2002-08-12 Andrew Cagney <cagney@redhat.com>
[binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "floatformat.h"
30 #include "symfile.h"
31 #include "symtab.h"
32 #include "gdbcmd.h"
33 #include "command.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "doublest.h"
37 #include "value.h"
38 #include "gdb_assert.h"
39
40 #include "i386-tdep.h"
41
42 /* Names of the registers. The first 10 registers match the register
43 numbering scheme used by GCC for stabs and DWARF. */
44 static char *i386_register_names[] =
45 {
46 "eax", "ecx", "edx", "ebx",
47 "esp", "ebp", "esi", "edi",
48 "eip", "eflags", "cs", "ss",
49 "ds", "es", "fs", "gs",
50 "st0", "st1", "st2", "st3",
51 "st4", "st5", "st6", "st7",
52 "fctrl", "fstat", "ftag", "fiseg",
53 "fioff", "foseg", "fooff", "fop",
54 "xmm0", "xmm1", "xmm2", "xmm3",
55 "xmm4", "xmm5", "xmm6", "xmm7",
56 "mxcsr"
57 };
58
59 /* Return the name of register REG. */
60
61 const char *
62 i386_register_name (int reg)
63 {
64 if (reg < 0)
65 return NULL;
66 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
67 return NULL;
68
69 return i386_register_names[reg];
70 }
71
72 /* Convert stabs register number REG to the appropriate register
73 number used by GDB. */
74
75 static int
76 i386_stab_reg_to_regnum (int reg)
77 {
78 /* This implements what GCC calls the "default" register map. */
79 if (reg >= 0 && reg <= 7)
80 {
81 /* General registers. */
82 return reg;
83 }
84 else if (reg >= 12 && reg <= 19)
85 {
86 /* Floating-point registers. */
87 return reg - 12 + FP0_REGNUM;
88 }
89 else if (reg >= 21 && reg <= 28)
90 {
91 /* SSE registers. */
92 return reg - 21 + XMM0_REGNUM;
93 }
94 else if (reg >= 29 && reg <= 36)
95 {
96 /* MMX registers. */
97 /* FIXME: kettenis/2001-07-28: Should we have the MMX registers
98 as pseudo-registers? */
99 return reg - 29 + FP0_REGNUM;
100 }
101
102 /* This will hopefully provoke a warning. */
103 return NUM_REGS + NUM_PSEUDO_REGS;
104 }
105
106 /* Convert DWARF register number REG to the appropriate register
107 number used by GDB. */
108
109 static int
110 i386_dwarf_reg_to_regnum (int reg)
111 {
112 /* The DWARF register numbering includes %eip and %eflags, and
113 numbers the floating point registers differently. */
114 if (reg >= 0 && reg <= 9)
115 {
116 /* General registers. */
117 return reg;
118 }
119 else if (reg >= 11 && reg <= 18)
120 {
121 /* Floating-point registers. */
122 return reg - 11 + FP0_REGNUM;
123 }
124 else if (reg >= 21)
125 {
126 /* The SSE and MMX registers have identical numbers as in stabs. */
127 return i386_stab_reg_to_regnum (reg);
128 }
129
130 /* This will hopefully provoke a warning. */
131 return NUM_REGS + NUM_PSEUDO_REGS;
132 }
133 \f
134
135 /* This is the variable that is set with "set disassembly-flavor", and
136 its legitimate values. */
137 static const char att_flavor[] = "att";
138 static const char intel_flavor[] = "intel";
139 static const char *valid_flavors[] =
140 {
141 att_flavor,
142 intel_flavor,
143 NULL
144 };
145 static const char *disassembly_flavor = att_flavor;
146
147 /* Stdio style buffering was used to minimize calls to ptrace, but
148 this buffering did not take into account that the code section
149 being accessed may not be an even number of buffers long (even if
150 the buffer is only sizeof(int) long). In cases where the code
151 section size happened to be a non-integral number of buffers long,
152 attempting to read the last buffer would fail. Simply using
153 target_read_memory and ignoring errors, rather than read_memory, is
154 not the correct solution, since legitimate access errors would then
155 be totally ignored. To properly handle this situation and continue
156 to use buffering would require that this code be able to determine
157 the minimum code section size granularity (not the alignment of the
158 section itself, since the actual failing case that pointed out this
159 problem had a section alignment of 4 but was not a multiple of 4
160 bytes long), on a target by target basis, and then adjust it's
161 buffer size accordingly. This is messy, but potentially feasible.
