infrun.c: Move non_stop_1 etc., higher up in file.
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "record-full.h"
53 #include "inline-frame.h"
54 #include "jit.h"
55 #include "tracepoint.h"
56 #include "continuations.h"
57 #include "interps.h"
58 #include "skip.h"
59 #include "probe.h"
60 #include "objfiles.h"
61 #include "completer.h"
62 #include "target-descriptions.h"
63
64 /* Prototypes for local functions */
65
66 static void signals_info (char *, int);
67
68 static void handle_command (char *, int);
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static void resume_cleanups (void *);
75
76 static int hook_stop_stub (void *);
77
78 static int restore_selected_frame (void *);
79
80 static int follow_fork (void);
81
82 static void set_schedlock_func (char *args, int from_tty,
83 struct cmd_list_element *c);
84
85 static int currently_stepping (struct thread_info *tp);
86
87 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 void *data);
89
90 static void xdb_handle_command (char *args, int from_tty);
91
92 static int prepare_to_proceed (int);
93
94 static void print_exited_reason (int exitstatus);
95
96 static void print_signal_exited_reason (enum gdb_signal siggnal);
97
98 static void print_no_history_reason (void);
99
100 static void print_signal_received_reason (enum gdb_signal siggnal);
101
102 static void print_end_stepping_range_reason (void);
103
104 void _initialize_infrun (void);
105
106 void nullify_last_target_wait_ptid (void);
107
108 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
109
110 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111
112 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113
114 /* When set, stop the 'step' command if we enter a function which has
115 no line number information. The normal behavior is that we step
116 over such function. */
117 int step_stop_if_no_debug = 0;
118 static void
119 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123 }
124
125 /* In asynchronous mode, but simulating synchronous execution. */
126
127 int sync_execution = 0;
128
129 /* wait_for_inferior and normal_stop use this to notify the user
130 when the inferior stopped in a different thread than it had been
131 running in. */
132
133 static ptid_t previous_inferior_ptid;
134
135 /* Default behavior is to detach newly forked processes (legacy). */
136 int detach_fork = 1;
137
138 int debug_displaced = 0;
139 static void
140 show_debug_displaced (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142 {
143 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
144 }
145
146 unsigned int debug_infrun = 0;
147 static void
148 show_debug_infrun (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150 {
151 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
152 }
153
154
155 /* Support for disabling address space randomization. */
156
157 int disable_randomization = 1;
158
159 static void
160 show_disable_randomization (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162 {
163 if (target_supports_disable_randomization ())
164 fprintf_filtered (file,
165 _("Disabling randomization of debuggee's "
166 "virtual address space is %s.\n"),
167 value);
168 else
169 fputs_filtered (_("Disabling randomization of debuggee's "
170 "virtual address space is unsupported on\n"
171 "this platform.\n"), file);
172 }
173
174 static void
175 set_disable_randomization (char *args, int from_tty,
176 struct cmd_list_element *c)
177 {
178 if (!target_supports_disable_randomization ())
179 error (_("Disabling randomization of debuggee's "
180 "virtual address space is unsupported on\n"
181 "this platform."));
182 }
183
184 /* User interface for non-stop mode. */
185
186 int non_stop = 0;
187 static int non_stop_1 = 0;
188
189 static void
190 set_non_stop (char *args, int from_tty,
191 struct cmd_list_element *c)
192 {
193 if (target_has_execution)
194 {
195 non_stop_1 = non_stop;
196 error (_("Cannot change this setting while the inferior is running."));
197 }
198
199 non_stop = non_stop_1;
200 }
201
202 static void
203 show_non_stop (struct ui_file *file, int from_tty,
204 struct cmd_list_element *c, const char *value)
205 {
206 fprintf_filtered (file,
207 _("Controlling the inferior in non-stop mode is %s.\n"),
208 value);
209 }
210
211 /* "Observer mode" is somewhat like a more extreme version of
212 non-stop, in which all GDB operations that might affect the
213 target's execution have been disabled. */
214
215 int observer_mode = 0;
216 static int observer_mode_1 = 0;
217
218 static void
219 set_observer_mode (char *args, int from_tty,
220 struct cmd_list_element *c)
221 {
222 extern int pagination_enabled;
223
224 if (target_has_execution)
225 {
226 observer_mode_1 = observer_mode;
227 error (_("Cannot change this setting while the inferior is running."));
228 }
229
230 observer_mode = observer_mode_1;
231
232 may_write_registers = !observer_mode;
233 may_write_memory = !observer_mode;
234 may_insert_breakpoints = !observer_mode;
235 may_insert_tracepoints = !observer_mode;
236 /* We can insert fast tracepoints in or out of observer mode,
237 but enable them if we're going into this mode. */
238 if (observer_mode)
239 may_insert_fast_tracepoints = 1;
240 may_stop = !observer_mode;
241 update_target_permissions ();
242
243 /* Going *into* observer mode we must force non-stop, then
244 going out we leave it that way. */
245 if (observer_mode)
246 {
247 target_async_permitted = 1;
248 pagination_enabled = 0;
249 non_stop = non_stop_1 = 1;
250 }
251
252 if (from_tty)
253 printf_filtered (_("Observer mode is now %s.\n"),
254 (observer_mode ? "on" : "off"));
255 }
256
257 static void
258 show_observer_mode (struct ui_file *file, int from_tty,
259 struct cmd_list_element *c, const char *value)
260 {
261 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
262 }
263
264 /* This updates the value of observer mode based on changes in
265 permissions. Note that we are deliberately ignoring the values of
266 may-write-registers and may-write-memory, since the user may have
267 reason to enable these during a session, for instance to turn on a
268 debugging-related global. */
269
270 void
271 update_observer_mode (void)
272 {
273 int newval;
274
275 newval = (!may_insert_breakpoints
276 && !may_insert_tracepoints
277 && may_insert_fast_tracepoints
278 && !may_stop
279 && non_stop);
280
281 /* Let the user know if things change. */
282 if (newval != observer_mode)
283 printf_filtered (_("Observer mode is now %s.\n"),
284 (newval ? "on" : "off"));
285
286 observer_mode = observer_mode_1 = newval;
287 }
288
289 /* Tables of how to react to signals; the user sets them. */
290
291 static unsigned char *signal_stop;
292 static unsigned char *signal_print;
293 static unsigned char *signal_program;
294
295 /* Table of signals that are registered with "catch signal". A
296 non-zero entry indicates that the signal is caught by some "catch
297 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
298 signals. */
299 static unsigned char *signal_catch;
300
301 /* Table of signals that the target may silently handle.
302 This is automatically determined from the flags above,
303 and simply cached here. */
304 static unsigned char *signal_pass;
305
306 #define SET_SIGS(nsigs,sigs,flags) \
307 do { \
308 int signum = (nsigs); \
309 while (signum-- > 0) \
310 if ((sigs)[signum]) \
311 (flags)[signum] = 1; \
312 } while (0)
313
314 #define UNSET_SIGS(nsigs,sigs,flags) \
315 do { \
316 int signum = (nsigs); \
317 while (signum-- > 0) \
318 if ((sigs)[signum]) \
319 (flags)[signum] = 0; \
320 } while (0)
321
322 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
323 this function is to avoid exporting `signal_program'. */
324
325 void
326 update_signals_program_target (void)
327 {
328 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
329 }
330
331 /* Value to pass to target_resume() to cause all threads to resume. */
332
333 #define RESUME_ALL minus_one_ptid
334
335 /* Command list pointer for the "stop" placeholder. */
336
337 static struct cmd_list_element *stop_command;
338
339 /* Function inferior was in as of last step command. */
340
341 static struct symbol *step_start_function;
342
343 /* Nonzero if we want to give control to the user when we're notified
344 of shared library events by the dynamic linker. */
345 int stop_on_solib_events;
346
347 /* Enable or disable optional shared library event breakpoints
348 as appropriate when the above flag is changed. */
349
350 static void
351 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
352 {
353 update_solib_breakpoints ();
354 }
355
356 static void
357 show_stop_on_solib_events (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c, const char *value)
359 {
360 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
361 value);
362 }
363
364 /* Nonzero means expecting a trace trap
365 and should stop the inferior and return silently when it happens. */
366
367 int stop_after_trap;
368
369 /* Save register contents here when executing a "finish" command or are
370 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
371 Thus this contains the return value from the called function (assuming
372 values are returned in a register). */
373
374 struct regcache *stop_registers;
375
376 /* Nonzero after stop if current stack frame should be printed. */
377
378 static int stop_print_frame;
379
380 /* This is a cached copy of the pid/waitstatus of the last event
381 returned by target_wait()/deprecated_target_wait_hook(). This
382 information is returned by get_last_target_status(). */
383 static ptid_t target_last_wait_ptid;
384 static struct target_waitstatus target_last_waitstatus;
385
386 static void context_switch (ptid_t ptid);
387
388 void init_thread_stepping_state (struct thread_info *tss);
389
390 static void init_infwait_state (void);
391
392 static const char follow_fork_mode_child[] = "child";
393 static const char follow_fork_mode_parent[] = "parent";
394
395 static const char *const follow_fork_mode_kind_names[] = {
396 follow_fork_mode_child,
397 follow_fork_mode_parent,
398 NULL
399 };
400
401 static const char *follow_fork_mode_string = follow_fork_mode_parent;
402 static void
403 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
404 struct cmd_list_element *c, const char *value)
405 {
406 fprintf_filtered (file,
407 _("Debugger response to a program "
408 "call of fork or vfork is \"%s\".\n"),
409 value);
410 }
411 \f
412
413 /* Tell the target to follow the fork we're stopped at. Returns true
414 if the inferior should be resumed; false, if the target for some
415 reason decided it's best not to resume. */
416
417 static int
418 follow_fork (void)
419 {
420 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
421 int should_resume = 1;
422 struct thread_info *tp;
423
424 /* Copy user stepping state to the new inferior thread. FIXME: the
425 followed fork child thread should have a copy of most of the
426 parent thread structure's run control related fields, not just these.
427 Initialized to avoid "may be used uninitialized" warnings from gcc. */
428 struct breakpoint *step_resume_breakpoint = NULL;
429 struct breakpoint *exception_resume_breakpoint = NULL;
430 CORE_ADDR step_range_start = 0;
431 CORE_ADDR step_range_end = 0;
432 struct frame_id step_frame_id = { 0 };
433
434 if (!non_stop)
435 {
436 ptid_t wait_ptid;
437 struct target_waitstatus wait_status;
438
439 /* Get the last target status returned by target_wait(). */
440 get_last_target_status (&wait_ptid, &wait_status);
441
442 /* If not stopped at a fork event, then there's nothing else to
443 do. */
444 if (wait_status.kind != TARGET_WAITKIND_FORKED
445 && wait_status.kind != TARGET_WAITKIND_VFORKED)
446 return 1;
447
448 /* Check if we switched over from WAIT_PTID, since the event was
449 reported. */
450 if (!ptid_equal (wait_ptid, minus_one_ptid)
451 && !ptid_equal (inferior_ptid, wait_ptid))
452 {
453 /* We did. Switch back to WAIT_PTID thread, to tell the
454 target to follow it (in either direction). We'll
455 afterwards refuse to resume, and inform the user what
456 happened. */
457 switch_to_thread (wait_ptid);
458 should_resume = 0;
459 }
460 }
461
462 tp = inferior_thread ();
463
464 /* If there were any forks/vforks that were caught and are now to be
465 followed, then do so now. */
466 switch (tp->pending_follow.kind)
467 {
468 case TARGET_WAITKIND_FORKED:
469 case TARGET_WAITKIND_VFORKED:
470 {
471 ptid_t parent, child;
472
473 /* If the user did a next/step, etc, over a fork call,
474 preserve the stepping state in the fork child. */
475 if (follow_child && should_resume)
476 {
477 step_resume_breakpoint = clone_momentary_breakpoint
478 (tp->control.step_resume_breakpoint);
479 step_range_start = tp->control.step_range_start;
480 step_range_end = tp->control.step_range_end;
481 step_frame_id = tp->control.step_frame_id;
482 exception_resume_breakpoint
483 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
484
485 /* For now, delete the parent's sr breakpoint, otherwise,
486 parent/child sr breakpoints are considered duplicates,
487 and the child version will not be installed. Remove
488 this when the breakpoints module becomes aware of
489 inferiors and address spaces. */
490 delete_step_resume_breakpoint (tp);
491 tp->control.step_range_start = 0;
492 tp->control.step_range_end = 0;
493 tp->control.step_frame_id = null_frame_id;
494 delete_exception_resume_breakpoint (tp);
495 }
496
497 parent = inferior_ptid;
498 child = tp->pending_follow.value.related_pid;
499
500 /* Tell the target to do whatever is necessary to follow
501 either parent or child. */
502 if (target_follow_fork (follow_child))
503 {
504 /* Target refused to follow, or there's some other reason
505 we shouldn't resume. */
506 should_resume = 0;
507 }
508 else
509 {
510 /* This pending follow fork event is now handled, one way
511 or another. The previous selected thread may be gone
512 from the lists by now, but if it is still around, need
513 to clear the pending follow request. */
514 tp = find_thread_ptid (parent);
515 if (tp)
516 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
517
518 /* This makes sure we don't try to apply the "Switched
519 over from WAIT_PID" logic above. */
520 nullify_last_target_wait_ptid ();
521
522 /* If we followed the child, switch to it... */
523 if (follow_child)
524 {
525 switch_to_thread (child);
526
527 /* ... and preserve the stepping state, in case the
528 user was stepping over the fork call. */
529 if (should_resume)
530 {
531 tp = inferior_thread ();
532 tp->control.step_resume_breakpoint
533 = step_resume_breakpoint;
534 tp->control.step_range_start = step_range_start;
535 tp->control.step_range_end = step_range_end;
536 tp->control.step_frame_id = step_frame_id;
537 tp->control.exception_resume_breakpoint
538 = exception_resume_breakpoint;
539 }
540 else
541 {
542 /* If we get here, it was because we're trying to
543 resume from a fork catchpoint, but, the user
544 has switched threads away from the thread that
545 forked. In that case, the resume command
546 issued is most likely not applicable to the
547 child, so just warn, and refuse to resume. */
548 warning (_("Not resuming: switched threads "
549 "before following fork child.\n"));
550 }
551
552 /* Reset breakpoints in the child as appropriate. */
553 follow_inferior_reset_breakpoints ();
554 }
555 else
556 switch_to_thread (parent);
557 }
558 }
559 break;
560 case TARGET_WAITKIND_SPURIOUS:
561 /* Nothing to follow. */
562 break;
563 default:
564 internal_error (__FILE__, __LINE__,
565 "Unexpected pending_follow.kind %d\n",
566 tp->pending_follow.kind);
567 break;
568 }
569
570 return should_resume;
571 }
572
573 void
574 follow_inferior_reset_breakpoints (void)
575 {
576 struct thread_info *tp = inferior_thread ();
577
578 /* Was there a step_resume breakpoint? (There was if the user
579 did a "next" at the fork() call.) If so, explicitly reset its
580 thread number.
581
582 step_resumes are a form of bp that are made to be per-thread.
583 Since we created the step_resume bp when the parent process
584 was being debugged, and now are switching to the child process,
585 from the breakpoint package's viewpoint, that's a switch of
586 "threads". We must update the bp's notion of which thread
587 it is for, or it'll be ignored when it triggers. */
588
589 if (tp->control.step_resume_breakpoint)
590 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
591
592 if (tp->control.exception_resume_breakpoint)
593 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
594
595 /* Reinsert all breakpoints in the child. The user may have set
596 breakpoints after catching the fork, in which case those
597 were never set in the child, but only in the parent. This makes
598 sure the inserted breakpoints match the breakpoint list. */
599
600 breakpoint_re_set ();
601 insert_breakpoints ();
602 }
603
604 /* The child has exited or execed: resume threads of the parent the
605 user wanted to be executing. */
606
607 static int
608 proceed_after_vfork_done (struct thread_info *thread,
609 void *arg)
610 {
611 int pid = * (int *) arg;
612
613 if (ptid_get_pid (thread->ptid) == pid
614 && is_running (thread->ptid)
615 && !is_executing (thread->ptid)
616 && !thread->stop_requested
617 && thread->suspend.stop_signal == GDB_SIGNAL_0)
618 {
619 if (debug_infrun)
620 fprintf_unfiltered (gdb_stdlog,
621 "infrun: resuming vfork parent thread %s\n",
622 target_pid_to_str (thread->ptid));
623
624 switch_to_thread (thread->ptid);
625 clear_proceed_status ();
626 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
627 }
628
629 return 0;
630 }
631
632 /* Called whenever we notice an exec or exit event, to handle
633 detaching or resuming a vfork parent. */
634
635 static void
636 handle_vfork_child_exec_or_exit (int exec)
637 {
638 struct inferior *inf = current_inferior ();
639
640 if (inf->vfork_parent)
641 {
642 int resume_parent = -1;
643
644 /* This exec or exit marks the end of the shared memory region
645 between the parent and the child. If the user wanted to
646 detach from the parent, now is the time. */
647
648 if (inf->vfork_parent->pending_detach)
649 {
650 struct thread_info *tp;
651 struct cleanup *old_chain;
652 struct program_space *pspace;
653 struct address_space *aspace;
654
655 /* follow-fork child, detach-on-fork on. */
656
657 inf->vfork_parent->pending_detach = 0;
658
659 if (!exec)
660 {
661 /* If we're handling a child exit, then inferior_ptid
662 points at the inferior's pid, not to a thread. */
663 old_chain = save_inferior_ptid ();
664 save_current_program_space ();
665 save_current_inferior ();
666 }
667 else
668 old_chain = save_current_space_and_thread ();
669
670 /* We're letting loose of the parent. */
671 tp = any_live_thread_of_process (inf->vfork_parent->pid);
672 switch_to_thread (tp->ptid);
673
674 /* We're about to detach from the parent, which implicitly
675 removes breakpoints from its address space. There's a
676 catch here: we want to reuse the spaces for the child,
677 but, parent/child are still sharing the pspace at this
678 point, although the exec in reality makes the kernel give
679 the child a fresh set of new pages. The problem here is
680 that the breakpoints module being unaware of this, would
681 likely chose the child process to write to the parent
682 address space. Swapping the child temporarily away from
683 the spaces has the desired effect. Yes, this is "sort
684 of" a hack. */
685
686 pspace = inf->pspace;
687 aspace = inf->aspace;
688 inf->aspace = NULL;
689 inf->pspace = NULL;
690
691 if (debug_infrun || info_verbose)
692 {
693 target_terminal_ours ();
694
695 if (exec)
696 fprintf_filtered (gdb_stdlog,
697 "Detaching vfork parent process "
698 "%d after child exec.\n",
699 inf->vfork_parent->pid);
700 else
701 fprintf_filtered (gdb_stdlog,
702 "Detaching vfork parent process "
703 "%d after child exit.\n",
704 inf->vfork_parent->pid);
705 }
706
707 target_detach (NULL, 0);
708
709 /* Put it back. */
710 inf->pspace = pspace;
711 inf->aspace = aspace;
712
713 do_cleanups (old_chain);
714 }
715 else if (exec)
716 {
717 /* We're staying attached to the parent, so, really give the
718 child a new address space. */
719 inf->pspace = add_program_space (maybe_new_address_space ());
720 inf->aspace = inf->pspace->aspace;
721 inf->removable = 1;
722 set_current_program_space (inf->pspace);
723
724 resume_parent = inf->vfork_parent->pid;
725
726 /* Break the bonds. */
727 inf->vfork_parent->vfork_child = NULL;
728 }
729 else
730 {
731 struct cleanup *old_chain;
732 struct program_space *pspace;
733
734 /* If this is a vfork child exiting, then the pspace and
735 aspaces were shared with the parent. Since we're
736 reporting the process exit, we'll be mourning all that is
737 found in the address space, and switching to null_ptid,
738 preparing to start a new inferior. But, since we don't
739 want to clobber the parent's address/program spaces, we
740 go ahead and create a new one for this exiting
741 inferior. */
742
743 /* Switch to null_ptid, so that clone_program_space doesn't want
744 to read the selected frame of a dead process. */
745 old_chain = save_inferior_ptid ();
746 inferior_ptid = null_ptid;
747
748 /* This inferior is dead, so avoid giving the breakpoints
749 module the option to write through to it (cloning a
750 program space resets breakpoints). */
751 inf->aspace = NULL;
752 inf->pspace = NULL;
753 pspace = add_program_space (maybe_new_address_space ());
754 set_current_program_space (pspace);
755 inf->removable = 1;
756 inf->symfile_flags = SYMFILE_NO_READ;
757 clone_program_space (pspace, inf->vfork_parent->pspace);
758 inf->pspace = pspace;
759 inf->aspace = pspace->aspace;
760
761 /* Put back inferior_ptid. We'll continue mourning this
762 inferior. */
763 do_cleanups (old_chain);
764
765 resume_parent = inf->vfork_parent->pid;
766 /* Break the bonds. */
767 inf->vfork_parent->vfork_child = NULL;
768 }
769
770 inf->vfork_parent = NULL;
771
772 gdb_assert (current_program_space == inf->pspace);
773
774 if (non_stop && resume_parent != -1)
775 {
776 /* If the user wanted the parent to be running, let it go
777 free now. */
778 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
779
780 if (debug_infrun)
781 fprintf_unfiltered (gdb_stdlog,
782 "infrun: resuming vfork parent process %d\n",
783 resume_parent);
784
785 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
786
787 do_cleanups (old_chain);
788 }
789 }
790 }
791
792 /* Enum strings for "set|show follow-exec-mode". */
793
794 static const char follow_exec_mode_new[] = "new";
795 static const char follow_exec_mode_same[] = "same";
796 static const char *const follow_exec_mode_names[] =
797 {
798 follow_exec_mode_new,
799 follow_exec_mode_same,
800 NULL,
801 };
802
803 static const char *follow_exec_mode_string = follow_exec_mode_same;
804 static void
805 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
806 struct cmd_list_element *c, const char *value)
807 {
808 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
809 }
810
811 /* EXECD_PATHNAME is assumed to be non-NULL. */
812
813 static void
814 follow_exec (ptid_t pid, char *execd_pathname)
815 {
816 struct thread_info *th = inferior_thread ();
817 struct inferior *inf = current_inferior ();
818
819 /* This is an exec event that we actually wish to pay attention to.
820 Refresh our symbol table to the newly exec'd program, remove any
821 momentary bp's, etc.
822
823 If there are breakpoints, they aren't really inserted now,
824 since the exec() transformed our inferior into a fresh set
825 of instructions.
826
827 We want to preserve symbolic breakpoints on the list, since
828 we have hopes that they can be reset after the new a.out's
829 symbol table is read.
830
831 However, any "raw" breakpoints must be removed from the list
832 (e.g., the solib bp's), since their address is probably invalid
833 now.
834
835 And, we DON'T want to call delete_breakpoints() here, since
836 that may write the bp's "shadow contents" (the instruction
837 value that was overwritten witha TRAP instruction). Since
838 we now have a new a.out, those shadow contents aren't valid. */
839
840 mark_breakpoints_out ();
841
842 update_breakpoints_after_exec ();
843
844 /* If there was one, it's gone now. We cannot truly step-to-next
845 statement through an exec(). */
846 th->control.step_resume_breakpoint = NULL;
847 th->control.exception_resume_breakpoint = NULL;
848 th->control.step_range_start = 0;
849 th->control.step_range_end = 0;
850
851 /* The target reports the exec event to the main thread, even if
852 some other thread does the exec, and even if the main thread was
853 already stopped --- if debugging in non-stop mode, it's possible
854 the user had the main thread held stopped in the previous image
855 --- release it now. This is the same behavior as step-over-exec
856 with scheduler-locking on in all-stop mode. */
857 th->stop_requested = 0;
858
859 /* What is this a.out's name? */
860 printf_unfiltered (_("%s is executing new program: %s\n"),
861 target_pid_to_str (inferior_ptid),
862 execd_pathname);
863
864 /* We've followed the inferior through an exec. Therefore, the
865 inferior has essentially been killed & reborn. */
866
867 gdb_flush (gdb_stdout);
868
869 breakpoint_init_inferior (inf_execd);
870
871 if (gdb_sysroot && *gdb_sysroot)
872 {
873 char *name = alloca (strlen (gdb_sysroot)
874 + strlen (execd_pathname)
875 + 1);
876
877 strcpy (name, gdb_sysroot);
878 strcat (name, execd_pathname);
879 execd_pathname = name;
880 }
881
882 /* Reset the shared library package. This ensures that we get a
883 shlib event when the child reaches "_start", at which point the
884 dld will have had a chance to initialize the child. */
885 /* Also, loading a symbol file below may trigger symbol lookups, and
886 we don't want those to be satisfied by the libraries of the
887 previous incarnation of this process. */
888 no_shared_libraries (NULL, 0);
889
890 if (follow_exec_mode_string == follow_exec_mode_new)
891 {
892 struct program_space *pspace;
893
894 /* The user wants to keep the old inferior and program spaces
895 around. Create a new fresh one, and switch to it. */
896
897 inf = add_inferior (current_inferior ()->pid);
898 pspace = add_program_space (maybe_new_address_space ());
899 inf->pspace = pspace;
900 inf->aspace = pspace->aspace;
901
902 exit_inferior_num_silent (current_inferior ()->num);
903
904 set_current_inferior (inf);
905 set_current_program_space (pspace);
906 }
907 else
908 {
909 /* The old description may no longer be fit for the new image.
910 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
911 old description; we'll read a new one below. No need to do
912 this on "follow-exec-mode new", as the old inferior stays
913 around (its description is later cleared/refetched on
914 restart). */
915 target_clear_description ();
916 }
917
918 gdb_assert (current_program_space == inf->pspace);
919
920 /* That a.out is now the one to use. */
921 exec_file_attach (execd_pathname, 0);
922
923 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
924 (Position Independent Executable) main symbol file will get applied by
925 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
926 the breakpoints with the zero displacement. */
927
928 symbol_file_add (execd_pathname,
929 (inf->symfile_flags
930 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
931 NULL, 0);
932
933 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
934 set_initial_language ();
935
936 /* If the target can specify a description, read it. Must do this
937 after flipping to the new executable (because the target supplied
938 description must be compatible with the executable's
939 architecture, and the old executable may e.g., be 32-bit, while
940 the new one 64-bit), and before anything involving memory or
941 registers. */
942 target_find_description ();
943
944 solib_create_inferior_hook (0);
945
946 jit_inferior_created_hook ();
947
948 breakpoint_re_set ();
949
950 /* Reinsert all breakpoints. (Those which were symbolic have
951 been reset to the proper address in the new a.out, thanks
952 to symbol_file_command...). */
953 insert_breakpoints ();
954
955 /* The next resume of this inferior should bring it to the shlib
956 startup breakpoints. (If the user had also set bp's on
957 "main" from the old (parent) process, then they'll auto-
958 matically get reset there in the new process.). */
959 }
960
961 /* Non-zero if we just simulating a single-step. This is needed
962 because we cannot remove the breakpoints in the inferior process
963 until after the `wait' in `wait_for_inferior'. */
964 static int singlestep_breakpoints_inserted_p = 0;
965
966 /* The thread we inserted single-step breakpoints for. */
967 static ptid_t singlestep_ptid;
968
969 /* PC when we started this single-step. */
970 static CORE_ADDR singlestep_pc;
971
972 /* If another thread hit the singlestep breakpoint, we save the original
973 thread here so that we can resume single-stepping it later. */
974 static ptid_t saved_singlestep_ptid;
975 static int stepping_past_singlestep_breakpoint;
976
977 /* If not equal to null_ptid, this means that after stepping over breakpoint
978 is finished, we need to switch to deferred_step_ptid, and step it.
979
980 The use case is when one thread has hit a breakpoint, and then the user
981 has switched to another thread and issued 'step'. We need to step over
982 breakpoint in the thread which hit the breakpoint, but then continue
983 stepping the thread user has selected. */
984 static ptid_t deferred_step_ptid;
985 \f
986 /* Displaced stepping. */
987
988 /* In non-stop debugging mode, we must take special care to manage
989 breakpoints properly; in particular, the traditional strategy for
990 stepping a thread past a breakpoint it has hit is unsuitable.
991 'Displaced stepping' is a tactic for stepping one thread past a
992 breakpoint it has hit while ensuring that other threads running
993 concurrently will hit the breakpoint as they should.
994
995 The traditional way to step a thread T off a breakpoint in a
996 multi-threaded program in all-stop mode is as follows:
997
998 a0) Initially, all threads are stopped, and breakpoints are not
999 inserted.
1000 a1) We single-step T, leaving breakpoints uninserted.
1001 a2) We insert breakpoints, and resume all threads.
1002
1003 In non-stop debugging, however, this strategy is unsuitable: we
1004 don't want to have to stop all threads in the system in order to
1005 continue or step T past a breakpoint. Instead, we use displaced
1006 stepping:
1007
1008 n0) Initially, T is stopped, other threads are running, and
1009 breakpoints are inserted.
1010 n1) We copy the instruction "under" the breakpoint to a separate
1011 location, outside the main code stream, making any adjustments
1012 to the instruction, register, and memory state as directed by
1013 T's architecture.
1014 n2) We single-step T over the instruction at its new location.
1015 n3) We adjust the resulting register and memory state as directed
1016 by T's architecture. This includes resetting T's PC to point
1017 back into the main instruction stream.
1018 n4) We resume T.
1019
1020 This approach depends on the following gdbarch methods:
1021
1022 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1023 indicate where to copy the instruction, and how much space must
1024 be reserved there. We use these in step n1.
1025
1026 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1027 address, and makes any necessary adjustments to the instruction,
1028 register contents, and memory. We use this in step n1.
1029
1030 - gdbarch_displaced_step_fixup adjusts registers and memory after
1031 we have successfuly single-stepped the instruction, to yield the
1032 same effect the instruction would have had if we had executed it
1033 at its original address. We use this in step n3.
1034
1035 - gdbarch_displaced_step_free_closure provides cleanup.
