* infrun.c (adjust_pc_after_break): Do not call get_thread_regcache
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51 #include "event-top.h"
52
53 /* Prototypes for local functions */
54
55 static void signals_info (char *, int);
56
57 static void handle_command (char *, int);
58
59 static void sig_print_info (enum target_signal);
60
61 static void sig_print_header (void);
62
63 static void resume_cleanups (void *);
64
65 static int hook_stop_stub (void *);
66
67 static int restore_selected_frame (void *);
68
69 static void build_infrun (void);
70
71 static int follow_fork (void);
72
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
75
76 struct thread_stepping_state;
77
78 static int currently_stepping (struct thread_stepping_state *tss);
79
80 static void xdb_handle_command (char *args, int from_tty);
81
82 static int prepare_to_proceed (int);
83
84 void _initialize_infrun (void);
85
86 /* When set, stop the 'step' command if we enter a function which has
87 no line number information. The normal behavior is that we step
88 over such function. */
89 int step_stop_if_no_debug = 0;
90 static void
91 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
92 struct cmd_list_element *c, const char *value)
93 {
94 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
95 }
96
97 /* In asynchronous mode, but simulating synchronous execution. */
98
99 int sync_execution = 0;
100
101 /* wait_for_inferior and normal_stop use this to notify the user
102 when the inferior stopped in a different thread than it had been
103 running in. */
104
105 static ptid_t previous_inferior_ptid;
106
107 int debug_displaced = 0;
108 static void
109 show_debug_displaced (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
111 {
112 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
113 }
114
115 static int debug_infrun = 0;
116 static void
117 show_debug_infrun (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
121 }
122
123 /* If the program uses ELF-style shared libraries, then calls to
124 functions in shared libraries go through stubs, which live in a
125 table called the PLT (Procedure Linkage Table). The first time the
126 function is called, the stub sends control to the dynamic linker,
127 which looks up the function's real address, patches the stub so
128 that future calls will go directly to the function, and then passes
129 control to the function.
130
131 If we are stepping at the source level, we don't want to see any of
132 this --- we just want to skip over the stub and the dynamic linker.
133 The simple approach is to single-step until control leaves the
134 dynamic linker.
135
136 However, on some systems (e.g., Red Hat's 5.2 distribution) the
137 dynamic linker calls functions in the shared C library, so you
138 can't tell from the PC alone whether the dynamic linker is still
139 running. In this case, we use a step-resume breakpoint to get us
140 past the dynamic linker, as if we were using "next" to step over a
141 function call.
142
143 in_solib_dynsym_resolve_code() says whether we're in the dynamic
144 linker code or not. Normally, this means we single-step. However,
145 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
146 address where we can place a step-resume breakpoint to get past the
147 linker's symbol resolution function.
148
149 in_solib_dynsym_resolve_code() can generally be implemented in a
150 pretty portable way, by comparing the PC against the address ranges
151 of the dynamic linker's sections.
152
153 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
154 it depends on internal details of the dynamic linker. It's usually
155 not too hard to figure out where to put a breakpoint, but it
156 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
157 sanity checking. If it can't figure things out, returning zero and
158 getting the (possibly confusing) stepping behavior is better than
159 signalling an error, which will obscure the change in the
160 inferior's state. */
161
162 /* This function returns TRUE if pc is the address of an instruction
163 that lies within the dynamic linker (such as the event hook, or the
164 dld itself).
165
166 This function must be used only when a dynamic linker event has
167 been caught, and the inferior is being stepped out of the hook, or
168 undefined results are guaranteed. */
169
170 #ifndef SOLIB_IN_DYNAMIC_LINKER
171 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
172 #endif
173
174
175 /* Convert the #defines into values. This is temporary until wfi control
176 flow is completely sorted out. */
177
178 #ifndef CANNOT_STEP_HW_WATCHPOINTS
179 #define CANNOT_STEP_HW_WATCHPOINTS 0
180 #else
181 #undef CANNOT_STEP_HW_WATCHPOINTS
182 #define CANNOT_STEP_HW_WATCHPOINTS 1
183 #endif
184
185 /* Tables of how to react to signals; the user sets them. */
186
187 static unsigned char *signal_stop;
188 static unsigned char *signal_print;
189 static unsigned char *signal_program;
190
191 #define SET_SIGS(nsigs,sigs,flags) \
192 do { \
193 int signum = (nsigs); \
194 while (signum-- > 0) \
195 if ((sigs)[signum]) \
196 (flags)[signum] = 1; \
197 } while (0)
198
199 #define UNSET_SIGS(nsigs,sigs,flags) \
200 do { \
201 int signum = (nsigs); \
202 while (signum-- > 0) \
203 if ((sigs)[signum]) \
204 (flags)[signum] = 0; \
205 } while (0)
206
207 /* Value to pass to target_resume() to cause all threads to resume */
208
209 #define RESUME_ALL (pid_to_ptid (-1))
210
211 /* Command list pointer for the "stop" placeholder. */
212
213 static struct cmd_list_element *stop_command;
214
215 /* Function inferior was in as of last step command. */
216
217 static struct symbol *step_start_function;
218
219 /* Nonzero if we are presently stepping over a breakpoint.
220
221 If we hit a breakpoint or watchpoint, and then continue,
222 we need to single step the current thread with breakpoints
223 disabled, to avoid hitting the same breakpoint or
224 watchpoint again. And we should step just a single
225 thread and keep other threads stopped, so that
226 other threads don't miss breakpoints while they are removed.
227
228 So, this variable simultaneously means that we need to single
229 step the current thread, keep other threads stopped, and that
230 breakpoints should be removed while we step.
231
232 This variable is set either:
233 - in proceed, when we resume inferior on user's explicit request
234 - in keep_going, if handle_inferior_event decides we need to
235 step over breakpoint.
236
237 The variable is cleared in clear_proceed_status, called every
238 time before we call proceed. The proceed calls wait_for_inferior,
239 which calls handle_inferior_event in a loop, and until
240 wait_for_inferior exits, this variable is changed only by keep_going. */
241
242 static int stepping_over_breakpoint;
243
244 /* Nonzero if we want to give control to the user when we're notified
245 of shared library events by the dynamic linker. */
246 static int stop_on_solib_events;
247 static void
248 show_stop_on_solib_events (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
252 value);
253 }
254
255 /* Nonzero means expecting a trace trap
256 and should stop the inferior and return silently when it happens. */
257
258 int stop_after_trap;
259
260 /* Nonzero means expecting a trap and caller will handle it themselves.
261 It is used after attach, due to attaching to a process;
262 when running in the shell before the child program has been exec'd;
263 and when running some kinds of remote stuff (FIXME?). */
264
265 enum stop_kind stop_soon;
266
267 /* Nonzero if proceed is being used for a "finish" command or a similar
268 situation when stop_registers should be saved. */
269
270 int proceed_to_finish;
271
272 /* Save register contents here when about to pop a stack dummy frame,
273 if-and-only-if proceed_to_finish is set.
274 Thus this contains the return value from the called function (assuming
275 values are returned in a register). */
276
277 struct regcache *stop_registers;
278
279 /* Nonzero after stop if current stack frame should be printed. */
280
281 static int stop_print_frame;
282
283 /* Step-resume or longjmp-resume breakpoint. */
284 static struct breakpoint *step_resume_breakpoint = NULL;
285
286 /* This is a cached copy of the pid/waitstatus of the last event
287 returned by target_wait()/deprecated_target_wait_hook(). This
288 information is returned by get_last_target_status(). */
289 static ptid_t target_last_wait_ptid;
290 static struct target_waitstatus target_last_waitstatus;
291
292 /* Context-switchable data. */
293 struct thread_stepping_state
294 {
295 /* Should we step over breakpoint next time keep_going
296 is called? */
297 int stepping_over_breakpoint;
298 int current_line;
299 struct symtab *current_symtab;
300 int step_after_step_resume_breakpoint;
301 int stepping_through_solib_after_catch;
302 bpstat stepping_through_solib_catchpoints;
303 };
304
305 struct thread_stepping_state gtss;
306 struct thread_stepping_state *tss = &gtss;
307
308 static void context_switch (ptid_t ptid);
309
310 void init_thread_stepping_state (struct thread_stepping_state *tss);
311
312 void init_infwait_state (void);
313
314 /* This is used to remember when a fork, vfork or exec event
315 was caught by a catchpoint, and thus the event is to be
316 followed at the next resume of the inferior, and not
317 immediately. */
318 static struct
319 {
320 enum target_waitkind kind;
321 struct
322 {
323 ptid_t parent_pid;
324 ptid_t child_pid;
325 }
326 fork_event;
327 char *execd_pathname;
328 }
329 pending_follow;
330
331 static const char follow_fork_mode_child[] = "child";
332 static const char follow_fork_mode_parent[] = "parent";
333
334 static const char *follow_fork_mode_kind_names[] = {
335 follow_fork_mode_child,
336 follow_fork_mode_parent,
337 NULL
338 };
339
340 static const char *follow_fork_mode_string = follow_fork_mode_parent;
341 static void
342 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
343 struct cmd_list_element *c, const char *value)
344 {
345 fprintf_filtered (file, _("\
346 Debugger response to a program call of fork or vfork is \"%s\".\n"),
347 value);
348 }
349 \f
350
351 static int
352 follow_fork (void)
353 {
354 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
355
356 return target_follow_fork (follow_child);
357 }
358
359 void
360 follow_inferior_reset_breakpoints (void)
361 {
362 /* Was there a step_resume breakpoint? (There was if the user
363 did a "next" at the fork() call.) If so, explicitly reset its
364 thread number.
365
366 step_resumes are a form of bp that are made to be per-thread.
367 Since we created the step_resume bp when the parent process
368 was being debugged, and now are switching to the child process,
369 from the breakpoint package's viewpoint, that's a switch of
370 "threads". We must update the bp's notion of which thread
371 it is for, or it'll be ignored when it triggers. */
372
373 if (step_resume_breakpoint)
374 breakpoint_re_set_thread (step_resume_breakpoint);
375
376 /* Reinsert all breakpoints in the child. The user may have set
377 breakpoints after catching the fork, in which case those
378 were never set in the child, but only in the parent. This makes
379 sure the inserted breakpoints match the breakpoint list. */
380
381 breakpoint_re_set ();
382 insert_breakpoints ();
383 }
384
385 /* EXECD_PATHNAME is assumed to be non-NULL. */
386
387 static void
388 follow_exec (ptid_t pid, char *execd_pathname)
389 {
390 ptid_t saved_pid = pid;
391 struct target_ops *tgt;
392
393 /* This is an exec event that we actually wish to pay attention to.
394 Refresh our symbol table to the newly exec'd program, remove any
395 momentary bp's, etc.
396
397 If there are breakpoints, they aren't really inserted now,
398 since the exec() transformed our inferior into a fresh set
399 of instructions.
400
401 We want to preserve symbolic breakpoints on the list, since
402 we have hopes that they can be reset after the new a.out's
403 symbol table is read.
404
405 However, any "raw" breakpoints must be removed from the list
406 (e.g., the solib bp's), since their address is probably invalid
407 now.
408
409 And, we DON'T want to call delete_breakpoints() here, since
410 that may write the bp's "shadow contents" (the instruction
411 value that was overwritten witha TRAP instruction). Since
412 we now have a new a.out, those shadow contents aren't valid. */
413 update_breakpoints_after_exec ();
414
415 /* If there was one, it's gone now. We cannot truly step-to-next
416 statement through an exec(). */
417 step_resume_breakpoint = NULL;
418 step_range_start = 0;
419 step_range_end = 0;
420
421 /* What is this a.out's name? */
422 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
423
424 /* We've followed the inferior through an exec. Therefore, the
425 inferior has essentially been killed & reborn. */
426
427 gdb_flush (gdb_stdout);
428 generic_mourn_inferior ();
429 /* Because mourn_inferior resets inferior_ptid. */
430 inferior_ptid = saved_pid;
431
432 if (gdb_sysroot && *gdb_sysroot)
433 {
434 char *name = alloca (strlen (gdb_sysroot)
435 + strlen (execd_pathname)
436 + 1);
437 strcpy (name, gdb_sysroot);
438 strcat (name, execd_pathname);
439 execd_pathname = name;
440 }
441
442 /* That a.out is now the one to use. */
443 exec_file_attach (execd_pathname, 0);
444
445 /* Reset the shared library package. This ensures that we get a
446 shlib event when the child reaches "_start", at which point the
447 dld will have had a chance to initialize the child. */
448 /* Also, loading a symbol file below may trigger symbol lookups, and
449 we don't want those to be satisfied by the libraries of the
450 previous incarnation of this process. */
451 no_shared_libraries (NULL, 0);
452
453 /* Load the main file's symbols. */
454 symbol_file_add_main (execd_pathname, 0);
455
456 #ifdef SOLIB_CREATE_INFERIOR_HOOK
457 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
458 #else
459 solib_create_inferior_hook ();
460 #endif
461
462 /* Reinsert all breakpoints. (Those which were symbolic have
463 been reset to the proper address in the new a.out, thanks
464 to symbol_file_command...) */
465 insert_breakpoints ();
466
467 /* The next resume of this inferior should bring it to the shlib
468 startup breakpoints. (If the user had also set bp's on
469 "main" from the old (parent) process, then they'll auto-
470 matically get reset there in the new process.) */
471 }
472
473 /* Non-zero if we just simulating a single-step. This is needed
474 because we cannot remove the breakpoints in the inferior process
475 until after the `wait' in `wait_for_inferior'. */
476 static int singlestep_breakpoints_inserted_p = 0;
477
478 /* The thread we inserted single-step breakpoints for. */
479 static ptid_t singlestep_ptid;
480
481 /* PC when we started this single-step. */
482 static CORE_ADDR singlestep_pc;
483
484 /* If another thread hit the singlestep breakpoint, we save the original
485 thread here so that we can resume single-stepping it later. */
486 static ptid_t saved_singlestep_ptid;
487 static int stepping_past_singlestep_breakpoint;
488
489 /* If not equal to null_ptid, this means that after stepping over breakpoint
490 is finished, we need to switch to deferred_step_ptid, and step it.
491
492 The use case is when one thread has hit a breakpoint, and then the user
493 has switched to another thread and issued 'step'. We need to step over
494 breakpoint in the thread which hit the breakpoint, but then continue
495 stepping the thread user has selected. */
496 static ptid_t deferred_step_ptid;
497 \f
498 /* Displaced stepping. */
499
500 /* In non-stop debugging mode, we must take special care to manage
501 breakpoints properly; in particular, the traditional strategy for
502 stepping a thread past a breakpoint it has hit is unsuitable.
503 'Displaced stepping' is a tactic for stepping one thread past a
504 breakpoint it has hit while ensuring that other threads running
505 concurrently will hit the breakpoint as they should.
506
507 The traditional way to step a thread T off a breakpoint in a
508 multi-threaded program in all-stop mode is as follows:
509
510 a0) Initially, all threads are stopped, and breakpoints are not
511 inserted.
512 a1) We single-step T, leaving breakpoints uninserted.
513 a2) We insert breakpoints, and resume all threads.
514
515 In non-stop debugging, however, this strategy is unsuitable: we
516 don't want to have to stop all threads in the system in order to
517 continue or step T past a breakpoint. Instead, we use displaced
518 stepping:
519
520 n0) Initially, T is stopped, other threads are running, and
521 breakpoints are inserted.
522 n1) We copy the instruction "under" the breakpoint to a separate
523 location, outside the main code stream, making any adjustments
524 to the instruction, register, and memory state as directed by
525 T's architecture.
526 n2) We single-step T over the instruction at its new location.
527 n3) We adjust the resulting register and memory state as directed
528 by T's architecture. This includes resetting T's PC to point
529 back into the main instruction stream.
530 n4) We resume T.
531
532 This approach depends on the following gdbarch methods:
533
534 - gdbarch_max_insn_length and gdbarch_displaced_step_location
535 indicate where to copy the instruction, and how much space must
536 be reserved there. We use these in step n1.
537
538 - gdbarch_displaced_step_copy_insn copies a instruction to a new
539 address, and makes any necessary adjustments to the instruction,
540 register contents, and memory. We use this in step n1.
541
542 - gdbarch_displaced_step_fixup adjusts registers and memory after
543 we have successfuly single-stepped the instruction, to yield the
544 same effect the instruction would have had if we had executed it
545 at its original address. We use this in step n3.
546
547 - gdbarch_displaced_step_free_closure provides cleanup.
548
549 The gdbarch_displaced_step_copy_insn and
550 gdbarch_displaced_step_fixup functions must be written so that
551 copying an instruction with gdbarch_displaced_step_copy_insn,
552 single-stepping across the copied instruction, and then applying
553 gdbarch_displaced_insn_fixup should have the same effects on the
554 thread's memory and registers as stepping the instruction in place
555 would have. Exactly which responsibilities fall to the copy and
556 which fall to the fixup is up to the author of those functions.
557
558 See the comments in gdbarch.sh for details.
559
560 Note that displaced stepping and software single-step cannot
561 currently be used in combination, although with some care I think
562 they could be made to. Software single-step works by placing
563 breakpoints on all possible subsequent instructions; if the
564 displaced instruction is a PC-relative jump, those breakpoints
565 could fall in very strange places --- on pages that aren't
566 executable, or at addresses that are not proper instruction
567 boundaries. (We do generally let other threads run while we wait
568 to hit the software single-step breakpoint, and they might
569 encounter such a corrupted instruction.) One way to work around
570 this would be to have gdbarch_displaced_step_copy_insn fully
571 simulate the effect of PC-relative instructions (and return NULL)
572 on architectures that use software single-stepping.
573
574 In non-stop mode, we can have independent and simultaneous step
575 requests, so more than one thread may need to simultaneously step
576 over a breakpoint. The current implementation assumes there is
577 only one scratch space per process. In this case, we have to
578 serialize access to the scratch space. If thread A wants to step
579 over a breakpoint, but we are currently waiting for some other
580 thread to complete a displaced step, we leave thread A stopped and
581 place it in the displaced_step_request_queue. Whenever a displaced
582 step finishes, we pick the next thread in the queue and start a new
583 displaced step operation on it. See displaced_step_prepare and
584 displaced_step_fixup for details. */
585
586 /* If this is not null_ptid, this is the thread carrying out a
587 displaced single-step. This thread's state will require fixing up
588 once it has completed its step. */
589 static ptid_t displaced_step_ptid;
590
591 struct displaced_step_request
592 {
593 ptid_t ptid;
594 struct displaced_step_request *next;
595 };
596
597 /* A queue of pending displaced stepping requests. */
598 struct displaced_step_request *displaced_step_request_queue;
599
600 /* The architecture the thread had when we stepped it. */
601 static struct gdbarch *displaced_step_gdbarch;
602
603 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
604 for post-step cleanup. */
605 static struct displaced_step_closure *displaced_step_closure;
606
607 /* The address of the original instruction, and the copy we made. */
608 static CORE_ADDR displaced_step_original, displaced_step_copy;
609
610 /* Saved contents of copy area. */
611 static gdb_byte *displaced_step_saved_copy;
612
613 /* When this is non-zero, we are allowed to use displaced stepping, if
614 the architecture supports it. When this is zero, we use
615 traditional the hold-and-step approach. */
616 int can_use_displaced_stepping = 1;
617 static void
618 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
619 struct cmd_list_element *c,
620 const char *value)
621 {
622 fprintf_filtered (file, _("\
623 Debugger's willingness to use displaced stepping to step over "
624 "breakpoints is %s.\n"), value);
625 }
626
627 /* Return non-zero if displaced stepping is enabled, and can be used
628 with GDBARCH. */
629 static int
630 use_displaced_stepping (struct gdbarch *gdbarch)
631 {
632 return (can_use_displaced_stepping
633 && gdbarch_displaced_step_copy_insn_p (gdbarch));
634 }
635
636 /* Clean out any stray displaced stepping state. */
637 static void
638 displaced_step_clear (void)
639 {
640 /* Indicate that there is no cleanup pending. */
641 displaced_step_ptid = null_ptid;
642
643 if (displaced_step_closure)
644 {
645 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
646 displaced_step_closure);
647 displaced_step_closure = NULL;
648 }
649 }
650
651 static void
652 cleanup_displaced_step_closure (void *ptr)
653 {
654 struct displaced_step_closure *closure = ptr;
655
656 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
657 }
658
659 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
660 void
661 displaced_step_dump_bytes (struct ui_file *file,
662 const gdb_byte *buf,
663 size_t len)
664 {
665 int i;
666
667 for (i = 0; i < len; i++)
668 fprintf_unfiltered (file, "%02x ", buf[i]);
669 fputs_unfiltered ("\n", file);
670 }
671
672 /* Prepare to single-step, using displaced stepping.
