Fix follow-fork latent bug
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2017 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67
68 /* Prototypes for local functions */
69
70 static void signals_info (char *, int);
71
72 static void handle_command (char *, int);
73
74 static void sig_print_info (enum gdb_signal);
75
76 static void sig_print_header (void);
77
78 static void resume_cleanups (void *);
79
80 static int hook_stop_stub (void *);
81
82 static int restore_selected_frame (void *);
83
84 static int follow_fork (void);
85
86 static int follow_fork_inferior (int follow_child, int detach_fork);
87
88 static void follow_inferior_reset_breakpoints (void);
89
90 static void set_schedlock_func (char *args, int from_tty,
91 struct cmd_list_element *c);
92
93 static int currently_stepping (struct thread_info *tp);
94
95 void _initialize_infrun (void);
96
97 void nullify_last_target_wait_ptid (void);
98
99 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
100
101 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
103 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
105 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
107 /* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109 static struct async_event_handler *infrun_async_inferior_event_token;
110
111 /* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113 static int infrun_is_async = -1;
114
115 /* See infrun.h. */
116
117 void
118 infrun_async (int enable)
119 {
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134 }
135
136 /* See infrun.h. */
137
138 void
139 mark_infrun_async_event_handler (void)
140 {
141 mark_async_event_handler (infrun_async_inferior_event_token);
142 }
143
144 /* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147 int step_stop_if_no_debug = 0;
148 static void
149 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153 }
154
155 /* proceed and normal_stop use this to notify the user when the
156 inferior stopped in a different thread than it had been running
157 in. */
158
159 static ptid_t previous_inferior_ptid;
160
161 /* If set (default for legacy reasons), when following a fork, GDB
162 will detach from one of the fork branches, child or parent.
163 Exactly which branch is detached depends on 'set follow-fork-mode'
164 setting. */
165
166 static int detach_fork = 1;
167
168 int debug_displaced = 0;
169 static void
170 show_debug_displaced (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172 {
173 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
174 }
175
176 unsigned int debug_infrun = 0;
177 static void
178 show_debug_infrun (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
182 }
183
184
185 /* Support for disabling address space randomization. */
186
187 int disable_randomization = 1;
188
189 static void
190 show_disable_randomization (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 if (target_supports_disable_randomization ())
194 fprintf_filtered (file,
195 _("Disabling randomization of debuggee's "
196 "virtual address space is %s.\n"),
197 value);
198 else
199 fputs_filtered (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform.\n"), file);
202 }
203
204 static void
205 set_disable_randomization (char *args, int from_tty,
206 struct cmd_list_element *c)
207 {
208 if (!target_supports_disable_randomization ())
209 error (_("Disabling randomization of debuggee's "
210 "virtual address space is unsupported on\n"
211 "this platform."));
212 }
213
214 /* User interface for non-stop mode. */
215
216 int non_stop = 0;
217 static int non_stop_1 = 0;
218
219 static void
220 set_non_stop (char *args, int from_tty,
221 struct cmd_list_element *c)
222 {
223 if (target_has_execution)
224 {
225 non_stop_1 = non_stop;
226 error (_("Cannot change this setting while the inferior is running."));
227 }
228
229 non_stop = non_stop_1;
230 }
231
232 static void
233 show_non_stop (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file,
237 _("Controlling the inferior in non-stop mode is %s.\n"),
238 value);
239 }
240
241 /* "Observer mode" is somewhat like a more extreme version of
242 non-stop, in which all GDB operations that might affect the
243 target's execution have been disabled. */
244
245 int observer_mode = 0;
246 static int observer_mode_1 = 0;
247
248 static void
249 set_observer_mode (char *args, int from_tty,
250 struct cmd_list_element *c)
251 {
252 if (target_has_execution)
253 {
254 observer_mode_1 = observer_mode;
255 error (_("Cannot change this setting while the inferior is running."));
256 }
257
258 observer_mode = observer_mode_1;
259
260 may_write_registers = !observer_mode;
261 may_write_memory = !observer_mode;
262 may_insert_breakpoints = !observer_mode;
263 may_insert_tracepoints = !observer_mode;
264 /* We can insert fast tracepoints in or out of observer mode,
265 but enable them if we're going into this mode. */
266 if (observer_mode)
267 may_insert_fast_tracepoints = 1;
268 may_stop = !observer_mode;
269 update_target_permissions ();
270
271 /* Going *into* observer mode we must force non-stop, then
272 going out we leave it that way. */
273 if (observer_mode)
274 {
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282 }
283
284 static void
285 show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287 {
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289 }
290
291 /* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297 void
298 update_observer_mode (void)
299 {
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314 }
315
316 /* Tables of how to react to signals; the user sets them. */
317
318 static unsigned char *signal_stop;
319 static unsigned char *signal_print;
320 static unsigned char *signal_program;
321
322 /* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326 static unsigned char *signal_catch;
327
328 /* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331 static unsigned char *signal_pass;
332
333 #define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341 #define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
349 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352 void
353 update_signals_program_target (void)
354 {
355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
356 }
357
358 /* Value to pass to target_resume() to cause all threads to resume. */
359
360 #define RESUME_ALL minus_one_ptid
361
362 /* Command list pointer for the "stop" placeholder. */
363
364 static struct cmd_list_element *stop_command;
365
366 /* Nonzero if we want to give control to the user when we're notified
367 of shared library events by the dynamic linker. */
368 int stop_on_solib_events;
369
370 /* Enable or disable optional shared library event breakpoints
371 as appropriate when the above flag is changed. */
372
373 static void
374 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
375 {
376 update_solib_breakpoints ();
377 }
378
379 static void
380 show_stop_on_solib_events (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c, const char *value)
382 {
383 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
384 value);
385 }
386
387 /* Nonzero after stop if current stack frame should be printed. */
388
389 static int stop_print_frame;
390
391 /* This is a cached copy of the pid/waitstatus of the last event
392 returned by target_wait()/deprecated_target_wait_hook(). This
393 information is returned by get_last_target_status(). */
394 static ptid_t target_last_wait_ptid;
395 static struct target_waitstatus target_last_waitstatus;
396
397 static void context_switch (ptid_t ptid);
398
399 void init_thread_stepping_state (struct thread_info *tss);
400
401 static const char follow_fork_mode_child[] = "child";
402 static const char follow_fork_mode_parent[] = "parent";
403
404 static const char *const follow_fork_mode_kind_names[] = {
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
408 };
409
410 static const char *follow_fork_mode_string = follow_fork_mode_parent;
411 static void
412 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414 {
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
418 value);
419 }
420 \f
421
422 /* Handle changes to the inferior list based on the type of fork,
423 which process is being followed, and whether the other process
424 should be detached. On entry inferior_ptid must be the ptid of
425 the fork parent. At return inferior_ptid is the ptid of the
426 followed inferior. */
427
428 static int
429 follow_fork_inferior (int follow_child, int detach_fork)
430 {
431 int has_vforked;
432 ptid_t parent_ptid, child_ptid;
433
434 has_vforked = (inferior_thread ()->pending_follow.kind
435 == TARGET_WAITKIND_VFORKED);
436 parent_ptid = inferior_ptid;
437 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
438
439 if (has_vforked
440 && !non_stop /* Non-stop always resumes both branches. */
441 && current_ui->prompt_state == PROMPT_BLOCKED
442 && !(follow_child || detach_fork || sched_multi))
443 {
444 /* The parent stays blocked inside the vfork syscall until the
445 child execs or exits. If we don't let the child run, then
446 the parent stays blocked. If we're telling the parent to run
447 in the foreground, the user will not be able to ctrl-c to get
448 back the terminal, effectively hanging the debug session. */
449 fprintf_filtered (gdb_stderr, _("\
450 Can not resume the parent process over vfork in the foreground while\n\
451 holding the child stopped. Try \"set detach-on-fork\" or \
452 \"set schedule-multiple\".\n"));
453 /* FIXME output string > 80 columns. */
454 return 1;
455 }
456
457 if (!follow_child)
458 {
459 /* Detach new forked process? */
460 if (detach_fork)
461 {
462 /* Before detaching from the child, remove all breakpoints
463 from it. If we forked, then this has already been taken
464 care of by infrun.c. If we vforked however, any
465 breakpoint inserted in the parent is visible in the
466 child, even those added while stopped in a vfork
467 catchpoint. This will remove the breakpoints from the
468 parent also, but they'll be reinserted below. */
469 if (has_vforked)
470 {
471 /* Keep breakpoints list in sync. */
472 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
473 }
474
475 if (info_verbose || debug_infrun)
476 {
477 /* Ensure that we have a process ptid. */
478 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
479
480 target_terminal_ours_for_output ();
481 fprintf_filtered (gdb_stdlog,
482 _("Detaching after %s from child %s.\n"),
483 has_vforked ? "vfork" : "fork",
484 target_pid_to_str (process_ptid));
485 }
486 }
487 else
488 {
489 struct inferior *parent_inf, *child_inf;
490 struct cleanup *old_chain;
491
492 /* Add process to GDB's tables. */
493 child_inf = add_inferior (ptid_get_pid (child_ptid));
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 old_chain = save_current_space_and_thread ();
502
503 inferior_ptid = child_ptid;
504 add_thread (inferior_ptid);
505 set_current_inferior (child_inf);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539
540 do_cleanups (old_chain);
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
572 has_vforked ? "vfork" : "fork",
573 target_pid_to_str (child_ptid));
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
579 child_inf = add_inferior (ptid_get_pid (child_ptid));
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
610 {
611 if (info_verbose || debug_infrun)
612 {
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
619 "child %s.\n"),
620 target_pid_to_str (process_ptid));
621 }
622
623 target_detach (NULL, 0);
624 }
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
632 inferior_ptid = child_ptid;
633 add_thread (inferior_ptid);
634 set_current_inferior (child_inf);
635
636 /* If this is a vfork child, then the address-space is shared
637 with the parent. If we detached from the parent, then we can
638 reuse the parent's program/address spaces. */
639 if (has_vforked || detach_fork)
640 {
641 child_inf->pspace = parent_pspace;
642 child_inf->aspace = child_inf->pspace->aspace;
643 }
644 else
645 {
646 child_inf->aspace = new_address_space ();
647 child_inf->pspace = add_program_space (child_inf->aspace);
648 child_inf->removable = 1;
649 child_inf->symfile_flags = SYMFILE_NO_READ;
650 set_current_program_space (child_inf->pspace);
651 clone_program_space (child_inf->pspace, parent_pspace);
652
653 /* Let the shared library layer (e.g., solib-svr4) learn
654 about this new process, relocate the cloned exec, pull in
655 shared libraries, and install the solib event breakpoint.
656 If a "cloned-VM" event was propagated better throughout
657 the core, this wouldn't be required. */
658 solib_create_inferior_hook (0);
659 }
660 }
661
662 return target_follow_fork (follow_child, detach_fork);
663 }
664
665 /* Tell the target to follow the fork we're stopped at. Returns true
666 if the inferior should be resumed; false, if the target for some
667 reason decided it's best not to resume. */
668
669 static int
670 follow_fork (void)
671 {
672 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
673 int should_resume = 1;
674 struct thread_info *tp;
675
676 /* Copy user stepping state to the new inferior thread. FIXME: the
677 followed fork child thread should have a copy of most of the
678 parent thread structure's run control related fields, not just these.
679 Initialized to avoid "may be used uninitialized" warnings from gcc. */
680 struct breakpoint *step_resume_breakpoint = NULL;
681 struct breakpoint *exception_resume_breakpoint = NULL;
682 CORE_ADDR step_range_start = 0;
683 CORE_ADDR step_range_end = 0;
684 struct frame_id step_frame_id = { 0 };
685 struct thread_fsm *thread_fsm = NULL;
686
687 if (!non_stop)
688 {
689 ptid_t wait_ptid;
690 struct target_waitstatus wait_status;
691
692 /* Get the last target status returned by target_wait(). */
693 get_last_target_status (&wait_ptid, &wait_status);
694
695 /* If not stopped at a fork event, then there's nothing else to
696 do. */
697 if (wait_status.kind != TARGET_WAITKIND_FORKED
698 && wait_status.kind != TARGET_WAITKIND_VFORKED)
699 return 1;
700
701 /* Check if we switched over from WAIT_PTID, since the event was
702 reported. */
703 if (!ptid_equal (wait_ptid, minus_one_ptid)
704 && !ptid_equal (inferior_ptid, wait_ptid))
705 {
706 /* We did. Switch back to WAIT_PTID thread, to tell the
707 target to follow it (in either direction). We'll
708 afterwards refuse to resume, and inform the user what
709 happened. */
710 switch_to_thread (wait_ptid);
711 should_resume = 0;
712 }
713 }
714
715 tp = inferior_thread ();
716
717 /* If there were any forks/vforks that were caught and are now to be
718 followed, then do so now. */
719 switch (tp->pending_follow.kind)
720 {
721 case TARGET_WAITKIND_FORKED:
722 case TARGET_WAITKIND_VFORKED:
723 {
724 ptid_t parent, child;
725
726 /* If the user did a next/step, etc, over a fork call,
727 preserve the stepping state in the fork child. */
728 if (follow_child && should_resume)
729 {
730 step_resume_breakpoint = clone_momentary_breakpoint
731 (tp->control.step_resume_breakpoint);
732 step_range_start = tp->control.step_range_start;
733 step_range_end = tp->control.step_range_end;
734 step_frame_id = tp->control.step_frame_id;
735 exception_resume_breakpoint
736 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
737 thread_fsm = tp->thread_fsm;
738
739 /* For now, delete the parent's sr breakpoint, otherwise,
740 parent/child sr breakpoints are considered duplicates,
741 and the child version will not be installed. Remove
742 this when the breakpoints module becomes aware of
743 inferiors and address spaces. */
744 delete_step_resume_breakpoint (tp);
745 tp->control.step_range_start = 0;
746 tp->control.step_range_end = 0;
747 tp->control.step_frame_id = null_frame_id;
748 delete_exception_resume_breakpoint (tp);
749 tp->thread_fsm = NULL;
750 }
751
752 parent = inferior_ptid;
753 child = tp->pending_follow.value.related_pid;
754
755 /* Set up inferior(s) as specified by the caller, and tell the
756 target to do whatever is necessary to follow either parent
757 or child. */
758 if (follow_fork_inferior (follow_child, detach_fork))
759 {
760 /* Target refused to follow, or there's some other reason
761 we shouldn't resume. */
762 should_resume = 0;
763 }
764 else
765 {
766 /* This pending follow fork event is now handled, one way
767 or another. The previous selected thread may be gone
768 from the lists by now, but if it is still around, need
769 to clear the pending follow request. */
770 tp = find_thread_ptid (parent);
771 if (tp)
772 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
773
774 /* This makes sure we don't try to apply the "Switched
775 over from WAIT_PID" logic above. */
776 nullify_last_target_wait_ptid ();
777
778 /* If we followed the child, switch to it... */
779 if (follow_child)
780 {
781 switch_to_thread (child);
782
783 /* ... and preserve the stepping state, in case the
784 user was stepping over the fork call. */
785 if (should_resume)
786 {
787 tp = inferior_thread ();
788 tp->control.step_resume_breakpoint
789 = step_resume_breakpoint;
790 tp->control.step_range_start = step_range_start;
791 tp->control.step_range_end = step_range_end;
792 tp->control.step_frame_id = step_frame_id;
793 tp->control.exception_resume_breakpoint
794 = exception_resume_breakpoint;
795 tp->thread_fsm = thread_fsm;
796 }
797 else
798 {
799 /* If we get here, it was because we're trying to
800 resume from a fork catchpoint, but, the user
801 has switched threads away from the thread that
802 forked. In that case, the resume command
803 issued is most likely not applicable to the
804 child, so just warn, and refuse to resume. */
805 warning (_("Not resuming: switched threads "
806 "before following fork child."));
807 }
808
809 /* Reset breakpoints in the child as appropriate. */
810 follow_inferior_reset_breakpoints ();
811 }
812 else
813 switch_to_thread (parent);
814 }
815 }
816 break;
817 case TARGET_WAITKIND_SPURIOUS:
818 /* Nothing to follow. */
819 break;
820 default:
821 internal_error (__FILE__, __LINE__,
822 "Unexpected pending_follow.kind %d\n",
823 tp->pending_follow.kind);
824 break;
825 }
826
827 return should_resume;
828 }
829
830 static void
831 follow_inferior_reset_breakpoints (void)
832 {
833 struct thread_info *tp = inferior_thread ();
834
835 /* Was there a step_resume breakpoint? (There was if the user
836 did a "next" at the fork() call.) If so, explicitly reset its
837 thread number. Cloned step_resume breakpoints are disabled on
838 creation, so enable it here now that it is associated with the
839 correct thread.
840
841 step_resumes are a form of bp that are made to be per-thread.
842 Since we created the step_resume bp when the parent process
843 was being debugged, and now are switching to the child process,
844 from the breakpoint package's viewpoint, that's a switch of
845 "threads". We must update the bp's notion of which thread
846 it is for, or it'll be ignored when it triggers. */
847
848 if (tp->control.step_resume_breakpoint)
849 {
850 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
851 tp->control.step_resume_breakpoint->loc->enabled = 1;
852 }
853
854 /* Treat exception_resume breakpoints like step_resume breakpoints. */
855 if (tp->control.exception_resume_breakpoint)
856 {
857 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
858 tp->control.exception_resume_breakpoint->loc->enabled = 1;
859 }
860
861 /* Reinsert all breakpoints in the child. The user may have set
862 breakpoints after catching the fork, in which case those
863 were never set in the child, but only in the parent. This makes
864 sure the inserted breakpoints match the breakpoint list. */
865
866 breakpoint_re_set ();
867 insert_breakpoints ();
868 }
869
870 /* The child has exited or execed: resume threads of the parent the
871 user wanted to be executing. */
872
873 static int
874 proceed_after_vfork_done (struct thread_info *thread,
875 void *arg)
876 {
877 int pid = * (int *) arg;
878
879 if (ptid_get_pid (thread->ptid) == pid
880 && is_running (thread->ptid)
881 && !is_executing (thread->ptid)
882 && !thread->stop_requested
883 && thread->suspend.stop_signal == GDB_SIGNAL_0)
884 {
885 if (debug_infrun)
886 fprintf_unfiltered (gdb_stdlog,
887 "infrun: resuming vfork parent thread %s\n",
888 target_pid_to_str (thread->ptid));
889
890 switch_to_thread (thread->ptid);
891 clear_proceed_status (0);
892 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
893 }
894
895 return 0;
896 }
897
898 /* Called whenever we notice an exec or exit event, to handle
899 detaching or resuming a vfork parent. */
900
901 static void
902 handle_vfork_child_exec_or_exit (int exec)
903 {
904 struct inferior *inf = current_inferior ();
905
906 if (inf->vfork_parent)
907 {
908 int resume_parent = -1;
909
910 /* This exec or exit marks the end of the shared memory region
911 between the parent and the child. If the user wanted to
912 detach from the parent, now is the time. */
913
914 if (inf->vfork_parent->pending_detach)
915 {
916 struct thread_info *tp;
917 struct cleanup *old_chain;
918 struct program_space *pspace;
919 struct address_space *aspace;
920
921 /* follow-fork child, detach-on-fork on. */
922
923 inf->vfork_parent->pending_detach = 0;
924
925 if (!exec)
926 {
927 /* If we're handling a child exit, then inferior_ptid
928 points at the inferior's pid, not to a thread. */
929 old_chain = save_inferior_ptid ();
930 save_current_program_space ();
931 save_current_inferior ();
932 }
933 else
934 old_chain = save_current_space_and_thread ();
935
936 /* We're letting loose of the parent. */
937 tp = any_live_thread_of_process (inf->vfork_parent->pid);
938 switch_to_thread (tp->ptid);
939
940 /* We're about to detach from the parent, which implicitly
941 removes breakpoints from its address space. There's a
942 catch here: we want to reuse the spaces for the child,
943 but, parent/child are still sharing the pspace at this
944 point, although the exec in reality makes the kernel give
945 the child a fresh set of new pages. The problem here is
946 that the breakpoints module being unaware of this, would
947 likely chose the child process to write to the parent
948 address space. Swapping the child temporarily away from
949 the spaces has the desired effect. Yes, this is "sort
950 of" a hack. */
951
952 pspace = inf->pspace;
953 aspace = inf->aspace;
954 inf->aspace = NULL;
955 inf->pspace = NULL;
956
957 if (debug_infrun || info_verbose)
958 {
959 target_terminal_ours_for_output ();
960
961 if (exec)
962 {
963 fprintf_filtered (gdb_stdlog,
964 _("Detaching vfork parent process "
965 "%d after child exec.\n"),
966 inf->vfork_parent->pid);
967 }
968 else
969 {
970 fprintf_filtered (gdb_stdlog,
971 _("Detaching vfork parent process "
972 "%d after child exit.\n"),
973 inf->vfork_parent->pid);
974 }
975 }
976
977 target_detach (NULL, 0);
978
979 /* Put it back. */
980 inf->pspace = pspace;
981 inf->aspace = aspace;
982
983 do_cleanups (old_chain);
984 }
985 else if (exec)
986 {
987 /* We're staying attached to the parent, so, really give the
988 child a new address space. */
989 inf->pspace = add_program_space (maybe_new_address_space ());
990 inf->aspace = inf->pspace->aspace;
991 inf->removable = 1;
992 set_current_program_space (inf->pspace);
993
994 resume_parent = inf->vfork_parent->pid;
995
996 /* Break the bonds. */
997 inf->vfork_parent->vfork_child = NULL;
998 }
999 else
1000 {
1001 struct cleanup *old_chain;
1002 struct program_space *pspace;
1003
1004 /* If this is a vfork child exiting, then the pspace and
1005 aspaces were shared with the parent. Since we're
1006 reporting the process exit, we'll be mourning all that is
1007 found in the address space, and switching to null_ptid,
1008 preparing to start a new inferior. But, since we don't
1009 want to clobber the parent's address/program spaces, we
1010 go ahead and create a new one for this exiting
1011 inferior. */
1012
1013 /* Switch to null_ptid, so that clone_program_space doesn't want
1014 to read the selected frame of a dead process. */
1015 old_chain = save_inferior_ptid ();
1016 inferior_ptid = null_ptid;
1017
1018 /* This inferior is dead, so avoid giving the breakpoints
1019 module the option to write through to it (cloning a
1020 program space resets breakpoints). */
1021 inf->aspace = NULL;
1022 inf->pspace = NULL;
1023 pspace = add_program_space (maybe_new_address_space ());
1024 set_current_program_space (pspace);
1025 inf->removable = 1;
1026 inf->symfile_flags = SYMFILE_NO_READ;
1027 clone_program_space (pspace, inf->vfork_parent->pspace);
1028 inf->pspace = pspace;
1029 inf->aspace = pspace->aspace;
1030
1031 /* Put back inferior_ptid. We'll continue mourning this
1032 inferior. */
1033 do_cleanups (old_chain);
1034
1035 resume_parent = inf->vfork_parent->pid;
1036 /* Break the bonds. */
1037 inf->vfork_parent->vfork_child = NULL;
1038 }
1039
1040 inf->vfork_parent = NULL;
1041
1042 gdb_assert (current_program_space == inf->pspace);
1043
1044 if (non_stop && resume_parent != -1)
1045 {
1046 /* If the user wanted the parent to be running, let it go
1047 free now. */
1048 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1049
1050 if (debug_infrun)
1051 fprintf_unfiltered (gdb_stdlog,
1052 "infrun: resuming vfork parent process %d\n",
1053 resume_parent);
1054
1055 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1056
1057 do_cleanups (old_chain);
1058 }
1059 }
1060 }
1061
1062 /* Enum strings for "set|show follow-exec-mode". */
1063
1064 static const char follow_exec_mode_new[] = "new";
1065 static const char follow_exec_mode_same[] = "same";
1066 static const char *const follow_exec_mode_names[] =
1067 {
1068 follow_exec_mode_new,
1069 follow_exec_mode_same,
1070 NULL,
1071 };
1072
1073 static const char *follow_exec_mode_string = follow_exec_mode_same;
1074 static void
1075 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1076 struct cmd_list_element *c, const char *value)
1077 {
1078 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1079 }
1080
1081 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1082
1083 static void
1084 follow_exec (ptid_t ptid, char *exec_file_target)
1085 {
1086 struct thread_info *th, *tmp;
1087 struct inferior *inf = current_inferior ();
1088 int pid = ptid_get_pid (ptid);
1089 ptid_t process_ptid;
1090 char *exec_file_host;
1091 struct cleanup *old_chain;
1092
1093 /* This is an exec event that we actually wish to pay attention to.
1094 Refresh our symbol table to the newly exec'd program, remove any
1095 momentary bp's, etc.
1096
1097 If there are breakpoints, they aren't really inserted now,
1098 since the exec() transformed our inferior into a fresh set
1099 of instructions.
1100
1101 We want to preserve symbolic breakpoints on the list, since
1102 we have hopes that they can be reset after the new a.out's
1103 symbol table is read.
1104
1105 However, any "raw" breakpoints must be removed from the list
1106 (e.g., the solib bp's), since their address is probably invalid
1107 now.
1108
1109 And, we DON'T want to call delete_breakpoints() here, since
1110 that may write the bp's "shadow contents" (the instruction
1111 value that was overwritten witha TRAP instruction). Since
1112 we now have a new a.out, those shadow contents aren't valid. */
1113
1114 mark_breakpoints_out ();
1115
1116 /* The target reports the exec event to the main thread, even if
1117 some other thread does the exec, and even if the main thread was
1118 stopped or already gone. We may still have non-leader threads of
1119 the process on our list. E.g., on targets that don't have thread
1120 exit events (like remote); or on native Linux in non-stop mode if
1121 there were only two threads in the inferior and the non-leader
1122 one is the one that execs (and nothing forces an update of the
1123 thread list up to here). When debugging remotely, it's best to
1124 avoid extra traffic, when possible, so avoid syncing the thread
1125 list with the target, and instead go ahead and delete all threads
1126 of the process but one that reported the event. Note this must
1127 be done before calling update_breakpoints_after_exec, as
1128 otherwise clearing the threads' resources would reference stale
1129 thread breakpoints -- it may have been one of these threads that
1130 stepped across the exec. We could just clear their stepping
1131 states, but as long as we're iterating, might as well delete
1132 them. Deleting them now rather than at the next user-visible
1133 stop provides a nicer sequence of events for user and MI
1134 notifications. */
1135 ALL_THREADS_SAFE (th, tmp)
1136 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1137 delete_thread (th->ptid);
1138
1139 /* We also need to clear any left over stale state for the
1140 leader/event thread. E.g., if there was any step-resume
1141 breakpoint or similar, it's gone now. We cannot truly
1142 step-to-next statement through an exec(). */
1143 th = inferior_thread ();
1144 th->control.step_resume_breakpoint = NULL;
1145 th->control.exception_resume_breakpoint = NULL;
1146 th->control.single_step_breakpoints = NULL;
1147 th->control.step_range_start = 0;
1148 th->control.step_range_end = 0;
1149
1150 /* The user may have had the main thread held stopped in the
1151 previous image (e.g., schedlock on, or non-stop). Release
1152 it now. */
1153 th->stop_requested = 0;
1154
1155 update_breakpoints_after_exec ();
1156
1157 /* What is this a.out's name? */
1158 process_ptid = pid_to_ptid (pid);
1159 printf_unfiltered (_("%s is executing new program: %s\n"),
1160 target_pid_to_str (process_ptid),
1161 exec_file_target);
1162
1163 /* We've followed the inferior through an exec. Therefore, the
1164 inferior has essentially been killed & reborn. */
1165
1166 gdb_flush (gdb_stdout);
1167
1168 breakpoint_init_inferior (inf_execd);
1169
1170 exec_file_host = exec_file_find (exec_file_target, NULL);
1171 old_chain = make_cleanup (xfree, exec_file_host);
1172
1173 /* If we were unable to map the executable target pathname onto a host
1174 pathname, tell the user that. Otherwise GDB's subsequent behavior
1175 is confusing. Maybe it would even be better to stop at this point
1176 so that the user can specify a file manually before continuing. */
1177 if (exec_file_host == NULL)
1178 warning (_("Could not load symbols for executable %s.\n"
1179 "Do you need \"set sysroot\"?"),
1180 exec_file_target);
1181
1182 /* Reset the shared library package. This ensures that we get a
1183 shlib event when the child reaches "_start", at which point the
1184 dld will have had a chance to initialize the child. */
1185 /* Also, loading a symbol file below may trigger symbol lookups, and
1186 we don't want those to be satisfied by the libraries of the
1187 previous incarnation of this process. */
1188 no_shared_libraries (NULL, 0);
1189
1190 if (follow_exec_mode_string == follow_exec_mode_new)
1191 {
1192 /* The user wants to keep the old inferior and program spaces
1193 around. Create a new fresh one, and switch to it. */
1194
1195 /* Do exit processing for the original inferior before adding
1196 the new inferior so we don't have two active inferiors with
1197 the same ptid, which can confuse find_inferior_ptid. */
1198 exit_inferior_num_silent (current_inferior ()->num);
1199
1200 inf = add_inferior_with_spaces ();
1201 inf->pid = pid;
1202 target_follow_exec (inf, exec_file_target);
1203
1204 set_current_inferior (inf);
1205 set_current_program_space (inf->pspace);
1206 add_thread (ptid);
1207 }
1208 else
1209 {
1210 /* The old description may no longer be fit for the new image.
1211 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1212 old description; we'll read a new one below. No need to do
1213 this on "follow-exec-mode new", as the old inferior stays
1214 around (its description is later cleared/refetched on
1215 restart). */
1216 target_clear_description ();
1217 }
1218
1219 gdb_assert (current_program_space == inf->pspace);
1220
1221 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1222 because the proper displacement for a PIE (Position Independent
1223 Executable) main symbol file will only be computed by
1224 solib_create_inferior_hook below. breakpoint_re_set would fail
1225 to insert the breakpoints with the zero displacement. */
1226 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
1227
1228 do_cleanups (old_chain);
1229
1230 /* If the target can specify a description, read it. Must do this
1231 after flipping to the new executable (because the target supplied
1232 description must be compatible with the executable's
1233 architecture, and the old executable may e.g., be 32-bit, while
1234 the new one 64-bit), and before anything involving memory or
1235 registers. */
1236 target_find_description ();
1237
1238 solib_create_inferior_hook (0);
1239
1240 jit_inferior_created_hook ();
1241
1242 breakpoint_re_set ();
1243
1244 /* Reinsert all breakpoints. (Those which were symbolic have
1245 been reset to the proper address in the new a.out, thanks
1246 to symbol_file_command...). */
1247 insert_breakpoints ();
1248
1249 /* The next resume of this inferior should bring it to the shlib
1250 startup breakpoints. (If the user had also set bp's on
1251 "main" from the old (parent) process, then they'll auto-
1252 matically get reset there in the new process.). */
1253 }
1254
1255 /* The queue of threads that need to do a step-over operation to get
1256 past e.g., a breakpoint. What technique is used to step over the
1257 breakpoint/watchpoint does not matter -- all threads end up in the
1258 same queue, to maintain rough temporal order of execution, in order
1259 to avoid starvation, otherwise, we could e.g., find ourselves
1260 constantly stepping the same couple threads past their breakpoints
1261 over and over, if the single-step finish fast enough. */
1262 struct thread_info *step_over_queue_head;
1263
1264 /* Bit flags indicating what the thread needs to step over. */
1265
1266 enum step_over_what_flag
1267 {
1268 /* Step over a breakpoint. */
1269 STEP_OVER_BREAKPOINT = 1,
1270
1271 /* Step past a non-continuable watchpoint, in order to let the
1272 instruction execute so we can evaluate the watchpoint
1273 expression. */
1274 STEP_OVER_WATCHPOINT = 2
1275 };
1276 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1277
1278 /* Info about an instruction that is being stepped over. */
1279
1280 struct step_over_info
1281 {
1282 /* If we're stepping past a breakpoint, this is the address space
1283 and address of the instruction the breakpoint is set at. We'll
1284 skip inserting all breakpoints here. Valid iff ASPACE is
1285 non-NULL. */
1286 struct address_space *aspace;
1287 CORE_ADDR address;
1288
1289 /* The instruction being stepped over triggers a nonsteppable
1290 watchpoint. If true, we'll skip inserting watchpoints. */
1291 int nonsteppable_watchpoint_p;
1292
1293 /* The thread's global number. */
1294 int thread;
1295 };
1296
1297 /* The step-over info of the location that is being stepped over.
1298
1299 Note that with async/breakpoint always-inserted mode, a user might
1300 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1301 being stepped over. As setting a new breakpoint inserts all
1302 breakpoints, we need to make sure the breakpoint being stepped over
1303 isn't inserted then. We do that by only clearing the step-over
1304 info when the step-over is actually finished (or aborted).
1305
1306 Presently GDB can only step over one breakpoint at any given time.
1307 Given threads that can't run code in the same address space as the
1308 breakpoint's can't really miss the breakpoint, GDB could be taught
1309 to step-over at most one breakpoint per address space (so this info
1310 could move to the address space object if/when GDB is extended).
1311 The set of breakpoints being stepped over will normally be much
1312 smaller than the set of all breakpoints, so a flag in the
1313 breakpoint location structure would be wasteful. A separate list
1314 also saves complexity and run-time, as otherwise we'd have to go
1315 through all breakpoint locations clearing their flag whenever we
1316 start a new sequence. Similar considerations weigh against storing
1317 this info in the thread object. Plus, not all step overs actually
1318 have breakpoint locations -- e.g., stepping past a single-step
1319 breakpoint, or stepping to complete a non-continuable
1320 watchpoint. */
1321 static struct step_over_info step_over_info;
1322
1323 /* Record the address of the breakpoint/instruction we're currently
1324 stepping over.
1325 N.B. We record the aspace and address now, instead of say just the thread,
1326 because when we need the info later the thread may be running. */
1327
1328 static void
1329 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1330 int nonsteppable_watchpoint_p,
1331 int thread)
1332 {
1333 step_over_info.aspace = aspace;
1334 step_over_info.address = address;
1335 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1336 step_over_info.thread = thread;
1337 }
1338
1339 /* Called when we're not longer stepping over a breakpoint / an
1340 instruction, so all breakpoints are free to be (re)inserted. */
1341
1342 static void
1343 clear_step_over_info (void)
1344 {
1345 if (debug_infrun)
1346 fprintf_unfiltered (gdb_stdlog,
1347 "infrun: clear_step_over_info\n");
1348 step_over_info.aspace = NULL;
1349 step_over_info.address = 0;
1350 step_over_info.nonsteppable_watchpoint_p = 0;
1351 step_over_info.thread = -1;
1352 }
1353
1354 /* See infrun.h. */
1355
1356 int
1357 stepping_past_instruction_at (struct address_space *aspace,
1358 CORE_ADDR address)
1359 {
1360 return (step_over_info.aspace != NULL
1361 && breakpoint_address_match (aspace, address,
1362 step_over_info.aspace,
1363 step_over_info.address));
1364 }
1365
1366 /* See infrun.h. */
1367
1368 int
1369 thread_is_stepping_over_breakpoint (int thread)
1370 {
1371 return (step_over_info.thread != -1
1372 && thread == step_over_info.thread);
1373 }
1374
1375 /* See infrun.h. */
1376
1377 int
1378 stepping_past_nonsteppable_watchpoint (void)
1379 {
1380 return step_over_info.nonsteppable_watchpoint_p;
1381 }
1382
1383 /* Returns true if step-over info is valid. */
1384
1385 static int
1386 step_over_info_valid_p (void)
1387 {
1388 return (step_over_info.aspace != NULL
1389 || stepping_past_nonsteppable_watchpoint ());
1390 }
1391
1392 \f
1393 /* Displaced stepping. */
1394
1395 /* In non-stop debugging mode, we must take special care to manage
1396 breakpoints properly; in particular, the traditional strategy for
1397 stepping a thread past a breakpoint it has hit is unsuitable.
1398 'Displaced stepping' is a tactic for stepping one thread past a
1399 breakpoint it has hit while ensuring that other threads running
1400 concurrently will hit the breakpoint as they should.
1401
1402 The traditional way to step a thread T off a breakpoint in a
1403 multi-threaded program in all-stop mode is as follows:
1404
1405 a0) Initially, all threads are stopped, and breakpoints are not
1406 inserted.
1407 a1) We single-step T, leaving breakpoints uninserted.
1408 a2) We insert breakpoints, and resume all threads.
1409
1410 In non-stop debugging, however, this strategy is unsuitable: we
1411 don't want to have to stop all threads in the system in order to
1412 continue or step T past a breakpoint. Instead, we use displaced
1413 stepping:
1414
1415 n0) Initially, T is stopped, other threads are running, and
1416 breakpoints are inserted.
1417 n1) We copy the instruction "under" the breakpoint to a separate
1418 location, outside the main code stream, making any adjustments
1419 to the instruction, register, and memory state as directed by
1420 T's architecture.
1421 n2) We single-step T over the instruction at its new location.
1422 n3) We adjust the resulting register and memory state as directed
1423 by T's architecture. This includes resetting T's PC to point
1424 back into the main instruction stream.
1425 n4) We resume T.
1426
1427 This approach depends on the following gdbarch methods:
1428
1429 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1430 indicate where to copy the instruction, and how much space must
1431 be reserved there. We use these in step n1.
1432
1433 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1434 address, and makes any necessary adjustments to the instruction,
1435 register contents, and memory. We use this in step n1.