1036
1037 The gdbarch_displaced_step_copy_insn and
1038 gdbarch_displaced_step_fixup functions must be written so that
1039 copying an instruction with gdbarch_displaced_step_copy_insn,
1040 single-stepping across the copied instruction, and then applying
1041 gdbarch_displaced_insn_fixup should have the same effects on the
1042 thread's memory and registers as stepping the instruction in place
1043 would have. Exactly which responsibilities fall to the copy and
1044 which fall to the fixup is up to the author of those functions.
1045
1046 See the comments in gdbarch.sh for details.
1047
1048 Note that displaced stepping and software single-step cannot
1049 currently be used in combination, although with some care I think
1050 they could be made to. Software single-step works by placing
1051 breakpoints on all possible subsequent instructions; if the
1052 displaced instruction is a PC-relative jump, those breakpoints
1053 could fall in very strange places --- on pages that aren't
1054 executable, or at addresses that are not proper instruction
1055 boundaries. (We do generally let other threads run while we wait
1056 to hit the software single-step breakpoint, and they might
1057 encounter such a corrupted instruction.) One way to work around
1058 this would be to have gdbarch_displaced_step_copy_insn fully
1059 simulate the effect of PC-relative instructions (and return NULL)
1060 on architectures that use software single-stepping.
1061
1062 In non-stop mode, we can have independent and simultaneous step
1063 requests, so more than one thread may need to simultaneously step
1064 over a breakpoint. The current implementation assumes there is
1065 only one scratch space per process. In this case, we have to
1066 serialize access to the scratch space. If thread A wants to step
1067 over a breakpoint, but we are currently waiting for some other
1068 thread to complete a displaced step, we leave thread A stopped and
1069 place it in the displaced_step_request_queue. Whenever a displaced
1070 step finishes, we pick the next thread in the queue and start a new
1071 displaced step operation on it. See displaced_step_prepare and
1072 displaced_step_fixup for details. */
1073
1074 struct displaced_step_request
1075 {
1076 ptid_t ptid;
1077 struct displaced_step_request *next;
1078 };
1079
1080 /* Per-inferior displaced stepping state. */
1081 struct displaced_step_inferior_state
1082 {
1083 /* Pointer to next in linked list. */
1084 struct displaced_step_inferior_state *next;
1085
1086 /* The process this displaced step state refers to. */
1087 int pid;
1088
1089 /* A queue of pending displaced stepping requests. One entry per
1090 thread that needs to do a displaced step. */
1091 struct displaced_step_request *step_request_queue;
1092
1093 /* If this is not null_ptid, this is the thread carrying out a
1094 displaced single-step in process PID. This thread's state will
1095 require fixing up once it has completed its step. */
1096 ptid_t step_ptid;
1097
1098 /* The architecture the thread had when we stepped it. */
1099 struct gdbarch *step_gdbarch;
1100
1101 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1102 for post-step cleanup. */
1103 struct displaced_step_closure *step_closure;
1104
1105 /* The address of the original instruction, and the copy we
1106 made. */
1107 CORE_ADDR step_original, step_copy;
1108
1109 /* Saved contents of copy area. */
1110 gdb_byte *step_saved_copy;
1111 };
1112
1113 /* The list of states of processes involved in displaced stepping
1114 presently. */
1115 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1116
1117 /* Get the displaced stepping state of process PID. */
1118
1119 static struct displaced_step_inferior_state *
1120 get_displaced_stepping_state (int pid)
1121 {
1122 struct displaced_step_inferior_state *state;
1123
1124 for (state = displaced_step_inferior_states;
1125 state != NULL;
1126 state = state->next)
1127 if (state->pid == pid)
1128 return state;
1129
1130 return NULL;
1131 }
1132
1133 /* Add a new displaced stepping state for process PID to the displaced
1134 stepping state list, or return a pointer to an already existing
1135 entry, if it already exists. Never returns NULL. */
1136
1137 static struct displaced_step_inferior_state *
1138 add_displaced_stepping_state (int pid)
1139 {
1140 struct displaced_step_inferior_state *state;
1141
1142 for (state = displaced_step_inferior_states;
1143 state != NULL;
1144 state = state->next)
1145 if (state->pid == pid)
1146 return state;
1147
1148 state = xcalloc (1, sizeof (*state));
1149 state->pid = pid;
1150 state->next = displaced_step_inferior_states;
1151 displaced_step_inferior_states = state;
1152
1153 return state;
1154 }
1155
1156 /* If inferior is in displaced stepping, and ADDR equals to starting address
1157 of copy area, return corresponding displaced_step_closure. Otherwise,
1158 return NULL. */
1159
1160 struct displaced_step_closure*
1161 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1162 {
1163 struct displaced_step_inferior_state *displaced
1164 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1165
1166 /* If checking the mode of displaced instruction in copy area. */
1167 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1168 && (displaced->step_copy == addr))
1169 return displaced->step_closure;
1170
1171 return NULL;
1172 }
1173
1174 /* Remove the displaced stepping state of process PID. */
1175
1176 static void
1177 remove_displaced_stepping_state (int pid)
1178 {
1179 struct displaced_step_inferior_state *it, **prev_next_p;
1180
1181 gdb_assert (pid != 0);
1182
1183 it = displaced_step_inferior_states;
1184 prev_next_p = &displaced_step_inferior_states;
1185 while (it)
1186 {
1187 if (it->pid == pid)
1188 {
1189 *prev_next_p = it->next;
1190 xfree (it);
1191 return;
1192 }
1193
1194 prev_next_p = &it->next;
1195 it = *prev_next_p;
1196 }
1197 }
1198
1199 static void
1200 infrun_inferior_exit (struct inferior *inf)
1201 {
1202 remove_displaced_stepping_state (inf->pid);
1203 }
1204
1205 /* If ON, and the architecture supports it, GDB will use displaced
1206 stepping to step over breakpoints. If OFF, or if the architecture
1207 doesn't support it, GDB will instead use the traditional
1208 hold-and-step approach. If AUTO (which is the default), GDB will
1209 decide which technique to use to step over breakpoints depending on
1210 which of all-stop or non-stop mode is active --- displaced stepping
1211 in non-stop mode; hold-and-step in all-stop mode. */
1212
1213 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1214
1215 static void
1216 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1217 struct cmd_list_element *c,
1218 const char *value)
1219 {
1220 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1221 fprintf_filtered (file,
1222 _("Debugger's willingness to use displaced stepping "
1223 "to step over breakpoints is %s (currently %s).\n"),
1224 value, non_stop ? "on" : "off");
1225 else
1226 fprintf_filtered (file,
1227 _("Debugger's willingness to use displaced stepping "
1228 "to step over breakpoints is %s.\n"), value);
1229 }
1230
1231 /* Return non-zero if displaced stepping can/should be used to step
1232 over breakpoints. */
1233
1234 static int
1235 use_displaced_stepping (struct gdbarch *gdbarch)
1236 {
1237 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1238 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1239 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1240 && !RECORD_IS_USED);
1241 }
1242
1243 /* Clean out any stray displaced stepping state. */
1244 static void
1245 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1246 {
1247 /* Indicate that there is no cleanup pending. */
1248 displaced->step_ptid = null_ptid;
1249
1250 if (displaced->step_closure)
1251 {
1252 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1253 displaced->step_closure);
1254 displaced->step_closure = NULL;
1255 }
1256 }
1257
1258 static void
1259 displaced_step_clear_cleanup (void *arg)
1260 {
1261 struct displaced_step_inferior_state *state = arg;
1262
1263 displaced_step_clear (state);
1264 }
1265
1266 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1267 void
1268 displaced_step_dump_bytes (struct ui_file *file,
1269 const gdb_byte *buf,
1270 size_t len)
1271 {
1272 int i;
1273
1274 for (i = 0; i < len; i++)
1275 fprintf_unfiltered (file, "%02x ", buf[i]);
1276 fputs_unfiltered ("\n", file);
1277 }
1278
1279 /* Prepare to single-step, using displaced stepping.
1280
1281 Note that we cannot use displaced stepping when we have a signal to
1282 deliver. If we have a signal to deliver and an instruction to step
1283 over, then after the step, there will be no indication from the
1284 target whether the thread entered a signal handler or ignored the
1285 signal and stepped over the instruction successfully --- both cases
1286 result in a simple SIGTRAP. In the first case we mustn't do a
1287 fixup, and in the second case we must --- but we can't tell which.
1288 Comments in the code for 'random signals' in handle_inferior_event
1289 explain how we handle this case instead.
1290
1291 Returns 1 if preparing was successful -- this thread is going to be
1292 stepped now; or 0 if displaced stepping this thread got queued. */
1293 static int
1294 displaced_step_prepare (ptid_t ptid)
1295 {
1296 struct cleanup *old_cleanups, *ignore_cleanups;
1297 struct thread_info *tp = find_thread_ptid (ptid);
1298 struct regcache *regcache = get_thread_regcache (ptid);
1299 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1300 CORE_ADDR original, copy;
1301 ULONGEST len;
1302 struct displaced_step_closure *closure;
1303 struct displaced_step_inferior_state *displaced;
1304 int status;
1305
1306 /* We should never reach this function if the architecture does not
1307 support displaced stepping. */
1308 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1309
1310 /* Disable range stepping while executing in the scratch pad. We
1311 want a single-step even if executing the displaced instruction in
1312 the scratch buffer lands within the stepping range (e.g., a
1313 jump/branch). */
1314 tp->control.may_range_step = 0;
1315
1316 /* We have to displaced step one thread at a time, as we only have
1317 access to a single scratch space per inferior. */
1318
1319 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1320
1321 if (!ptid_equal (displaced->step_ptid, null_ptid))
1322 {
1323 /* Already waiting for a displaced step to finish. Defer this
1324 request and place in queue. */
1325 struct displaced_step_request *req, *new_req;
1326
1327 if (debug_displaced)
1328 fprintf_unfiltered (gdb_stdlog,
1329 "displaced: defering step of %s\n",
1330 target_pid_to_str (ptid));
1331
1332 new_req = xmalloc (sizeof (*new_req));
1333 new_req->ptid = ptid;
1334 new_req->next = NULL;
1335
1336 if (displaced->step_request_queue)
1337 {
1338 for (req = displaced->step_request_queue;
1339 req && req->next;
1340 req = req->next)
1341 ;
1342 req->next = new_req;
1343 }
1344 else
1345 displaced->step_request_queue = new_req;
1346
1347 return 0;
1348 }
1349 else
1350 {
1351 if (debug_displaced)
1352 fprintf_unfiltered (gdb_stdlog,
1353 "displaced: stepping %s now\n",
1354 target_pid_to_str (ptid));
1355 }
1356
1357 displaced_step_clear (displaced);
1358
1359 old_cleanups = save_inferior_ptid ();
1360 inferior_ptid = ptid;
1361
1362 original = regcache_read_pc (regcache);
1363
1364 copy = gdbarch_displaced_step_location (gdbarch);
1365 len = gdbarch_max_insn_length (gdbarch);
1366
1367 /* Save the original contents of the copy area. */
1368 displaced->step_saved_copy = xmalloc (len);
1369 ignore_cleanups = make_cleanup (free_current_contents,
1370 &displaced->step_saved_copy);
1371 status = target_read_memory (copy, displaced->step_saved_copy, len);
1372 if (status != 0)
1373 throw_error (MEMORY_ERROR,
1374 _("Error accessing memory address %s (%s) for "
1375 "displaced-stepping scratch space."),
1376 paddress (gdbarch, copy), safe_strerror (status));
1377 if (debug_displaced)
1378 {
1379 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1380 paddress (gdbarch, copy));
1381 displaced_step_dump_bytes (gdb_stdlog,
1382 displaced->step_saved_copy,
1383 len);
1384 };
1385
1386 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1387 original, copy, regcache);
1388
1389 /* We don't support the fully-simulated case at present. */
1390 gdb_assert (closure);
1391
1392 /* Save the information we need to fix things up if the step
1393 succeeds. */
1394 displaced->step_ptid = ptid;
1395 displaced->step_gdbarch = gdbarch;
1396 displaced->step_closure = closure;
1397 displaced->step_original = original;
1398 displaced->step_copy = copy;
1399
1400 make_cleanup (displaced_step_clear_cleanup, displaced);
1401
1402 /* Resume execution at the copy. */
1403 regcache_write_pc (regcache, copy);
1404
1405 discard_cleanups (ignore_cleanups);
1406
1407 do_cleanups (old_cleanups);
1408
1409 if (debug_displaced)
1410 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1411 paddress (gdbarch, copy));
1412
1413 return 1;
1414 }
1415
1416 static void
1417 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1418 const gdb_byte *myaddr, int len)
1419 {
1420 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1421
1422 inferior_ptid = ptid;
1423 write_memory (memaddr, myaddr, len);
1424 do_cleanups (ptid_cleanup);
1425 }
1426
1427 /* Restore the contents of the copy area for thread PTID. */
1428
1429 static void
1430 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1431 ptid_t ptid)
1432 {
1433 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1434
1435 write_memory_ptid (ptid, displaced->step_copy,
1436 displaced->step_saved_copy, len);
1437 if (debug_displaced)
1438 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1439 target_pid_to_str (ptid),
1440 paddress (displaced->step_gdbarch,
1441 displaced->step_copy));
1442 }
1443
1444 static void
1445 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1446 {
1447 struct cleanup *old_cleanups;
1448 struct displaced_step_inferior_state *displaced
1449 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1450
1451 /* Was any thread of this process doing a displaced step? */
1452 if (displaced == NULL)
1453 return;
1454
1455 /* Was this event for the pid we displaced? */
1456 if (ptid_equal (displaced->step_ptid, null_ptid)
1457 || ! ptid_equal (displaced->step_ptid, event_ptid))
1458 return;
1459
1460 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1461
1462 displaced_step_restore (displaced, displaced->step_ptid);
1463
1464 /* Did the instruction complete successfully? */
1465 if (signal == GDB_SIGNAL_TRAP)
1466 {
1467 /* Fix up the resulting state. */
1468 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1469 displaced->step_closure,
1470 displaced->step_original,
1471 displaced->step_copy,
1472 get_thread_regcache (displaced->step_ptid));
1473 }
1474 else
1475 {
1476 /* Since the instruction didn't complete, all we can do is
1477 relocate the PC. */
1478 struct regcache *regcache = get_thread_regcache (event_ptid);
1479 CORE_ADDR pc = regcache_read_pc (regcache);
1480
1481 pc = displaced->step_original + (pc - displaced->step_copy);
1482 regcache_write_pc (regcache, pc);
1483 }
1484
1485 do_cleanups (old_cleanups);
1486
1487 displaced->step_ptid = null_ptid;
1488
1489 /* Are there any pending displaced stepping requests? If so, run
1490 one now. Leave the state object around, since we're likely to
1491 need it again soon. */
1492 while (displaced->step_request_queue)
1493 {
1494 struct displaced_step_request *head;
1495 ptid_t ptid;
1496 struct regcache *regcache;
1497 struct gdbarch *gdbarch;
1498 CORE_ADDR actual_pc;
1499 struct address_space *aspace;
1500
1501 head = displaced->step_request_queue;
1502 ptid = head->ptid;
1503 displaced->step_request_queue = head->next;
1504 xfree (head);
1505
1506 context_switch (ptid);
1507
1508 regcache = get_thread_regcache (ptid);
1509 actual_pc = regcache_read_pc (regcache);
1510 aspace = get_regcache_aspace (regcache);
1511
1512 if (breakpoint_here_p (aspace, actual_pc))
1513 {
1514 if (debug_displaced)
1515 fprintf_unfiltered (gdb_stdlog,
1516 "displaced: stepping queued %s now\n",
1517 target_pid_to_str (ptid));
1518
1519 displaced_step_prepare (ptid);
1520
1521 gdbarch = get_regcache_arch (regcache);
1522
1523 if (debug_displaced)
1524 {
1525 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1526 gdb_byte buf[4];
1527
1528 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1529 paddress (gdbarch, actual_pc));
1530 read_memory (actual_pc, buf, sizeof (buf));
1531 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1532 }
1533
1534 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1535 displaced->step_closure))
1536 target_resume (ptid, 1, GDB_SIGNAL_0);
1537 else
1538 target_resume (ptid, 0, GDB_SIGNAL_0);
1539
1540 /* Done, we're stepping a thread. */
1541 break;
1542 }
1543 else
1544 {
1545 int step;
1546 struct thread_info *tp = inferior_thread ();
1547
1548 /* The breakpoint we were sitting under has since been
1549 removed. */
1550 tp->control.trap_expected = 0;
1551
1552 /* Go back to what we were trying to do. */
1553 step = currently_stepping (tp);
1554
1555 if (debug_displaced)
1556 fprintf_unfiltered (gdb_stdlog,
1557 "displaced: breakpoint is gone: %s, step(%d)\n",
1558 target_pid_to_str (tp->ptid), step);
1559
1560 target_resume (ptid, step, GDB_SIGNAL_0);
1561 tp->suspend.stop_signal = GDB_SIGNAL_0;
1562
1563 /* This request was discarded. See if there's any other
1564 thread waiting for its turn. */
1565 }
1566 }
1567 }
1568
1569 /* Update global variables holding ptids to hold NEW_PTID if they were
1570 holding OLD_PTID. */
1571 static void
1572 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1573 {
1574 struct displaced_step_request *it;
1575 struct displaced_step_inferior_state *displaced;
1576
1577 if (ptid_equal (inferior_ptid, old_ptid))
1578 inferior_ptid = new_ptid;
1579
1580 if (ptid_equal (singlestep_ptid, old_ptid))
1581 singlestep_ptid = new_ptid;
1582
1583 if (ptid_equal (deferred_step_ptid, old_ptid))
1584 deferred_step_ptid = new_ptid;
1585
1586 for (displaced = displaced_step_inferior_states;
1587 displaced;
1588 displaced = displaced->next)
1589 {
1590 if (ptid_equal (displaced->step_ptid, old_ptid))
1591 displaced->step_ptid = new_ptid;
1592
1593 for (it = displaced->step_request_queue; it; it = it->next)
1594 if (ptid_equal (it->ptid, old_ptid))
1595 it->ptid = new_ptid;
1596 }
1597 }
1598
1599 \f
1600 /* Resuming. */
1601
1602 /* Things to clean up if we QUIT out of resume (). */
1603 static void
1604 resume_cleanups (void *ignore)
1605 {
1606 normal_stop ();
1607 }
1608
1609 static const char schedlock_off[] = "off";
1610 static const char schedlock_on[] = "on";
1611 static const char schedlock_step[] = "step";
1612 static const char *const scheduler_enums[] = {
1613 schedlock_off,
1614 schedlock_on,
1615 schedlock_step,
1616 NULL
1617 };
1618 static const char *scheduler_mode = schedlock_off;
1619 static void
1620 show_scheduler_mode (struct ui_file *file, int from_tty,
1621 struct cmd_list_element *c, const char *value)
1622 {
1623 fprintf_filtered (file,
1624 _("Mode for locking scheduler "
1625 "during execution is \"%s\".\n"),
1626 value);
1627 }
1628
1629 static void
1630 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1631 {
1632 if (!target_can_lock_scheduler)
1633 {
1634 scheduler_mode = schedlock_off;
1635 error (_("Target '%s' cannot support this command."), target_shortname);
1636 }
1637 }
1638
1639 /* True if execution commands resume all threads of all processes by
1640 default; otherwise, resume only threads of the current inferior
1641 process. */
1642 int sched_multi = 0;
1643
1644 /* Try to setup for software single stepping over the specified location.
1645 Return 1 if target_resume() should use hardware single step.
1646
1647 GDBARCH the current gdbarch.
1648 PC the location to step over. */
1649
1650 static int
1651 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1652 {
1653 int hw_step = 1;
1654
1655 if (execution_direction == EXEC_FORWARD
1656 && gdbarch_software_single_step_p (gdbarch)
1657 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1658 {
1659 hw_step = 0;
1660 /* Do not pull these breakpoints until after a `wait' in
1661 `wait_for_inferior'. */
1662 singlestep_breakpoints_inserted_p = 1;
1663 singlestep_ptid = inferior_ptid;
1664 singlestep_pc = pc;
1665 }
1666 return hw_step;
1667 }
1668
1669 /* Return a ptid representing the set of threads that we will proceed,
1670 in the perspective of the user/frontend. We may actually resume
1671 fewer threads at first, e.g., if a thread is stopped at a
1672 breakpoint that needs stepping-off, but that should not be visible
1673 to the user/frontend, and neither should the frontend/user be
1674 allowed to proceed any of the threads that happen to be stopped for
1675 internal run control handling, if a previous command wanted them
1676 resumed. */
1677
1678 ptid_t
1679 user_visible_resume_ptid (int step)
1680 {
1681 /* By default, resume all threads of all processes. */
1682 ptid_t resume_ptid = RESUME_ALL;
1683
1684 /* Maybe resume only all threads of the current process. */
1685 if (!sched_multi && target_supports_multi_process ())
1686 {
1687 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1688 }
1689
1690 /* Maybe resume a single thread after all. */
1691 if (non_stop)
1692 {
1693 /* With non-stop mode on, threads are always handled
1694 individually. */
1695 resume_ptid = inferior_ptid;
1696 }
1697 else if ((scheduler_mode == schedlock_on)
1698 || (scheduler_mode == schedlock_step
1699 && (step || singlestep_breakpoints_inserted_p)))
1700 {
1701 /* User-settable 'scheduler' mode requires solo thread resume. */
1702 resume_ptid = inferior_ptid;
1703 }
1704
1705 return resume_ptid;
1706 }
1707
1708 /* Resume the inferior, but allow a QUIT. This is useful if the user
1709 wants to interrupt some lengthy single-stepping operation
1710 (for child processes, the SIGINT goes to the inferior, and so
1711 we get a SIGINT random_signal, but for remote debugging and perhaps
1712 other targets, that's not true).
1713
1714 STEP nonzero if we should step (zero to continue instead).
1715 SIG is the signal to give the inferior (zero for none). */
1716 void
1717 resume (int step, enum gdb_signal sig)
1718 {
1719 int should_resume = 1;
1720 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1721 struct regcache *regcache = get_current_regcache ();
1722 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1723 struct thread_info *tp = inferior_thread ();
1724 CORE_ADDR pc = regcache_read_pc (regcache);
1725 struct address_space *aspace = get_regcache_aspace (regcache);
1726
1727 QUIT;
1728
1729 if (current_inferior ()->waiting_for_vfork_done)
1730 {
1731 /* Don't try to single-step a vfork parent that is waiting for
1732 the child to get out of the shared memory region (by exec'ing
1733 or exiting). This is particularly important on software
1734 single-step archs, as the child process would trip on the
1735 software single step breakpoint inserted for the parent
1736 process. Since the parent will not actually execute any
1737 instruction until the child is out of the shared region (such
1738 are vfork's semantics), it is safe to simply continue it.
1739 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1740 the parent, and tell it to `keep_going', which automatically
1741 re-sets it stepping. */
1742 if (debug_infrun)
1743 fprintf_unfiltered (gdb_stdlog,
1744 "infrun: resume : clear step\n");
1745 step = 0;
1746 }
1747
1748 if (debug_infrun)
1749 fprintf_unfiltered (gdb_stdlog,
1750 "infrun: resume (step=%d, signal=%d), "
1751 "trap_expected=%d, current thread [%s] at %s\n",
1752 step, sig, tp->control.trap_expected,
1753 target_pid_to_str (inferior_ptid),
1754 paddress (gdbarch, pc));
1755
1756 /* Normally, by the time we reach `resume', the breakpoints are either
1757 removed or inserted, as appropriate. The exception is if we're sitting
1758 at a permanent breakpoint; we need to step over it, but permanent
1759 breakpoints can't be removed. So we have to test for it here. */
1760 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1761 {
1762 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1763 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1764 else
1765 error (_("\
1766 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1767 how to step past a permanent breakpoint on this architecture. Try using\n\
1768 a command like `return' or `jump' to continue execution."));
1769 }
1770
1771 /* If we have a breakpoint to step over, make sure to do a single
1772 step only. Same if we have software watchpoints. */
1773 if (tp->control.trap_expected || bpstat_should_step ())
1774 tp->control.may_range_step = 0;
1775
1776 /* If enabled, step over breakpoints by executing a copy of the
1777 instruction at a different address.
1778
1779 We can't use displaced stepping when we have a signal to deliver;
1780 the comments for displaced_step_prepare explain why. The
1781 comments in the handle_inferior event for dealing with 'random
1782 signals' explain what we do instead.
1783
1784 We can't use displaced stepping when we are waiting for vfork_done
1785 event, displaced stepping breaks the vfork child similarly as single
1786 step software breakpoint. */
1787 if (use_displaced_stepping (gdbarch)
1788 && (tp->control.trap_expected
1789 || (step && gdbarch_software_single_step_p (gdbarch)))
1790 && sig == GDB_SIGNAL_0
1791 && !current_inferior ()->waiting_for_vfork_done)
1792 {
1793 struct displaced_step_inferior_state *displaced;
1794
1795 if (!displaced_step_prepare (inferior_ptid))
1796 {
1797 /* Got placed in displaced stepping queue. Will be resumed
1798 later when all the currently queued displaced stepping
1799 requests finish. The thread is not executing at this point,
1800 and the call to set_executing will be made later. But we
1801 need to call set_running here, since from frontend point of view,
1802 the thread is running. */
1803 set_running (inferior_ptid, 1);
1804 discard_cleanups (old_cleanups);
1805 return;
1806 }
1807
1808 /* Update pc to reflect the new address from which we will execute
1809 instructions due to displaced stepping. */
1810 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1811
1812 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1813 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1814 displaced->step_closure);
1815 }
1816
1817 /* Do we need to do it the hard way, w/temp breakpoints? */
1818 else if (step)
1819 step = maybe_software_singlestep (gdbarch, pc);
1820
1821 /* Currently, our software single-step implementation leads to different
1822 results than hardware single-stepping in one situation: when stepping
1823 into delivering a signal which has an associated signal handler,
1824 hardware single-step will stop at the first instruction of the handler,
1825 while software single-step will simply skip execution of the handler.
1826
1827 For now, this difference in behavior is accepted since there is no
1828 easy way to actually implement single-stepping into a signal handler
1829 without kernel support.
1830
1831 However, there is one scenario where this difference leads to follow-on
1832 problems: if we're stepping off a breakpoint by removing all breakpoints
1833 and then single-stepping. In this case, the software single-step
1834 behavior means that even if there is a *breakpoint* in the signal
1835 handler, GDB still would not stop.
1836
1837 Fortunately, we can at least fix this particular issue. We detect
1838 here the case where we are about to deliver a signal while software
1839 single-stepping with breakpoints removed. In this situation, we
1840 revert the decisions to remove all breakpoints and insert single-
1841 step breakpoints, and instead we install a step-resume breakpoint
1842 at the current address, deliver the signal without stepping, and
1843 once we arrive back at the step-resume breakpoint, actually step
1844 over the breakpoint we originally wanted to step over. */
1845 if (singlestep_breakpoints_inserted_p
1846 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1847 {
1848 /* If we have nested signals or a pending signal is delivered
1849 immediately after a handler returns, might might already have
1850 a step-resume breakpoint set on the earlier handler. We cannot
1851 set another step-resume breakpoint; just continue on until the
1852 original breakpoint is hit. */
1853 if (tp->control.step_resume_breakpoint == NULL)
1854 {
1855 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1856 tp->step_after_step_resume_breakpoint = 1;
1857 }
1858
1859 remove_single_step_breakpoints ();
1860 singlestep_breakpoints_inserted_p = 0;
1861
1862 insert_breakpoints ();
1863 tp->control.trap_expected = 0;
1864 }
1865
1866 if (should_resume)
1867 {
1868 ptid_t resume_ptid;
1869
1870 /* If STEP is set, it's a request to use hardware stepping
1871 facilities. But in that case, we should never
1872 use singlestep breakpoint. */
1873 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1874
1875 /* Decide the set of threads to ask the target to resume. Start
1876 by assuming everything will be resumed, than narrow the set
1877 by applying increasingly restricting conditions. */
1878 resume_ptid = user_visible_resume_ptid (step);
1879
1880 /* Maybe resume a single thread after all. */
1881 if (singlestep_breakpoints_inserted_p
1882 && stepping_past_singlestep_breakpoint)
1883 {
1884 /* The situation here is as follows. In thread T1 we wanted to
1885 single-step. Lacking hardware single-stepping we've
1886 set breakpoint at the PC of the next instruction -- call it
1887 P. After resuming, we've hit that breakpoint in thread T2.
1888 Now we've removed original breakpoint, inserted breakpoint
1889 at P+1, and try to step to advance T2 past breakpoint.
1890 We need to step only T2, as if T1 is allowed to freely run,
1891 it can run past P, and if other threads are allowed to run,
1892 they can hit breakpoint at P+1, and nested hits of single-step
1893 breakpoints is not something we'd want -- that's complicated
1894 to support, and has no value. */
1895 resume_ptid = inferior_ptid;
1896 }
1897 else if ((step || singlestep_breakpoints_inserted_p)
1898 && tp->control.trap_expected)
1899 {
1900 /* We're allowing a thread to run past a breakpoint it has
1901 hit, by single-stepping the thread with the breakpoint
1902 removed. In which case, we need to single-step only this
1903 thread, and keep others stopped, as they can miss this
1904 breakpoint if allowed to run.
