*** empty log message ***
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009, 2010 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "inline-frame.h"
53 #include "jit.h"
54
55 /* Prototypes for local functions */
56
57 static void signals_info (char *, int);
58
59 static void handle_command (char *, int);
60
61 static void sig_print_info (enum target_signal);
62
63 static void sig_print_header (void);
64
65 static void resume_cleanups (void *);
66
67 static int hook_stop_stub (void *);
68
69 static int restore_selected_frame (void *);
70
71 static int follow_fork (void);
72
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
75
76 static int currently_stepping (struct thread_info *tp);
77
78 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
79 void *data);
80
81 static void xdb_handle_command (char *args, int from_tty);
82
83 static int prepare_to_proceed (int);
84
85 void _initialize_infrun (void);
86
87 void nullify_last_target_wait_ptid (void);
88
89 /* When set, stop the 'step' command if we enter a function which has
90 no line number information. The normal behavior is that we step
91 over such function. */
92 int step_stop_if_no_debug = 0;
93 static void
94 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
95 struct cmd_list_element *c, const char *value)
96 {
97 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
98 }
99
100 /* In asynchronous mode, but simulating synchronous execution. */
101
102 int sync_execution = 0;
103
104 /* wait_for_inferior and normal_stop use this to notify the user
105 when the inferior stopped in a different thread than it had been
106 running in. */
107
108 static ptid_t previous_inferior_ptid;
109
110 /* Default behavior is to detach newly forked processes (legacy). */
111 int detach_fork = 1;
112
113 int debug_displaced = 0;
114 static void
115 show_debug_displaced (struct ui_file *file, int from_tty,
116 struct cmd_list_element *c, const char *value)
117 {
118 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
119 }
120
121 static int debug_infrun = 0;
122 static void
123 show_debug_infrun (struct ui_file *file, int from_tty,
124 struct cmd_list_element *c, const char *value)
125 {
126 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
127 }
128
129 /* If the program uses ELF-style shared libraries, then calls to
130 functions in shared libraries go through stubs, which live in a
131 table called the PLT (Procedure Linkage Table). The first time the
132 function is called, the stub sends control to the dynamic linker,
133 which looks up the function's real address, patches the stub so
134 that future calls will go directly to the function, and then passes
135 control to the function.
136
137 If we are stepping at the source level, we don't want to see any of
138 this --- we just want to skip over the stub and the dynamic linker.
139 The simple approach is to single-step until control leaves the
140 dynamic linker.
141
142 However, on some systems (e.g., Red Hat's 5.2 distribution) the
143 dynamic linker calls functions in the shared C library, so you
144 can't tell from the PC alone whether the dynamic linker is still
145 running. In this case, we use a step-resume breakpoint to get us
146 past the dynamic linker, as if we were using "next" to step over a
147 function call.
148
149 in_solib_dynsym_resolve_code() says whether we're in the dynamic
150 linker code or not. Normally, this means we single-step. However,
151 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
152 address where we can place a step-resume breakpoint to get past the
153 linker's symbol resolution function.
154
155 in_solib_dynsym_resolve_code() can generally be implemented in a
156 pretty portable way, by comparing the PC against the address ranges
157 of the dynamic linker's sections.
158
159 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
160 it depends on internal details of the dynamic linker. It's usually
161 not too hard to figure out where to put a breakpoint, but it
162 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
163 sanity checking. If it can't figure things out, returning zero and
164 getting the (possibly confusing) stepping behavior is better than
165 signalling an error, which will obscure the change in the
166 inferior's state. */
167
168 /* This function returns TRUE if pc is the address of an instruction
169 that lies within the dynamic linker (such as the event hook, or the
170 dld itself).
171
172 This function must be used only when a dynamic linker event has
173 been caught, and the inferior is being stepped out of the hook, or
174 undefined results are guaranteed. */
175
176 #ifndef SOLIB_IN_DYNAMIC_LINKER
177 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
178 #endif
179
180
181 /* Convert the #defines into values. This is temporary until wfi control
182 flow is completely sorted out. */
183
184 #ifndef CANNOT_STEP_HW_WATCHPOINTS
185 #define CANNOT_STEP_HW_WATCHPOINTS 0
186 #else
187 #undef CANNOT_STEP_HW_WATCHPOINTS
188 #define CANNOT_STEP_HW_WATCHPOINTS 1
189 #endif
190
191 /* Tables of how to react to signals; the user sets them. */
192
193 static unsigned char *signal_stop;
194 static unsigned char *signal_print;
195 static unsigned char *signal_program;
196
197 #define SET_SIGS(nsigs,sigs,flags) \
198 do { \
199 int signum = (nsigs); \
200 while (signum-- > 0) \
201 if ((sigs)[signum]) \
202 (flags)[signum] = 1; \
203 } while (0)
204
205 #define UNSET_SIGS(nsigs,sigs,flags) \
206 do { \
207 int signum = (nsigs); \
208 while (signum-- > 0) \
209 if ((sigs)[signum]) \
210 (flags)[signum] = 0; \
211 } while (0)
212
213 /* Value to pass to target_resume() to cause all threads to resume */
214
215 #define RESUME_ALL minus_one_ptid
216
217 /* Command list pointer for the "stop" placeholder. */
218
219 static struct cmd_list_element *stop_command;
220
221 /* Function inferior was in as of last step command. */
222
223 static struct symbol *step_start_function;
224
225 /* Nonzero if we want to give control to the user when we're notified
226 of shared library events by the dynamic linker. */
227 static int stop_on_solib_events;
228 static void
229 show_stop_on_solib_events (struct ui_file *file, int from_tty,
230 struct cmd_list_element *c, const char *value)
231 {
232 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
233 value);
234 }
235
236 /* Nonzero means expecting a trace trap
237 and should stop the inferior and return silently when it happens. */
238
239 int stop_after_trap;
240
241 /* Save register contents here when executing a "finish" command or are
242 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
243 Thus this contains the return value from the called function (assuming
244 values are returned in a register). */
245
246 struct regcache *stop_registers;
247
248 /* Nonzero after stop if current stack frame should be printed. */
249
250 static int stop_print_frame;
251
252 /* This is a cached copy of the pid/waitstatus of the last event
253 returned by target_wait()/deprecated_target_wait_hook(). This
254 information is returned by get_last_target_status(). */
255 static ptid_t target_last_wait_ptid;
256 static struct target_waitstatus target_last_waitstatus;
257
258 static void context_switch (ptid_t ptid);
259
260 void init_thread_stepping_state (struct thread_info *tss);
261
262 void init_infwait_state (void);
263
264 static const char follow_fork_mode_child[] = "child";
265 static const char follow_fork_mode_parent[] = "parent";
266
267 static const char *follow_fork_mode_kind_names[] = {
268 follow_fork_mode_child,
269 follow_fork_mode_parent,
270 NULL
271 };
272
273 static const char *follow_fork_mode_string = follow_fork_mode_parent;
274 static void
275 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
276 struct cmd_list_element *c, const char *value)
277 {
278 fprintf_filtered (file, _("\
279 Debugger response to a program call of fork or vfork is \"%s\".\n"),
280 value);
281 }
282 \f
283
284 /* Tell the target to follow the fork we're stopped at. Returns true
285 if the inferior should be resumed; false, if the target for some
286 reason decided it's best not to resume. */
287
288 static int
289 follow_fork (void)
290 {
291 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
292 int should_resume = 1;
293 struct thread_info *tp;
294
295 /* Copy user stepping state to the new inferior thread. FIXME: the
296 followed fork child thread should have a copy of most of the
297 parent thread structure's run control related fields, not just these.
298 Initialized to avoid "may be used uninitialized" warnings from gcc. */
299 struct breakpoint *step_resume_breakpoint = NULL;
300 CORE_ADDR step_range_start = 0;
301 CORE_ADDR step_range_end = 0;
302 struct frame_id step_frame_id = { 0 };
303
304 if (!non_stop)
305 {
306 ptid_t wait_ptid;
307 struct target_waitstatus wait_status;
308
309 /* Get the last target status returned by target_wait(). */
310 get_last_target_status (&wait_ptid, &wait_status);
311
312 /* If not stopped at a fork event, then there's nothing else to
313 do. */
314 if (wait_status.kind != TARGET_WAITKIND_FORKED
315 && wait_status.kind != TARGET_WAITKIND_VFORKED)
316 return 1;
317
318 /* Check if we switched over from WAIT_PTID, since the event was
319 reported. */
320 if (!ptid_equal (wait_ptid, minus_one_ptid)
321 && !ptid_equal (inferior_ptid, wait_ptid))
322 {
323 /* We did. Switch back to WAIT_PTID thread, to tell the
324 target to follow it (in either direction). We'll
325 afterwards refuse to resume, and inform the user what
326 happened. */
327 switch_to_thread (wait_ptid);
328 should_resume = 0;
329 }
330 }
331
332 tp = inferior_thread ();
333
334 /* If there were any forks/vforks that were caught and are now to be
335 followed, then do so now. */
336 switch (tp->pending_follow.kind)
337 {
338 case TARGET_WAITKIND_FORKED:
339 case TARGET_WAITKIND_VFORKED:
340 {
341 ptid_t parent, child;
342
343 /* If the user did a next/step, etc, over a fork call,
344 preserve the stepping state in the fork child. */
345 if (follow_child && should_resume)
346 {
347 step_resume_breakpoint
348 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
349 step_range_start = tp->step_range_start;
350 step_range_end = tp->step_range_end;
351 step_frame_id = tp->step_frame_id;
352
353 /* For now, delete the parent's sr breakpoint, otherwise,
354 parent/child sr breakpoints are considered duplicates,
355 and the child version will not be installed. Remove
356 this when the breakpoints module becomes aware of
357 inferiors and address spaces. */
358 delete_step_resume_breakpoint (tp);
359 tp->step_range_start = 0;
360 tp->step_range_end = 0;
361 tp->step_frame_id = null_frame_id;
362 }
363
364 parent = inferior_ptid;
365 child = tp->pending_follow.value.related_pid;
366
367 /* Tell the target to do whatever is necessary to follow
368 either parent or child. */
369 if (target_follow_fork (follow_child))
370 {
371 /* Target refused to follow, or there's some other reason
372 we shouldn't resume. */
373 should_resume = 0;
374 }
375 else
376 {
377 /* This pending follow fork event is now handled, one way
378 or another. The previous selected thread may be gone
379 from the lists by now, but if it is still around, need
380 to clear the pending follow request. */
381 tp = find_thread_ptid (parent);
382 if (tp)
383 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
384
385 /* This makes sure we don't try to apply the "Switched
386 over from WAIT_PID" logic above. */
387 nullify_last_target_wait_ptid ();
388
389 /* If we followed the child, switch to it... */
390 if (follow_child)
391 {
392 switch_to_thread (child);
393
394 /* ... and preserve the stepping state, in case the
395 user was stepping over the fork call. */
396 if (should_resume)
397 {
398 tp = inferior_thread ();
399 tp->step_resume_breakpoint = step_resume_breakpoint;
400 tp->step_range_start = step_range_start;
401 tp->step_range_end = step_range_end;
402 tp->step_frame_id = step_frame_id;
403 }
404 else
405 {
406 /* If we get here, it was because we're trying to
407 resume from a fork catchpoint, but, the user
408 has switched threads away from the thread that
409 forked. In that case, the resume command
410 issued is most likely not applicable to the
411 child, so just warn, and refuse to resume. */
412 warning (_("\
413 Not resuming: switched threads before following fork child.\n"));
414 }
415
416 /* Reset breakpoints in the child as appropriate. */
417 follow_inferior_reset_breakpoints ();
418 }
419 else
420 switch_to_thread (parent);
421 }
422 }
423 break;
424 case TARGET_WAITKIND_SPURIOUS:
425 /* Nothing to follow. */
426 break;
427 default:
428 internal_error (__FILE__, __LINE__,
429 "Unexpected pending_follow.kind %d\n",
430 tp->pending_follow.kind);
431 break;
432 }
433
434 return should_resume;
435 }
436
437 void
438 follow_inferior_reset_breakpoints (void)
439 {
440 struct thread_info *tp = inferior_thread ();
441
442 /* Was there a step_resume breakpoint? (There was if the user
443 did a "next" at the fork() call.) If so, explicitly reset its
444 thread number.
445
446 step_resumes are a form of bp that are made to be per-thread.
447 Since we created the step_resume bp when the parent process
448 was being debugged, and now are switching to the child process,
449 from the breakpoint package's viewpoint, that's a switch of
450 "threads". We must update the bp's notion of which thread
451 it is for, or it'll be ignored when it triggers. */
452
453 if (tp->step_resume_breakpoint)
454 breakpoint_re_set_thread (tp->step_resume_breakpoint);
455
456 /* Reinsert all breakpoints in the child. The user may have set
457 breakpoints after catching the fork, in which case those
458 were never set in the child, but only in the parent. This makes
459 sure the inserted breakpoints match the breakpoint list. */
460
461 breakpoint_re_set ();
462 insert_breakpoints ();
463 }
464
465 /* The child has exited or execed: resume threads of the parent the
466 user wanted to be executing. */
467
468 static int
469 proceed_after_vfork_done (struct thread_info *thread,
470 void *arg)
471 {
472 int pid = * (int *) arg;
473
474 if (ptid_get_pid (thread->ptid) == pid
475 && is_running (thread->ptid)
476 && !is_executing (thread->ptid)
477 && !thread->stop_requested
478 && thread->stop_signal == TARGET_SIGNAL_0)
479 {
480 if (debug_infrun)
481 fprintf_unfiltered (gdb_stdlog,
482 "infrun: resuming vfork parent thread %s\n",
483 target_pid_to_str (thread->ptid));
484
485 switch_to_thread (thread->ptid);
486 clear_proceed_status ();
487 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
488 }
489
490 return 0;
491 }
492
493 /* Called whenever we notice an exec or exit event, to handle
494 detaching or resuming a vfork parent. */
495
496 static void
497 handle_vfork_child_exec_or_exit (int exec)
498 {
499 struct inferior *inf = current_inferior ();
500
501 if (inf->vfork_parent)
502 {
503 int resume_parent = -1;
504
505 /* This exec or exit marks the end of the shared memory region
506 between the parent and the child. If the user wanted to
507 detach from the parent, now is the time. */
508
509 if (inf->vfork_parent->pending_detach)
510 {
511 struct thread_info *tp;
512 struct cleanup *old_chain;
513 struct program_space *pspace;
514 struct address_space *aspace;
515
516 /* follow-fork child, detach-on-fork on */
517
518 old_chain = make_cleanup_restore_current_thread ();
519
520 /* We're letting loose of the parent. */
521 tp = any_live_thread_of_process (inf->vfork_parent->pid);
522 switch_to_thread (tp->ptid);
523
524 /* We're about to detach from the parent, which implicitly
525 removes breakpoints from its address space. There's a
526 catch here: we want to reuse the spaces for the child,
527 but, parent/child are still sharing the pspace at this
528 point, although the exec in reality makes the kernel give
529 the child a fresh set of new pages. The problem here is
530 that the breakpoints module being unaware of this, would
531 likely chose the child process to write to the parent
532 address space. Swapping the child temporarily away from
533 the spaces has the desired effect. Yes, this is "sort
534 of" a hack. */
535
536 pspace = inf->pspace;
537 aspace = inf->aspace;
538 inf->aspace = NULL;
539 inf->pspace = NULL;
540
541 if (debug_infrun || info_verbose)
542 {
543 target_terminal_ours ();
544
545 if (exec)
546 fprintf_filtered (gdb_stdlog,
547 "Detaching vfork parent process %d after child exec.\n",
548 inf->vfork_parent->pid);
549 else
550 fprintf_filtered (gdb_stdlog,
551 "Detaching vfork parent process %d after child exit.\n",
552 inf->vfork_parent->pid);
553 }
554
555 target_detach (NULL, 0);
556
557 /* Put it back. */
558 inf->pspace = pspace;
559 inf->aspace = aspace;
560
561 do_cleanups (old_chain);
562 }
563 else if (exec)
564 {
565 /* We're staying attached to the parent, so, really give the
566 child a new address space. */
567 inf->pspace = add_program_space (maybe_new_address_space ());
568 inf->aspace = inf->pspace->aspace;
569 inf->removable = 1;
570 set_current_program_space (inf->pspace);
571
572 resume_parent = inf->vfork_parent->pid;
573
574 /* Break the bonds. */
575 inf->vfork_parent->vfork_child = NULL;
576 }
577 else
578 {
579 struct cleanup *old_chain;
580 struct program_space *pspace;
581
582 /* If this is a vfork child exiting, then the pspace and
583 aspaces were shared with the parent. Since we're
584 reporting the process exit, we'll be mourning all that is
585 found in the address space, and switching to null_ptid,
586 preparing to start a new inferior. But, since we don't
587 want to clobber the parent's address/program spaces, we
588 go ahead and create a new one for this exiting
589 inferior. */
590
591 /* Switch to null_ptid, so that clone_program_space doesn't want
592 to read the selected frame of a dead process. */
593 old_chain = save_inferior_ptid ();
594 inferior_ptid = null_ptid;
595
596 /* This inferior is dead, so avoid giving the breakpoints
597 module the option to write through to it (cloning a
598 program space resets breakpoints). */
599 inf->aspace = NULL;
600 inf->pspace = NULL;
601 pspace = add_program_space (maybe_new_address_space ());
602 set_current_program_space (pspace);
603 inf->removable = 1;
604 clone_program_space (pspace, inf->vfork_parent->pspace);
605 inf->pspace = pspace;
606 inf->aspace = pspace->aspace;
607
608 /* Put back inferior_ptid. We'll continue mourning this
609 inferior. */
610 do_cleanups (old_chain);
611
612 resume_parent = inf->vfork_parent->pid;
613 /* Break the bonds. */
614 inf->vfork_parent->vfork_child = NULL;
615 }
616
617 inf->vfork_parent = NULL;
618
619 gdb_assert (current_program_space == inf->pspace);
620
621 if (non_stop && resume_parent != -1)
622 {
623 /* If the user wanted the parent to be running, let it go
624 free now. */
625 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
626
627 if (debug_infrun)
628 fprintf_unfiltered (gdb_stdlog, "infrun: resuming vfork parent process %d\n",
629 resume_parent);
630
631 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
632
633 do_cleanups (old_chain);
634 }
635 }
636 }
637
638 /* Enum strings for "set|show displaced-stepping". */
639
640 static const char follow_exec_mode_new[] = "new";
641 static const char follow_exec_mode_same[] = "same";
642 static const char *follow_exec_mode_names[] =
643 {
644 follow_exec_mode_new,
645 follow_exec_mode_same,
646 NULL,
647 };
648
649 static const char *follow_exec_mode_string = follow_exec_mode_same;
650 static void
651 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
652 struct cmd_list_element *c, const char *value)
653 {
654 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
655 }
656
657 /* EXECD_PATHNAME is assumed to be non-NULL. */
658
659 static void
660 follow_exec (ptid_t pid, char *execd_pathname)
661 {
662 struct target_ops *tgt;
663 struct thread_info *th = inferior_thread ();
664 struct inferior *inf = current_inferior ();
665
666 /* This is an exec event that we actually wish to pay attention to.
667 Refresh our symbol table to the newly exec'd program, remove any
668 momentary bp's, etc.
669
670 If there are breakpoints, they aren't really inserted now,
671 since the exec() transformed our inferior into a fresh set
672 of instructions.
673
674 We want to preserve symbolic breakpoints on the list, since
675 we have hopes that they can be reset after the new a.out's
676 symbol table is read.
677
678 However, any "raw" breakpoints must be removed from the list
679 (e.g., the solib bp's), since their address is probably invalid
680 now.
681
682 And, we DON'T want to call delete_breakpoints() here, since
683 that may write the bp's "shadow contents" (the instruction
684 value that was overwritten witha TRAP instruction). Since
685 we now have a new a.out, those shadow contents aren't valid. */
686
687 mark_breakpoints_out ();
688
689 update_breakpoints_after_exec ();
690
691 /* If there was one, it's gone now. We cannot truly step-to-next
692 statement through an exec(). */
693 th->step_resume_breakpoint = NULL;
694 th->step_range_start = 0;
695 th->step_range_end = 0;
696
697 /* The target reports the exec event to the main thread, even if
698 some other thread does the exec, and even if the main thread was
699 already stopped --- if debugging in non-stop mode, it's possible
700 the user had the main thread held stopped in the previous image
701 --- release it now. This is the same behavior as step-over-exec
702 with scheduler-locking on in all-stop mode. */
703 th->stop_requested = 0;
704
705 /* What is this a.out's name? */
706 printf_unfiltered (_("%s is executing new program: %s\n"),
707 target_pid_to_str (inferior_ptid),
708 execd_pathname);
709
710 /* We've followed the inferior through an exec. Therefore, the
711 inferior has essentially been killed & reborn. */
712
713 gdb_flush (gdb_stdout);
714
715 breakpoint_init_inferior (inf_execd);
716
717 if (gdb_sysroot && *gdb_sysroot)
718 {
719 char *name = alloca (strlen (gdb_sysroot)
720 + strlen (execd_pathname)
721 + 1);
722 strcpy (name, gdb_sysroot);
723 strcat (name, execd_pathname);
724 execd_pathname = name;
725 }
726
727 /* Reset the shared library package. This ensures that we get a
728 shlib event when the child reaches "_start", at which point the
729 dld will have had a chance to initialize the child. */
730 /* Also, loading a symbol file below may trigger symbol lookups, and
731 we don't want those to be satisfied by the libraries of the
732 previous incarnation of this process. */
733 no_shared_libraries (NULL, 0);
734
735 if (follow_exec_mode_string == follow_exec_mode_new)
736 {
737 struct program_space *pspace;
738 struct inferior *new_inf;
739
740 /* The user wants to keep the old inferior and program spaces
741 around. Create a new fresh one, and switch to it. */
742
743 inf = add_inferior (current_inferior ()->pid);
744 pspace = add_program_space (maybe_new_address_space ());
745 inf->pspace = pspace;
746 inf->aspace = pspace->aspace;
747
748 exit_inferior_num_silent (current_inferior ()->num);
749
750 set_current_inferior (inf);
751 set_current_program_space (pspace);
752 }
753
754 gdb_assert (current_program_space == inf->pspace);
755
756 /* That a.out is now the one to use. */
757 exec_file_attach (execd_pathname, 0);
758
759 /* Load the main file's symbols. */
760 symbol_file_add_main (execd_pathname, 0);
761
762 #ifdef SOLIB_CREATE_INFERIOR_HOOK
763 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
764 #else
765 solib_create_inferior_hook (0);
766 #endif
767
768 jit_inferior_created_hook ();
769
770 /* Reinsert all breakpoints. (Those which were symbolic have
771 been reset to the proper address in the new a.out, thanks
772 to symbol_file_command...) */
773 insert_breakpoints ();
774
775 /* The next resume of this inferior should bring it to the shlib
776 startup breakpoints. (If the user had also set bp's on
777 "main" from the old (parent) process, then they'll auto-
778 matically get reset there in the new process.) */
779 }
780
781 /* Non-zero if we just simulating a single-step. This is needed
782 because we cannot remove the breakpoints in the inferior process
783 until after the `wait' in `wait_for_inferior'. */
784 static int singlestep_breakpoints_inserted_p = 0;
785
786 /* The thread we inserted single-step breakpoints for. */
787 static ptid_t singlestep_ptid;
788
789 /* PC when we started this single-step. */
790 static CORE_ADDR singlestep_pc;
791
792 /* If another thread hit the singlestep breakpoint, we save the original
793 thread here so that we can resume single-stepping it later. */
794 static ptid_t saved_singlestep_ptid;
795 static int stepping_past_singlestep_breakpoint;
796
797 /* If not equal to null_ptid, this means that after stepping over breakpoint
798 is finished, we need to switch to deferred_step_ptid, and step it.
799
800 The use case is when one thread has hit a breakpoint, and then the user
801 has switched to another thread and issued 'step'. We need to step over
802 breakpoint in the thread which hit the breakpoint, but then continue
803 stepping the thread user has selected. */
804 static ptid_t deferred_step_ptid;
805 \f
806 /* Displaced stepping. */
807
808 /* In non-stop debugging mode, we must take special care to manage
809 breakpoints properly; in particular, the traditional strategy for
810 stepping a thread past a breakpoint it has hit is unsuitable.
811 'Displaced stepping' is a tactic for stepping one thread past a
812 breakpoint it has hit while ensuring that other threads running
813 concurrently will hit the breakpoint as they should.
814
815 The traditional way to step a thread T off a breakpoint in a
816 multi-threaded program in all-stop mode is as follows:
817
818 a0) Initially, all threads are stopped, and breakpoints are not
819 inserted.
820 a1) We single-step T, leaving breakpoints uninserted.
821 a2) We insert breakpoints, and resume all threads.
822
823 In non-stop debugging, however, this strategy is unsuitable: we
824 don't want to have to stop all threads in the system in order to
825 continue or step T past a breakpoint. Instead, we use displaced
826 stepping:
827
828 n0) Initially, T is stopped, other threads are running, and
829 breakpoints are inserted.
830 n1) We copy the instruction "under" the breakpoint to a separate
831 location, outside the main code stream, making any adjustments
832 to the instruction, register, and memory state as directed by
833 T's architecture.
834 n2) We single-step T over the instruction at its new location.
835 n3) We adjust the resulting register and memory state as directed
836 by T's architecture. This includes resetting T's PC to point
837 back into the main instruction stream.
838 n4) We resume T.
839
840 This approach depends on the following gdbarch methods:
841
842 - gdbarch_max_insn_length and gdbarch_displaced_step_location
843 indicate where to copy the instruction, and how much space must
844 be reserved there. We use these in step n1.
845
846 - gdbarch_displaced_step_copy_insn copies a instruction to a new
847 address, and makes any necessary adjustments to the instruction,
848 register contents, and memory. We use this in step n1.
849
850 - gdbarch_displaced_step_fixup adjusts registers and memory after
851 we have successfuly single-stepped the instruction, to yield the
852 same effect the instruction would have had if we had executed it
853 at its original address. We use this in step n3.
854
855 - gdbarch_displaced_step_free_closure provides cleanup.
856
857 The gdbarch_displaced_step_copy_insn and
858 gdbarch_displaced_step_fixup functions must be written so that
859 copying an instruction with gdbarch_displaced_step_copy_insn,
860 single-stepping across the copied instruction, and then applying
861 gdbarch_displaced_insn_fixup should have the same effects on the
862 thread's memory and registers as stepping the instruction in place
863 would have. Exactly which responsibilities fall to the copy and
864 which fall to the fixup is up to the author of those functions.
