2004-06-09 Andrew Cagney <cagney@gnu.org>
[binutils-gdb.git] / gdb / infptrace.c
1 /* Low level Unix child interface to ptrace, for GDB when running under Unix.
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "gdb_string.h"
28 #include "regcache.h"
29
30 #include "gdb_wait.h"
31
32 #include "command.h"
33
34 #ifdef USG
35 #include <sys/types.h>
36 #endif
37
38 #include <sys/param.h>
39 #include "gdb_dirent.h"
40 #include <signal.h>
41 #include <sys/ioctl.h>
42
43 #ifdef HAVE_PTRACE_H
44 #include <ptrace.h>
45 #else
46 #ifdef HAVE_SYS_PTRACE_H
47 #include <sys/ptrace.h>
48 #endif
49 #endif
50
51 #if !defined (PT_READ_I)
52 #define PT_READ_I 1 /* Read word from text space */
53 #endif
54 #if !defined (PT_READ_D)
55 #define PT_READ_D 2 /* Read word from data space */
56 #endif
57 #if !defined (PT_READ_U)
58 #define PT_READ_U 3 /* Read word from kernel user struct */
59 #endif
60 #if !defined (PT_WRITE_I)
61 #define PT_WRITE_I 4 /* Write word to text space */
62 #endif
63 #if !defined (PT_WRITE_D)
64 #define PT_WRITE_D 5 /* Write word to data space */
65 #endif
66 #if !defined (PT_WRITE_U)
67 #define PT_WRITE_U 6 /* Write word to kernel user struct */
68 #endif
69 #if !defined (PT_CONTINUE)
70 #define PT_CONTINUE 7 /* Continue after signal */
71 #endif
72 #if !defined (PT_STEP)
73 #define PT_STEP 9 /* Set flag for single stepping */
74 #endif
75 #if !defined (PT_KILL)
76 #define PT_KILL 8 /* Send child a SIGKILL signal */
77 #endif
78
79 #include "gdbcore.h"
80 #ifndef NO_SYS_FILE
81 #include <sys/file.h>
82 #endif
83 #if 0
84 /* Don't think this is used anymore. On the sequent (not sure whether it's
85 dynix or ptx or both), it is included unconditionally by sys/user.h and
86 not protected against multiple inclusion. */
87 #include "gdb_stat.h"
88 #endif
89
90 #if !defined (FETCH_INFERIOR_REGISTERS)
91 #include <sys/user.h> /* Probably need to poke the user structure */
92 #if defined (KERNEL_U_ADDR_BSD)
93 #include <a.out.h> /* For struct nlist */
94 #endif /* KERNEL_U_ADDR_BSD. */
95 #endif /* !FETCH_INFERIOR_REGISTERS */
96
97 #if !defined (CHILD_XFER_MEMORY)
98 static void udot_info (char *, int);
99 #endif
100
101 #if !defined (FETCH_INFERIOR_REGISTERS)
102 static void fetch_register (int);
103 static void store_register (int);
104 #endif
105
106 void _initialize_kernel_u_addr (void);
107 void _initialize_infptrace (void);
108 \f
109
110 /* This function simply calls ptrace with the given arguments.
