gdb: rs6000_dwarf2_reg_to_regnum return -1 for unknown register number
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "target-connection.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34 #include "symfile.h"
35 #include "top.h"
36 #include "inf-loop.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "language.h"
41 #include "solib.h"
42 #include "main.h"
43 #include "block.h"
44 #include "mi/mi-common.h"
45 #include "event-top.h"
46 #include "record.h"
47 #include "record-full.h"
48 #include "inline-frame.h"
49 #include "jit.h"
50 #include "tracepoint.h"
51 #include "skip.h"
52 #include "probe.h"
53 #include "objfiles.h"
54 #include "completer.h"
55 #include "target-descriptions.h"
56 #include "target-dcache.h"
57 #include "terminal.h"
58 #include "solist.h"
59 #include "gdbsupport/event-loop.h"
60 #include "thread-fsm.h"
61 #include "gdbsupport/enum-flags.h"
62 #include "progspace-and-thread.h"
63 #include "gdbsupport/gdb_optional.h"
64 #include "arch-utils.h"
65 #include "gdbsupport/scope-exit.h"
66 #include "gdbsupport/forward-scope-exit.h"
67 #include "gdbsupport/gdb_select.h"
68 #include <unordered_map>
69 #include "async-event.h"
70 #include "gdbsupport/selftest.h"
71 #include "scoped-mock-context.h"
72 #include "test-target.h"
73 #include "gdbsupport/common-debug.h"
74
75 /* Prototypes for local functions */
76
77 static void sig_print_info (enum gdb_signal);
78
79 static void sig_print_header (void);
80
81 static void follow_inferior_reset_breakpoints (void);
82
83 static bool currently_stepping (struct thread_info *tp);
84
85 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
86
87 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
88
89 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
90
91 static bool maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
92
93 static void resume (gdb_signal sig);
94
95 static void wait_for_inferior (inferior *inf);
96
97 /* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99 static struct async_event_handler *infrun_async_inferior_event_token;
100
101 /* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103 static int infrun_is_async = -1;
104
105 /* See infrun.h. */
106
107 void
108 infrun_debug_printf_1 (const char *func_name, const char *fmt, ...)
109 {
110 va_list ap;
111 va_start (ap, fmt);
112 debug_prefixed_vprintf ("infrun", func_name, fmt, ap);
113 va_end (ap);
114 }
115
116 /* See infrun.h. */
117
118 void
119 infrun_async (int enable)
120 {
121 if (infrun_is_async != enable)
122 {
123 infrun_is_async = enable;
124
125 infrun_debug_printf ("enable=%d", enable);
126
127 if (enable)
128 mark_async_event_handler (infrun_async_inferior_event_token);
129 else
130 clear_async_event_handler (infrun_async_inferior_event_token);
131 }
132 }
133
134 /* See infrun.h. */
135
136 void
137 mark_infrun_async_event_handler (void)
138 {
139 mark_async_event_handler (infrun_async_inferior_event_token);
140 }
141
142 /* When set, stop the 'step' command if we enter a function which has
143 no line number information. The normal behavior is that we step
144 over such function. */
145 bool step_stop_if_no_debug = false;
146 static void
147 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
148 struct cmd_list_element *c, const char *value)
149 {
150 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
151 }
152
153 /* proceed and normal_stop use this to notify the user when the
154 inferior stopped in a different thread than it had been running
155 in. */
156
157 static ptid_t previous_inferior_ptid;
158
159 /* If set (default for legacy reasons), when following a fork, GDB
160 will detach from one of the fork branches, child or parent.
161 Exactly which branch is detached depends on 'set follow-fork-mode'
162 setting. */
163
164 static bool detach_fork = true;
165
166 bool debug_displaced = false;
167 static void
168 show_debug_displaced (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
172 }
173
174 unsigned int debug_infrun = 0;
175 static void
176 show_debug_infrun (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
180 }
181
182
183 /* Support for disabling address space randomization. */
184
185 bool disable_randomization = true;
186
187 static void
188 show_disable_randomization (struct ui_file *file, int from_tty,
189 struct cmd_list_element *c, const char *value)
190 {
191 if (target_supports_disable_randomization ())
192 fprintf_filtered (file,
193 _("Disabling randomization of debuggee's "
194 "virtual address space is %s.\n"),
195 value);
196 else
197 fputs_filtered (_("Disabling randomization of debuggee's "
198 "virtual address space is unsupported on\n"
199 "this platform.\n"), file);
200 }
201
202 static void
203 set_disable_randomization (const char *args, int from_tty,
204 struct cmd_list_element *c)
205 {
206 if (!target_supports_disable_randomization ())
207 error (_("Disabling randomization of debuggee's "
208 "virtual address space is unsupported on\n"
209 "this platform."));
210 }
211
212 /* User interface for non-stop mode. */
213
214 bool non_stop = false;
215 static bool non_stop_1 = false;
216
217 static void
218 set_non_stop (const char *args, int from_tty,
219 struct cmd_list_element *c)
220 {
221 if (target_has_execution ())
222 {
223 non_stop_1 = non_stop;
224 error (_("Cannot change this setting while the inferior is running."));
225 }
226
227 non_stop = non_stop_1;
228 }
229
230 static void
231 show_non_stop (struct ui_file *file, int from_tty,
232 struct cmd_list_element *c, const char *value)
233 {
234 fprintf_filtered (file,
235 _("Controlling the inferior in non-stop mode is %s.\n"),
236 value);
237 }
238
239 /* "Observer mode" is somewhat like a more extreme version of
240 non-stop, in which all GDB operations that might affect the
241 target's execution have been disabled. */
242
243 bool observer_mode = false;
244 static bool observer_mode_1 = false;
245
246 static void
247 set_observer_mode (const char *args, int from_tty,
248 struct cmd_list_element *c)
249 {
250 if (target_has_execution ())
251 {
252 observer_mode_1 = observer_mode;
253 error (_("Cannot change this setting while the inferior is running."));
254 }
255
256 observer_mode = observer_mode_1;
257
258 may_write_registers = !observer_mode;
259 may_write_memory = !observer_mode;
260 may_insert_breakpoints = !observer_mode;
261 may_insert_tracepoints = !observer_mode;
262 /* We can insert fast tracepoints in or out of observer mode,
263 but enable them if we're going into this mode. */
264 if (observer_mode)
265 may_insert_fast_tracepoints = true;
266 may_stop = !observer_mode;
267 update_target_permissions ();
268
269 /* Going *into* observer mode we must force non-stop, then
270 going out we leave it that way. */
271 if (observer_mode)
272 {
273 pagination_enabled = 0;
274 non_stop = non_stop_1 = true;
275 }
276
277 if (from_tty)
278 printf_filtered (_("Observer mode is now %s.\n"),
279 (observer_mode ? "on" : "off"));
280 }
281
282 static void
283 show_observer_mode (struct ui_file *file, int from_tty,
284 struct cmd_list_element *c, const char *value)
285 {
286 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
287 }
288
289 /* This updates the value of observer mode based on changes in
290 permissions. Note that we are deliberately ignoring the values of
291 may-write-registers and may-write-memory, since the user may have
292 reason to enable these during a session, for instance to turn on a
293 debugging-related global. */
294
295 void
296 update_observer_mode (void)
297 {
298 bool newval = (!may_insert_breakpoints
299 && !may_insert_tracepoints
300 && may_insert_fast_tracepoints
301 && !may_stop
302 && non_stop);
303
304 /* Let the user know if things change. */
305 if (newval != observer_mode)
306 printf_filtered (_("Observer mode is now %s.\n"),
307 (newval ? "on" : "off"));
308
309 observer_mode = observer_mode_1 = newval;
310 }
311
312 /* Tables of how to react to signals; the user sets them. */
313
314 static unsigned char signal_stop[GDB_SIGNAL_LAST];
315 static unsigned char signal_print[GDB_SIGNAL_LAST];
316 static unsigned char signal_program[GDB_SIGNAL_LAST];
317
318 /* Table of signals that are registered with "catch signal". A
319 non-zero entry indicates that the signal is caught by some "catch
320 signal" command. */
321 static unsigned char signal_catch[GDB_SIGNAL_LAST];
322
323 /* Table of signals that the target may silently handle.
324 This is automatically determined from the flags above,
325 and simply cached here. */
326 static unsigned char signal_pass[GDB_SIGNAL_LAST];
327
328 #define SET_SIGS(nsigs,sigs,flags) \
329 do { \
330 int signum = (nsigs); \
331 while (signum-- > 0) \
332 if ((sigs)[signum]) \
333 (flags)[signum] = 1; \
334 } while (0)
335
336 #define UNSET_SIGS(nsigs,sigs,flags) \
337 do { \
338 int signum = (nsigs); \
339 while (signum-- > 0) \
340 if ((sigs)[signum]) \
341 (flags)[signum] = 0; \
342 } while (0)
343
344 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
345 this function is to avoid exporting `signal_program'. */
346
347 void
348 update_signals_program_target (void)
349 {
350 target_program_signals (signal_program);
351 }
352
353 /* Value to pass to target_resume() to cause all threads to resume. */
354
355 #define RESUME_ALL minus_one_ptid
356
357 /* Command list pointer for the "stop" placeholder. */
358
359 static struct cmd_list_element *stop_command;
360
361 /* Nonzero if we want to give control to the user when we're notified
362 of shared library events by the dynamic linker. */
363 int stop_on_solib_events;
364
365 /* Enable or disable optional shared library event breakpoints
366 as appropriate when the above flag is changed. */
367
368 static void
369 set_stop_on_solib_events (const char *args,
370 int from_tty, struct cmd_list_element *c)
371 {
372 update_solib_breakpoints ();
373 }
374
375 static void
376 show_stop_on_solib_events (struct ui_file *file, int from_tty,
377 struct cmd_list_element *c, const char *value)
378 {
379 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
380 value);
381 }
382
383 /* True after stop if current stack frame should be printed. */
384
385 static bool stop_print_frame;
386
387 /* This is a cached copy of the target/ptid/waitstatus of the last
388 event returned by target_wait()/deprecated_target_wait_hook().
389 This information is returned by get_last_target_status(). */
390 static process_stratum_target *target_last_proc_target;
391 static ptid_t target_last_wait_ptid;
392 static struct target_waitstatus target_last_waitstatus;
393
394 void init_thread_stepping_state (struct thread_info *tss);
395
396 static const char follow_fork_mode_child[] = "child";
397 static const char follow_fork_mode_parent[] = "parent";
398
399 static const char *const follow_fork_mode_kind_names[] = {
400 follow_fork_mode_child,
401 follow_fork_mode_parent,
402 NULL
403 };
404
405 static const char *follow_fork_mode_string = follow_fork_mode_parent;
406 static void
407 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
408 struct cmd_list_element *c, const char *value)
409 {
410 fprintf_filtered (file,
411 _("Debugger response to a program "
412 "call of fork or vfork is \"%s\".\n"),
413 value);
414 }
415 \f
416
417 /* Handle changes to the inferior list based on the type of fork,
418 which process is being followed, and whether the other process
419 should be detached. On entry inferior_ptid must be the ptid of
420 the fork parent. At return inferior_ptid is the ptid of the
421 followed inferior. */
422
423 static bool
424 follow_fork_inferior (bool follow_child, bool detach_fork)
425 {
426 int has_vforked;
427 ptid_t parent_ptid, child_ptid;
428
429 has_vforked = (inferior_thread ()->pending_follow.kind
430 == TARGET_WAITKIND_VFORKED);
431 parent_ptid = inferior_ptid;
432 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
433
434 if (has_vforked
435 && !non_stop /* Non-stop always resumes both branches. */
436 && current_ui->prompt_state == PROMPT_BLOCKED
437 && !(follow_child || detach_fork || sched_multi))
438 {
439 /* The parent stays blocked inside the vfork syscall until the
440 child execs or exits. If we don't let the child run, then
441 the parent stays blocked. If we're telling the parent to run
442 in the foreground, the user will not be able to ctrl-c to get
443 back the terminal, effectively hanging the debug session. */
444 fprintf_filtered (gdb_stderr, _("\
445 Can not resume the parent process over vfork in the foreground while\n\
446 holding the child stopped. Try \"set detach-on-fork\" or \
447 \"set schedule-multiple\".\n"));
448 return 1;
449 }
450
451 if (!follow_child)
452 {
453 /* Detach new forked process? */
454 if (detach_fork)
455 {
456 /* Before detaching from the child, remove all breakpoints
457 from it. If we forked, then this has already been taken
458 care of by infrun.c. If we vforked however, any
459 breakpoint inserted in the parent is visible in the
460 child, even those added while stopped in a vfork
461 catchpoint. This will remove the breakpoints from the
462 parent also, but they'll be reinserted below. */
463 if (has_vforked)
464 {
465 /* Keep breakpoints list in sync. */
466 remove_breakpoints_inf (current_inferior ());
467 }
468
469 if (print_inferior_events)
470 {
471 /* Ensure that we have a process ptid. */
472 ptid_t process_ptid = ptid_t (child_ptid.pid ());
473
474 target_terminal::ours_for_output ();
475 fprintf_filtered (gdb_stdlog,
476 _("[Detaching after %s from child %s]\n"),
477 has_vforked ? "vfork" : "fork",
478 target_pid_to_str (process_ptid).c_str ());
479 }
480 }
481 else
482 {
483 struct inferior *parent_inf, *child_inf;
484
485 /* Add process to GDB's tables. */
486 child_inf = add_inferior (child_ptid.pid ());
487
488 parent_inf = current_inferior ();
489 child_inf->attach_flag = parent_inf->attach_flag;
490 copy_terminal_info (child_inf, parent_inf);
491 child_inf->gdbarch = parent_inf->gdbarch;
492 copy_inferior_target_desc_info (child_inf, parent_inf);
493
494 scoped_restore_current_pspace_and_thread restore_pspace_thread;
495
496 set_current_inferior (child_inf);
497 switch_to_no_thread ();
498 child_inf->symfile_flags = SYMFILE_NO_READ;
499 push_target (parent_inf->process_target ());
500 thread_info *child_thr
501 = add_thread_silent (child_inf->process_target (), child_ptid);
502
503 /* If this is a vfork child, then the address-space is
504 shared with the parent. */
505 if (has_vforked)
506 {
507 child_inf->pspace = parent_inf->pspace;
508 child_inf->aspace = parent_inf->aspace;
509
510 exec_on_vfork ();
511
512 /* The parent will be frozen until the child is done
513 with the shared region. Keep track of the
514 parent. */
515 child_inf->vfork_parent = parent_inf;
516 child_inf->pending_detach = 0;
517 parent_inf->vfork_child = child_inf;
518 parent_inf->pending_detach = 0;
519
520 /* Now that the inferiors and program spaces are all
521 wired up, we can switch to the child thread (which
522 switches inferior and program space too). */
523 switch_to_thread (child_thr);
524 }
525 else
526 {
527 child_inf->aspace = new_address_space ();
528 child_inf->pspace = new program_space (child_inf->aspace);
529 child_inf->removable = 1;
530 set_current_program_space (child_inf->pspace);
531 clone_program_space (child_inf->pspace, parent_inf->pspace);
532
533 /* solib_create_inferior_hook relies on the current
534 thread. */
535 switch_to_thread (child_thr);
536
537 /* Let the shared library layer (e.g., solib-svr4) learn
538 about this new process, relocate the cloned exec, pull
539 in shared libraries, and install the solib event
540 breakpoint. If a "cloned-VM" event was propagated
541 better throughout the core, this wouldn't be
542 required. */
543 solib_create_inferior_hook (0);
544 }
545 }
546
547 if (has_vforked)
548 {
549 struct inferior *parent_inf;
550
551 parent_inf = current_inferior ();
552
553 /* If we detached from the child, then we have to be careful
554 to not insert breakpoints in the parent until the child
555 is done with the shared memory region. However, if we're
556 staying attached to the child, then we can and should
557 insert breakpoints, so that we can debug it. A
558 subsequent child exec or exit is enough to know when does
559 the child stops using the parent's address space. */
560 parent_inf->waiting_for_vfork_done = detach_fork;
561 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
562 }
563 }
564 else
565 {
566 /* Follow the child. */
567 struct inferior *parent_inf, *child_inf;
568 struct program_space *parent_pspace;
569
570 if (print_inferior_events)
571 {
572 std::string parent_pid = target_pid_to_str (parent_ptid);
573 std::string child_pid = target_pid_to_str (child_ptid);
574
575 target_terminal::ours_for_output ();
576 fprintf_filtered (gdb_stdlog,
577 _("[Attaching after %s %s to child %s]\n"),
578 parent_pid.c_str (),
579 has_vforked ? "vfork" : "fork",
580 child_pid.c_str ());
581 }
582
583 /* Add the new inferior first, so that the target_detach below
584 doesn't unpush the target. */
585
586 child_inf = add_inferior (child_ptid.pid ());
587
588 parent_inf = current_inferior ();
589 child_inf->attach_flag = parent_inf->attach_flag;
590 copy_terminal_info (child_inf, parent_inf);
591 child_inf->gdbarch = parent_inf->gdbarch;
592 copy_inferior_target_desc_info (child_inf, parent_inf);
593
594 parent_pspace = parent_inf->pspace;
595
596 process_stratum_target *target = parent_inf->process_target ();
597
598 {
599 /* Hold a strong reference to the target while (maybe)
600 detaching the parent. Otherwise detaching could close the
601 target. */
602 auto target_ref = target_ops_ref::new_reference (target);
603
604 /* If we're vforking, we want to hold on to the parent until
605 the child exits or execs. At child exec or exit time we
606 can remove the old breakpoints from the parent and detach
607 or resume debugging it. Otherwise, detach the parent now;
608 we'll want to reuse it's program/address spaces, but we
609 can't set them to the child before removing breakpoints
610 from the parent, otherwise, the breakpoints module could
611 decide to remove breakpoints from the wrong process (since
612 they'd be assigned to the same address space). */
613
614 if (has_vforked)
615 {
616 gdb_assert (child_inf->vfork_parent == NULL);
617 gdb_assert (parent_inf->vfork_child == NULL);
618 child_inf->vfork_parent = parent_inf;
619 child_inf->pending_detach = 0;
620 parent_inf->vfork_child = child_inf;
621 parent_inf->pending_detach = detach_fork;
622 parent_inf->waiting_for_vfork_done = 0;
623 }
624 else if (detach_fork)
625 {
626 if (print_inferior_events)
627 {
628 /* Ensure that we have a process ptid. */
629 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
630
631 target_terminal::ours_for_output ();
632 fprintf_filtered (gdb_stdlog,
633 _("[Detaching after fork from "
634 "parent %s]\n"),
635 target_pid_to_str (process_ptid).c_str ());
636 }
637
638 target_detach (parent_inf, 0);
639 parent_inf = NULL;
640 }
641
642 /* Note that the detach above makes PARENT_INF dangling. */
643
644 /* Add the child thread to the appropriate lists, and switch
645 to this new thread, before cloning the program space, and
646 informing the solib layer about this new process. */
647
648 set_current_inferior (child_inf);
649 push_target (target);
650 }
651
652 thread_info *child_thr = add_thread_silent (target, child_ptid);
653
654 /* If this is a vfork child, then the address-space is shared
655 with the parent. If we detached from the parent, then we can
656 reuse the parent's program/address spaces. */
657 if (has_vforked || detach_fork)
658 {
659 child_inf->pspace = parent_pspace;
660 child_inf->aspace = child_inf->pspace->aspace;
661
662 exec_on_vfork ();
663 }
664 else
665 {
666 child_inf->aspace = new_address_space ();
667 child_inf->pspace = new program_space (child_inf->aspace);
668 child_inf->removable = 1;
669 child_inf->symfile_flags = SYMFILE_NO_READ;
670 set_current_program_space (child_inf->pspace);
671 clone_program_space (child_inf->pspace, parent_pspace);
672
673 /* Let the shared library layer (e.g., solib-svr4) learn
674 about this new process, relocate the cloned exec, pull in
675 shared libraries, and install the solib event breakpoint.
676 If a "cloned-VM" event was propagated better throughout
677 the core, this wouldn't be required. */
678 solib_create_inferior_hook (0);
679 }
680
681 switch_to_thread (child_thr);
682 }
683
684 return target_follow_fork (follow_child, detach_fork);
685 }
686
687 /* Tell the target to follow the fork we're stopped at. Returns true
688 if the inferior should be resumed; false, if the target for some
689 reason decided it's best not to resume. */
690
691 static bool
692 follow_fork ()
693 {
694 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
695 bool should_resume = true;
696 struct thread_info *tp;
697
698 /* Copy user stepping state to the new inferior thread. FIXME: the
699 followed fork child thread should have a copy of most of the
700 parent thread structure's run control related fields, not just these.
701 Initialized to avoid "may be used uninitialized" warnings from gcc. */
702 struct breakpoint *step_resume_breakpoint = NULL;
703 struct breakpoint *exception_resume_breakpoint = NULL;
704 CORE_ADDR step_range_start = 0;
705 CORE_ADDR step_range_end = 0;
706 int current_line = 0;
707 symtab *current_symtab = NULL;
708 struct frame_id step_frame_id = { 0 };
709 struct thread_fsm *thread_fsm = NULL;
710
711 if (!non_stop)
712 {
713 process_stratum_target *wait_target;
714 ptid_t wait_ptid;
715 struct target_waitstatus wait_status;
716
717 /* Get the last target status returned by target_wait(). */
718 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
719
720 /* If not stopped at a fork event, then there's nothing else to
721 do. */
722 if (wait_status.kind != TARGET_WAITKIND_FORKED
723 && wait_status.kind != TARGET_WAITKIND_VFORKED)
724 return 1;
725
726 /* Check if we switched over from WAIT_PTID, since the event was
727 reported. */
728 if (wait_ptid != minus_one_ptid
729 && (current_inferior ()->process_target () != wait_target
730 || inferior_ptid != wait_ptid))
731 {
732 /* We did. Switch back to WAIT_PTID thread, to tell the
733 target to follow it (in either direction). We'll
734 afterwards refuse to resume, and inform the user what
735 happened. */
736 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
737 switch_to_thread (wait_thread);
738 should_resume = false;
739 }
740 }
741
742 tp = inferior_thread ();
743
744 /* If there were any forks/vforks that were caught and are now to be
745 followed, then do so now. */
746 switch (tp->pending_follow.kind)
747 {
748 case TARGET_WAITKIND_FORKED:
749 case TARGET_WAITKIND_VFORKED:
750 {
751 ptid_t parent, child;
752
753 /* If the user did a next/step, etc, over a fork call,
754 preserve the stepping state in the fork child. */
755 if (follow_child && should_resume)
756 {
757 step_resume_breakpoint = clone_momentary_breakpoint
758 (tp->control.step_resume_breakpoint);
759 step_range_start = tp->control.step_range_start;
760 step_range_end = tp->control.step_range_end;
761 current_line = tp->current_line;
762 current_symtab = tp->current_symtab;
763 step_frame_id = tp->control.step_frame_id;
764 exception_resume_breakpoint
765 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
766 thread_fsm = tp->thread_fsm;
767
768 /* For now, delete the parent's sr breakpoint, otherwise,
769 parent/child sr breakpoints are considered duplicates,
770 and the child version will not be installed. Remove
771 this when the breakpoints module becomes aware of
772 inferiors and address spaces. */
773 delete_step_resume_breakpoint (tp);
774 tp->control.step_range_start = 0;
775 tp->control.step_range_end = 0;
776 tp->control.step_frame_id = null_frame_id;
777 delete_exception_resume_breakpoint (tp);
778 tp->thread_fsm = NULL;
779 }
780
781 parent = inferior_ptid;
782 child = tp->pending_follow.value.related_pid;
783
784 process_stratum_target *parent_targ = tp->inf->process_target ();
785 /* Set up inferior(s) as specified by the caller, and tell the
786 target to do whatever is necessary to follow either parent
787 or child. */
788 if (follow_fork_inferior (follow_child, detach_fork))
789 {
790 /* Target refused to follow, or there's some other reason
791 we shouldn't resume. */
792 should_resume = 0;
793 }
794 else
795 {
796 /* This pending follow fork event is now handled, one way
797 or another. The previous selected thread may be gone
798 from the lists by now, but if it is still around, need
799 to clear the pending follow request. */
800 tp = find_thread_ptid (parent_targ, parent);
801 if (tp)
802 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
803
804 /* This makes sure we don't try to apply the "Switched
805 over from WAIT_PID" logic above. */
806 nullify_last_target_wait_ptid ();
807
808 /* If we followed the child, switch to it... */
809 if (follow_child)
810 {
811 thread_info *child_thr = find_thread_ptid (parent_targ, child);
812 switch_to_thread (child_thr);
813
814 /* ... and preserve the stepping state, in case the
815 user was stepping over the fork call. */
816 if (should_resume)
817 {
818 tp = inferior_thread ();
819 tp->control.step_resume_breakpoint
820 = step_resume_breakpoint;
821 tp->control.step_range_start = step_range_start;
822 tp->control.step_range_end = step_range_end;
823 tp->current_line = current_line;
824 tp->current_symtab = current_symtab;
825 tp->control.step_frame_id = step_frame_id;
826 tp->control.exception_resume_breakpoint
827 = exception_resume_breakpoint;
828 tp->thread_fsm = thread_fsm;
829 }
830 else
831 {
832 /* If we get here, it was because we're trying to
833 resume from a fork catchpoint, but, the user
834 has switched threads away from the thread that
835 forked. In that case, the resume command
836 issued is most likely not applicable to the
837 child, so just warn, and refuse to resume. */
838 warning (_("Not resuming: switched threads "
839 "before following fork child."));
840 }
841
842 /* Reset breakpoints in the child as appropriate. */
843 follow_inferior_reset_breakpoints ();
844 }
845 }
846 }
847 break;
848 case TARGET_WAITKIND_SPURIOUS:
849 /* Nothing to follow. */
850 break;
851 default:
852 internal_error (__FILE__, __LINE__,
853 "Unexpected pending_follow.kind %d\n",
854 tp->pending_follow.kind);
855 break;
856 }
857
858 return should_resume;
859 }
860
861 static void
862 follow_inferior_reset_breakpoints (void)
863 {
864 struct thread_info *tp = inferior_thread ();
865
866 /* Was there a step_resume breakpoint? (There was if the user
867 did a "next" at the fork() call.) If so, explicitly reset its
868 thread number. Cloned step_resume breakpoints are disabled on
869 creation, so enable it here now that it is associated with the
870 correct thread.
871
872 step_resumes are a form of bp that are made to be per-thread.
873 Since we created the step_resume bp when the parent process
874 was being debugged, and now are switching to the child process,
875 from the breakpoint package's viewpoint, that's a switch of
876 "threads". We must update the bp's notion of which thread
877 it is for, or it'll be ignored when it triggers. */
878
879 if (tp->control.step_resume_breakpoint)
880 {
881 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
882 tp->control.step_resume_breakpoint->loc->enabled = 1;
883 }
884
885 /* Treat exception_resume breakpoints like step_resume breakpoints. */
886 if (tp->control.exception_resume_breakpoint)
887 {
888 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
889 tp->control.exception_resume_breakpoint->loc->enabled = 1;
890 }
891
892 /* Reinsert all breakpoints in the child. The user may have set
893 breakpoints after catching the fork, in which case those
894 were never set in the child, but only in the parent. This makes
895 sure the inserted breakpoints match the breakpoint list. */
896
897 breakpoint_re_set ();
898 insert_breakpoints ();
899 }
900
901 /* The child has exited or execed: resume threads of the parent the
902 user wanted to be executing. */
903
904 static int
905 proceed_after_vfork_done (struct thread_info *thread,
906 void *arg)
907 {
908 int pid = * (int *) arg;
909
910 if (thread->ptid.pid () == pid
911 && thread->state == THREAD_RUNNING
912 && !thread->executing
913 && !thread->stop_requested
914 && thread->suspend.stop_signal == GDB_SIGNAL_0)
915 {
916 infrun_debug_printf ("resuming vfork parent thread %s",
917 target_pid_to_str (thread->ptid).c_str ());
918
919 switch_to_thread (thread);
920 clear_proceed_status (0);
921 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
922 }
923
924 return 0;
925 }
926
927 /* Called whenever we notice an exec or exit event, to handle
928 detaching or resuming a vfork parent. */
929
930 static void
931 handle_vfork_child_exec_or_exit (int exec)
932 {
933 struct inferior *inf = current_inferior ();
934
935 if (inf->vfork_parent)
936 {
937 int resume_parent = -1;
938
939 /* This exec or exit marks the end of the shared memory region
940 between the parent and the child. Break the bonds. */
941 inferior *vfork_parent = inf->vfork_parent;
942 inf->vfork_parent->vfork_child = NULL;
943 inf->vfork_parent = NULL;
944
945 /* If the user wanted to detach from the parent, now is the
946 time. */
947 if (vfork_parent->pending_detach)
948 {
949 struct program_space *pspace;
950 struct address_space *aspace;
951
952 /* follow-fork child, detach-on-fork on. */
953
954 vfork_parent->pending_detach = 0;
955
956 scoped_restore_current_pspace_and_thread restore_thread;
957
958 /* We're letting loose of the parent. */
959 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
960 switch_to_thread (tp);
961
962 /* We're about to detach from the parent, which implicitly
963 removes breakpoints from its address space. There's a
964 catch here: we want to reuse the spaces for the child,
965 but, parent/child are still sharing the pspace at this
966 point, although the exec in reality makes the kernel give
967 the child a fresh set of new pages. The problem here is
968 that the breakpoints module being unaware of this, would
969 likely chose the child process to write to the parent
970 address space. Swapping the child temporarily away from
971 the spaces has the desired effect. Yes, this is "sort
972 of" a hack. */
973
974 pspace = inf->pspace;
975 aspace = inf->aspace;
976 inf->aspace = NULL;
977 inf->pspace = NULL;
978
979 if (print_inferior_events)
980 {
981 std::string pidstr
982 = target_pid_to_str (ptid_t (vfork_parent->pid));
983
984 target_terminal::ours_for_output ();
985
986 if (exec)
987 {
988 fprintf_filtered (gdb_stdlog,
989 _("[Detaching vfork parent %s "
990 "after child exec]\n"), pidstr.c_str ());
991 }
992 else
993 {
994 fprintf_filtered (gdb_stdlog,
995 _("[Detaching vfork parent %s "
996 "after child exit]\n"), pidstr.c_str ());
997 }
998 }
999
1000 target_detach (vfork_parent, 0);
1001
1002 /* Put it back. */
1003 inf->pspace = pspace;
1004 inf->aspace = aspace;
1005 }
1006 else if (exec)
1007 {
1008 /* We're staying attached to the parent, so, really give the
1009 child a new address space. */
1010 inf->pspace = new program_space (maybe_new_address_space ());
1011 inf->aspace = inf->pspace->aspace;
1012 inf->removable = 1;
1013 set_current_program_space (inf->pspace);
1014
1015 resume_parent = vfork_parent->pid;
1016 }
1017 else
1018 {
1019 /* If this is a vfork child exiting, then the pspace and
1020 aspaces were shared with the parent. Since we're
1021 reporting the process exit, we'll be mourning all that is
1022 found in the address space, and switching to null_ptid,
1023 preparing to start a new inferior. But, since we don't
1024 want to clobber the parent's address/program spaces, we
1025 go ahead and create a new one for this exiting
1026 inferior. */
1027
1028 /* Switch to no-thread while running clone_program_space, so
1029 that clone_program_space doesn't want to read the
1030 selected frame of a dead process. */
1031 scoped_restore_current_thread restore_thread;
1032 switch_to_no_thread ();
1033
1034 inf->pspace = new program_space (maybe_new_address_space ());
1035 inf->aspace = inf->pspace->aspace;
1036 set_current_program_space (inf->pspace);
1037 inf->removable = 1;
1038 inf->symfile_flags = SYMFILE_NO_READ;
1039 clone_program_space (inf->pspace, vfork_parent->pspace);
1040
1041 resume_parent = vfork_parent->pid;
1042 }
1043
1044 gdb_assert (current_program_space == inf->pspace);
1045
1046 if (non_stop && resume_parent != -1)
1047 {
1048 /* If the user wanted the parent to be running, let it go
1049 free now. */
1050 scoped_restore_current_thread restore_thread;
1051
1052 infrun_debug_printf ("resuming vfork parent process %d",
1053 resume_parent);
1054
1055 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1056 }
1057 }
1058 }
1059
1060 /* Enum strings for "set|show follow-exec-mode". */
1061
1062 static const char follow_exec_mode_new[] = "new";
1063 static const char follow_exec_mode_same[] = "same";
1064 static const char *const follow_exec_mode_names[] =
1065 {
1066 follow_exec_mode_new,
1067 follow_exec_mode_same,
1068 NULL,
1069 };
1070
1071 static const char *follow_exec_mode_string = follow_exec_mode_same;
1072 static void
1073 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1074 struct cmd_list_element *c, const char *value)
1075 {
1076 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1077 }
1078
1079 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1080
1081 static void
1082 follow_exec (ptid_t ptid, const char *exec_file_target)
1083 {
1084 struct inferior *inf = current_inferior ();
1085 int pid = ptid.pid ();
1086 ptid_t process_ptid;
1087
1088 /* Switch terminal for any messages produced e.g. by
1089 breakpoint_re_set. */
1090 target_terminal::ours_for_output ();
1091
1092 /* This is an exec event that we actually wish to pay attention to.
1093 Refresh our symbol table to the newly exec'd program, remove any
1094 momentary bp's, etc.
1095
1096 If there are breakpoints, they aren't really inserted now,
1097 since the exec() transformed our inferior into a fresh set
1098 of instructions.
1099
1100 We want to preserve symbolic breakpoints on the list, since
1101 we have hopes that they can be reset after the new a.out's
1102 symbol table is read.
1103
1104 However, any "raw" breakpoints must be removed from the list
1105 (e.g., the solib bp's), since their address is probably invalid
1106 now.
1107
1108 And, we DON'T want to call delete_breakpoints() here, since
1109 that may write the bp's "shadow contents" (the instruction
1110 value that was overwritten with a TRAP instruction). Since
1111 we now have a new a.out, those shadow contents aren't valid. */
1112
1113 mark_breakpoints_out ();
1114
1115 /* The target reports the exec event to the main thread, even if
1116 some other thread does the exec, and even if the main thread was
1117 stopped or already gone. We may still have non-leader threads of
1118 the process on our list. E.g., on targets that don't have thread
1119 exit events (like remote); or on native Linux in non-stop mode if
1120 there were only two threads in the inferior and the non-leader
1121 one is the one that execs (and nothing forces an update of the
1122 thread list up to here). When debugging remotely, it's best to
1123 avoid extra traffic, when possible, so avoid syncing the thread
1124 list with the target, and instead go ahead and delete all threads
1125 of the process but one that reported the event. Note this must
1126 be done before calling update_breakpoints_after_exec, as
1127 otherwise clearing the threads' resources would reference stale
1128 thread breakpoints -- it may have been one of these threads that
1129 stepped across the exec. We could just clear their stepping
1130 states, but as long as we're iterating, might as well delete
1131 them. Deleting them now rather than at the next user-visible
1132 stop provides a nicer sequence of events for user and MI
1133 notifications. */
1134 for (thread_info *th : all_threads_safe ())
1135 if (th->ptid.pid () == pid && th->ptid != ptid)
1136 delete_thread (th);
1137
1138 /* We also need to clear any left over stale state for the
1139 leader/event thread. E.g., if there was any step-resume
1140 breakpoint or similar, it's gone now. We cannot truly
1141 step-to-next statement through an exec(). */
1142 thread_info *th = inferior_thread ();
1143 th->control.step_resume_breakpoint = NULL;
1144 th->control.exception_resume_breakpoint = NULL;
1145 th->control.single_step_breakpoints = NULL;
1146 th->control.step_range_start = 0;
1147 th->control.step_range_end = 0;
1148
1149 /* The user may have had the main thread held stopped in the
1150 previous image (e.g., schedlock on, or non-stop). Release
1151 it now. */
1152 th->stop_requested = 0;
1153
1154 update_breakpoints_after_exec ();
1155
1156 /* What is this a.out's name? */
1157 process_ptid = ptid_t (pid);
1158 printf_unfiltered (_("%s is executing new program: %s\n"),
1159 target_pid_to_str (process_ptid).c_str (),
1160 exec_file_target);
1161
1162 /* We've followed the inferior through an exec. Therefore, the
1163 inferior has essentially been killed & reborn. */
1164
1165 breakpoint_init_inferior (inf_execd);
1166
1167 gdb::unique_xmalloc_ptr<char> exec_file_host
1168 = exec_file_find (exec_file_target, NULL);
1169
1170 /* If we were unable to map the executable target pathname onto a host
1171 pathname, tell the user that. Otherwise GDB's subsequent behavior
1172 is confusing. Maybe it would even be better to stop at this point
1173 so that the user can specify a file manually before continuing. */
1174 if (exec_file_host == NULL)
1175 warning (_("Could not load symbols for executable %s.\n"
1176 "Do you need \"set sysroot\"?"),
1177 exec_file_target);
1178
1179 /* Reset the shared library package. This ensures that we get a
1180 shlib event when the child reaches "_start", at which point the
1181 dld will have had a chance to initialize the child. */
1182 /* Also, loading a symbol file below may trigger symbol lookups, and
1183 we don't want those to be satisfied by the libraries of the
1184 previous incarnation of this process. */
1185 no_shared_libraries (NULL, 0);
1186
1187 if (follow_exec_mode_string == follow_exec_mode_new)
1188 {
1189 /* The user wants to keep the old inferior and program spaces
1190 around. Create a new fresh one, and switch to it. */
1191
1192 /* Do exit processing for the original inferior before setting the new
1193 inferior's pid. Having two inferiors with the same pid would confuse
1194 find_inferior_p(t)id. Transfer the terminal state and info from the
1195 old to the new inferior. */
1196 inf = add_inferior_with_spaces ();
1197 swap_terminal_info (inf, current_inferior ());
1198 exit_inferior_silent (current_inferior ());
1199
1200 inf->pid = pid;
1201 target_follow_exec (inf, exec_file_target);
1202
1203 inferior *org_inferior = current_inferior ();
1204 switch_to_inferior_no_thread (inf);
1205 push_target (org_inferior->process_target ());
1206 thread_info *thr = add_thread (inf->process_target (), ptid);
1207 switch_to_thread (thr);
1208 }
1209 else
1210 {
1211 /* The old description may no longer be fit for the new image.
