405b907856ae96ce740523eac0aeb044cd28fb0c
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2021 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "displaced-stepping.h"
23 #include "infrun.h"
24 #include <ctype.h>
25 #include "symtab.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "breakpoint.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "target-connection.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include "inf-loop.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "observable.h"
41 #include "language.h"
42 #include "solib.h"
43 #include "main.h"
44 #include "block.h"
45 #include "mi/mi-common.h"
46 #include "event-top.h"
47 #include "record.h"
48 #include "record-full.h"
49 #include "inline-frame.h"
50 #include "jit.h"
51 #include "tracepoint.h"
52 #include "skip.h"
53 #include "probe.h"
54 #include "objfiles.h"
55 #include "completer.h"
56 #include "target-descriptions.h"
57 #include "target-dcache.h"
58 #include "terminal.h"
59 #include "solist.h"
60 #include "gdbsupport/event-loop.h"
61 #include "thread-fsm.h"
62 #include "gdbsupport/enum-flags.h"
63 #include "progspace-and-thread.h"
64 #include "gdbsupport/gdb_optional.h"
65 #include "arch-utils.h"
66 #include "gdbsupport/scope-exit.h"
67 #include "gdbsupport/forward-scope-exit.h"
68 #include "gdbsupport/gdb_select.h"
69 #include <unordered_map>
70 #include "async-event.h"
71 #include "gdbsupport/selftest.h"
72 #include "scoped-mock-context.h"
73 #include "test-target.h"
74 #include "gdbsupport/common-debug.h"
75
76 /* Prototypes for local functions */
77
78 static void sig_print_info (enum gdb_signal);
79
80 static void sig_print_header (void);
81
82 static void follow_inferior_reset_breakpoints (void);
83
84 static bool currently_stepping (struct thread_info *tp);
85
86 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
87
88 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
89
90 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
91
92 static bool maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
93
94 static void resume (gdb_signal sig);
95
96 static void wait_for_inferior (inferior *inf);
97
98 /* Asynchronous signal handler registered as event loop source for
99 when we have pending events ready to be passed to the core. */
100 static struct async_event_handler *infrun_async_inferior_event_token;
101
102 /* Stores whether infrun_async was previously enabled or disabled.
103 Starts off as -1, indicating "never enabled/disabled". */
104 static int infrun_is_async = -1;
105
106 /* See infrun.h. */
107
108 void
109 infrun_async (int enable)
110 {
111 if (infrun_is_async != enable)
112 {
113 infrun_is_async = enable;
114
115 infrun_debug_printf ("enable=%d", enable);
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122 }
123
124 /* See infrun.h. */
125
126 void
127 mark_infrun_async_event_handler (void)
128 {
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 }
131
132 /* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
135 bool step_stop_if_no_debug = false;
136 static void
137 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139 {
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141 }
142
143 /* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
146
147 static ptid_t previous_inferior_ptid;
148
149 /* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
154 static bool detach_fork = true;
155
156 bool debug_infrun = false;
157 static void
158 show_debug_infrun (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160 {
161 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
162 }
163
164 /* Support for disabling address space randomization. */
165
166 bool disable_randomization = true;
167
168 static void
169 show_disable_randomization (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171 {
172 if (target_supports_disable_randomization ())
173 fprintf_filtered (file,
174 _("Disabling randomization of debuggee's "
175 "virtual address space is %s.\n"),
176 value);
177 else
178 fputs_filtered (_("Disabling randomization of debuggee's "
179 "virtual address space is unsupported on\n"
180 "this platform.\n"), file);
181 }
182
183 static void
184 set_disable_randomization (const char *args, int from_tty,
185 struct cmd_list_element *c)
186 {
187 if (!target_supports_disable_randomization ())
188 error (_("Disabling randomization of debuggee's "
189 "virtual address space is unsupported on\n"
190 "this platform."));
191 }
192
193 /* User interface for non-stop mode. */
194
195 bool non_stop = false;
196 static bool non_stop_1 = false;
197
198 static void
199 set_non_stop (const char *args, int from_tty,
200 struct cmd_list_element *c)
201 {
202 if (target_has_execution ())
203 {
204 non_stop_1 = non_stop;
205 error (_("Cannot change this setting while the inferior is running."));
206 }
207
208 non_stop = non_stop_1;
209 }
210
211 static void
212 show_non_stop (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214 {
215 fprintf_filtered (file,
216 _("Controlling the inferior in non-stop mode is %s.\n"),
217 value);
218 }
219
220 /* "Observer mode" is somewhat like a more extreme version of
221 non-stop, in which all GDB operations that might affect the
222 target's execution have been disabled. */
223
224 static bool observer_mode = false;
225 static bool observer_mode_1 = false;
226
227 static void
228 set_observer_mode (const char *args, int from_tty,
229 struct cmd_list_element *c)
230 {
231 if (target_has_execution ())
232 {
233 observer_mode_1 = observer_mode;
234 error (_("Cannot change this setting while the inferior is running."));
235 }
236
237 observer_mode = observer_mode_1;
238
239 may_write_registers = !observer_mode;
240 may_write_memory = !observer_mode;
241 may_insert_breakpoints = !observer_mode;
242 may_insert_tracepoints = !observer_mode;
243 /* We can insert fast tracepoints in or out of observer mode,
244 but enable them if we're going into this mode. */
245 if (observer_mode)
246 may_insert_fast_tracepoints = true;
247 may_stop = !observer_mode;
248 update_target_permissions ();
249
250 /* Going *into* observer mode we must force non-stop, then
251 going out we leave it that way. */
252 if (observer_mode)
253 {
254 pagination_enabled = 0;
255 non_stop = non_stop_1 = true;
256 }
257
258 if (from_tty)
259 printf_filtered (_("Observer mode is now %s.\n"),
260 (observer_mode ? "on" : "off"));
261 }
262
263 static void
264 show_observer_mode (struct ui_file *file, int from_tty,
265 struct cmd_list_element *c, const char *value)
266 {
267 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
268 }
269
270 /* This updates the value of observer mode based on changes in
271 permissions. Note that we are deliberately ignoring the values of
272 may-write-registers and may-write-memory, since the user may have
273 reason to enable these during a session, for instance to turn on a
274 debugging-related global. */
275
276 void
277 update_observer_mode (void)
278 {
279 bool newval = (!may_insert_breakpoints
280 && !may_insert_tracepoints
281 && may_insert_fast_tracepoints
282 && !may_stop
283 && non_stop);
284
285 /* Let the user know if things change. */
286 if (newval != observer_mode)
287 printf_filtered (_("Observer mode is now %s.\n"),
288 (newval ? "on" : "off"));
289
290 observer_mode = observer_mode_1 = newval;
291 }
292
293 /* Tables of how to react to signals; the user sets them. */
294
295 static unsigned char signal_stop[GDB_SIGNAL_LAST];
296 static unsigned char signal_print[GDB_SIGNAL_LAST];
297 static unsigned char signal_program[GDB_SIGNAL_LAST];
298
299 /* Table of signals that are registered with "catch signal". A
300 non-zero entry indicates that the signal is caught by some "catch
301 signal" command. */
302 static unsigned char signal_catch[GDB_SIGNAL_LAST];
303
304 /* Table of signals that the target may silently handle.
305 This is automatically determined from the flags above,
306 and simply cached here. */
307 static unsigned char signal_pass[GDB_SIGNAL_LAST];
308
309 #define SET_SIGS(nsigs,sigs,flags) \
310 do { \
311 int signum = (nsigs); \
312 while (signum-- > 0) \
313 if ((sigs)[signum]) \
314 (flags)[signum] = 1; \
315 } while (0)
316
317 #define UNSET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 0; \
323 } while (0)
324
325 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
326 this function is to avoid exporting `signal_program'. */
327
328 void
329 update_signals_program_target (void)
330 {
331 target_program_signals (signal_program);
332 }
333
334 /* Value to pass to target_resume() to cause all threads to resume. */
335
336 #define RESUME_ALL minus_one_ptid
337
338 /* Command list pointer for the "stop" placeholder. */
339
340 static struct cmd_list_element *stop_command;
341
342 /* Nonzero if we want to give control to the user when we're notified
343 of shared library events by the dynamic linker. */
344 int stop_on_solib_events;
345
346 /* Enable or disable optional shared library event breakpoints
347 as appropriate when the above flag is changed. */
348
349 static void
350 set_stop_on_solib_events (const char *args,
351 int from_tty, struct cmd_list_element *c)
352 {
353 update_solib_breakpoints ();
354 }
355
356 static void
357 show_stop_on_solib_events (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c, const char *value)
359 {
360 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
361 value);
362 }
363
364 /* True after stop if current stack frame should be printed. */
365
366 static bool stop_print_frame;
367
368 /* This is a cached copy of the target/ptid/waitstatus of the last
369 event returned by target_wait()/deprecated_target_wait_hook().
370 This information is returned by get_last_target_status(). */
371 static process_stratum_target *target_last_proc_target;
372 static ptid_t target_last_wait_ptid;
373 static struct target_waitstatus target_last_waitstatus;
374
375 void init_thread_stepping_state (struct thread_info *tss);
376
377 static const char follow_fork_mode_child[] = "child";
378 static const char follow_fork_mode_parent[] = "parent";
379
380 static const char *const follow_fork_mode_kind_names[] = {
381 follow_fork_mode_child,
382 follow_fork_mode_parent,
383 NULL
384 };
385
386 static const char *follow_fork_mode_string = follow_fork_mode_parent;
387 static void
388 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
389 struct cmd_list_element *c, const char *value)
390 {
391 fprintf_filtered (file,
392 _("Debugger response to a program "
393 "call of fork or vfork is \"%s\".\n"),
394 value);
395 }
396 \f
397
398 /* Handle changes to the inferior list based on the type of fork,
399 which process is being followed, and whether the other process
400 should be detached. On entry inferior_ptid must be the ptid of
401 the fork parent. At return inferior_ptid is the ptid of the
402 followed inferior. */
403
404 static bool
405 follow_fork_inferior (bool follow_child, bool detach_fork)
406 {
407 int has_vforked;
408 ptid_t parent_ptid, child_ptid;
409
410 has_vforked = (inferior_thread ()->pending_follow.kind
411 == TARGET_WAITKIND_VFORKED);
412 parent_ptid = inferior_ptid;
413 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
414
415 if (has_vforked
416 && !non_stop /* Non-stop always resumes both branches. */
417 && current_ui->prompt_state == PROMPT_BLOCKED
418 && !(follow_child || detach_fork || sched_multi))
419 {
420 /* The parent stays blocked inside the vfork syscall until the
421 child execs or exits. If we don't let the child run, then
422 the parent stays blocked. If we're telling the parent to run
423 in the foreground, the user will not be able to ctrl-c to get
424 back the terminal, effectively hanging the debug session. */
425 fprintf_filtered (gdb_stderr, _("\
426 Can not resume the parent process over vfork in the foreground while\n\
427 holding the child stopped. Try \"set detach-on-fork\" or \
428 \"set schedule-multiple\".\n"));
429 return 1;
430 }
431
432 if (!follow_child)
433 {
434 /* Detach new forked process? */
435 if (detach_fork)
436 {
437 /* Before detaching from the child, remove all breakpoints
438 from it. If we forked, then this has already been taken
439 care of by infrun.c. If we vforked however, any
440 breakpoint inserted in the parent is visible in the
441 child, even those added while stopped in a vfork
442 catchpoint. This will remove the breakpoints from the
443 parent also, but they'll be reinserted below. */
444 if (has_vforked)
445 {
446 /* Keep breakpoints list in sync. */
447 remove_breakpoints_inf (current_inferior ());
448 }
449
450 if (print_inferior_events)
451 {
452 /* Ensure that we have a process ptid. */
453 ptid_t process_ptid = ptid_t (child_ptid.pid ());
454
455 target_terminal::ours_for_output ();
456 fprintf_filtered (gdb_stdlog,
457 _("[Detaching after %s from child %s]\n"),
458 has_vforked ? "vfork" : "fork",
459 target_pid_to_str (process_ptid).c_str ());
460 }
461 }
462 else
463 {
464 struct inferior *parent_inf, *child_inf;
465
466 /* Add process to GDB's tables. */
467 child_inf = add_inferior (child_ptid.pid ());
468
469 parent_inf = current_inferior ();
470 child_inf->attach_flag = parent_inf->attach_flag;
471 copy_terminal_info (child_inf, parent_inf);
472 child_inf->gdbarch = parent_inf->gdbarch;
473 copy_inferior_target_desc_info (child_inf, parent_inf);
474
475 scoped_restore_current_pspace_and_thread restore_pspace_thread;
476
477 set_current_inferior (child_inf);
478 switch_to_no_thread ();
479 child_inf->symfile_flags = SYMFILE_NO_READ;
480 push_target (parent_inf->process_target ());
481 thread_info *child_thr
482 = add_thread_silent (child_inf->process_target (), child_ptid);
483
484 /* If this is a vfork child, then the address-space is
485 shared with the parent. */
486 if (has_vforked)
487 {
488 child_inf->pspace = parent_inf->pspace;
489 child_inf->aspace = parent_inf->aspace;
490
491 exec_on_vfork ();
492
493 /* The parent will be frozen until the child is done
494 with the shared region. Keep track of the
495 parent. */
496 child_inf->vfork_parent = parent_inf;
497 child_inf->pending_detach = 0;
498 parent_inf->vfork_child = child_inf;
499 parent_inf->pending_detach = 0;
500
501 /* Now that the inferiors and program spaces are all
502 wired up, we can switch to the child thread (which
503 switches inferior and program space too). */
504 switch_to_thread (child_thr);
505 }
506 else
507 {
508 child_inf->aspace = new_address_space ();
509 child_inf->pspace = new program_space (child_inf->aspace);
510 child_inf->removable = 1;
511 set_current_program_space (child_inf->pspace);
512 clone_program_space (child_inf->pspace, parent_inf->pspace);
513
514 /* solib_create_inferior_hook relies on the current
515 thread. */
516 switch_to_thread (child_thr);
517
518 /* Let the shared library layer (e.g., solib-svr4) learn
519 about this new process, relocate the cloned exec, pull
520 in shared libraries, and install the solib event
521 breakpoint. If a "cloned-VM" event was propagated
522 better throughout the core, this wouldn't be
523 required. */
524 solib_create_inferior_hook (0);
525 }
526 }
527
528 if (has_vforked)
529 {
530 struct inferior *parent_inf;
531
532 parent_inf = current_inferior ();
533
534 /* If we detached from the child, then we have to be careful
535 to not insert breakpoints in the parent until the child
536 is done with the shared memory region. However, if we're
537 staying attached to the child, then we can and should
538 insert breakpoints, so that we can debug it. A
539 subsequent child exec or exit is enough to know when does
540 the child stops using the parent's address space. */
541 parent_inf->waiting_for_vfork_done = detach_fork;
542 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
543 }
544 }
545 else
546 {
547 /* Follow the child. */
548 struct inferior *parent_inf, *child_inf;
549 struct program_space *parent_pspace;
550
551 if (print_inferior_events)
552 {
553 std::string parent_pid = target_pid_to_str (parent_ptid);
554 std::string child_pid = target_pid_to_str (child_ptid);
555
556 target_terminal::ours_for_output ();
557 fprintf_filtered (gdb_stdlog,
558 _("[Attaching after %s %s to child %s]\n"),
559 parent_pid.c_str (),
560 has_vforked ? "vfork" : "fork",
561 child_pid.c_str ());
562 }
563
564 /* Add the new inferior first, so that the target_detach below
565 doesn't unpush the target. */
566
567 child_inf = add_inferior (child_ptid.pid ());
568
569 parent_inf = current_inferior ();
570 child_inf->attach_flag = parent_inf->attach_flag;
571 copy_terminal_info (child_inf, parent_inf);
572 child_inf->gdbarch = parent_inf->gdbarch;
573 copy_inferior_target_desc_info (child_inf, parent_inf);
574
575 parent_pspace = parent_inf->pspace;
576
577 process_stratum_target *target = parent_inf->process_target ();
578
579 {
580 /* Hold a strong reference to the target while (maybe)
581 detaching the parent. Otherwise detaching could close the
582 target. */
583 auto target_ref = target_ops_ref::new_reference (target);
584
585 /* If we're vforking, we want to hold on to the parent until
586 the child exits or execs. At child exec or exit time we
587 can remove the old breakpoints from the parent and detach
588 or resume debugging it. Otherwise, detach the parent now;
589 we'll want to reuse it's program/address spaces, but we
590 can't set them to the child before removing breakpoints
591 from the parent, otherwise, the breakpoints module could
592 decide to remove breakpoints from the wrong process (since
593 they'd be assigned to the same address space). */
594
595 if (has_vforked)
596 {
597 gdb_assert (child_inf->vfork_parent == NULL);
598 gdb_assert (parent_inf->vfork_child == NULL);
599 child_inf->vfork_parent = parent_inf;
600 child_inf->pending_detach = 0;
601 parent_inf->vfork_child = child_inf;
602 parent_inf->pending_detach = detach_fork;
603 parent_inf->waiting_for_vfork_done = 0;
604 }
605 else if (detach_fork)
606 {
607 if (print_inferior_events)
608 {
609 /* Ensure that we have a process ptid. */
610 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
611
612 target_terminal::ours_for_output ();
613 fprintf_filtered (gdb_stdlog,
614 _("[Detaching after fork from "
615 "parent %s]\n"),
616 target_pid_to_str (process_ptid).c_str ());
617 }
618
619 target_detach (parent_inf, 0);
620 parent_inf = NULL;
621 }
622
623 /* Note that the detach above makes PARENT_INF dangling. */
624
625 /* Add the child thread to the appropriate lists, and switch
626 to this new thread, before cloning the program space, and
627 informing the solib layer about this new process. */
628
629 set_current_inferior (child_inf);
630 push_target (target);
631 }
632
633 thread_info *child_thr = add_thread_silent (target, child_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642
643 exec_on_vfork ();
644 }
645 else
646 {
647 child_inf->aspace = new_address_space ();
648 child_inf->pspace = new program_space (child_inf->aspace);
649 child_inf->removable = 1;
650 child_inf->symfile_flags = SYMFILE_NO_READ;
651 set_current_program_space (child_inf->pspace);
652 clone_program_space (child_inf->pspace, parent_pspace);
653
654 /* Let the shared library layer (e.g., solib-svr4) learn
655 about this new process, relocate the cloned exec, pull in
656 shared libraries, and install the solib event breakpoint.
657 If a "cloned-VM" event was propagated better throughout
658 the core, this wouldn't be required. */
659 solib_create_inferior_hook (0);
660 }
661
662 switch_to_thread (child_thr);
663 }
664
665 return target_follow_fork (follow_child, detach_fork);
666 }
667
668 /* Tell the target to follow the fork we're stopped at. Returns true
669 if the inferior should be resumed; false, if the target for some
670 reason decided it's best not to resume. */
671
672 static bool
673 follow_fork ()
674 {
675 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
676 bool should_resume = true;
677 struct thread_info *tp;
678
679 /* Copy user stepping state to the new inferior thread. FIXME: the
680 followed fork child thread should have a copy of most of the
681 parent thread structure's run control related fields, not just these.
682 Initialized to avoid "may be used uninitialized" warnings from gcc. */
683 struct breakpoint *step_resume_breakpoint = NULL;
684 struct breakpoint *exception_resume_breakpoint = NULL;
685 CORE_ADDR step_range_start = 0;
686 CORE_ADDR step_range_end = 0;
687 int current_line = 0;
688 symtab *current_symtab = NULL;
689 struct frame_id step_frame_id = { 0 };
690 struct thread_fsm *thread_fsm = NULL;
691
692 if (!non_stop)
693 {
694 process_stratum_target *wait_target;
695 ptid_t wait_ptid;
696 struct target_waitstatus wait_status;
697
698 /* Get the last target status returned by target_wait(). */
699 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
700
701 /* If not stopped at a fork event, then there's nothing else to
702 do. */
703 if (wait_status.kind != TARGET_WAITKIND_FORKED
704 && wait_status.kind != TARGET_WAITKIND_VFORKED)
705 return 1;
706
707 /* Check if we switched over from WAIT_PTID, since the event was
708 reported. */
709 if (wait_ptid != minus_one_ptid
710 && (current_inferior ()->process_target () != wait_target
711 || inferior_ptid != wait_ptid))
712 {
713 /* We did. Switch back to WAIT_PTID thread, to tell the
714 target to follow it (in either direction). We'll
715 afterwards refuse to resume, and inform the user what
716 happened. */
717 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
718 switch_to_thread (wait_thread);
719 should_resume = false;
720 }
721 }
722
723 tp = inferior_thread ();
724
725 /* If there were any forks/vforks that were caught and are now to be
726 followed, then do so now. */
727 switch (tp->pending_follow.kind)
728 {
729 case TARGET_WAITKIND_FORKED:
730 case TARGET_WAITKIND_VFORKED:
731 {
732 ptid_t parent, child;
733
734 /* If the user did a next/step, etc, over a fork call,
735 preserve the stepping state in the fork child. */
736 if (follow_child && should_resume)
737 {
738 step_resume_breakpoint = clone_momentary_breakpoint
739 (tp->control.step_resume_breakpoint);
740 step_range_start = tp->control.step_range_start;
741 step_range_end = tp->control.step_range_end;
742 current_line = tp->current_line;
743 current_symtab = tp->current_symtab;
744 step_frame_id = tp->control.step_frame_id;
745 exception_resume_breakpoint
746 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
747 thread_fsm = tp->thread_fsm;
748
749 /* For now, delete the parent's sr breakpoint, otherwise,
750 parent/child sr breakpoints are considered duplicates,
751 and the child version will not be installed. Remove
752 this when the breakpoints module becomes aware of
753 inferiors and address spaces. */
754 delete_step_resume_breakpoint (tp);
755 tp->control.step_range_start = 0;
756 tp->control.step_range_end = 0;
757 tp->control.step_frame_id = null_frame_id;
758 delete_exception_resume_breakpoint (tp);
759 tp->thread_fsm = NULL;
760 }
761
762 parent = inferior_ptid;
763 child = tp->pending_follow.value.related_pid;
764
765 process_stratum_target *parent_targ = tp->inf->process_target ();
766 /* Set up inferior(s) as specified by the caller, and tell the
767 target to do whatever is necessary to follow either parent
768 or child. */
769 if (follow_fork_inferior (follow_child, detach_fork))
770 {
771 /* Target refused to follow, or there's some other reason
772 we shouldn't resume. */
773 should_resume = 0;
774 }
775 else
776 {
777 /* This pending follow fork event is now handled, one way
778 or another. The previous selected thread may be gone
779 from the lists by now, but if it is still around, need
780 to clear the pending follow request. */
781 tp = find_thread_ptid (parent_targ, parent);
782 if (tp)
783 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
784
785 /* This makes sure we don't try to apply the "Switched
786 over from WAIT_PID" logic above. */
787 nullify_last_target_wait_ptid ();
788
789 /* If we followed the child, switch to it... */
790 if (follow_child)
791 {
792 thread_info *child_thr = find_thread_ptid (parent_targ, child);
793 switch_to_thread (child_thr);
794
795 /* ... and preserve the stepping state, in case the
796 user was stepping over the fork call. */
797 if (should_resume)
798 {
799 tp = inferior_thread ();
800 tp->control.step_resume_breakpoint
801 = step_resume_breakpoint;
802 tp->control.step_range_start = step_range_start;
803 tp->control.step_range_end = step_range_end;
804 tp->current_line = current_line;
805 tp->current_symtab = current_symtab;
806 tp->control.step_frame_id = step_frame_id;
807 tp->control.exception_resume_breakpoint
808 = exception_resume_breakpoint;
809 tp->thread_fsm = thread_fsm;
810 }
811 else
812 {
813 /* If we get here, it was because we're trying to
814 resume from a fork catchpoint, but, the user
815 has switched threads away from the thread that
816 forked. In that case, the resume command
817 issued is most likely not applicable to the
818 child, so just warn, and refuse to resume. */
819 warning (_("Not resuming: switched threads "
820 "before following fork child."));
821 }
822
823 /* Reset breakpoints in the child as appropriate. */
824 follow_inferior_reset_breakpoints ();
825 }
826 }
827 }
828 break;
829 case TARGET_WAITKIND_SPURIOUS:
830 /* Nothing to follow. */
831 break;
832 default:
833 internal_error (__FILE__, __LINE__,
834 "Unexpected pending_follow.kind %d\n",
835 tp->pending_follow.kind);
836 break;
837 }
838
839 return should_resume;
840 }
841
842 static void
843 follow_inferior_reset_breakpoints (void)
844 {
845 struct thread_info *tp = inferior_thread ();
846
847 /* Was there a step_resume breakpoint? (There was if the user
848 did a "next" at the fork() call.) If so, explicitly reset its
849 thread number. Cloned step_resume breakpoints are disabled on
850 creation, so enable it here now that it is associated with the
851 correct thread.
852
853 step_resumes are a form of bp that are made to be per-thread.
854 Since we created the step_resume bp when the parent process
855 was being debugged, and now are switching to the child process,
856 from the breakpoint package's viewpoint, that's a switch of
857 "threads". We must update the bp's notion of which thread
858 it is for, or it'll be ignored when it triggers. */
859
860 if (tp->control.step_resume_breakpoint)
861 {
862 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
863 tp->control.step_resume_breakpoint->loc->enabled = 1;
864 }
865
866 /* Treat exception_resume breakpoints like step_resume breakpoints. */
867 if (tp->control.exception_resume_breakpoint)
868 {
869 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
870 tp->control.exception_resume_breakpoint->loc->enabled = 1;
871 }
872
873 /* Reinsert all breakpoints in the child. The user may have set
874 breakpoints after catching the fork, in which case those
875 were never set in the child, but only in the parent. This makes
876 sure the inserted breakpoints match the breakpoint list. */
877
878 breakpoint_re_set ();
879 insert_breakpoints ();
880 }
881
882 /* The child has exited or execed: resume threads of the parent the
883 user wanted to be executing. */
884
885 static int
886 proceed_after_vfork_done (struct thread_info *thread,
887 void *arg)
888 {
889 int pid = * (int *) arg;
890
891 if (thread->ptid.pid () == pid
892 && thread->state == THREAD_RUNNING
893 && !thread->executing
894 && !thread->stop_requested
895 && thread->suspend.stop_signal == GDB_SIGNAL_0)
896 {
897 infrun_debug_printf ("resuming vfork parent thread %s",
898 target_pid_to_str (thread->ptid).c_str ());
899
900 switch_to_thread (thread);
901 clear_proceed_status (0);
902 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
903 }
904
905 return 0;
906 }
907
908 /* Called whenever we notice an exec or exit event, to handle
909 detaching or resuming a vfork parent. */
910
911 static void
912 handle_vfork_child_exec_or_exit (int exec)
913 {
914 struct inferior *inf = current_inferior ();
915
916 if (inf->vfork_parent)
917 {
918 int resume_parent = -1;
919
920 /* This exec or exit marks the end of the shared memory region
921 between the parent and the child. Break the bonds. */
922 inferior *vfork_parent = inf->vfork_parent;
923 inf->vfork_parent->vfork_child = NULL;
924 inf->vfork_parent = NULL;
925
926 /* If the user wanted to detach from the parent, now is the
927 time. */
928 if (vfork_parent->pending_detach)
929 {
930 struct program_space *pspace;
931 struct address_space *aspace;
932
933 /* follow-fork child, detach-on-fork on. */
934
935 vfork_parent->pending_detach = 0;
936
937 scoped_restore_current_pspace_and_thread restore_thread;
938
939 /* We're letting loose of the parent. */
940 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
941 switch_to_thread (tp);
942
943 /* We're about to detach from the parent, which implicitly
944 removes breakpoints from its address space. There's a
945 catch here: we want to reuse the spaces for the child,
946 but, parent/child are still sharing the pspace at this
947 point, although the exec in reality makes the kernel give
948 the child a fresh set of new pages. The problem here is
949 that the breakpoints module being unaware of this, would
950 likely chose the child process to write to the parent
951 address space. Swapping the child temporarily away from
952 the spaces has the desired effect. Yes, this is "sort
953 of" a hack. */
954
955 pspace = inf->pspace;
956 aspace = inf->aspace;
957 inf->aspace = NULL;
958 inf->pspace = NULL;
959
960 if (print_inferior_events)
961 {
962 std::string pidstr
963 = target_pid_to_str (ptid_t (vfork_parent->pid));
964
965 target_terminal::ours_for_output ();
966
967 if (exec)
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("[Detaching vfork parent %s "
971 "after child exec]\n"), pidstr.c_str ());
972 }
973 else
974 {
975 fprintf_filtered (gdb_stdlog,
976 _("[Detaching vfork parent %s "
977 "after child exit]\n"), pidstr.c_str ());
978 }
979 }
980
981 target_detach (vfork_parent, 0);
982
983 /* Put it back. */
984 inf->pspace = pspace;
985 inf->aspace = aspace;
986 }
987 else if (exec)
988 {
989 /* We're staying attached to the parent, so, really give the
990 child a new address space. */
991 inf->pspace = new program_space (maybe_new_address_space ());
992 inf->aspace = inf->pspace->aspace;
993 inf->removable = 1;
994 set_current_program_space (inf->pspace);
995
996 resume_parent = vfork_parent->pid;
997 }
998 else
999 {
1000 /* If this is a vfork child exiting, then the pspace and
1001 aspaces were shared with the parent. Since we're
1002 reporting the process exit, we'll be mourning all that is
1003 found in the address space, and switching to null_ptid,
1004 preparing to start a new inferior. But, since we don't
1005 want to clobber the parent's address/program spaces, we
1006 go ahead and create a new one for this exiting
1007 inferior. */
1008
1009 /* Switch to no-thread while running clone_program_space, so
1010 that clone_program_space doesn't want to read the
1011 selected frame of a dead process. */
1012 scoped_restore_current_thread restore_thread;
1013 switch_to_no_thread ();
1014
1015 inf->pspace = new program_space (maybe_new_address_space ());
1016 inf->aspace = inf->pspace->aspace;
1017 set_current_program_space (inf->pspace);
1018 inf->removable = 1;
1019 inf->symfile_flags = SYMFILE_NO_READ;
1020 clone_program_space (inf->pspace, vfork_parent->pspace);
1021
1022 resume_parent = vfork_parent->pid;
1023 }
1024
1025 gdb_assert (current_program_space == inf->pspace);
1026
1027 if (non_stop && resume_parent != -1)
1028 {
1029 /* If the user wanted the parent to be running, let it go
1030 free now. */
1031 scoped_restore_current_thread restore_thread;
1032
1033 infrun_debug_printf ("resuming vfork parent process %d",
1034 resume_parent);
1035
1036 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1037 }
1038 }
1039 }
1040
1041 /* Enum strings for "set|show follow-exec-mode". */
1042
1043 static const char follow_exec_mode_new[] = "new";
1044 static const char follow_exec_mode_same[] = "same";
1045 static const char *const follow_exec_mode_names[] =
1046 {
1047 follow_exec_mode_new,
1048 follow_exec_mode_same,
1049 NULL,
1050 };
1051
1052 static const char *follow_exec_mode_string = follow_exec_mode_same;
1053 static void
1054 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1055 struct cmd_list_element *c, const char *value)
1056 {
1057 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1058 }
1059
1060 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1061
1062 static void
1063 follow_exec (ptid_t ptid, const char *exec_file_target)
1064 {
1065 struct inferior *inf = current_inferior ();
1066 int pid = ptid.pid ();
1067 ptid_t process_ptid;
1068
1069 /* Switch terminal for any messages produced e.g. by
1070 breakpoint_re_set. */
1071 target_terminal::ours_for_output ();
1072
1073 /* This is an exec event that we actually wish to pay attention to.
1074 Refresh our symbol table to the newly exec'd program, remove any
1075 momentary bp's, etc.
1076
1077 If there are breakpoints, they aren't really inserted now,
1078 since the exec() transformed our inferior into a fresh set
1079 of instructions.
1080
1081 We want to preserve symbolic breakpoints on the list, since
1082 we have hopes that they can be reset after the new a.out's
1083 symbol table is read.
1084
1085 However, any "raw" breakpoints must be removed from the list
1086 (e.g., the solib bp's), since their address is probably invalid
1087 now.
1088
1089 And, we DON'T want to call delete_breakpoints() here, since
1090 that may write the bp's "shadow contents" (the instruction
1091 value that was overwritten with a TRAP instruction). Since
1092 we now have a new a.out, those shadow contents aren't valid. */
1093
1094 mark_breakpoints_out ();
1095
1096 /* The target reports the exec event to the main thread, even if
1097 some other thread does the exec, and even if the main thread was
1098 stopped or already gone. We may still have non-leader threads of
1099 the process on our list. E.g., on targets that don't have thread
1100 exit events (like remote); or on native Linux in non-stop mode if
1101 there were only two threads in the inferior and the non-leader
1102 one is the one that execs (and nothing forces an update of the
1103 thread list up to here). When debugging remotely, it's best to
1104 avoid extra traffic, when possible, so avoid syncing the thread
1105 list with the target, and instead go ahead and delete all threads
1106 of the process but one that reported the event. Note this must
1107 be done before calling update_breakpoints_after_exec, as
1108 otherwise clearing the threads' resources would reference stale
1109 thread breakpoints -- it may have been one of these threads that
1110 stepped across the exec. We could just clear their stepping
1111 states, but as long as we're iterating, might as well delete
1112 them. Deleting them now rather than at the next user-visible
1113 stop provides a nicer sequence of events for user and MI
1114 notifications. */
1115 for (thread_info *th : all_threads_safe ())
1116 if (th->ptid.pid () == pid && th->ptid != ptid)
1117 delete_thread (th);
1118
1119 /* We also need to clear any left over stale state for the
1120 leader/event thread. E.g., if there was any step-resume
1121 breakpoint or similar, it's gone now. We cannot truly
1122 step-to-next statement through an exec(). */
1123 thread_info *th = inferior_thread ();
1124 th->control.step_resume_breakpoint = NULL;
1125 th->control.exception_resume_breakpoint = NULL;
1126 th->control.single_step_breakpoints = NULL;
1127 th->control.step_range_start = 0;
1128 th->control.step_range_end = 0;
1129
1130 /* The user may have had the main thread held stopped in the
1131 previous image (e.g., schedlock on, or non-stop). Release
1132 it now. */
1133 th->stop_requested = 0;
1134
1135 update_breakpoints_after_exec ();
1136
1137 /* What is this a.out's name? */
1138 process_ptid = ptid_t (pid);
1139 printf_unfiltered (_("%s is executing new program: %s\n"),
1140 target_pid_to_str (process_ptid).c_str (),
1141 exec_file_target);
1142
1143 /* We've followed the inferior through an exec. Therefore, the
1144 inferior has essentially been killed & reborn. */
1145
1146 breakpoint_init_inferior (inf_execd);
1147
1148 gdb::unique_xmalloc_ptr<char> exec_file_host
1149 = exec_file_find (exec_file_target, NULL);
1150
1151 /* If we were unable to map the executable target pathname onto a host
1152 pathname, tell the user that. Otherwise GDB's subsequent behavior
1153 is confusing. Maybe it would even be better to stop at this point
1154 so that the user can specify a file manually before continuing. */
1155 if (exec_file_host == NULL)
1156 warning (_("Could not load symbols for executable %s.\n"
1157 "Do you need \"set sysroot\"?"),
1158 exec_file_target);
1159
1160 /* Reset the shared library package. This ensures that we get a
1161 shlib event when the child reaches "_start", at which point the
1162 dld will have had a chance to initialize the child. */
1163 /* Also, loading a symbol file below may trigger symbol lookups, and
1164 we don't want those to be satisfied by the libraries of the
1165 previous incarnation of this process. */
1166 no_shared_libraries (NULL, 0);
1167
1168 if (follow_exec_mode_string == follow_exec_mode_new)
1169 {
1170 /* The user wants to keep the old inferior and program spaces
1171 around. Create a new fresh one, and switch to it. */
1172
1173 /* Do exit processing for the original inferior before setting the new
1174 inferior's pid. Having two inferiors with the same pid would confuse
1175 find_inferior_p(t)id. Transfer the terminal state and info from the
1176 old to the new inferior. */
1177 inf = add_inferior_with_spaces ();
1178 swap_terminal_info (inf, current_inferior ());
1179 exit_inferior_silent (current_inferior ());
1180
1181 inf->pid = pid;
1182 target_follow_exec (inf, exec_file_target);
1183
1184 inferior *org_inferior = current_inferior ();
1185 switch_to_inferior_no_thread (inf);
1186 push_target (org_inferior->process_target ());
1187 thread_info *thr = add_thread (inf->process_target (), ptid);
1188 switch_to_thread (thr);
1189 }
1190 else
1191 {
1192 /* The old description may no longer be fit for the new image.
1193 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1194 old description; we'll read a new one below. No need to do
1195 this on "follow-exec-mode new", as the old inferior stays
1196 around (its description is later cleared/refetched on
1197 restart). */
1198 target_clear_description ();
1199 }
1200
1201 gdb_assert (current_program_space == inf->pspace);
1202
1203 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1204 because the proper displacement for a PIE (Position Independent
1205 Executable) main symbol file will only be computed by
1206 solib_create_inferior_hook below. breakpoint_re_set would fail
1207 to insert the breakpoints with the zero displacement. */
1208 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1209
1210 /* If the target can specify a description, read it. Must do this
1211 after flipping to the new executable (because the target supplied
1212 description must be compatible with the executable's
1213 architecture, and the old executable may e.g., be 32-bit, while
1214 the new one 64-bit), and before anything involving memory or
1215 registers. */
1216 target_find_description ();
1217
1218 gdb::observers::inferior_execd.notify (inf);
1219
1220 breakpoint_re_set ();
1221
1222 /* Reinsert all breakpoints. (Those which were symbolic have
1223 been reset to the proper address in the new a.out, thanks
1224 to symbol_file_command...). */
1225 insert_breakpoints ();
1226
1227 /* The next resume of this inferior should bring it to the shlib
1228 startup breakpoints. (If the user had also set bp's on
1229 "main" from the old (parent) process, then they'll auto-
1230 matically get reset there in the new process.). */
1231 }
1232
1233 /* The chain of threads that need to do a step-over operation to get
1234 past e.g., a breakpoint. What technique is used to step over the
1235 breakpoint/watchpoint does not matter -- all threads end up in the
1236 same queue, to maintain rough temporal order of execution, in order
1237 to avoid starvation, otherwise, we could e.g., find ourselves
1238 constantly stepping the same couple threads past their breakpoints
1239 over and over, if the single-step finish fast enough. */
1240 struct thread_info *global_thread_step_over_chain_head;
1241
1242 /* Bit flags indicating what the thread needs to step over. */
1243
1244 enum step_over_what_flag
1245 {
1246 /* Step over a breakpoint. */
1247 STEP_OVER_BREAKPOINT = 1,
1248
1249 /* Step past a non-continuable watchpoint, in order to let the
1250 instruction execute so we can evaluate the watchpoint
1251 expression. */
1252 STEP_OVER_WATCHPOINT = 2
1253 };
1254 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1255
1256 /* Info about an instruction that is being stepped over. */
1257
1258 struct step_over_info
1259 {
1260 /* If we're stepping past a breakpoint, this is the address space
1261 and address of the instruction the breakpoint is set at. We'll
1262 skip inserting all breakpoints here. Valid iff ASPACE is
1263 non-NULL. */
1264 const address_space *aspace;
1265 CORE_ADDR address;
1266
1267 /* The instruction being stepped over triggers a nonsteppable
1268 watchpoint. If true, we'll skip inserting watchpoints. */
1269 int nonsteppable_watchpoint_p;
1270
1271 /* The thread's global number. */
1272 int thread;
1273 };
1274
1275 /* The step-over info of the location that is being stepped over.
