* i386-tdep.c: Add missing ')' in comment.
[binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2 Copyright (C) 1988, 1989, 1991, 1994, 1995, 1996, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "floatformat.h"
29 #include "symtab.h"
30 #include "gdbcmd.h"
31 #include "command.h"
32 #include "arch-utils.h"
33
34 static long i386_get_frame_setup (CORE_ADDR);
35
36 static void i386_follow_jump (void);
37
38 static void codestream_read (unsigned char *, int);
39
40 static void codestream_seek (CORE_ADDR);
41
42 static unsigned char codestream_fill (int);
43
44 CORE_ADDR skip_trampoline_code (CORE_ADDR, char *);
45
46 static int gdb_print_insn_i386 (bfd_vma, disassemble_info *);
47
48 void _initialize_i386_tdep (void);
49
50 /* i386_register_byte[i] is the offset into the register file of the
51 start of register number i. We initialize this from
52 i386_register_raw_size. */
53 int i386_register_byte[MAX_NUM_REGS];
54
55 /* i386_register_raw_size[i] is the number of bytes of storage in
56 GDB's register array occupied by register i. */
57 int i386_register_raw_size[MAX_NUM_REGS] = {
58 4, 4, 4, 4,
59 4, 4, 4, 4,
60 4, 4, 4, 4,
61 4, 4, 4, 4,
62 10, 10, 10, 10,
63 10, 10, 10, 10,
64 4, 4, 4, 4,
65 4, 4, 4, 4,
66 16, 16, 16, 16,
67 16, 16, 16, 16,
68 4
69 };
70
71 /* i386_register_virtual_size[i] is the size in bytes of the virtual
72 type of register i. */
73 int i386_register_virtual_size[MAX_NUM_REGS];
74
75
76 /* This is the variable the is set with "set disassembly-flavor",
77 and its legitimate values. */
78 static const char att_flavor[] = "att";
79 static const char intel_flavor[] = "intel";
80 static const char *valid_flavors[] =
81 {
82 att_flavor,
83 intel_flavor,
84 NULL
85 };
86 static const char *disassembly_flavor = att_flavor;
87
88 static void i386_print_register (char *, int, int);
89
90 /* This is used to keep the bfd arch_info in sync with the disassembly flavor. */
91 static void set_disassembly_flavor_sfunc (char *, int,
92 struct cmd_list_element *);
93 static void set_disassembly_flavor (void);
94
95 /* Stdio style buffering was used to minimize calls to ptrace, but this
96 buffering did not take into account that the code section being accessed
97 may not be an even number of buffers long (even if the buffer is only
98 sizeof(int) long). In cases where the code section size happened to
99 be a non-integral number of buffers long, attempting to read the last
100 buffer would fail. Simply using target_read_memory and ignoring errors,
101 rather than read_memory, is not the correct solution, since legitimate
102 access errors would then be totally ignored. To properly handle this
103 situation and continue to use buffering would require that this code
104 be able to determine the minimum code section size granularity (not the
105 alignment of the section itself, since the actual failing case that
106 pointed out this problem had a section alignment of 4 but was not a
107 multiple of 4 bytes long), on a target by target basis, and then
108 adjust it's buffer size accordingly. This is messy, but potentially
109 feasible. It probably needs the bfd library's help and support. For
110 now, the buffer size is set to 1. (FIXME -fnf) */
111
112 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
113 static CORE_ADDR codestream_next_addr;
114 static CORE_ADDR codestream_addr;
115 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
116 static int codestream_off;
117 static int codestream_cnt;
118
119 #define codestream_tell() (codestream_addr + codestream_off)
120 #define codestream_peek() (codestream_cnt == 0 ? \