162 It probably needs the bfd library's help and support. For now, the
163 buffer size is set to 1. (FIXME -fnf) */
164
165 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
166 static CORE_ADDR codestream_next_addr;
167 static CORE_ADDR codestream_addr;
168 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
169 static int codestream_off;
170 static int codestream_cnt;
171
172 #define codestream_tell() (codestream_addr + codestream_off)
173 #define codestream_peek() \
174 (codestream_cnt == 0 ? \
175 codestream_fill(1) : codestream_buf[codestream_off])
176 #define codestream_get() \
177 (codestream_cnt-- == 0 ? \
178 codestream_fill(0) : codestream_buf[codestream_off++])
179
180 static unsigned char
181 codestream_fill (int peek_flag)
182 {
183 codestream_addr = codestream_next_addr;
184 codestream_next_addr += CODESTREAM_BUFSIZ;
185 codestream_off = 0;
186 codestream_cnt = CODESTREAM_BUFSIZ;
187 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
188
189 if (peek_flag)
190 return (codestream_peek ());
191 else
192 return (codestream_get ());
193 }
194
195 static void
196 codestream_seek (CORE_ADDR place)
197 {
198 codestream_next_addr = place / CODESTREAM_BUFSIZ;
199 codestream_next_addr *= CODESTREAM_BUFSIZ;
200 codestream_cnt = 0;
201 codestream_fill (1);
202 while (codestream_tell () != place)
203 codestream_get ();
204 }
205
206 static void
207 codestream_read (unsigned char *buf, int count)
208 {
209 unsigned char *p;
210 int i;
211 p = buf;
212 for (i = 0; i < count; i++)
213 *p++ = codestream_get ();
214 }
215 \f
216
217 /* If the next instruction is a jump, move to its target. */
218
219 static void
220 i386_follow_jump (void)
221 {
222 unsigned char buf[4];
223 long delta;
224
225 int data16;
226 CORE_ADDR pos;
227
228 pos = codestream_tell ();
229
230 data16 = 0;
231 if (codestream_peek () == 0x66)
232 {
233 codestream_get ();
234 data16 = 1;
235 }
236
237 switch (codestream_get ())
238 {
239 case 0xe9:
240 /* Relative jump: if data16 == 0, disp32, else disp16. */
241 if (data16)
242 {
243 codestream_read (buf, 2);
244 delta = extract_signed_integer (buf, 2);
245
246 /* Include the size of the jmp instruction (including the
247 0x66 prefix). */
248 pos += delta + 4;
249 }
250 else
251 {
252 codestream_read (buf, 4);
253 delta = extract_signed_integer (buf, 4);
254
255 pos += delta + 5;
256 }
257 break;
258 case 0xeb:
259 /* Relative jump, disp8 (ignore data16). */
260 codestream_read (buf, 1);
261 /* Sign-extend it. */
262 delta = extract_signed_integer (buf, 1);
263
264 pos += delta + 2;
265 break;
266 }
267 codestream_seek (pos);
268 }
269
270 /* Find & return the amount a local space allocated, and advance the
271 codestream to the first register push (if any).
272
273 If the entry sequence doesn't make sense, return -1, and leave
274 codestream pointer at a random spot. */
275
276 static long
277 i386_get_frame_setup (CORE_ADDR pc)
278 {
279 unsigned char op;
280
281 codestream_seek (pc);
282
283 i386_follow_jump ();
284
285 op = codestream_get ();
286
287 if (op == 0x58) /* popl %eax */
288 {
289 /* This function must start with
290
291 popl %eax 0x58
292 xchgl %eax, (%esp) 0x87 0x04 0x24
293 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
294
295 (the System V compiler puts out the second `xchg'
296 instruction, and the assembler doesn't try to optimize it, so
297 the 'sib' form gets generated). This sequence is used to get
298 the address of the return buffer for a function that returns
299 a structure. */
300 int pos;
301 unsigned char buf[4];
302 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
303 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
304
305 pos = codestream_tell ();
306 codestream_read (buf, 4);
307 if (memcmp (buf, proto1, 3) == 0)
308 pos += 3;
309 else if (memcmp (buf, proto2, 4) == 0)
310 pos += 4;
311
312 codestream_seek (pos);
313 op = codestream_get (); /* Update next opcode. */
314 }
315
316 if (op == 0x68 || op == 0x6a)
317 {
318 /* This function may start with
319
320 pushl constant
321 call _probe
322 addl $4, %esp
323
324 followed by
325
326 pushl %ebp
327
328 etc. */
329 int pos;
330 unsigned char buf[8];
331
332 /* Skip past the `pushl' instruction; it has either a one-byte
333 or a four-byte operand, depending on the opcode. */
334 pos = codestream_tell ();
335 if (op == 0x68)
336 pos += 4;
337 else
338 pos += 1;
339 codestream_seek (pos);
340
341 /* Read the following 8 bytes, which should be "call _probe" (6
342 bytes) followed by "addl $4,%esp" (2 bytes). */
343 codestream_read (buf, sizeof (buf));
344 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
345 pos += sizeof (buf);
346 codestream_seek (pos);
347 op = codestream_get (); /* Update next opcode. */
348 }
349
350 if (op == 0x55) /* pushl %ebp */
351 {
352 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
353 switch (codestream_get ())
354 {
355 case 0x8b:
356 if (codestream_get () != 0xec)
357 return -1;
358 break;
359 case 0x89:
360 if (codestream_get () != 0xe5)
361 return -1;
362 break;
363 default:
364 return -1;
365 }
366 /* Check for stack adjustment
367
368 subl $XXX, %esp
369
370 NOTE: You can't subtract a 16 bit immediate from a 32 bit
371 reg, so we don't have to worry about a data16 prefix. */
372 op = codestream_peek ();
373 if (op == 0x83)
374 {
375 /* `subl' with 8 bit immediate. */
376 codestream_get ();
377 if (codestream_get () != 0xec)
378 /* Some instruction starting with 0x83 other than `subl'. */
379 {
380 codestream_seek (codestream_tell () - 2);
381 return 0;
382 }
383 /* `subl' with signed byte immediate (though it wouldn't
384 make sense to be negative). */
385 return (codestream_get ());
386 }
387 else if (op == 0x81)
388 {
389 char buf[4];
390 /* Maybe it is `subl' with a 32 bit immedediate. */
391 codestream_get ();
392 if (codestream_get () != 0xec)
393 /* Some instruction starting with 0x81 other than `subl'. */
394 {
395 codestream_seek (codestream_tell () - 2);
396 return 0;
397 }
398 /* It is `subl' with a 32 bit immediate. */
399 codestream_read ((unsigned char *) buf, 4);
400 return extract_signed_integer (buf, 4);
401 }
402 else
403 {
404 return 0;
405 }
406 }
407 else if (op == 0xc8)
408 {
409 char buf[2];
410 /* `enter' with 16 bit unsigned immediate. */
411 codestream_read ((unsigned char *) buf, 2);
412 codestream_get (); /* Flush final byte of enter instruction. */
413 return extract_unsigned_integer (buf, 2);
414 }
415 return (-1);