1276
1277 Note that with async/breakpoint always-inserted mode, a user might
1278 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1279 being stepped over. As setting a new breakpoint inserts all
1280 breakpoints, we need to make sure the breakpoint being stepped over
1281 isn't inserted then. We do that by only clearing the step-over
1282 info when the step-over is actually finished (or aborted).
1283
1284 Presently GDB can only step over one breakpoint at any given time.
1285 Given threads that can't run code in the same address space as the
1286 breakpoint's can't really miss the breakpoint, GDB could be taught
1287 to step-over at most one breakpoint per address space (so this info
1288 could move to the address space object if/when GDB is extended).
1289 The set of breakpoints being stepped over will normally be much
1290 smaller than the set of all breakpoints, so a flag in the
1291 breakpoint location structure would be wasteful. A separate list
1292 also saves complexity and run-time, as otherwise we'd have to go
1293 through all breakpoint locations clearing their flag whenever we
1294 start a new sequence. Similar considerations weigh against storing
1295 this info in the thread object. Plus, not all step overs actually
1296 have breakpoint locations -- e.g., stepping past a single-step
1297 breakpoint, or stepping to complete a non-continuable
1298 watchpoint. */
1299 static struct step_over_info step_over_info;
1300
1301 /* Record the address of the breakpoint/instruction we're currently
1302 stepping over.
1303 N.B. We record the aspace and address now, instead of say just the thread,
1304 because when we need the info later the thread may be running. */
1305
1306 static void
1307 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1308 int nonsteppable_watchpoint_p,
1309 int thread)
1310 {
1311 step_over_info.aspace = aspace;
1312 step_over_info.address = address;
1313 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1314 step_over_info.thread = thread;
1315 }
1316
1317 /* Called when we're not longer stepping over a breakpoint / an
1318 instruction, so all breakpoints are free to be (re)inserted. */
1319
1320 static void
1321 clear_step_over_info (void)
1322 {
1323 infrun_debug_printf ("clearing step over info");
1324 step_over_info.aspace = NULL;
1325 step_over_info.address = 0;
1326 step_over_info.nonsteppable_watchpoint_p = 0;
1327 step_over_info.thread = -1;
1328 }
1329
1330 /* See infrun.h. */
1331
1332 int
1333 stepping_past_instruction_at (struct address_space *aspace,
1334 CORE_ADDR address)
1335 {
1336 return (step_over_info.aspace != NULL
1337 && breakpoint_address_match (aspace, address,
1338 step_over_info.aspace,
1339 step_over_info.address));
1340 }
1341
1342 /* See infrun.h. */
1343
1344 int
1345 thread_is_stepping_over_breakpoint (int thread)
1346 {
1347 return (step_over_info.thread != -1
1348 && thread == step_over_info.thread);
1349 }
1350
1351 /* See infrun.h. */
1352
1353 int
1354 stepping_past_nonsteppable_watchpoint (void)
1355 {
1356 return step_over_info.nonsteppable_watchpoint_p;
1357 }
1358
1359 /* Returns true if step-over info is valid. */
1360
1361 static bool
1362 step_over_info_valid_p (void)
1363 {
1364 return (step_over_info.aspace != NULL
1365 || stepping_past_nonsteppable_watchpoint ());
1366 }
1367
1368 \f
1369 /* Displaced stepping. */
1370
1371 /* In non-stop debugging mode, we must take special care to manage
1372 breakpoints properly; in particular, the traditional strategy for
1373 stepping a thread past a breakpoint it has hit is unsuitable.
1374 'Displaced stepping' is a tactic for stepping one thread past a
1375 breakpoint it has hit while ensuring that other threads running
1376 concurrently will hit the breakpoint as they should.
1377
1378 The traditional way to step a thread T off a breakpoint in a
1379 multi-threaded program in all-stop mode is as follows:
1380
1381 a0) Initially, all threads are stopped, and breakpoints are not
1382 inserted.
1383 a1) We single-step T, leaving breakpoints uninserted.
1384 a2) We insert breakpoints, and resume all threads.
1385
1386 In non-stop debugging, however, this strategy is unsuitable: we
1387 don't want to have to stop all threads in the system in order to
1388 continue or step T past a breakpoint. Instead, we use displaced
1389 stepping:
1390
1391 n0) Initially, T is stopped, other threads are running, and
1392 breakpoints are inserted.
1393 n1) We copy the instruction "under" the breakpoint to a separate
1394 location, outside the main code stream, making any adjustments
1395 to the instruction, register, and memory state as directed by
1396 T's architecture.
1397 n2) We single-step T over the instruction at its new location.
1398 n3) We adjust the resulting register and memory state as directed
1399 by T's architecture. This includes resetting T's PC to point
1400 back into the main instruction stream.
1401 n4) We resume T.
1402
1403 This approach depends on the following gdbarch methods:
1404
1405 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1406 indicate where to copy the instruction, and how much space must
1407 be reserved there. We use these in step n1.
1408
1409 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1410 address, and makes any necessary adjustments to the instruction,
1411 register contents, and memory. We use this in step n1.
1412
1413 - gdbarch_displaced_step_fixup adjusts registers and memory after
1414 we have successfully single-stepped the instruction, to yield the
1415 same effect the instruction would have had if we had executed it
1416 at its original address. We use this in step n3.
1417
1418 The gdbarch_displaced_step_copy_insn and
1419 gdbarch_displaced_step_fixup functions must be written so that
1420 copying an instruction with gdbarch_displaced_step_copy_insn,
1421 single-stepping across the copied instruction, and then applying
1422 gdbarch_displaced_insn_fixup should have the same effects on the
1423 thread's memory and registers as stepping the instruction in place
1424 would have. Exactly which responsibilities fall to the copy and
1425 which fall to the fixup is up to the author of those functions.
1426
1427 See the comments in gdbarch.sh for details.
1428
1429 Note that displaced stepping and software single-step cannot
1430 currently be used in combination, although with some care I think
1431 they could be made to. Software single-step works by placing
1432 breakpoints on all possible subsequent instructions; if the
1433 displaced instruction is a PC-relative jump, those breakpoints
1434 could fall in very strange places --- on pages that aren't
1435 executable, or at addresses that are not proper instruction
1436 boundaries. (We do generally let other threads run while we wait
1437 to hit the software single-step breakpoint, and they might
1438 encounter such a corrupted instruction.) One way to work around
1439 this would be to have gdbarch_displaced_step_copy_insn fully
1440 simulate the effect of PC-relative instructions (and return NULL)
1441 on architectures that use software single-stepping.
1442
1443 In non-stop mode, we can have independent and simultaneous step
1444 requests, so more than one thread may need to simultaneously step
1445 over a breakpoint. The current implementation assumes there is
1446 only one scratch space per process. In this case, we have to
1447 serialize access to the scratch space. If thread A wants to step
1448 over a breakpoint, but we are currently waiting for some other
1449 thread to complete a displaced step, we leave thread A stopped and
1450 place it in the displaced_step_request_queue. Whenever a displaced
1451 step finishes, we pick the next thread in the queue and start a new
1452 displaced step operation on it. See displaced_step_prepare and
1453 displaced_step_finish for details. */
1454
1455 /* Return true if THREAD is doing a displaced step. */
1456
1457 static bool
1458 displaced_step_in_progress_thread (thread_info *thread)
1459 {
1460 gdb_assert (thread != NULL);
1461
1462 return thread->displaced_step_state.in_progress ();
1463 }
1464
1465 /* Return true if INF has a thread doing a displaced step. */
1466
1467 static bool
1468 displaced_step_in_progress (inferior *inf)
1469 {
1470 return inf->displaced_step_state.in_progress_count > 0;
1471 }
1472
1473 /* Return true if any thread is doing a displaced step. */
1474
1475 static bool
1476 displaced_step_in_progress_any_thread ()
1477 {
1478 for (inferior *inf : all_non_exited_inferiors ())
1479 {
1480 if (displaced_step_in_progress (inf))
1481 return true;
1482 }
1483
1484 return false;
1485 }
1486
1487 static void
1488 infrun_inferior_exit (struct inferior *inf)
1489 {
1490 inf->displaced_step_state.reset ();
1491 }
1492
1493 static void
1494 infrun_inferior_execd (inferior *inf)
1495 {
1496 /* If some threads where was doing a displaced step in this inferior at the
1497 moment of the exec, they no longer exist. Even if the exec'ing thread
1498 doing a displaced step, we don't want to to any fixup nor restore displaced
1499 stepping buffer bytes. */
1500 inf->displaced_step_state.reset ();
1501
1502 for (thread_info *thread : inf->threads ())
1503 thread->displaced_step_state.reset ();
1504
1505 /* Since an in-line step is done with everything else stopped, if there was
1506 one in progress at the time of the exec, it must have been the exec'ing
1507 thread. */
1508 clear_step_over_info ();
1509 }
1510
1511 /* If ON, and the architecture supports it, GDB will use displaced
1512 stepping to step over breakpoints. If OFF, or if the architecture
1513 doesn't support it, GDB will instead use the traditional
1514 hold-and-step approach. If AUTO (which is the default), GDB will
1515 decide which technique to use to step over breakpoints depending on
1516 whether the target works in a non-stop way (see use_displaced_stepping). */
1517
1518 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1519
1520 static void
1521 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1522 struct cmd_list_element *c,
1523 const char *value)
1524 {
1525 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1526 fprintf_filtered (file,
1527 _("Debugger's willingness to use displaced stepping "
1528 "to step over breakpoints is %s (currently %s).\n"),
1529 value, target_is_non_stop_p () ? "on" : "off");
1530 else
1531 fprintf_filtered (file,
1532 _("Debugger's willingness to use displaced stepping "
1533 "to step over breakpoints is %s.\n"), value);
1534 }
1535
1536 /* Return true if the gdbarch implements the required methods to use
1537 displaced stepping. */
1538
1539 static bool
1540 gdbarch_supports_displaced_stepping (gdbarch *arch)
1541 {
1542 /* Only check for the presence of `prepare`. The gdbarch verification ensures
1543 that if `prepare` is provided, so is `finish`. */
1544 return gdbarch_displaced_step_prepare_p (arch);
1545 }
1546
1547 /* Return non-zero if displaced stepping can/should be used to step
1548 over breakpoints of thread TP. */
1549
1550 static bool
1551 use_displaced_stepping (thread_info *tp)
1552 {
1553 /* If the user disabled it explicitly, don't use displaced stepping. */
1554 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1555 return false;
1556
1557 /* If "auto", only use displaced stepping if the target operates in a non-stop
1558 way. */
1559 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1560 && !target_is_non_stop_p ())
1561 return false;
1562
1563 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1564
1565 /* If the architecture doesn't implement displaced stepping, don't use
1566 it. */
1567 if (!gdbarch_supports_displaced_stepping (gdbarch))
1568 return false;
1569
1570 /* If recording, don't use displaced stepping. */
1571 if (find_record_target () != nullptr)
1572 return false;
1573
1574 /* If displaced stepping failed before for this inferior, don't bother trying
1575 again. */
1576 if (tp->inf->displaced_step_state.failed_before)
1577 return false;
1578
1579 return true;
1580 }
1581
1582 /* Simple function wrapper around displaced_step_thread_state::reset. */
1583
1584 static void
1585 displaced_step_reset (displaced_step_thread_state *displaced)
1586 {
1587 displaced->reset ();
1588 }
1589
1590 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1591 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1592
1593 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1594
1595 /* See infrun.h. */
1596
1597 std::string
1598 displaced_step_dump_bytes (const gdb_byte *buf, size_t len)
1599 {
1600 std::string ret;
1601
1602 for (size_t i = 0; i < len; i++)
1603 {
1604 if (i == 0)
1605 ret += string_printf ("%02x", buf[i]);
1606 else
1607 ret += string_printf (" %02x", buf[i]);
1608 }
1609
1610 return ret;
1611 }
1612
1613 /* Prepare to single-step, using displaced stepping.
1614
1615 Note that we cannot use displaced stepping when we have a signal to
1616 deliver. If we have a signal to deliver and an instruction to step
1617 over, then after the step, there will be no indication from the
1618 target whether the thread entered a signal handler or ignored the
1619 signal and stepped over the instruction successfully --- both cases
1620 result in a simple SIGTRAP. In the first case we mustn't do a
1621 fixup, and in the second case we must --- but we can't tell which.
1622 Comments in the code for 'random signals' in handle_inferior_event
1623 explain how we handle this case instead.
1624
1625 Returns DISPLACED_STEP_PREPARE_STATUS_OK if preparing was successful -- this
1626 thread is going to be stepped now; DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE
1627 if displaced stepping this thread got queued; or
1628 DISPLACED_STEP_PREPARE_STATUS_CANT if this instruction can't be displaced
1629 stepped. */
1630
1631 static displaced_step_prepare_status
1632 displaced_step_prepare_throw (thread_info *tp)
1633 {
1634 regcache *regcache = get_thread_regcache (tp);
1635 struct gdbarch *gdbarch = regcache->arch ();
1636 displaced_step_thread_state &disp_step_thread_state
1637 = tp->displaced_step_state;
1638
1639 /* We should never reach this function if the architecture does not
1640 support displaced stepping. */
1641 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1642
1643 /* Nor if the thread isn't meant to step over a breakpoint. */
1644 gdb_assert (tp->control.trap_expected);
1645
1646 /* Disable range stepping while executing in the scratch pad. We
1647 want a single-step even if executing the displaced instruction in
1648 the scratch buffer lands within the stepping range (e.g., a
1649 jump/branch). */
1650 tp->control.may_range_step = 0;
1651
1652 /* We are about to start a displaced step for this thread. If one is already
1653 in progress, something's wrong. */
1654 gdb_assert (!disp_step_thread_state.in_progress ());
1655
1656 if (tp->inf->displaced_step_state.unavailable)
1657 {
1658 /* The gdbarch tells us it's not worth asking to try a prepare because
1659 it is likely that it will return unavailable, so don't bother asking. */
1660
1661 displaced_debug_printf ("deferring step of %s",
1662 target_pid_to_str (tp->ptid).c_str ());
1663
1664 global_thread_step_over_chain_enqueue (tp);
1665 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1666 }
1667
1668 displaced_debug_printf ("displaced-stepping %s now",
1669 target_pid_to_str (tp->ptid).c_str ());
1670
1671 scoped_restore_current_thread restore_thread;
1672
1673 switch_to_thread (tp);
1674
1675 CORE_ADDR original_pc = regcache_read_pc (regcache);
1676 CORE_ADDR displaced_pc;
1677
1678 displaced_step_prepare_status status
1679 = gdbarch_displaced_step_prepare (gdbarch, tp, displaced_pc);
1680
1681 if (status == DISPLACED_STEP_PREPARE_STATUS_CANT)
1682 {
1683 displaced_debug_printf ("failed to prepare (%s)",
1684 target_pid_to_str (tp->ptid).c_str ());
1685
1686 return DISPLACED_STEP_PREPARE_STATUS_CANT;
1687 }
1688 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
1689 {
1690 /* Not enough displaced stepping resources available, defer this
1691 request by placing it the queue. */
1692
1693 displaced_debug_printf ("not enough resources available, "
1694 "deferring step of %s",
1695 target_pid_to_str (tp->ptid).c_str ());
1696
1697 global_thread_step_over_chain_enqueue (tp);
1698
1699 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1700 }
1701
1702 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1703
1704 /* Save the information we need to fix things up if the step
1705 succeeds. */
1706 disp_step_thread_state.set (gdbarch);
1707
1708 tp->inf->displaced_step_state.in_progress_count++;
1709
1710 displaced_debug_printf ("prepared successfully thread=%s, "
1711 "original_pc=%s, displaced_pc=%s",
1712 target_pid_to_str (tp->ptid).c_str (),
1713 paddress (gdbarch, original_pc),
1714 paddress (gdbarch, displaced_pc));
1715
1716 return DISPLACED_STEP_PREPARE_STATUS_OK;
1717 }
1718
1719 /* Wrapper for displaced_step_prepare_throw that disabled further
1720 attempts at displaced stepping if we get a memory error. */
1721
1722 static displaced_step_prepare_status
1723 displaced_step_prepare (thread_info *thread)
1724 {
1725 displaced_step_prepare_status status
1726 = DISPLACED_STEP_PREPARE_STATUS_CANT;
1727
1728 try
1729 {
1730 status = displaced_step_prepare_throw (thread);
1731 }
1732 catch (const gdb_exception_error &ex)
1733 {
1734 if (ex.error != MEMORY_ERROR
1735 && ex.error != NOT_SUPPORTED_ERROR)
1736 throw;
1737
1738 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1739 ex.what ());
1740
1741 /* Be verbose if "set displaced-stepping" is "on", silent if
1742 "auto". */
1743 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1744 {
1745 warning (_("disabling displaced stepping: %s"),
1746 ex.what ());
1747 }
1748
1749 /* Disable further displaced stepping attempts. */
1750 thread->inf->displaced_step_state.failed_before = 1;
1751 }
1752
1753 return status;
1754 }
1755
1756 /* If we displaced stepped an instruction successfully, adjust registers and
1757 memory to yield the same effect the instruction would have had if we had
1758 executed it at its original address, and return
1759 DISPLACED_STEP_FINISH_STATUS_OK. If the instruction didn't complete,
1760 relocate the PC and return DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED.
1761
1762 If the thread wasn't displaced stepping, return
1763 DISPLACED_STEP_FINISH_STATUS_OK as well. */
1764
1765 static displaced_step_finish_status
1766 displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
1767 {
1768 displaced_step_thread_state *displaced = &event_thread->displaced_step_state;
1769
1770 /* Was this thread performing a displaced step? */
1771 if (!displaced->in_progress ())
1772 return DISPLACED_STEP_FINISH_STATUS_OK;
1773
1774 gdb_assert (event_thread->inf->displaced_step_state.in_progress_count > 0);
1775 event_thread->inf->displaced_step_state.in_progress_count--;
1776
1777 /* Fixup may need to read memory/registers. Switch to the thread
1778 that we're fixing up. Also, target_stopped_by_watchpoint checks
1779 the current thread, and displaced_step_restore performs ptid-dependent
1780 memory accesses using current_inferior() and current_top_target(). */
1781 switch_to_thread (event_thread);
1782
1783 displaced_step_reset_cleanup cleanup (displaced);
1784
1785 /* Do the fixup, and release the resources acquired to do the displaced
1786 step. */
1787 return gdbarch_displaced_step_finish (displaced->get_original_gdbarch (),
1788 event_thread, signal);
1789 }
1790
1791 /* Data to be passed around while handling an event. This data is
1792 discarded between events. */
1793 struct execution_control_state
1794 {
1795 process_stratum_target *target;
1796 ptid_t ptid;
1797 /* The thread that got the event, if this was a thread event; NULL
1798 otherwise. */
1799 struct thread_info *event_thread;
1800
1801 struct target_waitstatus ws;
1802 int stop_func_filled_in;
1803 CORE_ADDR stop_func_start;
1804 CORE_ADDR stop_func_end;
1805 const char *stop_func_name;
1806 int wait_some_more;
1807
1808 /* True if the event thread hit the single-step breakpoint of
1809 another thread. Thus the event doesn't cause a stop, the thread
1810 needs to be single-stepped past the single-step breakpoint before
1811 we can switch back to the original stepping thread. */
1812 int hit_singlestep_breakpoint;
1813 };
1814
1815 /* Clear ECS and set it to point at TP. */
1816
1817 static void
1818 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1819 {
1820 memset (ecs, 0, sizeof (*ecs));
1821 ecs->event_thread = tp;
1822 ecs->ptid = tp->ptid;
1823 }
1824
1825 static void keep_going_pass_signal (struct execution_control_state *ecs);
1826 static void prepare_to_wait (struct execution_control_state *ecs);
1827 static bool keep_going_stepped_thread (struct thread_info *tp);
1828 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1829
1830 /* Are there any pending step-over requests? If so, run all we can
1831 now and return true. Otherwise, return false. */
1832
1833 static bool
1834 start_step_over (void)
1835 {
1836 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
1837
1838 thread_info *next;
1839
1840 /* Don't start a new step-over if we already have an in-line
1841 step-over operation ongoing. */
1842 if (step_over_info_valid_p ())
1843 return false;
1844
1845 /* Steal the global thread step over chain. As we try to initiate displaced
1846 steps, threads will be enqueued in the global chain if no buffers are
1847 available. If we iterated on the global chain directly, we might iterate
1848 indefinitely. */
1849 thread_info *threads_to_step = global_thread_step_over_chain_head;
1850 global_thread_step_over_chain_head = NULL;
1851
1852 infrun_debug_printf ("stealing global queue of threads to step, length = %d",
1853 thread_step_over_chain_length (threads_to_step));
1854
1855 bool started = false;
1856
1857 /* On scope exit (whatever the reason, return or exception), if there are
1858 threads left in the THREADS_TO_STEP chain, put back these threads in the
1859 global list. */
1860 SCOPE_EXIT
1861 {
1862 if (threads_to_step == nullptr)
1863 infrun_debug_printf ("step-over queue now empty");
1864 else
1865 {
1866 infrun_debug_printf ("putting back %d threads to step in global queue",
1867 thread_step_over_chain_length (threads_to_step));
1868
1869 global_thread_step_over_chain_enqueue_chain (threads_to_step);
1870 }
1871 };
1872
1873 for (thread_info *tp = threads_to_step; tp != NULL; tp = next)
1874 {
1875 struct execution_control_state ecss;
1876 struct execution_control_state *ecs = &ecss;
1877 step_over_what step_what;
1878 int must_be_in_line;
1879
1880 gdb_assert (!tp->stop_requested);
1881
1882 next = thread_step_over_chain_next (threads_to_step, tp);
1883
1884 if (tp->inf->displaced_step_state.unavailable)
1885 {
1886 /* The arch told us to not even try preparing another displaced step
1887 for this inferior. Just leave the thread in THREADS_TO_STEP, it
1888 will get moved to the global chain on scope exit. */
1889 continue;
1890 }
1891
1892 /* Remove thread from the THREADS_TO_STEP chain. If anything goes wrong
1893 while we try to prepare the displaced step, we don't add it back to
1894 the global step over chain. This is to avoid a thread staying in the
1895 step over chain indefinitely if something goes wrong when resuming it
1896 If the error is intermittent and it still needs a step over, it will
1897 get enqueued again when we try to resume it normally. */
1898 thread_step_over_chain_remove (&threads_to_step, tp);
1899
1900 step_what = thread_still_needs_step_over (tp);
1901 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1902 || ((step_what & STEP_OVER_BREAKPOINT)
1903 && !use_displaced_stepping (tp)));
1904
1905 /* We currently stop all threads of all processes to step-over
1906 in-line. If we need to start a new in-line step-over, let
1907 any pending displaced steps finish first. */
1908 if (must_be_in_line && displaced_step_in_progress_any_thread ())
1909 {
1910 global_thread_step_over_chain_enqueue (tp);
1911 continue;
1912 }
1913
1914 if (tp->control.trap_expected
1915 || tp->resumed
1916 || tp->executing)
1917 {
1918 internal_error (__FILE__, __LINE__,
1919 "[%s] has inconsistent state: "
1920 "trap_expected=%d, resumed=%d, executing=%d\n",
1921 target_pid_to_str (tp->ptid).c_str (),
1922 tp->control.trap_expected,
1923 tp->resumed,
1924 tp->executing);
1925 }
1926
1927 infrun_debug_printf ("resuming [%s] for step-over",
1928 target_pid_to_str (tp->ptid).c_str ());
1929
1930 /* keep_going_pass_signal skips the step-over if the breakpoint
1931 is no longer inserted. In all-stop, we want to keep looking
1932 for a thread that needs a step-over instead of resuming TP,
1933 because we wouldn't be able to resume anything else until the
1934 target stops again. In non-stop, the resume always resumes
1935 only TP, so it's OK to let the thread resume freely. */
1936 if (!target_is_non_stop_p () && !step_what)
1937 continue;
1938
1939 switch_to_thread (tp);
1940 reset_ecs (ecs, tp);
1941 keep_going_pass_signal (ecs);
1942
1943 if (!ecs->wait_some_more)
1944 error (_("Command aborted."));
1945
1946 /* If the thread's step over could not be initiated because no buffers
1947 were available, it was re-added to the global step over chain. */
1948 if (tp->resumed)
1949 {
1950 infrun_debug_printf ("[%s] was resumed.",
1951 target_pid_to_str (tp->ptid).c_str ());
1952 gdb_assert (!thread_is_in_step_over_chain (tp));
1953 }
1954 else
1955 {
1956 infrun_debug_printf ("[%s] was NOT resumed.",
1957 target_pid_to_str (tp->ptid).c_str ());
1958 gdb_assert (thread_is_in_step_over_chain (tp));
1959 }
1960
1961 /* If we started a new in-line step-over, we're done. */
1962 if (step_over_info_valid_p ())
1963 {
1964 gdb_assert (tp->control.trap_expected);
1965 started = true;
1966 break;
1967 }
1968
1969 if (!target_is_non_stop_p ())
1970 {
1971 /* On all-stop, shouldn't have resumed unless we needed a
1972 step over. */
1973 gdb_assert (tp->control.trap_expected
1974 || tp->step_after_step_resume_breakpoint);
1975
1976 /* With remote targets (at least), in all-stop, we can't
1977 issue any further remote commands until the program stops
1978 again. */
1979 started = true;
1980 break;
1981 }
1982
1983 /* Either the thread no longer needed a step-over, or a new
1984 displaced stepping sequence started. Even in the latter
1985 case, continue looking. Maybe we can also start another
1986 displaced step on a thread of other process. */
1987 }
1988
1989 return started;
1990 }
1991
1992 /* Update global variables holding ptids to hold NEW_PTID if they were
1993 holding OLD_PTID. */
1994 static void
1995 infrun_thread_ptid_changed (process_stratum_target *target,
1996 ptid_t old_ptid, ptid_t new_ptid)
1997 {
1998 if (inferior_ptid == old_ptid
1999 && current_inferior ()->process_target () == target)
2000 inferior_ptid = new_ptid;
2001 }
2002
2003 \f
2004
2005 static const char schedlock_off[] = "off";
2006 static const char schedlock_on[] = "on";
2007 static const char schedlock_step[] = "step";
2008 static const char schedlock_replay[] = "replay";
2009 static const char *const scheduler_enums[] = {
2010 schedlock_off,
2011 schedlock_on,
2012 schedlock_step,
2013 schedlock_replay,
2014 NULL
2015 };
2016 static const char *scheduler_mode = schedlock_replay;
2017 static void
2018 show_scheduler_mode (struct ui_file *file, int from_tty,
2019 struct cmd_list_element *c, const char *value)
2020 {
2021 fprintf_filtered (file,
2022 _("Mode for locking scheduler "
2023 "during execution is \"%s\".\n"),
2024 value);
2025 }
2026
2027 static void
2028 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2029 {
2030 if (!target_can_lock_scheduler ())
2031 {
2032 scheduler_mode = schedlock_off;
2033 error (_("Target '%s' cannot support this command."), target_shortname);
2034 }
2035 }
2036
2037 /* True if execution commands resume all threads of all processes by
2038 default; otherwise, resume only threads of the current inferior
2039 process. */
2040 bool sched_multi = false;
2041
2042 /* Try to setup for software single stepping over the specified location.
2043 Return true if target_resume() should use hardware single step.
2044
2045 GDBARCH the current gdbarch.
2046 PC the location to step over. */
2047
2048 static bool
2049 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2050 {
2051 bool hw_step = true;
2052
2053 if (execution_direction == EXEC_FORWARD
2054 && gdbarch_software_single_step_p (gdbarch))
2055 hw_step = !insert_single_step_breakpoints (gdbarch);
2056
2057 return hw_step;
2058 }
2059
2060 /* See infrun.h. */
2061
2062 ptid_t
2063 user_visible_resume_ptid (int step)
2064 {
2065 ptid_t resume_ptid;
2066
2067 if (non_stop)
2068 {
2069 /* With non-stop mode on, threads are always handled
2070 individually. */
2071 resume_ptid = inferior_ptid;
2072 }
2073 else if ((scheduler_mode == schedlock_on)
2074 || (scheduler_mode == schedlock_step && step))
2075 {
2076 /* User-settable 'scheduler' mode requires solo thread
2077 resume. */
2078 resume_ptid = inferior_ptid;
2079 }
2080 else if ((scheduler_mode == schedlock_replay)
2081 && target_record_will_replay (minus_one_ptid, execution_direction))
2082 {
2083 /* User-settable 'scheduler' mode requires solo thread resume in replay
2084 mode. */
2085 resume_ptid = inferior_ptid;
2086 }
2087 else if (!sched_multi && target_supports_multi_process ())
2088 {
2089 /* Resume all threads of the current process (and none of other
2090 processes). */
2091 resume_ptid = ptid_t (inferior_ptid.pid ());
2092 }
2093 else
2094 {
2095 /* Resume all threads of all processes. */
2096 resume_ptid = RESUME_ALL;
2097 }
2098
2099 return resume_ptid;
2100 }
2101
2102 /* See infrun.h. */
2103
2104 process_stratum_target *
2105 user_visible_resume_target (ptid_t resume_ptid)
2106 {
2107 return (resume_ptid == minus_one_ptid && sched_multi
2108 ? NULL
2109 : current_inferior ()->process_target ());
2110 }
2111
2112 /* Return a ptid representing the set of threads that we will resume,
2113 in the perspective of the target, assuming run control handling
2114 does not require leaving some threads stopped (e.g., stepping past
2115 breakpoint). USER_STEP indicates whether we're about to start the
2116 target for a stepping command. */
2117
2118 static ptid_t
2119 internal_resume_ptid (int user_step)
2120 {
2121 /* In non-stop, we always control threads individually. Note that
2122 the target may always work in non-stop mode even with "set
2123 non-stop off", in which case user_visible_resume_ptid could
2124 return a wildcard ptid. */
2125 if (target_is_non_stop_p ())
2126 return inferior_ptid;
2127 else
2128 return user_visible_resume_ptid (user_step);
2129 }
2130
2131 /* Wrapper for target_resume, that handles infrun-specific
2132 bookkeeping. */
2133
2134 static void
2135 do_target_resume (ptid_t resume_ptid, bool step, enum gdb_signal sig)
2136 {
2137 struct thread_info *tp = inferior_thread ();
2138
2139 gdb_assert (!tp->stop_requested);
2140
2141 /* Install inferior's terminal modes. */
2142 target_terminal::inferior ();
2143
2144 /* Avoid confusing the next resume, if the next stop/resume
2145 happens to apply to another thread. */
2146 tp->suspend.stop_signal = GDB_SIGNAL_0;
2147
2148 /* Advise target which signals may be handled silently.
2149
2150 If we have removed breakpoints because we are stepping over one
2151 in-line (in any thread), we need to receive all signals to avoid
2152 accidentally skipping a breakpoint during execution of a signal
2153 handler.
2154
2155 Likewise if we're displaced stepping, otherwise a trap for a
2156 breakpoint in a signal handler might be confused with the
2157 displaced step finishing. We don't make the displaced_step_finish
2158 step distinguish the cases instead, because:
2159
2160 - a backtrace while stopped in the signal handler would show the
2161 scratch pad as frame older than the signal handler, instead of
2162 the real mainline code.
2163
2164 - when the thread is later resumed, the signal handler would
2165 return to the scratch pad area, which would no longer be
2166 valid. */
2167 if (step_over_info_valid_p ()
2168 || displaced_step_in_progress (tp->inf))
2169 target_pass_signals ({});
2170 else
2171 target_pass_signals (signal_pass);
2172
2173 target_resume (resume_ptid, step, sig);
2174
2175 target_commit_resume ();
2176
2177 if (target_can_async_p ())
2178 target_async (1);
2179 }
2180
2181 /* Resume the inferior. SIG is the signal to give the inferior
2182 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2183 call 'resume', which handles exceptions. */
2184
2185 static void
2186 resume_1 (enum gdb_signal sig)
2187 {
2188 struct regcache *regcache = get_current_regcache ();
2189 struct gdbarch *gdbarch = regcache->arch ();
2190 struct thread_info *tp = inferior_thread ();
2191 const address_space *aspace = regcache->aspace ();
2192 ptid_t resume_ptid;
2193 /* This represents the user's step vs continue request. When
2194 deciding whether "set scheduler-locking step" applies, it's the
2195 user's intention that counts. */
2196 const int user_step = tp->control.stepping_command;
2197 /* This represents what we'll actually request the target to do.
2198 This can decay from a step to a continue, if e.g., we need to
2199 implement single-stepping with breakpoints (software
2200 single-step). */
2201 bool step;
2202
2203 gdb_assert (!tp->stop_requested);
2204 gdb_assert (!thread_is_in_step_over_chain (tp));
2205
2206 if (tp->suspend.waitstatus_pending_p)
2207 {
2208 infrun_debug_printf
2209 ("thread %s has pending wait "
2210 "status %s (currently_stepping=%d).",
2211 target_pid_to_str (tp->ptid).c_str (),
2212 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2213 currently_stepping (tp));
2214
2215 tp->inf->process_target ()->threads_executing = true;
2216 tp->resumed = true;
2217
2218 /* FIXME: What should we do if we are supposed to resume this
2219 thread with a signal? Maybe we should maintain a queue of
2220 pending signals to deliver. */
2221 if (sig != GDB_SIGNAL_0)
2222 {
2223 warning (_("Couldn't deliver signal %s to %s."),
2224 gdb_signal_to_name (sig),
2225 target_pid_to_str (tp->ptid).c_str ());
2226 }
2227
2228 tp->suspend.stop_signal = GDB_SIGNAL_0;
2229
2230 if (target_can_async_p ())
2231 {
2232 target_async (1);
2233 /* Tell the event loop we have an event to process. */
2234 mark_async_event_handler (infrun_async_inferior_event_token);
2235 }
2236 return;
2237 }
2238
2239 tp->stepped_breakpoint = 0;
2240
2241 /* Depends on stepped_breakpoint. */
2242 step = currently_stepping (tp);
2243
2244 if (current_inferior ()->waiting_for_vfork_done)
2245 {
2246 /* Don't try to single-step a vfork parent that is waiting for
2247 the child to get out of the shared memory region (by exec'ing
2248 or exiting). This is particularly important on software
2249 single-step archs, as the child process would trip on the
2250 software single step breakpoint inserted for the parent
2251 process. Since the parent will not actually execute any
2252 instruction until the child is out of the shared region (such
2253 are vfork's semantics), it is safe to simply continue it.
2254 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2255 the parent, and tell it to `keep_going', which automatically
2256 re-sets it stepping. */
2257 infrun_debug_printf ("resume : clear step");
2258 step = false;
2259 }
2260
2261 CORE_ADDR pc = regcache_read_pc (regcache);
2262
2263 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2264 "current thread [%s] at %s",
2265 step, gdb_signal_to_symbol_string (sig),
2266 tp->control.trap_expected,
2267 target_pid_to_str (inferior_ptid).c_str (),
2268 paddress (gdbarch, pc));
2269
2270 /* Normally, by the time we reach `resume', the breakpoints are either
2271 removed or inserted, as appropriate. The exception is if we're sitting
2272 at a permanent breakpoint; we need to step over it, but permanent
2273 breakpoints can't be removed. So we have to test for it here. */
2274 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2275 {
2276 if (sig != GDB_SIGNAL_0)
2277 {
2278 /* We have a signal to pass to the inferior. The resume
2279 may, or may not take us to the signal handler. If this
2280 is a step, we'll need to stop in the signal handler, if
2281 there's one, (if the target supports stepping into
2282 handlers), or in the next mainline instruction, if
2283 there's no handler. If this is a continue, we need to be
2284 sure to run the handler with all breakpoints inserted.
2285 In all cases, set a breakpoint at the current address
2286 (where the handler returns to), and once that breakpoint
2287 is hit, resume skipping the permanent breakpoint. If
2288 that breakpoint isn't hit, then we've stepped into the
2289 signal handler (or hit some other event). We'll delete
2290 the step-resume breakpoint then. */
2291
2292 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2293 "deliver signal first");
2294
2295 clear_step_over_info ();
2296 tp->control.trap_expected = 0;
2297
2298 if (tp->control.step_resume_breakpoint == NULL)
2299 {
2300 /* Set a "high-priority" step-resume, as we don't want
2301 user breakpoints at PC to trigger (again) when this
2302 hits. */
2303 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2304 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2305
2306 tp->step_after_step_resume_breakpoint = step;
2307 }
2308
2309 insert_breakpoints ();
2310 }
2311 else
2312 {
2313 /* There's no signal to pass, we can go ahead and skip the
2314 permanent breakpoint manually. */
2315 infrun_debug_printf ("skipping permanent breakpoint");
2316 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2317 /* Update pc to reflect the new address from which we will
2318 execute instructions. */
2319 pc = regcache_read_pc (regcache);
2320
2321 if (step)
2322 {
2323 /* We've already advanced the PC, so the stepping part
2324 is done. Now we need to arrange for a trap to be
2325 reported to handle_inferior_event. Set a breakpoint
2326 at the current PC, and run to it. Don't update
2327 prev_pc, because if we end in
2328 switch_back_to_stepped_thread, we want the "expected
2329 thread advanced also" branch to be taken. IOW, we
2330 don't want this thread to step further from PC
2331 (overstep). */
2332 gdb_assert (!step_over_info_valid_p ());
2333 insert_single_step_breakpoint (gdbarch, aspace, pc);
2334 insert_breakpoints ();
2335
2336 resume_ptid = internal_resume_ptid (user_step);
2337 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
2338 tp->resumed = true;
2339 return;
2340 }
2341 }
2342 }
2343
2344 /* If we have a breakpoint to step over, make sure to do a single
2345 step only. Same if we have software watchpoints. */
2346 if (tp->control.trap_expected || bpstat_should_step ())
2347 tp->control.may_range_step = 0;
2348
2349 /* If displaced stepping is enabled, step over breakpoints by executing a
2350 copy of the instruction at a different address.