1212 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1213 old description; we'll read a new one below. No need to do
1214 this on "follow-exec-mode new", as the old inferior stays
1215 around (its description is later cleared/refetched on
1216 restart). */
1217 target_clear_description ();
1218 }
1219
1220 gdb_assert (current_program_space == inf->pspace);
1221
1222 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1223 because the proper displacement for a PIE (Position Independent
1224 Executable) main symbol file will only be computed by
1225 solib_create_inferior_hook below. breakpoint_re_set would fail
1226 to insert the breakpoints with the zero displacement. */
1227 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1228
1229 /* If the target can specify a description, read it. Must do this
1230 after flipping to the new executable (because the target supplied
1231 description must be compatible with the executable's
1232 architecture, and the old executable may e.g., be 32-bit, while
1233 the new one 64-bit), and before anything involving memory or
1234 registers. */
1235 target_find_description ();
1236
1237 solib_create_inferior_hook (0);
1238
1239 jit_inferior_created_hook (inf);
1240
1241 breakpoint_re_set ();
1242
1243 /* Reinsert all breakpoints. (Those which were symbolic have
1244 been reset to the proper address in the new a.out, thanks
1245 to symbol_file_command...). */
1246 insert_breakpoints ();
1247
1248 /* The next resume of this inferior should bring it to the shlib
1249 startup breakpoints. (If the user had also set bp's on
1250 "main" from the old (parent) process, then they'll auto-
1251 matically get reset there in the new process.). */
1252 }
1253
1254 /* The queue of threads that need to do a step-over operation to get
1255 past e.g., a breakpoint. What technique is used to step over the
1256 breakpoint/watchpoint does not matter -- all threads end up in the
1257 same queue, to maintain rough temporal order of execution, in order
1258 to avoid starvation, otherwise, we could e.g., find ourselves
1259 constantly stepping the same couple threads past their breakpoints
1260 over and over, if the single-step finish fast enough. */
1261 struct thread_info *step_over_queue_head;
1262
1263 /* Bit flags indicating what the thread needs to step over. */
1264
1265 enum step_over_what_flag
1266 {
1267 /* Step over a breakpoint. */
1268 STEP_OVER_BREAKPOINT = 1,
1269
1270 /* Step past a non-continuable watchpoint, in order to let the
1271 instruction execute so we can evaluate the watchpoint
1272 expression. */
1273 STEP_OVER_WATCHPOINT = 2
1274 };
1275 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1276
1277 /* Info about an instruction that is being stepped over. */
1278
1279 struct step_over_info
1280 {
1281 /* If we're stepping past a breakpoint, this is the address space
1282 and address of the instruction the breakpoint is set at. We'll
1283 skip inserting all breakpoints here. Valid iff ASPACE is
1284 non-NULL. */
1285 const address_space *aspace;
1286 CORE_ADDR address;
1287
1288 /* The instruction being stepped over triggers a nonsteppable
1289 watchpoint. If true, we'll skip inserting watchpoints. */
1290 int nonsteppable_watchpoint_p;
1291
1292 /* The thread's global number. */
1293 int thread;
1294 };
1295
1296 /* The step-over info of the location that is being stepped over.
1297
1298 Note that with async/breakpoint always-inserted mode, a user might
1299 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1300 being stepped over. As setting a new breakpoint inserts all
1301 breakpoints, we need to make sure the breakpoint being stepped over
1302 isn't inserted then. We do that by only clearing the step-over
1303 info when the step-over is actually finished (or aborted).
1304
1305 Presently GDB can only step over one breakpoint at any given time.
1306 Given threads that can't run code in the same address space as the
1307 breakpoint's can't really miss the breakpoint, GDB could be taught
1308 to step-over at most one breakpoint per address space (so this info
1309 could move to the address space object if/when GDB is extended).
1310 The set of breakpoints being stepped over will normally be much
1311 smaller than the set of all breakpoints, so a flag in the
1312 breakpoint location structure would be wasteful. A separate list
1313 also saves complexity and run-time, as otherwise we'd have to go
1314 through all breakpoint locations clearing their flag whenever we
1315 start a new sequence. Similar considerations weigh against storing
1316 this info in the thread object. Plus, not all step overs actually
1317 have breakpoint locations -- e.g., stepping past a single-step
1318 breakpoint, or stepping to complete a non-continuable
1319 watchpoint. */
1320 static struct step_over_info step_over_info;
1321
1322 /* Record the address of the breakpoint/instruction we're currently
1323 stepping over.
1324 N.B. We record the aspace and address now, instead of say just the thread,
1325 because when we need the info later the thread may be running. */
1326
1327 static void
1328 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1329 int nonsteppable_watchpoint_p,
1330 int thread)
1331 {
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1335 step_over_info.thread = thread;
1336 }
1337
1338 /* Called when we're not longer stepping over a breakpoint / an
1339 instruction, so all breakpoints are free to be (re)inserted. */
1340
1341 static void
1342 clear_step_over_info (void)
1343 {
1344 infrun_debug_printf ("clearing step over info");
1345 step_over_info.aspace = NULL;
1346 step_over_info.address = 0;
1347 step_over_info.nonsteppable_watchpoint_p = 0;
1348 step_over_info.thread = -1;
1349 }
1350
1351 /* See infrun.h. */
1352
1353 int
1354 stepping_past_instruction_at (struct address_space *aspace,
1355 CORE_ADDR address)
1356 {
1357 return (step_over_info.aspace != NULL
1358 && breakpoint_address_match (aspace, address,
1359 step_over_info.aspace,
1360 step_over_info.address));
1361 }
1362
1363 /* See infrun.h. */
1364
1365 int
1366 thread_is_stepping_over_breakpoint (int thread)
1367 {
1368 return (step_over_info.thread != -1
1369 && thread == step_over_info.thread);
1370 }
1371
1372 /* See infrun.h. */
1373
1374 int
1375 stepping_past_nonsteppable_watchpoint (void)
1376 {
1377 return step_over_info.nonsteppable_watchpoint_p;
1378 }
1379
1380 /* Returns true if step-over info is valid. */
1381
1382 static bool
1383 step_over_info_valid_p (void)
1384 {
1385 return (step_over_info.aspace != NULL
1386 || stepping_past_nonsteppable_watchpoint ());
1387 }
1388
1389 \f
1390 /* Displaced stepping. */
1391
1392 /* In non-stop debugging mode, we must take special care to manage
1393 breakpoints properly; in particular, the traditional strategy for
1394 stepping a thread past a breakpoint it has hit is unsuitable.
1395 'Displaced stepping' is a tactic for stepping one thread past a
1396 breakpoint it has hit while ensuring that other threads running
1397 concurrently will hit the breakpoint as they should.
1398
1399 The traditional way to step a thread T off a breakpoint in a
1400 multi-threaded program in all-stop mode is as follows:
1401
1402 a0) Initially, all threads are stopped, and breakpoints are not
1403 inserted.
1404 a1) We single-step T, leaving breakpoints uninserted.
1405 a2) We insert breakpoints, and resume all threads.
1406
1407 In non-stop debugging, however, this strategy is unsuitable: we
1408 don't want to have to stop all threads in the system in order to
1409 continue or step T past a breakpoint. Instead, we use displaced
1410 stepping:
1411
1412 n0) Initially, T is stopped, other threads are running, and
1413 breakpoints are inserted.
1414 n1) We copy the instruction "under" the breakpoint to a separate
1415 location, outside the main code stream, making any adjustments
1416 to the instruction, register, and memory state as directed by
1417 T's architecture.
1418 n2) We single-step T over the instruction at its new location.
1419 n3) We adjust the resulting register and memory state as directed
1420 by T's architecture. This includes resetting T's PC to point
1421 back into the main instruction stream.
1422 n4) We resume T.
1423
1424 This approach depends on the following gdbarch methods:
1425
1426 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1427 indicate where to copy the instruction, and how much space must
1428 be reserved there. We use these in step n1.
1429
1430 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1431 address, and makes any necessary adjustments to the instruction,
1432 register contents, and memory. We use this in step n1.
1433
1434 - gdbarch_displaced_step_fixup adjusts registers and memory after
1435 we have successfully single-stepped the instruction, to yield the
1436 same effect the instruction would have had if we had executed it
1437 at its original address. We use this in step n3.
1438
1439 The gdbarch_displaced_step_copy_insn and
1440 gdbarch_displaced_step_fixup functions must be written so that
1441 copying an instruction with gdbarch_displaced_step_copy_insn,
1442 single-stepping across the copied instruction, and then applying
1443 gdbarch_displaced_insn_fixup should have the same effects on the
1444 thread's memory and registers as stepping the instruction in place
1445 would have. Exactly which responsibilities fall to the copy and
1446 which fall to the fixup is up to the author of those functions.
1447
1448 See the comments in gdbarch.sh for details.
1449
1450 Note that displaced stepping and software single-step cannot
1451 currently be used in combination, although with some care I think
1452 they could be made to. Software single-step works by placing
1453 breakpoints on all possible subsequent instructions; if the
1454 displaced instruction is a PC-relative jump, those breakpoints
1455 could fall in very strange places --- on pages that aren't
1456 executable, or at addresses that are not proper instruction
1457 boundaries. (We do generally let other threads run while we wait
1458 to hit the software single-step breakpoint, and they might
1459 encounter such a corrupted instruction.) One way to work around
1460 this would be to have gdbarch_displaced_step_copy_insn fully
1461 simulate the effect of PC-relative instructions (and return NULL)
1462 on architectures that use software single-stepping.
1463
1464 In non-stop mode, we can have independent and simultaneous step
1465 requests, so more than one thread may need to simultaneously step
1466 over a breakpoint. The current implementation assumes there is
1467 only one scratch space per process. In this case, we have to
1468 serialize access to the scratch space. If thread A wants to step
1469 over a breakpoint, but we are currently waiting for some other
1470 thread to complete a displaced step, we leave thread A stopped and
1471 place it in the displaced_step_request_queue. Whenever a displaced
1472 step finishes, we pick the next thread in the queue and start a new
1473 displaced step operation on it. See displaced_step_prepare and
1474 displaced_step_fixup for details. */
1475
1476 /* Default destructor for displaced_step_closure. */
1477
1478 displaced_step_closure::~displaced_step_closure () = default;
1479
1480 /* Get the displaced stepping state of inferior INF. */
1481
1482 static displaced_step_inferior_state *
1483 get_displaced_stepping_state (inferior *inf)
1484 {
1485 return &inf->displaced_step_state;
1486 }
1487
1488 /* Returns true if any inferior has a thread doing a displaced
1489 step. */
1490
1491 static bool
1492 displaced_step_in_progress_any_inferior ()
1493 {
1494 for (inferior *i : all_inferiors ())
1495 {
1496 if (i->displaced_step_state.step_thread != nullptr)
1497 return true;
1498 }
1499
1500 return false;
1501 }
1502
1503 /* Return true if THREAD is doing a displaced step. */
1504
1505 static bool
1506 displaced_step_in_progress_thread (thread_info *thread)
1507 {
1508 gdb_assert (thread != NULL);
1509
1510 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1511 }
1512
1513 /* Return true if INF has a thread doing a displaced step. */
1514
1515 static bool
1516 displaced_step_in_progress (inferior *inf)
1517 {
1518 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1519 }
1520
1521 /* If inferior is in displaced stepping, and ADDR equals to starting address
1522 of copy area, return corresponding displaced_step_closure. Otherwise,
1523 return NULL. */
1524
1525 struct displaced_step_closure*
1526 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1527 {
1528 displaced_step_inferior_state *displaced
1529 = get_displaced_stepping_state (current_inferior ());
1530
1531 /* If checking the mode of displaced instruction in copy area. */
1532 if (displaced->step_thread != nullptr
1533 && displaced->step_copy == addr)
1534 return displaced->step_closure.get ();
1535
1536 return NULL;
1537 }
1538
1539 static void
1540 infrun_inferior_exit (struct inferior *inf)
1541 {
1542 inf->displaced_step_state.reset ();
1543 }
1544
1545 /* If ON, and the architecture supports it, GDB will use displaced
1546 stepping to step over breakpoints. If OFF, or if the architecture
1547 doesn't support it, GDB will instead use the traditional
1548 hold-and-step approach. If AUTO (which is the default), GDB will
1549 decide which technique to use to step over breakpoints depending on
1550 whether the target works in a non-stop way (see use_displaced_stepping). */
1551
1552 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1553
1554 static void
1555 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1556 struct cmd_list_element *c,
1557 const char *value)
1558 {
1559 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1560 fprintf_filtered (file,
1561 _("Debugger's willingness to use displaced stepping "
1562 "to step over breakpoints is %s (currently %s).\n"),
1563 value, target_is_non_stop_p () ? "on" : "off");
1564 else
1565 fprintf_filtered (file,
1566 _("Debugger's willingness to use displaced stepping "
1567 "to step over breakpoints is %s.\n"), value);
1568 }
1569
1570 /* Return true if the gdbarch implements the required methods to use
1571 displaced stepping. */
1572
1573 static bool
1574 gdbarch_supports_displaced_stepping (gdbarch *arch)
1575 {
1576 /* Only check for the presence of step_copy_insn. Other required methods
1577 are checked by the gdbarch validation. */
1578 return gdbarch_displaced_step_copy_insn_p (arch);
1579 }
1580
1581 /* Return non-zero if displaced stepping can/should be used to step
1582 over breakpoints of thread TP. */
1583
1584 static bool
1585 use_displaced_stepping (thread_info *tp)
1586 {
1587 /* If the user disabled it explicitly, don't use displaced stepping. */
1588 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1589 return false;
1590
1591 /* If "auto", only use displaced stepping if the target operates in a non-stop
1592 way. */
1593 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1594 && !target_is_non_stop_p ())
1595 return false;
1596
1597 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1598
1599 /* If the architecture doesn't implement displaced stepping, don't use
1600 it. */
1601 if (!gdbarch_supports_displaced_stepping (gdbarch))
1602 return false;
1603
1604 /* If recording, don't use displaced stepping. */
1605 if (find_record_target () != nullptr)
1606 return false;
1607
1608 displaced_step_inferior_state *displaced_state
1609 = get_displaced_stepping_state (tp->inf);
1610
1611 /* If displaced stepping failed before for this inferior, don't bother trying
1612 again. */
1613 if (displaced_state->failed_before)
1614 return false;
1615
1616 return true;
1617 }
1618
1619 /* Simple function wrapper around displaced_step_inferior_state::reset. */
1620
1621 static void
1622 displaced_step_reset (displaced_step_inferior_state *displaced)
1623 {
1624 displaced->reset ();
1625 }
1626
1627 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1628 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1629
1630 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1631
1632 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1633 void
1634 displaced_step_dump_bytes (struct ui_file *file,
1635 const gdb_byte *buf,
1636 size_t len)
1637 {
1638 int i;
1639
1640 for (i = 0; i < len; i++)
1641 fprintf_unfiltered (file, "%02x ", buf[i]);
1642 fputs_unfiltered ("\n", file);
1643 }
1644
1645 /* Prepare to single-step, using displaced stepping.
1646
1647 Note that we cannot use displaced stepping when we have a signal to
1648 deliver. If we have a signal to deliver and an instruction to step
1649 over, then after the step, there will be no indication from the
1650 target whether the thread entered a signal handler or ignored the
1651 signal and stepped over the instruction successfully --- both cases
1652 result in a simple SIGTRAP. In the first case we mustn't do a
1653 fixup, and in the second case we must --- but we can't tell which.
1654 Comments in the code for 'random signals' in handle_inferior_event
1655 explain how we handle this case instead.
1656
1657 Returns 1 if preparing was successful -- this thread is going to be
1658 stepped now; 0 if displaced stepping this thread got queued; or -1
1659 if this instruction can't be displaced stepped. */
1660
1661 static int
1662 displaced_step_prepare_throw (thread_info *tp)
1663 {
1664 regcache *regcache = get_thread_regcache (tp);
1665 struct gdbarch *gdbarch = regcache->arch ();
1666 const address_space *aspace = regcache->aspace ();
1667 CORE_ADDR original, copy;
1668 ULONGEST len;
1669 int status;
1670
1671 /* We should never reach this function if the architecture does not
1672 support displaced stepping. */
1673 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1674
1675 /* Nor if the thread isn't meant to step over a breakpoint. */
1676 gdb_assert (tp->control.trap_expected);
1677
1678 /* Disable range stepping while executing in the scratch pad. We
1679 want a single-step even if executing the displaced instruction in
1680 the scratch buffer lands within the stepping range (e.g., a
1681 jump/branch). */
1682 tp->control.may_range_step = 0;
1683
1684 /* We have to displaced step one thread at a time, as we only have
1685 access to a single scratch space per inferior. */
1686
1687 displaced_step_inferior_state *displaced
1688 = get_displaced_stepping_state (tp->inf);
1689
1690 if (displaced->step_thread != nullptr)
1691 {
1692 /* Already waiting for a displaced step to finish. Defer this
1693 request and place in queue. */
1694
1695 if (debug_displaced)
1696 fprintf_unfiltered (gdb_stdlog,
1697 "displaced: deferring step of %s\n",
1698 target_pid_to_str (tp->ptid).c_str ());
1699
1700 thread_step_over_chain_enqueue (tp);
1701 return 0;
1702 }
1703 else
1704 {
1705 if (debug_displaced)
1706 fprintf_unfiltered (gdb_stdlog,
1707 "displaced: stepping %s now\n",
1708 target_pid_to_str (tp->ptid).c_str ());
1709 }
1710
1711 displaced_step_reset (displaced);
1712
1713 scoped_restore_current_thread restore_thread;
1714
1715 switch_to_thread (tp);
1716
1717 original = regcache_read_pc (regcache);
1718
1719 copy = gdbarch_displaced_step_location (gdbarch);
1720 len = gdbarch_max_insn_length (gdbarch);
1721
1722 if (breakpoint_in_range_p (aspace, copy, len))
1723 {
1724 /* There's a breakpoint set in the scratch pad location range
1725 (which is usually around the entry point). We'd either
1726 install it before resuming, which would overwrite/corrupt the
1727 scratch pad, or if it was already inserted, this displaced
1728 step would overwrite it. The latter is OK in the sense that
1729 we already assume that no thread is going to execute the code
1730 in the scratch pad range (after initial startup) anyway, but
1731 the former is unacceptable. Simply punt and fallback to
1732 stepping over this breakpoint in-line. */
1733 if (debug_displaced)
1734 {
1735 fprintf_unfiltered (gdb_stdlog,
1736 "displaced: breakpoint set in scratch pad. "
1737 "Stepping over breakpoint in-line instead.\n");
1738 }
1739
1740 return -1;
1741 }
1742
1743 /* Save the original contents of the copy area. */
1744 displaced->step_saved_copy.resize (len);
1745 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1746 if (status != 0)
1747 throw_error (MEMORY_ERROR,
1748 _("Error accessing memory address %s (%s) for "
1749 "displaced-stepping scratch space."),
1750 paddress (gdbarch, copy), safe_strerror (status));
1751 if (debug_displaced)
1752 {
1753 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1754 paddress (gdbarch, copy));
1755 displaced_step_dump_bytes (gdb_stdlog,
1756 displaced->step_saved_copy.data (),
1757 len);
1758 };
1759
1760 displaced->step_closure
1761 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1762 if (displaced->step_closure == NULL)
1763 {
1764 /* The architecture doesn't know how or want to displaced step
1765 this instruction or instruction sequence. Fallback to
1766 stepping over the breakpoint in-line. */
1767 return -1;
1768 }
1769
1770 /* Save the information we need to fix things up if the step
1771 succeeds. */
1772 displaced->step_thread = tp;
1773 displaced->step_gdbarch = gdbarch;
1774 displaced->step_original = original;
1775 displaced->step_copy = copy;
1776
1777 {
1778 displaced_step_reset_cleanup cleanup (displaced);
1779
1780 /* Resume execution at the copy. */
1781 regcache_write_pc (regcache, copy);
1782
1783 cleanup.release ();
1784 }
1785
1786 if (debug_displaced)
1787 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1788 paddress (gdbarch, copy));
1789
1790 return 1;
1791 }
1792
1793 /* Wrapper for displaced_step_prepare_throw that disabled further
1794 attempts at displaced stepping if we get a memory error. */
1795
1796 static int
1797 displaced_step_prepare (thread_info *thread)
1798 {
1799 int prepared = -1;
1800
1801 try
1802 {
1803 prepared = displaced_step_prepare_throw (thread);
1804 }
1805 catch (const gdb_exception_error &ex)
1806 {
1807 struct displaced_step_inferior_state *displaced_state;
1808
1809 if (ex.error != MEMORY_ERROR
1810 && ex.error != NOT_SUPPORTED_ERROR)
1811 throw;
1812
1813 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1814 ex.what ());
1815
1816 /* Be verbose if "set displaced-stepping" is "on", silent if
1817 "auto". */
1818 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1819 {
1820 warning (_("disabling displaced stepping: %s"),
1821 ex.what ());
1822 }
1823
1824 /* Disable further displaced stepping attempts. */
1825 displaced_state
1826 = get_displaced_stepping_state (thread->inf);
1827 displaced_state->failed_before = 1;
1828 }
1829
1830 return prepared;
1831 }
1832
1833 static void
1834 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1835 const gdb_byte *myaddr, int len)
1836 {
1837 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1838
1839 inferior_ptid = ptid;
1840 write_memory (memaddr, myaddr, len);
1841 }
1842
1843 /* Restore the contents of the copy area for thread PTID. */
1844
1845 static void
1846 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1847 ptid_t ptid)
1848 {
1849 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1850
1851 write_memory_ptid (ptid, displaced->step_copy,
1852 displaced->step_saved_copy.data (), len);
1853 if (debug_displaced)
1854 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1855 target_pid_to_str (ptid).c_str (),
1856 paddress (displaced->step_gdbarch,
1857 displaced->step_copy));
1858 }
1859
1860 /* If we displaced stepped an instruction successfully, adjust
1861 registers and memory to yield the same effect the instruction would
1862 have had if we had executed it at its original address, and return
1863 1. If the instruction didn't complete, relocate the PC and return
1864 -1. If the thread wasn't displaced stepping, return 0. */
1865
1866 static int
1867 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1868 {
1869 struct displaced_step_inferior_state *displaced
1870 = get_displaced_stepping_state (event_thread->inf);
1871 int ret;
1872
1873 /* Was this event for the thread we displaced? */
1874 if (displaced->step_thread != event_thread)
1875 return 0;
1876
1877 /* Fixup may need to read memory/registers. Switch to the thread
1878 that we're fixing up. Also, target_stopped_by_watchpoint checks
1879 the current thread, and displaced_step_restore performs ptid-dependent
1880 memory accesses using current_inferior() and current_top_target(). */
1881 switch_to_thread (event_thread);
1882
1883 displaced_step_reset_cleanup cleanup (displaced);
1884
1885 displaced_step_restore (displaced, displaced->step_thread->ptid);
1886
1887 /* Did the instruction complete successfully? */
1888 if (signal == GDB_SIGNAL_TRAP
1889 && !(target_stopped_by_watchpoint ()
1890 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1891 || target_have_steppable_watchpoint ())))
1892 {
1893 /* Fix up the resulting state. */
1894 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1895 displaced->step_closure.get (),
1896 displaced->step_original,
1897 displaced->step_copy,
1898 get_thread_regcache (displaced->step_thread));
1899 ret = 1;
1900 }
1901 else
1902 {
1903 /* Since the instruction didn't complete, all we can do is
1904 relocate the PC. */
1905 struct regcache *regcache = get_thread_regcache (event_thread);
1906 CORE_ADDR pc = regcache_read_pc (regcache);
1907
1908 pc = displaced->step_original + (pc - displaced->step_copy);
1909 regcache_write_pc (regcache, pc);
1910 ret = -1;
1911 }
1912
1913 return ret;
1914 }
1915
1916 /* Data to be passed around while handling an event. This data is
1917 discarded between events. */
1918 struct execution_control_state
1919 {
1920 process_stratum_target *target;
1921 ptid_t ptid;
1922 /* The thread that got the event, if this was a thread event; NULL
1923 otherwise. */
1924 struct thread_info *event_thread;
1925
1926 struct target_waitstatus ws;
1927 int stop_func_filled_in;
1928 CORE_ADDR stop_func_start;
1929 CORE_ADDR stop_func_end;
1930 const char *stop_func_name;
1931 int wait_some_more;
1932
1933 /* True if the event thread hit the single-step breakpoint of
1934 another thread. Thus the event doesn't cause a stop, the thread
1935 needs to be single-stepped past the single-step breakpoint before
1936 we can switch back to the original stepping thread. */
1937 int hit_singlestep_breakpoint;
1938 };
1939
1940 /* Clear ECS and set it to point at TP. */
1941
1942 static void
1943 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1944 {
1945 memset (ecs, 0, sizeof (*ecs));
1946 ecs->event_thread = tp;
1947 ecs->ptid = tp->ptid;
1948 }
1949
1950 static void keep_going_pass_signal (struct execution_control_state *ecs);
1951 static void prepare_to_wait (struct execution_control_state *ecs);
1952 static bool keep_going_stepped_thread (struct thread_info *tp);
1953 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1954
1955 /* Are there any pending step-over requests? If so, run all we can
1956 now and return true. Otherwise, return false. */
1957
1958 static bool
1959 start_step_over (void)
1960 {
1961 struct thread_info *tp, *next;
1962
1963 /* Don't start a new step-over if we already have an in-line
1964 step-over operation ongoing. */
1965 if (step_over_info_valid_p ())
1966 return false;
1967
1968 for (tp = step_over_queue_head; tp != NULL; tp = next)
1969 {
1970 struct execution_control_state ecss;
1971 struct execution_control_state *ecs = &ecss;
1972 step_over_what step_what;
1973 int must_be_in_line;
1974
1975 gdb_assert (!tp->stop_requested);
1976
1977 next = thread_step_over_chain_next (tp);
1978
1979 /* If this inferior already has a displaced step in process,
1980 don't start a new one. */
1981 if (displaced_step_in_progress (tp->inf))
1982 continue;
1983
1984 step_what = thread_still_needs_step_over (tp);
1985 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1986 || ((step_what & STEP_OVER_BREAKPOINT)
1987 && !use_displaced_stepping (tp)));
1988
1989 /* We currently stop all threads of all processes to step-over
1990 in-line. If we need to start a new in-line step-over, let
1991 any pending displaced steps finish first. */
1992 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1993 return false;
1994
1995 thread_step_over_chain_remove (tp);
1996
1997 if (step_over_queue_head == NULL)
1998 infrun_debug_printf ("step-over queue now empty");
1999
2000 if (tp->control.trap_expected
2001 || tp->resumed
2002 || tp->executing)
2003 {
2004 internal_error (__FILE__, __LINE__,
2005 "[%s] has inconsistent state: "
2006 "trap_expected=%d, resumed=%d, executing=%d\n",
2007 target_pid_to_str (tp->ptid).c_str (),
2008 tp->control.trap_expected,
2009 tp->resumed,
2010 tp->executing);
2011 }
2012
2013 infrun_debug_printf ("resuming [%s] for step-over",
2014 target_pid_to_str (tp->ptid).c_str ());
2015
2016 /* keep_going_pass_signal skips the step-over if the breakpoint
2017 is no longer inserted. In all-stop, we want to keep looking
2018 for a thread that needs a step-over instead of resuming TP,
2019 because we wouldn't be able to resume anything else until the
2020 target stops again. In non-stop, the resume always resumes
2021 only TP, so it's OK to let the thread resume freely. */
2022 if (!target_is_non_stop_p () && !step_what)
2023 continue;
2024
2025 switch_to_thread (tp);
2026 reset_ecs (ecs, tp);
2027 keep_going_pass_signal (ecs);
2028
2029 if (!ecs->wait_some_more)
2030 error (_("Command aborted."));
2031
2032 gdb_assert (tp->resumed);
2033
2034 /* If we started a new in-line step-over, we're done. */
2035 if (step_over_info_valid_p ())
2036 {
2037 gdb_assert (tp->control.trap_expected);
2038 return true;
2039 }
2040
2041 if (!target_is_non_stop_p ())
2042 {
2043 /* On all-stop, shouldn't have resumed unless we needed a
2044 step over. */
2045 gdb_assert (tp->control.trap_expected
2046 || tp->step_after_step_resume_breakpoint);
2047
2048 /* With remote targets (at least), in all-stop, we can't
2049 issue any further remote commands until the program stops
2050 again. */
2051 return true;
2052 }
2053
2054 /* Either the thread no longer needed a step-over, or a new
2055 displaced stepping sequence started. Even in the latter
2056 case, continue looking. Maybe we can also start another
2057 displaced step on a thread of other process. */
2058 }
2059
2060 return false;
2061 }
2062
2063 /* Update global variables holding ptids to hold NEW_PTID if they were
2064 holding OLD_PTID. */
2065 static void
2066 infrun_thread_ptid_changed (process_stratum_target *target,
2067 ptid_t old_ptid, ptid_t new_ptid)
2068 {
2069 if (inferior_ptid == old_ptid
2070 && current_inferior ()->process_target () == target)
2071 inferior_ptid = new_ptid;
2072 }
2073
2074 \f
2075
2076 static const char schedlock_off[] = "off";
2077 static const char schedlock_on[] = "on";
2078 static const char schedlock_step[] = "step";
2079 static const char schedlock_replay[] = "replay";
2080 static const char *const scheduler_enums[] = {
2081 schedlock_off,
2082 schedlock_on,
2083 schedlock_step,
2084 schedlock_replay,
2085 NULL
2086 };
2087 static const char *scheduler_mode = schedlock_replay;
2088 static void
2089 show_scheduler_mode (struct ui_file *file, int from_tty,
2090 struct cmd_list_element *c, const char *value)
2091 {
2092 fprintf_filtered (file,
2093 _("Mode for locking scheduler "
2094 "during execution is \"%s\".\n"),
2095 value);
2096 }
2097
2098 static void
2099 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2100 {
2101 if (!target_can_lock_scheduler ())
2102 {
2103 scheduler_mode = schedlock_off;
2104 error (_("Target '%s' cannot support this command."), target_shortname);
2105 }
2106 }
2107
2108 /* True if execution commands resume all threads of all processes by
2109 default; otherwise, resume only threads of the current inferior
2110 process. */
2111 bool sched_multi = false;
2112
2113 /* Try to setup for software single stepping over the specified location.
2114 Return true if target_resume() should use hardware single step.
2115
2116 GDBARCH the current gdbarch.
2117 PC the location to step over. */
2118
2119 static bool
2120 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2121 {
2122 bool hw_step = true;
2123
2124 if (execution_direction == EXEC_FORWARD
2125 && gdbarch_software_single_step_p (gdbarch))
2126 hw_step = !insert_single_step_breakpoints (gdbarch);
2127
2128 return hw_step;
2129 }
2130
2131 /* See infrun.h. */
2132
2133 ptid_t
2134 user_visible_resume_ptid (int step)
2135 {
2136 ptid_t resume_ptid;
2137
2138 if (non_stop)
2139 {
2140 /* With non-stop mode on, threads are always handled
2141 individually. */
2142 resume_ptid = inferior_ptid;
2143 }
2144 else if ((scheduler_mode == schedlock_on)
2145 || (scheduler_mode == schedlock_step && step))
2146 {
2147 /* User-settable 'scheduler' mode requires solo thread
2148 resume. */
2149 resume_ptid = inferior_ptid;
2150 }
2151 else if ((scheduler_mode == schedlock_replay)
2152 && target_record_will_replay (minus_one_ptid, execution_direction))
2153 {
2154 /* User-settable 'scheduler' mode requires solo thread resume in replay
2155 mode. */
2156 resume_ptid = inferior_ptid;
2157 }
2158 else if (!sched_multi && target_supports_multi_process ())
2159 {
2160 /* Resume all threads of the current process (and none of other
2161 processes). */
2162 resume_ptid = ptid_t (inferior_ptid.pid ());
2163 }
2164 else
2165 {
2166 /* Resume all threads of all processes. */
2167 resume_ptid = RESUME_ALL;
2168 }
2169
2170 return resume_ptid;
2171 }
2172
2173 /* See infrun.h. */
2174
2175 process_stratum_target *
2176 user_visible_resume_target (ptid_t resume_ptid)
2177 {
2178 return (resume_ptid == minus_one_ptid && sched_multi
2179 ? NULL
2180 : current_inferior ()->process_target ());
2181 }
2182
2183 /* Return a ptid representing the set of threads that we will resume,
2184 in the perspective of the target, assuming run control handling
2185 does not require leaving some threads stopped (e.g., stepping past
2186 breakpoint). USER_STEP indicates whether we're about to start the
2187 target for a stepping command. */
2188
2189 static ptid_t
2190 internal_resume_ptid (int user_step)
2191 {
2192 /* In non-stop, we always control threads individually. Note that
2193 the target may always work in non-stop mode even with "set
2194 non-stop off", in which case user_visible_resume_ptid could
2195 return a wildcard ptid. */
2196 if (target_is_non_stop_p ())
2197 return inferior_ptid;
2198 else
2199 return user_visible_resume_ptid (user_step);
2200 }
2201
2202 /* Wrapper for target_resume, that handles infrun-specific
2203 bookkeeping. */
2204
2205 static void
2206 do_target_resume (ptid_t resume_ptid, bool step, enum gdb_signal sig)
2207 {
2208 struct thread_info *tp = inferior_thread ();
2209
2210 gdb_assert (!tp->stop_requested);
2211
2212 /* Install inferior's terminal modes. */
2213 target_terminal::inferior ();
2214
2215 /* Avoid confusing the next resume, if the next stop/resume
2216 happens to apply to another thread. */
2217 tp->suspend.stop_signal = GDB_SIGNAL_0;
2218
2219 /* Advise target which signals may be handled silently.
2220
2221 If we have removed breakpoints because we are stepping over one
2222 in-line (in any thread), we need to receive all signals to avoid
2223 accidentally skipping a breakpoint during execution of a signal
2224 handler.
2225
2226 Likewise if we're displaced stepping, otherwise a trap for a
2227 breakpoint in a signal handler might be confused with the
2228 displaced step finishing. We don't make the displaced_step_fixup
2229 step distinguish the cases instead, because:
2230
2231 - a backtrace while stopped in the signal handler would show the
2232 scratch pad as frame older than the signal handler, instead of
2233 the real mainline code.
2234
2235 - when the thread is later resumed, the signal handler would
2236 return to the scratch pad area, which would no longer be
2237 valid. */
2238 if (step_over_info_valid_p ()
2239 || displaced_step_in_progress (tp->inf))
2240 target_pass_signals ({});
2241 else
2242 target_pass_signals (signal_pass);
2243
2244 target_resume (resume_ptid, step, sig);
2245
2246 target_commit_resume ();
2247
2248 if (target_can_async_p ())
2249 target_async (1);
2250 }
2251
2252 /* Resume the inferior. SIG is the signal to give the inferior
2253 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2254 call 'resume', which handles exceptions. */
2255
2256 static void
2257 resume_1 (enum gdb_signal sig)
2258 {
2259 struct regcache *regcache = get_current_regcache ();
2260 struct gdbarch *gdbarch = regcache->arch ();
2261 struct thread_info *tp = inferior_thread ();
2262 const address_space *aspace = regcache->aspace ();
2263 ptid_t resume_ptid;
2264 /* This represents the user's step vs continue request. When
2265 deciding whether "set scheduler-locking step" applies, it's the
2266 user's intention that counts. */
2267 const int user_step = tp->control.stepping_command;
2268 /* This represents what we'll actually request the target to do.
2269 This can decay from a step to a continue, if e.g., we need to
2270 implement single-stepping with breakpoints (software
2271 single-step). */
2272 bool step;
2273
2274 gdb_assert (!tp->stop_requested);
2275 gdb_assert (!thread_is_in_step_over_chain (tp));
2276
2277 if (tp->suspend.waitstatus_pending_p)
2278 {
2279 infrun_debug_printf
2280 ("thread %s has pending wait "
2281 "status %s (currently_stepping=%d).",
2282 target_pid_to_str (tp->ptid).c_str (),
2283 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2284 currently_stepping (tp));
2285
2286 tp->inf->process_target ()->threads_executing = true;
2287 tp->resumed = true;
2288
2289 /* FIXME: What should we do if we are supposed to resume this
2290 thread with a signal? Maybe we should maintain a queue of
2291 pending signals to deliver. */
2292 if (sig != GDB_SIGNAL_0)
2293 {
2294 warning (_("Couldn't deliver signal %s to %s."),
2295 gdb_signal_to_name (sig),
2296 target_pid_to_str (tp->ptid).c_str ());
2297 }
2298
2299 tp->suspend.stop_signal = GDB_SIGNAL_0;
2300
2301 if (target_can_async_p ())
2302 {
2303 target_async (1);
2304 /* Tell the event loop we have an event to process. */
2305 mark_async_event_handler (infrun_async_inferior_event_token);
2306 }
2307 return;
2308 }
2309
2310 tp->stepped_breakpoint = 0;
2311
2312 /* Depends on stepped_breakpoint. */
2313 step = currently_stepping (tp);
2314
2315 if (current_inferior ()->waiting_for_vfork_done)
2316 {
2317 /* Don't try to single-step a vfork parent that is waiting for
2318 the child to get out of the shared memory region (by exec'ing
2319 or exiting). This is particularly important on software
2320 single-step archs, as the child process would trip on the
2321 software single step breakpoint inserted for the parent
2322 process. Since the parent will not actually execute any
2323 instruction until the child is out of the shared region (such
2324 are vfork's semantics), it is safe to simply continue it.
2325 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2326 the parent, and tell it to `keep_going', which automatically
2327 re-sets it stepping. */
2328 infrun_debug_printf ("resume : clear step");
2329 step = false;
2330 }
2331
2332 CORE_ADDR pc = regcache_read_pc (regcache);
2333
2334 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2335 "current thread [%s] at %s",
2336 step, gdb_signal_to_symbol_string (sig),
2337 tp->control.trap_expected,
2338 target_pid_to_str (inferior_ptid).c_str (),
2339 paddress (gdbarch, pc));
2340
2341 /* Normally, by the time we reach `resume', the breakpoints are either
2342 removed or inserted, as appropriate. The exception is if we're sitting
2343 at a permanent breakpoint; we need to step over it, but permanent
2344 breakpoints can't be removed. So we have to test for it here. */
2345 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2346 {
2347 if (sig != GDB_SIGNAL_0)
2348 {
2349 /* We have a signal to pass to the inferior. The resume
2350 may, or may not take us to the signal handler. If this
2351 is a step, we'll need to stop in the signal handler, if
2352 there's one, (if the target supports stepping into
2353 handlers), or in the next mainline instruction, if
2354 there's no handler. If this is a continue, we need to be
2355 sure to run the handler with all breakpoints inserted.