1905
1906 The current code actually removes all breakpoints when
1907 doing this, not just the one being stepped over, so if we
1908 let other threads run, we can actually miss any
1909 breakpoint, not just the one at PC. */
1910 resume_ptid = inferior_ptid;
1911 }
1912
1913 if (gdbarch_cannot_step_breakpoint (gdbarch))
1914 {
1915 /* Most targets can step a breakpoint instruction, thus
1916 executing it normally. But if this one cannot, just
1917 continue and we will hit it anyway. */
1918 if (step && breakpoint_inserted_here_p (aspace, pc))
1919 step = 0;
1920 }
1921
1922 if (debug_displaced
1923 && use_displaced_stepping (gdbarch)
1924 && tp->control.trap_expected)
1925 {
1926 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1927 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1928 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1929 gdb_byte buf[4];
1930
1931 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1932 paddress (resume_gdbarch, actual_pc));
1933 read_memory (actual_pc, buf, sizeof (buf));
1934 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1935 }
1936
1937 if (tp->control.may_range_step)
1938 {
1939 /* If we're resuming a thread with the PC out of the step
1940 range, then we're doing some nested/finer run control
1941 operation, like stepping the thread out of the dynamic
1942 linker or the displaced stepping scratch pad. We
1943 shouldn't have allowed a range step then. */
1944 gdb_assert (pc_in_thread_step_range (pc, tp));
1945 }
1946
1947 /* Install inferior's terminal modes. */
1948 target_terminal_inferior ();
1949
1950 /* Avoid confusing the next resume, if the next stop/resume
1951 happens to apply to another thread. */
1952 tp->suspend.stop_signal = GDB_SIGNAL_0;
1953
1954 /* Advise target which signals may be handled silently. If we have
1955 removed breakpoints because we are stepping over one (which can
1956 happen only if we are not using displaced stepping), we need to
1957 receive all signals to avoid accidentally skipping a breakpoint
1958 during execution of a signal handler. */
1959 if ((step || singlestep_breakpoints_inserted_p)
1960 && tp->control.trap_expected
1961 && !use_displaced_stepping (gdbarch))
1962 target_pass_signals (0, NULL);
1963 else
1964 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1965
1966 target_resume (resume_ptid, step, sig);
1967 }
1968
1969 discard_cleanups (old_cleanups);
1970 }
1971 \f
1972 /* Proceeding. */
1973
1974 /* Clear out all variables saying what to do when inferior is continued.
1975 First do this, then set the ones you want, then call `proceed'. */
1976
1977 static void
1978 clear_proceed_status_thread (struct thread_info *tp)
1979 {
1980 if (debug_infrun)
1981 fprintf_unfiltered (gdb_stdlog,
1982 "infrun: clear_proceed_status_thread (%s)\n",
1983 target_pid_to_str (tp->ptid));
1984
1985 tp->control.trap_expected = 0;
1986 tp->control.step_range_start = 0;
1987 tp->control.step_range_end = 0;
1988 tp->control.may_range_step = 0;
1989 tp->control.step_frame_id = null_frame_id;
1990 tp->control.step_stack_frame_id = null_frame_id;
1991 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1992 tp->stop_requested = 0;
1993
1994 tp->control.stop_step = 0;
1995
1996 tp->control.proceed_to_finish = 0;
1997
1998 /* Discard any remaining commands or status from previous stop. */
1999 bpstat_clear (&tp->control.stop_bpstat);
2000 }
2001
2002 static int
2003 clear_proceed_status_callback (struct thread_info *tp, void *data)
2004 {
2005 if (is_exited (tp->ptid))
2006 return 0;
2007
2008 clear_proceed_status_thread (tp);
2009 return 0;
2010 }
2011
2012 void
2013 clear_proceed_status (void)
2014 {
2015 if (!non_stop)
2016 {
2017 /* In all-stop mode, delete the per-thread status of all
2018 threads, even if inferior_ptid is null_ptid, there may be
2019 threads on the list. E.g., we may be launching a new
2020 process, while selecting the executable. */
2021 iterate_over_threads (clear_proceed_status_callback, NULL);
2022 }
2023
2024 if (!ptid_equal (inferior_ptid, null_ptid))
2025 {
2026 struct inferior *inferior;
2027
2028 if (non_stop)
2029 {
2030 /* If in non-stop mode, only delete the per-thread status of
2031 the current thread. */
2032 clear_proceed_status_thread (inferior_thread ());
2033 }
2034
2035 inferior = current_inferior ();
2036 inferior->control.stop_soon = NO_STOP_QUIETLY;
2037 }
2038
2039 stop_after_trap = 0;
2040
2041 observer_notify_about_to_proceed ();
2042
2043 if (stop_registers)
2044 {
2045 regcache_xfree (stop_registers);
2046 stop_registers = NULL;
2047 }
2048 }
2049
2050 /* Check the current thread against the thread that reported the most recent
2051 event. If a step-over is required return TRUE and set the current thread
2052 to the old thread. Otherwise return FALSE.
2053
2054 This should be suitable for any targets that support threads. */
2055
2056 static int
2057 prepare_to_proceed (int step)
2058 {
2059 ptid_t wait_ptid;
2060 struct target_waitstatus wait_status;
2061 int schedlock_enabled;
2062
2063 /* With non-stop mode on, threads are always handled individually. */
2064 gdb_assert (! non_stop);
2065
2066 /* Get the last target status returned by target_wait(). */
2067 get_last_target_status (&wait_ptid, &wait_status);
2068
2069 /* Make sure we were stopped at a breakpoint. */
2070 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2071 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2072 && wait_status.value.sig != GDB_SIGNAL_ILL
2073 && wait_status.value.sig != GDB_SIGNAL_SEGV
2074 && wait_status.value.sig != GDB_SIGNAL_EMT))
2075 {
2076 return 0;
2077 }
2078
2079 schedlock_enabled = (scheduler_mode == schedlock_on
2080 || (scheduler_mode == schedlock_step
2081 && step));
2082
2083 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2084 if (schedlock_enabled)
2085 return 0;
2086
2087 /* Don't switch over if we're about to resume some other process
2088 other than WAIT_PTID's, and schedule-multiple is off. */
2089 if (!sched_multi
2090 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2091 return 0;
2092
2093 /* Switched over from WAIT_PID. */
2094 if (!ptid_equal (wait_ptid, minus_one_ptid)
2095 && !ptid_equal (inferior_ptid, wait_ptid))
2096 {
2097 struct regcache *regcache = get_thread_regcache (wait_ptid);
2098
2099 if (breakpoint_here_p (get_regcache_aspace (regcache),
2100 regcache_read_pc (regcache)))
2101 {
2102 /* If stepping, remember current thread to switch back to. */
2103 if (step)
2104 deferred_step_ptid = inferior_ptid;
2105
2106 /* Switch back to WAIT_PID thread. */
2107 switch_to_thread (wait_ptid);
2108
2109 if (debug_infrun)
2110 fprintf_unfiltered (gdb_stdlog,
2111 "infrun: prepare_to_proceed (step=%d), "
2112 "switched to [%s]\n",
2113 step, target_pid_to_str (inferior_ptid));
2114
2115 /* We return 1 to indicate that there is a breakpoint here,
2116 so we need to step over it before continuing to avoid
2117 hitting it straight away. */
2118 return 1;
2119 }
2120 }
2121
2122 return 0;
2123 }
2124
2125 /* Basic routine for continuing the program in various fashions.
2126
2127 ADDR is the address to resume at, or -1 for resume where stopped.
2128 SIGGNAL is the signal to give it, or 0 for none,
2129 or -1 for act according to how it stopped.
2130 STEP is nonzero if should trap after one instruction.
2131 -1 means return after that and print nothing.
2132 You should probably set various step_... variables
2133 before calling here, if you are stepping.
2134
2135 You should call clear_proceed_status before calling proceed. */
2136
2137 void
2138 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2139 {
2140 struct regcache *regcache;
2141 struct gdbarch *gdbarch;
2142 struct thread_info *tp;
2143 CORE_ADDR pc;
2144 struct address_space *aspace;
2145 /* GDB may force the inferior to step due to various reasons. */
2146 int force_step = 0;
2147
2148 /* If we're stopped at a fork/vfork, follow the branch set by the
2149 "set follow-fork-mode" command; otherwise, we'll just proceed
2150 resuming the current thread. */
2151 if (!follow_fork ())
2152 {
2153 /* The target for some reason decided not to resume. */
2154 normal_stop ();
2155 if (target_can_async_p ())
2156 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2157 return;
2158 }
2159
2160 /* We'll update this if & when we switch to a new thread. */
2161 previous_inferior_ptid = inferior_ptid;
2162
2163 regcache = get_current_regcache ();
2164 gdbarch = get_regcache_arch (regcache);
2165 aspace = get_regcache_aspace (regcache);
2166 pc = regcache_read_pc (regcache);
2167
2168 if (step > 0)
2169 step_start_function = find_pc_function (pc);
2170 if (step < 0)
2171 stop_after_trap = 1;
2172
2173 if (addr == (CORE_ADDR) -1)
2174 {
2175 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2176 && execution_direction != EXEC_REVERSE)
2177 /* There is a breakpoint at the address we will resume at,
2178 step one instruction before inserting breakpoints so that
2179 we do not stop right away (and report a second hit at this
2180 breakpoint).
2181
2182 Note, we don't do this in reverse, because we won't
2183 actually be executing the breakpoint insn anyway.
2184 We'll be (un-)executing the previous instruction. */
2185
2186 force_step = 1;
2187 else if (gdbarch_single_step_through_delay_p (gdbarch)
2188 && gdbarch_single_step_through_delay (gdbarch,
2189 get_current_frame ()))
2190 /* We stepped onto an instruction that needs to be stepped
2191 again before re-inserting the breakpoint, do so. */
2192 force_step = 1;
2193 }
2194 else
2195 {
2196 regcache_write_pc (regcache, addr);
2197 }
2198
2199 if (debug_infrun)
2200 fprintf_unfiltered (gdb_stdlog,
2201 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2202 paddress (gdbarch, addr), siggnal, step);
2203
2204 if (non_stop)
2205 /* In non-stop, each thread is handled individually. The context
2206 must already be set to the right thread here. */
2207 ;
2208 else
2209 {
2210 /* In a multi-threaded task we may select another thread and
2211 then continue or step.
2212
2213 But if the old thread was stopped at a breakpoint, it will
2214 immediately cause another breakpoint stop without any
2215 execution (i.e. it will report a breakpoint hit incorrectly).
2216 So we must step over it first.
2217
2218 prepare_to_proceed checks the current thread against the
2219 thread that reported the most recent event. If a step-over
2220 is required it returns TRUE and sets the current thread to
2221 the old thread. */
2222 if (prepare_to_proceed (step))
2223 force_step = 1;
2224 }
2225
2226 /* prepare_to_proceed may change the current thread. */
2227 tp = inferior_thread ();
2228
2229 if (force_step)
2230 {
2231 tp->control.trap_expected = 1;
2232 /* If displaced stepping is enabled, we can step over the
2233 breakpoint without hitting it, so leave all breakpoints
2234 inserted. Otherwise we need to disable all breakpoints, step
2235 one instruction, and then re-add them when that step is
2236 finished. */
2237 if (!use_displaced_stepping (gdbarch))
2238 remove_breakpoints ();
2239 }
2240
2241 /* We can insert breakpoints if we're not trying to step over one,
2242 or if we are stepping over one but we're using displaced stepping
2243 to do so. */
2244 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2245 insert_breakpoints ();
2246
2247 if (!non_stop)
2248 {
2249 /* Pass the last stop signal to the thread we're resuming,
2250 irrespective of whether the current thread is the thread that
2251 got the last event or not. This was historically GDB's
2252 behaviour before keeping a stop_signal per thread. */
2253
2254 struct thread_info *last_thread;
2255 ptid_t last_ptid;
2256 struct target_waitstatus last_status;
2257
2258 get_last_target_status (&last_ptid, &last_status);
2259 if (!ptid_equal (inferior_ptid, last_ptid)
2260 && !ptid_equal (last_ptid, null_ptid)
2261 && !ptid_equal (last_ptid, minus_one_ptid))
2262 {
2263 last_thread = find_thread_ptid (last_ptid);
2264 if (last_thread)
2265 {
2266 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2267 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2268 }
2269 }
2270 }
2271
2272 if (siggnal != GDB_SIGNAL_DEFAULT)
2273 tp->suspend.stop_signal = siggnal;
2274 /* If this signal should not be seen by program,
2275 give it zero. Used for debugging signals. */
2276 else if (!signal_program[tp->suspend.stop_signal])
2277 tp->suspend.stop_signal = GDB_SIGNAL_0;
2278
2279 annotate_starting ();
2280
2281 /* Make sure that output from GDB appears before output from the
2282 inferior. */
2283 gdb_flush (gdb_stdout);
2284
2285 /* Refresh prev_pc value just prior to resuming. This used to be
2286 done in stop_stepping, however, setting prev_pc there did not handle
2287 scenarios such as inferior function calls or returning from
2288 a function via the return command. In those cases, the prev_pc
2289 value was not set properly for subsequent commands. The prev_pc value
2290 is used to initialize the starting line number in the ecs. With an
2291 invalid value, the gdb next command ends up stopping at the position
2292 represented by the next line table entry past our start position.
2293 On platforms that generate one line table entry per line, this
2294 is not a problem. However, on the ia64, the compiler generates
2295 extraneous line table entries that do not increase the line number.
2296 When we issue the gdb next command on the ia64 after an inferior call
2297 or a return command, we often end up a few instructions forward, still
2298 within the original line we started.
2299
2300 An attempt was made to refresh the prev_pc at the same time the
2301 execution_control_state is initialized (for instance, just before
2302 waiting for an inferior event). But this approach did not work
2303 because of platforms that use ptrace, where the pc register cannot
2304 be read unless the inferior is stopped. At that point, we are not
2305 guaranteed the inferior is stopped and so the regcache_read_pc() call
2306 can fail. Setting the prev_pc value here ensures the value is updated
2307 correctly when the inferior is stopped. */
2308 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2309
2310 /* Fill in with reasonable starting values. */
2311 init_thread_stepping_state (tp);
2312
2313 /* Reset to normal state. */
2314 init_infwait_state ();
2315
2316 /* Resume inferior. */
2317 resume (force_step || step || bpstat_should_step (),
2318 tp->suspend.stop_signal);
2319
2320 /* Wait for it to stop (if not standalone)
2321 and in any case decode why it stopped, and act accordingly. */
2322 /* Do this only if we are not using the event loop, or if the target
2323 does not support asynchronous execution. */
2324 if (!target_can_async_p ())
2325 {
2326 wait_for_inferior ();
2327 normal_stop ();
2328 }
2329 }
2330 \f
2331
2332 /* Start remote-debugging of a machine over a serial link. */
2333
2334 void
2335 start_remote (int from_tty)
2336 {
2337 struct inferior *inferior;
2338
2339 inferior = current_inferior ();
2340 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2341
2342 /* Always go on waiting for the target, regardless of the mode. */
2343 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2344 indicate to wait_for_inferior that a target should timeout if
2345 nothing is returned (instead of just blocking). Because of this,
2346 targets expecting an immediate response need to, internally, set
2347 things up so that the target_wait() is forced to eventually
2348 timeout. */
2349 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2350 differentiate to its caller what the state of the target is after
2351 the initial open has been performed. Here we're assuming that
2352 the target has stopped. It should be possible to eventually have
2353 target_open() return to the caller an indication that the target
2354 is currently running and GDB state should be set to the same as
2355 for an async run. */
2356 wait_for_inferior ();
2357
2358 /* Now that the inferior has stopped, do any bookkeeping like
2359 loading shared libraries. We want to do this before normal_stop,
2360 so that the displayed frame is up to date. */
2361 post_create_inferior (&current_target, from_tty);
2362
2363 normal_stop ();
2364 }
2365
2366 /* Initialize static vars when a new inferior begins. */
2367
2368 void
2369 init_wait_for_inferior (void)
2370 {
2371 /* These are meaningless until the first time through wait_for_inferior. */
2372
2373 breakpoint_init_inferior (inf_starting);
2374
2375 clear_proceed_status ();
2376
2377 stepping_past_singlestep_breakpoint = 0;
2378 deferred_step_ptid = null_ptid;
2379
2380 target_last_wait_ptid = minus_one_ptid;
2381
2382 previous_inferior_ptid = inferior_ptid;
2383 init_infwait_state ();
2384
2385 /* Discard any skipped inlined frames. */
2386 clear_inline_frame_state (minus_one_ptid);
2387 }
2388
2389 \f
2390 /* This enum encodes possible reasons for doing a target_wait, so that
2391 wfi can call target_wait in one place. (Ultimately the call will be
2392 moved out of the infinite loop entirely.) */
2393
2394 enum infwait_states
2395 {
2396 infwait_normal_state,
2397 infwait_thread_hop_state,
2398 infwait_step_watch_state,
2399 infwait_nonstep_watch_state
2400 };
2401
2402 /* The PTID we'll do a target_wait on.*/
2403 ptid_t waiton_ptid;
2404
2405 /* Current inferior wait state. */
2406 static enum infwait_states infwait_state;
2407
2408 /* Data to be passed around while handling an event. This data is
2409 discarded between events. */
2410 struct execution_control_state
2411 {
2412 ptid_t ptid;
2413 /* The thread that got the event, if this was a thread event; NULL
2414 otherwise. */
2415 struct thread_info *event_thread;
2416
2417 struct target_waitstatus ws;
2418 int random_signal;
2419 int stop_func_filled_in;
2420 CORE_ADDR stop_func_start;
2421 CORE_ADDR stop_func_end;
2422 const char *stop_func_name;
2423 int wait_some_more;
2424 };
2425
2426 static void handle_inferior_event (struct execution_control_state *ecs);
2427
2428 static void handle_step_into_function (struct gdbarch *gdbarch,
2429 struct execution_control_state *ecs);
2430 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2431 struct execution_control_state *ecs);
2432 static void check_exception_resume (struct execution_control_state *,
2433 struct frame_info *);
2434
2435 static void stop_stepping (struct execution_control_state *ecs);
2436 static void prepare_to_wait (struct execution_control_state *ecs);
2437 static void keep_going (struct execution_control_state *ecs);
2438
2439 /* Callback for iterate over threads. If the thread is stopped, but
2440 the user/frontend doesn't know about that yet, go through
2441 normal_stop, as if the thread had just stopped now. ARG points at
2442 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2443 ptid_is_pid(PTID) is true, applies to all threads of the process
2444 pointed at by PTID. Otherwise, apply only to the thread pointed by
2445 PTID. */
2446
2447 static int
2448 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2449 {
2450 ptid_t ptid = * (ptid_t *) arg;
2451
2452 if ((ptid_equal (info->ptid, ptid)
2453 || ptid_equal (minus_one_ptid, ptid)
2454 || (ptid_is_pid (ptid)
2455 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2456 && is_running (info->ptid)
2457 && !is_executing (info->ptid))
2458 {
2459 struct cleanup *old_chain;
2460 struct execution_control_state ecss;
2461 struct execution_control_state *ecs = &ecss;
2462
2463 memset (ecs, 0, sizeof (*ecs));
2464
2465 old_chain = make_cleanup_restore_current_thread ();
2466
2467 /* Go through handle_inferior_event/normal_stop, so we always
2468 have consistent output as if the stop event had been
2469 reported. */
2470 ecs->ptid = info->ptid;
2471 ecs->event_thread = find_thread_ptid (info->ptid);
2472 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2473 ecs->ws.value.sig = GDB_SIGNAL_0;
2474
2475 handle_inferior_event (ecs);
2476
2477 if (!ecs->wait_some_more)
2478 {
2479 struct thread_info *tp;
2480
2481 normal_stop ();
2482
2483 /* Finish off the continuations. */
2484 tp = inferior_thread ();
2485 do_all_intermediate_continuations_thread (tp, 1);
2486 do_all_continuations_thread (tp, 1);
2487 }
2488
2489 do_cleanups (old_chain);
2490 }
2491
2492 return 0;
2493 }
2494
2495 /* This function is attached as a "thread_stop_requested" observer.
2496 Cleanup local state that assumed the PTID was to be resumed, and
2497 report the stop to the frontend. */
2498
2499 static void
2500 infrun_thread_stop_requested (ptid_t ptid)
2501 {
2502 struct displaced_step_inferior_state *displaced;
2503
2504 /* PTID was requested to stop. Remove it from the displaced
2505 stepping queue, so we don't try to resume it automatically. */
2506
2507 for (displaced = displaced_step_inferior_states;
2508 displaced;
2509 displaced = displaced->next)
2510 {
2511 struct displaced_step_request *it, **prev_next_p;
2512
2513 it = displaced->step_request_queue;
2514 prev_next_p = &displaced->step_request_queue;
2515 while (it)
2516 {
2517 if (ptid_match (it->ptid, ptid))
2518 {
2519 *prev_next_p = it->next;
2520 it->next = NULL;
2521 xfree (it);
2522 }
2523 else
2524 {
2525 prev_next_p = &it->next;
2526 }
2527
2528 it = *prev_next_p;
2529 }
2530 }
2531
2532 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2533 }
2534
2535 static void
2536 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2537 {
2538 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2539 nullify_last_target_wait_ptid ();
2540 }
2541
2542 /* Callback for iterate_over_threads. */
2543
2544 static int
2545 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2546 {
2547 if (is_exited (info->ptid))
2548 return 0;
2549
2550 delete_step_resume_breakpoint (info);
2551 delete_exception_resume_breakpoint (info);
2552 return 0;
2553 }
2554
2555 /* In all-stop, delete the step resume breakpoint of any thread that
2556 had one. In non-stop, delete the step resume breakpoint of the
2557 thread that just stopped. */
2558
2559 static void
2560 delete_step_thread_step_resume_breakpoint (void)
2561 {
2562 if (!target_has_execution
2563 || ptid_equal (inferior_ptid, null_ptid))
2564 /* If the inferior has exited, we have already deleted the step
2565 resume breakpoints out of GDB's lists. */
2566 return;
2567
2568 if (non_stop)
2569 {
2570 /* If in non-stop mode, only delete the step-resume or
2571 longjmp-resume breakpoint of the thread that just stopped
2572 stepping. */
2573 struct thread_info *tp = inferior_thread ();
2574
2575 delete_step_resume_breakpoint (tp);
2576 delete_exception_resume_breakpoint (tp);
2577 }
2578 else
2579 /* In all-stop mode, delete all step-resume and longjmp-resume
2580 breakpoints of any thread that had them. */
2581 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2582 }
2583
2584 /* A cleanup wrapper. */
2585
2586 static void
2587 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2588 {
2589 delete_step_thread_step_resume_breakpoint ();
2590 }
2591
2592 /* Pretty print the results of target_wait, for debugging purposes. */
2593
2594 static void
2595 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2596 const struct target_waitstatus *ws)
2597 {
2598 char *status_string = target_waitstatus_to_string (ws);
2599 struct ui_file *tmp_stream = mem_fileopen ();
2600 char *text;
2601
2602 /* The text is split over several lines because it was getting too long.
2603 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2604 output as a unit; we want only one timestamp printed if debug_timestamp
2605 is set. */
2606
2607 fprintf_unfiltered (tmp_stream,
2608 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2609 if (PIDGET (waiton_ptid) != -1)
2610 fprintf_unfiltered (tmp_stream,
2611 " [%s]", target_pid_to_str (waiton_ptid));
2612 fprintf_unfiltered (tmp_stream, ", status) =\n");
2613 fprintf_unfiltered (tmp_stream,
2614 "infrun: %d [%s],\n",
2615 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2616 fprintf_unfiltered (tmp_stream,
2617 "infrun: %s\n",
2618 status_string);
2619
2620 text = ui_file_xstrdup (tmp_stream, NULL);
2621
2622 /* This uses %s in part to handle %'s in the text, but also to avoid
2623 a gcc error: the format attribute requires a string literal. */
2624 fprintf_unfiltered (gdb_stdlog, "%s", text);
2625
2626 xfree (status_string);
2627 xfree (text);
2628 ui_file_delete (tmp_stream);
2629 }
2630
2631 /* Prepare and stabilize the inferior for detaching it. E.g.,
2632 detaching while a thread is displaced stepping is a recipe for
2633 crashing it, as nothing would readjust the PC out of the scratch
2634 pad. */
2635
2636 void
2637 prepare_for_detach (void)
2638 {
2639 struct inferior *inf = current_inferior ();
2640 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2641 struct cleanup *old_chain_1;
2642 struct displaced_step_inferior_state *displaced;
2643
2644 displaced = get_displaced_stepping_state (inf->pid);
2645
2646 /* Is any thread of this process displaced stepping? If not,
2647 there's nothing else to do. */
2648 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2649 return;
2650
2651 if (debug_infrun)
2652 fprintf_unfiltered (gdb_stdlog,
2653 "displaced-stepping in-process while detaching");
2654
2655 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2656 inf->detaching = 1;
2657
2658 while (!ptid_equal (displaced->step_ptid, null_ptid))
2659 {
2660 struct cleanup *old_chain_2;
2661 struct execution_control_state ecss;
2662 struct execution_control_state *ecs;
2663
2664 ecs = &ecss;
2665 memset (ecs, 0, sizeof (*ecs));
2666
2667 overlay_cache_invalid = 1;
2668
2669 if (deprecated_target_wait_hook)
2670 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2671 else
2672 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2673
2674 if (debug_infrun)
2675 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2676
2677 /* If an error happens while handling the event, propagate GDB's
2678 knowledge of the executing state to the frontend/user running
2679 state. */
2680 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2681 &minus_one_ptid);
2682
2683 /* Now figure out what to do with the result of the result. */
2684 handle_inferior_event (ecs);
2685
2686 /* No error, don't finish the state yet. */
2687 discard_cleanups (old_chain_2);
2688
2689 /* Breakpoints and watchpoints are not installed on the target
2690 at this point, and signals are passed directly to the
2691 inferior, so this must mean the process is gone. */
2692 if (!ecs->wait_some_more)
2693 {
2694 discard_cleanups (old_chain_1);
2695 error (_("Program exited while detaching"));
2696 }
2697 }
2698
2699 discard_cleanups (old_chain_1);
2700 }
2701
2702 /* Wait for control to return from inferior to debugger.
2703
2704 If inferior gets a signal, we may decide to start it up again
2705 instead of returning. That is why there is a loop in this function.
2706 When this function actually returns it means the inferior
2707 should be left stopped and GDB should read more commands. */
2708
2709 void
2710 wait_for_inferior (void)
2711 {
2712 struct cleanup *old_cleanups;
2713
2714 if (debug_infrun)
2715 fprintf_unfiltered
2716 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2717
2718 old_cleanups =
2719 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2720
2721 while (1)
2722 {
2723 struct execution_control_state ecss;
2724 struct execution_control_state *ecs = &ecss;
2725 struct cleanup *old_chain;
2726
2727 memset (ecs, 0, sizeof (*ecs));
2728
2729 overlay_cache_invalid = 1;
2730
2731 if (deprecated_target_wait_hook)
2732 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2733 else
2734 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2735
2736 if (debug_infrun)
2737 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2738
2739 /* If an error happens while handling the event, propagate GDB's
2740 knowledge of the executing state to the frontend/user running
2741 state. */
2742 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2743
2744 /* Now figure out what to do with the result of the result. */
2745 handle_inferior_event (ecs);
2746
2747 /* No error, don't finish the state yet. */
2748 discard_cleanups (old_chain);
2749
2750 if (!ecs->wait_some_more)
2751 break;
2752 }
2753
2754 do_cleanups (old_cleanups);
2755 }
2756
2757 /* Asynchronous version of wait_for_inferior. It is called by the
2758 event loop whenever a change of state is detected on the file
2759 descriptor corresponding to the target. It can be called more than
2760 once to complete a single execution command. In such cases we need
2761 to keep the state in a global variable ECSS. If it is the last time
2762 that this function is called for a single execution command, then
2763 report to the user that the inferior has stopped, and do the
2764 necessary cleanups. */
2765
2766 void
2767 fetch_inferior_event (void *client_data)
2768 {
2769 struct execution_control_state ecss;
2770 struct execution_control_state *ecs = &ecss;
2771 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2772 struct cleanup *ts_old_chain;
2773 int was_sync = sync_execution;
2774 int cmd_done = 0;
2775
2776 memset (ecs, 0, sizeof (*ecs));
2777
2778 /* We're handling a live event, so make sure we're doing live
2779 debugging. If we're looking at traceframes while the target is
2780 running, we're going to need to get back to that mode after
2781 handling the event. */
2782 if (non_stop)
2783 {
2784 make_cleanup_restore_current_traceframe ();
2785 set_current_traceframe (-1);
2786 }
2787
2788 if (non_stop)
2789 /* In non-stop mode, the user/frontend should not notice a thread
2790 switch due to internal events. Make sure we reverse to the
2791 user selected thread and frame after handling the event and
2792 running any breakpoint commands. */
2793 make_cleanup_restore_current_thread ();
2794
2795 overlay_cache_invalid = 1;
2796
2797 make_cleanup_restore_integer (&execution_direction);
2798 execution_direction = target_execution_direction ();
2799
2800 if (deprecated_target_wait_hook)
2801 ecs->ptid =
2802 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2803 else
2804 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2805
2806 if (debug_infrun)
2807 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2808
2809 /* If an error happens while handling the event, propagate GDB's
2810 knowledge of the executing state to the frontend/user running
2811 state. */
2812 if (!non_stop)
2813 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2814 else
2815 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2816
2817 /* Get executed before make_cleanup_restore_current_thread above to apply
2818 still for the thread which has thrown the exception. */
2819 make_bpstat_clear_actions_cleanup ();
2820
2821 /* Now figure out what to do with the result of the result. */
2822 handle_inferior_event (ecs);
2823
2824 if (!ecs->wait_some_more)
2825 {
2826 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2827
2828 delete_step_thread_step_resume_breakpoint ();
2829
2830 /* We may not find an inferior if this was a process exit. */
2831 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2832 normal_stop ();
2833
2834 if (target_has_execution
2835 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2836 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2837 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2838 && ecs->event_thread->step_multi
2839 && ecs->event_thread->control.stop_step)
2840 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2841 else
2842 {
2843 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2844 cmd_done = 1;
2845 }
2846 }
2847
2848 /* No error, don't finish the thread states yet. */
2849 discard_cleanups (ts_old_chain);
2850
2851 /* Revert thread and frame. */
2852 do_cleanups (old_chain);
2853
2854 /* If the inferior was in sync execution mode, and now isn't,
2855 restore the prompt (a synchronous execution command has finished,
2856 and we're ready for input). */
2857 if (interpreter_async && was_sync && !sync_execution)
2858 display_gdb_prompt (0);
2859
2860 if (cmd_done
2861 && !was_sync
2862 && exec_done_display_p
2863 && (ptid_equal (inferior_ptid, null_ptid)
2864 || !is_running (inferior_ptid)))
2865 printf_unfiltered (_("completed.\n"));
2866 }
2867
2868 /* Record the frame and location we're currently stepping through. */
2869 void
2870 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2871 {
2872 struct thread_info *tp = inferior_thread ();
2873
2874 tp->control.step_frame_id = get_frame_id (frame);
2875 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2876
2877 tp->current_symtab = sal.symtab;
2878 tp->current_line = sal.line;
2879 }
2880
2881 /* Clear context switchable stepping state. */
2882
2883 void
2884 init_thread_stepping_state (struct thread_info *tss)
2885 {
2886 tss->stepping_over_breakpoint = 0;
2887 tss->step_after_step_resume_breakpoint = 0;
2888 }
2889
2890 /* Return the cached copy of the last pid/waitstatus returned by
2891 target_wait()/deprecated_target_wait_hook(). The data is actually
2892 cached by handle_inferior_event(), which gets called immediately
2893 after target_wait()/deprecated_target_wait_hook(). */
2894
2895 void
2896 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2897 {
2898 *ptidp = target_last_wait_ptid;
2899 *status = target_last_waitstatus;
2900 }
2901
2902 void
2903 nullify_last_target_wait_ptid (void)
2904 {
2905 target_last_wait_ptid = minus_one_ptid;
2906 }
2907
2908 /* Switch thread contexts. */
2909
2910 static void
2911 context_switch (ptid_t ptid)
2912 {
2913 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2914 {
2915 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2916 target_pid_to_str (inferior_ptid));
2917 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2918 target_pid_to_str (ptid));
2919 }
2920
2921 switch_to_thread (ptid);
2922 }
2923
2924 static void
2925 adjust_pc_after_break (struct execution_control_state *ecs)
2926 {
2927 struct regcache *regcache;
2928 struct gdbarch *gdbarch;
2929 struct address_space *aspace;
2930 CORE_ADDR breakpoint_pc;
2931
2932 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2933 we aren't, just return.