111 It exists so that all calls to ptrace are isolated in this
112 machine-dependent file. */
113 int
114 call_ptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data)
115 {
116 int pt_status = 0;
117
118 #if 0
119 int saved_errno;
120
121 printf ("call_ptrace(request=%d, pid=%d, addr=0x%x, data=0x%x)",
122 request, pid, addr, data);
123 #endif
124 #if defined(PT_SETTRC)
125 /* If the parent can be told to attach to us, try to do it. */
126 if (request == PT_SETTRC)
127 {
128 errno = 0;
129 #if !defined (FIVE_ARG_PTRACE)
130 pt_status = ptrace (PT_SETTRC, pid, addr, data);
131 #else
132 /* Deal with HPUX 8.0 braindamage. We never use the
133 calls which require the fifth argument. */
134 pt_status = ptrace (PT_SETTRC, pid, addr, data, 0);
135 #endif
136 if (errno)
137 perror_with_name ("ptrace");
138 #if 0
139 printf (" = %d\n", pt_status);
140 #endif
141 if (pt_status < 0)
142 return pt_status;
143 else
144 return parent_attach_all (pid, addr, data);
145 }
146 #endif
147
148 #if defined(PT_CONTIN1)
149 /* On HPUX, PT_CONTIN1 is a form of continue that preserves pending
150 signals. If it's available, use it. */
151 if (request == PT_CONTINUE)
152 request = PT_CONTIN1;
153 #endif
154
155 #if defined(PT_SINGLE1)
156 /* On HPUX, PT_SINGLE1 is a form of step that preserves pending
157 signals. If it's available, use it. */
158 if (request == PT_STEP)
159 request = PT_SINGLE1;
160 #endif
161
162 #if 0
163 saved_errno = errno;
164 errno = 0;
165 #endif
166 #if !defined (FIVE_ARG_PTRACE)
167 pt_status = ptrace (request, pid, addr, data);
168 #else
169 /* Deal with HPUX 8.0 braindamage. We never use the
170 calls which require the fifth argument. */
171 pt_status = ptrace (request, pid, addr, data, 0);
172 #endif
173
174 #if 0
175 if (errno)
176 printf (" [errno = %d]", errno);
177
178 errno = saved_errno;
179 printf (" = 0x%x\n", pt_status);
180 #endif
181 return pt_status;
182 }
183
184
185 #if defined (DEBUG_PTRACE) || defined (FIVE_ARG_PTRACE)
186 /* For the rest of the file, use an extra level of indirection */
187 /* This lets us breakpoint usefully on call_ptrace. */
188 #define ptrace call_ptrace
189 #endif
190
191 /* Wait for a process to finish, possibly running a target-specific
192 hook before returning. */
193
194 int
195 ptrace_wait (ptid_t ptid, int *status)
196 {
197 int wstate;
198
199 wstate = wait (status);
200 target_post_wait (pid_to_ptid (wstate), *status);
201 return wstate;
202 }
203
204 #ifndef KILL_INFERIOR
205 void
206 kill_inferior (void)
207 {
208 int status;
209 int pid = PIDGET (inferior_ptid);
210
211 if (pid == 0)
212 return;
213
214 /* This once used to call "kill" to kill the inferior just in case
215 the inferior was still running. As others have noted in the past
216 (kingdon) there shouldn't be any way to get here if the inferior
217 is still running -- else there's a major problem elsewere in gdb
218 and it needs to be fixed.
219
220 The kill call causes problems under hpux10, so it's been removed;
221 if this causes problems we'll deal with them as they arise. */
222 ptrace (PT_KILL, pid, (PTRACE_ARG3_TYPE) 0, 0);
223 ptrace_wait (null_ptid, &status);
224 target_mourn_inferior ();
225 }
226 #endif /* KILL_INFERIOR */
227
228 #ifndef CHILD_RESUME
229
230 /* Resume execution of the inferior process.
231 If STEP is nonzero, single-step it.
232 If SIGNAL is nonzero, give it that signal. */
233
234 void
235 child_resume (ptid_t ptid, int step, enum target_signal signal)
236 {
237 int pid = PIDGET (ptid);
238
239 errno = 0;
240
241 if (pid == -1)
242 /* Resume all threads. */
243 /* I think this only gets used in the non-threaded case, where "resume
244 all threads" and "resume inferior_ptid" are the same. */
245 pid = PIDGET (inferior_ptid);
246
247 /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
248 it was. (If GDB wanted it to start some other way, we have already
249 written a new PC value to the child.)
250
251 If this system does not support PT_STEP, a higher level function will
252 have called single_step() to transmute the step request into a
253 continue request (by setting breakpoints on all possible successor
254 instructions), so we don't have to worry about that here. */
255
256 if (step)
257 {
258 if (SOFTWARE_SINGLE_STEP_P ())
259 internal_error (__FILE__, __LINE__, "failed internal consistency check"); /* Make sure this doesn't happen. */
260 else
261 ptrace (PT_STEP, pid, (PTRACE_ARG3_TYPE) 1,
262 target_signal_to_host (signal));
263 }
264 else
265 ptrace (PT_CONTINUE, pid, (PTRACE_ARG3_TYPE) 1,
266 target_signal_to_host (signal));
267
268 if (errno)
269 {
270 perror_with_name ("ptrace");
271 }
272 }
273 #endif /* CHILD_RESUME */
274 \f
275 /* Start debugging the process whose number is PID. */
276 int
277 attach (int pid)
278 {
279 errno = 0;
280 #ifndef PT_ATTACH
281 #ifdef PTRACE_ATTACH
282 #define PT_ATTACH PTRACE_ATTACH
283 #endif
284 #endif
285 #ifdef PT_ATTACH
286 ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
287 if (errno)
288 perror_with_name ("ptrace");
289 attach_flag = 1;
290 return pid;
291 #else
292 error ("This system does not support attaching to a process");
293 #endif
294 }
295
296 /* Stop debugging the process whose number is PID
297 and continue it with signal number SIGNAL.
