2011-09-14 Pedro Alves <pedro@codesourcery.com>
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "dictionary.h"
49 #include "block.h"
50 #include "gdb_assert.h"
51 #include "mi/mi-common.h"
52 #include "event-top.h"
53 #include "record.h"
54 #include "inline-frame.h"
55 #include "jit.h"
56 #include "tracepoint.h"
57 #include "continuations.h"
58 #include "interps.h"
59
60 /* Prototypes for local functions */
61
62 static void signals_info (char *, int);
63
64 static void handle_command (char *, int);
65
66 static void sig_print_info (enum target_signal);
67
68 static void sig_print_header (void);
69
70 static void resume_cleanups (void *);
71
72 static int hook_stop_stub (void *);
73
74 static int restore_selected_frame (void *);
75
76 static int follow_fork (void);
77
78 static void set_schedlock_func (char *args, int from_tty,
79 struct cmd_list_element *c);
80
81 static int currently_stepping (struct thread_info *tp);
82
83 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
84 void *data);
85
86 static void xdb_handle_command (char *args, int from_tty);
87
88 static int prepare_to_proceed (int);
89
90 static void print_exited_reason (int exitstatus);
91
92 static void print_signal_exited_reason (enum target_signal siggnal);
93
94 static void print_no_history_reason (void);
95
96 static void print_signal_received_reason (enum target_signal siggnal);
97
98 static void print_end_stepping_range_reason (void);
99
100 void _initialize_infrun (void);
101
102 void nullify_last_target_wait_ptid (void);
103
104 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
105
106 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
107
108 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
109
110 /* When set, stop the 'step' command if we enter a function which has
111 no line number information. The normal behavior is that we step
112 over such function. */
113 int step_stop_if_no_debug = 0;
114 static void
115 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
116 struct cmd_list_element *c, const char *value)
117 {
118 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
119 }
120
121 /* In asynchronous mode, but simulating synchronous execution. */
122
123 int sync_execution = 0;
124
125 /* wait_for_inferior and normal_stop use this to notify the user
126 when the inferior stopped in a different thread than it had been
127 running in. */
128
129 static ptid_t previous_inferior_ptid;
130
131 /* Default behavior is to detach newly forked processes (legacy). */
132 int detach_fork = 1;
133
134 int debug_displaced = 0;
135 static void
136 show_debug_displaced (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138 {
139 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
140 }
141
142 int debug_infrun = 0;
143 static void
144 show_debug_infrun (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
148 }
149
150 /* If the program uses ELF-style shared libraries, then calls to
151 functions in shared libraries go through stubs, which live in a
152 table called the PLT (Procedure Linkage Table). The first time the
153 function is called, the stub sends control to the dynamic linker,
154 which looks up the function's real address, patches the stub so
155 that future calls will go directly to the function, and then passes
156 control to the function.
157
158 If we are stepping at the source level, we don't want to see any of
159 this --- we just want to skip over the stub and the dynamic linker.
160 The simple approach is to single-step until control leaves the
161 dynamic linker.
162
163 However, on some systems (e.g., Red Hat's 5.2 distribution) the
164 dynamic linker calls functions in the shared C library, so you
165 can't tell from the PC alone whether the dynamic linker is still
166 running. In this case, we use a step-resume breakpoint to get us
167 past the dynamic linker, as if we were using "next" to step over a
168 function call.
169
170 in_solib_dynsym_resolve_code() says whether we're in the dynamic
171 linker code or not. Normally, this means we single-step. However,
172 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
173 address where we can place a step-resume breakpoint to get past the
174 linker's symbol resolution function.
175
176 in_solib_dynsym_resolve_code() can generally be implemented in a
177 pretty portable way, by comparing the PC against the address ranges
178 of the dynamic linker's sections.
179
180 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
181 it depends on internal details of the dynamic linker. It's usually
182 not too hard to figure out where to put a breakpoint, but it
183 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
184 sanity checking. If it can't figure things out, returning zero and
185 getting the (possibly confusing) stepping behavior is better than
186 signalling an error, which will obscure the change in the
187 inferior's state. */
188
189 /* This function returns TRUE if pc is the address of an instruction
190 that lies within the dynamic linker (such as the event hook, or the
191 dld itself).
192
193 This function must be used only when a dynamic linker event has
194 been caught, and the inferior is being stepped out of the hook, or
195 undefined results are guaranteed. */
196
197 #ifndef SOLIB_IN_DYNAMIC_LINKER
198 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
199 #endif
200
201 /* "Observer mode" is somewhat like a more extreme version of
202 non-stop, in which all GDB operations that might affect the
203 target's execution have been disabled. */
204
205 static int non_stop_1 = 0;
206
207 int observer_mode = 0;
208 static int observer_mode_1 = 0;
209
210 static void
211 set_observer_mode (char *args, int from_tty,
212 struct cmd_list_element *c)
213 {
214 extern int pagination_enabled;
215
216 if (target_has_execution)
217 {
218 observer_mode_1 = observer_mode;
219 error (_("Cannot change this setting while the inferior is running."));
220 }
221
222 observer_mode = observer_mode_1;
223
224 may_write_registers = !observer_mode;
225 may_write_memory = !observer_mode;
226 may_insert_breakpoints = !observer_mode;
227 may_insert_tracepoints = !observer_mode;
228 /* We can insert fast tracepoints in or out of observer mode,
229 but enable them if we're going into this mode. */
230 if (observer_mode)
231 may_insert_fast_tracepoints = 1;
232 may_stop = !observer_mode;
233 update_target_permissions ();
234
235 /* Going *into* observer mode we must force non-stop, then
236 going out we leave it that way. */
237 if (observer_mode)
238 {
239 target_async_permitted = 1;
240 pagination_enabled = 0;
241 non_stop = non_stop_1 = 1;
242 }
243
244 if (from_tty)
245 printf_filtered (_("Observer mode is now %s.\n"),
246 (observer_mode ? "on" : "off"));
247 }
248
249 static void
250 show_observer_mode (struct ui_file *file, int from_tty,
251 struct cmd_list_element *c, const char *value)
252 {
253 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
254 }
255
256 /* This updates the value of observer mode based on changes in
257 permissions. Note that we are deliberately ignoring the values of
258 may-write-registers and may-write-memory, since the user may have
259 reason to enable these during a session, for instance to turn on a
260 debugging-related global. */
261
262 void
263 update_observer_mode (void)
264 {
265 int newval;
266
267 newval = (!may_insert_breakpoints
268 && !may_insert_tracepoints
269 && may_insert_fast_tracepoints
270 && !may_stop
271 && non_stop);
272
273 /* Let the user know if things change. */
274 if (newval != observer_mode)
275 printf_filtered (_("Observer mode is now %s.\n"),
276 (newval ? "on" : "off"));
277
278 observer_mode = observer_mode_1 = newval;
279 }
280
281 /* Tables of how to react to signals; the user sets them. */
282
283 static unsigned char *signal_stop;
284 static unsigned char *signal_print;
285 static unsigned char *signal_program;
286
287 /* Table of signals that the target may silently handle.
288 This is automatically determined from the flags above,
289 and simply cached here. */
290 static unsigned char *signal_pass;
291
292 #define SET_SIGS(nsigs,sigs,flags) \
293 do { \
294 int signum = (nsigs); \
295 while (signum-- > 0) \
296 if ((sigs)[signum]) \
297 (flags)[signum] = 1; \
298 } while (0)
299
300 #define UNSET_SIGS(nsigs,sigs,flags) \
301 do { \
302 int signum = (nsigs); \
303 while (signum-- > 0) \
304 if ((sigs)[signum]) \
305 (flags)[signum] = 0; \
306 } while (0)
307
308 /* Value to pass to target_resume() to cause all threads to resume. */
309
310 #define RESUME_ALL minus_one_ptid
311
312 /* Command list pointer for the "stop" placeholder. */
313
314 static struct cmd_list_element *stop_command;
315
316 /* Function inferior was in as of last step command. */
317
318 static struct symbol *step_start_function;
319
320 /* Nonzero if we want to give control to the user when we're notified
321 of shared library events by the dynamic linker. */
322 int stop_on_solib_events;
323 static void
324 show_stop_on_solib_events (struct ui_file *file, int from_tty,
325 struct cmd_list_element *c, const char *value)
326 {
327 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
328 value);
329 }
330
331 /* Nonzero means expecting a trace trap
332 and should stop the inferior and return silently when it happens. */
333
334 int stop_after_trap;
335
336 /* Save register contents here when executing a "finish" command or are
337 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
338 Thus this contains the return value from the called function (assuming
339 values are returned in a register). */
340
341 struct regcache *stop_registers;
342
343 /* Nonzero after stop if current stack frame should be printed. */
344
345 static int stop_print_frame;
346
347 /* This is a cached copy of the pid/waitstatus of the last event
348 returned by target_wait()/deprecated_target_wait_hook(). This
349 information is returned by get_last_target_status(). */
350 static ptid_t target_last_wait_ptid;
351 static struct target_waitstatus target_last_waitstatus;
352
353 static void context_switch (ptid_t ptid);
354
355 void init_thread_stepping_state (struct thread_info *tss);
356
357 void init_infwait_state (void);
358
359 static const char follow_fork_mode_child[] = "child";
360 static const char follow_fork_mode_parent[] = "parent";
361
362 static const char *follow_fork_mode_kind_names[] = {
363 follow_fork_mode_child,
364 follow_fork_mode_parent,
365 NULL
366 };
367
368 static const char *follow_fork_mode_string = follow_fork_mode_parent;
369 static void
370 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
371 struct cmd_list_element *c, const char *value)
372 {
373 fprintf_filtered (file,
374 _("Debugger response to a program "
375 "call of fork or vfork is \"%s\".\n"),
376 value);
377 }
378 \f
379
380 /* Tell the target to follow the fork we're stopped at. Returns true
381 if the inferior should be resumed; false, if the target for some
382 reason decided it's best not to resume. */
383
384 static int
385 follow_fork (void)
386 {
387 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
388 int should_resume = 1;
389 struct thread_info *tp;
390
391 /* Copy user stepping state to the new inferior thread. FIXME: the
392 followed fork child thread should have a copy of most of the
393 parent thread structure's run control related fields, not just these.
394 Initialized to avoid "may be used uninitialized" warnings from gcc. */
395 struct breakpoint *step_resume_breakpoint = NULL;
396 struct breakpoint *exception_resume_breakpoint = NULL;
397 CORE_ADDR step_range_start = 0;
398 CORE_ADDR step_range_end = 0;
399 struct frame_id step_frame_id = { 0 };
400
401 if (!non_stop)
402 {
403 ptid_t wait_ptid;
404 struct target_waitstatus wait_status;
405
406 /* Get the last target status returned by target_wait(). */
407 get_last_target_status (&wait_ptid, &wait_status);
408
409 /* If not stopped at a fork event, then there's nothing else to
410 do. */
411 if (wait_status.kind != TARGET_WAITKIND_FORKED
412 && wait_status.kind != TARGET_WAITKIND_VFORKED)
413 return 1;
414
415 /* Check if we switched over from WAIT_PTID, since the event was
416 reported. */
417 if (!ptid_equal (wait_ptid, minus_one_ptid)
418 && !ptid_equal (inferior_ptid, wait_ptid))
419 {
420 /* We did. Switch back to WAIT_PTID thread, to tell the
421 target to follow it (in either direction). We'll
422 afterwards refuse to resume, and inform the user what
423 happened. */
424 switch_to_thread (wait_ptid);
425 should_resume = 0;
426 }
427 }
428
429 tp = inferior_thread ();
430
431 /* If there were any forks/vforks that were caught and are now to be
432 followed, then do so now. */
433 switch (tp->pending_follow.kind)
434 {
435 case TARGET_WAITKIND_FORKED:
436 case TARGET_WAITKIND_VFORKED:
437 {
438 ptid_t parent, child;
439
440 /* If the user did a next/step, etc, over a fork call,
441 preserve the stepping state in the fork child. */
442 if (follow_child && should_resume)
443 {
444 step_resume_breakpoint = clone_momentary_breakpoint
445 (tp->control.step_resume_breakpoint);
446 step_range_start = tp->control.step_range_start;
447 step_range_end = tp->control.step_range_end;
448 step_frame_id = tp->control.step_frame_id;
449 exception_resume_breakpoint
450 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
451
452 /* For now, delete the parent's sr breakpoint, otherwise,
453 parent/child sr breakpoints are considered duplicates,
454 and the child version will not be installed. Remove
455 this when the breakpoints module becomes aware of
456 inferiors and address spaces. */
457 delete_step_resume_breakpoint (tp);
458 tp->control.step_range_start = 0;
459 tp->control.step_range_end = 0;
460 tp->control.step_frame_id = null_frame_id;
461 delete_exception_resume_breakpoint (tp);
462 }
463
464 parent = inferior_ptid;
465 child = tp->pending_follow.value.related_pid;
466
467 /* Tell the target to do whatever is necessary to follow
468 either parent or child. */
469 if (target_follow_fork (follow_child))
470 {
471 /* Target refused to follow, or there's some other reason
472 we shouldn't resume. */
473 should_resume = 0;
474 }
475 else
476 {
477 /* This pending follow fork event is now handled, one way
478 or another. The previous selected thread may be gone
479 from the lists by now, but if it is still around, need
480 to clear the pending follow request. */
481 tp = find_thread_ptid (parent);
482 if (tp)
483 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
484
485 /* This makes sure we don't try to apply the "Switched
486 over from WAIT_PID" logic above. */
487 nullify_last_target_wait_ptid ();
488
489 /* If we followed the child, switch to it... */
490 if (follow_child)
491 {
492 switch_to_thread (child);
493
494 /* ... and preserve the stepping state, in case the
495 user was stepping over the fork call. */
496 if (should_resume)
497 {
498 tp = inferior_thread ();
499 tp->control.step_resume_breakpoint
500 = step_resume_breakpoint;
501 tp->control.step_range_start = step_range_start;
502 tp->control.step_range_end = step_range_end;
503 tp->control.step_frame_id = step_frame_id;
504 tp->control.exception_resume_breakpoint
505 = exception_resume_breakpoint;
506 }
507 else
508 {
509 /* If we get here, it was because we're trying to
510 resume from a fork catchpoint, but, the user
511 has switched threads away from the thread that
512 forked. In that case, the resume command
513 issued is most likely not applicable to the
514 child, so just warn, and refuse to resume. */
515 warning (_("Not resuming: switched threads "
516 "before following fork child.\n"));
517 }
518
519 /* Reset breakpoints in the child as appropriate. */
520 follow_inferior_reset_breakpoints ();
521 }
522 else
523 switch_to_thread (parent);
524 }
525 }
526 break;
527 case TARGET_WAITKIND_SPURIOUS:
528 /* Nothing to follow. */
529 break;
530 default:
531 internal_error (__FILE__, __LINE__,
532 "Unexpected pending_follow.kind %d\n",
533 tp->pending_follow.kind);
534 break;
535 }
536
537 return should_resume;
538 }
539
540 void
541 follow_inferior_reset_breakpoints (void)
542 {
543 struct thread_info *tp = inferior_thread ();
544
545 /* Was there a step_resume breakpoint? (There was if the user
546 did a "next" at the fork() call.) If so, explicitly reset its
547 thread number.
548
549 step_resumes are a form of bp that are made to be per-thread.
550 Since we created the step_resume bp when the parent process
551 was being debugged, and now are switching to the child process,
552 from the breakpoint package's viewpoint, that's a switch of
553 "threads". We must update the bp's notion of which thread
554 it is for, or it'll be ignored when it triggers. */
555
556 if (tp->control.step_resume_breakpoint)
557 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
558
559 if (tp->control.exception_resume_breakpoint)
560 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
561
562 /* Reinsert all breakpoints in the child. The user may have set
563 breakpoints after catching the fork, in which case those
564 were never set in the child, but only in the parent. This makes
565 sure the inserted breakpoints match the breakpoint list. */
566
567 breakpoint_re_set ();
568 insert_breakpoints ();
569 }
570
571 /* The child has exited or execed: resume threads of the parent the
572 user wanted to be executing. */
573
574 static int
575 proceed_after_vfork_done (struct thread_info *thread,
576 void *arg)
577 {
578 int pid = * (int *) arg;
579
580 if (ptid_get_pid (thread->ptid) == pid
581 && is_running (thread->ptid)
582 && !is_executing (thread->ptid)
583 && !thread->stop_requested
584 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
585 {
586 if (debug_infrun)
587 fprintf_unfiltered (gdb_stdlog,
588 "infrun: resuming vfork parent thread %s\n",
589 target_pid_to_str (thread->ptid));
590
591 switch_to_thread (thread->ptid);
592 clear_proceed_status ();
593 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
594 }
595
596 return 0;
597 }
598
599 /* Called whenever we notice an exec or exit event, to handle
600 detaching or resuming a vfork parent. */
601
602 static void
603 handle_vfork_child_exec_or_exit (int exec)
604 {
605 struct inferior *inf = current_inferior ();
606
607 if (inf->vfork_parent)
608 {
609 int resume_parent = -1;
610
611 /* This exec or exit marks the end of the shared memory region
612 between the parent and the child. If the user wanted to
613 detach from the parent, now is the time. */
614
615 if (inf->vfork_parent->pending_detach)
616 {
617 struct thread_info *tp;
618 struct cleanup *old_chain;
619 struct program_space *pspace;
620 struct address_space *aspace;
621
622 /* follow-fork child, detach-on-fork on. */
623
624 old_chain = make_cleanup_restore_current_thread ();
625
626 /* We're letting loose of the parent. */
627 tp = any_live_thread_of_process (inf->vfork_parent->pid);
628 switch_to_thread (tp->ptid);
629
630 /* We're about to detach from the parent, which implicitly
631 removes breakpoints from its address space. There's a
632 catch here: we want to reuse the spaces for the child,
633 but, parent/child are still sharing the pspace at this
634 point, although the exec in reality makes the kernel give
635 the child a fresh set of new pages. The problem here is
636 that the breakpoints module being unaware of this, would
637 likely chose the child process to write to the parent
638 address space. Swapping the child temporarily away from
639 the spaces has the desired effect. Yes, this is "sort
640 of" a hack. */
641
642 pspace = inf->pspace;
643 aspace = inf->aspace;
644 inf->aspace = NULL;
645 inf->pspace = NULL;
646
647 if (debug_infrun || info_verbose)
648 {
649 target_terminal_ours ();
650
651 if (exec)
652 fprintf_filtered (gdb_stdlog,
653 "Detaching vfork parent process "
654 "%d after child exec.\n",
655 inf->vfork_parent->pid);
656 else
657 fprintf_filtered (gdb_stdlog,
658 "Detaching vfork parent process "
659 "%d after child exit.\n",
660 inf->vfork_parent->pid);
661 }
662
663 target_detach (NULL, 0);
664
665 /* Put it back. */
666 inf->pspace = pspace;
667 inf->aspace = aspace;
668
669 do_cleanups (old_chain);
670 }
671 else if (exec)
672 {
673 /* We're staying attached to the parent, so, really give the
674 child a new address space. */
675 inf->pspace = add_program_space (maybe_new_address_space ());
676 inf->aspace = inf->pspace->aspace;
677 inf->removable = 1;
678 set_current_program_space (inf->pspace);
679
680 resume_parent = inf->vfork_parent->pid;
681
682 /* Break the bonds. */
683 inf->vfork_parent->vfork_child = NULL;
684 }
685 else
686 {
687 struct cleanup *old_chain;
688 struct program_space *pspace;
689
690 /* If this is a vfork child exiting, then the pspace and
691 aspaces were shared with the parent. Since we're
692 reporting the process exit, we'll be mourning all that is
693 found in the address space, and switching to null_ptid,
694 preparing to start a new inferior. But, since we don't
695 want to clobber the parent's address/program spaces, we
696 go ahead and create a new one for this exiting
697 inferior. */
698
699 /* Switch to null_ptid, so that clone_program_space doesn't want
700 to read the selected frame of a dead process. */
701 old_chain = save_inferior_ptid ();
702 inferior_ptid = null_ptid;
703
704 /* This inferior is dead, so avoid giving the breakpoints
705 module the option to write through to it (cloning a
706 program space resets breakpoints). */
707 inf->aspace = NULL;
708 inf->pspace = NULL;
709 pspace = add_program_space (maybe_new_address_space ());
710 set_current_program_space (pspace);
711 inf->removable = 1;
712 clone_program_space (pspace, inf->vfork_parent->pspace);
713 inf->pspace = pspace;
714 inf->aspace = pspace->aspace;
715
716 /* Put back inferior_ptid. We'll continue mourning this
717 inferior. */
718 do_cleanups (old_chain);
719
720 resume_parent = inf->vfork_parent->pid;
721 /* Break the bonds. */
722 inf->vfork_parent->vfork_child = NULL;
723 }
724
725 inf->vfork_parent = NULL;
726
727 gdb_assert (current_program_space == inf->pspace);
728
729 if (non_stop && resume_parent != -1)
730 {
731 /* If the user wanted the parent to be running, let it go
732 free now. */
733 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
734
735 if (debug_infrun)
736 fprintf_unfiltered (gdb_stdlog,
737 "infrun: resuming vfork parent process %d\n",
738 resume_parent);
739
740 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
741
742 do_cleanups (old_chain);
743 }
744 }
745 }
746
747 /* Enum strings for "set|show displaced-stepping". */
748
749 static const char follow_exec_mode_new[] = "new";
750 static const char follow_exec_mode_same[] = "same";
751 static const char *follow_exec_mode_names[] =
752 {
753 follow_exec_mode_new,
754 follow_exec_mode_same,
755 NULL,
756 };
757
758 static const char *follow_exec_mode_string = follow_exec_mode_same;
759 static void
760 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
761 struct cmd_list_element *c, const char *value)
762 {
763 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
764 }
765
766 /* EXECD_PATHNAME is assumed to be non-NULL. */
767
768 static void
769 follow_exec (ptid_t pid, char *execd_pathname)
770 {
771 struct thread_info *th = inferior_thread ();
772 struct inferior *inf = current_inferior ();
773
774 /* This is an exec event that we actually wish to pay attention to.
775 Refresh our symbol table to the newly exec'd program, remove any
776 momentary bp's, etc.
777
778 If there are breakpoints, they aren't really inserted now,
779 since the exec() transformed our inferior into a fresh set
780 of instructions.
781
782 We want to preserve symbolic breakpoints on the list, since
783 we have hopes that they can be reset after the new a.out's
784 symbol table is read.
785
786 However, any "raw" breakpoints must be removed from the list
787 (e.g., the solib bp's), since their address is probably invalid
788 now.
789
790 And, we DON'T want to call delete_breakpoints() here, since
791 that may write the bp's "shadow contents" (the instruction
792 value that was overwritten witha TRAP instruction). Since
793 we now have a new a.out, those shadow contents aren't valid. */
794
795 mark_breakpoints_out ();
796
797 update_breakpoints_after_exec ();
798
799 /* If there was one, it's gone now. We cannot truly step-to-next
800 statement through an exec(). */
801 th->control.step_resume_breakpoint = NULL;
802 th->control.exception_resume_breakpoint = NULL;
803 th->control.step_range_start = 0;
804 th->control.step_range_end = 0;
805
806 /* The target reports the exec event to the main thread, even if
807 some other thread does the exec, and even if the main thread was
808 already stopped --- if debugging in non-stop mode, it's possible
809 the user had the main thread held stopped in the previous image
810 --- release it now. This is the same behavior as step-over-exec
811 with scheduler-locking on in all-stop mode. */
812 th->stop_requested = 0;
813
814 /* What is this a.out's name? */
815 printf_unfiltered (_("%s is executing new program: %s\n"),
816 target_pid_to_str (inferior_ptid),
817 execd_pathname);
818
819 /* We've followed the inferior through an exec. Therefore, the
820 inferior has essentially been killed & reborn. */
821
822 gdb_flush (gdb_stdout);
823
824 breakpoint_init_inferior (inf_execd);
825
826 if (gdb_sysroot && *gdb_sysroot)
827 {
828 char *name = alloca (strlen (gdb_sysroot)
829 + strlen (execd_pathname)
830 + 1);
831
832 strcpy (name, gdb_sysroot);
833 strcat (name, execd_pathname);
834 execd_pathname = name;
835 }
836
837 /* Reset the shared library package. This ensures that we get a
838 shlib event when the child reaches "_start", at which point the
839 dld will have had a chance to initialize the child. */
840 /* Also, loading a symbol file below may trigger symbol lookups, and
841 we don't want those to be satisfied by the libraries of the
842 previous incarnation of this process. */
843 no_shared_libraries (NULL, 0);
844
845 if (follow_exec_mode_string == follow_exec_mode_new)
846 {
847 struct program_space *pspace;
848
849 /* The user wants to keep the old inferior and program spaces
850 around. Create a new fresh one, and switch to it. */
851
852 inf = add_inferior (current_inferior ()->pid);
853 pspace = add_program_space (maybe_new_address_space ());
854 inf->pspace = pspace;
855 inf->aspace = pspace->aspace;
856
857 exit_inferior_num_silent (current_inferior ()->num);
858
859 set_current_inferior (inf);
860 set_current_program_space (pspace);
861 }
862
863 gdb_assert (current_program_space == inf->pspace);
864
865 /* That a.out is now the one to use. */
866 exec_file_attach (execd_pathname, 0);
867
868 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
869 (Position Independent Executable) main symbol file will get applied by
870 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
871 the breakpoints with the zero displacement. */
872
873 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
874 NULL, 0);
875
876 set_initial_language ();
877
878 #ifdef SOLIB_CREATE_INFERIOR_HOOK
879 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
880 #else
881 solib_create_inferior_hook (0);
882 #endif
883
884 jit_inferior_created_hook ();
885
886 breakpoint_re_set ();
887
888 /* Reinsert all breakpoints. (Those which were symbolic have
889 been reset to the proper address in the new a.out, thanks
890 to symbol_file_command...). */
891 insert_breakpoints ();
892
893 /* The next resume of this inferior should bring it to the shlib
894 startup breakpoints. (If the user had also set bp's on
895 "main" from the old (parent) process, then they'll auto-
896 matically get reset there in the new process.). */
897 }
898
899 /* Non-zero if we just simulating a single-step. This is needed
900 because we cannot remove the breakpoints in the inferior process
901 until after the `wait' in `wait_for_inferior'. */
902 static int singlestep_breakpoints_inserted_p = 0;
903
904 /* The thread we inserted single-step breakpoints for. */
905 static ptid_t singlestep_ptid;
906
907 /* PC when we started this single-step. */
908 static CORE_ADDR singlestep_pc;
909
910 /* If another thread hit the singlestep breakpoint, we save the original
911 thread here so that we can resume single-stepping it later. */
912 static ptid_t saved_singlestep_ptid;
913 static int stepping_past_singlestep_breakpoint;
914
915 /* If not equal to null_ptid, this means that after stepping over breakpoint
916 is finished, we need to switch to deferred_step_ptid, and step it.
917
918 The use case is when one thread has hit a breakpoint, and then the user
919 has switched to another thread and issued 'step'. We need to step over
920 breakpoint in the thread which hit the breakpoint, but then continue
921 stepping the thread user has selected. */
922 static ptid_t deferred_step_ptid;
923 \f
924 /* Displaced stepping. */
925
926 /* In non-stop debugging mode, we must take special care to manage
927 breakpoints properly; in particular, the traditional strategy for
928 stepping a thread past a breakpoint it has hit is unsuitable.
929 'Displaced stepping' is a tactic for stepping one thread past a
930 breakpoint it has hit while ensuring that other threads running
931 concurrently will hit the breakpoint as they should.
932
933 The traditional way to step a thread T off a breakpoint in a
934 multi-threaded program in all-stop mode is as follows:
935
936 a0) Initially, all threads are stopped, and breakpoints are not
937 inserted.
938 a1) We single-step T, leaving breakpoints uninserted.
939 a2) We insert breakpoints, and resume all threads.
940
941 In non-stop debugging, however, this strategy is unsuitable: we
942 don't want to have to stop all threads in the system in order to
943 continue or step T past a breakpoint. Instead, we use displaced
944 stepping:
945
946 n0) Initially, T is stopped, other threads are running, and
947 breakpoints are inserted.
948 n1) We copy the instruction "under" the breakpoint to a separate
949 location, outside the main code stream, making any adjustments
950 to the instruction, register, and memory state as directed by
951 T's architecture.
952 n2) We single-step T over the instruction at its new location.
953 n3) We adjust the resulting register and memory state as directed
954 by T's architecture. This includes resetting T's PC to point
955 back into the main instruction stream.
956 n4) We resume T.
957
958 This approach depends on the following gdbarch methods:
959
960 - gdbarch_max_insn_length and gdbarch_displaced_step_location
961 indicate where to copy the instruction, and how much space must
962 be reserved there. We use these in step n1.
963
964 - gdbarch_displaced_step_copy_insn copies a instruction to a new
965 address, and makes any necessary adjustments to the instruction,
966 register contents, and memory. We use this in step n1.
967
968 - gdbarch_displaced_step_fixup adjusts registers and memory after
969 we have successfuly single-stepped the instruction, to yield the
970 same effect the instruction would have had if we had executed it
971 at its original address. We use this in step n3.
