de1827eb669cc8607b0055212d9b609334354f85
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51 #include "event-top.h"
52
53 /* Prototypes for local functions */
54
55 static void signals_info (char *, int);
56
57 static void handle_command (char *, int);
58
59 static void sig_print_info (enum target_signal);
60
61 static void sig_print_header (void);
62
63 static void resume_cleanups (void *);
64
65 static int hook_stop_stub (void *);
66
67 static int restore_selected_frame (void *);
68
69 static void build_infrun (void);
70
71 static int follow_fork (void);
72
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
75
76 struct thread_stepping_state;
77
78 static int currently_stepping (struct thread_stepping_state *tss);
79
80 static void xdb_handle_command (char *args, int from_tty);
81
82 static int prepare_to_proceed (int);
83
84 void _initialize_infrun (void);
85
86 /* When set, stop the 'step' command if we enter a function which has
87 no line number information. The normal behavior is that we step
88 over such function. */
89 int step_stop_if_no_debug = 0;
90 static void
91 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
92 struct cmd_list_element *c, const char *value)
93 {
94 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
95 }
96
97 /* In asynchronous mode, but simulating synchronous execution. */
98
99 int sync_execution = 0;
100
101 /* wait_for_inferior and normal_stop use this to notify the user
102 when the inferior stopped in a different thread than it had been
103 running in. */
104
105 static ptid_t previous_inferior_ptid;
106
107 int debug_displaced = 0;
108 static void
109 show_debug_displaced (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
111 {
112 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
113 }
114
115 static int debug_infrun = 0;
116 static void
117 show_debug_infrun (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
121 }
122
123 /* If the program uses ELF-style shared libraries, then calls to
124 functions in shared libraries go through stubs, which live in a
125 table called the PLT (Procedure Linkage Table). The first time the
126 function is called, the stub sends control to the dynamic linker,
127 which looks up the function's real address, patches the stub so
128 that future calls will go directly to the function, and then passes
129 control to the function.
130
131 If we are stepping at the source level, we don't want to see any of
132 this --- we just want to skip over the stub and the dynamic linker.
133 The simple approach is to single-step until control leaves the
134 dynamic linker.
135
136 However, on some systems (e.g., Red Hat's 5.2 distribution) the
137 dynamic linker calls functions in the shared C library, so you
138 can't tell from the PC alone whether the dynamic linker is still
139 running. In this case, we use a step-resume breakpoint to get us
140 past the dynamic linker, as if we were using "next" to step over a
141 function call.
142
143 in_solib_dynsym_resolve_code() says whether we're in the dynamic
144 linker code or not. Normally, this means we single-step. However,
145 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
146 address where we can place a step-resume breakpoint to get past the
147 linker's symbol resolution function.
148
149 in_solib_dynsym_resolve_code() can generally be implemented in a
150 pretty portable way, by comparing the PC against the address ranges
151 of the dynamic linker's sections.
152
153 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
154 it depends on internal details of the dynamic linker. It's usually
155 not too hard to figure out where to put a breakpoint, but it
156 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
157 sanity checking. If it can't figure things out, returning zero and
158 getting the (possibly confusing) stepping behavior is better than
159 signalling an error, which will obscure the change in the
160 inferior's state. */
161
162 /* This function returns TRUE if pc is the address of an instruction
163 that lies within the dynamic linker (such as the event hook, or the
164 dld itself).
165
166 This function must be used only when a dynamic linker event has
167 been caught, and the inferior is being stepped out of the hook, or
168 undefined results are guaranteed. */
169
170 #ifndef SOLIB_IN_DYNAMIC_LINKER
171 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
172 #endif
173
174
175 /* Convert the #defines into values. This is temporary until wfi control
176 flow is completely sorted out. */
177
178 #ifndef CANNOT_STEP_HW_WATCHPOINTS
179 #define CANNOT_STEP_HW_WATCHPOINTS 0
180 #else
181 #undef CANNOT_STEP_HW_WATCHPOINTS
182 #define CANNOT_STEP_HW_WATCHPOINTS 1
183 #endif
184
185 /* Tables of how to react to signals; the user sets them. */
186
187 static unsigned char *signal_stop;
188 static unsigned char *signal_print;
189 static unsigned char *signal_program;
190
191 #define SET_SIGS(nsigs,sigs,flags) \
192 do { \
193 int signum = (nsigs); \
194 while (signum-- > 0) \
195 if ((sigs)[signum]) \
196 (flags)[signum] = 1; \
197 } while (0)
198
199 #define UNSET_SIGS(nsigs,sigs,flags) \
200 do { \
201 int signum = (nsigs); \
202 while (signum-- > 0) \
203 if ((sigs)[signum]) \
204 (flags)[signum] = 0; \
205 } while (0)
206
207 /* Value to pass to target_resume() to cause all threads to resume */
208
209 #define RESUME_ALL (pid_to_ptid (-1))
210
211 /* Command list pointer for the "stop" placeholder. */
212
213 static struct cmd_list_element *stop_command;
214
215 /* Function inferior was in as of last step command. */
216
217 static struct symbol *step_start_function;
218
219 /* Nonzero if we are presently stepping over a breakpoint.
220
221 If we hit a breakpoint or watchpoint, and then continue,
222 we need to single step the current thread with breakpoints
223 disabled, to avoid hitting the same breakpoint or
224 watchpoint again. And we should step just a single
225 thread and keep other threads stopped, so that
226 other threads don't miss breakpoints while they are removed.
227
228 So, this variable simultaneously means that we need to single
229 step the current thread, keep other threads stopped, and that
230 breakpoints should be removed while we step.
231
232 This variable is set either:
233 - in proceed, when we resume inferior on user's explicit request
234 - in keep_going, if handle_inferior_event decides we need to
235 step over breakpoint.
236
237 The variable is cleared in clear_proceed_status, called every
238 time before we call proceed. The proceed calls wait_for_inferior,
239 which calls handle_inferior_event in a loop, and until
240 wait_for_inferior exits, this variable is changed only by keep_going. */
241
242 static int stepping_over_breakpoint;
243
244 /* Nonzero if we want to give control to the user when we're notified
245 of shared library events by the dynamic linker. */
246 static int stop_on_solib_events;
247 static void
248 show_stop_on_solib_events (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
252 value);
253 }
254
255 /* Nonzero means expecting a trace trap
256 and should stop the inferior and return silently when it happens. */
257
258 int stop_after_trap;
259
260 /* Nonzero means expecting a trap and caller will handle it themselves.
261 It is used after attach, due to attaching to a process;
262 when running in the shell before the child program has been exec'd;
263 and when running some kinds of remote stuff (FIXME?). */
264
265 enum stop_kind stop_soon;
266
267 /* Nonzero if proceed is being used for a "finish" command or a similar
268 situation when stop_registers should be saved. */
269
270 int proceed_to_finish;
271
272 /* Save register contents here when about to pop a stack dummy frame,
273 if-and-only-if proceed_to_finish is set.
274 Thus this contains the return value from the called function (assuming
275 values are returned in a register). */
276
277 struct regcache *stop_registers;
278
279 /* Nonzero after stop if current stack frame should be printed. */
280
281 static int stop_print_frame;
282
283 /* Step-resume or longjmp-resume breakpoint. */
284 static struct breakpoint *step_resume_breakpoint = NULL;
285
286 /* This is a cached copy of the pid/waitstatus of the last event
287 returned by target_wait()/deprecated_target_wait_hook(). This
288 information is returned by get_last_target_status(). */
289 static ptid_t target_last_wait_ptid;
290 static struct target_waitstatus target_last_waitstatus;
291
292 /* Context-switchable data. */
293 struct thread_stepping_state
294 {
295 /* Should we step over breakpoint next time keep_going
296 is called? */
297 int stepping_over_breakpoint;
298 int current_line;
299 struct symtab *current_symtab;
300 int step_after_step_resume_breakpoint;
301 int stepping_through_solib_after_catch;
302 bpstat stepping_through_solib_catchpoints;
303 };
304
305 struct thread_stepping_state gtss;
306 struct thread_stepping_state *tss = &gtss;
307
308 static void context_switch (ptid_t ptid);
309
310 void init_thread_stepping_state (struct thread_stepping_state *tss);
311
312 void init_infwait_state (void);
313
314 /* This is used to remember when a fork, vfork or exec event
315 was caught by a catchpoint, and thus the event is to be
316 followed at the next resume of the inferior, and not
317 immediately. */
318 static struct
319 {
320 enum target_waitkind kind;
321 struct
322 {
323 ptid_t parent_pid;
324 ptid_t child_pid;
325 }
326 fork_event;
327 char *execd_pathname;
328 }
329 pending_follow;
330
331 static const char follow_fork_mode_child[] = "child";
332 static const char follow_fork_mode_parent[] = "parent";
333
334 static const char *follow_fork_mode_kind_names[] = {
335 follow_fork_mode_child,
336 follow_fork_mode_parent,
337 NULL
338 };
339
340 static const char *follow_fork_mode_string = follow_fork_mode_parent;
341 static void
342 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
343 struct cmd_list_element *c, const char *value)
344 {
345 fprintf_filtered (file, _("\
346 Debugger response to a program call of fork or vfork is \"%s\".\n"),
347 value);
348 }
349 \f
350
351 static int
352 follow_fork (void)
353 {
354 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
355
356 return target_follow_fork (follow_child);
357 }
358
359 void
360 follow_inferior_reset_breakpoints (void)
361 {
362 /* Was there a step_resume breakpoint? (There was if the user
363 did a "next" at the fork() call.) If so, explicitly reset its
364 thread number.
365
366 step_resumes are a form of bp that are made to be per-thread.
367 Since we created the step_resume bp when the parent process
368 was being debugged, and now are switching to the child process,
369 from the breakpoint package's viewpoint, that's a switch of
370 "threads". We must update the bp's notion of which thread
371 it is for, or it'll be ignored when it triggers. */
372
373 if (step_resume_breakpoint)
374 breakpoint_re_set_thread (step_resume_breakpoint);
375
376 /* Reinsert all breakpoints in the child. The user may have set
377 breakpoints after catching the fork, in which case those
378 were never set in the child, but only in the parent. This makes
379 sure the inserted breakpoints match the breakpoint list. */
380
381 breakpoint_re_set ();
382 insert_breakpoints ();
383 }
384
385 /* EXECD_PATHNAME is assumed to be non-NULL. */
386
387 static void
388 follow_exec (ptid_t pid, char *execd_pathname)
389 {
390 ptid_t saved_pid = pid;
391 struct target_ops *tgt;
392
393 /* This is an exec event that we actually wish to pay attention to.
394 Refresh our symbol table to the newly exec'd program, remove any
395 momentary bp's, etc.
396
397 If there are breakpoints, they aren't really inserted now,
398 since the exec() transformed our inferior into a fresh set
399 of instructions.
400
401 We want to preserve symbolic breakpoints on the list, since
402 we have hopes that they can be reset after the new a.out's
403 symbol table is read.
404
405 However, any "raw" breakpoints must be removed from the list
406 (e.g., the solib bp's), since their address is probably invalid
407 now.
408
409 And, we DON'T want to call delete_breakpoints() here, since
410 that may write the bp's "shadow contents" (the instruction
411 value that was overwritten witha TRAP instruction). Since
412 we now have a new a.out, those shadow contents aren't valid. */
413 update_breakpoints_after_exec ();
414
415 /* If there was one, it's gone now. We cannot truly step-to-next
416 statement through an exec(). */
417 step_resume_breakpoint = NULL;
418 step_range_start = 0;
419 step_range_end = 0;
420
421 /* What is this a.out's name? */
422 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
423
424 /* We've followed the inferior through an exec. Therefore, the
425 inferior has essentially been killed & reborn. */
426
427 gdb_flush (gdb_stdout);
428 generic_mourn_inferior ();
429 /* Because mourn_inferior resets inferior_ptid. */
430 inferior_ptid = saved_pid;
431
432 if (gdb_sysroot && *gdb_sysroot)
433 {
434 char *name = alloca (strlen (gdb_sysroot)
435 + strlen (execd_pathname)
436 + 1);
437 strcpy (name, gdb_sysroot);
438 strcat (name, execd_pathname);
439 execd_pathname = name;
440 }
441
442 /* That a.out is now the one to use. */
443 exec_file_attach (execd_pathname, 0);
444
445 /* Reset the shared library package. This ensures that we get a
446 shlib event when the child reaches "_start", at which point the
447 dld will have had a chance to initialize the child. */
448 /* Also, loading a symbol file below may trigger symbol lookups, and
449 we don't want those to be satisfied by the libraries of the
450 previous incarnation of this process. */
451 no_shared_libraries (NULL, 0);
452
453 /* Load the main file's symbols. */
454 symbol_file_add_main (execd_pathname, 0);
455
456 #ifdef SOLIB_CREATE_INFERIOR_HOOK
457 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
458 #else
459 solib_create_inferior_hook ();
460 #endif
461
462 /* Reinsert all breakpoints. (Those which were symbolic have
463 been reset to the proper address in the new a.out, thanks
464 to symbol_file_command...) */
465 insert_breakpoints ();
466
467 /* The next resume of this inferior should bring it to the shlib
468 startup breakpoints. (If the user had also set bp's on
469 "main" from the old (parent) process, then they'll auto-
470 matically get reset there in the new process.) */
471 }
472
473 /* Non-zero if we just simulating a single-step. This is needed
474 because we cannot remove the breakpoints in the inferior process
475 until after the `wait' in `wait_for_inferior'. */
476 static int singlestep_breakpoints_inserted_p = 0;
477
478 /* The thread we inserted single-step breakpoints for. */
479 static ptid_t singlestep_ptid;
480
481 /* PC when we started this single-step. */
482 static CORE_ADDR singlestep_pc;
483
484 /* If another thread hit the singlestep breakpoint, we save the original
485 thread here so that we can resume single-stepping it later. */
486 static ptid_t saved_singlestep_ptid;
487 static int stepping_past_singlestep_breakpoint;
488
489 /* If not equal to null_ptid, this means that after stepping over breakpoint
490 is finished, we need to switch to deferred_step_ptid, and step it.
491
492 The use case is when one thread has hit a breakpoint, and then the user
493 has switched to another thread and issued 'step'. We need to step over
494 breakpoint in the thread which hit the breakpoint, but then continue
495 stepping the thread user has selected. */
496 static ptid_t deferred_step_ptid;
497 \f
498 /* Displaced stepping. */
499
500 /* In non-stop debugging mode, we must take special care to manage
501 breakpoints properly; in particular, the traditional strategy for
502 stepping a thread past a breakpoint it has hit is unsuitable.
503 'Displaced stepping' is a tactic for stepping one thread past a
504 breakpoint it has hit while ensuring that other threads running
505 concurrently will hit the breakpoint as they should.
506
507 The traditional way to step a thread T off a breakpoint in a
508 multi-threaded program in all-stop mode is as follows:
509
510 a0) Initially, all threads are stopped, and breakpoints are not
511 inserted.
512 a1) We single-step T, leaving breakpoints uninserted.
513 a2) We insert breakpoints, and resume all threads.
514
515 In non-stop debugging, however, this strategy is unsuitable: we
516 don't want to have to stop all threads in the system in order to
517 continue or step T past a breakpoint. Instead, we use displaced
518 stepping:
519
520 n0) Initially, T is stopped, other threads are running, and
521 breakpoints are inserted.
522 n1) We copy the instruction "under" the breakpoint to a separate
523 location, outside the main code stream, making any adjustments
524 to the instruction, register, and memory state as directed by
525 T's architecture.
526 n2) We single-step T over the instruction at its new location.
527 n3) We adjust the resulting register and memory state as directed
528 by T's architecture. This includes resetting T's PC to point
529 back into the main instruction stream.
530 n4) We resume T.
531
532 This approach depends on the following gdbarch methods:
533
534 - gdbarch_max_insn_length and gdbarch_displaced_step_location
535 indicate where to copy the instruction, and how much space must
536 be reserved there. We use these in step n1.
537
538 - gdbarch_displaced_step_copy_insn copies a instruction to a new
539 address, and makes any necessary adjustments to the instruction,
540 register contents, and memory. We use this in step n1.
541
542 - gdbarch_displaced_step_fixup adjusts registers and memory after
543 we have successfuly single-stepped the instruction, to yield the
544 same effect the instruction would have had if we had executed it
545 at its original address. We use this in step n3.
546
547 - gdbarch_displaced_step_free_closure provides cleanup.
548
549 The gdbarch_displaced_step_copy_insn and
550 gdbarch_displaced_step_fixup functions must be written so that
551 copying an instruction with gdbarch_displaced_step_copy_insn,
552 single-stepping across the copied instruction, and then applying
553 gdbarch_displaced_insn_fixup should have the same effects on the
554 thread's memory and registers as stepping the instruction in place
555 would have. Exactly which responsibilities fall to the copy and
556 which fall to the fixup is up to the author of those functions.
557
558 See the comments in gdbarch.sh for details.
559
560 Note that displaced stepping and software single-step cannot
561 currently be used in combination, although with some care I think
562 they could be made to. Software single-step works by placing
563 breakpoints on all possible subsequent instructions; if the
564 displaced instruction is a PC-relative jump, those breakpoints
565 could fall in very strange places --- on pages that aren't
566 executable, or at addresses that are not proper instruction
567 boundaries. (We do generally let other threads run while we wait
568 to hit the software single-step breakpoint, and they might
569 encounter such a corrupted instruction.) One way to work around
570 this would be to have gdbarch_displaced_step_copy_insn fully
571 simulate the effect of PC-relative instructions (and return NULL)
572 on architectures that use software single-stepping.
573
574 In non-stop mode, we can have independent and simultaneous step
575 requests, so more than one thread may need to simultaneously step
576 over a breakpoint. The current implementation assumes there is
577 only one scratch space per process. In this case, we have to
578 serialize access to the scratch space. If thread A wants to step
579 over a breakpoint, but we are currently waiting for some other
580 thread to complete a displaced step, we leave thread A stopped and
581 place it in the displaced_step_request_queue. Whenever a displaced
582 step finishes, we pick the next thread in the queue and start a new
583 displaced step operation on it. See displaced_step_prepare and
584 displaced_step_fixup for details. */
585
586 /* If this is not null_ptid, this is the thread carrying out a
587 displaced single-step. This thread's state will require fixing up
588 once it has completed its step. */
589 static ptid_t displaced_step_ptid;
590
591 struct displaced_step_request
592 {
593 ptid_t ptid;
594 struct displaced_step_request *next;
595 };
596
597 /* A queue of pending displaced stepping requests. */
598 struct displaced_step_request *displaced_step_request_queue;
599
600 /* The architecture the thread had when we stepped it. */
601 static struct gdbarch *displaced_step_gdbarch;
602
603 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
604 for post-step cleanup. */
605 static struct displaced_step_closure *displaced_step_closure;
606
607 /* The address of the original instruction, and the copy we made. */
608 static CORE_ADDR displaced_step_original, displaced_step_copy;
609
610 /* Saved contents of copy area. */
611 static gdb_byte *displaced_step_saved_copy;
612
613 /* When this is non-zero, we are allowed to use displaced stepping, if
614 the architecture supports it. When this is zero, we use
615 traditional the hold-and-step approach. */
616 int can_use_displaced_stepping = 1;
617 static void
618 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
619 struct cmd_list_element *c,
620 const char *value)
621 {
622 fprintf_filtered (file, _("\
623 Debugger's willingness to use displaced stepping to step over "
624 "breakpoints is %s.\n"), value);
625 }
626
627 /* Return non-zero if displaced stepping is enabled, and can be used
628 with GDBARCH. */
629 static int
630 use_displaced_stepping (struct gdbarch *gdbarch)
631 {
632 return (can_use_displaced_stepping
633 && gdbarch_displaced_step_copy_insn_p (gdbarch));
634 }
635
636 /* Clean out any stray displaced stepping state. */
637 static void
638 displaced_step_clear (void)
639 {
640 /* Indicate that there is no cleanup pending. */
641 displaced_step_ptid = null_ptid;
642
643 if (displaced_step_closure)
644 {
645 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
646 displaced_step_closure);
647 displaced_step_closure = NULL;
648 }
649 }
650
651 static void
652 cleanup_displaced_step_closure (void *ptr)
653 {
654 struct displaced_step_closure *closure = ptr;
655
656 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
657 }
658
659 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
660 void
661 displaced_step_dump_bytes (struct ui_file *file,
662 const gdb_byte *buf,
663 size_t len)
664 {
665 int i;
666
667 for (i = 0; i < len; i++)
668 fprintf_unfiltered (file, "%02x ", buf[i]);
669 fputs_unfiltered ("\n", file);
670 }
671
672 /* Prepare to single-step, using displaced stepping.