2356 In all cases, set a breakpoint at the current address
2357 (where the handler returns to), and once that breakpoint
2358 is hit, resume skipping the permanent breakpoint. If
2359 that breakpoint isn't hit, then we've stepped into the
2360 signal handler (or hit some other event). We'll delete
2361 the step-resume breakpoint then. */
2362
2363 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2364 "deliver signal first");
2365
2366 clear_step_over_info ();
2367 tp->control.trap_expected = 0;
2368
2369 if (tp->control.step_resume_breakpoint == NULL)
2370 {
2371 /* Set a "high-priority" step-resume, as we don't want
2372 user breakpoints at PC to trigger (again) when this
2373 hits. */
2374 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2375 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2376
2377 tp->step_after_step_resume_breakpoint = step;
2378 }
2379
2380 insert_breakpoints ();
2381 }
2382 else
2383 {
2384 /* There's no signal to pass, we can go ahead and skip the
2385 permanent breakpoint manually. */
2386 infrun_debug_printf ("skipping permanent breakpoint");
2387 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2388 /* Update pc to reflect the new address from which we will
2389 execute instructions. */
2390 pc = regcache_read_pc (regcache);
2391
2392 if (step)
2393 {
2394 /* We've already advanced the PC, so the stepping part
2395 is done. Now we need to arrange for a trap to be
2396 reported to handle_inferior_event. Set a breakpoint
2397 at the current PC, and run to it. Don't update
2398 prev_pc, because if we end in
2399 switch_back_to_stepped_thread, we want the "expected
2400 thread advanced also" branch to be taken. IOW, we
2401 don't want this thread to step further from PC
2402 (overstep). */
2403 gdb_assert (!step_over_info_valid_p ());
2404 insert_single_step_breakpoint (gdbarch, aspace, pc);
2405 insert_breakpoints ();
2406
2407 resume_ptid = internal_resume_ptid (user_step);
2408 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
2409 tp->resumed = true;
2410 return;
2411 }
2412 }
2413 }
2414
2415 /* If we have a breakpoint to step over, make sure to do a single
2416 step only. Same if we have software watchpoints. */
2417 if (tp->control.trap_expected || bpstat_should_step ())
2418 tp->control.may_range_step = 0;
2419
2420 /* If displaced stepping is enabled, step over breakpoints by executing a
2421 copy of the instruction at a different address.
2422
2423 We can't use displaced stepping when we have a signal to deliver;
2424 the comments for displaced_step_prepare explain why. The
2425 comments in the handle_inferior event for dealing with 'random
2426 signals' explain what we do instead.
2427
2428 We can't use displaced stepping when we are waiting for vfork_done
2429 event, displaced stepping breaks the vfork child similarly as single
2430 step software breakpoint. */
2431 if (tp->control.trap_expected
2432 && use_displaced_stepping (tp)
2433 && !step_over_info_valid_p ()
2434 && sig == GDB_SIGNAL_0
2435 && !current_inferior ()->waiting_for_vfork_done)
2436 {
2437 int prepared = displaced_step_prepare (tp);
2438
2439 if (prepared == 0)
2440 {
2441 infrun_debug_printf ("Got placed in step-over queue");
2442
2443 tp->control.trap_expected = 0;
2444 return;
2445 }
2446 else if (prepared < 0)
2447 {
2448 /* Fallback to stepping over the breakpoint in-line. */
2449
2450 if (target_is_non_stop_p ())
2451 stop_all_threads ();
2452
2453 set_step_over_info (regcache->aspace (),
2454 regcache_read_pc (regcache), 0, tp->global_num);
2455
2456 step = maybe_software_singlestep (gdbarch, pc);
2457
2458 insert_breakpoints ();
2459 }
2460 else if (prepared > 0)
2461 {
2462 /* Update pc to reflect the new address from which we will
2463 execute instructions due to displaced stepping. */
2464 pc = regcache_read_pc (get_thread_regcache (tp));
2465
2466 step = gdbarch_displaced_step_hw_singlestep (gdbarch);
2467 }
2468 }
2469
2470 /* Do we need to do it the hard way, w/temp breakpoints? */
2471 else if (step)
2472 step = maybe_software_singlestep (gdbarch, pc);
2473
2474 /* Currently, our software single-step implementation leads to different
2475 results than hardware single-stepping in one situation: when stepping
2476 into delivering a signal which has an associated signal handler,
2477 hardware single-step will stop at the first instruction of the handler,
2478 while software single-step will simply skip execution of the handler.
2479
2480 For now, this difference in behavior is accepted since there is no
2481 easy way to actually implement single-stepping into a signal handler
2482 without kernel support.
2483
2484 However, there is one scenario where this difference leads to follow-on
2485 problems: if we're stepping off a breakpoint by removing all breakpoints
2486 and then single-stepping. In this case, the software single-step
2487 behavior means that even if there is a *breakpoint* in the signal
2488 handler, GDB still would not stop.
2489
2490 Fortunately, we can at least fix this particular issue. We detect
2491 here the case where we are about to deliver a signal while software
2492 single-stepping with breakpoints removed. In this situation, we
2493 revert the decisions to remove all breakpoints and insert single-
2494 step breakpoints, and instead we install a step-resume breakpoint
2495 at the current address, deliver the signal without stepping, and
2496 once we arrive back at the step-resume breakpoint, actually step
2497 over the breakpoint we originally wanted to step over. */
2498 if (thread_has_single_step_breakpoints_set (tp)
2499 && sig != GDB_SIGNAL_0
2500 && step_over_info_valid_p ())
2501 {
2502 /* If we have nested signals or a pending signal is delivered
2503 immediately after a handler returns, might already have
2504 a step-resume breakpoint set on the earlier handler. We cannot
2505 set another step-resume breakpoint; just continue on until the
2506 original breakpoint is hit. */
2507 if (tp->control.step_resume_breakpoint == NULL)
2508 {
2509 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2510 tp->step_after_step_resume_breakpoint = 1;
2511 }
2512
2513 delete_single_step_breakpoints (tp);
2514
2515 clear_step_over_info ();
2516 tp->control.trap_expected = 0;
2517
2518 insert_breakpoints ();
2519 }
2520
2521 /* If STEP is set, it's a request to use hardware stepping
2522 facilities. But in that case, we should never
2523 use singlestep breakpoint. */
2524 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2525
2526 /* Decide the set of threads to ask the target to resume. */
2527 if (tp->control.trap_expected)
2528 {
2529 /* We're allowing a thread to run past a breakpoint it has
2530 hit, either by single-stepping the thread with the breakpoint
2531 removed, or by displaced stepping, with the breakpoint inserted.
2532 In the former case, we need to single-step only this thread,
2533 and keep others stopped, as they can miss this breakpoint if
2534 allowed to run. That's not really a problem for displaced
2535 stepping, but, we still keep other threads stopped, in case
2536 another thread is also stopped for a breakpoint waiting for
2537 its turn in the displaced stepping queue. */
2538 resume_ptid = inferior_ptid;
2539 }
2540 else
2541 resume_ptid = internal_resume_ptid (user_step);
2542
2543 if (execution_direction != EXEC_REVERSE
2544 && step && breakpoint_inserted_here_p (aspace, pc))
2545 {
2546 /* There are two cases where we currently need to step a
2547 breakpoint instruction when we have a signal to deliver:
2548
2549 - See handle_signal_stop where we handle random signals that
2550 could take out us out of the stepping range. Normally, in
2551 that case we end up continuing (instead of stepping) over the
2552 signal handler with a breakpoint at PC, but there are cases
2553 where we should _always_ single-step, even if we have a
2554 step-resume breakpoint, like when a software watchpoint is
2555 set. Assuming single-stepping and delivering a signal at the
2556 same time would takes us to the signal handler, then we could
2557 have removed the breakpoint at PC to step over it. However,
2558 some hardware step targets (like e.g., Mac OS) can't step
2559 into signal handlers, and for those, we need to leave the
2560 breakpoint at PC inserted, as otherwise if the handler
2561 recurses and executes PC again, it'll miss the breakpoint.
2562 So we leave the breakpoint inserted anyway, but we need to
2563 record that we tried to step a breakpoint instruction, so
2564 that adjust_pc_after_break doesn't end up confused.
2565
2566 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2567 in one thread after another thread that was stepping had been
2568 momentarily paused for a step-over. When we re-resume the
2569 stepping thread, it may be resumed from that address with a
2570 breakpoint that hasn't trapped yet. Seen with
2571 gdb.threads/non-stop-fair-events.exp, on targets that don't
2572 do displaced stepping. */
2573
2574 infrun_debug_printf ("resume: [%s] stepped breakpoint",
2575 target_pid_to_str (tp->ptid).c_str ());
2576
2577 tp->stepped_breakpoint = 1;
2578
2579 /* Most targets can step a breakpoint instruction, thus
2580 executing it normally. But if this one cannot, just
2581 continue and we will hit it anyway. */
2582 if (gdbarch_cannot_step_breakpoint (gdbarch))
2583 step = false;
2584 }
2585
2586 if (debug_displaced
2587 && tp->control.trap_expected
2588 && use_displaced_stepping (tp)
2589 && !step_over_info_valid_p ())
2590 {
2591 struct regcache *resume_regcache = get_thread_regcache (tp);
2592 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2593 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2594 gdb_byte buf[4];
2595
2596 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2597 paddress (resume_gdbarch, actual_pc));
2598 read_memory (actual_pc, buf, sizeof (buf));
2599 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2600 }
2601
2602 if (tp->control.may_range_step)
2603 {
2604 /* If we're resuming a thread with the PC out of the step
2605 range, then we're doing some nested/finer run control
2606 operation, like stepping the thread out of the dynamic
2607 linker or the displaced stepping scratch pad. We
2608 shouldn't have allowed a range step then. */
2609 gdb_assert (pc_in_thread_step_range (pc, tp));
2610 }
2611
2612 do_target_resume (resume_ptid, step, sig);
2613 tp->resumed = true;
2614 }
2615
2616 /* Resume the inferior. SIG is the signal to give the inferior
2617 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2618 rolls back state on error. */
2619
2620 static void
2621 resume (gdb_signal sig)
2622 {
2623 try
2624 {
2625 resume_1 (sig);
2626 }
2627 catch (const gdb_exception &ex)
2628 {
2629 /* If resuming is being aborted for any reason, delete any
2630 single-step breakpoint resume_1 may have created, to avoid
2631 confusing the following resumption, and to avoid leaving
2632 single-step breakpoints perturbing other threads, in case
2633 we're running in non-stop mode. */
2634 if (inferior_ptid != null_ptid)
2635 delete_single_step_breakpoints (inferior_thread ());
2636 throw;
2637 }
2638 }
2639
2640 \f
2641 /* Proceeding. */
2642
2643 /* See infrun.h. */
2644
2645 /* Counter that tracks number of user visible stops. This can be used
2646 to tell whether a command has proceeded the inferior past the
2647 current location. This allows e.g., inferior function calls in
2648 breakpoint commands to not interrupt the command list. When the
2649 call finishes successfully, the inferior is standing at the same
2650 breakpoint as if nothing happened (and so we don't call
2651 normal_stop). */
2652 static ULONGEST current_stop_id;
2653
2654 /* See infrun.h. */
2655
2656 ULONGEST
2657 get_stop_id (void)
2658 {
2659 return current_stop_id;
2660 }
2661
2662 /* Called when we report a user visible stop. */
2663
2664 static void
2665 new_stop_id (void)
2666 {
2667 current_stop_id++;
2668 }
2669
2670 /* Clear out all variables saying what to do when inferior is continued.
2671 First do this, then set the ones you want, then call `proceed'. */
2672
2673 static void
2674 clear_proceed_status_thread (struct thread_info *tp)
2675 {
2676 infrun_debug_printf ("%s", target_pid_to_str (tp->ptid).c_str ());
2677
2678 /* If we're starting a new sequence, then the previous finished
2679 single-step is no longer relevant. */
2680 if (tp->suspend.waitstatus_pending_p)
2681 {
2682 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2683 {
2684 infrun_debug_printf ("pending event of %s was a finished step. "
2685 "Discarding.",
2686 target_pid_to_str (tp->ptid).c_str ());
2687
2688 tp->suspend.waitstatus_pending_p = 0;
2689 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2690 }
2691 else
2692 {
2693 infrun_debug_printf
2694 ("thread %s has pending wait status %s (currently_stepping=%d).",
2695 target_pid_to_str (tp->ptid).c_str (),
2696 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2697 currently_stepping (tp));
2698 }
2699 }
2700
2701 /* If this signal should not be seen by program, give it zero.
2702 Used for debugging signals. */
2703 if (!signal_pass_state (tp->suspend.stop_signal))
2704 tp->suspend.stop_signal = GDB_SIGNAL_0;
2705
2706 delete tp->thread_fsm;
2707 tp->thread_fsm = NULL;
2708
2709 tp->control.trap_expected = 0;
2710 tp->control.step_range_start = 0;
2711 tp->control.step_range_end = 0;
2712 tp->control.may_range_step = 0;
2713 tp->control.step_frame_id = null_frame_id;
2714 tp->control.step_stack_frame_id = null_frame_id;
2715 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2716 tp->control.step_start_function = NULL;
2717 tp->stop_requested = 0;
2718
2719 tp->control.stop_step = 0;
2720
2721 tp->control.proceed_to_finish = 0;
2722
2723 tp->control.stepping_command = 0;
2724
2725 /* Discard any remaining commands or status from previous stop. */
2726 bpstat_clear (&tp->control.stop_bpstat);
2727 }
2728
2729 void
2730 clear_proceed_status (int step)
2731 {
2732 /* With scheduler-locking replay, stop replaying other threads if we're
2733 not replaying the user-visible resume ptid.
2734
2735 This is a convenience feature to not require the user to explicitly
2736 stop replaying the other threads. We're assuming that the user's
2737 intent is to resume tracing the recorded process. */
2738 if (!non_stop && scheduler_mode == schedlock_replay
2739 && target_record_is_replaying (minus_one_ptid)
2740 && !target_record_will_replay (user_visible_resume_ptid (step),
2741 execution_direction))
2742 target_record_stop_replaying ();
2743
2744 if (!non_stop && inferior_ptid != null_ptid)
2745 {
2746 ptid_t resume_ptid = user_visible_resume_ptid (step);
2747 process_stratum_target *resume_target
2748 = user_visible_resume_target (resume_ptid);
2749
2750 /* In all-stop mode, delete the per-thread status of all threads
2751 we're about to resume, implicitly and explicitly. */
2752 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2753 clear_proceed_status_thread (tp);
2754 }
2755
2756 if (inferior_ptid != null_ptid)
2757 {
2758 struct inferior *inferior;
2759
2760 if (non_stop)
2761 {
2762 /* If in non-stop mode, only delete the per-thread status of
2763 the current thread. */
2764 clear_proceed_status_thread (inferior_thread ());
2765 }
2766
2767 inferior = current_inferior ();
2768 inferior->control.stop_soon = NO_STOP_QUIETLY;
2769 }
2770
2771 gdb::observers::about_to_proceed.notify ();
2772 }
2773
2774 /* Returns true if TP is still stopped at a breakpoint that needs
2775 stepping-over in order to make progress. If the breakpoint is gone
2776 meanwhile, we can skip the whole step-over dance. */
2777
2778 static bool
2779 thread_still_needs_step_over_bp (struct thread_info *tp)
2780 {
2781 if (tp->stepping_over_breakpoint)
2782 {
2783 struct regcache *regcache = get_thread_regcache (tp);
2784
2785 if (breakpoint_here_p (regcache->aspace (),
2786 regcache_read_pc (regcache))
2787 == ordinary_breakpoint_here)
2788 return true;
2789
2790 tp->stepping_over_breakpoint = 0;
2791 }
2792
2793 return false;
2794 }
2795
2796 /* Check whether thread TP still needs to start a step-over in order
2797 to make progress when resumed. Returns an bitwise or of enum
2798 step_over_what bits, indicating what needs to be stepped over. */
2799
2800 static step_over_what
2801 thread_still_needs_step_over (struct thread_info *tp)
2802 {
2803 step_over_what what = 0;
2804
2805 if (thread_still_needs_step_over_bp (tp))
2806 what |= STEP_OVER_BREAKPOINT;
2807
2808 if (tp->stepping_over_watchpoint
2809 && !target_have_steppable_watchpoint ())
2810 what |= STEP_OVER_WATCHPOINT;
2811
2812 return what;
2813 }
2814
2815 /* Returns true if scheduler locking applies. STEP indicates whether
2816 we're about to do a step/next-like command to a thread. */
2817
2818 static bool
2819 schedlock_applies (struct thread_info *tp)
2820 {
2821 return (scheduler_mode == schedlock_on
2822 || (scheduler_mode == schedlock_step
2823 && tp->control.stepping_command)
2824 || (scheduler_mode == schedlock_replay
2825 && target_record_will_replay (minus_one_ptid,
2826 execution_direction)));
2827 }
2828
2829 /* Calls target_commit_resume on all targets. */
2830
2831 static void
2832 commit_resume_all_targets ()
2833 {
2834 scoped_restore_current_thread restore_thread;
2835
2836 /* Map between process_target and a representative inferior. This
2837 is to avoid committing a resume in the same target more than
2838 once. Resumptions must be idempotent, so this is an
2839 optimization. */
2840 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2841
2842 for (inferior *inf : all_non_exited_inferiors ())
2843 if (inf->has_execution ())
2844 conn_inf[inf->process_target ()] = inf;
2845
2846 for (const auto &ci : conn_inf)
2847 {
2848 inferior *inf = ci.second;
2849 switch_to_inferior_no_thread (inf);
2850 target_commit_resume ();
2851 }
2852 }
2853
2854 /* Check that all the targets we're about to resume are in non-stop
2855 mode. Ideally, we'd only care whether all targets support
2856 target-async, but we're not there yet. E.g., stop_all_threads
2857 doesn't know how to handle all-stop targets. Also, the remote
2858 protocol in all-stop mode is synchronous, irrespective of
2859 target-async, which means that things like a breakpoint re-set
2860 triggered by one target would try to read memory from all targets
2861 and fail. */
2862
2863 static void
2864 check_multi_target_resumption (process_stratum_target *resume_target)
2865 {
2866 if (!non_stop && resume_target == nullptr)
2867 {
2868 scoped_restore_current_thread restore_thread;
2869
2870 /* This is used to track whether we're resuming more than one
2871 target. */
2872 process_stratum_target *first_connection = nullptr;
2873
2874 /* The first inferior we see with a target that does not work in
2875 always-non-stop mode. */
2876 inferior *first_not_non_stop = nullptr;
2877
2878 for (inferior *inf : all_non_exited_inferiors (resume_target))
2879 {
2880 switch_to_inferior_no_thread (inf);
2881
2882 if (!target_has_execution ())
2883 continue;
2884
2885 process_stratum_target *proc_target
2886 = current_inferior ()->process_target();
2887
2888 if (!target_is_non_stop_p ())
2889 first_not_non_stop = inf;
2890
2891 if (first_connection == nullptr)
2892 first_connection = proc_target;
2893 else if (first_connection != proc_target
2894 && first_not_non_stop != nullptr)
2895 {
2896 switch_to_inferior_no_thread (first_not_non_stop);
2897
2898 proc_target = current_inferior ()->process_target();
2899
2900 error (_("Connection %d (%s) does not support "
2901 "multi-target resumption."),
2902 proc_target->connection_number,
2903 make_target_connection_string (proc_target).c_str ());
2904 }
2905 }
2906 }
2907 }
2908
2909 /* Basic routine for continuing the program in various fashions.
2910
2911 ADDR is the address to resume at, or -1 for resume where stopped.
2912 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2913 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2914
2915 You should call clear_proceed_status before calling proceed. */
2916
2917 void
2918 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2919 {
2920 struct regcache *regcache;
2921 struct gdbarch *gdbarch;
2922 CORE_ADDR pc;
2923 struct execution_control_state ecss;
2924 struct execution_control_state *ecs = &ecss;
2925 bool started;
2926
2927 /* If we're stopped at a fork/vfork, follow the branch set by the
2928 "set follow-fork-mode" command; otherwise, we'll just proceed
2929 resuming the current thread. */
2930 if (!follow_fork ())
2931 {
2932 /* The target for some reason decided not to resume. */
2933 normal_stop ();
2934 if (target_can_async_p ())
2935 inferior_event_handler (INF_EXEC_COMPLETE);
2936 return;
2937 }
2938
2939 /* We'll update this if & when we switch to a new thread. */
2940 previous_inferior_ptid = inferior_ptid;
2941
2942 regcache = get_current_regcache ();
2943 gdbarch = regcache->arch ();
2944 const address_space *aspace = regcache->aspace ();
2945
2946 pc = regcache_read_pc_protected (regcache);
2947
2948 thread_info *cur_thr = inferior_thread ();
2949
2950 /* Fill in with reasonable starting values. */
2951 init_thread_stepping_state (cur_thr);
2952
2953 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2954
2955 ptid_t resume_ptid
2956 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2957 process_stratum_target *resume_target
2958 = user_visible_resume_target (resume_ptid);
2959
2960 check_multi_target_resumption (resume_target);
2961
2962 if (addr == (CORE_ADDR) -1)
2963 {
2964 if (pc == cur_thr->suspend.stop_pc
2965 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2966 && execution_direction != EXEC_REVERSE)
2967 /* There is a breakpoint at the address we will resume at,
2968 step one instruction before inserting breakpoints so that
2969 we do not stop right away (and report a second hit at this
2970 breakpoint).
2971
2972 Note, we don't do this in reverse, because we won't
2973 actually be executing the breakpoint insn anyway.
2974 We'll be (un-)executing the previous instruction. */
2975 cur_thr->stepping_over_breakpoint = 1;
2976 else if (gdbarch_single_step_through_delay_p (gdbarch)
2977 && gdbarch_single_step_through_delay (gdbarch,
2978 get_current_frame ()))
2979 /* We stepped onto an instruction that needs to be stepped
2980 again before re-inserting the breakpoint, do so. */
2981 cur_thr->stepping_over_breakpoint = 1;
2982 }
2983 else
2984 {
2985 regcache_write_pc (regcache, addr);
2986 }
2987
2988 if (siggnal != GDB_SIGNAL_DEFAULT)
2989 cur_thr->suspend.stop_signal = siggnal;
2990
2991 /* If an exception is thrown from this point on, make sure to
2992 propagate GDB's knowledge of the executing state to the
2993 frontend/user running state. */
2994 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
2995
2996 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2997 threads (e.g., we might need to set threads stepping over
2998 breakpoints first), from the user/frontend's point of view, all
2999 threads in RESUME_PTID are now running. Unless we're calling an
3000 inferior function, as in that case we pretend the inferior
3001 doesn't run at all. */
3002 if (!cur_thr->control.in_infcall)
3003 set_running (resume_target, resume_ptid, true);
3004
3005 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
3006 gdb_signal_to_symbol_string (siggnal));
3007
3008 annotate_starting ();
3009
3010 /* Make sure that output from GDB appears before output from the
3011 inferior. */
3012 gdb_flush (gdb_stdout);
3013
3014 /* Since we've marked the inferior running, give it the terminal. A
3015 QUIT/Ctrl-C from here on is forwarded to the target (which can
3016 still detect attempts to unblock a stuck connection with repeated
3017 Ctrl-C from within target_pass_ctrlc). */
3018 target_terminal::inferior ();
3019
3020 /* In a multi-threaded task we may select another thread and
3021 then continue or step.
3022
3023 But if a thread that we're resuming had stopped at a breakpoint,
3024 it will immediately cause another breakpoint stop without any
3025 execution (i.e. it will report a breakpoint hit incorrectly). So
3026 we must step over it first.
3027
3028 Look for threads other than the current (TP) that reported a
3029 breakpoint hit and haven't been resumed yet since. */
3030
3031 /* If scheduler locking applies, we can avoid iterating over all
3032 threads. */
3033 if (!non_stop && !schedlock_applies (cur_thr))
3034 {
3035 for (thread_info *tp : all_non_exited_threads (resume_target,
3036 resume_ptid))
3037 {
3038 switch_to_thread_no_regs (tp);
3039
3040 /* Ignore the current thread here. It's handled
3041 afterwards. */
3042 if (tp == cur_thr)
3043 continue;
3044
3045 if (!thread_still_needs_step_over (tp))
3046 continue;
3047
3048 gdb_assert (!thread_is_in_step_over_chain (tp));
3049
3050 infrun_debug_printf ("need to step-over [%s] first",
3051 target_pid_to_str (tp->ptid).c_str ());
3052
3053 thread_step_over_chain_enqueue (tp);
3054 }
3055
3056 switch_to_thread (cur_thr);
3057 }
3058
3059 /* Enqueue the current thread last, so that we move all other
3060 threads over their breakpoints first. */
3061 if (cur_thr->stepping_over_breakpoint)
3062 thread_step_over_chain_enqueue (cur_thr);
3063
3064 /* If the thread isn't started, we'll still need to set its prev_pc,
3065 so that switch_back_to_stepped_thread knows the thread hasn't
3066 advanced. Must do this before resuming any thread, as in
3067 all-stop/remote, once we resume we can't send any other packet
3068 until the target stops again. */
3069 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3070
3071 {
3072 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3073
3074 started = start_step_over ();
3075
3076 if (step_over_info_valid_p ())
3077 {
3078 /* Either this thread started a new in-line step over, or some
3079 other thread was already doing one. In either case, don't
3080 resume anything else until the step-over is finished. */
3081 }
3082 else if (started && !target_is_non_stop_p ())
3083 {
3084 /* A new displaced stepping sequence was started. In all-stop,
3085 we can't talk to the target anymore until it next stops. */
3086 }
3087 else if (!non_stop && target_is_non_stop_p ())
3088 {
3089 /* In all-stop, but the target is always in non-stop mode.
3090 Start all other threads that are implicitly resumed too. */
3091 for (thread_info *tp : all_non_exited_threads (resume_target,
3092 resume_ptid))
3093 {
3094 switch_to_thread_no_regs (tp);
3095
3096 if (!tp->inf->has_execution ())
3097 {
3098 infrun_debug_printf ("[%s] target has no execution",
3099 target_pid_to_str (tp->ptid).c_str ());
3100 continue;
3101 }
3102
3103 if (tp->resumed)
3104 {
3105 infrun_debug_printf ("[%s] resumed",
3106 target_pid_to_str (tp->ptid).c_str ());
3107 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3108 continue;
3109 }
3110
3111 if (thread_is_in_step_over_chain (tp))
3112 {
3113 infrun_debug_printf ("[%s] needs step-over",
3114 target_pid_to_str (tp->ptid).c_str ());
3115 continue;
3116 }
3117
3118 infrun_debug_printf ("resuming %s",
3119 target_pid_to_str (tp->ptid).c_str ());
3120
3121 reset_ecs (ecs, tp);
3122 switch_to_thread (tp);
3123 keep_going_pass_signal (ecs);
3124 if (!ecs->wait_some_more)
3125 error (_("Command aborted."));
3126 }
3127 }
3128 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3129 {
3130 /* The thread wasn't started, and isn't queued, run it now. */
3131 reset_ecs (ecs, cur_thr);
3132 switch_to_thread (cur_thr);
3133 keep_going_pass_signal (ecs);
3134 if (!ecs->wait_some_more)
3135 error (_("Command aborted."));
3136 }
3137 }
3138
3139 commit_resume_all_targets ();
3140
3141 finish_state.release ();
3142
3143 /* If we've switched threads above, switch back to the previously
3144 current thread. We don't want the user to see a different
3145 selected thread. */
3146 switch_to_thread (cur_thr);
3147
3148 /* Tell the event loop to wait for it to stop. If the target
3149 supports asynchronous execution, it'll do this from within
3150 target_resume. */
3151 if (!target_can_async_p ())
3152 mark_async_event_handler (infrun_async_inferior_event_token);
3153 }
3154 \f
3155
3156 /* Start remote-debugging of a machine over a serial link. */
3157
3158 void
3159 start_remote (int from_tty)
3160 {
3161 inferior *inf = current_inferior ();
3162 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3163
3164 /* Always go on waiting for the target, regardless of the mode. */
3165 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3166 indicate to wait_for_inferior that a target should timeout if
3167 nothing is returned (instead of just blocking). Because of this,
3168 targets expecting an immediate response need to, internally, set
3169 things up so that the target_wait() is forced to eventually
3170 timeout. */
3171 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3172 differentiate to its caller what the state of the target is after
3173 the initial open has been performed. Here we're assuming that
3174 the target has stopped. It should be possible to eventually have
3175 target_open() return to the caller an indication that the target
3176 is currently running and GDB state should be set to the same as
3177 for an async run. */
3178 wait_for_inferior (inf);
3179
3180 /* Now that the inferior has stopped, do any bookkeeping like
3181 loading shared libraries. We want to do this before normal_stop,
3182 so that the displayed frame is up to date. */
3183 post_create_inferior (from_tty);
3184
3185 normal_stop ();
3186 }
3187
3188 /* Initialize static vars when a new inferior begins. */
3189
3190 void
3191 init_wait_for_inferior (void)
3192 {
3193 /* These are meaningless until the first time through wait_for_inferior. */
3194
3195 breakpoint_init_inferior (inf_starting);
3196
3197 clear_proceed_status (0);
3198
3199 nullify_last_target_wait_ptid ();
3200
3201 previous_inferior_ptid = inferior_ptid;
3202 }
3203
3204 \f
3205
3206 static void handle_inferior_event (struct execution_control_state *ecs);
3207
3208 static void handle_step_into_function (struct gdbarch *gdbarch,
3209 struct execution_control_state *ecs);
3210 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3211 struct execution_control_state *ecs);
3212 static void handle_signal_stop (struct execution_control_state *ecs);
3213 static void check_exception_resume (struct execution_control_state *,
3214 struct frame_info *);
3215
3216 static void end_stepping_range (struct execution_control_state *ecs);
3217 static void stop_waiting (struct execution_control_state *ecs);
3218 static void keep_going (struct execution_control_state *ecs);
3219 static void process_event_stop_test (struct execution_control_state *ecs);
3220 static bool switch_back_to_stepped_thread (struct execution_control_state *ecs);
3221
3222 /* This function is attached as a "thread_stop_requested" observer.
3223 Cleanup local state that assumed the PTID was to be resumed, and
3224 report the stop to the frontend. */
3225
3226 static void
3227 infrun_thread_stop_requested (ptid_t ptid)
3228 {
3229 process_stratum_target *curr_target = current_inferior ()->process_target ();
3230
3231 /* PTID was requested to stop. If the thread was already stopped,
3232 but the user/frontend doesn't know about that yet (e.g., the
3233 thread had been temporarily paused for some step-over), set up
3234 for reporting the stop now. */
3235 for (thread_info *tp : all_threads (curr_target, ptid))
3236 {
3237 if (tp->state != THREAD_RUNNING)
3238 continue;
3239 if (tp->executing)
3240 continue;
3241
3242 /* Remove matching threads from the step-over queue, so
3243 start_step_over doesn't try to resume them
3244 automatically. */
3245 if (thread_is_in_step_over_chain (tp))
3246 thread_step_over_chain_remove (tp);
3247
3248 /* If the thread is stopped, but the user/frontend doesn't
3249 know about that yet, queue a pending event, as if the
3250 thread had just stopped now. Unless the thread already had
3251 a pending event. */
3252 if (!tp->suspend.waitstatus_pending_p)
3253 {
3254 tp->suspend.waitstatus_pending_p = 1;
3255 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3256 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3257 }
3258
3259 /* Clear the inline-frame state, since we're re-processing the
3260 stop. */
3261 clear_inline_frame_state (tp);
3262
3263 /* If this thread was paused because some other thread was
3264 doing an inline-step over, let that finish first. Once
3265 that happens, we'll restart all threads and consume pending
3266 stop events then. */
3267 if (step_over_info_valid_p ())
3268 continue;
3269
3270 /* Otherwise we can process the (new) pending event now. Set
3271 it so this pending event is considered by
3272 do_target_wait. */
3273 tp->resumed = true;
3274 }
3275 }
3276
3277 static void
3278 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3279 {
3280 if (target_last_proc_target == tp->inf->process_target ()
3281 && target_last_wait_ptid == tp->ptid)
3282 nullify_last_target_wait_ptid ();
3283 }
3284
3285 /* Delete the step resume, single-step and longjmp/exception resume
3286 breakpoints of TP. */
3287
3288 static void
3289 delete_thread_infrun_breakpoints (struct thread_info *tp)
3290 {
3291 delete_step_resume_breakpoint (tp);
3292 delete_exception_resume_breakpoint (tp);
3293 delete_single_step_breakpoints (tp);
3294 }
3295
3296 /* If the target still has execution, call FUNC for each thread that
3297 just stopped. In all-stop, that's all the non-exited threads; in
3298 non-stop, that's the current thread, only. */
3299
3300 typedef void (*for_each_just_stopped_thread_callback_func)
3301 (struct thread_info *tp);
3302
3303 static void
3304 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3305 {
3306 if (!target_has_execution () || inferior_ptid == null_ptid)
3307 return;
3308
3309 if (target_is_non_stop_p ())
3310 {
3311 /* If in non-stop mode, only the current thread stopped. */
3312 func (inferior_thread ());
3313 }
3314 else
3315 {
3316 /* In all-stop mode, all threads have stopped. */
3317 for (thread_info *tp : all_non_exited_threads ())
3318 func (tp);
3319 }
3320 }
3321
3322 /* Delete the step resume and longjmp/exception resume breakpoints of
3323 the threads that just stopped. */
3324
3325 static void
3326 delete_just_stopped_threads_infrun_breakpoints (void)
3327 {
3328 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3329 }
3330
3331 /* Delete the single-step breakpoints of the threads that just
3332 stopped. */
3333
3334 static void
3335 delete_just_stopped_threads_single_step_breakpoints (void)
3336 {
3337 for_each_just_stopped_thread (delete_single_step_breakpoints);
3338 }
3339
3340 /* See infrun.h. */
3341
3342 void
3343 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3344 const struct target_waitstatus *ws)
3345 {
3346 std::string status_string = target_waitstatus_to_string (ws);
3347 string_file stb;
3348
3349 /* The text is split over several lines because it was getting too long.
