* i386-tdep.c (i386_saved_pc_after_call): New function.
[binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "floatformat.h"
30 #include "symtab.h"
31 #include "gdbcmd.h"
32 #include "command.h"
33 #include "arch-utils.h"
34 #include "regcache.h"
35
36 /* i386_register_byte[i] is the offset into the register file of the
37 start of register number i. We initialize this from
38 i386_register_raw_size. */
39 int i386_register_byte[MAX_NUM_REGS];
40
41 /* i386_register_raw_size[i] is the number of bytes of storage in
42 GDB's register array occupied by register i. */
43 int i386_register_raw_size[MAX_NUM_REGS] = {
44 4, 4, 4, 4,
45 4, 4, 4, 4,
46 4, 4, 4, 4,
47 4, 4, 4, 4,
48 10, 10, 10, 10,
49 10, 10, 10, 10,
50 4, 4, 4, 4,
51 4, 4, 4, 4,
52 16, 16, 16, 16,
53 16, 16, 16, 16,
54 4
55 };
56
57 /* i386_register_virtual_size[i] is the size in bytes of the virtual
58 type of register i. */
59 int i386_register_virtual_size[MAX_NUM_REGS];
60 \f
61
62 /* This is the variable that is set with "set disassembly-flavor", and
63 its legitimate values. */
64 static const char att_flavor[] = "att";
65 static const char intel_flavor[] = "intel";
66 static const char *valid_flavors[] =
67 {
68 att_flavor,
69 intel_flavor,
70 NULL
71 };
72 static const char *disassembly_flavor = att_flavor;
73
74 /* This is used to keep the bfd arch_info in sync with the disassembly
75 flavor. */
76 static void set_disassembly_flavor_sfunc (char *, int,
77 struct cmd_list_element *);
78 static void set_disassembly_flavor (void);
79 \f
80
81 /* Stdio style buffering was used to minimize calls to ptrace, but
82 this buffering did not take into account that the code section
83 being accessed may not be an even number of buffers long (even if
84 the buffer is only sizeof(int) long). In cases where the code
85 section size happened to be a non-integral number of buffers long,
86 attempting to read the last buffer would fail. Simply using
87 target_read_memory and ignoring errors, rather than read_memory, is
88 not the correct solution, since legitimate access errors would then
89 be totally ignored. To properly handle this situation and continue
90 to use buffering would require that this code be able to determine
91 the minimum code section size granularity (not the alignment of the
92 section itself, since the actual failing case that pointed out this
93 problem had a section alignment of 4 but was not a multiple of 4
94 bytes long), on a target by target basis, and then adjust it's
95 buffer size accordingly. This is messy, but potentially feasible.
96 It probably needs the bfd library's help and support. For now, the
97 buffer size is set to 1. (FIXME -fnf) */
98
99 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
100 static CORE_ADDR codestream_next_addr;
101 static CORE_ADDR codestream_addr;
102 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
103 static int codestream_off;
104 static int codestream_cnt;
105
106 #define codestream_tell() (codestream_addr + codestream_off)
107 #define codestream_peek() \
108 (codestream_cnt == 0 ? \
109 codestream_fill(1) : codestream_buf[codestream_off])
110 #define codestream_get() \
111 (codestream_cnt-- == 0 ? \
112 codestream_fill(0) : codestream_buf[codestream_off++])
113
114 static unsigned char
115 codestream_fill (int peek_flag)
116 {
117 codestream_addr = codestream_next_addr;
118 codestream_next_addr += CODESTREAM_BUFSIZ;
119 codestream_off = 0;
120 codestream_cnt = CODESTREAM_BUFSIZ;
121 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
122
123 if (peek_flag)
124 return (codestream_peek ());
125 else