972
973 - gdbarch_displaced_step_free_closure provides cleanup.
974
975 The gdbarch_displaced_step_copy_insn and
976 gdbarch_displaced_step_fixup functions must be written so that
977 copying an instruction with gdbarch_displaced_step_copy_insn,
978 single-stepping across the copied instruction, and then applying
979 gdbarch_displaced_insn_fixup should have the same effects on the
980 thread's memory and registers as stepping the instruction in place
981 would have. Exactly which responsibilities fall to the copy and
982 which fall to the fixup is up to the author of those functions.
983
984 See the comments in gdbarch.sh for details.
985
986 Note that displaced stepping and software single-step cannot
987 currently be used in combination, although with some care I think
988 they could be made to. Software single-step works by placing
989 breakpoints on all possible subsequent instructions; if the
990 displaced instruction is a PC-relative jump, those breakpoints
991 could fall in very strange places --- on pages that aren't
992 executable, or at addresses that are not proper instruction
993 boundaries. (We do generally let other threads run while we wait
994 to hit the software single-step breakpoint, and they might
995 encounter such a corrupted instruction.) One way to work around
996 this would be to have gdbarch_displaced_step_copy_insn fully
997 simulate the effect of PC-relative instructions (and return NULL)
998 on architectures that use software single-stepping.
999
1000 In non-stop mode, we can have independent and simultaneous step
1001 requests, so more than one thread may need to simultaneously step
1002 over a breakpoint. The current implementation assumes there is
1003 only one scratch space per process. In this case, we have to
1004 serialize access to the scratch space. If thread A wants to step
1005 over a breakpoint, but we are currently waiting for some other
1006 thread to complete a displaced step, we leave thread A stopped and
1007 place it in the displaced_step_request_queue. Whenever a displaced
1008 step finishes, we pick the next thread in the queue and start a new
1009 displaced step operation on it. See displaced_step_prepare and
1010 displaced_step_fixup for details. */
1011
1012 struct displaced_step_request
1013 {
1014 ptid_t ptid;
1015 struct displaced_step_request *next;
1016 };
1017
1018 /* Per-inferior displaced stepping state. */
1019 struct displaced_step_inferior_state
1020 {
1021 /* Pointer to next in linked list. */
1022 struct displaced_step_inferior_state *next;
1023
1024 /* The process this displaced step state refers to. */
1025 int pid;
1026
1027 /* A queue of pending displaced stepping requests. One entry per
1028 thread that needs to do a displaced step. */
1029 struct displaced_step_request *step_request_queue;
1030
1031 /* If this is not null_ptid, this is the thread carrying out a
1032 displaced single-step in process PID. This thread's state will
1033 require fixing up once it has completed its step. */
1034 ptid_t step_ptid;
1035
1036 /* The architecture the thread had when we stepped it. */
1037 struct gdbarch *step_gdbarch;
1038
1039 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1040 for post-step cleanup. */
1041 struct displaced_step_closure *step_closure;
1042
1043 /* The address of the original instruction, and the copy we
1044 made. */
1045 CORE_ADDR step_original, step_copy;
1046
1047 /* Saved contents of copy area. */
1048 gdb_byte *step_saved_copy;
1049 };
1050
1051 /* The list of states of processes involved in displaced stepping
1052 presently. */
1053 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1054
1055 /* Get the displaced stepping state of process PID. */
1056
1057 static struct displaced_step_inferior_state *
1058 get_displaced_stepping_state (int pid)
1059 {
1060 struct displaced_step_inferior_state *state;
1061
1062 for (state = displaced_step_inferior_states;
1063 state != NULL;
1064 state = state->next)
1065 if (state->pid == pid)
1066 return state;
1067
1068 return NULL;
1069 }
1070
1071 /* Add a new displaced stepping state for process PID to the displaced
1072 stepping state list, or return a pointer to an already existing
1073 entry, if it already exists. Never returns NULL. */
1074
1075 static struct displaced_step_inferior_state *
1076 add_displaced_stepping_state (int pid)
1077 {
1078 struct displaced_step_inferior_state *state;
1079
1080 for (state = displaced_step_inferior_states;
1081 state != NULL;
1082 state = state->next)
1083 if (state->pid == pid)
1084 return state;
1085
1086 state = xcalloc (1, sizeof (*state));
1087 state->pid = pid;
1088 state->next = displaced_step_inferior_states;
1089 displaced_step_inferior_states = state;
1090
1091 return state;
1092 }
1093
1094 /* If inferior is in displaced stepping, and ADDR equals to starting address
1095 of copy area, return corresponding displaced_step_closure. Otherwise,
1096 return NULL. */
1097
1098 struct displaced_step_closure*
1099 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1100 {
1101 struct displaced_step_inferior_state *displaced
1102 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1103
1104 /* If checking the mode of displaced instruction in copy area. */
1105 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1106 && (displaced->step_copy == addr))
1107 return displaced->step_closure;
1108
1109 return NULL;
1110 }
1111
1112 /* Remove the displaced stepping state of process PID. */
1113
1114 static void
1115 remove_displaced_stepping_state (int pid)
1116 {
1117 struct displaced_step_inferior_state *it, **prev_next_p;
1118
1119 gdb_assert (pid != 0);
1120
1121 it = displaced_step_inferior_states;
1122 prev_next_p = &displaced_step_inferior_states;
1123 while (it)
1124 {
1125 if (it->pid == pid)
1126 {
1127 *prev_next_p = it->next;
1128 xfree (it);
1129 return;
1130 }
1131
1132 prev_next_p = &it->next;
1133 it = *prev_next_p;
1134 }
1135 }
1136
1137 static void
1138 infrun_inferior_exit (struct inferior *inf)
1139 {
1140 remove_displaced_stepping_state (inf->pid);
1141 }
1142
1143 /* Enum strings for "set|show displaced-stepping". */
1144
1145 static const char can_use_displaced_stepping_auto[] = "auto";
1146 static const char can_use_displaced_stepping_on[] = "on";
1147 static const char can_use_displaced_stepping_off[] = "off";
1148 static const char *can_use_displaced_stepping_enum[] =
1149 {
1150 can_use_displaced_stepping_auto,
1151 can_use_displaced_stepping_on,
1152 can_use_displaced_stepping_off,
1153 NULL,
1154 };
1155
1156 /* If ON, and the architecture supports it, GDB will use displaced
1157 stepping to step over breakpoints. If OFF, or if the architecture
1158 doesn't support it, GDB will instead use the traditional
1159 hold-and-step approach. If AUTO (which is the default), GDB will
1160 decide which technique to use to step over breakpoints depending on
1161 which of all-stop or non-stop mode is active --- displaced stepping
1162 in non-stop mode; hold-and-step in all-stop mode. */
1163
1164 static const char *can_use_displaced_stepping =
1165 can_use_displaced_stepping_auto;
1166
1167 static void
1168 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1169 struct cmd_list_element *c,
1170 const char *value)
1171 {
1172 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1173 fprintf_filtered (file,
1174 _("Debugger's willingness to use displaced stepping "
1175 "to step over breakpoints is %s (currently %s).\n"),
1176 value, non_stop ? "on" : "off");
1177 else
1178 fprintf_filtered (file,
1179 _("Debugger's willingness to use displaced stepping "
1180 "to step over breakpoints is %s.\n"), value);
1181 }
1182
1183 /* Return non-zero if displaced stepping can/should be used to step
1184 over breakpoints. */
1185
1186 static int
1187 use_displaced_stepping (struct gdbarch *gdbarch)
1188 {
1189 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1190 && non_stop)
1191 || can_use_displaced_stepping == can_use_displaced_stepping_on)
1192 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1193 && !RECORD_IS_USED);
1194 }
1195
1196 /* Clean out any stray displaced stepping state. */
1197 static void
1198 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1199 {
1200 /* Indicate that there is no cleanup pending. */
1201 displaced->step_ptid = null_ptid;
1202
1203 if (displaced->step_closure)
1204 {
1205 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1206 displaced->step_closure);
1207 displaced->step_closure = NULL;
1208 }
1209 }
1210
1211 static void
1212 displaced_step_clear_cleanup (void *arg)
1213 {
1214 struct displaced_step_inferior_state *state = arg;
1215
1216 displaced_step_clear (state);
1217 }
1218
1219 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1220 void
1221 displaced_step_dump_bytes (struct ui_file *file,
1222 const gdb_byte *buf,
1223 size_t len)
1224 {
1225 int i;
1226
1227 for (i = 0; i < len; i++)
1228 fprintf_unfiltered (file, "%02x ", buf[i]);
1229 fputs_unfiltered ("\n", file);
1230 }
1231
1232 /* Prepare to single-step, using displaced stepping.
1233
1234 Note that we cannot use displaced stepping when we have a signal to
1235 deliver. If we have a signal to deliver and an instruction to step
1236 over, then after the step, there will be no indication from the
1237 target whether the thread entered a signal handler or ignored the
1238 signal and stepped over the instruction successfully --- both cases
1239 result in a simple SIGTRAP. In the first case we mustn't do a
1240 fixup, and in the second case we must --- but we can't tell which.
1241 Comments in the code for 'random signals' in handle_inferior_event
1242 explain how we handle this case instead.
1243
1244 Returns 1 if preparing was successful -- this thread is going to be
1245 stepped now; or 0 if displaced stepping this thread got queued. */
1246 static int
1247 displaced_step_prepare (ptid_t ptid)
1248 {
1249 struct cleanup *old_cleanups, *ignore_cleanups;
1250 struct regcache *regcache = get_thread_regcache (ptid);
1251 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1252 CORE_ADDR original, copy;
1253 ULONGEST len;
1254 struct displaced_step_closure *closure;
1255 struct displaced_step_inferior_state *displaced;
1256
1257 /* We should never reach this function if the architecture does not
1258 support displaced stepping. */
1259 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1260
1261 /* We have to displaced step one thread at a time, as we only have
1262 access to a single scratch space per inferior. */
1263
1264 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1265
1266 if (!ptid_equal (displaced->step_ptid, null_ptid))
1267 {
1268 /* Already waiting for a displaced step to finish. Defer this
1269 request and place in queue. */
1270 struct displaced_step_request *req, *new_req;
1271
1272 if (debug_displaced)
1273 fprintf_unfiltered (gdb_stdlog,
1274 "displaced: defering step of %s\n",
1275 target_pid_to_str (ptid));
1276
1277 new_req = xmalloc (sizeof (*new_req));
1278 new_req->ptid = ptid;
1279 new_req->next = NULL;
1280
1281 if (displaced->step_request_queue)
1282 {
1283 for (req = displaced->step_request_queue;
1284 req && req->next;
1285 req = req->next)
1286 ;
1287 req->next = new_req;
1288 }
1289 else
1290 displaced->step_request_queue = new_req;
1291
1292 return 0;
1293 }
1294 else
1295 {
1296 if (debug_displaced)
1297 fprintf_unfiltered (gdb_stdlog,
1298 "displaced: stepping %s now\n",
1299 target_pid_to_str (ptid));
1300 }
1301
1302 displaced_step_clear (displaced);
1303
1304 old_cleanups = save_inferior_ptid ();
1305 inferior_ptid = ptid;
1306
1307 original = regcache_read_pc (regcache);
1308
1309 copy = gdbarch_displaced_step_location (gdbarch);
1310 len = gdbarch_max_insn_length (gdbarch);
1311
1312 /* Save the original contents of the copy area. */
1313 displaced->step_saved_copy = xmalloc (len);
1314 ignore_cleanups = make_cleanup (free_current_contents,
1315 &displaced->step_saved_copy);
1316 read_memory (copy, displaced->step_saved_copy, len);
1317 if (debug_displaced)
1318 {
1319 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1320 paddress (gdbarch, copy));
1321 displaced_step_dump_bytes (gdb_stdlog,
1322 displaced->step_saved_copy,
1323 len);
1324 };
1325
1326 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1327 original, copy, regcache);
1328
1329 /* We don't support the fully-simulated case at present. */
1330 gdb_assert (closure);
1331
1332 /* Save the information we need to fix things up if the step
1333 succeeds. */
1334 displaced->step_ptid = ptid;
1335 displaced->step_gdbarch = gdbarch;
1336 displaced->step_closure = closure;
1337 displaced->step_original = original;
1338 displaced->step_copy = copy;
1339
1340 make_cleanup (displaced_step_clear_cleanup, displaced);
1341
1342 /* Resume execution at the copy. */
1343 regcache_write_pc (regcache, copy);
1344
1345 discard_cleanups (ignore_cleanups);
1346
1347 do_cleanups (old_cleanups);
1348
1349 if (debug_displaced)
1350 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1351 paddress (gdbarch, copy));
1352
1353 return 1;
1354 }
1355
1356 static void
1357 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1358 const gdb_byte *myaddr, int len)
1359 {
1360 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1361
1362 inferior_ptid = ptid;
1363 write_memory (memaddr, myaddr, len);
1364 do_cleanups (ptid_cleanup);
1365 }
1366
1367 static void
1368 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1369 {
1370 struct cleanup *old_cleanups;
1371 struct displaced_step_inferior_state *displaced
1372 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1373
1374 /* Was any thread of this process doing a displaced step? */
1375 if (displaced == NULL)
1376 return;
1377
1378 /* Was this event for the pid we displaced? */
1379 if (ptid_equal (displaced->step_ptid, null_ptid)
1380 || ! ptid_equal (displaced->step_ptid, event_ptid))
1381 return;
1382
1383 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1384
1385 /* Restore the contents of the copy area. */
1386 {
1387 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1388
1389 write_memory_ptid (displaced->step_ptid, displaced->step_copy,
1390 displaced->step_saved_copy, len);
1391 if (debug_displaced)
1392 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
1393 paddress (displaced->step_gdbarch,
1394 displaced->step_copy));
1395 }
1396
1397 /* Did the instruction complete successfully? */
1398 if (signal == TARGET_SIGNAL_TRAP)
1399 {
1400 /* Fix up the resulting state. */
1401 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1402 displaced->step_closure,
1403 displaced->step_original,
1404 displaced->step_copy,
1405 get_thread_regcache (displaced->step_ptid));
1406 }
1407 else
1408 {
1409 /* Since the instruction didn't complete, all we can do is
1410 relocate the PC. */
1411 struct regcache *regcache = get_thread_regcache (event_ptid);
1412 CORE_ADDR pc = regcache_read_pc (regcache);
1413
1414 pc = displaced->step_original + (pc - displaced->step_copy);
1415 regcache_write_pc (regcache, pc);
1416 }
1417
1418 do_cleanups (old_cleanups);
1419
1420 displaced->step_ptid = null_ptid;
1421
1422 /* Are there any pending displaced stepping requests? If so, run
1423 one now. Leave the state object around, since we're likely to
1424 need it again soon. */
1425 while (displaced->step_request_queue)
1426 {
1427 struct displaced_step_request *head;
1428 ptid_t ptid;
1429 struct regcache *regcache;
1430 struct gdbarch *gdbarch;
1431 CORE_ADDR actual_pc;
1432 struct address_space *aspace;
1433
1434 head = displaced->step_request_queue;
1435 ptid = head->ptid;
1436 displaced->step_request_queue = head->next;
1437 xfree (head);
1438
1439 context_switch (ptid);
1440
1441 regcache = get_thread_regcache (ptid);
1442 actual_pc = regcache_read_pc (regcache);
1443 aspace = get_regcache_aspace (regcache);
1444
1445 if (breakpoint_here_p (aspace, actual_pc))
1446 {
1447 if (debug_displaced)
1448 fprintf_unfiltered (gdb_stdlog,
1449 "displaced: stepping queued %s now\n",
1450 target_pid_to_str (ptid));
1451
1452 displaced_step_prepare (ptid);
1453
1454 gdbarch = get_regcache_arch (regcache);
1455
1456 if (debug_displaced)
1457 {
1458 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1459 gdb_byte buf[4];
1460
1461 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1462 paddress (gdbarch, actual_pc));
1463 read_memory (actual_pc, buf, sizeof (buf));
1464 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1465 }
1466
1467 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1468 displaced->step_closure))
1469 target_resume (ptid, 1, TARGET_SIGNAL_0);
1470 else
1471 target_resume (ptid, 0, TARGET_SIGNAL_0);
1472
1473 /* Done, we're stepping a thread. */
1474 break;
1475 }
1476 else
1477 {
1478 int step;
1479 struct thread_info *tp = inferior_thread ();
1480
1481 /* The breakpoint we were sitting under has since been
1482 removed. */
1483 tp->control.trap_expected = 0;
1484
1485 /* Go back to what we were trying to do. */
1486 step = currently_stepping (tp);
1487
1488 if (debug_displaced)
1489 fprintf_unfiltered (gdb_stdlog,
1490 "breakpoint is gone %s: step(%d)\n",
1491 target_pid_to_str (tp->ptid), step);
1492
1493 target_resume (ptid, step, TARGET_SIGNAL_0);
1494 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1495
1496 /* This request was discarded. See if there's any other
1497 thread waiting for its turn. */
1498 }
1499 }
1500 }
1501
1502 /* Update global variables holding ptids to hold NEW_PTID if they were
1503 holding OLD_PTID. */
1504 static void
1505 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1506 {
1507 struct displaced_step_request *it;
1508 struct displaced_step_inferior_state *displaced;
1509
1510 if (ptid_equal (inferior_ptid, old_ptid))
1511 inferior_ptid = new_ptid;
1512
1513 if (ptid_equal (singlestep_ptid, old_ptid))
1514 singlestep_ptid = new_ptid;
1515
1516 if (ptid_equal (deferred_step_ptid, old_ptid))
1517 deferred_step_ptid = new_ptid;
1518
1519 for (displaced = displaced_step_inferior_states;
1520 displaced;
1521 displaced = displaced->next)
1522 {
1523 if (ptid_equal (displaced->step_ptid, old_ptid))
1524 displaced->step_ptid = new_ptid;
1525
1526 for (it = displaced->step_request_queue; it; it = it->next)
1527 if (ptid_equal (it->ptid, old_ptid))
1528 it->ptid = new_ptid;
1529 }
1530 }
1531
1532 \f
1533 /* Resuming. */
1534
1535 /* Things to clean up if we QUIT out of resume (). */
1536 static void
1537 resume_cleanups (void *ignore)
1538 {
1539 normal_stop ();
1540 }
1541
1542 static const char schedlock_off[] = "off";
1543 static const char schedlock_on[] = "on";
1544 static const char schedlock_step[] = "step";
1545 static const char *scheduler_enums[] = {
1546 schedlock_off,
1547 schedlock_on,
1548 schedlock_step,
1549 NULL
1550 };
1551 static const char *scheduler_mode = schedlock_off;
1552 static void
1553 show_scheduler_mode (struct ui_file *file, int from_tty,
1554 struct cmd_list_element *c, const char *value)
1555 {
1556 fprintf_filtered (file,
1557 _("Mode for locking scheduler "
1558 "during execution is \"%s\".\n"),
1559 value);
1560 }
1561
1562 static void
1563 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1564 {
1565 if (!target_can_lock_scheduler)
1566 {
1567 scheduler_mode = schedlock_off;
1568 error (_("Target '%s' cannot support this command."), target_shortname);
1569 }
1570 }
1571
1572 /* True if execution commands resume all threads of all processes by
1573 default; otherwise, resume only threads of the current inferior
1574 process. */
1575 int sched_multi = 0;
1576
1577 /* Try to setup for software single stepping over the specified location.
1578 Return 1 if target_resume() should use hardware single step.
1579
1580 GDBARCH the current gdbarch.
1581 PC the location to step over. */
1582
1583 static int
1584 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1585 {
1586 int hw_step = 1;
1587
1588 if (execution_direction == EXEC_FORWARD
1589 && gdbarch_software_single_step_p (gdbarch)
1590 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1591 {
1592 hw_step = 0;
1593 /* Do not pull these breakpoints until after a `wait' in
1594 `wait_for_inferior'. */
1595 singlestep_breakpoints_inserted_p = 1;
1596 singlestep_ptid = inferior_ptid;
1597 singlestep_pc = pc;
1598 }
1599 return hw_step;
1600 }
1601
1602 /* Return a ptid representing the set of threads that we will proceed,
1603 in the perspective of the user/frontend. We may actually resume
1604 fewer threads at first, e.g., if a thread is stopped at a
1605 breakpoint that needs stepping-off, but that should not be visible
1606 to the user/frontend, and neither should the frontend/user be
1607 allowed to proceed any of the threads that happen to be stopped for
1608 internal run control handling, if a previous command wanted them
1609 resumed. */
1610
1611 ptid_t
1612 user_visible_resume_ptid (int step)
1613 {
1614 /* By default, resume all threads of all processes. */
1615 ptid_t resume_ptid = RESUME_ALL;
1616
1617 /* Maybe resume only all threads of the current process. */
1618 if (!sched_multi && target_supports_multi_process ())
1619 {
1620 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1621 }
1622
1623 /* Maybe resume a single thread after all. */
1624 if (non_stop)
1625 {
1626 /* With non-stop mode on, threads are always handled
1627 individually. */
1628 resume_ptid = inferior_ptid;
1629 }
1630 else if ((scheduler_mode == schedlock_on)
1631 || (scheduler_mode == schedlock_step
1632 && (step || singlestep_breakpoints_inserted_p)))
1633 {
1634 /* User-settable 'scheduler' mode requires solo thread resume. */
1635 resume_ptid = inferior_ptid;
1636 }
1637
1638 return resume_ptid;
1639 }
1640
1641 /* Resume the inferior, but allow a QUIT. This is useful if the user
1642 wants to interrupt some lengthy single-stepping operation
1643 (for child processes, the SIGINT goes to the inferior, and so
1644 we get a SIGINT random_signal, but for remote debugging and perhaps
1645 other targets, that's not true).
1646
1647 STEP nonzero if we should step (zero to continue instead).
1648 SIG is the signal to give the inferior (zero for none). */
1649 void
1650 resume (int step, enum target_signal sig)
1651 {
1652 int should_resume = 1;
1653 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1654 struct regcache *regcache = get_current_regcache ();
1655 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1656 struct thread_info *tp = inferior_thread ();
1657 CORE_ADDR pc = regcache_read_pc (regcache);
1658 struct address_space *aspace = get_regcache_aspace (regcache);
1659
1660 QUIT;
1661
1662 if (current_inferior ()->waiting_for_vfork_done)
1663 {
1664 /* Don't try to single-step a vfork parent that is waiting for
1665 the child to get out of the shared memory region (by exec'ing
1666 or exiting). This is particularly important on software
1667 single-step archs, as the child process would trip on the
1668 software single step breakpoint inserted for the parent
1669 process. Since the parent will not actually execute any
1670 instruction until the child is out of the shared region (such
1671 are vfork's semantics), it is safe to simply continue it.
1672 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1673 the parent, and tell it to `keep_going', which automatically
1674 re-sets it stepping. */
1675 if (debug_infrun)
1676 fprintf_unfiltered (gdb_stdlog,
1677 "infrun: resume : clear step\n");
1678 step = 0;
1679 }
1680
1681 if (debug_infrun)
1682 fprintf_unfiltered (gdb_stdlog,
1683 "infrun: resume (step=%d, signal=%d), "
1684 "trap_expected=%d, current thread [%s] at %s\n",
1685 step, sig, tp->control.trap_expected,
1686 target_pid_to_str (inferior_ptid),
1687 paddress (gdbarch, pc));
1688
1689 /* Normally, by the time we reach `resume', the breakpoints are either
1690 removed or inserted, as appropriate. The exception is if we're sitting
1691 at a permanent breakpoint; we need to step over it, but permanent
1692 breakpoints can't be removed. So we have to test for it here. */
1693 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1694 {
1695 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1696 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1697 else
1698 error (_("\
1699 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1700 how to step past a permanent breakpoint on this architecture. Try using\n\
1701 a command like `return' or `jump' to continue execution."));
1702 }
1703
1704 /* If enabled, step over breakpoints by executing a copy of the
1705 instruction at a different address.
1706
1707 We can't use displaced stepping when we have a signal to deliver;
1708 the comments for displaced_step_prepare explain why. The
1709 comments in the handle_inferior event for dealing with 'random
1710 signals' explain what we do instead.
1711
1712 We can't use displaced stepping when we are waiting for vfork_done
1713 event, displaced stepping breaks the vfork child similarly as single
1714 step software breakpoint. */
1715 if (use_displaced_stepping (gdbarch)
1716 && (tp->control.trap_expected
1717 || (step && gdbarch_software_single_step_p (gdbarch)))
1718 && sig == TARGET_SIGNAL_0
1719 && !current_inferior ()->waiting_for_vfork_done)
1720 {
1721 struct displaced_step_inferior_state *displaced;
1722
1723 if (!displaced_step_prepare (inferior_ptid))
1724 {
1725 /* Got placed in displaced stepping queue. Will be resumed
1726 later when all the currently queued displaced stepping
1727 requests finish. The thread is not executing at this point,
1728 and the call to set_executing will be made later. But we
1729 need to call set_running here, since from frontend point of view,
1730 the thread is running. */
1731 set_running (inferior_ptid, 1);
1732 discard_cleanups (old_cleanups);
1733 return;
1734 }
1735
1736 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1737 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1738 displaced->step_closure);
1739 }
1740
1741 /* Do we need to do it the hard way, w/temp breakpoints? */
1742 else if (step)
1743 step = maybe_software_singlestep (gdbarch, pc);
1744
1745 /* Currently, our software single-step implementation leads to different
1746 results than hardware single-stepping in one situation: when stepping
1747 into delivering a signal which has an associated signal handler,
1748 hardware single-step will stop at the first instruction of the handler,
1749 while software single-step will simply skip execution of the handler.
1750
1751 For now, this difference in behavior is accepted since there is no
1752 easy way to actually implement single-stepping into a signal handler
1753 without kernel support.
1754
1755 However, there is one scenario where this difference leads to follow-on
1756 problems: if we're stepping off a breakpoint by removing all breakpoints
1757 and then single-stepping. In this case, the software single-step
1758 behavior means that even if there is a *breakpoint* in the signal
1759 handler, GDB still would not stop.
1760
1761 Fortunately, we can at least fix this particular issue. We detect
1762 here the case where we are about to deliver a signal while software
1763 single-stepping with breakpoints removed. In this situation, we
1764 revert the decisions to remove all breakpoints and insert single-
1765 step breakpoints, and instead we install a step-resume breakpoint
1766 at the current address, deliver the signal without stepping, and
1767 once we arrive back at the step-resume breakpoint, actually step
1768 over the breakpoint we originally wanted to step over. */
1769 if (singlestep_breakpoints_inserted_p
1770 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1771 {
1772 /* If we have nested signals or a pending signal is delivered
1773 immediately after a handler returns, might might already have
1774 a step-resume breakpoint set on the earlier handler. We cannot
1775 set another step-resume breakpoint; just continue on until the
1776 original breakpoint is hit. */
1777 if (tp->control.step_resume_breakpoint == NULL)
1778 {
1779 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1780 tp->step_after_step_resume_breakpoint = 1;
1781 }
1782
1783 remove_single_step_breakpoints ();
1784 singlestep_breakpoints_inserted_p = 0;
1785
1786 insert_breakpoints ();
1787 tp->control.trap_expected = 0;
1788 }
1789
1790 if (should_resume)
1791 {
1792 ptid_t resume_ptid;
1793
1794 /* If STEP is set, it's a request to use hardware stepping
1795 facilities. But in that case, we should never
1796 use singlestep breakpoint. */
1797 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1798
1799 /* Decide the set of threads to ask the target to resume. Start
1800 by assuming everything will be resumed, than narrow the set
1801 by applying increasingly restricting conditions. */
1802 resume_ptid = user_visible_resume_ptid (step);
1803
1804 /* Maybe resume a single thread after all. */
1805 if (singlestep_breakpoints_inserted_p
1806 && stepping_past_singlestep_breakpoint)
1807 {
1808 /* The situation here is as follows. In thread T1 we wanted to
1809 single-step. Lacking hardware single-stepping we've
1810 set breakpoint at the PC of the next instruction -- call it
1811 P. After resuming, we've hit that breakpoint in thread T2.
1812 Now we've removed original breakpoint, inserted breakpoint
1813 at P+1, and try to step to advance T2 past breakpoint.
1814 We need to step only T2, as if T1 is allowed to freely run,
1815 it can run past P, and if other threads are allowed to run,
1816 they can hit breakpoint at P+1, and nested hits of single-step
1817 breakpoints is not something we'd want -- that's complicated
1818 to support, and has no value. */
1819 resume_ptid = inferior_ptid;
1820 }
1821 else if ((step || singlestep_breakpoints_inserted_p)
1822 && tp->control.trap_expected)
1823 {
1824 /* We're allowing a thread to run past a breakpoint it has
1825 hit, by single-stepping the thread with the breakpoint
1826 removed. In which case, we need to single-step only this
1827 thread, and keep others stopped, as they can miss this
1828 breakpoint if allowed to run.
