Follow-fork message printing improvements
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63
64 /* Prototypes for local functions */
65
66 static void signals_info (char *, int);
67
68 static void handle_command (char *, int);
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static void resume_cleanups (void *);
75
76 static int hook_stop_stub (void *);
77
78 static int restore_selected_frame (void *);
79
80 static int follow_fork (void);
81
82 static int follow_fork_inferior (int follow_child, int detach_fork);
83
84 static void follow_inferior_reset_breakpoints (void);
85
86 static void set_schedlock_func (char *args, int from_tty,
87 struct cmd_list_element *c);
88
89 static int currently_stepping (struct thread_info *tp);
90
91 static void xdb_handle_command (char *args, int from_tty);
92
93 void _initialize_infrun (void);
94
95 void nullify_last_target_wait_ptid (void);
96
97 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
98
99 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
100
101 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
102
103 /* When set, stop the 'step' command if we enter a function which has
104 no line number information. The normal behavior is that we step
105 over such function. */
106 int step_stop_if_no_debug = 0;
107 static void
108 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
112 }
113
114 /* In asynchronous mode, but simulating synchronous execution. */
115
116 int sync_execution = 0;
117
118 /* proceed and normal_stop use this to notify the user when the
119 inferior stopped in a different thread than it had been running
120 in. */
121
122 static ptid_t previous_inferior_ptid;
123
124 /* If set (default for legacy reasons), when following a fork, GDB
125 will detach from one of the fork branches, child or parent.
126 Exactly which branch is detached depends on 'set follow-fork-mode'
127 setting. */
128
129 static int detach_fork = 1;
130
131 int debug_displaced = 0;
132 static void
133 show_debug_displaced (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c, const char *value)
135 {
136 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
137 }
138
139 unsigned int debug_infrun = 0;
140 static void
141 show_debug_infrun (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143 {
144 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
145 }
146
147
148 /* Support for disabling address space randomization. */
149
150 int disable_randomization = 1;
151
152 static void
153 show_disable_randomization (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 if (target_supports_disable_randomization ())
157 fprintf_filtered (file,
158 _("Disabling randomization of debuggee's "
159 "virtual address space is %s.\n"),
160 value);
161 else
162 fputs_filtered (_("Disabling randomization of debuggee's "
163 "virtual address space is unsupported on\n"
164 "this platform.\n"), file);
165 }
166
167 static void
168 set_disable_randomization (char *args, int from_tty,
169 struct cmd_list_element *c)
170 {
171 if (!target_supports_disable_randomization ())
172 error (_("Disabling randomization of debuggee's "
173 "virtual address space is unsupported on\n"
174 "this platform."));
175 }
176
177 /* User interface for non-stop mode. */
178
179 int non_stop = 0;
180 static int non_stop_1 = 0;
181
182 static void
183 set_non_stop (char *args, int from_tty,
184 struct cmd_list_element *c)
185 {
186 if (target_has_execution)
187 {
188 non_stop_1 = non_stop;
189 error (_("Cannot change this setting while the inferior is running."));
190 }
191
192 non_stop = non_stop_1;
193 }
194
195 static void
196 show_non_stop (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file,
200 _("Controlling the inferior in non-stop mode is %s.\n"),
201 value);
202 }
203
204 /* "Observer mode" is somewhat like a more extreme version of
205 non-stop, in which all GDB operations that might affect the
206 target's execution have been disabled. */
207
208 int observer_mode = 0;
209 static int observer_mode_1 = 0;
210
211 static void
212 set_observer_mode (char *args, int from_tty,
213 struct cmd_list_element *c)
214 {
215 if (target_has_execution)
216 {
217 observer_mode_1 = observer_mode;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 observer_mode = observer_mode_1;
222
223 may_write_registers = !observer_mode;
224 may_write_memory = !observer_mode;
225 may_insert_breakpoints = !observer_mode;
226 may_insert_tracepoints = !observer_mode;
227 /* We can insert fast tracepoints in or out of observer mode,
228 but enable them if we're going into this mode. */
229 if (observer_mode)
230 may_insert_fast_tracepoints = 1;
231 may_stop = !observer_mode;
232 update_target_permissions ();
233
234 /* Going *into* observer mode we must force non-stop, then
235 going out we leave it that way. */
236 if (observer_mode)
237 {
238 pagination_enabled = 0;
239 non_stop = non_stop_1 = 1;
240 }
241
242 if (from_tty)
243 printf_filtered (_("Observer mode is now %s.\n"),
244 (observer_mode ? "on" : "off"));
245 }
246
247 static void
248 show_observer_mode (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
252 }
253
254 /* This updates the value of observer mode based on changes in
255 permissions. Note that we are deliberately ignoring the values of
256 may-write-registers and may-write-memory, since the user may have
257 reason to enable these during a session, for instance to turn on a
258 debugging-related global. */
259
260 void
261 update_observer_mode (void)
262 {
263 int newval;
264
265 newval = (!may_insert_breakpoints
266 && !may_insert_tracepoints
267 && may_insert_fast_tracepoints
268 && !may_stop
269 && non_stop);
270
271 /* Let the user know if things change. */
272 if (newval != observer_mode)
273 printf_filtered (_("Observer mode is now %s.\n"),
274 (newval ? "on" : "off"));
275
276 observer_mode = observer_mode_1 = newval;
277 }
278
279 /* Tables of how to react to signals; the user sets them. */
280
281 static unsigned char *signal_stop;
282 static unsigned char *signal_print;
283 static unsigned char *signal_program;
284
285 /* Table of signals that are registered with "catch signal". A
286 non-zero entry indicates that the signal is caught by some "catch
287 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
288 signals. */
289 static unsigned char *signal_catch;
290
291 /* Table of signals that the target may silently handle.
292 This is automatically determined from the flags above,
293 and simply cached here. */
294 static unsigned char *signal_pass;
295
296 #define SET_SIGS(nsigs,sigs,flags) \
297 do { \
298 int signum = (nsigs); \
299 while (signum-- > 0) \
300 if ((sigs)[signum]) \
301 (flags)[signum] = 1; \
302 } while (0)
303
304 #define UNSET_SIGS(nsigs,sigs,flags) \
305 do { \
306 int signum = (nsigs); \
307 while (signum-- > 0) \
308 if ((sigs)[signum]) \
309 (flags)[signum] = 0; \
310 } while (0)
311
312 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
313 this function is to avoid exporting `signal_program'. */
314
315 void
316 update_signals_program_target (void)
317 {
318 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
319 }
320
321 /* Value to pass to target_resume() to cause all threads to resume. */
322
323 #define RESUME_ALL minus_one_ptid
324
325 /* Command list pointer for the "stop" placeholder. */
326
327 static struct cmd_list_element *stop_command;
328
329 /* Function inferior was in as of last step command. */
330
331 static struct symbol *step_start_function;
332
333 /* Nonzero if we want to give control to the user when we're notified
334 of shared library events by the dynamic linker. */
335 int stop_on_solib_events;
336
337 /* Enable or disable optional shared library event breakpoints
338 as appropriate when the above flag is changed. */
339
340 static void
341 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
342 {
343 update_solib_breakpoints ();
344 }
345
346 static void
347 show_stop_on_solib_events (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c, const char *value)
349 {
350 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
351 value);
352 }
353
354 /* Nonzero means expecting a trace trap
355 and should stop the inferior and return silently when it happens. */
356
357 int stop_after_trap;
358
359 /* Save register contents here when executing a "finish" command or are
360 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
361 Thus this contains the return value from the called function (assuming
362 values are returned in a register). */
363
364 struct regcache *stop_registers;
365
366 /* Nonzero after stop if current stack frame should be printed. */
367
368 static int stop_print_frame;
369
370 /* This is a cached copy of the pid/waitstatus of the last event
371 returned by target_wait()/deprecated_target_wait_hook(). This
372 information is returned by get_last_target_status(). */
373 static ptid_t target_last_wait_ptid;
374 static struct target_waitstatus target_last_waitstatus;
375
376 static void context_switch (ptid_t ptid);
377
378 void init_thread_stepping_state (struct thread_info *tss);
379
380 static const char follow_fork_mode_child[] = "child";
381 static const char follow_fork_mode_parent[] = "parent";
382
383 static const char *const follow_fork_mode_kind_names[] = {
384 follow_fork_mode_child,
385 follow_fork_mode_parent,
386 NULL
387 };
388
389 static const char *follow_fork_mode_string = follow_fork_mode_parent;
390 static void
391 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
392 struct cmd_list_element *c, const char *value)
393 {
394 fprintf_filtered (file,
395 _("Debugger response to a program "
396 "call of fork or vfork is \"%s\".\n"),
397 value);
398 }
399 \f
400
401 /* Handle changes to the inferior list based on the type of fork,
402 which process is being followed, and whether the other process
403 should be detached. On entry inferior_ptid must be the ptid of
404 the fork parent. At return inferior_ptid is the ptid of the
405 followed inferior. */
406
407 static int
408 follow_fork_inferior (int follow_child, int detach_fork)
409 {
410 int has_vforked;
411 int parent_pid, child_pid;
412
413 has_vforked = (inferior_thread ()->pending_follow.kind
414 == TARGET_WAITKIND_VFORKED);
415 parent_pid = ptid_get_lwp (inferior_ptid);
416 if (parent_pid == 0)
417 parent_pid = ptid_get_pid (inferior_ptid);
418 child_pid
419 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
420
421 if (has_vforked
422 && !non_stop /* Non-stop always resumes both branches. */
423 && (!target_is_async_p () || sync_execution)
424 && !(follow_child || detach_fork || sched_multi))
425 {
426 /* The parent stays blocked inside the vfork syscall until the
427 child execs or exits. If we don't let the child run, then
428 the parent stays blocked. If we're telling the parent to run
429 in the foreground, the user will not be able to ctrl-c to get
430 back the terminal, effectively hanging the debug session. */
431 fprintf_filtered (gdb_stderr, _("\
432 Can not resume the parent process over vfork in the foreground while\n\
433 holding the child stopped. Try \"set detach-on-fork\" or \
434 \"set schedule-multiple\".\n"));
435 /* FIXME output string > 80 columns. */
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
444 struct cleanup *old_chain;
445
446 /* Before detaching from the child, remove all breakpoints
447 from it. If we forked, then this has already been taken
448 care of by infrun.c. If we vforked however, any
449 breakpoint inserted in the parent is visible in the
450 child, even those added while stopped in a vfork
451 catchpoint. This will remove the breakpoints from the
452 parent also, but they'll be reinserted below. */
453 if (has_vforked)
454 {
455 /* Keep breakpoints list in sync. */
456 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
457 }
458
459 if (info_verbose || debug_infrun)
460 {
461 target_terminal_ours_for_output ();
462 fprintf_filtered (gdb_stdlog,
463 _("Detaching after %s from "
464 "child process %d.\n"),
465 has_vforked ? "vfork" : "fork",
466 child_pid);
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
472 struct cleanup *old_chain;
473
474 /* Add process to GDB's tables. */
475 child_inf = add_inferior (child_pid);
476
477 parent_inf = current_inferior ();
478 child_inf->attach_flag = parent_inf->attach_flag;
479 copy_terminal_info (child_inf, parent_inf);
480 child_inf->gdbarch = parent_inf->gdbarch;
481 copy_inferior_target_desc_info (child_inf, parent_inf);
482
483 old_chain = save_inferior_ptid ();
484 save_current_program_space ();
485
486 inferior_ptid = ptid_build (child_pid, child_pid, 0);
487 add_thread (inferior_ptid);
488 child_inf->symfile_flags = SYMFILE_NO_READ;
489
490 /* If this is a vfork child, then the address-space is
491 shared with the parent. */
492 if (has_vforked)
493 {
494 child_inf->pspace = parent_inf->pspace;
495 child_inf->aspace = parent_inf->aspace;
496
497 /* The parent will be frozen until the child is done
498 with the shared region. Keep track of the
499 parent. */
500 child_inf->vfork_parent = parent_inf;
501 child_inf->pending_detach = 0;
502 parent_inf->vfork_child = child_inf;
503 parent_inf->pending_detach = 0;
504 }
505 else
506 {
507 child_inf->aspace = new_address_space ();
508 child_inf->pspace = add_program_space (child_inf->aspace);
509 child_inf->removable = 1;
510 set_current_program_space (child_inf->pspace);
511 clone_program_space (child_inf->pspace, parent_inf->pspace);
512
513 /* Let the shared library layer (e.g., solib-svr4) learn
514 about this new process, relocate the cloned exec, pull
515 in shared libraries, and install the solib event
516 breakpoint. If a "cloned-VM" event was propagated
517 better throughout the core, this wouldn't be
518 required. */
519 solib_create_inferior_hook (0);
520 }
521
522 do_cleanups (old_chain);
523 }
524
525 if (has_vforked)
526 {
527 struct inferior *parent_inf;
528
529 parent_inf = current_inferior ();
530
531 /* If we detached from the child, then we have to be careful
532 to not insert breakpoints in the parent until the child
533 is done with the shared memory region. However, if we're
534 staying attached to the child, then we can and should
535 insert breakpoints, so that we can debug it. A
536 subsequent child exec or exit is enough to know when does
537 the child stops using the parent's address space. */
538 parent_inf->waiting_for_vfork_done = detach_fork;
539 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
540 }
541 }
542 else
543 {
544 /* Follow the child. */
545 struct inferior *parent_inf, *child_inf;
546 struct program_space *parent_pspace;
547
548 if (info_verbose || debug_infrun)
549 {
550 target_terminal_ours_for_output ();
551 fprintf_filtered (gdb_stdlog,
552 _("Attaching after process %d "
553 "%s to child process %d.\n"),
554 parent_pid,
555 has_vforked ? "vfork" : "fork",
556 child_pid);
557 }
558
559 /* Add the new inferior first, so that the target_detach below
560 doesn't unpush the target. */
561
562 child_inf = add_inferior (child_pid);
563
564 parent_inf = current_inferior ();
565 child_inf->attach_flag = parent_inf->attach_flag;
566 copy_terminal_info (child_inf, parent_inf);
567 child_inf->gdbarch = parent_inf->gdbarch;
568 copy_inferior_target_desc_info (child_inf, parent_inf);
569
570 parent_pspace = parent_inf->pspace;
571
572 /* If we're vforking, we want to hold on to the parent until the
573 child exits or execs. At child exec or exit time we can
574 remove the old breakpoints from the parent and detach or
575 resume debugging it. Otherwise, detach the parent now; we'll
576 want to reuse it's program/address spaces, but we can't set
577 them to the child before removing breakpoints from the
578 parent, otherwise, the breakpoints module could decide to
579 remove breakpoints from the wrong process (since they'd be
580 assigned to the same address space). */
581
582 if (has_vforked)
583 {
584 gdb_assert (child_inf->vfork_parent == NULL);
585 gdb_assert (parent_inf->vfork_child == NULL);
586 child_inf->vfork_parent = parent_inf;
587 child_inf->pending_detach = 0;
588 parent_inf->vfork_child = child_inf;
589 parent_inf->pending_detach = detach_fork;
590 parent_inf->waiting_for_vfork_done = 0;
591 }
592 else if (detach_fork)
593 {
594 if (info_verbose || debug_infrun)
595 {
596 target_terminal_ours_for_output ();
597 fprintf_filtered (gdb_stdlog,
598 _("Detaching after fork from "
599 "child process %d.\n"),
600 child_pid);
601 }
602
603 target_detach (NULL, 0);
604 }
605
606 /* Note that the detach above makes PARENT_INF dangling. */
607
608 /* Add the child thread to the appropriate lists, and switch to
609 this new thread, before cloning the program space, and
610 informing the solib layer about this new process. */
611
612 inferior_ptid = ptid_build (child_pid, child_pid, 0);
613 add_thread (inferior_ptid);
614
615 /* If this is a vfork child, then the address-space is shared
616 with the parent. If we detached from the parent, then we can
617 reuse the parent's program/address spaces. */
618 if (has_vforked || detach_fork)
619 {
620 child_inf->pspace = parent_pspace;
621 child_inf->aspace = child_inf->pspace->aspace;
622 }
623 else
624 {
625 child_inf->aspace = new_address_space ();
626 child_inf->pspace = add_program_space (child_inf->aspace);
627 child_inf->removable = 1;
628 child_inf->symfile_flags = SYMFILE_NO_READ;
629 set_current_program_space (child_inf->pspace);
630 clone_program_space (child_inf->pspace, parent_pspace);
631
632 /* Let the shared library layer (e.g., solib-svr4) learn
633 about this new process, relocate the cloned exec, pull in
634 shared libraries, and install the solib event breakpoint.
635 If a "cloned-VM" event was propagated better throughout
636 the core, this wouldn't be required. */
637 solib_create_inferior_hook (0);
638 }
639 }
640
641 return target_follow_fork (follow_child, detach_fork);
642 }
643
644 /* Tell the target to follow the fork we're stopped at. Returns true
645 if the inferior should be resumed; false, if the target for some
646 reason decided it's best not to resume. */
647
648 static int
649 follow_fork (void)
650 {
651 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
652 int should_resume = 1;
653 struct thread_info *tp;
654
655 /* Copy user stepping state to the new inferior thread. FIXME: the
656 followed fork child thread should have a copy of most of the
657 parent thread structure's run control related fields, not just these.
658 Initialized to avoid "may be used uninitialized" warnings from gcc. */
659 struct breakpoint *step_resume_breakpoint = NULL;
660 struct breakpoint *exception_resume_breakpoint = NULL;
661 CORE_ADDR step_range_start = 0;
662 CORE_ADDR step_range_end = 0;
663 struct frame_id step_frame_id = { 0 };
664 struct interp *command_interp = NULL;
665
666 if (!non_stop)
667 {
668 ptid_t wait_ptid;
669 struct target_waitstatus wait_status;
670
671 /* Get the last target status returned by target_wait(). */
672 get_last_target_status (&wait_ptid, &wait_status);
673
674 /* If not stopped at a fork event, then there's nothing else to
675 do. */
676 if (wait_status.kind != TARGET_WAITKIND_FORKED
677 && wait_status.kind != TARGET_WAITKIND_VFORKED)
678 return 1;
679
680 /* Check if we switched over from WAIT_PTID, since the event was
681 reported. */
682 if (!ptid_equal (wait_ptid, minus_one_ptid)
683 && !ptid_equal (inferior_ptid, wait_ptid))
684 {
685 /* We did. Switch back to WAIT_PTID thread, to tell the
686 target to follow it (in either direction). We'll
687 afterwards refuse to resume, and inform the user what
688 happened. */
689 switch_to_thread (wait_ptid);
690 should_resume = 0;
691 }
692 }
693
694 tp = inferior_thread ();
695
696 /* If there were any forks/vforks that were caught and are now to be
697 followed, then do so now. */
698 switch (tp->pending_follow.kind)
699 {
700 case TARGET_WAITKIND_FORKED:
701 case TARGET_WAITKIND_VFORKED:
702 {
703 ptid_t parent, child;
704
705 /* If the user did a next/step, etc, over a fork call,
706 preserve the stepping state in the fork child. */
707 if (follow_child && should_resume)
708 {
709 step_resume_breakpoint = clone_momentary_breakpoint
710 (tp->control.step_resume_breakpoint);
711 step_range_start = tp->control.step_range_start;
712 step_range_end = tp->control.step_range_end;
713 step_frame_id = tp->control.step_frame_id;
714 exception_resume_breakpoint
715 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
716 command_interp = tp->control.command_interp;
717
718 /* For now, delete the parent's sr breakpoint, otherwise,
719 parent/child sr breakpoints are considered duplicates,
720 and the child version will not be installed. Remove
721 this when the breakpoints module becomes aware of
722 inferiors and address spaces. */
723 delete_step_resume_breakpoint (tp);
724 tp->control.step_range_start = 0;
725 tp->control.step_range_end = 0;
726 tp->control.step_frame_id = null_frame_id;
727 delete_exception_resume_breakpoint (tp);
728 tp->control.command_interp = NULL;
729 }
730
731 parent = inferior_ptid;
732 child = tp->pending_follow.value.related_pid;
733
734 /* Set up inferior(s) as specified by the caller, and tell the
735 target to do whatever is necessary to follow either parent
736 or child. */
737 if (follow_fork_inferior (follow_child, detach_fork))
738 {
739 /* Target refused to follow, or there's some other reason
740 we shouldn't resume. */
741 should_resume = 0;
742 }
743 else
744 {
745 /* This pending follow fork event is now handled, one way
746 or another. The previous selected thread may be gone
747 from the lists by now, but if it is still around, need
748 to clear the pending follow request. */
749 tp = find_thread_ptid (parent);
750 if (tp)
751 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
752
753 /* This makes sure we don't try to apply the "Switched
754 over from WAIT_PID" logic above. */
755 nullify_last_target_wait_ptid ();
756
757 /* If we followed the child, switch to it... */
758 if (follow_child)
759 {
760 switch_to_thread (child);
761
762 /* ... and preserve the stepping state, in case the
763 user was stepping over the fork call. */
764 if (should_resume)
765 {
766 tp = inferior_thread ();
767 tp->control.step_resume_breakpoint
768 = step_resume_breakpoint;
769 tp->control.step_range_start = step_range_start;
770 tp->control.step_range_end = step_range_end;
771 tp->control.step_frame_id = step_frame_id;
772 tp->control.exception_resume_breakpoint
773 = exception_resume_breakpoint;
774 tp->control.command_interp = command_interp;
775 }
776 else
777 {
778 /* If we get here, it was because we're trying to
779 resume from a fork catchpoint, but, the user
780 has switched threads away from the thread that
781 forked. In that case, the resume command
782 issued is most likely not applicable to the
783 child, so just warn, and refuse to resume. */
784 warning (_("Not resuming: switched threads "
785 "before following fork child.\n"));
786 }
787
788 /* Reset breakpoints in the child as appropriate. */
789 follow_inferior_reset_breakpoints ();
790 }
791 else
792 switch_to_thread (parent);
793 }
794 }
795 break;
796 case TARGET_WAITKIND_SPURIOUS:
797 /* Nothing to follow. */
798 break;
799 default:
800 internal_error (__FILE__, __LINE__,
801 "Unexpected pending_follow.kind %d\n",
802 tp->pending_follow.kind);
803 break;
804 }
805
806 return should_resume;
807 }
808
809 static void
810 follow_inferior_reset_breakpoints (void)
811 {
812 struct thread_info *tp = inferior_thread ();
813
814 /* Was there a step_resume breakpoint? (There was if the user
815 did a "next" at the fork() call.) If so, explicitly reset its
816 thread number. Cloned step_resume breakpoints are disabled on
817 creation, so enable it here now that it is associated with the
818 correct thread.
819
820 step_resumes are a form of bp that are made to be per-thread.
821 Since we created the step_resume bp when the parent process
822 was being debugged, and now are switching to the child process,
823 from the breakpoint package's viewpoint, that's a switch of
824 "threads". We must update the bp's notion of which thread
825 it is for, or it'll be ignored when it triggers. */
826
827 if (tp->control.step_resume_breakpoint)
828 {
829 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
830 tp->control.step_resume_breakpoint->loc->enabled = 1;
831 }
832
833 /* Treat exception_resume breakpoints like step_resume breakpoints. */
834 if (tp->control.exception_resume_breakpoint)
835 {
836 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
837 tp->control.exception_resume_breakpoint->loc->enabled = 1;
838 }
839
840 /* Reinsert all breakpoints in the child. The user may have set
841 breakpoints after catching the fork, in which case those
842 were never set in the child, but only in the parent. This makes
843 sure the inserted breakpoints match the breakpoint list. */
844
845 breakpoint_re_set ();
846 insert_breakpoints ();
847 }
848
849 /* The child has exited or execed: resume threads of the parent the
850 user wanted to be executing. */
851
852 static int
853 proceed_after_vfork_done (struct thread_info *thread,
854 void *arg)
855 {
856 int pid = * (int *) arg;
857
858 if (ptid_get_pid (thread->ptid) == pid
859 && is_running (thread->ptid)
860 && !is_executing (thread->ptid)
861 && !thread->stop_requested
862 && thread->suspend.stop_signal == GDB_SIGNAL_0)
863 {
864 if (debug_infrun)
865 fprintf_unfiltered (gdb_stdlog,
866 "infrun: resuming vfork parent thread %s\n",
867 target_pid_to_str (thread->ptid));
868
869 switch_to_thread (thread->ptid);
870 clear_proceed_status (0);
871 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
872 }
873
874 return 0;
875 }
876
877 /* Called whenever we notice an exec or exit event, to handle
878 detaching or resuming a vfork parent. */
879
880 static void
881 handle_vfork_child_exec_or_exit (int exec)
882 {
883 struct inferior *inf = current_inferior ();
884
885 if (inf->vfork_parent)
886 {
887 int resume_parent = -1;
888
889 /* This exec or exit marks the end of the shared memory region
890 between the parent and the child. If the user wanted to
891 detach from the parent, now is the time. */
892
893 if (inf->vfork_parent->pending_detach)
894 {
895 struct thread_info *tp;
896 struct cleanup *old_chain;
897 struct program_space *pspace;
898 struct address_space *aspace;
899
900 /* follow-fork child, detach-on-fork on. */
901
902 inf->vfork_parent->pending_detach = 0;
903
904 if (!exec)
905 {
906 /* If we're handling a child exit, then inferior_ptid
907 points at the inferior's pid, not to a thread. */
908 old_chain = save_inferior_ptid ();
909 save_current_program_space ();
910 save_current_inferior ();
911 }
912 else
913 old_chain = save_current_space_and_thread ();
914
915 /* We're letting loose of the parent. */
916 tp = any_live_thread_of_process (inf->vfork_parent->pid);
917 switch_to_thread (tp->ptid);
918
919 /* We're about to detach from the parent, which implicitly
920 removes breakpoints from its address space. There's a
921 catch here: we want to reuse the spaces for the child,
922 but, parent/child are still sharing the pspace at this
923 point, although the exec in reality makes the kernel give
924 the child a fresh set of new pages. The problem here is
925 that the breakpoints module being unaware of this, would
926 likely chose the child process to write to the parent
927 address space. Swapping the child temporarily away from
928 the spaces has the desired effect. Yes, this is "sort
929 of" a hack. */
930
931 pspace = inf->pspace;
932 aspace = inf->aspace;
933 inf->aspace = NULL;
934 inf->pspace = NULL;
935
936 if (debug_infrun || info_verbose)
937 {
938 target_terminal_ours_for_output ();
939
940 if (exec)
941 {
942 fprintf_filtered (gdb_stdlog,
943 _("Detaching vfork parent process "
944 "%d after child exec.\n"),
945 inf->vfork_parent->pid);
946 }
947 else
948 {
949 fprintf_filtered (gdb_stdlog,
950 _("Detaching vfork parent process "
951 "%d after child exit.\n"),
952 inf->vfork_parent->pid);
953 }
954 }
955
956 target_detach (NULL, 0);
957
958 /* Put it back. */
959 inf->pspace = pspace;
960 inf->aspace = aspace;
961
962 do_cleanups (old_chain);
963 }
964 else if (exec)
965 {
966 /* We're staying attached to the parent, so, really give the
967 child a new address space. */
968 inf->pspace = add_program_space (maybe_new_address_space ());
969 inf->aspace = inf->pspace->aspace;
970 inf->removable = 1;
971 set_current_program_space (inf->pspace);
972
973 resume_parent = inf->vfork_parent->pid;
974
975 /* Break the bonds. */
976 inf->vfork_parent->vfork_child = NULL;
977 }
978 else
979 {
980 struct cleanup *old_chain;
981 struct program_space *pspace;
982
983 /* If this is a vfork child exiting, then the pspace and
984 aspaces were shared with the parent. Since we're
985 reporting the process exit, we'll be mourning all that is
986 found in the address space, and switching to null_ptid,
987 preparing to start a new inferior. But, since we don't
988 want to clobber the parent's address/program spaces, we
989 go ahead and create a new one for this exiting
990 inferior. */
991
992 /* Switch to null_ptid, so that clone_program_space doesn't want
993 to read the selected frame of a dead process. */
994 old_chain = save_inferior_ptid ();
995 inferior_ptid = null_ptid;
996
997 /* This inferior is dead, so avoid giving the breakpoints
998 module the option to write through to it (cloning a
999 program space resets breakpoints). */
1000 inf->aspace = NULL;
1001 inf->pspace = NULL;
1002 pspace = add_program_space (maybe_new_address_space ());
1003 set_current_program_space (pspace);
1004 inf->removable = 1;
1005 inf->symfile_flags = SYMFILE_NO_READ;
1006 clone_program_space (pspace, inf->vfork_parent->pspace);
1007 inf->pspace = pspace;
1008 inf->aspace = pspace->aspace;
1009
1010 /* Put back inferior_ptid. We'll continue mourning this
1011 inferior. */
1012 do_cleanups (old_chain);
1013
1014 resume_parent = inf->vfork_parent->pid;
1015 /* Break the bonds. */
1016 inf->vfork_parent->vfork_child = NULL;
1017 }
1018
1019 inf->vfork_parent = NULL;
1020
1021 gdb_assert (current_program_space == inf->pspace);
1022
1023 if (non_stop && resume_parent != -1)
1024 {
1025 /* If the user wanted the parent to be running, let it go
1026 free now. */
1027 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1028
1029 if (debug_infrun)
1030 fprintf_unfiltered (gdb_stdlog,
1031 "infrun: resuming vfork parent process %d\n",
1032 resume_parent);
1033
1034 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1035
1036 do_cleanups (old_chain);
1037 }
1038 }
1039 }
1040
1041 /* Enum strings for "set|show follow-exec-mode". */
1042
1043 static const char follow_exec_mode_new[] = "new";
1044 static const char follow_exec_mode_same[] = "same";
1045 static const char *const follow_exec_mode_names[] =
1046 {
1047 follow_exec_mode_new,
1048 follow_exec_mode_same,
1049 NULL,
1050 };
1051
1052 static const char *follow_exec_mode_string = follow_exec_mode_same;
1053 static void
1054 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1055 struct cmd_list_element *c, const char *value)
1056 {
1057 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1058 }
1059
1060 /* EXECD_PATHNAME is assumed to be non-NULL. */
1061
1062 static void
1063 follow_exec (ptid_t pid, char *execd_pathname)
1064 {
1065 struct thread_info *th = inferior_thread ();
1066 struct inferior *inf = current_inferior ();
1067
1068 /* This is an exec event that we actually wish to pay attention to.
1069 Refresh our symbol table to the newly exec'd program, remove any
1070 momentary bp's, etc.
1071
1072 If there are breakpoints, they aren't really inserted now,
1073 since the exec() transformed our inferior into a fresh set
1074 of instructions.
1075
1076 We want to preserve symbolic breakpoints on the list, since
1077 we have hopes that they can be reset after the new a.out's
1078 symbol table is read.
1079
1080 However, any "raw" breakpoints must be removed from the list
1081 (e.g., the solib bp's), since their address is probably invalid
1082 now.