126 return (codestream_get ());
127 }
128
129 static void
130 codestream_seek (CORE_ADDR place)
131 {
132 codestream_next_addr = place / CODESTREAM_BUFSIZ;
133 codestream_next_addr *= CODESTREAM_BUFSIZ;
134 codestream_cnt = 0;
135 codestream_fill (1);
136 while (codestream_tell () != place)
137 codestream_get ();
138 }
139
140 static void
141 codestream_read (unsigned char *buf, int count)
142 {
143 unsigned char *p;
144 int i;
145 p = buf;
146 for (i = 0; i < count; i++)
147 *p++ = codestream_get ();
148 }
149 \f
150
151 /* If the next instruction is a jump, move to its target. */
152
153 static void
154 i386_follow_jump (void)
155 {
156 unsigned char buf[4];
157 long delta;
158
159 int data16;
160 CORE_ADDR pos;
161
162 pos = codestream_tell ();
163
164 data16 = 0;
165 if (codestream_peek () == 0x66)
166 {
167 codestream_get ();
168 data16 = 1;
169 }
170
171 switch (codestream_get ())
172 {
173 case 0xe9:
174 /* Relative jump: if data16 == 0, disp32, else disp16. */
175 if (data16)
176 {
177 codestream_read (buf, 2);
178 delta = extract_signed_integer (buf, 2);
179
180 /* Include the size of the jmp instruction (including the
181 0x66 prefix). */
182 pos += delta + 4;
183 }
184 else
185 {
186 codestream_read (buf, 4);
187 delta = extract_signed_integer (buf, 4);
188
189 pos += delta + 5;
190 }
191 break;
192 case 0xeb:
193 /* Relative jump, disp8 (ignore data16). */
194 codestream_read (buf, 1);
195 /* Sign-extend it. */
196 delta = extract_signed_integer (buf, 1);
197
198 pos += delta + 2;
199 break;
200 }
201 codestream_seek (pos);
202 }
203
204 /* Find & return the amount a local space allocated, and advance the
205 codestream to the first register push (if any).
206
207 If the entry sequence doesn't make sense, return -1, and leave
208 codestream pointer at a random spot. */
209
210 static long
211 i386_get_frame_setup (CORE_ADDR pc)
212 {
213 unsigned char op;
214
215 codestream_seek (pc);
216
217 i386_follow_jump ();
218
219 op = codestream_get ();
220
221 if (op == 0x58) /* popl %eax */
222 {
223 /* This function must start with
224
225 popl %eax 0x58
226 xchgl %eax, (%esp) 0x87 0x04 0x24
227 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
228
229 (the System V compiler puts out the second `xchg'
230 instruction, and the assembler doesn't try to optimize it, so
231 the 'sib' form gets generated). This sequence is used to get
232 the address of the return buffer for a function that returns
233 a structure. */
234 int pos;
235 unsigned char buf[4];
236 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
237 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
238
239 pos = codestream_tell ();
240 codestream_read (buf, 4);
241 if (memcmp (buf, proto1, 3) == 0)
242 pos += 3;
243 else if (memcmp (buf, proto2, 4) == 0)
244 pos += 4;
245
246 codestream_seek (pos);
247 op = codestream_get (); /* Update next opcode. */
248 }
249
250 if (op == 0x68 || op == 0x6a)
251 {
252 /* This function may start with
253
254 pushl constant
255 call _probe
256 addl $4, %esp
257
258 followed by
259
260 pushl %ebp
261
262 etc. */
263 int pos;
264 unsigned char buf[8];
265
266 /* Skip past the `pushl' instruction; it has either a one-byte
267 or a four-byte operand, depending on the opcode. */
268 pos = codestream_tell ();
269 if (op == 0x68)
270 pos += 4;
271 else
272 pos += 1;
273 codestream_seek (pos);
274
275 /* Read the following 8 bytes, which should be "call _probe" (6
276 bytes) followed by "addl $4,%esp" (2 bytes). */
277 codestream_read (buf, sizeof (buf));
278 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
279 pos += sizeof (buf);
280 codestream_seek (pos);
