2007-11-07 Markus Deuling <deuling@de.ibm.com>
[binutils-gdb.git] / gdb / infcall.c
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "breakpoint.h"
24 #include "target.h"
25 #include "regcache.h"
26 #include "inferior.h"
27 #include "gdb_assert.h"
28 #include "block.h"
29 #include "gdbcore.h"
30 #include "language.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "command.h"
34 #include "gdb_string.h"
35 #include "infcall.h"
36 #include "dummy-frame.h"
37
38 /* NOTE: cagney/2003-04-16: What's the future of this code?
39
40 GDB needs an asynchronous expression evaluator, that means an
41 asynchronous inferior function call implementation, and that in
42 turn means restructuring the code so that it is event driven. */
43
44 /* How you should pass arguments to a function depends on whether it
45 was defined in K&R style or prototype style. If you define a
46 function using the K&R syntax that takes a `float' argument, then
47 callers must pass that argument as a `double'. If you define the
48 function using the prototype syntax, then you must pass the
49 argument as a `float', with no promotion.
50
51 Unfortunately, on certain older platforms, the debug info doesn't
52 indicate reliably how each function was defined. A function type's
53 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
54 defined in prototype style. When calling a function whose
55 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to
56 decide what to do.
57
58 For modern targets, it is proper to assume that, if the prototype
59 flag is clear, that can be trusted: `float' arguments should be
60 promoted to `double'. For some older targets, if the prototype
61 flag is clear, that doesn't tell us anything. The default is to
62 trust the debug information; the user can override this behavior
63 with "set coerce-float-to-double 0". */
64
65 static int coerce_float_to_double_p = 1;
66 static void
67 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
68 struct cmd_list_element *c, const char *value)
69 {
70 fprintf_filtered (file, _("\
71 Coercion of floats to doubles when calling functions is %s.\n"),
72 value);
73 }
74
75 /* This boolean tells what gdb should do if a signal is received while
76 in a function called from gdb (call dummy). If set, gdb unwinds
77 the stack and restore the context to what as it was before the
78 call.
79
80 The default is to stop in the frame where the signal was received. */
81
82 int unwind_on_signal_p = 0;
83 static void
84 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
85 struct cmd_list_element *c, const char *value)
86 {
87 fprintf_filtered (file, _("\
88 Unwinding of stack if a signal is received while in a call dummy is %s.\n"),
89 value);
90 }
91
92
93 /* Perform the standard coercions that are specified
94 for arguments to be passed to C functions.
95
96 If PARAM_TYPE is non-NULL, it is the expected parameter type.
97 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
98
99 static struct value *
100 value_arg_coerce (struct value *arg, struct type *param_type,
101 int is_prototyped)
102 {
103 struct type *arg_type = check_typedef (value_type (arg));
104 struct type *type
105 = param_type ? check_typedef (param_type) : arg_type;
106
107 switch (TYPE_CODE (type))
108 {
109 case TYPE_CODE_REF:
110 {
111 struct value *new_value;
112
113 if (TYPE_CODE (arg_type) == TYPE_CODE_REF)
114 return value_cast_pointers (type, arg);
115
116 /* Cast the value to the reference's target type, and then
117 convert it back to a reference. This will issue an error
118 if the value was not previously in memory - in some cases
119 we should clearly be allowing this, but how? */
120 new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
121 new_value = value_ref (new_value);
122 return new_value;
123 }
124 case TYPE_CODE_INT:
125 case TYPE_CODE_CHAR:
126 case TYPE_CODE_BOOL:
127 case TYPE_CODE_ENUM:
128 /* If we don't have a prototype, coerce to integer type if necessary. */
129 if (!is_prototyped)
130 {