2934
2935 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2936 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2937 implemented by software breakpoints should be handled through the normal
2938 breakpoint layer.
2939
2940 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2941 different signals (SIGILL or SIGEMT for instance), but it is less
2942 clear where the PC is pointing afterwards. It may not match
2943 gdbarch_decr_pc_after_break. I don't know any specific target that
2944 generates these signals at breakpoints (the code has been in GDB since at
2945 least 1992) so I can not guess how to handle them here.
2946
2947 In earlier versions of GDB, a target with
2948 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2949 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2950 target with both of these set in GDB history, and it seems unlikely to be
2951 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2952
2953 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2954 return;
2955
2956 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2957 return;
2958
2959 /* In reverse execution, when a breakpoint is hit, the instruction
2960 under it has already been de-executed. The reported PC always
2961 points at the breakpoint address, so adjusting it further would
2962 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2963 architecture:
2964
2965 B1 0x08000000 : INSN1
2966 B2 0x08000001 : INSN2
2967 0x08000002 : INSN3
2968 PC -> 0x08000003 : INSN4
2969
2970 Say you're stopped at 0x08000003 as above. Reverse continuing
2971 from that point should hit B2 as below. Reading the PC when the
2972 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2973 been de-executed already.
2974
2975 B1 0x08000000 : INSN1
2976 B2 PC -> 0x08000001 : INSN2
2977 0x08000002 : INSN3
2978 0x08000003 : INSN4
2979
2980 We can't apply the same logic as for forward execution, because
2981 we would wrongly adjust the PC to 0x08000000, since there's a
2982 breakpoint at PC - 1. We'd then report a hit on B1, although
2983 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2984 behaviour. */
2985 if (execution_direction == EXEC_REVERSE)
2986 return;
2987
2988 /* If this target does not decrement the PC after breakpoints, then
2989 we have nothing to do. */
2990 regcache = get_thread_regcache (ecs->ptid);
2991 gdbarch = get_regcache_arch (regcache);
2992 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2993 return;
2994
2995 aspace = get_regcache_aspace (regcache);
2996
2997 /* Find the location where (if we've hit a breakpoint) the
2998 breakpoint would be. */
2999 breakpoint_pc = regcache_read_pc (regcache)
3000 - gdbarch_decr_pc_after_break (gdbarch);
3001
3002 /* Check whether there actually is a software breakpoint inserted at
3003 that location.
3004
3005 If in non-stop mode, a race condition is possible where we've
3006 removed a breakpoint, but stop events for that breakpoint were
3007 already queued and arrive later. To suppress those spurious
3008 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3009 and retire them after a number of stop events are reported. */
3010 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3011 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3012 {
3013 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3014
3015 if (RECORD_IS_USED)
3016 record_full_gdb_operation_disable_set ();
3017
3018 /* When using hardware single-step, a SIGTRAP is reported for both
3019 a completed single-step and a software breakpoint. Need to
3020 differentiate between the two, as the latter needs adjusting
3021 but the former does not.
3022
3023 The SIGTRAP can be due to a completed hardware single-step only if
3024 - we didn't insert software single-step breakpoints
3025 - the thread to be examined is still the current thread
3026 - this thread is currently being stepped
3027
3028 If any of these events did not occur, we must have stopped due
3029 to hitting a software breakpoint, and have to back up to the
3030 breakpoint address.
3031
3032 As a special case, we could have hardware single-stepped a
3033 software breakpoint. In this case (prev_pc == breakpoint_pc),
3034 we also need to back up to the breakpoint address. */
3035
3036 if (singlestep_breakpoints_inserted_p
3037 || !ptid_equal (ecs->ptid, inferior_ptid)
3038 || !currently_stepping (ecs->event_thread)
3039 || ecs->event_thread->prev_pc == breakpoint_pc)
3040 regcache_write_pc (regcache, breakpoint_pc);
3041
3042 do_cleanups (old_cleanups);
3043 }
3044 }
3045
3046 static void
3047 init_infwait_state (void)
3048 {
3049 waiton_ptid = pid_to_ptid (-1);
3050 infwait_state = infwait_normal_state;
3051 }
3052
3053 static int
3054 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3055 {
3056 for (frame = get_prev_frame (frame);
3057 frame != NULL;
3058 frame = get_prev_frame (frame))
3059 {
3060 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3061 return 1;
3062 if (get_frame_type (frame) != INLINE_FRAME)
3063 break;
3064 }
3065
3066 return 0;
3067 }
3068
3069 /* Auxiliary function that handles syscall entry/return events.
3070 It returns 1 if the inferior should keep going (and GDB
3071 should ignore the event), or 0 if the event deserves to be
3072 processed. */
3073
3074 static int
3075 handle_syscall_event (struct execution_control_state *ecs)
3076 {
3077 struct regcache *regcache;
3078 int syscall_number;
3079
3080 if (!ptid_equal (ecs->ptid, inferior_ptid))
3081 context_switch (ecs->ptid);
3082
3083 regcache = get_thread_regcache (ecs->ptid);
3084 syscall_number = ecs->ws.value.syscall_number;
3085 stop_pc = regcache_read_pc (regcache);
3086
3087 if (catch_syscall_enabled () > 0
3088 && catching_syscall_number (syscall_number) > 0)
3089 {
3090 enum bpstat_signal_value sval;
3091
3092 if (debug_infrun)
3093 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3094 syscall_number);
3095
3096 ecs->event_thread->control.stop_bpstat
3097 = bpstat_stop_status (get_regcache_aspace (regcache),
3098 stop_pc, ecs->ptid, &ecs->ws);
3099
3100 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3101 GDB_SIGNAL_TRAP);
3102 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
3103
3104 if (!ecs->random_signal)
3105 {
3106 /* Catchpoint hit. */
3107 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3108 return 0;
3109 }
3110 }
3111
3112 /* If no catchpoint triggered for this, then keep going. */
3113 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3114 keep_going (ecs);
3115 return 1;
3116 }
3117
3118 /* Clear the supplied execution_control_state's stop_func_* fields. */
3119
3120 static void
3121 clear_stop_func (struct execution_control_state *ecs)
3122 {
3123 ecs->stop_func_filled_in = 0;
3124 ecs->stop_func_start = 0;
3125 ecs->stop_func_end = 0;
3126 ecs->stop_func_name = NULL;
3127 }
3128
3129 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3130
3131 static void
3132 fill_in_stop_func (struct gdbarch *gdbarch,
3133 struct execution_control_state *ecs)
3134 {
3135 if (!ecs->stop_func_filled_in)
3136 {
3137 /* Don't care about return value; stop_func_start and stop_func_name
3138 will both be 0 if it doesn't work. */
3139 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3140 &ecs->stop_func_start, &ecs->stop_func_end);
3141 ecs->stop_func_start
3142 += gdbarch_deprecated_function_start_offset (gdbarch);
3143
3144 ecs->stop_func_filled_in = 1;
3145 }
3146 }
3147
3148 /* Given an execution control state that has been freshly filled in
3149 by an event from the inferior, figure out what it means and take
3150 appropriate action. */
3151
3152 static void
3153 handle_inferior_event (struct execution_control_state *ecs)
3154 {
3155 struct frame_info *frame;
3156 struct gdbarch *gdbarch;
3157 int stopped_by_watchpoint;
3158 int stepped_after_stopped_by_watchpoint = 0;
3159 struct symtab_and_line stop_pc_sal;
3160 enum stop_kind stop_soon;
3161
3162 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3163 {
3164 /* We had an event in the inferior, but we are not interested in
3165 handling it at this level. The lower layers have already
3166 done what needs to be done, if anything.
3167
3168 One of the possible circumstances for this is when the
3169 inferior produces output for the console. The inferior has
3170 not stopped, and we are ignoring the event. Another possible
3171 circumstance is any event which the lower level knows will be
3172 reported multiple times without an intervening resume. */
3173 if (debug_infrun)
3174 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3175 prepare_to_wait (ecs);
3176 return;
3177 }
3178
3179 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3180 && target_can_async_p () && !sync_execution)
3181 {
3182 /* There were no unwaited-for children left in the target, but,
3183 we're not synchronously waiting for events either. Just
3184 ignore. Otherwise, if we were running a synchronous
3185 execution command, we need to cancel it and give the user
3186 back the terminal. */
3187 if (debug_infrun)
3188 fprintf_unfiltered (gdb_stdlog,
3189 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3190 prepare_to_wait (ecs);
3191 return;
3192 }
3193
3194 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3195 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3196 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3197 {
3198 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3199
3200 gdb_assert (inf);
3201 stop_soon = inf->control.stop_soon;
3202 }
3203 else
3204 stop_soon = NO_STOP_QUIETLY;
3205
3206 /* Cache the last pid/waitstatus. */
3207 target_last_wait_ptid = ecs->ptid;
3208 target_last_waitstatus = ecs->ws;
3209
3210 /* Always clear state belonging to the previous time we stopped. */
3211 stop_stack_dummy = STOP_NONE;
3212
3213 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3214 {
3215 /* No unwaited-for children left. IOW, all resumed children
3216 have exited. */
3217 if (debug_infrun)
3218 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3219
3220 stop_print_frame = 0;
3221 stop_stepping (ecs);
3222 return;
3223 }
3224
3225 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3226 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3227 {
3228 ecs->event_thread = find_thread_ptid (ecs->ptid);
3229 /* If it's a new thread, add it to the thread database. */
3230 if (ecs->event_thread == NULL)
3231 ecs->event_thread = add_thread (ecs->ptid);
3232
3233 /* Disable range stepping. If the next step request could use a
3234 range, this will be end up re-enabled then. */
3235 ecs->event_thread->control.may_range_step = 0;
3236 }
3237
3238 /* Dependent on valid ECS->EVENT_THREAD. */
3239 adjust_pc_after_break (ecs);
3240
3241 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3242 reinit_frame_cache ();
3243
3244 breakpoint_retire_moribund ();
3245
3246 /* First, distinguish signals caused by the debugger from signals
3247 that have to do with the program's own actions. Note that
3248 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3249 on the operating system version. Here we detect when a SIGILL or
3250 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3251 something similar for SIGSEGV, since a SIGSEGV will be generated
3252 when we're trying to execute a breakpoint instruction on a
3253 non-executable stack. This happens for call dummy breakpoints
3254 for architectures like SPARC that place call dummies on the
3255 stack. */
3256 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3257 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3258 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3259 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3260 {
3261 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3262
3263 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3264 regcache_read_pc (regcache)))
3265 {
3266 if (debug_infrun)
3267 fprintf_unfiltered (gdb_stdlog,
3268 "infrun: Treating signal as SIGTRAP\n");
3269 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3270 }
3271 }
3272
3273 /* Mark the non-executing threads accordingly. In all-stop, all
3274 threads of all processes are stopped when we get any event
3275 reported. In non-stop mode, only the event thread stops. If
3276 we're handling a process exit in non-stop mode, there's nothing
3277 to do, as threads of the dead process are gone, and threads of
3278 any other process were left running. */
3279 if (!non_stop)
3280 set_executing (minus_one_ptid, 0);
3281 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3282 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3283 set_executing (ecs->ptid, 0);
3284
3285 switch (infwait_state)
3286 {
3287 case infwait_thread_hop_state:
3288 if (debug_infrun)
3289 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3290 break;
3291
3292 case infwait_normal_state:
3293 if (debug_infrun)
3294 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3295 break;
3296
3297 case infwait_step_watch_state:
3298 if (debug_infrun)
3299 fprintf_unfiltered (gdb_stdlog,
3300 "infrun: infwait_step_watch_state\n");
3301
3302 stepped_after_stopped_by_watchpoint = 1;
3303 break;
3304
3305 case infwait_nonstep_watch_state:
3306 if (debug_infrun)
3307 fprintf_unfiltered (gdb_stdlog,
3308 "infrun: infwait_nonstep_watch_state\n");
3309 insert_breakpoints ();
3310
3311 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3312 handle things like signals arriving and other things happening
3313 in combination correctly? */
3314 stepped_after_stopped_by_watchpoint = 1;
3315 break;
3316
3317 default:
3318 internal_error (__FILE__, __LINE__, _("bad switch"));
3319 }
3320
3321 infwait_state = infwait_normal_state;
3322 waiton_ptid = pid_to_ptid (-1);
3323
3324 switch (ecs->ws.kind)
3325 {
3326 case TARGET_WAITKIND_LOADED:
3327 if (debug_infrun)
3328 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3329 /* Ignore gracefully during startup of the inferior, as it might
3330 be the shell which has just loaded some objects, otherwise
3331 add the symbols for the newly loaded objects. Also ignore at
3332 the beginning of an attach or remote session; we will query
3333 the full list of libraries once the connection is
3334 established. */
3335 if (stop_soon == NO_STOP_QUIETLY)
3336 {
3337 struct regcache *regcache;
3338 enum bpstat_signal_value sval;
3339
3340 if (!ptid_equal (ecs->ptid, inferior_ptid))
3341 context_switch (ecs->ptid);
3342 regcache = get_thread_regcache (ecs->ptid);
3343
3344 handle_solib_event ();
3345
3346 ecs->event_thread->control.stop_bpstat
3347 = bpstat_stop_status (get_regcache_aspace (regcache),
3348 stop_pc, ecs->ptid, &ecs->ws);
3349
3350 sval
3351 = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3352 GDB_SIGNAL_TRAP);
3353 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
3354
3355 if (!ecs->random_signal)
3356 {
3357 /* A catchpoint triggered. */
3358 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3359 goto process_event_stop_test;
3360 }
3361
3362 /* If requested, stop when the dynamic linker notifies
3363 gdb of events. This allows the user to get control
3364 and place breakpoints in initializer routines for
3365 dynamically loaded objects (among other things). */
3366 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3367 if (stop_on_solib_events)
3368 {
3369 /* Make sure we print "Stopped due to solib-event" in
3370 normal_stop. */
3371 stop_print_frame = 1;
3372
3373 stop_stepping (ecs);
3374 return;
3375 }
3376 }
3377
3378 /* If we are skipping through a shell, or through shared library
3379 loading that we aren't interested in, resume the program. If
3380 we're running the program normally, also resume. But stop if
3381 we're attaching or setting up a remote connection. */
3382 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3383 {
3384 if (!ptid_equal (ecs->ptid, inferior_ptid))
3385 context_switch (ecs->ptid);
3386
3387 /* Loading of shared libraries might have changed breakpoint
3388 addresses. Make sure new breakpoints are inserted. */
3389 if (stop_soon == NO_STOP_QUIETLY
3390 && !breakpoints_always_inserted_mode ())
3391 insert_breakpoints ();
3392 resume (0, GDB_SIGNAL_0);
3393 prepare_to_wait (ecs);
3394 return;
3395 }
3396
3397 break;
3398
3399 case TARGET_WAITKIND_SPURIOUS:
3400 if (debug_infrun)
3401 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3402 if (!ptid_equal (ecs->ptid, inferior_ptid))
3403 context_switch (ecs->ptid);
3404 resume (0, GDB_SIGNAL_0);
3405 prepare_to_wait (ecs);
3406 return;
3407
3408 case TARGET_WAITKIND_EXITED:
3409 case TARGET_WAITKIND_SIGNALLED:
3410 if (debug_infrun)
3411 {
3412 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3413 fprintf_unfiltered (gdb_stdlog,
3414 "infrun: TARGET_WAITKIND_EXITED\n");
3415 else
3416 fprintf_unfiltered (gdb_stdlog,
3417 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3418 }
3419
3420 inferior_ptid = ecs->ptid;
3421 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3422 set_current_program_space (current_inferior ()->pspace);
3423 handle_vfork_child_exec_or_exit (0);
3424 target_terminal_ours (); /* Must do this before mourn anyway. */
3425
3426 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3427 {
3428 /* Record the exit code in the convenience variable $_exitcode, so
3429 that the user can inspect this again later. */
3430 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3431 (LONGEST) ecs->ws.value.integer);
3432
3433 /* Also record this in the inferior itself. */
3434 current_inferior ()->has_exit_code = 1;
3435 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3436
3437 print_exited_reason (ecs->ws.value.integer);
3438 }
3439 else
3440 print_signal_exited_reason (ecs->ws.value.sig);
3441
3442 gdb_flush (gdb_stdout);
3443 target_mourn_inferior ();
3444 singlestep_breakpoints_inserted_p = 0;
3445 cancel_single_step_breakpoints ();
3446 stop_print_frame = 0;
3447 stop_stepping (ecs);
3448 return;
3449
3450 /* The following are the only cases in which we keep going;
3451 the above cases end in a continue or goto. */
3452 case TARGET_WAITKIND_FORKED:
3453 case TARGET_WAITKIND_VFORKED:
3454 if (debug_infrun)
3455 {
3456 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3457 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3458 else
3459 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3460 }
3461
3462 /* Check whether the inferior is displaced stepping. */
3463 {
3464 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3465 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3466 struct displaced_step_inferior_state *displaced
3467 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3468
3469 /* If checking displaced stepping is supported, and thread
3470 ecs->ptid is displaced stepping. */
3471 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3472 {
3473 struct inferior *parent_inf
3474 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3475 struct regcache *child_regcache;
3476 CORE_ADDR parent_pc;
3477
3478 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3479 indicating that the displaced stepping of syscall instruction
3480 has been done. Perform cleanup for parent process here. Note
3481 that this operation also cleans up the child process for vfork,
3482 because their pages are shared. */
3483 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3484
3485 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3486 {
3487 /* Restore scratch pad for child process. */
3488 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3489 }
3490
3491 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3492 the child's PC is also within the scratchpad. Set the child's PC
3493 to the parent's PC value, which has already been fixed up.
3494 FIXME: we use the parent's aspace here, although we're touching
3495 the child, because the child hasn't been added to the inferior
3496 list yet at this point. */
3497
3498 child_regcache
3499 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3500 gdbarch,
3501 parent_inf->aspace);
3502 /* Read PC value of parent process. */
3503 parent_pc = regcache_read_pc (regcache);
3504
3505 if (debug_displaced)
3506 fprintf_unfiltered (gdb_stdlog,
3507 "displaced: write child pc from %s to %s\n",
3508 paddress (gdbarch,
3509 regcache_read_pc (child_regcache)),
3510 paddress (gdbarch, parent_pc));
3511
3512 regcache_write_pc (child_regcache, parent_pc);
3513 }
3514 }
3515
3516 if (!ptid_equal (ecs->ptid, inferior_ptid))
3517 context_switch (ecs->ptid);
3518
3519 /* Immediately detach breakpoints from the child before there's
3520 any chance of letting the user delete breakpoints from the
3521 breakpoint lists. If we don't do this early, it's easy to
3522 leave left over traps in the child, vis: "break foo; catch
3523 fork; c; <fork>; del; c; <child calls foo>". We only follow
3524 the fork on the last `continue', and by that time the
3525 breakpoint at "foo" is long gone from the breakpoint table.
3526 If we vforked, then we don't need to unpatch here, since both
3527 parent and child are sharing the same memory pages; we'll
3528 need to unpatch at follow/detach time instead to be certain
3529 that new breakpoints added between catchpoint hit time and
3530 vfork follow are detached. */
3531 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3532 {
3533 /* This won't actually modify the breakpoint list, but will
3534 physically remove the breakpoints from the child. */
3535 detach_breakpoints (ecs->ws.value.related_pid);
3536 }
3537
3538 if (singlestep_breakpoints_inserted_p)
3539 {
3540 /* Pull the single step breakpoints out of the target. */
3541 remove_single_step_breakpoints ();
3542 singlestep_breakpoints_inserted_p = 0;
3543 }
3544
3545 /* In case the event is caught by a catchpoint, remember that
3546 the event is to be followed at the next resume of the thread,
3547 and not immediately. */
3548 ecs->event_thread->pending_follow = ecs->ws;
3549
3550 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3551
3552 ecs->event_thread->control.stop_bpstat
3553 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3554 stop_pc, ecs->ptid, &ecs->ws);
3555
3556 /* Note that we're interested in knowing the bpstat actually
3557 causes a stop, not just if it may explain the signal.
3558 Software watchpoints, for example, always appear in the
3559 bpstat. */
3560 ecs->random_signal
3561 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3562
3563 /* If no catchpoint triggered for this, then keep going. */
3564 if (ecs->random_signal)
3565 {
3566 ptid_t parent;
3567 ptid_t child;
3568 int should_resume;
3569 int follow_child
3570 = (follow_fork_mode_string == follow_fork_mode_child);
3571
3572 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3573
3574 should_resume = follow_fork ();
3575
3576 parent = ecs->ptid;
3577 child = ecs->ws.value.related_pid;
3578
3579 /* In non-stop mode, also resume the other branch. */
3580 if (non_stop && !detach_fork)
3581 {
3582 if (follow_child)
3583 switch_to_thread (parent);
3584 else
3585 switch_to_thread (child);
3586
3587 ecs->event_thread = inferior_thread ();
3588 ecs->ptid = inferior_ptid;
3589 keep_going (ecs);
3590 }
3591
3592 if (follow_child)
3593 switch_to_thread (child);
3594 else
3595 switch_to_thread (parent);
3596
3597 ecs->event_thread = inferior_thread ();
3598 ecs->ptid = inferior_ptid;
3599
3600 if (should_resume)
3601 keep_going (ecs);
3602 else
3603 stop_stepping (ecs);
3604 return;
3605 }
3606 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3607 goto process_event_stop_test;
3608
3609 case TARGET_WAITKIND_VFORK_DONE:
3610 /* Done with the shared memory region. Re-insert breakpoints in
3611 the parent, and keep going. */
3612
3613 if (debug_infrun)
3614 fprintf_unfiltered (gdb_stdlog,
3615 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3616
3617 if (!ptid_equal (ecs->ptid, inferior_ptid))
3618 context_switch (ecs->ptid);
3619
3620 current_inferior ()->waiting_for_vfork_done = 0;
3621 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3622 /* This also takes care of reinserting breakpoints in the
3623 previously locked inferior. */
3624 keep_going (ecs);
3625 return;
3626
3627 case TARGET_WAITKIND_EXECD:
3628 if (debug_infrun)
3629 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3630
3631 if (!ptid_equal (ecs->ptid, inferior_ptid))
3632 context_switch (ecs->ptid);
3633
3634 singlestep_breakpoints_inserted_p = 0;
3635 cancel_single_step_breakpoints ();
3636
3637 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3638
3639 /* Do whatever is necessary to the parent branch of the vfork. */
3640 handle_vfork_child_exec_or_exit (1);
3641
3642 /* This causes the eventpoints and symbol table to be reset.
3643 Must do this now, before trying to determine whether to
3644 stop. */
3645 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3646
3647 ecs->event_thread->control.stop_bpstat
3648 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3649 stop_pc, ecs->ptid, &ecs->ws);
3650 ecs->random_signal
3651 = (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3652 GDB_SIGNAL_TRAP)
3653 == BPSTAT_SIGNAL_NO);
3654
3655 /* Note that this may be referenced from inside
3656 bpstat_stop_status above, through inferior_has_execd. */
3657 xfree (ecs->ws.value.execd_pathname);
3658 ecs->ws.value.execd_pathname = NULL;
3659
3660 /* If no catchpoint triggered for this, then keep going. */
3661 if (ecs->random_signal)
3662 {
3663 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3664 keep_going (ecs);
3665 return;
3666 }
3667 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3668 goto process_event_stop_test;
3669
3670 /* Be careful not to try to gather much state about a thread
3671 that's in a syscall. It's frequently a losing proposition. */
3672 case TARGET_WAITKIND_SYSCALL_ENTRY:
3673 if (debug_infrun)
3674 fprintf_unfiltered (gdb_stdlog,
3675 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3676 /* Getting the current syscall number. */
3677 if (handle_syscall_event (ecs) != 0)
3678 return;
3679 goto process_event_stop_test;
3680
3681 /* Before examining the threads further, step this thread to
3682 get it entirely out of the syscall. (We get notice of the
3683 event when the thread is just on the verge of exiting a
3684 syscall. Stepping one instruction seems to get it back
3685 into user code.) */
3686 case TARGET_WAITKIND_SYSCALL_RETURN:
3687 if (debug_infrun)
3688 fprintf_unfiltered (gdb_stdlog,
3689 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3690 if (handle_syscall_event (ecs) != 0)
3691 return;
3692 goto process_event_stop_test;
3693
3694 case TARGET_WAITKIND_STOPPED:
3695 if (debug_infrun)
3696 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3697 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3698 break;
3699
3700 case TARGET_WAITKIND_NO_HISTORY:
3701 if (debug_infrun)
3702 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3703 /* Reverse execution: target ran out of history info. */
3704
3705 /* Pull the single step breakpoints out of the target. */
3706 if (singlestep_breakpoints_inserted_p)
3707 {
3708 if (!ptid_equal (ecs->ptid, inferior_ptid))
3709 context_switch (ecs->ptid);
3710 remove_single_step_breakpoints ();
3711 singlestep_breakpoints_inserted_p = 0;
3712 }
3713 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3714 print_no_history_reason ();
3715 stop_stepping (ecs);
3716 return;
3717 }
3718
3719 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3720 {
3721 /* Do we need to clean up the state of a thread that has
3722 completed a displaced single-step? (Doing so usually affects
3723 the PC, so do it here, before we set stop_pc.) */
3724 displaced_step_fixup (ecs->ptid,
3725 ecs->event_thread->suspend.stop_signal);
3726
3727 /* If we either finished a single-step or hit a breakpoint, but
3728 the user wanted this thread to be stopped, pretend we got a
3729 SIG0 (generic unsignaled stop). */
3730
3731 if (ecs->event_thread->stop_requested
3732 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3733 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3734 }
3735
3736 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3737
3738 if (debug_infrun)
3739 {
3740 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3741 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3742 struct cleanup *old_chain = save_inferior_ptid ();
3743
3744 inferior_ptid = ecs->ptid;
3745
3746 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3747 paddress (gdbarch, stop_pc));
3748 if (target_stopped_by_watchpoint ())
3749 {
3750 CORE_ADDR addr;
3751
3752 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3753
3754 if (target_stopped_data_address (&current_target, &addr))
3755 fprintf_unfiltered (gdb_stdlog,
3756 "infrun: stopped data address = %s\n",
3757 paddress (gdbarch, addr));
3758 else
3759 fprintf_unfiltered (gdb_stdlog,
3760 "infrun: (no data address available)\n");
3761 }
3762
3763 do_cleanups (old_chain);
3764 }
3765
3766 if (stepping_past_singlestep_breakpoint)
3767 {
3768 gdb_assert (singlestep_breakpoints_inserted_p);
3769 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3770 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3771
3772 stepping_past_singlestep_breakpoint = 0;
3773
3774 /* We've either finished single-stepping past the single-step
3775 breakpoint, or stopped for some other reason. It would be nice if
3776 we could tell, but we can't reliably. */
3777 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3778 {
3779 if (debug_infrun)
3780 fprintf_unfiltered (gdb_stdlog,
3781 "infrun: stepping_past_"
3782 "singlestep_breakpoint\n");
3783 /* Pull the single step breakpoints out of the target. */
3784 if (!ptid_equal (ecs->ptid, inferior_ptid))
3785 context_switch (ecs->ptid);
3786 remove_single_step_breakpoints ();
3787 singlestep_breakpoints_inserted_p = 0;
3788
3789 ecs->random_signal = 0;
3790 ecs->event_thread->control.trap_expected = 0;
3791
3792 context_switch (saved_singlestep_ptid);
3793 if (deprecated_context_hook)
3794 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
3795
3796 resume (1, GDB_SIGNAL_0);
3797 prepare_to_wait (ecs);
3798 return;
3799 }
3800 }
3801
3802 if (!ptid_equal (deferred_step_ptid, null_ptid))
3803 {
3804 /* In non-stop mode, there's never a deferred_step_ptid set. */
3805 gdb_assert (!non_stop);
3806
3807 /* If we stopped for some other reason than single-stepping, ignore
3808 the fact that we were supposed to switch back. */
3809 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3810 {
3811 if (debug_infrun)
3812 fprintf_unfiltered (gdb_stdlog,
3813 "infrun: handling deferred step\n");
3814
3815 /* Pull the single step breakpoints out of the target. */
3816 if (singlestep_breakpoints_inserted_p)
3817 {
3818 if (!ptid_equal (ecs->ptid, inferior_ptid))
3819 context_switch (ecs->ptid);
3820 remove_single_step_breakpoints ();
3821 singlestep_breakpoints_inserted_p = 0;
3822 }
3823
3824 ecs->event_thread->control.trap_expected = 0;
3825
3826 context_switch (deferred_step_ptid);
3827 deferred_step_ptid = null_ptid;
3828 /* Suppress spurious "Switching to ..." message. */
3829 previous_inferior_ptid = inferior_ptid;
3830
3831 resume (1, GDB_SIGNAL_0);
3832 prepare_to_wait (ecs);
3833 return;
3834 }
3835
3836 deferred_step_ptid = null_ptid;
3837 }
3838
3839 /* See if a thread hit a thread-specific breakpoint that was meant for
3840 another thread. If so, then step that thread past the breakpoint,
3841 and continue it. */
3842
3843 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3844 {
3845 int thread_hop_needed = 0;
3846 struct address_space *aspace =
3847 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3848
3849 /* Check if a regular breakpoint has been hit before checking
3850 for a potential single step breakpoint. Otherwise, GDB will
3851 not see this breakpoint hit when stepping onto breakpoints. */
3852 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3853 {
3854 ecs->random_signal = 0;
3855 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3856 thread_hop_needed = 1;
3857 }
3858 else if (singlestep_breakpoints_inserted_p)
3859 {
3860 /* We have not context switched yet, so this should be true
3861 no matter which thread hit the singlestep breakpoint. */
3862 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3863 if (debug_infrun)
3864 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3865 "trap for %s\n",
3866 target_pid_to_str (ecs->ptid));
3867
3868 ecs->random_signal = 0;
3869 /* The call to in_thread_list is necessary because PTIDs sometimes
3870 change when we go from single-threaded to multi-threaded. If
3871 the singlestep_ptid is still in the list, assume that it is
3872 really different from ecs->ptid. */
3873 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3874 && in_thread_list (singlestep_ptid))
3875 {
3876 /* If the PC of the thread we were trying to single-step
3877 has changed, discard this event (which we were going
3878 to ignore anyway), and pretend we saw that thread
3879 trap. This prevents us continuously moving the
3880 single-step breakpoint forward, one instruction at a
3881 time. If the PC has changed, then the thread we were
3882 trying to single-step has trapped or been signalled,
3883 but the event has not been reported to GDB yet.