281 op = codestream_get (); /* Update next opcode. */
282 }
283
284 if (op == 0x55) /* pushl %ebp */
285 {
286 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
287 switch (codestream_get ())
288 {
289 case 0x8b:
290 if (codestream_get () != 0xec)
291 return -1;
292 break;
293 case 0x89:
294 if (codestream_get () != 0xe5)
295 return -1;
296 break;
297 default:
298 return -1;
299 }
300 /* Check for stack adjustment
301
302 subl $XXX, %esp
303
304 NOTE: You can't subtract a 16 bit immediate from a 32 bit
305 reg, so we don't have to worry about a data16 prefix. */
306 op = codestream_peek ();
307 if (op == 0x83)
308 {
309 /* `subl' with 8 bit immediate. */
310 codestream_get ();
311 if (codestream_get () != 0xec)
312 /* Some instruction starting with 0x83 other than `subl'. */
313 {
314 codestream_seek (codestream_tell () - 2);
315 return 0;
316 }
317 /* `subl' with signed byte immediate (though it wouldn't
318 make sense to be negative). */
319 return (codestream_get ());
320 }
321 else if (op == 0x81)
322 {
323 char buf[4];
324 /* Maybe it is `subl' with a 32 bit immedediate. */
325 codestream_get ();
326 if (codestream_get () != 0xec)
327 /* Some instruction starting with 0x81 other than `subl'. */
328 {
329 codestream_seek (codestream_tell () - 2);
330 return 0;
331 }
332 /* It is `subl' with a 32 bit immediate. */
333 codestream_read ((unsigned char *) buf, 4);
334 return extract_signed_integer (buf, 4);
335 }
336 else
337 {
338 return 0;
339 }
340 }
341 else if (op == 0xc8)
342 {
343 char buf[2];
344 /* `enter' with 16 bit unsigned immediate. */
345 codestream_read ((unsigned char *) buf, 2);
346 codestream_get (); /* Flush final byte of enter instruction. */
347 return extract_unsigned_integer (buf, 2);
348 }
349 return (-1);
350 }
351
352 /* Return the chain-pointer for FRAME. In the case of the i386, the
353 frame's nominal address is the address of a 4-byte word containing
354 the calling frame's address. */
355
356 CORE_ADDR
357 i386_frame_chain (struct frame_info *frame)
358 {
359 if (frame->signal_handler_caller)
360 return frame->frame;
361
362 if (! inside_entry_file (frame->pc))
363 return read_memory_unsigned_integer (frame->frame, 4);
364
365 return 0;
366 }
367
368 /* Immediately after a function call, return the saved pc. */
369
370 CORE_ADDR
371 i386_saved_pc_after_call (struct frame_info *frame)
372 {
373 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
374 }
375
376 /* Return number of args passed to a frame.
377 Can return -1, meaning no way to tell. */
378
379 int
380 i386_frame_num_args (struct frame_info *fi)
381 {
382 #if 1
383 return -1;
384 #else
385 /* This loses because not only might the compiler not be popping the
386 args right after the function call, it might be popping args from
387 both this call and a previous one, and we would say there are
388 more args than there really are. */
389
390 int retpc;
391 unsigned char op;
392 struct frame_info *pfi;
393
394 /* On the i386, the instruction following the call could be:
395 popl %ecx - one arg
396 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
397 anything else - zero args. */
398
399 int frameless;
400
401 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
402 if (frameless)
403 /* In the absence of a frame pointer, GDB doesn't get correct
404 values for nameless arguments. Return -1, so it doesn't print
405 any nameless arguments. */
406 return -1;
407
408 pfi = get_prev_frame (fi);
409 if (pfi == 0)
410 {
411 /* NOTE: This can happen if we are looking at the frame for
412 main, because FRAME_CHAIN_VALID won't let us go into start.