416 }
417
418 /* Signal trampolines don't have a meaningful frame. The frame
419 pointer value we use is actually the frame pointer of the calling
420 frame -- that is, the frame which was in progress when the signal
421 trampoline was entered. GDB mostly treats this frame pointer value
422 as a magic cookie. We detect the case of a signal trampoline by
423 looking at the SIGNAL_HANDLER_CALLER field, which is set based on
424 PC_IN_SIGTRAMP.
425
426 When a signal trampoline is invoked from a frameless function, we
427 essentially have two frameless functions in a row. In this case,
428 we use the same magic cookie for three frames in a row. We detect
429 this case by seeing whether the next frame has
430 SIGNAL_HANDLER_CALLER set, and, if it does, checking whether the
431 current frame is actually frameless. In this case, we need to get
432 the PC by looking at the SP register value stored in the signal
433 context.
434
435 This should work in most cases except in horrible situations where
436 a signal occurs just as we enter a function but before the frame
437 has been set up. Incidentally, that's just what happens when we
438 call a function from GDB with a signal pending (there's a test in
439 the testsuite that makes this happen). Therefore we pretend that
440 we have a frameless function if we're stopped at the start of a
441 function. */
442
443 /* Return non-zero if we're dealing with a frameless signal, that is,
444 a signal trampoline invoked from a frameless function. */
445
446 static int
447 i386_frameless_signal_p (struct frame_info *frame)
448 {
449 return (frame->next && frame->next->signal_handler_caller
450 && (frameless_look_for_prologue (frame)
451 || frame->pc == get_pc_function_start (frame->pc)));
452 }
453
454 /* Return the chain-pointer for FRAME. In the case of the i386, the
455 frame's nominal address is the address of a 4-byte word containing
456 the calling frame's address. */
457
458 static CORE_ADDR
459 i386_frame_chain (struct frame_info *frame)
460 {
461 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
462 return frame->frame;
463
464 if (frame->signal_handler_caller
465 || i386_frameless_signal_p (frame))
466 return frame->frame;
467
468 if (! inside_entry_file (frame->pc))
469 return read_memory_unsigned_integer (frame->frame, 4);
470
471 return 0;
472 }
473
474 /* Determine whether the function invocation represented by FRAME does
475 not have a from on the stack associated with it. If it does not,
476 return non-zero, otherwise return zero. */
477
478 static int
479 i386_frameless_function_invocation (struct frame_info *frame)
480 {
481 if (frame->signal_handler_caller)
482 return 0;
483
484 return frameless_look_for_prologue (frame);
485 }
486
487 /* Assuming FRAME is for a sigtramp routine, return the saved program
488 counter. */
489
490 static CORE_ADDR
491 i386_sigtramp_saved_pc (struct frame_info *frame)
492 {
493 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
494 CORE_ADDR addr;
495
496 addr = tdep->sigcontext_addr (frame);
497 return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
498 }
499
500 /* Assuming FRAME is for a sigtramp routine, return the saved stack
501 pointer. */
502
503 static CORE_ADDR
504 i386_sigtramp_saved_sp (struct frame_info *frame)
505 {
506 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
507 CORE_ADDR addr;
508
509 addr = tdep->sigcontext_addr (frame);
510 return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
511 }
512
513 /* Return the saved program counter for FRAME. */
514
515 static CORE_ADDR
516 i386_frame_saved_pc (struct frame_info *frame)
517 {
518 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
519 return generic_read_register_dummy (frame->pc, frame->frame,
520 PC_REGNUM);
521
522 if (frame->signal_handler_caller)
523 return i386_sigtramp_saved_pc (frame);
524
525 if (i386_frameless_signal_p (frame))
526 {
527 CORE_ADDR sp = i386_sigtramp_saved_sp (frame->next);
528 return read_memory_unsigned_integer (sp, 4);
529 }
530
531 return read_memory_unsigned_integer (frame->frame + 4, 4);
532 }
533
534 /* Immediately after a function call, return the saved pc. */
535
536 static CORE_ADDR
537 i386_saved_pc_after_call (struct frame_info *frame)
538 {
539 if (frame->signal_handler_caller)
540 return i386_sigtramp_saved_pc (frame);
541
542 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
543 }
544
545 /* Return number of args passed to a frame.
546 Can return -1, meaning no way to tell. */
547
548 static int
549 i386_frame_num_args (struct frame_info *fi)
550 {
551 #if 1
552 return -1;
553 #else
554 /* This loses because not only might the compiler not be popping the
555 args right after the function call, it might be popping args from
556 both this call and a previous one, and we would say there are
557 more args than there really are. */
558
559 int retpc;
560 unsigned char op;
561 struct frame_info *pfi;
562
563 /* On the i386, the instruction following the call could be:
564 popl %ecx - one arg
565 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
566 anything else - zero args. */
567
568 int frameless;
569
570 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
571 if (frameless)
572 /* In the absence of a frame pointer, GDB doesn't get correct
573 values for nameless arguments. Return -1, so it doesn't print
574 any nameless arguments. */
575 return -1;
576
577 pfi = get_prev_frame (fi);
578 if (pfi == 0)
579 {
580 /* NOTE: This can happen if we are looking at the frame for
581 main, because FRAME_CHAIN_VALID won't let us go into start.