1436
1437 - gdbarch_displaced_step_fixup adjusts registers and memory after
1438 we have successfuly single-stepped the instruction, to yield the
1439 same effect the instruction would have had if we had executed it
1440 at its original address. We use this in step n3.
1441
1442 - gdbarch_displaced_step_free_closure provides cleanup.
1443
1444 The gdbarch_displaced_step_copy_insn and
1445 gdbarch_displaced_step_fixup functions must be written so that
1446 copying an instruction with gdbarch_displaced_step_copy_insn,
1447 single-stepping across the copied instruction, and then applying
1448 gdbarch_displaced_insn_fixup should have the same effects on the
1449 thread's memory and registers as stepping the instruction in place
1450 would have. Exactly which responsibilities fall to the copy and
1451 which fall to the fixup is up to the author of those functions.
1452
1453 See the comments in gdbarch.sh for details.
1454
1455 Note that displaced stepping and software single-step cannot
1456 currently be used in combination, although with some care I think
1457 they could be made to. Software single-step works by placing
1458 breakpoints on all possible subsequent instructions; if the
1459 displaced instruction is a PC-relative jump, those breakpoints
1460 could fall in very strange places --- on pages that aren't
1461 executable, or at addresses that are not proper instruction
1462 boundaries. (We do generally let other threads run while we wait
1463 to hit the software single-step breakpoint, and they might
1464 encounter such a corrupted instruction.) One way to work around
1465 this would be to have gdbarch_displaced_step_copy_insn fully
1466 simulate the effect of PC-relative instructions (and return NULL)
1467 on architectures that use software single-stepping.
1468
1469 In non-stop mode, we can have independent and simultaneous step
1470 requests, so more than one thread may need to simultaneously step
1471 over a breakpoint. The current implementation assumes there is
1472 only one scratch space per process. In this case, we have to
1473 serialize access to the scratch space. If thread A wants to step
1474 over a breakpoint, but we are currently waiting for some other
1475 thread to complete a displaced step, we leave thread A stopped and
1476 place it in the displaced_step_request_queue. Whenever a displaced
1477 step finishes, we pick the next thread in the queue and start a new
1478 displaced step operation on it. See displaced_step_prepare and
1479 displaced_step_fixup for details. */
1480
1481 /* Per-inferior displaced stepping state. */
1482 struct displaced_step_inferior_state
1483 {
1484 /* Pointer to next in linked list. */
1485 struct displaced_step_inferior_state *next;
1486
1487 /* The process this displaced step state refers to. */
1488 int pid;
1489
1490 /* True if preparing a displaced step ever failed. If so, we won't
1491 try displaced stepping for this inferior again. */
1492 int failed_before;
1493
1494 /* If this is not null_ptid, this is the thread carrying out a
1495 displaced single-step in process PID. This thread's state will
1496 require fixing up once it has completed its step. */
1497 ptid_t step_ptid;
1498
1499 /* The architecture the thread had when we stepped it. */
1500 struct gdbarch *step_gdbarch;
1501
1502 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1503 for post-step cleanup. */
1504 struct displaced_step_closure *step_closure;
1505
1506 /* The address of the original instruction, and the copy we
1507 made. */
1508 CORE_ADDR step_original, step_copy;
1509
1510 /* Saved contents of copy area. */
1511 gdb_byte *step_saved_copy;
1512 };
1513
1514 /* The list of states of processes involved in displaced stepping
1515 presently. */
1516 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1517
1518 /* Get the displaced stepping state of process PID. */
1519
1520 static struct displaced_step_inferior_state *
1521 get_displaced_stepping_state (int pid)
1522 {
1523 struct displaced_step_inferior_state *state;
1524
1525 for (state = displaced_step_inferior_states;
1526 state != NULL;
1527 state = state->next)
1528 if (state->pid == pid)
1529 return state;
1530
1531 return NULL;
1532 }
1533
1534 /* Returns true if any inferior has a thread doing a displaced
1535 step. */
1536
1537 static int
1538 displaced_step_in_progress_any_inferior (void)
1539 {
1540 struct displaced_step_inferior_state *state;
1541
1542 for (state = displaced_step_inferior_states;
1543 state != NULL;
1544 state = state->next)
1545 if (!ptid_equal (state->step_ptid, null_ptid))
1546 return 1;
1547
1548 return 0;
1549 }
1550
1551 /* Return true if thread represented by PTID is doing a displaced
1552 step. */
1553
1554 static int
1555 displaced_step_in_progress_thread (ptid_t ptid)
1556 {
1557 struct displaced_step_inferior_state *displaced;
1558
1559 gdb_assert (!ptid_equal (ptid, null_ptid));
1560
1561 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1562
1563 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1564 }
1565
1566 /* Return true if process PID has a thread doing a displaced step. */
1567
1568 static int
1569 displaced_step_in_progress (int pid)
1570 {
1571 struct displaced_step_inferior_state *displaced;
1572
1573 displaced = get_displaced_stepping_state (pid);
1574 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1575 return 1;
1576
1577 return 0;
1578 }
1579
1580 /* Add a new displaced stepping state for process PID to the displaced
1581 stepping state list, or return a pointer to an already existing
1582 entry, if it already exists. Never returns NULL. */
1583
1584 static struct displaced_step_inferior_state *
1585 add_displaced_stepping_state (int pid)
1586 {
1587 struct displaced_step_inferior_state *state;
1588
1589 for (state = displaced_step_inferior_states;
1590 state != NULL;
1591 state = state->next)
1592 if (state->pid == pid)
1593 return state;
1594
1595 state = XCNEW (struct displaced_step_inferior_state);
1596 state->pid = pid;
1597 state->next = displaced_step_inferior_states;
1598 displaced_step_inferior_states = state;
1599
1600 return state;
1601 }
1602
1603 /* If inferior is in displaced stepping, and ADDR equals to starting address
1604 of copy area, return corresponding displaced_step_closure. Otherwise,
1605 return NULL. */
1606
1607 struct displaced_step_closure*
1608 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1609 {
1610 struct displaced_step_inferior_state *displaced
1611 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1612
1613 /* If checking the mode of displaced instruction in copy area. */
1614 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1615 && (displaced->step_copy == addr))
1616 return displaced->step_closure;
1617
1618 return NULL;
1619 }
1620
1621 /* Remove the displaced stepping state of process PID. */
1622
1623 static void
1624 remove_displaced_stepping_state (int pid)
1625 {
1626 struct displaced_step_inferior_state *it, **prev_next_p;
1627
1628 gdb_assert (pid != 0);
1629
1630 it = displaced_step_inferior_states;
1631 prev_next_p = &displaced_step_inferior_states;
1632 while (it)
1633 {
1634 if (it->pid == pid)
1635 {
1636 *prev_next_p = it->next;
1637 xfree (it);
1638 return;
1639 }
1640
1641 prev_next_p = &it->next;
1642 it = *prev_next_p;
1643 }
1644 }
1645
1646 static void
1647 infrun_inferior_exit (struct inferior *inf)
1648 {
1649 remove_displaced_stepping_state (inf->pid);
1650 }
1651
1652 /* If ON, and the architecture supports it, GDB will use displaced
1653 stepping to step over breakpoints. If OFF, or if the architecture
1654 doesn't support it, GDB will instead use the traditional
1655 hold-and-step approach. If AUTO (which is the default), GDB will
1656 decide which technique to use to step over breakpoints depending on
1657 which of all-stop or non-stop mode is active --- displaced stepping
1658 in non-stop mode; hold-and-step in all-stop mode. */
1659
1660 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1661
1662 static void
1663 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1664 struct cmd_list_element *c,
1665 const char *value)
1666 {
1667 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1668 fprintf_filtered (file,
1669 _("Debugger's willingness to use displaced stepping "
1670 "to step over breakpoints is %s (currently %s).\n"),
1671 value, target_is_non_stop_p () ? "on" : "off");
1672 else
1673 fprintf_filtered (file,
1674 _("Debugger's willingness to use displaced stepping "
1675 "to step over breakpoints is %s.\n"), value);
1676 }
1677
1678 /* Return non-zero if displaced stepping can/should be used to step
1679 over breakpoints of thread TP. */
1680
1681 static int
1682 use_displaced_stepping (struct thread_info *tp)
1683 {
1684 struct regcache *regcache = get_thread_regcache (tp->ptid);
1685 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1686 struct displaced_step_inferior_state *displaced_state;
1687
1688 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1689
1690 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1691 && target_is_non_stop_p ())
1692 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1693 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1694 && find_record_target () == NULL
1695 && (displaced_state == NULL
1696 || !displaced_state->failed_before));
1697 }
1698
1699 /* Clean out any stray displaced stepping state. */
1700 static void
1701 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1702 {
1703 /* Indicate that there is no cleanup pending. */
1704 displaced->step_ptid = null_ptid;
1705
1706 if (displaced->step_closure)
1707 {
1708 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1709 displaced->step_closure);
1710 displaced->step_closure = NULL;
1711 }
1712 }
1713
1714 static void
1715 displaced_step_clear_cleanup (void *arg)
1716 {
1717 struct displaced_step_inferior_state *state
1718 = (struct displaced_step_inferior_state *) arg;
1719
1720 displaced_step_clear (state);
1721 }
1722
1723 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1724 void
1725 displaced_step_dump_bytes (struct ui_file *file,
1726 const gdb_byte *buf,
1727 size_t len)
1728 {
1729 int i;
1730
1731 for (i = 0; i < len; i++)
1732 fprintf_unfiltered (file, "%02x ", buf[i]);
1733 fputs_unfiltered ("\n", file);
1734 }
1735
1736 /* Prepare to single-step, using displaced stepping.
1737
1738 Note that we cannot use displaced stepping when we have a signal to
1739 deliver. If we have a signal to deliver and an instruction to step
1740 over, then after the step, there will be no indication from the
1741 target whether the thread entered a signal handler or ignored the
1742 signal and stepped over the instruction successfully --- both cases
1743 result in a simple SIGTRAP. In the first case we mustn't do a
1744 fixup, and in the second case we must --- but we can't tell which.
1745 Comments in the code for 'random signals' in handle_inferior_event
1746 explain how we handle this case instead.
1747
1748 Returns 1 if preparing was successful -- this thread is going to be
1749 stepped now; 0 if displaced stepping this thread got queued; or -1
1750 if this instruction can't be displaced stepped. */
1751
1752 static int
1753 displaced_step_prepare_throw (ptid_t ptid)
1754 {
1755 struct cleanup *old_cleanups, *ignore_cleanups;
1756 struct thread_info *tp = find_thread_ptid (ptid);
1757 struct regcache *regcache = get_thread_regcache (ptid);
1758 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1759 struct address_space *aspace = get_regcache_aspace (regcache);
1760 CORE_ADDR original, copy;
1761 ULONGEST len;
1762 struct displaced_step_closure *closure;
1763 struct displaced_step_inferior_state *displaced;
1764 int status;
1765
1766 /* We should never reach this function if the architecture does not
1767 support displaced stepping. */
1768 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1769
1770 /* Nor if the thread isn't meant to step over a breakpoint. */
1771 gdb_assert (tp->control.trap_expected);
1772
1773 /* Disable range stepping while executing in the scratch pad. We
1774 want a single-step even if executing the displaced instruction in
1775 the scratch buffer lands within the stepping range (e.g., a
1776 jump/branch). */
1777 tp->control.may_range_step = 0;
1778
1779 /* We have to displaced step one thread at a time, as we only have
1780 access to a single scratch space per inferior. */
1781
1782 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1783
1784 if (!ptid_equal (displaced->step_ptid, null_ptid))
1785 {
1786 /* Already waiting for a displaced step to finish. Defer this
1787 request and place in queue. */
1788
1789 if (debug_displaced)
1790 fprintf_unfiltered (gdb_stdlog,
1791 "displaced: deferring step of %s\n",
1792 target_pid_to_str (ptid));
1793
1794 thread_step_over_chain_enqueue (tp);
1795 return 0;
1796 }
1797 else
1798 {
1799 if (debug_displaced)
1800 fprintf_unfiltered (gdb_stdlog,
1801 "displaced: stepping %s now\n",
1802 target_pid_to_str (ptid));
1803 }
1804
1805 displaced_step_clear (displaced);
1806
1807 old_cleanups = save_inferior_ptid ();
1808 inferior_ptid = ptid;
1809
1810 original = regcache_read_pc (regcache);
1811
1812 copy = gdbarch_displaced_step_location (gdbarch);
1813 len = gdbarch_max_insn_length (gdbarch);
1814
1815 if (breakpoint_in_range_p (aspace, copy, len))
1816 {
1817 /* There's a breakpoint set in the scratch pad location range
1818 (which is usually around the entry point). We'd either
1819 install it before resuming, which would overwrite/corrupt the
1820 scratch pad, or if it was already inserted, this displaced
1821 step would overwrite it. The latter is OK in the sense that
1822 we already assume that no thread is going to execute the code
1823 in the scratch pad range (after initial startup) anyway, but
1824 the former is unacceptable. Simply punt and fallback to
1825 stepping over this breakpoint in-line. */
1826 if (debug_displaced)
1827 {
1828 fprintf_unfiltered (gdb_stdlog,
1829 "displaced: breakpoint set in scratch pad. "
1830 "Stepping over breakpoint in-line instead.\n");
1831 }
1832
1833 do_cleanups (old_cleanups);
1834 return -1;
1835 }
1836
1837 /* Save the original contents of the copy area. */
1838 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1839 ignore_cleanups = make_cleanup (free_current_contents,
1840 &displaced->step_saved_copy);
1841 status = target_read_memory (copy, displaced->step_saved_copy, len);
1842 if (status != 0)
1843 throw_error (MEMORY_ERROR,
1844 _("Error accessing memory address %s (%s) for "
1845 "displaced-stepping scratch space."),
1846 paddress (gdbarch, copy), safe_strerror (status));
1847 if (debug_displaced)
1848 {
1849 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1850 paddress (gdbarch, copy));
1851 displaced_step_dump_bytes (gdb_stdlog,
1852 displaced->step_saved_copy,
1853 len);
1854 };
1855
1856 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1857 original, copy, regcache);
1858 if (closure == NULL)
1859 {
1860 /* The architecture doesn't know how or want to displaced step
1861 this instruction or instruction sequence. Fallback to
1862 stepping over the breakpoint in-line. */
1863 do_cleanups (old_cleanups);
1864 return -1;
1865 }
1866
1867 /* Save the information we need to fix things up if the step
1868 succeeds. */
1869 displaced->step_ptid = ptid;
1870 displaced->step_gdbarch = gdbarch;
1871 displaced->step_closure = closure;
1872 displaced->step_original = original;
1873 displaced->step_copy = copy;
1874
1875 make_cleanup (displaced_step_clear_cleanup, displaced);
1876
1877 /* Resume execution at the copy. */
1878 regcache_write_pc (regcache, copy);
1879
1880 discard_cleanups (ignore_cleanups);
1881
1882 do_cleanups (old_cleanups);
1883
1884 if (debug_displaced)
1885 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1886 paddress (gdbarch, copy));
1887
1888 return 1;
1889 }
1890
1891 /* Wrapper for displaced_step_prepare_throw that disabled further
1892 attempts at displaced stepping if we get a memory error. */
1893
1894 static int
1895 displaced_step_prepare (ptid_t ptid)
1896 {
1897 int prepared = -1;
1898
1899 TRY
1900 {
1901 prepared = displaced_step_prepare_throw (ptid);
1902 }
1903 CATCH (ex, RETURN_MASK_ERROR)
1904 {
1905 struct displaced_step_inferior_state *displaced_state;
1906
1907 if (ex.error != MEMORY_ERROR
1908 && ex.error != NOT_SUPPORTED_ERROR)
1909 throw_exception (ex);
1910
1911 if (debug_infrun)
1912 {
1913 fprintf_unfiltered (gdb_stdlog,
1914 "infrun: disabling displaced stepping: %s\n",
1915 ex.message);
1916 }
1917
1918 /* Be verbose if "set displaced-stepping" is "on", silent if
1919 "auto". */
1920 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1921 {
1922 warning (_("disabling displaced stepping: %s"),
1923 ex.message);
1924 }
1925
1926 /* Disable further displaced stepping attempts. */
1927 displaced_state
1928 = get_displaced_stepping_state (ptid_get_pid (ptid));
1929 displaced_state->failed_before = 1;
1930 }
1931 END_CATCH
1932
1933 return prepared;
1934 }
1935
1936 static void
1937 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1938 const gdb_byte *myaddr, int len)
1939 {
1940 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1941
1942 inferior_ptid = ptid;
1943 write_memory (memaddr, myaddr, len);
1944 do_cleanups (ptid_cleanup);
1945 }
1946
1947 /* Restore the contents of the copy area for thread PTID. */
1948
1949 static void
1950 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1951 ptid_t ptid)
1952 {
1953 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1954
1955 write_memory_ptid (ptid, displaced->step_copy,
1956 displaced->step_saved_copy, len);
1957 if (debug_displaced)
1958 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1959 target_pid_to_str (ptid),
1960 paddress (displaced->step_gdbarch,
1961 displaced->step_copy));
1962 }
1963
1964 /* If we displaced stepped an instruction successfully, adjust
1965 registers and memory to yield the same effect the instruction would
1966 have had if we had executed it at its original address, and return
1967 1. If the instruction didn't complete, relocate the PC and return
1968 -1. If the thread wasn't displaced stepping, return 0. */
1969
1970 static int
1971 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1972 {
1973 struct cleanup *old_cleanups;
1974 struct displaced_step_inferior_state *displaced
1975 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1976 int ret;
1977
1978 /* Was any thread of this process doing a displaced step? */
1979 if (displaced == NULL)
1980 return 0;
1981
1982 /* Was this event for the pid we displaced? */
1983 if (ptid_equal (displaced->step_ptid, null_ptid)
1984 || ! ptid_equal (displaced->step_ptid, event_ptid))
1985 return 0;
1986
1987 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1988
1989 displaced_step_restore (displaced, displaced->step_ptid);
1990
1991 /* Fixup may need to read memory/registers. Switch to the thread
1992 that we're fixing up. Also, target_stopped_by_watchpoint checks
1993 the current thread. */
1994 switch_to_thread (event_ptid);
1995
1996 /* Did the instruction complete successfully? */
1997 if (signal == GDB_SIGNAL_TRAP
1998 && !(target_stopped_by_watchpoint ()
1999 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
2000 || target_have_steppable_watchpoint)))
2001 {
2002 /* Fix up the resulting state. */
2003 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2004 displaced->step_closure,
2005 displaced->step_original,
2006 displaced->step_copy,
2007 get_thread_regcache (displaced->step_ptid));
2008 ret = 1;
2009 }
2010 else
2011 {
2012 /* Since the instruction didn't complete, all we can do is
2013 relocate the PC. */
2014 struct regcache *regcache = get_thread_regcache (event_ptid);
2015 CORE_ADDR pc = regcache_read_pc (regcache);
2016
2017 pc = displaced->step_original + (pc - displaced->step_copy);
2018 regcache_write_pc (regcache, pc);
2019 ret = -1;
2020 }
2021
2022 do_cleanups (old_cleanups);
2023
2024 displaced->step_ptid = null_ptid;
2025
2026 return ret;
2027 }
2028
2029 /* Data to be passed around while handling an event. This data is
2030 discarded between events. */
2031 struct execution_control_state
2032 {
2033 ptid_t ptid;
2034 /* The thread that got the event, if this was a thread event; NULL
2035 otherwise. */
2036 struct thread_info *event_thread;
2037
2038 struct target_waitstatus ws;
2039 int stop_func_filled_in;
2040 CORE_ADDR stop_func_start;
2041 CORE_ADDR stop_func_end;
2042 const char *stop_func_name;
2043 int wait_some_more;
2044
2045 /* True if the event thread hit the single-step breakpoint of
2046 another thread. Thus the event doesn't cause a stop, the thread
2047 needs to be single-stepped past the single-step breakpoint before
2048 we can switch back to the original stepping thread. */
2049 int hit_singlestep_breakpoint;
2050 };
2051
2052 /* Clear ECS and set it to point at TP. */
2053
2054 static void
2055 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2056 {
2057 memset (ecs, 0, sizeof (*ecs));
2058 ecs->event_thread = tp;
2059 ecs->ptid = tp->ptid;
2060 }
2061
2062 static void keep_going_pass_signal (struct execution_control_state *ecs);
2063 static void prepare_to_wait (struct execution_control_state *ecs);
2064 static int keep_going_stepped_thread (struct thread_info *tp);
2065 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2066
2067 /* Are there any pending step-over requests? If so, run all we can
2068 now and return true. Otherwise, return false. */
2069
2070 static int
2071 start_step_over (void)
2072 {
2073 struct thread_info *tp, *next;
2074
2075 /* Don't start a new step-over if we already have an in-line
2076 step-over operation ongoing. */
2077 if (step_over_info_valid_p ())
2078 return 0;
2079
2080 for (tp = step_over_queue_head; tp != NULL; tp = next)
2081 {
2082 struct execution_control_state ecss;
2083 struct execution_control_state *ecs = &ecss;
2084 step_over_what step_what;
2085 int must_be_in_line;
2086
2087 gdb_assert (!tp->stop_requested);
2088
2089 next = thread_step_over_chain_next (tp);
2090
2091 /* If this inferior already has a displaced step in process,
2092 don't start a new one. */
2093 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2094 continue;
2095
2096 step_what = thread_still_needs_step_over (tp);
2097 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2098 || ((step_what & STEP_OVER_BREAKPOINT)
2099 && !use_displaced_stepping (tp)));
2100
2101 /* We currently stop all threads of all processes to step-over
2102 in-line. If we need to start a new in-line step-over, let
2103 any pending displaced steps finish first. */
2104 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2105 return 0;
2106
2107 thread_step_over_chain_remove (tp);
2108
2109 if (step_over_queue_head == NULL)
2110 {
2111 if (debug_infrun)
2112 fprintf_unfiltered (gdb_stdlog,
2113 "infrun: step-over queue now empty\n");
2114 }
2115
2116 if (tp->control.trap_expected
2117 || tp->resumed
2118 || tp->executing)
2119 {
2120 internal_error (__FILE__, __LINE__,
2121 "[%s] has inconsistent state: "
2122 "trap_expected=%d, resumed=%d, executing=%d\n",
2123 target_pid_to_str (tp->ptid),
2124 tp->control.trap_expected,
2125 tp->resumed,
2126 tp->executing);
2127 }
2128
2129 if (debug_infrun)
2130 fprintf_unfiltered (gdb_stdlog,
2131 "infrun: resuming [%s] for step-over\n",
2132 target_pid_to_str (tp->ptid));
2133
2134 /* keep_going_pass_signal skips the step-over if the breakpoint
2135 is no longer inserted. In all-stop, we want to keep looking
2136 for a thread that needs a step-over instead of resuming TP,
2137 because we wouldn't be able to resume anything else until the
2138 target stops again. In non-stop, the resume always resumes
2139 only TP, so it's OK to let the thread resume freely. */
2140 if (!target_is_non_stop_p () && !step_what)
2141 continue;
2142
2143 switch_to_thread (tp->ptid);
2144 reset_ecs (ecs, tp);
2145 keep_going_pass_signal (ecs);
2146
2147 if (!ecs->wait_some_more)
2148 error (_("Command aborted."));
2149
2150 gdb_assert (tp->resumed);
2151
2152 /* If we started a new in-line step-over, we're done. */
2153 if (step_over_info_valid_p ())
2154 {
2155 gdb_assert (tp->control.trap_expected);
2156 return 1;
2157 }
2158
2159 if (!target_is_non_stop_p ())
2160 {
2161 /* On all-stop, shouldn't have resumed unless we needed a
2162 step over. */
2163 gdb_assert (tp->control.trap_expected
2164 || tp->step_after_step_resume_breakpoint);
2165
2166 /* With remote targets (at least), in all-stop, we can't
2167 issue any further remote commands until the program stops
2168 again. */
2169 return 1;
2170 }
2171
2172 /* Either the thread no longer needed a step-over, or a new
2173 displaced stepping sequence started. Even in the latter
2174 case, continue looking. Maybe we can also start another
2175 displaced step on a thread of other process. */
2176 }
2177
2178 return 0;
2179 }
2180
2181 /* Update global variables holding ptids to hold NEW_PTID if they were
2182 holding OLD_PTID. */
2183 static void
2184 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2185 {
2186 struct displaced_step_inferior_state *displaced;
2187
2188 if (ptid_equal (inferior_ptid, old_ptid))
2189 inferior_ptid = new_ptid;
2190
2191 for (displaced = displaced_step_inferior_states;
2192 displaced;
2193 displaced = displaced->next)
2194 {
2195 if (ptid_equal (displaced->step_ptid, old_ptid))
2196 displaced->step_ptid = new_ptid;
2197 }
2198 }
2199
2200 \f
2201 /* Resuming. */
2202
2203 /* Things to clean up if we QUIT out of resume (). */
2204 static void
2205 resume_cleanups (void *ignore)
2206 {
2207 if (!ptid_equal (inferior_ptid, null_ptid))
2208 delete_single_step_breakpoints (inferior_thread ());
2209
2210 normal_stop ();
2211 }
2212
2213 static const char schedlock_off[] = "off";
2214 static const char schedlock_on[] = "on";
2215 static const char schedlock_step[] = "step";
2216 static const char schedlock_replay[] = "replay";
2217 static const char *const scheduler_enums[] = {
2218 schedlock_off,
2219 schedlock_on,
2220 schedlock_step,
2221 schedlock_replay,
2222 NULL
2223 };
2224 static const char *scheduler_mode = schedlock_replay;
2225 static void
2226 show_scheduler_mode (struct ui_file *file, int from_tty,
2227 struct cmd_list_element *c, const char *value)
2228 {
2229 fprintf_filtered (file,
2230 _("Mode for locking scheduler "
2231 "during execution is \"%s\".\n"),
2232 value);
2233 }
2234
2235 static void
2236 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2237 {
2238 if (!target_can_lock_scheduler)
2239 {
2240 scheduler_mode = schedlock_off;
2241 error (_("Target '%s' cannot support this command."), target_shortname);
2242 }
2243 }
2244
2245 /* True if execution commands resume all threads of all processes by
2246 default; otherwise, resume only threads of the current inferior
2247 process. */
2248 int sched_multi = 0;
2249
2250 /* Try to setup for software single stepping over the specified location.
2251 Return 1 if target_resume() should use hardware single step.
2252
2253 GDBARCH the current gdbarch.
2254 PC the location to step over. */
2255
2256 static int
2257 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2258 {
2259 int hw_step = 1;
2260
2261 if (execution_direction == EXEC_FORWARD
2262 && gdbarch_software_single_step_p (gdbarch))
2263 hw_step = !insert_single_step_breakpoints (gdbarch);
2264
2265 return hw_step;
2266 }
2267
2268 /* See infrun.h. */
2269
2270 ptid_t
2271 user_visible_resume_ptid (int step)
2272 {
2273 ptid_t resume_ptid;
2274
2275 if (non_stop)
2276 {
2277 /* With non-stop mode on, threads are always handled
2278 individually. */
2279 resume_ptid = inferior_ptid;
2280 }
2281 else if ((scheduler_mode == schedlock_on)
2282 || (scheduler_mode == schedlock_step && step))
2283 {
2284 /* User-settable 'scheduler' mode requires solo thread
2285 resume. */
2286 resume_ptid = inferior_ptid;
2287 }
2288 else if ((scheduler_mode == schedlock_replay)
2289 && target_record_will_replay (minus_one_ptid, execution_direction))
2290 {
2291 /* User-settable 'scheduler' mode requires solo thread resume in replay
2292 mode. */
2293 resume_ptid = inferior_ptid;
2294 }
2295 else if (!sched_multi && target_supports_multi_process ())
2296 {
2297 /* Resume all threads of the current process (and none of other
2298 processes). */
2299 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2300 }
2301 else
2302 {
2303 /* Resume all threads of all processes. */
2304 resume_ptid = RESUME_ALL;
2305 }
2306
2307 return resume_ptid;
2308 }
2309
2310 /* Return a ptid representing the set of threads that we will resume,
2311 in the perspective of the target, assuming run control handling
2312 does not require leaving some threads stopped (e.g., stepping past
2313 breakpoint). USER_STEP indicates whether we're about to start the
2314 target for a stepping command. */
2315
2316 static ptid_t
2317 internal_resume_ptid (int user_step)
2318 {
2319 /* In non-stop, we always control threads individually. Note that
2320 the target may always work in non-stop mode even with "set
2321 non-stop off", in which case user_visible_resume_ptid could
2322 return a wildcard ptid. */
2323 if (target_is_non_stop_p ())
2324 return inferior_ptid;
2325 else
2326 return user_visible_resume_ptid (user_step);
2327 }
2328
2329 /* Wrapper for target_resume, that handles infrun-specific
2330 bookkeeping. */
2331
2332 static void
2333 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2334 {
2335 struct thread_info *tp = inferior_thread ();
2336
2337 gdb_assert (!tp->stop_requested);
2338
2339 /* Install inferior's terminal modes. */
2340 target_terminal_inferior ();
2341
2342 /* Avoid confusing the next resume, if the next stop/resume
2343 happens to apply to another thread. */
2344 tp->suspend.stop_signal = GDB_SIGNAL_0;
2345
2346 /* Advise target which signals may be handled silently.
2347
2348 If we have removed breakpoints because we are stepping over one
2349 in-line (in any thread), we need to receive all signals to avoid
2350 accidentally skipping a breakpoint during execution of a signal
2351 handler.
2352
2353 Likewise if we're displaced stepping, otherwise a trap for a
2354 breakpoint in a signal handler might be confused with the
2355 displaced step finishing. We don't make the displaced_step_fixup
2356 step distinguish the cases instead, because:
2357
2358 - a backtrace while stopped in the signal handler would show the
2359 scratch pad as frame older than the signal handler, instead of
2360 the real mainline code.
2361
2362 - when the thread is later resumed, the signal handler would
2363 return to the scratch pad area, which would no longer be
2364 valid. */
2365 if (step_over_info_valid_p ()
2366 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2367 target_pass_signals (0, NULL);
2368 else
2369 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2370
2371 target_resume (resume_ptid, step, sig);
2372
2373 target_commit_resume ();
2374 }
2375
2376 /* Resume the inferior, but allow a QUIT. This is useful if the user
2377 wants to interrupt some lengthy single-stepping operation
2378 (for child processes, the SIGINT goes to the inferior, and so
2379 we get a SIGINT random_signal, but for remote debugging and perhaps
2380 other targets, that's not true).
2381
2382 SIG is the signal to give the inferior (zero for none). */
2383 void
2384 resume (enum gdb_signal sig)
2385 {
2386 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2387 struct regcache *regcache = get_current_regcache ();
2388 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2389 struct thread_info *tp = inferior_thread ();
2390 CORE_ADDR pc = regcache_read_pc (regcache);
2391 struct address_space *aspace = get_regcache_aspace (regcache);
2392 ptid_t resume_ptid;
2393 /* This represents the user's step vs continue request. When
2394 deciding whether "set scheduler-locking step" applies, it's the
2395 user's intention that counts. */
2396 const int user_step = tp->control.stepping_command;
2397 /* This represents what we'll actually request the target to do.
2398 This can decay from a step to a continue, if e.g., we need to
2399 implement single-stepping with breakpoints (software
2400 single-step). */
2401 int step;
2402
2403 gdb_assert (!tp->stop_requested);
2404 gdb_assert (!thread_is_in_step_over_chain (tp));
2405
2406 QUIT;
2407
2408 if (tp->suspend.waitstatus_pending_p)
2409 {
2410 if (debug_infrun)
2411 {
2412 char *statstr;
2413
2414 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2415 fprintf_unfiltered (gdb_stdlog,
2416 "infrun: resume: thread %s has pending wait status %s "
2417 "(currently_stepping=%d).\n",
2418 target_pid_to_str (tp->ptid), statstr,
2419 currently_stepping (tp));
2420 xfree (statstr);
2421 }
2422
2423 tp->resumed = 1;
2424
2425 /* FIXME: What should we do if we are supposed to resume this
2426 thread with a signal? Maybe we should maintain a queue of
2427 pending signals to deliver. */
2428 if (sig != GDB_SIGNAL_0)
2429 {
2430 warning (_("Couldn't deliver signal %s to %s."),
2431 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2432 }
2433
2434 tp->suspend.stop_signal = GDB_SIGNAL_0;
2435 discard_cleanups (old_cleanups);
2436
2437 if (target_can_async_p ())
2438 target_async (1);
2439 return;
2440 }
2441
2442 tp->stepped_breakpoint = 0;
2443
2444 /* Depends on stepped_breakpoint. */
2445 step = currently_stepping (tp);
2446
2447 if (current_inferior ()->waiting_for_vfork_done)
2448 {
2449 /* Don't try to single-step a vfork parent that is waiting for
2450 the child to get out of the shared memory region (by exec'ing
2451 or exiting). This is particularly important on software
2452 single-step archs, as the child process would trip on the
2453 software single step breakpoint inserted for the parent
2454 process. Since the parent will not actually execute any
2455 instruction until the child is out of the shared region (such
2456 are vfork's semantics), it is safe to simply continue it.
2457 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2458 the parent, and tell it to `keep_going', which automatically
2459 re-sets it stepping. */
2460 if (debug_infrun)
2461 fprintf_unfiltered (gdb_stdlog,
2462 "infrun: resume : clear step\n");
2463 step = 0;
2464 }
2465
2466 if (debug_infrun)
2467 fprintf_unfiltered (gdb_stdlog,
2468 "infrun: resume (step=%d, signal=%s), "
2469 "trap_expected=%d, current thread [%s] at %s\n",
2470 step, gdb_signal_to_symbol_string (sig),
2471 tp->control.trap_expected,
2472 target_pid_to_str (inferior_ptid),
2473 paddress (gdbarch, pc));
2474
2475 /* Normally, by the time we reach `resume', the breakpoints are either
2476 removed or inserted, as appropriate. The exception is if we're sitting
2477 at a permanent breakpoint; we need to step over it, but permanent
2478 breakpoints can't be removed. So we have to test for it here. */
2479 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2480 {
2481 if (sig != GDB_SIGNAL_0)
2482 {
2483 /* We have a signal to pass to the inferior. The resume
2484 may, or may not take us to the signal handler. If this
2485 is a step, we'll need to stop in the signal handler, if
2486 there's one, (if the target supports stepping into
2487 handlers), or in the next mainline instruction, if
2488 there's no handler. If this is a continue, we need to be
2489 sure to run the handler with all breakpoints inserted.
2490 In all cases, set a breakpoint at the current address
2491 (where the handler returns to), and once that breakpoint
2492 is hit, resume skipping the permanent breakpoint. If
2493 that breakpoint isn't hit, then we've stepped into the
2494 signal handler (or hit some other event). We'll delete
2495 the step-resume breakpoint then. */
2496
2497 if (debug_infrun)
2498 fprintf_unfiltered (gdb_stdlog,
2499 "infrun: resume: skipping permanent breakpoint, "
2500 "deliver signal first\n");
2501
2502 clear_step_over_info ();
2503 tp->control.trap_expected = 0;
2504
2505 if (tp->control.step_resume_breakpoint == NULL)
2506 {
2507 /* Set a "high-priority" step-resume, as we don't want
2508 user breakpoints at PC to trigger (again) when this
2509 hits. */
2510 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2511 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2512
2513 tp->step_after_step_resume_breakpoint = step;
2514 }
2515
2516 insert_breakpoints ();
2517 }
2518 else
2519 {
2520 /* There's no signal to pass, we can go ahead and skip the
2521 permanent breakpoint manually. */
2522 if (debug_infrun)
2523 fprintf_unfiltered (gdb_stdlog,
2524 "infrun: resume: skipping permanent breakpoint\n");
2525 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2526 /* Update pc to reflect the new address from which we will
2527 execute instructions. */
2528 pc = regcache_read_pc (regcache);
2529
2530 if (step)
2531 {
2532 /* We've already advanced the PC, so the stepping part
2533 is done. Now we need to arrange for a trap to be
2534 reported to handle_inferior_event. Set a breakpoint
2535 at the current PC, and run to it. Don't update
2536 prev_pc, because if we end in
2537 switch_back_to_stepped_thread, we want the "expected
2538 thread advanced also" branch to be taken. IOW, we
2539 don't want this thread to step further from PC
2540 (overstep). */
2541 gdb_assert (!step_over_info_valid_p ());
2542 insert_single_step_breakpoint (gdbarch, aspace, pc);
2543 insert_breakpoints ();
2544
2545 resume_ptid = internal_resume_ptid (user_step);
2546 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2547 discard_cleanups (old_cleanups);
2548 tp->resumed = 1;
2549 return;
2550 }
2551 }
2552 }
2553
2554 /* If we have a breakpoint to step over, make sure to do a single
2555 step only. Same if we have software watchpoints. */
2556 if (tp->control.trap_expected || bpstat_should_step ())
2557 tp->control.may_range_step = 0;
2558
2559 /* If enabled, step over breakpoints by executing a copy of the
2560 instruction at a different address.
2561
2562 We can't use displaced stepping when we have a signal to deliver;
2563 the comments for displaced_step_prepare explain why. The
2564 comments in the handle_inferior event for dealing with 'random
2565 signals' explain what we do instead.