121 codestream_fill(1): codestream_buf[codestream_off])
122 #define codestream_get() (codestream_cnt-- == 0 ? \
123 codestream_fill(0) : codestream_buf[codestream_off++])
124
125 static unsigned char
126 codestream_fill (int peek_flag)
127 {
128 codestream_addr = codestream_next_addr;
129 codestream_next_addr += CODESTREAM_BUFSIZ;
130 codestream_off = 0;
131 codestream_cnt = CODESTREAM_BUFSIZ;
132 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
133
134 if (peek_flag)
135 return (codestream_peek ());
136 else
137 return (codestream_get ());
138 }
139
140 static void
141 codestream_seek (CORE_ADDR place)
142 {
143 codestream_next_addr = place / CODESTREAM_BUFSIZ;
144 codestream_next_addr *= CODESTREAM_BUFSIZ;
145 codestream_cnt = 0;
146 codestream_fill (1);
147 while (codestream_tell () != place)
148 codestream_get ();
149 }
150
151 static void
152 codestream_read (unsigned char *buf, int count)
153 {
154 unsigned char *p;
155 int i;
156 p = buf;
157 for (i = 0; i < count; i++)
158 *p++ = codestream_get ();
159 }
160
161 /* next instruction is a jump, move to target */
162
163 static void
164 i386_follow_jump (void)
165 {
166 unsigned char buf[4];
167 long delta;
168
169 int data16;
170 CORE_ADDR pos;
171
172 pos = codestream_tell ();
173
174 data16 = 0;
175 if (codestream_peek () == 0x66)
176 {
177 codestream_get ();
178 data16 = 1;
179 }
180
181 switch (codestream_get ())
182 {
183 case 0xe9:
184 /* relative jump: if data16 == 0, disp32, else disp16 */
185 if (data16)
186 {
187 codestream_read (buf, 2);
188 delta = extract_signed_integer (buf, 2);
189
190 /* include size of jmp inst (including the 0x66 prefix). */
191 pos += delta + 4;
192 }
193 else
194 {
195 codestream_read (buf, 4);
196 delta = extract_signed_integer (buf, 4);
197
198 pos += delta + 5;
199 }
200 break;
201 case 0xeb:
202 /* relative jump, disp8 (ignore data16) */
203 codestream_read (buf, 1);
204 /* Sign-extend it. */
205 delta = extract_signed_integer (buf, 1);
206
207 pos += delta + 2;
208 break;
209 }
210 codestream_seek (pos);
211 }
212
213 /*
214 * find & return amound a local space allocated, and advance codestream to
215 * first register push (if any)
216 *
217 * if entry sequence doesn't make sense, return -1, and leave
218 * codestream pointer random
219 */
220
221 static long
222 i386_get_frame_setup (CORE_ADDR pc)
223 {
224 unsigned char op;
225
226 codestream_seek (pc);
227
228 i386_follow_jump ();
229
230 op = codestream_get ();
231
232 if (op == 0x58) /* popl %eax */
233 {
234 /*
235 * this function must start with
236 *
237 * popl %eax 0x58
238 * xchgl %eax, (%esp) 0x87 0x04 0x24
239 * or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
240 *
241 * (the system 5 compiler puts out the second xchg
242 * inst, and the assembler doesn't try to optimize it,
243 * so the 'sib' form gets generated)
244 *
245 * this sequence is used to get the address of the return
246 * buffer for a function that returns a structure
247 */
248 int pos;
249 unsigned char buf[4];
250 static unsigned char proto1[3] =
251 {0x87, 0x04, 0x24};
252 static unsigned char proto2[4] =
253 {0x87, 0x44, 0x24, 0x00};
254 pos = codestream_tell ();
255 codestream_read (buf, 4);
256 if (memcmp (buf, proto1, 3) == 0)
257 pos += 3;
258 else if (memcmp (buf, proto2, 4) == 0)
259 pos += 4;
260
261 codestream_seek (pos);
262 op = codestream_get (); /* update next opcode */
263 }
264
265 if (op == 0x68 || op == 0x6a)
266 {
267 /*
268 * this function may start with
269 *
270 * pushl constant
271 * call _probe
272 * addl $4, %esp
273 * followed by
274 * pushl %ebp
275 * etc.