298 SIGNAL = 0 means just continue it. */
299
300 void
301 detach (int signal)
302 {
303 errno = 0;
304 #ifndef PT_DETACH
305 #ifdef PTRACE_DETACH
306 #define PT_DETACH PTRACE_DETACH
307 #endif
308 #endif
309 #ifdef PT_DETACH
310 ptrace (PT_DETACH, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) 1,
311 signal);
312 if (errno)
313 print_sys_errmsg ("ptrace", errno);
314 attach_flag = 0;
315 #else
316 error ("This system does not support detaching from a process");
317 #endif
318 }
319 \f
320 /* Default the type of the ptrace transfer to int. */
321 #ifndef PTRACE_XFER_TYPE
322 #define PTRACE_XFER_TYPE int
323 #endif
324
325 /* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
326 to get the offset in the core file of the register values. */
327 #if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
328 /* Get kernel_u_addr using BSD-style nlist(). */
329 CORE_ADDR kernel_u_addr;
330 #endif /* KERNEL_U_ADDR_BSD. */
331
332 void
333 _initialize_kernel_u_addr (void)
334 {
335 #if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
336 struct nlist names[2];
337
338 names[0].n_un.n_name = "_u";
339 names[1].n_un.n_name = NULL;
340 if (nlist ("/vmunix", names) == 0)
341 kernel_u_addr = names[0].n_value;
342 else
343 internal_error (__FILE__, __LINE__,
344 "Unable to get kernel u area address.");
345 #endif /* KERNEL_U_ADDR_BSD. */
346 }
347
348 #if !defined (FETCH_INFERIOR_REGISTERS)
349
350 #if !defined (offsetof)
351 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
352 #endif
353
354 /* U_REGS_OFFSET is the offset of the registers within the u area. */
355 #if !defined (U_REGS_OFFSET)
356 #define U_REGS_OFFSET \
357 ptrace (PT_READ_U, PIDGET (inferior_ptid), \
358 (PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \
359 - KERNEL_U_ADDR
360 #endif
361
362 /* Fetch one register. */
363
364 static void
365 fetch_register (int regno)
366 {
367 /* This isn't really an address. But ptrace thinks of it as one. */
368 CORE_ADDR regaddr;
369 char mess[128]; /* For messages */
370 int i;
371 unsigned int offset; /* Offset of registers within the u area. */
372 char buf[MAX_REGISTER_SIZE];
373 int tid;
374
375 if (CANNOT_FETCH_REGISTER (regno))
376 {
377 memset (buf, '\0', DEPRECATED_REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
378 supply_register (regno, buf);
379 return;
380 }
381
382 /* Overload thread id onto process id */
383 if ((tid = TIDGET (inferior_ptid)) == 0)
384 tid = PIDGET (inferior_ptid); /* no thread id, just use process id */
385
386 offset = U_REGS_OFFSET;
387
388 regaddr = register_addr (regno, offset);
389 for (i = 0; i < DEPRECATED_REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
390 {
391 errno = 0;
392 *(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, tid,
393 (PTRACE_ARG3_TYPE) regaddr, 0);
394 regaddr += sizeof (PTRACE_XFER_TYPE);
395 if (errno != 0)
396 {
397 sprintf (mess, "reading register %s (#%d)",
398 REGISTER_NAME (regno), regno);
399 perror_with_name (mess);
400 }
401 }
402 supply_register (regno, buf);
403 }
404
405
406 /* Fetch register values from the inferior.