3884
3885 There might be some cases where this loses signal
3886 information, if a signal has arrived at exactly the
3887 same time that the PC changed, but this is the best
3888 we can do with the information available. Perhaps we
3889 should arrange to report all events for all threads
3890 when they stop, or to re-poll the remote looking for
3891 this particular thread (i.e. temporarily enable
3892 schedlock). */
3893
3894 CORE_ADDR new_singlestep_pc
3895 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3896
3897 if (new_singlestep_pc != singlestep_pc)
3898 {
3899 enum gdb_signal stop_signal;
3900
3901 if (debug_infrun)
3902 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3903 " but expected thread advanced also\n");
3904
3905 /* The current context still belongs to
3906 singlestep_ptid. Don't swap here, since that's
3907 the context we want to use. Just fudge our
3908 state and continue. */
3909 stop_signal = ecs->event_thread->suspend.stop_signal;
3910 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3911 ecs->ptid = singlestep_ptid;
3912 ecs->event_thread = find_thread_ptid (ecs->ptid);
3913 ecs->event_thread->suspend.stop_signal = stop_signal;
3914 stop_pc = new_singlestep_pc;
3915 }
3916 else
3917 {
3918 if (debug_infrun)
3919 fprintf_unfiltered (gdb_stdlog,
3920 "infrun: unexpected thread\n");
3921
3922 thread_hop_needed = 1;
3923 stepping_past_singlestep_breakpoint = 1;
3924 saved_singlestep_ptid = singlestep_ptid;
3925 }
3926 }
3927 }
3928
3929 if (thread_hop_needed)
3930 {
3931 struct regcache *thread_regcache;
3932 int remove_status = 0;
3933
3934 if (debug_infrun)
3935 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3936
3937 /* Switch context before touching inferior memory, the
3938 previous thread may have exited. */
3939 if (!ptid_equal (inferior_ptid, ecs->ptid))
3940 context_switch (ecs->ptid);
3941
3942 /* Saw a breakpoint, but it was hit by the wrong thread.
3943 Just continue. */
3944
3945 if (singlestep_breakpoints_inserted_p)
3946 {
3947 /* Pull the single step breakpoints out of the target. */
3948 remove_single_step_breakpoints ();
3949 singlestep_breakpoints_inserted_p = 0;
3950 }
3951
3952 /* If the arch can displace step, don't remove the
3953 breakpoints. */
3954 thread_regcache = get_thread_regcache (ecs->ptid);
3955 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3956 remove_status = remove_breakpoints ();
3957
3958 /* Did we fail to remove breakpoints? If so, try
3959 to set the PC past the bp. (There's at least
3960 one situation in which we can fail to remove
3961 the bp's: On HP-UX's that use ttrace, we can't
3962 change the address space of a vforking child
3963 process until the child exits (well, okay, not
3964 then either :-) or execs. */
3965 if (remove_status != 0)
3966 error (_("Cannot step over breakpoint hit in wrong thread"));
3967 else
3968 { /* Single step */
3969 if (!non_stop)
3970 {
3971 /* Only need to require the next event from this
3972 thread in all-stop mode. */
3973 waiton_ptid = ecs->ptid;
3974 infwait_state = infwait_thread_hop_state;
3975 }
3976
3977 ecs->event_thread->stepping_over_breakpoint = 1;
3978 keep_going (ecs);
3979 return;
3980 }
3981 }
3982 else if (singlestep_breakpoints_inserted_p)
3983 {
3984 ecs->random_signal = 0;
3985 }
3986 }
3987 else
3988 ecs->random_signal = 1;
3989
3990 /* See if something interesting happened to the non-current thread. If
3991 so, then switch to that thread. */
3992 if (!ptid_equal (ecs->ptid, inferior_ptid))
3993 {
3994 if (debug_infrun)
3995 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3996
3997 context_switch (ecs->ptid);
3998
3999 if (deprecated_context_hook)
4000 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4001 }
4002
4003 /* At this point, get hold of the now-current thread's frame. */
4004 frame = get_current_frame ();
4005 gdbarch = get_frame_arch (frame);
4006
4007 if (singlestep_breakpoints_inserted_p)
4008 {
4009 /* Pull the single step breakpoints out of the target. */
4010 remove_single_step_breakpoints ();
4011 singlestep_breakpoints_inserted_p = 0;
4012 }
4013
4014 if (stepped_after_stopped_by_watchpoint)
4015 stopped_by_watchpoint = 0;
4016 else
4017 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4018
4019 /* If necessary, step over this watchpoint. We'll be back to display
4020 it in a moment. */
4021 if (stopped_by_watchpoint
4022 && (target_have_steppable_watchpoint
4023 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4024 {
4025 /* At this point, we are stopped at an instruction which has
4026 attempted to write to a piece of memory under control of
4027 a watchpoint. The instruction hasn't actually executed
4028 yet. If we were to evaluate the watchpoint expression
4029 now, we would get the old value, and therefore no change
4030 would seem to have occurred.
4031
4032 In order to make watchpoints work `right', we really need
4033 to complete the memory write, and then evaluate the
4034 watchpoint expression. We do this by single-stepping the
4035 target.
4036
4037 It may not be necessary to disable the watchpoint to stop over
4038 it. For example, the PA can (with some kernel cooperation)
4039 single step over a watchpoint without disabling the watchpoint.
4040
4041 It is far more common to need to disable a watchpoint to step
4042 the inferior over it. If we have non-steppable watchpoints,
4043 we must disable the current watchpoint; it's simplest to
4044 disable all watchpoints and breakpoints. */
4045 int hw_step = 1;
4046
4047 if (!target_have_steppable_watchpoint)
4048 {
4049 remove_breakpoints ();
4050 /* See comment in resume why we need to stop bypassing signals
4051 while breakpoints have been removed. */
4052 target_pass_signals (0, NULL);
4053 }
4054 /* Single step */
4055 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4056 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4057 waiton_ptid = ecs->ptid;
4058 if (target_have_steppable_watchpoint)
4059 infwait_state = infwait_step_watch_state;
4060 else
4061 infwait_state = infwait_nonstep_watch_state;
4062 prepare_to_wait (ecs);
4063 return;
4064 }
4065
4066 clear_stop_func (ecs);
4067 ecs->event_thread->stepping_over_breakpoint = 0;
4068 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4069 ecs->event_thread->control.stop_step = 0;
4070 stop_print_frame = 1;
4071 ecs->random_signal = 0;
4072 stopped_by_random_signal = 0;
4073
4074 /* Hide inlined functions starting here, unless we just performed stepi or
4075 nexti. After stepi and nexti, always show the innermost frame (not any
4076 inline function call sites). */
4077 if (ecs->event_thread->control.step_range_end != 1)
4078 {
4079 struct address_space *aspace =
4080 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4081
4082 /* skip_inline_frames is expensive, so we avoid it if we can
4083 determine that the address is one where functions cannot have
4084 been inlined. This improves performance with inferiors that
4085 load a lot of shared libraries, because the solib event
4086 breakpoint is defined as the address of a function (i.e. not
4087 inline). Note that we have to check the previous PC as well
4088 as the current one to catch cases when we have just
4089 single-stepped off a breakpoint prior to reinstating it.
4090 Note that we're assuming that the code we single-step to is
4091 not inline, but that's not definitive: there's nothing
4092 preventing the event breakpoint function from containing
4093 inlined code, and the single-step ending up there. If the
4094 user had set a breakpoint on that inlined code, the missing
4095 skip_inline_frames call would break things. Fortunately
4096 that's an extremely unlikely scenario. */
4097 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4098 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4099 && ecs->event_thread->control.trap_expected
4100 && pc_at_non_inline_function (aspace,
4101 ecs->event_thread->prev_pc,
4102 &ecs->ws)))
4103 {
4104 skip_inline_frames (ecs->ptid);
4105
4106 /* Re-fetch current thread's frame in case that invalidated
4107 the frame cache. */
4108 frame = get_current_frame ();
4109 gdbarch = get_frame_arch (frame);
4110 }
4111 }
4112
4113 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4114 && ecs->event_thread->control.trap_expected
4115 && gdbarch_single_step_through_delay_p (gdbarch)
4116 && currently_stepping (ecs->event_thread))
4117 {
4118 /* We're trying to step off a breakpoint. Turns out that we're
4119 also on an instruction that needs to be stepped multiple
4120 times before it's been fully executing. E.g., architectures
4121 with a delay slot. It needs to be stepped twice, once for
4122 the instruction and once for the delay slot. */
4123 int step_through_delay
4124 = gdbarch_single_step_through_delay (gdbarch, frame);
4125
4126 if (debug_infrun && step_through_delay)
4127 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4128 if (ecs->event_thread->control.step_range_end == 0
4129 && step_through_delay)
4130 {
4131 /* The user issued a continue when stopped at a breakpoint.
4132 Set up for another trap and get out of here. */
4133 ecs->event_thread->stepping_over_breakpoint = 1;
4134 keep_going (ecs);
4135 return;
4136 }
4137 else if (step_through_delay)
4138 {
4139 /* The user issued a step when stopped at a breakpoint.
4140 Maybe we should stop, maybe we should not - the delay
4141 slot *might* correspond to a line of source. In any
4142 case, don't decide that here, just set
4143 ecs->stepping_over_breakpoint, making sure we
4144 single-step again before breakpoints are re-inserted. */
4145 ecs->event_thread->stepping_over_breakpoint = 1;
4146 }
4147 }
4148
4149 /* Look at the cause of the stop, and decide what to do.
4150 The alternatives are:
4151 1) stop_stepping and return; to really stop and return to the debugger,
4152 2) keep_going and return to start up again
4153 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4154 3) set ecs->random_signal to 1, and the decision between 1 and 2
4155 will be made according to the signal handling tables. */
4156
4157 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4158 && stop_after_trap)
4159 {
4160 if (debug_infrun)
4161 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4162 stop_print_frame = 0;
4163 stop_stepping (ecs);
4164 return;
4165 }
4166
4167 /* This is originated from start_remote(), start_inferior() and
4168 shared libraries hook functions. */
4169 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4170 {
4171 if (debug_infrun)
4172 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4173 stop_stepping (ecs);
4174 return;
4175 }
4176
4177 /* This originates from attach_command(). We need to overwrite
4178 the stop_signal here, because some kernels don't ignore a
4179 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4180 See more comments in inferior.h. On the other hand, if we
4181 get a non-SIGSTOP, report it to the user - assume the backend
4182 will handle the SIGSTOP if it should show up later.
4183
4184 Also consider that the attach is complete when we see a
4185 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4186 target extended-remote report it instead of a SIGSTOP
4187 (e.g. gdbserver). We already rely on SIGTRAP being our
4188 signal, so this is no exception.
4189
4190 Also consider that the attach is complete when we see a
4191 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4192 the target to stop all threads of the inferior, in case the
4193 low level attach operation doesn't stop them implicitly. If
4194 they weren't stopped implicitly, then the stub will report a
4195 GDB_SIGNAL_0, meaning: stopped for no particular reason
4196 other than GDB's request. */
4197 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4198 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4199 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4200 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4201 {
4202 stop_stepping (ecs);
4203 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4204 return;
4205 }
4206
4207 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4208 handles this event. */
4209 ecs->event_thread->control.stop_bpstat
4210 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4211 stop_pc, ecs->ptid, &ecs->ws);
4212
4213 /* Following in case break condition called a
4214 function. */
4215 stop_print_frame = 1;
4216
4217 /* This is where we handle "moribund" watchpoints. Unlike
4218 software breakpoints traps, hardware watchpoint traps are
4219 always distinguishable from random traps. If no high-level
4220 watchpoint is associated with the reported stop data address
4221 anymore, then the bpstat does not explain the signal ---
4222 simply make sure to ignore it if `stopped_by_watchpoint' is
4223 set. */
4224
4225 if (debug_infrun
4226 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4227 && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4228 GDB_SIGNAL_TRAP)
4229 == BPSTAT_SIGNAL_NO)
4230 && stopped_by_watchpoint)
4231 fprintf_unfiltered (gdb_stdlog,
4232 "infrun: no user watchpoint explains "
4233 "watchpoint SIGTRAP, ignoring\n");
4234
4235 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4236 at one stage in the past included checks for an inferior
4237 function call's call dummy's return breakpoint. The original
4238 comment, that went with the test, read:
4239
4240 ``End of a stack dummy. Some systems (e.g. Sony news) give
4241 another signal besides SIGTRAP, so check here as well as
4242 above.''
4243
4244 If someone ever tries to get call dummys on a
4245 non-executable stack to work (where the target would stop
4246 with something like a SIGSEGV), then those tests might need
4247 to be re-instated. Given, however, that the tests were only
4248 enabled when momentary breakpoints were not being used, I
4249 suspect that it won't be the case.
4250
4251 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4252 be necessary for call dummies on a non-executable stack on
4253 SPARC. */
4254
4255 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4256 ecs->random_signal
4257 = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4258 GDB_SIGNAL_TRAP)
4259 != BPSTAT_SIGNAL_NO)
4260 || stopped_by_watchpoint
4261 || ecs->event_thread->control.trap_expected
4262 || (ecs->event_thread->control.step_range_end
4263 && (ecs->event_thread->control.step_resume_breakpoint
4264 == NULL)));
4265 else
4266 {
4267 enum bpstat_signal_value sval;
4268
4269 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4270 ecs->event_thread->suspend.stop_signal);
4271 ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);
4272
4273 if (sval == BPSTAT_SIGNAL_HIDE)
4274 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4275 }
4276
4277 process_event_stop_test:
4278
4279 /* Re-fetch current thread's frame in case we did a
4280 "goto process_event_stop_test" above. */
4281 frame = get_current_frame ();
4282 gdbarch = get_frame_arch (frame);
4283
4284 /* For the program's own signals, act according to
4285 the signal handling tables. */
4286
4287 if (ecs->random_signal)
4288 {
4289 /* Signal not for debugging purposes. */
4290 int printed = 0;
4291 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4292
4293 if (debug_infrun)
4294 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4295 ecs->event_thread->suspend.stop_signal);
4296
4297 stopped_by_random_signal = 1;
4298
4299 if (signal_print[ecs->event_thread->suspend.stop_signal])
4300 {
4301 printed = 1;
4302 target_terminal_ours_for_output ();
4303 print_signal_received_reason
4304 (ecs->event_thread->suspend.stop_signal);
4305 }
4306 /* Always stop on signals if we're either just gaining control
4307 of the program, or the user explicitly requested this thread
4308 to remain stopped. */
4309 if (stop_soon != NO_STOP_QUIETLY
4310 || ecs->event_thread->stop_requested
4311 || (!inf->detaching
4312 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4313 {
4314 stop_stepping (ecs);
4315 return;
4316 }
4317 /* If not going to stop, give terminal back
4318 if we took it away. */
4319 else if (printed)
4320 target_terminal_inferior ();
4321
4322 /* Clear the signal if it should not be passed. */
4323 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4324 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4325
4326 if (ecs->event_thread->prev_pc == stop_pc
4327 && ecs->event_thread->control.trap_expected
4328 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4329 {
4330 /* We were just starting a new sequence, attempting to
4331 single-step off of a breakpoint and expecting a SIGTRAP.
4332 Instead this signal arrives. This signal will take us out
4333 of the stepping range so GDB needs to remember to, when
4334 the signal handler returns, resume stepping off that
4335 breakpoint. */
4336 /* To simplify things, "continue" is forced to use the same
4337 code paths as single-step - set a breakpoint at the
4338 signal return address and then, once hit, step off that
4339 breakpoint. */
4340 if (debug_infrun)
4341 fprintf_unfiltered (gdb_stdlog,
4342 "infrun: signal arrived while stepping over "
4343 "breakpoint\n");
4344
4345 insert_hp_step_resume_breakpoint_at_frame (frame);
4346 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4347 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4348 ecs->event_thread->control.trap_expected = 0;
4349 keep_going (ecs);
4350 return;
4351 }
4352
4353 if (ecs->event_thread->control.step_range_end != 0
4354 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4355 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
4356 && frame_id_eq (get_stack_frame_id (frame),
4357 ecs->event_thread->control.step_stack_frame_id)
4358 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4359 {
4360 /* The inferior is about to take a signal that will take it
4361 out of the single step range. Set a breakpoint at the
4362 current PC (which is presumably where the signal handler
4363 will eventually return) and then allow the inferior to
4364 run free.
4365
4366 Note that this is only needed for a signal delivered
4367 while in the single-step range. Nested signals aren't a
4368 problem as they eventually all return. */
4369 if (debug_infrun)
4370 fprintf_unfiltered (gdb_stdlog,
4371 "infrun: signal may take us out of "
4372 "single-step range\n");
4373
4374 insert_hp_step_resume_breakpoint_at_frame (frame);
4375 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4376 ecs->event_thread->control.trap_expected = 0;
4377 keep_going (ecs);
4378 return;
4379 }
4380
4381 /* Note: step_resume_breakpoint may be non-NULL. This occures
4382 when either there's a nested signal, or when there's a
4383 pending signal enabled just as the signal handler returns
4384 (leaving the inferior at the step-resume-breakpoint without
4385 actually executing it). Either way continue until the
4386 breakpoint is really hit. */
4387 }
4388 else
4389 {
4390 /* Handle cases caused by hitting a breakpoint. */
4391
4392 CORE_ADDR jmp_buf_pc;
4393 struct bpstat_what what;
4394
4395 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4396
4397 if (what.call_dummy)
4398 {
4399 stop_stack_dummy = what.call_dummy;
4400 }
4401
4402 /* If we hit an internal event that triggers symbol changes, the
4403 current frame will be invalidated within bpstat_what (e.g.,
4404 if we hit an internal solib event). Re-fetch it. */
4405 frame = get_current_frame ();
4406 gdbarch = get_frame_arch (frame);
4407
4408 switch (what.main_action)
4409 {
4410 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4411 /* If we hit the breakpoint at longjmp while stepping, we
4412 install a momentary breakpoint at the target of the
4413 jmp_buf. */
4414
4415 if (debug_infrun)
4416 fprintf_unfiltered (gdb_stdlog,
4417 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4418
4419 ecs->event_thread->stepping_over_breakpoint = 1;
4420
4421 if (what.is_longjmp)
4422 {
4423 struct value *arg_value;
4424
4425 /* If we set the longjmp breakpoint via a SystemTap
4426 probe, then use it to extract the arguments. The
4427 destination PC is the third argument to the
4428 probe. */
4429 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4430 if (arg_value)
4431 jmp_buf_pc = value_as_address (arg_value);
4432 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4433 || !gdbarch_get_longjmp_target (gdbarch,
4434 frame, &jmp_buf_pc))
4435 {
4436 if (debug_infrun)
4437 fprintf_unfiltered (gdb_stdlog,
4438 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4439 "(!gdbarch_get_longjmp_target)\n");
4440 keep_going (ecs);
4441 return;
4442 }
4443
4444 /* Insert a breakpoint at resume address. */
4445 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4446 }
4447 else
4448 check_exception_resume (ecs, frame);
4449 keep_going (ecs);
4450 return;
4451
4452 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4453 {
4454 struct frame_info *init_frame;
4455
4456 /* There are several cases to consider.
4457
4458 1. The initiating frame no longer exists. In this case
4459 we must stop, because the exception or longjmp has gone
4460 too far.
4461
4462 2. The initiating frame exists, and is the same as the
4463 current frame. We stop, because the exception or
4464 longjmp has been caught.
4465
4466 3. The initiating frame exists and is different from
4467 the current frame. This means the exception or longjmp
4468 has been caught beneath the initiating frame, so keep
4469 going.
4470
4471 4. longjmp breakpoint has been placed just to protect
4472 against stale dummy frames and user is not interested
4473 in stopping around longjmps. */
4474
4475 if (debug_infrun)
4476 fprintf_unfiltered (gdb_stdlog,
4477 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4478
4479 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4480 != NULL);
4481 delete_exception_resume_breakpoint (ecs->event_thread);
4482
4483 if (what.is_longjmp)
4484 {
4485 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4486
4487 if (!frame_id_p (ecs->event_thread->initiating_frame))
4488 {
4489 /* Case 4. */
4490 keep_going (ecs);
4491 return;
4492 }
4493 }
4494
4495 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4496
4497 if (init_frame)
4498 {
4499 struct frame_id current_id
4500 = get_frame_id (get_current_frame ());
4501 if (frame_id_eq (current_id,
4502 ecs->event_thread->initiating_frame))
4503 {
4504 /* Case 2. Fall through. */
4505 }
4506 else
4507 {
4508 /* Case 3. */
4509 keep_going (ecs);
4510 return;
4511 }
4512 }
4513
4514 /* For Cases 1 and 2, remove the step-resume breakpoint,
4515 if it exists. */
4516 delete_step_resume_breakpoint (ecs->event_thread);
4517
4518 ecs->event_thread->control.stop_step = 1;
4519 print_end_stepping_range_reason ();
4520 stop_stepping (ecs);
4521 }
4522 return;
4523
4524 case BPSTAT_WHAT_SINGLE:
4525 if (debug_infrun)
4526 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4527 ecs->event_thread->stepping_over_breakpoint = 1;
4528 /* Still need to check other stuff, at least the case where
4529 we are stepping and step out of the right range. */
4530 break;
4531
4532 case BPSTAT_WHAT_STEP_RESUME:
4533 if (debug_infrun)
4534 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4535
4536 delete_step_resume_breakpoint (ecs->event_thread);
4537 if (ecs->event_thread->control.proceed_to_finish
4538 && execution_direction == EXEC_REVERSE)
4539 {
4540 struct thread_info *tp = ecs->event_thread;
4541
4542 /* We are finishing a function in reverse, and just hit
4543 the step-resume breakpoint at the start address of
4544 the function, and we're almost there -- just need to
4545 back up by one more single-step, which should take us
4546 back to the function call. */
4547 tp->control.step_range_start = tp->control.step_range_end = 1;
4548 keep_going (ecs);
4549 return;
4550 }
4551 fill_in_stop_func (gdbarch, ecs);
4552 if (stop_pc == ecs->stop_func_start
4553 && execution_direction == EXEC_REVERSE)
4554 {
4555 /* We are stepping over a function call in reverse, and
4556 just hit the step-resume breakpoint at the start
4557 address of the function. Go back to single-stepping,
4558 which should take us back to the function call. */
4559 ecs->event_thread->stepping_over_breakpoint = 1;
4560 keep_going (ecs);
4561 return;
4562 }
4563 break;
4564
4565 case BPSTAT_WHAT_STOP_NOISY:
4566 if (debug_infrun)
4567 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4568 stop_print_frame = 1;
4569
4570 /* We are about to nuke the step_resume_breakpointt via the
4571 cleanup chain, so no need to worry about it here. */
4572
4573 stop_stepping (ecs);
4574 return;
4575
4576 case BPSTAT_WHAT_STOP_SILENT:
4577 if (debug_infrun)
4578 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4579 stop_print_frame = 0;
4580
4581 /* We are about to nuke the step_resume_breakpoin via the
4582 cleanup chain, so no need to worry about it here. */
4583
4584 stop_stepping (ecs);
4585 return;
4586
4587 case BPSTAT_WHAT_HP_STEP_RESUME:
4588 if (debug_infrun)
4589 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4590
4591 delete_step_resume_breakpoint (ecs->event_thread);
4592 if (ecs->event_thread->step_after_step_resume_breakpoint)
4593 {
4594 /* Back when the step-resume breakpoint was inserted, we
4595 were trying to single-step off a breakpoint. Go back
4596 to doing that. */
4597 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4598 ecs->event_thread->stepping_over_breakpoint = 1;
4599 keep_going (ecs);
4600 return;
4601 }
4602 break;
4603
4604 case BPSTAT_WHAT_KEEP_CHECKING:
4605 break;
4606 }
4607 }
4608
4609 /* We come here if we hit a breakpoint but should not
4610 stop for it. Possibly we also were stepping
4611 and should stop for that. So fall through and
4612 test for stepping. But, if not stepping,
4613 do not stop. */
4614
4615 /* In all-stop mode, if we're currently stepping but have stopped in
4616 some other thread, we need to switch back to the stepped thread. */
4617 if (!non_stop)
4618 {
4619 struct thread_info *tp;
4620
4621 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4622 ecs->event_thread);
4623 if (tp)
4624 {
4625 /* However, if the current thread is blocked on some internal
4626 breakpoint, and we simply need to step over that breakpoint
4627 to get it going again, do that first. */
4628 if ((ecs->event_thread->control.trap_expected
4629 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
4630 || ecs->event_thread->stepping_over_breakpoint)
4631 {
4632 keep_going (ecs);
4633 return;
4634 }
4635
4636 /* If the stepping thread exited, then don't try to switch
4637 back and resume it, which could fail in several different
4638 ways depending on the target. Instead, just keep going.
4639
4640 We can find a stepping dead thread in the thread list in
4641 two cases:
4642
4643 - The target supports thread exit events, and when the
4644 target tries to delete the thread from the thread list,
4645 inferior_ptid pointed at the exiting thread. In such
4646 case, calling delete_thread does not really remove the
4647 thread from the list; instead, the thread is left listed,
4648 with 'exited' state.
4649
4650 - The target's debug interface does not support thread
4651 exit events, and so we have no idea whatsoever if the
4652 previously stepping thread is still alive. For that
4653 reason, we need to synchronously query the target
4654 now. */
4655 if (is_exited (tp->ptid)
4656 || !target_thread_alive (tp->ptid))
4657 {
4658 if (debug_infrun)
4659 fprintf_unfiltered (gdb_stdlog,
4660 "infrun: not switching back to "
4661 "stepped thread, it has vanished\n");
4662
4663 delete_thread (tp->ptid);
4664 keep_going (ecs);
4665 return;
4666 }
4667
4668 /* Otherwise, we no longer expect a trap in the current thread.
4669 Clear the trap_expected flag before switching back -- this is
4670 what keep_going would do as well, if we called it. */
4671 ecs->event_thread->control.trap_expected = 0;
4672
4673 if (debug_infrun)
4674 fprintf_unfiltered (gdb_stdlog,
4675 "infrun: switching back to stepped thread\n");
4676
4677 ecs->event_thread = tp;
4678 ecs->ptid = tp->ptid;
4679 context_switch (ecs->ptid);
4680 keep_going (ecs);
4681 return;
4682 }
4683 }
4684
4685 if (ecs->event_thread->control.step_resume_breakpoint)
4686 {
4687 if (debug_infrun)
4688 fprintf_unfiltered (gdb_stdlog,
4689 "infrun: step-resume breakpoint is inserted\n");
4690
4691 /* Having a step-resume breakpoint overrides anything
4692 else having to do with stepping commands until
4693 that breakpoint is reached. */
4694 keep_going (ecs);
4695 return;
4696 }
4697
4698 if (ecs->event_thread->control.step_range_end == 0)
4699 {
4700 if (debug_infrun)
4701 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4702 /* Likewise if we aren't even stepping. */
4703 keep_going (ecs);
4704 return;
4705 }
4706
4707 /* Re-fetch current thread's frame in case the code above caused
4708 the frame cache to be re-initialized, making our FRAME variable
4709 a dangling pointer. */
4710 frame = get_current_frame ();
4711 gdbarch = get_frame_arch (frame);
4712 fill_in_stop_func (gdbarch, ecs);
4713
4714 /* If stepping through a line, keep going if still within it.
4715
4716 Note that step_range_end is the address of the first instruction
4717 beyond the step range, and NOT the address of the last instruction
4718 within it!