673
674 Note that we cannot use displaced stepping when we have a signal to
675 deliver. If we have a signal to deliver and an instruction to step
676 over, then after the step, there will be no indication from the
677 target whether the thread entered a signal handler or ignored the
678 signal and stepped over the instruction successfully --- both cases
679 result in a simple SIGTRAP. In the first case we mustn't do a
680 fixup, and in the second case we must --- but we can't tell which.
681 Comments in the code for 'random signals' in handle_inferior_event
682 explain how we handle this case instead.
683
684 Returns 1 if preparing was successful -- this thread is going to be
685 stepped now; or 0 if displaced stepping this thread got queued. */
686 static int
687 displaced_step_prepare (ptid_t ptid)
688 {
689 struct cleanup *old_cleanups;
690 struct regcache *regcache = get_thread_regcache (ptid);
691 struct gdbarch *gdbarch = get_regcache_arch (regcache);
692 CORE_ADDR original, copy;
693 ULONGEST len;
694 struct displaced_step_closure *closure;
695
696 /* We should never reach this function if the architecture does not
697 support displaced stepping. */
698 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
699
700 /* For the first cut, we're displaced stepping one thread at a
701 time. */
702
703 if (!ptid_equal (displaced_step_ptid, null_ptid))
704 {
705 /* Already waiting for a displaced step to finish. Defer this
706 request and place in queue. */
707 struct displaced_step_request *req, *new_req;
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
711 "displaced: defering step of %s\n",
712 target_pid_to_str (ptid));
713
714 new_req = xmalloc (sizeof (*new_req));
715 new_req->ptid = ptid;
716 new_req->next = NULL;
717
718 if (displaced_step_request_queue)
719 {
720 for (req = displaced_step_request_queue;
721 req && req->next;
722 req = req->next)
723 ;
724 req->next = new_req;
725 }
726 else
727 displaced_step_request_queue = new_req;
728
729 return 0;
730 }
731 else
732 {
733 if (debug_displaced)
734 fprintf_unfiltered (gdb_stdlog,
735 "displaced: stepping %s now\n",
736 target_pid_to_str (ptid));
737 }
738
739 displaced_step_clear ();
740
741 original = regcache_read_pc (regcache);
742
743 copy = gdbarch_displaced_step_location (gdbarch);
744 len = gdbarch_max_insn_length (gdbarch);
745
746 /* Save the original contents of the copy area. */
747 displaced_step_saved_copy = xmalloc (len);
748 old_cleanups = make_cleanup (free_current_contents,
749 &displaced_step_saved_copy);
750 read_memory (copy, displaced_step_saved_copy, len);
751 if (debug_displaced)
752 {
753 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
754 paddr_nz (copy));
755 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
756 };
757
758 closure = gdbarch_displaced_step_copy_insn (gdbarch,
759 original, copy, regcache);
760
761 /* We don't support the fully-simulated case at present. */
762 gdb_assert (closure);
763
764 make_cleanup (cleanup_displaced_step_closure, closure);
765
766 /* Resume execution at the copy. */
767 regcache_write_pc (regcache, copy);
768
769 discard_cleanups (old_cleanups);
770
771 if (debug_displaced)
772 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
773 paddr_nz (copy));
774
775 /* Save the information we need to fix things up if the step
776 succeeds. */
777 displaced_step_ptid = ptid;
778 displaced_step_gdbarch = gdbarch;
779 displaced_step_closure = closure;
780 displaced_step_original = original;
781 displaced_step_copy = copy;
782 return 1;
783 }
784
785 static void
786 displaced_step_clear_cleanup (void *ignore)
787 {
788 displaced_step_clear ();
789 }
790
791 static void
792 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
793 {
794 struct cleanup *ptid_cleanup = save_inferior_ptid ();
795 inferior_ptid = ptid;
796 write_memory (memaddr, myaddr, len);
797 do_cleanups (ptid_cleanup);
798 }
799
800 static void
801 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
802 {
803 struct cleanup *old_cleanups;
804
805 /* Was this event for the pid we displaced? */
806 if (ptid_equal (displaced_step_ptid, null_ptid)
807 || ! ptid_equal (displaced_step_ptid, event_ptid))
808 return;
809
810 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
811
812 /* Restore the contents of the copy area. */
813 {
814 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
815 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
816 displaced_step_saved_copy, len);
817 if (debug_displaced)
818 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
819 paddr_nz (displaced_step_copy));
820 }
821
822 /* Did the instruction complete successfully? */
823 if (signal == TARGET_SIGNAL_TRAP)
824 {
825 /* Fix up the resulting state. */
826 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
827 displaced_step_closure,
828 displaced_step_original,
829 displaced_step_copy,
830 get_thread_regcache (displaced_step_ptid));
831 }
832 else
833 {
834 /* Since the instruction didn't complete, all we can do is
835 relocate the PC. */
836 struct regcache *regcache = get_thread_regcache (event_ptid);
837 CORE_ADDR pc = regcache_read_pc (regcache);
838 pc = displaced_step_original + (pc - displaced_step_copy);
839 regcache_write_pc (regcache, pc);
840 }
841
842 do_cleanups (old_cleanups);
843
844 /* Are there any pending displaced stepping requests? If so, run
845 one now. */
846 if (displaced_step_request_queue)
847 {
848 struct displaced_step_request *head;
849 ptid_t ptid;
850
851 head = displaced_step_request_queue;
852 ptid = head->ptid;
853 displaced_step_request_queue = head->next;
854 xfree (head);
855
856 if (debug_displaced)
857 fprintf_unfiltered (gdb_stdlog,
858 "displaced: stepping queued %s now\n",
859 target_pid_to_str (ptid));
860
861
862 displaced_step_ptid = null_ptid;
863 displaced_step_prepare (ptid);
864 target_resume (ptid, 1, TARGET_SIGNAL_0);
865 }
866 }
867
868 /* Update global variables holding ptids to hold NEW_PTID if they were
869 holding OLD_PTID. */
870 static void
871 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
872 {
873 struct displaced_step_request *it;
874
875 if (ptid_equal (inferior_ptid, old_ptid))
876 inferior_ptid = new_ptid;
877
878 if (ptid_equal (singlestep_ptid, old_ptid))
879 singlestep_ptid = new_ptid;
880
881 if (ptid_equal (displaced_step_ptid, old_ptid))
882 displaced_step_ptid = new_ptid;
883
884 if (ptid_equal (deferred_step_ptid, old_ptid))
885 deferred_step_ptid = new_ptid;
886
887 for (it = displaced_step_request_queue; it; it = it->next)
888 if (ptid_equal (it->ptid, old_ptid))
889 it->ptid = new_ptid;
890 }
891
892 \f
893 /* Resuming. */
894
895 /* Things to clean up if we QUIT out of resume (). */
896 static void
897 resume_cleanups (void *ignore)
898 {
899 normal_stop ();
900 }
901
902 static const char schedlock_off[] = "off";
903 static const char schedlock_on[] = "on";
904 static const char schedlock_step[] = "step";
905 static const char *scheduler_enums[] = {
906 schedlock_off,
907 schedlock_on,
908 schedlock_step,
909 NULL
910 };
911 static const char *scheduler_mode = schedlock_off;
912 static void
913 show_scheduler_mode (struct ui_file *file, int from_tty,
914 struct cmd_list_element *c, const char *value)
915 {
916 fprintf_filtered (file, _("\
917 Mode for locking scheduler during execution is \"%s\".\n"),
918 value);
919 }
920
921 static void
922 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
923 {
924 if (!target_can_lock_scheduler)
925 {
926 scheduler_mode = schedlock_off;
927 error (_("Target '%s' cannot support this command."), target_shortname);
928 }
929 }
930
931
932 /* Resume the inferior, but allow a QUIT. This is useful if the user
933 wants to interrupt some lengthy single-stepping operation
934 (for child processes, the SIGINT goes to the inferior, and so
935 we get a SIGINT random_signal, but for remote debugging and perhaps
936 other targets, that's not true).
937
938 STEP nonzero if we should step (zero to continue instead).
939 SIG is the signal to give the inferior (zero for none). */
940 void
941 resume (int step, enum target_signal sig)
942 {
943 int should_resume = 1;
944 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
945 struct regcache *regcache = get_current_regcache ();
946 struct gdbarch *gdbarch = get_regcache_arch (regcache);
947 CORE_ADDR pc = regcache_read_pc (regcache);
948 QUIT;
949
950 if (debug_infrun)
951 fprintf_unfiltered (gdb_stdlog,
952 "infrun: resume (step=%d, signal=%d), "
953 "stepping_over_breakpoint=%d\n",
954 step, sig, stepping_over_breakpoint);
955
956 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
957 over an instruction that causes a page fault without triggering
958 a hardware watchpoint. The kernel properly notices that it shouldn't
959 stop, because the hardware watchpoint is not triggered, but it forgets
960 the step request and continues the program normally.
961 Work around the problem by removing hardware watchpoints if a step is
962 requested, GDB will check for a hardware watchpoint trigger after the
963 step anyway. */
964 if (CANNOT_STEP_HW_WATCHPOINTS && step)
965 remove_hw_watchpoints ();
966
967
968 /* Normally, by the time we reach `resume', the breakpoints are either
969 removed or inserted, as appropriate. The exception is if we're sitting
970 at a permanent breakpoint; we need to step over it, but permanent
971 breakpoints can't be removed. So we have to test for it here. */
972 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
973 {
974 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
975 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
976 else
977 error (_("\
978 The program is stopped at a permanent breakpoint, but GDB does not know\n\
979 how to step past a permanent breakpoint on this architecture. Try using\n\
980 a command like `return' or `jump' to continue execution."));
981 }
982
983 /* If enabled, step over breakpoints by executing a copy of the
984 instruction at a different address.
985
986 We can't use displaced stepping when we have a signal to deliver;
987 the comments for displaced_step_prepare explain why. The
988 comments in the handle_inferior event for dealing with 'random
989 signals' explain what we do instead. */
990 if (use_displaced_stepping (gdbarch)
991 && stepping_over_breakpoint
992 && sig == TARGET_SIGNAL_0)
993 {
994 if (!displaced_step_prepare (inferior_ptid))
995 {
996 /* Got placed in displaced stepping queue. Will be resumed
997 later when all the currently queued displaced stepping
998 requests finish. The thread is not executing at this point,
999 and the call to set_executing will be made later. But we
1000 need to call set_running here, since from frontend point of view,
1001 the thread is running. */
1002 set_running (inferior_ptid, 1);
1003 discard_cleanups (old_cleanups);
1004 return;
1005 }
1006 }
1007
1008 if (step && gdbarch_software_single_step_p (gdbarch))
1009 {
1010 /* Do it the hard way, w/temp breakpoints */
1011 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
1012 {
1013 /* ...and don't ask hardware to do it. */
1014 step = 0;
1015 /* and do not pull these breakpoints until after a `wait' in
1016 `wait_for_inferior' */
1017 singlestep_breakpoints_inserted_p = 1;
1018 singlestep_ptid = inferior_ptid;
1019 singlestep_pc = pc;
1020 }
1021 }
1022
1023 /* If there were any forks/vforks/execs that were caught and are
1024 now to be followed, then do so. */
1025 switch (pending_follow.kind)
1026 {
1027 case TARGET_WAITKIND_FORKED:
1028 case TARGET_WAITKIND_VFORKED:
1029 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1030 if (follow_fork ())
1031 should_resume = 0;
1032 break;
1033
1034 case TARGET_WAITKIND_EXECD:
1035 /* follow_exec is called as soon as the exec event is seen. */
1036 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1037 break;
1038
1039 default:
1040 break;
1041 }
1042
1043 /* Install inferior's terminal modes. */
1044 target_terminal_inferior ();
1045
1046 if (should_resume)
1047 {
1048 ptid_t resume_ptid;
1049
1050 resume_ptid = RESUME_ALL; /* Default */
1051
1052 /* If STEP is set, it's a request to use hardware stepping
1053 facilities. But in that case, we should never
1054 use singlestep breakpoint. */
1055 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1056
1057 if (singlestep_breakpoints_inserted_p
1058 && stepping_past_singlestep_breakpoint)
1059 {
1060 /* The situation here is as follows. In thread T1 we wanted to
1061 single-step. Lacking hardware single-stepping we've
1062 set breakpoint at the PC of the next instruction -- call it
1063 P. After resuming, we've hit that breakpoint in thread T2.
1064 Now we've removed original breakpoint, inserted breakpoint
1065 at P+1, and try to step to advance T2 past breakpoint.
1066 We need to step only T2, as if T1 is allowed to freely run,
1067 it can run past P, and if other threads are allowed to run,
1068 they can hit breakpoint at P+1, and nested hits of single-step
1069 breakpoints is not something we'd want -- that's complicated
1070 to support, and has no value. */
1071 resume_ptid = inferior_ptid;
1072 }
1073
1074 if ((step || singlestep_breakpoints_inserted_p)
1075 && stepping_over_breakpoint)
1076 {
1077 /* We're allowing a thread to run past a breakpoint it has
1078 hit, by single-stepping the thread with the breakpoint
1079 removed. In which case, we need to single-step only this
1080 thread, and keep others stopped, as they can miss this
1081 breakpoint if allowed to run.
1082
1083 The current code actually removes all breakpoints when
1084 doing this, not just the one being stepped over, so if we
1085 let other threads run, we can actually miss any
1086 breakpoint, not just the one at PC. */
1087 resume_ptid = inferior_ptid;
1088 }
1089
1090 if (non_stop)
1091 {
1092 /* With non-stop mode on, threads are always handled
1093 individually. */
1094 resume_ptid = inferior_ptid;
1095 }
1096 else if ((scheduler_mode == schedlock_on)
1097 || (scheduler_mode == schedlock_step
1098 && (step || singlestep_breakpoints_inserted_p)))
1099 {
1100 /* User-settable 'scheduler' mode requires solo thread resume. */
1101 resume_ptid = inferior_ptid;
1102 }
1103
1104 if (gdbarch_cannot_step_breakpoint (gdbarch))
1105 {
1106 /* Most targets can step a breakpoint instruction, thus
1107 executing it normally. But if this one cannot, just
1108 continue and we will hit it anyway. */
1109 if (step && breakpoint_inserted_here_p (pc))
1110 step = 0;
1111 }
1112
1113 if (debug_displaced
1114 && use_displaced_stepping (gdbarch)
1115 && stepping_over_breakpoint)
1116 {
1117 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1118 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1119 gdb_byte buf[4];
1120
1121 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1122 paddr_nz (actual_pc));
1123 read_memory (actual_pc, buf, sizeof (buf));
1124 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1125 }
1126
1127 target_resume (resume_ptid, step, sig);
1128 }
1129
1130 discard_cleanups (old_cleanups);
1131 }
1132 \f
1133 /* Proceeding. */
1134
1135 /* Clear out all variables saying what to do when inferior is continued.
1136 First do this, then set the ones you want, then call `proceed'. */
1137
1138 void
1139 clear_proceed_status (void)
1140 {
1141 stepping_over_breakpoint = 0;
1142 step_range_start = 0;
1143 step_range_end = 0;
1144 step_frame_id = null_frame_id;
1145 step_over_calls = STEP_OVER_UNDEBUGGABLE;
1146 stop_after_trap = 0;
1147 stop_soon = NO_STOP_QUIETLY;
1148 proceed_to_finish = 0;
1149 breakpoint_proceeded = 1; /* We're about to proceed... */
1150
1151 if (stop_registers)
1152 {
1153 regcache_xfree (stop_registers);
1154 stop_registers = NULL;
1155 }
1156
1157 /* Discard any remaining commands or status from previous stop. */
1158 bpstat_clear (&stop_bpstat);
1159 }
1160
1161 /* This should be suitable for any targets that support threads. */
1162
1163 static int
1164 prepare_to_proceed (int step)
1165 {
1166 ptid_t wait_ptid;
1167 struct target_waitstatus wait_status;
1168
1169 /* Get the last target status returned by target_wait(). */
1170 get_last_target_status (&wait_ptid, &wait_status);
1171
1172 /* Make sure we were stopped at a breakpoint. */
1173 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1174 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1175 {
1176 return 0;
1177 }
1178
1179 /* Switched over from WAIT_PID. */
1180 if (!ptid_equal (wait_ptid, minus_one_ptid)
1181 && !ptid_equal (inferior_ptid, wait_ptid))
1182 {
1183 struct regcache *regcache = get_thread_regcache (wait_ptid);
1184
1185 if (breakpoint_here_p (regcache_read_pc (regcache)))
1186 {
1187 /* If stepping, remember current thread to switch back to. */
1188 if (step)
1189 deferred_step_ptid = inferior_ptid;
1190
1191 /* Switch back to WAIT_PID thread. */
1192 switch_to_thread (wait_ptid);
1193
1194 /* We return 1 to indicate that there is a breakpoint here,
1195 so we need to step over it before continuing to avoid
1196 hitting it straight away. */
1197 return 1;
1198 }
1199 }
1200
1201 return 0;
1202 }
1203
1204 /* Record the pc of the program the last time it stopped. This is
1205 just used internally by wait_for_inferior, but need to be preserved
1206 over calls to it and cleared when the inferior is started. */
1207 static CORE_ADDR prev_pc;
1208
1209 /* Basic routine for continuing the program in various fashions.
1210
1211 ADDR is the address to resume at, or -1 for resume where stopped.
1212 SIGGNAL is the signal to give it, or 0 for none,
1213 or -1 for act according to how it stopped.
1214 STEP is nonzero if should trap after one instruction.
1215 -1 means return after that and print nothing.
1216 You should probably set various step_... variables
1217 before calling here, if you are stepping.
1218
1219 You should call clear_proceed_status before calling proceed. */
1220
1221 void
1222 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1223 {
1224 struct regcache *regcache = get_current_regcache ();
1225 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1226 CORE_ADDR pc = regcache_read_pc (regcache);
1227 int oneproc = 0;
1228
1229 if (step > 0)
1230 step_start_function = find_pc_function (pc);
1231 if (step < 0)
1232 stop_after_trap = 1;
1233
1234 if (addr == (CORE_ADDR) -1)
1235 {
1236 if (pc == stop_pc && breakpoint_here_p (pc))
1237 /* There is a breakpoint at the address we will resume at,
1238 step one instruction before inserting breakpoints so that
1239 we do not stop right away (and report a second hit at this
1240 breakpoint). */
1241 oneproc = 1;
1242 else if (gdbarch_single_step_through_delay_p (gdbarch)
1243 && gdbarch_single_step_through_delay (gdbarch,
1244 get_current_frame ()))
1245 /* We stepped onto an instruction that needs to be stepped
1246 again before re-inserting the breakpoint, do so. */
1247 oneproc = 1;
1248 }
1249 else
1250 {
1251 regcache_write_pc (regcache, addr);
1252 }
1253
1254 if (debug_infrun)
1255 fprintf_unfiltered (gdb_stdlog,
1256 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1257 paddr_nz (addr), siggnal, step);
1258
1259 if (non_stop)
1260 /* In non-stop, each thread is handled individually. The context
1261 must already be set to the right thread here. */
1262 ;
1263 else
1264 {
1265 /* In a multi-threaded task we may select another thread and
1266 then continue or step.
1267
1268 But if the old thread was stopped at a breakpoint, it will
1269 immediately cause another breakpoint stop without any
1270 execution (i.e. it will report a breakpoint hit incorrectly).