1829
1830 The current code actually removes all breakpoints when
1831 doing this, not just the one being stepped over, so if we
1832 let other threads run, we can actually miss any
1833 breakpoint, not just the one at PC. */
1834 resume_ptid = inferior_ptid;
1835 }
1836
1837 if (gdbarch_cannot_step_breakpoint (gdbarch))
1838 {
1839 /* Most targets can step a breakpoint instruction, thus
1840 executing it normally. But if this one cannot, just
1841 continue and we will hit it anyway. */
1842 if (step && breakpoint_inserted_here_p (aspace, pc))
1843 step = 0;
1844 }
1845
1846 if (debug_displaced
1847 && use_displaced_stepping (gdbarch)
1848 && tp->control.trap_expected)
1849 {
1850 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1851 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1852 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1853 gdb_byte buf[4];
1854
1855 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1856 paddress (resume_gdbarch, actual_pc));
1857 read_memory (actual_pc, buf, sizeof (buf));
1858 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1859 }
1860
1861 /* Install inferior's terminal modes. */
1862 target_terminal_inferior ();
1863
1864 /* Avoid confusing the next resume, if the next stop/resume
1865 happens to apply to another thread. */
1866 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1867
1868 /* Advise target which signals may be handled silently. If we have
1869 removed breakpoints because we are stepping over one (which can
1870 happen only if we are not using displaced stepping), we need to
1871 receive all signals to avoid accidentally skipping a breakpoint
1872 during execution of a signal handler. */
1873 if ((step || singlestep_breakpoints_inserted_p)
1874 && tp->control.trap_expected
1875 && !use_displaced_stepping (gdbarch))
1876 target_pass_signals (0, NULL);
1877 else
1878 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1879
1880 target_resume (resume_ptid, step, sig);
1881 }
1882
1883 discard_cleanups (old_cleanups);
1884 }
1885 \f
1886 /* Proceeding. */
1887
1888 /* Clear out all variables saying what to do when inferior is continued.
1889 First do this, then set the ones you want, then call `proceed'. */
1890
1891 static void
1892 clear_proceed_status_thread (struct thread_info *tp)
1893 {
1894 if (debug_infrun)
1895 fprintf_unfiltered (gdb_stdlog,
1896 "infrun: clear_proceed_status_thread (%s)\n",
1897 target_pid_to_str (tp->ptid));
1898
1899 tp->control.trap_expected = 0;
1900 tp->control.step_range_start = 0;
1901 tp->control.step_range_end = 0;
1902 tp->control.step_frame_id = null_frame_id;
1903 tp->control.step_stack_frame_id = null_frame_id;
1904 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1905 tp->stop_requested = 0;
1906
1907 tp->control.stop_step = 0;
1908
1909 tp->control.proceed_to_finish = 0;
1910
1911 /* Discard any remaining commands or status from previous stop. */
1912 bpstat_clear (&tp->control.stop_bpstat);
1913 }
1914
1915 static int
1916 clear_proceed_status_callback (struct thread_info *tp, void *data)
1917 {
1918 if (is_exited (tp->ptid))
1919 return 0;
1920
1921 clear_proceed_status_thread (tp);
1922 return 0;
1923 }
1924
1925 void
1926 clear_proceed_status (void)
1927 {
1928 if (!non_stop)
1929 {
1930 /* In all-stop mode, delete the per-thread status of all
1931 threads, even if inferior_ptid is null_ptid, there may be
1932 threads on the list. E.g., we may be launching a new
1933 process, while selecting the executable. */
1934 iterate_over_threads (clear_proceed_status_callback, NULL);
1935 }
1936
1937 if (!ptid_equal (inferior_ptid, null_ptid))
1938 {
1939 struct inferior *inferior;
1940
1941 if (non_stop)
1942 {
1943 /* If in non-stop mode, only delete the per-thread status of
1944 the current thread. */
1945 clear_proceed_status_thread (inferior_thread ());
1946 }
1947
1948 inferior = current_inferior ();
1949 inferior->control.stop_soon = NO_STOP_QUIETLY;
1950 }
1951
1952 stop_after_trap = 0;
1953
1954 observer_notify_about_to_proceed ();
1955
1956 if (stop_registers)
1957 {
1958 regcache_xfree (stop_registers);
1959 stop_registers = NULL;
1960 }
1961 }
1962
1963 /* Check the current thread against the thread that reported the most recent
1964 event. If a step-over is required return TRUE and set the current thread
1965 to the old thread. Otherwise return FALSE.
1966
1967 This should be suitable for any targets that support threads. */
1968
1969 static int
1970 prepare_to_proceed (int step)
1971 {
1972 ptid_t wait_ptid;
1973 struct target_waitstatus wait_status;
1974 int schedlock_enabled;
1975
1976 /* With non-stop mode on, threads are always handled individually. */
1977 gdb_assert (! non_stop);
1978
1979 /* Get the last target status returned by target_wait(). */
1980 get_last_target_status (&wait_ptid, &wait_status);
1981
1982 /* Make sure we were stopped at a breakpoint. */
1983 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1984 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1985 && wait_status.value.sig != TARGET_SIGNAL_ILL
1986 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1987 && wait_status.value.sig != TARGET_SIGNAL_EMT))
1988 {
1989 return 0;
1990 }
1991
1992 schedlock_enabled = (scheduler_mode == schedlock_on
1993 || (scheduler_mode == schedlock_step
1994 && step));
1995
1996 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1997 if (schedlock_enabled)
1998 return 0;
1999
2000 /* Don't switch over if we're about to resume some other process
2001 other than WAIT_PTID's, and schedule-multiple is off. */
2002 if (!sched_multi
2003 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2004 return 0;
2005
2006 /* Switched over from WAIT_PID. */
2007 if (!ptid_equal (wait_ptid, minus_one_ptid)
2008 && !ptid_equal (inferior_ptid, wait_ptid))
2009 {
2010 struct regcache *regcache = get_thread_regcache (wait_ptid);
2011
2012 if (breakpoint_here_p (get_regcache_aspace (regcache),
2013 regcache_read_pc (regcache)))
2014 {
2015 /* If stepping, remember current thread to switch back to. */
2016 if (step)
2017 deferred_step_ptid = inferior_ptid;
2018
2019 /* Switch back to WAIT_PID thread. */
2020 switch_to_thread (wait_ptid);
2021
2022 if (debug_infrun)
2023 fprintf_unfiltered (gdb_stdlog,
2024 "infrun: prepare_to_proceed (step=%d), "
2025 "switched to [%s]\n",
2026 step, target_pid_to_str (inferior_ptid));
2027
2028 /* We return 1 to indicate that there is a breakpoint here,
2029 so we need to step over it before continuing to avoid
2030 hitting it straight away. */
2031 return 1;
2032 }
2033 }
2034
2035 return 0;
2036 }
2037
2038 /* Basic routine for continuing the program in various fashions.
2039
2040 ADDR is the address to resume at, or -1 for resume where stopped.
2041 SIGGNAL is the signal to give it, or 0 for none,
2042 or -1 for act according to how it stopped.
2043 STEP is nonzero if should trap after one instruction.
2044 -1 means return after that and print nothing.
2045 You should probably set various step_... variables
2046 before calling here, if you are stepping.
2047
2048 You should call clear_proceed_status before calling proceed. */
2049
2050 void
2051 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
2052 {
2053 struct regcache *regcache;
2054 struct gdbarch *gdbarch;
2055 struct thread_info *tp;
2056 CORE_ADDR pc;
2057 struct address_space *aspace;
2058 int oneproc = 0;
2059
2060 /* If we're stopped at a fork/vfork, follow the branch set by the
2061 "set follow-fork-mode" command; otherwise, we'll just proceed
2062 resuming the current thread. */
2063 if (!follow_fork ())
2064 {
2065 /* The target for some reason decided not to resume. */
2066 normal_stop ();
2067 if (target_can_async_p ())
2068 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2069 return;
2070 }
2071
2072 /* We'll update this if & when we switch to a new thread. */
2073 previous_inferior_ptid = inferior_ptid;
2074
2075 regcache = get_current_regcache ();
2076 gdbarch = get_regcache_arch (regcache);
2077 aspace = get_regcache_aspace (regcache);
2078 pc = regcache_read_pc (regcache);
2079
2080 if (step > 0)
2081 step_start_function = find_pc_function (pc);
2082 if (step < 0)
2083 stop_after_trap = 1;
2084
2085 if (addr == (CORE_ADDR) -1)
2086 {
2087 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2088 && execution_direction != EXEC_REVERSE)
2089 /* There is a breakpoint at the address we will resume at,
2090 step one instruction before inserting breakpoints so that
2091 we do not stop right away (and report a second hit at this
2092 breakpoint).
2093
2094 Note, we don't do this in reverse, because we won't
2095 actually be executing the breakpoint insn anyway.
2096 We'll be (un-)executing the previous instruction. */
2097
2098 oneproc = 1;
2099 else if (gdbarch_single_step_through_delay_p (gdbarch)
2100 && gdbarch_single_step_through_delay (gdbarch,
2101 get_current_frame ()))
2102 /* We stepped onto an instruction that needs to be stepped
2103 again before re-inserting the breakpoint, do so. */
2104 oneproc = 1;
2105 }
2106 else
2107 {
2108 regcache_write_pc (regcache, addr);
2109 }
2110
2111 if (debug_infrun)
2112 fprintf_unfiltered (gdb_stdlog,
2113 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2114 paddress (gdbarch, addr), siggnal, step);
2115
2116 if (non_stop)
2117 /* In non-stop, each thread is handled individually. The context
2118 must already be set to the right thread here. */
2119 ;
2120 else
2121 {
2122 /* In a multi-threaded task we may select another thread and
2123 then continue or step.
2124
2125 But if the old thread was stopped at a breakpoint, it will
2126 immediately cause another breakpoint stop without any
2127 execution (i.e. it will report a breakpoint hit incorrectly).
2128 So we must step over it first.
2129
2130 prepare_to_proceed checks the current thread against the
2131 thread that reported the most recent event. If a step-over
2132 is required it returns TRUE and sets the current thread to
2133 the old thread. */
2134 if (prepare_to_proceed (step))
2135 oneproc = 1;
2136 }
2137
2138 /* prepare_to_proceed may change the current thread. */
2139 tp = inferior_thread ();
2140
2141 if (oneproc)
2142 {
2143 tp->control.trap_expected = 1;
2144 /* If displaced stepping is enabled, we can step over the
2145 breakpoint without hitting it, so leave all breakpoints
2146 inserted. Otherwise we need to disable all breakpoints, step
2147 one instruction, and then re-add them when that step is
2148 finished. */
2149 if (!use_displaced_stepping (gdbarch))
2150 remove_breakpoints ();
2151 }
2152
2153 /* We can insert breakpoints if we're not trying to step over one,
2154 or if we are stepping over one but we're using displaced stepping
2155 to do so. */
2156 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2157 insert_breakpoints ();
2158
2159 if (!non_stop)
2160 {
2161 /* Pass the last stop signal to the thread we're resuming,
2162 irrespective of whether the current thread is the thread that
2163 got the last event or not. This was historically GDB's
2164 behaviour before keeping a stop_signal per thread. */
2165
2166 struct thread_info *last_thread;
2167 ptid_t last_ptid;
2168 struct target_waitstatus last_status;
2169
2170 get_last_target_status (&last_ptid, &last_status);
2171 if (!ptid_equal (inferior_ptid, last_ptid)
2172 && !ptid_equal (last_ptid, null_ptid)
2173 && !ptid_equal (last_ptid, minus_one_ptid))
2174 {
2175 last_thread = find_thread_ptid (last_ptid);
2176 if (last_thread)
2177 {
2178 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2179 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2180 }
2181 }
2182 }
2183
2184 if (siggnal != TARGET_SIGNAL_DEFAULT)
2185 tp->suspend.stop_signal = siggnal;
2186 /* If this signal should not be seen by program,
2187 give it zero. Used for debugging signals. */
2188 else if (!signal_program[tp->suspend.stop_signal])
2189 tp->suspend.stop_signal = TARGET_SIGNAL_0;
2190
2191 annotate_starting ();
2192
2193 /* Make sure that output from GDB appears before output from the
2194 inferior. */
2195 gdb_flush (gdb_stdout);
2196
2197 /* Refresh prev_pc value just prior to resuming. This used to be
2198 done in stop_stepping, however, setting prev_pc there did not handle
2199 scenarios such as inferior function calls or returning from
2200 a function via the return command. In those cases, the prev_pc
2201 value was not set properly for subsequent commands. The prev_pc value
2202 is used to initialize the starting line number in the ecs. With an
2203 invalid value, the gdb next command ends up stopping at the position
2204 represented by the next line table entry past our start position.
2205 On platforms that generate one line table entry per line, this
2206 is not a problem. However, on the ia64, the compiler generates
2207 extraneous line table entries that do not increase the line number.
2208 When we issue the gdb next command on the ia64 after an inferior call
2209 or a return command, we often end up a few instructions forward, still
2210 within the original line we started.
2211
2212 An attempt was made to refresh the prev_pc at the same time the
2213 execution_control_state is initialized (for instance, just before
2214 waiting for an inferior event). But this approach did not work
2215 because of platforms that use ptrace, where the pc register cannot
2216 be read unless the inferior is stopped. At that point, we are not
2217 guaranteed the inferior is stopped and so the regcache_read_pc() call
2218 can fail. Setting the prev_pc value here ensures the value is updated
2219 correctly when the inferior is stopped. */
2220 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2221
2222 /* Fill in with reasonable starting values. */
2223 init_thread_stepping_state (tp);
2224
2225 /* Reset to normal state. */
2226 init_infwait_state ();
2227
2228 /* Resume inferior. */
2229 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2230
2231 /* Wait for it to stop (if not standalone)
2232 and in any case decode why it stopped, and act accordingly. */
2233 /* Do this only if we are not using the event loop, or if the target
2234 does not support asynchronous execution. */
2235 if (!target_can_async_p ())
2236 {
2237 wait_for_inferior ();
2238 normal_stop ();
2239 }
2240 }
2241 \f
2242
2243 /* Start remote-debugging of a machine over a serial link. */
2244
2245 void
2246 start_remote (int from_tty)
2247 {
2248 struct inferior *inferior;
2249
2250 inferior = current_inferior ();
2251 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2252
2253 /* Always go on waiting for the target, regardless of the mode. */
2254 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2255 indicate to wait_for_inferior that a target should timeout if
2256 nothing is returned (instead of just blocking). Because of this,
2257 targets expecting an immediate response need to, internally, set
2258 things up so that the target_wait() is forced to eventually
2259 timeout. */
2260 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2261 differentiate to its caller what the state of the target is after
2262 the initial open has been performed. Here we're assuming that
2263 the target has stopped. It should be possible to eventually have
2264 target_open() return to the caller an indication that the target
2265 is currently running and GDB state should be set to the same as
2266 for an async run. */
2267 wait_for_inferior ();
2268
2269 /* Now that the inferior has stopped, do any bookkeeping like
2270 loading shared libraries. We want to do this before normal_stop,
2271 so that the displayed frame is up to date. */
2272 post_create_inferior (&current_target, from_tty);
2273
2274 normal_stop ();
2275 }
2276
2277 /* Initialize static vars when a new inferior begins. */
2278
2279 void
2280 init_wait_for_inferior (void)
2281 {
2282 /* These are meaningless until the first time through wait_for_inferior. */
2283
2284 breakpoint_init_inferior (inf_starting);
2285
2286 clear_proceed_status ();
2287
2288 stepping_past_singlestep_breakpoint = 0;
2289 deferred_step_ptid = null_ptid;
2290
2291 target_last_wait_ptid = minus_one_ptid;
2292
2293 previous_inferior_ptid = inferior_ptid;
2294 init_infwait_state ();
2295
2296 /* Discard any skipped inlined frames. */
2297 clear_inline_frame_state (minus_one_ptid);
2298 }
2299
2300 \f
2301 /* This enum encodes possible reasons for doing a target_wait, so that
2302 wfi can call target_wait in one place. (Ultimately the call will be
2303 moved out of the infinite loop entirely.) */
2304
2305 enum infwait_states
2306 {
2307 infwait_normal_state,
2308 infwait_thread_hop_state,
2309 infwait_step_watch_state,
2310 infwait_nonstep_watch_state
2311 };
2312
2313 /* The PTID we'll do a target_wait on.*/
2314 ptid_t waiton_ptid;
2315
2316 /* Current inferior wait state. */
2317 enum infwait_states infwait_state;
2318
2319 /* Data to be passed around while handling an event. This data is
2320 discarded between events. */
2321 struct execution_control_state
2322 {
2323 ptid_t ptid;
2324 /* The thread that got the event, if this was a thread event; NULL
2325 otherwise. */
2326 struct thread_info *event_thread;
2327
2328 struct target_waitstatus ws;
2329 int random_signal;
2330 int stop_func_filled_in;
2331 CORE_ADDR stop_func_start;
2332 CORE_ADDR stop_func_end;
2333 char *stop_func_name;
2334 int new_thread_event;
2335 int wait_some_more;
2336 };
2337
2338 static void handle_inferior_event (struct execution_control_state *ecs);
2339
2340 static void handle_step_into_function (struct gdbarch *gdbarch,
2341 struct execution_control_state *ecs);
2342 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2343 struct execution_control_state *ecs);
2344 static void check_exception_resume (struct execution_control_state *,
2345 struct frame_info *, struct symbol *);
2346
2347 static void stop_stepping (struct execution_control_state *ecs);
2348 static void prepare_to_wait (struct execution_control_state *ecs);
2349 static void keep_going (struct execution_control_state *ecs);
2350
2351 /* Callback for iterate over threads. If the thread is stopped, but
2352 the user/frontend doesn't know about that yet, go through
2353 normal_stop, as if the thread had just stopped now. ARG points at
2354 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2355 ptid_is_pid(PTID) is true, applies to all threads of the process
2356 pointed at by PTID. Otherwise, apply only to the thread pointed by
2357 PTID. */
2358
2359 static int
2360 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2361 {
2362 ptid_t ptid = * (ptid_t *) arg;
2363
2364 if ((ptid_equal (info->ptid, ptid)
2365 || ptid_equal (minus_one_ptid, ptid)
2366 || (ptid_is_pid (ptid)
2367 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2368 && is_running (info->ptid)
2369 && !is_executing (info->ptid))
2370 {
2371 struct cleanup *old_chain;
2372 struct execution_control_state ecss;
2373 struct execution_control_state *ecs = &ecss;
2374
2375 memset (ecs, 0, sizeof (*ecs));
2376
2377 old_chain = make_cleanup_restore_current_thread ();
2378
2379 switch_to_thread (info->ptid);
2380
2381 /* Go through handle_inferior_event/normal_stop, so we always
2382 have consistent output as if the stop event had been
2383 reported. */
2384 ecs->ptid = info->ptid;
2385 ecs->event_thread = find_thread_ptid (info->ptid);
2386 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2387 ecs->ws.value.sig = TARGET_SIGNAL_0;
2388
2389 handle_inferior_event (ecs);
2390
2391 if (!ecs->wait_some_more)
2392 {
2393 struct thread_info *tp;
2394
2395 normal_stop ();
2396
2397 /* Finish off the continuations. */
2398 tp = inferior_thread ();
2399 do_all_intermediate_continuations_thread (tp, 1);
2400 do_all_continuations_thread (tp, 1);
2401 }
2402
2403 do_cleanups (old_chain);
2404 }
2405
2406 return 0;
2407 }
2408
2409 /* This function is attached as a "thread_stop_requested" observer.
2410 Cleanup local state that assumed the PTID was to be resumed, and
2411 report the stop to the frontend. */
2412
2413 static void
2414 infrun_thread_stop_requested (ptid_t ptid)
2415 {
2416 struct displaced_step_inferior_state *displaced;
2417
2418 /* PTID was requested to stop. Remove it from the displaced
2419 stepping queue, so we don't try to resume it automatically. */
2420
2421 for (displaced = displaced_step_inferior_states;
2422 displaced;
2423 displaced = displaced->next)
2424 {
2425 struct displaced_step_request *it, **prev_next_p;
2426
2427 it = displaced->step_request_queue;
2428 prev_next_p = &displaced->step_request_queue;
2429 while (it)
2430 {
2431 if (ptid_match (it->ptid, ptid))
2432 {
2433 *prev_next_p = it->next;
2434 it->next = NULL;
2435 xfree (it);
2436 }
2437 else
2438 {
2439 prev_next_p = &it->next;
2440 }
2441
2442 it = *prev_next_p;
2443 }
2444 }
2445
2446 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2447 }
2448
2449 static void
2450 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2451 {
2452 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2453 nullify_last_target_wait_ptid ();
2454 }
2455
2456 /* Callback for iterate_over_threads. */
2457
2458 static int
2459 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2460 {
2461 if (is_exited (info->ptid))
2462 return 0;
2463
2464 delete_step_resume_breakpoint (info);
2465 delete_exception_resume_breakpoint (info);
2466 return 0;
2467 }
2468
2469 /* In all-stop, delete the step resume breakpoint of any thread that
2470 had one. In non-stop, delete the step resume breakpoint of the
2471 thread that just stopped. */
2472
2473 static void
2474 delete_step_thread_step_resume_breakpoint (void)
2475 {
2476 if (!target_has_execution
2477 || ptid_equal (inferior_ptid, null_ptid))
2478 /* If the inferior has exited, we have already deleted the step
2479 resume breakpoints out of GDB's lists. */
2480 return;
2481
2482 if (non_stop)
2483 {
2484 /* If in non-stop mode, only delete the step-resume or
2485 longjmp-resume breakpoint of the thread that just stopped
2486 stepping. */
2487 struct thread_info *tp = inferior_thread ();
2488
2489 delete_step_resume_breakpoint (tp);
2490 delete_exception_resume_breakpoint (tp);
2491 }
2492 else
2493 /* In all-stop mode, delete all step-resume and longjmp-resume
2494 breakpoints of any thread that had them. */
2495 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2496 }
2497
2498 /* A cleanup wrapper. */
2499
2500 static void
2501 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2502 {
2503 delete_step_thread_step_resume_breakpoint ();
2504 }
2505
2506 /* Pretty print the results of target_wait, for debugging purposes. */
2507
2508 static void
2509 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2510 const struct target_waitstatus *ws)
2511 {
2512 char *status_string = target_waitstatus_to_string (ws);
2513 struct ui_file *tmp_stream = mem_fileopen ();
2514 char *text;
2515
2516 /* The text is split over several lines because it was getting too long.
2517 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2518 output as a unit; we want only one timestamp printed if debug_timestamp
2519 is set. */
2520
2521 fprintf_unfiltered (tmp_stream,
2522 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2523 if (PIDGET (waiton_ptid) != -1)
2524 fprintf_unfiltered (tmp_stream,
2525 " [%s]", target_pid_to_str (waiton_ptid));
2526 fprintf_unfiltered (tmp_stream, ", status) =\n");
2527 fprintf_unfiltered (tmp_stream,
2528 "infrun: %d [%s],\n",
2529 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2530 fprintf_unfiltered (tmp_stream,
2531 "infrun: %s\n",
2532 status_string);
2533
2534 text = ui_file_xstrdup (tmp_stream, NULL);
2535
2536 /* This uses %s in part to handle %'s in the text, but also to avoid
2537 a gcc error: the format attribute requires a string literal. */
2538 fprintf_unfiltered (gdb_stdlog, "%s", text);
2539
2540 xfree (status_string);
2541 xfree (text);
2542 ui_file_delete (tmp_stream);
2543 }
2544
2545 /* Prepare and stabilize the inferior for detaching it. E.g.,
2546 detaching while a thread is displaced stepping is a recipe for
2547 crashing it, as nothing would readjust the PC out of the scratch
2548 pad. */
2549
2550 void
2551 prepare_for_detach (void)
2552 {
2553 struct inferior *inf = current_inferior ();
2554 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2555 struct cleanup *old_chain_1;
2556 struct displaced_step_inferior_state *displaced;
2557
2558 displaced = get_displaced_stepping_state (inf->pid);
2559
2560 /* Is any thread of this process displaced stepping? If not,
2561 there's nothing else to do. */
2562 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2563 return;
2564
2565 if (debug_infrun)
2566 fprintf_unfiltered (gdb_stdlog,
2567 "displaced-stepping in-process while detaching");
2568
2569 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2570 inf->detaching = 1;
2571
2572 while (!ptid_equal (displaced->step_ptid, null_ptid))
2573 {
2574 struct cleanup *old_chain_2;
2575 struct execution_control_state ecss;
2576 struct execution_control_state *ecs;
2577
2578 ecs = &ecss;
2579 memset (ecs, 0, sizeof (*ecs));
2580
2581 overlay_cache_invalid = 1;
2582
2583 if (deprecated_target_wait_hook)
2584 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2585 else
2586 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2587
2588 if (debug_infrun)
2589 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2590
2591 /* If an error happens while handling the event, propagate GDB's
2592 knowledge of the executing state to the frontend/user running
2593 state. */
2594 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2595 &minus_one_ptid);
2596
2597 /* In non-stop mode, each thread is handled individually.
2598 Switch early, so the global state is set correctly for this
2599 thread. */
2600 if (non_stop
2601 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2602 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2603 context_switch (ecs->ptid);
2604
2605 /* Now figure out what to do with the result of the result. */
2606 handle_inferior_event (ecs);
2607
2608 /* No error, don't finish the state yet. */
2609 discard_cleanups (old_chain_2);
2610
2611 /* Breakpoints and watchpoints are not installed on the target
2612 at this point, and signals are passed directly to the
2613 inferior, so this must mean the process is gone. */
2614 if (!ecs->wait_some_more)
2615 {
2616 discard_cleanups (old_chain_1);
2617 error (_("Program exited while detaching"));
2618 }
2619 }
2620
2621 discard_cleanups (old_chain_1);
2622 }
2623
2624 /* Wait for control to return from inferior to debugger.
2625
2626 If inferior gets a signal, we may decide to start it up again
2627 instead of returning. That is why there is a loop in this function.