276 */
277 int pos;
278 unsigned char buf[8];
279
280 /* Skip past the pushl instruction; it has either a one-byte
281 or a four-byte operand, depending on the opcode. */
282 pos = codestream_tell ();
283 if (op == 0x68)
284 pos += 4;
285 else
286 pos += 1;
287 codestream_seek (pos);
288
289 /* Read the following 8 bytes, which should be "call _probe" (6 bytes)
290 followed by "addl $4,%esp" (2 bytes). */
291 codestream_read (buf, sizeof (buf));
292 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
293 pos += sizeof (buf);
294 codestream_seek (pos);
295 op = codestream_get (); /* update next opcode */
296 }
297
298 if (op == 0x55) /* pushl %ebp */
299 {
300 /* check for movl %esp, %ebp - can be written two ways */
301 switch (codestream_get ())
302 {
303 case 0x8b:
304 if (codestream_get () != 0xec)
305 return (-1);
306 break;
307 case 0x89:
308 if (codestream_get () != 0xe5)
309 return (-1);
310 break;
311 default:
312 return (-1);
313 }
314 /* check for stack adjustment
315
316 * subl $XXX, %esp
317 *
318 * note: you can't subtract a 16 bit immediate
319 * from a 32 bit reg, so we don't have to worry
320 * about a data16 prefix
321 */
322 op = codestream_peek ();
323 if (op == 0x83)
324 {
325 /* subl with 8 bit immed */
326 codestream_get ();
327 if (codestream_get () != 0xec)
328 /* Some instruction starting with 0x83 other than subl. */
329 {
330 codestream_seek (codestream_tell () - 2);
331 return 0;
332 }
333 /* subl with signed byte immediate
334 * (though it wouldn't make sense to be negative)
335 */
336 return (codestream_get ());
337 }
338 else if (op == 0x81)
339 {
340 char buf[4];
341 /* Maybe it is subl with 32 bit immedediate. */
342 codestream_get ();
343 if (codestream_get () != 0xec)
344 /* Some instruction starting with 0x81 other than subl. */
345 {
346 codestream_seek (codestream_tell () - 2);
347 return 0;
348 }
349 /* It is subl with 32 bit immediate. */
350 codestream_read ((unsigned char *) buf, 4);
351 return extract_signed_integer (buf, 4);
352 }
353 else
354 {
355 return (0);
356 }
357 }
358 else if (op == 0xc8)
359 {
360 char buf[2];
361 /* enter instruction: arg is 16 bit unsigned immed */
362 codestream_read ((unsigned char *) buf, 2);
363 codestream_get (); /* flush final byte of enter instruction */
364 return extract_unsigned_integer (buf, 2);
365 }
366 return (-1);
367 }
368
369 /* Return number of args passed to a frame.
370 Can return -1, meaning no way to tell. */
371
372 int
373 i386_frame_num_args (struct frame_info *fi)
374 {
375 #if 1
376 return -1;
377 #else
378 /* This loses because not only might the compiler not be popping the
379 args right after the function call, it might be popping args from both
380 this call and a previous one, and we would say there are more args
381 than there really are. */
382
383 int retpc;
384 unsigned char op;
385 struct frame_info *pfi;
386
387 /* on the 386, the instruction following the call could be:
388 popl %ecx - one arg
389 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
390 anything else - zero args */
391
392 int frameless;
393
394 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
395 if (frameless)
396 /* In the absence of a frame pointer, GDB doesn't get correct values
397 for nameless arguments. Return -1, so it doesn't print any
398 nameless arguments. */
399 return -1;
400
401 pfi = get_prev_frame (fi);
402 if (pfi == 0)
403 {
404 /* Note: this can happen if we are looking at the frame for
405 main, because FRAME_CHAIN_VALID won't let us go into
406 start. If we have debugging symbols, that's not really
407 a big deal; it just means it will only show as many arguments
408 to main as are declared. */
409 return -1;
410 }
411 else
412 {
413 retpc = pfi->pc;
414 op = read_memory_integer (retpc, 1);
415 if (op == 0x59)
416 /* pop %ecx */
417 return 1;
418 else if (op == 0x83)
419 {
420 op = read_memory_integer (retpc + 1, 1);
421 if (op == 0xc4)
422 /* addl $<signed imm 8 bits>, %esp */
423 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
424 else
425 return 0;
426 }
427 else if (op == 0x81)
428 { /* add with 32 bit immediate */
429 op = read_memory_integer (retpc + 1, 1);
430 if (op == 0xc4)
431 /* addl $<imm 32>, %esp */
432 return read_memory_integer (retpc + 2, 4) / 4;
433 else
434 return 0;
435 }
436 else
437 {
438 return 0;
439 }
440 }
441 #endif
442 }
443
444 /*
445 * parse the first few instructions of the function to see
446 * what registers were stored.
447 *
448 * We handle these cases:
449 *
450 * The startup sequence can be at the start of the function,
451 * or the function can start with a branch to startup code at the end.
