35e002d9e50f272beeef464dd8a96c1f663672dc
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
6 Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "breakpoint.h"
32 #include "gdb_wait.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "cli/cli-script.h"
36 #include "target.h"
37 #include "gdbthread.h"
38 #include "annotate.h"
39 #include "symfile.h"
40 #include "top.h"
41 #include <signal.h>
42 #include "inf-loop.h"
43 #include "regcache.h"
44 #include "value.h"
45 #include "observer.h"
46 #include "language.h"
47
48 /* Prototypes for local functions */
49
50 static void signals_info (char *, int);
51
52 static void handle_command (char *, int);
53
54 static void sig_print_info (enum target_signal);
55
56 static void sig_print_header (void);
57
58 static void resume_cleanups (void *);
59
60 static int hook_stop_stub (void *);
61
62 static void delete_breakpoint_current_contents (void *);
63
64 static void set_follow_fork_mode_command (char *arg, int from_tty,
65 struct cmd_list_element *c);
66
67 static int restore_selected_frame (void *);
68
69 static void build_infrun (void);
70
71 static int follow_fork (void);
72
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
75
76 struct execution_control_state;
77
78 static int currently_stepping (struct execution_control_state *ecs);
79
80 static void xdb_handle_command (char *args, int from_tty);
81
82 void _initialize_infrun (void);
83
84 int inferior_ignoring_startup_exec_events = 0;
85 int inferior_ignoring_leading_exec_events = 0;
86
87 /* When set, stop the 'step' command if we enter a function which has
88 no line number information. The normal behavior is that we step
89 over such function. */
90 int step_stop_if_no_debug = 0;
91
92 /* In asynchronous mode, but simulating synchronous execution. */
93
94 int sync_execution = 0;
95
96 /* wait_for_inferior and normal_stop use this to notify the user
97 when the inferior stopped in a different thread than it had been
98 running in. */
99
100 static ptid_t previous_inferior_ptid;
101
102 /* This is true for configurations that may follow through execl() and
103 similar functions. At present this is only true for HP-UX native. */
104
105 #ifndef MAY_FOLLOW_EXEC
106 #define MAY_FOLLOW_EXEC (0)
107 #endif
108
109 static int may_follow_exec = MAY_FOLLOW_EXEC;
110
111 /* If the program uses ELF-style shared libraries, then calls to
112 functions in shared libraries go through stubs, which live in a
113 table called the PLT (Procedure Linkage Table). The first time the
114 function is called, the stub sends control to the dynamic linker,
115 which looks up the function's real address, patches the stub so
116 that future calls will go directly to the function, and then passes
117 control to the function.
118
119 If we are stepping at the source level, we don't want to see any of
120 this --- we just want to skip over the stub and the dynamic linker.
121 The simple approach is to single-step until control leaves the
122 dynamic linker.
123
124 However, on some systems (e.g., Red Hat's 5.2 distribution) the
125 dynamic linker calls functions in the shared C library, so you
126 can't tell from the PC alone whether the dynamic linker is still
127 running. In this case, we use a step-resume breakpoint to get us
128 past the dynamic linker, as if we were using "next" to step over a
129 function call.
130
131 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
132 linker code or not. Normally, this means we single-step. However,
133 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
134 address where we can place a step-resume breakpoint to get past the
135 linker's symbol resolution function.
136
137 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
138 pretty portable way, by comparing the PC against the address ranges
139 of the dynamic linker's sections.
140
141 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
142 it depends on internal details of the dynamic linker. It's usually
143 not too hard to figure out where to put a breakpoint, but it
144 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
145 sanity checking. If it can't figure things out, returning zero and
146 getting the (possibly confusing) stepping behavior is better than
147 signalling an error, which will obscure the change in the
148 inferior's state. */
149
150 #ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
151 #define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
152 #endif
153
154 #ifndef SKIP_SOLIB_RESOLVER
155 #define SKIP_SOLIB_RESOLVER(pc) 0
156 #endif
157
158 /* This function returns TRUE if pc is the address of an instruction
159 that lies within the dynamic linker (such as the event hook, or the
160 dld itself).
161
162 This function must be used only when a dynamic linker event has
163 been caught, and the inferior is being stepped out of the hook, or
164 undefined results are guaranteed. */
165
166 #ifndef SOLIB_IN_DYNAMIC_LINKER
167 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
168 #endif
169
170 /* On MIPS16, a function that returns a floating point value may call
171 a library helper function to copy the return value to a floating point
172 register. The IGNORE_HELPER_CALL macro returns non-zero if we
173 should ignore (i.e. step over) this function call. */
174 #ifndef IGNORE_HELPER_CALL
175 #define IGNORE_HELPER_CALL(pc) 0
176 #endif
177
178 /* On some systems, the PC may be left pointing at an instruction that won't
179 actually be executed. This is usually indicated by a bit in the PSW. If
180 we find ourselves in such a state, then we step the target beyond the
181 nullified instruction before returning control to the user so as to avoid
182 confusion. */
183
184 #ifndef INSTRUCTION_NULLIFIED
185 #define INSTRUCTION_NULLIFIED 0
186 #endif
187
188 /* We can't step off a permanent breakpoint in the ordinary way, because we
189 can't remove it. Instead, we have to advance the PC to the next
190 instruction. This macro should expand to a pointer to a function that
191 does that, or zero if we have no such function. If we don't have a
192 definition for it, we have to report an error. */
193 #ifndef SKIP_PERMANENT_BREAKPOINT
194 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
195 static void
196 default_skip_permanent_breakpoint (void)
197 {
198 error ("\
199 The program is stopped at a permanent breakpoint, but GDB does not know\n\
200 how to step past a permanent breakpoint on this architecture. Try using\n\
201 a command like `return' or `jump' to continue execution.");
202 }
203 #endif
204
205
206 /* Convert the #defines into values. This is temporary until wfi control
207 flow is completely sorted out. */
208
209 #ifndef HAVE_STEPPABLE_WATCHPOINT
210 #define HAVE_STEPPABLE_WATCHPOINT 0
211 #else
212 #undef HAVE_STEPPABLE_WATCHPOINT
213 #define HAVE_STEPPABLE_WATCHPOINT 1
214 #endif
215
216 #ifndef CANNOT_STEP_HW_WATCHPOINTS
217 #define CANNOT_STEP_HW_WATCHPOINTS 0
218 #else
219 #undef CANNOT_STEP_HW_WATCHPOINTS
220 #define CANNOT_STEP_HW_WATCHPOINTS 1
221 #endif
222
223 /* Tables of how to react to signals; the user sets them. */
224
225 static unsigned char *signal_stop;
226 static unsigned char *signal_print;
227 static unsigned char *signal_program;
228
229 #define SET_SIGS(nsigs,sigs,flags) \
230 do { \
231 int signum = (nsigs); \
232 while (signum-- > 0) \
233 if ((sigs)[signum]) \
234 (flags)[signum] = 1; \
235 } while (0)
236
237 #define UNSET_SIGS(nsigs,sigs,flags) \
238 do { \
239 int signum = (nsigs); \
240 while (signum-- > 0) \
241 if ((sigs)[signum]) \
242 (flags)[signum] = 0; \
243 } while (0)
244
245 /* Value to pass to target_resume() to cause all threads to resume */
246
247 #define RESUME_ALL (pid_to_ptid (-1))
248
249 /* Command list pointer for the "stop" placeholder. */
250
251 static struct cmd_list_element *stop_command;
252
253 /* Nonzero if breakpoints are now inserted in the inferior. */
254
255 static int breakpoints_inserted;
256
257 /* Function inferior was in as of last step command. */
258
259 static struct symbol *step_start_function;
260
261 /* Nonzero if we are expecting a trace trap and should proceed from it. */
262
263 static int trap_expected;
264
265 #ifdef SOLIB_ADD
266 /* Nonzero if we want to give control to the user when we're notified
267 of shared library events by the dynamic linker. */
268 static int stop_on_solib_events;
269 #endif
270
271 #ifdef HP_OS_BUG
272 /* Nonzero if the next time we try to continue the inferior, it will
273 step one instruction and generate a spurious trace trap.
274 This is used to compensate for a bug in HP-UX. */
275
276 static int trap_expected_after_continue;
277 #endif
278
279 /* Nonzero means expecting a trace trap
280 and should stop the inferior and return silently when it happens. */
281
282 int stop_after_trap;
283
284 /* Nonzero means expecting a trap and caller will handle it themselves.
285 It is used after attach, due to attaching to a process;
286 when running in the shell before the child program has been exec'd;
287 and when running some kinds of remote stuff (FIXME?). */
288
289 enum stop_kind stop_soon;
290
291 /* Nonzero if proceed is being used for a "finish" command or a similar
292 situation when stop_registers should be saved. */
293
294 int proceed_to_finish;
295
296 /* Save register contents here when about to pop a stack dummy frame,
297 if-and-only-if proceed_to_finish is set.
298 Thus this contains the return value from the called function (assuming
299 values are returned in a register). */
300
301 struct regcache *stop_registers;
302
303 /* Nonzero if program stopped due to error trying to insert breakpoints. */
304
305 static int breakpoints_failed;
306
307 /* Nonzero after stop if current stack frame should be printed. */
308
309 static int stop_print_frame;
310
311 static struct breakpoint *step_resume_breakpoint = NULL;
312 static struct breakpoint *through_sigtramp_breakpoint = NULL;
313
314 /* On some platforms (e.g., HP-UX), hardware watchpoints have bad
315 interactions with an inferior that is running a kernel function
316 (aka, a system call or "syscall"). wait_for_inferior therefore
317 may have a need to know when the inferior is in a syscall. This
318 is a count of the number of inferior threads which are known to
319 currently be running in a syscall. */
320 static int number_of_threads_in_syscalls;
321
322 /* This is a cached copy of the pid/waitstatus of the last event
323 returned by target_wait()/target_wait_hook(). This information is
324 returned by get_last_target_status(). */
325 static ptid_t target_last_wait_ptid;
326 static struct target_waitstatus target_last_waitstatus;
327
328 /* This is used to remember when a fork, vfork or exec event
329 was caught by a catchpoint, and thus the event is to be
330 followed at the next resume of the inferior, and not
331 immediately. */
332 static struct
333 {
334 enum target_waitkind kind;
335 struct
336 {
337 int parent_pid;
338 int child_pid;
339 }
340 fork_event;
341 char *execd_pathname;
342 }
343 pending_follow;
344
345 static const char follow_fork_mode_ask[] = "ask";
346 static const char follow_fork_mode_child[] = "child";
347 static const char follow_fork_mode_parent[] = "parent";
348
349 static const char *follow_fork_mode_kind_names[] = {
350 follow_fork_mode_ask,
351 follow_fork_mode_child,
352 follow_fork_mode_parent,
353 NULL
354 };
355
356 static const char *follow_fork_mode_string = follow_fork_mode_parent;
357 \f
358
359 static int
360 follow_fork (void)
361 {
362 const char *follow_mode = follow_fork_mode_string;
363 int follow_child = (follow_mode == follow_fork_mode_child);
364
365 /* Or, did the user not know, and want us to ask? */
366 if (follow_fork_mode_string == follow_fork_mode_ask)
367 {
368 internal_error (__FILE__, __LINE__,
369 "follow_inferior_fork: \"ask\" mode not implemented");
370 /* follow_mode = follow_fork_mode_...; */
371 }
372
373 return target_follow_fork (follow_child);
374 }
375
376 void
377 follow_inferior_reset_breakpoints (void)
378 {
379 /* Was there a step_resume breakpoint? (There was if the user
380 did a "next" at the fork() call.) If so, explicitly reset its
381 thread number.
382
383 step_resumes are a form of bp that are made to be per-thread.
384 Since we created the step_resume bp when the parent process
385 was being debugged, and now are switching to the child process,
386 from the breakpoint package's viewpoint, that's a switch of
387 "threads". We must update the bp's notion of which thread
388 it is for, or it'll be ignored when it triggers. */
389
390 if (step_resume_breakpoint)
391 breakpoint_re_set_thread (step_resume_breakpoint);
392
393 /* Reinsert all breakpoints in the child. The user may have set
394 breakpoints after catching the fork, in which case those
395 were never set in the child, but only in the parent. This makes
396 sure the inserted breakpoints match the breakpoint list. */
397
398 breakpoint_re_set ();
399 insert_breakpoints ();
400 }
401
402 /* EXECD_PATHNAME is assumed to be non-NULL. */
403
404 static void
405 follow_exec (int pid, char *execd_pathname)
406 {
407 int saved_pid = pid;
408 struct target_ops *tgt;
409
410 if (!may_follow_exec)
411 return;
412
413 /* This is an exec event that we actually wish to pay attention to.
414 Refresh our symbol table to the newly exec'd program, remove any
415 momentary bp's, etc.
416
417 If there are breakpoints, they aren't really inserted now,
418 since the exec() transformed our inferior into a fresh set
419 of instructions.
420
421 We want to preserve symbolic breakpoints on the list, since
422 we have hopes that they can be reset after the new a.out's
423 symbol table is read.
424
425 However, any "raw" breakpoints must be removed from the list
426 (e.g., the solib bp's), since their address is probably invalid
427 now.
428
429 And, we DON'T want to call delete_breakpoints() here, since
430 that may write the bp's "shadow contents" (the instruction
431 value that was overwritten witha TRAP instruction). Since
432 we now have a new a.out, those shadow contents aren't valid. */
433 update_breakpoints_after_exec ();
434
435 /* If there was one, it's gone now. We cannot truly step-to-next
436 statement through an exec(). */
437 step_resume_breakpoint = NULL;
438 step_range_start = 0;
439 step_range_end = 0;
440
441 /* If there was one, it's gone now. */
442 through_sigtramp_breakpoint = NULL;
443
444 /* What is this a.out's name? */
445 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
446
447 /* We've followed the inferior through an exec. Therefore, the
448 inferior has essentially been killed & reborn. */
449
450 /* First collect the run target in effect. */
451 tgt = find_run_target ();
452 /* If we can't find one, things are in a very strange state... */
453 if (tgt == NULL)
454 error ("Could find run target to save before following exec");
455
456 gdb_flush (gdb_stdout);
457 target_mourn_inferior ();
458 inferior_ptid = pid_to_ptid (saved_pid);
459 /* Because mourn_inferior resets inferior_ptid. */
460 push_target (tgt);
461
462 /* That a.out is now the one to use. */
463 exec_file_attach (execd_pathname, 0);
464
465 /* And also is where symbols can be found. */
466 symbol_file_add_main (execd_pathname, 0);
467
468 /* Reset the shared library package. This ensures that we get
469 a shlib event when the child reaches "_start", at which point
470 the dld will have had a chance to initialize the child. */
471 #if defined(SOLIB_RESTART)
472 SOLIB_RESTART ();
473 #endif
474 #ifdef SOLIB_CREATE_INFERIOR_HOOK
475 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
476 #endif
477
478 /* Reinsert all breakpoints. (Those which were symbolic have
479 been reset to the proper address in the new a.out, thanks
480 to symbol_file_command...) */
481 insert_breakpoints ();
482
483 /* The next resume of this inferior should bring it to the shlib
484 startup breakpoints. (If the user had also set bp's on
485 "main" from the old (parent) process, then they'll auto-
486 matically get reset there in the new process.) */
487 }
488
489 /* Non-zero if we just simulating a single-step. This is needed
490 because we cannot remove the breakpoints in the inferior process
491 until after the `wait' in `wait_for_inferior'. */
492 static int singlestep_breakpoints_inserted_p = 0;
493 \f
494
495 /* Things to clean up if we QUIT out of resume (). */
496 /* ARGSUSED */
497 static void
498 resume_cleanups (void *ignore)
499 {
500 normal_stop ();
501 }
502
503 static const char schedlock_off[] = "off";
504 static const char schedlock_on[] = "on";
505 static const char schedlock_step[] = "step";
506 static const char *scheduler_mode = schedlock_off;
507 static const char *scheduler_enums[] = {
508 schedlock_off,
509 schedlock_on,
510 schedlock_step,
511 NULL
512 };
513
514 static void
515 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
516 {
517 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
518 the set command passed as a parameter. The clone operation will
519 include (BUG?) any ``set'' command callback, if present.
520 Commands like ``info set'' call all the ``show'' command
521 callbacks. Unfortunatly, for ``show'' commands cloned from
522 ``set'', this includes callbacks belonging to ``set'' commands.
523 Making this worse, this only occures if add_show_from_set() is
524 called after add_cmd_sfunc() (BUG?). */
525 if (cmd_type (c) == set_cmd)
526 if (!target_can_lock_scheduler)
527 {
528 scheduler_mode = schedlock_off;
529 error ("Target '%s' cannot support this command.", target_shortname);
530 }
531 }
532
533
534 /* Resume the inferior, but allow a QUIT. This is useful if the user
535 wants to interrupt some lengthy single-stepping operation
536 (for child processes, the SIGINT goes to the inferior, and so
537 we get a SIGINT random_signal, but for remote debugging and perhaps
538 other targets, that's not true).