413 If we have debugging symbols, that's not really a big deal;
414 it just means it will only show as many arguments to main as
415 are declared. */
416 return -1;
417 }
418 else
419 {
420 retpc = pfi->pc;
421 op = read_memory_integer (retpc, 1);
422 if (op == 0x59) /* pop %ecx */
423 return 1;
424 else if (op == 0x83)
425 {
426 op = read_memory_integer (retpc + 1, 1);
427 if (op == 0xc4)
428 /* addl $<signed imm 8 bits>, %esp */
429 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
430 else
431 return 0;
432 }
433 else if (op == 0x81) /* `add' with 32 bit immediate. */
434 {
435 op = read_memory_integer (retpc + 1, 1);
436 if (op == 0xc4)
437 /* addl $<imm 32>, %esp */
438 return read_memory_integer (retpc + 2, 4) / 4;
439 else
440 return 0;
441 }
442 else
443 {
444 return 0;
445 }
446 }
447 #endif
448 }
449
450 /* Parse the first few instructions the function to see what registers
451 were stored.
452
453 We handle these cases:
454
455 The startup sequence can be at the start of the function, or the
456 function can start with a branch to startup code at the end.
457
458 %ebp can be set up with either the 'enter' instruction, or "pushl
459 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
460 once used in the System V compiler).
461
462 Local space is allocated just below the saved %ebp by either the
463 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
464 bit unsigned argument for space to allocate, and the 'addl'
465 instruction could have either a signed byte, or 32 bit immediate.
466
467 Next, the registers used by this function are pushed. With the
468 System V compiler they will always be in the order: %edi, %esi,
469 %ebx (and sometimes a harmless bug causes it to also save but not
470 restore %eax); however, the code below is willing to see the pushes
471 in any order, and will handle up to 8 of them.
472
473 If the setup sequence is at the end of the function, then the next
474 instruction will be a branch back to the start. */
475
476 void
477 i386_frame_init_saved_regs (struct frame_info *fip)
478 {
479 long locals = -1;
480 unsigned char op;
481 CORE_ADDR dummy_bottom;
482 CORE_ADDR addr;
483 CORE_ADDR pc;
484 int i;
485
486 if (fip->saved_regs)
487 return;
488
489 frame_saved_regs_zalloc (fip);
490
491 /* If the frame is the end of a dummy, compute where the beginning
492 would be. */
493 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
494
495 /* Check if the PC points in the stack, in a dummy frame. */
496 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
497 {
498 /* All registers were saved by push_call_dummy. */
499 addr = fip->frame;
500 for (i = 0; i < NUM_REGS; i++)
501 {
502 addr -= REGISTER_RAW_SIZE (i);
503 fip->saved_regs[i] = addr;
504 }
505 return;
506 }
507
508 pc = get_pc_function_start (fip->pc);
509 if (pc != 0)
510 locals = i386_get_frame_setup (pc);
511
512 if (locals >= 0)
513 {
514 addr = fip->frame - 4 - locals;
515 for (i = 0; i < 8; i++)
516 {
517 op = codestream_get ();
518 if (op < 0x50 || op > 0x57)
519 break;
520 #ifdef I386_REGNO_TO_SYMMETRY
521 /* Dynix uses different internal numbering. Ick. */
522 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
523 #else
524 fip->saved_regs[op - 0x50] = addr;
525 #endif
526 addr -= 4;
527 }
528 }
529
530 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
531 fip->saved_regs[FP_REGNUM] = fip->frame;
532 }
533
534 /* Return PC of first real instruction. */
535
536 int
537 i386_skip_prologue (int pc)
538 {
539 unsigned char op;
540 int i;
541 static unsigned char pic_pat[6] =
542 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
543 0x5b, /* popl %ebx */
544 };
545 CORE_ADDR pos;
546
547 if (i386_get_frame_setup (pc) < 0)
548 return (pc);
549
550 /* Found valid frame setup -- codestream now points to start of push
551 instructions for saving registers. */
552
