Remove ui_register_input_event_handler
[binutils-gdb.git] / gdb / infcall.c
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "infcall.h"
22 #include "breakpoint.h"
23 #include "tracepoint.h"
24 #include "target.h"
25 #include "regcache.h"
26 #include "inferior.h"
27 #include "infrun.h"
28 #include "block.h"
29 #include "gdbcore.h"
30 #include "language.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "command.h"
34 #include "dummy-frame.h"
35 #include "ada-lang.h"
36 #include "f-lang.h"
37 #include "gdbthread.h"
38 #include "event-top.h"
39 #include "observable.h"
40 #include "top.h"
41 #include "interps.h"
42 #include "thread-fsm.h"
43 #include <algorithm>
44 #include "gdbsupport/scope-exit.h"
45 #include <list>
46
47 /* If we can't find a function's name from its address,
48 we print this instead. */
49 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s"
50 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \
51 + 2 * sizeof (CORE_ADDR))
52
53 /* NOTE: cagney/2003-04-16: What's the future of this code?
54
55 GDB needs an asynchronous expression evaluator, that means an
56 asynchronous inferior function call implementation, and that in
57 turn means restructuring the code so that it is event driven. */
58
59 static bool may_call_functions_p = true;
60 static void
61 show_may_call_functions_p (struct ui_file *file, int from_tty,
62 struct cmd_list_element *c,
63 const char *value)
64 {
65 gdb_printf (file,
66 _("Permission to call functions in the program is %s.\n"),
67 value);
68 }
69
70 /* How you should pass arguments to a function depends on whether it
71 was defined in K&R style or prototype style. If you define a
72 function using the K&R syntax that takes a `float' argument, then
73 callers must pass that argument as a `double'. If you define the
74 function using the prototype syntax, then you must pass the
75 argument as a `float', with no promotion.
76
77 Unfortunately, on certain older platforms, the debug info doesn't
78 indicate reliably how each function was defined. A function type's
79 TYPE_PROTOTYPED flag may be clear, even if the function was defined
80 in prototype style. When calling a function whose TYPE_PROTOTYPED
81 flag is clear, GDB consults this flag to decide what to do.
82
83 For modern targets, it is proper to assume that, if the prototype
84 flag is clear, that can be trusted: `float' arguments should be
85 promoted to `double'. For some older targets, if the prototype
86 flag is clear, that doesn't tell us anything. The default is to
87 trust the debug information; the user can override this behavior
88 with "set coerce-float-to-double 0". */
89
90 static bool coerce_float_to_double_p = true;
91 static void
92 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94 {
95 gdb_printf (file,
96 _("Coercion of floats to doubles "
97 "when calling functions is %s.\n"),
98 value);
99 }
100
101 /* This boolean tells what gdb should do if a signal is received while
102 in a function called from gdb (call dummy). If set, gdb unwinds
103 the stack and restore the context to what as it was before the
104 call.
105
106 The default is to stop in the frame where the signal was received. */
107
108 static bool unwind_on_signal_p = false;
109 static void
110 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
111 struct cmd_list_element *c, const char *value)
112 {
113 gdb_printf (file,
114 _("Unwinding of stack if a signal is "
115 "received while in a call dummy is %s.\n"),
116 value);
117 }
118
119 /* This boolean tells what gdb should do if a std::terminate call is
120 made while in a function called from gdb (call dummy).
121 As the confines of a single dummy stack prohibit out-of-frame
122 handlers from handling a raised exception, and as out-of-frame
123 handlers are common in C++, this can lead to no handler being found
124 by the unwinder, and a std::terminate call. This is a false positive.
125 If set, gdb unwinds the stack and restores the context to what it
126 was before the call.
127
128 The default is to unwind the frame if a std::terminate call is
129 made. */
130
131 static bool unwind_on_terminating_exception_p = true;
132
133 static void
134 show_unwind_on_terminating_exception_p (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c,
136 const char *value)
137
138 {
139 gdb_printf (file,
140 _("Unwind stack if a C++ exception is "
141 "unhandled while in a call dummy is %s.\n"),
142 value);
143 }
144
145 /* Perform the standard coercions that are specified
146 for arguments to be passed to C, Ada or Fortran functions.
147
148 If PARAM_TYPE is non-NULL, it is the expected parameter type.
149 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
150
151 static struct value *
152 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg,
153 struct type *param_type, int is_prototyped)
154 {
155 const struct builtin_type *builtin = builtin_type (gdbarch);
156 struct type *arg_type = check_typedef (value_type (arg));
157 struct type *type
158 = param_type ? check_typedef (param_type) : arg_type;
159
160 /* Perform any Ada- and Fortran-specific coercion first. */
161 if (current_language->la_language == language_ada)
162 arg = ada_convert_actual (arg, type);
163 else if (current_language->la_language == language_fortran)
164 type = fortran_preserve_arg_pointer (arg, type);
165
166 /* Force the value to the target if we will need its address. At
167 this point, we could allocate arguments on the stack instead of
168 calling malloc if we knew that their addresses would not be
169 saved by the called function. */
170 arg = value_coerce_to_target (arg);
171
172 switch (type->code ())
173 {
174 case TYPE_CODE_REF:
175 case TYPE_CODE_RVALUE_REF:
176 {
177 struct value *new_value;
178
179 if (TYPE_IS_REFERENCE (arg_type))
180 return value_cast_pointers (type, arg, 0);
181
182 /* Cast the value to the reference's target type, and then
183 convert it back to a reference. This will issue an error
184 if the value was not previously in memory - in some cases
185 we should clearly be allowing this, but how? */