582 If we have debugging symbols, that's not really a big deal;
583 it just means it will only show as many arguments to main as
584 are declared. */
585 return -1;
586 }
587 else
588 {
589 retpc = pfi->pc;
590 op = read_memory_integer (retpc, 1);
591 if (op == 0x59) /* pop %ecx */
592 return 1;
593 else if (op == 0x83)
594 {
595 op = read_memory_integer (retpc + 1, 1);
596 if (op == 0xc4)
597 /* addl $<signed imm 8 bits>, %esp */
598 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
599 else
600 return 0;
601 }
602 else if (op == 0x81) /* `add' with 32 bit immediate. */
603 {
604 op = read_memory_integer (retpc + 1, 1);
605 if (op == 0xc4)
606 /* addl $<imm 32>, %esp */
607 return read_memory_integer (retpc + 2, 4) / 4;
608 else
609 return 0;
610 }
611 else
612 {
613 return 0;
614 }
615 }
616 #endif
617 }
618
619 /* Parse the first few instructions the function to see what registers
620 were stored.
621
622 We handle these cases:
623
624 The startup sequence can be at the start of the function, or the
625 function can start with a branch to startup code at the end.
626
627 %ebp can be set up with either the 'enter' instruction, or "pushl
628 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
629 once used in the System V compiler).
630
631 Local space is allocated just below the saved %ebp by either the
632 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
633 bit unsigned argument for space to allocate, and the 'addl'
634 instruction could have either a signed byte, or 32 bit immediate.
635
636 Next, the registers used by this function are pushed. With the
637 System V compiler they will always be in the order: %edi, %esi,
638 %ebx (and sometimes a harmless bug causes it to also save but not
639 restore %eax); however, the code below is willing to see the pushes
640 in any order, and will handle up to 8 of them.
641
642 If the setup sequence is at the end of the function, then the next
643 instruction will be a branch back to the start. */
644
645 static void
646 i386_frame_init_saved_regs (struct frame_info *fip)
647 {
648 long locals = -1;
649 unsigned char op;
650 CORE_ADDR addr;
651 CORE_ADDR pc;
652 int i;
653
654 if (fip->saved_regs)
655 return;
656
657 frame_saved_regs_zalloc (fip);
658
659 pc = get_pc_function_start (fip->pc);
660 if (pc != 0)
661 locals = i386_get_frame_setup (pc);
662
663 if (locals >= 0)
664 {
665 addr = fip->frame - 4 - locals;
666 for (i = 0; i < 8; i++)
667 {
668 op = codestream_get ();
669 if (op < 0x50 || op > 0x57)
670 break;
671 #ifdef I386_REGNO_TO_SYMMETRY
672 /* Dynix uses different internal numbering. Ick. */
673 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
674 #else
675 fip->saved_regs[op - 0x50] = addr;
676 #endif
677 addr -= 4;
678 }
679 }
680
681 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
682 fip->saved_regs[FP_REGNUM] = fip->frame;
683 }
684
685 /* Return PC of first real instruction. */
686
687 static CORE_ADDR
688 i386_skip_prologue (CORE_ADDR pc)
689 {
690 unsigned char op;
691 int i;
692 static unsigned char pic_pat[6] =
693 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
694 0x5b, /* popl %ebx */
695 };
696 CORE_ADDR pos;
697
698 if (i386_get_frame_setup (pc) < 0)
699 return (pc);
700
701 /* Found valid frame setup -- codestream now points to start of push
702 instructions for saving registers. */
703
704 /* Skip over register saves. */
705 for (i = 0; i < 8; i++)
706 {
707 op = codestream_peek ();
708 /* Break if not `pushl' instrunction. */
709 if (op < 0x50 || op > 0x57)
710 break;
711 codestream_get ();
712 }
713
714 /* The native cc on SVR4 in -K PIC mode inserts the following code
715 to get the address of the global offset table (GOT) into register
716 %ebx
717
718 call 0x0
719 popl %ebx
720 movl %ebx,x(%ebp) (optional)
721 addl y,%ebx
722
723 This code is with the rest of the prologue (at the end of the
724 function), so we have to skip it to get to the first real
725 instruction at the start of the function. */
726
727 pos = codestream_tell ();
728 for (i = 0; i < 6; i++)
729 {
730 op = codestream_get ();
731 if (pic_pat[i] != op)
732 break;
733 }
734 if (i == 6)
735 {
736 unsigned char buf[4];
737 long delta = 6;
738
739 op = codestream_get ();
740 if (op == 0x89) /* movl %ebx, x(%ebp) */
741 {
742 op = codestream_get ();
743 if (op == 0x5d) /* One byte offset from %ebp. */
744 {
745 delta += 3;
746 codestream_read (buf, 1);
747 }
748 else if (op == 0x9d) /* Four byte offset from %ebp. */
749 {
750 delta += 6;
751 codestream_read (buf, 4);
752 }
753 else /* Unexpected instruction. */
754 delta = -1;
755 op = codestream_get ();
756 }
757 /* addl y,%ebx */
758 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
759 {
760 pos += delta + 6;
761 }
762 }
763 codestream_seek (pos);
764
765 i386_follow_jump ();
766
767 return (codestream_tell ());
768 }
769
770 /* Use the program counter to determine the contents and size of a
771 breakpoint instruction. Return a pointer to a string of bytes that
772 encode a breakpoint instruction, store the length of the string in
773 *LEN and optionally adjust *PC to point to the correct memory
774 location for inserting the breakpoint.