2566
2567 We can't use displaced stepping when we are waiting for vfork_done
2568 event, displaced stepping breaks the vfork child similarly as single
2569 step software breakpoint. */
2570 if (tp->control.trap_expected
2571 && use_displaced_stepping (tp)
2572 && !step_over_info_valid_p ()
2573 && sig == GDB_SIGNAL_0
2574 && !current_inferior ()->waiting_for_vfork_done)
2575 {
2576 int prepared = displaced_step_prepare (inferior_ptid);
2577
2578 if (prepared == 0)
2579 {
2580 if (debug_infrun)
2581 fprintf_unfiltered (gdb_stdlog,
2582 "Got placed in step-over queue\n");
2583
2584 tp->control.trap_expected = 0;
2585 discard_cleanups (old_cleanups);
2586 return;
2587 }
2588 else if (prepared < 0)
2589 {
2590 /* Fallback to stepping over the breakpoint in-line. */
2591
2592 if (target_is_non_stop_p ())
2593 stop_all_threads ();
2594
2595 set_step_over_info (get_regcache_aspace (regcache),
2596 regcache_read_pc (regcache), 0, tp->global_num);
2597
2598 step = maybe_software_singlestep (gdbarch, pc);
2599
2600 insert_breakpoints ();
2601 }
2602 else if (prepared > 0)
2603 {
2604 struct displaced_step_inferior_state *displaced;
2605
2606 /* Update pc to reflect the new address from which we will
2607 execute instructions due to displaced stepping. */
2608 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2609
2610 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2611 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2612 displaced->step_closure);
2613 }
2614 }
2615
2616 /* Do we need to do it the hard way, w/temp breakpoints? */
2617 else if (step)
2618 step = maybe_software_singlestep (gdbarch, pc);
2619
2620 /* Currently, our software single-step implementation leads to different
2621 results than hardware single-stepping in one situation: when stepping
2622 into delivering a signal which has an associated signal handler,
2623 hardware single-step will stop at the first instruction of the handler,
2624 while software single-step will simply skip execution of the handler.
2625
2626 For now, this difference in behavior is accepted since there is no
2627 easy way to actually implement single-stepping into a signal handler
2628 without kernel support.
2629
2630 However, there is one scenario where this difference leads to follow-on
2631 problems: if we're stepping off a breakpoint by removing all breakpoints
2632 and then single-stepping. In this case, the software single-step
2633 behavior means that even if there is a *breakpoint* in the signal
2634 handler, GDB still would not stop.
2635
2636 Fortunately, we can at least fix this particular issue. We detect
2637 here the case where we are about to deliver a signal while software
2638 single-stepping with breakpoints removed. In this situation, we
2639 revert the decisions to remove all breakpoints and insert single-
2640 step breakpoints, and instead we install a step-resume breakpoint
2641 at the current address, deliver the signal without stepping, and
2642 once we arrive back at the step-resume breakpoint, actually step
2643 over the breakpoint we originally wanted to step over. */
2644 if (thread_has_single_step_breakpoints_set (tp)
2645 && sig != GDB_SIGNAL_0
2646 && step_over_info_valid_p ())
2647 {
2648 /* If we have nested signals or a pending signal is delivered
2649 immediately after a handler returns, might might already have
2650 a step-resume breakpoint set on the earlier handler. We cannot
2651 set another step-resume breakpoint; just continue on until the
2652 original breakpoint is hit. */
2653 if (tp->control.step_resume_breakpoint == NULL)
2654 {
2655 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2656 tp->step_after_step_resume_breakpoint = 1;
2657 }
2658
2659 delete_single_step_breakpoints (tp);
2660
2661 clear_step_over_info ();
2662 tp->control.trap_expected = 0;
2663
2664 insert_breakpoints ();
2665 }
2666
2667 /* If STEP is set, it's a request to use hardware stepping
2668 facilities. But in that case, we should never
2669 use singlestep breakpoint. */
2670 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2671
2672 /* Decide the set of threads to ask the target to resume. */
2673 if (tp->control.trap_expected)
2674 {
2675 /* We're allowing a thread to run past a breakpoint it has
2676 hit, either by single-stepping the thread with the breakpoint
2677 removed, or by displaced stepping, with the breakpoint inserted.
2678 In the former case, we need to single-step only this thread,
2679 and keep others stopped, as they can miss this breakpoint if
2680 allowed to run. That's not really a problem for displaced
2681 stepping, but, we still keep other threads stopped, in case
2682 another thread is also stopped for a breakpoint waiting for
2683 its turn in the displaced stepping queue. */
2684 resume_ptid = inferior_ptid;
2685 }
2686 else
2687 resume_ptid = internal_resume_ptid (user_step);
2688
2689 if (execution_direction != EXEC_REVERSE
2690 && step && breakpoint_inserted_here_p (aspace, pc))
2691 {
2692 /* There are two cases where we currently need to step a
2693 breakpoint instruction when we have a signal to deliver:
2694
2695 - See handle_signal_stop where we handle random signals that
2696 could take out us out of the stepping range. Normally, in
2697 that case we end up continuing (instead of stepping) over the
2698 signal handler with a breakpoint at PC, but there are cases
2699 where we should _always_ single-step, even if we have a
2700 step-resume breakpoint, like when a software watchpoint is
2701 set. Assuming single-stepping and delivering a signal at the
2702 same time would takes us to the signal handler, then we could
2703 have removed the breakpoint at PC to step over it. However,
2704 some hardware step targets (like e.g., Mac OS) can't step
2705 into signal handlers, and for those, we need to leave the
2706 breakpoint at PC inserted, as otherwise if the handler
2707 recurses and executes PC again, it'll miss the breakpoint.
2708 So we leave the breakpoint inserted anyway, but we need to
2709 record that we tried to step a breakpoint instruction, so
2710 that adjust_pc_after_break doesn't end up confused.
2711
2712 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2713 in one thread after another thread that was stepping had been
2714 momentarily paused for a step-over. When we re-resume the
2715 stepping thread, it may be resumed from that address with a
2716 breakpoint that hasn't trapped yet. Seen with
2717 gdb.threads/non-stop-fair-events.exp, on targets that don't
2718 do displaced stepping. */
2719
2720 if (debug_infrun)
2721 fprintf_unfiltered (gdb_stdlog,
2722 "infrun: resume: [%s] stepped breakpoint\n",
2723 target_pid_to_str (tp->ptid));
2724
2725 tp->stepped_breakpoint = 1;
2726
2727 /* Most targets can step a breakpoint instruction, thus
2728 executing it normally. But if this one cannot, just
2729 continue and we will hit it anyway. */
2730 if (gdbarch_cannot_step_breakpoint (gdbarch))
2731 step = 0;
2732 }
2733
2734 if (debug_displaced
2735 && tp->control.trap_expected
2736 && use_displaced_stepping (tp)
2737 && !step_over_info_valid_p ())
2738 {
2739 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2740 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2741 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2742 gdb_byte buf[4];
2743
2744 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2745 paddress (resume_gdbarch, actual_pc));
2746 read_memory (actual_pc, buf, sizeof (buf));
2747 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2748 }
2749
2750 if (tp->control.may_range_step)
2751 {
2752 /* If we're resuming a thread with the PC out of the step
2753 range, then we're doing some nested/finer run control
2754 operation, like stepping the thread out of the dynamic
2755 linker or the displaced stepping scratch pad. We
2756 shouldn't have allowed a range step then. */
2757 gdb_assert (pc_in_thread_step_range (pc, tp));
2758 }
2759
2760 do_target_resume (resume_ptid, step, sig);
2761 tp->resumed = 1;
2762 discard_cleanups (old_cleanups);
2763 }
2764 \f
2765 /* Proceeding. */
2766
2767 /* See infrun.h. */
2768
2769 /* Counter that tracks number of user visible stops. This can be used
2770 to tell whether a command has proceeded the inferior past the
2771 current location. This allows e.g., inferior function calls in
2772 breakpoint commands to not interrupt the command list. When the
2773 call finishes successfully, the inferior is standing at the same
2774 breakpoint as if nothing happened (and so we don't call
2775 normal_stop). */
2776 static ULONGEST current_stop_id;
2777
2778 /* See infrun.h. */
2779
2780 ULONGEST
2781 get_stop_id (void)
2782 {
2783 return current_stop_id;
2784 }
2785
2786 /* Called when we report a user visible stop. */
2787
2788 static void
2789 new_stop_id (void)
2790 {
2791 current_stop_id++;
2792 }
2793
2794 /* Clear out all variables saying what to do when inferior is continued.
2795 First do this, then set the ones you want, then call `proceed'. */
2796
2797 static void
2798 clear_proceed_status_thread (struct thread_info *tp)
2799 {
2800 if (debug_infrun)
2801 fprintf_unfiltered (gdb_stdlog,
2802 "infrun: clear_proceed_status_thread (%s)\n",
2803 target_pid_to_str (tp->ptid));
2804
2805 /* If we're starting a new sequence, then the previous finished
2806 single-step is no longer relevant. */
2807 if (tp->suspend.waitstatus_pending_p)
2808 {
2809 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2810 {
2811 if (debug_infrun)
2812 fprintf_unfiltered (gdb_stdlog,
2813 "infrun: clear_proceed_status: pending "
2814 "event of %s was a finished step. "
2815 "Discarding.\n",
2816 target_pid_to_str (tp->ptid));
2817
2818 tp->suspend.waitstatus_pending_p = 0;
2819 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2820 }
2821 else if (debug_infrun)
2822 {
2823 char *statstr;
2824
2825 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2826 fprintf_unfiltered (gdb_stdlog,
2827 "infrun: clear_proceed_status_thread: thread %s "
2828 "has pending wait status %s "
2829 "(currently_stepping=%d).\n",
2830 target_pid_to_str (tp->ptid), statstr,
2831 currently_stepping (tp));
2832 xfree (statstr);
2833 }
2834 }
2835
2836 /* If this signal should not be seen by program, give it zero.
2837 Used for debugging signals. */
2838 if (!signal_pass_state (tp->suspend.stop_signal))
2839 tp->suspend.stop_signal = GDB_SIGNAL_0;
2840
2841 thread_fsm_delete (tp->thread_fsm);
2842 tp->thread_fsm = NULL;
2843
2844 tp->control.trap_expected = 0;
2845 tp->control.step_range_start = 0;
2846 tp->control.step_range_end = 0;
2847 tp->control.may_range_step = 0;
2848 tp->control.step_frame_id = null_frame_id;
2849 tp->control.step_stack_frame_id = null_frame_id;
2850 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2851 tp->control.step_start_function = NULL;
2852 tp->stop_requested = 0;
2853
2854 tp->control.stop_step = 0;
2855
2856 tp->control.proceed_to_finish = 0;
2857
2858 tp->control.stepping_command = 0;
2859
2860 /* Discard any remaining commands or status from previous stop. */
2861 bpstat_clear (&tp->control.stop_bpstat);
2862 }
2863
2864 void
2865 clear_proceed_status (int step)
2866 {
2867 /* With scheduler-locking replay, stop replaying other threads if we're
2868 not replaying the user-visible resume ptid.
2869
2870 This is a convenience feature to not require the user to explicitly
2871 stop replaying the other threads. We're assuming that the user's
2872 intent is to resume tracing the recorded process. */
2873 if (!non_stop && scheduler_mode == schedlock_replay
2874 && target_record_is_replaying (minus_one_ptid)
2875 && !target_record_will_replay (user_visible_resume_ptid (step),
2876 execution_direction))
2877 target_record_stop_replaying ();
2878
2879 if (!non_stop)
2880 {
2881 struct thread_info *tp;
2882 ptid_t resume_ptid;
2883
2884 resume_ptid = user_visible_resume_ptid (step);
2885
2886 /* In all-stop mode, delete the per-thread status of all threads
2887 we're about to resume, implicitly and explicitly. */
2888 ALL_NON_EXITED_THREADS (tp)
2889 {
2890 if (!ptid_match (tp->ptid, resume_ptid))
2891 continue;
2892 clear_proceed_status_thread (tp);
2893 }
2894 }
2895
2896 if (!ptid_equal (inferior_ptid, null_ptid))
2897 {
2898 struct inferior *inferior;
2899
2900 if (non_stop)
2901 {
2902 /* If in non-stop mode, only delete the per-thread status of
2903 the current thread. */
2904 clear_proceed_status_thread (inferior_thread ());
2905 }
2906
2907 inferior = current_inferior ();
2908 inferior->control.stop_soon = NO_STOP_QUIETLY;
2909 }
2910
2911 observer_notify_about_to_proceed ();
2912 }
2913
2914 /* Returns true if TP is still stopped at a breakpoint that needs
2915 stepping-over in order to make progress. If the breakpoint is gone
2916 meanwhile, we can skip the whole step-over dance. */
2917
2918 static int
2919 thread_still_needs_step_over_bp (struct thread_info *tp)
2920 {
2921 if (tp->stepping_over_breakpoint)
2922 {
2923 struct regcache *regcache = get_thread_regcache (tp->ptid);
2924
2925 if (breakpoint_here_p (get_regcache_aspace (regcache),
2926 regcache_read_pc (regcache))
2927 == ordinary_breakpoint_here)
2928 return 1;
2929
2930 tp->stepping_over_breakpoint = 0;
2931 }
2932
2933 return 0;
2934 }
2935
2936 /* Check whether thread TP still needs to start a step-over in order
2937 to make progress when resumed. Returns an bitwise or of enum
2938 step_over_what bits, indicating what needs to be stepped over. */
2939
2940 static step_over_what
2941 thread_still_needs_step_over (struct thread_info *tp)
2942 {
2943 step_over_what what = 0;
2944
2945 if (thread_still_needs_step_over_bp (tp))
2946 what |= STEP_OVER_BREAKPOINT;
2947
2948 if (tp->stepping_over_watchpoint
2949 && !target_have_steppable_watchpoint)
2950 what |= STEP_OVER_WATCHPOINT;
2951
2952 return what;
2953 }
2954
2955 /* Returns true if scheduler locking applies. STEP indicates whether
2956 we're about to do a step/next-like command to a thread. */
2957
2958 static int
2959 schedlock_applies (struct thread_info *tp)
2960 {
2961 return (scheduler_mode == schedlock_on
2962 || (scheduler_mode == schedlock_step
2963 && tp->control.stepping_command)
2964 || (scheduler_mode == schedlock_replay
2965 && target_record_will_replay (minus_one_ptid,
2966 execution_direction)));
2967 }
2968
2969 /* Basic routine for continuing the program in various fashions.
2970
2971 ADDR is the address to resume at, or -1 for resume where stopped.
2972 SIGGNAL is the signal to give it, or 0 for none,
2973 or -1 for act according to how it stopped.
2974 STEP is nonzero if should trap after one instruction.
2975 -1 means return after that and print nothing.
2976 You should probably set various step_... variables
2977 before calling here, if you are stepping.
2978
2979 You should call clear_proceed_status before calling proceed. */
2980
2981 void
2982 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2983 {
2984 struct regcache *regcache;
2985 struct gdbarch *gdbarch;
2986 struct thread_info *tp;
2987 CORE_ADDR pc;
2988 struct address_space *aspace;
2989 ptid_t resume_ptid;
2990 struct execution_control_state ecss;
2991 struct execution_control_state *ecs = &ecss;
2992 struct cleanup *old_chain;
2993 struct cleanup *defer_resume_cleanup;
2994 int started;
2995
2996 /* If we're stopped at a fork/vfork, follow the branch set by the
2997 "set follow-fork-mode" command; otherwise, we'll just proceed
2998 resuming the current thread. */
2999 if (!follow_fork ())
3000 {
3001 /* The target for some reason decided not to resume. */
3002 normal_stop ();
3003 if (target_can_async_p ())
3004 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3005 return;
3006 }
3007
3008 /* We'll update this if & when we switch to a new thread. */
3009 previous_inferior_ptid = inferior_ptid;
3010
3011 regcache = get_current_regcache ();
3012 gdbarch = get_regcache_arch (regcache);
3013 aspace = get_regcache_aspace (regcache);
3014 pc = regcache_read_pc (regcache);
3015 tp = inferior_thread ();
3016
3017 /* Fill in with reasonable starting values. */
3018 init_thread_stepping_state (tp);
3019
3020 gdb_assert (!thread_is_in_step_over_chain (tp));
3021
3022 if (addr == (CORE_ADDR) -1)
3023 {
3024 if (pc == stop_pc
3025 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3026 && execution_direction != EXEC_REVERSE)
3027 /* There is a breakpoint at the address we will resume at,
3028 step one instruction before inserting breakpoints so that
3029 we do not stop right away (and report a second hit at this
3030 breakpoint).
3031
3032 Note, we don't do this in reverse, because we won't
3033 actually be executing the breakpoint insn anyway.
3034 We'll be (un-)executing the previous instruction. */
3035 tp->stepping_over_breakpoint = 1;
3036 else if (gdbarch_single_step_through_delay_p (gdbarch)
3037 && gdbarch_single_step_through_delay (gdbarch,
3038 get_current_frame ()))
3039 /* We stepped onto an instruction that needs to be stepped
3040 again before re-inserting the breakpoint, do so. */
3041 tp->stepping_over_breakpoint = 1;
3042 }
3043 else
3044 {
3045 regcache_write_pc (regcache, addr);
3046 }
3047
3048 if (siggnal != GDB_SIGNAL_DEFAULT)
3049 tp->suspend.stop_signal = siggnal;
3050
3051 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3052
3053 /* If an exception is thrown from this point on, make sure to
3054 propagate GDB's knowledge of the executing state to the
3055 frontend/user running state. */
3056 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3057
3058 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3059 threads (e.g., we might need to set threads stepping over
3060 breakpoints first), from the user/frontend's point of view, all
3061 threads in RESUME_PTID are now running. Unless we're calling an
3062 inferior function, as in that case we pretend the inferior
3063 doesn't run at all. */
3064 if (!tp->control.in_infcall)
3065 set_running (resume_ptid, 1);
3066
3067 if (debug_infrun)
3068 fprintf_unfiltered (gdb_stdlog,
3069 "infrun: proceed (addr=%s, signal=%s)\n",
3070 paddress (gdbarch, addr),
3071 gdb_signal_to_symbol_string (siggnal));
3072
3073 annotate_starting ();
3074
3075 /* Make sure that output from GDB appears before output from the
3076 inferior. */
3077 gdb_flush (gdb_stdout);
3078
3079 /* In a multi-threaded task we may select another thread and
3080 then continue or step.
3081
3082 But if a thread that we're resuming had stopped at a breakpoint,
3083 it will immediately cause another breakpoint stop without any
3084 execution (i.e. it will report a breakpoint hit incorrectly). So
3085 we must step over it first.
3086
3087 Look for threads other than the current (TP) that reported a
3088 breakpoint hit and haven't been resumed yet since. */
3089
3090 /* If scheduler locking applies, we can avoid iterating over all
3091 threads. */
3092 if (!non_stop && !schedlock_applies (tp))
3093 {
3094 struct thread_info *current = tp;
3095
3096 ALL_NON_EXITED_THREADS (tp)
3097 {
3098 /* Ignore the current thread here. It's handled
3099 afterwards. */
3100 if (tp == current)
3101 continue;
3102
3103 /* Ignore threads of processes we're not resuming. */
3104 if (!ptid_match (tp->ptid, resume_ptid))
3105 continue;
3106
3107 if (!thread_still_needs_step_over (tp))
3108 continue;
3109
3110 gdb_assert (!thread_is_in_step_over_chain (tp));
3111
3112 if (debug_infrun)
3113 fprintf_unfiltered (gdb_stdlog,
3114 "infrun: need to step-over [%s] first\n",
3115 target_pid_to_str (tp->ptid));
3116
3117 thread_step_over_chain_enqueue (tp);
3118 }
3119
3120 tp = current;
3121 }
3122
3123 /* Enqueue the current thread last, so that we move all other
3124 threads over their breakpoints first. */
3125 if (tp->stepping_over_breakpoint)
3126 thread_step_over_chain_enqueue (tp);
3127
3128 /* If the thread isn't started, we'll still need to set its prev_pc,
3129 so that switch_back_to_stepped_thread knows the thread hasn't
3130 advanced. Must do this before resuming any thread, as in
3131 all-stop/remote, once we resume we can't send any other packet
3132 until the target stops again. */
3133 tp->prev_pc = regcache_read_pc (regcache);
3134
3135 defer_resume_cleanup = make_cleanup_defer_target_commit_resume ();
3136
3137 started = start_step_over ();
3138
3139 if (step_over_info_valid_p ())
3140 {
3141 /* Either this thread started a new in-line step over, or some
3142 other thread was already doing one. In either case, don't
3143 resume anything else until the step-over is finished. */
3144 }
3145 else if (started && !target_is_non_stop_p ())
3146 {
3147 /* A new displaced stepping sequence was started. In all-stop,
3148 we can't talk to the target anymore until it next stops. */
3149 }
3150 else if (!non_stop && target_is_non_stop_p ())
3151 {
3152 /* In all-stop, but the target is always in non-stop mode.
3153 Start all other threads that are implicitly resumed too. */
3154 ALL_NON_EXITED_THREADS (tp)
3155 {
3156 /* Ignore threads of processes we're not resuming. */
3157 if (!ptid_match (tp->ptid, resume_ptid))
3158 continue;
3159
3160 if (tp->resumed)
3161 {
3162 if (debug_infrun)
3163 fprintf_unfiltered (gdb_stdlog,
3164 "infrun: proceed: [%s] resumed\n",
3165 target_pid_to_str (tp->ptid));
3166 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3167 continue;
3168 }
3169
3170 if (thread_is_in_step_over_chain (tp))
3171 {
3172 if (debug_infrun)
3173 fprintf_unfiltered (gdb_stdlog,
3174 "infrun: proceed: [%s] needs step-over\n",
3175 target_pid_to_str (tp->ptid));
3176 continue;
3177 }
3178
3179 if (debug_infrun)
3180 fprintf_unfiltered (gdb_stdlog,
3181 "infrun: proceed: resuming %s\n",
3182 target_pid_to_str (tp->ptid));
3183
3184 reset_ecs (ecs, tp);
3185 switch_to_thread (tp->ptid);
3186 keep_going_pass_signal (ecs);
3187 if (!ecs->wait_some_more)
3188 error (_("Command aborted."));
3189 }
3190 }
3191 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3192 {
3193 /* The thread wasn't started, and isn't queued, run it now. */
3194 reset_ecs (ecs, tp);
3195 switch_to_thread (tp->ptid);
3196 keep_going_pass_signal (ecs);
3197 if (!ecs->wait_some_more)
3198 error (_("Command aborted."));
3199 }
3200
3201 do_cleanups (defer_resume_cleanup);
3202 target_commit_resume ();
3203
3204 discard_cleanups (old_chain);
3205
3206 /* Tell the event loop to wait for it to stop. If the target
3207 supports asynchronous execution, it'll do this from within
3208 target_resume. */
3209 if (!target_can_async_p ())
3210 mark_async_event_handler (infrun_async_inferior_event_token);
3211 }
3212 \f
3213
3214 /* Start remote-debugging of a machine over a serial link. */
3215
3216 void
3217 start_remote (int from_tty)
3218 {
3219 struct inferior *inferior;
3220
3221 inferior = current_inferior ();
3222 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3223
3224 /* Always go on waiting for the target, regardless of the mode. */
3225 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3226 indicate to wait_for_inferior that a target should timeout if
3227 nothing is returned (instead of just blocking). Because of this,
3228 targets expecting an immediate response need to, internally, set
3229 things up so that the target_wait() is forced to eventually
3230 timeout. */
3231 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3232 differentiate to its caller what the state of the target is after
3233 the initial open has been performed. Here we're assuming that
3234 the target has stopped. It should be possible to eventually have
3235 target_open() return to the caller an indication that the target
3236 is currently running and GDB state should be set to the same as
3237 for an async run. */
3238 wait_for_inferior ();
3239
3240 /* Now that the inferior has stopped, do any bookkeeping like
3241 loading shared libraries. We want to do this before normal_stop,
3242 so that the displayed frame is up to date. */
3243 post_create_inferior (&current_target, from_tty);
3244
3245 normal_stop ();
3246 }
3247
3248 /* Initialize static vars when a new inferior begins. */
3249
3250 void
3251 init_wait_for_inferior (void)
3252 {
3253 /* These are meaningless until the first time through wait_for_inferior. */
3254
3255 breakpoint_init_inferior (inf_starting);
3256
3257 clear_proceed_status (0);
3258
3259 target_last_wait_ptid = minus_one_ptid;
3260
3261 previous_inferior_ptid = inferior_ptid;
3262
3263 /* Discard any skipped inlined frames. */
3264 clear_inline_frame_state (minus_one_ptid);
3265 }
3266
3267 \f
3268
3269 static void handle_inferior_event (struct execution_control_state *ecs);
3270
3271 static void handle_step_into_function (struct gdbarch *gdbarch,
3272 struct execution_control_state *ecs);
3273 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3274 struct execution_control_state *ecs);
3275 static void handle_signal_stop (struct execution_control_state *ecs);
3276 static void check_exception_resume (struct execution_control_state *,
3277 struct frame_info *);
3278
3279 static void end_stepping_range (struct execution_control_state *ecs);
3280 static void stop_waiting (struct execution_control_state *ecs);
3281 static void keep_going (struct execution_control_state *ecs);
3282 static void process_event_stop_test (struct execution_control_state *ecs);
3283 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3284
3285 /* This function is attached as a "thread_stop_requested" observer.
3286 Cleanup local state that assumed the PTID was to be resumed, and
3287 report the stop to the frontend. */
3288
3289 static void
3290 infrun_thread_stop_requested (ptid_t ptid)
3291 {
3292 struct thread_info *tp;
3293
3294 /* PTID was requested to stop. If the thread was already stopped,
3295 but the user/frontend doesn't know about that yet (e.g., the
3296 thread had been temporarily paused for some step-over), set up
3297 for reporting the stop now. */
3298 ALL_NON_EXITED_THREADS (tp)
3299 if (ptid_match (tp->ptid, ptid))
3300 {
3301 if (tp->state != THREAD_RUNNING)
3302 continue;
3303 if (tp->executing)
3304 continue;
3305
3306 /* Remove matching threads from the step-over queue, so
3307 start_step_over doesn't try to resume them
3308 automatically. */
3309 if (thread_is_in_step_over_chain (tp))
3310 thread_step_over_chain_remove (tp);
3311
3312 /* If the thread is stopped, but the user/frontend doesn't
3313 know about that yet, queue a pending event, as if the
3314 thread had just stopped now. Unless the thread already had
3315 a pending event. */
3316 if (!tp->suspend.waitstatus_pending_p)
3317 {
3318 tp->suspend.waitstatus_pending_p = 1;
3319 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3320 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3321 }
3322
3323 /* Clear the inline-frame state, since we're re-processing the
3324 stop. */
3325 clear_inline_frame_state (tp->ptid);
3326
3327 /* If this thread was paused because some other thread was
3328 doing an inline-step over, let that finish first. Once
3329 that happens, we'll restart all threads and consume pending
3330 stop events then. */
3331 if (step_over_info_valid_p ())
3332 continue;
3333
3334 /* Otherwise we can process the (new) pending event now. Set
3335 it so this pending event is considered by
3336 do_target_wait. */
3337 tp->resumed = 1;
3338 }
3339 }
3340
3341 static void
3342 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3343 {
3344 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3345 nullify_last_target_wait_ptid ();
3346 }
3347
3348 /* Delete the step resume, single-step and longjmp/exception resume
3349 breakpoints of TP. */
3350
3351 static void
3352 delete_thread_infrun_breakpoints (struct thread_info *tp)
3353 {
3354 delete_step_resume_breakpoint (tp);
3355 delete_exception_resume_breakpoint (tp);
3356 delete_single_step_breakpoints (tp);
3357 }
3358
3359 /* If the target still has execution, call FUNC for each thread that
3360 just stopped. In all-stop, that's all the non-exited threads; in
3361 non-stop, that's the current thread, only. */
3362
3363 typedef void (*for_each_just_stopped_thread_callback_func)
3364 (struct thread_info *tp);
3365
3366 static void
3367 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3368 {
3369 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3370 return;
3371
3372 if (target_is_non_stop_p ())
3373 {
3374 /* If in non-stop mode, only the current thread stopped. */
3375 func (inferior_thread ());
3376 }
3377 else
3378 {
3379 struct thread_info *tp;
3380
3381 /* In all-stop mode, all threads have stopped. */
3382 ALL_NON_EXITED_THREADS (tp)
3383 {
3384 func (tp);
3385 }
3386 }
3387 }
3388
3389 /* Delete the step resume and longjmp/exception resume breakpoints of
3390 the threads that just stopped. */
3391
3392 static void
3393 delete_just_stopped_threads_infrun_breakpoints (void)
3394 {
3395 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3396 }
3397
3398 /* Delete the single-step breakpoints of the threads that just
3399 stopped. */
3400
3401 static void
3402 delete_just_stopped_threads_single_step_breakpoints (void)
3403 {
3404 for_each_just_stopped_thread (delete_single_step_breakpoints);
3405 }
3406
3407 /* A cleanup wrapper. */
3408
3409 static void
3410 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3411 {
3412 delete_just_stopped_threads_infrun_breakpoints ();
3413 }
3414
3415 /* See infrun.h. */
3416
3417 void
3418 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3419 const struct target_waitstatus *ws)
3420 {
3421 char *status_string = target_waitstatus_to_string (ws);
3422 string_file stb;
3423
3424 /* The text is split over several lines because it was getting too long.
3425 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3426 output as a unit; we want only one timestamp printed if debug_timestamp
3427 is set. */
3428
3429 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3430 ptid_get_pid (waiton_ptid),
3431 ptid_get_lwp (waiton_ptid),
3432 ptid_get_tid (waiton_ptid));
3433 if (ptid_get_pid (waiton_ptid) != -1)
3434 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3435 stb.printf (", status) =\n");
3436 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3437 ptid_get_pid (result_ptid),
3438 ptid_get_lwp (result_ptid),
3439 ptid_get_tid (result_ptid),
3440 target_pid_to_str (result_ptid));
3441 stb.printf ("infrun: %s\n", status_string);
3442
3443 /* This uses %s in part to handle %'s in the text, but also to avoid
3444 a gcc error: the format attribute requires a string literal. */
3445 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3446
3447 xfree (status_string);
3448 }
3449
3450 /* Select a thread at random, out of those which are resumed and have
3451 had events. */
3452
3453 static struct thread_info *
3454 random_pending_event_thread (ptid_t waiton_ptid)
3455 {
3456 struct thread_info *event_tp;
3457 int num_events = 0;
3458 int random_selector;
3459
3460 /* First see how many events we have. Count only resumed threads
3461 that have an event pending. */
3462 ALL_NON_EXITED_THREADS (event_tp)
3463 if (ptid_match (event_tp->ptid, waiton_ptid)
3464 && event_tp->resumed
3465 && event_tp->suspend.waitstatus_pending_p)
3466 num_events++;
3467
3468 if (num_events == 0)
3469 return NULL;
3470
3471 /* Now randomly pick a thread out of those that have had events. */
3472 random_selector = (int)
3473 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3474
3475 if (debug_infrun && num_events > 1)
3476 fprintf_unfiltered (gdb_stdlog,
3477 "infrun: Found %d events, selecting #%d\n",
3478 num_events, random_selector);
3479
3480 /* Select the Nth thread that has had an event. */
3481 ALL_NON_EXITED_THREADS (event_tp)
3482 if (ptid_match (event_tp->ptid, waiton_ptid)
3483 && event_tp->resumed
3484 && event_tp->suspend.waitstatus_pending_p)
3485 if (random_selector-- == 0)
3486 break;
3487
3488 return event_tp;
3489 }
3490
3491 /* Wrapper for target_wait that first checks whether threads have
3492 pending statuses to report before actually asking the target for
3493 more events. */
3494
3495 static ptid_t
3496 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3497 {
3498 ptid_t event_ptid;
3499 struct thread_info *tp;
3500
3501 /* First check if there is a resumed thread with a wait status
3502 pending. */
3503 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3504 {
3505 tp = random_pending_event_thread (ptid);
3506 }
3507 else
3508 {
3509 if (debug_infrun)
3510 fprintf_unfiltered (gdb_stdlog,
3511 "infrun: Waiting for specific thread %s.\n",
3512 target_pid_to_str (ptid));
3513
3514 /* We have a specific thread to check. */
3515 tp = find_thread_ptid (ptid);
3516 gdb_assert (tp != NULL);
3517 if (!tp->suspend.waitstatus_pending_p)
3518 tp = NULL;
3519 }
3520
3521 if (tp != NULL
3522 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3523 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3524 {
3525 struct regcache *regcache = get_thread_regcache (tp->ptid);
3526 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3527 CORE_ADDR pc;
3528 int discard = 0;
3529
3530 pc = regcache_read_pc (regcache);
3531
3532 if (pc != tp->suspend.stop_pc)
3533 {
3534 if (debug_infrun)
3535 fprintf_unfiltered (gdb_stdlog,
3536 "infrun: PC of %s changed. was=%s, now=%s\n",
3537 target_pid_to_str (tp->ptid),
3538 paddress (gdbarch, tp->prev_pc),
3539 paddress (gdbarch, pc));
3540 discard = 1;
3541 }
3542 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3543 {
3544 if (debug_infrun)
3545 fprintf_unfiltered (gdb_stdlog,
3546 "infrun: previous breakpoint of %s, at %s gone\n",
3547 target_pid_to_str (tp->ptid),
3548 paddress (gdbarch, pc));
3549
3550 discard = 1;
3551 }
3552
3553 if (discard)
3554 {
3555 if (debug_infrun)
3556 fprintf_unfiltered (gdb_stdlog,
3557 "infrun: pending event of %s cancelled.\n",
3558 target_pid_to_str (tp->ptid));
3559
3560 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3561 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3562 }
3563 }
3564
3565 if (tp != NULL)
3566 {
3567 if (debug_infrun)
3568 {
3569 char *statstr;
3570
3571 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3572 fprintf_unfiltered (gdb_stdlog,
3573 "infrun: Using pending wait status %s for %s.\n",
3574 statstr,
3575 target_pid_to_str (tp->ptid));
3576 xfree (statstr);
3577 }
3578
3579 /* Now that we've selected our final event LWP, un-adjust its PC
3580 if it was a software breakpoint (and the target doesn't
3581 always adjust the PC itself). */
3582 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3583 && !target_supports_stopped_by_sw_breakpoint ())
3584 {
3585 struct regcache *regcache;
3586 struct gdbarch *gdbarch;
3587 int decr_pc;
3588
3589 regcache = get_thread_regcache (tp->ptid);
3590 gdbarch = get_regcache_arch (regcache);
3591
3592 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3593 if (decr_pc != 0)
3594 {
3595 CORE_ADDR pc;
3596
3597 pc = regcache_read_pc (regcache);
3598 regcache_write_pc (regcache, pc + decr_pc);
3599 }
3600 }
3601
3602 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3603 *status = tp->suspend.waitstatus;
3604 tp->suspend.waitstatus_pending_p = 0;
3605
3606 /* Wake up the event loop again, until all pending events are
3607 processed. */
3608 if (target_is_async_p ())
3609 mark_async_event_handler (infrun_async_inferior_event_token);
3610 return tp->ptid;
3611 }
3612
3613 /* But if we don't find one, we'll have to wait. */
3614
3615 if (deprecated_target_wait_hook)
3616 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3617 else
3618 event_ptid = target_wait (ptid, status, options);
3619
3620 return event_ptid;
3621 }
3622
3623 /* Prepare and stabilize the inferior for detaching it. E.g.,
3624 detaching while a thread is displaced stepping is a recipe for
3625 crashing it, as nothing would readjust the PC out of the scratch
3626 pad. */
3627
3628 void
3629 prepare_for_detach (void)
3630 {
3631 struct inferior *inf = current_inferior ();
3632 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3633 struct cleanup *old_chain_1;
3634 struct displaced_step_inferior_state *displaced;
3635
3636 displaced = get_displaced_stepping_state (inf->pid);
3637
3638 /* Is any thread of this process displaced stepping? If not,
3639 there's nothing else to do. */
3640 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3641 return;
3642
3643 if (debug_infrun)
3644 fprintf_unfiltered (gdb_stdlog,
3645 "displaced-stepping in-process while detaching");
3646
3647 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3648 inf->detaching = 1;
3649
3650 while (!ptid_equal (displaced->step_ptid, null_ptid))
3651 {
3652 struct cleanup *old_chain_2;
3653 struct execution_control_state ecss;
3654 struct execution_control_state *ecs;
3655
3656 ecs = &ecss;
3657 memset (ecs, 0, sizeof (*ecs));
3658
3659 overlay_cache_invalid = 1;
3660 /* Flush target cache before starting to handle each event.
3661 Target was running and cache could be stale. This is just a
3662 heuristic. Running threads may modify target memory, but we
3663 don't get any event. */
3664 target_dcache_invalidate ();
3665
3666 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3667
3668 if (debug_infrun)
3669 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3670
3671 /* If an error happens while handling the event, propagate GDB's
3672 knowledge of the executing state to the frontend/user running
3673 state. */
3674 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3675 &minus_one_ptid);
3676
3677 /* Now figure out what to do with the result of the result. */
3678 handle_inferior_event (ecs);
3679
3680 /* No error, don't finish the state yet. */
3681 discard_cleanups (old_chain_2);
3682
3683 /* Breakpoints and watchpoints are not installed on the target
3684 at this point, and signals are passed directly to the
3685 inferior, so this must mean the process is gone. */
3686 if (!ecs->wait_some_more)
3687 {
3688 discard_cleanups (old_chain_1);
3689 error (_("Program exited while detaching"));
3690 }
3691 }
3692
3693 discard_cleanups (old_chain_1);
3694 }
3695
3696 /* Wait for control to return from inferior to debugger.