673
674 Note that we cannot use displaced stepping when we have a signal to
675 deliver. If we have a signal to deliver and an instruction to step
676 over, then after the step, there will be no indication from the
677 target whether the thread entered a signal handler or ignored the
678 signal and stepped over the instruction successfully --- both cases
679 result in a simple SIGTRAP. In the first case we mustn't do a
680 fixup, and in the second case we must --- but we can't tell which.
681 Comments in the code for 'random signals' in handle_inferior_event
682 explain how we handle this case instead.
683
684 Returns 1 if preparing was successful -- this thread is going to be
685 stepped now; or 0 if displaced stepping this thread got queued. */
686 static int
687 displaced_step_prepare (ptid_t ptid)
688 {
689 struct cleanup *old_cleanups;
690 struct regcache *regcache = get_thread_regcache (ptid);
691 struct gdbarch *gdbarch = get_regcache_arch (regcache);
692 CORE_ADDR original, copy;
693 ULONGEST len;
694 struct displaced_step_closure *closure;
695
696 /* We should never reach this function if the architecture does not
697 support displaced stepping. */
698 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
699
700 /* For the first cut, we're displaced stepping one thread at a
701 time. */
702
703 if (!ptid_equal (displaced_step_ptid, null_ptid))
704 {
705 /* Already waiting for a displaced step to finish. Defer this
706 request and place in queue. */
707 struct displaced_step_request *req, *new_req;
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
711 "displaced: defering step of %s\n",
712 target_pid_to_str (ptid));
713
714 new_req = xmalloc (sizeof (*new_req));
715 new_req->ptid = ptid;
716 new_req->next = NULL;
717
718 if (displaced_step_request_queue)
719 {
720 for (req = displaced_step_request_queue;
721 req && req->next;
722 req = req->next)
723 ;
724 req->next = new_req;
725 }
726 else
727 displaced_step_request_queue = new_req;
728
729 return 0;
730 }
731 else
732 {
733 if (debug_displaced)
734 fprintf_unfiltered (gdb_stdlog,
735 "displaced: stepping %s now\n",
736 target_pid_to_str (ptid));
737 }
738
739 displaced_step_clear ();
740
741 original = regcache_read_pc (regcache);
742
743 copy = gdbarch_displaced_step_location (gdbarch);
744 len = gdbarch_max_insn_length (gdbarch);
745
746 /* Save the original contents of the copy area. */
747 displaced_step_saved_copy = xmalloc (len);
748 old_cleanups = make_cleanup (free_current_contents,
749 &displaced_step_saved_copy);
750 read_memory (copy, displaced_step_saved_copy, len);
751 if (debug_displaced)
752 {
753 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
754 paddr_nz (copy));
755 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
756 };
757
758 closure = gdbarch_displaced_step_copy_insn (gdbarch,
759 original, copy, regcache);
760
761 /* We don't support the fully-simulated case at present. */
762 gdb_assert (closure);
763
764 make_cleanup (cleanup_displaced_step_closure, closure);
765
766 /* Resume execution at the copy. */
767 regcache_write_pc (regcache, copy);
768
769 discard_cleanups (old_cleanups);
770
771 if (debug_displaced)
772 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
773 paddr_nz (copy));
774
775 /* Save the information we need to fix things up if the step
776 succeeds. */
777 displaced_step_ptid = ptid;
778 displaced_step_gdbarch = gdbarch;
779 displaced_step_closure = closure;
780 displaced_step_original = original;
781 displaced_step_copy = copy;
782 return 1;
783 }
784
785 static void
786 displaced_step_clear_cleanup (void *ignore)
787 {
788 displaced_step_clear ();
789 }
790
791 static void
792 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
793 {
794 struct cleanup *ptid_cleanup = save_inferior_ptid ();
795 inferior_ptid = ptid;
796 write_memory (memaddr, myaddr, len);
797 do_cleanups (ptid_cleanup);
798 }
799
800 static void
801 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
802 {
803 struct cleanup *old_cleanups;
804
805 /* Was this event for the pid we displaced? */
806 if (ptid_equal (displaced_step_ptid, null_ptid)
807 || ! ptid_equal (displaced_step_ptid, event_ptid))
808 return;
809
810 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
811
812 /* Restore the contents of the copy area. */
813 {
814 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
815 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
816 displaced_step_saved_copy, len);
817 if (debug_displaced)
818 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
819 paddr_nz (displaced_step_copy));
820 }
821
822 /* Did the instruction complete successfully? */
823 if (signal == TARGET_SIGNAL_TRAP)
824 {
825 /* Fix up the resulting state. */
826 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
827 displaced_step_closure,
828 displaced_step_original,
829 displaced_step_copy,
830 get_thread_regcache (displaced_step_ptid));
831 }
832 else
833 {
834 /* Since the instruction didn't complete, all we can do is
835 relocate the PC. */
836 struct regcache *regcache = get_thread_regcache (event_ptid);
837 CORE_ADDR pc = regcache_read_pc (regcache);
838 pc = displaced_step_original + (pc - displaced_step_copy);
839 regcache_write_pc (regcache, pc);
840 }
841
842 do_cleanups (old_cleanups);
843
844 /* Are there any pending displaced stepping requests? If so, run
845 one now. */
846 if (displaced_step_request_queue)
847 {
848 struct displaced_step_request *head;
849 ptid_t ptid;
850
851 head = displaced_step_request_queue;
852 ptid = head->ptid;
853 displaced_step_request_queue = head->next;
854 xfree (head);
855
856 if (debug_displaced)
857 fprintf_unfiltered (gdb_stdlog,
858 "displaced: stepping queued %s now\n",
859 target_pid_to_str (ptid));
860
861
862 displaced_step_ptid = null_ptid;
863 displaced_step_prepare (ptid);
864 target_resume (ptid, 1, TARGET_SIGNAL_0);
865 }
866 }
867
868 /* Update global variables holding ptids to hold NEW_PTID if they were
869 holding OLD_PTID. */
870 static void
871 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
872 {
873 struct displaced_step_request *it;
874
875 if (ptid_equal (inferior_ptid, old_ptid))
876 inferior_ptid = new_ptid;
877
878 if (ptid_equal (singlestep_ptid, old_ptid))
879 singlestep_ptid = new_ptid;
880
881 if (ptid_equal (displaced_step_ptid, old_ptid))
882 displaced_step_ptid = new_ptid;
883
884 if (ptid_equal (deferred_step_ptid, old_ptid))
885 deferred_step_ptid = new_ptid;
886
887 for (it = displaced_step_request_queue; it; it = it->next)
888 if (ptid_equal (it->ptid, old_ptid))
889 it->ptid = new_ptid;
890 }
891
892 \f
893 /* Resuming. */
894
895 /* Things to clean up if we QUIT out of resume (). */
896 static void
897 resume_cleanups (void *ignore)
898 {
899 normal_stop ();
900 }
901
902 static const char schedlock_off[] = "off";
903 static const char schedlock_on[] = "on";
904 static const char schedlock_step[] = "step";
905 static const char *scheduler_enums[] = {
906 schedlock_off,
907 schedlock_on,
908 schedlock_step,
909 NULL
910 };
911 static const char *scheduler_mode = schedlock_off;
912 static void
913 show_scheduler_mode (struct ui_file *file, int from_tty,
914 struct cmd_list_element *c, const char *value)
915 {
916 fprintf_filtered (file, _("\
917 Mode for locking scheduler during execution is \"%s\".\n"),
918 value);
919 }
920
921 static void
922 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
923 {
924 if (!target_can_lock_scheduler)
925 {
926 scheduler_mode = schedlock_off;
927 error (_("Target '%s' cannot support this command."), target_shortname);
928 }
929 }
930
931
932 /* Resume the inferior, but allow a QUIT. This is useful if the user
933 wants to interrupt some lengthy single-stepping operation
934 (for child processes, the SIGINT goes to the inferior, and so
935 we get a SIGINT random_signal, but for remote debugging and perhaps
936 other targets, that's not true).
937
938 STEP nonzero if we should step (zero to continue instead).
939 SIG is the signal to give the inferior (zero for none). */
940 void
941 resume (int step, enum target_signal sig)
942 {
943 int should_resume = 1;
944 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
945 struct regcache *regcache = get_current_regcache ();
946 struct gdbarch *gdbarch = get_regcache_arch (regcache);
947 CORE_ADDR pc = regcache_read_pc (regcache);
948 QUIT;
949
950 if (debug_infrun)
951 fprintf_unfiltered (gdb_stdlog,
952 "infrun: resume (step=%d, signal=%d), "
953 "stepping_over_breakpoint=%d\n",
954 step, sig, stepping_over_breakpoint);
955
956 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
957 over an instruction that causes a page fault without triggering
958 a hardware watchpoint. The kernel properly notices that it shouldn't
959 stop, because the hardware watchpoint is not triggered, but it forgets
960 the step request and continues the program normally.
961 Work around the problem by removing hardware watchpoints if a step is
962 requested, GDB will check for a hardware watchpoint trigger after the
963 step anyway. */
964 if (CANNOT_STEP_HW_WATCHPOINTS && step)
965 remove_hw_watchpoints ();
966
967
968 /* Normally, by the time we reach `resume', the breakpoints are either
969 removed or inserted, as appropriate. The exception is if we're sitting
970 at a permanent breakpoint; we need to step over it, but permanent
971 breakpoints can't be removed. So we have to test for it here. */
972 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
973 {
974 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
975 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
976 else
977 error (_("\
978 The program is stopped at a permanent breakpoint, but GDB does not know\n\
979 how to step past a permanent breakpoint on this architecture. Try using\n\
980 a command like `return' or `jump' to continue execution."));
981 }
982
983 /* If enabled, step over breakpoints by executing a copy of the
984 instruction at a different address.
985
986 We can't use displaced stepping when we have a signal to deliver;
987 the comments for displaced_step_prepare explain why. The
988 comments in the handle_inferior event for dealing with 'random
989 signals' explain what we do instead. */
990 if (use_displaced_stepping (gdbarch)
991 && stepping_over_breakpoint
992 && sig == TARGET_SIGNAL_0)
993 {
994 if (!displaced_step_prepare (inferior_ptid))
995 {
996 /* Got placed in displaced stepping queue. Will be resumed
997 later when all the currently queued displaced stepping
998 requests finish. The thread is not executing at this point,
999 and the call to set_executing will be made later. But we
1000 need to call set_running here, since from frontend point of view,
1001 the thread is running. */
1002 set_running (inferior_ptid, 1);
1003 discard_cleanups (old_cleanups);
1004 return;
1005 }
1006 }
1007
1008 if (step && gdbarch_software_single_step_p (gdbarch))
1009 {
1010 /* Do it the hard way, w/temp breakpoints */
1011 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
1012 {
1013 /* ...and don't ask hardware to do it. */
1014 step = 0;
1015 /* and do not pull these breakpoints until after a `wait' in
1016 `wait_for_inferior' */
1017 singlestep_breakpoints_inserted_p = 1;
1018 singlestep_ptid = inferior_ptid;
1019 singlestep_pc = pc;
1020 }
1021 }
1022
1023 /* If there were any forks/vforks/execs that were caught and are
1024 now to be followed, then do so. */
1025 switch (pending_follow.kind)
1026 {
1027 case TARGET_WAITKIND_FORKED:
1028 case TARGET_WAITKIND_VFORKED:
1029 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1030 if (follow_fork ())
1031 should_resume = 0;
1032 break;
1033
1034 case TARGET_WAITKIND_EXECD:
1035 /* follow_exec is called as soon as the exec event is seen. */
1036 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1037 break;
1038
1039 default:
1040 break;
1041 }
1042
1043 /* Install inferior's terminal modes. */
1044 target_terminal_inferior ();
1045
1046 if (should_resume)
1047 {
1048 ptid_t resume_ptid;
1049
1050 resume_ptid = RESUME_ALL; /* Default */
1051
1052 /* If STEP is set, it's a request to use hardware stepping
1053 facilities. But in that case, we should never
1054 use singlestep breakpoint. */
1055 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1056
1057 if (singlestep_breakpoints_inserted_p
1058 && stepping_past_singlestep_breakpoint)
1059 {
1060 /* The situation here is as follows. In thread T1 we wanted to
1061 single-step. Lacking hardware single-stepping we've
1062 set breakpoint at the PC of the next instruction -- call it
1063 P. After resuming, we've hit that breakpoint in thread T2.
1064 Now we've removed original breakpoint, inserted breakpoint
1065 at P+1, and try to step to advance T2 past breakpoint.
1066 We need to step only T2, as if T1 is allowed to freely run,
1067 it can run past P, and if other threads are allowed to run,
1068 they can hit breakpoint at P+1, and nested hits of single-step
1069 breakpoints is not something we'd want -- that's complicated
1070 to support, and has no value. */
1071 resume_ptid = inferior_ptid;
1072 }
1073
1074 if ((step || singlestep_breakpoints_inserted_p)
1075 && stepping_over_breakpoint)
1076 {
1077 /* We're allowing a thread to run past a breakpoint it has
1078 hit, by single-stepping the thread with the breakpoint
1079 removed. In which case, we need to single-step only this
1080 thread, and keep others stopped, as they can miss this
1081 breakpoint if allowed to run.
1082
1083 The current code actually removes all breakpoints when
1084 doing this, not just the one being stepped over, so if we
1085 let other threads run, we can actually miss any
1086 breakpoint, not just the one at PC. */
1087 resume_ptid = inferior_ptid;
1088 }
1089
1090 if (non_stop)
1091 {
1092 /* With non-stop mode on, threads are always handled
1093 individually. */
1094 resume_ptid = inferior_ptid;
1095 }
1096 else if ((scheduler_mode == schedlock_on)
1097 || (scheduler_mode == schedlock_step
1098 && (step || singlestep_breakpoints_inserted_p)))
1099 {
1100 /* User-settable 'scheduler' mode requires solo thread resume. */
1101 resume_ptid = inferior_ptid;
1102 }
1103
1104 if (gdbarch_cannot_step_breakpoint (gdbarch))
1105 {
1106 /* Most targets can step a breakpoint instruction, thus
1107 executing it normally. But if this one cannot, just
1108 continue and we will hit it anyway. */
1109 if (step && breakpoint_inserted_here_p (pc))
1110 step = 0;
1111 }
1112
1113 if (debug_displaced
1114 && use_displaced_stepping (gdbarch)
1115 && stepping_over_breakpoint)
1116 {
1117 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1118 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1119 gdb_byte buf[4];
1120
1121 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1122 paddr_nz (actual_pc));
1123 read_memory (actual_pc, buf, sizeof (buf));
1124 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1125 }
1126
1127 target_resume (resume_ptid, step, sig);
1128 }
1129
1130 discard_cleanups (old_cleanups);
1131 }
1132 \f
1133 /* Proceeding. */
1134
1135 /* Clear out all variables saying what to do when inferior is continued.
1136 First do this, then set the ones you want, then call `proceed'. */
1137
1138 void
1139 clear_proceed_status (void)
1140 {
1141 stepping_over_breakpoint = 0;
1142 step_range_start = 0;
1143 step_range_end = 0;
1144 step_frame_id = null_frame_id;
1145 step_over_calls = STEP_OVER_UNDEBUGGABLE;
1146 stop_after_trap = 0;
1147 stop_soon = NO_STOP_QUIETLY;
1148 proceed_to_finish = 0;
1149 breakpoint_proceeded = 1; /* We're about to proceed... */
1150
1151 if (stop_registers)
1152 {
1153 regcache_xfree (stop_registers);
1154 stop_registers = NULL;
1155 }
1156
1157 /* Discard any remaining commands or status from previous stop. */
1158 bpstat_clear (&stop_bpstat);
1159 }
1160
1161 /* This should be suitable for any targets that support threads. */
1162
1163 static int
1164 prepare_to_proceed (int step)
1165 {
1166 ptid_t wait_ptid;
1167 struct target_waitstatus wait_status;
1168
1169 /* Get the last target status returned by target_wait(). */
1170 get_last_target_status (&wait_ptid, &wait_status);
1171
1172 /* Make sure we were stopped at a breakpoint. */
1173 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1174 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1175 {
1176 return 0;
1177 }
1178
1179 /* Switched over from WAIT_PID. */
1180 if (!ptid_equal (wait_ptid, minus_one_ptid)
1181 && !ptid_equal (inferior_ptid, wait_ptid))
1182 {
1183 struct regcache *regcache = get_thread_regcache (wait_ptid);
1184
1185 if (breakpoint_here_p (regcache_read_pc (regcache)))
1186 {
1187 /* If stepping, remember current thread to switch back to. */
1188 if (step)
1189 deferred_step_ptid = inferior_ptid;
1190
1191 /* Switch back to WAIT_PID thread. */
1192 switch_to_thread (wait_ptid);
1193
1194 /* We return 1 to indicate that there is a breakpoint here,
1195 so we need to step over it before continuing to avoid
1196 hitting it straight away. */
1197 return 1;
1198 }
1199 }
1200
1201 return 0;
1202 }
1203
1204 /* Record the pc of the program the last time it stopped. This is
1205 just used internally by wait_for_inferior, but need to be preserved
1206 over calls to it and cleared when the inferior is started. */
1207 static CORE_ADDR prev_pc;
1208
1209 /* Basic routine for continuing the program in various fashions.
1210
1211 ADDR is the address to resume at, or -1 for resume where stopped.
1212 SIGGNAL is the signal to give it, or 0 for none,
1213 or -1 for act according to how it stopped.
1214 STEP is nonzero if should trap after one instruction.
1215 -1 means return after that and print nothing.
1216 You should probably set various step_... variables
1217 before calling here, if you are stepping.
1218
1219 You should call clear_proceed_status before calling proceed. */
1220
1221 void
1222 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1223 {
1224 struct regcache *regcache = get_current_regcache ();
1225 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1226 CORE_ADDR pc = regcache_read_pc (regcache);
1227 int oneproc = 0;
1228
1229 if (step > 0)
1230 step_start_function = find_pc_function (pc);
1231 if (step < 0)
1232 stop_after_trap = 1;
1233
1234 if (addr == (CORE_ADDR) -1)
1235 {
1236 if (pc == stop_pc && breakpoint_here_p (pc))
1237 /* There is a breakpoint at the address we will resume at,
1238 step one instruction before inserting breakpoints so that
1239 we do not stop right away (and report a second hit at this
1240 breakpoint). */
1241 oneproc = 1;
1242 else if (gdbarch_single_step_through_delay_p (gdbarch)
1243 && gdbarch_single_step_through_delay (gdbarch,
1244 get_current_frame ()))
1245 /* We stepped onto an instruction that needs to be stepped
1246 again before re-inserting the breakpoint, do so. */
1247 oneproc = 1;
1248 }
1249 else
1250 {
1251 regcache_write_pc (regcache, addr);
1252 }
1253
1254 if (debug_infrun)
1255 fprintf_unfiltered (gdb_stdlog,
1256 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1257 paddr_nz (addr), siggnal, step);
1258
1259 if (non_stop)
1260 /* In non-stop, each thread is handled individually. The context
1261 must already be set to the right thread here. */
1262 ;
1263 else
1264 {
1265 /* In a multi-threaded task we may select another thread and
1266 then continue or step.
1267
1268 But if the old thread was stopped at a breakpoint, it will
1269 immediately cause another breakpoint stop without any
1270 execution (i.e. it will report a breakpoint hit incorrectly).