1083
1084 And, we DON'T want to call delete_breakpoints() here, since
1085 that may write the bp's "shadow contents" (the instruction
1086 value that was overwritten witha TRAP instruction). Since
1087 we now have a new a.out, those shadow contents aren't valid. */
1088
1089 mark_breakpoints_out ();
1090
1091 update_breakpoints_after_exec ();
1092
1093 /* If there was one, it's gone now. We cannot truly step-to-next
1094 statement through an exec(). */
1095 th->control.step_resume_breakpoint = NULL;
1096 th->control.exception_resume_breakpoint = NULL;
1097 th->control.single_step_breakpoints = NULL;
1098 th->control.step_range_start = 0;
1099 th->control.step_range_end = 0;
1100
1101 /* The target reports the exec event to the main thread, even if
1102 some other thread does the exec, and even if the main thread was
1103 already stopped --- if debugging in non-stop mode, it's possible
1104 the user had the main thread held stopped in the previous image
1105 --- release it now. This is the same behavior as step-over-exec
1106 with scheduler-locking on in all-stop mode. */
1107 th->stop_requested = 0;
1108
1109 /* What is this a.out's name? */
1110 printf_unfiltered (_("%s is executing new program: %s\n"),
1111 target_pid_to_str (inferior_ptid),
1112 execd_pathname);
1113
1114 /* We've followed the inferior through an exec. Therefore, the
1115 inferior has essentially been killed & reborn. */
1116
1117 gdb_flush (gdb_stdout);
1118
1119 breakpoint_init_inferior (inf_execd);
1120
1121 if (gdb_sysroot && *gdb_sysroot)
1122 {
1123 char *name = alloca (strlen (gdb_sysroot)
1124 + strlen (execd_pathname)
1125 + 1);
1126
1127 strcpy (name, gdb_sysroot);
1128 strcat (name, execd_pathname);
1129 execd_pathname = name;
1130 }
1131
1132 /* Reset the shared library package. This ensures that we get a
1133 shlib event when the child reaches "_start", at which point the
1134 dld will have had a chance to initialize the child. */
1135 /* Also, loading a symbol file below may trigger symbol lookups, and
1136 we don't want those to be satisfied by the libraries of the
1137 previous incarnation of this process. */
1138 no_shared_libraries (NULL, 0);
1139
1140 if (follow_exec_mode_string == follow_exec_mode_new)
1141 {
1142 struct program_space *pspace;
1143
1144 /* The user wants to keep the old inferior and program spaces
1145 around. Create a new fresh one, and switch to it. */
1146
1147 inf = add_inferior (current_inferior ()->pid);
1148 pspace = add_program_space (maybe_new_address_space ());
1149 inf->pspace = pspace;
1150 inf->aspace = pspace->aspace;
1151
1152 exit_inferior_num_silent (current_inferior ()->num);
1153
1154 set_current_inferior (inf);
1155 set_current_program_space (pspace);
1156 }
1157 else
1158 {
1159 /* The old description may no longer be fit for the new image.
1160 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1161 old description; we'll read a new one below. No need to do
1162 this on "follow-exec-mode new", as the old inferior stays
1163 around (its description is later cleared/refetched on
1164 restart). */
1165 target_clear_description ();
1166 }
1167
1168 gdb_assert (current_program_space == inf->pspace);
1169
1170 /* That a.out is now the one to use. */
1171 exec_file_attach (execd_pathname, 0);
1172
1173 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1174 (Position Independent Executable) main symbol file will get applied by
1175 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1176 the breakpoints with the zero displacement. */
1177
1178 symbol_file_add (execd_pathname,
1179 (inf->symfile_flags
1180 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1181 NULL, 0);
1182
1183 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1184 set_initial_language ();
1185
1186 /* If the target can specify a description, read it. Must do this
1187 after flipping to the new executable (because the target supplied
1188 description must be compatible with the executable's
1189 architecture, and the old executable may e.g., be 32-bit, while
1190 the new one 64-bit), and before anything involving memory or
1191 registers. */
1192 target_find_description ();
1193
1194 solib_create_inferior_hook (0);
1195
1196 jit_inferior_created_hook ();
1197
1198 breakpoint_re_set ();
1199
1200 /* Reinsert all breakpoints. (Those which were symbolic have
1201 been reset to the proper address in the new a.out, thanks
1202 to symbol_file_command...). */
1203 insert_breakpoints ();
1204
1205 /* The next resume of this inferior should bring it to the shlib
1206 startup breakpoints. (If the user had also set bp's on
1207 "main" from the old (parent) process, then they'll auto-
1208 matically get reset there in the new process.). */
1209 }
1210
1211 /* Info about an instruction that is being stepped over. */
1212
1213 struct step_over_info
1214 {
1215 /* If we're stepping past a breakpoint, this is the address space
1216 and address of the instruction the breakpoint is set at. We'll
1217 skip inserting all breakpoints here. Valid iff ASPACE is
1218 non-NULL. */
1219 struct address_space *aspace;
1220 CORE_ADDR address;
1221
1222 /* The instruction being stepped over triggers a nonsteppable
1223 watchpoint. If true, we'll skip inserting watchpoints. */
1224 int nonsteppable_watchpoint_p;
1225 };
1226
1227 /* The step-over info of the location that is being stepped over.
1228
1229 Note that with async/breakpoint always-inserted mode, a user might
1230 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1231 being stepped over. As setting a new breakpoint inserts all
1232 breakpoints, we need to make sure the breakpoint being stepped over
1233 isn't inserted then. We do that by only clearing the step-over
1234 info when the step-over is actually finished (or aborted).
1235
1236 Presently GDB can only step over one breakpoint at any given time.
1237 Given threads that can't run code in the same address space as the
1238 breakpoint's can't really miss the breakpoint, GDB could be taught
1239 to step-over at most one breakpoint per address space (so this info
1240 could move to the address space object if/when GDB is extended).
1241 The set of breakpoints being stepped over will normally be much
1242 smaller than the set of all breakpoints, so a flag in the
1243 breakpoint location structure would be wasteful. A separate list
1244 also saves complexity and run-time, as otherwise we'd have to go
1245 through all breakpoint locations clearing their flag whenever we
1246 start a new sequence. Similar considerations weigh against storing
1247 this info in the thread object. Plus, not all step overs actually
1248 have breakpoint locations -- e.g., stepping past a single-step
1249 breakpoint, or stepping to complete a non-continuable
1250 watchpoint. */
1251 static struct step_over_info step_over_info;
1252
1253 /* Record the address of the breakpoint/instruction we're currently
1254 stepping over. */
1255
1256 static void
1257 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1258 int nonsteppable_watchpoint_p)
1259 {
1260 step_over_info.aspace = aspace;
1261 step_over_info.address = address;
1262 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1263 }
1264
1265 /* Called when we're not longer stepping over a breakpoint / an
1266 instruction, so all breakpoints are free to be (re)inserted. */
1267
1268 static void
1269 clear_step_over_info (void)
1270 {
1271 step_over_info.aspace = NULL;
1272 step_over_info.address = 0;
1273 step_over_info.nonsteppable_watchpoint_p = 0;
1274 }
1275
1276 /* See infrun.h. */
1277
1278 int
1279 stepping_past_instruction_at (struct address_space *aspace,
1280 CORE_ADDR address)
1281 {
1282 return (step_over_info.aspace != NULL
1283 && breakpoint_address_match (aspace, address,
1284 step_over_info.aspace,
1285 step_over_info.address));
1286 }
1287
1288 /* See infrun.h. */
1289
1290 int
1291 stepping_past_nonsteppable_watchpoint (void)
1292 {
1293 return step_over_info.nonsteppable_watchpoint_p;
1294 }
1295
1296 /* Returns true if step-over info is valid. */
1297
1298 static int
1299 step_over_info_valid_p (void)
1300 {
1301 return (step_over_info.aspace != NULL
1302 || stepping_past_nonsteppable_watchpoint ());
1303 }
1304
1305 \f
1306 /* Displaced stepping. */
1307
1308 /* In non-stop debugging mode, we must take special care to manage
1309 breakpoints properly; in particular, the traditional strategy for
1310 stepping a thread past a breakpoint it has hit is unsuitable.
1311 'Displaced stepping' is a tactic for stepping one thread past a
1312 breakpoint it has hit while ensuring that other threads running
1313 concurrently will hit the breakpoint as they should.
1314
1315 The traditional way to step a thread T off a breakpoint in a
1316 multi-threaded program in all-stop mode is as follows:
1317
1318 a0) Initially, all threads are stopped, and breakpoints are not
1319 inserted.
1320 a1) We single-step T, leaving breakpoints uninserted.
1321 a2) We insert breakpoints, and resume all threads.
1322
1323 In non-stop debugging, however, this strategy is unsuitable: we
1324 don't want to have to stop all threads in the system in order to
1325 continue or step T past a breakpoint. Instead, we use displaced
1326 stepping:
1327
1328 n0) Initially, T is stopped, other threads are running, and
1329 breakpoints are inserted.
1330 n1) We copy the instruction "under" the breakpoint to a separate
1331 location, outside the main code stream, making any adjustments
1332 to the instruction, register, and memory state as directed by
1333 T's architecture.
1334 n2) We single-step T over the instruction at its new location.
1335 n3) We adjust the resulting register and memory state as directed
1336 by T's architecture. This includes resetting T's PC to point
1337 back into the main instruction stream.
1338 n4) We resume T.
1339
1340 This approach depends on the following gdbarch methods:
1341
1342 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1343 indicate where to copy the instruction, and how much space must
1344 be reserved there. We use these in step n1.
1345
1346 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1347 address, and makes any necessary adjustments to the instruction,
1348 register contents, and memory. We use this in step n1.
1349
1350 - gdbarch_displaced_step_fixup adjusts registers and memory after
1351 we have successfuly single-stepped the instruction, to yield the
1352 same effect the instruction would have had if we had executed it
1353 at its original address. We use this in step n3.
1354
1355 - gdbarch_displaced_step_free_closure provides cleanup.
1356
1357 The gdbarch_displaced_step_copy_insn and
1358 gdbarch_displaced_step_fixup functions must be written so that
1359 copying an instruction with gdbarch_displaced_step_copy_insn,
1360 single-stepping across the copied instruction, and then applying
1361 gdbarch_displaced_insn_fixup should have the same effects on the
1362 thread's memory and registers as stepping the instruction in place
1363 would have. Exactly which responsibilities fall to the copy and
1364 which fall to the fixup is up to the author of those functions.
1365
1366 See the comments in gdbarch.sh for details.
1367
1368 Note that displaced stepping and software single-step cannot
1369 currently be used in combination, although with some care I think
1370 they could be made to. Software single-step works by placing
1371 breakpoints on all possible subsequent instructions; if the
1372 displaced instruction is a PC-relative jump, those breakpoints
1373 could fall in very strange places --- on pages that aren't
1374 executable, or at addresses that are not proper instruction
1375 boundaries. (We do generally let other threads run while we wait
1376 to hit the software single-step breakpoint, and they might
1377 encounter such a corrupted instruction.) One way to work around
1378 this would be to have gdbarch_displaced_step_copy_insn fully
1379 simulate the effect of PC-relative instructions (and return NULL)
1380 on architectures that use software single-stepping.
1381
1382 In non-stop mode, we can have independent and simultaneous step
1383 requests, so more than one thread may need to simultaneously step
1384 over a breakpoint. The current implementation assumes there is
1385 only one scratch space per process. In this case, we have to
1386 serialize access to the scratch space. If thread A wants to step
1387 over a breakpoint, but we are currently waiting for some other
1388 thread to complete a displaced step, we leave thread A stopped and
1389 place it in the displaced_step_request_queue. Whenever a displaced
1390 step finishes, we pick the next thread in the queue and start a new
1391 displaced step operation on it. See displaced_step_prepare and
1392 displaced_step_fixup for details. */
1393
1394 struct displaced_step_request
1395 {
1396 ptid_t ptid;
1397 struct displaced_step_request *next;
1398 };
1399
1400 /* Per-inferior displaced stepping state. */
1401 struct displaced_step_inferior_state
1402 {
1403 /* Pointer to next in linked list. */
1404 struct displaced_step_inferior_state *next;
1405
1406 /* The process this displaced step state refers to. */
1407 int pid;
1408
1409 /* A queue of pending displaced stepping requests. One entry per
1410 thread that needs to do a displaced step. */
1411 struct displaced_step_request *step_request_queue;
1412
1413 /* If this is not null_ptid, this is the thread carrying out a
1414 displaced single-step in process PID. This thread's state will
1415 require fixing up once it has completed its step. */
1416 ptid_t step_ptid;
1417
1418 /* The architecture the thread had when we stepped it. */
1419 struct gdbarch *step_gdbarch;
1420
1421 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1422 for post-step cleanup. */
1423 struct displaced_step_closure *step_closure;
1424
1425 /* The address of the original instruction, and the copy we
1426 made. */
1427 CORE_ADDR step_original, step_copy;
1428
1429 /* Saved contents of copy area. */
1430 gdb_byte *step_saved_copy;
1431 };
1432
1433 /* The list of states of processes involved in displaced stepping
1434 presently. */
1435 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1436
1437 /* Get the displaced stepping state of process PID. */
1438
1439 static struct displaced_step_inferior_state *
1440 get_displaced_stepping_state (int pid)
1441 {
1442 struct displaced_step_inferior_state *state;
1443
1444 for (state = displaced_step_inferior_states;
1445 state != NULL;
1446 state = state->next)
1447 if (state->pid == pid)
1448 return state;
1449
1450 return NULL;
1451 }
1452
1453 /* Add a new displaced stepping state for process PID to the displaced
1454 stepping state list, or return a pointer to an already existing
1455 entry, if it already exists. Never returns NULL. */
1456
1457 static struct displaced_step_inferior_state *
1458 add_displaced_stepping_state (int pid)
1459 {
1460 struct displaced_step_inferior_state *state;
1461
1462 for (state = displaced_step_inferior_states;
1463 state != NULL;
1464 state = state->next)
1465 if (state->pid == pid)
1466 return state;
1467
1468 state = xcalloc (1, sizeof (*state));
1469 state->pid = pid;
1470 state->next = displaced_step_inferior_states;
1471 displaced_step_inferior_states = state;
1472
1473 return state;
1474 }
1475
1476 /* If inferior is in displaced stepping, and ADDR equals to starting address
1477 of copy area, return corresponding displaced_step_closure. Otherwise,
1478 return NULL. */
1479
1480 struct displaced_step_closure*
1481 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1482 {
1483 struct displaced_step_inferior_state *displaced
1484 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1485
1486 /* If checking the mode of displaced instruction in copy area. */
1487 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1488 && (displaced->step_copy == addr))
1489 return displaced->step_closure;
1490
1491 return NULL;
1492 }
1493
1494 /* Remove the displaced stepping state of process PID. */
1495
1496 static void
1497 remove_displaced_stepping_state (int pid)
1498 {
1499 struct displaced_step_inferior_state *it, **prev_next_p;
1500
1501 gdb_assert (pid != 0);
1502
1503 it = displaced_step_inferior_states;
1504 prev_next_p = &displaced_step_inferior_states;
1505 while (it)
1506 {
1507 if (it->pid == pid)
1508 {
1509 *prev_next_p = it->next;
1510 xfree (it);
1511 return;
1512 }
1513
1514 prev_next_p = &it->next;
1515 it = *prev_next_p;
1516 }
1517 }
1518
1519 static void
1520 infrun_inferior_exit (struct inferior *inf)
1521 {
1522 remove_displaced_stepping_state (inf->pid);
1523 }
1524
1525 /* If ON, and the architecture supports it, GDB will use displaced
1526 stepping to step over breakpoints. If OFF, or if the architecture
1527 doesn't support it, GDB will instead use the traditional
1528 hold-and-step approach. If AUTO (which is the default), GDB will
1529 decide which technique to use to step over breakpoints depending on
1530 which of all-stop or non-stop mode is active --- displaced stepping
1531 in non-stop mode; hold-and-step in all-stop mode. */
1532
1533 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1534
1535 static void
1536 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1537 struct cmd_list_element *c,
1538 const char *value)
1539 {
1540 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1541 fprintf_filtered (file,
1542 _("Debugger's willingness to use displaced stepping "
1543 "to step over breakpoints is %s (currently %s).\n"),
1544 value, non_stop ? "on" : "off");
1545 else
1546 fprintf_filtered (file,
1547 _("Debugger's willingness to use displaced stepping "
1548 "to step over breakpoints is %s.\n"), value);
1549 }
1550
1551 /* Return non-zero if displaced stepping can/should be used to step
1552 over breakpoints. */
1553
1554 static int
1555 use_displaced_stepping (struct gdbarch *gdbarch)
1556 {
1557 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1558 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1559 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1560 && find_record_target () == NULL);
1561 }
1562
1563 /* Clean out any stray displaced stepping state. */
1564 static void
1565 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1566 {
1567 /* Indicate that there is no cleanup pending. */
1568 displaced->step_ptid = null_ptid;
1569
1570 if (displaced->step_closure)
1571 {
1572 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1573 displaced->step_closure);
1574 displaced->step_closure = NULL;
1575 }
1576 }
1577
1578 static void
1579 displaced_step_clear_cleanup (void *arg)
1580 {
1581 struct displaced_step_inferior_state *state = arg;
1582
1583 displaced_step_clear (state);
1584 }
1585
1586 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1587 void
1588 displaced_step_dump_bytes (struct ui_file *file,
1589 const gdb_byte *buf,
1590 size_t len)
1591 {
1592 int i;
1593
1594 for (i = 0; i < len; i++)
1595 fprintf_unfiltered (file, "%02x ", buf[i]);
1596 fputs_unfiltered ("\n", file);
1597 }
1598
1599 /* Prepare to single-step, using displaced stepping.
1600
1601 Note that we cannot use displaced stepping when we have a signal to
1602 deliver. If we have a signal to deliver and an instruction to step
1603 over, then after the step, there will be no indication from the
1604 target whether the thread entered a signal handler or ignored the
1605 signal and stepped over the instruction successfully --- both cases
1606 result in a simple SIGTRAP. In the first case we mustn't do a
1607 fixup, and in the second case we must --- but we can't tell which.
1608 Comments in the code for 'random signals' in handle_inferior_event
1609 explain how we handle this case instead.
1610
1611 Returns 1 if preparing was successful -- this thread is going to be
1612 stepped now; or 0 if displaced stepping this thread got queued. */
1613 static int
1614 displaced_step_prepare (ptid_t ptid)
1615 {
1616 struct cleanup *old_cleanups, *ignore_cleanups;
1617 struct thread_info *tp = find_thread_ptid (ptid);
1618 struct regcache *regcache = get_thread_regcache (ptid);
1619 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1620 CORE_ADDR original, copy;
1621 ULONGEST len;
1622 struct displaced_step_closure *closure;
1623 struct displaced_step_inferior_state *displaced;
1624 int status;
1625
1626 /* We should never reach this function if the architecture does not
1627 support displaced stepping. */
1628 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1629
1630 /* Disable range stepping while executing in the scratch pad. We
1631 want a single-step even if executing the displaced instruction in
1632 the scratch buffer lands within the stepping range (e.g., a
1633 jump/branch). */
1634 tp->control.may_range_step = 0;
1635
1636 /* We have to displaced step one thread at a time, as we only have
1637 access to a single scratch space per inferior. */
1638
1639 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1640
1641 if (!ptid_equal (displaced->step_ptid, null_ptid))
1642 {
1643 /* Already waiting for a displaced step to finish. Defer this
1644 request and place in queue. */
1645 struct displaced_step_request *req, *new_req;
1646
1647 if (debug_displaced)
1648 fprintf_unfiltered (gdb_stdlog,
1649 "displaced: defering step of %s\n",
1650 target_pid_to_str (ptid));
1651
1652 new_req = xmalloc (sizeof (*new_req));
1653 new_req->ptid = ptid;
1654 new_req->next = NULL;
1655
1656 if (displaced->step_request_queue)
1657 {
1658 for (req = displaced->step_request_queue;
1659 req && req->next;
1660 req = req->next)
1661 ;
1662 req->next = new_req;
1663 }
1664 else
1665 displaced->step_request_queue = new_req;
1666
1667 return 0;
1668 }
1669 else
1670 {
1671 if (debug_displaced)
1672 fprintf_unfiltered (gdb_stdlog,
1673 "displaced: stepping %s now\n",
1674 target_pid_to_str (ptid));
1675 }
1676
1677 displaced_step_clear (displaced);
1678
1679 old_cleanups = save_inferior_ptid ();
1680 inferior_ptid = ptid;
1681
1682 original = regcache_read_pc (regcache);
1683
1684 copy = gdbarch_displaced_step_location (gdbarch);
1685 len = gdbarch_max_insn_length (gdbarch);
1686
1687 /* Save the original contents of the copy area. */
1688 displaced->step_saved_copy = xmalloc (len);
1689 ignore_cleanups = make_cleanup (free_current_contents,
1690 &displaced->step_saved_copy);
1691 status = target_read_memory (copy, displaced->step_saved_copy, len);
1692 if (status != 0)
1693 throw_error (MEMORY_ERROR,
1694 _("Error accessing memory address %s (%s) for "
1695 "displaced-stepping scratch space."),
1696 paddress (gdbarch, copy), safe_strerror (status));
1697 if (debug_displaced)
1698 {
1699 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1700 paddress (gdbarch, copy));
1701 displaced_step_dump_bytes (gdb_stdlog,
1702 displaced->step_saved_copy,
1703 len);
1704 };
1705
1706 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1707 original, copy, regcache);
1708
1709 /* We don't support the fully-simulated case at present. */
1710 gdb_assert (closure);
1711
1712 /* Save the information we need to fix things up if the step
1713 succeeds. */
1714 displaced->step_ptid = ptid;
1715 displaced->step_gdbarch = gdbarch;
1716 displaced->step_closure = closure;
1717 displaced->step_original = original;
1718 displaced->step_copy = copy;
1719
1720 make_cleanup (displaced_step_clear_cleanup, displaced);
1721
1722 /* Resume execution at the copy. */
1723 regcache_write_pc (regcache, copy);
1724
1725 discard_cleanups (ignore_cleanups);
1726
1727 do_cleanups (old_cleanups);
1728
1729 if (debug_displaced)
1730 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1731 paddress (gdbarch, copy));
1732
1733 return 1;
1734 }
1735
1736 static void
1737 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1738 const gdb_byte *myaddr, int len)
1739 {
1740 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1741
1742 inferior_ptid = ptid;
1743 write_memory (memaddr, myaddr, len);
1744 do_cleanups (ptid_cleanup);
1745 }
1746
1747 /* Restore the contents of the copy area for thread PTID. */
1748
1749 static void
1750 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1751 ptid_t ptid)
1752 {
1753 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1754
1755 write_memory_ptid (ptid, displaced->step_copy,
1756 displaced->step_saved_copy, len);
1757 if (debug_displaced)
1758 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1759 target_pid_to_str (ptid),
1760 paddress (displaced->step_gdbarch,
1761 displaced->step_copy));
1762 }
1763
1764 static void
1765 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1766 {
1767 struct cleanup *old_cleanups;
1768 struct displaced_step_inferior_state *displaced
1769 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1770
1771 /* Was any thread of this process doing a displaced step? */
1772 if (displaced == NULL)
1773 return;
1774
1775 /* Was this event for the pid we displaced? */
1776 if (ptid_equal (displaced->step_ptid, null_ptid)
1777 || ! ptid_equal (displaced->step_ptid, event_ptid))
1778 return;
1779
1780 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1781
1782 displaced_step_restore (displaced, displaced->step_ptid);
1783
1784 /* Did the instruction complete successfully? */
1785 if (signal == GDB_SIGNAL_TRAP)
1786 {
1787 /* Fix up the resulting state. */
1788 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1789 displaced->step_closure,
1790 displaced->step_original,
1791 displaced->step_copy,
1792 get_thread_regcache (displaced->step_ptid));
1793 }
1794 else
1795 {
1796 /* Since the instruction didn't complete, all we can do is
1797 relocate the PC. */
1798 struct regcache *regcache = get_thread_regcache (event_ptid);
1799 CORE_ADDR pc = regcache_read_pc (regcache);
1800
1801 pc = displaced->step_original + (pc - displaced->step_copy);
1802 regcache_write_pc (regcache, pc);
1803 }
1804
1805 do_cleanups (old_cleanups);
1806
1807 displaced->step_ptid = null_ptid;
1808
1809 /* Are there any pending displaced stepping requests? If so, run
1810 one now. Leave the state object around, since we're likely to
1811 need it again soon. */
1812 while (displaced->step_request_queue)
1813 {
1814 struct displaced_step_request *head;
1815 ptid_t ptid;
1816 struct regcache *regcache;
1817 struct gdbarch *gdbarch;
1818 CORE_ADDR actual_pc;
1819 struct address_space *aspace;
1820
1821 head = displaced->step_request_queue;
1822 ptid = head->ptid;
1823 displaced->step_request_queue = head->next;
1824 xfree (head);
1825
1826 context_switch (ptid);
1827
1828 regcache = get_thread_regcache (ptid);
1829 actual_pc = regcache_read_pc (regcache);
1830 aspace = get_regcache_aspace (regcache);
1831
1832 if (breakpoint_here_p (aspace, actual_pc))
1833 {
1834 if (debug_displaced)
1835 fprintf_unfiltered (gdb_stdlog,
1836 "displaced: stepping queued %s now\n",
1837 target_pid_to_str (ptid));
1838
1839 displaced_step_prepare (ptid);
1840
1841 gdbarch = get_regcache_arch (regcache);
1842
1843 if (debug_displaced)
1844 {
1845 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1846 gdb_byte buf[4];
1847
1848 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1849 paddress (gdbarch, actual_pc));
1850 read_memory (actual_pc, buf, sizeof (buf));
1851 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1852 }
1853
1854 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1855 displaced->step_closure))
1856 target_resume (ptid, 1, GDB_SIGNAL_0);
1857 else
1858 target_resume (ptid, 0, GDB_SIGNAL_0);
1859
1860 /* Done, we're stepping a thread. */
1861 break;
1862 }
1863 else
1864 {
1865 int step;
1866 struct thread_info *tp = inferior_thread ();
1867
1868 /* The breakpoint we were sitting under has since been
1869 removed. */
1870 tp->control.trap_expected = 0;
1871
1872 /* Go back to what we were trying to do. */
1873 step = currently_stepping (tp);
1874
1875 if (debug_displaced)
1876 fprintf_unfiltered (gdb_stdlog,
1877 "displaced: breakpoint is gone: %s, step(%d)\n",
1878 target_pid_to_str (tp->ptid), step);
1879
1880 target_resume (ptid, step, GDB_SIGNAL_0);
1881 tp->suspend.stop_signal = GDB_SIGNAL_0;
1882
1883 /* This request was discarded. See if there's any other
1884 thread waiting for its turn. */
1885 }
1886 }
1887 }
1888
1889 /* Update global variables holding ptids to hold NEW_PTID if they were
1890 holding OLD_PTID. */
1891 static void
1892 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1893 {
1894 struct displaced_step_request *it;
1895 struct displaced_step_inferior_state *displaced;
1896
1897 if (ptid_equal (inferior_ptid, old_ptid))
1898 inferior_ptid = new_ptid;
1899
1900 for (displaced = displaced_step_inferior_states;
1901 displaced;
1902 displaced = displaced->next)
1903 {
1904 if (ptid_equal (displaced->step_ptid, old_ptid))
1905 displaced->step_ptid = new_ptid;
1906
1907 for (it = displaced->step_request_queue; it; it = it->next)
1908 if (ptid_equal (it->ptid, old_ptid))
1909 it->ptid = new_ptid;
1910 }
1911 }
1912
1913 \f
1914 /* Resuming. */
1915
1916 /* Things to clean up if we QUIT out of resume (). */
1917 static void
1918 resume_cleanups (void *ignore)
1919 {
1920 if (!ptid_equal (inferior_ptid, null_ptid))
1921 delete_single_step_breakpoints (inferior_thread ());
1922
1923 normal_stop ();
1924 }
1925
1926 static const char schedlock_off[] = "off";
1927 static const char schedlock_on[] = "on";
1928 static const char schedlock_step[] = "step";
1929 static const char *const scheduler_enums[] = {
1930 schedlock_off,
1931 schedlock_on,
1932 schedlock_step,
1933 NULL
1934 };
1935 static const char *scheduler_mode = schedlock_off;
1936 static void
1937 show_scheduler_mode (struct ui_file *file, int from_tty,
1938 struct cmd_list_element *c, const char *value)
1939 {
1940 fprintf_filtered (file,
1941 _("Mode for locking scheduler "
1942 "during execution is \"%s\".\n"),
1943 value);
1944 }
1945
1946 static void
1947 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1948 {
1949 if (!target_can_lock_scheduler)
1950 {
1951 scheduler_mode = schedlock_off;
1952 error (_("Target '%s' cannot support this command."), target_shortname);
1953 }
1954 }
1955
1956 /* True if execution commands resume all threads of all processes by
1957 default; otherwise, resume only threads of the current inferior
1958 process. */
1959 int sched_multi = 0;
1960
1961 /* Try to setup for software single stepping over the specified location.
1962 Return 1 if target_resume() should use hardware single step.
1963
1964 GDBARCH the current gdbarch.
1965 PC the location to step over. */
1966
1967 static int
1968 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1969 {
1970 int hw_step = 1;
1971
1972 if (execution_direction == EXEC_FORWARD
1973 && gdbarch_software_single_step_p (gdbarch)
1974 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1975 {
1976 hw_step = 0;
1977 }
1978 return hw_step;
1979 }
1980
1981 ptid_t
1982 user_visible_resume_ptid (int step)
1983 {
1984 /* By default, resume all threads of all processes. */
1985 ptid_t resume_ptid = RESUME_ALL;
1986
1987 /* Maybe resume only all threads of the current process. */
1988 if (!sched_multi && target_supports_multi_process ())
1989 {
1990 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1991 }
1992
1993 /* Maybe resume a single thread after all. */
1994 if (non_stop)
1995 {
1996 /* With non-stop mode on, threads are always handled
1997 individually. */
1998 resume_ptid = inferior_ptid;
1999 }
2000 else if ((scheduler_mode == schedlock_on)
2001 || (scheduler_mode == schedlock_step && step))
2002 {
2003 /* User-settable 'scheduler' mode requires solo thread resume. */
2004 resume_ptid = inferior_ptid;
2005 }
2006
2007 /* We may actually resume fewer threads at first, e.g., if a thread
2008 is stopped at a breakpoint that needs stepping-off, but that
2009 should not be visible to the user/frontend, and neither should
2010 the frontend/user be allowed to proceed any of the threads that
2011 happen to be stopped for internal run control handling, if a
2012 previous command wanted them resumed. */
2013 return resume_ptid;
2014 }
2015
2016 /* Resume the inferior, but allow a QUIT. This is useful if the user
2017 wants to interrupt some lengthy single-stepping operation
2018 (for child processes, the SIGINT goes to the inferior, and so
2019 we get a SIGINT random_signal, but for remote debugging and perhaps
2020 other targets, that's not true).
2021
2022 STEP nonzero if we should step (zero to continue instead).
2023 SIG is the signal to give the inferior (zero for none). */
2024 void
2025 resume (int step, enum gdb_signal sig)
2026 {
2027 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2028 struct regcache *regcache = get_current_regcache ();
2029 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2030 struct thread_info *tp = inferior_thread ();
2031 CORE_ADDR pc = regcache_read_pc (regcache);
2032 struct address_space *aspace = get_regcache_aspace (regcache);
2033 ptid_t resume_ptid;
2034 /* From here on, this represents the caller's step vs continue
2035 request, while STEP represents what we'll actually request the
2036 target to do. STEP can decay from a step to a continue, if e.g.,
2037 we need to implement single-stepping with breakpoints (software
2038 single-step). When deciding whether "set scheduler-locking step"
2039 applies, it's the callers intention that counts. */
2040 const int entry_step = step;
2041
2042 QUIT;
2043
2044 if (current_inferior ()->waiting_for_vfork_done)
2045 {
2046 /* Don't try to single-step a vfork parent that is waiting for
2047 the child to get out of the shared memory region (by exec'ing
2048 or exiting). This is particularly important on software
2049 single-step archs, as the child process would trip on the
2050 software single step breakpoint inserted for the parent
2051 process. Since the parent will not actually execute any
2052 instruction until the child is out of the shared region (such
2053 are vfork's semantics), it is safe to simply continue it.
