* infrun.c (handle_inferior_event): Do not insert breakpoints at
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51
52 /* Prototypes for local functions */
53
54 static void signals_info (char *, int);
55
56 static void handle_command (char *, int);
57
58 static void sig_print_info (enum target_signal);
59
60 static void sig_print_header (void);
61
62 static void resume_cleanups (void *);
63
64 static int hook_stop_stub (void *);
65
66 static int restore_selected_frame (void *);
67
68 static void build_infrun (void);
69
70 static int follow_fork (void);
71
72 static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75 struct execution_control_state;
76
77 static int currently_stepping (struct execution_control_state *ecs);
78
79 static void xdb_handle_command (char *args, int from_tty);
80
81 static int prepare_to_proceed (int);
82
83 void _initialize_infrun (void);
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89 static void
90 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
91 struct cmd_list_element *c, const char *value)
92 {
93 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
94 }
95
96 /* In asynchronous mode, but simulating synchronous execution. */
97
98 int sync_execution = 0;
99
100 /* wait_for_inferior and normal_stop use this to notify the user
101 when the inferior stopped in a different thread than it had been
102 running in. */
103
104 static ptid_t previous_inferior_ptid;
105
106 int debug_displaced = 0;
107 static void
108 show_debug_displaced (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
112 }
113
114 static int debug_infrun = 0;
115 static void
116 show_debug_infrun (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118 {
119 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
120 }
121
122 /* If the program uses ELF-style shared libraries, then calls to
123 functions in shared libraries go through stubs, which live in a
124 table called the PLT (Procedure Linkage Table). The first time the
125 function is called, the stub sends control to the dynamic linker,
126 which looks up the function's real address, patches the stub so
127 that future calls will go directly to the function, and then passes
128 control to the function.
129
130 If we are stepping at the source level, we don't want to see any of
131 this --- we just want to skip over the stub and the dynamic linker.
132 The simple approach is to single-step until control leaves the
133 dynamic linker.
134
135 However, on some systems (e.g., Red Hat's 5.2 distribution) the
136 dynamic linker calls functions in the shared C library, so you
137 can't tell from the PC alone whether the dynamic linker is still
138 running. In this case, we use a step-resume breakpoint to get us
139 past the dynamic linker, as if we were using "next" to step over a
140 function call.
141
142 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
143 linker code or not. Normally, this means we single-step. However,
144 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
145 address where we can place a step-resume breakpoint to get past the
146 linker's symbol resolution function.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
149 pretty portable way, by comparing the PC against the address ranges
150 of the dynamic linker's sections.
151
152 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
153 it depends on internal details of the dynamic linker. It's usually
154 not too hard to figure out where to put a breakpoint, but it
155 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
156 sanity checking. If it can't figure things out, returning zero and
157 getting the (possibly confusing) stepping behavior is better than
158 signalling an error, which will obscure the change in the
159 inferior's state. */
160
161 /* This function returns TRUE if pc is the address of an instruction
162 that lies within the dynamic linker (such as the event hook, or the
163 dld itself).
164
165 This function must be used only when a dynamic linker event has
166 been caught, and the inferior is being stepped out of the hook, or
167 undefined results are guaranteed. */
168
169 #ifndef SOLIB_IN_DYNAMIC_LINKER
170 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
171 #endif
172
173
174 /* Convert the #defines into values. This is temporary until wfi control
175 flow is completely sorted out. */
176
177 #ifndef CANNOT_STEP_HW_WATCHPOINTS
178 #define CANNOT_STEP_HW_WATCHPOINTS 0
179 #else
180 #undef CANNOT_STEP_HW_WATCHPOINTS
181 #define CANNOT_STEP_HW_WATCHPOINTS 1
182 #endif
183
184 /* Tables of how to react to signals; the user sets them. */
185
186 static unsigned char *signal_stop;
187 static unsigned char *signal_print;
188 static unsigned char *signal_program;
189
190 #define SET_SIGS(nsigs,sigs,flags) \
191 do { \
192 int signum = (nsigs); \
193 while (signum-- > 0) \
194 if ((sigs)[signum]) \
195 (flags)[signum] = 1; \
196 } while (0)
197
198 #define UNSET_SIGS(nsigs,sigs,flags) \
199 do { \
200 int signum = (nsigs); \
201 while (signum-- > 0) \
202 if ((sigs)[signum]) \
203 (flags)[signum] = 0; \
204 } while (0)
205
206 /* Value to pass to target_resume() to cause all threads to resume */
207
208 #define RESUME_ALL (pid_to_ptid (-1))
209
210 /* Command list pointer for the "stop" placeholder. */
211
212 static struct cmd_list_element *stop_command;
213
214 /* Function inferior was in as of last step command. */
215
216 static struct symbol *step_start_function;
217
218 /* Nonzero if we are presently stepping over a breakpoint.
219
220 If we hit a breakpoint or watchpoint, and then continue,
221 we need to single step the current thread with breakpoints
222 disabled, to avoid hitting the same breakpoint or
223 watchpoint again. And we should step just a single
224 thread and keep other threads stopped, so that
225 other threads don't miss breakpoints while they are removed.
226
227 So, this variable simultaneously means that we need to single
228 step the current thread, keep other threads stopped, and that
229 breakpoints should be removed while we step.
230
231 This variable is set either:
232 - in proceed, when we resume inferior on user's explicit request
233 - in keep_going, if handle_inferior_event decides we need to
234 step over breakpoint.
235
236 The variable is cleared in clear_proceed_status, called every
237 time before we call proceed. The proceed calls wait_for_inferior,
238 which calls handle_inferior_event in a loop, and until
239 wait_for_inferior exits, this variable is changed only by keep_going. */
240
241 static int stepping_over_breakpoint;
242
243 /* Nonzero if we want to give control to the user when we're notified
244 of shared library events by the dynamic linker. */
245 static int stop_on_solib_events;
246 static void
247 show_stop_on_solib_events (struct ui_file *file, int from_tty,
248 struct cmd_list_element *c, const char *value)
249 {
250 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
251 value);
252 }
253
254 /* Nonzero means expecting a trace trap
255 and should stop the inferior and return silently when it happens. */
256
257 int stop_after_trap;
258
259 /* Nonzero means expecting a trap and caller will handle it themselves.
260 It is used after attach, due to attaching to a process;
261 when running in the shell before the child program has been exec'd;
262 and when running some kinds of remote stuff (FIXME?). */
263
264 enum stop_kind stop_soon;
265
266 /* Nonzero if proceed is being used for a "finish" command or a similar
267 situation when stop_registers should be saved. */
268
269 int proceed_to_finish;
270
271 /* Save register contents here when about to pop a stack dummy frame,
272 if-and-only-if proceed_to_finish is set.
273 Thus this contains the return value from the called function (assuming
274 values are returned in a register). */
275
276 struct regcache *stop_registers;
277
278 /* Nonzero after stop if current stack frame should be printed. */
279
280 static int stop_print_frame;
281
282 static struct breakpoint *step_resume_breakpoint = NULL;
283
284 /* This is a cached copy of the pid/waitstatus of the last event
285 returned by target_wait()/deprecated_target_wait_hook(). This
286 information is returned by get_last_target_status(). */
287 static ptid_t target_last_wait_ptid;
288 static struct target_waitstatus target_last_waitstatus;
289
290 /* This is used to remember when a fork, vfork or exec event
291 was caught by a catchpoint, and thus the event is to be
292 followed at the next resume of the inferior, and not
293 immediately. */
294 static struct
295 {
296 enum target_waitkind kind;
297 struct
298 {
299 int parent_pid;
300 int child_pid;
301 }
302 fork_event;
303 char *execd_pathname;
304 }
305 pending_follow;
306
307 static const char follow_fork_mode_child[] = "child";
308 static const char follow_fork_mode_parent[] = "parent";
309
310 static const char *follow_fork_mode_kind_names[] = {
311 follow_fork_mode_child,
312 follow_fork_mode_parent,
313 NULL
314 };
315
316 static const char *follow_fork_mode_string = follow_fork_mode_parent;
317 static void
318 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
319 struct cmd_list_element *c, const char *value)
320 {
321 fprintf_filtered (file, _("\
322 Debugger response to a program call of fork or vfork is \"%s\".\n"),
323 value);
324 }
325 \f
326
327 static int
328 follow_fork (void)
329 {
330 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
331
332 return target_follow_fork (follow_child);
333 }
334
335 void
336 follow_inferior_reset_breakpoints (void)
337 {
338 /* Was there a step_resume breakpoint? (There was if the user
339 did a "next" at the fork() call.) If so, explicitly reset its
340 thread number.
341
342 step_resumes are a form of bp that are made to be per-thread.
343 Since we created the step_resume bp when the parent process
344 was being debugged, and now are switching to the child process,
345 from the breakpoint package's viewpoint, that's a switch of
346 "threads". We must update the bp's notion of which thread
347 it is for, or it'll be ignored when it triggers. */
348
349 if (step_resume_breakpoint)
350 breakpoint_re_set_thread (step_resume_breakpoint);
351
352 /* Reinsert all breakpoints in the child. The user may have set
353 breakpoints after catching the fork, in which case those
354 were never set in the child, but only in the parent. This makes
355 sure the inserted breakpoints match the breakpoint list. */
356
357 breakpoint_re_set ();
358 insert_breakpoints ();
359 }
360
361 /* EXECD_PATHNAME is assumed to be non-NULL. */
362
363 static void
364 follow_exec (int pid, char *execd_pathname)
365 {
366 int saved_pid = pid;
367 struct target_ops *tgt;
368
369 /* This is an exec event that we actually wish to pay attention to.
370 Refresh our symbol table to the newly exec'd program, remove any
371 momentary bp's, etc.
372
373 If there are breakpoints, they aren't really inserted now,
374 since the exec() transformed our inferior into a fresh set
375 of instructions.
376
377 We want to preserve symbolic breakpoints on the list, since
378 we have hopes that they can be reset after the new a.out's
379 symbol table is read.
380
381 However, any "raw" breakpoints must be removed from the list
382 (e.g., the solib bp's), since their address is probably invalid
383 now.
384
385 And, we DON'T want to call delete_breakpoints() here, since
386 that may write the bp's "shadow contents" (the instruction
387 value that was overwritten witha TRAP instruction). Since
388 we now have a new a.out, those shadow contents aren't valid. */
389 update_breakpoints_after_exec ();
390
391 /* If there was one, it's gone now. We cannot truly step-to-next
392 statement through an exec(). */
393 step_resume_breakpoint = NULL;
394 step_range_start = 0;
395 step_range_end = 0;
396
397 /* What is this a.out's name? */
398 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
399
400 /* We've followed the inferior through an exec. Therefore, the
401 inferior has essentially been killed & reborn. */
402
403 gdb_flush (gdb_stdout);
404 generic_mourn_inferior ();
405 /* Because mourn_inferior resets inferior_ptid. */
406 inferior_ptid = pid_to_ptid (saved_pid);
407
408 if (gdb_sysroot && *gdb_sysroot)
409 {
410 char *name = alloca (strlen (gdb_sysroot)
411 + strlen (execd_pathname)
412 + 1);
413 strcpy (name, gdb_sysroot);
414 strcat (name, execd_pathname);
415 execd_pathname = name;
416 }
417
418 /* That a.out is now the one to use. */
419 exec_file_attach (execd_pathname, 0);
420
421 /* And also is where symbols can be found. */
422 symbol_file_add_main (execd_pathname, 0);
423
424 /* Reset the shared library package. This ensures that we get
425 a shlib event when the child reaches "_start", at which point
426 the dld will have had a chance to initialize the child. */
427 no_shared_libraries (NULL, 0);
428 #ifdef SOLIB_CREATE_INFERIOR_HOOK
429 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
430 #else
431 solib_create_inferior_hook ();
432 #endif
433
434 /* Reinsert all breakpoints. (Those which were symbolic have
435 been reset to the proper address in the new a.out, thanks
436 to symbol_file_command...) */
437 insert_breakpoints ();
438
439 /* The next resume of this inferior should bring it to the shlib
440 startup breakpoints. (If the user had also set bp's on
441 "main" from the old (parent) process, then they'll auto-
442 matically get reset there in the new process.) */
443 }
444
445 /* Non-zero if we just simulating a single-step. This is needed
446 because we cannot remove the breakpoints in the inferior process
447 until after the `wait' in `wait_for_inferior'. */
448 static int singlestep_breakpoints_inserted_p = 0;
449
450 /* The thread we inserted single-step breakpoints for. */
451 static ptid_t singlestep_ptid;
452
453 /* PC when we started this single-step. */
454 static CORE_ADDR singlestep_pc;
455
456 /* If another thread hit the singlestep breakpoint, we save the original
457 thread here so that we can resume single-stepping it later. */
458 static ptid_t saved_singlestep_ptid;
459 static int stepping_past_singlestep_breakpoint;
460
461 /* If not equal to null_ptid, this means that after stepping over breakpoint
462 is finished, we need to switch to deferred_step_ptid, and step it.
463
464 The use case is when one thread has hit a breakpoint, and then the user
465 has switched to another thread and issued 'step'. We need to step over
466 breakpoint in the thread which hit the breakpoint, but then continue
467 stepping the thread user has selected. */
468 static ptid_t deferred_step_ptid;
469 \f
470 /* Displaced stepping. */
471
472 /* In non-stop debugging mode, we must take special care to manage
473 breakpoints properly; in particular, the traditional strategy for
474 stepping a thread past a breakpoint it has hit is unsuitable.
475 'Displaced stepping' is a tactic for stepping one thread past a
476 breakpoint it has hit while ensuring that other threads running
477 concurrently will hit the breakpoint as they should.
478
479 The traditional way to step a thread T off a breakpoint in a
480 multi-threaded program in all-stop mode is as follows:
481
482 a0) Initially, all threads are stopped, and breakpoints are not
483 inserted.
484 a1) We single-step T, leaving breakpoints uninserted.
485 a2) We insert breakpoints, and resume all threads.
486
487 In non-stop debugging, however, this strategy is unsuitable: we
488 don't want to have to stop all threads in the system in order to
489 continue or step T past a breakpoint. Instead, we use displaced
490 stepping:
491
492 n0) Initially, T is stopped, other threads are running, and
493 breakpoints are inserted.
494 n1) We copy the instruction "under" the breakpoint to a separate
495 location, outside the main code stream, making any adjustments
496 to the instruction, register, and memory state as directed by
497 T's architecture.
498 n2) We single-step T over the instruction at its new location.
499 n3) We adjust the resulting register and memory state as directed
500 by T's architecture. This includes resetting T's PC to point
501 back into the main instruction stream.
502 n4) We resume T.
503
504 This approach depends on the following gdbarch methods:
505
506 - gdbarch_max_insn_length and gdbarch_displaced_step_location
507 indicate where to copy the instruction, and how much space must
508 be reserved there. We use these in step n1.
509
510 - gdbarch_displaced_step_copy_insn copies a instruction to a new
511 address, and makes any necessary adjustments to the instruction,
512 register contents, and memory. We use this in step n1.
513
514 - gdbarch_displaced_step_fixup adjusts registers and memory after
515 we have successfuly single-stepped the instruction, to yield the
516 same effect the instruction would have had if we had executed it
517 at its original address. We use this in step n3.
518
519 - gdbarch_displaced_step_free_closure provides cleanup.
520
521 The gdbarch_displaced_step_copy_insn and
522 gdbarch_displaced_step_fixup functions must be written so that
523 copying an instruction with gdbarch_displaced_step_copy_insn,
524 single-stepping across the copied instruction, and then applying
525 gdbarch_displaced_insn_fixup should have the same effects on the
526 thread's memory and registers as stepping the instruction in place
527 would have. Exactly which responsibilities fall to the copy and
528 which fall to the fixup is up to the author of those functions.
529
530 See the comments in gdbarch.sh for details.
531
532 Note that displaced stepping and software single-step cannot
533 currently be used in combination, although with some care I think
534 they could be made to. Software single-step works by placing
535 breakpoints on all possible subsequent instructions; if the
536 displaced instruction is a PC-relative jump, those breakpoints
537 could fall in very strange places --- on pages that aren't
538 executable, or at addresses that are not proper instruction
539 boundaries. (We do generally let other threads run while we wait
540 to hit the software single-step breakpoint, and they might
541 encounter such a corrupted instruction.) One way to work around
542 this would be to have gdbarch_displaced_step_copy_insn fully
543 simulate the effect of PC-relative instructions (and return NULL)
544 on architectures that use software single-stepping.
545
546 In non-stop mode, we can have independent and simultaneous step
547 requests, so more than one thread may need to simultaneously step
548 over a breakpoint. The current implementation assumes there is
549 only one scratch space per process. In this case, we have to
550 serialize access to the scratch space. If thread A wants to step
551 over a breakpoint, but we are currently waiting for some other
552 thread to complete a displaced step, we leave thread A stopped and
553 place it in the displaced_step_request_queue. Whenever a displaced
554 step finishes, we pick the next thread in the queue and start a new
555 displaced step operation on it. See displaced_step_prepare and
556 displaced_step_fixup for details. */
557
558 /* If this is not null_ptid, this is the thread carrying out a
559 displaced single-step. This thread's state will require fixing up
560 once it has completed its step. */
561 static ptid_t displaced_step_ptid;
562
563 struct displaced_step_request
564 {
565 ptid_t ptid;
566 struct displaced_step_request *next;
567 };
568
569 /* A queue of pending displaced stepping requests. */
570 struct displaced_step_request *displaced_step_request_queue;
571
572 /* The architecture the thread had when we stepped it. */
573 static struct gdbarch *displaced_step_gdbarch;
574
575 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
576 for post-step cleanup. */
577 static struct displaced_step_closure *displaced_step_closure;
578
579 /* The address of the original instruction, and the copy we made. */
580 static CORE_ADDR displaced_step_original, displaced_step_copy;
581
582 /* Saved contents of copy area. */
583 static gdb_byte *displaced_step_saved_copy;
584
585 /* When this is non-zero, we are allowed to use displaced stepping, if
586 the architecture supports it. When this is zero, we use
587 traditional the hold-and-step approach. */
588 int can_use_displaced_stepping = 1;
589 static void
590 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
591 struct cmd_list_element *c,
592 const char *value)
593 {
594 fprintf_filtered (file, _("\
595 Debugger's willingness to use displaced stepping to step over "
596 "breakpoints is %s.\n"), value);
597 }
598
599 /* Return non-zero if displaced stepping is enabled, and can be used
600 with GDBARCH. */
601 static int
602 use_displaced_stepping (struct gdbarch *gdbarch)
603 {
604 return (can_use_displaced_stepping
605 && gdbarch_displaced_step_copy_insn_p (gdbarch));
606 }
607
608 /* Clean out any stray displaced stepping state. */
609 static void
610 displaced_step_clear (void)
611 {
612 /* Indicate that there is no cleanup pending. */
613 displaced_step_ptid = null_ptid;
614
615 if (displaced_step_closure)
616 {
617 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
618 displaced_step_closure);
619 displaced_step_closure = NULL;
620 }
621 }
622
623 static void
624 cleanup_displaced_step_closure (void *ptr)
625 {
626 struct displaced_step_closure *closure = ptr;
627
628 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
629 }
630
631 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
632 void
633 displaced_step_dump_bytes (struct ui_file *file,
634 const gdb_byte *buf,
635 size_t len)
636 {
637 int i;
638
639 for (i = 0; i < len; i++)
640 fprintf_unfiltered (file, "%02x ", buf[i]);
641 fputs_unfiltered ("\n", file);
642 }
643
644 /* Prepare to single-step, using displaced stepping.