865
866 See the comments in gdbarch.sh for details.
867
868 Note that displaced stepping and software single-step cannot
869 currently be used in combination, although with some care I think
870 they could be made to. Software single-step works by placing
871 breakpoints on all possible subsequent instructions; if the
872 displaced instruction is a PC-relative jump, those breakpoints
873 could fall in very strange places --- on pages that aren't
874 executable, or at addresses that are not proper instruction
875 boundaries. (We do generally let other threads run while we wait
876 to hit the software single-step breakpoint, and they might
877 encounter such a corrupted instruction.) One way to work around
878 this would be to have gdbarch_displaced_step_copy_insn fully
879 simulate the effect of PC-relative instructions (and return NULL)
880 on architectures that use software single-stepping.
881
882 In non-stop mode, we can have independent and simultaneous step
883 requests, so more than one thread may need to simultaneously step
884 over a breakpoint. The current implementation assumes there is
885 only one scratch space per process. In this case, we have to
886 serialize access to the scratch space. If thread A wants to step
887 over a breakpoint, but we are currently waiting for some other
888 thread to complete a displaced step, we leave thread A stopped and
889 place it in the displaced_step_request_queue. Whenever a displaced
890 step finishes, we pick the next thread in the queue and start a new
891 displaced step operation on it. See displaced_step_prepare and
892 displaced_step_fixup for details. */
893
894 /* If this is not null_ptid, this is the thread carrying out a
895 displaced single-step. This thread's state will require fixing up
896 once it has completed its step. */
897 static ptid_t displaced_step_ptid;
898
899 struct displaced_step_request
900 {
901 ptid_t ptid;
902 struct displaced_step_request *next;
903 };
904
905 /* A queue of pending displaced stepping requests. */
906 struct displaced_step_request *displaced_step_request_queue;
907
908 /* The architecture the thread had when we stepped it. */
909 static struct gdbarch *displaced_step_gdbarch;
910
911 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
912 for post-step cleanup. */
913 static struct displaced_step_closure *displaced_step_closure;
914
915 /* The address of the original instruction, and the copy we made. */
916 static CORE_ADDR displaced_step_original, displaced_step_copy;
917
918 /* Saved contents of copy area. */
919 static gdb_byte *displaced_step_saved_copy;
920
921 /* Enum strings for "set|show displaced-stepping". */
922
923 static const char can_use_displaced_stepping_auto[] = "auto";
924 static const char can_use_displaced_stepping_on[] = "on";
925 static const char can_use_displaced_stepping_off[] = "off";
926 static const char *can_use_displaced_stepping_enum[] =
927 {
928 can_use_displaced_stepping_auto,
929 can_use_displaced_stepping_on,
930 can_use_displaced_stepping_off,
931 NULL,
932 };
933
934 /* If ON, and the architecture supports it, GDB will use displaced
935 stepping to step over breakpoints. If OFF, or if the architecture
936 doesn't support it, GDB will instead use the traditional
937 hold-and-step approach. If AUTO (which is the default), GDB will
938 decide which technique to use to step over breakpoints depending on
939 which of all-stop or non-stop mode is active --- displaced stepping
940 in non-stop mode; hold-and-step in all-stop mode. */
941
942 static const char *can_use_displaced_stepping =
943 can_use_displaced_stepping_auto;
944
945 static void
946 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
947 struct cmd_list_element *c,
948 const char *value)
949 {
950 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
951 fprintf_filtered (file, _("\
952 Debugger's willingness to use displaced stepping to step over \
953 breakpoints is %s (currently %s).\n"),
954 value, non_stop ? "on" : "off");
955 else
956 fprintf_filtered (file, _("\
957 Debugger's willingness to use displaced stepping to step over \
958 breakpoints is %s.\n"), value);
959 }
960
961 /* Return non-zero if displaced stepping can/should be used to step
962 over breakpoints. */
963
964 static int
965 use_displaced_stepping (struct gdbarch *gdbarch)
966 {
967 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
968 && non_stop)
969 || can_use_displaced_stepping == can_use_displaced_stepping_on)
970 && gdbarch_displaced_step_copy_insn_p (gdbarch)
971 && !RECORD_IS_USED);
972 }
973
974 /* Clean out any stray displaced stepping state. */
975 static void
976 displaced_step_clear (void)
977 {
978 /* Indicate that there is no cleanup pending. */
979 displaced_step_ptid = null_ptid;
980
981 if (displaced_step_closure)
982 {
983 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
984 displaced_step_closure);
985 displaced_step_closure = NULL;
986 }
987 }
988
989 static void
990 displaced_step_clear_cleanup (void *ignore)
991 {
992 displaced_step_clear ();
993 }
994
995 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
996 void
997 displaced_step_dump_bytes (struct ui_file *file,
998 const gdb_byte *buf,
999 size_t len)
1000 {
1001 int i;
1002
1003 for (i = 0; i < len; i++)
1004 fprintf_unfiltered (file, "%02x ", buf[i]);
1005 fputs_unfiltered ("\n", file);
1006 }
1007
1008 /* Prepare to single-step, using displaced stepping.
1009
1010 Note that we cannot use displaced stepping when we have a signal to
1011 deliver. If we have a signal to deliver and an instruction to step
1012 over, then after the step, there will be no indication from the
1013 target whether the thread entered a signal handler or ignored the
1014 signal and stepped over the instruction successfully --- both cases
1015 result in a simple SIGTRAP. In the first case we mustn't do a
1016 fixup, and in the second case we must --- but we can't tell which.
1017 Comments in the code for 'random signals' in handle_inferior_event
1018 explain how we handle this case instead.
1019
1020 Returns 1 if preparing was successful -- this thread is going to be
1021 stepped now; or 0 if displaced stepping this thread got queued. */
1022 static int
1023 displaced_step_prepare (ptid_t ptid)
1024 {
1025 struct cleanup *old_cleanups, *ignore_cleanups;
1026 struct regcache *regcache = get_thread_regcache (ptid);
1027 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1028 CORE_ADDR original, copy;
1029 ULONGEST len;
1030 struct displaced_step_closure *closure;
1031
1032 /* We should never reach this function if the architecture does not
1033 support displaced stepping. */
1034 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1035
1036 /* For the first cut, we're displaced stepping one thread at a
1037 time. */
1038
1039 if (!ptid_equal (displaced_step_ptid, null_ptid))
1040 {
1041 /* Already waiting for a displaced step to finish. Defer this
1042 request and place in queue. */
1043 struct displaced_step_request *req, *new_req;
1044
1045 if (debug_displaced)
1046 fprintf_unfiltered (gdb_stdlog,
1047 "displaced: defering step of %s\n",
1048 target_pid_to_str (ptid));
1049
1050 new_req = xmalloc (sizeof (*new_req));
1051 new_req->ptid = ptid;
1052 new_req->next = NULL;
1053
1054 if (displaced_step_request_queue)
1055 {
1056 for (req = displaced_step_request_queue;
1057 req && req->next;
1058 req = req->next)
1059 ;
1060 req->next = new_req;
1061 }
1062 else
1063 displaced_step_request_queue = new_req;
1064
1065 return 0;
1066 }
1067 else
1068 {
1069 if (debug_displaced)
1070 fprintf_unfiltered (gdb_stdlog,
1071 "displaced: stepping %s now\n",
1072 target_pid_to_str (ptid));
1073 }
1074
1075 displaced_step_clear ();
1076
1077 old_cleanups = save_inferior_ptid ();
1078 inferior_ptid = ptid;
1079
1080 original = regcache_read_pc (regcache);
1081
1082 copy = gdbarch_displaced_step_location (gdbarch);
1083 len = gdbarch_max_insn_length (gdbarch);
1084
1085 /* Save the original contents of the copy area. */
1086 displaced_step_saved_copy = xmalloc (len);
1087 ignore_cleanups = make_cleanup (free_current_contents,
1088 &displaced_step_saved_copy);
1089 read_memory (copy, displaced_step_saved_copy, len);
1090 if (debug_displaced)
1091 {
1092 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1093 paddress (gdbarch, copy));
1094 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
1095 };
1096
1097 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1098 original, copy, regcache);
1099
1100 /* We don't support the fully-simulated case at present. */
1101 gdb_assert (closure);
1102
1103 /* Save the information we need to fix things up if the step
1104 succeeds. */
1105 displaced_step_ptid = ptid;
1106 displaced_step_gdbarch = gdbarch;
1107 displaced_step_closure = closure;
1108 displaced_step_original = original;
1109 displaced_step_copy = copy;
1110
1111 make_cleanup (displaced_step_clear_cleanup, 0);
1112
1113 /* Resume execution at the copy. */
1114 regcache_write_pc (regcache, copy);
1115
1116 discard_cleanups (ignore_cleanups);
1117
1118 do_cleanups (old_cleanups);
1119
1120 if (debug_displaced)
1121 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1122 paddress (gdbarch, copy));
1123
1124 return 1;
1125 }
1126
1127 static void
1128 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1129 {
1130 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1131 inferior_ptid = ptid;
1132 write_memory (memaddr, myaddr, len);
1133 do_cleanups (ptid_cleanup);
1134 }
1135
1136 static void
1137 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1138 {
1139 struct cleanup *old_cleanups;
1140
1141 /* Was this event for the pid we displaced? */
1142 if (ptid_equal (displaced_step_ptid, null_ptid)
1143 || ! ptid_equal (displaced_step_ptid, event_ptid))
1144 return;
1145
1146 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
1147
1148 /* Restore the contents of the copy area. */
1149 {
1150 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
1151 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
1152 displaced_step_saved_copy, len);
1153 if (debug_displaced)
1154 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
1155 paddress (displaced_step_gdbarch,
1156 displaced_step_copy));
1157 }
1158
1159 /* Did the instruction complete successfully? */
1160 if (signal == TARGET_SIGNAL_TRAP)
1161 {
1162 /* Fix up the resulting state. */
1163 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
1164 displaced_step_closure,
1165 displaced_step_original,
1166 displaced_step_copy,
1167 get_thread_regcache (displaced_step_ptid));
1168 }
1169 else
1170 {
1171 /* Since the instruction didn't complete, all we can do is
1172 relocate the PC. */
1173 struct regcache *regcache = get_thread_regcache (event_ptid);
1174 CORE_ADDR pc = regcache_read_pc (regcache);
1175 pc = displaced_step_original + (pc - displaced_step_copy);
1176 regcache_write_pc (regcache, pc);
1177 }
1178
1179 do_cleanups (old_cleanups);
1180
1181 displaced_step_ptid = null_ptid;
1182
1183 /* Are there any pending displaced stepping requests? If so, run
1184 one now. */
1185 while (displaced_step_request_queue)
1186 {
1187 struct displaced_step_request *head;
1188 ptid_t ptid;
1189 struct regcache *regcache;
1190 struct gdbarch *gdbarch;
1191 CORE_ADDR actual_pc;
1192 struct address_space *aspace;
1193
1194 head = displaced_step_request_queue;
1195 ptid = head->ptid;
1196 displaced_step_request_queue = head->next;
1197 xfree (head);
1198
1199 context_switch (ptid);
1200
1201 regcache = get_thread_regcache (ptid);
1202 actual_pc = regcache_read_pc (regcache);
1203 aspace = get_regcache_aspace (regcache);
1204
1205 if (breakpoint_here_p (aspace, actual_pc))
1206 {
1207 if (debug_displaced)
1208 fprintf_unfiltered (gdb_stdlog,
1209 "displaced: stepping queued %s now\n",
1210 target_pid_to_str (ptid));
1211
1212 displaced_step_prepare (ptid);
1213
1214 gdbarch = get_regcache_arch (regcache);
1215
1216 if (debug_displaced)
1217 {
1218 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1219 gdb_byte buf[4];
1220
1221 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1222 paddress (gdbarch, actual_pc));
1223 read_memory (actual_pc, buf, sizeof (buf));
1224 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1225 }
1226
1227 if (gdbarch_displaced_step_hw_singlestep
1228 (gdbarch, displaced_step_closure))
1229 target_resume (ptid, 1, TARGET_SIGNAL_0);
1230 else
1231 target_resume (ptid, 0, TARGET_SIGNAL_0);
1232
1233 /* Done, we're stepping a thread. */
1234 break;
1235 }
1236 else
1237 {
1238 int step;
1239 struct thread_info *tp = inferior_thread ();
1240
1241 /* The breakpoint we were sitting under has since been
1242 removed. */
1243 tp->trap_expected = 0;
1244
1245 /* Go back to what we were trying to do. */
1246 step = currently_stepping (tp);
1247
1248 if (debug_displaced)
1249 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1250 target_pid_to_str (tp->ptid), step);
1251
1252 target_resume (ptid, step, TARGET_SIGNAL_0);
1253 tp->stop_signal = TARGET_SIGNAL_0;
1254
1255 /* This request was discarded. See if there's any other
1256 thread waiting for its turn. */
1257 }
1258 }
1259 }
1260
1261 /* Update global variables holding ptids to hold NEW_PTID if they were
1262 holding OLD_PTID. */
1263 static void
1264 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1265 {
1266 struct displaced_step_request *it;
1267
1268 if (ptid_equal (inferior_ptid, old_ptid))
1269 inferior_ptid = new_ptid;
1270
1271 if (ptid_equal (singlestep_ptid, old_ptid))
1272 singlestep_ptid = new_ptid;
1273
1274 if (ptid_equal (displaced_step_ptid, old_ptid))
1275 displaced_step_ptid = new_ptid;
1276
1277 if (ptid_equal (deferred_step_ptid, old_ptid))
1278 deferred_step_ptid = new_ptid;
1279
1280 for (it = displaced_step_request_queue; it; it = it->next)
1281 if (ptid_equal (it->ptid, old_ptid))
1282 it->ptid = new_ptid;
1283 }
1284
1285 \f
1286 /* Resuming. */
1287
1288 /* Things to clean up if we QUIT out of resume (). */
1289 static void
1290 resume_cleanups (void *ignore)
1291 {
1292 normal_stop ();
1293 }
1294
1295 static const char schedlock_off[] = "off";
1296 static const char schedlock_on[] = "on";
1297 static const char schedlock_step[] = "step";
1298 static const char *scheduler_enums[] = {
1299 schedlock_off,
1300 schedlock_on,
1301 schedlock_step,
1302 NULL
1303 };
1304 static const char *scheduler_mode = schedlock_off;
1305 static void
1306 show_scheduler_mode (struct ui_file *file, int from_tty,
1307 struct cmd_list_element *c, const char *value)
1308 {
1309 fprintf_filtered (file, _("\
1310 Mode for locking scheduler during execution is \"%s\".\n"),
1311 value);
1312 }
1313
1314 static void
1315 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1316 {
1317 if (!target_can_lock_scheduler)
1318 {
1319 scheduler_mode = schedlock_off;
1320 error (_("Target '%s' cannot support this command."), target_shortname);
1321 }
1322 }
1323
1324 /* True if execution commands resume all threads of all processes by
1325 default; otherwise, resume only threads of the current inferior
1326 process. */
1327 int sched_multi = 0;
1328
1329 /* Try to setup for software single stepping over the specified location.
1330 Return 1 if target_resume() should use hardware single step.
1331
1332 GDBARCH the current gdbarch.
1333 PC the location to step over. */
1334
1335 static int
1336 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1337 {
1338 int hw_step = 1;
1339
1340 if (gdbarch_software_single_step_p (gdbarch)
1341 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1342 {
1343 hw_step = 0;
1344 /* Do not pull these breakpoints until after a `wait' in
1345 `wait_for_inferior' */
1346 singlestep_breakpoints_inserted_p = 1;
1347 singlestep_ptid = inferior_ptid;
1348 singlestep_pc = pc;
1349 }
1350 return hw_step;
1351 }
1352
1353 /* Resume the inferior, but allow a QUIT. This is useful if the user
1354 wants to interrupt some lengthy single-stepping operation
1355 (for child processes, the SIGINT goes to the inferior, and so
1356 we get a SIGINT random_signal, but for remote debugging and perhaps
1357 other targets, that's not true).
1358
1359 STEP nonzero if we should step (zero to continue instead).
1360 SIG is the signal to give the inferior (zero for none). */
1361 void
1362 resume (int step, enum target_signal sig)
1363 {
1364 int should_resume = 1;
1365 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1366 struct regcache *regcache = get_current_regcache ();
1367 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1368 struct thread_info *tp = inferior_thread ();
1369 CORE_ADDR pc = regcache_read_pc (regcache);
1370 struct address_space *aspace = get_regcache_aspace (regcache);
1371
1372 QUIT;
1373
1374 if (debug_infrun)
1375 fprintf_unfiltered (gdb_stdlog,
1376 "infrun: resume (step=%d, signal=%d), "
1377 "trap_expected=%d\n",
1378 step, sig, tp->trap_expected);
1379
1380 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
1381 over an instruction that causes a page fault without triggering
1382 a hardware watchpoint. The kernel properly notices that it shouldn't
1383 stop, because the hardware watchpoint is not triggered, but it forgets
1384 the step request and continues the program normally.
1385 Work around the problem by removing hardware watchpoints if a step is
1386 requested, GDB will check for a hardware watchpoint trigger after the
1387 step anyway. */
1388 if (CANNOT_STEP_HW_WATCHPOINTS && step)
1389 remove_hw_watchpoints ();
1390
1391
1392 /* Normally, by the time we reach `resume', the breakpoints are either
1393 removed or inserted, as appropriate. The exception is if we're sitting
1394 at a permanent breakpoint; we need to step over it, but permanent
1395 breakpoints can't be removed. So we have to test for it here. */
1396 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1397 {
1398 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1399 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1400 else
1401 error (_("\
1402 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1403 how to step past a permanent breakpoint on this architecture. Try using\n\
1404 a command like `return' or `jump' to continue execution."));
1405 }
1406
1407 /* If enabled, step over breakpoints by executing a copy of the
1408 instruction at a different address.
1409
1410 We can't use displaced stepping when we have a signal to deliver;
1411 the comments for displaced_step_prepare explain why. The
1412 comments in the handle_inferior event for dealing with 'random
1413 signals' explain what we do instead. */
1414 if (use_displaced_stepping (gdbarch)
1415 && (tp->trap_expected
1416 || (step && gdbarch_software_single_step_p (gdbarch)))
1417 && sig == TARGET_SIGNAL_0)
1418 {
1419 if (!displaced_step_prepare (inferior_ptid))
1420 {
1421 /* Got placed in displaced stepping queue. Will be resumed
1422 later when all the currently queued displaced stepping
1423 requests finish. The thread is not executing at this point,
1424 and the call to set_executing will be made later. But we
1425 need to call set_running here, since from frontend point of view,
1426 the thread is running. */
1427 set_running (inferior_ptid, 1);
1428 discard_cleanups (old_cleanups);
1429 return;
1430 }
1431
1432 step = gdbarch_displaced_step_hw_singlestep
1433 (gdbarch, displaced_step_closure);
1434 }
1435
1436 /* Do we need to do it the hard way, w/temp breakpoints? */
1437 else if (step)
1438 step = maybe_software_singlestep (gdbarch, pc);
1439
1440 if (should_resume)
1441 {
1442 ptid_t resume_ptid;
1443
1444 /* If STEP is set, it's a request to use hardware stepping
1445 facilities. But in that case, we should never
1446 use singlestep breakpoint. */
1447 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1448
1449 /* Decide the set of threads to ask the target to resume. Start
1450 by assuming everything will be resumed, than narrow the set
1451 by applying increasingly restricting conditions. */
1452
1453 /* By default, resume all threads of all processes. */
1454 resume_ptid = RESUME_ALL;
1455
1456 /* Maybe resume only all threads of the current process. */
1457 if (!sched_multi && target_supports_multi_process ())
1458 {
1459 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1460 }
1461
1462 /* Maybe resume a single thread after all. */
1463 if (singlestep_breakpoints_inserted_p
1464 && stepping_past_singlestep_breakpoint)
1465 {
1466 /* The situation here is as follows. In thread T1 we wanted to
1467 single-step. Lacking hardware single-stepping we've
1468 set breakpoint at the PC of the next instruction -- call it
1469 P. After resuming, we've hit that breakpoint in thread T2.
1470 Now we've removed original breakpoint, inserted breakpoint
1471 at P+1, and try to step to advance T2 past breakpoint.
1472 We need to step only T2, as if T1 is allowed to freely run,
1473 it can run past P, and if other threads are allowed to run,
1474 they can hit breakpoint at P+1, and nested hits of single-step
1475 breakpoints is not something we'd want -- that's complicated
1476 to support, and has no value. */
1477 resume_ptid = inferior_ptid;
1478 }
1479 else if ((step || singlestep_breakpoints_inserted_p)
1480 && tp->trap_expected)
1481 {
1482 /* We're allowing a thread to run past a breakpoint it has
1483 hit, by single-stepping the thread with the breakpoint
1484 removed. In which case, we need to single-step only this
1485 thread, and keep others stopped, as they can miss this
1486 breakpoint if allowed to run.
1487
1488 The current code actually removes all breakpoints when
1489 doing this, not just the one being stepped over, so if we
1490 let other threads run, we can actually miss any
1491 breakpoint, not just the one at PC. */
1492 resume_ptid = inferior_ptid;
1493 }
1494 else if (non_stop)
1495 {
1496 /* With non-stop mode on, threads are always handled
1497 individually. */
1498 resume_ptid = inferior_ptid;
1499 }
1500 else if ((scheduler_mode == schedlock_on)
1501 || (scheduler_mode == schedlock_step
1502 && (step || singlestep_breakpoints_inserted_p)))
1503 {
1504 /* User-settable 'scheduler' mode requires solo thread resume. */
1505 resume_ptid = inferior_ptid;
1506 }
1507
1508 if (gdbarch_cannot_step_breakpoint (gdbarch))
1509 {
1510 /* Most targets can step a breakpoint instruction, thus
1511 executing it normally. But if this one cannot, just
1512 continue and we will hit it anyway. */
1513 if (step && breakpoint_inserted_here_p (aspace, pc))
1514 step = 0;
1515 }
1516
1517 if (debug_displaced
1518 && use_displaced_stepping (gdbarch)
1519 && tp->trap_expected)
1520 {
1521 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1522 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1523 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1524 gdb_byte buf[4];
1525
1526 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1527 paddress (resume_gdbarch, actual_pc));
1528 read_memory (actual_pc, buf, sizeof (buf));
1529 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1530 }
1531
1532 /* Install inferior's terminal modes. */
1533 target_terminal_inferior ();
1534
1535 /* Avoid confusing the next resume, if the next stop/resume
1536 happens to apply to another thread. */
1537 tp->stop_signal = TARGET_SIGNAL_0;
1538
1539 target_resume (resume_ptid, step, sig);
1540 }
1541
1542 discard_cleanups (old_cleanups);
1543 }
1544 \f
1545 /* Proceeding. */
1546
1547 /* Clear out all variables saying what to do when inferior is continued.
1548 First do this, then set the ones you want, then call `proceed'. */
1549
1550 static void
1551 clear_proceed_status_thread (struct thread_info *tp)
1552 {
1553 if (debug_infrun)
1554 fprintf_unfiltered (gdb_stdlog,
1555 "infrun: clear_proceed_status_thread (%s)\n",
1556 target_pid_to_str (tp->ptid));
1557
1558 tp->trap_expected = 0;
1559 tp->step_range_start = 0;
1560 tp->step_range_end = 0;
1561 tp->step_frame_id = null_frame_id;
1562 tp->step_stack_frame_id = null_frame_id;
1563 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1564 tp->stop_requested = 0;
1565
1566 tp->stop_step = 0;
1567
1568 tp->proceed_to_finish = 0;
1569
1570 /* Discard any remaining commands or status from previous stop. */
1571 bpstat_clear (&tp->stop_bpstat);
1572 }
1573
1574 static int
1575 clear_proceed_status_callback (struct thread_info *tp, void *data)
1576 {
1577 if (is_exited (tp->ptid))
1578 return 0;
1579
1580 clear_proceed_status_thread (tp);
1581 return 0;
1582 }
1583
1584 void
1585 clear_proceed_status (void)
1586 {
1587 if (!non_stop)
1588 {
1589 /* In all-stop mode, delete the per-thread status of all
1590 threads, even if inferior_ptid is null_ptid, there may be
1591 threads on the list. E.g., we may be launching a new
1592 process, while selecting the executable. */
1593 iterate_over_threads (clear_proceed_status_callback, NULL);
1594 }
1595
1596 if (!ptid_equal (inferior_ptid, null_ptid))
1597 {
1598 struct inferior *inferior;
1599
1600 if (non_stop)
1601 {
1602 /* If in non-stop mode, only delete the per-thread status of
1603 the current thread. */
1604 clear_proceed_status_thread (inferior_thread ());
1605 }
1606
1607 inferior = current_inferior ();
1608 inferior->stop_soon = NO_STOP_QUIETLY;
1609 }
1610
1611 stop_after_trap = 0;
1612
1613 observer_notify_about_to_proceed ();
1614
1615 if (stop_registers)
1616 {
1617 regcache_xfree (stop_registers);
1618 stop_registers = NULL;
1619 }
1620 }
1621
1622 /* Check the current thread against the thread that reported the most recent
1623 event. If a step-over is required return TRUE and set the current thread
1624 to the old thread. Otherwise return FALSE.
1625
1626 This should be suitable for any targets that support threads. */
1627
1628 static int
1629 prepare_to_proceed (int step)
1630 {
1631 ptid_t wait_ptid;
1632 struct target_waitstatus wait_status;
1633 int schedlock_enabled;
1634
1635 /* With non-stop mode on, threads are always handled individually. */
1636 gdb_assert (! non_stop);
1637
1638 /* Get the last target status returned by target_wait(). */
1639 get_last_target_status (&wait_ptid, &wait_status);
1640
1641 /* Make sure we were stopped at a breakpoint. */
1642 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1643 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1644 && wait_status.value.sig != TARGET_SIGNAL_ILL
1645 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1646 && wait_status.value.sig != TARGET_SIGNAL_EMT))
1647 {
1648 return 0;
1649 }
1650
1651 schedlock_enabled = (scheduler_mode == schedlock_on
1652 || (scheduler_mode == schedlock_step
1653 && step));
1654
1655 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1656 if (schedlock_enabled)
1657 return 0;
1658
1659 /* Don't switch over if we're about to resume some other process
1660 other than WAIT_PTID's, and schedule-multiple is off. */
1661 if (!sched_multi
1662 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1663 return 0;
1664
1665 /* Switched over from WAIT_PID. */
1666 if (!ptid_equal (wait_ptid, minus_one_ptid)
1667 && !ptid_equal (inferior_ptid, wait_ptid))
1668 {
1669 struct regcache *regcache = get_thread_regcache (wait_ptid);
1670
1671 if (breakpoint_here_p (get_regcache_aspace (regcache),
1672 regcache_read_pc (regcache)))
1673 {
1674 /* If stepping, remember current thread to switch back to. */
1675 if (step)
1676 deferred_step_ptid = inferior_ptid;
1677
1678 /* Switch back to WAIT_PID thread. */
1679 switch_to_thread (wait_ptid);
1680
1681 /* We return 1 to indicate that there is a breakpoint here,
1682 so we need to step over it before continuing to avoid
1683 hitting it straight away. */
1684 return 1;
1685 }
1686 }
1687
1688 return 0;
1689 }
1690
1691 /* Basic routine for continuing the program in various fashions.