1271 So we must step over it first.
1272
1273 prepare_to_proceed checks the current thread against the
1274 thread that reported the most recent event. If a step-over
1275 is required it returns TRUE and sets the current thread to
1276 the old thread. */
1277 if (prepare_to_proceed (step))
1278 oneproc = 1;
1279 }
1280
1281 if (oneproc)
1282 {
1283 stepping_over_breakpoint = 1;
1284 /* If displaced stepping is enabled, we can step over the
1285 breakpoint without hitting it, so leave all breakpoints
1286 inserted. Otherwise we need to disable all breakpoints, step
1287 one instruction, and then re-add them when that step is
1288 finished. */
1289 if (!use_displaced_stepping (gdbarch))
1290 remove_breakpoints ();
1291 }
1292
1293 /* We can insert breakpoints if we're not trying to step over one,
1294 or if we are stepping over one but we're using displaced stepping
1295 to do so. */
1296 if (! stepping_over_breakpoint || use_displaced_stepping (gdbarch))
1297 insert_breakpoints ();
1298
1299 if (siggnal != TARGET_SIGNAL_DEFAULT)
1300 stop_signal = siggnal;
1301 /* If this signal should not be seen by program,
1302 give it zero. Used for debugging signals. */
1303 else if (!signal_program[stop_signal])
1304 stop_signal = TARGET_SIGNAL_0;
1305
1306 annotate_starting ();
1307
1308 /* Make sure that output from GDB appears before output from the
1309 inferior. */
1310 gdb_flush (gdb_stdout);
1311
1312 /* Refresh prev_pc value just prior to resuming. This used to be
1313 done in stop_stepping, however, setting prev_pc there did not handle
1314 scenarios such as inferior function calls or returning from
1315 a function via the return command. In those cases, the prev_pc
1316 value was not set properly for subsequent commands. The prev_pc value
1317 is used to initialize the starting line number in the ecs. With an
1318 invalid value, the gdb next command ends up stopping at the position
1319 represented by the next line table entry past our start position.
1320 On platforms that generate one line table entry per line, this
1321 is not a problem. However, on the ia64, the compiler generates
1322 extraneous line table entries that do not increase the line number.
1323 When we issue the gdb next command on the ia64 after an inferior call
1324 or a return command, we often end up a few instructions forward, still
1325 within the original line we started.
1326
1327 An attempt was made to have init_execution_control_state () refresh
1328 the prev_pc value before calculating the line number. This approach
1329 did not work because on platforms that use ptrace, the pc register
1330 cannot be read unless the inferior is stopped. At that point, we
1331 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1332 call can fail. Setting the prev_pc value here ensures the value is
1333 updated correctly when the inferior is stopped. */
1334 prev_pc = regcache_read_pc (get_current_regcache ());
1335
1336 /* Fill in with reasonable starting values. */
1337 init_thread_stepping_state (tss);
1338
1339 /* Reset to normal state. */
1340 init_infwait_state ();
1341
1342 /* Resume inferior. */
1343 resume (oneproc || step || bpstat_should_step (), stop_signal);
1344
1345 /* Wait for it to stop (if not standalone)
1346 and in any case decode why it stopped, and act accordingly. */
1347 /* Do this only if we are not using the event loop, or if the target
1348 does not support asynchronous execution. */
1349 if (!target_can_async_p ())
1350 {
1351 wait_for_inferior (0);
1352 normal_stop ();
1353 }
1354 }
1355 \f
1356
1357 /* Start remote-debugging of a machine over a serial link. */
1358
1359 void
1360 start_remote (int from_tty)
1361 {
1362 init_wait_for_inferior ();
1363 stop_soon = STOP_QUIETLY_REMOTE;
1364 stepping_over_breakpoint = 0;
1365
1366 /* Always go on waiting for the target, regardless of the mode. */
1367 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1368 indicate to wait_for_inferior that a target should timeout if
1369 nothing is returned (instead of just blocking). Because of this,
1370 targets expecting an immediate response need to, internally, set
1371 things up so that the target_wait() is forced to eventually
1372 timeout. */
1373 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1374 differentiate to its caller what the state of the target is after
1375 the initial open has been performed. Here we're assuming that
1376 the target has stopped. It should be possible to eventually have
1377 target_open() return to the caller an indication that the target
1378 is currently running and GDB state should be set to the same as
1379 for an async run. */
1380 wait_for_inferior (0);
1381
1382 /* Now that the inferior has stopped, do any bookkeeping like
1383 loading shared libraries. We want to do this before normal_stop,
1384 so that the displayed frame is up to date. */
1385 post_create_inferior (&current_target, from_tty);
1386
1387 normal_stop ();
1388 }
1389
1390 /* Initialize static vars when a new inferior begins. */
1391
1392 void
1393 init_wait_for_inferior (void)
1394 {
1395 /* These are meaningless until the first time through wait_for_inferior. */
1396 prev_pc = 0;
1397
1398 breakpoint_init_inferior (inf_starting);
1399
1400 /* Don't confuse first call to proceed(). */
1401 stop_signal = TARGET_SIGNAL_0;
1402
1403 /* The first resume is not following a fork/vfork/exec. */
1404 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1405
1406 clear_proceed_status ();
1407
1408 stepping_past_singlestep_breakpoint = 0;
1409 deferred_step_ptid = null_ptid;
1410
1411 target_last_wait_ptid = minus_one_ptid;
1412
1413 init_thread_stepping_state (tss);
1414 previous_inferior_ptid = null_ptid;
1415 init_infwait_state ();
1416
1417 displaced_step_clear ();
1418 }
1419
1420 \f
1421 /* This enum encodes possible reasons for doing a target_wait, so that
1422 wfi can call target_wait in one place. (Ultimately the call will be
1423 moved out of the infinite loop entirely.) */
1424
1425 enum infwait_states
1426 {
1427 infwait_normal_state,
1428 infwait_thread_hop_state,
1429 infwait_step_watch_state,
1430 infwait_nonstep_watch_state
1431 };
1432
1433 /* Why did the inferior stop? Used to print the appropriate messages
1434 to the interface from within handle_inferior_event(). */
1435 enum inferior_stop_reason
1436 {
1437 /* Step, next, nexti, stepi finished. */
1438 END_STEPPING_RANGE,
1439 /* Inferior terminated by signal. */
1440 SIGNAL_EXITED,
1441 /* Inferior exited. */
1442 EXITED,
1443 /* Inferior received signal, and user asked to be notified. */
1444 SIGNAL_RECEIVED
1445 };
1446
1447 /* The PTID we'll do a target_wait on.*/
1448 ptid_t waiton_ptid;
1449
1450 /* Current inferior wait state. */
1451 enum infwait_states infwait_state;
1452
1453 /* Data to be passed around while handling an event. This data is
1454 discarded between events. */
1455 struct execution_control_state
1456 {
1457 ptid_t ptid;
1458 struct target_waitstatus ws;
1459 int random_signal;
1460 CORE_ADDR stop_func_start;
1461 CORE_ADDR stop_func_end;
1462 char *stop_func_name;
1463 int new_thread_event;
1464 int wait_some_more;
1465 };
1466
1467 void init_execution_control_state (struct execution_control_state *ecs);
1468
1469 void handle_inferior_event (struct execution_control_state *ecs);
1470
1471 static void step_into_function (struct execution_control_state *ecs);
1472 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1473 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1474 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1475 struct frame_id sr_id);
1476 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1477
1478 static void stop_stepping (struct execution_control_state *ecs);
1479 static void prepare_to_wait (struct execution_control_state *ecs);
1480 static void keep_going (struct execution_control_state *ecs);
1481 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1482 int stop_info);
1483
1484 /* Wait for control to return from inferior to debugger.
1485
1486 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1487 as if they were SIGTRAP signals. This can be useful during
1488 the startup sequence on some targets such as HP/UX, where
1489 we receive an EXEC event instead of the expected SIGTRAP.
1490
1491 If inferior gets a signal, we may decide to start it up again
1492 instead of returning. That is why there is a loop in this function.
1493 When this function actually returns it means the inferior
1494 should be left stopped and GDB should read more commands. */
1495
1496 void
1497 wait_for_inferior (int treat_exec_as_sigtrap)
1498 {
1499 struct cleanup *old_cleanups;
1500 struct execution_control_state ecss;
1501 struct execution_control_state *ecs;
1502
1503 if (debug_infrun)
1504 fprintf_unfiltered
1505 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1506 treat_exec_as_sigtrap);
1507
1508 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1509 &step_resume_breakpoint);
1510
1511 ecs = &ecss;
1512 memset (ecs, 0, sizeof (*ecs));
1513
1514 overlay_cache_invalid = 1;
1515
1516 /* We'll update this if & when we switch to a new thread. */
1517 previous_inferior_ptid = inferior_ptid;
1518
1519 /* We have to invalidate the registers BEFORE calling target_wait
1520 because they can be loaded from the target while in target_wait.
1521 This makes remote debugging a bit more efficient for those
1522 targets that provide critical registers as part of their normal
1523 status mechanism. */
1524
1525 registers_changed ();
1526
1527 while (1)
1528 {
1529 if (deprecated_target_wait_hook)
1530 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1531 else
1532 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1533
1534 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1535 {
1536 xfree (ecs->ws.value.execd_pathname);
1537 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1538 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1539 }
1540
1541 /* Now figure out what to do with the result of the result. */
1542 handle_inferior_event (ecs);
1543
1544 if (!ecs->wait_some_more)
1545 break;
1546 }
1547 do_cleanups (old_cleanups);
1548 }
1549
1550 /* Asynchronous version of wait_for_inferior. It is called by the
1551 event loop whenever a change of state is detected on the file
1552 descriptor corresponding to the target. It can be called more than
1553 once to complete a single execution command. In such cases we need
1554 to keep the state in a global variable ECSS. If it is the last time
1555 that this function is called for a single execution command, then
1556 report to the user that the inferior has stopped, and do the
1557 necessary cleanups. */
1558
1559 void
1560 fetch_inferior_event (void *client_data)
1561 {
1562 struct execution_control_state ecss;
1563 struct execution_control_state *ecs = &ecss;
1564 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1565 int was_sync = sync_execution;
1566
1567 memset (ecs, 0, sizeof (*ecs));
1568
1569 overlay_cache_invalid = 1;
1570
1571 /* We can only rely on wait_for_more being correct before handling
1572 the event in all-stop, but previous_inferior_ptid isn't used in
1573 non-stop. */
1574 if (!ecs->wait_some_more)
1575 /* We'll update this if & when we switch to a new thread. */
1576 previous_inferior_ptid = inferior_ptid;
1577
1578 if (non_stop)
1579 /* In non-stop mode, the user/frontend should not notice a thread
1580 switch due to internal events. Make sure we reverse to the
1581 user selected thread and frame after handling the event and
1582 running any breakpoint commands. */
1583 make_cleanup_restore_current_thread ();
1584
1585 /* We have to invalidate the registers BEFORE calling target_wait
1586 because they can be loaded from the target while in target_wait.
1587 This makes remote debugging a bit more efficient for those
1588 targets that provide critical registers as part of their normal
1589 status mechanism. */
1590
1591 registers_changed ();
1592
1593 if (deprecated_target_wait_hook)
1594 ecs->ptid =
1595 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1596 else
1597 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1598
1599 if (non_stop
1600 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1601 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1602 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1603 /* In non-stop mode, each thread is handled individually. Switch
1604 early, so the global state is set correctly for this
1605 thread. */
1606 context_switch (ecs->ptid);
1607
1608 /* Now figure out what to do with the result of the result. */
1609 handle_inferior_event (ecs);
1610
1611 if (!ecs->wait_some_more)
1612 {
1613 delete_step_resume_breakpoint (&step_resume_breakpoint);
1614
1615 if (stop_soon == NO_STOP_QUIETLY)
1616 normal_stop ();
1617
1618 if (step_multi && stop_step)
1619 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1620 else
1621 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1622 }
1623
1624 /* Revert thread and frame. */
1625 do_cleanups (old_chain);
1626
1627 /* If the inferior was in sync execution mode, and now isn't,
1628 restore the prompt. */
1629 if (was_sync && !sync_execution)
1630 display_gdb_prompt (0);
1631 }
1632
1633 /* Prepare an execution control state for looping through a
1634 wait_for_inferior-type loop. */
1635
1636 void
1637 init_execution_control_state (struct execution_control_state *ecs)
1638 {
1639 ecs->random_signal = 0;
1640 }
1641
1642 /* Clear context switchable stepping state. */
1643
1644 void
1645 init_thread_stepping_state (struct thread_stepping_state *tss)
1646 {
1647 struct symtab_and_line sal;
1648
1649 tss->stepping_over_breakpoint = 0;
1650 tss->step_after_step_resume_breakpoint = 0;
1651 tss->stepping_through_solib_after_catch = 0;
1652 tss->stepping_through_solib_catchpoints = NULL;
1653
1654 sal = find_pc_line (prev_pc, 0);
1655 tss->current_line = sal.line;
1656 tss->current_symtab = sal.symtab;
1657 }
1658
1659 /* Return the cached copy of the last pid/waitstatus returned by
1660 target_wait()/deprecated_target_wait_hook(). The data is actually
1661 cached by handle_inferior_event(), which gets called immediately
1662 after target_wait()/deprecated_target_wait_hook(). */
1663
1664 void
1665 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1666 {
1667 *ptidp = target_last_wait_ptid;
1668 *status = target_last_waitstatus;
1669 }
1670
1671 void
1672 nullify_last_target_wait_ptid (void)
1673 {
1674 target_last_wait_ptid = minus_one_ptid;
1675 }
1676
1677 /* Switch thread contexts, maintaining "infrun state". */
1678
1679 static void
1680 context_switch (ptid_t ptid)
1681 {
1682 /* Caution: it may happen that the new thread (or the old one!)
1683 is not in the thread list. In this case we must not attempt
1684 to "switch context", or we run the risk that our context may
1685 be lost. This may happen as a result of the target module
1686 mishandling thread creation. */
1687
1688 if (debug_infrun)
1689 {
1690 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1691 target_pid_to_str (inferior_ptid));
1692 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1693 target_pid_to_str (ptid));
1694 }
1695
1696 if (in_thread_list (inferior_ptid) && in_thread_list (ptid))
1697 { /* Perform infrun state context switch: */
1698 /* Save infrun state for the old thread. */
1699 save_infrun_state (inferior_ptid, prev_pc,
1700 stepping_over_breakpoint, step_resume_breakpoint,
1701 step_range_start,
1702 step_range_end, &step_frame_id,
1703 tss->stepping_over_breakpoint,
1704 tss->stepping_through_solib_after_catch,
1705 tss->stepping_through_solib_catchpoints,
1706 tss->current_line, tss->current_symtab,
1707 cmd_continuation, intermediate_continuation,
1708 proceed_to_finish,
1709 step_over_calls,
1710 stop_step,
1711 step_multi,
1712 stop_signal,
1713 stop_bpstat);
1714
1715 /* Load infrun state for the new thread. */
1716 load_infrun_state (ptid, &prev_pc,
1717 &stepping_over_breakpoint, &step_resume_breakpoint,
1718 &step_range_start,
1719 &step_range_end, &step_frame_id,
1720 &tss->stepping_over_breakpoint,
1721 &tss->stepping_through_solib_after_catch,
1722 &tss->stepping_through_solib_catchpoints,
1723 &tss->current_line, &tss->current_symtab,
1724 &cmd_continuation, &intermediate_continuation,
1725 &proceed_to_finish,
1726 &step_over_calls,
1727 &stop_step,
1728 &step_multi,
1729 &stop_signal,
1730 &stop_bpstat);
1731 }
1732
1733 switch_to_thread (ptid);
1734 }
1735
1736 /* Context switch to thread PTID. */
1737 ptid_t
1738 context_switch_to (ptid_t ptid)
1739 {
1740 ptid_t current_ptid = inferior_ptid;
1741
1742 /* Context switch to the new thread. */
1743 if (!ptid_equal (ptid, inferior_ptid))
1744 {
1745 context_switch (ptid);
1746 }
1747 return current_ptid;
1748 }
1749
1750 static void
1751 adjust_pc_after_break (struct execution_control_state *ecs)
1752 {
1753 struct regcache *regcache;
1754 struct gdbarch *gdbarch;
1755 CORE_ADDR breakpoint_pc;
1756
1757 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1758 we aren't, just return.
1759
1760 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1761 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1762 implemented by software breakpoints should be handled through the normal
1763 breakpoint layer.
1764
1765 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1766 different signals (SIGILL or SIGEMT for instance), but it is less
1767 clear where the PC is pointing afterwards. It may not match
1768 gdbarch_decr_pc_after_break. I don't know any specific target that
1769 generates these signals at breakpoints (the code has been in GDB since at
1770 least 1992) so I can not guess how to handle them here.
1771
1772 In earlier versions of GDB, a target with
1773 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1774 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1775 target with both of these set in GDB history, and it seems unlikely to be
1776 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1777
1778 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1779 return;
1780
1781 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1782 return;
1783
1784 /* If this target does not decrement the PC after breakpoints, then
1785 we have nothing to do. */
1786 regcache = get_thread_regcache (ecs->ptid);
1787 gdbarch = get_regcache_arch (regcache);
1788 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
1789 return;
1790
1791 /* Find the location where (if we've hit a breakpoint) the
1792 breakpoint would be. */
1793 breakpoint_pc = regcache_read_pc (regcache)
1794 - gdbarch_decr_pc_after_break (gdbarch);
1795
1796 /* Check whether there actually is a software breakpoint inserted
1797 at that location. */
1798 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1799 {
1800 /* When using hardware single-step, a SIGTRAP is reported for both
1801 a completed single-step and a software breakpoint. Need to
1802 differentiate between the two, as the latter needs adjusting
1803 but the former does not.
1804
1805 The SIGTRAP can be due to a completed hardware single-step only if
1806 - we didn't insert software single-step breakpoints
1807 - the thread to be examined is still the current thread
1808 - this thread is currently being stepped
1809
1810 If any of these events did not occur, we must have stopped due
1811 to hitting a software breakpoint, and have to back up to the
1812 breakpoint address.