186 new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
187 new_value = value_ref (new_value, type->code ());
188 return new_value;
189 }
190 case TYPE_CODE_INT:
191 case TYPE_CODE_CHAR:
192 case TYPE_CODE_BOOL:
193 case TYPE_CODE_ENUM:
194 /* If we don't have a prototype, coerce to integer type if necessary. */
195 if (!is_prototyped)
196 {
197 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
198 type = builtin->builtin_int;
199 }
200 /* Currently all target ABIs require at least the width of an integer
201 type for an argument. We may have to conditionalize the following
202 type coercion for future targets. */
203 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
204 type = builtin->builtin_int;
205 break;
206 case TYPE_CODE_FLT:
207 if (!is_prototyped && coerce_float_to_double_p)
208 {
209 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_double))
210 type = builtin->builtin_double;
211 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin->builtin_double))
212 type = builtin->builtin_long_double;
213 }
214 break;
215 case TYPE_CODE_FUNC:
216 type = lookup_pointer_type (type);
217 break;
218 case TYPE_CODE_ARRAY:
219 /* Arrays are coerced to pointers to their first element, unless
220 they are vectors, in which case we want to leave them alone,
221 because they are passed by value. */
222 if (current_language->c_style_arrays_p ())
223 if (!type->is_vector ())
224 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
225 break;
226 case TYPE_CODE_UNDEF:
227 case TYPE_CODE_PTR:
228 case TYPE_CODE_STRUCT:
229 case TYPE_CODE_UNION:
230 case TYPE_CODE_VOID:
231 case TYPE_CODE_SET:
232 case TYPE_CODE_RANGE:
233 case TYPE_CODE_STRING:
234 case TYPE_CODE_ERROR:
235 case TYPE_CODE_MEMBERPTR:
236 case TYPE_CODE_METHODPTR:
237 case TYPE_CODE_METHOD:
238 case TYPE_CODE_COMPLEX:
239 default:
240 break;
241 }
242
243 return value_cast (type, arg);
244 }
245
246 /* See infcall.h. */
247
248 CORE_ADDR
249 find_function_addr (struct value *function,
250 struct type **retval_type,
251 struct type **function_type)
252 {
253 struct type *ftype = check_typedef (value_type (function));
254 struct gdbarch *gdbarch = ftype->arch ();
255 struct type *value_type = NULL;
256 /* Initialize it just to avoid a GCC false warning. */
257 CORE_ADDR funaddr = 0;
258
259 /* If it's a member function, just look at the function
260 part of it. */
261
262 /* Determine address to call. */
263 if (ftype->code () == TYPE_CODE_FUNC
264 || ftype->code () == TYPE_CODE_METHOD)
265 funaddr = value_address (function);
266 else if (ftype->code () == TYPE_CODE_PTR)
267 {
268 funaddr = value_as_address (function);
269 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
270 if (ftype->code () == TYPE_CODE_FUNC
271 || ftype->code () == TYPE_CODE_METHOD)
272 funaddr = gdbarch_convert_from_func_ptr_addr
273 (gdbarch, funaddr, current_inferior ()->top_target());
274 }
275 if (ftype->code () == TYPE_CODE_FUNC
276 || ftype->code () == TYPE_CODE_METHOD)
277 {
278 if (ftype->is_gnu_ifunc ())
279 {
280 CORE_ADDR resolver_addr = funaddr;
281
282 /* Resolve the ifunc. Note this may call the resolver
283 function in the inferior. */
284 funaddr = gnu_ifunc_resolve_addr (gdbarch, resolver_addr);
285
286 /* Skip querying the function symbol if no RETVAL_TYPE or
287 FUNCTION_TYPE have been asked for. */
288 if (retval_type != NULL || function_type != NULL)
289 {
290 type *target_ftype = find_function_type (funaddr);
291 /* If we don't have debug info for the target function,
292 see if we can instead extract the target function's
293 type from the type that the resolver returns. */
294 if (target_ftype == NULL)
295 target_ftype = find_gnu_ifunc_target_type (resolver_addr);
296 if (target_ftype != NULL)
297 {
298 value_type = TYPE_TARGET_TYPE (check_typedef (target_ftype));
299 ftype = target_ftype;
300 }
301 }
302 }
303 else
304 value_type = TYPE_TARGET_TYPE (ftype);
305 }
306 else if (ftype->code () == TYPE_CODE_INT)
307 {
308 /* Handle the case of functions lacking debugging info.
309 Their values are characters since their addresses are char. */
310 if (TYPE_LENGTH (ftype) == 1)
311 funaddr = value_as_address (value_addr (function));
312 else
313 {
314 /* Handle function descriptors lacking debug info. */
315 int found_descriptor = 0;
316
317 funaddr = 0; /* pacify "gcc -Werror" */
318 if (VALUE_LVAL (function) == lval_memory)
319 {
320 CORE_ADDR nfunaddr;
321
322 funaddr = value_as_address (value_addr (function));
323 nfunaddr = funaddr;
324 funaddr = gdbarch_convert_from_func_ptr_addr
325 (gdbarch, funaddr, current_inferior ()->top_target ());
326 if (funaddr != nfunaddr)
327 found_descriptor = 1;
328 }
329 if (!found_descriptor)
330 /* Handle integer used as address of a function. */
331 funaddr = (CORE_ADDR) value_as_long (function);
332 }
333 }
334 else
335 error (_("Invalid data type for function to be called."));
336
337 if (retval_type != NULL)
338 *retval_type = value_type;
339 if (function_type != NULL)
340 *function_type = ftype;
341 return funaddr + gdbarch_deprecated_function_start_offset (gdbarch);
342 }
343
344 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
345 function returns to. */
346
347 static CORE_ADDR
348 push_dummy_code (struct gdbarch *gdbarch,
349 CORE_ADDR sp, CORE_ADDR funaddr,
350 gdb::array_view<value *> args,
351 struct type *value_type,
352 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
353 struct regcache *regcache)
354 {
355 gdb_assert (gdbarch_push_dummy_code_p (gdbarch));
356
357 return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
358 args.data (), args.size (),
359 value_type, real_pc, bp_addr,
360 regcache);
361 }
362
363 /* See infcall.h. */
364
365 void
366 error_call_unknown_return_type (const char *func_name)
367 {
368 if (func_name != NULL)
369 error (_("'%s' has unknown return type; "
370 "cast the call to its declared return type"),
371 func_name);
372 else
373 error (_("function has unknown return type; "
374 "cast the call to its declared return type"));
375 }
376
377 /* Fetch the name of the function at FUNADDR.