3350 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3351 output as a unit; we want only one timestamp printed if debug_timestamp
3352 is set. */
3353
3354 stb.printf ("[infrun] target_wait (%d.%ld.%ld",
3355 waiton_ptid.pid (),
3356 waiton_ptid.lwp (),
3357 waiton_ptid.tid ());
3358 if (waiton_ptid.pid () != -1)
3359 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3360 stb.printf (", status) =\n");
3361 stb.printf ("[infrun] %d.%ld.%ld [%s],\n",
3362 result_ptid.pid (),
3363 result_ptid.lwp (),
3364 result_ptid.tid (),
3365 target_pid_to_str (result_ptid).c_str ());
3366 stb.printf ("[infrun] %s\n", status_string.c_str ());
3367
3368 /* This uses %s in part to handle %'s in the text, but also to avoid
3369 a gcc error: the format attribute requires a string literal. */
3370 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3371 }
3372
3373 /* Select a thread at random, out of those which are resumed and have
3374 had events. */
3375
3376 static struct thread_info *
3377 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3378 {
3379 int num_events = 0;
3380
3381 auto has_event = [&] (thread_info *tp)
3382 {
3383 return (tp->ptid.matches (waiton_ptid)
3384 && tp->resumed
3385 && tp->suspend.waitstatus_pending_p);
3386 };
3387
3388 /* First see how many events we have. Count only resumed threads
3389 that have an event pending. */
3390 for (thread_info *tp : inf->non_exited_threads ())
3391 if (has_event (tp))
3392 num_events++;
3393
3394 if (num_events == 0)
3395 return NULL;
3396
3397 /* Now randomly pick a thread out of those that have had events. */
3398 int random_selector = (int) ((num_events * (double) rand ())
3399 / (RAND_MAX + 1.0));
3400
3401 if (num_events > 1)
3402 infrun_debug_printf ("Found %d events, selecting #%d",
3403 num_events, random_selector);
3404
3405 /* Select the Nth thread that has had an event. */
3406 for (thread_info *tp : inf->non_exited_threads ())
3407 if (has_event (tp))
3408 if (random_selector-- == 0)
3409 return tp;
3410
3411 gdb_assert_not_reached ("event thread not found");
3412 }
3413
3414 /* Wrapper for target_wait that first checks whether threads have
3415 pending statuses to report before actually asking the target for
3416 more events. INF is the inferior we're using to call target_wait
3417 on. */
3418
3419 static ptid_t
3420 do_target_wait_1 (inferior *inf, ptid_t ptid,
3421 target_waitstatus *status, target_wait_flags options)
3422 {
3423 ptid_t event_ptid;
3424 struct thread_info *tp;
3425
3426 /* We know that we are looking for an event in the target of inferior
3427 INF, but we don't know which thread the event might come from. As
3428 such we want to make sure that INFERIOR_PTID is reset so that none of
3429 the wait code relies on it - doing so is always a mistake. */
3430 switch_to_inferior_no_thread (inf);
3431
3432 /* First check if there is a resumed thread with a wait status
3433 pending. */
3434 if (ptid == minus_one_ptid || ptid.is_pid ())
3435 {
3436 tp = random_pending_event_thread (inf, ptid);
3437 }
3438 else
3439 {
3440 infrun_debug_printf ("Waiting for specific thread %s.",
3441 target_pid_to_str (ptid).c_str ());
3442
3443 /* We have a specific thread to check. */
3444 tp = find_thread_ptid (inf, ptid);
3445 gdb_assert (tp != NULL);
3446 if (!tp->suspend.waitstatus_pending_p)
3447 tp = NULL;
3448 }
3449
3450 if (tp != NULL
3451 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3452 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3453 {
3454 struct regcache *regcache = get_thread_regcache (tp);
3455 struct gdbarch *gdbarch = regcache->arch ();
3456 CORE_ADDR pc;
3457 int discard = 0;
3458
3459 pc = regcache_read_pc (regcache);
3460
3461 if (pc != tp->suspend.stop_pc)
3462 {
3463 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
3464 target_pid_to_str (tp->ptid).c_str (),
3465 paddress (gdbarch, tp->suspend.stop_pc),
3466 paddress (gdbarch, pc));
3467 discard = 1;
3468 }
3469 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3470 {
3471 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3472 target_pid_to_str (tp->ptid).c_str (),
3473 paddress (gdbarch, pc));
3474
3475 discard = 1;
3476 }
3477
3478 if (discard)
3479 {
3480 infrun_debug_printf ("pending event of %s cancelled.",
3481 target_pid_to_str (tp->ptid).c_str ());
3482
3483 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3484 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3485 }
3486 }
3487
3488 if (tp != NULL)
3489 {
3490 infrun_debug_printf ("Using pending wait status %s for %s.",
3491 target_waitstatus_to_string
3492 (&tp->suspend.waitstatus).c_str (),
3493 target_pid_to_str (tp->ptid).c_str ());
3494
3495 /* Now that we've selected our final event LWP, un-adjust its PC
3496 if it was a software breakpoint (and the target doesn't
3497 always adjust the PC itself). */
3498 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3499 && !target_supports_stopped_by_sw_breakpoint ())
3500 {
3501 struct regcache *regcache;
3502 struct gdbarch *gdbarch;
3503 int decr_pc;
3504
3505 regcache = get_thread_regcache (tp);
3506 gdbarch = regcache->arch ();
3507
3508 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3509 if (decr_pc != 0)
3510 {
3511 CORE_ADDR pc;
3512
3513 pc = regcache_read_pc (regcache);
3514 regcache_write_pc (regcache, pc + decr_pc);
3515 }
3516 }
3517
3518 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3519 *status = tp->suspend.waitstatus;
3520 tp->suspend.waitstatus_pending_p = 0;
3521
3522 /* Wake up the event loop again, until all pending events are
3523 processed. */
3524 if (target_is_async_p ())
3525 mark_async_event_handler (infrun_async_inferior_event_token);
3526 return tp->ptid;
3527 }
3528
3529 /* But if we don't find one, we'll have to wait. */
3530
3531 /* We can't ask a non-async target to do a non-blocking wait, so this will be
3532 a blocking wait. */
3533 if (!target_can_async_p ())
3534 options &= ~TARGET_WNOHANG;
3535
3536 if (deprecated_target_wait_hook)
3537 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3538 else
3539 event_ptid = target_wait (ptid, status, options);
3540
3541 return event_ptid;
3542 }
3543
3544 /* Wrapper for target_wait that first checks whether threads have
3545 pending statuses to report before actually asking the target for
3546 more events. Polls for events from all inferiors/targets. */
3547
3548 static bool
3549 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs,
3550 target_wait_flags options)
3551 {
3552 int num_inferiors = 0;
3553 int random_selector;
3554
3555 /* For fairness, we pick the first inferior/target to poll at random
3556 out of all inferiors that may report events, and then continue
3557 polling the rest of the inferior list starting from that one in a
3558 circular fashion until the whole list is polled once. */
3559
3560 auto inferior_matches = [&wait_ptid] (inferior *inf)
3561 {
3562 return (inf->process_target () != NULL
3563 && ptid_t (inf->pid).matches (wait_ptid));
3564 };
3565
3566 /* First see how many matching inferiors we have. */
3567 for (inferior *inf : all_inferiors ())
3568 if (inferior_matches (inf))
3569 num_inferiors++;
3570
3571 if (num_inferiors == 0)
3572 {
3573 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3574 return false;
3575 }
3576
3577 /* Now randomly pick an inferior out of those that matched. */
3578 random_selector = (int)
3579 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3580
3581 if (num_inferiors > 1)
3582 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3583 num_inferiors, random_selector);
3584
3585 /* Select the Nth inferior that matched. */
3586
3587 inferior *selected = nullptr;
3588
3589 for (inferior *inf : all_inferiors ())
3590 if (inferior_matches (inf))
3591 if (random_selector-- == 0)
3592 {
3593 selected = inf;
3594 break;
3595 }
3596
3597 /* Now poll for events out of each of the matching inferior's
3598 targets, starting from the selected one. */
3599
3600 auto do_wait = [&] (inferior *inf)
3601 {
3602 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3603 ecs->target = inf->process_target ();
3604 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3605 };
3606
3607 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3608 here spuriously after the target is all stopped and we've already
3609 reported the stop to the user, polling for events. */
3610 scoped_restore_current_thread restore_thread;
3611
3612 int inf_num = selected->num;
3613 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3614 if (inferior_matches (inf))
3615 if (do_wait (inf))
3616 return true;
3617
3618 for (inferior *inf = inferior_list;
3619 inf != NULL && inf->num < inf_num;
3620 inf = inf->next)
3621 if (inferior_matches (inf))
3622 if (do_wait (inf))
3623 return true;
3624
3625 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3626 return false;
3627 }
3628
3629 /* Prepare and stabilize the inferior for detaching it. E.g.,
3630 detaching while a thread is displaced stepping is a recipe for
3631 crashing it, as nothing would readjust the PC out of the scratch
3632 pad. */
3633
3634 void
3635 prepare_for_detach (void)
3636 {
3637 struct inferior *inf = current_inferior ();
3638 ptid_t pid_ptid = ptid_t (inf->pid);
3639
3640 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3641
3642 /* Is any thread of this process displaced stepping? If not,
3643 there's nothing else to do. */
3644 if (displaced->step_thread == nullptr)
3645 return;
3646
3647 infrun_debug_printf ("displaced-stepping in-process while detaching");
3648
3649 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3650
3651 while (displaced->step_thread != nullptr)
3652 {
3653 struct execution_control_state ecss;
3654 struct execution_control_state *ecs;
3655
3656 ecs = &ecss;
3657 memset (ecs, 0, sizeof (*ecs));
3658
3659 overlay_cache_invalid = 1;
3660 /* Flush target cache before starting to handle each event.
3661 Target was running and cache could be stale. This is just a
3662 heuristic. Running threads may modify target memory, but we
3663 don't get any event. */
3664 target_dcache_invalidate ();
3665
3666 do_target_wait (pid_ptid, ecs, 0);
3667
3668 if (debug_infrun)
3669 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3670
3671 /* If an error happens while handling the event, propagate GDB's
3672 knowledge of the executing state to the frontend/user running
3673 state. */
3674 scoped_finish_thread_state finish_state (inf->process_target (),
3675 minus_one_ptid);
3676
3677 /* Now figure out what to do with the result of the result. */
3678 handle_inferior_event (ecs);
3679
3680 /* No error, don't finish the state yet. */
3681 finish_state.release ();
3682
3683 /* Breakpoints and watchpoints are not installed on the target
3684 at this point, and signals are passed directly to the
3685 inferior, so this must mean the process is gone. */
3686 if (!ecs->wait_some_more)
3687 {
3688 restore_detaching.release ();
3689 error (_("Program exited while detaching"));
3690 }
3691 }
3692
3693 restore_detaching.release ();
3694 }
3695
3696 /* Wait for control to return from inferior to debugger.
3697
3698 If inferior gets a signal, we may decide to start it up again
3699 instead of returning. That is why there is a loop in this function.
3700 When this function actually returns it means the inferior
3701 should be left stopped and GDB should read more commands. */
3702
3703 static void
3704 wait_for_inferior (inferior *inf)
3705 {
3706 infrun_debug_printf ("wait_for_inferior ()");
3707
3708 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3709
3710 /* If an error happens while handling the event, propagate GDB's
3711 knowledge of the executing state to the frontend/user running
3712 state. */
3713 scoped_finish_thread_state finish_state
3714 (inf->process_target (), minus_one_ptid);
3715
3716 while (1)
3717 {
3718 struct execution_control_state ecss;
3719 struct execution_control_state *ecs = &ecss;
3720
3721 memset (ecs, 0, sizeof (*ecs));
3722
3723 overlay_cache_invalid = 1;
3724
3725 /* Flush target cache before starting to handle each event.
3726 Target was running and cache could be stale. This is just a
3727 heuristic. Running threads may modify target memory, but we
3728 don't get any event. */
3729 target_dcache_invalidate ();
3730
3731 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3732 ecs->target = inf->process_target ();
3733
3734 if (debug_infrun)
3735 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3736
3737 /* Now figure out what to do with the result of the result. */
3738 handle_inferior_event (ecs);
3739
3740 if (!ecs->wait_some_more)
3741 break;
3742 }
3743
3744 /* No error, don't finish the state yet. */
3745 finish_state.release ();
3746 }
3747
3748 /* Cleanup that reinstalls the readline callback handler, if the
3749 target is running in the background. If while handling the target
3750 event something triggered a secondary prompt, like e.g., a
3751 pagination prompt, we'll have removed the callback handler (see
3752 gdb_readline_wrapper_line). Need to do this as we go back to the
3753 event loop, ready to process further input. Note this has no
3754 effect if the handler hasn't actually been removed, because calling
3755 rl_callback_handler_install resets the line buffer, thus losing
3756 input. */
3757
3758 static void
3759 reinstall_readline_callback_handler_cleanup ()
3760 {
3761 struct ui *ui = current_ui;
3762
3763 if (!ui->async)
3764 {
3765 /* We're not going back to the top level event loop yet. Don't
3766 install the readline callback, as it'd prep the terminal,
3767 readline-style (raw, noecho) (e.g., --batch). We'll install
3768 it the next time the prompt is displayed, when we're ready
3769 for input. */
3770 return;
3771 }
3772
3773 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3774 gdb_rl_callback_handler_reinstall ();
3775 }
3776
3777 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3778 that's just the event thread. In all-stop, that's all threads. */
3779
3780 static void
3781 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3782 {
3783 if (ecs->event_thread != NULL
3784 && ecs->event_thread->thread_fsm != NULL)
3785 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3786
3787 if (!non_stop)
3788 {
3789 for (thread_info *thr : all_non_exited_threads ())
3790 {
3791 if (thr->thread_fsm == NULL)
3792 continue;
3793 if (thr == ecs->event_thread)
3794 continue;
3795
3796 switch_to_thread (thr);
3797 thr->thread_fsm->clean_up (thr);
3798 }
3799
3800 if (ecs->event_thread != NULL)
3801 switch_to_thread (ecs->event_thread);
3802 }
3803 }
3804
3805 /* Helper for all_uis_check_sync_execution_done that works on the
3806 current UI. */
3807
3808 static void
3809 check_curr_ui_sync_execution_done (void)
3810 {
3811 struct ui *ui = current_ui;
3812
3813 if (ui->prompt_state == PROMPT_NEEDED
3814 && ui->async
3815 && !gdb_in_secondary_prompt_p (ui))
3816 {
3817 target_terminal::ours ();
3818 gdb::observers::sync_execution_done.notify ();
3819 ui_register_input_event_handler (ui);
3820 }
3821 }
3822
3823 /* See infrun.h. */
3824
3825 void
3826 all_uis_check_sync_execution_done (void)
3827 {
3828 SWITCH_THRU_ALL_UIS ()
3829 {
3830 check_curr_ui_sync_execution_done ();
3831 }
3832 }
3833
3834 /* See infrun.h. */
3835
3836 void
3837 all_uis_on_sync_execution_starting (void)
3838 {
3839 SWITCH_THRU_ALL_UIS ()
3840 {
3841 if (current_ui->prompt_state == PROMPT_NEEDED)
3842 async_disable_stdin ();
3843 }
3844 }
3845
3846 /* Asynchronous version of wait_for_inferior. It is called by the
3847 event loop whenever a change of state is detected on the file
3848 descriptor corresponding to the target. It can be called more than
3849 once to complete a single execution command. In such cases we need
3850 to keep the state in a global variable ECSS. If it is the last time
3851 that this function is called for a single execution command, then
3852 report to the user that the inferior has stopped, and do the
3853 necessary cleanups. */
3854
3855 void
3856 fetch_inferior_event ()
3857 {
3858 struct execution_control_state ecss;
3859 struct execution_control_state *ecs = &ecss;
3860 int cmd_done = 0;
3861
3862 memset (ecs, 0, sizeof (*ecs));
3863
3864 /* Events are always processed with the main UI as current UI. This
3865 way, warnings, debug output, etc. are always consistently sent to
3866 the main console. */
3867 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3868
3869 /* Temporarily disable pagination. Otherwise, the user would be
3870 given an option to press 'q' to quit, which would cause an early
3871 exit and could leave GDB in a half-baked state. */
3872 scoped_restore save_pagination
3873 = make_scoped_restore (&pagination_enabled, false);
3874
3875 /* End up with readline processing input, if necessary. */
3876 {
3877 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3878
3879 /* We're handling a live event, so make sure we're doing live
3880 debugging. If we're looking at traceframes while the target is
3881 running, we're going to need to get back to that mode after
3882 handling the event. */
3883 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3884 if (non_stop)
3885 {
3886 maybe_restore_traceframe.emplace ();
3887 set_current_traceframe (-1);
3888 }
3889
3890 /* The user/frontend should not notice a thread switch due to
3891 internal events. Make sure we revert to the user selected
3892 thread and frame after handling the event and running any
3893 breakpoint commands. */
3894 scoped_restore_current_thread restore_thread;
3895
3896 overlay_cache_invalid = 1;
3897 /* Flush target cache before starting to handle each event. Target
3898 was running and cache could be stale. This is just a heuristic.
3899 Running threads may modify target memory, but we don't get any
3900 event. */
3901 target_dcache_invalidate ();
3902
3903 scoped_restore save_exec_dir
3904 = make_scoped_restore (&execution_direction,
3905 target_execution_direction ());
3906
3907 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3908 return;
3909
3910 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3911
3912 /* Switch to the target that generated the event, so we can do
3913 target calls. */
3914 switch_to_target_no_thread (ecs->target);
3915
3916 if (debug_infrun)
3917 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3918
3919 /* If an error happens while handling the event, propagate GDB's
3920 knowledge of the executing state to the frontend/user running
3921 state. */
3922 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3923 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
3924
3925 /* Get executed before scoped_restore_current_thread above to apply
3926 still for the thread which has thrown the exception. */
3927 auto defer_bpstat_clear
3928 = make_scope_exit (bpstat_clear_actions);
3929 auto defer_delete_threads
3930 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3931
3932 /* Now figure out what to do with the result of the result. */
3933 handle_inferior_event (ecs);
3934
3935 if (!ecs->wait_some_more)
3936 {
3937 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
3938 int should_stop = 1;
3939 struct thread_info *thr = ecs->event_thread;
3940
3941 delete_just_stopped_threads_infrun_breakpoints ();
3942
3943 if (thr != NULL)
3944 {
3945 struct thread_fsm *thread_fsm = thr->thread_fsm;
3946
3947 if (thread_fsm != NULL)
3948 should_stop = thread_fsm->should_stop (thr);
3949 }
3950
3951 if (!should_stop)
3952 {
3953 keep_going (ecs);
3954 }
3955 else
3956 {
3957 bool should_notify_stop = true;
3958 int proceeded = 0;
3959
3960 clean_up_just_stopped_threads_fsms (ecs);
3961
3962 if (thr != NULL && thr->thread_fsm != NULL)
3963 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3964
3965 if (should_notify_stop)
3966 {
3967 /* We may not find an inferior if this was a process exit. */
3968 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3969 proceeded = normal_stop ();
3970 }
3971
3972 if (!proceeded)
3973 {
3974 inferior_event_handler (INF_EXEC_COMPLETE);
3975 cmd_done = 1;
3976 }
3977
3978 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3979 previously selected thread is gone. We have two
3980 choices - switch to no thread selected, or restore the
3981 previously selected thread (now exited). We chose the
3982 later, just because that's what GDB used to do. After
3983 this, "info threads" says "The current thread <Thread
3984 ID 2> has terminated." instead of "No thread
3985 selected.". */
3986 if (!non_stop
3987 && cmd_done
3988 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3989 restore_thread.dont_restore ();
3990 }
3991 }
3992
3993 defer_delete_threads.release ();
3994 defer_bpstat_clear.release ();
3995
3996 /* No error, don't finish the thread states yet. */
3997 finish_state.release ();
3998
3999 /* This scope is used to ensure that readline callbacks are
4000 reinstalled here. */
4001 }
4002
4003 /* If a UI was in sync execution mode, and now isn't, restore its
4004 prompt (a synchronous execution command has finished, and we're
4005 ready for input). */
4006 all_uis_check_sync_execution_done ();
4007
4008 if (cmd_done
4009 && exec_done_display_p
4010 && (inferior_ptid == null_ptid
4011 || inferior_thread ()->state != THREAD_RUNNING))
4012 printf_unfiltered (_("completed.\n"));
4013 }
4014
4015 /* See infrun.h. */
4016
4017 void
4018 set_step_info (thread_info *tp, struct frame_info *frame,
4019 struct symtab_and_line sal)
4020 {
4021 /* This can be removed once this function no longer implicitly relies on the
4022 inferior_ptid value. */
4023 gdb_assert (inferior_ptid == tp->ptid);
4024
4025 tp->control.step_frame_id = get_frame_id (frame);
4026 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4027
4028 tp->current_symtab = sal.symtab;
4029 tp->current_line = sal.line;
4030 }
4031
4032 /* Clear context switchable stepping state. */
4033
4034 void
4035 init_thread_stepping_state (struct thread_info *tss)
4036 {
4037 tss->stepped_breakpoint = 0;
4038 tss->stepping_over_breakpoint = 0;
4039 tss->stepping_over_watchpoint = 0;
4040 tss->step_after_step_resume_breakpoint = 0;
4041 }
4042
4043 /* See infrun.h. */
4044
4045 void
4046 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4047 target_waitstatus status)
4048 {
4049 target_last_proc_target = target;
4050 target_last_wait_ptid = ptid;
4051 target_last_waitstatus = status;
4052 }
4053
4054 /* See infrun.h. */
4055
4056 void
4057 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4058 target_waitstatus *status)
4059 {
4060 if (target != nullptr)
4061 *target = target_last_proc_target;
4062 if (ptid != nullptr)
4063 *ptid = target_last_wait_ptid;
4064 if (status != nullptr)
4065 *status = target_last_waitstatus;
4066 }
4067
4068 /* See infrun.h. */
4069
4070 void
4071 nullify_last_target_wait_ptid (void)
4072 {
4073 target_last_proc_target = nullptr;
4074 target_last_wait_ptid = minus_one_ptid;
4075 target_last_waitstatus = {};
4076 }
4077
4078 /* Switch thread contexts. */
4079
4080 static void
4081 context_switch (execution_control_state *ecs)
4082 {
4083 if (ecs->ptid != inferior_ptid
4084 && (inferior_ptid == null_ptid
4085 || ecs->event_thread != inferior_thread ()))
4086 {
4087 infrun_debug_printf ("Switching context from %s to %s",
4088 target_pid_to_str (inferior_ptid).c_str (),
4089 target_pid_to_str (ecs->ptid).c_str ());
4090 }
4091
4092 switch_to_thread (ecs->event_thread);
4093 }
4094
4095 /* If the target can't tell whether we've hit breakpoints
4096 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4097 check whether that could have been caused by a breakpoint. If so,
4098 adjust the PC, per gdbarch_decr_pc_after_break. */
4099
4100 static void
4101 adjust_pc_after_break (struct thread_info *thread,
4102 struct target_waitstatus *ws)
4103 {
4104 struct regcache *regcache;
4105 struct gdbarch *gdbarch;
4106 CORE_ADDR breakpoint_pc, decr_pc;
4107
4108 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4109 we aren't, just return.
4110
4111 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4112 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4113 implemented by software breakpoints should be handled through the normal
4114 breakpoint layer.
4115
4116 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4117 different signals (SIGILL or SIGEMT for instance), but it is less
4118 clear where the PC is pointing afterwards. It may not match
4119 gdbarch_decr_pc_after_break. I don't know any specific target that
4120 generates these signals at breakpoints (the code has been in GDB since at
4121 least 1992) so I can not guess how to handle them here.
4122
4123 In earlier versions of GDB, a target with
4124 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4125 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4126 target with both of these set in GDB history, and it seems unlikely to be
4127 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4128
4129 if (ws->kind != TARGET_WAITKIND_STOPPED)
4130 return;
4131
4132 if (ws->value.sig != GDB_SIGNAL_TRAP)
4133 return;
4134
4135 /* In reverse execution, when a breakpoint is hit, the instruction
4136 under it has already been de-executed. The reported PC always
4137 points at the breakpoint address, so adjusting it further would
4138 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4139 architecture:
4140
4141 B1 0x08000000 : INSN1
4142 B2 0x08000001 : INSN2
4143 0x08000002 : INSN3
4144 PC -> 0x08000003 : INSN4
4145
4146 Say you're stopped at 0x08000003 as above. Reverse continuing
4147 from that point should hit B2 as below. Reading the PC when the
4148 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4149 been de-executed already.
4150
4151 B1 0x08000000 : INSN1
4152 B2 PC -> 0x08000001 : INSN2
4153 0x08000002 : INSN3
4154 0x08000003 : INSN4
4155
4156 We can't apply the same logic as for forward execution, because
4157 we would wrongly adjust the PC to 0x08000000, since there's a
4158 breakpoint at PC - 1. We'd then report a hit on B1, although
4159 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4160 behaviour. */
4161 if (execution_direction == EXEC_REVERSE)
4162 return;
4163
4164 /* If the target can tell whether the thread hit a SW breakpoint,
4165 trust it. Targets that can tell also adjust the PC
4166 themselves. */
4167 if (target_supports_stopped_by_sw_breakpoint ())
4168 return;
4169
4170 /* Note that relying on whether a breakpoint is planted in memory to
4171 determine this can fail. E.g,. the breakpoint could have been
4172 removed since. Or the thread could have been told to step an
4173 instruction the size of a breakpoint instruction, and only
4174 _after_ was a breakpoint inserted at its address. */
4175
4176 /* If this target does not decrement the PC after breakpoints, then
4177 we have nothing to do. */
4178 regcache = get_thread_regcache (thread);
4179 gdbarch = regcache->arch ();
4180
4181 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4182 if (decr_pc == 0)
4183 return;
4184
4185 const address_space *aspace = regcache->aspace ();
4186
4187 /* Find the location where (if we've hit a breakpoint) the
4188 breakpoint would be. */
4189 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4190
4191 /* If the target can't tell whether a software breakpoint triggered,
4192 fallback to figuring it out based on breakpoints we think were
4193 inserted in the target, and on whether the thread was stepped or
4194 continued. */
4195
4196 /* Check whether there actually is a software breakpoint inserted at
4197 that location.
4198
4199 If in non-stop mode, a race condition is possible where we've
4200 removed a breakpoint, but stop events for that breakpoint were
4201 already queued and arrive later. To suppress those spurious
4202 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4203 and retire them after a number of stop events are reported. Note
4204 this is an heuristic and can thus get confused. The real fix is
4205 to get the "stopped by SW BP and needs adjustment" info out of
4206 the target/kernel (and thus never reach here; see above). */
4207 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4208 || (target_is_non_stop_p ()
4209 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4210 {
4211 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4212
4213 if (record_full_is_used ())
4214 restore_operation_disable.emplace
4215 (record_full_gdb_operation_disable_set ());
4216
4217 /* When using hardware single-step, a SIGTRAP is reported for both
4218 a completed single-step and a software breakpoint. Need to
4219 differentiate between the two, as the latter needs adjusting
4220 but the former does not.
4221
4222 The SIGTRAP can be due to a completed hardware single-step only if
4223 - we didn't insert software single-step breakpoints
4224 - this thread is currently being stepped
4225
4226 If any of these events did not occur, we must have stopped due
4227 to hitting a software breakpoint, and have to back up to the
4228 breakpoint address.
4229
4230 As a special case, we could have hardware single-stepped a
4231 software breakpoint. In this case (prev_pc == breakpoint_pc),
4232 we also need to back up to the breakpoint address. */
4233
4234 if (thread_has_single_step_breakpoints_set (thread)
4235 || !currently_stepping (thread)
4236 || (thread->stepped_breakpoint
4237 && thread->prev_pc == breakpoint_pc))
4238 regcache_write_pc (regcache, breakpoint_pc);
4239 }
4240 }
4241
4242 static bool
4243 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4244 {
4245 for (frame = get_prev_frame (frame);
4246 frame != NULL;
4247 frame = get_prev_frame (frame))
4248 {
4249 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4250 return true;
4251
4252 if (get_frame_type (frame) != INLINE_FRAME)
4253 break;
4254 }
4255
4256 return false;
4257 }
4258
4259 /* Look for an inline frame that is marked for skip.
4260 If PREV_FRAME is TRUE start at the previous frame,
4261 otherwise start at the current frame. Stop at the
4262 first non-inline frame, or at the frame where the
4263 step started. */
4264
4265 static bool
4266 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4267 {
4268 struct frame_info *frame = get_current_frame ();
4269
4270 if (prev_frame)
4271 frame = get_prev_frame (frame);
4272
4273 for (; frame != NULL; frame = get_prev_frame (frame))
4274 {
4275 const char *fn = NULL;
4276 symtab_and_line sal;
4277 struct symbol *sym;
4278
4279 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4280 break;
4281 if (get_frame_type (frame) != INLINE_FRAME)
4282 break;
4283
4284 sal = find_frame_sal (frame);
4285 sym = get_frame_function (frame);
4286
4287 if (sym != NULL)
4288 fn = sym->print_name ();
4289
4290 if (sal.line != 0
4291 && function_name_is_marked_for_skip (fn, sal))
4292 return true;
4293 }
4294
4295 return false;
4296 }
4297
4298 /* If the event thread has the stop requested flag set, pretend it
4299 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4300 target_stop). */
4301
4302 static bool
4303 handle_stop_requested (struct execution_control_state *ecs)
4304 {
4305 if (ecs->event_thread->stop_requested)
4306 {
4307 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4308 ecs->ws.value.sig = GDB_SIGNAL_0;
4309 handle_signal_stop (ecs);
4310 return true;
4311 }
4312 return false;
4313 }
4314
4315 /* Auxiliary function that handles syscall entry/return events.
4316 It returns true if the inferior should keep going (and GDB
4317 should ignore the event), or false if the event deserves to be
4318 processed. */
4319
4320 static bool
4321 handle_syscall_event (struct execution_control_state *ecs)
4322 {
4323 struct regcache *regcache;
4324 int syscall_number;
4325
4326 context_switch (ecs);
4327
4328 regcache = get_thread_regcache (ecs->event_thread);
4329 syscall_number = ecs->ws.value.syscall_number;
4330 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4331
4332 if (catch_syscall_enabled () > 0
4333 && catching_syscall_number (syscall_number) > 0)
4334 {
4335 infrun_debug_printf ("syscall number=%d", syscall_number);
4336
4337 ecs->event_thread->control.stop_bpstat
4338 = bpstat_stop_status (regcache->aspace (),
4339 ecs->event_thread->suspend.stop_pc,
4340 ecs->event_thread, &ecs->ws);
4341
4342 if (handle_stop_requested (ecs))
4343 return false;
4344
4345 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4346 {
4347 /* Catchpoint hit. */
4348 return false;
4349 }
4350 }
4351
4352 if (handle_stop_requested (ecs))
4353 return false;
4354
4355 /* If no catchpoint triggered for this, then keep going. */
4356 keep_going (ecs);
4357
4358 return true;
4359 }
4360
4361 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4362
4363 static void
4364 fill_in_stop_func (struct gdbarch *gdbarch,
4365 struct execution_control_state *ecs)
4366 {
4367 if (!ecs->stop_func_filled_in)
4368 {
4369 const block *block;
4370 const general_symbol_info *gsi;
4371
4372 /* Don't care about return value; stop_func_start and stop_func_name
4373 will both be 0 if it doesn't work. */
4374 find_pc_partial_function_sym (ecs->event_thread->suspend.stop_pc,
4375 &gsi,
4376 &ecs->stop_func_start,
4377 &ecs->stop_func_end,
4378 &block);
4379 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
4380
4381 /* The call to find_pc_partial_function, above, will set
4382 stop_func_start and stop_func_end to the start and end
4383 of the range containing the stop pc. If this range
4384 contains the entry pc for the block (which is always the
4385 case for contiguous blocks), advance stop_func_start past
4386 the function's start offset and entrypoint. Note that
4387 stop_func_start is NOT advanced when in a range of a
4388 non-contiguous block that does not contain the entry pc. */
4389 if (block != nullptr
4390 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4391 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4392 {
4393 ecs->stop_func_start
4394 += gdbarch_deprecated_function_start_offset (gdbarch);
4395
4396 if (gdbarch_skip_entrypoint_p (gdbarch))
4397 ecs->stop_func_start
4398 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4399 }
4400
4401 ecs->stop_func_filled_in = 1;
4402 }
4403 }
4404
4405
4406 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4407
4408 static enum stop_kind
4409 get_inferior_stop_soon (execution_control_state *ecs)
4410 {
4411 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4412
4413 gdb_assert (inf != NULL);
4414 return inf->control.stop_soon;
4415 }
4416
4417 /* Poll for one event out of the current target. Store the resulting
4418 waitstatus in WS, and return the event ptid. Does not block. */
4419
4420 static ptid_t
4421 poll_one_curr_target (struct target_waitstatus *ws)
4422 {
4423 ptid_t event_ptid;
4424
4425 overlay_cache_invalid = 1;
4426
4427 /* Flush target cache before starting to handle each event.
4428 Target was running and cache could be stale. This is just a
4429 heuristic. Running threads may modify target memory, but we
4430 don't get any event. */
4431 target_dcache_invalidate ();
4432
4433 if (deprecated_target_wait_hook)
4434 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4435 else
4436 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4437
4438 if (debug_infrun)
4439 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4440
4441 return event_ptid;
4442 }
4443
4444 /* An event reported by wait_one. */
4445
4446 struct wait_one_event
4447 {
4448 /* The target the event came out of. */
4449 process_stratum_target *target;
4450
4451 /* The PTID the event was for. */
4452 ptid_t ptid;
4453
4454 /* The waitstatus. */
4455 target_waitstatus ws;
4456 };
4457
4458 /* Wait for one event out of any target. */
4459
4460 static wait_one_event
4461 wait_one ()
4462 {
4463 while (1)
4464 {
4465 for (inferior *inf : all_inferiors ())
4466 {
4467 process_stratum_target *target = inf->process_target ();
4468 if (target == NULL
4469 || !target->is_async_p ()
4470 || !target->threads_executing)
4471 continue;
4472
4473 switch_to_inferior_no_thread (inf);
4474
4475 wait_one_event event;
4476 event.target = target;
4477 event.ptid = poll_one_curr_target (&event.ws);
4478
4479 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4480 {
4481 /* If nothing is resumed, remove the target from the
4482 event loop. */
4483 target_async (0);
4484 }
4485 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4486 return event;
4487 }
4488
4489 /* Block waiting for some event. */
4490
4491 fd_set readfds;
4492 int nfds = 0;
4493
4494 FD_ZERO (&readfds);
4495
4496 for (inferior *inf : all_inferiors ())
4497 {
4498 process_stratum_target *target = inf->process_target ();
4499 if (target == NULL
4500 || !target->is_async_p ()
4501 || !target->threads_executing)
4502 continue;
4503
4504 int fd = target->async_wait_fd ();
4505 FD_SET (fd, &readfds);
4506 if (nfds <= fd)
4507 nfds = fd + 1;
4508 }
4509
4510 if (nfds == 0)
4511 {
4512 /* No waitable targets left. All must be stopped. */
4513 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4514 }
4515
4516 QUIT;
4517
4518 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4519 if (numfds < 0)
4520 {
4521 if (errno == EINTR)
4522 continue;
4523 else
4524 perror_with_name ("interruptible_select");
4525 }
4526 }
4527 }
4528
4529 /* Save the thread's event and stop reason to process it later. */
4530
4531 static void
4532 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4533 {
4534 infrun_debug_printf ("saving status %s for %d.%ld.%ld",
4535 target_waitstatus_to_string (ws).c_str (),
4536 tp->ptid.pid (),
4537 tp->ptid.lwp (),
4538 tp->ptid.tid ());
4539
4540 /* Record for later. */
4541 tp->suspend.waitstatus = *ws;
4542 tp->suspend.waitstatus_pending_p = 1;
4543
4544 struct regcache *regcache = get_thread_regcache (tp);
4545 const address_space *aspace = regcache->aspace ();
4546
4547 if (ws->kind == TARGET_WAITKIND_STOPPED
4548 && ws->value.sig == GDB_SIGNAL_TRAP)
4549 {
4550 CORE_ADDR pc = regcache_read_pc (regcache);
4551
4552 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4553
4554 scoped_restore_current_thread restore_thread;
4555 switch_to_thread (tp);
4556
4557 if (target_stopped_by_watchpoint ())
4558 {
4559 tp->suspend.stop_reason
4560 = TARGET_STOPPED_BY_WATCHPOINT;
4561 }
4562 else if (target_supports_stopped_by_sw_breakpoint ()
4563 && target_stopped_by_sw_breakpoint ())
4564 {
4565 tp->suspend.stop_reason
4566 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4567 }
4568 else if (target_supports_stopped_by_hw_breakpoint ()
4569 && target_stopped_by_hw_breakpoint ())
4570 {
4571 tp->suspend.stop_reason
4572 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4573 }
4574 else if (!target_supports_stopped_by_hw_breakpoint ()
4575 && hardware_breakpoint_inserted_here_p (aspace,
4576 pc))
4577 {
4578 tp->suspend.stop_reason
4579 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4580 }
4581 else if (!target_supports_stopped_by_sw_breakpoint ()
4582 && software_breakpoint_inserted_here_p (aspace,
4583 pc))
4584 {
4585 tp->suspend.stop_reason
4586 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4587 }
4588 else if (!thread_has_single_step_breakpoints_set (tp)
4589 && currently_stepping (tp))
4590 {
4591 tp->suspend.stop_reason
4592 = TARGET_STOPPED_BY_SINGLE_STEP;
4593 }
4594 }
4595 }
4596
4597 /* Mark the non-executing threads accordingly. In all-stop, all
4598 threads of all processes are stopped when we get any event
4599 reported. In non-stop mode, only the event thread stops. */
4600
4601 static void
4602 mark_non_executing_threads (process_stratum_target *target,
4603 ptid_t event_ptid,
4604 struct target_waitstatus ws)
4605 {
4606 ptid_t mark_ptid;
4607
4608 if (!target_is_non_stop_p ())
4609 mark_ptid = minus_one_ptid;
4610 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4611 || ws.kind == TARGET_WAITKIND_EXITED)
4612 {
4613 /* If we're handling a process exit in non-stop mode, even
4614 though threads haven't been deleted yet, one would think
4615 that there is nothing to do, as threads of the dead process
4616 will be soon deleted, and threads of any other process were
4617 left running. However, on some targets, threads survive a
4618 process exit event. E.g., for the "checkpoint" command,
4619 when the current checkpoint/fork exits, linux-fork.c
4620 automatically switches to another fork from within
4621 target_mourn_inferior, by associating the same
4622 inferior/thread to another fork. We haven't mourned yet at
4623 this point, but we must mark any threads left in the
4624 process as not-executing so that finish_thread_state marks
4625 them stopped (in the user's perspective) if/when we present
4626 the stop to the user. */
4627 mark_ptid = ptid_t (event_ptid.pid ());
4628 }
4629 else
4630 mark_ptid = event_ptid;
4631
4632 set_executing (target, mark_ptid, false);
4633
4634 /* Likewise the resumed flag. */
4635 set_resumed (target, mark_ptid, false);
4636 }
4637
4638 /* See infrun.h. */
4639
4640 void
4641 stop_all_threads (void)
4642 {
4643 /* We may need multiple passes to discover all threads. */
4644 int pass;
4645 int iterations = 0;
4646
4647 gdb_assert (exists_non_stop_target ());
4648
4649 infrun_debug_printf ("starting");
4650
4651 scoped_restore_current_thread restore_thread;
4652
4653 /* Enable thread events of all targets. */
4654 for (auto *target : all_non_exited_process_targets ())
4655 {
4656 switch_to_target_no_thread (target);
4657 target_thread_events (true);
4658 }
4659
4660 SCOPE_EXIT
4661 {
4662 /* Disable thread events of all targets. */
4663 for (auto *target : all_non_exited_process_targets ())
4664 {
4665 switch_to_target_no_thread (target);
4666 target_thread_events (false);
4667 }
4668
4669 /* Use infrun_debug_printf_1 directly to get a meaningful function
4670 name. */
4671 if (debug_infrun)
4672 infrun_debug_printf_1 ("stop_all_threads", "done");
4673 };
4674
4675 /* Request threads to stop, and then wait for the stops. Because
4676 threads we already know about can spawn more threads while we're
4677 trying to stop them, and we only learn about new threads when we
4678 update the thread list, do this in a loop, and keep iterating
4679 until two passes find no threads that need to be stopped. */
4680 for (pass = 0; pass < 2; pass++, iterations++)
4681 {
4682 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
4683 while (1)
4684 {
4685 int waits_needed = 0;
4686
4687 for (auto *target : all_non_exited_process_targets ())
4688 {
4689 switch_to_target_no_thread (target);
4690 update_thread_list ();
4691 }
4692
4693 /* Go through all threads looking for threads that we need
4694 to tell the target to stop. */
4695 for (thread_info *t : all_non_exited_threads ())
4696 {
4697 /* For a single-target setting with an all-stop target,
4698 we would not even arrive here. For a multi-target
4699 setting, until GDB is able to handle a mixture of
4700 all-stop and non-stop targets, simply skip all-stop
4701 targets' threads. This should be fine due to the
4702 protection of 'check_multi_target_resumption'. */
4703
4704 switch_to_thread_no_regs (t);
4705 if (!target_is_non_stop_p ())
4706 continue;
4707
4708 if (t->executing)
4709 {
4710 /* If already stopping, don't request a stop again.
4711 We just haven't seen the notification yet. */
4712 if (!t->stop_requested)
4713 {
4714 infrun_debug_printf (" %s executing, need stop",
4715 target_pid_to_str (t->ptid).c_str ());
4716 target_stop (t->ptid);
4717 t->stop_requested = 1;
4718 }
4719 else
4720 {
4721 infrun_debug_printf (" %s executing, already stopping",
4722 target_pid_to_str (t->ptid).c_str ());
4723 }
4724
4725 if (t->stop_requested)
4726 waits_needed++;
4727 }
4728 else
4729 {
4730 infrun_debug_printf (" %s not executing",
4731 target_pid_to_str (t->ptid).c_str ());
4732
4733 /* The thread may be not executing, but still be
4734 resumed with a pending status to process. */
4735 t->resumed = false;
4736 }
4737 }
4738
4739 if (waits_needed == 0)
4740 break;
4741
4742 /* If we find new threads on the second iteration, restart
4743 over. We want to see two iterations in a row with all
4744 threads stopped. */
4745 if (pass > 0)
4746 pass = -1;
4747
4748 for (int i = 0; i < waits_needed; i++)
4749 {
4750 wait_one_event event = wait_one ();
4751
4752 infrun_debug_printf
4753 ("%s %s", target_waitstatus_to_string (&event.ws).c_str (),
4754 target_pid_to_str (event.ptid).c_str ());
4755
4756 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4757 {
4758 /* All resumed threads exited. */
4759 break;
4760 }
4761 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4762 || event.ws.kind == TARGET_WAITKIND_EXITED
4763 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4764 {
4765 /* One thread/process exited/signalled. */
4766
4767 thread_info *t = nullptr;
4768
4769 /* The target may have reported just a pid. If so, try
4770 the first non-exited thread. */
4771 if (event.ptid.is_pid ())
4772 {
4773 int pid = event.ptid.pid ();
4774 inferior *inf = find_inferior_pid (event.target, pid);
4775 for (thread_info *tp : inf->non_exited_threads ())
4776 {
4777 t = tp;
4778 break;
4779 }
4780
4781 /* If there is no available thread, the event would
4782 have to be appended to a per-inferior event list,
4783 which does not exist (and if it did, we'd have
4784 to adjust run control command to be able to
4785 resume such an inferior). We assert here instead
4786 of going into an infinite loop. */
4787 gdb_assert (t != nullptr);
4788
4789 infrun_debug_printf
4790 ("using %s", target_pid_to_str (t->ptid).c_str ());
4791 }
4792 else
4793 {
4794 t = find_thread_ptid (event.target, event.ptid);
4795 /* Check if this is the first time we see this thread.