452 *
453 * %ebp can be set up with either the 'enter' instruction, or
454 * 'pushl %ebp, movl %esp, %ebp' (enter is too slow to be useful,
455 * but was once used in the sys5 compiler)
456 *
457 * Local space is allocated just below the saved %ebp by either the
458 * 'enter' instruction, or by 'subl $<size>, %esp'. 'enter' has
459 * a 16 bit unsigned argument for space to allocate, and the
460 * 'addl' instruction could have either a signed byte, or
461 * 32 bit immediate.
462 *
463 * Next, the registers used by this function are pushed. In
464 * the sys5 compiler they will always be in the order: %edi, %esi, %ebx
465 * (and sometimes a harmless bug causes it to also save but not restore %eax);
466 * however, the code below is willing to see the pushes in any order,
467 * and will handle up to 8 of them.
468 *
469 * If the setup sequence is at the end of the function, then the
470 * next instruction will be a branch back to the start.
471 */
472
473 void
474 i386_frame_init_saved_regs (struct frame_info *fip)
475 {
476 long locals = -1;
477 unsigned char op;
478 CORE_ADDR dummy_bottom;
479 CORE_ADDR adr;
480 CORE_ADDR pc;
481 int i;
482
483 if (fip->saved_regs)
484 return;
485
486 frame_saved_regs_zalloc (fip);
487
488 /* if frame is the end of a dummy, compute where the
489 * beginning would be
490 */
491 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
492
493 /* check if the PC is in the stack, in a dummy frame */
494 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
495 {
496 /* all regs were saved by push_call_dummy () */
497 adr = fip->frame;
498 for (i = 0; i < NUM_REGS; i++)
499 {
500 adr -= REGISTER_RAW_SIZE (i);
501 fip->saved_regs[i] = adr;
502 }
503 return;
504 }
505
506 pc = get_pc_function_start (fip->pc);
507 if (pc != 0)
508 locals = i386_get_frame_setup (pc);
509
510 if (locals >= 0)
511 {
512 adr = fip->frame - 4 - locals;
513 for (i = 0; i < 8; i++)
514 {
515 op = codestream_get ();
516 if (op < 0x50 || op > 0x57)
517 break;
518 #ifdef I386_REGNO_TO_SYMMETRY
519 /* Dynix uses different internal numbering. Ick. */
520 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = adr;
521 #else
522 fip->saved_regs[op - 0x50] = adr;
523 #endif
524 adr -= 4;
525 }
526 }
527
528 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
529 fip->saved_regs[FP_REGNUM] = fip->frame;
530 }
531
532 /* return pc of first real instruction */
533
534 int
535 i386_skip_prologue (int pc)
536 {
537 unsigned char op;
538 int i;
539 static unsigned char pic_pat[6] =
540 {0xe8, 0, 0, 0, 0, /* call 0x0 */
541 0x5b, /* popl %ebx */
542 };
543 CORE_ADDR pos;
544
545 if (i386_get_frame_setup (pc) < 0)
546 return (pc);
547
548 /* found valid frame setup - codestream now points to
549 * start of push instructions for saving registers
550 */
551
552 /* skip over register saves */
553 for (i = 0; i < 8; i++)
554 {
555 op = codestream_peek ();
556 /* break if not pushl inst */
557 if (op < 0x50 || op > 0x57)
558 break;
559 codestream_get ();
560 }
561
562 /* The native cc on SVR4 in -K PIC mode inserts the following code to get
563 the address of the global offset table (GOT) into register %ebx.