553 /* Skip over register saves. */
554 for (i = 0; i < 8; i++)
555 {
556 op = codestream_peek ();
557 /* Break if not `pushl' instrunction. */
558 if (op < 0x50 || op > 0x57)
559 break;
560 codestream_get ();
561 }
562
563 /* The native cc on SVR4 in -K PIC mode inserts the following code
564 to get the address of the global offset table (GOT) into register
565 %ebx
566
567 call 0x0
568 popl %ebx
569 movl %ebx,x(%ebp) (optional)
570 addl y,%ebx
571
572 This code is with the rest of the prologue (at the end of the
573 function), so we have to skip it to get to the first real
574 instruction at the start of the function. */
575
576 pos = codestream_tell ();
577 for (i = 0; i < 6; i++)
578 {
579 op = codestream_get ();
580 if (pic_pat[i] != op)
581 break;
582 }
583 if (i == 6)
584 {
585 unsigned char buf[4];
586 long delta = 6;
587
588 op = codestream_get ();
589 if (op == 0x89) /* movl %ebx, x(%ebp) */
590 {
591 op = codestream_get ();
592 if (op == 0x5d) /* One byte offset from %ebp. */
593 {
594 delta += 3;
595 codestream_read (buf, 1);
596 }
597 else if (op == 0x9d) /* Four byte offset from %ebp. */
598 {
599 delta += 6;
600 codestream_read (buf, 4);
601 }
602 else /* Unexpected instruction. */
603 delta = -1;
604 op = codestream_get ();
605 }
606 /* addl y,%ebx */
607 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
608 {
609 pos += delta + 6;
610 }
611 }
612 codestream_seek (pos);
613
614 i386_follow_jump ();
615
616 return (codestream_tell ());
617 }
618
619 void
620 i386_push_dummy_frame (void)
621 {
622 CORE_ADDR sp = read_register (SP_REGNUM);
623 int regnum;
624 char regbuf[MAX_REGISTER_RAW_SIZE];
625
626 sp = push_word (sp, read_register (PC_REGNUM));
627 sp = push_word (sp, read_register (FP_REGNUM));
628 write_register (FP_REGNUM, sp);
629 for (regnum = 0; regnum < NUM_REGS; regnum++)
630 {
631 read_register_gen (regnum, regbuf);
632 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
633 }
634 write_register (SP_REGNUM, sp);
635 }
636
637 /* Insert the (relative) function address into the call sequence
638 stored at DYMMY. */
639
640 void
641 i386_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
642 value_ptr *args, struct type *type, int gcc_p)
643 {
644 int from, to, delta, loc;
645
646 loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH);
647 from = loc + 5;
648 to = (int)(fun);
649 delta = to - from;
650
651 *((char *)(dummy) + 1) = (delta & 0xff);
652 *((char *)(dummy) + 2) = ((delta >> 8) & 0xff);
653 *((char *)(dummy) + 3) = ((delta >> 16) & 0xff);
654 *((char *)(dummy) + 4) = ((delta >> 24) & 0xff);
655 }
656
657 void
658 i386_pop_frame (void)
659 {
660 struct frame_info *frame = get_current_frame ();
661 CORE_ADDR fp;
662 int regnum;
663 char regbuf[MAX_REGISTER_RAW_SIZE];
664
665 fp = FRAME_FP (frame);
666 i386_frame_init_saved_regs (frame);
667
668 for (regnum = 0; regnum < NUM_REGS; regnum++)
669 {
670 CORE_ADDR addr;
671 addr = frame->saved_regs[regnum];
672 if (addr)
673 {
674 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
675 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
676 REGISTER_RAW_SIZE (regnum));
677 }
678 }
679 write_register (FP_REGNUM, read_memory_integer (fp, 4));
680 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
681 write_register (SP_REGNUM, fp + 8);
682 flush_cached_frames ();
683 }
684 \f
685
686 #ifdef GET_LONGJMP_TARGET
687
688 /* Figure out where the longjmp will land. Slurp the args out of the
689 stack. We expect the first arg to be a pointer to the jmp_buf
690 structure from which we extract the pc (JB_PC) that we will land
691 at. The pc is copied into PC. This routine returns true on
692 success. */
693
694 int
695 get_longjmp_target (CORE_ADDR *pc)
696 {
697 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
698 CORE_ADDR sp, jb_addr;
699
700 sp = read_register (SP_REGNUM);
701