1692
1693 ADDR is the address to resume at, or -1 for resume where stopped.
1694 SIGGNAL is the signal to give it, or 0 for none,
1695 or -1 for act according to how it stopped.
1696 STEP is nonzero if should trap after one instruction.
1697 -1 means return after that and print nothing.
1698 You should probably set various step_... variables
1699 before calling here, if you are stepping.
1700
1701 You should call clear_proceed_status before calling proceed. */
1702
1703 void
1704 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1705 {
1706 struct regcache *regcache;
1707 struct gdbarch *gdbarch;
1708 struct thread_info *tp;
1709 CORE_ADDR pc;
1710 struct address_space *aspace;
1711 int oneproc = 0;
1712
1713 /* If we're stopped at a fork/vfork, follow the branch set by the
1714 "set follow-fork-mode" command; otherwise, we'll just proceed
1715 resuming the current thread. */
1716 if (!follow_fork ())
1717 {
1718 /* The target for some reason decided not to resume. */
1719 normal_stop ();
1720 return;
1721 }
1722
1723 regcache = get_current_regcache ();
1724 gdbarch = get_regcache_arch (regcache);
1725 aspace = get_regcache_aspace (regcache);
1726 pc = regcache_read_pc (regcache);
1727
1728 if (step > 0)
1729 step_start_function = find_pc_function (pc);
1730 if (step < 0)
1731 stop_after_trap = 1;
1732
1733 if (addr == (CORE_ADDR) -1)
1734 {
1735 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
1736 && execution_direction != EXEC_REVERSE)
1737 /* There is a breakpoint at the address we will resume at,
1738 step one instruction before inserting breakpoints so that
1739 we do not stop right away (and report a second hit at this
1740 breakpoint).
1741
1742 Note, we don't do this in reverse, because we won't
1743 actually be executing the breakpoint insn anyway.
1744 We'll be (un-)executing the previous instruction. */
1745
1746 oneproc = 1;
1747 else if (gdbarch_single_step_through_delay_p (gdbarch)
1748 && gdbarch_single_step_through_delay (gdbarch,
1749 get_current_frame ()))
1750 /* We stepped onto an instruction that needs to be stepped
1751 again before re-inserting the breakpoint, do so. */
1752 oneproc = 1;
1753 }
1754 else
1755 {
1756 regcache_write_pc (regcache, addr);
1757 }
1758
1759 if (debug_infrun)
1760 fprintf_unfiltered (gdb_stdlog,
1761 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
1762 paddress (gdbarch, addr), siggnal, step);
1763
1764 if (non_stop)
1765 /* In non-stop, each thread is handled individually. The context
1766 must already be set to the right thread here. */
1767 ;
1768 else
1769 {
1770 /* In a multi-threaded task we may select another thread and
1771 then continue or step.
1772
1773 But if the old thread was stopped at a breakpoint, it will
1774 immediately cause another breakpoint stop without any
1775 execution (i.e. it will report a breakpoint hit incorrectly).
1776 So we must step over it first.
1777
1778 prepare_to_proceed checks the current thread against the
1779 thread that reported the most recent event. If a step-over
1780 is required it returns TRUE and sets the current thread to
1781 the old thread. */
1782 if (prepare_to_proceed (step))
1783 oneproc = 1;
1784 }
1785
1786 /* prepare_to_proceed may change the current thread. */
1787 tp = inferior_thread ();
1788
1789 if (oneproc)
1790 {
1791 tp->trap_expected = 1;
1792 /* If displaced stepping is enabled, we can step over the
1793 breakpoint without hitting it, so leave all breakpoints
1794 inserted. Otherwise we need to disable all breakpoints, step
1795 one instruction, and then re-add them when that step is
1796 finished. */
1797 if (!use_displaced_stepping (gdbarch))
1798 remove_breakpoints ();
1799 }
1800
1801 /* We can insert breakpoints if we're not trying to step over one,
1802 or if we are stepping over one but we're using displaced stepping
1803 to do so. */
1804 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1805 insert_breakpoints ();
1806
1807 if (!non_stop)
1808 {
1809 /* Pass the last stop signal to the thread we're resuming,
1810 irrespective of whether the current thread is the thread that
1811 got the last event or not. This was historically GDB's
1812 behaviour before keeping a stop_signal per thread. */
1813
1814 struct thread_info *last_thread;
1815 ptid_t last_ptid;
1816 struct target_waitstatus last_status;
1817
1818 get_last_target_status (&last_ptid, &last_status);
1819 if (!ptid_equal (inferior_ptid, last_ptid)
1820 && !ptid_equal (last_ptid, null_ptid)
1821 && !ptid_equal (last_ptid, minus_one_ptid))
1822 {
1823 last_thread = find_thread_ptid (last_ptid);
1824 if (last_thread)
1825 {
1826 tp->stop_signal = last_thread->stop_signal;
1827 last_thread->stop_signal = TARGET_SIGNAL_0;
1828 }
1829 }
1830 }
1831
1832 if (siggnal != TARGET_SIGNAL_DEFAULT)
1833 tp->stop_signal = siggnal;
1834 /* If this signal should not be seen by program,
1835 give it zero. Used for debugging signals. */
1836 else if (!signal_program[tp->stop_signal])
1837 tp->stop_signal = TARGET_SIGNAL_0;
1838
1839 annotate_starting ();
1840
1841 /* Make sure that output from GDB appears before output from the
1842 inferior. */
1843 gdb_flush (gdb_stdout);
1844
1845 /* Refresh prev_pc value just prior to resuming. This used to be
1846 done in stop_stepping, however, setting prev_pc there did not handle
1847 scenarios such as inferior function calls or returning from
1848 a function via the return command. In those cases, the prev_pc
1849 value was not set properly for subsequent commands. The prev_pc value
1850 is used to initialize the starting line number in the ecs. With an
1851 invalid value, the gdb next command ends up stopping at the position
1852 represented by the next line table entry past our start position.
1853 On platforms that generate one line table entry per line, this
1854 is not a problem. However, on the ia64, the compiler generates
1855 extraneous line table entries that do not increase the line number.
1856 When we issue the gdb next command on the ia64 after an inferior call
1857 or a return command, we often end up a few instructions forward, still
1858 within the original line we started.
1859
1860 An attempt was made to refresh the prev_pc at the same time the
1861 execution_control_state is initialized (for instance, just before
1862 waiting for an inferior event). But this approach did not work
1863 because of platforms that use ptrace, where the pc register cannot
1864 be read unless the inferior is stopped. At that point, we are not
1865 guaranteed the inferior is stopped and so the regcache_read_pc() call
1866 can fail. Setting the prev_pc value here ensures the value is updated
1867 correctly when the inferior is stopped. */
1868 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1869
1870 /* Fill in with reasonable starting values. */
1871 init_thread_stepping_state (tp);
1872
1873 /* Reset to normal state. */
1874 init_infwait_state ();
1875
1876 /* Resume inferior. */
1877 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
1878
1879 /* Wait for it to stop (if not standalone)
1880 and in any case decode why it stopped, and act accordingly. */
1881 /* Do this only if we are not using the event loop, or if the target
1882 does not support asynchronous execution. */
1883 if (!target_can_async_p ())
1884 {
1885 wait_for_inferior (0);
1886 normal_stop ();
1887 }
1888 }
1889 \f
1890
1891 /* Start remote-debugging of a machine over a serial link. */
1892
1893 void
1894 start_remote (int from_tty)
1895 {
1896 struct inferior *inferior;
1897 init_wait_for_inferior ();
1898
1899 inferior = current_inferior ();
1900 inferior->stop_soon = STOP_QUIETLY_REMOTE;
1901
1902 /* Always go on waiting for the target, regardless of the mode. */
1903 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1904 indicate to wait_for_inferior that a target should timeout if
1905 nothing is returned (instead of just blocking). Because of this,
1906 targets expecting an immediate response need to, internally, set
1907 things up so that the target_wait() is forced to eventually
1908 timeout. */
1909 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1910 differentiate to its caller what the state of the target is after
1911 the initial open has been performed. Here we're assuming that
1912 the target has stopped. It should be possible to eventually have
1913 target_open() return to the caller an indication that the target
1914 is currently running and GDB state should be set to the same as
1915 for an async run. */
1916 wait_for_inferior (0);
1917
1918 /* Now that the inferior has stopped, do any bookkeeping like
1919 loading shared libraries. We want to do this before normal_stop,
1920 so that the displayed frame is up to date. */
1921 post_create_inferior (&current_target, from_tty);
1922
1923 normal_stop ();
1924 }
1925
1926 /* Initialize static vars when a new inferior begins. */
1927
1928 void
1929 init_wait_for_inferior (void)
1930 {
1931 /* These are meaningless until the first time through wait_for_inferior. */
1932
1933 breakpoint_init_inferior (inf_starting);
1934
1935 clear_proceed_status ();
1936
1937 stepping_past_singlestep_breakpoint = 0;
1938 deferred_step_ptid = null_ptid;
1939
1940 target_last_wait_ptid = minus_one_ptid;
1941
1942 previous_inferior_ptid = null_ptid;
1943 init_infwait_state ();
1944
1945 displaced_step_clear ();
1946
1947 /* Discard any skipped inlined frames. */
1948 clear_inline_frame_state (minus_one_ptid);
1949 }
1950
1951 \f
1952 /* This enum encodes possible reasons for doing a target_wait, so that
1953 wfi can call target_wait in one place. (Ultimately the call will be
1954 moved out of the infinite loop entirely.) */
1955
1956 enum infwait_states
1957 {
1958 infwait_normal_state,
1959 infwait_thread_hop_state,
1960 infwait_step_watch_state,
1961 infwait_nonstep_watch_state
1962 };
1963
1964 /* Why did the inferior stop? Used to print the appropriate messages
1965 to the interface from within handle_inferior_event(). */
1966 enum inferior_stop_reason
1967 {
1968 /* Step, next, nexti, stepi finished. */
1969 END_STEPPING_RANGE,
1970 /* Inferior terminated by signal. */
1971 SIGNAL_EXITED,
1972 /* Inferior exited. */
1973 EXITED,
1974 /* Inferior received signal, and user asked to be notified. */
1975 SIGNAL_RECEIVED,
1976 /* Reverse execution -- target ran out of history info. */
1977 NO_HISTORY
1978 };
1979
1980 /* The PTID we'll do a target_wait on.*/
1981 ptid_t waiton_ptid;
1982
1983 /* Current inferior wait state. */
1984 enum infwait_states infwait_state;
1985
1986 /* Data to be passed around while handling an event. This data is
1987 discarded between events. */
1988 struct execution_control_state
1989 {
1990 ptid_t ptid;
1991 /* The thread that got the event, if this was a thread event; NULL
1992 otherwise. */
1993 struct thread_info *event_thread;
1994
1995 struct target_waitstatus ws;
1996 int random_signal;
1997 CORE_ADDR stop_func_start;
1998 CORE_ADDR stop_func_end;
1999 char *stop_func_name;
2000 int new_thread_event;
2001 int wait_some_more;
2002 };
2003
2004 static void handle_inferior_event (struct execution_control_state *ecs);
2005
2006 static void handle_step_into_function (struct gdbarch *gdbarch,
2007 struct execution_control_state *ecs);
2008 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2009 struct execution_control_state *ecs);
2010 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
2011 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
2012 static void insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
2013 struct symtab_and_line sr_sal,
2014 struct frame_id sr_id);
2015 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
2016
2017 static void stop_stepping (struct execution_control_state *ecs);
2018 static void prepare_to_wait (struct execution_control_state *ecs);
2019 static void keep_going (struct execution_control_state *ecs);
2020 static void print_stop_reason (enum inferior_stop_reason stop_reason,
2021 int stop_info);
2022
2023 /* Callback for iterate over threads. If the thread is stopped, but
2024 the user/frontend doesn't know about that yet, go through
2025 normal_stop, as if the thread had just stopped now. ARG points at
2026 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2027 ptid_is_pid(PTID) is true, applies to all threads of the process
2028 pointed at by PTID. Otherwise, apply only to the thread pointed by
2029 PTID. */
2030
2031 static int
2032 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2033 {
2034 ptid_t ptid = * (ptid_t *) arg;
2035
2036 if ((ptid_equal (info->ptid, ptid)
2037 || ptid_equal (minus_one_ptid, ptid)
2038 || (ptid_is_pid (ptid)
2039 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2040 && is_running (info->ptid)
2041 && !is_executing (info->ptid))
2042 {
2043 struct cleanup *old_chain;
2044 struct execution_control_state ecss;
2045 struct execution_control_state *ecs = &ecss;
2046
2047 memset (ecs, 0, sizeof (*ecs));
2048
2049 old_chain = make_cleanup_restore_current_thread ();
2050
2051 switch_to_thread (info->ptid);
2052
2053 /* Go through handle_inferior_event/normal_stop, so we always
2054 have consistent output as if the stop event had been
2055 reported. */
2056 ecs->ptid = info->ptid;
2057 ecs->event_thread = find_thread_ptid (info->ptid);
2058 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2059 ecs->ws.value.sig = TARGET_SIGNAL_0;
2060
2061 handle_inferior_event (ecs);
2062
2063 if (!ecs->wait_some_more)
2064 {
2065 struct thread_info *tp;
2066
2067 normal_stop ();
2068
2069 /* Finish off the continuations. The continations
2070 themselves are responsible for realising the thread
2071 didn't finish what it was supposed to do. */
2072 tp = inferior_thread ();
2073 do_all_intermediate_continuations_thread (tp);
2074 do_all_continuations_thread (tp);
2075 }
2076
2077 do_cleanups (old_chain);
2078 }
2079
2080 return 0;
2081 }
2082
2083 /* This function is attached as a "thread_stop_requested" observer.
2084 Cleanup local state that assumed the PTID was to be resumed, and
2085 report the stop to the frontend. */
2086
2087 static void
2088 infrun_thread_stop_requested (ptid_t ptid)
2089 {
2090 struct displaced_step_request *it, *next, *prev = NULL;
2091
2092 /* PTID was requested to stop. Remove it from the displaced
2093 stepping queue, so we don't try to resume it automatically. */
2094 for (it = displaced_step_request_queue; it; it = next)
2095 {
2096 next = it->next;
2097
2098 if (ptid_equal (it->ptid, ptid)
2099 || ptid_equal (minus_one_ptid, ptid)
2100 || (ptid_is_pid (ptid)
2101 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
2102 {
2103 if (displaced_step_request_queue == it)
2104 displaced_step_request_queue = it->next;
2105 else
2106 prev->next = it->next;
2107
2108 xfree (it);
2109 }
2110 else
2111 prev = it;
2112 }
2113
2114 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2115 }
2116
2117 static void
2118 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2119 {
2120 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2121 nullify_last_target_wait_ptid ();
2122 }
2123
2124 /* Callback for iterate_over_threads. */
2125
2126 static int
2127 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2128 {
2129 if (is_exited (info->ptid))
2130 return 0;
2131
2132 delete_step_resume_breakpoint (info);
2133 return 0;
2134 }
2135
2136 /* In all-stop, delete the step resume breakpoint of any thread that
2137 had one. In non-stop, delete the step resume breakpoint of the
2138 thread that just stopped. */
2139
2140 static void
2141 delete_step_thread_step_resume_breakpoint (void)
2142 {
2143 if (!target_has_execution
2144 || ptid_equal (inferior_ptid, null_ptid))
2145 /* If the inferior has exited, we have already deleted the step
2146 resume breakpoints out of GDB's lists. */
2147 return;
2148
2149 if (non_stop)
2150 {
2151 /* If in non-stop mode, only delete the step-resume or
2152 longjmp-resume breakpoint of the thread that just stopped
2153 stepping. */
2154 struct thread_info *tp = inferior_thread ();
2155 delete_step_resume_breakpoint (tp);
2156 }
2157 else
2158 /* In all-stop mode, delete all step-resume and longjmp-resume
2159 breakpoints of any thread that had them. */
2160 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2161 }
2162
2163 /* A cleanup wrapper. */
2164
2165 static void
2166 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2167 {
2168 delete_step_thread_step_resume_breakpoint ();
2169 }
2170
2171 /* Pretty print the results of target_wait, for debugging purposes. */
2172
2173 static void
2174 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2175 const struct target_waitstatus *ws)
2176 {
2177 char *status_string = target_waitstatus_to_string (ws);
2178 struct ui_file *tmp_stream = mem_fileopen ();
2179 char *text;
2180
2181 /* The text is split over several lines because it was getting too long.
2182 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2183 output as a unit; we want only one timestamp printed if debug_timestamp
2184 is set. */
2185
2186 fprintf_unfiltered (tmp_stream,
2187 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2188 if (PIDGET (waiton_ptid) != -1)
2189 fprintf_unfiltered (tmp_stream,
2190 " [%s]", target_pid_to_str (waiton_ptid));
2191 fprintf_unfiltered (tmp_stream, ", status) =\n");
2192 fprintf_unfiltered (tmp_stream,
2193 "infrun: %d [%s],\n",
2194 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2195 fprintf_unfiltered (tmp_stream,
2196 "infrun: %s\n",
2197 status_string);
2198
2199 text = ui_file_xstrdup (tmp_stream, NULL);
2200
2201 /* This uses %s in part to handle %'s in the text, but also to avoid
2202 a gcc error: the format attribute requires a string literal. */
2203 fprintf_unfiltered (gdb_stdlog, "%s", text);
2204
2205 xfree (status_string);
2206 xfree (text);
2207 ui_file_delete (tmp_stream);
2208 }
2209
2210 /* Wait for control to return from inferior to debugger.
2211
2212 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
2213 as if they were SIGTRAP signals. This can be useful during
2214 the startup sequence on some targets such as HP/UX, where
2215 we receive an EXEC event instead of the expected SIGTRAP.
2216
2217 If inferior gets a signal, we may decide to start it up again
2218 instead of returning. That is why there is a loop in this function.
2219 When this function actually returns it means the inferior
2220 should be left stopped and GDB should read more commands. */
2221
2222 void
2223 wait_for_inferior (int treat_exec_as_sigtrap)
2224 {
2225 struct cleanup *old_cleanups;
2226 struct execution_control_state ecss;
2227 struct execution_control_state *ecs;
2228
2229 if (debug_infrun)
2230 fprintf_unfiltered
2231 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
2232 treat_exec_as_sigtrap);
2233
2234 old_cleanups =
2235 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2236
2237 ecs = &ecss;
2238 memset (ecs, 0, sizeof (*ecs));
2239
2240 /* We'll update this if & when we switch to a new thread. */
2241 previous_inferior_ptid = inferior_ptid;
2242
2243 while (1)
2244 {
2245 struct cleanup *old_chain;
2246
2247 /* We have to invalidate the registers BEFORE calling target_wait
2248 because they can be loaded from the target while in target_wait.
2249 This makes remote debugging a bit more efficient for those
2250 targets that provide critical registers as part of their normal
2251 status mechanism. */
2252
2253 overlay_cache_invalid = 1;
2254 registers_changed ();
2255
2256 if (deprecated_target_wait_hook)
2257 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2258 else
2259 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2260
2261 if (debug_infrun)
2262 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2263
2264 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2265 {
2266 xfree (ecs->ws.value.execd_pathname);
2267 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2268 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2269 }
2270
2271 /* If an error happens while handling the event, propagate GDB's
2272 knowledge of the executing state to the frontend/user running
2273 state. */
2274 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2275
2276 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2277 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2278 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2279
2280 /* Now figure out what to do with the result of the result. */
2281 handle_inferior_event (ecs);
2282
2283 /* No error, don't finish the state yet. */
2284 discard_cleanups (old_chain);
2285
2286 if (!ecs->wait_some_more)
2287 break;
2288 }
2289
2290 do_cleanups (old_cleanups);
2291 }
2292
2293 /* Asynchronous version of wait_for_inferior. It is called by the
2294 event loop whenever a change of state is detected on the file
2295 descriptor corresponding to the target. It can be called more than
2296 once to complete a single execution command. In such cases we need
2297 to keep the state in a global variable ECSS. If it is the last time
2298 that this function is called for a single execution command, then
2299 report to the user that the inferior has stopped, and do the
2300 necessary cleanups. */
2301
2302 void
2303 fetch_inferior_event (void *client_data)
2304 {
2305 struct execution_control_state ecss;
2306 struct execution_control_state *ecs = &ecss;
2307 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2308 struct cleanup *ts_old_chain;
2309 int was_sync = sync_execution;
2310
2311 memset (ecs, 0, sizeof (*ecs));
2312
2313 /* We'll update this if & when we switch to a new thread. */
2314 previous_inferior_ptid = inferior_ptid;
2315
2316 if (non_stop)
2317 /* In non-stop mode, the user/frontend should not notice a thread
2318 switch due to internal events. Make sure we reverse to the
2319 user selected thread and frame after handling the event and
2320 running any breakpoint commands. */
2321 make_cleanup_restore_current_thread ();
2322
2323 /* We have to invalidate the registers BEFORE calling target_wait
2324 because they can be loaded from the target while in target_wait.
2325 This makes remote debugging a bit more efficient for those
2326 targets that provide critical registers as part of their normal
2327 status mechanism. */
2328
2329 overlay_cache_invalid = 1;
2330 registers_changed ();
2331
2332 if (deprecated_target_wait_hook)
2333 ecs->ptid =
2334 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2335 else
2336 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2337
2338 if (debug_infrun)
2339 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2340
2341 if (non_stop
2342 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2343 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2344 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2345 /* In non-stop mode, each thread is handled individually. Switch
2346 early, so the global state is set correctly for this
2347 thread. */
2348 context_switch (ecs->ptid);
2349
2350 /* If an error happens while handling the event, propagate GDB's
2351 knowledge of the executing state to the frontend/user running
2352 state. */
2353 if (!non_stop)
2354 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2355 else
2356 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2357
2358 /* Now figure out what to do with the result of the result. */
2359 handle_inferior_event (ecs);
2360
2361 if (!ecs->wait_some_more)
2362 {
2363 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2364
2365 delete_step_thread_step_resume_breakpoint ();
2366
2367 /* We may not find an inferior if this was a process exit. */
2368 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
2369 normal_stop ();
2370
2371 if (target_has_execution
2372 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2373 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2374 && ecs->event_thread->step_multi
2375 && ecs->event_thread->stop_step)
2376 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2377 else
2378 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2379 }
2380
2381 /* No error, don't finish the thread states yet. */
2382 discard_cleanups (ts_old_chain);
2383
2384 /* Revert thread and frame. */
2385 do_cleanups (old_chain);
2386
2387 /* If the inferior was in sync execution mode, and now isn't,
2388 restore the prompt. */
2389 if (was_sync && !sync_execution)
2390 display_gdb_prompt (0);
2391 }
2392
2393 /* Record the frame and location we're currently stepping through. */
2394 void
2395 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2396 {
2397 struct thread_info *tp = inferior_thread ();
2398
2399 tp->step_frame_id = get_frame_id (frame);
2400 tp->step_stack_frame_id = get_stack_frame_id (frame);
2401
2402 tp->current_symtab = sal.symtab;
2403 tp->current_line = sal.line;
2404 }
2405
2406 /* Clear context switchable stepping state. */
2407
2408 void
2409 init_thread_stepping_state (struct thread_info *tss)
2410 {
2411 tss->stepping_over_breakpoint = 0;
2412 tss->step_after_step_resume_breakpoint = 0;
2413 tss->stepping_through_solib_after_catch = 0;
2414 tss->stepping_through_solib_catchpoints = NULL;
2415 }
2416
2417 /* Return the cached copy of the last pid/waitstatus returned by
2418 target_wait()/deprecated_target_wait_hook(). The data is actually
2419 cached by handle_inferior_event(), which gets called immediately
2420 after target_wait()/deprecated_target_wait_hook(). */
2421
2422 void
2423 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2424 {
2425 *ptidp = target_last_wait_ptid;
2426 *status = target_last_waitstatus;
2427 }
2428
2429 void
2430 nullify_last_target_wait_ptid (void)
2431 {
2432 target_last_wait_ptid = minus_one_ptid;
2433 }
2434
2435 /* Switch thread contexts. */
2436
2437 static void
2438 context_switch (ptid_t ptid)
2439 {
2440 if (debug_infrun)
2441 {
2442 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2443 target_pid_to_str (inferior_ptid));
2444 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2445 target_pid_to_str (ptid));
2446 }
2447
2448 switch_to_thread (ptid);
2449 }
2450
2451 static void
2452 adjust_pc_after_break (struct execution_control_state *ecs)
2453 {
2454 struct regcache *regcache;
2455 struct gdbarch *gdbarch;
2456 struct address_space *aspace;
2457 CORE_ADDR breakpoint_pc;
2458
2459 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2460 we aren't, just return.
2461
2462 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2463 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2464 implemented by software breakpoints should be handled through the normal
2465 breakpoint layer.
2466
2467 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2468 different signals (SIGILL or SIGEMT for instance), but it is less
2469 clear where the PC is pointing afterwards. It may not match
2470 gdbarch_decr_pc_after_break. I don't know any specific target that
2471 generates these signals at breakpoints (the code has been in GDB since at
2472 least 1992) so I can not guess how to handle them here.
2473
2474 In earlier versions of GDB, a target with
2475 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2476 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2477 target with both of these set in GDB history, and it seems unlikely to be
2478 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2479
2480 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2481 return;
2482
2483 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2484 return;
2485
2486 /* In reverse execution, when a breakpoint is hit, the instruction
2487 under it has already been de-executed. The reported PC always
2488 points at the breakpoint address, so adjusting it further would
2489 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2490 architecture:
2491
2492 B1 0x08000000 : INSN1
2493 B2 0x08000001 : INSN2
2494 0x08000002 : INSN3
2495 PC -> 0x08000003 : INSN4
2496
2497 Say you're stopped at 0x08000003 as above. Reverse continuing
2498 from that point should hit B2 as below. Reading the PC when the
2499 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2500 been de-executed already.
2501
2502 B1 0x08000000 : INSN1
2503 B2 PC -> 0x08000001 : INSN2
2504 0x08000002 : INSN3
2505 0x08000003 : INSN4
2506
2507 We can't apply the same logic as for forward execution, because
2508 we would wrongly adjust the PC to 0x08000000, since there's a
2509 breakpoint at PC - 1. We'd then report a hit on B1, although
2510 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2511 behaviour. */
2512 if (execution_direction == EXEC_REVERSE)
2513 return;
2514
2515 /* If this target does not decrement the PC after breakpoints, then
2516 we have nothing to do. */
2517 regcache = get_thread_regcache (ecs->ptid);
2518 gdbarch = get_regcache_arch (regcache);
2519 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2520 return;
2521
2522 aspace = get_regcache_aspace (regcache);
2523
2524 /* Find the location where (if we've hit a breakpoint) the
2525 breakpoint would be. */
2526 breakpoint_pc = regcache_read_pc (regcache)
2527 - gdbarch_decr_pc_after_break (gdbarch);
2528
2529 /* Check whether there actually is a software breakpoint inserted at
2530 that location.