775
776 On the i386 we have a single breakpoint that fits in a single byte
777 and can be inserted anywhere. */
778
779 static const unsigned char *
780 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
781 {
782 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
783
784 *len = sizeof (break_insn);
785 return break_insn;
786 }
787
788 /* Push the return address (pointing to the call dummy) onto the stack
789 and return the new value for the stack pointer. */
790
791 static CORE_ADDR
792 i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
793 {
794 char buf[4];
795
796 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
797 write_memory (sp - 4, buf, 4);
798 return sp - 4;
799 }
800
801 static void
802 i386_do_pop_frame (struct frame_info *frame)
803 {
804 CORE_ADDR fp;
805 int regnum;
806 char regbuf[I386_MAX_REGISTER_SIZE];
807
808 fp = FRAME_FP (frame);
809 i386_frame_init_saved_regs (frame);
810
811 for (regnum = 0; regnum < NUM_REGS; regnum++)
812 {
813 CORE_ADDR addr;
814 addr = frame->saved_regs[regnum];
815 if (addr)
816 {
817 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
818 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
819 REGISTER_RAW_SIZE (regnum));
820 }
821 }
822 write_register (FP_REGNUM, read_memory_integer (fp, 4));
823 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
824 write_register (SP_REGNUM, fp + 8);
825 flush_cached_frames ();
826 }
827
828 static void
829 i386_pop_frame (void)
830 {
831 generic_pop_current_frame (i386_do_pop_frame);
832 }
833 \f
834
835 /* Figure out where the longjmp will land. Slurp the args out of the
836 stack. We expect the first arg to be a pointer to the jmp_buf
837 structure from which we extract the address that we will land at.
838 This address is copied into PC. This routine returns true on
839 success. */
840
841 static int
842 i386_get_longjmp_target (CORE_ADDR *pc)
843 {
844 char buf[4];
845 CORE_ADDR sp, jb_addr;
846 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
847
848 /* If JB_PC_OFFSET is -1, we have no way to find out where the
849 longjmp will land. */
850 if (jb_pc_offset == -1)
851 return 0;
852
853 sp = read_register (SP_REGNUM);
854 if (target_read_memory (sp + 4, buf, 4))
855 return 0;
856
857 jb_addr = extract_address (buf, 4);
858 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
859 return 0;
860
861 *pc = extract_address (buf, 4);
862 return 1;
863 }
864 \f
865
866 static CORE_ADDR
867 i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
868 int struct_return, CORE_ADDR struct_addr)
869 {
870 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
871
872 if (struct_return)
873 {
874 char buf[4];
875
876 sp -= 4;
877 store_address (buf, 4, struct_addr);
878 write_memory (sp, buf, 4);
879 }
880
881 return sp;
882 }
883
884 static void
885 i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
886 {
887 /* Do nothing. Everything was already done by i386_push_arguments. */
888 }
889
890 /* These registers are used for returning integers (and on some
891 targets also for returning `struct' and `union' values when their
892 size and alignment match an integer type). */
893 #define LOW_RETURN_REGNUM 0 /* %eax */
894 #define HIGH_RETURN_REGNUM 2 /* %edx */
895
896 /* Extract from an array REGBUF containing the (raw) register state, a
897 function return value of TYPE, and copy that, in virtual format,
898 into VALBUF. */
899
900 static void
901 i386_extract_return_value (struct type *type, struct regcache *regcache,
902 char *valbuf)
903 {
904 int len = TYPE_LENGTH (type);
905 char buf[I386_MAX_REGISTER_SIZE];
906
907 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
908 && TYPE_NFIELDS (type) == 1)
909 {
910 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
911 return;
912 }
913
914 if (TYPE_CODE (type) == TYPE_CODE_FLT)
915 {
916 if (FP0_REGNUM == 0)
917 {
918 warning ("Cannot find floating-point return value.");
919 memset (valbuf, 0, len);
920 return;
921 }
922
923 /* Floating-point return values can be found in %st(0). Convert
924 its contents to the desired type. This is probably not
925 exactly how it would happen on the target itself, but it is
926 the best we can do. */
927 regcache_raw_read (regcache, FP0_REGNUM, buf);
928 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
929 }
930 else
931 {
932 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
933 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
934
935 if (len <= low_size)
936 {
937 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
938 memcpy (valbuf, buf, len);
939 }
940 else if (len <= (low_size + high_size))
941 {
942 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
943 memcpy (valbuf, buf, low_size);
944 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
945 memcpy (valbuf + low_size, buf, len - low_size);
946 }
947 else
948 internal_error (__FILE__, __LINE__,
949 "Cannot extract return value of %d bytes long.", len);
950 }
951 }
952
953 /* Write into the appropriate registers a function return value stored
954 in VALBUF of type TYPE, given in virtual format. */
955
956 static void
957 i386_store_return_value (struct type *type, char *valbuf)
958 {
959 int len = TYPE_LENGTH (type);
960
961 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
962 && TYPE_NFIELDS (type) == 1)
963 {
964 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
965 return;
966 }
967
968 if (TYPE_CODE (type) == TYPE_CODE_FLT)
969 {
970 unsigned int fstat;
971 char buf[FPU_REG_RAW_SIZE];
972
973 if (FP0_REGNUM == 0)
974 {
975 warning ("Cannot set floating-point return value.");
976 return;
977 }
978
979 /* Returning floating-point values is a bit tricky. Apart from
980 storing the return value in %st(0), we have to simulate the
981 state of the FPU at function return point. */
982
983 /* Convert the value found in VALBUF to the extended
984 floating-point format used by the FPU. This is probably
985 not exactly how it would happen on the target itself, but
986 it is the best we can do. */
987 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
988 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
989 FPU_REG_RAW_SIZE);
990
991 /* Set the top of the floating-point register stack to 7. The
992 actual value doesn't really matter, but 7 is what a normal
993 function return would end up with if the program started out
994 with a freshly initialized FPU. */
995 fstat = read_register (FSTAT_REGNUM);
996 fstat |= (7 << 11);
997 write_register (FSTAT_REGNUM, fstat);
998
999 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1000 the floating-point register stack to 7, the appropriate value
1001 for the tag word is 0x3fff. */
1002 write_register (FTAG_REGNUM, 0x3fff);
1003 }
1004 else
1005 {
1006 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1007 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1008
1009 if (len <= low_size)
1010 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
1011 else if (len <= (low_size + high_size))
1012 {
1013 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
1014 valbuf, low_size);
1015 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
1016 valbuf + low_size, len - low_size);
1017 }
1018 else
1019 internal_error (__FILE__, __LINE__,
1020 "Cannot store return value of %d bytes long.", len);
1021 }
1022 }
1023
1024 /* Extract from an array REGBUF containing the (raw) register state
1025 the address in which a function should return its structure value,
1026 as a CORE_ADDR. */
1027
1028 static CORE_ADDR
1029 i386_extract_struct_value_address (struct regcache *regcache)
1030 {
1031 /* NOTE: cagney/2002-08-12: Replaced a call to
1032 regcache_raw_read_as_address() with a call to
1033 regcache_cooked_read_unsigned(). The old, ...as_address function
1034 was eventually calling extract_unsigned_integer (via
1035 extract_address) to unpack the registers value. The below is
1036 doing an unsigned extract so that it is functionally equivalent.