1813
1814 As a special case, we could have hardware single-stepped a
1815 software breakpoint. In this case (prev_pc == breakpoint_pc),
1816 we also need to back up to the breakpoint address. */
1817
1818 if (singlestep_breakpoints_inserted_p
1819 || !ptid_equal (ecs->ptid, inferior_ptid)
1820 || !currently_stepping (tss)
1821 || prev_pc == breakpoint_pc)
1822 regcache_write_pc (regcache, breakpoint_pc);
1823 }
1824 }
1825
1826 void
1827 init_infwait_state (void)
1828 {
1829 waiton_ptid = pid_to_ptid (-1);
1830 infwait_state = infwait_normal_state;
1831 }
1832
1833 void
1834 error_is_running (void)
1835 {
1836 error (_("\
1837 Cannot execute this command while the selected thread is running."));
1838 }
1839
1840 void
1841 ensure_not_running (void)
1842 {
1843 if (is_running (inferior_ptid))
1844 error_is_running ();
1845 }
1846
1847 /* Given an execution control state that has been freshly filled in
1848 by an event from the inferior, figure out what it means and take
1849 appropriate action. */
1850
1851 void
1852 handle_inferior_event (struct execution_control_state *ecs)
1853 {
1854 int sw_single_step_trap_p = 0;
1855 int stopped_by_watchpoint;
1856 int stepped_after_stopped_by_watchpoint = 0;
1857 struct symtab_and_line stop_pc_sal;
1858
1859 breakpoint_retire_moribund ();
1860
1861 /* Cache the last pid/waitstatus. */
1862 target_last_wait_ptid = ecs->ptid;
1863 target_last_waitstatus = ecs->ws;
1864
1865 /* Always clear state belonging to the previous time we stopped. */
1866 stop_stack_dummy = 0;
1867
1868 adjust_pc_after_break (ecs);
1869
1870 reinit_frame_cache ();
1871
1872 /* If it's a new process, add it to the thread database */
1873
1874 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1875 && !ptid_equal (ecs->ptid, minus_one_ptid)
1876 && !in_thread_list (ecs->ptid));
1877
1878 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1879 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1880 add_thread (ecs->ptid);
1881
1882 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
1883 {
1884 /* Mark the non-executing threads accordingly. */
1885 if (!non_stop
1886 || ecs->ws.kind == TARGET_WAITKIND_EXITED
1887 || ecs->ws.kind == TARGET_WAITKIND_SIGNALLED)
1888 set_executing (pid_to_ptid (-1), 0);
1889 else
1890 set_executing (ecs->ptid, 0);
1891 }
1892
1893 switch (infwait_state)
1894 {
1895 case infwait_thread_hop_state:
1896 if (debug_infrun)
1897 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1898 /* Cancel the waiton_ptid. */
1899 waiton_ptid = pid_to_ptid (-1);
1900 break;
1901
1902 case infwait_normal_state:
1903 if (debug_infrun)
1904 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1905 break;
1906
1907 case infwait_step_watch_state:
1908 if (debug_infrun)
1909 fprintf_unfiltered (gdb_stdlog,
1910 "infrun: infwait_step_watch_state\n");
1911
1912 stepped_after_stopped_by_watchpoint = 1;
1913 break;
1914
1915 case infwait_nonstep_watch_state:
1916 if (debug_infrun)
1917 fprintf_unfiltered (gdb_stdlog,
1918 "infrun: infwait_nonstep_watch_state\n");
1919 insert_breakpoints ();
1920
1921 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1922 handle things like signals arriving and other things happening
1923 in combination correctly? */
1924 stepped_after_stopped_by_watchpoint = 1;
1925 break;
1926
1927 default:
1928 internal_error (__FILE__, __LINE__, _("bad switch"));
1929 }
1930 infwait_state = infwait_normal_state;
1931
1932 switch (ecs->ws.kind)
1933 {
1934 case TARGET_WAITKIND_LOADED:
1935 if (debug_infrun)
1936 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1937 /* Ignore gracefully during startup of the inferior, as it might
1938 be the shell which has just loaded some objects, otherwise
1939 add the symbols for the newly loaded objects. Also ignore at
1940 the beginning of an attach or remote session; we will query
1941 the full list of libraries once the connection is
1942 established. */
1943 if (stop_soon == NO_STOP_QUIETLY)
1944 {
1945 /* Check for any newly added shared libraries if we're
1946 supposed to be adding them automatically. Switch
1947 terminal for any messages produced by
1948 breakpoint_re_set. */
1949 target_terminal_ours_for_output ();
1950 /* NOTE: cagney/2003-11-25: Make certain that the target
1951 stack's section table is kept up-to-date. Architectures,
1952 (e.g., PPC64), use the section table to perform
1953 operations such as address => section name and hence
1954 require the table to contain all sections (including
1955 those found in shared libraries). */
1956 /* NOTE: cagney/2003-11-25: Pass current_target and not
1957 exec_ops to SOLIB_ADD. This is because current GDB is
1958 only tooled to propagate section_table changes out from
1959 the "current_target" (see target_resize_to_sections), and
1960 not up from the exec stratum. This, of course, isn't
1961 right. "infrun.c" should only interact with the
1962 exec/process stratum, instead relying on the target stack
1963 to propagate relevant changes (stop, section table
1964 changed, ...) up to other layers. */
1965 #ifdef SOLIB_ADD
1966 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1967 #else
1968 solib_add (NULL, 0, &current_target, auto_solib_add);
1969 #endif
1970 target_terminal_inferior ();
1971
1972 /* If requested, stop when the dynamic linker notifies
1973 gdb of events. This allows the user to get control
1974 and place breakpoints in initializer routines for
1975 dynamically loaded objects (among other things). */
1976 if (stop_on_solib_events)
1977 {
1978 stop_stepping (ecs);
1979 return;
1980 }
1981
1982 /* NOTE drow/2007-05-11: This might be a good place to check
1983 for "catch load". */
1984 }
1985
1986 /* If we are skipping through a shell, or through shared library
1987 loading that we aren't interested in, resume the program. If
1988 we're running the program normally, also resume. But stop if
1989 we're attaching or setting up a remote connection. */
1990 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1991 {
1992 /* Loading of shared libraries might have changed breakpoint
1993 addresses. Make sure new breakpoints are inserted. */
1994 if (stop_soon == NO_STOP_QUIETLY
1995 && !breakpoints_always_inserted_mode ())
1996 insert_breakpoints ();
1997 resume (0, TARGET_SIGNAL_0);
1998 prepare_to_wait (ecs);
1999 return;
2000 }
2001
2002 break;
2003
2004 case TARGET_WAITKIND_SPURIOUS:
2005 if (debug_infrun)
2006 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2007 resume (0, TARGET_SIGNAL_0);
2008 prepare_to_wait (ecs);
2009 return;
2010
2011 case TARGET_WAITKIND_EXITED:
2012 if (debug_infrun)
2013 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2014 target_terminal_ours (); /* Must do this before mourn anyway */
2015 print_stop_reason (EXITED, ecs->ws.value.integer);
2016
2017 /* Record the exit code in the convenience variable $_exitcode, so
2018 that the user can inspect this again later. */
2019 set_internalvar (lookup_internalvar ("_exitcode"),
2020 value_from_longest (builtin_type_int,
2021 (LONGEST) ecs->ws.value.integer));
2022 gdb_flush (gdb_stdout);
2023 target_mourn_inferior ();
2024 singlestep_breakpoints_inserted_p = 0;
2025 stop_print_frame = 0;
2026 stop_stepping (ecs);
2027 return;
2028
2029 case TARGET_WAITKIND_SIGNALLED:
2030 if (debug_infrun)
2031 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2032 stop_print_frame = 0;
2033 stop_signal = ecs->ws.value.sig;
2034 target_terminal_ours (); /* Must do this before mourn anyway */
2035
2036 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2037 reach here unless the inferior is dead. However, for years
2038 target_kill() was called here, which hints that fatal signals aren't
2039 really fatal on some systems. If that's true, then some changes
2040 may be needed. */
2041 target_mourn_inferior ();
2042
2043 print_stop_reason (SIGNAL_EXITED, stop_signal);
2044 singlestep_breakpoints_inserted_p = 0;
2045 stop_stepping (ecs);
2046 return;
2047
2048 /* The following are the only cases in which we keep going;
2049 the above cases end in a continue or goto. */
2050 case TARGET_WAITKIND_FORKED:
2051 case TARGET_WAITKIND_VFORKED:
2052 if (debug_infrun)
2053 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2054 stop_signal = TARGET_SIGNAL_TRAP;
2055 pending_follow.kind = ecs->ws.kind;
2056
2057 pending_follow.fork_event.parent_pid = ecs->ptid;
2058 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
2059
2060 if (!ptid_equal (ecs->ptid, inferior_ptid))
2061 {
2062 context_switch (ecs->ptid);
2063 reinit_frame_cache ();
2064 }
2065
2066 stop_pc = read_pc ();
2067
2068 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2069
2070 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2071
2072 /* If no catchpoint triggered for this, then keep going. */
2073 if (ecs->random_signal)
2074 {
2075 stop_signal = TARGET_SIGNAL_0;
2076 keep_going (ecs);
2077 return;
2078 }
2079 goto process_event_stop_test;
2080
2081 case TARGET_WAITKIND_EXECD:
2082 if (debug_infrun)
2083 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2084 stop_signal = TARGET_SIGNAL_TRAP;
2085
2086 pending_follow.execd_pathname =
2087 savestring (ecs->ws.value.execd_pathname,
2088 strlen (ecs->ws.value.execd_pathname));
2089
2090 /* This causes the eventpoints and symbol table to be reset. Must
2091 do this now, before trying to determine whether to stop. */
2092 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2093 xfree (pending_follow.execd_pathname);
2094
2095 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2096
2097 {
2098 /* The breakpoints module may need to touch the inferior's
2099 memory. Switch to the (stopped) event ptid
2100 momentarily. */
2101 ptid_t saved_inferior_ptid = inferior_ptid;
2102 inferior_ptid = ecs->ptid;
2103
2104 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2105
2106 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2107 inferior_ptid = saved_inferior_ptid;
2108 }
2109
2110 if (!ptid_equal (ecs->ptid, inferior_ptid))
2111 {
2112 context_switch (ecs->ptid);
2113 reinit_frame_cache ();
2114 }
2115
2116 /* If no catchpoint triggered for this, then keep going. */
2117 if (ecs->random_signal)
2118 {
2119 stop_signal = TARGET_SIGNAL_0;
2120 keep_going (ecs);
2121 return;
2122 }
2123 goto process_event_stop_test;
2124
2125 /* Be careful not to try to gather much state about a thread
2126 that's in a syscall. It's frequently a losing proposition. */
2127 case TARGET_WAITKIND_SYSCALL_ENTRY:
2128 if (debug_infrun)
2129 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2130 resume (0, TARGET_SIGNAL_0);
2131 prepare_to_wait (ecs);
2132 return;
2133
2134 /* Before examining the threads further, step this thread to
2135 get it entirely out of the syscall. (We get notice of the
2136 event when the thread is just on the verge of exiting a
2137 syscall. Stepping one instruction seems to get it back
2138 into user code.) */
2139 case TARGET_WAITKIND_SYSCALL_RETURN:
2140 if (debug_infrun)
2141 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2142 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2143 prepare_to_wait (ecs);
2144 return;
2145
2146 case TARGET_WAITKIND_STOPPED:
2147 if (debug_infrun)
2148 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2149 stop_signal = ecs->ws.value.sig;
2150 break;
2151
2152 /* We had an event in the inferior, but we are not interested
2153 in handling it at this level. The lower layers have already
2154 done what needs to be done, if anything.
2155
2156 One of the possible circumstances for this is when the
2157 inferior produces output for the console. The inferior has
2158 not stopped, and we are ignoring the event. Another possible
2159 circumstance is any event which the lower level knows will be
2160 reported multiple times without an intervening resume. */
2161 case TARGET_WAITKIND_IGNORE:
2162 if (debug_infrun)
2163 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2164 prepare_to_wait (ecs);
2165 return;
2166 }
2167
2168 if (ecs->new_thread_event)
2169 {
2170 if (non_stop)
2171 /* Non-stop assumes that the target handles adding new threads
2172 to the thread list. */
2173 internal_error (__FILE__, __LINE__, "\
2174 targets should add new threads to the thread list themselves in non-stop mode.");
2175
2176 /* We may want to consider not doing a resume here in order to
2177 give the user a chance to play with the new thread. It might
2178 be good to make that a user-settable option. */
2179
2180 /* At this point, all threads are stopped (happens automatically
2181 in either the OS or the native code). Therefore we need to
2182 continue all threads in order to make progress. */
2183
2184 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2185 prepare_to_wait (ecs);
2186 return;
2187 }
2188
2189 /* Do we need to clean up the state of a thread that has completed a
2190 displaced single-step? (Doing so usually affects the PC, so do
2191 it here, before we set stop_pc.) */
2192 displaced_step_fixup (ecs->ptid, stop_signal);
2193
2194 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2195
2196 if (debug_infrun)
2197 {
2198 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2199 paddr_nz (stop_pc));
2200 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2201 {
2202 CORE_ADDR addr;
2203 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2204
2205 if (target_stopped_data_address (&current_target, &addr))
2206 fprintf_unfiltered (gdb_stdlog,
2207 "infrun: stopped data address = 0x%s\n",
2208 paddr_nz (addr));
2209 else
2210 fprintf_unfiltered (gdb_stdlog,
2211 "infrun: (no data address available)\n");
2212 }
2213 }
2214
2215 if (stepping_past_singlestep_breakpoint)
2216 {
2217 gdb_assert (singlestep_breakpoints_inserted_p);
2218 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2219 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2220
2221 stepping_past_singlestep_breakpoint = 0;
2222
2223 /* We've either finished single-stepping past the single-step
2224 breakpoint, or stopped for some other reason. It would be nice if
2225 we could tell, but we can't reliably. */
2226 if (stop_signal == TARGET_SIGNAL_TRAP)
2227 {
2228 if (debug_infrun)
2229 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2230 /* Pull the single step breakpoints out of the target. */
2231 remove_single_step_breakpoints ();
2232 singlestep_breakpoints_inserted_p = 0;
2233
2234 ecs->random_signal = 0;
2235
2236 context_switch (saved_singlestep_ptid);
2237 if (deprecated_context_hook)
2238 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2239
2240 resume (1, TARGET_SIGNAL_0);
2241 prepare_to_wait (ecs);
2242 return;
2243 }
2244 }
2245
2246 stepping_past_singlestep_breakpoint = 0;
2247
2248 if (!ptid_equal (deferred_step_ptid, null_ptid))
2249 {
2250 /* In non-stop mode, there's never a deferred_step_ptid set. */
2251 gdb_assert (!non_stop);
2252
2253 /* If we stopped for some other reason than single-stepping, ignore
2254 the fact that we were supposed to switch back. */
2255 if (stop_signal == TARGET_SIGNAL_TRAP)
2256 {
2257 if (debug_infrun)
2258 fprintf_unfiltered (gdb_stdlog,
2259 "infrun: handling deferred step\n");
2260
2261 /* Pull the single step breakpoints out of the target. */
2262 if (singlestep_breakpoints_inserted_p)
2263 {
2264 remove_single_step_breakpoints ();
2265 singlestep_breakpoints_inserted_p = 0;
2266 }
2267
2268 /* Note: We do not call context_switch at this point, as the
2269 context is already set up for stepping the original thread. */
2270 switch_to_thread (deferred_step_ptid);
2271 deferred_step_ptid = null_ptid;
2272 /* Suppress spurious "Switching to ..." message. */
2273 previous_inferior_ptid = inferior_ptid;
2274
2275 resume (1, TARGET_SIGNAL_0);
2276 prepare_to_wait (ecs);
2277 return;
2278 }
2279
2280 deferred_step_ptid = null_ptid;
2281 }
2282
2283 /* See if a thread hit a thread-specific breakpoint that was meant for
2284 another thread. If so, then step that thread past the breakpoint,
2285 and continue it. */
2286
2287 if (stop_signal == TARGET_SIGNAL_TRAP)
2288 {
2289 int thread_hop_needed = 0;
2290
2291 /* Check if a regular breakpoint has been hit before checking
2292 for a potential single step breakpoint. Otherwise, GDB will
2293 not see this breakpoint hit when stepping onto breakpoints. */
2294 if (regular_breakpoint_inserted_here_p (stop_pc))
2295 {
2296 ecs->random_signal = 0;
2297 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2298 thread_hop_needed = 1;
2299 }
2300 else if (singlestep_breakpoints_inserted_p)
2301 {
2302 /* We have not context switched yet, so this should be true
2303 no matter which thread hit the singlestep breakpoint. */
2304 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2305 if (debug_infrun)
2306 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2307 "trap for %s\n",
2308 target_pid_to_str (ecs->ptid));
2309
2310 ecs->random_signal = 0;
2311 /* The call to in_thread_list is necessary because PTIDs sometimes
2312 change when we go from single-threaded to multi-threaded. If
2313 the singlestep_ptid is still in the list, assume that it is
2314 really different from ecs->ptid. */
2315 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2316 && in_thread_list (singlestep_ptid))
2317 {
2318 /* If the PC of the thread we were trying to single-step
2319 has changed, discard this event (which we were going
2320 to ignore anyway), and pretend we saw that thread
2321 trap. This prevents us continuously moving the
2322 single-step breakpoint forward, one instruction at a
2323 time. If the PC has changed, then the thread we were
2324 trying to single-step has trapped or been signalled,
2325 but the event has not been reported to GDB yet.
2326
2327 There might be some cases where this loses signal
2328 information, if a signal has arrived at exactly the
2329 same time that the PC changed, but this is the best
2330 we can do with the information available. Perhaps we
2331 should arrange to report all events for all threads
2332 when they stop, or to re-poll the remote looking for
2333 this particular thread (i.e. temporarily enable
2334 schedlock). */
2335
2336 CORE_ADDR new_singlestep_pc
2337 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2338
2339 if (new_singlestep_pc != singlestep_pc)
2340 {
2341 if (debug_infrun)
2342 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2343 " but expected thread advanced also\n");
2344
2345 /* The current context still belongs to
2346 singlestep_ptid. Don't swap here, since that's
2347 the context we want to use. Just fudge our
2348 state and continue. */
2349 ecs->ptid = singlestep_ptid;
2350 stop_pc = new_singlestep_pc;
2351 }
2352 else
2353 {
2354 if (debug_infrun)
2355 fprintf_unfiltered (gdb_stdlog,
2356 "infrun: unexpected thread\n");
2357
2358 thread_hop_needed = 1;
2359 stepping_past_singlestep_breakpoint = 1;
2360 saved_singlestep_ptid = singlestep_ptid;
2361 }
2362 }
2363 }
2364
2365 if (thread_hop_needed)
2366 {
2367 int remove_status = 0;
2368
2369 if (debug_infrun)
2370 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2371
2372 /* Saw a breakpoint, but it was hit by the wrong thread.
2373 Just continue. */
2374
2375 if (singlestep_breakpoints_inserted_p)
2376 {
2377 /* Pull the single step breakpoints out of the target. */
2378 remove_single_step_breakpoints ();
2379 singlestep_breakpoints_inserted_p = 0;
2380 }
2381
2382 /* If the arch can displace step, don't remove the
2383 breakpoints. */
2384 if (!use_displaced_stepping (current_gdbarch))
2385 remove_status = remove_breakpoints ();
2386
2387 /* Did we fail to remove breakpoints? If so, try
2388 to set the PC past the bp. (There's at least
2389 one situation in which we can fail to remove
2390 the bp's: On HP-UX's that use ttrace, we can't
2391 change the address space of a vforking child
2392 process until the child exits (well, okay, not
2393 then either :-) or execs. */
2394 if (remove_status != 0)
2395 error (_("Cannot step over breakpoint hit in wrong thread"));
2396 else
2397 { /* Single step */
2398 if (!ptid_equal (inferior_ptid, ecs->ptid))
2399 context_switch (ecs->ptid);
2400
2401 if (!non_stop)
2402 {
2403 /* Only need to require the next event from this
2404 thread in all-stop mode. */
2405 waiton_ptid = ecs->ptid;
2406 infwait_state = infwait_thread_hop_state;
2407 }
2408
2409 tss->stepping_over_breakpoint = 1;
2410 keep_going (ecs);
2411 registers_changed ();
2412 return;
2413 }
2414 }
2415 else if (singlestep_breakpoints_inserted_p)
2416 {
2417 sw_single_step_trap_p = 1;
2418 ecs->random_signal = 0;
2419 }
2420 }
2421 else
2422 ecs->random_signal = 1;
2423
2424 /* See if something interesting happened to the non-current thread. If
2425 so, then switch to that thread. */
2426 if (!ptid_equal (ecs->ptid, inferior_ptid))
2427 {
2428 if (debug_infrun)
2429 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2430
2431 context_switch (ecs->ptid);
2432
2433 if (deprecated_context_hook)
2434 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2435 }
2436
2437 if (singlestep_breakpoints_inserted_p)
2438 {
2439 /* Pull the single step breakpoints out of the target. */
2440 remove_single_step_breakpoints ();
2441 singlestep_breakpoints_inserted_p = 0;
2442 }
2443
2444 if (stepped_after_stopped_by_watchpoint)
2445 stopped_by_watchpoint = 0;
2446 else
2447 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2448
2449 /* If necessary, step over this watchpoint. We'll be back to display
2450 it in a moment. */
2451 if (stopped_by_watchpoint
2452 && (HAVE_STEPPABLE_WATCHPOINT
2453 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2454 {
2455 /* At this point, we are stopped at an instruction which has
2456 attempted to write to a piece of memory under control of
2457 a watchpoint. The instruction hasn't actually executed
2458 yet. If we were to evaluate the watchpoint expression
2459 now, we would get the old value, and therefore no change
2460 would seem to have occurred.
2461
2462 In order to make watchpoints work `right', we really need
2463 to complete the memory write, and then evaluate the
2464 watchpoint expression. We do this by single-stepping the
2465 target.
2466
2467 It may not be necessary to disable the watchpoint to stop over
2468 it. For example, the PA can (with some kernel cooperation)
2469 single step over a watchpoint without disabling the watchpoint.