2628 When this function actually returns it means the inferior
2629 should be left stopped and GDB should read more commands. */
2630
2631 void
2632 wait_for_inferior (void)
2633 {
2634 struct cleanup *old_cleanups;
2635 struct execution_control_state ecss;
2636 struct execution_control_state *ecs;
2637
2638 if (debug_infrun)
2639 fprintf_unfiltered
2640 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2641
2642 old_cleanups =
2643 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2644
2645 ecs = &ecss;
2646 memset (ecs, 0, sizeof (*ecs));
2647
2648 while (1)
2649 {
2650 struct cleanup *old_chain;
2651
2652 overlay_cache_invalid = 1;
2653
2654 if (deprecated_target_wait_hook)
2655 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2656 else
2657 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2658
2659 if (debug_infrun)
2660 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2661
2662 /* If an error happens while handling the event, propagate GDB's
2663 knowledge of the executing state to the frontend/user running
2664 state. */
2665 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2666
2667 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2668 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2669 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2670
2671 /* Now figure out what to do with the result of the result. */
2672 handle_inferior_event (ecs);
2673
2674 /* No error, don't finish the state yet. */
2675 discard_cleanups (old_chain);
2676
2677 if (!ecs->wait_some_more)
2678 break;
2679 }
2680
2681 do_cleanups (old_cleanups);
2682 }
2683
2684 /* Asynchronous version of wait_for_inferior. It is called by the
2685 event loop whenever a change of state is detected on the file
2686 descriptor corresponding to the target. It can be called more than
2687 once to complete a single execution command. In such cases we need
2688 to keep the state in a global variable ECSS. If it is the last time
2689 that this function is called for a single execution command, then
2690 report to the user that the inferior has stopped, and do the
2691 necessary cleanups. */
2692
2693 void
2694 fetch_inferior_event (void *client_data)
2695 {
2696 struct execution_control_state ecss;
2697 struct execution_control_state *ecs = &ecss;
2698 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2699 struct cleanup *ts_old_chain;
2700 int was_sync = sync_execution;
2701 int cmd_done = 0;
2702
2703 memset (ecs, 0, sizeof (*ecs));
2704
2705 /* We're handling a live event, so make sure we're doing live
2706 debugging. If we're looking at traceframes while the target is
2707 running, we're going to need to get back to that mode after
2708 handling the event. */
2709 if (non_stop)
2710 {
2711 make_cleanup_restore_current_traceframe ();
2712 set_current_traceframe (-1);
2713 }
2714
2715 if (non_stop)
2716 /* In non-stop mode, the user/frontend should not notice a thread
2717 switch due to internal events. Make sure we reverse to the
2718 user selected thread and frame after handling the event and
2719 running any breakpoint commands. */
2720 make_cleanup_restore_current_thread ();
2721
2722 overlay_cache_invalid = 1;
2723
2724 make_cleanup_restore_integer (&execution_direction);
2725 execution_direction = target_execution_direction ();
2726
2727 if (deprecated_target_wait_hook)
2728 ecs->ptid =
2729 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2730 else
2731 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2732
2733 if (debug_infrun)
2734 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2735
2736 if (non_stop
2737 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2738 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2739 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2740 /* In non-stop mode, each thread is handled individually. Switch
2741 early, so the global state is set correctly for this
2742 thread. */
2743 context_switch (ecs->ptid);
2744
2745 /* If an error happens while handling the event, propagate GDB's
2746 knowledge of the executing state to the frontend/user running
2747 state. */
2748 if (!non_stop)
2749 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2750 else
2751 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2752
2753 /* Get executed before make_cleanup_restore_current_thread above to apply
2754 still for the thread which has thrown the exception. */
2755 make_bpstat_clear_actions_cleanup ();
2756
2757 /* Now figure out what to do with the result of the result. */
2758 handle_inferior_event (ecs);
2759
2760 if (!ecs->wait_some_more)
2761 {
2762 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2763
2764 delete_step_thread_step_resume_breakpoint ();
2765
2766 /* We may not find an inferior if this was a process exit. */
2767 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2768 normal_stop ();
2769
2770 if (target_has_execution
2771 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2772 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2773 && ecs->event_thread->step_multi
2774 && ecs->event_thread->control.stop_step)
2775 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2776 else
2777 {
2778 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2779 cmd_done = 1;
2780 }
2781 }
2782
2783 /* No error, don't finish the thread states yet. */
2784 discard_cleanups (ts_old_chain);
2785
2786 /* Revert thread and frame. */
2787 do_cleanups (old_chain);
2788
2789 /* If the inferior was in sync execution mode, and now isn't,
2790 restore the prompt (a synchronous execution command has finished,
2791 and we're ready for input). */
2792 if (interpreter_async && was_sync && !sync_execution)
2793 display_gdb_prompt (0);
2794
2795 if (cmd_done
2796 && !was_sync
2797 && exec_done_display_p
2798 && (ptid_equal (inferior_ptid, null_ptid)
2799 || !is_running (inferior_ptid)))
2800 printf_unfiltered (_("completed.\n"));
2801 }
2802
2803 /* Record the frame and location we're currently stepping through. */
2804 void
2805 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2806 {
2807 struct thread_info *tp = inferior_thread ();
2808
2809 tp->control.step_frame_id = get_frame_id (frame);
2810 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2811
2812 tp->current_symtab = sal.symtab;
2813 tp->current_line = sal.line;
2814 }
2815
2816 /* Clear context switchable stepping state. */
2817
2818 void
2819 init_thread_stepping_state (struct thread_info *tss)
2820 {
2821 tss->stepping_over_breakpoint = 0;
2822 tss->step_after_step_resume_breakpoint = 0;
2823 }
2824
2825 /* Return the cached copy of the last pid/waitstatus returned by
2826 target_wait()/deprecated_target_wait_hook(). The data is actually
2827 cached by handle_inferior_event(), which gets called immediately
2828 after target_wait()/deprecated_target_wait_hook(). */
2829
2830 void
2831 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2832 {
2833 *ptidp = target_last_wait_ptid;
2834 *status = target_last_waitstatus;
2835 }
2836
2837 void
2838 nullify_last_target_wait_ptid (void)
2839 {
2840 target_last_wait_ptid = minus_one_ptid;
2841 }
2842
2843 /* Switch thread contexts. */
2844
2845 static void
2846 context_switch (ptid_t ptid)
2847 {
2848 if (debug_infrun)
2849 {
2850 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2851 target_pid_to_str (inferior_ptid));
2852 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2853 target_pid_to_str (ptid));
2854 }
2855
2856 switch_to_thread (ptid);
2857 }
2858
2859 static void
2860 adjust_pc_after_break (struct execution_control_state *ecs)
2861 {
2862 struct regcache *regcache;
2863 struct gdbarch *gdbarch;
2864 struct address_space *aspace;
2865 CORE_ADDR breakpoint_pc;
2866
2867 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2868 we aren't, just return.
2869
2870 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2871 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2872 implemented by software breakpoints should be handled through the normal
2873 breakpoint layer.
2874
2875 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2876 different signals (SIGILL or SIGEMT for instance), but it is less
2877 clear where the PC is pointing afterwards. It may not match
2878 gdbarch_decr_pc_after_break. I don't know any specific target that
2879 generates these signals at breakpoints (the code has been in GDB since at
2880 least 1992) so I can not guess how to handle them here.
2881
2882 In earlier versions of GDB, a target with
2883 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2884 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2885 target with both of these set in GDB history, and it seems unlikely to be
2886 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2887
2888 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2889 return;
2890
2891 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2892 return;
2893
2894 /* In reverse execution, when a breakpoint is hit, the instruction
2895 under it has already been de-executed. The reported PC always
2896 points at the breakpoint address, so adjusting it further would
2897 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2898 architecture:
2899
2900 B1 0x08000000 : INSN1
2901 B2 0x08000001 : INSN2
2902 0x08000002 : INSN3
2903 PC -> 0x08000003 : INSN4
2904
2905 Say you're stopped at 0x08000003 as above. Reverse continuing
2906 from that point should hit B2 as below. Reading the PC when the
2907 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2908 been de-executed already.
2909
2910 B1 0x08000000 : INSN1
2911 B2 PC -> 0x08000001 : INSN2
2912 0x08000002 : INSN3
2913 0x08000003 : INSN4
2914
2915 We can't apply the same logic as for forward execution, because
2916 we would wrongly adjust the PC to 0x08000000, since there's a
2917 breakpoint at PC - 1. We'd then report a hit on B1, although
2918 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2919 behaviour. */
2920 if (execution_direction == EXEC_REVERSE)
2921 return;
2922
2923 /* If this target does not decrement the PC after breakpoints, then
2924 we have nothing to do. */
2925 regcache = get_thread_regcache (ecs->ptid);
2926 gdbarch = get_regcache_arch (regcache);
2927 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2928 return;
2929
2930 aspace = get_regcache_aspace (regcache);
2931
2932 /* Find the location where (if we've hit a breakpoint) the
2933 breakpoint would be. */
2934 breakpoint_pc = regcache_read_pc (regcache)
2935 - gdbarch_decr_pc_after_break (gdbarch);
2936
2937 /* Check whether there actually is a software breakpoint inserted at
2938 that location.
2939
2940 If in non-stop mode, a race condition is possible where we've
2941 removed a breakpoint, but stop events for that breakpoint were
2942 already queued and arrive later. To suppress those spurious
2943 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2944 and retire them after a number of stop events are reported. */
2945 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2946 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2947 {
2948 struct cleanup *old_cleanups = NULL;
2949
2950 if (RECORD_IS_USED)
2951 old_cleanups = record_gdb_operation_disable_set ();
2952
2953 /* When using hardware single-step, a SIGTRAP is reported for both
2954 a completed single-step and a software breakpoint. Need to
2955 differentiate between the two, as the latter needs adjusting
2956 but the former does not.
2957
2958 The SIGTRAP can be due to a completed hardware single-step only if
2959 - we didn't insert software single-step breakpoints
2960 - the thread to be examined is still the current thread
2961 - this thread is currently being stepped
2962
2963 If any of these events did not occur, we must have stopped due
2964 to hitting a software breakpoint, and have to back up to the
2965 breakpoint address.
2966
2967 As a special case, we could have hardware single-stepped a
2968 software breakpoint. In this case (prev_pc == breakpoint_pc),
2969 we also need to back up to the breakpoint address. */
2970
2971 if (singlestep_breakpoints_inserted_p
2972 || !ptid_equal (ecs->ptid, inferior_ptid)
2973 || !currently_stepping (ecs->event_thread)
2974 || ecs->event_thread->prev_pc == breakpoint_pc)
2975 regcache_write_pc (regcache, breakpoint_pc);
2976
2977 if (RECORD_IS_USED)
2978 do_cleanups (old_cleanups);
2979 }
2980 }
2981
2982 void
2983 init_infwait_state (void)
2984 {
2985 waiton_ptid = pid_to_ptid (-1);
2986 infwait_state = infwait_normal_state;
2987 }
2988
2989 void
2990 error_is_running (void)
2991 {
2992 error (_("Cannot execute this command while "
2993 "the selected thread is running."));
2994 }
2995
2996 void
2997 ensure_not_running (void)
2998 {
2999 if (is_running (inferior_ptid))
3000 error_is_running ();
3001 }
3002
3003 static int
3004 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3005 {
3006 for (frame = get_prev_frame (frame);
3007 frame != NULL;
3008 frame = get_prev_frame (frame))
3009 {
3010 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3011 return 1;
3012 if (get_frame_type (frame) != INLINE_FRAME)
3013 break;
3014 }
3015
3016 return 0;
3017 }
3018
3019 /* Auxiliary function that handles syscall entry/return events.
3020 It returns 1 if the inferior should keep going (and GDB
3021 should ignore the event), or 0 if the event deserves to be
3022 processed. */
3023
3024 static int
3025 handle_syscall_event (struct execution_control_state *ecs)
3026 {
3027 struct regcache *regcache;
3028 struct gdbarch *gdbarch;
3029 int syscall_number;
3030
3031 if (!ptid_equal (ecs->ptid, inferior_ptid))
3032 context_switch (ecs->ptid);
3033
3034 regcache = get_thread_regcache (ecs->ptid);
3035 gdbarch = get_regcache_arch (regcache);
3036 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
3037 stop_pc = regcache_read_pc (regcache);
3038
3039 target_last_waitstatus.value.syscall_number = syscall_number;
3040
3041 if (catch_syscall_enabled () > 0
3042 && catching_syscall_number (syscall_number) > 0)
3043 {
3044 if (debug_infrun)
3045 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3046 syscall_number);
3047
3048 ecs->event_thread->control.stop_bpstat
3049 = bpstat_stop_status (get_regcache_aspace (regcache),
3050 stop_pc, ecs->ptid);
3051 ecs->random_signal
3052 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3053
3054 if (!ecs->random_signal)
3055 {
3056 /* Catchpoint hit. */
3057 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3058 return 0;
3059 }
3060 }
3061
3062 /* If no catchpoint triggered for this, then keep going. */
3063 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3064 keep_going (ecs);
3065 return 1;
3066 }
3067
3068 /* Clear the supplied execution_control_state's stop_func_* fields. */
3069
3070 static void
3071 clear_stop_func (struct execution_control_state *ecs)
3072 {
3073 ecs->stop_func_filled_in = 0;
3074 ecs->stop_func_start = 0;
3075 ecs->stop_func_end = 0;
3076 ecs->stop_func_name = NULL;
3077 }
3078
3079 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3080
3081 static void
3082 fill_in_stop_func (struct gdbarch *gdbarch,
3083 struct execution_control_state *ecs)
3084 {
3085 if (!ecs->stop_func_filled_in)
3086 {
3087 /* Don't care about return value; stop_func_start and stop_func_name
3088 will both be 0 if it doesn't work. */
3089 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3090 &ecs->stop_func_start, &ecs->stop_func_end);
3091 ecs->stop_func_start
3092 += gdbarch_deprecated_function_start_offset (gdbarch);
3093
3094 ecs->stop_func_filled_in = 1;
3095 }
3096 }
3097
3098 /* Given an execution control state that has been freshly filled in
3099 by an event from the inferior, figure out what it means and take
3100 appropriate action. */
3101
3102 static void
3103 handle_inferior_event (struct execution_control_state *ecs)
3104 {
3105 struct frame_info *frame;
3106 struct gdbarch *gdbarch;
3107 int stopped_by_watchpoint;
3108 int stepped_after_stopped_by_watchpoint = 0;
3109 struct symtab_and_line stop_pc_sal;
3110 enum stop_kind stop_soon;
3111
3112 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3113 {
3114 /* We had an event in the inferior, but we are not interested in
3115 handling it at this level. The lower layers have already
3116 done what needs to be done, if anything.
3117
3118 One of the possible circumstances for this is when the
3119 inferior produces output for the console. The inferior has
3120 not stopped, and we are ignoring the event. Another possible
3121 circumstance is any event which the lower level knows will be
3122 reported multiple times without an intervening resume. */
3123 if (debug_infrun)
3124 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3125 prepare_to_wait (ecs);
3126 return;
3127 }
3128
3129 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3130 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3131 {
3132 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3133
3134 gdb_assert (inf);
3135 stop_soon = inf->control.stop_soon;
3136 }
3137 else
3138 stop_soon = NO_STOP_QUIETLY;
3139
3140 /* Cache the last pid/waitstatus. */
3141 target_last_wait_ptid = ecs->ptid;
3142 target_last_waitstatus = ecs->ws;
3143
3144 /* Always clear state belonging to the previous time we stopped. */
3145 stop_stack_dummy = STOP_NONE;
3146
3147 /* If it's a new process, add it to the thread database. */
3148
3149 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3150 && !ptid_equal (ecs->ptid, minus_one_ptid)
3151 && !in_thread_list (ecs->ptid));
3152
3153 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3154 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3155 add_thread (ecs->ptid);
3156
3157 ecs->event_thread = find_thread_ptid (ecs->ptid);
3158
3159 /* Dependent on valid ECS->EVENT_THREAD. */
3160 adjust_pc_after_break (ecs);
3161
3162 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3163 reinit_frame_cache ();
3164
3165 breakpoint_retire_moribund ();
3166
3167 /* First, distinguish signals caused by the debugger from signals
3168 that have to do with the program's own actions. Note that
3169 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3170 on the operating system version. Here we detect when a SIGILL or
3171 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3172 something similar for SIGSEGV, since a SIGSEGV will be generated
3173 when we're trying to execute a breakpoint instruction on a
3174 non-executable stack. This happens for call dummy breakpoints
3175 for architectures like SPARC that place call dummies on the
3176 stack. */
3177 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3178 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3179 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
3180 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
3181 {
3182 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3183
3184 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3185 regcache_read_pc (regcache)))
3186 {
3187 if (debug_infrun)
3188 fprintf_unfiltered (gdb_stdlog,
3189 "infrun: Treating signal as SIGTRAP\n");
3190 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3191 }
3192 }
3193
3194 /* Mark the non-executing threads accordingly. In all-stop, all
3195 threads of all processes are stopped when we get any event
3196 reported. In non-stop mode, only the event thread stops. If
3197 we're handling a process exit in non-stop mode, there's nothing
3198 to do, as threads of the dead process are gone, and threads of
3199 any other process were left running. */
3200 if (!non_stop)
3201 set_executing (minus_one_ptid, 0);
3202 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3203 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3204 set_executing (inferior_ptid, 0);
3205
3206 switch (infwait_state)
3207 {
3208 case infwait_thread_hop_state:
3209 if (debug_infrun)
3210 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3211 break;
3212
3213 case infwait_normal_state:
3214 if (debug_infrun)
3215 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3216 break;
3217
3218 case infwait_step_watch_state:
3219 if (debug_infrun)
3220 fprintf_unfiltered (gdb_stdlog,
3221 "infrun: infwait_step_watch_state\n");
3222
3223 stepped_after_stopped_by_watchpoint = 1;
3224 break;
3225
3226 case infwait_nonstep_watch_state:
3227 if (debug_infrun)
3228 fprintf_unfiltered (gdb_stdlog,
3229 "infrun: infwait_nonstep_watch_state\n");
3230 insert_breakpoints ();
3231
3232 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3233 handle things like signals arriving and other things happening
3234 in combination correctly? */
3235 stepped_after_stopped_by_watchpoint = 1;
3236 break;
3237
3238 default:
3239 internal_error (__FILE__, __LINE__, _("bad switch"));
3240 }
3241
3242 infwait_state = infwait_normal_state;
3243 waiton_ptid = pid_to_ptid (-1);
3244
3245 switch (ecs->ws.kind)
3246 {
3247 case TARGET_WAITKIND_LOADED:
3248 if (debug_infrun)
3249 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3250 /* Ignore gracefully during startup of the inferior, as it might
3251 be the shell which has just loaded some objects, otherwise
3252 add the symbols for the newly loaded objects. Also ignore at
3253 the beginning of an attach or remote session; we will query
3254 the full list of libraries once the connection is
3255 established. */
3256 if (stop_soon == NO_STOP_QUIETLY)
3257 {
3258 /* Check for any newly added shared libraries if we're
3259 supposed to be adding them automatically. Switch
3260 terminal for any messages produced by
3261 breakpoint_re_set. */
3262 target_terminal_ours_for_output ();
3263 /* NOTE: cagney/2003-11-25: Make certain that the target
3264 stack's section table is kept up-to-date. Architectures,
3265 (e.g., PPC64), use the section table to perform
3266 operations such as address => section name and hence
3267 require the table to contain all sections (including
3268 those found in shared libraries). */
3269 #ifdef SOLIB_ADD
3270 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3271 #else
3272 solib_add (NULL, 0, &current_target, auto_solib_add);
3273 #endif
3274 target_terminal_inferior ();
3275
3276 /* If requested, stop when the dynamic linker notifies
3277 gdb of events. This allows the user to get control
3278 and place breakpoints in initializer routines for
3279 dynamically loaded objects (among other things). */
3280 if (stop_on_solib_events)
3281 {
3282 /* Make sure we print "Stopped due to solib-event" in
3283 normal_stop. */
3284 stop_print_frame = 1;
3285
3286 stop_stepping (ecs);
3287 return;
3288 }
3289
3290 /* NOTE drow/2007-05-11: This might be a good place to check
3291 for "catch load". */
3292 }
3293
3294 /* If we are skipping through a shell, or through shared library
3295 loading that we aren't interested in, resume the program. If
3296 we're running the program normally, also resume. But stop if
3297 we're attaching or setting up a remote connection. */
3298 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3299 {
3300 /* Loading of shared libraries might have changed breakpoint
3301 addresses. Make sure new breakpoints are inserted. */
3302 if (stop_soon == NO_STOP_QUIETLY
3303 && !breakpoints_always_inserted_mode ())
3304 insert_breakpoints ();
3305 resume (0, TARGET_SIGNAL_0);
3306 prepare_to_wait (ecs);
3307 return;
3308 }
3309
3310 break;
3311
3312 case TARGET_WAITKIND_SPURIOUS:
3313 if (debug_infrun)
3314 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3315 resume (0, TARGET_SIGNAL_0);
3316 prepare_to_wait (ecs);
3317 return;
3318
3319 case TARGET_WAITKIND_EXITED:
3320 if (debug_infrun)
3321 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3322 inferior_ptid = ecs->ptid;
3323 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3324 set_current_program_space (current_inferior ()->pspace);
3325 handle_vfork_child_exec_or_exit (0);
3326 target_terminal_ours (); /* Must do this before mourn anyway. */
3327 print_exited_reason (ecs->ws.value.integer);
3328
3329 /* Record the exit code in the convenience variable $_exitcode, so
3330 that the user can inspect this again later. */
3331 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3332 (LONGEST) ecs->ws.value.integer);
3333
3334 /* Also record this in the inferior itself. */
3335 current_inferior ()->has_exit_code = 1;
3336 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3337
3338 gdb_flush (gdb_stdout);
3339 target_mourn_inferior ();
3340 singlestep_breakpoints_inserted_p = 0;
3341 cancel_single_step_breakpoints ();
3342 stop_print_frame = 0;
3343 stop_stepping (ecs);
3344 return;
3345
3346 case TARGET_WAITKIND_SIGNALLED:
3347 if (debug_infrun)
3348 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3349 inferior_ptid = ecs->ptid;
3350 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3351 set_current_program_space (current_inferior ()->pspace);
3352 handle_vfork_child_exec_or_exit (0);
3353 stop_print_frame = 0;
3354 target_terminal_ours (); /* Must do this before mourn anyway. */
3355
3356 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3357 reach here unless the inferior is dead. However, for years
3358 target_kill() was called here, which hints that fatal signals aren't
3359 really fatal on some systems. If that's true, then some changes
3360 may be needed. */
3361 target_mourn_inferior ();
3362
3363 print_signal_exited_reason (ecs->ws.value.sig);
3364 singlestep_breakpoints_inserted_p = 0;
3365 cancel_single_step_breakpoints ();
3366 stop_stepping (ecs);
3367 return;
3368
3369 /* The following are the only cases in which we keep going;
3370 the above cases end in a continue or goto. */
3371 case TARGET_WAITKIND_FORKED:
3372 case TARGET_WAITKIND_VFORKED:
3373 if (debug_infrun)
3374 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3375
3376 if (!ptid_equal (ecs->ptid, inferior_ptid))
3377 {
3378 context_switch (ecs->ptid);
3379 reinit_frame_cache ();
3380 }
3381
3382 /* Immediately detach breakpoints from the child before there's
3383 any chance of letting the user delete breakpoints from the
3384 breakpoint lists. If we don't do this early, it's easy to
3385 leave left over traps in the child, vis: "break foo; catch
3386 fork; c; <fork>; del; c; <child calls foo>". We only follow
3387 the fork on the last `continue', and by that time the
3388 breakpoint at "foo" is long gone from the breakpoint table.
3389 If we vforked, then we don't need to unpatch here, since both
3390 parent and child are sharing the same memory pages; we'll
3391 need to unpatch at follow/detach time instead to be certain
3392 that new breakpoints added between catchpoint hit time and
3393 vfork follow are detached. */
3394 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3395 {
3396 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3397
3398 /* This won't actually modify the breakpoint list, but will
3399 physically remove the breakpoints from the child. */
3400 detach_breakpoints (child_pid);
3401 }
3402
3403 if (singlestep_breakpoints_inserted_p)
3404 {
3405 /* Pull the single step breakpoints out of the target. */
3406 remove_single_step_breakpoints ();
3407 singlestep_breakpoints_inserted_p = 0;
3408 }
3409
3410 /* In case the event is caught by a catchpoint, remember that
3411 the event is to be followed at the next resume of the thread,
3412 and not immediately. */
3413 ecs->event_thread->pending_follow = ecs->ws;
3414
3415 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3416
3417 ecs->event_thread->control.stop_bpstat
3418 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3419 stop_pc, ecs->ptid);
3420
3421 /* Note that we're interested in knowing the bpstat actually
3422 causes a stop, not just if it may explain the signal.
3423 Software watchpoints, for example, always appear in the
3424 bpstat. */
3425 ecs->random_signal
3426 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3427
3428 /* If no catchpoint triggered for this, then keep going. */
3429 if (ecs->random_signal)
3430 {
3431 ptid_t parent;
3432 ptid_t child;
3433 int should_resume;
3434 int follow_child
3435 = (follow_fork_mode_string == follow_fork_mode_child);
3436
3437 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3438
3439 should_resume = follow_fork ();
3440
3441 parent = ecs->ptid;
3442 child = ecs->ws.value.related_pid;
3443
3444 /* In non-stop mode, also resume the other branch. */
3445 if (non_stop && !detach_fork)
3446 {
3447 if (follow_child)
3448 switch_to_thread (parent);
3449 else
3450 switch_to_thread (child);
3451
3452 ecs->event_thread = inferior_thread ();
3453 ecs->ptid = inferior_ptid;
3454 keep_going (ecs);
3455 }
3456
3457 if (follow_child)
3458 switch_to_thread (child);
3459 else
3460 switch_to_thread (parent);
3461
3462 ecs->event_thread = inferior_thread ();
3463 ecs->ptid = inferior_ptid;
3464
3465 if (should_resume)
3466 keep_going (ecs);
3467 else
3468 stop_stepping (ecs);
3469 return;
3470 }
3471 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3472 goto process_event_stop_test;
3473
3474 case TARGET_WAITKIND_VFORK_DONE:
3475 /* Done with the shared memory region. Re-insert breakpoints in
3476 the parent, and keep going. */
3477
3478 if (debug_infrun)
3479 fprintf_unfiltered (gdb_stdlog,
3480 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3481
3482 if (!ptid_equal (ecs->ptid, inferior_ptid))
3483 context_switch (ecs->ptid);
3484
3485 current_inferior ()->waiting_for_vfork_done = 0;
3486 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3487 /* This also takes care of reinserting breakpoints in the
3488 previously locked inferior. */
3489 keep_going (ecs);
3490 return;
3491
3492 case TARGET_WAITKIND_EXECD:
3493 if (debug_infrun)
3494 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3495
3496 if (!ptid_equal (ecs->ptid, inferior_ptid))
3497 {
3498 context_switch (ecs->ptid);
3499 reinit_frame_cache ();
3500 }
3501
3502 singlestep_breakpoints_inserted_p = 0;
3503 cancel_single_step_breakpoints ();
3504
3505 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3506
3507 /* Do whatever is necessary to the parent branch of the vfork. */
3508 handle_vfork_child_exec_or_exit (1);
3509
3510 /* This causes the eventpoints and symbol table to be reset.
3511 Must do this now, before trying to determine whether to
3512 stop. */
3513 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3514
3515 ecs->event_thread->control.stop_bpstat
3516 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3517 stop_pc, ecs->ptid);
3518 ecs->random_signal
3519 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3520
3521 /* Note that this may be referenced from inside
3522 bpstat_stop_status above, through inferior_has_execd. */
3523 xfree (ecs->ws.value.execd_pathname);
3524 ecs->ws.value.execd_pathname = NULL;
3525
3526 /* If no catchpoint triggered for this, then keep going. */
3527 if (ecs->random_signal)
3528 {
3529 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3530 keep_going (ecs);
3531 return;
3532 }
3533 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3534 goto process_event_stop_test;
3535
3536 /* Be careful not to try to gather much state about a thread
3537 that's in a syscall. It's frequently a losing proposition. */
3538 case TARGET_WAITKIND_SYSCALL_ENTRY:
3539 if (debug_infrun)
3540 fprintf_unfiltered (gdb_stdlog,
3541 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3542 /* Getting the current syscall number. */
3543 if (handle_syscall_event (ecs) != 0)
3544 return;
3545 goto process_event_stop_test;
3546
3547 /* Before examining the threads further, step this thread to
3548 get it entirely out of the syscall. (We get notice of the
3549 event when the thread is just on the verge of exiting a
3550 syscall. Stepping one instruction seems to get it back
3551 into user code.) */
3552 case TARGET_WAITKIND_SYSCALL_RETURN:
3553 if (debug_infrun)
3554 fprintf_unfiltered (gdb_stdlog,
3555 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3556 if (handle_syscall_event (ecs) != 0)
3557 return;
3558 goto process_event_stop_test;
3559
3560 case TARGET_WAITKIND_STOPPED:
3561 if (debug_infrun)
3562 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3563 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3564 break;
3565
3566 case TARGET_WAITKIND_NO_HISTORY:
3567 /* Reverse execution: target ran out of history info. */
3568 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3569 print_no_history_reason ();
3570 stop_stepping (ecs);
3571 return;
3572 }
3573
3574 if (ecs->new_thread_event)
3575 {
3576 if (non_stop)
3577 /* Non-stop assumes that the target handles adding new threads
3578 to the thread list. */
3579 internal_error (__FILE__, __LINE__,
3580 "targets should add new threads to the thread "
3581 "list themselves in non-stop mode.");
3582
3583 /* We may want to consider not doing a resume here in order to
3584 give the user a chance to play with the new thread. It might
3585 be good to make that a user-settable option. */
3586
3587 /* At this point, all threads are stopped (happens automatically
3588 in either the OS or the native code). Therefore we need to
3589 continue all threads in order to make progress. */
3590
3591 if (!ptid_equal (ecs->ptid, inferior_ptid))
3592 context_switch (ecs->ptid);
3593 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3594 prepare_to_wait (ecs);
3595 return;
3596 }
3597
3598 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3599 {
3600 /* Do we need to clean up the state of a thread that has
3601 completed a displaced single-step? (Doing so usually affects
3602 the PC, so do it here, before we set stop_pc.) */
3603 displaced_step_fixup (ecs->ptid,
3604 ecs->event_thread->suspend.stop_signal);
3605
3606 /* If we either finished a single-step or hit a breakpoint, but
3607 the user wanted this thread to be stopped, pretend we got a
3608 SIG0 (generic unsignaled stop). */
3609
3610 if (ecs->event_thread->stop_requested
3611 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3612 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3613 }
3614
3615 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3616
3617 if (debug_infrun)
3618 {
3619 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3620 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3621 struct cleanup *old_chain = save_inferior_ptid ();
3622
3623 inferior_ptid = ecs->ptid;
3624
3625 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3626 paddress (gdbarch, stop_pc));
3627 if (target_stopped_by_watchpoint ())
3628 {
3629 CORE_ADDR addr;
3630
3631 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3632
3633 if (target_stopped_data_address (&current_target, &addr))
3634 fprintf_unfiltered (gdb_stdlog,
3635 "infrun: stopped data address = %s\n",
3636 paddress (gdbarch, addr));
3637 else
3638 fprintf_unfiltered (gdb_stdlog,
3639 "infrun: (no data address available)\n");
3640 }
3641
3642 do_cleanups (old_chain);
3643 }
3644
3645 if (stepping_past_singlestep_breakpoint)
3646 {
3647 gdb_assert (singlestep_breakpoints_inserted_p);
3648 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3649 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3650
3651 stepping_past_singlestep_breakpoint = 0;
3652
3653 /* We've either finished single-stepping past the single-step
3654 breakpoint, or stopped for some other reason. It would be nice if
3655 we could tell, but we can't reliably. */
3656 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3657 {
3658 if (debug_infrun)
3659 fprintf_unfiltered (gdb_stdlog,
3660 "infrun: stepping_past_"
3661 "singlestep_breakpoint\n");
3662 /* Pull the single step breakpoints out of the target. */
3663 remove_single_step_breakpoints ();
3664 singlestep_breakpoints_inserted_p = 0;
3665
3666 ecs->random_signal = 0;
3667 ecs->event_thread->control.trap_expected = 0;
3668
3669 context_switch (saved_singlestep_ptid);
3670 if (deprecated_context_hook)
3671 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3672
3673 resume (1, TARGET_SIGNAL_0);
3674 prepare_to_wait (ecs);
3675 return;
3676 }
3677 }
3678
3679 if (!ptid_equal (deferred_step_ptid, null_ptid))
3680 {
3681 /* In non-stop mode, there's never a deferred_step_ptid set. */
3682 gdb_assert (!non_stop);
3683
3684 /* If we stopped for some other reason than single-stepping, ignore
3685 the fact that we were supposed to switch back. */
3686 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3687 {
3688 if (debug_infrun)
3689 fprintf_unfiltered (gdb_stdlog,
3690 "infrun: handling deferred step\n");
3691
3692 /* Pull the single step breakpoints out of the target. */
3693 if (singlestep_breakpoints_inserted_p)
3694 {
3695 remove_single_step_breakpoints ();
3696 singlestep_breakpoints_inserted_p = 0;
3697 }
3698
3699 ecs->event_thread->control.trap_expected = 0;
3700
3701 /* Note: We do not call context_switch at this point, as the
3702 context is already set up for stepping the original thread. */
3703 switch_to_thread (deferred_step_ptid);
3704 deferred_step_ptid = null_ptid;
3705 /* Suppress spurious "Switching to ..." message. */
3706 previous_inferior_ptid = inferior_ptid;
3707
3708 resume (1, TARGET_SIGNAL_0);
3709 prepare_to_wait (ecs);
3710 return;
3711 }
3712
3713 deferred_step_ptid = null_ptid;
3714 }
3715
3716 /* See if a thread hit a thread-specific breakpoint that was meant for
3717 another thread. If so, then step that thread past the breakpoint,
3718 and continue it. */
3719
3720 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3721 {
3722 int thread_hop_needed = 0;
3723 struct address_space *aspace =
3724 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3725
3726 /* Check if a regular breakpoint has been hit before checking
3727 for a potential single step breakpoint. Otherwise, GDB will
3728 not see this breakpoint hit when stepping onto breakpoints. */
3729 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3730 {
3731 ecs->random_signal = 0;
3732 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3733 thread_hop_needed = 1;
3734 }
3735 else if (singlestep_breakpoints_inserted_p)
3736 {
3737 /* We have not context switched yet, so this should be true
3738 no matter which thread hit the singlestep breakpoint. */
3739 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3740 if (debug_infrun)
3741 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3742 "trap for %s\n",
3743 target_pid_to_str (ecs->ptid));
3744
3745 ecs->random_signal = 0;
3746 /* The call to in_thread_list is necessary because PTIDs sometimes
3747 change when we go from single-threaded to multi-threaded. If
3748 the singlestep_ptid is still in the list, assume that it is
3749 really different from ecs->ptid. */
3750 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3751 && in_thread_list (singlestep_ptid))
3752 {
3753 /* If the PC of the thread we were trying to single-step
3754 has changed, discard this event (which we were going
3755 to ignore anyway), and pretend we saw that thread
3756 trap. This prevents us continuously moving the
3757 single-step breakpoint forward, one instruction at a
3758 time. If the PC has changed, then the thread we were
3759 trying to single-step has trapped or been signalled,
3760 but the event has not been reported to GDB yet.