564 call 0x0
565 popl %ebx
566 movl %ebx,x(%ebp) (optional)
567 addl y,%ebx
568 This code is with the rest of the prologue (at the end of the
569 function), so we have to skip it to get to the first real
570 instruction at the start of the function. */
571
572 pos = codestream_tell ();
573 for (i = 0; i < 6; i++)
574 {
575 op = codestream_get ();
576 if (pic_pat[i] != op)
577 break;
578 }
579 if (i == 6)
580 {
581 unsigned char buf[4];
582 long delta = 6;
583
584 op = codestream_get ();
585 if (op == 0x89) /* movl %ebx, x(%ebp) */
586 {
587 op = codestream_get ();
588 if (op == 0x5d) /* one byte offset from %ebp */
589 {
590 delta += 3;
591 codestream_read (buf, 1);
592 }
593 else if (op == 0x9d) /* four byte offset from %ebp */
594 {
595 delta += 6;
596 codestream_read (buf, 4);
597 }
598 else /* unexpected instruction */
599 delta = -1;
600 op = codestream_get ();
601 }
602 /* addl y,%ebx */
603 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
604 {
605 pos += delta + 6;
606 }
607 }
608 codestream_seek (pos);
609
610 i386_follow_jump ();
611
612 return (codestream_tell ());
613 }
614
615 void
616 i386_push_dummy_frame (void)
617 {
618 CORE_ADDR sp = read_register (SP_REGNUM);
619 int regnum;
620 char regbuf[MAX_REGISTER_RAW_SIZE];
621
622 sp = push_word (sp, read_register (PC_REGNUM));
623 sp = push_word (sp, read_register (FP_REGNUM));
624 write_register (FP_REGNUM, sp);
625 for (regnum = 0; regnum < NUM_REGS; regnum++)
626 {
627 read_register_gen (regnum, regbuf);
628 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
629 }
630 write_register (SP_REGNUM, sp);
631 }
632
633 /* Insert the (relative) function address into the call sequence
634 stored at DYMMY. */
635
636 void
637 i386_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
638 value_ptr *args, struct type *type, int gcc_p)
639 {
640 int from, to, delta, loc;
641
642 loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH);
643 from = loc + 5;
644 to = (int)(fun);
645 delta = to - from;
646
647 *((char *)(dummy) + 1) = (delta & 0xff);
648 *((char *)(dummy) + 2) = ((delta >> 8) & 0xff);
649 *((char *)(dummy) + 3) = ((delta >> 16) & 0xff);
650 *((char *)(dummy) + 4) = ((delta >> 24) & 0xff);
651 }
652
653 void
654 i386_pop_frame (void)
655 {
656 struct frame_info *frame = get_current_frame ();
657 CORE_ADDR fp;
658 int regnum;
659 char regbuf[MAX_REGISTER_RAW_SIZE];
660
661 fp = FRAME_FP (frame);
662 i386_frame_init_saved_regs (frame);
663
664 for (regnum = 0; regnum < NUM_REGS; regnum++)
665 {
666 CORE_ADDR adr;
667 adr = frame->saved_regs[regnum];
668 if (adr)
669 {
670 read_memory (adr, regbuf, REGISTER_RAW_SIZE (regnum));
671 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
672 REGISTER_RAW_SIZE (regnum));
673 }
674 }
675 write_register (FP_REGNUM, read_memory_integer (fp, 4));
676 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
677 write_register (SP_REGNUM, fp + 8);
678 flush_cached_frames ();
679 }
680
681 #ifdef GET_LONGJMP_TARGET
682
683 /* Figure out where the longjmp will land. Slurp the args out of the stack.
684 We expect the first arg to be a pointer to the jmp_buf structure from which
685 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
686 This routine returns true on success. */
687
688 int
689 get_longjmp_target (CORE_ADDR *pc)
690 {
691 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
692 CORE_ADDR sp, jb_addr;
693
694 sp = read_register (SP_REGNUM);
695
696 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
697 buf,
698 TARGET_PTR_BIT / TARGET_CHAR_BIT))
699 return 0;
700
701 jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
702
703 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
704 TARGET_PTR_BIT / TARGET_CHAR_BIT))
705 return 0;
706
707 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
708
709 return 1;
710 }
711
712 #endif /* GET_LONGJMP_TARGET */
713
714 /* These registers are used for returning integers (and on some
715 targets also for returning `struct' and `union' values when their
716 size and alignment match an integer type). */
717 #define LOW_RETURN_REGNUM 0 /* %eax */
718 #define HIGH_RETURN_REGNUM 2 /* %edx */
719
720 /* Extract from an array REGBUF containing the (raw) register state, a
721 function return value of TYPE, and copy that, in virtual format,
722 into VALBUF. */
723
724 void
725 i386_extract_return_value (struct type *type, char *regbuf, char *valbuf)
726 {
727 int len = TYPE_LENGTH (type);