2531
2532 If in non-stop mode, a race condition is possible where we've
2533 removed a breakpoint, but stop events for that breakpoint were
2534 already queued and arrive later. To suppress those spurious
2535 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2536 and retire them after a number of stop events are reported. */
2537 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2538 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2539 {
2540 struct cleanup *old_cleanups = NULL;
2541 if (RECORD_IS_USED)
2542 old_cleanups = record_gdb_operation_disable_set ();
2543
2544 /* When using hardware single-step, a SIGTRAP is reported for both
2545 a completed single-step and a software breakpoint. Need to
2546 differentiate between the two, as the latter needs adjusting
2547 but the former does not.
2548
2549 The SIGTRAP can be due to a completed hardware single-step only if
2550 - we didn't insert software single-step breakpoints
2551 - the thread to be examined is still the current thread
2552 - this thread is currently being stepped
2553
2554 If any of these events did not occur, we must have stopped due
2555 to hitting a software breakpoint, and have to back up to the
2556 breakpoint address.
2557
2558 As a special case, we could have hardware single-stepped a
2559 software breakpoint. In this case (prev_pc == breakpoint_pc),
2560 we also need to back up to the breakpoint address. */
2561
2562 if (singlestep_breakpoints_inserted_p
2563 || !ptid_equal (ecs->ptid, inferior_ptid)
2564 || !currently_stepping (ecs->event_thread)
2565 || ecs->event_thread->prev_pc == breakpoint_pc)
2566 regcache_write_pc (regcache, breakpoint_pc);
2567
2568 if (RECORD_IS_USED)
2569 do_cleanups (old_cleanups);
2570 }
2571 }
2572
2573 void
2574 init_infwait_state (void)
2575 {
2576 waiton_ptid = pid_to_ptid (-1);
2577 infwait_state = infwait_normal_state;
2578 }
2579
2580 void
2581 error_is_running (void)
2582 {
2583 error (_("\
2584 Cannot execute this command while the selected thread is running."));
2585 }
2586
2587 void
2588 ensure_not_running (void)
2589 {
2590 if (is_running (inferior_ptid))
2591 error_is_running ();
2592 }
2593
2594 static int
2595 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2596 {
2597 for (frame = get_prev_frame (frame);
2598 frame != NULL;
2599 frame = get_prev_frame (frame))
2600 {
2601 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2602 return 1;
2603 if (get_frame_type (frame) != INLINE_FRAME)
2604 break;
2605 }
2606
2607 return 0;
2608 }
2609
2610 /* Auxiliary function that handles syscall entry/return events.
2611 It returns 1 if the inferior should keep going (and GDB
2612 should ignore the event), or 0 if the event deserves to be
2613 processed. */
2614
2615 static int
2616 handle_syscall_event (struct execution_control_state *ecs)
2617 {
2618 struct regcache *regcache;
2619 struct gdbarch *gdbarch;
2620 int syscall_number;
2621
2622 if (!ptid_equal (ecs->ptid, inferior_ptid))
2623 context_switch (ecs->ptid);
2624
2625 regcache = get_thread_regcache (ecs->ptid);
2626 gdbarch = get_regcache_arch (regcache);
2627 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
2628 stop_pc = regcache_read_pc (regcache);
2629
2630 target_last_waitstatus.value.syscall_number = syscall_number;
2631
2632 if (catch_syscall_enabled () > 0
2633 && catching_syscall_number (syscall_number) > 0)
2634 {
2635 if (debug_infrun)
2636 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
2637 syscall_number);
2638
2639 ecs->event_thread->stop_bpstat
2640 = bpstat_stop_status (get_regcache_aspace (regcache),
2641 stop_pc, ecs->ptid);
2642 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2643
2644 if (!ecs->random_signal)
2645 {
2646 /* Catchpoint hit. */
2647 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2648 return 0;
2649 }
2650 }
2651
2652 /* If no catchpoint triggered for this, then keep going. */
2653 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2654 keep_going (ecs);
2655 return 1;
2656 }
2657
2658 /* Given an execution control state that has been freshly filled in
2659 by an event from the inferior, figure out what it means and take
2660 appropriate action. */
2661
2662 static void
2663 handle_inferior_event (struct execution_control_state *ecs)
2664 {
2665 struct frame_info *frame;
2666 struct gdbarch *gdbarch;
2667 int sw_single_step_trap_p = 0;
2668 int stopped_by_watchpoint;
2669 int stepped_after_stopped_by_watchpoint = 0;
2670 struct symtab_and_line stop_pc_sal;
2671 enum stop_kind stop_soon;
2672
2673 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
2674 {
2675 /* We had an event in the inferior, but we are not interested in
2676 handling it at this level. The lower layers have already
2677 done what needs to be done, if anything.
2678
2679 One of the possible circumstances for this is when the
2680 inferior produces output for the console. The inferior has
2681 not stopped, and we are ignoring the event. Another possible
2682 circumstance is any event which the lower level knows will be
2683 reported multiple times without an intervening resume. */
2684 if (debug_infrun)
2685 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2686 prepare_to_wait (ecs);
2687 return;
2688 }
2689
2690 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2691 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2692 {
2693 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2694 gdb_assert (inf);
2695 stop_soon = inf->stop_soon;
2696 }
2697 else
2698 stop_soon = NO_STOP_QUIETLY;
2699
2700 /* Cache the last pid/waitstatus. */
2701 target_last_wait_ptid = ecs->ptid;
2702 target_last_waitstatus = ecs->ws;
2703
2704 /* Always clear state belonging to the previous time we stopped. */
2705 stop_stack_dummy = 0;
2706
2707 /* If it's a new process, add it to the thread database */
2708
2709 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2710 && !ptid_equal (ecs->ptid, minus_one_ptid)
2711 && !in_thread_list (ecs->ptid));
2712
2713 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2714 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2715 add_thread (ecs->ptid);
2716
2717 ecs->event_thread = find_thread_ptid (ecs->ptid);
2718
2719 /* Dependent on valid ECS->EVENT_THREAD. */
2720 adjust_pc_after_break (ecs);
2721
2722 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2723 reinit_frame_cache ();
2724
2725 breakpoint_retire_moribund ();
2726
2727 /* First, distinguish signals caused by the debugger from signals
2728 that have to do with the program's own actions. Note that
2729 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2730 on the operating system version. Here we detect when a SIGILL or
2731 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2732 something similar for SIGSEGV, since a SIGSEGV will be generated
2733 when we're trying to execute a breakpoint instruction on a
2734 non-executable stack. This happens for call dummy breakpoints
2735 for architectures like SPARC that place call dummies on the
2736 stack. */
2737 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
2738 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
2739 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
2740 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
2741 {
2742 struct regcache *regcache = get_thread_regcache (ecs->ptid);
2743
2744 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2745 regcache_read_pc (regcache)))
2746 {
2747 if (debug_infrun)
2748 fprintf_unfiltered (gdb_stdlog,
2749 "infrun: Treating signal as SIGTRAP\n");
2750 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2751 }
2752 }
2753
2754 /* Mark the non-executing threads accordingly. In all-stop, all
2755 threads of all processes are stopped when we get any event
2756 reported. In non-stop mode, only the event thread stops. If
2757 we're handling a process exit in non-stop mode, there's nothing
2758 to do, as threads of the dead process are gone, and threads of
2759 any other process were left running. */
2760 if (!non_stop)
2761 set_executing (minus_one_ptid, 0);
2762 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2763 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2764 set_executing (inferior_ptid, 0);
2765
2766 switch (infwait_state)
2767 {
2768 case infwait_thread_hop_state:
2769 if (debug_infrun)
2770 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
2771 break;
2772
2773 case infwait_normal_state:
2774 if (debug_infrun)
2775 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
2776 break;
2777
2778 case infwait_step_watch_state:
2779 if (debug_infrun)
2780 fprintf_unfiltered (gdb_stdlog,
2781 "infrun: infwait_step_watch_state\n");
2782
2783 stepped_after_stopped_by_watchpoint = 1;
2784 break;
2785
2786 case infwait_nonstep_watch_state:
2787 if (debug_infrun)
2788 fprintf_unfiltered (gdb_stdlog,
2789 "infrun: infwait_nonstep_watch_state\n");
2790 insert_breakpoints ();
2791
2792 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2793 handle things like signals arriving and other things happening
2794 in combination correctly? */
2795 stepped_after_stopped_by_watchpoint = 1;
2796 break;
2797
2798 default:
2799 internal_error (__FILE__, __LINE__, _("bad switch"));
2800 }
2801
2802 infwait_state = infwait_normal_state;
2803 waiton_ptid = pid_to_ptid (-1);
2804
2805 switch (ecs->ws.kind)
2806 {
2807 case TARGET_WAITKIND_LOADED:
2808 if (debug_infrun)
2809 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
2810 /* Ignore gracefully during startup of the inferior, as it might
2811 be the shell which has just loaded some objects, otherwise
2812 add the symbols for the newly loaded objects. Also ignore at
2813 the beginning of an attach or remote session; we will query
2814 the full list of libraries once the connection is
2815 established. */
2816 if (stop_soon == NO_STOP_QUIETLY)
2817 {
2818 /* Check for any newly added shared libraries if we're
2819 supposed to be adding them automatically. Switch
2820 terminal for any messages produced by
2821 breakpoint_re_set. */
2822 target_terminal_ours_for_output ();
2823 /* NOTE: cagney/2003-11-25: Make certain that the target
2824 stack's section table is kept up-to-date. Architectures,
2825 (e.g., PPC64), use the section table to perform
2826 operations such as address => section name and hence
2827 require the table to contain all sections (including
2828 those found in shared libraries). */
2829 #ifdef SOLIB_ADD
2830 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2831 #else
2832 solib_add (NULL, 0, &current_target, auto_solib_add);
2833 #endif
2834 target_terminal_inferior ();
2835
2836 /* If requested, stop when the dynamic linker notifies
2837 gdb of events. This allows the user to get control
2838 and place breakpoints in initializer routines for
2839 dynamically loaded objects (among other things). */
2840 if (stop_on_solib_events)
2841 {
2842 /* Make sure we print "Stopped due to solib-event" in
2843 normal_stop. */
2844 stop_print_frame = 1;
2845
2846 stop_stepping (ecs);
2847 return;
2848 }
2849
2850 /* NOTE drow/2007-05-11: This might be a good place to check
2851 for "catch load". */
2852 }
2853
2854 /* If we are skipping through a shell, or through shared library
2855 loading that we aren't interested in, resume the program. If
2856 we're running the program normally, also resume. But stop if
2857 we're attaching or setting up a remote connection. */
2858 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2859 {
2860 /* Loading of shared libraries might have changed breakpoint
2861 addresses. Make sure new breakpoints are inserted. */
2862 if (stop_soon == NO_STOP_QUIETLY
2863 && !breakpoints_always_inserted_mode ())
2864 insert_breakpoints ();
2865 resume (0, TARGET_SIGNAL_0);
2866 prepare_to_wait (ecs);
2867 return;
2868 }
2869
2870 break;
2871
2872 case TARGET_WAITKIND_SPURIOUS:
2873 if (debug_infrun)
2874 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2875 resume (0, TARGET_SIGNAL_0);
2876 prepare_to_wait (ecs);
2877 return;
2878
2879 case TARGET_WAITKIND_EXITED:
2880 if (debug_infrun)
2881 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2882 inferior_ptid = ecs->ptid;
2883 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
2884 set_current_program_space (current_inferior ()->pspace);
2885 handle_vfork_child_exec_or_exit (0);
2886 target_terminal_ours (); /* Must do this before mourn anyway */
2887 print_stop_reason (EXITED, ecs->ws.value.integer);
2888
2889 /* Record the exit code in the convenience variable $_exitcode, so
2890 that the user can inspect this again later. */
2891 set_internalvar_integer (lookup_internalvar ("_exitcode"),
2892 (LONGEST) ecs->ws.value.integer);
2893 gdb_flush (gdb_stdout);
2894 target_mourn_inferior ();
2895 singlestep_breakpoints_inserted_p = 0;
2896 stop_print_frame = 0;
2897 stop_stepping (ecs);
2898 return;
2899
2900 case TARGET_WAITKIND_SIGNALLED:
2901 if (debug_infrun)
2902 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2903 inferior_ptid = ecs->ptid;
2904 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
2905 set_current_program_space (current_inferior ()->pspace);
2906 handle_vfork_child_exec_or_exit (0);
2907 stop_print_frame = 0;
2908 target_terminal_ours (); /* Must do this before mourn anyway */
2909
2910 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2911 reach here unless the inferior is dead. However, for years
2912 target_kill() was called here, which hints that fatal signals aren't
2913 really fatal on some systems. If that's true, then some changes
2914 may be needed. */
2915 target_mourn_inferior ();
2916
2917 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
2918 singlestep_breakpoints_inserted_p = 0;
2919 stop_stepping (ecs);
2920 return;
2921
2922 /* The following are the only cases in which we keep going;
2923 the above cases end in a continue or goto. */
2924 case TARGET_WAITKIND_FORKED:
2925 case TARGET_WAITKIND_VFORKED:
2926 if (debug_infrun)
2927 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2928
2929 if (!ptid_equal (ecs->ptid, inferior_ptid))
2930 {
2931 context_switch (ecs->ptid);
2932 reinit_frame_cache ();
2933 }
2934
2935 /* Immediately detach breakpoints from the child before there's
2936 any chance of letting the user delete breakpoints from the
2937 breakpoint lists. If we don't do this early, it's easy to
2938 leave left over traps in the child, vis: "break foo; catch
2939 fork; c; <fork>; del; c; <child calls foo>". We only follow
2940 the fork on the last `continue', and by that time the
2941 breakpoint at "foo" is long gone from the breakpoint table.
2942 If we vforked, then we don't need to unpatch here, since both
2943 parent and child are sharing the same memory pages; we'll
2944 need to unpatch at follow/detach time instead to be certain
2945 that new breakpoints added between catchpoint hit time and
2946 vfork follow are detached. */
2947 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
2948 {
2949 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
2950
2951 /* This won't actually modify the breakpoint list, but will
2952 physically remove the breakpoints from the child. */
2953 detach_breakpoints (child_pid);
2954 }
2955
2956 /* In case the event is caught by a catchpoint, remember that
2957 the event is to be followed at the next resume of the thread,
2958 and not immediately. */
2959 ecs->event_thread->pending_follow = ecs->ws;
2960
2961 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2962
2963 ecs->event_thread->stop_bpstat
2964 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
2965 stop_pc, ecs->ptid);
2966
2967 /* Note that we're interested in knowing the bpstat actually
2968 causes a stop, not just if it may explain the signal.
2969 Software watchpoints, for example, always appear in the
2970 bpstat. */
2971 ecs->random_signal = !bpstat_causes_stop (ecs->event_thread->stop_bpstat);
2972
2973 /* If no catchpoint triggered for this, then keep going. */
2974 if (ecs->random_signal)
2975 {
2976 ptid_t parent;
2977 ptid_t child;
2978 int should_resume;
2979 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
2980
2981 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2982
2983 should_resume = follow_fork ();
2984
2985 parent = ecs->ptid;
2986 child = ecs->ws.value.related_pid;
2987
2988 /* In non-stop mode, also resume the other branch. */
2989 if (non_stop && !detach_fork)
2990 {
2991 if (follow_child)
2992 switch_to_thread (parent);
2993 else
2994 switch_to_thread (child);
2995
2996 ecs->event_thread = inferior_thread ();
2997 ecs->ptid = inferior_ptid;
2998 keep_going (ecs);
2999 }
3000
3001 if (follow_child)
3002 switch_to_thread (child);
3003 else
3004 switch_to_thread (parent);
3005
3006 ecs->event_thread = inferior_thread ();
3007 ecs->ptid = inferior_ptid;
3008
3009 if (should_resume)
3010 keep_going (ecs);
3011 else
3012 stop_stepping (ecs);
3013 return;
3014 }
3015 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
3016 goto process_event_stop_test;
3017
3018 case TARGET_WAITKIND_VFORK_DONE:
3019 /* Done with the shared memory region. Re-insert breakpoints in
3020 the parent, and keep going. */
3021
3022 if (debug_infrun)
3023 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3024
3025 if (!ptid_equal (ecs->ptid, inferior_ptid))
3026 context_switch (ecs->ptid);
3027
3028 current_inferior ()->waiting_for_vfork_done = 0;
3029 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3030 /* This also takes care of reinserting breakpoints in the
3031 previously locked inferior. */
3032 keep_going (ecs);
3033 return;
3034
3035 case TARGET_WAITKIND_EXECD:
3036 if (debug_infrun)
3037 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3038
3039 if (!ptid_equal (ecs->ptid, inferior_ptid))
3040 {
3041 context_switch (ecs->ptid);
3042 reinit_frame_cache ();
3043 }
3044
3045 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3046
3047 /* Do whatever is necessary to the parent branch of the vfork. */
3048 handle_vfork_child_exec_or_exit (1);
3049
3050 /* This causes the eventpoints and symbol table to be reset.
3051 Must do this now, before trying to determine whether to
3052 stop. */
3053 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3054
3055 ecs->event_thread->stop_bpstat
3056 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3057 stop_pc, ecs->ptid);
3058 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
3059
3060 /* Note that this may be referenced from inside
3061 bpstat_stop_status above, through inferior_has_execd. */
3062 xfree (ecs->ws.value.execd_pathname);
3063 ecs->ws.value.execd_pathname = NULL;
3064
3065 /* If no catchpoint triggered for this, then keep going. */
3066 if (ecs->random_signal)
3067 {
3068 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3069 keep_going (ecs);
3070 return;
3071 }
3072 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
3073 goto process_event_stop_test;
3074
3075 /* Be careful not to try to gather much state about a thread
3076 that's in a syscall. It's frequently a losing proposition. */
3077 case TARGET_WAITKIND_SYSCALL_ENTRY:
3078 if (debug_infrun)
3079 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3080 /* Getting the current syscall number */
3081 if (handle_syscall_event (ecs) != 0)
3082 return;
3083 goto process_event_stop_test;
3084
3085 /* Before examining the threads further, step this thread to
3086 get it entirely out of the syscall. (We get notice of the
3087 event when the thread is just on the verge of exiting a
3088 syscall. Stepping one instruction seems to get it back
3089 into user code.) */
3090 case TARGET_WAITKIND_SYSCALL_RETURN:
3091 if (debug_infrun)
3092 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3093 if (handle_syscall_event (ecs) != 0)
3094 return;
3095 goto process_event_stop_test;
3096
3097 case TARGET_WAITKIND_STOPPED:
3098 if (debug_infrun)
3099 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3100 ecs->event_thread->stop_signal = ecs->ws.value.sig;
3101 break;
3102
3103 case TARGET_WAITKIND_NO_HISTORY:
3104 /* Reverse execution: target ran out of history info. */
3105 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3106 print_stop_reason (NO_HISTORY, 0);
3107 stop_stepping (ecs);
3108 return;
3109 }
3110
3111 if (ecs->new_thread_event)
3112 {
3113 if (non_stop)
3114 /* Non-stop assumes that the target handles adding new threads
3115 to the thread list. */
3116 internal_error (__FILE__, __LINE__, "\
3117 targets should add new threads to the thread list themselves in non-stop mode.");
3118
3119 /* We may want to consider not doing a resume here in order to
3120 give the user a chance to play with the new thread. It might
3121 be good to make that a user-settable option. */
3122
3123 /* At this point, all threads are stopped (happens automatically
3124 in either the OS or the native code). Therefore we need to
3125 continue all threads in order to make progress. */
3126
3127 if (!ptid_equal (ecs->ptid, inferior_ptid))
3128 context_switch (ecs->ptid);
3129 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3130 prepare_to_wait (ecs);
3131 return;
3132 }
3133
3134 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3135 {
3136 /* Do we need to clean up the state of a thread that has
3137 completed a displaced single-step? (Doing so usually affects
3138 the PC, so do it here, before we set stop_pc.) */
3139 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
3140
3141 /* If we either finished a single-step or hit a breakpoint, but
3142 the user wanted this thread to be stopped, pretend we got a
3143 SIG0 (generic unsignaled stop). */
3144
3145 if (ecs->event_thread->stop_requested
3146 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3147 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3148 }
3149
3150 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3151
3152 if (debug_infrun)
3153 {
3154 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3155 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3156 struct cleanup *old_chain = save_inferior_ptid ();
3157
3158 inferior_ptid = ecs->ptid;
3159
3160 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3161 paddress (gdbarch, stop_pc));
3162 if (target_stopped_by_watchpoint ())
3163 {
3164 CORE_ADDR addr;
3165 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3166
3167 if (target_stopped_data_address (&current_target, &addr))
3168 fprintf_unfiltered (gdb_stdlog,
3169 "infrun: stopped data address = %s\n",
3170 paddress (gdbarch, addr));
3171 else
3172 fprintf_unfiltered (gdb_stdlog,
3173 "infrun: (no data address available)\n");
3174 }
3175
3176 do_cleanups (old_chain);
3177 }
3178
3179 if (stepping_past_singlestep_breakpoint)
3180 {
3181 gdb_assert (singlestep_breakpoints_inserted_p);
3182 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3183 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3184
3185 stepping_past_singlestep_breakpoint = 0;
3186
3187 /* We've either finished single-stepping past the single-step
3188 breakpoint, or stopped for some other reason. It would be nice if
3189 we could tell, but we can't reliably. */
3190 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3191 {
3192 if (debug_infrun)
3193 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
3194 /* Pull the single step breakpoints out of the target. */
3195 remove_single_step_breakpoints ();
3196 singlestep_breakpoints_inserted_p = 0;
3197
3198 ecs->random_signal = 0;
3199 ecs->event_thread->trap_expected = 0;
3200
3201 context_switch (saved_singlestep_ptid);
3202 if (deprecated_context_hook)
3203 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3204
3205 resume (1, TARGET_SIGNAL_0);
3206 prepare_to_wait (ecs);
3207 return;
3208 }
3209 }
3210
3211 if (!ptid_equal (deferred_step_ptid, null_ptid))
3212 {
3213 /* In non-stop mode, there's never a deferred_step_ptid set. */
3214 gdb_assert (!non_stop);
3215
3216 /* If we stopped for some other reason than single-stepping, ignore
3217 the fact that we were supposed to switch back. */
3218 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3219 {
3220 if (debug_infrun)
3221 fprintf_unfiltered (gdb_stdlog,
3222 "infrun: handling deferred step\n");
3223
3224 /* Pull the single step breakpoints out of the target. */
3225 if (singlestep_breakpoints_inserted_p)
3226 {
3227 remove_single_step_breakpoints ();
3228 singlestep_breakpoints_inserted_p = 0;
3229 }
3230
3231 /* Note: We do not call context_switch at this point, as the
3232 context is already set up for stepping the original thread. */
3233 switch_to_thread (deferred_step_ptid);
3234 deferred_step_ptid = null_ptid;
3235 /* Suppress spurious "Switching to ..." message. */
3236 previous_inferior_ptid = inferior_ptid;
3237
3238 resume (1, TARGET_SIGNAL_0);
3239 prepare_to_wait (ecs);
3240 return;
3241 }
3242
3243 deferred_step_ptid = null_ptid;
3244 }
3245
3246 /* See if a thread hit a thread-specific breakpoint that was meant for
3247 another thread. If so, then step that thread past the breakpoint,
3248 and continue it. */
3249
3250 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3251 {
3252 int thread_hop_needed = 0;
3253 struct address_space *aspace =
3254 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3255
3256 /* Check if a regular breakpoint has been hit before checking
3257 for a potential single step breakpoint. Otherwise, GDB will
3258 not see this breakpoint hit when stepping onto breakpoints. */
3259 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3260 {
3261 ecs->random_signal = 0;
3262 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3263 thread_hop_needed = 1;
3264 }
3265 else if (singlestep_breakpoints_inserted_p)
3266 {
3267 /* We have not context switched yet, so this should be true
3268 no matter which thread hit the singlestep breakpoint. */
3269 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3270 if (debug_infrun)
3271 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3272 "trap for %s\n",
3273 target_pid_to_str (ecs->ptid));
3274
3275 ecs->random_signal = 0;
3276 /* The call to in_thread_list is necessary because PTIDs sometimes
3277 change when we go from single-threaded to multi-threaded. If
3278 the singlestep_ptid is still in the list, assume that it is
3279 really different from ecs->ptid. */
3280 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3281 && in_thread_list (singlestep_ptid))
3282 {
3283 /* If the PC of the thread we were trying to single-step
3284 has changed, discard this event (which we were going
3285 to ignore anyway), and pretend we saw that thread
3286 trap. This prevents us continuously moving the
3287 single-step breakpoint forward, one instruction at a
3288 time. If the PC has changed, then the thread we were
3289 trying to single-step has trapped or been signalled,
3290 but the event has not been reported to GDB yet.
3291
3292 There might be some cases where this loses signal
3293 information, if a signal has arrived at exactly the
3294 same time that the PC changed, but this is the best
3295 we can do with the information available. Perhaps we
3296 should arrange to report all events for all threads
3297 when they stop, or to re-poll the remote looking for
3298 this particular thread (i.e. temporarily enable
3299 schedlock). */
3300
3301 CORE_ADDR new_singlestep_pc
3302 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3303
3304 if (new_singlestep_pc != singlestep_pc)
3305 {
3306 enum target_signal stop_signal;
3307
3308 if (debug_infrun)
3309 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3310 " but expected thread advanced also\n");
3311
3312 /* The current context still belongs to
3313 singlestep_ptid. Don't swap here, since that's
3314 the context we want to use. Just fudge our
3315 state and continue. */
3316 stop_signal = ecs->event_thread->stop_signal;
3317 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3318 ecs->ptid = singlestep_ptid;
3319 ecs->event_thread = find_thread_ptid (ecs->ptid);
3320 ecs->event_thread->stop_signal = stop_signal;
3321 stop_pc = new_singlestep_pc;
3322 }
3323 else
3324 {
3325 if (debug_infrun)
3326 fprintf_unfiltered (gdb_stdlog,
3327 "infrun: unexpected thread\n");
3328
3329 thread_hop_needed = 1;
3330 stepping_past_singlestep_breakpoint = 1;
3331 saved_singlestep_ptid = singlestep_ptid;
3332 }
3333 }
3334 }
3335
3336 if (thread_hop_needed)
3337 {
3338 struct regcache *thread_regcache;
3339 int remove_status = 0;
3340
3341 if (debug_infrun)
3342 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3343
3344 /* Switch context before touching inferior memory, the
3345 previous thread may have exited. */
3346 if (!ptid_equal (inferior_ptid, ecs->ptid))
3347 context_switch (ecs->ptid);
3348
3349 /* Saw a breakpoint, but it was hit by the wrong thread.