2054 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2055 the parent, and tell it to `keep_going', which automatically
2056 re-sets it stepping. */
2057 if (debug_infrun)
2058 fprintf_unfiltered (gdb_stdlog,
2059 "infrun: resume : clear step\n");
2060 step = 0;
2061 }
2062
2063 if (debug_infrun)
2064 fprintf_unfiltered (gdb_stdlog,
2065 "infrun: resume (step=%d, signal=%s), "
2066 "trap_expected=%d, current thread [%s] at %s\n",
2067 step, gdb_signal_to_symbol_string (sig),
2068 tp->control.trap_expected,
2069 target_pid_to_str (inferior_ptid),
2070 paddress (gdbarch, pc));
2071
2072 /* Normally, by the time we reach `resume', the breakpoints are either
2073 removed or inserted, as appropriate. The exception is if we're sitting
2074 at a permanent breakpoint; we need to step over it, but permanent
2075 breakpoints can't be removed. So we have to test for it here. */
2076 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2077 {
2078 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
2079 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2080 else
2081 error (_("\
2082 The program is stopped at a permanent breakpoint, but GDB does not know\n\
2083 how to step past a permanent breakpoint on this architecture. Try using\n\
2084 a command like `return' or `jump' to continue execution."));
2085 }
2086
2087 /* If we have a breakpoint to step over, make sure to do a single
2088 step only. Same if we have software watchpoints. */
2089 if (tp->control.trap_expected || bpstat_should_step ())
2090 tp->control.may_range_step = 0;
2091
2092 /* If enabled, step over breakpoints by executing a copy of the
2093 instruction at a different address.
2094
2095 We can't use displaced stepping when we have a signal to deliver;
2096 the comments for displaced_step_prepare explain why. The
2097 comments in the handle_inferior event for dealing with 'random
2098 signals' explain what we do instead.
2099
2100 We can't use displaced stepping when we are waiting for vfork_done
2101 event, displaced stepping breaks the vfork child similarly as single
2102 step software breakpoint. */
2103 if (use_displaced_stepping (gdbarch)
2104 && tp->control.trap_expected
2105 && sig == GDB_SIGNAL_0
2106 && !current_inferior ()->waiting_for_vfork_done)
2107 {
2108 struct displaced_step_inferior_state *displaced;
2109
2110 if (!displaced_step_prepare (inferior_ptid))
2111 {
2112 /* Got placed in displaced stepping queue. Will be resumed
2113 later when all the currently queued displaced stepping
2114 requests finish. The thread is not executing at this
2115 point, and the call to set_executing will be made later.
2116 But we need to call set_running here, since from the
2117 user/frontend's point of view, threads were set running.
2118 Unless we're calling an inferior function, as in that
2119 case we pretend the inferior doesn't run at all. */
2120 if (!tp->control.in_infcall)
2121 set_running (user_visible_resume_ptid (entry_step), 1);
2122 discard_cleanups (old_cleanups);
2123 return;
2124 }
2125
2126 /* Update pc to reflect the new address from which we will execute
2127 instructions due to displaced stepping. */
2128 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2129
2130 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2131 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2132 displaced->step_closure);
2133 }
2134
2135 /* Do we need to do it the hard way, w/temp breakpoints? */
2136 else if (step)
2137 step = maybe_software_singlestep (gdbarch, pc);
2138
2139 /* Currently, our software single-step implementation leads to different
2140 results than hardware single-stepping in one situation: when stepping
2141 into delivering a signal which has an associated signal handler,
2142 hardware single-step will stop at the first instruction of the handler,
2143 while software single-step will simply skip execution of the handler.
2144
2145 For now, this difference in behavior is accepted since there is no
2146 easy way to actually implement single-stepping into a signal handler
2147 without kernel support.
2148
2149 However, there is one scenario where this difference leads to follow-on
2150 problems: if we're stepping off a breakpoint by removing all breakpoints
2151 and then single-stepping. In this case, the software single-step
2152 behavior means that even if there is a *breakpoint* in the signal
2153 handler, GDB still would not stop.
2154
2155 Fortunately, we can at least fix this particular issue. We detect
2156 here the case where we are about to deliver a signal while software
2157 single-stepping with breakpoints removed. In this situation, we
2158 revert the decisions to remove all breakpoints and insert single-
2159 step breakpoints, and instead we install a step-resume breakpoint
2160 at the current address, deliver the signal without stepping, and
2161 once we arrive back at the step-resume breakpoint, actually step
2162 over the breakpoint we originally wanted to step over. */
2163 if (thread_has_single_step_breakpoints_set (tp)
2164 && sig != GDB_SIGNAL_0
2165 && step_over_info_valid_p ())
2166 {
2167 /* If we have nested signals or a pending signal is delivered
2168 immediately after a handler returns, might might already have
2169 a step-resume breakpoint set on the earlier handler. We cannot
2170 set another step-resume breakpoint; just continue on until the
2171 original breakpoint is hit. */
2172 if (tp->control.step_resume_breakpoint == NULL)
2173 {
2174 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2175 tp->step_after_step_resume_breakpoint = 1;
2176 }
2177
2178 delete_single_step_breakpoints (tp);
2179
2180 clear_step_over_info ();
2181 tp->control.trap_expected = 0;
2182
2183 insert_breakpoints ();
2184 }
2185
2186 /* If STEP is set, it's a request to use hardware stepping
2187 facilities. But in that case, we should never
2188 use singlestep breakpoint. */
2189 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2190
2191 /* Decide the set of threads to ask the target to resume. Start
2192 by assuming everything will be resumed, than narrow the set
2193 by applying increasingly restricting conditions. */
2194 resume_ptid = user_visible_resume_ptid (entry_step);
2195
2196 /* Even if RESUME_PTID is a wildcard, and we end up resuming less
2197 (e.g., we might need to step over a breakpoint), from the
2198 user/frontend's point of view, all threads in RESUME_PTID are now
2199 running. Unless we're calling an inferior function, as in that
2200 case pretend we inferior doesn't run at all. */
2201 if (!tp->control.in_infcall)
2202 set_running (resume_ptid, 1);
2203
2204 /* Maybe resume a single thread after all. */
2205 if ((step || thread_has_single_step_breakpoints_set (tp))
2206 && tp->control.trap_expected)
2207 {
2208 /* We're allowing a thread to run past a breakpoint it has
2209 hit, by single-stepping the thread with the breakpoint
2210 removed. In which case, we need to single-step only this
2211 thread, and keep others stopped, as they can miss this
2212 breakpoint if allowed to run. */
2213 resume_ptid = inferior_ptid;
2214 }
2215
2216 if (gdbarch_cannot_step_breakpoint (gdbarch))
2217 {
2218 /* Most targets can step a breakpoint instruction, thus
2219 executing it normally. But if this one cannot, just
2220 continue and we will hit it anyway. */
2221 if (step && breakpoint_inserted_here_p (aspace, pc))
2222 step = 0;
2223 }
2224
2225 if (debug_displaced
2226 && use_displaced_stepping (gdbarch)
2227 && tp->control.trap_expected)
2228 {
2229 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
2230 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2231 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2232 gdb_byte buf[4];
2233
2234 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2235 paddress (resume_gdbarch, actual_pc));
2236 read_memory (actual_pc, buf, sizeof (buf));
2237 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2238 }
2239
2240 if (tp->control.may_range_step)
2241 {
2242 /* If we're resuming a thread with the PC out of the step
2243 range, then we're doing some nested/finer run control
2244 operation, like stepping the thread out of the dynamic
2245 linker or the displaced stepping scratch pad. We
2246 shouldn't have allowed a range step then. */
2247 gdb_assert (pc_in_thread_step_range (pc, tp));
2248 }
2249
2250 /* Install inferior's terminal modes. */
2251 target_terminal_inferior ();
2252
2253 /* Avoid confusing the next resume, if the next stop/resume
2254 happens to apply to another thread. */
2255 tp->suspend.stop_signal = GDB_SIGNAL_0;
2256
2257 /* Advise target which signals may be handled silently. If we have
2258 removed breakpoints because we are stepping over one (in any
2259 thread), we need to receive all signals to avoid accidentally
2260 skipping a breakpoint during execution of a signal handler. */
2261 if (step_over_info_valid_p ())
2262 target_pass_signals (0, NULL);
2263 else
2264 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2265
2266 target_resume (resume_ptid, step, sig);
2267
2268 discard_cleanups (old_cleanups);
2269 }
2270 \f
2271 /* Proceeding. */
2272
2273 /* Clear out all variables saying what to do when inferior is continued.
2274 First do this, then set the ones you want, then call `proceed'. */
2275
2276 static void
2277 clear_proceed_status_thread (struct thread_info *tp)
2278 {
2279 if (debug_infrun)
2280 fprintf_unfiltered (gdb_stdlog,
2281 "infrun: clear_proceed_status_thread (%s)\n",
2282 target_pid_to_str (tp->ptid));
2283
2284 /* If this signal should not be seen by program, give it zero.
2285 Used for debugging signals. */
2286 if (!signal_pass_state (tp->suspend.stop_signal))
2287 tp->suspend.stop_signal = GDB_SIGNAL_0;
2288
2289 tp->control.trap_expected = 0;
2290 tp->control.step_range_start = 0;
2291 tp->control.step_range_end = 0;
2292 tp->control.may_range_step = 0;
2293 tp->control.step_frame_id = null_frame_id;
2294 tp->control.step_stack_frame_id = null_frame_id;
2295 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2296 tp->stop_requested = 0;
2297
2298 tp->control.stop_step = 0;
2299
2300 tp->control.proceed_to_finish = 0;
2301
2302 tp->control.command_interp = NULL;
2303
2304 /* Discard any remaining commands or status from previous stop. */
2305 bpstat_clear (&tp->control.stop_bpstat);
2306 }
2307
2308 void
2309 clear_proceed_status (int step)
2310 {
2311 if (!non_stop)
2312 {
2313 struct thread_info *tp;
2314 ptid_t resume_ptid;
2315
2316 resume_ptid = user_visible_resume_ptid (step);
2317
2318 /* In all-stop mode, delete the per-thread status of all threads
2319 we're about to resume, implicitly and explicitly. */
2320 ALL_NON_EXITED_THREADS (tp)
2321 {
2322 if (!ptid_match (tp->ptid, resume_ptid))
2323 continue;
2324 clear_proceed_status_thread (tp);
2325 }
2326 }
2327
2328 if (!ptid_equal (inferior_ptid, null_ptid))
2329 {
2330 struct inferior *inferior;
2331
2332 if (non_stop)
2333 {
2334 /* If in non-stop mode, only delete the per-thread status of
2335 the current thread. */
2336 clear_proceed_status_thread (inferior_thread ());
2337 }
2338
2339 inferior = current_inferior ();
2340 inferior->control.stop_soon = NO_STOP_QUIETLY;
2341 }
2342
2343 stop_after_trap = 0;
2344
2345 clear_step_over_info ();
2346
2347 observer_notify_about_to_proceed ();
2348
2349 if (stop_registers)
2350 {
2351 regcache_xfree (stop_registers);
2352 stop_registers = NULL;
2353 }
2354 }
2355
2356 /* Returns true if TP is still stopped at a breakpoint that needs
2357 stepping-over in order to make progress. If the breakpoint is gone
2358 meanwhile, we can skip the whole step-over dance. */
2359
2360 static int
2361 thread_still_needs_step_over (struct thread_info *tp)
2362 {
2363 if (tp->stepping_over_breakpoint)
2364 {
2365 struct regcache *regcache = get_thread_regcache (tp->ptid);
2366
2367 if (breakpoint_here_p (get_regcache_aspace (regcache),
2368 regcache_read_pc (regcache)))
2369 return 1;
2370
2371 tp->stepping_over_breakpoint = 0;
2372 }
2373
2374 return 0;
2375 }
2376
2377 /* Returns true if scheduler locking applies. STEP indicates whether
2378 we're about to do a step/next-like command to a thread. */
2379
2380 static int
2381 schedlock_applies (int step)
2382 {
2383 return (scheduler_mode == schedlock_on
2384 || (scheduler_mode == schedlock_step
2385 && step));
2386 }
2387
2388 /* Look a thread other than EXCEPT that has previously reported a
2389 breakpoint event, and thus needs a step-over in order to make
2390 progress. Returns NULL is none is found. STEP indicates whether
2391 we're about to step the current thread, in order to decide whether
2392 "set scheduler-locking step" applies. */
2393
2394 static struct thread_info *
2395 find_thread_needs_step_over (int step, struct thread_info *except)
2396 {
2397 struct thread_info *tp, *current;
2398
2399 /* With non-stop mode on, threads are always handled individually. */
2400 gdb_assert (! non_stop);
2401
2402 current = inferior_thread ();
2403
2404 /* If scheduler locking applies, we can avoid iterating over all
2405 threads. */
2406 if (schedlock_applies (step))
2407 {
2408 if (except != current
2409 && thread_still_needs_step_over (current))
2410 return current;
2411
2412 return NULL;
2413 }
2414
2415 ALL_NON_EXITED_THREADS (tp)
2416 {
2417 /* Ignore the EXCEPT thread. */
2418 if (tp == except)
2419 continue;
2420 /* Ignore threads of processes we're not resuming. */
2421 if (!sched_multi
2422 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
2423 continue;
2424
2425 if (thread_still_needs_step_over (tp))
2426 return tp;
2427 }
2428
2429 return NULL;
2430 }
2431
2432 /* Basic routine for continuing the program in various fashions.
2433
2434 ADDR is the address to resume at, or -1 for resume where stopped.
2435 SIGGNAL is the signal to give it, or 0 for none,
2436 or -1 for act according to how it stopped.
2437 STEP is nonzero if should trap after one instruction.
2438 -1 means return after that and print nothing.
2439 You should probably set various step_... variables
2440 before calling here, if you are stepping.
2441
2442 You should call clear_proceed_status before calling proceed. */
2443
2444 void
2445 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2446 {
2447 struct regcache *regcache;
2448 struct gdbarch *gdbarch;
2449 struct thread_info *tp;
2450 CORE_ADDR pc;
2451 struct address_space *aspace;
2452
2453 /* If we're stopped at a fork/vfork, follow the branch set by the
2454 "set follow-fork-mode" command; otherwise, we'll just proceed
2455 resuming the current thread. */
2456 if (!follow_fork ())
2457 {
2458 /* The target for some reason decided not to resume. */
2459 normal_stop ();
2460 if (target_can_async_p ())
2461 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2462 return;
2463 }
2464
2465 /* We'll update this if & when we switch to a new thread. */
2466 previous_inferior_ptid = inferior_ptid;
2467
2468 regcache = get_current_regcache ();
2469 gdbarch = get_regcache_arch (regcache);
2470 aspace = get_regcache_aspace (regcache);
2471 pc = regcache_read_pc (regcache);
2472 tp = inferior_thread ();
2473
2474 if (step > 0)
2475 step_start_function = find_pc_function (pc);
2476 if (step < 0)
2477 stop_after_trap = 1;
2478
2479 /* Fill in with reasonable starting values. */
2480 init_thread_stepping_state (tp);
2481
2482 if (addr == (CORE_ADDR) -1)
2483 {
2484 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2485 && execution_direction != EXEC_REVERSE)
2486 /* There is a breakpoint at the address we will resume at,
2487 step one instruction before inserting breakpoints so that
2488 we do not stop right away (and report a second hit at this
2489 breakpoint).
2490
2491 Note, we don't do this in reverse, because we won't
2492 actually be executing the breakpoint insn anyway.
2493 We'll be (un-)executing the previous instruction. */
2494 tp->stepping_over_breakpoint = 1;
2495 else if (gdbarch_single_step_through_delay_p (gdbarch)
2496 && gdbarch_single_step_through_delay (gdbarch,
2497 get_current_frame ()))
2498 /* We stepped onto an instruction that needs to be stepped
2499 again before re-inserting the breakpoint, do so. */
2500 tp->stepping_over_breakpoint = 1;
2501 }
2502 else
2503 {
2504 regcache_write_pc (regcache, addr);
2505 }
2506
2507 if (siggnal != GDB_SIGNAL_DEFAULT)
2508 tp->suspend.stop_signal = siggnal;
2509
2510 /* Record the interpreter that issued the execution command that
2511 caused this thread to resume. If the top level interpreter is
2512 MI/async, and the execution command was a CLI command
2513 (next/step/etc.), we'll want to print stop event output to the MI
2514 console channel (the stepped-to line, etc.), as if the user
2515 entered the execution command on a real GDB console. */
2516 inferior_thread ()->control.command_interp = command_interp ();
2517
2518 if (debug_infrun)
2519 fprintf_unfiltered (gdb_stdlog,
2520 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2521 paddress (gdbarch, addr),
2522 gdb_signal_to_symbol_string (siggnal), step);
2523
2524 if (non_stop)
2525 /* In non-stop, each thread is handled individually. The context
2526 must already be set to the right thread here. */
2527 ;
2528 else
2529 {
2530 struct thread_info *step_over;
2531
2532 /* In a multi-threaded task we may select another thread and
2533 then continue or step.
2534
2535 But if the old thread was stopped at a breakpoint, it will
2536 immediately cause another breakpoint stop without any
2537 execution (i.e. it will report a breakpoint hit incorrectly).
2538 So we must step over it first.
2539
2540 Look for a thread other than the current (TP) that reported a
2541 breakpoint hit and hasn't been resumed yet since. */
2542 step_over = find_thread_needs_step_over (step, tp);
2543 if (step_over != NULL)
2544 {
2545 if (debug_infrun)
2546 fprintf_unfiltered (gdb_stdlog,
2547 "infrun: need to step-over [%s] first\n",
2548 target_pid_to_str (step_over->ptid));
2549
2550 /* Store the prev_pc for the stepping thread too, needed by
2551 switch_back_to_stepping thread. */
2552 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2553 switch_to_thread (step_over->ptid);
2554 tp = step_over;
2555 }
2556 }
2557
2558 /* If we need to step over a breakpoint, and we're not using
2559 displaced stepping to do so, insert all breakpoints (watchpoints,
2560 etc.) but the one we're stepping over, step one instruction, and
2561 then re-insert the breakpoint when that step is finished. */
2562 if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch))
2563 {
2564 struct regcache *regcache = get_current_regcache ();
2565
2566 set_step_over_info (get_regcache_aspace (regcache),
2567 regcache_read_pc (regcache), 0);
2568 }
2569 else
2570 clear_step_over_info ();
2571
2572 insert_breakpoints ();
2573
2574 tp->control.trap_expected = tp->stepping_over_breakpoint;
2575
2576 annotate_starting ();
2577
2578 /* Make sure that output from GDB appears before output from the
2579 inferior. */
2580 gdb_flush (gdb_stdout);
2581
2582 /* Refresh prev_pc value just prior to resuming. This used to be
2583 done in stop_waiting, however, setting prev_pc there did not handle
2584 scenarios such as inferior function calls or returning from
2585 a function via the return command. In those cases, the prev_pc
2586 value was not set properly for subsequent commands. The prev_pc value
2587 is used to initialize the starting line number in the ecs. With an
2588 invalid value, the gdb next command ends up stopping at the position
2589 represented by the next line table entry past our start position.
2590 On platforms that generate one line table entry per line, this
2591 is not a problem. However, on the ia64, the compiler generates
2592 extraneous line table entries that do not increase the line number.
2593 When we issue the gdb next command on the ia64 after an inferior call
2594 or a return command, we often end up a few instructions forward, still
2595 within the original line we started.
2596
2597 An attempt was made to refresh the prev_pc at the same time the
2598 execution_control_state is initialized (for instance, just before
2599 waiting for an inferior event). But this approach did not work
2600 because of platforms that use ptrace, where the pc register cannot
2601 be read unless the inferior is stopped. At that point, we are not
2602 guaranteed the inferior is stopped and so the regcache_read_pc() call
2603 can fail. Setting the prev_pc value here ensures the value is updated
2604 correctly when the inferior is stopped. */
2605 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2606
2607 /* Resume inferior. */
2608 resume (tp->control.trap_expected || step || bpstat_should_step (),
2609 tp->suspend.stop_signal);
2610
2611 /* Wait for it to stop (if not standalone)
2612 and in any case decode why it stopped, and act accordingly. */
2613 /* Do this only if we are not using the event loop, or if the target
2614 does not support asynchronous execution. */
2615 if (!target_can_async_p ())
2616 {
2617 wait_for_inferior ();
2618 normal_stop ();
2619 }
2620 }
2621 \f
2622
2623 /* Start remote-debugging of a machine over a serial link. */
2624
2625 void
2626 start_remote (int from_tty)
2627 {
2628 struct inferior *inferior;
2629
2630 inferior = current_inferior ();
2631 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2632
2633 /* Always go on waiting for the target, regardless of the mode. */
2634 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2635 indicate to wait_for_inferior that a target should timeout if
2636 nothing is returned (instead of just blocking). Because of this,
2637 targets expecting an immediate response need to, internally, set
2638 things up so that the target_wait() is forced to eventually
2639 timeout. */
2640 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2641 differentiate to its caller what the state of the target is after
2642 the initial open has been performed. Here we're assuming that
2643 the target has stopped. It should be possible to eventually have
2644 target_open() return to the caller an indication that the target
2645 is currently running and GDB state should be set to the same as
2646 for an async run. */
2647 wait_for_inferior ();
2648
2649 /* Now that the inferior has stopped, do any bookkeeping like
2650 loading shared libraries. We want to do this before normal_stop,
2651 so that the displayed frame is up to date. */
2652 post_create_inferior (&current_target, from_tty);
2653
2654 normal_stop ();
2655 }
2656
2657 /* Initialize static vars when a new inferior begins. */
2658
2659 void
2660 init_wait_for_inferior (void)
2661 {
2662 /* These are meaningless until the first time through wait_for_inferior. */
2663
2664 breakpoint_init_inferior (inf_starting);
2665
2666 clear_proceed_status (0);
2667
2668 target_last_wait_ptid = minus_one_ptid;
2669
2670 previous_inferior_ptid = inferior_ptid;
2671
2672 /* Discard any skipped inlined frames. */
2673 clear_inline_frame_state (minus_one_ptid);
2674 }
2675
2676 \f
2677 /* This enum encodes possible reasons for doing a target_wait, so that
2678 wfi can call target_wait in one place. (Ultimately the call will be
2679 moved out of the infinite loop entirely.) */
2680
2681 enum infwait_states
2682 {
2683 infwait_normal_state,
2684 infwait_step_watch_state,
2685 infwait_nonstep_watch_state
2686 };
2687
2688 /* Current inferior wait state. */
2689 static enum infwait_states infwait_state;
2690
2691 /* Data to be passed around while handling an event. This data is
2692 discarded between events. */
2693 struct execution_control_state
2694 {
2695 ptid_t ptid;
2696 /* The thread that got the event, if this was a thread event; NULL
2697 otherwise. */
2698 struct thread_info *event_thread;
2699
2700 struct target_waitstatus ws;
2701 int stop_func_filled_in;
2702 CORE_ADDR stop_func_start;
2703 CORE_ADDR stop_func_end;
2704 const char *stop_func_name;
2705 int wait_some_more;
2706
2707 /* True if the event thread hit the single-step breakpoint of
2708 another thread. Thus the event doesn't cause a stop, the thread
2709 needs to be single-stepped past the single-step breakpoint before
2710 we can switch back to the original stepping thread. */
2711 int hit_singlestep_breakpoint;
2712 };
2713
2714 static void handle_inferior_event (struct execution_control_state *ecs);
2715
2716 static void handle_step_into_function (struct gdbarch *gdbarch,
2717 struct execution_control_state *ecs);
2718 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2719 struct execution_control_state *ecs);
2720 static void handle_signal_stop (struct execution_control_state *ecs);
2721 static void check_exception_resume (struct execution_control_state *,
2722 struct frame_info *);
2723
2724 static void end_stepping_range (struct execution_control_state *ecs);
2725 static void stop_waiting (struct execution_control_state *ecs);
2726 static void prepare_to_wait (struct execution_control_state *ecs);
2727 static void keep_going (struct execution_control_state *ecs);
2728 static void process_event_stop_test (struct execution_control_state *ecs);
2729 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
2730
2731 /* Callback for iterate over threads. If the thread is stopped, but
2732 the user/frontend doesn't know about that yet, go through
2733 normal_stop, as if the thread had just stopped now. ARG points at
2734 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2735 ptid_is_pid(PTID) is true, applies to all threads of the process
2736 pointed at by PTID. Otherwise, apply only to the thread pointed by
2737 PTID. */
2738
2739 static int
2740 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2741 {
2742 ptid_t ptid = * (ptid_t *) arg;
2743
2744 if ((ptid_equal (info->ptid, ptid)
2745 || ptid_equal (minus_one_ptid, ptid)
2746 || (ptid_is_pid (ptid)
2747 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2748 && is_running (info->ptid)
2749 && !is_executing (info->ptid))
2750 {
2751 struct cleanup *old_chain;
2752 struct execution_control_state ecss;
2753 struct execution_control_state *ecs = &ecss;
2754
2755 memset (ecs, 0, sizeof (*ecs));
2756
2757 old_chain = make_cleanup_restore_current_thread ();
2758
2759 overlay_cache_invalid = 1;
2760 /* Flush target cache before starting to handle each event.
2761 Target was running and cache could be stale. This is just a
2762 heuristic. Running threads may modify target memory, but we
2763 don't get any event. */
2764 target_dcache_invalidate ();
2765
2766 /* Go through handle_inferior_event/normal_stop, so we always
2767 have consistent output as if the stop event had been
2768 reported. */
2769 ecs->ptid = info->ptid;
2770 ecs->event_thread = find_thread_ptid (info->ptid);
2771 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2772 ecs->ws.value.sig = GDB_SIGNAL_0;
2773
2774 handle_inferior_event (ecs);
2775
2776 if (!ecs->wait_some_more)
2777 {
2778 struct thread_info *tp;
2779
2780 normal_stop ();
2781
2782 /* Finish off the continuations. */
2783 tp = inferior_thread ();
2784 do_all_intermediate_continuations_thread (tp, 1);
2785 do_all_continuations_thread (tp, 1);
2786 }
2787
2788 do_cleanups (old_chain);
2789 }
2790
2791 return 0;
2792 }
2793
2794 /* This function is attached as a "thread_stop_requested" observer.
2795 Cleanup local state that assumed the PTID was to be resumed, and
2796 report the stop to the frontend. */
2797
2798 static void
2799 infrun_thread_stop_requested (ptid_t ptid)
2800 {
2801 struct displaced_step_inferior_state *displaced;
2802
2803 /* PTID was requested to stop. Remove it from the displaced
2804 stepping queue, so we don't try to resume it automatically. */
2805
2806 for (displaced = displaced_step_inferior_states;
2807 displaced;
2808 displaced = displaced->next)
2809 {
2810 struct displaced_step_request *it, **prev_next_p;
2811
2812 it = displaced->step_request_queue;
2813 prev_next_p = &displaced->step_request_queue;
2814 while (it)
2815 {
2816 if (ptid_match (it->ptid, ptid))
2817 {
2818 *prev_next_p = it->next;
2819 it->next = NULL;
2820 xfree (it);
2821 }
2822 else
2823 {
2824 prev_next_p = &it->next;
2825 }
2826
2827 it = *prev_next_p;
2828 }
2829 }
2830
2831 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2832 }
2833
2834 static void
2835 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2836 {
2837 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2838 nullify_last_target_wait_ptid ();
2839 }
2840
2841 /* Delete the step resume, single-step and longjmp/exception resume
2842 breakpoints of TP. */
2843
2844 static void
2845 delete_thread_infrun_breakpoints (struct thread_info *tp)
2846 {
2847 delete_step_resume_breakpoint (tp);
2848 delete_exception_resume_breakpoint (tp);
2849 delete_single_step_breakpoints (tp);
2850 }
2851
2852 /* If the target still has execution, call FUNC for each thread that
2853 just stopped. In all-stop, that's all the non-exited threads; in
2854 non-stop, that's the current thread, only. */
2855
2856 typedef void (*for_each_just_stopped_thread_callback_func)
2857 (struct thread_info *tp);
2858
2859 static void
2860 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
2861 {
2862 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
2863 return;
2864
2865 if (non_stop)
2866 {
2867 /* If in non-stop mode, only the current thread stopped. */
2868 func (inferior_thread ());
2869 }
2870 else
2871 {
2872 struct thread_info *tp;
2873
2874 /* In all-stop mode, all threads have stopped. */
2875 ALL_NON_EXITED_THREADS (tp)
2876 {
2877 func (tp);
2878 }
2879 }
2880 }
2881
2882 /* Delete the step resume and longjmp/exception resume breakpoints of
2883 the threads that just stopped. */
2884
2885 static void
2886 delete_just_stopped_threads_infrun_breakpoints (void)
2887 {
2888 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
2889 }
2890
2891 /* Delete the single-step breakpoints of the threads that just
2892 stopped. */
2893
2894 static void
2895 delete_just_stopped_threads_single_step_breakpoints (void)
2896 {
2897 for_each_just_stopped_thread (delete_single_step_breakpoints);
2898 }
2899
2900 /* A cleanup wrapper. */
2901
2902 static void
2903 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
2904 {
2905 delete_just_stopped_threads_infrun_breakpoints ();
2906 }
2907
2908 /* Pretty print the results of target_wait, for debugging purposes. */
2909
2910 static void
2911 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2912 const struct target_waitstatus *ws)
2913 {
2914 char *status_string = target_waitstatus_to_string (ws);
2915 struct ui_file *tmp_stream = mem_fileopen ();
2916 char *text;
2917
2918 /* The text is split over several lines because it was getting too long.
2919 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2920 output as a unit; we want only one timestamp printed if debug_timestamp
2921 is set. */
2922
2923 fprintf_unfiltered (tmp_stream,
2924 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2925 if (ptid_get_pid (waiton_ptid) != -1)
2926 fprintf_unfiltered (tmp_stream,
2927 " [%s]", target_pid_to_str (waiton_ptid));
2928 fprintf_unfiltered (tmp_stream, ", status) =\n");
2929 fprintf_unfiltered (tmp_stream,
2930 "infrun: %d [%s],\n",
2931 ptid_get_pid (result_ptid),
2932 target_pid_to_str (result_ptid));
2933 fprintf_unfiltered (tmp_stream,
2934 "infrun: %s\n",
2935 status_string);
2936
2937 text = ui_file_xstrdup (tmp_stream, NULL);
2938
2939 /* This uses %s in part to handle %'s in the text, but also to avoid
2940 a gcc error: the format attribute requires a string literal. */
2941 fprintf_unfiltered (gdb_stdlog, "%s", text);
2942
2943 xfree (status_string);
2944 xfree (text);
2945 ui_file_delete (tmp_stream);
2946 }
2947
2948 /* Prepare and stabilize the inferior for detaching it. E.g.,
2949 detaching while a thread is displaced stepping is a recipe for
2950 crashing it, as nothing would readjust the PC out of the scratch
2951 pad. */
2952
2953 void
2954 prepare_for_detach (void)
2955 {
2956 struct inferior *inf = current_inferior ();
2957 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2958 struct cleanup *old_chain_1;
2959 struct displaced_step_inferior_state *displaced;
2960
2961 displaced = get_displaced_stepping_state (inf->pid);
2962
2963 /* Is any thread of this process displaced stepping? If not,
2964 there's nothing else to do. */
2965 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2966 return;
2967
2968 if (debug_infrun)
2969 fprintf_unfiltered (gdb_stdlog,
2970 "displaced-stepping in-process while detaching");
2971
2972 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2973 inf->detaching = 1;
2974
2975 while (!ptid_equal (displaced->step_ptid, null_ptid))
2976 {
2977 struct cleanup *old_chain_2;
2978 struct execution_control_state ecss;
2979 struct execution_control_state *ecs;
2980
2981 ecs = &ecss;
2982 memset (ecs, 0, sizeof (*ecs));
2983
2984 overlay_cache_invalid = 1;
2985 /* Flush target cache before starting to handle each event.