1037 The read needs to be cooked as, otherwise, it will never
1038 correctly return the value of a register in the [NUM_REGS
1039 .. NUM_REGS+NUM_PSEUDO_REGS) range. */
1040 ULONGEST val;
1041 regcache_cooked_read_unsigned (regcache, LOW_RETURN_REGNUM, &val);
1042 return val;
1043 }
1044 \f
1045
1046 /* This is the variable that is set with "set struct-convention", and
1047 its legitimate values. */
1048 static const char default_struct_convention[] = "default";
1049 static const char pcc_struct_convention[] = "pcc";
1050 static const char reg_struct_convention[] = "reg";
1051 static const char *valid_conventions[] =
1052 {
1053 default_struct_convention,
1054 pcc_struct_convention,
1055 reg_struct_convention,
1056 NULL
1057 };
1058 static const char *struct_convention = default_struct_convention;
1059
1060 static int
1061 i386_use_struct_convention (int gcc_p, struct type *type)
1062 {
1063 enum struct_return struct_return;
1064
1065 if (struct_convention == default_struct_convention)
1066 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1067 else if (struct_convention == pcc_struct_convention)
1068 struct_return = pcc_struct_return;
1069 else
1070 struct_return = reg_struct_return;
1071
1072 return generic_use_struct_convention (struct_return == reg_struct_return,
1073 type);
1074 }
1075 \f
1076
1077 /* Return the GDB type object for the "standard" data type of data in
1078 register REGNUM. Perhaps %esi and %edi should go here, but
1079 potentially they could be used for things other than address. */
1080
1081 static struct type *
1082 i386_register_virtual_type (int regnum)
1083 {
1084 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1085 return lookup_pointer_type (builtin_type_void);
1086
1087 if (IS_FP_REGNUM (regnum))
1088 return builtin_type_i387_ext;
1089
1090 if (IS_SSE_REGNUM (regnum))
1091 return builtin_type_vec128i;
1092
1093 return builtin_type_int;
1094 }
1095
1096 /* Return true iff register REGNUM's virtual format is different from
1097 its raw format. Note that this definition assumes that the host
1098 supports IEEE 32-bit floats, since it doesn't say that SSE
1099 registers need conversion. Even if we can't find a counterexample,
1100 this is still sloppy. */
1101
1102 static int
1103 i386_register_convertible (int regnum)
1104 {
1105 return IS_FP_REGNUM (regnum);
1106 }
1107
1108 /* Convert data from raw format for register REGNUM in buffer FROM to
1109 virtual format with type TYPE in buffer TO. */
1110
1111 static void
1112 i386_register_convert_to_virtual (int regnum, struct type *type,
1113 char *from, char *to)
1114 {
1115 gdb_assert (IS_FP_REGNUM (regnum));
1116
1117 /* We only support floating-point values. */
1118 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1119 {
1120 warning ("Cannot convert floating-point register value "
1121 "to non-floating-point type.");
1122 memset (to, 0, TYPE_LENGTH (type));
1123 return;
1124 }
1125
1126 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1127 the extended floating-point format used by the FPU. */
1128 convert_typed_floating (from, builtin_type_i387_ext, to, type);
1129 }
1130
1131 /* Convert data from virtual format with type TYPE in buffer FROM to
1132 raw format for register REGNUM in buffer TO. */
1133
1134 static void
1135 i386_register_convert_to_raw (struct type *type, int regnum,
1136 char *from, char *to)
1137 {
1138 gdb_assert (IS_FP_REGNUM (regnum));
1139
1140 /* We only support floating-point values. */
1141 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1142 {
1143 warning ("Cannot convert non-floating-point type "
1144 "to floating-point register value.");
1145 memset (to, 0, TYPE_LENGTH (type));
1146 return;
1147 }
1148
1149 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1150 to the extended floating-point format used by the FPU. */
1151 convert_typed_floating (from, type, to, builtin_type_i387_ext);
1152 }
1153 \f
1154
1155 #ifdef STATIC_TRANSFORM_NAME
1156 /* SunPRO encodes the static variables. This is not related to C++
1157 mangling, it is done for C too. */
1158
1159 char *
1160 sunpro_static_transform_name (char *name)
1161 {
1162 char *p;
1163 if (IS_STATIC_TRANSFORM_NAME (name))
1164 {
1165 /* For file-local statics there will be a period, a bunch of
1166 junk (the contents of which match a string given in the
1167 N_OPT), a period and the name. For function-local statics
1168 there will be a bunch of junk (which seems to change the
1169 second character from 'A' to 'B'), a period, the name of the
1170 function, and the name. So just skip everything before the
1171 last period. */
1172 p = strrchr (name, '.');
1173 if (p != NULL)
1174 name = p + 1;
1175 }
1176 return name;
1177 }
1178 #endif /* STATIC_TRANSFORM_NAME */
1179 \f
1180
1181 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1182
1183 CORE_ADDR
1184 skip_trampoline_code (CORE_ADDR pc, char *name)
1185 {
1186 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1187 {
1188 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1189 struct minimal_symbol *indsym =
1190 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1191 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