3350 Just continue. */
3351
3352 if (singlestep_breakpoints_inserted_p)
3353 {
3354 /* Pull the single step breakpoints out of the target. */
3355 remove_single_step_breakpoints ();
3356 singlestep_breakpoints_inserted_p = 0;
3357 }
3358
3359 /* If the arch can displace step, don't remove the
3360 breakpoints. */
3361 thread_regcache = get_thread_regcache (ecs->ptid);
3362 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3363 remove_status = remove_breakpoints ();
3364
3365 /* Did we fail to remove breakpoints? If so, try
3366 to set the PC past the bp. (There's at least
3367 one situation in which we can fail to remove
3368 the bp's: On HP-UX's that use ttrace, we can't
3369 change the address space of a vforking child
3370 process until the child exits (well, okay, not
3371 then either :-) or execs. */
3372 if (remove_status != 0)
3373 error (_("Cannot step over breakpoint hit in wrong thread"));
3374 else
3375 { /* Single step */
3376 if (!non_stop)
3377 {
3378 /* Only need to require the next event from this
3379 thread in all-stop mode. */
3380 waiton_ptid = ecs->ptid;
3381 infwait_state = infwait_thread_hop_state;
3382 }
3383
3384 ecs->event_thread->stepping_over_breakpoint = 1;
3385 keep_going (ecs);
3386 return;
3387 }
3388 }
3389 else if (singlestep_breakpoints_inserted_p)
3390 {
3391 sw_single_step_trap_p = 1;
3392 ecs->random_signal = 0;
3393 }
3394 }
3395 else
3396 ecs->random_signal = 1;
3397
3398 /* See if something interesting happened to the non-current thread. If
3399 so, then switch to that thread. */
3400 if (!ptid_equal (ecs->ptid, inferior_ptid))
3401 {
3402 if (debug_infrun)
3403 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3404
3405 context_switch (ecs->ptid);
3406
3407 if (deprecated_context_hook)
3408 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3409 }
3410
3411 /* At this point, get hold of the now-current thread's frame. */
3412 frame = get_current_frame ();
3413 gdbarch = get_frame_arch (frame);
3414
3415 if (singlestep_breakpoints_inserted_p)
3416 {
3417 /* Pull the single step breakpoints out of the target. */
3418 remove_single_step_breakpoints ();
3419 singlestep_breakpoints_inserted_p = 0;
3420 }
3421
3422 if (stepped_after_stopped_by_watchpoint)
3423 stopped_by_watchpoint = 0;
3424 else
3425 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3426
3427 /* If necessary, step over this watchpoint. We'll be back to display
3428 it in a moment. */
3429 if (stopped_by_watchpoint
3430 && (target_have_steppable_watchpoint
3431 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3432 {
3433 /* At this point, we are stopped at an instruction which has
3434 attempted to write to a piece of memory under control of
3435 a watchpoint. The instruction hasn't actually executed
3436 yet. If we were to evaluate the watchpoint expression
3437 now, we would get the old value, and therefore no change
3438 would seem to have occurred.
3439
3440 In order to make watchpoints work `right', we really need
3441 to complete the memory write, and then evaluate the
3442 watchpoint expression. We do this by single-stepping the
3443 target.
3444
3445 It may not be necessary to disable the watchpoint to stop over
3446 it. For example, the PA can (with some kernel cooperation)
3447 single step over a watchpoint without disabling the watchpoint.
3448
3449 It is far more common to need to disable a watchpoint to step
3450 the inferior over it. If we have non-steppable watchpoints,
3451 we must disable the current watchpoint; it's simplest to
3452 disable all watchpoints and breakpoints. */
3453 int hw_step = 1;
3454
3455 if (!target_have_steppable_watchpoint)
3456 remove_breakpoints ();
3457 /* Single step */
3458 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
3459 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
3460 waiton_ptid = ecs->ptid;
3461 if (target_have_steppable_watchpoint)
3462 infwait_state = infwait_step_watch_state;
3463 else
3464 infwait_state = infwait_nonstep_watch_state;
3465 prepare_to_wait (ecs);
3466 return;
3467 }
3468
3469 ecs->stop_func_start = 0;
3470 ecs->stop_func_end = 0;
3471 ecs->stop_func_name = 0;
3472 /* Don't care about return value; stop_func_start and stop_func_name
3473 will both be 0 if it doesn't work. */
3474 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3475 &ecs->stop_func_start, &ecs->stop_func_end);
3476 ecs->stop_func_start
3477 += gdbarch_deprecated_function_start_offset (gdbarch);
3478 ecs->event_thread->stepping_over_breakpoint = 0;
3479 bpstat_clear (&ecs->event_thread->stop_bpstat);
3480 ecs->event_thread->stop_step = 0;
3481 stop_print_frame = 1;
3482 ecs->random_signal = 0;
3483 stopped_by_random_signal = 0;
3484
3485 /* Hide inlined functions starting here, unless we just performed stepi or
3486 nexti. After stepi and nexti, always show the innermost frame (not any
3487 inline function call sites). */
3488 if (ecs->event_thread->step_range_end != 1)
3489 skip_inline_frames (ecs->ptid);
3490
3491 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3492 && ecs->event_thread->trap_expected
3493 && gdbarch_single_step_through_delay_p (gdbarch)
3494 && currently_stepping (ecs->event_thread))
3495 {
3496 /* We're trying to step off a breakpoint. Turns out that we're
3497 also on an instruction that needs to be stepped multiple
3498 times before it's been fully executing. E.g., architectures
3499 with a delay slot. It needs to be stepped twice, once for
3500 the instruction and once for the delay slot. */
3501 int step_through_delay
3502 = gdbarch_single_step_through_delay (gdbarch, frame);
3503 if (debug_infrun && step_through_delay)
3504 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3505 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3506 {
3507 /* The user issued a continue when stopped at a breakpoint.
3508 Set up for another trap and get out of here. */
3509 ecs->event_thread->stepping_over_breakpoint = 1;
3510 keep_going (ecs);
3511 return;
3512 }
3513 else if (step_through_delay)
3514 {
3515 /* The user issued a step when stopped at a breakpoint.
3516 Maybe we should stop, maybe we should not - the delay
3517 slot *might* correspond to a line of source. In any
3518 case, don't decide that here, just set
3519 ecs->stepping_over_breakpoint, making sure we
3520 single-step again before breakpoints are re-inserted. */
3521 ecs->event_thread->stepping_over_breakpoint = 1;
3522 }
3523 }
3524
3525 /* Look at the cause of the stop, and decide what to do.
3526 The alternatives are:
3527 1) stop_stepping and return; to really stop and return to the debugger,
3528 2) keep_going and return to start up again
3529 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
3530 3) set ecs->random_signal to 1, and the decision between 1 and 2
3531 will be made according to the signal handling tables. */
3532
3533 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3534 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3535 || stop_soon == STOP_QUIETLY_REMOTE)
3536 {
3537 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
3538 {
3539 if (debug_infrun)
3540 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3541 stop_print_frame = 0;
3542 stop_stepping (ecs);
3543 return;
3544 }
3545
3546 /* This is originated from start_remote(), start_inferior() and
3547 shared libraries hook functions. */
3548 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
3549 {
3550 if (debug_infrun)
3551 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3552 stop_stepping (ecs);
3553 return;
3554 }
3555
3556 /* This originates from attach_command(). We need to overwrite
3557 the stop_signal here, because some kernels don't ignore a
3558 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3559 See more comments in inferior.h. On the other hand, if we
3560 get a non-SIGSTOP, report it to the user - assume the backend
3561 will handle the SIGSTOP if it should show up later.
3562
3563 Also consider that the attach is complete when we see a
3564 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3565 target extended-remote report it instead of a SIGSTOP
3566 (e.g. gdbserver). We already rely on SIGTRAP being our
3567 signal, so this is no exception.
3568
3569 Also consider that the attach is complete when we see a
3570 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3571 the target to stop all threads of the inferior, in case the
3572 low level attach operation doesn't stop them implicitly. If
3573 they weren't stopped implicitly, then the stub will report a
3574 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3575 other than GDB's request. */
3576 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3577 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
3578 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3579 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
3580 {
3581 stop_stepping (ecs);
3582 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3583 return;
3584 }
3585
3586 /* See if there is a breakpoint at the current PC. */
3587 ecs->event_thread->stop_bpstat
3588 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3589 stop_pc, ecs->ptid);
3590
3591 /* Following in case break condition called a
3592 function. */
3593 stop_print_frame = 1;
3594
3595 /* This is where we handle "moribund" watchpoints. Unlike
3596 software breakpoints traps, hardware watchpoint traps are
3597 always distinguishable from random traps. If no high-level
3598 watchpoint is associated with the reported stop data address
3599 anymore, then the bpstat does not explain the signal ---
3600 simply make sure to ignore it if `stopped_by_watchpoint' is
3601 set. */
3602
3603 if (debug_infrun
3604 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3605 && !bpstat_explains_signal (ecs->event_thread->stop_bpstat)
3606 && stopped_by_watchpoint)
3607 fprintf_unfiltered (gdb_stdlog, "\
3608 infrun: no user watchpoint explains watchpoint SIGTRAP, ignoring\n");
3609
3610 /* NOTE: cagney/2003-03-29: These two checks for a random signal
3611 at one stage in the past included checks for an inferior
3612 function call's call dummy's return breakpoint. The original
3613 comment, that went with the test, read:
3614
3615 ``End of a stack dummy. Some systems (e.g. Sony news) give
3616 another signal besides SIGTRAP, so check here as well as
3617 above.''
3618
3619 If someone ever tries to get call dummys on a
3620 non-executable stack to work (where the target would stop
3621 with something like a SIGSEGV), then those tests might need
3622 to be re-instated. Given, however, that the tests were only
3623 enabled when momentary breakpoints were not being used, I
3624 suspect that it won't be the case.
3625
3626 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3627 be necessary for call dummies on a non-executable stack on
3628 SPARC. */
3629
3630 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3631 ecs->random_signal
3632 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
3633 || stopped_by_watchpoint
3634 || ecs->event_thread->trap_expected
3635 || (ecs->event_thread->step_range_end
3636 && ecs->event_thread->step_resume_breakpoint == NULL));
3637 else
3638 {
3639 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
3640 if (!ecs->random_signal)
3641 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
3642 }
3643 }
3644
3645 /* When we reach this point, we've pretty much decided
3646 that the reason for stopping must've been a random
3647 (unexpected) signal. */
3648
3649 else
3650 ecs->random_signal = 1;
3651
3652 process_event_stop_test:
3653
3654 /* Re-fetch current thread's frame in case we did a
3655 "goto process_event_stop_test" above. */
3656 frame = get_current_frame ();
3657 gdbarch = get_frame_arch (frame);
3658
3659 /* For the program's own signals, act according to
3660 the signal handling tables. */
3661
3662 if (ecs->random_signal)
3663 {
3664 /* Signal not for debugging purposes. */
3665 int printed = 0;
3666
3667 if (debug_infrun)
3668 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3669 ecs->event_thread->stop_signal);
3670
3671 stopped_by_random_signal = 1;
3672
3673 if (signal_print[ecs->event_thread->stop_signal])
3674 {
3675 printed = 1;
3676 target_terminal_ours_for_output ();
3677 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
3678 }
3679 /* Always stop on signals if we're either just gaining control
3680 of the program, or the user explicitly requested this thread
3681 to remain stopped. */
3682 if (stop_soon != NO_STOP_QUIETLY
3683 || ecs->event_thread->stop_requested
3684 || signal_stop_state (ecs->event_thread->stop_signal))
3685 {
3686 stop_stepping (ecs);
3687 return;
3688 }
3689 /* If not going to stop, give terminal back
3690 if we took it away. */
3691 else if (printed)
3692 target_terminal_inferior ();
3693
3694 /* Clear the signal if it should not be passed. */
3695 if (signal_program[ecs->event_thread->stop_signal] == 0)
3696 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3697
3698 if (ecs->event_thread->prev_pc == stop_pc
3699 && ecs->event_thread->trap_expected
3700 && ecs->event_thread->step_resume_breakpoint == NULL)
3701 {
3702 /* We were just starting a new sequence, attempting to
3703 single-step off of a breakpoint and expecting a SIGTRAP.
3704 Instead this signal arrives. This signal will take us out
3705 of the stepping range so GDB needs to remember to, when
3706 the signal handler returns, resume stepping off that
3707 breakpoint. */
3708 /* To simplify things, "continue" is forced to use the same
3709 code paths as single-step - set a breakpoint at the
3710 signal return address and then, once hit, step off that
3711 breakpoint. */
3712 if (debug_infrun)
3713 fprintf_unfiltered (gdb_stdlog,
3714 "infrun: signal arrived while stepping over "
3715 "breakpoint\n");
3716
3717 insert_step_resume_breakpoint_at_frame (frame);
3718 ecs->event_thread->step_after_step_resume_breakpoint = 1;
3719 keep_going (ecs);
3720 return;
3721 }
3722
3723 if (ecs->event_thread->step_range_end != 0
3724 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
3725 && (ecs->event_thread->step_range_start <= stop_pc
3726 && stop_pc < ecs->event_thread->step_range_end)
3727 && frame_id_eq (get_stack_frame_id (frame),
3728 ecs->event_thread->step_stack_frame_id)
3729 && ecs->event_thread->step_resume_breakpoint == NULL)
3730 {
3731 /* The inferior is about to take a signal that will take it
3732 out of the single step range. Set a breakpoint at the
3733 current PC (which is presumably where the signal handler
3734 will eventually return) and then allow the inferior to
3735 run free.
3736
3737 Note that this is only needed for a signal delivered
3738 while in the single-step range. Nested signals aren't a
3739 problem as they eventually all return. */
3740 if (debug_infrun)
3741 fprintf_unfiltered (gdb_stdlog,
3742 "infrun: signal may take us out of "
3743 "single-step range\n");
3744
3745 insert_step_resume_breakpoint_at_frame (frame);
3746 keep_going (ecs);
3747 return;
3748 }
3749
3750 /* Note: step_resume_breakpoint may be non-NULL. This occures
3751 when either there's a nested signal, or when there's a
3752 pending signal enabled just as the signal handler returns
3753 (leaving the inferior at the step-resume-breakpoint without
3754 actually executing it). Either way continue until the
3755 breakpoint is really hit. */
3756 keep_going (ecs);
3757 return;
3758 }
3759
3760 /* Handle cases caused by hitting a breakpoint. */
3761 {
3762 CORE_ADDR jmp_buf_pc;
3763 struct bpstat_what what;
3764
3765 what = bpstat_what (ecs->event_thread->stop_bpstat);
3766
3767 if (what.call_dummy)
3768 {
3769 stop_stack_dummy = 1;
3770 }
3771
3772 switch (what.main_action)
3773 {
3774 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
3775 /* If we hit the breakpoint at longjmp while stepping, we
3776 install a momentary breakpoint at the target of the
3777 jmp_buf. */
3778
3779 if (debug_infrun)
3780 fprintf_unfiltered (gdb_stdlog,
3781 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3782
3783 ecs->event_thread->stepping_over_breakpoint = 1;
3784
3785 if (!gdbarch_get_longjmp_target_p (gdbarch)
3786 || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc))
3787 {
3788 if (debug_infrun)
3789 fprintf_unfiltered (gdb_stdlog, "\
3790 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
3791 keep_going (ecs);
3792 return;
3793 }
3794
3795 /* We're going to replace the current step-resume breakpoint
3796 with a longjmp-resume breakpoint. */
3797 delete_step_resume_breakpoint (ecs->event_thread);
3798
3799 /* Insert a breakpoint at resume address. */
3800 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
3801
3802 keep_going (ecs);
3803 return;
3804
3805 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
3806 if (debug_infrun)
3807 fprintf_unfiltered (gdb_stdlog,
3808 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3809
3810 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3811 delete_step_resume_breakpoint (ecs->event_thread);
3812
3813 ecs->event_thread->stop_step = 1;
3814 print_stop_reason (END_STEPPING_RANGE, 0);
3815 stop_stepping (ecs);
3816 return;
3817
3818 case BPSTAT_WHAT_SINGLE:
3819 if (debug_infrun)
3820 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
3821 ecs->event_thread->stepping_over_breakpoint = 1;
3822 /* Still need to check other stuff, at least the case
3823 where we are stepping and step out of the right range. */
3824 break;
3825
3826 case BPSTAT_WHAT_STOP_NOISY:
3827 if (debug_infrun)
3828 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
3829 stop_print_frame = 1;
3830
3831 /* We are about to nuke the step_resume_breakpointt via the
3832 cleanup chain, so no need to worry about it here. */
3833
3834 stop_stepping (ecs);
3835 return;
3836
3837 case BPSTAT_WHAT_STOP_SILENT:
3838 if (debug_infrun)
3839 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
3840 stop_print_frame = 0;
3841
3842 /* We are about to nuke the step_resume_breakpoin via the
3843 cleanup chain, so no need to worry about it here. */
3844
3845 stop_stepping (ecs);
3846 return;
3847
3848 case BPSTAT_WHAT_STEP_RESUME:
3849 if (debug_infrun)
3850 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
3851
3852 delete_step_resume_breakpoint (ecs->event_thread);
3853 if (ecs->event_thread->step_after_step_resume_breakpoint)
3854 {
3855 /* Back when the step-resume breakpoint was inserted, we
3856 were trying to single-step off a breakpoint. Go back
3857 to doing that. */
3858 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3859 ecs->event_thread->stepping_over_breakpoint = 1;
3860 keep_going (ecs);
3861 return;
3862 }
3863 if (stop_pc == ecs->stop_func_start
3864 && execution_direction == EXEC_REVERSE)
3865 {
3866 /* We are stepping over a function call in reverse, and
3867 just hit the step-resume breakpoint at the start
3868 address of the function. Go back to single-stepping,
3869 which should take us back to the function call. */
3870 ecs->event_thread->stepping_over_breakpoint = 1;
3871 keep_going (ecs);
3872 return;
3873 }
3874 break;
3875
3876 case BPSTAT_WHAT_CHECK_SHLIBS:
3877 {
3878 if (debug_infrun)
3879 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
3880
3881 /* Check for any newly added shared libraries if we're
3882 supposed to be adding them automatically. Switch
3883 terminal for any messages produced by
3884 breakpoint_re_set. */
3885 target_terminal_ours_for_output ();
3886 /* NOTE: cagney/2003-11-25: Make certain that the target
3887 stack's section table is kept up-to-date. Architectures,
3888 (e.g., PPC64), use the section table to perform
3889 operations such as address => section name and hence
3890 require the table to contain all sections (including
3891 those found in shared libraries). */
3892 #ifdef SOLIB_ADD
3893 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3894 #else
3895 solib_add (NULL, 0, &current_target, auto_solib_add);
3896 #endif
3897 target_terminal_inferior ();
3898
3899 /* If requested, stop when the dynamic linker notifies
3900 gdb of events. This allows the user to get control
3901 and place breakpoints in initializer routines for
3902 dynamically loaded objects (among other things). */
3903 if (stop_on_solib_events || stop_stack_dummy)
3904 {
3905 stop_stepping (ecs);
3906 return;
3907 }
3908 else
3909 {
3910 /* We want to step over this breakpoint, then keep going. */
3911 ecs->event_thread->stepping_over_breakpoint = 1;
3912 break;
3913 }
3914 }
3915 break;
3916
3917 case BPSTAT_WHAT_CHECK_JIT:
3918 if (debug_infrun)
3919 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_JIT\n");
3920
3921 /* Switch terminal for any messages produced by breakpoint_re_set. */
3922 target_terminal_ours_for_output ();
3923
3924 jit_event_handler (gdbarch);
3925
3926 target_terminal_inferior ();
3927
3928 /* We want to step over this breakpoint, then keep going. */
3929 ecs->event_thread->stepping_over_breakpoint = 1;
3930
3931 break;
3932
3933 case BPSTAT_WHAT_LAST:
3934 /* Not a real code, but listed here to shut up gcc -Wall. */
3935
3936 case BPSTAT_WHAT_KEEP_CHECKING:
3937 break;
3938 }
3939 }
3940
3941 /* We come here if we hit a breakpoint but should not
3942 stop for it. Possibly we also were stepping
3943 and should stop for that. So fall through and
3944 test for stepping. But, if not stepping,
3945 do not stop. */
3946
3947 /* In all-stop mode, if we're currently stepping but have stopped in
3948 some other thread, we need to switch back to the stepped thread. */
3949 if (!non_stop)
3950 {
3951 struct thread_info *tp;
3952 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
3953 ecs->event_thread);
3954 if (tp)
3955 {
3956 /* However, if the current thread is blocked on some internal
3957 breakpoint, and we simply need to step over that breakpoint
3958 to get it going again, do that first. */
3959 if ((ecs->event_thread->trap_expected
3960 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3961 || ecs->event_thread->stepping_over_breakpoint)
3962 {
3963 keep_going (ecs);
3964 return;
3965 }
3966
3967 /* If the stepping thread exited, then don't try to switch
3968 back and resume it, which could fail in several different
3969 ways depending on the target. Instead, just keep going.
3970
3971 We can find a stepping dead thread in the thread list in
3972 two cases:
3973
3974 - The target supports thread exit events, and when the
3975 target tries to delete the thread from the thread list,
3976 inferior_ptid pointed at the exiting thread. In such
3977 case, calling delete_thread does not really remove the
3978 thread from the list; instead, the thread is left listed,
3979 with 'exited' state.
3980
3981 - The target's debug interface does not support thread
3982 exit events, and so we have no idea whatsoever if the
3983 previously stepping thread is still alive. For that
3984 reason, we need to synchronously query the target
3985 now. */
3986 if (is_exited (tp->ptid)
3987 || !target_thread_alive (tp->ptid))
3988 {
3989 if (debug_infrun)
3990 fprintf_unfiltered (gdb_stdlog, "\
3991 infrun: not switching back to stepped thread, it has vanished\n");
3992
3993 delete_thread (tp->ptid);
3994 keep_going (ecs);
3995 return;
3996 }
3997
3998 /* Otherwise, we no longer expect a trap in the current thread.
3999 Clear the trap_expected flag before switching back -- this is
4000 what keep_going would do as well, if we called it. */
4001 ecs->event_thread->trap_expected = 0;
4002
4003 if (debug_infrun)
4004 fprintf_unfiltered (gdb_stdlog,
4005 "infrun: switching back to stepped thread\n");
4006
4007 ecs->event_thread = tp;
4008 ecs->ptid = tp->ptid;
4009 context_switch (ecs->ptid);
4010 keep_going (ecs);
4011 return;
4012 }
4013 }
4014
4015 /* Are we stepping to get the inferior out of the dynamic linker's
4016 hook (and possibly the dld itself) after catching a shlib
4017 event? */
4018 if (ecs->event_thread->stepping_through_solib_after_catch)
4019 {
4020 #if defined(SOLIB_ADD)
4021 /* Have we reached our destination? If not, keep going. */
4022 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
4023 {
4024 if (debug_infrun)
4025 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4026 ecs->event_thread->stepping_over_breakpoint = 1;
4027 keep_going (ecs);
4028 return;
4029 }
4030 #endif
4031 if (debug_infrun)
4032 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
4033 /* Else, stop and report the catchpoint(s) whose triggering
4034 caused us to begin stepping. */
4035 ecs->event_thread->stepping_through_solib_after_catch = 0;
4036 bpstat_clear (&ecs->event_thread->stop_bpstat);
4037 ecs->event_thread->stop_bpstat
4038 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4039 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
4040 stop_print_frame = 1;
4041 stop_stepping (ecs);
4042 return;
4043 }
4044
4045 if (ecs->event_thread->step_resume_breakpoint)
4046 {
4047 if (debug_infrun)
4048 fprintf_unfiltered (gdb_stdlog,
4049 "infrun: step-resume breakpoint is inserted\n");
4050
4051 /* Having a step-resume breakpoint overrides anything
4052 else having to do with stepping commands until
4053 that breakpoint is reached. */
4054 keep_going (ecs);
4055 return;
4056 }
4057
4058 if (ecs->event_thread->step_range_end == 0)
4059 {
4060 if (debug_infrun)
4061 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4062 /* Likewise if we aren't even stepping. */
4063 keep_going (ecs);
4064 return;
4065 }
4066
4067 /* Re-fetch current thread's frame in case the code above caused
4068 the frame cache to be re-initialized, making our FRAME variable
4069 a dangling pointer. */
4070 frame = get_current_frame ();
4071
4072 /* If stepping through a line, keep going if still within it.
4073
4074 Note that step_range_end is the address of the first instruction
4075 beyond the step range, and NOT the address of the last instruction
4076 within it!
4077
4078 Note also that during reverse execution, we may be stepping
4079 through a function epilogue and therefore must detect when
4080 the current-frame changes in the middle of a line. */
4081
4082 if (stop_pc >= ecs->event_thread->step_range_start
4083 && stop_pc < ecs->event_thread->step_range_end
4084 && (execution_direction != EXEC_REVERSE
4085 || frame_id_eq (get_frame_id (frame),
4086 ecs->event_thread->step_frame_id)))
4087 {
4088 if (debug_infrun)
4089 fprintf_unfiltered
4090 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4091 paddress (gdbarch, ecs->event_thread->step_range_start),
4092 paddress (gdbarch, ecs->event_thread->step_range_end));
4093
4094 /* When stepping backward, stop at beginning of line range
4095 (unless it's the function entry point, in which case
4096 keep going back to the call point). */
4097 if (stop_pc == ecs->event_thread->step_range_start
4098 && stop_pc != ecs->stop_func_start
4099 && execution_direction == EXEC_REVERSE)
4100 {
4101 ecs->event_thread->stop_step = 1;
4102 print_stop_reason (END_STEPPING_RANGE, 0);
4103 stop_stepping (ecs);
4104 }
4105 else
4106 keep_going (ecs);
4107
4108 return;
4109 }
4110
4111 /* We stepped out of the stepping range. */
4112
4113 /* If we are stepping at the source level and entered the runtime
4114 loader dynamic symbol resolution code...
4115
4116 EXEC_FORWARD: we keep on single stepping until we exit the run
4117 time loader code and reach the callee's address.