645
646 Note that we cannot use displaced stepping when we have a signal to
647 deliver. If we have a signal to deliver and an instruction to step
648 over, then after the step, there will be no indication from the
649 target whether the thread entered a signal handler or ignored the
650 signal and stepped over the instruction successfully --- both cases
651 result in a simple SIGTRAP. In the first case we mustn't do a
652 fixup, and in the second case we must --- but we can't tell which.
653 Comments in the code for 'random signals' in handle_inferior_event
654 explain how we handle this case instead.
655
656 Returns 1 if preparing was successful -- this thread is going to be
657 stepped now; or 0 if displaced stepping this thread got queued. */
658 static int
659 displaced_step_prepare (ptid_t ptid)
660 {
661 struct cleanup *old_cleanups;
662 struct regcache *regcache = get_thread_regcache (ptid);
663 struct gdbarch *gdbarch = get_regcache_arch (regcache);
664 CORE_ADDR original, copy;
665 ULONGEST len;
666 struct displaced_step_closure *closure;
667
668 /* We should never reach this function if the architecture does not
669 support displaced stepping. */
670 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
671
672 /* For the first cut, we're displaced stepping one thread at a
673 time. */
674
675 if (!ptid_equal (displaced_step_ptid, null_ptid))
676 {
677 /* Already waiting for a displaced step to finish. Defer this
678 request and place in queue. */
679 struct displaced_step_request *req, *new_req;
680
681 if (debug_displaced)
682 fprintf_unfiltered (gdb_stdlog,
683 "displaced: defering step of %s\n",
684 target_pid_to_str (ptid));
685
686 new_req = xmalloc (sizeof (*new_req));
687 new_req->ptid = ptid;
688 new_req->next = NULL;
689
690 if (displaced_step_request_queue)
691 {
692 for (req = displaced_step_request_queue;
693 req && req->next;
694 req = req->next)
695 ;
696 req->next = new_req;
697 }
698 else
699 displaced_step_request_queue = new_req;
700
701 return 0;
702 }
703 else
704 {
705 if (debug_displaced)
706 fprintf_unfiltered (gdb_stdlog,
707 "displaced: stepping %s now\n",
708 target_pid_to_str (ptid));
709 }
710
711 displaced_step_clear ();
712
713 original = read_pc_pid (ptid);
714
715 copy = gdbarch_displaced_step_location (gdbarch);
716 len = gdbarch_max_insn_length (gdbarch);
717
718 /* Save the original contents of the copy area. */
719 displaced_step_saved_copy = xmalloc (len);
720 old_cleanups = make_cleanup (free_current_contents,
721 &displaced_step_saved_copy);
722 read_memory (copy, displaced_step_saved_copy, len);
723 if (debug_displaced)
724 {
725 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
726 paddr_nz (copy));
727 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
728 };
729
730 closure = gdbarch_displaced_step_copy_insn (gdbarch,
731 original, copy, regcache);
732
733 /* We don't support the fully-simulated case at present. */
734 gdb_assert (closure);
735
736 make_cleanup (cleanup_displaced_step_closure, closure);
737
738 /* Resume execution at the copy. */
739 write_pc_pid (copy, ptid);
740
741 discard_cleanups (old_cleanups);
742
743 if (debug_displaced)
744 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
745 paddr_nz (copy));
746
747 /* Save the information we need to fix things up if the step
748 succeeds. */
749 displaced_step_ptid = ptid;
750 displaced_step_gdbarch = gdbarch;
751 displaced_step_closure = closure;
752 displaced_step_original = original;
753 displaced_step_copy = copy;
754 return 1;
755 }
756
757 static void
758 displaced_step_clear_cleanup (void *ignore)
759 {
760 displaced_step_clear ();
761 }
762
763 static void
764 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
765 {
766 struct cleanup *ptid_cleanup = save_inferior_ptid ();
767 inferior_ptid = ptid;
768 write_memory (memaddr, myaddr, len);
769 do_cleanups (ptid_cleanup);
770 }
771
772 static void
773 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
774 {
775 struct cleanup *old_cleanups;
776
777 /* Was this event for the pid we displaced? */
778 if (ptid_equal (displaced_step_ptid, null_ptid)
779 || ! ptid_equal (displaced_step_ptid, event_ptid))
780 return;
781
782 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
783
784 /* Restore the contents of the copy area. */
785 {
786 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
787 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
788 displaced_step_saved_copy, len);
789 if (debug_displaced)
790 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
791 paddr_nz (displaced_step_copy));
792 }
793
794 /* Did the instruction complete successfully? */
795 if (signal == TARGET_SIGNAL_TRAP)
796 {
797 /* Fix up the resulting state. */
798 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
799 displaced_step_closure,
800 displaced_step_original,
801 displaced_step_copy,
802 get_thread_regcache (displaced_step_ptid));
803 }
804 else
805 {
806 /* Since the instruction didn't complete, all we can do is
807 relocate the PC. */
808 CORE_ADDR pc = read_pc_pid (event_ptid);
809 pc = displaced_step_original + (pc - displaced_step_copy);
810 write_pc_pid (pc, event_ptid);
811 }
812
813 do_cleanups (old_cleanups);
814
815 /* Are there any pending displaced stepping requests? If so, run
816 one now. */
817 if (displaced_step_request_queue)
818 {
819 struct displaced_step_request *head;
820 ptid_t ptid;
821
822 head = displaced_step_request_queue;
823 ptid = head->ptid;
824 displaced_step_request_queue = head->next;
825 xfree (head);
826
827 if (debug_displaced)
828 fprintf_unfiltered (gdb_stdlog,
829 "displaced: stepping queued %s now\n",
830 target_pid_to_str (ptid));
831
832
833 displaced_step_ptid = null_ptid;
834 displaced_step_prepare (ptid);
835 target_resume (ptid, 1, TARGET_SIGNAL_0);
836 }
837 }
838
839 \f
840 /* Resuming. */
841
842 /* Things to clean up if we QUIT out of resume (). */
843 static void
844 resume_cleanups (void *ignore)
845 {
846 normal_stop ();
847 }
848
849 static const char schedlock_off[] = "off";
850 static const char schedlock_on[] = "on";
851 static const char schedlock_step[] = "step";
852 static const char *scheduler_enums[] = {
853 schedlock_off,
854 schedlock_on,
855 schedlock_step,
856 NULL
857 };
858 static const char *scheduler_mode = schedlock_off;
859 static void
860 show_scheduler_mode (struct ui_file *file, int from_tty,
861 struct cmd_list_element *c, const char *value)
862 {
863 fprintf_filtered (file, _("\
864 Mode for locking scheduler during execution is \"%s\".\n"),
865 value);
866 }
867
868 static void
869 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
870 {
871 if (!target_can_lock_scheduler)
872 {
873 scheduler_mode = schedlock_off;
874 error (_("Target '%s' cannot support this command."), target_shortname);
875 }
876 }
877
878
879 /* Resume the inferior, but allow a QUIT. This is useful if the user
880 wants to interrupt some lengthy single-stepping operation
881 (for child processes, the SIGINT goes to the inferior, and so
882 we get a SIGINT random_signal, but for remote debugging and perhaps
883 other targets, that's not true).
884
885 STEP nonzero if we should step (zero to continue instead).
886 SIG is the signal to give the inferior (zero for none). */
887 void
888 resume (int step, enum target_signal sig)
889 {
890 int should_resume = 1;
891 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
892 CORE_ADDR pc = read_pc ();
893 QUIT;
894
895 if (debug_infrun)
896 fprintf_unfiltered (gdb_stdlog,
897 "infrun: resume (step=%d, signal=%d), "
898 "stepping_over_breakpoint=%d\n",
899 step, sig, stepping_over_breakpoint);
900
901 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
902 over an instruction that causes a page fault without triggering
903 a hardware watchpoint. The kernel properly notices that it shouldn't
904 stop, because the hardware watchpoint is not triggered, but it forgets
905 the step request and continues the program normally.
906 Work around the problem by removing hardware watchpoints if a step is
907 requested, GDB will check for a hardware watchpoint trigger after the
908 step anyway. */
909 if (CANNOT_STEP_HW_WATCHPOINTS && step)
910 remove_hw_watchpoints ();
911
912
913 /* Normally, by the time we reach `resume', the breakpoints are either
914 removed or inserted, as appropriate. The exception is if we're sitting
915 at a permanent breakpoint; we need to step over it, but permanent
916 breakpoints can't be removed. So we have to test for it here. */
917 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
918 {
919 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
920 gdbarch_skip_permanent_breakpoint (current_gdbarch,
921 get_current_regcache ());
922 else
923 error (_("\
924 The program is stopped at a permanent breakpoint, but GDB does not know\n\
925 how to step past a permanent breakpoint on this architecture. Try using\n\
926 a command like `return' or `jump' to continue execution."));
927 }
928
929 /* If enabled, step over breakpoints by executing a copy of the
930 instruction at a different address.
931
932 We can't use displaced stepping when we have a signal to deliver;
933 the comments for displaced_step_prepare explain why. The
934 comments in the handle_inferior event for dealing with 'random
935 signals' explain what we do instead. */
936 if (use_displaced_stepping (current_gdbarch)
937 && stepping_over_breakpoint
938 && sig == TARGET_SIGNAL_0)
939 {
940 if (!displaced_step_prepare (inferior_ptid))
941 /* Got placed in displaced stepping queue. Will be resumed
942 later when all the currently queued displaced stepping
943 requests finish. */
944 return;
945 }
946
947 if (step && gdbarch_software_single_step_p (current_gdbarch))
948 {
949 /* Do it the hard way, w/temp breakpoints */
950 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
951 {
952 /* ...and don't ask hardware to do it. */
953 step = 0;
954 /* and do not pull these breakpoints until after a `wait' in
955 `wait_for_inferior' */
956 singlestep_breakpoints_inserted_p = 1;
957 singlestep_ptid = inferior_ptid;
958 singlestep_pc = pc;
959 }
960 }
961
962 /* If there were any forks/vforks/execs that were caught and are
963 now to be followed, then do so. */
964 switch (pending_follow.kind)
965 {
966 case TARGET_WAITKIND_FORKED:
967 case TARGET_WAITKIND_VFORKED:
968 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
969 if (follow_fork ())
970 should_resume = 0;
971 break;
972
973 case TARGET_WAITKIND_EXECD:
974 /* follow_exec is called as soon as the exec event is seen. */
975 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
976 break;
977
978 default:
979 break;
980 }
981
982 /* Install inferior's terminal modes. */
983 target_terminal_inferior ();
984
985 if (should_resume)
986 {
987 ptid_t resume_ptid;
988
989 resume_ptid = RESUME_ALL; /* Default */
990
991 /* If STEP is set, it's a request to use hardware stepping
992 facilities. But in that case, we should never
993 use singlestep breakpoint. */
994 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
995
996 if (singlestep_breakpoints_inserted_p
997 && stepping_past_singlestep_breakpoint)
998 {
999 /* The situation here is as follows. In thread T1 we wanted to
1000 single-step. Lacking hardware single-stepping we've
1001 set breakpoint at the PC of the next instruction -- call it
1002 P. After resuming, we've hit that breakpoint in thread T2.
1003 Now we've removed original breakpoint, inserted breakpoint
1004 at P+1, and try to step to advance T2 past breakpoint.
1005 We need to step only T2, as if T1 is allowed to freely run,
1006 it can run past P, and if other threads are allowed to run,
1007 they can hit breakpoint at P+1, and nested hits of single-step
1008 breakpoints is not something we'd want -- that's complicated
1009 to support, and has no value. */
1010 resume_ptid = inferior_ptid;
1011 }
1012
1013 if ((step || singlestep_breakpoints_inserted_p)
1014 && stepping_over_breakpoint)
1015 {
1016 /* We're allowing a thread to run past a breakpoint it has
1017 hit, by single-stepping the thread with the breakpoint
1018 removed. In which case, we need to single-step only this
1019 thread, and keep others stopped, as they can miss this
1020 breakpoint if allowed to run.
1021
1022 The current code actually removes all breakpoints when
1023 doing this, not just the one being stepped over, so if we
1024 let other threads run, we can actually miss any
1025 breakpoint, not just the one at PC. */
1026 resume_ptid = inferior_ptid;
1027 }
1028
1029 if ((scheduler_mode == schedlock_on)
1030 || (scheduler_mode == schedlock_step
1031 && (step || singlestep_breakpoints_inserted_p)))
1032 {
1033 /* User-settable 'scheduler' mode requires solo thread resume. */
1034 resume_ptid = inferior_ptid;
1035 }
1036
1037 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
1038 {
1039 /* Most targets can step a breakpoint instruction, thus
1040 executing it normally. But if this one cannot, just
1041 continue and we will hit it anyway. */
1042 if (step && breakpoint_inserted_here_p (pc))
1043 step = 0;
1044 }
1045
1046 if (debug_displaced
1047 && use_displaced_stepping (current_gdbarch)
1048 && stepping_over_breakpoint)
1049 {
1050 CORE_ADDR actual_pc = read_pc_pid (resume_ptid);
1051 gdb_byte buf[4];
1052
1053 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1054 paddr_nz (actual_pc));
1055 read_memory (actual_pc, buf, sizeof (buf));
1056 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1057 }
1058
1059 target_resume (resume_ptid, step, sig);
1060 }
1061
1062 discard_cleanups (old_cleanups);
1063 }
1064 \f
1065 /* Proceeding. */
1066
1067 /* Clear out all variables saying what to do when inferior is continued.
1068 First do this, then set the ones you want, then call `proceed'. */
1069
1070 void
1071 clear_proceed_status (void)
1072 {
1073 stepping_over_breakpoint = 0;
1074 step_range_start = 0;
1075 step_range_end = 0;
1076 step_frame_id = null_frame_id;
1077 step_over_calls = STEP_OVER_UNDEBUGGABLE;
1078 stop_after_trap = 0;
1079 stop_soon = NO_STOP_QUIETLY;
1080 proceed_to_finish = 0;
1081 breakpoint_proceeded = 1; /* We're about to proceed... */
1082
1083 if (stop_registers)
1084 {
1085 regcache_xfree (stop_registers);
1086 stop_registers = NULL;
1087 }
1088
1089 /* Discard any remaining commands or status from previous stop. */
1090 bpstat_clear (&stop_bpstat);
1091 }
1092
1093 /* This should be suitable for any targets that support threads. */
1094
1095 static int
1096 prepare_to_proceed (int step)
1097 {
1098 ptid_t wait_ptid;
1099 struct target_waitstatus wait_status;
1100
1101 /* Get the last target status returned by target_wait(). */
1102 get_last_target_status (&wait_ptid, &wait_status);
1103
1104 /* Make sure we were stopped at a breakpoint. */
1105 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1106 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1107 {
1108 return 0;
1109 }
1110
1111 /* Switched over from WAIT_PID. */
1112 if (!ptid_equal (wait_ptid, minus_one_ptid)
1113 && !ptid_equal (inferior_ptid, wait_ptid)
1114 && breakpoint_here_p (read_pc_pid (wait_ptid)))
1115 {
1116 /* If stepping, remember current thread to switch back to. */
1117 if (step)
1118 {
1119 deferred_step_ptid = inferior_ptid;
1120 }
1121
1122 /* Switch back to WAIT_PID thread. */
1123 switch_to_thread (wait_ptid);
1124
1125 /* We return 1 to indicate that there is a breakpoint here,
1126 so we need to step over it before continuing to avoid
1127 hitting it straight away. */
1128 return 1;
1129 }
1130
1131 return 0;
1132 }
1133
1134 /* Record the pc of the program the last time it stopped. This is
1135 just used internally by wait_for_inferior, but need to be preserved
1136 over calls to it and cleared when the inferior is started. */
1137 static CORE_ADDR prev_pc;
1138
1139 /* Basic routine for continuing the program in various fashions.
1140
1141 ADDR is the address to resume at, or -1 for resume where stopped.
1142 SIGGNAL is the signal to give it, or 0 for none,
1143 or -1 for act according to how it stopped.
1144 STEP is nonzero if should trap after one instruction.
1145 -1 means return after that and print nothing.
1146 You should probably set various step_... variables
1147 before calling here, if you are stepping.
1148
1149 You should call clear_proceed_status before calling proceed. */
1150
1151 void
1152 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1153 {
1154 int oneproc = 0;
1155
1156 if (step > 0)
1157 step_start_function = find_pc_function (read_pc ());
1158 if (step < 0)
1159 stop_after_trap = 1;
1160
1161 if (addr == (CORE_ADDR) -1)
1162 {
1163 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
1164 /* There is a breakpoint at the address we will resume at,
1165 step one instruction before inserting breakpoints so that
1166 we do not stop right away (and report a second hit at this
1167 breakpoint). */
1168 oneproc = 1;
1169 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
1170 && gdbarch_single_step_through_delay (current_gdbarch,
1171 get_current_frame ()))
1172 /* We stepped onto an instruction that needs to be stepped
1173 again before re-inserting the breakpoint, do so. */
1174 oneproc = 1;
1175 }
1176 else
1177 {
1178 write_pc (addr);
1179 }
1180
1181 if (debug_infrun)
1182 fprintf_unfiltered (gdb_stdlog,
1183 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1184 paddr_nz (addr), siggnal, step);
1185
1186 /* In a multi-threaded task we may select another thread
1187 and then continue or step.
1188
1189 But if the old thread was stopped at a breakpoint, it
1190 will immediately cause another breakpoint stop without
1191 any execution (i.e. it will report a breakpoint hit
1192 incorrectly). So we must step over it first.