2470
2471 It is far more common to need to disable a watchpoint to step
2472 the inferior over it. If we have non-steppable watchpoints,
2473 we must disable the current watchpoint; it's simplest to
2474 disable all watchpoints and breakpoints. */
2475
2476 if (!HAVE_STEPPABLE_WATCHPOINT)
2477 remove_breakpoints ();
2478 registers_changed ();
2479 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2480 waiton_ptid = ecs->ptid;
2481 if (HAVE_STEPPABLE_WATCHPOINT)
2482 infwait_state = infwait_step_watch_state;
2483 else
2484 infwait_state = infwait_nonstep_watch_state;
2485 prepare_to_wait (ecs);
2486 return;
2487 }
2488
2489 ecs->stop_func_start = 0;
2490 ecs->stop_func_end = 0;
2491 ecs->stop_func_name = 0;
2492 /* Don't care about return value; stop_func_start and stop_func_name
2493 will both be 0 if it doesn't work. */
2494 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2495 &ecs->stop_func_start, &ecs->stop_func_end);
2496 ecs->stop_func_start
2497 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2498 tss->stepping_over_breakpoint = 0;
2499 bpstat_clear (&stop_bpstat);
2500 stop_step = 0;
2501 stop_print_frame = 1;
2502 ecs->random_signal = 0;
2503 stopped_by_random_signal = 0;
2504
2505 if (stop_signal == TARGET_SIGNAL_TRAP
2506 && stepping_over_breakpoint
2507 && gdbarch_single_step_through_delay_p (current_gdbarch)
2508 && currently_stepping (tss))
2509 {
2510 /* We're trying to step off a breakpoint. Turns out that we're
2511 also on an instruction that needs to be stepped multiple
2512 times before it's been fully executing. E.g., architectures
2513 with a delay slot. It needs to be stepped twice, once for
2514 the instruction and once for the delay slot. */
2515 int step_through_delay
2516 = gdbarch_single_step_through_delay (current_gdbarch,
2517 get_current_frame ());
2518 if (debug_infrun && step_through_delay)
2519 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2520 if (step_range_end == 0 && step_through_delay)
2521 {
2522 /* The user issued a continue when stopped at a breakpoint.
2523 Set up for another trap and get out of here. */
2524 tss->stepping_over_breakpoint = 1;
2525 keep_going (ecs);
2526 return;
2527 }
2528 else if (step_through_delay)
2529 {
2530 /* The user issued a step when stopped at a breakpoint.
2531 Maybe we should stop, maybe we should not - the delay
2532 slot *might* correspond to a line of source. In any
2533 case, don't decide that here, just set
2534 ecs->stepping_over_breakpoint, making sure we
2535 single-step again before breakpoints are re-inserted. */
2536 tss->stepping_over_breakpoint = 1;
2537 }
2538 }
2539
2540 /* Look at the cause of the stop, and decide what to do.
2541 The alternatives are:
2542 1) stop_stepping and return; to really stop and return to the debugger,
2543 2) keep_going and return to start up again
2544 (set tss->stepping_over_breakpoint to 1 to single step once)
2545 3) set ecs->random_signal to 1, and the decision between 1 and 2
2546 will be made according to the signal handling tables. */
2547
2548 /* First, distinguish signals caused by the debugger from signals
2549 that have to do with the program's own actions. Note that
2550 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2551 on the operating system version. Here we detect when a SIGILL or
2552 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2553 something similar for SIGSEGV, since a SIGSEGV will be generated
2554 when we're trying to execute a breakpoint instruction on a
2555 non-executable stack. This happens for call dummy breakpoints
2556 for architectures like SPARC that place call dummies on the
2557 stack.
2558
2559 If we're doing a displaced step past a breakpoint, then the
2560 breakpoint is always inserted at the original instruction;
2561 non-standard signals can't be explained by the breakpoint. */
2562 if (stop_signal == TARGET_SIGNAL_TRAP
2563 || (! stepping_over_breakpoint
2564 && breakpoint_inserted_here_p (stop_pc)
2565 && (stop_signal == TARGET_SIGNAL_ILL
2566 || stop_signal == TARGET_SIGNAL_SEGV
2567 || stop_signal == TARGET_SIGNAL_EMT))
2568 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2569 || stop_soon == STOP_QUIETLY_REMOTE)
2570 {
2571 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2572 {
2573 if (debug_infrun)
2574 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2575 stop_print_frame = 0;
2576 stop_stepping (ecs);
2577 return;
2578 }
2579
2580 /* This is originated from start_remote(), start_inferior() and
2581 shared libraries hook functions. */
2582 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2583 {
2584 if (debug_infrun)
2585 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2586 stop_stepping (ecs);
2587 return;
2588 }
2589
2590 /* This originates from attach_command(). We need to overwrite
2591 the stop_signal here, because some kernels don't ignore a
2592 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2593 See more comments in inferior.h. On the other hand, if we
2594 get a non-SIGSTOP, report it to the user - assume the backend
2595 will handle the SIGSTOP if it should show up later.
2596
2597 Also consider that the attach is complete when we see a
2598 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2599 target extended-remote report it instead of a SIGSTOP
2600 (e.g. gdbserver). We already rely on SIGTRAP being our
2601 signal, so this is no exception. */
2602 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2603 && (stop_signal == TARGET_SIGNAL_STOP
2604 || stop_signal == TARGET_SIGNAL_TRAP))
2605 {
2606 stop_stepping (ecs);
2607 stop_signal = TARGET_SIGNAL_0;
2608 return;
2609 }
2610
2611 /* See if there is a breakpoint at the current PC. */
2612 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2613
2614 /* Following in case break condition called a
2615 function. */
2616 stop_print_frame = 1;
2617
2618 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2619 at one stage in the past included checks for an inferior
2620 function call's call dummy's return breakpoint. The original
2621 comment, that went with the test, read:
2622
2623 ``End of a stack dummy. Some systems (e.g. Sony news) give
2624 another signal besides SIGTRAP, so check here as well as
2625 above.''
2626
2627 If someone ever tries to get get call dummys on a
2628 non-executable stack to work (where the target would stop
2629 with something like a SIGSEGV), then those tests might need
2630 to be re-instated. Given, however, that the tests were only
2631 enabled when momentary breakpoints were not being used, I
2632 suspect that it won't be the case.
2633
2634 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2635 be necessary for call dummies on a non-executable stack on
2636 SPARC. */
2637
2638 if (stop_signal == TARGET_SIGNAL_TRAP)
2639 ecs->random_signal
2640 = !(bpstat_explains_signal (stop_bpstat)
2641 || stepping_over_breakpoint
2642 || (step_range_end && step_resume_breakpoint == NULL));
2643 else
2644 {
2645 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2646 if (!ecs->random_signal)
2647 stop_signal = TARGET_SIGNAL_TRAP;
2648 }
2649 }
2650
2651 /* When we reach this point, we've pretty much decided
2652 that the reason for stopping must've been a random
2653 (unexpected) signal. */
2654
2655 else
2656 ecs->random_signal = 1;
2657
2658 process_event_stop_test:
2659 /* For the program's own signals, act according to
2660 the signal handling tables. */
2661
2662 if (ecs->random_signal)
2663 {
2664 /* Signal not for debugging purposes. */
2665 int printed = 0;
2666
2667 if (debug_infrun)
2668 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2669
2670 stopped_by_random_signal = 1;
2671
2672 if (signal_print[stop_signal])
2673 {
2674 printed = 1;
2675 target_terminal_ours_for_output ();
2676 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2677 }
2678 if (signal_stop_state (stop_signal))
2679 {
2680 stop_stepping (ecs);
2681 return;
2682 }
2683 /* If not going to stop, give terminal back
2684 if we took it away. */
2685 else if (printed)
2686 target_terminal_inferior ();
2687
2688 /* Clear the signal if it should not be passed. */
2689 if (signal_program[stop_signal] == 0)
2690 stop_signal = TARGET_SIGNAL_0;
2691
2692 if (prev_pc == read_pc ()
2693 && stepping_over_breakpoint
2694 && step_resume_breakpoint == NULL)
2695 {
2696 /* We were just starting a new sequence, attempting to
2697 single-step off of a breakpoint and expecting a SIGTRAP.
2698 Instead this signal arrives. This signal will take us out
2699 of the stepping range so GDB needs to remember to, when
2700 the signal handler returns, resume stepping off that
2701 breakpoint. */
2702 /* To simplify things, "continue" is forced to use the same
2703 code paths as single-step - set a breakpoint at the
2704 signal return address and then, once hit, step off that
2705 breakpoint. */
2706 if (debug_infrun)
2707 fprintf_unfiltered (gdb_stdlog,
2708 "infrun: signal arrived while stepping over "
2709 "breakpoint\n");
2710
2711 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2712 tss->step_after_step_resume_breakpoint = 1;
2713 keep_going (ecs);
2714 return;
2715 }
2716
2717 if (step_range_end != 0
2718 && stop_signal != TARGET_SIGNAL_0
2719 && stop_pc >= step_range_start && stop_pc < step_range_end
2720 && frame_id_eq (get_frame_id (get_current_frame ()),
2721 step_frame_id)
2722 && step_resume_breakpoint == NULL)
2723 {
2724 /* The inferior is about to take a signal that will take it
2725 out of the single step range. Set a breakpoint at the
2726 current PC (which is presumably where the signal handler
2727 will eventually return) and then allow the inferior to
2728 run free.
2729
2730 Note that this is only needed for a signal delivered
2731 while in the single-step range. Nested signals aren't a
2732 problem as they eventually all return. */
2733 if (debug_infrun)
2734 fprintf_unfiltered (gdb_stdlog,
2735 "infrun: signal may take us out of "
2736 "single-step range\n");
2737
2738 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2739 keep_going (ecs);
2740 return;
2741 }
2742
2743 /* Note: step_resume_breakpoint may be non-NULL. This occures
2744 when either there's a nested signal, or when there's a
2745 pending signal enabled just as the signal handler returns
2746 (leaving the inferior at the step-resume-breakpoint without
2747 actually executing it). Either way continue until the
2748 breakpoint is really hit. */
2749 keep_going (ecs);
2750 return;
2751 }
2752
2753 /* Handle cases caused by hitting a breakpoint. */
2754 {
2755 CORE_ADDR jmp_buf_pc;
2756 struct bpstat_what what;
2757
2758 what = bpstat_what (stop_bpstat);
2759
2760 if (what.call_dummy)
2761 {
2762 stop_stack_dummy = 1;
2763 }
2764
2765 switch (what.main_action)
2766 {
2767 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2768 /* If we hit the breakpoint at longjmp while stepping, we
2769 install a momentary breakpoint at the target of the
2770 jmp_buf. */
2771
2772 if (debug_infrun)
2773 fprintf_unfiltered (gdb_stdlog,
2774 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2775
2776 tss->stepping_over_breakpoint = 1;
2777
2778 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2779 || !gdbarch_get_longjmp_target (current_gdbarch,
2780 get_current_frame (), &jmp_buf_pc))
2781 {
2782 if (debug_infrun)
2783 fprintf_unfiltered (gdb_stdlog, "\
2784 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
2785 keep_going (ecs);
2786 return;
2787 }
2788
2789 /* We're going to replace the current step-resume breakpoint
2790 with a longjmp-resume breakpoint. */
2791 if (step_resume_breakpoint != NULL)
2792 delete_step_resume_breakpoint (&step_resume_breakpoint);
2793
2794 /* Insert a breakpoint at resume address. */
2795 insert_longjmp_resume_breakpoint (jmp_buf_pc);
2796
2797 keep_going (ecs);
2798 return;
2799
2800 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2801 if (debug_infrun)
2802 fprintf_unfiltered (gdb_stdlog,
2803 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2804
2805 gdb_assert (step_resume_breakpoint != NULL);
2806 delete_step_resume_breakpoint (&step_resume_breakpoint);
2807
2808 stop_step = 1;
2809 print_stop_reason (END_STEPPING_RANGE, 0);
2810 stop_stepping (ecs);
2811 return;
2812
2813 case BPSTAT_WHAT_SINGLE:
2814 if (debug_infrun)
2815 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2816 tss->stepping_over_breakpoint = 1;
2817 /* Still need to check other stuff, at least the case
2818 where we are stepping and step out of the right range. */
2819 break;
2820
2821 case BPSTAT_WHAT_STOP_NOISY:
2822 if (debug_infrun)
2823 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2824 stop_print_frame = 1;
2825
2826 /* We are about to nuke the step_resume_breakpointt via the
2827 cleanup chain, so no need to worry about it here. */
2828
2829 stop_stepping (ecs);
2830 return;
2831
2832 case BPSTAT_WHAT_STOP_SILENT:
2833 if (debug_infrun)
2834 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2835 stop_print_frame = 0;
2836
2837 /* We are about to nuke the step_resume_breakpoin via the
2838 cleanup chain, so no need to worry about it here. */
2839
2840 stop_stepping (ecs);
2841 return;
2842
2843 case BPSTAT_WHAT_STEP_RESUME:
2844 /* This proably demands a more elegant solution, but, yeah
2845 right...
2846
2847 This function's use of the simple variable
2848 step_resume_breakpoint doesn't seem to accomodate
2849 simultaneously active step-resume bp's, although the
2850 breakpoint list certainly can.
2851
2852 If we reach here and step_resume_breakpoint is already
2853 NULL, then apparently we have multiple active
2854 step-resume bp's. We'll just delete the breakpoint we
2855 stopped at, and carry on.
2856
2857 Correction: what the code currently does is delete a
2858 step-resume bp, but it makes no effort to ensure that
2859 the one deleted is the one currently stopped at. MVS */
2860
2861 if (debug_infrun)
2862 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2863
2864 if (step_resume_breakpoint == NULL)
2865 {
2866 step_resume_breakpoint =
2867 bpstat_find_step_resume_breakpoint (stop_bpstat);
2868 }
2869 delete_step_resume_breakpoint (&step_resume_breakpoint);
2870 if (tss->step_after_step_resume_breakpoint)
2871 {
2872 /* Back when the step-resume breakpoint was inserted, we
2873 were trying to single-step off a breakpoint. Go back
2874 to doing that. */
2875 tss->step_after_step_resume_breakpoint = 0;
2876 tss->stepping_over_breakpoint = 1;
2877 keep_going (ecs);
2878 return;
2879 }
2880 break;
2881
2882 case BPSTAT_WHAT_CHECK_SHLIBS:
2883 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2884 {
2885 if (debug_infrun)
2886 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2887
2888 /* Check for any newly added shared libraries if we're
2889 supposed to be adding them automatically. Switch
2890 terminal for any messages produced by
2891 breakpoint_re_set. */
2892 target_terminal_ours_for_output ();
2893 /* NOTE: cagney/2003-11-25: Make certain that the target
2894 stack's section table is kept up-to-date. Architectures,
2895 (e.g., PPC64), use the section table to perform
2896 operations such as address => section name and hence
2897 require the table to contain all sections (including
2898 those found in shared libraries). */
2899 /* NOTE: cagney/2003-11-25: Pass current_target and not
2900 exec_ops to SOLIB_ADD. This is because current GDB is
2901 only tooled to propagate section_table changes out from
2902 the "current_target" (see target_resize_to_sections), and
2903 not up from the exec stratum. This, of course, isn't
2904 right. "infrun.c" should only interact with the
2905 exec/process stratum, instead relying on the target stack
2906 to propagate relevant changes (stop, section table
2907 changed, ...) up to other layers. */
2908 #ifdef SOLIB_ADD
2909 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2910 #else
2911 solib_add (NULL, 0, &current_target, auto_solib_add);
2912 #endif
2913 target_terminal_inferior ();
2914
2915 /* If requested, stop when the dynamic linker notifies
2916 gdb of events. This allows the user to get control
2917 and place breakpoints in initializer routines for
2918 dynamically loaded objects (among other things). */
2919 if (stop_on_solib_events || stop_stack_dummy)
2920 {
2921 stop_stepping (ecs);
2922 return;
2923 }
2924
2925 /* If we stopped due to an explicit catchpoint, then the
2926 (see above) call to SOLIB_ADD pulled in any symbols
2927 from a newly-loaded library, if appropriate.
2928
2929 We do want the inferior to stop, but not where it is
2930 now, which is in the dynamic linker callback. Rather,
2931 we would like it stop in the user's program, just after
2932 the call that caused this catchpoint to trigger. That
2933 gives the user a more useful vantage from which to
2934 examine their program's state. */
2935 else if (what.main_action
2936 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2937 {
2938 /* ??rehrauer: If I could figure out how to get the
2939 right return PC from here, we could just set a temp
2940 breakpoint and resume. I'm not sure we can without
2941 cracking open the dld's shared libraries and sniffing
2942 their unwind tables and text/data ranges, and that's
2943 not a terribly portable notion.
2944
2945 Until that time, we must step the inferior out of the
2946 dld callback, and also out of the dld itself (and any
2947 code or stubs in libdld.sl, such as "shl_load" and
2948 friends) until we reach non-dld code. At that point,
2949 we can stop stepping. */
2950 bpstat_get_triggered_catchpoints (stop_bpstat,
2951 &tss->
2952 stepping_through_solib_catchpoints);
2953 tss->stepping_through_solib_after_catch = 1;
2954
2955 /* Be sure to lift all breakpoints, so the inferior does
2956 actually step past this point... */
2957 tss->stepping_over_breakpoint = 1;
2958 break;
2959 }
2960 else
2961 {
2962 /* We want to step over this breakpoint, then keep going. */
2963 tss->stepping_over_breakpoint = 1;
2964 break;
2965 }
2966 }
2967 break;
2968
2969 case BPSTAT_WHAT_LAST:
2970 /* Not a real code, but listed here to shut up gcc -Wall. */
2971
2972 case BPSTAT_WHAT_KEEP_CHECKING:
2973 break;
2974 }
2975 }
2976
2977 /* We come here if we hit a breakpoint but should not
2978 stop for it. Possibly we also were stepping
2979 and should stop for that. So fall through and
2980 test for stepping. But, if not stepping,
2981 do not stop. */
2982
2983 /* Are we stepping to get the inferior out of the dynamic linker's
2984 hook (and possibly the dld itself) after catching a shlib
2985 event? */
2986 if (tss->stepping_through_solib_after_catch)
2987 {
2988 #if defined(SOLIB_ADD)
2989 /* Have we reached our destination? If not, keep going. */
2990 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2991 {
2992 if (debug_infrun)
2993 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2994 tss->stepping_over_breakpoint = 1;
2995 keep_going (ecs);
2996 return;
2997 }
2998 #endif
2999 if (debug_infrun)
3000 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
3001 /* Else, stop and report the catchpoint(s) whose triggering
3002 caused us to begin stepping. */
3003 tss->stepping_through_solib_after_catch = 0;
3004 bpstat_clear (&stop_bpstat);
3005 stop_bpstat = bpstat_copy (tss->stepping_through_solib_catchpoints);
3006 bpstat_clear (&tss->stepping_through_solib_catchpoints);
3007 stop_print_frame = 1;
3008 stop_stepping (ecs);
3009 return;
3010 }
3011
3012 if (step_resume_breakpoint)
3013 {
3014 if (debug_infrun)
3015 fprintf_unfiltered (gdb_stdlog,
3016 "infrun: step-resume breakpoint is inserted\n");
3017
3018 /* Having a step-resume breakpoint overrides anything
3019 else having to do with stepping commands until
3020 that breakpoint is reached. */
3021 keep_going (ecs);
3022 return;
3023 }
3024
3025 if (step_range_end == 0)
3026 {
3027 if (debug_infrun)
3028 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3029 /* Likewise if we aren't even stepping. */
3030 keep_going (ecs);
3031 return;
3032 }
3033
3034 /* If stepping through a line, keep going if still within it.