2351
2352 We can't use displaced stepping when we have a signal to deliver;
2353 the comments for displaced_step_prepare explain why. The
2354 comments in the handle_inferior event for dealing with 'random
2355 signals' explain what we do instead.
2356
2357 We can't use displaced stepping when we are waiting for vfork_done
2358 event, displaced stepping breaks the vfork child similarly as single
2359 step software breakpoint. */
2360 if (tp->control.trap_expected
2361 && use_displaced_stepping (tp)
2362 && !step_over_info_valid_p ()
2363 && sig == GDB_SIGNAL_0
2364 && !current_inferior ()->waiting_for_vfork_done)
2365 {
2366 displaced_step_prepare_status prepare_status
2367 = displaced_step_prepare (tp);
2368
2369 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
2370 {
2371 infrun_debug_printf ("Got placed in step-over queue");
2372
2373 tp->control.trap_expected = 0;
2374 return;
2375 }
2376 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_CANT)
2377 {
2378 /* Fallback to stepping over the breakpoint in-line. */
2379
2380 if (target_is_non_stop_p ())
2381 stop_all_threads ();
2382
2383 set_step_over_info (regcache->aspace (),
2384 regcache_read_pc (regcache), 0, tp->global_num);
2385
2386 step = maybe_software_singlestep (gdbarch, pc);
2387
2388 insert_breakpoints ();
2389 }
2390 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
2391 {
2392 /* Update pc to reflect the new address from which we will
2393 execute instructions due to displaced stepping. */
2394 pc = regcache_read_pc (get_thread_regcache (tp));
2395
2396 step = gdbarch_displaced_step_hw_singlestep (gdbarch);
2397 }
2398 else
2399 gdb_assert_not_reached (_("Invalid displaced_step_prepare_status "
2400 "value."));
2401 }
2402
2403 /* Do we need to do it the hard way, w/temp breakpoints? */
2404 else if (step)
2405 step = maybe_software_singlestep (gdbarch, pc);
2406
2407 /* Currently, our software single-step implementation leads to different
2408 results than hardware single-stepping in one situation: when stepping
2409 into delivering a signal which has an associated signal handler,
2410 hardware single-step will stop at the first instruction of the handler,
2411 while software single-step will simply skip execution of the handler.
2412
2413 For now, this difference in behavior is accepted since there is no
2414 easy way to actually implement single-stepping into a signal handler
2415 without kernel support.
2416
2417 However, there is one scenario where this difference leads to follow-on
2418 problems: if we're stepping off a breakpoint by removing all breakpoints
2419 and then single-stepping. In this case, the software single-step
2420 behavior means that even if there is a *breakpoint* in the signal
2421 handler, GDB still would not stop.
2422
2423 Fortunately, we can at least fix this particular issue. We detect
2424 here the case where we are about to deliver a signal while software
2425 single-stepping with breakpoints removed. In this situation, we
2426 revert the decisions to remove all breakpoints and insert single-
2427 step breakpoints, and instead we install a step-resume breakpoint
2428 at the current address, deliver the signal without stepping, and
2429 once we arrive back at the step-resume breakpoint, actually step
2430 over the breakpoint we originally wanted to step over. */
2431 if (thread_has_single_step_breakpoints_set (tp)
2432 && sig != GDB_SIGNAL_0
2433 && step_over_info_valid_p ())
2434 {
2435 /* If we have nested signals or a pending signal is delivered
2436 immediately after a handler returns, might already have
2437 a step-resume breakpoint set on the earlier handler. We cannot
2438 set another step-resume breakpoint; just continue on until the
2439 original breakpoint is hit. */
2440 if (tp->control.step_resume_breakpoint == NULL)
2441 {
2442 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2443 tp->step_after_step_resume_breakpoint = 1;
2444 }
2445
2446 delete_single_step_breakpoints (tp);
2447
2448 clear_step_over_info ();
2449 tp->control.trap_expected = 0;
2450
2451 insert_breakpoints ();
2452 }
2453
2454 /* If STEP is set, it's a request to use hardware stepping
2455 facilities. But in that case, we should never
2456 use singlestep breakpoint. */
2457 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2458
2459 /* Decide the set of threads to ask the target to resume. */
2460 if (tp->control.trap_expected)
2461 {
2462 /* We're allowing a thread to run past a breakpoint it has
2463 hit, either by single-stepping the thread with the breakpoint
2464 removed, or by displaced stepping, with the breakpoint inserted.
2465 In the former case, we need to single-step only this thread,
2466 and keep others stopped, as they can miss this breakpoint if
2467 allowed to run. That's not really a problem for displaced
2468 stepping, but, we still keep other threads stopped, in case
2469 another thread is also stopped for a breakpoint waiting for
2470 its turn in the displaced stepping queue. */
2471 resume_ptid = inferior_ptid;
2472 }
2473 else
2474 resume_ptid = internal_resume_ptid (user_step);
2475
2476 if (execution_direction != EXEC_REVERSE
2477 && step && breakpoint_inserted_here_p (aspace, pc))
2478 {
2479 /* There are two cases where we currently need to step a
2480 breakpoint instruction when we have a signal to deliver:
2481
2482 - See handle_signal_stop where we handle random signals that
2483 could take out us out of the stepping range. Normally, in
2484 that case we end up continuing (instead of stepping) over the
2485 signal handler with a breakpoint at PC, but there are cases
2486 where we should _always_ single-step, even if we have a
2487 step-resume breakpoint, like when a software watchpoint is
2488 set. Assuming single-stepping and delivering a signal at the
2489 same time would takes us to the signal handler, then we could
2490 have removed the breakpoint at PC to step over it. However,
2491 some hardware step targets (like e.g., Mac OS) can't step
2492 into signal handlers, and for those, we need to leave the
2493 breakpoint at PC inserted, as otherwise if the handler
2494 recurses and executes PC again, it'll miss the breakpoint.
2495 So we leave the breakpoint inserted anyway, but we need to
2496 record that we tried to step a breakpoint instruction, so
2497 that adjust_pc_after_break doesn't end up confused.
2498
2499 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2500 in one thread after another thread that was stepping had been
2501 momentarily paused for a step-over. When we re-resume the
2502 stepping thread, it may be resumed from that address with a
2503 breakpoint that hasn't trapped yet. Seen with
2504 gdb.threads/non-stop-fair-events.exp, on targets that don't
2505 do displaced stepping. */
2506
2507 infrun_debug_printf ("resume: [%s] stepped breakpoint",
2508 target_pid_to_str (tp->ptid).c_str ());
2509
2510 tp->stepped_breakpoint = 1;
2511
2512 /* Most targets can step a breakpoint instruction, thus
2513 executing it normally. But if this one cannot, just
2514 continue and we will hit it anyway. */
2515 if (gdbarch_cannot_step_breakpoint (gdbarch))
2516 step = false;
2517 }
2518
2519 if (debug_displaced
2520 && tp->control.trap_expected
2521 && use_displaced_stepping (tp)
2522 && !step_over_info_valid_p ())
2523 {
2524 struct regcache *resume_regcache = get_thread_regcache (tp);
2525 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2526 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2527 gdb_byte buf[4];
2528
2529 read_memory (actual_pc, buf, sizeof (buf));
2530 displaced_debug_printf ("run %s: %s",
2531 paddress (resume_gdbarch, actual_pc),
2532 displaced_step_dump_bytes
2533 (buf, sizeof (buf)).c_str ());
2534 }
2535
2536 if (tp->control.may_range_step)
2537 {
2538 /* If we're resuming a thread with the PC out of the step
2539 range, then we're doing some nested/finer run control
2540 operation, like stepping the thread out of the dynamic
2541 linker or the displaced stepping scratch pad. We
2542 shouldn't have allowed a range step then. */
2543 gdb_assert (pc_in_thread_step_range (pc, tp));
2544 }
2545
2546 do_target_resume (resume_ptid, step, sig);
2547 tp->resumed = true;
2548 }
2549
2550 /* Resume the inferior. SIG is the signal to give the inferior
2551 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2552 rolls back state on error. */
2553
2554 static void
2555 resume (gdb_signal sig)
2556 {
2557 try
2558 {
2559 resume_1 (sig);
2560 }
2561 catch (const gdb_exception &ex)
2562 {
2563 /* If resuming is being aborted for any reason, delete any
2564 single-step breakpoint resume_1 may have created, to avoid
2565 confusing the following resumption, and to avoid leaving
2566 single-step breakpoints perturbing other threads, in case
2567 we're running in non-stop mode. */
2568 if (inferior_ptid != null_ptid)
2569 delete_single_step_breakpoints (inferior_thread ());
2570 throw;
2571 }
2572 }
2573
2574 \f
2575 /* Proceeding. */
2576
2577 /* See infrun.h. */
2578
2579 /* Counter that tracks number of user visible stops. This can be used
2580 to tell whether a command has proceeded the inferior past the
2581 current location. This allows e.g., inferior function calls in
2582 breakpoint commands to not interrupt the command list. When the
2583 call finishes successfully, the inferior is standing at the same
2584 breakpoint as if nothing happened (and so we don't call
2585 normal_stop). */
2586 static ULONGEST current_stop_id;
2587
2588 /* See infrun.h. */
2589
2590 ULONGEST
2591 get_stop_id (void)
2592 {
2593 return current_stop_id;
2594 }
2595
2596 /* Called when we report a user visible stop. */
2597
2598 static void
2599 new_stop_id (void)
2600 {
2601 current_stop_id++;
2602 }
2603
2604 /* Clear out all variables saying what to do when inferior is continued.
2605 First do this, then set the ones you want, then call `proceed'. */
2606
2607 static void
2608 clear_proceed_status_thread (struct thread_info *tp)
2609 {
2610 infrun_debug_printf ("%s", target_pid_to_str (tp->ptid).c_str ());
2611
2612 /* If we're starting a new sequence, then the previous finished
2613 single-step is no longer relevant. */
2614 if (tp->suspend.waitstatus_pending_p)
2615 {
2616 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2617 {
2618 infrun_debug_printf ("pending event of %s was a finished step. "
2619 "Discarding.",
2620 target_pid_to_str (tp->ptid).c_str ());
2621
2622 tp->suspend.waitstatus_pending_p = 0;
2623 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2624 }
2625 else
2626 {
2627 infrun_debug_printf
2628 ("thread %s has pending wait status %s (currently_stepping=%d).",
2629 target_pid_to_str (tp->ptid).c_str (),
2630 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2631 currently_stepping (tp));
2632 }
2633 }
2634
2635 /* If this signal should not be seen by program, give it zero.
2636 Used for debugging signals. */
2637 if (!signal_pass_state (tp->suspend.stop_signal))
2638 tp->suspend.stop_signal = GDB_SIGNAL_0;
2639
2640 delete tp->thread_fsm;
2641 tp->thread_fsm = NULL;
2642
2643 tp->control.trap_expected = 0;
2644 tp->control.step_range_start = 0;
2645 tp->control.step_range_end = 0;
2646 tp->control.may_range_step = 0;
2647 tp->control.step_frame_id = null_frame_id;
2648 tp->control.step_stack_frame_id = null_frame_id;
2649 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2650 tp->control.step_start_function = NULL;
2651 tp->stop_requested = 0;
2652
2653 tp->control.stop_step = 0;
2654
2655 tp->control.proceed_to_finish = 0;
2656
2657 tp->control.stepping_command = 0;
2658
2659 /* Discard any remaining commands or status from previous stop. */
2660 bpstat_clear (&tp->control.stop_bpstat);
2661 }
2662
2663 void
2664 clear_proceed_status (int step)
2665 {
2666 /* With scheduler-locking replay, stop replaying other threads if we're
2667 not replaying the user-visible resume ptid.
2668
2669 This is a convenience feature to not require the user to explicitly
2670 stop replaying the other threads. We're assuming that the user's
2671 intent is to resume tracing the recorded process. */
2672 if (!non_stop && scheduler_mode == schedlock_replay
2673 && target_record_is_replaying (minus_one_ptid)
2674 && !target_record_will_replay (user_visible_resume_ptid (step),
2675 execution_direction))
2676 target_record_stop_replaying ();
2677
2678 if (!non_stop && inferior_ptid != null_ptid)
2679 {
2680 ptid_t resume_ptid = user_visible_resume_ptid (step);
2681 process_stratum_target *resume_target
2682 = user_visible_resume_target (resume_ptid);
2683
2684 /* In all-stop mode, delete the per-thread status of all threads
2685 we're about to resume, implicitly and explicitly. */
2686 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2687 clear_proceed_status_thread (tp);
2688 }
2689
2690 if (inferior_ptid != null_ptid)
2691 {
2692 struct inferior *inferior;
2693
2694 if (non_stop)
2695 {
2696 /* If in non-stop mode, only delete the per-thread status of
2697 the current thread. */
2698 clear_proceed_status_thread (inferior_thread ());
2699 }
2700
2701 inferior = current_inferior ();
2702 inferior->control.stop_soon = NO_STOP_QUIETLY;
2703 }
2704
2705 gdb::observers::about_to_proceed.notify ();
2706 }
2707
2708 /* Returns true if TP is still stopped at a breakpoint that needs
2709 stepping-over in order to make progress. If the breakpoint is gone
2710 meanwhile, we can skip the whole step-over dance. */
2711
2712 static bool
2713 thread_still_needs_step_over_bp (struct thread_info *tp)
2714 {
2715 if (tp->stepping_over_breakpoint)
2716 {
2717 struct regcache *regcache = get_thread_regcache (tp);
2718
2719 if (breakpoint_here_p (regcache->aspace (),
2720 regcache_read_pc (regcache))
2721 == ordinary_breakpoint_here)
2722 return true;
2723
2724 tp->stepping_over_breakpoint = 0;
2725 }
2726
2727 return false;
2728 }
2729
2730 /* Check whether thread TP still needs to start a step-over in order
2731 to make progress when resumed. Returns an bitwise or of enum
2732 step_over_what bits, indicating what needs to be stepped over. */
2733
2734 static step_over_what
2735 thread_still_needs_step_over (struct thread_info *tp)
2736 {
2737 step_over_what what = 0;
2738
2739 if (thread_still_needs_step_over_bp (tp))
2740 what |= STEP_OVER_BREAKPOINT;
2741
2742 if (tp->stepping_over_watchpoint
2743 && !target_have_steppable_watchpoint ())
2744 what |= STEP_OVER_WATCHPOINT;
2745
2746 return what;
2747 }
2748
2749 /* Returns true if scheduler locking applies. STEP indicates whether
2750 we're about to do a step/next-like command to a thread. */
2751
2752 static bool
2753 schedlock_applies (struct thread_info *tp)
2754 {
2755 return (scheduler_mode == schedlock_on
2756 || (scheduler_mode == schedlock_step
2757 && tp->control.stepping_command)
2758 || (scheduler_mode == schedlock_replay
2759 && target_record_will_replay (minus_one_ptid,
2760 execution_direction)));
2761 }
2762
2763 /* Calls target_commit_resume on all targets. */
2764
2765 static void
2766 commit_resume_all_targets ()
2767 {
2768 scoped_restore_current_thread restore_thread;
2769
2770 /* Map between process_target and a representative inferior. This
2771 is to avoid committing a resume in the same target more than
2772 once. Resumptions must be idempotent, so this is an
2773 optimization. */
2774 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2775
2776 for (inferior *inf : all_non_exited_inferiors ())
2777 if (inf->has_execution ())
2778 conn_inf[inf->process_target ()] = inf;
2779
2780 for (const auto &ci : conn_inf)
2781 {
2782 inferior *inf = ci.second;
2783 switch_to_inferior_no_thread (inf);
2784 target_commit_resume ();
2785 }
2786 }
2787
2788 /* Check that all the targets we're about to resume are in non-stop
2789 mode. Ideally, we'd only care whether all targets support
2790 target-async, but we're not there yet. E.g., stop_all_threads
2791 doesn't know how to handle all-stop targets. Also, the remote
2792 protocol in all-stop mode is synchronous, irrespective of
2793 target-async, which means that things like a breakpoint re-set
2794 triggered by one target would try to read memory from all targets
2795 and fail. */
2796
2797 static void
2798 check_multi_target_resumption (process_stratum_target *resume_target)
2799 {
2800 if (!non_stop && resume_target == nullptr)
2801 {
2802 scoped_restore_current_thread restore_thread;
2803
2804 /* This is used to track whether we're resuming more than one
2805 target. */
2806 process_stratum_target *first_connection = nullptr;
2807
2808 /* The first inferior we see with a target that does not work in
2809 always-non-stop mode. */
2810 inferior *first_not_non_stop = nullptr;
2811
2812 for (inferior *inf : all_non_exited_inferiors (resume_target))
2813 {
2814 switch_to_inferior_no_thread (inf);
2815
2816 if (!target_has_execution ())
2817 continue;
2818
2819 process_stratum_target *proc_target
2820 = current_inferior ()->process_target();
2821
2822 if (!target_is_non_stop_p ())
2823 first_not_non_stop = inf;
2824
2825 if (first_connection == nullptr)
2826 first_connection = proc_target;
2827 else if (first_connection != proc_target
2828 && first_not_non_stop != nullptr)
2829 {
2830 switch_to_inferior_no_thread (first_not_non_stop);
2831
2832 proc_target = current_inferior ()->process_target();
2833
2834 error (_("Connection %d (%s) does not support "
2835 "multi-target resumption."),
2836 proc_target->connection_number,
2837 make_target_connection_string (proc_target).c_str ());
2838 }
2839 }
2840 }
2841 }
2842
2843 /* Basic routine for continuing the program in various fashions.
2844
2845 ADDR is the address to resume at, or -1 for resume where stopped.
2846 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2847 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2848
2849 You should call clear_proceed_status before calling proceed. */
2850
2851 void
2852 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2853 {
2854 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
2855
2856 struct regcache *regcache;
2857 struct gdbarch *gdbarch;
2858 CORE_ADDR pc;
2859 struct execution_control_state ecss;
2860 struct execution_control_state *ecs = &ecss;
2861 bool started;
2862
2863 /* If we're stopped at a fork/vfork, follow the branch set by the
2864 "set follow-fork-mode" command; otherwise, we'll just proceed
2865 resuming the current thread. */
2866 if (!follow_fork ())
2867 {
2868 /* The target for some reason decided not to resume. */
2869 normal_stop ();
2870 if (target_can_async_p ())
2871 inferior_event_handler (INF_EXEC_COMPLETE);
2872 return;
2873 }
2874
2875 /* We'll update this if & when we switch to a new thread. */
2876 previous_inferior_ptid = inferior_ptid;
2877
2878 regcache = get_current_regcache ();
2879 gdbarch = regcache->arch ();
2880 const address_space *aspace = regcache->aspace ();
2881
2882 pc = regcache_read_pc_protected (regcache);
2883
2884 thread_info *cur_thr = inferior_thread ();
2885
2886 /* Fill in with reasonable starting values. */
2887 init_thread_stepping_state (cur_thr);
2888
2889 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2890
2891 ptid_t resume_ptid
2892 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2893 process_stratum_target *resume_target
2894 = user_visible_resume_target (resume_ptid);
2895
2896 check_multi_target_resumption (resume_target);
2897
2898 if (addr == (CORE_ADDR) -1)
2899 {
2900 if (pc == cur_thr->suspend.stop_pc
2901 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2902 && execution_direction != EXEC_REVERSE)
2903 /* There is a breakpoint at the address we will resume at,
2904 step one instruction before inserting breakpoints so that
2905 we do not stop right away (and report a second hit at this
2906 breakpoint).
2907
2908 Note, we don't do this in reverse, because we won't
2909 actually be executing the breakpoint insn anyway.
2910 We'll be (un-)executing the previous instruction. */
2911 cur_thr->stepping_over_breakpoint = 1;
2912 else if (gdbarch_single_step_through_delay_p (gdbarch)
2913 && gdbarch_single_step_through_delay (gdbarch,
2914 get_current_frame ()))
2915 /* We stepped onto an instruction that needs to be stepped
2916 again before re-inserting the breakpoint, do so. */
2917 cur_thr->stepping_over_breakpoint = 1;
2918 }
2919 else
2920 {
2921 regcache_write_pc (regcache, addr);
2922 }
2923
2924 if (siggnal != GDB_SIGNAL_DEFAULT)
2925 cur_thr->suspend.stop_signal = siggnal;
2926
2927 /* If an exception is thrown from this point on, make sure to
2928 propagate GDB's knowledge of the executing state to the
2929 frontend/user running state. */
2930 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
2931
2932 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2933 threads (e.g., we might need to set threads stepping over
2934 breakpoints first), from the user/frontend's point of view, all
2935 threads in RESUME_PTID are now running. Unless we're calling an
2936 inferior function, as in that case we pretend the inferior
2937 doesn't run at all. */
2938 if (!cur_thr->control.in_infcall)
2939 set_running (resume_target, resume_ptid, true);
2940
2941 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
2942 gdb_signal_to_symbol_string (siggnal));
2943
2944 annotate_starting ();
2945
2946 /* Make sure that output from GDB appears before output from the
2947 inferior. */
2948 gdb_flush (gdb_stdout);
2949
2950 /* Since we've marked the inferior running, give it the terminal. A
2951 QUIT/Ctrl-C from here on is forwarded to the target (which can
2952 still detect attempts to unblock a stuck connection with repeated
2953 Ctrl-C from within target_pass_ctrlc). */
2954 target_terminal::inferior ();
2955
2956 /* In a multi-threaded task we may select another thread and
2957 then continue or step.
2958
2959 But if a thread that we're resuming had stopped at a breakpoint,
2960 it will immediately cause another breakpoint stop without any
2961 execution (i.e. it will report a breakpoint hit incorrectly). So
2962 we must step over it first.
2963
2964 Look for threads other than the current (TP) that reported a
2965 breakpoint hit and haven't been resumed yet since. */
2966
2967 /* If scheduler locking applies, we can avoid iterating over all
2968 threads. */
2969 if (!non_stop && !schedlock_applies (cur_thr))
2970 {
2971 for (thread_info *tp : all_non_exited_threads (resume_target,
2972 resume_ptid))
2973 {
2974 switch_to_thread_no_regs (tp);
2975
2976 /* Ignore the current thread here. It's handled
2977 afterwards. */
2978 if (tp == cur_thr)
2979 continue;
2980
2981 if (!thread_still_needs_step_over (tp))
2982 continue;
2983
2984 gdb_assert (!thread_is_in_step_over_chain (tp));
2985
2986 infrun_debug_printf ("need to step-over [%s] first",
2987 target_pid_to_str (tp->ptid).c_str ());
2988
2989 global_thread_step_over_chain_enqueue (tp);
2990 }
2991
2992 switch_to_thread (cur_thr);
2993 }
2994
2995 /* Enqueue the current thread last, so that we move all other
2996 threads over their breakpoints first. */
2997 if (cur_thr->stepping_over_breakpoint)
2998 global_thread_step_over_chain_enqueue (cur_thr);
2999
3000 /* If the thread isn't started, we'll still need to set its prev_pc,
3001 so that switch_back_to_stepped_thread knows the thread hasn't
3002 advanced. Must do this before resuming any thread, as in
3003 all-stop/remote, once we resume we can't send any other packet
3004 until the target stops again. */
3005 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3006
3007 {
3008 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3009
3010 started = start_step_over ();
3011
3012 if (step_over_info_valid_p ())
3013 {
3014 /* Either this thread started a new in-line step over, or some
3015 other thread was already doing one. In either case, don't
3016 resume anything else until the step-over is finished. */
3017 }
3018 else if (started && !target_is_non_stop_p ())
3019 {
3020 /* A new displaced stepping sequence was started. In all-stop,
3021 we can't talk to the target anymore until it next stops. */
3022 }
3023 else if (!non_stop && target_is_non_stop_p ())
3024 {
3025 INFRUN_SCOPED_DEBUG_START_END
3026 ("resuming threads, all-stop-on-top-of-non-stop");
3027
3028 /* In all-stop, but the target is always in non-stop mode.
3029 Start all other threads that are implicitly resumed too. */
3030 for (thread_info *tp : all_non_exited_threads (resume_target,
3031 resume_ptid))
3032 {
3033 switch_to_thread_no_regs (tp);
3034
3035 if (!tp->inf->has_execution ())
3036 {
3037 infrun_debug_printf ("[%s] target has no execution",
3038 target_pid_to_str (tp->ptid).c_str ());
3039 continue;
3040 }
3041
3042 if (tp->resumed)
3043 {
3044 infrun_debug_printf ("[%s] resumed",
3045 target_pid_to_str (tp->ptid).c_str ());
3046 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3047 continue;
3048 }
3049
3050 if (thread_is_in_step_over_chain (tp))
3051 {
3052 infrun_debug_printf ("[%s] needs step-over",
3053 target_pid_to_str (tp->ptid).c_str ());
3054 continue;
3055 }
3056
3057 infrun_debug_printf ("resuming %s",
3058 target_pid_to_str (tp->ptid).c_str ());
3059
3060 reset_ecs (ecs, tp);
3061 switch_to_thread (tp);
3062 keep_going_pass_signal (ecs);
3063 if (!ecs->wait_some_more)
3064 error (_("Command aborted."));
3065 }
3066 }
3067 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3068 {
3069 /* The thread wasn't started, and isn't queued, run it now. */
3070 reset_ecs (ecs, cur_thr);
3071 switch_to_thread (cur_thr);
3072 keep_going_pass_signal (ecs);
3073 if (!ecs->wait_some_more)
3074 error (_("Command aborted."));
3075 }
3076 }
3077
3078 commit_resume_all_targets ();
3079
3080 finish_state.release ();
3081
3082 /* If we've switched threads above, switch back to the previously
3083 current thread. We don't want the user to see a different
3084 selected thread. */
3085 switch_to_thread (cur_thr);
3086
3087 /* Tell the event loop to wait for it to stop. If the target
3088 supports asynchronous execution, it'll do this from within
3089 target_resume. */
3090 if (!target_can_async_p ())
3091 mark_async_event_handler (infrun_async_inferior_event_token);
3092 }
3093 \f
3094
3095 /* Start remote-debugging of a machine over a serial link. */
3096
3097 void
3098 start_remote (int from_tty)
3099 {
3100 inferior *inf = current_inferior ();
3101 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3102
3103 /* Always go on waiting for the target, regardless of the mode. */
3104 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3105 indicate to wait_for_inferior that a target should timeout if
3106 nothing is returned (instead of just blocking). Because of this,
3107 targets expecting an immediate response need to, internally, set
3108 things up so that the target_wait() is forced to eventually
3109 timeout. */
3110 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3111 differentiate to its caller what the state of the target is after
3112 the initial open has been performed. Here we're assuming that
3113 the target has stopped. It should be possible to eventually have
3114 target_open() return to the caller an indication that the target
3115 is currently running and GDB state should be set to the same as
3116 for an async run. */
3117 wait_for_inferior (inf);
3118
3119 /* Now that the inferior has stopped, do any bookkeeping like
3120 loading shared libraries. We want to do this before normal_stop,
3121 so that the displayed frame is up to date. */
3122 post_create_inferior (from_tty);
3123
3124 normal_stop ();
3125 }
3126
3127 /* Initialize static vars when a new inferior begins. */
3128
3129 void
3130 init_wait_for_inferior (void)
3131 {
3132 /* These are meaningless until the first time through wait_for_inferior. */
3133
3134 breakpoint_init_inferior (inf_starting);
3135
3136 clear_proceed_status (0);
3137
3138 nullify_last_target_wait_ptid ();
3139
3140 previous_inferior_ptid = inferior_ptid;
3141 }
3142
3143 \f
3144
3145 static void handle_inferior_event (struct execution_control_state *ecs);
3146
3147 static void handle_step_into_function (struct gdbarch *gdbarch,
3148 struct execution_control_state *ecs);
3149 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3150 struct execution_control_state *ecs);
3151 static void handle_signal_stop (struct execution_control_state *ecs);
3152 static void check_exception_resume (struct execution_control_state *,
3153 struct frame_info *);
3154
3155 static void end_stepping_range (struct execution_control_state *ecs);
3156 static void stop_waiting (struct execution_control_state *ecs);
3157 static void keep_going (struct execution_control_state *ecs);
3158 static void process_event_stop_test (struct execution_control_state *ecs);
3159 static bool switch_back_to_stepped_thread (struct execution_control_state *ecs);
3160
3161 /* This function is attached as a "thread_stop_requested" observer.
3162 Cleanup local state that assumed the PTID was to be resumed, and
3163 report the stop to the frontend. */
3164
3165 static void
3166 infrun_thread_stop_requested (ptid_t ptid)
3167 {
3168 process_stratum_target *curr_target = current_inferior ()->process_target ();
3169
3170 /* PTID was requested to stop. If the thread was already stopped,
3171 but the user/frontend doesn't know about that yet (e.g., the
3172 thread had been temporarily paused for some step-over), set up
3173 for reporting the stop now. */
3174 for (thread_info *tp : all_threads (curr_target, ptid))
3175 {
3176 if (tp->state != THREAD_RUNNING)
3177 continue;
3178 if (tp->executing)
3179 continue;
3180
3181 /* Remove matching threads from the step-over queue, so
3182 start_step_over doesn't try to resume them
3183 automatically. */
3184 if (thread_is_in_step_over_chain (tp))
3185 global_thread_step_over_chain_remove (tp);
3186
3187 /* If the thread is stopped, but the user/frontend doesn't
3188 know about that yet, queue a pending event, as if the
3189 thread had just stopped now. Unless the thread already had
3190 a pending event. */
3191 if (!tp->suspend.waitstatus_pending_p)
3192 {
3193 tp->suspend.waitstatus_pending_p = 1;
3194 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3195 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3196 }
3197
3198 /* Clear the inline-frame state, since we're re-processing the
3199 stop. */
3200 clear_inline_frame_state (tp);
3201
3202 /* If this thread was paused because some other thread was
3203 doing an inline-step over, let that finish first. Once
3204 that happens, we'll restart all threads and consume pending
3205 stop events then. */
3206 if (step_over_info_valid_p ())
3207 continue;
3208
3209 /* Otherwise we can process the (new) pending event now. Set
3210 it so this pending event is considered by
3211 do_target_wait. */
3212 tp->resumed = true;
3213 }
3214 }
3215
3216 static void
3217 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3218 {
3219 if (target_last_proc_target == tp->inf->process_target ()
3220 && target_last_wait_ptid == tp->ptid)
3221 nullify_last_target_wait_ptid ();
3222 }
3223
3224 /* Delete the step resume, single-step and longjmp/exception resume
3225 breakpoints of TP. */
3226
3227 static void
3228 delete_thread_infrun_breakpoints (struct thread_info *tp)
3229 {
3230 delete_step_resume_breakpoint (tp);
3231 delete_exception_resume_breakpoint (tp);
3232 delete_single_step_breakpoints (tp);
3233 }
3234
3235 /* If the target still has execution, call FUNC for each thread that
3236 just stopped. In all-stop, that's all the non-exited threads; in
3237 non-stop, that's the current thread, only. */
3238
3239 typedef void (*for_each_just_stopped_thread_callback_func)
3240 (struct thread_info *tp);
3241
3242 static void
3243 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3244 {
3245 if (!target_has_execution () || inferior_ptid == null_ptid)
3246 return;
3247
3248 if (target_is_non_stop_p ())
3249 {
3250 /* If in non-stop mode, only the current thread stopped. */
3251 func (inferior_thread ());
3252 }
3253 else
3254 {
3255 /* In all-stop mode, all threads have stopped. */
3256 for (thread_info *tp : all_non_exited_threads ())
3257 func (tp);
3258 }
3259 }
3260
3261 /* Delete the step resume and longjmp/exception resume breakpoints of
3262 the threads that just stopped. */
3263
3264 static void
3265 delete_just_stopped_threads_infrun_breakpoints (void)
3266 {
3267 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3268 }
3269
3270 /* Delete the single-step breakpoints of the threads that just
3271 stopped. */
3272
3273 static void
3274 delete_just_stopped_threads_single_step_breakpoints (void)
3275 {
3276 for_each_just_stopped_thread (delete_single_step_breakpoints);
3277 }
3278
3279 /* See infrun.h. */
3280
3281 void
3282 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3283 const struct target_waitstatus *ws)
3284 {
3285 infrun_debug_printf ("target_wait (%d.%ld.%ld [%s], status) =",
3286 waiton_ptid.pid (),
3287 waiton_ptid.lwp (),
3288 waiton_ptid.tid (),
3289 target_pid_to_str (waiton_ptid).c_str ());
3290 infrun_debug_printf (" %d.%ld.%ld [%s],",
3291 result_ptid.pid (),
3292 result_ptid.lwp (),
3293 result_ptid.tid (),
3294 target_pid_to_str (result_ptid).c_str ());
3295 infrun_debug_printf (" %s", target_waitstatus_to_string (ws).c_str ());
3296 }
3297
3298 /* Select a thread at random, out of those which are resumed and have
3299 had events. */
3300
3301 static struct thread_info *
3302 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3303 {
3304 int num_events = 0;
3305
3306 auto has_event = [&] (thread_info *tp)
3307 {
3308 return (tp->ptid.matches (waiton_ptid)
3309 && tp->resumed
3310 && tp->suspend.waitstatus_pending_p);
3311 };
3312
3313 /* First see how many events we have. Count only resumed threads
3314 that have an event pending. */
3315 for (thread_info *tp : inf->non_exited_threads ())
3316 if (has_event (tp))
3317 num_events++;
3318
3319 if (num_events == 0)
3320 return NULL;
3321
3322 /* Now randomly pick a thread out of those that have had events. */
3323 int random_selector = (int) ((num_events * (double) rand ())
3324 / (RAND_MAX + 1.0));
3325
3326 if (num_events > 1)
3327 infrun_debug_printf ("Found %d events, selecting #%d",
3328 num_events, random_selector);
3329
3330 /* Select the Nth thread that has had an event. */
3331 for (thread_info *tp : inf->non_exited_threads ())
3332 if (has_event (tp))
3333 if (random_selector-- == 0)
3334 return tp;
3335
3336 gdb_assert_not_reached ("event thread not found");
3337 }
3338
3339 /* Wrapper for target_wait that first checks whether threads have
3340 pending statuses to report before actually asking the target for
3341 more events. INF is the inferior we're using to call target_wait
3342 on. */
3343
3344 static ptid_t
3345 do_target_wait_1 (inferior *inf, ptid_t ptid,
3346 target_waitstatus *status, target_wait_flags options)
3347 {
3348 ptid_t event_ptid;
3349 struct thread_info *tp;
3350
3351 /* We know that we are looking for an event in the target of inferior
3352 INF, but we don't know which thread the event might come from. As
3353 such we want to make sure that INFERIOR_PTID is reset so that none of
3354 the wait code relies on it - doing so is always a mistake. */
3355 switch_to_inferior_no_thread (inf);
3356
3357 /* First check if there is a resumed thread with a wait status
3358 pending. */
3359 if (ptid == minus_one_ptid || ptid.is_pid ())
3360 {
3361 tp = random_pending_event_thread (inf, ptid);
3362 }
3363 else
3364 {
3365 infrun_debug_printf ("Waiting for specific thread %s.",
3366 target_pid_to_str (ptid).c_str ());
3367
3368 /* We have a specific thread to check. */
3369 tp = find_thread_ptid (inf, ptid);
3370 gdb_assert (tp != NULL);
3371 if (!tp->suspend.waitstatus_pending_p)
3372 tp = NULL;
3373 }
3374
3375 if (tp != NULL
3376 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3377 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3378 {
3379 struct regcache *regcache = get_thread_regcache (tp);
3380 struct gdbarch *gdbarch = regcache->arch ();
3381 CORE_ADDR pc;
3382 int discard = 0;
3383
3384 pc = regcache_read_pc (regcache);
3385
3386 if (pc != tp->suspend.stop_pc)
3387 {
3388 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
3389 target_pid_to_str (tp->ptid).c_str (),
3390 paddress (gdbarch, tp->suspend.stop_pc),
3391 paddress (gdbarch, pc));
3392 discard = 1;
3393 }
3394 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3395 {
3396 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3397 target_pid_to_str (tp->ptid).c_str (),
3398 paddress (gdbarch, pc));
3399
3400 discard = 1;
3401 }
3402
3403 if (discard)
3404 {
3405 infrun_debug_printf ("pending event of %s cancelled.",
3406 target_pid_to_str (tp->ptid).c_str ());
3407
3408 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3409 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3410 }
3411 }
3412
3413 if (tp != NULL)
3414 {
3415 infrun_debug_printf ("Using pending wait status %s for %s.",
3416 target_waitstatus_to_string
3417 (&tp->suspend.waitstatus).c_str (),
3418 target_pid_to_str (tp->ptid).c_str ());
3419
3420 /* Now that we've selected our final event LWP, un-adjust its PC
3421 if it was a software breakpoint (and the target doesn't
3422 always adjust the PC itself). */
3423 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3424 && !target_supports_stopped_by_sw_breakpoint ())
3425 {
3426 struct regcache *regcache;
3427 struct gdbarch *gdbarch;
3428 int decr_pc;
3429
3430 regcache = get_thread_regcache (tp);
3431 gdbarch = regcache->arch ();
3432
3433 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3434 if (decr_pc != 0)
3435 {
3436 CORE_ADDR pc;
3437
3438 pc = regcache_read_pc (regcache);
3439 regcache_write_pc (regcache, pc + decr_pc);
3440 }
3441 }
3442
3443 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3444 *status = tp->suspend.waitstatus;
3445 tp->suspend.waitstatus_pending_p = 0;
3446
3447 /* Wake up the event loop again, until all pending events are
3448 processed. */
3449 if (target_is_async_p ())
3450 mark_async_event_handler (infrun_async_inferior_event_token);
3451 return tp->ptid;
3452 }
3453
3454 /* But if we don't find one, we'll have to wait. */
3455
3456 /* We can't ask a non-async target to do a non-blocking wait, so this will be
3457 a blocking wait. */
3458 if (!target_can_async_p ())
3459 options &= ~TARGET_WNOHANG;
3460
3461 if (deprecated_target_wait_hook)
3462 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3463 else
3464 event_ptid = target_wait (ptid, status, options);
3465
3466 return event_ptid;
3467 }
3468
3469 /* Wrapper for target_wait that first checks whether threads have
3470 pending statuses to report before actually asking the target for
3471 more events. Polls for events from all inferiors/targets. */
3472
3473 static bool
3474 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs,
3475 target_wait_flags options)
3476 {
3477 int num_inferiors = 0;
3478 int random_selector;
3479
3480 /* For fairness, we pick the first inferior/target to poll at random
3481 out of all inferiors that may report events, and then continue
3482 polling the rest of the inferior list starting from that one in a
3483 circular fashion until the whole list is polled once. */
3484
3485 auto inferior_matches = [&wait_ptid] (inferior *inf)
3486 {
3487 return (inf->process_target () != NULL
3488 && ptid_t (inf->pid).matches (wait_ptid));
3489 };
3490
3491 /* First see how many matching inferiors we have. */
3492 for (inferior *inf : all_inferiors ())
3493 if (inferior_matches (inf))
3494 num_inferiors++;
3495
3496 if (num_inferiors == 0)
3497 {
3498 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3499 return false;
3500 }
3501
3502 /* Now randomly pick an inferior out of those that matched. */
3503 random_selector = (int)
3504 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3505
3506 if (num_inferiors > 1)
3507 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3508 num_inferiors, random_selector);
3509
3510 /* Select the Nth inferior that matched. */
3511
3512 inferior *selected = nullptr;
3513
3514 for (inferior *inf : all_inferiors ())
3515 if (inferior_matches (inf))
3516 if (random_selector-- == 0)
3517 {
3518 selected = inf;
3519 break;
3520 }
3521
3522 /* Now poll for events out of each of the matching inferior's
3523 targets, starting from the selected one. */
3524
3525 auto do_wait = [&] (inferior *inf)
3526 {
3527 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3528 ecs->target = inf->process_target ();
3529 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3530 };
3531
3532 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3533 here spuriously after the target is all stopped and we've already
3534 reported the stop to the user, polling for events. */
3535 scoped_restore_current_thread restore_thread;
3536
3537 int inf_num = selected->num;
3538 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3539 if (inferior_matches (inf))
3540 if (do_wait (inf))
3541 return true;
3542
3543 for (inferior *inf = inferior_list;
3544 inf != NULL && inf->num < inf_num;
3545 inf = inf->next)
3546 if (inferior_matches (inf))
3547 if (do_wait (inf))
3548 return true;
3549
3550 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3551 return false;
3552 }
3553
3554 /* Prepare and stabilize the inferior for detaching it. E.g.,
3555 detaching while a thread is displaced stepping is a recipe for
3556 crashing it, as nothing would readjust the PC out of the scratch
3557 pad. */
3558
3559 void
3560 prepare_for_detach (void)
3561 {
3562 struct inferior *inf = current_inferior ();
3563 ptid_t pid_ptid = ptid_t (inf->pid);
3564
3565 /* Is any thread of this process displaced stepping? If not,
3566 there's nothing else to do. */
3567 if (displaced_step_in_progress (inf))
3568 return;
3569
3570 infrun_debug_printf ("displaced-stepping in-process while detaching");
3571
3572 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3573
3574 while (displaced_step_in_progress (inf))
3575 {
3576 struct execution_control_state ecss;
3577 struct execution_control_state *ecs;
3578
3579 ecs = &ecss;
3580 memset (ecs, 0, sizeof (*ecs));
3581
3582 overlay_cache_invalid = 1;
3583 /* Flush target cache before starting to handle each event.