4118
4119 EXEC_REVERSE: we've already executed the callee (backward), and
4120 the runtime loader code is handled just like any other
4121 undebuggable function call. Now we need only keep stepping
4122 backward through the trampoline code, and that's handled further
4123 down, so there is nothing for us to do here. */
4124
4125 if (execution_direction != EXEC_REVERSE
4126 && ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4127 && in_solib_dynsym_resolve_code (stop_pc))
4128 {
4129 CORE_ADDR pc_after_resolver =
4130 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4131
4132 if (debug_infrun)
4133 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
4134
4135 if (pc_after_resolver)
4136 {
4137 /* Set up a step-resume breakpoint at the address
4138 indicated by SKIP_SOLIB_RESOLVER. */
4139 struct symtab_and_line sr_sal;
4140 init_sal (&sr_sal);
4141 sr_sal.pc = pc_after_resolver;
4142 sr_sal.pspace = get_frame_program_space (frame);
4143
4144 insert_step_resume_breakpoint_at_sal (gdbarch,
4145 sr_sal, null_frame_id);
4146 }
4147
4148 keep_going (ecs);
4149 return;
4150 }
4151
4152 if (ecs->event_thread->step_range_end != 1
4153 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4154 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4155 && get_frame_type (frame) == SIGTRAMP_FRAME)
4156 {
4157 if (debug_infrun)
4158 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
4159 /* The inferior, while doing a "step" or "next", has ended up in
4160 a signal trampoline (either by a signal being delivered or by
4161 the signal handler returning). Just single-step until the
4162 inferior leaves the trampoline (either by calling the handler
4163 or returning). */
4164 keep_going (ecs);
4165 return;
4166 }
4167
4168 /* Check for subroutine calls. The check for the current frame
4169 equalling the step ID is not necessary - the check of the
4170 previous frame's ID is sufficient - but it is a common case and
4171 cheaper than checking the previous frame's ID.
4172
4173 NOTE: frame_id_eq will never report two invalid frame IDs as
4174 being equal, so to get into this block, both the current and
4175 previous frame must have valid frame IDs. */
4176 /* The outer_frame_id check is a heuristic to detect stepping
4177 through startup code. If we step over an instruction which
4178 sets the stack pointer from an invalid value to a valid value,
4179 we may detect that as a subroutine call from the mythical
4180 "outermost" function. This could be fixed by marking
4181 outermost frames as !stack_p,code_p,special_p. Then the
4182 initial outermost frame, before sp was valid, would
4183 have code_addr == &_start. See the comment in frame_id_eq
4184 for more. */
4185 if (!frame_id_eq (get_stack_frame_id (frame),
4186 ecs->event_thread->step_stack_frame_id)
4187 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4188 ecs->event_thread->step_stack_frame_id)
4189 && (!frame_id_eq (ecs->event_thread->step_stack_frame_id,
4190 outer_frame_id)
4191 || step_start_function != find_pc_function (stop_pc))))
4192 {
4193 CORE_ADDR real_stop_pc;
4194
4195 if (debug_infrun)
4196 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4197
4198 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4199 || ((ecs->event_thread->step_range_end == 1)
4200 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4201 ecs->stop_func_start)))
4202 {
4203 /* I presume that step_over_calls is only 0 when we're
4204 supposed to be stepping at the assembly language level
4205 ("stepi"). Just stop. */
4206 /* Also, maybe we just did a "nexti" inside a prolog, so we
4207 thought it was a subroutine call but it was not. Stop as
4208 well. FENN */
4209 /* And this works the same backward as frontward. MVS */
4210 ecs->event_thread->stop_step = 1;
4211 print_stop_reason (END_STEPPING_RANGE, 0);
4212 stop_stepping (ecs);
4213 return;
4214 }
4215
4216 /* Reverse stepping through solib trampolines. */
4217
4218 if (execution_direction == EXEC_REVERSE
4219 && ecs->event_thread->step_over_calls != STEP_OVER_NONE
4220 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4221 || (ecs->stop_func_start == 0
4222 && in_solib_dynsym_resolve_code (stop_pc))))
4223 {
4224 /* Any solib trampoline code can be handled in reverse
4225 by simply continuing to single-step. We have already
4226 executed the solib function (backwards), and a few
4227 steps will take us back through the trampoline to the
4228 caller. */
4229 keep_going (ecs);
4230 return;
4231 }
4232
4233 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4234 {
4235 /* We're doing a "next".
4236
4237 Normal (forward) execution: set a breakpoint at the
4238 callee's return address (the address at which the caller
4239 will resume).
4240
4241 Reverse (backward) execution. set the step-resume
4242 breakpoint at the start of the function that we just
4243 stepped into (backwards), and continue to there. When we
4244 get there, we'll need to single-step back to the caller. */
4245
4246 if (execution_direction == EXEC_REVERSE)
4247 {
4248 struct symtab_and_line sr_sal;
4249
4250 /* Normal function call return (static or dynamic). */
4251 init_sal (&sr_sal);
4252 sr_sal.pc = ecs->stop_func_start;
4253 sr_sal.pspace = get_frame_program_space (frame);
4254 insert_step_resume_breakpoint_at_sal (gdbarch,
4255 sr_sal, null_frame_id);
4256 }
4257 else
4258 insert_step_resume_breakpoint_at_caller (frame);
4259
4260 keep_going (ecs);
4261 return;
4262 }
4263
4264 /* If we are in a function call trampoline (a stub between the
4265 calling routine and the real function), locate the real
4266 function. That's what tells us (a) whether we want to step
4267 into it at all, and (b) what prologue we want to run to the
4268 end of, if we do step into it. */
4269 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4270 if (real_stop_pc == 0)
4271 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4272 if (real_stop_pc != 0)
4273 ecs->stop_func_start = real_stop_pc;
4274
4275 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4276 {
4277 struct symtab_and_line sr_sal;
4278 init_sal (&sr_sal);
4279 sr_sal.pc = ecs->stop_func_start;
4280 sr_sal.pspace = get_frame_program_space (frame);
4281
4282 insert_step_resume_breakpoint_at_sal (gdbarch,
4283 sr_sal, null_frame_id);
4284 keep_going (ecs);
4285 return;
4286 }
4287
4288 /* If we have line number information for the function we are
4289 thinking of stepping into, step into it.
4290
4291 If there are several symtabs at that PC (e.g. with include
4292 files), just want to know whether *any* of them have line
4293 numbers. find_pc_line handles this. */
4294 {
4295 struct symtab_and_line tmp_sal;
4296
4297 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4298 tmp_sal.pspace = get_frame_program_space (frame);
4299 if (tmp_sal.line != 0)
4300 {
4301 if (execution_direction == EXEC_REVERSE)
4302 handle_step_into_function_backward (gdbarch, ecs);
4303 else
4304 handle_step_into_function (gdbarch, ecs);
4305 return;
4306 }
4307 }
4308
4309 /* If we have no line number and the step-stop-if-no-debug is
4310 set, we stop the step so that the user has a chance to switch
4311 in assembly mode. */
4312 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4313 && step_stop_if_no_debug)
4314 {
4315 ecs->event_thread->stop_step = 1;
4316 print_stop_reason (END_STEPPING_RANGE, 0);
4317 stop_stepping (ecs);
4318 return;
4319 }
4320
4321 if (execution_direction == EXEC_REVERSE)
4322 {
4323 /* Set a breakpoint at callee's start address.
4324 From there we can step once and be back in the caller. */
4325 struct symtab_and_line sr_sal;
4326 init_sal (&sr_sal);
4327 sr_sal.pc = ecs->stop_func_start;
4328 sr_sal.pspace = get_frame_program_space (frame);
4329 insert_step_resume_breakpoint_at_sal (gdbarch,
4330 sr_sal, null_frame_id);
4331 }
4332 else
4333 /* Set a breakpoint at callee's return address (the address
4334 at which the caller will resume). */
4335 insert_step_resume_breakpoint_at_caller (frame);
4336
4337 keep_going (ecs);
4338 return;
4339 }
4340
4341 /* Reverse stepping through solib trampolines. */
4342
4343 if (execution_direction == EXEC_REVERSE
4344 && ecs->event_thread->step_over_calls != STEP_OVER_NONE)
4345 {
4346 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4347 || (ecs->stop_func_start == 0
4348 && in_solib_dynsym_resolve_code (stop_pc)))
4349 {
4350 /* Any solib trampoline code can be handled in reverse
4351 by simply continuing to single-step. We have already
4352 executed the solib function (backwards), and a few
4353 steps will take us back through the trampoline to the
4354 caller. */
4355 keep_going (ecs);
4356 return;
4357 }
4358 else if (in_solib_dynsym_resolve_code (stop_pc))
4359 {
4360 /* Stepped backward into the solib dynsym resolver.
4361 Set a breakpoint at its start and continue, then
4362 one more step will take us out. */
4363 struct symtab_and_line sr_sal;
4364 init_sal (&sr_sal);
4365 sr_sal.pc = ecs->stop_func_start;
4366 sr_sal.pspace = get_frame_program_space (frame);
4367 insert_step_resume_breakpoint_at_sal (gdbarch,
4368 sr_sal, null_frame_id);
4369 keep_going (ecs);
4370 return;
4371 }
4372 }
4373
4374 /* If we're in the return path from a shared library trampoline,
4375 we want to proceed through the trampoline when stepping. */
4376 if (gdbarch_in_solib_return_trampoline (gdbarch,
4377 stop_pc, ecs->stop_func_name))
4378 {
4379 /* Determine where this trampoline returns. */
4380 CORE_ADDR real_stop_pc;
4381 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4382
4383 if (debug_infrun)
4384 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
4385
4386 /* Only proceed through if we know where it's going. */
4387 if (real_stop_pc)
4388 {
4389 /* And put the step-breakpoint there and go until there. */
4390 struct symtab_and_line sr_sal;
4391
4392 init_sal (&sr_sal); /* initialize to zeroes */
4393 sr_sal.pc = real_stop_pc;
4394 sr_sal.section = find_pc_overlay (sr_sal.pc);
4395 sr_sal.pspace = get_frame_program_space (frame);
4396
4397 /* Do not specify what the fp should be when we stop since
4398 on some machines the prologue is where the new fp value
4399 is established. */
4400 insert_step_resume_breakpoint_at_sal (gdbarch,
4401 sr_sal, null_frame_id);
4402
4403 /* Restart without fiddling with the step ranges or
4404 other state. */
4405 keep_going (ecs);
4406 return;
4407 }
4408 }
4409
4410 stop_pc_sal = find_pc_line (stop_pc, 0);
4411
4412 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4413 the trampoline processing logic, however, there are some trampolines
4414 that have no names, so we should do trampoline handling first. */
4415 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4416 && ecs->stop_func_name == NULL
4417 && stop_pc_sal.line == 0)
4418 {
4419 if (debug_infrun)
4420 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
4421
4422 /* The inferior just stepped into, or returned to, an
4423 undebuggable function (where there is no debugging information
4424 and no line number corresponding to the address where the
4425 inferior stopped). Since we want to skip this kind of code,
4426 we keep going until the inferior returns from this
4427 function - unless the user has asked us not to (via
4428 set step-mode) or we no longer know how to get back
4429 to the call site. */
4430 if (step_stop_if_no_debug
4431 || !frame_id_p (frame_unwind_caller_id (frame)))
4432 {
4433 /* If we have no line number and the step-stop-if-no-debug
4434 is set, we stop the step so that the user has a chance to
4435 switch in assembly mode. */
4436 ecs->event_thread->stop_step = 1;
4437 print_stop_reason (END_STEPPING_RANGE, 0);
4438 stop_stepping (ecs);
4439 return;
4440 }
4441 else
4442 {
4443 /* Set a breakpoint at callee's return address (the address
4444 at which the caller will resume). */
4445 insert_step_resume_breakpoint_at_caller (frame);
4446 keep_going (ecs);
4447 return;
4448 }
4449 }
4450
4451 if (ecs->event_thread->step_range_end == 1)
4452 {
4453 /* It is stepi or nexti. We always want to stop stepping after
4454 one instruction. */
4455 if (debug_infrun)
4456 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
4457 ecs->event_thread->stop_step = 1;
4458 print_stop_reason (END_STEPPING_RANGE, 0);
4459 stop_stepping (ecs);
4460 return;
4461 }
4462
4463 if (stop_pc_sal.line == 0)
4464 {
4465 /* We have no line number information. That means to stop
4466 stepping (does this always happen right after one instruction,
4467 when we do "s" in a function with no line numbers,
4468 or can this happen as a result of a return or longjmp?). */
4469 if (debug_infrun)
4470 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
4471 ecs->event_thread->stop_step = 1;
4472 print_stop_reason (END_STEPPING_RANGE, 0);
4473 stop_stepping (ecs);
4474 return;
4475 }
4476
4477 /* Look for "calls" to inlined functions, part one. If the inline
4478 frame machinery detected some skipped call sites, we have entered
4479 a new inline function. */
4480
4481 if (frame_id_eq (get_frame_id (get_current_frame ()),
4482 ecs->event_thread->step_frame_id)
4483 && inline_skipped_frames (ecs->ptid))
4484 {
4485 struct symtab_and_line call_sal;
4486
4487 if (debug_infrun)
4488 fprintf_unfiltered (gdb_stdlog,
4489 "infrun: stepped into inlined function\n");
4490
4491 find_frame_sal (get_current_frame (), &call_sal);
4492
4493 if (ecs->event_thread->step_over_calls != STEP_OVER_ALL)
4494 {
4495 /* For "step", we're going to stop. But if the call site
4496 for this inlined function is on the same source line as
4497 we were previously stepping, go down into the function
4498 first. Otherwise stop at the call site. */
4499
4500 if (call_sal.line == ecs->event_thread->current_line
4501 && call_sal.symtab == ecs->event_thread->current_symtab)
4502 step_into_inline_frame (ecs->ptid);
4503
4504 ecs->event_thread->stop_step = 1;
4505 print_stop_reason (END_STEPPING_RANGE, 0);
4506 stop_stepping (ecs);
4507 return;
4508 }
4509 else
4510 {
4511 /* For "next", we should stop at the call site if it is on a
4512 different source line. Otherwise continue through the
4513 inlined function. */
4514 if (call_sal.line == ecs->event_thread->current_line
4515 && call_sal.symtab == ecs->event_thread->current_symtab)
4516 keep_going (ecs);
4517 else
4518 {
4519 ecs->event_thread->stop_step = 1;
4520 print_stop_reason (END_STEPPING_RANGE, 0);
4521 stop_stepping (ecs);
4522 }
4523 return;
4524 }
4525 }
4526
4527 /* Look for "calls" to inlined functions, part two. If we are still
4528 in the same real function we were stepping through, but we have
4529 to go further up to find the exact frame ID, we are stepping
4530 through a more inlined call beyond its call site. */
4531
4532 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4533 && !frame_id_eq (get_frame_id (get_current_frame ()),
4534 ecs->event_thread->step_frame_id)
4535 && stepped_in_from (get_current_frame (),
4536 ecs->event_thread->step_frame_id))
4537 {
4538 if (debug_infrun)
4539 fprintf_unfiltered (gdb_stdlog,
4540 "infrun: stepping through inlined function\n");
4541
4542 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4543 keep_going (ecs);
4544 else
4545 {
4546 ecs->event_thread->stop_step = 1;
4547 print_stop_reason (END_STEPPING_RANGE, 0);
4548 stop_stepping (ecs);
4549 }
4550 return;
4551 }
4552
4553 if ((stop_pc == stop_pc_sal.pc)
4554 && (ecs->event_thread->current_line != stop_pc_sal.line
4555 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
4556 {
4557 /* We are at the start of a different line. So stop. Note that
4558 we don't stop if we step into the middle of a different line.
4559 That is said to make things like for (;;) statements work
4560 better. */
4561 if (debug_infrun)
4562 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
4563 ecs->event_thread->stop_step = 1;
4564 print_stop_reason (END_STEPPING_RANGE, 0);
4565 stop_stepping (ecs);
4566 return;
4567 }
4568
4569 /* We aren't done stepping.
4570
4571 Optimize by setting the stepping range to the line.
4572 (We might not be in the original line, but if we entered a
4573 new line in mid-statement, we continue stepping. This makes
4574 things like for(;;) statements work better.) */
4575
4576 ecs->event_thread->step_range_start = stop_pc_sal.pc;
4577 ecs->event_thread->step_range_end = stop_pc_sal.end;
4578 set_step_info (frame, stop_pc_sal);
4579
4580 if (debug_infrun)
4581 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
4582 keep_going (ecs);
4583 }
4584
4585 /* Is thread TP in the middle of single-stepping? */
4586
4587 static int
4588 currently_stepping (struct thread_info *tp)
4589 {
4590 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
4591 || tp->trap_expected
4592 || tp->stepping_through_solib_after_catch
4593 || bpstat_should_step ());
4594 }
4595
4596 /* Returns true if any thread *but* the one passed in "data" is in the
4597 middle of stepping or of handling a "next". */
4598
4599 static int
4600 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
4601 {
4602 if (tp == data)
4603 return 0;
4604
4605 return (tp->step_range_end
4606 || tp->trap_expected
4607 || tp->stepping_through_solib_after_catch);
4608 }
4609
4610 /* Inferior has stepped into a subroutine call with source code that
4611 we should not step over. Do step to the first line of code in
4612 it. */
4613
4614 static void
4615 handle_step_into_function (struct gdbarch *gdbarch,
4616 struct execution_control_state *ecs)
4617 {
4618 struct symtab *s;
4619 struct symtab_and_line stop_func_sal, sr_sal;
4620
4621 s = find_pc_symtab (stop_pc);
4622 if (s && s->language != language_asm)
4623 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
4624 ecs->stop_func_start);
4625
4626 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
4627 /* Use the step_resume_break to step until the end of the prologue,
4628 even if that involves jumps (as it seems to on the vax under
4629 4.2). */
4630 /* If the prologue ends in the middle of a source line, continue to
4631 the end of that source line (if it is still within the function).
4632 Otherwise, just go to end of prologue. */
4633 if (stop_func_sal.end
4634 && stop_func_sal.pc != ecs->stop_func_start
4635 && stop_func_sal.end < ecs->stop_func_end)
4636 ecs->stop_func_start = stop_func_sal.end;
4637
4638 /* Architectures which require breakpoint adjustment might not be able
4639 to place a breakpoint at the computed address. If so, the test
4640 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4641 ecs->stop_func_start to an address at which a breakpoint may be
4642 legitimately placed.
4643
4644 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4645 made, GDB will enter an infinite loop when stepping through
4646 optimized code consisting of VLIW instructions which contain
4647 subinstructions corresponding to different source lines. On
4648 FR-V, it's not permitted to place a breakpoint on any but the
4649 first subinstruction of a VLIW instruction. When a breakpoint is
4650 set, GDB will adjust the breakpoint address to the beginning of
4651 the VLIW instruction. Thus, we need to make the corresponding
4652 adjustment here when computing the stop address. */
4653
4654 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
4655 {
4656 ecs->stop_func_start
4657 = gdbarch_adjust_breakpoint_address (gdbarch,
4658 ecs->stop_func_start);
4659 }
4660
4661 if (ecs->stop_func_start == stop_pc)
4662 {
4663 /* We are already there: stop now. */
4664 ecs->event_thread->stop_step = 1;
4665 print_stop_reason (END_STEPPING_RANGE, 0);
4666 stop_stepping (ecs);
4667 return;
4668 }
4669 else
4670 {
4671 /* Put the step-breakpoint there and go until there. */
4672 init_sal (&sr_sal); /* initialize to zeroes */
4673 sr_sal.pc = ecs->stop_func_start;
4674 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
4675 sr_sal.pspace = get_frame_program_space (get_current_frame ());
4676
4677 /* Do not specify what the fp should be when we stop since on
4678 some machines the prologue is where the new fp value is
4679 established. */
4680 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
4681
4682 /* And make sure stepping stops right away then. */
4683 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
4684 }
4685 keep_going (ecs);
4686 }
4687
4688 /* Inferior has stepped backward into a subroutine call with source
4689 code that we should not step over. Do step to the beginning of the
4690 last line of code in it. */
4691
4692 static void
4693 handle_step_into_function_backward (struct gdbarch *gdbarch,
4694 struct execution_control_state *ecs)
4695 {
4696 struct symtab *s;
4697 struct symtab_and_line stop_func_sal, sr_sal;
4698
4699 s = find_pc_symtab (stop_pc);
4700 if (s && s->language != language_asm)
4701 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
4702 ecs->stop_func_start);
4703
4704 stop_func_sal = find_pc_line (stop_pc, 0);
4705
4706 /* OK, we're just going to keep stepping here. */
4707 if (stop_func_sal.pc == stop_pc)
4708 {
4709 /* We're there already. Just stop stepping now. */
4710 ecs->event_thread->stop_step = 1;
4711 print_stop_reason (END_STEPPING_RANGE, 0);
4712 stop_stepping (ecs);
4713 }
4714 else
4715 {
4716 /* Else just reset the step range and keep going.
4717 No step-resume breakpoint, they don't work for
4718 epilogues, which can have multiple entry paths. */
4719 ecs->event_thread->step_range_start = stop_func_sal.pc;
4720 ecs->event_thread->step_range_end = stop_func_sal.end;
4721 keep_going (ecs);
4722 }
4723 return;
4724 }
4725
4726 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
4727 This is used to both functions and to skip over code. */
4728
4729 static void
4730 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
4731 struct symtab_and_line sr_sal,
4732 struct frame_id sr_id)
4733 {
4734 /* There should never be more than one step-resume or longjmp-resume
4735 breakpoint per thread, so we should never be setting a new
4736 step_resume_breakpoint when one is already active. */
4737 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
4738
4739 if (debug_infrun)
4740 fprintf_unfiltered (gdb_stdlog,
4741 "infrun: inserting step-resume breakpoint at %s\n",
4742 paddress (gdbarch, sr_sal.pc));
4743
4744 inferior_thread ()->step_resume_breakpoint
4745 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
4746 }
4747
4748 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
4749 to skip a potential signal handler.
4750
4751 This is called with the interrupted function's frame. The signal
4752 handler, when it returns, will resume the interrupted function at
4753 RETURN_FRAME.pc. */
4754
4755 static void
4756 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
4757 {
4758 struct symtab_and_line sr_sal;
4759 struct gdbarch *gdbarch;
4760
4761 gdb_assert (return_frame != NULL);
4762 init_sal (&sr_sal); /* initialize to zeros */
4763
4764 gdbarch = get_frame_arch (return_frame);
4765 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
4766 sr_sal.section = find_pc_overlay (sr_sal.pc);
4767 sr_sal.pspace = get_frame_program_space (return_frame);
4768
4769 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
4770 get_stack_frame_id (return_frame));
4771 }
4772
4773 /* Similar to insert_step_resume_breakpoint_at_frame, except
4774 but a breakpoint at the previous frame's PC. This is used to
4775 skip a function after stepping into it (for "next" or if the called
4776 function has no debugging information).
4777
4778 The current function has almost always been reached by single
4779 stepping a call or return instruction. NEXT_FRAME belongs to the
4780 current function, and the breakpoint will be set at the caller's
4781 resume address.
4782
4783 This is a separate function rather than reusing
4784 insert_step_resume_breakpoint_at_frame in order to avoid
4785 get_prev_frame, which may stop prematurely (see the implementation
4786 of frame_unwind_caller_id for an example). */
4787
4788 static void
4789 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4790 {
4791 struct symtab_and_line sr_sal;
4792 struct gdbarch *gdbarch;
4793
4794 /* We shouldn't have gotten here if we don't know where the call site
4795 is. */
4796 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
4797
4798 init_sal (&sr_sal); /* initialize to zeros */
4799
4800 gdbarch = frame_unwind_caller_arch (next_frame);
4801 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
4802 frame_unwind_caller_pc (next_frame));
4803 sr_sal.section = find_pc_overlay (sr_sal.pc);
4804 sr_sal.pspace = frame_unwind_program_space (next_frame);
4805
4806 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
4807 frame_unwind_caller_id (next_frame));
4808 }
4809
4810 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4811 new breakpoint at the target of a jmp_buf. The handling of
4812 longjmp-resume uses the same mechanisms used for handling
4813 "step-resume" breakpoints. */
4814
4815 static void
4816 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
4817 {
4818 /* There should never be more than one step-resume or longjmp-resume
4819 breakpoint per thread, so we should never be setting a new
4820 longjmp_resume_breakpoint when one is already active. */
4821 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
4822
4823 if (debug_infrun)
4824 fprintf_unfiltered (gdb_stdlog,
4825 "infrun: inserting longjmp-resume breakpoint at %s\n",
4826 paddress (gdbarch, pc));
4827
4828 inferior_thread ()->step_resume_breakpoint =
4829 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
4830 }
4831
4832 static void
4833 stop_stepping (struct execution_control_state *ecs)
4834 {
4835 if (debug_infrun)
4836 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
4837
4838 /* Let callers know we don't want to wait for the inferior anymore. */
4839 ecs->wait_some_more = 0;
4840 }
4841
4842 /* This function handles various cases where we need to continue
4843 waiting for the inferior. */
4844 /* (Used to be the keep_going: label in the old wait_for_inferior) */
4845
4846 static void
4847 keep_going (struct execution_control_state *ecs)
4848 {
4849 /* Make sure normal_stop is called if we get a QUIT handled before
4850 reaching resume. */
4851 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
4852
4853 /* Save the pc before execution, to compare with pc after stop. */
4854 ecs->event_thread->prev_pc
4855 = regcache_read_pc (get_thread_regcache (ecs->ptid));
4856
4857 /* If we did not do break;, it means we should keep running the
4858 inferior and not return to debugger. */
4859
4860 if (ecs->event_thread->trap_expected
4861 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
4862 {
4863 /* We took a signal (which we are supposed to pass through to
4864 the inferior, else we'd not get here) and we haven't yet
4865 gotten our trap. Simply continue. */
4866
4867 discard_cleanups (old_cleanups);
4868 resume (currently_stepping (ecs->event_thread),
4869 ecs->event_thread->stop_signal);
4870 }
4871 else
4872 {
4873 /* Either the trap was not expected, but we are continuing
4874 anyway (the user asked that this signal be passed to the
4875 child)
4876 -- or --
4877 The signal was SIGTRAP, e.g. it was our signal, but we
4878 decided we should resume from it.
4879
4880 We're going to run this baby now!
4881
4882 Note that insert_breakpoints won't try to re-insert
4883 already inserted breakpoints. Therefore, we don't
4884 care if breakpoints were already inserted, or not. */
4885
4886 if (ecs->event_thread->stepping_over_breakpoint)
4887 {
4888 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
4889 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
4890 /* Since we can't do a displaced step, we have to remove
4891 the breakpoint while we step it. To keep things
4892 simple, we remove them all. */
4893 remove_breakpoints ();
4894 }
4895 else
4896 {
4897 struct gdb_exception e;
4898 /* Stop stepping when inserting breakpoints
4899 has failed. */
4900 TRY_CATCH (e, RETURN_MASK_ERROR)
4901 {
4902 insert_breakpoints ();
4903 }
4904 if (e.reason < 0)
4905 {
4906 exception_print (gdb_stderr, e);
4907 stop_stepping (ecs);
4908 return;
4909 }
4910 }
4911
4912 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
4913
4914 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
4915 specifies that such a signal should be delivered to the
4916 target program).