4796 Don't bother adding if it individually exited. */
4797 if (t == nullptr
4798 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4799 t = add_thread (event.target, event.ptid);
4800 }
4801
4802 if (t != nullptr)
4803 {
4804 /* Set the threads as non-executing to avoid
4805 another stop attempt on them. */
4806 switch_to_thread_no_regs (t);
4807 mark_non_executing_threads (event.target, event.ptid,
4808 event.ws);
4809 save_waitstatus (t, &event.ws);
4810 t->stop_requested = false;
4811 }
4812 }
4813 else
4814 {
4815 thread_info *t = find_thread_ptid (event.target, event.ptid);
4816 if (t == NULL)
4817 t = add_thread (event.target, event.ptid);
4818
4819 t->stop_requested = 0;
4820 t->executing = 0;
4821 t->resumed = false;
4822 t->control.may_range_step = 0;
4823
4824 /* This may be the first time we see the inferior report
4825 a stop. */
4826 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4827 if (inf->needs_setup)
4828 {
4829 switch_to_thread_no_regs (t);
4830 setup_inferior (0);
4831 }
4832
4833 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4834 && event.ws.value.sig == GDB_SIGNAL_0)
4835 {
4836 /* We caught the event that we intended to catch, so
4837 there's no event pending. */
4838 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4839 t->suspend.waitstatus_pending_p = 0;
4840
4841 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4842 {
4843 /* Add it back to the step-over queue. */
4844 infrun_debug_printf
4845 ("displaced-step of %s canceled: adding back to "
4846 "the step-over queue",
4847 target_pid_to_str (t->ptid).c_str ());
4848
4849 t->control.trap_expected = 0;
4850 thread_step_over_chain_enqueue (t);
4851 }
4852 }
4853 else
4854 {
4855 enum gdb_signal sig;
4856 struct regcache *regcache;
4857
4858 infrun_debug_printf
4859 ("target_wait %s, saving status for %d.%ld.%ld",
4860 target_waitstatus_to_string (&event.ws).c_str (),
4861 t->ptid.pid (), t->ptid.lwp (), t->ptid.tid ());
4862
4863 /* Record for later. */
4864 save_waitstatus (t, &event.ws);
4865
4866 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4867 ? event.ws.value.sig : GDB_SIGNAL_0);
4868
4869 if (displaced_step_fixup (t, sig) < 0)
4870 {
4871 /* Add it back to the step-over queue. */
4872 t->control.trap_expected = 0;
4873 thread_step_over_chain_enqueue (t);
4874 }
4875
4876 regcache = get_thread_regcache (t);
4877 t->suspend.stop_pc = regcache_read_pc (regcache);
4878
4879 infrun_debug_printf ("saved stop_pc=%s for %s "
4880 "(currently_stepping=%d)",
4881 paddress (target_gdbarch (),
4882 t->suspend.stop_pc),
4883 target_pid_to_str (t->ptid).c_str (),
4884 currently_stepping (t));
4885 }
4886 }
4887 }
4888 }
4889 }
4890 }
4891
4892 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4893
4894 static bool
4895 handle_no_resumed (struct execution_control_state *ecs)
4896 {
4897 if (target_can_async_p ())
4898 {
4899 bool any_sync = false;
4900
4901 for (ui *ui : all_uis ())
4902 {
4903 if (ui->prompt_state == PROMPT_BLOCKED)
4904 {
4905 any_sync = true;
4906 break;
4907 }
4908 }
4909 if (!any_sync)
4910 {
4911 /* There were no unwaited-for children left in the target, but,
4912 we're not synchronously waiting for events either. Just
4913 ignore. */
4914
4915 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
4916 prepare_to_wait (ecs);
4917 return true;
4918 }
4919 }
4920
4921 /* Otherwise, if we were running a synchronous execution command, we
4922 may need to cancel it and give the user back the terminal.
4923
4924 In non-stop mode, the target can't tell whether we've already
4925 consumed previous stop events, so it can end up sending us a
4926 no-resumed event like so:
4927
4928 #0 - thread 1 is left stopped
4929
4930 #1 - thread 2 is resumed and hits breakpoint
4931 -> TARGET_WAITKIND_STOPPED
4932
4933 #2 - thread 3 is resumed and exits
4934 this is the last resumed thread, so
4935 -> TARGET_WAITKIND_NO_RESUMED
4936
4937 #3 - gdb processes stop for thread 2 and decides to re-resume
4938 it.
4939
4940 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4941 thread 2 is now resumed, so the event should be ignored.
4942
4943 IOW, if the stop for thread 2 doesn't end a foreground command,
4944 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4945 event. But it could be that the event meant that thread 2 itself
4946 (or whatever other thread was the last resumed thread) exited.
4947
4948 To address this we refresh the thread list and check whether we
4949 have resumed threads _now_. In the example above, this removes
4950 thread 3 from the thread list. If thread 2 was re-resumed, we
4951 ignore this event. If we find no thread resumed, then we cancel
4952 the synchronous command and show "no unwaited-for " to the
4953 user. */
4954
4955 inferior *curr_inf = current_inferior ();
4956
4957 scoped_restore_current_thread restore_thread;
4958
4959 for (auto *target : all_non_exited_process_targets ())
4960 {
4961 switch_to_target_no_thread (target);
4962 update_thread_list ();
4963 }
4964
4965 /* If:
4966
4967 - the current target has no thread executing, and
4968 - the current inferior is native, and
4969 - the current inferior is the one which has the terminal, and
4970 - we did nothing,
4971
4972 then a Ctrl-C from this point on would remain stuck in the
4973 kernel, until a thread resumes and dequeues it. That would
4974 result in the GDB CLI not reacting to Ctrl-C, not able to
4975 interrupt the program. To address this, if the current inferior
4976 no longer has any thread executing, we give the terminal to some
4977 other inferior that has at least one thread executing. */
4978 bool swap_terminal = true;
4979
4980 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
4981 whether to report it to the user. */
4982 bool ignore_event = false;
4983
4984 for (thread_info *thread : all_non_exited_threads ())
4985 {
4986 if (swap_terminal && thread->executing)
4987 {
4988 if (thread->inf != curr_inf)
4989 {
4990 target_terminal::ours ();
4991
4992 switch_to_thread (thread);
4993 target_terminal::inferior ();
4994 }
4995 swap_terminal = false;
4996 }
4997
4998 if (!ignore_event
4999 && (thread->executing
5000 || thread->suspend.waitstatus_pending_p))
5001 {
5002 /* Either there were no unwaited-for children left in the
5003 target at some point, but there are now, or some target
5004 other than the eventing one has unwaited-for children
5005 left. Just ignore. */
5006 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
5007 "(ignoring: found resumed)");
5008
5009 ignore_event = true;
5010 }
5011
5012 if (ignore_event && !swap_terminal)
5013 break;
5014 }
5015
5016 if (ignore_event)
5017 {
5018 switch_to_inferior_no_thread (curr_inf);
5019 prepare_to_wait (ecs);
5020 return true;
5021 }
5022
5023 /* Go ahead and report the event. */
5024 return false;
5025 }
5026
5027 /* Given an execution control state that has been freshly filled in by
5028 an event from the inferior, figure out what it means and take
5029 appropriate action.
5030
5031 The alternatives are:
5032
5033 1) stop_waiting and return; to really stop and return to the
5034 debugger.
5035
5036 2) keep_going and return; to wait for the next event (set
5037 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5038 once). */
5039
5040 static void
5041 handle_inferior_event (struct execution_control_state *ecs)
5042 {
5043 /* Make sure that all temporary struct value objects that were
5044 created during the handling of the event get deleted at the
5045 end. */
5046 scoped_value_mark free_values;
5047
5048 enum stop_kind stop_soon;
5049
5050 infrun_debug_printf ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
5051
5052 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5053 {
5054 /* We had an event in the inferior, but we are not interested in
5055 handling it at this level. The lower layers have already
5056 done what needs to be done, if anything.
5057
5058 One of the possible circumstances for this is when the
5059 inferior produces output for the console. The inferior has
5060 not stopped, and we are ignoring the event. Another possible
5061 circumstance is any event which the lower level knows will be
5062 reported multiple times without an intervening resume. */
5063 prepare_to_wait (ecs);
5064 return;
5065 }
5066
5067 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5068 {
5069 prepare_to_wait (ecs);
5070 return;
5071 }
5072
5073 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5074 && handle_no_resumed (ecs))
5075 return;
5076
5077 /* Cache the last target/ptid/waitstatus. */
5078 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5079
5080 /* Always clear state belonging to the previous time we stopped. */
5081 stop_stack_dummy = STOP_NONE;
5082
5083 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5084 {
5085 /* No unwaited-for children left. IOW, all resumed children
5086 have exited. */
5087 stop_print_frame = false;
5088 stop_waiting (ecs);
5089 return;
5090 }
5091
5092 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5093 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5094 {
5095 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5096 /* If it's a new thread, add it to the thread database. */
5097 if (ecs->event_thread == NULL)
5098 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5099
5100 /* Disable range stepping. If the next step request could use a
5101 range, this will be end up re-enabled then. */
5102 ecs->event_thread->control.may_range_step = 0;
5103 }
5104
5105 /* Dependent on valid ECS->EVENT_THREAD. */
5106 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5107
5108 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5109 reinit_frame_cache ();
5110
5111 breakpoint_retire_moribund ();
5112
5113 /* First, distinguish signals caused by the debugger from signals
5114 that have to do with the program's own actions. Note that
5115 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5116 on the operating system version. Here we detect when a SIGILL or
5117 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5118 something similar for SIGSEGV, since a SIGSEGV will be generated
5119 when we're trying to execute a breakpoint instruction on a
5120 non-executable stack. This happens for call dummy breakpoints
5121 for architectures like SPARC that place call dummies on the
5122 stack. */
5123 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5124 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5125 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5126 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5127 {
5128 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5129
5130 if (breakpoint_inserted_here_p (regcache->aspace (),
5131 regcache_read_pc (regcache)))
5132 {
5133 infrun_debug_printf ("Treating signal as SIGTRAP");
5134 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5135 }
5136 }
5137
5138 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5139
5140 switch (ecs->ws.kind)
5141 {
5142 case TARGET_WAITKIND_LOADED:
5143 context_switch (ecs);
5144 /* Ignore gracefully during startup of the inferior, as it might
5145 be the shell which has just loaded some objects, otherwise
5146 add the symbols for the newly loaded objects. Also ignore at
5147 the beginning of an attach or remote session; we will query
5148 the full list of libraries once the connection is
5149 established. */
5150
5151 stop_soon = get_inferior_stop_soon (ecs);
5152 if (stop_soon == NO_STOP_QUIETLY)
5153 {
5154 struct regcache *regcache;
5155
5156 regcache = get_thread_regcache (ecs->event_thread);
5157
5158 handle_solib_event ();
5159
5160 ecs->event_thread->control.stop_bpstat
5161 = bpstat_stop_status (regcache->aspace (),
5162 ecs->event_thread->suspend.stop_pc,
5163 ecs->event_thread, &ecs->ws);
5164
5165 if (handle_stop_requested (ecs))
5166 return;
5167
5168 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5169 {
5170 /* A catchpoint triggered. */
5171 process_event_stop_test (ecs);
5172 return;
5173 }
5174
5175 /* If requested, stop when the dynamic linker notifies
5176 gdb of events. This allows the user to get control
5177 and place breakpoints in initializer routines for
5178 dynamically loaded objects (among other things). */
5179 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5180 if (stop_on_solib_events)
5181 {
5182 /* Make sure we print "Stopped due to solib-event" in
5183 normal_stop. */
5184 stop_print_frame = true;
5185
5186 stop_waiting (ecs);
5187 return;
5188 }
5189 }
5190
5191 /* If we are skipping through a shell, or through shared library
5192 loading that we aren't interested in, resume the program. If
5193 we're running the program normally, also resume. */
5194 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5195 {
5196 /* Loading of shared libraries might have changed breakpoint
5197 addresses. Make sure new breakpoints are inserted. */
5198 if (stop_soon == NO_STOP_QUIETLY)
5199 insert_breakpoints ();
5200 resume (GDB_SIGNAL_0);
5201 prepare_to_wait (ecs);
5202 return;
5203 }
5204
5205 /* But stop if we're attaching or setting up a remote
5206 connection. */
5207 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5208 || stop_soon == STOP_QUIETLY_REMOTE)
5209 {
5210 infrun_debug_printf ("quietly stopped");
5211 stop_waiting (ecs);
5212 return;
5213 }
5214
5215 internal_error (__FILE__, __LINE__,
5216 _("unhandled stop_soon: %d"), (int) stop_soon);
5217
5218 case TARGET_WAITKIND_SPURIOUS:
5219 if (handle_stop_requested (ecs))
5220 return;
5221 context_switch (ecs);
5222 resume (GDB_SIGNAL_0);
5223 prepare_to_wait (ecs);
5224 return;
5225
5226 case TARGET_WAITKIND_THREAD_CREATED:
5227 if (handle_stop_requested (ecs))
5228 return;
5229 context_switch (ecs);
5230 if (!switch_back_to_stepped_thread (ecs))
5231 keep_going (ecs);
5232 return;
5233
5234 case TARGET_WAITKIND_EXITED:
5235 case TARGET_WAITKIND_SIGNALLED:
5236 {
5237 /* Depending on the system, ecs->ptid may point to a thread or
5238 to a process. On some targets, target_mourn_inferior may
5239 need to have access to the just-exited thread. That is the
5240 case of GNU/Linux's "checkpoint" support, for example.
5241 Call the switch_to_xxx routine as appropriate. */
5242 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5243 if (thr != nullptr)
5244 switch_to_thread (thr);
5245 else
5246 {
5247 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5248 switch_to_inferior_no_thread (inf);
5249 }
5250 }
5251 handle_vfork_child_exec_or_exit (0);
5252 target_terminal::ours (); /* Must do this before mourn anyway. */
5253
5254 /* Clearing any previous state of convenience variables. */
5255 clear_exit_convenience_vars ();
5256
5257 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5258 {
5259 /* Record the exit code in the convenience variable $_exitcode, so
5260 that the user can inspect this again later. */
5261 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5262 (LONGEST) ecs->ws.value.integer);
5263
5264 /* Also record this in the inferior itself. */
5265 current_inferior ()->has_exit_code = 1;
5266 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5267
5268 /* Support the --return-child-result option. */
5269 return_child_result_value = ecs->ws.value.integer;
5270
5271 gdb::observers::exited.notify (ecs->ws.value.integer);
5272 }
5273 else
5274 {
5275 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5276
5277 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5278 {
5279 /* Set the value of the internal variable $_exitsignal,
5280 which holds the signal uncaught by the inferior. */
5281 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5282 gdbarch_gdb_signal_to_target (gdbarch,
5283 ecs->ws.value.sig));
5284 }
5285 else
5286 {
5287 /* We don't have access to the target's method used for
5288 converting between signal numbers (GDB's internal
5289 representation <-> target's representation).
5290 Therefore, we cannot do a good job at displaying this
5291 information to the user. It's better to just warn
5292 her about it (if infrun debugging is enabled), and
5293 give up. */
5294 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5295 "signal number.");
5296 }
5297
5298 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5299 }
5300
5301 gdb_flush (gdb_stdout);
5302 target_mourn_inferior (inferior_ptid);
5303 stop_print_frame = false;
5304 stop_waiting (ecs);
5305 return;
5306
5307 case TARGET_WAITKIND_FORKED:
5308 case TARGET_WAITKIND_VFORKED:
5309 /* Check whether the inferior is displaced stepping. */
5310 {
5311 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5312 struct gdbarch *gdbarch = regcache->arch ();
5313
5314 /* If checking displaced stepping is supported, and thread
5315 ecs->ptid is displaced stepping. */
5316 if (displaced_step_in_progress_thread (ecs->event_thread))
5317 {
5318 struct inferior *parent_inf
5319 = find_inferior_ptid (ecs->target, ecs->ptid);
5320 struct regcache *child_regcache;
5321 CORE_ADDR parent_pc;
5322
5323 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5324 {
5325 struct displaced_step_inferior_state *displaced
5326 = get_displaced_stepping_state (parent_inf);
5327
5328 /* Restore scratch pad for child process. */
5329 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5330 }
5331
5332 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5333 indicating that the displaced stepping of syscall instruction
5334 has been done. Perform cleanup for parent process here. Note
5335 that this operation also cleans up the child process for vfork,
5336 because their pages are shared. */
5337 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5338 /* Start a new step-over in another thread if there's one
5339 that needs it. */
5340 start_step_over ();
5341
5342 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5343 the child's PC is also within the scratchpad. Set the child's PC
5344 to the parent's PC value, which has already been fixed up.
5345 FIXME: we use the parent's aspace here, although we're touching
5346 the child, because the child hasn't been added to the inferior
5347 list yet at this point. */
5348
5349 child_regcache
5350 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5351 ecs->ws.value.related_pid,
5352 gdbarch,
5353 parent_inf->aspace);
5354 /* Read PC value of parent process. */
5355 parent_pc = regcache_read_pc (regcache);
5356
5357 if (debug_displaced)
5358 fprintf_unfiltered (gdb_stdlog,
5359 "displaced: write child pc from %s to %s\n",
5360 paddress (gdbarch,
5361 regcache_read_pc (child_regcache)),
5362 paddress (gdbarch, parent_pc));
5363
5364 regcache_write_pc (child_regcache, parent_pc);
5365 }
5366 }
5367
5368 context_switch (ecs);
5369
5370 /* Immediately detach breakpoints from the child before there's
5371 any chance of letting the user delete breakpoints from the
5372 breakpoint lists. If we don't do this early, it's easy to
5373 leave left over traps in the child, vis: "break foo; catch
5374 fork; c; <fork>; del; c; <child calls foo>". We only follow
5375 the fork on the last `continue', and by that time the
5376 breakpoint at "foo" is long gone from the breakpoint table.
5377 If we vforked, then we don't need to unpatch here, since both
5378 parent and child are sharing the same memory pages; we'll
5379 need to unpatch at follow/detach time instead to be certain
5380 that new breakpoints added between catchpoint hit time and
5381 vfork follow are detached. */
5382 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5383 {
5384 /* This won't actually modify the breakpoint list, but will
5385 physically remove the breakpoints from the child. */
5386 detach_breakpoints (ecs->ws.value.related_pid);
5387 }
5388
5389 delete_just_stopped_threads_single_step_breakpoints ();
5390
5391 /* In case the event is caught by a catchpoint, remember that
5392 the event is to be followed at the next resume of the thread,
5393 and not immediately. */
5394 ecs->event_thread->pending_follow = ecs->ws;
5395
5396 ecs->event_thread->suspend.stop_pc
5397 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5398
5399 ecs->event_thread->control.stop_bpstat
5400 = bpstat_stop_status (get_current_regcache ()->aspace (),
5401 ecs->event_thread->suspend.stop_pc,
5402 ecs->event_thread, &ecs->ws);
5403
5404 if (handle_stop_requested (ecs))
5405 return;
5406
5407 /* If no catchpoint triggered for this, then keep going. Note
5408 that we're interested in knowing the bpstat actually causes a
5409 stop, not just if it may explain the signal. Software
5410 watchpoints, for example, always appear in the bpstat. */
5411 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5412 {
5413 bool follow_child
5414 = (follow_fork_mode_string == follow_fork_mode_child);
5415
5416 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5417
5418 process_stratum_target *targ
5419 = ecs->event_thread->inf->process_target ();
5420
5421 bool should_resume = follow_fork ();
5422
5423 /* Note that one of these may be an invalid pointer,
5424 depending on detach_fork. */
5425 thread_info *parent = ecs->event_thread;
5426 thread_info *child
5427 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5428
5429 /* At this point, the parent is marked running, and the
5430 child is marked stopped. */
5431
5432 /* If not resuming the parent, mark it stopped. */
5433 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5434 parent->set_running (false);
5435
5436 /* If resuming the child, mark it running. */
5437 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5438 child->set_running (true);
5439
5440 /* In non-stop mode, also resume the other branch. */
5441 if (!detach_fork && (non_stop
5442 || (sched_multi && target_is_non_stop_p ())))
5443 {
5444 if (follow_child)
5445 switch_to_thread (parent);
5446 else
5447 switch_to_thread (child);
5448
5449 ecs->event_thread = inferior_thread ();
5450 ecs->ptid = inferior_ptid;
5451 keep_going (ecs);
5452 }
5453
5454 if (follow_child)
5455 switch_to_thread (child);
5456 else
5457 switch_to_thread (parent);
5458
5459 ecs->event_thread = inferior_thread ();
5460 ecs->ptid = inferior_ptid;
5461
5462 if (should_resume)
5463 keep_going (ecs);
5464 else
5465 stop_waiting (ecs);
5466 return;
5467 }
5468 process_event_stop_test (ecs);
5469 return;
5470
5471 case TARGET_WAITKIND_VFORK_DONE:
5472 /* Done with the shared memory region. Re-insert breakpoints in
5473 the parent, and keep going. */
5474
5475 context_switch (ecs);
5476
5477 current_inferior ()->waiting_for_vfork_done = 0;
5478 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5479
5480 if (handle_stop_requested (ecs))
5481 return;
5482
5483 /* This also takes care of reinserting breakpoints in the
5484 previously locked inferior. */
5485 keep_going (ecs);
5486 return;
5487
5488 case TARGET_WAITKIND_EXECD:
5489
5490 /* Note we can't read registers yet (the stop_pc), because we
5491 don't yet know the inferior's post-exec architecture.
5492 'stop_pc' is explicitly read below instead. */
5493 switch_to_thread_no_regs (ecs->event_thread);
5494
5495 /* Do whatever is necessary to the parent branch of the vfork. */
5496 handle_vfork_child_exec_or_exit (1);
5497
5498 /* This causes the eventpoints and symbol table to be reset.
5499 Must do this now, before trying to determine whether to
5500 stop. */
5501 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5502
5503 /* In follow_exec we may have deleted the original thread and
5504 created a new one. Make sure that the event thread is the
5505 execd thread for that case (this is a nop otherwise). */
5506 ecs->event_thread = inferior_thread ();
5507
5508 ecs->event_thread->suspend.stop_pc
5509 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5510
5511 ecs->event_thread->control.stop_bpstat
5512 = bpstat_stop_status (get_current_regcache ()->aspace (),
5513 ecs->event_thread->suspend.stop_pc,
5514 ecs->event_thread, &ecs->ws);
5515
5516 /* Note that this may be referenced from inside
5517 bpstat_stop_status above, through inferior_has_execd. */
5518 xfree (ecs->ws.value.execd_pathname);
5519 ecs->ws.value.execd_pathname = NULL;
5520
5521 if (handle_stop_requested (ecs))
5522 return;
5523
5524 /* If no catchpoint triggered for this, then keep going. */
5525 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5526 {
5527 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5528 keep_going (ecs);
5529 return;
5530 }
5531 process_event_stop_test (ecs);
5532 return;
5533
5534 /* Be careful not to try to gather much state about a thread
5535 that's in a syscall. It's frequently a losing proposition. */
5536 case TARGET_WAITKIND_SYSCALL_ENTRY:
5537 /* Getting the current syscall number. */
5538 if (handle_syscall_event (ecs) == 0)
5539 process_event_stop_test (ecs);
5540 return;
5541
5542 /* Before examining the threads further, step this thread to
5543 get it entirely out of the syscall. (We get notice of the
5544 event when the thread is just on the verge of exiting a
5545 syscall. Stepping one instruction seems to get it back
5546 into user code.) */
5547 case TARGET_WAITKIND_SYSCALL_RETURN:
5548 if (handle_syscall_event (ecs) == 0)
5549 process_event_stop_test (ecs);
5550 return;
5551
5552 case TARGET_WAITKIND_STOPPED:
5553 handle_signal_stop (ecs);
5554 return;
5555
5556 case TARGET_WAITKIND_NO_HISTORY:
5557 /* Reverse execution: target ran out of history info. */
5558
5559 /* Switch to the stopped thread. */
5560 context_switch (ecs);
5561 infrun_debug_printf ("stopped");
5562
5563 delete_just_stopped_threads_single_step_breakpoints ();
5564 ecs->event_thread->suspend.stop_pc
5565 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5566
5567 if (handle_stop_requested (ecs))
5568 return;
5569
5570 gdb::observers::no_history.notify ();
5571 stop_waiting (ecs);
5572 return;
5573 }
5574 }
5575
5576 /* Restart threads back to what they were trying to do back when we
5577 paused them for an in-line step-over. The EVENT_THREAD thread is
5578 ignored. */
5579
5580 static void
5581 restart_threads (struct thread_info *event_thread)
5582 {
5583 /* In case the instruction just stepped spawned a new thread. */
5584 update_thread_list ();
5585
5586 for (thread_info *tp : all_non_exited_threads ())
5587 {
5588 switch_to_thread_no_regs (tp);
5589
5590 if (tp == event_thread)
5591 {
5592 infrun_debug_printf ("restart threads: [%s] is event thread",
5593 target_pid_to_str (tp->ptid).c_str ());
5594 continue;
5595 }
5596
5597 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5598 {
5599 infrun_debug_printf ("restart threads: [%s] not meant to be running",
5600 target_pid_to_str (tp->ptid).c_str ());
5601 continue;
5602 }
5603
5604 if (tp->resumed)
5605 {
5606 infrun_debug_printf ("restart threads: [%s] resumed",
5607 target_pid_to_str (tp->ptid).c_str ());
5608 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5609 continue;
5610 }
5611
5612 if (thread_is_in_step_over_chain (tp))
5613 {
5614 infrun_debug_printf ("restart threads: [%s] needs step-over",
5615 target_pid_to_str (tp->ptid).c_str ());
5616 gdb_assert (!tp->resumed);
5617 continue;
5618 }
5619
5620
5621 if (tp->suspend.waitstatus_pending_p)
5622 {
5623 infrun_debug_printf ("restart threads: [%s] has pending status",
5624 target_pid_to_str (tp->ptid).c_str ());
5625 tp->resumed = true;
5626 continue;
5627 }
5628
5629 gdb_assert (!tp->stop_requested);
5630
5631 /* If some thread needs to start a step-over at this point, it
5632 should still be in the step-over queue, and thus skipped
5633 above. */
5634 if (thread_still_needs_step_over (tp))
5635 {
5636 internal_error (__FILE__, __LINE__,
5637 "thread [%s] needs a step-over, but not in "
5638 "step-over queue\n",
5639 target_pid_to_str (tp->ptid).c_str ());
5640 }
5641
5642 if (currently_stepping (tp))
5643 {
5644 infrun_debug_printf ("restart threads: [%s] was stepping",
5645 target_pid_to_str (tp->ptid).c_str ());
5646 keep_going_stepped_thread (tp);
5647 }
5648 else
5649 {
5650 struct execution_control_state ecss;
5651 struct execution_control_state *ecs = &ecss;
5652
5653 infrun_debug_printf ("restart threads: [%s] continuing",
5654 target_pid_to_str (tp->ptid).c_str ());
5655 reset_ecs (ecs, tp);
5656 switch_to_thread (tp);
5657 keep_going_pass_signal (ecs);
5658 }
5659 }
5660 }
5661
5662 /* Callback for iterate_over_threads. Find a resumed thread that has
5663 a pending waitstatus. */
5664
5665 static int
5666 resumed_thread_with_pending_status (struct thread_info *tp,
5667 void *arg)
5668 {
5669 return (tp->resumed
5670 && tp->suspend.waitstatus_pending_p);
5671 }
5672
5673 /* Called when we get an event that may finish an in-line or
5674 out-of-line (displaced stepping) step-over started previously.
5675 Return true if the event is processed and we should go back to the
5676 event loop; false if the caller should continue processing the
5677 event. */
5678
5679 static int
5680 finish_step_over (struct execution_control_state *ecs)
5681 {
5682 displaced_step_fixup (ecs->event_thread,
5683 ecs->event_thread->suspend.stop_signal);
5684
5685 bool had_step_over_info = step_over_info_valid_p ();
5686
5687 if (had_step_over_info)
5688 {
5689 /* If we're stepping over a breakpoint with all threads locked,
5690 then only the thread that was stepped should be reporting
5691 back an event. */
5692 gdb_assert (ecs->event_thread->control.trap_expected);
5693
5694 clear_step_over_info ();
5695 }
5696
5697 if (!target_is_non_stop_p ())
5698 return 0;
5699
5700 /* Start a new step-over in another thread if there's one that
5701 needs it. */
5702 start_step_over ();
5703
5704 /* If we were stepping over a breakpoint before, and haven't started
5705 a new in-line step-over sequence, then restart all other threads
5706 (except the event thread). We can't do this in all-stop, as then
5707 e.g., we wouldn't be able to issue any other remote packet until
5708 these other threads stop. */
5709 if (had_step_over_info && !step_over_info_valid_p ())
5710 {
5711 struct thread_info *pending;
5712
5713 /* If we only have threads with pending statuses, the restart
5714 below won't restart any thread and so nothing re-inserts the
5715 breakpoint we just stepped over. But we need it inserted
5716 when we later process the pending events, otherwise if
5717 another thread has a pending event for this breakpoint too,
5718 we'd discard its event (because the breakpoint that
5719 originally caused the event was no longer inserted). */
5720 context_switch (ecs);
5721 insert_breakpoints ();
5722
5723 restart_threads (ecs->event_thread);
5724
5725 /* If we have events pending, go through handle_inferior_event
5726 again, picking up a pending event at random. This avoids
5727 thread starvation. */
5728
5729 /* But not if we just stepped over a watchpoint in order to let
5730 the instruction execute so we can evaluate its expression.
5731 The set of watchpoints that triggered is recorded in the
5732 breakpoint objects themselves (see bp->watchpoint_triggered).
5733 If we processed another event first, that other event could
5734 clobber this info. */
5735 if (ecs->event_thread->stepping_over_watchpoint)
5736 return 0;
5737
5738 pending = iterate_over_threads (resumed_thread_with_pending_status,
5739 NULL);
5740 if (pending != NULL)
5741 {
5742 struct thread_info *tp = ecs->event_thread;
5743 struct regcache *regcache;
5744
5745 infrun_debug_printf ("found resumed threads with "
5746 "pending events, saving status");
5747
5748 gdb_assert (pending != tp);
5749
5750 /* Record the event thread's event for later. */
5751 save_waitstatus (tp, &ecs->ws);
5752 /* This was cleared early, by handle_inferior_event. Set it
5753 so this pending event is considered by
5754 do_target_wait. */
5755 tp->resumed = true;
5756
5757 gdb_assert (!tp->executing);
5758
5759 regcache = get_thread_regcache (tp);
5760 tp->suspend.stop_pc = regcache_read_pc (regcache);
5761
5762 infrun_debug_printf ("saved stop_pc=%s for %s "
5763 "(currently_stepping=%d)",
5764 paddress (target_gdbarch (),
5765 tp->suspend.stop_pc),
5766 target_pid_to_str (tp->ptid).c_str (),
5767 currently_stepping (tp));
5768
5769 /* This in-line step-over finished; clear this so we won't
5770 start a new one. This is what handle_signal_stop would
5771 do, if we returned false. */
5772 tp->stepping_over_breakpoint = 0;
5773
5774 /* Wake up the event loop again. */
5775 mark_async_event_handler (infrun_async_inferior_event_token);
5776
5777 prepare_to_wait (ecs);
5778 return 1;
5779 }
5780 }
5781
5782 return 0;
5783 }
5784
5785 /* Come here when the program has stopped with a signal. */
5786
5787 static void
5788 handle_signal_stop (struct execution_control_state *ecs)
5789 {
5790 struct frame_info *frame;
5791 struct gdbarch *gdbarch;
5792 int stopped_by_watchpoint;
5793 enum stop_kind stop_soon;
5794 int random_signal;
5795
5796 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5797
5798 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5799
5800 /* Do we need to clean up the state of a thread that has
5801 completed a displaced single-step? (Doing so usually affects
5802 the PC, so do it here, before we set stop_pc.) */
5803 if (finish_step_over (ecs))
5804 return;
5805
5806 /* If we either finished a single-step or hit a breakpoint, but
5807 the user wanted this thread to be stopped, pretend we got a
5808 SIG0 (generic unsignaled stop). */
5809 if (ecs->event_thread->stop_requested
5810 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5811 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5812
5813 ecs->event_thread->suspend.stop_pc
5814 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5815
5816 if (debug_infrun)
5817 {
5818 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5819 struct gdbarch *reg_gdbarch = regcache->arch ();
5820
5821 switch_to_thread (ecs->event_thread);
5822
5823 infrun_debug_printf ("stop_pc=%s",
5824 paddress (reg_gdbarch,
5825 ecs->event_thread->suspend.stop_pc));
5826 if (target_stopped_by_watchpoint ())
5827 {
5828 CORE_ADDR addr;
5829
5830 infrun_debug_printf ("stopped by watchpoint");
5831
5832 if (target_stopped_data_address (current_top_target (), &addr))
5833 infrun_debug_printf ("stopped data address=%s",
5834 paddress (reg_gdbarch, addr));
5835 else
5836 infrun_debug_printf ("(no data address available)");
5837 }
5838 }
5839
5840 /* This is originated from start_remote(), start_inferior() and
5841 shared libraries hook functions. */
5842 stop_soon = get_inferior_stop_soon (ecs);
5843 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5844 {
5845 context_switch (ecs);
5846 infrun_debug_printf ("quietly stopped");
5847 stop_print_frame = true;
5848 stop_waiting (ecs);
5849 return;
5850 }
5851
5852 /* This originates from attach_command(). We need to overwrite
5853 the stop_signal here, because some kernels don't ignore a
5854 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5855 See more comments in inferior.h. On the other hand, if we
5856 get a non-SIGSTOP, report it to the user - assume the backend
5857 will handle the SIGSTOP if it should show up later.
5858
5859 Also consider that the attach is complete when we see a
5860 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5861 target extended-remote report it instead of a SIGSTOP
5862 (e.g. gdbserver). We already rely on SIGTRAP being our
5863 signal, so this is no exception.
5864
5865 Also consider that the attach is complete when we see a
5866 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5867 the target to stop all threads of the inferior, in case the
5868 low level attach operation doesn't stop them implicitly. If
5869 they weren't stopped implicitly, then the stub will report a
5870 GDB_SIGNAL_0, meaning: stopped for no particular reason
5871 other than GDB's request. */
5872 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5873 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5874 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5875 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5876 {
5877 stop_print_frame = true;
5878 stop_waiting (ecs);
5879 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5880 return;
5881 }
5882
5883 /* See if something interesting happened to the non-current thread. If
5884 so, then switch to that thread. */
5885 if (ecs->ptid != inferior_ptid)
5886 {
5887 infrun_debug_printf ("context switch");
5888
5889 context_switch (ecs);
5890
5891 if (deprecated_context_hook)
5892 deprecated_context_hook (ecs->event_thread->global_num);
5893 }
5894
5895 /* At this point, get hold of the now-current thread's frame. */
5896 frame = get_current_frame ();
5897 gdbarch = get_frame_arch (frame);
5898
5899 /* Pull the single step breakpoints out of the target. */
5900 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5901 {
5902 struct regcache *regcache;
5903 CORE_ADDR pc;
5904
5905 regcache = get_thread_regcache (ecs->event_thread);
5906 const address_space *aspace = regcache->aspace ();
5907
5908 pc = regcache_read_pc (regcache);
5909
5910 /* However, before doing so, if this single-step breakpoint was
5911 actually for another thread, set this thread up for moving
5912 past it. */
5913 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5914 aspace, pc))
5915 {
5916 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5917 {
5918 infrun_debug_printf ("[%s] hit another thread's single-step "
5919 "breakpoint",
5920 target_pid_to_str (ecs->ptid).c_str ());
5921 ecs->hit_singlestep_breakpoint = 1;
5922 }
5923 }
5924 else
5925 {
5926 infrun_debug_printf ("[%s] hit its single-step breakpoint",
5927 target_pid_to_str (ecs->ptid).c_str ());
5928 }
5929 }
5930 delete_just_stopped_threads_single_step_breakpoints ();
5931
5932 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5933 && ecs->event_thread->control.trap_expected
5934 && ecs->event_thread->stepping_over_watchpoint)
5935 stopped_by_watchpoint = 0;
5936 else
5937 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5938
5939 /* If necessary, step over this watchpoint. We'll be back to display
5940 it in a moment. */
5941 if (stopped_by_watchpoint
5942 && (target_have_steppable_watchpoint ()
5943 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5944 {
5945 /* At this point, we are stopped at an instruction which has
5946 attempted to write to a piece of memory under control of
5947 a watchpoint. The instruction hasn't actually executed
5948 yet. If we were to evaluate the watchpoint expression
5949 now, we would get the old value, and therefore no change
5950 would seem to have occurred.
5951
5952 In order to make watchpoints work `right', we really need
5953 to complete the memory write, and then evaluate the
5954 watchpoint expression. We do this by single-stepping the
5955 target.
5956
5957 It may not be necessary to disable the watchpoint to step over
5958 it. For example, the PA can (with some kernel cooperation)
5959 single step over a watchpoint without disabling the watchpoint.
5960
5961 It is far more common to need to disable a watchpoint to step
5962 the inferior over it. If we have non-steppable watchpoints,
5963 we must disable the current watchpoint; it's simplest to
5964 disable all watchpoints.