3584 Target was running and cache could be stale. This is just a
3585 heuristic. Running threads may modify target memory, but we
3586 don't get any event. */
3587 target_dcache_invalidate ();
3588
3589 do_target_wait (pid_ptid, ecs, 0);
3590
3591 if (debug_infrun)
3592 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3593
3594 /* If an error happens while handling the event, propagate GDB's
3595 knowledge of the executing state to the frontend/user running
3596 state. */
3597 scoped_finish_thread_state finish_state (inf->process_target (),
3598 minus_one_ptid);
3599
3600 /* Now figure out what to do with the result of the result. */
3601 handle_inferior_event (ecs);
3602
3603 /* No error, don't finish the state yet. */
3604 finish_state.release ();
3605
3606 /* Breakpoints and watchpoints are not installed on the target
3607 at this point, and signals are passed directly to the
3608 inferior, so this must mean the process is gone. */
3609 if (!ecs->wait_some_more)
3610 {
3611 restore_detaching.release ();
3612 error (_("Program exited while detaching"));
3613 }
3614 }
3615
3616 restore_detaching.release ();
3617 }
3618
3619 /* Wait for control to return from inferior to debugger.
3620
3621 If inferior gets a signal, we may decide to start it up again
3622 instead of returning. That is why there is a loop in this function.
3623 When this function actually returns it means the inferior
3624 should be left stopped and GDB should read more commands. */
3625
3626 static void
3627 wait_for_inferior (inferior *inf)
3628 {
3629 infrun_debug_printf ("wait_for_inferior ()");
3630
3631 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3632
3633 /* If an error happens while handling the event, propagate GDB's
3634 knowledge of the executing state to the frontend/user running
3635 state. */
3636 scoped_finish_thread_state finish_state
3637 (inf->process_target (), minus_one_ptid);
3638
3639 while (1)
3640 {
3641 struct execution_control_state ecss;
3642 struct execution_control_state *ecs = &ecss;
3643
3644 memset (ecs, 0, sizeof (*ecs));
3645
3646 overlay_cache_invalid = 1;
3647
3648 /* Flush target cache before starting to handle each event.
3649 Target was running and cache could be stale. This is just a
3650 heuristic. Running threads may modify target memory, but we
3651 don't get any event. */
3652 target_dcache_invalidate ();
3653
3654 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3655 ecs->target = inf->process_target ();
3656
3657 if (debug_infrun)
3658 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3659
3660 /* Now figure out what to do with the result of the result. */
3661 handle_inferior_event (ecs);
3662
3663 if (!ecs->wait_some_more)
3664 break;
3665 }
3666
3667 /* No error, don't finish the state yet. */
3668 finish_state.release ();
3669 }
3670
3671 /* Cleanup that reinstalls the readline callback handler, if the
3672 target is running in the background. If while handling the target
3673 event something triggered a secondary prompt, like e.g., a
3674 pagination prompt, we'll have removed the callback handler (see
3675 gdb_readline_wrapper_line). Need to do this as we go back to the
3676 event loop, ready to process further input. Note this has no
3677 effect if the handler hasn't actually been removed, because calling
3678 rl_callback_handler_install resets the line buffer, thus losing
3679 input. */
3680
3681 static void
3682 reinstall_readline_callback_handler_cleanup ()
3683 {
3684 struct ui *ui = current_ui;
3685
3686 if (!ui->async)
3687 {
3688 /* We're not going back to the top level event loop yet. Don't
3689 install the readline callback, as it'd prep the terminal,
3690 readline-style (raw, noecho) (e.g., --batch). We'll install
3691 it the next time the prompt is displayed, when we're ready
3692 for input. */
3693 return;
3694 }
3695
3696 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3697 gdb_rl_callback_handler_reinstall ();
3698 }
3699
3700 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3701 that's just the event thread. In all-stop, that's all threads. */
3702
3703 static void
3704 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3705 {
3706 if (ecs->event_thread != NULL
3707 && ecs->event_thread->thread_fsm != NULL)
3708 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3709
3710 if (!non_stop)
3711 {
3712 for (thread_info *thr : all_non_exited_threads ())
3713 {
3714 if (thr->thread_fsm == NULL)
3715 continue;
3716 if (thr == ecs->event_thread)
3717 continue;
3718
3719 switch_to_thread (thr);
3720 thr->thread_fsm->clean_up (thr);
3721 }
3722
3723 if (ecs->event_thread != NULL)
3724 switch_to_thread (ecs->event_thread);
3725 }
3726 }
3727
3728 /* Helper for all_uis_check_sync_execution_done that works on the
3729 current UI. */
3730
3731 static void
3732 check_curr_ui_sync_execution_done (void)
3733 {
3734 struct ui *ui = current_ui;
3735
3736 if (ui->prompt_state == PROMPT_NEEDED
3737 && ui->async
3738 && !gdb_in_secondary_prompt_p (ui))
3739 {
3740 target_terminal::ours ();
3741 gdb::observers::sync_execution_done.notify ();
3742 ui_register_input_event_handler (ui);
3743 }
3744 }
3745
3746 /* See infrun.h. */
3747
3748 void
3749 all_uis_check_sync_execution_done (void)
3750 {
3751 SWITCH_THRU_ALL_UIS ()
3752 {
3753 check_curr_ui_sync_execution_done ();
3754 }
3755 }
3756
3757 /* See infrun.h. */
3758
3759 void
3760 all_uis_on_sync_execution_starting (void)
3761 {
3762 SWITCH_THRU_ALL_UIS ()
3763 {
3764 if (current_ui->prompt_state == PROMPT_NEEDED)
3765 async_disable_stdin ();
3766 }
3767 }
3768
3769 /* Asynchronous version of wait_for_inferior. It is called by the
3770 event loop whenever a change of state is detected on the file
3771 descriptor corresponding to the target. It can be called more than
3772 once to complete a single execution command. In such cases we need
3773 to keep the state in a global variable ECSS. If it is the last time
3774 that this function is called for a single execution command, then
3775 report to the user that the inferior has stopped, and do the
3776 necessary cleanups. */
3777
3778 void
3779 fetch_inferior_event ()
3780 {
3781 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
3782
3783 struct execution_control_state ecss;
3784 struct execution_control_state *ecs = &ecss;
3785 int cmd_done = 0;
3786
3787 memset (ecs, 0, sizeof (*ecs));
3788
3789 /* Events are always processed with the main UI as current UI. This
3790 way, warnings, debug output, etc. are always consistently sent to
3791 the main console. */
3792 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3793
3794 /* Temporarily disable pagination. Otherwise, the user would be
3795 given an option to press 'q' to quit, which would cause an early
3796 exit and could leave GDB in a half-baked state. */
3797 scoped_restore save_pagination
3798 = make_scoped_restore (&pagination_enabled, false);
3799
3800 /* End up with readline processing input, if necessary. */
3801 {
3802 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3803
3804 /* We're handling a live event, so make sure we're doing live
3805 debugging. If we're looking at traceframes while the target is
3806 running, we're going to need to get back to that mode after
3807 handling the event. */
3808 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3809 if (non_stop)
3810 {
3811 maybe_restore_traceframe.emplace ();
3812 set_current_traceframe (-1);
3813 }
3814
3815 /* The user/frontend should not notice a thread switch due to
3816 internal events. Make sure we revert to the user selected
3817 thread and frame after handling the event and running any
3818 breakpoint commands. */
3819 scoped_restore_current_thread restore_thread;
3820
3821 overlay_cache_invalid = 1;
3822 /* Flush target cache before starting to handle each event. Target
3823 was running and cache could be stale. This is just a heuristic.
3824 Running threads may modify target memory, but we don't get any
3825 event. */
3826 target_dcache_invalidate ();
3827
3828 scoped_restore save_exec_dir
3829 = make_scoped_restore (&execution_direction,
3830 target_execution_direction ());
3831
3832 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3833 return;
3834
3835 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3836
3837 /* Switch to the target that generated the event, so we can do
3838 target calls. */
3839 switch_to_target_no_thread (ecs->target);
3840
3841 if (debug_infrun)
3842 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3843
3844 /* If an error happens while handling the event, propagate GDB's
3845 knowledge of the executing state to the frontend/user running
3846 state. */
3847 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3848 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
3849
3850 /* Get executed before scoped_restore_current_thread above to apply
3851 still for the thread which has thrown the exception. */
3852 auto defer_bpstat_clear
3853 = make_scope_exit (bpstat_clear_actions);
3854 auto defer_delete_threads
3855 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3856
3857 /* Now figure out what to do with the result of the result. */
3858 handle_inferior_event (ecs);
3859
3860 if (!ecs->wait_some_more)
3861 {
3862 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
3863 bool should_stop = true;
3864 struct thread_info *thr = ecs->event_thread;
3865
3866 delete_just_stopped_threads_infrun_breakpoints ();
3867
3868 if (thr != NULL)
3869 {
3870 struct thread_fsm *thread_fsm = thr->thread_fsm;
3871
3872 if (thread_fsm != NULL)
3873 should_stop = thread_fsm->should_stop (thr);
3874 }
3875
3876 if (!should_stop)
3877 {
3878 keep_going (ecs);
3879 }
3880 else
3881 {
3882 bool should_notify_stop = true;
3883 int proceeded = 0;
3884
3885 clean_up_just_stopped_threads_fsms (ecs);
3886
3887 if (thr != NULL && thr->thread_fsm != NULL)
3888 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3889
3890 if (should_notify_stop)
3891 {
3892 /* We may not find an inferior if this was a process exit. */
3893 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3894 proceeded = normal_stop ();
3895 }
3896
3897 if (!proceeded)
3898 {
3899 inferior_event_handler (INF_EXEC_COMPLETE);
3900 cmd_done = 1;
3901 }
3902
3903 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3904 previously selected thread is gone. We have two
3905 choices - switch to no thread selected, or restore the
3906 previously selected thread (now exited). We chose the
3907 later, just because that's what GDB used to do. After
3908 this, "info threads" says "The current thread <Thread
3909 ID 2> has terminated." instead of "No thread
3910 selected.". */
3911 if (!non_stop
3912 && cmd_done
3913 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3914 restore_thread.dont_restore ();
3915 }
3916 }
3917
3918 defer_delete_threads.release ();
3919 defer_bpstat_clear.release ();
3920
3921 /* No error, don't finish the thread states yet. */
3922 finish_state.release ();
3923
3924 /* This scope is used to ensure that readline callbacks are
3925 reinstalled here. */
3926 }
3927
3928 /* If a UI was in sync execution mode, and now isn't, restore its
3929 prompt (a synchronous execution command has finished, and we're
3930 ready for input). */
3931 all_uis_check_sync_execution_done ();
3932
3933 if (cmd_done
3934 && exec_done_display_p
3935 && (inferior_ptid == null_ptid
3936 || inferior_thread ()->state != THREAD_RUNNING))
3937 printf_unfiltered (_("completed.\n"));
3938 }
3939
3940 /* See infrun.h. */
3941
3942 void
3943 set_step_info (thread_info *tp, struct frame_info *frame,
3944 struct symtab_and_line sal)
3945 {
3946 /* This can be removed once this function no longer implicitly relies on the
3947 inferior_ptid value. */
3948 gdb_assert (inferior_ptid == tp->ptid);
3949
3950 tp->control.step_frame_id = get_frame_id (frame);
3951 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3952
3953 tp->current_symtab = sal.symtab;
3954 tp->current_line = sal.line;
3955 }
3956
3957 /* Clear context switchable stepping state. */
3958
3959 void
3960 init_thread_stepping_state (struct thread_info *tss)
3961 {
3962 tss->stepped_breakpoint = 0;
3963 tss->stepping_over_breakpoint = 0;
3964 tss->stepping_over_watchpoint = 0;
3965 tss->step_after_step_resume_breakpoint = 0;
3966 }
3967
3968 /* See infrun.h. */
3969
3970 void
3971 set_last_target_status (process_stratum_target *target, ptid_t ptid,
3972 target_waitstatus status)
3973 {
3974 target_last_proc_target = target;
3975 target_last_wait_ptid = ptid;
3976 target_last_waitstatus = status;
3977 }
3978
3979 /* See infrun.h. */
3980
3981 void
3982 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
3983 target_waitstatus *status)
3984 {
3985 if (target != nullptr)
3986 *target = target_last_proc_target;
3987 if (ptid != nullptr)
3988 *ptid = target_last_wait_ptid;
3989 if (status != nullptr)
3990 *status = target_last_waitstatus;
3991 }
3992
3993 /* See infrun.h. */
3994
3995 void
3996 nullify_last_target_wait_ptid (void)
3997 {
3998 target_last_proc_target = nullptr;
3999 target_last_wait_ptid = minus_one_ptid;
4000 target_last_waitstatus = {};
4001 }
4002
4003 /* Switch thread contexts. */
4004
4005 static void
4006 context_switch (execution_control_state *ecs)
4007 {
4008 if (ecs->ptid != inferior_ptid
4009 && (inferior_ptid == null_ptid
4010 || ecs->event_thread != inferior_thread ()))
4011 {
4012 infrun_debug_printf ("Switching context from %s to %s",
4013 target_pid_to_str (inferior_ptid).c_str (),
4014 target_pid_to_str (ecs->ptid).c_str ());
4015 }
4016
4017 switch_to_thread (ecs->event_thread);
4018 }
4019
4020 /* If the target can't tell whether we've hit breakpoints
4021 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4022 check whether that could have been caused by a breakpoint. If so,
4023 adjust the PC, per gdbarch_decr_pc_after_break. */
4024
4025 static void
4026 adjust_pc_after_break (struct thread_info *thread,
4027 struct target_waitstatus *ws)
4028 {
4029 struct regcache *regcache;
4030 struct gdbarch *gdbarch;
4031 CORE_ADDR breakpoint_pc, decr_pc;
4032
4033 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4034 we aren't, just return.
4035
4036 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4037 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4038 implemented by software breakpoints should be handled through the normal
4039 breakpoint layer.
4040
4041 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4042 different signals (SIGILL or SIGEMT for instance), but it is less
4043 clear where the PC is pointing afterwards. It may not match
4044 gdbarch_decr_pc_after_break. I don't know any specific target that
4045 generates these signals at breakpoints (the code has been in GDB since at
4046 least 1992) so I can not guess how to handle them here.
4047
4048 In earlier versions of GDB, a target with
4049 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4050 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4051 target with both of these set in GDB history, and it seems unlikely to be
4052 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4053
4054 if (ws->kind != TARGET_WAITKIND_STOPPED)
4055 return;
4056
4057 if (ws->value.sig != GDB_SIGNAL_TRAP)
4058 return;
4059
4060 /* In reverse execution, when a breakpoint is hit, the instruction
4061 under it has already been de-executed. The reported PC always
4062 points at the breakpoint address, so adjusting it further would
4063 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4064 architecture:
4065
4066 B1 0x08000000 : INSN1
4067 B2 0x08000001 : INSN2
4068 0x08000002 : INSN3
4069 PC -> 0x08000003 : INSN4
4070
4071 Say you're stopped at 0x08000003 as above. Reverse continuing
4072 from that point should hit B2 as below. Reading the PC when the
4073 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4074 been de-executed already.
4075
4076 B1 0x08000000 : INSN1
4077 B2 PC -> 0x08000001 : INSN2
4078 0x08000002 : INSN3
4079 0x08000003 : INSN4
4080
4081 We can't apply the same logic as for forward execution, because
4082 we would wrongly adjust the PC to 0x08000000, since there's a
4083 breakpoint at PC - 1. We'd then report a hit on B1, although
4084 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4085 behaviour. */
4086 if (execution_direction == EXEC_REVERSE)
4087 return;
4088
4089 /* If the target can tell whether the thread hit a SW breakpoint,
4090 trust it. Targets that can tell also adjust the PC
4091 themselves. */
4092 if (target_supports_stopped_by_sw_breakpoint ())
4093 return;
4094
4095 /* Note that relying on whether a breakpoint is planted in memory to
4096 determine this can fail. E.g,. the breakpoint could have been
4097 removed since. Or the thread could have been told to step an
4098 instruction the size of a breakpoint instruction, and only
4099 _after_ was a breakpoint inserted at its address. */
4100
4101 /* If this target does not decrement the PC after breakpoints, then
4102 we have nothing to do. */
4103 regcache = get_thread_regcache (thread);
4104 gdbarch = regcache->arch ();
4105
4106 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4107 if (decr_pc == 0)
4108 return;
4109
4110 const address_space *aspace = regcache->aspace ();
4111
4112 /* Find the location where (if we've hit a breakpoint) the
4113 breakpoint would be. */
4114 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4115
4116 /* If the target can't tell whether a software breakpoint triggered,
4117 fallback to figuring it out based on breakpoints we think were
4118 inserted in the target, and on whether the thread was stepped or
4119 continued. */
4120
4121 /* Check whether there actually is a software breakpoint inserted at
4122 that location.
4123
4124 If in non-stop mode, a race condition is possible where we've
4125 removed a breakpoint, but stop events for that breakpoint were
4126 already queued and arrive later. To suppress those spurious
4127 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4128 and retire them after a number of stop events are reported. Note
4129 this is an heuristic and can thus get confused. The real fix is
4130 to get the "stopped by SW BP and needs adjustment" info out of
4131 the target/kernel (and thus never reach here; see above). */
4132 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4133 || (target_is_non_stop_p ()
4134 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4135 {
4136 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4137
4138 if (record_full_is_used ())
4139 restore_operation_disable.emplace
4140 (record_full_gdb_operation_disable_set ());
4141
4142 /* When using hardware single-step, a SIGTRAP is reported for both
4143 a completed single-step and a software breakpoint. Need to
4144 differentiate between the two, as the latter needs adjusting
4145 but the former does not.
4146
4147 The SIGTRAP can be due to a completed hardware single-step only if
4148 - we didn't insert software single-step breakpoints
4149 - this thread is currently being stepped
4150
4151 If any of these events did not occur, we must have stopped due
4152 to hitting a software breakpoint, and have to back up to the
4153 breakpoint address.
4154
4155 As a special case, we could have hardware single-stepped a
4156 software breakpoint. In this case (prev_pc == breakpoint_pc),
4157 we also need to back up to the breakpoint address. */
4158
4159 if (thread_has_single_step_breakpoints_set (thread)
4160 || !currently_stepping (thread)
4161 || (thread->stepped_breakpoint
4162 && thread->prev_pc == breakpoint_pc))
4163 regcache_write_pc (regcache, breakpoint_pc);
4164 }
4165 }
4166
4167 static bool
4168 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4169 {
4170 for (frame = get_prev_frame (frame);
4171 frame != NULL;
4172 frame = get_prev_frame (frame))
4173 {
4174 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4175 return true;
4176
4177 if (get_frame_type (frame) != INLINE_FRAME)
4178 break;
4179 }
4180
4181 return false;
4182 }
4183
4184 /* Look for an inline frame that is marked for skip.
4185 If PREV_FRAME is TRUE start at the previous frame,
4186 otherwise start at the current frame. Stop at the
4187 first non-inline frame, or at the frame where the
4188 step started. */
4189
4190 static bool
4191 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4192 {
4193 struct frame_info *frame = get_current_frame ();
4194
4195 if (prev_frame)
4196 frame = get_prev_frame (frame);
4197
4198 for (; frame != NULL; frame = get_prev_frame (frame))
4199 {
4200 const char *fn = NULL;
4201 symtab_and_line sal;
4202 struct symbol *sym;
4203
4204 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4205 break;
4206 if (get_frame_type (frame) != INLINE_FRAME)
4207 break;
4208
4209 sal = find_frame_sal (frame);
4210 sym = get_frame_function (frame);
4211
4212 if (sym != NULL)
4213 fn = sym->print_name ();
4214
4215 if (sal.line != 0
4216 && function_name_is_marked_for_skip (fn, sal))
4217 return true;
4218 }
4219
4220 return false;
4221 }
4222
4223 /* If the event thread has the stop requested flag set, pretend it
4224 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4225 target_stop). */
4226
4227 static bool
4228 handle_stop_requested (struct execution_control_state *ecs)
4229 {
4230 if (ecs->event_thread->stop_requested)
4231 {
4232 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4233 ecs->ws.value.sig = GDB_SIGNAL_0;
4234 handle_signal_stop (ecs);
4235 return true;
4236 }
4237 return false;
4238 }
4239
4240 /* Auxiliary function that handles syscall entry/return events.
4241 It returns true if the inferior should keep going (and GDB
4242 should ignore the event), or false if the event deserves to be
4243 processed. */
4244
4245 static bool
4246 handle_syscall_event (struct execution_control_state *ecs)
4247 {
4248 struct regcache *regcache;
4249 int syscall_number;
4250
4251 context_switch (ecs);
4252
4253 regcache = get_thread_regcache (ecs->event_thread);
4254 syscall_number = ecs->ws.value.syscall_number;
4255 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4256
4257 if (catch_syscall_enabled () > 0
4258 && catching_syscall_number (syscall_number) > 0)
4259 {
4260 infrun_debug_printf ("syscall number=%d", syscall_number);
4261
4262 ecs->event_thread->control.stop_bpstat
4263 = bpstat_stop_status (regcache->aspace (),
4264 ecs->event_thread->suspend.stop_pc,
4265 ecs->event_thread, &ecs->ws);
4266
4267 if (handle_stop_requested (ecs))
4268 return false;
4269
4270 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4271 {
4272 /* Catchpoint hit. */
4273 return false;
4274 }
4275 }
4276
4277 if (handle_stop_requested (ecs))
4278 return false;
4279
4280 /* If no catchpoint triggered for this, then keep going. */
4281 keep_going (ecs);
4282
4283 return true;
4284 }
4285
4286 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4287
4288 static void
4289 fill_in_stop_func (struct gdbarch *gdbarch,
4290 struct execution_control_state *ecs)
4291 {
4292 if (!ecs->stop_func_filled_in)
4293 {
4294 const block *block;
4295 const general_symbol_info *gsi;
4296
4297 /* Don't care about return value; stop_func_start and stop_func_name
4298 will both be 0 if it doesn't work. */
4299 find_pc_partial_function_sym (ecs->event_thread->suspend.stop_pc,
4300 &gsi,
4301 &ecs->stop_func_start,
4302 &ecs->stop_func_end,
4303 &block);
4304 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
4305
4306 /* The call to find_pc_partial_function, above, will set
4307 stop_func_start and stop_func_end to the start and end
4308 of the range containing the stop pc. If this range
4309 contains the entry pc for the block (which is always the
4310 case for contiguous blocks), advance stop_func_start past
4311 the function's start offset and entrypoint. Note that
4312 stop_func_start is NOT advanced when in a range of a
4313 non-contiguous block that does not contain the entry pc. */
4314 if (block != nullptr
4315 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4316 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4317 {
4318 ecs->stop_func_start
4319 += gdbarch_deprecated_function_start_offset (gdbarch);
4320
4321 if (gdbarch_skip_entrypoint_p (gdbarch))
4322 ecs->stop_func_start
4323 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4324 }
4325
4326 ecs->stop_func_filled_in = 1;
4327 }
4328 }
4329
4330
4331 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4332
4333 static enum stop_kind
4334 get_inferior_stop_soon (execution_control_state *ecs)
4335 {
4336 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4337
4338 gdb_assert (inf != NULL);
4339 return inf->control.stop_soon;
4340 }
4341
4342 /* Poll for one event out of the current target. Store the resulting
4343 waitstatus in WS, and return the event ptid. Does not block. */
4344
4345 static ptid_t
4346 poll_one_curr_target (struct target_waitstatus *ws)
4347 {
4348 ptid_t event_ptid;
4349
4350 overlay_cache_invalid = 1;
4351
4352 /* Flush target cache before starting to handle each event.
4353 Target was running and cache could be stale. This is just a
4354 heuristic. Running threads may modify target memory, but we
4355 don't get any event. */
4356 target_dcache_invalidate ();
4357
4358 if (deprecated_target_wait_hook)
4359 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4360 else
4361 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4362
4363 if (debug_infrun)
4364 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4365
4366 return event_ptid;
4367 }
4368
4369 /* An event reported by wait_one. */
4370
4371 struct wait_one_event
4372 {
4373 /* The target the event came out of. */
4374 process_stratum_target *target;
4375
4376 /* The PTID the event was for. */
4377 ptid_t ptid;
4378
4379 /* The waitstatus. */
4380 target_waitstatus ws;
4381 };
4382
4383 /* Wait for one event out of any target. */
4384
4385 static wait_one_event
4386 wait_one ()
4387 {
4388 while (1)
4389 {
4390 for (inferior *inf : all_inferiors ())
4391 {
4392 process_stratum_target *target = inf->process_target ();
4393 if (target == NULL
4394 || !target->is_async_p ()
4395 || !target->threads_executing)
4396 continue;
4397
4398 switch_to_inferior_no_thread (inf);
4399
4400 wait_one_event event;
4401 event.target = target;
4402 event.ptid = poll_one_curr_target (&event.ws);
4403
4404 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4405 {
4406 /* If nothing is resumed, remove the target from the
4407 event loop. */
4408 target_async (0);
4409 }
4410 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4411 return event;
4412 }
4413
4414 /* Block waiting for some event. */
4415
4416 fd_set readfds;
4417 int nfds = 0;
4418
4419 FD_ZERO (&readfds);
4420
4421 for (inferior *inf : all_inferiors ())
4422 {
4423 process_stratum_target *target = inf->process_target ();
4424 if (target == NULL
4425 || !target->is_async_p ()
4426 || !target->threads_executing)
4427 continue;
4428
4429 int fd = target->async_wait_fd ();
4430 FD_SET (fd, &readfds);
4431 if (nfds <= fd)
4432 nfds = fd + 1;
4433 }
4434
4435 if (nfds == 0)
4436 {
4437 /* No waitable targets left. All must be stopped. */
4438 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4439 }
4440
4441 QUIT;
4442
4443 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4444 if (numfds < 0)
4445 {
4446 if (errno == EINTR)
4447 continue;
4448 else
4449 perror_with_name ("interruptible_select");
4450 }
4451 }
4452 }
4453
4454 /* Save the thread's event and stop reason to process it later. */
4455
4456 static void
4457 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4458 {
4459 infrun_debug_printf ("saving status %s for %d.%ld.%ld",
4460 target_waitstatus_to_string (ws).c_str (),
4461 tp->ptid.pid (),
4462 tp->ptid.lwp (),
4463 tp->ptid.tid ());
4464
4465 /* Record for later. */
4466 tp->suspend.waitstatus = *ws;
4467 tp->suspend.waitstatus_pending_p = 1;
4468
4469 struct regcache *regcache = get_thread_regcache (tp);
4470 const address_space *aspace = regcache->aspace ();
4471
4472 if (ws->kind == TARGET_WAITKIND_STOPPED
4473 && ws->value.sig == GDB_SIGNAL_TRAP)
4474 {
4475 CORE_ADDR pc = regcache_read_pc (regcache);
4476
4477 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4478
4479 scoped_restore_current_thread restore_thread;
4480 switch_to_thread (tp);
4481
4482 if (target_stopped_by_watchpoint ())
4483 {
4484 tp->suspend.stop_reason
4485 = TARGET_STOPPED_BY_WATCHPOINT;
4486 }
4487 else if (target_supports_stopped_by_sw_breakpoint ()
4488 && target_stopped_by_sw_breakpoint ())
4489 {
4490 tp->suspend.stop_reason
4491 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4492 }
4493 else if (target_supports_stopped_by_hw_breakpoint ()
4494 && target_stopped_by_hw_breakpoint ())
4495 {
4496 tp->suspend.stop_reason
4497 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4498 }
4499 else if (!target_supports_stopped_by_hw_breakpoint ()
4500 && hardware_breakpoint_inserted_here_p (aspace,
4501 pc))
4502 {
4503 tp->suspend.stop_reason
4504 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4505 }
4506 else if (!target_supports_stopped_by_sw_breakpoint ()
4507 && software_breakpoint_inserted_here_p (aspace,
4508 pc))
4509 {
4510 tp->suspend.stop_reason
4511 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4512 }
4513 else if (!thread_has_single_step_breakpoints_set (tp)
4514 && currently_stepping (tp))
4515 {
4516 tp->suspend.stop_reason
4517 = TARGET_STOPPED_BY_SINGLE_STEP;
4518 }
4519 }
4520 }
4521
4522 /* Mark the non-executing threads accordingly. In all-stop, all
4523 threads of all processes are stopped when we get any event
4524 reported. In non-stop mode, only the event thread stops. */
4525
4526 static void
4527 mark_non_executing_threads (process_stratum_target *target,
4528 ptid_t event_ptid,
4529 struct target_waitstatus ws)
4530 {
4531 ptid_t mark_ptid;
4532
4533 if (!target_is_non_stop_p ())
4534 mark_ptid = minus_one_ptid;
4535 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4536 || ws.kind == TARGET_WAITKIND_EXITED)
4537 {
4538 /* If we're handling a process exit in non-stop mode, even
4539 though threads haven't been deleted yet, one would think
4540 that there is nothing to do, as threads of the dead process
4541 will be soon deleted, and threads of any other process were
4542 left running. However, on some targets, threads survive a
4543 process exit event. E.g., for the "checkpoint" command,
4544 when the current checkpoint/fork exits, linux-fork.c
4545 automatically switches to another fork from within
4546 target_mourn_inferior, by associating the same
4547 inferior/thread to another fork. We haven't mourned yet at
4548 this point, but we must mark any threads left in the
4549 process as not-executing so that finish_thread_state marks
4550 them stopped (in the user's perspective) if/when we present
4551 the stop to the user. */
4552 mark_ptid = ptid_t (event_ptid.pid ());
4553 }
4554 else
4555 mark_ptid = event_ptid;
4556
4557 set_executing (target, mark_ptid, false);
4558
4559 /* Likewise the resumed flag. */
4560 set_resumed (target, mark_ptid, false);
4561 }
4562
4563 /* See infrun.h. */
4564
4565 void
4566 stop_all_threads (void)
4567 {
4568 /* We may need multiple passes to discover all threads. */
4569 int pass;
4570 int iterations = 0;
4571
4572 gdb_assert (exists_non_stop_target ());
4573
4574 infrun_debug_printf ("starting");
4575
4576 scoped_restore_current_thread restore_thread;
4577
4578 /* Enable thread events of all targets. */
4579 for (auto *target : all_non_exited_process_targets ())
4580 {
4581 switch_to_target_no_thread (target);
4582 target_thread_events (true);
4583 }
4584
4585 SCOPE_EXIT
4586 {
4587 /* Disable thread events of all targets. */
4588 for (auto *target : all_non_exited_process_targets ())
4589 {
4590 switch_to_target_no_thread (target);
4591 target_thread_events (false);
4592 }
4593
4594 /* Use debug_prefixed_printf directly to get a meaningful function
4595 name. */
4596 if (debug_infrun)
4597 debug_prefixed_printf ("infrun", "stop_all_threads", "done");
4598 };
4599
4600 /* Request threads to stop, and then wait for the stops. Because
4601 threads we already know about can spawn more threads while we're
4602 trying to stop them, and we only learn about new threads when we
4603 update the thread list, do this in a loop, and keep iterating
4604 until two passes find no threads that need to be stopped. */
4605 for (pass = 0; pass < 2; pass++, iterations++)
4606 {
4607 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
4608 while (1)
4609 {
4610 int waits_needed = 0;
4611
4612 for (auto *target : all_non_exited_process_targets ())
4613 {
4614 switch_to_target_no_thread (target);
4615 update_thread_list ();
4616 }
4617
4618 /* Go through all threads looking for threads that we need
4619 to tell the target to stop. */
4620 for (thread_info *t : all_non_exited_threads ())
4621 {
4622 /* For a single-target setting with an all-stop target,
4623 we would not even arrive here. For a multi-target
4624 setting, until GDB is able to handle a mixture of
4625 all-stop and non-stop targets, simply skip all-stop
4626 targets' threads. This should be fine due to the
4627 protection of 'check_multi_target_resumption'. */
4628
4629 switch_to_thread_no_regs (t);
4630 if (!target_is_non_stop_p ())
4631 continue;
4632
4633 if (t->executing)
4634 {
4635 /* If already stopping, don't request a stop again.
4636 We just haven't seen the notification yet. */
4637 if (!t->stop_requested)
4638 {
4639 infrun_debug_printf (" %s executing, need stop",
4640 target_pid_to_str (t->ptid).c_str ());
4641 target_stop (t->ptid);
4642 t->stop_requested = 1;
4643 }
4644 else
4645 {
4646 infrun_debug_printf (" %s executing, already stopping",
4647 target_pid_to_str (t->ptid).c_str ());
4648 }
4649
4650 if (t->stop_requested)
4651 waits_needed++;
4652 }
4653 else
4654 {
4655 infrun_debug_printf (" %s not executing",
4656 target_pid_to_str (t->ptid).c_str ());
4657
4658 /* The thread may be not executing, but still be
4659 resumed with a pending status to process. */
4660 t->resumed = false;
4661 }
4662 }
4663
4664 if (waits_needed == 0)
4665 break;
4666
4667 /* If we find new threads on the second iteration, restart
4668 over. We want to see two iterations in a row with all
4669 threads stopped. */
4670 if (pass > 0)
4671 pass = -1;
4672
4673 for (int i = 0; i < waits_needed; i++)
4674 {
4675 wait_one_event event = wait_one ();
4676
4677 infrun_debug_printf
4678 ("%s %s", target_waitstatus_to_string (&event.ws).c_str (),
4679 target_pid_to_str (event.ptid).c_str ());
4680
4681 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4682 {
4683 /* All resumed threads exited. */
4684 break;
4685 }
4686 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4687 || event.ws.kind == TARGET_WAITKIND_EXITED
4688 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4689 {
4690 /* One thread/process exited/signalled. */
4691
4692 thread_info *t = nullptr;
4693
4694 /* The target may have reported just a pid. If so, try
4695 the first non-exited thread. */
4696 if (event.ptid.is_pid ())
4697 {
4698 int pid = event.ptid.pid ();
4699 inferior *inf = find_inferior_pid (event.target, pid);
4700 for (thread_info *tp : inf->non_exited_threads ())
4701 {
4702 t = tp;
4703 break;
4704 }
4705
4706 /* If there is no available thread, the event would
4707 have to be appended to a per-inferior event list,
4708 which does not exist (and if it did, we'd have
4709 to adjust run control command to be able to
4710 resume such an inferior). We assert here instead
4711 of going into an infinite loop. */
4712 gdb_assert (t != nullptr);
4713
4714 infrun_debug_printf
4715 ("using %s", target_pid_to_str (t->ptid).c_str ());
4716 }
4717 else
4718 {
4719 t = find_thread_ptid (event.target, event.ptid);
4720 /* Check if this is the first time we see this thread.