702 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
703 buf,
704 TARGET_PTR_BIT / TARGET_CHAR_BIT))
705 return 0;
706
707 jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
708
709 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
710 TARGET_PTR_BIT / TARGET_CHAR_BIT))
711 return 0;
712
713 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
714
715 return 1;
716 }
717
718 #endif /* GET_LONGJMP_TARGET */
719 \f
720
721 CORE_ADDR
722 i386_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
723 int struct_return, CORE_ADDR struct_addr)
724 {
725 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
726
727 if (struct_return)
728 {
729 char buf[4];
730
731 sp -= 4;
732 store_address (buf, 4, struct_addr);
733 write_memory (sp, buf, 4);
734 }
735
736 return sp;
737 }
738
739 void
740 i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
741 {
742 /* Do nothing. Everything was already done by i386_push_arguments. */
743 }
744
745 /* These registers are used for returning integers (and on some
746 targets also for returning `struct' and `union' values when their
747 size and alignment match an integer type). */
748 #define LOW_RETURN_REGNUM 0 /* %eax */
749 #define HIGH_RETURN_REGNUM 2 /* %edx */
750
751 /* Extract from an array REGBUF containing the (raw) register state, a
752 function return value of TYPE, and copy that, in virtual format,
753 into VALBUF. */
754
755 void
756 i386_extract_return_value (struct type *type, char *regbuf, char *valbuf)
757 {
758 int len = TYPE_LENGTH (type);
759
760 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
761 && TYPE_NFIELDS (type) == 1)
762 {
763 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regbuf, valbuf);
764 return;
765 }
766
767 if (TYPE_CODE (type) == TYPE_CODE_FLT)
768 {
769 if (NUM_FREGS == 0)
770 {
771 warning ("Cannot find floating-point return value.");
772 memset (valbuf, 0, len);
773 return;
774 }
775
776 /* Floating-point return values can be found in %st(0). */
777 if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT
778 && TARGET_LONG_DOUBLE_FORMAT == &floatformat_i387_ext)
779 {
780 /* Copy straight over, but take care of the padding. */
781 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM)],
782 FPU_REG_RAW_SIZE);
783 memset (valbuf + FPU_REG_RAW_SIZE, 0, len - FPU_REG_RAW_SIZE);
784 }
785 else
786 {
787 /* Convert the extended floating-point number found in
788 %st(0) to the desired type. This is probably not exactly
789 how it would happen on the target itself, but it is the
790 best we can do. */
791 DOUBLEST val;
792 floatformat_to_doublest (&floatformat_i387_ext,
793 &regbuf[REGISTER_BYTE (FP0_REGNUM)], &val);
794 store_floating (valbuf, TYPE_LENGTH (type), val);
795 }
796 }
797 else
798 {
799 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
800 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
801
802 if (len <= low_size)
803 memcpy (valbuf, &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], len);
804 else if (len <= (low_size + high_size))
805 {
806 memcpy (valbuf,
807 &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], low_size);
808 memcpy (valbuf + low_size,
809 &regbuf[REGISTER_BYTE (HIGH_RETURN_REGNUM)], len - low_size);
810 }
811 else
812 internal_error (__FILE__, __LINE__,
813 "Cannot extract return value of %d bytes long.", len);
814 }
815 }
816
817 /* Write into the appropriate registers a function return value stored
818 in VALBUF of type TYPE, given in virtual format. */
819
820 void
821 i386_store_return_value (struct type *type, char *valbuf)
822 {
823 int len = TYPE_LENGTH (type);
824
825 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
826 && TYPE_NFIELDS (type) == 1)
827 {
828 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
829 return;
830 }
831
832 if (TYPE_CODE (type) == TYPE_CODE_FLT)
833 {
834 if (NUM_FREGS == 0)
835 {