1271 So we must step over it first.
1272
1273 prepare_to_proceed checks the current thread against the
1274 thread that reported the most recent event. If a step-over
1275 is required it returns TRUE and sets the current thread to
1276 the old thread. */
1277 if (prepare_to_proceed (step))
1278 oneproc = 1;
1279 }
1280
1281 if (oneproc)
1282 {
1283 stepping_over_breakpoint = 1;
1284 /* If displaced stepping is enabled, we can step over the
1285 breakpoint without hitting it, so leave all breakpoints
1286 inserted. Otherwise we need to disable all breakpoints, step
1287 one instruction, and then re-add them when that step is
1288 finished. */
1289 if (!use_displaced_stepping (gdbarch))
1290 remove_breakpoints ();
1291 }
1292
1293 /* We can insert breakpoints if we're not trying to step over one,
1294 or if we are stepping over one but we're using displaced stepping
1295 to do so. */
1296 if (! stepping_over_breakpoint || use_displaced_stepping (gdbarch))
1297 insert_breakpoints ();
1298
1299 if (siggnal != TARGET_SIGNAL_DEFAULT)
1300 stop_signal = siggnal;
1301 /* If this signal should not be seen by program,
1302 give it zero. Used for debugging signals. */
1303 else if (!signal_program[stop_signal])
1304 stop_signal = TARGET_SIGNAL_0;
1305
1306 annotate_starting ();
1307
1308 /* Make sure that output from GDB appears before output from the
1309 inferior. */
1310 gdb_flush (gdb_stdout);
1311
1312 /* Refresh prev_pc value just prior to resuming. This used to be
1313 done in stop_stepping, however, setting prev_pc there did not handle
1314 scenarios such as inferior function calls or returning from
1315 a function via the return command. In those cases, the prev_pc
1316 value was not set properly for subsequent commands. The prev_pc value
1317 is used to initialize the starting line number in the ecs. With an
1318 invalid value, the gdb next command ends up stopping at the position
1319 represented by the next line table entry past our start position.
1320 On platforms that generate one line table entry per line, this
1321 is not a problem. However, on the ia64, the compiler generates
1322 extraneous line table entries that do not increase the line number.
1323 When we issue the gdb next command on the ia64 after an inferior call
1324 or a return command, we often end up a few instructions forward, still
1325 within the original line we started.
1326
1327 An attempt was made to have init_execution_control_state () refresh
1328 the prev_pc value before calculating the line number. This approach
1329 did not work because on platforms that use ptrace, the pc register
1330 cannot be read unless the inferior is stopped. At that point, we
1331 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1332 call can fail. Setting the prev_pc value here ensures the value is
1333 updated correctly when the inferior is stopped. */
1334 prev_pc = regcache_read_pc (get_current_regcache ());
1335
1336 /* Fill in with reasonable starting values. */
1337 init_thread_stepping_state (tss);
1338
1339 /* Reset to normal state. */
1340 init_infwait_state ();
1341
1342 /* Resume inferior. */
1343 resume (oneproc || step || bpstat_should_step (), stop_signal);
1344
1345 /* Wait for it to stop (if not standalone)
1346 and in any case decode why it stopped, and act accordingly. */
1347 /* Do this only if we are not using the event loop, or if the target
1348 does not support asynchronous execution. */
1349 if (!target_can_async_p ())
1350 {
1351 wait_for_inferior (0);
1352 normal_stop ();
1353 }
1354 }
1355 \f
1356
1357 /* Start remote-debugging of a machine over a serial link. */
1358
1359 void
1360 start_remote (int from_tty)
1361 {
1362 init_wait_for_inferior ();
1363 stop_soon = STOP_QUIETLY_REMOTE;
1364 stepping_over_breakpoint = 0;
1365
1366 /* Always go on waiting for the target, regardless of the mode. */
1367 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1368 indicate to wait_for_inferior that a target should timeout if
1369 nothing is returned (instead of just blocking). Because of this,
1370 targets expecting an immediate response need to, internally, set
1371 things up so that the target_wait() is forced to eventually
1372 timeout. */
1373 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1374 differentiate to its caller what the state of the target is after
1375 the initial open has been performed. Here we're assuming that
1376 the target has stopped. It should be possible to eventually have
1377 target_open() return to the caller an indication that the target
1378 is currently running and GDB state should be set to the same as
1379 for an async run. */
1380 wait_for_inferior (0);
1381
1382 /* Now that the inferior has stopped, do any bookkeeping like
1383 loading shared libraries. We want to do this before normal_stop,
1384 so that the displayed frame is up to date. */
1385 post_create_inferior (&current_target, from_tty);
1386
1387 normal_stop ();
1388 }
1389
1390 /* Initialize static vars when a new inferior begins. */
1391
1392 void
1393 init_wait_for_inferior (void)
1394 {
1395 /* These are meaningless until the first time through wait_for_inferior. */
1396 prev_pc = 0;
1397
1398 breakpoint_init_inferior (inf_starting);
1399
1400 /* Don't confuse first call to proceed(). */
1401 stop_signal = TARGET_SIGNAL_0;
1402
1403 /* The first resume is not following a fork/vfork/exec. */
1404 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1405
1406 clear_proceed_status ();
1407
1408 stepping_past_singlestep_breakpoint = 0;
1409 deferred_step_ptid = null_ptid;
1410
1411 target_last_wait_ptid = minus_one_ptid;
1412
1413 init_thread_stepping_state (tss);
1414 previous_inferior_ptid = null_ptid;
1415 init_infwait_state ();
1416
1417 displaced_step_clear ();
1418 }
1419
1420 \f
1421 /* This enum encodes possible reasons for doing a target_wait, so that
1422 wfi can call target_wait in one place. (Ultimately the call will be
1423 moved out of the infinite loop entirely.) */
1424
1425 enum infwait_states
1426 {
1427 infwait_normal_state,
1428 infwait_thread_hop_state,
1429 infwait_step_watch_state,
1430 infwait_nonstep_watch_state
1431 };
1432
1433 /* Why did the inferior stop? Used to print the appropriate messages
1434 to the interface from within handle_inferior_event(). */
1435 enum inferior_stop_reason
1436 {
1437 /* Step, next, nexti, stepi finished. */
1438 END_STEPPING_RANGE,
1439 /* Inferior terminated by signal. */
1440 SIGNAL_EXITED,
1441 /* Inferior exited. */
1442 EXITED,
1443 /* Inferior received signal, and user asked to be notified. */
1444 SIGNAL_RECEIVED
1445 };
1446
1447 /* The PTID we'll do a target_wait on.*/
1448 ptid_t waiton_ptid;
1449
1450 /* Current inferior wait state. */
1451 enum infwait_states infwait_state;
1452
1453 /* Data to be passed around while handling an event. This data is
1454 discarded between events. */
1455 struct execution_control_state
1456 {
1457 ptid_t ptid;
1458 struct target_waitstatus ws;
1459 int random_signal;
1460 CORE_ADDR stop_func_start;
1461 CORE_ADDR stop_func_end;
1462 char *stop_func_name;
1463 int new_thread_event;
1464 int wait_some_more;
1465 };
1466
1467 void init_execution_control_state (struct execution_control_state *ecs);
1468
1469 void handle_inferior_event (struct execution_control_state *ecs);
1470
1471 static void step_into_function (struct execution_control_state *ecs);
1472 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1473 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1474 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1475 struct frame_id sr_id);
1476 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1477
1478 static void stop_stepping (struct execution_control_state *ecs);
1479 static void prepare_to_wait (struct execution_control_state *ecs);
1480 static void keep_going (struct execution_control_state *ecs);
1481 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1482 int stop_info);
1483
1484 /* Wait for control to return from inferior to debugger.
1485
1486 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1487 as if they were SIGTRAP signals. This can be useful during
1488 the startup sequence on some targets such as HP/UX, where
1489 we receive an EXEC event instead of the expected SIGTRAP.
1490
1491 If inferior gets a signal, we may decide to start it up again
1492 instead of returning. That is why there is a loop in this function.
1493 When this function actually returns it means the inferior
1494 should be left stopped and GDB should read more commands. */
1495
1496 void
1497 wait_for_inferior (int treat_exec_as_sigtrap)
1498 {
1499 struct cleanup *old_cleanups;
1500 struct execution_control_state ecss;
1501 struct execution_control_state *ecs;
1502
1503 if (debug_infrun)
1504 fprintf_unfiltered
1505 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1506 treat_exec_as_sigtrap);
1507
1508 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1509 &step_resume_breakpoint);
1510
1511 ecs = &ecss;
1512 memset (ecs, 0, sizeof (*ecs));
1513
1514 overlay_cache_invalid = 1;
1515
1516 /* We'll update this if & when we switch to a new thread. */
1517 previous_inferior_ptid = inferior_ptid;
1518
1519 /* We have to invalidate the registers BEFORE calling target_wait
1520 because they can be loaded from the target while in target_wait.
1521 This makes remote debugging a bit more efficient for those
1522 targets that provide critical registers as part of their normal
1523 status mechanism. */
1524
1525 registers_changed ();
1526
1527 while (1)
1528 {
1529 if (deprecated_target_wait_hook)
1530 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1531 else
1532 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1533
1534 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1535 {
1536 xfree (ecs->ws.value.execd_pathname);
1537 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1538 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1539 }
1540
1541 /* Now figure out what to do with the result of the result. */
1542 handle_inferior_event (ecs);
1543
1544 if (!ecs->wait_some_more)
1545 break;
1546 }
1547 do_cleanups (old_cleanups);
1548 }
1549
1550 /* Asynchronous version of wait_for_inferior. It is called by the
1551 event loop whenever a change of state is detected on the file
1552 descriptor corresponding to the target. It can be called more than
1553 once to complete a single execution command. In such cases we need
1554 to keep the state in a global variable ECSS. If it is the last time
1555 that this function is called for a single execution command, then
1556 report to the user that the inferior has stopped, and do the
1557 necessary cleanups. */
1558
1559 void
1560 fetch_inferior_event (void *client_data)
1561 {
1562 struct execution_control_state ecss;
1563 struct execution_control_state *ecs = &ecss;
1564 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1565 int was_sync = sync_execution;
1566
1567 memset (ecs, 0, sizeof (*ecs));
1568
1569 overlay_cache_invalid = 1;
1570
1571 /* We can only rely on wait_for_more being correct before handling
1572 the event in all-stop, but previous_inferior_ptid isn't used in
1573 non-stop. */
1574 if (!ecs->wait_some_more)
1575 /* We'll update this if & when we switch to a new thread. */
1576 previous_inferior_ptid = inferior_ptid;
1577
1578 if (non_stop)
1579 /* In non-stop mode, the user/frontend should not notice a thread
1580 switch due to internal events. Make sure we reverse to the
1581 user selected thread and frame after handling the event and
1582 running any breakpoint commands. */
1583 make_cleanup_restore_current_thread ();
1584
1585 /* We have to invalidate the registers BEFORE calling target_wait
1586 because they can be loaded from the target while in target_wait.
1587 This makes remote debugging a bit more efficient for those
1588 targets that provide critical registers as part of their normal
1589 status mechanism. */
1590
1591 registers_changed ();
1592
1593 if (deprecated_target_wait_hook)
1594 ecs->ptid =
1595 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1596 else
1597 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1598
1599 if (non_stop
1600 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1601 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1602 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1603 /* In non-stop mode, each thread is handled individually. Switch
1604 early, so the global state is set correctly for this
1605 thread. */
1606 context_switch (ecs->ptid);
1607
1608 /* Now figure out what to do with the result of the result. */
1609 handle_inferior_event (ecs);
1610
1611 if (!ecs->wait_some_more)
1612 {
1613 delete_step_resume_breakpoint (&step_resume_breakpoint);
1614
1615 if (stop_soon == NO_STOP_QUIETLY)
1616 normal_stop ();
1617
1618 if (step_multi && stop_step)
1619 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1620 else
1621 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1622 }
1623
1624 /* Revert thread and frame. */
1625 do_cleanups (old_chain);
1626
1627 /* If the inferior was in sync execution mode, and now isn't,
1628 restore the prompt. */
1629 if (was_sync && !sync_execution)
1630 display_gdb_prompt (0);
1631 }
1632
1633 /* Prepare an execution control state for looping through a
1634 wait_for_inferior-type loop. */
1635
1636 void
1637 init_execution_control_state (struct execution_control_state *ecs)
1638 {
1639 ecs->random_signal = 0;
1640 }
1641
1642 /* Clear context switchable stepping state. */
1643
1644 void
1645 init_thread_stepping_state (struct thread_stepping_state *tss)
1646 {
1647 struct symtab_and_line sal;
1648
1649 tss->stepping_over_breakpoint = 0;
1650 tss->step_after_step_resume_breakpoint = 0;
1651 tss->stepping_through_solib_after_catch = 0;
1652 tss->stepping_through_solib_catchpoints = NULL;
1653
1654 sal = find_pc_line (prev_pc, 0);
1655 tss->current_line = sal.line;
1656 tss->current_symtab = sal.symtab;
1657 }
1658
1659 /* Return the cached copy of the last pid/waitstatus returned by
1660 target_wait()/deprecated_target_wait_hook(). The data is actually
1661 cached by handle_inferior_event(), which gets called immediately
1662 after target_wait()/deprecated_target_wait_hook(). */
1663
1664 void
1665 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1666 {
1667 *ptidp = target_last_wait_ptid;
1668 *status = target_last_waitstatus;
1669 }
1670
1671 void
1672 nullify_last_target_wait_ptid (void)
1673 {
1674 target_last_wait_ptid = minus_one_ptid;
1675 }
1676
1677 /* Switch thread contexts, maintaining "infrun state". */
1678
1679 static void
1680 context_switch (ptid_t ptid)
1681 {
1682 /* Caution: it may happen that the new thread (or the old one!)
1683 is not in the thread list. In this case we must not attempt
1684 to "switch context", or we run the risk that our context may
1685 be lost. This may happen as a result of the target module
1686 mishandling thread creation. */
1687
1688 if (debug_infrun)
1689 {
1690 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1691 target_pid_to_str (inferior_ptid));
1692 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1693 target_pid_to_str (ptid));
1694 }
1695
1696 if (in_thread_list (inferior_ptid) && in_thread_list (ptid))
1697 { /* Perform infrun state context switch: */
1698 /* Save infrun state for the old thread. */
1699 save_infrun_state (inferior_ptid, prev_pc,
1700 stepping_over_breakpoint, step_resume_breakpoint,
1701 step_range_start,
1702 step_range_end, &step_frame_id,
1703 tss->stepping_over_breakpoint,
1704 tss->stepping_through_solib_after_catch,
1705 tss->stepping_through_solib_catchpoints,
1706 tss->current_line, tss->current_symtab,
1707 cmd_continuation, intermediate_continuation,
1708 proceed_to_finish,
1709 step_over_calls,
1710 stop_step,
1711 step_multi,
1712 stop_signal,
1713 stop_bpstat);
1714
1715 /* Load infrun state for the new thread. */
1716 load_infrun_state (ptid, &prev_pc,
1717 &stepping_over_breakpoint, &step_resume_breakpoint,
1718 &step_range_start,
1719 &step_range_end, &step_frame_id,
1720 &tss->stepping_over_breakpoint,
1721 &tss->stepping_through_solib_after_catch,
1722 &tss->stepping_through_solib_catchpoints,
1723 &tss->current_line, &tss->current_symtab,
1724 &cmd_continuation, &intermediate_continuation,
1725 &proceed_to_finish,
1726 &step_over_calls,
1727 &stop_step,
1728 &step_multi,
1729 &stop_signal,
1730 &stop_bpstat);
1731 }
1732
1733 switch_to_thread (ptid);
1734 }
1735
1736 /* Context switch to thread PTID. */
1737 ptid_t
1738 context_switch_to (ptid_t ptid)
1739 {
1740 ptid_t current_ptid = inferior_ptid;
1741
1742 /* Context switch to the new thread. */
1743 if (!ptid_equal (ptid, inferior_ptid))
1744 {
1745 context_switch (ptid);
1746 }
1747 return current_ptid;
1748 }
1749
1750 static void
1751 adjust_pc_after_break (struct execution_control_state *ecs)
1752 {
1753 struct regcache *regcache = get_thread_regcache (ecs->ptid);
1754 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1755 CORE_ADDR breakpoint_pc;
1756
1757 /* If this target does not decrement the PC after breakpoints, then
1758 we have nothing to do. */
1759 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
1760 return;
1761
1762 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1763 we aren't, just return.
1764
1765 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1766 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1767 implemented by software breakpoints should be handled through the normal
1768 breakpoint layer.
1769
1770 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1771 different signals (SIGILL or SIGEMT for instance), but it is less
1772 clear where the PC is pointing afterwards. It may not match
1773 gdbarch_decr_pc_after_break. I don't know any specific target that
1774 generates these signals at breakpoints (the code has been in GDB since at
1775 least 1992) so I can not guess how to handle them here.
1776
1777 In earlier versions of GDB, a target with
1778 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1779 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1780 target with both of these set in GDB history, and it seems unlikely to be
1781 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1782
1783 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1784 return;
1785
1786 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1787 return;
1788
1789 /* Find the location where (if we've hit a breakpoint) the
1790 breakpoint would be. */
1791 breakpoint_pc = regcache_read_pc (regcache)
1792 - gdbarch_decr_pc_after_break (gdbarch);
1793
1794 /* Check whether there actually is a software breakpoint inserted
1795 at that location. */
1796 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1797 {
1798 /* When using hardware single-step, a SIGTRAP is reported for both
1799 a completed single-step and a software breakpoint. Need to
1800 differentiate between the two, as the latter needs adjusting
1801 but the former does not.
1802
1803 The SIGTRAP can be due to a completed hardware single-step only if
1804 - we didn't insert software single-step breakpoints
1805 - the thread to be examined is still the current thread
1806 - this thread is currently being stepped
1807
1808 If any of these events did not occur, we must have stopped due
1809 to hitting a software breakpoint, and have to back up to the
1810 breakpoint address.
