gdb: fix comment of get_displaced_stepping_state
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "target-connection.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34 #include "symfile.h"
35 #include "top.h"
36 #include "inf-loop.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "language.h"
41 #include "solib.h"
42 #include "main.h"
43 #include "block.h"
44 #include "mi/mi-common.h"
45 #include "event-top.h"
46 #include "record.h"
47 #include "record-full.h"
48 #include "inline-frame.h"
49 #include "jit.h"
50 #include "tracepoint.h"
51 #include "skip.h"
52 #include "probe.h"
53 #include "objfiles.h"
54 #include "completer.h"
55 #include "target-descriptions.h"
56 #include "target-dcache.h"
57 #include "terminal.h"
58 #include "solist.h"
59 #include "gdbsupport/event-loop.h"
60 #include "thread-fsm.h"
61 #include "gdbsupport/enum-flags.h"
62 #include "progspace-and-thread.h"
63 #include "gdbsupport/gdb_optional.h"
64 #include "arch-utils.h"
65 #include "gdbsupport/scope-exit.h"
66 #include "gdbsupport/forward-scope-exit.h"
67 #include "gdbsupport/gdb_select.h"
68 #include <unordered_map>
69 #include "async-event.h"
70 #include "gdbsupport/selftest.h"
71 #include "scoped-mock-context.h"
72 #include "test-target.h"
73 #include "gdbsupport/common-debug.h"
74
75 /* Prototypes for local functions */
76
77 static void sig_print_info (enum gdb_signal);
78
79 static void sig_print_header (void);
80
81 static void follow_inferior_reset_breakpoints (void);
82
83 static int currently_stepping (struct thread_info *tp);
84
85 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
86
87 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
88
89 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
90
91 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
92
93 static void resume (gdb_signal sig);
94
95 static void wait_for_inferior (inferior *inf);
96
97 /* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99 static struct async_event_handler *infrun_async_inferior_event_token;
100
101 /* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103 static int infrun_is_async = -1;
104
105 /* See infrun.h. */
106
107 void
108 infrun_debug_printf_1 (const char *func_name, const char *fmt, ...)
109 {
110 va_list ap;
111 va_start (ap, fmt);
112 debug_prefixed_vprintf ("infrun", func_name, fmt, ap);
113 va_end (ap);
114 }
115
116 /* See infrun.h. */
117
118 void
119 infrun_async (int enable)
120 {
121 if (infrun_is_async != enable)
122 {
123 infrun_is_async = enable;
124
125 infrun_debug_printf ("enable=%d", enable);
126
127 if (enable)
128 mark_async_event_handler (infrun_async_inferior_event_token);
129 else
130 clear_async_event_handler (infrun_async_inferior_event_token);
131 }
132 }
133
134 /* See infrun.h. */
135
136 void
137 mark_infrun_async_event_handler (void)
138 {
139 mark_async_event_handler (infrun_async_inferior_event_token);
140 }
141
142 /* When set, stop the 'step' command if we enter a function which has
143 no line number information. The normal behavior is that we step
144 over such function. */
145 bool step_stop_if_no_debug = false;
146 static void
147 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
148 struct cmd_list_element *c, const char *value)
149 {
150 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
151 }
152
153 /* proceed and normal_stop use this to notify the user when the
154 inferior stopped in a different thread than it had been running
155 in. */
156
157 static ptid_t previous_inferior_ptid;
158
159 /* If set (default for legacy reasons), when following a fork, GDB
160 will detach from one of the fork branches, child or parent.
161 Exactly which branch is detached depends on 'set follow-fork-mode'
162 setting. */
163
164 static bool detach_fork = true;
165
166 bool debug_displaced = false;
167 static void
168 show_debug_displaced (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
172 }
173
174 unsigned int debug_infrun = 0;
175 static void
176 show_debug_infrun (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
180 }
181
182
183 /* Support for disabling address space randomization. */
184
185 bool disable_randomization = true;
186
187 static void
188 show_disable_randomization (struct ui_file *file, int from_tty,
189 struct cmd_list_element *c, const char *value)
190 {
191 if (target_supports_disable_randomization ())
192 fprintf_filtered (file,
193 _("Disabling randomization of debuggee's "
194 "virtual address space is %s.\n"),
195 value);
196 else
197 fputs_filtered (_("Disabling randomization of debuggee's "
198 "virtual address space is unsupported on\n"
199 "this platform.\n"), file);
200 }
201
202 static void
203 set_disable_randomization (const char *args, int from_tty,
204 struct cmd_list_element *c)
205 {
206 if (!target_supports_disable_randomization ())
207 error (_("Disabling randomization of debuggee's "
208 "virtual address space is unsupported on\n"
209 "this platform."));
210 }
211
212 /* User interface for non-stop mode. */
213
214 bool non_stop = false;
215 static bool non_stop_1 = false;
216
217 static void
218 set_non_stop (const char *args, int from_tty,
219 struct cmd_list_element *c)
220 {
221 if (target_has_execution ())
222 {
223 non_stop_1 = non_stop;
224 error (_("Cannot change this setting while the inferior is running."));
225 }
226
227 non_stop = non_stop_1;
228 }
229
230 static void
231 show_non_stop (struct ui_file *file, int from_tty,
232 struct cmd_list_element *c, const char *value)
233 {
234 fprintf_filtered (file,
235 _("Controlling the inferior in non-stop mode is %s.\n"),
236 value);
237 }
238
239 /* "Observer mode" is somewhat like a more extreme version of
240 non-stop, in which all GDB operations that might affect the
241 target's execution have been disabled. */
242
243 bool observer_mode = false;
244 static bool observer_mode_1 = false;
245
246 static void
247 set_observer_mode (const char *args, int from_tty,
248 struct cmd_list_element *c)
249 {
250 if (target_has_execution ())
251 {
252 observer_mode_1 = observer_mode;
253 error (_("Cannot change this setting while the inferior is running."));
254 }
255
256 observer_mode = observer_mode_1;
257
258 may_write_registers = !observer_mode;
259 may_write_memory = !observer_mode;
260 may_insert_breakpoints = !observer_mode;
261 may_insert_tracepoints = !observer_mode;
262 /* We can insert fast tracepoints in or out of observer mode,
263 but enable them if we're going into this mode. */
264 if (observer_mode)
265 may_insert_fast_tracepoints = true;
266 may_stop = !observer_mode;
267 update_target_permissions ();
268
269 /* Going *into* observer mode we must force non-stop, then
270 going out we leave it that way. */
271 if (observer_mode)
272 {
273 pagination_enabled = 0;
274 non_stop = non_stop_1 = true;
275 }
276
277 if (from_tty)
278 printf_filtered (_("Observer mode is now %s.\n"),
279 (observer_mode ? "on" : "off"));
280 }
281
282 static void
283 show_observer_mode (struct ui_file *file, int from_tty,
284 struct cmd_list_element *c, const char *value)
285 {
286 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
287 }
288
289 /* This updates the value of observer mode based on changes in
290 permissions. Note that we are deliberately ignoring the values of
291 may-write-registers and may-write-memory, since the user may have
292 reason to enable these during a session, for instance to turn on a
293 debugging-related global. */
294
295 void
296 update_observer_mode (void)
297 {
298 bool newval = (!may_insert_breakpoints
299 && !may_insert_tracepoints
300 && may_insert_fast_tracepoints
301 && !may_stop
302 && non_stop);
303
304 /* Let the user know if things change. */
305 if (newval != observer_mode)
306 printf_filtered (_("Observer mode is now %s.\n"),
307 (newval ? "on" : "off"));
308
309 observer_mode = observer_mode_1 = newval;
310 }
311
312 /* Tables of how to react to signals; the user sets them. */
313
314 static unsigned char signal_stop[GDB_SIGNAL_LAST];
315 static unsigned char signal_print[GDB_SIGNAL_LAST];
316 static unsigned char signal_program[GDB_SIGNAL_LAST];
317
318 /* Table of signals that are registered with "catch signal". A
319 non-zero entry indicates that the signal is caught by some "catch
320 signal" command. */
321 static unsigned char signal_catch[GDB_SIGNAL_LAST];
322
323 /* Table of signals that the target may silently handle.
324 This is automatically determined from the flags above,
325 and simply cached here. */
326 static unsigned char signal_pass[GDB_SIGNAL_LAST];
327
328 #define SET_SIGS(nsigs,sigs,flags) \
329 do { \
330 int signum = (nsigs); \
331 while (signum-- > 0) \
332 if ((sigs)[signum]) \
333 (flags)[signum] = 1; \
334 } while (0)
335
336 #define UNSET_SIGS(nsigs,sigs,flags) \
337 do { \
338 int signum = (nsigs); \
339 while (signum-- > 0) \
340 if ((sigs)[signum]) \
341 (flags)[signum] = 0; \
342 } while (0)
343
344 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
345 this function is to avoid exporting `signal_program'. */
346
347 void
348 update_signals_program_target (void)
349 {
350 target_program_signals (signal_program);
351 }
352
353 /* Value to pass to target_resume() to cause all threads to resume. */
354
355 #define RESUME_ALL minus_one_ptid
356
357 /* Command list pointer for the "stop" placeholder. */
358
359 static struct cmd_list_element *stop_command;
360
361 /* Nonzero if we want to give control to the user when we're notified
362 of shared library events by the dynamic linker. */
363 int stop_on_solib_events;
364
365 /* Enable or disable optional shared library event breakpoints
366 as appropriate when the above flag is changed. */
367
368 static void
369 set_stop_on_solib_events (const char *args,
370 int from_tty, struct cmd_list_element *c)
371 {
372 update_solib_breakpoints ();
373 }
374
375 static void
376 show_stop_on_solib_events (struct ui_file *file, int from_tty,
377 struct cmd_list_element *c, const char *value)
378 {
379 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
380 value);
381 }
382
383 /* Nonzero after stop if current stack frame should be printed. */
384
385 static int stop_print_frame;
386
387 /* This is a cached copy of the target/ptid/waitstatus of the last
388 event returned by target_wait()/deprecated_target_wait_hook().
389 This information is returned by get_last_target_status(). */
390 static process_stratum_target *target_last_proc_target;
391 static ptid_t target_last_wait_ptid;
392 static struct target_waitstatus target_last_waitstatus;
393
394 void init_thread_stepping_state (struct thread_info *tss);
395
396 static const char follow_fork_mode_child[] = "child";
397 static const char follow_fork_mode_parent[] = "parent";
398
399 static const char *const follow_fork_mode_kind_names[] = {
400 follow_fork_mode_child,
401 follow_fork_mode_parent,
402 NULL
403 };
404
405 static const char *follow_fork_mode_string = follow_fork_mode_parent;
406 static void
407 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
408 struct cmd_list_element *c, const char *value)
409 {
410 fprintf_filtered (file,
411 _("Debugger response to a program "
412 "call of fork or vfork is \"%s\".\n"),
413 value);
414 }
415 \f
416
417 /* Handle changes to the inferior list based on the type of fork,
418 which process is being followed, and whether the other process
419 should be detached. On entry inferior_ptid must be the ptid of
420 the fork parent. At return inferior_ptid is the ptid of the
421 followed inferior. */
422
423 static bool
424 follow_fork_inferior (bool follow_child, bool detach_fork)
425 {
426 int has_vforked;
427 ptid_t parent_ptid, child_ptid;
428
429 has_vforked = (inferior_thread ()->pending_follow.kind
430 == TARGET_WAITKIND_VFORKED);
431 parent_ptid = inferior_ptid;
432 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
433
434 if (has_vforked
435 && !non_stop /* Non-stop always resumes both branches. */
436 && current_ui->prompt_state == PROMPT_BLOCKED
437 && !(follow_child || detach_fork || sched_multi))
438 {
439 /* The parent stays blocked inside the vfork syscall until the
440 child execs or exits. If we don't let the child run, then
441 the parent stays blocked. If we're telling the parent to run
442 in the foreground, the user will not be able to ctrl-c to get
443 back the terminal, effectively hanging the debug session. */
444 fprintf_filtered (gdb_stderr, _("\
445 Can not resume the parent process over vfork in the foreground while\n\
446 holding the child stopped. Try \"set detach-on-fork\" or \
447 \"set schedule-multiple\".\n"));
448 return 1;
449 }
450
451 if (!follow_child)
452 {
453 /* Detach new forked process? */
454 if (detach_fork)
455 {
456 /* Before detaching from the child, remove all breakpoints
457 from it. If we forked, then this has already been taken
458 care of by infrun.c. If we vforked however, any
459 breakpoint inserted in the parent is visible in the
460 child, even those added while stopped in a vfork
461 catchpoint. This will remove the breakpoints from the
462 parent also, but they'll be reinserted below. */
463 if (has_vforked)
464 {
465 /* Keep breakpoints list in sync. */
466 remove_breakpoints_inf (current_inferior ());
467 }
468
469 if (print_inferior_events)
470 {
471 /* Ensure that we have a process ptid. */
472 ptid_t process_ptid = ptid_t (child_ptid.pid ());
473
474 target_terminal::ours_for_output ();
475 fprintf_filtered (gdb_stdlog,
476 _("[Detaching after %s from child %s]\n"),
477 has_vforked ? "vfork" : "fork",
478 target_pid_to_str (process_ptid).c_str ());
479 }
480 }
481 else
482 {
483 struct inferior *parent_inf, *child_inf;
484
485 /* Add process to GDB's tables. */
486 child_inf = add_inferior (child_ptid.pid ());
487
488 parent_inf = current_inferior ();
489 child_inf->attach_flag = parent_inf->attach_flag;
490 copy_terminal_info (child_inf, parent_inf);
491 child_inf->gdbarch = parent_inf->gdbarch;
492 copy_inferior_target_desc_info (child_inf, parent_inf);
493
494 scoped_restore_current_pspace_and_thread restore_pspace_thread;
495
496 set_current_inferior (child_inf);
497 switch_to_no_thread ();
498 child_inf->symfile_flags = SYMFILE_NO_READ;
499 push_target (parent_inf->process_target ());
500 thread_info *child_thr
501 = add_thread_silent (child_inf->process_target (), child_ptid);
502
503 /* If this is a vfork child, then the address-space is
504 shared with the parent. */
505 if (has_vforked)
506 {
507 child_inf->pspace = parent_inf->pspace;
508 child_inf->aspace = parent_inf->aspace;
509
510 exec_on_vfork ();
511
512 /* The parent will be frozen until the child is done
513 with the shared region. Keep track of the
514 parent. */
515 child_inf->vfork_parent = parent_inf;
516 child_inf->pending_detach = 0;
517 parent_inf->vfork_child = child_inf;
518 parent_inf->pending_detach = 0;
519
520 /* Now that the inferiors and program spaces are all
521 wired up, we can switch to the child thread (which
522 switches inferior and program space too). */
523 switch_to_thread (child_thr);
524 }
525 else
526 {
527 child_inf->aspace = new_address_space ();
528 child_inf->pspace = new program_space (child_inf->aspace);
529 child_inf->removable = 1;
530 set_current_program_space (child_inf->pspace);
531 clone_program_space (child_inf->pspace, parent_inf->pspace);
532
533 /* solib_create_inferior_hook relies on the current
534 thread. */
535 switch_to_thread (child_thr);
536
537 /* Let the shared library layer (e.g., solib-svr4) learn
538 about this new process, relocate the cloned exec, pull
539 in shared libraries, and install the solib event
540 breakpoint. If a "cloned-VM" event was propagated
541 better throughout the core, this wouldn't be
542 required. */
543 solib_create_inferior_hook (0);
544 }
545 }
546
547 if (has_vforked)
548 {
549 struct inferior *parent_inf;
550
551 parent_inf = current_inferior ();
552
553 /* If we detached from the child, then we have to be careful
554 to not insert breakpoints in the parent until the child
555 is done with the shared memory region. However, if we're
556 staying attached to the child, then we can and should
557 insert breakpoints, so that we can debug it. A
558 subsequent child exec or exit is enough to know when does
559 the child stops using the parent's address space. */
560 parent_inf->waiting_for_vfork_done = detach_fork;
561 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
562 }
563 }
564 else
565 {
566 /* Follow the child. */
567 struct inferior *parent_inf, *child_inf;
568 struct program_space *parent_pspace;
569
570 if (print_inferior_events)
571 {
572 std::string parent_pid = target_pid_to_str (parent_ptid);
573 std::string child_pid = target_pid_to_str (child_ptid);
574
575 target_terminal::ours_for_output ();
576 fprintf_filtered (gdb_stdlog,
577 _("[Attaching after %s %s to child %s]\n"),
578 parent_pid.c_str (),
579 has_vforked ? "vfork" : "fork",
580 child_pid.c_str ());
581 }
582
583 /* Add the new inferior first, so that the target_detach below
584 doesn't unpush the target. */
585
586 child_inf = add_inferior (child_ptid.pid ());
587
588 parent_inf = current_inferior ();
589 child_inf->attach_flag = parent_inf->attach_flag;
590 copy_terminal_info (child_inf, parent_inf);
591 child_inf->gdbarch = parent_inf->gdbarch;
592 copy_inferior_target_desc_info (child_inf, parent_inf);
593
594 parent_pspace = parent_inf->pspace;
595
596 process_stratum_target *target = parent_inf->process_target ();
597
598 {
599 /* Hold a strong reference to the target while (maybe)
600 detaching the parent. Otherwise detaching could close the
601 target. */
602 auto target_ref = target_ops_ref::new_reference (target);
603
604 /* If we're vforking, we want to hold on to the parent until
605 the child exits or execs. At child exec or exit time we
606 can remove the old breakpoints from the parent and detach
607 or resume debugging it. Otherwise, detach the parent now;
608 we'll want to reuse it's program/address spaces, but we
609 can't set them to the child before removing breakpoints
610 from the parent, otherwise, the breakpoints module could
611 decide to remove breakpoints from the wrong process (since
612 they'd be assigned to the same address space). */
613
614 if (has_vforked)
615 {
616 gdb_assert (child_inf->vfork_parent == NULL);
617 gdb_assert (parent_inf->vfork_child == NULL);
618 child_inf->vfork_parent = parent_inf;
619 child_inf->pending_detach = 0;
620 parent_inf->vfork_child = child_inf;
621 parent_inf->pending_detach = detach_fork;
622 parent_inf->waiting_for_vfork_done = 0;
623 }
624 else if (detach_fork)
625 {
626 if (print_inferior_events)
627 {
628 /* Ensure that we have a process ptid. */
629 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
630
631 target_terminal::ours_for_output ();
632 fprintf_filtered (gdb_stdlog,
633 _("[Detaching after fork from "
634 "parent %s]\n"),
635 target_pid_to_str (process_ptid).c_str ());
636 }
637
638 target_detach (parent_inf, 0);
639 parent_inf = NULL;
640 }
641
642 /* Note that the detach above makes PARENT_INF dangling. */
643
644 /* Add the child thread to the appropriate lists, and switch
645 to this new thread, before cloning the program space, and
646 informing the solib layer about this new process. */
647
648 set_current_inferior (child_inf);
649 push_target (target);
650 }
651
652 thread_info *child_thr = add_thread_silent (target, child_ptid);
653
654 /* If this is a vfork child, then the address-space is shared
655 with the parent. If we detached from the parent, then we can
656 reuse the parent's program/address spaces. */
657 if (has_vforked || detach_fork)
658 {
659 child_inf->pspace = parent_pspace;
660 child_inf->aspace = child_inf->pspace->aspace;
661
662 exec_on_vfork ();
663 }
664 else
665 {
666 child_inf->aspace = new_address_space ();
667 child_inf->pspace = new program_space (child_inf->aspace);
668 child_inf->removable = 1;
669 child_inf->symfile_flags = SYMFILE_NO_READ;
670 set_current_program_space (child_inf->pspace);
671 clone_program_space (child_inf->pspace, parent_pspace);
672
673 /* Let the shared library layer (e.g., solib-svr4) learn
674 about this new process, relocate the cloned exec, pull in
675 shared libraries, and install the solib event breakpoint.