131 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
132 type = builtin_type_int;
133 }
134 /* Currently all target ABIs require at least the width of an integer
135 type for an argument. We may have to conditionalize the following
136 type coercion for future targets. */
137 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
138 type = builtin_type_int;
139 break;
140 case TYPE_CODE_FLT:
141 if (!is_prototyped && coerce_float_to_double_p)
142 {
143 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
144 type = builtin_type_double;
145 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
146 type = builtin_type_long_double;
147 }
148 break;
149 case TYPE_CODE_FUNC:
150 type = lookup_pointer_type (type);
151 break;
152 case TYPE_CODE_ARRAY:
153 /* Arrays are coerced to pointers to their first element, unless
154 they are vectors, in which case we want to leave them alone,
155 because they are passed by value. */
156 if (current_language->c_style_arrays)
157 if (!TYPE_VECTOR (type))
158 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
159 break;
160 case TYPE_CODE_UNDEF:
161 case TYPE_CODE_PTR:
162 case TYPE_CODE_STRUCT:
163 case TYPE_CODE_UNION:
164 case TYPE_CODE_VOID:
165 case TYPE_CODE_SET:
166 case TYPE_CODE_RANGE:
167 case TYPE_CODE_STRING:
168 case TYPE_CODE_BITSTRING:
169 case TYPE_CODE_ERROR:
170 case TYPE_CODE_MEMBERPTR:
171 case TYPE_CODE_METHODPTR:
172 case TYPE_CODE_METHOD:
173 case TYPE_CODE_COMPLEX:
174 default:
175 break;
176 }
177
178 return value_cast (type, arg);
179 }
180
181 /* Determine a function's address and its return type from its value.
182 Calls error() if the function is not valid for calling. */
183
184 CORE_ADDR
185 find_function_addr (struct value *function, struct type **retval_type)
186 {
187 struct type *ftype = check_typedef (value_type (function));
188 enum type_code code = TYPE_CODE (ftype);
189 struct type *value_type;
190 CORE_ADDR funaddr;
191
192 /* If it's a member function, just look at the function
193 part of it. */
194
195 /* Determine address to call. */
196 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
197 {
198 funaddr = VALUE_ADDRESS (function);
199 value_type = TYPE_TARGET_TYPE (ftype);
200 }
201 else if (code == TYPE_CODE_PTR)
202 {
203 funaddr = value_as_address (function);
204 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
205 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
206 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
207 {
208 funaddr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
209 funaddr,
210 &current_target);
211 value_type = TYPE_TARGET_TYPE (ftype);
212 }
213 else
214 value_type = builtin_type_int;
215 }
216 else if (code == TYPE_CODE_INT)
217 {
218 /* Handle the case of functions lacking debugging info.
219 Their values are characters since their addresses are char */
220 if (TYPE_LENGTH (ftype) == 1)
221 funaddr = value_as_address (value_addr (function));
222 else
223 {
224 /* Handle function descriptors lacking debug info. */
225 int found_descriptor = 0;
226 if (VALUE_LVAL (function) == lval_memory)
227 {
228 CORE_ADDR nfunaddr;
229 funaddr = value_as_address (value_addr (function));
230 nfunaddr = funaddr;
231 funaddr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
232 funaddr,
233 &current_target);
234 if (funaddr != nfunaddr)
235 found_descriptor = 1;
236 }
237 if (!found_descriptor)
238 /* Handle integer used as address of a function. */
239 funaddr = (CORE_ADDR) value_as_long (function);
240 }
241
242 value_type = builtin_type_int;
243 }
244 else
245 error (_("Invalid data type for function to be called."));
246
247 if (retval_type != NULL)
248 *retval_type = value_type;
249 return funaddr + gdbarch_deprecated_function_start_offset (current_gdbarch);
250 }
251
252 /* Call breakpoint_auto_delete on the current contents of the bpstat
253 pointed to by arg (which is really a bpstat *). */
254
255 static void
256 breakpoint_auto_delete_contents (void *arg)
257 {
258 breakpoint_auto_delete (*(bpstat *) arg);