836 warning ("Cannot set floating-point return value.");
837 return;
838 }
839
840 /* Floating-point return values can be found in %st(0). */
841 if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT
842 && TARGET_LONG_DOUBLE_FORMAT == &floatformat_i387_ext)
843 {
844 /* Copy straight over. */
845 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), valbuf,
846 FPU_REG_RAW_SIZE);
847 }
848 else
849 {
850 char buf[FPU_REG_RAW_SIZE];
851 DOUBLEST val;
852
853 /* Convert the value found in VALBUF to the extended
854 floating point format used by the FPU. This is probably
855 not exactly how it would happen on the target itself, but
856 it is the best we can do. */
857 val = extract_floating (valbuf, TYPE_LENGTH (type));
858 floatformat_from_doublest (&floatformat_i387_ext, &val, buf);
859 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
860 FPU_REG_RAW_SIZE);
861 }
862 }
863 else
864 {
865 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
866 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
867
868 if (len <= low_size)
869 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
870 else if (len <= (low_size + high_size))
871 {
872 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
873 valbuf, low_size);
874 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
875 valbuf + low_size, len - low_size);
876 }
877 else
878 internal_error (__FILE__, __LINE__,
879 "Cannot store return value of %d bytes long.", len);
880 }
881 }
882
883 /* Extract from an array REGBUF containing the (raw) register state
884 the address in which a function should return its structure value,
885 as a CORE_ADDR. */
886
887 CORE_ADDR
888 i386_extract_struct_value_address (char *regbuf)
889 {
890 return extract_address (&regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)],
891 REGISTER_RAW_SIZE (LOW_RETURN_REGNUM));
892 }
893 \f
894
895 /* Convert data from raw format for register REGNUM in buffer FROM to
896 virtual format with type TYPE in buffer TO. In principle both
897 formats are identical except that the virtual format has two extra
898 bytes appended that aren't used. We set these to zero. */
899
900 void
901 i386_register_convert_to_virtual (int regnum, struct type *type,
902 char *from, char *to)
903 {
904 /* Copy straight over, but take care of the padding. */
905 memcpy (to, from, FPU_REG_RAW_SIZE);
906 memset (to + FPU_REG_RAW_SIZE, 0, TYPE_LENGTH (type) - FPU_REG_RAW_SIZE);
907 }
908
909 /* Convert data from virtual format with type TYPE in buffer FROM to
910 raw format for register REGNUM in buffer TO. Simply omit the two
911 unused bytes. */
912
913 void
914 i386_register_convert_to_raw (struct type *type, int regnum,
915 char *from, char *to)
916 {
917 memcpy (to, from, FPU_REG_RAW_SIZE);
918 }
919 \f
920
921 #ifdef I386V4_SIGTRAMP_SAVED_PC
922 /* Get saved user PC for sigtramp from the pushed ucontext on the
923 stack for all three variants of SVR4 sigtramps. */
924
925 CORE_ADDR
926 i386v4_sigtramp_saved_pc (struct frame_info *frame)
927 {
928 CORE_ADDR saved_pc_offset = 4;
929 char *name = NULL;
930
931 find_pc_partial_function (frame->pc, &name, NULL, NULL);
932 if (name)
933 {
934 if (STREQ (name, "_sigreturn"))
935 saved_pc_offset = 132 + 14 * 4;
936 else if (STREQ (name, "_sigacthandler"))
937 saved_pc_offset = 80 + 14 * 4;
938 else if (STREQ (name, "sigvechandler"))
939 saved_pc_offset = 120 + 14 * 4;
940 }
941
942 if (frame->next)
943 return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
944 return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
945 }
946 #endif /* I386V4_SIGTRAMP_SAVED_PC */
947 \f
948
949 #ifdef STATIC_TRANSFORM_NAME
950 /* SunPRO encodes the static variables. This is not related to C++
951 mangling, it is done for C too. */
952
953 char *
954 sunpro_static_transform_name (char *name)
955 {
956 char *p;
957 if (IS_STATIC_TRANSFORM_NAME (name))