676 If a "cloned-VM" event was propagated better throughout
677 the core, this wouldn't be required. */
678 solib_create_inferior_hook (0);
679 }
680
681 switch_to_thread (child_thr);
682 }
683
684 return target_follow_fork (follow_child, detach_fork);
685 }
686
687 /* Tell the target to follow the fork we're stopped at. Returns true
688 if the inferior should be resumed; false, if the target for some
689 reason decided it's best not to resume. */
690
691 static bool
692 follow_fork ()
693 {
694 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
695 bool should_resume = true;
696 struct thread_info *tp;
697
698 /* Copy user stepping state to the new inferior thread. FIXME: the
699 followed fork child thread should have a copy of most of the
700 parent thread structure's run control related fields, not just these.
701 Initialized to avoid "may be used uninitialized" warnings from gcc. */
702 struct breakpoint *step_resume_breakpoint = NULL;
703 struct breakpoint *exception_resume_breakpoint = NULL;
704 CORE_ADDR step_range_start = 0;
705 CORE_ADDR step_range_end = 0;
706 int current_line = 0;
707 symtab *current_symtab = NULL;
708 struct frame_id step_frame_id = { 0 };
709 struct thread_fsm *thread_fsm = NULL;
710
711 if (!non_stop)
712 {
713 process_stratum_target *wait_target;
714 ptid_t wait_ptid;
715 struct target_waitstatus wait_status;
716
717 /* Get the last target status returned by target_wait(). */
718 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
719
720 /* If not stopped at a fork event, then there's nothing else to
721 do. */
722 if (wait_status.kind != TARGET_WAITKIND_FORKED
723 && wait_status.kind != TARGET_WAITKIND_VFORKED)
724 return 1;
725
726 /* Check if we switched over from WAIT_PTID, since the event was
727 reported. */
728 if (wait_ptid != minus_one_ptid
729 && (current_inferior ()->process_target () != wait_target
730 || inferior_ptid != wait_ptid))
731 {
732 /* We did. Switch back to WAIT_PTID thread, to tell the
733 target to follow it (in either direction). We'll
734 afterwards refuse to resume, and inform the user what
735 happened. */
736 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
737 switch_to_thread (wait_thread);
738 should_resume = false;
739 }
740 }
741
742 tp = inferior_thread ();
743
744 /* If there were any forks/vforks that were caught and are now to be
745 followed, then do so now. */
746 switch (tp->pending_follow.kind)
747 {
748 case TARGET_WAITKIND_FORKED:
749 case TARGET_WAITKIND_VFORKED:
750 {
751 ptid_t parent, child;
752
753 /* If the user did a next/step, etc, over a fork call,
754 preserve the stepping state in the fork child. */
755 if (follow_child && should_resume)
756 {
757 step_resume_breakpoint = clone_momentary_breakpoint
758 (tp->control.step_resume_breakpoint);
759 step_range_start = tp->control.step_range_start;
760 step_range_end = tp->control.step_range_end;
761 current_line = tp->current_line;
762 current_symtab = tp->current_symtab;
763 step_frame_id = tp->control.step_frame_id;
764 exception_resume_breakpoint
765 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
766 thread_fsm = tp->thread_fsm;
767
768 /* For now, delete the parent's sr breakpoint, otherwise,
769 parent/child sr breakpoints are considered duplicates,
770 and the child version will not be installed. Remove
771 this when the breakpoints module becomes aware of
772 inferiors and address spaces. */
773 delete_step_resume_breakpoint (tp);
774 tp->control.step_range_start = 0;
775 tp->control.step_range_end = 0;
776 tp->control.step_frame_id = null_frame_id;
777 delete_exception_resume_breakpoint (tp);
778 tp->thread_fsm = NULL;
779 }
780
781 parent = inferior_ptid;
782 child = tp->pending_follow.value.related_pid;
783
784 process_stratum_target *parent_targ = tp->inf->process_target ();
785 /* Set up inferior(s) as specified by the caller, and tell the
786 target to do whatever is necessary to follow either parent
787 or child. */
788 if (follow_fork_inferior (follow_child, detach_fork))
789 {
790 /* Target refused to follow, or there's some other reason
791 we shouldn't resume. */
792 should_resume = 0;
793 }
794 else
795 {
796 /* This pending follow fork event is now handled, one way
797 or another. The previous selected thread may be gone
798 from the lists by now, but if it is still around, need
799 to clear the pending follow request. */
800 tp = find_thread_ptid (parent_targ, parent);
801 if (tp)
802 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
803
804 /* This makes sure we don't try to apply the "Switched
805 over from WAIT_PID" logic above. */
806 nullify_last_target_wait_ptid ();
807
808 /* If we followed the child, switch to it... */
809 if (follow_child)
810 {
811 thread_info *child_thr = find_thread_ptid (parent_targ, child);
812 switch_to_thread (child_thr);
813
814 /* ... and preserve the stepping state, in case the
815 user was stepping over the fork call. */
816 if (should_resume)
817 {
818 tp = inferior_thread ();
819 tp->control.step_resume_breakpoint
820 = step_resume_breakpoint;
821 tp->control.step_range_start = step_range_start;
822 tp->control.step_range_end = step_range_end;
823 tp->current_line = current_line;
824 tp->current_symtab = current_symtab;
825 tp->control.step_frame_id = step_frame_id;
826 tp->control.exception_resume_breakpoint
827 = exception_resume_breakpoint;
828 tp->thread_fsm = thread_fsm;
829 }
830 else
831 {
832 /* If we get here, it was because we're trying to
833 resume from a fork catchpoint, but, the user
834 has switched threads away from the thread that
835 forked. In that case, the resume command
836 issued is most likely not applicable to the
837 child, so just warn, and refuse to resume. */
838 warning (_("Not resuming: switched threads "
839 "before following fork child."));
840 }
841
842 /* Reset breakpoints in the child as appropriate. */
843 follow_inferior_reset_breakpoints ();
844 }
845 }
846 }
847 break;
848 case TARGET_WAITKIND_SPURIOUS:
849 /* Nothing to follow. */
850 break;
851 default:
852 internal_error (__FILE__, __LINE__,
853 "Unexpected pending_follow.kind %d\n",
854 tp->pending_follow.kind);
855 break;
856 }
857
858 return should_resume;
859 }
860
861 static void
862 follow_inferior_reset_breakpoints (void)
863 {
864 struct thread_info *tp = inferior_thread ();
865
866 /* Was there a step_resume breakpoint? (There was if the user
867 did a "next" at the fork() call.) If so, explicitly reset its
868 thread number. Cloned step_resume breakpoints are disabled on
869 creation, so enable it here now that it is associated with the
870 correct thread.
871
872 step_resumes are a form of bp that are made to be per-thread.
873 Since we created the step_resume bp when the parent process
874 was being debugged, and now are switching to the child process,
875 from the breakpoint package's viewpoint, that's a switch of
876 "threads". We must update the bp's notion of which thread
877 it is for, or it'll be ignored when it triggers. */
878
879 if (tp->control.step_resume_breakpoint)
880 {
881 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
882 tp->control.step_resume_breakpoint->loc->enabled = 1;
883 }
884
885 /* Treat exception_resume breakpoints like step_resume breakpoints. */
886 if (tp->control.exception_resume_breakpoint)
887 {
888 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
889 tp->control.exception_resume_breakpoint->loc->enabled = 1;
890 }
891
892 /* Reinsert all breakpoints in the child. The user may have set
893 breakpoints after catching the fork, in which case those
894 were never set in the child, but only in the parent. This makes
895 sure the inserted breakpoints match the breakpoint list. */
896
897 breakpoint_re_set ();
898 insert_breakpoints ();
899 }
900
901 /* The child has exited or execed: resume threads of the parent the
902 user wanted to be executing. */
903
904 static int
905 proceed_after_vfork_done (struct thread_info *thread,
906 void *arg)
907 {
908 int pid = * (int *) arg;
909
910 if (thread->ptid.pid () == pid
911 && thread->state == THREAD_RUNNING
912 && !thread->executing
913 && !thread->stop_requested
914 && thread->suspend.stop_signal == GDB_SIGNAL_0)
915 {
916 infrun_debug_printf ("resuming vfork parent thread %s",
917 target_pid_to_str (thread->ptid).c_str ());
918
919 switch_to_thread (thread);
920 clear_proceed_status (0);
921 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
922 }
923
924 return 0;
925 }
926
927 /* Called whenever we notice an exec or exit event, to handle
928 detaching or resuming a vfork parent. */
929
930 static void
931 handle_vfork_child_exec_or_exit (int exec)
932 {
933 struct inferior *inf = current_inferior ();
934
935 if (inf->vfork_parent)
936 {
937 int resume_parent = -1;
938
939 /* This exec or exit marks the end of the shared memory region
940 between the parent and the child. Break the bonds. */
941 inferior *vfork_parent = inf->vfork_parent;
942 inf->vfork_parent->vfork_child = NULL;
943 inf->vfork_parent = NULL;
944
945 /* If the user wanted to detach from the parent, now is the
946 time. */
947 if (vfork_parent->pending_detach)
948 {
949 struct program_space *pspace;
950 struct address_space *aspace;
951
952 /* follow-fork child, detach-on-fork on. */
953
954 vfork_parent->pending_detach = 0;
955
956 scoped_restore_current_pspace_and_thread restore_thread;
957
958 /* We're letting loose of the parent. */
959 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
960 switch_to_thread (tp);
961
962 /* We're about to detach from the parent, which implicitly
963 removes breakpoints from its address space. There's a
964 catch here: we want to reuse the spaces for the child,
965 but, parent/child are still sharing the pspace at this
966 point, although the exec in reality makes the kernel give
967 the child a fresh set of new pages. The problem here is
968 that the breakpoints module being unaware of this, would
969 likely chose the child process to write to the parent
970 address space. Swapping the child temporarily away from
971 the spaces has the desired effect. Yes, this is "sort
972 of" a hack. */
973
974 pspace = inf->pspace;
975 aspace = inf->aspace;
976 inf->aspace = NULL;
977 inf->pspace = NULL;
978
979 if (print_inferior_events)
980 {
981 std::string pidstr
982 = target_pid_to_str (ptid_t (vfork_parent->pid));
983
984 target_terminal::ours_for_output ();
985
986 if (exec)
987 {
988 fprintf_filtered (gdb_stdlog,
989 _("[Detaching vfork parent %s "
990 "after child exec]\n"), pidstr.c_str ());
991 }
992 else
993 {
994 fprintf_filtered (gdb_stdlog,
995 _("[Detaching vfork parent %s "
996 "after child exit]\n"), pidstr.c_str ());
997 }
998 }
999
1000 target_detach (vfork_parent, 0);
1001
1002 /* Put it back. */
1003 inf->pspace = pspace;
1004 inf->aspace = aspace;
1005 }
1006 else if (exec)
1007 {
1008 /* We're staying attached to the parent, so, really give the
1009 child a new address space. */
1010 inf->pspace = new program_space (maybe_new_address_space ());
1011 inf->aspace = inf->pspace->aspace;
1012 inf->removable = 1;
1013 set_current_program_space (inf->pspace);
1014
1015 resume_parent = vfork_parent->pid;
1016 }
1017 else
1018 {
1019 /* If this is a vfork child exiting, then the pspace and
1020 aspaces were shared with the parent. Since we're
1021 reporting the process exit, we'll be mourning all that is
1022 found in the address space, and switching to null_ptid,
1023 preparing to start a new inferior. But, since we don't
1024 want to clobber the parent's address/program spaces, we
1025 go ahead and create a new one for this exiting
1026 inferior. */
1027
1028 /* Switch to no-thread while running clone_program_space, so
1029 that clone_program_space doesn't want to read the
1030 selected frame of a dead process. */
1031 scoped_restore_current_thread restore_thread;
1032 switch_to_no_thread ();
1033
1034 inf->pspace = new program_space (maybe_new_address_space ());
1035 inf->aspace = inf->pspace->aspace;
1036 set_current_program_space (inf->pspace);
1037 inf->removable = 1;
1038 inf->symfile_flags = SYMFILE_NO_READ;
1039 clone_program_space (inf->pspace, vfork_parent->pspace);
1040
1041 resume_parent = vfork_parent->pid;
1042 }
1043
1044 gdb_assert (current_program_space == inf->pspace);
1045
1046 if (non_stop && resume_parent != -1)
1047 {
1048 /* If the user wanted the parent to be running, let it go
1049 free now. */
1050 scoped_restore_current_thread restore_thread;
1051
1052 infrun_debug_printf ("resuming vfork parent process %d",
1053 resume_parent);
1054
1055 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1056 }
1057 }
1058 }
1059
1060 /* Enum strings for "set|show follow-exec-mode". */
1061
1062 static const char follow_exec_mode_new[] = "new";
1063 static const char follow_exec_mode_same[] = "same";
1064 static const char *const follow_exec_mode_names[] =
1065 {
1066 follow_exec_mode_new,
1067 follow_exec_mode_same,
1068 NULL,
1069 };
1070
1071 static const char *follow_exec_mode_string = follow_exec_mode_same;
1072 static void
1073 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1074 struct cmd_list_element *c, const char *value)
1075 {
1076 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1077 }
1078
1079 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1080
1081 static void
1082 follow_exec (ptid_t ptid, const char *exec_file_target)
1083 {
1084 struct inferior *inf = current_inferior ();
1085 int pid = ptid.pid ();
1086 ptid_t process_ptid;
1087
1088 /* Switch terminal for any messages produced e.g. by
1089 breakpoint_re_set. */
1090 target_terminal::ours_for_output ();
1091
1092 /* This is an exec event that we actually wish to pay attention to.
1093 Refresh our symbol table to the newly exec'd program, remove any
1094 momentary bp's, etc.
1095
1096 If there are breakpoints, they aren't really inserted now,
1097 since the exec() transformed our inferior into a fresh set
1098 of instructions.
1099
1100 We want to preserve symbolic breakpoints on the list, since
1101 we have hopes that they can be reset after the new a.out's
1102 symbol table is read.
1103
1104 However, any "raw" breakpoints must be removed from the list
1105 (e.g., the solib bp's), since their address is probably invalid
1106 now.
1107
1108 And, we DON'T want to call delete_breakpoints() here, since
1109 that may write the bp's "shadow contents" (the instruction
1110 value that was overwritten with a TRAP instruction). Since
1111 we now have a new a.out, those shadow contents aren't valid. */
1112
1113 mark_breakpoints_out ();
1114
1115 /* The target reports the exec event to the main thread, even if
1116 some other thread does the exec, and even if the main thread was
1117 stopped or already gone. We may still have non-leader threads of
1118 the process on our list. E.g., on targets that don't have thread
1119 exit events (like remote); or on native Linux in non-stop mode if
1120 there were only two threads in the inferior and the non-leader
1121 one is the one that execs (and nothing forces an update of the
1122 thread list up to here). When debugging remotely, it's best to
1123 avoid extra traffic, when possible, so avoid syncing the thread
1124 list with the target, and instead go ahead and delete all threads
1125 of the process but one that reported the event. Note this must
1126 be done before calling update_breakpoints_after_exec, as
1127 otherwise clearing the threads' resources would reference stale
1128 thread breakpoints -- it may have been one of these threads that
1129 stepped across the exec. We could just clear their stepping
1130 states, but as long as we're iterating, might as well delete
1131 them. Deleting them now rather than at the next user-visible
1132 stop provides a nicer sequence of events for user and MI
1133 notifications. */
1134 for (thread_info *th : all_threads_safe ())
1135 if (th->ptid.pid () == pid && th->ptid != ptid)
1136 delete_thread (th);
1137
1138 /* We also need to clear any left over stale state for the
1139 leader/event thread. E.g., if there was any step-resume
1140 breakpoint or similar, it's gone now. We cannot truly
1141 step-to-next statement through an exec(). */
1142 thread_info *th = inferior_thread ();
1143 th->control.step_resume_breakpoint = NULL;
1144 th->control.exception_resume_breakpoint = NULL;
1145 th->control.single_step_breakpoints = NULL;
1146 th->control.step_range_start = 0;
1147 th->control.step_range_end = 0;
1148
1149 /* The user may have had the main thread held stopped in the
1150 previous image (e.g., schedlock on, or non-stop). Release
1151 it now. */
1152 th->stop_requested = 0;
1153
1154 update_breakpoints_after_exec ();
1155
1156 /* What is this a.out's name? */
1157 process_ptid = ptid_t (pid);
1158 printf_unfiltered (_("%s is executing new program: %s\n"),
1159 target_pid_to_str (process_ptid).c_str (),
1160 exec_file_target);
1161
1162 /* We've followed the inferior through an exec. Therefore, the
1163 inferior has essentially been killed & reborn. */
1164
1165 breakpoint_init_inferior (inf_execd);
1166
1167 gdb::unique_xmalloc_ptr<char> exec_file_host
1168 = exec_file_find (exec_file_target, NULL);
1169
1170 /* If we were unable to map the executable target pathname onto a host
1171 pathname, tell the user that. Otherwise GDB's subsequent behavior
1172 is confusing. Maybe it would even be better to stop at this point
1173 so that the user can specify a file manually before continuing. */
1174 if (exec_file_host == NULL)
1175 warning (_("Could not load symbols for executable %s.\n"
1176 "Do you need \"set sysroot\"?"),
1177 exec_file_target);
1178
1179 /* Reset the shared library package. This ensures that we get a
1180 shlib event when the child reaches "_start", at which point the
1181 dld will have had a chance to initialize the child. */
1182 /* Also, loading a symbol file below may trigger symbol lookups, and
1183 we don't want those to be satisfied by the libraries of the
1184 previous incarnation of this process. */
1185 no_shared_libraries (NULL, 0);
1186
1187 if (follow_exec_mode_string == follow_exec_mode_new)
1188 {
1189 /* The user wants to keep the old inferior and program spaces
1190 around. Create a new fresh one, and switch to it. */
1191
1192 /* Do exit processing for the original inferior before setting the new
1193 inferior's pid. Having two inferiors with the same pid would confuse
1194 find_inferior_p(t)id. Transfer the terminal state and info from the
1195 old to the new inferior. */
1196 inf = add_inferior_with_spaces ();
1197 swap_terminal_info (inf, current_inferior ());
1198 exit_inferior_silent (current_inferior ());
1199
1200 inf->pid = pid;
1201 target_follow_exec (inf, exec_file_target);
1202
1203 inferior *org_inferior = current_inferior ();
1204 switch_to_inferior_no_thread (inf);
1205 push_target (org_inferior->process_target ());
1206 thread_info *thr = add_thread (inf->process_target (), ptid);
1207 switch_to_thread (thr);
1208 }
1209 else
1210 {
1211 /* The old description may no longer be fit for the new image.