4721 Don't bother adding if it individually exited. */
4722 if (t == nullptr
4723 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4724 t = add_thread (event.target, event.ptid);
4725 }
4726
4727 if (t != nullptr)
4728 {
4729 /* Set the threads as non-executing to avoid
4730 another stop attempt on them. */
4731 switch_to_thread_no_regs (t);
4732 mark_non_executing_threads (event.target, event.ptid,
4733 event.ws);
4734 save_waitstatus (t, &event.ws);
4735 t->stop_requested = false;
4736 }
4737 }
4738 else
4739 {
4740 thread_info *t = find_thread_ptid (event.target, event.ptid);
4741 if (t == NULL)
4742 t = add_thread (event.target, event.ptid);
4743
4744 t->stop_requested = 0;
4745 t->executing = 0;
4746 t->resumed = false;
4747 t->control.may_range_step = 0;
4748
4749 /* This may be the first time we see the inferior report
4750 a stop. */
4751 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4752 if (inf->needs_setup)
4753 {
4754 switch_to_thread_no_regs (t);
4755 setup_inferior (0);
4756 }
4757
4758 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4759 && event.ws.value.sig == GDB_SIGNAL_0)
4760 {
4761 /* We caught the event that we intended to catch, so
4762 there's no event pending. */
4763 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4764 t->suspend.waitstatus_pending_p = 0;
4765
4766 if (displaced_step_finish (t, GDB_SIGNAL_0)
4767 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4768 {
4769 /* Add it back to the step-over queue. */
4770 infrun_debug_printf
4771 ("displaced-step of %s canceled: adding back to "
4772 "the step-over queue",
4773 target_pid_to_str (t->ptid).c_str ());
4774
4775 t->control.trap_expected = 0;
4776 global_thread_step_over_chain_enqueue (t);
4777 }
4778 }
4779 else
4780 {
4781 enum gdb_signal sig;
4782 struct regcache *regcache;
4783
4784 infrun_debug_printf
4785 ("target_wait %s, saving status for %d.%ld.%ld",
4786 target_waitstatus_to_string (&event.ws).c_str (),
4787 t->ptid.pid (), t->ptid.lwp (), t->ptid.tid ());
4788
4789 /* Record for later. */
4790 save_waitstatus (t, &event.ws);
4791
4792 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4793 ? event.ws.value.sig : GDB_SIGNAL_0);
4794
4795 if (displaced_step_finish (t, sig)
4796 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4797 {
4798 /* Add it back to the step-over queue. */
4799 t->control.trap_expected = 0;
4800 global_thread_step_over_chain_enqueue (t);
4801 }
4802
4803 regcache = get_thread_regcache (t);
4804 t->suspend.stop_pc = regcache_read_pc (regcache);
4805
4806 infrun_debug_printf ("saved stop_pc=%s for %s "
4807 "(currently_stepping=%d)",
4808 paddress (target_gdbarch (),
4809 t->suspend.stop_pc),
4810 target_pid_to_str (t->ptid).c_str (),
4811 currently_stepping (t));
4812 }
4813 }
4814 }
4815 }
4816 }
4817 }
4818
4819 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4820
4821 static bool
4822 handle_no_resumed (struct execution_control_state *ecs)
4823 {
4824 if (target_can_async_p ())
4825 {
4826 bool any_sync = false;
4827
4828 for (ui *ui : all_uis ())
4829 {
4830 if (ui->prompt_state == PROMPT_BLOCKED)
4831 {
4832 any_sync = true;
4833 break;
4834 }
4835 }
4836 if (!any_sync)
4837 {
4838 /* There were no unwaited-for children left in the target, but,
4839 we're not synchronously waiting for events either. Just
4840 ignore. */
4841
4842 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
4843 prepare_to_wait (ecs);
4844 return true;
4845 }
4846 }
4847
4848 /* Otherwise, if we were running a synchronous execution command, we
4849 may need to cancel it and give the user back the terminal.
4850
4851 In non-stop mode, the target can't tell whether we've already
4852 consumed previous stop events, so it can end up sending us a
4853 no-resumed event like so:
4854
4855 #0 - thread 1 is left stopped
4856
4857 #1 - thread 2 is resumed and hits breakpoint
4858 -> TARGET_WAITKIND_STOPPED
4859
4860 #2 - thread 3 is resumed and exits
4861 this is the last resumed thread, so
4862 -> TARGET_WAITKIND_NO_RESUMED
4863
4864 #3 - gdb processes stop for thread 2 and decides to re-resume
4865 it.
4866
4867 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4868 thread 2 is now resumed, so the event should be ignored.
4869
4870 IOW, if the stop for thread 2 doesn't end a foreground command,
4871 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4872 event. But it could be that the event meant that thread 2 itself
4873 (or whatever other thread was the last resumed thread) exited.
4874
4875 To address this we refresh the thread list and check whether we
4876 have resumed threads _now_. In the example above, this removes
4877 thread 3 from the thread list. If thread 2 was re-resumed, we
4878 ignore this event. If we find no thread resumed, then we cancel
4879 the synchronous command and show "no unwaited-for " to the
4880 user. */
4881
4882 inferior *curr_inf = current_inferior ();
4883
4884 scoped_restore_current_thread restore_thread;
4885
4886 for (auto *target : all_non_exited_process_targets ())
4887 {
4888 switch_to_target_no_thread (target);
4889 update_thread_list ();
4890 }
4891
4892 /* If:
4893
4894 - the current target has no thread executing, and
4895 - the current inferior is native, and
4896 - the current inferior is the one which has the terminal, and
4897 - we did nothing,
4898
4899 then a Ctrl-C from this point on would remain stuck in the
4900 kernel, until a thread resumes and dequeues it. That would
4901 result in the GDB CLI not reacting to Ctrl-C, not able to
4902 interrupt the program. To address this, if the current inferior
4903 no longer has any thread executing, we give the terminal to some
4904 other inferior that has at least one thread executing. */
4905 bool swap_terminal = true;
4906
4907 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
4908 whether to report it to the user. */
4909 bool ignore_event = false;
4910
4911 for (thread_info *thread : all_non_exited_threads ())
4912 {
4913 if (swap_terminal && thread->executing)
4914 {
4915 if (thread->inf != curr_inf)
4916 {
4917 target_terminal::ours ();
4918
4919 switch_to_thread (thread);
4920 target_terminal::inferior ();
4921 }
4922 swap_terminal = false;
4923 }
4924
4925 if (!ignore_event
4926 && (thread->executing
4927 || thread->suspend.waitstatus_pending_p))
4928 {
4929 /* Either there were no unwaited-for children left in the
4930 target at some point, but there are now, or some target
4931 other than the eventing one has unwaited-for children
4932 left. Just ignore. */
4933 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
4934 "(ignoring: found resumed)");
4935
4936 ignore_event = true;
4937 }
4938
4939 if (ignore_event && !swap_terminal)
4940 break;
4941 }
4942
4943 if (ignore_event)
4944 {
4945 switch_to_inferior_no_thread (curr_inf);
4946 prepare_to_wait (ecs);
4947 return true;
4948 }
4949
4950 /* Go ahead and report the event. */
4951 return false;
4952 }
4953
4954 /* Given an execution control state that has been freshly filled in by
4955 an event from the inferior, figure out what it means and take
4956 appropriate action.
4957
4958 The alternatives are:
4959
4960 1) stop_waiting and return; to really stop and return to the
4961 debugger.
4962
4963 2) keep_going and return; to wait for the next event (set
4964 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4965 once). */
4966
4967 static void
4968 handle_inferior_event (struct execution_control_state *ecs)
4969 {
4970 /* Make sure that all temporary struct value objects that were
4971 created during the handling of the event get deleted at the
4972 end. */
4973 scoped_value_mark free_values;
4974
4975 enum stop_kind stop_soon;
4976
4977 infrun_debug_printf ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
4978
4979 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4980 {
4981 /* We had an event in the inferior, but we are not interested in
4982 handling it at this level. The lower layers have already
4983 done what needs to be done, if anything.
4984
4985 One of the possible circumstances for this is when the
4986 inferior produces output for the console. The inferior has
4987 not stopped, and we are ignoring the event. Another possible
4988 circumstance is any event which the lower level knows will be
4989 reported multiple times without an intervening resume. */
4990 prepare_to_wait (ecs);
4991 return;
4992 }
4993
4994 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4995 {
4996 prepare_to_wait (ecs);
4997 return;
4998 }
4999
5000 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5001 && handle_no_resumed (ecs))
5002 return;
5003
5004 /* Cache the last target/ptid/waitstatus. */
5005 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5006
5007 /* Always clear state belonging to the previous time we stopped. */
5008 stop_stack_dummy = STOP_NONE;
5009
5010 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5011 {
5012 /* No unwaited-for children left. IOW, all resumed children
5013 have exited. */
5014 stop_print_frame = false;
5015 stop_waiting (ecs);
5016 return;
5017 }
5018
5019 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5020 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5021 {
5022 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5023 /* If it's a new thread, add it to the thread database. */
5024 if (ecs->event_thread == NULL)
5025 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5026
5027 /* Disable range stepping. If the next step request could use a
5028 range, this will be end up re-enabled then. */
5029 ecs->event_thread->control.may_range_step = 0;
5030 }
5031
5032 /* Dependent on valid ECS->EVENT_THREAD. */
5033 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5034
5035 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5036 reinit_frame_cache ();
5037
5038 breakpoint_retire_moribund ();
5039
5040 /* First, distinguish signals caused by the debugger from signals
5041 that have to do with the program's own actions. Note that
5042 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5043 on the operating system version. Here we detect when a SIGILL or
5044 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5045 something similar for SIGSEGV, since a SIGSEGV will be generated
5046 when we're trying to execute a breakpoint instruction on a
5047 non-executable stack. This happens for call dummy breakpoints
5048 for architectures like SPARC that place call dummies on the
5049 stack. */
5050 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5051 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5052 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5053 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5054 {
5055 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5056
5057 if (breakpoint_inserted_here_p (regcache->aspace (),
5058 regcache_read_pc (regcache)))
5059 {
5060 infrun_debug_printf ("Treating signal as SIGTRAP");
5061 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5062 }
5063 }
5064
5065 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5066
5067 switch (ecs->ws.kind)
5068 {
5069 case TARGET_WAITKIND_LOADED:
5070 context_switch (ecs);
5071 /* Ignore gracefully during startup of the inferior, as it might
5072 be the shell which has just loaded some objects, otherwise
5073 add the symbols for the newly loaded objects. Also ignore at
5074 the beginning of an attach or remote session; we will query
5075 the full list of libraries once the connection is
5076 established. */
5077
5078 stop_soon = get_inferior_stop_soon (ecs);
5079 if (stop_soon == NO_STOP_QUIETLY)
5080 {
5081 struct regcache *regcache;
5082
5083 regcache = get_thread_regcache (ecs->event_thread);
5084
5085 handle_solib_event ();
5086
5087 ecs->event_thread->control.stop_bpstat
5088 = bpstat_stop_status (regcache->aspace (),
5089 ecs->event_thread->suspend.stop_pc,
5090 ecs->event_thread, &ecs->ws);
5091
5092 if (handle_stop_requested (ecs))
5093 return;
5094
5095 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5096 {
5097 /* A catchpoint triggered. */
5098 process_event_stop_test (ecs);
5099 return;
5100 }
5101
5102 /* If requested, stop when the dynamic linker notifies
5103 gdb of events. This allows the user to get control
5104 and place breakpoints in initializer routines for
5105 dynamically loaded objects (among other things). */
5106 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5107 if (stop_on_solib_events)
5108 {
5109 /* Make sure we print "Stopped due to solib-event" in
5110 normal_stop. */
5111 stop_print_frame = true;
5112
5113 stop_waiting (ecs);
5114 return;
5115 }
5116 }
5117
5118 /* If we are skipping through a shell, or through shared library
5119 loading that we aren't interested in, resume the program. If
5120 we're running the program normally, also resume. */
5121 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5122 {
5123 /* Loading of shared libraries might have changed breakpoint
5124 addresses. Make sure new breakpoints are inserted. */
5125 if (stop_soon == NO_STOP_QUIETLY)
5126 insert_breakpoints ();
5127 resume (GDB_SIGNAL_0);
5128 prepare_to_wait (ecs);
5129 return;
5130 }
5131
5132 /* But stop if we're attaching or setting up a remote
5133 connection. */
5134 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5135 || stop_soon == STOP_QUIETLY_REMOTE)
5136 {
5137 infrun_debug_printf ("quietly stopped");
5138 stop_waiting (ecs);
5139 return;
5140 }
5141
5142 internal_error (__FILE__, __LINE__,
5143 _("unhandled stop_soon: %d"), (int) stop_soon);
5144
5145 case TARGET_WAITKIND_SPURIOUS:
5146 if (handle_stop_requested (ecs))
5147 return;
5148 context_switch (ecs);
5149 resume (GDB_SIGNAL_0);
5150 prepare_to_wait (ecs);
5151 return;
5152
5153 case TARGET_WAITKIND_THREAD_CREATED:
5154 if (handle_stop_requested (ecs))
5155 return;
5156 context_switch (ecs);
5157 if (!switch_back_to_stepped_thread (ecs))
5158 keep_going (ecs);
5159 return;
5160
5161 case TARGET_WAITKIND_EXITED:
5162 case TARGET_WAITKIND_SIGNALLED:
5163 {
5164 /* Depending on the system, ecs->ptid may point to a thread or
5165 to a process. On some targets, target_mourn_inferior may
5166 need to have access to the just-exited thread. That is the
5167 case of GNU/Linux's "checkpoint" support, for example.
5168 Call the switch_to_xxx routine as appropriate. */
5169 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5170 if (thr != nullptr)
5171 switch_to_thread (thr);
5172 else
5173 {
5174 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5175 switch_to_inferior_no_thread (inf);
5176 }
5177 }
5178 handle_vfork_child_exec_or_exit (0);
5179 target_terminal::ours (); /* Must do this before mourn anyway. */
5180
5181 /* Clearing any previous state of convenience variables. */
5182 clear_exit_convenience_vars ();
5183
5184 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5185 {
5186 /* Record the exit code in the convenience variable $_exitcode, so
5187 that the user can inspect this again later. */
5188 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5189 (LONGEST) ecs->ws.value.integer);
5190
5191 /* Also record this in the inferior itself. */
5192 current_inferior ()->has_exit_code = 1;
5193 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5194
5195 /* Support the --return-child-result option. */
5196 return_child_result_value = ecs->ws.value.integer;
5197
5198 gdb::observers::exited.notify (ecs->ws.value.integer);
5199 }
5200 else
5201 {
5202 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5203
5204 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5205 {
5206 /* Set the value of the internal variable $_exitsignal,
5207 which holds the signal uncaught by the inferior. */
5208 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5209 gdbarch_gdb_signal_to_target (gdbarch,
5210 ecs->ws.value.sig));
5211 }
5212 else
5213 {
5214 /* We don't have access to the target's method used for
5215 converting between signal numbers (GDB's internal
5216 representation <-> target's representation).
5217 Therefore, we cannot do a good job at displaying this
5218 information to the user. It's better to just warn
5219 her about it (if infrun debugging is enabled), and
5220 give up. */
5221 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5222 "signal number.");
5223 }
5224
5225 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5226 }
5227
5228 gdb_flush (gdb_stdout);
5229 target_mourn_inferior (inferior_ptid);
5230 stop_print_frame = false;
5231 stop_waiting (ecs);
5232 return;
5233
5234 case TARGET_WAITKIND_FORKED:
5235 case TARGET_WAITKIND_VFORKED:
5236 /* Check whether the inferior is displaced stepping. */
5237 {
5238 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5239 struct gdbarch *gdbarch = regcache->arch ();
5240 inferior *parent_inf = find_inferior_ptid (ecs->target, ecs->ptid);
5241
5242 /* If this is a fork (child gets its own address space copy) and some
5243 displaced step buffers were in use at the time of the fork, restore
5244 the displaced step buffer bytes in the child process. */
5245 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5246 gdbarch_displaced_step_restore_all_in_ptid
5247 (gdbarch, parent_inf, ecs->ws.value.related_pid);
5248
5249 /* If displaced stepping is supported, and thread ecs->ptid is
5250 displaced stepping. */
5251 if (displaced_step_in_progress_thread (ecs->event_thread))
5252 {
5253 struct regcache *child_regcache;
5254 CORE_ADDR parent_pc;
5255
5256 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5257 indicating that the displaced stepping of syscall instruction
5258 has been done. Perform cleanup for parent process here. Note
5259 that this operation also cleans up the child process for vfork,
5260 because their pages are shared. */
5261 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
5262 /* Start a new step-over in another thread if there's one
5263 that needs it. */
5264 start_step_over ();
5265
5266 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5267 the child's PC is also within the scratchpad. Set the child's PC
5268 to the parent's PC value, which has already been fixed up.
5269 FIXME: we use the parent's aspace here, although we're touching
5270 the child, because the child hasn't been added to the inferior
5271 list yet at this point. */
5272
5273 child_regcache
5274 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5275 ecs->ws.value.related_pid,
5276 gdbarch,
5277 parent_inf->aspace);
5278 /* Read PC value of parent process. */
5279 parent_pc = regcache_read_pc (regcache);
5280
5281 displaced_debug_printf ("write child pc from %s to %s",
5282 paddress (gdbarch,
5283 regcache_read_pc (child_regcache)),
5284 paddress (gdbarch, parent_pc));
5285
5286 regcache_write_pc (child_regcache, parent_pc);
5287 }
5288 }
5289
5290 context_switch (ecs);
5291
5292 /* Immediately detach breakpoints from the child before there's
5293 any chance of letting the user delete breakpoints from the
5294 breakpoint lists. If we don't do this early, it's easy to
5295 leave left over traps in the child, vis: "break foo; catch
5296 fork; c; <fork>; del; c; <child calls foo>". We only follow
5297 the fork on the last `continue', and by that time the
5298 breakpoint at "foo" is long gone from the breakpoint table.
5299 If we vforked, then we don't need to unpatch here, since both
5300 parent and child are sharing the same memory pages; we'll
5301 need to unpatch at follow/detach time instead to be certain
5302 that new breakpoints added between catchpoint hit time and
5303 vfork follow are detached. */
5304 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5305 {
5306 /* This won't actually modify the breakpoint list, but will
5307 physically remove the breakpoints from the child. */
5308 detach_breakpoints (ecs->ws.value.related_pid);
5309 }
5310
5311 delete_just_stopped_threads_single_step_breakpoints ();
5312
5313 /* In case the event is caught by a catchpoint, remember that
5314 the event is to be followed at the next resume of the thread,
5315 and not immediately. */
5316 ecs->event_thread->pending_follow = ecs->ws;
5317
5318 ecs->event_thread->suspend.stop_pc
5319 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5320
5321 ecs->event_thread->control.stop_bpstat
5322 = bpstat_stop_status (get_current_regcache ()->aspace (),
5323 ecs->event_thread->suspend.stop_pc,
5324 ecs->event_thread, &ecs->ws);
5325
5326 if (handle_stop_requested (ecs))
5327 return;
5328
5329 /* If no catchpoint triggered for this, then keep going. Note
5330 that we're interested in knowing the bpstat actually causes a
5331 stop, not just if it may explain the signal. Software
5332 watchpoints, for example, always appear in the bpstat. */
5333 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5334 {
5335 bool follow_child
5336 = (follow_fork_mode_string == follow_fork_mode_child);
5337
5338 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5339
5340 process_stratum_target *targ
5341 = ecs->event_thread->inf->process_target ();
5342
5343 bool should_resume = follow_fork ();
5344
5345 /* Note that one of these may be an invalid pointer,
5346 depending on detach_fork. */
5347 thread_info *parent = ecs->event_thread;
5348 thread_info *child
5349 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5350
5351 /* At this point, the parent is marked running, and the
5352 child is marked stopped. */
5353
5354 /* If not resuming the parent, mark it stopped. */
5355 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5356 parent->set_running (false);
5357
5358 /* If resuming the child, mark it running. */
5359 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5360 child->set_running (true);
5361
5362 /* In non-stop mode, also resume the other branch. */
5363 if (!detach_fork && (non_stop
5364 || (sched_multi && target_is_non_stop_p ())))
5365 {
5366 if (follow_child)
5367 switch_to_thread (parent);
5368 else
5369 switch_to_thread (child);
5370
5371 ecs->event_thread = inferior_thread ();
5372 ecs->ptid = inferior_ptid;
5373 keep_going (ecs);
5374 }
5375
5376 if (follow_child)
5377 switch_to_thread (child);
5378 else
5379 switch_to_thread (parent);
5380
5381 ecs->event_thread = inferior_thread ();
5382 ecs->ptid = inferior_ptid;
5383
5384 if (should_resume)
5385 keep_going (ecs);
5386 else
5387 stop_waiting (ecs);
5388 return;
5389 }
5390 process_event_stop_test (ecs);
5391 return;
5392
5393 case TARGET_WAITKIND_VFORK_DONE:
5394 /* Done with the shared memory region. Re-insert breakpoints in
5395 the parent, and keep going. */
5396
5397 context_switch (ecs);
5398
5399 current_inferior ()->waiting_for_vfork_done = 0;
5400 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5401
5402 if (handle_stop_requested (ecs))
5403 return;
5404
5405 /* This also takes care of reinserting breakpoints in the
5406 previously locked inferior. */
5407 keep_going (ecs);
5408 return;
5409
5410 case TARGET_WAITKIND_EXECD:
5411
5412 /* Note we can't read registers yet (the stop_pc), because we
5413 don't yet know the inferior's post-exec architecture.
5414 'stop_pc' is explicitly read below instead. */
5415 switch_to_thread_no_regs (ecs->event_thread);
5416
5417 /* Do whatever is necessary to the parent branch of the vfork. */
5418 handle_vfork_child_exec_or_exit (1);
5419
5420 /* This causes the eventpoints and symbol table to be reset.
5421 Must do this now, before trying to determine whether to
5422 stop. */
5423 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5424
5425 /* In follow_exec we may have deleted the original thread and
5426 created a new one. Make sure that the event thread is the
5427 execd thread for that case (this is a nop otherwise). */
5428 ecs->event_thread = inferior_thread ();
5429
5430 ecs->event_thread->suspend.stop_pc
5431 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5432
5433 ecs->event_thread->control.stop_bpstat
5434 = bpstat_stop_status (get_current_regcache ()->aspace (),
5435 ecs->event_thread->suspend.stop_pc,
5436 ecs->event_thread, &ecs->ws);
5437
5438 /* Note that this may be referenced from inside
5439 bpstat_stop_status above, through inferior_has_execd. */
5440 xfree (ecs->ws.value.execd_pathname);
5441 ecs->ws.value.execd_pathname = NULL;
5442
5443 if (handle_stop_requested (ecs))
5444 return;
5445
5446 /* If no catchpoint triggered for this, then keep going. */
5447 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5448 {
5449 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5450 keep_going (ecs);
5451 return;
5452 }
5453 process_event_stop_test (ecs);
5454 return;
5455
5456 /* Be careful not to try to gather much state about a thread
5457 that's in a syscall. It's frequently a losing proposition. */
5458 case TARGET_WAITKIND_SYSCALL_ENTRY:
5459 /* Getting the current syscall number. */
5460 if (handle_syscall_event (ecs) == 0)
5461 process_event_stop_test (ecs);
5462 return;
5463
5464 /* Before examining the threads further, step this thread to
5465 get it entirely out of the syscall. (We get notice of the
5466 event when the thread is just on the verge of exiting a
5467 syscall. Stepping one instruction seems to get it back
5468 into user code.) */
5469 case TARGET_WAITKIND_SYSCALL_RETURN:
5470 if (handle_syscall_event (ecs) == 0)
5471 process_event_stop_test (ecs);
5472 return;
5473
5474 case TARGET_WAITKIND_STOPPED:
5475 handle_signal_stop (ecs);
5476 return;
5477
5478 case TARGET_WAITKIND_NO_HISTORY:
5479 /* Reverse execution: target ran out of history info. */
5480
5481 /* Switch to the stopped thread. */
5482 context_switch (ecs);
5483 infrun_debug_printf ("stopped");
5484
5485 delete_just_stopped_threads_single_step_breakpoints ();
5486 ecs->event_thread->suspend.stop_pc
5487 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5488
5489 if (handle_stop_requested (ecs))
5490 return;
5491
5492 gdb::observers::no_history.notify ();
5493 stop_waiting (ecs);
5494 return;
5495 }
5496 }
5497
5498 /* Restart threads back to what they were trying to do back when we
5499 paused them for an in-line step-over. The EVENT_THREAD thread is
5500 ignored. */
5501
5502 static void
5503 restart_threads (struct thread_info *event_thread)
5504 {
5505 /* In case the instruction just stepped spawned a new thread. */
5506 update_thread_list ();
5507
5508 for (thread_info *tp : all_non_exited_threads ())
5509 {
5510 switch_to_thread_no_regs (tp);
5511
5512 if (tp == event_thread)
5513 {
5514 infrun_debug_printf ("restart threads: [%s] is event thread",
5515 target_pid_to_str (tp->ptid).c_str ());
5516 continue;
5517 }
5518
5519 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5520 {
5521 infrun_debug_printf ("restart threads: [%s] not meant to be running",
5522 target_pid_to_str (tp->ptid).c_str ());
5523 continue;
5524 }
5525
5526 if (tp->resumed)
5527 {
5528 infrun_debug_printf ("restart threads: [%s] resumed",
5529 target_pid_to_str (tp->ptid).c_str ());
5530 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5531 continue;
5532 }
5533
5534 if (thread_is_in_step_over_chain (tp))
5535 {
5536 infrun_debug_printf ("restart threads: [%s] needs step-over",
5537 target_pid_to_str (tp->ptid).c_str ());
5538 gdb_assert (!tp->resumed);
5539 continue;
5540 }
5541
5542
5543 if (tp->suspend.waitstatus_pending_p)
5544 {
5545 infrun_debug_printf ("restart threads: [%s] has pending status",
5546 target_pid_to_str (tp->ptid).c_str ());
5547 tp->resumed = true;
5548 continue;
5549 }
5550
5551 gdb_assert (!tp->stop_requested);
5552
5553 /* If some thread needs to start a step-over at this point, it
5554 should still be in the step-over queue, and thus skipped
5555 above. */
5556 if (thread_still_needs_step_over (tp))
5557 {
5558 internal_error (__FILE__, __LINE__,
5559 "thread [%s] needs a step-over, but not in "
5560 "step-over queue\n",
5561 target_pid_to_str (tp->ptid).c_str ());
5562 }
5563
5564 if (currently_stepping (tp))
5565 {
5566 infrun_debug_printf ("restart threads: [%s] was stepping",
5567 target_pid_to_str (tp->ptid).c_str ());
5568 keep_going_stepped_thread (tp);
5569 }
5570 else
5571 {
5572 struct execution_control_state ecss;
5573 struct execution_control_state *ecs = &ecss;
5574
5575 infrun_debug_printf ("restart threads: [%s] continuing",
5576 target_pid_to_str (tp->ptid).c_str ());
5577 reset_ecs (ecs, tp);
5578 switch_to_thread (tp);
5579 keep_going_pass_signal (ecs);
5580 }
5581 }
5582 }
5583
5584 /* Callback for iterate_over_threads. Find a resumed thread that has
5585 a pending waitstatus. */
5586
5587 static int
5588 resumed_thread_with_pending_status (struct thread_info *tp,
5589 void *arg)
5590 {
5591 return (tp->resumed
5592 && tp->suspend.waitstatus_pending_p);
5593 }
5594
5595 /* Called when we get an event that may finish an in-line or
5596 out-of-line (displaced stepping) step-over started previously.
5597 Return true if the event is processed and we should go back to the
5598 event loop; false if the caller should continue processing the
5599 event. */
5600
5601 static int
5602 finish_step_over (struct execution_control_state *ecs)
5603 {
5604 displaced_step_finish (ecs->event_thread,
5605 ecs->event_thread->suspend.stop_signal);
5606
5607 bool had_step_over_info = step_over_info_valid_p ();
5608
5609 if (had_step_over_info)
5610 {
5611 /* If we're stepping over a breakpoint with all threads locked,
5612 then only the thread that was stepped should be reporting
5613 back an event. */
5614 gdb_assert (ecs->event_thread->control.trap_expected);
5615
5616 clear_step_over_info ();
5617 }
5618
5619 if (!target_is_non_stop_p ())
5620 return 0;
5621
5622 /* Start a new step-over in another thread if there's one that
5623 needs it. */
5624 start_step_over ();
5625
5626 /* If we were stepping over a breakpoint before, and haven't started
5627 a new in-line step-over sequence, then restart all other threads
5628 (except the event thread). We can't do this in all-stop, as then
5629 e.g., we wouldn't be able to issue any other remote packet until
5630 these other threads stop. */
5631 if (had_step_over_info && !step_over_info_valid_p ())
5632 {
5633 struct thread_info *pending;
5634
5635 /* If we only have threads with pending statuses, the restart
5636 below won't restart any thread and so nothing re-inserts the
5637 breakpoint we just stepped over. But we need it inserted
5638 when we later process the pending events, otherwise if
5639 another thread has a pending event for this breakpoint too,
5640 we'd discard its event (because the breakpoint that
5641 originally caused the event was no longer inserted). */
5642 context_switch (ecs);
5643 insert_breakpoints ();
5644
5645 restart_threads (ecs->event_thread);
5646
5647 /* If we have events pending, go through handle_inferior_event
5648 again, picking up a pending event at random. This avoids
5649 thread starvation. */
5650
5651 /* But not if we just stepped over a watchpoint in order to let
5652 the instruction execute so we can evaluate its expression.
5653 The set of watchpoints that triggered is recorded in the
5654 breakpoint objects themselves (see bp->watchpoint_triggered).
5655 If we processed another event first, that other event could
5656 clobber this info. */
5657 if (ecs->event_thread->stepping_over_watchpoint)
5658 return 0;
5659
5660 pending = iterate_over_threads (resumed_thread_with_pending_status,
5661 NULL);
5662 if (pending != NULL)
5663 {
5664 struct thread_info *tp = ecs->event_thread;
5665 struct regcache *regcache;
5666
5667 infrun_debug_printf ("found resumed threads with "
5668 "pending events, saving status");
5669
5670 gdb_assert (pending != tp);
5671
5672 /* Record the event thread's event for later. */
5673 save_waitstatus (tp, &ecs->ws);
5674 /* This was cleared early, by handle_inferior_event. Set it
5675 so this pending event is considered by
5676 do_target_wait. */
5677 tp->resumed = true;
5678
5679 gdb_assert (!tp->executing);
5680
5681 regcache = get_thread_regcache (tp);
5682 tp->suspend.stop_pc = regcache_read_pc (regcache);
5683
5684 infrun_debug_printf ("saved stop_pc=%s for %s "
5685 "(currently_stepping=%d)",
5686 paddress (target_gdbarch (),
5687 tp->suspend.stop_pc),
5688 target_pid_to_str (tp->ptid).c_str (),
5689 currently_stepping (tp));
5690
5691 /* This in-line step-over finished; clear this so we won't
5692 start a new one. This is what handle_signal_stop would
5693 do, if we returned false. */
5694 tp->stepping_over_breakpoint = 0;
5695
5696 /* Wake up the event loop again. */
5697 mark_async_event_handler (infrun_async_inferior_event_token);
5698
5699 prepare_to_wait (ecs);
5700 return 1;
5701 }
5702 }
5703
5704 return 0;
5705 }
5706
5707 /* Come here when the program has stopped with a signal. */
5708
5709 static void
5710 handle_signal_stop (struct execution_control_state *ecs)
5711 {
5712 struct frame_info *frame;
5713 struct gdbarch *gdbarch;
5714 int stopped_by_watchpoint;
5715 enum stop_kind stop_soon;
5716 int random_signal;
5717
5718 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5719
5720 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5721
5722 /* Do we need to clean up the state of a thread that has
5723 completed a displaced single-step? (Doing so usually affects
5724 the PC, so do it here, before we set stop_pc.) */
5725 if (finish_step_over (ecs))
5726 return;
5727
5728 /* If we either finished a single-step or hit a breakpoint, but
5729 the user wanted this thread to be stopped, pretend we got a
5730 SIG0 (generic unsignaled stop). */
5731 if (ecs->event_thread->stop_requested
5732 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5733 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5734
5735 ecs->event_thread->suspend.stop_pc
5736 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5737
5738 context_switch (ecs);
5739
5740 if (deprecated_context_hook)
5741 deprecated_context_hook (ecs->event_thread->global_num);
5742
5743 if (debug_infrun)
5744 {
5745 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5746 struct gdbarch *reg_gdbarch = regcache->arch ();
5747
5748 infrun_debug_printf ("stop_pc=%s",
5749 paddress (reg_gdbarch,
5750 ecs->event_thread->suspend.stop_pc));
5751 if (target_stopped_by_watchpoint ())
5752 {
5753 CORE_ADDR addr;
5754
5755 infrun_debug_printf ("stopped by watchpoint");
5756
5757 if (target_stopped_data_address (current_top_target (), &addr))
5758 infrun_debug_printf ("stopped data address=%s",
5759 paddress (reg_gdbarch, addr));
5760 else
5761 infrun_debug_printf ("(no data address available)");
5762 }
5763 }
5764
5765 /* This is originated from start_remote(), start_inferior() and
5766 shared libraries hook functions. */
5767 stop_soon = get_inferior_stop_soon (ecs);
5768 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5769 {
5770 infrun_debug_printf ("quietly stopped");
5771 stop_print_frame = true;
5772 stop_waiting (ecs);
5773 return;
5774 }
5775
5776 /* This originates from attach_command(). We need to overwrite
5777 the stop_signal here, because some kernels don't ignore a
5778 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5779 See more comments in inferior.h. On the other hand, if we
5780 get a non-SIGSTOP, report it to the user - assume the backend
5781 will handle the SIGSTOP if it should show up later.
5782
5783 Also consider that the attach is complete when we see a
5784 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5785 target extended-remote report it instead of a SIGSTOP
5786 (e.g. gdbserver). We already rely on SIGTRAP being our
5787 signal, so this is no exception.
5788
5789 Also consider that the attach is complete when we see a
5790 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5791 the target to stop all threads of the inferior, in case the
5792 low level attach operation doesn't stop them implicitly. If
5793 they weren't stopped implicitly, then the stub will report a
5794 GDB_SIGNAL_0, meaning: stopped for no particular reason
5795 other than GDB's request. */
5796 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5797 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5798 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5799 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5800 {
5801 stop_print_frame = true;
5802 stop_waiting (ecs);
5803 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5804 return;
5805 }
5806
5807 /* At this point, get hold of the now-current thread's frame. */
5808 frame = get_current_frame ();
5809 gdbarch = get_frame_arch (frame);
5810
5811 /* Pull the single step breakpoints out of the target. */
5812 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5813 {
5814 struct regcache *regcache;
5815 CORE_ADDR pc;
5816
5817 regcache = get_thread_regcache (ecs->event_thread);
5818 const address_space *aspace = regcache->aspace ();
5819
5820 pc = regcache_read_pc (regcache);
5821
5822 /* However, before doing so, if this single-step breakpoint was
5823 actually for another thread, set this thread up for moving
5824 past it. */
5825 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5826 aspace, pc))
5827 {
5828 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5829 {
5830 infrun_debug_printf ("[%s] hit another thread's single-step "
5831 "breakpoint",
5832 target_pid_to_str (ecs->ptid).c_str ());
5833 ecs->hit_singlestep_breakpoint = 1;
5834 }
5835 }
5836 else
5837 {
5838 infrun_debug_printf ("[%s] hit its single-step breakpoint",
5839 target_pid_to_str (ecs->ptid).c_str ());
5840 }
5841 }
5842 delete_just_stopped_threads_single_step_breakpoints ();
5843
5844 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5845 && ecs->event_thread->control.trap_expected
5846 && ecs->event_thread->stepping_over_watchpoint)
5847 stopped_by_watchpoint = 0;
5848 else
5849 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5850
5851 /* If necessary, step over this watchpoint. We'll be back to display
5852 it in a moment. */
5853 if (stopped_by_watchpoint
5854 && (target_have_steppable_watchpoint ()
5855 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5856 {
5857 /* At this point, we are stopped at an instruction which has
5858 attempted to write to a piece of memory under control of
5859 a watchpoint. The instruction hasn't actually executed
5860 yet. If we were to evaluate the watchpoint expression
5861 now, we would get the old value, and therefore no change
5862 would seem to have occurred.
5863
5864 In order to make watchpoints work `right', we really need
5865 to complete the memory write, and then evaluate the
5866 watchpoint expression. We do this by single-stepping the
5867 target.
5868
5869 It may not be necessary to disable the watchpoint to step over
5870 it. For example, the PA can (with some kernel cooperation)
5871 single step over a watchpoint without disabling the watchpoint.
5872
5873 It is far more common to need to disable a watchpoint to step
5874 the inferior over it. If we have non-steppable watchpoints,
5875 we must disable the current watchpoint; it's simplest to
5876 disable all watchpoints.
5877
5878 Any breakpoint at PC must also be stepped over -- if there's
5879 one, it will have already triggered before the watchpoint
5880 triggered, and we either already reported it to the user, or
5881 it didn't cause a stop and we called keep_going. In either
5882 case, if there was a breakpoint at PC, we must be trying to
5883 step past it. */
5884 ecs->event_thread->stepping_over_watchpoint = 1;
5885 keep_going (ecs);
5886 return;
5887 }
5888
5889 ecs->event_thread->stepping_over_breakpoint = 0;
5890 ecs->event_thread->stepping_over_watchpoint = 0;
5891 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5892 ecs->event_thread->control.stop_step = 0;
5893 stop_print_frame = true;
5894 stopped_by_random_signal = 0;
5895 bpstat stop_chain = NULL;
5896
5897 /* Hide inlined functions starting here, unless we just performed stepi or
5898 nexti. After stepi and nexti, always show the innermost frame (not any
5899 inline function call sites). */
5900 if (ecs->event_thread->control.step_range_end != 1)
5901 {
5902 const address_space *aspace
5903 = get_thread_regcache (ecs->event_thread)->aspace ();
5904
5905 /* skip_inline_frames is expensive, so we avoid it if we can
5906 determine that the address is one where functions cannot have
5907 been inlined. This improves performance with inferiors that
5908 load a lot of shared libraries, because the solib event
5909 breakpoint is defined as the address of a function (i.e. not
5910 inline). Note that we have to check the previous PC as well
5911 as the current one to catch cases when we have just
5912 single-stepped off a breakpoint prior to reinstating it.