4719
4720 Note also that during reverse execution, we may be stepping
4721 through a function epilogue and therefore must detect when
4722 the current-frame changes in the middle of a line. */
4723
4724 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4725 && (execution_direction != EXEC_REVERSE
4726 || frame_id_eq (get_frame_id (frame),
4727 ecs->event_thread->control.step_frame_id)))
4728 {
4729 if (debug_infrun)
4730 fprintf_unfiltered
4731 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4732 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4733 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4734
4735 /* Tentatively re-enable range stepping; `resume' disables it if
4736 necessary (e.g., if we're stepping over a breakpoint or we
4737 have software watchpoints). */
4738 ecs->event_thread->control.may_range_step = 1;
4739
4740 /* When stepping backward, stop at beginning of line range
4741 (unless it's the function entry point, in which case
4742 keep going back to the call point). */
4743 if (stop_pc == ecs->event_thread->control.step_range_start
4744 && stop_pc != ecs->stop_func_start
4745 && execution_direction == EXEC_REVERSE)
4746 {
4747 ecs->event_thread->control.stop_step = 1;
4748 print_end_stepping_range_reason ();
4749 stop_stepping (ecs);
4750 }
4751 else
4752 keep_going (ecs);
4753
4754 return;
4755 }
4756
4757 /* We stepped out of the stepping range. */
4758
4759 /* If we are stepping at the source level and entered the runtime
4760 loader dynamic symbol resolution code...
4761
4762 EXEC_FORWARD: we keep on single stepping until we exit the run
4763 time loader code and reach the callee's address.
4764
4765 EXEC_REVERSE: we've already executed the callee (backward), and
4766 the runtime loader code is handled just like any other
4767 undebuggable function call. Now we need only keep stepping
4768 backward through the trampoline code, and that's handled further
4769 down, so there is nothing for us to do here. */
4770
4771 if (execution_direction != EXEC_REVERSE
4772 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4773 && in_solib_dynsym_resolve_code (stop_pc))
4774 {
4775 CORE_ADDR pc_after_resolver =
4776 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4777
4778 if (debug_infrun)
4779 fprintf_unfiltered (gdb_stdlog,
4780 "infrun: stepped into dynsym resolve code\n");
4781
4782 if (pc_after_resolver)
4783 {
4784 /* Set up a step-resume breakpoint at the address
4785 indicated by SKIP_SOLIB_RESOLVER. */
4786 struct symtab_and_line sr_sal;
4787
4788 init_sal (&sr_sal);
4789 sr_sal.pc = pc_after_resolver;
4790 sr_sal.pspace = get_frame_program_space (frame);
4791
4792 insert_step_resume_breakpoint_at_sal (gdbarch,
4793 sr_sal, null_frame_id);
4794 }
4795
4796 keep_going (ecs);
4797 return;
4798 }
4799
4800 if (ecs->event_thread->control.step_range_end != 1
4801 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4802 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4803 && get_frame_type (frame) == SIGTRAMP_FRAME)
4804 {
4805 if (debug_infrun)
4806 fprintf_unfiltered (gdb_stdlog,
4807 "infrun: stepped into signal trampoline\n");
4808 /* The inferior, while doing a "step" or "next", has ended up in
4809 a signal trampoline (either by a signal being delivered or by
4810 the signal handler returning). Just single-step until the
4811 inferior leaves the trampoline (either by calling the handler
4812 or returning). */
4813 keep_going (ecs);
4814 return;
4815 }
4816
4817 /* If we're in the return path from a shared library trampoline,
4818 we want to proceed through the trampoline when stepping. */
4819 /* macro/2012-04-25: This needs to come before the subroutine
4820 call check below as on some targets return trampolines look
4821 like subroutine calls (MIPS16 return thunks). */
4822 if (gdbarch_in_solib_return_trampoline (gdbarch,
4823 stop_pc, ecs->stop_func_name)
4824 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4825 {
4826 /* Determine where this trampoline returns. */
4827 CORE_ADDR real_stop_pc;
4828
4829 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4830
4831 if (debug_infrun)
4832 fprintf_unfiltered (gdb_stdlog,
4833 "infrun: stepped into solib return tramp\n");
4834
4835 /* Only proceed through if we know where it's going. */
4836 if (real_stop_pc)
4837 {
4838 /* And put the step-breakpoint there and go until there. */
4839 struct symtab_and_line sr_sal;
4840
4841 init_sal (&sr_sal); /* initialize to zeroes */
4842 sr_sal.pc = real_stop_pc;
4843 sr_sal.section = find_pc_overlay (sr_sal.pc);
4844 sr_sal.pspace = get_frame_program_space (frame);
4845
4846 /* Do not specify what the fp should be when we stop since
4847 on some machines the prologue is where the new fp value
4848 is established. */
4849 insert_step_resume_breakpoint_at_sal (gdbarch,
4850 sr_sal, null_frame_id);
4851
4852 /* Restart without fiddling with the step ranges or
4853 other state. */
4854 keep_going (ecs);
4855 return;
4856 }
4857 }
4858
4859 /* Check for subroutine calls. The check for the current frame
4860 equalling the step ID is not necessary - the check of the
4861 previous frame's ID is sufficient - but it is a common case and
4862 cheaper than checking the previous frame's ID.
4863
4864 NOTE: frame_id_eq will never report two invalid frame IDs as
4865 being equal, so to get into this block, both the current and
4866 previous frame must have valid frame IDs. */
4867 /* The outer_frame_id check is a heuristic to detect stepping
4868 through startup code. If we step over an instruction which
4869 sets the stack pointer from an invalid value to a valid value,
4870 we may detect that as a subroutine call from the mythical
4871 "outermost" function. This could be fixed by marking
4872 outermost frames as !stack_p,code_p,special_p. Then the
4873 initial outermost frame, before sp was valid, would
4874 have code_addr == &_start. See the comment in frame_id_eq
4875 for more. */
4876 if (!frame_id_eq (get_stack_frame_id (frame),
4877 ecs->event_thread->control.step_stack_frame_id)
4878 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4879 ecs->event_thread->control.step_stack_frame_id)
4880 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4881 outer_frame_id)
4882 || step_start_function != find_pc_function (stop_pc))))
4883 {
4884 CORE_ADDR real_stop_pc;
4885
4886 if (debug_infrun)
4887 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4888
4889 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4890 || ((ecs->event_thread->control.step_range_end == 1)
4891 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4892 ecs->stop_func_start)))
4893 {
4894 /* I presume that step_over_calls is only 0 when we're
4895 supposed to be stepping at the assembly language level
4896 ("stepi"). Just stop. */
4897 /* Also, maybe we just did a "nexti" inside a prolog, so we
4898 thought it was a subroutine call but it was not. Stop as
4899 well. FENN */
4900 /* And this works the same backward as frontward. MVS */
4901 ecs->event_thread->control.stop_step = 1;
4902 print_end_stepping_range_reason ();
4903 stop_stepping (ecs);
4904 return;
4905 }
4906
4907 /* Reverse stepping through solib trampolines. */
4908
4909 if (execution_direction == EXEC_REVERSE
4910 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4911 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4912 || (ecs->stop_func_start == 0
4913 && in_solib_dynsym_resolve_code (stop_pc))))
4914 {
4915 /* Any solib trampoline code can be handled in reverse
4916 by simply continuing to single-step. We have already
4917 executed the solib function (backwards), and a few
4918 steps will take us back through the trampoline to the
4919 caller. */
4920 keep_going (ecs);
4921 return;
4922 }
4923
4924 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4925 {
4926 /* We're doing a "next".
4927
4928 Normal (forward) execution: set a breakpoint at the
4929 callee's return address (the address at which the caller
4930 will resume).
4931
4932 Reverse (backward) execution. set the step-resume
4933 breakpoint at the start of the function that we just
4934 stepped into (backwards), and continue to there. When we
4935 get there, we'll need to single-step back to the caller. */
4936
4937 if (execution_direction == EXEC_REVERSE)
4938 {
4939 /* If we're already at the start of the function, we've either
4940 just stepped backward into a single instruction function,
4941 or stepped back out of a signal handler to the first instruction
4942 of the function. Just keep going, which will single-step back
4943 to the caller. */
4944 if (ecs->stop_func_start != stop_pc)
4945 {
4946 struct symtab_and_line sr_sal;
4947
4948 /* Normal function call return (static or dynamic). */
4949 init_sal (&sr_sal);
4950 sr_sal.pc = ecs->stop_func_start;
4951 sr_sal.pspace = get_frame_program_space (frame);
4952 insert_step_resume_breakpoint_at_sal (gdbarch,
4953 sr_sal, null_frame_id);
4954 }
4955 }
4956 else
4957 insert_step_resume_breakpoint_at_caller (frame);
4958
4959 keep_going (ecs);
4960 return;
4961 }
4962
4963 /* If we are in a function call trampoline (a stub between the
4964 calling routine and the real function), locate the real
4965 function. That's what tells us (a) whether we want to step
4966 into it at all, and (b) what prologue we want to run to the
4967 end of, if we do step into it. */
4968 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4969 if (real_stop_pc == 0)
4970 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4971 if (real_stop_pc != 0)
4972 ecs->stop_func_start = real_stop_pc;
4973
4974 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4975 {
4976 struct symtab_and_line sr_sal;
4977
4978 init_sal (&sr_sal);
4979 sr_sal.pc = ecs->stop_func_start;
4980 sr_sal.pspace = get_frame_program_space (frame);
4981
4982 insert_step_resume_breakpoint_at_sal (gdbarch,
4983 sr_sal, null_frame_id);
4984 keep_going (ecs);
4985 return;
4986 }
4987
4988 /* If we have line number information for the function we are
4989 thinking of stepping into and the function isn't on the skip
4990 list, step into it.
4991
4992 If there are several symtabs at that PC (e.g. with include
4993 files), just want to know whether *any* of them have line
4994 numbers. find_pc_line handles this. */
4995 {
4996 struct symtab_and_line tmp_sal;
4997
4998 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4999 if (tmp_sal.line != 0
5000 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5001 &tmp_sal))
5002 {
5003 if (execution_direction == EXEC_REVERSE)
5004 handle_step_into_function_backward (gdbarch, ecs);
5005 else
5006 handle_step_into_function (gdbarch, ecs);
5007 return;
5008 }
5009 }
5010
5011 /* If we have no line number and the step-stop-if-no-debug is
5012 set, we stop the step so that the user has a chance to switch
5013 in assembly mode. */
5014 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5015 && step_stop_if_no_debug)
5016 {
5017 ecs->event_thread->control.stop_step = 1;
5018 print_end_stepping_range_reason ();
5019 stop_stepping (ecs);
5020 return;
5021 }
5022
5023 if (execution_direction == EXEC_REVERSE)
5024 {
5025 /* If we're already at the start of the function, we've either just
5026 stepped backward into a single instruction function without line
5027 number info, or stepped back out of a signal handler to the first
5028 instruction of the function without line number info. Just keep
5029 going, which will single-step back to the caller. */
5030 if (ecs->stop_func_start != stop_pc)
5031 {
5032 /* Set a breakpoint at callee's start address.
5033 From there we can step once and be back in the caller. */
5034 struct symtab_and_line sr_sal;
5035
5036 init_sal (&sr_sal);
5037 sr_sal.pc = ecs->stop_func_start;
5038 sr_sal.pspace = get_frame_program_space (frame);
5039 insert_step_resume_breakpoint_at_sal (gdbarch,
5040 sr_sal, null_frame_id);
5041 }
5042 }
5043 else
5044 /* Set a breakpoint at callee's return address (the address
5045 at which the caller will resume). */
5046 insert_step_resume_breakpoint_at_caller (frame);
5047
5048 keep_going (ecs);
5049 return;
5050 }
5051
5052 /* Reverse stepping through solib trampolines. */
5053
5054 if (execution_direction == EXEC_REVERSE
5055 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5056 {
5057 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5058 || (ecs->stop_func_start == 0
5059 && in_solib_dynsym_resolve_code (stop_pc)))
5060 {
5061 /* Any solib trampoline code can be handled in reverse
5062 by simply continuing to single-step. We have already
5063 executed the solib function (backwards), and a few
5064 steps will take us back through the trampoline to the
5065 caller. */
5066 keep_going (ecs);
5067 return;
5068 }
5069 else if (in_solib_dynsym_resolve_code (stop_pc))
5070 {
5071 /* Stepped backward into the solib dynsym resolver.
5072 Set a breakpoint at its start and continue, then
5073 one more step will take us out. */
5074 struct symtab_and_line sr_sal;
5075
5076 init_sal (&sr_sal);
5077 sr_sal.pc = ecs->stop_func_start;
5078 sr_sal.pspace = get_frame_program_space (frame);
5079 insert_step_resume_breakpoint_at_sal (gdbarch,
5080 sr_sal, null_frame_id);
5081 keep_going (ecs);
5082 return;
5083 }
5084 }
5085
5086 stop_pc_sal = find_pc_line (stop_pc, 0);
5087
5088 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5089 the trampoline processing logic, however, there are some trampolines
5090 that have no names, so we should do trampoline handling first. */
5091 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5092 && ecs->stop_func_name == NULL
5093 && stop_pc_sal.line == 0)
5094 {
5095 if (debug_infrun)
5096 fprintf_unfiltered (gdb_stdlog,
5097 "infrun: stepped into undebuggable function\n");
5098
5099 /* The inferior just stepped into, or returned to, an
5100 undebuggable function (where there is no debugging information
5101 and no line number corresponding to the address where the
5102 inferior stopped). Since we want to skip this kind of code,
5103 we keep going until the inferior returns from this
5104 function - unless the user has asked us not to (via
5105 set step-mode) or we no longer know how to get back
5106 to the call site. */
5107 if (step_stop_if_no_debug
5108 || !frame_id_p (frame_unwind_caller_id (frame)))
5109 {
5110 /* If we have no line number and the step-stop-if-no-debug
5111 is set, we stop the step so that the user has a chance to
5112 switch in assembly mode. */
5113 ecs->event_thread->control.stop_step = 1;
5114 print_end_stepping_range_reason ();
5115 stop_stepping (ecs);
5116 return;
5117 }
5118 else
5119 {
5120 /* Set a breakpoint at callee's return address (the address
5121 at which the caller will resume). */
5122 insert_step_resume_breakpoint_at_caller (frame);
5123 keep_going (ecs);
5124 return;
5125 }
5126 }
5127
5128 if (ecs->event_thread->control.step_range_end == 1)
5129 {
5130 /* It is stepi or nexti. We always want to stop stepping after
5131 one instruction. */
5132 if (debug_infrun)
5133 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5134 ecs->event_thread->control.stop_step = 1;
5135 print_end_stepping_range_reason ();
5136 stop_stepping (ecs);
5137 return;
5138 }
5139
5140 if (stop_pc_sal.line == 0)
5141 {
5142 /* We have no line number information. That means to stop
5143 stepping (does this always happen right after one instruction,
5144 when we do "s" in a function with no line numbers,
5145 or can this happen as a result of a return or longjmp?). */
5146 if (debug_infrun)
5147 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5148 ecs->event_thread->control.stop_step = 1;
5149 print_end_stepping_range_reason ();
5150 stop_stepping (ecs);
5151 return;
5152 }
5153
5154 /* Look for "calls" to inlined functions, part one. If the inline
5155 frame machinery detected some skipped call sites, we have entered
5156 a new inline function. */
5157
5158 if (frame_id_eq (get_frame_id (get_current_frame ()),
5159 ecs->event_thread->control.step_frame_id)
5160 && inline_skipped_frames (ecs->ptid))
5161 {
5162 struct symtab_and_line call_sal;
5163
5164 if (debug_infrun)
5165 fprintf_unfiltered (gdb_stdlog,
5166 "infrun: stepped into inlined function\n");
5167
5168 find_frame_sal (get_current_frame (), &call_sal);
5169
5170 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5171 {
5172 /* For "step", we're going to stop. But if the call site
5173 for this inlined function is on the same source line as
5174 we were previously stepping, go down into the function
5175 first. Otherwise stop at the call site. */
5176
5177 if (call_sal.line == ecs->event_thread->current_line
5178 && call_sal.symtab == ecs->event_thread->current_symtab)
5179 step_into_inline_frame (ecs->ptid);
5180
5181 ecs->event_thread->control.stop_step = 1;
5182 print_end_stepping_range_reason ();
5183 stop_stepping (ecs);
5184 return;
5185 }
5186 else
5187 {
5188 /* For "next", we should stop at the call site if it is on a
5189 different source line. Otherwise continue through the
5190 inlined function. */
5191 if (call_sal.line == ecs->event_thread->current_line
5192 && call_sal.symtab == ecs->event_thread->current_symtab)
5193 keep_going (ecs);
5194 else
5195 {
5196 ecs->event_thread->control.stop_step = 1;
5197 print_end_stepping_range_reason ();
5198 stop_stepping (ecs);
5199 }
5200 return;
5201 }
5202 }
5203
5204 /* Look for "calls" to inlined functions, part two. If we are still
5205 in the same real function we were stepping through, but we have
5206 to go further up to find the exact frame ID, we are stepping
5207 through a more inlined call beyond its call site. */
5208
5209 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5210 && !frame_id_eq (get_frame_id (get_current_frame ()),
5211 ecs->event_thread->control.step_frame_id)
5212 && stepped_in_from (get_current_frame (),
5213 ecs->event_thread->control.step_frame_id))
5214 {
5215 if (debug_infrun)
5216 fprintf_unfiltered (gdb_stdlog,
5217 "infrun: stepping through inlined function\n");
5218
5219 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5220 keep_going (ecs);
5221 else
5222 {
5223 ecs->event_thread->control.stop_step = 1;
5224 print_end_stepping_range_reason ();
5225 stop_stepping (ecs);
5226 }
5227 return;
5228 }
5229
5230 if ((stop_pc == stop_pc_sal.pc)
5231 && (ecs->event_thread->current_line != stop_pc_sal.line
5232 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5233 {
5234 /* We are at the start of a different line. So stop. Note that
5235 we don't stop if we step into the middle of a different line.
5236 That is said to make things like for (;;) statements work
5237 better. */
5238 if (debug_infrun)
5239 fprintf_unfiltered (gdb_stdlog,
5240 "infrun: stepped to a different line\n");
5241 ecs->event_thread->control.stop_step = 1;
5242 print_end_stepping_range_reason ();
5243 stop_stepping (ecs);
5244 return;
5245 }
5246
5247 /* We aren't done stepping.
5248
5249 Optimize by setting the stepping range to the line.
5250 (We might not be in the original line, but if we entered a
5251 new line in mid-statement, we continue stepping. This makes
5252 things like for(;;) statements work better.) */
5253
5254 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5255 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5256 ecs->event_thread->control.may_range_step = 1;
5257 set_step_info (frame, stop_pc_sal);
5258
5259 if (debug_infrun)
5260 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5261 keep_going (ecs);
5262 }
5263
5264 /* Is thread TP in the middle of single-stepping? */
5265
5266 static int
5267 currently_stepping (struct thread_info *tp)
5268 {
5269 return ((tp->control.step_range_end
5270 && tp->control.step_resume_breakpoint == NULL)
5271 || tp->control.trap_expected
5272 || bpstat_should_step ());
5273 }
5274
5275 /* Returns true if any thread *but* the one passed in "data" is in the
5276 middle of stepping or of handling a "next". */
5277
5278 static int
5279 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5280 {
5281 if (tp == data)
5282 return 0;
5283
5284 return (tp->control.step_range_end
5285 || tp->control.trap_expected);
5286 }
5287
5288 /* Inferior has stepped into a subroutine call with source code that
5289 we should not step over. Do step to the first line of code in
5290 it. */
5291
5292 static void
5293 handle_step_into_function (struct gdbarch *gdbarch,
5294 struct execution_control_state *ecs)
5295 {
5296 struct symtab *s;
5297 struct symtab_and_line stop_func_sal, sr_sal;
5298
5299 fill_in_stop_func (gdbarch, ecs);
5300
5301 s = find_pc_symtab (stop_pc);
5302 if (s && s->language != language_asm)
5303 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5304 ecs->stop_func_start);
5305
5306 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5307 /* Use the step_resume_break to step until the end of the prologue,
5308 even if that involves jumps (as it seems to on the vax under
5309 4.2). */
5310 /* If the prologue ends in the middle of a source line, continue to
5311 the end of that source line (if it is still within the function).
5312 Otherwise, just go to end of prologue. */
5313 if (stop_func_sal.end
5314 && stop_func_sal.pc != ecs->stop_func_start
5315 && stop_func_sal.end < ecs->stop_func_end)
5316 ecs->stop_func_start = stop_func_sal.end;
5317
5318 /* Architectures which require breakpoint adjustment might not be able
5319 to place a breakpoint at the computed address. If so, the test
5320 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5321 ecs->stop_func_start to an address at which a breakpoint may be
5322 legitimately placed.
5323
5324 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5325 made, GDB will enter an infinite loop when stepping through
5326 optimized code consisting of VLIW instructions which contain
5327 subinstructions corresponding to different source lines. On
5328 FR-V, it's not permitted to place a breakpoint on any but the
5329 first subinstruction of a VLIW instruction. When a breakpoint is
5330 set, GDB will adjust the breakpoint address to the beginning of
5331 the VLIW instruction. Thus, we need to make the corresponding
5332 adjustment here when computing the stop address. */
5333
5334 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5335 {
5336 ecs->stop_func_start
5337 = gdbarch_adjust_breakpoint_address (gdbarch,
5338 ecs->stop_func_start);
5339 }
5340
5341 if (ecs->stop_func_start == stop_pc)
5342 {
5343 /* We are already there: stop now. */
5344 ecs->event_thread->control.stop_step = 1;
5345 print_end_stepping_range_reason ();
5346 stop_stepping (ecs);
5347 return;
5348 }
5349 else
5350 {
5351 /* Put the step-breakpoint there and go until there. */
5352 init_sal (&sr_sal); /* initialize to zeroes */
5353 sr_sal.pc = ecs->stop_func_start;
5354 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5355 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5356
5357 /* Do not specify what the fp should be when we stop since on
5358 some machines the prologue is where the new fp value is
5359 established. */
5360 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5361
5362 /* And make sure stepping stops right away then. */
5363 ecs->event_thread->control.step_range_end
5364 = ecs->event_thread->control.step_range_start;
5365 }
5366 keep_going (ecs);
5367 }
5368
5369 /* Inferior has stepped backward into a subroutine call with source
5370 code that we should not step over. Do step to the beginning of the
5371 last line of code in it. */
5372
5373 static void
5374 handle_step_into_function_backward (struct gdbarch *gdbarch,
5375 struct execution_control_state *ecs)
5376 {
5377 struct symtab *s;
5378 struct symtab_and_line stop_func_sal;
5379
5380 fill_in_stop_func (gdbarch, ecs);
5381
5382 s = find_pc_symtab (stop_pc);
5383 if (s && s->language != language_asm)
5384 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5385 ecs->stop_func_start);
5386
5387 stop_func_sal = find_pc_line (stop_pc, 0);
5388
5389 /* OK, we're just going to keep stepping here. */
5390 if (stop_func_sal.pc == stop_pc)
5391 {
5392 /* We're there already. Just stop stepping now. */
5393 ecs->event_thread->control.stop_step = 1;
5394 print_end_stepping_range_reason ();
5395 stop_stepping (ecs);
5396 }
5397 else
5398 {
5399 /* Else just reset the step range and keep going.
5400 No step-resume breakpoint, they don't work for
5401 epilogues, which can have multiple entry paths. */
5402 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5403 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5404 keep_going (ecs);
5405 }
5406 return;
5407 }
5408
5409 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5410 This is used to both functions and to skip over code. */
5411
5412 static void
5413 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5414 struct symtab_and_line sr_sal,
5415 struct frame_id sr_id,
5416 enum bptype sr_type)
5417 {
5418 /* There should never be more than one step-resume or longjmp-resume
5419 breakpoint per thread, so we should never be setting a new
5420 step_resume_breakpoint when one is already active. */
5421 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5422 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5423
5424 if (debug_infrun)
5425 fprintf_unfiltered (gdb_stdlog,
5426 "infrun: inserting step-resume breakpoint at %s\n",
5427 paddress (gdbarch, sr_sal.pc));
5428
5429 inferior_thread ()->control.step_resume_breakpoint
5430 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5431 }
5432
5433 void
5434 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5435 struct symtab_and_line sr_sal,
5436 struct frame_id sr_id)
5437 {
5438 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5439 sr_sal, sr_id,
5440 bp_step_resume);
5441 }
5442
5443 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5444 This is used to skip a potential signal handler.
5445
5446 This is called with the interrupted function's frame. The signal
5447 handler, when it returns, will resume the interrupted function at
5448 RETURN_FRAME.pc. */
5449
5450 static void
5451 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5452 {
5453 struct symtab_and_line sr_sal;
5454 struct gdbarch *gdbarch;
5455
5456 gdb_assert (return_frame != NULL);
5457 init_sal (&sr_sal); /* initialize to zeros */
5458
5459 gdbarch = get_frame_arch (return_frame);
5460 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5461 sr_sal.section = find_pc_overlay (sr_sal.pc);
5462 sr_sal.pspace = get_frame_program_space (return_frame);
5463
5464 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5465 get_stack_frame_id (return_frame),
5466 bp_hp_step_resume);
5467 }
5468
5469 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5470 is used to skip a function after stepping into it (for "next" or if
5471 the called function has no debugging information).
5472
5473 The current function has almost always been reached by single
5474 stepping a call or return instruction. NEXT_FRAME belongs to the
5475 current function, and the breakpoint will be set at the caller's
5476 resume address.
5477
5478 This is a separate function rather than reusing
5479 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5480 get_prev_frame, which may stop prematurely (see the implementation
5481 of frame_unwind_caller_id for an example). */
5482
5483 static void
5484 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5485 {
5486 struct symtab_and_line sr_sal;
5487 struct gdbarch *gdbarch;
5488
5489 /* We shouldn't have gotten here if we don't know where the call site
5490 is. */
5491 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5492
5493 init_sal (&sr_sal); /* initialize to zeros */
5494
5495 gdbarch = frame_unwind_caller_arch (next_frame);
5496 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5497 frame_unwind_caller_pc (next_frame));
5498 sr_sal.section = find_pc_overlay (sr_sal.pc);
5499 sr_sal.pspace = frame_unwind_program_space (next_frame);
5500
5501 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5502 frame_unwind_caller_id (next_frame));
5503 }
5504
5505 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5506 new breakpoint at the target of a jmp_buf. The handling of
5507 longjmp-resume uses the same mechanisms used for handling
5508 "step-resume" breakpoints. */
5509
5510 static void
5511 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5512 {
5513 /* There should never be more than one longjmp-resume breakpoint per
5514 thread, so we should never be setting a new
5515 longjmp_resume_breakpoint when one is already active. */
5516 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5517
5518 if (debug_infrun)
5519 fprintf_unfiltered (gdb_stdlog,
5520 "infrun: inserting longjmp-resume breakpoint at %s\n",
5521 paddress (gdbarch, pc));
5522
5523 inferior_thread ()->control.exception_resume_breakpoint =
5524 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5525 }
5526
5527 /* Insert an exception resume breakpoint. TP is the thread throwing
5528 the exception. The block B is the block of the unwinder debug hook
5529 function. FRAME is the frame corresponding to the call to this
5530 function. SYM is the symbol of the function argument holding the
5531 target PC of the exception. */
5532
5533 static void
5534 insert_exception_resume_breakpoint (struct thread_info *tp,
5535 struct block *b,
5536 struct frame_info *frame,
5537 struct symbol *sym)
5538 {
5539 volatile struct gdb_exception e;
5540
5541 /* We want to ignore errors here. */
5542 TRY_CATCH (e, RETURN_MASK_ERROR)
5543 {
5544 struct symbol *vsym;
5545 struct value *value;
5546 CORE_ADDR handler;
5547 struct breakpoint *bp;
5548
5549 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5550 value = read_var_value (vsym, frame);
5551 /* If the value was optimized out, revert to the old behavior. */
5552 if (! value_optimized_out (value))
5553 {
5554 handler = value_as_address (value);
5555
5556 if (debug_infrun)
5557 fprintf_unfiltered (gdb_stdlog,
5558 "infrun: exception resume at %lx\n",
5559 (unsigned long) handler);
5560
5561 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5562 handler, bp_exception_resume);
5563
5564 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5565 frame = NULL;
5566
5567 bp->thread = tp->num;
5568 inferior_thread ()->control.exception_resume_breakpoint = bp;
5569 }
5570 }
5571 }
5572
5573 /* A helper for check_exception_resume that sets an
5574 exception-breakpoint based on a SystemTap probe. */
5575
5576 static void
5577 insert_exception_resume_from_probe (struct thread_info *tp,
5578 const struct probe *probe,
5579 struct frame_info *frame)
5580 {
5581 struct value *arg_value;
5582 CORE_ADDR handler;
5583 struct breakpoint *bp;
5584
5585 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5586 if (!arg_value)
5587 return;
5588
5589 handler = value_as_address (arg_value);
5590
5591 if (debug_infrun)
5592 fprintf_unfiltered (gdb_stdlog,
5593 "infrun: exception resume at %s\n",
5594 paddress (get_objfile_arch (probe->objfile),
5595 handler));
5596
5597 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5598 handler, bp_exception_resume);
5599 bp->thread = tp->num;
5600 inferior_thread ()->control.exception_resume_breakpoint = bp;
5601 }
5602
5603 /* This is called when an exception has been intercepted. Check to
5604 see whether the exception's destination is of interest, and if so,
5605 set an exception resume breakpoint there. */
5606
5607 static void
5608 check_exception_resume (struct execution_control_state *ecs,
5609 struct frame_info *frame)
5610 {
5611 volatile struct gdb_exception e;
5612 const struct probe *probe;
5613 struct symbol *func;
5614
5615 /* First see if this exception unwinding breakpoint was set via a
5616 SystemTap probe point. If so, the probe has two arguments: the
5617 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5618 set a breakpoint there. */
5619 probe = find_probe_by_pc (get_frame_pc (frame));
5620 if (probe)
5621 {
5622 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
5623 return;
5624 }
5625
5626 func = get_frame_function (frame);
5627 if (!func)
5628 return;
5629
5630 TRY_CATCH (e, RETURN_MASK_ERROR)
5631 {
5632 struct block *b;
5633 struct block_iterator iter;
5634 struct symbol *sym;
5635 int argno = 0;
5636
5637 /* The exception breakpoint is a thread-specific breakpoint on
5638 the unwinder's debug hook, declared as:
5639
5640 void _Unwind_DebugHook (void *cfa, void *handler);
5641
5642 The CFA argument indicates the frame to which control is
5643 about to be transferred. HANDLER is the destination PC.