539
540 STEP nonzero if we should step (zero to continue instead).
541 SIG is the signal to give the inferior (zero for none). */
542 void
543 resume (int step, enum target_signal sig)
544 {
545 int should_resume = 1;
546 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
547 QUIT;
548
549 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
550
551
552 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
553 over an instruction that causes a page fault without triggering
554 a hardware watchpoint. The kernel properly notices that it shouldn't
555 stop, because the hardware watchpoint is not triggered, but it forgets
556 the step request and continues the program normally.
557 Work around the problem by removing hardware watchpoints if a step is
558 requested, GDB will check for a hardware watchpoint trigger after the
559 step anyway. */
560 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
561 remove_hw_watchpoints ();
562
563
564 /* Normally, by the time we reach `resume', the breakpoints are either
565 removed or inserted, as appropriate. The exception is if we're sitting
566 at a permanent breakpoint; we need to step over it, but permanent
567 breakpoints can't be removed. So we have to test for it here. */
568 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
569 SKIP_PERMANENT_BREAKPOINT ();
570
571 if (SOFTWARE_SINGLE_STEP_P () && step)
572 {
573 /* Do it the hard way, w/temp breakpoints */
574 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
575 /* ...and don't ask hardware to do it. */
576 step = 0;
577 /* and do not pull these breakpoints until after a `wait' in
578 `wait_for_inferior' */
579 singlestep_breakpoints_inserted_p = 1;
580 }
581
582 /* Handle any optimized stores to the inferior NOW... */
583 #ifdef DO_DEFERRED_STORES
584 DO_DEFERRED_STORES;
585 #endif
586
587 /* If there were any forks/vforks/execs that were caught and are
588 now to be followed, then do so. */
589 switch (pending_follow.kind)
590 {
591 case TARGET_WAITKIND_FORKED:
592 case TARGET_WAITKIND_VFORKED:
593 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
594 if (follow_fork ())
595 should_resume = 0;
596 break;
597
598 case TARGET_WAITKIND_EXECD:
599 /* follow_exec is called as soon as the exec event is seen. */
600 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
601 break;
602
603 default:
604 break;
605 }
606
607 /* Install inferior's terminal modes. */
608 target_terminal_inferior ();
609
610 if (should_resume)
611 {
612 ptid_t resume_ptid;
613
614 resume_ptid = RESUME_ALL; /* Default */
615
616 if ((step || singlestep_breakpoints_inserted_p) &&
617 !breakpoints_inserted && breakpoint_here_p (read_pc ()))
618 {
619 /* Stepping past a breakpoint without inserting breakpoints.
620 Make sure only the current thread gets to step, so that
621 other threads don't sneak past breakpoints while they are
622 not inserted. */
623
624 resume_ptid = inferior_ptid;
625 }
626
627 if ((scheduler_mode == schedlock_on) ||
628 (scheduler_mode == schedlock_step &&
629 (step || singlestep_breakpoints_inserted_p)))
630 {
631 /* User-settable 'scheduler' mode requires solo thread resume. */
632 resume_ptid = inferior_ptid;
633 }
634
635 if (CANNOT_STEP_BREAKPOINT)
636 {
637 /* Most targets can step a breakpoint instruction, thus
638 executing it normally. But if this one cannot, just
639 continue and we will hit it anyway. */
640 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
641 step = 0;
642 }
643 target_resume (resume_ptid, step, sig);
644 }
645
646 discard_cleanups (old_cleanups);
647 }
648 \f
649
650 /* Clear out all variables saying what to do when inferior is continued.
651 First do this, then set the ones you want, then call `proceed'. */
652
653 void
654 clear_proceed_status (void)
655 {
656 trap_expected = 0;
657 step_range_start = 0;
658 step_range_end = 0;
659 step_frame_id = null_frame_id;
660 step_over_calls = STEP_OVER_UNDEBUGGABLE;
661 stop_after_trap = 0;
662 stop_soon = NO_STOP_QUIETLY;
663 proceed_to_finish = 0;
664 breakpoint_proceeded = 1; /* We're about to proceed... */
665
666 /* Discard any remaining commands or status from previous stop. */
667 bpstat_clear (&stop_bpstat);
668 }
669
670 /* Basic routine for continuing the program in various fashions.
671
672 ADDR is the address to resume at, or -1 for resume where stopped.
673 SIGGNAL is the signal to give it, or 0 for none,
674 or -1 for act according to how it stopped.
675 STEP is nonzero if should trap after one instruction.
676 -1 means return after that and print nothing.
677 You should probably set various step_... variables
678 before calling here, if you are stepping.
679
680 You should call clear_proceed_status before calling proceed. */
681
682 void
683 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
684 {
685 int oneproc = 0;
686
687 if (step > 0)
688 step_start_function = find_pc_function (read_pc ());
689 if (step < 0)
690 stop_after_trap = 1;
691
692 if (addr == (CORE_ADDR) -1)
693 {
694 /* If there is a breakpoint at the address we will resume at,
695 step one instruction before inserting breakpoints
696 so that we do not stop right away (and report a second
697 hit at this breakpoint). */
698
699 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
700 oneproc = 1;
701
702 #ifndef STEP_SKIPS_DELAY
703 #define STEP_SKIPS_DELAY(pc) (0)
704 #define STEP_SKIPS_DELAY_P (0)
705 #endif
706 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
707 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
708 is slow (it needs to read memory from the target). */
709 if (STEP_SKIPS_DELAY_P
710 && breakpoint_here_p (read_pc () + 4)
711 && STEP_SKIPS_DELAY (read_pc ()))
712 oneproc = 1;
713 }
714 else
715 {
716 write_pc (addr);
717 }
718
719 #ifdef PREPARE_TO_PROCEED
720 /* In a multi-threaded task we may select another thread
721 and then continue or step.
722
723 But if the old thread was stopped at a breakpoint, it
724 will immediately cause another breakpoint stop without
725 any execution (i.e. it will report a breakpoint hit
726 incorrectly). So we must step over it first.
727
728 PREPARE_TO_PROCEED checks the current thread against the thread
729 that reported the most recent event. If a step-over is required
730 it returns TRUE and sets the current thread to the old thread. */
731 if (PREPARE_TO_PROCEED (1) && breakpoint_here_p (read_pc ()))
732 {
733 oneproc = 1;
734 }
735
736 #endif /* PREPARE_TO_PROCEED */
737
738 #ifdef HP_OS_BUG
739 if (trap_expected_after_continue)
740 {
741 /* If (step == 0), a trap will be automatically generated after
742 the first instruction is executed. Force step one
743 instruction to clear this condition. This should not occur
744 if step is nonzero, but it is harmless in that case. */
745 oneproc = 1;
746 trap_expected_after_continue = 0;
747 }
748 #endif /* HP_OS_BUG */
749
750 if (oneproc)
751 /* We will get a trace trap after one instruction.
752 Continue it automatically and insert breakpoints then. */
753 trap_expected = 1;
754 else
755 {
756 insert_breakpoints ();
757 /* If we get here there was no call to error() in
758 insert breakpoints -- so they were inserted. */
759 breakpoints_inserted = 1;
760 }
761
762 if (siggnal != TARGET_SIGNAL_DEFAULT)
763 stop_signal = siggnal;
764 /* If this signal should not be seen by program,
765 give it zero. Used for debugging signals. */
766 else if (!signal_program[stop_signal])
767 stop_signal = TARGET_SIGNAL_0;
768
769 annotate_starting ();
770
771 /* Make sure that output from GDB appears before output from the
772 inferior. */
773 gdb_flush (gdb_stdout);
774
775 /* Resume inferior. */
776 resume (oneproc || step || bpstat_should_step (), stop_signal);
777
778 /* Wait for it to stop (if not standalone)
779 and in any case decode why it stopped, and act accordingly. */
780 /* Do this only if we are not using the event loop, or if the target
781 does not support asynchronous execution. */
782 if (!event_loop_p || !target_can_async_p ())
783 {
784 wait_for_inferior ();
785 normal_stop ();
786 }
787 }
788
789 /* Record the pc and sp of the program the last time it stopped.
790 These are just used internally by wait_for_inferior, but need
791 to be preserved over calls to it and cleared when the inferior
792 is started. */
793 static CORE_ADDR prev_pc;
794 static CORE_ADDR prev_func_start;
795 static char *prev_func_name;
796 \f
797
798 /* Start remote-debugging of a machine over a serial link. */
799
800 void
801 start_remote (void)
802 {
803 init_thread_list ();
804 init_wait_for_inferior ();
805 stop_soon = STOP_QUIETLY;
806 trap_expected = 0;
807
808 /* Always go on waiting for the target, regardless of the mode. */
809 /* FIXME: cagney/1999-09-23: At present it isn't possible to
810 indicate to wait_for_inferior that a target should timeout if
811 nothing is returned (instead of just blocking). Because of this,
812 targets expecting an immediate response need to, internally, set
813 things up so that the target_wait() is forced to eventually
814 timeout. */
815 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
816 differentiate to its caller what the state of the target is after
817 the initial open has been performed. Here we're assuming that
818 the target has stopped. It should be possible to eventually have
819 target_open() return to the caller an indication that the target
820 is currently running and GDB state should be set to the same as
821 for an async run. */
822 wait_for_inferior ();
823 normal_stop ();
824 }
825
826 /* Initialize static vars when a new inferior begins. */
827
828 void
829 init_wait_for_inferior (void)
830 {
831 /* These are meaningless until the first time through wait_for_inferior. */
832 prev_pc = 0;
833 prev_func_start = 0;
834 prev_func_name = NULL;
835
836 #ifdef HP_OS_BUG
837 trap_expected_after_continue = 0;
838 #endif
839 breakpoints_inserted = 0;
840 breakpoint_init_inferior (inf_starting);
841
842 /* Don't confuse first call to proceed(). */
843 stop_signal = TARGET_SIGNAL_0;
844
845 /* The first resume is not following a fork/vfork/exec. */
846 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
847
848 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
849 number_of_threads_in_syscalls = 0;
850
851 clear_proceed_status ();
852 }
853
854 static void
855 delete_breakpoint_current_contents (void *arg)
856 {
857 struct breakpoint **breakpointp = (struct breakpoint **) arg;
858 if (*breakpointp != NULL)
859 {
860 delete_breakpoint (*breakpointp);
861 *breakpointp = NULL;
862 }
863 }
864 \f
865 /* This enum encodes possible reasons for doing a target_wait, so that
866 wfi can call target_wait in one place. (Ultimately the call will be
867 moved out of the infinite loop entirely.) */
868
869 enum infwait_states
870 {
871 infwait_normal_state,
872 infwait_thread_hop_state,
873 infwait_nullified_state,
874 infwait_nonstep_watch_state
875 };
876
877 /* Why did the inferior stop? Used to print the appropriate messages
878 to the interface from within handle_inferior_event(). */
879 enum inferior_stop_reason
880 {
881 /* We don't know why. */
882 STOP_UNKNOWN,
883 /* Step, next, nexti, stepi finished. */
884 END_STEPPING_RANGE,
885 /* Found breakpoint. */
886 BREAKPOINT_HIT,
887 /* Inferior terminated by signal. */
888 SIGNAL_EXITED,
889 /* Inferior exited. */
890 EXITED,
891 /* Inferior received signal, and user asked to be notified. */
892 SIGNAL_RECEIVED
893 };
894
895 /* This structure contains what used to be local variables in
896 wait_for_inferior. Probably many of them can return to being
897 locals in handle_inferior_event. */
898
899 struct execution_control_state
900 {
901 struct target_waitstatus ws;
902 struct target_waitstatus *wp;
903 int another_trap;
904 int random_signal;
905 CORE_ADDR stop_func_start;
906 CORE_ADDR stop_func_end;
907 char *stop_func_name;
908 struct symtab_and_line sal;
909 int remove_breakpoints_on_following_step;
910 int current_line;
911 struct symtab *current_symtab;
912 int handling_longjmp; /* FIXME */
913 ptid_t ptid;
914 ptid_t saved_inferior_ptid;
915 int update_step_sp;
916 int stepping_through_solib_after_catch;
917 bpstat stepping_through_solib_catchpoints;
918 int enable_hw_watchpoints_after_wait;
919 int stepping_through_sigtramp;
920 int new_thread_event;
921 struct target_waitstatus tmpstatus;
922 enum infwait_states infwait_state;
923 ptid_t waiton_ptid;
924 int wait_some_more;
925 };
926
927 void init_execution_control_state (struct execution_control_state *ecs);
928
929 void handle_inferior_event (struct execution_control_state *ecs);
930
931 static void check_sigtramp2 (struct execution_control_state *ecs);
932 static void step_into_function (struct execution_control_state *ecs);
933 static void step_over_function (struct execution_control_state *ecs);
934 static void stop_stepping (struct execution_control_state *ecs);
935 static void prepare_to_wait (struct execution_control_state *ecs);
936 static void keep_going (struct execution_control_state *ecs);
937 static void print_stop_reason (enum inferior_stop_reason stop_reason,
938 int stop_info);
939
940 /* Wait for control to return from inferior to debugger.
941 If inferior gets a signal, we may decide to start it up again
942 instead of returning. That is why there is a loop in this function.
943 When this function actually returns it means the inferior
944 should be left stopped and GDB should read more commands. */
945
946 void
947 wait_for_inferior (void)
948 {
949 struct cleanup *old_cleanups;
950 struct execution_control_state ecss;
951 struct execution_control_state *ecs;
952
953 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
954 &step_resume_breakpoint);
955 make_cleanup (delete_breakpoint_current_contents,
956 &through_sigtramp_breakpoint);
957
958 /* wfi still stays in a loop, so it's OK just to take the address of
959 a local to get the ecs pointer. */
960 ecs = &ecss;
961
962 /* Fill in with reasonable starting values. */
963 init_execution_control_state (ecs);
964
965 /* We'll update this if & when we switch to a new thread. */
966 previous_inferior_ptid = inferior_ptid;
967
968 overlay_cache_invalid = 1;
969
970 /* We have to invalidate the registers BEFORE calling target_wait
971 because they can be loaded from the target while in target_wait.
972 This makes remote debugging a bit more efficient for those
973 targets that provide critical registers as part of their normal
974 status mechanism. */
975
976 registers_changed ();
977
978 while (1)
979 {
980 if (target_wait_hook)
981 ecs->ptid = target_wait_hook (ecs->waiton_ptid, ecs->wp);
982 else
983 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
984
985 /* Now figure out what to do with the result of the result. */
986 handle_inferior_event (ecs);
987
988 if (!ecs->wait_some_more)
989 break;
990 }
991 do_cleanups (old_cleanups);
992 }
993
994 /* Asynchronous version of wait_for_inferior. It is called by the
995 event loop whenever a change of state is detected on the file
996 descriptor corresponding to the target. It can be called more than
997 once to complete a single execution command. In such cases we need
998 to keep the state in a global variable ASYNC_ECSS. If it is the
999 last time that this function is called for a single execution
1000 command, then report to the user that the inferior has stopped, and
1001 do the necessary cleanups. */
1002
1003 struct execution_control_state async_ecss;
1004 struct execution_control_state *async_ecs;
1005
1006 void
1007 fetch_inferior_event (void *client_data)
1008 {
1009 static struct cleanup *old_cleanups;
1010
1011 async_ecs = &async_ecss;
1012
1013 if (!async_ecs->wait_some_more)
1014 {
1015 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1016 &step_resume_breakpoint);
1017 make_exec_cleanup (delete_breakpoint_current_contents,
1018 &through_sigtramp_breakpoint);
1019
1020 /* Fill in with reasonable starting values. */
1021 init_execution_control_state (async_ecs);
1022
1023 /* We'll update this if & when we switch to a new thread. */
1024 previous_inferior_ptid = inferior_ptid;
1025
1026 overlay_cache_invalid = 1;
1027
1028 /* We have to invalidate the registers BEFORE calling target_wait
1029 because they can be loaded from the target while in target_wait.