5965
5966 Any breakpoint at PC must also be stepped over -- if there's
5967 one, it will have already triggered before the watchpoint
5968 triggered, and we either already reported it to the user, or
5969 it didn't cause a stop and we called keep_going. In either
5970 case, if there was a breakpoint at PC, we must be trying to
5971 step past it. */
5972 ecs->event_thread->stepping_over_watchpoint = 1;
5973 keep_going (ecs);
5974 return;
5975 }
5976
5977 ecs->event_thread->stepping_over_breakpoint = 0;
5978 ecs->event_thread->stepping_over_watchpoint = 0;
5979 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5980 ecs->event_thread->control.stop_step = 0;
5981 stop_print_frame = true;
5982 stopped_by_random_signal = 0;
5983 bpstat stop_chain = NULL;
5984
5985 /* Hide inlined functions starting here, unless we just performed stepi or
5986 nexti. After stepi and nexti, always show the innermost frame (not any
5987 inline function call sites). */
5988 if (ecs->event_thread->control.step_range_end != 1)
5989 {
5990 const address_space *aspace
5991 = get_thread_regcache (ecs->event_thread)->aspace ();
5992
5993 /* skip_inline_frames is expensive, so we avoid it if we can
5994 determine that the address is one where functions cannot have
5995 been inlined. This improves performance with inferiors that
5996 load a lot of shared libraries, because the solib event
5997 breakpoint is defined as the address of a function (i.e. not
5998 inline). Note that we have to check the previous PC as well
5999 as the current one to catch cases when we have just
6000 single-stepped off a breakpoint prior to reinstating it.
6001 Note that we're assuming that the code we single-step to is
6002 not inline, but that's not definitive: there's nothing
6003 preventing the event breakpoint function from containing
6004 inlined code, and the single-step ending up there. If the
6005 user had set a breakpoint on that inlined code, the missing
6006 skip_inline_frames call would break things. Fortunately
6007 that's an extremely unlikely scenario. */
6008 if (!pc_at_non_inline_function (aspace,
6009 ecs->event_thread->suspend.stop_pc,
6010 &ecs->ws)
6011 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6012 && ecs->event_thread->control.trap_expected
6013 && pc_at_non_inline_function (aspace,
6014 ecs->event_thread->prev_pc,
6015 &ecs->ws)))
6016 {
6017 stop_chain = build_bpstat_chain (aspace,
6018 ecs->event_thread->suspend.stop_pc,
6019 &ecs->ws);
6020 skip_inline_frames (ecs->event_thread, stop_chain);
6021
6022 /* Re-fetch current thread's frame in case that invalidated
6023 the frame cache. */
6024 frame = get_current_frame ();
6025 gdbarch = get_frame_arch (frame);
6026 }
6027 }
6028
6029 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6030 && ecs->event_thread->control.trap_expected
6031 && gdbarch_single_step_through_delay_p (gdbarch)
6032 && currently_stepping (ecs->event_thread))
6033 {
6034 /* We're trying to step off a breakpoint. Turns out that we're
6035 also on an instruction that needs to be stepped multiple
6036 times before it's been fully executing. E.g., architectures
6037 with a delay slot. It needs to be stepped twice, once for
6038 the instruction and once for the delay slot. */
6039 int step_through_delay
6040 = gdbarch_single_step_through_delay (gdbarch, frame);
6041
6042 if (step_through_delay)
6043 infrun_debug_printf ("step through delay");
6044
6045 if (ecs->event_thread->control.step_range_end == 0
6046 && step_through_delay)
6047 {
6048 /* The user issued a continue when stopped at a breakpoint.
6049 Set up for another trap and get out of here. */
6050 ecs->event_thread->stepping_over_breakpoint = 1;
6051 keep_going (ecs);
6052 return;
6053 }
6054 else if (step_through_delay)
6055 {
6056 /* The user issued a step when stopped at a breakpoint.
6057 Maybe we should stop, maybe we should not - the delay
6058 slot *might* correspond to a line of source. In any
6059 case, don't decide that here, just set
6060 ecs->stepping_over_breakpoint, making sure we
6061 single-step again before breakpoints are re-inserted. */
6062 ecs->event_thread->stepping_over_breakpoint = 1;
6063 }
6064 }
6065
6066 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6067 handles this event. */
6068 ecs->event_thread->control.stop_bpstat
6069 = bpstat_stop_status (get_current_regcache ()->aspace (),
6070 ecs->event_thread->suspend.stop_pc,
6071 ecs->event_thread, &ecs->ws, stop_chain);
6072
6073 /* Following in case break condition called a
6074 function. */
6075 stop_print_frame = true;
6076
6077 /* This is where we handle "moribund" watchpoints. Unlike
6078 software breakpoints traps, hardware watchpoint traps are
6079 always distinguishable from random traps. If no high-level
6080 watchpoint is associated with the reported stop data address
6081 anymore, then the bpstat does not explain the signal ---
6082 simply make sure to ignore it if `stopped_by_watchpoint' is
6083 set. */
6084
6085 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6086 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6087 GDB_SIGNAL_TRAP)
6088 && stopped_by_watchpoint)
6089 {
6090 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6091 "ignoring");
6092 }
6093
6094 /* NOTE: cagney/2003-03-29: These checks for a random signal
6095 at one stage in the past included checks for an inferior
6096 function call's call dummy's return breakpoint. The original
6097 comment, that went with the test, read:
6098
6099 ``End of a stack dummy. Some systems (e.g. Sony news) give
6100 another signal besides SIGTRAP, so check here as well as
6101 above.''
6102
6103 If someone ever tries to get call dummys on a
6104 non-executable stack to work (where the target would stop
6105 with something like a SIGSEGV), then those tests might need
6106 to be re-instated. Given, however, that the tests were only
6107 enabled when momentary breakpoints were not being used, I
6108 suspect that it won't be the case.
6109
6110 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6111 be necessary for call dummies on a non-executable stack on
6112 SPARC. */
6113
6114 /* See if the breakpoints module can explain the signal. */
6115 random_signal
6116 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6117 ecs->event_thread->suspend.stop_signal);
6118
6119 /* Maybe this was a trap for a software breakpoint that has since
6120 been removed. */
6121 if (random_signal && target_stopped_by_sw_breakpoint ())
6122 {
6123 if (gdbarch_program_breakpoint_here_p (gdbarch,
6124 ecs->event_thread->suspend.stop_pc))
6125 {
6126 struct regcache *regcache;
6127 int decr_pc;
6128
6129 /* Re-adjust PC to what the program would see if GDB was not
6130 debugging it. */
6131 regcache = get_thread_regcache (ecs->event_thread);
6132 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6133 if (decr_pc != 0)
6134 {
6135 gdb::optional<scoped_restore_tmpl<int>>
6136 restore_operation_disable;
6137
6138 if (record_full_is_used ())
6139 restore_operation_disable.emplace
6140 (record_full_gdb_operation_disable_set ());
6141
6142 regcache_write_pc (regcache,
6143 ecs->event_thread->suspend.stop_pc + decr_pc);
6144 }
6145 }
6146 else
6147 {
6148 /* A delayed software breakpoint event. Ignore the trap. */
6149 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
6150 random_signal = 0;
6151 }
6152 }
6153
6154 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6155 has since been removed. */
6156 if (random_signal && target_stopped_by_hw_breakpoint ())
6157 {
6158 /* A delayed hardware breakpoint event. Ignore the trap. */
6159 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6160 "trap, ignoring");
6161 random_signal = 0;
6162 }
6163
6164 /* If not, perhaps stepping/nexting can. */
6165 if (random_signal)
6166 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6167 && currently_stepping (ecs->event_thread));
6168
6169 /* Perhaps the thread hit a single-step breakpoint of _another_
6170 thread. Single-step breakpoints are transparent to the
6171 breakpoints module. */
6172 if (random_signal)
6173 random_signal = !ecs->hit_singlestep_breakpoint;
6174
6175 /* No? Perhaps we got a moribund watchpoint. */
6176 if (random_signal)
6177 random_signal = !stopped_by_watchpoint;
6178
6179 /* Always stop if the user explicitly requested this thread to
6180 remain stopped. */
6181 if (ecs->event_thread->stop_requested)
6182 {
6183 random_signal = 1;
6184 infrun_debug_printf ("user-requested stop");
6185 }
6186
6187 /* For the program's own signals, act according to
6188 the signal handling tables. */
6189
6190 if (random_signal)
6191 {
6192 /* Signal not for debugging purposes. */
6193 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6194 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6195
6196 infrun_debug_printf ("random signal (%s)",
6197 gdb_signal_to_symbol_string (stop_signal));
6198
6199 stopped_by_random_signal = 1;
6200
6201 /* Always stop on signals if we're either just gaining control
6202 of the program, or the user explicitly requested this thread
6203 to remain stopped. */
6204 if (stop_soon != NO_STOP_QUIETLY
6205 || ecs->event_thread->stop_requested
6206 || (!inf->detaching
6207 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6208 {
6209 stop_waiting (ecs);
6210 return;
6211 }
6212
6213 /* Notify observers the signal has "handle print" set. Note we
6214 returned early above if stopping; normal_stop handles the
6215 printing in that case. */
6216 if (signal_print[ecs->event_thread->suspend.stop_signal])
6217 {
6218 /* The signal table tells us to print about this signal. */
6219 target_terminal::ours_for_output ();
6220 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6221 target_terminal::inferior ();
6222 }
6223
6224 /* Clear the signal if it should not be passed. */
6225 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6226 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6227
6228 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6229 && ecs->event_thread->control.trap_expected
6230 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6231 {
6232 /* We were just starting a new sequence, attempting to
6233 single-step off of a breakpoint and expecting a SIGTRAP.
6234 Instead this signal arrives. This signal will take us out
6235 of the stepping range so GDB needs to remember to, when
6236 the signal handler returns, resume stepping off that
6237 breakpoint. */
6238 /* To simplify things, "continue" is forced to use the same
6239 code paths as single-step - set a breakpoint at the
6240 signal return address and then, once hit, step off that
6241 breakpoint. */
6242 infrun_debug_printf ("signal arrived while stepping over breakpoint");
6243
6244 insert_hp_step_resume_breakpoint_at_frame (frame);
6245 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6246 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6247 ecs->event_thread->control.trap_expected = 0;
6248
6249 /* If we were nexting/stepping some other thread, switch to
6250 it, so that we don't continue it, losing control. */
6251 if (!switch_back_to_stepped_thread (ecs))
6252 keep_going (ecs);
6253 return;
6254 }
6255
6256 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6257 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6258 ecs->event_thread)
6259 || ecs->event_thread->control.step_range_end == 1)
6260 && frame_id_eq (get_stack_frame_id (frame),
6261 ecs->event_thread->control.step_stack_frame_id)
6262 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6263 {
6264 /* The inferior is about to take a signal that will take it
6265 out of the single step range. Set a breakpoint at the
6266 current PC (which is presumably where the signal handler
6267 will eventually return) and then allow the inferior to
6268 run free.
6269
6270 Note that this is only needed for a signal delivered
6271 while in the single-step range. Nested signals aren't a
6272 problem as they eventually all return. */
6273 infrun_debug_printf ("signal may take us out of single-step range");
6274
6275 clear_step_over_info ();
6276 insert_hp_step_resume_breakpoint_at_frame (frame);
6277 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6278 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6279 ecs->event_thread->control.trap_expected = 0;
6280 keep_going (ecs);
6281 return;
6282 }
6283
6284 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6285 when either there's a nested signal, or when there's a
6286 pending signal enabled just as the signal handler returns
6287 (leaving the inferior at the step-resume-breakpoint without
6288 actually executing it). Either way continue until the
6289 breakpoint is really hit. */
6290
6291 if (!switch_back_to_stepped_thread (ecs))
6292 {
6293 infrun_debug_printf ("random signal, keep going");
6294
6295 keep_going (ecs);
6296 }
6297 return;
6298 }
6299
6300 process_event_stop_test (ecs);
6301 }
6302
6303 /* Come here when we've got some debug event / signal we can explain
6304 (IOW, not a random signal), and test whether it should cause a
6305 stop, or whether we should resume the inferior (transparently).
6306 E.g., could be a breakpoint whose condition evaluates false; we
6307 could be still stepping within the line; etc. */
6308
6309 static void
6310 process_event_stop_test (struct execution_control_state *ecs)
6311 {
6312 struct symtab_and_line stop_pc_sal;
6313 struct frame_info *frame;
6314 struct gdbarch *gdbarch;
6315 CORE_ADDR jmp_buf_pc;
6316 struct bpstat_what what;
6317
6318 /* Handle cases caused by hitting a breakpoint. */
6319
6320 frame = get_current_frame ();
6321 gdbarch = get_frame_arch (frame);
6322
6323 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6324
6325 if (what.call_dummy)
6326 {
6327 stop_stack_dummy = what.call_dummy;
6328 }
6329
6330 /* A few breakpoint types have callbacks associated (e.g.,
6331 bp_jit_event). Run them now. */
6332 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6333
6334 /* If we hit an internal event that triggers symbol changes, the
6335 current frame will be invalidated within bpstat_what (e.g., if we
6336 hit an internal solib event). Re-fetch it. */
6337 frame = get_current_frame ();
6338 gdbarch = get_frame_arch (frame);
6339
6340 switch (what.main_action)
6341 {
6342 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6343 /* If we hit the breakpoint at longjmp while stepping, we
6344 install a momentary breakpoint at the target of the
6345 jmp_buf. */
6346
6347 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6348
6349 ecs->event_thread->stepping_over_breakpoint = 1;
6350
6351 if (what.is_longjmp)
6352 {
6353 struct value *arg_value;
6354
6355 /* If we set the longjmp breakpoint via a SystemTap probe,
6356 then use it to extract the arguments. The destination PC
6357 is the third argument to the probe. */
6358 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6359 if (arg_value)
6360 {
6361 jmp_buf_pc = value_as_address (arg_value);
6362 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6363 }
6364 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6365 || !gdbarch_get_longjmp_target (gdbarch,
6366 frame, &jmp_buf_pc))
6367 {
6368 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6369 "(!gdbarch_get_longjmp_target)");
6370 keep_going (ecs);
6371 return;
6372 }
6373
6374 /* Insert a breakpoint at resume address. */
6375 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6376 }
6377 else
6378 check_exception_resume (ecs, frame);
6379 keep_going (ecs);
6380 return;
6381
6382 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6383 {
6384 struct frame_info *init_frame;
6385
6386 /* There are several cases to consider.
6387
6388 1. The initiating frame no longer exists. In this case we
6389 must stop, because the exception or longjmp has gone too
6390 far.
6391
6392 2. The initiating frame exists, and is the same as the
6393 current frame. We stop, because the exception or longjmp
6394 has been caught.
6395
6396 3. The initiating frame exists and is different from the
6397 current frame. This means the exception or longjmp has
6398 been caught beneath the initiating frame, so keep going.
6399
6400 4. longjmp breakpoint has been placed just to protect
6401 against stale dummy frames and user is not interested in
6402 stopping around longjmps. */
6403
6404 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6405
6406 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6407 != NULL);
6408 delete_exception_resume_breakpoint (ecs->event_thread);
6409
6410 if (what.is_longjmp)
6411 {
6412 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6413
6414 if (!frame_id_p (ecs->event_thread->initiating_frame))
6415 {
6416 /* Case 4. */
6417 keep_going (ecs);
6418 return;
6419 }
6420 }
6421
6422 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6423
6424 if (init_frame)
6425 {
6426 struct frame_id current_id
6427 = get_frame_id (get_current_frame ());
6428 if (frame_id_eq (current_id,
6429 ecs->event_thread->initiating_frame))
6430 {
6431 /* Case 2. Fall through. */
6432 }
6433 else
6434 {
6435 /* Case 3. */
6436 keep_going (ecs);
6437 return;
6438 }
6439 }
6440
6441 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6442 exists. */
6443 delete_step_resume_breakpoint (ecs->event_thread);
6444
6445 end_stepping_range (ecs);
6446 }
6447 return;
6448
6449 case BPSTAT_WHAT_SINGLE:
6450 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
6451 ecs->event_thread->stepping_over_breakpoint = 1;
6452 /* Still need to check other stuff, at least the case where we
6453 are stepping and step out of the right range. */
6454 break;
6455
6456 case BPSTAT_WHAT_STEP_RESUME:
6457 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
6458
6459 delete_step_resume_breakpoint (ecs->event_thread);
6460 if (ecs->event_thread->control.proceed_to_finish
6461 && execution_direction == EXEC_REVERSE)
6462 {
6463 struct thread_info *tp = ecs->event_thread;
6464
6465 /* We are finishing a function in reverse, and just hit the
6466 step-resume breakpoint at the start address of the
6467 function, and we're almost there -- just need to back up
6468 by one more single-step, which should take us back to the
6469 function call. */
6470 tp->control.step_range_start = tp->control.step_range_end = 1;
6471 keep_going (ecs);
6472 return;
6473 }
6474 fill_in_stop_func (gdbarch, ecs);
6475 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6476 && execution_direction == EXEC_REVERSE)
6477 {
6478 /* We are stepping over a function call in reverse, and just
6479 hit the step-resume breakpoint at the start address of
6480 the function. Go back to single-stepping, which should
6481 take us back to the function call. */
6482 ecs->event_thread->stepping_over_breakpoint = 1;
6483 keep_going (ecs);
6484 return;
6485 }
6486 break;
6487
6488 case BPSTAT_WHAT_STOP_NOISY:
6489 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
6490 stop_print_frame = true;
6491
6492 /* Assume the thread stopped for a breakpoint. We'll still check
6493 whether a/the breakpoint is there when the thread is next
6494 resumed. */
6495 ecs->event_thread->stepping_over_breakpoint = 1;
6496
6497 stop_waiting (ecs);
6498 return;
6499
6500 case BPSTAT_WHAT_STOP_SILENT:
6501 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
6502 stop_print_frame = false;
6503
6504 /* Assume the thread stopped for a breakpoint. We'll still check
6505 whether a/the breakpoint is there when the thread is next
6506 resumed. */
6507 ecs->event_thread->stepping_over_breakpoint = 1;
6508 stop_waiting (ecs);
6509 return;
6510
6511 case BPSTAT_WHAT_HP_STEP_RESUME:
6512 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
6513
6514 delete_step_resume_breakpoint (ecs->event_thread);
6515 if (ecs->event_thread->step_after_step_resume_breakpoint)
6516 {
6517 /* Back when the step-resume breakpoint was inserted, we
6518 were trying to single-step off a breakpoint. Go back to
6519 doing that. */
6520 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6521 ecs->event_thread->stepping_over_breakpoint = 1;
6522 keep_going (ecs);
6523 return;
6524 }
6525 break;
6526
6527 case BPSTAT_WHAT_KEEP_CHECKING:
6528 break;
6529 }
6530
6531 /* If we stepped a permanent breakpoint and we had a high priority
6532 step-resume breakpoint for the address we stepped, but we didn't
6533 hit it, then we must have stepped into the signal handler. The
6534 step-resume was only necessary to catch the case of _not_
6535 stepping into the handler, so delete it, and fall through to
6536 checking whether the step finished. */
6537 if (ecs->event_thread->stepped_breakpoint)
6538 {
6539 struct breakpoint *sr_bp
6540 = ecs->event_thread->control.step_resume_breakpoint;
6541
6542 if (sr_bp != NULL
6543 && sr_bp->loc->permanent
6544 && sr_bp->type == bp_hp_step_resume
6545 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6546 {
6547 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
6548 delete_step_resume_breakpoint (ecs->event_thread);
6549 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6550 }
6551 }
6552
6553 /* We come here if we hit a breakpoint but should not stop for it.
6554 Possibly we also were stepping and should stop for that. So fall
6555 through and test for stepping. But, if not stepping, do not
6556 stop. */
6557
6558 /* In all-stop mode, if we're currently stepping but have stopped in
6559 some other thread, we need to switch back to the stepped thread. */
6560 if (switch_back_to_stepped_thread (ecs))
6561 return;
6562
6563 if (ecs->event_thread->control.step_resume_breakpoint)
6564 {
6565 infrun_debug_printf ("step-resume breakpoint is inserted");
6566
6567 /* Having a step-resume breakpoint overrides anything
6568 else having to do with stepping commands until
6569 that breakpoint is reached. */
6570 keep_going (ecs);
6571 return;
6572 }
6573
6574 if (ecs->event_thread->control.step_range_end == 0)
6575 {
6576 infrun_debug_printf ("no stepping, continue");
6577 /* Likewise if we aren't even stepping. */
6578 keep_going (ecs);
6579 return;
6580 }
6581
6582 /* Re-fetch current thread's frame in case the code above caused
6583 the frame cache to be re-initialized, making our FRAME variable
6584 a dangling pointer. */
6585 frame = get_current_frame ();
6586 gdbarch = get_frame_arch (frame);
6587 fill_in_stop_func (gdbarch, ecs);
6588
6589 /* If stepping through a line, keep going if still within it.
6590
6591 Note that step_range_end is the address of the first instruction
6592 beyond the step range, and NOT the address of the last instruction
6593 within it!
6594
6595 Note also that during reverse execution, we may be stepping
6596 through a function epilogue and therefore must detect when
6597 the current-frame changes in the middle of a line. */
6598
6599 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6600 ecs->event_thread)
6601 && (execution_direction != EXEC_REVERSE
6602 || frame_id_eq (get_frame_id (frame),
6603 ecs->event_thread->control.step_frame_id)))
6604 {
6605 infrun_debug_printf
6606 ("stepping inside range [%s-%s]",
6607 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6608 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6609
6610 /* Tentatively re-enable range stepping; `resume' disables it if
6611 necessary (e.g., if we're stepping over a breakpoint or we
6612 have software watchpoints). */
6613 ecs->event_thread->control.may_range_step = 1;
6614
6615 /* When stepping backward, stop at beginning of line range
6616 (unless it's the function entry point, in which case
6617 keep going back to the call point). */
6618 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6619 if (stop_pc == ecs->event_thread->control.step_range_start
6620 && stop_pc != ecs->stop_func_start
6621 && execution_direction == EXEC_REVERSE)
6622 end_stepping_range (ecs);
6623 else
6624 keep_going (ecs);
6625
6626 return;
6627 }
6628
6629 /* We stepped out of the stepping range. */
6630
6631 /* If we are stepping at the source level and entered the runtime
6632 loader dynamic symbol resolution code...
6633
6634 EXEC_FORWARD: we keep on single stepping until we exit the run
6635 time loader code and reach the callee's address.
6636
6637 EXEC_REVERSE: we've already executed the callee (backward), and
6638 the runtime loader code is handled just like any other
6639 undebuggable function call. Now we need only keep stepping
6640 backward through the trampoline code, and that's handled further
6641 down, so there is nothing for us to do here. */
6642
6643 if (execution_direction != EXEC_REVERSE
6644 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6645 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6646 {
6647 CORE_ADDR pc_after_resolver =
6648 gdbarch_skip_solib_resolver (gdbarch,
6649 ecs->event_thread->suspend.stop_pc);
6650
6651 infrun_debug_printf ("stepped into dynsym resolve code");
6652
6653 if (pc_after_resolver)
6654 {
6655 /* Set up a step-resume breakpoint at the address
6656 indicated by SKIP_SOLIB_RESOLVER. */
6657 symtab_and_line sr_sal;
6658 sr_sal.pc = pc_after_resolver;
6659 sr_sal.pspace = get_frame_program_space (frame);
6660
6661 insert_step_resume_breakpoint_at_sal (gdbarch,
6662 sr_sal, null_frame_id);
6663 }
6664
6665 keep_going (ecs);
6666 return;
6667 }
6668
6669 /* Step through an indirect branch thunk. */
6670 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6671 && gdbarch_in_indirect_branch_thunk (gdbarch,
6672 ecs->event_thread->suspend.stop_pc))
6673 {
6674 infrun_debug_printf ("stepped into indirect branch thunk");
6675 keep_going (ecs);
6676 return;
6677 }
6678
6679 if (ecs->event_thread->control.step_range_end != 1
6680 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6681 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6682 && get_frame_type (frame) == SIGTRAMP_FRAME)
6683 {
6684 infrun_debug_printf ("stepped into signal trampoline");
6685 /* The inferior, while doing a "step" or "next", has ended up in
6686 a signal trampoline (either by a signal being delivered or by
6687 the signal handler returning). Just single-step until the
6688 inferior leaves the trampoline (either by calling the handler
6689 or returning). */
6690 keep_going (ecs);
6691 return;
6692 }
6693
6694 /* If we're in the return path from a shared library trampoline,
6695 we want to proceed through the trampoline when stepping. */
6696 /* macro/2012-04-25: This needs to come before the subroutine
6697 call check below as on some targets return trampolines look
6698 like subroutine calls (MIPS16 return thunks). */
6699 if (gdbarch_in_solib_return_trampoline (gdbarch,
6700 ecs->event_thread->suspend.stop_pc,
6701 ecs->stop_func_name)
6702 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6703 {
6704 /* Determine where this trampoline returns. */
6705 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6706 CORE_ADDR real_stop_pc
6707 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6708
6709 infrun_debug_printf ("stepped into solib return tramp");
6710
6711 /* Only proceed through if we know where it's going. */
6712 if (real_stop_pc)
6713 {
6714 /* And put the step-breakpoint there and go until there. */
6715 symtab_and_line sr_sal;
6716 sr_sal.pc = real_stop_pc;
6717 sr_sal.section = find_pc_overlay (sr_sal.pc);
6718 sr_sal.pspace = get_frame_program_space (frame);
6719
6720 /* Do not specify what the fp should be when we stop since
6721 on some machines the prologue is where the new fp value
6722 is established. */
6723 insert_step_resume_breakpoint_at_sal (gdbarch,
6724 sr_sal, null_frame_id);
6725
6726 /* Restart without fiddling with the step ranges or
6727 other state. */
6728 keep_going (ecs);
6729 return;
6730 }
6731 }
6732
6733 /* Check for subroutine calls. The check for the current frame
6734 equalling the step ID is not necessary - the check of the
6735 previous frame's ID is sufficient - but it is a common case and
6736 cheaper than checking the previous frame's ID.
6737
6738 NOTE: frame_id_eq will never report two invalid frame IDs as
6739 being equal, so to get into this block, both the current and
6740 previous frame must have valid frame IDs. */
6741 /* The outer_frame_id check is a heuristic to detect stepping
6742 through startup code. If we step over an instruction which
6743 sets the stack pointer from an invalid value to a valid value,
6744 we may detect that as a subroutine call from the mythical
6745 "outermost" function. This could be fixed by marking
6746 outermost frames as !stack_p,code_p,special_p. Then the
6747 initial outermost frame, before sp was valid, would
6748 have code_addr == &_start. See the comment in frame_id_eq
6749 for more. */
6750 if (!frame_id_eq (get_stack_frame_id (frame),
6751 ecs->event_thread->control.step_stack_frame_id)
6752 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6753 ecs->event_thread->control.step_stack_frame_id)
6754 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6755 outer_frame_id)
6756 || (ecs->event_thread->control.step_start_function
6757 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6758 {
6759 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6760 CORE_ADDR real_stop_pc;
6761
6762 infrun_debug_printf ("stepped into subroutine");
6763
6764 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6765 {
6766 /* I presume that step_over_calls is only 0 when we're
6767 supposed to be stepping at the assembly language level
6768 ("stepi"). Just stop. */
6769 /* And this works the same backward as frontward. MVS */
6770 end_stepping_range (ecs);
6771 return;
6772 }
6773
6774 /* Reverse stepping through solib trampolines. */
6775
6776 if (execution_direction == EXEC_REVERSE
6777 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6778 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6779 || (ecs->stop_func_start == 0
6780 && in_solib_dynsym_resolve_code (stop_pc))))
6781 {
6782 /* Any solib trampoline code can be handled in reverse
6783 by simply continuing to single-step. We have already
6784 executed the solib function (backwards), and a few
6785 steps will take us back through the trampoline to the
6786 caller. */
6787 keep_going (ecs);
6788 return;
6789 }
6790
6791 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6792 {
6793 /* We're doing a "next".
6794
6795 Normal (forward) execution: set a breakpoint at the
6796 callee's return address (the address at which the caller
6797 will resume).
6798
6799 Reverse (backward) execution. set the step-resume
6800 breakpoint at the start of the function that we just
6801 stepped into (backwards), and continue to there. When we
6802 get there, we'll need to single-step back to the caller. */
6803
6804 if (execution_direction == EXEC_REVERSE)
6805 {
6806 /* If we're already at the start of the function, we've either
6807 just stepped backward into a single instruction function,
6808 or stepped back out of a signal handler to the first instruction
6809 of the function. Just keep going, which will single-step back
6810 to the caller. */
6811 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6812 {
6813 /* Normal function call return (static or dynamic). */
6814 symtab_and_line sr_sal;
6815 sr_sal.pc = ecs->stop_func_start;
6816 sr_sal.pspace = get_frame_program_space (frame);
6817 insert_step_resume_breakpoint_at_sal (gdbarch,
6818 sr_sal, null_frame_id);
6819 }
6820 }
6821 else
6822 insert_step_resume_breakpoint_at_caller (frame);
6823
6824 keep_going (ecs);
6825 return;
6826 }
6827
6828 /* If we are in a function call trampoline (a stub between the
6829 calling routine and the real function), locate the real
6830 function. That's what tells us (a) whether we want to step
6831 into it at all, and (b) what prologue we want to run to the
6832 end of, if we do step into it. */
6833 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6834 if (real_stop_pc == 0)
6835 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6836 if (real_stop_pc != 0)
6837 ecs->stop_func_start = real_stop_pc;
6838
6839 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6840 {
6841 symtab_and_line sr_sal;
6842 sr_sal.pc = ecs->stop_func_start;
6843 sr_sal.pspace = get_frame_program_space (frame);
6844
6845 insert_step_resume_breakpoint_at_sal (gdbarch,
6846 sr_sal, null_frame_id);
6847 keep_going (ecs);
6848 return;
6849 }
6850
6851 /* If we have line number information for the function we are
6852 thinking of stepping into and the function isn't on the skip
6853 list, step into it.
6854
6855 If there are several symtabs at that PC (e.g. with include
6856 files), just want to know whether *any* of them have line
6857 numbers. find_pc_line handles this. */
6858 {
6859 struct symtab_and_line tmp_sal;
6860
6861 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6862 if (tmp_sal.line != 0
6863 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6864 tmp_sal)
6865 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6866 {
6867 if (execution_direction == EXEC_REVERSE)
6868 handle_step_into_function_backward (gdbarch, ecs);
6869 else
6870 handle_step_into_function (gdbarch, ecs);
6871 return;
6872 }
6873 }
6874
6875 /* If we have no line number and the step-stop-if-no-debug is
6876 set, we stop the step so that the user has a chance to switch
6877 in assembly mode. */
6878 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6879 && step_stop_if_no_debug)
6880 {
6881 end_stepping_range (ecs);
6882 return;
6883 }
6884
6885 if (execution_direction == EXEC_REVERSE)
6886 {
6887 /* If we're already at the start of the function, we've either just
6888 stepped backward into a single instruction function without line
6889 number info, or stepped back out of a signal handler to the first
6890 instruction of the function without line number info. Just keep
6891 going, which will single-step back to the caller. */
6892 if (ecs->stop_func_start != stop_pc)
6893 {
6894 /* Set a breakpoint at callee's start address.
6895 From there we can step once and be back in the caller. */
6896 symtab_and_line sr_sal;
6897 sr_sal.pc = ecs->stop_func_start;
6898 sr_sal.pspace = get_frame_program_space (frame);
6899 insert_step_resume_breakpoint_at_sal (gdbarch,
6900 sr_sal, null_frame_id);
6901 }
6902 }
6903 else
6904 /* Set a breakpoint at callee's return address (the address
6905 at which the caller will resume). */
6906 insert_step_resume_breakpoint_at_caller (frame);
6907
6908 keep_going (ecs);
6909 return;
6910 }
6911
6912 /* Reverse stepping through solib trampolines. */
6913
6914 if (execution_direction == EXEC_REVERSE
6915 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6916 {
6917 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6918
6919 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6920 || (ecs->stop_func_start == 0
6921 && in_solib_dynsym_resolve_code (stop_pc)))
6922 {
6923 /* Any solib trampoline code can be handled in reverse
6924 by simply continuing to single-step. We have already
6925 executed the solib function (backwards), and a few
6926 steps will take us back through the trampoline to the
6927 caller. */
6928 keep_going (ecs);
6929 return;
6930 }
6931 else if (in_solib_dynsym_resolve_code (stop_pc))
6932 {
6933 /* Stepped backward into the solib dynsym resolver.
6934 Set a breakpoint at its start and continue, then
6935 one more step will take us out. */
6936 symtab_and_line sr_sal;
6937 sr_sal.pc = ecs->stop_func_start;
6938 sr_sal.pspace = get_frame_program_space (frame);
6939 insert_step_resume_breakpoint_at_sal (gdbarch,
6940 sr_sal, null_frame_id);
6941 keep_going (ecs);
6942 return;
6943 }
6944 }
6945
6946 /* This always returns the sal for the inner-most frame when we are in a
6947 stack of inlined frames, even if GDB actually believes that it is in a
6948 more outer frame. This is checked for below by calls to
6949 inline_skipped_frames. */
6950 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6951
6952 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6953 the trampoline processing logic, however, there are some trampolines
6954 that have no names, so we should do trampoline handling first. */
6955 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6956 && ecs->stop_func_name == NULL
6957 && stop_pc_sal.line == 0)
6958 {
6959 infrun_debug_printf ("stepped into undebuggable function");
6960
6961 /* The inferior just stepped into, or returned to, an
6962 undebuggable function (where there is no debugging information
6963 and no line number corresponding to the address where the
6964 inferior stopped). Since we want to skip this kind of code,
6965 we keep going until the inferior returns from this
6966 function - unless the user has asked us not to (via
6967 set step-mode) or we no longer know how to get back
6968 to the call site. */
6969 if (step_stop_if_no_debug
6970 || !frame_id_p (frame_unwind_caller_id (frame)))
6971 {
6972 /* If we have no line number and the step-stop-if-no-debug
6973 is set, we stop the step so that the user has a chance to
6974 switch in assembly mode. */
6975 end_stepping_range (ecs);
6976 return;
6977 }
6978 else
6979 {
6980 /* Set a breakpoint at callee's return address (the address
6981 at which the caller will resume). */
6982 insert_step_resume_breakpoint_at_caller (frame);
6983 keep_going (ecs);
6984 return;
6985 }
6986 }
6987
6988 if (ecs->event_thread->control.step_range_end == 1)
6989 {
6990 /* It is stepi or nexti. We always want to stop stepping after
6991 one instruction. */
6992 infrun_debug_printf ("stepi/nexti");
6993 end_stepping_range (ecs);
6994 return;
6995 }
6996
6997 if (stop_pc_sal.line == 0)
6998 {
6999 /* We have no line number information. That means to stop
7000 stepping (does this always happen right after one instruction,
7001 when we do "s" in a function with no line numbers,
7002 or can this happen as a result of a return or longjmp?). */
7003 infrun_debug_printf ("line number info");
7004 end_stepping_range (ecs);
7005 return;
7006 }
7007
7008 /* Look for "calls" to inlined functions, part one. If the inline
7009 frame machinery detected some skipped call sites, we have entered
7010 a new inline function. */
7011
7012 if (frame_id_eq (get_frame_id (get_current_frame ()),
7013 ecs->event_thread->control.step_frame_id)
7014 && inline_skipped_frames (ecs->event_thread))
7015 {
7016 infrun_debug_printf ("stepped into inlined function");
7017
7018 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7019
7020 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7021 {
7022 /* For "step", we're going to stop. But if the call site
7023 for this inlined function is on the same source line as
7024 we were previously stepping, go down into the function
7025 first. Otherwise stop at the call site. */
7026
7027 if (call_sal.line == ecs->event_thread->current_line
7028 && call_sal.symtab == ecs->event_thread->current_symtab)
7029 {
7030 step_into_inline_frame (ecs->event_thread);
7031 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7032 {
7033 keep_going (ecs);
7034 return;
7035 }
7036 }
7037
7038 end_stepping_range (ecs);
7039 return;
7040 }
7041 else
7042 {
7043 /* For "next", we should stop at the call site if it is on a
7044 different source line. Otherwise continue through the
7045 inlined function. */
7046 if (call_sal.line == ecs->event_thread->current_line
7047 && call_sal.symtab == ecs->event_thread->current_symtab)
7048 keep_going (ecs);
7049 else
7050 end_stepping_range (ecs);
7051 return;
7052 }
7053 }
7054
7055 /* Look for "calls" to inlined functions, part two. If we are still
7056 in the same real function we were stepping through, but we have
7057 to go further up to find the exact frame ID, we are stepping
7058 through a more inlined call beyond its call site. */
7059
7060 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7061 && !frame_id_eq (get_frame_id (get_current_frame ()),
7062 ecs->event_thread->control.step_frame_id)
7063 && stepped_in_from (get_current_frame (),
7064 ecs->event_thread->control.step_frame_id))
7065 {
7066 infrun_debug_printf ("stepping through inlined function");
7067
7068 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7069 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7070 keep_going (ecs);
7071 else
7072 end_stepping_range (ecs);
7073 return;
7074 }
7075
7076 bool refresh_step_info = true;
7077 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7078 && (ecs->event_thread->current_line != stop_pc_sal.line
7079 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7080 {
7081 if (stop_pc_sal.is_stmt)
7082 {
7083 /* We are at the start of a different line. So stop. Note that
7084 we don't stop if we step into the middle of a different line.
7085 That is said to make things like for (;;) statements work
7086 better. */
7087 infrun_debug_printf ("stepped to a different line");
7088 end_stepping_range (ecs);
7089 return;
7090 }
7091 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7092 ecs->event_thread->control.step_frame_id))
7093 {
7094 /* We are at the start of a different line, however, this line is
7095 not marked as a statement, and we have not changed frame. We
7096 ignore this line table entry, and continue stepping forward,
7097 looking for a better place to stop. */
7098 refresh_step_info = false;
7099 infrun_debug_printf ("stepped to a different line, but "
7100 "it's not the start of a statement");
7101 }
7102 }
7103
7104 /* We aren't done stepping.
7105
7106 Optimize by setting the stepping range to the line.
7107 (We might not be in the original line, but if we entered a
7108 new line in mid-statement, we continue stepping. This makes
7109 things like for(;;) statements work better.)
7110
7111 If we entered a SAL that indicates a non-statement line table entry,
7112 then we update the stepping range, but we don't update the step info,
7113 which includes things like the line number we are stepping away from.
