2011-10-28 Pedro Alves <pedro@codesourcery.com>
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "dictionary.h"
49 #include "block.h"
50 #include "gdb_assert.h"
51 #include "mi/mi-common.h"
52 #include "event-top.h"
53 #include "record.h"
54 #include "inline-frame.h"
55 #include "jit.h"
56 #include "tracepoint.h"
57 #include "continuations.h"
58 #include "interps.h"
59
60 /* Prototypes for local functions */
61
62 static void signals_info (char *, int);
63
64 static void handle_command (char *, int);
65
66 static void sig_print_info (enum target_signal);
67
68 static void sig_print_header (void);
69
70 static void resume_cleanups (void *);
71
72 static int hook_stop_stub (void *);
73
74 static int restore_selected_frame (void *);
75
76 static int follow_fork (void);
77
78 static void set_schedlock_func (char *args, int from_tty,
79 struct cmd_list_element *c);
80
81 static int currently_stepping (struct thread_info *tp);
82
83 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
84 void *data);
85
86 static void xdb_handle_command (char *args, int from_tty);
87
88 static int prepare_to_proceed (int);
89
90 static void print_exited_reason (int exitstatus);
91
92 static void print_signal_exited_reason (enum target_signal siggnal);
93
94 static void print_no_history_reason (void);
95
96 static void print_signal_received_reason (enum target_signal siggnal);
97
98 static void print_end_stepping_range_reason (void);
99
100 void _initialize_infrun (void);
101
102 void nullify_last_target_wait_ptid (void);
103
104 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
105
106 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
107
108 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
109
110 /* When set, stop the 'step' command if we enter a function which has
111 no line number information. The normal behavior is that we step
112 over such function. */
113 int step_stop_if_no_debug = 0;
114 static void
115 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
116 struct cmd_list_element *c, const char *value)
117 {
118 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
119 }
120
121 /* In asynchronous mode, but simulating synchronous execution. */
122
123 int sync_execution = 0;
124
125 /* wait_for_inferior and normal_stop use this to notify the user
126 when the inferior stopped in a different thread than it had been
127 running in. */
128
129 static ptid_t previous_inferior_ptid;
130
131 /* Default behavior is to detach newly forked processes (legacy). */
132 int detach_fork = 1;
133
134 int debug_displaced = 0;
135 static void
136 show_debug_displaced (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138 {
139 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
140 }
141
142 int debug_infrun = 0;
143 static void
144 show_debug_infrun (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
148 }
149
150
151 /* Support for disabling address space randomization. */
152
153 int disable_randomization = 1;
154
155 static void
156 show_disable_randomization (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 if (target_supports_disable_randomization ())
160 fprintf_filtered (file,
161 _("Disabling randomization of debuggee's "
162 "virtual address space is %s.\n"),
163 value);
164 else
165 fputs_filtered (_("Disabling randomization of debuggee's "
166 "virtual address space is unsupported on\n"
167 "this platform.\n"), file);
168 }
169
170 static void
171 set_disable_randomization (char *args, int from_tty,
172 struct cmd_list_element *c)
173 {
174 if (!target_supports_disable_randomization ())
175 error (_("Disabling randomization of debuggee's "
176 "virtual address space is unsupported on\n"
177 "this platform."));
178 }
179
180
181 /* If the program uses ELF-style shared libraries, then calls to
182 functions in shared libraries go through stubs, which live in a
183 table called the PLT (Procedure Linkage Table). The first time the
184 function is called, the stub sends control to the dynamic linker,
185 which looks up the function's real address, patches the stub so
186 that future calls will go directly to the function, and then passes
187 control to the function.
188
189 If we are stepping at the source level, we don't want to see any of
190 this --- we just want to skip over the stub and the dynamic linker.
191 The simple approach is to single-step until control leaves the
192 dynamic linker.
193
194 However, on some systems (e.g., Red Hat's 5.2 distribution) the
195 dynamic linker calls functions in the shared C library, so you
196 can't tell from the PC alone whether the dynamic linker is still
197 running. In this case, we use a step-resume breakpoint to get us
198 past the dynamic linker, as if we were using "next" to step over a
199 function call.
200
201 in_solib_dynsym_resolve_code() says whether we're in the dynamic
202 linker code or not. Normally, this means we single-step. However,
203 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
204 address where we can place a step-resume breakpoint to get past the
205 linker's symbol resolution function.
206
207 in_solib_dynsym_resolve_code() can generally be implemented in a
208 pretty portable way, by comparing the PC against the address ranges
209 of the dynamic linker's sections.
210
211 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
212 it depends on internal details of the dynamic linker. It's usually
213 not too hard to figure out where to put a breakpoint, but it
214 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
215 sanity checking. If it can't figure things out, returning zero and
216 getting the (possibly confusing) stepping behavior is better than
217 signalling an error, which will obscure the change in the
218 inferior's state. */
219
220 /* This function returns TRUE if pc is the address of an instruction
221 that lies within the dynamic linker (such as the event hook, or the
222 dld itself).
223
224 This function must be used only when a dynamic linker event has
225 been caught, and the inferior is being stepped out of the hook, or
226 undefined results are guaranteed. */
227
228 #ifndef SOLIB_IN_DYNAMIC_LINKER
229 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
230 #endif
231
232 /* "Observer mode" is somewhat like a more extreme version of
233 non-stop, in which all GDB operations that might affect the
234 target's execution have been disabled. */
235
236 static int non_stop_1 = 0;
237
238 int observer_mode = 0;
239 static int observer_mode_1 = 0;
240
241 static void
242 set_observer_mode (char *args, int from_tty,
243 struct cmd_list_element *c)
244 {
245 extern int pagination_enabled;
246
247 if (target_has_execution)
248 {
249 observer_mode_1 = observer_mode;
250 error (_("Cannot change this setting while the inferior is running."));
251 }
252
253 observer_mode = observer_mode_1;
254
255 may_write_registers = !observer_mode;
256 may_write_memory = !observer_mode;
257 may_insert_breakpoints = !observer_mode;
258 may_insert_tracepoints = !observer_mode;
259 /* We can insert fast tracepoints in or out of observer mode,
260 but enable them if we're going into this mode. */
261 if (observer_mode)
262 may_insert_fast_tracepoints = 1;
263 may_stop = !observer_mode;
264 update_target_permissions ();
265
266 /* Going *into* observer mode we must force non-stop, then
267 going out we leave it that way. */
268 if (observer_mode)
269 {
270 target_async_permitted = 1;
271 pagination_enabled = 0;
272 non_stop = non_stop_1 = 1;
273 }
274
275 if (from_tty)
276 printf_filtered (_("Observer mode is now %s.\n"),
277 (observer_mode ? "on" : "off"));
278 }
279
280 static void
281 show_observer_mode (struct ui_file *file, int from_tty,
282 struct cmd_list_element *c, const char *value)
283 {
284 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
285 }
286
287 /* This updates the value of observer mode based on changes in
288 permissions. Note that we are deliberately ignoring the values of
289 may-write-registers and may-write-memory, since the user may have
290 reason to enable these during a session, for instance to turn on a
291 debugging-related global. */
292
293 void
294 update_observer_mode (void)
295 {
296 int newval;
297
298 newval = (!may_insert_breakpoints
299 && !may_insert_tracepoints
300 && may_insert_fast_tracepoints
301 && !may_stop
302 && non_stop);
303
304 /* Let the user know if things change. */
305 if (newval != observer_mode)
306 printf_filtered (_("Observer mode is now %s.\n"),
307 (newval ? "on" : "off"));
308
309 observer_mode = observer_mode_1 = newval;
310 }
311
312 /* Tables of how to react to signals; the user sets them. */
313
314 static unsigned char *signal_stop;
315 static unsigned char *signal_print;
316 static unsigned char *signal_program;
317
318 /* Table of signals that the target may silently handle.
319 This is automatically determined from the flags above,
320 and simply cached here. */
321 static unsigned char *signal_pass;
322
323 #define SET_SIGS(nsigs,sigs,flags) \
324 do { \
325 int signum = (nsigs); \
326 while (signum-- > 0) \
327 if ((sigs)[signum]) \
328 (flags)[signum] = 1; \
329 } while (0)
330
331 #define UNSET_SIGS(nsigs,sigs,flags) \
332 do { \
333 int signum = (nsigs); \
334 while (signum-- > 0) \
335 if ((sigs)[signum]) \
336 (flags)[signum] = 0; \
337 } while (0)
338
339 /* Value to pass to target_resume() to cause all threads to resume. */
340
341 #define RESUME_ALL minus_one_ptid
342
343 /* Command list pointer for the "stop" placeholder. */
344
345 static struct cmd_list_element *stop_command;
346
347 /* Function inferior was in as of last step command. */
348
349 static struct symbol *step_start_function;
350
351 /* Nonzero if we want to give control to the user when we're notified
352 of shared library events by the dynamic linker. */
353 int stop_on_solib_events;
354 static void
355 show_stop_on_solib_events (struct ui_file *file, int from_tty,
356 struct cmd_list_element *c, const char *value)
357 {
358 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
359 value);
360 }
361
362 /* Nonzero means expecting a trace trap
363 and should stop the inferior and return silently when it happens. */
364
365 int stop_after_trap;
366
367 /* Save register contents here when executing a "finish" command or are
368 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
369 Thus this contains the return value from the called function (assuming
370 values are returned in a register). */
371
372 struct regcache *stop_registers;
373
374 /* Nonzero after stop if current stack frame should be printed. */
375
376 static int stop_print_frame;
377
378 /* This is a cached copy of the pid/waitstatus of the last event
379 returned by target_wait()/deprecated_target_wait_hook(). This
380 information is returned by get_last_target_status(). */
381 static ptid_t target_last_wait_ptid;
382 static struct target_waitstatus target_last_waitstatus;
383
384 static void context_switch (ptid_t ptid);
385
386 void init_thread_stepping_state (struct thread_info *tss);
387
388 void init_infwait_state (void);
389
390 static const char follow_fork_mode_child[] = "child";
391 static const char follow_fork_mode_parent[] = "parent";
392
393 static const char *follow_fork_mode_kind_names[] = {
394 follow_fork_mode_child,
395 follow_fork_mode_parent,
396 NULL
397 };
398
399 static const char *follow_fork_mode_string = follow_fork_mode_parent;
400 static void
401 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 struct cmd_list_element *c, const char *value)
403 {
404 fprintf_filtered (file,
405 _("Debugger response to a program "
406 "call of fork or vfork is \"%s\".\n"),
407 value);
408 }
409 \f
410
411 /* Tell the target to follow the fork we're stopped at. Returns true
412 if the inferior should be resumed; false, if the target for some
413 reason decided it's best not to resume. */
414
415 static int
416 follow_fork (void)
417 {
418 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
419 int should_resume = 1;
420 struct thread_info *tp;
421
422 /* Copy user stepping state to the new inferior thread. FIXME: the
423 followed fork child thread should have a copy of most of the
424 parent thread structure's run control related fields, not just these.
425 Initialized to avoid "may be used uninitialized" warnings from gcc. */
426 struct breakpoint *step_resume_breakpoint = NULL;
427 struct breakpoint *exception_resume_breakpoint = NULL;
428 CORE_ADDR step_range_start = 0;
429 CORE_ADDR step_range_end = 0;
430 struct frame_id step_frame_id = { 0 };
431
432 if (!non_stop)
433 {
434 ptid_t wait_ptid;
435 struct target_waitstatus wait_status;
436
437 /* Get the last target status returned by target_wait(). */
438 get_last_target_status (&wait_ptid, &wait_status);
439
440 /* If not stopped at a fork event, then there's nothing else to
441 do. */
442 if (wait_status.kind != TARGET_WAITKIND_FORKED
443 && wait_status.kind != TARGET_WAITKIND_VFORKED)
444 return 1;
445
446 /* Check if we switched over from WAIT_PTID, since the event was
447 reported. */
448 if (!ptid_equal (wait_ptid, minus_one_ptid)
449 && !ptid_equal (inferior_ptid, wait_ptid))
450 {
451 /* We did. Switch back to WAIT_PTID thread, to tell the
452 target to follow it (in either direction). We'll
453 afterwards refuse to resume, and inform the user what
454 happened. */
455 switch_to_thread (wait_ptid);
456 should_resume = 0;
457 }
458 }
459
460 tp = inferior_thread ();
461
462 /* If there were any forks/vforks that were caught and are now to be
463 followed, then do so now. */
464 switch (tp->pending_follow.kind)
465 {
466 case TARGET_WAITKIND_FORKED:
467 case TARGET_WAITKIND_VFORKED:
468 {
469 ptid_t parent, child;
470
471 /* If the user did a next/step, etc, over a fork call,
472 preserve the stepping state in the fork child. */
473 if (follow_child && should_resume)
474 {
475 step_resume_breakpoint = clone_momentary_breakpoint
476 (tp->control.step_resume_breakpoint);
477 step_range_start = tp->control.step_range_start;
478 step_range_end = tp->control.step_range_end;
479 step_frame_id = tp->control.step_frame_id;
480 exception_resume_breakpoint
481 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
482
483 /* For now, delete the parent's sr breakpoint, otherwise,
484 parent/child sr breakpoints are considered duplicates,
485 and the child version will not be installed. Remove
486 this when the breakpoints module becomes aware of
487 inferiors and address spaces. */
488 delete_step_resume_breakpoint (tp);
489 tp->control.step_range_start = 0;
490 tp->control.step_range_end = 0;
491 tp->control.step_frame_id = null_frame_id;
492 delete_exception_resume_breakpoint (tp);
493 }
494
495 parent = inferior_ptid;
496 child = tp->pending_follow.value.related_pid;
497
498 /* Tell the target to do whatever is necessary to follow
499 either parent or child. */
500 if (target_follow_fork (follow_child))
501 {
502 /* Target refused to follow, or there's some other reason
503 we shouldn't resume. */
504 should_resume = 0;
505 }
506 else
507 {
508 /* This pending follow fork event is now handled, one way
509 or another. The previous selected thread may be gone
510 from the lists by now, but if it is still around, need
511 to clear the pending follow request. */
512 tp = find_thread_ptid (parent);
513 if (tp)
514 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
515
516 /* This makes sure we don't try to apply the "Switched
517 over from WAIT_PID" logic above. */
518 nullify_last_target_wait_ptid ();
519
520 /* If we followed the child, switch to it... */
521 if (follow_child)
522 {
523 switch_to_thread (child);
524
525 /* ... and preserve the stepping state, in case the
526 user was stepping over the fork call. */
527 if (should_resume)
528 {
529 tp = inferior_thread ();
530 tp->control.step_resume_breakpoint
531 = step_resume_breakpoint;
532 tp->control.step_range_start = step_range_start;
533 tp->control.step_range_end = step_range_end;
534 tp->control.step_frame_id = step_frame_id;
535 tp->control.exception_resume_breakpoint
536 = exception_resume_breakpoint;
537 }
538 else
539 {
540 /* If we get here, it was because we're trying to
541 resume from a fork catchpoint, but, the user
542 has switched threads away from the thread that
543 forked. In that case, the resume command
544 issued is most likely not applicable to the
545 child, so just warn, and refuse to resume. */
546 warning (_("Not resuming: switched threads "
547 "before following fork child.\n"));
548 }
549
550 /* Reset breakpoints in the child as appropriate. */
551 follow_inferior_reset_breakpoints ();
552 }
553 else
554 switch_to_thread (parent);
555 }
556 }
557 break;
558 case TARGET_WAITKIND_SPURIOUS:
559 /* Nothing to follow. */
560 break;
561 default:
562 internal_error (__FILE__, __LINE__,
563 "Unexpected pending_follow.kind %d\n",
564 tp->pending_follow.kind);
565 break;
566 }
567
568 return should_resume;
569 }
570
571 void
572 follow_inferior_reset_breakpoints (void)
573 {
574 struct thread_info *tp = inferior_thread ();
575
576 /* Was there a step_resume breakpoint? (There was if the user
577 did a "next" at the fork() call.) If so, explicitly reset its
578 thread number.
579
580 step_resumes are a form of bp that are made to be per-thread.
581 Since we created the step_resume bp when the parent process
582 was being debugged, and now are switching to the child process,
583 from the breakpoint package's viewpoint, that's a switch of
584 "threads". We must update the bp's notion of which thread
585 it is for, or it'll be ignored when it triggers. */
586
587 if (tp->control.step_resume_breakpoint)
588 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
589
590 if (tp->control.exception_resume_breakpoint)
591 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
592
593 /* Reinsert all breakpoints in the child. The user may have set
594 breakpoints after catching the fork, in which case those
595 were never set in the child, but only in the parent. This makes
596 sure the inserted breakpoints match the breakpoint list. */
597
598 breakpoint_re_set ();
599 insert_breakpoints ();
600 }
601
602 /* The child has exited or execed: resume threads of the parent the
603 user wanted to be executing. */
604
605 static int
606 proceed_after_vfork_done (struct thread_info *thread,
607 void *arg)
608 {
609 int pid = * (int *) arg;
610
611 if (ptid_get_pid (thread->ptid) == pid
612 && is_running (thread->ptid)
613 && !is_executing (thread->ptid)
614 && !thread->stop_requested
615 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
616 {
617 if (debug_infrun)
618 fprintf_unfiltered (gdb_stdlog,
619 "infrun: resuming vfork parent thread %s\n",
620 target_pid_to_str (thread->ptid));
621
622 switch_to_thread (thread->ptid);
623 clear_proceed_status ();
624 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
625 }
626
627 return 0;
628 }
629
630 /* Called whenever we notice an exec or exit event, to handle
631 detaching or resuming a vfork parent. */
632
633 static void
634 handle_vfork_child_exec_or_exit (int exec)
635 {
636 struct inferior *inf = current_inferior ();
637
638 if (inf->vfork_parent)
639 {
640 int resume_parent = -1;
641
642 /* This exec or exit marks the end of the shared memory region
643 between the parent and the child. If the user wanted to
644 detach from the parent, now is the time. */
645
646 if (inf->vfork_parent->pending_detach)
647 {
648 struct thread_info *tp;
649 struct cleanup *old_chain;
650 struct program_space *pspace;
651 struct address_space *aspace;
652
653 /* follow-fork child, detach-on-fork on. */
654
655 old_chain = make_cleanup_restore_current_thread ();
656
657 /* We're letting loose of the parent. */
658 tp = any_live_thread_of_process (inf->vfork_parent->pid);
659 switch_to_thread (tp->ptid);
660
661 /* We're about to detach from the parent, which implicitly
662 removes breakpoints from its address space. There's a
663 catch here: we want to reuse the spaces for the child,
664 but, parent/child are still sharing the pspace at this
665 point, although the exec in reality makes the kernel give
666 the child a fresh set of new pages. The problem here is
667 that the breakpoints module being unaware of this, would
668 likely chose the child process to write to the parent
669 address space. Swapping the child temporarily away from
670 the spaces has the desired effect. Yes, this is "sort
671 of" a hack. */
672
673 pspace = inf->pspace;
674 aspace = inf->aspace;
675 inf->aspace = NULL;
676 inf->pspace = NULL;
677
678 if (debug_infrun || info_verbose)
679 {
680 target_terminal_ours ();
681
682 if (exec)
683 fprintf_filtered (gdb_stdlog,
684 "Detaching vfork parent process "
685 "%d after child exec.\n",
686 inf->vfork_parent->pid);
687 else
688 fprintf_filtered (gdb_stdlog,
689 "Detaching vfork parent process "
690 "%d after child exit.\n",
691 inf->vfork_parent->pid);
692 }
693
694 target_detach (NULL, 0);
695
696 /* Put it back. */
697 inf->pspace = pspace;
698 inf->aspace = aspace;
699
700 do_cleanups (old_chain);
701 }
702 else if (exec)
703 {
704 /* We're staying attached to the parent, so, really give the
705 child a new address space. */
706 inf->pspace = add_program_space (maybe_new_address_space ());
707 inf->aspace = inf->pspace->aspace;
708 inf->removable = 1;
709 set_current_program_space (inf->pspace);
710
711 resume_parent = inf->vfork_parent->pid;
712
713 /* Break the bonds. */
714 inf->vfork_parent->vfork_child = NULL;
715 }
716 else
717 {
718 struct cleanup *old_chain;
719 struct program_space *pspace;
720
721 /* If this is a vfork child exiting, then the pspace and
722 aspaces were shared with the parent. Since we're
723 reporting the process exit, we'll be mourning all that is
724 found in the address space, and switching to null_ptid,
725 preparing to start a new inferior. But, since we don't
726 want to clobber the parent's address/program spaces, we
727 go ahead and create a new one for this exiting
728 inferior. */
729
730 /* Switch to null_ptid, so that clone_program_space doesn't want
731 to read the selected frame of a dead process. */
732 old_chain = save_inferior_ptid ();
733 inferior_ptid = null_ptid;
734
735 /* This inferior is dead, so avoid giving the breakpoints
736 module the option to write through to it (cloning a
737 program space resets breakpoints). */
738 inf->aspace = NULL;
739 inf->pspace = NULL;
740 pspace = add_program_space (maybe_new_address_space ());
741 set_current_program_space (pspace);
742 inf->removable = 1;
743 clone_program_space (pspace, inf->vfork_parent->pspace);
744 inf->pspace = pspace;
745 inf->aspace = pspace->aspace;
746
747 /* Put back inferior_ptid. We'll continue mourning this
748 inferior. */
749 do_cleanups (old_chain);
750
751 resume_parent = inf->vfork_parent->pid;
752 /* Break the bonds. */
753 inf->vfork_parent->vfork_child = NULL;
754 }
755
756 inf->vfork_parent = NULL;
757
758 gdb_assert (current_program_space == inf->pspace);
759
760 if (non_stop && resume_parent != -1)
761 {
762 /* If the user wanted the parent to be running, let it go
763 free now. */
764 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
765
766 if (debug_infrun)
767 fprintf_unfiltered (gdb_stdlog,
768 "infrun: resuming vfork parent process %d\n",
769 resume_parent);
770
771 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
772
773 do_cleanups (old_chain);
774 }
775 }
776 }
777
778 /* Enum strings for "set|show displaced-stepping". */
779
780 static const char follow_exec_mode_new[] = "new";
781 static const char follow_exec_mode_same[] = "same";
782 static const char *follow_exec_mode_names[] =
783 {
784 follow_exec_mode_new,
785 follow_exec_mode_same,
786 NULL,
787 };
788
789 static const char *follow_exec_mode_string = follow_exec_mode_same;
790 static void
791 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
792 struct cmd_list_element *c, const char *value)
793 {
794 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
795 }
796
797 /* EXECD_PATHNAME is assumed to be non-NULL. */
798
799 static void
800 follow_exec (ptid_t pid, char *execd_pathname)
801 {
802 struct thread_info *th = inferior_thread ();
803 struct inferior *inf = current_inferior ();
804
805 /* This is an exec event that we actually wish to pay attention to.
806 Refresh our symbol table to the newly exec'd program, remove any
807 momentary bp's, etc.
808
809 If there are breakpoints, they aren't really inserted now,
810 since the exec() transformed our inferior into a fresh set
811 of instructions.
812
813 We want to preserve symbolic breakpoints on the list, since
814 we have hopes that they can be reset after the new a.out's
815 symbol table is read.
816
817 However, any "raw" breakpoints must be removed from the list
818 (e.g., the solib bp's), since their address is probably invalid
819 now.
820
821 And, we DON'T want to call delete_breakpoints() here, since
822 that may write the bp's "shadow contents" (the instruction
823 value that was overwritten witha TRAP instruction). Since
824 we now have a new a.out, those shadow contents aren't valid. */
825
826 mark_breakpoints_out ();
827
828 update_breakpoints_after_exec ();
829
830 /* If there was one, it's gone now. We cannot truly step-to-next
831 statement through an exec(). */
832 th->control.step_resume_breakpoint = NULL;
833 th->control.exception_resume_breakpoint = NULL;
834 th->control.step_range_start = 0;
835 th->control.step_range_end = 0;
836
837 /* The target reports the exec event to the main thread, even if
838 some other thread does the exec, and even if the main thread was
839 already stopped --- if debugging in non-stop mode, it's possible
840 the user had the main thread held stopped in the previous image
841 --- release it now. This is the same behavior as step-over-exec
842 with scheduler-locking on in all-stop mode. */
843 th->stop_requested = 0;
844
845 /* What is this a.out's name? */
846 printf_unfiltered (_("%s is executing new program: %s\n"),
847 target_pid_to_str (inferior_ptid),
848 execd_pathname);
849
850 /* We've followed the inferior through an exec. Therefore, the
851 inferior has essentially been killed & reborn. */
852
853 gdb_flush (gdb_stdout);
854
855 breakpoint_init_inferior (inf_execd);
856
857 if (gdb_sysroot && *gdb_sysroot)
858 {
859 char *name = alloca (strlen (gdb_sysroot)
860 + strlen (execd_pathname)
861 + 1);
862
863 strcpy (name, gdb_sysroot);
864 strcat (name, execd_pathname);
865 execd_pathname = name;
866 }
867
868 /* Reset the shared library package. This ensures that we get a
869 shlib event when the child reaches "_start", at which point the
870 dld will have had a chance to initialize the child. */
871 /* Also, loading a symbol file below may trigger symbol lookups, and
872 we don't want those to be satisfied by the libraries of the
873 previous incarnation of this process. */
874 no_shared_libraries (NULL, 0);
875
876 if (follow_exec_mode_string == follow_exec_mode_new)
877 {
878 struct program_space *pspace;
879
880 /* The user wants to keep the old inferior and program spaces
881 around. Create a new fresh one, and switch to it. */
882
883 inf = add_inferior (current_inferior ()->pid);
884 pspace = add_program_space (maybe_new_address_space ());
885 inf->pspace = pspace;
886 inf->aspace = pspace->aspace;
887
888 exit_inferior_num_silent (current_inferior ()->num);
889
890 set_current_inferior (inf);
891 set_current_program_space (pspace);
892 }
893
894 gdb_assert (current_program_space == inf->pspace);
895
896 /* That a.out is now the one to use. */
897 exec_file_attach (execd_pathname, 0);
898
899 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
900 (Position Independent Executable) main symbol file will get applied by
901 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
902 the breakpoints with the zero displacement. */
903
904 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
905 NULL, 0);
906
907 set_initial_language ();
908
909 #ifdef SOLIB_CREATE_INFERIOR_HOOK
910 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
911 #else
912 solib_create_inferior_hook (0);
913 #endif
914
915 jit_inferior_created_hook ();
916
917 breakpoint_re_set ();
918
919 /* Reinsert all breakpoints. (Those which were symbolic have
920 been reset to the proper address in the new a.out, thanks
921 to symbol_file_command...). */
922 insert_breakpoints ();
923
924 /* The next resume of this inferior should bring it to the shlib
925 startup breakpoints. (If the user had also set bp's on
926 "main" from the old (parent) process, then they'll auto-
927 matically get reset there in the new process.). */
928 }
929
930 /* Non-zero if we just simulating a single-step. This is needed
931 because we cannot remove the breakpoints in the inferior process
932 until after the `wait' in `wait_for_inferior'. */
933 static int singlestep_breakpoints_inserted_p = 0;
934
935 /* The thread we inserted single-step breakpoints for. */
936 static ptid_t singlestep_ptid;
937
938 /* PC when we started this single-step. */
939 static CORE_ADDR singlestep_pc;
940
941 /* If another thread hit the singlestep breakpoint, we save the original
942 thread here so that we can resume single-stepping it later. */
943 static ptid_t saved_singlestep_ptid;
944 static int stepping_past_singlestep_breakpoint;
945
946 /* If not equal to null_ptid, this means that after stepping over breakpoint
947 is finished, we need to switch to deferred_step_ptid, and step it.
948
949 The use case is when one thread has hit a breakpoint, and then the user
950 has switched to another thread and issued 'step'. We need to step over
951 breakpoint in the thread which hit the breakpoint, but then continue
952 stepping the thread user has selected. */
953 static ptid_t deferred_step_ptid;
954 \f
955 /* Displaced stepping. */
956
957 /* In non-stop debugging mode, we must take special care to manage
958 breakpoints properly; in particular, the traditional strategy for
959 stepping a thread past a breakpoint it has hit is unsuitable.
960 'Displaced stepping' is a tactic for stepping one thread past a
961 breakpoint it has hit while ensuring that other threads running
962 concurrently will hit the breakpoint as they should.
963
964 The traditional way to step a thread T off a breakpoint in a
965 multi-threaded program in all-stop mode is as follows:
966
967 a0) Initially, all threads are stopped, and breakpoints are not
968 inserted.
969 a1) We single-step T, leaving breakpoints uninserted.
970 a2) We insert breakpoints, and resume all threads.
971
972 In non-stop debugging, however, this strategy is unsuitable: we
973 don't want to have to stop all threads in the system in order to
974 continue or step T past a breakpoint. Instead, we use displaced
975 stepping:
976
977 n0) Initially, T is stopped, other threads are running, and
978 breakpoints are inserted.
979 n1) We copy the instruction "under" the breakpoint to a separate
980 location, outside the main code stream, making any adjustments
981 to the instruction, register, and memory state as directed by
982 T's architecture.
983 n2) We single-step T over the instruction at its new location.
984 n3) We adjust the resulting register and memory state as directed
985 by T's architecture. This includes resetting T's PC to point
986 back into the main instruction stream.
987 n4) We resume T.
988
989 This approach depends on the following gdbarch methods:
990
991 - gdbarch_max_insn_length and gdbarch_displaced_step_location
992 indicate where to copy the instruction, and how much space must
993 be reserved there. We use these in step n1.
994
995 - gdbarch_displaced_step_copy_insn copies a instruction to a new
996 address, and makes any necessary adjustments to the instruction,
997 register contents, and memory. We use this in step n1.