1193
1194 prepare_to_proceed checks the current thread against the thread
1195 that reported the most recent event. If a step-over is required
1196 it returns TRUE and sets the current thread to the old thread. */
1197 if (prepare_to_proceed (step))
1198 oneproc = 1;
1199
1200 if (oneproc)
1201 {
1202 stepping_over_breakpoint = 1;
1203 /* If displaced stepping is enabled, we can step over the
1204 breakpoint without hitting it, so leave all breakpoints
1205 inserted. Otherwise we need to disable all breakpoints, step
1206 one instruction, and then re-add them when that step is
1207 finished. */
1208 if (!use_displaced_stepping (current_gdbarch))
1209 remove_breakpoints ();
1210 }
1211
1212 /* We can insert breakpoints if we're not trying to step over one,
1213 or if we are stepping over one but we're using displaced stepping
1214 to do so. */
1215 if (! stepping_over_breakpoint || use_displaced_stepping (current_gdbarch))
1216 insert_breakpoints ();
1217
1218 if (siggnal != TARGET_SIGNAL_DEFAULT)
1219 stop_signal = siggnal;
1220 /* If this signal should not be seen by program,
1221 give it zero. Used for debugging signals. */
1222 else if (!signal_program[stop_signal])
1223 stop_signal = TARGET_SIGNAL_0;
1224
1225 annotate_starting ();
1226
1227 /* Make sure that output from GDB appears before output from the
1228 inferior. */
1229 gdb_flush (gdb_stdout);
1230
1231 /* Refresh prev_pc value just prior to resuming. This used to be
1232 done in stop_stepping, however, setting prev_pc there did not handle
1233 scenarios such as inferior function calls or returning from
1234 a function via the return command. In those cases, the prev_pc
1235 value was not set properly for subsequent commands. The prev_pc value
1236 is used to initialize the starting line number in the ecs. With an
1237 invalid value, the gdb next command ends up stopping at the position
1238 represented by the next line table entry past our start position.
1239 On platforms that generate one line table entry per line, this
1240 is not a problem. However, on the ia64, the compiler generates
1241 extraneous line table entries that do not increase the line number.
1242 When we issue the gdb next command on the ia64 after an inferior call
1243 or a return command, we often end up a few instructions forward, still
1244 within the original line we started.
1245
1246 An attempt was made to have init_execution_control_state () refresh
1247 the prev_pc value before calculating the line number. This approach
1248 did not work because on platforms that use ptrace, the pc register
1249 cannot be read unless the inferior is stopped. At that point, we
1250 are not guaranteed the inferior is stopped and so the read_pc ()
1251 call can fail. Setting the prev_pc value here ensures the value is
1252 updated correctly when the inferior is stopped. */
1253 prev_pc = read_pc ();
1254
1255 /* Resume inferior. */
1256 resume (oneproc || step || bpstat_should_step (), stop_signal);
1257
1258 /* Wait for it to stop (if not standalone)
1259 and in any case decode why it stopped, and act accordingly. */
1260 /* Do this only if we are not using the event loop, or if the target
1261 does not support asynchronous execution. */
1262 if (!target_can_async_p ())
1263 {
1264 wait_for_inferior (0);
1265 normal_stop ();
1266 }
1267 }
1268 \f
1269
1270 /* Start remote-debugging of a machine over a serial link. */
1271
1272 void
1273 start_remote (int from_tty)
1274 {
1275 init_thread_list ();
1276 init_wait_for_inferior ();
1277 stop_soon = STOP_QUIETLY_REMOTE;
1278 stepping_over_breakpoint = 0;
1279
1280 /* Always go on waiting for the target, regardless of the mode. */
1281 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1282 indicate to wait_for_inferior that a target should timeout if
1283 nothing is returned (instead of just blocking). Because of this,
1284 targets expecting an immediate response need to, internally, set
1285 things up so that the target_wait() is forced to eventually
1286 timeout. */
1287 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1288 differentiate to its caller what the state of the target is after
1289 the initial open has been performed. Here we're assuming that
1290 the target has stopped. It should be possible to eventually have
1291 target_open() return to the caller an indication that the target
1292 is currently running and GDB state should be set to the same as
1293 for an async run. */
1294 wait_for_inferior (0);
1295
1296 /* Now that the inferior has stopped, do any bookkeeping like
1297 loading shared libraries. We want to do this before normal_stop,
1298 so that the displayed frame is up to date. */
1299 post_create_inferior (&current_target, from_tty);
1300
1301 normal_stop ();
1302 }
1303
1304 /* Initialize static vars when a new inferior begins. */
1305
1306 void
1307 init_wait_for_inferior (void)
1308 {
1309 /* These are meaningless until the first time through wait_for_inferior. */
1310 prev_pc = 0;
1311
1312 breakpoint_init_inferior (inf_starting);
1313
1314 /* Don't confuse first call to proceed(). */
1315 stop_signal = TARGET_SIGNAL_0;
1316
1317 /* The first resume is not following a fork/vfork/exec. */
1318 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1319
1320 clear_proceed_status ();
1321
1322 stepping_past_singlestep_breakpoint = 0;
1323 deferred_step_ptid = null_ptid;
1324
1325 target_last_wait_ptid = minus_one_ptid;
1326
1327 displaced_step_clear ();
1328 }
1329
1330 \f
1331 /* This enum encodes possible reasons for doing a target_wait, so that
1332 wfi can call target_wait in one place. (Ultimately the call will be
1333 moved out of the infinite loop entirely.) */
1334
1335 enum infwait_states
1336 {
1337 infwait_normal_state,
1338 infwait_thread_hop_state,
1339 infwait_step_watch_state,
1340 infwait_nonstep_watch_state
1341 };
1342
1343 /* Why did the inferior stop? Used to print the appropriate messages
1344 to the interface from within handle_inferior_event(). */
1345 enum inferior_stop_reason
1346 {
1347 /* Step, next, nexti, stepi finished. */
1348 END_STEPPING_RANGE,
1349 /* Inferior terminated by signal. */
1350 SIGNAL_EXITED,
1351 /* Inferior exited. */
1352 EXITED,
1353 /* Inferior received signal, and user asked to be notified. */
1354 SIGNAL_RECEIVED
1355 };
1356
1357 /* This structure contains what used to be local variables in
1358 wait_for_inferior. Probably many of them can return to being
1359 locals in handle_inferior_event. */
1360
1361 struct execution_control_state
1362 {
1363 struct target_waitstatus ws;
1364 struct target_waitstatus *wp;
1365 /* Should we step over breakpoint next time keep_going
1366 is called? */
1367 int stepping_over_breakpoint;
1368 int random_signal;
1369 CORE_ADDR stop_func_start;
1370 CORE_ADDR stop_func_end;
1371 char *stop_func_name;
1372 struct symtab_and_line sal;
1373 int current_line;
1374 struct symtab *current_symtab;
1375 int handling_longjmp; /* FIXME */
1376 ptid_t ptid;
1377 ptid_t saved_inferior_ptid;
1378 int step_after_step_resume_breakpoint;
1379 int stepping_through_solib_after_catch;
1380 bpstat stepping_through_solib_catchpoints;
1381 int new_thread_event;
1382 struct target_waitstatus tmpstatus;
1383 enum infwait_states infwait_state;
1384 ptid_t waiton_ptid;
1385 int wait_some_more;
1386 };
1387
1388 void init_execution_control_state (struct execution_control_state *ecs);
1389
1390 void handle_inferior_event (struct execution_control_state *ecs);
1391
1392 static void step_into_function (struct execution_control_state *ecs);
1393 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1394 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1395 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1396 struct frame_id sr_id);
1397 static void stop_stepping (struct execution_control_state *ecs);
1398 static void prepare_to_wait (struct execution_control_state *ecs);
1399 static void keep_going (struct execution_control_state *ecs);
1400 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1401 int stop_info);
1402
1403 /* Wait for control to return from inferior to debugger.
1404
1405 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1406 as if they were SIGTRAP signals. This can be useful during
1407 the startup sequence on some targets such as HP/UX, where
1408 we receive an EXEC event instead of the expected SIGTRAP.
1409
1410 If inferior gets a signal, we may decide to start it up again
1411 instead of returning. That is why there is a loop in this function.
1412 When this function actually returns it means the inferior
1413 should be left stopped and GDB should read more commands. */
1414
1415 void
1416 wait_for_inferior (int treat_exec_as_sigtrap)
1417 {
1418 struct cleanup *old_cleanups;
1419 struct execution_control_state ecss;
1420 struct execution_control_state *ecs;
1421
1422 if (debug_infrun)
1423 fprintf_unfiltered
1424 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1425 treat_exec_as_sigtrap);
1426
1427 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1428 &step_resume_breakpoint);
1429
1430 /* wfi still stays in a loop, so it's OK just to take the address of
1431 a local to get the ecs pointer. */
1432 ecs = &ecss;
1433
1434 /* Fill in with reasonable starting values. */
1435 init_execution_control_state (ecs);
1436
1437 /* We'll update this if & when we switch to a new thread. */
1438 previous_inferior_ptid = inferior_ptid;
1439
1440 overlay_cache_invalid = 1;
1441
1442 /* We have to invalidate the registers BEFORE calling target_wait
1443 because they can be loaded from the target while in target_wait.
1444 This makes remote debugging a bit more efficient for those
1445 targets that provide critical registers as part of their normal
1446 status mechanism. */
1447
1448 registers_changed ();
1449
1450 while (1)
1451 {
1452 if (deprecated_target_wait_hook)
1453 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1454 else
1455 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1456
1457 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1458 {
1459 xfree (ecs->ws.value.execd_pathname);
1460 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1461 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1462 }
1463
1464 /* Now figure out what to do with the result of the result. */
1465 handle_inferior_event (ecs);
1466
1467 if (!ecs->wait_some_more)
1468 break;
1469 }
1470 do_cleanups (old_cleanups);
1471 }
1472
1473 /* Asynchronous version of wait_for_inferior. It is called by the
1474 event loop whenever a change of state is detected on the file
1475 descriptor corresponding to the target. It can be called more than
1476 once to complete a single execution command. In such cases we need
1477 to keep the state in a global variable ASYNC_ECSS. If it is the
1478 last time that this function is called for a single execution
1479 command, then report to the user that the inferior has stopped, and
1480 do the necessary cleanups. */
1481
1482 struct execution_control_state async_ecss;
1483 struct execution_control_state *async_ecs;
1484
1485 void
1486 fetch_inferior_event (void *client_data)
1487 {
1488 static struct cleanup *old_cleanups;
1489
1490 async_ecs = &async_ecss;
1491
1492 if (!async_ecs->wait_some_more)
1493 {
1494 /* Fill in with reasonable starting values. */
1495 init_execution_control_state (async_ecs);
1496
1497 /* We'll update this if & when we switch to a new thread. */
1498 previous_inferior_ptid = inferior_ptid;
1499
1500 overlay_cache_invalid = 1;
1501
1502 /* We have to invalidate the registers BEFORE calling target_wait
1503 because they can be loaded from the target while in target_wait.
1504 This makes remote debugging a bit more efficient for those
1505 targets that provide critical registers as part of their normal
1506 status mechanism. */
1507
1508 registers_changed ();
1509 }
1510
1511 if (deprecated_target_wait_hook)
1512 async_ecs->ptid =
1513 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1514 else
1515 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1516
1517 /* Now figure out what to do with the result of the result. */
1518 handle_inferior_event (async_ecs);
1519
1520 if (!async_ecs->wait_some_more)
1521 {
1522 delete_step_resume_breakpoint (&step_resume_breakpoint);
1523
1524 normal_stop ();
1525 if (step_multi && stop_step)
1526 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1527 else
1528 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1529 }
1530 }
1531
1532 /* Prepare an execution control state for looping through a
1533 wait_for_inferior-type loop. */
1534
1535 void
1536 init_execution_control_state (struct execution_control_state *ecs)
1537 {
1538 ecs->stepping_over_breakpoint = 0;
1539 ecs->random_signal = 0;
1540 ecs->step_after_step_resume_breakpoint = 0;
1541 ecs->handling_longjmp = 0; /* FIXME */
1542 ecs->stepping_through_solib_after_catch = 0;
1543 ecs->stepping_through_solib_catchpoints = NULL;
1544 ecs->sal = find_pc_line (prev_pc, 0);
1545 ecs->current_line = ecs->sal.line;
1546 ecs->current_symtab = ecs->sal.symtab;
1547 ecs->infwait_state = infwait_normal_state;
1548 ecs->waiton_ptid = pid_to_ptid (-1);
1549 ecs->wp = &(ecs->ws);
1550 }
1551
1552 /* Return the cached copy of the last pid/waitstatus returned by
1553 target_wait()/deprecated_target_wait_hook(). The data is actually
1554 cached by handle_inferior_event(), which gets called immediately
1555 after target_wait()/deprecated_target_wait_hook(). */
1556
1557 void
1558 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1559 {
1560 *ptidp = target_last_wait_ptid;
1561 *status = target_last_waitstatus;
1562 }
1563
1564 void
1565 nullify_last_target_wait_ptid (void)
1566 {
1567 target_last_wait_ptid = minus_one_ptid;
1568 }
1569
1570 /* Switch thread contexts, maintaining "infrun state". */
1571
1572 static void
1573 context_switch (struct execution_control_state *ecs)
1574 {
1575 /* Caution: it may happen that the new thread (or the old one!)
1576 is not in the thread list. In this case we must not attempt
1577 to "switch context", or we run the risk that our context may
1578 be lost. This may happen as a result of the target module
1579 mishandling thread creation. */
1580
1581 if (debug_infrun)
1582 {
1583 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1584 target_pid_to_str (inferior_ptid));
1585 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1586 target_pid_to_str (ecs->ptid));
1587 }
1588
1589 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1590 { /* Perform infrun state context switch: */
1591 /* Save infrun state for the old thread. */
1592 save_infrun_state (inferior_ptid, prev_pc,
1593 stepping_over_breakpoint, step_resume_breakpoint,
1594 step_range_start,
1595 step_range_end, &step_frame_id,
1596 ecs->handling_longjmp, ecs->stepping_over_breakpoint,
1597 ecs->stepping_through_solib_after_catch,
1598 ecs->stepping_through_solib_catchpoints,
1599 ecs->current_line, ecs->current_symtab);
1600
1601 /* Load infrun state for the new thread. */
1602 load_infrun_state (ecs->ptid, &prev_pc,
1603 &stepping_over_breakpoint, &step_resume_breakpoint,
1604 &step_range_start,
1605 &step_range_end, &step_frame_id,
1606 &ecs->handling_longjmp, &ecs->stepping_over_breakpoint,
1607 &ecs->stepping_through_solib_after_catch,
1608 &ecs->stepping_through_solib_catchpoints,
1609 &ecs->current_line, &ecs->current_symtab);
1610 }
1611
1612 switch_to_thread (ecs->ptid);
1613 }
1614
1615 static void
1616 adjust_pc_after_break (struct execution_control_state *ecs)
1617 {
1618 CORE_ADDR breakpoint_pc;
1619
1620 /* If this target does not decrement the PC after breakpoints, then
1621 we have nothing to do. */
1622 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
1623 return;
1624
1625 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1626 we aren't, just return.
1627
1628 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1629 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1630 implemented by software breakpoints should be handled through the normal
1631 breakpoint layer.
1632
1633 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1634 different signals (SIGILL or SIGEMT for instance), but it is less
1635 clear where the PC is pointing afterwards. It may not match
1636 gdbarch_decr_pc_after_break. I don't know any specific target that
1637 generates these signals at breakpoints (the code has been in GDB since at
1638 least 1992) so I can not guess how to handle them here.
1639
1640 In earlier versions of GDB, a target with
1641 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1642 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1643 target with both of these set in GDB history, and it seems unlikely to be
1644 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1645
1646 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1647 return;
1648
1649 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1650 return;
1651
1652 /* Find the location where (if we've hit a breakpoint) the
1653 breakpoint would be. */
1654 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1655 (current_gdbarch);
1656
1657 /* Check whether there actually is a software breakpoint inserted
1658 at that location. */
1659 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1660 {
1661 /* When using hardware single-step, a SIGTRAP is reported for both
1662 a completed single-step and a software breakpoint. Need to
1663 differentiate between the two, as the latter needs adjusting
1664 but the former does not.
1665
1666 The SIGTRAP can be due to a completed hardware single-step only if
1667 - we didn't insert software single-step breakpoints
1668 - the thread to be examined is still the current thread
1669 - this thread is currently being stepped
1670
1671 If any of these events did not occur, we must have stopped due
1672 to hitting a software breakpoint, and have to back up to the
1673 breakpoint address.