3761
3762 There might be some cases where this loses signal
3763 information, if a signal has arrived at exactly the
3764 same time that the PC changed, but this is the best
3765 we can do with the information available. Perhaps we
3766 should arrange to report all events for all threads
3767 when they stop, or to re-poll the remote looking for
3768 this particular thread (i.e. temporarily enable
3769 schedlock). */
3770
3771 CORE_ADDR new_singlestep_pc
3772 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3773
3774 if (new_singlestep_pc != singlestep_pc)
3775 {
3776 enum target_signal stop_signal;
3777
3778 if (debug_infrun)
3779 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3780 " but expected thread advanced also\n");
3781
3782 /* The current context still belongs to
3783 singlestep_ptid. Don't swap here, since that's
3784 the context we want to use. Just fudge our
3785 state and continue. */
3786 stop_signal = ecs->event_thread->suspend.stop_signal;
3787 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3788 ecs->ptid = singlestep_ptid;
3789 ecs->event_thread = find_thread_ptid (ecs->ptid);
3790 ecs->event_thread->suspend.stop_signal = stop_signal;
3791 stop_pc = new_singlestep_pc;
3792 }
3793 else
3794 {
3795 if (debug_infrun)
3796 fprintf_unfiltered (gdb_stdlog,
3797 "infrun: unexpected thread\n");
3798
3799 thread_hop_needed = 1;
3800 stepping_past_singlestep_breakpoint = 1;
3801 saved_singlestep_ptid = singlestep_ptid;
3802 }
3803 }
3804 }
3805
3806 if (thread_hop_needed)
3807 {
3808 struct regcache *thread_regcache;
3809 int remove_status = 0;
3810
3811 if (debug_infrun)
3812 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3813
3814 /* Switch context before touching inferior memory, the
3815 previous thread may have exited. */
3816 if (!ptid_equal (inferior_ptid, ecs->ptid))
3817 context_switch (ecs->ptid);
3818
3819 /* Saw a breakpoint, but it was hit by the wrong thread.
3820 Just continue. */
3821
3822 if (singlestep_breakpoints_inserted_p)
3823 {
3824 /* Pull the single step breakpoints out of the target. */
3825 remove_single_step_breakpoints ();
3826 singlestep_breakpoints_inserted_p = 0;
3827 }
3828
3829 /* If the arch can displace step, don't remove the
3830 breakpoints. */
3831 thread_regcache = get_thread_regcache (ecs->ptid);
3832 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3833 remove_status = remove_breakpoints ();
3834
3835 /* Did we fail to remove breakpoints? If so, try
3836 to set the PC past the bp. (There's at least
3837 one situation in which we can fail to remove
3838 the bp's: On HP-UX's that use ttrace, we can't
3839 change the address space of a vforking child
3840 process until the child exits (well, okay, not
3841 then either :-) or execs. */
3842 if (remove_status != 0)
3843 error (_("Cannot step over breakpoint hit in wrong thread"));
3844 else
3845 { /* Single step */
3846 if (!non_stop)
3847 {
3848 /* Only need to require the next event from this
3849 thread in all-stop mode. */
3850 waiton_ptid = ecs->ptid;
3851 infwait_state = infwait_thread_hop_state;
3852 }
3853
3854 ecs->event_thread->stepping_over_breakpoint = 1;
3855 keep_going (ecs);
3856 return;
3857 }
3858 }
3859 else if (singlestep_breakpoints_inserted_p)
3860 {
3861 ecs->random_signal = 0;
3862 }
3863 }
3864 else
3865 ecs->random_signal = 1;
3866
3867 /* See if something interesting happened to the non-current thread. If
3868 so, then switch to that thread. */
3869 if (!ptid_equal (ecs->ptid, inferior_ptid))
3870 {
3871 if (debug_infrun)
3872 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3873
3874 context_switch (ecs->ptid);
3875
3876 if (deprecated_context_hook)
3877 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3878 }
3879
3880 /* At this point, get hold of the now-current thread's frame. */
3881 frame = get_current_frame ();
3882 gdbarch = get_frame_arch (frame);
3883
3884 if (singlestep_breakpoints_inserted_p)
3885 {
3886 /* Pull the single step breakpoints out of the target. */
3887 remove_single_step_breakpoints ();
3888 singlestep_breakpoints_inserted_p = 0;
3889 }
3890
3891 if (stepped_after_stopped_by_watchpoint)
3892 stopped_by_watchpoint = 0;
3893 else
3894 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3895
3896 /* If necessary, step over this watchpoint. We'll be back to display
3897 it in a moment. */
3898 if (stopped_by_watchpoint
3899 && (target_have_steppable_watchpoint
3900 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3901 {
3902 /* At this point, we are stopped at an instruction which has
3903 attempted to write to a piece of memory under control of
3904 a watchpoint. The instruction hasn't actually executed
3905 yet. If we were to evaluate the watchpoint expression
3906 now, we would get the old value, and therefore no change
3907 would seem to have occurred.
3908
3909 In order to make watchpoints work `right', we really need
3910 to complete the memory write, and then evaluate the
3911 watchpoint expression. We do this by single-stepping the
3912 target.
3913
3914 It may not be necessary to disable the watchpoint to stop over
3915 it. For example, the PA can (with some kernel cooperation)
3916 single step over a watchpoint without disabling the watchpoint.
3917
3918 It is far more common to need to disable a watchpoint to step
3919 the inferior over it. If we have non-steppable watchpoints,
3920 we must disable the current watchpoint; it's simplest to
3921 disable all watchpoints and breakpoints. */
3922 int hw_step = 1;
3923
3924 if (!target_have_steppable_watchpoint)
3925 {
3926 remove_breakpoints ();
3927 /* See comment in resume why we need to stop bypassing signals
3928 while breakpoints have been removed. */
3929 target_pass_signals (0, NULL);
3930 }
3931 /* Single step */
3932 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
3933 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
3934 waiton_ptid = ecs->ptid;
3935 if (target_have_steppable_watchpoint)
3936 infwait_state = infwait_step_watch_state;
3937 else
3938 infwait_state = infwait_nonstep_watch_state;
3939 prepare_to_wait (ecs);
3940 return;
3941 }
3942
3943 clear_stop_func (ecs);
3944 ecs->event_thread->stepping_over_breakpoint = 0;
3945 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
3946 ecs->event_thread->control.stop_step = 0;
3947 stop_print_frame = 1;
3948 ecs->random_signal = 0;
3949 stopped_by_random_signal = 0;
3950
3951 /* Hide inlined functions starting here, unless we just performed stepi or
3952 nexti. After stepi and nexti, always show the innermost frame (not any
3953 inline function call sites). */
3954 if (ecs->event_thread->control.step_range_end != 1)
3955 skip_inline_frames (ecs->ptid);
3956
3957 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3958 && ecs->event_thread->control.trap_expected
3959 && gdbarch_single_step_through_delay_p (gdbarch)
3960 && currently_stepping (ecs->event_thread))
3961 {
3962 /* We're trying to step off a breakpoint. Turns out that we're
3963 also on an instruction that needs to be stepped multiple
3964 times before it's been fully executing. E.g., architectures
3965 with a delay slot. It needs to be stepped twice, once for
3966 the instruction and once for the delay slot. */
3967 int step_through_delay
3968 = gdbarch_single_step_through_delay (gdbarch, frame);
3969
3970 if (debug_infrun && step_through_delay)
3971 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3972 if (ecs->event_thread->control.step_range_end == 0
3973 && step_through_delay)
3974 {
3975 /* The user issued a continue when stopped at a breakpoint.
3976 Set up for another trap and get out of here. */
3977 ecs->event_thread->stepping_over_breakpoint = 1;
3978 keep_going (ecs);
3979 return;
3980 }
3981 else if (step_through_delay)
3982 {
3983 /* The user issued a step when stopped at a breakpoint.
3984 Maybe we should stop, maybe we should not - the delay
3985 slot *might* correspond to a line of source. In any
3986 case, don't decide that here, just set
3987 ecs->stepping_over_breakpoint, making sure we
3988 single-step again before breakpoints are re-inserted. */
3989 ecs->event_thread->stepping_over_breakpoint = 1;
3990 }
3991 }
3992
3993 /* Look at the cause of the stop, and decide what to do.
3994 The alternatives are:
3995 1) stop_stepping and return; to really stop and return to the debugger,
3996 2) keep_going and return to start up again
3997 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
3998 3) set ecs->random_signal to 1, and the decision between 1 and 2
3999 will be made according to the signal handling tables. */
4000
4001 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4002 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4003 || stop_soon == STOP_QUIETLY_REMOTE)
4004 {
4005 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4006 && stop_after_trap)
4007 {
4008 if (debug_infrun)
4009 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4010 stop_print_frame = 0;
4011 stop_stepping (ecs);
4012 return;
4013 }
4014
4015 /* This is originated from start_remote(), start_inferior() and
4016 shared libraries hook functions. */
4017 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4018 {
4019 if (debug_infrun)
4020 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4021 stop_stepping (ecs);
4022 return;
4023 }
4024
4025 /* This originates from attach_command(). We need to overwrite
4026 the stop_signal here, because some kernels don't ignore a
4027 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4028 See more comments in inferior.h. On the other hand, if we
4029 get a non-SIGSTOP, report it to the user - assume the backend
4030 will handle the SIGSTOP if it should show up later.
4031
4032 Also consider that the attach is complete when we see a
4033 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4034 target extended-remote report it instead of a SIGSTOP
4035 (e.g. gdbserver). We already rely on SIGTRAP being our
4036 signal, so this is no exception.
4037
4038 Also consider that the attach is complete when we see a
4039 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4040 the target to stop all threads of the inferior, in case the
4041 low level attach operation doesn't stop them implicitly. If
4042 they weren't stopped implicitly, then the stub will report a
4043 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4044 other than GDB's request. */
4045 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4046 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4047 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4048 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
4049 {
4050 stop_stepping (ecs);
4051 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4052 return;
4053 }
4054
4055 /* See if there is a breakpoint at the current PC. */
4056 ecs->event_thread->control.stop_bpstat
4057 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4058 stop_pc, ecs->ptid);
4059
4060 /* Following in case break condition called a
4061 function. */
4062 stop_print_frame = 1;
4063
4064 /* This is where we handle "moribund" watchpoints. Unlike
4065 software breakpoints traps, hardware watchpoint traps are
4066 always distinguishable from random traps. If no high-level
4067 watchpoint is associated with the reported stop data address
4068 anymore, then the bpstat does not explain the signal ---
4069 simply make sure to ignore it if `stopped_by_watchpoint' is
4070 set. */
4071
4072 if (debug_infrun
4073 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4074 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4075 && stopped_by_watchpoint)
4076 fprintf_unfiltered (gdb_stdlog,
4077 "infrun: no user watchpoint explains "
4078 "watchpoint SIGTRAP, ignoring\n");
4079
4080 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4081 at one stage in the past included checks for an inferior
4082 function call's call dummy's return breakpoint. The original
4083 comment, that went with the test, read:
4084
4085 ``End of a stack dummy. Some systems (e.g. Sony news) give
4086 another signal besides SIGTRAP, so check here as well as
4087 above.''
4088
4089 If someone ever tries to get call dummys on a
4090 non-executable stack to work (where the target would stop
4091 with something like a SIGSEGV), then those tests might need
4092 to be re-instated. Given, however, that the tests were only
4093 enabled when momentary breakpoints were not being used, I
4094 suspect that it won't be the case.
4095
4096 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4097 be necessary for call dummies on a non-executable stack on
4098 SPARC. */
4099
4100 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
4101 ecs->random_signal
4102 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4103 || stopped_by_watchpoint
4104 || ecs->event_thread->control.trap_expected
4105 || (ecs->event_thread->control.step_range_end
4106 && (ecs->event_thread->control.step_resume_breakpoint
4107 == NULL)));
4108 else
4109 {
4110 ecs->random_signal = !bpstat_explains_signal
4111 (ecs->event_thread->control.stop_bpstat);
4112 if (!ecs->random_signal)
4113 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
4114 }
4115 }
4116
4117 /* When we reach this point, we've pretty much decided
4118 that the reason for stopping must've been a random
4119 (unexpected) signal. */
4120
4121 else
4122 ecs->random_signal = 1;
4123
4124 process_event_stop_test:
4125
4126 /* Re-fetch current thread's frame in case we did a
4127 "goto process_event_stop_test" above. */
4128 frame = get_current_frame ();
4129 gdbarch = get_frame_arch (frame);
4130
4131 /* For the program's own signals, act according to
4132 the signal handling tables. */
4133
4134 if (ecs->random_signal)
4135 {
4136 /* Signal not for debugging purposes. */
4137 int printed = 0;
4138 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4139
4140 if (debug_infrun)
4141 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4142 ecs->event_thread->suspend.stop_signal);
4143
4144 stopped_by_random_signal = 1;
4145
4146 if (signal_print[ecs->event_thread->suspend.stop_signal])
4147 {
4148 printed = 1;
4149 target_terminal_ours_for_output ();
4150 print_signal_received_reason
4151 (ecs->event_thread->suspend.stop_signal);
4152 }
4153 /* Always stop on signals if we're either just gaining control
4154 of the program, or the user explicitly requested this thread
4155 to remain stopped. */
4156 if (stop_soon != NO_STOP_QUIETLY
4157 || ecs->event_thread->stop_requested
4158 || (!inf->detaching
4159 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4160 {
4161 stop_stepping (ecs);
4162 return;
4163 }
4164 /* If not going to stop, give terminal back
4165 if we took it away. */
4166 else if (printed)
4167 target_terminal_inferior ();
4168
4169 /* Clear the signal if it should not be passed. */
4170 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4171 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4172
4173 if (ecs->event_thread->prev_pc == stop_pc
4174 && ecs->event_thread->control.trap_expected
4175 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4176 {
4177 /* We were just starting a new sequence, attempting to
4178 single-step off of a breakpoint and expecting a SIGTRAP.
4179 Instead this signal arrives. This signal will take us out
4180 of the stepping range so GDB needs to remember to, when
4181 the signal handler returns, resume stepping off that
4182 breakpoint. */
4183 /* To simplify things, "continue" is forced to use the same
4184 code paths as single-step - set a breakpoint at the
4185 signal return address and then, once hit, step off that
4186 breakpoint. */
4187 if (debug_infrun)
4188 fprintf_unfiltered (gdb_stdlog,
4189 "infrun: signal arrived while stepping over "
4190 "breakpoint\n");
4191
4192 insert_hp_step_resume_breakpoint_at_frame (frame);
4193 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4194 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4195 ecs->event_thread->control.trap_expected = 0;
4196 keep_going (ecs);
4197 return;
4198 }
4199
4200 if (ecs->event_thread->control.step_range_end != 0
4201 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4202 && (ecs->event_thread->control.step_range_start <= stop_pc
4203 && stop_pc < ecs->event_thread->control.step_range_end)
4204 && frame_id_eq (get_stack_frame_id (frame),
4205 ecs->event_thread->control.step_stack_frame_id)
4206 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4207 {
4208 /* The inferior is about to take a signal that will take it
4209 out of the single step range. Set a breakpoint at the
4210 current PC (which is presumably where the signal handler
4211 will eventually return) and then allow the inferior to
4212 run free.
4213
4214 Note that this is only needed for a signal delivered
4215 while in the single-step range. Nested signals aren't a
4216 problem as they eventually all return. */
4217 if (debug_infrun)
4218 fprintf_unfiltered (gdb_stdlog,
4219 "infrun: signal may take us out of "
4220 "single-step range\n");
4221
4222 insert_hp_step_resume_breakpoint_at_frame (frame);
4223 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4224 ecs->event_thread->control.trap_expected = 0;
4225 keep_going (ecs);
4226 return;
4227 }
4228
4229 /* Note: step_resume_breakpoint may be non-NULL. This occures
4230 when either there's a nested signal, or when there's a
4231 pending signal enabled just as the signal handler returns
4232 (leaving the inferior at the step-resume-breakpoint without
4233 actually executing it). Either way continue until the
4234 breakpoint is really hit. */
4235 keep_going (ecs);
4236 return;
4237 }
4238
4239 /* Handle cases caused by hitting a breakpoint. */
4240 {
4241 CORE_ADDR jmp_buf_pc;
4242 struct bpstat_what what;
4243
4244 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4245
4246 if (what.call_dummy)
4247 {
4248 stop_stack_dummy = what.call_dummy;
4249 }
4250
4251 /* If we hit an internal event that triggers symbol changes, the
4252 current frame will be invalidated within bpstat_what (e.g., if
4253 we hit an internal solib event). Re-fetch it. */
4254 frame = get_current_frame ();
4255 gdbarch = get_frame_arch (frame);
4256
4257 switch (what.main_action)
4258 {
4259 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4260 /* If we hit the breakpoint at longjmp while stepping, we
4261 install a momentary breakpoint at the target of the
4262 jmp_buf. */
4263
4264 if (debug_infrun)
4265 fprintf_unfiltered (gdb_stdlog,
4266 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4267
4268 ecs->event_thread->stepping_over_breakpoint = 1;
4269
4270 if (what.is_longjmp)
4271 {
4272 if (!gdbarch_get_longjmp_target_p (gdbarch)
4273 || !gdbarch_get_longjmp_target (gdbarch,
4274 frame, &jmp_buf_pc))
4275 {
4276 if (debug_infrun)
4277 fprintf_unfiltered (gdb_stdlog,
4278 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4279 "(!gdbarch_get_longjmp_target)\n");
4280 keep_going (ecs);
4281 return;
4282 }
4283
4284 /* We're going to replace the current step-resume breakpoint
4285 with a longjmp-resume breakpoint. */
4286 delete_step_resume_breakpoint (ecs->event_thread);
4287
4288 /* Insert a breakpoint at resume address. */
4289 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4290 }
4291 else
4292 {
4293 struct symbol *func = get_frame_function (frame);
4294
4295 if (func)
4296 check_exception_resume (ecs, frame, func);
4297 }
4298 keep_going (ecs);
4299 return;
4300
4301 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4302 if (debug_infrun)
4303 fprintf_unfiltered (gdb_stdlog,
4304 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4305
4306 if (what.is_longjmp)
4307 {
4308 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4309 != NULL);
4310 delete_step_resume_breakpoint (ecs->event_thread);
4311 }
4312 else
4313 {
4314 /* There are several cases to consider.
4315
4316 1. The initiating frame no longer exists. In this case
4317 we must stop, because the exception has gone too far.
4318
4319 2. The initiating frame exists, and is the same as the
4320 current frame. We stop, because the exception has been
4321 caught.
4322
4323 3. The initiating frame exists and is different from
4324 the current frame. This means the exception has been
4325 caught beneath the initiating frame, so keep going. */
4326 struct frame_info *init_frame
4327 = frame_find_by_id (ecs->event_thread->initiating_frame);
4328
4329 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4330 != NULL);
4331 delete_exception_resume_breakpoint (ecs->event_thread);
4332
4333 if (init_frame)
4334 {
4335 struct frame_id current_id
4336 = get_frame_id (get_current_frame ());
4337 if (frame_id_eq (current_id,
4338 ecs->event_thread->initiating_frame))
4339 {
4340 /* Case 2. Fall through. */
4341 }
4342 else
4343 {
4344 /* Case 3. */
4345 keep_going (ecs);
4346 return;
4347 }
4348 }
4349
4350 /* For Cases 1 and 2, remove the step-resume breakpoint,
4351 if it exists. */
4352 delete_step_resume_breakpoint (ecs->event_thread);
4353 }
4354
4355 ecs->event_thread->control.stop_step = 1;
4356 print_end_stepping_range_reason ();
4357 stop_stepping (ecs);
4358 return;
4359
4360 case BPSTAT_WHAT_SINGLE:
4361 if (debug_infrun)
4362 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4363 ecs->event_thread->stepping_over_breakpoint = 1;
4364 /* Still need to check other stuff, at least the case
4365 where we are stepping and step out of the right range. */
4366 break;
4367
4368 case BPSTAT_WHAT_STEP_RESUME:
4369 if (debug_infrun)
4370 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4371
4372 delete_step_resume_breakpoint (ecs->event_thread);
4373 if (ecs->event_thread->control.proceed_to_finish
4374 && execution_direction == EXEC_REVERSE)
4375 {
4376 struct thread_info *tp = ecs->event_thread;
4377
4378 /* We are finishing a function in reverse, and just hit
4379 the step-resume breakpoint at the start address of the
4380 function, and we're almost there -- just need to back
4381 up by one more single-step, which should take us back
4382 to the function call. */
4383 tp->control.step_range_start = tp->control.step_range_end = 1;
4384 keep_going (ecs);
4385 return;
4386 }
4387 fill_in_stop_func (gdbarch, ecs);
4388 if (stop_pc == ecs->stop_func_start
4389 && execution_direction == EXEC_REVERSE)
4390 {
4391 /* We are stepping over a function call in reverse, and
4392 just hit the step-resume breakpoint at the start
4393 address of the function. Go back to single-stepping,
4394 which should take us back to the function call. */
4395 ecs->event_thread->stepping_over_breakpoint = 1;
4396 keep_going (ecs);
4397 return;
4398 }
4399 break;
4400
4401 case BPSTAT_WHAT_STOP_NOISY:
4402 if (debug_infrun)
4403 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4404 stop_print_frame = 1;
4405
4406 /* We are about to nuke the step_resume_breakpointt via the
4407 cleanup chain, so no need to worry about it here. */
4408
4409 stop_stepping (ecs);
4410 return;
4411
4412 case BPSTAT_WHAT_STOP_SILENT:
4413 if (debug_infrun)
4414 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4415 stop_print_frame = 0;
4416
4417 /* We are about to nuke the step_resume_breakpoin via the
4418 cleanup chain, so no need to worry about it here. */
4419
4420 stop_stepping (ecs);
4421 return;
4422
4423 case BPSTAT_WHAT_HP_STEP_RESUME:
4424 if (debug_infrun)
4425 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4426
4427 delete_step_resume_breakpoint (ecs->event_thread);
4428 if (ecs->event_thread->step_after_step_resume_breakpoint)
4429 {
4430 /* Back when the step-resume breakpoint was inserted, we
4431 were trying to single-step off a breakpoint. Go back
4432 to doing that. */
4433 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4434 ecs->event_thread->stepping_over_breakpoint = 1;
4435 keep_going (ecs);
4436 return;
4437 }
4438 break;
4439
4440 case BPSTAT_WHAT_KEEP_CHECKING:
4441 break;
4442 }
4443 }
4444
4445 /* We come here if we hit a breakpoint but should not
4446 stop for it. Possibly we also were stepping
4447 and should stop for that. So fall through and
4448 test for stepping. But, if not stepping,
4449 do not stop. */
4450
4451 /* In all-stop mode, if we're currently stepping but have stopped in
4452 some other thread, we need to switch back to the stepped thread. */
4453 if (!non_stop)
4454 {
4455 struct thread_info *tp;
4456
4457 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4458 ecs->event_thread);
4459 if (tp)
4460 {
4461 /* However, if the current thread is blocked on some internal
4462 breakpoint, and we simply need to step over that breakpoint
4463 to get it going again, do that first. */
4464 if ((ecs->event_thread->control.trap_expected
4465 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
4466 || ecs->event_thread->stepping_over_breakpoint)
4467 {
4468 keep_going (ecs);
4469 return;
4470 }
4471
4472 /* If the stepping thread exited, then don't try to switch
4473 back and resume it, which could fail in several different
4474 ways depending on the target. Instead, just keep going.
4475
4476 We can find a stepping dead thread in the thread list in
4477 two cases:
4478
4479 - The target supports thread exit events, and when the
4480 target tries to delete the thread from the thread list,
4481 inferior_ptid pointed at the exiting thread. In such
4482 case, calling delete_thread does not really remove the
4483 thread from the list; instead, the thread is left listed,
4484 with 'exited' state.
4485
4486 - The target's debug interface does not support thread
4487 exit events, and so we have no idea whatsoever if the
4488 previously stepping thread is still alive. For that
4489 reason, we need to synchronously query the target
4490 now. */
4491 if (is_exited (tp->ptid)
4492 || !target_thread_alive (tp->ptid))
4493 {
4494 if (debug_infrun)
4495 fprintf_unfiltered (gdb_stdlog,
4496 "infrun: not switching back to "
4497 "stepped thread, it has vanished\n");
4498
4499 delete_thread (tp->ptid);
4500 keep_going (ecs);
4501 return;
4502 }
4503
4504 /* Otherwise, we no longer expect a trap in the current thread.
4505 Clear the trap_expected flag before switching back -- this is
4506 what keep_going would do as well, if we called it. */
4507 ecs->event_thread->control.trap_expected = 0;
4508
4509 if (debug_infrun)
4510 fprintf_unfiltered (gdb_stdlog,
4511 "infrun: switching back to stepped thread\n");
4512
4513 ecs->event_thread = tp;
4514 ecs->ptid = tp->ptid;
4515 context_switch (ecs->ptid);
4516 keep_going (ecs);
4517 return;
4518 }
4519 }
4520
4521 if (ecs->event_thread->control.step_resume_breakpoint)
4522 {
4523 if (debug_infrun)
4524 fprintf_unfiltered (gdb_stdlog,
4525 "infrun: step-resume breakpoint is inserted\n");
4526
4527 /* Having a step-resume breakpoint overrides anything
4528 else having to do with stepping commands until
4529 that breakpoint is reached. */
4530 keep_going (ecs);
4531 return;
4532 }
4533
4534 if (ecs->event_thread->control.step_range_end == 0)
4535 {
4536 if (debug_infrun)
4537 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4538 /* Likewise if we aren't even stepping. */
4539 keep_going (ecs);
4540 return;
4541 }
4542
4543 /* Re-fetch current thread's frame in case the code above caused
4544 the frame cache to be re-initialized, making our FRAME variable
4545 a dangling pointer. */
4546 frame = get_current_frame ();
4547 gdbarch = get_frame_arch (frame);
4548 fill_in_stop_func (gdbarch, ecs);
4549
4550 /* If stepping through a line, keep going if still within it.