2986 Target was running and cache could be stale. This is just a
2987 heuristic. Running threads may modify target memory, but we
2988 don't get any event. */
2989 target_dcache_invalidate ();
2990
2991 if (deprecated_target_wait_hook)
2992 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2993 else
2994 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2995
2996 if (debug_infrun)
2997 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2998
2999 /* If an error happens while handling the event, propagate GDB's
3000 knowledge of the executing state to the frontend/user running
3001 state. */
3002 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3003 &minus_one_ptid);
3004
3005 /* Now figure out what to do with the result of the result. */
3006 handle_inferior_event (ecs);
3007
3008 /* No error, don't finish the state yet. */
3009 discard_cleanups (old_chain_2);
3010
3011 /* Breakpoints and watchpoints are not installed on the target
3012 at this point, and signals are passed directly to the
3013 inferior, so this must mean the process is gone. */
3014 if (!ecs->wait_some_more)
3015 {
3016 discard_cleanups (old_chain_1);
3017 error (_("Program exited while detaching"));
3018 }
3019 }
3020
3021 discard_cleanups (old_chain_1);
3022 }
3023
3024 /* Wait for control to return from inferior to debugger.
3025
3026 If inferior gets a signal, we may decide to start it up again
3027 instead of returning. That is why there is a loop in this function.
3028 When this function actually returns it means the inferior
3029 should be left stopped and GDB should read more commands. */
3030
3031 void
3032 wait_for_inferior (void)
3033 {
3034 struct cleanup *old_cleanups;
3035
3036 if (debug_infrun)
3037 fprintf_unfiltered
3038 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3039
3040 old_cleanups
3041 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3042 NULL);
3043
3044 while (1)
3045 {
3046 struct execution_control_state ecss;
3047 struct execution_control_state *ecs = &ecss;
3048 struct cleanup *old_chain;
3049 ptid_t waiton_ptid = minus_one_ptid;
3050
3051 memset (ecs, 0, sizeof (*ecs));
3052
3053 overlay_cache_invalid = 1;
3054
3055 /* Flush target cache before starting to handle each event.
3056 Target was running and cache could be stale. This is just a
3057 heuristic. Running threads may modify target memory, but we
3058 don't get any event. */
3059 target_dcache_invalidate ();
3060
3061 if (deprecated_target_wait_hook)
3062 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
3063 else
3064 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
3065
3066 if (debug_infrun)
3067 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3068
3069 /* If an error happens while handling the event, propagate GDB's
3070 knowledge of the executing state to the frontend/user running
3071 state. */
3072 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3073
3074 /* Now figure out what to do with the result of the result. */
3075 handle_inferior_event (ecs);
3076
3077 /* No error, don't finish the state yet. */
3078 discard_cleanups (old_chain);
3079
3080 if (!ecs->wait_some_more)
3081 break;
3082 }
3083
3084 do_cleanups (old_cleanups);
3085 }
3086
3087 /* Asynchronous version of wait_for_inferior. It is called by the
3088 event loop whenever a change of state is detected on the file
3089 descriptor corresponding to the target. It can be called more than
3090 once to complete a single execution command. In such cases we need
3091 to keep the state in a global variable ECSS. If it is the last time
3092 that this function is called for a single execution command, then
3093 report to the user that the inferior has stopped, and do the
3094 necessary cleanups. */
3095
3096 void
3097 fetch_inferior_event (void *client_data)
3098 {
3099 struct execution_control_state ecss;
3100 struct execution_control_state *ecs = &ecss;
3101 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3102 struct cleanup *ts_old_chain;
3103 int was_sync = sync_execution;
3104 int cmd_done = 0;
3105 ptid_t waiton_ptid = minus_one_ptid;
3106
3107 memset (ecs, 0, sizeof (*ecs));
3108
3109 /* We're handling a live event, so make sure we're doing live
3110 debugging. If we're looking at traceframes while the target is
3111 running, we're going to need to get back to that mode after
3112 handling the event. */
3113 if (non_stop)
3114 {
3115 make_cleanup_restore_current_traceframe ();
3116 set_current_traceframe (-1);
3117 }
3118
3119 if (non_stop)
3120 /* In non-stop mode, the user/frontend should not notice a thread
3121 switch due to internal events. Make sure we reverse to the
3122 user selected thread and frame after handling the event and
3123 running any breakpoint commands. */
3124 make_cleanup_restore_current_thread ();
3125
3126 overlay_cache_invalid = 1;
3127 /* Flush target cache before starting to handle each event. Target
3128 was running and cache could be stale. This is just a heuristic.
3129 Running threads may modify target memory, but we don't get any
3130 event. */
3131 target_dcache_invalidate ();
3132
3133 make_cleanup_restore_integer (&execution_direction);
3134 execution_direction = target_execution_direction ();
3135
3136 if (deprecated_target_wait_hook)
3137 ecs->ptid =
3138 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
3139 else
3140 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
3141
3142 if (debug_infrun)
3143 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3144
3145 /* If an error happens while handling the event, propagate GDB's
3146 knowledge of the executing state to the frontend/user running
3147 state. */
3148 if (!non_stop)
3149 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3150 else
3151 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3152
3153 /* Get executed before make_cleanup_restore_current_thread above to apply
3154 still for the thread which has thrown the exception. */
3155 make_bpstat_clear_actions_cleanup ();
3156
3157 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3158
3159 /* Now figure out what to do with the result of the result. */
3160 handle_inferior_event (ecs);
3161
3162 if (!ecs->wait_some_more)
3163 {
3164 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3165
3166 delete_just_stopped_threads_infrun_breakpoints ();
3167
3168 /* We may not find an inferior if this was a process exit. */
3169 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3170 normal_stop ();
3171
3172 if (target_has_execution
3173 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
3174 && ecs->ws.kind != TARGET_WAITKIND_EXITED
3175 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3176 && ecs->event_thread->step_multi
3177 && ecs->event_thread->control.stop_step)
3178 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3179 else
3180 {
3181 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3182 cmd_done = 1;
3183 }
3184 }
3185
3186 /* No error, don't finish the thread states yet. */
3187 discard_cleanups (ts_old_chain);
3188
3189 /* Revert thread and frame. */
3190 do_cleanups (old_chain);
3191
3192 /* If the inferior was in sync execution mode, and now isn't,
3193 restore the prompt (a synchronous execution command has finished,
3194 and we're ready for input). */
3195 if (interpreter_async && was_sync && !sync_execution)
3196 observer_notify_sync_execution_done ();
3197
3198 if (cmd_done
3199 && !was_sync
3200 && exec_done_display_p
3201 && (ptid_equal (inferior_ptid, null_ptid)
3202 || !is_running (inferior_ptid)))
3203 printf_unfiltered (_("completed.\n"));
3204 }
3205
3206 /* Record the frame and location we're currently stepping through. */
3207 void
3208 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3209 {
3210 struct thread_info *tp = inferior_thread ();
3211
3212 tp->control.step_frame_id = get_frame_id (frame);
3213 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3214
3215 tp->current_symtab = sal.symtab;
3216 tp->current_line = sal.line;
3217 }
3218
3219 /* Clear context switchable stepping state. */
3220
3221 void
3222 init_thread_stepping_state (struct thread_info *tss)
3223 {
3224 tss->stepping_over_breakpoint = 0;
3225 tss->stepping_over_watchpoint = 0;
3226 tss->step_after_step_resume_breakpoint = 0;
3227 }
3228
3229 /* Set the cached copy of the last ptid/waitstatus. */
3230
3231 static void
3232 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3233 {
3234 target_last_wait_ptid = ptid;
3235 target_last_waitstatus = status;
3236 }
3237
3238 /* Return the cached copy of the last pid/waitstatus returned by
3239 target_wait()/deprecated_target_wait_hook(). The data is actually
3240 cached by handle_inferior_event(), which gets called immediately
3241 after target_wait()/deprecated_target_wait_hook(). */
3242
3243 void
3244 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3245 {
3246 *ptidp = target_last_wait_ptid;
3247 *status = target_last_waitstatus;
3248 }
3249
3250 void
3251 nullify_last_target_wait_ptid (void)
3252 {
3253 target_last_wait_ptid = minus_one_ptid;
3254 }
3255
3256 /* Switch thread contexts. */
3257
3258 static void
3259 context_switch (ptid_t ptid)
3260 {
3261 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
3262 {
3263 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3264 target_pid_to_str (inferior_ptid));
3265 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3266 target_pid_to_str (ptid));
3267 }
3268
3269 switch_to_thread (ptid);
3270 }
3271
3272 static void
3273 adjust_pc_after_break (struct execution_control_state *ecs)
3274 {
3275 struct regcache *regcache;
3276 struct gdbarch *gdbarch;
3277 struct address_space *aspace;
3278 CORE_ADDR breakpoint_pc, decr_pc;
3279
3280 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3281 we aren't, just return.
3282
3283 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3284 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3285 implemented by software breakpoints should be handled through the normal
3286 breakpoint layer.
3287
3288 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3289 different signals (SIGILL or SIGEMT for instance), but it is less
3290 clear where the PC is pointing afterwards. It may not match
3291 gdbarch_decr_pc_after_break. I don't know any specific target that
3292 generates these signals at breakpoints (the code has been in GDB since at
3293 least 1992) so I can not guess how to handle them here.
3294
3295 In earlier versions of GDB, a target with
3296 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3297 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3298 target with both of these set in GDB history, and it seems unlikely to be
3299 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3300
3301 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
3302 return;
3303
3304 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
3305 return;
3306
3307 /* In reverse execution, when a breakpoint is hit, the instruction
3308 under it has already been de-executed. The reported PC always
3309 points at the breakpoint address, so adjusting it further would
3310 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3311 architecture:
3312
3313 B1 0x08000000 : INSN1
3314 B2 0x08000001 : INSN2
3315 0x08000002 : INSN3
3316 PC -> 0x08000003 : INSN4
3317
3318 Say you're stopped at 0x08000003 as above. Reverse continuing
3319 from that point should hit B2 as below. Reading the PC when the
3320 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3321 been de-executed already.
3322
3323 B1 0x08000000 : INSN1
3324 B2 PC -> 0x08000001 : INSN2
3325 0x08000002 : INSN3
3326 0x08000003 : INSN4
3327
3328 We can't apply the same logic as for forward execution, because
3329 we would wrongly adjust the PC to 0x08000000, since there's a
3330 breakpoint at PC - 1. We'd then report a hit on B1, although
3331 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3332 behaviour. */
3333 if (execution_direction == EXEC_REVERSE)
3334 return;
3335
3336 /* If this target does not decrement the PC after breakpoints, then
3337 we have nothing to do. */
3338 regcache = get_thread_regcache (ecs->ptid);
3339 gdbarch = get_regcache_arch (regcache);
3340
3341 decr_pc = target_decr_pc_after_break (gdbarch);
3342 if (decr_pc == 0)
3343 return;
3344
3345 aspace = get_regcache_aspace (regcache);
3346
3347 /* Find the location where (if we've hit a breakpoint) the
3348 breakpoint would be. */
3349 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3350
3351 /* Check whether there actually is a software breakpoint inserted at
3352 that location.
3353
3354 If in non-stop mode, a race condition is possible where we've
3355 removed a breakpoint, but stop events for that breakpoint were
3356 already queued and arrive later. To suppress those spurious
3357 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3358 and retire them after a number of stop events are reported. */
3359 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3360 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3361 {
3362 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3363
3364 if (record_full_is_used ())
3365 record_full_gdb_operation_disable_set ();
3366
3367 /* When using hardware single-step, a SIGTRAP is reported for both
3368 a completed single-step and a software breakpoint. Need to
3369 differentiate between the two, as the latter needs adjusting
3370 but the former does not.
3371
3372 The SIGTRAP can be due to a completed hardware single-step only if
3373 - we didn't insert software single-step breakpoints
3374 - the thread to be examined is still the current thread
3375 - this thread is currently being stepped
3376
3377 If any of these events did not occur, we must have stopped due
3378 to hitting a software breakpoint, and have to back up to the
3379 breakpoint address.
3380
3381 As a special case, we could have hardware single-stepped a
3382 software breakpoint. In this case (prev_pc == breakpoint_pc),
3383 we also need to back up to the breakpoint address. */
3384
3385 if (thread_has_single_step_breakpoints_set (ecs->event_thread)
3386 || !ptid_equal (ecs->ptid, inferior_ptid)
3387 || !currently_stepping (ecs->event_thread)
3388 || ecs->event_thread->prev_pc == breakpoint_pc)
3389 regcache_write_pc (regcache, breakpoint_pc);
3390
3391 do_cleanups (old_cleanups);
3392 }
3393 }
3394
3395 static int
3396 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3397 {
3398 for (frame = get_prev_frame (frame);
3399 frame != NULL;
3400 frame = get_prev_frame (frame))
3401 {
3402 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3403 return 1;
3404 if (get_frame_type (frame) != INLINE_FRAME)
3405 break;
3406 }
3407
3408 return 0;
3409 }
3410
3411 /* Auxiliary function that handles syscall entry/return events.
3412 It returns 1 if the inferior should keep going (and GDB
3413 should ignore the event), or 0 if the event deserves to be
3414 processed. */
3415
3416 static int
3417 handle_syscall_event (struct execution_control_state *ecs)
3418 {
3419 struct regcache *regcache;
3420 int syscall_number;
3421
3422 if (!ptid_equal (ecs->ptid, inferior_ptid))
3423 context_switch (ecs->ptid);
3424
3425 regcache = get_thread_regcache (ecs->ptid);
3426 syscall_number = ecs->ws.value.syscall_number;
3427 stop_pc = regcache_read_pc (regcache);
3428
3429 if (catch_syscall_enabled () > 0
3430 && catching_syscall_number (syscall_number) > 0)
3431 {
3432 if (debug_infrun)
3433 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3434 syscall_number);
3435
3436 ecs->event_thread->control.stop_bpstat
3437 = bpstat_stop_status (get_regcache_aspace (regcache),
3438 stop_pc, ecs->ptid, &ecs->ws);
3439
3440 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3441 {
3442 /* Catchpoint hit. */
3443 return 0;
3444 }
3445 }
3446
3447 /* If no catchpoint triggered for this, then keep going. */
3448 keep_going (ecs);
3449 return 1;
3450 }
3451
3452 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3453
3454 static void
3455 fill_in_stop_func (struct gdbarch *gdbarch,
3456 struct execution_control_state *ecs)
3457 {
3458 if (!ecs->stop_func_filled_in)
3459 {
3460 /* Don't care about return value; stop_func_start and stop_func_name
3461 will both be 0 if it doesn't work. */
3462 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3463 &ecs->stop_func_start, &ecs->stop_func_end);
3464 ecs->stop_func_start
3465 += gdbarch_deprecated_function_start_offset (gdbarch);
3466
3467 if (gdbarch_skip_entrypoint_p (gdbarch))
3468 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3469 ecs->stop_func_start);
3470
3471 ecs->stop_func_filled_in = 1;
3472 }
3473 }
3474
3475
3476 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
3477
3478 static enum stop_kind
3479 get_inferior_stop_soon (ptid_t ptid)
3480 {
3481 struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid));
3482
3483 gdb_assert (inf != NULL);
3484 return inf->control.stop_soon;
3485 }
3486
3487 /* Given an execution control state that has been freshly filled in by
3488 an event from the inferior, figure out what it means and take
3489 appropriate action.
3490
3491 The alternatives are:
3492
3493 1) stop_waiting and return; to really stop and return to the
3494 debugger.
3495
3496 2) keep_going and return; to wait for the next event (set
3497 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3498 once). */
3499
3500 static void
3501 handle_inferior_event (struct execution_control_state *ecs)
3502 {
3503 enum stop_kind stop_soon;
3504
3505 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3506 {
3507 /* We had an event in the inferior, but we are not interested in
3508 handling it at this level. The lower layers have already
3509 done what needs to be done, if anything.
3510
3511 One of the possible circumstances for this is when the
3512 inferior produces output for the console. The inferior has
3513 not stopped, and we are ignoring the event. Another possible
3514 circumstance is any event which the lower level knows will be
3515 reported multiple times without an intervening resume. */
3516 if (debug_infrun)
3517 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3518 prepare_to_wait (ecs);
3519 return;
3520 }
3521
3522 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3523 && target_can_async_p () && !sync_execution)
3524 {
3525 /* There were no unwaited-for children left in the target, but,
3526 we're not synchronously waiting for events either. Just
3527 ignore. Otherwise, if we were running a synchronous
3528 execution command, we need to cancel it and give the user
3529 back the terminal. */
3530 if (debug_infrun)
3531 fprintf_unfiltered (gdb_stdlog,
3532 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3533 prepare_to_wait (ecs);
3534 return;
3535 }
3536
3537 /* Cache the last pid/waitstatus. */
3538 set_last_target_status (ecs->ptid, ecs->ws);
3539
3540 /* Always clear state belonging to the previous time we stopped. */
3541 stop_stack_dummy = STOP_NONE;
3542
3543 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3544 {
3545 /* No unwaited-for children left. IOW, all resumed children
3546 have exited. */
3547 if (debug_infrun)
3548 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3549
3550 stop_print_frame = 0;
3551 stop_waiting (ecs);
3552 return;
3553 }
3554
3555 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3556 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3557 {
3558 ecs->event_thread = find_thread_ptid (ecs->ptid);
3559 /* If it's a new thread, add it to the thread database. */
3560 if (ecs->event_thread == NULL)
3561 ecs->event_thread = add_thread (ecs->ptid);
3562
3563 /* Disable range stepping. If the next step request could use a
3564 range, this will be end up re-enabled then. */
3565 ecs->event_thread->control.may_range_step = 0;
3566 }
3567
3568 /* Dependent on valid ECS->EVENT_THREAD. */
3569 adjust_pc_after_break (ecs);
3570
3571 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3572 reinit_frame_cache ();
3573
3574 breakpoint_retire_moribund ();
3575
3576 /* First, distinguish signals caused by the debugger from signals
3577 that have to do with the program's own actions. Note that
3578 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3579 on the operating system version. Here we detect when a SIGILL or
3580 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3581 something similar for SIGSEGV, since a SIGSEGV will be generated
3582 when we're trying to execute a breakpoint instruction on a
3583 non-executable stack. This happens for call dummy breakpoints
3584 for architectures like SPARC that place call dummies on the
3585 stack. */
3586 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3587 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3588 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3589 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3590 {
3591 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3592
3593 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3594 regcache_read_pc (regcache)))
3595 {
3596 if (debug_infrun)
3597 fprintf_unfiltered (gdb_stdlog,
3598 "infrun: Treating signal as SIGTRAP\n");
3599 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3600 }
3601 }
3602
3603 /* Mark the non-executing threads accordingly. In all-stop, all
3604 threads of all processes are stopped when we get any event
3605 reported. In non-stop mode, only the event thread stops. If
3606 we're handling a process exit in non-stop mode, there's nothing
3607 to do, as threads of the dead process are gone, and threads of
3608 any other process were left running. */
3609 if (!non_stop)
3610 set_executing (minus_one_ptid, 0);
3611 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3612 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3613 set_executing (ecs->ptid, 0);
3614
3615 switch (ecs->ws.kind)
3616 {
3617 case TARGET_WAITKIND_LOADED:
3618 if (debug_infrun)
3619 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3620 if (!ptid_equal (ecs->ptid, inferior_ptid))
3621 context_switch (ecs->ptid);
3622 /* Ignore gracefully during startup of the inferior, as it might
3623 be the shell which has just loaded some objects, otherwise
3624 add the symbols for the newly loaded objects. Also ignore at
3625 the beginning of an attach or remote session; we will query
3626 the full list of libraries once the connection is
3627 established. */
3628
3629 stop_soon = get_inferior_stop_soon (ecs->ptid);
3630 if (stop_soon == NO_STOP_QUIETLY)
3631 {
3632 struct regcache *regcache;
3633
3634 regcache = get_thread_regcache (ecs->ptid);
3635
3636 handle_solib_event ();
3637
3638 ecs->event_thread->control.stop_bpstat
3639 = bpstat_stop_status (get_regcache_aspace (regcache),
3640 stop_pc, ecs->ptid, &ecs->ws);
3641
3642 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3643 {
3644 /* A catchpoint triggered. */
3645 process_event_stop_test (ecs);
3646 return;
3647 }
3648
3649 /* If requested, stop when the dynamic linker notifies
3650 gdb of events. This allows the user to get control
3651 and place breakpoints in initializer routines for
3652 dynamically loaded objects (among other things). */
3653 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3654 if (stop_on_solib_events)
3655 {
3656 /* Make sure we print "Stopped due to solib-event" in
3657 normal_stop. */
3658 stop_print_frame = 1;
3659
3660 stop_waiting (ecs);
3661 return;
3662 }
3663 }
3664
3665 /* If we are skipping through a shell, or through shared library
3666 loading that we aren't interested in, resume the program. If
3667 we're running the program normally, also resume. */
3668 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3669 {
3670 /* Loading of shared libraries might have changed breakpoint
3671 addresses. Make sure new breakpoints are inserted. */
3672 if (stop_soon == NO_STOP_QUIETLY)
3673 insert_breakpoints ();
3674 resume (0, GDB_SIGNAL_0);
3675 prepare_to_wait (ecs);
3676 return;
3677 }
3678
3679 /* But stop if we're attaching or setting up a remote
3680 connection. */
3681 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3682 || stop_soon == STOP_QUIETLY_REMOTE)
3683 {
3684 if (debug_infrun)
3685 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3686 stop_waiting (ecs);
3687 return;
3688 }
3689
3690 internal_error (__FILE__, __LINE__,
3691 _("unhandled stop_soon: %d"), (int) stop_soon);
3692
3693 case TARGET_WAITKIND_SPURIOUS:
3694 if (debug_infrun)
3695 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3696 if (!ptid_equal (ecs->ptid, inferior_ptid))
3697 context_switch (ecs->ptid);
3698 resume (0, GDB_SIGNAL_0);
3699 prepare_to_wait (ecs);
3700 return;
3701
3702 case TARGET_WAITKIND_EXITED:
3703 case TARGET_WAITKIND_SIGNALLED:
3704 if (debug_infrun)
3705 {
3706 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3707 fprintf_unfiltered (gdb_stdlog,
3708 "infrun: TARGET_WAITKIND_EXITED\n");
3709 else
3710 fprintf_unfiltered (gdb_stdlog,
3711 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3712 }
3713
3714 inferior_ptid = ecs->ptid;
3715 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3716 set_current_program_space (current_inferior ()->pspace);
3717 handle_vfork_child_exec_or_exit (0);
3718 target_terminal_ours (); /* Must do this before mourn anyway. */
3719
3720 /* Clearing any previous state of convenience variables. */
3721 clear_exit_convenience_vars ();
3722
3723 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3724 {
3725 /* Record the exit code in the convenience variable $_exitcode, so
3726 that the user can inspect this again later. */
3727 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3728 (LONGEST) ecs->ws.value.integer);
3729
3730 /* Also record this in the inferior itself. */
3731 current_inferior ()->has_exit_code = 1;
3732 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3733
3734 /* Support the --return-child-result option. */
3735 return_child_result_value = ecs->ws.value.integer;
3736
3737 observer_notify_exited (ecs->ws.value.integer);
3738 }
3739 else
3740 {
3741 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3742 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3743
3744 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3745 {
3746 /* Set the value of the internal variable $_exitsignal,
3747 which holds the signal uncaught by the inferior. */
3748 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3749 gdbarch_gdb_signal_to_target (gdbarch,
3750 ecs->ws.value.sig));
3751 }
3752 else
3753 {
3754 /* We don't have access to the target's method used for
3755 converting between signal numbers (GDB's internal
3756 representation <-> target's representation).
3757 Therefore, we cannot do a good job at displaying this
3758 information to the user. It's better to just warn
3759 her about it (if infrun debugging is enabled), and
3760 give up. */
3761 if (debug_infrun)
3762 fprintf_filtered (gdb_stdlog, _("\
3763 Cannot fill $_exitsignal with the correct signal number.\n"));
3764 }
3765
3766 observer_notify_signal_exited (ecs->ws.value.sig);
3767 }
3768
3769 gdb_flush (gdb_stdout);
3770 target_mourn_inferior ();
3771 stop_print_frame = 0;
3772 stop_waiting (ecs);
3773 return;
3774
3775 /* The following are the only cases in which we keep going;
3776 the above cases end in a continue or goto. */
3777 case TARGET_WAITKIND_FORKED:
3778 case TARGET_WAITKIND_VFORKED:
3779 if (debug_infrun)
3780 {
3781 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3782 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3783 else
3784 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3785 }
3786
3787 /* Check whether the inferior is displaced stepping. */
3788 {
3789 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3790 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3791 struct displaced_step_inferior_state *displaced
3792 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3793
3794 /* If checking displaced stepping is supported, and thread
3795 ecs->ptid is displaced stepping. */
3796 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3797 {
3798 struct inferior *parent_inf
3799 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3800 struct regcache *child_regcache;
3801 CORE_ADDR parent_pc;
3802
3803 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3804 indicating that the displaced stepping of syscall instruction
3805 has been done. Perform cleanup for parent process here. Note
3806 that this operation also cleans up the child process for vfork,
3807 because their pages are shared. */
3808 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3809
3810 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3811 {
3812 /* Restore scratch pad for child process. */
3813 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3814 }
3815
3816 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3817 the child's PC is also within the scratchpad. Set the child's PC
3818 to the parent's PC value, which has already been fixed up.
3819 FIXME: we use the parent's aspace here, although we're touching
3820 the child, because the child hasn't been added to the inferior
3821 list yet at this point. */
3822
3823 child_regcache
3824 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3825 gdbarch,
3826 parent_inf->aspace);
3827 /* Read PC value of parent process. */
3828 parent_pc = regcache_read_pc (regcache);
3829
3830 if (debug_displaced)
3831 fprintf_unfiltered (gdb_stdlog,
3832 "displaced: write child pc from %s to %s\n",
3833 paddress (gdbarch,
3834 regcache_read_pc (child_regcache)),
3835 paddress (gdbarch, parent_pc));
3836
3837 regcache_write_pc (child_regcache, parent_pc);
3838 }
3839 }
3840
3841 if (!ptid_equal (ecs->ptid, inferior_ptid))
3842 context_switch (ecs->ptid);
3843
3844 /* Immediately detach breakpoints from the child before there's
3845 any chance of letting the user delete breakpoints from the
3846 breakpoint lists. If we don't do this early, it's easy to
3847 leave left over traps in the child, vis: "break foo; catch
3848 fork; c; <fork>; del; c; <child calls foo>". We only follow
3849 the fork on the last `continue', and by that time the
3850 breakpoint at "foo" is long gone from the breakpoint table.
3851 If we vforked, then we don't need to unpatch here, since both
3852 parent and child are sharing the same memory pages; we'll
3853 need to unpatch at follow/detach time instead to be certain
3854 that new breakpoints added between catchpoint hit time and
3855 vfork follow are detached. */
3856 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3857 {
3858 /* This won't actually modify the breakpoint list, but will
3859 physically remove the breakpoints from the child. */
3860 detach_breakpoints (ecs->ws.value.related_pid);
3861 }
3862
3863 delete_just_stopped_threads_single_step_breakpoints ();
3864
3865 /* In case the event is caught by a catchpoint, remember that
3866 the event is to be followed at the next resume of the thread,
3867 and not immediately. */
3868 ecs->event_thread->pending_follow = ecs->ws;
3869
3870 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3871
3872 ecs->event_thread->control.stop_bpstat
3873 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3874 stop_pc, ecs->ptid, &ecs->ws);
3875
3876 /* If no catchpoint triggered for this, then keep going. Note
3877 that we're interested in knowing the bpstat actually causes a
3878 stop, not just if it may explain the signal. Software
3879 watchpoints, for example, always appear in the bpstat. */
3880 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3881 {
3882 ptid_t parent;
3883 ptid_t child;
3884 int should_resume;
3885 int follow_child
3886 = (follow_fork_mode_string == follow_fork_mode_child);
3887
3888 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3889
3890 should_resume = follow_fork ();
3891
3892 parent = ecs->ptid;
3893 child = ecs->ws.value.related_pid;
3894
3895 /* In non-stop mode, also resume the other branch. */
3896 if (non_stop && !detach_fork)
3897 {
3898 if (follow_child)
3899 switch_to_thread (parent);
3900 else
3901 switch_to_thread (child);
3902
3903 ecs->event_thread = inferior_thread ();
3904 ecs->ptid = inferior_ptid;
3905 keep_going (ecs);
3906 }
3907
3908 if (follow_child)
3909 switch_to_thread (child);
3910 else
3911 switch_to_thread (parent);
3912
3913 ecs->event_thread = inferior_thread ();
3914 ecs->ptid = inferior_ptid;
3915
3916 if (should_resume)
3917 keep_going (ecs);
3918 else
3919 stop_waiting (ecs);
3920 return;
3921 }
3922 process_event_stop_test (ecs);
3923 return;
3924
3925 case TARGET_WAITKIND_VFORK_DONE:
3926 /* Done with the shared memory region. Re-insert breakpoints in
3927 the parent, and keep going. */
3928
3929 if (debug_infrun)
3930 fprintf_unfiltered (gdb_stdlog,
3931 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3932
3933 if (!ptid_equal (ecs->ptid, inferior_ptid))
3934 context_switch (ecs->ptid);
3935
3936 current_inferior ()->waiting_for_vfork_done = 0;
3937 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3938 /* This also takes care of reinserting breakpoints in the
3939 previously locked inferior. */
3940 keep_going (ecs);
3941 return;
3942
3943 case TARGET_WAITKIND_EXECD:
3944 if (debug_infrun)
3945 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3946
3947 if (!ptid_equal (ecs->ptid, inferior_ptid))
3948 context_switch (ecs->ptid);
3949
3950 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3951
3952 /* Do whatever is necessary to the parent branch of the vfork. */
3953 handle_vfork_child_exec_or_exit (1);
3954
3955 /* This causes the eventpoints and symbol table to be reset.