7114 This means we will stop when we find a line table entry that is marked
7115 as is-statement, even if it matches the non-statement one we just
7116 stepped into. */
7117
7118 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7119 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7120 ecs->event_thread->control.may_range_step = 1;
7121 if (refresh_step_info)
7122 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7123
7124 infrun_debug_printf ("keep going");
7125 keep_going (ecs);
7126 }
7127
7128 /* In all-stop mode, if we're currently stepping but have stopped in
7129 some other thread, we may need to switch back to the stepped
7130 thread. Returns true we set the inferior running, false if we left
7131 it stopped (and the event needs further processing). */
7132
7133 static bool
7134 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7135 {
7136 if (!target_is_non_stop_p ())
7137 {
7138 struct thread_info *stepping_thread;
7139
7140 /* If any thread is blocked on some internal breakpoint, and we
7141 simply need to step over that breakpoint to get it going
7142 again, do that first. */
7143
7144 /* However, if we see an event for the stepping thread, then we
7145 know all other threads have been moved past their breakpoints
7146 already. Let the caller check whether the step is finished,
7147 etc., before deciding to move it past a breakpoint. */
7148 if (ecs->event_thread->control.step_range_end != 0)
7149 return false;
7150
7151 /* Check if the current thread is blocked on an incomplete
7152 step-over, interrupted by a random signal. */
7153 if (ecs->event_thread->control.trap_expected
7154 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7155 {
7156 infrun_debug_printf
7157 ("need to finish step-over of [%s]",
7158 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7159 keep_going (ecs);
7160 return true;
7161 }
7162
7163 /* Check if the current thread is blocked by a single-step
7164 breakpoint of another thread. */
7165 if (ecs->hit_singlestep_breakpoint)
7166 {
7167 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7168 target_pid_to_str (ecs->ptid).c_str ());
7169 keep_going (ecs);
7170 return true;
7171 }
7172
7173 /* If this thread needs yet another step-over (e.g., stepping
7174 through a delay slot), do it first before moving on to
7175 another thread. */
7176 if (thread_still_needs_step_over (ecs->event_thread))
7177 {
7178 infrun_debug_printf
7179 ("thread [%s] still needs step-over",
7180 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7181 keep_going (ecs);
7182 return true;
7183 }
7184
7185 /* If scheduler locking applies even if not stepping, there's no
7186 need to walk over threads. Above we've checked whether the
7187 current thread is stepping. If some other thread not the
7188 event thread is stepping, then it must be that scheduler
7189 locking is not in effect. */
7190 if (schedlock_applies (ecs->event_thread))
7191 return false;
7192
7193 /* Otherwise, we no longer expect a trap in the current thread.
7194 Clear the trap_expected flag before switching back -- this is
7195 what keep_going does as well, if we call it. */
7196 ecs->event_thread->control.trap_expected = 0;
7197
7198 /* Likewise, clear the signal if it should not be passed. */
7199 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7200 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7201
7202 /* Do all pending step-overs before actually proceeding with
7203 step/next/etc. */
7204 if (start_step_over ())
7205 {
7206 prepare_to_wait (ecs);
7207 return true;
7208 }
7209
7210 /* Look for the stepping/nexting thread. */
7211 stepping_thread = NULL;
7212
7213 for (thread_info *tp : all_non_exited_threads ())
7214 {
7215 switch_to_thread_no_regs (tp);
7216
7217 /* Ignore threads of processes the caller is not
7218 resuming. */
7219 if (!sched_multi
7220 && (tp->inf->process_target () != ecs->target
7221 || tp->inf->pid != ecs->ptid.pid ()))
7222 continue;
7223
7224 /* When stepping over a breakpoint, we lock all threads
7225 except the one that needs to move past the breakpoint.
7226 If a non-event thread has this set, the "incomplete
7227 step-over" check above should have caught it earlier. */
7228 if (tp->control.trap_expected)
7229 {
7230 internal_error (__FILE__, __LINE__,
7231 "[%s] has inconsistent state: "
7232 "trap_expected=%d\n",
7233 target_pid_to_str (tp->ptid).c_str (),
7234 tp->control.trap_expected);
7235 }
7236
7237 /* Did we find the stepping thread? */
7238 if (tp->control.step_range_end)
7239 {
7240 /* Yep. There should only one though. */
7241 gdb_assert (stepping_thread == NULL);
7242
7243 /* The event thread is handled at the top, before we
7244 enter this loop. */
7245 gdb_assert (tp != ecs->event_thread);
7246
7247 /* If some thread other than the event thread is
7248 stepping, then scheduler locking can't be in effect,
7249 otherwise we wouldn't have resumed the current event
7250 thread in the first place. */
7251 gdb_assert (!schedlock_applies (tp));
7252
7253 stepping_thread = tp;
7254 }
7255 }
7256
7257 if (stepping_thread != NULL)
7258 {
7259 infrun_debug_printf ("switching back to stepped thread");
7260
7261 if (keep_going_stepped_thread (stepping_thread))
7262 {
7263 prepare_to_wait (ecs);
7264 return true;
7265 }
7266 }
7267
7268 switch_to_thread (ecs->event_thread);
7269 }
7270
7271 return false;
7272 }
7273
7274 /* Set a previously stepped thread back to stepping. Returns true on
7275 success, false if the resume is not possible (e.g., the thread
7276 vanished). */
7277
7278 static bool
7279 keep_going_stepped_thread (struct thread_info *tp)
7280 {
7281 struct frame_info *frame;
7282 struct execution_control_state ecss;
7283 struct execution_control_state *ecs = &ecss;
7284
7285 /* If the stepping thread exited, then don't try to switch back and
7286 resume it, which could fail in several different ways depending
7287 on the target. Instead, just keep going.
7288
7289 We can find a stepping dead thread in the thread list in two
7290 cases:
7291
7292 - The target supports thread exit events, and when the target
7293 tries to delete the thread from the thread list, inferior_ptid
7294 pointed at the exiting thread. In such case, calling
7295 delete_thread does not really remove the thread from the list;
7296 instead, the thread is left listed, with 'exited' state.
7297
7298 - The target's debug interface does not support thread exit
7299 events, and so we have no idea whatsoever if the previously
7300 stepping thread is still alive. For that reason, we need to
7301 synchronously query the target now. */
7302
7303 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7304 {
7305 infrun_debug_printf ("not resuming previously stepped thread, it has "
7306 "vanished");
7307
7308 delete_thread (tp);
7309 return false;
7310 }
7311
7312 infrun_debug_printf ("resuming previously stepped thread");
7313
7314 reset_ecs (ecs, tp);
7315 switch_to_thread (tp);
7316
7317 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7318 frame = get_current_frame ();
7319
7320 /* If the PC of the thread we were trying to single-step has
7321 changed, then that thread has trapped or been signaled, but the
7322 event has not been reported to GDB yet. Re-poll the target
7323 looking for this particular thread's event (i.e. temporarily
7324 enable schedlock) by:
7325
7326 - setting a break at the current PC
7327 - resuming that particular thread, only (by setting trap
7328 expected)
7329
7330 This prevents us continuously moving the single-step breakpoint
7331 forward, one instruction at a time, overstepping. */
7332
7333 if (tp->suspend.stop_pc != tp->prev_pc)
7334 {
7335 ptid_t resume_ptid;
7336
7337 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7338 paddress (target_gdbarch (), tp->prev_pc),
7339 paddress (target_gdbarch (), tp->suspend.stop_pc));
7340
7341 /* Clear the info of the previous step-over, as it's no longer
7342 valid (if the thread was trying to step over a breakpoint, it
7343 has already succeeded). It's what keep_going would do too,
7344 if we called it. Do this before trying to insert the sss
7345 breakpoint, otherwise if we were previously trying to step
7346 over this exact address in another thread, the breakpoint is
7347 skipped. */
7348 clear_step_over_info ();
7349 tp->control.trap_expected = 0;
7350
7351 insert_single_step_breakpoint (get_frame_arch (frame),
7352 get_frame_address_space (frame),
7353 tp->suspend.stop_pc);
7354
7355 tp->resumed = true;
7356 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7357 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
7358 }
7359 else
7360 {
7361 infrun_debug_printf ("expected thread still hasn't advanced");
7362
7363 keep_going_pass_signal (ecs);
7364 }
7365
7366 return true;
7367 }
7368
7369 /* Is thread TP in the middle of (software or hardware)
7370 single-stepping? (Note the result of this function must never be
7371 passed directly as target_resume's STEP parameter.) */
7372
7373 static bool
7374 currently_stepping (struct thread_info *tp)
7375 {
7376 return ((tp->control.step_range_end
7377 && tp->control.step_resume_breakpoint == NULL)
7378 || tp->control.trap_expected
7379 || tp->stepped_breakpoint
7380 || bpstat_should_step ());
7381 }
7382
7383 /* Inferior has stepped into a subroutine call with source code that
7384 we should not step over. Do step to the first line of code in
7385 it. */
7386
7387 static void
7388 handle_step_into_function (struct gdbarch *gdbarch,
7389 struct execution_control_state *ecs)
7390 {
7391 fill_in_stop_func (gdbarch, ecs);
7392
7393 compunit_symtab *cust
7394 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7395 if (cust != NULL && compunit_language (cust) != language_asm)
7396 ecs->stop_func_start
7397 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7398
7399 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7400 /* Use the step_resume_break to step until the end of the prologue,
7401 even if that involves jumps (as it seems to on the vax under
7402 4.2). */
7403 /* If the prologue ends in the middle of a source line, continue to
7404 the end of that source line (if it is still within the function).
7405 Otherwise, just go to end of prologue. */
7406 if (stop_func_sal.end
7407 && stop_func_sal.pc != ecs->stop_func_start
7408 && stop_func_sal.end < ecs->stop_func_end)
7409 ecs->stop_func_start = stop_func_sal.end;
7410
7411 /* Architectures which require breakpoint adjustment might not be able
7412 to place a breakpoint at the computed address. If so, the test
7413 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7414 ecs->stop_func_start to an address at which a breakpoint may be
7415 legitimately placed.
7416
7417 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7418 made, GDB will enter an infinite loop when stepping through
7419 optimized code consisting of VLIW instructions which contain
7420 subinstructions corresponding to different source lines. On
7421 FR-V, it's not permitted to place a breakpoint on any but the
7422 first subinstruction of a VLIW instruction. When a breakpoint is
7423 set, GDB will adjust the breakpoint address to the beginning of
7424 the VLIW instruction. Thus, we need to make the corresponding
7425 adjustment here when computing the stop address. */
7426
7427 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7428 {
7429 ecs->stop_func_start
7430 = gdbarch_adjust_breakpoint_address (gdbarch,
7431 ecs->stop_func_start);
7432 }
7433
7434 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7435 {
7436 /* We are already there: stop now. */
7437 end_stepping_range (ecs);
7438 return;
7439 }
7440 else
7441 {
7442 /* Put the step-breakpoint there and go until there. */
7443 symtab_and_line sr_sal;
7444 sr_sal.pc = ecs->stop_func_start;
7445 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7446 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7447
7448 /* Do not specify what the fp should be when we stop since on
7449 some machines the prologue is where the new fp value is
7450 established. */
7451 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7452
7453 /* And make sure stepping stops right away then. */
7454 ecs->event_thread->control.step_range_end
7455 = ecs->event_thread->control.step_range_start;
7456 }
7457 keep_going (ecs);
7458 }
7459
7460 /* Inferior has stepped backward into a subroutine call with source
7461 code that we should not step over. Do step to the beginning of the
7462 last line of code in it. */
7463
7464 static void
7465 handle_step_into_function_backward (struct gdbarch *gdbarch,
7466 struct execution_control_state *ecs)
7467 {
7468 struct compunit_symtab *cust;
7469 struct symtab_and_line stop_func_sal;
7470
7471 fill_in_stop_func (gdbarch, ecs);
7472
7473 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7474 if (cust != NULL && compunit_language (cust) != language_asm)
7475 ecs->stop_func_start
7476 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7477
7478 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7479
7480 /* OK, we're just going to keep stepping here. */
7481 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7482 {
7483 /* We're there already. Just stop stepping now. */
7484 end_stepping_range (ecs);
7485 }
7486 else
7487 {
7488 /* Else just reset the step range and keep going.
7489 No step-resume breakpoint, they don't work for
7490 epilogues, which can have multiple entry paths. */
7491 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7492 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7493 keep_going (ecs);
7494 }
7495 return;
7496 }
7497
7498 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7499 This is used to both functions and to skip over code. */
7500
7501 static void
7502 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7503 struct symtab_and_line sr_sal,
7504 struct frame_id sr_id,
7505 enum bptype sr_type)
7506 {
7507 /* There should never be more than one step-resume or longjmp-resume
7508 breakpoint per thread, so we should never be setting a new
7509 step_resume_breakpoint when one is already active. */
7510 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7511 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7512
7513 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7514 paddress (gdbarch, sr_sal.pc));
7515
7516 inferior_thread ()->control.step_resume_breakpoint
7517 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7518 }
7519
7520 void
7521 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7522 struct symtab_and_line sr_sal,
7523 struct frame_id sr_id)
7524 {
7525 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7526 sr_sal, sr_id,
7527 bp_step_resume);
7528 }
7529
7530 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7531 This is used to skip a potential signal handler.
7532
7533 This is called with the interrupted function's frame. The signal
7534 handler, when it returns, will resume the interrupted function at
7535 RETURN_FRAME.pc. */
7536
7537 static void
7538 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7539 {
7540 gdb_assert (return_frame != NULL);
7541
7542 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7543
7544 symtab_and_line sr_sal;
7545 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7546 sr_sal.section = find_pc_overlay (sr_sal.pc);
7547 sr_sal.pspace = get_frame_program_space (return_frame);
7548
7549 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7550 get_stack_frame_id (return_frame),
7551 bp_hp_step_resume);
7552 }
7553
7554 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7555 is used to skip a function after stepping into it (for "next" or if
7556 the called function has no debugging information).
7557
7558 The current function has almost always been reached by single
7559 stepping a call or return instruction. NEXT_FRAME belongs to the
7560 current function, and the breakpoint will be set at the caller's
7561 resume address.
7562
7563 This is a separate function rather than reusing
7564 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7565 get_prev_frame, which may stop prematurely (see the implementation
7566 of frame_unwind_caller_id for an example). */
7567
7568 static void
7569 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7570 {
7571 /* We shouldn't have gotten here if we don't know where the call site
7572 is. */
7573 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7574
7575 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7576
7577 symtab_and_line sr_sal;
7578 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7579 frame_unwind_caller_pc (next_frame));
7580 sr_sal.section = find_pc_overlay (sr_sal.pc);
7581 sr_sal.pspace = frame_unwind_program_space (next_frame);
7582
7583 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7584 frame_unwind_caller_id (next_frame));
7585 }
7586
7587 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7588 new breakpoint at the target of a jmp_buf. The handling of
7589 longjmp-resume uses the same mechanisms used for handling
7590 "step-resume" breakpoints. */
7591
7592 static void
7593 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7594 {
7595 /* There should never be more than one longjmp-resume breakpoint per
7596 thread, so we should never be setting a new
7597 longjmp_resume_breakpoint when one is already active. */
7598 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7599
7600 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7601 paddress (gdbarch, pc));
7602
7603 inferior_thread ()->control.exception_resume_breakpoint =
7604 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7605 }
7606
7607 /* Insert an exception resume breakpoint. TP is the thread throwing
7608 the exception. The block B is the block of the unwinder debug hook
7609 function. FRAME is the frame corresponding to the call to this
7610 function. SYM is the symbol of the function argument holding the
7611 target PC of the exception. */
7612
7613 static void
7614 insert_exception_resume_breakpoint (struct thread_info *tp,
7615 const struct block *b,
7616 struct frame_info *frame,
7617 struct symbol *sym)
7618 {
7619 try
7620 {
7621 struct block_symbol vsym;
7622 struct value *value;
7623 CORE_ADDR handler;
7624 struct breakpoint *bp;
7625
7626 vsym = lookup_symbol_search_name (sym->search_name (),
7627 b, VAR_DOMAIN);
7628 value = read_var_value (vsym.symbol, vsym.block, frame);
7629 /* If the value was optimized out, revert to the old behavior. */
7630 if (! value_optimized_out (value))
7631 {
7632 handler = value_as_address (value);
7633
7634 infrun_debug_printf ("exception resume at %lx",
7635 (unsigned long) handler);
7636
7637 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7638 handler,
7639 bp_exception_resume).release ();
7640
7641 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7642 frame = NULL;
7643
7644 bp->thread = tp->global_num;
7645 inferior_thread ()->control.exception_resume_breakpoint = bp;
7646 }
7647 }
7648 catch (const gdb_exception_error &e)
7649 {
7650 /* We want to ignore errors here. */
7651 }
7652 }
7653
7654 /* A helper for check_exception_resume that sets an
7655 exception-breakpoint based on a SystemTap probe. */
7656
7657 static void
7658 insert_exception_resume_from_probe (struct thread_info *tp,
7659 const struct bound_probe *probe,
7660 struct frame_info *frame)
7661 {
7662 struct value *arg_value;
7663 CORE_ADDR handler;
7664 struct breakpoint *bp;
7665
7666 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7667 if (!arg_value)
7668 return;
7669
7670 handler = value_as_address (arg_value);
7671
7672 infrun_debug_printf ("exception resume at %s",
7673 paddress (probe->objfile->arch (), handler));
7674
7675 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7676 handler, bp_exception_resume).release ();
7677 bp->thread = tp->global_num;
7678 inferior_thread ()->control.exception_resume_breakpoint = bp;
7679 }
7680
7681 /* This is called when an exception has been intercepted. Check to
7682 see whether the exception's destination is of interest, and if so,
7683 set an exception resume breakpoint there. */
7684
7685 static void
7686 check_exception_resume (struct execution_control_state *ecs,
7687 struct frame_info *frame)
7688 {
7689 struct bound_probe probe;
7690 struct symbol *func;
7691
7692 /* First see if this exception unwinding breakpoint was set via a
7693 SystemTap probe point. If so, the probe has two arguments: the
7694 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7695 set a breakpoint there. */
7696 probe = find_probe_by_pc (get_frame_pc (frame));
7697 if (probe.prob)
7698 {
7699 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7700 return;
7701 }
7702
7703 func = get_frame_function (frame);
7704 if (!func)
7705 return;
7706
7707 try
7708 {
7709 const struct block *b;
7710 struct block_iterator iter;
7711 struct symbol *sym;
7712 int argno = 0;
7713
7714 /* The exception breakpoint is a thread-specific breakpoint on
7715 the unwinder's debug hook, declared as:
7716
7717 void _Unwind_DebugHook (void *cfa, void *handler);
7718
7719 The CFA argument indicates the frame to which control is
7720 about to be transferred. HANDLER is the destination PC.
7721
7722 We ignore the CFA and set a temporary breakpoint at HANDLER.
7723 This is not extremely efficient but it avoids issues in gdb
7724 with computing the DWARF CFA, and it also works even in weird
7725 cases such as throwing an exception from inside a signal
7726 handler. */
7727
7728 b = SYMBOL_BLOCK_VALUE (func);
7729 ALL_BLOCK_SYMBOLS (b, iter, sym)
7730 {
7731 if (!SYMBOL_IS_ARGUMENT (sym))
7732 continue;
7733
7734 if (argno == 0)
7735 ++argno;
7736 else
7737 {
7738 insert_exception_resume_breakpoint (ecs->event_thread,
7739 b, frame, sym);
7740 break;
7741 }
7742 }
7743 }
7744 catch (const gdb_exception_error &e)
7745 {
7746 }
7747 }
7748
7749 static void
7750 stop_waiting (struct execution_control_state *ecs)
7751 {
7752 infrun_debug_printf ("stop_waiting");
7753
7754 /* Let callers know we don't want to wait for the inferior anymore. */
7755 ecs->wait_some_more = 0;
7756
7757 /* If all-stop, but there exists a non-stop target, stop all
7758 threads now that we're presenting the stop to the user. */
7759 if (!non_stop && exists_non_stop_target ())
7760 stop_all_threads ();
7761 }
7762
7763 /* Like keep_going, but passes the signal to the inferior, even if the
7764 signal is set to nopass. */
7765
7766 static void
7767 keep_going_pass_signal (struct execution_control_state *ecs)
7768 {
7769 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7770 gdb_assert (!ecs->event_thread->resumed);
7771
7772 /* Save the pc before execution, to compare with pc after stop. */
7773 ecs->event_thread->prev_pc
7774 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
7775
7776 if (ecs->event_thread->control.trap_expected)
7777 {
7778 struct thread_info *tp = ecs->event_thread;
7779
7780 infrun_debug_printf ("%s has trap_expected set, "
7781 "resuming to collect trap",
7782 target_pid_to_str (tp->ptid).c_str ());
7783
7784 /* We haven't yet gotten our trap, and either: intercepted a
7785 non-signal event (e.g., a fork); or took a signal which we
7786 are supposed to pass through to the inferior. Simply
7787 continue. */
7788 resume (ecs->event_thread->suspend.stop_signal);
7789 }
7790 else if (step_over_info_valid_p ())
7791 {
7792 /* Another thread is stepping over a breakpoint in-line. If
7793 this thread needs a step-over too, queue the request. In
7794 either case, this resume must be deferred for later. */
7795 struct thread_info *tp = ecs->event_thread;
7796
7797 if (ecs->hit_singlestep_breakpoint
7798 || thread_still_needs_step_over (tp))
7799 {
7800 infrun_debug_printf ("step-over already in progress: "
7801 "step-over for %s deferred",
7802 target_pid_to_str (tp->ptid).c_str ());
7803 thread_step_over_chain_enqueue (tp);
7804 }
7805 else
7806 {
7807 infrun_debug_printf ("step-over in progress: resume of %s deferred",
7808 target_pid_to_str (tp->ptid).c_str ());
7809 }
7810 }
7811 else
7812 {
7813 struct regcache *regcache = get_current_regcache ();
7814 int remove_bp;
7815 int remove_wps;
7816 step_over_what step_what;
7817
7818 /* Either the trap was not expected, but we are continuing
7819 anyway (if we got a signal, the user asked it be passed to
7820 the child)
7821 -- or --
7822 We got our expected trap, but decided we should resume from
7823 it.
7824
7825 We're going to run this baby now!
7826
7827 Note that insert_breakpoints won't try to re-insert
7828 already inserted breakpoints. Therefore, we don't
7829 care if breakpoints were already inserted, or not. */
7830
7831 /* If we need to step over a breakpoint, and we're not using
7832 displaced stepping to do so, insert all breakpoints
7833 (watchpoints, etc.) but the one we're stepping over, step one
7834 instruction, and then re-insert the breakpoint when that step
7835 is finished. */
7836
7837 step_what = thread_still_needs_step_over (ecs->event_thread);
7838
7839 remove_bp = (ecs->hit_singlestep_breakpoint
7840 || (step_what & STEP_OVER_BREAKPOINT));
7841 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7842
7843 /* We can't use displaced stepping if we need to step past a
7844 watchpoint. The instruction copied to the scratch pad would
7845 still trigger the watchpoint. */
7846 if (remove_bp
7847 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7848 {
7849 set_step_over_info (regcache->aspace (),
7850 regcache_read_pc (regcache), remove_wps,
7851 ecs->event_thread->global_num);
7852 }
7853 else if (remove_wps)
7854 set_step_over_info (NULL, 0, remove_wps, -1);
7855
7856 /* If we now need to do an in-line step-over, we need to stop
7857 all other threads. Note this must be done before
7858 insert_breakpoints below, because that removes the breakpoint
7859 we're about to step over, otherwise other threads could miss
7860 it. */
7861 if (step_over_info_valid_p () && target_is_non_stop_p ())
7862 stop_all_threads ();
7863
7864 /* Stop stepping if inserting breakpoints fails. */
7865 try
7866 {
7867 insert_breakpoints ();
7868 }
7869 catch (const gdb_exception_error &e)
7870 {
7871 exception_print (gdb_stderr, e);
7872 stop_waiting (ecs);
7873 clear_step_over_info ();
7874 return;
7875 }
7876
7877 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7878
7879 resume (ecs->event_thread->suspend.stop_signal);
7880 }
7881
7882 prepare_to_wait (ecs);
7883 }
7884
7885 /* Called when we should continue running the inferior, because the
7886 current event doesn't cause a user visible stop. This does the
7887 resuming part; waiting for the next event is done elsewhere. */
7888
7889 static void
7890 keep_going (struct execution_control_state *ecs)
7891 {
7892 if (ecs->event_thread->control.trap_expected
7893 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7894 ecs->event_thread->control.trap_expected = 0;
7895
7896 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7897 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7898 keep_going_pass_signal (ecs);
7899 }
7900
7901 /* This function normally comes after a resume, before
7902 handle_inferior_event exits. It takes care of any last bits of
7903 housekeeping, and sets the all-important wait_some_more flag. */
7904
7905 static void
7906 prepare_to_wait (struct execution_control_state *ecs)
7907 {
7908 infrun_debug_printf ("prepare_to_wait");
7909
7910 ecs->wait_some_more = 1;
7911
7912 /* If the target can't async, emulate it by marking the infrun event
7913 handler such that as soon as we get back to the event-loop, we
7914 immediately end up in fetch_inferior_event again calling
7915 target_wait. */
7916 if (!target_can_async_p ())
7917 mark_infrun_async_event_handler ();
7918 }
7919
7920 /* We are done with the step range of a step/next/si/ni command.
7921 Called once for each n of a "step n" operation. */
7922
7923 static void
7924 end_stepping_range (struct execution_control_state *ecs)
7925 {
7926 ecs->event_thread->control.stop_step = 1;
7927 stop_waiting (ecs);
7928 }
7929
7930 /* Several print_*_reason functions to print why the inferior has stopped.
7931 We always print something when the inferior exits, or receives a signal.
7932 The rest of the cases are dealt with later on in normal_stop and
7933 print_it_typical. Ideally there should be a call to one of these
7934 print_*_reason functions functions from handle_inferior_event each time
7935 stop_waiting is called.
7936
7937 Note that we don't call these directly, instead we delegate that to
7938 the interpreters, through observers. Interpreters then call these
7939 with whatever uiout is right. */
7940
7941 void
7942 print_end_stepping_range_reason (struct ui_out *uiout)
7943 {
7944 /* For CLI-like interpreters, print nothing. */
7945
7946 if (uiout->is_mi_like_p ())
7947 {
7948 uiout->field_string ("reason",
7949 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7950 }
7951 }
7952
7953 void
7954 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7955 {
7956 annotate_signalled ();
7957 if (uiout->is_mi_like_p ())
7958 uiout->field_string
7959 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7960 uiout->text ("\nProgram terminated with signal ");
7961 annotate_signal_name ();
7962 uiout->field_string ("signal-name",
7963 gdb_signal_to_name (siggnal));
7964 annotate_signal_name_end ();
7965 uiout->text (", ");
7966 annotate_signal_string ();
7967 uiout->field_string ("signal-meaning",
7968 gdb_signal_to_string (siggnal));
7969 annotate_signal_string_end ();
7970 uiout->text (".\n");
7971 uiout->text ("The program no longer exists.\n");
7972 }
7973
7974 void
7975 print_exited_reason (struct ui_out *uiout, int exitstatus)
7976 {
7977 struct inferior *inf = current_inferior ();
7978 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7979
7980 annotate_exited (exitstatus);
7981 if (exitstatus)
7982 {
7983 if (uiout->is_mi_like_p ())
7984 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7985 std::string exit_code_str
7986 = string_printf ("0%o", (unsigned int) exitstatus);
7987 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7988 plongest (inf->num), pidstr.c_str (),
7989 string_field ("exit-code", exit_code_str.c_str ()));
7990 }
7991 else
7992 {
7993 if (uiout->is_mi_like_p ())
7994 uiout->field_string
7995 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7996 uiout->message ("[Inferior %s (%s) exited normally]\n",
7997 plongest (inf->num), pidstr.c_str ());
7998 }
7999 }
8000
8001 void
8002 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8003 {
8004 struct thread_info *thr = inferior_thread ();
8005
8006 annotate_signal ();
8007
8008 if (uiout->is_mi_like_p ())
8009 ;
8010 else if (show_thread_that_caused_stop ())
8011 {
8012 const char *name;
8013
8014 uiout->text ("\nThread ");
8015 uiout->field_string ("thread-id", print_thread_id (thr));
8016
8017 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8018 if (name != NULL)
8019 {
8020 uiout->text (" \"");
8021 uiout->field_string ("name", name);
8022 uiout->text ("\"");
8023 }
8024 }
8025 else
8026 uiout->text ("\nProgram");
8027
8028 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8029 uiout->text (" stopped");
8030 else
8031 {
8032 uiout->text (" received signal ");
8033 annotate_signal_name ();
8034 if (uiout->is_mi_like_p ())
8035 uiout->field_string
8036 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8037 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8038 annotate_signal_name_end ();
8039 uiout->text (", ");
8040 annotate_signal_string ();
8041 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8042
8043 struct regcache *regcache = get_current_regcache ();
8044 struct gdbarch *gdbarch = regcache->arch ();
8045 if (gdbarch_report_signal_info_p (gdbarch))
8046 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8047
8048 annotate_signal_string_end ();
8049 }
8050 uiout->text (".\n");
8051 }
8052
8053 void
8054 print_no_history_reason (struct ui_out *uiout)
8055 {
8056 uiout->text ("\nNo more reverse-execution history.\n");
8057 }
8058
8059 /* Print current location without a level number, if we have changed
8060 functions or hit a breakpoint. Print source line if we have one.
8061 bpstat_print contains the logic deciding in detail what to print,
8062 based on the event(s) that just occurred. */
8063
8064 static void
8065 print_stop_location (struct target_waitstatus *ws)
8066 {
8067 int bpstat_ret;
8068 enum print_what source_flag;
8069 int do_frame_printing = 1;
8070 struct thread_info *tp = inferior_thread ();
8071
8072 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8073 switch (bpstat_ret)
8074 {
8075 case PRINT_UNKNOWN:
8076 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8077 should) carry around the function and does (or should) use
8078 that when doing a frame comparison. */
8079 if (tp->control.stop_step
8080 && frame_id_eq (tp->control.step_frame_id,
8081 get_frame_id (get_current_frame ()))
8082 && (tp->control.step_start_function
8083 == find_pc_function (tp->suspend.stop_pc)))
8084 {
8085 /* Finished step, just print source line. */
8086 source_flag = SRC_LINE;
8087 }
8088 else
8089 {
8090 /* Print location and source line. */
8091 source_flag = SRC_AND_LOC;
8092 }
8093 break;
8094 case PRINT_SRC_AND_LOC:
8095 /* Print location and source line. */
8096 source_flag = SRC_AND_LOC;
8097 break;
8098 case PRINT_SRC_ONLY:
8099 source_flag = SRC_LINE;
8100 break;
8101 case PRINT_NOTHING:
8102 /* Something bogus. */
8103 source_flag = SRC_LINE;
8104 do_frame_printing = 0;
8105 break;
8106 default:
8107 internal_error (__FILE__, __LINE__, _("Unknown value."));
8108 }
8109
8110 /* The behavior of this routine with respect to the source
8111 flag is:
8112 SRC_LINE: Print only source line
8113 LOCATION: Print only location
8114 SRC_AND_LOC: Print location and source line. */
8115 if (do_frame_printing)
8116 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8117 }
8118
8119 /* See infrun.h. */
8120
8121 void
8122 print_stop_event (struct ui_out *uiout, bool displays)
8123 {
8124 struct target_waitstatus last;
8125 struct thread_info *tp;
8126
8127 get_last_target_status (nullptr, nullptr, &last);
8128
8129 {
8130 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8131
8132 print_stop_location (&last);
8133
8134 /* Display the auto-display expressions. */
8135 if (displays)
8136 do_displays ();
8137 }
8138
8139 tp = inferior_thread ();
8140 if (tp->thread_fsm != NULL
8141 && tp->thread_fsm->finished_p ())
8142 {
8143 struct return_value_info *rv;
8144
8145 rv = tp->thread_fsm->return_value ();
8146 if (rv != NULL)
8147 print_return_value (uiout, rv);
8148 }
8149 }
8150
8151 /* See infrun.h. */
8152
8153 void
8154 maybe_remove_breakpoints (void)
8155 {
8156 if (!breakpoints_should_be_inserted_now () && target_has_execution ())
8157 {
8158 if (remove_breakpoints ())
8159 {
8160 target_terminal::ours_for_output ();
8161 printf_filtered (_("Cannot remove breakpoints because "
8162 "program is no longer writable.\nFurther "
8163 "execution is probably impossible.\n"));
8164 }
8165 }
8166 }
8167
8168 /* The execution context that just caused a normal stop. */
8169
8170 struct stop_context
8171 {
8172 stop_context ();
8173 ~stop_context ();
8174
8175 DISABLE_COPY_AND_ASSIGN (stop_context);
8176
8177 bool changed () const;
8178
8179 /* The stop ID. */
8180 ULONGEST stop_id;
8181
8182 /* The event PTID. */
8183
8184 ptid_t ptid;
8185
8186 /* If stopp for a thread event, this is the thread that caused the
8187 stop. */
8188 struct thread_info *thread;
8189
8190 /* The inferior that caused the stop. */
8191 int inf_num;
8192 };
8193
8194 /* Initializes a new stop context. If stopped for a thread event, this
8195 takes a strong reference to the thread. */
8196
8197 stop_context::stop_context ()
8198 {
8199 stop_id = get_stop_id ();
8200 ptid = inferior_ptid;
8201 inf_num = current_inferior ()->num;
8202
8203 if (inferior_ptid != null_ptid)
8204 {
8205 /* Take a strong reference so that the thread can't be deleted
8206 yet. */
8207 thread = inferior_thread ();
8208 thread->incref ();
8209 }
8210 else
8211 thread = NULL;
8212 }
8213
8214 /* Release a stop context previously created with save_stop_context.
8215 Releases the strong reference to the thread as well. */
8216
8217 stop_context::~stop_context ()
8218 {
8219 if (thread != NULL)
8220 thread->decref ();
8221 }
8222
8223 /* Return true if the current context no longer matches the saved stop
8224 context. */
8225
8226 bool
8227 stop_context::changed () const
8228 {
8229 if (ptid != inferior_ptid)
8230 return true;
8231 if (inf_num != current_inferior ()->num)
8232 return true;
8233 if (thread != NULL && thread->state != THREAD_STOPPED)
8234 return true;
8235 if (get_stop_id () != stop_id)
8236 return true;
8237 return false;
8238 }
8239
8240 /* See infrun.h. */
8241
8242 int
8243 normal_stop (void)
8244 {
8245 struct target_waitstatus last;
8246
8247 get_last_target_status (nullptr, nullptr, &last);
8248
8249 new_stop_id ();
8250
8251 /* If an exception is thrown from this point on, make sure to
8252 propagate GDB's knowledge of the executing state to the
8253 frontend/user running state. A QUIT is an easy exception to see
8254 here, so do this before any filtered output. */
8255
8256 ptid_t finish_ptid = null_ptid;
8257
8258 if (!non_stop)
8259 finish_ptid = minus_one_ptid;
8260 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8261 || last.kind == TARGET_WAITKIND_EXITED)
8262 {
8263 /* On some targets, we may still have live threads in the
8264 inferior when we get a process exit event. E.g., for
8265 "checkpoint", when the current checkpoint/fork exits,
8266 linux-fork.c automatically switches to another fork from
8267 within target_mourn_inferior. */
8268 if (inferior_ptid != null_ptid)
8269 finish_ptid = ptid_t (inferior_ptid.pid ());
8270 }
8271 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8272 finish_ptid = inferior_ptid;
8273
8274 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8275 if (finish_ptid != null_ptid)
8276 {
8277 maybe_finish_thread_state.emplace
8278 (user_visible_resume_target (finish_ptid), finish_ptid);
8279 }
8280
8281 /* As we're presenting a stop, and potentially removing breakpoints,
8282 update the thread list so we can tell whether there are threads
8283 running on the target. With target remote, for example, we can
8284 only learn about new threads when we explicitly update the thread
8285 list. Do this before notifying the interpreters about signal
8286 stops, end of stepping ranges, etc., so that the "new thread"
8287 output is emitted before e.g., "Program received signal FOO",
8288 instead of after. */
8289 update_thread_list ();
8290
8291 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8292 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8293
8294 /* As with the notification of thread events, we want to delay
8295 notifying the user that we've switched thread context until
8296 the inferior actually stops.
8297
8298 There's no point in saying anything if the inferior has exited.
8299 Note that SIGNALLED here means "exited with a signal", not
8300 "received a signal".
8301
8302 Also skip saying anything in non-stop mode. In that mode, as we
8303 don't want GDB to switch threads behind the user's back, to avoid
8304 races where the user is typing a command to apply to thread x,
8305 but GDB switches to thread y before the user finishes entering
8306 the command, fetch_inferior_event installs a cleanup to restore
8307 the current thread back to the thread the user had selected right
8308 after this event is handled, so we're not really switching, only
8309 informing of a stop. */
8310 if (!non_stop
8311 && previous_inferior_ptid != inferior_ptid
8312 && target_has_execution ()
8313 && last.kind != TARGET_WAITKIND_SIGNALLED
8314 && last.kind != TARGET_WAITKIND_EXITED
8315 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8316 {
8317 SWITCH_THRU_ALL_UIS ()
8318 {
8319 target_terminal::ours_for_output ();
8320 printf_filtered (_("[Switching to %s]\n"),
8321 target_pid_to_str (inferior_ptid).c_str ());
8322 annotate_thread_changed ();
8323 }
8324 previous_inferior_ptid = inferior_ptid;
8325 }
8326
8327 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8328 {
8329 SWITCH_THRU_ALL_UIS ()
8330 if (current_ui->prompt_state == PROMPT_BLOCKED)
8331 {
8332 target_terminal::ours_for_output ();
8333 printf_filtered (_("No unwaited-for children left.\n"));
8334 }
8335 }
8336
8337 /* Note: this depends on the update_thread_list call above. */
8338 maybe_remove_breakpoints ();
8339
8340 /* If an auto-display called a function and that got a signal,
8341 delete that auto-display to avoid an infinite recursion. */
8342
8343 if (stopped_by_random_signal)
8344 disable_current_display ();
8345
8346 SWITCH_THRU_ALL_UIS ()
8347 {
8348 async_enable_stdin ();
8349 }
8350
8351 /* Let the user/frontend see the threads as stopped. */
8352 maybe_finish_thread_state.reset ();
8353
8354 /* Select innermost stack frame - i.e., current frame is frame 0,
8355 and current location is based on that. Handle the case where the
8356 dummy call is returning after being stopped. E.g. the dummy call
8357 previously hit a breakpoint. (If the dummy call returns
8358 normally, we won't reach here.) Do this before the stop hook is
8359 run, so that it doesn't get to see the temporary dummy frame,
8360 which is not where we'll present the stop. */
8361 if (has_stack_frames ())
8362 {
8363 if (stop_stack_dummy == STOP_STACK_DUMMY)
8364 {
8365 /* Pop the empty frame that contains the stack dummy. This
8366 also restores inferior state prior to the call (struct
8367 infcall_suspend_state). */
8368 struct frame_info *frame = get_current_frame ();
8369
8370 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8371 frame_pop (frame);
8372 /* frame_pop calls reinit_frame_cache as the last thing it
8373 does which means there's now no selected frame. */
8374 }
8375
8376 select_frame (get_current_frame ());
8377
8378 /* Set the current source location. */
8379 set_current_sal_from_frame (get_current_frame ());
8380 }
8381
8382 /* Look up the hook_stop and run it (CLI internally handles problem
8383 of stop_command's pre-hook not existing). */
8384 if (stop_command != NULL)
8385 {
8386 stop_context saved_context;
8387
8388 try
8389 {
8390 execute_cmd_pre_hook (stop_command);
8391 }
8392 catch (const gdb_exception &ex)
8393 {
8394 exception_fprintf (gdb_stderr, ex,
8395 "Error while running hook_stop:\n");
8396 }
8397
8398 /* If the stop hook resumes the target, then there's no point in
8399 trying to notify about the previous stop; its context is
8400 gone. Likewise if the command switches thread or inferior --
8401 the observers would print a stop for the wrong
8402 thread/inferior. */
8403 if (saved_context.changed ())
8404 return 1;
8405 }
8406
8407 /* Notify observers about the stop. This is where the interpreters
8408 print the stop event. */
8409 if (inferior_ptid != null_ptid)
8410 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8411 stop_print_frame);
8412 else
8413 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8414
8415 annotate_stopped ();
8416
8417 if (target_has_execution ())
8418 {
8419 if (last.kind != TARGET_WAITKIND_SIGNALLED
8420 && last.kind != TARGET_WAITKIND_EXITED
8421 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8422 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8423 Delete any breakpoint that is to be deleted at the next stop. */
8424 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8425 }
8426
8427 /* Try to get rid of automatically added inferiors that are no
8428 longer needed. Keeping those around slows down things linearly.