1192
1193 if (symname)
1194 {
1195 if (strncmp (symname, "__imp_", 6) == 0
1196 || strncmp (symname, "_imp_", 5) == 0)
1197 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1198 }
1199 }
1200 return 0; /* Not a trampoline. */
1201 }
1202 \f
1203
1204 /* Return non-zero if PC and NAME show that we are in a signal
1205 trampoline. */
1206
1207 static int
1208 i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1209 {
1210 return (name && strcmp ("_sigtramp", name) == 0);
1211 }
1212 \f
1213
1214 /* We have two flavours of disassembly. The machinery on this page
1215 deals with switching between those. */
1216
1217 static int
1218 gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
1219 {
1220 if (disassembly_flavor == att_flavor)
1221 return print_insn_i386_att (memaddr, info);
1222 else if (disassembly_flavor == intel_flavor)
1223 return print_insn_i386_intel (memaddr, info);
1224 /* Never reached -- disassembly_flavour is always either att_flavor
1225 or intel_flavor. */
1226 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1227 }
1228 \f
1229
1230 /* There are a few i386 architecture variants that differ only
1231 slightly from the generic i386 target. For now, we don't give them
1232 their own source file, but include them here. As a consequence,
1233 they'll always be included. */
1234
1235 /* System V Release 4 (SVR4). */
1236
1237 static int
1238 i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
1239 {
1240 return (name && (strcmp ("_sigreturn", name) == 0
1241 || strcmp ("_sigacthandler", name) == 0
1242 || strcmp ("sigvechandler", name) == 0));
1243 }
1244
1245 /* Get address of the pushed ucontext (sigcontext) on the stack for
1246 all three variants of SVR4 sigtramps. */
1247
1248 static CORE_ADDR
1249 i386_svr4_sigcontext_addr (struct frame_info *frame)
1250 {
1251 int sigcontext_offset = -1;
1252 char *name = NULL;
1253
1254 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1255 if (name)
1256 {
1257 if (strcmp (name, "_sigreturn") == 0)
1258 sigcontext_offset = 132;
1259 else if (strcmp (name, "_sigacthandler") == 0)
1260 sigcontext_offset = 80;
1261 else if (strcmp (name, "sigvechandler") == 0)
1262 sigcontext_offset = 120;
1263 }
1264
1265 gdb_assert (sigcontext_offset != -1);
1266
1267 if (frame->next)
1268 return frame->next->frame + sigcontext_offset;
1269 return read_register (SP_REGNUM) + sigcontext_offset;
1270 }
1271 \f
1272
1273 /* DJGPP. */
1274
1275 static int
1276 i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1277 {
1278 /* DJGPP doesn't have any special frames for signal handlers. */
1279 return 0;
1280 }
1281 \f
1282
1283 /* Generic ELF. */
1284
1285 void
1286 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1287 {
1288 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1289 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1290 }
1291
1292 /* System V Release 4 (SVR4). */
1293
1294 void
1295 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1296 {
1297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1298
1299 /* System V Release 4 uses ELF. */
1300 i386_elf_init_abi (info, gdbarch);
1301
1302 /* FIXME: kettenis/20020511: Why do we override this function here? */
1303 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1304
1305 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
1306 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1307 tdep->sc_pc_offset = 14 * 4;
1308 tdep->sc_sp_offset = 7 * 4;
1309
1310 tdep->jb_pc_offset = 20;
1311 }
1312
1313 /* DJGPP. */
1314
1315 static void
1316 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1317 {
1318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1319
1320 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
1321
1322 tdep->jb_pc_offset = 36;
1323 }
1324
1325 /* NetWare. */
1326
1327 static void
1328 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1329 {
1330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1331
1332 /* FIXME: kettenis/20020511: Why do we override this function here? */
1333 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1334
1335 tdep->jb_pc_offset = 24;
1336 }
1337 \f
1338
1339 static struct gdbarch *
1340 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1341 {
1342 struct gdbarch_tdep *tdep;
1343 struct gdbarch *gdbarch;
1344 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
1345
1346 /* Try to determine the OS ABI of the object we're loading. */
1347 if (info.abfd != NULL)
1348 osabi = gdbarch_lookup_osabi (info.abfd);
1349
1350 /* Find a candidate among extant architectures. */
1351 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1352 arches != NULL;
1353 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1354 {
1355 /* Make sure the OS ABI selection matches. */
1356 tdep = gdbarch_tdep (arches->gdbarch);
1357 if (tdep && tdep->osabi == osabi)
1358 return arches->gdbarch;
1359 }
1360
1361 /* Allocate space for the new architecture. */
1362 tdep = XMALLOC (struct gdbarch_tdep);
1363 gdbarch = gdbarch_alloc (&info, tdep);
1364
1365 tdep->osabi = osabi;
1366
1367 /* The i386 default settings don't include the SSE registers.