1674
1675 As a special case, we could have hardware single-stepped a
1676 software breakpoint. In this case (prev_pc == breakpoint_pc),
1677 we also need to back up to the breakpoint address. */
1678
1679 if (singlestep_breakpoints_inserted_p
1680 || !ptid_equal (ecs->ptid, inferior_ptid)
1681 || !currently_stepping (ecs)
1682 || prev_pc == breakpoint_pc)
1683 write_pc_pid (breakpoint_pc, ecs->ptid);
1684 }
1685 }
1686
1687 /* Given an execution control state that has been freshly filled in
1688 by an event from the inferior, figure out what it means and take
1689 appropriate action. */
1690
1691 void
1692 handle_inferior_event (struct execution_control_state *ecs)
1693 {
1694 int sw_single_step_trap_p = 0;
1695 int stopped_by_watchpoint;
1696 int stepped_after_stopped_by_watchpoint = 0;
1697
1698 /* Cache the last pid/waitstatus. */
1699 target_last_wait_ptid = ecs->ptid;
1700 target_last_waitstatus = *ecs->wp;
1701
1702 /* Always clear state belonging to the previous time we stopped. */
1703 stop_stack_dummy = 0;
1704
1705 adjust_pc_after_break (ecs);
1706
1707 switch (ecs->infwait_state)
1708 {
1709 case infwait_thread_hop_state:
1710 if (debug_infrun)
1711 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1712 /* Cancel the waiton_ptid. */
1713 ecs->waiton_ptid = pid_to_ptid (-1);
1714 break;
1715
1716 case infwait_normal_state:
1717 if (debug_infrun)
1718 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1719 break;
1720
1721 case infwait_step_watch_state:
1722 if (debug_infrun)
1723 fprintf_unfiltered (gdb_stdlog,
1724 "infrun: infwait_step_watch_state\n");
1725
1726 stepped_after_stopped_by_watchpoint = 1;
1727 break;
1728
1729 case infwait_nonstep_watch_state:
1730 if (debug_infrun)
1731 fprintf_unfiltered (gdb_stdlog,
1732 "infrun: infwait_nonstep_watch_state\n");
1733 insert_breakpoints ();
1734
1735 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1736 handle things like signals arriving and other things happening
1737 in combination correctly? */
1738 stepped_after_stopped_by_watchpoint = 1;
1739 break;
1740
1741 default:
1742 internal_error (__FILE__, __LINE__, _("bad switch"));
1743 }
1744 ecs->infwait_state = infwait_normal_state;
1745
1746 reinit_frame_cache ();
1747
1748 /* If it's a new process, add it to the thread database */
1749
1750 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1751 && !ptid_equal (ecs->ptid, minus_one_ptid)
1752 && !in_thread_list (ecs->ptid));
1753
1754 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1755 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1756 add_thread (ecs->ptid);
1757
1758 switch (ecs->ws.kind)
1759 {
1760 case TARGET_WAITKIND_LOADED:
1761 if (debug_infrun)
1762 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1763 /* Ignore gracefully during startup of the inferior, as it might
1764 be the shell which has just loaded some objects, otherwise
1765 add the symbols for the newly loaded objects. Also ignore at
1766 the beginning of an attach or remote session; we will query
1767 the full list of libraries once the connection is
1768 established. */
1769 if (stop_soon == NO_STOP_QUIETLY)
1770 {
1771 /* Check for any newly added shared libraries if we're
1772 supposed to be adding them automatically. Switch
1773 terminal for any messages produced by
1774 breakpoint_re_set. */
1775 target_terminal_ours_for_output ();
1776 /* NOTE: cagney/2003-11-25: Make certain that the target
1777 stack's section table is kept up-to-date. Architectures,
1778 (e.g., PPC64), use the section table to perform
1779 operations such as address => section name and hence
1780 require the table to contain all sections (including
1781 those found in shared libraries). */
1782 /* NOTE: cagney/2003-11-25: Pass current_target and not
1783 exec_ops to SOLIB_ADD. This is because current GDB is
1784 only tooled to propagate section_table changes out from
1785 the "current_target" (see target_resize_to_sections), and
1786 not up from the exec stratum. This, of course, isn't
1787 right. "infrun.c" should only interact with the
1788 exec/process stratum, instead relying on the target stack
1789 to propagate relevant changes (stop, section table
1790 changed, ...) up to other layers. */
1791 #ifdef SOLIB_ADD
1792 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1793 #else
1794 solib_add (NULL, 0, &current_target, auto_solib_add);
1795 #endif
1796 target_terminal_inferior ();
1797
1798 /* If requested, stop when the dynamic linker notifies
1799 gdb of events. This allows the user to get control
1800 and place breakpoints in initializer routines for
1801 dynamically loaded objects (among other things). */
1802 if (stop_on_solib_events)
1803 {
1804 stop_stepping (ecs);
1805 return;
1806 }
1807
1808 /* NOTE drow/2007-05-11: This might be a good place to check
1809 for "catch load". */
1810 }
1811
1812 /* If we are skipping through a shell, or through shared library
1813 loading that we aren't interested in, resume the program. If
1814 we're running the program normally, also resume. But stop if
1815 we're attaching or setting up a remote connection. */
1816 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1817 {
1818 /* Loading of shared libraries might have changed breakpoint
1819 addresses. Make sure new breakpoints are inserted. */
1820 if (stop_soon == NO_STOP_QUIETLY
1821 && !breakpoints_always_inserted_mode ())
1822 insert_breakpoints ();
1823 resume (0, TARGET_SIGNAL_0);
1824 prepare_to_wait (ecs);
1825 return;
1826 }
1827
1828 break;
1829
1830 case TARGET_WAITKIND_SPURIOUS:
1831 if (debug_infrun)
1832 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1833 resume (0, TARGET_SIGNAL_0);
1834 prepare_to_wait (ecs);
1835 return;
1836
1837 case TARGET_WAITKIND_EXITED:
1838 if (debug_infrun)
1839 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1840 target_terminal_ours (); /* Must do this before mourn anyway */
1841 print_stop_reason (EXITED, ecs->ws.value.integer);
1842
1843 /* Record the exit code in the convenience variable $_exitcode, so
1844 that the user can inspect this again later. */
1845 set_internalvar (lookup_internalvar ("_exitcode"),
1846 value_from_longest (builtin_type_int,
1847 (LONGEST) ecs->ws.value.integer));
1848 gdb_flush (gdb_stdout);
1849 target_mourn_inferior ();
1850 singlestep_breakpoints_inserted_p = 0;
1851 stop_print_frame = 0;
1852 stop_stepping (ecs);
1853 return;
1854
1855 case TARGET_WAITKIND_SIGNALLED:
1856 if (debug_infrun)
1857 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1858 stop_print_frame = 0;
1859 stop_signal = ecs->ws.value.sig;
1860 target_terminal_ours (); /* Must do this before mourn anyway */
1861
1862 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1863 reach here unless the inferior is dead. However, for years
1864 target_kill() was called here, which hints that fatal signals aren't
1865 really fatal on some systems. If that's true, then some changes
1866 may be needed. */
1867 target_mourn_inferior ();
1868
1869 print_stop_reason (SIGNAL_EXITED, stop_signal);
1870 singlestep_breakpoints_inserted_p = 0;
1871 stop_stepping (ecs);
1872 return;
1873
1874 /* The following are the only cases in which we keep going;
1875 the above cases end in a continue or goto. */
1876 case TARGET_WAITKIND_FORKED:
1877 case TARGET_WAITKIND_VFORKED:
1878 if (debug_infrun)
1879 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1880 stop_signal = TARGET_SIGNAL_TRAP;
1881 pending_follow.kind = ecs->ws.kind;
1882
1883 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1884 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1885
1886 if (!ptid_equal (ecs->ptid, inferior_ptid))
1887 {
1888 context_switch (ecs);
1889 reinit_frame_cache ();
1890 }
1891
1892 stop_pc = read_pc ();
1893
1894 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1895
1896 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1897
1898 /* If no catchpoint triggered for this, then keep going. */
1899 if (ecs->random_signal)
1900 {
1901 stop_signal = TARGET_SIGNAL_0;
1902 keep_going (ecs);
1903 return;
1904 }
1905 goto process_event_stop_test;
1906
1907 case TARGET_WAITKIND_EXECD:
1908 if (debug_infrun)
1909 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1910 stop_signal = TARGET_SIGNAL_TRAP;
1911
1912 pending_follow.execd_pathname =
1913 savestring (ecs->ws.value.execd_pathname,
1914 strlen (ecs->ws.value.execd_pathname));
1915
1916 /* This causes the eventpoints and symbol table to be reset. Must
1917 do this now, before trying to determine whether to stop. */
1918 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1919 xfree (pending_follow.execd_pathname);
1920
1921 stop_pc = read_pc_pid (ecs->ptid);
1922 ecs->saved_inferior_ptid = inferior_ptid;
1923 inferior_ptid = ecs->ptid;
1924
1925 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1926
1927 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1928 inferior_ptid = ecs->saved_inferior_ptid;
1929
1930 if (!ptid_equal (ecs->ptid, inferior_ptid))
1931 {
1932 context_switch (ecs);
1933 reinit_frame_cache ();
1934 }
1935
1936 /* If no catchpoint triggered for this, then keep going. */
1937 if (ecs->random_signal)
1938 {
1939 stop_signal = TARGET_SIGNAL_0;
1940 keep_going (ecs);
1941 return;
1942 }
1943 goto process_event_stop_test;
1944
1945 /* Be careful not to try to gather much state about a thread
1946 that's in a syscall. It's frequently a losing proposition. */
1947 case TARGET_WAITKIND_SYSCALL_ENTRY:
1948 if (debug_infrun)
1949 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1950 resume (0, TARGET_SIGNAL_0);
1951 prepare_to_wait (ecs);
1952 return;
1953
1954 /* Before examining the threads further, step this thread to
1955 get it entirely out of the syscall. (We get notice of the
1956 event when the thread is just on the verge of exiting a
1957 syscall. Stepping one instruction seems to get it back
1958 into user code.) */
1959 case TARGET_WAITKIND_SYSCALL_RETURN:
1960 if (debug_infrun)
1961 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1962 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1963 prepare_to_wait (ecs);
1964 return;
1965
1966 case TARGET_WAITKIND_STOPPED:
1967 if (debug_infrun)
1968 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1969 stop_signal = ecs->ws.value.sig;
1970 break;
1971
1972 /* We had an event in the inferior, but we are not interested
1973 in handling it at this level. The lower layers have already
1974 done what needs to be done, if anything.
1975
1976 One of the possible circumstances for this is when the
1977 inferior produces output for the console. The inferior has
1978 not stopped, and we are ignoring the event. Another possible
1979 circumstance is any event which the lower level knows will be
1980 reported multiple times without an intervening resume. */
1981 case TARGET_WAITKIND_IGNORE:
1982 if (debug_infrun)
1983 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1984 prepare_to_wait (ecs);
1985 return;
1986 }
1987
1988 /* We may want to consider not doing a resume here in order to give
1989 the user a chance to play with the new thread. It might be good
1990 to make that a user-settable option. */
1991
1992 /* At this point, all threads are stopped (happens automatically in
1993 either the OS or the native code). Therefore we need to continue
1994 all threads in order to make progress. */
1995 if (ecs->new_thread_event)
1996 {
1997 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1998 prepare_to_wait (ecs);
1999 return;
2000 }
2001
2002 /* Do we need to clean up the state of a thread that has completed a
2003 displaced single-step? (Doing so usually affects the PC, so do
2004 it here, before we set stop_pc.) */
2005 displaced_step_fixup (ecs->ptid, stop_signal);
2006
2007 stop_pc = read_pc_pid (ecs->ptid);
2008
2009 if (debug_infrun)
2010 {
2011 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2012 paddr_nz (stop_pc));
2013 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2014 {
2015 CORE_ADDR addr;
2016 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2017
2018 if (target_stopped_data_address (&current_target, &addr))
2019 fprintf_unfiltered (gdb_stdlog,
2020 "infrun: stopped data address = 0x%s\n",
2021 paddr_nz (addr));
2022 else
2023 fprintf_unfiltered (gdb_stdlog,
2024 "infrun: (no data address available)\n");
2025 }
2026 }
2027
2028 if (stepping_past_singlestep_breakpoint)
2029 {
2030 gdb_assert (singlestep_breakpoints_inserted_p);
2031 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2032 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2033
2034 stepping_past_singlestep_breakpoint = 0;
2035
2036 /* We've either finished single-stepping past the single-step
2037 breakpoint, or stopped for some other reason. It would be nice if
2038 we could tell, but we can't reliably. */
2039 if (stop_signal == TARGET_SIGNAL_TRAP)
2040 {
2041 if (debug_infrun)
2042 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2043 /* Pull the single step breakpoints out of the target. */
2044 remove_single_step_breakpoints ();
2045 singlestep_breakpoints_inserted_p = 0;
2046
2047 ecs->random_signal = 0;
2048
2049 ecs->ptid = saved_singlestep_ptid;
2050 context_switch (ecs);
2051 if (deprecated_context_hook)
2052 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2053
2054 resume (1, TARGET_SIGNAL_0);
2055 prepare_to_wait (ecs);
2056 return;
2057 }
2058 }
2059
2060 stepping_past_singlestep_breakpoint = 0;
2061
2062 if (!ptid_equal (deferred_step_ptid, null_ptid))
2063 {
2064 /* If we stopped for some other reason than single-stepping, ignore
2065 the fact that we were supposed to switch back. */
2066 if (stop_signal == TARGET_SIGNAL_TRAP)
2067 {
2068 if (debug_infrun)
2069 fprintf_unfiltered (gdb_stdlog,
2070 "infrun: handling deferred step\n");
2071
2072 /* Pull the single step breakpoints out of the target. */
2073 if (singlestep_breakpoints_inserted_p)
2074 {
2075 remove_single_step_breakpoints ();
2076 singlestep_breakpoints_inserted_p = 0;
2077 }
2078
2079 /* Note: We do not call context_switch at this point, as the
2080 context is already set up for stepping the original thread. */
2081 switch_to_thread (deferred_step_ptid);
2082 deferred_step_ptid = null_ptid;
2083 /* Suppress spurious "Switching to ..." message. */
2084 previous_inferior_ptid = inferior_ptid;
2085
2086 resume (1, TARGET_SIGNAL_0);
2087 prepare_to_wait (ecs);
2088 return;
2089 }
2090
2091 deferred_step_ptid = null_ptid;
2092 }
2093
2094 /* See if a thread hit a thread-specific breakpoint that was meant for
2095 another thread. If so, then step that thread past the breakpoint,
2096 and continue it. */
2097
2098 if (stop_signal == TARGET_SIGNAL_TRAP)
2099 {
2100 int thread_hop_needed = 0;
2101
2102 /* Check if a regular breakpoint has been hit before checking
2103 for a potential single step breakpoint. Otherwise, GDB will
2104 not see this breakpoint hit when stepping onto breakpoints. */
2105 if (regular_breakpoint_inserted_here_p (stop_pc))
2106 {
2107 ecs->random_signal = 0;
2108 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2109 thread_hop_needed = 1;
2110 }
2111 else if (singlestep_breakpoints_inserted_p)
2112 {
2113 /* We have not context switched yet, so this should be true
2114 no matter which thread hit the singlestep breakpoint. */
2115 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2116 if (debug_infrun)
2117 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2118 "trap for %s\n",
2119 target_pid_to_str (ecs->ptid));
2120
2121 ecs->random_signal = 0;
2122 /* The call to in_thread_list is necessary because PTIDs sometimes
2123 change when we go from single-threaded to multi-threaded. If
2124 the singlestep_ptid is still in the list, assume that it is
2125 really different from ecs->ptid. */
2126 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2127 && in_thread_list (singlestep_ptid))
2128 {
2129 /* If the PC of the thread we were trying to single-step
2130 has changed, discard this event (which we were going
2131 to ignore anyway), and pretend we saw that thread
2132 trap. This prevents us continuously moving the
2133 single-step breakpoint forward, one instruction at a
2134 time. If the PC has changed, then the thread we were
2135 trying to single-step has trapped or been signalled,
2136 but the event has not been reported to GDB yet.
2137
2138 There might be some cases where this loses signal
2139 information, if a signal has arrived at exactly the
2140 same time that the PC changed, but this is the best
2141 we can do with the information available. Perhaps we
2142 should arrange to report all events for all threads
2143 when they stop, or to re-poll the remote looking for
2144 this particular thread (i.e. temporarily enable
2145 schedlock). */
2146 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
2147 {
2148 if (debug_infrun)
2149 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2150 " but expected thread advanced also\n");
2151
2152 /* The current context still belongs to
2153 singlestep_ptid. Don't swap here, since that's
2154 the context we want to use. Just fudge our
2155 state and continue. */
2156 ecs->ptid = singlestep_ptid;
2157 stop_pc = read_pc_pid (ecs->ptid);
2158 }
2159 else
2160 {
2161 if (debug_infrun)
2162 fprintf_unfiltered (gdb_stdlog,
2163 "infrun: unexpected thread\n");
2164
2165 thread_hop_needed = 1;
2166 stepping_past_singlestep_breakpoint = 1;
2167 saved_singlestep_ptid = singlestep_ptid;
2168 }
2169 }
2170 }
2171
2172 if (thread_hop_needed)
2173 {
2174 int remove_status = 0;
2175
2176 if (debug_infrun)
2177 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2178
2179 /* Saw a breakpoint, but it was hit by the wrong thread.
2180 Just continue. */
2181
2182 if (singlestep_breakpoints_inserted_p)
2183 {
2184 /* Pull the single step breakpoints out of the target. */
2185 remove_single_step_breakpoints ();
2186 singlestep_breakpoints_inserted_p = 0;
2187 }
2188
2189 /* If the arch can displace step, don't remove the
2190 breakpoints. */
2191 if (!use_displaced_stepping (current_gdbarch))
2192 remove_status = remove_breakpoints ();
2193
2194 /* Did we fail to remove breakpoints? If so, try
2195 to set the PC past the bp. (There's at least
2196 one situation in which we can fail to remove
2197 the bp's: On HP-UX's that use ttrace, we can't
2198 change the address space of a vforking child
2199 process until the child exits (well, okay, not
2200 then either :-) or execs. */
2201 if (remove_status != 0)
2202 error (_("Cannot step over breakpoint hit in wrong thread"));
2203 else
2204 { /* Single step */
2205 if (!ptid_equal (inferior_ptid, ecs->ptid))
2206 context_switch (ecs);
2207 ecs->waiton_ptid = ecs->ptid;
2208 ecs->wp = &(ecs->ws);
2209 ecs->stepping_over_breakpoint = 1;
2210
2211 ecs->infwait_state = infwait_thread_hop_state;
2212 keep_going (ecs);
2213 registers_changed ();
2214 return;
2215 }
2216 }
2217 else if (singlestep_breakpoints_inserted_p)
2218 {
2219 sw_single_step_trap_p = 1;
2220 ecs->random_signal = 0;
2221 }
2222 }
2223 else
2224 ecs->random_signal = 1;
2225
2226 /* See if something interesting happened to the non-current thread. If
2227 so, then switch to that thread. */
2228 if (!ptid_equal (ecs->ptid, inferior_ptid))
2229 {
2230 if (debug_infrun)
2231 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2232
2233 context_switch (ecs);
2234
2235 if (deprecated_context_hook)
2236 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2237 }
2238
2239 if (singlestep_breakpoints_inserted_p)
2240 {
2241 /* Pull the single step breakpoints out of the target. */
2242 remove_single_step_breakpoints ();
2243 singlestep_breakpoints_inserted_p = 0;
2244 }
2245
2246 if (stepped_after_stopped_by_watchpoint)
2247 stopped_by_watchpoint = 0;
2248 else
2249 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2250
2251 /* If necessary, step over this watchpoint. We'll be back to display
2252 it in a moment. */
2253 if (stopped_by_watchpoint
2254 && (HAVE_STEPPABLE_WATCHPOINT
2255 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2256 {
2257 /* At this point, we are stopped at an instruction which has
2258 attempted to write to a piece of memory under control of
2259 a watchpoint. The instruction hasn't actually executed
2260 yet. If we were to evaluate the watchpoint expression
2261 now, we would get the old value, and therefore no change
2262 would seem to have occurred.
2263
2264 In order to make watchpoints work `right', we really need
2265 to complete the memory write, and then evaluate the
2266 watchpoint expression. We do this by single-stepping the
2267 target.
2268
2269 It may not be necessary to disable the watchpoint to stop over
2270 it. For example, the PA can (with some kernel cooperation)
2271 single step over a watchpoint without disabling the watchpoint.
2272
2273 It is far more common to need to disable a watchpoint to step
2274 the inferior over it. If we have non-steppable watchpoints,
2275 we must disable the current watchpoint; it's simplest to
2276 disable all watchpoints and breakpoints. */
2277
2278 if (!HAVE_STEPPABLE_WATCHPOINT)
2279 remove_breakpoints ();
2280 registers_changed ();
2281 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2282 ecs->waiton_ptid = ecs->ptid;
2283 if (HAVE_STEPPABLE_WATCHPOINT)
2284 ecs->infwait_state = infwait_step_watch_state;
2285 else
2286 ecs->infwait_state = infwait_nonstep_watch_state;
2287 prepare_to_wait (ecs);
2288 return;
2289 }
2290
2291 ecs->stop_func_start = 0;
2292 ecs->stop_func_end = 0;
2293 ecs->stop_func_name = 0;
2294 /* Don't care about return value; stop_func_start and stop_func_name
2295 will both be 0 if it doesn't work. */
2296 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2297 &ecs->stop_func_start, &ecs->stop_func_end);
2298 ecs->stop_func_start
2299 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2300 ecs->stepping_over_breakpoint = 0;
2301 bpstat_clear (&stop_bpstat);
2302 stop_step = 0;
2303 stop_print_frame = 1;
2304 ecs->random_signal = 0;
2305 stopped_by_random_signal = 0;
2306
2307 if (stop_signal == TARGET_SIGNAL_TRAP
2308 && stepping_over_breakpoint
2309 && gdbarch_single_step_through_delay_p (current_gdbarch)
2310 && currently_stepping (ecs))
2311 {
2312 /* We're trying to step off a breakpoint. Turns out that we're
2313 also on an instruction that needs to be stepped multiple
2314 times before it's been fully executing. E.g., architectures
2315 with a delay slot. It needs to be stepped twice, once for
2316 the instruction and once for the delay slot. */
2317 int step_through_delay
2318 = gdbarch_single_step_through_delay (current_gdbarch,
2319 get_current_frame ());
2320 if (debug_infrun && step_through_delay)
2321 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2322 if (step_range_end == 0 && step_through_delay)
2323 {
2324 /* The user issued a continue when stopped at a breakpoint.