3956 Must do this now, before trying to determine whether to
3957 stop. */
3958 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3959
3960 ecs->event_thread->control.stop_bpstat
3961 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3962 stop_pc, ecs->ptid, &ecs->ws);
3963
3964 /* Note that this may be referenced from inside
3965 bpstat_stop_status above, through inferior_has_execd. */
3966 xfree (ecs->ws.value.execd_pathname);
3967 ecs->ws.value.execd_pathname = NULL;
3968
3969 /* If no catchpoint triggered for this, then keep going. */
3970 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3971 {
3972 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3973 keep_going (ecs);
3974 return;
3975 }
3976 process_event_stop_test (ecs);
3977 return;
3978
3979 /* Be careful not to try to gather much state about a thread
3980 that's in a syscall. It's frequently a losing proposition. */
3981 case TARGET_WAITKIND_SYSCALL_ENTRY:
3982 if (debug_infrun)
3983 fprintf_unfiltered (gdb_stdlog,
3984 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3985 /* Getting the current syscall number. */
3986 if (handle_syscall_event (ecs) == 0)
3987 process_event_stop_test (ecs);
3988 return;
3989
3990 /* Before examining the threads further, step this thread to
3991 get it entirely out of the syscall. (We get notice of the
3992 event when the thread is just on the verge of exiting a
3993 syscall. Stepping one instruction seems to get it back
3994 into user code.) */
3995 case TARGET_WAITKIND_SYSCALL_RETURN:
3996 if (debug_infrun)
3997 fprintf_unfiltered (gdb_stdlog,
3998 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3999 if (handle_syscall_event (ecs) == 0)
4000 process_event_stop_test (ecs);
4001 return;
4002
4003 case TARGET_WAITKIND_STOPPED:
4004 if (debug_infrun)
4005 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4006 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4007 handle_signal_stop (ecs);
4008 return;
4009
4010 case TARGET_WAITKIND_NO_HISTORY:
4011 if (debug_infrun)
4012 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
4013 /* Reverse execution: target ran out of history info. */
4014
4015 delete_just_stopped_threads_single_step_breakpoints ();
4016 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4017 observer_notify_no_history ();
4018 stop_waiting (ecs);
4019 return;
4020 }
4021 }
4022
4023 /* Come here when the program has stopped with a signal. */
4024
4025 static void
4026 handle_signal_stop (struct execution_control_state *ecs)
4027 {
4028 struct frame_info *frame;
4029 struct gdbarch *gdbarch;
4030 int stopped_by_watchpoint;
4031 enum stop_kind stop_soon;
4032 int random_signal;
4033
4034 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
4035
4036 /* Do we need to clean up the state of a thread that has
4037 completed a displaced single-step? (Doing so usually affects
4038 the PC, so do it here, before we set stop_pc.) */
4039 displaced_step_fixup (ecs->ptid,
4040 ecs->event_thread->suspend.stop_signal);
4041
4042 /* If we either finished a single-step or hit a breakpoint, but
4043 the user wanted this thread to be stopped, pretend we got a
4044 SIG0 (generic unsignaled stop). */
4045 if (ecs->event_thread->stop_requested
4046 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4047 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4048
4049 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4050
4051 if (debug_infrun)
4052 {
4053 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4054 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4055 struct cleanup *old_chain = save_inferior_ptid ();
4056
4057 inferior_ptid = ecs->ptid;
4058
4059 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
4060 paddress (gdbarch, stop_pc));
4061 if (target_stopped_by_watchpoint ())
4062 {
4063 CORE_ADDR addr;
4064
4065 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
4066
4067 if (target_stopped_data_address (&current_target, &addr))
4068 fprintf_unfiltered (gdb_stdlog,
4069 "infrun: stopped data address = %s\n",
4070 paddress (gdbarch, addr));
4071 else
4072 fprintf_unfiltered (gdb_stdlog,
4073 "infrun: (no data address available)\n");
4074 }
4075
4076 do_cleanups (old_chain);
4077 }
4078
4079 /* This is originated from start_remote(), start_inferior() and
4080 shared libraries hook functions. */
4081 stop_soon = get_inferior_stop_soon (ecs->ptid);
4082 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4083 {
4084 if (!ptid_equal (ecs->ptid, inferior_ptid))
4085 context_switch (ecs->ptid);
4086 if (debug_infrun)
4087 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4088 stop_print_frame = 1;
4089 stop_waiting (ecs);
4090 return;
4091 }
4092
4093 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4094 && stop_after_trap)
4095 {
4096 if (!ptid_equal (ecs->ptid, inferior_ptid))
4097 context_switch (ecs->ptid);
4098 if (debug_infrun)
4099 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4100 stop_print_frame = 0;
4101 stop_waiting (ecs);
4102 return;
4103 }
4104
4105 /* This originates from attach_command(). We need to overwrite
4106 the stop_signal here, because some kernels don't ignore a
4107 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4108 See more comments in inferior.h. On the other hand, if we
4109 get a non-SIGSTOP, report it to the user - assume the backend
4110 will handle the SIGSTOP if it should show up later.
4111
4112 Also consider that the attach is complete when we see a
4113 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4114 target extended-remote report it instead of a SIGSTOP
4115 (e.g. gdbserver). We already rely on SIGTRAP being our
4116 signal, so this is no exception.
4117
4118 Also consider that the attach is complete when we see a
4119 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4120 the target to stop all threads of the inferior, in case the
4121 low level attach operation doesn't stop them implicitly. If
4122 they weren't stopped implicitly, then the stub will report a
4123 GDB_SIGNAL_0, meaning: stopped for no particular reason
4124 other than GDB's request. */
4125 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4126 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4127 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4128 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4129 {
4130 stop_print_frame = 1;
4131 stop_waiting (ecs);
4132 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4133 return;
4134 }
4135
4136 /* See if something interesting happened to the non-current thread. If
4137 so, then switch to that thread. */
4138 if (!ptid_equal (ecs->ptid, inferior_ptid))
4139 {
4140 if (debug_infrun)
4141 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4142
4143 context_switch (ecs->ptid);
4144
4145 if (deprecated_context_hook)
4146 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4147 }
4148
4149 /* At this point, get hold of the now-current thread's frame. */
4150 frame = get_current_frame ();
4151 gdbarch = get_frame_arch (frame);
4152
4153 /* Pull the single step breakpoints out of the target. */
4154 if (gdbarch_software_single_step_p (gdbarch))
4155 {
4156 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4157 {
4158 struct regcache *regcache;
4159 struct address_space *aspace;
4160 CORE_ADDR pc;
4161
4162 regcache = get_thread_regcache (ecs->ptid);
4163 aspace = get_regcache_aspace (regcache);
4164 pc = regcache_read_pc (regcache);
4165
4166 /* However, before doing so, if this single-step breakpoint was
4167 actually for another thread, set this thread up for moving
4168 past it. */
4169 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
4170 aspace, pc))
4171 {
4172 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4173 {
4174 if (debug_infrun)
4175 {
4176 fprintf_unfiltered (gdb_stdlog,
4177 "infrun: [%s] hit another thread's "
4178 "single-step breakpoint\n",
4179 target_pid_to_str (ecs->ptid));
4180 }
4181 ecs->hit_singlestep_breakpoint = 1;
4182 }
4183 }
4184 else
4185 {
4186 if (debug_infrun)
4187 {
4188 fprintf_unfiltered (gdb_stdlog,
4189 "infrun: [%s] hit its "
4190 "single-step breakpoint\n",
4191 target_pid_to_str (ecs->ptid));
4192 }
4193 }
4194 }
4195
4196 delete_just_stopped_threads_single_step_breakpoints ();
4197 }
4198
4199 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4200 && ecs->event_thread->control.trap_expected
4201 && ecs->event_thread->stepping_over_watchpoint)
4202 stopped_by_watchpoint = 0;
4203 else
4204 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4205
4206 /* If necessary, step over this watchpoint. We'll be back to display
4207 it in a moment. */
4208 if (stopped_by_watchpoint
4209 && (target_have_steppable_watchpoint
4210 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4211 {
4212 /* At this point, we are stopped at an instruction which has
4213 attempted to write to a piece of memory under control of
4214 a watchpoint. The instruction hasn't actually executed
4215 yet. If we were to evaluate the watchpoint expression
4216 now, we would get the old value, and therefore no change
4217 would seem to have occurred.
4218
4219 In order to make watchpoints work `right', we really need
4220 to complete the memory write, and then evaluate the
4221 watchpoint expression. We do this by single-stepping the
4222 target.
4223
4224 It may not be necessary to disable the watchpoint to step over
4225 it. For example, the PA can (with some kernel cooperation)
4226 single step over a watchpoint without disabling the watchpoint.
4227
4228 It is far more common to need to disable a watchpoint to step
4229 the inferior over it. If we have non-steppable watchpoints,
4230 we must disable the current watchpoint; it's simplest to
4231 disable all watchpoints.
4232
4233 Any breakpoint at PC must also be stepped over -- if there's
4234 one, it will have already triggered before the watchpoint
4235 triggered, and we either already reported it to the user, or
4236 it didn't cause a stop and we called keep_going. In either
4237 case, if there was a breakpoint at PC, we must be trying to
4238 step past it. */
4239 ecs->event_thread->stepping_over_watchpoint = 1;
4240 keep_going (ecs);
4241 return;
4242 }
4243
4244 ecs->event_thread->stepping_over_breakpoint = 0;
4245 ecs->event_thread->stepping_over_watchpoint = 0;
4246 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4247 ecs->event_thread->control.stop_step = 0;
4248 stop_print_frame = 1;
4249 stopped_by_random_signal = 0;
4250
4251 /* Hide inlined functions starting here, unless we just performed stepi or
4252 nexti. After stepi and nexti, always show the innermost frame (not any
4253 inline function call sites). */
4254 if (ecs->event_thread->control.step_range_end != 1)
4255 {
4256 struct address_space *aspace =
4257 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4258
4259 /* skip_inline_frames is expensive, so we avoid it if we can
4260 determine that the address is one where functions cannot have
4261 been inlined. This improves performance with inferiors that
4262 load a lot of shared libraries, because the solib event
4263 breakpoint is defined as the address of a function (i.e. not
4264 inline). Note that we have to check the previous PC as well
4265 as the current one to catch cases when we have just
4266 single-stepped off a breakpoint prior to reinstating it.
4267 Note that we're assuming that the code we single-step to is
4268 not inline, but that's not definitive: there's nothing
4269 preventing the event breakpoint function from containing
4270 inlined code, and the single-step ending up there. If the
4271 user had set a breakpoint on that inlined code, the missing
4272 skip_inline_frames call would break things. Fortunately
4273 that's an extremely unlikely scenario. */
4274 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4275 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4276 && ecs->event_thread->control.trap_expected
4277 && pc_at_non_inline_function (aspace,
4278 ecs->event_thread->prev_pc,
4279 &ecs->ws)))
4280 {
4281 skip_inline_frames (ecs->ptid);
4282
4283 /* Re-fetch current thread's frame in case that invalidated
4284 the frame cache. */
4285 frame = get_current_frame ();
4286 gdbarch = get_frame_arch (frame);
4287 }
4288 }
4289
4290 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4291 && ecs->event_thread->control.trap_expected
4292 && gdbarch_single_step_through_delay_p (gdbarch)
4293 && currently_stepping (ecs->event_thread))
4294 {
4295 /* We're trying to step off a breakpoint. Turns out that we're
4296 also on an instruction that needs to be stepped multiple
4297 times before it's been fully executing. E.g., architectures
4298 with a delay slot. It needs to be stepped twice, once for
4299 the instruction and once for the delay slot. */
4300 int step_through_delay
4301 = gdbarch_single_step_through_delay (gdbarch, frame);
4302
4303 if (debug_infrun && step_through_delay)
4304 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4305 if (ecs->event_thread->control.step_range_end == 0
4306 && step_through_delay)
4307 {
4308 /* The user issued a continue when stopped at a breakpoint.
4309 Set up for another trap and get out of here. */
4310 ecs->event_thread->stepping_over_breakpoint = 1;
4311 keep_going (ecs);
4312 return;
4313 }
4314 else if (step_through_delay)
4315 {
4316 /* The user issued a step when stopped at a breakpoint.
4317 Maybe we should stop, maybe we should not - the delay
4318 slot *might* correspond to a line of source. In any
4319 case, don't decide that here, just set
4320 ecs->stepping_over_breakpoint, making sure we
4321 single-step again before breakpoints are re-inserted. */
4322 ecs->event_thread->stepping_over_breakpoint = 1;
4323 }
4324 }
4325
4326 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4327 handles this event. */
4328 ecs->event_thread->control.stop_bpstat
4329 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4330 stop_pc, ecs->ptid, &ecs->ws);
4331
4332 /* Following in case break condition called a
4333 function. */
4334 stop_print_frame = 1;
4335
4336 /* This is where we handle "moribund" watchpoints. Unlike
4337 software breakpoints traps, hardware watchpoint traps are
4338 always distinguishable from random traps. If no high-level
4339 watchpoint is associated with the reported stop data address
4340 anymore, then the bpstat does not explain the signal ---
4341 simply make sure to ignore it if `stopped_by_watchpoint' is
4342 set. */
4343
4344 if (debug_infrun
4345 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4346 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4347 GDB_SIGNAL_TRAP)
4348 && stopped_by_watchpoint)
4349 fprintf_unfiltered (gdb_stdlog,
4350 "infrun: no user watchpoint explains "
4351 "watchpoint SIGTRAP, ignoring\n");
4352
4353 /* NOTE: cagney/2003-03-29: These checks for a random signal
4354 at one stage in the past included checks for an inferior
4355 function call's call dummy's return breakpoint. The original
4356 comment, that went with the test, read:
4357
4358 ``End of a stack dummy. Some systems (e.g. Sony news) give
4359 another signal besides SIGTRAP, so check here as well as
4360 above.''
4361
4362 If someone ever tries to get call dummys on a
4363 non-executable stack to work (where the target would stop
4364 with something like a SIGSEGV), then those tests might need
4365 to be re-instated. Given, however, that the tests were only
4366 enabled when momentary breakpoints were not being used, I
4367 suspect that it won't be the case.
4368
4369 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4370 be necessary for call dummies on a non-executable stack on
4371 SPARC. */
4372
4373 /* See if the breakpoints module can explain the signal. */
4374 random_signal
4375 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4376 ecs->event_thread->suspend.stop_signal);
4377
4378 /* If not, perhaps stepping/nexting can. */
4379 if (random_signal)
4380 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4381 && currently_stepping (ecs->event_thread));
4382
4383 /* Perhaps the thread hit a single-step breakpoint of _another_
4384 thread. Single-step breakpoints are transparent to the
4385 breakpoints module. */
4386 if (random_signal)
4387 random_signal = !ecs->hit_singlestep_breakpoint;
4388
4389 /* No? Perhaps we got a moribund watchpoint. */
4390 if (random_signal)
4391 random_signal = !stopped_by_watchpoint;
4392
4393 /* For the program's own signals, act according to
4394 the signal handling tables. */
4395
4396 if (random_signal)
4397 {
4398 /* Signal not for debugging purposes. */
4399 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4400 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
4401
4402 if (debug_infrun)
4403 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4404 gdb_signal_to_symbol_string (stop_signal));
4405
4406 stopped_by_random_signal = 1;
4407
4408 /* Always stop on signals if we're either just gaining control
4409 of the program, or the user explicitly requested this thread
4410 to remain stopped. */
4411 if (stop_soon != NO_STOP_QUIETLY
4412 || ecs->event_thread->stop_requested
4413 || (!inf->detaching
4414 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4415 {
4416 stop_waiting (ecs);
4417 return;
4418 }
4419
4420 /* Notify observers the signal has "handle print" set. Note we
4421 returned early above if stopping; normal_stop handles the
4422 printing in that case. */
4423 if (signal_print[ecs->event_thread->suspend.stop_signal])
4424 {
4425 /* The signal table tells us to print about this signal. */
4426 target_terminal_ours_for_output ();
4427 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
4428 target_terminal_inferior ();
4429 }
4430
4431 /* Clear the signal if it should not be passed. */
4432 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4433 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4434
4435 if (ecs->event_thread->prev_pc == stop_pc
4436 && ecs->event_thread->control.trap_expected
4437 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4438 {
4439 /* We were just starting a new sequence, attempting to
4440 single-step off of a breakpoint and expecting a SIGTRAP.
4441 Instead this signal arrives. This signal will take us out
4442 of the stepping range so GDB needs to remember to, when
4443 the signal handler returns, resume stepping off that
4444 breakpoint. */
4445 /* To simplify things, "continue" is forced to use the same
4446 code paths as single-step - set a breakpoint at the
4447 signal return address and then, once hit, step off that
4448 breakpoint. */
4449 if (debug_infrun)
4450 fprintf_unfiltered (gdb_stdlog,
4451 "infrun: signal arrived while stepping over "
4452 "breakpoint\n");
4453
4454 insert_hp_step_resume_breakpoint_at_frame (frame);
4455 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4456 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4457 ecs->event_thread->control.trap_expected = 0;
4458
4459 /* If we were nexting/stepping some other thread, switch to
4460 it, so that we don't continue it, losing control. */
4461 if (!switch_back_to_stepped_thread (ecs))
4462 keep_going (ecs);
4463 return;
4464 }
4465
4466 if (ecs->event_thread->control.step_range_end != 0
4467 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4468 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
4469 && frame_id_eq (get_stack_frame_id (frame),
4470 ecs->event_thread->control.step_stack_frame_id)
4471 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4472 {
4473 /* The inferior is about to take a signal that will take it
4474 out of the single step range. Set a breakpoint at the
4475 current PC (which is presumably where the signal handler
4476 will eventually return) and then allow the inferior to
4477 run free.
4478
4479 Note that this is only needed for a signal delivered
4480 while in the single-step range. Nested signals aren't a
4481 problem as they eventually all return. */
4482 if (debug_infrun)
4483 fprintf_unfiltered (gdb_stdlog,
4484 "infrun: signal may take us out of "
4485 "single-step range\n");
4486
4487 insert_hp_step_resume_breakpoint_at_frame (frame);
4488 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4489 ecs->event_thread->control.trap_expected = 0;
4490 keep_going (ecs);
4491 return;
4492 }
4493
4494 /* Note: step_resume_breakpoint may be non-NULL. This occures
4495 when either there's a nested signal, or when there's a
4496 pending signal enabled just as the signal handler returns
4497 (leaving the inferior at the step-resume-breakpoint without
4498 actually executing it). Either way continue until the
4499 breakpoint is really hit. */
4500
4501 if (!switch_back_to_stepped_thread (ecs))
4502 {
4503 if (debug_infrun)
4504 fprintf_unfiltered (gdb_stdlog,
4505 "infrun: random signal, keep going\n");
4506
4507 keep_going (ecs);
4508 }
4509 return;
4510 }
4511
4512 process_event_stop_test (ecs);
4513 }
4514
4515 /* Come here when we've got some debug event / signal we can explain
4516 (IOW, not a random signal), and test whether it should cause a
4517 stop, or whether we should resume the inferior (transparently).
4518 E.g., could be a breakpoint whose condition evaluates false; we
4519 could be still stepping within the line; etc. */
4520
4521 static void
4522 process_event_stop_test (struct execution_control_state *ecs)
4523 {
4524 struct symtab_and_line stop_pc_sal;
4525 struct frame_info *frame;
4526 struct gdbarch *gdbarch;
4527 CORE_ADDR jmp_buf_pc;
4528 struct bpstat_what what;
4529
4530 /* Handle cases caused by hitting a breakpoint. */
4531
4532 frame = get_current_frame ();
4533 gdbarch = get_frame_arch (frame);
4534
4535 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4536
4537 if (what.call_dummy)
4538 {
4539 stop_stack_dummy = what.call_dummy;
4540 }
4541
4542 /* If we hit an internal event that triggers symbol changes, the
4543 current frame will be invalidated within bpstat_what (e.g., if we
4544 hit an internal solib event). Re-fetch it. */
4545 frame = get_current_frame ();
4546 gdbarch = get_frame_arch (frame);
4547
4548 switch (what.main_action)
4549 {
4550 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4551 /* If we hit the breakpoint at longjmp while stepping, we
4552 install a momentary breakpoint at the target of the
4553 jmp_buf. */
4554
4555 if (debug_infrun)
4556 fprintf_unfiltered (gdb_stdlog,
4557 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4558
4559 ecs->event_thread->stepping_over_breakpoint = 1;
4560
4561 if (what.is_longjmp)
4562 {
4563 struct value *arg_value;
4564
4565 /* If we set the longjmp breakpoint via a SystemTap probe,
4566 then use it to extract the arguments. The destination PC
4567 is the third argument to the probe. */
4568 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4569 if (arg_value)
4570 {
4571 jmp_buf_pc = value_as_address (arg_value);
4572 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
4573 }
4574 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4575 || !gdbarch_get_longjmp_target (gdbarch,
4576 frame, &jmp_buf_pc))
4577 {
4578 if (debug_infrun)
4579 fprintf_unfiltered (gdb_stdlog,
4580 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4581 "(!gdbarch_get_longjmp_target)\n");
4582 keep_going (ecs);
4583 return;
4584 }
4585
4586 /* Insert a breakpoint at resume address. */
4587 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4588 }
4589 else
4590 check_exception_resume (ecs, frame);
4591 keep_going (ecs);
4592 return;
4593
4594 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4595 {
4596 struct frame_info *init_frame;
4597
4598 /* There are several cases to consider.
4599
4600 1. The initiating frame no longer exists. In this case we
4601 must stop, because the exception or longjmp has gone too
4602 far.
4603
4604 2. The initiating frame exists, and is the same as the
4605 current frame. We stop, because the exception or longjmp
4606 has been caught.
4607
4608 3. The initiating frame exists and is different from the
4609 current frame. This means the exception or longjmp has
4610 been caught beneath the initiating frame, so keep going.
4611
4612 4. longjmp breakpoint has been placed just to protect
4613 against stale dummy frames and user is not interested in
4614 stopping around longjmps. */
4615
4616 if (debug_infrun)
4617 fprintf_unfiltered (gdb_stdlog,
4618 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4619
4620 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4621 != NULL);
4622 delete_exception_resume_breakpoint (ecs->event_thread);
4623
4624 if (what.is_longjmp)
4625 {
4626 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
4627
4628 if (!frame_id_p (ecs->event_thread->initiating_frame))
4629 {
4630 /* Case 4. */
4631 keep_going (ecs);
4632 return;
4633 }
4634 }
4635
4636 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4637
4638 if (init_frame)
4639 {
4640 struct frame_id current_id
4641 = get_frame_id (get_current_frame ());
4642 if (frame_id_eq (current_id,
4643 ecs->event_thread->initiating_frame))
4644 {
4645 /* Case 2. Fall through. */
4646 }
4647 else
4648 {
4649 /* Case 3. */
4650 keep_going (ecs);
4651 return;
4652 }
4653 }
4654
4655 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4656 exists. */
4657 delete_step_resume_breakpoint (ecs->event_thread);
4658
4659 end_stepping_range (ecs);
4660 }
4661 return;
4662
4663 case BPSTAT_WHAT_SINGLE:
4664 if (debug_infrun)
4665 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4666 ecs->event_thread->stepping_over_breakpoint = 1;
4667 /* Still need to check other stuff, at least the case where we
4668 are stepping and step out of the right range. */
4669 break;
4670
4671 case BPSTAT_WHAT_STEP_RESUME:
4672 if (debug_infrun)
4673 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4674
4675 delete_step_resume_breakpoint (ecs->event_thread);
4676 if (ecs->event_thread->control.proceed_to_finish
4677 && execution_direction == EXEC_REVERSE)
4678 {
4679 struct thread_info *tp = ecs->event_thread;
4680
4681 /* We are finishing a function in reverse, and just hit the
4682 step-resume breakpoint at the start address of the
4683 function, and we're almost there -- just need to back up
4684 by one more single-step, which should take us back to the
4685 function call. */
4686 tp->control.step_range_start = tp->control.step_range_end = 1;
4687 keep_going (ecs);
4688 return;
4689 }
4690 fill_in_stop_func (gdbarch, ecs);
4691 if (stop_pc == ecs->stop_func_start
4692 && execution_direction == EXEC_REVERSE)
4693 {
4694 /* We are stepping over a function call in reverse, and just
4695 hit the step-resume breakpoint at the start address of
4696 the function. Go back to single-stepping, which should
4697 take us back to the function call. */
4698 ecs->event_thread->stepping_over_breakpoint = 1;
4699 keep_going (ecs);
4700 return;
4701 }
4702 break;
4703
4704 case BPSTAT_WHAT_STOP_NOISY:
4705 if (debug_infrun)
4706 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4707 stop_print_frame = 1;
4708
4709 /* Assume the thread stopped for a breapoint. We'll still check
4710 whether a/the breakpoint is there when the thread is next
4711 resumed. */
4712 ecs->event_thread->stepping_over_breakpoint = 1;
4713
4714 stop_waiting (ecs);
4715 return;
4716
4717 case BPSTAT_WHAT_STOP_SILENT:
4718 if (debug_infrun)
4719 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4720 stop_print_frame = 0;
4721
4722 /* Assume the thread stopped for a breapoint. We'll still check
4723 whether a/the breakpoint is there when the thread is next
4724 resumed. */
4725 ecs->event_thread->stepping_over_breakpoint = 1;
4726 stop_waiting (ecs);
4727 return;
4728
4729 case BPSTAT_WHAT_HP_STEP_RESUME:
4730 if (debug_infrun)
4731 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4732
4733 delete_step_resume_breakpoint (ecs->event_thread);
4734 if (ecs->event_thread->step_after_step_resume_breakpoint)
4735 {
4736 /* Back when the step-resume breakpoint was inserted, we
4737 were trying to single-step off a breakpoint. Go back to
4738 doing that. */
4739 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4740 ecs->event_thread->stepping_over_breakpoint = 1;
4741 keep_going (ecs);
4742 return;
4743 }
4744 break;
4745
4746 case BPSTAT_WHAT_KEEP_CHECKING:
4747 break;
4748 }
4749
4750 /* We come here if we hit a breakpoint but should not stop for it.
4751 Possibly we also were stepping and should stop for that. So fall
4752 through and test for stepping. But, if not stepping, do not
4753 stop. */
4754
4755 /* In all-stop mode, if we're currently stepping but have stopped in
4756 some other thread, we need to switch back to the stepped thread. */
4757 if (switch_back_to_stepped_thread (ecs))
4758 return;
4759
4760 if (ecs->event_thread->control.step_resume_breakpoint)
4761 {
4762 if (debug_infrun)
4763 fprintf_unfiltered (gdb_stdlog,
4764 "infrun: step-resume breakpoint is inserted\n");
4765
4766 /* Having a step-resume breakpoint overrides anything
4767 else having to do with stepping commands until
4768 that breakpoint is reached. */
4769 keep_going (ecs);
4770 return;
4771 }
4772
4773 if (ecs->event_thread->control.step_range_end == 0)
4774 {
4775 if (debug_infrun)
4776 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4777 /* Likewise if we aren't even stepping. */
4778 keep_going (ecs);
4779 return;
4780 }
4781
4782 /* Re-fetch current thread's frame in case the code above caused
4783 the frame cache to be re-initialized, making our FRAME variable
4784 a dangling pointer. */
4785 frame = get_current_frame ();
4786 gdbarch = get_frame_arch (frame);
4787 fill_in_stop_func (gdbarch, ecs);
4788
4789 /* If stepping through a line, keep going if still within it.
4790
4791 Note that step_range_end is the address of the first instruction
4792 beyond the step range, and NOT the address of the last instruction
4793 within it!
4794
4795 Note also that during reverse execution, we may be stepping
4796 through a function epilogue and therefore must detect when
4797 the current-frame changes in the middle of a line. */
4798
4799 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4800 && (execution_direction != EXEC_REVERSE
4801 || frame_id_eq (get_frame_id (frame),
4802 ecs->event_thread->control.step_frame_id)))
4803 {
4804 if (debug_infrun)
4805 fprintf_unfiltered
4806 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4807 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4808 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4809
4810 /* Tentatively re-enable range stepping; `resume' disables it if
4811 necessary (e.g., if we're stepping over a breakpoint or we
4812 have software watchpoints). */
4813 ecs->event_thread->control.may_range_step = 1;
4814
4815 /* When stepping backward, stop at beginning of line range
4816 (unless it's the function entry point, in which case
4817 keep going back to the call point). */
4818 if (stop_pc == ecs->event_thread->control.step_range_start
4819 && stop_pc != ecs->stop_func_start
4820 && execution_direction == EXEC_REVERSE)
4821 end_stepping_range (ecs);
4822 else
4823 keep_going (ecs);
4824
4825 return;
4826 }
4827
4828 /* We stepped out of the stepping range. */
4829
4830 /* If we are stepping at the source level and entered the runtime
4831 loader dynamic symbol resolution code...
4832
4833 EXEC_FORWARD: we keep on single stepping until we exit the run
4834 time loader code and reach the callee's address.
4835
4836 EXEC_REVERSE: we've already executed the callee (backward), and
4837 the runtime loader code is handled just like any other
4838 undebuggable function call. Now we need only keep stepping
4839 backward through the trampoline code, and that's handled further
4840 down, so there is nothing for us to do here. */
4841
4842 if (execution_direction != EXEC_REVERSE
4843 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4844 && in_solib_dynsym_resolve_code (stop_pc))
4845 {
4846 CORE_ADDR pc_after_resolver =
4847 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4848
4849 if (debug_infrun)
4850 fprintf_unfiltered (gdb_stdlog,
4851 "infrun: stepped into dynsym resolve code\n");
4852
4853 if (pc_after_resolver)
4854 {
4855 /* Set up a step-resume breakpoint at the address
4856 indicated by SKIP_SOLIB_RESOLVER. */
4857 struct symtab_and_line sr_sal;
4858
4859 init_sal (&sr_sal);
4860 sr_sal.pc = pc_after_resolver;
4861 sr_sal.pspace = get_frame_program_space (frame);
4862
4863 insert_step_resume_breakpoint_at_sal (gdbarch,
4864 sr_sal, null_frame_id);
4865 }
4866
4867 keep_going (ecs);
4868 return;
4869 }
4870
4871 if (ecs->event_thread->control.step_range_end != 1
4872 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4873 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4874 && get_frame_type (frame) == SIGTRAMP_FRAME)
4875 {
4876 if (debug_infrun)
4877 fprintf_unfiltered (gdb_stdlog,
4878 "infrun: stepped into signal trampoline\n");
4879 /* The inferior, while doing a "step" or "next", has ended up in
4880 a signal trampoline (either by a signal being delivered or by
4881 the signal handler returning). Just single-step until the
4882 inferior leaves the trampoline (either by calling the handler
4883 or returning). */
4884 keep_going (ecs);
4885 return;
4886 }
4887
4888 /* If we're in the return path from a shared library trampoline,
4889 we want to proceed through the trampoline when stepping. */
4890 /* macro/2012-04-25: This needs to come before the subroutine
4891 call check below as on some targets return trampolines look
4892 like subroutine calls (MIPS16 return thunks). */
4893 if (gdbarch_in_solib_return_trampoline (gdbarch,
4894 stop_pc, ecs->stop_func_name)
4895 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4896 {
4897 /* Determine where this trampoline returns. */
4898 CORE_ADDR real_stop_pc;
4899
4900 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4901
4902 if (debug_infrun)
4903 fprintf_unfiltered (gdb_stdlog,
4904 "infrun: stepped into solib return tramp\n");
4905
4906 /* Only proceed through if we know where it's going. */
4907 if (real_stop_pc)
4908 {
4909 /* And put the step-breakpoint there and go until there. */
4910 struct symtab_and_line sr_sal;
4911
4912 init_sal (&sr_sal); /* initialize to zeroes */
4913 sr_sal.pc = real_stop_pc;
4914 sr_sal.section = find_pc_overlay (sr_sal.pc);
4915 sr_sal.pspace = get_frame_program_space (frame);
4916
4917 /* Do not specify what the fp should be when we stop since
4918 on some machines the prologue is where the new fp value
4919 is established. */
4920 insert_step_resume_breakpoint_at_sal (gdbarch,
4921 sr_sal, null_frame_id);
4922
4923 /* Restart without fiddling with the step ranges or
4924 other state. */
4925 keep_going (ecs);
4926 return;
4927 }
4928 }
4929
4930 /* Check for subroutine calls. The check for the current frame
4931 equalling the step ID is not necessary - the check of the
4932 previous frame's ID is sufficient - but it is a common case and
4933 cheaper than checking the previous frame's ID.