4917
4918 Typically, this would occure when a user is debugging a
4919 target monitor on a simulator: the target monitor sets a
4920 breakpoint; the simulator encounters this break-point and
4921 halts the simulation handing control to GDB; GDB, noteing
4922 that the break-point isn't valid, returns control back to the
4923 simulator; the simulator then delivers the hardware
4924 equivalent of a SIGNAL_TRAP to the program being debugged. */
4925
4926 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4927 && !signal_program[ecs->event_thread->stop_signal])
4928 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
4929
4930 discard_cleanups (old_cleanups);
4931 resume (currently_stepping (ecs->event_thread),
4932 ecs->event_thread->stop_signal);
4933 }
4934
4935 prepare_to_wait (ecs);
4936 }
4937
4938 /* This function normally comes after a resume, before
4939 handle_inferior_event exits. It takes care of any last bits of
4940 housekeeping, and sets the all-important wait_some_more flag. */
4941
4942 static void
4943 prepare_to_wait (struct execution_control_state *ecs)
4944 {
4945 if (debug_infrun)
4946 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
4947
4948 /* This is the old end of the while loop. Let everybody know we
4949 want to wait for the inferior some more and get called again
4950 soon. */
4951 ecs->wait_some_more = 1;
4952 }
4953
4954 /* Print why the inferior has stopped. We always print something when
4955 the inferior exits, or receives a signal. The rest of the cases are
4956 dealt with later on in normal_stop() and print_it_typical(). Ideally
4957 there should be a call to this function from handle_inferior_event()
4958 each time stop_stepping() is called.*/
4959 static void
4960 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4961 {
4962 switch (stop_reason)
4963 {
4964 case END_STEPPING_RANGE:
4965 /* We are done with a step/next/si/ni command. */
4966 /* For now print nothing. */
4967 /* Print a message only if not in the middle of doing a "step n"
4968 operation for n > 1 */
4969 if (!inferior_thread ()->step_multi
4970 || !inferior_thread ()->stop_step)
4971 if (ui_out_is_mi_like_p (uiout))
4972 ui_out_field_string
4973 (uiout, "reason",
4974 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
4975 break;
4976 case SIGNAL_EXITED:
4977 /* The inferior was terminated by a signal. */
4978 annotate_signalled ();
4979 if (ui_out_is_mi_like_p (uiout))
4980 ui_out_field_string
4981 (uiout, "reason",
4982 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
4983 ui_out_text (uiout, "\nProgram terminated with signal ");
4984 annotate_signal_name ();
4985 ui_out_field_string (uiout, "signal-name",
4986 target_signal_to_name (stop_info));
4987 annotate_signal_name_end ();
4988 ui_out_text (uiout, ", ");
4989 annotate_signal_string ();
4990 ui_out_field_string (uiout, "signal-meaning",
4991 target_signal_to_string (stop_info));
4992 annotate_signal_string_end ();
4993 ui_out_text (uiout, ".\n");
4994 ui_out_text (uiout, "The program no longer exists.\n");
4995 break;
4996 case EXITED:
4997 /* The inferior program is finished. */
4998 annotate_exited (stop_info);
4999 if (stop_info)
5000 {
5001 if (ui_out_is_mi_like_p (uiout))
5002 ui_out_field_string (uiout, "reason",
5003 async_reason_lookup (EXEC_ASYNC_EXITED));
5004 ui_out_text (uiout, "\nProgram exited with code ");
5005 ui_out_field_fmt (uiout, "exit-code", "0%o",
5006 (unsigned int) stop_info);
5007 ui_out_text (uiout, ".\n");
5008 }
5009 else
5010 {
5011 if (ui_out_is_mi_like_p (uiout))
5012 ui_out_field_string
5013 (uiout, "reason",
5014 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5015 ui_out_text (uiout, "\nProgram exited normally.\n");
5016 }
5017 /* Support the --return-child-result option. */
5018 return_child_result_value = stop_info;
5019 break;
5020 case SIGNAL_RECEIVED:
5021 /* Signal received. The signal table tells us to print about
5022 it. */
5023 annotate_signal ();
5024
5025 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5026 {
5027 struct thread_info *t = inferior_thread ();
5028
5029 ui_out_text (uiout, "\n[");
5030 ui_out_field_string (uiout, "thread-name",
5031 target_pid_to_str (t->ptid));
5032 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5033 ui_out_text (uiout, " stopped");
5034 }
5035 else
5036 {
5037 ui_out_text (uiout, "\nProgram received signal ");
5038 annotate_signal_name ();
5039 if (ui_out_is_mi_like_p (uiout))
5040 ui_out_field_string
5041 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5042 ui_out_field_string (uiout, "signal-name",
5043 target_signal_to_name (stop_info));
5044 annotate_signal_name_end ();
5045 ui_out_text (uiout, ", ");
5046 annotate_signal_string ();
5047 ui_out_field_string (uiout, "signal-meaning",
5048 target_signal_to_string (stop_info));
5049 annotate_signal_string_end ();
5050 }
5051 ui_out_text (uiout, ".\n");
5052 break;
5053 case NO_HISTORY:
5054 /* Reverse execution: target ran out of history info. */
5055 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
5056 break;
5057 default:
5058 internal_error (__FILE__, __LINE__,
5059 _("print_stop_reason: unrecognized enum value"));
5060 break;
5061 }
5062 }
5063 \f
5064
5065 /* Here to return control to GDB when the inferior stops for real.
5066 Print appropriate messages, remove breakpoints, give terminal our modes.
5067
5068 STOP_PRINT_FRAME nonzero means print the executing frame
5069 (pc, function, args, file, line number and line text).
5070 BREAKPOINTS_FAILED nonzero means stop was due to error
5071 attempting to insert breakpoints. */
5072
5073 void
5074 normal_stop (void)
5075 {
5076 struct target_waitstatus last;
5077 ptid_t last_ptid;
5078 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5079
5080 get_last_target_status (&last_ptid, &last);
5081
5082 /* If an exception is thrown from this point on, make sure to
5083 propagate GDB's knowledge of the executing state to the
5084 frontend/user running state. A QUIT is an easy exception to see
5085 here, so do this before any filtered output. */
5086 if (!non_stop)
5087 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5088 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5089 && last.kind != TARGET_WAITKIND_EXITED)
5090 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5091
5092 /* In non-stop mode, we don't want GDB to switch threads behind the
5093 user's back, to avoid races where the user is typing a command to
5094 apply to thread x, but GDB switches to thread y before the user
5095 finishes entering the command. */
5096
5097 /* As with the notification of thread events, we want to delay
5098 notifying the user that we've switched thread context until
5099 the inferior actually stops.
5100
5101 There's no point in saying anything if the inferior has exited.
5102 Note that SIGNALLED here means "exited with a signal", not
5103 "received a signal". */
5104 if (!non_stop
5105 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5106 && target_has_execution
5107 && last.kind != TARGET_WAITKIND_SIGNALLED
5108 && last.kind != TARGET_WAITKIND_EXITED)
5109 {
5110 target_terminal_ours_for_output ();
5111 printf_filtered (_("[Switching to %s]\n"),
5112 target_pid_to_str (inferior_ptid));
5113 annotate_thread_changed ();
5114 previous_inferior_ptid = inferior_ptid;
5115 }
5116
5117 if (!breakpoints_always_inserted_mode () && target_has_execution)
5118 {
5119 if (remove_breakpoints ())
5120 {
5121 target_terminal_ours_for_output ();
5122 printf_filtered (_("\
5123 Cannot remove breakpoints because program is no longer writable.\n\
5124 Further execution is probably impossible.\n"));
5125 }
5126 }
5127
5128 /* If an auto-display called a function and that got a signal,
5129 delete that auto-display to avoid an infinite recursion. */
5130
5131 if (stopped_by_random_signal)
5132 disable_current_display ();
5133
5134 /* Don't print a message if in the middle of doing a "step n"
5135 operation for n > 1 */
5136 if (target_has_execution
5137 && last.kind != TARGET_WAITKIND_SIGNALLED
5138 && last.kind != TARGET_WAITKIND_EXITED
5139 && inferior_thread ()->step_multi
5140 && inferior_thread ()->stop_step)
5141 goto done;
5142
5143 target_terminal_ours ();
5144
5145 /* Set the current source location. This will also happen if we
5146 display the frame below, but the current SAL will be incorrect
5147 during a user hook-stop function. */
5148 if (has_stack_frames () && !stop_stack_dummy)
5149 set_current_sal_from_frame (get_current_frame (), 1);
5150
5151 /* Let the user/frontend see the threads as stopped. */
5152 do_cleanups (old_chain);
5153
5154 /* Look up the hook_stop and run it (CLI internally handles problem
5155 of stop_command's pre-hook not existing). */
5156 if (stop_command)
5157 catch_errors (hook_stop_stub, stop_command,
5158 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5159
5160 if (!has_stack_frames ())
5161 goto done;
5162
5163 if (last.kind == TARGET_WAITKIND_SIGNALLED
5164 || last.kind == TARGET_WAITKIND_EXITED)
5165 goto done;
5166
5167 /* Select innermost stack frame - i.e., current frame is frame 0,
5168 and current location is based on that.
5169 Don't do this on return from a stack dummy routine,
5170 or if the program has exited. */
5171
5172 if (!stop_stack_dummy)
5173 {
5174 select_frame (get_current_frame ());
5175
5176 /* Print current location without a level number, if
5177 we have changed functions or hit a breakpoint.
5178 Print source line if we have one.
5179 bpstat_print() contains the logic deciding in detail
5180 what to print, based on the event(s) that just occurred. */
5181
5182 /* If --batch-silent is enabled then there's no need to print the current
5183 source location, and to try risks causing an error message about
5184 missing source files. */
5185 if (stop_print_frame && !batch_silent)
5186 {
5187 int bpstat_ret;
5188 int source_flag;
5189 int do_frame_printing = 1;
5190 struct thread_info *tp = inferior_thread ();
5191
5192 bpstat_ret = bpstat_print (tp->stop_bpstat);
5193 switch (bpstat_ret)
5194 {
5195 case PRINT_UNKNOWN:
5196 /* If we had hit a shared library event breakpoint,
5197 bpstat_print would print out this message. If we hit
5198 an OS-level shared library event, do the same
5199 thing. */
5200 if (last.kind == TARGET_WAITKIND_LOADED)
5201 {
5202 printf_filtered (_("Stopped due to shared library event\n"));
5203 source_flag = SRC_LINE; /* something bogus */
5204 do_frame_printing = 0;
5205 break;
5206 }
5207
5208 /* FIXME: cagney/2002-12-01: Given that a frame ID does
5209 (or should) carry around the function and does (or
5210 should) use that when doing a frame comparison. */
5211 if (tp->stop_step
5212 && frame_id_eq (tp->step_frame_id,
5213 get_frame_id (get_current_frame ()))
5214 && step_start_function == find_pc_function (stop_pc))
5215 source_flag = SRC_LINE; /* finished step, just print source line */
5216 else
5217 source_flag = SRC_AND_LOC; /* print location and source line */
5218 break;
5219 case PRINT_SRC_AND_LOC:
5220 source_flag = SRC_AND_LOC; /* print location and source line */
5221 break;
5222 case PRINT_SRC_ONLY:
5223 source_flag = SRC_LINE;
5224 break;
5225 case PRINT_NOTHING:
5226 source_flag = SRC_LINE; /* something bogus */
5227 do_frame_printing = 0;
5228 break;
5229 default:
5230 internal_error (__FILE__, __LINE__, _("Unknown value."));
5231 }
5232
5233 /* The behavior of this routine with respect to the source
5234 flag is:
5235 SRC_LINE: Print only source line
5236 LOCATION: Print only location
5237 SRC_AND_LOC: Print location and source line */
5238 if (do_frame_printing)
5239 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
5240
5241 /* Display the auto-display expressions. */
5242 do_displays ();
5243 }
5244 }
5245
5246 /* Save the function value return registers, if we care.
5247 We might be about to restore their previous contents. */
5248 if (inferior_thread ()->proceed_to_finish)
5249 {
5250 /* This should not be necessary. */
5251 if (stop_registers)
5252 regcache_xfree (stop_registers);
5253
5254 /* NB: The copy goes through to the target picking up the value of
5255 all the registers. */
5256 stop_registers = regcache_dup (get_current_regcache ());
5257 }
5258
5259 if (stop_stack_dummy)
5260 {
5261 /* Pop the empty frame that contains the stack dummy.
5262 This also restores inferior state prior to the call
5263 (struct inferior_thread_state). */
5264 struct frame_info *frame = get_current_frame ();
5265 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5266 frame_pop (frame);
5267 /* frame_pop() calls reinit_frame_cache as the last thing it does
5268 which means there's currently no selected frame. We don't need
5269 to re-establish a selected frame if the dummy call returns normally,
5270 that will be done by restore_inferior_status. However, we do have
5271 to handle the case where the dummy call is returning after being
5272 stopped (e.g. the dummy call previously hit a breakpoint). We
5273 can't know which case we have so just always re-establish a
5274 selected frame here. */
5275 select_frame (get_current_frame ());
5276 }
5277
5278 done:
5279 annotate_stopped ();
5280
5281 /* Suppress the stop observer if we're in the middle of:
5282
5283 - a step n (n > 1), as there still more steps to be done.
5284
5285 - a "finish" command, as the observer will be called in
5286 finish_command_continuation, so it can include the inferior
5287 function's return value.
5288
5289 - calling an inferior function, as we pretend we inferior didn't
5290 run at all. The return value of the call is handled by the
5291 expression evaluator, through call_function_by_hand. */
5292
5293 if (!target_has_execution
5294 || last.kind == TARGET_WAITKIND_SIGNALLED
5295 || last.kind == TARGET_WAITKIND_EXITED
5296 || (!inferior_thread ()->step_multi
5297 && !(inferior_thread ()->stop_bpstat
5298 && inferior_thread ()->proceed_to_finish)
5299 && !inferior_thread ()->in_infcall))
5300 {
5301 if (!ptid_equal (inferior_ptid, null_ptid))
5302 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
5303 stop_print_frame);
5304 else
5305 observer_notify_normal_stop (NULL, stop_print_frame);
5306 }
5307
5308 if (target_has_execution)
5309 {
5310 if (last.kind != TARGET_WAITKIND_SIGNALLED
5311 && last.kind != TARGET_WAITKIND_EXITED)
5312 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5313 Delete any breakpoint that is to be deleted at the next stop. */
5314 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
5315 }
5316
5317 /* Try to get rid of automatically added inferiors that are no
5318 longer needed. Keeping those around slows down things linearly.
5319 Note that this never removes the current inferior. */
5320 prune_inferiors ();
5321 }
5322
5323 static int
5324 hook_stop_stub (void *cmd)
5325 {
5326 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
5327 return (0);
5328 }
5329 \f
5330 int
5331 signal_stop_state (int signo)
5332 {
5333 return signal_stop[signo];
5334 }
5335
5336 int
5337 signal_print_state (int signo)
5338 {
5339 return signal_print[signo];
5340 }
5341
5342 int
5343 signal_pass_state (int signo)
5344 {
5345 return signal_program[signo];
5346 }
5347
5348 int
5349 signal_stop_update (int signo, int state)
5350 {
5351 int ret = signal_stop[signo];
5352 signal_stop[signo] = state;
5353 return ret;
5354 }
5355
5356 int
5357 signal_print_update (int signo, int state)
5358 {
5359 int ret = signal_print[signo];
5360 signal_print[signo] = state;
5361 return ret;
5362 }
5363
5364 int
5365 signal_pass_update (int signo, int state)
5366 {
5367 int ret = signal_program[signo];
5368 signal_program[signo] = state;
5369 return ret;
5370 }
5371
5372 static void
5373 sig_print_header (void)
5374 {
5375 printf_filtered (_("\
5376 Signal Stop\tPrint\tPass to program\tDescription\n"));
5377 }
5378
5379 static void
5380 sig_print_info (enum target_signal oursig)
5381 {
5382 const char *name = target_signal_to_name (oursig);
5383 int name_padding = 13 - strlen (name);
5384
5385 if (name_padding <= 0)
5386 name_padding = 0;
5387
5388 printf_filtered ("%s", name);
5389 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
5390 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
5391 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
5392 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
5393 printf_filtered ("%s\n", target_signal_to_string (oursig));
5394 }
5395
5396 /* Specify how various signals in the inferior should be handled. */
5397
5398 static void
5399 handle_command (char *args, int from_tty)
5400 {
5401 char **argv;
5402 int digits, wordlen;
5403 int sigfirst, signum, siglast;
5404 enum target_signal oursig;
5405 int allsigs;
5406 int nsigs;
5407 unsigned char *sigs;
5408 struct cleanup *old_chain;
5409
5410 if (args == NULL)
5411 {
5412 error_no_arg (_("signal to handle"));
5413 }
5414
5415 /* Allocate and zero an array of flags for which signals to handle. */
5416
5417 nsigs = (int) TARGET_SIGNAL_LAST;
5418 sigs = (unsigned char *) alloca (nsigs);
5419 memset (sigs, 0, nsigs);
5420
5421 /* Break the command line up into args. */
5422
5423 argv = gdb_buildargv (args);
5424 old_chain = make_cleanup_freeargv (argv);
5425
5426 /* Walk through the args, looking for signal oursigs, signal names, and
5427 actions. Signal numbers and signal names may be interspersed with
5428 actions, with the actions being performed for all signals cumulatively
5429 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
5430
5431 while (*argv != NULL)
5432 {
5433 wordlen = strlen (*argv);
5434 for (digits = 0; isdigit ((*argv)[digits]); digits++)
5435 {;
5436 }
5437 allsigs = 0;
5438 sigfirst = siglast = -1;
5439
5440 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
5441 {
5442 /* Apply action to all signals except those used by the
5443 debugger. Silently skip those. */
5444 allsigs = 1;
5445 sigfirst = 0;
5446 siglast = nsigs - 1;
5447 }
5448 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
5449 {
5450 SET_SIGS (nsigs, sigs, signal_stop);
5451 SET_SIGS (nsigs, sigs, signal_print);
5452 }
5453 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
5454 {
5455 UNSET_SIGS (nsigs, sigs, signal_program);
5456 }
5457 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
5458 {
5459 SET_SIGS (nsigs, sigs, signal_print);
5460 }
5461 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
5462 {
5463 SET_SIGS (nsigs, sigs, signal_program);
5464 }
5465 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
5466 {
5467 UNSET_SIGS (nsigs, sigs, signal_stop);
5468 }
5469 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
5470 {
5471 SET_SIGS (nsigs, sigs, signal_program);
5472 }
5473 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5474 {
5475 UNSET_SIGS (nsigs, sigs, signal_print);
5476 UNSET_SIGS (nsigs, sigs, signal_stop);
5477 }
5478 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5479 {
5480 UNSET_SIGS (nsigs, sigs, signal_program);
5481 }
5482 else if (digits > 0)
5483 {
5484 /* It is numeric. The numeric signal refers to our own
5485 internal signal numbering from target.h, not to host/target
5486 signal number. This is a feature; users really should be
5487 using symbolic names anyway, and the common ones like
5488 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
5489
5490 sigfirst = siglast = (int)
5491 target_signal_from_command (atoi (*argv));
5492 if ((*argv)[digits] == '-')
5493 {
5494 siglast = (int)
5495 target_signal_from_command (atoi ((*argv) + digits + 1));
5496 }
5497 if (sigfirst > siglast)
5498 {
5499 /* Bet he didn't figure we'd think of this case... */
5500 signum = sigfirst;
5501 sigfirst = siglast;
5502 siglast = signum;
5503 }
5504 }
5505 else
5506 {
5507 oursig = target_signal_from_name (*argv);
5508 if (oursig != TARGET_SIGNAL_UNKNOWN)
5509 {
5510 sigfirst = siglast = (int) oursig;
5511 }
5512 else
5513 {
5514 /* Not a number and not a recognized flag word => complain. */
5515 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
5516 }
5517 }
5518
5519 /* If any signal numbers or symbol names were found, set flags for
5520 which signals to apply actions to. */
5521
5522 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
5523 {
5524 switch ((enum target_signal) signum)
5525 {
5526 case TARGET_SIGNAL_TRAP:
5527 case TARGET_SIGNAL_INT:
5528 if (!allsigs && !sigs[signum])
5529 {
5530 if (query (_("%s is used by the debugger.\n\
5531 Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
5532 {
5533 sigs[signum] = 1;
5534 }
5535 else
5536 {
5537 printf_unfiltered (_("Not confirmed, unchanged.\n"));
5538 gdb_flush (gdb_stdout);
5539 }
5540 }
5541 break;
5542 case TARGET_SIGNAL_0:
5543 case TARGET_SIGNAL_DEFAULT:
5544 case TARGET_SIGNAL_UNKNOWN:
5545 /* Make sure that "all" doesn't print these. */
5546 break;
5547 default:
5548 sigs[signum] = 1;
5549 break;
5550 }
5551 }
5552
5553 argv++;
5554 }
5555
5556 for (signum = 0; signum < nsigs; signum++)
5557 if (sigs[signum])
5558 {
5559 target_notice_signals (inferior_ptid);
5560
5561 if (from_tty)
5562 {
5563 /* Show the results. */
5564 sig_print_header ();
5565 for (; signum < nsigs; signum++)
5566 if (sigs[signum])
5567 sig_print_info (signum);
5568 }
5569
5570 break;
5571 }
5572
5573 do_cleanups (old_chain);
5574 }
5575
5576 static void
5577 xdb_handle_command (char *args, int from_tty)
5578 {
5579 char **argv;
5580 struct cleanup *old_chain;
5581
5582 if (args == NULL)
5583 error_no_arg (_("xdb command"));
5584
5585 /* Break the command line up into args. */
5586
5587 argv = gdb_buildargv (args);
5588 old_chain = make_cleanup_freeargv (argv);
5589 if (argv[1] != (char *) NULL)
5590 {
5591 char *argBuf;
5592 int bufLen;
5593
5594 bufLen = strlen (argv[0]) + 20;
5595 argBuf = (char *) xmalloc (bufLen);
5596 if (argBuf)
5597 {
5598 int validFlag = 1;
5599 enum target_signal oursig;
5600
5601 oursig = target_signal_from_name (argv[0]);
5602 memset (argBuf, 0, bufLen);
5603 if (strcmp (argv[1], "Q") == 0)
5604 sprintf (argBuf, "%s %s", argv[0], "noprint");
5605 else
5606 {
5607 if (strcmp (argv[1], "s") == 0)
5608 {
5609 if (!signal_stop[oursig])
5610 sprintf (argBuf, "%s %s", argv[0], "stop");
5611 else
5612 sprintf (argBuf, "%s %s", argv[0], "nostop");
5613 }
5614 else if (strcmp (argv[1], "i") == 0)
5615 {
5616 if (!signal_program[oursig])
5617 sprintf (argBuf, "%s %s", argv[0], "pass");
5618 else
5619 sprintf (argBuf, "%s %s", argv[0], "nopass");
5620 }
5621 else if (strcmp (argv[1], "r") == 0)
5622 {
5623 if (!signal_print[oursig])
5624 sprintf (argBuf, "%s %s", argv[0], "print");
5625 else
5626 sprintf (argBuf, "%s %s", argv[0], "noprint");
5627 }
5628 else
5629 validFlag = 0;
5630 }
5631 if (validFlag)
5632 handle_command (argBuf, from_tty);
5633 else
5634 printf_filtered (_("Invalid signal handling flag.\n"));
5635 if (argBuf)
5636 xfree (argBuf);
5637 }
5638 }
5639 do_cleanups (old_chain);
5640 }
5641
5642 /* Print current contents of the tables set by the handle command.
5643 It is possible we should just be printing signals actually used
5644 by the current target (but for things to work right when switching
5645 targets, all signals should be in the signal tables). */
5646
5647 static void
5648 signals_info (char *signum_exp, int from_tty)
5649 {
5650 enum target_signal oursig;
5651 sig_print_header ();
5652
5653 if (signum_exp)
5654 {
5655 /* First see if this is a symbol name. */
5656 oursig = target_signal_from_name (signum_exp);
5657 if (oursig == TARGET_SIGNAL_UNKNOWN)
5658 {
5659 /* No, try numeric. */
5660 oursig =
5661 target_signal_from_command (parse_and_eval_long (signum_exp));
5662 }
5663 sig_print_info (oursig);
5664 return;
5665 }
5666
5667 printf_filtered ("\n");
5668 /* These ugly casts brought to you by the native VAX compiler. */
5669 for (oursig = TARGET_SIGNAL_FIRST;
5670 (int) oursig < (int) TARGET_SIGNAL_LAST;
5671 oursig = (enum target_signal) ((int) oursig + 1))
5672 {
5673 QUIT;
5674
5675 if (oursig != TARGET_SIGNAL_UNKNOWN
5676 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
5677 sig_print_info (oursig);
5678 }
5679
5680 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
5681 }
5682
5683 /* The $_siginfo convenience variable is a bit special. We don't know
5684 for sure the type of the value until we actually have a chance to
5685 fetch the data. The type can change depending on gdbarch, so it it
5686 also dependent on which thread you have selected.
5687
5688 1. making $_siginfo be an internalvar that creates a new value on
5689 access.
5690
5691 2. making the value of $_siginfo be an lval_computed value. */
5692
5693 /* This function implements the lval_computed support for reading a
5694 $_siginfo value. */
5695
5696 static void
5697 siginfo_value_read (struct value *v)
5698 {
5699 LONGEST transferred;
5700
5701 transferred =
5702 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5703 NULL,
5704 value_contents_all_raw (v),
5705 value_offset (v),
5706 TYPE_LENGTH (value_type (v)));
5707
5708 if (transferred != TYPE_LENGTH (value_type (v)))
5709 error (_("Unable to read siginfo"));
5710 }
5711
5712 /* This function implements the lval_computed support for writing a
5713 $_siginfo value. */
5714
5715 static void
5716 siginfo_value_write (struct value *v, struct value *fromval)
5717 {
5718 LONGEST transferred;
5719
5720 transferred = target_write (&current_target,
5721 TARGET_OBJECT_SIGNAL_INFO,
5722 NULL,
5723 value_contents_all_raw (fromval),
5724 value_offset (v),
5725 TYPE_LENGTH (value_type (fromval)));
5726
5727 if (transferred != TYPE_LENGTH (value_type (fromval)))
5728 error (_("Unable to write siginfo"));
5729 }
5730
5731 static struct lval_funcs siginfo_value_funcs =
5732 {
5733 siginfo_value_read,
5734 siginfo_value_write
5735 };
5736
5737 /* Return a new value with the correct type for the siginfo object of
5738 the current thread using architecture GDBARCH. Return a void value
5739 if there's no object available. */
5740
5741 static struct value *
5742 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
5743 {
5744 if (target_has_stack
5745 && !ptid_equal (inferior_ptid, null_ptid)
5746 && gdbarch_get_siginfo_type_p (gdbarch))
5747 {
5748 struct type *type = gdbarch_get_siginfo_type (gdbarch);
5749 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
5750 }
5751
5752 return allocate_value (builtin_type (gdbarch)->builtin_void);
5753 }
5754
5755 \f
5756 /* Inferior thread state.