998
999 - gdbarch_displaced_step_fixup adjusts registers and memory after
1000 we have successfuly single-stepped the instruction, to yield the
1001 same effect the instruction would have had if we had executed it
1002 at its original address. We use this in step n3.
1003
1004 - gdbarch_displaced_step_free_closure provides cleanup.
1005
1006 The gdbarch_displaced_step_copy_insn and
1007 gdbarch_displaced_step_fixup functions must be written so that
1008 copying an instruction with gdbarch_displaced_step_copy_insn,
1009 single-stepping across the copied instruction, and then applying
1010 gdbarch_displaced_insn_fixup should have the same effects on the
1011 thread's memory and registers as stepping the instruction in place
1012 would have. Exactly which responsibilities fall to the copy and
1013 which fall to the fixup is up to the author of those functions.
1014
1015 See the comments in gdbarch.sh for details.
1016
1017 Note that displaced stepping and software single-step cannot
1018 currently be used in combination, although with some care I think
1019 they could be made to. Software single-step works by placing
1020 breakpoints on all possible subsequent instructions; if the
1021 displaced instruction is a PC-relative jump, those breakpoints
1022 could fall in very strange places --- on pages that aren't
1023 executable, or at addresses that are not proper instruction
1024 boundaries. (We do generally let other threads run while we wait
1025 to hit the software single-step breakpoint, and they might
1026 encounter such a corrupted instruction.) One way to work around
1027 this would be to have gdbarch_displaced_step_copy_insn fully
1028 simulate the effect of PC-relative instructions (and return NULL)
1029 on architectures that use software single-stepping.
1030
1031 In non-stop mode, we can have independent and simultaneous step
1032 requests, so more than one thread may need to simultaneously step
1033 over a breakpoint. The current implementation assumes there is
1034 only one scratch space per process. In this case, we have to
1035 serialize access to the scratch space. If thread A wants to step
1036 over a breakpoint, but we are currently waiting for some other
1037 thread to complete a displaced step, we leave thread A stopped and
1038 place it in the displaced_step_request_queue. Whenever a displaced
1039 step finishes, we pick the next thread in the queue and start a new
1040 displaced step operation on it. See displaced_step_prepare and
1041 displaced_step_fixup for details. */
1042
1043 struct displaced_step_request
1044 {
1045 ptid_t ptid;
1046 struct displaced_step_request *next;
1047 };
1048
1049 /* Per-inferior displaced stepping state. */
1050 struct displaced_step_inferior_state
1051 {
1052 /* Pointer to next in linked list. */
1053 struct displaced_step_inferior_state *next;
1054
1055 /* The process this displaced step state refers to. */
1056 int pid;
1057
1058 /* A queue of pending displaced stepping requests. One entry per
1059 thread that needs to do a displaced step. */
1060 struct displaced_step_request *step_request_queue;
1061
1062 /* If this is not null_ptid, this is the thread carrying out a
1063 displaced single-step in process PID. This thread's state will
1064 require fixing up once it has completed its step. */
1065 ptid_t step_ptid;
1066
1067 /* The architecture the thread had when we stepped it. */
1068 struct gdbarch *step_gdbarch;
1069
1070 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1071 for post-step cleanup. */
1072 struct displaced_step_closure *step_closure;
1073
1074 /* The address of the original instruction, and the copy we
1075 made. */
1076 CORE_ADDR step_original, step_copy;
1077
1078 /* Saved contents of copy area. */
1079 gdb_byte *step_saved_copy;
1080 };
1081
1082 /* The list of states of processes involved in displaced stepping
1083 presently. */
1084 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1085
1086 /* Get the displaced stepping state of process PID. */
1087
1088 static struct displaced_step_inferior_state *
1089 get_displaced_stepping_state (int pid)
1090 {
1091 struct displaced_step_inferior_state *state;
1092
1093 for (state = displaced_step_inferior_states;
1094 state != NULL;
1095 state = state->next)
1096 if (state->pid == pid)
1097 return state;
1098
1099 return NULL;
1100 }
1101
1102 /* Add a new displaced stepping state for process PID to the displaced
1103 stepping state list, or return a pointer to an already existing
1104 entry, if it already exists. Never returns NULL. */
1105
1106 static struct displaced_step_inferior_state *
1107 add_displaced_stepping_state (int pid)
1108 {
1109 struct displaced_step_inferior_state *state;
1110
1111 for (state = displaced_step_inferior_states;
1112 state != NULL;
1113 state = state->next)
1114 if (state->pid == pid)
1115 return state;
1116
1117 state = xcalloc (1, sizeof (*state));
1118 state->pid = pid;
1119 state->next = displaced_step_inferior_states;
1120 displaced_step_inferior_states = state;
1121
1122 return state;
1123 }
1124
1125 /* If inferior is in displaced stepping, and ADDR equals to starting address
1126 of copy area, return corresponding displaced_step_closure. Otherwise,
1127 return NULL. */
1128
1129 struct displaced_step_closure*
1130 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1131 {
1132 struct displaced_step_inferior_state *displaced
1133 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1134
1135 /* If checking the mode of displaced instruction in copy area. */
1136 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1137 && (displaced->step_copy == addr))
1138 return displaced->step_closure;
1139
1140 return NULL;
1141 }
1142
1143 /* Remove the displaced stepping state of process PID. */
1144
1145 static void
1146 remove_displaced_stepping_state (int pid)
1147 {
1148 struct displaced_step_inferior_state *it, **prev_next_p;
1149
1150 gdb_assert (pid != 0);
1151
1152 it = displaced_step_inferior_states;
1153 prev_next_p = &displaced_step_inferior_states;
1154 while (it)
1155 {
1156 if (it->pid == pid)
1157 {
1158 *prev_next_p = it->next;
1159 xfree (it);
1160 return;
1161 }
1162
1163 prev_next_p = &it->next;
1164 it = *prev_next_p;
1165 }
1166 }
1167
1168 static void
1169 infrun_inferior_exit (struct inferior *inf)
1170 {
1171 remove_displaced_stepping_state (inf->pid);
1172 }
1173
1174 /* Enum strings for "set|show displaced-stepping". */
1175
1176 static const char can_use_displaced_stepping_auto[] = "auto";
1177 static const char can_use_displaced_stepping_on[] = "on";
1178 static const char can_use_displaced_stepping_off[] = "off";
1179 static const char *can_use_displaced_stepping_enum[] =
1180 {
1181 can_use_displaced_stepping_auto,
1182 can_use_displaced_stepping_on,
1183 can_use_displaced_stepping_off,
1184 NULL,
1185 };
1186
1187 /* If ON, and the architecture supports it, GDB will use displaced
1188 stepping to step over breakpoints. If OFF, or if the architecture
1189 doesn't support it, GDB will instead use the traditional
1190 hold-and-step approach. If AUTO (which is the default), GDB will
1191 decide which technique to use to step over breakpoints depending on
1192 which of all-stop or non-stop mode is active --- displaced stepping
1193 in non-stop mode; hold-and-step in all-stop mode. */
1194
1195 static const char *can_use_displaced_stepping =
1196 can_use_displaced_stepping_auto;
1197
1198 static void
1199 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1200 struct cmd_list_element *c,
1201 const char *value)
1202 {
1203 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1204 fprintf_filtered (file,
1205 _("Debugger's willingness to use displaced stepping "
1206 "to step over breakpoints is %s (currently %s).\n"),
1207 value, non_stop ? "on" : "off");
1208 else
1209 fprintf_filtered (file,
1210 _("Debugger's willingness to use displaced stepping "
1211 "to step over breakpoints is %s.\n"), value);
1212 }
1213
1214 /* Return non-zero if displaced stepping can/should be used to step
1215 over breakpoints. */
1216
1217 static int
1218 use_displaced_stepping (struct gdbarch *gdbarch)
1219 {
1220 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1221 && non_stop)
1222 || can_use_displaced_stepping == can_use_displaced_stepping_on)
1223 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1224 && !RECORD_IS_USED);
1225 }
1226
1227 /* Clean out any stray displaced stepping state. */
1228 static void
1229 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1230 {
1231 /* Indicate that there is no cleanup pending. */
1232 displaced->step_ptid = null_ptid;
1233
1234 if (displaced->step_closure)
1235 {
1236 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1237 displaced->step_closure);
1238 displaced->step_closure = NULL;
1239 }
1240 }
1241
1242 static void
1243 displaced_step_clear_cleanup (void *arg)
1244 {
1245 struct displaced_step_inferior_state *state = arg;
1246
1247 displaced_step_clear (state);
1248 }
1249
1250 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1251 void
1252 displaced_step_dump_bytes (struct ui_file *file,
1253 const gdb_byte *buf,
1254 size_t len)
1255 {
1256 int i;
1257
1258 for (i = 0; i < len; i++)
1259 fprintf_unfiltered (file, "%02x ", buf[i]);
1260 fputs_unfiltered ("\n", file);
1261 }
1262
1263 /* Prepare to single-step, using displaced stepping.
1264
1265 Note that we cannot use displaced stepping when we have a signal to
1266 deliver. If we have a signal to deliver and an instruction to step
1267 over, then after the step, there will be no indication from the
1268 target whether the thread entered a signal handler or ignored the
1269 signal and stepped over the instruction successfully --- both cases
1270 result in a simple SIGTRAP. In the first case we mustn't do a
1271 fixup, and in the second case we must --- but we can't tell which.
1272 Comments in the code for 'random signals' in handle_inferior_event
1273 explain how we handle this case instead.
1274
1275 Returns 1 if preparing was successful -- this thread is going to be
1276 stepped now; or 0 if displaced stepping this thread got queued. */
1277 static int
1278 displaced_step_prepare (ptid_t ptid)
1279 {
1280 struct cleanup *old_cleanups, *ignore_cleanups;
1281 struct regcache *regcache = get_thread_regcache (ptid);
1282 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1283 CORE_ADDR original, copy;
1284 ULONGEST len;
1285 struct displaced_step_closure *closure;
1286 struct displaced_step_inferior_state *displaced;
1287
1288 /* We should never reach this function if the architecture does not
1289 support displaced stepping. */
1290 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1291
1292 /* We have to displaced step one thread at a time, as we only have
1293 access to a single scratch space per inferior. */
1294
1295 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1296
1297 if (!ptid_equal (displaced->step_ptid, null_ptid))
1298 {
1299 /* Already waiting for a displaced step to finish. Defer this
1300 request and place in queue. */
1301 struct displaced_step_request *req, *new_req;
1302
1303 if (debug_displaced)
1304 fprintf_unfiltered (gdb_stdlog,
1305 "displaced: defering step of %s\n",
1306 target_pid_to_str (ptid));
1307
1308 new_req = xmalloc (sizeof (*new_req));
1309 new_req->ptid = ptid;
1310 new_req->next = NULL;
1311
1312 if (displaced->step_request_queue)
1313 {
1314 for (req = displaced->step_request_queue;
1315 req && req->next;
1316 req = req->next)
1317 ;
1318 req->next = new_req;
1319 }
1320 else
1321 displaced->step_request_queue = new_req;
1322
1323 return 0;
1324 }
1325 else
1326 {
1327 if (debug_displaced)
1328 fprintf_unfiltered (gdb_stdlog,
1329 "displaced: stepping %s now\n",
1330 target_pid_to_str (ptid));
1331 }
1332
1333 displaced_step_clear (displaced);
1334
1335 old_cleanups = save_inferior_ptid ();
1336 inferior_ptid = ptid;
1337
1338 original = regcache_read_pc (regcache);
1339
1340 copy = gdbarch_displaced_step_location (gdbarch);
1341 len = gdbarch_max_insn_length (gdbarch);
1342
1343 /* Save the original contents of the copy area. */
1344 displaced->step_saved_copy = xmalloc (len);
1345 ignore_cleanups = make_cleanup (free_current_contents,
1346 &displaced->step_saved_copy);
1347 read_memory (copy, displaced->step_saved_copy, len);
1348 if (debug_displaced)
1349 {
1350 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1351 paddress (gdbarch, copy));
1352 displaced_step_dump_bytes (gdb_stdlog,
1353 displaced->step_saved_copy,
1354 len);
1355 };
1356
1357 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1358 original, copy, regcache);
1359
1360 /* We don't support the fully-simulated case at present. */
1361 gdb_assert (closure);
1362
1363 /* Save the information we need to fix things up if the step
1364 succeeds. */
1365 displaced->step_ptid = ptid;
1366 displaced->step_gdbarch = gdbarch;
1367 displaced->step_closure = closure;
1368 displaced->step_original = original;
1369 displaced->step_copy = copy;
1370
1371 make_cleanup (displaced_step_clear_cleanup, displaced);
1372
1373 /* Resume execution at the copy. */
1374 regcache_write_pc (regcache, copy);
1375
1376 discard_cleanups (ignore_cleanups);
1377
1378 do_cleanups (old_cleanups);
1379
1380 if (debug_displaced)
1381 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1382 paddress (gdbarch, copy));
1383
1384 return 1;
1385 }
1386
1387 static void
1388 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1389 const gdb_byte *myaddr, int len)
1390 {
1391 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1392
1393 inferior_ptid = ptid;
1394 write_memory (memaddr, myaddr, len);
1395 do_cleanups (ptid_cleanup);
1396 }
1397
1398 /* Restore the contents of the copy area for thread PTID. */
1399
1400 static void
1401 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1402 ptid_t ptid)
1403 {
1404 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1405
1406 write_memory_ptid (ptid, displaced->step_copy,
1407 displaced->step_saved_copy, len);
1408 if (debug_displaced)
1409 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1410 target_pid_to_str (ptid),
1411 paddress (displaced->step_gdbarch,
1412 displaced->step_copy));
1413 }
1414
1415 static void
1416 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1417 {
1418 struct cleanup *old_cleanups;
1419 struct displaced_step_inferior_state *displaced
1420 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1421
1422 /* Was any thread of this process doing a displaced step? */
1423 if (displaced == NULL)
1424 return;
1425
1426 /* Was this event for the pid we displaced? */
1427 if (ptid_equal (displaced->step_ptid, null_ptid)
1428 || ! ptid_equal (displaced->step_ptid, event_ptid))
1429 return;
1430
1431 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1432
1433 displaced_step_restore (displaced, displaced->step_ptid);
1434
1435 /* Did the instruction complete successfully? */
1436 if (signal == TARGET_SIGNAL_TRAP)
1437 {
1438 /* Fix up the resulting state. */
1439 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1440 displaced->step_closure,
1441 displaced->step_original,
1442 displaced->step_copy,
1443 get_thread_regcache (displaced->step_ptid));
1444 }
1445 else
1446 {
1447 /* Since the instruction didn't complete, all we can do is
1448 relocate the PC. */
1449 struct regcache *regcache = get_thread_regcache (event_ptid);
1450 CORE_ADDR pc = regcache_read_pc (regcache);
1451
1452 pc = displaced->step_original + (pc - displaced->step_copy);
1453 regcache_write_pc (regcache, pc);
1454 }
1455
1456 do_cleanups (old_cleanups);
1457
1458 displaced->step_ptid = null_ptid;
1459
1460 /* Are there any pending displaced stepping requests? If so, run
1461 one now. Leave the state object around, since we're likely to
1462 need it again soon. */
1463 while (displaced->step_request_queue)
1464 {
1465 struct displaced_step_request *head;
1466 ptid_t ptid;
1467 struct regcache *regcache;
1468 struct gdbarch *gdbarch;
1469 CORE_ADDR actual_pc;
1470 struct address_space *aspace;
1471
1472 head = displaced->step_request_queue;
1473 ptid = head->ptid;
1474 displaced->step_request_queue = head->next;
1475 xfree (head);
1476
1477 context_switch (ptid);
1478
1479 regcache = get_thread_regcache (ptid);
1480 actual_pc = regcache_read_pc (regcache);
1481 aspace = get_regcache_aspace (regcache);
1482
1483 if (breakpoint_here_p (aspace, actual_pc))
1484 {
1485 if (debug_displaced)
1486 fprintf_unfiltered (gdb_stdlog,
1487 "displaced: stepping queued %s now\n",
1488 target_pid_to_str (ptid));
1489
1490 displaced_step_prepare (ptid);
1491
1492 gdbarch = get_regcache_arch (regcache);
1493
1494 if (debug_displaced)
1495 {
1496 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1497 gdb_byte buf[4];
1498
1499 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1500 paddress (gdbarch, actual_pc));
1501 read_memory (actual_pc, buf, sizeof (buf));
1502 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1503 }
1504
1505 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1506 displaced->step_closure))
1507 target_resume (ptid, 1, TARGET_SIGNAL_0);
1508 else
1509 target_resume (ptid, 0, TARGET_SIGNAL_0);
1510
1511 /* Done, we're stepping a thread. */
1512 break;
1513 }
1514 else
1515 {
1516 int step;
1517 struct thread_info *tp = inferior_thread ();
1518
1519 /* The breakpoint we were sitting under has since been
1520 removed. */
1521 tp->control.trap_expected = 0;
1522
1523 /* Go back to what we were trying to do. */
1524 step = currently_stepping (tp);
1525
1526 if (debug_displaced)
1527 fprintf_unfiltered (gdb_stdlog,
1528 "breakpoint is gone %s: step(%d)\n",
1529 target_pid_to_str (tp->ptid), step);
1530
1531 target_resume (ptid, step, TARGET_SIGNAL_0);
1532 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1533
1534 /* This request was discarded. See if there's any other
1535 thread waiting for its turn. */
1536 }
1537 }
1538 }
1539
1540 /* Update global variables holding ptids to hold NEW_PTID if they were
1541 holding OLD_PTID. */
1542 static void
1543 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1544 {
1545 struct displaced_step_request *it;
1546 struct displaced_step_inferior_state *displaced;
1547
1548 if (ptid_equal (inferior_ptid, old_ptid))
1549 inferior_ptid = new_ptid;
1550
1551 if (ptid_equal (singlestep_ptid, old_ptid))
1552 singlestep_ptid = new_ptid;
1553
1554 if (ptid_equal (deferred_step_ptid, old_ptid))
1555 deferred_step_ptid = new_ptid;
1556
1557 for (displaced = displaced_step_inferior_states;
1558 displaced;
1559 displaced = displaced->next)
1560 {
1561 if (ptid_equal (displaced->step_ptid, old_ptid))
1562 displaced->step_ptid = new_ptid;
1563
1564 for (it = displaced->step_request_queue; it; it = it->next)
1565 if (ptid_equal (it->ptid, old_ptid))
1566 it->ptid = new_ptid;
1567 }
1568 }
1569
1570 \f
1571 /* Resuming. */
1572
1573 /* Things to clean up if we QUIT out of resume (). */
1574 static void
1575 resume_cleanups (void *ignore)
1576 {
1577 normal_stop ();
1578 }
1579
1580 static const char schedlock_off[] = "off";
1581 static const char schedlock_on[] = "on";
1582 static const char schedlock_step[] = "step";
1583 static const char *scheduler_enums[] = {
1584 schedlock_off,
1585 schedlock_on,
1586 schedlock_step,
1587 NULL
1588 };
1589 static const char *scheduler_mode = schedlock_off;
1590 static void
1591 show_scheduler_mode (struct ui_file *file, int from_tty,
1592 struct cmd_list_element *c, const char *value)
1593 {
1594 fprintf_filtered (file,
1595 _("Mode for locking scheduler "
1596 "during execution is \"%s\".\n"),
1597 value);
1598 }
1599
1600 static void
1601 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1602 {
1603 if (!target_can_lock_scheduler)
1604 {
1605 scheduler_mode = schedlock_off;
1606 error (_("Target '%s' cannot support this command."), target_shortname);
1607 }
1608 }
1609
1610 /* True if execution commands resume all threads of all processes by
1611 default; otherwise, resume only threads of the current inferior
1612 process. */
1613 int sched_multi = 0;
1614
1615 /* Try to setup for software single stepping over the specified location.
1616 Return 1 if target_resume() should use hardware single step.
1617
1618 GDBARCH the current gdbarch.
1619 PC the location to step over. */
1620
1621 static int
1622 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1623 {
1624 int hw_step = 1;
1625
1626 if (execution_direction == EXEC_FORWARD
1627 && gdbarch_software_single_step_p (gdbarch)
1628 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1629 {
1630 hw_step = 0;
1631 /* Do not pull these breakpoints until after a `wait' in
1632 `wait_for_inferior'. */
1633 singlestep_breakpoints_inserted_p = 1;
1634 singlestep_ptid = inferior_ptid;
1635 singlestep_pc = pc;
1636 }
1637 return hw_step;
1638 }
1639
1640 /* Return a ptid representing the set of threads that we will proceed,
1641 in the perspective of the user/frontend. We may actually resume
1642 fewer threads at first, e.g., if a thread is stopped at a
1643 breakpoint that needs stepping-off, but that should not be visible
1644 to the user/frontend, and neither should the frontend/user be
1645 allowed to proceed any of the threads that happen to be stopped for
1646 internal run control handling, if a previous command wanted them
1647 resumed. */
1648
1649 ptid_t
1650 user_visible_resume_ptid (int step)
1651 {
1652 /* By default, resume all threads of all processes. */
1653 ptid_t resume_ptid = RESUME_ALL;
1654
1655 /* Maybe resume only all threads of the current process. */
1656 if (!sched_multi && target_supports_multi_process ())
1657 {
1658 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1659 }
1660
1661 /* Maybe resume a single thread after all. */
1662 if (non_stop)
1663 {
1664 /* With non-stop mode on, threads are always handled
1665 individually. */
1666 resume_ptid = inferior_ptid;
1667 }
1668 else if ((scheduler_mode == schedlock_on)
1669 || (scheduler_mode == schedlock_step
1670 && (step || singlestep_breakpoints_inserted_p)))
1671 {
1672 /* User-settable 'scheduler' mode requires solo thread resume. */
1673 resume_ptid = inferior_ptid;
1674 }
1675
1676 return resume_ptid;
1677 }
1678
1679 /* Resume the inferior, but allow a QUIT. This is useful if the user
1680 wants to interrupt some lengthy single-stepping operation
1681 (for child processes, the SIGINT goes to the inferior, and so
1682 we get a SIGINT random_signal, but for remote debugging and perhaps
1683 other targets, that's not true).
1684
1685 STEP nonzero if we should step (zero to continue instead).
1686 SIG is the signal to give the inferior (zero for none). */
1687 void
1688 resume (int step, enum target_signal sig)
1689 {
1690 int should_resume = 1;
1691 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1692 struct regcache *regcache = get_current_regcache ();
1693 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1694 struct thread_info *tp = inferior_thread ();
1695 CORE_ADDR pc = regcache_read_pc (regcache);
1696 struct address_space *aspace = get_regcache_aspace (regcache);
1697
1698 QUIT;
1699
1700 if (current_inferior ()->waiting_for_vfork_done)
1701 {
1702 /* Don't try to single-step a vfork parent that is waiting for
1703 the child to get out of the shared memory region (by exec'ing
1704 or exiting). This is particularly important on software
1705 single-step archs, as the child process would trip on the
1706 software single step breakpoint inserted for the parent
1707 process. Since the parent will not actually execute any
1708 instruction until the child is out of the shared region (such
1709 are vfork's semantics), it is safe to simply continue it.
1710 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1711 the parent, and tell it to `keep_going', which automatically
1712 re-sets it stepping. */
1713 if (debug_infrun)
1714 fprintf_unfiltered (gdb_stdlog,
1715 "infrun: resume : clear step\n");
1716 step = 0;
1717 }
1718
1719 if (debug_infrun)
1720 fprintf_unfiltered (gdb_stdlog,
1721 "infrun: resume (step=%d, signal=%d), "
1722 "trap_expected=%d, current thread [%s] at %s\n",
1723 step, sig, tp->control.trap_expected,
1724 target_pid_to_str (inferior_ptid),
1725 paddress (gdbarch, pc));
1726
1727 /* Normally, by the time we reach `resume', the breakpoints are either
1728 removed or inserted, as appropriate. The exception is if we're sitting
1729 at a permanent breakpoint; we need to step over it, but permanent
1730 breakpoints can't be removed. So we have to test for it here. */
1731 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1732 {
1733 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1734 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1735 else
1736 error (_("\
1737 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1738 how to step past a permanent breakpoint on this architecture. Try using\n\
1739 a command like `return' or `jump' to continue execution."));
1740 }
1741
1742 /* If enabled, step over breakpoints by executing a copy of the
1743 instruction at a different address.
1744
1745 We can't use displaced stepping when we have a signal to deliver;
1746 the comments for displaced_step_prepare explain why. The
1747 comments in the handle_inferior event for dealing with 'random
1748 signals' explain what we do instead.
1749
1750 We can't use displaced stepping when we are waiting for vfork_done
1751 event, displaced stepping breaks the vfork child similarly as single
1752 step software breakpoint. */
1753 if (use_displaced_stepping (gdbarch)
1754 && (tp->control.trap_expected
1755 || (step && gdbarch_software_single_step_p (gdbarch)))
1756 && sig == TARGET_SIGNAL_0
1757 && !current_inferior ()->waiting_for_vfork_done)
1758 {
1759 struct displaced_step_inferior_state *displaced;
1760
1761 if (!displaced_step_prepare (inferior_ptid))
1762 {
1763 /* Got placed in displaced stepping queue. Will be resumed
1764 later when all the currently queued displaced stepping
1765 requests finish. The thread is not executing at this point,
1766 and the call to set_executing will be made later. But we
1767 need to call set_running here, since from frontend point of view,
1768 the thread is running. */
1769 set_running (inferior_ptid, 1);
1770 discard_cleanups (old_cleanups);
1771 return;
1772 }
1773
1774 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1775 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1776 displaced->step_closure);
1777 }
1778
1779 /* Do we need to do it the hard way, w/temp breakpoints? */
1780 else if (step)
1781 step = maybe_software_singlestep (gdbarch, pc);
1782
1783 /* Currently, our software single-step implementation leads to different
1784 results than hardware single-stepping in one situation: when stepping
1785 into delivering a signal which has an associated signal handler,
1786 hardware single-step will stop at the first instruction of the handler,
1787 while software single-step will simply skip execution of the handler.
1788
1789 For now, this difference in behavior is accepted since there is no
1790 easy way to actually implement single-stepping into a signal handler
1791 without kernel support.
1792
1793 However, there is one scenario where this difference leads to follow-on
1794 problems: if we're stepping off a breakpoint by removing all breakpoints
1795 and then single-stepping. In this case, the software single-step
1796 behavior means that even if there is a *breakpoint* in the signal
1797 handler, GDB still would not stop.
1798
1799 Fortunately, we can at least fix this particular issue. We detect
1800 here the case where we are about to deliver a signal while software
1801 single-stepping with breakpoints removed. In this situation, we
1802 revert the decisions to remove all breakpoints and insert single-
1803 step breakpoints, and instead we install a step-resume breakpoint
1804 at the current address, deliver the signal without stepping, and
1805 once we arrive back at the step-resume breakpoint, actually step
1806 over the breakpoint we originally wanted to step over. */
1807 if (singlestep_breakpoints_inserted_p
1808 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1809 {
1810 /* If we have nested signals or a pending signal is delivered
1811 immediately after a handler returns, might might already have
1812 a step-resume breakpoint set on the earlier handler. We cannot
1813 set another step-resume breakpoint; just continue on until the
1814 original breakpoint is hit. */
1815 if (tp->control.step_resume_breakpoint == NULL)
1816 {
1817 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1818 tp->step_after_step_resume_breakpoint = 1;
1819 }
1820
1821 remove_single_step_breakpoints ();
1822 singlestep_breakpoints_inserted_p = 0;
1823
1824 insert_breakpoints ();
1825 tp->control.trap_expected = 0;
1826 }
1827
1828 if (should_resume)
1829 {
1830 ptid_t resume_ptid;
1831
1832 /* If STEP is set, it's a request to use hardware stepping
1833 facilities. But in that case, we should never
1834 use singlestep breakpoint. */
1835 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1836
1837 /* Decide the set of threads to ask the target to resume. Start
1838 by assuming everything will be resumed, than narrow the set
1839 by applying increasingly restricting conditions. */
1840 resume_ptid = user_visible_resume_ptid (step);
1841
1842 /* Maybe resume a single thread after all. */
1843 if (singlestep_breakpoints_inserted_p
1844 && stepping_past_singlestep_breakpoint)
1845 {
1846 /* The situation here is as follows. In thread T1 we wanted to
1847 single-step. Lacking hardware single-stepping we've
1848 set breakpoint at the PC of the next instruction -- call it
1849 P. After resuming, we've hit that breakpoint in thread T2.
1850 Now we've removed original breakpoint, inserted breakpoint
1851 at P+1, and try to step to advance T2 past breakpoint.
1852 We need to step only T2, as if T1 is allowed to freely run,
1853 it can run past P, and if other threads are allowed to run,
1854 they can hit breakpoint at P+1, and nested hits of single-step
1855 breakpoints is not something we'd want -- that's complicated
1856 to support, and has no value. */
1857 resume_ptid = inferior_ptid;
1858 }
1859 else if ((step || singlestep_breakpoints_inserted_p)
1860 && tp->control.trap_expected)
1861 {
1862 /* We're allowing a thread to run past a breakpoint it has
1863 hit, by single-stepping the thread with the breakpoint
1864 removed. In which case, we need to single-step only this
1865 thread, and keep others stopped, as they can miss this
1866 breakpoint if allowed to run.