1811
1812 As a special case, we could have hardware single-stepped a
1813 software breakpoint. In this case (prev_pc == breakpoint_pc),
1814 we also need to back up to the breakpoint address. */
1815
1816 if (singlestep_breakpoints_inserted_p
1817 || !ptid_equal (ecs->ptid, inferior_ptid)
1818 || !currently_stepping (tss)
1819 || prev_pc == breakpoint_pc)
1820 regcache_write_pc (regcache, breakpoint_pc);
1821 }
1822 }
1823
1824 void
1825 init_infwait_state (void)
1826 {
1827 waiton_ptid = pid_to_ptid (-1);
1828 infwait_state = infwait_normal_state;
1829 }
1830
1831 void
1832 error_is_running (void)
1833 {
1834 error (_("\
1835 Cannot execute this command while the selected thread is running."));
1836 }
1837
1838 void
1839 ensure_not_running (void)
1840 {
1841 if (is_running (inferior_ptid))
1842 error_is_running ();
1843 }
1844
1845 /* Given an execution control state that has been freshly filled in
1846 by an event from the inferior, figure out what it means and take
1847 appropriate action. */
1848
1849 void
1850 handle_inferior_event (struct execution_control_state *ecs)
1851 {
1852 int sw_single_step_trap_p = 0;
1853 int stopped_by_watchpoint;
1854 int stepped_after_stopped_by_watchpoint = 0;
1855 struct symtab_and_line stop_pc_sal;
1856
1857 breakpoint_retire_moribund ();
1858
1859 /* Cache the last pid/waitstatus. */
1860 target_last_wait_ptid = ecs->ptid;
1861 target_last_waitstatus = ecs->ws;
1862
1863 /* Always clear state belonging to the previous time we stopped. */
1864 stop_stack_dummy = 0;
1865
1866 adjust_pc_after_break (ecs);
1867
1868 reinit_frame_cache ();
1869
1870 /* If it's a new process, add it to the thread database */
1871
1872 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1873 && !ptid_equal (ecs->ptid, minus_one_ptid)
1874 && !in_thread_list (ecs->ptid));
1875
1876 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1877 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1878 add_thread (ecs->ptid);
1879
1880 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
1881 {
1882 /* Mark the non-executing threads accordingly. */
1883 if (!non_stop
1884 || ecs->ws.kind == TARGET_WAITKIND_EXITED
1885 || ecs->ws.kind == TARGET_WAITKIND_SIGNALLED)
1886 set_executing (pid_to_ptid (-1), 0);
1887 else
1888 set_executing (ecs->ptid, 0);
1889 }
1890
1891 switch (infwait_state)
1892 {
1893 case infwait_thread_hop_state:
1894 if (debug_infrun)
1895 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1896 /* Cancel the waiton_ptid. */
1897 waiton_ptid = pid_to_ptid (-1);
1898 break;
1899
1900 case infwait_normal_state:
1901 if (debug_infrun)
1902 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1903 break;
1904
1905 case infwait_step_watch_state:
1906 if (debug_infrun)
1907 fprintf_unfiltered (gdb_stdlog,
1908 "infrun: infwait_step_watch_state\n");
1909
1910 stepped_after_stopped_by_watchpoint = 1;
1911 break;
1912
1913 case infwait_nonstep_watch_state:
1914 if (debug_infrun)
1915 fprintf_unfiltered (gdb_stdlog,
1916 "infrun: infwait_nonstep_watch_state\n");
1917 insert_breakpoints ();
1918
1919 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1920 handle things like signals arriving and other things happening
1921 in combination correctly? */
1922 stepped_after_stopped_by_watchpoint = 1;
1923 break;
1924
1925 default:
1926 internal_error (__FILE__, __LINE__, _("bad switch"));
1927 }
1928 infwait_state = infwait_normal_state;
1929
1930 switch (ecs->ws.kind)
1931 {
1932 case TARGET_WAITKIND_LOADED:
1933 if (debug_infrun)
1934 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1935 /* Ignore gracefully during startup of the inferior, as it might
1936 be the shell which has just loaded some objects, otherwise
1937 add the symbols for the newly loaded objects. Also ignore at
1938 the beginning of an attach or remote session; we will query
1939 the full list of libraries once the connection is
1940 established. */
1941 if (stop_soon == NO_STOP_QUIETLY)
1942 {
1943 /* Check for any newly added shared libraries if we're
1944 supposed to be adding them automatically. Switch
1945 terminal for any messages produced by
1946 breakpoint_re_set. */
1947 target_terminal_ours_for_output ();
1948 /* NOTE: cagney/2003-11-25: Make certain that the target
1949 stack's section table is kept up-to-date. Architectures,
1950 (e.g., PPC64), use the section table to perform
1951 operations such as address => section name and hence
1952 require the table to contain all sections (including
1953 those found in shared libraries). */
1954 /* NOTE: cagney/2003-11-25: Pass current_target and not
1955 exec_ops to SOLIB_ADD. This is because current GDB is
1956 only tooled to propagate section_table changes out from
1957 the "current_target" (see target_resize_to_sections), and
1958 not up from the exec stratum. This, of course, isn't
1959 right. "infrun.c" should only interact with the
1960 exec/process stratum, instead relying on the target stack
1961 to propagate relevant changes (stop, section table
1962 changed, ...) up to other layers. */
1963 #ifdef SOLIB_ADD
1964 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1965 #else
1966 solib_add (NULL, 0, &current_target, auto_solib_add);
1967 #endif
1968 target_terminal_inferior ();
1969
1970 /* If requested, stop when the dynamic linker notifies
1971 gdb of events. This allows the user to get control
1972 and place breakpoints in initializer routines for
1973 dynamically loaded objects (among other things). */
1974 if (stop_on_solib_events)
1975 {
1976 stop_stepping (ecs);
1977 return;
1978 }
1979
1980 /* NOTE drow/2007-05-11: This might be a good place to check
1981 for "catch load". */
1982 }
1983
1984 /* If we are skipping through a shell, or through shared library
1985 loading that we aren't interested in, resume the program. If
1986 we're running the program normally, also resume. But stop if
1987 we're attaching or setting up a remote connection. */
1988 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1989 {
1990 /* Loading of shared libraries might have changed breakpoint
1991 addresses. Make sure new breakpoints are inserted. */
1992 if (stop_soon == NO_STOP_QUIETLY
1993 && !breakpoints_always_inserted_mode ())
1994 insert_breakpoints ();
1995 resume (0, TARGET_SIGNAL_0);
1996 prepare_to_wait (ecs);
1997 return;
1998 }
1999
2000 break;
2001
2002 case TARGET_WAITKIND_SPURIOUS:
2003 if (debug_infrun)
2004 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2005 resume (0, TARGET_SIGNAL_0);
2006 prepare_to_wait (ecs);
2007 return;
2008
2009 case TARGET_WAITKIND_EXITED:
2010 if (debug_infrun)
2011 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2012 target_terminal_ours (); /* Must do this before mourn anyway */
2013 print_stop_reason (EXITED, ecs->ws.value.integer);
2014
2015 /* Record the exit code in the convenience variable $_exitcode, so
2016 that the user can inspect this again later. */
2017 set_internalvar (lookup_internalvar ("_exitcode"),
2018 value_from_longest (builtin_type_int,
2019 (LONGEST) ecs->ws.value.integer));
2020 gdb_flush (gdb_stdout);
2021 target_mourn_inferior ();
2022 singlestep_breakpoints_inserted_p = 0;
2023 stop_print_frame = 0;
2024 stop_stepping (ecs);
2025 return;
2026
2027 case TARGET_WAITKIND_SIGNALLED:
2028 if (debug_infrun)
2029 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2030 stop_print_frame = 0;
2031 stop_signal = ecs->ws.value.sig;
2032 target_terminal_ours (); /* Must do this before mourn anyway */
2033
2034 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2035 reach here unless the inferior is dead. However, for years
2036 target_kill() was called here, which hints that fatal signals aren't
2037 really fatal on some systems. If that's true, then some changes
2038 may be needed. */
2039 target_mourn_inferior ();
2040
2041 print_stop_reason (SIGNAL_EXITED, stop_signal);
2042 singlestep_breakpoints_inserted_p = 0;
2043 stop_stepping (ecs);
2044 return;
2045
2046 /* The following are the only cases in which we keep going;
2047 the above cases end in a continue or goto. */
2048 case TARGET_WAITKIND_FORKED:
2049 case TARGET_WAITKIND_VFORKED:
2050 if (debug_infrun)
2051 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2052 stop_signal = TARGET_SIGNAL_TRAP;
2053 pending_follow.kind = ecs->ws.kind;
2054
2055 pending_follow.fork_event.parent_pid = ecs->ptid;
2056 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
2057
2058 if (!ptid_equal (ecs->ptid, inferior_ptid))
2059 {
2060 context_switch (ecs->ptid);
2061 reinit_frame_cache ();
2062 }
2063
2064 stop_pc = read_pc ();
2065
2066 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2067
2068 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2069
2070 /* If no catchpoint triggered for this, then keep going. */
2071 if (ecs->random_signal)
2072 {
2073 stop_signal = TARGET_SIGNAL_0;
2074 keep_going (ecs);
2075 return;
2076 }
2077 goto process_event_stop_test;
2078
2079 case TARGET_WAITKIND_EXECD:
2080 if (debug_infrun)
2081 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2082 stop_signal = TARGET_SIGNAL_TRAP;
2083
2084 pending_follow.execd_pathname =
2085 savestring (ecs->ws.value.execd_pathname,
2086 strlen (ecs->ws.value.execd_pathname));
2087
2088 /* This causes the eventpoints and symbol table to be reset. Must
2089 do this now, before trying to determine whether to stop. */
2090 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2091 xfree (pending_follow.execd_pathname);
2092
2093 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2094
2095 {
2096 /* The breakpoints module may need to touch the inferior's
2097 memory. Switch to the (stopped) event ptid
2098 momentarily. */
2099 ptid_t saved_inferior_ptid = inferior_ptid;
2100 inferior_ptid = ecs->ptid;
2101
2102 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2103
2104 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2105 inferior_ptid = saved_inferior_ptid;
2106 }
2107
2108 if (!ptid_equal (ecs->ptid, inferior_ptid))
2109 {
2110 context_switch (ecs->ptid);
2111 reinit_frame_cache ();
2112 }
2113
2114 /* If no catchpoint triggered for this, then keep going. */
2115 if (ecs->random_signal)
2116 {
2117 stop_signal = TARGET_SIGNAL_0;
2118 keep_going (ecs);
2119 return;
2120 }
2121 goto process_event_stop_test;
2122
2123 /* Be careful not to try to gather much state about a thread
2124 that's in a syscall. It's frequently a losing proposition. */
2125 case TARGET_WAITKIND_SYSCALL_ENTRY:
2126 if (debug_infrun)
2127 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2128 resume (0, TARGET_SIGNAL_0);
2129 prepare_to_wait (ecs);
2130 return;
2131
2132 /* Before examining the threads further, step this thread to
2133 get it entirely out of the syscall. (We get notice of the
2134 event when the thread is just on the verge of exiting a
2135 syscall. Stepping one instruction seems to get it back
2136 into user code.) */
2137 case TARGET_WAITKIND_SYSCALL_RETURN:
2138 if (debug_infrun)
2139 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2140 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2141 prepare_to_wait (ecs);
2142 return;
2143
2144 case TARGET_WAITKIND_STOPPED:
2145 if (debug_infrun)
2146 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2147 stop_signal = ecs->ws.value.sig;
2148 break;
2149
2150 /* We had an event in the inferior, but we are not interested
2151 in handling it at this level. The lower layers have already
2152 done what needs to be done, if anything.
2153
2154 One of the possible circumstances for this is when the
2155 inferior produces output for the console. The inferior has
2156 not stopped, and we are ignoring the event. Another possible
2157 circumstance is any event which the lower level knows will be
2158 reported multiple times without an intervening resume. */
2159 case TARGET_WAITKIND_IGNORE:
2160 if (debug_infrun)
2161 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2162 prepare_to_wait (ecs);
2163 return;
2164 }
2165
2166 if (ecs->new_thread_event)
2167 {
2168 if (non_stop)
2169 /* Non-stop assumes that the target handles adding new threads
2170 to the thread list. */
2171 internal_error (__FILE__, __LINE__, "\
2172 targets should add new threads to the thread list themselves in non-stop mode.");
2173
2174 /* We may want to consider not doing a resume here in order to
2175 give the user a chance to play with the new thread. It might
2176 be good to make that a user-settable option. */
2177
2178 /* At this point, all threads are stopped (happens automatically
2179 in either the OS or the native code). Therefore we need to
2180 continue all threads in order to make progress. */
2181
2182 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2183 prepare_to_wait (ecs);
2184 return;
2185 }
2186
2187 /* Do we need to clean up the state of a thread that has completed a
2188 displaced single-step? (Doing so usually affects the PC, so do
2189 it here, before we set stop_pc.) */
2190 displaced_step_fixup (ecs->ptid, stop_signal);
2191
2192 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2193
2194 if (debug_infrun)
2195 {
2196 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2197 paddr_nz (stop_pc));
2198 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2199 {
2200 CORE_ADDR addr;
2201 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2202
2203 if (target_stopped_data_address (&current_target, &addr))
2204 fprintf_unfiltered (gdb_stdlog,
2205 "infrun: stopped data address = 0x%s\n",
2206 paddr_nz (addr));
2207 else
2208 fprintf_unfiltered (gdb_stdlog,
2209 "infrun: (no data address available)\n");
2210 }
2211 }
2212
2213 if (stepping_past_singlestep_breakpoint)
2214 {
2215 gdb_assert (singlestep_breakpoints_inserted_p);
2216 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2217 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2218
2219 stepping_past_singlestep_breakpoint = 0;
2220
2221 /* We've either finished single-stepping past the single-step
2222 breakpoint, or stopped for some other reason. It would be nice if
2223 we could tell, but we can't reliably. */
2224 if (stop_signal == TARGET_SIGNAL_TRAP)
2225 {
2226 if (debug_infrun)
2227 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2228 /* Pull the single step breakpoints out of the target. */
2229 remove_single_step_breakpoints ();
2230 singlestep_breakpoints_inserted_p = 0;
2231
2232 ecs->random_signal = 0;
2233
2234 context_switch (saved_singlestep_ptid);
2235 if (deprecated_context_hook)
2236 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2237
2238 resume (1, TARGET_SIGNAL_0);
2239 prepare_to_wait (ecs);
2240 return;
2241 }
2242 }
2243
2244 stepping_past_singlestep_breakpoint = 0;
2245
2246 if (!ptid_equal (deferred_step_ptid, null_ptid))
2247 {
2248 /* In non-stop mode, there's never a deferred_step_ptid set. */
2249 gdb_assert (!non_stop);
2250
2251 /* If we stopped for some other reason than single-stepping, ignore
2252 the fact that we were supposed to switch back. */
2253 if (stop_signal == TARGET_SIGNAL_TRAP)
2254 {
2255 if (debug_infrun)
2256 fprintf_unfiltered (gdb_stdlog,
2257 "infrun: handling deferred step\n");
2258
2259 /* Pull the single step breakpoints out of the target. */
2260 if (singlestep_breakpoints_inserted_p)
2261 {
2262 remove_single_step_breakpoints ();
2263 singlestep_breakpoints_inserted_p = 0;
2264 }
2265
2266 /* Note: We do not call context_switch at this point, as the
2267 context is already set up for stepping the original thread. */
2268 switch_to_thread (deferred_step_ptid);
2269 deferred_step_ptid = null_ptid;
2270 /* Suppress spurious "Switching to ..." message. */
2271 previous_inferior_ptid = inferior_ptid;
2272
2273 resume (1, TARGET_SIGNAL_0);
2274 prepare_to_wait (ecs);
2275 return;
2276 }
2277
2278 deferred_step_ptid = null_ptid;
2279 }
2280
2281 /* See if a thread hit a thread-specific breakpoint that was meant for
2282 another thread. If so, then step that thread past the breakpoint,
2283 and continue it. */
2284
2285 if (stop_signal == TARGET_SIGNAL_TRAP)
2286 {
2287 int thread_hop_needed = 0;
2288
2289 /* Check if a regular breakpoint has been hit before checking
2290 for a potential single step breakpoint. Otherwise, GDB will
2291 not see this breakpoint hit when stepping onto breakpoints. */
2292 if (regular_breakpoint_inserted_here_p (stop_pc))
2293 {
2294 ecs->random_signal = 0;
2295 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2296 thread_hop_needed = 1;
2297 }
2298 else if (singlestep_breakpoints_inserted_p)
2299 {
2300 /* We have not context switched yet, so this should be true
2301 no matter which thread hit the singlestep breakpoint. */
2302 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2303 if (debug_infrun)
2304 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2305 "trap for %s\n",
2306 target_pid_to_str (ecs->ptid));
2307
2308 ecs->random_signal = 0;
2309 /* The call to in_thread_list is necessary because PTIDs sometimes
2310 change when we go from single-threaded to multi-threaded. If
2311 the singlestep_ptid is still in the list, assume that it is
2312 really different from ecs->ptid. */
2313 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2314 && in_thread_list (singlestep_ptid))
2315 {
2316 /* If the PC of the thread we were trying to single-step
2317 has changed, discard this event (which we were going
2318 to ignore anyway), and pretend we saw that thread
2319 trap. This prevents us continuously moving the
2320 single-step breakpoint forward, one instruction at a
2321 time. If the PC has changed, then the thread we were
2322 trying to single-step has trapped or been signalled,
2323 but the event has not been reported to GDB yet.
2324
2325 There might be some cases where this loses signal
2326 information, if a signal has arrived at exactly the
2327 same time that the PC changed, but this is the best
2328 we can do with the information available. Perhaps we
2329 should arrange to report all events for all threads
2330 when they stop, or to re-poll the remote looking for
2331 this particular thread (i.e. temporarily enable
2332 schedlock). */
2333
2334 CORE_ADDR new_singlestep_pc
2335 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2336
2337 if (new_singlestep_pc != singlestep_pc)
2338 {
2339 if (debug_infrun)
2340 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2341 " but expected thread advanced also\n");
2342
2343 /* The current context still belongs to
2344 singlestep_ptid. Don't swap here, since that's
2345 the context we want to use. Just fudge our
2346 state and continue. */
2347 ecs->ptid = singlestep_ptid;
2348 stop_pc = new_singlestep_pc;
2349 }
2350 else
2351 {
2352 if (debug_infrun)
2353 fprintf_unfiltered (gdb_stdlog,
2354 "infrun: unexpected thread\n");
2355
2356 thread_hop_needed = 1;
2357 stepping_past_singlestep_breakpoint = 1;
2358 saved_singlestep_ptid = singlestep_ptid;
2359 }
2360 }
2361 }
2362
2363 if (thread_hop_needed)
2364 {
2365 int remove_status = 0;
2366
2367 if (debug_infrun)
2368 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2369
2370 /* Saw a breakpoint, but it was hit by the wrong thread.
2371 Just continue. */
2372
2373 if (singlestep_breakpoints_inserted_p)
2374 {
2375 /* Pull the single step breakpoints out of the target. */
2376 remove_single_step_breakpoints ();
2377 singlestep_breakpoints_inserted_p = 0;
2378 }
2379
2380 /* If the arch can displace step, don't remove the
2381 breakpoints. */
2382 if (!use_displaced_stepping (current_gdbarch))
2383 remove_status = remove_breakpoints ();
2384
2385 /* Did we fail to remove breakpoints? If so, try
2386 to set the PC past the bp. (There's at least
2387 one situation in which we can fail to remove
2388 the bp's: On HP-UX's that use ttrace, we can't
2389 change the address space of a vforking child
2390 process until the child exits (well, okay, not
2391 then either :-) or execs. */
2392 if (remove_status != 0)
2393 error (_("Cannot step over breakpoint hit in wrong thread"));
2394 else
2395 { /* Single step */
2396 if (!ptid_equal (inferior_ptid, ecs->ptid))
2397 context_switch (ecs->ptid);
2398
2399 if (!non_stop)
2400 {
2401 /* Only need to require the next event from this
2402 thread in all-stop mode. */
2403 waiton_ptid = ecs->ptid;
2404 infwait_state = infwait_thread_hop_state;
2405 }
2406
2407 tss->stepping_over_breakpoint = 1;
2408 keep_going (ecs);
2409 registers_changed ();
2410 return;
2411 }
2412 }
2413 else if (singlestep_breakpoints_inserted_p)
2414 {
2415 sw_single_step_trap_p = 1;
2416 ecs->random_signal = 0;
2417 }
2418 }
2419 else
2420 ecs->random_signal = 1;
2421
2422 /* See if something interesting happened to the non-current thread. If
2423 so, then switch to that thread. */
2424 if (!ptid_equal (ecs->ptid, inferior_ptid))
2425 {
2426 if (debug_infrun)
2427 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2428
2429 context_switch (ecs->ptid);
2430
2431 if (deprecated_context_hook)
2432 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2433 }
2434
2435 if (singlestep_breakpoints_inserted_p)
2436 {
2437 /* Pull the single step breakpoints out of the target. */
2438 remove_single_step_breakpoints ();
2439 singlestep_breakpoints_inserted_p = 0;
2440 }
2441
2442 if (stepped_after_stopped_by_watchpoint)
2443 stopped_by_watchpoint = 0;
2444 else
2445 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2446
2447 /* If necessary, step over this watchpoint. We'll be back to display
2448 it in a moment. */
2449 if (stopped_by_watchpoint
2450 && (HAVE_STEPPABLE_WATCHPOINT
2451 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2452 {
2453 /* At this point, we are stopped at an instruction which has
2454 attempted to write to a piece of memory under control of
2455 a watchpoint. The instruction hasn't actually executed
2456 yet. If we were to evaluate the watchpoint expression
2457 now, we would get the old value, and therefore no change
2458 would seem to have occurred.
2459
2460 In order to make watchpoints work `right', we really need
2461 to complete the memory write, and then evaluate the
2462 watchpoint expression. We do this by single-stepping the
2463 target.
2464
2465 It may not be necessary to disable the watchpoint to stop over
2466 it. For example, the PA can (with some kernel cooperation)
2467 single step over a watchpoint without disabling the watchpoint.