3697
3698 If inferior gets a signal, we may decide to start it up again
3699 instead of returning. That is why there is a loop in this function.
3700 When this function actually returns it means the inferior
3701 should be left stopped and GDB should read more commands. */
3702
3703 void
3704 wait_for_inferior (void)
3705 {
3706 struct cleanup *old_cleanups;
3707 struct cleanup *thread_state_chain;
3708
3709 if (debug_infrun)
3710 fprintf_unfiltered
3711 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3712
3713 old_cleanups
3714 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3715 NULL);
3716
3717 /* If an error happens while handling the event, propagate GDB's
3718 knowledge of the executing state to the frontend/user running
3719 state. */
3720 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3721
3722 while (1)
3723 {
3724 struct execution_control_state ecss;
3725 struct execution_control_state *ecs = &ecss;
3726 ptid_t waiton_ptid = minus_one_ptid;
3727
3728 memset (ecs, 0, sizeof (*ecs));
3729
3730 overlay_cache_invalid = 1;
3731
3732 /* Flush target cache before starting to handle each event.
3733 Target was running and cache could be stale. This is just a
3734 heuristic. Running threads may modify target memory, but we
3735 don't get any event. */
3736 target_dcache_invalidate ();
3737
3738 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3739
3740 if (debug_infrun)
3741 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3742
3743 /* Now figure out what to do with the result of the result. */
3744 handle_inferior_event (ecs);
3745
3746 if (!ecs->wait_some_more)
3747 break;
3748 }
3749
3750 /* No error, don't finish the state yet. */
3751 discard_cleanups (thread_state_chain);
3752
3753 do_cleanups (old_cleanups);
3754 }
3755
3756 /* Cleanup that reinstalls the readline callback handler, if the
3757 target is running in the background. If while handling the target
3758 event something triggered a secondary prompt, like e.g., a
3759 pagination prompt, we'll have removed the callback handler (see
3760 gdb_readline_wrapper_line). Need to do this as we go back to the
3761 event loop, ready to process further input. Note this has no
3762 effect if the handler hasn't actually been removed, because calling
3763 rl_callback_handler_install resets the line buffer, thus losing
3764 input. */
3765
3766 static void
3767 reinstall_readline_callback_handler_cleanup (void *arg)
3768 {
3769 struct ui *ui = current_ui;
3770
3771 if (!ui->async)
3772 {
3773 /* We're not going back to the top level event loop yet. Don't
3774 install the readline callback, as it'd prep the terminal,
3775 readline-style (raw, noecho) (e.g., --batch). We'll install
3776 it the next time the prompt is displayed, when we're ready
3777 for input. */
3778 return;
3779 }
3780
3781 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3782 gdb_rl_callback_handler_reinstall ();
3783 }
3784
3785 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3786 that's just the event thread. In all-stop, that's all threads. */
3787
3788 static void
3789 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3790 {
3791 struct thread_info *thr = ecs->event_thread;
3792
3793 if (thr != NULL && thr->thread_fsm != NULL)
3794 thread_fsm_clean_up (thr->thread_fsm, thr);
3795
3796 if (!non_stop)
3797 {
3798 ALL_NON_EXITED_THREADS (thr)
3799 {
3800 if (thr->thread_fsm == NULL)
3801 continue;
3802 if (thr == ecs->event_thread)
3803 continue;
3804
3805 switch_to_thread (thr->ptid);
3806 thread_fsm_clean_up (thr->thread_fsm, thr);
3807 }
3808
3809 if (ecs->event_thread != NULL)
3810 switch_to_thread (ecs->event_thread->ptid);
3811 }
3812 }
3813
3814 /* Helper for all_uis_check_sync_execution_done that works on the
3815 current UI. */
3816
3817 static void
3818 check_curr_ui_sync_execution_done (void)
3819 {
3820 struct ui *ui = current_ui;
3821
3822 if (ui->prompt_state == PROMPT_NEEDED
3823 && ui->async
3824 && !gdb_in_secondary_prompt_p (ui))
3825 {
3826 target_terminal_ours ();
3827 observer_notify_sync_execution_done ();
3828 ui_register_input_event_handler (ui);
3829 }
3830 }
3831
3832 /* See infrun.h. */
3833
3834 void
3835 all_uis_check_sync_execution_done (void)
3836 {
3837 SWITCH_THRU_ALL_UIS ()
3838 {
3839 check_curr_ui_sync_execution_done ();
3840 }
3841 }
3842
3843 /* See infrun.h. */
3844
3845 void
3846 all_uis_on_sync_execution_starting (void)
3847 {
3848 SWITCH_THRU_ALL_UIS ()
3849 {
3850 if (current_ui->prompt_state == PROMPT_NEEDED)
3851 async_disable_stdin ();
3852 }
3853 }
3854
3855 /* Asynchronous version of wait_for_inferior. It is called by the
3856 event loop whenever a change of state is detected on the file
3857 descriptor corresponding to the target. It can be called more than
3858 once to complete a single execution command. In such cases we need
3859 to keep the state in a global variable ECSS. If it is the last time
3860 that this function is called for a single execution command, then
3861 report to the user that the inferior has stopped, and do the
3862 necessary cleanups. */
3863
3864 void
3865 fetch_inferior_event (void *client_data)
3866 {
3867 struct execution_control_state ecss;
3868 struct execution_control_state *ecs = &ecss;
3869 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3870 struct cleanup *ts_old_chain;
3871 int cmd_done = 0;
3872 ptid_t waiton_ptid = minus_one_ptid;
3873
3874 memset (ecs, 0, sizeof (*ecs));
3875
3876 /* Events are always processed with the main UI as current UI. This
3877 way, warnings, debug output, etc. are always consistently sent to
3878 the main console. */
3879 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3880
3881 /* End up with readline processing input, if necessary. */
3882 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3883
3884 /* We're handling a live event, so make sure we're doing live
3885 debugging. If we're looking at traceframes while the target is
3886 running, we're going to need to get back to that mode after
3887 handling the event. */
3888 if (non_stop)
3889 {
3890 make_cleanup_restore_current_traceframe ();
3891 set_current_traceframe (-1);
3892 }
3893
3894 if (non_stop)
3895 /* In non-stop mode, the user/frontend should not notice a thread
3896 switch due to internal events. Make sure we reverse to the
3897 user selected thread and frame after handling the event and
3898 running any breakpoint commands. */
3899 make_cleanup_restore_current_thread ();
3900
3901 overlay_cache_invalid = 1;
3902 /* Flush target cache before starting to handle each event. Target
3903 was running and cache could be stale. This is just a heuristic.
3904 Running threads may modify target memory, but we don't get any
3905 event. */
3906 target_dcache_invalidate ();
3907
3908 scoped_restore save_exec_dir
3909 = make_scoped_restore (&execution_direction, target_execution_direction ());
3910
3911 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3912 target_can_async_p () ? TARGET_WNOHANG : 0);
3913
3914 if (debug_infrun)
3915 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3916
3917 /* If an error happens while handling the event, propagate GDB's
3918 knowledge of the executing state to the frontend/user running
3919 state. */
3920 if (!target_is_non_stop_p ())
3921 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3922 else
3923 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3924
3925 /* Get executed before make_cleanup_restore_current_thread above to apply
3926 still for the thread which has thrown the exception. */
3927 make_bpstat_clear_actions_cleanup ();
3928
3929 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3930
3931 /* Now figure out what to do with the result of the result. */
3932 handle_inferior_event (ecs);
3933
3934 if (!ecs->wait_some_more)
3935 {
3936 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3937 int should_stop = 1;
3938 struct thread_info *thr = ecs->event_thread;
3939 int should_notify_stop = 1;
3940
3941 delete_just_stopped_threads_infrun_breakpoints ();
3942
3943 if (thr != NULL)
3944 {
3945 struct thread_fsm *thread_fsm = thr->thread_fsm;
3946
3947 if (thread_fsm != NULL)
3948 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3949 }
3950
3951 if (!should_stop)
3952 {
3953 keep_going (ecs);
3954 }
3955 else
3956 {
3957 clean_up_just_stopped_threads_fsms (ecs);
3958
3959 if (thr != NULL && thr->thread_fsm != NULL)
3960 {
3961 should_notify_stop
3962 = thread_fsm_should_notify_stop (thr->thread_fsm);
3963 }
3964
3965 if (should_notify_stop)
3966 {
3967 int proceeded = 0;
3968
3969 /* We may not find an inferior if this was a process exit. */
3970 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3971 proceeded = normal_stop ();
3972
3973 if (!proceeded)
3974 {
3975 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3976 cmd_done = 1;
3977 }
3978 }
3979 }
3980 }
3981
3982 /* No error, don't finish the thread states yet. */
3983 discard_cleanups (ts_old_chain);
3984
3985 /* Revert thread and frame. */
3986 do_cleanups (old_chain);
3987
3988 /* If a UI was in sync execution mode, and now isn't, restore its
3989 prompt (a synchronous execution command has finished, and we're
3990 ready for input). */
3991 all_uis_check_sync_execution_done ();
3992
3993 if (cmd_done
3994 && exec_done_display_p
3995 && (ptid_equal (inferior_ptid, null_ptid)
3996 || !is_running (inferior_ptid)))
3997 printf_unfiltered (_("completed.\n"));
3998 }
3999
4000 /* Record the frame and location we're currently stepping through. */
4001 void
4002 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4003 {
4004 struct thread_info *tp = inferior_thread ();
4005
4006 tp->control.step_frame_id = get_frame_id (frame);
4007 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4008
4009 tp->current_symtab = sal.symtab;
4010 tp->current_line = sal.line;
4011 }
4012
4013 /* Clear context switchable stepping state. */
4014
4015 void
4016 init_thread_stepping_state (struct thread_info *tss)
4017 {
4018 tss->stepped_breakpoint = 0;
4019 tss->stepping_over_breakpoint = 0;
4020 tss->stepping_over_watchpoint = 0;
4021 tss->step_after_step_resume_breakpoint = 0;
4022 }
4023
4024 /* Set the cached copy of the last ptid/waitstatus. */
4025
4026 void
4027 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4028 {
4029 target_last_wait_ptid = ptid;
4030 target_last_waitstatus = status;
4031 }
4032
4033 /* Return the cached copy of the last pid/waitstatus returned by
4034 target_wait()/deprecated_target_wait_hook(). The data is actually
4035 cached by handle_inferior_event(), which gets called immediately
4036 after target_wait()/deprecated_target_wait_hook(). */
4037
4038 void
4039 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4040 {
4041 *ptidp = target_last_wait_ptid;
4042 *status = target_last_waitstatus;
4043 }
4044
4045 void
4046 nullify_last_target_wait_ptid (void)
4047 {
4048 target_last_wait_ptid = minus_one_ptid;
4049 }
4050
4051 /* Switch thread contexts. */
4052
4053 static void
4054 context_switch (ptid_t ptid)
4055 {
4056 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4057 {
4058 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4059 target_pid_to_str (inferior_ptid));
4060 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4061 target_pid_to_str (ptid));
4062 }
4063
4064 switch_to_thread (ptid);
4065 }
4066
4067 /* If the target can't tell whether we've hit breakpoints
4068 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4069 check whether that could have been caused by a breakpoint. If so,
4070 adjust the PC, per gdbarch_decr_pc_after_break. */
4071
4072 static void
4073 adjust_pc_after_break (struct thread_info *thread,
4074 struct target_waitstatus *ws)
4075 {
4076 struct regcache *regcache;
4077 struct gdbarch *gdbarch;
4078 struct address_space *aspace;
4079 CORE_ADDR breakpoint_pc, decr_pc;
4080
4081 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4082 we aren't, just return.
4083
4084 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4085 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4086 implemented by software breakpoints should be handled through the normal
4087 breakpoint layer.
4088
4089 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4090 different signals (SIGILL or SIGEMT for instance), but it is less
4091 clear where the PC is pointing afterwards. It may not match
4092 gdbarch_decr_pc_after_break. I don't know any specific target that
4093 generates these signals at breakpoints (the code has been in GDB since at
4094 least 1992) so I can not guess how to handle them here.
4095
4096 In earlier versions of GDB, a target with
4097 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4098 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4099 target with both of these set in GDB history, and it seems unlikely to be
4100 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4101
4102 if (ws->kind != TARGET_WAITKIND_STOPPED)
4103 return;
4104
4105 if (ws->value.sig != GDB_SIGNAL_TRAP)
4106 return;
4107
4108 /* In reverse execution, when a breakpoint is hit, the instruction
4109 under it has already been de-executed. The reported PC always
4110 points at the breakpoint address, so adjusting it further would
4111 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4112 architecture:
4113
4114 B1 0x08000000 : INSN1
4115 B2 0x08000001 : INSN2
4116 0x08000002 : INSN3
4117 PC -> 0x08000003 : INSN4
4118
4119 Say you're stopped at 0x08000003 as above. Reverse continuing
4120 from that point should hit B2 as below. Reading the PC when the
4121 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4122 been de-executed already.
4123
4124 B1 0x08000000 : INSN1
4125 B2 PC -> 0x08000001 : INSN2
4126 0x08000002 : INSN3
4127 0x08000003 : INSN4
4128
4129 We can't apply the same logic as for forward execution, because
4130 we would wrongly adjust the PC to 0x08000000, since there's a
4131 breakpoint at PC - 1. We'd then report a hit on B1, although
4132 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4133 behaviour. */
4134 if (execution_direction == EXEC_REVERSE)
4135 return;
4136
4137 /* If the target can tell whether the thread hit a SW breakpoint,
4138 trust it. Targets that can tell also adjust the PC
4139 themselves. */
4140 if (target_supports_stopped_by_sw_breakpoint ())
4141 return;
4142
4143 /* Note that relying on whether a breakpoint is planted in memory to
4144 determine this can fail. E.g,. the breakpoint could have been
4145 removed since. Or the thread could have been told to step an
4146 instruction the size of a breakpoint instruction, and only
4147 _after_ was a breakpoint inserted at its address. */
4148
4149 /* If this target does not decrement the PC after breakpoints, then
4150 we have nothing to do. */
4151 regcache = get_thread_regcache (thread->ptid);
4152 gdbarch = get_regcache_arch (regcache);
4153
4154 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4155 if (decr_pc == 0)
4156 return;
4157
4158 aspace = get_regcache_aspace (regcache);
4159
4160 /* Find the location where (if we've hit a breakpoint) the
4161 breakpoint would be. */
4162 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4163
4164 /* If the target can't tell whether a software breakpoint triggered,
4165 fallback to figuring it out based on breakpoints we think were
4166 inserted in the target, and on whether the thread was stepped or
4167 continued. */
4168
4169 /* Check whether there actually is a software breakpoint inserted at
4170 that location.
4171
4172 If in non-stop mode, a race condition is possible where we've
4173 removed a breakpoint, but stop events for that breakpoint were
4174 already queued and arrive later. To suppress those spurious
4175 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4176 and retire them after a number of stop events are reported. Note
4177 this is an heuristic and can thus get confused. The real fix is
4178 to get the "stopped by SW BP and needs adjustment" info out of
4179 the target/kernel (and thus never reach here; see above). */
4180 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4181 || (target_is_non_stop_p ()
4182 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4183 {
4184 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4185
4186 if (record_full_is_used ())
4187 record_full_gdb_operation_disable_set ();
4188
4189 /* When using hardware single-step, a SIGTRAP is reported for both
4190 a completed single-step and a software breakpoint. Need to
4191 differentiate between the two, as the latter needs adjusting
4192 but the former does not.
4193
4194 The SIGTRAP can be due to a completed hardware single-step only if
4195 - we didn't insert software single-step breakpoints
4196 - this thread is currently being stepped
4197
4198 If any of these events did not occur, we must have stopped due
4199 to hitting a software breakpoint, and have to back up to the
4200 breakpoint address.
4201
4202 As a special case, we could have hardware single-stepped a
4203 software breakpoint. In this case (prev_pc == breakpoint_pc),
4204 we also need to back up to the breakpoint address. */
4205
4206 if (thread_has_single_step_breakpoints_set (thread)
4207 || !currently_stepping (thread)
4208 || (thread->stepped_breakpoint
4209 && thread->prev_pc == breakpoint_pc))
4210 regcache_write_pc (regcache, breakpoint_pc);
4211
4212 do_cleanups (old_cleanups);
4213 }
4214 }
4215
4216 static int
4217 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4218 {
4219 for (frame = get_prev_frame (frame);
4220 frame != NULL;
4221 frame = get_prev_frame (frame))
4222 {
4223 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4224 return 1;
4225 if (get_frame_type (frame) != INLINE_FRAME)
4226 break;
4227 }
4228
4229 return 0;
4230 }
4231
4232 /* If the event thread has the stop requested flag set, pretend it
4233 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4234 target_stop). */
4235
4236 static bool
4237 handle_stop_requested (struct execution_control_state *ecs)
4238 {
4239 if (ecs->event_thread->stop_requested)
4240 {
4241 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4242 ecs->ws.value.sig = GDB_SIGNAL_0;
4243 handle_signal_stop (ecs);
4244 return true;
4245 }
4246 return false;
4247 }
4248
4249 /* Auxiliary function that handles syscall entry/return events.
4250 It returns 1 if the inferior should keep going (and GDB
4251 should ignore the event), or 0 if the event deserves to be
4252 processed. */
4253
4254 static int
4255 handle_syscall_event (struct execution_control_state *ecs)
4256 {
4257 struct regcache *regcache;
4258 int syscall_number;
4259
4260 if (!ptid_equal (ecs->ptid, inferior_ptid))
4261 context_switch (ecs->ptid);
4262
4263 regcache = get_thread_regcache (ecs->ptid);
4264 syscall_number = ecs->ws.value.syscall_number;
4265 stop_pc = regcache_read_pc (regcache);
4266
4267 if (catch_syscall_enabled () > 0
4268 && catching_syscall_number (syscall_number) > 0)
4269 {
4270 if (debug_infrun)
4271 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4272 syscall_number);
4273
4274 ecs->event_thread->control.stop_bpstat
4275 = bpstat_stop_status (get_regcache_aspace (regcache),
4276 stop_pc, ecs->ptid, &ecs->ws);
4277
4278 if (handle_stop_requested (ecs))
4279 return 0;
4280
4281 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4282 {
4283 /* Catchpoint hit. */
4284 return 0;
4285 }
4286 }
4287
4288 if (handle_stop_requested (ecs))
4289 return 0;
4290
4291 /* If no catchpoint triggered for this, then keep going. */
4292 keep_going (ecs);
4293 return 1;
4294 }
4295
4296 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4297
4298 static void
4299 fill_in_stop_func (struct gdbarch *gdbarch,
4300 struct execution_control_state *ecs)
4301 {
4302 if (!ecs->stop_func_filled_in)
4303 {
4304 /* Don't care about return value; stop_func_start and stop_func_name
4305 will both be 0 if it doesn't work. */
4306 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4307 &ecs->stop_func_start, &ecs->stop_func_end);
4308 ecs->stop_func_start
4309 += gdbarch_deprecated_function_start_offset (gdbarch);
4310
4311 if (gdbarch_skip_entrypoint_p (gdbarch))
4312 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4313 ecs->stop_func_start);
4314
4315 ecs->stop_func_filled_in = 1;
4316 }
4317 }
4318
4319
4320 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4321
4322 static enum stop_kind
4323 get_inferior_stop_soon (ptid_t ptid)
4324 {
4325 struct inferior *inf = find_inferior_ptid (ptid);
4326
4327 gdb_assert (inf != NULL);
4328 return inf->control.stop_soon;
4329 }
4330
4331 /* Wait for one event. Store the resulting waitstatus in WS, and
4332 return the event ptid. */
4333
4334 static ptid_t
4335 wait_one (struct target_waitstatus *ws)
4336 {
4337 ptid_t event_ptid;
4338 ptid_t wait_ptid = minus_one_ptid;
4339
4340 overlay_cache_invalid = 1;
4341
4342 /* Flush target cache before starting to handle each event.
4343 Target was running and cache could be stale. This is just a
4344 heuristic. Running threads may modify target memory, but we
4345 don't get any event. */
4346 target_dcache_invalidate ();
4347
4348 if (deprecated_target_wait_hook)
4349 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4350 else
4351 event_ptid = target_wait (wait_ptid, ws, 0);
4352
4353 if (debug_infrun)
4354 print_target_wait_results (wait_ptid, event_ptid, ws);
4355
4356 return event_ptid;
4357 }
4358
4359 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4360 instead of the current thread. */
4361 #define THREAD_STOPPED_BY(REASON) \
4362 static int \
4363 thread_stopped_by_ ## REASON (ptid_t ptid) \
4364 { \
4365 struct cleanup *old_chain; \
4366 int res; \
4367 \
4368 old_chain = save_inferior_ptid (); \
4369 inferior_ptid = ptid; \
4370 \
4371 res = target_stopped_by_ ## REASON (); \
4372 \
4373 do_cleanups (old_chain); \
4374 \
4375 return res; \
4376 }
4377
4378 /* Generate thread_stopped_by_watchpoint. */
4379 THREAD_STOPPED_BY (watchpoint)
4380 /* Generate thread_stopped_by_sw_breakpoint. */
4381 THREAD_STOPPED_BY (sw_breakpoint)
4382 /* Generate thread_stopped_by_hw_breakpoint. */
4383 THREAD_STOPPED_BY (hw_breakpoint)
4384
4385 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4386
4387 static void
4388 switch_to_thread_cleanup (void *ptid_p)
4389 {
4390 ptid_t ptid = *(ptid_t *) ptid_p;
4391
4392 switch_to_thread (ptid);
4393 }
4394
4395 /* Save the thread's event and stop reason to process it later. */
4396
4397 static void
4398 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4399 {
4400 struct regcache *regcache;
4401 struct address_space *aspace;
4402
4403 if (debug_infrun)
4404 {
4405 char *statstr;
4406
4407 statstr = target_waitstatus_to_string (ws);
4408 fprintf_unfiltered (gdb_stdlog,
4409 "infrun: saving status %s for %d.%ld.%ld\n",
4410 statstr,
4411 ptid_get_pid (tp->ptid),
4412 ptid_get_lwp (tp->ptid),
4413 ptid_get_tid (tp->ptid));
4414 xfree (statstr);
4415 }
4416
4417 /* Record for later. */
4418 tp->suspend.waitstatus = *ws;
4419 tp->suspend.waitstatus_pending_p = 1;
4420
4421 regcache = get_thread_regcache (tp->ptid);
4422 aspace = get_regcache_aspace (regcache);
4423
4424 if (ws->kind == TARGET_WAITKIND_STOPPED
4425 && ws->value.sig == GDB_SIGNAL_TRAP)
4426 {
4427 CORE_ADDR pc = regcache_read_pc (regcache);
4428
4429 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4430
4431 if (thread_stopped_by_watchpoint (tp->ptid))
4432 {
4433 tp->suspend.stop_reason
4434 = TARGET_STOPPED_BY_WATCHPOINT;
4435 }
4436 else if (target_supports_stopped_by_sw_breakpoint ()
4437 && thread_stopped_by_sw_breakpoint (tp->ptid))
4438 {
4439 tp->suspend.stop_reason
4440 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4441 }
4442 else if (target_supports_stopped_by_hw_breakpoint ()
4443 && thread_stopped_by_hw_breakpoint (tp->ptid))
4444 {
4445 tp->suspend.stop_reason
4446 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4447 }
4448 else if (!target_supports_stopped_by_hw_breakpoint ()
4449 && hardware_breakpoint_inserted_here_p (aspace,
4450 pc))
4451 {
4452 tp->suspend.stop_reason
4453 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4454 }
4455 else if (!target_supports_stopped_by_sw_breakpoint ()
4456 && software_breakpoint_inserted_here_p (aspace,
4457 pc))
4458 {
4459 tp->suspend.stop_reason
4460 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4461 }
4462 else if (!thread_has_single_step_breakpoints_set (tp)
4463 && currently_stepping (tp))
4464 {
4465 tp->suspend.stop_reason
4466 = TARGET_STOPPED_BY_SINGLE_STEP;
4467 }
4468 }
4469 }
4470
4471 /* A cleanup that disables thread create/exit events. */
4472
4473 static void
4474 disable_thread_events (void *arg)
4475 {
4476 target_thread_events (0);
4477 }
4478
4479 /* See infrun.h. */
4480
4481 void
4482 stop_all_threads (void)
4483 {
4484 /* We may need multiple passes to discover all threads. */
4485 int pass;
4486 int iterations = 0;
4487 ptid_t entry_ptid;
4488 struct cleanup *old_chain;
4489
4490 gdb_assert (target_is_non_stop_p ());
4491
4492 if (debug_infrun)
4493 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4494
4495 entry_ptid = inferior_ptid;
4496 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4497
4498 target_thread_events (1);
4499 make_cleanup (disable_thread_events, NULL);
4500
4501 /* Request threads to stop, and then wait for the stops. Because
4502 threads we already know about can spawn more threads while we're
4503 trying to stop them, and we only learn about new threads when we
4504 update the thread list, do this in a loop, and keep iterating
4505 until two passes find no threads that need to be stopped. */
4506 for (pass = 0; pass < 2; pass++, iterations++)
4507 {
4508 if (debug_infrun)
4509 fprintf_unfiltered (gdb_stdlog,
4510 "infrun: stop_all_threads, pass=%d, "
4511 "iterations=%d\n", pass, iterations);
4512 while (1)
4513 {
4514 ptid_t event_ptid;
4515 struct target_waitstatus ws;
4516 int need_wait = 0;
4517 struct thread_info *t;
4518
4519 update_thread_list ();
4520
4521 /* Go through all threads looking for threads that we need
4522 to tell the target to stop. */
4523 ALL_NON_EXITED_THREADS (t)
4524 {
4525 if (t->executing)
4526 {
4527 /* If already stopping, don't request a stop again.
4528 We just haven't seen the notification yet. */
4529 if (!t->stop_requested)
4530 {
4531 if (debug_infrun)
4532 fprintf_unfiltered (gdb_stdlog,
4533 "infrun: %s executing, "
4534 "need stop\n",
4535 target_pid_to_str (t->ptid));
4536 target_stop (t->ptid);
4537 t->stop_requested = 1;
4538 }
4539 else
4540 {
4541 if (debug_infrun)
4542 fprintf_unfiltered (gdb_stdlog,
4543 "infrun: %s executing, "
4544 "already stopping\n",
4545 target_pid_to_str (t->ptid));
4546 }
4547
4548 if (t->stop_requested)
4549 need_wait = 1;
4550 }
4551 else
4552 {
4553 if (debug_infrun)
4554 fprintf_unfiltered (gdb_stdlog,
4555 "infrun: %s not executing\n",
4556 target_pid_to_str (t->ptid));
4557
4558 /* The thread may be not executing, but still be
4559 resumed with a pending status to process. */
4560 t->resumed = 0;
4561 }
4562 }
4563
4564 if (!need_wait)
4565 break;
4566
4567 /* If we find new threads on the second iteration, restart
4568 over. We want to see two iterations in a row with all
4569 threads stopped. */
4570 if (pass > 0)
4571 pass = -1;
4572
4573 event_ptid = wait_one (&ws);
4574 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4575 {
4576 /* All resumed threads exited. */
4577 }
4578 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4579 || ws.kind == TARGET_WAITKIND_EXITED
4580 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4581 {
4582 if (debug_infrun)
4583 {
4584 ptid_t ptid = pid_to_ptid (ws.value.integer);
4585
4586 fprintf_unfiltered (gdb_stdlog,
4587 "infrun: %s exited while "
4588 "stopping threads\n",
4589 target_pid_to_str (ptid));
4590 }
4591 }
4592 else
4593 {
4594 struct inferior *inf;
4595
4596 t = find_thread_ptid (event_ptid);
4597 if (t == NULL)
4598 t = add_thread (event_ptid);
4599
4600 t->stop_requested = 0;
4601 t->executing = 0;
4602 t->resumed = 0;
4603 t->control.may_range_step = 0;
4604
4605 /* This may be the first time we see the inferior report
4606 a stop. */
4607 inf = find_inferior_ptid (event_ptid);
4608 if (inf->needs_setup)
4609 {
4610 switch_to_thread_no_regs (t);
4611 setup_inferior (0);
4612 }
4613
4614 if (ws.kind == TARGET_WAITKIND_STOPPED
4615 && ws.value.sig == GDB_SIGNAL_0)
4616 {
4617 /* We caught the event that we intended to catch, so
4618 there's no event pending. */
4619 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4620 t->suspend.waitstatus_pending_p = 0;
4621
4622 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4623 {
4624 /* Add it back to the step-over queue. */
4625 if (debug_infrun)
4626 {
4627 fprintf_unfiltered (gdb_stdlog,
4628 "infrun: displaced-step of %s "
4629 "canceled: adding back to the "
4630 "step-over queue\n",
4631 target_pid_to_str (t->ptid));
4632 }
4633 t->control.trap_expected = 0;
4634 thread_step_over_chain_enqueue (t);
4635 }
4636 }
4637 else
4638 {
4639 enum gdb_signal sig;
4640 struct regcache *regcache;
4641
4642 if (debug_infrun)
4643 {
4644 char *statstr;
4645
4646 statstr = target_waitstatus_to_string (&ws);
4647 fprintf_unfiltered (gdb_stdlog,
4648 "infrun: target_wait %s, saving "
4649 "status for %d.%ld.%ld\n",
4650 statstr,
4651 ptid_get_pid (t->ptid),
4652 ptid_get_lwp (t->ptid),
4653 ptid_get_tid (t->ptid));
4654 xfree (statstr);
4655 }
4656
4657 /* Record for later. */
4658 save_waitstatus (t, &ws);
4659
4660 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4661 ? ws.value.sig : GDB_SIGNAL_0);
4662
4663 if (displaced_step_fixup (t->ptid, sig) < 0)
4664 {
4665 /* Add it back to the step-over queue. */
4666 t->control.trap_expected = 0;
4667 thread_step_over_chain_enqueue (t);
4668 }
4669
4670 regcache = get_thread_regcache (t->ptid);
4671 t->suspend.stop_pc = regcache_read_pc (regcache);
4672
4673 if (debug_infrun)
4674 {
4675 fprintf_unfiltered (gdb_stdlog,
4676 "infrun: saved stop_pc=%s for %s "
4677 "(currently_stepping=%d)\n",
4678 paddress (target_gdbarch (),
4679 t->suspend.stop_pc),
4680 target_pid_to_str (t->ptid),
4681 currently_stepping (t));
4682 }
4683 }
4684 }
4685 }
4686 }
4687
4688 do_cleanups (old_chain);
4689
4690 if (debug_infrun)
4691 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4692 }
4693
4694 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4695
4696 static int
4697 handle_no_resumed (struct execution_control_state *ecs)
4698 {
4699 struct inferior *inf;
4700 struct thread_info *thread;
4701
4702 if (target_can_async_p ())
4703 {
4704 struct ui *ui;
4705 int any_sync = 0;
4706
4707 ALL_UIS (ui)
4708 {
4709 if (ui->prompt_state == PROMPT_BLOCKED)
4710 {
4711 any_sync = 1;
4712 break;
4713 }
4714 }
4715 if (!any_sync)
4716 {
4717 /* There were no unwaited-for children left in the target, but,
4718 we're not synchronously waiting for events either. Just
4719 ignore. */
4720
4721 if (debug_infrun)
4722 fprintf_unfiltered (gdb_stdlog,
4723 "infrun: TARGET_WAITKIND_NO_RESUMED "
4724 "(ignoring: bg)\n");
4725 prepare_to_wait (ecs);
4726 return 1;
4727 }
4728 }
4729
4730 /* Otherwise, if we were running a synchronous execution command, we
4731 may need to cancel it and give the user back the terminal.
4732
4733 In non-stop mode, the target can't tell whether we've already
4734 consumed previous stop events, so it can end up sending us a
4735 no-resumed event like so:
4736
4737 #0 - thread 1 is left stopped
4738
4739 #1 - thread 2 is resumed and hits breakpoint
4740 -> TARGET_WAITKIND_STOPPED
4741
4742 #2 - thread 3 is resumed and exits
4743 this is the last resumed thread, so
4744 -> TARGET_WAITKIND_NO_RESUMED
4745
4746 #3 - gdb processes stop for thread 2 and decides to re-resume
4747 it.
4748
4749 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4750 thread 2 is now resumed, so the event should be ignored.
4751
4752 IOW, if the stop for thread 2 doesn't end a foreground command,
4753 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4754 event. But it could be that the event meant that thread 2 itself
4755 (or whatever other thread was the last resumed thread) exited.
4756
4757 To address this we refresh the thread list and check whether we
4758 have resumed threads _now_. In the example above, this removes
4759 thread 3 from the thread list. If thread 2 was re-resumed, we
4760 ignore this event. If we find no thread resumed, then we cancel
4761 the synchronous command show "no unwaited-for " to the user. */
4762 update_thread_list ();
4763
4764 ALL_NON_EXITED_THREADS (thread)
4765 {
4766 if (thread->executing
4767 || thread->suspend.waitstatus_pending_p)
4768 {
4769 /* There were no unwaited-for children left in the target at
4770 some point, but there are now. Just ignore. */
4771 if (debug_infrun)
4772 fprintf_unfiltered (gdb_stdlog,
4773 "infrun: TARGET_WAITKIND_NO_RESUMED "
4774 "(ignoring: found resumed)\n");
4775 prepare_to_wait (ecs);
4776 return 1;
4777 }
4778 }
4779
4780 /* Note however that we may find no resumed thread because the whole
4781 process exited meanwhile (thus updating the thread list results
4782 in an empty thread list). In this case we know we'll be getting
4783 a process exit event shortly. */
4784 ALL_INFERIORS (inf)
4785 {
4786 if (inf->pid == 0)
4787 continue;
4788
4789 thread = any_live_thread_of_process (inf->pid);
4790 if (thread == NULL)
4791 {
4792 if (debug_infrun)
4793 fprintf_unfiltered (gdb_stdlog,
4794 "infrun: TARGET_WAITKIND_NO_RESUMED "
4795 "(expect process exit)\n");
4796 prepare_to_wait (ecs);
4797 return 1;
4798 }
4799 }
4800
4801 /* Go ahead and report the event. */
4802 return 0;
4803 }
4804
4805 /* Given an execution control state that has been freshly filled in by
4806 an event from the inferior, figure out what it means and take
4807 appropriate action.
4808
4809 The alternatives are:
4810
4811 1) stop_waiting and return; to really stop and return to the
4812 debugger.
4813
4814 2) keep_going and return; to wait for the next event (set
4815 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4816 once). */
4817
4818 static void
4819 handle_inferior_event_1 (struct execution_control_state *ecs)
4820 {
4821 enum stop_kind stop_soon;
4822
4823 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4824 {
4825 /* We had an event in the inferior, but we are not interested in
4826 handling it at this level. The lower layers have already
4827 done what needs to be done, if anything.