1030 This makes remote debugging a bit more efficient for those
1031 targets that provide critical registers as part of their normal
1032 status mechanism. */
1033
1034 registers_changed ();
1035 }
1036
1037 if (target_wait_hook)
1038 async_ecs->ptid =
1039 target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1040 else
1041 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1042
1043 /* Now figure out what to do with the result of the result. */
1044 handle_inferior_event (async_ecs);
1045
1046 if (!async_ecs->wait_some_more)
1047 {
1048 /* Do only the cleanups that have been added by this
1049 function. Let the continuations for the commands do the rest,
1050 if there are any. */
1051 do_exec_cleanups (old_cleanups);
1052 normal_stop ();
1053 if (step_multi && stop_step)
1054 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1055 else
1056 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1057 }
1058 }
1059
1060 /* Prepare an execution control state for looping through a
1061 wait_for_inferior-type loop. */
1062
1063 void
1064 init_execution_control_state (struct execution_control_state *ecs)
1065 {
1066 /* ecs->another_trap? */
1067 ecs->random_signal = 0;
1068 ecs->remove_breakpoints_on_following_step = 0;
1069 ecs->handling_longjmp = 0; /* FIXME */
1070 ecs->update_step_sp = 0;
1071 ecs->stepping_through_solib_after_catch = 0;
1072 ecs->stepping_through_solib_catchpoints = NULL;
1073 ecs->enable_hw_watchpoints_after_wait = 0;
1074 ecs->stepping_through_sigtramp = 0;
1075 ecs->sal = find_pc_line (prev_pc, 0);
1076 ecs->current_line = ecs->sal.line;
1077 ecs->current_symtab = ecs->sal.symtab;
1078 ecs->infwait_state = infwait_normal_state;
1079 ecs->waiton_ptid = pid_to_ptid (-1);
1080 ecs->wp = &(ecs->ws);
1081 }
1082
1083 /* Call this function before setting step_resume_breakpoint, as a
1084 sanity check. There should never be more than one step-resume
1085 breakpoint per thread, so we should never be setting a new
1086 step_resume_breakpoint when one is already active. */
1087 static void
1088 check_for_old_step_resume_breakpoint (void)
1089 {
1090 if (step_resume_breakpoint)
1091 warning
1092 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
1093 }
1094
1095 /* Return the cached copy of the last pid/waitstatus returned by
1096 target_wait()/target_wait_hook(). The data is actually cached by
1097 handle_inferior_event(), which gets called immediately after
1098 target_wait()/target_wait_hook(). */
1099
1100 void
1101 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1102 {
1103 *ptidp = target_last_wait_ptid;
1104 *status = target_last_waitstatus;
1105 }
1106
1107 /* Switch thread contexts, maintaining "infrun state". */
1108
1109 static void
1110 context_switch (struct execution_control_state *ecs)
1111 {
1112 /* Caution: it may happen that the new thread (or the old one!)
1113 is not in the thread list. In this case we must not attempt
1114 to "switch context", or we run the risk that our context may
1115 be lost. This may happen as a result of the target module
1116 mishandling thread creation. */
1117
1118 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1119 { /* Perform infrun state context switch: */
1120 /* Save infrun state for the old thread. */
1121 save_infrun_state (inferior_ptid, prev_pc,
1122 prev_func_start, prev_func_name,
1123 trap_expected, step_resume_breakpoint,
1124 through_sigtramp_breakpoint, step_range_start,
1125 step_range_end, &step_frame_id,
1126 ecs->handling_longjmp, ecs->another_trap,
1127 ecs->stepping_through_solib_after_catch,
1128 ecs->stepping_through_solib_catchpoints,
1129 ecs->stepping_through_sigtramp,
1130 ecs->current_line, ecs->current_symtab, step_sp);
1131
1132 /* Load infrun state for the new thread. */
1133 load_infrun_state (ecs->ptid, &prev_pc,
1134 &prev_func_start, &prev_func_name,
1135 &trap_expected, &step_resume_breakpoint,
1136 &through_sigtramp_breakpoint, &step_range_start,
1137 &step_range_end, &step_frame_id,
1138 &ecs->handling_longjmp, &ecs->another_trap,
1139 &ecs->stepping_through_solib_after_catch,
1140 &ecs->stepping_through_solib_catchpoints,
1141 &ecs->stepping_through_sigtramp,
1142 &ecs->current_line, &ecs->current_symtab, &step_sp);
1143 }
1144 inferior_ptid = ecs->ptid;
1145 }
1146
1147
1148 /* Given an execution control state that has been freshly filled in
1149 by an event from the inferior, figure out what it means and take
1150 appropriate action. */
1151
1152 void
1153 handle_inferior_event (struct execution_control_state *ecs)
1154 {
1155 CORE_ADDR real_stop_pc;
1156 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1157 thinking that the variable stepped_after_stopped_by_watchpoint
1158 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1159 defined in the file "config/pa/nm-hppah.h", accesses the variable
1160 indirectly. Mutter something rude about the HP merge. */
1161 int stepped_after_stopped_by_watchpoint;
1162 int sw_single_step_trap_p = 0;
1163
1164 /* Cache the last pid/waitstatus. */
1165 target_last_wait_ptid = ecs->ptid;
1166 target_last_waitstatus = *ecs->wp;
1167
1168 switch (ecs->infwait_state)
1169 {
1170 case infwait_thread_hop_state:
1171 /* Cancel the waiton_ptid. */
1172 ecs->waiton_ptid = pid_to_ptid (-1);
1173 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1174 is serviced in this loop, below. */
1175 if (ecs->enable_hw_watchpoints_after_wait)
1176 {
1177 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1178 ecs->enable_hw_watchpoints_after_wait = 0;
1179 }
1180 stepped_after_stopped_by_watchpoint = 0;
1181 break;
1182
1183 case infwait_normal_state:
1184 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1185 is serviced in this loop, below. */
1186 if (ecs->enable_hw_watchpoints_after_wait)
1187 {
1188 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1189 ecs->enable_hw_watchpoints_after_wait = 0;
1190 }
1191 stepped_after_stopped_by_watchpoint = 0;
1192 break;
1193
1194 case infwait_nullified_state:
1195 stepped_after_stopped_by_watchpoint = 0;
1196 break;
1197
1198 case infwait_nonstep_watch_state:
1199 insert_breakpoints ();
1200
1201 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1202 handle things like signals arriving and other things happening
1203 in combination correctly? */
1204 stepped_after_stopped_by_watchpoint = 1;
1205 break;
1206
1207 default:
1208 internal_error (__FILE__, __LINE__, "bad switch");
1209 }
1210 ecs->infwait_state = infwait_normal_state;
1211
1212 flush_cached_frames ();
1213
1214 /* If it's a new process, add it to the thread database */
1215
1216 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1217 && !in_thread_list (ecs->ptid));
1218
1219 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1220 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1221 {
1222 add_thread (ecs->ptid);
1223
1224 ui_out_text (uiout, "[New ");
1225 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1226 ui_out_text (uiout, "]\n");
1227
1228 #if 0
1229 /* NOTE: This block is ONLY meant to be invoked in case of a
1230 "thread creation event"! If it is invoked for any other
1231 sort of event (such as a new thread landing on a breakpoint),
1232 the event will be discarded, which is almost certainly
1233 a bad thing!
1234
1235 To avoid this, the low-level module (eg. target_wait)
1236 should call in_thread_list and add_thread, so that the
1237 new thread is known by the time we get here. */
1238
1239 /* We may want to consider not doing a resume here in order
1240 to give the user a chance to play with the new thread.
1241 It might be good to make that a user-settable option. */
1242
1243 /* At this point, all threads are stopped (happens
1244 automatically in either the OS or the native code).
1245 Therefore we need to continue all threads in order to
1246 make progress. */
1247
1248 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1249 prepare_to_wait (ecs);
1250 return;
1251 #endif
1252 }
1253
1254 switch (ecs->ws.kind)
1255 {
1256 case TARGET_WAITKIND_LOADED:
1257 /* Ignore gracefully during startup of the inferior, as it
1258 might be the shell which has just loaded some objects,
1259 otherwise add the symbols for the newly loaded objects. */
1260 #ifdef SOLIB_ADD
1261 if (stop_soon == NO_STOP_QUIETLY)
1262 {
1263 /* Remove breakpoints, SOLIB_ADD might adjust
1264 breakpoint addresses via breakpoint_re_set. */
1265 if (breakpoints_inserted)
1266 remove_breakpoints ();
1267
1268 /* Check for any newly added shared libraries if we're
1269 supposed to be adding them automatically. Switch
1270 terminal for any messages produced by
1271 breakpoint_re_set. */
1272 target_terminal_ours_for_output ();
1273 SOLIB_ADD (NULL, 0, NULL, auto_solib_add);
1274 target_terminal_inferior ();
1275
1276 /* Reinsert breakpoints and continue. */
1277 if (breakpoints_inserted)
1278 insert_breakpoints ();
1279 }
1280 #endif
1281 resume (0, TARGET_SIGNAL_0);
1282 prepare_to_wait (ecs);
1283 return;
1284
1285 case TARGET_WAITKIND_SPURIOUS:
1286 resume (0, TARGET_SIGNAL_0);
1287 prepare_to_wait (ecs);
1288 return;
1289
1290 case TARGET_WAITKIND_EXITED:
1291 target_terminal_ours (); /* Must do this before mourn anyway */
1292 print_stop_reason (EXITED, ecs->ws.value.integer);
1293
1294 /* Record the exit code in the convenience variable $_exitcode, so
1295 that the user can inspect this again later. */
1296 set_internalvar (lookup_internalvar ("_exitcode"),
1297 value_from_longest (builtin_type_int,
1298 (LONGEST) ecs->ws.value.integer));
1299 gdb_flush (gdb_stdout);
1300 target_mourn_inferior ();
1301 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1302 stop_print_frame = 0;
1303 stop_stepping (ecs);
1304 return;
1305
1306 case TARGET_WAITKIND_SIGNALLED:
1307 stop_print_frame = 0;
1308 stop_signal = ecs->ws.value.sig;
1309 target_terminal_ours (); /* Must do this before mourn anyway */
1310
1311 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1312 reach here unless the inferior is dead. However, for years
1313 target_kill() was called here, which hints that fatal signals aren't
1314 really fatal on some systems. If that's true, then some changes
1315 may be needed. */
1316 target_mourn_inferior ();
1317
1318 print_stop_reason (SIGNAL_EXITED, stop_signal);
1319 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1320 stop_stepping (ecs);
1321 return;
1322
1323 /* The following are the only cases in which we keep going;
1324 the above cases end in a continue or goto. */
1325 case TARGET_WAITKIND_FORKED:
1326 case TARGET_WAITKIND_VFORKED:
1327 stop_signal = TARGET_SIGNAL_TRAP;
1328 pending_follow.kind = ecs->ws.kind;
1329
1330 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1331 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1332
1333 stop_pc = read_pc ();
1334
1335 /* Assume that catchpoints are not really software breakpoints. If
1336 some future target implements them using software breakpoints then
1337 that target is responsible for fudging DECR_PC_AFTER_BREAK. Thus
1338 we pass 1 for the NOT_A_SW_BREAKPOINT argument, so that
1339 bpstat_stop_status will not decrement the PC. */
1340
1341 stop_bpstat = bpstat_stop_status (&stop_pc, 1);
1342
1343 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1344
1345 /* If no catchpoint triggered for this, then keep going. */
1346 if (ecs->random_signal)
1347 {
1348 stop_signal = TARGET_SIGNAL_0;
1349 keep_going (ecs);
1350 return;
1351 }
1352 goto process_event_stop_test;
1353
1354 case TARGET_WAITKIND_EXECD:
1355 stop_signal = TARGET_SIGNAL_TRAP;
1356
1357 /* NOTE drow/2002-12-05: This code should be pushed down into the
1358 target_wait function. Until then following vfork on HP/UX 10.20
1359 is probably broken by this. Of course, it's broken anyway. */
1360 /* Is this a target which reports multiple exec events per actual
1361 call to exec()? (HP-UX using ptrace does, for example.) If so,
1362 ignore all but the last one. Just resume the exec'r, and wait
1363 for the next exec event. */
1364 if (inferior_ignoring_leading_exec_events)
1365 {
1366 inferior_ignoring_leading_exec_events--;
1367 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1368 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1369 parent_pid);
1370 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1371 prepare_to_wait (ecs);
1372 return;
1373 }
1374 inferior_ignoring_leading_exec_events =
1375 target_reported_exec_events_per_exec_call () - 1;
1376
1377 pending_follow.execd_pathname =
1378 savestring (ecs->ws.value.execd_pathname,
1379 strlen (ecs->ws.value.execd_pathname));
1380
1381 /* This causes the eventpoints and symbol table to be reset. Must
1382 do this now, before trying to determine whether to stop. */
1383 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1384 xfree (pending_follow.execd_pathname);
1385
1386 stop_pc = read_pc_pid (ecs->ptid);
1387 ecs->saved_inferior_ptid = inferior_ptid;
1388 inferior_ptid = ecs->ptid;
1389
1390 /* Assume that catchpoints are not really software breakpoints. If
1391 some future target implements them using software breakpoints then
1392 that target is responsible for fudging DECR_PC_AFTER_BREAK. Thus
1393 we pass 1 for the NOT_A_SW_BREAKPOINT argument, so that
1394 bpstat_stop_status will not decrement the PC. */
1395
1396 stop_bpstat = bpstat_stop_status (&stop_pc, 1);
1397
1398 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1399 inferior_ptid = ecs->saved_inferior_ptid;
1400
1401 /* If no catchpoint triggered for this, then keep going. */
1402 if (ecs->random_signal)
1403 {
1404 stop_signal = TARGET_SIGNAL_0;
1405 keep_going (ecs);
1406 return;
1407 }
1408 goto process_event_stop_test;
1409
1410 /* These syscall events are returned on HP-UX, as part of its
1411 implementation of page-protection-based "hardware" watchpoints.
1412 HP-UX has unfortunate interactions between page-protections and
1413 some system calls. Our solution is to disable hardware watches
1414 when a system call is entered, and reenable them when the syscall
1415 completes. The downside of this is that we may miss the precise
1416 point at which a watched piece of memory is modified. "Oh well."
1417
1418 Note that we may have multiple threads running, which may each
1419 enter syscalls at roughly the same time. Since we don't have a
1420 good notion currently of whether a watched piece of memory is
1421 thread-private, we'd best not have any page-protections active
1422 when any thread is in a syscall. Thus, we only want to reenable
1423 hardware watches when no threads are in a syscall.
1424
1425 Also, be careful not to try to gather much state about a thread
1426 that's in a syscall. It's frequently a losing proposition. */
1427 case TARGET_WAITKIND_SYSCALL_ENTRY:
1428 number_of_threads_in_syscalls++;
1429 if (number_of_threads_in_syscalls == 1)
1430 {
1431 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1432 }
1433 resume (0, TARGET_SIGNAL_0);
1434 prepare_to_wait (ecs);
1435 return;
1436
1437 /* Before examining the threads further, step this thread to
1438 get it entirely out of the syscall. (We get notice of the
1439 event when the thread is just on the verge of exiting a
1440 syscall. Stepping one instruction seems to get it back
1441 into user code.)
1442
1443 Note that although the logical place to reenable h/w watches
1444 is here, we cannot. We cannot reenable them before stepping
1445 the thread (this causes the next wait on the thread to hang).
1446
1447 Nor can we enable them after stepping until we've done a wait.
1448 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1449 here, which will be serviced immediately after the target
1450 is waited on. */
1451 case TARGET_WAITKIND_SYSCALL_RETURN:
1452 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1453
1454 if (number_of_threads_in_syscalls > 0)
1455 {
1456 number_of_threads_in_syscalls--;
1457 ecs->enable_hw_watchpoints_after_wait =
1458 (number_of_threads_in_syscalls == 0);
1459 }
1460 prepare_to_wait (ecs);
1461 return;
1462
1463 case TARGET_WAITKIND_STOPPED:
1464 stop_signal = ecs->ws.value.sig;
1465 break;
1466
1467 /* We had an event in the inferior, but we are not interested
1468 in handling it at this level. The lower layers have already
1469 done what needs to be done, if anything.
1470
1471 One of the possible circumstances for this is when the
1472 inferior produces output for the console. The inferior has
1473 not stopped, and we are ignoring the event. Another possible
1474 circumstance is any event which the lower level knows will be
1475 reported multiple times without an intervening resume. */
1476 case TARGET_WAITKIND_IGNORE:
1477 prepare_to_wait (ecs);
1478 return;
1479 }
1480
1481 /* We may want to consider not doing a resume here in order to give
1482 the user a chance to play with the new thread. It might be good
1483 to make that a user-settable option. */
1484
1485 /* At this point, all threads are stopped (happens automatically in
1486 either the OS or the native code). Therefore we need to continue
1487 all threads in order to make progress. */
1488 if (ecs->new_thread_event)
1489 {
1490 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1491 prepare_to_wait (ecs);
1492 return;
1493 }
1494
1495 stop_pc = read_pc_pid (ecs->ptid);
1496
1497 /* See if a thread hit a thread-specific breakpoint that was meant for
1498 another thread. If so, then step that thread past the breakpoint,
1499 and continue it. */
1500
1501 if (stop_signal == TARGET_SIGNAL_TRAP)
1502 {
1503 /* Check if a regular breakpoint has been hit before checking
1504 for a potential single step breakpoint. Otherwise, GDB will
1505 not see this breakpoint hit when stepping onto breakpoints. */
1506 if (breakpoints_inserted
1507 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
1508 {
1509 ecs->random_signal = 0;
1510 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK,
1511 ecs->ptid))
1512 {
1513 int remove_status;
1514
1515 /* Saw a breakpoint, but it was hit by the wrong thread.
1516 Just continue. */
1517 if (DECR_PC_AFTER_BREAK)
1518 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK, ecs->ptid);
1519
1520 remove_status = remove_breakpoints ();
1521 /* Did we fail to remove breakpoints? If so, try
1522 to set the PC past the bp. (There's at least
1523 one situation in which we can fail to remove
1524 the bp's: On HP-UX's that use ttrace, we can't
1525 change the address space of a vforking child
1526 process until the child exits (well, okay, not
1527 then either :-) or execs. */
1528 if (remove_status != 0)
1529 {
1530 /* FIXME! This is obviously non-portable! */
1531 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK + 4, ecs->ptid);
1532 /* We need to restart all the threads now,
1533 * unles we're running in scheduler-locked mode.