958 {
959 /* For file-local statics there will be a period, a bunch of
960 junk (the contents of which match a string given in the
961 N_OPT), a period and the name. For function-local statics
962 there will be a bunch of junk (which seems to change the
963 second character from 'A' to 'B'), a period, the name of the
964 function, and the name. So just skip everything before the
965 last period. */
966 p = strrchr (name, '.');
967 if (p != NULL)
968 name = p + 1;
969 }
970 return name;
971 }
972 #endif /* STATIC_TRANSFORM_NAME */
973 \f
974
975 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
976
977 CORE_ADDR
978 skip_trampoline_code (CORE_ADDR pc, char *name)
979 {
980 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
981 {
982 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
983 struct minimal_symbol *indsym =
984 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
985 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
986
987 if (symname)
988 {
989 if (strncmp (symname, "__imp_", 6) == 0
990 || strncmp (symname, "_imp_", 5) == 0)
991 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
992 }
993 }
994 return 0; /* Not a trampoline. */
995 }
996 \f
997
998 /* We have two flavours of disassembly. The machinery on this page
999 deals with switching between those. */
1000
1001 static int
1002 gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
1003 {
1004 if (disassembly_flavor == att_flavor)
1005 return print_insn_i386_att (memaddr, info);
1006 else if (disassembly_flavor == intel_flavor)
1007 return print_insn_i386_intel (memaddr, info);
1008 /* Never reached -- disassembly_flavour is always either att_flavor
1009 or intel_flavor. */
1010 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1011 }
1012
1013 /* If the disassembly mode is intel, we have to also switch the bfd
1014 mach_type. This function is run in the set disassembly_flavor
1015 command, and does that. */
1016
1017 static void
1018 set_disassembly_flavor_sfunc (char *args, int from_tty,
1019 struct cmd_list_element *c)
1020 {
1021 set_disassembly_flavor ();
1022 }
1023
1024 static void
1025 set_disassembly_flavor (void)
1026 {
1027 if (disassembly_flavor == att_flavor)
1028 set_architecture_from_arch_mach (bfd_arch_i386, bfd_mach_i386_i386);
1029 else if (disassembly_flavor == intel_flavor)
1030 set_architecture_from_arch_mach (bfd_arch_i386,
1031 bfd_mach_i386_i386_intel_syntax);
1032 }
1033 \f
1034
1035 /* Provide a prototype to silence -Wmissing-prototypes. */
1036 void _initialize_i386_tdep (void);
1037
1038 void
1039 _initialize_i386_tdep (void)
1040 {
1041 /* Initialize the table saying where each register starts in the
1042 register file. */
1043 {
1044 int i, offset;
1045
1046 offset = 0;
1047 for (i = 0; i < MAX_NUM_REGS; i++)
1048 {
1049 i386_register_byte[i] = offset;
1050 offset += i386_register_raw_size[i];
1051 }
1052 }
1053
1054 /* Initialize the table of virtual register sizes. */
1055 {
1056 int i;
1057
1058 for (i = 0; i < MAX_NUM_REGS; i++)
1059 i386_register_virtual_size[i] = TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (i));
1060 }
1061
1062 tm_print_insn = gdb_print_insn_i386;
1063 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1064
1065 /* Add the variable that controls the disassembly flavor. */
1066 {
1067 struct cmd_list_element *new_cmd;
1068
1069 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1070 valid_flavors,
1071 &disassembly_flavor,
1072 "\
1073 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1074 and the default value is \"att\".",
1075 &setlist);
1076 new_cmd->function.sfunc = set_disassembly_flavor_sfunc;
1077 add_show_from_set (new_cmd, &showlist);
1078 }
1079
1080 /* Finally, initialize the disassembly flavor to the default given
1081 in the disassembly_flavor variable. */
1082 set_disassembly_flavor ();
1083 }