728
729 if (TYPE_CODE_FLT == TYPE_CODE (type))
730 {
731 if (NUM_FREGS == 0)
732 {
733 warning ("Cannot find floating-point return value.");
734 memset (valbuf, 0, len);
735 return;
736 }
737
738 /* Floating-point return values can be found in %st(0). */
739 if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT
740 && TARGET_LONG_DOUBLE_FORMAT == &floatformat_i387_ext)
741 {
742 /* Copy straight over, but take care of the padding. */
743 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM)],
744 FPU_REG_RAW_SIZE);
745 memset (valbuf + FPU_REG_RAW_SIZE, 0, len - FPU_REG_RAW_SIZE);
746 }
747 else
748 {
749 /* Convert the extended floating-point number found in
750 %st(0) to the desired type. This is probably not exactly
751 how it would happen on the target itself, but it is the
752 best we can do. */
753 DOUBLEST val;
754 floatformat_to_doublest (&floatformat_i387_ext,
755 &regbuf[REGISTER_BYTE (FP0_REGNUM)], &val);
756 store_floating (valbuf, TYPE_LENGTH (type), val);
757 }
758 }
759 else
760 {
761 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
762 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
763
764 if (len <= low_size)
765 memcpy (valbuf, &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], len);
766 else if (len <= (low_size + high_size))
767 {
768 memcpy (valbuf,
769 &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], low_size);
770 memcpy (valbuf + low_size,
771 &regbuf[REGISTER_BYTE (HIGH_RETURN_REGNUM)], len - low_size);
772 }
773 else
774 internal_error ("Cannot extract return value of %d bytes long.", len);
775 }
776 }
777
778 /* Write into the appropriate registers a function return value stored
779 in VALBUF of type TYPE, given in virtual format. */
780
781 void
782 i386_store_return_value (struct type *type, char *valbuf)
783 {
784 int len = TYPE_LENGTH (type);
785
786 if (TYPE_CODE_FLT == TYPE_CODE (type))
787 {
788 if (NUM_FREGS == 0)
789 {
790 warning ("Cannot set floating-point return value.");
791 return;
792 }
793
794 /* Floating-point return values can be found in %st(0). */
795 if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT
796 && TARGET_LONG_DOUBLE_FORMAT == &floatformat_i387_ext)
797 {
798 /* Copy straight over. */
799 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), valbuf,
800 FPU_REG_RAW_SIZE);
801 }
802 else
803 {
804 char buf[FPU_REG_RAW_SIZE];
805 DOUBLEST val;
806
807 /* Convert the value found in VALBUF to the extended
808 floating point format used by the FPU. This is probably
809 not exactly how it would happen on the target itself, but
810 it is the best we can do. */
811 val = extract_floating (valbuf, TYPE_LENGTH (type));
812 floatformat_from_doublest (&floatformat_i387_ext, &val, buf);
813 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
814 FPU_REG_RAW_SIZE);
815 }
816 }
817 else
818 {
819 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
820 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
821
822 if (len <= low_size)
823 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
824 else if (len <= (low_size + high_size))
825 {
826 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
827 valbuf, low_size);
828 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
829 valbuf + low_size, len - low_size);
830 }
831 else
832 internal_error ("Cannot store return value of %d bytes long.", len);
833 }
834 }
835
836 /* Convert data from raw format for register REGNUM in buffer FROM to
837 virtual format with type TYPE in buffer TO. In principle both
838 formats are identical except that the virtual format has two extra
839 bytes appended that aren't used. We set these to zero. */
840
841 void
842 i386_register_convert_to_virtual (int regnum, struct type *type,
843 char *from, char *to)
844 {
845 /* Copy straight over, but take care of the padding. */
846 memcpy (to, from, FPU_REG_RAW_SIZE);
847 memset (to + FPU_REG_RAW_SIZE, 0, TYPE_LENGTH (type) - FPU_REG_RAW_SIZE);
848 }
849
850 /* Convert data from virtual format with type TYPE in buffer FROM to
851 raw format for register REGNUM in buffer TO. Simply omit the two
852 unused bytes. */
853
854 void
855 i386_register_convert_to_raw (struct type *type, int regnum,
856 char *from, char *to)
857 {
858 memcpy (to, from, FPU_REG_RAW_SIZE);
859 }
860
861 \f
862 #ifdef I386V4_SIGTRAMP_SAVED_PC
863 /* Get saved user PC for sigtramp from the pushed ucontext on the stack
864 for all three variants of SVR4 sigtramps. */