378 This is used in printing an error message for call_function_by_hand.
379 BUF is used to print FUNADDR in hex if the function name cannot be
380 determined. It must be large enough to hold formatted result of
381 RAW_FUNCTION_ADDRESS_FORMAT. */
382
383 static const char *
384 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size)
385 {
386 {
387 struct symbol *symbol = find_pc_function (funaddr);
388
389 if (symbol)
390 return symbol->print_name ();
391 }
392
393 {
394 /* Try the minimal symbols. */
395 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (funaddr);
396
397 if (msymbol.minsym)
398 return msymbol.minsym->print_name ();
399 }
400
401 {
402 std::string tmp = string_printf (_(RAW_FUNCTION_ADDRESS_FORMAT),
403 hex_string (funaddr));
404
405 gdb_assert (tmp.length () + 1 <= buf_size);
406 return strcpy (buf, tmp.c_str ());
407 }
408 }
409
410 /* All the meta data necessary to extract the call's return value. */
411
412 struct call_return_meta_info
413 {
414 /* The caller frame's architecture. */
415 struct gdbarch *gdbarch;
416
417 /* The called function. */
418 struct value *function;
419
420 /* The return value's type. */
421 struct type *value_type;
422
423 /* Are we returning a value using a structure return or a normal
424 value return? */
425 int struct_return_p;
426
427 /* If using a structure return, this is the structure's address. */
428 CORE_ADDR struct_addr;
429 };
430
431 /* Extract the called function's return value. */
432
433 static struct value *
434 get_call_return_value (struct call_return_meta_info *ri)
435 {
436 struct value *retval = NULL;
437 thread_info *thr = inferior_thread ();
438 bool stack_temporaries = thread_stack_temporaries_enabled_p (thr);
439
440 if (ri->value_type->code () == TYPE_CODE_VOID)
441 retval = allocate_value (ri->value_type);
442 else if (ri->struct_return_p)
443 {
444 if (stack_temporaries)
445 {
446 retval = value_from_contents_and_address (ri->value_type, NULL,
447 ri->struct_addr);
448 push_thread_stack_temporary (thr, retval);
449 }
450 else
451 {
452 retval = allocate_value (ri->value_type);
453 read_value_memory (retval, 0, 1, ri->struct_addr,
454 value_contents_raw (retval).data (),
455 TYPE_LENGTH (ri->value_type));
456 }
457 }
458 else
459 {
460 retval = allocate_value (ri->value_type);
461 gdbarch_return_value (ri->gdbarch, ri->function, ri->value_type,
462 get_current_regcache (),
463 value_contents_raw (retval).data (), NULL);
464 if (stack_temporaries && class_or_union_p (ri->value_type))
465 {
466 /* Values of class type returned in registers are copied onto
467 the stack and their lval_type set to lval_memory. This is
468 required because further evaluation of the expression
469 could potentially invoke methods on the return value
470 requiring GDB to evaluate the "this" pointer. To evaluate
471 the this pointer, GDB needs the memory address of the
472 value. */
473 value_force_lval (retval, ri->struct_addr);
474 push_thread_stack_temporary (thr, retval);
475 }
476 }
477
478 gdb_assert (retval != NULL);
479 return retval;
480 }
481
482 /* Data for the FSM that manages an infcall. It's main job is to
483 record the called function's return value. */
484
485 struct call_thread_fsm : public thread_fsm
486 {
487 /* All the info necessary to be able to extract the return
488 value. */
489 struct call_return_meta_info return_meta_info;
490
491 /* The called function's return value. This is extracted from the
492 target before the dummy frame is popped. */
493 struct value *return_value = nullptr;
494
495 /* The top level that started the infcall (and is synchronously
496 waiting for it to end). */
497 struct ui *waiting_ui;
498
499 call_thread_fsm (struct ui *waiting_ui, struct interp *cmd_interp,
500 struct gdbarch *gdbarch, struct value *function,
501 struct type *value_type,
502 int struct_return_p, CORE_ADDR struct_addr);
503
504 bool should_stop (struct thread_info *thread) override;
505
506 bool should_notify_stop () override;
507 };
508
509 /* Allocate a new call_thread_fsm object. */
510
511 call_thread_fsm::call_thread_fsm (struct ui *waiting_ui,
512 struct interp *cmd_interp,
513 struct gdbarch *gdbarch,
514 struct value *function,
515 struct type *value_type,
516 int struct_return_p, CORE_ADDR struct_addr)
517 : thread_fsm (cmd_interp),
518 waiting_ui (waiting_ui)
519 {
520 return_meta_info.gdbarch = gdbarch;
521 return_meta_info.function = function;
522 return_meta_info.value_type = value_type;
523 return_meta_info.struct_return_p = struct_return_p;
524 return_meta_info.struct_addr = struct_addr;
525 }
526
527 /* Implementation of should_stop method for infcalls. */
528
529 bool
530 call_thread_fsm::should_stop (struct thread_info *thread)
531 {
532 if (stop_stack_dummy == STOP_STACK_DUMMY)
533 {
534 /* Done. */
535 set_finished ();
536
537 /* Stash the return value before the dummy frame is popped and
538 registers are restored to what they were before the
539 call.. */
540 return_value = get_call_return_value (&return_meta_info);
541
542 /* Break out of wait_sync_command_done. */
543 scoped_restore save_ui = make_scoped_restore (&current_ui, waiting_ui);
544 target_terminal::ours ();
545 waiting_ui->prompt_state = PROMPT_NEEDED;
546 }
547
548 return true;
549 }
550
551 /* Implementation of should_notify_stop method for infcalls. */
552
553 bool
554 call_thread_fsm::should_notify_stop ()
555 {
556 if (finished_p ())
557 {
558 /* Infcall succeeded. Be silent and proceed with evaluating the
559 expression. */
560 return false;
561 }
562
563 /* Something wrong happened. E.g., an unexpected breakpoint
564 triggered, or a signal was intercepted. Notify the stop. */
565 return true;
566 }
567
568 /* Subroutine of call_function_by_hand to simplify it.
569 Start up the inferior and wait for it to stop.
570 Return the exception if there's an error, or an exception with
571 reason >= 0 if there's no error.
572
573 This is done inside a TRY_CATCH so the caller needn't worry about
574 thrown errors. The caller should rethrow if there's an error. */
575
576 static struct gdb_exception
577 run_inferior_call (std::unique_ptr<call_thread_fsm> sm,
578 struct thread_info *call_thread, CORE_ADDR real_pc)
579 {
580 struct gdb_exception caught_error;
581 ptid_t call_thread_ptid = call_thread->ptid;
582 int was_running = call_thread->state == THREAD_RUNNING;
583
584 current_ui->unregister_file_handler ();
585
586 scoped_restore restore_in_infcall
587 = make_scoped_restore (&call_thread->control.in_infcall, 1);
588
589 clear_proceed_status (0);
590
591 /* Associate the FSM with the thread after clear_proceed_status
592 (otherwise it'd clear this FSM). */
593 call_thread->set_thread_fsm (std::move (sm));
594
595 disable_watchpoints_before_interactive_call_start ();
596
597 /* We want to print return value, please... */
598 call_thread->control.proceed_to_finish = 1;
599
600 try
601 {
602 /* Infcalls run synchronously, in the foreground. */
603 scoped_restore restore_prompt_state
604 = make_scoped_restore (&current_ui->prompt_state, PROMPT_BLOCKED);
605
606 /* So that we don't print the prompt prematurely in
607 fetch_inferior_event. */
608 scoped_restore restore_ui_async
609 = make_scoped_restore (&current_ui->async, 0);
610
611 proceed (real_pc, GDB_SIGNAL_0);
612
613 /* Inferior function calls are always synchronous, even if the
614 target supports asynchronous execution. */
615 wait_sync_command_done ();
616 }
617 catch (gdb_exception &e)
618 {
619 caught_error = std::move (e);
620 }
621
622 /* If GDB has the prompt blocked before, then ensure that it remains
623 so. normal_stop calls async_enable_stdin, so reset the prompt
624 state again here. In other cases, stdin will be re-enabled by
625 inferior_event_handler, when an exception is thrown. */
626 if (current_ui->prompt_state == PROMPT_BLOCKED)
627 current_ui->unregister_file_handler ();
628 else
629 current_ui->register_file_handler ();
630
631 /* If the infcall does NOT succeed, normal_stop will have already
632 finished the thread states. However, on success, normal_stop
633 defers here, so that we can set back the thread states to what
634 they were before the call. Note that we must also finish the
635 state of new threads that might have spawned while the call was
636 running. The main cases to handle are:
637
638 - "(gdb) print foo ()", or any other command that evaluates an
639 expression at the prompt. (The thread was marked stopped before.)
640
641 - "(gdb) break foo if return_false()" or similar cases where we
642 do an infcall while handling an event (while the thread is still
643 marked running). In this example, whether the condition
644 evaluates true and thus we'll present a user-visible stop is
645 decided elsewhere. */
646 if (!was_running
647 && call_thread_ptid == inferior_ptid
648 && stop_stack_dummy == STOP_STACK_DUMMY)
649 finish_thread_state (call_thread->inf->process_target (),
650 user_visible_resume_ptid (0));
651
652 enable_watchpoints_after_interactive_call_stop ();
653
654 /* Call breakpoint_auto_delete on the current contents of the bpstat
655 of inferior call thread.