2468
2469 It is far more common to need to disable a watchpoint to step
2470 the inferior over it. If we have non-steppable watchpoints,
2471 we must disable the current watchpoint; it's simplest to
2472 disable all watchpoints and breakpoints. */
2473
2474 if (!HAVE_STEPPABLE_WATCHPOINT)
2475 remove_breakpoints ();
2476 registers_changed ();
2477 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2478 waiton_ptid = ecs->ptid;
2479 if (HAVE_STEPPABLE_WATCHPOINT)
2480 infwait_state = infwait_step_watch_state;
2481 else
2482 infwait_state = infwait_nonstep_watch_state;
2483 prepare_to_wait (ecs);
2484 return;
2485 }
2486
2487 ecs->stop_func_start = 0;
2488 ecs->stop_func_end = 0;
2489 ecs->stop_func_name = 0;
2490 /* Don't care about return value; stop_func_start and stop_func_name
2491 will both be 0 if it doesn't work. */
2492 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2493 &ecs->stop_func_start, &ecs->stop_func_end);
2494 ecs->stop_func_start
2495 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2496 tss->stepping_over_breakpoint = 0;
2497 bpstat_clear (&stop_bpstat);
2498 stop_step = 0;
2499 stop_print_frame = 1;
2500 ecs->random_signal = 0;
2501 stopped_by_random_signal = 0;
2502
2503 if (stop_signal == TARGET_SIGNAL_TRAP
2504 && stepping_over_breakpoint
2505 && gdbarch_single_step_through_delay_p (current_gdbarch)
2506 && currently_stepping (tss))
2507 {
2508 /* We're trying to step off a breakpoint. Turns out that we're
2509 also on an instruction that needs to be stepped multiple
2510 times before it's been fully executing. E.g., architectures
2511 with a delay slot. It needs to be stepped twice, once for
2512 the instruction and once for the delay slot. */
2513 int step_through_delay
2514 = gdbarch_single_step_through_delay (current_gdbarch,
2515 get_current_frame ());
2516 if (debug_infrun && step_through_delay)
2517 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2518 if (step_range_end == 0 && step_through_delay)
2519 {
2520 /* The user issued a continue when stopped at a breakpoint.
2521 Set up for another trap and get out of here. */
2522 tss->stepping_over_breakpoint = 1;
2523 keep_going (ecs);
2524 return;
2525 }
2526 else if (step_through_delay)
2527 {
2528 /* The user issued a step when stopped at a breakpoint.
2529 Maybe we should stop, maybe we should not - the delay
2530 slot *might* correspond to a line of source. In any
2531 case, don't decide that here, just set
2532 ecs->stepping_over_breakpoint, making sure we
2533 single-step again before breakpoints are re-inserted. */
2534 tss->stepping_over_breakpoint = 1;
2535 }
2536 }
2537
2538 /* Look at the cause of the stop, and decide what to do.
2539 The alternatives are:
2540 1) stop_stepping and return; to really stop and return to the debugger,
2541 2) keep_going and return to start up again
2542 (set tss->stepping_over_breakpoint to 1 to single step once)
2543 3) set ecs->random_signal to 1, and the decision between 1 and 2
2544 will be made according to the signal handling tables. */
2545
2546 /* First, distinguish signals caused by the debugger from signals
2547 that have to do with the program's own actions. Note that
2548 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2549 on the operating system version. Here we detect when a SIGILL or
2550 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2551 something similar for SIGSEGV, since a SIGSEGV will be generated
2552 when we're trying to execute a breakpoint instruction on a
2553 non-executable stack. This happens for call dummy breakpoints
2554 for architectures like SPARC that place call dummies on the
2555 stack.
2556
2557 If we're doing a displaced step past a breakpoint, then the
2558 breakpoint is always inserted at the original instruction;
2559 non-standard signals can't be explained by the breakpoint. */
2560 if (stop_signal == TARGET_SIGNAL_TRAP
2561 || (! stepping_over_breakpoint
2562 && breakpoint_inserted_here_p (stop_pc)
2563 && (stop_signal == TARGET_SIGNAL_ILL
2564 || stop_signal == TARGET_SIGNAL_SEGV
2565 || stop_signal == TARGET_SIGNAL_EMT))
2566 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2567 || stop_soon == STOP_QUIETLY_REMOTE)
2568 {
2569 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2570 {
2571 if (debug_infrun)
2572 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2573 stop_print_frame = 0;
2574 stop_stepping (ecs);
2575 return;
2576 }
2577
2578 /* This is originated from start_remote(), start_inferior() and
2579 shared libraries hook functions. */
2580 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2581 {
2582 if (debug_infrun)
2583 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2584 stop_stepping (ecs);
2585 return;
2586 }
2587
2588 /* This originates from attach_command(). We need to overwrite
2589 the stop_signal here, because some kernels don't ignore a
2590 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2591 See more comments in inferior.h. On the other hand, if we
2592 get a non-SIGSTOP, report it to the user - assume the backend
2593 will handle the SIGSTOP if it should show up later.
2594
2595 Also consider that the attach is complete when we see a
2596 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2597 target extended-remote report it instead of a SIGSTOP
2598 (e.g. gdbserver). We already rely on SIGTRAP being our
2599 signal, so this is no exception. */
2600 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2601 && (stop_signal == TARGET_SIGNAL_STOP
2602 || stop_signal == TARGET_SIGNAL_TRAP))
2603 {
2604 stop_stepping (ecs);
2605 stop_signal = TARGET_SIGNAL_0;
2606 return;
2607 }
2608
2609 /* See if there is a breakpoint at the current PC. */
2610 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2611
2612 /* Following in case break condition called a
2613 function. */
2614 stop_print_frame = 1;
2615
2616 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2617 at one stage in the past included checks for an inferior
2618 function call's call dummy's return breakpoint. The original
2619 comment, that went with the test, read:
2620
2621 ``End of a stack dummy. Some systems (e.g. Sony news) give
2622 another signal besides SIGTRAP, so check here as well as
2623 above.''
2624
2625 If someone ever tries to get get call dummys on a
2626 non-executable stack to work (where the target would stop
2627 with something like a SIGSEGV), then those tests might need
2628 to be re-instated. Given, however, that the tests were only
2629 enabled when momentary breakpoints were not being used, I
2630 suspect that it won't be the case.
2631
2632 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2633 be necessary for call dummies on a non-executable stack on
2634 SPARC. */
2635
2636 if (stop_signal == TARGET_SIGNAL_TRAP)
2637 ecs->random_signal
2638 = !(bpstat_explains_signal (stop_bpstat)
2639 || stepping_over_breakpoint
2640 || (step_range_end && step_resume_breakpoint == NULL));
2641 else
2642 {
2643 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2644 if (!ecs->random_signal)
2645 stop_signal = TARGET_SIGNAL_TRAP;
2646 }
2647 }
2648
2649 /* When we reach this point, we've pretty much decided
2650 that the reason for stopping must've been a random
2651 (unexpected) signal. */
2652
2653 else
2654 ecs->random_signal = 1;
2655
2656 process_event_stop_test:
2657 /* For the program's own signals, act according to
2658 the signal handling tables. */
2659
2660 if (ecs->random_signal)
2661 {
2662 /* Signal not for debugging purposes. */
2663 int printed = 0;
2664
2665 if (debug_infrun)
2666 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2667
2668 stopped_by_random_signal = 1;
2669
2670 if (signal_print[stop_signal])
2671 {
2672 printed = 1;
2673 target_terminal_ours_for_output ();
2674 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2675 }
2676 if (signal_stop_state (stop_signal))
2677 {
2678 stop_stepping (ecs);
2679 return;
2680 }
2681 /* If not going to stop, give terminal back
2682 if we took it away. */
2683 else if (printed)
2684 target_terminal_inferior ();
2685
2686 /* Clear the signal if it should not be passed. */
2687 if (signal_program[stop_signal] == 0)
2688 stop_signal = TARGET_SIGNAL_0;
2689
2690 if (prev_pc == read_pc ()
2691 && stepping_over_breakpoint
2692 && step_resume_breakpoint == NULL)
2693 {
2694 /* We were just starting a new sequence, attempting to
2695 single-step off of a breakpoint and expecting a SIGTRAP.
2696 Instead this signal arrives. This signal will take us out
2697 of the stepping range so GDB needs to remember to, when
2698 the signal handler returns, resume stepping off that
2699 breakpoint. */
2700 /* To simplify things, "continue" is forced to use the same
2701 code paths as single-step - set a breakpoint at the
2702 signal return address and then, once hit, step off that
2703 breakpoint. */
2704 if (debug_infrun)
2705 fprintf_unfiltered (gdb_stdlog,
2706 "infrun: signal arrived while stepping over "
2707 "breakpoint\n");
2708
2709 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2710 tss->step_after_step_resume_breakpoint = 1;
2711 keep_going (ecs);
2712 return;
2713 }
2714
2715 if (step_range_end != 0
2716 && stop_signal != TARGET_SIGNAL_0
2717 && stop_pc >= step_range_start && stop_pc < step_range_end
2718 && frame_id_eq (get_frame_id (get_current_frame ()),
2719 step_frame_id)
2720 && step_resume_breakpoint == NULL)
2721 {
2722 /* The inferior is about to take a signal that will take it
2723 out of the single step range. Set a breakpoint at the
2724 current PC (which is presumably where the signal handler
2725 will eventually return) and then allow the inferior to
2726 run free.
2727
2728 Note that this is only needed for a signal delivered
2729 while in the single-step range. Nested signals aren't a
2730 problem as they eventually all return. */
2731 if (debug_infrun)
2732 fprintf_unfiltered (gdb_stdlog,
2733 "infrun: signal may take us out of "
2734 "single-step range\n");
2735
2736 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2737 keep_going (ecs);
2738 return;
2739 }
2740
2741 /* Note: step_resume_breakpoint may be non-NULL. This occures
2742 when either there's a nested signal, or when there's a
2743 pending signal enabled just as the signal handler returns
2744 (leaving the inferior at the step-resume-breakpoint without
2745 actually executing it). Either way continue until the
2746 breakpoint is really hit. */
2747 keep_going (ecs);
2748 return;
2749 }
2750
2751 /* Handle cases caused by hitting a breakpoint. */
2752 {
2753 CORE_ADDR jmp_buf_pc;
2754 struct bpstat_what what;
2755
2756 what = bpstat_what (stop_bpstat);
2757
2758 if (what.call_dummy)
2759 {
2760 stop_stack_dummy = 1;
2761 }
2762
2763 switch (what.main_action)
2764 {
2765 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2766 /* If we hit the breakpoint at longjmp while stepping, we
2767 install a momentary breakpoint at the target of the
2768 jmp_buf. */
2769
2770 if (debug_infrun)
2771 fprintf_unfiltered (gdb_stdlog,
2772 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2773
2774 tss->stepping_over_breakpoint = 1;
2775
2776 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2777 || !gdbarch_get_longjmp_target (current_gdbarch,
2778 get_current_frame (), &jmp_buf_pc))
2779 {
2780 if (debug_infrun)
2781 fprintf_unfiltered (gdb_stdlog, "\
2782 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
2783 keep_going (ecs);
2784 return;
2785 }
2786
2787 /* We're going to replace the current step-resume breakpoint
2788 with a longjmp-resume breakpoint. */
2789 if (step_resume_breakpoint != NULL)
2790 delete_step_resume_breakpoint (&step_resume_breakpoint);
2791
2792 /* Insert a breakpoint at resume address. */
2793 insert_longjmp_resume_breakpoint (jmp_buf_pc);
2794
2795 keep_going (ecs);
2796 return;
2797
2798 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2799 if (debug_infrun)
2800 fprintf_unfiltered (gdb_stdlog,
2801 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2802
2803 gdb_assert (step_resume_breakpoint != NULL);
2804 delete_step_resume_breakpoint (&step_resume_breakpoint);
2805
2806 stop_step = 1;
2807 print_stop_reason (END_STEPPING_RANGE, 0);
2808 stop_stepping (ecs);
2809 return;
2810
2811 case BPSTAT_WHAT_SINGLE:
2812 if (debug_infrun)
2813 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2814 tss->stepping_over_breakpoint = 1;
2815 /* Still need to check other stuff, at least the case
2816 where we are stepping and step out of the right range. */
2817 break;
2818
2819 case BPSTAT_WHAT_STOP_NOISY:
2820 if (debug_infrun)
2821 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2822 stop_print_frame = 1;
2823
2824 /* We are about to nuke the step_resume_breakpointt via the
2825 cleanup chain, so no need to worry about it here. */
2826
2827 stop_stepping (ecs);
2828 return;
2829
2830 case BPSTAT_WHAT_STOP_SILENT:
2831 if (debug_infrun)
2832 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2833 stop_print_frame = 0;
2834
2835 /* We are about to nuke the step_resume_breakpoin via the
2836 cleanup chain, so no need to worry about it here. */
2837
2838 stop_stepping (ecs);
2839 return;
2840
2841 case BPSTAT_WHAT_STEP_RESUME:
2842 /* This proably demands a more elegant solution, but, yeah
2843 right...
2844
2845 This function's use of the simple variable
2846 step_resume_breakpoint doesn't seem to accomodate
2847 simultaneously active step-resume bp's, although the
2848 breakpoint list certainly can.
2849
2850 If we reach here and step_resume_breakpoint is already
2851 NULL, then apparently we have multiple active
2852 step-resume bp's. We'll just delete the breakpoint we
2853 stopped at, and carry on.
2854
2855 Correction: what the code currently does is delete a
2856 step-resume bp, but it makes no effort to ensure that
2857 the one deleted is the one currently stopped at. MVS */
2858
2859 if (debug_infrun)
2860 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2861
2862 if (step_resume_breakpoint == NULL)
2863 {
2864 step_resume_breakpoint =
2865 bpstat_find_step_resume_breakpoint (stop_bpstat);
2866 }
2867 delete_step_resume_breakpoint (&step_resume_breakpoint);
2868 if (tss->step_after_step_resume_breakpoint)
2869 {
2870 /* Back when the step-resume breakpoint was inserted, we
2871 were trying to single-step off a breakpoint. Go back
2872 to doing that. */
2873 tss->step_after_step_resume_breakpoint = 0;
2874 tss->stepping_over_breakpoint = 1;
2875 keep_going (ecs);
2876 return;
2877 }
2878 break;
2879
2880 case BPSTAT_WHAT_CHECK_SHLIBS:
2881 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2882 {
2883 if (debug_infrun)
2884 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2885
2886 /* Check for any newly added shared libraries if we're
2887 supposed to be adding them automatically. Switch
2888 terminal for any messages produced by
2889 breakpoint_re_set. */
2890 target_terminal_ours_for_output ();
2891 /* NOTE: cagney/2003-11-25: Make certain that the target
2892 stack's section table is kept up-to-date. Architectures,
2893 (e.g., PPC64), use the section table to perform
2894 operations such as address => section name and hence
2895 require the table to contain all sections (including
2896 those found in shared libraries). */
2897 /* NOTE: cagney/2003-11-25: Pass current_target and not
2898 exec_ops to SOLIB_ADD. This is because current GDB is
2899 only tooled to propagate section_table changes out from
2900 the "current_target" (see target_resize_to_sections), and
2901 not up from the exec stratum. This, of course, isn't
2902 right. "infrun.c" should only interact with the
2903 exec/process stratum, instead relying on the target stack
2904 to propagate relevant changes (stop, section table
2905 changed, ...) up to other layers. */
2906 #ifdef SOLIB_ADD
2907 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2908 #else
2909 solib_add (NULL, 0, &current_target, auto_solib_add);
2910 #endif
2911 target_terminal_inferior ();
2912
2913 /* If requested, stop when the dynamic linker notifies
2914 gdb of events. This allows the user to get control
2915 and place breakpoints in initializer routines for
2916 dynamically loaded objects (among other things). */
2917 if (stop_on_solib_events || stop_stack_dummy)
2918 {
2919 stop_stepping (ecs);
2920 return;
2921 }
2922
2923 /* If we stopped due to an explicit catchpoint, then the
2924 (see above) call to SOLIB_ADD pulled in any symbols
2925 from a newly-loaded library, if appropriate.
2926
2927 We do want the inferior to stop, but not where it is
2928 now, which is in the dynamic linker callback. Rather,
2929 we would like it stop in the user's program, just after
2930 the call that caused this catchpoint to trigger. That
2931 gives the user a more useful vantage from which to
2932 examine their program's state. */
2933 else if (what.main_action
2934 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2935 {
2936 /* ??rehrauer: If I could figure out how to get the
2937 right return PC from here, we could just set a temp
2938 breakpoint and resume. I'm not sure we can without
2939 cracking open the dld's shared libraries and sniffing
2940 their unwind tables and text/data ranges, and that's
2941 not a terribly portable notion.
2942
2943 Until that time, we must step the inferior out of the
2944 dld callback, and also out of the dld itself (and any
2945 code or stubs in libdld.sl, such as "shl_load" and
2946 friends) until we reach non-dld code. At that point,
2947 we can stop stepping. */
2948 bpstat_get_triggered_catchpoints (stop_bpstat,
2949 &tss->
2950 stepping_through_solib_catchpoints);
2951 tss->stepping_through_solib_after_catch = 1;
2952
2953 /* Be sure to lift all breakpoints, so the inferior does
2954 actually step past this point... */
2955 tss->stepping_over_breakpoint = 1;
2956 break;
2957 }
2958 else
2959 {
2960 /* We want to step over this breakpoint, then keep going. */
2961 tss->stepping_over_breakpoint = 1;
2962 break;
2963 }
2964 }
2965 break;
2966
2967 case BPSTAT_WHAT_LAST:
2968 /* Not a real code, but listed here to shut up gcc -Wall. */
2969
2970 case BPSTAT_WHAT_KEEP_CHECKING:
2971 break;
2972 }
2973 }
2974
2975 /* We come here if we hit a breakpoint but should not
2976 stop for it. Possibly we also were stepping
2977 and should stop for that. So fall through and
2978 test for stepping. But, if not stepping,
2979 do not stop. */
2980
2981 /* Are we stepping to get the inferior out of the dynamic linker's
2982 hook (and possibly the dld itself) after catching a shlib
2983 event? */
2984 if (tss->stepping_through_solib_after_catch)
2985 {
2986 #if defined(SOLIB_ADD)
2987 /* Have we reached our destination? If not, keep going. */
2988 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2989 {
2990 if (debug_infrun)
2991 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2992 tss->stepping_over_breakpoint = 1;
2993 keep_going (ecs);
2994 return;
2995 }
2996 #endif
2997 if (debug_infrun)
2998 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2999 /* Else, stop and report the catchpoint(s) whose triggering
3000 caused us to begin stepping. */
3001 tss->stepping_through_solib_after_catch = 0;
3002 bpstat_clear (&stop_bpstat);
3003 stop_bpstat = bpstat_copy (tss->stepping_through_solib_catchpoints);
3004 bpstat_clear (&tss->stepping_through_solib_catchpoints);
3005 stop_print_frame = 1;
3006 stop_stepping (ecs);
3007 return;
3008 }
3009
3010 if (step_resume_breakpoint)
3011 {
3012 if (debug_infrun)
3013 fprintf_unfiltered (gdb_stdlog,
3014 "infrun: step-resume breakpoint is inserted\n");
3015
3016 /* Having a step-resume breakpoint overrides anything
3017 else having to do with stepping commands until
3018 that breakpoint is reached. */
3019 keep_going (ecs);
3020 return;
3021 }
3022
3023 if (step_range_end == 0)
3024 {
3025 if (debug_infrun)
3026 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3027 /* Likewise if we aren't even stepping. */
3028 keep_going (ecs);
3029 return;
3030 }
3031
3032 /* If stepping through a line, keep going if still within it.