4551
4552 Note that step_range_end is the address of the first instruction
4553 beyond the step range, and NOT the address of the last instruction
4554 within it!
4555
4556 Note also that during reverse execution, we may be stepping
4557 through a function epilogue and therefore must detect when
4558 the current-frame changes in the middle of a line. */
4559
4560 if (stop_pc >= ecs->event_thread->control.step_range_start
4561 && stop_pc < ecs->event_thread->control.step_range_end
4562 && (execution_direction != EXEC_REVERSE
4563 || frame_id_eq (get_frame_id (frame),
4564 ecs->event_thread->control.step_frame_id)))
4565 {
4566 if (debug_infrun)
4567 fprintf_unfiltered
4568 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4569 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4570 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4571
4572 /* When stepping backward, stop at beginning of line range
4573 (unless it's the function entry point, in which case
4574 keep going back to the call point). */
4575 if (stop_pc == ecs->event_thread->control.step_range_start
4576 && stop_pc != ecs->stop_func_start
4577 && execution_direction == EXEC_REVERSE)
4578 {
4579 ecs->event_thread->control.stop_step = 1;
4580 print_end_stepping_range_reason ();
4581 stop_stepping (ecs);
4582 }
4583 else
4584 keep_going (ecs);
4585
4586 return;
4587 }
4588
4589 /* We stepped out of the stepping range. */
4590
4591 /* If we are stepping at the source level and entered the runtime
4592 loader dynamic symbol resolution code...
4593
4594 EXEC_FORWARD: we keep on single stepping until we exit the run
4595 time loader code and reach the callee's address.
4596
4597 EXEC_REVERSE: we've already executed the callee (backward), and
4598 the runtime loader code is handled just like any other
4599 undebuggable function call. Now we need only keep stepping
4600 backward through the trampoline code, and that's handled further
4601 down, so there is nothing for us to do here. */
4602
4603 if (execution_direction != EXEC_REVERSE
4604 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4605 && in_solib_dynsym_resolve_code (stop_pc))
4606 {
4607 CORE_ADDR pc_after_resolver =
4608 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4609
4610 if (debug_infrun)
4611 fprintf_unfiltered (gdb_stdlog,
4612 "infrun: stepped into dynsym resolve code\n");
4613
4614 if (pc_after_resolver)
4615 {
4616 /* Set up a step-resume breakpoint at the address
4617 indicated by SKIP_SOLIB_RESOLVER. */
4618 struct symtab_and_line sr_sal;
4619
4620 init_sal (&sr_sal);
4621 sr_sal.pc = pc_after_resolver;
4622 sr_sal.pspace = get_frame_program_space (frame);
4623
4624 insert_step_resume_breakpoint_at_sal (gdbarch,
4625 sr_sal, null_frame_id);
4626 }
4627
4628 keep_going (ecs);
4629 return;
4630 }
4631
4632 if (ecs->event_thread->control.step_range_end != 1
4633 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4634 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4635 && get_frame_type (frame) == SIGTRAMP_FRAME)
4636 {
4637 if (debug_infrun)
4638 fprintf_unfiltered (gdb_stdlog,
4639 "infrun: stepped into signal trampoline\n");
4640 /* The inferior, while doing a "step" or "next", has ended up in
4641 a signal trampoline (either by a signal being delivered or by
4642 the signal handler returning). Just single-step until the
4643 inferior leaves the trampoline (either by calling the handler
4644 or returning). */
4645 keep_going (ecs);
4646 return;
4647 }
4648
4649 /* Check for subroutine calls. The check for the current frame
4650 equalling the step ID is not necessary - the check of the
4651 previous frame's ID is sufficient - but it is a common case and
4652 cheaper than checking the previous frame's ID.
4653
4654 NOTE: frame_id_eq will never report two invalid frame IDs as
4655 being equal, so to get into this block, both the current and
4656 previous frame must have valid frame IDs. */
4657 /* The outer_frame_id check is a heuristic to detect stepping
4658 through startup code. If we step over an instruction which
4659 sets the stack pointer from an invalid value to a valid value,
4660 we may detect that as a subroutine call from the mythical
4661 "outermost" function. This could be fixed by marking
4662 outermost frames as !stack_p,code_p,special_p. Then the
4663 initial outermost frame, before sp was valid, would
4664 have code_addr == &_start. See the comment in frame_id_eq
4665 for more. */
4666 if (!frame_id_eq (get_stack_frame_id (frame),
4667 ecs->event_thread->control.step_stack_frame_id)
4668 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4669 ecs->event_thread->control.step_stack_frame_id)
4670 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4671 outer_frame_id)
4672 || step_start_function != find_pc_function (stop_pc))))
4673 {
4674 CORE_ADDR real_stop_pc;
4675
4676 if (debug_infrun)
4677 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4678
4679 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4680 || ((ecs->event_thread->control.step_range_end == 1)
4681 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4682 ecs->stop_func_start)))
4683 {
4684 /* I presume that step_over_calls is only 0 when we're
4685 supposed to be stepping at the assembly language level
4686 ("stepi"). Just stop. */
4687 /* Also, maybe we just did a "nexti" inside a prolog, so we
4688 thought it was a subroutine call but it was not. Stop as
4689 well. FENN */
4690 /* And this works the same backward as frontward. MVS */
4691 ecs->event_thread->control.stop_step = 1;
4692 print_end_stepping_range_reason ();
4693 stop_stepping (ecs);
4694 return;
4695 }
4696
4697 /* Reverse stepping through solib trampolines. */
4698
4699 if (execution_direction == EXEC_REVERSE
4700 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4701 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4702 || (ecs->stop_func_start == 0
4703 && in_solib_dynsym_resolve_code (stop_pc))))
4704 {
4705 /* Any solib trampoline code can be handled in reverse
4706 by simply continuing to single-step. We have already
4707 executed the solib function (backwards), and a few
4708 steps will take us back through the trampoline to the
4709 caller. */
4710 keep_going (ecs);
4711 return;
4712 }
4713
4714 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4715 {
4716 /* We're doing a "next".
4717
4718 Normal (forward) execution: set a breakpoint at the
4719 callee's return address (the address at which the caller
4720 will resume).
4721
4722 Reverse (backward) execution. set the step-resume
4723 breakpoint at the start of the function that we just
4724 stepped into (backwards), and continue to there. When we
4725 get there, we'll need to single-step back to the caller. */
4726
4727 if (execution_direction == EXEC_REVERSE)
4728 {
4729 struct symtab_and_line sr_sal;
4730
4731 /* Normal function call return (static or dynamic). */
4732 init_sal (&sr_sal);
4733 sr_sal.pc = ecs->stop_func_start;
4734 sr_sal.pspace = get_frame_program_space (frame);
4735 insert_step_resume_breakpoint_at_sal (gdbarch,
4736 sr_sal, null_frame_id);
4737 }
4738 else
4739 insert_step_resume_breakpoint_at_caller (frame);
4740
4741 keep_going (ecs);
4742 return;
4743 }
4744
4745 /* If we are in a function call trampoline (a stub between the
4746 calling routine and the real function), locate the real
4747 function. That's what tells us (a) whether we want to step
4748 into it at all, and (b) what prologue we want to run to the
4749 end of, if we do step into it. */
4750 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4751 if (real_stop_pc == 0)
4752 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4753 if (real_stop_pc != 0)
4754 ecs->stop_func_start = real_stop_pc;
4755
4756 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4757 {
4758 struct symtab_and_line sr_sal;
4759
4760 init_sal (&sr_sal);
4761 sr_sal.pc = ecs->stop_func_start;
4762 sr_sal.pspace = get_frame_program_space (frame);
4763
4764 insert_step_resume_breakpoint_at_sal (gdbarch,
4765 sr_sal, null_frame_id);
4766 keep_going (ecs);
4767 return;
4768 }
4769
4770 /* If we have line number information for the function we are
4771 thinking of stepping into, step into it.
4772
4773 If there are several symtabs at that PC (e.g. with include
4774 files), just want to know whether *any* of them have line
4775 numbers. find_pc_line handles this. */
4776 {
4777 struct symtab_and_line tmp_sal;
4778
4779 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4780 if (tmp_sal.line != 0)
4781 {
4782 if (execution_direction == EXEC_REVERSE)
4783 handle_step_into_function_backward (gdbarch, ecs);
4784 else
4785 handle_step_into_function (gdbarch, ecs);
4786 return;
4787 }
4788 }
4789
4790 /* If we have no line number and the step-stop-if-no-debug is
4791 set, we stop the step so that the user has a chance to switch
4792 in assembly mode. */
4793 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4794 && step_stop_if_no_debug)
4795 {
4796 ecs->event_thread->control.stop_step = 1;
4797 print_end_stepping_range_reason ();
4798 stop_stepping (ecs);
4799 return;
4800 }
4801
4802 if (execution_direction == EXEC_REVERSE)
4803 {
4804 /* Set a breakpoint at callee's start address.
4805 From there we can step once and be back in the caller. */
4806 struct symtab_and_line sr_sal;
4807
4808 init_sal (&sr_sal);
4809 sr_sal.pc = ecs->stop_func_start;
4810 sr_sal.pspace = get_frame_program_space (frame);
4811 insert_step_resume_breakpoint_at_sal (gdbarch,
4812 sr_sal, null_frame_id);
4813 }
4814 else
4815 /* Set a breakpoint at callee's return address (the address
4816 at which the caller will resume). */
4817 insert_step_resume_breakpoint_at_caller (frame);
4818
4819 keep_going (ecs);
4820 return;
4821 }
4822
4823 /* Reverse stepping through solib trampolines. */
4824
4825 if (execution_direction == EXEC_REVERSE
4826 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4827 {
4828 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4829 || (ecs->stop_func_start == 0
4830 && in_solib_dynsym_resolve_code (stop_pc)))
4831 {
4832 /* Any solib trampoline code can be handled in reverse
4833 by simply continuing to single-step. We have already
4834 executed the solib function (backwards), and a few
4835 steps will take us back through the trampoline to the
4836 caller. */
4837 keep_going (ecs);
4838 return;
4839 }
4840 else if (in_solib_dynsym_resolve_code (stop_pc))
4841 {
4842 /* Stepped backward into the solib dynsym resolver.
4843 Set a breakpoint at its start and continue, then
4844 one more step will take us out. */
4845 struct symtab_and_line sr_sal;
4846
4847 init_sal (&sr_sal);
4848 sr_sal.pc = ecs->stop_func_start;
4849 sr_sal.pspace = get_frame_program_space (frame);
4850 insert_step_resume_breakpoint_at_sal (gdbarch,
4851 sr_sal, null_frame_id);
4852 keep_going (ecs);
4853 return;
4854 }
4855 }
4856
4857 /* If we're in the return path from a shared library trampoline,
4858 we want to proceed through the trampoline when stepping. */
4859 if (gdbarch_in_solib_return_trampoline (gdbarch,
4860 stop_pc, ecs->stop_func_name))
4861 {
4862 /* Determine where this trampoline returns. */
4863 CORE_ADDR real_stop_pc;
4864
4865 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4866
4867 if (debug_infrun)
4868 fprintf_unfiltered (gdb_stdlog,
4869 "infrun: stepped into solib return tramp\n");
4870
4871 /* Only proceed through if we know where it's going. */
4872 if (real_stop_pc)
4873 {
4874 /* And put the step-breakpoint there and go until there. */
4875 struct symtab_and_line sr_sal;
4876
4877 init_sal (&sr_sal); /* initialize to zeroes */
4878 sr_sal.pc = real_stop_pc;
4879 sr_sal.section = find_pc_overlay (sr_sal.pc);
4880 sr_sal.pspace = get_frame_program_space (frame);
4881
4882 /* Do not specify what the fp should be when we stop since
4883 on some machines the prologue is where the new fp value
4884 is established. */
4885 insert_step_resume_breakpoint_at_sal (gdbarch,
4886 sr_sal, null_frame_id);
4887
4888 /* Restart without fiddling with the step ranges or
4889 other state. */
4890 keep_going (ecs);
4891 return;
4892 }
4893 }
4894
4895 stop_pc_sal = find_pc_line (stop_pc, 0);
4896
4897 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4898 the trampoline processing logic, however, there are some trampolines
4899 that have no names, so we should do trampoline handling first. */
4900 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4901 && ecs->stop_func_name == NULL
4902 && stop_pc_sal.line == 0)
4903 {
4904 if (debug_infrun)
4905 fprintf_unfiltered (gdb_stdlog,
4906 "infrun: stepped into undebuggable function\n");
4907
4908 /* The inferior just stepped into, or returned to, an
4909 undebuggable function (where there is no debugging information
4910 and no line number corresponding to the address where the
4911 inferior stopped). Since we want to skip this kind of code,
4912 we keep going until the inferior returns from this
4913 function - unless the user has asked us not to (via
4914 set step-mode) or we no longer know how to get back
4915 to the call site. */
4916 if (step_stop_if_no_debug
4917 || !frame_id_p (frame_unwind_caller_id (frame)))
4918 {
4919 /* If we have no line number and the step-stop-if-no-debug
4920 is set, we stop the step so that the user has a chance to
4921 switch in assembly mode. */
4922 ecs->event_thread->control.stop_step = 1;
4923 print_end_stepping_range_reason ();
4924 stop_stepping (ecs);
4925 return;
4926 }
4927 else
4928 {
4929 /* Set a breakpoint at callee's return address (the address
4930 at which the caller will resume). */
4931 insert_step_resume_breakpoint_at_caller (frame);
4932 keep_going (ecs);
4933 return;
4934 }
4935 }
4936
4937 if (ecs->event_thread->control.step_range_end == 1)
4938 {
4939 /* It is stepi or nexti. We always want to stop stepping after
4940 one instruction. */
4941 if (debug_infrun)
4942 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
4943 ecs->event_thread->control.stop_step = 1;
4944 print_end_stepping_range_reason ();
4945 stop_stepping (ecs);
4946 return;
4947 }
4948
4949 if (stop_pc_sal.line == 0)
4950 {
4951 /* We have no line number information. That means to stop
4952 stepping (does this always happen right after one instruction,
4953 when we do "s" in a function with no line numbers,
4954 or can this happen as a result of a return or longjmp?). */
4955 if (debug_infrun)
4956 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
4957 ecs->event_thread->control.stop_step = 1;
4958 print_end_stepping_range_reason ();
4959 stop_stepping (ecs);
4960 return;
4961 }
4962
4963 /* Look for "calls" to inlined functions, part one. If the inline
4964 frame machinery detected some skipped call sites, we have entered
4965 a new inline function. */
4966
4967 if (frame_id_eq (get_frame_id (get_current_frame ()),
4968 ecs->event_thread->control.step_frame_id)
4969 && inline_skipped_frames (ecs->ptid))
4970 {
4971 struct symtab_and_line call_sal;
4972
4973 if (debug_infrun)
4974 fprintf_unfiltered (gdb_stdlog,
4975 "infrun: stepped into inlined function\n");
4976
4977 find_frame_sal (get_current_frame (), &call_sal);
4978
4979 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
4980 {
4981 /* For "step", we're going to stop. But if the call site
4982 for this inlined function is on the same source line as
4983 we were previously stepping, go down into the function
4984 first. Otherwise stop at the call site. */
4985
4986 if (call_sal.line == ecs->event_thread->current_line
4987 && call_sal.symtab == ecs->event_thread->current_symtab)
4988 step_into_inline_frame (ecs->ptid);
4989
4990 ecs->event_thread->control.stop_step = 1;
4991 print_end_stepping_range_reason ();
4992 stop_stepping (ecs);
4993 return;
4994 }
4995 else
4996 {
4997 /* For "next", we should stop at the call site if it is on a
4998 different source line. Otherwise continue through the
4999 inlined function. */
5000 if (call_sal.line == ecs->event_thread->current_line
5001 && call_sal.symtab == ecs->event_thread->current_symtab)
5002 keep_going (ecs);
5003 else
5004 {
5005 ecs->event_thread->control.stop_step = 1;
5006 print_end_stepping_range_reason ();
5007 stop_stepping (ecs);
5008 }
5009 return;
5010 }
5011 }
5012
5013 /* Look for "calls" to inlined functions, part two. If we are still
5014 in the same real function we were stepping through, but we have
5015 to go further up to find the exact frame ID, we are stepping
5016 through a more inlined call beyond its call site. */
5017
5018 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5019 && !frame_id_eq (get_frame_id (get_current_frame ()),
5020 ecs->event_thread->control.step_frame_id)
5021 && stepped_in_from (get_current_frame (),
5022 ecs->event_thread->control.step_frame_id))
5023 {
5024 if (debug_infrun)
5025 fprintf_unfiltered (gdb_stdlog,
5026 "infrun: stepping through inlined function\n");
5027
5028 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5029 keep_going (ecs);
5030 else
5031 {
5032 ecs->event_thread->control.stop_step = 1;
5033 print_end_stepping_range_reason ();
5034 stop_stepping (ecs);
5035 }
5036 return;
5037 }
5038
5039 if ((stop_pc == stop_pc_sal.pc)
5040 && (ecs->event_thread->current_line != stop_pc_sal.line
5041 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5042 {
5043 /* We are at the start of a different line. So stop. Note that
5044 we don't stop if we step into the middle of a different line.
5045 That is said to make things like for (;;) statements work
5046 better. */
5047 if (debug_infrun)
5048 fprintf_unfiltered (gdb_stdlog,
5049 "infrun: stepped to a different line\n");
5050 ecs->event_thread->control.stop_step = 1;
5051 print_end_stepping_range_reason ();
5052 stop_stepping (ecs);
5053 return;
5054 }
5055
5056 /* We aren't done stepping.
5057
5058 Optimize by setting the stepping range to the line.
5059 (We might not be in the original line, but if we entered a
5060 new line in mid-statement, we continue stepping. This makes
5061 things like for(;;) statements work better.) */
5062
5063 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5064 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5065 set_step_info (frame, stop_pc_sal);
5066
5067 if (debug_infrun)
5068 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5069 keep_going (ecs);
5070 }
5071
5072 /* Is thread TP in the middle of single-stepping? */
5073
5074 static int
5075 currently_stepping (struct thread_info *tp)
5076 {
5077 return ((tp->control.step_range_end
5078 && tp->control.step_resume_breakpoint == NULL)
5079 || tp->control.trap_expected
5080 || bpstat_should_step ());
5081 }
5082
5083 /* Returns true if any thread *but* the one passed in "data" is in the
5084 middle of stepping or of handling a "next". */
5085
5086 static int
5087 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5088 {
5089 if (tp == data)
5090 return 0;
5091
5092 return (tp->control.step_range_end
5093 || tp->control.trap_expected);
5094 }
5095
5096 /* Inferior has stepped into a subroutine call with source code that
5097 we should not step over. Do step to the first line of code in
5098 it. */
5099
5100 static void
5101 handle_step_into_function (struct gdbarch *gdbarch,
5102 struct execution_control_state *ecs)
5103 {
5104 struct symtab *s;
5105 struct symtab_and_line stop_func_sal, sr_sal;
5106
5107 fill_in_stop_func (gdbarch, ecs);
5108
5109 s = find_pc_symtab (stop_pc);
5110 if (s && s->language != language_asm)
5111 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5112 ecs->stop_func_start);
5113
5114 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5115 /* Use the step_resume_break to step until the end of the prologue,
5116 even if that involves jumps (as it seems to on the vax under
5117 4.2). */
5118 /* If the prologue ends in the middle of a source line, continue to
5119 the end of that source line (if it is still within the function).
5120 Otherwise, just go to end of prologue. */
5121 if (stop_func_sal.end
5122 && stop_func_sal.pc != ecs->stop_func_start
5123 && stop_func_sal.end < ecs->stop_func_end)
5124 ecs->stop_func_start = stop_func_sal.end;
5125
5126 /* Architectures which require breakpoint adjustment might not be able
5127 to place a breakpoint at the computed address. If so, the test
5128 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5129 ecs->stop_func_start to an address at which a breakpoint may be
5130 legitimately placed.
5131
5132 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5133 made, GDB will enter an infinite loop when stepping through
5134 optimized code consisting of VLIW instructions which contain
5135 subinstructions corresponding to different source lines. On
5136 FR-V, it's not permitted to place a breakpoint on any but the
5137 first subinstruction of a VLIW instruction. When a breakpoint is
5138 set, GDB will adjust the breakpoint address to the beginning of
5139 the VLIW instruction. Thus, we need to make the corresponding
5140 adjustment here when computing the stop address. */
5141
5142 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5143 {
5144 ecs->stop_func_start
5145 = gdbarch_adjust_breakpoint_address (gdbarch,
5146 ecs->stop_func_start);
5147 }
5148
5149 if (ecs->stop_func_start == stop_pc)
5150 {
5151 /* We are already there: stop now. */
5152 ecs->event_thread->control.stop_step = 1;
5153 print_end_stepping_range_reason ();
5154 stop_stepping (ecs);
5155 return;
5156 }
5157 else
5158 {
5159 /* Put the step-breakpoint there and go until there. */
5160 init_sal (&sr_sal); /* initialize to zeroes */
5161 sr_sal.pc = ecs->stop_func_start;
5162 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5163 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5164
5165 /* Do not specify what the fp should be when we stop since on
5166 some machines the prologue is where the new fp value is
5167 established. */
5168 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5169
5170 /* And make sure stepping stops right away then. */
5171 ecs->event_thread->control.step_range_end
5172 = ecs->event_thread->control.step_range_start;
5173 }
5174 keep_going (ecs);
5175 }
5176
5177 /* Inferior has stepped backward into a subroutine call with source
5178 code that we should not step over. Do step to the beginning of the
5179 last line of code in it. */
5180
5181 static void
5182 handle_step_into_function_backward (struct gdbarch *gdbarch,
5183 struct execution_control_state *ecs)
5184 {
5185 struct symtab *s;
5186 struct symtab_and_line stop_func_sal;
5187
5188 fill_in_stop_func (gdbarch, ecs);
5189
5190 s = find_pc_symtab (stop_pc);
5191 if (s && s->language != language_asm)
5192 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5193 ecs->stop_func_start);
5194
5195 stop_func_sal = find_pc_line (stop_pc, 0);
5196
5197 /* OK, we're just going to keep stepping here. */
5198 if (stop_func_sal.pc == stop_pc)
5199 {
5200 /* We're there already. Just stop stepping now. */
5201 ecs->event_thread->control.stop_step = 1;
5202 print_end_stepping_range_reason ();
5203 stop_stepping (ecs);
5204 }
5205 else
5206 {
5207 /* Else just reset the step range and keep going.
5208 No step-resume breakpoint, they don't work for
5209 epilogues, which can have multiple entry paths. */
5210 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5211 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5212 keep_going (ecs);
5213 }
5214 return;
5215 }
5216
5217 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5218 This is used to both functions and to skip over code. */
5219
5220 static void
5221 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5222 struct symtab_and_line sr_sal,
5223 struct frame_id sr_id,
5224 enum bptype sr_type)
5225 {
5226 /* There should never be more than one step-resume or longjmp-resume
5227 breakpoint per thread, so we should never be setting a new
5228 step_resume_breakpoint when one is already active. */
5229 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5230 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5231
5232 if (debug_infrun)
5233 fprintf_unfiltered (gdb_stdlog,
5234 "infrun: inserting step-resume breakpoint at %s\n",
5235 paddress (gdbarch, sr_sal.pc));
5236
5237 inferior_thread ()->control.step_resume_breakpoint
5238 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5239 }
5240
5241 void
5242 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5243 struct symtab_and_line sr_sal,
5244 struct frame_id sr_id)
5245 {
5246 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5247 sr_sal, sr_id,
5248 bp_step_resume);
5249 }
5250
5251 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5252 This is used to skip a potential signal handler.
5253
5254 This is called with the interrupted function's frame. The signal
5255 handler, when it returns, will resume the interrupted function at
5256 RETURN_FRAME.pc. */
5257
5258 static void
5259 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5260 {
5261 struct symtab_and_line sr_sal;
5262 struct gdbarch *gdbarch;
5263
5264 gdb_assert (return_frame != NULL);
5265 init_sal (&sr_sal); /* initialize to zeros */
5266
5267 gdbarch = get_frame_arch (return_frame);
5268 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5269 sr_sal.section = find_pc_overlay (sr_sal.pc);
5270 sr_sal.pspace = get_frame_program_space (return_frame);
5271
5272 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5273 get_stack_frame_id (return_frame),
5274 bp_hp_step_resume);
5275 }
5276
5277 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5278 is used to skip a function after stepping into it (for "next" or if
5279 the called function has no debugging information).
5280
5281 The current function has almost always been reached by single
5282 stepping a call or return instruction. NEXT_FRAME belongs to the
5283 current function, and the breakpoint will be set at the caller's
5284 resume address.
5285
5286 This is a separate function rather than reusing
5287 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5288 get_prev_frame, which may stop prematurely (see the implementation
5289 of frame_unwind_caller_id for an example). */
5290
5291 static void
5292 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5293 {
5294 struct symtab_and_line sr_sal;
5295 struct gdbarch *gdbarch;
5296
5297 /* We shouldn't have gotten here if we don't know where the call site
5298 is. */
5299 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5300
5301 init_sal (&sr_sal); /* initialize to zeros */
5302
5303 gdbarch = frame_unwind_caller_arch (next_frame);
5304 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5305 frame_unwind_caller_pc (next_frame));
5306 sr_sal.section = find_pc_overlay (sr_sal.pc);
5307 sr_sal.pspace = frame_unwind_program_space (next_frame);
5308
5309 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5310 frame_unwind_caller_id (next_frame));
5311 }
5312
5313 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5314 new breakpoint at the target of a jmp_buf. The handling of
5315 longjmp-resume uses the same mechanisms used for handling
5316 "step-resume" breakpoints. */
5317
5318 static void
5319 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5320 {
5321 /* There should never be more than one step-resume or longjmp-resume
5322 breakpoint per thread, so we should never be setting a new
5323 longjmp_resume_breakpoint when one is already active. */
5324 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5325
5326 if (debug_infrun)
5327 fprintf_unfiltered (gdb_stdlog,
5328 "infrun: inserting longjmp-resume breakpoint at %s\n",
5329 paddress (gdbarch, pc));
5330
5331 inferior_thread ()->control.step_resume_breakpoint =
5332 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5333 }
5334
5335 /* Insert an exception resume breakpoint. TP is the thread throwing
5336 the exception. The block B is the block of the unwinder debug hook
5337 function. FRAME is the frame corresponding to the call to this
5338 function. SYM is the symbol of the function argument holding the
5339 target PC of the exception. */
5340
5341 static void
5342 insert_exception_resume_breakpoint (struct thread_info *tp,
5343 struct block *b,
5344 struct frame_info *frame,
5345 struct symbol *sym)
5346 {
5347 struct gdb_exception e;
5348
5349 /* We want to ignore errors here. */
5350 TRY_CATCH (e, RETURN_MASK_ERROR)
5351 {
5352 struct symbol *vsym;
5353 struct value *value;
5354 CORE_ADDR handler;
5355 struct breakpoint *bp;
5356
5357 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5358 value = read_var_value (vsym, frame);
5359 /* If the value was optimized out, revert to the old behavior. */
5360 if (! value_optimized_out (value))
5361 {
5362 handler = value_as_address (value);
5363
5364 if (debug_infrun)
5365 fprintf_unfiltered (gdb_stdlog,
5366 "infrun: exception resume at %lx\n",
5367 (unsigned long) handler);
5368
5369 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5370 handler, bp_exception_resume);
5371 bp->thread = tp->num;
5372 inferior_thread ()->control.exception_resume_breakpoint = bp;
5373 }
5374 }
5375 }
5376
5377 /* This is called when an exception has been intercepted. Check to
5378 see whether the exception's destination is of interest, and if so,
5379 set an exception resume breakpoint there. */
5380
5381 static void
5382 check_exception_resume (struct execution_control_state *ecs,
5383 struct frame_info *frame, struct symbol *func)
5384 {
5385 struct gdb_exception e;
5386
5387 TRY_CATCH (e, RETURN_MASK_ERROR)
5388 {
5389 struct block *b;
5390 struct dict_iterator iter;
5391 struct symbol *sym;
5392 int argno = 0;
5393
5394 /* The exception breakpoint is a thread-specific breakpoint on
5395 the unwinder's debug hook, declared as:
5396
5397 void _Unwind_DebugHook (void *cfa, void *handler);
5398
5399 The CFA argument indicates the frame to which control is
5400 about to be transferred. HANDLER is the destination PC.