1534 * Use currently_stepping to determine whether to
1535 * step or continue.
1536 */
1537 /* FIXME MVS: is there any reason not to call resume()? */
1538 if (scheduler_mode == schedlock_on)
1539 target_resume (ecs->ptid,
1540 currently_stepping (ecs), TARGET_SIGNAL_0);
1541 else
1542 target_resume (RESUME_ALL,
1543 currently_stepping (ecs), TARGET_SIGNAL_0);
1544 prepare_to_wait (ecs);
1545 return;
1546 }
1547 else
1548 { /* Single step */
1549 breakpoints_inserted = 0;
1550 if (!ptid_equal (inferior_ptid, ecs->ptid))
1551 context_switch (ecs);
1552 ecs->waiton_ptid = ecs->ptid;
1553 ecs->wp = &(ecs->ws);
1554 ecs->another_trap = 1;
1555
1556 ecs->infwait_state = infwait_thread_hop_state;
1557 keep_going (ecs);
1558 registers_changed ();
1559 return;
1560 }
1561 }
1562 }
1563 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1564 {
1565 /* Readjust the stop_pc as it is off by DECR_PC_AFTER_BREAK
1566 compared to the value it would have if the system stepping
1567 capability was used. This allows the rest of the code in
1568 this function to use this address without having to worry
1569 whether software single step is in use or not. */
1570 if (DECR_PC_AFTER_BREAK)
1571 {
1572 stop_pc -= DECR_PC_AFTER_BREAK;
1573 write_pc_pid (stop_pc, ecs->ptid);
1574 }
1575
1576 sw_single_step_trap_p = 1;
1577 ecs->random_signal = 0;
1578 }
1579 }
1580 else
1581 ecs->random_signal = 1;
1582
1583 /* See if something interesting happened to the non-current thread. If
1584 so, then switch to that thread, and eventually give control back to
1585 the user.
1586
1587 Note that if there's any kind of pending follow (i.e., of a fork,
1588 vfork or exec), we don't want to do this now. Rather, we'll let
1589 the next resume handle it. */
1590 if (!ptid_equal (ecs->ptid, inferior_ptid) &&
1591 (pending_follow.kind == TARGET_WAITKIND_SPURIOUS))
1592 {
1593 int printed = 0;
1594
1595 /* If it's a random signal for a non-current thread, notify user
1596 if he's expressed an interest. */
1597 if (ecs->random_signal && signal_print[stop_signal])
1598 {
1599 /* ??rehrauer: I don't understand the rationale for this code. If the
1600 inferior will stop as a result of this signal, then the act of handling
1601 the stop ought to print a message that's couches the stoppage in user
1602 terms, e.g., "Stopped for breakpoint/watchpoint". If the inferior
1603 won't stop as a result of the signal -- i.e., if the signal is merely
1604 a side-effect of something GDB's doing "under the covers" for the
1605 user, such as stepping threads over a breakpoint they shouldn't stop
1606 for -- then the message seems to be a serious annoyance at best.
1607
1608 For now, remove the message altogether. */
1609 #if 0
1610 printed = 1;
1611 target_terminal_ours_for_output ();
1612 printf_filtered ("\nProgram received signal %s, %s.\n",
1613 target_signal_to_name (stop_signal),
1614 target_signal_to_string (stop_signal));
1615 gdb_flush (gdb_stdout);
1616 #endif
1617 }
1618
1619 /* If it's not SIGTRAP and not a signal we want to stop for, then
1620 continue the thread. */
1621
1622 if (stop_signal != TARGET_SIGNAL_TRAP && !signal_stop[stop_signal])
1623 {
1624 if (printed)
1625 target_terminal_inferior ();
1626
1627 /* Clear the signal if it should not be passed. */
1628 if (signal_program[stop_signal] == 0)
1629 stop_signal = TARGET_SIGNAL_0;
1630
1631 target_resume (ecs->ptid, 0, stop_signal);
1632 prepare_to_wait (ecs);
1633 return;
1634 }
1635
1636 /* It's a SIGTRAP or a signal we're interested in. Switch threads,
1637 and fall into the rest of wait_for_inferior(). */
1638
1639 context_switch (ecs);
1640
1641 if (context_hook)
1642 context_hook (pid_to_thread_id (ecs->ptid));
1643
1644 flush_cached_frames ();
1645 }
1646
1647 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1648 {
1649 /* Pull the single step breakpoints out of the target. */
1650 SOFTWARE_SINGLE_STEP (0, 0);
1651 singlestep_breakpoints_inserted_p = 0;
1652 }
1653
1654 /* If PC is pointing at a nullified instruction, then step beyond
1655 it so that the user won't be confused when GDB appears to be ready
1656 to execute it. */
1657
1658 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1659 if (INSTRUCTION_NULLIFIED)
1660 {
1661 registers_changed ();
1662 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1663
1664 /* We may have received a signal that we want to pass to
1665 the inferior; therefore, we must not clobber the waitstatus
1666 in WS. */
1667
1668 ecs->infwait_state = infwait_nullified_state;
1669 ecs->waiton_ptid = ecs->ptid;
1670 ecs->wp = &(ecs->tmpstatus);
1671 prepare_to_wait (ecs);
1672 return;
1673 }
1674
1675 /* It may not be necessary to disable the watchpoint to stop over
1676 it. For example, the PA can (with some kernel cooperation)
1677 single step over a watchpoint without disabling the watchpoint. */
1678 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1679 {
1680 resume (1, 0);
1681 prepare_to_wait (ecs);
1682 return;
1683 }
1684
1685 /* It is far more common to need to disable a watchpoint to step
1686 the inferior over it. FIXME. What else might a debug
1687 register or page protection watchpoint scheme need here? */
1688 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1689 {
1690 /* At this point, we are stopped at an instruction which has
1691 attempted to write to a piece of memory under control of
1692 a watchpoint. The instruction hasn't actually executed
1693 yet. If we were to evaluate the watchpoint expression
1694 now, we would get the old value, and therefore no change
1695 would seem to have occurred.
1696
1697 In order to make watchpoints work `right', we really need
1698 to complete the memory write, and then evaluate the
1699 watchpoint expression. The following code does that by
1700 removing the watchpoint (actually, all watchpoints and
1701 breakpoints), single-stepping the target, re-inserting
1702 watchpoints, and then falling through to let normal
1703 single-step processing handle proceed. Since this
1704 includes evaluating watchpoints, things will come to a
1705 stop in the correct manner. */
1706
1707 if (DECR_PC_AFTER_BREAK)
1708 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
1709
1710 remove_breakpoints ();
1711 registers_changed ();
1712 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1713
1714 ecs->waiton_ptid = ecs->ptid;
1715 ecs->wp = &(ecs->ws);
1716 ecs->infwait_state = infwait_nonstep_watch_state;
1717 prepare_to_wait (ecs);
1718 return;
1719 }
1720
1721 /* It may be possible to simply continue after a watchpoint. */
1722 if (HAVE_CONTINUABLE_WATCHPOINT)
1723 STOPPED_BY_WATCHPOINT (ecs->ws);
1724
1725 ecs->stop_func_start = 0;
1726 ecs->stop_func_end = 0;
1727 ecs->stop_func_name = 0;
1728 /* Don't care about return value; stop_func_start and stop_func_name
1729 will both be 0 if it doesn't work. */
1730 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1731 &ecs->stop_func_start, &ecs->stop_func_end);
1732 ecs->stop_func_start += FUNCTION_START_OFFSET;
1733 ecs->another_trap = 0;
1734 bpstat_clear (&stop_bpstat);
1735 stop_step = 0;
1736 stop_stack_dummy = 0;
1737 stop_print_frame = 1;
1738 ecs->random_signal = 0;
1739 stopped_by_random_signal = 0;
1740 breakpoints_failed = 0;
1741
1742 /* Look at the cause of the stop, and decide what to do.
1743 The alternatives are:
1744 1) break; to really stop and return to the debugger,
1745 2) drop through to start up again
1746 (set ecs->another_trap to 1 to single step once)
1747 3) set ecs->random_signal to 1, and the decision between 1 and 2
1748 will be made according to the signal handling tables. */
1749
1750 /* First, distinguish signals caused by the debugger from signals
1751 that have to do with the program's own actions.
1752 Note that breakpoint insns may cause SIGTRAP or SIGILL
1753 or SIGEMT, depending on the operating system version.
1754 Here we detect when a SIGILL or SIGEMT is really a breakpoint
1755 and change it to SIGTRAP. */
1756
1757 if (stop_signal == TARGET_SIGNAL_TRAP
1758 || (breakpoints_inserted &&
1759 (stop_signal == TARGET_SIGNAL_ILL
1760 || stop_signal == TARGET_SIGNAL_EMT))
1761 || stop_soon == STOP_QUIETLY
1762 || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1763 {
1764 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1765 {
1766 stop_print_frame = 0;
1767 stop_stepping (ecs);
1768 return;
1769 }
1770
1771 /* This is originated from start_remote(), start_inferior() and
1772 shared libraries hook functions. */
1773 if (stop_soon == STOP_QUIETLY)
1774 {
1775 stop_stepping (ecs);
1776 return;
1777 }
1778
1779 /* This originates from attach_command(). We need to overwrite
1780 the stop_signal here, because some kernels don't ignore a
1781 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1782 See more comments in inferior.h. */
1783 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1784 {
1785 stop_stepping (ecs);
1786 if (stop_signal == TARGET_SIGNAL_STOP)
1787 stop_signal = TARGET_SIGNAL_0;
1788 return;
1789 }
1790
1791 /* Don't even think about breakpoints
1792 if just proceeded over a breakpoint.
1793
1794 However, if we are trying to proceed over a breakpoint
1795 and end up in sigtramp, then through_sigtramp_breakpoint
1796 will be set and we should check whether we've hit the
1797 step breakpoint. */
1798 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
1799 && through_sigtramp_breakpoint == NULL)
1800 bpstat_clear (&stop_bpstat);
1801 else
1802 {
1803 /* See if there is a breakpoint at the current PC. */
1804
1805 /* The second argument of bpstat_stop_status is meant to help
1806 distinguish between a breakpoint trap and a singlestep trap.
1807 This is only important on targets where DECR_PC_AFTER_BREAK
1808 is non-zero. The prev_pc test is meant to distinguish between
1809 singlestepping a trap instruction, and singlestepping thru a
1810 jump to the instruction following a trap instruction.
1811
1812 Therefore, pass TRUE if our reason for stopping is
1813 something other than hitting a breakpoint. We do this by
1814 checking that either: we detected earlier a software single
1815 step trap or, 1) stepping is going on and 2) we didn't hit
1816 a breakpoint in a signal handler without an intervening stop
1817 in sigtramp, which is detected by a new stack pointer value
1818 below any usual function calling stack adjustments. */
1819 stop_bpstat =
1820 bpstat_stop_status
1821 (&stop_pc,
1822 sw_single_step_trap_p
1823 || (currently_stepping (ecs)
1824 && prev_pc != stop_pc - DECR_PC_AFTER_BREAK
1825 && !(step_range_end
1826 && INNER_THAN (read_sp (), (step_sp - 16)))));
1827 /* Following in case break condition called a
1828 function. */
1829 stop_print_frame = 1;
1830 }
1831
1832 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1833 at one stage in the past included checks for an inferior
1834 function call's call dummy's return breakpoint. The original
1835 comment, that went with the test, read:
1836
1837 ``End of a stack dummy. Some systems (e.g. Sony news) give
1838 another signal besides SIGTRAP, so check here as well as
1839 above.''
1840
1841 If someone ever tries to get get call dummys on a
1842 non-executable stack to work (where the target would stop
1843 with something like a SIGSEG), then those tests might need to
1844 be re-instated. Given, however, that the tests were only
1845 enabled when momentary breakpoints were not being used, I
1846 suspect that it won't be the case. */
1847
1848 if (stop_signal == TARGET_SIGNAL_TRAP)
1849 ecs->random_signal
1850 = !(bpstat_explains_signal (stop_bpstat)
1851 || trap_expected
1852 || (step_range_end && step_resume_breakpoint == NULL));
1853 else
1854 {
1855 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1856 if (!ecs->random_signal)
1857 stop_signal = TARGET_SIGNAL_TRAP;
1858 }
1859 }
1860
1861 /* When we reach this point, we've pretty much decided
1862 that the reason for stopping must've been a random
1863 (unexpected) signal. */
1864
1865 else
1866 ecs->random_signal = 1;
1867
1868 process_event_stop_test:
1869 /* For the program's own signals, act according to
1870 the signal handling tables. */
1871
1872 if (ecs->random_signal)
1873 {
1874 /* Signal not for debugging purposes. */
1875 int printed = 0;
1876
1877 stopped_by_random_signal = 1;
1878
1879 if (signal_print[stop_signal])
1880 {
1881 printed = 1;
1882 target_terminal_ours_for_output ();
1883 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1884 }
1885 if (signal_stop[stop_signal])
1886 {
1887 stop_stepping (ecs);
1888 return;
1889 }
1890 /* If not going to stop, give terminal back
1891 if we took it away. */
1892 else if (printed)
1893 target_terminal_inferior ();
1894
1895 /* Clear the signal if it should not be passed. */
1896 if (signal_program[stop_signal] == 0)
1897 stop_signal = TARGET_SIGNAL_0;
1898
1899 /* I'm not sure whether this needs to be check_sigtramp2 or
1900 whether it could/should be keep_going.
1901
1902 This used to jump to step_over_function if we are stepping,
1903 which is wrong.
1904
1905 Suppose the user does a `next' over a function call, and while
1906 that call is in progress, the inferior receives a signal for
1907 which GDB does not stop (i.e., signal_stop[SIG] is false). In
1908 that case, when we reach this point, there is already a
1909 step-resume breakpoint established, right where it should be:
1910 immediately after the function call the user is "next"-ing
1911 over. If we call step_over_function now, two bad things
1912 happen:
1913
1914 - we'll create a new breakpoint, at wherever the current
1915 frame's return address happens to be. That could be
1916 anywhere, depending on what function call happens to be on
1917 the top of the stack at that point. Point is, it's probably
1918 not where we need it.
1919
1920 - the existing step-resume breakpoint (which is at the correct
1921 address) will get orphaned: step_resume_breakpoint will point
1922 to the new breakpoint, and the old step-resume breakpoint
1923 will never be cleaned up.
1924
1925 The old behavior was meant to help HP-UX single-step out of
1926 sigtramps. It would place the new breakpoint at prev_pc, which
1927 was certainly wrong. I don't know the details there, so fixing
1928 this probably breaks that. As with anything else, it's up to
1929 the HP-UX maintainer to furnish a fix that doesn't break other
1930 platforms. --JimB, 20 May 1999 */
1931 check_sigtramp2 (ecs);
1932 keep_going (ecs);
1933 return;
1934 }
1935
1936 /* Handle cases caused by hitting a breakpoint. */
1937 {
1938 CORE_ADDR jmp_buf_pc;
1939 struct bpstat_what what;
1940
1941 what = bpstat_what (stop_bpstat);
1942
1943 if (what.call_dummy)
1944 {
1945 stop_stack_dummy = 1;
1946 #ifdef HP_OS_BUG
1947 trap_expected_after_continue = 1;
1948 #endif
1949 }
1950
1951 switch (what.main_action)
1952 {
1953 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
1954 /* If we hit the breakpoint at longjmp, disable it for the
1955 duration of this command. Then, install a temporary
1956 breakpoint at the target of the jmp_buf. */
1957 disable_longjmp_breakpoint ();
1958 remove_breakpoints ();
1959 breakpoints_inserted = 0;
1960 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
1961 {
1962 keep_going (ecs);
1963 return;
1964 }
1965
1966 /* Need to blow away step-resume breakpoint, as it
1967 interferes with us */
1968 if (step_resume_breakpoint != NULL)
1969 {
1970 delete_step_resume_breakpoint (&step_resume_breakpoint);
1971 }
1972 /* Not sure whether we need to blow this away too, but probably
1973 it is like the step-resume breakpoint. */
1974 if (through_sigtramp_breakpoint != NULL)
1975 {
1976 delete_breakpoint (through_sigtramp_breakpoint);
1977 through_sigtramp_breakpoint = NULL;
1978 }
1979
1980 #if 0
1981 /* FIXME - Need to implement nested temporary breakpoints */
1982 if (step_over_calls > 0)
1983 set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
1984 else
1985 #endif /* 0 */
1986 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
1987 ecs->handling_longjmp = 1; /* FIXME */
1988 keep_going (ecs);
1989 return;
1990
1991 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
1992 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
1993 remove_breakpoints ();
1994 breakpoints_inserted = 0;
1995 #if 0
1996 /* FIXME - Need to implement nested temporary breakpoints */
1997 if (step_over_calls
1998 && (frame_id_inner (get_frame_id (get_current_frame ()),
1999 step_frame_id)))
2000 {
2001 ecs->another_trap = 1;
2002 keep_going (ecs);
2003 return;
2004 }
2005 #endif /* 0 */
2006 disable_longjmp_breakpoint ();
2007 ecs->handling_longjmp = 0; /* FIXME */
2008 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2009 break;
2010 /* else fallthrough */
2011
2012 case BPSTAT_WHAT_SINGLE:
2013 if (breakpoints_inserted)
2014 {
2015 remove_breakpoints ();
2016 }
2017 breakpoints_inserted = 0;
2018 ecs->another_trap = 1;
2019 /* Still need to check other stuff, at least the case
2020 where we are stepping and step out of the right range. */
2021 break;
2022
2023 case BPSTAT_WHAT_STOP_NOISY:
2024 stop_print_frame = 1;
2025
2026 /* We are about to nuke the step_resume_breakpoint and
2027 through_sigtramp_breakpoint via the cleanup chain, so
2028 no need to worry about it here. */
2029
2030 stop_stepping (ecs);
2031 return;
2032
2033 case BPSTAT_WHAT_STOP_SILENT:
2034 stop_print_frame = 0;
2035
2036 /* We are about to nuke the step_resume_breakpoint and
2037 through_sigtramp_breakpoint via the cleanup chain, so
2038 no need to worry about it here. */
2039
2040 stop_stepping (ecs);
2041 return;
2042
2043 case BPSTAT_WHAT_STEP_RESUME:
2044 /* This proably demands a more elegant solution, but, yeah
2045 right...