2325 Set up for another trap and get out of here. */
2326 ecs->stepping_over_breakpoint = 1;
2327 keep_going (ecs);
2328 return;
2329 }
2330 else if (step_through_delay)
2331 {
2332 /* The user issued a step when stopped at a breakpoint.
2333 Maybe we should stop, maybe we should not - the delay
2334 slot *might* correspond to a line of source. In any
2335 case, don't decide that here, just set
2336 ecs->stepping_over_breakpoint, making sure we
2337 single-step again before breakpoints are re-inserted. */
2338 ecs->stepping_over_breakpoint = 1;
2339 }
2340 }
2341
2342 /* Look at the cause of the stop, and decide what to do.
2343 The alternatives are:
2344 1) break; to really stop and return to the debugger,
2345 2) drop through to start up again
2346 (set ecs->stepping_over_breakpoint to 1 to single step once)
2347 3) set ecs->random_signal to 1, and the decision between 1 and 2
2348 will be made according to the signal handling tables. */
2349
2350 /* First, distinguish signals caused by the debugger from signals
2351 that have to do with the program's own actions. Note that
2352 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2353 on the operating system version. Here we detect when a SIGILL or
2354 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2355 something similar for SIGSEGV, since a SIGSEGV will be generated
2356 when we're trying to execute a breakpoint instruction on a
2357 non-executable stack. This happens for call dummy breakpoints
2358 for architectures like SPARC that place call dummies on the
2359 stack.
2360
2361 If we're doing a displaced step past a breakpoint, then the
2362 breakpoint is always inserted at the original instruction;
2363 non-standard signals can't be explained by the breakpoint. */
2364 if (stop_signal == TARGET_SIGNAL_TRAP
2365 || (! stepping_over_breakpoint
2366 && breakpoint_inserted_here_p (stop_pc)
2367 && (stop_signal == TARGET_SIGNAL_ILL
2368 || stop_signal == TARGET_SIGNAL_SEGV
2369 || stop_signal == TARGET_SIGNAL_EMT))
2370 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2371 || stop_soon == STOP_QUIETLY_REMOTE)
2372 {
2373 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2374 {
2375 if (debug_infrun)
2376 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2377 stop_print_frame = 0;
2378 stop_stepping (ecs);
2379 return;
2380 }
2381
2382 /* This is originated from start_remote(), start_inferior() and
2383 shared libraries hook functions. */
2384 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2385 {
2386 if (debug_infrun)
2387 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2388 stop_stepping (ecs);
2389 return;
2390 }
2391
2392 /* This originates from attach_command(). We need to overwrite
2393 the stop_signal here, because some kernels don't ignore a
2394 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2395 See more comments in inferior.h. On the other hand, if we
2396 get a non-SIGSTOP, report it to the user - assume the backend
2397 will handle the SIGSTOP if it should show up later. */
2398 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2399 && stop_signal == TARGET_SIGNAL_STOP)
2400 {
2401 stop_stepping (ecs);
2402 stop_signal = TARGET_SIGNAL_0;
2403 return;
2404 }
2405
2406 /* See if there is a breakpoint at the current PC. */
2407 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2408
2409 /* Following in case break condition called a
2410 function. */
2411 stop_print_frame = 1;
2412
2413 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2414 at one stage in the past included checks for an inferior
2415 function call's call dummy's return breakpoint. The original
2416 comment, that went with the test, read:
2417
2418 ``End of a stack dummy. Some systems (e.g. Sony news) give
2419 another signal besides SIGTRAP, so check here as well as
2420 above.''
2421
2422 If someone ever tries to get get call dummys on a
2423 non-executable stack to work (where the target would stop
2424 with something like a SIGSEGV), then those tests might need
2425 to be re-instated. Given, however, that the tests were only
2426 enabled when momentary breakpoints were not being used, I
2427 suspect that it won't be the case.
2428
2429 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2430 be necessary for call dummies on a non-executable stack on
2431 SPARC. */
2432
2433 if (stop_signal == TARGET_SIGNAL_TRAP)
2434 ecs->random_signal
2435 = !(bpstat_explains_signal (stop_bpstat)
2436 || stepping_over_breakpoint
2437 || (step_range_end && step_resume_breakpoint == NULL));
2438 else
2439 {
2440 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2441 if (!ecs->random_signal)
2442 stop_signal = TARGET_SIGNAL_TRAP;
2443 }
2444 }
2445
2446 /* When we reach this point, we've pretty much decided
2447 that the reason for stopping must've been a random
2448 (unexpected) signal. */
2449
2450 else
2451 ecs->random_signal = 1;
2452
2453 process_event_stop_test:
2454 /* For the program's own signals, act according to
2455 the signal handling tables. */
2456
2457 if (ecs->random_signal)
2458 {
2459 /* Signal not for debugging purposes. */
2460 int printed = 0;
2461
2462 if (debug_infrun)
2463 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2464
2465 stopped_by_random_signal = 1;
2466
2467 if (signal_print[stop_signal])
2468 {
2469 printed = 1;
2470 target_terminal_ours_for_output ();
2471 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2472 }
2473 if (signal_stop_state (stop_signal))
2474 {
2475 stop_stepping (ecs);
2476 return;
2477 }
2478 /* If not going to stop, give terminal back
2479 if we took it away. */
2480 else if (printed)
2481 target_terminal_inferior ();
2482
2483 /* Clear the signal if it should not be passed. */
2484 if (signal_program[stop_signal] == 0)
2485 stop_signal = TARGET_SIGNAL_0;
2486
2487 if (prev_pc == read_pc ()
2488 && stepping_over_breakpoint
2489 && step_resume_breakpoint == NULL)
2490 {
2491 /* We were just starting a new sequence, attempting to
2492 single-step off of a breakpoint and expecting a SIGTRAP.
2493 Instead this signal arrives. This signal will take us out
2494 of the stepping range so GDB needs to remember to, when
2495 the signal handler returns, resume stepping off that
2496 breakpoint. */
2497 /* To simplify things, "continue" is forced to use the same
2498 code paths as single-step - set a breakpoint at the
2499 signal return address and then, once hit, step off that
2500 breakpoint. */
2501 if (debug_infrun)
2502 fprintf_unfiltered (gdb_stdlog,
2503 "infrun: signal arrived while stepping over "
2504 "breakpoint\n");
2505
2506 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2507 ecs->step_after_step_resume_breakpoint = 1;
2508 keep_going (ecs);
2509 return;
2510 }
2511
2512 if (step_range_end != 0
2513 && stop_signal != TARGET_SIGNAL_0
2514 && stop_pc >= step_range_start && stop_pc < step_range_end
2515 && frame_id_eq (get_frame_id (get_current_frame ()),
2516 step_frame_id)
2517 && step_resume_breakpoint == NULL)
2518 {
2519 /* The inferior is about to take a signal that will take it
2520 out of the single step range. Set a breakpoint at the
2521 current PC (which is presumably where the signal handler
2522 will eventually return) and then allow the inferior to
2523 run free.
2524
2525 Note that this is only needed for a signal delivered
2526 while in the single-step range. Nested signals aren't a
2527 problem as they eventually all return. */
2528 if (debug_infrun)
2529 fprintf_unfiltered (gdb_stdlog,
2530 "infrun: signal may take us out of "
2531 "single-step range\n");
2532
2533 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2534 keep_going (ecs);
2535 return;
2536 }
2537
2538 /* Note: step_resume_breakpoint may be non-NULL. This occures
2539 when either there's a nested signal, or when there's a
2540 pending signal enabled just as the signal handler returns
2541 (leaving the inferior at the step-resume-breakpoint without
2542 actually executing it). Either way continue until the
2543 breakpoint is really hit. */
2544 keep_going (ecs);
2545 return;
2546 }
2547
2548 /* Handle cases caused by hitting a breakpoint. */
2549 {
2550 CORE_ADDR jmp_buf_pc;
2551 struct bpstat_what what;
2552
2553 what = bpstat_what (stop_bpstat);
2554
2555 if (what.call_dummy)
2556 {
2557 stop_stack_dummy = 1;
2558 }
2559
2560 switch (what.main_action)
2561 {
2562 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2563 /* If we hit the breakpoint at longjmp, disable it for the
2564 duration of this command. Then, install a temporary
2565 breakpoint at the target of the jmp_buf. */
2566 if (debug_infrun)
2567 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2568 disable_longjmp_breakpoint ();
2569 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2570 || !gdbarch_get_longjmp_target (current_gdbarch,
2571 get_current_frame (), &jmp_buf_pc))
2572 {
2573 keep_going (ecs);
2574 return;
2575 }
2576
2577 /* Need to blow away step-resume breakpoint, as it
2578 interferes with us */
2579 if (step_resume_breakpoint != NULL)
2580 {
2581 delete_step_resume_breakpoint (&step_resume_breakpoint);
2582 }
2583
2584 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2585 ecs->handling_longjmp = 1; /* FIXME */
2586 keep_going (ecs);
2587 return;
2588
2589 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2590 if (debug_infrun)
2591 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2592 disable_longjmp_breakpoint ();
2593 ecs->handling_longjmp = 0; /* FIXME */
2594 break;
2595
2596 case BPSTAT_WHAT_SINGLE:
2597 if (debug_infrun)
2598 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2599 ecs->stepping_over_breakpoint = 1;
2600 /* Still need to check other stuff, at least the case
2601 where we are stepping and step out of the right range. */
2602 break;
2603
2604 case BPSTAT_WHAT_STOP_NOISY:
2605 if (debug_infrun)
2606 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2607 stop_print_frame = 1;
2608
2609 /* We are about to nuke the step_resume_breakpointt via the
2610 cleanup chain, so no need to worry about it here. */
2611
2612 stop_stepping (ecs);
2613 return;
2614
2615 case BPSTAT_WHAT_STOP_SILENT:
2616 if (debug_infrun)
2617 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2618 stop_print_frame = 0;
2619
2620 /* We are about to nuke the step_resume_breakpoin via the
2621 cleanup chain, so no need to worry about it here. */
2622
2623 stop_stepping (ecs);
2624 return;
2625
2626 case BPSTAT_WHAT_STEP_RESUME:
2627 /* This proably demands a more elegant solution, but, yeah
2628 right...
2629
2630 This function's use of the simple variable
2631 step_resume_breakpoint doesn't seem to accomodate
2632 simultaneously active step-resume bp's, although the
2633 breakpoint list certainly can.
2634
2635 If we reach here and step_resume_breakpoint is already
2636 NULL, then apparently we have multiple active
2637 step-resume bp's. We'll just delete the breakpoint we
2638 stopped at, and carry on.
2639
2640 Correction: what the code currently does is delete a
2641 step-resume bp, but it makes no effort to ensure that
2642 the one deleted is the one currently stopped at. MVS */
2643
2644 if (debug_infrun)
2645 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2646
2647 if (step_resume_breakpoint == NULL)
2648 {
2649 step_resume_breakpoint =
2650 bpstat_find_step_resume_breakpoint (stop_bpstat);
2651 }
2652 delete_step_resume_breakpoint (&step_resume_breakpoint);
2653 if (ecs->step_after_step_resume_breakpoint)
2654 {
2655 /* Back when the step-resume breakpoint was inserted, we
2656 were trying to single-step off a breakpoint. Go back
2657 to doing that. */
2658 ecs->step_after_step_resume_breakpoint = 0;
2659 ecs->stepping_over_breakpoint = 1;
2660 keep_going (ecs);
2661 return;
2662 }
2663 break;
2664
2665 case BPSTAT_WHAT_CHECK_SHLIBS:
2666 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2667 {
2668 if (debug_infrun)
2669 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2670
2671 /* Check for any newly added shared libraries if we're
2672 supposed to be adding them automatically. Switch
2673 terminal for any messages produced by
2674 breakpoint_re_set. */
2675 target_terminal_ours_for_output ();
2676 /* NOTE: cagney/2003-11-25: Make certain that the target
2677 stack's section table is kept up-to-date. Architectures,
2678 (e.g., PPC64), use the section table to perform
2679 operations such as address => section name and hence
2680 require the table to contain all sections (including
2681 those found in shared libraries). */
2682 /* NOTE: cagney/2003-11-25: Pass current_target and not
2683 exec_ops to SOLIB_ADD. This is because current GDB is
2684 only tooled to propagate section_table changes out from
2685 the "current_target" (see target_resize_to_sections), and
2686 not up from the exec stratum. This, of course, isn't
2687 right. "infrun.c" should only interact with the
2688 exec/process stratum, instead relying on the target stack
2689 to propagate relevant changes (stop, section table
2690 changed, ...) up to other layers. */
2691 #ifdef SOLIB_ADD
2692 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2693 #else
2694 solib_add (NULL, 0, &current_target, auto_solib_add);
2695 #endif
2696 target_terminal_inferior ();
2697
2698 /* If requested, stop when the dynamic linker notifies
2699 gdb of events. This allows the user to get control
2700 and place breakpoints in initializer routines for
2701 dynamically loaded objects (among other things). */
2702 if (stop_on_solib_events || stop_stack_dummy)
2703 {
2704 stop_stepping (ecs);
2705 return;
2706 }
2707
2708 /* If we stopped due to an explicit catchpoint, then the
2709 (see above) call to SOLIB_ADD pulled in any symbols
2710 from a newly-loaded library, if appropriate.
2711
2712 We do want the inferior to stop, but not where it is
2713 now, which is in the dynamic linker callback. Rather,
2714 we would like it stop in the user's program, just after
2715 the call that caused this catchpoint to trigger. That
2716 gives the user a more useful vantage from which to
2717 examine their program's state. */
2718 else if (what.main_action
2719 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2720 {
2721 /* ??rehrauer: If I could figure out how to get the
2722 right return PC from here, we could just set a temp
2723 breakpoint and resume. I'm not sure we can without
2724 cracking open the dld's shared libraries and sniffing
2725 their unwind tables and text/data ranges, and that's
2726 not a terribly portable notion.
2727
2728 Until that time, we must step the inferior out of the
2729 dld callback, and also out of the dld itself (and any
2730 code or stubs in libdld.sl, such as "shl_load" and
2731 friends) until we reach non-dld code. At that point,
2732 we can stop stepping. */
2733 bpstat_get_triggered_catchpoints (stop_bpstat,
2734 &ecs->
2735 stepping_through_solib_catchpoints);
2736 ecs->stepping_through_solib_after_catch = 1;
2737
2738 /* Be sure to lift all breakpoints, so the inferior does
2739 actually step past this point... */
2740 ecs->stepping_over_breakpoint = 1;
2741 break;
2742 }
2743 else
2744 {
2745 /* We want to step over this breakpoint, then keep going. */
2746 ecs->stepping_over_breakpoint = 1;
2747 break;
2748 }
2749 }
2750 break;
2751
2752 case BPSTAT_WHAT_LAST:
2753 /* Not a real code, but listed here to shut up gcc -Wall. */
2754
2755 case BPSTAT_WHAT_KEEP_CHECKING:
2756 break;
2757 }
2758 }
2759
2760 /* We come here if we hit a breakpoint but should not
2761 stop for it. Possibly we also were stepping
2762 and should stop for that. So fall through and
2763 test for stepping. But, if not stepping,
2764 do not stop. */
2765
2766 /* Are we stepping to get the inferior out of the dynamic linker's
2767 hook (and possibly the dld itself) after catching a shlib
2768 event? */
2769 if (ecs->stepping_through_solib_after_catch)
2770 {
2771 #if defined(SOLIB_ADD)
2772 /* Have we reached our destination? If not, keep going. */
2773 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2774 {
2775 if (debug_infrun)
2776 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2777 ecs->stepping_over_breakpoint = 1;
2778 keep_going (ecs);
2779 return;
2780 }
2781 #endif
2782 if (debug_infrun)
2783 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2784 /* Else, stop and report the catchpoint(s) whose triggering
2785 caused us to begin stepping. */
2786 ecs->stepping_through_solib_after_catch = 0;
2787 bpstat_clear (&stop_bpstat);
2788 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2789 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2790 stop_print_frame = 1;
2791 stop_stepping (ecs);
2792 return;
2793 }
2794
2795 if (step_resume_breakpoint)
2796 {
2797 if (debug_infrun)
2798 fprintf_unfiltered (gdb_stdlog,
2799 "infrun: step-resume breakpoint is inserted\n");
2800
2801 /* Having a step-resume breakpoint overrides anything
2802 else having to do with stepping commands until
2803 that breakpoint is reached. */
2804 keep_going (ecs);
2805 return;
2806 }
2807
2808 if (step_range_end == 0)
2809 {
2810 if (debug_infrun)
2811 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2812 /* Likewise if we aren't even stepping. */
2813 keep_going (ecs);
2814 return;
2815 }
2816
2817 /* If stepping through a line, keep going if still within it.
2818
2819 Note that step_range_end is the address of the first instruction
2820 beyond the step range, and NOT the address of the last instruction
2821 within it! */
2822 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2823 {
2824 if (debug_infrun)
2825 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2826 paddr_nz (step_range_start),
2827 paddr_nz (step_range_end));
2828 keep_going (ecs);
2829 return;
2830 }
2831
2832 /* We stepped out of the stepping range. */
2833
2834 /* If we are stepping at the source level and entered the runtime
2835 loader dynamic symbol resolution code, we keep on single stepping
2836 until we exit the run time loader code and reach the callee's
2837 address. */
2838 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2839 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2840 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2841 #else
2842 && in_solib_dynsym_resolve_code (stop_pc)
2843 #endif
2844 )
2845 {
2846 CORE_ADDR pc_after_resolver =
2847 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2848
2849 if (debug_infrun)
2850 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2851
2852 if (pc_after_resolver)
2853 {
2854 /* Set up a step-resume breakpoint at the address
2855 indicated by SKIP_SOLIB_RESOLVER. */
2856 struct symtab_and_line sr_sal;
2857 init_sal (&sr_sal);
2858 sr_sal.pc = pc_after_resolver;
2859
2860 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2861 }
2862
2863 keep_going (ecs);
2864 return;
2865 }
2866
2867 if (step_range_end != 1
2868 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2869 || step_over_calls == STEP_OVER_ALL)
2870 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2871 {
2872 if (debug_infrun)
2873 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2874 /* The inferior, while doing a "step" or "next", has ended up in
2875 a signal trampoline (either by a signal being delivered or by
2876 the signal handler returning). Just single-step until the
2877 inferior leaves the trampoline (either by calling the handler
2878 or returning). */
2879 keep_going (ecs);
2880 return;
2881 }
2882
2883 /* Check for subroutine calls. The check for the current frame
2884 equalling the step ID is not necessary - the check of the
2885 previous frame's ID is sufficient - but it is a common case and
2886 cheaper than checking the previous frame's ID.