5401
5402 We ignore the CFA and set a temporary breakpoint at HANDLER.
5403 This is not extremely efficient but it avoids issues in gdb
5404 with computing the DWARF CFA, and it also works even in weird
5405 cases such as throwing an exception from inside a signal
5406 handler. */
5407
5408 b = SYMBOL_BLOCK_VALUE (func);
5409 ALL_BLOCK_SYMBOLS (b, iter, sym)
5410 {
5411 if (!SYMBOL_IS_ARGUMENT (sym))
5412 continue;
5413
5414 if (argno == 0)
5415 ++argno;
5416 else
5417 {
5418 insert_exception_resume_breakpoint (ecs->event_thread,
5419 b, frame, sym);
5420 break;
5421 }
5422 }
5423 }
5424 }
5425
5426 static void
5427 stop_stepping (struct execution_control_state *ecs)
5428 {
5429 if (debug_infrun)
5430 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5431
5432 /* Let callers know we don't want to wait for the inferior anymore. */
5433 ecs->wait_some_more = 0;
5434 }
5435
5436 /* This function handles various cases where we need to continue
5437 waiting for the inferior. */
5438 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5439
5440 static void
5441 keep_going (struct execution_control_state *ecs)
5442 {
5443 /* Make sure normal_stop is called if we get a QUIT handled before
5444 reaching resume. */
5445 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5446
5447 /* Save the pc before execution, to compare with pc after stop. */
5448 ecs->event_thread->prev_pc
5449 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5450
5451 /* If we did not do break;, it means we should keep running the
5452 inferior and not return to debugger. */
5453
5454 if (ecs->event_thread->control.trap_expected
5455 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
5456 {
5457 /* We took a signal (which we are supposed to pass through to
5458 the inferior, else we'd not get here) and we haven't yet
5459 gotten our trap. Simply continue. */
5460
5461 discard_cleanups (old_cleanups);
5462 resume (currently_stepping (ecs->event_thread),
5463 ecs->event_thread->suspend.stop_signal);
5464 }
5465 else
5466 {
5467 /* Either the trap was not expected, but we are continuing
5468 anyway (the user asked that this signal be passed to the
5469 child)
5470 -- or --
5471 The signal was SIGTRAP, e.g. it was our signal, but we
5472 decided we should resume from it.
5473
5474 We're going to run this baby now!
5475
5476 Note that insert_breakpoints won't try to re-insert
5477 already inserted breakpoints. Therefore, we don't
5478 care if breakpoints were already inserted, or not. */
5479
5480 if (ecs->event_thread->stepping_over_breakpoint)
5481 {
5482 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5483
5484 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5485 /* Since we can't do a displaced step, we have to remove
5486 the breakpoint while we step it. To keep things
5487 simple, we remove them all. */
5488 remove_breakpoints ();
5489 }
5490 else
5491 {
5492 struct gdb_exception e;
5493
5494 /* Stop stepping when inserting breakpoints
5495 has failed. */
5496 TRY_CATCH (e, RETURN_MASK_ERROR)
5497 {
5498 insert_breakpoints ();
5499 }
5500 if (e.reason < 0)
5501 {
5502 exception_print (gdb_stderr, e);
5503 stop_stepping (ecs);
5504 return;
5505 }
5506 }
5507
5508 ecs->event_thread->control.trap_expected
5509 = ecs->event_thread->stepping_over_breakpoint;
5510
5511 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5512 specifies that such a signal should be delivered to the
5513 target program).
5514
5515 Typically, this would occure when a user is debugging a
5516 target monitor on a simulator: the target monitor sets a
5517 breakpoint; the simulator encounters this break-point and
5518 halts the simulation handing control to GDB; GDB, noteing
5519 that the break-point isn't valid, returns control back to the
5520 simulator; the simulator then delivers the hardware
5521 equivalent of a SIGNAL_TRAP to the program being debugged. */
5522
5523 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5524 && !signal_program[ecs->event_thread->suspend.stop_signal])
5525 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
5526
5527 discard_cleanups (old_cleanups);
5528 resume (currently_stepping (ecs->event_thread),
5529 ecs->event_thread->suspend.stop_signal);
5530 }
5531
5532 prepare_to_wait (ecs);
5533 }
5534
5535 /* This function normally comes after a resume, before
5536 handle_inferior_event exits. It takes care of any last bits of
5537 housekeeping, and sets the all-important wait_some_more flag. */
5538
5539 static void
5540 prepare_to_wait (struct execution_control_state *ecs)
5541 {
5542 if (debug_infrun)
5543 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5544
5545 /* This is the old end of the while loop. Let everybody know we
5546 want to wait for the inferior some more and get called again
5547 soon. */
5548 ecs->wait_some_more = 1;
5549 }
5550
5551 /* Several print_*_reason functions to print why the inferior has stopped.
5552 We always print something when the inferior exits, or receives a signal.
5553 The rest of the cases are dealt with later on in normal_stop and
5554 print_it_typical. Ideally there should be a call to one of these
5555 print_*_reason functions functions from handle_inferior_event each time
5556 stop_stepping is called. */
5557
5558 /* Print why the inferior has stopped.
5559 We are done with a step/next/si/ni command, print why the inferior has
5560 stopped. For now print nothing. Print a message only if not in the middle
5561 of doing a "step n" operation for n > 1. */
5562
5563 static void
5564 print_end_stepping_range_reason (void)
5565 {
5566 if ((!inferior_thread ()->step_multi
5567 || !inferior_thread ()->control.stop_step)
5568 && ui_out_is_mi_like_p (current_uiout))
5569 ui_out_field_string (current_uiout, "reason",
5570 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5571 }
5572
5573 /* The inferior was terminated by a signal, print why it stopped. */
5574
5575 static void
5576 print_signal_exited_reason (enum target_signal siggnal)
5577 {
5578 struct ui_out *uiout = current_uiout;
5579
5580 annotate_signalled ();
5581 if (ui_out_is_mi_like_p (uiout))
5582 ui_out_field_string
5583 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5584 ui_out_text (uiout, "\nProgram terminated with signal ");
5585 annotate_signal_name ();
5586 ui_out_field_string (uiout, "signal-name",
5587 target_signal_to_name (siggnal));
5588 annotate_signal_name_end ();
5589 ui_out_text (uiout, ", ");
5590 annotate_signal_string ();
5591 ui_out_field_string (uiout, "signal-meaning",
5592 target_signal_to_string (siggnal));
5593 annotate_signal_string_end ();
5594 ui_out_text (uiout, ".\n");
5595 ui_out_text (uiout, "The program no longer exists.\n");
5596 }
5597
5598 /* The inferior program is finished, print why it stopped. */
5599
5600 static void
5601 print_exited_reason (int exitstatus)
5602 {
5603 struct inferior *inf = current_inferior ();
5604 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5605 struct ui_out *uiout = current_uiout;
5606
5607 annotate_exited (exitstatus);
5608 if (exitstatus)
5609 {
5610 if (ui_out_is_mi_like_p (uiout))
5611 ui_out_field_string (uiout, "reason",
5612 async_reason_lookup (EXEC_ASYNC_EXITED));
5613 ui_out_text (uiout, "[Inferior ");
5614 ui_out_text (uiout, plongest (inf->num));
5615 ui_out_text (uiout, " (");
5616 ui_out_text (uiout, pidstr);
5617 ui_out_text (uiout, ") exited with code ");
5618 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5619 ui_out_text (uiout, "]\n");
5620 }
5621 else
5622 {
5623 if (ui_out_is_mi_like_p (uiout))
5624 ui_out_field_string
5625 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5626 ui_out_text (uiout, "[Inferior ");
5627 ui_out_text (uiout, plongest (inf->num));
5628 ui_out_text (uiout, " (");
5629 ui_out_text (uiout, pidstr);
5630 ui_out_text (uiout, ") exited normally]\n");
5631 }
5632 /* Support the --return-child-result option. */
5633 return_child_result_value = exitstatus;
5634 }
5635
5636 /* Signal received, print why the inferior has stopped. The signal table
5637 tells us to print about it. */
5638
5639 static void
5640 print_signal_received_reason (enum target_signal siggnal)
5641 {
5642 struct ui_out *uiout = current_uiout;
5643
5644 annotate_signal ();
5645
5646 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5647 {
5648 struct thread_info *t = inferior_thread ();
5649
5650 ui_out_text (uiout, "\n[");
5651 ui_out_field_string (uiout, "thread-name",
5652 target_pid_to_str (t->ptid));
5653 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5654 ui_out_text (uiout, " stopped");
5655 }
5656 else
5657 {
5658 ui_out_text (uiout, "\nProgram received signal ");
5659 annotate_signal_name ();
5660 if (ui_out_is_mi_like_p (uiout))
5661 ui_out_field_string
5662 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5663 ui_out_field_string (uiout, "signal-name",
5664 target_signal_to_name (siggnal));
5665 annotate_signal_name_end ();
5666 ui_out_text (uiout, ", ");
5667 annotate_signal_string ();
5668 ui_out_field_string (uiout, "signal-meaning",
5669 target_signal_to_string (siggnal));
5670 annotate_signal_string_end ();
5671 }
5672 ui_out_text (uiout, ".\n");
5673 }
5674
5675 /* Reverse execution: target ran out of history info, print why the inferior
5676 has stopped. */
5677
5678 static void
5679 print_no_history_reason (void)
5680 {
5681 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5682 }
5683
5684 /* Here to return control to GDB when the inferior stops for real.
5685 Print appropriate messages, remove breakpoints, give terminal our modes.
5686
5687 STOP_PRINT_FRAME nonzero means print the executing frame
5688 (pc, function, args, file, line number and line text).
5689 BREAKPOINTS_FAILED nonzero means stop was due to error
5690 attempting to insert breakpoints. */
5691
5692 void
5693 normal_stop (void)
5694 {
5695 struct target_waitstatus last;
5696 ptid_t last_ptid;
5697 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5698
5699 get_last_target_status (&last_ptid, &last);
5700
5701 /* If an exception is thrown from this point on, make sure to
5702 propagate GDB's knowledge of the executing state to the
5703 frontend/user running state. A QUIT is an easy exception to see
5704 here, so do this before any filtered output. */
5705 if (!non_stop)
5706 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5707 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5708 && last.kind != TARGET_WAITKIND_EXITED)
5709 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5710
5711 /* In non-stop mode, we don't want GDB to switch threads behind the
5712 user's back, to avoid races where the user is typing a command to
5713 apply to thread x, but GDB switches to thread y before the user
5714 finishes entering the command. */
5715
5716 /* As with the notification of thread events, we want to delay
5717 notifying the user that we've switched thread context until
5718 the inferior actually stops.
5719
5720 There's no point in saying anything if the inferior has exited.
5721 Note that SIGNALLED here means "exited with a signal", not
5722 "received a signal". */
5723 if (!non_stop
5724 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5725 && target_has_execution
5726 && last.kind != TARGET_WAITKIND_SIGNALLED
5727 && last.kind != TARGET_WAITKIND_EXITED)
5728 {
5729 target_terminal_ours_for_output ();
5730 printf_filtered (_("[Switching to %s]\n"),
5731 target_pid_to_str (inferior_ptid));
5732 annotate_thread_changed ();
5733 previous_inferior_ptid = inferior_ptid;
5734 }
5735
5736 if (!breakpoints_always_inserted_mode () && target_has_execution)
5737 {
5738 if (remove_breakpoints ())
5739 {
5740 target_terminal_ours_for_output ();
5741 printf_filtered (_("Cannot remove breakpoints because "
5742 "program is no longer writable.\nFurther "
5743 "execution is probably impossible.\n"));
5744 }
5745 }
5746
5747 /* If an auto-display called a function and that got a signal,
5748 delete that auto-display to avoid an infinite recursion. */
5749
5750 if (stopped_by_random_signal)
5751 disable_current_display ();
5752
5753 /* Don't print a message if in the middle of doing a "step n"
5754 operation for n > 1 */
5755 if (target_has_execution
5756 && last.kind != TARGET_WAITKIND_SIGNALLED
5757 && last.kind != TARGET_WAITKIND_EXITED
5758 && inferior_thread ()->step_multi
5759 && inferior_thread ()->control.stop_step)
5760 goto done;
5761
5762 target_terminal_ours ();
5763 async_enable_stdin ();
5764
5765 /* Set the current source location. This will also happen if we
5766 display the frame below, but the current SAL will be incorrect
5767 during a user hook-stop function. */
5768 if (has_stack_frames () && !stop_stack_dummy)
5769 set_current_sal_from_frame (get_current_frame (), 1);
5770
5771 /* Let the user/frontend see the threads as stopped. */
5772 do_cleanups (old_chain);
5773
5774 /* Look up the hook_stop and run it (CLI internally handles problem
5775 of stop_command's pre-hook not existing). */
5776 if (stop_command)
5777 catch_errors (hook_stop_stub, stop_command,
5778 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5779
5780 if (!has_stack_frames ())
5781 goto done;
5782
5783 if (last.kind == TARGET_WAITKIND_SIGNALLED
5784 || last.kind == TARGET_WAITKIND_EXITED)
5785 goto done;
5786
5787 /* Select innermost stack frame - i.e., current frame is frame 0,
5788 and current location is based on that.
5789 Don't do this on return from a stack dummy routine,
5790 or if the program has exited. */
5791
5792 if (!stop_stack_dummy)
5793 {
5794 select_frame (get_current_frame ());
5795
5796 /* Print current location without a level number, if
5797 we have changed functions or hit a breakpoint.
5798 Print source line if we have one.
5799 bpstat_print() contains the logic deciding in detail
5800 what to print, based on the event(s) that just occurred. */
5801
5802 /* If --batch-silent is enabled then there's no need to print the current
5803 source location, and to try risks causing an error message about
5804 missing source files. */
5805 if (stop_print_frame && !batch_silent)
5806 {
5807 int bpstat_ret;
5808 int source_flag;
5809 int do_frame_printing = 1;
5810 struct thread_info *tp = inferior_thread ();
5811
5812 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
5813 switch (bpstat_ret)
5814 {
5815 case PRINT_UNKNOWN:
5816 /* If we had hit a shared library event breakpoint,
5817 bpstat_print would print out this message. If we hit
5818 an OS-level shared library event, do the same
5819 thing. */
5820 if (last.kind == TARGET_WAITKIND_LOADED)
5821 {
5822 printf_filtered (_("Stopped due to shared library event\n"));
5823 source_flag = SRC_LINE; /* something bogus */
5824 do_frame_printing = 0;
5825 break;
5826 }
5827
5828 /* FIXME: cagney/2002-12-01: Given that a frame ID does
5829 (or should) carry around the function and does (or
5830 should) use that when doing a frame comparison. */
5831 if (tp->control.stop_step
5832 && frame_id_eq (tp->control.step_frame_id,
5833 get_frame_id (get_current_frame ()))
5834 && step_start_function == find_pc_function (stop_pc))
5835 source_flag = SRC_LINE; /* Finished step, just
5836 print source line. */
5837 else
5838 source_flag = SRC_AND_LOC; /* Print location and
5839 source line. */
5840 break;
5841 case PRINT_SRC_AND_LOC:
5842 source_flag = SRC_AND_LOC; /* Print location and
5843 source line. */
5844 break;
5845 case PRINT_SRC_ONLY:
5846 source_flag = SRC_LINE;
5847 break;
5848 case PRINT_NOTHING:
5849 source_flag = SRC_LINE; /* something bogus */
5850 do_frame_printing = 0;
5851 break;
5852 default:
5853 internal_error (__FILE__, __LINE__, _("Unknown value."));
5854 }
5855
5856 /* The behavior of this routine with respect to the source
5857 flag is:
5858 SRC_LINE: Print only source line
5859 LOCATION: Print only location
5860 SRC_AND_LOC: Print location and source line. */
5861 if (do_frame_printing)
5862 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
5863
5864 /* Display the auto-display expressions. */
5865 do_displays ();
5866 }
5867 }
5868
5869 /* Save the function value return registers, if we care.
5870 We might be about to restore their previous contents. */
5871 if (inferior_thread ()->control.proceed_to_finish
5872 && execution_direction != EXEC_REVERSE)
5873 {
5874 /* This should not be necessary. */
5875 if (stop_registers)
5876 regcache_xfree (stop_registers);
5877
5878 /* NB: The copy goes through to the target picking up the value of
5879 all the registers. */
5880 stop_registers = regcache_dup (get_current_regcache ());
5881 }
5882
5883 if (stop_stack_dummy == STOP_STACK_DUMMY)
5884 {
5885 /* Pop the empty frame that contains the stack dummy.
5886 This also restores inferior state prior to the call
5887 (struct infcall_suspend_state). */
5888 struct frame_info *frame = get_current_frame ();
5889
5890 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5891 frame_pop (frame);
5892 /* frame_pop() calls reinit_frame_cache as the last thing it
5893 does which means there's currently no selected frame. We
5894 don't need to re-establish a selected frame if the dummy call
5895 returns normally, that will be done by
5896 restore_infcall_control_state. However, we do have to handle
5897 the case where the dummy call is returning after being
5898 stopped (e.g. the dummy call previously hit a breakpoint).
5899 We can't know which case we have so just always re-establish
5900 a selected frame here. */
5901 select_frame (get_current_frame ());
5902 }
5903
5904 done:
5905 annotate_stopped ();
5906
5907 /* Suppress the stop observer if we're in the middle of:
5908
5909 - a step n (n > 1), as there still more steps to be done.
5910
5911 - a "finish" command, as the observer will be called in
5912 finish_command_continuation, so it can include the inferior
5913 function's return value.
5914
5915 - calling an inferior function, as we pretend we inferior didn't
5916 run at all. The return value of the call is handled by the
5917 expression evaluator, through call_function_by_hand. */
5918
5919 if (!target_has_execution
5920 || last.kind == TARGET_WAITKIND_SIGNALLED
5921 || last.kind == TARGET_WAITKIND_EXITED
5922 || (!inferior_thread ()->step_multi
5923 && !(inferior_thread ()->control.stop_bpstat
5924 && inferior_thread ()->control.proceed_to_finish)
5925 && !inferior_thread ()->control.in_infcall))
5926 {
5927 if (!ptid_equal (inferior_ptid, null_ptid))
5928 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
5929 stop_print_frame);
5930 else
5931 observer_notify_normal_stop (NULL, stop_print_frame);
5932 }
5933
5934 if (target_has_execution)
5935 {
5936 if (last.kind != TARGET_WAITKIND_SIGNALLED
5937 && last.kind != TARGET_WAITKIND_EXITED)
5938 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5939 Delete any breakpoint that is to be deleted at the next stop. */
5940 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
5941 }
5942
5943 /* Try to get rid of automatically added inferiors that are no
5944 longer needed. Keeping those around slows down things linearly.
5945 Note that this never removes the current inferior. */
5946 prune_inferiors ();
5947 }
5948
5949 static int
5950 hook_stop_stub (void *cmd)
5951 {
5952 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
5953 return (0);
5954 }
5955 \f
5956 int
5957 signal_stop_state (int signo)
5958 {
5959 return signal_stop[signo];
5960 }
5961
5962 int
5963 signal_print_state (int signo)
5964 {
5965 return signal_print[signo];
5966 }
5967
5968 int
5969 signal_pass_state (int signo)
5970 {
5971 return signal_program[signo];
5972 }
5973
5974 static void
5975 signal_cache_update (int signo)
5976 {
5977 if (signo == -1)
5978 {
5979 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
5980 signal_cache_update (signo);
5981
5982 return;
5983 }
5984
5985 signal_pass[signo] = (signal_stop[signo] == 0
5986 && signal_print[signo] == 0
5987 && signal_program[signo] == 1);
5988 }
5989
5990 int
5991 signal_stop_update (int signo, int state)
5992 {
5993 int ret = signal_stop[signo];
5994
5995 signal_stop[signo] = state;
5996 signal_cache_update (signo);
5997 return ret;
5998 }
5999
6000 int
6001 signal_print_update (int signo, int state)
6002 {
6003 int ret = signal_print[signo];
6004
6005 signal_print[signo] = state;
6006 signal_cache_update (signo);
6007 return ret;
6008 }
6009
6010 int
6011 signal_pass_update (int signo, int state)
6012 {
6013 int ret = signal_program[signo];
6014
6015 signal_program[signo] = state;
6016 signal_cache_update (signo);
6017 return ret;
6018 }
6019
6020 static void
6021 sig_print_header (void)
6022 {
6023 printf_filtered (_("Signal Stop\tPrint\tPass "
6024 "to program\tDescription\n"));
6025 }
6026
6027 static void
6028 sig_print_info (enum target_signal oursig)
6029 {
6030 const char *name = target_signal_to_name (oursig);
6031 int name_padding = 13 - strlen (name);
6032
6033 if (name_padding <= 0)
6034 name_padding = 0;
6035
6036 printf_filtered ("%s", name);
6037 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6038 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6039 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6040 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6041 printf_filtered ("%s\n", target_signal_to_string (oursig));
6042 }
6043
6044 /* Specify how various signals in the inferior should be handled. */
6045
6046 static void
6047 handle_command (char *args, int from_tty)
6048 {
6049 char **argv;
6050 int digits, wordlen;
6051 int sigfirst, signum, siglast;
6052 enum target_signal oursig;
6053 int allsigs;
6054 int nsigs;
6055 unsigned char *sigs;
6056 struct cleanup *old_chain;
6057
6058 if (args == NULL)
6059 {
6060 error_no_arg (_("signal to handle"));
6061 }
6062
6063 /* Allocate and zero an array of flags for which signals to handle. */
6064
6065 nsigs = (int) TARGET_SIGNAL_LAST;
6066 sigs = (unsigned char *) alloca (nsigs);
6067 memset (sigs, 0, nsigs);
6068
6069 /* Break the command line up into args. */
6070
6071 argv = gdb_buildargv (args);
6072 old_chain = make_cleanup_freeargv (argv);
6073
6074 /* Walk through the args, looking for signal oursigs, signal names, and
6075 actions. Signal numbers and signal names may be interspersed with
6076 actions, with the actions being performed for all signals cumulatively
6077 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6078
6079 while (*argv != NULL)
6080 {
6081 wordlen = strlen (*argv);
6082 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6083 {;
6084 }
6085 allsigs = 0;
6086 sigfirst = siglast = -1;
6087
6088 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6089 {
6090 /* Apply action to all signals except those used by the
6091 debugger. Silently skip those. */
6092 allsigs = 1;
6093 sigfirst = 0;
6094 siglast = nsigs - 1;
6095 }
6096 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6097 {
6098 SET_SIGS (nsigs, sigs, signal_stop);
6099 SET_SIGS (nsigs, sigs, signal_print);
6100 }
6101 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6102 {
6103 UNSET_SIGS (nsigs, sigs, signal_program);
6104 }
6105 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6106 {
6107 SET_SIGS (nsigs, sigs, signal_print);
6108 }
6109 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6110 {
6111 SET_SIGS (nsigs, sigs, signal_program);
6112 }
6113 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6114 {
6115 UNSET_SIGS (nsigs, sigs, signal_stop);
6116 }
6117 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6118 {
6119 SET_SIGS (nsigs, sigs, signal_program);
6120 }
6121 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6122 {
6123 UNSET_SIGS (nsigs, sigs, signal_print);
6124 UNSET_SIGS (nsigs, sigs, signal_stop);
6125 }
6126 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6127 {
6128 UNSET_SIGS (nsigs, sigs, signal_program);
6129 }
6130 else if (digits > 0)
6131 {
6132 /* It is numeric. The numeric signal refers to our own
6133 internal signal numbering from target.h, not to host/target
6134 signal number. This is a feature; users really should be
6135 using symbolic names anyway, and the common ones like
6136 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6137
6138 sigfirst = siglast = (int)
6139 target_signal_from_command (atoi (*argv));
6140 if ((*argv)[digits] == '-')
6141 {
6142 siglast = (int)
6143 target_signal_from_command (atoi ((*argv) + digits + 1));
6144 }
6145 if (sigfirst > siglast)
6146 {
6147 /* Bet he didn't figure we'd think of this case... */
6148 signum = sigfirst;
6149 sigfirst = siglast;
6150 siglast = signum;
6151 }
6152 }
6153 else
6154 {
6155 oursig = target_signal_from_name (*argv);
6156 if (oursig != TARGET_SIGNAL_UNKNOWN)
6157 {
6158 sigfirst = siglast = (int) oursig;
6159 }
6160 else
6161 {
6162 /* Not a number and not a recognized flag word => complain. */
6163 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6164 }
6165 }
6166
6167 /* If any signal numbers or symbol names were found, set flags for
6168 which signals to apply actions to. */
6169
6170 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6171 {
6172 switch ((enum target_signal) signum)
6173 {
6174 case TARGET_SIGNAL_TRAP:
6175 case TARGET_SIGNAL_INT:
6176 if (!allsigs && !sigs[signum])
6177 {
6178 if (query (_("%s is used by the debugger.\n\
6179 Are you sure you want to change it? "),
6180 target_signal_to_name ((enum target_signal) signum)))
6181 {
6182 sigs[signum] = 1;
6183 }
6184 else
6185 {
6186 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6187 gdb_flush (gdb_stdout);
6188 }
6189 }
6190 break;
6191 case TARGET_SIGNAL_0:
6192 case TARGET_SIGNAL_DEFAULT:
6193 case TARGET_SIGNAL_UNKNOWN:
6194 /* Make sure that "all" doesn't print these. */
6195 break;
6196 default:
6197 sigs[signum] = 1;
6198 break;
6199 }
6200 }
6201
6202 argv++;
6203 }
6204
6205 for (signum = 0; signum < nsigs; signum++)
6206 if (sigs[signum])
6207 {
6208 signal_cache_update (-1);
6209 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
6210
6211 if (from_tty)
6212 {
6213 /* Show the results. */
6214 sig_print_header ();
6215 for (; signum < nsigs; signum++)
6216 if (sigs[signum])
6217 sig_print_info (signum);
6218 }
6219
6220 break;
6221 }
6222
6223 do_cleanups (old_chain);
6224 }
6225
6226 static void
6227 xdb_handle_command (char *args, int from_tty)
6228 {
6229 char **argv;
6230 struct cleanup *old_chain;
6231
6232 if (args == NULL)
6233 error_no_arg (_("xdb command"));
6234
6235 /* Break the command line up into args. */
6236
6237 argv = gdb_buildargv (args);
6238 old_chain = make_cleanup_freeargv (argv);
6239 if (argv[1] != (char *) NULL)
6240 {
6241 char *argBuf;
6242 int bufLen;
6243
6244 bufLen = strlen (argv[0]) + 20;
6245 argBuf = (char *) xmalloc (bufLen);
6246 if (argBuf)
6247 {
6248 int validFlag = 1;
6249 enum target_signal oursig;
6250
6251 oursig = target_signal_from_name (argv[0]);
6252 memset (argBuf, 0, bufLen);
6253 if (strcmp (argv[1], "Q") == 0)
6254 sprintf (argBuf, "%s %s", argv[0], "noprint");
6255 else
6256 {
6257 if (strcmp (argv[1], "s") == 0)
6258 {
6259 if (!signal_stop[oursig])
6260 sprintf (argBuf, "%s %s", argv[0], "stop");
6261 else
6262 sprintf (argBuf, "%s %s", argv[0], "nostop");
6263 }
6264 else if (strcmp (argv[1], "i") == 0)
6265 {
6266 if (!signal_program[oursig])
6267 sprintf (argBuf, "%s %s", argv[0], "pass");
6268 else
6269 sprintf (argBuf, "%s %s", argv[0], "nopass");
6270 }
6271 else if (strcmp (argv[1], "r") == 0)
6272 {
6273 if (!signal_print[oursig])
6274 sprintf (argBuf, "%s %s", argv[0], "print");
6275 else
6276 sprintf (argBuf, "%s %s", argv[0], "noprint");
6277 }
6278 else
6279 validFlag = 0;
6280 }
6281 if (validFlag)
6282 handle_command (argBuf, from_tty);
6283 else
6284 printf_filtered (_("Invalid signal handling flag.\n"));
6285 if (argBuf)
6286 xfree (argBuf);
6287 }
6288 }
6289 do_cleanups (old_chain);
6290 }
6291
6292 /* Print current contents of the tables set by the handle command.
6293 It is possible we should just be printing signals actually used
6294 by the current target (but for things to work right when switching
6295 targets, all signals should be in the signal tables). */
6296
6297 static void
6298 signals_info (char *signum_exp, int from_tty)
6299 {
6300 enum target_signal oursig;
6301
6302 sig_print_header ();
6303
6304 if (signum_exp)
6305 {
6306 /* First see if this is a symbol name. */
6307 oursig = target_signal_from_name (signum_exp);
6308 if (oursig == TARGET_SIGNAL_UNKNOWN)
6309 {
6310 /* No, try numeric. */
6311 oursig =
6312 target_signal_from_command (parse_and_eval_long (signum_exp));
6313 }
6314 sig_print_info (oursig);
6315 return;
6316 }
6317
6318 printf_filtered ("\n");
6319 /* These ugly casts brought to you by the native VAX compiler. */
6320 for (oursig = TARGET_SIGNAL_FIRST;
6321 (int) oursig < (int) TARGET_SIGNAL_LAST;
6322 oursig = (enum target_signal) ((int) oursig + 1))
6323 {
6324 QUIT;
6325
6326 if (oursig != TARGET_SIGNAL_UNKNOWN
6327 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
6328 sig_print_info (oursig);
6329 }
6330
6331 printf_filtered (_("\nUse the \"handle\" command "
6332 "to change these tables.\n"));
6333 }
6334
6335 /* Check if it makes sense to read $_siginfo from the current thread
6336 at this point. If not, throw an error. */
6337
6338 static void
6339 validate_siginfo_access (void)
6340 {
6341 /* No current inferior, no siginfo. */
6342 if (ptid_equal (inferior_ptid, null_ptid))
6343 error (_("No thread selected."));
6344
6345 /* Don't try to read from a dead thread. */
6346 if (is_exited (inferior_ptid))
6347 error (_("The current thread has terminated"));
6348
6349 /* ... or from a spinning thread. */
6350 if (is_running (inferior_ptid))
6351 error (_("Selected thread is running."));
6352 }
6353
6354 /* The $_siginfo convenience variable is a bit special. We don't know
6355 for sure the type of the value until we actually have a chance to
6356 fetch the data. The type can change depending on gdbarch, so it is
6357 also dependent on which thread you have selected.