5913 Note that we're assuming that the code we single-step to is
5914 not inline, but that's not definitive: there's nothing
5915 preventing the event breakpoint function from containing
5916 inlined code, and the single-step ending up there. If the
5917 user had set a breakpoint on that inlined code, the missing
5918 skip_inline_frames call would break things. Fortunately
5919 that's an extremely unlikely scenario. */
5920 if (!pc_at_non_inline_function (aspace,
5921 ecs->event_thread->suspend.stop_pc,
5922 &ecs->ws)
5923 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5924 && ecs->event_thread->control.trap_expected
5925 && pc_at_non_inline_function (aspace,
5926 ecs->event_thread->prev_pc,
5927 &ecs->ws)))
5928 {
5929 stop_chain = build_bpstat_chain (aspace,
5930 ecs->event_thread->suspend.stop_pc,
5931 &ecs->ws);
5932 skip_inline_frames (ecs->event_thread, stop_chain);
5933
5934 /* Re-fetch current thread's frame in case that invalidated
5935 the frame cache. */
5936 frame = get_current_frame ();
5937 gdbarch = get_frame_arch (frame);
5938 }
5939 }
5940
5941 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5942 && ecs->event_thread->control.trap_expected
5943 && gdbarch_single_step_through_delay_p (gdbarch)
5944 && currently_stepping (ecs->event_thread))
5945 {
5946 /* We're trying to step off a breakpoint. Turns out that we're
5947 also on an instruction that needs to be stepped multiple
5948 times before it's been fully executing. E.g., architectures
5949 with a delay slot. It needs to be stepped twice, once for
5950 the instruction and once for the delay slot. */
5951 int step_through_delay
5952 = gdbarch_single_step_through_delay (gdbarch, frame);
5953
5954 if (step_through_delay)
5955 infrun_debug_printf ("step through delay");
5956
5957 if (ecs->event_thread->control.step_range_end == 0
5958 && step_through_delay)
5959 {
5960 /* The user issued a continue when stopped at a breakpoint.
5961 Set up for another trap and get out of here. */
5962 ecs->event_thread->stepping_over_breakpoint = 1;
5963 keep_going (ecs);
5964 return;
5965 }
5966 else if (step_through_delay)
5967 {
5968 /* The user issued a step when stopped at a breakpoint.
5969 Maybe we should stop, maybe we should not - the delay
5970 slot *might* correspond to a line of source. In any
5971 case, don't decide that here, just set
5972 ecs->stepping_over_breakpoint, making sure we
5973 single-step again before breakpoints are re-inserted. */
5974 ecs->event_thread->stepping_over_breakpoint = 1;
5975 }
5976 }
5977
5978 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5979 handles this event. */
5980 ecs->event_thread->control.stop_bpstat
5981 = bpstat_stop_status (get_current_regcache ()->aspace (),
5982 ecs->event_thread->suspend.stop_pc,
5983 ecs->event_thread, &ecs->ws, stop_chain);
5984
5985 /* Following in case break condition called a
5986 function. */
5987 stop_print_frame = true;
5988
5989 /* This is where we handle "moribund" watchpoints. Unlike
5990 software breakpoints traps, hardware watchpoint traps are
5991 always distinguishable from random traps. If no high-level
5992 watchpoint is associated with the reported stop data address
5993 anymore, then the bpstat does not explain the signal ---
5994 simply make sure to ignore it if `stopped_by_watchpoint' is
5995 set. */
5996
5997 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5998 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5999 GDB_SIGNAL_TRAP)
6000 && stopped_by_watchpoint)
6001 {
6002 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6003 "ignoring");
6004 }
6005
6006 /* NOTE: cagney/2003-03-29: These checks for a random signal
6007 at one stage in the past included checks for an inferior
6008 function call's call dummy's return breakpoint. The original
6009 comment, that went with the test, read:
6010
6011 ``End of a stack dummy. Some systems (e.g. Sony news) give
6012 another signal besides SIGTRAP, so check here as well as
6013 above.''
6014
6015 If someone ever tries to get call dummys on a
6016 non-executable stack to work (where the target would stop
6017 with something like a SIGSEGV), then those tests might need
6018 to be re-instated. Given, however, that the tests were only
6019 enabled when momentary breakpoints were not being used, I
6020 suspect that it won't be the case.
6021
6022 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6023 be necessary for call dummies on a non-executable stack on
6024 SPARC. */
6025
6026 /* See if the breakpoints module can explain the signal. */
6027 random_signal
6028 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6029 ecs->event_thread->suspend.stop_signal);
6030
6031 /* Maybe this was a trap for a software breakpoint that has since
6032 been removed. */
6033 if (random_signal && target_stopped_by_sw_breakpoint ())
6034 {
6035 if (gdbarch_program_breakpoint_here_p (gdbarch,
6036 ecs->event_thread->suspend.stop_pc))
6037 {
6038 struct regcache *regcache;
6039 int decr_pc;
6040
6041 /* Re-adjust PC to what the program would see if GDB was not
6042 debugging it. */
6043 regcache = get_thread_regcache (ecs->event_thread);
6044 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6045 if (decr_pc != 0)
6046 {
6047 gdb::optional<scoped_restore_tmpl<int>>
6048 restore_operation_disable;
6049
6050 if (record_full_is_used ())
6051 restore_operation_disable.emplace
6052 (record_full_gdb_operation_disable_set ());
6053
6054 regcache_write_pc (regcache,
6055 ecs->event_thread->suspend.stop_pc + decr_pc);
6056 }
6057 }
6058 else
6059 {
6060 /* A delayed software breakpoint event. Ignore the trap. */
6061 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
6062 random_signal = 0;
6063 }
6064 }
6065
6066 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6067 has since been removed. */
6068 if (random_signal && target_stopped_by_hw_breakpoint ())
6069 {
6070 /* A delayed hardware breakpoint event. Ignore the trap. */
6071 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6072 "trap, ignoring");
6073 random_signal = 0;
6074 }
6075
6076 /* If not, perhaps stepping/nexting can. */
6077 if (random_signal)
6078 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6079 && currently_stepping (ecs->event_thread));
6080
6081 /* Perhaps the thread hit a single-step breakpoint of _another_
6082 thread. Single-step breakpoints are transparent to the
6083 breakpoints module. */
6084 if (random_signal)
6085 random_signal = !ecs->hit_singlestep_breakpoint;
6086
6087 /* No? Perhaps we got a moribund watchpoint. */
6088 if (random_signal)
6089 random_signal = !stopped_by_watchpoint;
6090
6091 /* Always stop if the user explicitly requested this thread to
6092 remain stopped. */
6093 if (ecs->event_thread->stop_requested)
6094 {
6095 random_signal = 1;
6096 infrun_debug_printf ("user-requested stop");
6097 }
6098
6099 /* For the program's own signals, act according to
6100 the signal handling tables. */
6101
6102 if (random_signal)
6103 {
6104 /* Signal not for debugging purposes. */
6105 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6106 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6107
6108 infrun_debug_printf ("random signal (%s)",
6109 gdb_signal_to_symbol_string (stop_signal));
6110
6111 stopped_by_random_signal = 1;
6112
6113 /* Always stop on signals if we're either just gaining control
6114 of the program, or the user explicitly requested this thread
6115 to remain stopped. */
6116 if (stop_soon != NO_STOP_QUIETLY
6117 || ecs->event_thread->stop_requested
6118 || (!inf->detaching
6119 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6120 {
6121 stop_waiting (ecs);
6122 return;
6123 }
6124
6125 /* Notify observers the signal has "handle print" set. Note we
6126 returned early above if stopping; normal_stop handles the
6127 printing in that case. */
6128 if (signal_print[ecs->event_thread->suspend.stop_signal])
6129 {
6130 /* The signal table tells us to print about this signal. */
6131 target_terminal::ours_for_output ();
6132 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6133 target_terminal::inferior ();
6134 }
6135
6136 /* Clear the signal if it should not be passed. */
6137 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6138 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6139
6140 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6141 && ecs->event_thread->control.trap_expected
6142 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6143 {
6144 /* We were just starting a new sequence, attempting to
6145 single-step off of a breakpoint and expecting a SIGTRAP.
6146 Instead this signal arrives. This signal will take us out
6147 of the stepping range so GDB needs to remember to, when
6148 the signal handler returns, resume stepping off that
6149 breakpoint. */
6150 /* To simplify things, "continue" is forced to use the same
6151 code paths as single-step - set a breakpoint at the
6152 signal return address and then, once hit, step off that
6153 breakpoint. */
6154 infrun_debug_printf ("signal arrived while stepping over breakpoint");
6155
6156 insert_hp_step_resume_breakpoint_at_frame (frame);
6157 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6158 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6159 ecs->event_thread->control.trap_expected = 0;
6160
6161 /* If we were nexting/stepping some other thread, switch to
6162 it, so that we don't continue it, losing control. */
6163 if (!switch_back_to_stepped_thread (ecs))
6164 keep_going (ecs);
6165 return;
6166 }
6167
6168 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6169 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6170 ecs->event_thread)
6171 || ecs->event_thread->control.step_range_end == 1)
6172 && frame_id_eq (get_stack_frame_id (frame),
6173 ecs->event_thread->control.step_stack_frame_id)
6174 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6175 {
6176 /* The inferior is about to take a signal that will take it
6177 out of the single step range. Set a breakpoint at the
6178 current PC (which is presumably where the signal handler
6179 will eventually return) and then allow the inferior to
6180 run free.
6181
6182 Note that this is only needed for a signal delivered
6183 while in the single-step range. Nested signals aren't a
6184 problem as they eventually all return. */
6185 infrun_debug_printf ("signal may take us out of single-step range");
6186
6187 clear_step_over_info ();
6188 insert_hp_step_resume_breakpoint_at_frame (frame);
6189 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6190 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6191 ecs->event_thread->control.trap_expected = 0;
6192 keep_going (ecs);
6193 return;
6194 }
6195
6196 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6197 when either there's a nested signal, or when there's a
6198 pending signal enabled just as the signal handler returns
6199 (leaving the inferior at the step-resume-breakpoint without
6200 actually executing it). Either way continue until the
6201 breakpoint is really hit. */
6202
6203 if (!switch_back_to_stepped_thread (ecs))
6204 {
6205 infrun_debug_printf ("random signal, keep going");
6206
6207 keep_going (ecs);
6208 }
6209 return;
6210 }
6211
6212 process_event_stop_test (ecs);
6213 }
6214
6215 /* Come here when we've got some debug event / signal we can explain
6216 (IOW, not a random signal), and test whether it should cause a
6217 stop, or whether we should resume the inferior (transparently).
6218 E.g., could be a breakpoint whose condition evaluates false; we
6219 could be still stepping within the line; etc. */
6220
6221 static void
6222 process_event_stop_test (struct execution_control_state *ecs)
6223 {
6224 struct symtab_and_line stop_pc_sal;
6225 struct frame_info *frame;
6226 struct gdbarch *gdbarch;
6227 CORE_ADDR jmp_buf_pc;
6228 struct bpstat_what what;
6229
6230 /* Handle cases caused by hitting a breakpoint. */
6231
6232 frame = get_current_frame ();
6233 gdbarch = get_frame_arch (frame);
6234
6235 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6236
6237 if (what.call_dummy)
6238 {
6239 stop_stack_dummy = what.call_dummy;
6240 }
6241
6242 /* A few breakpoint types have callbacks associated (e.g.,
6243 bp_jit_event). Run them now. */
6244 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6245
6246 /* If we hit an internal event that triggers symbol changes, the
6247 current frame will be invalidated within bpstat_what (e.g., if we
6248 hit an internal solib event). Re-fetch it. */
6249 frame = get_current_frame ();
6250 gdbarch = get_frame_arch (frame);
6251
6252 switch (what.main_action)
6253 {
6254 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6255 /* If we hit the breakpoint at longjmp while stepping, we
6256 install a momentary breakpoint at the target of the
6257 jmp_buf. */
6258
6259 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6260
6261 ecs->event_thread->stepping_over_breakpoint = 1;
6262
6263 if (what.is_longjmp)
6264 {
6265 struct value *arg_value;
6266
6267 /* If we set the longjmp breakpoint via a SystemTap probe,
6268 then use it to extract the arguments. The destination PC
6269 is the third argument to the probe. */
6270 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6271 if (arg_value)
6272 {
6273 jmp_buf_pc = value_as_address (arg_value);
6274 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6275 }
6276 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6277 || !gdbarch_get_longjmp_target (gdbarch,
6278 frame, &jmp_buf_pc))
6279 {
6280 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6281 "(!gdbarch_get_longjmp_target)");
6282 keep_going (ecs);
6283 return;
6284 }
6285
6286 /* Insert a breakpoint at resume address. */
6287 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6288 }
6289 else
6290 check_exception_resume (ecs, frame);
6291 keep_going (ecs);
6292 return;
6293
6294 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6295 {
6296 struct frame_info *init_frame;
6297
6298 /* There are several cases to consider.
6299
6300 1. The initiating frame no longer exists. In this case we
6301 must stop, because the exception or longjmp has gone too
6302 far.
6303
6304 2. The initiating frame exists, and is the same as the
6305 current frame. We stop, because the exception or longjmp
6306 has been caught.
6307
6308 3. The initiating frame exists and is different from the
6309 current frame. This means the exception or longjmp has
6310 been caught beneath the initiating frame, so keep going.
6311
6312 4. longjmp breakpoint has been placed just to protect
6313 against stale dummy frames and user is not interested in
6314 stopping around longjmps. */
6315
6316 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6317
6318 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6319 != NULL);
6320 delete_exception_resume_breakpoint (ecs->event_thread);
6321
6322 if (what.is_longjmp)
6323 {
6324 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6325
6326 if (!frame_id_p (ecs->event_thread->initiating_frame))
6327 {
6328 /* Case 4. */
6329 keep_going (ecs);
6330 return;
6331 }
6332 }
6333
6334 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6335
6336 if (init_frame)
6337 {
6338 struct frame_id current_id
6339 = get_frame_id (get_current_frame ());
6340 if (frame_id_eq (current_id,
6341 ecs->event_thread->initiating_frame))
6342 {
6343 /* Case 2. Fall through. */
6344 }
6345 else
6346 {
6347 /* Case 3. */
6348 keep_going (ecs);
6349 return;
6350 }
6351 }
6352
6353 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6354 exists. */
6355 delete_step_resume_breakpoint (ecs->event_thread);
6356
6357 end_stepping_range (ecs);
6358 }
6359 return;
6360
6361 case BPSTAT_WHAT_SINGLE:
6362 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
6363 ecs->event_thread->stepping_over_breakpoint = 1;
6364 /* Still need to check other stuff, at least the case where we
6365 are stepping and step out of the right range. */
6366 break;
6367
6368 case BPSTAT_WHAT_STEP_RESUME:
6369 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
6370
6371 delete_step_resume_breakpoint (ecs->event_thread);
6372 if (ecs->event_thread->control.proceed_to_finish
6373 && execution_direction == EXEC_REVERSE)
6374 {
6375 struct thread_info *tp = ecs->event_thread;
6376
6377 /* We are finishing a function in reverse, and just hit the
6378 step-resume breakpoint at the start address of the
6379 function, and we're almost there -- just need to back up
6380 by one more single-step, which should take us back to the
6381 function call. */
6382 tp->control.step_range_start = tp->control.step_range_end = 1;
6383 keep_going (ecs);
6384 return;
6385 }
6386 fill_in_stop_func (gdbarch, ecs);
6387 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6388 && execution_direction == EXEC_REVERSE)
6389 {
6390 /* We are stepping over a function call in reverse, and just
6391 hit the step-resume breakpoint at the start address of
6392 the function. Go back to single-stepping, which should
6393 take us back to the function call. */
6394 ecs->event_thread->stepping_over_breakpoint = 1;
6395 keep_going (ecs);
6396 return;
6397 }
6398 break;
6399
6400 case BPSTAT_WHAT_STOP_NOISY:
6401 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
6402 stop_print_frame = true;
6403
6404 /* Assume the thread stopped for a breakpoint. We'll still check
6405 whether a/the breakpoint is there when the thread is next
6406 resumed. */
6407 ecs->event_thread->stepping_over_breakpoint = 1;
6408
6409 stop_waiting (ecs);
6410 return;
6411
6412 case BPSTAT_WHAT_STOP_SILENT:
6413 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
6414 stop_print_frame = false;
6415
6416 /* Assume the thread stopped for a breakpoint. We'll still check
6417 whether a/the breakpoint is there when the thread is next
6418 resumed. */
6419 ecs->event_thread->stepping_over_breakpoint = 1;
6420 stop_waiting (ecs);
6421 return;
6422
6423 case BPSTAT_WHAT_HP_STEP_RESUME:
6424 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
6425
6426 delete_step_resume_breakpoint (ecs->event_thread);
6427 if (ecs->event_thread->step_after_step_resume_breakpoint)
6428 {
6429 /* Back when the step-resume breakpoint was inserted, we
6430 were trying to single-step off a breakpoint. Go back to
6431 doing that. */
6432 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6433 ecs->event_thread->stepping_over_breakpoint = 1;
6434 keep_going (ecs);
6435 return;
6436 }
6437 break;
6438
6439 case BPSTAT_WHAT_KEEP_CHECKING:
6440 break;
6441 }
6442
6443 /* If we stepped a permanent breakpoint and we had a high priority
6444 step-resume breakpoint for the address we stepped, but we didn't
6445 hit it, then we must have stepped into the signal handler. The
6446 step-resume was only necessary to catch the case of _not_
6447 stepping into the handler, so delete it, and fall through to
6448 checking whether the step finished. */
6449 if (ecs->event_thread->stepped_breakpoint)
6450 {
6451 struct breakpoint *sr_bp
6452 = ecs->event_thread->control.step_resume_breakpoint;
6453
6454 if (sr_bp != NULL
6455 && sr_bp->loc->permanent
6456 && sr_bp->type == bp_hp_step_resume
6457 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6458 {
6459 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
6460 delete_step_resume_breakpoint (ecs->event_thread);
6461 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6462 }
6463 }
6464
6465 /* We come here if we hit a breakpoint but should not stop for it.
6466 Possibly we also were stepping and should stop for that. So fall
6467 through and test for stepping. But, if not stepping, do not
6468 stop. */
6469
6470 /* In all-stop mode, if we're currently stepping but have stopped in
6471 some other thread, we need to switch back to the stepped thread. */
6472 if (switch_back_to_stepped_thread (ecs))
6473 return;
6474
6475 if (ecs->event_thread->control.step_resume_breakpoint)
6476 {
6477 infrun_debug_printf ("step-resume breakpoint is inserted");
6478
6479 /* Having a step-resume breakpoint overrides anything
6480 else having to do with stepping commands until
6481 that breakpoint is reached. */
6482 keep_going (ecs);
6483 return;
6484 }
6485
6486 if (ecs->event_thread->control.step_range_end == 0)
6487 {
6488 infrun_debug_printf ("no stepping, continue");
6489 /* Likewise if we aren't even stepping. */
6490 keep_going (ecs);
6491 return;
6492 }
6493
6494 /* Re-fetch current thread's frame in case the code above caused
6495 the frame cache to be re-initialized, making our FRAME variable
6496 a dangling pointer. */
6497 frame = get_current_frame ();
6498 gdbarch = get_frame_arch (frame);
6499 fill_in_stop_func (gdbarch, ecs);
6500
6501 /* If stepping through a line, keep going if still within it.
6502
6503 Note that step_range_end is the address of the first instruction
6504 beyond the step range, and NOT the address of the last instruction
6505 within it!
6506
6507 Note also that during reverse execution, we may be stepping
6508 through a function epilogue and therefore must detect when
6509 the current-frame changes in the middle of a line. */
6510
6511 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6512 ecs->event_thread)
6513 && (execution_direction != EXEC_REVERSE
6514 || frame_id_eq (get_frame_id (frame),
6515 ecs->event_thread->control.step_frame_id)))
6516 {
6517 infrun_debug_printf
6518 ("stepping inside range [%s-%s]",
6519 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6520 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6521
6522 /* Tentatively re-enable range stepping; `resume' disables it if
6523 necessary (e.g., if we're stepping over a breakpoint or we
6524 have software watchpoints). */
6525 ecs->event_thread->control.may_range_step = 1;
6526
6527 /* When stepping backward, stop at beginning of line range
6528 (unless it's the function entry point, in which case
6529 keep going back to the call point). */
6530 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6531 if (stop_pc == ecs->event_thread->control.step_range_start
6532 && stop_pc != ecs->stop_func_start
6533 && execution_direction == EXEC_REVERSE)
6534 end_stepping_range (ecs);
6535 else
6536 keep_going (ecs);
6537
6538 return;
6539 }
6540
6541 /* We stepped out of the stepping range. */
6542
6543 /* If we are stepping at the source level and entered the runtime
6544 loader dynamic symbol resolution code...
6545
6546 EXEC_FORWARD: we keep on single stepping until we exit the run
6547 time loader code and reach the callee's address.
6548
6549 EXEC_REVERSE: we've already executed the callee (backward), and
6550 the runtime loader code is handled just like any other
6551 undebuggable function call. Now we need only keep stepping
6552 backward through the trampoline code, and that's handled further
6553 down, so there is nothing for us to do here. */
6554
6555 if (execution_direction != EXEC_REVERSE
6556 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6557 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6558 {
6559 CORE_ADDR pc_after_resolver =
6560 gdbarch_skip_solib_resolver (gdbarch,
6561 ecs->event_thread->suspend.stop_pc);
6562
6563 infrun_debug_printf ("stepped into dynsym resolve code");
6564
6565 if (pc_after_resolver)
6566 {
6567 /* Set up a step-resume breakpoint at the address
6568 indicated by SKIP_SOLIB_RESOLVER. */
6569 symtab_and_line sr_sal;
6570 sr_sal.pc = pc_after_resolver;
6571 sr_sal.pspace = get_frame_program_space (frame);
6572
6573 insert_step_resume_breakpoint_at_sal (gdbarch,
6574 sr_sal, null_frame_id);
6575 }
6576
6577 keep_going (ecs);
6578 return;
6579 }
6580
6581 /* Step through an indirect branch thunk. */
6582 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6583 && gdbarch_in_indirect_branch_thunk (gdbarch,
6584 ecs->event_thread->suspend.stop_pc))
6585 {
6586 infrun_debug_printf ("stepped into indirect branch thunk");
6587 keep_going (ecs);
6588 return;
6589 }
6590
6591 if (ecs->event_thread->control.step_range_end != 1
6592 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6593 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6594 && get_frame_type (frame) == SIGTRAMP_FRAME)
6595 {
6596 infrun_debug_printf ("stepped into signal trampoline");
6597 /* The inferior, while doing a "step" or "next", has ended up in
6598 a signal trampoline (either by a signal being delivered or by
6599 the signal handler returning). Just single-step until the
6600 inferior leaves the trampoline (either by calling the handler
6601 or returning). */
6602 keep_going (ecs);
6603 return;
6604 }
6605
6606 /* If we're in the return path from a shared library trampoline,
6607 we want to proceed through the trampoline when stepping. */
6608 /* macro/2012-04-25: This needs to come before the subroutine
6609 call check below as on some targets return trampolines look
6610 like subroutine calls (MIPS16 return thunks). */
6611 if (gdbarch_in_solib_return_trampoline (gdbarch,
6612 ecs->event_thread->suspend.stop_pc,
6613 ecs->stop_func_name)
6614 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6615 {
6616 /* Determine where this trampoline returns. */
6617 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6618 CORE_ADDR real_stop_pc
6619 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6620
6621 infrun_debug_printf ("stepped into solib return tramp");
6622
6623 /* Only proceed through if we know where it's going. */
6624 if (real_stop_pc)
6625 {
6626 /* And put the step-breakpoint there and go until there. */
6627 symtab_and_line sr_sal;
6628 sr_sal.pc = real_stop_pc;
6629 sr_sal.section = find_pc_overlay (sr_sal.pc);
6630 sr_sal.pspace = get_frame_program_space (frame);
6631
6632 /* Do not specify what the fp should be when we stop since
6633 on some machines the prologue is where the new fp value
6634 is established. */
6635 insert_step_resume_breakpoint_at_sal (gdbarch,
6636 sr_sal, null_frame_id);
6637
6638 /* Restart without fiddling with the step ranges or
6639 other state. */
6640 keep_going (ecs);
6641 return;
6642 }
6643 }
6644
6645 /* Check for subroutine calls. The check for the current frame
6646 equalling the step ID is not necessary - the check of the
6647 previous frame's ID is sufficient - but it is a common case and
6648 cheaper than checking the previous frame's ID.
6649
6650 NOTE: frame_id_eq will never report two invalid frame IDs as
6651 being equal, so to get into this block, both the current and
6652 previous frame must have valid frame IDs. */
6653 /* The outer_frame_id check is a heuristic to detect stepping
6654 through startup code. If we step over an instruction which
6655 sets the stack pointer from an invalid value to a valid value,
6656 we may detect that as a subroutine call from the mythical
6657 "outermost" function. This could be fixed by marking
6658 outermost frames as !stack_p,code_p,special_p. Then the
6659 initial outermost frame, before sp was valid, would
6660 have code_addr == &_start. See the comment in frame_id_eq
6661 for more. */
6662 if (!frame_id_eq (get_stack_frame_id (frame),
6663 ecs->event_thread->control.step_stack_frame_id)
6664 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6665 ecs->event_thread->control.step_stack_frame_id)
6666 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6667 outer_frame_id)
6668 || (ecs->event_thread->control.step_start_function
6669 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6670 {
6671 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6672 CORE_ADDR real_stop_pc;
6673
6674 infrun_debug_printf ("stepped into subroutine");
6675
6676 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6677 {
6678 /* I presume that step_over_calls is only 0 when we're
6679 supposed to be stepping at the assembly language level
6680 ("stepi"). Just stop. */
6681 /* And this works the same backward as frontward. MVS */
6682 end_stepping_range (ecs);
6683 return;
6684 }
6685
6686 /* Reverse stepping through solib trampolines. */
6687
6688 if (execution_direction == EXEC_REVERSE
6689 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6690 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6691 || (ecs->stop_func_start == 0
6692 && in_solib_dynsym_resolve_code (stop_pc))))
6693 {
6694 /* Any solib trampoline code can be handled in reverse
6695 by simply continuing to single-step. We have already
6696 executed the solib function (backwards), and a few
6697 steps will take us back through the trampoline to the
6698 caller. */
6699 keep_going (ecs);
6700 return;
6701 }
6702
6703 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6704 {
6705 /* We're doing a "next".
6706
6707 Normal (forward) execution: set a breakpoint at the
6708 callee's return address (the address at which the caller
6709 will resume).
6710
6711 Reverse (backward) execution. set the step-resume
6712 breakpoint at the start of the function that we just
6713 stepped into (backwards), and continue to there. When we
6714 get there, we'll need to single-step back to the caller. */
6715
6716 if (execution_direction == EXEC_REVERSE)
6717 {
6718 /* If we're already at the start of the function, we've either
6719 just stepped backward into a single instruction function,
6720 or stepped back out of a signal handler to the first instruction
6721 of the function. Just keep going, which will single-step back
6722 to the caller. */
6723 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6724 {
6725 /* Normal function call return (static or dynamic). */
6726 symtab_and_line sr_sal;
6727 sr_sal.pc = ecs->stop_func_start;
6728 sr_sal.pspace = get_frame_program_space (frame);
6729 insert_step_resume_breakpoint_at_sal (gdbarch,
6730 sr_sal, null_frame_id);
6731 }
6732 }
6733 else
6734 insert_step_resume_breakpoint_at_caller (frame);
6735
6736 keep_going (ecs);
6737 return;
6738 }
6739
6740 /* If we are in a function call trampoline (a stub between the
6741 calling routine and the real function), locate the real
6742 function. That's what tells us (a) whether we want to step
6743 into it at all, and (b) what prologue we want to run to the
6744 end of, if we do step into it. */
6745 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6746 if (real_stop_pc == 0)
6747 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6748 if (real_stop_pc != 0)
6749 ecs->stop_func_start = real_stop_pc;
6750
6751 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6752 {
6753 symtab_and_line sr_sal;
6754 sr_sal.pc = ecs->stop_func_start;
6755 sr_sal.pspace = get_frame_program_space (frame);
6756
6757 insert_step_resume_breakpoint_at_sal (gdbarch,
6758 sr_sal, null_frame_id);
6759 keep_going (ecs);
6760 return;
6761 }
6762
6763 /* If we have line number information for the function we are
6764 thinking of stepping into and the function isn't on the skip
6765 list, step into it.
6766
6767 If there are several symtabs at that PC (e.g. with include
6768 files), just want to know whether *any* of them have line
6769 numbers. find_pc_line handles this. */
6770 {
6771 struct symtab_and_line tmp_sal;
6772
6773 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6774 if (tmp_sal.line != 0
6775 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6776 tmp_sal)
6777 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6778 {
6779 if (execution_direction == EXEC_REVERSE)
6780 handle_step_into_function_backward (gdbarch, ecs);
6781 else
6782 handle_step_into_function (gdbarch, ecs);
6783 return;
6784 }
6785 }
6786
6787 /* If we have no line number and the step-stop-if-no-debug is
6788 set, we stop the step so that the user has a chance to switch
6789 in assembly mode. */
6790 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6791 && step_stop_if_no_debug)
6792 {
6793 end_stepping_range (ecs);
6794 return;
6795 }
6796
6797 if (execution_direction == EXEC_REVERSE)
6798 {
6799 /* If we're already at the start of the function, we've either just
6800 stepped backward into a single instruction function without line
6801 number info, or stepped back out of a signal handler to the first
6802 instruction of the function without line number info. Just keep
6803 going, which will single-step back to the caller. */
6804 if (ecs->stop_func_start != stop_pc)
6805 {
6806 /* Set a breakpoint at callee's start address.
6807 From there we can step once and be back in the caller. */
6808 symtab_and_line sr_sal;
6809 sr_sal.pc = ecs->stop_func_start;
6810 sr_sal.pspace = get_frame_program_space (frame);
6811 insert_step_resume_breakpoint_at_sal (gdbarch,
6812 sr_sal, null_frame_id);
6813 }
6814 }
6815 else
6816 /* Set a breakpoint at callee's return address (the address
6817 at which the caller will resume). */
6818 insert_step_resume_breakpoint_at_caller (frame);
6819
6820 keep_going (ecs);
6821 return;
6822 }
6823
6824 /* Reverse stepping through solib trampolines. */
6825
6826 if (execution_direction == EXEC_REVERSE
6827 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6828 {
6829 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6830
6831 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6832 || (ecs->stop_func_start == 0
6833 && in_solib_dynsym_resolve_code (stop_pc)))
6834 {
6835 /* Any solib trampoline code can be handled in reverse
6836 by simply continuing to single-step. We have already
6837 executed the solib function (backwards), and a few
6838 steps will take us back through the trampoline to the
6839 caller. */
6840 keep_going (ecs);
6841 return;
6842 }
6843 else if (in_solib_dynsym_resolve_code (stop_pc))
6844 {
6845 /* Stepped backward into the solib dynsym resolver.
6846 Set a breakpoint at its start and continue, then
6847 one more step will take us out. */
6848 symtab_and_line sr_sal;
6849 sr_sal.pc = ecs->stop_func_start;
6850 sr_sal.pspace = get_frame_program_space (frame);
6851 insert_step_resume_breakpoint_at_sal (gdbarch,
6852 sr_sal, null_frame_id);
6853 keep_going (ecs);
6854 return;
6855 }
6856 }
6857
6858 /* This always returns the sal for the inner-most frame when we are in a
6859 stack of inlined frames, even if GDB actually believes that it is in a
6860 more outer frame. This is checked for below by calls to
6861 inline_skipped_frames. */
6862 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6863
6864 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6865 the trampoline processing logic, however, there are some trampolines
6866 that have no names, so we should do trampoline handling first. */
6867 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6868 && ecs->stop_func_name == NULL
6869 && stop_pc_sal.line == 0)
6870 {
6871 infrun_debug_printf ("stepped into undebuggable function");
6872
6873 /* The inferior just stepped into, or returned to, an
6874 undebuggable function (where there is no debugging information
6875 and no line number corresponding to the address where the
6876 inferior stopped). Since we want to skip this kind of code,
6877 we keep going until the inferior returns from this
6878 function - unless the user has asked us not to (via
6879 set step-mode) or we no longer know how to get back
6880 to the call site. */
6881 if (step_stop_if_no_debug
6882 || !frame_id_p (frame_unwind_caller_id (frame)))
6883 {
6884 /* If we have no line number and the step-stop-if-no-debug
6885 is set, we stop the step so that the user has a chance to
6886 switch in assembly mode. */
6887 end_stepping_range (ecs);
6888 return;
6889 }
6890 else
6891 {
6892 /* Set a breakpoint at callee's return address (the address
6893 at which the caller will resume). */
6894 insert_step_resume_breakpoint_at_caller (frame);
6895 keep_going (ecs);
6896 return;
6897 }
6898 }
6899
6900 if (ecs->event_thread->control.step_range_end == 1)
6901 {
6902 /* It is stepi or nexti. We always want to stop stepping after
6903 one instruction. */
6904 infrun_debug_printf ("stepi/nexti");
6905 end_stepping_range (ecs);
6906 return;
6907 }
6908
6909 if (stop_pc_sal.line == 0)
6910 {
6911 /* We have no line number information. That means to stop
6912 stepping (does this always happen right after one instruction,
6913 when we do "s" in a function with no line numbers,
6914 or can this happen as a result of a return or longjmp?). */
6915 infrun_debug_printf ("line number info");
6916 end_stepping_range (ecs);
6917 return;
6918 }
6919
6920 /* Look for "calls" to inlined functions, part one. If the inline
6921 frame machinery detected some skipped call sites, we have entered
6922 a new inline function. */
6923
6924 if (frame_id_eq (get_frame_id (get_current_frame ()),
6925 ecs->event_thread->control.step_frame_id)
6926 && inline_skipped_frames (ecs->event_thread))
6927 {
6928 infrun_debug_printf ("stepped into inlined function");
6929
6930 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6931
6932 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6933 {
6934 /* For "step", we're going to stop. But if the call site
6935 for this inlined function is on the same source line as
6936 we were previously stepping, go down into the function
6937 first. Otherwise stop at the call site. */
6938
6939 if (call_sal.line == ecs->event_thread->current_line
6940 && call_sal.symtab == ecs->event_thread->current_symtab)
6941 {
6942 step_into_inline_frame (ecs->event_thread);
6943 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
6944 {
6945 keep_going (ecs);
6946 return;
6947 }
6948 }
6949
6950 end_stepping_range (ecs);
6951 return;
6952 }
6953 else
6954 {
6955 /* For "next", we should stop at the call site if it is on a
6956 different source line. Otherwise continue through the
6957 inlined function. */
6958 if (call_sal.line == ecs->event_thread->current_line
6959 && call_sal.symtab == ecs->event_thread->current_symtab)
6960 keep_going (ecs);
6961 else
6962 end_stepping_range (ecs);
6963 return;
6964 }
6965 }
6966
6967 /* Look for "calls" to inlined functions, part two. If we are still
6968 in the same real function we were stepping through, but we have
6969 to go further up to find the exact frame ID, we are stepping
6970 through a more inlined call beyond its call site. */
6971
6972 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6973 && !frame_id_eq (get_frame_id (get_current_frame ()),
6974 ecs->event_thread->control.step_frame_id)
6975 && stepped_in_from (get_current_frame (),
6976 ecs->event_thread->control.step_frame_id))
6977 {
6978 infrun_debug_printf ("stepping through inlined function");
6979
6980 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
6981 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
6982 keep_going (ecs);
6983 else
6984 end_stepping_range (ecs);
6985 return;
6986 }
6987
6988 bool refresh_step_info = true;
6989 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
6990 && (ecs->event_thread->current_line != stop_pc_sal.line
6991 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6992 {
6993 /* We are at a different line. */
6994
6995 if (stop_pc_sal.is_stmt)
6996 {
6997 /* We are at the start of a statement.
6998
6999 So stop. Note that we don't stop if we step into the middle of a
7000 statement. That is said to make things like for (;;) statements
7001 work better. */
7002 infrun_debug_printf ("stepped to a different line");
7003 end_stepping_range (ecs);
7004 return;
7005 }
7006 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7007 ecs->event_thread->control.step_frame_id))
7008 {
7009 /* We are not at the start of a statement, and we have not changed
7010 frame.
7011
7012 We ignore this line table entry, and continue stepping forward,
7013 looking for a better place to stop. */
7014 refresh_step_info = false;
7015 infrun_debug_printf ("stepped to a different line, but "
7016 "it's not the start of a statement");
7017 }
7018 else
7019 {
7020 /* We are not the start of a statement, and we have changed frame.
7021
7022 We ignore this line table entry, and continue stepping forward,
7023 looking for a better place to stop. Keep refresh_step_info at
7024 true to note that the frame has changed, but ignore the line
7025 number to make sure we don't ignore a subsequent entry with the
7026 same line number. */
7027 stop_pc_sal.line = 0;
7028 infrun_debug_printf ("stepped to a different frame, but "
7029 "it's not the start of a statement");
7030 }
7031 }
7032
7033 /* We aren't done stepping.
7034
7035 Optimize by setting the stepping range to the line.
7036 (We might not be in the original line, but if we entered a
7037 new line in mid-statement, we continue stepping. This makes
7038 things like for(;;) statements work better.)
7039
7040 If we entered a SAL that indicates a non-statement line table entry,
7041 then we update the stepping range, but we don't update the step info,
7042 which includes things like the line number we are stepping away from.