2887
2888 NOTE: frame_id_eq will never report two invalid frame IDs as
2889 being equal, so to get into this block, both the current and
2890 previous frame must have valid frame IDs. */
2891 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2892 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2893 {
2894 CORE_ADDR real_stop_pc;
2895
2896 if (debug_infrun)
2897 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2898
2899 if ((step_over_calls == STEP_OVER_NONE)
2900 || ((step_range_end == 1)
2901 && in_prologue (prev_pc, ecs->stop_func_start)))
2902 {
2903 /* I presume that step_over_calls is only 0 when we're
2904 supposed to be stepping at the assembly language level
2905 ("stepi"). Just stop. */
2906 /* Also, maybe we just did a "nexti" inside a prolog, so we
2907 thought it was a subroutine call but it was not. Stop as
2908 well. FENN */
2909 stop_step = 1;
2910 print_stop_reason (END_STEPPING_RANGE, 0);
2911 stop_stepping (ecs);
2912 return;
2913 }
2914
2915 if (step_over_calls == STEP_OVER_ALL)
2916 {
2917 /* We're doing a "next", set a breakpoint at callee's return
2918 address (the address at which the caller will
2919 resume). */
2920 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2921 keep_going (ecs);
2922 return;
2923 }
2924
2925 /* If we are in a function call trampoline (a stub between the
2926 calling routine and the real function), locate the real
2927 function. That's what tells us (a) whether we want to step
2928 into it at all, and (b) what prologue we want to run to the
2929 end of, if we do step into it. */
2930 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2931 if (real_stop_pc == 0)
2932 real_stop_pc = gdbarch_skip_trampoline_code
2933 (current_gdbarch, get_current_frame (), stop_pc);
2934 if (real_stop_pc != 0)
2935 ecs->stop_func_start = real_stop_pc;
2936
2937 if (
2938 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2939 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2940 #else
2941 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2942 #endif
2943 )
2944 {
2945 struct symtab_and_line sr_sal;
2946 init_sal (&sr_sal);
2947 sr_sal.pc = ecs->stop_func_start;
2948
2949 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2950 keep_going (ecs);
2951 return;
2952 }
2953
2954 /* If we have line number information for the function we are
2955 thinking of stepping into, step into it.
2956
2957 If there are several symtabs at that PC (e.g. with include
2958 files), just want to know whether *any* of them have line
2959 numbers. find_pc_line handles this. */
2960 {
2961 struct symtab_and_line tmp_sal;
2962
2963 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2964 if (tmp_sal.line != 0)
2965 {
2966 step_into_function (ecs);
2967 return;
2968 }
2969 }
2970
2971 /* If we have no line number and the step-stop-if-no-debug is
2972 set, we stop the step so that the user has a chance to switch
2973 in assembly mode. */
2974 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2975 {
2976 stop_step = 1;
2977 print_stop_reason (END_STEPPING_RANGE, 0);
2978 stop_stepping (ecs);
2979 return;
2980 }
2981
2982 /* Set a breakpoint at callee's return address (the address at
2983 which the caller will resume). */
2984 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2985 keep_going (ecs);
2986 return;
2987 }
2988
2989 /* If we're in the return path from a shared library trampoline,
2990 we want to proceed through the trampoline when stepping. */
2991 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2992 stop_pc, ecs->stop_func_name))
2993 {
2994 /* Determine where this trampoline returns. */
2995 CORE_ADDR real_stop_pc;
2996 real_stop_pc = gdbarch_skip_trampoline_code
2997 (current_gdbarch, get_current_frame (), stop_pc);
2998
2999 if (debug_infrun)
3000 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3001
3002 /* Only proceed through if we know where it's going. */
3003 if (real_stop_pc)
3004 {
3005 /* And put the step-breakpoint there and go until there. */
3006 struct symtab_and_line sr_sal;
3007
3008 init_sal (&sr_sal); /* initialize to zeroes */
3009 sr_sal.pc = real_stop_pc;
3010 sr_sal.section = find_pc_overlay (sr_sal.pc);
3011
3012 /* Do not specify what the fp should be when we stop since
3013 on some machines the prologue is where the new fp value
3014 is established. */
3015 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3016
3017 /* Restart without fiddling with the step ranges or
3018 other state. */
3019 keep_going (ecs);
3020 return;
3021 }
3022 }
3023
3024 ecs->sal = find_pc_line (stop_pc, 0);
3025
3026 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3027 the trampoline processing logic, however, there are some trampolines
3028 that have no names, so we should do trampoline handling first. */
3029 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
3030 && ecs->stop_func_name == NULL
3031 && ecs->sal.line == 0)
3032 {
3033 if (debug_infrun)
3034 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3035
3036 /* The inferior just stepped into, or returned to, an
3037 undebuggable function (where there is no debugging information
3038 and no line number corresponding to the address where the
3039 inferior stopped). Since we want to skip this kind of code,
3040 we keep going until the inferior returns from this
3041 function - unless the user has asked us not to (via
3042 set step-mode) or we no longer know how to get back
3043 to the call site. */
3044 if (step_stop_if_no_debug
3045 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3046 {
3047 /* If we have no line number and the step-stop-if-no-debug
3048 is set, we stop the step so that the user has a chance to
3049 switch in assembly mode. */
3050 stop_step = 1;
3051 print_stop_reason (END_STEPPING_RANGE, 0);
3052 stop_stepping (ecs);
3053 return;
3054 }
3055 else
3056 {
3057 /* Set a breakpoint at callee's return address (the address
3058 at which the caller will resume). */
3059 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3060 keep_going (ecs);
3061 return;
3062 }
3063 }
3064
3065 if (step_range_end == 1)
3066 {
3067 /* It is stepi or nexti. We always want to stop stepping after
3068 one instruction. */
3069 if (debug_infrun)
3070 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3071 stop_step = 1;
3072 print_stop_reason (END_STEPPING_RANGE, 0);
3073 stop_stepping (ecs);
3074 return;
3075 }
3076
3077 if (ecs->sal.line == 0)
3078 {
3079 /* We have no line number information. That means to stop
3080 stepping (does this always happen right after one instruction,
3081 when we do "s" in a function with no line numbers,
3082 or can this happen as a result of a return or longjmp?). */
3083 if (debug_infrun)
3084 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3085 stop_step = 1;
3086 print_stop_reason (END_STEPPING_RANGE, 0);
3087 stop_stepping (ecs);
3088 return;
3089 }
3090
3091 if ((stop_pc == ecs->sal.pc)
3092 && (ecs->current_line != ecs->sal.line
3093 || ecs->current_symtab != ecs->sal.symtab))
3094 {
3095 /* We are at the start of a different line. So stop. Note that
3096 we don't stop if we step into the middle of a different line.
3097 That is said to make things like for (;;) statements work
3098 better. */
3099 if (debug_infrun)
3100 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3101 stop_step = 1;
3102 print_stop_reason (END_STEPPING_RANGE, 0);
3103 stop_stepping (ecs);
3104 return;
3105 }
3106
3107 /* We aren't done stepping.
3108
3109 Optimize by setting the stepping range to the line.
3110 (We might not be in the original line, but if we entered a
3111 new line in mid-statement, we continue stepping. This makes
3112 things like for(;;) statements work better.) */
3113
3114 step_range_start = ecs->sal.pc;
3115 step_range_end = ecs->sal.end;
3116 step_frame_id = get_frame_id (get_current_frame ());
3117 ecs->current_line = ecs->sal.line;
3118 ecs->current_symtab = ecs->sal.symtab;
3119
3120 /* In the case where we just stepped out of a function into the
3121 middle of a line of the caller, continue stepping, but
3122 step_frame_id must be modified to current frame */
3123 #if 0
3124 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
3125 generous. It will trigger on things like a step into a frameless
3126 stackless leaf function. I think the logic should instead look
3127 at the unwound frame ID has that should give a more robust
3128 indication of what happened. */
3129 if (step - ID == current - ID)
3130 still stepping in same function;
3131 else if (step - ID == unwind (current - ID))
3132 stepped into a function;
3133 else
3134 stepped out of a function;
3135 /* Of course this assumes that the frame ID unwind code is robust
3136 and we're willing to introduce frame unwind logic into this
3137 function. Fortunately, those days are nearly upon us. */
3138 #endif
3139 {
3140 struct frame_info *frame = get_current_frame ();
3141 struct frame_id current_frame = get_frame_id (frame);
3142 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
3143 step_frame_id)))
3144 step_frame_id = current_frame;
3145 }
3146
3147 if (debug_infrun)
3148 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3149 keep_going (ecs);
3150 }
3151
3152 /* Are we in the middle of stepping? */
3153
3154 static int
3155 currently_stepping (struct execution_control_state *ecs)
3156 {
3157 return ((!ecs->handling_longjmp
3158 && ((step_range_end && step_resume_breakpoint == NULL)
3159 || stepping_over_breakpoint))
3160 || ecs->stepping_through_solib_after_catch
3161 || bpstat_should_step ());
3162 }
3163
3164 /* Subroutine call with source code we should not step over. Do step
3165 to the first line of code in it. */
3166
3167 static void
3168 step_into_function (struct execution_control_state *ecs)
3169 {
3170 struct symtab *s;
3171 struct symtab_and_line sr_sal;
3172
3173 s = find_pc_symtab (stop_pc);
3174 if (s && s->language != language_asm)
3175 ecs->stop_func_start = gdbarch_skip_prologue
3176 (current_gdbarch, ecs->stop_func_start);
3177
3178 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
3179 /* Use the step_resume_break to step until the end of the prologue,
3180 even if that involves jumps (as it seems to on the vax under
3181 4.2). */
3182 /* If the prologue ends in the middle of a source line, continue to
3183 the end of that source line (if it is still within the function).
3184 Otherwise, just go to end of prologue. */
3185 if (ecs->sal.end
3186 && ecs->sal.pc != ecs->stop_func_start
3187 && ecs->sal.end < ecs->stop_func_end)
3188 ecs->stop_func_start = ecs->sal.end;
3189
3190 /* Architectures which require breakpoint adjustment might not be able
3191 to place a breakpoint at the computed address. If so, the test
3192 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3193 ecs->stop_func_start to an address at which a breakpoint may be
3194 legitimately placed.
3195
3196 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3197 made, GDB will enter an infinite loop when stepping through
3198 optimized code consisting of VLIW instructions which contain
3199 subinstructions corresponding to different source lines. On
3200 FR-V, it's not permitted to place a breakpoint on any but the
3201 first subinstruction of a VLIW instruction. When a breakpoint is
3202 set, GDB will adjust the breakpoint address to the beginning of
3203 the VLIW instruction. Thus, we need to make the corresponding
3204 adjustment here when computing the stop address. */
3205
3206 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3207 {
3208 ecs->stop_func_start
3209 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3210 ecs->stop_func_start);
3211 }
3212
3213 if (ecs->stop_func_start == stop_pc)
3214 {
3215 /* We are already there: stop now. */
3216 stop_step = 1;
3217 print_stop_reason (END_STEPPING_RANGE, 0);
3218 stop_stepping (ecs);
3219 return;
3220 }
3221 else
3222 {
3223 /* Put the step-breakpoint there and go until there. */
3224 init_sal (&sr_sal); /* initialize to zeroes */
3225 sr_sal.pc = ecs->stop_func_start;
3226 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3227
3228 /* Do not specify what the fp should be when we stop since on
3229 some machines the prologue is where the new fp value is
3230 established. */
3231 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3232
3233 /* And make sure stepping stops right away then. */
3234 step_range_end = step_range_start;
3235 }
3236 keep_going (ecs);
3237 }
3238
3239 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3240 This is used to both functions and to skip over code. */
3241
3242 static void
3243 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3244 struct frame_id sr_id)
3245 {
3246 /* There should never be more than one step-resume breakpoint per
3247 thread, so we should never be setting a new
3248 step_resume_breakpoint when one is already active. */
3249 gdb_assert (step_resume_breakpoint == NULL);
3250
3251 if (debug_infrun)
3252 fprintf_unfiltered (gdb_stdlog,
3253 "infrun: inserting step-resume breakpoint at 0x%s\n",
3254 paddr_nz (sr_sal.pc));
3255
3256 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
3257 bp_step_resume);
3258 }
3259
3260 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3261 to skip a potential signal handler.
3262
3263 This is called with the interrupted function's frame. The signal
3264 handler, when it returns, will resume the interrupted function at
3265 RETURN_FRAME.pc. */
3266
3267 static void
3268 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3269 {
3270 struct symtab_and_line sr_sal;
3271
3272 gdb_assert (return_frame != NULL);
3273 init_sal (&sr_sal); /* initialize to zeros */
3274
3275 sr_sal.pc = gdbarch_addr_bits_remove
3276 (current_gdbarch, get_frame_pc (return_frame));
3277 sr_sal.section = find_pc_overlay (sr_sal.pc);
3278
3279 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3280 }
3281
3282 /* Similar to insert_step_resume_breakpoint_at_frame, except
3283 but a breakpoint at the previous frame's PC. This is used to
3284 skip a function after stepping into it (for "next" or if the called
3285 function has no debugging information).
3286
3287 The current function has almost always been reached by single
3288 stepping a call or return instruction. NEXT_FRAME belongs to the
3289 current function, and the breakpoint will be set at the caller's
3290 resume address.
3291
3292 This is a separate function rather than reusing
3293 insert_step_resume_breakpoint_at_frame in order to avoid
3294 get_prev_frame, which may stop prematurely (see the implementation
3295 of frame_unwind_id for an example). */
3296
3297 static void
3298 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3299 {
3300 struct symtab_and_line sr_sal;
3301
3302 /* We shouldn't have gotten here if we don't know where the call site
3303 is. */
3304 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3305
3306 init_sal (&sr_sal); /* initialize to zeros */
3307
3308 sr_sal.pc = gdbarch_addr_bits_remove
3309 (current_gdbarch, frame_pc_unwind (next_frame));
3310 sr_sal.section = find_pc_overlay (sr_sal.pc);
3311
3312 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3313 }
3314
3315 static void
3316 stop_stepping (struct execution_control_state *ecs)
3317 {
3318 if (debug_infrun)
3319 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3320
3321 /* Let callers know we don't want to wait for the inferior anymore. */
3322 ecs->wait_some_more = 0;
3323 }
3324
3325 /* This function handles various cases where we need to continue
3326 waiting for the inferior. */
3327 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3328
3329 static void
3330 keep_going (struct execution_control_state *ecs)
3331 {
3332 /* Save the pc before execution, to compare with pc after stop. */
3333 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3334
3335 /* If we did not do break;, it means we should keep running the
3336 inferior and not return to debugger. */
3337
3338 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
3339 {
3340 /* We took a signal (which we are supposed to pass through to
3341 the inferior, else we'd have done a break above) and we
3342 haven't yet gotten our trap. Simply continue. */
3343 resume (currently_stepping (ecs), stop_signal);
3344 }
3345 else
3346 {
3347 /* Either the trap was not expected, but we are continuing
3348 anyway (the user asked that this signal be passed to the
3349 child)
3350 -- or --
3351 The signal was SIGTRAP, e.g. it was our signal, but we
3352 decided we should resume from it.
3353
3354 We're going to run this baby now!
3355
3356 Note that insert_breakpoints won't try to re-insert
3357 already inserted breakpoints. Therefore, we don't
3358 care if breakpoints were already inserted, or not. */
3359
3360 if (ecs->stepping_over_breakpoint)
3361 {
3362 if (! use_displaced_stepping (current_gdbarch))
3363 /* Since we can't do a displaced step, we have to remove
3364 the breakpoint while we step it. To keep things
3365 simple, we remove them all. */
3366 remove_breakpoints ();
3367 }
3368 else
3369 {
3370 struct gdb_exception e;
3371 /* Stop stepping when inserting breakpoints
3372 has failed. */
3373 TRY_CATCH (e, RETURN_MASK_ERROR)
3374 {
3375 insert_breakpoints ();
3376 }
3377 if (e.reason < 0)
3378 {
3379 stop_stepping (ecs);
3380 return;
3381 }
3382 }
3383
3384 stepping_over_breakpoint = ecs->stepping_over_breakpoint;
3385
3386 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3387 specifies that such a signal should be delivered to the
3388 target program).