8429 Note that this never removes the current inferior. */
8430 prune_inferiors ();
8431
8432 return 0;
8433 }
8434 \f
8435 int
8436 signal_stop_state (int signo)
8437 {
8438 return signal_stop[signo];
8439 }
8440
8441 int
8442 signal_print_state (int signo)
8443 {
8444 return signal_print[signo];
8445 }
8446
8447 int
8448 signal_pass_state (int signo)
8449 {
8450 return signal_program[signo];
8451 }
8452
8453 static void
8454 signal_cache_update (int signo)
8455 {
8456 if (signo == -1)
8457 {
8458 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8459 signal_cache_update (signo);
8460
8461 return;
8462 }
8463
8464 signal_pass[signo] = (signal_stop[signo] == 0
8465 && signal_print[signo] == 0
8466 && signal_program[signo] == 1
8467 && signal_catch[signo] == 0);
8468 }
8469
8470 int
8471 signal_stop_update (int signo, int state)
8472 {
8473 int ret = signal_stop[signo];
8474
8475 signal_stop[signo] = state;
8476 signal_cache_update (signo);
8477 return ret;
8478 }
8479
8480 int
8481 signal_print_update (int signo, int state)
8482 {
8483 int ret = signal_print[signo];
8484
8485 signal_print[signo] = state;
8486 signal_cache_update (signo);
8487 return ret;
8488 }
8489
8490 int
8491 signal_pass_update (int signo, int state)
8492 {
8493 int ret = signal_program[signo];
8494
8495 signal_program[signo] = state;
8496 signal_cache_update (signo);
8497 return ret;
8498 }
8499
8500 /* Update the global 'signal_catch' from INFO and notify the
8501 target. */
8502
8503 void
8504 signal_catch_update (const unsigned int *info)
8505 {
8506 int i;
8507
8508 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8509 signal_catch[i] = info[i] > 0;
8510 signal_cache_update (-1);
8511 target_pass_signals (signal_pass);
8512 }
8513
8514 static void
8515 sig_print_header (void)
8516 {
8517 printf_filtered (_("Signal Stop\tPrint\tPass "
8518 "to program\tDescription\n"));
8519 }
8520
8521 static void
8522 sig_print_info (enum gdb_signal oursig)
8523 {
8524 const char *name = gdb_signal_to_name (oursig);
8525 int name_padding = 13 - strlen (name);
8526
8527 if (name_padding <= 0)
8528 name_padding = 0;
8529
8530 printf_filtered ("%s", name);
8531 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8532 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8533 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8534 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8535 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8536 }
8537
8538 /* Specify how various signals in the inferior should be handled. */
8539
8540 static void
8541 handle_command (const char *args, int from_tty)
8542 {
8543 int digits, wordlen;
8544 int sigfirst, siglast;
8545 enum gdb_signal oursig;
8546 int allsigs;
8547
8548 if (args == NULL)
8549 {
8550 error_no_arg (_("signal to handle"));
8551 }
8552
8553 /* Allocate and zero an array of flags for which signals to handle. */
8554
8555 const size_t nsigs = GDB_SIGNAL_LAST;
8556 unsigned char sigs[nsigs] {};
8557
8558 /* Break the command line up into args. */
8559
8560 gdb_argv built_argv (args);
8561
8562 /* Walk through the args, looking for signal oursigs, signal names, and
8563 actions. Signal numbers and signal names may be interspersed with
8564 actions, with the actions being performed for all signals cumulatively
8565 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8566
8567 for (char *arg : built_argv)
8568 {
8569 wordlen = strlen (arg);
8570 for (digits = 0; isdigit (arg[digits]); digits++)
8571 {;
8572 }
8573 allsigs = 0;
8574 sigfirst = siglast = -1;
8575
8576 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8577 {
8578 /* Apply action to all signals except those used by the
8579 debugger. Silently skip those. */
8580 allsigs = 1;
8581 sigfirst = 0;
8582 siglast = nsigs - 1;
8583 }
8584 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8585 {
8586 SET_SIGS (nsigs, sigs, signal_stop);
8587 SET_SIGS (nsigs, sigs, signal_print);
8588 }
8589 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8590 {
8591 UNSET_SIGS (nsigs, sigs, signal_program);
8592 }
8593 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8594 {
8595 SET_SIGS (nsigs, sigs, signal_print);
8596 }
8597 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8598 {
8599 SET_SIGS (nsigs, sigs, signal_program);
8600 }
8601 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8602 {
8603 UNSET_SIGS (nsigs, sigs, signal_stop);
8604 }
8605 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8606 {
8607 SET_SIGS (nsigs, sigs, signal_program);
8608 }
8609 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8610 {
8611 UNSET_SIGS (nsigs, sigs, signal_print);
8612 UNSET_SIGS (nsigs, sigs, signal_stop);
8613 }
8614 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8615 {
8616 UNSET_SIGS (nsigs, sigs, signal_program);
8617 }
8618 else if (digits > 0)
8619 {
8620 /* It is numeric. The numeric signal refers to our own
8621 internal signal numbering from target.h, not to host/target
8622 signal number. This is a feature; users really should be
8623 using symbolic names anyway, and the common ones like
8624 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8625
8626 sigfirst = siglast = (int)
8627 gdb_signal_from_command (atoi (arg));
8628 if (arg[digits] == '-')
8629 {
8630 siglast = (int)
8631 gdb_signal_from_command (atoi (arg + digits + 1));
8632 }
8633 if (sigfirst > siglast)
8634 {
8635 /* Bet he didn't figure we'd think of this case... */
8636 std::swap (sigfirst, siglast);
8637 }
8638 }
8639 else
8640 {
8641 oursig = gdb_signal_from_name (arg);
8642 if (oursig != GDB_SIGNAL_UNKNOWN)
8643 {
8644 sigfirst = siglast = (int) oursig;
8645 }
8646 else
8647 {
8648 /* Not a number and not a recognized flag word => complain. */
8649 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8650 }
8651 }
8652
8653 /* If any signal numbers or symbol names were found, set flags for
8654 which signals to apply actions to. */
8655
8656 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8657 {
8658 switch ((enum gdb_signal) signum)
8659 {
8660 case GDB_SIGNAL_TRAP:
8661 case GDB_SIGNAL_INT:
8662 if (!allsigs && !sigs[signum])
8663 {
8664 if (query (_("%s is used by the debugger.\n\
8665 Are you sure you want to change it? "),
8666 gdb_signal_to_name ((enum gdb_signal) signum)))
8667 {
8668 sigs[signum] = 1;
8669 }
8670 else
8671 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8672 }
8673 break;
8674 case GDB_SIGNAL_0:
8675 case GDB_SIGNAL_DEFAULT:
8676 case GDB_SIGNAL_UNKNOWN:
8677 /* Make sure that "all" doesn't print these. */
8678 break;
8679 default:
8680 sigs[signum] = 1;
8681 break;
8682 }
8683 }
8684 }
8685
8686 for (int signum = 0; signum < nsigs; signum++)
8687 if (sigs[signum])
8688 {
8689 signal_cache_update (-1);
8690 target_pass_signals (signal_pass);
8691 target_program_signals (signal_program);
8692
8693 if (from_tty)
8694 {
8695 /* Show the results. */
8696 sig_print_header ();
8697 for (; signum < nsigs; signum++)
8698 if (sigs[signum])
8699 sig_print_info ((enum gdb_signal) signum);
8700 }
8701
8702 break;
8703 }
8704 }
8705
8706 /* Complete the "handle" command. */
8707
8708 static void
8709 handle_completer (struct cmd_list_element *ignore,
8710 completion_tracker &tracker,
8711 const char *text, const char *word)
8712 {
8713 static const char * const keywords[] =
8714 {
8715 "all",
8716 "stop",
8717 "ignore",
8718 "print",
8719 "pass",
8720 "nostop",
8721 "noignore",
8722 "noprint",
8723 "nopass",
8724 NULL,
8725 };
8726
8727 signal_completer (ignore, tracker, text, word);
8728 complete_on_enum (tracker, keywords, word, word);
8729 }
8730
8731 enum gdb_signal
8732 gdb_signal_from_command (int num)
8733 {
8734 if (num >= 1 && num <= 15)
8735 return (enum gdb_signal) num;
8736 error (_("Only signals 1-15 are valid as numeric signals.\n\
8737 Use \"info signals\" for a list of symbolic signals."));
8738 }
8739
8740 /* Print current contents of the tables set by the handle command.
8741 It is possible we should just be printing signals actually used
8742 by the current target (but for things to work right when switching
8743 targets, all signals should be in the signal tables). */
8744
8745 static void
8746 info_signals_command (const char *signum_exp, int from_tty)
8747 {
8748 enum gdb_signal oursig;
8749
8750 sig_print_header ();
8751
8752 if (signum_exp)
8753 {
8754 /* First see if this is a symbol name. */
8755 oursig = gdb_signal_from_name (signum_exp);
8756 if (oursig == GDB_SIGNAL_UNKNOWN)
8757 {
8758 /* No, try numeric. */
8759 oursig =
8760 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8761 }
8762 sig_print_info (oursig);
8763 return;
8764 }
8765
8766 printf_filtered ("\n");
8767 /* These ugly casts brought to you by the native VAX compiler. */
8768 for (oursig = GDB_SIGNAL_FIRST;
8769 (int) oursig < (int) GDB_SIGNAL_LAST;
8770 oursig = (enum gdb_signal) ((int) oursig + 1))
8771 {
8772 QUIT;
8773
8774 if (oursig != GDB_SIGNAL_UNKNOWN
8775 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8776 sig_print_info (oursig);
8777 }
8778
8779 printf_filtered (_("\nUse the \"handle\" command "
8780 "to change these tables.\n"));
8781 }
8782
8783 /* The $_siginfo convenience variable is a bit special. We don't know
8784 for sure the type of the value until we actually have a chance to
8785 fetch the data. The type can change depending on gdbarch, so it is
8786 also dependent on which thread you have selected.
8787
8788 1. making $_siginfo be an internalvar that creates a new value on
8789 access.
8790
8791 2. making the value of $_siginfo be an lval_computed value. */
8792
8793 /* This function implements the lval_computed support for reading a
8794 $_siginfo value. */
8795
8796 static void
8797 siginfo_value_read (struct value *v)
8798 {
8799 LONGEST transferred;
8800
8801 /* If we can access registers, so can we access $_siginfo. Likewise
8802 vice versa. */
8803 validate_registers_access ();
8804
8805 transferred =
8806 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8807 NULL,
8808 value_contents_all_raw (v),
8809 value_offset (v),
8810 TYPE_LENGTH (value_type (v)));
8811
8812 if (transferred != TYPE_LENGTH (value_type (v)))
8813 error (_("Unable to read siginfo"));
8814 }
8815
8816 /* This function implements the lval_computed support for writing a
8817 $_siginfo value. */
8818
8819 static void
8820 siginfo_value_write (struct value *v, struct value *fromval)
8821 {
8822 LONGEST transferred;
8823
8824 /* If we can access registers, so can we access $_siginfo. Likewise
8825 vice versa. */
8826 validate_registers_access ();
8827
8828 transferred = target_write (current_top_target (),
8829 TARGET_OBJECT_SIGNAL_INFO,
8830 NULL,
8831 value_contents_all_raw (fromval),
8832 value_offset (v),
8833 TYPE_LENGTH (value_type (fromval)));
8834
8835 if (transferred != TYPE_LENGTH (value_type (fromval)))
8836 error (_("Unable to write siginfo"));
8837 }
8838
8839 static const struct lval_funcs siginfo_value_funcs =
8840 {
8841 siginfo_value_read,
8842 siginfo_value_write
8843 };
8844
8845 /* Return a new value with the correct type for the siginfo object of
8846 the current thread using architecture GDBARCH. Return a void value
8847 if there's no object available. */
8848
8849 static struct value *
8850 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8851 void *ignore)
8852 {
8853 if (target_has_stack ()
8854 && inferior_ptid != null_ptid
8855 && gdbarch_get_siginfo_type_p (gdbarch))
8856 {
8857 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8858
8859 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8860 }
8861
8862 return allocate_value (builtin_type (gdbarch)->builtin_void);
8863 }
8864
8865 \f
8866 /* infcall_suspend_state contains state about the program itself like its
8867 registers and any signal it received when it last stopped.
8868 This state must be restored regardless of how the inferior function call
8869 ends (either successfully, or after it hits a breakpoint or signal)
8870 if the program is to properly continue where it left off. */
8871
8872 class infcall_suspend_state
8873 {
8874 public:
8875 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8876 once the inferior function call has finished. */
8877 infcall_suspend_state (struct gdbarch *gdbarch,
8878 const struct thread_info *tp,
8879 struct regcache *regcache)
8880 : m_thread_suspend (tp->suspend),
8881 m_registers (new readonly_detached_regcache (*regcache))
8882 {
8883 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8884
8885 if (gdbarch_get_siginfo_type_p (gdbarch))
8886 {
8887 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8888 size_t len = TYPE_LENGTH (type);
8889
8890 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8891
8892 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8893 siginfo_data.get (), 0, len) != len)
8894 {
8895 /* Errors ignored. */
8896 siginfo_data.reset (nullptr);
8897 }
8898 }
8899
8900 if (siginfo_data)
8901 {
8902 m_siginfo_gdbarch = gdbarch;
8903 m_siginfo_data = std::move (siginfo_data);
8904 }
8905 }
8906
8907 /* Return a pointer to the stored register state. */
8908
8909 readonly_detached_regcache *registers () const
8910 {
8911 return m_registers.get ();
8912 }
8913
8914 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8915
8916 void restore (struct gdbarch *gdbarch,
8917 struct thread_info *tp,
8918 struct regcache *regcache) const
8919 {
8920 tp->suspend = m_thread_suspend;
8921
8922 if (m_siginfo_gdbarch == gdbarch)
8923 {
8924 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8925
8926 /* Errors ignored. */
8927 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8928 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8929 }
8930
8931 /* The inferior can be gone if the user types "print exit(0)"
8932 (and perhaps other times). */
8933 if (target_has_execution ())
8934 /* NB: The register write goes through to the target. */
8935 regcache->restore (registers ());
8936 }
8937
8938 private:
8939 /* How the current thread stopped before the inferior function call was
8940 executed. */
8941 struct thread_suspend_state m_thread_suspend;
8942
8943 /* The registers before the inferior function call was executed. */
8944 std::unique_ptr<readonly_detached_regcache> m_registers;
8945
8946 /* Format of SIGINFO_DATA or NULL if it is not present. */
8947 struct gdbarch *m_siginfo_gdbarch = nullptr;
8948
8949 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8950 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8951 content would be invalid. */
8952 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8953 };
8954
8955 infcall_suspend_state_up
8956 save_infcall_suspend_state ()
8957 {
8958 struct thread_info *tp = inferior_thread ();
8959 struct regcache *regcache = get_current_regcache ();
8960 struct gdbarch *gdbarch = regcache->arch ();
8961
8962 infcall_suspend_state_up inf_state
8963 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8964
8965 /* Having saved the current state, adjust the thread state, discarding
8966 any stop signal information. The stop signal is not useful when
8967 starting an inferior function call, and run_inferior_call will not use
8968 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8969 tp->suspend.stop_signal = GDB_SIGNAL_0;
8970
8971 return inf_state;
8972 }
8973
8974 /* Restore inferior session state to INF_STATE. */
8975
8976 void
8977 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8978 {
8979 struct thread_info *tp = inferior_thread ();
8980 struct regcache *regcache = get_current_regcache ();
8981 struct gdbarch *gdbarch = regcache->arch ();
8982
8983 inf_state->restore (gdbarch, tp, regcache);
8984 discard_infcall_suspend_state (inf_state);
8985 }
8986
8987 void
8988 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8989 {
8990 delete inf_state;
8991 }
8992
8993 readonly_detached_regcache *
8994 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8995 {
8996 return inf_state->registers ();
8997 }
8998
8999 /* infcall_control_state contains state regarding gdb's control of the
9000 inferior itself like stepping control. It also contains session state like
9001 the user's currently selected frame. */
9002
9003 struct infcall_control_state
9004 {
9005 struct thread_control_state thread_control;
9006 struct inferior_control_state inferior_control;
9007
9008 /* Other fields: */
9009 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9010 int stopped_by_random_signal = 0;
9011
9012 /* ID and level of the selected frame when the inferior function
9013 call was made. */
9014 struct frame_id selected_frame_id {};
9015 int selected_frame_level = -1;
9016 };
9017
9018 /* Save all of the information associated with the inferior<==>gdb
9019 connection. */
9020
9021 infcall_control_state_up
9022 save_infcall_control_state ()
9023 {
9024 infcall_control_state_up inf_status (new struct infcall_control_state);
9025 struct thread_info *tp = inferior_thread ();
9026 struct inferior *inf = current_inferior ();
9027
9028 inf_status->thread_control = tp->control;
9029 inf_status->inferior_control = inf->control;
9030
9031 tp->control.step_resume_breakpoint = NULL;
9032 tp->control.exception_resume_breakpoint = NULL;
9033
9034 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9035 chain. If caller's caller is walking the chain, they'll be happier if we
9036 hand them back the original chain when restore_infcall_control_state is
9037 called. */
9038 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9039
9040 /* Other fields: */
9041 inf_status->stop_stack_dummy = stop_stack_dummy;
9042 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9043
9044 save_selected_frame (&inf_status->selected_frame_id,
9045 &inf_status->selected_frame_level);
9046
9047 return inf_status;
9048 }
9049
9050 /* Restore inferior session state to INF_STATUS. */
9051
9052 void
9053 restore_infcall_control_state (struct infcall_control_state *inf_status)
9054 {
9055 struct thread_info *tp = inferior_thread ();
9056 struct inferior *inf = current_inferior ();
9057
9058 if (tp->control.step_resume_breakpoint)
9059 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9060
9061 if (tp->control.exception_resume_breakpoint)
9062 tp->control.exception_resume_breakpoint->disposition
9063 = disp_del_at_next_stop;
9064
9065 /* Handle the bpstat_copy of the chain. */
9066 bpstat_clear (&tp->control.stop_bpstat);
9067
9068 tp->control = inf_status->thread_control;
9069 inf->control = inf_status->inferior_control;
9070
9071 /* Other fields: */
9072 stop_stack_dummy = inf_status->stop_stack_dummy;
9073 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9074
9075 if (target_has_stack ())
9076 {
9077 restore_selected_frame (inf_status->selected_frame_id,
9078 inf_status->selected_frame_level);
9079 }
9080
9081 delete inf_status;
9082 }
9083
9084 void
9085 discard_infcall_control_state (struct infcall_control_state *inf_status)
9086 {
9087 if (inf_status->thread_control.step_resume_breakpoint)
9088 inf_status->thread_control.step_resume_breakpoint->disposition
9089 = disp_del_at_next_stop;
9090
9091 if (inf_status->thread_control.exception_resume_breakpoint)
9092 inf_status->thread_control.exception_resume_breakpoint->disposition
9093 = disp_del_at_next_stop;
9094
9095 /* See save_infcall_control_state for info on stop_bpstat. */
9096 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9097
9098 delete inf_status;
9099 }
9100 \f
9101 /* See infrun.h. */
9102
9103 void
9104 clear_exit_convenience_vars (void)
9105 {
9106 clear_internalvar (lookup_internalvar ("_exitsignal"));
9107 clear_internalvar (lookup_internalvar ("_exitcode"));
9108 }
9109 \f
9110
9111 /* User interface for reverse debugging:
9112 Set exec-direction / show exec-direction commands
9113 (returns error unless target implements to_set_exec_direction method). */
9114
9115 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9116 static const char exec_forward[] = "forward";
9117 static const char exec_reverse[] = "reverse";
9118 static const char *exec_direction = exec_forward;
9119 static const char *const exec_direction_names[] = {
9120 exec_forward,
9121 exec_reverse,
9122 NULL
9123 };
9124
9125 static void
9126 set_exec_direction_func (const char *args, int from_tty,
9127 struct cmd_list_element *cmd)
9128 {
9129 if (target_can_execute_reverse ())
9130 {
9131 if (!strcmp (exec_direction, exec_forward))
9132 execution_direction = EXEC_FORWARD;
9133 else if (!strcmp (exec_direction, exec_reverse))
9134 execution_direction = EXEC_REVERSE;
9135 }
9136 else
9137 {
9138 exec_direction = exec_forward;
9139 error (_("Target does not support this operation."));
9140 }
9141 }
9142
9143 static void
9144 show_exec_direction_func (struct ui_file *out, int from_tty,
9145 struct cmd_list_element *cmd, const char *value)
9146 {
9147 switch (execution_direction) {
9148 case EXEC_FORWARD:
9149 fprintf_filtered (out, _("Forward.\n"));
9150 break;
9151 case EXEC_REVERSE:
9152 fprintf_filtered (out, _("Reverse.\n"));
9153 break;
9154 default:
9155 internal_error (__FILE__, __LINE__,
9156 _("bogus execution_direction value: %d"),
9157 (int) execution_direction);
9158 }
9159 }
9160
9161 static void
9162 show_schedule_multiple (struct ui_file *file, int from_tty,
9163 struct cmd_list_element *c, const char *value)
9164 {
9165 fprintf_filtered (file, _("Resuming the execution of threads "
9166 "of all processes is %s.\n"), value);
9167 }
9168
9169 /* Implementation of `siginfo' variable. */
9170
9171 static const struct internalvar_funcs siginfo_funcs =
9172 {
9173 siginfo_make_value,
9174 NULL,
9175 NULL
9176 };
9177
9178 /* Callback for infrun's target events source. This is marked when a
9179 thread has a pending status to process. */
9180
9181 static void
9182 infrun_async_inferior_event_handler (gdb_client_data data)
9183 {
9184 inferior_event_handler (INF_REG_EVENT);
9185 }
9186
9187 #if GDB_SELF_TEST
9188 namespace selftests
9189 {
9190
9191 /* Verify that when two threads with the same ptid exist (from two different
9192 targets) and one of them changes ptid, we only update inferior_ptid if
9193 it is appropriate. */
9194
9195 static void
9196 infrun_thread_ptid_changed ()
9197 {
9198 gdbarch *arch = current_inferior ()->gdbarch;
9199
9200 /* The thread which inferior_ptid represents changes ptid. */
9201 {
9202 scoped_restore_current_pspace_and_thread restore;
9203
9204 scoped_mock_context<test_target_ops> target1 (arch);
9205 scoped_mock_context<test_target_ops> target2 (arch);
9206 target2.mock_inferior.next = &target1.mock_inferior;
9207
9208 ptid_t old_ptid (111, 222);
9209 ptid_t new_ptid (111, 333);
9210
9211 target1.mock_inferior.pid = old_ptid.pid ();
9212 target1.mock_thread.ptid = old_ptid;
9213 target2.mock_inferior.pid = old_ptid.pid ();
9214 target2.mock_thread.ptid = old_ptid;
9215
9216 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9217 set_current_inferior (&target1.mock_inferior);
9218
9219 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9220
9221 gdb_assert (inferior_ptid == new_ptid);
9222 }
9223
9224 /* A thread with the same ptid as inferior_ptid, but from another target,
9225 changes ptid. */
9226 {
9227 scoped_restore_current_pspace_and_thread restore;
9228
9229 scoped_mock_context<test_target_ops> target1 (arch);
9230 scoped_mock_context<test_target_ops> target2 (arch);
9231 target2.mock_inferior.next = &target1.mock_inferior;
9232
9233 ptid_t old_ptid (111, 222);
9234 ptid_t new_ptid (111, 333);
9235
9236 target1.mock_inferior.pid = old_ptid.pid ();
9237 target1.mock_thread.ptid = old_ptid;
9238 target2.mock_inferior.pid = old_ptid.pid ();
9239 target2.mock_thread.ptid = old_ptid;
9240
9241 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9242 set_current_inferior (&target2.mock_inferior);
9243
9244 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9245
9246 gdb_assert (inferior_ptid == old_ptid);
9247 }
9248 }
9249
9250 } /* namespace selftests */
9251
9252 #endif /* GDB_SELF_TEST */
9253
9254 void _initialize_infrun ();
9255 void
9256 _initialize_infrun ()
9257 {
9258 struct cmd_list_element *c;
9259
9260 /* Register extra event sources in the event loop. */
9261 infrun_async_inferior_event_token
9262 = create_async_event_handler (infrun_async_inferior_event_handler, NULL,
9263 "infrun");
9264
9265 add_info ("signals", info_signals_command, _("\
9266 What debugger does when program gets various signals.\n\
9267 Specify a signal as argument to print info on that signal only."));
9268 add_info_alias ("handle", "signals", 0);
9269
9270 c = add_com ("handle", class_run, handle_command, _("\
9271 Specify how to handle signals.\n\
9272 Usage: handle SIGNAL [ACTIONS]\n\
9273 Args are signals and actions to apply to those signals.\n\
9274 If no actions are specified, the current settings for the specified signals\n\
9275 will be displayed instead.\n\
9276 \n\
9277 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9278 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9279 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9280 The special arg \"all\" is recognized to mean all signals except those\n\
9281 used by the debugger, typically SIGTRAP and SIGINT.\n\
9282 \n\
9283 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9284 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9285 Stop means reenter debugger if this signal happens (implies print).\n\
9286 Print means print a message if this signal happens.\n\
9287 Pass means let program see this signal; otherwise program doesn't know.\n\
9288 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9289 Pass and Stop may be combined.\n\
9290 \n\
9291 Multiple signals may be specified. Signal numbers and signal names\n\
9292 may be interspersed with actions, with the actions being performed for\n\
9293 all signals cumulatively specified."));
9294 set_cmd_completer (c, handle_completer);
9295
9296 if (!dbx_commands)
9297 stop_command = add_cmd ("stop", class_obscure,
9298 not_just_help_class_command, _("\
9299 There is no `stop' command, but you can set a hook on `stop'.\n\
9300 This allows you to set a list of commands to be run each time execution\n\
9301 of the program stops."), &cmdlist);
9302
9303 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9304 Set inferior debugging."), _("\
9305 Show inferior debugging."), _("\
9306 When non-zero, inferior specific debugging is enabled."),
9307 NULL,
9308 show_debug_infrun,
9309 &setdebuglist, &showdebuglist);
9310
9311 add_setshow_boolean_cmd ("displaced", class_maintenance,
9312 &debug_displaced, _("\
9313 Set displaced stepping debugging."), _("\
9314 Show displaced stepping debugging."), _("\
9315 When non-zero, displaced stepping specific debugging is enabled."),
9316 NULL,
9317 show_debug_displaced,
9318 &setdebuglist, &showdebuglist);
9319
9320 add_setshow_boolean_cmd ("non-stop", no_class,
9321 &non_stop_1, _("\
9322 Set whether gdb controls the inferior in non-stop mode."), _("\
9323 Show whether gdb controls the inferior in non-stop mode."), _("\
9324 When debugging a multi-threaded program and this setting is\n\
9325 off (the default, also called all-stop mode), when one thread stops\n\
9326 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9327 all other threads in the program while you interact with the thread of\n\
9328 interest. When you continue or step a thread, you can allow the other\n\
9329 threads to run, or have them remain stopped, but while you inspect any\n\
9330 thread's state, all threads stop.\n\
9331 \n\
9332 In non-stop mode, when one thread stops, other threads can continue\n\
9333 to run freely. You'll be able to step each thread independently,\n\
9334 leave it stopped or free to run as needed."),
9335 set_non_stop,
9336 show_non_stop,
9337 &setlist,
9338 &showlist);
9339
9340 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9341 {
9342 signal_stop[i] = 1;
9343 signal_print[i] = 1;
9344 signal_program[i] = 1;
9345 signal_catch[i] = 0;
9346 }
9347
9348 /* Signals caused by debugger's own actions should not be given to
9349 the program afterwards.
9350
9351 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9352 explicitly specifies that it should be delivered to the target
9353 program. Typically, that would occur when a user is debugging a
9354 target monitor on a simulator: the target monitor sets a
9355 breakpoint; the simulator encounters this breakpoint and halts
9356 the simulation handing control to GDB; GDB, noting that the stop
9357 address doesn't map to any known breakpoint, returns control back
9358 to the simulator; the simulator then delivers the hardware
9359 equivalent of a GDB_SIGNAL_TRAP to the program being
9360 debugged. */
9361 signal_program[GDB_SIGNAL_TRAP] = 0;
9362 signal_program[GDB_SIGNAL_INT] = 0;
9363
9364 /* Signals that are not errors should not normally enter the debugger. */
9365 signal_stop[GDB_SIGNAL_ALRM] = 0;
9366 signal_print[GDB_SIGNAL_ALRM] = 0;
9367 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9368 signal_print[GDB_SIGNAL_VTALRM] = 0;
9369 signal_stop[GDB_SIGNAL_PROF] = 0;
9370 signal_print[GDB_SIGNAL_PROF] = 0;
9371 signal_stop[GDB_SIGNAL_CHLD] = 0;
9372 signal_print[GDB_SIGNAL_CHLD] = 0;
9373 signal_stop[GDB_SIGNAL_IO] = 0;
9374 signal_print[GDB_SIGNAL_IO] = 0;
9375 signal_stop[GDB_SIGNAL_POLL] = 0;
9376 signal_print[GDB_SIGNAL_POLL] = 0;
9377 signal_stop[GDB_SIGNAL_URG] = 0;
9378 signal_print[GDB_SIGNAL_URG] = 0;
9379 signal_stop[GDB_SIGNAL_WINCH] = 0;
9380 signal_print[GDB_SIGNAL_WINCH] = 0;
9381 signal_stop[GDB_SIGNAL_PRIO] = 0;
9382 signal_print[GDB_SIGNAL_PRIO] = 0;
9383
9384 /* These signals are used internally by user-level thread
9385 implementations. (See signal(5) on Solaris.) Like the above
9386 signals, a healthy program receives and handles them as part of
9387 its normal operation. */
9388 signal_stop[GDB_SIGNAL_LWP] = 0;
9389 signal_print[GDB_SIGNAL_LWP] = 0;
9390 signal_stop[GDB_SIGNAL_WAITING] = 0;
9391 signal_print[GDB_SIGNAL_WAITING] = 0;
9392 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9393 signal_print[GDB_SIGNAL_CANCEL] = 0;
9394 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9395 signal_print[GDB_SIGNAL_LIBRT] = 0;
9396
9397 /* Update cached state. */
9398 signal_cache_update (-1);
9399
9400 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9401 &stop_on_solib_events, _("\
9402 Set stopping for shared library events."), _("\
9403 Show stopping for shared library events."), _("\
9404 If nonzero, gdb will give control to the user when the dynamic linker\n\
9405 notifies gdb of shared library events. The most common event of interest\n\
9406 to the user would be loading/unloading of a new library."),
9407 set_stop_on_solib_events,
9408 show_stop_on_solib_events,
9409 &setlist, &showlist);
9410
9411 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9412 follow_fork_mode_kind_names,
9413 &follow_fork_mode_string, _("\
9414 Set debugger response to a program call of fork or vfork."), _("\
9415 Show debugger response to a program call of fork or vfork."), _("\
9416 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9417 parent - the original process is debugged after a fork\n\
9418 child - the new process is debugged after a fork\n\
9419 The unfollowed process will continue to run.\n\
9420 By default, the debugger will follow the parent process."),
9421 NULL,
9422 show_follow_fork_mode_string,
9423 &setlist, &showlist);
9424
9425 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9426 follow_exec_mode_names,
9427 &follow_exec_mode_string, _("\
9428 Set debugger response to a program call of exec."), _("\
9429 Show debugger response to a program call of exec."), _("\
9430 An exec call replaces the program image of a process.\n\
9431 \n\
9432 follow-exec-mode can be:\n\
9433 \n\
9434 new - the debugger creates a new inferior and rebinds the process\n\
9435 to this new inferior. The program the process was running before\n\
9436 the exec call can be restarted afterwards by restarting the original\n\
9437 inferior.\n\
9438 \n\
9439 same - the debugger keeps the process bound to the same inferior.\n\
9440 The new executable image replaces the previous executable loaded in\n\
9441 the inferior. Restarting the inferior after the exec call restarts\n\
9442 the executable the process was running after the exec call.\n\
9443 \n\
9444 By default, the debugger will use the same inferior."),
9445 NULL,
9446 show_follow_exec_mode_string,
9447 &setlist, &showlist);
9448
9449 add_setshow_enum_cmd ("scheduler-locking", class_run,
9450 scheduler_enums, &scheduler_mode, _("\
9451 Set mode for locking scheduler during execution."), _("\
9452 Show mode for locking scheduler during execution."), _("\
9453 off == no locking (threads may preempt at any time)\n\
9454 on == full locking (no thread except the current thread may run)\n\
9455 This applies to both normal execution and replay mode.\n\
9456 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9457 In this mode, other threads may run during other commands.\n\
9458 This applies to both normal execution and replay mode.\n\
9459 replay == scheduler locked in replay mode and unlocked during normal execution."),
9460 set_schedlock_func, /* traps on target vector */
9461 show_scheduler_mode,
9462 &setlist, &showlist);
9463
9464 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9465 Set mode for resuming threads of all processes."), _("\
9466 Show mode for resuming threads of all processes."), _("\
9467 When on, execution commands (such as 'continue' or 'next') resume all\n\
9468 threads of all processes. When off (which is the default), execution\n\
9469 commands only resume the threads of the current process. The set of\n\
9470 threads that are resumed is further refined by the scheduler-locking\n\
9471 mode (see help set scheduler-locking)."),
9472 NULL,
9473 show_schedule_multiple,
9474 &setlist, &showlist);
9475
9476 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9477 Set mode of the step operation."), _("\
9478 Show mode of the step operation."), _("\
9479 When set, doing a step over a function without debug line information\n\
9480 will stop at the first instruction of that function. Otherwise, the\n\
9481 function is skipped and the step command stops at a different source line."),
9482 NULL,
9483 show_step_stop_if_no_debug,
9484 &setlist, &showlist);
9485
9486 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9487 &can_use_displaced_stepping, _("\
9488 Set debugger's willingness to use displaced stepping."), _("\
9489 Show debugger's willingness to use displaced stepping."), _("\
9490 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9491 supported by the target architecture. If off, gdb will not use displaced\n\
9492 stepping to step over breakpoints, even if such is supported by the target\n\
9493 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9494 if the target architecture supports it and non-stop mode is active, but will not\n\
9495 use it in all-stop mode (see help set non-stop)."),
9496 NULL,
9497 show_can_use_displaced_stepping,
9498 &setlist, &showlist);
9499
9500 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9501 &exec_direction, _("Set direction of execution.\n\
9502 Options are 'forward' or 'reverse'."),
9503 _("Show direction of execution (forward/reverse)."),
9504 _("Tells gdb whether to execute forward or backward."),
9505 set_exec_direction_func, show_exec_direction_func,
9506 &setlist, &showlist);
9507
9508 /* Set/show detach-on-fork: user-settable mode. */
9509
9510 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9511 Set whether gdb will detach the child of a fork."), _("\
9512 Show whether gdb will detach the child of a fork."), _("\
9513 Tells gdb whether to detach the child of a fork."),
9514 NULL, NULL, &setlist, &showlist);
9515
9516 /* Set/show disable address space randomization mode. */
9517
9518 add_setshow_boolean_cmd ("disable-randomization", class_support,
9519 &disable_randomization, _("\
9520 Set disabling of debuggee's virtual address space randomization."), _("\
9521 Show disabling of debuggee's virtual address space randomization."), _("\
9522 When this mode is on (which is the default), randomization of the virtual\n\
9523 address space is disabled. Standalone programs run with the randomization\n\
9524 enabled by default on some platforms."),
9525 &set_disable_randomization,
9526 &show_disable_randomization,
9527 &setlist, &showlist);
9528
9529 /* ptid initializations */
9530 inferior_ptid = null_ptid;
9531 target_last_wait_ptid = minus_one_ptid;
9532
9533 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9534 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9535 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9536 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9537
9538 /* Explicitly create without lookup, since that tries to create a
9539 value with a void typed value, and when we get here, gdbarch
9540 isn't initialized yet. At this point, we're quite sure there
9541 isn't another convenience variable of the same name. */
9542 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9543
9544 add_setshow_boolean_cmd ("observer", no_class,
9545 &observer_mode_1, _("\
9546 Set whether gdb controls the inferior in observer mode."), _("\
9547 Show whether gdb controls the inferior in observer mode."), _("\
9548 In observer mode, GDB can get data from the inferior, but not\n\
9549 affect its execution. Registers and memory may not be changed,\n\
9550 breakpoints may not be set, and the program cannot be interrupted\n\
9551 or signalled."),
9552 set_observer_mode,
9553 show_observer_mode,
9554 &setlist,
9555 &showlist);
9556
9557 #if GDB_SELF_TEST
9558 selftests::register_test ("infrun_thread_ptid_changed",
9559 selftests::infrun_thread_ptid_changed);
9560 #endif
9561 }