1368 FIXME: kettenis/20020614: They do include the FPU registers for
1369 now, which probably is not quite right. */
1370 tdep->num_xmm_regs = 0;
1371
1372 tdep->jb_pc_offset = -1;
1373 tdep->struct_return = pcc_struct_return;
1374 tdep->sigtramp_start = 0;
1375 tdep->sigtramp_end = 0;
1376 tdep->sigcontext_addr = NULL;
1377 tdep->sc_pc_offset = -1;
1378 tdep->sc_sp_offset = -1;
1379
1380 /* The format used for `long double' on almost all i386 targets is
1381 the i387 extended floating-point format. In fact, of all targets
1382 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1383 on having a `long double' that's not `long' at all. */
1384 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
1385
1386 /* Although the i386 extended floating-point has only 80 significant
1387 bits, a `long double' actually takes up 96, probably to enforce
1388 alignment. */
1389 set_gdbarch_long_double_bit (gdbarch, 96);
1390
1391 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1392 tm-symmetry.h currently override this. Sigh. */
1393 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
1394
1395 set_gdbarch_sp_regnum (gdbarch, 4);
1396 set_gdbarch_fp_regnum (gdbarch, 5);
1397 set_gdbarch_pc_regnum (gdbarch, 8);
1398 set_gdbarch_ps_regnum (gdbarch, 9);
1399 set_gdbarch_fp0_regnum (gdbarch, 16);
1400
1401 /* Use the "default" register numbering scheme for stabs and COFF. */
1402 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1403 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1404
1405 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1406 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1407 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1408
1409 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1410 be in use on any of the supported i386 targets. */
1411
1412 set_gdbarch_register_name (gdbarch, i386_register_name);
1413 set_gdbarch_register_size (gdbarch, 4);
1414 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
1415 set_gdbarch_max_register_raw_size (gdbarch, I386_MAX_REGISTER_SIZE);
1416 set_gdbarch_max_register_virtual_size (gdbarch, I386_MAX_REGISTER_SIZE);
1417 set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type);
1418
1419 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
1420
1421 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1422
1423 /* Call dummy code. */
1424 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1425 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1426 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1427 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1428 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1429 set_gdbarch_call_dummy_length (gdbarch, 0);
1430 set_gdbarch_call_dummy_p (gdbarch, 1);
1431 set_gdbarch_call_dummy_words (gdbarch, NULL);
1432 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
1433 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1434 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1435
1436 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1437 set_gdbarch_register_convert_to_virtual (gdbarch,
1438 i386_register_convert_to_virtual);
1439 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1440
1441 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1442 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1443
1444 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
1445
1446 /* "An argument's size is increased, if necessary, to make it a
1447 multiple of [32-bit] words. This may require tail padding,
1448 depending on the size of the argument" -- from the x86 ABI. */
1449 set_gdbarch_parm_boundary (gdbarch, 32);
1450
1451 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
1452 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1453 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1454 set_gdbarch_push_return_address (gdbarch, i386_push_return_address);
1455 set_gdbarch_pop_frame (gdbarch, i386_pop_frame);
1456 set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return);
1457 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
1458 set_gdbarch_extract_struct_value_address (gdbarch,
1459 i386_extract_struct_value_address);
1460 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1461
1462 set_gdbarch_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
1463 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1464
1465 /* Stack grows downward. */
1466 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1467
1468 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1469 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1470 set_gdbarch_function_start_offset (gdbarch, 0);
1471
1472 /* The following redefines make backtracing through sigtramp work.
1473 They manufacture a fake sigtramp frame and obtain the saved pc in
1474 sigtramp from the sigcontext structure which is pushed by the
1475 kernel on the user stack, along with a pointer to it. */
1476
1477 set_gdbarch_frame_args_skip (gdbarch, 8);
1478 set_gdbarch_frameless_function_invocation (gdbarch,
1479 i386_frameless_function_invocation);
1480 set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
1481 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1482 set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
1483 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1484 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
1485 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
1486 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
1487 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1488
1489 /* Hook in ABI-specific overrides, if they have been registered. */
1490 gdbarch_init_osabi (info, gdbarch, osabi);
1491
1492 return gdbarch;
1493 }
1494
1495 static enum gdb_osabi
1496 i386_coff_osabi_sniffer (bfd *abfd)
1497 {
1498 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1499 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
1500 return GDB_OSABI_GO32;
1501
1502 return GDB_OSABI_UNKNOWN;
1503 }
1504
1505 static enum gdb_osabi
1506 i386_nlm_osabi_sniffer (bfd *abfd)
1507 {
1508 return GDB_OSABI_NETWARE;
1509 }
1510 \f
1511
1512 /* Provide a prototype to silence -Wmissing-prototypes. */
1513 void _initialize_i386_tdep (void);
1514
1515 void
1516 _initialize_i386_tdep (void)
1517 {
1518 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1519
1520 tm_print_insn = gdb_print_insn_i386;
1521 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1522
1523 /* Add the variable that controls the disassembly flavor. */
1524 {
1525 struct cmd_list_element *new_cmd;
1526
1527 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1528 valid_flavors,
1529 &disassembly_flavor,
1530 "\
1531 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1532 and the default value is \"att\".",
1533 &setlist);
1534 add_show_from_set (new_cmd, &showlist);
1535 }
1536
1537 /* Add the variable that controls the convention for returning
1538 structs. */
1539 {
1540 struct cmd_list_element *new_cmd;
1541
1542 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1543 valid_conventions,
1544 &struct_convention, "\
1545 Set the convention for returning small structs, valid values \
1546 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1547 &setlist);
1548 add_show_from_set (new_cmd, &showlist);
1549 }
1550
1551 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1552 i386_coff_osabi_sniffer);
1553 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1554 i386_nlm_osabi_sniffer);
1555
1556 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_SVR4,
1557 i386_svr4_init_abi);
1558 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_GO32,
1559 i386_go32_init_abi);
1560 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_NETWARE,
1561 i386_nw_init_abi);
1562 }