656 If all error()s out of proceed ended up calling normal_stop
657 (and perhaps they should; it already does in the special case
658 of error out of resume()), then we wouldn't need this. */
659 if (caught_error.reason < 0)
660 {
661 if (call_thread->state != THREAD_EXITED)
662 breakpoint_auto_delete (call_thread->control.stop_bpstat);
663 }
664
665 return caught_error;
666 }
667
668 /* Reserve space on the stack for a value of the given type.
669 Return the address of the allocated space.
670 Make certain that the value is correctly aligned.
671 The SP argument is modified. */
672
673 static CORE_ADDR
674 reserve_stack_space (const type *values_type, CORE_ADDR &sp)
675 {
676 struct frame_info *frame = get_current_frame ();
677 struct gdbarch *gdbarch = get_frame_arch (frame);
678 CORE_ADDR addr = 0;
679
680 if (gdbarch_inner_than (gdbarch, 1, 2))
681 {
682 /* Stack grows downward. Align STRUCT_ADDR and SP after
683 making space. */
684 sp -= TYPE_LENGTH (values_type);
685 if (gdbarch_frame_align_p (gdbarch))
686 sp = gdbarch_frame_align (gdbarch, sp);
687 addr = sp;
688 }
689 else
690 {
691 /* Stack grows upward. Align the frame, allocate space, and
692 then again, re-align the frame??? */
693 if (gdbarch_frame_align_p (gdbarch))
694 sp = gdbarch_frame_align (gdbarch, sp);
695 addr = sp;
696 sp += TYPE_LENGTH (values_type);
697 if (gdbarch_frame_align_p (gdbarch))
698 sp = gdbarch_frame_align (gdbarch, sp);
699 }
700
701 return addr;
702 }
703
704 /* The data structure which keeps a destructor function and
705 its implicit 'this' parameter. */
706
707 struct destructor_info
708 {
709 destructor_info (struct value *function, struct value *self)
710 : function (function), self (self) { }
711
712 struct value *function;
713 struct value *self;
714 };
715
716
717 /* Auxiliary function that takes a list of destructor functions
718 with their 'this' parameters, and invokes the functions. */
719
720 static void
721 call_destructors (const std::list<destructor_info> &dtors_to_invoke,
722 struct type *default_return_type)
723 {
724 for (auto vals : dtors_to_invoke)
725 {
726 call_function_by_hand (vals.function, default_return_type,
727 gdb::make_array_view (&(vals.self), 1));
728 }
729 }
730
731 /* See infcall.h. */
732
733 struct value *
734 call_function_by_hand (struct value *function,
735 type *default_return_type,
736 gdb::array_view<value *> args)
737 {
738 return call_function_by_hand_dummy (function, default_return_type,
739 args, NULL, NULL);
740 }
741
742 /* All this stuff with a dummy frame may seem unnecessarily complicated
743 (why not just save registers in GDB?). The purpose of pushing a dummy
744 frame which looks just like a real frame is so that if you call a
745 function and then hit a breakpoint (get a signal, etc), "backtrace"
746 will look right. Whether the backtrace needs to actually show the
747 stack at the time the inferior function was called is debatable, but
748 it certainly needs to not display garbage. So if you are contemplating
749 making dummy frames be different from normal frames, consider that. */
750
751 /* Perform a function call in the inferior.
752 ARGS is a vector of values of arguments.
753 FUNCTION is a value, the function to be called.
754 Returns a value representing what the function returned.
755 May fail to return, if a breakpoint or signal is hit
756 during the execution of the function.
757
758 ARGS is modified to contain coerced values. */
759
760 struct value *
761 call_function_by_hand_dummy (struct value *function,
762 type *default_return_type,
763 gdb::array_view<value *> args,
764 dummy_frame_dtor_ftype *dummy_dtor,
765 void *dummy_dtor_data)
766 {
767 CORE_ADDR sp;
768 struct type *target_values_type;
769 function_call_return_method return_method = return_method_normal;
770 CORE_ADDR struct_addr = 0;
771 CORE_ADDR real_pc;
772 CORE_ADDR bp_addr;
773 struct frame_id dummy_id;
774 struct frame_info *frame;
775 struct gdbarch *gdbarch;
776 ptid_t call_thread_ptid;
777 struct gdb_exception e;
778 char name_buf[RAW_FUNCTION_ADDRESS_SIZE];
779
780 if (!may_call_functions_p)
781 error (_("Cannot call functions in the program: "
782 "may-call-functions is off."));
783
784 if (!target_has_execution ())
785 noprocess ();
786
787 if (get_traceframe_number () >= 0)
788 error (_("May not call functions while looking at trace frames."));
789
790 if (execution_direction == EXEC_REVERSE)
791 error (_("Cannot call functions in reverse mode."));
792
793 /* We're going to run the target, and inspect the thread's state
794 afterwards. Hold a strong reference so that the pointer remains
795 valid even if the thread exits. */
796 thread_info_ref call_thread
797 = thread_info_ref::new_reference (inferior_thread ());
798
799 bool stack_temporaries = thread_stack_temporaries_enabled_p (call_thread.get ());
800
801 frame = get_current_frame ();
802 gdbarch = get_frame_arch (frame);
803
804 if (!gdbarch_push_dummy_call_p (gdbarch))
805 error (_("This target does not support function calls."));
806
807 /* Find the function type and do a sanity check. */
808 type *ftype;
809 type *values_type;
810 CORE_ADDR funaddr = find_function_addr (function, &values_type, &ftype);
811
812 if (is_nocall_function (ftype))
813 error (_("Cannot call the function '%s' which does not follow the "
814 "target calling convention."),
815 get_function_name (funaddr, name_buf, sizeof (name_buf)));
816
817 if (values_type == NULL)
818 values_type = default_return_type;
819 if (values_type == NULL)
820 {
821 const char *name = get_function_name (funaddr,
822 name_buf, sizeof (name_buf));
823 error (_("'%s' has unknown return type; "
824 "cast the call to its declared return type"),
825 name);
826 }
827
828 values_type = check_typedef (values_type);
829
830 if (args.size () < ftype->num_fields ())
831 error (_("Too few arguments in function call."));
832
833 /* A holder for the inferior status.