4934
4935 NOTE: frame_id_eq will never report two invalid frame IDs as
4936 being equal, so to get into this block, both the current and
4937 previous frame must have valid frame IDs. */
4938 /* The outer_frame_id check is a heuristic to detect stepping
4939 through startup code. If we step over an instruction which
4940 sets the stack pointer from an invalid value to a valid value,
4941 we may detect that as a subroutine call from the mythical
4942 "outermost" function. This could be fixed by marking
4943 outermost frames as !stack_p,code_p,special_p. Then the
4944 initial outermost frame, before sp was valid, would
4945 have code_addr == &_start. See the comment in frame_id_eq
4946 for more. */
4947 if (!frame_id_eq (get_stack_frame_id (frame),
4948 ecs->event_thread->control.step_stack_frame_id)
4949 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4950 ecs->event_thread->control.step_stack_frame_id)
4951 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4952 outer_frame_id)
4953 || step_start_function != find_pc_function (stop_pc))))
4954 {
4955 CORE_ADDR real_stop_pc;
4956
4957 if (debug_infrun)
4958 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4959
4960 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4961 || ((ecs->event_thread->control.step_range_end == 1)
4962 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4963 ecs->stop_func_start)))
4964 {
4965 /* I presume that step_over_calls is only 0 when we're
4966 supposed to be stepping at the assembly language level
4967 ("stepi"). Just stop. */
4968 /* Also, maybe we just did a "nexti" inside a prolog, so we
4969 thought it was a subroutine call but it was not. Stop as
4970 well. FENN */
4971 /* And this works the same backward as frontward. MVS */
4972 end_stepping_range (ecs);
4973 return;
4974 }
4975
4976 /* Reverse stepping through solib trampolines. */
4977
4978 if (execution_direction == EXEC_REVERSE
4979 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4980 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4981 || (ecs->stop_func_start == 0
4982 && in_solib_dynsym_resolve_code (stop_pc))))
4983 {
4984 /* Any solib trampoline code can be handled in reverse
4985 by simply continuing to single-step. We have already
4986 executed the solib function (backwards), and a few
4987 steps will take us back through the trampoline to the
4988 caller. */
4989 keep_going (ecs);
4990 return;
4991 }
4992
4993 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4994 {
4995 /* We're doing a "next".
4996
4997 Normal (forward) execution: set a breakpoint at the
4998 callee's return address (the address at which the caller
4999 will resume).
5000
5001 Reverse (backward) execution. set the step-resume
5002 breakpoint at the start of the function that we just
5003 stepped into (backwards), and continue to there. When we
5004 get there, we'll need to single-step back to the caller. */
5005
5006 if (execution_direction == EXEC_REVERSE)
5007 {
5008 /* If we're already at the start of the function, we've either
5009 just stepped backward into a single instruction function,
5010 or stepped back out of a signal handler to the first instruction
5011 of the function. Just keep going, which will single-step back
5012 to the caller. */
5013 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
5014 {
5015 struct symtab_and_line sr_sal;
5016
5017 /* Normal function call return (static or dynamic). */
5018 init_sal (&sr_sal);
5019 sr_sal.pc = ecs->stop_func_start;
5020 sr_sal.pspace = get_frame_program_space (frame);
5021 insert_step_resume_breakpoint_at_sal (gdbarch,
5022 sr_sal, null_frame_id);
5023 }
5024 }
5025 else
5026 insert_step_resume_breakpoint_at_caller (frame);
5027
5028 keep_going (ecs);
5029 return;
5030 }
5031
5032 /* If we are in a function call trampoline (a stub between the
5033 calling routine and the real function), locate the real
5034 function. That's what tells us (a) whether we want to step
5035 into it at all, and (b) what prologue we want to run to the
5036 end of, if we do step into it. */
5037 real_stop_pc = skip_language_trampoline (frame, stop_pc);
5038 if (real_stop_pc == 0)
5039 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5040 if (real_stop_pc != 0)
5041 ecs->stop_func_start = real_stop_pc;
5042
5043 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
5044 {
5045 struct symtab_and_line sr_sal;
5046
5047 init_sal (&sr_sal);
5048 sr_sal.pc = ecs->stop_func_start;
5049 sr_sal.pspace = get_frame_program_space (frame);
5050
5051 insert_step_resume_breakpoint_at_sal (gdbarch,
5052 sr_sal, null_frame_id);
5053 keep_going (ecs);
5054 return;
5055 }
5056
5057 /* If we have line number information for the function we are
5058 thinking of stepping into and the function isn't on the skip
5059 list, step into it.
5060
5061 If there are several symtabs at that PC (e.g. with include
5062 files), just want to know whether *any* of them have line
5063 numbers. find_pc_line handles this. */
5064 {
5065 struct symtab_and_line tmp_sal;
5066
5067 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
5068 if (tmp_sal.line != 0
5069 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5070 &tmp_sal))
5071 {
5072 if (execution_direction == EXEC_REVERSE)
5073 handle_step_into_function_backward (gdbarch, ecs);
5074 else
5075 handle_step_into_function (gdbarch, ecs);
5076 return;
5077 }
5078 }
5079
5080 /* If we have no line number and the step-stop-if-no-debug is
5081 set, we stop the step so that the user has a chance to switch
5082 in assembly mode. */
5083 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5084 && step_stop_if_no_debug)
5085 {
5086 end_stepping_range (ecs);
5087 return;
5088 }
5089
5090 if (execution_direction == EXEC_REVERSE)
5091 {
5092 /* If we're already at the start of the function, we've either just
5093 stepped backward into a single instruction function without line
5094 number info, or stepped back out of a signal handler to the first
5095 instruction of the function without line number info. Just keep
5096 going, which will single-step back to the caller. */
5097 if (ecs->stop_func_start != stop_pc)
5098 {
5099 /* Set a breakpoint at callee's start address.
5100 From there we can step once and be back in the caller. */
5101 struct symtab_and_line sr_sal;
5102
5103 init_sal (&sr_sal);
5104 sr_sal.pc = ecs->stop_func_start;
5105 sr_sal.pspace = get_frame_program_space (frame);
5106 insert_step_resume_breakpoint_at_sal (gdbarch,
5107 sr_sal, null_frame_id);
5108 }
5109 }
5110 else
5111 /* Set a breakpoint at callee's return address (the address
5112 at which the caller will resume). */
5113 insert_step_resume_breakpoint_at_caller (frame);
5114
5115 keep_going (ecs);
5116 return;
5117 }
5118
5119 /* Reverse stepping through solib trampolines. */
5120
5121 if (execution_direction == EXEC_REVERSE
5122 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5123 {
5124 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5125 || (ecs->stop_func_start == 0
5126 && in_solib_dynsym_resolve_code (stop_pc)))
5127 {
5128 /* Any solib trampoline code can be handled in reverse
5129 by simply continuing to single-step. We have already
5130 executed the solib function (backwards), and a few
5131 steps will take us back through the trampoline to the
5132 caller. */
5133 keep_going (ecs);
5134 return;
5135 }
5136 else if (in_solib_dynsym_resolve_code (stop_pc))
5137 {
5138 /* Stepped backward into the solib dynsym resolver.
5139 Set a breakpoint at its start and continue, then
5140 one more step will take us out. */
5141 struct symtab_and_line sr_sal;
5142
5143 init_sal (&sr_sal);
5144 sr_sal.pc = ecs->stop_func_start;
5145 sr_sal.pspace = get_frame_program_space (frame);
5146 insert_step_resume_breakpoint_at_sal (gdbarch,
5147 sr_sal, null_frame_id);
5148 keep_going (ecs);
5149 return;
5150 }
5151 }
5152
5153 stop_pc_sal = find_pc_line (stop_pc, 0);
5154
5155 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5156 the trampoline processing logic, however, there are some trampolines
5157 that have no names, so we should do trampoline handling first. */
5158 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5159 && ecs->stop_func_name == NULL
5160 && stop_pc_sal.line == 0)
5161 {
5162 if (debug_infrun)
5163 fprintf_unfiltered (gdb_stdlog,
5164 "infrun: stepped into undebuggable function\n");
5165
5166 /* The inferior just stepped into, or returned to, an
5167 undebuggable function (where there is no debugging information
5168 and no line number corresponding to the address where the
5169 inferior stopped). Since we want to skip this kind of code,
5170 we keep going until the inferior returns from this
5171 function - unless the user has asked us not to (via
5172 set step-mode) or we no longer know how to get back
5173 to the call site. */
5174 if (step_stop_if_no_debug
5175 || !frame_id_p (frame_unwind_caller_id (frame)))
5176 {
5177 /* If we have no line number and the step-stop-if-no-debug
5178 is set, we stop the step so that the user has a chance to
5179 switch in assembly mode. */
5180 end_stepping_range (ecs);
5181 return;
5182 }
5183 else
5184 {
5185 /* Set a breakpoint at callee's return address (the address
5186 at which the caller will resume). */
5187 insert_step_resume_breakpoint_at_caller (frame);
5188 keep_going (ecs);
5189 return;
5190 }
5191 }
5192
5193 if (ecs->event_thread->control.step_range_end == 1)
5194 {
5195 /* It is stepi or nexti. We always want to stop stepping after
5196 one instruction. */
5197 if (debug_infrun)
5198 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5199 end_stepping_range (ecs);
5200 return;
5201 }
5202
5203 if (stop_pc_sal.line == 0)
5204 {
5205 /* We have no line number information. That means to stop
5206 stepping (does this always happen right after one instruction,
5207 when we do "s" in a function with no line numbers,
5208 or can this happen as a result of a return or longjmp?). */
5209 if (debug_infrun)
5210 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5211 end_stepping_range (ecs);
5212 return;
5213 }
5214
5215 /* Look for "calls" to inlined functions, part one. If the inline
5216 frame machinery detected some skipped call sites, we have entered
5217 a new inline function. */
5218
5219 if (frame_id_eq (get_frame_id (get_current_frame ()),
5220 ecs->event_thread->control.step_frame_id)
5221 && inline_skipped_frames (ecs->ptid))
5222 {
5223 struct symtab_and_line call_sal;
5224
5225 if (debug_infrun)
5226 fprintf_unfiltered (gdb_stdlog,
5227 "infrun: stepped into inlined function\n");
5228
5229 find_frame_sal (get_current_frame (), &call_sal);
5230
5231 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5232 {
5233 /* For "step", we're going to stop. But if the call site
5234 for this inlined function is on the same source line as
5235 we were previously stepping, go down into the function
5236 first. Otherwise stop at the call site. */
5237
5238 if (call_sal.line == ecs->event_thread->current_line
5239 && call_sal.symtab == ecs->event_thread->current_symtab)
5240 step_into_inline_frame (ecs->ptid);
5241
5242 end_stepping_range (ecs);
5243 return;
5244 }
5245 else
5246 {
5247 /* For "next", we should stop at the call site if it is on a
5248 different source line. Otherwise continue through the
5249 inlined function. */
5250 if (call_sal.line == ecs->event_thread->current_line
5251 && call_sal.symtab == ecs->event_thread->current_symtab)
5252 keep_going (ecs);
5253 else
5254 end_stepping_range (ecs);
5255 return;
5256 }
5257 }
5258
5259 /* Look for "calls" to inlined functions, part two. If we are still
5260 in the same real function we were stepping through, but we have
5261 to go further up to find the exact frame ID, we are stepping
5262 through a more inlined call beyond its call site. */
5263
5264 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5265 && !frame_id_eq (get_frame_id (get_current_frame ()),
5266 ecs->event_thread->control.step_frame_id)
5267 && stepped_in_from (get_current_frame (),
5268 ecs->event_thread->control.step_frame_id))
5269 {
5270 if (debug_infrun)
5271 fprintf_unfiltered (gdb_stdlog,
5272 "infrun: stepping through inlined function\n");
5273
5274 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5275 keep_going (ecs);
5276 else
5277 end_stepping_range (ecs);
5278 return;
5279 }
5280
5281 if ((stop_pc == stop_pc_sal.pc)
5282 && (ecs->event_thread->current_line != stop_pc_sal.line
5283 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5284 {
5285 /* We are at the start of a different line. So stop. Note that
5286 we don't stop if we step into the middle of a different line.
5287 That is said to make things like for (;;) statements work
5288 better. */
5289 if (debug_infrun)
5290 fprintf_unfiltered (gdb_stdlog,
5291 "infrun: stepped to a different line\n");
5292 end_stepping_range (ecs);
5293 return;
5294 }
5295
5296 /* We aren't done stepping.
5297
5298 Optimize by setting the stepping range to the line.
5299 (We might not be in the original line, but if we entered a
5300 new line in mid-statement, we continue stepping. This makes
5301 things like for(;;) statements work better.) */
5302
5303 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5304 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5305 ecs->event_thread->control.may_range_step = 1;
5306 set_step_info (frame, stop_pc_sal);
5307
5308 if (debug_infrun)
5309 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5310 keep_going (ecs);
5311 }
5312
5313 /* In all-stop mode, if we're currently stepping but have stopped in
5314 some other thread, we may need to switch back to the stepped
5315 thread. Returns true we set the inferior running, false if we left
5316 it stopped (and the event needs further processing). */
5317
5318 static int
5319 switch_back_to_stepped_thread (struct execution_control_state *ecs)
5320 {
5321 if (!non_stop)
5322 {
5323 struct thread_info *tp;
5324 struct thread_info *stepping_thread;
5325 struct thread_info *step_over;
5326
5327 /* If any thread is blocked on some internal breakpoint, and we
5328 simply need to step over that breakpoint to get it going
5329 again, do that first. */
5330
5331 /* However, if we see an event for the stepping thread, then we
5332 know all other threads have been moved past their breakpoints
5333 already. Let the caller check whether the step is finished,
5334 etc., before deciding to move it past a breakpoint. */
5335 if (ecs->event_thread->control.step_range_end != 0)
5336 return 0;
5337
5338 /* Check if the current thread is blocked on an incomplete
5339 step-over, interrupted by a random signal. */
5340 if (ecs->event_thread->control.trap_expected
5341 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5342 {
5343 if (debug_infrun)
5344 {
5345 fprintf_unfiltered (gdb_stdlog,
5346 "infrun: need to finish step-over of [%s]\n",
5347 target_pid_to_str (ecs->event_thread->ptid));
5348 }
5349 keep_going (ecs);
5350 return 1;
5351 }
5352
5353 /* Check if the current thread is blocked by a single-step
5354 breakpoint of another thread. */
5355 if (ecs->hit_singlestep_breakpoint)
5356 {
5357 if (debug_infrun)
5358 {
5359 fprintf_unfiltered (gdb_stdlog,
5360 "infrun: need to step [%s] over single-step "
5361 "breakpoint\n",
5362 target_pid_to_str (ecs->ptid));
5363 }
5364 keep_going (ecs);
5365 return 1;
5366 }
5367
5368 /* Otherwise, we no longer expect a trap in the current thread.
5369 Clear the trap_expected flag before switching back -- this is
5370 what keep_going does as well, if we call it. */
5371 ecs->event_thread->control.trap_expected = 0;
5372
5373 /* Likewise, clear the signal if it should not be passed. */
5374 if (!signal_program[ecs->event_thread->suspend.stop_signal])
5375 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5376
5377 /* If scheduler locking applies even if not stepping, there's no
5378 need to walk over threads. Above we've checked whether the
5379 current thread is stepping. If some other thread not the
5380 event thread is stepping, then it must be that scheduler
5381 locking is not in effect. */
5382 if (schedlock_applies (0))
5383 return 0;
5384
5385 /* Look for the stepping/nexting thread, and check if any other
5386 thread other than the stepping thread needs to start a
5387 step-over. Do all step-overs before actually proceeding with
5388 step/next/etc. */
5389 stepping_thread = NULL;
5390 step_over = NULL;
5391 ALL_NON_EXITED_THREADS (tp)
5392 {
5393 /* Ignore threads of processes we're not resuming. */
5394 if (!sched_multi
5395 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
5396 continue;
5397
5398 /* When stepping over a breakpoint, we lock all threads
5399 except the one that needs to move past the breakpoint.
5400 If a non-event thread has this set, the "incomplete
5401 step-over" check above should have caught it earlier. */
5402 gdb_assert (!tp->control.trap_expected);
5403
5404 /* Did we find the stepping thread? */
5405 if (tp->control.step_range_end)
5406 {
5407 /* Yep. There should only one though. */
5408 gdb_assert (stepping_thread == NULL);
5409
5410 /* The event thread is handled at the top, before we
5411 enter this loop. */
5412 gdb_assert (tp != ecs->event_thread);
5413
5414 /* If some thread other than the event thread is
5415 stepping, then scheduler locking can't be in effect,
5416 otherwise we wouldn't have resumed the current event
5417 thread in the first place. */
5418 gdb_assert (!schedlock_applies (1));
5419
5420 stepping_thread = tp;
5421 }
5422 else if (thread_still_needs_step_over (tp))
5423 {
5424 step_over = tp;
5425
5426 /* At the top we've returned early if the event thread
5427 is stepping. If some other thread not the event
5428 thread is stepping, then scheduler locking can't be
5429 in effect, and we can resume this thread. No need to
5430 keep looking for the stepping thread then. */
5431 break;
5432 }
5433 }
5434
5435 if (step_over != NULL)
5436 {
5437 tp = step_over;
5438 if (debug_infrun)
5439 {
5440 fprintf_unfiltered (gdb_stdlog,
5441 "infrun: need to step-over [%s]\n",
5442 target_pid_to_str (tp->ptid));
5443 }
5444
5445 /* Only the stepping thread should have this set. */
5446 gdb_assert (tp->control.step_range_end == 0);
5447
5448 ecs->ptid = tp->ptid;
5449 ecs->event_thread = tp;
5450 switch_to_thread (ecs->ptid);
5451 keep_going (ecs);
5452 return 1;
5453 }
5454
5455 if (stepping_thread != NULL)
5456 {
5457 struct frame_info *frame;
5458 struct gdbarch *gdbarch;
5459
5460 tp = stepping_thread;
5461
5462 /* If the stepping thread exited, then don't try to switch
5463 back and resume it, which could fail in several different
5464 ways depending on the target. Instead, just keep going.
5465
5466 We can find a stepping dead thread in the thread list in
5467 two cases:
5468
5469 - The target supports thread exit events, and when the
5470 target tries to delete the thread from the thread list,
5471 inferior_ptid pointed at the exiting thread. In such
5472 case, calling delete_thread does not really remove the
5473 thread from the list; instead, the thread is left listed,
5474 with 'exited' state.
5475
5476 - The target's debug interface does not support thread
5477 exit events, and so we have no idea whatsoever if the
5478 previously stepping thread is still alive. For that
5479 reason, we need to synchronously query the target
5480 now. */
5481 if (is_exited (tp->ptid)
5482 || !target_thread_alive (tp->ptid))
5483 {
5484 if (debug_infrun)
5485 fprintf_unfiltered (gdb_stdlog,
5486 "infrun: not switching back to "
5487 "stepped thread, it has vanished\n");
5488
5489 delete_thread (tp->ptid);
5490 keep_going (ecs);
5491 return 1;
5492 }
5493
5494 if (debug_infrun)
5495 fprintf_unfiltered (gdb_stdlog,
5496 "infrun: switching back to stepped thread\n");
5497
5498 ecs->event_thread = tp;
5499 ecs->ptid = tp->ptid;
5500 context_switch (ecs->ptid);
5501
5502 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5503 frame = get_current_frame ();
5504 gdbarch = get_frame_arch (frame);
5505
5506 /* If the PC of the thread we were trying to single-step has
5507 changed, then that thread has trapped or been signaled,
5508 but the event has not been reported to GDB yet. Re-poll
5509 the target looking for this particular thread's event
5510 (i.e. temporarily enable schedlock) by:
5511
5512 - setting a break at the current PC
5513 - resuming that particular thread, only (by setting
5514 trap expected)
5515
5516 This prevents us continuously moving the single-step
5517 breakpoint forward, one instruction at a time,
5518 overstepping. */
5519
5520 if (gdbarch_software_single_step_p (gdbarch)
5521 && stop_pc != tp->prev_pc)
5522 {
5523 if (debug_infrun)
5524 fprintf_unfiltered (gdb_stdlog,
5525 "infrun: expected thread advanced also\n");
5526
5527 /* Clear the info of the previous step-over, as it's no
5528 longer valid. It's what keep_going would do too, if
5529 we called it. Must do this before trying to insert
5530 the sss breakpoint, otherwise if we were previously
5531 trying to step over this exact address in another
5532 thread, the breakpoint ends up not installed. */
5533 clear_step_over_info ();
5534
5535 insert_single_step_breakpoint (get_frame_arch (frame),
5536 get_frame_address_space (frame),
5537 stop_pc);
5538 ecs->event_thread->control.trap_expected = 1;
5539
5540 resume (0, GDB_SIGNAL_0);
5541 prepare_to_wait (ecs);
5542 }
5543 else
5544 {
5545 if (debug_infrun)
5546 fprintf_unfiltered (gdb_stdlog,
5547 "infrun: expected thread still "
5548 "hasn't advanced\n");
5549 keep_going (ecs);
5550 }
5551
5552 return 1;
5553 }
5554 }
5555 return 0;
5556 }
5557
5558 /* Is thread TP in the middle of single-stepping? */
5559
5560 static int
5561 currently_stepping (struct thread_info *tp)
5562 {
5563 return ((tp->control.step_range_end
5564 && tp->control.step_resume_breakpoint == NULL)
5565 || tp->control.trap_expected
5566 || bpstat_should_step ());
5567 }
5568
5569 /* Inferior has stepped into a subroutine call with source code that
5570 we should not step over. Do step to the first line of code in
5571 it. */
5572
5573 static void
5574 handle_step_into_function (struct gdbarch *gdbarch,
5575 struct execution_control_state *ecs)
5576 {
5577 struct symtab *s;
5578 struct symtab_and_line stop_func_sal, sr_sal;
5579
5580 fill_in_stop_func (gdbarch, ecs);
5581
5582 s = find_pc_symtab (stop_pc);
5583 if (s && s->language != language_asm)
5584 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5585 ecs->stop_func_start);
5586
5587 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5588 /* Use the step_resume_break to step until the end of the prologue,
5589 even if that involves jumps (as it seems to on the vax under
5590 4.2). */
5591 /* If the prologue ends in the middle of a source line, continue to
5592 the end of that source line (if it is still within the function).
5593 Otherwise, just go to end of prologue. */
5594 if (stop_func_sal.end
5595 && stop_func_sal.pc != ecs->stop_func_start
5596 && stop_func_sal.end < ecs->stop_func_end)
5597 ecs->stop_func_start = stop_func_sal.end;
5598
5599 /* Architectures which require breakpoint adjustment might not be able
5600 to place a breakpoint at the computed address. If so, the test
5601 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5602 ecs->stop_func_start to an address at which a breakpoint may be
5603 legitimately placed.
5604
5605 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5606 made, GDB will enter an infinite loop when stepping through
5607 optimized code consisting of VLIW instructions which contain
5608 subinstructions corresponding to different source lines. On
5609 FR-V, it's not permitted to place a breakpoint on any but the
5610 first subinstruction of a VLIW instruction. When a breakpoint is
5611 set, GDB will adjust the breakpoint address to the beginning of
5612 the VLIW instruction. Thus, we need to make the corresponding
5613 adjustment here when computing the stop address. */
5614
5615 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5616 {
5617 ecs->stop_func_start
5618 = gdbarch_adjust_breakpoint_address (gdbarch,
5619 ecs->stop_func_start);
5620 }
5621
5622 if (ecs->stop_func_start == stop_pc)
5623 {
5624 /* We are already there: stop now. */
5625 end_stepping_range (ecs);
5626 return;
5627 }
5628 else
5629 {
5630 /* Put the step-breakpoint there and go until there. */
5631 init_sal (&sr_sal); /* initialize to zeroes */
5632 sr_sal.pc = ecs->stop_func_start;
5633 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5634 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5635
5636 /* Do not specify what the fp should be when we stop since on
5637 some machines the prologue is where the new fp value is
5638 established. */
5639 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5640
5641 /* And make sure stepping stops right away then. */
5642 ecs->event_thread->control.step_range_end
5643 = ecs->event_thread->control.step_range_start;
5644 }
5645 keep_going (ecs);
5646 }
5647
5648 /* Inferior has stepped backward into a subroutine call with source
5649 code that we should not step over. Do step to the beginning of the
5650 last line of code in it. */
5651
5652 static void
5653 handle_step_into_function_backward (struct gdbarch *gdbarch,
5654 struct execution_control_state *ecs)
5655 {
5656 struct symtab *s;
5657 struct symtab_and_line stop_func_sal;
5658
5659 fill_in_stop_func (gdbarch, ecs);
5660
5661 s = find_pc_symtab (stop_pc);
5662 if (s && s->language != language_asm)
5663 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5664 ecs->stop_func_start);
5665
5666 stop_func_sal = find_pc_line (stop_pc, 0);
5667
5668 /* OK, we're just going to keep stepping here. */
5669 if (stop_func_sal.pc == stop_pc)
5670 {
5671 /* We're there already. Just stop stepping now. */
5672 end_stepping_range (ecs);
5673 }
5674 else
5675 {
5676 /* Else just reset the step range and keep going.
5677 No step-resume breakpoint, they don't work for
5678 epilogues, which can have multiple entry paths. */
5679 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5680 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5681 keep_going (ecs);
5682 }
5683 return;
5684 }
5685
5686 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5687 This is used to both functions and to skip over code. */
5688
5689 static void
5690 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5691 struct symtab_and_line sr_sal,
5692 struct frame_id sr_id,
5693 enum bptype sr_type)
5694 {
5695 /* There should never be more than one step-resume or longjmp-resume
5696 breakpoint per thread, so we should never be setting a new
5697 step_resume_breakpoint when one is already active. */
5698 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5699 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5700
5701 if (debug_infrun)
5702 fprintf_unfiltered (gdb_stdlog,
5703 "infrun: inserting step-resume breakpoint at %s\n",
5704 paddress (gdbarch, sr_sal.pc));
5705
5706 inferior_thread ()->control.step_resume_breakpoint
5707 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5708 }
5709
5710 void
5711 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5712 struct symtab_and_line sr_sal,
5713 struct frame_id sr_id)
5714 {
5715 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5716 sr_sal, sr_id,
5717 bp_step_resume);
5718 }
5719
5720 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5721 This is used to skip a potential signal handler.
5722
5723 This is called with the interrupted function's frame. The signal
5724 handler, when it returns, will resume the interrupted function at
5725 RETURN_FRAME.pc. */
5726
5727 static void
5728 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5729 {
5730 struct symtab_and_line sr_sal;
5731 struct gdbarch *gdbarch;
5732
5733 gdb_assert (return_frame != NULL);
5734 init_sal (&sr_sal); /* initialize to zeros */
5735
5736 gdbarch = get_frame_arch (return_frame);
5737 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5738 sr_sal.section = find_pc_overlay (sr_sal.pc);
5739 sr_sal.pspace = get_frame_program_space (return_frame);
5740
5741 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5742 get_stack_frame_id (return_frame),
5743 bp_hp_step_resume);
5744 }
5745
5746 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5747 is used to skip a function after stepping into it (for "next" or if
5748 the called function has no debugging information).
5749
5750 The current function has almost always been reached by single
5751 stepping a call or return instruction. NEXT_FRAME belongs to the
5752 current function, and the breakpoint will be set at the caller's
5753 resume address.
5754
5755 This is a separate function rather than reusing
5756 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5757 get_prev_frame, which may stop prematurely (see the implementation
5758 of frame_unwind_caller_id for an example). */
5759
5760 static void
5761 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5762 {
5763 struct symtab_and_line sr_sal;
5764 struct gdbarch *gdbarch;
5765
5766 /* We shouldn't have gotten here if we don't know where the call site
5767 is. */
5768 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5769
5770 init_sal (&sr_sal); /* initialize to zeros */
5771
5772 gdbarch = frame_unwind_caller_arch (next_frame);
5773 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5774 frame_unwind_caller_pc (next_frame));
5775 sr_sal.section = find_pc_overlay (sr_sal.pc);
5776 sr_sal.pspace = frame_unwind_program_space (next_frame);
5777
5778 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5779 frame_unwind_caller_id (next_frame));
5780 }
5781
5782 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5783 new breakpoint at the target of a jmp_buf. The handling of
5784 longjmp-resume uses the same mechanisms used for handling
5785 "step-resume" breakpoints. */
5786
5787 static void
5788 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5789 {
5790 /* There should never be more than one longjmp-resume breakpoint per
5791 thread, so we should never be setting a new
5792 longjmp_resume_breakpoint when one is already active. */
5793 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5794
5795 if (debug_infrun)
5796 fprintf_unfiltered (gdb_stdlog,
5797 "infrun: inserting longjmp-resume breakpoint at %s\n",
5798 paddress (gdbarch, pc));
5799
5800 inferior_thread ()->control.exception_resume_breakpoint =
5801 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5802 }
5803
5804 /* Insert an exception resume breakpoint. TP is the thread throwing
5805 the exception. The block B is the block of the unwinder debug hook
5806 function. FRAME is the frame corresponding to the call to this
5807 function. SYM is the symbol of the function argument holding the
5808 target PC of the exception. */
5809
5810 static void
5811 insert_exception_resume_breakpoint (struct thread_info *tp,
5812 const struct block *b,
5813 struct frame_info *frame,
5814 struct symbol *sym)
5815 {
5816 volatile struct gdb_exception e;
5817
5818 /* We want to ignore errors here. */
5819 TRY_CATCH (e, RETURN_MASK_ERROR)
5820 {
5821 struct symbol *vsym;
5822 struct value *value;
5823 CORE_ADDR handler;
5824 struct breakpoint *bp;
5825
5826 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5827 value = read_var_value (vsym, frame);
5828 /* If the value was optimized out, revert to the old behavior. */
5829 if (! value_optimized_out (value))
5830 {
5831 handler = value_as_address (value);
5832
5833 if (debug_infrun)
5834 fprintf_unfiltered (gdb_stdlog,
5835 "infrun: exception resume at %lx\n",
5836 (unsigned long) handler);
5837
5838 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5839 handler, bp_exception_resume);
5840
5841 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5842 frame = NULL;
5843
5844 bp->thread = tp->num;
5845 inferior_thread ()->control.exception_resume_breakpoint = bp;
5846 }
5847 }
5848 }
5849
5850 /* A helper for check_exception_resume that sets an
5851 exception-breakpoint based on a SystemTap probe. */
5852
5853 static void
5854 insert_exception_resume_from_probe (struct thread_info *tp,
5855 const struct bound_probe *probe,
5856 struct frame_info *frame)
5857 {
5858 struct value *arg_value;
5859 CORE_ADDR handler;
5860 struct breakpoint *bp;
5861
5862 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5863 if (!arg_value)
5864 return;
5865
5866 handler = value_as_address (arg_value);
5867
5868 if (debug_infrun)
5869 fprintf_unfiltered (gdb_stdlog,
5870 "infrun: exception resume at %s\n",
5871 paddress (get_objfile_arch (probe->objfile),
5872 handler));
5873
5874 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5875 handler, bp_exception_resume);
5876 bp->thread = tp->num;
5877 inferior_thread ()->control.exception_resume_breakpoint = bp;
5878 }
5879
5880 /* This is called when an exception has been intercepted. Check to
5881 see whether the exception's destination is of interest, and if so,
5882 set an exception resume breakpoint there. */
5883
5884 static void
5885 check_exception_resume (struct execution_control_state *ecs,
5886 struct frame_info *frame)
5887 {
5888 volatile struct gdb_exception e;
5889 struct bound_probe probe;
5890 struct symbol *func;
5891
5892 /* First see if this exception unwinding breakpoint was set via a
5893 SystemTap probe point. If so, the probe has two arguments: the
5894 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5895 set a breakpoint there. */
5896 probe = find_probe_by_pc (get_frame_pc (frame));
5897 if (probe.probe)
5898 {
5899 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
5900 return;
5901 }
5902
5903 func = get_frame_function (frame);
5904 if (!func)
5905 return;
5906
5907 TRY_CATCH (e, RETURN_MASK_ERROR)
5908 {
5909 const struct block *b;
5910 struct block_iterator iter;
5911 struct symbol *sym;
5912 int argno = 0;
5913
5914 /* The exception breakpoint is a thread-specific breakpoint on
5915 the unwinder's debug hook, declared as:
5916
5917 void _Unwind_DebugHook (void *cfa, void *handler);
5918
5919 The CFA argument indicates the frame to which control is
5920 about to be transferred. HANDLER is the destination PC.