865
866 CORE_ADDR
867 i386v4_sigtramp_saved_pc (struct frame_info *frame)
868 {
869 CORE_ADDR saved_pc_offset = 4;
870 char *name = NULL;
871
872 find_pc_partial_function (frame->pc, &name, NULL, NULL);
873 if (name)
874 {
875 if (STREQ (name, "_sigreturn"))
876 saved_pc_offset = 132 + 14 * 4;
877 else if (STREQ (name, "_sigacthandler"))
878 saved_pc_offset = 80 + 14 * 4;
879 else if (STREQ (name, "sigvechandler"))
880 saved_pc_offset = 120 + 14 * 4;
881 }
882
883 if (frame->next)
884 return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
885 return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
886 }
887 #endif /* I386V4_SIGTRAMP_SAVED_PC */
888
889
890 #ifdef STATIC_TRANSFORM_NAME
891 /* SunPRO encodes the static variables. This is not related to C++ mangling,
892 it is done for C too. */
893
894 char *
895 sunpro_static_transform_name (char *name)
896 {
897 char *p;
898 if (IS_STATIC_TRANSFORM_NAME (name))
899 {
900 /* For file-local statics there will be a period, a bunch
901 of junk (the contents of which match a string given in the
902 N_OPT), a period and the name. For function-local statics
903 there will be a bunch of junk (which seems to change the
904 second character from 'A' to 'B'), a period, the name of the
905 function, and the name. So just skip everything before the
906 last period. */
907 p = strrchr (name, '.');
908 if (p != NULL)
909 name = p + 1;
910 }
911 return name;
912 }
913 #endif /* STATIC_TRANSFORM_NAME */
914
915
916
917 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
918
919 CORE_ADDR
920 skip_trampoline_code (CORE_ADDR pc, char *name)
921 {
922 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
923 {
924 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
925 struct minimal_symbol *indsym =
926 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
927 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
928
929 if (symname)
930 {
931 if (strncmp (symname, "__imp_", 6) == 0
932 || strncmp (symname, "_imp_", 5) == 0)
933 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
934 }
935 }
936 return 0; /* not a trampoline */
937 }
938
939 static int
940 gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
941 {
942 if (disassembly_flavor == att_flavor)
943 return print_insn_i386_att (memaddr, info);
944 else if (disassembly_flavor == intel_flavor)
945 return print_insn_i386_intel (memaddr, info);
946 /* Never reached - disassembly_flavour is always either att_flavor
947 or intel_flavor */
948 abort ();
949 }
950
951 /* If the disassembly mode is intel, we have to also switch the
952 bfd mach_type. This function is run in the set disassembly_flavor
953 command, and does that. */
954
955 static void
956 set_disassembly_flavor_sfunc (char *args, int from_tty,
957 struct cmd_list_element *c)
958 {
959 set_disassembly_flavor ();
960 }
961
962 static void
963 set_disassembly_flavor (void)
964 {
965 if (disassembly_flavor == att_flavor)
966 set_architecture_from_arch_mach (bfd_arch_i386, bfd_mach_i386_i386);
967 else if (disassembly_flavor == intel_flavor)
968 set_architecture_from_arch_mach (bfd_arch_i386, bfd_mach_i386_i386_intel_syntax);
969 }
970
971
972 void
973 _initialize_i386_tdep (void)
974 {
975 /* Initialize the table saying where each register starts in the
976 register file. */
977 {
978 int i, offset;
979
980 offset = 0;
981 for (i = 0; i < MAX_NUM_REGS; i++)
982 {
983 i386_register_byte[i] = offset;
984 offset += i386_register_raw_size[i];
985 }
986 }
987
988 /* Initialize the table of virtual register sizes. */
989 {
990 int i;
991
992 for (i = 0; i < MAX_NUM_REGS; i++)
993 i386_register_virtual_size[i] = TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (i));
994 }
995
996 tm_print_insn = gdb_print_insn_i386;
997 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
998
999 /* Add the variable that controls the disassembly flavor */
1000 {
1001 struct cmd_list_element *new_cmd;
1002
1003 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1004 valid_flavors,
1005 &disassembly_flavor,
1006 "Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1007 and the default value is \"att\".",
1008 &setlist);
1009 new_cmd->function.sfunc = set_disassembly_flavor_sfunc;
1010 add_show_from_set (new_cmd, &showlist);
1011 }
1012
1013 /* Finally, initialize the disassembly flavor to the default given
1014 in the disassembly_flavor variable */
1015
1016 set_disassembly_flavor ();
1017 }