3389
3390 Typically, this would occure when a user is debugging a
3391 target monitor on a simulator: the target monitor sets a
3392 breakpoint; the simulator encounters this break-point and
3393 halts the simulation handing control to GDB; GDB, noteing
3394 that the break-point isn't valid, returns control back to the
3395 simulator; the simulator then delivers the hardware
3396 equivalent of a SIGNAL_TRAP to the program being debugged. */
3397
3398 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
3399 stop_signal = TARGET_SIGNAL_0;
3400
3401
3402 resume (currently_stepping (ecs), stop_signal);
3403 }
3404
3405 prepare_to_wait (ecs);
3406 }
3407
3408 /* This function normally comes after a resume, before
3409 handle_inferior_event exits. It takes care of any last bits of
3410 housekeeping, and sets the all-important wait_some_more flag. */
3411
3412 static void
3413 prepare_to_wait (struct execution_control_state *ecs)
3414 {
3415 if (debug_infrun)
3416 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
3417 if (ecs->infwait_state == infwait_normal_state)
3418 {
3419 overlay_cache_invalid = 1;
3420
3421 /* We have to invalidate the registers BEFORE calling
3422 target_wait because they can be loaded from the target while
3423 in target_wait. This makes remote debugging a bit more
3424 efficient for those targets that provide critical registers
3425 as part of their normal status mechanism. */
3426
3427 registers_changed ();
3428 ecs->waiton_ptid = pid_to_ptid (-1);
3429 ecs->wp = &(ecs->ws);
3430 }
3431 /* This is the old end of the while loop. Let everybody know we
3432 want to wait for the inferior some more and get called again
3433 soon. */
3434 ecs->wait_some_more = 1;
3435 }
3436
3437 /* Print why the inferior has stopped. We always print something when
3438 the inferior exits, or receives a signal. The rest of the cases are
3439 dealt with later on in normal_stop() and print_it_typical(). Ideally
3440 there should be a call to this function from handle_inferior_event()
3441 each time stop_stepping() is called.*/
3442 static void
3443 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3444 {
3445 switch (stop_reason)
3446 {
3447 case END_STEPPING_RANGE:
3448 /* We are done with a step/next/si/ni command. */
3449 /* For now print nothing. */
3450 /* Print a message only if not in the middle of doing a "step n"
3451 operation for n > 1 */
3452 if (!step_multi || !stop_step)
3453 if (ui_out_is_mi_like_p (uiout))
3454 ui_out_field_string
3455 (uiout, "reason",
3456 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3457 break;
3458 case SIGNAL_EXITED:
3459 /* The inferior was terminated by a signal. */
3460 annotate_signalled ();
3461 if (ui_out_is_mi_like_p (uiout))
3462 ui_out_field_string
3463 (uiout, "reason",
3464 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3465 ui_out_text (uiout, "\nProgram terminated with signal ");
3466 annotate_signal_name ();
3467 ui_out_field_string (uiout, "signal-name",
3468 target_signal_to_name (stop_info));
3469 annotate_signal_name_end ();
3470 ui_out_text (uiout, ", ");
3471 annotate_signal_string ();
3472 ui_out_field_string (uiout, "signal-meaning",
3473 target_signal_to_string (stop_info));
3474 annotate_signal_string_end ();
3475 ui_out_text (uiout, ".\n");
3476 ui_out_text (uiout, "The program no longer exists.\n");
3477 break;
3478 case EXITED:
3479 /* The inferior program is finished. */
3480 annotate_exited (stop_info);
3481 if (stop_info)
3482 {
3483 if (ui_out_is_mi_like_p (uiout))
3484 ui_out_field_string (uiout, "reason",
3485 async_reason_lookup (EXEC_ASYNC_EXITED));
3486 ui_out_text (uiout, "\nProgram exited with code ");
3487 ui_out_field_fmt (uiout, "exit-code", "0%o",
3488 (unsigned int) stop_info);
3489 ui_out_text (uiout, ".\n");
3490 }
3491 else
3492 {
3493 if (ui_out_is_mi_like_p (uiout))
3494 ui_out_field_string
3495 (uiout, "reason",
3496 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3497 ui_out_text (uiout, "\nProgram exited normally.\n");
3498 }
3499 /* Support the --return-child-result option. */
3500 return_child_result_value = stop_info;
3501 break;
3502 case SIGNAL_RECEIVED:
3503 /* Signal received. The signal table tells us to print about
3504 it. */
3505 annotate_signal ();
3506 ui_out_text (uiout, "\nProgram received signal ");
3507 annotate_signal_name ();
3508 if (ui_out_is_mi_like_p (uiout))
3509 ui_out_field_string
3510 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3511 ui_out_field_string (uiout, "signal-name",
3512 target_signal_to_name (stop_info));
3513 annotate_signal_name_end ();
3514 ui_out_text (uiout, ", ");
3515 annotate_signal_string ();
3516 ui_out_field_string (uiout, "signal-meaning",
3517 target_signal_to_string (stop_info));
3518 annotate_signal_string_end ();
3519 ui_out_text (uiout, ".\n");
3520 break;
3521 default:
3522 internal_error (__FILE__, __LINE__,
3523 _("print_stop_reason: unrecognized enum value"));
3524 break;
3525 }
3526 }
3527 \f
3528
3529 /* Here to return control to GDB when the inferior stops for real.
3530 Print appropriate messages, remove breakpoints, give terminal our modes.
3531
3532 STOP_PRINT_FRAME nonzero means print the executing frame
3533 (pc, function, args, file, line number and line text).
3534 BREAKPOINTS_FAILED nonzero means stop was due to error
3535 attempting to insert breakpoints. */
3536
3537 void
3538 normal_stop (void)
3539 {
3540 struct target_waitstatus last;
3541 ptid_t last_ptid;
3542
3543 get_last_target_status (&last_ptid, &last);
3544
3545 /* As with the notification of thread events, we want to delay
3546 notifying the user that we've switched thread context until
3547 the inferior actually stops.
3548
3549 There's no point in saying anything if the inferior has exited.
3550 Note that SIGNALLED here means "exited with a signal", not
3551 "received a signal". */
3552 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3553 && target_has_execution
3554 && last.kind != TARGET_WAITKIND_SIGNALLED
3555 && last.kind != TARGET_WAITKIND_EXITED)
3556 {
3557 target_terminal_ours_for_output ();
3558 printf_filtered (_("[Switching to %s]\n"),
3559 target_pid_to_str (inferior_ptid));
3560 previous_inferior_ptid = inferior_ptid;
3561 }
3562
3563 /* NOTE drow/2004-01-17: Is this still necessary? */
3564 /* Make sure that the current_frame's pc is correct. This
3565 is a correction for setting up the frame info before doing
3566 gdbarch_decr_pc_after_break */
3567 if (target_has_execution)
3568 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3569 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3570 frame code to check for this and sort out any resultant mess.
3571 gdbarch_decr_pc_after_break needs to just go away. */
3572 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3573
3574 if (!breakpoints_always_inserted_mode () && target_has_execution)
3575 {
3576 if (remove_breakpoints ())
3577 {
3578 target_terminal_ours_for_output ();
3579 printf_filtered (_("\
3580 Cannot remove breakpoints because program is no longer writable.\n\
3581 It might be running in another process.\n\
3582 Further execution is probably impossible.\n"));
3583 }
3584 }
3585
3586 /* If an auto-display called a function and that got a signal,
3587 delete that auto-display to avoid an infinite recursion. */
3588
3589 if (stopped_by_random_signal)
3590 disable_current_display ();
3591
3592 /* Don't print a message if in the middle of doing a "step n"
3593 operation for n > 1 */
3594 if (step_multi && stop_step)
3595 goto done;
3596
3597 target_terminal_ours ();
3598
3599 /* Set the current source location. This will also happen if we
3600 display the frame below, but the current SAL will be incorrect
3601 during a user hook-stop function. */
3602 if (target_has_stack && !stop_stack_dummy)
3603 set_current_sal_from_frame (get_current_frame (), 1);
3604
3605 /* Look up the hook_stop and run it (CLI internally handles problem
3606 of stop_command's pre-hook not existing). */
3607 if (stop_command)
3608 catch_errors (hook_stop_stub, stop_command,
3609 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3610
3611 if (!target_has_stack)
3612 {
3613
3614 goto done;
3615 }
3616
3617 /* Select innermost stack frame - i.e., current frame is frame 0,
3618 and current location is based on that.
3619 Don't do this on return from a stack dummy routine,
3620 or if the program has exited. */
3621
3622 if (!stop_stack_dummy)
3623 {
3624 select_frame (get_current_frame ());
3625
3626 /* Print current location without a level number, if
3627 we have changed functions or hit a breakpoint.
3628 Print source line if we have one.
3629 bpstat_print() contains the logic deciding in detail
3630 what to print, based on the event(s) that just occurred. */
3631
3632 /* If --batch-silent is enabled then there's no need to print the current
3633 source location, and to try risks causing an error message about
3634 missing source files. */
3635 if (stop_print_frame && !batch_silent)
3636 {
3637 int bpstat_ret;
3638 int source_flag;
3639 int do_frame_printing = 1;
3640
3641 bpstat_ret = bpstat_print (stop_bpstat);
3642 switch (bpstat_ret)
3643 {
3644 case PRINT_UNKNOWN:
3645 /* If we had hit a shared library event breakpoint,
3646 bpstat_print would print out this message. If we hit
3647 an OS-level shared library event, do the same
3648 thing. */
3649 if (last.kind == TARGET_WAITKIND_LOADED)
3650 {
3651 printf_filtered (_("Stopped due to shared library event\n"));
3652 source_flag = SRC_LINE; /* something bogus */
3653 do_frame_printing = 0;
3654 break;
3655 }
3656
3657 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3658 (or should) carry around the function and does (or
3659 should) use that when doing a frame comparison. */
3660 if (stop_step
3661 && frame_id_eq (step_frame_id,
3662 get_frame_id (get_current_frame ()))
3663 && step_start_function == find_pc_function (stop_pc))
3664 source_flag = SRC_LINE; /* finished step, just print source line */
3665 else
3666 source_flag = SRC_AND_LOC; /* print location and source line */
3667 break;
3668 case PRINT_SRC_AND_LOC:
3669 source_flag = SRC_AND_LOC; /* print location and source line */
3670 break;
3671 case PRINT_SRC_ONLY:
3672 source_flag = SRC_LINE;
3673 break;
3674 case PRINT_NOTHING:
3675 source_flag = SRC_LINE; /* something bogus */
3676 do_frame_printing = 0;
3677 break;
3678 default:
3679 internal_error (__FILE__, __LINE__, _("Unknown value."));
3680 }
3681
3682 if (ui_out_is_mi_like_p (uiout))
3683 ui_out_field_int (uiout, "thread-id",
3684 pid_to_thread_id (inferior_ptid));
3685 /* The behavior of this routine with respect to the source
3686 flag is:
3687 SRC_LINE: Print only source line
3688 LOCATION: Print only location
3689 SRC_AND_LOC: Print location and source line */
3690 if (do_frame_printing)
3691 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3692
3693 /* Display the auto-display expressions. */
3694 do_displays ();
3695 }
3696 }
3697
3698 /* Save the function value return registers, if we care.
3699 We might be about to restore their previous contents. */
3700 if (proceed_to_finish)
3701 {
3702 /* This should not be necessary. */
3703 if (stop_registers)
3704 regcache_xfree (stop_registers);
3705
3706 /* NB: The copy goes through to the target picking up the value of
3707 all the registers. */
3708 stop_registers = regcache_dup (get_current_regcache ());
3709 }
3710
3711 if (stop_stack_dummy)
3712 {
3713 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3714 ends with a setting of the current frame, so we can use that
3715 next. */
3716 frame_pop (get_current_frame ());
3717 /* Set stop_pc to what it was before we called the function.
3718 Can't rely on restore_inferior_status because that only gets
3719 called if we don't stop in the called function. */
3720 stop_pc = read_pc ();
3721 select_frame (get_current_frame ());
3722 }
3723
3724 done:
3725 annotate_stopped ();
3726 observer_notify_normal_stop (stop_bpstat);
3727 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3728 Delete any breakpoint that is to be deleted at the next stop. */
3729 breakpoint_auto_delete (stop_bpstat);
3730 }
3731
3732 static int
3733 hook_stop_stub (void *cmd)
3734 {
3735 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3736 return (0);
3737 }
3738 \f
3739 int
3740 signal_stop_state (int signo)
3741 {
3742 /* Always stop on signals if we're just gaining control of the
3743 program. */
3744 return signal_stop[signo] || stop_soon != NO_STOP_QUIETLY;
3745 }
3746
3747 int
3748 signal_print_state (int signo)
3749 {
3750 return signal_print[signo];
3751 }
3752
3753 int
3754 signal_pass_state (int signo)
3755 {
3756 return signal_program[signo];
3757 }
3758
3759 int
3760 signal_stop_update (int signo, int state)
3761 {
3762 int ret = signal_stop[signo];
3763 signal_stop[signo] = state;
3764 return ret;
3765 }
3766
3767 int
3768 signal_print_update (int signo, int state)
3769 {
3770 int ret = signal_print[signo];
3771 signal_print[signo] = state;
3772 return ret;
3773 }
3774
3775 int
3776 signal_pass_update (int signo, int state)
3777 {
3778 int ret = signal_program[signo];
3779 signal_program[signo] = state;
3780 return ret;
3781 }
3782
3783 static void
3784 sig_print_header (void)
3785 {
3786 printf_filtered (_("\
3787 Signal Stop\tPrint\tPass to program\tDescription\n"));
3788 }
3789
3790 static void
3791 sig_print_info (enum target_signal oursig)
3792 {
3793 char *name = target_signal_to_name (oursig);
3794 int name_padding = 13 - strlen (name);
3795
3796 if (name_padding <= 0)
3797 name_padding = 0;
3798
3799 printf_filtered ("%s", name);
3800 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3801 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3802 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3803 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3804 printf_filtered ("%s\n", target_signal_to_string (oursig));
3805 }
3806
3807 /* Specify how various signals in the inferior should be handled. */
3808
3809 static void
3810 handle_command (char *args, int from_tty)
3811 {
3812 char **argv;
3813 int digits, wordlen;
3814 int sigfirst, signum, siglast;
3815 enum target_signal oursig;
3816 int allsigs;
3817 int nsigs;
3818 unsigned char *sigs;
3819 struct cleanup *old_chain;
3820
3821 if (args == NULL)
3822 {
3823 error_no_arg (_("signal to handle"));
3824 }
3825
3826 /* Allocate and zero an array of flags for which signals to handle. */
3827
3828 nsigs = (int) TARGET_SIGNAL_LAST;
3829 sigs = (unsigned char *) alloca (nsigs);
3830 memset (sigs, 0, nsigs);
3831
3832 /* Break the command line up into args. */
3833
3834 argv = buildargv (args);
3835 if (argv == NULL)
3836 {
3837 nomem (0);
3838 }
3839 old_chain = make_cleanup_freeargv (argv);
3840
3841 /* Walk through the args, looking for signal oursigs, signal names, and
3842 actions. Signal numbers and signal names may be interspersed with
3843 actions, with the actions being performed for all signals cumulatively
3844 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3845
3846 while (*argv != NULL)
3847 {
3848 wordlen = strlen (*argv);
3849 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3850 {;
3851 }
3852 allsigs = 0;
3853 sigfirst = siglast = -1;
3854
3855 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3856 {
3857 /* Apply action to all signals except those used by the
3858 debugger. Silently skip those. */
3859 allsigs = 1;
3860 sigfirst = 0;
3861 siglast = nsigs - 1;
3862 }
3863 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3864 {
3865 SET_SIGS (nsigs, sigs, signal_stop);
3866 SET_SIGS (nsigs, sigs, signal_print);
3867 }
3868 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3869 {
3870 UNSET_SIGS (nsigs, sigs, signal_program);
3871 }
3872 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3873 {
3874 SET_SIGS (nsigs, sigs, signal_print);
3875 }
3876 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3877 {
3878 SET_SIGS (nsigs, sigs, signal_program);
3879 }
3880 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3881 {
3882 UNSET_SIGS (nsigs, sigs, signal_stop);
3883 }
3884 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3885 {
3886 SET_SIGS (nsigs, sigs, signal_program);
3887 }
3888 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3889 {
3890 UNSET_SIGS (nsigs, sigs, signal_print);
3891 UNSET_SIGS (nsigs, sigs, signal_stop);
3892 }
3893 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3894 {
3895 UNSET_SIGS (nsigs, sigs, signal_program);
3896 }
3897 else if (digits > 0)
3898 {
3899 /* It is numeric. The numeric signal refers to our own
3900 internal signal numbering from target.h, not to host/target
3901 signal number. This is a feature; users really should be
3902 using symbolic names anyway, and the common ones like
3903 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3904
3905 sigfirst = siglast = (int)
3906 target_signal_from_command (atoi (*argv));
3907 if ((*argv)[digits] == '-')
3908 {
3909 siglast = (int)
3910 target_signal_from_command (atoi ((*argv) + digits + 1));
3911 }
3912 if (sigfirst > siglast)
3913 {
3914 /* Bet he didn't figure we'd think of this case... */
3915 signum = sigfirst;
3916 sigfirst = siglast;
3917 siglast = signum;
3918 }
3919 }
3920 else
3921 {
3922 oursig = target_signal_from_name (*argv);
3923 if (oursig != TARGET_SIGNAL_UNKNOWN)
3924 {
3925 sigfirst = siglast = (int) oursig;
3926 }
3927 else
3928 {
3929 /* Not a number and not a recognized flag word => complain. */
3930 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3931 }
3932 }
3933
3934 /* If any signal numbers or symbol names were found, set flags for
3935 which signals to apply actions to. */
3936
3937 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3938 {
3939 switch ((enum target_signal) signum)
3940 {
3941 case TARGET_SIGNAL_TRAP:
3942 case TARGET_SIGNAL_INT:
3943 if (!allsigs && !sigs[signum])
3944 {
3945 if (query ("%s is used by the debugger.\n\
3946 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3947 {
3948 sigs[signum] = 1;
3949 }
3950 else
3951 {
3952 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3953 gdb_flush (gdb_stdout);
3954 }
3955 }
3956 break;
3957 case TARGET_SIGNAL_0:
3958 case TARGET_SIGNAL_DEFAULT:
3959 case TARGET_SIGNAL_UNKNOWN:
3960 /* Make sure that "all" doesn't print these. */
3961 break;
3962 default:
3963 sigs[signum] = 1;
3964 break;
3965 }
3966 }
3967
3968 argv++;
3969 }
3970
3971 target_notice_signals (inferior_ptid);
3972
3973 if (from_tty)
3974 {
3975 /* Show the results. */
3976 sig_print_header ();
3977 for (signum = 0; signum < nsigs; signum++)
3978 {
3979 if (sigs[signum])
3980 {
3981 sig_print_info (signum);
3982 }
3983 }
3984 }
3985
3986 do_cleanups (old_chain);
3987 }
3988
3989 static void
3990 xdb_handle_command (char *args, int from_tty)
3991 {
3992 char **argv;
3993 struct cleanup *old_chain;
3994
3995 /* Break the command line up into args. */
3996
3997 argv = buildargv (args);
3998 if (argv == NULL)
3999 {
4000 nomem (0);
4001 }
4002 old_chain = make_cleanup_freeargv (argv);
4003 if (argv[1] != (char *) NULL)
4004 {
4005 char *argBuf;
4006 int bufLen;
4007
4008 bufLen = strlen (argv[0]) + 20;
4009 argBuf = (char *) xmalloc (bufLen);
4010 if (argBuf)
4011 {
4012 int validFlag = 1;
4013 enum target_signal oursig;
4014
4015 oursig = target_signal_from_name (argv[0]);
4016 memset (argBuf, 0, bufLen);
4017 if (strcmp (argv[1], "Q") == 0)
4018 sprintf (argBuf, "%s %s", argv[0], "noprint");
4019 else
4020 {
4021 if (strcmp (argv[1], "s") == 0)
4022 {
4023 if (!signal_stop[oursig])
4024 sprintf (argBuf, "%s %s", argv[0], "stop");
4025 else
4026 sprintf (argBuf, "%s %s", argv[0], "nostop");
4027 }
4028 else if (strcmp (argv[1], "i") == 0)
4029 {
4030 if (!signal_program[oursig])
4031 sprintf (argBuf, "%s %s", argv[0], "pass");
4032 else
4033 sprintf (argBuf, "%s %s", argv[0], "nopass");
4034 }
4035 else if (strcmp (argv[1], "r") == 0)
4036 {
4037 if (!signal_print[oursig])
4038 sprintf (argBuf, "%s %s", argv[0], "print");
4039 else
4040 sprintf (argBuf, "%s %s", argv[0], "noprint");
4041 }
4042 else
4043 validFlag = 0;
4044 }
4045 if (validFlag)
4046 handle_command (argBuf, from_tty);
4047 else
4048 printf_filtered (_("Invalid signal handling flag.\n"));
4049 if (argBuf)
4050 xfree (argBuf);
4051 }
4052 }
4053 do_cleanups (old_chain);
4054 }
4055
4056 /* Print current contents of the tables set by the handle command.