3035
3036 Note that step_range_end is the address of the first instruction
3037 beyond the step range, and NOT the address of the last instruction
3038 within it! */
3039 if (stop_pc >= step_range_start && stop_pc < step_range_end)
3040 {
3041 if (debug_infrun)
3042 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3043 paddr_nz (step_range_start),
3044 paddr_nz (step_range_end));
3045 keep_going (ecs);
3046 return;
3047 }
3048
3049 /* We stepped out of the stepping range. */
3050
3051 /* If we are stepping at the source level and entered the runtime
3052 loader dynamic symbol resolution code, we keep on single stepping
3053 until we exit the run time loader code and reach the callee's
3054 address. */
3055 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
3056 && in_solib_dynsym_resolve_code (stop_pc))
3057 {
3058 CORE_ADDR pc_after_resolver =
3059 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
3060
3061 if (debug_infrun)
3062 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3063
3064 if (pc_after_resolver)
3065 {
3066 /* Set up a step-resume breakpoint at the address
3067 indicated by SKIP_SOLIB_RESOLVER. */
3068 struct symtab_and_line sr_sal;
3069 init_sal (&sr_sal);
3070 sr_sal.pc = pc_after_resolver;
3071
3072 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3073 }
3074
3075 keep_going (ecs);
3076 return;
3077 }
3078
3079 if (step_range_end != 1
3080 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
3081 || step_over_calls == STEP_OVER_ALL)
3082 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
3083 {
3084 if (debug_infrun)
3085 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3086 /* The inferior, while doing a "step" or "next", has ended up in
3087 a signal trampoline (either by a signal being delivered or by
3088 the signal handler returning). Just single-step until the
3089 inferior leaves the trampoline (either by calling the handler
3090 or returning). */
3091 keep_going (ecs);
3092 return;
3093 }
3094
3095 /* Check for subroutine calls. The check for the current frame
3096 equalling the step ID is not necessary - the check of the
3097 previous frame's ID is sufficient - but it is a common case and
3098 cheaper than checking the previous frame's ID.
3099
3100 NOTE: frame_id_eq will never report two invalid frame IDs as
3101 being equal, so to get into this block, both the current and
3102 previous frame must have valid frame IDs. */
3103 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
3104 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
3105 {
3106 CORE_ADDR real_stop_pc;
3107
3108 if (debug_infrun)
3109 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3110
3111 if ((step_over_calls == STEP_OVER_NONE)
3112 || ((step_range_end == 1)
3113 && in_prologue (prev_pc, ecs->stop_func_start)))
3114 {
3115 /* I presume that step_over_calls is only 0 when we're
3116 supposed to be stepping at the assembly language level
3117 ("stepi"). Just stop. */
3118 /* Also, maybe we just did a "nexti" inside a prolog, so we
3119 thought it was a subroutine call but it was not. Stop as
3120 well. FENN */
3121 stop_step = 1;
3122 print_stop_reason (END_STEPPING_RANGE, 0);
3123 stop_stepping (ecs);
3124 return;
3125 }
3126
3127 if (step_over_calls == STEP_OVER_ALL)
3128 {
3129 /* We're doing a "next", set a breakpoint at callee's return
3130 address (the address at which the caller will
3131 resume). */
3132 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3133 keep_going (ecs);
3134 return;
3135 }
3136
3137 /* If we are in a function call trampoline (a stub between the
3138 calling routine and the real function), locate the real
3139 function. That's what tells us (a) whether we want to step
3140 into it at all, and (b) what prologue we want to run to the
3141 end of, if we do step into it. */
3142 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
3143 if (real_stop_pc == 0)
3144 real_stop_pc = gdbarch_skip_trampoline_code
3145 (current_gdbarch, get_current_frame (), stop_pc);
3146 if (real_stop_pc != 0)
3147 ecs->stop_func_start = real_stop_pc;
3148
3149 if (in_solib_dynsym_resolve_code (ecs->stop_func_start))
3150 {
3151 struct symtab_and_line sr_sal;
3152 init_sal (&sr_sal);
3153 sr_sal.pc = ecs->stop_func_start;
3154
3155 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3156 keep_going (ecs);
3157 return;
3158 }
3159
3160 /* If we have line number information for the function we are
3161 thinking of stepping into, step into it.
3162
3163 If there are several symtabs at that PC (e.g. with include
3164 files), just want to know whether *any* of them have line
3165 numbers. find_pc_line handles this. */
3166 {
3167 struct symtab_and_line tmp_sal;
3168
3169 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3170 if (tmp_sal.line != 0)
3171 {
3172 step_into_function (ecs);
3173 return;
3174 }
3175 }
3176
3177 /* If we have no line number and the step-stop-if-no-debug is
3178 set, we stop the step so that the user has a chance to switch
3179 in assembly mode. */
3180 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
3181 {
3182 stop_step = 1;
3183 print_stop_reason (END_STEPPING_RANGE, 0);
3184 stop_stepping (ecs);
3185 return;
3186 }
3187
3188 /* Set a breakpoint at callee's return address (the address at
3189 which the caller will resume). */
3190 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3191 keep_going (ecs);
3192 return;
3193 }
3194
3195 /* If we're in the return path from a shared library trampoline,
3196 we want to proceed through the trampoline when stepping. */
3197 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3198 stop_pc, ecs->stop_func_name))
3199 {
3200 /* Determine where this trampoline returns. */
3201 CORE_ADDR real_stop_pc;
3202 real_stop_pc = gdbarch_skip_trampoline_code
3203 (current_gdbarch, get_current_frame (), stop_pc);
3204
3205 if (debug_infrun)
3206 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3207
3208 /* Only proceed through if we know where it's going. */
3209 if (real_stop_pc)
3210 {
3211 /* And put the step-breakpoint there and go until there. */
3212 struct symtab_and_line sr_sal;
3213
3214 init_sal (&sr_sal); /* initialize to zeroes */
3215 sr_sal.pc = real_stop_pc;
3216 sr_sal.section = find_pc_overlay (sr_sal.pc);
3217
3218 /* Do not specify what the fp should be when we stop since
3219 on some machines the prologue is where the new fp value
3220 is established. */
3221 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3222
3223 /* Restart without fiddling with the step ranges or
3224 other state. */
3225 keep_going (ecs);
3226 return;
3227 }
3228 }
3229
3230 stop_pc_sal = find_pc_line (stop_pc, 0);
3231
3232 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3233 the trampoline processing logic, however, there are some trampolines
3234 that have no names, so we should do trampoline handling first. */
3235 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
3236 && ecs->stop_func_name == NULL
3237 && stop_pc_sal.line == 0)
3238 {
3239 if (debug_infrun)
3240 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3241
3242 /* The inferior just stepped into, or returned to, an
3243 undebuggable function (where there is no debugging information
3244 and no line number corresponding to the address where the
3245 inferior stopped). Since we want to skip this kind of code,
3246 we keep going until the inferior returns from this
3247 function - unless the user has asked us not to (via
3248 set step-mode) or we no longer know how to get back
3249 to the call site. */
3250 if (step_stop_if_no_debug
3251 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3252 {
3253 /* If we have no line number and the step-stop-if-no-debug
3254 is set, we stop the step so that the user has a chance to
3255 switch in assembly mode. */
3256 stop_step = 1;
3257 print_stop_reason (END_STEPPING_RANGE, 0);
3258 stop_stepping (ecs);
3259 return;
3260 }
3261 else
3262 {
3263 /* Set a breakpoint at callee's return address (the address
3264 at which the caller will resume). */
3265 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3266 keep_going (ecs);
3267 return;
3268 }
3269 }
3270
3271 if (step_range_end == 1)
3272 {
3273 /* It is stepi or nexti. We always want to stop stepping after
3274 one instruction. */
3275 if (debug_infrun)
3276 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3277 stop_step = 1;
3278 print_stop_reason (END_STEPPING_RANGE, 0);
3279 stop_stepping (ecs);
3280 return;
3281 }
3282
3283 if (stop_pc_sal.line == 0)
3284 {
3285 /* We have no line number information. That means to stop
3286 stepping (does this always happen right after one instruction,
3287 when we do "s" in a function with no line numbers,
3288 or can this happen as a result of a return or longjmp?). */
3289 if (debug_infrun)
3290 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3291 stop_step = 1;
3292 print_stop_reason (END_STEPPING_RANGE, 0);
3293 stop_stepping (ecs);
3294 return;
3295 }
3296
3297 if ((stop_pc == stop_pc_sal.pc)
3298 && (tss->current_line != stop_pc_sal.line
3299 || tss->current_symtab != stop_pc_sal.symtab))
3300 {
3301 /* We are at the start of a different line. So stop. Note that
3302 we don't stop if we step into the middle of a different line.
3303 That is said to make things like for (;;) statements work
3304 better. */
3305 if (debug_infrun)
3306 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3307 stop_step = 1;
3308 print_stop_reason (END_STEPPING_RANGE, 0);
3309 stop_stepping (ecs);
3310 return;
3311 }
3312
3313 /* We aren't done stepping.
3314
3315 Optimize by setting the stepping range to the line.
3316 (We might not be in the original line, but if we entered a
3317 new line in mid-statement, we continue stepping. This makes
3318 things like for(;;) statements work better.) */
3319
3320 step_range_start = stop_pc_sal.pc;
3321 step_range_end = stop_pc_sal.end;
3322 step_frame_id = get_frame_id (get_current_frame ());
3323 tss->current_line = stop_pc_sal.line;
3324 tss->current_symtab = stop_pc_sal.symtab;
3325
3326 /* In the case where we just stepped out of a function into the
3327 middle of a line of the caller, continue stepping, but
3328 step_frame_id must be modified to current frame */
3329 #if 0
3330 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
3331 generous. It will trigger on things like a step into a frameless
3332 stackless leaf function. I think the logic should instead look
3333 at the unwound frame ID has that should give a more robust
3334 indication of what happened. */
3335 if (step - ID == current - ID)
3336 still stepping in same function;
3337 else if (step - ID == unwind (current - ID))
3338 stepped into a function;
3339 else
3340 stepped out of a function;
3341 /* Of course this assumes that the frame ID unwind code is robust
3342 and we're willing to introduce frame unwind logic into this
3343 function. Fortunately, those days are nearly upon us. */
3344 #endif
3345 {
3346 struct frame_info *frame = get_current_frame ();
3347 struct frame_id current_frame = get_frame_id (frame);
3348 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
3349 step_frame_id)))
3350 step_frame_id = current_frame;
3351 }
3352
3353 if (debug_infrun)
3354 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3355 keep_going (ecs);
3356 }
3357
3358 /* Are we in the middle of stepping? */
3359
3360 static int
3361 currently_stepping (struct thread_stepping_state *tss)
3362 {
3363 return (((step_range_end && step_resume_breakpoint == NULL)
3364 || stepping_over_breakpoint)
3365 || tss->stepping_through_solib_after_catch
3366 || bpstat_should_step ());
3367 }
3368
3369 /* Subroutine call with source code we should not step over. Do step
3370 to the first line of code in it. */
3371
3372 static void
3373 step_into_function (struct execution_control_state *ecs)
3374 {
3375 struct symtab *s;
3376 struct symtab_and_line stop_func_sal, sr_sal;
3377
3378 s = find_pc_symtab (stop_pc);
3379 if (s && s->language != language_asm)
3380 ecs->stop_func_start = gdbarch_skip_prologue
3381 (current_gdbarch, ecs->stop_func_start);
3382
3383 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
3384 /* Use the step_resume_break to step until the end of the prologue,
3385 even if that involves jumps (as it seems to on the vax under
3386 4.2). */
3387 /* If the prologue ends in the middle of a source line, continue to
3388 the end of that source line (if it is still within the function).
3389 Otherwise, just go to end of prologue. */
3390 if (stop_func_sal.end
3391 && stop_func_sal.pc != ecs->stop_func_start
3392 && stop_func_sal.end < ecs->stop_func_end)
3393 ecs->stop_func_start = stop_func_sal.end;
3394
3395 /* Architectures which require breakpoint adjustment might not be able
3396 to place a breakpoint at the computed address. If so, the test
3397 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3398 ecs->stop_func_start to an address at which a breakpoint may be
3399 legitimately placed.
3400
3401 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3402 made, GDB will enter an infinite loop when stepping through
3403 optimized code consisting of VLIW instructions which contain
3404 subinstructions corresponding to different source lines. On
3405 FR-V, it's not permitted to place a breakpoint on any but the
3406 first subinstruction of a VLIW instruction. When a breakpoint is
3407 set, GDB will adjust the breakpoint address to the beginning of
3408 the VLIW instruction. Thus, we need to make the corresponding
3409 adjustment here when computing the stop address. */
3410
3411 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3412 {
3413 ecs->stop_func_start
3414 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3415 ecs->stop_func_start);
3416 }
3417
3418 if (ecs->stop_func_start == stop_pc)
3419 {
3420 /* We are already there: stop now. */
3421 stop_step = 1;
3422 print_stop_reason (END_STEPPING_RANGE, 0);
3423 stop_stepping (ecs);
3424 return;
3425 }
3426 else
3427 {
3428 /* Put the step-breakpoint there and go until there. */
3429 init_sal (&sr_sal); /* initialize to zeroes */
3430 sr_sal.pc = ecs->stop_func_start;
3431 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3432
3433 /* Do not specify what the fp should be when we stop since on
3434 some machines the prologue is where the new fp value is
3435 established. */
3436 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3437
3438 /* And make sure stepping stops right away then. */
3439 step_range_end = step_range_start;
3440 }
3441 keep_going (ecs);
3442 }
3443
3444 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3445 This is used to both functions and to skip over code. */
3446
3447 static void
3448 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3449 struct frame_id sr_id)
3450 {
3451 /* There should never be more than one step-resume or longjmp-resume
3452 breakpoint per thread, so we should never be setting a new
3453 step_resume_breakpoint when one is already active. */
3454 gdb_assert (step_resume_breakpoint == NULL);
3455
3456 if (debug_infrun)
3457 fprintf_unfiltered (gdb_stdlog,
3458 "infrun: inserting step-resume breakpoint at 0x%s\n",
3459 paddr_nz (sr_sal.pc));
3460
3461 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
3462 bp_step_resume);
3463 }
3464
3465 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3466 to skip a potential signal handler.
3467
3468 This is called with the interrupted function's frame. The signal
3469 handler, when it returns, will resume the interrupted function at
3470 RETURN_FRAME.pc. */
3471
3472 static void
3473 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3474 {
3475 struct symtab_and_line sr_sal;
3476
3477 gdb_assert (return_frame != NULL);
3478 init_sal (&sr_sal); /* initialize to zeros */
3479
3480 sr_sal.pc = gdbarch_addr_bits_remove
3481 (current_gdbarch, get_frame_pc (return_frame));
3482 sr_sal.section = find_pc_overlay (sr_sal.pc);
3483
3484 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3485 }
3486
3487 /* Similar to insert_step_resume_breakpoint_at_frame, except
3488 but a breakpoint at the previous frame's PC. This is used to
3489 skip a function after stepping into it (for "next" or if the called
3490 function has no debugging information).
3491
3492 The current function has almost always been reached by single
3493 stepping a call or return instruction. NEXT_FRAME belongs to the
3494 current function, and the breakpoint will be set at the caller's
3495 resume address.
3496
3497 This is a separate function rather than reusing
3498 insert_step_resume_breakpoint_at_frame in order to avoid
3499 get_prev_frame, which may stop prematurely (see the implementation
3500 of frame_unwind_id for an example). */
3501
3502 static void
3503 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3504 {
3505 struct symtab_and_line sr_sal;
3506
3507 /* We shouldn't have gotten here if we don't know where the call site
3508 is. */
3509 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3510
3511 init_sal (&sr_sal); /* initialize to zeros */
3512
3513 sr_sal.pc = gdbarch_addr_bits_remove
3514 (current_gdbarch, frame_pc_unwind (next_frame));
3515 sr_sal.section = find_pc_overlay (sr_sal.pc);
3516
3517 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3518 }
3519
3520 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3521 new breakpoint at the target of a jmp_buf. The handling of
3522 longjmp-resume uses the same mechanisms used for handling
3523 "step-resume" breakpoints. */
3524
3525 static void
3526 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3527 {
3528 /* There should never be more than one step-resume or longjmp-resume
3529 breakpoint per thread, so we should never be setting a new
3530 longjmp_resume_breakpoint when one is already active. */
3531 gdb_assert (step_resume_breakpoint == NULL);
3532
3533 if (debug_infrun)
3534 fprintf_unfiltered (gdb_stdlog,
3535 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3536 paddr_nz (pc));
3537
3538 step_resume_breakpoint =
3539 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3540 }
3541
3542 static void
3543 stop_stepping (struct execution_control_state *ecs)
3544 {
3545 if (debug_infrun)
3546 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3547
3548 /* Let callers know we don't want to wait for the inferior anymore. */
3549 ecs->wait_some_more = 0;
3550 }
3551
3552 /* This function handles various cases where we need to continue
3553 waiting for the inferior. */
3554 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3555
3556 static void
3557 keep_going (struct execution_control_state *ecs)
3558 {
3559 /* Save the pc before execution, to compare with pc after stop. */
3560 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3561
3562 /* If we did not do break;, it means we should keep running the
3563 inferior and not return to debugger. */
3564
3565 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
3566 {
3567 /* We took a signal (which we are supposed to pass through to
3568 the inferior, else we'd have done a break above) and we
3569 haven't yet gotten our trap. Simply continue. */
3570 resume (currently_stepping (tss), stop_signal);
3571 }
3572 else
3573 {
3574 /* Either the trap was not expected, but we are continuing
3575 anyway (the user asked that this signal be passed to the
3576 child)
3577 -- or --
3578 The signal was SIGTRAP, e.g. it was our signal, but we
3579 decided we should resume from it.
3580
3581 We're going to run this baby now!
3582
3583 Note that insert_breakpoints won't try to re-insert
3584 already inserted breakpoints. Therefore, we don't
3585 care if breakpoints were already inserted, or not. */
3586
3587 if (tss->stepping_over_breakpoint)
3588 {
3589 if (! use_displaced_stepping (current_gdbarch))
3590 /* Since we can't do a displaced step, we have to remove
3591 the breakpoint while we step it. To keep things
3592 simple, we remove them all. */
3593 remove_breakpoints ();
3594 }
3595 else
3596 {
3597 struct gdb_exception e;
3598 /* Stop stepping when inserting breakpoints
3599 has failed. */
3600 TRY_CATCH (e, RETURN_MASK_ERROR)
3601 {
3602 insert_breakpoints ();
3603 }
3604 if (e.reason < 0)
3605 {
3606 stop_stepping (ecs);
3607 return;
3608 }
3609 }
3610
3611 stepping_over_breakpoint = tss->stepping_over_breakpoint;
3612
3613 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3614 specifies that such a signal should be delivered to the
3615 target program).