3033
3034 Note that step_range_end is the address of the first instruction
3035 beyond the step range, and NOT the address of the last instruction
3036 within it! */
3037 if (stop_pc >= step_range_start && stop_pc < step_range_end)
3038 {
3039 if (debug_infrun)
3040 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3041 paddr_nz (step_range_start),
3042 paddr_nz (step_range_end));
3043 keep_going (ecs);
3044 return;
3045 }
3046
3047 /* We stepped out of the stepping range. */
3048
3049 /* If we are stepping at the source level and entered the runtime
3050 loader dynamic symbol resolution code, we keep on single stepping
3051 until we exit the run time loader code and reach the callee's
3052 address. */
3053 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
3054 && in_solib_dynsym_resolve_code (stop_pc))
3055 {
3056 CORE_ADDR pc_after_resolver =
3057 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
3058
3059 if (debug_infrun)
3060 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3061
3062 if (pc_after_resolver)
3063 {
3064 /* Set up a step-resume breakpoint at the address
3065 indicated by SKIP_SOLIB_RESOLVER. */
3066 struct symtab_and_line sr_sal;
3067 init_sal (&sr_sal);
3068 sr_sal.pc = pc_after_resolver;
3069
3070 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3071 }
3072
3073 keep_going (ecs);
3074 return;
3075 }
3076
3077 if (step_range_end != 1
3078 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
3079 || step_over_calls == STEP_OVER_ALL)
3080 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
3081 {
3082 if (debug_infrun)
3083 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3084 /* The inferior, while doing a "step" or "next", has ended up in
3085 a signal trampoline (either by a signal being delivered or by
3086 the signal handler returning). Just single-step until the
3087 inferior leaves the trampoline (either by calling the handler
3088 or returning). */
3089 keep_going (ecs);
3090 return;
3091 }
3092
3093 /* Check for subroutine calls. The check for the current frame
3094 equalling the step ID is not necessary - the check of the
3095 previous frame's ID is sufficient - but it is a common case and
3096 cheaper than checking the previous frame's ID.
3097
3098 NOTE: frame_id_eq will never report two invalid frame IDs as
3099 being equal, so to get into this block, both the current and
3100 previous frame must have valid frame IDs. */
3101 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
3102 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
3103 {
3104 CORE_ADDR real_stop_pc;
3105
3106 if (debug_infrun)
3107 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3108
3109 if ((step_over_calls == STEP_OVER_NONE)
3110 || ((step_range_end == 1)
3111 && in_prologue (prev_pc, ecs->stop_func_start)))
3112 {
3113 /* I presume that step_over_calls is only 0 when we're
3114 supposed to be stepping at the assembly language level
3115 ("stepi"). Just stop. */
3116 /* Also, maybe we just did a "nexti" inside a prolog, so we
3117 thought it was a subroutine call but it was not. Stop as
3118 well. FENN */
3119 stop_step = 1;
3120 print_stop_reason (END_STEPPING_RANGE, 0);
3121 stop_stepping (ecs);
3122 return;
3123 }
3124
3125 if (step_over_calls == STEP_OVER_ALL)
3126 {
3127 /* We're doing a "next", set a breakpoint at callee's return
3128 address (the address at which the caller will
3129 resume). */
3130 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3131 keep_going (ecs);
3132 return;
3133 }
3134
3135 /* If we are in a function call trampoline (a stub between the
3136 calling routine and the real function), locate the real
3137 function. That's what tells us (a) whether we want to step
3138 into it at all, and (b) what prologue we want to run to the
3139 end of, if we do step into it. */
3140 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
3141 if (real_stop_pc == 0)
3142 real_stop_pc = gdbarch_skip_trampoline_code
3143 (current_gdbarch, get_current_frame (), stop_pc);
3144 if (real_stop_pc != 0)
3145 ecs->stop_func_start = real_stop_pc;
3146
3147 if (in_solib_dynsym_resolve_code (ecs->stop_func_start))
3148 {
3149 struct symtab_and_line sr_sal;
3150 init_sal (&sr_sal);
3151 sr_sal.pc = ecs->stop_func_start;
3152
3153 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3154 keep_going (ecs);
3155 return;
3156 }
3157
3158 /* If we have line number information for the function we are
3159 thinking of stepping into, step into it.
3160
3161 If there are several symtabs at that PC (e.g. with include
3162 files), just want to know whether *any* of them have line
3163 numbers. find_pc_line handles this. */
3164 {
3165 struct symtab_and_line tmp_sal;
3166
3167 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3168 if (tmp_sal.line != 0)
3169 {
3170 step_into_function (ecs);
3171 return;
3172 }
3173 }
3174
3175 /* If we have no line number and the step-stop-if-no-debug is
3176 set, we stop the step so that the user has a chance to switch
3177 in assembly mode. */
3178 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
3179 {
3180 stop_step = 1;
3181 print_stop_reason (END_STEPPING_RANGE, 0);
3182 stop_stepping (ecs);
3183 return;
3184 }
3185
3186 /* Set a breakpoint at callee's return address (the address at
3187 which the caller will resume). */
3188 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3189 keep_going (ecs);
3190 return;
3191 }
3192
3193 /* If we're in the return path from a shared library trampoline,
3194 we want to proceed through the trampoline when stepping. */
3195 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3196 stop_pc, ecs->stop_func_name))
3197 {
3198 /* Determine where this trampoline returns. */
3199 CORE_ADDR real_stop_pc;
3200 real_stop_pc = gdbarch_skip_trampoline_code
3201 (current_gdbarch, get_current_frame (), stop_pc);
3202
3203 if (debug_infrun)
3204 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3205
3206 /* Only proceed through if we know where it's going. */
3207 if (real_stop_pc)
3208 {
3209 /* And put the step-breakpoint there and go until there. */
3210 struct symtab_and_line sr_sal;
3211
3212 init_sal (&sr_sal); /* initialize to zeroes */
3213 sr_sal.pc = real_stop_pc;
3214 sr_sal.section = find_pc_overlay (sr_sal.pc);
3215
3216 /* Do not specify what the fp should be when we stop since
3217 on some machines the prologue is where the new fp value
3218 is established. */
3219 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3220
3221 /* Restart without fiddling with the step ranges or
3222 other state. */
3223 keep_going (ecs);
3224 return;
3225 }
3226 }
3227
3228 stop_pc_sal = find_pc_line (stop_pc, 0);
3229
3230 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3231 the trampoline processing logic, however, there are some trampolines
3232 that have no names, so we should do trampoline handling first. */
3233 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
3234 && ecs->stop_func_name == NULL
3235 && stop_pc_sal.line == 0)
3236 {
3237 if (debug_infrun)
3238 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3239
3240 /* The inferior just stepped into, or returned to, an
3241 undebuggable function (where there is no debugging information
3242 and no line number corresponding to the address where the
3243 inferior stopped). Since we want to skip this kind of code,
3244 we keep going until the inferior returns from this
3245 function - unless the user has asked us not to (via
3246 set step-mode) or we no longer know how to get back
3247 to the call site. */
3248 if (step_stop_if_no_debug
3249 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3250 {
3251 /* If we have no line number and the step-stop-if-no-debug
3252 is set, we stop the step so that the user has a chance to
3253 switch in assembly mode. */
3254 stop_step = 1;
3255 print_stop_reason (END_STEPPING_RANGE, 0);
3256 stop_stepping (ecs);
3257 return;
3258 }
3259 else
3260 {
3261 /* Set a breakpoint at callee's return address (the address
3262 at which the caller will resume). */
3263 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3264 keep_going (ecs);
3265 return;
3266 }
3267 }
3268
3269 if (step_range_end == 1)
3270 {
3271 /* It is stepi or nexti. We always want to stop stepping after
3272 one instruction. */
3273 if (debug_infrun)
3274 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3275 stop_step = 1;
3276 print_stop_reason (END_STEPPING_RANGE, 0);
3277 stop_stepping (ecs);
3278 return;
3279 }
3280
3281 if (stop_pc_sal.line == 0)
3282 {
3283 /* We have no line number information. That means to stop
3284 stepping (does this always happen right after one instruction,
3285 when we do "s" in a function with no line numbers,
3286 or can this happen as a result of a return or longjmp?). */
3287 if (debug_infrun)
3288 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3289 stop_step = 1;
3290 print_stop_reason (END_STEPPING_RANGE, 0);
3291 stop_stepping (ecs);
3292 return;
3293 }
3294
3295 if ((stop_pc == stop_pc_sal.pc)
3296 && (tss->current_line != stop_pc_sal.line
3297 || tss->current_symtab != stop_pc_sal.symtab))
3298 {
3299 /* We are at the start of a different line. So stop. Note that
3300 we don't stop if we step into the middle of a different line.
3301 That is said to make things like for (;;) statements work
3302 better. */
3303 if (debug_infrun)
3304 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3305 stop_step = 1;
3306 print_stop_reason (END_STEPPING_RANGE, 0);
3307 stop_stepping (ecs);
3308 return;
3309 }
3310
3311 /* We aren't done stepping.
3312
3313 Optimize by setting the stepping range to the line.
3314 (We might not be in the original line, but if we entered a
3315 new line in mid-statement, we continue stepping. This makes
3316 things like for(;;) statements work better.) */
3317
3318 step_range_start = stop_pc_sal.pc;
3319 step_range_end = stop_pc_sal.end;
3320 step_frame_id = get_frame_id (get_current_frame ());
3321 tss->current_line = stop_pc_sal.line;
3322 tss->current_symtab = stop_pc_sal.symtab;
3323
3324 /* In the case where we just stepped out of a function into the
3325 middle of a line of the caller, continue stepping, but
3326 step_frame_id must be modified to current frame */
3327 #if 0
3328 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
3329 generous. It will trigger on things like a step into a frameless
3330 stackless leaf function. I think the logic should instead look
3331 at the unwound frame ID has that should give a more robust
3332 indication of what happened. */
3333 if (step - ID == current - ID)
3334 still stepping in same function;
3335 else if (step - ID == unwind (current - ID))
3336 stepped into a function;
3337 else
3338 stepped out of a function;
3339 /* Of course this assumes that the frame ID unwind code is robust
3340 and we're willing to introduce frame unwind logic into this
3341 function. Fortunately, those days are nearly upon us. */
3342 #endif
3343 {
3344 struct frame_info *frame = get_current_frame ();
3345 struct frame_id current_frame = get_frame_id (frame);
3346 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
3347 step_frame_id)))
3348 step_frame_id = current_frame;
3349 }
3350
3351 if (debug_infrun)
3352 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3353 keep_going (ecs);
3354 }
3355
3356 /* Are we in the middle of stepping? */
3357
3358 static int
3359 currently_stepping (struct thread_stepping_state *tss)
3360 {
3361 return (((step_range_end && step_resume_breakpoint == NULL)
3362 || stepping_over_breakpoint)
3363 || tss->stepping_through_solib_after_catch
3364 || bpstat_should_step ());
3365 }
3366
3367 /* Subroutine call with source code we should not step over. Do step
3368 to the first line of code in it. */
3369
3370 static void
3371 step_into_function (struct execution_control_state *ecs)
3372 {
3373 struct symtab *s;
3374 struct symtab_and_line stop_func_sal, sr_sal;
3375
3376 s = find_pc_symtab (stop_pc);
3377 if (s && s->language != language_asm)
3378 ecs->stop_func_start = gdbarch_skip_prologue
3379 (current_gdbarch, ecs->stop_func_start);
3380
3381 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
3382 /* Use the step_resume_break to step until the end of the prologue,
3383 even if that involves jumps (as it seems to on the vax under
3384 4.2). */
3385 /* If the prologue ends in the middle of a source line, continue to
3386 the end of that source line (if it is still within the function).
3387 Otherwise, just go to end of prologue. */
3388 if (stop_func_sal.end
3389 && stop_func_sal.pc != ecs->stop_func_start
3390 && stop_func_sal.end < ecs->stop_func_end)
3391 ecs->stop_func_start = stop_func_sal.end;
3392
3393 /* Architectures which require breakpoint adjustment might not be able
3394 to place a breakpoint at the computed address. If so, the test
3395 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3396 ecs->stop_func_start to an address at which a breakpoint may be
3397 legitimately placed.
3398
3399 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3400 made, GDB will enter an infinite loop when stepping through
3401 optimized code consisting of VLIW instructions which contain
3402 subinstructions corresponding to different source lines. On
3403 FR-V, it's not permitted to place a breakpoint on any but the
3404 first subinstruction of a VLIW instruction. When a breakpoint is
3405 set, GDB will adjust the breakpoint address to the beginning of
3406 the VLIW instruction. Thus, we need to make the corresponding
3407 adjustment here when computing the stop address. */
3408
3409 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3410 {
3411 ecs->stop_func_start
3412 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3413 ecs->stop_func_start);
3414 }
3415
3416 if (ecs->stop_func_start == stop_pc)
3417 {
3418 /* We are already there: stop now. */
3419 stop_step = 1;
3420 print_stop_reason (END_STEPPING_RANGE, 0);
3421 stop_stepping (ecs);
3422 return;
3423 }
3424 else
3425 {
3426 /* Put the step-breakpoint there and go until there. */
3427 init_sal (&sr_sal); /* initialize to zeroes */
3428 sr_sal.pc = ecs->stop_func_start;
3429 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3430
3431 /* Do not specify what the fp should be when we stop since on
3432 some machines the prologue is where the new fp value is
3433 established. */
3434 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3435
3436 /* And make sure stepping stops right away then. */
3437 step_range_end = step_range_start;
3438 }
3439 keep_going (ecs);
3440 }
3441
3442 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3443 This is used to both functions and to skip over code. */
3444
3445 static void
3446 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3447 struct frame_id sr_id)
3448 {
3449 /* There should never be more than one step-resume or longjmp-resume
3450 breakpoint per thread, so we should never be setting a new
3451 step_resume_breakpoint when one is already active. */
3452 gdb_assert (step_resume_breakpoint == NULL);
3453
3454 if (debug_infrun)
3455 fprintf_unfiltered (gdb_stdlog,
3456 "infrun: inserting step-resume breakpoint at 0x%s\n",
3457 paddr_nz (sr_sal.pc));
3458
3459 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
3460 bp_step_resume);
3461 }
3462
3463 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3464 to skip a potential signal handler.
3465
3466 This is called with the interrupted function's frame. The signal
3467 handler, when it returns, will resume the interrupted function at
3468 RETURN_FRAME.pc. */
3469
3470 static void
3471 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3472 {
3473 struct symtab_and_line sr_sal;
3474
3475 gdb_assert (return_frame != NULL);
3476 init_sal (&sr_sal); /* initialize to zeros */
3477
3478 sr_sal.pc = gdbarch_addr_bits_remove
3479 (current_gdbarch, get_frame_pc (return_frame));
3480 sr_sal.section = find_pc_overlay (sr_sal.pc);
3481
3482 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3483 }
3484
3485 /* Similar to insert_step_resume_breakpoint_at_frame, except
3486 but a breakpoint at the previous frame's PC. This is used to
3487 skip a function after stepping into it (for "next" or if the called
3488 function has no debugging information).
3489
3490 The current function has almost always been reached by single
3491 stepping a call or return instruction. NEXT_FRAME belongs to the
3492 current function, and the breakpoint will be set at the caller's
3493 resume address.
3494
3495 This is a separate function rather than reusing
3496 insert_step_resume_breakpoint_at_frame in order to avoid
3497 get_prev_frame, which may stop prematurely (see the implementation
3498 of frame_unwind_id for an example). */
3499
3500 static void
3501 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3502 {
3503 struct symtab_and_line sr_sal;
3504
3505 /* We shouldn't have gotten here if we don't know where the call site
3506 is. */
3507 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3508
3509 init_sal (&sr_sal); /* initialize to zeros */
3510
3511 sr_sal.pc = gdbarch_addr_bits_remove
3512 (current_gdbarch, frame_pc_unwind (next_frame));
3513 sr_sal.section = find_pc_overlay (sr_sal.pc);
3514
3515 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3516 }
3517
3518 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3519 new breakpoint at the target of a jmp_buf. The handling of
3520 longjmp-resume uses the same mechanisms used for handling
3521 "step-resume" breakpoints. */
3522
3523 static void
3524 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3525 {
3526 /* There should never be more than one step-resume or longjmp-resume
3527 breakpoint per thread, so we should never be setting a new
3528 longjmp_resume_breakpoint when one is already active. */
3529 gdb_assert (step_resume_breakpoint == NULL);
3530
3531 if (debug_infrun)
3532 fprintf_unfiltered (gdb_stdlog,
3533 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3534 paddr_nz (pc));
3535
3536 step_resume_breakpoint =
3537 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3538 }
3539
3540 static void
3541 stop_stepping (struct execution_control_state *ecs)
3542 {
3543 if (debug_infrun)
3544 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3545
3546 /* Let callers know we don't want to wait for the inferior anymore. */
3547 ecs->wait_some_more = 0;
3548 }
3549
3550 /* This function handles various cases where we need to continue
3551 waiting for the inferior. */
3552 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3553
3554 static void
3555 keep_going (struct execution_control_state *ecs)
3556 {
3557 /* Save the pc before execution, to compare with pc after stop. */
3558 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3559
3560 /* If we did not do break;, it means we should keep running the
3561 inferior and not return to debugger. */
3562
3563 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
3564 {
3565 /* We took a signal (which we are supposed to pass through to
3566 the inferior, else we'd have done a break above) and we
3567 haven't yet gotten our trap. Simply continue. */
3568 resume (currently_stepping (tss), stop_signal);
3569 }
3570 else
3571 {
3572 /* Either the trap was not expected, but we are continuing
3573 anyway (the user asked that this signal be passed to the
3574 child)
3575 -- or --
3576 The signal was SIGTRAP, e.g. it was our signal, but we
3577 decided we should resume from it.
3578
3579 We're going to run this baby now!
3580
3581 Note that insert_breakpoints won't try to re-insert
3582 already inserted breakpoints. Therefore, we don't
3583 care if breakpoints were already inserted, or not. */
3584
3585 if (tss->stepping_over_breakpoint)
3586 {
3587 if (! use_displaced_stepping (current_gdbarch))
3588 /* Since we can't do a displaced step, we have to remove
3589 the breakpoint while we step it. To keep things
3590 simple, we remove them all. */
3591 remove_breakpoints ();
3592 }
3593 else
3594 {
3595 struct gdb_exception e;
3596 /* Stop stepping when inserting breakpoints
3597 has failed. */
3598 TRY_CATCH (e, RETURN_MASK_ERROR)
3599 {
3600 insert_breakpoints ();
3601 }
3602 if (e.reason < 0)
3603 {
3604 stop_stepping (ecs);
3605 return;
3606 }
3607 }
3608
3609 stepping_over_breakpoint = tss->stepping_over_breakpoint;
3610
3611 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3612 specifies that such a signal should be delivered to the
3613 target program).