834 This is only needed while we're preparing the inferior function call. */
835 infcall_control_state_up inf_status (save_infcall_control_state ());
836
837 /* Save the caller's registers and other state associated with the
838 inferior itself so that they can be restored once the
839 callee returns. To allow nested calls the registers are (further
840 down) pushed onto a dummy frame stack. This unique pointer
841 is released once the regcache has been pushed). */
842 infcall_suspend_state_up caller_state (save_infcall_suspend_state ());
843
844 /* Ensure that the initial SP is correctly aligned. */
845 {
846 CORE_ADDR old_sp = get_frame_sp (frame);
847
848 if (gdbarch_frame_align_p (gdbarch))
849 {
850 sp = gdbarch_frame_align (gdbarch, old_sp);
851 /* NOTE: cagney/2003-08-13: Skip the "red zone". For some
852 ABIs, a function can use memory beyond the inner most stack
853 address. AMD64 called that region the "red zone". Skip at
854 least the "red zone" size before allocating any space on
855 the stack. */
856 if (gdbarch_inner_than (gdbarch, 1, 2))
857 sp -= gdbarch_frame_red_zone_size (gdbarch);
858 else
859 sp += gdbarch_frame_red_zone_size (gdbarch);
860 /* Still aligned? */
861 gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
862 /* NOTE: cagney/2002-09-18:
863
864 On a RISC architecture, a void parameterless generic dummy
865 frame (i.e., no parameters, no result) typically does not
866 need to push anything the stack and hence can leave SP and
867 FP. Similarly, a frameless (possibly leaf) function does
868 not push anything on the stack and, hence, that too can
869 leave FP and SP unchanged. As a consequence, a sequence of
870 void parameterless generic dummy frame calls to frameless
871 functions will create a sequence of effectively identical
872 frames (SP, FP and TOS and PC the same). This, not
873 surprisingly, results in what appears to be a stack in an
874 infinite loop --- when GDB tries to find a generic dummy
875 frame on the internal dummy frame stack, it will always
876 find the first one.
877
878 To avoid this problem, the code below always grows the
879 stack. That way, two dummy frames can never be identical.
880 It does burn a few bytes of stack but that is a small price
881 to pay :-). */
882 if (sp == old_sp)
883 {
884 if (gdbarch_inner_than (gdbarch, 1, 2))
885 /* Stack grows down. */
886 sp = gdbarch_frame_align (gdbarch, old_sp - 1);
887 else
888 /* Stack grows up. */
889 sp = gdbarch_frame_align (gdbarch, old_sp + 1);
890 }
891 /* SP may have underflown address zero here from OLD_SP. Memory access
892 functions will probably fail in such case but that is a target's
893 problem. */
894 }
895 else
896 /* FIXME: cagney/2002-09-18: Hey, you loose!
897
898 Who knows how badly aligned the SP is!
899
900 If the generic dummy frame ends up empty (because nothing is
901 pushed) GDB won't be able to correctly perform back traces.
902 If a target is having trouble with backtraces, first thing to
903 do is add FRAME_ALIGN() to the architecture vector. If that
904 fails, try dummy_id().
905
906 If the ABI specifies a "Red Zone" (see the doco) the code
907 below will quietly trash it. */
908 sp = old_sp;
909
910 /* Skip over the stack temporaries that might have been generated during
911 the evaluation of an expression. */
912 if (stack_temporaries)
913 {
914 struct value *lastval;
915
916 lastval = get_last_thread_stack_temporary (call_thread.get ());
917 if (lastval != NULL)
918 {
919 CORE_ADDR lastval_addr = value_address (lastval);
920
921 if (gdbarch_inner_than (gdbarch, 1, 2))
922 {
923 gdb_assert (sp >= lastval_addr);
924 sp = lastval_addr;
925 }
926 else
927 {
928 gdb_assert (sp <= lastval_addr);
929 sp = lastval_addr + TYPE_LENGTH (value_type (lastval));
930 }
931
932 if (gdbarch_frame_align_p (gdbarch))
933 sp = gdbarch_frame_align (gdbarch, sp);
934 }
935 }
936 }
937
938 /* Are we returning a value using a structure return? */
939
940 if (gdbarch_return_in_first_hidden_param_p (gdbarch, values_type))
941 {
942 return_method = return_method_hidden_param;
943
944 /* Tell the target specific argument pushing routine not to
945 expect a value. */
946 target_values_type = builtin_type (gdbarch)->builtin_void;
947 }
948 else
949 {
950 if (using_struct_return (gdbarch, function, values_type))
951 return_method = return_method_struct;
952 target_values_type = values_type;
953 }
954
955 gdb::observers::inferior_call_pre.notify (inferior_ptid, funaddr);
956
957 /* Determine the location of the breakpoint (and possibly other
958 stuff) that the called function will return to. The SPARC, for a
959 function returning a structure or union, needs to make space for
960 not just the breakpoint but also an extra word containing the
961 size (?) of the structure being passed. */
962
963 switch (gdbarch_call_dummy_location (gdbarch))
964 {
965 case ON_STACK:
966 {
967 const gdb_byte *bp_bytes;
968 CORE_ADDR bp_addr_as_address;
969 int bp_size;
970
971 /* Be careful BP_ADDR is in inferior PC encoding while
972 BP_ADDR_AS_ADDRESS is a plain memory address. */
973
974 sp = push_dummy_code (gdbarch, sp, funaddr, args,
975 target_values_type, &real_pc, &bp_addr,
976 get_current_regcache ());
977
978 /* Write a legitimate instruction at the point where the infcall
979 breakpoint is going to be inserted. While this instruction
980 is never going to be executed, a user investigating the
981 memory from GDB would see this instruction instead of random
982 uninitialized bytes. We chose the breakpoint instruction
983 as it may look as the most logical one to the user and also
984 valgrind 3.7.0 needs it for proper vgdb inferior calls.
985
986 If software breakpoints are unsupported for this target we
987 leave the user visible memory content uninitialized. */
988
989 bp_addr_as_address = bp_addr;
990 bp_bytes = gdbarch_breakpoint_from_pc (gdbarch, &bp_addr_as_address,
991 &bp_size);
992 if (bp_bytes != NULL)
993 write_memory (bp_addr_as_address, bp_bytes, bp_size);
994 }
995 break;
996 case AT_ENTRY_POINT:
997 {
998 CORE_ADDR dummy_addr;
999
1000 real_pc = funaddr;
1001 dummy_addr = entry_point_address ();
1002
1003 /* A call dummy always consists of just a single breakpoint, so
1004 its address is the same as the address of the dummy.
1005
1006 The actual breakpoint is inserted separatly so there is no need to
1007 write that out. */
1008 bp_addr = dummy_addr;
1009 break;
1010 }
1011 default:
1012 internal_error (__FILE__, __LINE__, _("bad switch"));
1013 }
1014
1015 /* Coerce the arguments and handle pass-by-reference.
1016 We want to remember the destruction required for pass-by-ref values.
1017 For these, store the dtor function and the 'this' argument
1018 in DTORS_TO_INVOKE. */
1019 std::list<destructor_info> dtors_to_invoke;
1020
1021 for (int i = args.size () - 1; i >= 0; i--)
1022 {
1023 int prototyped;
1024 struct type *param_type;
1025
1026 /* FIXME drow/2002-05-31: Should just always mark methods as
1027 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1028 if (ftype->code () == TYPE_CODE_METHOD)
1029 prototyped = 1;
1030 else if (TYPE_TARGET_TYPE (ftype) == NULL && ftype->num_fields () == 0
1031 && default_return_type != NULL)
1032 {
1033 /* Calling a no-debug function with the return type
1034 explicitly cast. Assume the function is prototyped,
1035 with a prototype matching the types of the arguments.