1867
1868 The current code actually removes all breakpoints when
1869 doing this, not just the one being stepped over, so if we
1870 let other threads run, we can actually miss any
1871 breakpoint, not just the one at PC. */
1872 resume_ptid = inferior_ptid;
1873 }
1874
1875 if (gdbarch_cannot_step_breakpoint (gdbarch))
1876 {
1877 /* Most targets can step a breakpoint instruction, thus
1878 executing it normally. But if this one cannot, just
1879 continue and we will hit it anyway. */
1880 if (step && breakpoint_inserted_here_p (aspace, pc))
1881 step = 0;
1882 }
1883
1884 if (debug_displaced
1885 && use_displaced_stepping (gdbarch)
1886 && tp->control.trap_expected)
1887 {
1888 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1889 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1890 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1891 gdb_byte buf[4];
1892
1893 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1894 paddress (resume_gdbarch, actual_pc));
1895 read_memory (actual_pc, buf, sizeof (buf));
1896 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1897 }
1898
1899 /* Install inferior's terminal modes. */
1900 target_terminal_inferior ();
1901
1902 /* Avoid confusing the next resume, if the next stop/resume
1903 happens to apply to another thread. */
1904 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1905
1906 /* Advise target which signals may be handled silently. If we have
1907 removed breakpoints because we are stepping over one (which can
1908 happen only if we are not using displaced stepping), we need to
1909 receive all signals to avoid accidentally skipping a breakpoint
1910 during execution of a signal handler. */
1911 if ((step || singlestep_breakpoints_inserted_p)
1912 && tp->control.trap_expected
1913 && !use_displaced_stepping (gdbarch))
1914 target_pass_signals (0, NULL);
1915 else
1916 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1917
1918 target_resume (resume_ptid, step, sig);
1919 }
1920
1921 discard_cleanups (old_cleanups);
1922 }
1923 \f
1924 /* Proceeding. */
1925
1926 /* Clear out all variables saying what to do when inferior is continued.
1927 First do this, then set the ones you want, then call `proceed'. */
1928
1929 static void
1930 clear_proceed_status_thread (struct thread_info *tp)
1931 {
1932 if (debug_infrun)
1933 fprintf_unfiltered (gdb_stdlog,
1934 "infrun: clear_proceed_status_thread (%s)\n",
1935 target_pid_to_str (tp->ptid));
1936
1937 tp->control.trap_expected = 0;
1938 tp->control.step_range_start = 0;
1939 tp->control.step_range_end = 0;
1940 tp->control.step_frame_id = null_frame_id;
1941 tp->control.step_stack_frame_id = null_frame_id;
1942 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1943 tp->stop_requested = 0;
1944
1945 tp->control.stop_step = 0;
1946
1947 tp->control.proceed_to_finish = 0;
1948
1949 /* Discard any remaining commands or status from previous stop. */
1950 bpstat_clear (&tp->control.stop_bpstat);
1951 }
1952
1953 static int
1954 clear_proceed_status_callback (struct thread_info *tp, void *data)
1955 {
1956 if (is_exited (tp->ptid))
1957 return 0;
1958
1959 clear_proceed_status_thread (tp);
1960 return 0;
1961 }
1962
1963 void
1964 clear_proceed_status (void)
1965 {
1966 if (!non_stop)
1967 {
1968 /* In all-stop mode, delete the per-thread status of all
1969 threads, even if inferior_ptid is null_ptid, there may be
1970 threads on the list. E.g., we may be launching a new
1971 process, while selecting the executable. */
1972 iterate_over_threads (clear_proceed_status_callback, NULL);
1973 }
1974
1975 if (!ptid_equal (inferior_ptid, null_ptid))
1976 {
1977 struct inferior *inferior;
1978
1979 if (non_stop)
1980 {
1981 /* If in non-stop mode, only delete the per-thread status of
1982 the current thread. */
1983 clear_proceed_status_thread (inferior_thread ());
1984 }
1985
1986 inferior = current_inferior ();
1987 inferior->control.stop_soon = NO_STOP_QUIETLY;
1988 }
1989
1990 stop_after_trap = 0;
1991
1992 observer_notify_about_to_proceed ();
1993
1994 if (stop_registers)
1995 {
1996 regcache_xfree (stop_registers);
1997 stop_registers = NULL;
1998 }
1999 }
2000
2001 /* Check the current thread against the thread that reported the most recent
2002 event. If a step-over is required return TRUE and set the current thread
2003 to the old thread. Otherwise return FALSE.
2004
2005 This should be suitable for any targets that support threads. */
2006
2007 static int
2008 prepare_to_proceed (int step)
2009 {
2010 ptid_t wait_ptid;
2011 struct target_waitstatus wait_status;
2012 int schedlock_enabled;
2013
2014 /* With non-stop mode on, threads are always handled individually. */
2015 gdb_assert (! non_stop);
2016
2017 /* Get the last target status returned by target_wait(). */
2018 get_last_target_status (&wait_ptid, &wait_status);
2019
2020 /* Make sure we were stopped at a breakpoint. */
2021 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2022 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
2023 && wait_status.value.sig != TARGET_SIGNAL_ILL
2024 && wait_status.value.sig != TARGET_SIGNAL_SEGV
2025 && wait_status.value.sig != TARGET_SIGNAL_EMT))
2026 {
2027 return 0;
2028 }
2029
2030 schedlock_enabled = (scheduler_mode == schedlock_on
2031 || (scheduler_mode == schedlock_step
2032 && step));
2033
2034 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2035 if (schedlock_enabled)
2036 return 0;
2037
2038 /* Don't switch over if we're about to resume some other process
2039 other than WAIT_PTID's, and schedule-multiple is off. */
2040 if (!sched_multi
2041 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2042 return 0;
2043
2044 /* Switched over from WAIT_PID. */
2045 if (!ptid_equal (wait_ptid, minus_one_ptid)
2046 && !ptid_equal (inferior_ptid, wait_ptid))
2047 {
2048 struct regcache *regcache = get_thread_regcache (wait_ptid);
2049
2050 if (breakpoint_here_p (get_regcache_aspace (regcache),
2051 regcache_read_pc (regcache)))
2052 {
2053 /* If stepping, remember current thread to switch back to. */
2054 if (step)
2055 deferred_step_ptid = inferior_ptid;
2056
2057 /* Switch back to WAIT_PID thread. */
2058 switch_to_thread (wait_ptid);
2059
2060 if (debug_infrun)
2061 fprintf_unfiltered (gdb_stdlog,
2062 "infrun: prepare_to_proceed (step=%d), "
2063 "switched to [%s]\n",
2064 step, target_pid_to_str (inferior_ptid));
2065
2066 /* We return 1 to indicate that there is a breakpoint here,
2067 so we need to step over it before continuing to avoid
2068 hitting it straight away. */
2069 return 1;
2070 }
2071 }
2072
2073 return 0;
2074 }
2075
2076 /* Basic routine for continuing the program in various fashions.
2077
2078 ADDR is the address to resume at, or -1 for resume where stopped.
2079 SIGGNAL is the signal to give it, or 0 for none,
2080 or -1 for act according to how it stopped.
2081 STEP is nonzero if should trap after one instruction.
2082 -1 means return after that and print nothing.
2083 You should probably set various step_... variables
2084 before calling here, if you are stepping.
2085
2086 You should call clear_proceed_status before calling proceed. */
2087
2088 void
2089 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
2090 {
2091 struct regcache *regcache;
2092 struct gdbarch *gdbarch;
2093 struct thread_info *tp;
2094 CORE_ADDR pc;
2095 struct address_space *aspace;
2096 int oneproc = 0;
2097
2098 /* If we're stopped at a fork/vfork, follow the branch set by the
2099 "set follow-fork-mode" command; otherwise, we'll just proceed
2100 resuming the current thread. */
2101 if (!follow_fork ())
2102 {
2103 /* The target for some reason decided not to resume. */
2104 normal_stop ();
2105 if (target_can_async_p ())
2106 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2107 return;
2108 }
2109
2110 /* We'll update this if & when we switch to a new thread. */
2111 previous_inferior_ptid = inferior_ptid;
2112
2113 regcache = get_current_regcache ();
2114 gdbarch = get_regcache_arch (regcache);
2115 aspace = get_regcache_aspace (regcache);
2116 pc = regcache_read_pc (regcache);
2117
2118 if (step > 0)
2119 step_start_function = find_pc_function (pc);
2120 if (step < 0)
2121 stop_after_trap = 1;
2122
2123 if (addr == (CORE_ADDR) -1)
2124 {
2125 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2126 && execution_direction != EXEC_REVERSE)
2127 /* There is a breakpoint at the address we will resume at,
2128 step one instruction before inserting breakpoints so that
2129 we do not stop right away (and report a second hit at this
2130 breakpoint).
2131
2132 Note, we don't do this in reverse, because we won't
2133 actually be executing the breakpoint insn anyway.
2134 We'll be (un-)executing the previous instruction. */
2135
2136 oneproc = 1;
2137 else if (gdbarch_single_step_through_delay_p (gdbarch)
2138 && gdbarch_single_step_through_delay (gdbarch,
2139 get_current_frame ()))
2140 /* We stepped onto an instruction that needs to be stepped
2141 again before re-inserting the breakpoint, do so. */
2142 oneproc = 1;
2143 }
2144 else
2145 {
2146 regcache_write_pc (regcache, addr);
2147 }
2148
2149 if (debug_infrun)
2150 fprintf_unfiltered (gdb_stdlog,
2151 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2152 paddress (gdbarch, addr), siggnal, step);
2153
2154 if (non_stop)
2155 /* In non-stop, each thread is handled individually. The context
2156 must already be set to the right thread here. */
2157 ;
2158 else
2159 {
2160 /* In a multi-threaded task we may select another thread and
2161 then continue or step.
2162
2163 But if the old thread was stopped at a breakpoint, it will
2164 immediately cause another breakpoint stop without any
2165 execution (i.e. it will report a breakpoint hit incorrectly).
2166 So we must step over it first.
2167
2168 prepare_to_proceed checks the current thread against the
2169 thread that reported the most recent event. If a step-over
2170 is required it returns TRUE and sets the current thread to
2171 the old thread. */
2172 if (prepare_to_proceed (step))
2173 oneproc = 1;
2174 }
2175
2176 /* prepare_to_proceed may change the current thread. */
2177 tp = inferior_thread ();
2178
2179 if (oneproc)
2180 {
2181 tp->control.trap_expected = 1;
2182 /* If displaced stepping is enabled, we can step over the
2183 breakpoint without hitting it, so leave all breakpoints
2184 inserted. Otherwise we need to disable all breakpoints, step
2185 one instruction, and then re-add them when that step is
2186 finished. */
2187 if (!use_displaced_stepping (gdbarch))
2188 remove_breakpoints ();
2189 }
2190
2191 /* We can insert breakpoints if we're not trying to step over one,
2192 or if we are stepping over one but we're using displaced stepping
2193 to do so. */
2194 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2195 insert_breakpoints ();
2196
2197 if (!non_stop)
2198 {
2199 /* Pass the last stop signal to the thread we're resuming,
2200 irrespective of whether the current thread is the thread that
2201 got the last event or not. This was historically GDB's
2202 behaviour before keeping a stop_signal per thread. */
2203
2204 struct thread_info *last_thread;
2205 ptid_t last_ptid;
2206 struct target_waitstatus last_status;
2207
2208 get_last_target_status (&last_ptid, &last_status);
2209 if (!ptid_equal (inferior_ptid, last_ptid)
2210 && !ptid_equal (last_ptid, null_ptid)
2211 && !ptid_equal (last_ptid, minus_one_ptid))
2212 {
2213 last_thread = find_thread_ptid (last_ptid);
2214 if (last_thread)
2215 {
2216 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2217 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2218 }
2219 }
2220 }
2221
2222 if (siggnal != TARGET_SIGNAL_DEFAULT)
2223 tp->suspend.stop_signal = siggnal;
2224 /* If this signal should not be seen by program,
2225 give it zero. Used for debugging signals. */
2226 else if (!signal_program[tp->suspend.stop_signal])
2227 tp->suspend.stop_signal = TARGET_SIGNAL_0;
2228
2229 annotate_starting ();
2230
2231 /* Make sure that output from GDB appears before output from the
2232 inferior. */
2233 gdb_flush (gdb_stdout);
2234
2235 /* Refresh prev_pc value just prior to resuming. This used to be
2236 done in stop_stepping, however, setting prev_pc there did not handle
2237 scenarios such as inferior function calls or returning from
2238 a function via the return command. In those cases, the prev_pc
2239 value was not set properly for subsequent commands. The prev_pc value
2240 is used to initialize the starting line number in the ecs. With an
2241 invalid value, the gdb next command ends up stopping at the position
2242 represented by the next line table entry past our start position.
2243 On platforms that generate one line table entry per line, this
2244 is not a problem. However, on the ia64, the compiler generates
2245 extraneous line table entries that do not increase the line number.
2246 When we issue the gdb next command on the ia64 after an inferior call
2247 or a return command, we often end up a few instructions forward, still
2248 within the original line we started.
2249
2250 An attempt was made to refresh the prev_pc at the same time the
2251 execution_control_state is initialized (for instance, just before
2252 waiting for an inferior event). But this approach did not work
2253 because of platforms that use ptrace, where the pc register cannot
2254 be read unless the inferior is stopped. At that point, we are not
2255 guaranteed the inferior is stopped and so the regcache_read_pc() call
2256 can fail. Setting the prev_pc value here ensures the value is updated
2257 correctly when the inferior is stopped. */
2258 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2259
2260 /* Fill in with reasonable starting values. */
2261 init_thread_stepping_state (tp);
2262
2263 /* Reset to normal state. */
2264 init_infwait_state ();
2265
2266 /* Resume inferior. */
2267 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2268
2269 /* Wait for it to stop (if not standalone)
2270 and in any case decode why it stopped, and act accordingly. */
2271 /* Do this only if we are not using the event loop, or if the target
2272 does not support asynchronous execution. */
2273 if (!target_can_async_p ())
2274 {
2275 wait_for_inferior ();
2276 normal_stop ();
2277 }
2278 }
2279 \f
2280
2281 /* Start remote-debugging of a machine over a serial link. */
2282
2283 void
2284 start_remote (int from_tty)
2285 {
2286 struct inferior *inferior;
2287
2288 inferior = current_inferior ();
2289 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2290
2291 /* Always go on waiting for the target, regardless of the mode. */
2292 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2293 indicate to wait_for_inferior that a target should timeout if
2294 nothing is returned (instead of just blocking). Because of this,
2295 targets expecting an immediate response need to, internally, set
2296 things up so that the target_wait() is forced to eventually
2297 timeout. */
2298 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2299 differentiate to its caller what the state of the target is after
2300 the initial open has been performed. Here we're assuming that
2301 the target has stopped. It should be possible to eventually have
2302 target_open() return to the caller an indication that the target
2303 is currently running and GDB state should be set to the same as
2304 for an async run. */
2305 wait_for_inferior ();
2306
2307 /* Now that the inferior has stopped, do any bookkeeping like
2308 loading shared libraries. We want to do this before normal_stop,
2309 so that the displayed frame is up to date. */
2310 post_create_inferior (&current_target, from_tty);
2311
2312 normal_stop ();
2313 }
2314
2315 /* Initialize static vars when a new inferior begins. */
2316
2317 void
2318 init_wait_for_inferior (void)
2319 {
2320 /* These are meaningless until the first time through wait_for_inferior. */
2321
2322 breakpoint_init_inferior (inf_starting);
2323
2324 clear_proceed_status ();
2325
2326 stepping_past_singlestep_breakpoint = 0;
2327 deferred_step_ptid = null_ptid;
2328
2329 target_last_wait_ptid = minus_one_ptid;
2330
2331 previous_inferior_ptid = inferior_ptid;
2332 init_infwait_state ();
2333
2334 /* Discard any skipped inlined frames. */
2335 clear_inline_frame_state (minus_one_ptid);
2336 }
2337
2338 \f
2339 /* This enum encodes possible reasons for doing a target_wait, so that
2340 wfi can call target_wait in one place. (Ultimately the call will be
2341 moved out of the infinite loop entirely.) */
2342
2343 enum infwait_states
2344 {
2345 infwait_normal_state,
2346 infwait_thread_hop_state,
2347 infwait_step_watch_state,
2348 infwait_nonstep_watch_state
2349 };
2350
2351 /* The PTID we'll do a target_wait on.*/
2352 ptid_t waiton_ptid;
2353
2354 /* Current inferior wait state. */
2355 enum infwait_states infwait_state;
2356
2357 /* Data to be passed around while handling an event. This data is
2358 discarded between events. */
2359 struct execution_control_state
2360 {
2361 ptid_t ptid;
2362 /* The thread that got the event, if this was a thread event; NULL
2363 otherwise. */
2364 struct thread_info *event_thread;
2365
2366 struct target_waitstatus ws;
2367 int random_signal;
2368 int stop_func_filled_in;
2369 CORE_ADDR stop_func_start;
2370 CORE_ADDR stop_func_end;
2371 char *stop_func_name;
2372 int new_thread_event;
2373 int wait_some_more;
2374 };
2375
2376 static void handle_inferior_event (struct execution_control_state *ecs);
2377
2378 static void handle_step_into_function (struct gdbarch *gdbarch,
2379 struct execution_control_state *ecs);
2380 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2381 struct execution_control_state *ecs);
2382 static void check_exception_resume (struct execution_control_state *,
2383 struct frame_info *, struct symbol *);
2384
2385 static void stop_stepping (struct execution_control_state *ecs);
2386 static void prepare_to_wait (struct execution_control_state *ecs);
2387 static void keep_going (struct execution_control_state *ecs);
2388
2389 /* Callback for iterate over threads. If the thread is stopped, but
2390 the user/frontend doesn't know about that yet, go through
2391 normal_stop, as if the thread had just stopped now. ARG points at
2392 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2393 ptid_is_pid(PTID) is true, applies to all threads of the process
2394 pointed at by PTID. Otherwise, apply only to the thread pointed by
2395 PTID. */
2396
2397 static int
2398 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2399 {
2400 ptid_t ptid = * (ptid_t *) arg;
2401
2402 if ((ptid_equal (info->ptid, ptid)
2403 || ptid_equal (minus_one_ptid, ptid)
2404 || (ptid_is_pid (ptid)
2405 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2406 && is_running (info->ptid)
2407 && !is_executing (info->ptid))
2408 {
2409 struct cleanup *old_chain;
2410 struct execution_control_state ecss;
2411 struct execution_control_state *ecs = &ecss;
2412
2413 memset (ecs, 0, sizeof (*ecs));
2414
2415 old_chain = make_cleanup_restore_current_thread ();
2416
2417 switch_to_thread (info->ptid);
2418
2419 /* Go through handle_inferior_event/normal_stop, so we always
2420 have consistent output as if the stop event had been
2421 reported. */
2422 ecs->ptid = info->ptid;
2423 ecs->event_thread = find_thread_ptid (info->ptid);
2424 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2425 ecs->ws.value.sig = TARGET_SIGNAL_0;
2426
2427 handle_inferior_event (ecs);
2428
2429 if (!ecs->wait_some_more)
2430 {
2431 struct thread_info *tp;
2432
2433 normal_stop ();
2434
2435 /* Finish off the continuations. */
2436 tp = inferior_thread ();
2437 do_all_intermediate_continuations_thread (tp, 1);
2438 do_all_continuations_thread (tp, 1);
2439 }
2440
2441 do_cleanups (old_chain);
2442 }
2443
2444 return 0;
2445 }
2446
2447 /* This function is attached as a "thread_stop_requested" observer.
2448 Cleanup local state that assumed the PTID was to be resumed, and
2449 report the stop to the frontend. */
2450
2451 static void
2452 infrun_thread_stop_requested (ptid_t ptid)
2453 {
2454 struct displaced_step_inferior_state *displaced;
2455
2456 /* PTID was requested to stop. Remove it from the displaced
2457 stepping queue, so we don't try to resume it automatically. */
2458
2459 for (displaced = displaced_step_inferior_states;
2460 displaced;
2461 displaced = displaced->next)
2462 {
2463 struct displaced_step_request *it, **prev_next_p;
2464
2465 it = displaced->step_request_queue;
2466 prev_next_p = &displaced->step_request_queue;
2467 while (it)
2468 {
2469 if (ptid_match (it->ptid, ptid))
2470 {
2471 *prev_next_p = it->next;
2472 it->next = NULL;
2473 xfree (it);
2474 }
2475 else
2476 {
2477 prev_next_p = &it->next;
2478 }
2479
2480 it = *prev_next_p;
2481 }
2482 }
2483
2484 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2485 }
2486
2487 static void
2488 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2489 {
2490 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2491 nullify_last_target_wait_ptid ();
2492 }
2493
2494 /* Callback for iterate_over_threads. */
2495
2496 static int
2497 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2498 {
2499 if (is_exited (info->ptid))
2500 return 0;
2501
2502 delete_step_resume_breakpoint (info);
2503 delete_exception_resume_breakpoint (info);
2504 return 0;
2505 }
2506
2507 /* In all-stop, delete the step resume breakpoint of any thread that
2508 had one. In non-stop, delete the step resume breakpoint of the
2509 thread that just stopped. */
2510
2511 static void
2512 delete_step_thread_step_resume_breakpoint (void)
2513 {
2514 if (!target_has_execution
2515 || ptid_equal (inferior_ptid, null_ptid))
2516 /* If the inferior has exited, we have already deleted the step
2517 resume breakpoints out of GDB's lists. */
2518 return;
2519
2520 if (non_stop)
2521 {
2522 /* If in non-stop mode, only delete the step-resume or
2523 longjmp-resume breakpoint of the thread that just stopped
2524 stepping. */
2525 struct thread_info *tp = inferior_thread ();
2526
2527 delete_step_resume_breakpoint (tp);
2528 delete_exception_resume_breakpoint (tp);
2529 }
2530 else
2531 /* In all-stop mode, delete all step-resume and longjmp-resume
2532 breakpoints of any thread that had them. */
2533 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2534 }
2535
2536 /* A cleanup wrapper. */
2537
2538 static void
2539 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2540 {
2541 delete_step_thread_step_resume_breakpoint ();
2542 }
2543
2544 /* Pretty print the results of target_wait, for debugging purposes. */
2545
2546 static void
2547 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2548 const struct target_waitstatus *ws)
2549 {
2550 char *status_string = target_waitstatus_to_string (ws);
2551 struct ui_file *tmp_stream = mem_fileopen ();
2552 char *text;
2553
2554 /* The text is split over several lines because it was getting too long.
2555 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2556 output as a unit; we want only one timestamp printed if debug_timestamp
2557 is set. */
2558
2559 fprintf_unfiltered (tmp_stream,
2560 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2561 if (PIDGET (waiton_ptid) != -1)
2562 fprintf_unfiltered (tmp_stream,
2563 " [%s]", target_pid_to_str (waiton_ptid));
2564 fprintf_unfiltered (tmp_stream, ", status) =\n");
2565 fprintf_unfiltered (tmp_stream,
2566 "infrun: %d [%s],\n",
2567 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2568 fprintf_unfiltered (tmp_stream,
2569 "infrun: %s\n",
2570 status_string);
2571
2572 text = ui_file_xstrdup (tmp_stream, NULL);
2573
2574 /* This uses %s in part to handle %'s in the text, but also to avoid
2575 a gcc error: the format attribute requires a string literal. */
2576 fprintf_unfiltered (gdb_stdlog, "%s", text);
2577
2578 xfree (status_string);
2579 xfree (text);
2580 ui_file_delete (tmp_stream);
2581 }
2582
2583 /* Prepare and stabilize the inferior for detaching it. E.g.,
2584 detaching while a thread is displaced stepping is a recipe for
2585 crashing it, as nothing would readjust the PC out of the scratch
2586 pad. */
2587
2588 void
2589 prepare_for_detach (void)
2590 {
2591 struct inferior *inf = current_inferior ();
2592 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2593 struct cleanup *old_chain_1;
2594 struct displaced_step_inferior_state *displaced;
2595
2596 displaced = get_displaced_stepping_state (inf->pid);
2597
2598 /* Is any thread of this process displaced stepping? If not,
2599 there's nothing else to do. */
2600 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2601 return;
2602
2603 if (debug_infrun)
2604 fprintf_unfiltered (gdb_stdlog,
2605 "displaced-stepping in-process while detaching");
2606
2607 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2608 inf->detaching = 1;
2609
2610 while (!ptid_equal (displaced->step_ptid, null_ptid))
2611 {
2612 struct cleanup *old_chain_2;
2613 struct execution_control_state ecss;
2614 struct execution_control_state *ecs;
2615
2616 ecs = &ecss;
2617 memset (ecs, 0, sizeof (*ecs));
2618
2619 overlay_cache_invalid = 1;
2620
2621 if (deprecated_target_wait_hook)
2622 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2623 else
2624 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2625
2626 if (debug_infrun)
2627 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2628
2629 /* If an error happens while handling the event, propagate GDB's
2630 knowledge of the executing state to the frontend/user running
2631 state. */
2632 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2633 &minus_one_ptid);
2634
2635 /* In non-stop mode, each thread is handled individually.
2636 Switch early, so the global state is set correctly for this
2637 thread. */
2638 if (non_stop
2639 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2640 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2641 context_switch (ecs->ptid);
2642
2643 /* Now figure out what to do with the result of the result. */
2644 handle_inferior_event (ecs);
2645
2646 /* No error, don't finish the state yet. */
2647 discard_cleanups (old_chain_2);
2648
2649 /* Breakpoints and watchpoints are not installed on the target
2650 at this point, and signals are passed directly to the
2651 inferior, so this must mean the process is gone. */
2652 if (!ecs->wait_some_more)
2653 {
2654 discard_cleanups (old_chain_1);
2655 error (_("Program exited while detaching"));
2656 }
2657 }
2658
2659 discard_cleanups (old_chain_1);
2660 }
2661
2662 /* Wait for control to return from inferior to debugger.
2663
2664 If inferior gets a signal, we may decide to start it up again
2665 instead of returning. That is why there is a loop in this function.
2666 When this function actually returns it means the inferior
2667 should be left stopped and GDB should read more commands. */
2668
2669 void
2670 wait_for_inferior (void)
2671 {
2672 struct cleanup *old_cleanups;
2673 struct execution_control_state ecss;
2674 struct execution_control_state *ecs;
2675
2676 if (debug_infrun)
2677 fprintf_unfiltered
2678 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2679
2680 old_cleanups =
2681 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2682
2683 ecs = &ecss;
2684 memset (ecs, 0, sizeof (*ecs));
2685
2686 while (1)
2687 {
2688 struct cleanup *old_chain;
2689
2690 overlay_cache_invalid = 1;
2691
2692 if (deprecated_target_wait_hook)
2693 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2694 else
2695 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2696
2697 if (debug_infrun)
2698 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2699
2700 /* If an error happens while handling the event, propagate GDB's
2701 knowledge of the executing state to the frontend/user running
2702 state. */
2703 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2704
2705 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2706 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2707 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2708
2709 /* Now figure out what to do with the result of the result. */
2710 handle_inferior_event (ecs);
2711
2712 /* No error, don't finish the state yet. */
2713 discard_cleanups (old_chain);
2714
2715 if (!ecs->wait_some_more)
2716 break;
2717 }
2718
2719 do_cleanups (old_cleanups);
2720 }
2721
2722 /* Asynchronous version of wait_for_inferior. It is called by the
2723 event loop whenever a change of state is detected on the file
2724 descriptor corresponding to the target. It can be called more than
2725 once to complete a single execution command. In such cases we need
2726 to keep the state in a global variable ECSS. If it is the last time
2727 that this function is called for a single execution command, then
2728 report to the user that the inferior has stopped, and do the
2729 necessary cleanups. */
2730
2731 void
2732 fetch_inferior_event (void *client_data)
2733 {
2734 struct execution_control_state ecss;
2735 struct execution_control_state *ecs = &ecss;
2736 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2737 struct cleanup *ts_old_chain;
2738 int was_sync = sync_execution;
2739 int cmd_done = 0;
2740
2741 memset (ecs, 0, sizeof (*ecs));
2742
2743 /* We're handling a live event, so make sure we're doing live
2744 debugging. If we're looking at traceframes while the target is
2745 running, we're going to need to get back to that mode after
2746 handling the event. */
2747 if (non_stop)
2748 {
2749 make_cleanup_restore_current_traceframe ();
2750 set_current_traceframe (-1);
2751 }
2752
2753 if (non_stop)
2754 /* In non-stop mode, the user/frontend should not notice a thread
2755 switch due to internal events. Make sure we reverse to the
2756 user selected thread and frame after handling the event and
2757 running any breakpoint commands. */
2758 make_cleanup_restore_current_thread ();
2759
2760 overlay_cache_invalid = 1;
2761
2762 make_cleanup_restore_integer (&execution_direction);
2763 execution_direction = target_execution_direction ();
2764
2765 if (deprecated_target_wait_hook)
2766 ecs->ptid =
2767 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2768 else
2769 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2770
2771 if (debug_infrun)
2772 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2773
2774 if (non_stop
2775 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2776 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2777 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2778 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2779 /* In non-stop mode, each thread is handled individually. Switch
2780 early, so the global state is set correctly for this
2781 thread. */
2782 context_switch (ecs->ptid);
2783
2784 /* If an error happens while handling the event, propagate GDB's
2785 knowledge of the executing state to the frontend/user running
2786 state. */
2787 if (!non_stop)
2788 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2789 else
2790 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2791
2792 /* Get executed before make_cleanup_restore_current_thread above to apply
2793 still for the thread which has thrown the exception. */
2794 make_bpstat_clear_actions_cleanup ();
2795
2796 /* Now figure out what to do with the result of the result. */
2797 handle_inferior_event (ecs);
2798
2799 if (!ecs->wait_some_more)
2800 {
2801 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2802
2803 delete_step_thread_step_resume_breakpoint ();
2804
2805 /* We may not find an inferior if this was a process exit. */
2806 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2807 normal_stop ();
2808
2809 if (target_has_execution
2810 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2811 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2812 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2813 && ecs->event_thread->step_multi
2814 && ecs->event_thread->control.stop_step)
2815 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2816 else
2817 {
2818 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2819 cmd_done = 1;
2820 }
2821 }
2822
2823 /* No error, don't finish the thread states yet. */
2824 discard_cleanups (ts_old_chain);
2825
2826 /* Revert thread and frame. */
2827 do_cleanups (old_chain);
2828
2829 /* If the inferior was in sync execution mode, and now isn't,
2830 restore the prompt (a synchronous execution command has finished,
2831 and we're ready for input). */
2832 if (interpreter_async && was_sync && !sync_execution)
2833 display_gdb_prompt (0);
2834
2835 if (cmd_done
2836 && !was_sync
2837 && exec_done_display_p
2838 && (ptid_equal (inferior_ptid, null_ptid)
2839 || !is_running (inferior_ptid)))
2840 printf_unfiltered (_("completed.\n"));
2841 }
2842
2843 /* Record the frame and location we're currently stepping through. */
2844 void
2845 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2846 {
2847 struct thread_info *tp = inferior_thread ();
2848
2849 tp->control.step_frame_id = get_frame_id (frame);
2850 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2851
2852 tp->current_symtab = sal.symtab;
2853 tp->current_line = sal.line;
2854 }
2855
2856 /* Clear context switchable stepping state. */
2857
2858 void
2859 init_thread_stepping_state (struct thread_info *tss)
2860 {
2861 tss->stepping_over_breakpoint = 0;
2862 tss->step_after_step_resume_breakpoint = 0;
2863 }
2864
2865 /* Return the cached copy of the last pid/waitstatus returned by
2866 target_wait()/deprecated_target_wait_hook(). The data is actually
2867 cached by handle_inferior_event(), which gets called immediately
2868 after target_wait()/deprecated_target_wait_hook(). */
2869
2870 void
2871 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2872 {
2873 *ptidp = target_last_wait_ptid;
2874 *status = target_last_waitstatus;
2875 }
2876
2877 void
2878 nullify_last_target_wait_ptid (void)
2879 {
2880 target_last_wait_ptid = minus_one_ptid;
2881 }
2882
2883 /* Switch thread contexts. */
2884
2885 static void
2886 context_switch (ptid_t ptid)
2887 {
2888 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2889 {
2890 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2891 target_pid_to_str (inferior_ptid));
2892 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2893 target_pid_to_str (ptid));
2894 }
2895
2896 switch_to_thread (ptid);
2897 }
2898
2899 static void
2900 adjust_pc_after_break (struct execution_control_state *ecs)
2901 {
2902 struct regcache *regcache;
2903 struct gdbarch *gdbarch;
2904 struct address_space *aspace;
2905 CORE_ADDR breakpoint_pc;
2906
2907 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2908 we aren't, just return.