4828
4829 One of the possible circumstances for this is when the
4830 inferior produces output for the console. The inferior has
4831 not stopped, and we are ignoring the event. Another possible
4832 circumstance is any event which the lower level knows will be
4833 reported multiple times without an intervening resume. */
4834 if (debug_infrun)
4835 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4836 prepare_to_wait (ecs);
4837 return;
4838 }
4839
4840 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4841 {
4842 if (debug_infrun)
4843 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4844 prepare_to_wait (ecs);
4845 return;
4846 }
4847
4848 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4849 && handle_no_resumed (ecs))
4850 return;
4851
4852 /* Cache the last pid/waitstatus. */
4853 set_last_target_status (ecs->ptid, ecs->ws);
4854
4855 /* Always clear state belonging to the previous time we stopped. */
4856 stop_stack_dummy = STOP_NONE;
4857
4858 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4859 {
4860 /* No unwaited-for children left. IOW, all resumed children
4861 have exited. */
4862 if (debug_infrun)
4863 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4864
4865 stop_print_frame = 0;
4866 stop_waiting (ecs);
4867 return;
4868 }
4869
4870 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4871 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4872 {
4873 ecs->event_thread = find_thread_ptid (ecs->ptid);
4874 /* If it's a new thread, add it to the thread database. */
4875 if (ecs->event_thread == NULL)
4876 ecs->event_thread = add_thread (ecs->ptid);
4877
4878 /* Disable range stepping. If the next step request could use a
4879 range, this will be end up re-enabled then. */
4880 ecs->event_thread->control.may_range_step = 0;
4881 }
4882
4883 /* Dependent on valid ECS->EVENT_THREAD. */
4884 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4885
4886 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4887 reinit_frame_cache ();
4888
4889 breakpoint_retire_moribund ();
4890
4891 /* First, distinguish signals caused by the debugger from signals
4892 that have to do with the program's own actions. Note that
4893 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4894 on the operating system version. Here we detect when a SIGILL or
4895 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4896 something similar for SIGSEGV, since a SIGSEGV will be generated
4897 when we're trying to execute a breakpoint instruction on a
4898 non-executable stack. This happens for call dummy breakpoints
4899 for architectures like SPARC that place call dummies on the
4900 stack. */
4901 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4902 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4903 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4904 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4905 {
4906 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4907
4908 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4909 regcache_read_pc (regcache)))
4910 {
4911 if (debug_infrun)
4912 fprintf_unfiltered (gdb_stdlog,
4913 "infrun: Treating signal as SIGTRAP\n");
4914 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4915 }
4916 }
4917
4918 /* Mark the non-executing threads accordingly. In all-stop, all
4919 threads of all processes are stopped when we get any event
4920 reported. In non-stop mode, only the event thread stops. */
4921 {
4922 ptid_t mark_ptid;
4923
4924 if (!target_is_non_stop_p ())
4925 mark_ptid = minus_one_ptid;
4926 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4927 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4928 {
4929 /* If we're handling a process exit in non-stop mode, even
4930 though threads haven't been deleted yet, one would think
4931 that there is nothing to do, as threads of the dead process
4932 will be soon deleted, and threads of any other process were
4933 left running. However, on some targets, threads survive a
4934 process exit event. E.g., for the "checkpoint" command,
4935 when the current checkpoint/fork exits, linux-fork.c
4936 automatically switches to another fork from within
4937 target_mourn_inferior, by associating the same
4938 inferior/thread to another fork. We haven't mourned yet at
4939 this point, but we must mark any threads left in the
4940 process as not-executing so that finish_thread_state marks
4941 them stopped (in the user's perspective) if/when we present
4942 the stop to the user. */
4943 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4944 }
4945 else
4946 mark_ptid = ecs->ptid;
4947
4948 set_executing (mark_ptid, 0);
4949
4950 /* Likewise the resumed flag. */
4951 set_resumed (mark_ptid, 0);
4952 }
4953
4954 switch (ecs->ws.kind)
4955 {
4956 case TARGET_WAITKIND_LOADED:
4957 if (debug_infrun)
4958 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4959 if (!ptid_equal (ecs->ptid, inferior_ptid))
4960 context_switch (ecs->ptid);
4961 /* Ignore gracefully during startup of the inferior, as it might
4962 be the shell which has just loaded some objects, otherwise
4963 add the symbols for the newly loaded objects. Also ignore at
4964 the beginning of an attach or remote session; we will query
4965 the full list of libraries once the connection is
4966 established. */
4967
4968 stop_soon = get_inferior_stop_soon (ecs->ptid);
4969 if (stop_soon == NO_STOP_QUIETLY)
4970 {
4971 struct regcache *regcache;
4972
4973 regcache = get_thread_regcache (ecs->ptid);
4974
4975 handle_solib_event ();
4976
4977 ecs->event_thread->control.stop_bpstat
4978 = bpstat_stop_status (get_regcache_aspace (regcache),
4979 stop_pc, ecs->ptid, &ecs->ws);
4980
4981 if (handle_stop_requested (ecs))
4982 return;
4983
4984 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4985 {
4986 /* A catchpoint triggered. */
4987 process_event_stop_test (ecs);
4988 return;
4989 }
4990
4991 /* If requested, stop when the dynamic linker notifies
4992 gdb of events. This allows the user to get control
4993 and place breakpoints in initializer routines for
4994 dynamically loaded objects (among other things). */
4995 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4996 if (stop_on_solib_events)
4997 {
4998 /* Make sure we print "Stopped due to solib-event" in
4999 normal_stop. */
5000 stop_print_frame = 1;
5001
5002 stop_waiting (ecs);
5003 return;
5004 }
5005 }
5006
5007 /* If we are skipping through a shell, or through shared library
5008 loading that we aren't interested in, resume the program. If
5009 we're running the program normally, also resume. */
5010 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5011 {
5012 /* Loading of shared libraries might have changed breakpoint
5013 addresses. Make sure new breakpoints are inserted. */
5014 if (stop_soon == NO_STOP_QUIETLY)
5015 insert_breakpoints ();
5016 resume (GDB_SIGNAL_0);
5017 prepare_to_wait (ecs);
5018 return;
5019 }
5020
5021 /* But stop if we're attaching or setting up a remote
5022 connection. */
5023 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5024 || stop_soon == STOP_QUIETLY_REMOTE)
5025 {
5026 if (debug_infrun)
5027 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5028 stop_waiting (ecs);
5029 return;
5030 }
5031
5032 internal_error (__FILE__, __LINE__,
5033 _("unhandled stop_soon: %d"), (int) stop_soon);
5034
5035 case TARGET_WAITKIND_SPURIOUS:
5036 if (debug_infrun)
5037 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5038 if (handle_stop_requested (ecs))
5039 return;
5040 if (!ptid_equal (ecs->ptid, inferior_ptid))
5041 context_switch (ecs->ptid);
5042 resume (GDB_SIGNAL_0);
5043 prepare_to_wait (ecs);
5044 return;
5045
5046 case TARGET_WAITKIND_THREAD_CREATED:
5047 if (debug_infrun)
5048 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5049 if (handle_stop_requested (ecs))
5050 return;
5051 if (!ptid_equal (ecs->ptid, inferior_ptid))
5052 context_switch (ecs->ptid);
5053 if (!switch_back_to_stepped_thread (ecs))
5054 keep_going (ecs);
5055 return;
5056
5057 case TARGET_WAITKIND_EXITED:
5058 case TARGET_WAITKIND_SIGNALLED:
5059 if (debug_infrun)
5060 {
5061 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5062 fprintf_unfiltered (gdb_stdlog,
5063 "infrun: TARGET_WAITKIND_EXITED\n");
5064 else
5065 fprintf_unfiltered (gdb_stdlog,
5066 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5067 }
5068
5069 inferior_ptid = ecs->ptid;
5070 set_current_inferior (find_inferior_ptid (ecs->ptid));
5071 set_current_program_space (current_inferior ()->pspace);
5072 handle_vfork_child_exec_or_exit (0);
5073 target_terminal_ours (); /* Must do this before mourn anyway. */
5074
5075 /* Clearing any previous state of convenience variables. */
5076 clear_exit_convenience_vars ();
5077
5078 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5079 {
5080 /* Record the exit code in the convenience variable $_exitcode, so
5081 that the user can inspect this again later. */
5082 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5083 (LONGEST) ecs->ws.value.integer);
5084
5085 /* Also record this in the inferior itself. */
5086 current_inferior ()->has_exit_code = 1;
5087 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5088
5089 /* Support the --return-child-result option. */
5090 return_child_result_value = ecs->ws.value.integer;
5091
5092 observer_notify_exited (ecs->ws.value.integer);
5093 }
5094 else
5095 {
5096 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5097 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5098
5099 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5100 {
5101 /* Set the value of the internal variable $_exitsignal,
5102 which holds the signal uncaught by the inferior. */
5103 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5104 gdbarch_gdb_signal_to_target (gdbarch,
5105 ecs->ws.value.sig));
5106 }
5107 else
5108 {
5109 /* We don't have access to the target's method used for
5110 converting between signal numbers (GDB's internal
5111 representation <-> target's representation).
5112 Therefore, we cannot do a good job at displaying this
5113 information to the user. It's better to just warn
5114 her about it (if infrun debugging is enabled), and
5115 give up. */
5116 if (debug_infrun)
5117 fprintf_filtered (gdb_stdlog, _("\
5118 Cannot fill $_exitsignal with the correct signal number.\n"));
5119 }
5120
5121 observer_notify_signal_exited (ecs->ws.value.sig);
5122 }
5123
5124 gdb_flush (gdb_stdout);
5125 target_mourn_inferior (inferior_ptid);
5126 stop_print_frame = 0;
5127 stop_waiting (ecs);
5128 return;
5129
5130 /* The following are the only cases in which we keep going;
5131 the above cases end in a continue or goto. */
5132 case TARGET_WAITKIND_FORKED:
5133 case TARGET_WAITKIND_VFORKED:
5134 if (debug_infrun)
5135 {
5136 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5137 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5138 else
5139 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5140 }
5141
5142 /* Check whether the inferior is displaced stepping. */
5143 {
5144 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5145 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5146
5147 /* If checking displaced stepping is supported, and thread
5148 ecs->ptid is displaced stepping. */
5149 if (displaced_step_in_progress_thread (ecs->ptid))
5150 {
5151 struct inferior *parent_inf
5152 = find_inferior_ptid (ecs->ptid);
5153 struct regcache *child_regcache;
5154 CORE_ADDR parent_pc;
5155
5156 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5157 indicating that the displaced stepping of syscall instruction
5158 has been done. Perform cleanup for parent process here. Note
5159 that this operation also cleans up the child process for vfork,
5160 because their pages are shared. */
5161 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5162 /* Start a new step-over in another thread if there's one
5163 that needs it. */
5164 start_step_over ();
5165
5166 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5167 {
5168 struct displaced_step_inferior_state *displaced
5169 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5170
5171 /* Restore scratch pad for child process. */
5172 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5173 }
5174
5175 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5176 the child's PC is also within the scratchpad. Set the child's PC
5177 to the parent's PC value, which has already been fixed up.
5178 FIXME: we use the parent's aspace here, although we're touching
5179 the child, because the child hasn't been added to the inferior
5180 list yet at this point. */
5181
5182 child_regcache
5183 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5184 gdbarch,
5185 parent_inf->aspace);
5186 /* Read PC value of parent process. */
5187 parent_pc = regcache_read_pc (regcache);
5188
5189 if (debug_displaced)
5190 fprintf_unfiltered (gdb_stdlog,
5191 "displaced: write child pc from %s to %s\n",
5192 paddress (gdbarch,
5193 regcache_read_pc (child_regcache)),
5194 paddress (gdbarch, parent_pc));
5195
5196 regcache_write_pc (child_regcache, parent_pc);
5197 }
5198 }
5199
5200 if (!ptid_equal (ecs->ptid, inferior_ptid))
5201 context_switch (ecs->ptid);
5202
5203 /* Immediately detach breakpoints from the child before there's
5204 any chance of letting the user delete breakpoints from the
5205 breakpoint lists. If we don't do this early, it's easy to
5206 leave left over traps in the child, vis: "break foo; catch
5207 fork; c; <fork>; del; c; <child calls foo>". We only follow
5208 the fork on the last `continue', and by that time the
5209 breakpoint at "foo" is long gone from the breakpoint table.
5210 If we vforked, then we don't need to unpatch here, since both
5211 parent and child are sharing the same memory pages; we'll
5212 need to unpatch at follow/detach time instead to be certain
5213 that new breakpoints added between catchpoint hit time and
5214 vfork follow are detached. */
5215 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5216 {
5217 /* This won't actually modify the breakpoint list, but will
5218 physically remove the breakpoints from the child. */
5219 detach_breakpoints (ecs->ws.value.related_pid);
5220 }
5221
5222 delete_just_stopped_threads_single_step_breakpoints ();
5223
5224 /* In case the event is caught by a catchpoint, remember that
5225 the event is to be followed at the next resume of the thread,
5226 and not immediately. */
5227 ecs->event_thread->pending_follow = ecs->ws;
5228
5229 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5230
5231 ecs->event_thread->control.stop_bpstat
5232 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5233 stop_pc, ecs->ptid, &ecs->ws);
5234
5235 if (handle_stop_requested (ecs))
5236 return;
5237
5238 /* If no catchpoint triggered for this, then keep going. Note
5239 that we're interested in knowing the bpstat actually causes a
5240 stop, not just if it may explain the signal. Software
5241 watchpoints, for example, always appear in the bpstat. */
5242 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5243 {
5244 ptid_t parent;
5245 ptid_t child;
5246 int should_resume;
5247 int follow_child
5248 = (follow_fork_mode_string == follow_fork_mode_child);
5249
5250 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5251
5252 should_resume = follow_fork ();
5253
5254 parent = ecs->ptid;
5255 child = ecs->ws.value.related_pid;
5256
5257 /* At this point, the parent is marked running, and the
5258 child is marked stopped. */
5259
5260 /* If not resuming the parent, mark it stopped. */
5261 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5262 set_running (parent, 0);
5263
5264 /* If resuming the child, mark it running. */
5265 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5266 set_running (child, 1);
5267
5268 /* In non-stop mode, also resume the other branch. */
5269 if (!detach_fork && (non_stop
5270 || (sched_multi && target_is_non_stop_p ())))
5271 {
5272 if (follow_child)
5273 switch_to_thread (parent);
5274 else
5275 switch_to_thread (child);
5276
5277 ecs->event_thread = inferior_thread ();
5278 ecs->ptid = inferior_ptid;
5279 keep_going (ecs);
5280 }
5281
5282 if (follow_child)
5283 switch_to_thread (child);
5284 else
5285 switch_to_thread (parent);
5286
5287 ecs->event_thread = inferior_thread ();
5288 ecs->ptid = inferior_ptid;
5289
5290 if (should_resume)
5291 keep_going (ecs);
5292 else
5293 stop_waiting (ecs);
5294 return;
5295 }
5296 process_event_stop_test (ecs);
5297 return;
5298
5299 case TARGET_WAITKIND_VFORK_DONE:
5300 /* Done with the shared memory region. Re-insert breakpoints in
5301 the parent, and keep going. */
5302
5303 if (debug_infrun)
5304 fprintf_unfiltered (gdb_stdlog,
5305 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5306
5307 if (!ptid_equal (ecs->ptid, inferior_ptid))
5308 context_switch (ecs->ptid);
5309
5310 current_inferior ()->waiting_for_vfork_done = 0;
5311 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5312
5313 if (handle_stop_requested (ecs))
5314 return;
5315
5316 /* This also takes care of reinserting breakpoints in the
5317 previously locked inferior. */
5318 keep_going (ecs);
5319 return;
5320
5321 case TARGET_WAITKIND_EXECD:
5322 if (debug_infrun)
5323 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5324
5325 if (!ptid_equal (ecs->ptid, inferior_ptid))
5326 context_switch (ecs->ptid);
5327
5328 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5329
5330 /* Do whatever is necessary to the parent branch of the vfork. */
5331 handle_vfork_child_exec_or_exit (1);
5332
5333 /* This causes the eventpoints and symbol table to be reset.
5334 Must do this now, before trying to determine whether to
5335 stop. */
5336 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5337
5338 /* In follow_exec we may have deleted the original thread and
5339 created a new one. Make sure that the event thread is the
5340 execd thread for that case (this is a nop otherwise). */
5341 ecs->event_thread = inferior_thread ();
5342
5343 ecs->event_thread->control.stop_bpstat
5344 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5345 stop_pc, ecs->ptid, &ecs->ws);
5346
5347 /* Note that this may be referenced from inside
5348 bpstat_stop_status above, through inferior_has_execd. */
5349 xfree (ecs->ws.value.execd_pathname);
5350 ecs->ws.value.execd_pathname = NULL;
5351
5352 if (handle_stop_requested (ecs))
5353 return;
5354
5355 /* If no catchpoint triggered for this, then keep going. */
5356 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5357 {
5358 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5359 keep_going (ecs);
5360 return;
5361 }
5362 process_event_stop_test (ecs);
5363 return;
5364
5365 /* Be careful not to try to gather much state about a thread
5366 that's in a syscall. It's frequently a losing proposition. */
5367 case TARGET_WAITKIND_SYSCALL_ENTRY:
5368 if (debug_infrun)
5369 fprintf_unfiltered (gdb_stdlog,
5370 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5371 /* Getting the current syscall number. */
5372 if (handle_syscall_event (ecs) == 0)
5373 process_event_stop_test (ecs);
5374 return;
5375
5376 /* Before examining the threads further, step this thread to
5377 get it entirely out of the syscall. (We get notice of the
5378 event when the thread is just on the verge of exiting a
5379 syscall. Stepping one instruction seems to get it back
5380 into user code.) */
5381 case TARGET_WAITKIND_SYSCALL_RETURN:
5382 if (debug_infrun)
5383 fprintf_unfiltered (gdb_stdlog,
5384 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5385 if (handle_syscall_event (ecs) == 0)
5386 process_event_stop_test (ecs);
5387 return;
5388
5389 case TARGET_WAITKIND_STOPPED:
5390 if (debug_infrun)
5391 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5392 handle_signal_stop (ecs);
5393 return;
5394
5395 case TARGET_WAITKIND_NO_HISTORY:
5396 if (debug_infrun)
5397 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5398 /* Reverse execution: target ran out of history info. */
5399
5400 /* Switch to the stopped thread. */
5401 if (!ptid_equal (ecs->ptid, inferior_ptid))
5402 context_switch (ecs->ptid);
5403 if (debug_infrun)
5404 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5405
5406 delete_just_stopped_threads_single_step_breakpoints ();
5407 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5408
5409 if (handle_stop_requested (ecs))
5410 return;
5411
5412 observer_notify_no_history ();
5413 stop_waiting (ecs);
5414 return;
5415 }
5416 }
5417
5418 /* A wrapper around handle_inferior_event_1, which also makes sure
5419 that all temporary struct value objects that were created during
5420 the handling of the event get deleted at the end. */
5421
5422 static void
5423 handle_inferior_event (struct execution_control_state *ecs)
5424 {
5425 struct value *mark = value_mark ();
5426
5427 handle_inferior_event_1 (ecs);
5428 /* Purge all temporary values created during the event handling,
5429 as it could be a long time before we return to the command level
5430 where such values would otherwise be purged. */
5431 value_free_to_mark (mark);
5432 }
5433
5434 /* Restart threads back to what they were trying to do back when we
5435 paused them for an in-line step-over. The EVENT_THREAD thread is
5436 ignored. */
5437
5438 static void
5439 restart_threads (struct thread_info *event_thread)
5440 {
5441 struct thread_info *tp;
5442
5443 /* In case the instruction just stepped spawned a new thread. */
5444 update_thread_list ();
5445
5446 ALL_NON_EXITED_THREADS (tp)
5447 {
5448 if (tp == event_thread)
5449 {
5450 if (debug_infrun)
5451 fprintf_unfiltered (gdb_stdlog,
5452 "infrun: restart threads: "
5453 "[%s] is event thread\n",
5454 target_pid_to_str (tp->ptid));
5455 continue;
5456 }
5457
5458 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5459 {
5460 if (debug_infrun)
5461 fprintf_unfiltered (gdb_stdlog,
5462 "infrun: restart threads: "
5463 "[%s] not meant to be running\n",
5464 target_pid_to_str (tp->ptid));
5465 continue;
5466 }
5467
5468 if (tp->resumed)
5469 {
5470 if (debug_infrun)
5471 fprintf_unfiltered (gdb_stdlog,
5472 "infrun: restart threads: [%s] resumed\n",
5473 target_pid_to_str (tp->ptid));
5474 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5475 continue;
5476 }
5477
5478 if (thread_is_in_step_over_chain (tp))
5479 {
5480 if (debug_infrun)
5481 fprintf_unfiltered (gdb_stdlog,
5482 "infrun: restart threads: "
5483 "[%s] needs step-over\n",
5484 target_pid_to_str (tp->ptid));
5485 gdb_assert (!tp->resumed);
5486 continue;
5487 }
5488
5489
5490 if (tp->suspend.waitstatus_pending_p)
5491 {
5492 if (debug_infrun)
5493 fprintf_unfiltered (gdb_stdlog,
5494 "infrun: restart threads: "
5495 "[%s] has pending status\n",
5496 target_pid_to_str (tp->ptid));
5497 tp->resumed = 1;
5498 continue;
5499 }
5500
5501 gdb_assert (!tp->stop_requested);
5502
5503 /* If some thread needs to start a step-over at this point, it
5504 should still be in the step-over queue, and thus skipped
5505 above. */
5506 if (thread_still_needs_step_over (tp))
5507 {
5508 internal_error (__FILE__, __LINE__,
5509 "thread [%s] needs a step-over, but not in "
5510 "step-over queue\n",
5511 target_pid_to_str (tp->ptid));
5512 }
5513
5514 if (currently_stepping (tp))
5515 {
5516 if (debug_infrun)
5517 fprintf_unfiltered (gdb_stdlog,
5518 "infrun: restart threads: [%s] was stepping\n",
5519 target_pid_to_str (tp->ptid));
5520 keep_going_stepped_thread (tp);
5521 }
5522 else
5523 {
5524 struct execution_control_state ecss;
5525 struct execution_control_state *ecs = &ecss;
5526
5527 if (debug_infrun)
5528 fprintf_unfiltered (gdb_stdlog,
5529 "infrun: restart threads: [%s] continuing\n",
5530 target_pid_to_str (tp->ptid));
5531 reset_ecs (ecs, tp);
5532 switch_to_thread (tp->ptid);
5533 keep_going_pass_signal (ecs);
5534 }
5535 }
5536 }
5537
5538 /* Callback for iterate_over_threads. Find a resumed thread that has
5539 a pending waitstatus. */
5540
5541 static int
5542 resumed_thread_with_pending_status (struct thread_info *tp,
5543 void *arg)
5544 {
5545 return (tp->resumed
5546 && tp->suspend.waitstatus_pending_p);
5547 }
5548
5549 /* Called when we get an event that may finish an in-line or
5550 out-of-line (displaced stepping) step-over started previously.
5551 Return true if the event is processed and we should go back to the
5552 event loop; false if the caller should continue processing the
5553 event. */
5554
5555 static int
5556 finish_step_over (struct execution_control_state *ecs)
5557 {
5558 int had_step_over_info;
5559
5560 displaced_step_fixup (ecs->ptid,
5561 ecs->event_thread->suspend.stop_signal);
5562
5563 had_step_over_info = step_over_info_valid_p ();
5564
5565 if (had_step_over_info)
5566 {
5567 /* If we're stepping over a breakpoint with all threads locked,
5568 then only the thread that was stepped should be reporting
5569 back an event. */
5570 gdb_assert (ecs->event_thread->control.trap_expected);
5571
5572 clear_step_over_info ();
5573 }
5574
5575 if (!target_is_non_stop_p ())
5576 return 0;
5577
5578 /* Start a new step-over in another thread if there's one that
5579 needs it. */
5580 start_step_over ();
5581
5582 /* If we were stepping over a breakpoint before, and haven't started
5583 a new in-line step-over sequence, then restart all other threads
5584 (except the event thread). We can't do this in all-stop, as then
5585 e.g., we wouldn't be able to issue any other remote packet until
5586 these other threads stop. */
5587 if (had_step_over_info && !step_over_info_valid_p ())
5588 {
5589 struct thread_info *pending;
5590
5591 /* If we only have threads with pending statuses, the restart
5592 below won't restart any thread and so nothing re-inserts the
5593 breakpoint we just stepped over. But we need it inserted
5594 when we later process the pending events, otherwise if
5595 another thread has a pending event for this breakpoint too,
5596 we'd discard its event (because the breakpoint that
5597 originally caused the event was no longer inserted). */
5598 context_switch (ecs->ptid);
5599 insert_breakpoints ();
5600
5601 restart_threads (ecs->event_thread);
5602
5603 /* If we have events pending, go through handle_inferior_event
5604 again, picking up a pending event at random. This avoids
5605 thread starvation. */
5606
5607 /* But not if we just stepped over a watchpoint in order to let
5608 the instruction execute so we can evaluate its expression.
5609 The set of watchpoints that triggered is recorded in the
5610 breakpoint objects themselves (see bp->watchpoint_triggered).
5611 If we processed another event first, that other event could
5612 clobber this info. */
5613 if (ecs->event_thread->stepping_over_watchpoint)
5614 return 0;
5615
5616 pending = iterate_over_threads (resumed_thread_with_pending_status,
5617 NULL);
5618 if (pending != NULL)
5619 {
5620 struct thread_info *tp = ecs->event_thread;
5621 struct regcache *regcache;
5622
5623 if (debug_infrun)
5624 {
5625 fprintf_unfiltered (gdb_stdlog,
5626 "infrun: found resumed threads with "
5627 "pending events, saving status\n");
5628 }
5629
5630 gdb_assert (pending != tp);
5631
5632 /* Record the event thread's event for later. */
5633 save_waitstatus (tp, &ecs->ws);
5634 /* This was cleared early, by handle_inferior_event. Set it
5635 so this pending event is considered by
5636 do_target_wait. */
5637 tp->resumed = 1;
5638
5639 gdb_assert (!tp->executing);
5640
5641 regcache = get_thread_regcache (tp->ptid);
5642 tp->suspend.stop_pc = regcache_read_pc (regcache);
5643
5644 if (debug_infrun)
5645 {
5646 fprintf_unfiltered (gdb_stdlog,
5647 "infrun: saved stop_pc=%s for %s "
5648 "(currently_stepping=%d)\n",
5649 paddress (target_gdbarch (),
5650 tp->suspend.stop_pc),
5651 target_pid_to_str (tp->ptid),
5652 currently_stepping (tp));
5653 }
5654
5655 /* This in-line step-over finished; clear this so we won't
5656 start a new one. This is what handle_signal_stop would
5657 do, if we returned false. */
5658 tp->stepping_over_breakpoint = 0;
5659
5660 /* Wake up the event loop again. */
5661 mark_async_event_handler (infrun_async_inferior_event_token);
5662
5663 prepare_to_wait (ecs);
5664 return 1;
5665 }
5666 }
5667
5668 return 0;
5669 }
5670
5671 /* Come here when the program has stopped with a signal. */
5672
5673 static void
5674 handle_signal_stop (struct execution_control_state *ecs)
5675 {
5676 struct frame_info *frame;
5677 struct gdbarch *gdbarch;
5678 int stopped_by_watchpoint;
5679 enum stop_kind stop_soon;
5680 int random_signal;
5681
5682 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5683
5684 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5685
5686 /* Do we need to clean up the state of a thread that has
5687 completed a displaced single-step? (Doing so usually affects
5688 the PC, so do it here, before we set stop_pc.) */
5689 if (finish_step_over (ecs))
5690 return;
5691
5692 /* If we either finished a single-step or hit a breakpoint, but
5693 the user wanted this thread to be stopped, pretend we got a
5694 SIG0 (generic unsignaled stop). */
5695 if (ecs->event_thread->stop_requested
5696 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5697 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5698
5699 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5700
5701 if (debug_infrun)
5702 {
5703 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5704 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5705 struct cleanup *old_chain = save_inferior_ptid ();
5706
5707 inferior_ptid = ecs->ptid;
5708
5709 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5710 paddress (gdbarch, stop_pc));
5711 if (target_stopped_by_watchpoint ())
5712 {
5713 CORE_ADDR addr;
5714
5715 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5716
5717 if (target_stopped_data_address (&current_target, &addr))
5718 fprintf_unfiltered (gdb_stdlog,
5719 "infrun: stopped data address = %s\n",
5720 paddress (gdbarch, addr));
5721 else
5722 fprintf_unfiltered (gdb_stdlog,
5723 "infrun: (no data address available)\n");
5724 }
5725
5726 do_cleanups (old_chain);
5727 }
5728
5729 /* This is originated from start_remote(), start_inferior() and
5730 shared libraries hook functions. */
5731 stop_soon = get_inferior_stop_soon (ecs->ptid);
5732 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5733 {
5734 if (!ptid_equal (ecs->ptid, inferior_ptid))
5735 context_switch (ecs->ptid);
5736 if (debug_infrun)
5737 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5738 stop_print_frame = 1;
5739 stop_waiting (ecs);
5740 return;
5741 }
5742
5743 /* This originates from attach_command(). We need to overwrite
5744 the stop_signal here, because some kernels don't ignore a
5745 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5746 See more comments in inferior.h. On the other hand, if we
5747 get a non-SIGSTOP, report it to the user - assume the backend
5748 will handle the SIGSTOP if it should show up later.
5749
5750 Also consider that the attach is complete when we see a
5751 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5752 target extended-remote report it instead of a SIGSTOP
5753 (e.g. gdbserver). We already rely on SIGTRAP being our
5754 signal, so this is no exception.
5755
5756 Also consider that the attach is complete when we see a
5757 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5758 the target to stop all threads of the inferior, in case the
5759 low level attach operation doesn't stop them implicitly. If
5760 they weren't stopped implicitly, then the stub will report a
5761 GDB_SIGNAL_0, meaning: stopped for no particular reason
5762 other than GDB's request. */
5763 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5764 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5765 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5766 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5767 {
5768 stop_print_frame = 1;
5769 stop_waiting (ecs);
5770 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5771 return;
5772 }
5773
5774 /* See if something interesting happened to the non-current thread. If
5775 so, then switch to that thread. */
5776 if (!ptid_equal (ecs->ptid, inferior_ptid))
5777 {
5778 if (debug_infrun)
5779 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5780
5781 context_switch (ecs->ptid);
5782
5783 if (deprecated_context_hook)
5784 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5785 }
5786
5787 /* At this point, get hold of the now-current thread's frame. */
5788 frame = get_current_frame ();
5789 gdbarch = get_frame_arch (frame);
5790
5791 /* Pull the single step breakpoints out of the target. */
5792 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5793 {
5794 struct regcache *regcache;
5795 struct address_space *aspace;
5796 CORE_ADDR pc;
5797
5798 regcache = get_thread_regcache (ecs->ptid);
5799 aspace = get_regcache_aspace (regcache);
5800 pc = regcache_read_pc (regcache);
5801
5802 /* However, before doing so, if this single-step breakpoint was
5803 actually for another thread, set this thread up for moving
5804 past it. */
5805 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5806 aspace, pc))
5807 {
5808 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5809 {
5810 if (debug_infrun)
5811 {
5812 fprintf_unfiltered (gdb_stdlog,
5813 "infrun: [%s] hit another thread's "
5814 "single-step breakpoint\n",
5815 target_pid_to_str (ecs->ptid));
5816 }
5817 ecs->hit_singlestep_breakpoint = 1;
5818 }
5819 }
5820 else
5821 {
5822 if (debug_infrun)
5823 {
5824 fprintf_unfiltered (gdb_stdlog,
5825 "infrun: [%s] hit its "
5826 "single-step breakpoint\n",
5827 target_pid_to_str (ecs->ptid));
5828 }
5829 }
5830 }
5831 delete_just_stopped_threads_single_step_breakpoints ();
5832
5833 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5834 && ecs->event_thread->control.trap_expected
5835 && ecs->event_thread->stepping_over_watchpoint)
5836 stopped_by_watchpoint = 0;
5837 else
5838 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5839
5840 /* If necessary, step over this watchpoint. We'll be back to display
5841 it in a moment. */
5842 if (stopped_by_watchpoint
5843 && (target_have_steppable_watchpoint
5844 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5845 {
5846 /* At this point, we are stopped at an instruction which has
5847 attempted to write to a piece of memory under control of
5848 a watchpoint. The instruction hasn't actually executed
5849 yet. If we were to evaluate the watchpoint expression
5850 now, we would get the old value, and therefore no change
5851 would seem to have occurred.
5852
5853 In order to make watchpoints work `right', we really need
5854 to complete the memory write, and then evaluate the
5855 watchpoint expression. We do this by single-stepping the
5856 target.
5857
5858 It may not be necessary to disable the watchpoint to step over
5859 it. For example, the PA can (with some kernel cooperation)
5860 single step over a watchpoint without disabling the watchpoint.
5861
5862 It is far more common to need to disable a watchpoint to step
5863 the inferior over it. If we have non-steppable watchpoints,
5864 we must disable the current watchpoint; it's simplest to
5865 disable all watchpoints.
5866
5867 Any breakpoint at PC must also be stepped over -- if there's
5868 one, it will have already triggered before the watchpoint
5869 triggered, and we either already reported it to the user, or
5870 it didn't cause a stop and we called keep_going. In either
5871 case, if there was a breakpoint at PC, we must be trying to
5872 step past it. */
5873 ecs->event_thread->stepping_over_watchpoint = 1;
5874 keep_going (ecs);
5875 return;
5876 }
5877
5878 ecs->event_thread->stepping_over_breakpoint = 0;
5879 ecs->event_thread->stepping_over_watchpoint = 0;
5880 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5881 ecs->event_thread->control.stop_step = 0;
5882 stop_print_frame = 1;
5883 stopped_by_random_signal = 0;
5884
5885 /* Hide inlined functions starting here, unless we just performed stepi or
5886 nexti. After stepi and nexti, always show the innermost frame (not any
5887 inline function call sites). */
5888 if (ecs->event_thread->control.step_range_end != 1)
5889 {
5890 struct address_space *aspace =
5891 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5892
5893 /* skip_inline_frames is expensive, so we avoid it if we can
5894 determine that the address is one where functions cannot have
5895 been inlined. This improves performance with inferiors that
5896 load a lot of shared libraries, because the solib event
5897 breakpoint is defined as the address of a function (i.e. not
5898 inline). Note that we have to check the previous PC as well
5899 as the current one to catch cases when we have just
5900 single-stepped off a breakpoint prior to reinstating it.
5901 Note that we're assuming that the code we single-step to is
5902 not inline, but that's not definitive: there's nothing
5903 preventing the event breakpoint function from containing
5904 inlined code, and the single-step ending up there. If the
5905 user had set a breakpoint on that inlined code, the missing
5906 skip_inline_frames call would break things. Fortunately
5907 that's an extremely unlikely scenario. */
5908 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5909 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5910 && ecs->event_thread->control.trap_expected
5911 && pc_at_non_inline_function (aspace,
5912 ecs->event_thread->prev_pc,
5913 &ecs->ws)))
5914 {
5915 skip_inline_frames (ecs->ptid);
5916
5917 /* Re-fetch current thread's frame in case that invalidated
5918 the frame cache. */
5919 frame = get_current_frame ();
5920 gdbarch = get_frame_arch (frame);
5921 }
5922 }
5923
5924 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5925 && ecs->event_thread->control.trap_expected
5926 && gdbarch_single_step_through_delay_p (gdbarch)
5927 && currently_stepping (ecs->event_thread))
5928 {
5929 /* We're trying to step off a breakpoint. Turns out that we're
5930 also on an instruction that needs to be stepped multiple
5931 times before it's been fully executing. E.g., architectures
5932 with a delay slot. It needs to be stepped twice, once for
5933 the instruction and once for the delay slot. */
5934 int step_through_delay
5935 = gdbarch_single_step_through_delay (gdbarch, frame);
5936
5937 if (debug_infrun && step_through_delay)
5938 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5939 if (ecs->event_thread->control.step_range_end == 0
5940 && step_through_delay)
5941 {
5942 /* The user issued a continue when stopped at a breakpoint.
5943 Set up for another trap and get out of here. */
5944 ecs->event_thread->stepping_over_breakpoint = 1;
5945 keep_going (ecs);
5946 return;
5947 }
5948 else if (step_through_delay)
5949 {
5950 /* The user issued a step when stopped at a breakpoint.
5951 Maybe we should stop, maybe we should not - the delay
5952 slot *might* correspond to a line of source. In any
5953 case, don't decide that here, just set
5954 ecs->stepping_over_breakpoint, making sure we
5955 single-step again before breakpoints are re-inserted. */
5956 ecs->event_thread->stepping_over_breakpoint = 1;
5957 }
5958 }
5959
5960 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5961 handles this event. */
5962 ecs->event_thread->control.stop_bpstat
5963 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5964 stop_pc, ecs->ptid, &ecs->ws);
5965
5966 /* Following in case break condition called a
5967 function. */
5968 stop_print_frame = 1;
5969
5970 /* This is where we handle "moribund" watchpoints. Unlike
5971 software breakpoints traps, hardware watchpoint traps are
5972 always distinguishable from random traps. If no high-level
5973 watchpoint is associated with the reported stop data address
5974 anymore, then the bpstat does not explain the signal ---
5975 simply make sure to ignore it if `stopped_by_watchpoint' is
5976 set. */
5977
5978 if (debug_infrun
5979 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5980 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5981 GDB_SIGNAL_TRAP)
5982 && stopped_by_watchpoint)
5983 fprintf_unfiltered (gdb_stdlog,
5984 "infrun: no user watchpoint explains "
5985 "watchpoint SIGTRAP, ignoring\n");
5986
5987 /* NOTE: cagney/2003-03-29: These checks for a random signal
5988 at one stage in the past included checks for an inferior
5989 function call's call dummy's return breakpoint. The original
5990 comment, that went with the test, read:
5991
5992 ``End of a stack dummy. Some systems (e.g. Sony news) give
5993 another signal besides SIGTRAP, so check here as well as
5994 above.''
5995
5996 If someone ever tries to get call dummys on a
5997 non-executable stack to work (where the target would stop
5998 with something like a SIGSEGV), then those tests might need
5999 to be re-instated. Given, however, that the tests were only
6000 enabled when momentary breakpoints were not being used, I
6001 suspect that it won't be the case.