5644
5645 We ignore the CFA and set a temporary breakpoint at HANDLER.
5646 This is not extremely efficient but it avoids issues in gdb
5647 with computing the DWARF CFA, and it also works even in weird
5648 cases such as throwing an exception from inside a signal
5649 handler. */
5650
5651 b = SYMBOL_BLOCK_VALUE (func);
5652 ALL_BLOCK_SYMBOLS (b, iter, sym)
5653 {
5654 if (!SYMBOL_IS_ARGUMENT (sym))
5655 continue;
5656
5657 if (argno == 0)
5658 ++argno;
5659 else
5660 {
5661 insert_exception_resume_breakpoint (ecs->event_thread,
5662 b, frame, sym);
5663 break;
5664 }
5665 }
5666 }
5667 }
5668
5669 static void
5670 stop_stepping (struct execution_control_state *ecs)
5671 {
5672 if (debug_infrun)
5673 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5674
5675 /* Let callers know we don't want to wait for the inferior anymore. */
5676 ecs->wait_some_more = 0;
5677 }
5678
5679 /* This function handles various cases where we need to continue
5680 waiting for the inferior. */
5681 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5682
5683 static void
5684 keep_going (struct execution_control_state *ecs)
5685 {
5686 /* Make sure normal_stop is called if we get a QUIT handled before
5687 reaching resume. */
5688 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5689
5690 /* Save the pc before execution, to compare with pc after stop. */
5691 ecs->event_thread->prev_pc
5692 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5693
5694 /* If we did not do break;, it means we should keep running the
5695 inferior and not return to debugger. */
5696
5697 if (ecs->event_thread->control.trap_expected
5698 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5699 {
5700 /* We took a signal (which we are supposed to pass through to
5701 the inferior, else we'd not get here) and we haven't yet
5702 gotten our trap. Simply continue. */
5703
5704 discard_cleanups (old_cleanups);
5705 resume (currently_stepping (ecs->event_thread),
5706 ecs->event_thread->suspend.stop_signal);
5707 }
5708 else
5709 {
5710 /* Either the trap was not expected, but we are continuing
5711 anyway (the user asked that this signal be passed to the
5712 child)
5713 -- or --
5714 The signal was SIGTRAP, e.g. it was our signal, but we
5715 decided we should resume from it.
5716
5717 We're going to run this baby now!
5718
5719 Note that insert_breakpoints won't try to re-insert
5720 already inserted breakpoints. Therefore, we don't
5721 care if breakpoints were already inserted, or not. */
5722
5723 if (ecs->event_thread->stepping_over_breakpoint)
5724 {
5725 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5726
5727 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5728 /* Since we can't do a displaced step, we have to remove
5729 the breakpoint while we step it. To keep things
5730 simple, we remove them all. */
5731 remove_breakpoints ();
5732 }
5733 else
5734 {
5735 volatile struct gdb_exception e;
5736
5737 /* Stop stepping when inserting breakpoints
5738 has failed. */
5739 TRY_CATCH (e, RETURN_MASK_ERROR)
5740 {
5741 insert_breakpoints ();
5742 }
5743 if (e.reason < 0)
5744 {
5745 exception_print (gdb_stderr, e);
5746 stop_stepping (ecs);
5747 return;
5748 }
5749 }
5750
5751 ecs->event_thread->control.trap_expected
5752 = ecs->event_thread->stepping_over_breakpoint;
5753
5754 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5755 specifies that such a signal should be delivered to the
5756 target program).
5757
5758 Typically, this would occure when a user is debugging a
5759 target monitor on a simulator: the target monitor sets a
5760 breakpoint; the simulator encounters this break-point and
5761 halts the simulation handing control to GDB; GDB, noteing
5762 that the break-point isn't valid, returns control back to the
5763 simulator; the simulator then delivers the hardware
5764 equivalent of a SIGNAL_TRAP to the program being debugged. */
5765
5766 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5767 && !signal_program[ecs->event_thread->suspend.stop_signal])
5768 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5769
5770 discard_cleanups (old_cleanups);
5771 resume (currently_stepping (ecs->event_thread),
5772 ecs->event_thread->suspend.stop_signal);
5773 }
5774
5775 prepare_to_wait (ecs);
5776 }
5777
5778 /* This function normally comes after a resume, before
5779 handle_inferior_event exits. It takes care of any last bits of
5780 housekeeping, and sets the all-important wait_some_more flag. */
5781
5782 static void
5783 prepare_to_wait (struct execution_control_state *ecs)
5784 {
5785 if (debug_infrun)
5786 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5787
5788 /* This is the old end of the while loop. Let everybody know we
5789 want to wait for the inferior some more and get called again
5790 soon. */
5791 ecs->wait_some_more = 1;
5792 }
5793
5794 /* Several print_*_reason functions to print why the inferior has stopped.
5795 We always print something when the inferior exits, or receives a signal.
5796 The rest of the cases are dealt with later on in normal_stop and
5797 print_it_typical. Ideally there should be a call to one of these
5798 print_*_reason functions functions from handle_inferior_event each time
5799 stop_stepping is called. */
5800
5801 /* Print why the inferior has stopped.
5802 We are done with a step/next/si/ni command, print why the inferior has
5803 stopped. For now print nothing. Print a message only if not in the middle
5804 of doing a "step n" operation for n > 1. */
5805
5806 static void
5807 print_end_stepping_range_reason (void)
5808 {
5809 if ((!inferior_thread ()->step_multi
5810 || !inferior_thread ()->control.stop_step)
5811 && ui_out_is_mi_like_p (current_uiout))
5812 ui_out_field_string (current_uiout, "reason",
5813 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5814 }
5815
5816 /* The inferior was terminated by a signal, print why it stopped. */
5817
5818 static void
5819 print_signal_exited_reason (enum gdb_signal siggnal)
5820 {
5821 struct ui_out *uiout = current_uiout;
5822
5823 annotate_signalled ();
5824 if (ui_out_is_mi_like_p (uiout))
5825 ui_out_field_string
5826 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5827 ui_out_text (uiout, "\nProgram terminated with signal ");
5828 annotate_signal_name ();
5829 ui_out_field_string (uiout, "signal-name",
5830 gdb_signal_to_name (siggnal));
5831 annotate_signal_name_end ();
5832 ui_out_text (uiout, ", ");
5833 annotate_signal_string ();
5834 ui_out_field_string (uiout, "signal-meaning",
5835 gdb_signal_to_string (siggnal));
5836 annotate_signal_string_end ();
5837 ui_out_text (uiout, ".\n");
5838 ui_out_text (uiout, "The program no longer exists.\n");
5839 }
5840
5841 /* The inferior program is finished, print why it stopped. */
5842
5843 static void
5844 print_exited_reason (int exitstatus)
5845 {
5846 struct inferior *inf = current_inferior ();
5847 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5848 struct ui_out *uiout = current_uiout;
5849
5850 annotate_exited (exitstatus);
5851 if (exitstatus)
5852 {
5853 if (ui_out_is_mi_like_p (uiout))
5854 ui_out_field_string (uiout, "reason",
5855 async_reason_lookup (EXEC_ASYNC_EXITED));
5856 ui_out_text (uiout, "[Inferior ");
5857 ui_out_text (uiout, plongest (inf->num));
5858 ui_out_text (uiout, " (");
5859 ui_out_text (uiout, pidstr);
5860 ui_out_text (uiout, ") exited with code ");
5861 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5862 ui_out_text (uiout, "]\n");
5863 }
5864 else
5865 {
5866 if (ui_out_is_mi_like_p (uiout))
5867 ui_out_field_string
5868 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5869 ui_out_text (uiout, "[Inferior ");
5870 ui_out_text (uiout, plongest (inf->num));
5871 ui_out_text (uiout, " (");
5872 ui_out_text (uiout, pidstr);
5873 ui_out_text (uiout, ") exited normally]\n");
5874 }
5875 /* Support the --return-child-result option. */
5876 return_child_result_value = exitstatus;
5877 }
5878
5879 /* Signal received, print why the inferior has stopped. The signal table
5880 tells us to print about it. */
5881
5882 static void
5883 print_signal_received_reason (enum gdb_signal siggnal)
5884 {
5885 struct ui_out *uiout = current_uiout;
5886
5887 annotate_signal ();
5888
5889 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5890 {
5891 struct thread_info *t = inferior_thread ();
5892
5893 ui_out_text (uiout, "\n[");
5894 ui_out_field_string (uiout, "thread-name",
5895 target_pid_to_str (t->ptid));
5896 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5897 ui_out_text (uiout, " stopped");
5898 }
5899 else
5900 {
5901 ui_out_text (uiout, "\nProgram received signal ");
5902 annotate_signal_name ();
5903 if (ui_out_is_mi_like_p (uiout))
5904 ui_out_field_string
5905 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5906 ui_out_field_string (uiout, "signal-name",
5907 gdb_signal_to_name (siggnal));
5908 annotate_signal_name_end ();
5909 ui_out_text (uiout, ", ");
5910 annotate_signal_string ();
5911 ui_out_field_string (uiout, "signal-meaning",
5912 gdb_signal_to_string (siggnal));
5913 annotate_signal_string_end ();
5914 }
5915 ui_out_text (uiout, ".\n");
5916 }
5917
5918 /* Reverse execution: target ran out of history info, print why the inferior
5919 has stopped. */
5920
5921 static void
5922 print_no_history_reason (void)
5923 {
5924 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5925 }
5926
5927 /* Here to return control to GDB when the inferior stops for real.
5928 Print appropriate messages, remove breakpoints, give terminal our modes.
5929
5930 STOP_PRINT_FRAME nonzero means print the executing frame
5931 (pc, function, args, file, line number and line text).
5932 BREAKPOINTS_FAILED nonzero means stop was due to error
5933 attempting to insert breakpoints. */
5934
5935 void
5936 normal_stop (void)
5937 {
5938 struct target_waitstatus last;
5939 ptid_t last_ptid;
5940 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5941
5942 get_last_target_status (&last_ptid, &last);
5943
5944 /* If an exception is thrown from this point on, make sure to
5945 propagate GDB's knowledge of the executing state to the
5946 frontend/user running state. A QUIT is an easy exception to see
5947 here, so do this before any filtered output. */
5948 if (!non_stop)
5949 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5950 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5951 && last.kind != TARGET_WAITKIND_EXITED
5952 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5953 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5954
5955 /* In non-stop mode, we don't want GDB to switch threads behind the
5956 user's back, to avoid races where the user is typing a command to
5957 apply to thread x, but GDB switches to thread y before the user
5958 finishes entering the command. */
5959
5960 /* As with the notification of thread events, we want to delay
5961 notifying the user that we've switched thread context until
5962 the inferior actually stops.
5963
5964 There's no point in saying anything if the inferior has exited.
5965 Note that SIGNALLED here means "exited with a signal", not
5966 "received a signal". */
5967 if (!non_stop
5968 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5969 && target_has_execution
5970 && last.kind != TARGET_WAITKIND_SIGNALLED
5971 && last.kind != TARGET_WAITKIND_EXITED
5972 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5973 {
5974 target_terminal_ours_for_output ();
5975 printf_filtered (_("[Switching to %s]\n"),
5976 target_pid_to_str (inferior_ptid));
5977 annotate_thread_changed ();
5978 previous_inferior_ptid = inferior_ptid;
5979 }
5980
5981 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5982 {
5983 gdb_assert (sync_execution || !target_can_async_p ());
5984
5985 target_terminal_ours_for_output ();
5986 printf_filtered (_("No unwaited-for children left.\n"));
5987 }
5988
5989 if (!breakpoints_always_inserted_mode () && target_has_execution)
5990 {
5991 if (remove_breakpoints ())
5992 {
5993 target_terminal_ours_for_output ();
5994 printf_filtered (_("Cannot remove breakpoints because "
5995 "program is no longer writable.\nFurther "
5996 "execution is probably impossible.\n"));
5997 }
5998 }
5999
6000 /* If an auto-display called a function and that got a signal,
6001 delete that auto-display to avoid an infinite recursion. */
6002
6003 if (stopped_by_random_signal)
6004 disable_current_display ();
6005
6006 /* Don't print a message if in the middle of doing a "step n"
6007 operation for n > 1 */
6008 if (target_has_execution
6009 && last.kind != TARGET_WAITKIND_SIGNALLED
6010 && last.kind != TARGET_WAITKIND_EXITED
6011 && inferior_thread ()->step_multi
6012 && inferior_thread ()->control.stop_step)
6013 goto done;
6014
6015 target_terminal_ours ();
6016 async_enable_stdin ();
6017
6018 /* Set the current source location. This will also happen if we
6019 display the frame below, but the current SAL will be incorrect
6020 during a user hook-stop function. */
6021 if (has_stack_frames () && !stop_stack_dummy)
6022 set_current_sal_from_frame (get_current_frame (), 1);
6023
6024 /* Let the user/frontend see the threads as stopped. */
6025 do_cleanups (old_chain);
6026
6027 /* Look up the hook_stop and run it (CLI internally handles problem
6028 of stop_command's pre-hook not existing). */
6029 if (stop_command)
6030 catch_errors (hook_stop_stub, stop_command,
6031 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6032
6033 if (!has_stack_frames ())
6034 goto done;
6035
6036 if (last.kind == TARGET_WAITKIND_SIGNALLED
6037 || last.kind == TARGET_WAITKIND_EXITED)
6038 goto done;
6039
6040 /* Select innermost stack frame - i.e., current frame is frame 0,
6041 and current location is based on that.
6042 Don't do this on return from a stack dummy routine,
6043 or if the program has exited. */
6044
6045 if (!stop_stack_dummy)
6046 {
6047 select_frame (get_current_frame ());
6048
6049 /* Print current location without a level number, if
6050 we have changed functions or hit a breakpoint.
6051 Print source line if we have one.
6052 bpstat_print() contains the logic deciding in detail
6053 what to print, based on the event(s) that just occurred. */
6054
6055 /* If --batch-silent is enabled then there's no need to print the current
6056 source location, and to try risks causing an error message about
6057 missing source files. */
6058 if (stop_print_frame && !batch_silent)
6059 {
6060 int bpstat_ret;
6061 int source_flag;
6062 int do_frame_printing = 1;
6063 struct thread_info *tp = inferior_thread ();
6064
6065 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6066 switch (bpstat_ret)
6067 {
6068 case PRINT_UNKNOWN:
6069 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6070 (or should) carry around the function and does (or
6071 should) use that when doing a frame comparison. */
6072 if (tp->control.stop_step
6073 && frame_id_eq (tp->control.step_frame_id,
6074 get_frame_id (get_current_frame ()))
6075 && step_start_function == find_pc_function (stop_pc))
6076 source_flag = SRC_LINE; /* Finished step, just
6077 print source line. */
6078 else
6079 source_flag = SRC_AND_LOC; /* Print location and
6080 source line. */
6081 break;
6082 case PRINT_SRC_AND_LOC:
6083 source_flag = SRC_AND_LOC; /* Print location and
6084 source line. */
6085 break;
6086 case PRINT_SRC_ONLY:
6087 source_flag = SRC_LINE;
6088 break;
6089 case PRINT_NOTHING:
6090 source_flag = SRC_LINE; /* something bogus */
6091 do_frame_printing = 0;
6092 break;
6093 default:
6094 internal_error (__FILE__, __LINE__, _("Unknown value."));
6095 }
6096
6097 /* The behavior of this routine with respect to the source
6098 flag is:
6099 SRC_LINE: Print only source line
6100 LOCATION: Print only location
6101 SRC_AND_LOC: Print location and source line. */
6102 if (do_frame_printing)
6103 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
6104
6105 /* Display the auto-display expressions. */
6106 do_displays ();
6107 }
6108 }
6109
6110 /* Save the function value return registers, if we care.
6111 We might be about to restore their previous contents. */
6112 if (inferior_thread ()->control.proceed_to_finish
6113 && execution_direction != EXEC_REVERSE)
6114 {
6115 /* This should not be necessary. */
6116 if (stop_registers)
6117 regcache_xfree (stop_registers);
6118
6119 /* NB: The copy goes through to the target picking up the value of
6120 all the registers. */
6121 stop_registers = regcache_dup (get_current_regcache ());
6122 }
6123
6124 if (stop_stack_dummy == STOP_STACK_DUMMY)
6125 {
6126 /* Pop the empty frame that contains the stack dummy.
6127 This also restores inferior state prior to the call
6128 (struct infcall_suspend_state). */
6129 struct frame_info *frame = get_current_frame ();
6130
6131 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6132 frame_pop (frame);
6133 /* frame_pop() calls reinit_frame_cache as the last thing it
6134 does which means there's currently no selected frame. We
6135 don't need to re-establish a selected frame if the dummy call
6136 returns normally, that will be done by
6137 restore_infcall_control_state. However, we do have to handle
6138 the case where the dummy call is returning after being
6139 stopped (e.g. the dummy call previously hit a breakpoint).
6140 We can't know which case we have so just always re-establish
6141 a selected frame here. */
6142 select_frame (get_current_frame ());
6143 }
6144
6145 done:
6146 annotate_stopped ();
6147
6148 /* Suppress the stop observer if we're in the middle of:
6149
6150 - a step n (n > 1), as there still more steps to be done.
6151
6152 - a "finish" command, as the observer will be called in
6153 finish_command_continuation, so it can include the inferior
6154 function's return value.
6155
6156 - calling an inferior function, as we pretend we inferior didn't
6157 run at all. The return value of the call is handled by the
6158 expression evaluator, through call_function_by_hand. */
6159
6160 if (!target_has_execution
6161 || last.kind == TARGET_WAITKIND_SIGNALLED
6162 || last.kind == TARGET_WAITKIND_EXITED
6163 || last.kind == TARGET_WAITKIND_NO_RESUMED
6164 || (!(inferior_thread ()->step_multi
6165 && inferior_thread ()->control.stop_step)
6166 && !(inferior_thread ()->control.stop_bpstat
6167 && inferior_thread ()->control.proceed_to_finish)
6168 && !inferior_thread ()->control.in_infcall))
6169 {
6170 if (!ptid_equal (inferior_ptid, null_ptid))
6171 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6172 stop_print_frame);
6173 else
6174 observer_notify_normal_stop (NULL, stop_print_frame);
6175 }
6176
6177 if (target_has_execution)
6178 {
6179 if (last.kind != TARGET_WAITKIND_SIGNALLED
6180 && last.kind != TARGET_WAITKIND_EXITED)
6181 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6182 Delete any breakpoint that is to be deleted at the next stop. */
6183 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6184 }
6185
6186 /* Try to get rid of automatically added inferiors that are no
6187 longer needed. Keeping those around slows down things linearly.
6188 Note that this never removes the current inferior. */
6189 prune_inferiors ();
6190 }
6191
6192 static int
6193 hook_stop_stub (void *cmd)
6194 {
6195 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6196 return (0);
6197 }
6198 \f
6199 int
6200 signal_stop_state (int signo)
6201 {
6202 return signal_stop[signo];
6203 }
6204
6205 int
6206 signal_print_state (int signo)
6207 {
6208 return signal_print[signo];
6209 }
6210
6211 int
6212 signal_pass_state (int signo)
6213 {
6214 return signal_program[signo];
6215 }
6216
6217 static void
6218 signal_cache_update (int signo)
6219 {
6220 if (signo == -1)
6221 {
6222 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6223 signal_cache_update (signo);
6224
6225 return;
6226 }
6227
6228 signal_pass[signo] = (signal_stop[signo] == 0
6229 && signal_print[signo] == 0
6230 && signal_program[signo] == 1
6231 && signal_catch[signo] == 0);
6232 }
6233
6234 int
6235 signal_stop_update (int signo, int state)
6236 {
6237 int ret = signal_stop[signo];
6238
6239 signal_stop[signo] = state;
6240 signal_cache_update (signo);
6241 return ret;
6242 }
6243
6244 int
6245 signal_print_update (int signo, int state)
6246 {
6247 int ret = signal_print[signo];
6248
6249 signal_print[signo] = state;
6250 signal_cache_update (signo);
6251 return ret;
6252 }
6253
6254 int
6255 signal_pass_update (int signo, int state)
6256 {
6257 int ret = signal_program[signo];
6258
6259 signal_program[signo] = state;
6260 signal_cache_update (signo);
6261 return ret;
6262 }
6263
6264 /* Update the global 'signal_catch' from INFO and notify the
6265 target. */
6266
6267 void
6268 signal_catch_update (const unsigned int *info)
6269 {
6270 int i;
6271
6272 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6273 signal_catch[i] = info[i] > 0;
6274 signal_cache_update (-1);
6275 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6276 }
6277
6278 static void
6279 sig_print_header (void)
6280 {
6281 printf_filtered (_("Signal Stop\tPrint\tPass "
6282 "to program\tDescription\n"));
6283 }
6284
6285 static void
6286 sig_print_info (enum gdb_signal oursig)
6287 {
6288 const char *name = gdb_signal_to_name (oursig);
6289 int name_padding = 13 - strlen (name);
6290
6291 if (name_padding <= 0)
6292 name_padding = 0;
6293
6294 printf_filtered ("%s", name);
6295 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6296 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6297 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6298 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6299 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6300 }
6301
6302 /* Specify how various signals in the inferior should be handled. */
6303
6304 static void
6305 handle_command (char *args, int from_tty)
6306 {
6307 char **argv;
6308 int digits, wordlen;
6309 int sigfirst, signum, siglast;
6310 enum gdb_signal oursig;
6311 int allsigs;
6312 int nsigs;
6313 unsigned char *sigs;
6314 struct cleanup *old_chain;
6315
6316 if (args == NULL)
6317 {
6318 error_no_arg (_("signal to handle"));
6319 }
6320
6321 /* Allocate and zero an array of flags for which signals to handle. */
6322
6323 nsigs = (int) GDB_SIGNAL_LAST;
6324 sigs = (unsigned char *) alloca (nsigs);
6325 memset (sigs, 0, nsigs);
6326
6327 /* Break the command line up into args. */
6328
6329 argv = gdb_buildargv (args);
6330 old_chain = make_cleanup_freeargv (argv);
6331
6332 /* Walk through the args, looking for signal oursigs, signal names, and
6333 actions. Signal numbers and signal names may be interspersed with
6334 actions, with the actions being performed for all signals cumulatively
6335 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6336
6337 while (*argv != NULL)
6338 {
6339 wordlen = strlen (*argv);
6340 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6341 {;
6342 }
6343 allsigs = 0;
6344 sigfirst = siglast = -1;
6345
6346 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6347 {
6348 /* Apply action to all signals except those used by the
6349 debugger. Silently skip those. */
6350 allsigs = 1;
6351 sigfirst = 0;
6352 siglast = nsigs - 1;
6353 }
6354 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6355 {
6356 SET_SIGS (nsigs, sigs, signal_stop);
6357 SET_SIGS (nsigs, sigs, signal_print);
6358 }
6359 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6360 {
6361 UNSET_SIGS (nsigs, sigs, signal_program);
6362 }
6363 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6364 {
6365 SET_SIGS (nsigs, sigs, signal_print);
6366 }
6367 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6368 {
6369 SET_SIGS (nsigs, sigs, signal_program);
6370 }
6371 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6372 {
6373 UNSET_SIGS (nsigs, sigs, signal_stop);
6374 }
6375 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6376 {
6377 SET_SIGS (nsigs, sigs, signal_program);
6378 }
6379 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6380 {
6381 UNSET_SIGS (nsigs, sigs, signal_print);
6382 UNSET_SIGS (nsigs, sigs, signal_stop);
6383 }
6384 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6385 {
6386 UNSET_SIGS (nsigs, sigs, signal_program);
6387 }
6388 else if (digits > 0)
6389 {
6390 /* It is numeric. The numeric signal refers to our own
6391 internal signal numbering from target.h, not to host/target
6392 signal number. This is a feature; users really should be
6393 using symbolic names anyway, and the common ones like
6394 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6395
6396 sigfirst = siglast = (int)
6397 gdb_signal_from_command (atoi (*argv));
6398 if ((*argv)[digits] == '-')
6399 {
6400 siglast = (int)
6401 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6402 }
6403 if (sigfirst > siglast)
6404 {
6405 /* Bet he didn't figure we'd think of this case... */
6406 signum = sigfirst;
6407 sigfirst = siglast;
6408 siglast = signum;
6409 }
6410 }
6411 else
6412 {
6413 oursig = gdb_signal_from_name (*argv);
6414 if (oursig != GDB_SIGNAL_UNKNOWN)
6415 {
6416 sigfirst = siglast = (int) oursig;
6417 }
6418 else
6419 {
6420 /* Not a number and not a recognized flag word => complain. */
6421 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6422 }
6423 }
6424
6425 /* If any signal numbers or symbol names were found, set flags for
6426 which signals to apply actions to. */
6427
6428 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6429 {
6430 switch ((enum gdb_signal) signum)
6431 {
6432 case GDB_SIGNAL_TRAP:
6433 case GDB_SIGNAL_INT:
6434 if (!allsigs && !sigs[signum])
6435 {
6436 if (query (_("%s is used by the debugger.\n\
6437 Are you sure you want to change it? "),
6438 gdb_signal_to_name ((enum gdb_signal) signum)))
6439 {
6440 sigs[signum] = 1;
6441 }
6442 else
6443 {
6444 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6445 gdb_flush (gdb_stdout);
6446 }
6447 }
6448 break;
6449 case GDB_SIGNAL_0:
6450 case GDB_SIGNAL_DEFAULT:
6451 case GDB_SIGNAL_UNKNOWN:
6452 /* Make sure that "all" doesn't print these. */
6453 break;
6454 default:
6455 sigs[signum] = 1;
6456 break;
6457 }
6458 }
6459
6460 argv++;
6461 }
6462
6463 for (signum = 0; signum < nsigs; signum++)
6464 if (sigs[signum])
6465 {
6466 signal_cache_update (-1);
6467 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6468 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6469
6470 if (from_tty)
6471 {
6472 /* Show the results. */
6473 sig_print_header ();
6474 for (; signum < nsigs; signum++)
6475 if (sigs[signum])
6476 sig_print_info (signum);
6477 }
6478
6479 break;
6480 }
6481
6482 do_cleanups (old_chain);
6483 }
6484
6485 /* Complete the "handle" command. */
6486
6487 static VEC (char_ptr) *
6488 handle_completer (struct cmd_list_element *ignore,
6489 const char *text, const char *word)
6490 {
6491 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6492 static const char * const keywords[] =
6493 {
6494 "all",
6495 "stop",
6496 "ignore",
6497 "print",
6498 "pass",
6499 "nostop",
6500 "noignore",
6501 "noprint",
6502 "nopass",
6503 NULL,
6504 };
6505
6506 vec_signals = signal_completer (ignore, text, word);
6507 vec_keywords = complete_on_enum (keywords, word, word);
6508
6509 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6510 VEC_free (char_ptr, vec_signals);
6511 VEC_free (char_ptr, vec_keywords);
6512 return return_val;
6513 }
6514
6515 static void
6516 xdb_handle_command (char *args, int from_tty)
6517 {
6518 char **argv;
6519 struct cleanup *old_chain;
6520
6521 if (args == NULL)
6522 error_no_arg (_("xdb command"));
6523
6524 /* Break the command line up into args. */
6525
6526 argv = gdb_buildargv (args);
6527 old_chain = make_cleanup_freeargv (argv);
6528 if (argv[1] != (char *) NULL)
6529 {
6530 char *argBuf;
6531 int bufLen;
6532
6533 bufLen = strlen (argv[0]) + 20;
6534 argBuf = (char *) xmalloc (bufLen);
6535 if (argBuf)
6536 {
6537 int validFlag = 1;
6538 enum gdb_signal oursig;
6539
6540 oursig = gdb_signal_from_name (argv[0]);
6541 memset (argBuf, 0, bufLen);
6542 if (strcmp (argv[1], "Q") == 0)
6543 sprintf (argBuf, "%s %s", argv[0], "noprint");
6544 else
6545 {
6546 if (strcmp (argv[1], "s") == 0)
6547 {
6548 if (!signal_stop[oursig])
6549 sprintf (argBuf, "%s %s", argv[0], "stop");
6550 else
6551 sprintf (argBuf, "%s %s", argv[0], "nostop");
6552 }
6553 else if (strcmp (argv[1], "i") == 0)
6554 {
6555 if (!signal_program[oursig])
6556 sprintf (argBuf, "%s %s", argv[0], "pass");
6557 else
6558 sprintf (argBuf, "%s %s", argv[0], "nopass");
6559 }
6560 else if (strcmp (argv[1], "r") == 0)
6561 {
6562 if (!signal_print[oursig])
6563 sprintf (argBuf, "%s %s", argv[0], "print");
6564 else
6565 sprintf (argBuf, "%s %s", argv[0], "noprint");
6566 }
6567 else
6568 validFlag = 0;
6569 }
6570 if (validFlag)
6571 handle_command (argBuf, from_tty);
6572 else
6573 printf_filtered (_("Invalid signal handling flag.\n"));
6574 if (argBuf)
6575 xfree (argBuf);
6576 }
6577 }
6578 do_cleanups (old_chain);
6579 }
6580
6581 enum gdb_signal
6582 gdb_signal_from_command (int num)
6583 {
6584 if (num >= 1 && num <= 15)
6585 return (enum gdb_signal) num;
6586 error (_("Only signals 1-15 are valid as numeric signals.\n\
6587 Use \"info signals\" for a list of symbolic signals."));
6588 }
6589
6590 /* Print current contents of the tables set by the handle command.