5921
5922 We ignore the CFA and set a temporary breakpoint at HANDLER.
5923 This is not extremely efficient but it avoids issues in gdb
5924 with computing the DWARF CFA, and it also works even in weird
5925 cases such as throwing an exception from inside a signal
5926 handler. */
5927
5928 b = SYMBOL_BLOCK_VALUE (func);
5929 ALL_BLOCK_SYMBOLS (b, iter, sym)
5930 {
5931 if (!SYMBOL_IS_ARGUMENT (sym))
5932 continue;
5933
5934 if (argno == 0)
5935 ++argno;
5936 else
5937 {
5938 insert_exception_resume_breakpoint (ecs->event_thread,
5939 b, frame, sym);
5940 break;
5941 }
5942 }
5943 }
5944 }
5945
5946 static void
5947 stop_waiting (struct execution_control_state *ecs)
5948 {
5949 if (debug_infrun)
5950 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
5951
5952 clear_step_over_info ();
5953
5954 /* Let callers know we don't want to wait for the inferior anymore. */
5955 ecs->wait_some_more = 0;
5956 }
5957
5958 /* Called when we should continue running the inferior, because the
5959 current event doesn't cause a user visible stop. This does the
5960 resuming part; waiting for the next event is done elsewhere. */
5961
5962 static void
5963 keep_going (struct execution_control_state *ecs)
5964 {
5965 /* Make sure normal_stop is called if we get a QUIT handled before
5966 reaching resume. */
5967 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5968
5969 /* Save the pc before execution, to compare with pc after stop. */
5970 ecs->event_thread->prev_pc
5971 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5972
5973 if (ecs->event_thread->control.trap_expected
5974 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5975 {
5976 /* We haven't yet gotten our trap, and either: intercepted a
5977 non-signal event (e.g., a fork); or took a signal which we
5978 are supposed to pass through to the inferior. Simply
5979 continue. */
5980 discard_cleanups (old_cleanups);
5981 resume (currently_stepping (ecs->event_thread),
5982 ecs->event_thread->suspend.stop_signal);
5983 }
5984 else
5985 {
5986 volatile struct gdb_exception e;
5987 struct regcache *regcache = get_current_regcache ();
5988 int remove_bp;
5989 int remove_wps;
5990
5991 /* Either the trap was not expected, but we are continuing
5992 anyway (if we got a signal, the user asked it be passed to
5993 the child)
5994 -- or --
5995 We got our expected trap, but decided we should resume from
5996 it.
5997
5998 We're going to run this baby now!
5999
6000 Note that insert_breakpoints won't try to re-insert
6001 already inserted breakpoints. Therefore, we don't
6002 care if breakpoints were already inserted, or not. */
6003
6004 /* If we need to step over a breakpoint, and we're not using
6005 displaced stepping to do so, insert all breakpoints
6006 (watchpoints, etc.) but the one we're stepping over, step one
6007 instruction, and then re-insert the breakpoint when that step
6008 is finished. */
6009
6010 remove_bp = (ecs->hit_singlestep_breakpoint
6011 || thread_still_needs_step_over (ecs->event_thread));
6012 remove_wps = (ecs->event_thread->stepping_over_watchpoint
6013 && !target_have_steppable_watchpoint);
6014
6015 if (remove_bp && !use_displaced_stepping (get_regcache_arch (regcache)))
6016 {
6017 set_step_over_info (get_regcache_aspace (regcache),
6018 regcache_read_pc (regcache), remove_wps);
6019 }
6020 else if (remove_wps)
6021 set_step_over_info (NULL, 0, remove_wps);
6022 else
6023 clear_step_over_info ();
6024
6025 /* Stop stepping if inserting breakpoints fails. */
6026 TRY_CATCH (e, RETURN_MASK_ERROR)
6027 {
6028 insert_breakpoints ();
6029 }
6030 if (e.reason < 0)
6031 {
6032 exception_print (gdb_stderr, e);
6033 stop_waiting (ecs);
6034 return;
6035 }
6036
6037 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
6038
6039 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
6040 explicitly specifies that such a signal should be delivered
6041 to the target program). Typically, that would occur when a
6042 user is debugging a target monitor on a simulator: the target
6043 monitor sets a breakpoint; the simulator encounters this
6044 breakpoint and halts the simulation handing control to GDB;
6045 GDB, noting that the stop address doesn't map to any known
6046 breakpoint, returns control back to the simulator; the
6047 simulator then delivers the hardware equivalent of a
6048 GDB_SIGNAL_TRAP to the program being debugged. */
6049 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6050 && !signal_program[ecs->event_thread->suspend.stop_signal])
6051 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6052
6053 discard_cleanups (old_cleanups);
6054 resume (currently_stepping (ecs->event_thread),
6055 ecs->event_thread->suspend.stop_signal);
6056 }
6057
6058 prepare_to_wait (ecs);
6059 }
6060
6061 /* This function normally comes after a resume, before
6062 handle_inferior_event exits. It takes care of any last bits of
6063 housekeeping, and sets the all-important wait_some_more flag. */
6064
6065 static void
6066 prepare_to_wait (struct execution_control_state *ecs)
6067 {
6068 if (debug_infrun)
6069 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
6070
6071 /* This is the old end of the while loop. Let everybody know we
6072 want to wait for the inferior some more and get called again
6073 soon. */
6074 ecs->wait_some_more = 1;
6075 }
6076
6077 /* We are done with the step range of a step/next/si/ni command.
6078 Called once for each n of a "step n" operation. */
6079
6080 static void
6081 end_stepping_range (struct execution_control_state *ecs)
6082 {
6083 ecs->event_thread->control.stop_step = 1;
6084 stop_waiting (ecs);
6085 }
6086
6087 /* Several print_*_reason functions to print why the inferior has stopped.
6088 We always print something when the inferior exits, or receives a signal.
6089 The rest of the cases are dealt with later on in normal_stop and
6090 print_it_typical. Ideally there should be a call to one of these
6091 print_*_reason functions functions from handle_inferior_event each time
6092 stop_waiting is called.
6093
6094 Note that we don't call these directly, instead we delegate that to
6095 the interpreters, through observers. Interpreters then call these
6096 with whatever uiout is right. */
6097
6098 void
6099 print_end_stepping_range_reason (struct ui_out *uiout)
6100 {
6101 /* For CLI-like interpreters, print nothing. */
6102
6103 if (ui_out_is_mi_like_p (uiout))
6104 {
6105 ui_out_field_string (uiout, "reason",
6106 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
6107 }
6108 }
6109
6110 void
6111 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
6112 {
6113 annotate_signalled ();
6114 if (ui_out_is_mi_like_p (uiout))
6115 ui_out_field_string
6116 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
6117 ui_out_text (uiout, "\nProgram terminated with signal ");
6118 annotate_signal_name ();
6119 ui_out_field_string (uiout, "signal-name",
6120 gdb_signal_to_name (siggnal));
6121 annotate_signal_name_end ();
6122 ui_out_text (uiout, ", ");
6123 annotate_signal_string ();
6124 ui_out_field_string (uiout, "signal-meaning",
6125 gdb_signal_to_string (siggnal));
6126 annotate_signal_string_end ();
6127 ui_out_text (uiout, ".\n");
6128 ui_out_text (uiout, "The program no longer exists.\n");
6129 }
6130
6131 void
6132 print_exited_reason (struct ui_out *uiout, int exitstatus)
6133 {
6134 struct inferior *inf = current_inferior ();
6135 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
6136
6137 annotate_exited (exitstatus);
6138 if (exitstatus)
6139 {
6140 if (ui_out_is_mi_like_p (uiout))
6141 ui_out_field_string (uiout, "reason",
6142 async_reason_lookup (EXEC_ASYNC_EXITED));
6143 ui_out_text (uiout, "[Inferior ");
6144 ui_out_text (uiout, plongest (inf->num));
6145 ui_out_text (uiout, " (");
6146 ui_out_text (uiout, pidstr);
6147 ui_out_text (uiout, ") exited with code ");
6148 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
6149 ui_out_text (uiout, "]\n");
6150 }
6151 else
6152 {
6153 if (ui_out_is_mi_like_p (uiout))
6154 ui_out_field_string
6155 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6156 ui_out_text (uiout, "[Inferior ");
6157 ui_out_text (uiout, plongest (inf->num));
6158 ui_out_text (uiout, " (");
6159 ui_out_text (uiout, pidstr);
6160 ui_out_text (uiout, ") exited normally]\n");
6161 }
6162 }
6163
6164 void
6165 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
6166 {
6167 annotate_signal ();
6168
6169 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
6170 {
6171 struct thread_info *t = inferior_thread ();
6172
6173 ui_out_text (uiout, "\n[");
6174 ui_out_field_string (uiout, "thread-name",
6175 target_pid_to_str (t->ptid));
6176 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
6177 ui_out_text (uiout, " stopped");
6178 }
6179 else
6180 {
6181 ui_out_text (uiout, "\nProgram received signal ");
6182 annotate_signal_name ();
6183 if (ui_out_is_mi_like_p (uiout))
6184 ui_out_field_string
6185 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
6186 ui_out_field_string (uiout, "signal-name",
6187 gdb_signal_to_name (siggnal));
6188 annotate_signal_name_end ();
6189 ui_out_text (uiout, ", ");
6190 annotate_signal_string ();
6191 ui_out_field_string (uiout, "signal-meaning",
6192 gdb_signal_to_string (siggnal));
6193 annotate_signal_string_end ();
6194 }
6195 ui_out_text (uiout, ".\n");
6196 }
6197
6198 void
6199 print_no_history_reason (struct ui_out *uiout)
6200 {
6201 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
6202 }
6203
6204 /* Print current location without a level number, if we have changed
6205 functions or hit a breakpoint. Print source line if we have one.
6206 bpstat_print contains the logic deciding in detail what to print,
6207 based on the event(s) that just occurred. */
6208
6209 void
6210 print_stop_event (struct target_waitstatus *ws)
6211 {
6212 int bpstat_ret;
6213 int source_flag;
6214 int do_frame_printing = 1;
6215 struct thread_info *tp = inferior_thread ();
6216
6217 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6218 switch (bpstat_ret)
6219 {
6220 case PRINT_UNKNOWN:
6221 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6222 should) carry around the function and does (or should) use
6223 that when doing a frame comparison. */
6224 if (tp->control.stop_step
6225 && frame_id_eq (tp->control.step_frame_id,
6226 get_frame_id (get_current_frame ()))
6227 && step_start_function == find_pc_function (stop_pc))
6228 {
6229 /* Finished step, just print source line. */
6230 source_flag = SRC_LINE;
6231 }
6232 else
6233 {
6234 /* Print location and source line. */
6235 source_flag = SRC_AND_LOC;
6236 }
6237 break;
6238 case PRINT_SRC_AND_LOC:
6239 /* Print location and source line. */
6240 source_flag = SRC_AND_LOC;
6241 break;
6242 case PRINT_SRC_ONLY:
6243 source_flag = SRC_LINE;
6244 break;
6245 case PRINT_NOTHING:
6246 /* Something bogus. */
6247 source_flag = SRC_LINE;
6248 do_frame_printing = 0;
6249 break;
6250 default:
6251 internal_error (__FILE__, __LINE__, _("Unknown value."));
6252 }
6253
6254 /* The behavior of this routine with respect to the source
6255 flag is:
6256 SRC_LINE: Print only source line
6257 LOCATION: Print only location
6258 SRC_AND_LOC: Print location and source line. */
6259 if (do_frame_printing)
6260 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6261
6262 /* Display the auto-display expressions. */
6263 do_displays ();
6264 }
6265
6266 /* Here to return control to GDB when the inferior stops for real.
6267 Print appropriate messages, remove breakpoints, give terminal our modes.
6268
6269 STOP_PRINT_FRAME nonzero means print the executing frame
6270 (pc, function, args, file, line number and line text).
6271 BREAKPOINTS_FAILED nonzero means stop was due to error
6272 attempting to insert breakpoints. */
6273
6274 void
6275 normal_stop (void)
6276 {
6277 struct target_waitstatus last;
6278 ptid_t last_ptid;
6279 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6280
6281 get_last_target_status (&last_ptid, &last);
6282
6283 /* If an exception is thrown from this point on, make sure to
6284 propagate GDB's knowledge of the executing state to the
6285 frontend/user running state. A QUIT is an easy exception to see
6286 here, so do this before any filtered output. */
6287 if (!non_stop)
6288 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6289 else if (last.kind != TARGET_WAITKIND_SIGNALLED
6290 && last.kind != TARGET_WAITKIND_EXITED
6291 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6292 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
6293
6294 /* As we're presenting a stop, and potentially removing breakpoints,
6295 update the thread list so we can tell whether there are threads
6296 running on the target. With target remote, for example, we can
6297 only learn about new threads when we explicitly update the thread
6298 list. Do this before notifying the interpreters about signal
6299 stops, end of stepping ranges, etc., so that the "new thread"
6300 output is emitted before e.g., "Program received signal FOO",
6301 instead of after. */
6302 update_thread_list ();
6303
6304 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
6305 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
6306
6307 /* As with the notification of thread events, we want to delay
6308 notifying the user that we've switched thread context until
6309 the inferior actually stops.
6310
6311 There's no point in saying anything if the inferior has exited.
6312 Note that SIGNALLED here means "exited with a signal", not
6313 "received a signal".
6314
6315 Also skip saying anything in non-stop mode. In that mode, as we
6316 don't want GDB to switch threads behind the user's back, to avoid
6317 races where the user is typing a command to apply to thread x,
6318 but GDB switches to thread y before the user finishes entering
6319 the command, fetch_inferior_event installs a cleanup to restore
6320 the current thread back to the thread the user had selected right
6321 after this event is handled, so we're not really switching, only
6322 informing of a stop. */
6323 if (!non_stop
6324 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
6325 && target_has_execution
6326 && last.kind != TARGET_WAITKIND_SIGNALLED
6327 && last.kind != TARGET_WAITKIND_EXITED
6328 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6329 {
6330 target_terminal_ours_for_output ();
6331 printf_filtered (_("[Switching to %s]\n"),
6332 target_pid_to_str (inferior_ptid));
6333 annotate_thread_changed ();
6334 previous_inferior_ptid = inferior_ptid;
6335 }
6336
6337 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6338 {
6339 gdb_assert (sync_execution || !target_can_async_p ());
6340
6341 target_terminal_ours_for_output ();
6342 printf_filtered (_("No unwaited-for children left.\n"));
6343 }
6344
6345 /* Note: this depends on the update_thread_list call above. */
6346 if (!breakpoints_should_be_inserted_now () && target_has_execution)
6347 {
6348 if (remove_breakpoints ())
6349 {
6350 target_terminal_ours_for_output ();
6351 printf_filtered (_("Cannot remove breakpoints because "
6352 "program is no longer writable.\nFurther "
6353 "execution is probably impossible.\n"));
6354 }
6355 }
6356
6357 /* If an auto-display called a function and that got a signal,
6358 delete that auto-display to avoid an infinite recursion. */
6359
6360 if (stopped_by_random_signal)
6361 disable_current_display ();
6362
6363 /* Notify observers if we finished a "step"-like command, etc. */
6364 if (target_has_execution
6365 && last.kind != TARGET_WAITKIND_SIGNALLED
6366 && last.kind != TARGET_WAITKIND_EXITED
6367 && inferior_thread ()->control.stop_step)
6368 {
6369 /* But not if in the middle of doing a "step n" operation for
6370 n > 1 */
6371 if (inferior_thread ()->step_multi)
6372 goto done;
6373
6374 observer_notify_end_stepping_range ();
6375 }
6376
6377 target_terminal_ours ();
6378 async_enable_stdin ();
6379
6380 /* Set the current source location. This will also happen if we
6381 display the frame below, but the current SAL will be incorrect
6382 during a user hook-stop function. */
6383 if (has_stack_frames () && !stop_stack_dummy)
6384 set_current_sal_from_frame (get_current_frame ());
6385
6386 /* Let the user/frontend see the threads as stopped, but do nothing
6387 if the thread was running an infcall. We may be e.g., evaluating
6388 a breakpoint condition. In that case, the thread had state
6389 THREAD_RUNNING before the infcall, and shall remain set to
6390 running, all without informing the user/frontend about state
6391 transition changes. If this is actually a call command, then the
6392 thread was originally already stopped, so there's no state to
6393 finish either. */
6394 if (target_has_execution && inferior_thread ()->control.in_infcall)
6395 discard_cleanups (old_chain);
6396 else
6397 do_cleanups (old_chain);
6398
6399 /* Look up the hook_stop and run it (CLI internally handles problem
6400 of stop_command's pre-hook not existing). */
6401 if (stop_command)
6402 catch_errors (hook_stop_stub, stop_command,
6403 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6404
6405 if (!has_stack_frames ())
6406 goto done;
6407
6408 if (last.kind == TARGET_WAITKIND_SIGNALLED
6409 || last.kind == TARGET_WAITKIND_EXITED)
6410 goto done;
6411
6412 /* Select innermost stack frame - i.e., current frame is frame 0,
6413 and current location is based on that.
6414 Don't do this on return from a stack dummy routine,
6415 or if the program has exited. */
6416
6417 if (!stop_stack_dummy)
6418 {
6419 select_frame (get_current_frame ());
6420
6421 /* If --batch-silent is enabled then there's no need to print the current
6422 source location, and to try risks causing an error message about
6423 missing source files. */
6424 if (stop_print_frame && !batch_silent)
6425 print_stop_event (&last);
6426 }
6427
6428 /* Save the function value return registers, if we care.
6429 We might be about to restore their previous contents. */
6430 if (inferior_thread ()->control.proceed_to_finish
6431 && execution_direction != EXEC_REVERSE)
6432 {
6433 /* This should not be necessary. */
6434 if (stop_registers)
6435 regcache_xfree (stop_registers);
6436
6437 /* NB: The copy goes through to the target picking up the value of
6438 all the registers. */
6439 stop_registers = regcache_dup (get_current_regcache ());
6440 }
6441
6442 if (stop_stack_dummy == STOP_STACK_DUMMY)
6443 {
6444 /* Pop the empty frame that contains the stack dummy.
6445 This also restores inferior state prior to the call
6446 (struct infcall_suspend_state). */
6447 struct frame_info *frame = get_current_frame ();
6448
6449 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6450 frame_pop (frame);
6451 /* frame_pop() calls reinit_frame_cache as the last thing it
6452 does which means there's currently no selected frame. We
6453 don't need to re-establish a selected frame if the dummy call
6454 returns normally, that will be done by
6455 restore_infcall_control_state. However, we do have to handle
6456 the case where the dummy call is returning after being
6457 stopped (e.g. the dummy call previously hit a breakpoint).
6458 We can't know which case we have so just always re-establish
6459 a selected frame here. */
6460 select_frame (get_current_frame ());
6461 }
6462
6463 done:
6464 annotate_stopped ();
6465
6466 /* Suppress the stop observer if we're in the middle of:
6467
6468 - a step n (n > 1), as there still more steps to be done.
6469
6470 - a "finish" command, as the observer will be called in
6471 finish_command_continuation, so it can include the inferior
6472 function's return value.
6473
6474 - calling an inferior function, as we pretend we inferior didn't
6475 run at all. The return value of the call is handled by the
6476 expression evaluator, through call_function_by_hand. */
6477
6478 if (!target_has_execution
6479 || last.kind == TARGET_WAITKIND_SIGNALLED
6480 || last.kind == TARGET_WAITKIND_EXITED
6481 || last.kind == TARGET_WAITKIND_NO_RESUMED
6482 || (!(inferior_thread ()->step_multi
6483 && inferior_thread ()->control.stop_step)
6484 && !(inferior_thread ()->control.stop_bpstat
6485 && inferior_thread ()->control.proceed_to_finish)
6486 && !inferior_thread ()->control.in_infcall))
6487 {
6488 if (!ptid_equal (inferior_ptid, null_ptid))
6489 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6490 stop_print_frame);
6491 else
6492 observer_notify_normal_stop (NULL, stop_print_frame);
6493 }
6494
6495 if (target_has_execution)
6496 {
6497 if (last.kind != TARGET_WAITKIND_SIGNALLED
6498 && last.kind != TARGET_WAITKIND_EXITED)
6499 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6500 Delete any breakpoint that is to be deleted at the next stop. */
6501 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6502 }
6503
6504 /* Try to get rid of automatically added inferiors that are no
6505 longer needed. Keeping those around slows down things linearly.
6506 Note that this never removes the current inferior. */
6507 prune_inferiors ();
6508 }
6509
6510 static int
6511 hook_stop_stub (void *cmd)
6512 {
6513 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6514 return (0);
6515 }
6516 \f
6517 int
6518 signal_stop_state (int signo)
6519 {
6520 return signal_stop[signo];
6521 }
6522
6523 int
6524 signal_print_state (int signo)
6525 {
6526 return signal_print[signo];
6527 }
6528
6529 int
6530 signal_pass_state (int signo)
6531 {
6532 return signal_program[signo];
6533 }
6534
6535 static void
6536 signal_cache_update (int signo)
6537 {
6538 if (signo == -1)
6539 {
6540 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6541 signal_cache_update (signo);
6542
6543 return;
6544 }
6545
6546 signal_pass[signo] = (signal_stop[signo] == 0
6547 && signal_print[signo] == 0
6548 && signal_program[signo] == 1
6549 && signal_catch[signo] == 0);
6550 }
6551
6552 int
6553 signal_stop_update (int signo, int state)
6554 {
6555 int ret = signal_stop[signo];
6556
6557 signal_stop[signo] = state;
6558 signal_cache_update (signo);
6559 return ret;
6560 }
6561
6562 int
6563 signal_print_update (int signo, int state)
6564 {
6565 int ret = signal_print[signo];
6566
6567 signal_print[signo] = state;
6568 signal_cache_update (signo);
6569 return ret;
6570 }
6571
6572 int
6573 signal_pass_update (int signo, int state)
6574 {
6575 int ret = signal_program[signo];
6576
6577 signal_program[signo] = state;
6578 signal_cache_update (signo);
6579 return ret;
6580 }
6581
6582 /* Update the global 'signal_catch' from INFO and notify the
6583 target. */
6584
6585 void
6586 signal_catch_update (const unsigned int *info)
6587 {
6588 int i;
6589
6590 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6591 signal_catch[i] = info[i] > 0;
6592 signal_cache_update (-1);
6593 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6594 }
6595
6596 static void
6597 sig_print_header (void)
6598 {
6599 printf_filtered (_("Signal Stop\tPrint\tPass "
6600 "to program\tDescription\n"));
6601 }
6602
6603 static void
6604 sig_print_info (enum gdb_signal oursig)
6605 {
6606 const char *name = gdb_signal_to_name (oursig);
6607 int name_padding = 13 - strlen (name);
6608
6609 if (name_padding <= 0)
6610 name_padding = 0;
6611
6612 printf_filtered ("%s", name);
6613 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6614 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6615 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6616 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6617 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6618 }
6619
6620 /* Specify how various signals in the inferior should be handled. */
6621
6622 static void
6623 handle_command (char *args, int from_tty)
6624 {
6625 char **argv;
6626 int digits, wordlen;
6627 int sigfirst, signum, siglast;
6628 enum gdb_signal oursig;
6629 int allsigs;
6630 int nsigs;
6631 unsigned char *sigs;
6632 struct cleanup *old_chain;
6633
6634 if (args == NULL)
6635 {
6636 error_no_arg (_("signal to handle"));
6637 }
6638
6639 /* Allocate and zero an array of flags for which signals to handle. */
6640
6641 nsigs = (int) GDB_SIGNAL_LAST;
6642 sigs = (unsigned char *) alloca (nsigs);
6643 memset (sigs, 0, nsigs);
6644
6645 /* Break the command line up into args. */
6646
6647 argv = gdb_buildargv (args);
6648 old_chain = make_cleanup_freeargv (argv);
6649
6650 /* Walk through the args, looking for signal oursigs, signal names, and
6651 actions. Signal numbers and signal names may be interspersed with
6652 actions, with the actions being performed for all signals cumulatively
6653 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6654
6655 while (*argv != NULL)
6656 {
6657 wordlen = strlen (*argv);
6658 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6659 {;
6660 }
6661 allsigs = 0;
6662 sigfirst = siglast = -1;
6663
6664 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6665 {
6666 /* Apply action to all signals except those used by the
6667 debugger. Silently skip those. */
6668 allsigs = 1;
6669 sigfirst = 0;
6670 siglast = nsigs - 1;
6671 }
6672 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6673 {
6674 SET_SIGS (nsigs, sigs, signal_stop);
6675 SET_SIGS (nsigs, sigs, signal_print);
6676 }
6677 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6678 {
6679 UNSET_SIGS (nsigs, sigs, signal_program);
6680 }
6681 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6682 {
6683 SET_SIGS (nsigs, sigs, signal_print);
6684 }
6685 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6686 {
6687 SET_SIGS (nsigs, sigs, signal_program);
6688 }
6689 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6690 {
6691 UNSET_SIGS (nsigs, sigs, signal_stop);
6692 }
6693 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6694 {
6695 SET_SIGS (nsigs, sigs, signal_program);
6696 }
6697 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6698 {
6699 UNSET_SIGS (nsigs, sigs, signal_print);
6700 UNSET_SIGS (nsigs, sigs, signal_stop);
6701 }
6702 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6703 {
6704 UNSET_SIGS (nsigs, sigs, signal_program);
6705 }
6706 else if (digits > 0)
6707 {
6708 /* It is numeric. The numeric signal refers to our own
6709 internal signal numbering from target.h, not to host/target
6710 signal number. This is a feature; users really should be
6711 using symbolic names anyway, and the common ones like
6712 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6713
6714 sigfirst = siglast = (int)
6715 gdb_signal_from_command (atoi (*argv));
6716 if ((*argv)[digits] == '-')
6717 {
6718 siglast = (int)
6719 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6720 }
6721 if (sigfirst > siglast)
6722 {
6723 /* Bet he didn't figure we'd think of this case... */
6724 signum = sigfirst;
6725 sigfirst = siglast;
6726 siglast = signum;
6727 }
6728 }
6729 else
6730 {
6731 oursig = gdb_signal_from_name (*argv);
6732 if (oursig != GDB_SIGNAL_UNKNOWN)
6733 {
6734 sigfirst = siglast = (int) oursig;
6735 }
6736 else
6737 {
6738 /* Not a number and not a recognized flag word => complain. */
6739 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6740 }
6741 }
6742
6743 /* If any signal numbers or symbol names were found, set flags for
6744 which signals to apply actions to. */
6745
6746 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6747 {
6748 switch ((enum gdb_signal) signum)
6749 {
6750 case GDB_SIGNAL_TRAP:
6751 case GDB_SIGNAL_INT:
6752 if (!allsigs && !sigs[signum])
6753 {
6754 if (query (_("%s is used by the debugger.\n\
6755 Are you sure you want to change it? "),
6756 gdb_signal_to_name ((enum gdb_signal) signum)))
6757 {
6758 sigs[signum] = 1;
6759 }
6760 else
6761 {
6762 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6763 gdb_flush (gdb_stdout);
6764 }
6765 }
6766 break;
6767 case GDB_SIGNAL_0:
6768 case GDB_SIGNAL_DEFAULT:
6769 case GDB_SIGNAL_UNKNOWN:
6770 /* Make sure that "all" doesn't print these. */
6771 break;
6772 default:
6773 sigs[signum] = 1;
6774 break;
6775 }
6776 }
6777
6778 argv++;
6779 }
6780
6781 for (signum = 0; signum < nsigs; signum++)
6782 if (sigs[signum])
6783 {
6784 signal_cache_update (-1);
6785 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6786 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6787
6788 if (from_tty)
6789 {
6790 /* Show the results. */
6791 sig_print_header ();
6792 for (; signum < nsigs; signum++)
6793 if (sigs[signum])
6794 sig_print_info (signum);
6795 }
6796
6797 break;
6798 }
6799
6800 do_cleanups (old_chain);
6801 }
6802
6803 /* Complete the "handle" command. */
6804
6805 static VEC (char_ptr) *
6806 handle_completer (struct cmd_list_element *ignore,
6807 const char *text, const char *word)
6808 {
6809 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6810 static const char * const keywords[] =
6811 {
6812 "all",
6813 "stop",
6814 "ignore",
6815 "print",
6816 "pass",
6817 "nostop",
6818 "noignore",
6819 "noprint",
6820 "nopass",
6821 NULL,
6822 };
6823
6824 vec_signals = signal_completer (ignore, text, word);
6825 vec_keywords = complete_on_enum (keywords, word, word);
6826
6827 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6828 VEC_free (char_ptr, vec_signals);
6829 VEC_free (char_ptr, vec_keywords);
6830 return return_val;
6831 }
6832
6833 static void
6834 xdb_handle_command (char *args, int from_tty)
6835 {
6836 char **argv;
6837 struct cleanup *old_chain;
6838
6839 if (args == NULL)
6840 error_no_arg (_("xdb command"));
6841
6842 /* Break the command line up into args. */
6843
6844 argv = gdb_buildargv (args);
6845 old_chain = make_cleanup_freeargv (argv);
6846 if (argv[1] != (char *) NULL)
6847 {
6848 char *argBuf;
6849 int bufLen;
6850
6851 bufLen = strlen (argv[0]) + 20;
6852 argBuf = (char *) xmalloc (bufLen);
6853 if (argBuf)
6854 {
6855 int validFlag = 1;
6856 enum gdb_signal oursig;
6857
6858 oursig = gdb_signal_from_name (argv[0]);
6859 memset (argBuf, 0, bufLen);
6860 if (strcmp (argv[1], "Q") == 0)
6861 sprintf (argBuf, "%s %s", argv[0], "noprint");
6862 else
6863 {
6864 if (strcmp (argv[1], "s") == 0)
6865 {
6866 if (!signal_stop[oursig])
6867 sprintf (argBuf, "%s %s", argv[0], "stop");
6868 else
6869 sprintf (argBuf, "%s %s", argv[0], "nostop");
6870 }
6871 else if (strcmp (argv[1], "i") == 0)
6872 {
6873 if (!signal_program[oursig])
6874 sprintf (argBuf, "%s %s", argv[0], "pass");
6875 else
6876 sprintf (argBuf, "%s %s", argv[0], "nopass");
6877 }
6878 else if (strcmp (argv[1], "r") == 0)
6879 {
6880 if (!signal_print[oursig])
6881 sprintf (argBuf, "%s %s", argv[0], "print");
6882 else
6883 sprintf (argBuf, "%s %s", argv[0], "noprint");
6884 }
6885 else
6886 validFlag = 0;
6887 }
6888 if (validFlag)
6889 handle_command (argBuf, from_tty);
6890 else
6891 printf_filtered (_("Invalid signal handling flag.\n"));
6892 if (argBuf)
6893 xfree (argBuf);
6894 }
6895 }
6896 do_cleanups (old_chain);
6897 }
6898
6899 enum gdb_signal
6900 gdb_signal_from_command (int num)
6901 {
6902 if (num >= 1 && num <= 15)
6903 return (enum gdb_signal) num;
6904 error (_("Only signals 1-15 are valid as numeric signals.\n\
6905 Use \"info signals\" for a list of symbolic signals."));
6906 }
6907
6908 /* Print current contents of the tables set by the handle command.