7043 This means we will stop when we find a line table entry that is marked
7044 as is-statement, even if it matches the non-statement one we just
7045 stepped into. */
7046
7047 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7048 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7049 ecs->event_thread->control.may_range_step = 1;
7050 if (refresh_step_info)
7051 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7052
7053 infrun_debug_printf ("keep going");
7054 keep_going (ecs);
7055 }
7056
7057 /* In all-stop mode, if we're currently stepping but have stopped in
7058 some other thread, we may need to switch back to the stepped
7059 thread. Returns true we set the inferior running, false if we left
7060 it stopped (and the event needs further processing). */
7061
7062 static bool
7063 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7064 {
7065 if (!target_is_non_stop_p ())
7066 {
7067 struct thread_info *stepping_thread;
7068
7069 /* If any thread is blocked on some internal breakpoint, and we
7070 simply need to step over that breakpoint to get it going
7071 again, do that first. */
7072
7073 /* However, if we see an event for the stepping thread, then we
7074 know all other threads have been moved past their breakpoints
7075 already. Let the caller check whether the step is finished,
7076 etc., before deciding to move it past a breakpoint. */
7077 if (ecs->event_thread->control.step_range_end != 0)
7078 return false;
7079
7080 /* Check if the current thread is blocked on an incomplete
7081 step-over, interrupted by a random signal. */
7082 if (ecs->event_thread->control.trap_expected
7083 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7084 {
7085 infrun_debug_printf
7086 ("need to finish step-over of [%s]",
7087 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7088 keep_going (ecs);
7089 return true;
7090 }
7091
7092 /* Check if the current thread is blocked by a single-step
7093 breakpoint of another thread. */
7094 if (ecs->hit_singlestep_breakpoint)
7095 {
7096 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7097 target_pid_to_str (ecs->ptid).c_str ());
7098 keep_going (ecs);
7099 return true;
7100 }
7101
7102 /* If this thread needs yet another step-over (e.g., stepping
7103 through a delay slot), do it first before moving on to
7104 another thread. */
7105 if (thread_still_needs_step_over (ecs->event_thread))
7106 {
7107 infrun_debug_printf
7108 ("thread [%s] still needs step-over",
7109 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7110 keep_going (ecs);
7111 return true;
7112 }
7113
7114 /* If scheduler locking applies even if not stepping, there's no
7115 need to walk over threads. Above we've checked whether the
7116 current thread is stepping. If some other thread not the
7117 event thread is stepping, then it must be that scheduler
7118 locking is not in effect. */
7119 if (schedlock_applies (ecs->event_thread))
7120 return false;
7121
7122 /* Otherwise, we no longer expect a trap in the current thread.
7123 Clear the trap_expected flag before switching back -- this is
7124 what keep_going does as well, if we call it. */
7125 ecs->event_thread->control.trap_expected = 0;
7126
7127 /* Likewise, clear the signal if it should not be passed. */
7128 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7129 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7130
7131 /* Do all pending step-overs before actually proceeding with
7132 step/next/etc. */
7133 if (start_step_over ())
7134 {
7135 prepare_to_wait (ecs);
7136 return true;
7137 }
7138
7139 /* Look for the stepping/nexting thread. */
7140 stepping_thread = NULL;
7141
7142 for (thread_info *tp : all_non_exited_threads ())
7143 {
7144 switch_to_thread_no_regs (tp);
7145
7146 /* Ignore threads of processes the caller is not
7147 resuming. */
7148 if (!sched_multi
7149 && (tp->inf->process_target () != ecs->target
7150 || tp->inf->pid != ecs->ptid.pid ()))
7151 continue;
7152
7153 /* When stepping over a breakpoint, we lock all threads
7154 except the one that needs to move past the breakpoint.
7155 If a non-event thread has this set, the "incomplete
7156 step-over" check above should have caught it earlier. */
7157 if (tp->control.trap_expected)
7158 {
7159 internal_error (__FILE__, __LINE__,
7160 "[%s] has inconsistent state: "
7161 "trap_expected=%d\n",
7162 target_pid_to_str (tp->ptid).c_str (),
7163 tp->control.trap_expected);
7164 }
7165
7166 /* Did we find the stepping thread? */
7167 if (tp->control.step_range_end)
7168 {
7169 /* Yep. There should only one though. */
7170 gdb_assert (stepping_thread == NULL);
7171
7172 /* The event thread is handled at the top, before we
7173 enter this loop. */
7174 gdb_assert (tp != ecs->event_thread);
7175
7176 /* If some thread other than the event thread is
7177 stepping, then scheduler locking can't be in effect,
7178 otherwise we wouldn't have resumed the current event
7179 thread in the first place. */
7180 gdb_assert (!schedlock_applies (tp));
7181
7182 stepping_thread = tp;
7183 }
7184 }
7185
7186 if (stepping_thread != NULL)
7187 {
7188 infrun_debug_printf ("switching back to stepped thread");
7189
7190 if (keep_going_stepped_thread (stepping_thread))
7191 {
7192 prepare_to_wait (ecs);
7193 return true;
7194 }
7195 }
7196
7197 switch_to_thread (ecs->event_thread);
7198 }
7199
7200 return false;
7201 }
7202
7203 /* Set a previously stepped thread back to stepping. Returns true on
7204 success, false if the resume is not possible (e.g., the thread
7205 vanished). */
7206
7207 static bool
7208 keep_going_stepped_thread (struct thread_info *tp)
7209 {
7210 struct frame_info *frame;
7211 struct execution_control_state ecss;
7212 struct execution_control_state *ecs = &ecss;
7213
7214 /* If the stepping thread exited, then don't try to switch back and
7215 resume it, which could fail in several different ways depending
7216 on the target. Instead, just keep going.
7217
7218 We can find a stepping dead thread in the thread list in two
7219 cases:
7220
7221 - The target supports thread exit events, and when the target
7222 tries to delete the thread from the thread list, inferior_ptid
7223 pointed at the exiting thread. In such case, calling
7224 delete_thread does not really remove the thread from the list;
7225 instead, the thread is left listed, with 'exited' state.
7226
7227 - The target's debug interface does not support thread exit
7228 events, and so we have no idea whatsoever if the previously
7229 stepping thread is still alive. For that reason, we need to
7230 synchronously query the target now. */
7231
7232 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7233 {
7234 infrun_debug_printf ("not resuming previously stepped thread, it has "
7235 "vanished");
7236
7237 delete_thread (tp);
7238 return false;
7239 }
7240
7241 infrun_debug_printf ("resuming previously stepped thread");
7242
7243 reset_ecs (ecs, tp);
7244 switch_to_thread (tp);
7245
7246 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7247 frame = get_current_frame ();
7248
7249 /* If the PC of the thread we were trying to single-step has
7250 changed, then that thread has trapped or been signaled, but the
7251 event has not been reported to GDB yet. Re-poll the target
7252 looking for this particular thread's event (i.e. temporarily
7253 enable schedlock) by:
7254
7255 - setting a break at the current PC
7256 - resuming that particular thread, only (by setting trap
7257 expected)
7258
7259 This prevents us continuously moving the single-step breakpoint
7260 forward, one instruction at a time, overstepping. */
7261
7262 if (tp->suspend.stop_pc != tp->prev_pc)
7263 {
7264 ptid_t resume_ptid;
7265
7266 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7267 paddress (target_gdbarch (), tp->prev_pc),
7268 paddress (target_gdbarch (), tp->suspend.stop_pc));
7269
7270 /* Clear the info of the previous step-over, as it's no longer
7271 valid (if the thread was trying to step over a breakpoint, it
7272 has already succeeded). It's what keep_going would do too,
7273 if we called it. Do this before trying to insert the sss
7274 breakpoint, otherwise if we were previously trying to step
7275 over this exact address in another thread, the breakpoint is
7276 skipped. */
7277 clear_step_over_info ();
7278 tp->control.trap_expected = 0;
7279
7280 insert_single_step_breakpoint (get_frame_arch (frame),
7281 get_frame_address_space (frame),
7282 tp->suspend.stop_pc);
7283
7284 tp->resumed = true;
7285 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7286 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
7287 }
7288 else
7289 {
7290 infrun_debug_printf ("expected thread still hasn't advanced");
7291
7292 keep_going_pass_signal (ecs);
7293 }
7294
7295 return true;
7296 }
7297
7298 /* Is thread TP in the middle of (software or hardware)
7299 single-stepping? (Note the result of this function must never be
7300 passed directly as target_resume's STEP parameter.) */
7301
7302 static bool
7303 currently_stepping (struct thread_info *tp)
7304 {
7305 return ((tp->control.step_range_end
7306 && tp->control.step_resume_breakpoint == NULL)
7307 || tp->control.trap_expected
7308 || tp->stepped_breakpoint
7309 || bpstat_should_step ());
7310 }
7311
7312 /* Inferior has stepped into a subroutine call with source code that
7313 we should not step over. Do step to the first line of code in
7314 it. */
7315
7316 static void
7317 handle_step_into_function (struct gdbarch *gdbarch,
7318 struct execution_control_state *ecs)
7319 {
7320 fill_in_stop_func (gdbarch, ecs);
7321
7322 compunit_symtab *cust
7323 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7324 if (cust != NULL && compunit_language (cust) != language_asm)
7325 ecs->stop_func_start
7326 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7327
7328 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7329 /* Use the step_resume_break to step until the end of the prologue,
7330 even if that involves jumps (as it seems to on the vax under
7331 4.2). */
7332 /* If the prologue ends in the middle of a source line, continue to
7333 the end of that source line (if it is still within the function).
7334 Otherwise, just go to end of prologue. */
7335 if (stop_func_sal.end
7336 && stop_func_sal.pc != ecs->stop_func_start
7337 && stop_func_sal.end < ecs->stop_func_end)
7338 ecs->stop_func_start = stop_func_sal.end;
7339
7340 /* Architectures which require breakpoint adjustment might not be able
7341 to place a breakpoint at the computed address. If so, the test
7342 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7343 ecs->stop_func_start to an address at which a breakpoint may be
7344 legitimately placed.
7345
7346 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7347 made, GDB will enter an infinite loop when stepping through
7348 optimized code consisting of VLIW instructions which contain
7349 subinstructions corresponding to different source lines. On
7350 FR-V, it's not permitted to place a breakpoint on any but the
7351 first subinstruction of a VLIW instruction. When a breakpoint is
7352 set, GDB will adjust the breakpoint address to the beginning of
7353 the VLIW instruction. Thus, we need to make the corresponding
7354 adjustment here when computing the stop address. */
7355
7356 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7357 {
7358 ecs->stop_func_start
7359 = gdbarch_adjust_breakpoint_address (gdbarch,
7360 ecs->stop_func_start);
7361 }
7362
7363 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7364 {
7365 /* We are already there: stop now. */
7366 end_stepping_range (ecs);
7367 return;
7368 }
7369 else
7370 {
7371 /* Put the step-breakpoint there and go until there. */
7372 symtab_and_line sr_sal;
7373 sr_sal.pc = ecs->stop_func_start;
7374 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7375 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7376
7377 /* Do not specify what the fp should be when we stop since on
7378 some machines the prologue is where the new fp value is
7379 established. */
7380 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7381
7382 /* And make sure stepping stops right away then. */
7383 ecs->event_thread->control.step_range_end
7384 = ecs->event_thread->control.step_range_start;
7385 }
7386 keep_going (ecs);
7387 }
7388
7389 /* Inferior has stepped backward into a subroutine call with source
7390 code that we should not step over. Do step to the beginning of the
7391 last line of code in it. */
7392
7393 static void
7394 handle_step_into_function_backward (struct gdbarch *gdbarch,
7395 struct execution_control_state *ecs)
7396 {
7397 struct compunit_symtab *cust;
7398 struct symtab_and_line stop_func_sal;
7399
7400 fill_in_stop_func (gdbarch, ecs);
7401
7402 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7403 if (cust != NULL && compunit_language (cust) != language_asm)
7404 ecs->stop_func_start
7405 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7406
7407 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7408
7409 /* OK, we're just going to keep stepping here. */
7410 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7411 {
7412 /* We're there already. Just stop stepping now. */
7413 end_stepping_range (ecs);
7414 }
7415 else
7416 {
7417 /* Else just reset the step range and keep going.
7418 No step-resume breakpoint, they don't work for
7419 epilogues, which can have multiple entry paths. */
7420 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7421 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7422 keep_going (ecs);
7423 }
7424 return;
7425 }
7426
7427 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7428 This is used to both functions and to skip over code. */
7429
7430 static void
7431 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7432 struct symtab_and_line sr_sal,
7433 struct frame_id sr_id,
7434 enum bptype sr_type)
7435 {
7436 /* There should never be more than one step-resume or longjmp-resume
7437 breakpoint per thread, so we should never be setting a new
7438 step_resume_breakpoint when one is already active. */
7439 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7440 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7441
7442 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7443 paddress (gdbarch, sr_sal.pc));
7444
7445 inferior_thread ()->control.step_resume_breakpoint
7446 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7447 }
7448
7449 void
7450 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7451 struct symtab_and_line sr_sal,
7452 struct frame_id sr_id)
7453 {
7454 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7455 sr_sal, sr_id,
7456 bp_step_resume);
7457 }
7458
7459 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7460 This is used to skip a potential signal handler.
7461
7462 This is called with the interrupted function's frame. The signal
7463 handler, when it returns, will resume the interrupted function at
7464 RETURN_FRAME.pc. */
7465
7466 static void
7467 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7468 {
7469 gdb_assert (return_frame != NULL);
7470
7471 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7472
7473 symtab_and_line sr_sal;
7474 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7475 sr_sal.section = find_pc_overlay (sr_sal.pc);
7476 sr_sal.pspace = get_frame_program_space (return_frame);
7477
7478 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7479 get_stack_frame_id (return_frame),
7480 bp_hp_step_resume);
7481 }
7482
7483 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7484 is used to skip a function after stepping into it (for "next" or if
7485 the called function has no debugging information).
7486
7487 The current function has almost always been reached by single
7488 stepping a call or return instruction. NEXT_FRAME belongs to the
7489 current function, and the breakpoint will be set at the caller's
7490 resume address.
7491
7492 This is a separate function rather than reusing
7493 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7494 get_prev_frame, which may stop prematurely (see the implementation
7495 of frame_unwind_caller_id for an example). */
7496
7497 static void
7498 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7499 {
7500 /* We shouldn't have gotten here if we don't know where the call site
7501 is. */
7502 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7503
7504 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7505
7506 symtab_and_line sr_sal;
7507 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7508 frame_unwind_caller_pc (next_frame));
7509 sr_sal.section = find_pc_overlay (sr_sal.pc);
7510 sr_sal.pspace = frame_unwind_program_space (next_frame);
7511
7512 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7513 frame_unwind_caller_id (next_frame));
7514 }
7515
7516 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7517 new breakpoint at the target of a jmp_buf. The handling of
7518 longjmp-resume uses the same mechanisms used for handling
7519 "step-resume" breakpoints. */
7520
7521 static void
7522 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7523 {
7524 /* There should never be more than one longjmp-resume breakpoint per
7525 thread, so we should never be setting a new
7526 longjmp_resume_breakpoint when one is already active. */
7527 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7528
7529 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7530 paddress (gdbarch, pc));
7531
7532 inferior_thread ()->control.exception_resume_breakpoint =
7533 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7534 }
7535
7536 /* Insert an exception resume breakpoint. TP is the thread throwing
7537 the exception. The block B is the block of the unwinder debug hook
7538 function. FRAME is the frame corresponding to the call to this
7539 function. SYM is the symbol of the function argument holding the
7540 target PC of the exception. */
7541
7542 static void
7543 insert_exception_resume_breakpoint (struct thread_info *tp,
7544 const struct block *b,
7545 struct frame_info *frame,
7546 struct symbol *sym)
7547 {
7548 try
7549 {
7550 struct block_symbol vsym;
7551 struct value *value;
7552 CORE_ADDR handler;
7553 struct breakpoint *bp;
7554
7555 vsym = lookup_symbol_search_name (sym->search_name (),
7556 b, VAR_DOMAIN);
7557 value = read_var_value (vsym.symbol, vsym.block, frame);
7558 /* If the value was optimized out, revert to the old behavior. */
7559 if (! value_optimized_out (value))
7560 {
7561 handler = value_as_address (value);
7562
7563 infrun_debug_printf ("exception resume at %lx",
7564 (unsigned long) handler);
7565
7566 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7567 handler,
7568 bp_exception_resume).release ();
7569
7570 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7571 frame = NULL;
7572
7573 bp->thread = tp->global_num;
7574 inferior_thread ()->control.exception_resume_breakpoint = bp;
7575 }
7576 }
7577 catch (const gdb_exception_error &e)
7578 {
7579 /* We want to ignore errors here. */
7580 }
7581 }
7582
7583 /* A helper for check_exception_resume that sets an
7584 exception-breakpoint based on a SystemTap probe. */
7585
7586 static void
7587 insert_exception_resume_from_probe (struct thread_info *tp,
7588 const struct bound_probe *probe,
7589 struct frame_info *frame)
7590 {
7591 struct value *arg_value;
7592 CORE_ADDR handler;
7593 struct breakpoint *bp;
7594
7595 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7596 if (!arg_value)
7597 return;
7598
7599 handler = value_as_address (arg_value);
7600
7601 infrun_debug_printf ("exception resume at %s",
7602 paddress (probe->objfile->arch (), handler));
7603
7604 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7605 handler, bp_exception_resume).release ();
7606 bp->thread = tp->global_num;
7607 inferior_thread ()->control.exception_resume_breakpoint = bp;
7608 }
7609
7610 /* This is called when an exception has been intercepted. Check to
7611 see whether the exception's destination is of interest, and if so,
7612 set an exception resume breakpoint there. */
7613
7614 static void
7615 check_exception_resume (struct execution_control_state *ecs,
7616 struct frame_info *frame)
7617 {
7618 struct bound_probe probe;
7619 struct symbol *func;
7620
7621 /* First see if this exception unwinding breakpoint was set via a
7622 SystemTap probe point. If so, the probe has two arguments: the
7623 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7624 set a breakpoint there. */
7625 probe = find_probe_by_pc (get_frame_pc (frame));
7626 if (probe.prob)
7627 {
7628 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7629 return;
7630 }
7631
7632 func = get_frame_function (frame);
7633 if (!func)
7634 return;
7635
7636 try
7637 {
7638 const struct block *b;
7639 struct block_iterator iter;
7640 struct symbol *sym;
7641 int argno = 0;
7642
7643 /* The exception breakpoint is a thread-specific breakpoint on
7644 the unwinder's debug hook, declared as:
7645
7646 void _Unwind_DebugHook (void *cfa, void *handler);
7647
7648 The CFA argument indicates the frame to which control is
7649 about to be transferred. HANDLER is the destination PC.
7650
7651 We ignore the CFA and set a temporary breakpoint at HANDLER.
7652 This is not extremely efficient but it avoids issues in gdb
7653 with computing the DWARF CFA, and it also works even in weird
7654 cases such as throwing an exception from inside a signal
7655 handler. */
7656
7657 b = SYMBOL_BLOCK_VALUE (func);
7658 ALL_BLOCK_SYMBOLS (b, iter, sym)
7659 {
7660 if (!SYMBOL_IS_ARGUMENT (sym))
7661 continue;
7662
7663 if (argno == 0)
7664 ++argno;
7665 else
7666 {
7667 insert_exception_resume_breakpoint (ecs->event_thread,
7668 b, frame, sym);
7669 break;
7670 }
7671 }
7672 }
7673 catch (const gdb_exception_error &e)
7674 {
7675 }
7676 }
7677
7678 static void
7679 stop_waiting (struct execution_control_state *ecs)
7680 {
7681 infrun_debug_printf ("stop_waiting");
7682
7683 /* Let callers know we don't want to wait for the inferior anymore. */
7684 ecs->wait_some_more = 0;
7685
7686 /* If all-stop, but there exists a non-stop target, stop all
7687 threads now that we're presenting the stop to the user. */
7688 if (!non_stop && exists_non_stop_target ())
7689 stop_all_threads ();
7690 }
7691
7692 /* Like keep_going, but passes the signal to the inferior, even if the
7693 signal is set to nopass. */
7694
7695 static void
7696 keep_going_pass_signal (struct execution_control_state *ecs)
7697 {
7698 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7699 gdb_assert (!ecs->event_thread->resumed);
7700
7701 /* Save the pc before execution, to compare with pc after stop. */
7702 ecs->event_thread->prev_pc
7703 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
7704
7705 if (ecs->event_thread->control.trap_expected)
7706 {
7707 struct thread_info *tp = ecs->event_thread;
7708
7709 infrun_debug_printf ("%s has trap_expected set, "
7710 "resuming to collect trap",
7711 target_pid_to_str (tp->ptid).c_str ());
7712
7713 /* We haven't yet gotten our trap, and either: intercepted a
7714 non-signal event (e.g., a fork); or took a signal which we
7715 are supposed to pass through to the inferior. Simply
7716 continue. */
7717 resume (ecs->event_thread->suspend.stop_signal);
7718 }
7719 else if (step_over_info_valid_p ())
7720 {
7721 /* Another thread is stepping over a breakpoint in-line. If
7722 this thread needs a step-over too, queue the request. In
7723 either case, this resume must be deferred for later. */
7724 struct thread_info *tp = ecs->event_thread;
7725
7726 if (ecs->hit_singlestep_breakpoint
7727 || thread_still_needs_step_over (tp))
7728 {
7729 infrun_debug_printf ("step-over already in progress: "
7730 "step-over for %s deferred",
7731 target_pid_to_str (tp->ptid).c_str ());
7732 global_thread_step_over_chain_enqueue (tp);
7733 }
7734 else
7735 {
7736 infrun_debug_printf ("step-over in progress: resume of %s deferred",
7737 target_pid_to_str (tp->ptid).c_str ());
7738 }
7739 }
7740 else
7741 {
7742 struct regcache *regcache = get_current_regcache ();
7743 int remove_bp;
7744 int remove_wps;
7745 step_over_what step_what;
7746
7747 /* Either the trap was not expected, but we are continuing
7748 anyway (if we got a signal, the user asked it be passed to
7749 the child)
7750 -- or --
7751 We got our expected trap, but decided we should resume from
7752 it.
7753
7754 We're going to run this baby now!
7755
7756 Note that insert_breakpoints won't try to re-insert
7757 already inserted breakpoints. Therefore, we don't
7758 care if breakpoints were already inserted, or not. */
7759
7760 /* If we need to step over a breakpoint, and we're not using
7761 displaced stepping to do so, insert all breakpoints
7762 (watchpoints, etc.) but the one we're stepping over, step one
7763 instruction, and then re-insert the breakpoint when that step
7764 is finished. */
7765
7766 step_what = thread_still_needs_step_over (ecs->event_thread);
7767
7768 remove_bp = (ecs->hit_singlestep_breakpoint
7769 || (step_what & STEP_OVER_BREAKPOINT));
7770 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7771
7772 /* We can't use displaced stepping if we need to step past a
7773 watchpoint. The instruction copied to the scratch pad would
7774 still trigger the watchpoint. */
7775 if (remove_bp
7776 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7777 {
7778 set_step_over_info (regcache->aspace (),
7779 regcache_read_pc (regcache), remove_wps,
7780 ecs->event_thread->global_num);
7781 }
7782 else if (remove_wps)
7783 set_step_over_info (NULL, 0, remove_wps, -1);
7784
7785 /* If we now need to do an in-line step-over, we need to stop
7786 all other threads. Note this must be done before
7787 insert_breakpoints below, because that removes the breakpoint
7788 we're about to step over, otherwise other threads could miss
7789 it. */
7790 if (step_over_info_valid_p () && target_is_non_stop_p ())
7791 stop_all_threads ();
7792
7793 /* Stop stepping if inserting breakpoints fails. */
7794 try
7795 {
7796 insert_breakpoints ();
7797 }
7798 catch (const gdb_exception_error &e)
7799 {
7800 exception_print (gdb_stderr, e);
7801 stop_waiting (ecs);
7802 clear_step_over_info ();
7803 return;
7804 }
7805
7806 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7807
7808 resume (ecs->event_thread->suspend.stop_signal);
7809 }
7810
7811 prepare_to_wait (ecs);
7812 }
7813
7814 /* Called when we should continue running the inferior, because the
7815 current event doesn't cause a user visible stop. This does the
7816 resuming part; waiting for the next event is done elsewhere. */
7817
7818 static void
7819 keep_going (struct execution_control_state *ecs)
7820 {
7821 if (ecs->event_thread->control.trap_expected
7822 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7823 ecs->event_thread->control.trap_expected = 0;
7824
7825 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7826 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7827 keep_going_pass_signal (ecs);
7828 }
7829
7830 /* This function normally comes after a resume, before
7831 handle_inferior_event exits. It takes care of any last bits of
7832 housekeeping, and sets the all-important wait_some_more flag. */
7833
7834 static void
7835 prepare_to_wait (struct execution_control_state *ecs)
7836 {
7837 infrun_debug_printf ("prepare_to_wait");
7838
7839 ecs->wait_some_more = 1;
7840
7841 /* If the target can't async, emulate it by marking the infrun event
7842 handler such that as soon as we get back to the event-loop, we
7843 immediately end up in fetch_inferior_event again calling
7844 target_wait. */
7845 if (!target_can_async_p ())
7846 mark_infrun_async_event_handler ();
7847 }
7848
7849 /* We are done with the step range of a step/next/si/ni command.
7850 Called once for each n of a "step n" operation. */
7851
7852 static void
7853 end_stepping_range (struct execution_control_state *ecs)
7854 {
7855 ecs->event_thread->control.stop_step = 1;
7856 stop_waiting (ecs);
7857 }
7858
7859 /* Several print_*_reason functions to print why the inferior has stopped.
7860 We always print something when the inferior exits, or receives a signal.
7861 The rest of the cases are dealt with later on in normal_stop and
7862 print_it_typical. Ideally there should be a call to one of these
7863 print_*_reason functions functions from handle_inferior_event each time
7864 stop_waiting is called.
7865
7866 Note that we don't call these directly, instead we delegate that to
7867 the interpreters, through observers. Interpreters then call these
7868 with whatever uiout is right. */
7869
7870 void
7871 print_end_stepping_range_reason (struct ui_out *uiout)
7872 {
7873 /* For CLI-like interpreters, print nothing. */
7874
7875 if (uiout->is_mi_like_p ())
7876 {
7877 uiout->field_string ("reason",
7878 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7879 }
7880 }
7881
7882 void
7883 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7884 {
7885 annotate_signalled ();
7886 if (uiout->is_mi_like_p ())
7887 uiout->field_string
7888 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7889 uiout->text ("\nProgram terminated with signal ");
7890 annotate_signal_name ();
7891 uiout->field_string ("signal-name",
7892 gdb_signal_to_name (siggnal));
7893 annotate_signal_name_end ();
7894 uiout->text (", ");
7895 annotate_signal_string ();
7896 uiout->field_string ("signal-meaning",
7897 gdb_signal_to_string (siggnal));
7898 annotate_signal_string_end ();
7899 uiout->text (".\n");
7900 uiout->text ("The program no longer exists.\n");
7901 }
7902
7903 void
7904 print_exited_reason (struct ui_out *uiout, int exitstatus)
7905 {
7906 struct inferior *inf = current_inferior ();
7907 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7908
7909 annotate_exited (exitstatus);
7910 if (exitstatus)
7911 {
7912 if (uiout->is_mi_like_p ())
7913 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7914 std::string exit_code_str
7915 = string_printf ("0%o", (unsigned int) exitstatus);
7916 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7917 plongest (inf->num), pidstr.c_str (),
7918 string_field ("exit-code", exit_code_str.c_str ()));
7919 }
7920 else
7921 {
7922 if (uiout->is_mi_like_p ())
7923 uiout->field_string
7924 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7925 uiout->message ("[Inferior %s (%s) exited normally]\n",
7926 plongest (inf->num), pidstr.c_str ());
7927 }
7928 }
7929
7930 void
7931 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7932 {
7933 struct thread_info *thr = inferior_thread ();
7934
7935 annotate_signal ();
7936
7937 if (uiout->is_mi_like_p ())
7938 ;
7939 else if (show_thread_that_caused_stop ())
7940 {
7941 const char *name;
7942
7943 uiout->text ("\nThread ");
7944 uiout->field_string ("thread-id", print_thread_id (thr));
7945
7946 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7947 if (name != NULL)
7948 {
7949 uiout->text (" \"");
7950 uiout->field_string ("name", name);
7951 uiout->text ("\"");
7952 }
7953 }
7954 else
7955 uiout->text ("\nProgram");
7956
7957 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7958 uiout->text (" stopped");
7959 else
7960 {
7961 uiout->text (" received signal ");
7962 annotate_signal_name ();
7963 if (uiout->is_mi_like_p ())
7964 uiout->field_string
7965 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7966 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7967 annotate_signal_name_end ();
7968 uiout->text (", ");
7969 annotate_signal_string ();
7970 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
7971
7972 struct regcache *regcache = get_current_regcache ();
7973 struct gdbarch *gdbarch = regcache->arch ();
7974 if (gdbarch_report_signal_info_p (gdbarch))
7975 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
7976
7977 annotate_signal_string_end ();
7978 }
7979 uiout->text (".\n");
7980 }
7981
7982 void
7983 print_no_history_reason (struct ui_out *uiout)
7984 {
7985 uiout->text ("\nNo more reverse-execution history.\n");
7986 }
7987
7988 /* Print current location without a level number, if we have changed
7989 functions or hit a breakpoint. Print source line if we have one.
7990 bpstat_print contains the logic deciding in detail what to print,
7991 based on the event(s) that just occurred. */
7992
7993 static void
7994 print_stop_location (struct target_waitstatus *ws)
7995 {
7996 int bpstat_ret;
7997 enum print_what source_flag;
7998 int do_frame_printing = 1;
7999 struct thread_info *tp = inferior_thread ();
8000
8001 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8002 switch (bpstat_ret)
8003 {
8004 case PRINT_UNKNOWN:
8005 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8006 should) carry around the function and does (or should) use
8007 that when doing a frame comparison. */
8008 if (tp->control.stop_step
8009 && frame_id_eq (tp->control.step_frame_id,
8010 get_frame_id (get_current_frame ()))
8011 && (tp->control.step_start_function
8012 == find_pc_function (tp->suspend.stop_pc)))
8013 {
8014 /* Finished step, just print source line. */
8015 source_flag = SRC_LINE;
8016 }
8017 else
8018 {
8019 /* Print location and source line. */
8020 source_flag = SRC_AND_LOC;
8021 }
8022 break;
8023 case PRINT_SRC_AND_LOC:
8024 /* Print location and source line. */
8025 source_flag = SRC_AND_LOC;
8026 break;
8027 case PRINT_SRC_ONLY:
8028 source_flag = SRC_LINE;
8029 break;
8030 case PRINT_NOTHING:
8031 /* Something bogus. */
8032 source_flag = SRC_LINE;
8033 do_frame_printing = 0;
8034 break;
8035 default:
8036 internal_error (__FILE__, __LINE__, _("Unknown value."));
8037 }
8038
8039 /* The behavior of this routine with respect to the source
8040 flag is:
8041 SRC_LINE: Print only source line
8042 LOCATION: Print only location
8043 SRC_AND_LOC: Print location and source line. */
8044 if (do_frame_printing)
8045 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8046 }
8047
8048 /* See infrun.h. */
8049
8050 void
8051 print_stop_event (struct ui_out *uiout, bool displays)
8052 {
8053 struct target_waitstatus last;
8054 struct thread_info *tp;
8055
8056 get_last_target_status (nullptr, nullptr, &last);
8057
8058 {
8059 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8060
8061 print_stop_location (&last);
8062
8063 /* Display the auto-display expressions. */
8064 if (displays)
8065 do_displays ();
8066 }
8067
8068 tp = inferior_thread ();
8069 if (tp->thread_fsm != NULL
8070 && tp->thread_fsm->finished_p ())
8071 {
8072 struct return_value_info *rv;
8073
8074 rv = tp->thread_fsm->return_value ();
8075 if (rv != NULL)
8076 print_return_value (uiout, rv);
8077 }
8078 }
8079
8080 /* See infrun.h. */
8081
8082 void
8083 maybe_remove_breakpoints (void)
8084 {
8085 if (!breakpoints_should_be_inserted_now () && target_has_execution ())
8086 {
8087 if (remove_breakpoints ())
8088 {
8089 target_terminal::ours_for_output ();
8090 printf_filtered (_("Cannot remove breakpoints because "
8091 "program is no longer writable.\nFurther "
8092 "execution is probably impossible.\n"));
8093 }
8094 }
8095 }
8096
8097 /* The execution context that just caused a normal stop. */
8098
8099 struct stop_context
8100 {
8101 stop_context ();
8102
8103 DISABLE_COPY_AND_ASSIGN (stop_context);
8104
8105 bool changed () const;
8106
8107 /* The stop ID. */
8108 ULONGEST stop_id;
8109
8110 /* The event PTID. */
8111
8112 ptid_t ptid;
8113
8114 /* If stopp for a thread event, this is the thread that caused the
8115 stop. */
8116 thread_info_ref thread;
8117
8118 /* The inferior that caused the stop. */
8119 int inf_num;
8120 };
8121
8122 /* Initializes a new stop context. If stopped for a thread event, this
8123 takes a strong reference to the thread. */
8124
8125 stop_context::stop_context ()
8126 {
8127 stop_id = get_stop_id ();
8128 ptid = inferior_ptid;
8129 inf_num = current_inferior ()->num;
8130
8131 if (inferior_ptid != null_ptid)
8132 {
8133 /* Take a strong reference so that the thread can't be deleted
8134 yet. */
8135 thread = thread_info_ref::new_reference (inferior_thread ());
8136 }
8137 }
8138
8139 /* Return true if the current context no longer matches the saved stop
8140 context. */
8141
8142 bool
8143 stop_context::changed () const
8144 {
8145 if (ptid != inferior_ptid)
8146 return true;
8147 if (inf_num != current_inferior ()->num)
8148 return true;
8149 if (thread != NULL && thread->state != THREAD_STOPPED)
8150 return true;
8151 if (get_stop_id () != stop_id)
8152 return true;
8153 return false;
8154 }
8155
8156 /* See infrun.h. */
8157
8158 int
8159 normal_stop (void)
8160 {
8161 struct target_waitstatus last;
8162
8163 get_last_target_status (nullptr, nullptr, &last);
8164
8165 new_stop_id ();
8166
8167 /* If an exception is thrown from this point on, make sure to
8168 propagate GDB's knowledge of the executing state to the
8169 frontend/user running state. A QUIT is an easy exception to see
8170 here, so do this before any filtered output. */
8171
8172 ptid_t finish_ptid = null_ptid;
8173
8174 if (!non_stop)
8175 finish_ptid = minus_one_ptid;
8176 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8177 || last.kind == TARGET_WAITKIND_EXITED)
8178 {
8179 /* On some targets, we may still have live threads in the
8180 inferior when we get a process exit event. E.g., for
8181 "checkpoint", when the current checkpoint/fork exits,
8182 linux-fork.c automatically switches to another fork from
8183 within target_mourn_inferior. */
8184 if (inferior_ptid != null_ptid)
8185 finish_ptid = ptid_t (inferior_ptid.pid ());
8186 }
8187 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8188 finish_ptid = inferior_ptid;
8189
8190 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8191 if (finish_ptid != null_ptid)
8192 {
8193 maybe_finish_thread_state.emplace
8194 (user_visible_resume_target (finish_ptid), finish_ptid);
8195 }
8196
8197 /* As we're presenting a stop, and potentially removing breakpoints,
8198 update the thread list so we can tell whether there are threads
8199 running on the target. With target remote, for example, we can
8200 only learn about new threads when we explicitly update the thread
8201 list. Do this before notifying the interpreters about signal
8202 stops, end of stepping ranges, etc., so that the "new thread"
8203 output is emitted before e.g., "Program received signal FOO",
8204 instead of after. */
8205 update_thread_list ();
8206
8207 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8208 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8209
8210 /* As with the notification of thread events, we want to delay
8211 notifying the user that we've switched thread context until
8212 the inferior actually stops.
8213
8214 There's no point in saying anything if the inferior has exited.
8215 Note that SIGNALLED here means "exited with a signal", not
8216 "received a signal".
8217
8218 Also skip saying anything in non-stop mode. In that mode, as we
8219 don't want GDB to switch threads behind the user's back, to avoid
8220 races where the user is typing a command to apply to thread x,
8221 but GDB switches to thread y before the user finishes entering
8222 the command, fetch_inferior_event installs a cleanup to restore
8223 the current thread back to the thread the user had selected right
8224 after this event is handled, so we're not really switching, only
8225 informing of a stop. */
8226 if (!non_stop
8227 && previous_inferior_ptid != inferior_ptid
8228 && target_has_execution ()
8229 && last.kind != TARGET_WAITKIND_SIGNALLED
8230 && last.kind != TARGET_WAITKIND_EXITED
8231 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8232 {
8233 SWITCH_THRU_ALL_UIS ()
8234 {
8235 target_terminal::ours_for_output ();
8236 printf_filtered (_("[Switching to %s]\n"),
8237 target_pid_to_str (inferior_ptid).c_str ());
8238 annotate_thread_changed ();
8239 }
8240 previous_inferior_ptid = inferior_ptid;
8241 }
8242
8243 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8244 {
8245 SWITCH_THRU_ALL_UIS ()
8246 if (current_ui->prompt_state == PROMPT_BLOCKED)
8247 {
8248 target_terminal::ours_for_output ();
8249 printf_filtered (_("No unwaited-for children left.\n"));
8250 }
8251 }
8252
8253 /* Note: this depends on the update_thread_list call above. */
8254 maybe_remove_breakpoints ();
8255
8256 /* If an auto-display called a function and that got a signal,
8257 delete that auto-display to avoid an infinite recursion. */
8258
8259 if (stopped_by_random_signal)
8260 disable_current_display ();
8261
8262 SWITCH_THRU_ALL_UIS ()
8263 {
8264 async_enable_stdin ();
8265 }
8266
8267 /* Let the user/frontend see the threads as stopped. */
8268 maybe_finish_thread_state.reset ();
8269
8270 /* Select innermost stack frame - i.e., current frame is frame 0,
8271 and current location is based on that. Handle the case where the
8272 dummy call is returning after being stopped. E.g. the dummy call
8273 previously hit a breakpoint. (If the dummy call returns
8274 normally, we won't reach here.) Do this before the stop hook is
8275 run, so that it doesn't get to see the temporary dummy frame,
8276 which is not where we'll present the stop. */
8277 if (has_stack_frames ())
8278 {
8279 if (stop_stack_dummy == STOP_STACK_DUMMY)
8280 {
8281 /* Pop the empty frame that contains the stack dummy. This
8282 also restores inferior state prior to the call (struct
8283 infcall_suspend_state). */
8284 struct frame_info *frame = get_current_frame ();
8285
8286 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8287 frame_pop (frame);
8288 /* frame_pop calls reinit_frame_cache as the last thing it
8289 does which means there's now no selected frame. */
8290 }
8291
8292 select_frame (get_current_frame ());
8293
8294 /* Set the current source location. */
8295 set_current_sal_from_frame (get_current_frame ());
8296 }
8297
8298 /* Look up the hook_stop and run it (CLI internally handles problem
8299 of stop_command's pre-hook not existing). */
8300 if (stop_command != NULL)
8301 {
8302 stop_context saved_context;
8303
8304 try
8305 {
8306 execute_cmd_pre_hook (stop_command);
8307 }
8308 catch (const gdb_exception &ex)
8309 {
8310 exception_fprintf (gdb_stderr, ex,
8311 "Error while running hook_stop:\n");
8312 }
8313
8314 /* If the stop hook resumes the target, then there's no point in
8315 trying to notify about the previous stop; its context is
8316 gone. Likewise if the command switches thread or inferior --
8317 the observers would print a stop for the wrong
8318 thread/inferior. */
8319 if (saved_context.changed ())
8320 return 1;
8321 }
8322
8323 /* Notify observers about the stop. This is where the interpreters
8324 print the stop event. */
8325 if (inferior_ptid != null_ptid)
8326 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8327 stop_print_frame);
8328 else
8329 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8330
8331 annotate_stopped ();
8332
8333 if (target_has_execution ())
8334 {
8335 if (last.kind != TARGET_WAITKIND_SIGNALLED
8336 && last.kind != TARGET_WAITKIND_EXITED
8337 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8338 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8339 Delete any breakpoint that is to be deleted at the next stop. */
8340 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8341 }
8342
8343 /* Try to get rid of automatically added inferiors that are no
8344 longer needed. Keeping those around slows down things linearly.