2909
2910 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2911 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2912 implemented by software breakpoints should be handled through the normal
2913 breakpoint layer.
2914
2915 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2916 different signals (SIGILL or SIGEMT for instance), but it is less
2917 clear where the PC is pointing afterwards. It may not match
2918 gdbarch_decr_pc_after_break. I don't know any specific target that
2919 generates these signals at breakpoints (the code has been in GDB since at
2920 least 1992) so I can not guess how to handle them here.
2921
2922 In earlier versions of GDB, a target with
2923 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2924 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2925 target with both of these set in GDB history, and it seems unlikely to be
2926 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2927
2928 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2929 return;
2930
2931 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2932 return;
2933
2934 /* In reverse execution, when a breakpoint is hit, the instruction
2935 under it has already been de-executed. The reported PC always
2936 points at the breakpoint address, so adjusting it further would
2937 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2938 architecture:
2939
2940 B1 0x08000000 : INSN1
2941 B2 0x08000001 : INSN2
2942 0x08000002 : INSN3
2943 PC -> 0x08000003 : INSN4
2944
2945 Say you're stopped at 0x08000003 as above. Reverse continuing
2946 from that point should hit B2 as below. Reading the PC when the
2947 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2948 been de-executed already.
2949
2950 B1 0x08000000 : INSN1
2951 B2 PC -> 0x08000001 : INSN2
2952 0x08000002 : INSN3
2953 0x08000003 : INSN4
2954
2955 We can't apply the same logic as for forward execution, because
2956 we would wrongly adjust the PC to 0x08000000, since there's a
2957 breakpoint at PC - 1. We'd then report a hit on B1, although
2958 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2959 behaviour. */
2960 if (execution_direction == EXEC_REVERSE)
2961 return;
2962
2963 /* If this target does not decrement the PC after breakpoints, then
2964 we have nothing to do. */
2965 regcache = get_thread_regcache (ecs->ptid);
2966 gdbarch = get_regcache_arch (regcache);
2967 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2968 return;
2969
2970 aspace = get_regcache_aspace (regcache);
2971
2972 /* Find the location where (if we've hit a breakpoint) the
2973 breakpoint would be. */
2974 breakpoint_pc = regcache_read_pc (regcache)
2975 - gdbarch_decr_pc_after_break (gdbarch);
2976
2977 /* Check whether there actually is a software breakpoint inserted at
2978 that location.
2979
2980 If in non-stop mode, a race condition is possible where we've
2981 removed a breakpoint, but stop events for that breakpoint were
2982 already queued and arrive later. To suppress those spurious
2983 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2984 and retire them after a number of stop events are reported. */
2985 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2986 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2987 {
2988 struct cleanup *old_cleanups = NULL;
2989
2990 if (RECORD_IS_USED)
2991 old_cleanups = record_gdb_operation_disable_set ();
2992
2993 /* When using hardware single-step, a SIGTRAP is reported for both
2994 a completed single-step and a software breakpoint. Need to
2995 differentiate between the two, as the latter needs adjusting
2996 but the former does not.
2997
2998 The SIGTRAP can be due to a completed hardware single-step only if
2999 - we didn't insert software single-step breakpoints
3000 - the thread to be examined is still the current thread
3001 - this thread is currently being stepped
3002
3003 If any of these events did not occur, we must have stopped due
3004 to hitting a software breakpoint, and have to back up to the
3005 breakpoint address.
3006
3007 As a special case, we could have hardware single-stepped a
3008 software breakpoint. In this case (prev_pc == breakpoint_pc),
3009 we also need to back up to the breakpoint address. */
3010
3011 if (singlestep_breakpoints_inserted_p
3012 || !ptid_equal (ecs->ptid, inferior_ptid)
3013 || !currently_stepping (ecs->event_thread)
3014 || ecs->event_thread->prev_pc == breakpoint_pc)
3015 regcache_write_pc (regcache, breakpoint_pc);
3016
3017 if (RECORD_IS_USED)
3018 do_cleanups (old_cleanups);
3019 }
3020 }
3021
3022 void
3023 init_infwait_state (void)
3024 {
3025 waiton_ptid = pid_to_ptid (-1);
3026 infwait_state = infwait_normal_state;
3027 }
3028
3029 void
3030 error_is_running (void)
3031 {
3032 error (_("Cannot execute this command while "
3033 "the selected thread is running."));
3034 }
3035
3036 void
3037 ensure_not_running (void)
3038 {
3039 if (is_running (inferior_ptid))
3040 error_is_running ();
3041 }
3042
3043 static int
3044 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3045 {
3046 for (frame = get_prev_frame (frame);
3047 frame != NULL;
3048 frame = get_prev_frame (frame))
3049 {
3050 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3051 return 1;
3052 if (get_frame_type (frame) != INLINE_FRAME)
3053 break;
3054 }
3055
3056 return 0;
3057 }
3058
3059 /* Auxiliary function that handles syscall entry/return events.
3060 It returns 1 if the inferior should keep going (and GDB
3061 should ignore the event), or 0 if the event deserves to be
3062 processed. */
3063
3064 static int
3065 handle_syscall_event (struct execution_control_state *ecs)
3066 {
3067 struct regcache *regcache;
3068 struct gdbarch *gdbarch;
3069 int syscall_number;
3070
3071 if (!ptid_equal (ecs->ptid, inferior_ptid))
3072 context_switch (ecs->ptid);
3073
3074 regcache = get_thread_regcache (ecs->ptid);
3075 gdbarch = get_regcache_arch (regcache);
3076 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
3077 stop_pc = regcache_read_pc (regcache);
3078
3079 target_last_waitstatus.value.syscall_number = syscall_number;
3080
3081 if (catch_syscall_enabled () > 0
3082 && catching_syscall_number (syscall_number) > 0)
3083 {
3084 if (debug_infrun)
3085 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3086 syscall_number);
3087
3088 ecs->event_thread->control.stop_bpstat
3089 = bpstat_stop_status (get_regcache_aspace (regcache),
3090 stop_pc, ecs->ptid);
3091 ecs->random_signal
3092 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3093
3094 if (!ecs->random_signal)
3095 {
3096 /* Catchpoint hit. */
3097 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3098 return 0;
3099 }
3100 }
3101
3102 /* If no catchpoint triggered for this, then keep going. */
3103 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3104 keep_going (ecs);
3105 return 1;
3106 }
3107
3108 /* Clear the supplied execution_control_state's stop_func_* fields. */
3109
3110 static void
3111 clear_stop_func (struct execution_control_state *ecs)
3112 {
3113 ecs->stop_func_filled_in = 0;
3114 ecs->stop_func_start = 0;
3115 ecs->stop_func_end = 0;
3116 ecs->stop_func_name = NULL;
3117 }
3118
3119 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3120
3121 static void
3122 fill_in_stop_func (struct gdbarch *gdbarch,
3123 struct execution_control_state *ecs)
3124 {
3125 if (!ecs->stop_func_filled_in)
3126 {
3127 /* Don't care about return value; stop_func_start and stop_func_name
3128 will both be 0 if it doesn't work. */
3129 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3130 &ecs->stop_func_start, &ecs->stop_func_end);
3131 ecs->stop_func_start
3132 += gdbarch_deprecated_function_start_offset (gdbarch);
3133
3134 ecs->stop_func_filled_in = 1;
3135 }
3136 }
3137
3138 /* Given an execution control state that has been freshly filled in
3139 by an event from the inferior, figure out what it means and take
3140 appropriate action. */
3141
3142 static void
3143 handle_inferior_event (struct execution_control_state *ecs)
3144 {
3145 struct frame_info *frame;
3146 struct gdbarch *gdbarch;
3147 int stopped_by_watchpoint;
3148 int stepped_after_stopped_by_watchpoint = 0;
3149 struct symtab_and_line stop_pc_sal;
3150 enum stop_kind stop_soon;
3151
3152 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3153 {
3154 /* We had an event in the inferior, but we are not interested in
3155 handling it at this level. The lower layers have already
3156 done what needs to be done, if anything.
3157
3158 One of the possible circumstances for this is when the
3159 inferior produces output for the console. The inferior has
3160 not stopped, and we are ignoring the event. Another possible
3161 circumstance is any event which the lower level knows will be
3162 reported multiple times without an intervening resume. */
3163 if (debug_infrun)
3164 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3165 prepare_to_wait (ecs);
3166 return;
3167 }
3168
3169 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3170 && target_can_async_p () && !sync_execution)
3171 {
3172 /* There were no unwaited-for children left in the target, but,
3173 we're not synchronously waiting for events either. Just
3174 ignore. Otherwise, if we were running a synchronous
3175 execution command, we need to cancel it and give the user
3176 back the terminal. */
3177 if (debug_infrun)
3178 fprintf_unfiltered (gdb_stdlog,
3179 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3180 prepare_to_wait (ecs);
3181 return;
3182 }
3183
3184 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3185 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3186 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3187 {
3188 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3189
3190 gdb_assert (inf);
3191 stop_soon = inf->control.stop_soon;
3192 }
3193 else
3194 stop_soon = NO_STOP_QUIETLY;
3195
3196 /* Cache the last pid/waitstatus. */
3197 target_last_wait_ptid = ecs->ptid;
3198 target_last_waitstatus = ecs->ws;
3199
3200 /* Always clear state belonging to the previous time we stopped. */
3201 stop_stack_dummy = STOP_NONE;
3202
3203 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3204 {
3205 /* No unwaited-for children left. IOW, all resumed children
3206 have exited. */
3207 if (debug_infrun)
3208 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3209
3210 stop_print_frame = 0;
3211 stop_stepping (ecs);
3212 return;
3213 }
3214
3215 /* If it's a new process, add it to the thread database. */
3216
3217 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3218 && !ptid_equal (ecs->ptid, minus_one_ptid)
3219 && !in_thread_list (ecs->ptid));
3220
3221 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3222 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3223 add_thread (ecs->ptid);
3224
3225 ecs->event_thread = find_thread_ptid (ecs->ptid);
3226
3227 /* Dependent on valid ECS->EVENT_THREAD. */
3228 adjust_pc_after_break (ecs);
3229
3230 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3231 reinit_frame_cache ();
3232
3233 breakpoint_retire_moribund ();
3234
3235 /* First, distinguish signals caused by the debugger from signals
3236 that have to do with the program's own actions. Note that
3237 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3238 on the operating system version. Here we detect when a SIGILL or
3239 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3240 something similar for SIGSEGV, since a SIGSEGV will be generated
3241 when we're trying to execute a breakpoint instruction on a
3242 non-executable stack. This happens for call dummy breakpoints
3243 for architectures like SPARC that place call dummies on the
3244 stack. */
3245 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3246 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3247 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
3248 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
3249 {
3250 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3251
3252 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3253 regcache_read_pc (regcache)))
3254 {
3255 if (debug_infrun)
3256 fprintf_unfiltered (gdb_stdlog,
3257 "infrun: Treating signal as SIGTRAP\n");
3258 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3259 }
3260 }
3261
3262 /* Mark the non-executing threads accordingly. In all-stop, all
3263 threads of all processes are stopped when we get any event
3264 reported. In non-stop mode, only the event thread stops. If
3265 we're handling a process exit in non-stop mode, there's nothing
3266 to do, as threads of the dead process are gone, and threads of
3267 any other process were left running. */
3268 if (!non_stop)
3269 set_executing (minus_one_ptid, 0);
3270 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3271 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3272 set_executing (ecs->ptid, 0);
3273
3274 switch (infwait_state)
3275 {
3276 case infwait_thread_hop_state:
3277 if (debug_infrun)
3278 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3279 break;
3280
3281 case infwait_normal_state:
3282 if (debug_infrun)
3283 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3284 break;
3285
3286 case infwait_step_watch_state:
3287 if (debug_infrun)
3288 fprintf_unfiltered (gdb_stdlog,
3289 "infrun: infwait_step_watch_state\n");
3290
3291 stepped_after_stopped_by_watchpoint = 1;
3292 break;
3293
3294 case infwait_nonstep_watch_state:
3295 if (debug_infrun)
3296 fprintf_unfiltered (gdb_stdlog,
3297 "infrun: infwait_nonstep_watch_state\n");
3298 insert_breakpoints ();
3299
3300 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3301 handle things like signals arriving and other things happening
3302 in combination correctly? */
3303 stepped_after_stopped_by_watchpoint = 1;
3304 break;
3305
3306 default:
3307 internal_error (__FILE__, __LINE__, _("bad switch"));
3308 }
3309
3310 infwait_state = infwait_normal_state;
3311 waiton_ptid = pid_to_ptid (-1);
3312
3313 switch (ecs->ws.kind)
3314 {
3315 case TARGET_WAITKIND_LOADED:
3316 if (debug_infrun)
3317 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3318 /* Ignore gracefully during startup of the inferior, as it might
3319 be the shell which has just loaded some objects, otherwise
3320 add the symbols for the newly loaded objects. Also ignore at
3321 the beginning of an attach or remote session; we will query
3322 the full list of libraries once the connection is
3323 established. */
3324 if (stop_soon == NO_STOP_QUIETLY)
3325 {
3326 /* Check for any newly added shared libraries if we're
3327 supposed to be adding them automatically. Switch
3328 terminal for any messages produced by
3329 breakpoint_re_set. */
3330 target_terminal_ours_for_output ();
3331 /* NOTE: cagney/2003-11-25: Make certain that the target
3332 stack's section table is kept up-to-date. Architectures,
3333 (e.g., PPC64), use the section table to perform
3334 operations such as address => section name and hence
3335 require the table to contain all sections (including
3336 those found in shared libraries). */
3337 #ifdef SOLIB_ADD
3338 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3339 #else
3340 solib_add (NULL, 0, &current_target, auto_solib_add);
3341 #endif
3342 target_terminal_inferior ();
3343
3344 /* If requested, stop when the dynamic linker notifies
3345 gdb of events. This allows the user to get control
3346 and place breakpoints in initializer routines for
3347 dynamically loaded objects (among other things). */
3348 if (stop_on_solib_events)
3349 {
3350 /* Make sure we print "Stopped due to solib-event" in
3351 normal_stop. */
3352 stop_print_frame = 1;
3353
3354 stop_stepping (ecs);
3355 return;
3356 }
3357
3358 /* NOTE drow/2007-05-11: This might be a good place to check
3359 for "catch load". */
3360 }
3361
3362 /* If we are skipping through a shell, or through shared library
3363 loading that we aren't interested in, resume the program. If
3364 we're running the program normally, also resume. But stop if
3365 we're attaching or setting up a remote connection. */
3366 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3367 {
3368 /* Loading of shared libraries might have changed breakpoint
3369 addresses. Make sure new breakpoints are inserted. */
3370 if (stop_soon == NO_STOP_QUIETLY
3371 && !breakpoints_always_inserted_mode ())
3372 insert_breakpoints ();
3373 resume (0, TARGET_SIGNAL_0);
3374 prepare_to_wait (ecs);
3375 return;
3376 }
3377
3378 break;
3379
3380 case TARGET_WAITKIND_SPURIOUS:
3381 if (debug_infrun)
3382 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3383 resume (0, TARGET_SIGNAL_0);
3384 prepare_to_wait (ecs);
3385 return;
3386
3387 case TARGET_WAITKIND_EXITED:
3388 if (debug_infrun)
3389 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3390 inferior_ptid = ecs->ptid;
3391 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3392 set_current_program_space (current_inferior ()->pspace);
3393 handle_vfork_child_exec_or_exit (0);
3394 target_terminal_ours (); /* Must do this before mourn anyway. */
3395 print_exited_reason (ecs->ws.value.integer);
3396
3397 /* Record the exit code in the convenience variable $_exitcode, so
3398 that the user can inspect this again later. */
3399 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3400 (LONGEST) ecs->ws.value.integer);
3401
3402 /* Also record this in the inferior itself. */
3403 current_inferior ()->has_exit_code = 1;
3404 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3405
3406 gdb_flush (gdb_stdout);
3407 target_mourn_inferior ();
3408 singlestep_breakpoints_inserted_p = 0;
3409 cancel_single_step_breakpoints ();
3410 stop_print_frame = 0;
3411 stop_stepping (ecs);
3412 return;
3413
3414 case TARGET_WAITKIND_SIGNALLED:
3415 if (debug_infrun)
3416 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3417 inferior_ptid = ecs->ptid;
3418 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3419 set_current_program_space (current_inferior ()->pspace);
3420 handle_vfork_child_exec_or_exit (0);
3421 stop_print_frame = 0;
3422 target_terminal_ours (); /* Must do this before mourn anyway. */
3423
3424 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3425 reach here unless the inferior is dead. However, for years
3426 target_kill() was called here, which hints that fatal signals aren't
3427 really fatal on some systems. If that's true, then some changes
3428 may be needed. */
3429 target_mourn_inferior ();
3430
3431 print_signal_exited_reason (ecs->ws.value.sig);
3432 singlestep_breakpoints_inserted_p = 0;
3433 cancel_single_step_breakpoints ();
3434 stop_stepping (ecs);
3435 return;
3436
3437 /* The following are the only cases in which we keep going;
3438 the above cases end in a continue or goto. */
3439 case TARGET_WAITKIND_FORKED:
3440 case TARGET_WAITKIND_VFORKED:
3441 if (debug_infrun)
3442 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3443
3444 /* Check whether the inferior is displaced stepping. */
3445 {
3446 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3447 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3448 struct displaced_step_inferior_state *displaced
3449 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3450
3451 /* If checking displaced stepping is supported, and thread
3452 ecs->ptid is displaced stepping. */
3453 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3454 {
3455 struct inferior *parent_inf
3456 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3457 struct regcache *child_regcache;
3458 CORE_ADDR parent_pc;
3459
3460 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3461 indicating that the displaced stepping of syscall instruction
3462 has been done. Perform cleanup for parent process here. Note
3463 that this operation also cleans up the child process for vfork,
3464 because their pages are shared. */
3465 displaced_step_fixup (ecs->ptid, TARGET_SIGNAL_TRAP);
3466
3467 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3468 {
3469 /* Restore scratch pad for child process. */
3470 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3471 }
3472
3473 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3474 the child's PC is also within the scratchpad. Set the child's PC
3475 to the parent's PC value, which has already been fixed up.
3476 FIXME: we use the parent's aspace here, although we're touching
3477 the child, because the child hasn't been added to the inferior
3478 list yet at this point. */
3479
3480 child_regcache
3481 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3482 gdbarch,
3483 parent_inf->aspace);
3484 /* Read PC value of parent process. */
3485 parent_pc = regcache_read_pc (regcache);
3486
3487 if (debug_displaced)
3488 fprintf_unfiltered (gdb_stdlog,
3489 "displaced: write child pc from %s to %s\n",
3490 paddress (gdbarch,
3491 regcache_read_pc (child_regcache)),
3492 paddress (gdbarch, parent_pc));
3493
3494 regcache_write_pc (child_regcache, parent_pc);
3495 }
3496 }
3497
3498 if (!ptid_equal (ecs->ptid, inferior_ptid))
3499 {
3500 context_switch (ecs->ptid);
3501 reinit_frame_cache ();
3502 }
3503
3504 /* Immediately detach breakpoints from the child before there's
3505 any chance of letting the user delete breakpoints from the
3506 breakpoint lists. If we don't do this early, it's easy to
3507 leave left over traps in the child, vis: "break foo; catch
3508 fork; c; <fork>; del; c; <child calls foo>". We only follow
3509 the fork on the last `continue', and by that time the
3510 breakpoint at "foo" is long gone from the breakpoint table.
3511 If we vforked, then we don't need to unpatch here, since both
3512 parent and child are sharing the same memory pages; we'll
3513 need to unpatch at follow/detach time instead to be certain
3514 that new breakpoints added between catchpoint hit time and
3515 vfork follow are detached. */
3516 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3517 {
3518 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3519
3520 /* This won't actually modify the breakpoint list, but will
3521 physically remove the breakpoints from the child. */
3522 detach_breakpoints (child_pid);
3523 }
3524
3525 if (singlestep_breakpoints_inserted_p)
3526 {
3527 /* Pull the single step breakpoints out of the target. */
3528 remove_single_step_breakpoints ();
3529 singlestep_breakpoints_inserted_p = 0;
3530 }
3531
3532 /* In case the event is caught by a catchpoint, remember that
3533 the event is to be followed at the next resume of the thread,
3534 and not immediately. */
3535 ecs->event_thread->pending_follow = ecs->ws;
3536
3537 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3538
3539 ecs->event_thread->control.stop_bpstat
3540 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3541 stop_pc, ecs->ptid);
3542
3543 /* Note that we're interested in knowing the bpstat actually
3544 causes a stop, not just if it may explain the signal.
3545 Software watchpoints, for example, always appear in the
3546 bpstat. */
3547 ecs->random_signal
3548 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3549
3550 /* If no catchpoint triggered for this, then keep going. */
3551 if (ecs->random_signal)
3552 {
3553 ptid_t parent;
3554 ptid_t child;
3555 int should_resume;
3556 int follow_child
3557 = (follow_fork_mode_string == follow_fork_mode_child);
3558
3559 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3560
3561 should_resume = follow_fork ();
3562
3563 parent = ecs->ptid;
3564 child = ecs->ws.value.related_pid;
3565
3566 /* In non-stop mode, also resume the other branch. */
3567 if (non_stop && !detach_fork)
3568 {
3569 if (follow_child)
3570 switch_to_thread (parent);
3571 else
3572 switch_to_thread (child);
3573
3574 ecs->event_thread = inferior_thread ();
3575 ecs->ptid = inferior_ptid;
3576 keep_going (ecs);
3577 }
3578
3579 if (follow_child)
3580 switch_to_thread (child);
3581 else
3582 switch_to_thread (parent);
3583
3584 ecs->event_thread = inferior_thread ();
3585 ecs->ptid = inferior_ptid;
3586
3587 if (should_resume)
3588 keep_going (ecs);
3589 else
3590 stop_stepping (ecs);
3591 return;
3592 }
3593 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3594 goto process_event_stop_test;
3595
3596 case TARGET_WAITKIND_VFORK_DONE:
3597 /* Done with the shared memory region. Re-insert breakpoints in
3598 the parent, and keep going. */
3599
3600 if (debug_infrun)
3601 fprintf_unfiltered (gdb_stdlog,
3602 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3603
3604 if (!ptid_equal (ecs->ptid, inferior_ptid))
3605 context_switch (ecs->ptid);
3606
3607 current_inferior ()->waiting_for_vfork_done = 0;
3608 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3609 /* This also takes care of reinserting breakpoints in the
3610 previously locked inferior. */
3611 keep_going (ecs);
3612 return;
3613
3614 case TARGET_WAITKIND_EXECD:
3615 if (debug_infrun)
3616 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3617
3618 if (!ptid_equal (ecs->ptid, inferior_ptid))
3619 {
3620 context_switch (ecs->ptid);
3621 reinit_frame_cache ();
3622 }
3623
3624 singlestep_breakpoints_inserted_p = 0;
3625 cancel_single_step_breakpoints ();
3626
3627 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3628
3629 /* Do whatever is necessary to the parent branch of the vfork. */
3630 handle_vfork_child_exec_or_exit (1);
3631
3632 /* This causes the eventpoints and symbol table to be reset.
3633 Must do this now, before trying to determine whether to
3634 stop. */
3635 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3636
3637 ecs->event_thread->control.stop_bpstat
3638 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3639 stop_pc, ecs->ptid);
3640 ecs->random_signal
3641 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3642
3643 /* Note that this may be referenced from inside
3644 bpstat_stop_status above, through inferior_has_execd. */
3645 xfree (ecs->ws.value.execd_pathname);
3646 ecs->ws.value.execd_pathname = NULL;
3647
3648 /* If no catchpoint triggered for this, then keep going. */
3649 if (ecs->random_signal)
3650 {
3651 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3652 keep_going (ecs);
3653 return;
3654 }
3655 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3656 goto process_event_stop_test;
3657
3658 /* Be careful not to try to gather much state about a thread
3659 that's in a syscall. It's frequently a losing proposition. */
3660 case TARGET_WAITKIND_SYSCALL_ENTRY:
3661 if (debug_infrun)
3662 fprintf_unfiltered (gdb_stdlog,
3663 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3664 /* Getting the current syscall number. */
3665 if (handle_syscall_event (ecs) != 0)
3666 return;
3667 goto process_event_stop_test;
3668
3669 /* Before examining the threads further, step this thread to
3670 get it entirely out of the syscall. (We get notice of the
3671 event when the thread is just on the verge of exiting a
3672 syscall. Stepping one instruction seems to get it back
3673 into user code.) */
3674 case TARGET_WAITKIND_SYSCALL_RETURN:
3675 if (debug_infrun)
3676 fprintf_unfiltered (gdb_stdlog,
3677 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3678 if (handle_syscall_event (ecs) != 0)
3679 return;
3680 goto process_event_stop_test;
3681
3682 case TARGET_WAITKIND_STOPPED:
3683 if (debug_infrun)
3684 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3685 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3686 break;
3687
3688 case TARGET_WAITKIND_NO_HISTORY:
3689 if (debug_infrun)
3690 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3691 /* Reverse execution: target ran out of history info. */
3692 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3693 print_no_history_reason ();
3694 stop_stepping (ecs);
3695 return;
3696 }
3697
3698 if (ecs->new_thread_event)
3699 {
3700 if (non_stop)
3701 /* Non-stop assumes that the target handles adding new threads
3702 to the thread list. */
3703 internal_error (__FILE__, __LINE__,
3704 "targets should add new threads to the thread "
3705 "list themselves in non-stop mode.");
3706
3707 /* We may want to consider not doing a resume here in order to
3708 give the user a chance to play with the new thread. It might
3709 be good to make that a user-settable option. */
3710
3711 /* At this point, all threads are stopped (happens automatically
3712 in either the OS or the native code). Therefore we need to
3713 continue all threads in order to make progress. */
3714
3715 if (!ptid_equal (ecs->ptid, inferior_ptid))
3716 context_switch (ecs->ptid);
3717 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3718 prepare_to_wait (ecs);
3719 return;
3720 }
3721
3722 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3723 {
3724 /* Do we need to clean up the state of a thread that has
3725 completed a displaced single-step? (Doing so usually affects
3726 the PC, so do it here, before we set stop_pc.) */
3727 displaced_step_fixup (ecs->ptid,
3728 ecs->event_thread->suspend.stop_signal);
3729
3730 /* If we either finished a single-step or hit a breakpoint, but
3731 the user wanted this thread to be stopped, pretend we got a
3732 SIG0 (generic unsignaled stop). */
3733
3734 if (ecs->event_thread->stop_requested
3735 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3736 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3737 }
3738
3739 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3740
3741 if (debug_infrun)
3742 {
3743 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3744 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3745 struct cleanup *old_chain = save_inferior_ptid ();
3746
3747 inferior_ptid = ecs->ptid;
3748
3749 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3750 paddress (gdbarch, stop_pc));
3751 if (target_stopped_by_watchpoint ())
3752 {
3753 CORE_ADDR addr;
3754
3755 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3756
3757 if (target_stopped_data_address (&current_target, &addr))
3758 fprintf_unfiltered (gdb_stdlog,
3759 "infrun: stopped data address = %s\n",
3760 paddress (gdbarch, addr));
3761 else
3762 fprintf_unfiltered (gdb_stdlog,
3763 "infrun: (no data address available)\n");
3764 }
3765
3766 do_cleanups (old_chain);
3767 }
3768
3769 if (stepping_past_singlestep_breakpoint)
3770 {
3771 gdb_assert (singlestep_breakpoints_inserted_p);
3772 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3773 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3774
3775 stepping_past_singlestep_breakpoint = 0;
3776
3777 /* We've either finished single-stepping past the single-step
3778 breakpoint, or stopped for some other reason. It would be nice if
3779 we could tell, but we can't reliably. */
3780 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3781 {
3782 if (debug_infrun)
3783 fprintf_unfiltered (gdb_stdlog,
3784 "infrun: stepping_past_"
3785 "singlestep_breakpoint\n");
3786 /* Pull the single step breakpoints out of the target. */
3787 remove_single_step_breakpoints ();
3788 singlestep_breakpoints_inserted_p = 0;
3789
3790 ecs->random_signal = 0;
3791 ecs->event_thread->control.trap_expected = 0;
3792
3793 context_switch (saved_singlestep_ptid);
3794 if (deprecated_context_hook)
3795 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3796
3797 resume (1, TARGET_SIGNAL_0);
3798 prepare_to_wait (ecs);
3799 return;
3800 }
3801 }
3802
3803 if (!ptid_equal (deferred_step_ptid, null_ptid))
3804 {
3805 /* In non-stop mode, there's never a deferred_step_ptid set. */
3806 gdb_assert (!non_stop);
3807
3808 /* If we stopped for some other reason than single-stepping, ignore
3809 the fact that we were supposed to switch back. */
3810 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3811 {
3812 if (debug_infrun)
3813 fprintf_unfiltered (gdb_stdlog,
3814 "infrun: handling deferred step\n");
3815
3816 /* Pull the single step breakpoints out of the target. */
3817 if (singlestep_breakpoints_inserted_p)
3818 {
3819 remove_single_step_breakpoints ();
3820 singlestep_breakpoints_inserted_p = 0;
3821 }
3822
3823 ecs->event_thread->control.trap_expected = 0;
3824
3825 /* Note: We do not call context_switch at this point, as the
3826 context is already set up for stepping the original thread. */
3827 switch_to_thread (deferred_step_ptid);
3828 deferred_step_ptid = null_ptid;
3829 /* Suppress spurious "Switching to ..." message. */
3830 previous_inferior_ptid = inferior_ptid;
3831
3832 resume (1, TARGET_SIGNAL_0);
3833 prepare_to_wait (ecs);
3834 return;
3835 }
3836
3837 deferred_step_ptid = null_ptid;
3838 }
3839
3840 /* See if a thread hit a thread-specific breakpoint that was meant for
3841 another thread. If so, then step that thread past the breakpoint,
3842 and continue it. */
3843
3844 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3845 {
3846 int thread_hop_needed = 0;
3847 struct address_space *aspace =
3848 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3849
3850 /* Check if a regular breakpoint has been hit before checking
3851 for a potential single step breakpoint. Otherwise, GDB will
3852 not see this breakpoint hit when stepping onto breakpoints. */
3853 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3854 {
3855 ecs->random_signal = 0;
3856 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3857 thread_hop_needed = 1;
3858 }
3859 else if (singlestep_breakpoints_inserted_p)
3860 {
3861 /* We have not context switched yet, so this should be true
3862 no matter which thread hit the singlestep breakpoint. */
3863 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3864 if (debug_infrun)
3865 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3866 "trap for %s\n",
3867 target_pid_to_str (ecs->ptid));
3868
3869 ecs->random_signal = 0;
3870 /* The call to in_thread_list is necessary because PTIDs sometimes
3871 change when we go from single-threaded to multi-threaded. If
3872 the singlestep_ptid is still in the list, assume that it is
3873 really different from ecs->ptid. */
3874 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3875 && in_thread_list (singlestep_ptid))
3876 {
3877 /* If the PC of the thread we were trying to single-step
3878 has changed, discard this event (which we were going
3879 to ignore anyway), and pretend we saw that thread
3880 trap. This prevents us continuously moving the
3881 single-step breakpoint forward, one instruction at a
3882 time. If the PC has changed, then the thread we were
3883 trying to single-step has trapped or been signalled,
3884 but the event has not been reported to GDB yet.