407 If REGNO is negative, do this for all registers.
408 Otherwise, REGNO specifies which register (so we can save time). */
409
410 void
411 fetch_inferior_registers (int regno)
412 {
413 if (regno >= 0)
414 {
415 fetch_register (regno);
416 }
417 else
418 {
419 for (regno = 0; regno < NUM_REGS; regno++)
420 {
421 fetch_register (regno);
422 }
423 }
424 }
425
426 /* Store one register. */
427
428 static void
429 store_register (int regno)
430 {
431 /* This isn't really an address. But ptrace thinks of it as one. */
432 CORE_ADDR regaddr;
433 char mess[128]; /* For messages */
434 int i;
435 unsigned int offset; /* Offset of registers within the u area. */
436 int tid;
437 char buf[MAX_REGISTER_SIZE];
438
439 if (CANNOT_STORE_REGISTER (regno))
440 {
441 return;
442 }
443
444 /* Overload thread id onto process id */
445 if ((tid = TIDGET (inferior_ptid)) == 0)
446 tid = PIDGET (inferior_ptid); /* no thread id, just use process id */
447
448 offset = U_REGS_OFFSET;
449
450 regaddr = register_addr (regno, offset);
451
452 /* Put the contents of regno into a local buffer */
453 regcache_collect (regno, buf);
454
455 /* Store the local buffer into the inferior a chunk at the time. */
456 for (i = 0; i < DEPRECATED_REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
457 {
458 errno = 0;
459 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
460 *(PTRACE_XFER_TYPE *) (buf + i));
461 regaddr += sizeof (PTRACE_XFER_TYPE);
462 if (errno != 0)
463 {
464 sprintf (mess, "writing register %s (#%d)",
465 REGISTER_NAME (regno), regno);
466 perror_with_name (mess);
467 }
468 }
469 }
470
471 /* Store our register values back into the inferior.
472 If REGNO is negative, do this for all registers.
473 Otherwise, REGNO specifies which register (so we can save time). */
474
475 void
476 store_inferior_registers (int regno)
477 {
478 if (regno >= 0)
479 {
480 store_register (regno);
481 }
482 else
483 {
484 for (regno = 0; regno < NUM_REGS; regno++)
485 {
486 store_register (regno);
487 }
488 }
489 }
490 #endif /* !defined (FETCH_INFERIOR_REGISTERS). */
491 \f
492
493 /* Set an upper limit on alloca. */
494 #ifndef GDB_MAX_ALLOCA
495 #define GDB_MAX_ALLOCA 0x1000
496 #endif
497
498 #if !defined (CHILD_XFER_MEMORY)
499 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
500 in the NEW_SUN_PTRACE case. It ought to be straightforward. But
501 it appears that writing did not write the data that I specified. I
502 cannot understand where it got the data that it actually did write. */
503
504 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR to
505 debugger memory starting at MYADDR. Copy to inferior if WRITE is
506 nonzero. TARGET is ignored.
507
508 Returns the length copied, which is either the LEN argument or
509 zero. This xfer function does not do partial moves, since
510 child_ops doesn't allow memory operations to cross below us in the
511 target stack anyway. */
512
513 int
514 child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
515 struct mem_attrib *attrib, struct target_ops *target)
516 {
517 int i;
518 /* Round starting address down to longword boundary. */
519 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
520 /* Round ending address up; get number of longwords that makes. */
521 int count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
522 / sizeof (PTRACE_XFER_TYPE));
523 int alloc = count * sizeof (PTRACE_XFER_TYPE);
524 PTRACE_XFER_TYPE *buffer;
525 struct cleanup *old_chain = NULL;
526
527 #ifdef PT_IO
528 /* OpenBSD 3.1, NetBSD 1.6 and FreeBSD 5.0 have a new PT_IO request
529 that promises to be much more efficient in reading and writing
530 data in the traced process's address space. */
531
532 {
533 struct ptrace_io_desc piod;
534
535 /* NOTE: We assume that there are no distinct address spaces for
536 instruction and data. */
537 piod.piod_op = write ? PIOD_WRITE_D : PIOD_READ_D;
538 piod.piod_offs = (void *) memaddr;
539 piod.piod_addr = myaddr;
540 piod.piod_len = len;
541