3616
3617 Typically, this would occure when a user is debugging a
3618 target monitor on a simulator: the target monitor sets a
3619 breakpoint; the simulator encounters this break-point and
3620 halts the simulation handing control to GDB; GDB, noteing
3621 that the break-point isn't valid, returns control back to the
3622 simulator; the simulator then delivers the hardware
3623 equivalent of a SIGNAL_TRAP to the program being debugged. */
3624
3625 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
3626 stop_signal = TARGET_SIGNAL_0;
3627
3628
3629 resume (currently_stepping (tss), stop_signal);
3630 }
3631
3632 prepare_to_wait (ecs);
3633 }
3634
3635 /* This function normally comes after a resume, before
3636 handle_inferior_event exits. It takes care of any last bits of
3637 housekeeping, and sets the all-important wait_some_more flag. */
3638
3639 static void
3640 prepare_to_wait (struct execution_control_state *ecs)
3641 {
3642 if (debug_infrun)
3643 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
3644 if (infwait_state == infwait_normal_state)
3645 {
3646 overlay_cache_invalid = 1;
3647
3648 /* We have to invalidate the registers BEFORE calling
3649 target_wait because they can be loaded from the target while
3650 in target_wait. This makes remote debugging a bit more
3651 efficient for those targets that provide critical registers
3652 as part of their normal status mechanism. */
3653
3654 registers_changed ();
3655 waiton_ptid = pid_to_ptid (-1);
3656 }
3657 /* This is the old end of the while loop. Let everybody know we
3658 want to wait for the inferior some more and get called again
3659 soon. */
3660 ecs->wait_some_more = 1;
3661 }
3662
3663 /* Print why the inferior has stopped. We always print something when
3664 the inferior exits, or receives a signal. The rest of the cases are
3665 dealt with later on in normal_stop() and print_it_typical(). Ideally
3666 there should be a call to this function from handle_inferior_event()
3667 each time stop_stepping() is called.*/
3668 static void
3669 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3670 {
3671 switch (stop_reason)
3672 {
3673 case END_STEPPING_RANGE:
3674 /* We are done with a step/next/si/ni command. */
3675 /* For now print nothing. */
3676 /* Print a message only if not in the middle of doing a "step n"
3677 operation for n > 1 */
3678 if (!step_multi || !stop_step)
3679 if (ui_out_is_mi_like_p (uiout))
3680 ui_out_field_string
3681 (uiout, "reason",
3682 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3683 break;
3684 case SIGNAL_EXITED:
3685 /* The inferior was terminated by a signal. */
3686 annotate_signalled ();
3687 if (ui_out_is_mi_like_p (uiout))
3688 ui_out_field_string
3689 (uiout, "reason",
3690 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3691 ui_out_text (uiout, "\nProgram terminated with signal ");
3692 annotate_signal_name ();
3693 ui_out_field_string (uiout, "signal-name",
3694 target_signal_to_name (stop_info));
3695 annotate_signal_name_end ();
3696 ui_out_text (uiout, ", ");
3697 annotate_signal_string ();
3698 ui_out_field_string (uiout, "signal-meaning",
3699 target_signal_to_string (stop_info));
3700 annotate_signal_string_end ();
3701 ui_out_text (uiout, ".\n");
3702 ui_out_text (uiout, "The program no longer exists.\n");
3703 break;
3704 case EXITED:
3705 /* The inferior program is finished. */
3706 annotate_exited (stop_info);
3707 if (stop_info)
3708 {
3709 if (ui_out_is_mi_like_p (uiout))
3710 ui_out_field_string (uiout, "reason",
3711 async_reason_lookup (EXEC_ASYNC_EXITED));
3712 ui_out_text (uiout, "\nProgram exited with code ");
3713 ui_out_field_fmt (uiout, "exit-code", "0%o",
3714 (unsigned int) stop_info);
3715 ui_out_text (uiout, ".\n");
3716 }
3717 else
3718 {
3719 if (ui_out_is_mi_like_p (uiout))
3720 ui_out_field_string
3721 (uiout, "reason",
3722 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3723 ui_out_text (uiout, "\nProgram exited normally.\n");
3724 }
3725 /* Support the --return-child-result option. */
3726 return_child_result_value = stop_info;
3727 break;
3728 case SIGNAL_RECEIVED:
3729 /* Signal received. The signal table tells us to print about
3730 it. */
3731 annotate_signal ();
3732 ui_out_text (uiout, "\nProgram received signal ");
3733 annotate_signal_name ();
3734 if (ui_out_is_mi_like_p (uiout))
3735 ui_out_field_string
3736 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3737 ui_out_field_string (uiout, "signal-name",
3738 target_signal_to_name (stop_info));
3739 annotate_signal_name_end ();
3740 ui_out_text (uiout, ", ");
3741 annotate_signal_string ();
3742 ui_out_field_string (uiout, "signal-meaning",
3743 target_signal_to_string (stop_info));
3744 annotate_signal_string_end ();
3745 ui_out_text (uiout, ".\n");
3746 break;
3747 default:
3748 internal_error (__FILE__, __LINE__,
3749 _("print_stop_reason: unrecognized enum value"));
3750 break;
3751 }
3752 }
3753 \f
3754
3755 /* Here to return control to GDB when the inferior stops for real.
3756 Print appropriate messages, remove breakpoints, give terminal our modes.
3757
3758 STOP_PRINT_FRAME nonzero means print the executing frame
3759 (pc, function, args, file, line number and line text).
3760 BREAKPOINTS_FAILED nonzero means stop was due to error
3761 attempting to insert breakpoints. */
3762
3763 void
3764 normal_stop (void)
3765 {
3766 struct target_waitstatus last;
3767 ptid_t last_ptid;
3768
3769 get_last_target_status (&last_ptid, &last);
3770
3771 /* In non-stop mode, we don't want GDB to switch threads behind the
3772 user's back, to avoid races where the user is typing a command to
3773 apply to thread x, but GDB switches to thread y before the user
3774 finishes entering the command. */
3775
3776 /* As with the notification of thread events, we want to delay
3777 notifying the user that we've switched thread context until
3778 the inferior actually stops.
3779
3780 There's no point in saying anything if the inferior has exited.
3781 Note that SIGNALLED here means "exited with a signal", not
3782 "received a signal". */
3783 if (!non_stop
3784 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
3785 && target_has_execution
3786 && last.kind != TARGET_WAITKIND_SIGNALLED
3787 && last.kind != TARGET_WAITKIND_EXITED)
3788 {
3789 target_terminal_ours_for_output ();
3790 printf_filtered (_("[Switching to %s]\n"),
3791 target_pid_to_str (inferior_ptid));
3792 annotate_thread_changed ();
3793 previous_inferior_ptid = inferior_ptid;
3794 }
3795
3796 /* NOTE drow/2004-01-17: Is this still necessary? */
3797 /* Make sure that the current_frame's pc is correct. This
3798 is a correction for setting up the frame info before doing
3799 gdbarch_decr_pc_after_break */
3800 if (target_has_execution)
3801 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3802 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3803 frame code to check for this and sort out any resultant mess.
3804 gdbarch_decr_pc_after_break needs to just go away. */
3805 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3806
3807 if (!breakpoints_always_inserted_mode () && target_has_execution)
3808 {
3809 if (remove_breakpoints ())
3810 {
3811 target_terminal_ours_for_output ();
3812 printf_filtered (_("\
3813 Cannot remove breakpoints because program is no longer writable.\n\
3814 It might be running in another process.\n\
3815 Further execution is probably impossible.\n"));
3816 }
3817 }
3818
3819 /* If an auto-display called a function and that got a signal,
3820 delete that auto-display to avoid an infinite recursion. */
3821
3822 if (stopped_by_random_signal)
3823 disable_current_display ();
3824
3825 /* Don't print a message if in the middle of doing a "step n"
3826 operation for n > 1 */
3827 if (step_multi && stop_step)
3828 goto done;
3829
3830 target_terminal_ours ();
3831
3832 /* Set the current source location. This will also happen if we
3833 display the frame below, but the current SAL will be incorrect
3834 during a user hook-stop function. */
3835 if (target_has_stack && !stop_stack_dummy)
3836 set_current_sal_from_frame (get_current_frame (), 1);
3837
3838 /* Look up the hook_stop and run it (CLI internally handles problem
3839 of stop_command's pre-hook not existing). */
3840 if (stop_command)
3841 catch_errors (hook_stop_stub, stop_command,
3842 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3843
3844 if (!target_has_stack)
3845 {
3846
3847 goto done;
3848 }
3849
3850 /* Select innermost stack frame - i.e., current frame is frame 0,
3851 and current location is based on that.
3852 Don't do this on return from a stack dummy routine,
3853 or if the program has exited. */
3854
3855 if (!stop_stack_dummy)
3856 {
3857 select_frame (get_current_frame ());
3858
3859 /* Print current location without a level number, if
3860 we have changed functions or hit a breakpoint.
3861 Print source line if we have one.
3862 bpstat_print() contains the logic deciding in detail
3863 what to print, based on the event(s) that just occurred. */
3864
3865 /* If --batch-silent is enabled then there's no need to print the current
3866 source location, and to try risks causing an error message about
3867 missing source files. */
3868 if (stop_print_frame && !batch_silent)
3869 {
3870 int bpstat_ret;
3871 int source_flag;
3872 int do_frame_printing = 1;
3873
3874 bpstat_ret = bpstat_print (stop_bpstat);
3875 switch (bpstat_ret)
3876 {
3877 case PRINT_UNKNOWN:
3878 /* If we had hit a shared library event breakpoint,
3879 bpstat_print would print out this message. If we hit
3880 an OS-level shared library event, do the same
3881 thing. */
3882 if (last.kind == TARGET_WAITKIND_LOADED)
3883 {
3884 printf_filtered (_("Stopped due to shared library event\n"));
3885 source_flag = SRC_LINE; /* something bogus */
3886 do_frame_printing = 0;
3887 break;
3888 }
3889
3890 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3891 (or should) carry around the function and does (or
3892 should) use that when doing a frame comparison. */
3893 if (stop_step
3894 && frame_id_eq (step_frame_id,
3895 get_frame_id (get_current_frame ()))
3896 && step_start_function == find_pc_function (stop_pc))
3897 source_flag = SRC_LINE; /* finished step, just print source line */
3898 else
3899 source_flag = SRC_AND_LOC; /* print location and source line */
3900 break;
3901 case PRINT_SRC_AND_LOC:
3902 source_flag = SRC_AND_LOC; /* print location and source line */
3903 break;
3904 case PRINT_SRC_ONLY:
3905 source_flag = SRC_LINE;
3906 break;
3907 case PRINT_NOTHING:
3908 source_flag = SRC_LINE; /* something bogus */
3909 do_frame_printing = 0;
3910 break;
3911 default:
3912 internal_error (__FILE__, __LINE__, _("Unknown value."));
3913 }
3914
3915 if (ui_out_is_mi_like_p (uiout))
3916 {
3917
3918 ui_out_field_int (uiout, "thread-id",
3919 pid_to_thread_id (inferior_ptid));
3920 if (non_stop)
3921 {
3922 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
3923 (uiout, "stopped-threads");
3924 ui_out_field_int (uiout, NULL,
3925 pid_to_thread_id (inferior_ptid));
3926 do_cleanups (back_to);
3927 }
3928 else
3929 ui_out_field_string (uiout, "stopped-threads", "all");
3930 }
3931 /* The behavior of this routine with respect to the source
3932 flag is:
3933 SRC_LINE: Print only source line
3934 LOCATION: Print only location
3935 SRC_AND_LOC: Print location and source line */
3936 if (do_frame_printing)
3937 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3938
3939 /* Display the auto-display expressions. */
3940 do_displays ();
3941 }
3942 }
3943
3944 /* Save the function value return registers, if we care.
3945 We might be about to restore their previous contents. */
3946 if (proceed_to_finish)
3947 {
3948 /* This should not be necessary. */
3949 if (stop_registers)
3950 regcache_xfree (stop_registers);
3951
3952 /* NB: The copy goes through to the target picking up the value of
3953 all the registers. */
3954 stop_registers = regcache_dup (get_current_regcache ());
3955 }
3956
3957 if (stop_stack_dummy)
3958 {
3959 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3960 ends with a setting of the current frame, so we can use that
3961 next. */
3962 frame_pop (get_current_frame ());
3963 /* Set stop_pc to what it was before we called the function.
3964 Can't rely on restore_inferior_status because that only gets
3965 called if we don't stop in the called function. */
3966 stop_pc = read_pc ();
3967 select_frame (get_current_frame ());
3968 }
3969
3970 done:
3971 annotate_stopped ();
3972 if (!suppress_stop_observer && !step_multi)
3973 observer_notify_normal_stop (stop_bpstat);
3974 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3975 Delete any breakpoint that is to be deleted at the next stop. */
3976 breakpoint_auto_delete (stop_bpstat);
3977
3978 if (target_has_execution
3979 && last.kind != TARGET_WAITKIND_SIGNALLED
3980 && last.kind != TARGET_WAITKIND_EXITED)
3981 {
3982 if (!non_stop)
3983 set_running (pid_to_ptid (-1), 0);
3984 else
3985 set_running (inferior_ptid, 0);
3986 }
3987 }
3988
3989 static int
3990 hook_stop_stub (void *cmd)
3991 {
3992 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3993 return (0);
3994 }
3995 \f
3996 int
3997 signal_stop_state (int signo)
3998 {
3999 /* Always stop on signals if we're just gaining control of the
4000 program. */
4001 return signal_stop[signo] || stop_soon != NO_STOP_QUIETLY;
4002 }
4003
4004 int
4005 signal_print_state (int signo)
4006 {
4007 return signal_print[signo];
4008 }
4009
4010 int
4011 signal_pass_state (int signo)
4012 {
4013 return signal_program[signo];
4014 }
4015
4016 int
4017 signal_stop_update (int signo, int state)
4018 {
4019 int ret = signal_stop[signo];
4020 signal_stop[signo] = state;
4021 return ret;
4022 }
4023
4024 int
4025 signal_print_update (int signo, int state)
4026 {
4027 int ret = signal_print[signo];
4028 signal_print[signo] = state;
4029 return ret;
4030 }
4031
4032 int
4033 signal_pass_update (int signo, int state)
4034 {
4035 int ret = signal_program[signo];
4036 signal_program[signo] = state;
4037 return ret;
4038 }
4039
4040 static void
4041 sig_print_header (void)
4042 {
4043 printf_filtered (_("\
4044 Signal Stop\tPrint\tPass to program\tDescription\n"));
4045 }
4046
4047 static void
4048 sig_print_info (enum target_signal oursig)
4049 {
4050 char *name = target_signal_to_name (oursig);
4051 int name_padding = 13 - strlen (name);
4052
4053 if (name_padding <= 0)
4054 name_padding = 0;
4055
4056 printf_filtered ("%s", name);
4057 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4058 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4059 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4060 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4061 printf_filtered ("%s\n", target_signal_to_string (oursig));
4062 }
4063
4064 /* Specify how various signals in the inferior should be handled. */
4065
4066 static void
4067 handle_command (char *args, int from_tty)
4068 {
4069 char **argv;
4070 int digits, wordlen;
4071 int sigfirst, signum, siglast;
4072 enum target_signal oursig;
4073 int allsigs;
4074 int nsigs;
4075 unsigned char *sigs;
4076 struct cleanup *old_chain;
4077
4078 if (args == NULL)
4079 {
4080 error_no_arg (_("signal to handle"));
4081 }
4082
4083 /* Allocate and zero an array of flags for which signals to handle. */
4084
4085 nsigs = (int) TARGET_SIGNAL_LAST;
4086 sigs = (unsigned char *) alloca (nsigs);
4087 memset (sigs, 0, nsigs);
4088
4089 /* Break the command line up into args. */
4090
4091 argv = buildargv (args);
4092 if (argv == NULL)
4093 {
4094 nomem (0);
4095 }
4096 old_chain = make_cleanup_freeargv (argv);
4097
4098 /* Walk through the args, looking for signal oursigs, signal names, and
4099 actions. Signal numbers and signal names may be interspersed with
4100 actions, with the actions being performed for all signals cumulatively
4101 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4102
4103 while (*argv != NULL)
4104 {
4105 wordlen = strlen (*argv);
4106 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4107 {;
4108 }
4109 allsigs = 0;
4110 sigfirst = siglast = -1;
4111
4112 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4113 {
4114 /* Apply action to all signals except those used by the
4115 debugger. Silently skip those. */
4116 allsigs = 1;
4117 sigfirst = 0;
4118 siglast = nsigs - 1;
4119 }
4120 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4121 {
4122 SET_SIGS (nsigs, sigs, signal_stop);
4123 SET_SIGS (nsigs, sigs, signal_print);
4124 }
4125 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4126 {
4127 UNSET_SIGS (nsigs, sigs, signal_program);
4128 }
4129 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4130 {
4131 SET_SIGS (nsigs, sigs, signal_print);
4132 }
4133 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4134 {
4135 SET_SIGS (nsigs, sigs, signal_program);
4136 }
4137 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4138 {
4139 UNSET_SIGS (nsigs, sigs, signal_stop);
4140 }
4141 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4142 {
4143 SET_SIGS (nsigs, sigs, signal_program);
4144 }
4145 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4146 {
4147 UNSET_SIGS (nsigs, sigs, signal_print);
4148 UNSET_SIGS (nsigs, sigs, signal_stop);
4149 }
4150 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4151 {
4152 UNSET_SIGS (nsigs, sigs, signal_program);
4153 }
4154 else if (digits > 0)
4155 {
4156 /* It is numeric. The numeric signal refers to our own
4157 internal signal numbering from target.h, not to host/target
4158 signal number. This is a feature; users really should be
4159 using symbolic names anyway, and the common ones like
4160 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4161
4162 sigfirst = siglast = (int)
4163 target_signal_from_command (atoi (*argv));
4164 if ((*argv)[digits] == '-')
4165 {
4166 siglast = (int)
4167 target_signal_from_command (atoi ((*argv) + digits + 1));
4168 }
4169 if (sigfirst > siglast)
4170 {
4171 /* Bet he didn't figure we'd think of this case... */
4172 signum = sigfirst;
4173 sigfirst = siglast;
4174 siglast = signum;
4175 }
4176 }
4177 else
4178 {
4179 oursig = target_signal_from_name (*argv);
4180 if (oursig != TARGET_SIGNAL_UNKNOWN)
4181 {
4182 sigfirst = siglast = (int) oursig;
4183 }
4184 else
4185 {
4186 /* Not a number and not a recognized flag word => complain. */
4187 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4188 }
4189 }
4190
4191 /* If any signal numbers or symbol names were found, set flags for
4192 which signals to apply actions to. */
4193
4194 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4195 {
4196 switch ((enum target_signal) signum)
4197 {
4198 case TARGET_SIGNAL_TRAP:
4199 case TARGET_SIGNAL_INT:
4200 if (!allsigs && !sigs[signum])
4201 {
4202 if (query ("%s is used by the debugger.\n\
4203 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
4204 {
4205 sigs[signum] = 1;
4206 }
4207 else
4208 {
4209 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4210 gdb_flush (gdb_stdout);
4211 }
4212 }
4213 break;
4214 case TARGET_SIGNAL_0:
4215 case TARGET_SIGNAL_DEFAULT:
4216 case TARGET_SIGNAL_UNKNOWN:
4217 /* Make sure that "all" doesn't print these. */
4218 break;
4219 default:
4220 sigs[signum] = 1;
4221 break;
4222 }
4223 }
4224
4225 argv++;
4226 }
4227
4228 target_notice_signals (inferior_ptid);
4229
4230 if (from_tty)
4231 {
4232 /* Show the results. */
4233 sig_print_header ();
4234 for (signum = 0; signum < nsigs; signum++)
4235 {
4236 if (sigs[signum])
4237 {
4238 sig_print_info (signum);
4239 }
4240 }
4241 }
4242
4243 do_cleanups (old_chain);
4244 }
4245
4246 static void
4247 xdb_handle_command (char *args, int from_tty)
4248 {
4249 char **argv;
4250 struct cleanup *old_chain;
4251
4252 /* Break the command line up into args. */
4253
4254 argv = buildargv (args);
4255 if (argv == NULL)
4256 {
4257 nomem (0);
4258 }
4259 old_chain = make_cleanup_freeargv (argv);
4260 if (argv[1] != (char *) NULL)
4261 {
4262 char *argBuf;
4263 int bufLen;
4264
4265 bufLen = strlen (argv[0]) + 20;
4266 argBuf = (char *) xmalloc (bufLen);
4267 if (argBuf)
4268 {
4269 int validFlag = 1;
4270 enum target_signal oursig;
4271
4272 oursig = target_signal_from_name (argv[0]);
4273 memset (argBuf, 0, bufLen);
4274 if (strcmp (argv[1], "Q") == 0)
4275 sprintf (argBuf, "%s %s", argv[0], "noprint");
4276 else
4277 {
4278 if (strcmp (argv[1], "s") == 0)
4279 {
4280 if (!signal_stop[oursig])
4281 sprintf (argBuf, "%s %s", argv[0], "stop");
4282 else
4283 sprintf (argBuf, "%s %s", argv[0], "nostop");
4284 }
4285 else if (strcmp (argv[1], "i") == 0)
4286 {
4287 if (!signal_program[oursig])
4288 sprintf (argBuf, "%s %s", argv[0], "pass");
4289 else
4290 sprintf (argBuf, "%s %s", argv[0], "nopass");
4291 }
4292 else if (strcmp (argv[1], "r") == 0)
4293 {
4294 if (!signal_print[oursig])
4295 sprintf (argBuf, "%s %s", argv[0], "print");
4296 else
4297 sprintf (argBuf, "%s %s", argv[0], "noprint");
4298 }
4299 else
4300 validFlag = 0;
4301 }
4302 if (validFlag)
4303 handle_command (argBuf, from_tty);
4304 else
4305 printf_filtered (_("Invalid signal handling flag.\n"));
4306 if (argBuf)
4307 xfree (argBuf);
4308 }
4309 }
4310 do_cleanups (old_chain);
4311 }
4312
4313 /* Print current contents of the tables set by the handle command.