5757 These are details related to the inferior itself, and don't include
5758 things like what frame the user had selected or what gdb was doing
5759 with the target at the time.
5760 For inferior function calls these are things we want to restore
5761 regardless of whether the function call successfully completes
5762 or the dummy frame has to be manually popped. */
5763
5764 struct inferior_thread_state
5765 {
5766 enum target_signal stop_signal;
5767 CORE_ADDR stop_pc;
5768 struct regcache *registers;
5769 };
5770
5771 struct inferior_thread_state *
5772 save_inferior_thread_state (void)
5773 {
5774 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5775 struct thread_info *tp = inferior_thread ();
5776
5777 inf_state->stop_signal = tp->stop_signal;
5778 inf_state->stop_pc = stop_pc;
5779
5780 inf_state->registers = regcache_dup (get_current_regcache ());
5781
5782 return inf_state;
5783 }
5784
5785 /* Restore inferior session state to INF_STATE. */
5786
5787 void
5788 restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5789 {
5790 struct thread_info *tp = inferior_thread ();
5791
5792 tp->stop_signal = inf_state->stop_signal;
5793 stop_pc = inf_state->stop_pc;
5794
5795 /* The inferior can be gone if the user types "print exit(0)"
5796 (and perhaps other times). */
5797 if (target_has_execution)
5798 /* NB: The register write goes through to the target. */
5799 regcache_cpy (get_current_regcache (), inf_state->registers);
5800 regcache_xfree (inf_state->registers);
5801 xfree (inf_state);
5802 }
5803
5804 static void
5805 do_restore_inferior_thread_state_cleanup (void *state)
5806 {
5807 restore_inferior_thread_state (state);
5808 }
5809
5810 struct cleanup *
5811 make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5812 {
5813 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
5814 }
5815
5816 void
5817 discard_inferior_thread_state (struct inferior_thread_state *inf_state)
5818 {
5819 regcache_xfree (inf_state->registers);
5820 xfree (inf_state);
5821 }
5822
5823 struct regcache *
5824 get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
5825 {
5826 return inf_state->registers;
5827 }
5828
5829 /* Session related state for inferior function calls.
5830 These are the additional bits of state that need to be restored
5831 when an inferior function call successfully completes. */
5832
5833 struct inferior_status
5834 {
5835 bpstat stop_bpstat;
5836 int stop_step;
5837 int stop_stack_dummy;
5838 int stopped_by_random_signal;
5839 int stepping_over_breakpoint;
5840 CORE_ADDR step_range_start;
5841 CORE_ADDR step_range_end;
5842 struct frame_id step_frame_id;
5843 struct frame_id step_stack_frame_id;
5844 enum step_over_calls_kind step_over_calls;
5845 CORE_ADDR step_resume_break_address;
5846 int stop_after_trap;
5847 int stop_soon;
5848
5849 /* ID if the selected frame when the inferior function call was made. */
5850 struct frame_id selected_frame_id;
5851
5852 int proceed_to_finish;
5853 int in_infcall;
5854 };
5855
5856 /* Save all of the information associated with the inferior<==>gdb
5857 connection. */
5858
5859 struct inferior_status *
5860 save_inferior_status (void)
5861 {
5862 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
5863 struct thread_info *tp = inferior_thread ();
5864 struct inferior *inf = current_inferior ();
5865
5866 inf_status->stop_step = tp->stop_step;
5867 inf_status->stop_stack_dummy = stop_stack_dummy;
5868 inf_status->stopped_by_random_signal = stopped_by_random_signal;
5869 inf_status->stepping_over_breakpoint = tp->trap_expected;
5870 inf_status->step_range_start = tp->step_range_start;
5871 inf_status->step_range_end = tp->step_range_end;
5872 inf_status->step_frame_id = tp->step_frame_id;
5873 inf_status->step_stack_frame_id = tp->step_stack_frame_id;
5874 inf_status->step_over_calls = tp->step_over_calls;
5875 inf_status->stop_after_trap = stop_after_trap;
5876 inf_status->stop_soon = inf->stop_soon;
5877 /* Save original bpstat chain here; replace it with copy of chain.
5878 If caller's caller is walking the chain, they'll be happier if we
5879 hand them back the original chain when restore_inferior_status is
5880 called. */
5881 inf_status->stop_bpstat = tp->stop_bpstat;
5882 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
5883 inf_status->proceed_to_finish = tp->proceed_to_finish;
5884 inf_status->in_infcall = tp->in_infcall;
5885
5886 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
5887
5888 return inf_status;
5889 }
5890
5891 static int
5892 restore_selected_frame (void *args)
5893 {
5894 struct frame_id *fid = (struct frame_id *) args;
5895 struct frame_info *frame;
5896
5897 frame = frame_find_by_id (*fid);
5898
5899 /* If inf_status->selected_frame_id is NULL, there was no previously
5900 selected frame. */
5901 if (frame == NULL)
5902 {
5903 warning (_("Unable to restore previously selected frame."));
5904 return 0;
5905 }
5906
5907 select_frame (frame);
5908
5909 return (1);
5910 }
5911
5912 /* Restore inferior session state to INF_STATUS. */
5913
5914 void
5915 restore_inferior_status (struct inferior_status *inf_status)
5916 {
5917 struct thread_info *tp = inferior_thread ();
5918 struct inferior *inf = current_inferior ();
5919
5920 tp->stop_step = inf_status->stop_step;
5921 stop_stack_dummy = inf_status->stop_stack_dummy;
5922 stopped_by_random_signal = inf_status->stopped_by_random_signal;
5923 tp->trap_expected = inf_status->stepping_over_breakpoint;
5924 tp->step_range_start = inf_status->step_range_start;
5925 tp->step_range_end = inf_status->step_range_end;
5926 tp->step_frame_id = inf_status->step_frame_id;
5927 tp->step_stack_frame_id = inf_status->step_stack_frame_id;
5928 tp->step_over_calls = inf_status->step_over_calls;
5929 stop_after_trap = inf_status->stop_after_trap;
5930 inf->stop_soon = inf_status->stop_soon;
5931 bpstat_clear (&tp->stop_bpstat);
5932 tp->stop_bpstat = inf_status->stop_bpstat;
5933 inf_status->stop_bpstat = NULL;
5934 tp->proceed_to_finish = inf_status->proceed_to_finish;
5935 tp->in_infcall = inf_status->in_infcall;
5936
5937 if (target_has_stack)
5938 {
5939 /* The point of catch_errors is that if the stack is clobbered,
5940 walking the stack might encounter a garbage pointer and
5941 error() trying to dereference it. */
5942 if (catch_errors
5943 (restore_selected_frame, &inf_status->selected_frame_id,
5944 "Unable to restore previously selected frame:\n",
5945 RETURN_MASK_ERROR) == 0)
5946 /* Error in restoring the selected frame. Select the innermost
5947 frame. */
5948 select_frame (get_current_frame ());
5949 }
5950
5951 xfree (inf_status);
5952 }
5953
5954 static void
5955 do_restore_inferior_status_cleanup (void *sts)
5956 {
5957 restore_inferior_status (sts);
5958 }
5959
5960 struct cleanup *
5961 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5962 {
5963 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5964 }
5965
5966 void
5967 discard_inferior_status (struct inferior_status *inf_status)
5968 {
5969 /* See save_inferior_status for info on stop_bpstat. */
5970 bpstat_clear (&inf_status->stop_bpstat);
5971 xfree (inf_status);
5972 }
5973 \f
5974 int
5975 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
5976 {
5977 struct target_waitstatus last;
5978 ptid_t last_ptid;
5979
5980 get_last_target_status (&last_ptid, &last);
5981
5982 if (last.kind != TARGET_WAITKIND_FORKED)
5983 return 0;
5984
5985 if (!ptid_equal (last_ptid, pid))
5986 return 0;
5987
5988 *child_pid = last.value.related_pid;
5989 return 1;
5990 }
5991
5992 int
5993 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
5994 {
5995 struct target_waitstatus last;
5996 ptid_t last_ptid;
5997
5998 get_last_target_status (&last_ptid, &last);
5999
6000 if (last.kind != TARGET_WAITKIND_VFORKED)
6001 return 0;
6002
6003 if (!ptid_equal (last_ptid, pid))
6004 return 0;
6005
6006 *child_pid = last.value.related_pid;
6007 return 1;
6008 }
6009
6010 int
6011 inferior_has_execd (ptid_t pid, char **execd_pathname)
6012 {
6013 struct target_waitstatus last;
6014 ptid_t last_ptid;
6015
6016 get_last_target_status (&last_ptid, &last);
6017
6018 if (last.kind != TARGET_WAITKIND_EXECD)
6019 return 0;
6020
6021 if (!ptid_equal (last_ptid, pid))
6022 return 0;
6023
6024 *execd_pathname = xstrdup (last.value.execd_pathname);
6025 return 1;
6026 }
6027
6028 int
6029 inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6030 {
6031 struct target_waitstatus last;
6032 ptid_t last_ptid;
6033
6034 get_last_target_status (&last_ptid, &last);
6035
6036 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6037 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6038 return 0;
6039
6040 if (!ptid_equal (last_ptid, pid))
6041 return 0;
6042
6043 *syscall_number = last.value.syscall_number;
6044 return 1;
6045 }
6046
6047 /* Oft used ptids */
6048 ptid_t null_ptid;
6049 ptid_t minus_one_ptid;
6050
6051 /* Create a ptid given the necessary PID, LWP, and TID components. */
6052
6053 ptid_t
6054 ptid_build (int pid, long lwp, long tid)
6055 {
6056 ptid_t ptid;
6057
6058 ptid.pid = pid;
6059 ptid.lwp = lwp;
6060 ptid.tid = tid;
6061 return ptid;
6062 }
6063
6064 /* Create a ptid from just a pid. */
6065
6066 ptid_t
6067 pid_to_ptid (int pid)
6068 {
6069 return ptid_build (pid, 0, 0);
6070 }
6071
6072 /* Fetch the pid (process id) component from a ptid. */
6073
6074 int
6075 ptid_get_pid (ptid_t ptid)
6076 {
6077 return ptid.pid;
6078 }
6079
6080 /* Fetch the lwp (lightweight process) component from a ptid. */
6081
6082 long
6083 ptid_get_lwp (ptid_t ptid)
6084 {
6085 return ptid.lwp;
6086 }
6087
6088 /* Fetch the tid (thread id) component from a ptid. */
6089
6090 long
6091 ptid_get_tid (ptid_t ptid)
6092 {
6093 return ptid.tid;
6094 }
6095
6096 /* ptid_equal() is used to test equality of two ptids. */
6097
6098 int
6099 ptid_equal (ptid_t ptid1, ptid_t ptid2)
6100 {
6101 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
6102 && ptid1.tid == ptid2.tid);
6103 }
6104
6105 /* Returns true if PTID represents a process. */
6106
6107 int
6108 ptid_is_pid (ptid_t ptid)
6109 {
6110 if (ptid_equal (minus_one_ptid, ptid))
6111 return 0;
6112 if (ptid_equal (null_ptid, ptid))
6113 return 0;
6114
6115 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
6116 }
6117
6118 /* restore_inferior_ptid() will be used by the cleanup machinery
6119 to restore the inferior_ptid value saved in a call to
6120 save_inferior_ptid(). */
6121
6122 static void
6123 restore_inferior_ptid (void *arg)
6124 {
6125 ptid_t *saved_ptid_ptr = arg;
6126 inferior_ptid = *saved_ptid_ptr;
6127 xfree (arg);
6128 }
6129
6130 /* Save the value of inferior_ptid so that it may be restored by a
6131 later call to do_cleanups(). Returns the struct cleanup pointer
6132 needed for later doing the cleanup. */
6133
6134 struct cleanup *
6135 save_inferior_ptid (void)
6136 {
6137 ptid_t *saved_ptid_ptr;
6138
6139 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6140 *saved_ptid_ptr = inferior_ptid;
6141 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6142 }
6143 \f
6144
6145 /* User interface for reverse debugging:
6146 Set exec-direction / show exec-direction commands
6147 (returns error unless target implements to_set_exec_direction method). */
6148
6149 enum exec_direction_kind execution_direction = EXEC_FORWARD;
6150 static const char exec_forward[] = "forward";
6151 static const char exec_reverse[] = "reverse";
6152 static const char *exec_direction = exec_forward;
6153 static const char *exec_direction_names[] = {
6154 exec_forward,
6155 exec_reverse,
6156 NULL
6157 };
6158
6159 static void
6160 set_exec_direction_func (char *args, int from_tty,
6161 struct cmd_list_element *cmd)
6162 {
6163 if (target_can_execute_reverse)
6164 {
6165 if (!strcmp (exec_direction, exec_forward))
6166 execution_direction = EXEC_FORWARD;
6167 else if (!strcmp (exec_direction, exec_reverse))
6168 execution_direction = EXEC_REVERSE;
6169 }
6170 }
6171
6172 static void
6173 show_exec_direction_func (struct ui_file *out, int from_tty,
6174 struct cmd_list_element *cmd, const char *value)
6175 {
6176 switch (execution_direction) {
6177 case EXEC_FORWARD:
6178 fprintf_filtered (out, _("Forward.\n"));
6179 break;
6180 case EXEC_REVERSE:
6181 fprintf_filtered (out, _("Reverse.\n"));
6182 break;
6183 case EXEC_ERROR:
6184 default:
6185 fprintf_filtered (out,
6186 _("Forward (target `%s' does not support exec-direction).\n"),
6187 target_shortname);
6188 break;
6189 }
6190 }
6191
6192 /* User interface for non-stop mode. */
6193
6194 int non_stop = 0;
6195 static int non_stop_1 = 0;
6196
6197 static void
6198 set_non_stop (char *args, int from_tty,
6199 struct cmd_list_element *c)
6200 {
6201 if (target_has_execution)
6202 {
6203 non_stop_1 = non_stop;
6204 error (_("Cannot change this setting while the inferior is running."));
6205 }
6206
6207 non_stop = non_stop_1;
6208 }
6209
6210 static void
6211 show_non_stop (struct ui_file *file, int from_tty,
6212 struct cmd_list_element *c, const char *value)
6213 {
6214 fprintf_filtered (file,
6215 _("Controlling the inferior in non-stop mode is %s.\n"),
6216 value);
6217 }
6218
6219 static void
6220 show_schedule_multiple (struct ui_file *file, int from_tty,
6221 struct cmd_list_element *c, const char *value)
6222 {
6223 fprintf_filtered (file, _("\
6224 Resuming the execution of threads of all processes is %s.\n"), value);
6225 }
6226
6227 void
6228 _initialize_infrun (void)
6229 {
6230 int i;
6231 int numsigs;
6232 struct cmd_list_element *c;
6233
6234 add_info ("signals", signals_info, _("\
6235 What debugger does when program gets various signals.\n\
6236 Specify a signal as argument to print info on that signal only."));
6237 add_info_alias ("handle", "signals", 0);
6238
6239 add_com ("handle", class_run, handle_command, _("\
6240 Specify how to handle a signal.\n\
6241 Args are signals and actions to apply to those signals.\n\
6242 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6243 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6244 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6245 The special arg \"all\" is recognized to mean all signals except those\n\
6246 used by the debugger, typically SIGTRAP and SIGINT.\n\
6247 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
6248 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6249 Stop means reenter debugger if this signal happens (implies print).\n\
6250 Print means print a message if this signal happens.\n\
6251 Pass means let program see this signal; otherwise program doesn't know.\n\
6252 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6253 Pass and Stop may be combined."));
6254 if (xdb_commands)
6255 {
6256 add_com ("lz", class_info, signals_info, _("\
6257 What debugger does when program gets various signals.\n\
6258 Specify a signal as argument to print info on that signal only."));
6259 add_com ("z", class_run, xdb_handle_command, _("\
6260 Specify how to handle a signal.\n\
6261 Args are signals and actions to apply to those signals.\n\
6262 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6263 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6264 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6265 The special arg \"all\" is recognized to mean all signals except those\n\
6266 used by the debugger, typically SIGTRAP and SIGINT.\n\
6267 Recognized actions include \"s\" (toggles between stop and nostop), \n\
6268 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6269 nopass), \"Q\" (noprint)\n\
6270 Stop means reenter debugger if this signal happens (implies print).\n\
6271 Print means print a message if this signal happens.\n\
6272 Pass means let program see this signal; otherwise program doesn't know.\n\
6273 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6274 Pass and Stop may be combined."));
6275 }
6276
6277 if (!dbx_commands)
6278 stop_command = add_cmd ("stop", class_obscure,
6279 not_just_help_class_command, _("\
6280 There is no `stop' command, but you can set a hook on `stop'.\n\
6281 This allows you to set a list of commands to be run each time execution\n\
6282 of the program stops."), &cmdlist);
6283
6284 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
6285 Set inferior debugging."), _("\
6286 Show inferior debugging."), _("\
6287 When non-zero, inferior specific debugging is enabled."),
6288 NULL,
6289 show_debug_infrun,
6290 &setdebuglist, &showdebuglist);
6291
6292 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
6293 Set displaced stepping debugging."), _("\
6294 Show displaced stepping debugging."), _("\
6295 When non-zero, displaced stepping specific debugging is enabled."),
6296 NULL,
6297 show_debug_displaced,
6298 &setdebuglist, &showdebuglist);
6299
6300 add_setshow_boolean_cmd ("non-stop", no_class,
6301 &non_stop_1, _("\
6302 Set whether gdb controls the inferior in non-stop mode."), _("\
6303 Show whether gdb controls the inferior in non-stop mode."), _("\
6304 When debugging a multi-threaded program and this setting is\n\
6305 off (the default, also called all-stop mode), when one thread stops\n\
6306 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
6307 all other threads in the program while you interact with the thread of\n\
6308 interest. When you continue or step a thread, you can allow the other\n\
6309 threads to run, or have them remain stopped, but while you inspect any\n\
6310 thread's state, all threads stop.\n\
6311 \n\
6312 In non-stop mode, when one thread stops, other threads can continue\n\
6313 to run freely. You'll be able to step each thread independently,\n\
6314 leave it stopped or free to run as needed."),
6315 set_non_stop,
6316 show_non_stop,
6317 &setlist,
6318 &showlist);
6319
6320 numsigs = (int) TARGET_SIGNAL_LAST;
6321 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
6322 signal_print = (unsigned char *)
6323 xmalloc (sizeof (signal_print[0]) * numsigs);
6324 signal_program = (unsigned char *)
6325 xmalloc (sizeof (signal_program[0]) * numsigs);
6326 for (i = 0; i < numsigs; i++)
6327 {
6328 signal_stop[i] = 1;
6329 signal_print[i] = 1;
6330 signal_program[i] = 1;
6331 }
6332
6333 /* Signals caused by debugger's own actions
6334 should not be given to the program afterwards. */
6335 signal_program[TARGET_SIGNAL_TRAP] = 0;
6336 signal_program[TARGET_SIGNAL_INT] = 0;
6337
6338 /* Signals that are not errors should not normally enter the debugger. */
6339 signal_stop[TARGET_SIGNAL_ALRM] = 0;
6340 signal_print[TARGET_SIGNAL_ALRM] = 0;
6341 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
6342 signal_print[TARGET_SIGNAL_VTALRM] = 0;
6343 signal_stop[TARGET_SIGNAL_PROF] = 0;
6344 signal_print[TARGET_SIGNAL_PROF] = 0;
6345 signal_stop[TARGET_SIGNAL_CHLD] = 0;
6346 signal_print[TARGET_SIGNAL_CHLD] = 0;
6347 signal_stop[TARGET_SIGNAL_IO] = 0;
6348 signal_print[TARGET_SIGNAL_IO] = 0;
6349 signal_stop[TARGET_SIGNAL_POLL] = 0;
6350 signal_print[TARGET_SIGNAL_POLL] = 0;
6351 signal_stop[TARGET_SIGNAL_URG] = 0;
6352 signal_print[TARGET_SIGNAL_URG] = 0;
6353 signal_stop[TARGET_SIGNAL_WINCH] = 0;
6354 signal_print[TARGET_SIGNAL_WINCH] = 0;
6355
6356 /* These signals are used internally by user-level thread
6357 implementations. (See signal(5) on Solaris.) Like the above
6358 signals, a healthy program receives and handles them as part of
6359 its normal operation. */
6360 signal_stop[TARGET_SIGNAL_LWP] = 0;
6361 signal_print[TARGET_SIGNAL_LWP] = 0;
6362 signal_stop[TARGET_SIGNAL_WAITING] = 0;
6363 signal_print[TARGET_SIGNAL_WAITING] = 0;
6364 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
6365 signal_print[TARGET_SIGNAL_CANCEL] = 0;
6366
6367 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
6368 &stop_on_solib_events, _("\
6369 Set stopping for shared library events."), _("\
6370 Show stopping for shared library events."), _("\
6371 If nonzero, gdb will give control to the user when the dynamic linker\n\
6372 notifies gdb of shared library events. The most common event of interest\n\
6373 to the user would be loading/unloading of a new library."),
6374 NULL,
6375 show_stop_on_solib_events,
6376 &setlist, &showlist);
6377
6378 add_setshow_enum_cmd ("follow-fork-mode", class_run,
6379 follow_fork_mode_kind_names,
6380 &follow_fork_mode_string, _("\
6381 Set debugger response to a program call of fork or vfork."), _("\
6382 Show debugger response to a program call of fork or vfork."), _("\
6383 A fork or vfork creates a new process. follow-fork-mode can be:\n\
6384 parent - the original process is debugged after a fork\n\
6385 child - the new process is debugged after a fork\n\
6386 The unfollowed process will continue to run.\n\
6387 By default, the debugger will follow the parent process."),
6388 NULL,
6389 show_follow_fork_mode_string,
6390 &setlist, &showlist);
6391
6392 add_setshow_enum_cmd ("follow-exec-mode", class_run,
6393 follow_exec_mode_names,
6394 &follow_exec_mode_string, _("\
6395 Set debugger response to a program call of exec."), _("\
6396 Show debugger response to a program call of exec."), _("\
6397 An exec call replaces the program image of a process.\n\
6398 \n\
6399 follow-exec-mode can be:\n\
6400 \n\
6401 new - the debugger creates a new inferior and rebinds the process \n\
6402 to this new inferior. The program the process was running before\n\
6403 the exec call can be restarted afterwards by restarting the original\n\
6404 inferior.\n\
6405 \n\
6406 same - the debugger keeps the process bound to the same inferior.\n\
6407 The new executable image replaces the previous executable loaded in\n\
6408 the inferior. Restarting the inferior after the exec call restarts\n\
6409 the executable the process was running after the exec call.\n\
6410 \n\
6411 By default, the debugger will use the same inferior."),
6412 NULL,
6413 show_follow_exec_mode_string,
6414 &setlist, &showlist);
6415
6416 add_setshow_enum_cmd ("scheduler-locking", class_run,
6417 scheduler_enums, &scheduler_mode, _("\
6418 Set mode for locking scheduler during execution."), _("\
6419 Show mode for locking scheduler during execution."), _("\
6420 off == no locking (threads may preempt at any time)\n\
6421 on == full locking (no thread except the current thread may run)\n\
6422 step == scheduler locked during every single-step operation.\n\
6423 In this mode, no other thread may run during a step command.\n\
6424 Other threads may run while stepping over a function call ('next')."),
6425 set_schedlock_func, /* traps on target vector */
6426 show_scheduler_mode,
6427 &setlist, &showlist);
6428
6429 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
6430 Set mode for resuming threads of all processes."), _("\
6431 Show mode for resuming threads of all processes."), _("\
6432 When on, execution commands (such as 'continue' or 'next') resume all\n\
6433 threads of all processes. When off (which is the default), execution\n\
6434 commands only resume the threads of the current process. The set of\n\
6435 threads that are resumed is further refined by the scheduler-locking\n\
6436 mode (see help set scheduler-locking)."),
6437 NULL,
6438 show_schedule_multiple,
6439 &setlist, &showlist);
6440
6441 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
6442 Set mode of the step operation."), _("\
6443 Show mode of the step operation."), _("\
6444 When set, doing a step over a function without debug line information\n\
6445 will stop at the first instruction of that function. Otherwise, the\n\
6446 function is skipped and the step command stops at a different source line."),
6447 NULL,
6448 show_step_stop_if_no_debug,
6449 &setlist, &showlist);
6450
6451 add_setshow_enum_cmd ("displaced-stepping", class_run,
6452 can_use_displaced_stepping_enum,
6453 &can_use_displaced_stepping, _("\
6454 Set debugger's willingness to use displaced stepping."), _("\
6455 Show debugger's willingness to use displaced stepping."), _("\
6456 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
6457 supported by the target architecture. If off, gdb will not use displaced\n\
6458 stepping to step over breakpoints, even if such is supported by the target\n\
6459 architecture. If auto (which is the default), gdb will use displaced stepping\n\
6460 if the target architecture supports it and non-stop mode is active, but will not\n\
6461 use it in all-stop mode (see help set non-stop)."),
6462 NULL,
6463 show_can_use_displaced_stepping,
6464 &setlist, &showlist);
6465
6466 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
6467 &exec_direction, _("Set direction of execution.\n\
6468 Options are 'forward' or 'reverse'."),
6469 _("Show direction of execution (forward/reverse)."),
6470 _("Tells gdb whether to execute forward or backward."),
6471 set_exec_direction_func, show_exec_direction_func,
6472 &setlist, &showlist);
6473
6474 /* Set/show detach-on-fork: user-settable mode. */
6475
6476 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
6477 Set whether gdb will detach the child of a fork."), _("\
6478 Show whether gdb will detach the child of a fork."), _("\
6479 Tells gdb whether to detach the child of a fork."),
6480 NULL, NULL, &setlist, &showlist);
6481
6482 /* ptid initializations */
6483 null_ptid = ptid_build (0, 0, 0);
6484 minus_one_ptid = ptid_build (-1, 0, 0);
6485 inferior_ptid = null_ptid;
6486 target_last_wait_ptid = minus_one_ptid;
6487 displaced_step_ptid = null_ptid;
6488
6489 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
6490 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
6491 observer_attach_thread_exit (infrun_thread_thread_exit);
6492
6493 /* Explicitly create without lookup, since that tries to create a
6494 value with a void typed value, and when we get here, gdbarch
6495 isn't initialized yet. At this point, we're quite sure there
6496 isn't another convenience variable of the same name. */
6497 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
6498 }