2046
2047 This function's use of the simple variable
2048 step_resume_breakpoint doesn't seem to accomodate
2049 simultaneously active step-resume bp's, although the
2050 breakpoint list certainly can.
2051
2052 If we reach here and step_resume_breakpoint is already
2053 NULL, then apparently we have multiple active
2054 step-resume bp's. We'll just delete the breakpoint we
2055 stopped at, and carry on.
2056
2057 Correction: what the code currently does is delete a
2058 step-resume bp, but it makes no effort to ensure that
2059 the one deleted is the one currently stopped at. MVS */
2060
2061 if (step_resume_breakpoint == NULL)
2062 {
2063 step_resume_breakpoint =
2064 bpstat_find_step_resume_breakpoint (stop_bpstat);
2065 }
2066 delete_step_resume_breakpoint (&step_resume_breakpoint);
2067 break;
2068
2069 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2070 if (through_sigtramp_breakpoint)
2071 delete_breakpoint (through_sigtramp_breakpoint);
2072 through_sigtramp_breakpoint = NULL;
2073
2074 /* If were waiting for a trap, hitting the step_resume_break
2075 doesn't count as getting it. */
2076 if (trap_expected)
2077 ecs->another_trap = 1;
2078 break;
2079
2080 case BPSTAT_WHAT_CHECK_SHLIBS:
2081 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2082 #ifdef SOLIB_ADD
2083 {
2084 /* Remove breakpoints, we eventually want to step over the
2085 shlib event breakpoint, and SOLIB_ADD might adjust
2086 breakpoint addresses via breakpoint_re_set. */
2087 if (breakpoints_inserted)
2088 remove_breakpoints ();
2089 breakpoints_inserted = 0;
2090
2091 /* Check for any newly added shared libraries if we're
2092 supposed to be adding them automatically. Switch
2093 terminal for any messages produced by
2094 breakpoint_re_set. */
2095 target_terminal_ours_for_output ();
2096 SOLIB_ADD (NULL, 0, NULL, auto_solib_add);
2097 target_terminal_inferior ();
2098
2099 /* Try to reenable shared library breakpoints, additional
2100 code segments in shared libraries might be mapped in now. */
2101 re_enable_breakpoints_in_shlibs ();
2102
2103 /* If requested, stop when the dynamic linker notifies
2104 gdb of events. This allows the user to get control
2105 and place breakpoints in initializer routines for
2106 dynamically loaded objects (among other things). */
2107 if (stop_on_solib_events)
2108 {
2109 stop_stepping (ecs);
2110 return;
2111 }
2112
2113 /* If we stopped due to an explicit catchpoint, then the
2114 (see above) call to SOLIB_ADD pulled in any symbols
2115 from a newly-loaded library, if appropriate.
2116
2117 We do want the inferior to stop, but not where it is
2118 now, which is in the dynamic linker callback. Rather,
2119 we would like it stop in the user's program, just after
2120 the call that caused this catchpoint to trigger. That
2121 gives the user a more useful vantage from which to
2122 examine their program's state. */
2123 else if (what.main_action ==
2124 BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2125 {
2126 /* ??rehrauer: If I could figure out how to get the
2127 right return PC from here, we could just set a temp
2128 breakpoint and resume. I'm not sure we can without
2129 cracking open the dld's shared libraries and sniffing
2130 their unwind tables and text/data ranges, and that's
2131 not a terribly portable notion.
2132
2133 Until that time, we must step the inferior out of the
2134 dld callback, and also out of the dld itself (and any
2135 code or stubs in libdld.sl, such as "shl_load" and
2136 friends) until we reach non-dld code. At that point,
2137 we can stop stepping. */
2138 bpstat_get_triggered_catchpoints (stop_bpstat,
2139 &ecs->
2140 stepping_through_solib_catchpoints);
2141 ecs->stepping_through_solib_after_catch = 1;
2142
2143 /* Be sure to lift all breakpoints, so the inferior does
2144 actually step past this point... */
2145 ecs->another_trap = 1;
2146 break;
2147 }
2148 else
2149 {
2150 /* We want to step over this breakpoint, then keep going. */
2151 ecs->another_trap = 1;
2152 break;
2153 }
2154 }
2155 #endif
2156 break;
2157
2158 case BPSTAT_WHAT_LAST:
2159 /* Not a real code, but listed here to shut up gcc -Wall. */
2160
2161 case BPSTAT_WHAT_KEEP_CHECKING:
2162 break;
2163 }
2164 }
2165
2166 /* We come here if we hit a breakpoint but should not
2167 stop for it. Possibly we also were stepping
2168 and should stop for that. So fall through and
2169 test for stepping. But, if not stepping,
2170 do not stop. */
2171
2172 /* Are we stepping to get the inferior out of the dynamic
2173 linker's hook (and possibly the dld itself) after catching
2174 a shlib event? */
2175 if (ecs->stepping_through_solib_after_catch)
2176 {
2177 #if defined(SOLIB_ADD)
2178 /* Have we reached our destination? If not, keep going. */
2179 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2180 {
2181 ecs->another_trap = 1;
2182 keep_going (ecs);
2183 return;
2184 }
2185 #endif
2186 /* Else, stop and report the catchpoint(s) whose triggering
2187 caused us to begin stepping. */
2188 ecs->stepping_through_solib_after_catch = 0;
2189 bpstat_clear (&stop_bpstat);
2190 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2191 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2192 stop_print_frame = 1;
2193 stop_stepping (ecs);
2194 return;
2195 }
2196
2197 if (step_resume_breakpoint)
2198 {
2199 /* Having a step-resume breakpoint overrides anything
2200 else having to do with stepping commands until
2201 that breakpoint is reached. */
2202 /* I'm not sure whether this needs to be check_sigtramp2 or
2203 whether it could/should be keep_going. */
2204 check_sigtramp2 (ecs);
2205 keep_going (ecs);
2206 return;
2207 }
2208
2209 if (step_range_end == 0)
2210 {
2211 /* Likewise if we aren't even stepping. */
2212 /* I'm not sure whether this needs to be check_sigtramp2 or
2213 whether it could/should be keep_going. */
2214 check_sigtramp2 (ecs);
2215 keep_going (ecs);
2216 return;
2217 }
2218
2219 /* If stepping through a line, keep going if still within it.
2220
2221 Note that step_range_end is the address of the first instruction
2222 beyond the step range, and NOT the address of the last instruction
2223 within it! */
2224 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2225 {
2226 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
2227 So definately need to check for sigtramp here. */
2228 check_sigtramp2 (ecs);
2229 keep_going (ecs);
2230 return;
2231 }
2232
2233 /* We stepped out of the stepping range. */
2234
2235 /* If we are stepping at the source level and entered the runtime
2236 loader dynamic symbol resolution code, we keep on single stepping
2237 until we exit the run time loader code and reach the callee's
2238 address. */
2239 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2240 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2241 {
2242 CORE_ADDR pc_after_resolver = SKIP_SOLIB_RESOLVER (stop_pc);
2243
2244 if (pc_after_resolver)
2245 {
2246 /* Set up a step-resume breakpoint at the address
2247 indicated by SKIP_SOLIB_RESOLVER. */
2248 struct symtab_and_line sr_sal;
2249 init_sal (&sr_sal);
2250 sr_sal.pc = pc_after_resolver;
2251
2252 check_for_old_step_resume_breakpoint ();
2253 step_resume_breakpoint =
2254 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2255 if (breakpoints_inserted)
2256 insert_breakpoints ();
2257 }
2258
2259 keep_going (ecs);
2260 return;
2261 }
2262
2263 /* We can't update step_sp every time through the loop, because
2264 reading the stack pointer would slow down stepping too much.
2265 But we can update it every time we leave the step range. */
2266 ecs->update_step_sp = 1;
2267
2268 /* Did we just take a signal? */
2269 if (PC_IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2270 && !PC_IN_SIGTRAMP (prev_pc, prev_func_name)
2271 && INNER_THAN (read_sp (), step_sp))
2272 {
2273 /* We've just taken a signal; go until we are back to
2274 the point where we took it and one more. */
2275
2276 /* Note: The test above succeeds not only when we stepped
2277 into a signal handler, but also when we step past the last
2278 statement of a signal handler and end up in the return stub
2279 of the signal handler trampoline. To distinguish between
2280 these two cases, check that the frame is INNER_THAN the
2281 previous one below. pai/1997-09-11 */
2282
2283
2284 {
2285 struct frame_id current_frame = get_frame_id (get_current_frame ());
2286
2287 if (frame_id_inner (current_frame, step_frame_id))
2288 {
2289 /* We have just taken a signal; go until we are back to
2290 the point where we took it and one more. */
2291
2292 /* This code is needed at least in the following case:
2293 The user types "next" and then a signal arrives (before
2294 the "next" is done). */
2295
2296 /* Note that if we are stopped at a breakpoint, then we need
2297 the step_resume breakpoint to override any breakpoints at
2298 the same location, so that we will still step over the
2299 breakpoint even though the signal happened. */
2300 struct symtab_and_line sr_sal;
2301
2302 init_sal (&sr_sal);
2303 sr_sal.symtab = NULL;
2304 sr_sal.line = 0;
2305 sr_sal.pc = prev_pc;
2306 /* We could probably be setting the frame to
2307 step_frame_id; I don't think anyone thought to try it. */
2308 check_for_old_step_resume_breakpoint ();
2309 step_resume_breakpoint =
2310 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2311 if (breakpoints_inserted)
2312 insert_breakpoints ();
2313 }
2314 else
2315 {
2316 /* We just stepped out of a signal handler and into
2317 its calling trampoline.
2318
2319 Normally, we'd call step_over_function from
2320 here, but for some reason GDB can't unwind the
2321 stack correctly to find the real PC for the point
2322 user code where the signal trampoline will return
2323 -- FRAME_SAVED_PC fails, at least on HP-UX 10.20.
2324 But signal trampolines are pretty small stubs of
2325 code, anyway, so it's OK instead to just
2326 single-step out. Note: assuming such trampolines
2327 don't exhibit recursion on any platform... */
2328 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2329 &ecs->stop_func_start,
2330 &ecs->stop_func_end);
2331 /* Readjust stepping range */
2332 step_range_start = ecs->stop_func_start;
2333 step_range_end = ecs->stop_func_end;
2334 ecs->stepping_through_sigtramp = 1;
2335 }
2336 }
2337
2338
2339 /* If this is stepi or nexti, make sure that the stepping range
2340 gets us past that instruction. */
2341 if (step_range_end == 1)
2342 /* FIXME: Does this run afoul of the code below which, if
2343 we step into the middle of a line, resets the stepping
2344 range? */
2345 step_range_end = (step_range_start = prev_pc) + 1;
2346
2347 ecs->remove_breakpoints_on_following_step = 1;
2348 keep_going (ecs);
2349 return;
2350 }
2351
2352 if (stop_pc == ecs->stop_func_start /* Quick test */
2353 || (in_prologue (stop_pc, ecs->stop_func_start) &&
2354 !IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2355 || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, ecs->stop_func_name)
2356 || ecs->stop_func_name == 0)
2357 {
2358 /* It's a subroutine call. */
2359
2360 if ((step_over_calls == STEP_OVER_NONE)
2361 || ((step_range_end == 1)
2362 && in_prologue (prev_pc, ecs->stop_func_start)))
2363 {
2364 /* I presume that step_over_calls is only 0 when we're
2365 supposed to be stepping at the assembly language level
2366 ("stepi"). Just stop. */
2367 /* Also, maybe we just did a "nexti" inside a prolog,
2368 so we thought it was a subroutine call but it was not.
2369 Stop as well. FENN */
2370 stop_step = 1;
2371 print_stop_reason (END_STEPPING_RANGE, 0);
2372 stop_stepping (ecs);
2373 return;
2374 }
2375
2376 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
2377 {
2378 /* We're doing a "next". */
2379
2380 if (PC_IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2381 && frame_id_inner (step_frame_id,
2382 frame_id_build (read_sp (), 0)))
2383 /* We stepped out of a signal handler, and into its
2384 calling trampoline. This is misdetected as a
2385 subroutine call, but stepping over the signal
2386 trampoline isn't such a bad idea. In order to do that,
2387 we have to ignore the value in step_frame_id, since
2388 that doesn't represent the frame that'll reach when we
2389 return from the signal trampoline. Otherwise we'll
2390 probably continue to the end of the program. */
2391 step_frame_id = null_frame_id;
2392
2393 step_over_function (ecs);
2394 keep_going (ecs);
2395 return;
2396 }
2397
2398 /* If we are in a function call trampoline (a stub between
2399 the calling routine and the real function), locate the real
2400 function. That's what tells us (a) whether we want to step
2401 into it at all, and (b) what prologue we want to run to
2402 the end of, if we do step into it. */
2403 real_stop_pc = skip_language_trampoline (stop_pc);
2404 if (real_stop_pc == 0)
2405 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2406 if (real_stop_pc != 0)
2407 ecs->stop_func_start = real_stop_pc;
2408
2409 /* If we have line number information for the function we
2410 are thinking of stepping into, step into it.
2411
2412 If there are several symtabs at that PC (e.g. with include
2413 files), just want to know whether *any* of them have line
2414 numbers. find_pc_line handles this. */
2415 {
2416 struct symtab_and_line tmp_sal;
2417
2418 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2419 if (tmp_sal.line != 0)
2420 {
2421 step_into_function (ecs);
2422 return;
2423 }
2424 }
2425
2426 /* If we have no line number and the step-stop-if-no-debug
2427 is set, we stop the step so that the user has a chance to
2428 switch in assembly mode. */
2429 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2430 {
2431 stop_step = 1;
2432 print_stop_reason (END_STEPPING_RANGE, 0);
2433 stop_stepping (ecs);
2434 return;
2435 }
2436
2437 step_over_function (ecs);
2438 keep_going (ecs);
2439 return;
2440
2441 }
2442
2443 /* We've wandered out of the step range. */
2444
2445 ecs->sal = find_pc_line (stop_pc, 0);
2446
2447 if (step_range_end == 1)
2448 {
2449 /* It is stepi or nexti. We always want to stop stepping after
2450 one instruction. */
2451 stop_step = 1;
2452 print_stop_reason (END_STEPPING_RANGE, 0);
2453 stop_stepping (ecs);
2454 return;
2455 }
2456
2457 /* If we're in the return path from a shared library trampoline,
2458 we want to proceed through the trampoline when stepping. */
2459 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2460 {
2461 /* Determine where this trampoline returns. */
2462 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2463
2464 /* Only proceed through if we know where it's going. */
2465 if (real_stop_pc)
2466 {
2467 /* And put the step-breakpoint there and go until there. */
2468 struct symtab_and_line sr_sal;
2469
2470 init_sal (&sr_sal); /* initialize to zeroes */
2471 sr_sal.pc = real_stop_pc;
2472 sr_sal.section = find_pc_overlay (sr_sal.pc);
2473 /* Do not specify what the fp should be when we stop
2474 since on some machines the prologue
2475 is where the new fp value is established. */
2476 check_for_old_step_resume_breakpoint ();
2477 step_resume_breakpoint =
2478 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2479 if (breakpoints_inserted)
2480 insert_breakpoints ();
2481
2482 /* Restart without fiddling with the step ranges or
2483 other state. */
2484 keep_going (ecs);
2485 return;
2486 }
2487 }
2488
2489 if (ecs->sal.line == 0)
2490 {
2491 /* We have no line number information. That means to stop
2492 stepping (does this always happen right after one instruction,
2493 when we do "s" in a function with no line numbers,
2494 or can this happen as a result of a return or longjmp?). */
2495 stop_step = 1;
2496 print_stop_reason (END_STEPPING_RANGE, 0);
2497 stop_stepping (ecs);
2498 return;
2499 }
2500
2501 if ((stop_pc == ecs->sal.pc)
2502 && (ecs->current_line != ecs->sal.line
2503 || ecs->current_symtab != ecs->sal.symtab))
2504 {
2505 /* We are at the start of a different line. So stop. Note that
2506 we don't stop if we step into the middle of a different line.