4314 It is possible we should just be printing signals actually used
4315 by the current target (but for things to work right when switching
4316 targets, all signals should be in the signal tables). */
4317
4318 static void
4319 signals_info (char *signum_exp, int from_tty)
4320 {
4321 enum target_signal oursig;
4322 sig_print_header ();
4323
4324 if (signum_exp)
4325 {
4326 /* First see if this is a symbol name. */
4327 oursig = target_signal_from_name (signum_exp);
4328 if (oursig == TARGET_SIGNAL_UNKNOWN)
4329 {
4330 /* No, try numeric. */
4331 oursig =
4332 target_signal_from_command (parse_and_eval_long (signum_exp));
4333 }
4334 sig_print_info (oursig);
4335 return;
4336 }
4337
4338 printf_filtered ("\n");
4339 /* These ugly casts brought to you by the native VAX compiler. */
4340 for (oursig = TARGET_SIGNAL_FIRST;
4341 (int) oursig < (int) TARGET_SIGNAL_LAST;
4342 oursig = (enum target_signal) ((int) oursig + 1))
4343 {
4344 QUIT;
4345
4346 if (oursig != TARGET_SIGNAL_UNKNOWN
4347 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4348 sig_print_info (oursig);
4349 }
4350
4351 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4352 }
4353 \f
4354 struct inferior_status
4355 {
4356 enum target_signal stop_signal;
4357 CORE_ADDR stop_pc;
4358 bpstat stop_bpstat;
4359 int stop_step;
4360 int stop_stack_dummy;
4361 int stopped_by_random_signal;
4362 int stepping_over_breakpoint;
4363 CORE_ADDR step_range_start;
4364 CORE_ADDR step_range_end;
4365 struct frame_id step_frame_id;
4366 enum step_over_calls_kind step_over_calls;
4367 CORE_ADDR step_resume_break_address;
4368 int stop_after_trap;
4369 int stop_soon;
4370
4371 /* These are here because if call_function_by_hand has written some
4372 registers and then decides to call error(), we better not have changed
4373 any registers. */
4374 struct regcache *registers;
4375
4376 /* A frame unique identifier. */
4377 struct frame_id selected_frame_id;
4378
4379 int breakpoint_proceeded;
4380 int restore_stack_info;
4381 int proceed_to_finish;
4382 };
4383
4384 void
4385 write_inferior_status_register (struct inferior_status *inf_status, int regno,
4386 LONGEST val)
4387 {
4388 int size = register_size (current_gdbarch, regno);
4389 void *buf = alloca (size);
4390 store_signed_integer (buf, size, val);
4391 regcache_raw_write (inf_status->registers, regno, buf);
4392 }
4393
4394 /* Save all of the information associated with the inferior<==>gdb
4395 connection. INF_STATUS is a pointer to a "struct inferior_status"
4396 (defined in inferior.h). */
4397
4398 struct inferior_status *
4399 save_inferior_status (int restore_stack_info)
4400 {
4401 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4402
4403 inf_status->stop_signal = stop_signal;
4404 inf_status->stop_pc = stop_pc;
4405 inf_status->stop_step = stop_step;
4406 inf_status->stop_stack_dummy = stop_stack_dummy;
4407 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4408 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
4409 inf_status->step_range_start = step_range_start;
4410 inf_status->step_range_end = step_range_end;
4411 inf_status->step_frame_id = step_frame_id;
4412 inf_status->step_over_calls = step_over_calls;
4413 inf_status->stop_after_trap = stop_after_trap;
4414 inf_status->stop_soon = stop_soon;
4415 /* Save original bpstat chain here; replace it with copy of chain.
4416 If caller's caller is walking the chain, they'll be happier if we
4417 hand them back the original chain when restore_inferior_status is
4418 called. */
4419 inf_status->stop_bpstat = stop_bpstat;
4420 stop_bpstat = bpstat_copy (stop_bpstat);
4421 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4422 inf_status->restore_stack_info = restore_stack_info;
4423 inf_status->proceed_to_finish = proceed_to_finish;
4424
4425 inf_status->registers = regcache_dup (get_current_regcache ());
4426
4427 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4428 return inf_status;
4429 }
4430
4431 static int
4432 restore_selected_frame (void *args)
4433 {
4434 struct frame_id *fid = (struct frame_id *) args;
4435 struct frame_info *frame;
4436
4437 frame = frame_find_by_id (*fid);
4438
4439 /* If inf_status->selected_frame_id is NULL, there was no previously
4440 selected frame. */
4441 if (frame == NULL)
4442 {
4443 warning (_("Unable to restore previously selected frame."));
4444 return 0;
4445 }
4446
4447 select_frame (frame);
4448
4449 return (1);
4450 }
4451
4452 void
4453 restore_inferior_status (struct inferior_status *inf_status)
4454 {
4455 stop_signal = inf_status->stop_signal;
4456 stop_pc = inf_status->stop_pc;
4457 stop_step = inf_status->stop_step;
4458 stop_stack_dummy = inf_status->stop_stack_dummy;
4459 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4460 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
4461 step_range_start = inf_status->step_range_start;
4462 step_range_end = inf_status->step_range_end;
4463 step_frame_id = inf_status->step_frame_id;
4464 step_over_calls = inf_status->step_over_calls;
4465 stop_after_trap = inf_status->stop_after_trap;
4466 stop_soon = inf_status->stop_soon;
4467 bpstat_clear (&stop_bpstat);
4468 stop_bpstat = inf_status->stop_bpstat;
4469 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4470 proceed_to_finish = inf_status->proceed_to_finish;
4471
4472 /* The inferior can be gone if the user types "print exit(0)"
4473 (and perhaps other times). */
4474 if (target_has_execution)
4475 /* NB: The register write goes through to the target. */
4476 regcache_cpy (get_current_regcache (), inf_status->registers);
4477 regcache_xfree (inf_status->registers);
4478
4479 /* FIXME: If we are being called after stopping in a function which
4480 is called from gdb, we should not be trying to restore the
4481 selected frame; it just prints a spurious error message (The
4482 message is useful, however, in detecting bugs in gdb (like if gdb
4483 clobbers the stack)). In fact, should we be restoring the
4484 inferior status at all in that case? . */
4485
4486 if (target_has_stack && inf_status->restore_stack_info)
4487 {
4488 /* The point of catch_errors is that if the stack is clobbered,
4489 walking the stack might encounter a garbage pointer and
4490 error() trying to dereference it. */
4491 if (catch_errors
4492 (restore_selected_frame, &inf_status->selected_frame_id,
4493 "Unable to restore previously selected frame:\n",
4494 RETURN_MASK_ERROR) == 0)
4495 /* Error in restoring the selected frame. Select the innermost
4496 frame. */
4497 select_frame (get_current_frame ());
4498
4499 }
4500
4501 xfree (inf_status);
4502 }
4503
4504 static void
4505 do_restore_inferior_status_cleanup (void *sts)
4506 {
4507 restore_inferior_status (sts);
4508 }
4509
4510 struct cleanup *
4511 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4512 {
4513 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4514 }
4515
4516 void
4517 discard_inferior_status (struct inferior_status *inf_status)
4518 {
4519 /* See save_inferior_status for info on stop_bpstat. */
4520 bpstat_clear (&inf_status->stop_bpstat);
4521 regcache_xfree (inf_status->registers);
4522 xfree (inf_status);
4523 }
4524
4525 int
4526 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
4527 {
4528 struct target_waitstatus last;
4529 ptid_t last_ptid;
4530
4531 get_last_target_status (&last_ptid, &last);
4532
4533 if (last.kind != TARGET_WAITKIND_FORKED)
4534 return 0;
4535
4536 if (!ptid_equal (last_ptid, pid))
4537 return 0;
4538
4539 *child_pid = last.value.related_pid;
4540 return 1;
4541 }
4542
4543 int
4544 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
4545 {
4546 struct target_waitstatus last;
4547 ptid_t last_ptid;
4548
4549 get_last_target_status (&last_ptid, &last);
4550
4551 if (last.kind != TARGET_WAITKIND_VFORKED)
4552 return 0;
4553
4554 if (!ptid_equal (last_ptid, pid))
4555 return 0;
4556
4557 *child_pid = last.value.related_pid;
4558 return 1;
4559 }
4560
4561 int
4562 inferior_has_execd (ptid_t pid, char **execd_pathname)
4563 {
4564 struct target_waitstatus last;
4565 ptid_t last_ptid;
4566
4567 get_last_target_status (&last_ptid, &last);
4568
4569 if (last.kind != TARGET_WAITKIND_EXECD)
4570 return 0;
4571
4572 if (!ptid_equal (last_ptid, pid))
4573 return 0;
4574
4575 *execd_pathname = xstrdup (last.value.execd_pathname);
4576 return 1;
4577 }
4578
4579 /* Oft used ptids */
4580 ptid_t null_ptid;
4581 ptid_t minus_one_ptid;
4582
4583 /* Create a ptid given the necessary PID, LWP, and TID components. */
4584
4585 ptid_t
4586 ptid_build (int pid, long lwp, long tid)
4587 {
4588 ptid_t ptid;
4589
4590 ptid.pid = pid;
4591 ptid.lwp = lwp;
4592 ptid.tid = tid;
4593 return ptid;
4594 }
4595
4596 /* Create a ptid from just a pid. */
4597
4598 ptid_t
4599 pid_to_ptid (int pid)
4600 {
4601 return ptid_build (pid, 0, 0);
4602 }
4603
4604 /* Fetch the pid (process id) component from a ptid. */
4605
4606 int
4607 ptid_get_pid (ptid_t ptid)
4608 {
4609 return ptid.pid;
4610 }
4611
4612 /* Fetch the lwp (lightweight process) component from a ptid. */
4613
4614 long
4615 ptid_get_lwp (ptid_t ptid)
4616 {
4617 return ptid.lwp;
4618 }
4619
4620 /* Fetch the tid (thread id) component from a ptid. */
4621
4622 long
4623 ptid_get_tid (ptid_t ptid)
4624 {
4625 return ptid.tid;
4626 }
4627
4628 /* ptid_equal() is used to test equality of two ptids. */
4629
4630 int
4631 ptid_equal (ptid_t ptid1, ptid_t ptid2)
4632 {
4633 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
4634 && ptid1.tid == ptid2.tid);
4635 }
4636
4637 /* restore_inferior_ptid() will be used by the cleanup machinery
4638 to restore the inferior_ptid value saved in a call to
4639 save_inferior_ptid(). */
4640
4641 static void
4642 restore_inferior_ptid (void *arg)
4643 {
4644 ptid_t *saved_ptid_ptr = arg;
4645 inferior_ptid = *saved_ptid_ptr;
4646 xfree (arg);
4647 }
4648
4649 /* Save the value of inferior_ptid so that it may be restored by a
4650 later call to do_cleanups(). Returns the struct cleanup pointer
4651 needed for later doing the cleanup. */
4652
4653 struct cleanup *
4654 save_inferior_ptid (void)
4655 {
4656 ptid_t *saved_ptid_ptr;
4657
4658 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4659 *saved_ptid_ptr = inferior_ptid;
4660 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4661 }
4662 \f
4663
4664 int non_stop = 0;
4665 static int non_stop_1 = 0;
4666
4667 static void
4668 set_non_stop (char *args, int from_tty,
4669 struct cmd_list_element *c)
4670 {
4671 if (target_has_execution)
4672 {
4673 non_stop_1 = non_stop;
4674 error (_("Cannot change this setting while the inferior is running."));
4675 }
4676
4677 non_stop = non_stop_1;
4678 }
4679
4680 static void
4681 show_non_stop (struct ui_file *file, int from_tty,
4682 struct cmd_list_element *c, const char *value)
4683 {
4684 fprintf_filtered (file,
4685 _("Controlling the inferior in non-stop mode is %s.\n"),
4686 value);
4687 }
4688
4689
4690 void
4691 _initialize_infrun (void)
4692 {
4693 int i;
4694 int numsigs;
4695 struct cmd_list_element *c;
4696
4697 add_info ("signals", signals_info, _("\
4698 What debugger does when program gets various signals.\n\
4699 Specify a signal as argument to print info on that signal only."));
4700 add_info_alias ("handle", "signals", 0);
4701
4702 add_com ("handle", class_run, handle_command, _("\
4703 Specify how to handle a signal.\n\
4704 Args are signals and actions to apply to those signals.\n\
4705 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4706 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4707 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4708 The special arg \"all\" is recognized to mean all signals except those\n\
4709 used by the debugger, typically SIGTRAP and SIGINT.\n\
4710 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4711 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4712 Stop means reenter debugger if this signal happens (implies print).\n\
4713 Print means print a message if this signal happens.\n\
4714 Pass means let program see this signal; otherwise program doesn't know.\n\
4715 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4716 Pass and Stop may be combined."));
4717 if (xdb_commands)
4718 {
4719 add_com ("lz", class_info, signals_info, _("\
4720 What debugger does when program gets various signals.\n\
4721 Specify a signal as argument to print info on that signal only."));
4722 add_com ("z", class_run, xdb_handle_command, _("\
4723 Specify how to handle a signal.\n\
4724 Args are signals and actions to apply to those signals.\n\
4725 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4726 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4727 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4728 The special arg \"all\" is recognized to mean all signals except those\n\
4729 used by the debugger, typically SIGTRAP and SIGINT.\n\
4730 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4731 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4732 nopass), \"Q\" (noprint)\n\
4733 Stop means reenter debugger if this signal happens (implies print).\n\
4734 Print means print a message if this signal happens.\n\
4735 Pass means let program see this signal; otherwise program doesn't know.\n\
4736 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4737 Pass and Stop may be combined."));
4738 }
4739
4740 if (!dbx_commands)
4741 stop_command = add_cmd ("stop", class_obscure,
4742 not_just_help_class_command, _("\
4743 There is no `stop' command, but you can set a hook on `stop'.\n\
4744 This allows you to set a list of commands to be run each time execution\n\
4745 of the program stops."), &cmdlist);
4746
4747 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4748 Set inferior debugging."), _("\
4749 Show inferior debugging."), _("\
4750 When non-zero, inferior specific debugging is enabled."),
4751 NULL,
4752 show_debug_infrun,
4753 &setdebuglist, &showdebuglist);
4754
4755 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
4756 Set displaced stepping debugging."), _("\
4757 Show displaced stepping debugging."), _("\
4758 When non-zero, displaced stepping specific debugging is enabled."),
4759 NULL,
4760 show_debug_displaced,
4761 &setdebuglist, &showdebuglist);
4762
4763 add_setshow_boolean_cmd ("non-stop", no_class,
4764 &non_stop_1, _("\
4765 Set whether gdb controls the inferior in non-stop mode."), _("\
4766 Show whether gdb controls the inferior in non-stop mode."), _("\
4767 When debugging a multi-threaded program and this setting is\n\
4768 off (the default, also called all-stop mode), when one thread stops\n\
4769 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
4770 all other threads in the program while you interact with the thread of\n\
4771 interest. When you continue or step a thread, you can allow the other\n\
4772 threads to run, or have them remain stopped, but while you inspect any\n\
4773 thread's state, all threads stop.\n\
4774 \n\
4775 In non-stop mode, when one thread stops, other threads can continue\n\
4776 to run freely. You'll be able to step each thread independently,\n\
4777 leave it stopped or free to run as needed."),
4778 set_non_stop,
4779 show_non_stop,
4780 &setlist,
4781 &showlist);
4782
4783 numsigs = (int) TARGET_SIGNAL_LAST;
4784 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4785 signal_print = (unsigned char *)
4786 xmalloc (sizeof (signal_print[0]) * numsigs);
4787 signal_program = (unsigned char *)
4788 xmalloc (sizeof (signal_program[0]) * numsigs);
4789 for (i = 0; i < numsigs; i++)
4790 {
4791 signal_stop[i] = 1;
4792 signal_print[i] = 1;
4793 signal_program[i] = 1;
4794 }
4795
4796 /* Signals caused by debugger's own actions
4797 should not be given to the program afterwards. */
4798 signal_program[TARGET_SIGNAL_TRAP] = 0;
4799 signal_program[TARGET_SIGNAL_INT] = 0;
4800
4801 /* Signals that are not errors should not normally enter the debugger. */
4802 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4803 signal_print[TARGET_SIGNAL_ALRM] = 0;
4804 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4805 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4806 signal_stop[TARGET_SIGNAL_PROF] = 0;
4807 signal_print[TARGET_SIGNAL_PROF] = 0;
4808 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4809 signal_print[TARGET_SIGNAL_CHLD] = 0;
4810 signal_stop[TARGET_SIGNAL_IO] = 0;
4811 signal_print[TARGET_SIGNAL_IO] = 0;
4812 signal_stop[TARGET_SIGNAL_POLL] = 0;
4813 signal_print[TARGET_SIGNAL_POLL] = 0;
4814 signal_stop[TARGET_SIGNAL_URG] = 0;
4815 signal_print[TARGET_SIGNAL_URG] = 0;
4816 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4817 signal_print[TARGET_SIGNAL_WINCH] = 0;
4818
4819 /* These signals are used internally by user-level thread
4820 implementations. (See signal(5) on Solaris.) Like the above
4821 signals, a healthy program receives and handles them as part of
4822 its normal operation. */
4823 signal_stop[TARGET_SIGNAL_LWP] = 0;
4824 signal_print[TARGET_SIGNAL_LWP] = 0;
4825 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4826 signal_print[TARGET_SIGNAL_WAITING] = 0;
4827 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4828 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4829
4830 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4831 &stop_on_solib_events, _("\
4832 Set stopping for shared library events."), _("\
4833 Show stopping for shared library events."), _("\
4834 If nonzero, gdb will give control to the user when the dynamic linker\n\
4835 notifies gdb of shared library events. The most common event of interest\n\
4836 to the user would be loading/unloading of a new library."),
4837 NULL,
4838 show_stop_on_solib_events,
4839 &setlist, &showlist);
4840
4841 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4842 follow_fork_mode_kind_names,
4843 &follow_fork_mode_string, _("\
4844 Set debugger response to a program call of fork or vfork."), _("\
4845 Show debugger response to a program call of fork or vfork."), _("\
4846 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4847 parent - the original process is debugged after a fork\n\
4848 child - the new process is debugged after a fork\n\
4849 The unfollowed process will continue to run.\n\
4850 By default, the debugger will follow the parent process."),
4851 NULL,
4852 show_follow_fork_mode_string,
4853 &setlist, &showlist);
4854
4855 add_setshow_enum_cmd ("scheduler-locking", class_run,
4856 scheduler_enums, &scheduler_mode, _("\
4857 Set mode for locking scheduler during execution."), _("\
4858 Show mode for locking scheduler during execution."), _("\
4859 off == no locking (threads may preempt at any time)\n\
4860 on == full locking (no thread except the current thread may run)\n\
4861 step == scheduler locked during every single-step operation.\n\
4862 In this mode, no other thread may run during a step command.\n\
4863 Other threads may run while stepping over a function call ('next')."),
4864 set_schedlock_func, /* traps on target vector */
4865 show_scheduler_mode,
4866 &setlist, &showlist);
4867
4868 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4869 Set mode of the step operation."), _("\
4870 Show mode of the step operation."), _("\
4871 When set, doing a step over a function without debug line information\n\
4872 will stop at the first instruction of that function. Otherwise, the\n\
4873 function is skipped and the step command stops at a different source line."),
4874 NULL,
4875 show_step_stop_if_no_debug,
4876 &setlist, &showlist);
4877
4878 add_setshow_boolean_cmd ("can-use-displaced-stepping", class_maintenance,
4879 &can_use_displaced_stepping, _("\
4880 Set debugger's willingness to use displaced stepping."), _("\
4881 Show debugger's willingness to use displaced stepping."), _("\
4882 If zero, gdb will not use displaced stepping to step over\n\
4883 breakpoints, even if such is supported by the target."),
4884 NULL,
4885 show_can_use_displaced_stepping,
4886 &maintenance_set_cmdlist,
4887 &maintenance_show_cmdlist);
4888
4889 /* ptid initializations */
4890 null_ptid = ptid_build (0, 0, 0);
4891 minus_one_ptid = ptid_build (-1, 0, 0);
4892 inferior_ptid = null_ptid;
4893 target_last_wait_ptid = minus_one_ptid;
4894 displaced_step_ptid = null_ptid;
4895
4896 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
4897 }