8345 Note that this never removes the current inferior. */
8346 prune_inferiors ();
8347
8348 return 0;
8349 }
8350 \f
8351 int
8352 signal_stop_state (int signo)
8353 {
8354 return signal_stop[signo];
8355 }
8356
8357 int
8358 signal_print_state (int signo)
8359 {
8360 return signal_print[signo];
8361 }
8362
8363 int
8364 signal_pass_state (int signo)
8365 {
8366 return signal_program[signo];
8367 }
8368
8369 static void
8370 signal_cache_update (int signo)
8371 {
8372 if (signo == -1)
8373 {
8374 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8375 signal_cache_update (signo);
8376
8377 return;
8378 }
8379
8380 signal_pass[signo] = (signal_stop[signo] == 0
8381 && signal_print[signo] == 0
8382 && signal_program[signo] == 1
8383 && signal_catch[signo] == 0);
8384 }
8385
8386 int
8387 signal_stop_update (int signo, int state)
8388 {
8389 int ret = signal_stop[signo];
8390
8391 signal_stop[signo] = state;
8392 signal_cache_update (signo);
8393 return ret;
8394 }
8395
8396 int
8397 signal_print_update (int signo, int state)
8398 {
8399 int ret = signal_print[signo];
8400
8401 signal_print[signo] = state;
8402 signal_cache_update (signo);
8403 return ret;
8404 }
8405
8406 int
8407 signal_pass_update (int signo, int state)
8408 {
8409 int ret = signal_program[signo];
8410
8411 signal_program[signo] = state;
8412 signal_cache_update (signo);
8413 return ret;
8414 }
8415
8416 /* Update the global 'signal_catch' from INFO and notify the
8417 target. */
8418
8419 void
8420 signal_catch_update (const unsigned int *info)
8421 {
8422 int i;
8423
8424 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8425 signal_catch[i] = info[i] > 0;
8426 signal_cache_update (-1);
8427 target_pass_signals (signal_pass);
8428 }
8429
8430 static void
8431 sig_print_header (void)
8432 {
8433 printf_filtered (_("Signal Stop\tPrint\tPass "
8434 "to program\tDescription\n"));
8435 }
8436
8437 static void
8438 sig_print_info (enum gdb_signal oursig)
8439 {
8440 const char *name = gdb_signal_to_name (oursig);
8441 int name_padding = 13 - strlen (name);
8442
8443 if (name_padding <= 0)
8444 name_padding = 0;
8445
8446 printf_filtered ("%s", name);
8447 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8448 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8449 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8450 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8451 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8452 }
8453
8454 /* Specify how various signals in the inferior should be handled. */
8455
8456 static void
8457 handle_command (const char *args, int from_tty)
8458 {
8459 int digits, wordlen;
8460 int sigfirst, siglast;
8461 enum gdb_signal oursig;
8462 int allsigs;
8463
8464 if (args == NULL)
8465 {
8466 error_no_arg (_("signal to handle"));
8467 }
8468
8469 /* Allocate and zero an array of flags for which signals to handle. */
8470
8471 const size_t nsigs = GDB_SIGNAL_LAST;
8472 unsigned char sigs[nsigs] {};
8473
8474 /* Break the command line up into args. */
8475
8476 gdb_argv built_argv (args);
8477
8478 /* Walk through the args, looking for signal oursigs, signal names, and
8479 actions. Signal numbers and signal names may be interspersed with
8480 actions, with the actions being performed for all signals cumulatively
8481 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8482
8483 for (char *arg : built_argv)
8484 {
8485 wordlen = strlen (arg);
8486 for (digits = 0; isdigit (arg[digits]); digits++)
8487 {;
8488 }
8489 allsigs = 0;
8490 sigfirst = siglast = -1;
8491
8492 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8493 {
8494 /* Apply action to all signals except those used by the
8495 debugger. Silently skip those. */
8496 allsigs = 1;
8497 sigfirst = 0;
8498 siglast = nsigs - 1;
8499 }
8500 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8501 {
8502 SET_SIGS (nsigs, sigs, signal_stop);
8503 SET_SIGS (nsigs, sigs, signal_print);
8504 }
8505 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8506 {
8507 UNSET_SIGS (nsigs, sigs, signal_program);
8508 }
8509 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8510 {
8511 SET_SIGS (nsigs, sigs, signal_print);
8512 }
8513 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8514 {
8515 SET_SIGS (nsigs, sigs, signal_program);
8516 }
8517 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8518 {
8519 UNSET_SIGS (nsigs, sigs, signal_stop);
8520 }
8521 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8522 {
8523 SET_SIGS (nsigs, sigs, signal_program);
8524 }
8525 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8526 {
8527 UNSET_SIGS (nsigs, sigs, signal_print);
8528 UNSET_SIGS (nsigs, sigs, signal_stop);
8529 }
8530 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8531 {
8532 UNSET_SIGS (nsigs, sigs, signal_program);
8533 }
8534 else if (digits > 0)
8535 {
8536 /* It is numeric. The numeric signal refers to our own
8537 internal signal numbering from target.h, not to host/target
8538 signal number. This is a feature; users really should be
8539 using symbolic names anyway, and the common ones like
8540 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8541
8542 sigfirst = siglast = (int)
8543 gdb_signal_from_command (atoi (arg));
8544 if (arg[digits] == '-')
8545 {
8546 siglast = (int)
8547 gdb_signal_from_command (atoi (arg + digits + 1));
8548 }
8549 if (sigfirst > siglast)
8550 {
8551 /* Bet he didn't figure we'd think of this case... */
8552 std::swap (sigfirst, siglast);
8553 }
8554 }
8555 else
8556 {
8557 oursig = gdb_signal_from_name (arg);
8558 if (oursig != GDB_SIGNAL_UNKNOWN)
8559 {
8560 sigfirst = siglast = (int) oursig;
8561 }
8562 else
8563 {
8564 /* Not a number and not a recognized flag word => complain. */
8565 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8566 }
8567 }
8568
8569 /* If any signal numbers or symbol names were found, set flags for
8570 which signals to apply actions to. */
8571
8572 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8573 {
8574 switch ((enum gdb_signal) signum)
8575 {
8576 case GDB_SIGNAL_TRAP:
8577 case GDB_SIGNAL_INT:
8578 if (!allsigs && !sigs[signum])
8579 {
8580 if (query (_("%s is used by the debugger.\n\
8581 Are you sure you want to change it? "),
8582 gdb_signal_to_name ((enum gdb_signal) signum)))
8583 {
8584 sigs[signum] = 1;
8585 }
8586 else
8587 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8588 }
8589 break;
8590 case GDB_SIGNAL_0:
8591 case GDB_SIGNAL_DEFAULT:
8592 case GDB_SIGNAL_UNKNOWN:
8593 /* Make sure that "all" doesn't print these. */
8594 break;
8595 default:
8596 sigs[signum] = 1;
8597 break;
8598 }
8599 }
8600 }
8601
8602 for (int signum = 0; signum < nsigs; signum++)
8603 if (sigs[signum])
8604 {
8605 signal_cache_update (-1);
8606 target_pass_signals (signal_pass);
8607 target_program_signals (signal_program);
8608
8609 if (from_tty)
8610 {
8611 /* Show the results. */
8612 sig_print_header ();
8613 for (; signum < nsigs; signum++)
8614 if (sigs[signum])
8615 sig_print_info ((enum gdb_signal) signum);
8616 }
8617
8618 break;
8619 }
8620 }
8621
8622 /* Complete the "handle" command. */
8623
8624 static void
8625 handle_completer (struct cmd_list_element *ignore,
8626 completion_tracker &tracker,
8627 const char *text, const char *word)
8628 {
8629 static const char * const keywords[] =
8630 {
8631 "all",
8632 "stop",
8633 "ignore",
8634 "print",
8635 "pass",
8636 "nostop",
8637 "noignore",
8638 "noprint",
8639 "nopass",
8640 NULL,
8641 };
8642
8643 signal_completer (ignore, tracker, text, word);
8644 complete_on_enum (tracker, keywords, word, word);
8645 }
8646
8647 enum gdb_signal
8648 gdb_signal_from_command (int num)
8649 {
8650 if (num >= 1 && num <= 15)
8651 return (enum gdb_signal) num;
8652 error (_("Only signals 1-15 are valid as numeric signals.\n\
8653 Use \"info signals\" for a list of symbolic signals."));
8654 }
8655
8656 /* Print current contents of the tables set by the handle command.
8657 It is possible we should just be printing signals actually used
8658 by the current target (but for things to work right when switching
8659 targets, all signals should be in the signal tables). */
8660
8661 static void
8662 info_signals_command (const char *signum_exp, int from_tty)
8663 {
8664 enum gdb_signal oursig;
8665
8666 sig_print_header ();
8667
8668 if (signum_exp)
8669 {
8670 /* First see if this is a symbol name. */
8671 oursig = gdb_signal_from_name (signum_exp);
8672 if (oursig == GDB_SIGNAL_UNKNOWN)
8673 {
8674 /* No, try numeric. */
8675 oursig =
8676 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8677 }
8678 sig_print_info (oursig);
8679 return;
8680 }
8681
8682 printf_filtered ("\n");
8683 /* These ugly casts brought to you by the native VAX compiler. */
8684 for (oursig = GDB_SIGNAL_FIRST;
8685 (int) oursig < (int) GDB_SIGNAL_LAST;
8686 oursig = (enum gdb_signal) ((int) oursig + 1))
8687 {
8688 QUIT;
8689
8690 if (oursig != GDB_SIGNAL_UNKNOWN
8691 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8692 sig_print_info (oursig);
8693 }
8694
8695 printf_filtered (_("\nUse the \"handle\" command "
8696 "to change these tables.\n"));
8697 }
8698
8699 /* The $_siginfo convenience variable is a bit special. We don't know
8700 for sure the type of the value until we actually have a chance to
8701 fetch the data. The type can change depending on gdbarch, so it is
8702 also dependent on which thread you have selected.
8703
8704 1. making $_siginfo be an internalvar that creates a new value on
8705 access.
8706
8707 2. making the value of $_siginfo be an lval_computed value. */
8708
8709 /* This function implements the lval_computed support for reading a
8710 $_siginfo value. */
8711
8712 static void
8713 siginfo_value_read (struct value *v)
8714 {
8715 LONGEST transferred;
8716
8717 /* If we can access registers, so can we access $_siginfo. Likewise
8718 vice versa. */
8719 validate_registers_access ();
8720
8721 transferred =
8722 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8723 NULL,
8724 value_contents_all_raw (v),
8725 value_offset (v),
8726 TYPE_LENGTH (value_type (v)));
8727
8728 if (transferred != TYPE_LENGTH (value_type (v)))
8729 error (_("Unable to read siginfo"));
8730 }
8731
8732 /* This function implements the lval_computed support for writing a
8733 $_siginfo value. */
8734
8735 static void
8736 siginfo_value_write (struct value *v, struct value *fromval)
8737 {
8738 LONGEST transferred;
8739
8740 /* If we can access registers, so can we access $_siginfo. Likewise
8741 vice versa. */
8742 validate_registers_access ();
8743
8744 transferred = target_write (current_top_target (),
8745 TARGET_OBJECT_SIGNAL_INFO,
8746 NULL,
8747 value_contents_all_raw (fromval),
8748 value_offset (v),
8749 TYPE_LENGTH (value_type (fromval)));
8750
8751 if (transferred != TYPE_LENGTH (value_type (fromval)))
8752 error (_("Unable to write siginfo"));
8753 }
8754
8755 static const struct lval_funcs siginfo_value_funcs =
8756 {
8757 siginfo_value_read,
8758 siginfo_value_write
8759 };
8760
8761 /* Return a new value with the correct type for the siginfo object of
8762 the current thread using architecture GDBARCH. Return a void value
8763 if there's no object available. */
8764
8765 static struct value *
8766 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8767 void *ignore)
8768 {
8769 if (target_has_stack ()
8770 && inferior_ptid != null_ptid
8771 && gdbarch_get_siginfo_type_p (gdbarch))
8772 {
8773 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8774
8775 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8776 }
8777
8778 return allocate_value (builtin_type (gdbarch)->builtin_void);
8779 }
8780
8781 \f
8782 /* infcall_suspend_state contains state about the program itself like its
8783 registers and any signal it received when it last stopped.
8784 This state must be restored regardless of how the inferior function call
8785 ends (either successfully, or after it hits a breakpoint or signal)
8786 if the program is to properly continue where it left off. */
8787
8788 class infcall_suspend_state
8789 {
8790 public:
8791 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8792 once the inferior function call has finished. */
8793 infcall_suspend_state (struct gdbarch *gdbarch,
8794 const struct thread_info *tp,
8795 struct regcache *regcache)
8796 : m_thread_suspend (tp->suspend),
8797 m_registers (new readonly_detached_regcache (*regcache))
8798 {
8799 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8800
8801 if (gdbarch_get_siginfo_type_p (gdbarch))
8802 {
8803 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8804 size_t len = TYPE_LENGTH (type);
8805
8806 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8807
8808 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8809 siginfo_data.get (), 0, len) != len)
8810 {
8811 /* Errors ignored. */
8812 siginfo_data.reset (nullptr);
8813 }
8814 }
8815
8816 if (siginfo_data)
8817 {
8818 m_siginfo_gdbarch = gdbarch;
8819 m_siginfo_data = std::move (siginfo_data);
8820 }
8821 }
8822
8823 /* Return a pointer to the stored register state. */
8824
8825 readonly_detached_regcache *registers () const
8826 {
8827 return m_registers.get ();
8828 }
8829
8830 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8831
8832 void restore (struct gdbarch *gdbarch,
8833 struct thread_info *tp,
8834 struct regcache *regcache) const
8835 {
8836 tp->suspend = m_thread_suspend;
8837
8838 if (m_siginfo_gdbarch == gdbarch)
8839 {
8840 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8841
8842 /* Errors ignored. */
8843 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8844 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8845 }
8846
8847 /* The inferior can be gone if the user types "print exit(0)"
8848 (and perhaps other times). */
8849 if (target_has_execution ())
8850 /* NB: The register write goes through to the target. */
8851 regcache->restore (registers ());
8852 }
8853
8854 private:
8855 /* How the current thread stopped before the inferior function call was
8856 executed. */
8857 struct thread_suspend_state m_thread_suspend;
8858
8859 /* The registers before the inferior function call was executed. */
8860 std::unique_ptr<readonly_detached_regcache> m_registers;
8861
8862 /* Format of SIGINFO_DATA or NULL if it is not present. */
8863 struct gdbarch *m_siginfo_gdbarch = nullptr;
8864
8865 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8866 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8867 content would be invalid. */
8868 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8869 };
8870
8871 infcall_suspend_state_up
8872 save_infcall_suspend_state ()
8873 {
8874 struct thread_info *tp = inferior_thread ();
8875 struct regcache *regcache = get_current_regcache ();
8876 struct gdbarch *gdbarch = regcache->arch ();
8877
8878 infcall_suspend_state_up inf_state
8879 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8880
8881 /* Having saved the current state, adjust the thread state, discarding
8882 any stop signal information. The stop signal is not useful when
8883 starting an inferior function call, and run_inferior_call will not use
8884 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8885 tp->suspend.stop_signal = GDB_SIGNAL_0;
8886
8887 return inf_state;
8888 }
8889
8890 /* Restore inferior session state to INF_STATE. */
8891
8892 void
8893 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8894 {
8895 struct thread_info *tp = inferior_thread ();
8896 struct regcache *regcache = get_current_regcache ();
8897 struct gdbarch *gdbarch = regcache->arch ();
8898
8899 inf_state->restore (gdbarch, tp, regcache);
8900 discard_infcall_suspend_state (inf_state);
8901 }
8902
8903 void
8904 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8905 {
8906 delete inf_state;
8907 }
8908
8909 readonly_detached_regcache *
8910 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8911 {
8912 return inf_state->registers ();
8913 }
8914
8915 /* infcall_control_state contains state regarding gdb's control of the
8916 inferior itself like stepping control. It also contains session state like
8917 the user's currently selected frame. */
8918
8919 struct infcall_control_state
8920 {
8921 struct thread_control_state thread_control;
8922 struct inferior_control_state inferior_control;
8923
8924 /* Other fields: */
8925 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8926 int stopped_by_random_signal = 0;
8927
8928 /* ID and level of the selected frame when the inferior function
8929 call was made. */
8930 struct frame_id selected_frame_id {};
8931 int selected_frame_level = -1;
8932 };
8933
8934 /* Save all of the information associated with the inferior<==>gdb
8935 connection. */
8936
8937 infcall_control_state_up
8938 save_infcall_control_state ()
8939 {
8940 infcall_control_state_up inf_status (new struct infcall_control_state);
8941 struct thread_info *tp = inferior_thread ();
8942 struct inferior *inf = current_inferior ();
8943
8944 inf_status->thread_control = tp->control;
8945 inf_status->inferior_control = inf->control;
8946
8947 tp->control.step_resume_breakpoint = NULL;
8948 tp->control.exception_resume_breakpoint = NULL;
8949
8950 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8951 chain. If caller's caller is walking the chain, they'll be happier if we
8952 hand them back the original chain when restore_infcall_control_state is
8953 called. */
8954 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8955
8956 /* Other fields: */
8957 inf_status->stop_stack_dummy = stop_stack_dummy;
8958 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8959
8960 save_selected_frame (&inf_status->selected_frame_id,
8961 &inf_status->selected_frame_level);
8962
8963 return inf_status;
8964 }
8965
8966 /* Restore inferior session state to INF_STATUS. */
8967
8968 void
8969 restore_infcall_control_state (struct infcall_control_state *inf_status)
8970 {
8971 struct thread_info *tp = inferior_thread ();
8972 struct inferior *inf = current_inferior ();
8973
8974 if (tp->control.step_resume_breakpoint)
8975 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8976
8977 if (tp->control.exception_resume_breakpoint)
8978 tp->control.exception_resume_breakpoint->disposition
8979 = disp_del_at_next_stop;
8980
8981 /* Handle the bpstat_copy of the chain. */
8982 bpstat_clear (&tp->control.stop_bpstat);
8983
8984 tp->control = inf_status->thread_control;
8985 inf->control = inf_status->inferior_control;
8986
8987 /* Other fields: */
8988 stop_stack_dummy = inf_status->stop_stack_dummy;
8989 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8990
8991 if (target_has_stack ())
8992 {
8993 restore_selected_frame (inf_status->selected_frame_id,
8994 inf_status->selected_frame_level);
8995 }
8996
8997 delete inf_status;
8998 }
8999
9000 void
9001 discard_infcall_control_state (struct infcall_control_state *inf_status)
9002 {
9003 if (inf_status->thread_control.step_resume_breakpoint)
9004 inf_status->thread_control.step_resume_breakpoint->disposition
9005 = disp_del_at_next_stop;
9006
9007 if (inf_status->thread_control.exception_resume_breakpoint)
9008 inf_status->thread_control.exception_resume_breakpoint->disposition
9009 = disp_del_at_next_stop;
9010
9011 /* See save_infcall_control_state for info on stop_bpstat. */
9012 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9013
9014 delete inf_status;
9015 }
9016 \f
9017 /* See infrun.h. */
9018
9019 void
9020 clear_exit_convenience_vars (void)
9021 {
9022 clear_internalvar (lookup_internalvar ("_exitsignal"));
9023 clear_internalvar (lookup_internalvar ("_exitcode"));
9024 }
9025 \f
9026
9027 /* User interface for reverse debugging:
9028 Set exec-direction / show exec-direction commands
9029 (returns error unless target implements to_set_exec_direction method). */
9030
9031 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9032 static const char exec_forward[] = "forward";
9033 static const char exec_reverse[] = "reverse";
9034 static const char *exec_direction = exec_forward;
9035 static const char *const exec_direction_names[] = {
9036 exec_forward,
9037 exec_reverse,
9038 NULL
9039 };
9040
9041 static void
9042 set_exec_direction_func (const char *args, int from_tty,
9043 struct cmd_list_element *cmd)
9044 {
9045 if (target_can_execute_reverse ())
9046 {
9047 if (!strcmp (exec_direction, exec_forward))
9048 execution_direction = EXEC_FORWARD;
9049 else if (!strcmp (exec_direction, exec_reverse))
9050 execution_direction = EXEC_REVERSE;
9051 }
9052 else
9053 {
9054 exec_direction = exec_forward;
9055 error (_("Target does not support this operation."));
9056 }
9057 }
9058
9059 static void
9060 show_exec_direction_func (struct ui_file *out, int from_tty,
9061 struct cmd_list_element *cmd, const char *value)
9062 {
9063 switch (execution_direction) {
9064 case EXEC_FORWARD:
9065 fprintf_filtered (out, _("Forward.\n"));
9066 break;
9067 case EXEC_REVERSE:
9068 fprintf_filtered (out, _("Reverse.\n"));
9069 break;
9070 default:
9071 internal_error (__FILE__, __LINE__,
9072 _("bogus execution_direction value: %d"),
9073 (int) execution_direction);
9074 }
9075 }
9076
9077 static void
9078 show_schedule_multiple (struct ui_file *file, int from_tty,
9079 struct cmd_list_element *c, const char *value)
9080 {
9081 fprintf_filtered (file, _("Resuming the execution of threads "
9082 "of all processes is %s.\n"), value);
9083 }
9084
9085 /* Implementation of `siginfo' variable. */
9086
9087 static const struct internalvar_funcs siginfo_funcs =
9088 {
9089 siginfo_make_value,
9090 NULL,
9091 NULL
9092 };
9093
9094 /* Callback for infrun's target events source. This is marked when a
9095 thread has a pending status to process. */
9096
9097 static void
9098 infrun_async_inferior_event_handler (gdb_client_data data)
9099 {
9100 inferior_event_handler (INF_REG_EVENT);
9101 }
9102
9103 #if GDB_SELF_TEST
9104 namespace selftests
9105 {
9106
9107 /* Verify that when two threads with the same ptid exist (from two different
9108 targets) and one of them changes ptid, we only update inferior_ptid if
9109 it is appropriate. */
9110
9111 static void
9112 infrun_thread_ptid_changed ()
9113 {
9114 gdbarch *arch = current_inferior ()->gdbarch;
9115
9116 /* The thread which inferior_ptid represents changes ptid. */
9117 {
9118 scoped_restore_current_pspace_and_thread restore;
9119
9120 scoped_mock_context<test_target_ops> target1 (arch);
9121 scoped_mock_context<test_target_ops> target2 (arch);
9122 target2.mock_inferior.next = &target1.mock_inferior;
9123
9124 ptid_t old_ptid (111, 222);
9125 ptid_t new_ptid (111, 333);
9126
9127 target1.mock_inferior.pid = old_ptid.pid ();
9128 target1.mock_thread.ptid = old_ptid;
9129 target2.mock_inferior.pid = old_ptid.pid ();
9130 target2.mock_thread.ptid = old_ptid;
9131
9132 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9133 set_current_inferior (&target1.mock_inferior);
9134
9135 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9136
9137 gdb_assert (inferior_ptid == new_ptid);
9138 }
9139
9140 /* A thread with the same ptid as inferior_ptid, but from another target,
9141 changes ptid. */
9142 {
9143 scoped_restore_current_pspace_and_thread restore;
9144
9145 scoped_mock_context<test_target_ops> target1 (arch);
9146 scoped_mock_context<test_target_ops> target2 (arch);
9147 target2.mock_inferior.next = &target1.mock_inferior;
9148
9149 ptid_t old_ptid (111, 222);
9150 ptid_t new_ptid (111, 333);
9151
9152 target1.mock_inferior.pid = old_ptid.pid ();
9153 target1.mock_thread.ptid = old_ptid;
9154 target2.mock_inferior.pid = old_ptid.pid ();
9155 target2.mock_thread.ptid = old_ptid;
9156
9157 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9158 set_current_inferior (&target2.mock_inferior);
9159
9160 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9161
9162 gdb_assert (inferior_ptid == old_ptid);
9163 }
9164 }
9165
9166 } /* namespace selftests */
9167
9168 #endif /* GDB_SELF_TEST */
9169
9170 void _initialize_infrun ();
9171 void
9172 _initialize_infrun ()
9173 {
9174 struct cmd_list_element *c;
9175
9176 /* Register extra event sources in the event loop. */
9177 infrun_async_inferior_event_token
9178 = create_async_event_handler (infrun_async_inferior_event_handler, NULL,
9179 "infrun");
9180
9181 add_info ("signals", info_signals_command, _("\
9182 What debugger does when program gets various signals.\n\
9183 Specify a signal as argument to print info on that signal only."));
9184 add_info_alias ("handle", "signals", 0);
9185
9186 c = add_com ("handle", class_run, handle_command, _("\
9187 Specify how to handle signals.\n\
9188 Usage: handle SIGNAL [ACTIONS]\n\
9189 Args are signals and actions to apply to those signals.\n\
9190 If no actions are specified, the current settings for the specified signals\n\
9191 will be displayed instead.\n\
9192 \n\
9193 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9194 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9195 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9196 The special arg \"all\" is recognized to mean all signals except those\n\
9197 used by the debugger, typically SIGTRAP and SIGINT.\n\
9198 \n\
9199 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9200 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9201 Stop means reenter debugger if this signal happens (implies print).\n\
9202 Print means print a message if this signal happens.\n\
9203 Pass means let program see this signal; otherwise program doesn't know.\n\
9204 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9205 Pass and Stop may be combined.\n\
9206 \n\
9207 Multiple signals may be specified. Signal numbers and signal names\n\
9208 may be interspersed with actions, with the actions being performed for\n\
9209 all signals cumulatively specified."));
9210 set_cmd_completer (c, handle_completer);
9211
9212 if (!dbx_commands)
9213 stop_command = add_cmd ("stop", class_obscure,
9214 not_just_help_class_command, _("\
9215 There is no `stop' command, but you can set a hook on `stop'.\n\
9216 This allows you to set a list of commands to be run each time execution\n\
9217 of the program stops."), &cmdlist);
9218
9219 add_setshow_boolean_cmd
9220 ("infrun", class_maintenance, &debug_infrun,
9221 _("Set inferior debugging."),
9222 _("Show inferior debugging."),
9223 _("When non-zero, inferior specific debugging is enabled."),
9224 NULL, show_debug_infrun, &setdebuglist, &showdebuglist);
9225
9226 add_setshow_boolean_cmd ("non-stop", no_class,
9227 &non_stop_1, _("\
9228 Set whether gdb controls the inferior in non-stop mode."), _("\
9229 Show whether gdb controls the inferior in non-stop mode."), _("\
9230 When debugging a multi-threaded program and this setting is\n\
9231 off (the default, also called all-stop mode), when one thread stops\n\
9232 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9233 all other threads in the program while you interact with the thread of\n\
9234 interest. When you continue or step a thread, you can allow the other\n\
9235 threads to run, or have them remain stopped, but while you inspect any\n\
9236 thread's state, all threads stop.\n\
9237 \n\
9238 In non-stop mode, when one thread stops, other threads can continue\n\
9239 to run freely. You'll be able to step each thread independently,\n\
9240 leave it stopped or free to run as needed."),
9241 set_non_stop,
9242 show_non_stop,
9243 &setlist,
9244 &showlist);
9245
9246 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9247 {
9248 signal_stop[i] = 1;
9249 signal_print[i] = 1;
9250 signal_program[i] = 1;
9251 signal_catch[i] = 0;
9252 }
9253
9254 /* Signals caused by debugger's own actions should not be given to
9255 the program afterwards.
9256
9257 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9258 explicitly specifies that it should be delivered to the target
9259 program. Typically, that would occur when a user is debugging a
9260 target monitor on a simulator: the target monitor sets a
9261 breakpoint; the simulator encounters this breakpoint and halts
9262 the simulation handing control to GDB; GDB, noting that the stop
9263 address doesn't map to any known breakpoint, returns control back
9264 to the simulator; the simulator then delivers the hardware
9265 equivalent of a GDB_SIGNAL_TRAP to the program being
9266 debugged. */
9267 signal_program[GDB_SIGNAL_TRAP] = 0;
9268 signal_program[GDB_SIGNAL_INT] = 0;
9269
9270 /* Signals that are not errors should not normally enter the debugger. */
9271 signal_stop[GDB_SIGNAL_ALRM] = 0;
9272 signal_print[GDB_SIGNAL_ALRM] = 0;
9273 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9274 signal_print[GDB_SIGNAL_VTALRM] = 0;
9275 signal_stop[GDB_SIGNAL_PROF] = 0;
9276 signal_print[GDB_SIGNAL_PROF] = 0;
9277 signal_stop[GDB_SIGNAL_CHLD] = 0;
9278 signal_print[GDB_SIGNAL_CHLD] = 0;
9279 signal_stop[GDB_SIGNAL_IO] = 0;
9280 signal_print[GDB_SIGNAL_IO] = 0;
9281 signal_stop[GDB_SIGNAL_POLL] = 0;
9282 signal_print[GDB_SIGNAL_POLL] = 0;
9283 signal_stop[GDB_SIGNAL_URG] = 0;
9284 signal_print[GDB_SIGNAL_URG] = 0;
9285 signal_stop[GDB_SIGNAL_WINCH] = 0;
9286 signal_print[GDB_SIGNAL_WINCH] = 0;
9287 signal_stop[GDB_SIGNAL_PRIO] = 0;
9288 signal_print[GDB_SIGNAL_PRIO] = 0;
9289
9290 /* These signals are used internally by user-level thread
9291 implementations. (See signal(5) on Solaris.) Like the above
9292 signals, a healthy program receives and handles them as part of
9293 its normal operation. */
9294 signal_stop[GDB_SIGNAL_LWP] = 0;
9295 signal_print[GDB_SIGNAL_LWP] = 0;
9296 signal_stop[GDB_SIGNAL_WAITING] = 0;
9297 signal_print[GDB_SIGNAL_WAITING] = 0;
9298 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9299 signal_print[GDB_SIGNAL_CANCEL] = 0;
9300 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9301 signal_print[GDB_SIGNAL_LIBRT] = 0;
9302
9303 /* Update cached state. */
9304 signal_cache_update (-1);
9305
9306 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9307 &stop_on_solib_events, _("\
9308 Set stopping for shared library events."), _("\
9309 Show stopping for shared library events."), _("\
9310 If nonzero, gdb will give control to the user when the dynamic linker\n\
9311 notifies gdb of shared library events. The most common event of interest\n\
9312 to the user would be loading/unloading of a new library."),
9313 set_stop_on_solib_events,
9314 show_stop_on_solib_events,
9315 &setlist, &showlist);
9316
9317 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9318 follow_fork_mode_kind_names,
9319 &follow_fork_mode_string, _("\
9320 Set debugger response to a program call of fork or vfork."), _("\
9321 Show debugger response to a program call of fork or vfork."), _("\
9322 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9323 parent - the original process is debugged after a fork\n\
9324 child - the new process is debugged after a fork\n\
9325 The unfollowed process will continue to run.\n\
9326 By default, the debugger will follow the parent process."),
9327 NULL,
9328 show_follow_fork_mode_string,
9329 &setlist, &showlist);
9330
9331 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9332 follow_exec_mode_names,
9333 &follow_exec_mode_string, _("\
9334 Set debugger response to a program call of exec."), _("\
9335 Show debugger response to a program call of exec."), _("\
9336 An exec call replaces the program image of a process.\n\
9337 \n\
9338 follow-exec-mode can be:\n\
9339 \n\
9340 new - the debugger creates a new inferior and rebinds the process\n\
9341 to this new inferior. The program the process was running before\n\
9342 the exec call can be restarted afterwards by restarting the original\n\
9343 inferior.\n\
9344 \n\
9345 same - the debugger keeps the process bound to the same inferior.\n\
9346 The new executable image replaces the previous executable loaded in\n\
9347 the inferior. Restarting the inferior after the exec call restarts\n\
9348 the executable the process was running after the exec call.\n\
9349 \n\
9350 By default, the debugger will use the same inferior."),
9351 NULL,
9352 show_follow_exec_mode_string,
9353 &setlist, &showlist);
9354
9355 add_setshow_enum_cmd ("scheduler-locking", class_run,
9356 scheduler_enums, &scheduler_mode, _("\
9357 Set mode for locking scheduler during execution."), _("\
9358 Show mode for locking scheduler during execution."), _("\
9359 off == no locking (threads may preempt at any time)\n\
9360 on == full locking (no thread except the current thread may run)\n\
9361 This applies to both normal execution and replay mode.\n\
9362 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9363 In this mode, other threads may run during other commands.\n\
9364 This applies to both normal execution and replay mode.\n\
9365 replay == scheduler locked in replay mode and unlocked during normal execution."),
9366 set_schedlock_func, /* traps on target vector */
9367 show_scheduler_mode,
9368 &setlist, &showlist);
9369
9370 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9371 Set mode for resuming threads of all processes."), _("\
9372 Show mode for resuming threads of all processes."), _("\
9373 When on, execution commands (such as 'continue' or 'next') resume all\n\
9374 threads of all processes. When off (which is the default), execution\n\
9375 commands only resume the threads of the current process. The set of\n\
9376 threads that are resumed is further refined by the scheduler-locking\n\
9377 mode (see help set scheduler-locking)."),
9378 NULL,
9379 show_schedule_multiple,
9380 &setlist, &showlist);
9381
9382 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9383 Set mode of the step operation."), _("\
9384 Show mode of the step operation."), _("\
9385 When set, doing a step over a function without debug line information\n\
9386 will stop at the first instruction of that function. Otherwise, the\n\
9387 function is skipped and the step command stops at a different source line."),
9388 NULL,
9389 show_step_stop_if_no_debug,
9390 &setlist, &showlist);
9391
9392 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9393 &can_use_displaced_stepping, _("\
9394 Set debugger's willingness to use displaced stepping."), _("\
9395 Show debugger's willingness to use displaced stepping."), _("\
9396 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9397 supported by the target architecture. If off, gdb will not use displaced\n\
9398 stepping to step over breakpoints, even if such is supported by the target\n\
9399 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9400 if the target architecture supports it and non-stop mode is active, but will not\n\
9401 use it in all-stop mode (see help set non-stop)."),
9402 NULL,
9403 show_can_use_displaced_stepping,
9404 &setlist, &showlist);
9405
9406 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9407 &exec_direction, _("Set direction of execution.\n\
9408 Options are 'forward' or 'reverse'."),
9409 _("Show direction of execution (forward/reverse)."),
9410 _("Tells gdb whether to execute forward or backward."),
9411 set_exec_direction_func, show_exec_direction_func,
9412 &setlist, &showlist);
9413
9414 /* Set/show detach-on-fork: user-settable mode. */
9415
9416 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9417 Set whether gdb will detach the child of a fork."), _("\
9418 Show whether gdb will detach the child of a fork."), _("\
9419 Tells gdb whether to detach the child of a fork."),
9420 NULL, NULL, &setlist, &showlist);
9421
9422 /* Set/show disable address space randomization mode. */
9423
9424 add_setshow_boolean_cmd ("disable-randomization", class_support,
9425 &disable_randomization, _("\
9426 Set disabling of debuggee's virtual address space randomization."), _("\
9427 Show disabling of debuggee's virtual address space randomization."), _("\
9428 When this mode is on (which is the default), randomization of the virtual\n\
9429 address space is disabled. Standalone programs run with the randomization\n\
9430 enabled by default on some platforms."),
9431 &set_disable_randomization,
9432 &show_disable_randomization,
9433 &setlist, &showlist);
9434
9435 /* ptid initializations */
9436 inferior_ptid = null_ptid;
9437 target_last_wait_ptid = minus_one_ptid;
9438
9439 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9440 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9441 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9442 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9443 gdb::observers::inferior_execd.attach (infrun_inferior_execd);
9444
9445 /* Explicitly create without lookup, since that tries to create a
9446 value with a void typed value, and when we get here, gdbarch
9447 isn't initialized yet. At this point, we're quite sure there
9448 isn't another convenience variable of the same name. */
9449 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9450
9451 add_setshow_boolean_cmd ("observer", no_class,
9452 &observer_mode_1, _("\
9453 Set whether gdb controls the inferior in observer mode."), _("\
9454 Show whether gdb controls the inferior in observer mode."), _("\
9455 In observer mode, GDB can get data from the inferior, but not\n\
9456 affect its execution. Registers and memory may not be changed,\n\
9457 breakpoints may not be set, and the program cannot be interrupted\n\
9458 or signalled."),
9459 set_observer_mode,
9460 show_observer_mode,
9461 &setlist,
9462 &showlist);
9463
9464 #if GDB_SELF_TEST
9465 selftests::register_test ("infrun_thread_ptid_changed",
9466 selftests::infrun_thread_ptid_changed);
9467 #endif
9468 }