2507 That is said to make things like for (;;) statements work
2508 better. */
2509 stop_step = 1;
2510 print_stop_reason (END_STEPPING_RANGE, 0);
2511 stop_stepping (ecs);
2512 return;
2513 }
2514
2515 /* We aren't done stepping.
2516
2517 Optimize by setting the stepping range to the line.
2518 (We might not be in the original line, but if we entered a
2519 new line in mid-statement, we continue stepping. This makes
2520 things like for(;;) statements work better.) */
2521
2522 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2523 {
2524 /* If this is the last line of the function, don't keep stepping
2525 (it would probably step us out of the function).
2526 This is particularly necessary for a one-line function,
2527 in which after skipping the prologue we better stop even though
2528 we will be in mid-line. */
2529 stop_step = 1;
2530 print_stop_reason (END_STEPPING_RANGE, 0);
2531 stop_stepping (ecs);
2532 return;
2533 }
2534 step_range_start = ecs->sal.pc;
2535 step_range_end = ecs->sal.end;
2536 step_frame_id = get_frame_id (get_current_frame ());
2537 ecs->current_line = ecs->sal.line;
2538 ecs->current_symtab = ecs->sal.symtab;
2539
2540 /* In the case where we just stepped out of a function into the
2541 middle of a line of the caller, continue stepping, but
2542 step_frame_id must be modified to current frame */
2543 {
2544 struct frame_id current_frame = get_frame_id (get_current_frame ());
2545 if (!(frame_id_inner (current_frame, step_frame_id)))
2546 step_frame_id = current_frame;
2547 }
2548
2549 keep_going (ecs);
2550 }
2551
2552 /* Are we in the middle of stepping? */
2553
2554 static int
2555 currently_stepping (struct execution_control_state *ecs)
2556 {
2557 return ((through_sigtramp_breakpoint == NULL
2558 && !ecs->handling_longjmp
2559 && ((step_range_end && step_resume_breakpoint == NULL)
2560 || trap_expected))
2561 || ecs->stepping_through_solib_after_catch
2562 || bpstat_should_step ());
2563 }
2564
2565 static void
2566 check_sigtramp2 (struct execution_control_state *ecs)
2567 {
2568 if (trap_expected
2569 && PC_IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2570 && !PC_IN_SIGTRAMP (prev_pc, prev_func_name)
2571 && INNER_THAN (read_sp (), step_sp))
2572 {
2573 /* What has happened here is that we have just stepped the
2574 inferior with a signal (because it is a signal which
2575 shouldn't make us stop), thus stepping into sigtramp.
2576
2577 So we need to set a step_resume_break_address breakpoint and
2578 continue until we hit it, and then step. FIXME: This should
2579 be more enduring than a step_resume breakpoint; we should
2580 know that we will later need to keep going rather than
2581 re-hitting the breakpoint here (see the testsuite,
2582 gdb.base/signals.exp where it says "exceedingly difficult"). */
2583
2584 struct symtab_and_line sr_sal;
2585
2586 init_sal (&sr_sal); /* initialize to zeroes */
2587 sr_sal.pc = prev_pc;
2588 sr_sal.section = find_pc_overlay (sr_sal.pc);
2589 /* We perhaps could set the frame if we kept track of what the
2590 frame corresponding to prev_pc was. But we don't, so don't. */
2591 through_sigtramp_breakpoint =
2592 set_momentary_breakpoint (sr_sal, null_frame_id, bp_through_sigtramp);
2593 if (breakpoints_inserted)
2594 insert_breakpoints ();
2595
2596 ecs->remove_breakpoints_on_following_step = 1;
2597 ecs->another_trap = 1;
2598 }
2599 }
2600
2601 /* Subroutine call with source code we should not step over. Do step
2602 to the first line of code in it. */
2603
2604 static void
2605 step_into_function (struct execution_control_state *ecs)
2606 {
2607 struct symtab *s;
2608 struct symtab_and_line sr_sal;
2609
2610 s = find_pc_symtab (stop_pc);
2611 if (s && s->language != language_asm)
2612 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2613
2614 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2615 /* Use the step_resume_break to step until the end of the prologue,
2616 even if that involves jumps (as it seems to on the vax under
2617 4.2). */
2618 /* If the prologue ends in the middle of a source line, continue to
2619 the end of that source line (if it is still within the function).
2620 Otherwise, just go to end of prologue. */
2621 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
2622 /* no, don't either. It skips any code that's legitimately on the
2623 first line. */
2624 #else
2625 if (ecs->sal.end
2626 && ecs->sal.pc != ecs->stop_func_start
2627 && ecs->sal.end < ecs->stop_func_end)
2628 ecs->stop_func_start = ecs->sal.end;
2629 #endif
2630
2631 if (ecs->stop_func_start == stop_pc)
2632 {
2633 /* We are already there: stop now. */
2634 stop_step = 1;
2635 print_stop_reason (END_STEPPING_RANGE, 0);
2636 stop_stepping (ecs);
2637 return;
2638 }
2639 else
2640 {
2641 /* Put the step-breakpoint there and go until there. */
2642 init_sal (&sr_sal); /* initialize to zeroes */
2643 sr_sal.pc = ecs->stop_func_start;
2644 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2645 /* Do not specify what the fp should be when we stop since on
2646 some machines the prologue is where the new fp value is
2647 established. */
2648 check_for_old_step_resume_breakpoint ();
2649 step_resume_breakpoint =
2650 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2651 if (breakpoints_inserted)
2652 insert_breakpoints ();
2653
2654 /* And make sure stepping stops right away then. */
2655 step_range_end = step_range_start;
2656 }
2657 keep_going (ecs);
2658 }
2659
2660 /* We've just entered a callee, and we wish to resume until it returns
2661 to the caller. Setting a step_resume breakpoint on the return
2662 address will catch a return from the callee.
2663
2664 However, if the callee is recursing, we want to be careful not to
2665 catch returns of those recursive calls, but only of THIS instance
2666 of the call.
2667
2668 To do this, we set the step_resume bp's frame to our current
2669 caller's frame (step_frame_id, which is set by the "next" or
2670 "until" command, before execution begins). */
2671
2672 static void
2673 step_over_function (struct execution_control_state *ecs)
2674 {
2675 struct symtab_and_line sr_sal;
2676
2677 init_sal (&sr_sal); /* initialize to zeros */
2678
2679 /* NOTE: cagney/2003-04-06:
2680
2681 At this point the equality get_frame_pc() == get_frame_func()
2682 should hold. This may make it possible for this code to tell the
2683 frame where it's function is, instead of the reverse. This would
2684 avoid the need to search for the frame's function, which can get
2685 very messy when there is no debug info available (look at the
2686 heuristic find pc start code found in targets like the MIPS). */
2687
2688 /* NOTE: cagney/2003-04-06:
2689
2690 The intent of DEPRECATED_SAVED_PC_AFTER_CALL was to:
2691
2692 - provide a very light weight equivalent to frame_unwind_pc()
2693 (nee FRAME_SAVED_PC) that avoids the prologue analyzer
2694
2695 - avoid handling the case where the PC hasn't been saved in the
2696 prologue analyzer
2697
2698 Unfortunatly, not five lines further down, is a call to
2699 get_frame_id() and that is guarenteed to trigger the prologue
2700 analyzer.
2701
2702 The `correct fix' is for the prologe analyzer to handle the case
2703 where the prologue is incomplete (PC in prologue) and,
2704 consequently, the return pc has not yet been saved. It should be
2705 noted that the prologue analyzer needs to handle this case
2706 anyway: frameless leaf functions that don't save the return PC;
2707 single stepping through a prologue.
2708
2709 The d10v handles all this by bailing out of the prologue analsis
2710 when it reaches the current instruction. */
2711
2712 if (DEPRECATED_SAVED_PC_AFTER_CALL_P ())
2713 sr_sal.pc = ADDR_BITS_REMOVE (DEPRECATED_SAVED_PC_AFTER_CALL (get_current_frame ()));
2714 else
2715 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (get_current_frame ()));
2716 sr_sal.section = find_pc_overlay (sr_sal.pc);
2717
2718 check_for_old_step_resume_breakpoint ();
2719 step_resume_breakpoint =
2720 set_momentary_breakpoint (sr_sal, get_frame_id (get_current_frame ()),
2721 bp_step_resume);
2722
2723 if (frame_id_p (step_frame_id)
2724 && !IN_SOLIB_DYNSYM_RESOLVE_CODE (sr_sal.pc))
2725 step_resume_breakpoint->frame_id = step_frame_id;
2726
2727 if (breakpoints_inserted)
2728 insert_breakpoints ();
2729 }
2730
2731 static void
2732 stop_stepping (struct execution_control_state *ecs)
2733 {
2734 if (target_has_execution)
2735 {
2736 /* Assuming the inferior still exists, set these up for next
2737 time, just like we did above if we didn't break out of the
2738 loop. */
2739 prev_pc = read_pc ();
2740 prev_func_start = ecs->stop_func_start;
2741 prev_func_name = ecs->stop_func_name;
2742 }
2743
2744 /* Let callers know we don't want to wait for the inferior anymore. */
2745 ecs->wait_some_more = 0;
2746 }
2747
2748 /* This function handles various cases where we need to continue
2749 waiting for the inferior. */
2750 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2751
2752 static void
2753 keep_going (struct execution_control_state *ecs)
2754 {
2755 /* Save the pc before execution, to compare with pc after stop. */
2756 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2757 prev_func_start = ecs->stop_func_start; /* Ok, since if DECR_PC_AFTER
2758 BREAK is defined, the
2759 original pc would not have
2760 been at the start of a
2761 function. */
2762 prev_func_name = ecs->stop_func_name;
2763
2764 if (ecs->update_step_sp)
2765 step_sp = read_sp ();
2766 ecs->update_step_sp = 0;
2767
2768 /* If we did not do break;, it means we should keep running the
2769 inferior and not return to debugger. */
2770
2771 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2772 {
2773 /* We took a signal (which we are supposed to pass through to
2774 the inferior, else we'd have done a break above) and we
2775 haven't yet gotten our trap. Simply continue. */
2776 resume (currently_stepping (ecs), stop_signal);
2777 }
2778 else
2779 {
2780 /* Either the trap was not expected, but we are continuing
2781 anyway (the user asked that this signal be passed to the
2782 child)
2783 -- or --
2784 The signal was SIGTRAP, e.g. it was our signal, but we
2785 decided we should resume from it.
2786
2787 We're going to run this baby now!
2788
2789 Insert breakpoints now, unless we are trying to one-proceed
2790 past a breakpoint. */
2791 /* If we've just finished a special step resume and we don't
2792 want to hit a breakpoint, pull em out. */
2793 if (step_resume_breakpoint == NULL
2794 && through_sigtramp_breakpoint == NULL
2795 && ecs->remove_breakpoints_on_following_step)
2796 {
2797 ecs->remove_breakpoints_on_following_step = 0;
2798 remove_breakpoints ();
2799 breakpoints_inserted = 0;
2800 }
2801 else if (!breakpoints_inserted &&
2802 (through_sigtramp_breakpoint != NULL || !ecs->another_trap))
2803 {
2804 breakpoints_failed = insert_breakpoints ();
2805 if (breakpoints_failed)
2806 {
2807 stop_stepping (ecs);
2808 return;
2809 }
2810 breakpoints_inserted = 1;
2811 }
2812
2813 trap_expected = ecs->another_trap;
2814
2815 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2816 specifies that such a signal should be delivered to the
2817 target program).
2818
2819 Typically, this would occure when a user is debugging a
2820 target monitor on a simulator: the target monitor sets a
2821 breakpoint; the simulator encounters this break-point and
2822 halts the simulation handing control to GDB; GDB, noteing
2823 that the break-point isn't valid, returns control back to the
2824 simulator; the simulator then delivers the hardware
2825 equivalent of a SIGNAL_TRAP to the program being debugged. */
2826
2827 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2828 stop_signal = TARGET_SIGNAL_0;
2829
2830 #ifdef SHIFT_INST_REGS
2831 /* I'm not sure when this following segment applies. I do know,
2832 now, that we shouldn't rewrite the regs when we were stopped
2833 by a random signal from the inferior process. */
2834 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
2835 (this is only used on the 88k). */
2836
2837 if (!bpstat_explains_signal (stop_bpstat)
2838 && (stop_signal != TARGET_SIGNAL_CHLD) && !stopped_by_random_signal)
2839 SHIFT_INST_REGS ();
2840 #endif /* SHIFT_INST_REGS */
2841
2842 resume (currently_stepping (ecs), stop_signal);
2843 }
2844
2845 prepare_to_wait (ecs);
2846 }
2847
2848 /* This function normally comes after a resume, before
2849 handle_inferior_event exits. It takes care of any last bits of
2850 housekeeping, and sets the all-important wait_some_more flag. */
2851
2852 static void
2853 prepare_to_wait (struct execution_control_state *ecs)
2854 {
2855 if (ecs->infwait_state == infwait_normal_state)
2856 {
2857 overlay_cache_invalid = 1;
2858
2859 /* We have to invalidate the registers BEFORE calling
2860 target_wait because they can be loaded from the target while
2861 in target_wait. This makes remote debugging a bit more
2862 efficient for those targets that provide critical registers
2863 as part of their normal status mechanism. */
2864
2865 registers_changed ();
2866 ecs->waiton_ptid = pid_to_ptid (-1);
2867 ecs->wp = &(ecs->ws);
2868 }
2869 /* This is the old end of the while loop. Let everybody know we
2870 want to wait for the inferior some more and get called again
2871 soon. */
2872 ecs->wait_some_more = 1;
2873 }
2874
2875 /* Print why the inferior has stopped. We always print something when
2876 the inferior exits, or receives a signal. The rest of the cases are
2877 dealt with later on in normal_stop() and print_it_typical(). Ideally
2878 there should be a call to this function from handle_inferior_event()
2879 each time stop_stepping() is called.*/
2880 static void
2881 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2882 {
2883 switch (stop_reason)
2884 {
2885 case STOP_UNKNOWN:
2886 /* We don't deal with these cases from handle_inferior_event()
2887 yet. */
2888 break;
2889 case END_STEPPING_RANGE:
2890 /* We are done with a step/next/si/ni command. */
2891 /* For now print nothing. */
2892 /* Print a message only if not in the middle of doing a "step n"
2893 operation for n > 1 */
2894 if (!step_multi || !stop_step)
2895 if (ui_out_is_mi_like_p (uiout))
2896 ui_out_field_string (uiout, "reason", "end-stepping-range");
2897 break;
2898 case BREAKPOINT_HIT:
2899 /* We found a breakpoint. */
2900 /* For now print nothing. */
2901 break;
2902 case SIGNAL_EXITED:
2903 /* The inferior was terminated by a signal. */
2904 annotate_signalled ();
2905 if (ui_out_is_mi_like_p (uiout))
2906 ui_out_field_string (uiout, "reason", "exited-signalled");
2907 ui_out_text (uiout, "\nProgram terminated with signal ");
2908 annotate_signal_name ();
2909 ui_out_field_string (uiout, "signal-name",
2910 target_signal_to_name (stop_info));
2911 annotate_signal_name_end ();
2912 ui_out_text (uiout, ", ");
2913 annotate_signal_string ();
2914 ui_out_field_string (uiout, "signal-meaning",
2915 target_signal_to_string (stop_info));
2916 annotate_signal_string_end ();
2917 ui_out_text (uiout, ".\n");
2918 ui_out_text (uiout, "The program no longer exists.\n");
2919 break;
2920 case EXITED:
2921 /* The inferior program is finished. */
2922 annotate_exited (stop_info);
2923 if (stop_info)
2924 {
2925 if (ui_out_is_mi_like_p (uiout))
2926 ui_out_field_string (uiout, "reason", "exited");
2927 ui_out_text (uiout, "\nProgram exited with code ");
2928 ui_out_field_fmt (uiout, "exit-code", "0%o",
2929 (unsigned int) stop_info);
2930 ui_out_text (uiout, ".\n");
2931 }
2932 else
2933 {
2934 if (ui_out_is_mi_like_p (uiout))
2935 ui_out_field_string (uiout, "reason", "exited-normally");
2936 ui_out_text (uiout, "\nProgram exited normally.\n");
2937 }
2938 break;
2939 case SIGNAL_RECEIVED:
2940 /* Signal received. The signal table tells us to print about
2941 it. */
2942 annotate_signal ();
2943 ui_out_text (uiout, "\nProgram received signal ");
2944 annotate_signal_name ();
2945 if (ui_out_is_mi_like_p (uiout))
2946 ui_out_field_string (uiout, "reason", "signal-received");
2947 ui_out_field_string (uiout, "signal-name",
2948 target_signal_to_name (stop_info));
2949 annotate_signal_name_end ();
2950 ui_out_text (uiout, ", ");
2951 annotate_signal_string ();
2952 ui_out_field_string (uiout, "signal-meaning",
2953 target_signal_to_string (stop_info));
2954 annotate_signal_string_end ();
2955 ui_out_text (uiout, ".\n");
2956 break;
2957 default:
2958 internal_error (__FILE__, __LINE__,
2959 "print_stop_reason: unrecognized enum value");
2960 break;
2961 }
2962 }
2963 \f
2964
2965 /* Here to return control to GDB when the inferior stops for real.