259 }
260
261 static CORE_ADDR
262 generic_push_dummy_code (struct gdbarch *gdbarch,
263 CORE_ADDR sp, CORE_ADDR funaddr,
264 struct value **args, int nargs,
265 struct type *value_type,
266 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
267 struct regcache *regcache)
268 {
269 /* Something here to findout the size of a breakpoint and then
270 allocate space for it on the stack. */
271 int bplen;
272 /* This code assumes frame align. */
273 gdb_assert (gdbarch_frame_align_p (gdbarch));
274 /* Force the stack's alignment. The intent is to ensure that the SP
275 is aligned to at least a breakpoint instruction's boundary. */
276 sp = gdbarch_frame_align (gdbarch, sp);
277 /* Allocate space for, and then position the breakpoint on the
278 stack. */
279 if (gdbarch_inner_than (gdbarch, 1, 2))
280 {
281 CORE_ADDR bppc = sp;
282 gdbarch_breakpoint_from_pc (gdbarch, &bppc, &bplen);
283 sp = gdbarch_frame_align (gdbarch, sp - bplen);
284 (*bp_addr) = sp;
285 /* Should the breakpoint size/location be re-computed here? */
286 }
287 else
288 {
289 (*bp_addr) = sp;
290 gdbarch_breakpoint_from_pc (gdbarch, bp_addr, &bplen);
291 sp = gdbarch_frame_align (gdbarch, sp + bplen);
292 }
293 /* Inferior resumes at the function entry point. */
294 (*real_pc) = funaddr;
295 return sp;
296 }
297
298 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
299 function returns to. */
300
301 static CORE_ADDR
302 push_dummy_code (struct gdbarch *gdbarch,
303 CORE_ADDR sp, CORE_ADDR funaddr,
304 struct value **args, int nargs,
305 struct type *value_type,
306 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
307 struct regcache *regcache)
308 {
309 if (gdbarch_push_dummy_code_p (gdbarch))
310 return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
311 args, nargs, value_type, real_pc, bp_addr,
312 regcache);
313 else
314 return generic_push_dummy_code (gdbarch, sp, funaddr,
315 args, nargs, value_type, real_pc, bp_addr,
316 regcache);
317 }
318
319 /* All this stuff with a dummy frame may seem unnecessarily complicated
320 (why not just save registers in GDB?). The purpose of pushing a dummy
321 frame which looks just like a real frame is so that if you call a
322 function and then hit a breakpoint (get a signal, etc), "backtrace"
323 will look right. Whether the backtrace needs to actually show the
324 stack at the time the inferior function was called is debatable, but
325 it certainly needs to not display garbage. So if you are contemplating
326 making dummy frames be different from normal frames, consider that. */
327
328 /* Perform a function call in the inferior.
329 ARGS is a vector of values of arguments (NARGS of them).
330 FUNCTION is a value, the function to be called.
331 Returns a value representing what the function returned.
332 May fail to return, if a breakpoint or signal is hit
333 during the execution of the function.
334
335 ARGS is modified to contain coerced values. */
336
337 struct value *
338 call_function_by_hand (struct value *function, int nargs, struct value **args)
339 {
340 CORE_ADDR sp;
341 CORE_ADDR dummy_addr;
342 struct type *values_type, *target_values_type;
343 unsigned char struct_return = 0, lang_struct_return = 0;
344 CORE_ADDR struct_addr = 0;
345 struct regcache *retbuf;
346 struct cleanup *retbuf_cleanup;
347 struct inferior_status *inf_status;
348 struct cleanup *inf_status_cleanup;
349 CORE_ADDR funaddr;
350 CORE_ADDR real_pc;
351 struct type *ftype = check_typedef (value_type (function));
352 CORE_ADDR bp_addr;
353 struct regcache *caller_regcache;
354 struct cleanup *caller_regcache_cleanup;
355 struct frame_id dummy_id;
356 struct cleanup *args_cleanup;
357 struct frame_info *frame;
358 struct gdbarch *gdbarch;
359
360 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
361 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
362
363 if (!target_has_execution)
364 noprocess ();
365
366 frame = get_current_frame ();
367 gdbarch = get_frame_arch (frame);
368