1036 E.g., with:
1037 float mult (float v1, float v2) { return v1 * v2; }
1038 This:
1039 (gdb) p (float) mult (2.0f, 3.0f)
1040 Is a simpler alternative to:
1041 (gdb) p ((float (*) (float, float)) mult) (2.0f, 3.0f)
1042 */
1043 prototyped = 1;
1044 }
1045 else if (i < ftype->num_fields ())
1046 prototyped = ftype->is_prototyped ();
1047 else
1048 prototyped = 0;
1049
1050 if (i < ftype->num_fields ())
1051 param_type = ftype->field (i).type ();
1052 else
1053 param_type = NULL;
1054
1055 value *original_arg = args[i];
1056 args[i] = value_arg_coerce (gdbarch, args[i],
1057 param_type, prototyped);
1058
1059 if (param_type == NULL)
1060 continue;
1061
1062 auto info = language_pass_by_reference (param_type);
1063 if (!info.copy_constructible)
1064 error (_("expression cannot be evaluated because the type '%s' "
1065 "is not copy constructible"), param_type->name ());
1066
1067 if (!info.destructible)
1068 error (_("expression cannot be evaluated because the type '%s' "
1069 "is not destructible"), param_type->name ());
1070
1071 if (info.trivially_copyable)
1072 continue;
1073
1074 /* Make a copy of the argument on the stack. If the argument is
1075 trivially copy ctor'able, copy bit by bit. Otherwise, call
1076 the copy ctor to initialize the clone. */
1077 CORE_ADDR addr = reserve_stack_space (param_type, sp);
1078 value *clone
1079 = value_from_contents_and_address (param_type, nullptr, addr);
1080 push_thread_stack_temporary (call_thread.get (), clone);
1081 value *clone_ptr
1082 = value_from_pointer (lookup_pointer_type (param_type), addr);
1083
1084 if (info.trivially_copy_constructible)
1085 {
1086 int length = TYPE_LENGTH (param_type);
1087 write_memory (addr, value_contents (args[i]).data (), length);
1088 }
1089 else
1090 {
1091 value *copy_ctor;
1092 value *cctor_args[2] = { clone_ptr, original_arg };
1093 find_overload_match (gdb::make_array_view (cctor_args, 2),
1094 param_type->name (), METHOD,
1095 &clone_ptr, nullptr, &copy_ctor, nullptr,
1096 nullptr, 0, EVAL_NORMAL);
1097
1098 if (copy_ctor == nullptr)
1099 error (_("expression cannot be evaluated because a copy "
1100 "constructor for the type '%s' could not be found "
1101 "(maybe inlined?)"), param_type->name ());
1102
1103 call_function_by_hand (copy_ctor, default_return_type,
1104 gdb::make_array_view (cctor_args, 2));
1105 }
1106
1107 /* If the argument has a destructor, remember it so that we
1108 invoke it after the infcall is complete. */
1109 if (!info.trivially_destructible)
1110 {
1111 /* Looking up the function via overload resolution does not
1112 work because the compiler (in particular, gcc) adds an
1113 artificial int parameter in some cases. So we look up
1114 the function by using the "~" name. This should be OK
1115 because there can be only one dtor definition. */
1116 const char *dtor_name = nullptr;
1117 for (int fieldnum = 0;
1118 fieldnum < TYPE_NFN_FIELDS (param_type);
1119 fieldnum++)
1120 {
1121 fn_field *fn
1122 = TYPE_FN_FIELDLIST1 (param_type, fieldnum);
1123 const char *field_name
1124 = TYPE_FN_FIELDLIST_NAME (param_type, fieldnum);
1125
1126 if (field_name[0] == '~')
1127 dtor_name = TYPE_FN_FIELD_PHYSNAME (fn, 0);
1128 }
1129
1130 if (dtor_name == nullptr)
1131 error (_("expression cannot be evaluated because a destructor "
1132 "for the type '%s' could not be found "
1133 "(maybe inlined?)"), param_type->name ());
1134
1135 value *dtor
1136 = find_function_in_inferior (dtor_name, 0);
1137
1138 /* Insert the dtor to the front of the list to call them
1139 in reverse order later. */
1140 dtors_to_invoke.emplace_front (dtor, clone_ptr);
1141 }
1142
1143 args[i] = clone_ptr;
1144 }
1145
1146 /* Reserve space for the return structure to be written on the
1147 stack, if necessary.
1148
1149 While evaluating expressions, we reserve space on the stack for
1150 return values of class type even if the language ABI and the target
1151 ABI do not require that the return value be passed as a hidden first
1152 argument. This is because we want to store the return value as an
1153 on-stack temporary while the expression is being evaluated. This
1154 enables us to have chained function calls in expressions.
1155
1156 Keeping the return values as on-stack temporaries while the expression
1157 is being evaluated is OK because the thread is stopped until the
1158 expression is completely evaluated. */
1159
1160 if (return_method != return_method_normal
1161 || (stack_temporaries && class_or_union_p (values_type)))
1162 struct_addr = reserve_stack_space (values_type, sp);
1163
1164 std::vector<struct value *> new_args;
1165 if (return_method == return_method_hidden_param)
1166 {
1167 /* Add the new argument to the front of the argument list. */
1168 new_args.reserve (args.size ());
1169 new_args.push_back
1170 (value_from_pointer (lookup_pointer_type (values_type), struct_addr));
1171 new_args.insert (new_args.end (), args.begin (), args.end ());
1172 args = new_args;
1173 }
1174
1175 /* Create the dummy stack frame. Pass in the call dummy address as,
1176 presumably, the ABI code knows where, in the call dummy, the
1177 return address should be pointed. */
1178 sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
1179 bp_addr, args.size (), args.data (),
1180 sp, return_method, struct_addr);
1181
1182 /* Set up a frame ID for the dummy frame so we can pass it to
1183 set_momentary_breakpoint. We need to give the breakpoint a frame
1184 ID so that the breakpoint code can correctly re-identify the
1185 dummy breakpoint. */
1186 /* Sanity. The exact same SP value is returned by PUSH_DUMMY_CALL,
1187 saved as the dummy-frame TOS, and used by dummy_id to form
1188 the frame ID's stack address. */
1189 dummy_id = frame_id_build (sp, bp_addr);
1190
1191 /* Create a momentary breakpoint at the return address of the
1192 inferior. That way it breaks when it returns. */
1193
1194 {
1195 symtab_and_line sal;
1196 sal.pspace = current_program_space;
1197 sal.pc = bp_addr;
1198 sal.section = find_pc_overlay (sal.pc);
1199
1200 /* Sanity. The exact same SP value is returned by
1201 PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
1202 dummy_id to form the frame ID's stack address. */
1203 breakpoint *bpt
1204 = set_momentary_breakpoint (gdbarch, sal,
1205 dummy_id, bp_call_dummy).release ();
1206
1207 /* set_momentary_breakpoint invalidates FRAME. */
1208 frame = NULL;
1209
1210 bpt->disposition = disp_del;
1211 gdb_assert (bpt->related_breakpoint == bpt);
1212
1213 breakpoint *longjmp_b = set_longjmp_breakpoint_for_call_dummy ();
1214 if (longjmp_b)
1215 {
1216 /* Link BPT into the chain of LONGJMP_B. */
1217 bpt->related_breakpoint = longjmp_b;
1218 while (longjmp_b->related_breakpoint != bpt->related_breakpoint)
1219 longjmp_b = longjmp_b->related_breakpoint;
1220 longjmp_b->related_breakpoint = bpt;
1221 }
1222 }
1223
1224 /* Create a breakpoint in std::terminate.