4057 It is possible we should just be printing signals actually used
4058 by the current target (but for things to work right when switching
4059 targets, all signals should be in the signal tables). */
4060
4061 static void
4062 signals_info (char *signum_exp, int from_tty)
4063 {
4064 enum target_signal oursig;
4065 sig_print_header ();
4066
4067 if (signum_exp)
4068 {
4069 /* First see if this is a symbol name. */
4070 oursig = target_signal_from_name (signum_exp);
4071 if (oursig == TARGET_SIGNAL_UNKNOWN)
4072 {
4073 /* No, try numeric. */
4074 oursig =
4075 target_signal_from_command (parse_and_eval_long (signum_exp));
4076 }
4077 sig_print_info (oursig);
4078 return;
4079 }
4080
4081 printf_filtered ("\n");
4082 /* These ugly casts brought to you by the native VAX compiler. */
4083 for (oursig = TARGET_SIGNAL_FIRST;
4084 (int) oursig < (int) TARGET_SIGNAL_LAST;
4085 oursig = (enum target_signal) ((int) oursig + 1))
4086 {
4087 QUIT;
4088
4089 if (oursig != TARGET_SIGNAL_UNKNOWN
4090 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4091 sig_print_info (oursig);
4092 }
4093
4094 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4095 }
4096 \f
4097 struct inferior_status
4098 {
4099 enum target_signal stop_signal;
4100 CORE_ADDR stop_pc;
4101 bpstat stop_bpstat;
4102 int stop_step;
4103 int stop_stack_dummy;
4104 int stopped_by_random_signal;
4105 int stepping_over_breakpoint;
4106 CORE_ADDR step_range_start;
4107 CORE_ADDR step_range_end;
4108 struct frame_id step_frame_id;
4109 enum step_over_calls_kind step_over_calls;
4110 CORE_ADDR step_resume_break_address;
4111 int stop_after_trap;
4112 int stop_soon;
4113
4114 /* These are here because if call_function_by_hand has written some
4115 registers and then decides to call error(), we better not have changed
4116 any registers. */
4117 struct regcache *registers;
4118
4119 /* A frame unique identifier. */
4120 struct frame_id selected_frame_id;
4121
4122 int breakpoint_proceeded;
4123 int restore_stack_info;
4124 int proceed_to_finish;
4125 };
4126
4127 void
4128 write_inferior_status_register (struct inferior_status *inf_status, int regno,
4129 LONGEST val)
4130 {
4131 int size = register_size (current_gdbarch, regno);
4132 void *buf = alloca (size);
4133 store_signed_integer (buf, size, val);
4134 regcache_raw_write (inf_status->registers, regno, buf);
4135 }
4136
4137 /* Save all of the information associated with the inferior<==>gdb
4138 connection. INF_STATUS is a pointer to a "struct inferior_status"
4139 (defined in inferior.h). */
4140
4141 struct inferior_status *
4142 save_inferior_status (int restore_stack_info)
4143 {
4144 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4145
4146 inf_status->stop_signal = stop_signal;
4147 inf_status->stop_pc = stop_pc;
4148 inf_status->stop_step = stop_step;
4149 inf_status->stop_stack_dummy = stop_stack_dummy;
4150 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4151 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
4152 inf_status->step_range_start = step_range_start;
4153 inf_status->step_range_end = step_range_end;
4154 inf_status->step_frame_id = step_frame_id;
4155 inf_status->step_over_calls = step_over_calls;
4156 inf_status->stop_after_trap = stop_after_trap;
4157 inf_status->stop_soon = stop_soon;
4158 /* Save original bpstat chain here; replace it with copy of chain.
4159 If caller's caller is walking the chain, they'll be happier if we
4160 hand them back the original chain when restore_inferior_status is
4161 called. */
4162 inf_status->stop_bpstat = stop_bpstat;
4163 stop_bpstat = bpstat_copy (stop_bpstat);
4164 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4165 inf_status->restore_stack_info = restore_stack_info;
4166 inf_status->proceed_to_finish = proceed_to_finish;
4167
4168 inf_status->registers = regcache_dup (get_current_regcache ());
4169
4170 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4171 return inf_status;
4172 }
4173
4174 static int
4175 restore_selected_frame (void *args)
4176 {
4177 struct frame_id *fid = (struct frame_id *) args;
4178 struct frame_info *frame;
4179
4180 frame = frame_find_by_id (*fid);
4181
4182 /* If inf_status->selected_frame_id is NULL, there was no previously
4183 selected frame. */
4184 if (frame == NULL)
4185 {
4186 warning (_("Unable to restore previously selected frame."));
4187 return 0;
4188 }
4189
4190 select_frame (frame);
4191
4192 return (1);
4193 }
4194
4195 void
4196 restore_inferior_status (struct inferior_status *inf_status)
4197 {
4198 stop_signal = inf_status->stop_signal;
4199 stop_pc = inf_status->stop_pc;
4200 stop_step = inf_status->stop_step;
4201 stop_stack_dummy = inf_status->stop_stack_dummy;
4202 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4203 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
4204 step_range_start = inf_status->step_range_start;
4205 step_range_end = inf_status->step_range_end;
4206 step_frame_id = inf_status->step_frame_id;
4207 step_over_calls = inf_status->step_over_calls;
4208 stop_after_trap = inf_status->stop_after_trap;
4209 stop_soon = inf_status->stop_soon;
4210 bpstat_clear (&stop_bpstat);
4211 stop_bpstat = inf_status->stop_bpstat;
4212 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4213 proceed_to_finish = inf_status->proceed_to_finish;
4214
4215 /* The inferior can be gone if the user types "print exit(0)"
4216 (and perhaps other times). */
4217 if (target_has_execution)
4218 /* NB: The register write goes through to the target. */
4219 regcache_cpy (get_current_regcache (), inf_status->registers);
4220 regcache_xfree (inf_status->registers);
4221
4222 /* FIXME: If we are being called after stopping in a function which
4223 is called from gdb, we should not be trying to restore the
4224 selected frame; it just prints a spurious error message (The
4225 message is useful, however, in detecting bugs in gdb (like if gdb
4226 clobbers the stack)). In fact, should we be restoring the
4227 inferior status at all in that case? . */
4228
4229 if (target_has_stack && inf_status->restore_stack_info)
4230 {
4231 /* The point of catch_errors is that if the stack is clobbered,
4232 walking the stack might encounter a garbage pointer and
4233 error() trying to dereference it. */
4234 if (catch_errors
4235 (restore_selected_frame, &inf_status->selected_frame_id,
4236 "Unable to restore previously selected frame:\n",
4237 RETURN_MASK_ERROR) == 0)
4238 /* Error in restoring the selected frame. Select the innermost
4239 frame. */
4240 select_frame (get_current_frame ());
4241
4242 }
4243
4244 xfree (inf_status);
4245 }
4246
4247 static void
4248 do_restore_inferior_status_cleanup (void *sts)
4249 {
4250 restore_inferior_status (sts);
4251 }
4252
4253 struct cleanup *
4254 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4255 {
4256 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4257 }
4258
4259 void
4260 discard_inferior_status (struct inferior_status *inf_status)
4261 {
4262 /* See save_inferior_status for info on stop_bpstat. */
4263 bpstat_clear (&inf_status->stop_bpstat);
4264 regcache_xfree (inf_status->registers);
4265 xfree (inf_status);
4266 }
4267
4268 int
4269 inferior_has_forked (int pid, int *child_pid)
4270 {
4271 struct target_waitstatus last;
4272 ptid_t last_ptid;
4273
4274 get_last_target_status (&last_ptid, &last);
4275
4276 if (last.kind != TARGET_WAITKIND_FORKED)
4277 return 0;
4278
4279 if (ptid_get_pid (last_ptid) != pid)
4280 return 0;
4281
4282 *child_pid = last.value.related_pid;
4283 return 1;
4284 }
4285
4286 int
4287 inferior_has_vforked (int pid, int *child_pid)
4288 {
4289 struct target_waitstatus last;
4290 ptid_t last_ptid;
4291
4292 get_last_target_status (&last_ptid, &last);
4293
4294 if (last.kind != TARGET_WAITKIND_VFORKED)
4295 return 0;
4296
4297 if (ptid_get_pid (last_ptid) != pid)
4298 return 0;
4299
4300 *child_pid = last.value.related_pid;
4301 return 1;
4302 }
4303
4304 int
4305 inferior_has_execd (int pid, char **execd_pathname)
4306 {
4307 struct target_waitstatus last;
4308 ptid_t last_ptid;
4309
4310 get_last_target_status (&last_ptid, &last);
4311
4312 if (last.kind != TARGET_WAITKIND_EXECD)
4313 return 0;
4314
4315 if (ptid_get_pid (last_ptid) != pid)
4316 return 0;
4317
4318 *execd_pathname = xstrdup (last.value.execd_pathname);
4319 return 1;
4320 }
4321
4322 /* Oft used ptids */
4323 ptid_t null_ptid;
4324 ptid_t minus_one_ptid;
4325
4326 /* Create a ptid given the necessary PID, LWP, and TID components. */
4327
4328 ptid_t
4329 ptid_build (int pid, long lwp, long tid)
4330 {
4331 ptid_t ptid;
4332
4333 ptid.pid = pid;
4334 ptid.lwp = lwp;
4335 ptid.tid = tid;
4336 return ptid;
4337 }
4338
4339 /* Create a ptid from just a pid. */
4340
4341 ptid_t
4342 pid_to_ptid (int pid)
4343 {
4344 return ptid_build (pid, 0, 0);
4345 }
4346
4347 /* Fetch the pid (process id) component from a ptid. */
4348
4349 int
4350 ptid_get_pid (ptid_t ptid)
4351 {
4352 return ptid.pid;
4353 }
4354
4355 /* Fetch the lwp (lightweight process) component from a ptid. */
4356
4357 long
4358 ptid_get_lwp (ptid_t ptid)
4359 {
4360 return ptid.lwp;
4361 }
4362
4363 /* Fetch the tid (thread id) component from a ptid. */
4364
4365 long
4366 ptid_get_tid (ptid_t ptid)
4367 {
4368 return ptid.tid;
4369 }
4370
4371 /* ptid_equal() is used to test equality of two ptids. */
4372
4373 int
4374 ptid_equal (ptid_t ptid1, ptid_t ptid2)
4375 {
4376 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
4377 && ptid1.tid == ptid2.tid);
4378 }
4379
4380 /* restore_inferior_ptid() will be used by the cleanup machinery
4381 to restore the inferior_ptid value saved in a call to
4382 save_inferior_ptid(). */
4383
4384 static void
4385 restore_inferior_ptid (void *arg)
4386 {
4387 ptid_t *saved_ptid_ptr = arg;
4388 inferior_ptid = *saved_ptid_ptr;
4389 xfree (arg);
4390 }
4391
4392 /* Save the value of inferior_ptid so that it may be restored by a
4393 later call to do_cleanups(). Returns the struct cleanup pointer
4394 needed for later doing the cleanup. */
4395
4396 struct cleanup *
4397 save_inferior_ptid (void)
4398 {
4399 ptid_t *saved_ptid_ptr;
4400
4401 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4402 *saved_ptid_ptr = inferior_ptid;
4403 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4404 }
4405 \f
4406
4407 void
4408 _initialize_infrun (void)
4409 {
4410 int i;
4411 int numsigs;
4412 struct cmd_list_element *c;
4413
4414 add_info ("signals", signals_info, _("\
4415 What debugger does when program gets various signals.\n\
4416 Specify a signal as argument to print info on that signal only."));
4417 add_info_alias ("handle", "signals", 0);
4418
4419 add_com ("handle", class_run, handle_command, _("\
4420 Specify how to handle a signal.\n\
4421 Args are signals and actions to apply to those signals.\n\
4422 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4423 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4424 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4425 The special arg \"all\" is recognized to mean all signals except those\n\
4426 used by the debugger, typically SIGTRAP and SIGINT.\n\
4427 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4428 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4429 Stop means reenter debugger if this signal happens (implies print).\n\
4430 Print means print a message if this signal happens.\n\
4431 Pass means let program see this signal; otherwise program doesn't know.\n\
4432 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4433 Pass and Stop may be combined."));
4434 if (xdb_commands)
4435 {
4436 add_com ("lz", class_info, signals_info, _("\
4437 What debugger does when program gets various signals.\n\
4438 Specify a signal as argument to print info on that signal only."));
4439 add_com ("z", class_run, xdb_handle_command, _("\
4440 Specify how to handle a signal.\n\
4441 Args are signals and actions to apply to those signals.\n\
4442 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4443 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4444 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4445 The special arg \"all\" is recognized to mean all signals except those\n\
4446 used by the debugger, typically SIGTRAP and SIGINT.\n\
4447 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4448 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4449 nopass), \"Q\" (noprint)\n\
4450 Stop means reenter debugger if this signal happens (implies print).\n\
4451 Print means print a message if this signal happens.\n\
4452 Pass means let program see this signal; otherwise program doesn't know.\n\
4453 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4454 Pass and Stop may be combined."));
4455 }
4456
4457 if (!dbx_commands)
4458 stop_command = add_cmd ("stop", class_obscure,
4459 not_just_help_class_command, _("\
4460 There is no `stop' command, but you can set a hook on `stop'.\n\
4461 This allows you to set a list of commands to be run each time execution\n\
4462 of the program stops."), &cmdlist);
4463
4464 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4465 Set inferior debugging."), _("\
4466 Show inferior debugging."), _("\
4467 When non-zero, inferior specific debugging is enabled."),
4468 NULL,
4469 show_debug_infrun,
4470 &setdebuglist, &showdebuglist);
4471
4472 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
4473 Set displaced stepping debugging."), _("\
4474 Show displaced stepping debugging."), _("\
4475 When non-zero, displaced stepping specific debugging is enabled."),
4476 NULL,
4477 show_debug_displaced,
4478 &setdebuglist, &showdebuglist);
4479
4480 numsigs = (int) TARGET_SIGNAL_LAST;
4481 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4482 signal_print = (unsigned char *)
4483 xmalloc (sizeof (signal_print[0]) * numsigs);
4484 signal_program = (unsigned char *)
4485 xmalloc (sizeof (signal_program[0]) * numsigs);
4486 for (i = 0; i < numsigs; i++)
4487 {
4488 signal_stop[i] = 1;
4489 signal_print[i] = 1;
4490 signal_program[i] = 1;
4491 }
4492
4493 /* Signals caused by debugger's own actions
4494 should not be given to the program afterwards. */
4495 signal_program[TARGET_SIGNAL_TRAP] = 0;
4496 signal_program[TARGET_SIGNAL_INT] = 0;
4497
4498 /* Signals that are not errors should not normally enter the debugger. */
4499 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4500 signal_print[TARGET_SIGNAL_ALRM] = 0;
4501 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4502 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4503 signal_stop[TARGET_SIGNAL_PROF] = 0;
4504 signal_print[TARGET_SIGNAL_PROF] = 0;
4505 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4506 signal_print[TARGET_SIGNAL_CHLD] = 0;
4507 signal_stop[TARGET_SIGNAL_IO] = 0;
4508 signal_print[TARGET_SIGNAL_IO] = 0;
4509 signal_stop[TARGET_SIGNAL_POLL] = 0;
4510 signal_print[TARGET_SIGNAL_POLL] = 0;
4511 signal_stop[TARGET_SIGNAL_URG] = 0;
4512 signal_print[TARGET_SIGNAL_URG] = 0;
4513 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4514 signal_print[TARGET_SIGNAL_WINCH] = 0;
4515
4516 /* These signals are used internally by user-level thread
4517 implementations. (See signal(5) on Solaris.) Like the above
4518 signals, a healthy program receives and handles them as part of
4519 its normal operation. */
4520 signal_stop[TARGET_SIGNAL_LWP] = 0;
4521 signal_print[TARGET_SIGNAL_LWP] = 0;
4522 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4523 signal_print[TARGET_SIGNAL_WAITING] = 0;
4524 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4525 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4526
4527 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4528 &stop_on_solib_events, _("\
4529 Set stopping for shared library events."), _("\
4530 Show stopping for shared library events."), _("\
4531 If nonzero, gdb will give control to the user when the dynamic linker\n\
4532 notifies gdb of shared library events. The most common event of interest\n\
4533 to the user would be loading/unloading of a new library."),
4534 NULL,
4535 show_stop_on_solib_events,
4536 &setlist, &showlist);
4537
4538 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4539 follow_fork_mode_kind_names,
4540 &follow_fork_mode_string, _("\
4541 Set debugger response to a program call of fork or vfork."), _("\
4542 Show debugger response to a program call of fork or vfork."), _("\
4543 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4544 parent - the original process is debugged after a fork\n\
4545 child - the new process is debugged after a fork\n\
4546 The unfollowed process will continue to run.\n\
4547 By default, the debugger will follow the parent process."),
4548 NULL,
4549 show_follow_fork_mode_string,
4550 &setlist, &showlist);
4551
4552 add_setshow_enum_cmd ("scheduler-locking", class_run,
4553 scheduler_enums, &scheduler_mode, _("\
4554 Set mode for locking scheduler during execution."), _("\
4555 Show mode for locking scheduler during execution."), _("\
4556 off == no locking (threads may preempt at any time)\n\
4557 on == full locking (no thread except the current thread may run)\n\
4558 step == scheduler locked during every single-step operation.\n\
4559 In this mode, no other thread may run during a step command.\n\
4560 Other threads may run while stepping over a function call ('next')."),
4561 set_schedlock_func, /* traps on target vector */
4562 show_scheduler_mode,
4563 &setlist, &showlist);
4564
4565 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4566 Set mode of the step operation."), _("\
4567 Show mode of the step operation."), _("\
4568 When set, doing a step over a function without debug line information\n\
4569 will stop at the first instruction of that function. Otherwise, the\n\
4570 function is skipped and the step command stops at a different source line."),
4571 NULL,
4572 show_step_stop_if_no_debug,
4573 &setlist, &showlist);
4574
4575 add_setshow_boolean_cmd ("can-use-displaced-stepping", class_maintenance,
4576 &can_use_displaced_stepping, _("\
4577 Set debugger's willingness to use displaced stepping."), _("\
4578 Show debugger's willingness to use displaced stepping."), _("\
4579 If zero, gdb will not use to use displaced stepping to step over\n\
4580 breakpoints, even if such is supported by the target."),
4581 NULL,
4582 show_can_use_displaced_stepping,
4583 &maintenance_set_cmdlist,
4584 &maintenance_show_cmdlist);
4585
4586
4587 /* ptid initializations */
4588 null_ptid = ptid_build (0, 0, 0);
4589 minus_one_ptid = ptid_build (-1, 0, 0);
4590 inferior_ptid = null_ptid;
4591 target_last_wait_ptid = minus_one_ptid;
4592 displaced_step_ptid = null_ptid;
4593 }