369 if (!gdbarch_push_dummy_call_p (gdbarch))
370 error (_("This target does not support function calls"));
371
372 /* Create a cleanup chain that contains the retbuf (buffer
373 containing the register values). This chain is create BEFORE the
374 inf_status chain so that the inferior status can cleaned up
375 (restored or discarded) without having the retbuf freed. */
376 retbuf = regcache_xmalloc (gdbarch);
377 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
378
379 /* A cleanup for the inferior status. Create this AFTER the retbuf
380 so that this can be discarded or applied without interfering with
381 the regbuf. */
382 inf_status = save_inferior_status (1);
383 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
384
385 /* Save the caller's registers so that they can be restored once the
386 callee returns. To allow nested calls the registers are (further
387 down) pushed onto a dummy frame stack. Include a cleanup (which
388 is tossed once the regcache has been pushed). */
389 caller_regcache = frame_save_as_regcache (frame);
390 caller_regcache_cleanup = make_cleanup_regcache_xfree (caller_regcache);
391
392 /* Ensure that the initial SP is correctly aligned. */
393 {
394 CORE_ADDR old_sp = get_frame_sp (frame);
395 if (gdbarch_frame_align_p (gdbarch))
396 {
397 sp = gdbarch_frame_align (gdbarch, old_sp);
398 /* NOTE: cagney/2003-08-13: Skip the "red zone". For some
399 ABIs, a function can use memory beyond the inner most stack
400 address. AMD64 called that region the "red zone". Skip at
401 least the "red zone" size before allocating any space on
402 the stack. */
403 if (gdbarch_inner_than (gdbarch, 1, 2))
404 sp -= gdbarch_frame_red_zone_size (gdbarch);
405 else
406 sp += gdbarch_frame_red_zone_size (gdbarch);
407 /* Still aligned? */
408 gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
409 /* NOTE: cagney/2002-09-18:
410
411 On a RISC architecture, a void parameterless generic dummy
412 frame (i.e., no parameters, no result) typically does not
413 need to push anything the stack and hence can leave SP and
414 FP. Similarly, a frameless (possibly leaf) function does
415 not push anything on the stack and, hence, that too can
416 leave FP and SP unchanged. As a consequence, a sequence of
417 void parameterless generic dummy frame calls to frameless
418 functions will create a sequence of effectively identical
419 frames (SP, FP and TOS and PC the same). This, not
420 suprisingly, results in what appears to be a stack in an
421 infinite loop --- when GDB tries to find a generic dummy
422 frame on the internal dummy frame stack, it will always
423 find the first one.
424
425 To avoid this problem, the code below always grows the
426 stack. That way, two dummy frames can never be identical.
427 It does burn a few bytes of stack but that is a small price
428 to pay :-). */
429 if (sp == old_sp)
430 {
431 if (gdbarch_inner_than (gdbarch, 1, 2))
432 /* Stack grows down. */
433 sp = gdbarch_frame_align (gdbarch, old_sp - 1);
434 else
435 /* Stack grows up. */
436 sp = gdbarch_frame_align (gdbarch, old_sp + 1);
437 }
438 gdb_assert ((gdbarch_inner_than (gdbarch, 1, 2)
439 && sp <= old_sp)
440 || (gdbarch_inner_than (gdbarch, 2, 1)
441 && sp >= old_sp));
442 }
443 else
444 /* FIXME: cagney/2002-09-18: Hey, you loose!
445
446 Who knows how badly aligned the SP is!
447
448 If the generic dummy frame ends up empty (because nothing is
449 pushed) GDB won't be able to correctly perform back traces.
450 If a target is having trouble with backtraces, first thing to
451 do is add FRAME_ALIGN() to the architecture vector. If that
452 fails, try unwind_dummy_id().
453
454 If the ABI specifies a "Red Zone" (see the doco) the code
455 below will quietly trash it. */
456 sp = old_sp;
457 }
458
459 funaddr = find_function_addr (function, &values_type);
460 CHECK_TYPEDEF (values_type);
461
462 /* Are we returning a value using a structure return (passing a
463 hidden argument pointing to storage) or a normal value return?