1225 If a C++ exception is raised in the dummy-frame, and the
1226 exception handler is (normally, and expected to be) out-of-frame,
1227 the default C++ handler will (wrongly) be called in an inferior
1228 function call. This is wrong, as an exception can be normally
1229 and legally handled out-of-frame. The confines of the dummy frame
1230 prevent the unwinder from finding the correct handler (or any
1231 handler, unless it is in-frame). The default handler calls
1232 std::terminate. This will kill the inferior. Assert that
1233 terminate should never be called in an inferior function
1234 call. Place a momentary breakpoint in the std::terminate function
1235 and if triggered in the call, rewind. */
1236 if (unwind_on_terminating_exception_p)
1237 set_std_terminate_breakpoint ();
1238
1239 /* Everything's ready, push all the info needed to restore the
1240 caller (and identify the dummy-frame) onto the dummy-frame
1241 stack. */
1242 dummy_frame_push (caller_state.release (), &dummy_id, call_thread.get ());
1243 if (dummy_dtor != NULL)
1244 register_dummy_frame_dtor (dummy_id, call_thread.get (),
1245 dummy_dtor, dummy_dtor_data);
1246
1247 /* Register a clean-up for unwind_on_terminating_exception_breakpoint. */
1248 SCOPE_EXIT { delete_std_terminate_breakpoint (); };
1249
1250 /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
1251 If you're looking to implement asynchronous dummy-frames, then
1252 just below is the place to chop this function in two.. */
1253
1254 {
1255 /* Save the current FSM. We'll override it. */
1256 std::unique_ptr<thread_fsm> saved_sm = call_thread->release_thread_fsm ();
1257 struct call_thread_fsm *sm;
1258
1259 /* Save this thread's ptid, we need it later but the thread
1260 may have exited. */
1261 call_thread_ptid = call_thread->ptid;
1262
1263 /* Run the inferior until it stops. */
1264
1265 /* Create the FSM used to manage the infcall. It tells infrun to
1266 not report the stop to the user, and captures the return value
1267 before the dummy frame is popped. run_inferior_call registers
1268 it with the thread ASAP. */
1269 sm = new call_thread_fsm (current_ui, command_interp (),
1270 gdbarch, function,
1271 values_type,
1272 return_method != return_method_normal,
1273 struct_addr);
1274 {
1275 std::unique_ptr<call_thread_fsm> sm_up (sm);
1276 e = run_inferior_call (std::move (sm_up), call_thread.get (), real_pc);
1277 }
1278
1279 gdb::observers::inferior_call_post.notify (call_thread_ptid, funaddr);
1280
1281 if (call_thread->state != THREAD_EXITED)
1282 {
1283 /* The FSM should still be the same. */
1284 gdb_assert (call_thread->thread_fsm () == sm);
1285
1286 if (call_thread->thread_fsm ()->finished_p ())
1287 {
1288 struct value *retval;
1289
1290 /* The inferior call is successful. Pop the dummy frame,
1291 which runs its destructors and restores the inferior's
1292 suspend state, and restore the inferior control
1293 state. */
1294 dummy_frame_pop (dummy_id, call_thread.get ());
1295 restore_infcall_control_state (inf_status.release ());
1296
1297 /* Get the return value. */
1298 retval = sm->return_value;
1299
1300 /* Restore the original FSM and clean up / destroh the call FSM.
1301 Doing it in this order ensures that if the call to clean_up
1302 throws, the original FSM is properly restored. */
1303 {
1304 std::unique_ptr<thread_fsm> finalizing
1305 = call_thread->release_thread_fsm ();
1306 call_thread->set_thread_fsm (std::move (saved_sm));
1307
1308 finalizing->clean_up (call_thread.get ());
1309 }
1310
1311 maybe_remove_breakpoints ();
1312
1313 gdb_assert (retval != NULL);
1314
1315 /* Destruct the pass-by-ref argument clones. */
1316 call_destructors (dtors_to_invoke, default_return_type);
1317
1318 return retval;
1319 }
1320
1321 /* Didn't complete. Clean up / destroy the call FSM, and restore the
1322 previous state machine, and handle the error. */
1323 {
1324 std::unique_ptr<thread_fsm> finalizing
1325 = call_thread->release_thread_fsm ();
1326 call_thread->set_thread_fsm (std::move (saved_sm));
1327
1328 finalizing->clean_up (call_thread.get ());
1329 }
1330 }
1331 }
1332
1333 /* Rethrow an error if we got one trying to run the inferior. */
1334
1335 if (e.reason < 0)
1336 {
1337 const char *name = get_function_name (funaddr,
1338 name_buf, sizeof (name_buf));
1339
1340 discard_infcall_control_state (inf_status.release ());
1341
1342 /* We could discard the dummy frame here if the program exited,
1343 but it will get garbage collected the next time the program is
1344 run anyway. */
1345
1346 switch (e.reason)
1347 {
1348 case RETURN_ERROR:
1349 throw_error (e.error, _("%s\n\
1350 An error occurred while in a function called from GDB.\n\
1351 Evaluation of the expression containing the function\n\
1352 (%s) will be abandoned.\n\
1353 When the function is done executing, GDB will silently stop."),
1354 e.what (), name);
1355 case RETURN_QUIT:
1356 default:
1357 throw_exception (std::move (e));
1358 }
1359 }
1360
1361 /* If the program has exited, or we stopped at a different thread,
1362 exit and inform the user. */
1363
1364 if (! target_has_execution ())
1365 {
1366 const char *name = get_function_name (funaddr,
1367 name_buf, sizeof (name_buf));
1368
1369 /* If we try to restore the inferior status,
1370 we'll crash as the inferior is no longer running. */
1371 discard_infcall_control_state (inf_status.release ());
1372
1373 /* We could discard the dummy frame here given that the program exited,
1374 but it will get garbage collected the next time the program is
1375 run anyway. */
1376
1377 error (_("The program being debugged exited while in a function "
1378 "called from GDB.\n"
1379 "Evaluation of the expression containing the function\n"
1380 "(%s) will be abandoned."),
1381 name);
1382 }
1383
1384 if (call_thread_ptid != inferior_ptid)
1385 {
1386 const char *name = get_function_name (funaddr,
1387 name_buf, sizeof (name_buf));
1388
1389 /* We've switched threads. This can happen if another thread gets a
1390 signal or breakpoint while our thread was running.