1212 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1213 old description; we'll read a new one below. No need to do
1214 this on "follow-exec-mode new", as the old inferior stays
1215 around (its description is later cleared/refetched on
1216 restart). */
1217 target_clear_description ();
1218 }
1219
1220 gdb_assert (current_program_space == inf->pspace);
1221
1222 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1223 because the proper displacement for a PIE (Position Independent
1224 Executable) main symbol file will only be computed by
1225 solib_create_inferior_hook below. breakpoint_re_set would fail
1226 to insert the breakpoints with the zero displacement. */
1227 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1228
1229 /* If the target can specify a description, read it. Must do this
1230 after flipping to the new executable (because the target supplied
1231 description must be compatible with the executable's
1232 architecture, and the old executable may e.g., be 32-bit, while
1233 the new one 64-bit), and before anything involving memory or
1234 registers. */
1235 target_find_description ();
1236
1237 solib_create_inferior_hook (0);
1238
1239 jit_inferior_created_hook ();
1240
1241 breakpoint_re_set ();
1242
1243 /* Reinsert all breakpoints. (Those which were symbolic have
1244 been reset to the proper address in the new a.out, thanks
1245 to symbol_file_command...). */
1246 insert_breakpoints ();
1247
1248 /* The next resume of this inferior should bring it to the shlib
1249 startup breakpoints. (If the user had also set bp's on
1250 "main" from the old (parent) process, then they'll auto-
1251 matically get reset there in the new process.). */
1252 }
1253
1254 /* The queue of threads that need to do a step-over operation to get
1255 past e.g., a breakpoint. What technique is used to step over the
1256 breakpoint/watchpoint does not matter -- all threads end up in the
1257 same queue, to maintain rough temporal order of execution, in order
1258 to avoid starvation, otherwise, we could e.g., find ourselves
1259 constantly stepping the same couple threads past their breakpoints
1260 over and over, if the single-step finish fast enough. */
1261 struct thread_info *step_over_queue_head;
1262
1263 /* Bit flags indicating what the thread needs to step over. */
1264
1265 enum step_over_what_flag
1266 {
1267 /* Step over a breakpoint. */
1268 STEP_OVER_BREAKPOINT = 1,
1269
1270 /* Step past a non-continuable watchpoint, in order to let the
1271 instruction execute so we can evaluate the watchpoint
1272 expression. */
1273 STEP_OVER_WATCHPOINT = 2
1274 };
1275 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1276
1277 /* Info about an instruction that is being stepped over. */
1278
1279 struct step_over_info
1280 {
1281 /* If we're stepping past a breakpoint, this is the address space
1282 and address of the instruction the breakpoint is set at. We'll
1283 skip inserting all breakpoints here. Valid iff ASPACE is
1284 non-NULL. */
1285 const address_space *aspace;
1286 CORE_ADDR address;
1287
1288 /* The instruction being stepped over triggers a nonsteppable
1289 watchpoint. If true, we'll skip inserting watchpoints. */
1290 int nonsteppable_watchpoint_p;
1291
1292 /* The thread's global number. */
1293 int thread;
1294 };
1295
1296 /* The step-over info of the location that is being stepped over.
1297
1298 Note that with async/breakpoint always-inserted mode, a user might
1299 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1300 being stepped over. As setting a new breakpoint inserts all
1301 breakpoints, we need to make sure the breakpoint being stepped over
1302 isn't inserted then. We do that by only clearing the step-over
1303 info when the step-over is actually finished (or aborted).
1304
1305 Presently GDB can only step over one breakpoint at any given time.
1306 Given threads that can't run code in the same address space as the
1307 breakpoint's can't really miss the breakpoint, GDB could be taught
1308 to step-over at most one breakpoint per address space (so this info
1309 could move to the address space object if/when GDB is extended).
1310 The set of breakpoints being stepped over will normally be much
1311 smaller than the set of all breakpoints, so a flag in the
1312 breakpoint location structure would be wasteful. A separate list
1313 also saves complexity and run-time, as otherwise we'd have to go
1314 through all breakpoint locations clearing their flag whenever we
1315 start a new sequence. Similar considerations weigh against storing
1316 this info in the thread object. Plus, not all step overs actually
1317 have breakpoint locations -- e.g., stepping past a single-step
1318 breakpoint, or stepping to complete a non-continuable
1319 watchpoint. */
1320 static struct step_over_info step_over_info;
1321
1322 /* Record the address of the breakpoint/instruction we're currently
1323 stepping over.
1324 N.B. We record the aspace and address now, instead of say just the thread,
1325 because when we need the info later the thread may be running. */
1326
1327 static void
1328 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1329 int nonsteppable_watchpoint_p,
1330 int thread)
1331 {
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1335 step_over_info.thread = thread;
1336 }
1337
1338 /* Called when we're not longer stepping over a breakpoint / an
1339 instruction, so all breakpoints are free to be (re)inserted. */
1340
1341 static void
1342 clear_step_over_info (void)
1343 {
1344 infrun_debug_printf ("clearing step over info");
1345 step_over_info.aspace = NULL;
1346 step_over_info.address = 0;
1347 step_over_info.nonsteppable_watchpoint_p = 0;
1348 step_over_info.thread = -1;
1349 }
1350
1351 /* See infrun.h. */
1352
1353 int
1354 stepping_past_instruction_at (struct address_space *aspace,
1355 CORE_ADDR address)
1356 {
1357 return (step_over_info.aspace != NULL
1358 && breakpoint_address_match (aspace, address,
1359 step_over_info.aspace,
1360 step_over_info.address));
1361 }
1362
1363 /* See infrun.h. */
1364
1365 int
1366 thread_is_stepping_over_breakpoint (int thread)
1367 {
1368 return (step_over_info.thread != -1
1369 && thread == step_over_info.thread);
1370 }
1371
1372 /* See infrun.h. */
1373
1374 int
1375 stepping_past_nonsteppable_watchpoint (void)
1376 {
1377 return step_over_info.nonsteppable_watchpoint_p;
1378 }
1379
1380 /* Returns true if step-over info is valid. */
1381
1382 static int
1383 step_over_info_valid_p (void)
1384 {
1385 return (step_over_info.aspace != NULL
1386 || stepping_past_nonsteppable_watchpoint ());
1387 }
1388
1389 \f
1390 /* Displaced stepping. */
1391
1392 /* In non-stop debugging mode, we must take special care to manage
1393 breakpoints properly; in particular, the traditional strategy for
1394 stepping a thread past a breakpoint it has hit is unsuitable.
1395 'Displaced stepping' is a tactic for stepping one thread past a
1396 breakpoint it has hit while ensuring that other threads running
1397 concurrently will hit the breakpoint as they should.
1398
1399 The traditional way to step a thread T off a breakpoint in a
1400 multi-threaded program in all-stop mode is as follows:
1401
1402 a0) Initially, all threads are stopped, and breakpoints are not
1403 inserted.
1404 a1) We single-step T, leaving breakpoints uninserted.
1405 a2) We insert breakpoints, and resume all threads.
1406
1407 In non-stop debugging, however, this strategy is unsuitable: we
1408 don't want to have to stop all threads in the system in order to
1409 continue or step T past a breakpoint. Instead, we use displaced
1410 stepping:
1411
1412 n0) Initially, T is stopped, other threads are running, and
1413 breakpoints are inserted.
1414 n1) We copy the instruction "under" the breakpoint to a separate
1415 location, outside the main code stream, making any adjustments
1416 to the instruction, register, and memory state as directed by
1417 T's architecture.
1418 n2) We single-step T over the instruction at its new location.
1419 n3) We adjust the resulting register and memory state as directed
1420 by T's architecture. This includes resetting T's PC to point
1421 back into the main instruction stream.
1422 n4) We resume T.
1423
1424 This approach depends on the following gdbarch methods:
1425
1426 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1427 indicate where to copy the instruction, and how much space must
1428 be reserved there. We use these in step n1.
1429
1430 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1431 address, and makes any necessary adjustments to the instruction,
1432 register contents, and memory. We use this in step n1.
1433
1434 - gdbarch_displaced_step_fixup adjusts registers and memory after
1435 we have successfully single-stepped the instruction, to yield the
1436 same effect the instruction would have had if we had executed it
1437 at its original address. We use this in step n3.
1438
1439 The gdbarch_displaced_step_copy_insn and
1440 gdbarch_displaced_step_fixup functions must be written so that
1441 copying an instruction with gdbarch_displaced_step_copy_insn,
1442 single-stepping across the copied instruction, and then applying
1443 gdbarch_displaced_insn_fixup should have the same effects on the
1444 thread's memory and registers as stepping the instruction in place
1445 would have. Exactly which responsibilities fall to the copy and
1446 which fall to the fixup is up to the author of those functions.
1447
1448 See the comments in gdbarch.sh for details.
1449
1450 Note that displaced stepping and software single-step cannot
1451 currently be used in combination, although with some care I think
1452 they could be made to. Software single-step works by placing
1453 breakpoints on all possible subsequent instructions; if the
1454 displaced instruction is a PC-relative jump, those breakpoints
1455 could fall in very strange places --- on pages that aren't
1456 executable, or at addresses that are not proper instruction
1457 boundaries. (We do generally let other threads run while we wait
1458 to hit the software single-step breakpoint, and they might
1459 encounter such a corrupted instruction.) One way to work around
1460 this would be to have gdbarch_displaced_step_copy_insn fully
1461 simulate the effect of PC-relative instructions (and return NULL)
1462 on architectures that use software single-stepping.
1463
1464 In non-stop mode, we can have independent and simultaneous step
1465 requests, so more than one thread may need to simultaneously step
1466 over a breakpoint. The current implementation assumes there is
1467 only one scratch space per process. In this case, we have to
1468 serialize access to the scratch space. If thread A wants to step
1469 over a breakpoint, but we are currently waiting for some other
1470 thread to complete a displaced step, we leave thread A stopped and
1471 place it in the displaced_step_request_queue. Whenever a displaced
1472 step finishes, we pick the next thread in the queue and start a new
1473 displaced step operation on it. See displaced_step_prepare and
1474 displaced_step_fixup for details. */
1475
1476 /* Default destructor for displaced_step_closure. */
1477
1478 displaced_step_closure::~displaced_step_closure () = default;
1479
1480 /* Get the displaced stepping state of inferior INF. */
1481
1482 static displaced_step_inferior_state *
1483 get_displaced_stepping_state (inferior *inf)
1484 {
1485 return &inf->displaced_step_state;
1486 }
1487
1488 /* Returns true if any inferior has a thread doing a displaced
1489 step. */
1490
1491 static bool
1492 displaced_step_in_progress_any_inferior ()
1493 {
1494 for (inferior *i : all_inferiors ())
1495 {
1496 if (i->displaced_step_state.step_thread != nullptr)
1497 return true;
1498 }
1499
1500 return false;
1501 }
1502
1503 /* Return true if thread represented by PTID is doing a displaced
1504 step. */
1505
1506 static int
1507 displaced_step_in_progress_thread (thread_info *thread)
1508 {
1509 gdb_assert (thread != NULL);
1510
1511 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1512 }
1513
1514 /* Return true if process PID has a thread doing a displaced step. */
1515
1516 static int
1517 displaced_step_in_progress (inferior *inf)
1518 {
1519 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1520 }
1521
1522 /* If inferior is in displaced stepping, and ADDR equals to starting address
1523 of copy area, return corresponding displaced_step_closure. Otherwise,
1524 return NULL. */
1525
1526 struct displaced_step_closure*
1527 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1528 {
1529 displaced_step_inferior_state *displaced
1530 = get_displaced_stepping_state (current_inferior ());
1531
1532 /* If checking the mode of displaced instruction in copy area. */
1533 if (displaced->step_thread != nullptr
1534 && displaced->step_copy == addr)
1535 return displaced->step_closure.get ();
1536
1537 return NULL;
1538 }
1539
1540 static void
1541 infrun_inferior_exit (struct inferior *inf)
1542 {
1543 inf->displaced_step_state.reset ();
1544 }
1545
1546 /* If ON, and the architecture supports it, GDB will use displaced
1547 stepping to step over breakpoints. If OFF, or if the architecture
1548 doesn't support it, GDB will instead use the traditional
1549 hold-and-step approach. If AUTO (which is the default), GDB will
1550 decide which technique to use to step over breakpoints depending on
1551 whether the target works in a non-stop way (see use_displaced_stepping). */
1552
1553 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1554
1555 static void
1556 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1557 struct cmd_list_element *c,
1558 const char *value)
1559 {
1560 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1561 fprintf_filtered (file,
1562 _("Debugger's willingness to use displaced stepping "
1563 "to step over breakpoints is %s (currently %s).\n"),
1564 value, target_is_non_stop_p () ? "on" : "off");
1565 else
1566 fprintf_filtered (file,
1567 _("Debugger's willingness to use displaced stepping "
1568 "to step over breakpoints is %s.\n"), value);
1569 }
1570
1571 /* Return true if the gdbarch implements the required methods to use
1572 displaced stepping. */
1573
1574 static bool
1575 gdbarch_supports_displaced_stepping (gdbarch *arch)
1576 {
1577 /* Only check for the presence of step_copy_insn. Other required methods
1578 are checked by the gdbarch validation. */
1579 return gdbarch_displaced_step_copy_insn_p (arch);
1580 }
1581
1582 /* Return non-zero if displaced stepping can/should be used to step
1583 over breakpoints of thread TP. */
1584
1585 static bool
1586 use_displaced_stepping (thread_info *tp)
1587 {
1588 /* If the user disabled it explicitly, don't use displaced stepping. */
1589 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1590 return false;
1591
1592 /* If "auto", only use displaced stepping if the target operates in a non-stop
1593 way. */
1594 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1595 && !target_is_non_stop_p ())
1596 return false;
1597
1598 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1599
1600 /* If the architecture doesn't implement displaced stepping, don't use
1601 it. */
1602 if (!gdbarch_supports_displaced_stepping (gdbarch))
1603 return false;
1604
1605 /* If recording, don't use displaced stepping. */
1606 if (find_record_target () != nullptr)
1607 return false;
1608
1609 displaced_step_inferior_state *displaced_state
1610 = get_displaced_stepping_state (tp->inf);
1611
1612 /* If displaced stepping failed before for this inferior, don't bother trying
1613 again. */
1614 if (displaced_state->failed_before)
1615 return false;
1616
1617 return true;
1618 }
1619
1620 /* Simple function wrapper around displaced_step_inferior_state::reset. */
1621
1622 static void
1623 displaced_step_reset (displaced_step_inferior_state *displaced)
1624 {
1625 displaced->reset ();
1626 }
1627
1628 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1629 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1630
1631 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1632
1633 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1634 void
1635 displaced_step_dump_bytes (struct ui_file *file,
1636 const gdb_byte *buf,
1637 size_t len)
1638 {
1639 int i;
1640
1641 for (i = 0; i < len; i++)
1642 fprintf_unfiltered (file, "%02x ", buf[i]);
1643 fputs_unfiltered ("\n", file);
1644 }
1645
1646 /* Prepare to single-step, using displaced stepping.
1647
1648 Note that we cannot use displaced stepping when we have a signal to
1649 deliver. If we have a signal to deliver and an instruction to step
1650 over, then after the step, there will be no indication from the
1651 target whether the thread entered a signal handler or ignored the
1652 signal and stepped over the instruction successfully --- both cases
1653 result in a simple SIGTRAP. In the first case we mustn't do a
1654 fixup, and in the second case we must --- but we can't tell which.
1655 Comments in the code for 'random signals' in handle_inferior_event
1656 explain how we handle this case instead.