464 There are two cases: language-mandated structure return and
465 target ABI structure return. The variable STRUCT_RETURN only
466 describes the latter. The language version is handled by passing
467 the return location as the first parameter to the function,
468 even preceding "this". This is different from the target
469 ABI version, which is target-specific; for instance, on ia64
470 the first argument is passed in out0 but the hidden structure
471 return pointer would normally be passed in r8. */
472
473 if (language_pass_by_reference (values_type))
474 {
475 lang_struct_return = 1;
476
477 /* Tell the target specific argument pushing routine not to
478 expect a value. */
479 target_values_type = builtin_type_void;
480 }
481 else
482 {
483 struct_return = using_struct_return (values_type);
484 target_values_type = values_type;
485 }
486
487 /* Determine the location of the breakpoint (and possibly other
488 stuff) that the called function will return to. The SPARC, for a
489 function returning a structure or union, needs to make space for
490 not just the breakpoint but also an extra word containing the
491 size (?) of the structure being passed. */
492
493 /* The actual breakpoint (at BP_ADDR) is inserted separatly so there
494 is no need to write that out. */
495
496 switch (gdbarch_call_dummy_location (gdbarch))
497 {
498 case ON_STACK:
499 /* "dummy_addr" is here just to keep old targets happy. New
500 targets return that same information via "sp" and "bp_addr". */
501 if (gdbarch_inner_than (gdbarch, 1, 2))
502 {
503 sp = push_dummy_code (gdbarch, sp, funaddr,
504 args, nargs, target_values_type,
505 &real_pc, &bp_addr, get_current_regcache ());
506 dummy_addr = sp;
507 }
508 else
509 {
510 dummy_addr = sp;
511 sp = push_dummy_code (gdbarch, sp, funaddr,
512 args, nargs, target_values_type,
513 &real_pc, &bp_addr, get_current_regcache ());
514 }
515 break;
516 case AT_ENTRY_POINT:
517 real_pc = funaddr;
518 dummy_addr = entry_point_address ();
519 /* Make certain that the address points at real code, and not a
520 function descriptor. */
521 dummy_addr = gdbarch_convert_from_func_ptr_addr (gdbarch,
522 dummy_addr,
523 &current_target);
524 /* A call dummy always consists of just a single breakpoint, so
525 it's address is the same as the address of the dummy. */
526 bp_addr = dummy_addr;
527 break;
528 case AT_SYMBOL:
529 /* Some executables define a symbol __CALL_DUMMY_ADDRESS whose
530 address is the location where the breakpoint should be
531 placed. Once all targets are using the overhauled frame code
532 this can be deleted - ON_STACK is a better option. */
533 {
534 struct minimal_symbol *sym;
535
536 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
537 real_pc = funaddr;
538 if (sym)
539 dummy_addr = SYMBOL_VALUE_ADDRESS (sym);
540 else
541 dummy_addr = entry_point_address ();
542 /* Make certain that the address points at real code, and not
543 a function descriptor. */
544 dummy_addr = gdbarch_convert_from_func_ptr_addr (gdbarch,
545 dummy_addr,
546 &current_target);
547 /* A call dummy always consists of just a single breakpoint,
548 so it's address is the same as the address of the dummy. */
549 bp_addr = dummy_addr;
550 break;
551 }
552 default:
553 internal_error (__FILE__, __LINE__, _("bad switch"));
554 }
555
556 if (nargs < TYPE_NFIELDS (ftype))
557 error (_("too few arguments in function call"));
558
559 {
560 int i;
561 for (i = nargs - 1; i >= 0; i--)
562 {
563 int prototyped;
564 struct type *param_type;
565
566 /* FIXME drow/2002-05-31: Should just always mark methods as
567 prototyped. Can we respect TYPE_VARARGS? Probably not. */
568 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
569 prototyped = 1;
570 else if (i < TYPE_NFIELDS (ftype))