2966 Print appropriate messages, remove breakpoints, give terminal our modes.
2967
2968 STOP_PRINT_FRAME nonzero means print the executing frame
2969 (pc, function, args, file, line number and line text).
2970 BREAKPOINTS_FAILED nonzero means stop was due to error
2971 attempting to insert breakpoints. */
2972
2973 void
2974 normal_stop (void)
2975 {
2976 /* As with the notification of thread events, we want to delay
2977 notifying the user that we've switched thread context until
2978 the inferior actually stops.
2979
2980 (Note that there's no point in saying anything if the inferior
2981 has exited!) */
2982 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
2983 && target_has_execution)
2984 {
2985 target_terminal_ours_for_output ();
2986 printf_filtered ("[Switching to %s]\n",
2987 target_pid_or_tid_to_str (inferior_ptid));
2988 previous_inferior_ptid = inferior_ptid;
2989 }
2990
2991 /* Make sure that the current_frame's pc is correct. This
2992 is a correction for setting up the frame info before doing
2993 DECR_PC_AFTER_BREAK */
2994 if (target_has_execution)
2995 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
2996 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
2997 frame code to check for this and sort out any resultant mess.
2998 DECR_PC_AFTER_BREAK needs to just go away. */
2999 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3000
3001 if (target_has_execution && breakpoints_inserted)
3002 {
3003 if (remove_breakpoints ())
3004 {
3005 target_terminal_ours_for_output ();
3006 printf_filtered ("Cannot remove breakpoints because ");
3007 printf_filtered ("program is no longer writable.\n");
3008 printf_filtered ("It might be running in another process.\n");
3009 printf_filtered ("Further execution is probably impossible.\n");
3010 }
3011 }
3012 breakpoints_inserted = 0;
3013
3014 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3015 Delete any breakpoint that is to be deleted at the next stop. */
3016
3017 breakpoint_auto_delete (stop_bpstat);
3018
3019 /* If an auto-display called a function and that got a signal,
3020 delete that auto-display to avoid an infinite recursion. */
3021
3022 if (stopped_by_random_signal)
3023 disable_current_display ();
3024
3025 /* Don't print a message if in the middle of doing a "step n"
3026 operation for n > 1 */
3027 if (step_multi && stop_step)
3028 goto done;
3029
3030 target_terminal_ours ();
3031
3032 /* Look up the hook_stop and run it (CLI internally handles problem
3033 of stop_command's pre-hook not existing). */
3034 if (stop_command)
3035 catch_errors (hook_stop_stub, stop_command,
3036 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3037
3038 if (!target_has_stack)
3039 {
3040
3041 goto done;
3042 }
3043
3044 /* Select innermost stack frame - i.e., current frame is frame 0,
3045 and current location is based on that.
3046 Don't do this on return from a stack dummy routine,
3047 or if the program has exited. */
3048
3049 if (!stop_stack_dummy)
3050 {
3051 select_frame (get_current_frame ());
3052
3053 /* Print current location without a level number, if
3054 we have changed functions or hit a breakpoint.
3055 Print source line if we have one.
3056 bpstat_print() contains the logic deciding in detail
3057 what to print, based on the event(s) that just occurred. */
3058
3059 if (stop_print_frame && deprecated_selected_frame)
3060 {
3061 int bpstat_ret;
3062 int source_flag;
3063 int do_frame_printing = 1;
3064
3065 bpstat_ret = bpstat_print (stop_bpstat);
3066 switch (bpstat_ret)
3067 {
3068 case PRINT_UNKNOWN:
3069 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3070 (or should) carry around the function and does (or
3071 should) use that when doing a frame comparison. */
3072 if (stop_step
3073 && frame_id_eq (step_frame_id,
3074 get_frame_id (get_current_frame ()))
3075 && step_start_function == find_pc_function (stop_pc))
3076 source_flag = SRC_LINE; /* finished step, just print source line */
3077 else
3078 source_flag = SRC_AND_LOC; /* print location and source line */
3079 break;
3080 case PRINT_SRC_AND_LOC:
3081 source_flag = SRC_AND_LOC; /* print location and source line */
3082 break;
3083 case PRINT_SRC_ONLY:
3084 source_flag = SRC_LINE;
3085 break;
3086 case PRINT_NOTHING:
3087 source_flag = SRC_LINE; /* something bogus */
3088 do_frame_printing = 0;
3089 break;
3090 default:
3091 internal_error (__FILE__, __LINE__, "Unknown value.");
3092 }
3093 /* For mi, have the same behavior every time we stop:
3094 print everything but the source line. */
3095 if (ui_out_is_mi_like_p (uiout))
3096 source_flag = LOC_AND_ADDRESS;
3097
3098 if (ui_out_is_mi_like_p (uiout))
3099 ui_out_field_int (uiout, "thread-id",
3100 pid_to_thread_id (inferior_ptid));
3101 /* The behavior of this routine with respect to the source
3102 flag is:
3103 SRC_LINE: Print only source line
3104 LOCATION: Print only location
3105 SRC_AND_LOC: Print location and source line */
3106 if (do_frame_printing)
3107 print_stack_frame (deprecated_selected_frame, -1, source_flag);
3108
3109 /* Display the auto-display expressions. */
3110 do_displays ();
3111 }
3112 }
3113
3114 /* Save the function value return registers, if we care.
3115 We might be about to restore their previous contents. */
3116 if (proceed_to_finish)
3117 /* NB: The copy goes through to the target picking up the value of
3118 all the registers. */
3119 regcache_cpy (stop_registers, current_regcache);
3120
3121 if (stop_stack_dummy)
3122 {
3123 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3124 ends with a setting of the current frame, so we can use that
3125 next. */
3126 frame_pop (get_current_frame ());
3127 /* Set stop_pc to what it was before we called the function.
3128 Can't rely on restore_inferior_status because that only gets
3129 called if we don't stop in the called function. */
3130 stop_pc = read_pc ();
3131 select_frame (get_current_frame ());
3132 }
3133
3134 done:
3135 annotate_stopped ();
3136 observer_notify_normal_stop ();
3137 }
3138
3139 static int
3140 hook_stop_stub (void *cmd)
3141 {
3142 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3143 return (0);
3144 }
3145 \f
3146 int
3147 signal_stop_state (int signo)
3148 {
3149 return signal_stop[signo];
3150 }
3151
3152 int
3153 signal_print_state (int signo)
3154 {
3155 return signal_print[signo];
3156 }
3157
3158 int
3159 signal_pass_state (int signo)
3160 {
3161 return signal_program[signo];
3162 }
3163
3164 int
3165 signal_stop_update (int signo, int state)
3166 {
3167 int ret = signal_stop[signo];
3168 signal_stop[signo] = state;
3169 return ret;
3170 }
3171
3172 int
3173 signal_print_update (int signo, int state)
3174 {
3175 int ret = signal_print[signo];
3176 signal_print[signo] = state;
3177 return ret;
3178 }
3179
3180 int
3181 signal_pass_update (int signo, int state)
3182 {
3183 int ret = signal_program[signo];
3184 signal_program[signo] = state;
3185 return ret;
3186 }
3187
3188 static void
3189 sig_print_header (void)
3190 {
3191 printf_filtered ("\
3192 Signal Stop\tPrint\tPass to program\tDescription\n");
3193 }
3194
3195 static void
3196 sig_print_info (enum target_signal oursig)
3197 {
3198 char *name = target_signal_to_name (oursig);
3199 int name_padding = 13 - strlen (name);
3200
3201 if (name_padding <= 0)
3202 name_padding = 0;
3203
3204 printf_filtered ("%s", name);
3205 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3206 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3207 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3208 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3209 printf_filtered ("%s\n", target_signal_to_string (oursig));
3210 }
3211
3212 /* Specify how various signals in the inferior should be handled. */
3213
3214 static void
3215 handle_command (char *args, int from_tty)
3216 {
3217 char **argv;
3218 int digits, wordlen;
3219 int sigfirst, signum, siglast;
3220 enum target_signal oursig;
3221 int allsigs;
3222 int nsigs;
3223 unsigned char *sigs;
3224 struct cleanup *old_chain;
3225
3226 if (args == NULL)
3227 {
3228 error_no_arg ("signal to handle");
3229 }
3230
3231 /* Allocate and zero an array of flags for which signals to handle. */
3232
3233 nsigs = (int) TARGET_SIGNAL_LAST;
3234 sigs = (unsigned char *) alloca (nsigs);
3235 memset (sigs, 0, nsigs);
3236
3237 /* Break the command line up into args. */
3238
3239 argv = buildargv (args);
3240 if (argv == NULL)
3241 {
3242 nomem (0);
3243 }
3244 old_chain = make_cleanup_freeargv (argv);
3245
3246 /* Walk through the args, looking for signal oursigs, signal names, and
3247 actions. Signal numbers and signal names may be interspersed with
3248 actions, with the actions being performed for all signals cumulatively
3249 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3250
3251 while (*argv != NULL)
3252 {
3253 wordlen = strlen (*argv);
3254 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3255 {;
3256 }
3257 allsigs = 0;
3258 sigfirst = siglast = -1;
3259
3260 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3261 {
3262 /* Apply action to all signals except those used by the
3263 debugger. Silently skip those. */
3264 allsigs = 1;
3265 sigfirst = 0;
3266 siglast = nsigs - 1;
3267 }
3268 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3269 {
3270 SET_SIGS (nsigs, sigs, signal_stop);
3271 SET_SIGS (nsigs, sigs, signal_print);
3272 }
3273 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3274 {
3275 UNSET_SIGS (nsigs, sigs, signal_program);
3276 }
3277 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3278 {
3279 SET_SIGS (nsigs, sigs, signal_print);
3280 }
3281 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3282 {
3283 SET_SIGS (nsigs, sigs, signal_program);
3284 }
3285 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3286 {
3287 UNSET_SIGS (nsigs, sigs, signal_stop);
3288 }
3289 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3290 {
3291 SET_SIGS (nsigs, sigs, signal_program);
3292 }
3293 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3294 {
3295 UNSET_SIGS (nsigs, sigs, signal_print);
3296 UNSET_SIGS (nsigs, sigs, signal_stop);
3297 }
3298 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3299 {
3300 UNSET_SIGS (nsigs, sigs, signal_program);
3301 }
3302 else if (digits > 0)
3303 {
3304 /* It is numeric. The numeric signal refers to our own
3305 internal signal numbering from target.h, not to host/target
3306 signal number. This is a feature; users really should be
3307 using symbolic names anyway, and the common ones like
3308 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3309
3310 sigfirst = siglast = (int)
3311 target_signal_from_command (atoi (*argv));
3312 if ((*argv)[digits] == '-')
3313 {
3314 siglast = (int)
3315 target_signal_from_command (atoi ((*argv) + digits + 1));
3316 }
3317 if (sigfirst > siglast)
3318 {
3319 /* Bet he didn't figure we'd think of this case... */
3320 signum = sigfirst;
3321 sigfirst = siglast;
3322 siglast = signum;
3323 }
3324 }
3325 else
3326 {
3327 oursig = target_signal_from_name (*argv);
3328 if (oursig != TARGET_SIGNAL_UNKNOWN)
3329 {
3330 sigfirst = siglast = (int) oursig;
3331 }
3332 else
3333 {
3334 /* Not a number and not a recognized flag word => complain. */
3335 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3336 }
3337 }
3338
3339 /* If any signal numbers or symbol names were found, set flags for
3340 which signals to apply actions to. */
3341
3342 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3343 {
3344 switch ((enum target_signal) signum)
3345 {
3346 case TARGET_SIGNAL_TRAP:
3347 case TARGET_SIGNAL_INT:
3348 if (!allsigs && !sigs[signum])
3349 {
3350 if (query ("%s is used by the debugger.\n\
3351 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3352 {
3353 sigs[signum] = 1;
3354 }
3355 else
3356 {
3357 printf_unfiltered ("Not confirmed, unchanged.\n");
3358 gdb_flush (gdb_stdout);
3359 }
3360 }
3361 break;
3362 case TARGET_SIGNAL_0:
3363 case TARGET_SIGNAL_DEFAULT:
3364 case TARGET_SIGNAL_UNKNOWN:
3365 /* Make sure that "all" doesn't print these. */
3366 break;
3367 default:
3368 sigs[signum] = 1;
3369 break;
3370 }
3371 }
3372
3373 argv++;
3374 }
3375
3376 target_notice_signals (inferior_ptid);
3377
3378 if (from_tty)
3379 {
3380 /* Show the results. */
3381 sig_print_header ();
3382 for (signum = 0; signum < nsigs; signum++)
3383 {
3384 if (sigs[signum])
3385 {
3386 sig_print_info (signum);
3387 }
3388 }
3389 }
3390
3391 do_cleanups (old_chain);
3392 }
3393
3394 static void
3395 xdb_handle_command (char *args, int from_tty)
3396 {
3397 char **argv;
3398 struct cleanup *old_chain;
3399
3400 /* Break the command line up into args. */
3401
3402 argv = buildargv (args);
3403 if (argv == NULL)
3404 {
3405 nomem (0);
3406 }
3407 old_chain = make_cleanup_freeargv (argv);
3408 if (argv[1] != (char *) NULL)
3409 {
3410 char *argBuf;
3411 int bufLen;
3412
3413 bufLen = strlen (argv[0]) + 20;
3414 argBuf = (char *) xmalloc (bufLen);
3415 if (argBuf)
3416 {
3417 int validFlag = 1;
3418 enum target_signal oursig;
3419
3420 oursig = target_signal_from_name (argv[0]);
3421 memset (argBuf, 0, bufLen);
3422 if (strcmp (argv[1], "Q") == 0)
3423 sprintf (argBuf, "%s %s", argv[0], "noprint");
3424 else
3425 {
3426 if (strcmp (argv[1], "s") == 0)
3427 {
3428 if (!signal_stop[oursig])
3429 sprintf (argBuf, "%s %s", argv[0], "stop");
3430 else
3431 sprintf (argBuf, "%s %s", argv[0], "nostop");
3432 }
3433 else if (strcmp (argv[1], "i") == 0)
3434 {
3435 if (!signal_program[oursig])
3436 sprintf (argBuf, "%s %s", argv[0], "pass");
3437 else
3438 sprintf (argBuf, "%s %s", argv[0], "nopass");
3439 }
3440 else if (strcmp (argv[1], "r") == 0)
3441 {
3442 if (!signal_print[oursig])
3443 sprintf (argBuf, "%s %s", argv[0], "print");
3444 else
3445 sprintf (argBuf, "%s %s", argv[0], "noprint");
3446 }
3447 else
3448 validFlag = 0;
3449 }
3450 if (validFlag)
3451 handle_command (argBuf, from_tty);
3452 else
3453 printf_filtered ("Invalid signal handling flag.\n");
3454 if (argBuf)
3455 xfree (argBuf);
3456 }
3457 }
3458 do_cleanups (old_chain);
3459 }
3460
3461 /* Print current contents of the tables set by the handle command.