6002
6003 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6004 be necessary for call dummies on a non-executable stack on
6005 SPARC. */
6006
6007 /* See if the breakpoints module can explain the signal. */
6008 random_signal
6009 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6010 ecs->event_thread->suspend.stop_signal);
6011
6012 /* Maybe this was a trap for a software breakpoint that has since
6013 been removed. */
6014 if (random_signal && target_stopped_by_sw_breakpoint ())
6015 {
6016 if (program_breakpoint_here_p (gdbarch, stop_pc))
6017 {
6018 struct regcache *regcache;
6019 int decr_pc;
6020
6021 /* Re-adjust PC to what the program would see if GDB was not
6022 debugging it. */
6023 regcache = get_thread_regcache (ecs->event_thread->ptid);
6024 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6025 if (decr_pc != 0)
6026 {
6027 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6028
6029 if (record_full_is_used ())
6030 record_full_gdb_operation_disable_set ();
6031
6032 regcache_write_pc (regcache, stop_pc + decr_pc);
6033
6034 do_cleanups (old_cleanups);
6035 }
6036 }
6037 else
6038 {
6039 /* A delayed software breakpoint event. Ignore the trap. */
6040 if (debug_infrun)
6041 fprintf_unfiltered (gdb_stdlog,
6042 "infrun: delayed software breakpoint "
6043 "trap, ignoring\n");
6044 random_signal = 0;
6045 }
6046 }
6047
6048 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6049 has since been removed. */
6050 if (random_signal && target_stopped_by_hw_breakpoint ())
6051 {
6052 /* A delayed hardware breakpoint event. Ignore the trap. */
6053 if (debug_infrun)
6054 fprintf_unfiltered (gdb_stdlog,
6055 "infrun: delayed hardware breakpoint/watchpoint "
6056 "trap, ignoring\n");
6057 random_signal = 0;
6058 }
6059
6060 /* If not, perhaps stepping/nexting can. */
6061 if (random_signal)
6062 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6063 && currently_stepping (ecs->event_thread));
6064
6065 /* Perhaps the thread hit a single-step breakpoint of _another_
6066 thread. Single-step breakpoints are transparent to the
6067 breakpoints module. */
6068 if (random_signal)
6069 random_signal = !ecs->hit_singlestep_breakpoint;
6070
6071 /* No? Perhaps we got a moribund watchpoint. */
6072 if (random_signal)
6073 random_signal = !stopped_by_watchpoint;
6074
6075 /* Always stop if the user explicitly requested this thread to
6076 remain stopped. */
6077 if (ecs->event_thread->stop_requested)
6078 {
6079 random_signal = 1;
6080 if (debug_infrun)
6081 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6082 }
6083
6084 /* For the program's own signals, act according to
6085 the signal handling tables. */
6086
6087 if (random_signal)
6088 {
6089 /* Signal not for debugging purposes. */
6090 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6091 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6092
6093 if (debug_infrun)
6094 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6095 gdb_signal_to_symbol_string (stop_signal));
6096
6097 stopped_by_random_signal = 1;
6098
6099 /* Always stop on signals if we're either just gaining control
6100 of the program, or the user explicitly requested this thread
6101 to remain stopped. */
6102 if (stop_soon != NO_STOP_QUIETLY
6103 || ecs->event_thread->stop_requested
6104 || (!inf->detaching
6105 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6106 {
6107 stop_waiting (ecs);
6108 return;
6109 }
6110
6111 /* Notify observers the signal has "handle print" set. Note we
6112 returned early above if stopping; normal_stop handles the
6113 printing in that case. */
6114 if (signal_print[ecs->event_thread->suspend.stop_signal])
6115 {
6116 /* The signal table tells us to print about this signal. */
6117 target_terminal_ours_for_output ();
6118 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6119 target_terminal_inferior ();
6120 }
6121
6122 /* Clear the signal if it should not be passed. */
6123 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6124 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6125
6126 if (ecs->event_thread->prev_pc == stop_pc
6127 && ecs->event_thread->control.trap_expected
6128 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6129 {
6130 /* We were just starting a new sequence, attempting to
6131 single-step off of a breakpoint and expecting a SIGTRAP.
6132 Instead this signal arrives. This signal will take us out
6133 of the stepping range so GDB needs to remember to, when
6134 the signal handler returns, resume stepping off that
6135 breakpoint. */
6136 /* To simplify things, "continue" is forced to use the same
6137 code paths as single-step - set a breakpoint at the
6138 signal return address and then, once hit, step off that
6139 breakpoint. */
6140 if (debug_infrun)
6141 fprintf_unfiltered (gdb_stdlog,
6142 "infrun: signal arrived while stepping over "
6143 "breakpoint\n");
6144
6145 insert_hp_step_resume_breakpoint_at_frame (frame);
6146 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6147 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6148 ecs->event_thread->control.trap_expected = 0;
6149
6150 /* If we were nexting/stepping some other thread, switch to
6151 it, so that we don't continue it, losing control. */
6152 if (!switch_back_to_stepped_thread (ecs))
6153 keep_going (ecs);
6154 return;
6155 }
6156
6157 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6158 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6159 || ecs->event_thread->control.step_range_end == 1)
6160 && frame_id_eq (get_stack_frame_id (frame),
6161 ecs->event_thread->control.step_stack_frame_id)
6162 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6163 {
6164 /* The inferior is about to take a signal that will take it
6165 out of the single step range. Set a breakpoint at the
6166 current PC (which is presumably where the signal handler
6167 will eventually return) and then allow the inferior to
6168 run free.
6169
6170 Note that this is only needed for a signal delivered
6171 while in the single-step range. Nested signals aren't a
6172 problem as they eventually all return. */
6173 if (debug_infrun)
6174 fprintf_unfiltered (gdb_stdlog,
6175 "infrun: signal may take us out of "
6176 "single-step range\n");
6177
6178 clear_step_over_info ();
6179 insert_hp_step_resume_breakpoint_at_frame (frame);
6180 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6181 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6182 ecs->event_thread->control.trap_expected = 0;
6183 keep_going (ecs);
6184 return;
6185 }
6186
6187 /* Note: step_resume_breakpoint may be non-NULL. This occures
6188 when either there's a nested signal, or when there's a
6189 pending signal enabled just as the signal handler returns
6190 (leaving the inferior at the step-resume-breakpoint without
6191 actually executing it). Either way continue until the
6192 breakpoint is really hit. */
6193
6194 if (!switch_back_to_stepped_thread (ecs))
6195 {
6196 if (debug_infrun)
6197 fprintf_unfiltered (gdb_stdlog,
6198 "infrun: random signal, keep going\n");
6199
6200 keep_going (ecs);
6201 }
6202 return;
6203 }
6204
6205 process_event_stop_test (ecs);
6206 }
6207
6208 /* Come here when we've got some debug event / signal we can explain
6209 (IOW, not a random signal), and test whether it should cause a
6210 stop, or whether we should resume the inferior (transparently).
6211 E.g., could be a breakpoint whose condition evaluates false; we
6212 could be still stepping within the line; etc. */
6213
6214 static void
6215 process_event_stop_test (struct execution_control_state *ecs)
6216 {
6217 struct symtab_and_line stop_pc_sal;
6218 struct frame_info *frame;
6219 struct gdbarch *gdbarch;
6220 CORE_ADDR jmp_buf_pc;
6221 struct bpstat_what what;
6222
6223 /* Handle cases caused by hitting a breakpoint. */
6224
6225 frame = get_current_frame ();
6226 gdbarch = get_frame_arch (frame);
6227
6228 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6229
6230 if (what.call_dummy)
6231 {
6232 stop_stack_dummy = what.call_dummy;
6233 }
6234
6235 /* A few breakpoint types have callbacks associated (e.g.,
6236 bp_jit_event). Run them now. */
6237 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6238
6239 /* If we hit an internal event that triggers symbol changes, the
6240 current frame will be invalidated within bpstat_what (e.g., if we
6241 hit an internal solib event). Re-fetch it. */
6242 frame = get_current_frame ();
6243 gdbarch = get_frame_arch (frame);
6244
6245 switch (what.main_action)
6246 {
6247 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6248 /* If we hit the breakpoint at longjmp while stepping, we
6249 install a momentary breakpoint at the target of the
6250 jmp_buf. */
6251
6252 if (debug_infrun)
6253 fprintf_unfiltered (gdb_stdlog,
6254 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6255
6256 ecs->event_thread->stepping_over_breakpoint = 1;
6257
6258 if (what.is_longjmp)
6259 {
6260 struct value *arg_value;
6261
6262 /* If we set the longjmp breakpoint via a SystemTap probe,
6263 then use it to extract the arguments. The destination PC
6264 is the third argument to the probe. */
6265 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6266 if (arg_value)
6267 {
6268 jmp_buf_pc = value_as_address (arg_value);
6269 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6270 }
6271 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6272 || !gdbarch_get_longjmp_target (gdbarch,
6273 frame, &jmp_buf_pc))
6274 {
6275 if (debug_infrun)
6276 fprintf_unfiltered (gdb_stdlog,
6277 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6278 "(!gdbarch_get_longjmp_target)\n");
6279 keep_going (ecs);
6280 return;
6281 }
6282
6283 /* Insert a breakpoint at resume address. */
6284 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6285 }
6286 else
6287 check_exception_resume (ecs, frame);
6288 keep_going (ecs);
6289 return;
6290
6291 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6292 {
6293 struct frame_info *init_frame;
6294
6295 /* There are several cases to consider.
6296
6297 1. The initiating frame no longer exists. In this case we
6298 must stop, because the exception or longjmp has gone too
6299 far.
6300
6301 2. The initiating frame exists, and is the same as the
6302 current frame. We stop, because the exception or longjmp
6303 has been caught.
6304
6305 3. The initiating frame exists and is different from the
6306 current frame. This means the exception or longjmp has
6307 been caught beneath the initiating frame, so keep going.
6308
6309 4. longjmp breakpoint has been placed just to protect
6310 against stale dummy frames and user is not interested in
6311 stopping around longjmps. */
6312
6313 if (debug_infrun)
6314 fprintf_unfiltered (gdb_stdlog,
6315 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6316
6317 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6318 != NULL);
6319 delete_exception_resume_breakpoint (ecs->event_thread);
6320
6321 if (what.is_longjmp)
6322 {
6323 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6324
6325 if (!frame_id_p (ecs->event_thread->initiating_frame))
6326 {
6327 /* Case 4. */
6328 keep_going (ecs);
6329 return;
6330 }
6331 }
6332
6333 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6334
6335 if (init_frame)
6336 {
6337 struct frame_id current_id
6338 = get_frame_id (get_current_frame ());
6339 if (frame_id_eq (current_id,
6340 ecs->event_thread->initiating_frame))
6341 {
6342 /* Case 2. Fall through. */
6343 }
6344 else
6345 {
6346 /* Case 3. */
6347 keep_going (ecs);
6348 return;
6349 }
6350 }
6351
6352 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6353 exists. */
6354 delete_step_resume_breakpoint (ecs->event_thread);
6355
6356 end_stepping_range (ecs);
6357 }
6358 return;
6359
6360 case BPSTAT_WHAT_SINGLE:
6361 if (debug_infrun)
6362 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6363 ecs->event_thread->stepping_over_breakpoint = 1;
6364 /* Still need to check other stuff, at least the case where we
6365 are stepping and step out of the right range. */
6366 break;
6367
6368 case BPSTAT_WHAT_STEP_RESUME:
6369 if (debug_infrun)
6370 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6371
6372 delete_step_resume_breakpoint (ecs->event_thread);
6373 if (ecs->event_thread->control.proceed_to_finish
6374 && execution_direction == EXEC_REVERSE)
6375 {
6376 struct thread_info *tp = ecs->event_thread;
6377
6378 /* We are finishing a function in reverse, and just hit the
6379 step-resume breakpoint at the start address of the
6380 function, and we're almost there -- just need to back up
6381 by one more single-step, which should take us back to the
6382 function call. */
6383 tp->control.step_range_start = tp->control.step_range_end = 1;
6384 keep_going (ecs);
6385 return;
6386 }
6387 fill_in_stop_func (gdbarch, ecs);
6388 if (stop_pc == ecs->stop_func_start
6389 && execution_direction == EXEC_REVERSE)
6390 {
6391 /* We are stepping over a function call in reverse, and just
6392 hit the step-resume breakpoint at the start address of
6393 the function. Go back to single-stepping, which should
6394 take us back to the function call. */
6395 ecs->event_thread->stepping_over_breakpoint = 1;
6396 keep_going (ecs);
6397 return;
6398 }
6399 break;
6400
6401 case BPSTAT_WHAT_STOP_NOISY:
6402 if (debug_infrun)
6403 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6404 stop_print_frame = 1;
6405
6406 /* Assume the thread stopped for a breapoint. We'll still check
6407 whether a/the breakpoint is there when the thread is next
6408 resumed. */
6409 ecs->event_thread->stepping_over_breakpoint = 1;
6410
6411 stop_waiting (ecs);
6412 return;
6413
6414 case BPSTAT_WHAT_STOP_SILENT:
6415 if (debug_infrun)
6416 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6417 stop_print_frame = 0;
6418
6419 /* Assume the thread stopped for a breapoint. We'll still check
6420 whether a/the breakpoint is there when the thread is next
6421 resumed. */
6422 ecs->event_thread->stepping_over_breakpoint = 1;
6423 stop_waiting (ecs);
6424 return;
6425
6426 case BPSTAT_WHAT_HP_STEP_RESUME:
6427 if (debug_infrun)
6428 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6429
6430 delete_step_resume_breakpoint (ecs->event_thread);
6431 if (ecs->event_thread->step_after_step_resume_breakpoint)
6432 {
6433 /* Back when the step-resume breakpoint was inserted, we
6434 were trying to single-step off a breakpoint. Go back to
6435 doing that. */
6436 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6437 ecs->event_thread->stepping_over_breakpoint = 1;
6438 keep_going (ecs);
6439 return;
6440 }
6441 break;
6442
6443 case BPSTAT_WHAT_KEEP_CHECKING:
6444 break;
6445 }
6446
6447 /* If we stepped a permanent breakpoint and we had a high priority
6448 step-resume breakpoint for the address we stepped, but we didn't
6449 hit it, then we must have stepped into the signal handler. The
6450 step-resume was only necessary to catch the case of _not_
6451 stepping into the handler, so delete it, and fall through to
6452 checking whether the step finished. */
6453 if (ecs->event_thread->stepped_breakpoint)
6454 {
6455 struct breakpoint *sr_bp
6456 = ecs->event_thread->control.step_resume_breakpoint;
6457
6458 if (sr_bp != NULL
6459 && sr_bp->loc->permanent
6460 && sr_bp->type == bp_hp_step_resume
6461 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6462 {
6463 if (debug_infrun)
6464 fprintf_unfiltered (gdb_stdlog,
6465 "infrun: stepped permanent breakpoint, stopped in "
6466 "handler\n");
6467 delete_step_resume_breakpoint (ecs->event_thread);
6468 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6469 }
6470 }
6471
6472 /* We come here if we hit a breakpoint but should not stop for it.
6473 Possibly we also were stepping and should stop for that. So fall
6474 through and test for stepping. But, if not stepping, do not
6475 stop. */
6476
6477 /* In all-stop mode, if we're currently stepping but have stopped in
6478 some other thread, we need to switch back to the stepped thread. */
6479 if (switch_back_to_stepped_thread (ecs))
6480 return;
6481
6482 if (ecs->event_thread->control.step_resume_breakpoint)
6483 {
6484 if (debug_infrun)
6485 fprintf_unfiltered (gdb_stdlog,
6486 "infrun: step-resume breakpoint is inserted\n");
6487
6488 /* Having a step-resume breakpoint overrides anything
6489 else having to do with stepping commands until
6490 that breakpoint is reached. */
6491 keep_going (ecs);
6492 return;
6493 }
6494
6495 if (ecs->event_thread->control.step_range_end == 0)
6496 {
6497 if (debug_infrun)
6498 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6499 /* Likewise if we aren't even stepping. */
6500 keep_going (ecs);
6501 return;
6502 }
6503
6504 /* Re-fetch current thread's frame in case the code above caused
6505 the frame cache to be re-initialized, making our FRAME variable
6506 a dangling pointer. */
6507 frame = get_current_frame ();
6508 gdbarch = get_frame_arch (frame);
6509 fill_in_stop_func (gdbarch, ecs);
6510
6511 /* If stepping through a line, keep going if still within it.
6512
6513 Note that step_range_end is the address of the first instruction
6514 beyond the step range, and NOT the address of the last instruction
6515 within it!
6516
6517 Note also that during reverse execution, we may be stepping
6518 through a function epilogue and therefore must detect when
6519 the current-frame changes in the middle of a line. */
6520
6521 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6522 && (execution_direction != EXEC_REVERSE
6523 || frame_id_eq (get_frame_id (frame),
6524 ecs->event_thread->control.step_frame_id)))
6525 {
6526 if (debug_infrun)
6527 fprintf_unfiltered
6528 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6529 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6530 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6531
6532 /* Tentatively re-enable range stepping; `resume' disables it if
6533 necessary (e.g., if we're stepping over a breakpoint or we
6534 have software watchpoints). */
6535 ecs->event_thread->control.may_range_step = 1;
6536
6537 /* When stepping backward, stop at beginning of line range
6538 (unless it's the function entry point, in which case
6539 keep going back to the call point). */
6540 if (stop_pc == ecs->event_thread->control.step_range_start
6541 && stop_pc != ecs->stop_func_start
6542 && execution_direction == EXEC_REVERSE)
6543 end_stepping_range (ecs);
6544 else
6545 keep_going (ecs);
6546
6547 return;
6548 }
6549
6550 /* We stepped out of the stepping range. */
6551
6552 /* If we are stepping at the source level and entered the runtime
6553 loader dynamic symbol resolution code...
6554
6555 EXEC_FORWARD: we keep on single stepping until we exit the run
6556 time loader code and reach the callee's address.
6557
6558 EXEC_REVERSE: we've already executed the callee (backward), and
6559 the runtime loader code is handled just like any other
6560 undebuggable function call. Now we need only keep stepping
6561 backward through the trampoline code, and that's handled further
6562 down, so there is nothing for us to do here. */
6563
6564 if (execution_direction != EXEC_REVERSE
6565 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6566 && in_solib_dynsym_resolve_code (stop_pc))
6567 {
6568 CORE_ADDR pc_after_resolver =
6569 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6570
6571 if (debug_infrun)
6572 fprintf_unfiltered (gdb_stdlog,
6573 "infrun: stepped into dynsym resolve code\n");
6574
6575 if (pc_after_resolver)
6576 {
6577 /* Set up a step-resume breakpoint at the address
6578 indicated by SKIP_SOLIB_RESOLVER. */
6579 struct symtab_and_line sr_sal;
6580
6581 init_sal (&sr_sal);
6582 sr_sal.pc = pc_after_resolver;
6583 sr_sal.pspace = get_frame_program_space (frame);
6584
6585 insert_step_resume_breakpoint_at_sal (gdbarch,
6586 sr_sal, null_frame_id);
6587 }
6588
6589 keep_going (ecs);
6590 return;
6591 }
6592
6593 if (ecs->event_thread->control.step_range_end != 1
6594 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6595 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6596 && get_frame_type (frame) == SIGTRAMP_FRAME)
6597 {
6598 if (debug_infrun)
6599 fprintf_unfiltered (gdb_stdlog,
6600 "infrun: stepped into signal trampoline\n");
6601 /* The inferior, while doing a "step" or "next", has ended up in
6602 a signal trampoline (either by a signal being delivered or by
6603 the signal handler returning). Just single-step until the
6604 inferior leaves the trampoline (either by calling the handler
6605 or returning). */
6606 keep_going (ecs);
6607 return;
6608 }
6609
6610 /* If we're in the return path from a shared library trampoline,
6611 we want to proceed through the trampoline when stepping. */
6612 /* macro/2012-04-25: This needs to come before the subroutine
6613 call check below as on some targets return trampolines look
6614 like subroutine calls (MIPS16 return thunks). */
6615 if (gdbarch_in_solib_return_trampoline (gdbarch,
6616 stop_pc, ecs->stop_func_name)
6617 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6618 {
6619 /* Determine where this trampoline returns. */
6620 CORE_ADDR real_stop_pc;
6621
6622 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6623
6624 if (debug_infrun)
6625 fprintf_unfiltered (gdb_stdlog,
6626 "infrun: stepped into solib return tramp\n");
6627
6628 /* Only proceed through if we know where it's going. */
6629 if (real_stop_pc)
6630 {
6631 /* And put the step-breakpoint there and go until there. */
6632 struct symtab_and_line sr_sal;
6633
6634 init_sal (&sr_sal); /* initialize to zeroes */
6635 sr_sal.pc = real_stop_pc;
6636 sr_sal.section = find_pc_overlay (sr_sal.pc);
6637 sr_sal.pspace = get_frame_program_space (frame);
6638
6639 /* Do not specify what the fp should be when we stop since
6640 on some machines the prologue is where the new fp value
6641 is established. */
6642 insert_step_resume_breakpoint_at_sal (gdbarch,
6643 sr_sal, null_frame_id);
6644
6645 /* Restart without fiddling with the step ranges or
6646 other state. */
6647 keep_going (ecs);
6648 return;
6649 }
6650 }
6651
6652 /* Check for subroutine calls. The check for the current frame
6653 equalling the step ID is not necessary - the check of the
6654 previous frame's ID is sufficient - but it is a common case and
6655 cheaper than checking the previous frame's ID.
6656
6657 NOTE: frame_id_eq will never report two invalid frame IDs as
6658 being equal, so to get into this block, both the current and
6659 previous frame must have valid frame IDs. */
6660 /* The outer_frame_id check is a heuristic to detect stepping
6661 through startup code. If we step over an instruction which
6662 sets the stack pointer from an invalid value to a valid value,
6663 we may detect that as a subroutine call from the mythical
6664 "outermost" function. This could be fixed by marking
6665 outermost frames as !stack_p,code_p,special_p. Then the
6666 initial outermost frame, before sp was valid, would
6667 have code_addr == &_start. See the comment in frame_id_eq
6668 for more. */
6669 if (!frame_id_eq (get_stack_frame_id (frame),
6670 ecs->event_thread->control.step_stack_frame_id)
6671 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6672 ecs->event_thread->control.step_stack_frame_id)
6673 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6674 outer_frame_id)
6675 || (ecs->event_thread->control.step_start_function
6676 != find_pc_function (stop_pc)))))
6677 {
6678 CORE_ADDR real_stop_pc;
6679
6680 if (debug_infrun)
6681 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6682
6683 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6684 {
6685 /* I presume that step_over_calls is only 0 when we're
6686 supposed to be stepping at the assembly language level
6687 ("stepi"). Just stop. */
6688 /* And this works the same backward as frontward. MVS */
6689 end_stepping_range (ecs);
6690 return;
6691 }
6692
6693 /* Reverse stepping through solib trampolines. */
6694
6695 if (execution_direction == EXEC_REVERSE
6696 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6697 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6698 || (ecs->stop_func_start == 0
6699 && in_solib_dynsym_resolve_code (stop_pc))))
6700 {
6701 /* Any solib trampoline code can be handled in reverse
6702 by simply continuing to single-step. We have already
6703 executed the solib function (backwards), and a few
6704 steps will take us back through the trampoline to the
6705 caller. */
6706 keep_going (ecs);
6707 return;
6708 }
6709
6710 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6711 {
6712 /* We're doing a "next".
6713
6714 Normal (forward) execution: set a breakpoint at the
6715 callee's return address (the address at which the caller
6716 will resume).
6717
6718 Reverse (backward) execution. set the step-resume
6719 breakpoint at the start of the function that we just
6720 stepped into (backwards), and continue to there. When we
6721 get there, we'll need to single-step back to the caller. */
6722
6723 if (execution_direction == EXEC_REVERSE)
6724 {
6725 /* If we're already at the start of the function, we've either
6726 just stepped backward into a single instruction function,
6727 or stepped back out of a signal handler to the first instruction
6728 of the function. Just keep going, which will single-step back
6729 to the caller. */
6730 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6731 {
6732 struct symtab_and_line sr_sal;
6733
6734 /* Normal function call return (static or dynamic). */
6735 init_sal (&sr_sal);
6736 sr_sal.pc = ecs->stop_func_start;
6737 sr_sal.pspace = get_frame_program_space (frame);
6738 insert_step_resume_breakpoint_at_sal (gdbarch,
6739 sr_sal, null_frame_id);
6740 }
6741 }
6742 else
6743 insert_step_resume_breakpoint_at_caller (frame);
6744
6745 keep_going (ecs);
6746 return;
6747 }
6748
6749 /* If we are in a function call trampoline (a stub between the
6750 calling routine and the real function), locate the real
6751 function. That's what tells us (a) whether we want to step
6752 into it at all, and (b) what prologue we want to run to the
6753 end of, if we do step into it. */
6754 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6755 if (real_stop_pc == 0)
6756 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6757 if (real_stop_pc != 0)
6758 ecs->stop_func_start = real_stop_pc;
6759
6760 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6761 {
6762 struct symtab_and_line sr_sal;
6763
6764 init_sal (&sr_sal);
6765 sr_sal.pc = ecs->stop_func_start;
6766 sr_sal.pspace = get_frame_program_space (frame);
6767
6768 insert_step_resume_breakpoint_at_sal (gdbarch,
6769 sr_sal, null_frame_id);
6770 keep_going (ecs);
6771 return;
6772 }
6773
6774 /* If we have line number information for the function we are
6775 thinking of stepping into and the function isn't on the skip
6776 list, step into it.
6777
6778 If there are several symtabs at that PC (e.g. with include
6779 files), just want to know whether *any* of them have line
6780 numbers. find_pc_line handles this. */
6781 {
6782 struct symtab_and_line tmp_sal;
6783
6784 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6785 if (tmp_sal.line != 0
6786 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6787 &tmp_sal))
6788 {
6789 if (execution_direction == EXEC_REVERSE)
6790 handle_step_into_function_backward (gdbarch, ecs);
6791 else
6792 handle_step_into_function (gdbarch, ecs);
6793 return;
6794 }
6795 }
6796
6797 /* If we have no line number and the step-stop-if-no-debug is
6798 set, we stop the step so that the user has a chance to switch
6799 in assembly mode. */
6800 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6801 && step_stop_if_no_debug)
6802 {
6803 end_stepping_range (ecs);
6804 return;
6805 }
6806
6807 if (execution_direction == EXEC_REVERSE)
6808 {
6809 /* If we're already at the start of the function, we've either just
6810 stepped backward into a single instruction function without line
6811 number info, or stepped back out of a signal handler to the first
6812 instruction of the function without line number info. Just keep
6813 going, which will single-step back to the caller. */
6814 if (ecs->stop_func_start != stop_pc)
6815 {
6816 /* Set a breakpoint at callee's start address.
6817 From there we can step once and be back in the caller. */
6818 struct symtab_and_line sr_sal;
6819
6820 init_sal (&sr_sal);
6821 sr_sal.pc = ecs->stop_func_start;
6822 sr_sal.pspace = get_frame_program_space (frame);
6823 insert_step_resume_breakpoint_at_sal (gdbarch,
6824 sr_sal, null_frame_id);
6825 }
6826 }
6827 else
6828 /* Set a breakpoint at callee's return address (the address
6829 at which the caller will resume). */
6830 insert_step_resume_breakpoint_at_caller (frame);
6831
6832 keep_going (ecs);
6833 return;
6834 }
6835
6836 /* Reverse stepping through solib trampolines. */
6837
6838 if (execution_direction == EXEC_REVERSE
6839 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6840 {
6841 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6842 || (ecs->stop_func_start == 0
6843 && in_solib_dynsym_resolve_code (stop_pc)))
6844 {
6845 /* Any solib trampoline code can be handled in reverse
6846 by simply continuing to single-step. We have already
6847 executed the solib function (backwards), and a few
6848 steps will take us back through the trampoline to the
6849 caller. */
6850 keep_going (ecs);
6851 return;
6852 }
6853 else if (in_solib_dynsym_resolve_code (stop_pc))
6854 {
6855 /* Stepped backward into the solib dynsym resolver.
6856 Set a breakpoint at its start and continue, then
6857 one more step will take us out. */
6858 struct symtab_and_line sr_sal;
6859
6860 init_sal (&sr_sal);
6861 sr_sal.pc = ecs->stop_func_start;
6862 sr_sal.pspace = get_frame_program_space (frame);
6863 insert_step_resume_breakpoint_at_sal (gdbarch,
6864 sr_sal, null_frame_id);
6865 keep_going (ecs);
6866 return;
6867 }
6868 }
6869
6870 stop_pc_sal = find_pc_line (stop_pc, 0);
6871
6872 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6873 the trampoline processing logic, however, there are some trampolines
6874 that have no names, so we should do trampoline handling first. */
6875 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6876 && ecs->stop_func_name == NULL
6877 && stop_pc_sal.line == 0)
6878 {
6879 if (debug_infrun)
6880 fprintf_unfiltered (gdb_stdlog,
6881 "infrun: stepped into undebuggable function\n");
6882
6883 /* The inferior just stepped into, or returned to, an
6884 undebuggable function (where there is no debugging information
6885 and no line number corresponding to the address where the
6886 inferior stopped). Since we want to skip this kind of code,
6887 we keep going until the inferior returns from this
6888 function - unless the user has asked us not to (via
6889 set step-mode) or we no longer know how to get back
6890 to the call site. */
6891 if (step_stop_if_no_debug
6892 || !frame_id_p (frame_unwind_caller_id (frame)))
6893 {
6894 /* If we have no line number and the step-stop-if-no-debug
6895 is set, we stop the step so that the user has a chance to
6896 switch in assembly mode. */
6897 end_stepping_range (ecs);
6898 return;
6899 }
6900 else
6901 {
6902 /* Set a breakpoint at callee's return address (the address
6903 at which the caller will resume). */
6904 insert_step_resume_breakpoint_at_caller (frame);
6905 keep_going (ecs);
6906 return;
6907 }
6908 }
6909
6910 if (ecs->event_thread->control.step_range_end == 1)
6911 {
6912 /* It is stepi or nexti. We always want to stop stepping after
6913 one instruction. */
6914 if (debug_infrun)
6915 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6916 end_stepping_range (ecs);
6917 return;
6918 }
6919
6920 if (stop_pc_sal.line == 0)
6921 {
6922 /* We have no line number information. That means to stop
6923 stepping (does this always happen right after one instruction,
6924 when we do "s" in a function with no line numbers,
6925 or can this happen as a result of a return or longjmp?). */
6926 if (debug_infrun)
6927 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6928 end_stepping_range (ecs);
6929 return;
6930 }
6931
6932 /* Look for "calls" to inlined functions, part one. If the inline
6933 frame machinery detected some skipped call sites, we have entered
6934 a new inline function. */
6935
6936 if (frame_id_eq (get_frame_id (get_current_frame ()),
6937 ecs->event_thread->control.step_frame_id)
6938 && inline_skipped_frames (ecs->ptid))
6939 {
6940 struct symtab_and_line call_sal;
6941
6942 if (debug_infrun)
6943 fprintf_unfiltered (gdb_stdlog,
6944 "infrun: stepped into inlined function\n");
6945
6946 find_frame_sal (get_current_frame (), &call_sal);
6947
6948 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6949 {
6950 /* For "step", we're going to stop. But if the call site
6951 for this inlined function is on the same source line as
6952 we were previously stepping, go down into the function
6953 first. Otherwise stop at the call site. */
6954
6955 if (call_sal.line == ecs->event_thread->current_line
6956 && call_sal.symtab == ecs->event_thread->current_symtab)
6957 step_into_inline_frame (ecs->ptid);
6958
6959 end_stepping_range (ecs);
6960 return;
6961 }
6962 else
6963 {
6964 /* For "next", we should stop at the call site if it is on a
6965 different source line. Otherwise continue through the
6966 inlined function. */
6967 if (call_sal.line == ecs->event_thread->current_line
6968 && call_sal.symtab == ecs->event_thread->current_symtab)
6969 keep_going (ecs);
6970 else
6971 end_stepping_range (ecs);
6972 return;
6973 }
6974 }
6975
6976 /* Look for "calls" to inlined functions, part two. If we are still
6977 in the same real function we were stepping through, but we have
6978 to go further up to find the exact frame ID, we are stepping
6979 through a more inlined call beyond its call site. */
6980
6981 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6982 && !frame_id_eq (get_frame_id (get_current_frame ()),
6983 ecs->event_thread->control.step_frame_id)
6984 && stepped_in_from (get_current_frame (),
6985 ecs->event_thread->control.step_frame_id))
6986 {
6987 if (debug_infrun)
6988 fprintf_unfiltered (gdb_stdlog,
6989 "infrun: stepping through inlined function\n");
6990
6991 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6992 keep_going (ecs);
6993 else
6994 end_stepping_range (ecs);
6995 return;
6996 }
6997
6998 if ((stop_pc == stop_pc_sal.pc)
6999 && (ecs->event_thread->current_line != stop_pc_sal.line
7000 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7001 {
7002 /* We are at the start of a different line. So stop. Note that
7003 we don't stop if we step into the middle of a different line.
7004 That is said to make things like for (;;) statements work
7005 better. */
7006 if (debug_infrun)
7007 fprintf_unfiltered (gdb_stdlog,
7008 "infrun: stepped to a different line\n");
7009 end_stepping_range (ecs);
7010 return;
7011 }
7012
7013 /* We aren't done stepping.
7014
7015 Optimize by setting the stepping range to the line.
7016 (We might not be in the original line, but if we entered a
7017 new line in mid-statement, we continue stepping. This makes
7018 things like for(;;) statements work better.) */
7019
7020 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7021 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7022 ecs->event_thread->control.may_range_step = 1;
7023 set_step_info (frame, stop_pc_sal);
7024
7025 if (debug_infrun)
7026 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7027 keep_going (ecs);
7028 }
7029
7030 /* In all-stop mode, if we're currently stepping but have stopped in
7031 some other thread, we may need to switch back to the stepped
7032 thread. Returns true we set the inferior running, false if we left
7033 it stopped (and the event needs further processing). */
7034
7035 static int
7036 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7037 {
7038 if (!target_is_non_stop_p ())
7039 {
7040 struct thread_info *tp;
7041 struct thread_info *stepping_thread;
7042
7043 /* If any thread is blocked on some internal breakpoint, and we
7044 simply need to step over that breakpoint to get it going
7045 again, do that first. */
7046
7047 /* However, if we see an event for the stepping thread, then we
7048 know all other threads have been moved past their breakpoints
7049 already. Let the caller check whether the step is finished,
7050 etc., before deciding to move it past a breakpoint. */
7051 if (ecs->event_thread->control.step_range_end != 0)
7052 return 0;
7053
7054 /* Check if the current thread is blocked on an incomplete
7055 step-over, interrupted by a random signal. */
7056 if (ecs->event_thread->control.trap_expected
7057 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7058 {
7059 if (debug_infrun)
7060 {
7061 fprintf_unfiltered (gdb_stdlog,
7062 "infrun: need to finish step-over of [%s]\n",
7063 target_pid_to_str (ecs->event_thread->ptid));
7064 }
7065 keep_going (ecs);
7066 return 1;
7067 }
7068
7069 /* Check if the current thread is blocked by a single-step
7070 breakpoint of another thread. */
7071 if (ecs->hit_singlestep_breakpoint)
7072 {
7073 if (debug_infrun)
7074 {
7075 fprintf_unfiltered (gdb_stdlog,
7076 "infrun: need to step [%s] over single-step "
7077 "breakpoint\n",
7078 target_pid_to_str (ecs->ptid));
7079 }
7080 keep_going (ecs);
7081 return 1;
7082 }
7083
7084 /* If this thread needs yet another step-over (e.g., stepping
7085 through a delay slot), do it first before moving on to
7086 another thread. */
7087 if (thread_still_needs_step_over (ecs->event_thread))
7088 {
7089 if (debug_infrun)
7090 {
7091 fprintf_unfiltered (gdb_stdlog,
7092 "infrun: thread [%s] still needs step-over\n",
7093 target_pid_to_str (ecs->event_thread->ptid));
7094 }
7095 keep_going (ecs);
7096 return 1;
7097 }
7098
7099 /* If scheduler locking applies even if not stepping, there's no
7100 need to walk over threads. Above we've checked whether the
7101 current thread is stepping. If some other thread not the
7102 event thread is stepping, then it must be that scheduler
7103 locking is not in effect. */
7104 if (schedlock_applies (ecs->event_thread))
7105 return 0;
7106
7107 /* Otherwise, we no longer expect a trap in the current thread.
7108 Clear the trap_expected flag before switching back -- this is
7109 what keep_going does as well, if we call it. */
7110 ecs->event_thread->control.trap_expected = 0;
7111
7112 /* Likewise, clear the signal if it should not be passed. */
7113 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7114 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7115
7116 /* Do all pending step-overs before actually proceeding with
7117 step/next/etc. */
7118 if (start_step_over ())
7119 {
7120 prepare_to_wait (ecs);
7121 return 1;
7122 }
7123
7124 /* Look for the stepping/nexting thread. */
7125 stepping_thread = NULL;
7126
7127 ALL_NON_EXITED_THREADS (tp)
7128 {
7129 /* Ignore threads of processes the caller is not
7130 resuming. */
7131 if (!sched_multi
7132 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7133 continue;
7134
7135 /* When stepping over a breakpoint, we lock all threads
7136 except the one that needs to move past the breakpoint.
7137 If a non-event thread has this set, the "incomplete
7138 step-over" check above should have caught it earlier. */
7139 if (tp->control.trap_expected)
7140 {
7141 internal_error (__FILE__, __LINE__,
7142 "[%s] has inconsistent state: "
7143 "trap_expected=%d\n",
7144 target_pid_to_str (tp->ptid),
7145 tp->control.trap_expected);
7146 }
7147
7148 /* Did we find the stepping thread? */
7149 if (tp->control.step_range_end)
7150 {
7151 /* Yep. There should only one though. */
7152 gdb_assert (stepping_thread == NULL);
7153
7154 /* The event thread is handled at the top, before we
7155 enter this loop. */
7156 gdb_assert (tp != ecs->event_thread);
7157
7158 /* If some thread other than the event thread is
7159 stepping, then scheduler locking can't be in effect,
7160 otherwise we wouldn't have resumed the current event
7161 thread in the first place. */
7162 gdb_assert (!schedlock_applies (tp));
7163
7164 stepping_thread = tp;
7165 }
7166 }
7167
7168 if (stepping_thread != NULL)
7169 {
7170 if (debug_infrun)
7171 fprintf_unfiltered (gdb_stdlog,
7172 "infrun: switching back to stepped thread\n");
7173
7174 if (keep_going_stepped_thread (stepping_thread))
7175 {
7176 prepare_to_wait (ecs);
7177 return 1;
7178 }
7179 }
7180 }
7181
7182 return 0;
7183 }
7184
7185 /* Set a previously stepped thread back to stepping. Returns true on
7186 success, false if the resume is not possible (e.g., the thread
7187 vanished). */
7188
7189 static int
7190 keep_going_stepped_thread (struct thread_info *tp)
7191 {
7192 struct frame_info *frame;
7193 struct execution_control_state ecss;
7194 struct execution_control_state *ecs = &ecss;
7195
7196 /* If the stepping thread exited, then don't try to switch back and
7197 resume it, which could fail in several different ways depending
7198 on the target. Instead, just keep going.