6909 It is possible we should just be printing signals actually used
6910 by the current target (but for things to work right when switching
6911 targets, all signals should be in the signal tables). */
6912
6913 static void
6914 signals_info (char *signum_exp, int from_tty)
6915 {
6916 enum gdb_signal oursig;
6917
6918 sig_print_header ();
6919
6920 if (signum_exp)
6921 {
6922 /* First see if this is a symbol name. */
6923 oursig = gdb_signal_from_name (signum_exp);
6924 if (oursig == GDB_SIGNAL_UNKNOWN)
6925 {
6926 /* No, try numeric. */
6927 oursig =
6928 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6929 }
6930 sig_print_info (oursig);
6931 return;
6932 }
6933
6934 printf_filtered ("\n");
6935 /* These ugly casts brought to you by the native VAX compiler. */
6936 for (oursig = GDB_SIGNAL_FIRST;
6937 (int) oursig < (int) GDB_SIGNAL_LAST;
6938 oursig = (enum gdb_signal) ((int) oursig + 1))
6939 {
6940 QUIT;
6941
6942 if (oursig != GDB_SIGNAL_UNKNOWN
6943 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6944 sig_print_info (oursig);
6945 }
6946
6947 printf_filtered (_("\nUse the \"handle\" command "
6948 "to change these tables.\n"));
6949 }
6950
6951 /* Check if it makes sense to read $_siginfo from the current thread
6952 at this point. If not, throw an error. */
6953
6954 static void
6955 validate_siginfo_access (void)
6956 {
6957 /* No current inferior, no siginfo. */
6958 if (ptid_equal (inferior_ptid, null_ptid))
6959 error (_("No thread selected."));
6960
6961 /* Don't try to read from a dead thread. */
6962 if (is_exited (inferior_ptid))
6963 error (_("The current thread has terminated"));
6964
6965 /* ... or from a spinning thread. */
6966 if (is_running (inferior_ptid))
6967 error (_("Selected thread is running."));
6968 }
6969
6970 /* The $_siginfo convenience variable is a bit special. We don't know
6971 for sure the type of the value until we actually have a chance to
6972 fetch the data. The type can change depending on gdbarch, so it is
6973 also dependent on which thread you have selected.
6974
6975 1. making $_siginfo be an internalvar that creates a new value on
6976 access.
6977
6978 2. making the value of $_siginfo be an lval_computed value. */
6979
6980 /* This function implements the lval_computed support for reading a
6981 $_siginfo value. */
6982
6983 static void
6984 siginfo_value_read (struct value *v)
6985 {
6986 LONGEST transferred;
6987
6988 validate_siginfo_access ();
6989
6990 transferred =
6991 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6992 NULL,
6993 value_contents_all_raw (v),
6994 value_offset (v),
6995 TYPE_LENGTH (value_type (v)));
6996
6997 if (transferred != TYPE_LENGTH (value_type (v)))
6998 error (_("Unable to read siginfo"));
6999 }
7000
7001 /* This function implements the lval_computed support for writing a
7002 $_siginfo value. */
7003
7004 static void
7005 siginfo_value_write (struct value *v, struct value *fromval)
7006 {
7007 LONGEST transferred;
7008
7009 validate_siginfo_access ();
7010
7011 transferred = target_write (&current_target,
7012 TARGET_OBJECT_SIGNAL_INFO,
7013 NULL,
7014 value_contents_all_raw (fromval),
7015 value_offset (v),
7016 TYPE_LENGTH (value_type (fromval)));
7017
7018 if (transferred != TYPE_LENGTH (value_type (fromval)))
7019 error (_("Unable to write siginfo"));
7020 }
7021
7022 static const struct lval_funcs siginfo_value_funcs =
7023 {
7024 siginfo_value_read,
7025 siginfo_value_write
7026 };
7027
7028 /* Return a new value with the correct type for the siginfo object of
7029 the current thread using architecture GDBARCH. Return a void value
7030 if there's no object available. */
7031
7032 static struct value *
7033 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
7034 void *ignore)
7035 {
7036 if (target_has_stack
7037 && !ptid_equal (inferior_ptid, null_ptid)
7038 && gdbarch_get_siginfo_type_p (gdbarch))
7039 {
7040 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7041
7042 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
7043 }
7044
7045 return allocate_value (builtin_type (gdbarch)->builtin_void);
7046 }
7047
7048 \f
7049 /* infcall_suspend_state contains state about the program itself like its
7050 registers and any signal it received when it last stopped.
7051 This state must be restored regardless of how the inferior function call
7052 ends (either successfully, or after it hits a breakpoint or signal)
7053 if the program is to properly continue where it left off. */
7054
7055 struct infcall_suspend_state
7056 {
7057 struct thread_suspend_state thread_suspend;
7058 #if 0 /* Currently unused and empty structures are not valid C. */
7059 struct inferior_suspend_state inferior_suspend;
7060 #endif
7061
7062 /* Other fields: */
7063 CORE_ADDR stop_pc;
7064 struct regcache *registers;
7065
7066 /* Format of SIGINFO_DATA or NULL if it is not present. */
7067 struct gdbarch *siginfo_gdbarch;
7068
7069 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
7070 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
7071 content would be invalid. */
7072 gdb_byte *siginfo_data;
7073 };
7074
7075 struct infcall_suspend_state *
7076 save_infcall_suspend_state (void)
7077 {
7078 struct infcall_suspend_state *inf_state;
7079 struct thread_info *tp = inferior_thread ();
7080 #if 0
7081 struct inferior *inf = current_inferior ();
7082 #endif
7083 struct regcache *regcache = get_current_regcache ();
7084 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7085 gdb_byte *siginfo_data = NULL;
7086
7087 if (gdbarch_get_siginfo_type_p (gdbarch))
7088 {
7089 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7090 size_t len = TYPE_LENGTH (type);
7091 struct cleanup *back_to;
7092
7093 siginfo_data = xmalloc (len);
7094 back_to = make_cleanup (xfree, siginfo_data);
7095
7096 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7097 siginfo_data, 0, len) == len)
7098 discard_cleanups (back_to);
7099 else
7100 {
7101 /* Errors ignored. */
7102 do_cleanups (back_to);
7103 siginfo_data = NULL;
7104 }
7105 }
7106
7107 inf_state = XCNEW (struct infcall_suspend_state);
7108
7109 if (siginfo_data)
7110 {
7111 inf_state->siginfo_gdbarch = gdbarch;
7112 inf_state->siginfo_data = siginfo_data;
7113 }
7114
7115 inf_state->thread_suspend = tp->suspend;
7116 #if 0 /* Currently unused and empty structures are not valid C. */
7117 inf_state->inferior_suspend = inf->suspend;
7118 #endif
7119
7120 /* run_inferior_call will not use the signal due to its `proceed' call with
7121 GDB_SIGNAL_0 anyway. */
7122 tp->suspend.stop_signal = GDB_SIGNAL_0;
7123
7124 inf_state->stop_pc = stop_pc;
7125
7126 inf_state->registers = regcache_dup (regcache);
7127
7128 return inf_state;
7129 }
7130
7131 /* Restore inferior session state to INF_STATE. */
7132
7133 void
7134 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
7135 {
7136 struct thread_info *tp = inferior_thread ();
7137 #if 0
7138 struct inferior *inf = current_inferior ();
7139 #endif
7140 struct regcache *regcache = get_current_regcache ();
7141 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7142
7143 tp->suspend = inf_state->thread_suspend;
7144 #if 0 /* Currently unused and empty structures are not valid C. */
7145 inf->suspend = inf_state->inferior_suspend;
7146 #endif
7147
7148 stop_pc = inf_state->stop_pc;
7149
7150 if (inf_state->siginfo_gdbarch == gdbarch)
7151 {
7152 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7153
7154 /* Errors ignored. */
7155 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7156 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
7157 }
7158
7159 /* The inferior can be gone if the user types "print exit(0)"
7160 (and perhaps other times). */
7161 if (target_has_execution)
7162 /* NB: The register write goes through to the target. */
7163 regcache_cpy (regcache, inf_state->registers);
7164
7165 discard_infcall_suspend_state (inf_state);
7166 }
7167
7168 static void
7169 do_restore_infcall_suspend_state_cleanup (void *state)
7170 {
7171 restore_infcall_suspend_state (state);
7172 }
7173
7174 struct cleanup *
7175 make_cleanup_restore_infcall_suspend_state
7176 (struct infcall_suspend_state *inf_state)
7177 {
7178 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
7179 }
7180
7181 void
7182 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
7183 {
7184 regcache_xfree (inf_state->registers);
7185 xfree (inf_state->siginfo_data);
7186 xfree (inf_state);
7187 }
7188
7189 struct regcache *
7190 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
7191 {
7192 return inf_state->registers;
7193 }
7194
7195 /* infcall_control_state contains state regarding gdb's control of the
7196 inferior itself like stepping control. It also contains session state like
7197 the user's currently selected frame. */
7198
7199 struct infcall_control_state
7200 {
7201 struct thread_control_state thread_control;
7202 struct inferior_control_state inferior_control;
7203
7204 /* Other fields: */
7205 enum stop_stack_kind stop_stack_dummy;
7206 int stopped_by_random_signal;
7207 int stop_after_trap;
7208
7209 /* ID if the selected frame when the inferior function call was made. */
7210 struct frame_id selected_frame_id;
7211 };
7212
7213 /* Save all of the information associated with the inferior<==>gdb
7214 connection. */
7215
7216 struct infcall_control_state *
7217 save_infcall_control_state (void)
7218 {
7219 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
7220 struct thread_info *tp = inferior_thread ();
7221 struct inferior *inf = current_inferior ();
7222
7223 inf_status->thread_control = tp->control;
7224 inf_status->inferior_control = inf->control;
7225
7226 tp->control.step_resume_breakpoint = NULL;
7227 tp->control.exception_resume_breakpoint = NULL;
7228
7229 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
7230 chain. If caller's caller is walking the chain, they'll be happier if we
7231 hand them back the original chain when restore_infcall_control_state is
7232 called. */
7233 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
7234
7235 /* Other fields: */
7236 inf_status->stop_stack_dummy = stop_stack_dummy;
7237 inf_status->stopped_by_random_signal = stopped_by_random_signal;
7238 inf_status->stop_after_trap = stop_after_trap;
7239
7240 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7241
7242 return inf_status;
7243 }
7244
7245 static int
7246 restore_selected_frame (void *args)
7247 {
7248 struct frame_id *fid = (struct frame_id *) args;
7249 struct frame_info *frame;
7250
7251 frame = frame_find_by_id (*fid);
7252
7253 /* If inf_status->selected_frame_id is NULL, there was no previously
7254 selected frame. */
7255 if (frame == NULL)
7256 {
7257 warning (_("Unable to restore previously selected frame."));
7258 return 0;
7259 }
7260
7261 select_frame (frame);
7262
7263 return (1);
7264 }
7265
7266 /* Restore inferior session state to INF_STATUS. */
7267
7268 void
7269 restore_infcall_control_state (struct infcall_control_state *inf_status)
7270 {
7271 struct thread_info *tp = inferior_thread ();
7272 struct inferior *inf = current_inferior ();
7273
7274 if (tp->control.step_resume_breakpoint)
7275 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7276
7277 if (tp->control.exception_resume_breakpoint)
7278 tp->control.exception_resume_breakpoint->disposition
7279 = disp_del_at_next_stop;
7280
7281 /* Handle the bpstat_copy of the chain. */
7282 bpstat_clear (&tp->control.stop_bpstat);
7283
7284 tp->control = inf_status->thread_control;
7285 inf->control = inf_status->inferior_control;
7286
7287 /* Other fields: */
7288 stop_stack_dummy = inf_status->stop_stack_dummy;
7289 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7290 stop_after_trap = inf_status->stop_after_trap;
7291
7292 if (target_has_stack)
7293 {
7294 /* The point of catch_errors is that if the stack is clobbered,
7295 walking the stack might encounter a garbage pointer and
7296 error() trying to dereference it. */
7297 if (catch_errors
7298 (restore_selected_frame, &inf_status->selected_frame_id,
7299 "Unable to restore previously selected frame:\n",
7300 RETURN_MASK_ERROR) == 0)
7301 /* Error in restoring the selected frame. Select the innermost
7302 frame. */
7303 select_frame (get_current_frame ());
7304 }
7305
7306 xfree (inf_status);
7307 }
7308
7309 static void
7310 do_restore_infcall_control_state_cleanup (void *sts)
7311 {
7312 restore_infcall_control_state (sts);
7313 }
7314
7315 struct cleanup *
7316 make_cleanup_restore_infcall_control_state
7317 (struct infcall_control_state *inf_status)
7318 {
7319 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7320 }
7321
7322 void
7323 discard_infcall_control_state (struct infcall_control_state *inf_status)
7324 {
7325 if (inf_status->thread_control.step_resume_breakpoint)
7326 inf_status->thread_control.step_resume_breakpoint->disposition
7327 = disp_del_at_next_stop;
7328
7329 if (inf_status->thread_control.exception_resume_breakpoint)
7330 inf_status->thread_control.exception_resume_breakpoint->disposition
7331 = disp_del_at_next_stop;
7332
7333 /* See save_infcall_control_state for info on stop_bpstat. */
7334 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7335
7336 xfree (inf_status);
7337 }
7338 \f
7339 /* restore_inferior_ptid() will be used by the cleanup machinery
7340 to restore the inferior_ptid value saved in a call to
7341 save_inferior_ptid(). */
7342
7343 static void
7344 restore_inferior_ptid (void *arg)
7345 {
7346 ptid_t *saved_ptid_ptr = arg;
7347
7348 inferior_ptid = *saved_ptid_ptr;
7349 xfree (arg);
7350 }
7351
7352 /* Save the value of inferior_ptid so that it may be restored by a
7353 later call to do_cleanups(). Returns the struct cleanup pointer
7354 needed for later doing the cleanup. */
7355
7356 struct cleanup *
7357 save_inferior_ptid (void)
7358 {
7359 ptid_t *saved_ptid_ptr;
7360
7361 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7362 *saved_ptid_ptr = inferior_ptid;
7363 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7364 }
7365
7366 /* See infrun.h. */
7367
7368 void
7369 clear_exit_convenience_vars (void)
7370 {
7371 clear_internalvar (lookup_internalvar ("_exitsignal"));
7372 clear_internalvar (lookup_internalvar ("_exitcode"));
7373 }
7374 \f
7375
7376 /* User interface for reverse debugging:
7377 Set exec-direction / show exec-direction commands
7378 (returns error unless target implements to_set_exec_direction method). */
7379
7380 int execution_direction = EXEC_FORWARD;
7381 static const char exec_forward[] = "forward";
7382 static const char exec_reverse[] = "reverse";
7383 static const char *exec_direction = exec_forward;
7384 static const char *const exec_direction_names[] = {
7385 exec_forward,
7386 exec_reverse,
7387 NULL
7388 };
7389
7390 static void
7391 set_exec_direction_func (char *args, int from_tty,
7392 struct cmd_list_element *cmd)
7393 {
7394 if (target_can_execute_reverse)
7395 {
7396 if (!strcmp (exec_direction, exec_forward))
7397 execution_direction = EXEC_FORWARD;
7398 else if (!strcmp (exec_direction, exec_reverse))
7399 execution_direction = EXEC_REVERSE;
7400 }
7401 else
7402 {
7403 exec_direction = exec_forward;
7404 error (_("Target does not support this operation."));
7405 }
7406 }
7407
7408 static void
7409 show_exec_direction_func (struct ui_file *out, int from_tty,
7410 struct cmd_list_element *cmd, const char *value)
7411 {
7412 switch (execution_direction) {
7413 case EXEC_FORWARD:
7414 fprintf_filtered (out, _("Forward.\n"));
7415 break;
7416 case EXEC_REVERSE:
7417 fprintf_filtered (out, _("Reverse.\n"));
7418 break;
7419 default:
7420 internal_error (__FILE__, __LINE__,
7421 _("bogus execution_direction value: %d"),
7422 (int) execution_direction);
7423 }
7424 }
7425
7426 static void
7427 show_schedule_multiple (struct ui_file *file, int from_tty,
7428 struct cmd_list_element *c, const char *value)
7429 {
7430 fprintf_filtered (file, _("Resuming the execution of threads "
7431 "of all processes is %s.\n"), value);
7432 }
7433
7434 /* Implementation of `siginfo' variable. */
7435
7436 static const struct internalvar_funcs siginfo_funcs =
7437 {
7438 siginfo_make_value,
7439 NULL,
7440 NULL
7441 };
7442
7443 void
7444 _initialize_infrun (void)
7445 {
7446 int i;
7447 int numsigs;
7448 struct cmd_list_element *c;
7449
7450 add_info ("signals", signals_info, _("\
7451 What debugger does when program gets various signals.\n\
7452 Specify a signal as argument to print info on that signal only."));
7453 add_info_alias ("handle", "signals", 0);
7454
7455 c = add_com ("handle", class_run, handle_command, _("\
7456 Specify how to handle signals.\n\
7457 Usage: handle SIGNAL [ACTIONS]\n\
7458 Args are signals and actions to apply to those signals.\n\
7459 If no actions are specified, the current settings for the specified signals\n\
7460 will be displayed instead.\n\
7461 \n\
7462 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7463 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7464 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7465 The special arg \"all\" is recognized to mean all signals except those\n\
7466 used by the debugger, typically SIGTRAP and SIGINT.\n\
7467 \n\
7468 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7469 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7470 Stop means reenter debugger if this signal happens (implies print).\n\
7471 Print means print a message if this signal happens.\n\
7472 Pass means let program see this signal; otherwise program doesn't know.\n\
7473 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7474 Pass and Stop may be combined.\n\
7475 \n\
7476 Multiple signals may be specified. Signal numbers and signal names\n\
7477 may be interspersed with actions, with the actions being performed for\n\
7478 all signals cumulatively specified."));
7479 set_cmd_completer (c, handle_completer);
7480
7481 if (xdb_commands)
7482 {
7483 add_com ("lz", class_info, signals_info, _("\
7484 What debugger does when program gets various signals.\n\
7485 Specify a signal as argument to print info on that signal only."));
7486 add_com ("z", class_run, xdb_handle_command, _("\
7487 Specify how to handle a signal.\n\
7488 Args are signals and actions to apply to those signals.\n\
7489 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7490 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7491 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7492 The special arg \"all\" is recognized to mean all signals except those\n\
7493 used by the debugger, typically SIGTRAP and SIGINT.\n\
7494 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7495 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7496 nopass), \"Q\" (noprint)\n\
7497 Stop means reenter debugger if this signal happens (implies print).\n\
7498 Print means print a message if this signal happens.\n\
7499 Pass means let program see this signal; otherwise program doesn't know.\n\
7500 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7501 Pass and Stop may be combined."));
7502 }
7503
7504 if (!dbx_commands)
7505 stop_command = add_cmd ("stop", class_obscure,
7506 not_just_help_class_command, _("\
7507 There is no `stop' command, but you can set a hook on `stop'.\n\
7508 This allows you to set a list of commands to be run each time execution\n\
7509 of the program stops."), &cmdlist);
7510
7511 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7512 Set inferior debugging."), _("\
7513 Show inferior debugging."), _("\
7514 When non-zero, inferior specific debugging is enabled."),
7515 NULL,
7516 show_debug_infrun,
7517 &setdebuglist, &showdebuglist);
7518
7519 add_setshow_boolean_cmd ("displaced", class_maintenance,
7520 &debug_displaced, _("\
7521 Set displaced stepping debugging."), _("\
7522 Show displaced stepping debugging."), _("\
7523 When non-zero, displaced stepping specific debugging is enabled."),
7524 NULL,
7525 show_debug_displaced,
7526 &setdebuglist, &showdebuglist);
7527
7528 add_setshow_boolean_cmd ("non-stop", no_class,
7529 &non_stop_1, _("\
7530 Set whether gdb controls the inferior in non-stop mode."), _("\
7531 Show whether gdb controls the inferior in non-stop mode."), _("\
7532 When debugging a multi-threaded program and this setting is\n\
7533 off (the default, also called all-stop mode), when one thread stops\n\
7534 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7535 all other threads in the program while you interact with the thread of\n\
7536 interest. When you continue or step a thread, you can allow the other\n\
7537 threads to run, or have them remain stopped, but while you inspect any\n\
7538 thread's state, all threads stop.\n\
7539 \n\
7540 In non-stop mode, when one thread stops, other threads can continue\n\
7541 to run freely. You'll be able to step each thread independently,\n\
7542 leave it stopped or free to run as needed."),
7543 set_non_stop,
7544 show_non_stop,
7545 &setlist,
7546 &showlist);
7547
7548 numsigs = (int) GDB_SIGNAL_LAST;
7549 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7550 signal_print = (unsigned char *)
7551 xmalloc (sizeof (signal_print[0]) * numsigs);
7552 signal_program = (unsigned char *)
7553 xmalloc (sizeof (signal_program[0]) * numsigs);
7554 signal_catch = (unsigned char *)
7555 xmalloc (sizeof (signal_catch[0]) * numsigs);
7556 signal_pass = (unsigned char *)
7557 xmalloc (sizeof (signal_pass[0]) * numsigs);
7558 for (i = 0; i < numsigs; i++)
7559 {
7560 signal_stop[i] = 1;
7561 signal_print[i] = 1;
7562 signal_program[i] = 1;
7563 signal_catch[i] = 0;
7564 }
7565
7566 /* Signals caused by debugger's own actions
7567 should not be given to the program afterwards. */
7568 signal_program[GDB_SIGNAL_TRAP] = 0;
7569 signal_program[GDB_SIGNAL_INT] = 0;
7570
7571 /* Signals that are not errors should not normally enter the debugger. */
7572 signal_stop[GDB_SIGNAL_ALRM] = 0;
7573 signal_print[GDB_SIGNAL_ALRM] = 0;
7574 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7575 signal_print[GDB_SIGNAL_VTALRM] = 0;
7576 signal_stop[GDB_SIGNAL_PROF] = 0;
7577 signal_print[GDB_SIGNAL_PROF] = 0;
7578 signal_stop[GDB_SIGNAL_CHLD] = 0;
7579 signal_print[GDB_SIGNAL_CHLD] = 0;
7580 signal_stop[GDB_SIGNAL_IO] = 0;
7581 signal_print[GDB_SIGNAL_IO] = 0;
7582 signal_stop[GDB_SIGNAL_POLL] = 0;
7583 signal_print[GDB_SIGNAL_POLL] = 0;
7584 signal_stop[GDB_SIGNAL_URG] = 0;
7585 signal_print[GDB_SIGNAL_URG] = 0;
7586 signal_stop[GDB_SIGNAL_WINCH] = 0;
7587 signal_print[GDB_SIGNAL_WINCH] = 0;
7588 signal_stop[GDB_SIGNAL_PRIO] = 0;
7589 signal_print[GDB_SIGNAL_PRIO] = 0;
7590
7591 /* These signals are used internally by user-level thread
7592 implementations. (See signal(5) on Solaris.) Like the above
7593 signals, a healthy program receives and handles them as part of
7594 its normal operation. */
7595 signal_stop[GDB_SIGNAL_LWP] = 0;
7596 signal_print[GDB_SIGNAL_LWP] = 0;
7597 signal_stop[GDB_SIGNAL_WAITING] = 0;
7598 signal_print[GDB_SIGNAL_WAITING] = 0;
7599 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7600 signal_print[GDB_SIGNAL_CANCEL] = 0;
7601
7602 /* Update cached state. */
7603 signal_cache_update (-1);
7604
7605 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7606 &stop_on_solib_events, _("\
7607 Set stopping for shared library events."), _("\
7608 Show stopping for shared library events."), _("\
7609 If nonzero, gdb will give control to the user when the dynamic linker\n\
7610 notifies gdb of shared library events. The most common event of interest\n\
7611 to the user would be loading/unloading of a new library."),
7612 set_stop_on_solib_events,
7613 show_stop_on_solib_events,
7614 &setlist, &showlist);
7615
7616 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7617 follow_fork_mode_kind_names,
7618 &follow_fork_mode_string, _("\
7619 Set debugger response to a program call of fork or vfork."), _("\
7620 Show debugger response to a program call of fork or vfork."), _("\
7621 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7622 parent - the original process is debugged after a fork\n\
7623 child - the new process is debugged after a fork\n\
7624 The unfollowed process will continue to run.\n\
7625 By default, the debugger will follow the parent process."),
7626 NULL,
7627 show_follow_fork_mode_string,
7628 &setlist, &showlist);
7629
7630 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7631 follow_exec_mode_names,
7632 &follow_exec_mode_string, _("\
7633 Set debugger response to a program call of exec."), _("\
7634 Show debugger response to a program call of exec."), _("\
7635 An exec call replaces the program image of a process.\n\
7636 \n\
7637 follow-exec-mode can be:\n\
7638 \n\
7639 new - the debugger creates a new inferior and rebinds the process\n\
7640 to this new inferior. The program the process was running before\n\
7641 the exec call can be restarted afterwards by restarting the original\n\
7642 inferior.\n\
7643 \n\
7644 same - the debugger keeps the process bound to the same inferior.\n\
7645 The new executable image replaces the previous executable loaded in\n\
7646 the inferior. Restarting the inferior after the exec call restarts\n\
7647 the executable the process was running after the exec call.\n\
7648 \n\
7649 By default, the debugger will use the same inferior."),
7650 NULL,
7651 show_follow_exec_mode_string,
7652 &setlist, &showlist);
7653
7654 add_setshow_enum_cmd ("scheduler-locking", class_run,
7655 scheduler_enums, &scheduler_mode, _("\
7656 Set mode for locking scheduler during execution."), _("\
7657 Show mode for locking scheduler during execution."), _("\
7658 off == no locking (threads may preempt at any time)\n\
7659 on == full locking (no thread except the current thread may run)\n\
7660 step == scheduler locked during every single-step operation.\n\
7661 In this mode, no other thread may run during a step command.\n\
7662 Other threads may run while stepping over a function call ('next')."),
7663 set_schedlock_func, /* traps on target vector */
7664 show_scheduler_mode,
7665 &setlist, &showlist);
7666
7667 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7668 Set mode for resuming threads of all processes."), _("\
7669 Show mode for resuming threads of all processes."), _("\
7670 When on, execution commands (such as 'continue' or 'next') resume all\n\
7671 threads of all processes. When off (which is the default), execution\n\
7672 commands only resume the threads of the current process. The set of\n\
7673 threads that are resumed is further refined by the scheduler-locking\n\
7674 mode (see help set scheduler-locking)."),
7675 NULL,
7676 show_schedule_multiple,
7677 &setlist, &showlist);
7678
7679 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7680 Set mode of the step operation."), _("\
7681 Show mode of the step operation."), _("\
7682 When set, doing a step over a function without debug line information\n\
7683 will stop at the first instruction of that function. Otherwise, the\n\
7684 function is skipped and the step command stops at a different source line."),
7685 NULL,
7686 show_step_stop_if_no_debug,
7687 &setlist, &showlist);
7688
7689 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7690 &can_use_displaced_stepping, _("\
7691 Set debugger's willingness to use displaced stepping."), _("\
7692 Show debugger's willingness to use displaced stepping."), _("\
7693 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7694 supported by the target architecture. If off, gdb will not use displaced\n\
7695 stepping to step over breakpoints, even if such is supported by the target\n\
7696 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7697 if the target architecture supports it and non-stop mode is active, but will not\n\
7698 use it in all-stop mode (see help set non-stop)."),
7699 NULL,
7700 show_can_use_displaced_stepping,
7701 &setlist, &showlist);
7702
7703 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7704 &exec_direction, _("Set direction of execution.\n\
7705 Options are 'forward' or 'reverse'."),
7706 _("Show direction of execution (forward/reverse)."),
7707 _("Tells gdb whether to execute forward or backward."),
7708 set_exec_direction_func, show_exec_direction_func,
7709 &setlist, &showlist);
7710
7711 /* Set/show detach-on-fork: user-settable mode. */
7712
7713 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7714 Set whether gdb will detach the child of a fork."), _("\
7715 Show whether gdb will detach the child of a fork."), _("\
7716 Tells gdb whether to detach the child of a fork."),
7717 NULL, NULL, &setlist, &showlist);
7718
7719 /* Set/show disable address space randomization mode. */
7720
7721 add_setshow_boolean_cmd ("disable-randomization", class_support,
7722 &disable_randomization, _("\
7723 Set disabling of debuggee's virtual address space randomization."), _("\
7724 Show disabling of debuggee's virtual address space randomization."), _("\
7725 When this mode is on (which is the default), randomization of the virtual\n\
7726 address space is disabled. Standalone programs run with the randomization\n\
7727 enabled by default on some platforms."),
7728 &set_disable_randomization,
7729 &show_disable_randomization,
7730 &setlist, &showlist);
7731
7732 /* ptid initializations */
7733 inferior_ptid = null_ptid;
7734 target_last_wait_ptid = minus_one_ptid;
7735
7736 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7737 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7738 observer_attach_thread_exit (infrun_thread_thread_exit);
7739 observer_attach_inferior_exit (infrun_inferior_exit);
7740
7741 /* Explicitly create without lookup, since that tries to create a
7742 value with a void typed value, and when we get here, gdbarch
7743 isn't initialized yet. At this point, we're quite sure there
7744 isn't another convenience variable of the same name. */
7745 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7746
7747 add_setshow_boolean_cmd ("observer", no_class,
7748 &observer_mode_1, _("\
7749 Set whether gdb controls the inferior in observer mode."), _("\
7750 Show whether gdb controls the inferior in observer mode."), _("\
7751 In observer mode, GDB can get data from the inferior, but not\n\
7752 affect its execution. Registers and memory may not be changed,\n\
7753 breakpoints may not be set, and the program cannot be interrupted\n\
7754 or signalled."),
7755 set_observer_mode,
7756 show_observer_mode,
7757 &setlist,
7758 &showlist);
7759 }