3614
3615 Typically, this would occure when a user is debugging a
3616 target monitor on a simulator: the target monitor sets a
3617 breakpoint; the simulator encounters this break-point and
3618 halts the simulation handing control to GDB; GDB, noteing
3619 that the break-point isn't valid, returns control back to the
3620 simulator; the simulator then delivers the hardware
3621 equivalent of a SIGNAL_TRAP to the program being debugged. */
3622
3623 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
3624 stop_signal = TARGET_SIGNAL_0;
3625
3626
3627 resume (currently_stepping (tss), stop_signal);
3628 }
3629
3630 prepare_to_wait (ecs);
3631 }
3632
3633 /* This function normally comes after a resume, before
3634 handle_inferior_event exits. It takes care of any last bits of
3635 housekeeping, and sets the all-important wait_some_more flag. */
3636
3637 static void
3638 prepare_to_wait (struct execution_control_state *ecs)
3639 {
3640 if (debug_infrun)
3641 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
3642 if (infwait_state == infwait_normal_state)
3643 {
3644 overlay_cache_invalid = 1;
3645
3646 /* We have to invalidate the registers BEFORE calling
3647 target_wait because they can be loaded from the target while
3648 in target_wait. This makes remote debugging a bit more
3649 efficient for those targets that provide critical registers
3650 as part of their normal status mechanism. */
3651
3652 registers_changed ();
3653 waiton_ptid = pid_to_ptid (-1);
3654 }
3655 /* This is the old end of the while loop. Let everybody know we
3656 want to wait for the inferior some more and get called again
3657 soon. */
3658 ecs->wait_some_more = 1;
3659 }
3660
3661 /* Print why the inferior has stopped. We always print something when
3662 the inferior exits, or receives a signal. The rest of the cases are
3663 dealt with later on in normal_stop() and print_it_typical(). Ideally
3664 there should be a call to this function from handle_inferior_event()
3665 each time stop_stepping() is called.*/
3666 static void
3667 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3668 {
3669 switch (stop_reason)
3670 {
3671 case END_STEPPING_RANGE:
3672 /* We are done with a step/next/si/ni command. */
3673 /* For now print nothing. */
3674 /* Print a message only if not in the middle of doing a "step n"
3675 operation for n > 1 */
3676 if (!step_multi || !stop_step)
3677 if (ui_out_is_mi_like_p (uiout))
3678 ui_out_field_string
3679 (uiout, "reason",
3680 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3681 break;
3682 case SIGNAL_EXITED:
3683 /* The inferior was terminated by a signal. */
3684 annotate_signalled ();
3685 if (ui_out_is_mi_like_p (uiout))
3686 ui_out_field_string
3687 (uiout, "reason",
3688 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3689 ui_out_text (uiout, "\nProgram terminated with signal ");
3690 annotate_signal_name ();
3691 ui_out_field_string (uiout, "signal-name",
3692 target_signal_to_name (stop_info));
3693 annotate_signal_name_end ();
3694 ui_out_text (uiout, ", ");
3695 annotate_signal_string ();
3696 ui_out_field_string (uiout, "signal-meaning",
3697 target_signal_to_string (stop_info));
3698 annotate_signal_string_end ();
3699 ui_out_text (uiout, ".\n");
3700 ui_out_text (uiout, "The program no longer exists.\n");
3701 break;
3702 case EXITED:
3703 /* The inferior program is finished. */
3704 annotate_exited (stop_info);
3705 if (stop_info)
3706 {
3707 if (ui_out_is_mi_like_p (uiout))
3708 ui_out_field_string (uiout, "reason",
3709 async_reason_lookup (EXEC_ASYNC_EXITED));
3710 ui_out_text (uiout, "\nProgram exited with code ");
3711 ui_out_field_fmt (uiout, "exit-code", "0%o",
3712 (unsigned int) stop_info);
3713 ui_out_text (uiout, ".\n");
3714 }
3715 else
3716 {
3717 if (ui_out_is_mi_like_p (uiout))
3718 ui_out_field_string
3719 (uiout, "reason",
3720 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3721 ui_out_text (uiout, "\nProgram exited normally.\n");
3722 }
3723 /* Support the --return-child-result option. */
3724 return_child_result_value = stop_info;
3725 break;
3726 case SIGNAL_RECEIVED:
3727 /* Signal received. The signal table tells us to print about
3728 it. */
3729 annotate_signal ();
3730 ui_out_text (uiout, "\nProgram received signal ");
3731 annotate_signal_name ();
3732 if (ui_out_is_mi_like_p (uiout))
3733 ui_out_field_string
3734 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3735 ui_out_field_string (uiout, "signal-name",
3736 target_signal_to_name (stop_info));
3737 annotate_signal_name_end ();
3738 ui_out_text (uiout, ", ");
3739 annotate_signal_string ();
3740 ui_out_field_string (uiout, "signal-meaning",
3741 target_signal_to_string (stop_info));
3742 annotate_signal_string_end ();
3743 ui_out_text (uiout, ".\n");
3744 break;
3745 default:
3746 internal_error (__FILE__, __LINE__,
3747 _("print_stop_reason: unrecognized enum value"));
3748 break;
3749 }
3750 }
3751 \f
3752
3753 /* Here to return control to GDB when the inferior stops for real.
3754 Print appropriate messages, remove breakpoints, give terminal our modes.
3755
3756 STOP_PRINT_FRAME nonzero means print the executing frame
3757 (pc, function, args, file, line number and line text).
3758 BREAKPOINTS_FAILED nonzero means stop was due to error
3759 attempting to insert breakpoints. */
3760
3761 void
3762 normal_stop (void)
3763 {
3764 struct target_waitstatus last;
3765 ptid_t last_ptid;
3766
3767 get_last_target_status (&last_ptid, &last);
3768
3769 /* In non-stop mode, we don't want GDB to switch threads behind the
3770 user's back, to avoid races where the user is typing a command to
3771 apply to thread x, but GDB switches to thread y before the user
3772 finishes entering the command. */
3773
3774 /* As with the notification of thread events, we want to delay
3775 notifying the user that we've switched thread context until
3776 the inferior actually stops.
3777
3778 There's no point in saying anything if the inferior has exited.
3779 Note that SIGNALLED here means "exited with a signal", not
3780 "received a signal". */
3781 if (!non_stop
3782 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
3783 && target_has_execution
3784 && last.kind != TARGET_WAITKIND_SIGNALLED
3785 && last.kind != TARGET_WAITKIND_EXITED)
3786 {
3787 target_terminal_ours_for_output ();
3788 printf_filtered (_("[Switching to %s]\n"),
3789 target_pid_to_str (inferior_ptid));
3790 annotate_thread_changed ();
3791 previous_inferior_ptid = inferior_ptid;
3792 }
3793
3794 /* NOTE drow/2004-01-17: Is this still necessary? */
3795 /* Make sure that the current_frame's pc is correct. This
3796 is a correction for setting up the frame info before doing
3797 gdbarch_decr_pc_after_break */
3798 if (target_has_execution)
3799 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3800 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3801 frame code to check for this and sort out any resultant mess.
3802 gdbarch_decr_pc_after_break needs to just go away. */
3803 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3804
3805 if (!breakpoints_always_inserted_mode () && target_has_execution)
3806 {
3807 if (remove_breakpoints ())
3808 {
3809 target_terminal_ours_for_output ();
3810 printf_filtered (_("\
3811 Cannot remove breakpoints because program is no longer writable.\n\
3812 It might be running in another process.\n\
3813 Further execution is probably impossible.\n"));
3814 }
3815 }
3816
3817 /* If an auto-display called a function and that got a signal,
3818 delete that auto-display to avoid an infinite recursion. */
3819
3820 if (stopped_by_random_signal)
3821 disable_current_display ();
3822
3823 /* Don't print a message if in the middle of doing a "step n"
3824 operation for n > 1 */
3825 if (step_multi && stop_step)
3826 goto done;
3827
3828 target_terminal_ours ();
3829
3830 /* Set the current source location. This will also happen if we
3831 display the frame below, but the current SAL will be incorrect
3832 during a user hook-stop function. */
3833 if (target_has_stack && !stop_stack_dummy)
3834 set_current_sal_from_frame (get_current_frame (), 1);
3835
3836 /* Look up the hook_stop and run it (CLI internally handles problem
3837 of stop_command's pre-hook not existing). */
3838 if (stop_command)
3839 catch_errors (hook_stop_stub, stop_command,
3840 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3841
3842 if (!target_has_stack)
3843 {
3844
3845 goto done;
3846 }
3847
3848 /* Select innermost stack frame - i.e., current frame is frame 0,
3849 and current location is based on that.
3850 Don't do this on return from a stack dummy routine,
3851 or if the program has exited. */
3852
3853 if (!stop_stack_dummy)
3854 {
3855 select_frame (get_current_frame ());
3856
3857 /* Print current location without a level number, if
3858 we have changed functions or hit a breakpoint.
3859 Print source line if we have one.
3860 bpstat_print() contains the logic deciding in detail
3861 what to print, based on the event(s) that just occurred. */
3862
3863 /* If --batch-silent is enabled then there's no need to print the current
3864 source location, and to try risks causing an error message about
3865 missing source files. */
3866 if (stop_print_frame && !batch_silent)
3867 {
3868 int bpstat_ret;
3869 int source_flag;
3870 int do_frame_printing = 1;
3871
3872 bpstat_ret = bpstat_print (stop_bpstat);
3873 switch (bpstat_ret)
3874 {
3875 case PRINT_UNKNOWN:
3876 /* If we had hit a shared library event breakpoint,
3877 bpstat_print would print out this message. If we hit
3878 an OS-level shared library event, do the same
3879 thing. */
3880 if (last.kind == TARGET_WAITKIND_LOADED)
3881 {
3882 printf_filtered (_("Stopped due to shared library event\n"));
3883 source_flag = SRC_LINE; /* something bogus */
3884 do_frame_printing = 0;
3885 break;
3886 }
3887
3888 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3889 (or should) carry around the function and does (or
3890 should) use that when doing a frame comparison. */
3891 if (stop_step
3892 && frame_id_eq (step_frame_id,
3893 get_frame_id (get_current_frame ()))
3894 && step_start_function == find_pc_function (stop_pc))
3895 source_flag = SRC_LINE; /* finished step, just print source line */
3896 else
3897 source_flag = SRC_AND_LOC; /* print location and source line */
3898 break;
3899 case PRINT_SRC_AND_LOC:
3900 source_flag = SRC_AND_LOC; /* print location and source line */
3901 break;
3902 case PRINT_SRC_ONLY:
3903 source_flag = SRC_LINE;
3904 break;
3905 case PRINT_NOTHING:
3906 source_flag = SRC_LINE; /* something bogus */
3907 do_frame_printing = 0;
3908 break;
3909 default:
3910 internal_error (__FILE__, __LINE__, _("Unknown value."));
3911 }
3912
3913 if (ui_out_is_mi_like_p (uiout))
3914 {
3915
3916 ui_out_field_int (uiout, "thread-id",
3917 pid_to_thread_id (inferior_ptid));
3918 if (non_stop)
3919 {
3920 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
3921 (uiout, "stopped-threads");
3922 ui_out_field_int (uiout, NULL,
3923 pid_to_thread_id (inferior_ptid));
3924 do_cleanups (back_to);
3925 }
3926 else
3927 ui_out_field_string (uiout, "stopped-threads", "all");
3928 }
3929 /* The behavior of this routine with respect to the source
3930 flag is:
3931 SRC_LINE: Print only source line
3932 LOCATION: Print only location
3933 SRC_AND_LOC: Print location and source line */
3934 if (do_frame_printing)
3935 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3936
3937 /* Display the auto-display expressions. */
3938 do_displays ();
3939 }
3940 }
3941
3942 /* Save the function value return registers, if we care.
3943 We might be about to restore their previous contents. */
3944 if (proceed_to_finish)
3945 {
3946 /* This should not be necessary. */
3947 if (stop_registers)
3948 regcache_xfree (stop_registers);
3949
3950 /* NB: The copy goes through to the target picking up the value of
3951 all the registers. */
3952 stop_registers = regcache_dup (get_current_regcache ());
3953 }
3954
3955 if (stop_stack_dummy)
3956 {
3957 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3958 ends with a setting of the current frame, so we can use that
3959 next. */
3960 frame_pop (get_current_frame ());
3961 /* Set stop_pc to what it was before we called the function.
3962 Can't rely on restore_inferior_status because that only gets
3963 called if we don't stop in the called function. */
3964 stop_pc = read_pc ();
3965 select_frame (get_current_frame ());
3966 }
3967
3968 done:
3969 annotate_stopped ();
3970 if (!suppress_stop_observer && !step_multi)
3971 observer_notify_normal_stop (stop_bpstat);
3972 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3973 Delete any breakpoint that is to be deleted at the next stop. */
3974 breakpoint_auto_delete (stop_bpstat);
3975
3976 if (target_has_execution
3977 && last.kind != TARGET_WAITKIND_SIGNALLED
3978 && last.kind != TARGET_WAITKIND_EXITED)
3979 {
3980 if (!non_stop)
3981 set_running (pid_to_ptid (-1), 0);
3982 else
3983 set_running (inferior_ptid, 0);
3984 }
3985 }
3986
3987 static int
3988 hook_stop_stub (void *cmd)
3989 {
3990 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3991 return (0);
3992 }
3993 \f
3994 int
3995 signal_stop_state (int signo)
3996 {
3997 /* Always stop on signals if we're just gaining control of the
3998 program. */
3999 return signal_stop[signo] || stop_soon != NO_STOP_QUIETLY;
4000 }
4001
4002 int
4003 signal_print_state (int signo)
4004 {
4005 return signal_print[signo];
4006 }
4007
4008 int
4009 signal_pass_state (int signo)
4010 {
4011 return signal_program[signo];
4012 }
4013
4014 int
4015 signal_stop_update (int signo, int state)
4016 {
4017 int ret = signal_stop[signo];
4018 signal_stop[signo] = state;
4019 return ret;
4020 }
4021
4022 int
4023 signal_print_update (int signo, int state)
4024 {
4025 int ret = signal_print[signo];
4026 signal_print[signo] = state;
4027 return ret;
4028 }
4029
4030 int
4031 signal_pass_update (int signo, int state)
4032 {
4033 int ret = signal_program[signo];
4034 signal_program[signo] = state;
4035 return ret;
4036 }
4037
4038 static void
4039 sig_print_header (void)
4040 {
4041 printf_filtered (_("\
4042 Signal Stop\tPrint\tPass to program\tDescription\n"));
4043 }
4044
4045 static void
4046 sig_print_info (enum target_signal oursig)
4047 {
4048 char *name = target_signal_to_name (oursig);
4049 int name_padding = 13 - strlen (name);
4050
4051 if (name_padding <= 0)
4052 name_padding = 0;
4053
4054 printf_filtered ("%s", name);
4055 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4056 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4057 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4058 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4059 printf_filtered ("%s\n", target_signal_to_string (oursig));
4060 }
4061
4062 /* Specify how various signals in the inferior should be handled. */
4063
4064 static void
4065 handle_command (char *args, int from_tty)
4066 {
4067 char **argv;
4068 int digits, wordlen;
4069 int sigfirst, signum, siglast;
4070 enum target_signal oursig;
4071 int allsigs;
4072 int nsigs;
4073 unsigned char *sigs;
4074 struct cleanup *old_chain;
4075
4076 if (args == NULL)
4077 {
4078 error_no_arg (_("signal to handle"));
4079 }
4080
4081 /* Allocate and zero an array of flags for which signals to handle. */
4082
4083 nsigs = (int) TARGET_SIGNAL_LAST;
4084 sigs = (unsigned char *) alloca (nsigs);
4085 memset (sigs, 0, nsigs);
4086
4087 /* Break the command line up into args. */
4088
4089 argv = buildargv (args);
4090 if (argv == NULL)
4091 {
4092 nomem (0);
4093 }
4094 old_chain = make_cleanup_freeargv (argv);
4095
4096 /* Walk through the args, looking for signal oursigs, signal names, and
4097 actions. Signal numbers and signal names may be interspersed with
4098 actions, with the actions being performed for all signals cumulatively
4099 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4100
4101 while (*argv != NULL)
4102 {
4103 wordlen = strlen (*argv);
4104 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4105 {;
4106 }
4107 allsigs = 0;
4108 sigfirst = siglast = -1;
4109
4110 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4111 {
4112 /* Apply action to all signals except those used by the
4113 debugger. Silently skip those. */
4114 allsigs = 1;
4115 sigfirst = 0;
4116 siglast = nsigs - 1;
4117 }
4118 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4119 {
4120 SET_SIGS (nsigs, sigs, signal_stop);
4121 SET_SIGS (nsigs, sigs, signal_print);
4122 }
4123 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4124 {
4125 UNSET_SIGS (nsigs, sigs, signal_program);
4126 }
4127 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4128 {
4129 SET_SIGS (nsigs, sigs, signal_print);
4130 }
4131 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4132 {
4133 SET_SIGS (nsigs, sigs, signal_program);
4134 }
4135 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4136 {
4137 UNSET_SIGS (nsigs, sigs, signal_stop);
4138 }
4139 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4140 {
4141 SET_SIGS (nsigs, sigs, signal_program);
4142 }
4143 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4144 {
4145 UNSET_SIGS (nsigs, sigs, signal_print);
4146 UNSET_SIGS (nsigs, sigs, signal_stop);
4147 }
4148 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4149 {
4150 UNSET_SIGS (nsigs, sigs, signal_program);
4151 }
4152 else if (digits > 0)
4153 {
4154 /* It is numeric. The numeric signal refers to our own
4155 internal signal numbering from target.h, not to host/target
4156 signal number. This is a feature; users really should be
4157 using symbolic names anyway, and the common ones like
4158 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4159
4160 sigfirst = siglast = (int)
4161 target_signal_from_command (atoi (*argv));
4162 if ((*argv)[digits] == '-')
4163 {
4164 siglast = (int)
4165 target_signal_from_command (atoi ((*argv) + digits + 1));
4166 }
4167 if (sigfirst > siglast)
4168 {
4169 /* Bet he didn't figure we'd think of this case... */
4170 signum = sigfirst;
4171 sigfirst = siglast;
4172 siglast = signum;
4173 }
4174 }
4175 else
4176 {
4177 oursig = target_signal_from_name (*argv);
4178 if (oursig != TARGET_SIGNAL_UNKNOWN)
4179 {
4180 sigfirst = siglast = (int) oursig;
4181 }
4182 else
4183 {
4184 /* Not a number and not a recognized flag word => complain. */
4185 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4186 }
4187 }
4188
4189 /* If any signal numbers or symbol names were found, set flags for
4190 which signals to apply actions to. */
4191
4192 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4193 {
4194 switch ((enum target_signal) signum)
4195 {
4196 case TARGET_SIGNAL_TRAP:
4197 case TARGET_SIGNAL_INT:
4198 if (!allsigs && !sigs[signum])
4199 {
4200 if (query ("%s is used by the debugger.\n\
4201 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
4202 {
4203 sigs[signum] = 1;
4204 }
4205 else
4206 {
4207 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4208 gdb_flush (gdb_stdout);
4209 }
4210 }
4211 break;
4212 case TARGET_SIGNAL_0:
4213 case TARGET_SIGNAL_DEFAULT:
4214 case TARGET_SIGNAL_UNKNOWN:
4215 /* Make sure that "all" doesn't print these. */
4216 break;
4217 default:
4218 sigs[signum] = 1;
4219 break;
4220 }
4221 }
4222
4223 argv++;
4224 }
4225
4226 target_notice_signals (inferior_ptid);
4227
4228 if (from_tty)
4229 {
4230 /* Show the results. */
4231 sig_print_header ();
4232 for (signum = 0; signum < nsigs; signum++)
4233 {
4234 if (sigs[signum])
4235 {
4236 sig_print_info (signum);
4237 }
4238 }
4239 }
4240
4241 do_cleanups (old_chain);
4242 }
4243
4244 static void
4245 xdb_handle_command (char *args, int from_tty)
4246 {
4247 char **argv;
4248 struct cleanup *old_chain;
4249
4250 /* Break the command line up into args. */
4251
4252 argv = buildargv (args);
4253 if (argv == NULL)
4254 {
4255 nomem (0);
4256 }
4257 old_chain = make_cleanup_freeargv (argv);
4258 if (argv[1] != (char *) NULL)
4259 {
4260 char *argBuf;
4261 int bufLen;
4262
4263 bufLen = strlen (argv[0]) + 20;
4264 argBuf = (char *) xmalloc (bufLen);
4265 if (argBuf)
4266 {
4267 int validFlag = 1;
4268 enum target_signal oursig;
4269
4270 oursig = target_signal_from_name (argv[0]);
4271 memset (argBuf, 0, bufLen);
4272 if (strcmp (argv[1], "Q") == 0)
4273 sprintf (argBuf, "%s %s", argv[0], "noprint");
4274 else
4275 {
4276 if (strcmp (argv[1], "s") == 0)
4277 {
4278 if (!signal_stop[oursig])
4279 sprintf (argBuf, "%s %s", argv[0], "stop");
4280 else
4281 sprintf (argBuf, "%s %s", argv[0], "nostop");
4282 }
4283 else if (strcmp (argv[1], "i") == 0)
4284 {
4285 if (!signal_program[oursig])
4286 sprintf (argBuf, "%s %s", argv[0], "pass");
4287 else
4288 sprintf (argBuf, "%s %s", argv[0], "nopass");
4289 }
4290 else if (strcmp (argv[1], "r") == 0)
4291 {
4292 if (!signal_print[oursig])
4293 sprintf (argBuf, "%s %s", argv[0], "print");
4294 else
4295 sprintf (argBuf, "%s %s", argv[0], "noprint");
4296 }
4297 else
4298 validFlag = 0;
4299 }
4300 if (validFlag)
4301 handle_command (argBuf, from_tty);
4302 else
4303 printf_filtered (_("Invalid signal handling flag.\n"));
4304 if (argBuf)
4305 xfree (argBuf);
4306 }
4307 }
4308 do_cleanups (old_chain);
4309 }
4310
4311 /* Print current contents of the tables set by the handle command.