1391 There's no point in restoring the inferior status,
1392 we're in a different thread. */
1393 discard_infcall_control_state (inf_status.release ());
1394 /* Keep the dummy frame record, if the user switches back to the
1395 thread with the hand-call, we'll need it. */
1396 if (stopped_by_random_signal)
1397 error (_("\
1398 The program received a signal in another thread while\n\
1399 making a function call from GDB.\n\
1400 Evaluation of the expression containing the function\n\
1401 (%s) will be abandoned.\n\
1402 When the function is done executing, GDB will silently stop."),
1403 name);
1404 else
1405 error (_("\
1406 The program stopped in another thread while making a function call from GDB.\n\
1407 Evaluation of the expression containing the function\n\
1408 (%s) will be abandoned.\n\
1409 When the function is done executing, GDB will silently stop."),
1410 name);
1411 }
1412
1413 {
1414 /* Make a copy as NAME may be in an objfile freed by dummy_frame_pop. */
1415 std::string name = get_function_name (funaddr, name_buf,
1416 sizeof (name_buf));
1417
1418 if (stopped_by_random_signal)
1419 {
1420 /* We stopped inside the FUNCTION because of a random
1421 signal. Further execution of the FUNCTION is not
1422 allowed. */
1423
1424 if (unwind_on_signal_p)
1425 {
1426 /* The user wants the context restored. */
1427
1428 /* We must get back to the frame we were before the
1429 dummy call. */
1430 dummy_frame_pop (dummy_id, call_thread.get ());
1431
1432 /* We also need to restore inferior status to that before the
1433 dummy call. */
1434 restore_infcall_control_state (inf_status.release ());
1435
1436 /* FIXME: Insert a bunch of wrap_here; name can be very
1437 long if it's a C++ name with arguments and stuff. */
1438 error (_("\
1439 The program being debugged was signaled while in a function called from GDB.\n\
1440 GDB has restored the context to what it was before the call.\n\
1441 To change this behavior use \"set unwindonsignal off\".\n\
1442 Evaluation of the expression containing the function\n\
1443 (%s) will be abandoned."),
1444 name.c_str ());
1445 }
1446 else
1447 {
1448 /* The user wants to stay in the frame where we stopped
1449 (default).
1450 Discard inferior status, we're not at the same point
1451 we started at. */
1452 discard_infcall_control_state (inf_status.release ());
1453
1454 /* FIXME: Insert a bunch of wrap_here; name can be very
1455 long if it's a C++ name with arguments and stuff. */
1456 error (_("\
1457 The program being debugged was signaled while in a function called from GDB.\n\
1458 GDB remains in the frame where the signal was received.\n\
1459 To change this behavior use \"set unwindonsignal on\".\n\
1460 Evaluation of the expression containing the function\n\
1461 (%s) will be abandoned.\n\
1462 When the function is done executing, GDB will silently stop."),
1463 name.c_str ());
1464 }
1465 }
1466
1467 if (stop_stack_dummy == STOP_STD_TERMINATE)
1468 {
1469 /* We must get back to the frame we were before the dummy
1470 call. */
1471 dummy_frame_pop (dummy_id, call_thread.get ());
1472
1473 /* We also need to restore inferior status to that before
1474 the dummy call. */
1475 restore_infcall_control_state (inf_status.release ());
1476
1477 error (_("\
1478 The program being debugged entered a std::terminate call, most likely\n\
1479 caused by an unhandled C++ exception. GDB blocked this call in order\n\
1480 to prevent the program from being terminated, and has restored the\n\
1481 context to its original state before the call.\n\
1482 To change this behaviour use \"set unwind-on-terminating-exception off\".\n\
1483 Evaluation of the expression containing the function (%s)\n\
1484 will be abandoned."),
1485 name.c_str ());
1486 }
1487 else if (stop_stack_dummy == STOP_NONE)
1488 {
1489
1490 /* We hit a breakpoint inside the FUNCTION.
1491 Keep the dummy frame, the user may want to examine its state.
1492 Discard inferior status, we're not at the same point
1493 we started at. */
1494 discard_infcall_control_state (inf_status.release ());
1495
1496 /* The following error message used to say "The expression
1497 which contained the function call has been discarded."
1498 It is a hard concept to explain in a few words. Ideally,
1499 GDB would be able to resume evaluation of the expression
1500 when the function finally is done executing. Perhaps
1501 someday this will be implemented (it would not be easy). */
1502 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1503 a C++ name with arguments and stuff. */
1504 error (_("\
1505 The program being debugged stopped while in a function called from GDB.\n\
1506 Evaluation of the expression containing the function\n\
1507 (%s) will be abandoned.\n\
1508 When the function is done executing, GDB will silently stop."),
1509 name.c_str ());
1510 }
1511
1512 }
1513
1514 /* The above code errors out, so ... */
1515 gdb_assert_not_reached ("... should not be here");
1516 }
1517
1518 void _initialize_infcall ();
1519 void
1520 _initialize_infcall ()
1521 {
1522 add_setshow_boolean_cmd ("may-call-functions", no_class,
1523 &may_call_functions_p, _("\
1524 Set permission to call functions in the program."), _("\
1525 Show permission to call functions in the program."), _("\
1526 When this permission is on, GDB may call functions in the program.\n\
1527 Otherwise, any sort of attempt to call a function in the program\n\
1528 will result in an error."),
1529 NULL,
1530 show_may_call_functions_p,
1531 &setlist, &showlist);
1532
1533 add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
1534 &coerce_float_to_double_p, _("\
1535 Set coercion of floats to doubles when calling functions."), _("\
1536 Show coercion of floats to doubles when calling functions."), _("\
1537 Variables of type float should generally be converted to doubles before\n\
1538 calling an unprototyped function, and left alone when calling a prototyped\n\
1539 function. However, some older debug info formats do not provide enough\n\
1540 information to determine that a function is prototyped. If this flag is\n\
1541 set, GDB will perform the conversion for a function it considers\n\
1542 unprototyped.\n\
1543 The default is to perform the conversion."),
1544 NULL,
1545 show_coerce_float_to_double_p,
1546 &setlist, &showlist);
1547
1548 add_setshow_boolean_cmd ("unwindonsignal", no_class,
1549 &unwind_on_signal_p, _("\
1550 Set unwinding of stack if a signal is received while in a call dummy."), _("\
1551 Show unwinding of stack if a signal is received while in a call dummy."), _("\
1552 The unwindonsignal lets the user determine what gdb should do if a signal\n\
1553 is received while in a function called from gdb (call dummy). If set, gdb\n\
1554 unwinds the stack and restore the context to what as it was before the call.\n\
1555 The default is to stop in the frame where the signal was received."),
1556 NULL,
1557 show_unwind_on_signal_p,
1558 &setlist, &showlist);
1559
1560 add_setshow_boolean_cmd ("unwind-on-terminating-exception", no_class,
1561 &unwind_on_terminating_exception_p, _("\
1562 Set unwinding of stack if std::terminate is called while in call dummy."), _("\
1563 Show unwinding of stack if std::terminate() is called while in a call dummy."),
1564 _("\
1565 The unwind on terminating exception flag lets the user determine\n\
1566 what gdb should do if a std::terminate() call is made from the\n\
1567 default exception handler. If set, gdb unwinds the stack and restores\n\
1568 the context to what it was before the call. If unset, gdb allows the\n\
1569 std::terminate call to proceed.\n\
1570 The default is to unwind the frame."),
1571 NULL,
1572 show_unwind_on_terminating_exception_p,
1573 &setlist, &showlist);
1574
1575 }