571 prototyped = TYPE_PROTOTYPED (ftype);
572 else
573 prototyped = 0;
574
575 if (i < TYPE_NFIELDS (ftype))
576 param_type = TYPE_FIELD_TYPE (ftype, i);
577 else
578 param_type = NULL;
579
580 args[i] = value_arg_coerce (args[i], param_type, prototyped);
581
582 if (param_type != NULL && language_pass_by_reference (param_type))
583 args[i] = value_addr (args[i]);
584 }
585 }
586
587 /* Reserve space for the return structure to be written on the
588 stack, if necessary. Make certain that the value is correctly
589 aligned. */
590
591 if (struct_return || lang_struct_return)
592 {
593 int len = TYPE_LENGTH (values_type);
594 if (gdbarch_inner_than (gdbarch, 1, 2))
595 {
596 /* Stack grows downward. Align STRUCT_ADDR and SP after
597 making space for the return value. */
598 sp -= len;
599 if (gdbarch_frame_align_p (gdbarch))
600 sp = gdbarch_frame_align (gdbarch, sp);
601 struct_addr = sp;
602 }
603 else
604 {
605 /* Stack grows upward. Align the frame, allocate space, and
606 then again, re-align the frame??? */
607 if (gdbarch_frame_align_p (gdbarch))
608 sp = gdbarch_frame_align (gdbarch, sp);
609 struct_addr = sp;
610 sp += len;
611 if (gdbarch_frame_align_p (gdbarch))
612 sp = gdbarch_frame_align (gdbarch, sp);
613 }
614 }
615
616 if (lang_struct_return)
617 {
618 struct value **new_args;
619
620 /* Add the new argument to the front of the argument list. */
621 new_args = xmalloc (sizeof (struct value *) * (nargs + 1));
622 new_args[0] = value_from_pointer (lookup_pointer_type (values_type),
623 struct_addr);
624 memcpy (&new_args[1], &args[0], sizeof (struct value *) * nargs);
625 args = new_args;
626 nargs++;
627 args_cleanup = make_cleanup (xfree, args);
628 }
629 else
630 args_cleanup = make_cleanup (null_cleanup, NULL);
631
632 /* Create the dummy stack frame. Pass in the call dummy address as,
633 presumably, the ABI code knows where, in the call dummy, the
634 return address should be pointed. */
635 sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
636 bp_addr, nargs, args,
637 sp, struct_return, struct_addr);
638
639 do_cleanups (args_cleanup);
640
641 /* Set up a frame ID for the dummy frame so we can pass it to
642 set_momentary_breakpoint. We need to give the breakpoint a frame
643 ID so that the breakpoint code can correctly re-identify the
644 dummy breakpoint. */
645 /* Sanity. The exact same SP value is returned by PUSH_DUMMY_CALL,
646 saved as the dummy-frame TOS, and used by unwind_dummy_id to form
647 the frame ID's stack address. */
648 dummy_id = frame_id_build (sp, bp_addr);
649
650 /* Create a momentary breakpoint at the return address of the
651 inferior. That way it breaks when it returns. */
652
653 {
654 struct breakpoint *bpt;
655 struct symtab_and_line sal;
656 init_sal (&sal); /* initialize to zeroes */
657 sal.pc = bp_addr;
658 sal.section = find_pc_overlay (sal.pc);
659 /* Sanity. The exact same SP value is returned by
660 PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
661 unwind_dummy_id to form the frame ID's stack address. */
662 bpt = set_momentary_breakpoint (sal, dummy_id, bp_call_dummy);
663 bpt->disposition = disp_del;
664 }
665
666 /* Everything's ready, push all the info needed to restore the
667 caller (and identify the dummy-frame) onto the dummy-frame
668 stack. */
669 dummy_frame_push (caller_regcache, &dummy_id);
670 discard_cleanups (caller_regcache_cleanup);
671
672 /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
673 If you're looking to implement asynchronous dummy-frames, then
674 just below is the place to chop this function in two.. */
675
676 /* Now proceed, having reached the desired place. */
677 clear_proceed_status ();
678
679 /* Execute a "stack dummy", a piece of code stored in the stack by
680 the debugger to be executed in the inferior.