542 if (ptrace (PT_IO, PIDGET (inferior_ptid), (caddr_t) &piod, 0) == -1)
543 {
544 /* If the PT_IO request is somehow not supported, fallback on
545 using PT_WRITE_D/PT_READ_D. Otherwise we will return zero
546 to indicate failure. */
547 if (errno != EINVAL)
548 return 0;
549 }
550 else
551 {
552 /* Return the actual number of bytes read or written. */
553 return piod.piod_len;
554 }
555 }
556 #endif
557
558 /* Allocate buffer of that many longwords. */
559 if (len < GDB_MAX_ALLOCA)
560 {
561 buffer = (PTRACE_XFER_TYPE *) alloca (alloc);
562 }
563 else
564 {
565 buffer = (PTRACE_XFER_TYPE *) xmalloc (alloc);
566 old_chain = make_cleanup (xfree, buffer);
567 }
568
569 if (write)
570 {
571 /* Fill start and end extra bytes of buffer with existing memory
572 data. */
573 if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE))
574 {
575 /* Need part of initial word -- fetch it. */
576 buffer[0] = ptrace (PT_READ_I, PIDGET (inferior_ptid),
577 (PTRACE_ARG3_TYPE) addr, 0);
578 }
579
580 if (count > 1) /* FIXME, avoid if even boundary. */
581 {
582 buffer[count - 1] =
583 ptrace (PT_READ_I, PIDGET (inferior_ptid),
584 ((PTRACE_ARG3_TYPE)
585 (addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))), 0);
586 }
587
588 /* Copy data to be written over corresponding part of buffer. */
589 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
590 myaddr, len);
591
592 /* Write the entire buffer. */
593 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
594 {
595 errno = 0;
596 ptrace (PT_WRITE_D, PIDGET (inferior_ptid),
597 (PTRACE_ARG3_TYPE) addr, buffer[i]);
598 if (errno)
599 {
600 /* Using the appropriate one (I or D) is necessary for
601 Gould NP1, at least. */
602 errno = 0;
603 ptrace (PT_WRITE_I, PIDGET (inferior_ptid),
604 (PTRACE_ARG3_TYPE) addr, buffer[i]);
605 }
606 if (errno)
607 return 0;
608 }
609 }
610 else
611 {
612 /* Read all the longwords. */
613 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
614 {
615 errno = 0;
616 buffer[i] = ptrace (PT_READ_I, PIDGET (inferior_ptid),
617 (PTRACE_ARG3_TYPE) addr, 0);
618 if (errno)
619 return 0;
620 QUIT;
621 }
622
623 /* Copy appropriate bytes out of the buffer. */
624 memcpy (myaddr,
625 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
626 len);
627 }
628
629 if (old_chain != NULL)
630 do_cleanups (old_chain);
631 return len;
632 }
633 \f
634
635 static void
636 udot_info (char *dummy1, int dummy2)
637 {
638 #if defined (KERNEL_U_SIZE)
639 long udot_off; /* Offset into user struct */
640 int udot_val; /* Value from user struct at udot_off */
641 char mess[128]; /* For messages */
642 #endif
643
644 if (!target_has_execution)
645 {
646 error ("The program is not being run.");
647 }
648
649 #if !defined (KERNEL_U_SIZE)
650
651 /* Adding support for this command is easy. Typically you just add a
652 routine, called "kernel_u_size" that returns the size of the user
653 struct, to the appropriate *-nat.c file and then add to the native
654 config file "#define KERNEL_U_SIZE kernel_u_size()" */
655 error ("Don't know how large ``struct user'' is in this version of gdb.");
656
657 #else
658
659 for (udot_off = 0; udot_off < KERNEL_U_SIZE; udot_off += sizeof (udot_val))
660 {
661 if ((udot_off % 24) == 0)
662 {
663 if (udot_off > 0)
664 {
665 printf_filtered ("\n");
666 }
667 printf_filtered ("%s:", paddr (udot_off));
668 }
669 udot_val = ptrace (PT_READ_U, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) udot_off, 0);
670 if (errno != 0)
671 {
672 sprintf (mess, "\nreading user struct at offset 0x%s",
673 paddr_nz (udot_off));
674 perror_with_name (mess);
675 }
676 /* Avoid using nonportable (?) "*" in print specs */
677 printf_filtered (sizeof (int) == 4 ? " 0x%08x" : " 0x%16x", udot_val);
678 }
679 printf_filtered ("\n");
680
681 #endif
682 }
683 #endif /* !defined (CHILD_XFER_MEMORY). */
684 \f
685
686 void
687 _initialize_infptrace (void)
688 {
689 #if !defined (CHILD_XFER_MEMORY)
690 add_info ("udot", udot_info,
691 "Print contents of kernel ``struct user'' for current child.");
692 #endif
693 }