1657
1658 Returns 1 if preparing was successful -- this thread is going to be
1659 stepped now; 0 if displaced stepping this thread got queued; or -1
1660 if this instruction can't be displaced stepped. */
1661
1662 static int
1663 displaced_step_prepare_throw (thread_info *tp)
1664 {
1665 regcache *regcache = get_thread_regcache (tp);
1666 struct gdbarch *gdbarch = regcache->arch ();
1667 const address_space *aspace = regcache->aspace ();
1668 CORE_ADDR original, copy;
1669 ULONGEST len;
1670 int status;
1671
1672 /* We should never reach this function if the architecture does not
1673 support displaced stepping. */
1674 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1675
1676 /* Nor if the thread isn't meant to step over a breakpoint. */
1677 gdb_assert (tp->control.trap_expected);
1678
1679 /* Disable range stepping while executing in the scratch pad. We
1680 want a single-step even if executing the displaced instruction in
1681 the scratch buffer lands within the stepping range (e.g., a
1682 jump/branch). */
1683 tp->control.may_range_step = 0;
1684
1685 /* We have to displaced step one thread at a time, as we only have
1686 access to a single scratch space per inferior. */
1687
1688 displaced_step_inferior_state *displaced
1689 = get_displaced_stepping_state (tp->inf);
1690
1691 if (displaced->step_thread != nullptr)
1692 {
1693 /* Already waiting for a displaced step to finish. Defer this
1694 request and place in queue. */
1695
1696 if (debug_displaced)
1697 fprintf_unfiltered (gdb_stdlog,
1698 "displaced: deferring step of %s\n",
1699 target_pid_to_str (tp->ptid).c_str ());
1700
1701 thread_step_over_chain_enqueue (tp);
1702 return 0;
1703 }
1704 else
1705 {
1706 if (debug_displaced)
1707 fprintf_unfiltered (gdb_stdlog,
1708 "displaced: stepping %s now\n",
1709 target_pid_to_str (tp->ptid).c_str ());
1710 }
1711
1712 displaced_step_reset (displaced);
1713
1714 scoped_restore_current_thread restore_thread;
1715
1716 switch_to_thread (tp);
1717
1718 original = regcache_read_pc (regcache);
1719
1720 copy = gdbarch_displaced_step_location (gdbarch);
1721 len = gdbarch_max_insn_length (gdbarch);
1722
1723 if (breakpoint_in_range_p (aspace, copy, len))
1724 {
1725 /* There's a breakpoint set in the scratch pad location range
1726 (which is usually around the entry point). We'd either
1727 install it before resuming, which would overwrite/corrupt the
1728 scratch pad, or if it was already inserted, this displaced
1729 step would overwrite it. The latter is OK in the sense that
1730 we already assume that no thread is going to execute the code
1731 in the scratch pad range (after initial startup) anyway, but
1732 the former is unacceptable. Simply punt and fallback to
1733 stepping over this breakpoint in-line. */
1734 if (debug_displaced)
1735 {
1736 fprintf_unfiltered (gdb_stdlog,
1737 "displaced: breakpoint set in scratch pad. "
1738 "Stepping over breakpoint in-line instead.\n");
1739 }
1740
1741 return -1;
1742 }
1743
1744 /* Save the original contents of the copy area. */
1745 displaced->step_saved_copy.resize (len);
1746 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1747 if (status != 0)
1748 throw_error (MEMORY_ERROR,
1749 _("Error accessing memory address %s (%s) for "
1750 "displaced-stepping scratch space."),
1751 paddress (gdbarch, copy), safe_strerror (status));
1752 if (debug_displaced)
1753 {
1754 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1755 paddress (gdbarch, copy));
1756 displaced_step_dump_bytes (gdb_stdlog,
1757 displaced->step_saved_copy.data (),
1758 len);
1759 };
1760
1761 displaced->step_closure
1762 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1763 if (displaced->step_closure == NULL)
1764 {
1765 /* The architecture doesn't know how or want to displaced step
1766 this instruction or instruction sequence. Fallback to
1767 stepping over the breakpoint in-line. */
1768 return -1;
1769 }
1770
1771 /* Save the information we need to fix things up if the step
1772 succeeds. */
1773 displaced->step_thread = tp;
1774 displaced->step_gdbarch = gdbarch;
1775 displaced->step_original = original;
1776 displaced->step_copy = copy;
1777
1778 {
1779 displaced_step_reset_cleanup cleanup (displaced);
1780
1781 /* Resume execution at the copy. */
1782 regcache_write_pc (regcache, copy);
1783
1784 cleanup.release ();
1785 }
1786
1787 if (debug_displaced)
1788 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1789 paddress (gdbarch, copy));
1790
1791 return 1;
1792 }
1793
1794 /* Wrapper for displaced_step_prepare_throw that disabled further
1795 attempts at displaced stepping if we get a memory error. */
1796
1797 static int
1798 displaced_step_prepare (thread_info *thread)
1799 {
1800 int prepared = -1;
1801
1802 try
1803 {
1804 prepared = displaced_step_prepare_throw (thread);
1805 }
1806 catch (const gdb_exception_error &ex)
1807 {
1808 struct displaced_step_inferior_state *displaced_state;
1809
1810 if (ex.error != MEMORY_ERROR
1811 && ex.error != NOT_SUPPORTED_ERROR)
1812 throw;
1813
1814 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1815 ex.what ());
1816
1817 /* Be verbose if "set displaced-stepping" is "on", silent if
1818 "auto". */
1819 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1820 {
1821 warning (_("disabling displaced stepping: %s"),
1822 ex.what ());
1823 }
1824
1825 /* Disable further displaced stepping attempts. */
1826 displaced_state
1827 = get_displaced_stepping_state (thread->inf);
1828 displaced_state->failed_before = 1;
1829 }
1830
1831 return prepared;
1832 }
1833
1834 static void
1835 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1836 const gdb_byte *myaddr, int len)
1837 {
1838 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1839
1840 inferior_ptid = ptid;
1841 write_memory (memaddr, myaddr, len);
1842 }
1843
1844 /* Restore the contents of the copy area for thread PTID. */
1845
1846 static void
1847 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1848 ptid_t ptid)
1849 {
1850 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1851
1852 write_memory_ptid (ptid, displaced->step_copy,
1853 displaced->step_saved_copy.data (), len);
1854 if (debug_displaced)
1855 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1856 target_pid_to_str (ptid).c_str (),
1857 paddress (displaced->step_gdbarch,
1858 displaced->step_copy));
1859 }
1860
1861 /* If we displaced stepped an instruction successfully, adjust
1862 registers and memory to yield the same effect the instruction would
1863 have had if we had executed it at its original address, and return
1864 1. If the instruction didn't complete, relocate the PC and return
1865 -1. If the thread wasn't displaced stepping, return 0. */
1866
1867 static int
1868 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1869 {
1870 struct displaced_step_inferior_state *displaced
1871 = get_displaced_stepping_state (event_thread->inf);
1872 int ret;
1873
1874 /* Was this event for the thread we displaced? */
1875 if (displaced->step_thread != event_thread)
1876 return 0;
1877
1878 /* Fixup may need to read memory/registers. Switch to the thread
1879 that we're fixing up. Also, target_stopped_by_watchpoint checks
1880 the current thread, and displaced_step_restore performs ptid-dependent
1881 memory accesses using current_inferior() and current_top_target(). */
1882 switch_to_thread (event_thread);
1883
1884 displaced_step_reset_cleanup cleanup (displaced);
1885
1886 displaced_step_restore (displaced, displaced->step_thread->ptid);
1887
1888 /* Did the instruction complete successfully? */
1889 if (signal == GDB_SIGNAL_TRAP
1890 && !(target_stopped_by_watchpoint ()
1891 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1892 || target_have_steppable_watchpoint ())))
1893 {
1894 /* Fix up the resulting state. */
1895 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1896 displaced->step_closure.get (),
1897 displaced->step_original,
1898 displaced->step_copy,
1899 get_thread_regcache (displaced->step_thread));
1900 ret = 1;
1901 }
1902 else
1903 {
1904 /* Since the instruction didn't complete, all we can do is
1905 relocate the PC. */
1906 struct regcache *regcache = get_thread_regcache (event_thread);
1907 CORE_ADDR pc = regcache_read_pc (regcache);
1908
1909 pc = displaced->step_original + (pc - displaced->step_copy);
1910 regcache_write_pc (regcache, pc);
1911 ret = -1;
1912 }
1913
1914 return ret;
1915 }
1916
1917 /* Data to be passed around while handling an event. This data is
1918 discarded between events. */
1919 struct execution_control_state
1920 {
1921 process_stratum_target *target;
1922 ptid_t ptid;
1923 /* The thread that got the event, if this was a thread event; NULL
1924 otherwise. */
1925 struct thread_info *event_thread;
1926
1927 struct target_waitstatus ws;
1928 int stop_func_filled_in;
1929 CORE_ADDR stop_func_start;
1930 CORE_ADDR stop_func_end;
1931 const char *stop_func_name;
1932 int wait_some_more;
1933
1934 /* True if the event thread hit the single-step breakpoint of
1935 another thread. Thus the event doesn't cause a stop, the thread
1936 needs to be single-stepped past the single-step breakpoint before
1937 we can switch back to the original stepping thread. */
1938 int hit_singlestep_breakpoint;
1939 };
1940
1941 /* Clear ECS and set it to point at TP. */
1942
1943 static void
1944 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1945 {
1946 memset (ecs, 0, sizeof (*ecs));
1947 ecs->event_thread = tp;
1948 ecs->ptid = tp->ptid;
1949 }
1950
1951 static void keep_going_pass_signal (struct execution_control_state *ecs);
1952 static void prepare_to_wait (struct execution_control_state *ecs);
1953 static int keep_going_stepped_thread (struct thread_info *tp);
1954 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1955
1956 /* Are there any pending step-over requests? If so, run all we can
1957 now and return true. Otherwise, return false. */
1958
1959 static int
1960 start_step_over (void)
1961 {
1962 struct thread_info *tp, *next;
1963
1964 /* Don't start a new step-over if we already have an in-line
1965 step-over operation ongoing. */
1966 if (step_over_info_valid_p ())
1967 return 0;
1968
1969 for (tp = step_over_queue_head; tp != NULL; tp = next)
1970 {
1971 struct execution_control_state ecss;
1972 struct execution_control_state *ecs = &ecss;
1973 step_over_what step_what;
1974 int must_be_in_line;
1975
1976 gdb_assert (!tp->stop_requested);
1977
1978 next = thread_step_over_chain_next (tp);
1979
1980 /* If this inferior already has a displaced step in process,
1981 don't start a new one. */
1982 if (displaced_step_in_progress (tp->inf))
1983 continue;
1984
1985 step_what = thread_still_needs_step_over (tp);
1986 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1987 || ((step_what & STEP_OVER_BREAKPOINT)
1988 && !use_displaced_stepping (tp)));
1989
1990 /* We currently stop all threads of all processes to step-over
1991 in-line. If we need to start a new in-line step-over, let
1992 any pending displaced steps finish first. */
1993 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1994 return 0;
1995
1996 thread_step_over_chain_remove (tp);
1997
1998 if (step_over_queue_head == NULL)
1999 infrun_debug_printf ("step-over queue now empty");
2000
2001 if (tp->control.trap_expected
2002 || tp->resumed
2003 || tp->executing)
2004 {
2005 internal_error (__FILE__, __LINE__,
2006 "[%s] has inconsistent state: "
2007 "trap_expected=%d, resumed=%d, executing=%d\n",
2008 target_pid_to_str (tp->ptid).c_str (),
2009 tp->control.trap_expected,
2010 tp->resumed,
2011 tp->executing);
2012 }
2013
2014 infrun_debug_printf ("resuming [%s] for step-over",
2015 target_pid_to_str (tp->ptid).c_str ());
2016
2017 /* keep_going_pass_signal skips the step-over if the breakpoint
2018 is no longer inserted. In all-stop, we want to keep looking
2019 for a thread that needs a step-over instead of resuming TP,
2020 because we wouldn't be able to resume anything else until the
2021 target stops again. In non-stop, the resume always resumes
2022 only TP, so it's OK to let the thread resume freely. */
2023 if (!target_is_non_stop_p () && !step_what)
2024 continue;
2025
2026 switch_to_thread (tp);
2027 reset_ecs (ecs, tp);
2028 keep_going_pass_signal (ecs);
2029
2030 if (!ecs->wait_some_more)
2031 error (_("Command aborted."));
2032
2033 gdb_assert (tp->resumed);
2034
2035 /* If we started a new in-line step-over, we're done. */
2036 if (step_over_info_valid_p ())
2037 {
2038 gdb_assert (tp->control.trap_expected);
2039 return 1;
2040 }
2041
2042 if (!target_is_non_stop_p ())
2043 {
2044 /* On all-stop, shouldn't have resumed unless we needed a
2045 step over. */
2046 gdb_assert (tp->control.trap_expected
2047 || tp->step_after_step_resume_breakpoint);
2048
2049 /* With remote targets (at least), in all-stop, we can't
2050 issue any further remote commands until the program stops
2051 again. */
2052 return 1;
2053 }
2054
2055 /* Either the thread no longer needed a step-over, or a new
2056 displaced stepping sequence started. Even in the latter
2057 case, continue looking. Maybe we can also start another
2058 displaced step on a thread of other process. */
2059 }
2060
2061 return 0;
2062 }
2063
2064 /* Update global variables holding ptids to hold NEW_PTID if they were
2065 holding OLD_PTID. */
2066 static void
2067 infrun_thread_ptid_changed (process_stratum_target *target,
2068 ptid_t old_ptid, ptid_t new_ptid)
2069 {
2070 if (inferior_ptid == old_ptid
2071 && current_inferior ()->process_target () == target)
2072 inferior_ptid = new_ptid;
2073 }
2074
2075 \f
2076
2077 static const char schedlock_off[] = "off";
2078 static const char schedlock_on[] = "on";
2079 static const char schedlock_step[] = "step";
2080 static const char schedlock_replay[] = "replay";
2081 static const char *const scheduler_enums[] = {
2082 schedlock_off,
2083 schedlock_on,
2084 schedlock_step,
2085 schedlock_replay,
2086 NULL
2087 };
2088 static const char *scheduler_mode = schedlock_replay;
2089 static void
2090 show_scheduler_mode (struct ui_file *file, int from_tty,
2091 struct cmd_list_element *c, const char *value)
2092 {
2093 fprintf_filtered (file,
2094 _("Mode for locking scheduler "
2095 "during execution is \"%s\".\n"),
2096 value);
2097 }
2098
2099 static void
2100 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2101 {
2102 if (!target_can_lock_scheduler ())
2103 {
2104 scheduler_mode = schedlock_off;
2105 error (_("Target '%s' cannot support this command."), target_shortname);
2106 }
2107 }
2108
2109 /* True if execution commands resume all threads of all processes by
2110 default; otherwise, resume only threads of the current inferior
2111 process. */
2112 bool sched_multi = false;
2113
2114 /* Try to setup for software single stepping over the specified location.
2115 Return 1 if target_resume() should use hardware single step.
2116
2117 GDBARCH the current gdbarch.
2118 PC the location to step over. */
2119
2120 static int
2121 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2122 {
2123 int hw_step = 1;
2124
2125 if (execution_direction == EXEC_FORWARD
2126 && gdbarch_software_single_step_p (gdbarch))
2127 hw_step = !insert_single_step_breakpoints (gdbarch);
2128
2129 return hw_step;
2130 }
2131
2132 /* See infrun.h. */
2133
2134 ptid_t
2135 user_visible_resume_ptid (int step)
2136 {
2137 ptid_t resume_ptid;
2138
2139 if (non_stop)
2140 {
2141 /* With non-stop mode on, threads are always handled
2142 individually. */
2143 resume_ptid = inferior_ptid;
2144 }
2145 else if ((scheduler_mode == schedlock_on)
2146 || (scheduler_mode == schedlock_step && step))
2147 {
2148 /* User-settable 'scheduler' mode requires solo thread
2149 resume. */
2150 resume_ptid = inferior_ptid;
2151 }
2152 else if ((scheduler_mode == schedlock_replay)
2153 && target_record_will_replay (minus_one_ptid, execution_direction))
2154 {
2155 /* User-settable 'scheduler' mode requires solo thread resume in replay
2156 mode. */
2157 resume_ptid = inferior_ptid;
2158 }
2159 else if (!sched_multi && target_supports_multi_process ())
2160 {
2161 /* Resume all threads of the current process (and none of other
2162 processes). */
2163 resume_ptid = ptid_t (inferior_ptid.pid ());
2164 }
2165 else
2166 {
2167 /* Resume all threads of all processes. */
2168 resume_ptid = RESUME_ALL;
2169 }
2170
2171 return resume_ptid;
2172 }
2173
2174 /* See infrun.h. */
2175
2176 process_stratum_target *
2177 user_visible_resume_target (ptid_t resume_ptid)
2178 {
2179 return (resume_ptid == minus_one_ptid && sched_multi
2180 ? NULL
2181 : current_inferior ()->process_target ());
2182 }
2183
2184 /* Return a ptid representing the set of threads that we will resume,
2185 in the perspective of the target, assuming run control handling
2186 does not require leaving some threads stopped (e.g., stepping past
2187 breakpoint). USER_STEP indicates whether we're about to start the
2188 target for a stepping command. */
2189
2190 static ptid_t
2191 internal_resume_ptid (int user_step)
2192 {
2193 /* In non-stop, we always control threads individually. Note that
2194 the target may always work in non-stop mode even with "set
2195 non-stop off", in which case user_visible_resume_ptid could
2196 return a wildcard ptid. */
2197 if (target_is_non_stop_p ())
2198 return inferior_ptid;
2199 else
2200 return user_visible_resume_ptid (user_step);
2201 }
2202
2203 /* Wrapper for target_resume, that handles infrun-specific
2204 bookkeeping. */
2205
2206 static void
2207 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2208 {
2209 struct thread_info *tp = inferior_thread ();
2210
2211 gdb_assert (!tp->stop_requested);
2212
2213 /* Install inferior's terminal modes. */
2214 target_terminal::inferior ();
2215
2216 /* Avoid confusing the next resume, if the next stop/resume
2217 happens to apply to another thread. */
2218 tp->suspend.stop_signal = GDB_SIGNAL_0;
2219
2220 /* Advise target which signals may be handled silently.
2221
2222 If we have removed breakpoints because we are stepping over one
2223 in-line (in any thread), we need to receive all signals to avoid
2224 accidentally skipping a breakpoint during execution of a signal
2225 handler.