681
682 The dummy's frame is automatically popped whenever that break is
683 hit. If that is the first time the program stops,
684 call_function_by_hand returns to its caller with that frame
685 already gone and sets RC to 0.
686
687 Otherwise, set RC to a non-zero value. If the called function
688 receives a random signal, we do not allow the user to continue
689 executing it as this may not work. The dummy frame is poped and
690 we return 1. If we hit a breakpoint, we leave the frame in place
691 and return 2 (the frame will eventually be popped when we do hit
692 the dummy end breakpoint). */
693
694 {
695 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
696 int saved_async = 0;
697
698 /* If all error()s out of proceed ended up calling normal_stop
699 (and perhaps they should; it already does in the special case
700 of error out of resume()), then we wouldn't need this. */
701 make_cleanup (breakpoint_auto_delete_contents, &stop_bpstat);
702
703 disable_watchpoints_before_interactive_call_start ();
704 proceed_to_finish = 1; /* We want stop_registers, please... */
705
706 if (target_can_async_p ())
707 saved_async = target_async_mask (0);
708
709 proceed (real_pc, TARGET_SIGNAL_0, 0);
710
711 if (saved_async)
712 target_async_mask (saved_async);
713
714 enable_watchpoints_after_interactive_call_stop ();
715
716 discard_cleanups (old_cleanups);
717 }
718
719 if (stopped_by_random_signal || !stop_stack_dummy)
720 {
721 /* Find the name of the function we're about to complain about. */
722 const char *name = NULL;
723 {
724 struct symbol *symbol = find_pc_function (funaddr);
725 if (symbol)
726 name = SYMBOL_PRINT_NAME (symbol);
727 else
728 {
729 /* Try the minimal symbols. */
730 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
731 if (msymbol)
732 name = SYMBOL_PRINT_NAME (msymbol);
733 }
734 if (name == NULL)
735 {
736 /* Can't use a cleanup here. It is discarded, instead use
737 an alloca. */
738 char *tmp = xstrprintf ("at %s", hex_string (funaddr));
739 char *a = alloca (strlen (tmp) + 1);
740 strcpy (a, tmp);
741 xfree (tmp);
742 name = a;
743 }
744 }
745 if (stopped_by_random_signal)
746 {
747 /* We stopped inside the FUNCTION because of a random
748 signal. Further execution of the FUNCTION is not
749 allowed. */
750
751 if (unwind_on_signal_p)
752 {
753 /* The user wants the context restored. */
754
755 /* We must get back to the frame we were before the
756 dummy call. */
757 frame_pop (get_current_frame ());
758
759 /* FIXME: Insert a bunch of wrap_here; name can be very
760 long if it's a C++ name with arguments and stuff. */
761 error (_("\
762 The program being debugged was signaled while in a function called from GDB.\n\
763 GDB has restored the context to what it was before the call.\n\
764 To change this behavior use \"set unwindonsignal off\"\n\
765 Evaluation of the expression containing the function (%s) will be abandoned."),
766 name);
767 }
768 else
769 {
770 /* The user wants to stay in the frame where we stopped
771 (default).*/
772 /* If we restored the inferior status (via the cleanup),
773 we would print a spurious error message (Unable to
774 restore previously selected frame), would write the
775 registers from the inf_status (which is wrong), and
776 would do other wrong things. */
777 discard_cleanups (inf_status_cleanup);
778 discard_inferior_status (inf_status);
779 /* FIXME: Insert a bunch of wrap_here; name can be very
780 long if it's a C++ name with arguments and stuff. */
781 error (_("\
782 The program being debugged was signaled while in a function called from GDB.\n\
783 GDB remains in the frame where the signal was received.\n\
784 To change this behavior use \"set unwindonsignal on\"\n\
785 Evaluation of the expression containing the function (%s) will be abandoned."),
786 name);
787 }
788 }
789
790 if (!stop_stack_dummy)
791 {
792 /* We hit a breakpoint inside the FUNCTION. */
793 /* If we restored the inferior status (via the cleanup), we
794 would print a spurious error message (Unable to restore
795 previously selected frame), would write the registers
796 from the inf_status (which is wrong), and would do other
797 wrong things. */
798 discard_cleanups (inf_status_cleanup);
799 discard_inferior_status (inf_status);
800 /* The following error message used to say "The expression
801 which contained the function call has been discarded."