3885
3886 There might be some cases where this loses signal
3887 information, if a signal has arrived at exactly the
3888 same time that the PC changed, but this is the best
3889 we can do with the information available. Perhaps we
3890 should arrange to report all events for all threads
3891 when they stop, or to re-poll the remote looking for
3892 this particular thread (i.e. temporarily enable
3893 schedlock). */
3894
3895 CORE_ADDR new_singlestep_pc
3896 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3897
3898 if (new_singlestep_pc != singlestep_pc)
3899 {
3900 enum target_signal stop_signal;
3901
3902 if (debug_infrun)
3903 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3904 " but expected thread advanced also\n");
3905
3906 /* The current context still belongs to
3907 singlestep_ptid. Don't swap here, since that's
3908 the context we want to use. Just fudge our
3909 state and continue. */
3910 stop_signal = ecs->event_thread->suspend.stop_signal;
3911 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3912 ecs->ptid = singlestep_ptid;
3913 ecs->event_thread = find_thread_ptid (ecs->ptid);
3914 ecs->event_thread->suspend.stop_signal = stop_signal;
3915 stop_pc = new_singlestep_pc;
3916 }
3917 else
3918 {
3919 if (debug_infrun)
3920 fprintf_unfiltered (gdb_stdlog,
3921 "infrun: unexpected thread\n");
3922
3923 thread_hop_needed = 1;
3924 stepping_past_singlestep_breakpoint = 1;
3925 saved_singlestep_ptid = singlestep_ptid;
3926 }
3927 }
3928 }
3929
3930 if (thread_hop_needed)
3931 {
3932 struct regcache *thread_regcache;
3933 int remove_status = 0;
3934
3935 if (debug_infrun)
3936 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3937
3938 /* Switch context before touching inferior memory, the
3939 previous thread may have exited. */
3940 if (!ptid_equal (inferior_ptid, ecs->ptid))
3941 context_switch (ecs->ptid);
3942
3943 /* Saw a breakpoint, but it was hit by the wrong thread.
3944 Just continue. */
3945
3946 if (singlestep_breakpoints_inserted_p)
3947 {
3948 /* Pull the single step breakpoints out of the target. */
3949 remove_single_step_breakpoints ();
3950 singlestep_breakpoints_inserted_p = 0;
3951 }
3952
3953 /* If the arch can displace step, don't remove the
3954 breakpoints. */
3955 thread_regcache = get_thread_regcache (ecs->ptid);
3956 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3957 remove_status = remove_breakpoints ();
3958
3959 /* Did we fail to remove breakpoints? If so, try
3960 to set the PC past the bp. (There's at least
3961 one situation in which we can fail to remove
3962 the bp's: On HP-UX's that use ttrace, we can't
3963 change the address space of a vforking child
3964 process until the child exits (well, okay, not
3965 then either :-) or execs. */
3966 if (remove_status != 0)
3967 error (_("Cannot step over breakpoint hit in wrong thread"));
3968 else
3969 { /* Single step */
3970 if (!non_stop)
3971 {
3972 /* Only need to require the next event from this
3973 thread in all-stop mode. */
3974 waiton_ptid = ecs->ptid;
3975 infwait_state = infwait_thread_hop_state;
3976 }
3977
3978 ecs->event_thread->stepping_over_breakpoint = 1;
3979 keep_going (ecs);
3980 return;
3981 }
3982 }
3983 else if (singlestep_breakpoints_inserted_p)
3984 {
3985 ecs->random_signal = 0;
3986 }
3987 }
3988 else
3989 ecs->random_signal = 1;
3990
3991 /* See if something interesting happened to the non-current thread. If
3992 so, then switch to that thread. */
3993 if (!ptid_equal (ecs->ptid, inferior_ptid))
3994 {
3995 if (debug_infrun)
3996 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3997
3998 context_switch (ecs->ptid);
3999
4000 if (deprecated_context_hook)
4001 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4002 }
4003
4004 /* At this point, get hold of the now-current thread's frame. */
4005 frame = get_current_frame ();
4006 gdbarch = get_frame_arch (frame);
4007
4008 if (singlestep_breakpoints_inserted_p)
4009 {
4010 /* Pull the single step breakpoints out of the target. */
4011 remove_single_step_breakpoints ();
4012 singlestep_breakpoints_inserted_p = 0;
4013 }
4014
4015 if (stepped_after_stopped_by_watchpoint)
4016 stopped_by_watchpoint = 0;
4017 else
4018 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4019
4020 /* If necessary, step over this watchpoint. We'll be back to display
4021 it in a moment. */
4022 if (stopped_by_watchpoint
4023 && (target_have_steppable_watchpoint
4024 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4025 {
4026 /* At this point, we are stopped at an instruction which has
4027 attempted to write to a piece of memory under control of
4028 a watchpoint. The instruction hasn't actually executed
4029 yet. If we were to evaluate the watchpoint expression
4030 now, we would get the old value, and therefore no change
4031 would seem to have occurred.
4032
4033 In order to make watchpoints work `right', we really need
4034 to complete the memory write, and then evaluate the
4035 watchpoint expression. We do this by single-stepping the
4036 target.
4037
4038 It may not be necessary to disable the watchpoint to stop over
4039 it. For example, the PA can (with some kernel cooperation)
4040 single step over a watchpoint without disabling the watchpoint.
4041
4042 It is far more common to need to disable a watchpoint to step
4043 the inferior over it. If we have non-steppable watchpoints,
4044 we must disable the current watchpoint; it's simplest to
4045 disable all watchpoints and breakpoints. */
4046 int hw_step = 1;
4047
4048 if (!target_have_steppable_watchpoint)
4049 {
4050 remove_breakpoints ();
4051 /* See comment in resume why we need to stop bypassing signals
4052 while breakpoints have been removed. */
4053 target_pass_signals (0, NULL);
4054 }
4055 /* Single step */
4056 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4057 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
4058 waiton_ptid = ecs->ptid;
4059 if (target_have_steppable_watchpoint)
4060 infwait_state = infwait_step_watch_state;
4061 else
4062 infwait_state = infwait_nonstep_watch_state;
4063 prepare_to_wait (ecs);
4064 return;
4065 }
4066
4067 clear_stop_func (ecs);
4068 ecs->event_thread->stepping_over_breakpoint = 0;
4069 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4070 ecs->event_thread->control.stop_step = 0;
4071 stop_print_frame = 1;
4072 ecs->random_signal = 0;
4073 stopped_by_random_signal = 0;
4074
4075 /* Hide inlined functions starting here, unless we just performed stepi or
4076 nexti. After stepi and nexti, always show the innermost frame (not any
4077 inline function call sites). */
4078 if (ecs->event_thread->control.step_range_end != 1)
4079 {
4080 struct address_space *aspace =
4081 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4082
4083 /* skip_inline_frames is expensive, so we avoid it if we can
4084 determine that the address is one where functions cannot have
4085 been inlined. This improves performance with inferiors that
4086 load a lot of shared libraries, because the solib event
4087 breakpoint is defined as the address of a function (i.e. not
4088 inline). Note that we have to check the previous PC as well
4089 as the current one to catch cases when we have just
4090 single-stepped off a breakpoint prior to reinstating it.
4091 Note that we're assuming that the code we single-step to is
4092 not inline, but that's not definitive: there's nothing
4093 preventing the event breakpoint function from containing
4094 inlined code, and the single-step ending up there. If the
4095 user had set a breakpoint on that inlined code, the missing
4096 skip_inline_frames call would break things. Fortunately
4097 that's an extremely unlikely scenario. */
4098 if (!pc_at_non_inline_function (aspace, stop_pc)
4099 && !(ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4100 && ecs->event_thread->control.trap_expected
4101 && pc_at_non_inline_function (aspace,
4102 ecs->event_thread->prev_pc)))
4103 skip_inline_frames (ecs->ptid);
4104 }
4105
4106 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4107 && ecs->event_thread->control.trap_expected
4108 && gdbarch_single_step_through_delay_p (gdbarch)
4109 && currently_stepping (ecs->event_thread))
4110 {
4111 /* We're trying to step off a breakpoint. Turns out that we're
4112 also on an instruction that needs to be stepped multiple
4113 times before it's been fully executing. E.g., architectures
4114 with a delay slot. It needs to be stepped twice, once for
4115 the instruction and once for the delay slot. */
4116 int step_through_delay
4117 = gdbarch_single_step_through_delay (gdbarch, frame);
4118
4119 if (debug_infrun && step_through_delay)
4120 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4121 if (ecs->event_thread->control.step_range_end == 0
4122 && step_through_delay)
4123 {
4124 /* The user issued a continue when stopped at a breakpoint.
4125 Set up for another trap and get out of here. */
4126 ecs->event_thread->stepping_over_breakpoint = 1;
4127 keep_going (ecs);
4128 return;
4129 }
4130 else if (step_through_delay)
4131 {
4132 /* The user issued a step when stopped at a breakpoint.
4133 Maybe we should stop, maybe we should not - the delay
4134 slot *might* correspond to a line of source. In any
4135 case, don't decide that here, just set
4136 ecs->stepping_over_breakpoint, making sure we
4137 single-step again before breakpoints are re-inserted. */
4138 ecs->event_thread->stepping_over_breakpoint = 1;
4139 }
4140 }
4141
4142 /* Look at the cause of the stop, and decide what to do.
4143 The alternatives are:
4144 1) stop_stepping and return; to really stop and return to the debugger,
4145 2) keep_going and return to start up again
4146 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4147 3) set ecs->random_signal to 1, and the decision between 1 and 2
4148 will be made according to the signal handling tables. */
4149
4150 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4151 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4152 || stop_soon == STOP_QUIETLY_REMOTE)
4153 {
4154 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4155 && stop_after_trap)
4156 {
4157 if (debug_infrun)
4158 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4159 stop_print_frame = 0;
4160 stop_stepping (ecs);
4161 return;
4162 }
4163
4164 /* This is originated from start_remote(), start_inferior() and
4165 shared libraries hook functions. */
4166 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4167 {
4168 if (debug_infrun)
4169 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4170 stop_stepping (ecs);
4171 return;
4172 }
4173
4174 /* This originates from attach_command(). We need to overwrite
4175 the stop_signal here, because some kernels don't ignore a
4176 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4177 See more comments in inferior.h. On the other hand, if we
4178 get a non-SIGSTOP, report it to the user - assume the backend
4179 will handle the SIGSTOP if it should show up later.
4180
4181 Also consider that the attach is complete when we see a
4182 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4183 target extended-remote report it instead of a SIGSTOP
4184 (e.g. gdbserver). We already rely on SIGTRAP being our
4185 signal, so this is no exception.
4186
4187 Also consider that the attach is complete when we see a
4188 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4189 the target to stop all threads of the inferior, in case the
4190 low level attach operation doesn't stop them implicitly. If
4191 they weren't stopped implicitly, then the stub will report a
4192 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4193 other than GDB's request. */
4194 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4195 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4196 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4197 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
4198 {
4199 stop_stepping (ecs);
4200 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4201 return;
4202 }
4203
4204 /* See if there is a breakpoint at the current PC. */
4205 ecs->event_thread->control.stop_bpstat
4206 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4207 stop_pc, ecs->ptid);
4208
4209 /* Following in case break condition called a
4210 function. */
4211 stop_print_frame = 1;
4212
4213 /* This is where we handle "moribund" watchpoints. Unlike
4214 software breakpoints traps, hardware watchpoint traps are
4215 always distinguishable from random traps. If no high-level
4216 watchpoint is associated with the reported stop data address
4217 anymore, then the bpstat does not explain the signal ---
4218 simply make sure to ignore it if `stopped_by_watchpoint' is
4219 set. */
4220
4221 if (debug_infrun
4222 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4223 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4224 && stopped_by_watchpoint)
4225 fprintf_unfiltered (gdb_stdlog,
4226 "infrun: no user watchpoint explains "
4227 "watchpoint SIGTRAP, ignoring\n");
4228
4229 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4230 at one stage in the past included checks for an inferior
4231 function call's call dummy's return breakpoint. The original
4232 comment, that went with the test, read:
4233
4234 ``End of a stack dummy. Some systems (e.g. Sony news) give
4235 another signal besides SIGTRAP, so check here as well as
4236 above.''
4237
4238 If someone ever tries to get call dummys on a
4239 non-executable stack to work (where the target would stop
4240 with something like a SIGSEGV), then those tests might need
4241 to be re-instated. Given, however, that the tests were only
4242 enabled when momentary breakpoints were not being used, I
4243 suspect that it won't be the case.
4244
4245 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4246 be necessary for call dummies on a non-executable stack on
4247 SPARC. */
4248
4249 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
4250 ecs->random_signal
4251 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4252 || stopped_by_watchpoint
4253 || ecs->event_thread->control.trap_expected
4254 || (ecs->event_thread->control.step_range_end
4255 && (ecs->event_thread->control.step_resume_breakpoint
4256 == NULL)));
4257 else
4258 {
4259 ecs->random_signal = !bpstat_explains_signal
4260 (ecs->event_thread->control.stop_bpstat);
4261 if (!ecs->random_signal)
4262 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
4263 }
4264 }
4265
4266 /* When we reach this point, we've pretty much decided
4267 that the reason for stopping must've been a random
4268 (unexpected) signal. */
4269
4270 else
4271 ecs->random_signal = 1;
4272
4273 process_event_stop_test:
4274
4275 /* Re-fetch current thread's frame in case we did a
4276 "goto process_event_stop_test" above. */
4277 frame = get_current_frame ();
4278 gdbarch = get_frame_arch (frame);
4279
4280 /* For the program's own signals, act according to
4281 the signal handling tables. */
4282
4283 if (ecs->random_signal)
4284 {
4285 /* Signal not for debugging purposes. */
4286 int printed = 0;
4287 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4288
4289 if (debug_infrun)
4290 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4291 ecs->event_thread->suspend.stop_signal);
4292
4293 stopped_by_random_signal = 1;
4294
4295 if (signal_print[ecs->event_thread->suspend.stop_signal])
4296 {
4297 printed = 1;
4298 target_terminal_ours_for_output ();
4299 print_signal_received_reason
4300 (ecs->event_thread->suspend.stop_signal);
4301 }
4302 /* Always stop on signals if we're either just gaining control
4303 of the program, or the user explicitly requested this thread
4304 to remain stopped. */
4305 if (stop_soon != NO_STOP_QUIETLY
4306 || ecs->event_thread->stop_requested
4307 || (!inf->detaching
4308 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4309 {
4310 stop_stepping (ecs);
4311 return;
4312 }
4313 /* If not going to stop, give terminal back
4314 if we took it away. */
4315 else if (printed)
4316 target_terminal_inferior ();
4317
4318 /* Clear the signal if it should not be passed. */
4319 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4320 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4321
4322 if (ecs->event_thread->prev_pc == stop_pc
4323 && ecs->event_thread->control.trap_expected
4324 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4325 {
4326 /* We were just starting a new sequence, attempting to
4327 single-step off of a breakpoint and expecting a SIGTRAP.
4328 Instead this signal arrives. This signal will take us out
4329 of the stepping range so GDB needs to remember to, when
4330 the signal handler returns, resume stepping off that
4331 breakpoint. */
4332 /* To simplify things, "continue" is forced to use the same
4333 code paths as single-step - set a breakpoint at the
4334 signal return address and then, once hit, step off that
4335 breakpoint. */
4336 if (debug_infrun)
4337 fprintf_unfiltered (gdb_stdlog,
4338 "infrun: signal arrived while stepping over "
4339 "breakpoint\n");
4340
4341 insert_hp_step_resume_breakpoint_at_frame (frame);
4342 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4343 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4344 ecs->event_thread->control.trap_expected = 0;
4345 keep_going (ecs);
4346 return;
4347 }
4348
4349 if (ecs->event_thread->control.step_range_end != 0
4350 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4351 && (ecs->event_thread->control.step_range_start <= stop_pc
4352 && stop_pc < ecs->event_thread->control.step_range_end)
4353 && frame_id_eq (get_stack_frame_id (frame),
4354 ecs->event_thread->control.step_stack_frame_id)
4355 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4356 {
4357 /* The inferior is about to take a signal that will take it
4358 out of the single step range. Set a breakpoint at the
4359 current PC (which is presumably where the signal handler
4360 will eventually return) and then allow the inferior to
4361 run free.
4362
4363 Note that this is only needed for a signal delivered
4364 while in the single-step range. Nested signals aren't a
4365 problem as they eventually all return. */
4366 if (debug_infrun)
4367 fprintf_unfiltered (gdb_stdlog,
4368 "infrun: signal may take us out of "
4369 "single-step range\n");
4370
4371 insert_hp_step_resume_breakpoint_at_frame (frame);
4372 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4373 ecs->event_thread->control.trap_expected = 0;
4374 keep_going (ecs);
4375 return;
4376 }
4377
4378 /* Note: step_resume_breakpoint may be non-NULL. This occures
4379 when either there's a nested signal, or when there's a
4380 pending signal enabled just as the signal handler returns
4381 (leaving the inferior at the step-resume-breakpoint without
4382 actually executing it). Either way continue until the
4383 breakpoint is really hit. */
4384 keep_going (ecs);
4385 return;
4386 }
4387
4388 /* Handle cases caused by hitting a breakpoint. */
4389 {
4390 CORE_ADDR jmp_buf_pc;
4391 struct bpstat_what what;
4392
4393 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4394
4395 if (what.call_dummy)
4396 {
4397 stop_stack_dummy = what.call_dummy;
4398 }
4399
4400 /* If we hit an internal event that triggers symbol changes, the
4401 current frame will be invalidated within bpstat_what (e.g., if
4402 we hit an internal solib event). Re-fetch it. */
4403 frame = get_current_frame ();
4404 gdbarch = get_frame_arch (frame);
4405
4406 switch (what.main_action)
4407 {
4408 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4409 /* If we hit the breakpoint at longjmp while stepping, we
4410 install a momentary breakpoint at the target of the
4411 jmp_buf. */
4412
4413 if (debug_infrun)
4414 fprintf_unfiltered (gdb_stdlog,
4415 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4416
4417 ecs->event_thread->stepping_over_breakpoint = 1;
4418
4419 if (what.is_longjmp)
4420 {
4421 if (!gdbarch_get_longjmp_target_p (gdbarch)
4422 || !gdbarch_get_longjmp_target (gdbarch,
4423 frame, &jmp_buf_pc))
4424 {
4425 if (debug_infrun)
4426 fprintf_unfiltered (gdb_stdlog,
4427 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4428 "(!gdbarch_get_longjmp_target)\n");
4429 keep_going (ecs);
4430 return;
4431 }
4432
4433 /* We're going to replace the current step-resume breakpoint
4434 with a longjmp-resume breakpoint. */
4435 delete_step_resume_breakpoint (ecs->event_thread);
4436
4437 /* Insert a breakpoint at resume address. */
4438 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4439 }
4440 else
4441 {
4442 struct symbol *func = get_frame_function (frame);
4443
4444 if (func)
4445 check_exception_resume (ecs, frame, func);
4446 }
4447 keep_going (ecs);
4448 return;
4449
4450 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4451 if (debug_infrun)
4452 fprintf_unfiltered (gdb_stdlog,
4453 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4454
4455 if (what.is_longjmp)
4456 {
4457 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4458 != NULL);
4459 delete_step_resume_breakpoint (ecs->event_thread);
4460 }
4461 else
4462 {
4463 /* There are several cases to consider.
4464
4465 1. The initiating frame no longer exists. In this case
4466 we must stop, because the exception has gone too far.
4467
4468 2. The initiating frame exists, and is the same as the
4469 current frame. We stop, because the exception has been
4470 caught.
4471
4472 3. The initiating frame exists and is different from
4473 the current frame. This means the exception has been
4474 caught beneath the initiating frame, so keep going. */
4475 struct frame_info *init_frame
4476 = frame_find_by_id (ecs->event_thread->initiating_frame);
4477
4478 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4479 != NULL);
4480 delete_exception_resume_breakpoint (ecs->event_thread);
4481
4482 if (init_frame)
4483 {
4484 struct frame_id current_id
4485 = get_frame_id (get_current_frame ());
4486 if (frame_id_eq (current_id,
4487 ecs->event_thread->initiating_frame))
4488 {
4489 /* Case 2. Fall through. */
4490 }
4491 else
4492 {
4493 /* Case 3. */
4494 keep_going (ecs);
4495 return;
4496 }
4497 }
4498
4499 /* For Cases 1 and 2, remove the step-resume breakpoint,
4500 if it exists. */
4501 delete_step_resume_breakpoint (ecs->event_thread);
4502 }
4503
4504 ecs->event_thread->control.stop_step = 1;
4505 print_end_stepping_range_reason ();
4506 stop_stepping (ecs);
4507 return;
4508
4509 case BPSTAT_WHAT_SINGLE:
4510 if (debug_infrun)
4511 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4512 ecs->event_thread->stepping_over_breakpoint = 1;
4513 /* Still need to check other stuff, at least the case
4514 where we are stepping and step out of the right range. */
4515 break;
4516
4517 case BPSTAT_WHAT_STEP_RESUME:
4518 if (debug_infrun)
4519 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4520
4521 delete_step_resume_breakpoint (ecs->event_thread);
4522 if (ecs->event_thread->control.proceed_to_finish
4523 && execution_direction == EXEC_REVERSE)
4524 {
4525 struct thread_info *tp = ecs->event_thread;
4526
4527 /* We are finishing a function in reverse, and just hit
4528 the step-resume breakpoint at the start address of the
4529 function, and we're almost there -- just need to back
4530 up by one more single-step, which should take us back
4531 to the function call. */
4532 tp->control.step_range_start = tp->control.step_range_end = 1;
4533 keep_going (ecs);
4534 return;
4535 }
4536 fill_in_stop_func (gdbarch, ecs);
4537 if (stop_pc == ecs->stop_func_start
4538 && execution_direction == EXEC_REVERSE)
4539 {
4540 /* We are stepping over a function call in reverse, and
4541 just hit the step-resume breakpoint at the start
4542 address of the function. Go back to single-stepping,
4543 which should take us back to the function call. */
4544 ecs->event_thread->stepping_over_breakpoint = 1;
4545 keep_going (ecs);
4546 return;
4547 }
4548 break;
4549
4550 case BPSTAT_WHAT_STOP_NOISY:
4551 if (debug_infrun)
4552 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4553 stop_print_frame = 1;
4554
4555 /* We are about to nuke the step_resume_breakpointt via the
4556 cleanup chain, so no need to worry about it here. */
4557
4558 stop_stepping (ecs);
4559 return;
4560
4561 case BPSTAT_WHAT_STOP_SILENT:
4562 if (debug_infrun)
4563 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4564 stop_print_frame = 0;
4565
4566 /* We are about to nuke the step_resume_breakpoin via the
4567 cleanup chain, so no need to worry about it here. */
4568
4569 stop_stepping (ecs);
4570 return;
4571
4572 case BPSTAT_WHAT_HP_STEP_RESUME:
4573 if (debug_infrun)
4574 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4575
4576 delete_step_resume_breakpoint (ecs->event_thread);
4577 if (ecs->event_thread->step_after_step_resume_breakpoint)
4578 {
4579 /* Back when the step-resume breakpoint was inserted, we
4580 were trying to single-step off a breakpoint. Go back
4581 to doing that. */
4582 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4583 ecs->event_thread->stepping_over_breakpoint = 1;
4584 keep_going (ecs);
4585 return;
4586 }
4587 break;
4588
4589 case BPSTAT_WHAT_KEEP_CHECKING:
4590 break;
4591 }
4592 }
4593
4594 /* We come here if we hit a breakpoint but should not
4595 stop for it. Possibly we also were stepping
4596 and should stop for that. So fall through and
4597 test for stepping. But, if not stepping,
4598 do not stop. */
4599
4600 /* In all-stop mode, if we're currently stepping but have stopped in
4601 some other thread, we need to switch back to the stepped thread. */
4602 if (!non_stop)
4603 {
4604 struct thread_info *tp;
4605
4606 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4607 ecs->event_thread);
4608 if (tp)
4609 {
4610 /* However, if the current thread is blocked on some internal
4611 breakpoint, and we simply need to step over that breakpoint
4612 to get it going again, do that first. */
4613 if ((ecs->event_thread->control.trap_expected
4614 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
4615 || ecs->event_thread->stepping_over_breakpoint)
4616 {
4617 keep_going (ecs);
4618 return;
4619 }
4620
4621 /* If the stepping thread exited, then don't try to switch
4622 back and resume it, which could fail in several different
4623 ways depending on the target. Instead, just keep going.
4624
4625 We can find a stepping dead thread in the thread list in
4626 two cases:
4627
4628 - The target supports thread exit events, and when the
4629 target tries to delete the thread from the thread list,
4630 inferior_ptid pointed at the exiting thread. In such
4631 case, calling delete_thread does not really remove the
4632 thread from the list; instead, the thread is left listed,
4633 with 'exited' state.
4634
4635 - The target's debug interface does not support thread
4636 exit events, and so we have no idea whatsoever if the
4637 previously stepping thread is still alive. For that
4638 reason, we need to synchronously query the target
4639 now. */
4640 if (is_exited (tp->ptid)
4641 || !target_thread_alive (tp->ptid))
4642 {
4643 if (debug_infrun)
4644 fprintf_unfiltered (gdb_stdlog,
4645 "infrun: not switching back to "
4646 "stepped thread, it has vanished\n");
4647
4648 delete_thread (tp->ptid);
4649 keep_going (ecs);
4650 return;
4651 }
4652
4653 /* Otherwise, we no longer expect a trap in the current thread.