2226
2227 Likewise if we're displaced stepping, otherwise a trap for a
2228 breakpoint in a signal handler might be confused with the
2229 displaced step finishing. We don't make the displaced_step_fixup
2230 step distinguish the cases instead, because:
2231
2232 - a backtrace while stopped in the signal handler would show the
2233 scratch pad as frame older than the signal handler, instead of
2234 the real mainline code.
2235
2236 - when the thread is later resumed, the signal handler would
2237 return to the scratch pad area, which would no longer be
2238 valid. */
2239 if (step_over_info_valid_p ()
2240 || displaced_step_in_progress (tp->inf))
2241 target_pass_signals ({});
2242 else
2243 target_pass_signals (signal_pass);
2244
2245 target_resume (resume_ptid, step, sig);
2246
2247 target_commit_resume ();
2248
2249 if (target_can_async_p ())
2250 target_async (1);
2251 }
2252
2253 /* Resume the inferior. SIG is the signal to give the inferior
2254 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2255 call 'resume', which handles exceptions. */
2256
2257 static void
2258 resume_1 (enum gdb_signal sig)
2259 {
2260 struct regcache *regcache = get_current_regcache ();
2261 struct gdbarch *gdbarch = regcache->arch ();
2262 struct thread_info *tp = inferior_thread ();
2263 const address_space *aspace = regcache->aspace ();
2264 ptid_t resume_ptid;
2265 /* This represents the user's step vs continue request. When
2266 deciding whether "set scheduler-locking step" applies, it's the
2267 user's intention that counts. */
2268 const int user_step = tp->control.stepping_command;
2269 /* This represents what we'll actually request the target to do.
2270 This can decay from a step to a continue, if e.g., we need to
2271 implement single-stepping with breakpoints (software
2272 single-step). */
2273 int step;
2274
2275 gdb_assert (!tp->stop_requested);
2276 gdb_assert (!thread_is_in_step_over_chain (tp));
2277
2278 if (tp->suspend.waitstatus_pending_p)
2279 {
2280 infrun_debug_printf
2281 ("thread %s has pending wait "
2282 "status %s (currently_stepping=%d).",
2283 target_pid_to_str (tp->ptid).c_str (),
2284 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2285 currently_stepping (tp));
2286
2287 tp->inf->process_target ()->threads_executing = true;
2288 tp->resumed = true;
2289
2290 /* FIXME: What should we do if we are supposed to resume this
2291 thread with a signal? Maybe we should maintain a queue of
2292 pending signals to deliver. */
2293 if (sig != GDB_SIGNAL_0)
2294 {
2295 warning (_("Couldn't deliver signal %s to %s."),
2296 gdb_signal_to_name (sig),
2297 target_pid_to_str (tp->ptid).c_str ());
2298 }
2299
2300 tp->suspend.stop_signal = GDB_SIGNAL_0;
2301
2302 if (target_can_async_p ())
2303 {
2304 target_async (1);
2305 /* Tell the event loop we have an event to process. */
2306 mark_async_event_handler (infrun_async_inferior_event_token);
2307 }
2308 return;
2309 }
2310
2311 tp->stepped_breakpoint = 0;
2312
2313 /* Depends on stepped_breakpoint. */
2314 step = currently_stepping (tp);
2315
2316 if (current_inferior ()->waiting_for_vfork_done)
2317 {
2318 /* Don't try to single-step a vfork parent that is waiting for
2319 the child to get out of the shared memory region (by exec'ing
2320 or exiting). This is particularly important on software
2321 single-step archs, as the child process would trip on the
2322 software single step breakpoint inserted for the parent
2323 process. Since the parent will not actually execute any
2324 instruction until the child is out of the shared region (such
2325 are vfork's semantics), it is safe to simply continue it.
2326 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2327 the parent, and tell it to `keep_going', which automatically
2328 re-sets it stepping. */
2329 infrun_debug_printf ("resume : clear step");
2330 step = 0;
2331 }
2332
2333 CORE_ADDR pc = regcache_read_pc (regcache);
2334
2335 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2336 "current thread [%s] at %s",
2337 step, gdb_signal_to_symbol_string (sig),
2338 tp->control.trap_expected,
2339 target_pid_to_str (inferior_ptid).c_str (),
2340 paddress (gdbarch, pc));
2341
2342 /* Normally, by the time we reach `resume', the breakpoints are either
2343 removed or inserted, as appropriate. The exception is if we're sitting
2344 at a permanent breakpoint; we need to step over it, but permanent
2345 breakpoints can't be removed. So we have to test for it here. */
2346 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2347 {
2348 if (sig != GDB_SIGNAL_0)
2349 {
2350 /* We have a signal to pass to the inferior. The resume
2351 may, or may not take us to the signal handler. If this
2352 is a step, we'll need to stop in the signal handler, if
2353 there's one, (if the target supports stepping into
2354 handlers), or in the next mainline instruction, if
2355 there's no handler. If this is a continue, we need to be
2356 sure to run the handler with all breakpoints inserted.
2357 In all cases, set a breakpoint at the current address
2358 (where the handler returns to), and once that breakpoint
2359 is hit, resume skipping the permanent breakpoint. If
2360 that breakpoint isn't hit, then we've stepped into the
2361 signal handler (or hit some other event). We'll delete
2362 the step-resume breakpoint then. */
2363
2364 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2365 "deliver signal first");
2366
2367 clear_step_over_info ();
2368 tp->control.trap_expected = 0;
2369
2370 if (tp->control.step_resume_breakpoint == NULL)
2371 {
2372 /* Set a "high-priority" step-resume, as we don't want
2373 user breakpoints at PC to trigger (again) when this
2374 hits. */
2375 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2376 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2377
2378 tp->step_after_step_resume_breakpoint = step;
2379 }
2380
2381 insert_breakpoints ();
2382 }
2383 else
2384 {
2385 /* There's no signal to pass, we can go ahead and skip the
2386 permanent breakpoint manually. */
2387 infrun_debug_printf ("skipping permanent breakpoint");
2388 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2389 /* Update pc to reflect the new address from which we will
2390 execute instructions. */
2391 pc = regcache_read_pc (regcache);
2392
2393 if (step)
2394 {
2395 /* We've already advanced the PC, so the stepping part
2396 is done. Now we need to arrange for a trap to be
2397 reported to handle_inferior_event. Set a breakpoint
2398 at the current PC, and run to it. Don't update
2399 prev_pc, because if we end in
2400 switch_back_to_stepped_thread, we want the "expected
2401 thread advanced also" branch to be taken. IOW, we
2402 don't want this thread to step further from PC
2403 (overstep). */
2404 gdb_assert (!step_over_info_valid_p ());
2405 insert_single_step_breakpoint (gdbarch, aspace, pc);
2406 insert_breakpoints ();
2407
2408 resume_ptid = internal_resume_ptid (user_step);
2409 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2410 tp->resumed = true;
2411 return;
2412 }
2413 }
2414 }
2415
2416 /* If we have a breakpoint to step over, make sure to do a single
2417 step only. Same if we have software watchpoints. */
2418 if (tp->control.trap_expected || bpstat_should_step ())
2419 tp->control.may_range_step = 0;
2420
2421 /* If displaced stepping is enabled, step over breakpoints by executing a
2422 copy of the instruction at a different address.
2423
2424 We can't use displaced stepping when we have a signal to deliver;
2425 the comments for displaced_step_prepare explain why. The
2426 comments in the handle_inferior event for dealing with 'random
2427 signals' explain what we do instead.
2428
2429 We can't use displaced stepping when we are waiting for vfork_done
2430 event, displaced stepping breaks the vfork child similarly as single
2431 step software breakpoint. */
2432 if (tp->control.trap_expected
2433 && use_displaced_stepping (tp)
2434 && !step_over_info_valid_p ()
2435 && sig == GDB_SIGNAL_0
2436 && !current_inferior ()->waiting_for_vfork_done)
2437 {
2438 int prepared = displaced_step_prepare (tp);
2439
2440 if (prepared == 0)
2441 {
2442 infrun_debug_printf ("Got placed in step-over queue");
2443
2444 tp->control.trap_expected = 0;
2445 return;
2446 }
2447 else if (prepared < 0)
2448 {
2449 /* Fallback to stepping over the breakpoint in-line. */
2450
2451 if (target_is_non_stop_p ())
2452 stop_all_threads ();
2453
2454 set_step_over_info (regcache->aspace (),
2455 regcache_read_pc (regcache), 0, tp->global_num);
2456
2457 step = maybe_software_singlestep (gdbarch, pc);
2458
2459 insert_breakpoints ();
2460 }
2461 else if (prepared > 0)
2462 {
2463 struct displaced_step_inferior_state *displaced;
2464
2465 /* Update pc to reflect the new address from which we will
2466 execute instructions due to displaced stepping. */
2467 pc = regcache_read_pc (get_thread_regcache (tp));
2468
2469 displaced = get_displaced_stepping_state (tp->inf);
2470 step = gdbarch_displaced_step_hw_singlestep
2471 (gdbarch, displaced->step_closure.get ());
2472 }
2473 }
2474
2475 /* Do we need to do it the hard way, w/temp breakpoints? */
2476 else if (step)
2477 step = maybe_software_singlestep (gdbarch, pc);
2478
2479 /* Currently, our software single-step implementation leads to different
2480 results than hardware single-stepping in one situation: when stepping
2481 into delivering a signal which has an associated signal handler,
2482 hardware single-step will stop at the first instruction of the handler,
2483 while software single-step will simply skip execution of the handler.
2484
2485 For now, this difference in behavior is accepted since there is no
2486 easy way to actually implement single-stepping into a signal handler
2487 without kernel support.
2488
2489 However, there is one scenario where this difference leads to follow-on
2490 problems: if we're stepping off a breakpoint by removing all breakpoints
2491 and then single-stepping. In this case, the software single-step
2492 behavior means that even if there is a *breakpoint* in the signal
2493 handler, GDB still would not stop.
2494
2495 Fortunately, we can at least fix this particular issue. We detect
2496 here the case where we are about to deliver a signal while software
2497 single-stepping with breakpoints removed. In this situation, we
2498 revert the decisions to remove all breakpoints and insert single-
2499 step breakpoints, and instead we install a step-resume breakpoint
2500 at the current address, deliver the signal without stepping, and
2501 once we arrive back at the step-resume breakpoint, actually step
2502 over the breakpoint we originally wanted to step over. */
2503 if (thread_has_single_step_breakpoints_set (tp)
2504 && sig != GDB_SIGNAL_0
2505 && step_over_info_valid_p ())
2506 {
2507 /* If we have nested signals or a pending signal is delivered
2508 immediately after a handler returns, might already have
2509 a step-resume breakpoint set on the earlier handler. We cannot
2510 set another step-resume breakpoint; just continue on until the
2511 original breakpoint is hit. */
2512 if (tp->control.step_resume_breakpoint == NULL)
2513 {
2514 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2515 tp->step_after_step_resume_breakpoint = 1;
2516 }
2517
2518 delete_single_step_breakpoints (tp);
2519
2520 clear_step_over_info ();
2521 tp->control.trap_expected = 0;
2522
2523 insert_breakpoints ();
2524 }
2525
2526 /* If STEP is set, it's a request to use hardware stepping
2527 facilities. But in that case, we should never
2528 use singlestep breakpoint. */
2529 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2530
2531 /* Decide the set of threads to ask the target to resume. */
2532 if (tp->control.trap_expected)
2533 {
2534 /* We're allowing a thread to run past a breakpoint it has
2535 hit, either by single-stepping the thread with the breakpoint
2536 removed, or by displaced stepping, with the breakpoint inserted.
2537 In the former case, we need to single-step only this thread,
2538 and keep others stopped, as they can miss this breakpoint if
2539 allowed to run. That's not really a problem for displaced
2540 stepping, but, we still keep other threads stopped, in case
2541 another thread is also stopped for a breakpoint waiting for
2542 its turn in the displaced stepping queue. */
2543 resume_ptid = inferior_ptid;
2544 }
2545 else
2546 resume_ptid = internal_resume_ptid (user_step);
2547
2548 if (execution_direction != EXEC_REVERSE
2549 && step && breakpoint_inserted_here_p (aspace, pc))
2550 {
2551 /* There are two cases where we currently need to step a
2552 breakpoint instruction when we have a signal to deliver:
2553
2554 - See handle_signal_stop where we handle random signals that
2555 could take out us out of the stepping range. Normally, in
2556 that case we end up continuing (instead of stepping) over the
2557 signal handler with a breakpoint at PC, but there are cases
2558 where we should _always_ single-step, even if we have a
2559 step-resume breakpoint, like when a software watchpoint is
2560 set. Assuming single-stepping and delivering a signal at the
2561 same time would takes us to the signal handler, then we could
2562 have removed the breakpoint at PC to step over it. However,
2563 some hardware step targets (like e.g., Mac OS) can't step
2564 into signal handlers, and for those, we need to leave the
2565 breakpoint at PC inserted, as otherwise if the handler
2566 recurses and executes PC again, it'll miss the breakpoint.
2567 So we leave the breakpoint inserted anyway, but we need to
2568 record that we tried to step a breakpoint instruction, so
2569 that adjust_pc_after_break doesn't end up confused.
2570
2571 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2572 in one thread after another thread that was stepping had been
2573 momentarily paused for a step-over. When we re-resume the
2574 stepping thread, it may be resumed from that address with a
2575 breakpoint that hasn't trapped yet. Seen with
2576 gdb.threads/non-stop-fair-events.exp, on targets that don't
2577 do displaced stepping. */
2578
2579 infrun_debug_printf ("resume: [%s] stepped breakpoint",
2580 target_pid_to_str (tp->ptid).c_str ());
2581
2582 tp->stepped_breakpoint = 1;
2583
2584 /* Most targets can step a breakpoint instruction, thus
2585 executing it normally. But if this one cannot, just
2586 continue and we will hit it anyway. */
2587 if (gdbarch_cannot_step_breakpoint (gdbarch))
2588 step = 0;
2589 }
2590
2591 if (debug_displaced
2592 && tp->control.trap_expected
2593 && use_displaced_stepping (tp)
2594 && !step_over_info_valid_p ())
2595 {
2596 struct regcache *resume_regcache = get_thread_regcache (tp);
2597 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2598 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2599 gdb_byte buf[4];
2600
2601 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2602 paddress (resume_gdbarch, actual_pc));
2603 read_memory (actual_pc, buf, sizeof (buf));
2604 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2605 }
2606
2607 if (tp->control.may_range_step)
2608 {
2609 /* If we're resuming a thread with the PC out of the step
2610 range, then we're doing some nested/finer run control
2611 operation, like stepping the thread out of the dynamic
2612 linker or the displaced stepping scratch pad. We
2613 shouldn't have allowed a range step then. */
2614 gdb_assert (pc_in_thread_step_range (pc, tp));
2615 }
2616
2617 do_target_resume (resume_ptid, step, sig);
2618 tp->resumed = true;
2619 }
2620
2621 /* Resume the inferior. SIG is the signal to give the inferior
2622 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2623 rolls back state on error. */
2624
2625 static void
2626 resume (gdb_signal sig)
2627 {
2628 try
2629 {
2630 resume_1 (sig);
2631 }
2632 catch (const gdb_exception &ex)
2633 {
2634 /* If resuming is being aborted for any reason, delete any
2635 single-step breakpoint resume_1 may have created, to avoid
2636 confusing the following resumption, and to avoid leaving
2637 single-step breakpoints perturbing other threads, in case
2638 we're running in non-stop mode. */
2639 if (inferior_ptid != null_ptid)
2640 delete_single_step_breakpoints (inferior_thread ());
2641 throw;
2642 }
2643 }
2644
2645 \f
2646 /* Proceeding. */
2647
2648 /* See infrun.h. */
2649
2650 /* Counter that tracks number of user visible stops. This can be used
2651 to tell whether a command has proceeded the inferior past the
2652 current location. This allows e.g., inferior function calls in
2653 breakpoint commands to not interrupt the command list. When the
2654 call finishes successfully, the inferior is standing at the same
2655 breakpoint as if nothing happened (and so we don't call
2656 normal_stop). */
2657 static ULONGEST current_stop_id;
2658
2659 /* See infrun.h. */
2660
2661 ULONGEST
2662 get_stop_id (void)
2663 {
2664 return current_stop_id;
2665 }
2666
2667 /* Called when we report a user visible stop. */
2668
2669 static void
2670 new_stop_id (void)
2671 {
2672 current_stop_id++;
2673 }
2674
2675 /* Clear out all variables saying what to do when inferior is continued.
2676 First do this, then set the ones you want, then call `proceed'. */
2677
2678 static void
2679 clear_proceed_status_thread (struct thread_info *tp)
2680 {
2681 infrun_debug_printf ("%s", target_pid_to_str (tp->ptid).c_str ());
2682
2683 /* If we're starting a new sequence, then the previous finished
2684 single-step is no longer relevant. */
2685 if (tp->suspend.waitstatus_pending_p)
2686 {
2687 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2688 {
2689 infrun_debug_printf ("pending event of %s was a finished step. "
2690 "Discarding.",
2691 target_pid_to_str (tp->ptid).c_str ());
2692
2693 tp->suspend.waitstatus_pending_p = 0;
2694 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2695 }
2696 else
2697 {
2698 infrun_debug_printf
2699 ("thread %s has pending wait status %s (currently_stepping=%d).",
2700 target_pid_to_str (tp->ptid).c_str (),
2701 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2702 currently_stepping (tp));
2703 }
2704 }
2705
2706 /* If this signal should not be seen by program, give it zero.
2707 Used for debugging signals. */
2708 if (!signal_pass_state (tp->suspend.stop_signal))
2709 tp->suspend.stop_signal = GDB_SIGNAL_0;
2710
2711 delete tp->thread_fsm;
2712 tp->thread_fsm = NULL;
2713
2714 tp->control.trap_expected = 0;
2715 tp->control.step_range_start = 0;
2716 tp->control.step_range_end = 0;
2717 tp->control.may_range_step = 0;
2718 tp->control.step_frame_id = null_frame_id;
2719 tp->control.step_stack_frame_id = null_frame_id;
2720 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2721 tp->control.step_start_function = NULL;
2722 tp->stop_requested = 0;
2723
2724 tp->control.stop_step = 0;
2725
2726 tp->control.proceed_to_finish = 0;
2727
2728 tp->control.stepping_command = 0;
2729
2730 /* Discard any remaining commands or status from previous stop. */
2731 bpstat_clear (&tp->control.stop_bpstat);
2732 }
2733
2734 void
2735 clear_proceed_status (int step)
2736 {
2737 /* With scheduler-locking replay, stop replaying other threads if we're
2738 not replaying the user-visible resume ptid.