7199
7200 We can find a stepping dead thread in the thread list in two
7201 cases:
7202
7203 - The target supports thread exit events, and when the target
7204 tries to delete the thread from the thread list, inferior_ptid
7205 pointed at the exiting thread. In such case, calling
7206 delete_thread does not really remove the thread from the list;
7207 instead, the thread is left listed, with 'exited' state.
7208
7209 - The target's debug interface does not support thread exit
7210 events, and so we have no idea whatsoever if the previously
7211 stepping thread is still alive. For that reason, we need to
7212 synchronously query the target now. */
7213
7214 if (is_exited (tp->ptid)
7215 || !target_thread_alive (tp->ptid))
7216 {
7217 if (debug_infrun)
7218 fprintf_unfiltered (gdb_stdlog,
7219 "infrun: not resuming previously "
7220 "stepped thread, it has vanished\n");
7221
7222 delete_thread (tp->ptid);
7223 return 0;
7224 }
7225
7226 if (debug_infrun)
7227 fprintf_unfiltered (gdb_stdlog,
7228 "infrun: resuming previously stepped thread\n");
7229
7230 reset_ecs (ecs, tp);
7231 switch_to_thread (tp->ptid);
7232
7233 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7234 frame = get_current_frame ();
7235
7236 /* If the PC of the thread we were trying to single-step has
7237 changed, then that thread has trapped or been signaled, but the
7238 event has not been reported to GDB yet. Re-poll the target
7239 looking for this particular thread's event (i.e. temporarily
7240 enable schedlock) by:
7241
7242 - setting a break at the current PC
7243 - resuming that particular thread, only (by setting trap
7244 expected)
7245
7246 This prevents us continuously moving the single-step breakpoint
7247 forward, one instruction at a time, overstepping. */
7248
7249 if (stop_pc != tp->prev_pc)
7250 {
7251 ptid_t resume_ptid;
7252
7253 if (debug_infrun)
7254 fprintf_unfiltered (gdb_stdlog,
7255 "infrun: expected thread advanced also (%s -> %s)\n",
7256 paddress (target_gdbarch (), tp->prev_pc),
7257 paddress (target_gdbarch (), stop_pc));
7258
7259 /* Clear the info of the previous step-over, as it's no longer
7260 valid (if the thread was trying to step over a breakpoint, it
7261 has already succeeded). It's what keep_going would do too,
7262 if we called it. Do this before trying to insert the sss
7263 breakpoint, otherwise if we were previously trying to step
7264 over this exact address in another thread, the breakpoint is
7265 skipped. */
7266 clear_step_over_info ();
7267 tp->control.trap_expected = 0;
7268
7269 insert_single_step_breakpoint (get_frame_arch (frame),
7270 get_frame_address_space (frame),
7271 stop_pc);
7272
7273 tp->resumed = 1;
7274 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7275 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7276 }
7277 else
7278 {
7279 if (debug_infrun)
7280 fprintf_unfiltered (gdb_stdlog,
7281 "infrun: expected thread still hasn't advanced\n");
7282
7283 keep_going_pass_signal (ecs);
7284 }
7285 return 1;
7286 }
7287
7288 /* Is thread TP in the middle of (software or hardware)
7289 single-stepping? (Note the result of this function must never be
7290 passed directly as target_resume's STEP parameter.) */
7291
7292 static int
7293 currently_stepping (struct thread_info *tp)
7294 {
7295 return ((tp->control.step_range_end
7296 && tp->control.step_resume_breakpoint == NULL)
7297 || tp->control.trap_expected
7298 || tp->stepped_breakpoint
7299 || bpstat_should_step ());
7300 }
7301
7302 /* Inferior has stepped into a subroutine call with source code that
7303 we should not step over. Do step to the first line of code in
7304 it. */
7305
7306 static void
7307 handle_step_into_function (struct gdbarch *gdbarch,
7308 struct execution_control_state *ecs)
7309 {
7310 struct compunit_symtab *cust;
7311 struct symtab_and_line stop_func_sal, sr_sal;
7312
7313 fill_in_stop_func (gdbarch, ecs);
7314
7315 cust = find_pc_compunit_symtab (stop_pc);
7316 if (cust != NULL && compunit_language (cust) != language_asm)
7317 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7318 ecs->stop_func_start);
7319
7320 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7321 /* Use the step_resume_break to step until the end of the prologue,
7322 even if that involves jumps (as it seems to on the vax under
7323 4.2). */
7324 /* If the prologue ends in the middle of a source line, continue to
7325 the end of that source line (if it is still within the function).
7326 Otherwise, just go to end of prologue. */
7327 if (stop_func_sal.end
7328 && stop_func_sal.pc != ecs->stop_func_start
7329 && stop_func_sal.end < ecs->stop_func_end)
7330 ecs->stop_func_start = stop_func_sal.end;
7331
7332 /* Architectures which require breakpoint adjustment might not be able
7333 to place a breakpoint at the computed address. If so, the test
7334 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7335 ecs->stop_func_start to an address at which a breakpoint may be
7336 legitimately placed.
7337
7338 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7339 made, GDB will enter an infinite loop when stepping through
7340 optimized code consisting of VLIW instructions which contain
7341 subinstructions corresponding to different source lines. On
7342 FR-V, it's not permitted to place a breakpoint on any but the
7343 first subinstruction of a VLIW instruction. When a breakpoint is
7344 set, GDB will adjust the breakpoint address to the beginning of
7345 the VLIW instruction. Thus, we need to make the corresponding
7346 adjustment here when computing the stop address. */
7347
7348 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7349 {
7350 ecs->stop_func_start
7351 = gdbarch_adjust_breakpoint_address (gdbarch,
7352 ecs->stop_func_start);
7353 }
7354
7355 if (ecs->stop_func_start == stop_pc)
7356 {
7357 /* We are already there: stop now. */
7358 end_stepping_range (ecs);
7359 return;
7360 }
7361 else
7362 {
7363 /* Put the step-breakpoint there and go until there. */
7364 init_sal (&sr_sal); /* initialize to zeroes */
7365 sr_sal.pc = ecs->stop_func_start;
7366 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7367 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7368
7369 /* Do not specify what the fp should be when we stop since on
7370 some machines the prologue is where the new fp value is
7371 established. */
7372 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7373
7374 /* And make sure stepping stops right away then. */
7375 ecs->event_thread->control.step_range_end
7376 = ecs->event_thread->control.step_range_start;
7377 }
7378 keep_going (ecs);
7379 }
7380
7381 /* Inferior has stepped backward into a subroutine call with source
7382 code that we should not step over. Do step to the beginning of the
7383 last line of code in it. */
7384
7385 static void
7386 handle_step_into_function_backward (struct gdbarch *gdbarch,
7387 struct execution_control_state *ecs)
7388 {
7389 struct compunit_symtab *cust;
7390 struct symtab_and_line stop_func_sal;
7391
7392 fill_in_stop_func (gdbarch, ecs);
7393
7394 cust = find_pc_compunit_symtab (stop_pc);
7395 if (cust != NULL && compunit_language (cust) != language_asm)
7396 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7397 ecs->stop_func_start);
7398
7399 stop_func_sal = find_pc_line (stop_pc, 0);
7400
7401 /* OK, we're just going to keep stepping here. */
7402 if (stop_func_sal.pc == stop_pc)
7403 {
7404 /* We're there already. Just stop stepping now. */
7405 end_stepping_range (ecs);
7406 }
7407 else
7408 {
7409 /* Else just reset the step range and keep going.
7410 No step-resume breakpoint, they don't work for
7411 epilogues, which can have multiple entry paths. */
7412 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7413 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7414 keep_going (ecs);
7415 }
7416 return;
7417 }
7418
7419 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7420 This is used to both functions and to skip over code. */
7421
7422 static void
7423 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7424 struct symtab_and_line sr_sal,
7425 struct frame_id sr_id,
7426 enum bptype sr_type)
7427 {
7428 /* There should never be more than one step-resume or longjmp-resume
7429 breakpoint per thread, so we should never be setting a new
7430 step_resume_breakpoint when one is already active. */
7431 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7432 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7433
7434 if (debug_infrun)
7435 fprintf_unfiltered (gdb_stdlog,
7436 "infrun: inserting step-resume breakpoint at %s\n",
7437 paddress (gdbarch, sr_sal.pc));
7438
7439 inferior_thread ()->control.step_resume_breakpoint
7440 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7441 }
7442
7443 void
7444 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7445 struct symtab_and_line sr_sal,
7446 struct frame_id sr_id)
7447 {
7448 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7449 sr_sal, sr_id,
7450 bp_step_resume);
7451 }
7452
7453 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7454 This is used to skip a potential signal handler.
7455
7456 This is called with the interrupted function's frame. The signal
7457 handler, when it returns, will resume the interrupted function at
7458 RETURN_FRAME.pc. */
7459
7460 static void
7461 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7462 {
7463 struct symtab_and_line sr_sal;
7464 struct gdbarch *gdbarch;
7465
7466 gdb_assert (return_frame != NULL);
7467 init_sal (&sr_sal); /* initialize to zeros */
7468
7469 gdbarch = get_frame_arch (return_frame);
7470 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7471 sr_sal.section = find_pc_overlay (sr_sal.pc);
7472 sr_sal.pspace = get_frame_program_space (return_frame);
7473
7474 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7475 get_stack_frame_id (return_frame),
7476 bp_hp_step_resume);
7477 }
7478
7479 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7480 is used to skip a function after stepping into it (for "next" or if
7481 the called function has no debugging information).
7482
7483 The current function has almost always been reached by single
7484 stepping a call or return instruction. NEXT_FRAME belongs to the
7485 current function, and the breakpoint will be set at the caller's
7486 resume address.
7487
7488 This is a separate function rather than reusing
7489 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7490 get_prev_frame, which may stop prematurely (see the implementation
7491 of frame_unwind_caller_id for an example). */
7492
7493 static void
7494 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7495 {
7496 struct symtab_and_line sr_sal;
7497 struct gdbarch *gdbarch;
7498
7499 /* We shouldn't have gotten here if we don't know where the call site
7500 is. */
7501 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7502
7503 init_sal (&sr_sal); /* initialize to zeros */
7504
7505 gdbarch = frame_unwind_caller_arch (next_frame);
7506 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7507 frame_unwind_caller_pc (next_frame));
7508 sr_sal.section = find_pc_overlay (sr_sal.pc);
7509 sr_sal.pspace = frame_unwind_program_space (next_frame);
7510
7511 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7512 frame_unwind_caller_id (next_frame));
7513 }
7514
7515 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7516 new breakpoint at the target of a jmp_buf. The handling of
7517 longjmp-resume uses the same mechanisms used for handling
7518 "step-resume" breakpoints. */
7519
7520 static void
7521 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7522 {
7523 /* There should never be more than one longjmp-resume breakpoint per
7524 thread, so we should never be setting a new
7525 longjmp_resume_breakpoint when one is already active. */
7526 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7527
7528 if (debug_infrun)
7529 fprintf_unfiltered (gdb_stdlog,
7530 "infrun: inserting longjmp-resume breakpoint at %s\n",
7531 paddress (gdbarch, pc));
7532
7533 inferior_thread ()->control.exception_resume_breakpoint =
7534 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7535 }
7536
7537 /* Insert an exception resume breakpoint. TP is the thread throwing
7538 the exception. The block B is the block of the unwinder debug hook
7539 function. FRAME is the frame corresponding to the call to this
7540 function. SYM is the symbol of the function argument holding the
7541 target PC of the exception. */
7542
7543 static void
7544 insert_exception_resume_breakpoint (struct thread_info *tp,
7545 const struct block *b,
7546 struct frame_info *frame,
7547 struct symbol *sym)
7548 {
7549 TRY
7550 {
7551 struct block_symbol vsym;
7552 struct value *value;
7553 CORE_ADDR handler;
7554 struct breakpoint *bp;
7555
7556 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7557 value = read_var_value (vsym.symbol, vsym.block, frame);
7558 /* If the value was optimized out, revert to the old behavior. */
7559 if (! value_optimized_out (value))
7560 {
7561 handler = value_as_address (value);
7562
7563 if (debug_infrun)
7564 fprintf_unfiltered (gdb_stdlog,
7565 "infrun: exception resume at %lx\n",
7566 (unsigned long) handler);
7567
7568 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7569 handler, bp_exception_resume);
7570
7571 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7572 frame = NULL;
7573
7574 bp->thread = tp->global_num;
7575 inferior_thread ()->control.exception_resume_breakpoint = bp;
7576 }
7577 }
7578 CATCH (e, RETURN_MASK_ERROR)
7579 {
7580 /* We want to ignore errors here. */
7581 }
7582 END_CATCH
7583 }
7584
7585 /* A helper for check_exception_resume that sets an
7586 exception-breakpoint based on a SystemTap probe. */
7587
7588 static void
7589 insert_exception_resume_from_probe (struct thread_info *tp,
7590 const struct bound_probe *probe,
7591 struct frame_info *frame)
7592 {
7593 struct value *arg_value;
7594 CORE_ADDR handler;
7595 struct breakpoint *bp;
7596
7597 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7598 if (!arg_value)
7599 return;
7600
7601 handler = value_as_address (arg_value);
7602
7603 if (debug_infrun)
7604 fprintf_unfiltered (gdb_stdlog,
7605 "infrun: exception resume at %s\n",
7606 paddress (get_objfile_arch (probe->objfile),
7607 handler));
7608
7609 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7610 handler, bp_exception_resume);
7611 bp->thread = tp->global_num;
7612 inferior_thread ()->control.exception_resume_breakpoint = bp;
7613 }
7614
7615 /* This is called when an exception has been intercepted. Check to
7616 see whether the exception's destination is of interest, and if so,
7617 set an exception resume breakpoint there. */
7618
7619 static void
7620 check_exception_resume (struct execution_control_state *ecs,
7621 struct frame_info *frame)
7622 {
7623 struct bound_probe probe;
7624 struct symbol *func;
7625
7626 /* First see if this exception unwinding breakpoint was set via a
7627 SystemTap probe point. If so, the probe has two arguments: the
7628 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7629 set a breakpoint there. */
7630 probe = find_probe_by_pc (get_frame_pc (frame));
7631 if (probe.probe)
7632 {
7633 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7634 return;
7635 }
7636
7637 func = get_frame_function (frame);
7638 if (!func)
7639 return;
7640
7641 TRY
7642 {
7643 const struct block *b;
7644 struct block_iterator iter;
7645 struct symbol *sym;
7646 int argno = 0;
7647
7648 /* The exception breakpoint is a thread-specific breakpoint on
7649 the unwinder's debug hook, declared as:
7650
7651 void _Unwind_DebugHook (void *cfa, void *handler);
7652
7653 The CFA argument indicates the frame to which control is
7654 about to be transferred. HANDLER is the destination PC.
7655
7656 We ignore the CFA and set a temporary breakpoint at HANDLER.
7657 This is not extremely efficient but it avoids issues in gdb
7658 with computing the DWARF CFA, and it also works even in weird
7659 cases such as throwing an exception from inside a signal
7660 handler. */
7661
7662 b = SYMBOL_BLOCK_VALUE (func);
7663 ALL_BLOCK_SYMBOLS (b, iter, sym)
7664 {
7665 if (!SYMBOL_IS_ARGUMENT (sym))
7666 continue;
7667
7668 if (argno == 0)
7669 ++argno;
7670 else
7671 {
7672 insert_exception_resume_breakpoint (ecs->event_thread,
7673 b, frame, sym);
7674 break;
7675 }
7676 }
7677 }
7678 CATCH (e, RETURN_MASK_ERROR)
7679 {
7680 }
7681 END_CATCH
7682 }
7683
7684 static void
7685 stop_waiting (struct execution_control_state *ecs)
7686 {
7687 if (debug_infrun)
7688 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7689
7690 /* Let callers know we don't want to wait for the inferior anymore. */
7691 ecs->wait_some_more = 0;
7692
7693 /* If all-stop, but the target is always in non-stop mode, stop all
7694 threads now that we're presenting the stop to the user. */
7695 if (!non_stop && target_is_non_stop_p ())
7696 stop_all_threads ();
7697 }
7698
7699 /* Like keep_going, but passes the signal to the inferior, even if the
7700 signal is set to nopass. */
7701
7702 static void
7703 keep_going_pass_signal (struct execution_control_state *ecs)
7704 {
7705 /* Make sure normal_stop is called if we get a QUIT handled before
7706 reaching resume. */
7707 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7708
7709 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7710 gdb_assert (!ecs->event_thread->resumed);
7711
7712 /* Save the pc before execution, to compare with pc after stop. */
7713 ecs->event_thread->prev_pc
7714 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7715
7716 if (ecs->event_thread->control.trap_expected)
7717 {
7718 struct thread_info *tp = ecs->event_thread;
7719
7720 if (debug_infrun)
7721 fprintf_unfiltered (gdb_stdlog,
7722 "infrun: %s has trap_expected set, "
7723 "resuming to collect trap\n",
7724 target_pid_to_str (tp->ptid));
7725
7726 /* We haven't yet gotten our trap, and either: intercepted a
7727 non-signal event (e.g., a fork); or took a signal which we
7728 are supposed to pass through to the inferior. Simply
7729 continue. */
7730 discard_cleanups (old_cleanups);
7731 resume (ecs->event_thread->suspend.stop_signal);
7732 }
7733 else if (step_over_info_valid_p ())
7734 {
7735 /* Another thread is stepping over a breakpoint in-line. If
7736 this thread needs a step-over too, queue the request. In
7737 either case, this resume must be deferred for later. */
7738 struct thread_info *tp = ecs->event_thread;
7739
7740 if (ecs->hit_singlestep_breakpoint
7741 || thread_still_needs_step_over (tp))
7742 {
7743 if (debug_infrun)
7744 fprintf_unfiltered (gdb_stdlog,
7745 "infrun: step-over already in progress: "
7746 "step-over for %s deferred\n",
7747 target_pid_to_str (tp->ptid));
7748 thread_step_over_chain_enqueue (tp);
7749 }
7750 else
7751 {
7752 if (debug_infrun)
7753 fprintf_unfiltered (gdb_stdlog,
7754 "infrun: step-over in progress: "
7755 "resume of %s deferred\n",
7756 target_pid_to_str (tp->ptid));
7757 }
7758
7759 discard_cleanups (old_cleanups);
7760 }
7761 else
7762 {
7763 struct regcache *regcache = get_current_regcache ();
7764 int remove_bp;
7765 int remove_wps;
7766 step_over_what step_what;
7767
7768 /* Either the trap was not expected, but we are continuing
7769 anyway (if we got a signal, the user asked it be passed to
7770 the child)
7771 -- or --
7772 We got our expected trap, but decided we should resume from
7773 it.
7774
7775 We're going to run this baby now!
7776
7777 Note that insert_breakpoints won't try to re-insert
7778 already inserted breakpoints. Therefore, we don't
7779 care if breakpoints were already inserted, or not. */
7780
7781 /* If we need to step over a breakpoint, and we're not using
7782 displaced stepping to do so, insert all breakpoints
7783 (watchpoints, etc.) but the one we're stepping over, step one
7784 instruction, and then re-insert the breakpoint when that step
7785 is finished. */
7786
7787 step_what = thread_still_needs_step_over (ecs->event_thread);
7788
7789 remove_bp = (ecs->hit_singlestep_breakpoint
7790 || (step_what & STEP_OVER_BREAKPOINT));
7791 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7792
7793 /* We can't use displaced stepping if we need to step past a
7794 watchpoint. The instruction copied to the scratch pad would
7795 still trigger the watchpoint. */
7796 if (remove_bp
7797 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7798 {
7799 set_step_over_info (get_regcache_aspace (regcache),
7800 regcache_read_pc (regcache), remove_wps,
7801 ecs->event_thread->global_num);
7802 }
7803 else if (remove_wps)
7804 set_step_over_info (NULL, 0, remove_wps, -1);
7805
7806 /* If we now need to do an in-line step-over, we need to stop
7807 all other threads. Note this must be done before
7808 insert_breakpoints below, because that removes the breakpoint
7809 we're about to step over, otherwise other threads could miss
7810 it. */
7811 if (step_over_info_valid_p () && target_is_non_stop_p ())
7812 stop_all_threads ();
7813
7814 /* Stop stepping if inserting breakpoints fails. */
7815 TRY
7816 {
7817 insert_breakpoints ();
7818 }
7819 CATCH (e, RETURN_MASK_ERROR)
7820 {
7821 exception_print (gdb_stderr, e);
7822 stop_waiting (ecs);
7823 discard_cleanups (old_cleanups);
7824 return;
7825 }
7826 END_CATCH
7827
7828 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7829
7830 discard_cleanups (old_cleanups);
7831 resume (ecs->event_thread->suspend.stop_signal);
7832 }
7833
7834 prepare_to_wait (ecs);
7835 }
7836
7837 /* Called when we should continue running the inferior, because the
7838 current event doesn't cause a user visible stop. This does the
7839 resuming part; waiting for the next event is done elsewhere. */
7840
7841 static void
7842 keep_going (struct execution_control_state *ecs)
7843 {
7844 if (ecs->event_thread->control.trap_expected
7845 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7846 ecs->event_thread->control.trap_expected = 0;
7847
7848 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7849 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7850 keep_going_pass_signal (ecs);
7851 }
7852
7853 /* This function normally comes after a resume, before
7854 handle_inferior_event exits. It takes care of any last bits of
7855 housekeeping, and sets the all-important wait_some_more flag. */
7856
7857 static void
7858 prepare_to_wait (struct execution_control_state *ecs)
7859 {
7860 if (debug_infrun)
7861 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7862
7863 ecs->wait_some_more = 1;
7864
7865 if (!target_is_async_p ())
7866 mark_infrun_async_event_handler ();
7867 }
7868
7869 /* We are done with the step range of a step/next/si/ni command.
7870 Called once for each n of a "step n" operation. */
7871
7872 static void
7873 end_stepping_range (struct execution_control_state *ecs)
7874 {
7875 ecs->event_thread->control.stop_step = 1;
7876 stop_waiting (ecs);
7877 }
7878
7879 /* Several print_*_reason functions to print why the inferior has stopped.
7880 We always print something when the inferior exits, or receives a signal.
7881 The rest of the cases are dealt with later on in normal_stop and
7882 print_it_typical. Ideally there should be a call to one of these
7883 print_*_reason functions functions from handle_inferior_event each time
7884 stop_waiting is called.
7885
7886 Note that we don't call these directly, instead we delegate that to
7887 the interpreters, through observers. Interpreters then call these
7888 with whatever uiout is right. */
7889
7890 void
7891 print_end_stepping_range_reason (struct ui_out *uiout)
7892 {
7893 /* For CLI-like interpreters, print nothing. */
7894
7895 if (uiout->is_mi_like_p ())
7896 {
7897 uiout->field_string ("reason",
7898 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7899 }
7900 }
7901
7902 void
7903 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7904 {
7905 annotate_signalled ();
7906 if (uiout->is_mi_like_p ())
7907 uiout->field_string
7908 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7909 uiout->text ("\nProgram terminated with signal ");
7910 annotate_signal_name ();
7911 uiout->field_string ("signal-name",
7912 gdb_signal_to_name (siggnal));
7913 annotate_signal_name_end ();
7914 uiout->text (", ");
7915 annotate_signal_string ();
7916 uiout->field_string ("signal-meaning",
7917 gdb_signal_to_string (siggnal));
7918 annotate_signal_string_end ();
7919 uiout->text (".\n");
7920 uiout->text ("The program no longer exists.\n");
7921 }
7922
7923 void
7924 print_exited_reason (struct ui_out *uiout, int exitstatus)
7925 {
7926 struct inferior *inf = current_inferior ();
7927 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7928
7929 annotate_exited (exitstatus);
7930 if (exitstatus)
7931 {
7932 if (uiout->is_mi_like_p ())
7933 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7934 uiout->text ("[Inferior ");
7935 uiout->text (plongest (inf->num));
7936 uiout->text (" (");
7937 uiout->text (pidstr);
7938 uiout->text (") exited with code ");
7939 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7940 uiout->text ("]\n");
7941 }
7942 else
7943 {
7944 if (uiout->is_mi_like_p ())
7945 uiout->field_string
7946 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7947 uiout->text ("[Inferior ");
7948 uiout->text (plongest (inf->num));
7949 uiout->text (" (");
7950 uiout->text (pidstr);
7951 uiout->text (") exited normally]\n");
7952 }
7953 }
7954
7955 /* Some targets/architectures can do extra processing/display of
7956 segmentation faults. E.g., Intel MPX boundary faults.
7957 Call the architecture dependent function to handle the fault. */
7958
7959 static void
7960 handle_segmentation_fault (struct ui_out *uiout)
7961 {
7962 struct regcache *regcache = get_current_regcache ();
7963 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7964
7965 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7966 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7967 }
7968
7969 void
7970 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7971 {
7972 struct thread_info *thr = inferior_thread ();
7973
7974 annotate_signal ();
7975
7976 if (uiout->is_mi_like_p ())
7977 ;
7978 else if (show_thread_that_caused_stop ())
7979 {
7980 const char *name;
7981
7982 uiout->text ("\nThread ");
7983 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
7984
7985 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7986 if (name != NULL)
7987 {
7988 uiout->text (" \"");
7989 uiout->field_fmt ("name", "%s", name);
7990 uiout->text ("\"");
7991 }
7992 }
7993 else
7994 uiout->text ("\nProgram");
7995
7996 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7997 uiout->text (" stopped");
7998 else
7999 {
8000 uiout->text (" received signal ");
8001 annotate_signal_name ();
8002 if (uiout->is_mi_like_p ())
8003 uiout->field_string
8004 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8005 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8006 annotate_signal_name_end ();
8007 uiout->text (", ");
8008 annotate_signal_string ();
8009 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8010
8011 if (siggnal == GDB_SIGNAL_SEGV)
8012 handle_segmentation_fault (uiout);
8013
8014 annotate_signal_string_end ();
8015 }
8016 uiout->text (".\n");
8017 }
8018
8019 void
8020 print_no_history_reason (struct ui_out *uiout)
8021 {
8022 uiout->text ("\nNo more reverse-execution history.\n");
8023 }
8024
8025 /* Print current location without a level number, if we have changed
8026 functions or hit a breakpoint. Print source line if we have one.
8027 bpstat_print contains the logic deciding in detail what to print,
8028 based on the event(s) that just occurred. */
8029
8030 static void
8031 print_stop_location (struct target_waitstatus *ws)
8032 {
8033 int bpstat_ret;
8034 enum print_what source_flag;
8035 int do_frame_printing = 1;
8036 struct thread_info *tp = inferior_thread ();
8037
8038 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8039 switch (bpstat_ret)
8040 {
8041 case PRINT_UNKNOWN:
8042 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8043 should) carry around the function and does (or should) use
8044 that when doing a frame comparison. */
8045 if (tp->control.stop_step
8046 && frame_id_eq (tp->control.step_frame_id,
8047 get_frame_id (get_current_frame ()))
8048 && tp->control.step_start_function == find_pc_function (stop_pc))
8049 {
8050 /* Finished step, just print source line. */
8051 source_flag = SRC_LINE;
8052 }
8053 else
8054 {
8055 /* Print location and source line. */
8056 source_flag = SRC_AND_LOC;
8057 }
8058 break;
8059 case PRINT_SRC_AND_LOC:
8060 /* Print location and source line. */
8061 source_flag = SRC_AND_LOC;
8062 break;
8063 case PRINT_SRC_ONLY:
8064 source_flag = SRC_LINE;
8065 break;
8066 case PRINT_NOTHING:
8067 /* Something bogus. */
8068 source_flag = SRC_LINE;
8069 do_frame_printing = 0;
8070 break;
8071 default:
8072 internal_error (__FILE__, __LINE__, _("Unknown value."));
8073 }
8074
8075 /* The behavior of this routine with respect to the source
8076 flag is:
8077 SRC_LINE: Print only source line
8078 LOCATION: Print only location
8079 SRC_AND_LOC: Print location and source line. */
8080 if (do_frame_printing)
8081 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8082 }
8083
8084 /* See infrun.h. */
8085
8086 void
8087 print_stop_event (struct ui_out *uiout)
8088 {
8089 struct target_waitstatus last;
8090 ptid_t last_ptid;
8091 struct thread_info *tp;
8092
8093 get_last_target_status (&last_ptid, &last);
8094
8095 {
8096 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8097
8098 print_stop_location (&last);
8099
8100 /* Display the auto-display expressions. */
8101 do_displays ();
8102 }
8103
8104 tp = inferior_thread ();
8105 if (tp->thread_fsm != NULL
8106 && thread_fsm_finished_p (tp->thread_fsm))
8107 {
8108 struct return_value_info *rv;
8109
8110 rv = thread_fsm_return_value (tp->thread_fsm);
8111 if (rv != NULL)
8112 print_return_value (uiout, rv);
8113 }
8114 }
8115
8116 /* See infrun.h. */
8117
8118 void
8119 maybe_remove_breakpoints (void)
8120 {
8121 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8122 {
8123 if (remove_breakpoints ())
8124 {
8125 target_terminal_ours_for_output ();
8126 printf_filtered (_("Cannot remove breakpoints because "
8127 "program is no longer writable.\nFurther "
8128 "execution is probably impossible.\n"));
8129 }
8130 }
8131 }
8132
8133 /* The execution context that just caused a normal stop. */
8134
8135 struct stop_context
8136 {
8137 /* The stop ID. */
8138 ULONGEST stop_id;
8139
8140 /* The event PTID. */
8141
8142 ptid_t ptid;
8143
8144 /* If stopp for a thread event, this is the thread that caused the
8145 stop. */
8146 struct thread_info *thread;
8147
8148 /* The inferior that caused the stop. */
8149 int inf_num;
8150 };
8151
8152 /* Returns a new stop context. If stopped for a thread event, this
8153 takes a strong reference to the thread. */
8154
8155 static struct stop_context *
8156 save_stop_context (void)
8157 {
8158 struct stop_context *sc = XNEW (struct stop_context);
8159
8160 sc->stop_id = get_stop_id ();
8161 sc->ptid = inferior_ptid;
8162 sc->inf_num = current_inferior ()->num;
8163
8164 if (!ptid_equal (inferior_ptid, null_ptid))
8165 {
8166 /* Take a strong reference so that the thread can't be deleted
8167 yet. */
8168 sc->thread = inferior_thread ();
8169 sc->thread->incref ();
8170 }
8171 else
8172 sc->thread = NULL;
8173
8174 return sc;
8175 }
8176
8177 /* Release a stop context previously created with save_stop_context.
8178 Releases the strong reference to the thread as well. */
8179
8180 static void
8181 release_stop_context_cleanup (void *arg)
8182 {
8183 struct stop_context *sc = (struct stop_context *) arg;
8184
8185 if (sc->thread != NULL)
8186 sc->thread->decref ();
8187 xfree (sc);
8188 }
8189
8190 /* Return true if the current context no longer matches the saved stop
8191 context. */
8192
8193 static int
8194 stop_context_changed (struct stop_context *prev)
8195 {
8196 if (!ptid_equal (prev->ptid, inferior_ptid))
8197 return 1;
8198 if (prev->inf_num != current_inferior ()->num)
8199 return 1;
8200 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8201 return 1;
8202 if (get_stop_id () != prev->stop_id)
8203 return 1;
8204 return 0;
8205 }
8206
8207 /* See infrun.h. */
8208
8209 int
8210 normal_stop (void)
8211 {
8212 struct target_waitstatus last;
8213 ptid_t last_ptid;
8214 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8215 ptid_t pid_ptid;
8216
8217 get_last_target_status (&last_ptid, &last);
8218
8219 new_stop_id ();
8220
8221 /* If an exception is thrown from this point on, make sure to
8222 propagate GDB's knowledge of the executing state to the
8223 frontend/user running state. A QUIT is an easy exception to see
8224 here, so do this before any filtered output. */
8225 if (!non_stop)
8226 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8227 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8228 || last.kind == TARGET_WAITKIND_EXITED)
8229 {
8230 /* On some targets, we may still have live threads in the
8231 inferior when we get a process exit event. E.g., for
8232 "checkpoint", when the current checkpoint/fork exits,
8233 linux-fork.c automatically switches to another fork from
8234 within target_mourn_inferior. */
8235 if (!ptid_equal (inferior_ptid, null_ptid))
8236 {
8237 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8238 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8239 }
8240 }
8241 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8242 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8243
8244 /* As we're presenting a stop, and potentially removing breakpoints,
8245 update the thread list so we can tell whether there are threads
8246 running on the target. With target remote, for example, we can
8247 only learn about new threads when we explicitly update the thread
8248 list. Do this before notifying the interpreters about signal
8249 stops, end of stepping ranges, etc., so that the "new thread"
8250 output is emitted before e.g., "Program received signal FOO",
8251 instead of after. */
8252 update_thread_list ();
8253
8254 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8255 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8256
8257 /* As with the notification of thread events, we want to delay
8258 notifying the user that we've switched thread context until
8259 the inferior actually stops.
8260
8261 There's no point in saying anything if the inferior has exited.
8262 Note that SIGNALLED here means "exited with a signal", not
8263 "received a signal".
8264
8265 Also skip saying anything in non-stop mode. In that mode, as we
8266 don't want GDB to switch threads behind the user's back, to avoid
8267 races where the user is typing a command to apply to thread x,
8268 but GDB switches to thread y before the user finishes entering
8269 the command, fetch_inferior_event installs a cleanup to restore
8270 the current thread back to the thread the user had selected right
8271 after this event is handled, so we're not really switching, only
8272 informing of a stop. */
8273 if (!non_stop
8274 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8275 && target_has_execution
8276 && last.kind != TARGET_WAITKIND_SIGNALLED
8277 && last.kind != TARGET_WAITKIND_EXITED
8278 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8279 {
8280 SWITCH_THRU_ALL_UIS ()
8281 {
8282 target_terminal_ours_for_output ();
8283 printf_filtered (_("[Switching to %s]\n"),
8284 target_pid_to_str (inferior_ptid));
8285 annotate_thread_changed ();
8286 }
8287 previous_inferior_ptid = inferior_ptid;
8288 }
8289
8290 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8291 {
8292 SWITCH_THRU_ALL_UIS ()
8293 if (current_ui->prompt_state == PROMPT_BLOCKED)
8294 {
8295 target_terminal_ours_for_output ();
8296 printf_filtered (_("No unwaited-for children left.\n"));
8297 }
8298 }
8299
8300 /* Note: this depends on the update_thread_list call above. */
8301 maybe_remove_breakpoints ();
8302
8303 /* If an auto-display called a function and that got a signal,
8304 delete that auto-display to avoid an infinite recursion. */
8305
8306 if (stopped_by_random_signal)
8307 disable_current_display ();
8308
8309 SWITCH_THRU_ALL_UIS ()
8310 {
8311 async_enable_stdin ();
8312 }
8313
8314 /* Let the user/frontend see the threads as stopped. */
8315 do_cleanups (old_chain);
8316
8317 /* Select innermost stack frame - i.e., current frame is frame 0,
8318 and current location is based on that. Handle the case where the
8319 dummy call is returning after being stopped. E.g. the dummy call
8320 previously hit a breakpoint. (If the dummy call returns
8321 normally, we won't reach here.) Do this before the stop hook is
8322 run, so that it doesn't get to see the temporary dummy frame,
8323 which is not where we'll present the stop. */
8324 if (has_stack_frames ())
8325 {
8326 if (stop_stack_dummy == STOP_STACK_DUMMY)
8327 {
8328 /* Pop the empty frame that contains the stack dummy. This
8329 also restores inferior state prior to the call (struct
8330 infcall_suspend_state). */
8331 struct frame_info *frame = get_current_frame ();
8332
8333 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8334 frame_pop (frame);
8335 /* frame_pop calls reinit_frame_cache as the last thing it
8336 does which means there's now no selected frame. */
8337 }
8338
8339 select_frame (get_current_frame ());
8340
8341 /* Set the current source location. */
8342 set_current_sal_from_frame (get_current_frame ());
8343 }
8344
8345 /* Look up the hook_stop and run it (CLI internally handles problem
8346 of stop_command's pre-hook not existing). */
8347 if (stop_command != NULL)
8348 {
8349 struct stop_context *saved_context = save_stop_context ();
8350 struct cleanup *old_chain
8351 = make_cleanup (release_stop_context_cleanup, saved_context);
8352
8353 catch_errors (hook_stop_stub, stop_command,
8354 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8355
8356 /* If the stop hook resumes the target, then there's no point in
8357 trying to notify about the previous stop; its context is
8358 gone. Likewise if the command switches thread or inferior --
8359 the observers would print a stop for the wrong
8360 thread/inferior. */
8361 if (stop_context_changed (saved_context))
8362 {
8363 do_cleanups (old_chain);
8364 return 1;
8365 }
8366 do_cleanups (old_chain);
8367 }
8368
8369 /* Notify observers about the stop. This is where the interpreters
8370 print the stop event. */
8371 if (!ptid_equal (inferior_ptid, null_ptid))
8372 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8373 stop_print_frame);
8374 else
8375 observer_notify_normal_stop (NULL, stop_print_frame);
8376
8377 annotate_stopped ();
8378
8379 if (target_has_execution)
8380 {
8381 if (last.kind != TARGET_WAITKIND_SIGNALLED
8382 && last.kind != TARGET_WAITKIND_EXITED)
8383 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8384 Delete any breakpoint that is to be deleted at the next stop. */
8385 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8386 }
8387
8388 /* Try to get rid of automatically added inferiors that are no
8389 longer needed. Keeping those around slows down things linearly.