3462 It is possible we should just be printing signals actually used
3463 by the current target (but for things to work right when switching
3464 targets, all signals should be in the signal tables). */
3465
3466 static void
3467 signals_info (char *signum_exp, int from_tty)
3468 {
3469 enum target_signal oursig;
3470 sig_print_header ();
3471
3472 if (signum_exp)
3473 {
3474 /* First see if this is a symbol name. */
3475 oursig = target_signal_from_name (signum_exp);
3476 if (oursig == TARGET_SIGNAL_UNKNOWN)
3477 {
3478 /* No, try numeric. */
3479 oursig =
3480 target_signal_from_command (parse_and_eval_long (signum_exp));
3481 }
3482 sig_print_info (oursig);
3483 return;
3484 }
3485
3486 printf_filtered ("\n");
3487 /* These ugly casts brought to you by the native VAX compiler. */
3488 for (oursig = TARGET_SIGNAL_FIRST;
3489 (int) oursig < (int) TARGET_SIGNAL_LAST;
3490 oursig = (enum target_signal) ((int) oursig + 1))
3491 {
3492 QUIT;
3493
3494 if (oursig != TARGET_SIGNAL_UNKNOWN
3495 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3496 sig_print_info (oursig);
3497 }
3498
3499 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3500 }
3501 \f
3502 struct inferior_status
3503 {
3504 enum target_signal stop_signal;
3505 CORE_ADDR stop_pc;
3506 bpstat stop_bpstat;
3507 int stop_step;
3508 int stop_stack_dummy;
3509 int stopped_by_random_signal;
3510 int trap_expected;
3511 CORE_ADDR step_range_start;
3512 CORE_ADDR step_range_end;
3513 struct frame_id step_frame_id;
3514 enum step_over_calls_kind step_over_calls;
3515 CORE_ADDR step_resume_break_address;
3516 int stop_after_trap;
3517 int stop_soon;
3518 struct regcache *stop_registers;
3519
3520 /* These are here because if call_function_by_hand has written some
3521 registers and then decides to call error(), we better not have changed
3522 any registers. */
3523 struct regcache *registers;
3524
3525 /* A frame unique identifier. */
3526 struct frame_id selected_frame_id;
3527
3528 int breakpoint_proceeded;
3529 int restore_stack_info;
3530 int proceed_to_finish;
3531 };
3532
3533 void
3534 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3535 LONGEST val)
3536 {
3537 int size = REGISTER_RAW_SIZE (regno);
3538 void *buf = alloca (size);
3539 store_signed_integer (buf, size, val);
3540 regcache_raw_write (inf_status->registers, regno, buf);
3541 }
3542
3543 /* Save all of the information associated with the inferior<==>gdb
3544 connection. INF_STATUS is a pointer to a "struct inferior_status"
3545 (defined in inferior.h). */
3546
3547 struct inferior_status *
3548 save_inferior_status (int restore_stack_info)
3549 {
3550 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3551
3552 inf_status->stop_signal = stop_signal;
3553 inf_status->stop_pc = stop_pc;
3554 inf_status->stop_step = stop_step;
3555 inf_status->stop_stack_dummy = stop_stack_dummy;
3556 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3557 inf_status->trap_expected = trap_expected;
3558 inf_status->step_range_start = step_range_start;
3559 inf_status->step_range_end = step_range_end;
3560 inf_status->step_frame_id = step_frame_id;
3561 inf_status->step_over_calls = step_over_calls;
3562 inf_status->stop_after_trap = stop_after_trap;
3563 inf_status->stop_soon = stop_soon;
3564 /* Save original bpstat chain here; replace it with copy of chain.
3565 If caller's caller is walking the chain, they'll be happier if we
3566 hand them back the original chain when restore_inferior_status is
3567 called. */
3568 inf_status->stop_bpstat = stop_bpstat;
3569 stop_bpstat = bpstat_copy (stop_bpstat);
3570 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3571 inf_status->restore_stack_info = restore_stack_info;
3572 inf_status->proceed_to_finish = proceed_to_finish;
3573
3574 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3575
3576 inf_status->registers = regcache_dup (current_regcache);
3577
3578 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3579 return inf_status;
3580 }
3581
3582 static int
3583 restore_selected_frame (void *args)
3584 {
3585 struct frame_id *fid = (struct frame_id *) args;
3586 struct frame_info *frame;
3587
3588 frame = frame_find_by_id (*fid);
3589
3590 /* If inf_status->selected_frame_id is NULL, there was no previously
3591 selected frame. */
3592 if (frame == NULL)
3593 {
3594 warning ("Unable to restore previously selected frame.\n");
3595 return 0;
3596 }
3597
3598 select_frame (frame);
3599
3600 return (1);
3601 }
3602
3603 void
3604 restore_inferior_status (struct inferior_status *inf_status)
3605 {
3606 stop_signal = inf_status->stop_signal;
3607 stop_pc = inf_status->stop_pc;
3608 stop_step = inf_status->stop_step;
3609 stop_stack_dummy = inf_status->stop_stack_dummy;
3610 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3611 trap_expected = inf_status->trap_expected;
3612 step_range_start = inf_status->step_range_start;
3613 step_range_end = inf_status->step_range_end;
3614 step_frame_id = inf_status->step_frame_id;
3615 step_over_calls = inf_status->step_over_calls;
3616 stop_after_trap = inf_status->stop_after_trap;
3617 stop_soon = inf_status->stop_soon;
3618 bpstat_clear (&stop_bpstat);
3619 stop_bpstat = inf_status->stop_bpstat;
3620 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3621 proceed_to_finish = inf_status->proceed_to_finish;
3622
3623 /* FIXME: Is the restore of stop_registers always needed. */
3624 regcache_xfree (stop_registers);
3625 stop_registers = inf_status->stop_registers;
3626
3627 /* The inferior can be gone if the user types "print exit(0)"
3628 (and perhaps other times). */
3629 if (target_has_execution)
3630 /* NB: The register write goes through to the target. */
3631 regcache_cpy (current_regcache, inf_status->registers);
3632 regcache_xfree (inf_status->registers);
3633
3634 /* FIXME: If we are being called after stopping in a function which
3635 is called from gdb, we should not be trying to restore the
3636 selected frame; it just prints a spurious error message (The
3637 message is useful, however, in detecting bugs in gdb (like if gdb
3638 clobbers the stack)). In fact, should we be restoring the
3639 inferior status at all in that case? . */
3640
3641 if (target_has_stack && inf_status->restore_stack_info)
3642 {
3643 /* The point of catch_errors is that if the stack is clobbered,
3644 walking the stack might encounter a garbage pointer and
3645 error() trying to dereference it. */
3646 if (catch_errors
3647 (restore_selected_frame, &inf_status->selected_frame_id,
3648 "Unable to restore previously selected frame:\n",
3649 RETURN_MASK_ERROR) == 0)
3650 /* Error in restoring the selected frame. Select the innermost
3651 frame. */
3652 select_frame (get_current_frame ());
3653
3654 }
3655
3656 xfree (inf_status);
3657 }
3658
3659 static void
3660 do_restore_inferior_status_cleanup (void *sts)
3661 {
3662 restore_inferior_status (sts);
3663 }
3664
3665 struct cleanup *
3666 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3667 {
3668 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3669 }
3670
3671 void
3672 discard_inferior_status (struct inferior_status *inf_status)
3673 {
3674 /* See save_inferior_status for info on stop_bpstat. */
3675 bpstat_clear (&inf_status->stop_bpstat);
3676 regcache_xfree (inf_status->registers);
3677 regcache_xfree (inf_status->stop_registers);
3678 xfree (inf_status);
3679 }
3680
3681 int
3682 inferior_has_forked (int pid, int *child_pid)
3683 {
3684 struct target_waitstatus last;
3685 ptid_t last_ptid;
3686
3687 get_last_target_status (&last_ptid, &last);
3688
3689 if (last.kind != TARGET_WAITKIND_FORKED)
3690 return 0;
3691
3692 if (ptid_get_pid (last_ptid) != pid)
3693 return 0;
3694
3695 *child_pid = last.value.related_pid;
3696 return 1;
3697 }
3698
3699 int
3700 inferior_has_vforked (int pid, int *child_pid)
3701 {
3702 struct target_waitstatus last;
3703 ptid_t last_ptid;
3704
3705 get_last_target_status (&last_ptid, &last);
3706
3707 if (last.kind != TARGET_WAITKIND_VFORKED)
3708 return 0;
3709
3710 if (ptid_get_pid (last_ptid) != pid)
3711 return 0;
3712
3713 *child_pid = last.value.related_pid;
3714 return 1;
3715 }
3716
3717 int
3718 inferior_has_execd (int pid, char **execd_pathname)
3719 {
3720 struct target_waitstatus last;
3721 ptid_t last_ptid;
3722
3723 get_last_target_status (&last_ptid, &last);
3724
3725 if (last.kind != TARGET_WAITKIND_EXECD)
3726 return 0;
3727
3728 if (ptid_get_pid (last_ptid) != pid)
3729 return 0;
3730
3731 *execd_pathname = xstrdup (last.value.execd_pathname);
3732 return 1;
3733 }
3734
3735 /* Oft used ptids */
3736 ptid_t null_ptid;
3737 ptid_t minus_one_ptid;
3738
3739 /* Create a ptid given the necessary PID, LWP, and TID components. */
3740
3741 ptid_t
3742 ptid_build (int pid, long lwp, long tid)
3743 {
3744 ptid_t ptid;
3745
3746 ptid.pid = pid;
3747 ptid.lwp = lwp;
3748 ptid.tid = tid;
3749 return ptid;
3750 }
3751
3752 /* Create a ptid from just a pid. */
3753
3754 ptid_t
3755 pid_to_ptid (int pid)
3756 {
3757 return ptid_build (pid, 0, 0);
3758 }
3759
3760 /* Fetch the pid (process id) component from a ptid. */
3761
3762 int
3763 ptid_get_pid (ptid_t ptid)
3764 {
3765 return ptid.pid;
3766 }
3767
3768 /* Fetch the lwp (lightweight process) component from a ptid. */
3769
3770 long
3771 ptid_get_lwp (ptid_t ptid)
3772 {
3773 return ptid.lwp;
3774 }
3775
3776 /* Fetch the tid (thread id) component from a ptid. */
3777
3778 long
3779 ptid_get_tid (ptid_t ptid)
3780 {
3781 return ptid.tid;
3782 }
3783
3784 /* ptid_equal() is used to test equality of two ptids. */
3785
3786 int
3787 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3788 {
3789 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3790 && ptid1.tid == ptid2.tid);
3791 }
3792
3793 /* restore_inferior_ptid() will be used by the cleanup machinery
3794 to restore the inferior_ptid value saved in a call to
3795 save_inferior_ptid(). */
3796
3797 static void
3798 restore_inferior_ptid (void *arg)
3799 {
3800 ptid_t *saved_ptid_ptr = arg;
3801 inferior_ptid = *saved_ptid_ptr;
3802 xfree (arg);
3803 }
3804
3805 /* Save the value of inferior_ptid so that it may be restored by a
3806 later call to do_cleanups(). Returns the struct cleanup pointer
3807 needed for later doing the cleanup. */
3808
3809 struct cleanup *
3810 save_inferior_ptid (void)
3811 {
3812 ptid_t *saved_ptid_ptr;
3813
3814 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3815 *saved_ptid_ptr = inferior_ptid;
3816 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3817 }
3818 \f
3819
3820 static void
3821 build_infrun (void)
3822 {
3823 stop_registers = regcache_xmalloc (current_gdbarch);
3824 }
3825
3826 void
3827 _initialize_infrun (void)
3828 {
3829 register int i;
3830 register int numsigs;
3831 struct cmd_list_element *c;
3832
3833 register_gdbarch_swap (&stop_registers, sizeof (stop_registers), NULL);
3834 register_gdbarch_swap (NULL, 0, build_infrun);
3835
3836 add_info ("signals", signals_info,
3837 "What debugger does when program gets various signals.\n\
3838 Specify a signal as argument to print info on that signal only.");
3839 add_info_alias ("handle", "signals", 0);
3840
3841 add_com ("handle", class_run, handle_command,
3842 concat ("Specify how to handle a signal.\n\
3843 Args are signals and actions to apply to those signals.\n\
3844 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3845 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3846 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3847 The special arg \"all\" is recognized to mean all signals except those\n\
3848 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3849 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3850 Stop means reenter debugger if this signal happens (implies print).\n\
3851 Print means print a message if this signal happens.\n\
3852 Pass means let program see this signal; otherwise program doesn't know.\n\
3853 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3854 Pass and Stop may be combined.", NULL));
3855 if (xdb_commands)
3856 {
3857 add_com ("lz", class_info, signals_info,
3858 "What debugger does when program gets various signals.\n\
3859 Specify a signal as argument to print info on that signal only.");
3860 add_com ("z", class_run, xdb_handle_command,
3861 concat ("Specify how to handle a signal.\n\
3862 Args are signals and actions to apply to those signals.\n\
3863 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3864 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3865 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3866 The special arg \"all\" is recognized to mean all signals except those\n\
3867 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
3868 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3869 nopass), \"Q\" (noprint)\n\
3870 Stop means reenter debugger if this signal happens (implies print).\n\
3871 Print means print a message if this signal happens.\n\
3872 Pass means let program see this signal; otherwise program doesn't know.\n\
3873 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3874 Pass and Stop may be combined.", NULL));
3875 }
3876
3877 if (!dbx_commands)
3878 stop_command =
3879 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
3880 This allows you to set a list of commands to be run each time execution\n\
3881 of the program stops.", &cmdlist);
3882
3883 numsigs = (int) TARGET_SIGNAL_LAST;
3884 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3885 signal_print = (unsigned char *)
3886 xmalloc (sizeof (signal_print[0]) * numsigs);
3887 signal_program = (unsigned char *)
3888 xmalloc (sizeof (signal_program[0]) * numsigs);
3889 for (i = 0; i < numsigs; i++)
3890 {
3891 signal_stop[i] = 1;
3892 signal_print[i] = 1;
3893 signal_program[i] = 1;
3894 }
3895
3896 /* Signals caused by debugger's own actions
3897 should not be given to the program afterwards. */
3898 signal_program[TARGET_SIGNAL_TRAP] = 0;
3899 signal_program[TARGET_SIGNAL_INT] = 0;
3900
3901 /* Signals that are not errors should not normally enter the debugger. */
3902 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3903 signal_print[TARGET_SIGNAL_ALRM] = 0;
3904 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3905 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3906 signal_stop[TARGET_SIGNAL_PROF] = 0;
3907 signal_print[TARGET_SIGNAL_PROF] = 0;
3908 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3909 signal_print[TARGET_SIGNAL_CHLD] = 0;
3910 signal_stop[TARGET_SIGNAL_IO] = 0;
3911 signal_print[TARGET_SIGNAL_IO] = 0;
3912 signal_stop[TARGET_SIGNAL_POLL] = 0;
3913 signal_print[TARGET_SIGNAL_POLL] = 0;
3914 signal_stop[TARGET_SIGNAL_URG] = 0;
3915 signal_print[TARGET_SIGNAL_URG] = 0;
3916 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3917 signal_print[TARGET_SIGNAL_WINCH] = 0;
3918
3919 /* These signals are used internally by user-level thread
3920 implementations. (See signal(5) on Solaris.) Like the above
3921 signals, a healthy program receives and handles them as part of
3922 its normal operation. */
3923 signal_stop[TARGET_SIGNAL_LWP] = 0;
3924 signal_print[TARGET_SIGNAL_LWP] = 0;
3925 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3926 signal_print[TARGET_SIGNAL_WAITING] = 0;
3927 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3928 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3929
3930 #ifdef SOLIB_ADD
3931 add_show_from_set
3932 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3933 (char *) &stop_on_solib_events,
3934 "Set stopping for shared library events.\n\
3935 If nonzero, gdb will give control to the user when the dynamic linker\n\
3936 notifies gdb of shared library events. The most common event of interest\n\
3937 to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
3938 #endif
3939
3940 c = add_set_enum_cmd ("follow-fork-mode",
3941 class_run,
3942 follow_fork_mode_kind_names, &follow_fork_mode_string,
3943 /* ??rehrauer: The "both" option is broken, by what may be a 10.20
3944 kernel problem. It's also not terribly useful without a GUI to
3945 help the user drive two debuggers. So for now, I'm disabling
3946 the "both" option. */
3947 /* "Set debugger response to a program call of fork \
3948 or vfork.\n\
3949 A fork or vfork creates a new process. follow-fork-mode can be:\n\
3950 parent - the original process is debugged after a fork\n\
3951 child - the new process is debugged after a fork\n\
3952 both - both the parent and child are debugged after a fork\n\
3953 ask - the debugger will ask for one of the above choices\n\
3954 For \"both\", another copy of the debugger will be started to follow\n\
3955 the new child process. The original debugger will continue to follow\n\
3956 the original parent process. To distinguish their prompts, the\n\
3957 debugger copy's prompt will be changed.\n\
3958 For \"parent\" or \"child\", the unfollowed process will run free.\n\
3959 By default, the debugger will follow the parent process.",
3960 */
3961 "Set debugger response to a program call of fork \
3962 or vfork.\n\
3963 A fork or vfork creates a new process. follow-fork-mode can be:\n\
3964 parent - the original process is debugged after a fork\n\
3965 child - the new process is debugged after a fork\n\
3966 ask - the debugger will ask for one of the above choices\n\
3967 For \"parent\" or \"child\", the unfollowed process will run free.\n\
3968 By default, the debugger will follow the parent process.", &setlist);
3969 add_show_from_set (c, &showlist);
3970
3971 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
3972 &scheduler_mode, /* current mode */
3973 "Set mode for locking scheduler during execution.\n\
3974 off == no locking (threads may preempt at any time)\n\
3975 on == full locking (no thread except the current thread may run)\n\
3976 step == scheduler locked during every single-step operation.\n\
3977 In this mode, no other thread may run during a step command.\n\
3978 Other threads may run while stepping over a function call ('next').", &setlist);
3979
3980 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
3981 add_show_from_set (c, &showlist);
3982
3983 c = add_set_cmd ("step-mode", class_run,
3984 var_boolean, (char *) &step_stop_if_no_debug,
3985 "Set mode of the step operation. When set, doing a step over a\n\
3986 function without debug line information will stop at the first\n\
3987 instruction of that function. Otherwise, the function is skipped and\n\
3988 the step command stops at a different source line.", &setlist);
3989 add_show_from_set (c, &showlist);
3990
3991 /* ptid initializations */
3992 null_ptid = ptid_build (0, 0, 0);
3993 minus_one_ptid = ptid_build (-1, 0, 0);
3994 inferior_ptid = null_ptid;
3995 target_last_wait_ptid = minus_one_ptid;
3996 }