2739
2740 This is a convenience feature to not require the user to explicitly
2741 stop replaying the other threads. We're assuming that the user's
2742 intent is to resume tracing the recorded process. */
2743 if (!non_stop && scheduler_mode == schedlock_replay
2744 && target_record_is_replaying (minus_one_ptid)
2745 && !target_record_will_replay (user_visible_resume_ptid (step),
2746 execution_direction))
2747 target_record_stop_replaying ();
2748
2749 if (!non_stop && inferior_ptid != null_ptid)
2750 {
2751 ptid_t resume_ptid = user_visible_resume_ptid (step);
2752 process_stratum_target *resume_target
2753 = user_visible_resume_target (resume_ptid);
2754
2755 /* In all-stop mode, delete the per-thread status of all threads
2756 we're about to resume, implicitly and explicitly. */
2757 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2758 clear_proceed_status_thread (tp);
2759 }
2760
2761 if (inferior_ptid != null_ptid)
2762 {
2763 struct inferior *inferior;
2764
2765 if (non_stop)
2766 {
2767 /* If in non-stop mode, only delete the per-thread status of
2768 the current thread. */
2769 clear_proceed_status_thread (inferior_thread ());
2770 }
2771
2772 inferior = current_inferior ();
2773 inferior->control.stop_soon = NO_STOP_QUIETLY;
2774 }
2775
2776 gdb::observers::about_to_proceed.notify ();
2777 }
2778
2779 /* Returns true if TP is still stopped at a breakpoint that needs
2780 stepping-over in order to make progress. If the breakpoint is gone
2781 meanwhile, we can skip the whole step-over dance. */
2782
2783 static int
2784 thread_still_needs_step_over_bp (struct thread_info *tp)
2785 {
2786 if (tp->stepping_over_breakpoint)
2787 {
2788 struct regcache *regcache = get_thread_regcache (tp);
2789
2790 if (breakpoint_here_p (regcache->aspace (),
2791 regcache_read_pc (regcache))
2792 == ordinary_breakpoint_here)
2793 return 1;
2794
2795 tp->stepping_over_breakpoint = 0;
2796 }
2797
2798 return 0;
2799 }
2800
2801 /* Check whether thread TP still needs to start a step-over in order
2802 to make progress when resumed. Returns an bitwise or of enum
2803 step_over_what bits, indicating what needs to be stepped over. */
2804
2805 static step_over_what
2806 thread_still_needs_step_over (struct thread_info *tp)
2807 {
2808 step_over_what what = 0;
2809
2810 if (thread_still_needs_step_over_bp (tp))
2811 what |= STEP_OVER_BREAKPOINT;
2812
2813 if (tp->stepping_over_watchpoint
2814 && !target_have_steppable_watchpoint ())
2815 what |= STEP_OVER_WATCHPOINT;
2816
2817 return what;
2818 }
2819
2820 /* Returns true if scheduler locking applies. STEP indicates whether
2821 we're about to do a step/next-like command to a thread. */
2822
2823 static int
2824 schedlock_applies (struct thread_info *tp)
2825 {
2826 return (scheduler_mode == schedlock_on
2827 || (scheduler_mode == schedlock_step
2828 && tp->control.stepping_command)
2829 || (scheduler_mode == schedlock_replay
2830 && target_record_will_replay (minus_one_ptid,
2831 execution_direction)));
2832 }
2833
2834 /* Calls target_commit_resume on all targets. */
2835
2836 static void
2837 commit_resume_all_targets ()
2838 {
2839 scoped_restore_current_thread restore_thread;
2840
2841 /* Map between process_target and a representative inferior. This
2842 is to avoid committing a resume in the same target more than
2843 once. Resumptions must be idempotent, so this is an
2844 optimization. */
2845 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2846
2847 for (inferior *inf : all_non_exited_inferiors ())
2848 if (inf->has_execution ())
2849 conn_inf[inf->process_target ()] = inf;
2850
2851 for (const auto &ci : conn_inf)
2852 {
2853 inferior *inf = ci.second;
2854 switch_to_inferior_no_thread (inf);
2855 target_commit_resume ();
2856 }
2857 }
2858
2859 /* Check that all the targets we're about to resume are in non-stop
2860 mode. Ideally, we'd only care whether all targets support
2861 target-async, but we're not there yet. E.g., stop_all_threads
2862 doesn't know how to handle all-stop targets. Also, the remote
2863 protocol in all-stop mode is synchronous, irrespective of
2864 target-async, which means that things like a breakpoint re-set
2865 triggered by one target would try to read memory from all targets
2866 and fail. */
2867
2868 static void
2869 check_multi_target_resumption (process_stratum_target *resume_target)
2870 {
2871 if (!non_stop && resume_target == nullptr)
2872 {
2873 scoped_restore_current_thread restore_thread;
2874
2875 /* This is used to track whether we're resuming more than one
2876 target. */
2877 process_stratum_target *first_connection = nullptr;
2878
2879 /* The first inferior we see with a target that does not work in
2880 always-non-stop mode. */
2881 inferior *first_not_non_stop = nullptr;
2882
2883 for (inferior *inf : all_non_exited_inferiors (resume_target))
2884 {
2885 switch_to_inferior_no_thread (inf);
2886
2887 if (!target_has_execution ())
2888 continue;
2889
2890 process_stratum_target *proc_target
2891 = current_inferior ()->process_target();
2892
2893 if (!target_is_non_stop_p ())
2894 first_not_non_stop = inf;
2895
2896 if (first_connection == nullptr)
2897 first_connection = proc_target;
2898 else if (first_connection != proc_target
2899 && first_not_non_stop != nullptr)
2900 {
2901 switch_to_inferior_no_thread (first_not_non_stop);
2902
2903 proc_target = current_inferior ()->process_target();
2904
2905 error (_("Connection %d (%s) does not support "
2906 "multi-target resumption."),
2907 proc_target->connection_number,
2908 make_target_connection_string (proc_target).c_str ());
2909 }
2910 }
2911 }
2912 }
2913
2914 /* Basic routine for continuing the program in various fashions.
2915
2916 ADDR is the address to resume at, or -1 for resume where stopped.
2917 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2918 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2919
2920 You should call clear_proceed_status before calling proceed. */
2921
2922 void
2923 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2924 {
2925 struct regcache *regcache;
2926 struct gdbarch *gdbarch;
2927 CORE_ADDR pc;
2928 struct execution_control_state ecss;
2929 struct execution_control_state *ecs = &ecss;
2930 int started;
2931
2932 /* If we're stopped at a fork/vfork, follow the branch set by the
2933 "set follow-fork-mode" command; otherwise, we'll just proceed
2934 resuming the current thread. */
2935 if (!follow_fork ())
2936 {
2937 /* The target for some reason decided not to resume. */
2938 normal_stop ();
2939 if (target_can_async_p ())
2940 inferior_event_handler (INF_EXEC_COMPLETE);
2941 return;
2942 }
2943
2944 /* We'll update this if & when we switch to a new thread. */
2945 previous_inferior_ptid = inferior_ptid;
2946
2947 regcache = get_current_regcache ();
2948 gdbarch = regcache->arch ();
2949 const address_space *aspace = regcache->aspace ();
2950
2951 pc = regcache_read_pc_protected (regcache);
2952
2953 thread_info *cur_thr = inferior_thread ();
2954
2955 /* Fill in with reasonable starting values. */
2956 init_thread_stepping_state (cur_thr);
2957
2958 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2959
2960 ptid_t resume_ptid
2961 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2962 process_stratum_target *resume_target
2963 = user_visible_resume_target (resume_ptid);
2964
2965 check_multi_target_resumption (resume_target);
2966
2967 if (addr == (CORE_ADDR) -1)
2968 {
2969 if (pc == cur_thr->suspend.stop_pc
2970 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2971 && execution_direction != EXEC_REVERSE)
2972 /* There is a breakpoint at the address we will resume at,
2973 step one instruction before inserting breakpoints so that
2974 we do not stop right away (and report a second hit at this
2975 breakpoint).
2976
2977 Note, we don't do this in reverse, because we won't
2978 actually be executing the breakpoint insn anyway.
2979 We'll be (un-)executing the previous instruction. */
2980 cur_thr->stepping_over_breakpoint = 1;
2981 else if (gdbarch_single_step_through_delay_p (gdbarch)
2982 && gdbarch_single_step_through_delay (gdbarch,
2983 get_current_frame ()))
2984 /* We stepped onto an instruction that needs to be stepped
2985 again before re-inserting the breakpoint, do so. */
2986 cur_thr->stepping_over_breakpoint = 1;
2987 }
2988 else
2989 {
2990 regcache_write_pc (regcache, addr);
2991 }
2992
2993 if (siggnal != GDB_SIGNAL_DEFAULT)
2994 cur_thr->suspend.stop_signal = siggnal;
2995
2996 /* If an exception is thrown from this point on, make sure to
2997 propagate GDB's knowledge of the executing state to the
2998 frontend/user running state. */
2999 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3000
3001 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3002 threads (e.g., we might need to set threads stepping over
3003 breakpoints first), from the user/frontend's point of view, all
3004 threads in RESUME_PTID are now running. Unless we're calling an
3005 inferior function, as in that case we pretend the inferior
3006 doesn't run at all. */
3007 if (!cur_thr->control.in_infcall)
3008 set_running (resume_target, resume_ptid, true);
3009
3010 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
3011 gdb_signal_to_symbol_string (siggnal));
3012
3013 annotate_starting ();
3014
3015 /* Make sure that output from GDB appears before output from the
3016 inferior. */
3017 gdb_flush (gdb_stdout);
3018
3019 /* Since we've marked the inferior running, give it the terminal. A
3020 QUIT/Ctrl-C from here on is forwarded to the target (which can
3021 still detect attempts to unblock a stuck connection with repeated
3022 Ctrl-C from within target_pass_ctrlc). */
3023 target_terminal::inferior ();
3024
3025 /* In a multi-threaded task we may select another thread and
3026 then continue or step.
3027
3028 But if a thread that we're resuming had stopped at a breakpoint,
3029 it will immediately cause another breakpoint stop without any
3030 execution (i.e. it will report a breakpoint hit incorrectly). So
3031 we must step over it first.
3032
3033 Look for threads other than the current (TP) that reported a
3034 breakpoint hit and haven't been resumed yet since. */
3035
3036 /* If scheduler locking applies, we can avoid iterating over all
3037 threads. */
3038 if (!non_stop && !schedlock_applies (cur_thr))
3039 {
3040 for (thread_info *tp : all_non_exited_threads (resume_target,
3041 resume_ptid))
3042 {
3043 switch_to_thread_no_regs (tp);
3044
3045 /* Ignore the current thread here. It's handled
3046 afterwards. */
3047 if (tp == cur_thr)
3048 continue;
3049
3050 if (!thread_still_needs_step_over (tp))
3051 continue;
3052
3053 gdb_assert (!thread_is_in_step_over_chain (tp));
3054
3055 infrun_debug_printf ("need to step-over [%s] first",
3056 target_pid_to_str (tp->ptid).c_str ());
3057
3058 thread_step_over_chain_enqueue (tp);
3059 }
3060
3061 switch_to_thread (cur_thr);
3062 }
3063
3064 /* Enqueue the current thread last, so that we move all other
3065 threads over their breakpoints first. */
3066 if (cur_thr->stepping_over_breakpoint)
3067 thread_step_over_chain_enqueue (cur_thr);
3068
3069 /* If the thread isn't started, we'll still need to set its prev_pc,
3070 so that switch_back_to_stepped_thread knows the thread hasn't
3071 advanced. Must do this before resuming any thread, as in
3072 all-stop/remote, once we resume we can't send any other packet
3073 until the target stops again. */
3074 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3075
3076 {
3077 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3078
3079 started = start_step_over ();
3080
3081 if (step_over_info_valid_p ())
3082 {
3083 /* Either this thread started a new in-line step over, or some
3084 other thread was already doing one. In either case, don't
3085 resume anything else until the step-over is finished. */
3086 }
3087 else if (started && !target_is_non_stop_p ())
3088 {
3089 /* A new displaced stepping sequence was started. In all-stop,
3090 we can't talk to the target anymore until it next stops. */
3091 }
3092 else if (!non_stop && target_is_non_stop_p ())
3093 {
3094 /* In all-stop, but the target is always in non-stop mode.
3095 Start all other threads that are implicitly resumed too. */
3096 for (thread_info *tp : all_non_exited_threads (resume_target,
3097 resume_ptid))
3098 {
3099 switch_to_thread_no_regs (tp);
3100
3101 if (!tp->inf->has_execution ())
3102 {
3103 infrun_debug_printf ("[%s] target has no execution",
3104 target_pid_to_str (tp->ptid).c_str ());
3105 continue;
3106 }
3107
3108 if (tp->resumed)
3109 {
3110 infrun_debug_printf ("[%s] resumed",
3111 target_pid_to_str (tp->ptid).c_str ());
3112 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3113 continue;
3114 }
3115
3116 if (thread_is_in_step_over_chain (tp))
3117 {
3118 infrun_debug_printf ("[%s] needs step-over",
3119 target_pid_to_str (tp->ptid).c_str ());
3120 continue;
3121 }
3122
3123 infrun_debug_printf ("resuming %s",
3124 target_pid_to_str (tp->ptid).c_str ());
3125
3126 reset_ecs (ecs, tp);
3127 switch_to_thread (tp);
3128 keep_going_pass_signal (ecs);
3129 if (!ecs->wait_some_more)
3130 error (_("Command aborted."));
3131 }
3132 }
3133 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3134 {
3135 /* The thread wasn't started, and isn't queued, run it now. */
3136 reset_ecs (ecs, cur_thr);
3137 switch_to_thread (cur_thr);
3138 keep_going_pass_signal (ecs);
3139 if (!ecs->wait_some_more)
3140 error (_("Command aborted."));
3141 }
3142 }
3143
3144 commit_resume_all_targets ();
3145
3146 finish_state.release ();
3147
3148 /* If we've switched threads above, switch back to the previously
3149 current thread. We don't want the user to see a different
3150 selected thread. */
3151 switch_to_thread (cur_thr);
3152
3153 /* Tell the event loop to wait for it to stop. If the target
3154 supports asynchronous execution, it'll do this from within
3155 target_resume. */
3156 if (!target_can_async_p ())
3157 mark_async_event_handler (infrun_async_inferior_event_token);
3158 }
3159 \f
3160
3161 /* Start remote-debugging of a machine over a serial link. */
3162
3163 void
3164 start_remote (int from_tty)
3165 {
3166 inferior *inf = current_inferior ();
3167 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3168
3169 /* Always go on waiting for the target, regardless of the mode. */
3170 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3171 indicate to wait_for_inferior that a target should timeout if
3172 nothing is returned (instead of just blocking). Because of this,
3173 targets expecting an immediate response need to, internally, set
3174 things up so that the target_wait() is forced to eventually
3175 timeout. */
3176 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3177 differentiate to its caller what the state of the target is after
3178 the initial open has been performed. Here we're assuming that
3179 the target has stopped. It should be possible to eventually have
3180 target_open() return to the caller an indication that the target
3181 is currently running and GDB state should be set to the same as
3182 for an async run. */
3183 wait_for_inferior (inf);
3184
3185 /* Now that the inferior has stopped, do any bookkeeping like
3186 loading shared libraries. We want to do this before normal_stop,
3187 so that the displayed frame is up to date. */
3188 post_create_inferior (from_tty);
3189
3190 normal_stop ();
3191 }
3192
3193 /* Initialize static vars when a new inferior begins. */
3194
3195 void
3196 init_wait_for_inferior (void)
3197 {
3198 /* These are meaningless until the first time through wait_for_inferior. */
3199
3200 breakpoint_init_inferior (inf_starting);
3201
3202 clear_proceed_status (0);
3203
3204 nullify_last_target_wait_ptid ();
3205
3206 previous_inferior_ptid = inferior_ptid;
3207 }
3208
3209 \f
3210
3211 static void handle_inferior_event (struct execution_control_state *ecs);
3212
3213 static void handle_step_into_function (struct gdbarch *gdbarch,
3214 struct execution_control_state *ecs);
3215 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3216 struct execution_control_state *ecs);
3217 static void handle_signal_stop (struct execution_control_state *ecs);
3218 static void check_exception_resume (struct execution_control_state *,
3219 struct frame_info *);
3220
3221 static void end_stepping_range (struct execution_control_state *ecs);
3222 static void stop_waiting (struct execution_control_state *ecs);
3223 static void keep_going (struct execution_control_state *ecs);
3224 static void process_event_stop_test (struct execution_control_state *ecs);
3225 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3226
3227 /* This function is attached as a "thread_stop_requested" observer.