8390 Note that this never removes the current inferior. */
8391 prune_inferiors ();
8392
8393 return 0;
8394 }
8395
8396 static int
8397 hook_stop_stub (void *cmd)
8398 {
8399 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8400 return (0);
8401 }
8402 \f
8403 int
8404 signal_stop_state (int signo)
8405 {
8406 return signal_stop[signo];
8407 }
8408
8409 int
8410 signal_print_state (int signo)
8411 {
8412 return signal_print[signo];
8413 }
8414
8415 int
8416 signal_pass_state (int signo)
8417 {
8418 return signal_program[signo];
8419 }
8420
8421 static void
8422 signal_cache_update (int signo)
8423 {
8424 if (signo == -1)
8425 {
8426 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8427 signal_cache_update (signo);
8428
8429 return;
8430 }
8431
8432 signal_pass[signo] = (signal_stop[signo] == 0
8433 && signal_print[signo] == 0
8434 && signal_program[signo] == 1
8435 && signal_catch[signo] == 0);
8436 }
8437
8438 int
8439 signal_stop_update (int signo, int state)
8440 {
8441 int ret = signal_stop[signo];
8442
8443 signal_stop[signo] = state;
8444 signal_cache_update (signo);
8445 return ret;
8446 }
8447
8448 int
8449 signal_print_update (int signo, int state)
8450 {
8451 int ret = signal_print[signo];
8452
8453 signal_print[signo] = state;
8454 signal_cache_update (signo);
8455 return ret;
8456 }
8457
8458 int
8459 signal_pass_update (int signo, int state)
8460 {
8461 int ret = signal_program[signo];
8462
8463 signal_program[signo] = state;
8464 signal_cache_update (signo);
8465 return ret;
8466 }
8467
8468 /* Update the global 'signal_catch' from INFO and notify the
8469 target. */
8470
8471 void
8472 signal_catch_update (const unsigned int *info)
8473 {
8474 int i;
8475
8476 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8477 signal_catch[i] = info[i] > 0;
8478 signal_cache_update (-1);
8479 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8480 }
8481
8482 static void
8483 sig_print_header (void)
8484 {
8485 printf_filtered (_("Signal Stop\tPrint\tPass "
8486 "to program\tDescription\n"));
8487 }
8488
8489 static void
8490 sig_print_info (enum gdb_signal oursig)
8491 {
8492 const char *name = gdb_signal_to_name (oursig);
8493 int name_padding = 13 - strlen (name);
8494
8495 if (name_padding <= 0)
8496 name_padding = 0;
8497
8498 printf_filtered ("%s", name);
8499 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8500 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8501 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8502 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8503 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8504 }
8505
8506 /* Specify how various signals in the inferior should be handled. */
8507
8508 static void
8509 handle_command (char *args, int from_tty)
8510 {
8511 char **argv;
8512 int digits, wordlen;
8513 int sigfirst, signum, siglast;
8514 enum gdb_signal oursig;
8515 int allsigs;
8516 int nsigs;
8517 unsigned char *sigs;
8518 struct cleanup *old_chain;
8519
8520 if (args == NULL)
8521 {
8522 error_no_arg (_("signal to handle"));
8523 }
8524
8525 /* Allocate and zero an array of flags for which signals to handle. */
8526
8527 nsigs = (int) GDB_SIGNAL_LAST;
8528 sigs = (unsigned char *) alloca (nsigs);
8529 memset (sigs, 0, nsigs);
8530
8531 /* Break the command line up into args. */
8532
8533 argv = gdb_buildargv (args);
8534 old_chain = make_cleanup_freeargv (argv);
8535
8536 /* Walk through the args, looking for signal oursigs, signal names, and
8537 actions. Signal numbers and signal names may be interspersed with
8538 actions, with the actions being performed for all signals cumulatively
8539 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8540
8541 while (*argv != NULL)
8542 {
8543 wordlen = strlen (*argv);
8544 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8545 {;
8546 }
8547 allsigs = 0;
8548 sigfirst = siglast = -1;
8549
8550 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8551 {
8552 /* Apply action to all signals except those used by the
8553 debugger. Silently skip those. */
8554 allsigs = 1;
8555 sigfirst = 0;
8556 siglast = nsigs - 1;
8557 }
8558 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8559 {
8560 SET_SIGS (nsigs, sigs, signal_stop);
8561 SET_SIGS (nsigs, sigs, signal_print);
8562 }
8563 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8564 {
8565 UNSET_SIGS (nsigs, sigs, signal_program);
8566 }
8567 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8568 {
8569 SET_SIGS (nsigs, sigs, signal_print);
8570 }
8571 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8572 {
8573 SET_SIGS (nsigs, sigs, signal_program);
8574 }
8575 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8576 {
8577 UNSET_SIGS (nsigs, sigs, signal_stop);
8578 }
8579 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8580 {
8581 SET_SIGS (nsigs, sigs, signal_program);
8582 }
8583 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8584 {
8585 UNSET_SIGS (nsigs, sigs, signal_print);
8586 UNSET_SIGS (nsigs, sigs, signal_stop);
8587 }
8588 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8589 {
8590 UNSET_SIGS (nsigs, sigs, signal_program);
8591 }
8592 else if (digits > 0)
8593 {
8594 /* It is numeric. The numeric signal refers to our own
8595 internal signal numbering from target.h, not to host/target
8596 signal number. This is a feature; users really should be
8597 using symbolic names anyway, and the common ones like
8598 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8599
8600 sigfirst = siglast = (int)
8601 gdb_signal_from_command (atoi (*argv));
8602 if ((*argv)[digits] == '-')
8603 {
8604 siglast = (int)
8605 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8606 }
8607 if (sigfirst > siglast)
8608 {
8609 /* Bet he didn't figure we'd think of this case... */
8610 signum = sigfirst;
8611 sigfirst = siglast;
8612 siglast = signum;
8613 }
8614 }
8615 else
8616 {
8617 oursig = gdb_signal_from_name (*argv);
8618 if (oursig != GDB_SIGNAL_UNKNOWN)
8619 {
8620 sigfirst = siglast = (int) oursig;
8621 }
8622 else
8623 {
8624 /* Not a number and not a recognized flag word => complain. */
8625 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8626 }
8627 }
8628
8629 /* If any signal numbers or symbol names were found, set flags for
8630 which signals to apply actions to. */
8631
8632 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8633 {
8634 switch ((enum gdb_signal) signum)
8635 {
8636 case GDB_SIGNAL_TRAP:
8637 case GDB_SIGNAL_INT:
8638 if (!allsigs && !sigs[signum])
8639 {
8640 if (query (_("%s is used by the debugger.\n\
8641 Are you sure you want to change it? "),
8642 gdb_signal_to_name ((enum gdb_signal) signum)))
8643 {
8644 sigs[signum] = 1;
8645 }
8646 else
8647 {
8648 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8649 gdb_flush (gdb_stdout);
8650 }
8651 }
8652 break;
8653 case GDB_SIGNAL_0:
8654 case GDB_SIGNAL_DEFAULT:
8655 case GDB_SIGNAL_UNKNOWN:
8656 /* Make sure that "all" doesn't print these. */
8657 break;
8658 default:
8659 sigs[signum] = 1;
8660 break;
8661 }
8662 }
8663
8664 argv++;
8665 }
8666
8667 for (signum = 0; signum < nsigs; signum++)
8668 if (sigs[signum])
8669 {
8670 signal_cache_update (-1);
8671 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8672 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8673
8674 if (from_tty)
8675 {
8676 /* Show the results. */
8677 sig_print_header ();
8678 for (; signum < nsigs; signum++)
8679 if (sigs[signum])
8680 sig_print_info ((enum gdb_signal) signum);
8681 }
8682
8683 break;
8684 }
8685
8686 do_cleanups (old_chain);
8687 }
8688
8689 /* Complete the "handle" command. */
8690
8691 static VEC (char_ptr) *
8692 handle_completer (struct cmd_list_element *ignore,
8693 const char *text, const char *word)
8694 {
8695 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8696 static const char * const keywords[] =
8697 {
8698 "all",
8699 "stop",
8700 "ignore",
8701 "print",
8702 "pass",
8703 "nostop",
8704 "noignore",
8705 "noprint",
8706 "nopass",
8707 NULL,
8708 };
8709
8710 vec_signals = signal_completer (ignore, text, word);
8711 vec_keywords = complete_on_enum (keywords, word, word);
8712
8713 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8714 VEC_free (char_ptr, vec_signals);
8715 VEC_free (char_ptr, vec_keywords);
8716 return return_val;
8717 }
8718
8719 enum gdb_signal
8720 gdb_signal_from_command (int num)
8721 {
8722 if (num >= 1 && num <= 15)
8723 return (enum gdb_signal) num;
8724 error (_("Only signals 1-15 are valid as numeric signals.\n\
8725 Use \"info signals\" for a list of symbolic signals."));
8726 }
8727
8728 /* Print current contents of the tables set by the handle command.
8729 It is possible we should just be printing signals actually used
8730 by the current target (but for things to work right when switching
8731 targets, all signals should be in the signal tables). */
8732
8733 static void
8734 signals_info (char *signum_exp, int from_tty)
8735 {
8736 enum gdb_signal oursig;
8737
8738 sig_print_header ();
8739
8740 if (signum_exp)
8741 {
8742 /* First see if this is a symbol name. */
8743 oursig = gdb_signal_from_name (signum_exp);
8744 if (oursig == GDB_SIGNAL_UNKNOWN)
8745 {
8746 /* No, try numeric. */
8747 oursig =
8748 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8749 }
8750 sig_print_info (oursig);
8751 return;
8752 }
8753
8754 printf_filtered ("\n");
8755 /* These ugly casts brought to you by the native VAX compiler. */
8756 for (oursig = GDB_SIGNAL_FIRST;
8757 (int) oursig < (int) GDB_SIGNAL_LAST;
8758 oursig = (enum gdb_signal) ((int) oursig + 1))
8759 {
8760 QUIT;
8761
8762 if (oursig != GDB_SIGNAL_UNKNOWN
8763 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8764 sig_print_info (oursig);
8765 }
8766
8767 printf_filtered (_("\nUse the \"handle\" command "
8768 "to change these tables.\n"));
8769 }
8770
8771 /* The $_siginfo convenience variable is a bit special. We don't know
8772 for sure the type of the value until we actually have a chance to
8773 fetch the data. The type can change depending on gdbarch, so it is
8774 also dependent on which thread you have selected.
8775
8776 1. making $_siginfo be an internalvar that creates a new value on
8777 access.
8778
8779 2. making the value of $_siginfo be an lval_computed value. */
8780
8781 /* This function implements the lval_computed support for reading a
8782 $_siginfo value. */
8783
8784 static void
8785 siginfo_value_read (struct value *v)
8786 {
8787 LONGEST transferred;
8788
8789 /* If we can access registers, so can we access $_siginfo. Likewise
8790 vice versa. */
8791 validate_registers_access ();
8792
8793 transferred =
8794 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8795 NULL,
8796 value_contents_all_raw (v),
8797 value_offset (v),
8798 TYPE_LENGTH (value_type (v)));
8799
8800 if (transferred != TYPE_LENGTH (value_type (v)))
8801 error (_("Unable to read siginfo"));
8802 }
8803
8804 /* This function implements the lval_computed support for writing a
8805 $_siginfo value. */
8806
8807 static void
8808 siginfo_value_write (struct value *v, struct value *fromval)
8809 {
8810 LONGEST transferred;
8811
8812 /* If we can access registers, so can we access $_siginfo. Likewise
8813 vice versa. */
8814 validate_registers_access ();
8815
8816 transferred = target_write (&current_target,
8817 TARGET_OBJECT_SIGNAL_INFO,
8818 NULL,
8819 value_contents_all_raw (fromval),
8820 value_offset (v),
8821 TYPE_LENGTH (value_type (fromval)));
8822
8823 if (transferred != TYPE_LENGTH (value_type (fromval)))
8824 error (_("Unable to write siginfo"));
8825 }
8826
8827 static const struct lval_funcs siginfo_value_funcs =
8828 {
8829 siginfo_value_read,
8830 siginfo_value_write
8831 };
8832
8833 /* Return a new value with the correct type for the siginfo object of
8834 the current thread using architecture GDBARCH. Return a void value
8835 if there's no object available. */
8836
8837 static struct value *
8838 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8839 void *ignore)
8840 {
8841 if (target_has_stack
8842 && !ptid_equal (inferior_ptid, null_ptid)
8843 && gdbarch_get_siginfo_type_p (gdbarch))
8844 {
8845 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8846
8847 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8848 }
8849
8850 return allocate_value (builtin_type (gdbarch)->builtin_void);
8851 }
8852
8853 \f
8854 /* infcall_suspend_state contains state about the program itself like its
8855 registers and any signal it received when it last stopped.
8856 This state must be restored regardless of how the inferior function call
8857 ends (either successfully, or after it hits a breakpoint or signal)
8858 if the program is to properly continue where it left off. */
8859
8860 struct infcall_suspend_state
8861 {
8862 struct thread_suspend_state thread_suspend;
8863
8864 /* Other fields: */
8865 CORE_ADDR stop_pc;
8866 struct regcache *registers;
8867
8868 /* Format of SIGINFO_DATA or NULL if it is not present. */
8869 struct gdbarch *siginfo_gdbarch;
8870
8871 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8872 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8873 content would be invalid. */
8874 gdb_byte *siginfo_data;
8875 };
8876
8877 struct infcall_suspend_state *
8878 save_infcall_suspend_state (void)
8879 {
8880 struct infcall_suspend_state *inf_state;
8881 struct thread_info *tp = inferior_thread ();
8882 struct regcache *regcache = get_current_regcache ();
8883 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8884 gdb_byte *siginfo_data = NULL;
8885
8886 if (gdbarch_get_siginfo_type_p (gdbarch))
8887 {
8888 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8889 size_t len = TYPE_LENGTH (type);
8890 struct cleanup *back_to;
8891
8892 siginfo_data = (gdb_byte *) xmalloc (len);
8893 back_to = make_cleanup (xfree, siginfo_data);
8894
8895 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8896 siginfo_data, 0, len) == len)
8897 discard_cleanups (back_to);
8898 else
8899 {
8900 /* Errors ignored. */
8901 do_cleanups (back_to);
8902 siginfo_data = NULL;
8903 }
8904 }
8905
8906 inf_state = XCNEW (struct infcall_suspend_state);
8907
8908 if (siginfo_data)
8909 {
8910 inf_state->siginfo_gdbarch = gdbarch;
8911 inf_state->siginfo_data = siginfo_data;
8912 }
8913
8914 inf_state->thread_suspend = tp->suspend;
8915
8916 /* run_inferior_call will not use the signal due to its `proceed' call with
8917 GDB_SIGNAL_0 anyway. */
8918 tp->suspend.stop_signal = GDB_SIGNAL_0;
8919
8920 inf_state->stop_pc = stop_pc;
8921
8922 inf_state->registers = regcache_dup (regcache);
8923
8924 return inf_state;
8925 }
8926
8927 /* Restore inferior session state to INF_STATE. */
8928
8929 void
8930 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8931 {
8932 struct thread_info *tp = inferior_thread ();
8933 struct regcache *regcache = get_current_regcache ();
8934 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8935
8936 tp->suspend = inf_state->thread_suspend;
8937
8938 stop_pc = inf_state->stop_pc;
8939
8940 if (inf_state->siginfo_gdbarch == gdbarch)
8941 {
8942 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8943
8944 /* Errors ignored. */
8945 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8946 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8947 }
8948
8949 /* The inferior can be gone if the user types "print exit(0)"
8950 (and perhaps other times). */
8951 if (target_has_execution)
8952 /* NB: The register write goes through to the target. */
8953 regcache_cpy (regcache, inf_state->registers);
8954
8955 discard_infcall_suspend_state (inf_state);
8956 }
8957
8958 static void
8959 do_restore_infcall_suspend_state_cleanup (void *state)
8960 {
8961 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8962 }
8963
8964 struct cleanup *
8965 make_cleanup_restore_infcall_suspend_state
8966 (struct infcall_suspend_state *inf_state)
8967 {
8968 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8969 }
8970
8971 void
8972 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8973 {
8974 regcache_xfree (inf_state->registers);
8975 xfree (inf_state->siginfo_data);
8976 xfree (inf_state);
8977 }
8978
8979 struct regcache *
8980 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8981 {
8982 return inf_state->registers;
8983 }
8984
8985 /* infcall_control_state contains state regarding gdb's control of the
8986 inferior itself like stepping control. It also contains session state like
8987 the user's currently selected frame. */
8988
8989 struct infcall_control_state
8990 {
8991 struct thread_control_state thread_control;
8992 struct inferior_control_state inferior_control;
8993
8994 /* Other fields: */
8995 enum stop_stack_kind stop_stack_dummy;
8996 int stopped_by_random_signal;
8997
8998 /* ID if the selected frame when the inferior function call was made. */
8999 struct frame_id selected_frame_id;
9000 };
9001
9002 /* Save all of the information associated with the inferior<==>gdb
9003 connection. */
9004
9005 struct infcall_control_state *
9006 save_infcall_control_state (void)
9007 {
9008 struct infcall_control_state *inf_status =
9009 XNEW (struct infcall_control_state);
9010 struct thread_info *tp = inferior_thread ();
9011 struct inferior *inf = current_inferior ();
9012
9013 inf_status->thread_control = tp->control;
9014 inf_status->inferior_control = inf->control;
9015
9016 tp->control.step_resume_breakpoint = NULL;
9017 tp->control.exception_resume_breakpoint = NULL;
9018
9019 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9020 chain. If caller's caller is walking the chain, they'll be happier if we
9021 hand them back the original chain when restore_infcall_control_state is
9022 called. */
9023 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9024
9025 /* Other fields: */
9026 inf_status->stop_stack_dummy = stop_stack_dummy;
9027 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9028
9029 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9030
9031 return inf_status;
9032 }
9033
9034 static int
9035 restore_selected_frame (void *args)
9036 {
9037 struct frame_id *fid = (struct frame_id *) args;
9038 struct frame_info *frame;
9039
9040 frame = frame_find_by_id (*fid);
9041
9042 /* If inf_status->selected_frame_id is NULL, there was no previously
9043 selected frame. */
9044 if (frame == NULL)
9045 {
9046 warning (_("Unable to restore previously selected frame."));
9047 return 0;
9048 }
9049
9050 select_frame (frame);
9051
9052 return (1);
9053 }
9054
9055 /* Restore inferior session state to INF_STATUS. */
9056
9057 void
9058 restore_infcall_control_state (struct infcall_control_state *inf_status)
9059 {
9060 struct thread_info *tp = inferior_thread ();
9061 struct inferior *inf = current_inferior ();
9062
9063 if (tp->control.step_resume_breakpoint)
9064 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9065
9066 if (tp->control.exception_resume_breakpoint)
9067 tp->control.exception_resume_breakpoint->disposition
9068 = disp_del_at_next_stop;
9069
9070 /* Handle the bpstat_copy of the chain. */
9071 bpstat_clear (&tp->control.stop_bpstat);
9072
9073 tp->control = inf_status->thread_control;
9074 inf->control = inf_status->inferior_control;
9075
9076 /* Other fields: */
9077 stop_stack_dummy = inf_status->stop_stack_dummy;
9078 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9079
9080 if (target_has_stack)
9081 {
9082 /* The point of catch_errors is that if the stack is clobbered,
9083 walking the stack might encounter a garbage pointer and
9084 error() trying to dereference it. */
9085 if (catch_errors
9086 (restore_selected_frame, &inf_status->selected_frame_id,
9087 "Unable to restore previously selected frame:\n",
9088 RETURN_MASK_ERROR) == 0)
9089 /* Error in restoring the selected frame. Select the innermost
9090 frame. */
9091 select_frame (get_current_frame ());
9092 }
9093
9094 xfree (inf_status);
9095 }
9096
9097 static void
9098 do_restore_infcall_control_state_cleanup (void *sts)
9099 {
9100 restore_infcall_control_state ((struct infcall_control_state *) sts);
9101 }
9102
9103 struct cleanup *
9104 make_cleanup_restore_infcall_control_state
9105 (struct infcall_control_state *inf_status)
9106 {
9107 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9108 }
9109
9110 void
9111 discard_infcall_control_state (struct infcall_control_state *inf_status)
9112 {
9113 if (inf_status->thread_control.step_resume_breakpoint)
9114 inf_status->thread_control.step_resume_breakpoint->disposition
9115 = disp_del_at_next_stop;
9116
9117 if (inf_status->thread_control.exception_resume_breakpoint)
9118 inf_status->thread_control.exception_resume_breakpoint->disposition
9119 = disp_del_at_next_stop;
9120
9121 /* See save_infcall_control_state for info on stop_bpstat. */
9122 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9123
9124 xfree (inf_status);
9125 }
9126 \f
9127 /* restore_inferior_ptid() will be used by the cleanup machinery
9128 to restore the inferior_ptid value saved in a call to
9129 save_inferior_ptid(). */
9130
9131 static void
9132 restore_inferior_ptid (void *arg)
9133 {
9134 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
9135
9136 inferior_ptid = *saved_ptid_ptr;
9137 xfree (arg);
9138 }
9139
9140 /* Save the value of inferior_ptid so that it may be restored by a
9141 later call to do_cleanups(). Returns the struct cleanup pointer
9142 needed for later doing the cleanup. */
9143
9144 struct cleanup *
9145 save_inferior_ptid (void)
9146 {
9147 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
9148
9149 *saved_ptid_ptr = inferior_ptid;
9150 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9151 }
9152
9153 /* See infrun.h. */
9154
9155 void
9156 clear_exit_convenience_vars (void)
9157 {
9158 clear_internalvar (lookup_internalvar ("_exitsignal"));
9159 clear_internalvar (lookup_internalvar ("_exitcode"));
9160 }
9161 \f
9162
9163 /* User interface for reverse debugging:
9164 Set exec-direction / show exec-direction commands
9165 (returns error unless target implements to_set_exec_direction method). */
9166
9167 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9168 static const char exec_forward[] = "forward";
9169 static const char exec_reverse[] = "reverse";
9170 static const char *exec_direction = exec_forward;
9171 static const char *const exec_direction_names[] = {
9172 exec_forward,
9173 exec_reverse,
9174 NULL
9175 };
9176
9177 static void
9178 set_exec_direction_func (char *args, int from_tty,
9179 struct cmd_list_element *cmd)
9180 {
9181 if (target_can_execute_reverse)
9182 {
9183 if (!strcmp (exec_direction, exec_forward))
9184 execution_direction = EXEC_FORWARD;
9185 else if (!strcmp (exec_direction, exec_reverse))
9186 execution_direction = EXEC_REVERSE;
9187 }
9188 else
9189 {
9190 exec_direction = exec_forward;
9191 error (_("Target does not support this operation."));
9192 }
9193 }
9194
9195 static void
9196 show_exec_direction_func (struct ui_file *out, int from_tty,
9197 struct cmd_list_element *cmd, const char *value)
9198 {
9199 switch (execution_direction) {
9200 case EXEC_FORWARD:
9201 fprintf_filtered (out, _("Forward.\n"));
9202 break;
9203 case EXEC_REVERSE:
9204 fprintf_filtered (out, _("Reverse.\n"));
9205 break;
9206 default:
9207 internal_error (__FILE__, __LINE__,
9208 _("bogus execution_direction value: %d"),
9209 (int) execution_direction);
9210 }
9211 }
9212
9213 static void
9214 show_schedule_multiple (struct ui_file *file, int from_tty,
9215 struct cmd_list_element *c, const char *value)
9216 {
9217 fprintf_filtered (file, _("Resuming the execution of threads "
9218 "of all processes is %s.\n"), value);
9219 }
9220
9221 /* Implementation of `siginfo' variable. */
9222
9223 static const struct internalvar_funcs siginfo_funcs =
9224 {
9225 siginfo_make_value,
9226 NULL,
9227 NULL
9228 };
9229
9230 /* Callback for infrun's target events source. This is marked when a
9231 thread has a pending status to process. */
9232
9233 static void
9234 infrun_async_inferior_event_handler (gdb_client_data data)
9235 {
9236 inferior_event_handler (INF_REG_EVENT, NULL);
9237 }
9238
9239 void
9240 _initialize_infrun (void)
9241 {
9242 int i;
9243 int numsigs;
9244 struct cmd_list_element *c;
9245
9246 /* Register extra event sources in the event loop. */
9247 infrun_async_inferior_event_token
9248 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9249
9250 add_info ("signals", signals_info, _("\
9251 What debugger does when program gets various signals.\n\
9252 Specify a signal as argument to print info on that signal only."));
9253 add_info_alias ("handle", "signals", 0);
9254
9255 c = add_com ("handle", class_run, handle_command, _("\
9256 Specify how to handle signals.\n\
9257 Usage: handle SIGNAL [ACTIONS]\n\
9258 Args are signals and actions to apply to those signals.\n\
9259 If no actions are specified, the current settings for the specified signals\n\
9260 will be displayed instead.\n\
9261 \n\
9262 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9263 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9264 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9265 The special arg \"all\" is recognized to mean all signals except those\n\
9266 used by the debugger, typically SIGTRAP and SIGINT.\n\
9267 \n\
9268 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9269 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9270 Stop means reenter debugger if this signal happens (implies print).\n\
9271 Print means print a message if this signal happens.\n\
9272 Pass means let program see this signal; otherwise program doesn't know.\n\
9273 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9274 Pass and Stop may be combined.\n\
9275 \n\
9276 Multiple signals may be specified. Signal numbers and signal names\n\
9277 may be interspersed with actions, with the actions being performed for\n\
9278 all signals cumulatively specified."));
9279 set_cmd_completer (c, handle_completer);
9280
9281 if (!dbx_commands)
9282 stop_command = add_cmd ("stop", class_obscure,
9283 not_just_help_class_command, _("\
9284 There is no `stop' command, but you can set a hook on `stop'.\n\
9285 This allows you to set a list of commands to be run each time execution\n\
9286 of the program stops."), &cmdlist);
9287
9288 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9289 Set inferior debugging."), _("\
9290 Show inferior debugging."), _("\
9291 When non-zero, inferior specific debugging is enabled."),
9292 NULL,
9293 show_debug_infrun,
9294 &setdebuglist, &showdebuglist);
9295
9296 add_setshow_boolean_cmd ("displaced", class_maintenance,
9297 &debug_displaced, _("\
9298 Set displaced stepping debugging."), _("\
9299 Show displaced stepping debugging."), _("\
9300 When non-zero, displaced stepping specific debugging is enabled."),
9301 NULL,
9302 show_debug_displaced,
9303 &setdebuglist, &showdebuglist);
9304
9305 add_setshow_boolean_cmd ("non-stop", no_class,
9306 &non_stop_1, _("\
9307 Set whether gdb controls the inferior in non-stop mode."), _("\
9308 Show whether gdb controls the inferior in non-stop mode."), _("\
9309 When debugging a multi-threaded program and this setting is\n\
9310 off (the default, also called all-stop mode), when one thread stops\n\
9311 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9312 all other threads in the program while you interact with the thread of\n\
9313 interest. When you continue or step a thread, you can allow the other\n\
9314 threads to run, or have them remain stopped, but while you inspect any\n\
9315 thread's state, all threads stop.\n\
9316 \n\
9317 In non-stop mode, when one thread stops, other threads can continue\n\
9318 to run freely. You'll be able to step each thread independently,\n\
9319 leave it stopped or free to run as needed."),
9320 set_non_stop,
9321 show_non_stop,
9322 &setlist,
9323 &showlist);
9324
9325 numsigs = (int) GDB_SIGNAL_LAST;
9326 signal_stop = XNEWVEC (unsigned char, numsigs);
9327 signal_print = XNEWVEC (unsigned char, numsigs);
9328 signal_program = XNEWVEC (unsigned char, numsigs);
9329 signal_catch = XNEWVEC (unsigned char, numsigs);
9330 signal_pass = XNEWVEC (unsigned char, numsigs);
9331 for (i = 0; i < numsigs; i++)
9332 {
9333 signal_stop[i] = 1;
9334 signal_print[i] = 1;
9335 signal_program[i] = 1;
9336 signal_catch[i] = 0;
9337 }
9338
9339 /* Signals caused by debugger's own actions should not be given to
9340 the program afterwards.
9341
9342 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9343 explicitly specifies that it should be delivered to the target
9344 program. Typically, that would occur when a user is debugging a
9345 target monitor on a simulator: the target monitor sets a
9346 breakpoint; the simulator encounters this breakpoint and halts
9347 the simulation handing control to GDB; GDB, noting that the stop
9348 address doesn't map to any known breakpoint, returns control back
9349 to the simulator; the simulator then delivers the hardware
9350 equivalent of a GDB_SIGNAL_TRAP to the program being
9351 debugged. */
9352 signal_program[GDB_SIGNAL_TRAP] = 0;
9353 signal_program[GDB_SIGNAL_INT] = 0;
9354
9355 /* Signals that are not errors should not normally enter the debugger. */
9356 signal_stop[GDB_SIGNAL_ALRM] = 0;
9357 signal_print[GDB_SIGNAL_ALRM] = 0;
9358 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9359 signal_print[GDB_SIGNAL_VTALRM] = 0;
9360 signal_stop[GDB_SIGNAL_PROF] = 0;
9361 signal_print[GDB_SIGNAL_PROF] = 0;
9362 signal_stop[GDB_SIGNAL_CHLD] = 0;
9363 signal_print[GDB_SIGNAL_CHLD] = 0;
9364 signal_stop[GDB_SIGNAL_IO] = 0;
9365 signal_print[GDB_SIGNAL_IO] = 0;
9366 signal_stop[GDB_SIGNAL_POLL] = 0;
9367 signal_print[GDB_SIGNAL_POLL] = 0;
9368 signal_stop[GDB_SIGNAL_URG] = 0;
9369 signal_print[GDB_SIGNAL_URG] = 0;
9370 signal_stop[GDB_SIGNAL_WINCH] = 0;
9371 signal_print[GDB_SIGNAL_WINCH] = 0;
9372 signal_stop[GDB_SIGNAL_PRIO] = 0;
9373 signal_print[GDB_SIGNAL_PRIO] = 0;
9374
9375 /* These signals are used internally by user-level thread
9376 implementations. (See signal(5) on Solaris.) Like the above
9377 signals, a healthy program receives and handles them as part of
9378 its normal operation. */
9379 signal_stop[GDB_SIGNAL_LWP] = 0;
9380 signal_print[GDB_SIGNAL_LWP] = 0;
9381 signal_stop[GDB_SIGNAL_WAITING] = 0;
9382 signal_print[GDB_SIGNAL_WAITING] = 0;
9383 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9384 signal_print[GDB_SIGNAL_CANCEL] = 0;
9385 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9386 signal_print[GDB_SIGNAL_LIBRT] = 0;
9387
9388 /* Update cached state. */
9389 signal_cache_update (-1);
9390
9391 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9392 &stop_on_solib_events, _("\
9393 Set stopping for shared library events."), _("\
9394 Show stopping for shared library events."), _("\
9395 If nonzero, gdb will give control to the user when the dynamic linker\n\
9396 notifies gdb of shared library events. The most common event of interest\n\
9397 to the user would be loading/unloading of a new library."),
9398 set_stop_on_solib_events,
9399 show_stop_on_solib_events,
9400 &setlist, &showlist);
9401
9402 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9403 follow_fork_mode_kind_names,
9404 &follow_fork_mode_string, _("\
9405 Set debugger response to a program call of fork or vfork."), _("\
9406 Show debugger response to a program call of fork or vfork."), _("\
9407 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9408 parent - the original process is debugged after a fork\n\
9409 child - the new process is debugged after a fork\n\
9410 The unfollowed process will continue to run.\n\
9411 By default, the debugger will follow the parent process."),
9412 NULL,
9413 show_follow_fork_mode_string,
9414 &setlist, &showlist);
9415
9416 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9417 follow_exec_mode_names,
9418 &follow_exec_mode_string, _("\
9419 Set debugger response to a program call of exec."), _("\
9420 Show debugger response to a program call of exec."), _("\
9421 An exec call replaces the program image of a process.\n\
9422 \n\
9423 follow-exec-mode can be:\n\
9424 \n\
9425 new - the debugger creates a new inferior and rebinds the process\n\
9426 to this new inferior. The program the process was running before\n\
9427 the exec call can be restarted afterwards by restarting the original\n\
9428 inferior.\n\
9429 \n\
9430 same - the debugger keeps the process bound to the same inferior.\n\
9431 The new executable image replaces the previous executable loaded in\n\
9432 the inferior. Restarting the inferior after the exec call restarts\n\
9433 the executable the process was running after the exec call.\n\
9434 \n\
9435 By default, the debugger will use the same inferior."),
9436 NULL,
9437 show_follow_exec_mode_string,
9438 &setlist, &showlist);
9439
9440 add_setshow_enum_cmd ("scheduler-locking", class_run,
9441 scheduler_enums, &scheduler_mode, _("\
9442 Set mode for locking scheduler during execution."), _("\
9443 Show mode for locking scheduler during execution."), _("\
9444 off == no locking (threads may preempt at any time)\n\
9445 on == full locking (no thread except the current thread may run)\n\
9446 This applies to both normal execution and replay mode.\n\
9447 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9448 In this mode, other threads may run during other commands.\n\
9449 This applies to both normal execution and replay mode.\n\
9450 replay == scheduler locked in replay mode and unlocked during normal execution."),
9451 set_schedlock_func, /* traps on target vector */
9452 show_scheduler_mode,
9453 &setlist, &showlist);
9454
9455 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9456 Set mode for resuming threads of all processes."), _("\
9457 Show mode for resuming threads of all processes."), _("\
9458 When on, execution commands (such as 'continue' or 'next') resume all\n\
9459 threads of all processes. When off (which is the default), execution\n\
9460 commands only resume the threads of the current process. The set of\n\
9461 threads that are resumed is further refined by the scheduler-locking\n\
9462 mode (see help set scheduler-locking)."),
9463 NULL,
9464 show_schedule_multiple,
9465 &setlist, &showlist);
9466
9467 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9468 Set mode of the step operation."), _("\
9469 Show mode of the step operation."), _("\
9470 When set, doing a step over a function without debug line information\n\
9471 will stop at the first instruction of that function. Otherwise, the\n\
9472 function is skipped and the step command stops at a different source line."),
9473 NULL,
9474 show_step_stop_if_no_debug,
9475 &setlist, &showlist);
9476
9477 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9478 &can_use_displaced_stepping, _("\
9479 Set debugger's willingness to use displaced stepping."), _("\
9480 Show debugger's willingness to use displaced stepping."), _("\
9481 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9482 supported by the target architecture. If off, gdb will not use displaced\n\
9483 stepping to step over breakpoints, even if such is supported by the target\n\
9484 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9485 if the target architecture supports it and non-stop mode is active, but will not\n\
9486 use it in all-stop mode (see help set non-stop)."),
9487 NULL,
9488 show_can_use_displaced_stepping,
9489 &setlist, &showlist);
9490
9491 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9492 &exec_direction, _("Set direction of execution.\n\
9493 Options are 'forward' or 'reverse'."),
9494 _("Show direction of execution (forward/reverse)."),
9495 _("Tells gdb whether to execute forward or backward."),
9496 set_exec_direction_func, show_exec_direction_func,
9497 &setlist, &showlist);
9498
9499 /* Set/show detach-on-fork: user-settable mode. */
9500
9501 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9502 Set whether gdb will detach the child of a fork."), _("\
9503 Show whether gdb will detach the child of a fork."), _("\
9504 Tells gdb whether to detach the child of a fork."),
9505 NULL, NULL, &setlist, &showlist);
9506
9507 /* Set/show disable address space randomization mode. */
9508
9509 add_setshow_boolean_cmd ("disable-randomization", class_support,
9510 &disable_randomization, _("\
9511 Set disabling of debuggee's virtual address space randomization."), _("\
9512 Show disabling of debuggee's virtual address space randomization."), _("\
9513 When this mode is on (which is the default), randomization of the virtual\n\
9514 address space is disabled. Standalone programs run with the randomization\n\
9515 enabled by default on some platforms."),
9516 &set_disable_randomization,
9517 &show_disable_randomization,
9518 &setlist, &showlist);
9519
9520 /* ptid initializations */
9521 inferior_ptid = null_ptid;
9522 target_last_wait_ptid = minus_one_ptid;
9523
9524 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9525 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9526 observer_attach_thread_exit (infrun_thread_thread_exit);
9527 observer_attach_inferior_exit (infrun_inferior_exit);
9528
9529 /* Explicitly create without lookup, since that tries to create a
9530 value with a void typed value, and when we get here, gdbarch
9531 isn't initialized yet. At this point, we're quite sure there
9532 isn't another convenience variable of the same name. */
9533 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9534
9535 add_setshow_boolean_cmd ("observer", no_class,
9536 &observer_mode_1, _("\
9537 Set whether gdb controls the inferior in observer mode."), _("\
9538 Show whether gdb controls the inferior in observer mode."), _("\
9539 In observer mode, GDB can get data from the inferior, but not\n\
9540 affect its execution. Registers and memory may not be changed,\n\
9541 breakpoints may not be set, and the program cannot be interrupted\n\
9542 or signalled."),
9543 set_observer_mode,
9544 show_observer_mode,
9545 &setlist,
9546 &showlist);
9547 }