4312 It is possible we should just be printing signals actually used
4313 by the current target (but for things to work right when switching
4314 targets, all signals should be in the signal tables). */
4315
4316 static void
4317 signals_info (char *signum_exp, int from_tty)
4318 {
4319 enum target_signal oursig;
4320 sig_print_header ();
4321
4322 if (signum_exp)
4323 {
4324 /* First see if this is a symbol name. */
4325 oursig = target_signal_from_name (signum_exp);
4326 if (oursig == TARGET_SIGNAL_UNKNOWN)
4327 {
4328 /* No, try numeric. */
4329 oursig =
4330 target_signal_from_command (parse_and_eval_long (signum_exp));
4331 }
4332 sig_print_info (oursig);
4333 return;
4334 }
4335
4336 printf_filtered ("\n");
4337 /* These ugly casts brought to you by the native VAX compiler. */
4338 for (oursig = TARGET_SIGNAL_FIRST;
4339 (int) oursig < (int) TARGET_SIGNAL_LAST;
4340 oursig = (enum target_signal) ((int) oursig + 1))
4341 {
4342 QUIT;
4343
4344 if (oursig != TARGET_SIGNAL_UNKNOWN
4345 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4346 sig_print_info (oursig);
4347 }
4348
4349 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4350 }
4351 \f
4352 struct inferior_status
4353 {
4354 enum target_signal stop_signal;
4355 CORE_ADDR stop_pc;
4356 bpstat stop_bpstat;
4357 int stop_step;
4358 int stop_stack_dummy;
4359 int stopped_by_random_signal;
4360 int stepping_over_breakpoint;
4361 CORE_ADDR step_range_start;
4362 CORE_ADDR step_range_end;
4363 struct frame_id step_frame_id;
4364 enum step_over_calls_kind step_over_calls;
4365 CORE_ADDR step_resume_break_address;
4366 int stop_after_trap;
4367 int stop_soon;
4368
4369 /* These are here because if call_function_by_hand has written some
4370 registers and then decides to call error(), we better not have changed
4371 any registers. */
4372 struct regcache *registers;
4373
4374 /* A frame unique identifier. */
4375 struct frame_id selected_frame_id;
4376
4377 int breakpoint_proceeded;
4378 int restore_stack_info;
4379 int proceed_to_finish;
4380 };
4381
4382 void
4383 write_inferior_status_register (struct inferior_status *inf_status, int regno,
4384 LONGEST val)
4385 {
4386 int size = register_size (current_gdbarch, regno);
4387 void *buf = alloca (size);
4388 store_signed_integer (buf, size, val);
4389 regcache_raw_write (inf_status->registers, regno, buf);
4390 }
4391
4392 /* Save all of the information associated with the inferior<==>gdb
4393 connection. INF_STATUS is a pointer to a "struct inferior_status"
4394 (defined in inferior.h). */
4395
4396 struct inferior_status *
4397 save_inferior_status (int restore_stack_info)
4398 {
4399 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4400
4401 inf_status->stop_signal = stop_signal;
4402 inf_status->stop_pc = stop_pc;
4403 inf_status->stop_step = stop_step;
4404 inf_status->stop_stack_dummy = stop_stack_dummy;
4405 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4406 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
4407 inf_status->step_range_start = step_range_start;
4408 inf_status->step_range_end = step_range_end;
4409 inf_status->step_frame_id = step_frame_id;
4410 inf_status->step_over_calls = step_over_calls;
4411 inf_status->stop_after_trap = stop_after_trap;
4412 inf_status->stop_soon = stop_soon;
4413 /* Save original bpstat chain here; replace it with copy of chain.
4414 If caller's caller is walking the chain, they'll be happier if we
4415 hand them back the original chain when restore_inferior_status is
4416 called. */
4417 inf_status->stop_bpstat = stop_bpstat;
4418 stop_bpstat = bpstat_copy (stop_bpstat);
4419 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4420 inf_status->restore_stack_info = restore_stack_info;
4421 inf_status->proceed_to_finish = proceed_to_finish;
4422
4423 inf_status->registers = regcache_dup (get_current_regcache ());
4424
4425 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4426 return inf_status;
4427 }
4428
4429 static int
4430 restore_selected_frame (void *args)
4431 {
4432 struct frame_id *fid = (struct frame_id *) args;
4433 struct frame_info *frame;
4434
4435 frame = frame_find_by_id (*fid);
4436
4437 /* If inf_status->selected_frame_id is NULL, there was no previously
4438 selected frame. */
4439 if (frame == NULL)
4440 {
4441 warning (_("Unable to restore previously selected frame."));
4442 return 0;
4443 }
4444
4445 select_frame (frame);
4446
4447 return (1);
4448 }
4449
4450 void
4451 restore_inferior_status (struct inferior_status *inf_status)
4452 {
4453 stop_signal = inf_status->stop_signal;
4454 stop_pc = inf_status->stop_pc;
4455 stop_step = inf_status->stop_step;
4456 stop_stack_dummy = inf_status->stop_stack_dummy;
4457 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4458 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
4459 step_range_start = inf_status->step_range_start;
4460 step_range_end = inf_status->step_range_end;
4461 step_frame_id = inf_status->step_frame_id;
4462 step_over_calls = inf_status->step_over_calls;
4463 stop_after_trap = inf_status->stop_after_trap;
4464 stop_soon = inf_status->stop_soon;
4465 bpstat_clear (&stop_bpstat);
4466 stop_bpstat = inf_status->stop_bpstat;
4467 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4468 proceed_to_finish = inf_status->proceed_to_finish;
4469
4470 /* The inferior can be gone if the user types "print exit(0)"
4471 (and perhaps other times). */
4472 if (target_has_execution)
4473 /* NB: The register write goes through to the target. */
4474 regcache_cpy (get_current_regcache (), inf_status->registers);
4475 regcache_xfree (inf_status->registers);
4476
4477 /* FIXME: If we are being called after stopping in a function which
4478 is called from gdb, we should not be trying to restore the
4479 selected frame; it just prints a spurious error message (The
4480 message is useful, however, in detecting bugs in gdb (like if gdb
4481 clobbers the stack)). In fact, should we be restoring the
4482 inferior status at all in that case? . */
4483
4484 if (target_has_stack && inf_status->restore_stack_info)
4485 {
4486 /* The point of catch_errors is that if the stack is clobbered,
4487 walking the stack might encounter a garbage pointer and
4488 error() trying to dereference it. */
4489 if (catch_errors
4490 (restore_selected_frame, &inf_status->selected_frame_id,
4491 "Unable to restore previously selected frame:\n",
4492 RETURN_MASK_ERROR) == 0)
4493 /* Error in restoring the selected frame. Select the innermost
4494 frame. */
4495 select_frame (get_current_frame ());
4496
4497 }
4498
4499 xfree (inf_status);
4500 }
4501
4502 static void
4503 do_restore_inferior_status_cleanup (void *sts)
4504 {
4505 restore_inferior_status (sts);
4506 }
4507
4508 struct cleanup *
4509 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4510 {
4511 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4512 }
4513
4514 void
4515 discard_inferior_status (struct inferior_status *inf_status)
4516 {
4517 /* See save_inferior_status for info on stop_bpstat. */
4518 bpstat_clear (&inf_status->stop_bpstat);
4519 regcache_xfree (inf_status->registers);
4520 xfree (inf_status);
4521 }
4522
4523 int
4524 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
4525 {
4526 struct target_waitstatus last;
4527 ptid_t last_ptid;
4528
4529 get_last_target_status (&last_ptid, &last);
4530
4531 if (last.kind != TARGET_WAITKIND_FORKED)
4532 return 0;
4533
4534 if (!ptid_equal (last_ptid, pid))
4535 return 0;
4536
4537 *child_pid = last.value.related_pid;
4538 return 1;
4539 }
4540
4541 int
4542 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
4543 {
4544 struct target_waitstatus last;
4545 ptid_t last_ptid;
4546
4547 get_last_target_status (&last_ptid, &last);
4548
4549 if (last.kind != TARGET_WAITKIND_VFORKED)
4550 return 0;
4551
4552 if (!ptid_equal (last_ptid, pid))
4553 return 0;
4554
4555 *child_pid = last.value.related_pid;
4556 return 1;
4557 }
4558
4559 int
4560 inferior_has_execd (ptid_t pid, char **execd_pathname)
4561 {
4562 struct target_waitstatus last;
4563 ptid_t last_ptid;
4564
4565 get_last_target_status (&last_ptid, &last);
4566
4567 if (last.kind != TARGET_WAITKIND_EXECD)
4568 return 0;
4569
4570 if (!ptid_equal (last_ptid, pid))
4571 return 0;
4572
4573 *execd_pathname = xstrdup (last.value.execd_pathname);
4574 return 1;
4575 }
4576
4577 /* Oft used ptids */
4578 ptid_t null_ptid;
4579 ptid_t minus_one_ptid;
4580
4581 /* Create a ptid given the necessary PID, LWP, and TID components. */
4582
4583 ptid_t
4584 ptid_build (int pid, long lwp, long tid)
4585 {
4586 ptid_t ptid;
4587
4588 ptid.pid = pid;
4589 ptid.lwp = lwp;
4590 ptid.tid = tid;
4591 return ptid;
4592 }
4593
4594 /* Create a ptid from just a pid. */
4595
4596 ptid_t
4597 pid_to_ptid (int pid)
4598 {
4599 return ptid_build (pid, 0, 0);
4600 }
4601
4602 /* Fetch the pid (process id) component from a ptid. */
4603
4604 int
4605 ptid_get_pid (ptid_t ptid)
4606 {
4607 return ptid.pid;
4608 }
4609
4610 /* Fetch the lwp (lightweight process) component from a ptid. */
4611
4612 long
4613 ptid_get_lwp (ptid_t ptid)
4614 {
4615 return ptid.lwp;
4616 }
4617
4618 /* Fetch the tid (thread id) component from a ptid. */
4619
4620 long
4621 ptid_get_tid (ptid_t ptid)
4622 {
4623 return ptid.tid;
4624 }
4625
4626 /* ptid_equal() is used to test equality of two ptids. */
4627
4628 int
4629 ptid_equal (ptid_t ptid1, ptid_t ptid2)
4630 {
4631 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
4632 && ptid1.tid == ptid2.tid);
4633 }
4634
4635 /* restore_inferior_ptid() will be used by the cleanup machinery
4636 to restore the inferior_ptid value saved in a call to
4637 save_inferior_ptid(). */
4638
4639 static void
4640 restore_inferior_ptid (void *arg)
4641 {
4642 ptid_t *saved_ptid_ptr = arg;
4643 inferior_ptid = *saved_ptid_ptr;
4644 xfree (arg);
4645 }
4646
4647 /* Save the value of inferior_ptid so that it may be restored by a
4648 later call to do_cleanups(). Returns the struct cleanup pointer
4649 needed for later doing the cleanup. */
4650
4651 struct cleanup *
4652 save_inferior_ptid (void)
4653 {
4654 ptid_t *saved_ptid_ptr;
4655
4656 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4657 *saved_ptid_ptr = inferior_ptid;
4658 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4659 }
4660 \f
4661
4662 int non_stop = 0;
4663 static int non_stop_1 = 0;
4664
4665 static void
4666 set_non_stop (char *args, int from_tty,
4667 struct cmd_list_element *c)
4668 {
4669 if (target_has_execution)
4670 {
4671 non_stop_1 = non_stop;
4672 error (_("Cannot change this setting while the inferior is running."));
4673 }
4674
4675 non_stop = non_stop_1;
4676 }
4677
4678 static void
4679 show_non_stop (struct ui_file *file, int from_tty,
4680 struct cmd_list_element *c, const char *value)
4681 {
4682 fprintf_filtered (file,
4683 _("Controlling the inferior in non-stop mode is %s.\n"),
4684 value);
4685 }
4686
4687
4688 void
4689 _initialize_infrun (void)
4690 {
4691 int i;
4692 int numsigs;
4693 struct cmd_list_element *c;
4694
4695 add_info ("signals", signals_info, _("\
4696 What debugger does when program gets various signals.\n\
4697 Specify a signal as argument to print info on that signal only."));
4698 add_info_alias ("handle", "signals", 0);
4699
4700 add_com ("handle", class_run, handle_command, _("\
4701 Specify how to handle a signal.\n\
4702 Args are signals and actions to apply to those signals.\n\
4703 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4704 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4705 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4706 The special arg \"all\" is recognized to mean all signals except those\n\
4707 used by the debugger, typically SIGTRAP and SIGINT.\n\
4708 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4709 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4710 Stop means reenter debugger if this signal happens (implies print).\n\
4711 Print means print a message if this signal happens.\n\
4712 Pass means let program see this signal; otherwise program doesn't know.\n\
4713 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4714 Pass and Stop may be combined."));
4715 if (xdb_commands)
4716 {
4717 add_com ("lz", class_info, signals_info, _("\
4718 What debugger does when program gets various signals.\n\
4719 Specify a signal as argument to print info on that signal only."));
4720 add_com ("z", class_run, xdb_handle_command, _("\
4721 Specify how to handle a signal.\n\
4722 Args are signals and actions to apply to those signals.\n\
4723 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4724 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4725 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4726 The special arg \"all\" is recognized to mean all signals except those\n\
4727 used by the debugger, typically SIGTRAP and SIGINT.\n\
4728 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4729 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4730 nopass), \"Q\" (noprint)\n\
4731 Stop means reenter debugger if this signal happens (implies print).\n\
4732 Print means print a message if this signal happens.\n\
4733 Pass means let program see this signal; otherwise program doesn't know.\n\
4734 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4735 Pass and Stop may be combined."));
4736 }
4737
4738 if (!dbx_commands)
4739 stop_command = add_cmd ("stop", class_obscure,
4740 not_just_help_class_command, _("\
4741 There is no `stop' command, but you can set a hook on `stop'.\n\
4742 This allows you to set a list of commands to be run each time execution\n\
4743 of the program stops."), &cmdlist);
4744
4745 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4746 Set inferior debugging."), _("\
4747 Show inferior debugging."), _("\
4748 When non-zero, inferior specific debugging is enabled."),
4749 NULL,
4750 show_debug_infrun,
4751 &setdebuglist, &showdebuglist);
4752
4753 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
4754 Set displaced stepping debugging."), _("\
4755 Show displaced stepping debugging."), _("\
4756 When non-zero, displaced stepping specific debugging is enabled."),
4757 NULL,
4758 show_debug_displaced,
4759 &setdebuglist, &showdebuglist);
4760
4761 add_setshow_boolean_cmd ("non-stop", no_class,
4762 &non_stop_1, _("\
4763 Set whether gdb controls the inferior in non-stop mode."), _("\
4764 Show whether gdb controls the inferior in non-stop mode."), _("\
4765 When debugging a multi-threaded program and this setting is\n\
4766 off (the default, also called all-stop mode), when one thread stops\n\
4767 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
4768 all other threads in the program while you interact with the thread of\n\
4769 interest. When you continue or step a thread, you can allow the other\n\
4770 threads to run, or have them remain stopped, but while you inspect any\n\
4771 thread's state, all threads stop.\n\
4772 \n\
4773 In non-stop mode, when one thread stops, other threads can continue\n\
4774 to run freely. You'll be able to step each thread independently,\n\
4775 leave it stopped or free to run as needed."),
4776 set_non_stop,
4777 show_non_stop,
4778 &setlist,
4779 &showlist);
4780
4781 numsigs = (int) TARGET_SIGNAL_LAST;
4782 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4783 signal_print = (unsigned char *)
4784 xmalloc (sizeof (signal_print[0]) * numsigs);
4785 signal_program = (unsigned char *)
4786 xmalloc (sizeof (signal_program[0]) * numsigs);
4787 for (i = 0; i < numsigs; i++)
4788 {
4789 signal_stop[i] = 1;
4790 signal_print[i] = 1;
4791 signal_program[i] = 1;
4792 }
4793
4794 /* Signals caused by debugger's own actions
4795 should not be given to the program afterwards. */
4796 signal_program[TARGET_SIGNAL_TRAP] = 0;
4797 signal_program[TARGET_SIGNAL_INT] = 0;
4798
4799 /* Signals that are not errors should not normally enter the debugger. */
4800 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4801 signal_print[TARGET_SIGNAL_ALRM] = 0;
4802 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4803 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4804 signal_stop[TARGET_SIGNAL_PROF] = 0;
4805 signal_print[TARGET_SIGNAL_PROF] = 0;
4806 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4807 signal_print[TARGET_SIGNAL_CHLD] = 0;
4808 signal_stop[TARGET_SIGNAL_IO] = 0;
4809 signal_print[TARGET_SIGNAL_IO] = 0;
4810 signal_stop[TARGET_SIGNAL_POLL] = 0;
4811 signal_print[TARGET_SIGNAL_POLL] = 0;
4812 signal_stop[TARGET_SIGNAL_URG] = 0;
4813 signal_print[TARGET_SIGNAL_URG] = 0;
4814 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4815 signal_print[TARGET_SIGNAL_WINCH] = 0;
4816
4817 /* These signals are used internally by user-level thread
4818 implementations. (See signal(5) on Solaris.) Like the above
4819 signals, a healthy program receives and handles them as part of
4820 its normal operation. */
4821 signal_stop[TARGET_SIGNAL_LWP] = 0;
4822 signal_print[TARGET_SIGNAL_LWP] = 0;
4823 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4824 signal_print[TARGET_SIGNAL_WAITING] = 0;
4825 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4826 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4827
4828 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4829 &stop_on_solib_events, _("\
4830 Set stopping for shared library events."), _("\
4831 Show stopping for shared library events."), _("\
4832 If nonzero, gdb will give control to the user when the dynamic linker\n\
4833 notifies gdb of shared library events. The most common event of interest\n\
4834 to the user would be loading/unloading of a new library."),
4835 NULL,
4836 show_stop_on_solib_events,
4837 &setlist, &showlist);
4838
4839 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4840 follow_fork_mode_kind_names,
4841 &follow_fork_mode_string, _("\
4842 Set debugger response to a program call of fork or vfork."), _("\
4843 Show debugger response to a program call of fork or vfork."), _("\
4844 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4845 parent - the original process is debugged after a fork\n\
4846 child - the new process is debugged after a fork\n\
4847 The unfollowed process will continue to run.\n\
4848 By default, the debugger will follow the parent process."),
4849 NULL,
4850 show_follow_fork_mode_string,
4851 &setlist, &showlist);
4852
4853 add_setshow_enum_cmd ("scheduler-locking", class_run,
4854 scheduler_enums, &scheduler_mode, _("\
4855 Set mode for locking scheduler during execution."), _("\
4856 Show mode for locking scheduler during execution."), _("\
4857 off == no locking (threads may preempt at any time)\n\
4858 on == full locking (no thread except the current thread may run)\n\
4859 step == scheduler locked during every single-step operation.\n\
4860 In this mode, no other thread may run during a step command.\n\
4861 Other threads may run while stepping over a function call ('next')."),
4862 set_schedlock_func, /* traps on target vector */
4863 show_scheduler_mode,
4864 &setlist, &showlist);
4865
4866 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4867 Set mode of the step operation."), _("\
4868 Show mode of the step operation."), _("\
4869 When set, doing a step over a function without debug line information\n\
4870 will stop at the first instruction of that function. Otherwise, the\n\
4871 function is skipped and the step command stops at a different source line."),
4872 NULL,
4873 show_step_stop_if_no_debug,
4874 &setlist, &showlist);
4875
4876 add_setshow_boolean_cmd ("can-use-displaced-stepping", class_maintenance,
4877 &can_use_displaced_stepping, _("\
4878 Set debugger's willingness to use displaced stepping."), _("\
4879 Show debugger's willingness to use displaced stepping."), _("\
4880 If zero, gdb will not use displaced stepping to step over\n\
4881 breakpoints, even if such is supported by the target."),
4882 NULL,
4883 show_can_use_displaced_stepping,
4884 &maintenance_set_cmdlist,
4885 &maintenance_show_cmdlist);
4886
4887 /* ptid initializations */
4888 null_ptid = ptid_build (0, 0, 0);
4889 minus_one_ptid = ptid_build (-1, 0, 0);
4890 inferior_ptid = null_ptid;
4891 target_last_wait_ptid = minus_one_ptid;
4892 displaced_step_ptid = null_ptid;
4893
4894 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
4895 }