3228 Cleanup local state that assumed the PTID was to be resumed, and
3229 report the stop to the frontend. */
3230
3231 static void
3232 infrun_thread_stop_requested (ptid_t ptid)
3233 {
3234 process_stratum_target *curr_target = current_inferior ()->process_target ();
3235
3236 /* PTID was requested to stop. If the thread was already stopped,
3237 but the user/frontend doesn't know about that yet (e.g., the
3238 thread had been temporarily paused for some step-over), set up
3239 for reporting the stop now. */
3240 for (thread_info *tp : all_threads (curr_target, ptid))
3241 {
3242 if (tp->state != THREAD_RUNNING)
3243 continue;
3244 if (tp->executing)
3245 continue;
3246
3247 /* Remove matching threads from the step-over queue, so
3248 start_step_over doesn't try to resume them
3249 automatically. */
3250 if (thread_is_in_step_over_chain (tp))
3251 thread_step_over_chain_remove (tp);
3252
3253 /* If the thread is stopped, but the user/frontend doesn't
3254 know about that yet, queue a pending event, as if the
3255 thread had just stopped now. Unless the thread already had
3256 a pending event. */
3257 if (!tp->suspend.waitstatus_pending_p)
3258 {
3259 tp->suspend.waitstatus_pending_p = 1;
3260 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3261 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3262 }
3263
3264 /* Clear the inline-frame state, since we're re-processing the
3265 stop. */
3266 clear_inline_frame_state (tp);
3267
3268 /* If this thread was paused because some other thread was
3269 doing an inline-step over, let that finish first. Once
3270 that happens, we'll restart all threads and consume pending
3271 stop events then. */
3272 if (step_over_info_valid_p ())
3273 continue;
3274
3275 /* Otherwise we can process the (new) pending event now. Set
3276 it so this pending event is considered by
3277 do_target_wait. */
3278 tp->resumed = true;
3279 }
3280 }
3281
3282 static void
3283 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3284 {
3285 if (target_last_proc_target == tp->inf->process_target ()
3286 && target_last_wait_ptid == tp->ptid)
3287 nullify_last_target_wait_ptid ();
3288 }
3289
3290 /* Delete the step resume, single-step and longjmp/exception resume
3291 breakpoints of TP. */
3292
3293 static void
3294 delete_thread_infrun_breakpoints (struct thread_info *tp)
3295 {
3296 delete_step_resume_breakpoint (tp);
3297 delete_exception_resume_breakpoint (tp);
3298 delete_single_step_breakpoints (tp);
3299 }
3300
3301 /* If the target still has execution, call FUNC for each thread that
3302 just stopped. In all-stop, that's all the non-exited threads; in
3303 non-stop, that's the current thread, only. */
3304
3305 typedef void (*for_each_just_stopped_thread_callback_func)
3306 (struct thread_info *tp);
3307
3308 static void
3309 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3310 {
3311 if (!target_has_execution () || inferior_ptid == null_ptid)
3312 return;
3313
3314 if (target_is_non_stop_p ())
3315 {
3316 /* If in non-stop mode, only the current thread stopped. */
3317 func (inferior_thread ());
3318 }
3319 else
3320 {
3321 /* In all-stop mode, all threads have stopped. */
3322 for (thread_info *tp : all_non_exited_threads ())
3323 func (tp);
3324 }
3325 }
3326
3327 /* Delete the step resume and longjmp/exception resume breakpoints of
3328 the threads that just stopped. */
3329
3330 static void
3331 delete_just_stopped_threads_infrun_breakpoints (void)
3332 {
3333 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3334 }
3335
3336 /* Delete the single-step breakpoints of the threads that just
3337 stopped. */
3338
3339 static void
3340 delete_just_stopped_threads_single_step_breakpoints (void)
3341 {
3342 for_each_just_stopped_thread (delete_single_step_breakpoints);
3343 }
3344
3345 /* See infrun.h. */
3346
3347 void
3348 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3349 const struct target_waitstatus *ws)
3350 {
3351 std::string status_string = target_waitstatus_to_string (ws);
3352 string_file stb;
3353
3354 /* The text is split over several lines because it was getting too long.
3355 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3356 output as a unit; we want only one timestamp printed if debug_timestamp
3357 is set. */
3358
3359 stb.printf ("[infrun] target_wait (%d.%ld.%ld",
3360 waiton_ptid.pid (),
3361 waiton_ptid.lwp (),
3362 waiton_ptid.tid ());
3363 if (waiton_ptid.pid () != -1)
3364 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3365 stb.printf (", status) =\n");
3366 stb.printf ("[infrun] %d.%ld.%ld [%s],\n",
3367 result_ptid.pid (),
3368 result_ptid.lwp (),
3369 result_ptid.tid (),
3370 target_pid_to_str (result_ptid).c_str ());
3371 stb.printf ("[infrun] %s\n", status_string.c_str ());
3372
3373 /* This uses %s in part to handle %'s in the text, but also to avoid
3374 a gcc error: the format attribute requires a string literal. */
3375 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3376 }
3377
3378 /* Select a thread at random, out of those which are resumed and have
3379 had events. */
3380
3381 static struct thread_info *
3382 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3383 {
3384 int num_events = 0;
3385
3386 auto has_event = [&] (thread_info *tp)
3387 {
3388 return (tp->ptid.matches (waiton_ptid)
3389 && tp->resumed
3390 && tp->suspend.waitstatus_pending_p);
3391 };
3392
3393 /* First see how many events we have. Count only resumed threads
3394 that have an event pending. */
3395 for (thread_info *tp : inf->non_exited_threads ())
3396 if (has_event (tp))
3397 num_events++;
3398
3399 if (num_events == 0)
3400 return NULL;
3401
3402 /* Now randomly pick a thread out of those that have had events. */
3403 int random_selector = (int) ((num_events * (double) rand ())
3404 / (RAND_MAX + 1.0));
3405
3406 if (num_events > 1)
3407 infrun_debug_printf ("Found %d events, selecting #%d",
3408 num_events, random_selector);
3409
3410 /* Select the Nth thread that has had an event. */
3411 for (thread_info *tp : inf->non_exited_threads ())
3412 if (has_event (tp))
3413 if (random_selector-- == 0)
3414 return tp;
3415
3416 gdb_assert_not_reached ("event thread not found");
3417 }
3418
3419 /* Wrapper for target_wait that first checks whether threads have
3420 pending statuses to report before actually asking the target for
3421 more events. INF is the inferior we're using to call target_wait
3422 on. */
3423
3424 static ptid_t
3425 do_target_wait_1 (inferior *inf, ptid_t ptid,
3426 target_waitstatus *status, target_wait_flags options)
3427 {
3428 ptid_t event_ptid;
3429 struct thread_info *tp;
3430
3431 /* We know that we are looking for an event in the target of inferior
3432 INF, but we don't know which thread the event might come from. As
3433 such we want to make sure that INFERIOR_PTID is reset so that none of
3434 the wait code relies on it - doing so is always a mistake. */
3435 switch_to_inferior_no_thread (inf);
3436
3437 /* First check if there is a resumed thread with a wait status
3438 pending. */
3439 if (ptid == minus_one_ptid || ptid.is_pid ())
3440 {
3441 tp = random_pending_event_thread (inf, ptid);
3442 }
3443 else
3444 {
3445 infrun_debug_printf ("Waiting for specific thread %s.",
3446 target_pid_to_str (ptid).c_str ());
3447
3448 /* We have a specific thread to check. */
3449 tp = find_thread_ptid (inf, ptid);
3450 gdb_assert (tp != NULL);
3451 if (!tp->suspend.waitstatus_pending_p)
3452 tp = NULL;
3453 }
3454
3455 if (tp != NULL
3456 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3457 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3458 {
3459 struct regcache *regcache = get_thread_regcache (tp);
3460 struct gdbarch *gdbarch = regcache->arch ();
3461 CORE_ADDR pc;
3462 int discard = 0;
3463
3464 pc = regcache_read_pc (regcache);
3465
3466 if (pc != tp->suspend.stop_pc)
3467 {
3468 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
3469 target_pid_to_str (tp->ptid).c_str (),
3470 paddress (gdbarch, tp->suspend.stop_pc),
3471 paddress (gdbarch, pc));
3472 discard = 1;
3473 }
3474 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3475 {
3476 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3477 target_pid_to_str (tp->ptid).c_str (),
3478 paddress (gdbarch, pc));
3479
3480 discard = 1;
3481 }
3482
3483 if (discard)
3484 {
3485 infrun_debug_printf ("pending event of %s cancelled.",
3486 target_pid_to_str (tp->ptid).c_str ());
3487
3488 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3489 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3490 }
3491 }
3492
3493 if (tp != NULL)
3494 {
3495 infrun_debug_printf ("Using pending wait status %s for %s.",
3496 target_waitstatus_to_string
3497 (&tp->suspend.waitstatus).c_str (),
3498 target_pid_to_str (tp->ptid).c_str ());
3499
3500 /* Now that we've selected our final event LWP, un-adjust its PC
3501 if it was a software breakpoint (and the target doesn't
3502 always adjust the PC itself). */
3503 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3504 && !target_supports_stopped_by_sw_breakpoint ())
3505 {
3506 struct regcache *regcache;
3507 struct gdbarch *gdbarch;
3508 int decr_pc;
3509
3510 regcache = get_thread_regcache (tp);
3511 gdbarch = regcache->arch ();
3512
3513 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3514 if (decr_pc != 0)
3515 {
3516 CORE_ADDR pc;
3517
3518 pc = regcache_read_pc (regcache);
3519 regcache_write_pc (regcache, pc + decr_pc);
3520 }
3521 }
3522
3523 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3524 *status = tp->suspend.waitstatus;
3525 tp->suspend.waitstatus_pending_p = 0;
3526
3527 /* Wake up the event loop again, until all pending events are
3528 processed. */
3529 if (target_is_async_p ())
3530 mark_async_event_handler (infrun_async_inferior_event_token);
3531 return tp->ptid;
3532 }
3533
3534 /* But if we don't find one, we'll have to wait. */
3535
3536 /* We can't ask a non-async target to do a non-blocking wait, so this will be
3537 a blocking wait. */
3538 if (!target_can_async_p ())
3539 options &= ~TARGET_WNOHANG;
3540
3541 if (deprecated_target_wait_hook)
3542 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3543 else
3544 event_ptid = target_wait (ptid, status, options);
3545
3546 return event_ptid;
3547 }
3548
3549 /* Wrapper for target_wait that first checks whether threads have
3550 pending statuses to report before actually asking the target for
3551 more events. Polls for events from all inferiors/targets. */
3552
3553 static bool
3554 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs,
3555 target_wait_flags options)
3556 {
3557 int num_inferiors = 0;
3558 int random_selector;
3559
3560 /* For fairness, we pick the first inferior/target to poll at random
3561 out of all inferiors that may report events, and then continue
3562 polling the rest of the inferior list starting from that one in a
3563 circular fashion until the whole list is polled once. */
3564
3565 auto inferior_matches = [&wait_ptid] (inferior *inf)
3566 {
3567 return (inf->process_target () != NULL
3568 && ptid_t (inf->pid).matches (wait_ptid));
3569 };
3570
3571 /* First see how many matching inferiors we have. */
3572 for (inferior *inf : all_inferiors ())
3573 if (inferior_matches (inf))
3574 num_inferiors++;
3575
3576 if (num_inferiors == 0)
3577 {
3578 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3579 return false;
3580 }
3581
3582 /* Now randomly pick an inferior out of those that matched. */
3583 random_selector = (int)
3584 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3585
3586 if (num_inferiors > 1)
3587 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3588 num_inferiors, random_selector);
3589
3590 /* Select the Nth inferior that matched. */
3591
3592 inferior *selected = nullptr;
3593
3594 for (inferior *inf : all_inferiors ())
3595 if (inferior_matches (inf))
3596 if (random_selector-- == 0)
3597 {
3598 selected = inf;
3599 break;
3600 }
3601
3602 /* Now poll for events out of each of the matching inferior's
3603 targets, starting from the selected one. */
3604
3605 auto do_wait = [&] (inferior *inf)
3606 {
3607 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3608 ecs->target = inf->process_target ();
3609 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3610 };
3611
3612 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3613 here spuriously after the target is all stopped and we've already
3614 reported the stop to the user, polling for events. */
3615 scoped_restore_current_thread restore_thread;
3616
3617 int inf_num = selected->num;
3618 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3619 if (inferior_matches (inf))
3620 if (do_wait (inf))
3621 return true;
3622
3623 for (inferior *inf = inferior_list;
3624 inf != NULL && inf->num < inf_num;
3625 inf = inf->next)
3626 if (inferior_matches (inf))
3627 if (do_wait (inf))
3628 return true;
3629
3630 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3631 return false;
3632 }
3633
3634 /* Prepare and stabilize the inferior for detaching it. E.g.,
3635 detaching while a thread is displaced stepping is a recipe for
3636 crashing it, as nothing would readjust the PC out of the scratch
3637 pad. */
3638
3639 void
3640 prepare_for_detach (void)
3641 {
3642 struct inferior *inf = current_inferior ();
3643 ptid_t pid_ptid = ptid_t (inf->pid);
3644
3645 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3646
3647 /* Is any thread of this process displaced stepping? If not,
3648 there's nothing else to do. */
3649 if (displaced->step_thread == nullptr)
3650 return;
3651
3652 infrun_debug_printf ("displaced-stepping in-process while detaching");
3653
3654 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3655
3656 while (displaced->step_thread != nullptr)
3657 {
3658 struct execution_control_state ecss;
3659 struct execution_control_state *ecs;
3660
3661 ecs = &ecss;
3662 memset (ecs, 0, sizeof (*ecs));
3663
3664 overlay_cache_invalid = 1;
3665 /* Flush target cache before starting to handle each event.
3666 Target was running and cache could be stale. This is just a
3667 heuristic. Running threads may modify target memory, but we
3668 don't get any event. */
3669 target_dcache_invalidate ();
3670
3671 do_target_wait (pid_ptid, ecs, 0);
3672
3673 if (debug_infrun)
3674 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3675
3676 /* If an error happens while handling the event, propagate GDB's
3677 knowledge of the executing state to the frontend/user running
3678 state. */
3679 scoped_finish_thread_state finish_state (inf->process_target (),
3680 minus_one_ptid);
3681
3682 /* Now figure out what to do with the result of the result. */
3683 handle_inferior_event (ecs);
3684
3685 /* No error, don't finish the state yet. */
3686 finish_state.release ();
3687
3688 /* Breakpoints and watchpoints are not installed on the target
3689 at this point, and signals are passed directly to the
3690 inferior, so this must mean the process is gone. */
3691 if (!ecs->wait_some_more)
3692 {
3693 restore_detaching.release ();
3694 error (_("Program exited while detaching"));
3695 }
3696 }
3697
3698 restore_detaching.release ();
3699 }
3700
3701 /* Wait for control to return from inferior to debugger.
3702
3703 If inferior gets a signal, we may decide to start it up again
3704 instead of returning. That is why there is a loop in this function.
3705 When this function actually returns it means the inferior
3706 should be left stopped and GDB should read more commands. */
3707
3708 static void
3709 wait_for_inferior (inferior *inf)
3710 {
3711 infrun_debug_printf ("wait_for_inferior ()");
3712
3713 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3714
3715 /* If an error happens while handling the event, propagate GDB's
3716 knowledge of the executing state to the frontend/user running
3717 state. */
3718 scoped_finish_thread_state finish_state
3719 (inf->process_target (), minus_one_ptid);
3720
3721 while (1)
3722 {
3723 struct execution_control_state ecss;
3724 struct execution_control_state *ecs = &ecss;
3725
3726 memset (ecs, 0, sizeof (*ecs));
3727
3728 overlay_cache_invalid = 1;
3729
3730 /* Flush target cache before starting to handle each event.
3731 Target was running and cache could be stale. This is just a
3732 heuristic. Running threads may modify target memory, but we
3733 don't get any event. */
3734 target_dcache_invalidate ();
3735
3736 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3737 ecs->target = inf->process_target ();
3738
3739 if (debug_infrun)
3740 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3741
3742 /* Now figure out what to do with the result of the result. */
3743 handle_inferior_event (ecs);
3744
3745 if (!ecs->wait_some_more)
3746 break;
3747 }
3748
3749 /* No error, don't finish the state yet. */
3750 finish_state.release ();
3751 }
3752
3753 /* Cleanup that reinstalls the readline callback handler, if the
3754 target is running in the background. If while handling the target
3755 event something triggered a secondary prompt, like e.g., a
3756 pagination prompt, we'll have removed the callback handler (see
3757 gdb_readline_wrapper_line). Need to do this as we go back to the
3758 event loop, ready to process further input. Note this has no
3759 effect if the handler hasn't actually been removed, because calling
3760 rl_callback_handler_install resets the line buffer, thus losing
3761 input. */
3762
3763 static void
3764 reinstall_readline_callback_handler_cleanup ()
3765 {
3766 struct ui *ui = current_ui;
3767
3768 if (!ui->async)
3769 {
3770 /* We're not going back to the top level event loop yet. Don't
3771 install the readline callback, as it'd prep the terminal,
3772 readline-style (raw, noecho) (e.g., --batch). We'll install
3773 it the next time the prompt is displayed, when we're ready
3774 for input. */
3775 return;
3776 }
3777
3778 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3779 gdb_rl_callback_handler_reinstall ();
3780 }
3781
3782 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3783 that's just the event thread. In all-stop, that's all threads. */
3784
3785 static void
3786 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3787 {
3788 if (ecs->event_thread != NULL
3789 && ecs->event_thread->thread_fsm != NULL)
3790 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3791
3792 if (!non_stop)
3793 {
3794 for (thread_info *thr : all_non_exited_threads ())
3795 {
3796 if (thr->thread_fsm == NULL)
3797 continue;
3798 if (thr == ecs->event_thread)
3799 continue;
3800
3801 switch_to_thread (thr);
3802 thr->thread_fsm->clean_up (thr);
3803 }
3804
3805 if (ecs->event_thread != NULL)
3806 switch_to_thread (ecs->event_thread);
3807 }
3808 }
3809
3810 /* Helper for all_uis_check_sync_execution_done that works on the
3811 current UI. */
3812
3813 static void
3814 check_curr_ui_sync_execution_done (void)
3815 {
3816 struct ui *ui = current_ui;
3817
3818 if (ui->prompt_state == PROMPT_NEEDED
3819 && ui->async
3820 && !gdb_in_secondary_prompt_p (ui))
3821 {
3822 target_terminal::ours ();
3823 gdb::observers::sync_execution_done.notify ();
3824 ui_register_input_event_handler (ui);
3825 }
3826 }
3827
3828 /* See infrun.h. */
3829
3830 void
3831 all_uis_check_sync_execution_done (void)
3832 {
3833 SWITCH_THRU_ALL_UIS ()
3834 {
3835 check_curr_ui_sync_execution_done ();
3836 }
3837 }
3838
3839 /* See infrun.h. */
3840
3841 void
3842 all_uis_on_sync_execution_starting (void)
3843 {
3844 SWITCH_THRU_ALL_UIS ()
3845 {
3846 if (current_ui->prompt_state == PROMPT_NEEDED)
3847 async_disable_stdin ();
3848 }
3849 }
3850
3851 /* Asynchronous version of wait_for_inferior. It is called by the
3852 event loop whenever a change of state is detected on the file
3853 descriptor corresponding to the target. It can be called more than
3854 once to complete a single execution command. In such cases we need
3855 to keep the state in a global variable ECSS. If it is the last time
3856 that this function is called for a single execution command, then
3857 report to the user that the inferior has stopped, and do the
3858 necessary cleanups. */
3859
3860 void
3861 fetch_inferior_event ()
3862 {
3863 struct execution_control_state ecss;
3864 struct execution_control_state *ecs = &ecss;
3865 int cmd_done = 0;
3866
3867 memset (ecs, 0, sizeof (*ecs));
3868
3869 /* Events are always processed with the main UI as current UI. This
3870 way, warnings, debug output, etc. are always consistently sent to
3871 the main console. */
3872 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3873
3874 /* End up with readline processing input, if necessary. */
3875 {
3876 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3877
3878 /* We're handling a live event, so make sure we're doing live
3879 debugging. If we're looking at traceframes while the target is
3880 running, we're going to need to get back to that mode after
3881 handling the event. */
3882 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3883 if (non_stop)
3884 {
3885 maybe_restore_traceframe.emplace ();
3886 set_current_traceframe (-1);
3887 }
3888
3889 /* The user/frontend should not notice a thread switch due to
3890 internal events. Make sure we revert to the user selected
3891 thread and frame after handling the event and running any
3892 breakpoint commands. */
3893 scoped_restore_current_thread restore_thread;
3894
3895 overlay_cache_invalid = 1;
3896 /* Flush target cache before starting to handle each event. Target
3897 was running and cache could be stale. This is just a heuristic.