6358
6359 1. making $_siginfo be an internalvar that creates a new value on
6360 access.
6361
6362 2. making the value of $_siginfo be an lval_computed value. */
6363
6364 /* This function implements the lval_computed support for reading a
6365 $_siginfo value. */
6366
6367 static void
6368 siginfo_value_read (struct value *v)
6369 {
6370 LONGEST transferred;
6371
6372 validate_siginfo_access ();
6373
6374 transferred =
6375 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6376 NULL,
6377 value_contents_all_raw (v),
6378 value_offset (v),
6379 TYPE_LENGTH (value_type (v)));
6380
6381 if (transferred != TYPE_LENGTH (value_type (v)))
6382 error (_("Unable to read siginfo"));
6383 }
6384
6385 /* This function implements the lval_computed support for writing a
6386 $_siginfo value. */
6387
6388 static void
6389 siginfo_value_write (struct value *v, struct value *fromval)
6390 {
6391 LONGEST transferred;
6392
6393 validate_siginfo_access ();
6394
6395 transferred = target_write (&current_target,
6396 TARGET_OBJECT_SIGNAL_INFO,
6397 NULL,
6398 value_contents_all_raw (fromval),
6399 value_offset (v),
6400 TYPE_LENGTH (value_type (fromval)));
6401
6402 if (transferred != TYPE_LENGTH (value_type (fromval)))
6403 error (_("Unable to write siginfo"));
6404 }
6405
6406 static const struct lval_funcs siginfo_value_funcs =
6407 {
6408 siginfo_value_read,
6409 siginfo_value_write
6410 };
6411
6412 /* Return a new value with the correct type for the siginfo object of
6413 the current thread using architecture GDBARCH. Return a void value
6414 if there's no object available. */
6415
6416 static struct value *
6417 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
6418 {
6419 if (target_has_stack
6420 && !ptid_equal (inferior_ptid, null_ptid)
6421 && gdbarch_get_siginfo_type_p (gdbarch))
6422 {
6423 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6424
6425 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6426 }
6427
6428 return allocate_value (builtin_type (gdbarch)->builtin_void);
6429 }
6430
6431 \f
6432 /* infcall_suspend_state contains state about the program itself like its
6433 registers and any signal it received when it last stopped.
6434 This state must be restored regardless of how the inferior function call
6435 ends (either successfully, or after it hits a breakpoint or signal)
6436 if the program is to properly continue where it left off. */
6437
6438 struct infcall_suspend_state
6439 {
6440 struct thread_suspend_state thread_suspend;
6441 struct inferior_suspend_state inferior_suspend;
6442
6443 /* Other fields: */
6444 CORE_ADDR stop_pc;
6445 struct regcache *registers;
6446
6447 /* Format of SIGINFO_DATA or NULL if it is not present. */
6448 struct gdbarch *siginfo_gdbarch;
6449
6450 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6451 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6452 content would be invalid. */
6453 gdb_byte *siginfo_data;
6454 };
6455
6456 struct infcall_suspend_state *
6457 save_infcall_suspend_state (void)
6458 {
6459 struct infcall_suspend_state *inf_state;
6460 struct thread_info *tp = inferior_thread ();
6461 struct inferior *inf = current_inferior ();
6462 struct regcache *regcache = get_current_regcache ();
6463 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6464 gdb_byte *siginfo_data = NULL;
6465
6466 if (gdbarch_get_siginfo_type_p (gdbarch))
6467 {
6468 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6469 size_t len = TYPE_LENGTH (type);
6470 struct cleanup *back_to;
6471
6472 siginfo_data = xmalloc (len);
6473 back_to = make_cleanup (xfree, siginfo_data);
6474
6475 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6476 siginfo_data, 0, len) == len)
6477 discard_cleanups (back_to);
6478 else
6479 {
6480 /* Errors ignored. */
6481 do_cleanups (back_to);
6482 siginfo_data = NULL;
6483 }
6484 }
6485
6486 inf_state = XZALLOC (struct infcall_suspend_state);
6487
6488 if (siginfo_data)
6489 {
6490 inf_state->siginfo_gdbarch = gdbarch;
6491 inf_state->siginfo_data = siginfo_data;
6492 }
6493
6494 inf_state->thread_suspend = tp->suspend;
6495 inf_state->inferior_suspend = inf->suspend;
6496
6497 /* run_inferior_call will not use the signal due to its `proceed' call with
6498 TARGET_SIGNAL_0 anyway. */
6499 tp->suspend.stop_signal = TARGET_SIGNAL_0;
6500
6501 inf_state->stop_pc = stop_pc;
6502
6503 inf_state->registers = regcache_dup (regcache);
6504
6505 return inf_state;
6506 }
6507
6508 /* Restore inferior session state to INF_STATE. */
6509
6510 void
6511 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6512 {
6513 struct thread_info *tp = inferior_thread ();
6514 struct inferior *inf = current_inferior ();
6515 struct regcache *regcache = get_current_regcache ();
6516 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6517
6518 tp->suspend = inf_state->thread_suspend;
6519 inf->suspend = inf_state->inferior_suspend;
6520
6521 stop_pc = inf_state->stop_pc;
6522
6523 if (inf_state->siginfo_gdbarch == gdbarch)
6524 {
6525 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6526 size_t len = TYPE_LENGTH (type);
6527
6528 /* Errors ignored. */
6529 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6530 inf_state->siginfo_data, 0, len);
6531 }
6532
6533 /* The inferior can be gone if the user types "print exit(0)"
6534 (and perhaps other times). */
6535 if (target_has_execution)
6536 /* NB: The register write goes through to the target. */
6537 regcache_cpy (regcache, inf_state->registers);
6538
6539 discard_infcall_suspend_state (inf_state);
6540 }
6541
6542 static void
6543 do_restore_infcall_suspend_state_cleanup (void *state)
6544 {
6545 restore_infcall_suspend_state (state);
6546 }
6547
6548 struct cleanup *
6549 make_cleanup_restore_infcall_suspend_state
6550 (struct infcall_suspend_state *inf_state)
6551 {
6552 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6553 }
6554
6555 void
6556 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6557 {
6558 regcache_xfree (inf_state->registers);
6559 xfree (inf_state->siginfo_data);
6560 xfree (inf_state);
6561 }
6562
6563 struct regcache *
6564 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6565 {
6566 return inf_state->registers;
6567 }
6568
6569 /* infcall_control_state contains state regarding gdb's control of the
6570 inferior itself like stepping control. It also contains session state like
6571 the user's currently selected frame. */
6572
6573 struct infcall_control_state
6574 {
6575 struct thread_control_state thread_control;
6576 struct inferior_control_state inferior_control;
6577
6578 /* Other fields: */
6579 enum stop_stack_kind stop_stack_dummy;
6580 int stopped_by_random_signal;
6581 int stop_after_trap;
6582
6583 /* ID if the selected frame when the inferior function call was made. */
6584 struct frame_id selected_frame_id;
6585 };
6586
6587 /* Save all of the information associated with the inferior<==>gdb
6588 connection. */
6589
6590 struct infcall_control_state *
6591 save_infcall_control_state (void)
6592 {
6593 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6594 struct thread_info *tp = inferior_thread ();
6595 struct inferior *inf = current_inferior ();
6596
6597 inf_status->thread_control = tp->control;
6598 inf_status->inferior_control = inf->control;
6599
6600 tp->control.step_resume_breakpoint = NULL;
6601 tp->control.exception_resume_breakpoint = NULL;
6602
6603 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6604 chain. If caller's caller is walking the chain, they'll be happier if we
6605 hand them back the original chain when restore_infcall_control_state is
6606 called. */
6607 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6608
6609 /* Other fields: */
6610 inf_status->stop_stack_dummy = stop_stack_dummy;
6611 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6612 inf_status->stop_after_trap = stop_after_trap;
6613
6614 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6615
6616 return inf_status;
6617 }
6618
6619 static int
6620 restore_selected_frame (void *args)
6621 {
6622 struct frame_id *fid = (struct frame_id *) args;
6623 struct frame_info *frame;
6624
6625 frame = frame_find_by_id (*fid);
6626
6627 /* If inf_status->selected_frame_id is NULL, there was no previously
6628 selected frame. */
6629 if (frame == NULL)
6630 {
6631 warning (_("Unable to restore previously selected frame."));
6632 return 0;
6633 }
6634
6635 select_frame (frame);
6636
6637 return (1);
6638 }
6639
6640 /* Restore inferior session state to INF_STATUS. */
6641
6642 void
6643 restore_infcall_control_state (struct infcall_control_state *inf_status)
6644 {
6645 struct thread_info *tp = inferior_thread ();
6646 struct inferior *inf = current_inferior ();
6647
6648 if (tp->control.step_resume_breakpoint)
6649 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6650
6651 if (tp->control.exception_resume_breakpoint)
6652 tp->control.exception_resume_breakpoint->disposition
6653 = disp_del_at_next_stop;
6654
6655 /* Handle the bpstat_copy of the chain. */
6656 bpstat_clear (&tp->control.stop_bpstat);
6657
6658 tp->control = inf_status->thread_control;
6659 inf->control = inf_status->inferior_control;
6660
6661 /* Other fields: */
6662 stop_stack_dummy = inf_status->stop_stack_dummy;
6663 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6664 stop_after_trap = inf_status->stop_after_trap;
6665
6666 if (target_has_stack)
6667 {
6668 /* The point of catch_errors is that if the stack is clobbered,
6669 walking the stack might encounter a garbage pointer and
6670 error() trying to dereference it. */
6671 if (catch_errors
6672 (restore_selected_frame, &inf_status->selected_frame_id,
6673 "Unable to restore previously selected frame:\n",
6674 RETURN_MASK_ERROR) == 0)
6675 /* Error in restoring the selected frame. Select the innermost
6676 frame. */
6677 select_frame (get_current_frame ());
6678 }
6679
6680 xfree (inf_status);
6681 }
6682
6683 static void
6684 do_restore_infcall_control_state_cleanup (void *sts)
6685 {
6686 restore_infcall_control_state (sts);
6687 }
6688
6689 struct cleanup *
6690 make_cleanup_restore_infcall_control_state
6691 (struct infcall_control_state *inf_status)
6692 {
6693 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6694 }
6695
6696 void
6697 discard_infcall_control_state (struct infcall_control_state *inf_status)
6698 {
6699 if (inf_status->thread_control.step_resume_breakpoint)
6700 inf_status->thread_control.step_resume_breakpoint->disposition
6701 = disp_del_at_next_stop;
6702
6703 if (inf_status->thread_control.exception_resume_breakpoint)
6704 inf_status->thread_control.exception_resume_breakpoint->disposition
6705 = disp_del_at_next_stop;
6706
6707 /* See save_infcall_control_state for info on stop_bpstat. */
6708 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6709
6710 xfree (inf_status);
6711 }
6712 \f
6713 int
6714 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
6715 {
6716 struct target_waitstatus last;
6717 ptid_t last_ptid;
6718
6719 get_last_target_status (&last_ptid, &last);
6720
6721 if (last.kind != TARGET_WAITKIND_FORKED)
6722 return 0;
6723
6724 if (!ptid_equal (last_ptid, pid))
6725 return 0;
6726
6727 *child_pid = last.value.related_pid;
6728 return 1;
6729 }
6730
6731 int
6732 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
6733 {
6734 struct target_waitstatus last;
6735 ptid_t last_ptid;
6736
6737 get_last_target_status (&last_ptid, &last);
6738
6739 if (last.kind != TARGET_WAITKIND_VFORKED)
6740 return 0;
6741
6742 if (!ptid_equal (last_ptid, pid))
6743 return 0;
6744
6745 *child_pid = last.value.related_pid;
6746 return 1;
6747 }
6748
6749 int
6750 inferior_has_execd (ptid_t pid, char **execd_pathname)
6751 {
6752 struct target_waitstatus last;
6753 ptid_t last_ptid;
6754
6755 get_last_target_status (&last_ptid, &last);
6756
6757 if (last.kind != TARGET_WAITKIND_EXECD)
6758 return 0;
6759
6760 if (!ptid_equal (last_ptid, pid))
6761 return 0;
6762
6763 *execd_pathname = xstrdup (last.value.execd_pathname);
6764 return 1;
6765 }
6766
6767 int
6768 inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6769 {
6770 struct target_waitstatus last;
6771 ptid_t last_ptid;
6772
6773 get_last_target_status (&last_ptid, &last);
6774
6775 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6776 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6777 return 0;
6778
6779 if (!ptid_equal (last_ptid, pid))
6780 return 0;
6781
6782 *syscall_number = last.value.syscall_number;
6783 return 1;
6784 }
6785
6786 int
6787 ptid_match (ptid_t ptid, ptid_t filter)
6788 {
6789 if (ptid_equal (filter, minus_one_ptid))
6790 return 1;
6791 if (ptid_is_pid (filter)
6792 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6793 return 1;
6794 else if (ptid_equal (ptid, filter))
6795 return 1;
6796
6797 return 0;
6798 }
6799
6800 /* restore_inferior_ptid() will be used by the cleanup machinery
6801 to restore the inferior_ptid value saved in a call to
6802 save_inferior_ptid(). */
6803
6804 static void
6805 restore_inferior_ptid (void *arg)
6806 {
6807 ptid_t *saved_ptid_ptr = arg;
6808
6809 inferior_ptid = *saved_ptid_ptr;
6810 xfree (arg);
6811 }
6812
6813 /* Save the value of inferior_ptid so that it may be restored by a
6814 later call to do_cleanups(). Returns the struct cleanup pointer
6815 needed for later doing the cleanup. */
6816
6817 struct cleanup *
6818 save_inferior_ptid (void)
6819 {
6820 ptid_t *saved_ptid_ptr;
6821
6822 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6823 *saved_ptid_ptr = inferior_ptid;
6824 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6825 }
6826 \f
6827
6828 /* User interface for reverse debugging:
6829 Set exec-direction / show exec-direction commands
6830 (returns error unless target implements to_set_exec_direction method). */
6831
6832 int execution_direction = EXEC_FORWARD;
6833 static const char exec_forward[] = "forward";
6834 static const char exec_reverse[] = "reverse";
6835 static const char *exec_direction = exec_forward;
6836 static const char *exec_direction_names[] = {
6837 exec_forward,
6838 exec_reverse,
6839 NULL
6840 };
6841
6842 static void
6843 set_exec_direction_func (char *args, int from_tty,
6844 struct cmd_list_element *cmd)
6845 {
6846 if (target_can_execute_reverse)
6847 {
6848 if (!strcmp (exec_direction, exec_forward))
6849 execution_direction = EXEC_FORWARD;
6850 else if (!strcmp (exec_direction, exec_reverse))
6851 execution_direction = EXEC_REVERSE;
6852 }
6853 else
6854 {
6855 exec_direction = exec_forward;
6856 error (_("Target does not support this operation."));
6857 }
6858 }
6859
6860 static void
6861 show_exec_direction_func (struct ui_file *out, int from_tty,
6862 struct cmd_list_element *cmd, const char *value)
6863 {
6864 switch (execution_direction) {
6865 case EXEC_FORWARD:
6866 fprintf_filtered (out, _("Forward.\n"));
6867 break;
6868 case EXEC_REVERSE:
6869 fprintf_filtered (out, _("Reverse.\n"));
6870 break;
6871 default:
6872 internal_error (__FILE__, __LINE__,
6873 _("bogus execution_direction value: %d"),
6874 (int) execution_direction);
6875 }
6876 }
6877
6878 /* User interface for non-stop mode. */
6879
6880 int non_stop = 0;
6881
6882 static void
6883 set_non_stop (char *args, int from_tty,
6884 struct cmd_list_element *c)
6885 {
6886 if (target_has_execution)
6887 {
6888 non_stop_1 = non_stop;
6889 error (_("Cannot change this setting while the inferior is running."));
6890 }
6891
6892 non_stop = non_stop_1;
6893 }
6894
6895 static void
6896 show_non_stop (struct ui_file *file, int from_tty,
6897 struct cmd_list_element *c, const char *value)
6898 {
6899 fprintf_filtered (file,
6900 _("Controlling the inferior in non-stop mode is %s.\n"),
6901 value);
6902 }
6903
6904 static void
6905 show_schedule_multiple (struct ui_file *file, int from_tty,
6906 struct cmd_list_element *c, const char *value)
6907 {
6908 fprintf_filtered (file, _("Resuming the execution of threads "
6909 "of all processes is %s.\n"), value);
6910 }
6911
6912 void
6913 _initialize_infrun (void)
6914 {
6915 int i;
6916 int numsigs;
6917
6918 add_info ("signals", signals_info, _("\
6919 What debugger does when program gets various signals.\n\
6920 Specify a signal as argument to print info on that signal only."));
6921 add_info_alias ("handle", "signals", 0);
6922
6923 add_com ("handle", class_run, handle_command, _("\
6924 Specify how to handle a signal.\n\
6925 Args are signals and actions to apply to those signals.\n\
6926 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6927 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6928 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6929 The special arg \"all\" is recognized to mean all signals except those\n\
6930 used by the debugger, typically SIGTRAP and SIGINT.\n\
6931 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
6932 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6933 Stop means reenter debugger if this signal happens (implies print).\n\
6934 Print means print a message if this signal happens.\n\
6935 Pass means let program see this signal; otherwise program doesn't know.\n\
6936 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6937 Pass and Stop may be combined."));
6938 if (xdb_commands)
6939 {
6940 add_com ("lz", class_info, signals_info, _("\
6941 What debugger does when program gets various signals.\n\
6942 Specify a signal as argument to print info on that signal only."));
6943 add_com ("z", class_run, xdb_handle_command, _("\
6944 Specify how to handle a signal.\n\
6945 Args are signals and actions to apply to those signals.\n\
6946 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6947 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6948 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6949 The special arg \"all\" is recognized to mean all signals except those\n\
6950 used by the debugger, typically SIGTRAP and SIGINT.\n\
6951 Recognized actions include \"s\" (toggles between stop and nostop),\n\
6952 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6953 nopass), \"Q\" (noprint)\n\
6954 Stop means reenter debugger if this signal happens (implies print).\n\
6955 Print means print a message if this signal happens.\n\
6956 Pass means let program see this signal; otherwise program doesn't know.\n\
6957 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6958 Pass and Stop may be combined."));
6959 }
6960
6961 if (!dbx_commands)
6962 stop_command = add_cmd ("stop", class_obscure,
6963 not_just_help_class_command, _("\
6964 There is no `stop' command, but you can set a hook on `stop'.\n\
6965 This allows you to set a list of commands to be run each time execution\n\
6966 of the program stops."), &cmdlist);
6967
6968 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
6969 Set inferior debugging."), _("\
6970 Show inferior debugging."), _("\
6971 When non-zero, inferior specific debugging is enabled."),
6972 NULL,
6973 show_debug_infrun,
6974 &setdebuglist, &showdebuglist);
6975
6976 add_setshow_boolean_cmd ("displaced", class_maintenance,
6977 &debug_displaced, _("\
6978 Set displaced stepping debugging."), _("\
6979 Show displaced stepping debugging."), _("\
6980 When non-zero, displaced stepping specific debugging is enabled."),
6981 NULL,
6982 show_debug_displaced,
6983 &setdebuglist, &showdebuglist);
6984
6985 add_setshow_boolean_cmd ("non-stop", no_class,
6986 &non_stop_1, _("\
6987 Set whether gdb controls the inferior in non-stop mode."), _("\
6988 Show whether gdb controls the inferior in non-stop mode."), _("\
6989 When debugging a multi-threaded program and this setting is\n\
6990 off (the default, also called all-stop mode), when one thread stops\n\
6991 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
6992 all other threads in the program while you interact with the thread of\n\
6993 interest. When you continue or step a thread, you can allow the other\n\
6994 threads to run, or have them remain stopped, but while you inspect any\n\
6995 thread's state, all threads stop.\n\
6996 \n\
6997 In non-stop mode, when one thread stops, other threads can continue\n\
6998 to run freely. You'll be able to step each thread independently,\n\
6999 leave it stopped or free to run as needed."),
7000 set_non_stop,
7001 show_non_stop,
7002 &setlist,
7003 &showlist);
7004
7005 numsigs = (int) TARGET_SIGNAL_LAST;
7006 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7007 signal_print = (unsigned char *)
7008 xmalloc (sizeof (signal_print[0]) * numsigs);
7009 signal_program = (unsigned char *)
7010 xmalloc (sizeof (signal_program[0]) * numsigs);
7011 signal_pass = (unsigned char *)
7012 xmalloc (sizeof (signal_program[0]) * numsigs);
7013 for (i = 0; i < numsigs; i++)
7014 {
7015 signal_stop[i] = 1;
7016 signal_print[i] = 1;
7017 signal_program[i] = 1;
7018 }
7019
7020 /* Signals caused by debugger's own actions
7021 should not be given to the program afterwards. */
7022 signal_program[TARGET_SIGNAL_TRAP] = 0;
7023 signal_program[TARGET_SIGNAL_INT] = 0;
7024
7025 /* Signals that are not errors should not normally enter the debugger. */
7026 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7027 signal_print[TARGET_SIGNAL_ALRM] = 0;
7028 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7029 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7030 signal_stop[TARGET_SIGNAL_PROF] = 0;
7031 signal_print[TARGET_SIGNAL_PROF] = 0;
7032 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7033 signal_print[TARGET_SIGNAL_CHLD] = 0;
7034 signal_stop[TARGET_SIGNAL_IO] = 0;
7035 signal_print[TARGET_SIGNAL_IO] = 0;
7036 signal_stop[TARGET_SIGNAL_POLL] = 0;
7037 signal_print[TARGET_SIGNAL_POLL] = 0;
7038 signal_stop[TARGET_SIGNAL_URG] = 0;
7039 signal_print[TARGET_SIGNAL_URG] = 0;
7040 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7041 signal_print[TARGET_SIGNAL_WINCH] = 0;
7042 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7043 signal_print[TARGET_SIGNAL_PRIO] = 0;
7044
7045 /* These signals are used internally by user-level thread
7046 implementations. (See signal(5) on Solaris.) Like the above
7047 signals, a healthy program receives and handles them as part of
7048 its normal operation. */
7049 signal_stop[TARGET_SIGNAL_LWP] = 0;
7050 signal_print[TARGET_SIGNAL_LWP] = 0;
7051 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7052 signal_print[TARGET_SIGNAL_WAITING] = 0;
7053 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7054 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7055
7056 /* Update cached state. */
7057 signal_cache_update (-1);
7058
7059 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7060 &stop_on_solib_events, _("\
7061 Set stopping for shared library events."), _("\
7062 Show stopping for shared library events."), _("\
7063 If nonzero, gdb will give control to the user when the dynamic linker\n\
7064 notifies gdb of shared library events. The most common event of interest\n\
7065 to the user would be loading/unloading of a new library."),
7066 NULL,
7067 show_stop_on_solib_events,
7068 &setlist, &showlist);
7069
7070 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7071 follow_fork_mode_kind_names,
7072 &follow_fork_mode_string, _("\
7073 Set debugger response to a program call of fork or vfork."), _("\
7074 Show debugger response to a program call of fork or vfork."), _("\
7075 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7076 parent - the original process is debugged after a fork\n\
7077 child - the new process is debugged after a fork\n\
7078 The unfollowed process will continue to run.\n\
7079 By default, the debugger will follow the parent process."),
7080 NULL,
7081 show_follow_fork_mode_string,
7082 &setlist, &showlist);
7083
7084 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7085 follow_exec_mode_names,
7086 &follow_exec_mode_string, _("\
7087 Set debugger response to a program call of exec."), _("\
7088 Show debugger response to a program call of exec."), _("\
7089 An exec call replaces the program image of a process.\n\
7090 \n\
7091 follow-exec-mode can be:\n\
7092 \n\
7093 new - the debugger creates a new inferior and rebinds the process\n\
7094 to this new inferior. The program the process was running before\n\
7095 the exec call can be restarted afterwards by restarting the original\n\
7096 inferior.\n\
7097 \n\
7098 same - the debugger keeps the process bound to the same inferior.\n\
7099 The new executable image replaces the previous executable loaded in\n\
7100 the inferior. Restarting the inferior after the exec call restarts\n\
7101 the executable the process was running after the exec call.\n\
7102 \n\
7103 By default, the debugger will use the same inferior."),
7104 NULL,
7105 show_follow_exec_mode_string,
7106 &setlist, &showlist);
7107
7108 add_setshow_enum_cmd ("scheduler-locking", class_run,
7109 scheduler_enums, &scheduler_mode, _("\
7110 Set mode for locking scheduler during execution."), _("\
7111 Show mode for locking scheduler during execution."), _("\
7112 off == no locking (threads may preempt at any time)\n\
7113 on == full locking (no thread except the current thread may run)\n\
7114 step == scheduler locked during every single-step operation.\n\
7115 In this mode, no other thread may run during a step command.\n\
7116 Other threads may run while stepping over a function call ('next')."),
7117 set_schedlock_func, /* traps on target vector */
7118 show_scheduler_mode,
7119 &setlist, &showlist);
7120
7121 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7122 Set mode for resuming threads of all processes."), _("\
7123 Show mode for resuming threads of all processes."), _("\
7124 When on, execution commands (such as 'continue' or 'next') resume all\n\
7125 threads of all processes. When off (which is the default), execution\n\
7126 commands only resume the threads of the current process. The set of\n\
7127 threads that are resumed is further refined by the scheduler-locking\n\
7128 mode (see help set scheduler-locking)."),
7129 NULL,
7130 show_schedule_multiple,
7131 &setlist, &showlist);
7132
7133 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7134 Set mode of the step operation."), _("\
7135 Show mode of the step operation."), _("\
7136 When set, doing a step over a function without debug line information\n\
7137 will stop at the first instruction of that function. Otherwise, the\n\
7138 function is skipped and the step command stops at a different source line."),
7139 NULL,
7140 show_step_stop_if_no_debug,
7141 &setlist, &showlist);
7142
7143 add_setshow_enum_cmd ("displaced-stepping", class_run,
7144 can_use_displaced_stepping_enum,
7145 &can_use_displaced_stepping, _("\
7146 Set debugger's willingness to use displaced stepping."), _("\
7147 Show debugger's willingness to use displaced stepping."), _("\
7148 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7149 supported by the target architecture. If off, gdb will not use displaced\n\
7150 stepping to step over breakpoints, even if such is supported by the target\n\
7151 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7152 if the target architecture supports it and non-stop mode is active, but will not\n\
7153 use it in all-stop mode (see help set non-stop)."),
7154 NULL,
7155 show_can_use_displaced_stepping,
7156 &setlist, &showlist);
7157
7158 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7159 &exec_direction, _("Set direction of execution.\n\
7160 Options are 'forward' or 'reverse'."),
7161 _("Show direction of execution (forward/reverse)."),
7162 _("Tells gdb whether to execute forward or backward."),
7163 set_exec_direction_func, show_exec_direction_func,
7164 &setlist, &showlist);
7165
7166 /* Set/show detach-on-fork: user-settable mode. */
7167
7168 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7169 Set whether gdb will detach the child of a fork."), _("\
7170 Show whether gdb will detach the child of a fork."), _("\
7171 Tells gdb whether to detach the child of a fork."),
7172 NULL, NULL, &setlist, &showlist);
7173
7174 /* ptid initializations */
7175 inferior_ptid = null_ptid;
7176 target_last_wait_ptid = minus_one_ptid;
7177
7178 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7179 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7180 observer_attach_thread_exit (infrun_thread_thread_exit);
7181 observer_attach_inferior_exit (infrun_inferior_exit);
7182
7183 /* Explicitly create without lookup, since that tries to create a
7184 value with a void typed value, and when we get here, gdbarch
7185 isn't initialized yet. At this point, we're quite sure there
7186 isn't another convenience variable of the same name. */
7187 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
7188
7189 add_setshow_boolean_cmd ("observer", no_class,
7190 &observer_mode_1, _("\
7191 Set whether gdb controls the inferior in observer mode."), _("\
7192 Show whether gdb controls the inferior in observer mode."), _("\
7193 In observer mode, GDB can get data from the inferior, but not\n\
7194 affect its execution. Registers and memory may not be changed,\n\
7195 breakpoints may not be set, and the program cannot be interrupted\n\
7196 or signalled."),
7197 set_observer_mode,
7198 show_observer_mode,
7199 &setlist,
7200 &showlist);
7201 }