6591 It is possible we should just be printing signals actually used
6592 by the current target (but for things to work right when switching
6593 targets, all signals should be in the signal tables). */
6594
6595 static void
6596 signals_info (char *signum_exp, int from_tty)
6597 {
6598 enum gdb_signal oursig;
6599
6600 sig_print_header ();
6601
6602 if (signum_exp)
6603 {
6604 /* First see if this is a symbol name. */
6605 oursig = gdb_signal_from_name (signum_exp);
6606 if (oursig == GDB_SIGNAL_UNKNOWN)
6607 {
6608 /* No, try numeric. */
6609 oursig =
6610 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6611 }
6612 sig_print_info (oursig);
6613 return;
6614 }
6615
6616 printf_filtered ("\n");
6617 /* These ugly casts brought to you by the native VAX compiler. */
6618 for (oursig = GDB_SIGNAL_FIRST;
6619 (int) oursig < (int) GDB_SIGNAL_LAST;
6620 oursig = (enum gdb_signal) ((int) oursig + 1))
6621 {
6622 QUIT;
6623
6624 if (oursig != GDB_SIGNAL_UNKNOWN
6625 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6626 sig_print_info (oursig);
6627 }
6628
6629 printf_filtered (_("\nUse the \"handle\" command "
6630 "to change these tables.\n"));
6631 }
6632
6633 /* Check if it makes sense to read $_siginfo from the current thread
6634 at this point. If not, throw an error. */
6635
6636 static void
6637 validate_siginfo_access (void)
6638 {
6639 /* No current inferior, no siginfo. */
6640 if (ptid_equal (inferior_ptid, null_ptid))
6641 error (_("No thread selected."));
6642
6643 /* Don't try to read from a dead thread. */
6644 if (is_exited (inferior_ptid))
6645 error (_("The current thread has terminated"));
6646
6647 /* ... or from a spinning thread. */
6648 if (is_running (inferior_ptid))
6649 error (_("Selected thread is running."));
6650 }
6651
6652 /* The $_siginfo convenience variable is a bit special. We don't know
6653 for sure the type of the value until we actually have a chance to
6654 fetch the data. The type can change depending on gdbarch, so it is
6655 also dependent on which thread you have selected.
6656
6657 1. making $_siginfo be an internalvar that creates a new value on
6658 access.
6659
6660 2. making the value of $_siginfo be an lval_computed value. */
6661
6662 /* This function implements the lval_computed support for reading a
6663 $_siginfo value. */
6664
6665 static void
6666 siginfo_value_read (struct value *v)
6667 {
6668 LONGEST transferred;
6669
6670 validate_siginfo_access ();
6671
6672 transferred =
6673 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6674 NULL,
6675 value_contents_all_raw (v),
6676 value_offset (v),
6677 TYPE_LENGTH (value_type (v)));
6678
6679 if (transferred != TYPE_LENGTH (value_type (v)))
6680 error (_("Unable to read siginfo"));
6681 }
6682
6683 /* This function implements the lval_computed support for writing a
6684 $_siginfo value. */
6685
6686 static void
6687 siginfo_value_write (struct value *v, struct value *fromval)
6688 {
6689 LONGEST transferred;
6690
6691 validate_siginfo_access ();
6692
6693 transferred = target_write (&current_target,
6694 TARGET_OBJECT_SIGNAL_INFO,
6695 NULL,
6696 value_contents_all_raw (fromval),
6697 value_offset (v),
6698 TYPE_LENGTH (value_type (fromval)));
6699
6700 if (transferred != TYPE_LENGTH (value_type (fromval)))
6701 error (_("Unable to write siginfo"));
6702 }
6703
6704 static const struct lval_funcs siginfo_value_funcs =
6705 {
6706 siginfo_value_read,
6707 siginfo_value_write
6708 };
6709
6710 /* Return a new value with the correct type for the siginfo object of
6711 the current thread using architecture GDBARCH. Return a void value
6712 if there's no object available. */
6713
6714 static struct value *
6715 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6716 void *ignore)
6717 {
6718 if (target_has_stack
6719 && !ptid_equal (inferior_ptid, null_ptid)
6720 && gdbarch_get_siginfo_type_p (gdbarch))
6721 {
6722 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6723
6724 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6725 }
6726
6727 return allocate_value (builtin_type (gdbarch)->builtin_void);
6728 }
6729
6730 \f
6731 /* infcall_suspend_state contains state about the program itself like its
6732 registers and any signal it received when it last stopped.
6733 This state must be restored regardless of how the inferior function call
6734 ends (either successfully, or after it hits a breakpoint or signal)
6735 if the program is to properly continue where it left off. */
6736
6737 struct infcall_suspend_state
6738 {
6739 struct thread_suspend_state thread_suspend;
6740 #if 0 /* Currently unused and empty structures are not valid C. */
6741 struct inferior_suspend_state inferior_suspend;
6742 #endif
6743
6744 /* Other fields: */
6745 CORE_ADDR stop_pc;
6746 struct regcache *registers;
6747
6748 /* Format of SIGINFO_DATA or NULL if it is not present. */
6749 struct gdbarch *siginfo_gdbarch;
6750
6751 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6752 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6753 content would be invalid. */
6754 gdb_byte *siginfo_data;
6755 };
6756
6757 struct infcall_suspend_state *
6758 save_infcall_suspend_state (void)
6759 {
6760 struct infcall_suspend_state *inf_state;
6761 struct thread_info *tp = inferior_thread ();
6762 #if 0
6763 struct inferior *inf = current_inferior ();
6764 #endif
6765 struct regcache *regcache = get_current_regcache ();
6766 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6767 gdb_byte *siginfo_data = NULL;
6768
6769 if (gdbarch_get_siginfo_type_p (gdbarch))
6770 {
6771 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6772 size_t len = TYPE_LENGTH (type);
6773 struct cleanup *back_to;
6774
6775 siginfo_data = xmalloc (len);
6776 back_to = make_cleanup (xfree, siginfo_data);
6777
6778 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6779 siginfo_data, 0, len) == len)
6780 discard_cleanups (back_to);
6781 else
6782 {
6783 /* Errors ignored. */
6784 do_cleanups (back_to);
6785 siginfo_data = NULL;
6786 }
6787 }
6788
6789 inf_state = XZALLOC (struct infcall_suspend_state);
6790
6791 if (siginfo_data)
6792 {
6793 inf_state->siginfo_gdbarch = gdbarch;
6794 inf_state->siginfo_data = siginfo_data;
6795 }
6796
6797 inf_state->thread_suspend = tp->suspend;
6798 #if 0 /* Currently unused and empty structures are not valid C. */
6799 inf_state->inferior_suspend = inf->suspend;
6800 #endif
6801
6802 /* run_inferior_call will not use the signal due to its `proceed' call with
6803 GDB_SIGNAL_0 anyway. */
6804 tp->suspend.stop_signal = GDB_SIGNAL_0;
6805
6806 inf_state->stop_pc = stop_pc;
6807
6808 inf_state->registers = regcache_dup (regcache);
6809
6810 return inf_state;
6811 }
6812
6813 /* Restore inferior session state to INF_STATE. */
6814
6815 void
6816 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6817 {
6818 struct thread_info *tp = inferior_thread ();
6819 #if 0
6820 struct inferior *inf = current_inferior ();
6821 #endif
6822 struct regcache *regcache = get_current_regcache ();
6823 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6824
6825 tp->suspend = inf_state->thread_suspend;
6826 #if 0 /* Currently unused and empty structures are not valid C. */
6827 inf->suspend = inf_state->inferior_suspend;
6828 #endif
6829
6830 stop_pc = inf_state->stop_pc;
6831
6832 if (inf_state->siginfo_gdbarch == gdbarch)
6833 {
6834 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6835
6836 /* Errors ignored. */
6837 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6838 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
6839 }
6840
6841 /* The inferior can be gone if the user types "print exit(0)"
6842 (and perhaps other times). */
6843 if (target_has_execution)
6844 /* NB: The register write goes through to the target. */
6845 regcache_cpy (regcache, inf_state->registers);
6846
6847 discard_infcall_suspend_state (inf_state);
6848 }
6849
6850 static void
6851 do_restore_infcall_suspend_state_cleanup (void *state)
6852 {
6853 restore_infcall_suspend_state (state);
6854 }
6855
6856 struct cleanup *
6857 make_cleanup_restore_infcall_suspend_state
6858 (struct infcall_suspend_state *inf_state)
6859 {
6860 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6861 }
6862
6863 void
6864 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6865 {
6866 regcache_xfree (inf_state->registers);
6867 xfree (inf_state->siginfo_data);
6868 xfree (inf_state);
6869 }
6870
6871 struct regcache *
6872 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6873 {
6874 return inf_state->registers;
6875 }
6876
6877 /* infcall_control_state contains state regarding gdb's control of the
6878 inferior itself like stepping control. It also contains session state like
6879 the user's currently selected frame. */
6880
6881 struct infcall_control_state
6882 {
6883 struct thread_control_state thread_control;
6884 struct inferior_control_state inferior_control;
6885
6886 /* Other fields: */
6887 enum stop_stack_kind stop_stack_dummy;
6888 int stopped_by_random_signal;
6889 int stop_after_trap;
6890
6891 /* ID if the selected frame when the inferior function call was made. */
6892 struct frame_id selected_frame_id;
6893 };
6894
6895 /* Save all of the information associated with the inferior<==>gdb
6896 connection. */
6897
6898 struct infcall_control_state *
6899 save_infcall_control_state (void)
6900 {
6901 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6902 struct thread_info *tp = inferior_thread ();
6903 struct inferior *inf = current_inferior ();
6904
6905 inf_status->thread_control = tp->control;
6906 inf_status->inferior_control = inf->control;
6907
6908 tp->control.step_resume_breakpoint = NULL;
6909 tp->control.exception_resume_breakpoint = NULL;
6910
6911 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6912 chain. If caller's caller is walking the chain, they'll be happier if we
6913 hand them back the original chain when restore_infcall_control_state is
6914 called. */
6915 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6916
6917 /* Other fields: */
6918 inf_status->stop_stack_dummy = stop_stack_dummy;
6919 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6920 inf_status->stop_after_trap = stop_after_trap;
6921
6922 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6923
6924 return inf_status;
6925 }
6926
6927 static int
6928 restore_selected_frame (void *args)
6929 {
6930 struct frame_id *fid = (struct frame_id *) args;
6931 struct frame_info *frame;
6932
6933 frame = frame_find_by_id (*fid);
6934
6935 /* If inf_status->selected_frame_id is NULL, there was no previously
6936 selected frame. */
6937 if (frame == NULL)
6938 {
6939 warning (_("Unable to restore previously selected frame."));
6940 return 0;
6941 }
6942
6943 select_frame (frame);
6944
6945 return (1);
6946 }
6947
6948 /* Restore inferior session state to INF_STATUS. */
6949
6950 void
6951 restore_infcall_control_state (struct infcall_control_state *inf_status)
6952 {
6953 struct thread_info *tp = inferior_thread ();
6954 struct inferior *inf = current_inferior ();
6955
6956 if (tp->control.step_resume_breakpoint)
6957 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6958
6959 if (tp->control.exception_resume_breakpoint)
6960 tp->control.exception_resume_breakpoint->disposition
6961 = disp_del_at_next_stop;
6962
6963 /* Handle the bpstat_copy of the chain. */
6964 bpstat_clear (&tp->control.stop_bpstat);
6965
6966 tp->control = inf_status->thread_control;
6967 inf->control = inf_status->inferior_control;
6968
6969 /* Other fields: */
6970 stop_stack_dummy = inf_status->stop_stack_dummy;
6971 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6972 stop_after_trap = inf_status->stop_after_trap;
6973
6974 if (target_has_stack)
6975 {
6976 /* The point of catch_errors is that if the stack is clobbered,
6977 walking the stack might encounter a garbage pointer and
6978 error() trying to dereference it. */
6979 if (catch_errors
6980 (restore_selected_frame, &inf_status->selected_frame_id,
6981 "Unable to restore previously selected frame:\n",
6982 RETURN_MASK_ERROR) == 0)
6983 /* Error in restoring the selected frame. Select the innermost
6984 frame. */
6985 select_frame (get_current_frame ());
6986 }
6987
6988 xfree (inf_status);
6989 }
6990
6991 static void
6992 do_restore_infcall_control_state_cleanup (void *sts)
6993 {
6994 restore_infcall_control_state (sts);
6995 }
6996
6997 struct cleanup *
6998 make_cleanup_restore_infcall_control_state
6999 (struct infcall_control_state *inf_status)
7000 {
7001 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7002 }
7003
7004 void
7005 discard_infcall_control_state (struct infcall_control_state *inf_status)
7006 {
7007 if (inf_status->thread_control.step_resume_breakpoint)
7008 inf_status->thread_control.step_resume_breakpoint->disposition
7009 = disp_del_at_next_stop;
7010
7011 if (inf_status->thread_control.exception_resume_breakpoint)
7012 inf_status->thread_control.exception_resume_breakpoint->disposition
7013 = disp_del_at_next_stop;
7014
7015 /* See save_infcall_control_state for info on stop_bpstat. */
7016 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7017
7018 xfree (inf_status);
7019 }
7020 \f
7021 int
7022 ptid_match (ptid_t ptid, ptid_t filter)
7023 {
7024 if (ptid_equal (filter, minus_one_ptid))
7025 return 1;
7026 if (ptid_is_pid (filter)
7027 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7028 return 1;
7029 else if (ptid_equal (ptid, filter))
7030 return 1;
7031
7032 return 0;
7033 }
7034
7035 /* restore_inferior_ptid() will be used by the cleanup machinery
7036 to restore the inferior_ptid value saved in a call to
7037 save_inferior_ptid(). */
7038
7039 static void
7040 restore_inferior_ptid (void *arg)
7041 {
7042 ptid_t *saved_ptid_ptr = arg;
7043
7044 inferior_ptid = *saved_ptid_ptr;
7045 xfree (arg);
7046 }
7047
7048 /* Save the value of inferior_ptid so that it may be restored by a
7049 later call to do_cleanups(). Returns the struct cleanup pointer
7050 needed for later doing the cleanup. */
7051
7052 struct cleanup *
7053 save_inferior_ptid (void)
7054 {
7055 ptid_t *saved_ptid_ptr;
7056
7057 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7058 *saved_ptid_ptr = inferior_ptid;
7059 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7060 }
7061 \f
7062
7063 /* User interface for reverse debugging:
7064 Set exec-direction / show exec-direction commands
7065 (returns error unless target implements to_set_exec_direction method). */
7066
7067 int execution_direction = EXEC_FORWARD;
7068 static const char exec_forward[] = "forward";
7069 static const char exec_reverse[] = "reverse";
7070 static const char *exec_direction = exec_forward;
7071 static const char *const exec_direction_names[] = {
7072 exec_forward,
7073 exec_reverse,
7074 NULL
7075 };
7076
7077 static void
7078 set_exec_direction_func (char *args, int from_tty,
7079 struct cmd_list_element *cmd)
7080 {
7081 if (target_can_execute_reverse)
7082 {
7083 if (!strcmp (exec_direction, exec_forward))
7084 execution_direction = EXEC_FORWARD;
7085 else if (!strcmp (exec_direction, exec_reverse))
7086 execution_direction = EXEC_REVERSE;
7087 }
7088 else
7089 {
7090 exec_direction = exec_forward;
7091 error (_("Target does not support this operation."));
7092 }
7093 }
7094
7095 static void
7096 show_exec_direction_func (struct ui_file *out, int from_tty,
7097 struct cmd_list_element *cmd, const char *value)
7098 {
7099 switch (execution_direction) {
7100 case EXEC_FORWARD:
7101 fprintf_filtered (out, _("Forward.\n"));
7102 break;
7103 case EXEC_REVERSE:
7104 fprintf_filtered (out, _("Reverse.\n"));
7105 break;
7106 default:
7107 internal_error (__FILE__, __LINE__,
7108 _("bogus execution_direction value: %d"),
7109 (int) execution_direction);
7110 }
7111 }
7112
7113 static void
7114 show_schedule_multiple (struct ui_file *file, int from_tty,
7115 struct cmd_list_element *c, const char *value)
7116 {
7117 fprintf_filtered (file, _("Resuming the execution of threads "
7118 "of all processes is %s.\n"), value);
7119 }
7120
7121 /* Implementation of `siginfo' variable. */
7122
7123 static const struct internalvar_funcs siginfo_funcs =
7124 {
7125 siginfo_make_value,
7126 NULL,
7127 NULL
7128 };
7129
7130 void
7131 _initialize_infrun (void)
7132 {
7133 int i;
7134 int numsigs;
7135 struct cmd_list_element *c;
7136
7137 add_info ("signals", signals_info, _("\
7138 What debugger does when program gets various signals.\n\
7139 Specify a signal as argument to print info on that signal only."));
7140 add_info_alias ("handle", "signals", 0);
7141
7142 c = add_com ("handle", class_run, handle_command, _("\
7143 Specify how to handle signals.\n\
7144 Usage: handle SIGNAL [ACTIONS]\n\
7145 Args are signals and actions to apply to those signals.\n\
7146 If no actions are specified, the current settings for the specified signals\n\
7147 will be displayed instead.\n\
7148 \n\
7149 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7150 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7151 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7152 The special arg \"all\" is recognized to mean all signals except those\n\
7153 used by the debugger, typically SIGTRAP and SIGINT.\n\
7154 \n\
7155 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7156 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7157 Stop means reenter debugger if this signal happens (implies print).\n\
7158 Print means print a message if this signal happens.\n\
7159 Pass means let program see this signal; otherwise program doesn't know.\n\
7160 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7161 Pass and Stop may be combined.\n\
7162 \n\
7163 Multiple signals may be specified. Signal numbers and signal names\n\
7164 may be interspersed with actions, with the actions being performed for\n\
7165 all signals cumulatively specified."));
7166 set_cmd_completer (c, handle_completer);
7167
7168 if (xdb_commands)
7169 {
7170 add_com ("lz", class_info, signals_info, _("\
7171 What debugger does when program gets various signals.\n\
7172 Specify a signal as argument to print info on that signal only."));
7173 add_com ("z", class_run, xdb_handle_command, _("\
7174 Specify how to handle a signal.\n\
7175 Args are signals and actions to apply to those signals.\n\
7176 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7177 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7178 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7179 The special arg \"all\" is recognized to mean all signals except those\n\
7180 used by the debugger, typically SIGTRAP and SIGINT.\n\
7181 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7182 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7183 nopass), \"Q\" (noprint)\n\
7184 Stop means reenter debugger if this signal happens (implies print).\n\
7185 Print means print a message if this signal happens.\n\
7186 Pass means let program see this signal; otherwise program doesn't know.\n\
7187 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7188 Pass and Stop may be combined."));
7189 }
7190
7191 if (!dbx_commands)
7192 stop_command = add_cmd ("stop", class_obscure,
7193 not_just_help_class_command, _("\
7194 There is no `stop' command, but you can set a hook on `stop'.\n\
7195 This allows you to set a list of commands to be run each time execution\n\
7196 of the program stops."), &cmdlist);
7197
7198 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7199 Set inferior debugging."), _("\
7200 Show inferior debugging."), _("\
7201 When non-zero, inferior specific debugging is enabled."),
7202 NULL,
7203 show_debug_infrun,
7204 &setdebuglist, &showdebuglist);
7205
7206 add_setshow_boolean_cmd ("displaced", class_maintenance,
7207 &debug_displaced, _("\
7208 Set displaced stepping debugging."), _("\
7209 Show displaced stepping debugging."), _("\
7210 When non-zero, displaced stepping specific debugging is enabled."),
7211 NULL,
7212 show_debug_displaced,
7213 &setdebuglist, &showdebuglist);
7214
7215 add_setshow_boolean_cmd ("non-stop", no_class,
7216 &non_stop_1, _("\
7217 Set whether gdb controls the inferior in non-stop mode."), _("\
7218 Show whether gdb controls the inferior in non-stop mode."), _("\
7219 When debugging a multi-threaded program and this setting is\n\
7220 off (the default, also called all-stop mode), when one thread stops\n\
7221 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7222 all other threads in the program while you interact with the thread of\n\
7223 interest. When you continue or step a thread, you can allow the other\n\
7224 threads to run, or have them remain stopped, but while you inspect any\n\
7225 thread's state, all threads stop.\n\
7226 \n\
7227 In non-stop mode, when one thread stops, other threads can continue\n\
7228 to run freely. You'll be able to step each thread independently,\n\
7229 leave it stopped or free to run as needed."),
7230 set_non_stop,
7231 show_non_stop,
7232 &setlist,
7233 &showlist);
7234
7235 numsigs = (int) GDB_SIGNAL_LAST;
7236 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7237 signal_print = (unsigned char *)
7238 xmalloc (sizeof (signal_print[0]) * numsigs);
7239 signal_program = (unsigned char *)
7240 xmalloc (sizeof (signal_program[0]) * numsigs);
7241 signal_catch = (unsigned char *)
7242 xmalloc (sizeof (signal_catch[0]) * numsigs);
7243 signal_pass = (unsigned char *)
7244 xmalloc (sizeof (signal_program[0]) * numsigs);
7245 for (i = 0; i < numsigs; i++)
7246 {
7247 signal_stop[i] = 1;
7248 signal_print[i] = 1;
7249 signal_program[i] = 1;
7250 signal_catch[i] = 0;
7251 }
7252
7253 /* Signals caused by debugger's own actions
7254 should not be given to the program afterwards. */
7255 signal_program[GDB_SIGNAL_TRAP] = 0;
7256 signal_program[GDB_SIGNAL_INT] = 0;
7257
7258 /* Signals that are not errors should not normally enter the debugger. */
7259 signal_stop[GDB_SIGNAL_ALRM] = 0;
7260 signal_print[GDB_SIGNAL_ALRM] = 0;
7261 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7262 signal_print[GDB_SIGNAL_VTALRM] = 0;
7263 signal_stop[GDB_SIGNAL_PROF] = 0;
7264 signal_print[GDB_SIGNAL_PROF] = 0;
7265 signal_stop[GDB_SIGNAL_CHLD] = 0;
7266 signal_print[GDB_SIGNAL_CHLD] = 0;
7267 signal_stop[GDB_SIGNAL_IO] = 0;
7268 signal_print[GDB_SIGNAL_IO] = 0;
7269 signal_stop[GDB_SIGNAL_POLL] = 0;
7270 signal_print[GDB_SIGNAL_POLL] = 0;
7271 signal_stop[GDB_SIGNAL_URG] = 0;
7272 signal_print[GDB_SIGNAL_URG] = 0;
7273 signal_stop[GDB_SIGNAL_WINCH] = 0;
7274 signal_print[GDB_SIGNAL_WINCH] = 0;
7275 signal_stop[GDB_SIGNAL_PRIO] = 0;
7276 signal_print[GDB_SIGNAL_PRIO] = 0;
7277
7278 /* These signals are used internally by user-level thread
7279 implementations. (See signal(5) on Solaris.) Like the above
7280 signals, a healthy program receives and handles them as part of
7281 its normal operation. */
7282 signal_stop[GDB_SIGNAL_LWP] = 0;
7283 signal_print[GDB_SIGNAL_LWP] = 0;
7284 signal_stop[GDB_SIGNAL_WAITING] = 0;
7285 signal_print[GDB_SIGNAL_WAITING] = 0;
7286 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7287 signal_print[GDB_SIGNAL_CANCEL] = 0;
7288
7289 /* Update cached state. */
7290 signal_cache_update (-1);
7291
7292 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7293 &stop_on_solib_events, _("\
7294 Set stopping for shared library events."), _("\
7295 Show stopping for shared library events."), _("\
7296 If nonzero, gdb will give control to the user when the dynamic linker\n\
7297 notifies gdb of shared library events. The most common event of interest\n\
7298 to the user would be loading/unloading of a new library."),
7299 set_stop_on_solib_events,
7300 show_stop_on_solib_events,
7301 &setlist, &showlist);
7302
7303 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7304 follow_fork_mode_kind_names,
7305 &follow_fork_mode_string, _("\
7306 Set debugger response to a program call of fork or vfork."), _("\
7307 Show debugger response to a program call of fork or vfork."), _("\
7308 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7309 parent - the original process is debugged after a fork\n\
7310 child - the new process is debugged after a fork\n\
7311 The unfollowed process will continue to run.\n\
7312 By default, the debugger will follow the parent process."),
7313 NULL,
7314 show_follow_fork_mode_string,
7315 &setlist, &showlist);
7316
7317 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7318 follow_exec_mode_names,
7319 &follow_exec_mode_string, _("\
7320 Set debugger response to a program call of exec."), _("\
7321 Show debugger response to a program call of exec."), _("\
7322 An exec call replaces the program image of a process.\n\
7323 \n\
7324 follow-exec-mode can be:\n\
7325 \n\
7326 new - the debugger creates a new inferior and rebinds the process\n\
7327 to this new inferior. The program the process was running before\n\
7328 the exec call can be restarted afterwards by restarting the original\n\
7329 inferior.\n\
7330 \n\
7331 same - the debugger keeps the process bound to the same inferior.\n\
7332 The new executable image replaces the previous executable loaded in\n\
7333 the inferior. Restarting the inferior after the exec call restarts\n\
7334 the executable the process was running after the exec call.\n\
7335 \n\
7336 By default, the debugger will use the same inferior."),
7337 NULL,
7338 show_follow_exec_mode_string,
7339 &setlist, &showlist);
7340
7341 add_setshow_enum_cmd ("scheduler-locking", class_run,
7342 scheduler_enums, &scheduler_mode, _("\
7343 Set mode for locking scheduler during execution."), _("\
7344 Show mode for locking scheduler during execution."), _("\
7345 off == no locking (threads may preempt at any time)\n\
7346 on == full locking (no thread except the current thread may run)\n\
7347 step == scheduler locked during every single-step operation.\n\
7348 In this mode, no other thread may run during a step command.\n\
7349 Other threads may run while stepping over a function call ('next')."),
7350 set_schedlock_func, /* traps on target vector */
7351 show_scheduler_mode,
7352 &setlist, &showlist);
7353
7354 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7355 Set mode for resuming threads of all processes."), _("\
7356 Show mode for resuming threads of all processes."), _("\
7357 When on, execution commands (such as 'continue' or 'next') resume all\n\
7358 threads of all processes. When off (which is the default), execution\n\
7359 commands only resume the threads of the current process. The set of\n\
7360 threads that are resumed is further refined by the scheduler-locking\n\
7361 mode (see help set scheduler-locking)."),
7362 NULL,
7363 show_schedule_multiple,
7364 &setlist, &showlist);
7365
7366 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7367 Set mode of the step operation."), _("\
7368 Show mode of the step operation."), _("\
7369 When set, doing a step over a function without debug line information\n\
7370 will stop at the first instruction of that function. Otherwise, the\n\
7371 function is skipped and the step command stops at a different source line."),
7372 NULL,
7373 show_step_stop_if_no_debug,
7374 &setlist, &showlist);
7375
7376 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7377 &can_use_displaced_stepping, _("\
7378 Set debugger's willingness to use displaced stepping."), _("\
7379 Show debugger's willingness to use displaced stepping."), _("\
7380 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7381 supported by the target architecture. If off, gdb will not use displaced\n\
7382 stepping to step over breakpoints, even if such is supported by the target\n\
7383 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7384 if the target architecture supports it and non-stop mode is active, but will not\n\
7385 use it in all-stop mode (see help set non-stop)."),
7386 NULL,
7387 show_can_use_displaced_stepping,
7388 &setlist, &showlist);
7389
7390 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7391 &exec_direction, _("Set direction of execution.\n\
7392 Options are 'forward' or 'reverse'."),
7393 _("Show direction of execution (forward/reverse)."),
7394 _("Tells gdb whether to execute forward or backward."),
7395 set_exec_direction_func, show_exec_direction_func,
7396 &setlist, &showlist);
7397
7398 /* Set/show detach-on-fork: user-settable mode. */
7399
7400 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7401 Set whether gdb will detach the child of a fork."), _("\
7402 Show whether gdb will detach the child of a fork."), _("\
7403 Tells gdb whether to detach the child of a fork."),
7404 NULL, NULL, &setlist, &showlist);
7405
7406 /* Set/show disable address space randomization mode. */
7407
7408 add_setshow_boolean_cmd ("disable-randomization", class_support,
7409 &disable_randomization, _("\
7410 Set disabling of debuggee's virtual address space randomization."), _("\
7411 Show disabling of debuggee's virtual address space randomization."), _("\
7412 When this mode is on (which is the default), randomization of the virtual\n\
7413 address space is disabled. Standalone programs run with the randomization\n\
7414 enabled by default on some platforms."),
7415 &set_disable_randomization,
7416 &show_disable_randomization,
7417 &setlist, &showlist);
7418
7419 /* ptid initializations */
7420 inferior_ptid = null_ptid;
7421 target_last_wait_ptid = minus_one_ptid;
7422
7423 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7424 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7425 observer_attach_thread_exit (infrun_thread_thread_exit);
7426 observer_attach_inferior_exit (infrun_inferior_exit);
7427
7428 /* Explicitly create without lookup, since that tries to create a
7429 value with a void typed value, and when we get here, gdbarch
7430 isn't initialized yet. At this point, we're quite sure there
7431 isn't another convenience variable of the same name. */
7432 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7433
7434 add_setshow_boolean_cmd ("observer", no_class,
7435 &observer_mode_1, _("\
7436 Set whether gdb controls the inferior in observer mode."), _("\
7437 Show whether gdb controls the inferior in observer mode."), _("\
7438 In observer mode, GDB can get data from the inferior, but not\n\
7439 affect its execution. Registers and memory may not be changed,\n\
7440 breakpoints may not be set, and the program cannot be interrupted\n\
7441 or signalled."),
7442 set_observer_mode,
7443 show_observer_mode,
7444 &setlist,
7445 &showlist);
7446 }