802 It is a hard concept to explain in a few words. Ideally,
803 GDB would be able to resume evaluation of the expression
804 when the function finally is done executing. Perhaps
805 someday this will be implemented (it would not be easy). */
806 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
807 a C++ name with arguments and stuff. */
808 error (_("\
809 The program being debugged stopped while in a function called from GDB.\n\
810 When the function (%s) is done executing, GDB will silently\n\
811 stop (instead of continuing to evaluate the expression containing\n\
812 the function call)."), name);
813 }
814
815 /* The above code errors out, so ... */
816 internal_error (__FILE__, __LINE__, _("... should not be here"));
817 }
818
819 /* If we get here the called FUNCTION run to completion. */
820
821 /* On normal return, the stack dummy has been popped already. */
822 regcache_cpy_no_passthrough (retbuf, stop_registers);
823
824 /* Restore the inferior status, via its cleanup. At this stage,
825 leave the RETBUF alone. */
826 do_cleanups (inf_status_cleanup);
827
828 /* Figure out the value returned by the function. */
829 {
830 struct value *retval = NULL;
831
832 if (lang_struct_return)
833 retval = value_at (values_type, struct_addr);
834 else if (TYPE_CODE (target_values_type) == TYPE_CODE_VOID)
835 {
836 /* If the function returns void, don't bother fetching the
837 return value. */
838 retval = allocate_value (values_type);
839 }
840 else
841 {
842 switch (gdbarch_return_value (gdbarch, target_values_type,
843 NULL, NULL, NULL))
844 {
845 case RETURN_VALUE_REGISTER_CONVENTION:
846 case RETURN_VALUE_ABI_RETURNS_ADDRESS:
847 case RETURN_VALUE_ABI_PRESERVES_ADDRESS:
848 retval = allocate_value (values_type);
849 gdbarch_return_value (gdbarch, values_type, retbuf,
850 value_contents_raw (retval), NULL);
851 break;
852 case RETURN_VALUE_STRUCT_CONVENTION:
853 retval = value_at (values_type, struct_addr);
854 break;
855 }
856 }
857
858 do_cleanups (retbuf_cleanup);
859
860 gdb_assert(retval);
861 return retval;
862 }
863 }
864 \f
865
866 /* Provide a prototype to silence -Wmissing-prototypes. */
867 void _initialize_infcall (void);
868
869 void
870 _initialize_infcall (void)
871 {
872 add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
873 &coerce_float_to_double_p, _("\
874 Set coercion of floats to doubles when calling functions."), _("\
875 Show coercion of floats to doubles when calling functions"), _("\
876 Variables of type float should generally be converted to doubles before\n\
877 calling an unprototyped function, and left alone when calling a prototyped\n\
878 function. However, some older debug info formats do not provide enough\n\
879 information to determine that a function is prototyped. If this flag is\n\
880 set, GDB will perform the conversion for a function it considers\n\
881 unprototyped.\n\
882 The default is to perform the conversion.\n"),
883 NULL,
884 show_coerce_float_to_double_p,
885 &setlist, &showlist);
886
887 add_setshow_boolean_cmd ("unwindonsignal", no_class,
888 &unwind_on_signal_p, _("\
889 Set unwinding of stack if a signal is received while in a call dummy."), _("\
890 Show unwinding of stack if a signal is received while in a call dummy."), _("\
891 The unwindonsignal lets the user determine what gdb should do if a signal\n\
892 is received while in a function called from gdb (call dummy). If set, gdb\n\
893 unwinds the stack and restore the context to what as it was before the call.\n\
894 The default is to stop in the frame where the signal was received."),
895 NULL,
896 show_unwind_on_signal_p,
897 &setlist, &showlist);
898 }