4654 Clear the trap_expected flag before switching back -- this is
4655 what keep_going would do as well, if we called it. */
4656 ecs->event_thread->control.trap_expected = 0;
4657
4658 if (debug_infrun)
4659 fprintf_unfiltered (gdb_stdlog,
4660 "infrun: switching back to stepped thread\n");
4661
4662 ecs->event_thread = tp;
4663 ecs->ptid = tp->ptid;
4664 context_switch (ecs->ptid);
4665 keep_going (ecs);
4666 return;
4667 }
4668 }
4669
4670 if (ecs->event_thread->control.step_resume_breakpoint)
4671 {
4672 if (debug_infrun)
4673 fprintf_unfiltered (gdb_stdlog,
4674 "infrun: step-resume breakpoint is inserted\n");
4675
4676 /* Having a step-resume breakpoint overrides anything
4677 else having to do with stepping commands until
4678 that breakpoint is reached. */
4679 keep_going (ecs);
4680 return;
4681 }
4682
4683 if (ecs->event_thread->control.step_range_end == 0)
4684 {
4685 if (debug_infrun)
4686 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4687 /* Likewise if we aren't even stepping. */
4688 keep_going (ecs);
4689 return;
4690 }
4691
4692 /* Re-fetch current thread's frame in case the code above caused
4693 the frame cache to be re-initialized, making our FRAME variable
4694 a dangling pointer. */
4695 frame = get_current_frame ();
4696 gdbarch = get_frame_arch (frame);
4697 fill_in_stop_func (gdbarch, ecs);
4698
4699 /* If stepping through a line, keep going if still within it.
4700
4701 Note that step_range_end is the address of the first instruction
4702 beyond the step range, and NOT the address of the last instruction
4703 within it!
4704
4705 Note also that during reverse execution, we may be stepping
4706 through a function epilogue and therefore must detect when
4707 the current-frame changes in the middle of a line. */
4708
4709 if (stop_pc >= ecs->event_thread->control.step_range_start
4710 && stop_pc < ecs->event_thread->control.step_range_end
4711 && (execution_direction != EXEC_REVERSE
4712 || frame_id_eq (get_frame_id (frame),
4713 ecs->event_thread->control.step_frame_id)))
4714 {
4715 if (debug_infrun)
4716 fprintf_unfiltered
4717 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4718 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4719 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4720
4721 /* When stepping backward, stop at beginning of line range
4722 (unless it's the function entry point, in which case
4723 keep going back to the call point). */
4724 if (stop_pc == ecs->event_thread->control.step_range_start
4725 && stop_pc != ecs->stop_func_start
4726 && execution_direction == EXEC_REVERSE)
4727 {
4728 ecs->event_thread->control.stop_step = 1;
4729 print_end_stepping_range_reason ();
4730 stop_stepping (ecs);
4731 }
4732 else
4733 keep_going (ecs);
4734
4735 return;
4736 }
4737
4738 /* We stepped out of the stepping range. */
4739
4740 /* If we are stepping at the source level and entered the runtime
4741 loader dynamic symbol resolution code...
4742
4743 EXEC_FORWARD: we keep on single stepping until we exit the run
4744 time loader code and reach the callee's address.
4745
4746 EXEC_REVERSE: we've already executed the callee (backward), and
4747 the runtime loader code is handled just like any other
4748 undebuggable function call. Now we need only keep stepping
4749 backward through the trampoline code, and that's handled further
4750 down, so there is nothing for us to do here. */
4751
4752 if (execution_direction != EXEC_REVERSE
4753 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4754 && in_solib_dynsym_resolve_code (stop_pc))
4755 {
4756 CORE_ADDR pc_after_resolver =
4757 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4758
4759 if (debug_infrun)
4760 fprintf_unfiltered (gdb_stdlog,
4761 "infrun: stepped into dynsym resolve code\n");
4762
4763 if (pc_after_resolver)
4764 {
4765 /* Set up a step-resume breakpoint at the address
4766 indicated by SKIP_SOLIB_RESOLVER. */
4767 struct symtab_and_line sr_sal;
4768
4769 init_sal (&sr_sal);
4770 sr_sal.pc = pc_after_resolver;
4771 sr_sal.pspace = get_frame_program_space (frame);
4772
4773 insert_step_resume_breakpoint_at_sal (gdbarch,
4774 sr_sal, null_frame_id);
4775 }
4776
4777 keep_going (ecs);
4778 return;
4779 }
4780
4781 if (ecs->event_thread->control.step_range_end != 1
4782 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4783 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4784 && get_frame_type (frame) == SIGTRAMP_FRAME)
4785 {
4786 if (debug_infrun)
4787 fprintf_unfiltered (gdb_stdlog,
4788 "infrun: stepped into signal trampoline\n");
4789 /* The inferior, while doing a "step" or "next", has ended up in
4790 a signal trampoline (either by a signal being delivered or by
4791 the signal handler returning). Just single-step until the
4792 inferior leaves the trampoline (either by calling the handler
4793 or returning). */
4794 keep_going (ecs);
4795 return;
4796 }
4797
4798 /* Check for subroutine calls. The check for the current frame
4799 equalling the step ID is not necessary - the check of the
4800 previous frame's ID is sufficient - but it is a common case and
4801 cheaper than checking the previous frame's ID.
4802
4803 NOTE: frame_id_eq will never report two invalid frame IDs as
4804 being equal, so to get into this block, both the current and
4805 previous frame must have valid frame IDs. */
4806 /* The outer_frame_id check is a heuristic to detect stepping
4807 through startup code. If we step over an instruction which
4808 sets the stack pointer from an invalid value to a valid value,
4809 we may detect that as a subroutine call from the mythical
4810 "outermost" function. This could be fixed by marking
4811 outermost frames as !stack_p,code_p,special_p. Then the
4812 initial outermost frame, before sp was valid, would
4813 have code_addr == &_start. See the comment in frame_id_eq
4814 for more. */
4815 if (!frame_id_eq (get_stack_frame_id (frame),
4816 ecs->event_thread->control.step_stack_frame_id)
4817 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4818 ecs->event_thread->control.step_stack_frame_id)
4819 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4820 outer_frame_id)
4821 || step_start_function != find_pc_function (stop_pc))))
4822 {
4823 CORE_ADDR real_stop_pc;
4824
4825 if (debug_infrun)
4826 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4827
4828 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4829 || ((ecs->event_thread->control.step_range_end == 1)
4830 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4831 ecs->stop_func_start)))
4832 {
4833 /* I presume that step_over_calls is only 0 when we're
4834 supposed to be stepping at the assembly language level
4835 ("stepi"). Just stop. */
4836 /* Also, maybe we just did a "nexti" inside a prolog, so we
4837 thought it was a subroutine call but it was not. Stop as
4838 well. FENN */
4839 /* And this works the same backward as frontward. MVS */
4840 ecs->event_thread->control.stop_step = 1;
4841 print_end_stepping_range_reason ();
4842 stop_stepping (ecs);
4843 return;
4844 }
4845
4846 /* Reverse stepping through solib trampolines. */
4847
4848 if (execution_direction == EXEC_REVERSE
4849 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4850 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4851 || (ecs->stop_func_start == 0
4852 && in_solib_dynsym_resolve_code (stop_pc))))
4853 {
4854 /* Any solib trampoline code can be handled in reverse
4855 by simply continuing to single-step. We have already
4856 executed the solib function (backwards), and a few
4857 steps will take us back through the trampoline to the
4858 caller. */
4859 keep_going (ecs);
4860 return;
4861 }
4862
4863 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4864 {
4865 /* We're doing a "next".
4866
4867 Normal (forward) execution: set a breakpoint at the
4868 callee's return address (the address at which the caller
4869 will resume).
4870
4871 Reverse (backward) execution. set the step-resume
4872 breakpoint at the start of the function that we just
4873 stepped into (backwards), and continue to there. When we
4874 get there, we'll need to single-step back to the caller. */
4875
4876 if (execution_direction == EXEC_REVERSE)
4877 {
4878 struct symtab_and_line sr_sal;
4879
4880 /* Normal function call return (static or dynamic). */
4881 init_sal (&sr_sal);
4882 sr_sal.pc = ecs->stop_func_start;
4883 sr_sal.pspace = get_frame_program_space (frame);
4884 insert_step_resume_breakpoint_at_sal (gdbarch,
4885 sr_sal, null_frame_id);
4886 }
4887 else
4888 insert_step_resume_breakpoint_at_caller (frame);
4889
4890 keep_going (ecs);
4891 return;
4892 }
4893
4894 /* If we are in a function call trampoline (a stub between the
4895 calling routine and the real function), locate the real
4896 function. That's what tells us (a) whether we want to step
4897 into it at all, and (b) what prologue we want to run to the
4898 end of, if we do step into it. */
4899 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4900 if (real_stop_pc == 0)
4901 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4902 if (real_stop_pc != 0)
4903 ecs->stop_func_start = real_stop_pc;
4904
4905 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4906 {
4907 struct symtab_and_line sr_sal;
4908
4909 init_sal (&sr_sal);
4910 sr_sal.pc = ecs->stop_func_start;
4911 sr_sal.pspace = get_frame_program_space (frame);
4912
4913 insert_step_resume_breakpoint_at_sal (gdbarch,
4914 sr_sal, null_frame_id);
4915 keep_going (ecs);
4916 return;
4917 }
4918
4919 /* If we have line number information for the function we are
4920 thinking of stepping into, step into it.
4921
4922 If there are several symtabs at that PC (e.g. with include
4923 files), just want to know whether *any* of them have line
4924 numbers. find_pc_line handles this. */
4925 {
4926 struct symtab_and_line tmp_sal;
4927
4928 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4929 if (tmp_sal.line != 0)
4930 {
4931 if (execution_direction == EXEC_REVERSE)
4932 handle_step_into_function_backward (gdbarch, ecs);
4933 else
4934 handle_step_into_function (gdbarch, ecs);
4935 return;
4936 }
4937 }
4938
4939 /* If we have no line number and the step-stop-if-no-debug is
4940 set, we stop the step so that the user has a chance to switch
4941 in assembly mode. */
4942 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4943 && step_stop_if_no_debug)
4944 {
4945 ecs->event_thread->control.stop_step = 1;
4946 print_end_stepping_range_reason ();
4947 stop_stepping (ecs);
4948 return;
4949 }
4950
4951 if (execution_direction == EXEC_REVERSE)
4952 {
4953 /* Set a breakpoint at callee's start address.
4954 From there we can step once and be back in the caller. */
4955 struct symtab_and_line sr_sal;
4956
4957 init_sal (&sr_sal);
4958 sr_sal.pc = ecs->stop_func_start;
4959 sr_sal.pspace = get_frame_program_space (frame);
4960 insert_step_resume_breakpoint_at_sal (gdbarch,
4961 sr_sal, null_frame_id);
4962 }
4963 else
4964 /* Set a breakpoint at callee's return address (the address
4965 at which the caller will resume). */
4966 insert_step_resume_breakpoint_at_caller (frame);
4967
4968 keep_going (ecs);
4969 return;
4970 }
4971
4972 /* Reverse stepping through solib trampolines. */
4973
4974 if (execution_direction == EXEC_REVERSE
4975 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4976 {
4977 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4978 || (ecs->stop_func_start == 0
4979 && in_solib_dynsym_resolve_code (stop_pc)))
4980 {
4981 /* Any solib trampoline code can be handled in reverse
4982 by simply continuing to single-step. We have already
4983 executed the solib function (backwards), and a few
4984 steps will take us back through the trampoline to the
4985 caller. */
4986 keep_going (ecs);
4987 return;
4988 }
4989 else if (in_solib_dynsym_resolve_code (stop_pc))
4990 {
4991 /* Stepped backward into the solib dynsym resolver.
4992 Set a breakpoint at its start and continue, then
4993 one more step will take us out. */
4994 struct symtab_and_line sr_sal;
4995
4996 init_sal (&sr_sal);
4997 sr_sal.pc = ecs->stop_func_start;
4998 sr_sal.pspace = get_frame_program_space (frame);
4999 insert_step_resume_breakpoint_at_sal (gdbarch,
5000 sr_sal, null_frame_id);
5001 keep_going (ecs);
5002 return;
5003 }
5004 }
5005
5006 /* If we're in the return path from a shared library trampoline,
5007 we want to proceed through the trampoline when stepping. */
5008 if (gdbarch_in_solib_return_trampoline (gdbarch,
5009 stop_pc, ecs->stop_func_name))
5010 {
5011 /* Determine where this trampoline returns. */
5012 CORE_ADDR real_stop_pc;
5013
5014 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5015
5016 if (debug_infrun)
5017 fprintf_unfiltered (gdb_stdlog,
5018 "infrun: stepped into solib return tramp\n");
5019
5020 /* Only proceed through if we know where it's going. */
5021 if (real_stop_pc)
5022 {
5023 /* And put the step-breakpoint there and go until there. */
5024 struct symtab_and_line sr_sal;
5025
5026 init_sal (&sr_sal); /* initialize to zeroes */
5027 sr_sal.pc = real_stop_pc;
5028 sr_sal.section = find_pc_overlay (sr_sal.pc);
5029 sr_sal.pspace = get_frame_program_space (frame);
5030
5031 /* Do not specify what the fp should be when we stop since
5032 on some machines the prologue is where the new fp value
5033 is established. */
5034 insert_step_resume_breakpoint_at_sal (gdbarch,
5035 sr_sal, null_frame_id);
5036
5037 /* Restart without fiddling with the step ranges or
5038 other state. */
5039 keep_going (ecs);
5040 return;
5041 }
5042 }
5043
5044 stop_pc_sal = find_pc_line (stop_pc, 0);
5045
5046 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5047 the trampoline processing logic, however, there are some trampolines
5048 that have no names, so we should do trampoline handling first. */
5049 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5050 && ecs->stop_func_name == NULL
5051 && stop_pc_sal.line == 0)
5052 {
5053 if (debug_infrun)
5054 fprintf_unfiltered (gdb_stdlog,
5055 "infrun: stepped into undebuggable function\n");
5056
5057 /* The inferior just stepped into, or returned to, an
5058 undebuggable function (where there is no debugging information
5059 and no line number corresponding to the address where the
5060 inferior stopped). Since we want to skip this kind of code,
5061 we keep going until the inferior returns from this
5062 function - unless the user has asked us not to (via
5063 set step-mode) or we no longer know how to get back
5064 to the call site. */
5065 if (step_stop_if_no_debug
5066 || !frame_id_p (frame_unwind_caller_id (frame)))
5067 {
5068 /* If we have no line number and the step-stop-if-no-debug
5069 is set, we stop the step so that the user has a chance to
5070 switch in assembly mode. */
5071 ecs->event_thread->control.stop_step = 1;
5072 print_end_stepping_range_reason ();
5073 stop_stepping (ecs);
5074 return;
5075 }
5076 else
5077 {
5078 /* Set a breakpoint at callee's return address (the address
5079 at which the caller will resume). */
5080 insert_step_resume_breakpoint_at_caller (frame);
5081 keep_going (ecs);
5082 return;
5083 }
5084 }
5085
5086 if (ecs->event_thread->control.step_range_end == 1)
5087 {
5088 /* It is stepi or nexti. We always want to stop stepping after
5089 one instruction. */
5090 if (debug_infrun)
5091 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5092 ecs->event_thread->control.stop_step = 1;
5093 print_end_stepping_range_reason ();
5094 stop_stepping (ecs);
5095 return;
5096 }
5097
5098 if (stop_pc_sal.line == 0)
5099 {
5100 /* We have no line number information. That means to stop
5101 stepping (does this always happen right after one instruction,
5102 when we do "s" in a function with no line numbers,
5103 or can this happen as a result of a return or longjmp?). */
5104 if (debug_infrun)
5105 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5106 ecs->event_thread->control.stop_step = 1;
5107 print_end_stepping_range_reason ();
5108 stop_stepping (ecs);
5109 return;
5110 }
5111
5112 /* Look for "calls" to inlined functions, part one. If the inline
5113 frame machinery detected some skipped call sites, we have entered
5114 a new inline function. */
5115
5116 if (frame_id_eq (get_frame_id (get_current_frame ()),
5117 ecs->event_thread->control.step_frame_id)
5118 && inline_skipped_frames (ecs->ptid))
5119 {
5120 struct symtab_and_line call_sal;
5121
5122 if (debug_infrun)
5123 fprintf_unfiltered (gdb_stdlog,
5124 "infrun: stepped into inlined function\n");
5125
5126 find_frame_sal (get_current_frame (), &call_sal);
5127
5128 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5129 {
5130 /* For "step", we're going to stop. But if the call site
5131 for this inlined function is on the same source line as
5132 we were previously stepping, go down into the function
5133 first. Otherwise stop at the call site. */
5134
5135 if (call_sal.line == ecs->event_thread->current_line
5136 && call_sal.symtab == ecs->event_thread->current_symtab)
5137 step_into_inline_frame (ecs->ptid);
5138
5139 ecs->event_thread->control.stop_step = 1;
5140 print_end_stepping_range_reason ();
5141 stop_stepping (ecs);
5142 return;
5143 }
5144 else
5145 {
5146 /* For "next", we should stop at the call site if it is on a
5147 different source line. Otherwise continue through the
5148 inlined function. */
5149 if (call_sal.line == ecs->event_thread->current_line
5150 && call_sal.symtab == ecs->event_thread->current_symtab)
5151 keep_going (ecs);
5152 else
5153 {
5154 ecs->event_thread->control.stop_step = 1;
5155 print_end_stepping_range_reason ();
5156 stop_stepping (ecs);
5157 }
5158 return;
5159 }
5160 }
5161
5162 /* Look for "calls" to inlined functions, part two. If we are still
5163 in the same real function we were stepping through, but we have
5164 to go further up to find the exact frame ID, we are stepping
5165 through a more inlined call beyond its call site. */
5166
5167 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5168 && !frame_id_eq (get_frame_id (get_current_frame ()),
5169 ecs->event_thread->control.step_frame_id)
5170 && stepped_in_from (get_current_frame (),
5171 ecs->event_thread->control.step_frame_id))
5172 {
5173 if (debug_infrun)
5174 fprintf_unfiltered (gdb_stdlog,
5175 "infrun: stepping through inlined function\n");
5176
5177 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5178 keep_going (ecs);
5179 else
5180 {
5181 ecs->event_thread->control.stop_step = 1;
5182 print_end_stepping_range_reason ();
5183 stop_stepping (ecs);
5184 }
5185 return;
5186 }
5187
5188 if ((stop_pc == stop_pc_sal.pc)
5189 && (ecs->event_thread->current_line != stop_pc_sal.line
5190 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5191 {
5192 /* We are at the start of a different line. So stop. Note that
5193 we don't stop if we step into the middle of a different line.
5194 That is said to make things like for (;;) statements work
5195 better. */
5196 if (debug_infrun)
5197 fprintf_unfiltered (gdb_stdlog,
5198 "infrun: stepped to a different line\n");
5199 ecs->event_thread->control.stop_step = 1;
5200 print_end_stepping_range_reason ();
5201 stop_stepping (ecs);
5202 return;
5203 }
5204
5205 /* We aren't done stepping.
5206
5207 Optimize by setting the stepping range to the line.
5208 (We might not be in the original line, but if we entered a
5209 new line in mid-statement, we continue stepping. This makes
5210 things like for(;;) statements work better.) */
5211
5212 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5213 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5214 set_step_info (frame, stop_pc_sal);
5215
5216 if (debug_infrun)
5217 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5218 keep_going (ecs);
5219 }
5220
5221 /* Is thread TP in the middle of single-stepping? */
5222
5223 static int
5224 currently_stepping (struct thread_info *tp)
5225 {
5226 return ((tp->control.step_range_end
5227 && tp->control.step_resume_breakpoint == NULL)
5228 || tp->control.trap_expected
5229 || bpstat_should_step ());
5230 }
5231
5232 /* Returns true if any thread *but* the one passed in "data" is in the
5233 middle of stepping or of handling a "next". */
5234
5235 static int
5236 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5237 {
5238 if (tp == data)
5239 return 0;
5240
5241 return (tp->control.step_range_end
5242 || tp->control.trap_expected);
5243 }
5244
5245 /* Inferior has stepped into a subroutine call with source code that
5246 we should not step over. Do step to the first line of code in
5247 it. */
5248
5249 static void
5250 handle_step_into_function (struct gdbarch *gdbarch,
5251 struct execution_control_state *ecs)
5252 {
5253 struct symtab *s;
5254 struct symtab_and_line stop_func_sal, sr_sal;
5255
5256 fill_in_stop_func (gdbarch, ecs);
5257
5258 s = find_pc_symtab (stop_pc);
5259 if (s && s->language != language_asm)
5260 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5261 ecs->stop_func_start);
5262
5263 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5264 /* Use the step_resume_break to step until the end of the prologue,
5265 even if that involves jumps (as it seems to on the vax under
5266 4.2). */
5267 /* If the prologue ends in the middle of a source line, continue to
5268 the end of that source line (if it is still within the function).
5269 Otherwise, just go to end of prologue. */
5270 if (stop_func_sal.end
5271 && stop_func_sal.pc != ecs->stop_func_start
5272 && stop_func_sal.end < ecs->stop_func_end)
5273 ecs->stop_func_start = stop_func_sal.end;
5274
5275 /* Architectures which require breakpoint adjustment might not be able
5276 to place a breakpoint at the computed address. If so, the test
5277 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5278 ecs->stop_func_start to an address at which a breakpoint may be
5279 legitimately placed.
5280
5281 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5282 made, GDB will enter an infinite loop when stepping through
5283 optimized code consisting of VLIW instructions which contain
5284 subinstructions corresponding to different source lines. On
5285 FR-V, it's not permitted to place a breakpoint on any but the
5286 first subinstruction of a VLIW instruction. When a breakpoint is
5287 set, GDB will adjust the breakpoint address to the beginning of
5288 the VLIW instruction. Thus, we need to make the corresponding
5289 adjustment here when computing the stop address. */
5290
5291 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5292 {
5293 ecs->stop_func_start
5294 = gdbarch_adjust_breakpoint_address (gdbarch,
5295 ecs->stop_func_start);
5296 }
5297
5298 if (ecs->stop_func_start == stop_pc)
5299 {
5300 /* We are already there: stop now. */
5301 ecs->event_thread->control.stop_step = 1;
5302 print_end_stepping_range_reason ();
5303 stop_stepping (ecs);
5304 return;
5305 }
5306 else
5307 {
5308 /* Put the step-breakpoint there and go until there. */
5309 init_sal (&sr_sal); /* initialize to zeroes */
5310 sr_sal.pc = ecs->stop_func_start;
5311 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5312 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5313
5314 /* Do not specify what the fp should be when we stop since on
5315 some machines the prologue is where the new fp value is
5316 established. */
5317 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5318
5319 /* And make sure stepping stops right away then. */
5320 ecs->event_thread->control.step_range_end
5321 = ecs->event_thread->control.step_range_start;
5322 }
5323 keep_going (ecs);
5324 }
5325
5326 /* Inferior has stepped backward into a subroutine call with source
5327 code that we should not step over. Do step to the beginning of the
5328 last line of code in it. */
5329
5330 static void
5331 handle_step_into_function_backward (struct gdbarch *gdbarch,
5332 struct execution_control_state *ecs)
5333 {
5334 struct symtab *s;
5335 struct symtab_and_line stop_func_sal;
5336
5337 fill_in_stop_func (gdbarch, ecs);
5338
5339 s = find_pc_symtab (stop_pc);
5340 if (s && s->language != language_asm)
5341 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5342 ecs->stop_func_start);
5343
5344 stop_func_sal = find_pc_line (stop_pc, 0);
5345
5346 /* OK, we're just going to keep stepping here. */
5347 if (stop_func_sal.pc == stop_pc)
5348 {
5349 /* We're there already. Just stop stepping now. */
5350 ecs->event_thread->control.stop_step = 1;
5351 print_end_stepping_range_reason ();
5352 stop_stepping (ecs);
5353 }
5354 else
5355 {
5356 /* Else just reset the step range and keep going.
5357 No step-resume breakpoint, they don't work for
5358 epilogues, which can have multiple entry paths. */
5359 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5360 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5361 keep_going (ecs);
5362 }
5363 return;
5364 }
5365
5366 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5367 This is used to both functions and to skip over code. */
5368
5369 static void
5370 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5371 struct symtab_and_line sr_sal,
5372 struct frame_id sr_id,
5373 enum bptype sr_type)
5374 {
5375 /* There should never be more than one step-resume or longjmp-resume
5376 breakpoint per thread, so we should never be setting a new
5377 step_resume_breakpoint when one is already active. */
5378 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5379 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5380
5381 if (debug_infrun)
5382 fprintf_unfiltered (gdb_stdlog,
5383 "infrun: inserting step-resume breakpoint at %s\n",
5384 paddress (gdbarch, sr_sal.pc));
5385
5386 inferior_thread ()->control.step_resume_breakpoint
5387 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5388 }
5389
5390 void
5391 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5392 struct symtab_and_line sr_sal,
5393 struct frame_id sr_id)
5394 {
5395 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5396 sr_sal, sr_id,
5397 bp_step_resume);
5398 }
5399
5400 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5401 This is used to skip a potential signal handler.
5402
5403 This is called with the interrupted function's frame. The signal
5404 handler, when it returns, will resume the interrupted function at
5405 RETURN_FRAME.pc. */
5406
5407 static void
5408 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5409 {
5410 struct symtab_and_line sr_sal;
5411 struct gdbarch *gdbarch;
5412
5413 gdb_assert (return_frame != NULL);
5414 init_sal (&sr_sal); /* initialize to zeros */
5415
5416 gdbarch = get_frame_arch (return_frame);
5417 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5418 sr_sal.section = find_pc_overlay (sr_sal.pc);
5419 sr_sal.pspace = get_frame_program_space (return_frame);
5420
5421 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5422 get_stack_frame_id (return_frame),
5423 bp_hp_step_resume);
5424 }
5425
5426 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5427 is used to skip a function after stepping into it (for "next" or if
5428 the called function has no debugging information).
5429
5430 The current function has almost always been reached by single
5431 stepping a call or return instruction. NEXT_FRAME belongs to the
5432 current function, and the breakpoint will be set at the caller's
5433 resume address.
5434
5435 This is a separate function rather than reusing
5436 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5437 get_prev_frame, which may stop prematurely (see the implementation
5438 of frame_unwind_caller_id for an example). */
5439
5440 static void
5441 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5442 {
5443 struct symtab_and_line sr_sal;
5444 struct gdbarch *gdbarch;
5445
5446 /* We shouldn't have gotten here if we don't know where the call site
5447 is. */
5448 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5449
5450 init_sal (&sr_sal); /* initialize to zeros */
5451
5452 gdbarch = frame_unwind_caller_arch (next_frame);
5453 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5454 frame_unwind_caller_pc (next_frame));
5455 sr_sal.section = find_pc_overlay (sr_sal.pc);
5456 sr_sal.pspace = frame_unwind_program_space (next_frame);
5457
5458 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5459 frame_unwind_caller_id (next_frame));
5460 }
5461
5462 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5463 new breakpoint at the target of a jmp_buf. The handling of
5464 longjmp-resume uses the same mechanisms used for handling
5465 "step-resume" breakpoints. */
5466
5467 static void
5468 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5469 {
5470 /* There should never be more than one step-resume or longjmp-resume
5471 breakpoint per thread, so we should never be setting a new
5472 longjmp_resume_breakpoint when one is already active. */
5473 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5474
5475 if (debug_infrun)
5476 fprintf_unfiltered (gdb_stdlog,
5477 "infrun: inserting longjmp-resume breakpoint at %s\n",
5478 paddress (gdbarch, pc));
5479
5480 inferior_thread ()->control.step_resume_breakpoint =
5481 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5482 }
5483
5484 /* Insert an exception resume breakpoint. TP is the thread throwing
5485 the exception. The block B is the block of the unwinder debug hook
5486 function. FRAME is the frame corresponding to the call to this
5487 function. SYM is the symbol of the function argument holding the
5488 target PC of the exception. */
5489
5490 static void
5491 insert_exception_resume_breakpoint (struct thread_info *tp,
5492 struct block *b,
5493 struct frame_info *frame,
5494 struct symbol *sym)
5495 {
5496 struct gdb_exception e;
5497
5498 /* We want to ignore errors here. */
5499 TRY_CATCH (e, RETURN_MASK_ERROR)
5500 {
5501 struct symbol *vsym;
5502 struct value *value;
5503 CORE_ADDR handler;
5504 struct breakpoint *bp;
5505
5506 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5507 value = read_var_value (vsym, frame);
5508 /* If the value was optimized out, revert to the old behavior. */
5509 if (! value_optimized_out (value))
5510 {
5511 handler = value_as_address (value);
5512
5513 if (debug_infrun)
5514 fprintf_unfiltered (gdb_stdlog,
5515 "infrun: exception resume at %lx\n",
5516 (unsigned long) handler);
5517
5518 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5519 handler, bp_exception_resume);
5520 bp->thread = tp->num;
5521 inferior_thread ()->control.exception_resume_breakpoint = bp;
5522 }
5523 }
5524 }
5525
5526 /* This is called when an exception has been intercepted. Check to
5527 see whether the exception's destination is of interest, and if so,
5528 set an exception resume breakpoint there. */
5529
5530 static void
5531 check_exception_resume (struct execution_control_state *ecs,
5532 struct frame_info *frame, struct symbol *func)
5533 {
5534 struct gdb_exception e;
5535
5536 TRY_CATCH (e, RETURN_MASK_ERROR)
5537 {
5538 struct block *b;
5539 struct dict_iterator iter;
5540 struct symbol *sym;
5541 int argno = 0;
5542
5543 /* The exception breakpoint is a thread-specific breakpoint on
5544 the unwinder's debug hook, declared as:
5545
5546 void _Unwind_DebugHook (void *cfa, void *handler);
5547
5548 The CFA argument indicates the frame to which control is
5549 about to be transferred. HANDLER is the destination PC.
5550
5551 We ignore the CFA and set a temporary breakpoint at HANDLER.
5552 This is not extremely efficient but it avoids issues in gdb
5553 with computing the DWARF CFA, and it also works even in weird
5554 cases such as throwing an exception from inside a signal
5555 handler. */
5556
5557 b = SYMBOL_BLOCK_VALUE (func);
5558 ALL_BLOCK_SYMBOLS (b, iter, sym)
5559 {
5560 if (!SYMBOL_IS_ARGUMENT (sym))
5561 continue;
5562
5563 if (argno == 0)
5564 ++argno;
5565 else
5566 {
5567 insert_exception_resume_breakpoint (ecs->event_thread,
5568 b, frame, sym);
5569 break;
5570 }
5571 }
5572 }
5573 }
5574
5575 static void
5576 stop_stepping (struct execution_control_state *ecs)
5577 {
5578 if (debug_infrun)
5579 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5580
5581 /* Let callers know we don't want to wait for the inferior anymore. */
5582 ecs->wait_some_more = 0;
5583 }
5584
5585 /* This function handles various cases where we need to continue
5586 waiting for the inferior. */
5587 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5588
5589 static void
5590 keep_going (struct execution_control_state *ecs)
5591 {
5592 /* Make sure normal_stop is called if we get a QUIT handled before
5593 reaching resume. */
5594 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5595
5596 /* Save the pc before execution, to compare with pc after stop. */
5597 ecs->event_thread->prev_pc
5598 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5599
5600 /* If we did not do break;, it means we should keep running the
5601 inferior and not return to debugger. */
5602
5603 if (ecs->event_thread->control.trap_expected
5604 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
5605 {
5606 /* We took a signal (which we are supposed to pass through to
5607 the inferior, else we'd not get here) and we haven't yet
5608 gotten our trap. Simply continue. */
5609
5610 discard_cleanups (old_cleanups);
5611 resume (currently_stepping (ecs->event_thread),
5612 ecs->event_thread->suspend.stop_signal);
5613 }
5614 else
5615 {
5616 /* Either the trap was not expected, but we are continuing
5617 anyway (the user asked that this signal be passed to the
5618 child)
5619 -- or --
5620 The signal was SIGTRAP, e.g. it was our signal, but we
5621 decided we should resume from it.
5622
5623 We're going to run this baby now!
5624
5625 Note that insert_breakpoints won't try to re-insert
5626 already inserted breakpoints. Therefore, we don't
5627 care if breakpoints were already inserted, or not. */
5628
5629 if (ecs->event_thread->stepping_over_breakpoint)
5630 {
5631 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5632
5633 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5634 /* Since we can't do a displaced step, we have to remove
5635 the breakpoint while we step it. To keep things
5636 simple, we remove them all. */
5637 remove_breakpoints ();
5638 }
5639 else
5640 {
5641 struct gdb_exception e;
5642
5643 /* Stop stepping when inserting breakpoints
5644 has failed. */
5645 TRY_CATCH (e, RETURN_MASK_ERROR)
5646 {
5647 insert_breakpoints ();
5648 }
5649 if (e.reason < 0)
5650 {
5651 exception_print (gdb_stderr, e);
5652 stop_stepping (ecs);
5653 return;
5654 }
5655 }
5656
5657 ecs->event_thread->control.trap_expected
5658 = ecs->event_thread->stepping_over_breakpoint;
5659
5660 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5661 specifies that such a signal should be delivered to the
5662 target program).
5663
5664 Typically, this would occure when a user is debugging a
5665 target monitor on a simulator: the target monitor sets a
5666 breakpoint; the simulator encounters this break-point and
5667 halts the simulation handing control to GDB; GDB, noteing
5668 that the break-point isn't valid, returns control back to the
5669 simulator; the simulator then delivers the hardware
5670 equivalent of a SIGNAL_TRAP to the program being debugged. */
5671
5672 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5673 && !signal_program[ecs->event_thread->suspend.stop_signal])
5674 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
5675
5676 discard_cleanups (old_cleanups);
5677 resume (currently_stepping (ecs->event_thread),
5678 ecs->event_thread->suspend.stop_signal);
5679 }
5680
5681 prepare_to_wait (ecs);
5682 }
5683
5684 /* This function normally comes after a resume, before
5685 handle_inferior_event exits. It takes care of any last bits of
5686 housekeeping, and sets the all-important wait_some_more flag. */
5687
5688 static void
5689 prepare_to_wait (struct execution_control_state *ecs)
5690 {
5691 if (debug_infrun)
5692 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5693
5694 /* This is the old end of the while loop. Let everybody know we
5695 want to wait for the inferior some more and get called again
5696 soon. */
5697 ecs->wait_some_more = 1;
5698 }
5699
5700 /* Several print_*_reason functions to print why the inferior has stopped.
5701 We always print something when the inferior exits, or receives a signal.
5702 The rest of the cases are dealt with later on in normal_stop and
5703 print_it_typical. Ideally there should be a call to one of these
5704 print_*_reason functions functions from handle_inferior_event each time
5705 stop_stepping is called. */
5706
5707 /* Print why the inferior has stopped.
5708 We are done with a step/next/si/ni command, print why the inferior has
5709 stopped. For now print nothing. Print a message only if not in the middle
5710 of doing a "step n" operation for n > 1. */
5711
5712 static void
5713 print_end_stepping_range_reason (void)
5714 {
5715 if ((!inferior_thread ()->step_multi
5716 || !inferior_thread ()->control.stop_step)
5717 && ui_out_is_mi_like_p (current_uiout))
5718 ui_out_field_string (current_uiout, "reason",
5719 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5720 }
5721
5722 /* The inferior was terminated by a signal, print why it stopped. */
5723
5724 static void
5725 print_signal_exited_reason (enum target_signal siggnal)
5726 {
5727 struct ui_out *uiout = current_uiout;
5728
5729 annotate_signalled ();
5730 if (ui_out_is_mi_like_p (uiout))
5731 ui_out_field_string
5732 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5733 ui_out_text (uiout, "\nProgram terminated with signal ");
5734 annotate_signal_name ();
5735 ui_out_field_string (uiout, "signal-name",
5736 target_signal_to_name (siggnal));
5737 annotate_signal_name_end ();
5738 ui_out_text (uiout, ", ");
5739 annotate_signal_string ();
5740 ui_out_field_string (uiout, "signal-meaning",
5741 target_signal_to_string (siggnal));
5742 annotate_signal_string_end ();
5743 ui_out_text (uiout, ".\n");
5744 ui_out_text (uiout, "The program no longer exists.\n");
5745 }
5746
5747 /* The inferior program is finished, print why it stopped. */
5748
5749 static void
5750 print_exited_reason (int exitstatus)
5751 {
5752 struct inferior *inf = current_inferior ();
5753 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5754 struct ui_out *uiout = current_uiout;
5755
5756 annotate_exited (exitstatus);
5757 if (exitstatus)
5758 {
5759 if (ui_out_is_mi_like_p (uiout))
5760 ui_out_field_string (uiout, "reason",
5761 async_reason_lookup (EXEC_ASYNC_EXITED));
5762 ui_out_text (uiout, "[Inferior ");
5763 ui_out_text (uiout, plongest (inf->num));
5764 ui_out_text (uiout, " (");
5765 ui_out_text (uiout, pidstr);
5766 ui_out_text (uiout, ") exited with code ");
5767 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5768 ui_out_text (uiout, "]\n");
5769 }
5770 else
5771 {
5772 if (ui_out_is_mi_like_p (uiout))
5773 ui_out_field_string
5774 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5775 ui_out_text (uiout, "[Inferior ");
5776 ui_out_text (uiout, plongest (inf->num));
5777 ui_out_text (uiout, " (");
5778 ui_out_text (uiout, pidstr);
5779 ui_out_text (uiout, ") exited normally]\n");
5780 }
5781 /* Support the --return-child-result option. */
5782 return_child_result_value = exitstatus;
5783 }
5784
5785 /* Signal received, print why the inferior has stopped. The signal table
5786 tells us to print about it. */
5787
5788 static void
5789 print_signal_received_reason (enum target_signal siggnal)
5790 {
5791 struct ui_out *uiout = current_uiout;
5792
5793 annotate_signal ();
5794
5795 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5796 {
5797 struct thread_info *t = inferior_thread ();
5798
5799 ui_out_text (uiout, "\n[");
5800 ui_out_field_string (uiout, "thread-name",
5801 target_pid_to_str (t->ptid));
5802 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5803 ui_out_text (uiout, " stopped");
5804 }
5805 else
5806 {
5807 ui_out_text (uiout, "\nProgram received signal ");
5808 annotate_signal_name ();
5809 if (ui_out_is_mi_like_p (uiout))
5810 ui_out_field_string
5811 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5812 ui_out_field_string (uiout, "signal-name",
5813 target_signal_to_name (siggnal));
5814 annotate_signal_name_end ();
5815 ui_out_text (uiout, ", ");
5816 annotate_signal_string ();
5817 ui_out_field_string (uiout, "signal-meaning",
5818 target_signal_to_string (siggnal));
5819 annotate_signal_string_end ();
5820 }
5821 ui_out_text (uiout, ".\n");
5822 }
5823
5824 /* Reverse execution: target ran out of history info, print why the inferior
5825 has stopped. */
5826
5827 static void
5828 print_no_history_reason (void)
5829 {
5830 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5831 }
5832
5833 /* Here to return control to GDB when the inferior stops for real.
5834 Print appropriate messages, remove breakpoints, give terminal our modes.
5835
5836 STOP_PRINT_FRAME nonzero means print the executing frame
5837 (pc, function, args, file, line number and line text).
5838 BREAKPOINTS_FAILED nonzero means stop was due to error
5839 attempting to insert breakpoints. */
5840
5841 void
5842 normal_stop (void)
5843 {
5844 struct target_waitstatus last;
5845 ptid_t last_ptid;
5846 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5847
5848 get_last_target_status (&last_ptid, &last);
5849
5850 /* If an exception is thrown from this point on, make sure to
5851 propagate GDB's knowledge of the executing state to the
5852 frontend/user running state. A QUIT is an easy exception to see
5853 here, so do this before any filtered output. */
5854 if (!non_stop)
5855 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5856 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5857 && last.kind != TARGET_WAITKIND_EXITED
5858 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5859 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5860
5861 /* In non-stop mode, we don't want GDB to switch threads behind the
5862 user's back, to avoid races where the user is typing a command to
5863 apply to thread x, but GDB switches to thread y before the user
5864 finishes entering the command. */
5865
5866 /* As with the notification of thread events, we want to delay
5867 notifying the user that we've switched thread context until
5868 the inferior actually stops.
5869
5870 There's no point in saying anything if the inferior has exited.
5871 Note that SIGNALLED here means "exited with a signal", not
5872 "received a signal". */
5873 if (!non_stop
5874 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5875 && target_has_execution
5876 && last.kind != TARGET_WAITKIND_SIGNALLED
5877 && last.kind != TARGET_WAITKIND_EXITED
5878 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5879 {
5880 target_terminal_ours_for_output ();
5881 printf_filtered (_("[Switching to %s]\n"),
5882 target_pid_to_str (inferior_ptid));
5883 annotate_thread_changed ();
5884 previous_inferior_ptid = inferior_ptid;
5885 }
5886
5887 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5888 {
5889 gdb_assert (sync_execution || !target_can_async_p ());
5890
5891 target_terminal_ours_for_output ();
5892 printf_filtered (_("No unwaited-for children left.\n"));
5893 }
5894
5895 if (!breakpoints_always_inserted_mode () && target_has_execution)
5896 {
5897 if (remove_breakpoints ())
5898 {
5899 target_terminal_ours_for_output ();
5900 printf_filtered (_("Cannot remove breakpoints because "
5901 "program is no longer writable.\nFurther "
5902 "execution is probably impossible.\n"));
5903 }
5904 }
5905
5906 /* If an auto-display called a function and that got a signal,
5907 delete that auto-display to avoid an infinite recursion. */
5908
5909 if (stopped_by_random_signal)
5910 disable_current_display ();
5911
5912 /* Don't print a message if in the middle of doing a "step n"
5913 operation for n > 1 */
5914 if (target_has_execution
5915 && last.kind != TARGET_WAITKIND_SIGNALLED
5916 && last.kind != TARGET_WAITKIND_EXITED
5917 && inferior_thread ()->step_multi
5918 && inferior_thread ()->control.stop_step)
5919 goto done;
5920
5921 target_terminal_ours ();
5922 async_enable_stdin ();
5923
5924 /* Set the current source location. This will also happen if we
5925 display the frame below, but the current SAL will be incorrect
5926 during a user hook-stop function. */
5927 if (has_stack_frames () && !stop_stack_dummy)
5928 set_current_sal_from_frame (get_current_frame (), 1);
5929
5930 /* Let the user/frontend see the threads as stopped. */
5931 do_cleanups (old_chain);
5932
5933 /* Look up the hook_stop and run it (CLI internally handles problem
5934 of stop_command's pre-hook not existing). */
5935 if (stop_command)
5936 catch_errors (hook_stop_stub, stop_command,
5937 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5938
5939 if (!has_stack_frames ())
5940 goto done;
5941
5942 if (last.kind == TARGET_WAITKIND_SIGNALLED
5943 || last.kind == TARGET_WAITKIND_EXITED)
5944 goto done;
5945
5946 /* Select innermost stack frame - i.e., current frame is frame 0,
5947 and current location is based on that.
5948 Don't do this on return from a stack dummy routine,
5949 or if the program has exited. */
5950
5951 if (!stop_stack_dummy)
5952 {
5953 select_frame (get_current_frame ());
5954
5955 /* Print current location without a level number, if
5956 we have changed functions or hit a breakpoint.
5957 Print source line if we have one.
5958 bpstat_print() contains the logic deciding in detail
5959 what to print, based on the event(s) that just occurred. */
5960
5961 /* If --batch-silent is enabled then there's no need to print the current
5962 source location, and to try risks causing an error message about
5963 missing source files. */
5964 if (stop_print_frame && !batch_silent)
5965 {
5966 int bpstat_ret;
5967 int source_flag;
5968 int do_frame_printing = 1;
5969 struct thread_info *tp = inferior_thread ();
5970
5971 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
5972 switch (bpstat_ret)
5973 {
5974 case PRINT_UNKNOWN:
5975 /* If we had hit a shared library event breakpoint,
5976 bpstat_print would print out this message. If we hit
5977 an OS-level shared library event, do the same
5978 thing. */
5979 if (last.kind == TARGET_WAITKIND_LOADED)
5980 {
5981 printf_filtered (_("Stopped due to shared library event\n"));
5982 source_flag = SRC_LINE; /* something bogus */
5983 do_frame_printing = 0;
5984 break;
5985 }
5986
5987 /* FIXME: cagney/2002-12-01: Given that a frame ID does
5988 (or should) carry around the function and does (or
5989 should) use that when doing a frame comparison. */
5990 if (tp->control.stop_step
5991 && frame_id_eq (tp->control.step_frame_id,
5992 get_frame_id (get_current_frame ()))
5993 && step_start_function == find_pc_function (stop_pc))
5994 source_flag = SRC_LINE; /* Finished step, just
5995 print source line. */
5996 else
5997 source_flag = SRC_AND_LOC; /* Print location and
5998 source line. */
5999 break;
6000 case PRINT_SRC_AND_LOC:
6001 source_flag = SRC_AND_LOC; /* Print location and
6002 source line. */
6003 break;
6004 case PRINT_SRC_ONLY:
6005 source_flag = SRC_LINE;
6006 break;
6007 case PRINT_NOTHING:
6008 source_flag = SRC_LINE; /* something bogus */
6009 do_frame_printing = 0;
6010 break;
6011 default:
6012 internal_error (__FILE__, __LINE__, _("Unknown value."));
6013 }
6014
6015 /* The behavior of this routine with respect to the source
6016 flag is:
6017 SRC_LINE: Print only source line
6018 LOCATION: Print only location
6019 SRC_AND_LOC: Print location and source line. */
6020 if (do_frame_printing)
6021 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
6022
6023 /* Display the auto-display expressions. */
6024 do_displays ();
6025 }
6026 }
6027
6028 /* Save the function value return registers, if we care.
6029 We might be about to restore their previous contents. */
6030 if (inferior_thread ()->control.proceed_to_finish
6031 && execution_direction != EXEC_REVERSE)
6032 {
6033 /* This should not be necessary. */
6034 if (stop_registers)
6035 regcache_xfree (stop_registers);
6036
6037 /* NB: The copy goes through to the target picking up the value of
6038 all the registers. */
6039 stop_registers = regcache_dup (get_current_regcache ());
6040 }
6041
6042 if (stop_stack_dummy == STOP_STACK_DUMMY)
6043 {
6044 /* Pop the empty frame that contains the stack dummy.
6045 This also restores inferior state prior to the call
6046 (struct infcall_suspend_state). */
6047 struct frame_info *frame = get_current_frame ();
6048
6049 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6050 frame_pop (frame);
6051 /* frame_pop() calls reinit_frame_cache as the last thing it
6052 does which means there's currently no selected frame. We
6053 don't need to re-establish a selected frame if the dummy call
6054 returns normally, that will be done by
6055 restore_infcall_control_state. However, we do have to handle
6056 the case where the dummy call is returning after being
6057 stopped (e.g. the dummy call previously hit a breakpoint).
6058 We can't know which case we have so just always re-establish
6059 a selected frame here. */
6060 select_frame (get_current_frame ());
6061 }
6062
6063 done:
6064 annotate_stopped ();
6065
6066 /* Suppress the stop observer if we're in the middle of:
6067
6068 - a step n (n > 1), as there still more steps to be done.
6069
6070 - a "finish" command, as the observer will be called in
6071 finish_command_continuation, so it can include the inferior
6072 function's return value.
6073
6074 - calling an inferior function, as we pretend we inferior didn't
6075 run at all. The return value of the call is handled by the
6076 expression evaluator, through call_function_by_hand. */
6077
6078 if (!target_has_execution
6079 || last.kind == TARGET_WAITKIND_SIGNALLED
6080 || last.kind == TARGET_WAITKIND_EXITED
6081 || last.kind == TARGET_WAITKIND_NO_RESUMED
6082 || (!inferior_thread ()->step_multi
6083 && !(inferior_thread ()->control.stop_bpstat
6084 && inferior_thread ()->control.proceed_to_finish)
6085 && !inferior_thread ()->control.in_infcall))
6086 {
6087 if (!ptid_equal (inferior_ptid, null_ptid))
6088 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6089 stop_print_frame);
6090 else
6091 observer_notify_normal_stop (NULL, stop_print_frame);
6092 }
6093
6094 if (target_has_execution)
6095 {
6096 if (last.kind != TARGET_WAITKIND_SIGNALLED
6097 && last.kind != TARGET_WAITKIND_EXITED)
6098 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6099 Delete any breakpoint that is to be deleted at the next stop. */
6100 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6101 }
6102
6103 /* Try to get rid of automatically added inferiors that are no
6104 longer needed. Keeping those around slows down things linearly.
6105 Note that this never removes the current inferior. */
6106 prune_inferiors ();
6107 }
6108
6109 static int
6110 hook_stop_stub (void *cmd)
6111 {
6112 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6113 return (0);
6114 }
6115 \f
6116 int
6117 signal_stop_state (int signo)
6118 {
6119 return signal_stop[signo];
6120 }
6121
6122 int
6123 signal_print_state (int signo)
6124 {
6125 return signal_print[signo];
6126 }
6127
6128 int
6129 signal_pass_state (int signo)
6130 {
6131 return signal_program[signo];
6132 }
6133
6134 static void
6135 signal_cache_update (int signo)
6136 {
6137 if (signo == -1)
6138 {
6139 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
6140 signal_cache_update (signo);
6141
6142 return;
6143 }
6144
6145 signal_pass[signo] = (signal_stop[signo] == 0
6146 && signal_print[signo] == 0
6147 && signal_program[signo] == 1);
6148 }
6149
6150 int
6151 signal_stop_update (int signo, int state)
6152 {
6153 int ret = signal_stop[signo];
6154
6155 signal_stop[signo] = state;
6156 signal_cache_update (signo);
6157 return ret;
6158 }
6159
6160 int
6161 signal_print_update (int signo, int state)
6162 {
6163 int ret = signal_print[signo];
6164
6165 signal_print[signo] = state;
6166 signal_cache_update (signo);
6167 return ret;
6168 }
6169
6170 int
6171 signal_pass_update (int signo, int state)
6172 {
6173 int ret = signal_program[signo];
6174
6175 signal_program[signo] = state;
6176 signal_cache_update (signo);
6177 return ret;
6178 }
6179
6180 static void
6181 sig_print_header (void)
6182 {
6183 printf_filtered (_("Signal Stop\tPrint\tPass "
6184 "to program\tDescription\n"));
6185 }
6186
6187 static void
6188 sig_print_info (enum target_signal oursig)
6189 {
6190 const char *name = target_signal_to_name (oursig);
6191 int name_padding = 13 - strlen (name);
6192
6193 if (name_padding <= 0)
6194 name_padding = 0;
6195
6196 printf_filtered ("%s", name);
6197 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6198 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6199 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6200 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6201 printf_filtered ("%s\n", target_signal_to_string (oursig));
6202 }
6203
6204 /* Specify how various signals in the inferior should be handled. */
6205
6206 static void
6207 handle_command (char *args, int from_tty)
6208 {
6209 char **argv;
6210 int digits, wordlen;
6211 int sigfirst, signum, siglast;
6212 enum target_signal oursig;
6213 int allsigs;
6214 int nsigs;
6215 unsigned char *sigs;
6216 struct cleanup *old_chain;
6217
6218 if (args == NULL)
6219 {
6220 error_no_arg (_("signal to handle"));
6221 }
6222
6223 /* Allocate and zero an array of flags for which signals to handle. */
6224
6225 nsigs = (int) TARGET_SIGNAL_LAST;
6226 sigs = (unsigned char *) alloca (nsigs);
6227 memset (sigs, 0, nsigs);
6228
6229 /* Break the command line up into args. */
6230
6231 argv = gdb_buildargv (args);
6232 old_chain = make_cleanup_freeargv (argv);
6233
6234 /* Walk through the args, looking for signal oursigs, signal names, and
6235 actions. Signal numbers and signal names may be interspersed with
6236 actions, with the actions being performed for all signals cumulatively
6237 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6238
6239 while (*argv != NULL)
6240 {
6241 wordlen = strlen (*argv);
6242 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6243 {;
6244 }
6245 allsigs = 0;
6246 sigfirst = siglast = -1;
6247
6248 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6249 {
6250 /* Apply action to all signals except those used by the
6251 debugger. Silently skip those. */
6252 allsigs = 1;
6253 sigfirst = 0;
6254 siglast = nsigs - 1;
6255 }
6256 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6257 {
6258 SET_SIGS (nsigs, sigs, signal_stop);
6259 SET_SIGS (nsigs, sigs, signal_print);
6260 }
6261 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6262 {
6263 UNSET_SIGS (nsigs, sigs, signal_program);
6264 }
6265 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6266 {
6267 SET_SIGS (nsigs, sigs, signal_print);
6268 }
6269 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6270 {
6271 SET_SIGS (nsigs, sigs, signal_program);
6272 }
6273 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6274 {
6275 UNSET_SIGS (nsigs, sigs, signal_stop);
6276 }
6277 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6278 {
6279 SET_SIGS (nsigs, sigs, signal_program);
6280 }
6281 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6282 {
6283 UNSET_SIGS (nsigs, sigs, signal_print);
6284 UNSET_SIGS (nsigs, sigs, signal_stop);
6285 }
6286 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6287 {
6288 UNSET_SIGS (nsigs, sigs, signal_program);
6289 }
6290 else if (digits > 0)
6291 {
6292 /* It is numeric. The numeric signal refers to our own
6293 internal signal numbering from target.h, not to host/target
6294 signal number. This is a feature; users really should be
6295 using symbolic names anyway, and the common ones like
6296 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6297
6298 sigfirst = siglast = (int)
6299 target_signal_from_command (atoi (*argv));
6300 if ((*argv)[digits] == '-')
6301 {
6302 siglast = (int)
6303 target_signal_from_command (atoi ((*argv) + digits + 1));
6304 }
6305 if (sigfirst > siglast)
6306 {
6307 /* Bet he didn't figure we'd think of this case... */
6308 signum = sigfirst;
6309 sigfirst = siglast;
6310 siglast = signum;
6311 }
6312 }
6313 else
6314 {
6315 oursig = target_signal_from_name (*argv);
6316 if (oursig != TARGET_SIGNAL_UNKNOWN)
6317 {
6318 sigfirst = siglast = (int) oursig;
6319 }
6320 else
6321 {
6322 /* Not a number and not a recognized flag word => complain. */
6323 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6324 }
6325 }
6326
6327 /* If any signal numbers or symbol names were found, set flags for
6328 which signals to apply actions to. */
6329
6330 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6331 {
6332 switch ((enum target_signal) signum)
6333 {
6334 case TARGET_SIGNAL_TRAP:
6335 case TARGET_SIGNAL_INT:
6336 if (!allsigs && !sigs[signum])
6337 {
6338 if (query (_("%s is used by the debugger.\n\
6339 Are you sure you want to change it? "),
6340 target_signal_to_name ((enum target_signal) signum)))
6341 {
6342 sigs[signum] = 1;
6343 }
6344 else
6345 {
6346 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6347 gdb_flush (gdb_stdout);
6348 }
6349 }
6350 break;
6351 case TARGET_SIGNAL_0:
6352 case TARGET_SIGNAL_DEFAULT:
6353 case TARGET_SIGNAL_UNKNOWN:
6354 /* Make sure that "all" doesn't print these. */
6355 break;
6356 default:
6357 sigs[signum] = 1;
6358 break;
6359 }
6360 }
6361
6362 argv++;
6363 }
6364
6365 for (signum = 0; signum < nsigs; signum++)
6366 if (sigs[signum])
6367 {
6368 signal_cache_update (-1);
6369 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
6370
6371 if (from_tty)
6372 {
6373 /* Show the results. */
6374 sig_print_header ();
6375 for (; signum < nsigs; signum++)
6376 if (sigs[signum])
6377 sig_print_info (signum);
6378 }
6379
6380 break;
6381 }
6382
6383 do_cleanups (old_chain);
6384 }
6385
6386 static void
6387 xdb_handle_command (char *args, int from_tty)
6388 {
6389 char **argv;
6390 struct cleanup *old_chain;
6391
6392 if (args == NULL)
6393 error_no_arg (_("xdb command"));
6394
6395 /* Break the command line up into args. */
6396
6397 argv = gdb_buildargv (args);
6398 old_chain = make_cleanup_freeargv (argv);
6399 if (argv[1] != (char *) NULL)
6400 {
6401 char *argBuf;
6402 int bufLen;
6403
6404 bufLen = strlen (argv[0]) + 20;
6405 argBuf = (char *) xmalloc (bufLen);
6406 if (argBuf)
6407 {
6408 int validFlag = 1;
6409 enum target_signal oursig;
6410
6411 oursig = target_signal_from_name (argv[0]);
6412 memset (argBuf, 0, bufLen);
6413 if (strcmp (argv[1], "Q") == 0)
6414 sprintf (argBuf, "%s %s", argv[0], "noprint");
6415 else
6416 {
6417 if (strcmp (argv[1], "s") == 0)
6418 {
6419 if (!signal_stop[oursig])
6420 sprintf (argBuf, "%s %s", argv[0], "stop");
6421 else
6422 sprintf (argBuf, "%s %s", argv[0], "nostop");
6423 }
6424 else if (strcmp (argv[1], "i") == 0)
6425 {
6426 if (!signal_program[oursig])
6427 sprintf (argBuf, "%s %s", argv[0], "pass");
6428 else
6429 sprintf (argBuf, "%s %s", argv[0], "nopass");
6430 }
6431 else if (strcmp (argv[1], "r") == 0)
6432 {
6433 if (!signal_print[oursig])
6434 sprintf (argBuf, "%s %s", argv[0], "print");
6435 else
6436 sprintf (argBuf, "%s %s", argv[0], "noprint");
6437 }
6438 else
6439 validFlag = 0;
6440 }
6441 if (validFlag)
6442 handle_command (argBuf, from_tty);
6443 else
6444 printf_filtered (_("Invalid signal handling flag.\n"));
6445 if (argBuf)
6446 xfree (argBuf);
6447 }
6448 }
6449 do_cleanups (old_chain);
6450 }
6451
6452 /* Print current contents of the tables set by the handle command.
6453 It is possible we should just be printing signals actually used
6454 by the current target (but for things to work right when switching
6455 targets, all signals should be in the signal tables). */
6456
6457 static void
6458 signals_info (char *signum_exp, int from_tty)
6459 {
6460 enum target_signal oursig;
6461
6462 sig_print_header ();
6463
6464 if (signum_exp)
6465 {
6466 /* First see if this is a symbol name. */
6467 oursig = target_signal_from_name (signum_exp);
6468 if (oursig == TARGET_SIGNAL_UNKNOWN)
6469 {
6470 /* No, try numeric. */
6471 oursig =
6472 target_signal_from_command (parse_and_eval_long (signum_exp));
6473 }
6474 sig_print_info (oursig);
6475 return;
6476 }
6477
6478 printf_filtered ("\n");
6479 /* These ugly casts brought to you by the native VAX compiler. */
6480 for (oursig = TARGET_SIGNAL_FIRST;
6481 (int) oursig < (int) TARGET_SIGNAL_LAST;
6482 oursig = (enum target_signal) ((int) oursig + 1))
6483 {
6484 QUIT;
6485
6486 if (oursig != TARGET_SIGNAL_UNKNOWN
6487 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
6488 sig_print_info (oursig);
6489 }
6490
6491 printf_filtered (_("\nUse the \"handle\" command "
6492 "to change these tables.\n"));
6493 }
6494
6495 /* Check if it makes sense to read $_siginfo from the current thread
6496 at this point. If not, throw an error. */
6497
6498 static void
6499 validate_siginfo_access (void)
6500 {
6501 /* No current inferior, no siginfo. */
6502 if (ptid_equal (inferior_ptid, null_ptid))
6503 error (_("No thread selected."));
6504
6505 /* Don't try to read from a dead thread. */
6506 if (is_exited (inferior_ptid))
6507 error (_("The current thread has terminated"));
6508
6509 /* ... or from a spinning thread. */
6510 if (is_running (inferior_ptid))
6511 error (_("Selected thread is running."));
6512 }
6513
6514 /* The $_siginfo convenience variable is a bit special. We don't know
6515 for sure the type of the value until we actually have a chance to
6516 fetch the data. The type can change depending on gdbarch, so it is
6517 also dependent on which thread you have selected.
6518
6519 1. making $_siginfo be an internalvar that creates a new value on
6520 access.
6521
6522 2. making the value of $_siginfo be an lval_computed value. */
6523
6524 /* This function implements the lval_computed support for reading a
6525 $_siginfo value. */
6526
6527 static void
6528 siginfo_value_read (struct value *v)
6529 {
6530 LONGEST transferred;
6531
6532 validate_siginfo_access ();
6533
6534 transferred =
6535 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6536 NULL,
6537 value_contents_all_raw (v),
6538 value_offset (v),
6539 TYPE_LENGTH (value_type (v)));
6540
6541 if (transferred != TYPE_LENGTH (value_type (v)))
6542 error (_("Unable to read siginfo"));
6543 }
6544
6545 /* This function implements the lval_computed support for writing a
6546 $_siginfo value. */
6547
6548 static void
6549 siginfo_value_write (struct value *v, struct value *fromval)
6550 {
6551 LONGEST transferred;
6552
6553 validate_siginfo_access ();
6554
6555 transferred = target_write (&current_target,
6556 TARGET_OBJECT_SIGNAL_INFO,
6557 NULL,
6558 value_contents_all_raw (fromval),
6559 value_offset (v),
6560 TYPE_LENGTH (value_type (fromval)));
6561
6562 if (transferred != TYPE_LENGTH (value_type (fromval)))
6563 error (_("Unable to write siginfo"));
6564 }
6565
6566 static const struct lval_funcs siginfo_value_funcs =
6567 {
6568 siginfo_value_read,
6569 siginfo_value_write
6570 };
6571
6572 /* Return a new value with the correct type for the siginfo object of
6573 the current thread using architecture GDBARCH. Return a void value
6574 if there's no object available. */
6575
6576 static struct value *
6577 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
6578 {
6579 if (target_has_stack
6580 && !ptid_equal (inferior_ptid, null_ptid)
6581 && gdbarch_get_siginfo_type_p (gdbarch))
6582 {
6583 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6584
6585 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6586 }
6587
6588 return allocate_value (builtin_type (gdbarch)->builtin_void);
6589 }
6590
6591 \f
6592 /* infcall_suspend_state contains state about the program itself like its
6593 registers and any signal it received when it last stopped.
6594 This state must be restored regardless of how the inferior function call
6595 ends (either successfully, or after it hits a breakpoint or signal)
6596 if the program is to properly continue where it left off. */
6597
6598 struct infcall_suspend_state
6599 {
6600 struct thread_suspend_state thread_suspend;
6601 struct inferior_suspend_state inferior_suspend;
6602
6603 /* Other fields: */
6604 CORE_ADDR stop_pc;
6605 struct regcache *registers;
6606
6607 /* Format of SIGINFO_DATA or NULL if it is not present. */
6608 struct gdbarch *siginfo_gdbarch;
6609
6610 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6611 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6612 content would be invalid. */
6613 gdb_byte *siginfo_data;
6614 };
6615
6616 struct infcall_suspend_state *
6617 save_infcall_suspend_state (void)
6618 {
6619 struct infcall_suspend_state *inf_state;
6620 struct thread_info *tp = inferior_thread ();
6621 struct inferior *inf = current_inferior ();
6622 struct regcache *regcache = get_current_regcache ();
6623 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6624 gdb_byte *siginfo_data = NULL;
6625
6626 if (gdbarch_get_siginfo_type_p (gdbarch))
6627 {
6628 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6629 size_t len = TYPE_LENGTH (type);
6630 struct cleanup *back_to;
6631
6632 siginfo_data = xmalloc (len);
6633 back_to = make_cleanup (xfree, siginfo_data);
6634
6635 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6636 siginfo_data, 0, len) == len)
6637 discard_cleanups (back_to);
6638 else
6639 {
6640 /* Errors ignored. */
6641 do_cleanups (back_to);
6642 siginfo_data = NULL;
6643 }
6644 }
6645
6646 inf_state = XZALLOC (struct infcall_suspend_state);
6647
6648 if (siginfo_data)
6649 {
6650 inf_state->siginfo_gdbarch = gdbarch;
6651 inf_state->siginfo_data = siginfo_data;
6652 }
6653
6654 inf_state->thread_suspend = tp->suspend;
6655 inf_state->inferior_suspend = inf->suspend;
6656
6657 /* run_inferior_call will not use the signal due to its `proceed' call with
6658 TARGET_SIGNAL_0 anyway. */
6659 tp->suspend.stop_signal = TARGET_SIGNAL_0;
6660
6661 inf_state->stop_pc = stop_pc;
6662
6663 inf_state->registers = regcache_dup (regcache);
6664
6665 return inf_state;
6666 }
6667
6668 /* Restore inferior session state to INF_STATE. */
6669
6670 void
6671 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6672 {
6673 struct thread_info *tp = inferior_thread ();
6674 struct inferior *inf = current_inferior ();
6675 struct regcache *regcache = get_current_regcache ();
6676 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6677
6678 tp->suspend = inf_state->thread_suspend;
6679 inf->suspend = inf_state->inferior_suspend;
6680
6681 stop_pc = inf_state->stop_pc;
6682
6683 if (inf_state->siginfo_gdbarch == gdbarch)
6684 {
6685 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6686 size_t len = TYPE_LENGTH (type);
6687
6688 /* Errors ignored. */
6689 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6690 inf_state->siginfo_data, 0, len);
6691 }
6692
6693 /* The inferior can be gone if the user types "print exit(0)"
6694 (and perhaps other times). */
6695 if (target_has_execution)
6696 /* NB: The register write goes through to the target. */
6697 regcache_cpy (regcache, inf_state->registers);
6698
6699 discard_infcall_suspend_state (inf_state);
6700 }
6701
6702 static void
6703 do_restore_infcall_suspend_state_cleanup (void *state)
6704 {
6705 restore_infcall_suspend_state (state);
6706 }
6707
6708 struct cleanup *
6709 make_cleanup_restore_infcall_suspend_state
6710 (struct infcall_suspend_state *inf_state)
6711 {
6712 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6713 }
6714
6715 void
6716 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6717 {
6718 regcache_xfree (inf_state->registers);
6719 xfree (inf_state->siginfo_data);
6720 xfree (inf_state);
6721 }
6722
6723 struct regcache *
6724 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6725 {
6726 return inf_state->registers;
6727 }
6728
6729 /* infcall_control_state contains state regarding gdb's control of the
6730 inferior itself like stepping control. It also contains session state like
6731 the user's currently selected frame. */
6732
6733 struct infcall_control_state
6734 {
6735 struct thread_control_state thread_control;
6736 struct inferior_control_state inferior_control;
6737
6738 /* Other fields: */
6739 enum stop_stack_kind stop_stack_dummy;
6740 int stopped_by_random_signal;
6741 int stop_after_trap;
6742
6743 /* ID if the selected frame when the inferior function call was made. */
6744 struct frame_id selected_frame_id;
6745 };
6746
6747 /* Save all of the information associated with the inferior<==>gdb
6748 connection. */
6749
6750 struct infcall_control_state *
6751 save_infcall_control_state (void)
6752 {
6753 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6754 struct thread_info *tp = inferior_thread ();
6755 struct inferior *inf = current_inferior ();
6756
6757 inf_status->thread_control = tp->control;
6758 inf_status->inferior_control = inf->control;
6759
6760 tp->control.step_resume_breakpoint = NULL;
6761 tp->control.exception_resume_breakpoint = NULL;
6762
6763 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6764 chain. If caller's caller is walking the chain, they'll be happier if we
6765 hand them back the original chain when restore_infcall_control_state is
6766 called. */
6767 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6768
6769 /* Other fields: */
6770 inf_status->stop_stack_dummy = stop_stack_dummy;
6771 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6772 inf_status->stop_after_trap = stop_after_trap;
6773
6774 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6775
6776 return inf_status;
6777 }
6778
6779 static int
6780 restore_selected_frame (void *args)
6781 {
6782 struct frame_id *fid = (struct frame_id *) args;
6783 struct frame_info *frame;
6784
6785 frame = frame_find_by_id (*fid);
6786
6787 /* If inf_status->selected_frame_id is NULL, there was no previously
6788 selected frame. */
6789 if (frame == NULL)
6790 {
6791 warning (_("Unable to restore previously selected frame."));
6792 return 0;
6793 }
6794
6795 select_frame (frame);
6796
6797 return (1);
6798 }
6799
6800 /* Restore inferior session state to INF_STATUS. */
6801
6802 void
6803 restore_infcall_control_state (struct infcall_control_state *inf_status)
6804 {
6805 struct thread_info *tp = inferior_thread ();
6806 struct inferior *inf = current_inferior ();
6807
6808 if (tp->control.step_resume_breakpoint)
6809 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6810
6811 if (tp->control.exception_resume_breakpoint)
6812 tp->control.exception_resume_breakpoint->disposition
6813 = disp_del_at_next_stop;
6814
6815 /* Handle the bpstat_copy of the chain. */
6816 bpstat_clear (&tp->control.stop_bpstat);
6817
6818 tp->control = inf_status->thread_control;
6819 inf->control = inf_status->inferior_control;
6820
6821 /* Other fields: */
6822 stop_stack_dummy = inf_status->stop_stack_dummy;
6823 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6824 stop_after_trap = inf_status->stop_after_trap;
6825
6826 if (target_has_stack)
6827 {
6828 /* The point of catch_errors is that if the stack is clobbered,
6829 walking the stack might encounter a garbage pointer and
6830 error() trying to dereference it. */
6831 if (catch_errors
6832 (restore_selected_frame, &inf_status->selected_frame_id,
6833 "Unable to restore previously selected frame:\n",
6834 RETURN_MASK_ERROR) == 0)
6835 /* Error in restoring the selected frame. Select the innermost
6836 frame. */
6837 select_frame (get_current_frame ());
6838 }
6839
6840 xfree (inf_status);
6841 }
6842
6843 static void
6844 do_restore_infcall_control_state_cleanup (void *sts)
6845 {
6846 restore_infcall_control_state (sts);
6847 }
6848
6849 struct cleanup *
6850 make_cleanup_restore_infcall_control_state
6851 (struct infcall_control_state *inf_status)
6852 {
6853 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6854 }
6855
6856 void
6857 discard_infcall_control_state (struct infcall_control_state *inf_status)
6858 {
6859 if (inf_status->thread_control.step_resume_breakpoint)
6860 inf_status->thread_control.step_resume_breakpoint->disposition
6861 = disp_del_at_next_stop;
6862
6863 if (inf_status->thread_control.exception_resume_breakpoint)
6864 inf_status->thread_control.exception_resume_breakpoint->disposition
6865 = disp_del_at_next_stop;
6866
6867 /* See save_infcall_control_state for info on stop_bpstat. */
6868 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6869
6870 xfree (inf_status);
6871 }
6872 \f
6873 int
6874 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
6875 {
6876 struct target_waitstatus last;
6877 ptid_t last_ptid;
6878
6879 get_last_target_status (&last_ptid, &last);
6880
6881 if (last.kind != TARGET_WAITKIND_FORKED)
6882 return 0;
6883
6884 if (!ptid_equal (last_ptid, pid))
6885 return 0;
6886
6887 *child_pid = last.value.related_pid;
6888 return 1;
6889 }
6890
6891 int
6892 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
6893 {
6894 struct target_waitstatus last;
6895 ptid_t last_ptid;
6896
6897 get_last_target_status (&last_ptid, &last);
6898
6899 if (last.kind != TARGET_WAITKIND_VFORKED)
6900 return 0;
6901
6902 if (!ptid_equal (last_ptid, pid))
6903 return 0;
6904
6905 *child_pid = last.value.related_pid;
6906 return 1;
6907 }
6908
6909 int
6910 inferior_has_execd (ptid_t pid, char **execd_pathname)
6911 {
6912 struct target_waitstatus last;
6913 ptid_t last_ptid;
6914
6915 get_last_target_status (&last_ptid, &last);
6916
6917 if (last.kind != TARGET_WAITKIND_EXECD)
6918 return 0;
6919
6920 if (!ptid_equal (last_ptid, pid))
6921 return 0;
6922
6923 *execd_pathname = xstrdup (last.value.execd_pathname);
6924 return 1;
6925 }
6926
6927 int
6928 inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6929 {
6930 struct target_waitstatus last;
6931 ptid_t last_ptid;
6932
6933 get_last_target_status (&last_ptid, &last);
6934
6935 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6936 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6937 return 0;
6938
6939 if (!ptid_equal (last_ptid, pid))
6940 return 0;
6941
6942 *syscall_number = last.value.syscall_number;
6943 return 1;
6944 }
6945
6946 int
6947 ptid_match (ptid_t ptid, ptid_t filter)
6948 {
6949 if (ptid_equal (filter, minus_one_ptid))
6950 return 1;
6951 if (ptid_is_pid (filter)
6952 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6953 return 1;
6954 else if (ptid_equal (ptid, filter))
6955 return 1;
6956
6957 return 0;
6958 }
6959
6960 /* restore_inferior_ptid() will be used by the cleanup machinery
6961 to restore the inferior_ptid value saved in a call to
6962 save_inferior_ptid(). */
6963
6964 static void
6965 restore_inferior_ptid (void *arg)
6966 {
6967 ptid_t *saved_ptid_ptr = arg;
6968
6969 inferior_ptid = *saved_ptid_ptr;
6970 xfree (arg);
6971 }
6972
6973 /* Save the value of inferior_ptid so that it may be restored by a
6974 later call to do_cleanups(). Returns the struct cleanup pointer
6975 needed for later doing the cleanup. */
6976
6977 struct cleanup *
6978 save_inferior_ptid (void)
6979 {
6980 ptid_t *saved_ptid_ptr;
6981
6982 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6983 *saved_ptid_ptr = inferior_ptid;
6984 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6985 }
6986 \f
6987
6988 /* User interface for reverse debugging:
6989 Set exec-direction / show exec-direction commands
6990 (returns error unless target implements to_set_exec_direction method). */
6991
6992 int execution_direction = EXEC_FORWARD;
6993 static const char exec_forward[] = "forward";
6994 static const char exec_reverse[] = "reverse";
6995 static const char *exec_direction = exec_forward;
6996 static const char *exec_direction_names[] = {
6997 exec_forward,
6998 exec_reverse,
6999 NULL
7000 };
7001
7002 static void
7003 set_exec_direction_func (char *args, int from_tty,
7004 struct cmd_list_element *cmd)
7005 {
7006 if (target_can_execute_reverse)
7007 {
7008 if (!strcmp (exec_direction, exec_forward))
7009 execution_direction = EXEC_FORWARD;
7010 else if (!strcmp (exec_direction, exec_reverse))
7011 execution_direction = EXEC_REVERSE;
7012 }
7013 else
7014 {
7015 exec_direction = exec_forward;
7016 error (_("Target does not support this operation."));
7017 }
7018 }
7019
7020 static void
7021 show_exec_direction_func (struct ui_file *out, int from_tty,
7022 struct cmd_list_element *cmd, const char *value)
7023 {
7024 switch (execution_direction) {
7025 case EXEC_FORWARD:
7026 fprintf_filtered (out, _("Forward.\n"));
7027 break;
7028 case EXEC_REVERSE:
7029 fprintf_filtered (out, _("Reverse.\n"));
7030 break;
7031 default:
7032 internal_error (__FILE__, __LINE__,
7033 _("bogus execution_direction value: %d"),
7034 (int) execution_direction);
7035 }
7036 }
7037
7038 /* User interface for non-stop mode. */
7039
7040 int non_stop = 0;
7041
7042 static void
7043 set_non_stop (char *args, int from_tty,
7044 struct cmd_list_element *c)
7045 {
7046 if (target_has_execution)
7047 {
7048 non_stop_1 = non_stop;
7049 error (_("Cannot change this setting while the inferior is running."));
7050 }
7051
7052 non_stop = non_stop_1;
7053 }
7054
7055 static void
7056 show_non_stop (struct ui_file *file, int from_tty,
7057 struct cmd_list_element *c, const char *value)
7058 {
7059 fprintf_filtered (file,
7060 _("Controlling the inferior in non-stop mode is %s.\n"),
7061 value);
7062 }
7063
7064 static void
7065 show_schedule_multiple (struct ui_file *file, int from_tty,
7066 struct cmd_list_element *c, const char *value)
7067 {
7068 fprintf_filtered (file, _("Resuming the execution of threads "
7069 "of all processes is %s.\n"), value);
7070 }
7071
7072 void
7073 _initialize_infrun (void)
7074 {
7075 int i;
7076 int numsigs;
7077
7078 add_info ("signals", signals_info, _("\
7079 What debugger does when program gets various signals.\n\
7080 Specify a signal as argument to print info on that signal only."));
7081 add_info_alias ("handle", "signals", 0);
7082
7083 add_com ("handle", class_run, handle_command, _("\
7084 Specify how to handle a signal.\n\
7085 Args are signals and actions to apply to those signals.\n\
7086 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7087 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7088 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7089 The special arg \"all\" is recognized to mean all signals except those\n\
7090 used by the debugger, typically SIGTRAP and SIGINT.\n\
7091 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7092 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7093 Stop means reenter debugger if this signal happens (implies print).\n\
7094 Print means print a message if this signal happens.\n\
7095 Pass means let program see this signal; otherwise program doesn't know.\n\
7096 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7097 Pass and Stop may be combined."));
7098 if (xdb_commands)
7099 {
7100 add_com ("lz", class_info, signals_info, _("\
7101 What debugger does when program gets various signals.\n\
7102 Specify a signal as argument to print info on that signal only."));
7103 add_com ("z", class_run, xdb_handle_command, _("\
7104 Specify how to handle a signal.\n\
7105 Args are signals and actions to apply to those signals.\n\
7106 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7107 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7108 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7109 The special arg \"all\" is recognized to mean all signals except those\n\
7110 used by the debugger, typically SIGTRAP and SIGINT.\n\
7111 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7112 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7113 nopass), \"Q\" (noprint)\n\
7114 Stop means reenter debugger if this signal happens (implies print).\n\
7115 Print means print a message if this signal happens.\n\
7116 Pass means let program see this signal; otherwise program doesn't know.\n\
7117 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7118 Pass and Stop may be combined."));
7119 }
7120
7121 if (!dbx_commands)
7122 stop_command = add_cmd ("stop", class_obscure,
7123 not_just_help_class_command, _("\
7124 There is no `stop' command, but you can set a hook on `stop'.\n\
7125 This allows you to set a list of commands to be run each time execution\n\
7126 of the program stops."), &cmdlist);
7127
7128 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7129 Set inferior debugging."), _("\
7130 Show inferior debugging."), _("\
7131 When non-zero, inferior specific debugging is enabled."),
7132 NULL,
7133 show_debug_infrun,
7134 &setdebuglist, &showdebuglist);
7135
7136 add_setshow_boolean_cmd ("displaced", class_maintenance,
7137 &debug_displaced, _("\
7138 Set displaced stepping debugging."), _("\
7139 Show displaced stepping debugging."), _("\
7140 When non-zero, displaced stepping specific debugging is enabled."),
7141 NULL,
7142 show_debug_displaced,
7143 &setdebuglist, &showdebuglist);
7144
7145 add_setshow_boolean_cmd ("non-stop", no_class,
7146 &non_stop_1, _("\
7147 Set whether gdb controls the inferior in non-stop mode."), _("\
7148 Show whether gdb controls the inferior in non-stop mode."), _("\
7149 When debugging a multi-threaded program and this setting is\n\
7150 off (the default, also called all-stop mode), when one thread stops\n\
7151 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7152 all other threads in the program while you interact with the thread of\n\
7153 interest. When you continue or step a thread, you can allow the other\n\
7154 threads to run, or have them remain stopped, but while you inspect any\n\
7155 thread's state, all threads stop.\n\
7156 \n\
7157 In non-stop mode, when one thread stops, other threads can continue\n\
7158 to run freely. You'll be able to step each thread independently,\n\
7159 leave it stopped or free to run as needed."),
7160 set_non_stop,
7161 show_non_stop,
7162 &setlist,
7163 &showlist);
7164
7165 numsigs = (int) TARGET_SIGNAL_LAST;
7166 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7167 signal_print = (unsigned char *)
7168 xmalloc (sizeof (signal_print[0]) * numsigs);
7169 signal_program = (unsigned char *)
7170 xmalloc (sizeof (signal_program[0]) * numsigs);
7171 signal_pass = (unsigned char *)
7172 xmalloc (sizeof (signal_program[0]) * numsigs);
7173 for (i = 0; i < numsigs; i++)
7174 {
7175 signal_stop[i] = 1;
7176 signal_print[i] = 1;
7177 signal_program[i] = 1;
7178 }
7179
7180 /* Signals caused by debugger's own actions
7181 should not be given to the program afterwards. */
7182 signal_program[TARGET_SIGNAL_TRAP] = 0;
7183 signal_program[TARGET_SIGNAL_INT] = 0;
7184
7185 /* Signals that are not errors should not normally enter the debugger. */
7186 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7187 signal_print[TARGET_SIGNAL_ALRM] = 0;
7188 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7189 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7190 signal_stop[TARGET_SIGNAL_PROF] = 0;
7191 signal_print[TARGET_SIGNAL_PROF] = 0;
7192 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7193 signal_print[TARGET_SIGNAL_CHLD] = 0;
7194 signal_stop[TARGET_SIGNAL_IO] = 0;
7195 signal_print[TARGET_SIGNAL_IO] = 0;
7196 signal_stop[TARGET_SIGNAL_POLL] = 0;
7197 signal_print[TARGET_SIGNAL_POLL] = 0;
7198 signal_stop[TARGET_SIGNAL_URG] = 0;
7199 signal_print[TARGET_SIGNAL_URG] = 0;
7200 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7201 signal_print[TARGET_SIGNAL_WINCH] = 0;
7202 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7203 signal_print[TARGET_SIGNAL_PRIO] = 0;
7204
7205 /* These signals are used internally by user-level thread
7206 implementations. (See signal(5) on Solaris.) Like the above
7207 signals, a healthy program receives and handles them as part of
7208 its normal operation. */
7209 signal_stop[TARGET_SIGNAL_LWP] = 0;
7210 signal_print[TARGET_SIGNAL_LWP] = 0;
7211 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7212 signal_print[TARGET_SIGNAL_WAITING] = 0;
7213 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7214 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7215
7216 /* Update cached state. */
7217 signal_cache_update (-1);
7218
7219 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7220 &stop_on_solib_events, _("\
7221 Set stopping for shared library events."), _("\
7222 Show stopping for shared library events."), _("\
7223 If nonzero, gdb will give control to the user when the dynamic linker\n\
7224 notifies gdb of shared library events. The most common event of interest\n\
7225 to the user would be loading/unloading of a new library."),
7226 NULL,
7227 show_stop_on_solib_events,
7228 &setlist, &showlist);
7229
7230 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7231 follow_fork_mode_kind_names,
7232 &follow_fork_mode_string, _("\
7233 Set debugger response to a program call of fork or vfork."), _("\
7234 Show debugger response to a program call of fork or vfork."), _("\
7235 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7236 parent - the original process is debugged after a fork\n\
7237 child - the new process is debugged after a fork\n\
7238 The unfollowed process will continue to run.\n\
7239 By default, the debugger will follow the parent process."),
7240 NULL,
7241 show_follow_fork_mode_string,
7242 &setlist, &showlist);
7243
7244 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7245 follow_exec_mode_names,
7246 &follow_exec_mode_string, _("\
7247 Set debugger response to a program call of exec."), _("\
7248 Show debugger response to a program call of exec."), _("\
7249 An exec call replaces the program image of a process.\n\
7250 \n\
7251 follow-exec-mode can be:\n\
7252 \n\
7253 new - the debugger creates a new inferior and rebinds the process\n\
7254 to this new inferior. The program the process was running before\n\
7255 the exec call can be restarted afterwards by restarting the original\n\
7256 inferior.\n\
7257 \n\
7258 same - the debugger keeps the process bound to the same inferior.\n\
7259 The new executable image replaces the previous executable loaded in\n\
7260 the inferior. Restarting the inferior after the exec call restarts\n\
7261 the executable the process was running after the exec call.\n\
7262 \n\
7263 By default, the debugger will use the same inferior."),
7264 NULL,
7265 show_follow_exec_mode_string,
7266 &setlist, &showlist);
7267
7268 add_setshow_enum_cmd ("scheduler-locking", class_run,
7269 scheduler_enums, &scheduler_mode, _("\
7270 Set mode for locking scheduler during execution."), _("\
7271 Show mode for locking scheduler during execution."), _("\
7272 off == no locking (threads may preempt at any time)\n\
7273 on == full locking (no thread except the current thread may run)\n\
7274 step == scheduler locked during every single-step operation.\n\
7275 In this mode, no other thread may run during a step command.\n\
7276 Other threads may run while stepping over a function call ('next')."),
7277 set_schedlock_func, /* traps on target vector */
7278 show_scheduler_mode,
7279 &setlist, &showlist);
7280
7281 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7282 Set mode for resuming threads of all processes."), _("\
7283 Show mode for resuming threads of all processes."), _("\
7284 When on, execution commands (such as 'continue' or 'next') resume all\n\
7285 threads of all processes. When off (which is the default), execution\n\
7286 commands only resume the threads of the current process. The set of\n\
7287 threads that are resumed is further refined by the scheduler-locking\n\
7288 mode (see help set scheduler-locking)."),
7289 NULL,
7290 show_schedule_multiple,
7291 &setlist, &showlist);
7292
7293 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7294 Set mode of the step operation."), _("\
7295 Show mode of the step operation."), _("\
7296 When set, doing a step over a function without debug line information\n\
7297 will stop at the first instruction of that function. Otherwise, the\n\
7298 function is skipped and the step command stops at a different source line."),
7299 NULL,
7300 show_step_stop_if_no_debug,
7301 &setlist, &showlist);
7302
7303 add_setshow_enum_cmd ("displaced-stepping", class_run,
7304 can_use_displaced_stepping_enum,
7305 &can_use_displaced_stepping, _("\
7306 Set debugger's willingness to use displaced stepping."), _("\
7307 Show debugger's willingness to use displaced stepping."), _("\
7308 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7309 supported by the target architecture. If off, gdb will not use displaced\n\
7310 stepping to step over breakpoints, even if such is supported by the target\n\
7311 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7312 if the target architecture supports it and non-stop mode is active, but will not\n\
7313 use it in all-stop mode (see help set non-stop)."),
7314 NULL,
7315 show_can_use_displaced_stepping,
7316 &setlist, &showlist);
7317
7318 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7319 &exec_direction, _("Set direction of execution.\n\
7320 Options are 'forward' or 'reverse'."),
7321 _("Show direction of execution (forward/reverse)."),
7322 _("Tells gdb whether to execute forward or backward."),
7323 set_exec_direction_func, show_exec_direction_func,
7324 &setlist, &showlist);
7325
7326 /* Set/show detach-on-fork: user-settable mode. */
7327
7328 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7329 Set whether gdb will detach the child of a fork."), _("\
7330 Show whether gdb will detach the child of a fork."), _("\
7331 Tells gdb whether to detach the child of a fork."),
7332 NULL, NULL, &setlist, &showlist);
7333
7334 /* Set/show disable address space randomization mode. */
7335
7336 add_setshow_boolean_cmd ("disable-randomization", class_support,
7337 &disable_randomization, _("\
7338 Set disabling of debuggee's virtual address space randomization."), _("\
7339 Show disabling of debuggee's virtual address space randomization."), _("\
7340 When this mode is on (which is the default), randomization of the virtual\n\
7341 address space is disabled. Standalone programs run with the randomization\n\
7342 enabled by default on some platforms."),
7343 &set_disable_randomization,
7344 &show_disable_randomization,
7345 &setlist, &showlist);
7346
7347 /* ptid initializations */
7348 inferior_ptid = null_ptid;
7349 target_last_wait_ptid = minus_one_ptid;
7350
7351 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7352 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7353 observer_attach_thread_exit (infrun_thread_thread_exit);
7354 observer_attach_inferior_exit (infrun_inferior_exit);
7355
7356 /* Explicitly create without lookup, since that tries to create a
7357 value with a void typed value, and when we get here, gdbarch
7358 isn't initialized yet. At this point, we're quite sure there
7359 isn't another convenience variable of the same name. */
7360 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
7361
7362 add_setshow_boolean_cmd ("observer", no_class,
7363 &observer_mode_1, _("\
7364 Set whether gdb controls the inferior in observer mode."), _("\
7365 Show whether gdb controls the inferior in observer mode."), _("\
7366 In observer mode, GDB can get data from the inferior, but not\n\
7367 affect its execution. Registers and memory may not be changed,\n\
7368 breakpoints may not be set, and the program cannot be interrupted\n\
7369 or signalled."),
7370 set_observer_mode,
7371 show_observer_mode,
7372 &setlist,
7373 &showlist);
7374 }