3898 Running threads may modify target memory, but we don't get any
3899 event. */
3900 target_dcache_invalidate ();
3901
3902 scoped_restore save_exec_dir
3903 = make_scoped_restore (&execution_direction,
3904 target_execution_direction ());
3905
3906 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3907 return;
3908
3909 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3910
3911 /* Switch to the target that generated the event, so we can do
3912 target calls. */
3913 switch_to_target_no_thread (ecs->target);
3914
3915 if (debug_infrun)
3916 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3917
3918 /* If an error happens while handling the event, propagate GDB's
3919 knowledge of the executing state to the frontend/user running
3920 state. */
3921 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3922 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
3923
3924 /* Get executed before scoped_restore_current_thread above to apply
3925 still for the thread which has thrown the exception. */
3926 auto defer_bpstat_clear
3927 = make_scope_exit (bpstat_clear_actions);
3928 auto defer_delete_threads
3929 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3930
3931 /* Now figure out what to do with the result of the result. */
3932 handle_inferior_event (ecs);
3933
3934 if (!ecs->wait_some_more)
3935 {
3936 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
3937 int should_stop = 1;
3938 struct thread_info *thr = ecs->event_thread;
3939
3940 delete_just_stopped_threads_infrun_breakpoints ();
3941
3942 if (thr != NULL)
3943 {
3944 struct thread_fsm *thread_fsm = thr->thread_fsm;
3945
3946 if (thread_fsm != NULL)
3947 should_stop = thread_fsm->should_stop (thr);
3948 }
3949
3950 if (!should_stop)
3951 {
3952 keep_going (ecs);
3953 }
3954 else
3955 {
3956 bool should_notify_stop = true;
3957 int proceeded = 0;
3958
3959 clean_up_just_stopped_threads_fsms (ecs);
3960
3961 if (thr != NULL && thr->thread_fsm != NULL)
3962 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3963
3964 if (should_notify_stop)
3965 {
3966 /* We may not find an inferior if this was a process exit. */
3967 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3968 proceeded = normal_stop ();
3969 }
3970
3971 if (!proceeded)
3972 {
3973 inferior_event_handler (INF_EXEC_COMPLETE);
3974 cmd_done = 1;
3975 }
3976
3977 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3978 previously selected thread is gone. We have two
3979 choices - switch to no thread selected, or restore the
3980 previously selected thread (now exited). We chose the
3981 later, just because that's what GDB used to do. After
3982 this, "info threads" says "The current thread <Thread
3983 ID 2> has terminated." instead of "No thread
3984 selected.". */
3985 if (!non_stop
3986 && cmd_done
3987 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3988 restore_thread.dont_restore ();
3989 }
3990 }
3991
3992 defer_delete_threads.release ();
3993 defer_bpstat_clear.release ();
3994
3995 /* No error, don't finish the thread states yet. */
3996 finish_state.release ();
3997
3998 /* This scope is used to ensure that readline callbacks are
3999 reinstalled here. */
4000 }
4001
4002 /* If a UI was in sync execution mode, and now isn't, restore its
4003 prompt (a synchronous execution command has finished, and we're
4004 ready for input). */
4005 all_uis_check_sync_execution_done ();
4006
4007 if (cmd_done
4008 && exec_done_display_p
4009 && (inferior_ptid == null_ptid
4010 || inferior_thread ()->state != THREAD_RUNNING))
4011 printf_unfiltered (_("completed.\n"));
4012 }
4013
4014 /* See infrun.h. */
4015
4016 void
4017 set_step_info (thread_info *tp, struct frame_info *frame,
4018 struct symtab_and_line sal)
4019 {
4020 /* This can be removed once this function no longer implicitly relies on the
4021 inferior_ptid value. */
4022 gdb_assert (inferior_ptid == tp->ptid);
4023
4024 tp->control.step_frame_id = get_frame_id (frame);
4025 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4026
4027 tp->current_symtab = sal.symtab;
4028 tp->current_line = sal.line;
4029 }
4030
4031 /* Clear context switchable stepping state. */
4032
4033 void
4034 init_thread_stepping_state (struct thread_info *tss)
4035 {
4036 tss->stepped_breakpoint = 0;
4037 tss->stepping_over_breakpoint = 0;
4038 tss->stepping_over_watchpoint = 0;
4039 tss->step_after_step_resume_breakpoint = 0;
4040 }
4041
4042 /* See infrun.h. */
4043
4044 void
4045 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4046 target_waitstatus status)
4047 {
4048 target_last_proc_target = target;
4049 target_last_wait_ptid = ptid;
4050 target_last_waitstatus = status;
4051 }
4052
4053 /* See infrun.h. */
4054
4055 void
4056 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4057 target_waitstatus *status)
4058 {
4059 if (target != nullptr)
4060 *target = target_last_proc_target;
4061 if (ptid != nullptr)
4062 *ptid = target_last_wait_ptid;
4063 if (status != nullptr)
4064 *status = target_last_waitstatus;
4065 }
4066
4067 /* See infrun.h. */
4068
4069 void
4070 nullify_last_target_wait_ptid (void)
4071 {
4072 target_last_proc_target = nullptr;
4073 target_last_wait_ptid = minus_one_ptid;
4074 target_last_waitstatus = {};
4075 }
4076
4077 /* Switch thread contexts. */
4078
4079 static void
4080 context_switch (execution_control_state *ecs)
4081 {
4082 if (ecs->ptid != inferior_ptid
4083 && (inferior_ptid == null_ptid
4084 || ecs->event_thread != inferior_thread ()))
4085 {
4086 infrun_debug_printf ("Switching context from %s to %s",
4087 target_pid_to_str (inferior_ptid).c_str (),
4088 target_pid_to_str (ecs->ptid).c_str ());
4089 }
4090
4091 switch_to_thread (ecs->event_thread);
4092 }
4093
4094 /* If the target can't tell whether we've hit breakpoints
4095 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4096 check whether that could have been caused by a breakpoint. If so,
4097 adjust the PC, per gdbarch_decr_pc_after_break. */
4098
4099 static void
4100 adjust_pc_after_break (struct thread_info *thread,
4101 struct target_waitstatus *ws)
4102 {
4103 struct regcache *regcache;
4104 struct gdbarch *gdbarch;
4105 CORE_ADDR breakpoint_pc, decr_pc;
4106
4107 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4108 we aren't, just return.
4109
4110 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4111 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4112 implemented by software breakpoints should be handled through the normal
4113 breakpoint layer.
4114
4115 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4116 different signals (SIGILL or SIGEMT for instance), but it is less
4117 clear where the PC is pointing afterwards. It may not match
4118 gdbarch_decr_pc_after_break. I don't know any specific target that
4119 generates these signals at breakpoints (the code has been in GDB since at
4120 least 1992) so I can not guess how to handle them here.
4121
4122 In earlier versions of GDB, a target with
4123 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4124 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4125 target with both of these set in GDB history, and it seems unlikely to be
4126 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4127
4128 if (ws->kind != TARGET_WAITKIND_STOPPED)
4129 return;
4130
4131 if (ws->value.sig != GDB_SIGNAL_TRAP)
4132 return;
4133
4134 /* In reverse execution, when a breakpoint is hit, the instruction
4135 under it has already been de-executed. The reported PC always
4136 points at the breakpoint address, so adjusting it further would
4137 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4138 architecture:
4139
4140 B1 0x08000000 : INSN1
4141 B2 0x08000001 : INSN2
4142 0x08000002 : INSN3
4143 PC -> 0x08000003 : INSN4
4144
4145 Say you're stopped at 0x08000003 as above. Reverse continuing
4146 from that point should hit B2 as below. Reading the PC when the
4147 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4148 been de-executed already.
4149
4150 B1 0x08000000 : INSN1
4151 B2 PC -> 0x08000001 : INSN2
4152 0x08000002 : INSN3
4153 0x08000003 : INSN4
4154
4155 We can't apply the same logic as for forward execution, because
4156 we would wrongly adjust the PC to 0x08000000, since there's a
4157 breakpoint at PC - 1. We'd then report a hit on B1, although
4158 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4159 behaviour. */
4160 if (execution_direction == EXEC_REVERSE)
4161 return;
4162
4163 /* If the target can tell whether the thread hit a SW breakpoint,
4164 trust it. Targets that can tell also adjust the PC
4165 themselves. */
4166 if (target_supports_stopped_by_sw_breakpoint ())
4167 return;
4168
4169 /* Note that relying on whether a breakpoint is planted in memory to
4170 determine this can fail. E.g,. the breakpoint could have been
4171 removed since. Or the thread could have been told to step an
4172 instruction the size of a breakpoint instruction, and only
4173 _after_ was a breakpoint inserted at its address. */
4174
4175 /* If this target does not decrement the PC after breakpoints, then
4176 we have nothing to do. */
4177 regcache = get_thread_regcache (thread);
4178 gdbarch = regcache->arch ();
4179
4180 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4181 if (decr_pc == 0)
4182 return;
4183
4184 const address_space *aspace = regcache->aspace ();
4185
4186 /* Find the location where (if we've hit a breakpoint) the
4187 breakpoint would be. */
4188 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4189
4190 /* If the target can't tell whether a software breakpoint triggered,
4191 fallback to figuring it out based on breakpoints we think were
4192 inserted in the target, and on whether the thread was stepped or
4193 continued. */
4194
4195 /* Check whether there actually is a software breakpoint inserted at
4196 that location.
4197
4198 If in non-stop mode, a race condition is possible where we've
4199 removed a breakpoint, but stop events for that breakpoint were
4200 already queued and arrive later. To suppress those spurious
4201 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4202 and retire them after a number of stop events are reported. Note
4203 this is an heuristic and can thus get confused. The real fix is
4204 to get the "stopped by SW BP and needs adjustment" info out of
4205 the target/kernel (and thus never reach here; see above). */
4206 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4207 || (target_is_non_stop_p ()
4208 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4209 {
4210 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4211
4212 if (record_full_is_used ())
4213 restore_operation_disable.emplace
4214 (record_full_gdb_operation_disable_set ());
4215
4216 /* When using hardware single-step, a SIGTRAP is reported for both
4217 a completed single-step and a software breakpoint. Need to
4218 differentiate between the two, as the latter needs adjusting
4219 but the former does not.
4220
4221 The SIGTRAP can be due to a completed hardware single-step only if
4222 - we didn't insert software single-step breakpoints
4223 - this thread is currently being stepped
4224
4225 If any of these events did not occur, we must have stopped due
4226 to hitting a software breakpoint, and have to back up to the
4227 breakpoint address.
4228
4229 As a special case, we could have hardware single-stepped a
4230 software breakpoint. In this case (prev_pc == breakpoint_pc),
4231 we also need to back up to the breakpoint address. */
4232
4233 if (thread_has_single_step_breakpoints_set (thread)
4234 || !currently_stepping (thread)
4235 || (thread->stepped_breakpoint
4236 && thread->prev_pc == breakpoint_pc))
4237 regcache_write_pc (regcache, breakpoint_pc);
4238 }
4239 }
4240
4241 static int
4242 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4243 {
4244 for (frame = get_prev_frame (frame);
4245 frame != NULL;
4246 frame = get_prev_frame (frame))
4247 {
4248 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4249 return 1;
4250 if (get_frame_type (frame) != INLINE_FRAME)
4251 break;
4252 }
4253
4254 return 0;
4255 }
4256
4257 /* Look for an inline frame that is marked for skip.
4258 If PREV_FRAME is TRUE start at the previous frame,
4259 otherwise start at the current frame. Stop at the
4260 first non-inline frame, or at the frame where the
4261 step started. */
4262
4263 static bool
4264 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4265 {
4266 struct frame_info *frame = get_current_frame ();
4267
4268 if (prev_frame)
4269 frame = get_prev_frame (frame);
4270
4271 for (; frame != NULL; frame = get_prev_frame (frame))
4272 {
4273 const char *fn = NULL;
4274 symtab_and_line sal;
4275 struct symbol *sym;
4276
4277 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4278 break;
4279 if (get_frame_type (frame) != INLINE_FRAME)
4280 break;
4281
4282 sal = find_frame_sal (frame);
4283 sym = get_frame_function (frame);
4284
4285 if (sym != NULL)
4286 fn = sym->print_name ();
4287
4288 if (sal.line != 0
4289 && function_name_is_marked_for_skip (fn, sal))
4290 return true;
4291 }
4292
4293 return false;
4294 }
4295
4296 /* If the event thread has the stop requested flag set, pretend it
4297 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4298 target_stop). */
4299
4300 static bool
4301 handle_stop_requested (struct execution_control_state *ecs)
4302 {
4303 if (ecs->event_thread->stop_requested)
4304 {
4305 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4306 ecs->ws.value.sig = GDB_SIGNAL_0;
4307 handle_signal_stop (ecs);
4308 return true;
4309 }
4310 return false;
4311 }
4312
4313 /* Auxiliary function that handles syscall entry/return events.
4314 It returns 1 if the inferior should keep going (and GDB
4315 should ignore the event), or 0 if the event deserves to be
4316 processed. */
4317
4318 static int
4319 handle_syscall_event (struct execution_control_state *ecs)
4320 {
4321 struct regcache *regcache;
4322 int syscall_number;
4323
4324 context_switch (ecs);
4325
4326 regcache = get_thread_regcache (ecs->event_thread);
4327 syscall_number = ecs->ws.value.syscall_number;
4328 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4329
4330 if (catch_syscall_enabled () > 0
4331 && catching_syscall_number (syscall_number) > 0)
4332 {
4333 infrun_debug_printf ("syscall number=%d", syscall_number);
4334
4335 ecs->event_thread->control.stop_bpstat
4336 = bpstat_stop_status (regcache->aspace (),
4337 ecs->event_thread->suspend.stop_pc,
4338 ecs->event_thread, &ecs->ws);
4339
4340 if (handle_stop_requested (ecs))
4341 return 0;
4342
4343 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4344 {
4345 /* Catchpoint hit. */
4346 return 0;
4347 }
4348 }
4349
4350 if (handle_stop_requested (ecs))
4351 return 0;
4352
4353 /* If no catchpoint triggered for this, then keep going. */
4354 keep_going (ecs);
4355 return 1;
4356 }
4357
4358 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4359
4360 static void
4361 fill_in_stop_func (struct gdbarch *gdbarch,
4362 struct execution_control_state *ecs)
4363 {
4364 if (!ecs->stop_func_filled_in)
4365 {
4366 const block *block;
4367 const general_symbol_info *gsi;
4368
4369 /* Don't care about return value; stop_func_start and stop_func_name
4370 will both be 0 if it doesn't work. */
4371 find_pc_partial_function_sym (ecs->event_thread->suspend.stop_pc,
4372 &gsi,
4373 &ecs->stop_func_start,
4374 &ecs->stop_func_end,
4375 &block);
4376 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
4377
4378 /* The call to find_pc_partial_function, above, will set
4379 stop_func_start and stop_func_end to the start and end
4380 of the range containing the stop pc. If this range
4381 contains the entry pc for the block (which is always the
4382 case for contiguous blocks), advance stop_func_start past
4383 the function's start offset and entrypoint. Note that
4384 stop_func_start is NOT advanced when in a range of a
4385 non-contiguous block that does not contain the entry pc. */
4386 if (block != nullptr
4387 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4388 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4389 {
4390 ecs->stop_func_start
4391 += gdbarch_deprecated_function_start_offset (gdbarch);
4392
4393 if (gdbarch_skip_entrypoint_p (gdbarch))
4394 ecs->stop_func_start
4395 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4396 }
4397
4398 ecs->stop_func_filled_in = 1;
4399 }
4400 }
4401
4402
4403 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4404
4405 static enum stop_kind
4406 get_inferior_stop_soon (execution_control_state *ecs)
4407 {
4408 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4409
4410 gdb_assert (inf != NULL);
4411 return inf->control.stop_soon;
4412 }
4413
4414 /* Poll for one event out of the current target. Store the resulting
4415 waitstatus in WS, and return the event ptid. Does not block. */
4416
4417 static ptid_t
4418 poll_one_curr_target (struct target_waitstatus *ws)
4419 {
4420 ptid_t event_ptid;
4421
4422 overlay_cache_invalid = 1;
4423
4424 /* Flush target cache before starting to handle each event.
4425 Target was running and cache could be stale. This is just a
4426 heuristic. Running threads may modify target memory, but we
4427 don't get any event. */
4428 target_dcache_invalidate ();
4429
4430 if (deprecated_target_wait_hook)
4431 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4432 else
4433 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4434
4435 if (debug_infrun)
4436 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4437
4438 return event_ptid;
4439 }
4440
4441 /* An event reported by wait_one. */
4442
4443 struct wait_one_event
4444 {
4445 /* The target the event came out of. */
4446 process_stratum_target *target;
4447
4448 /* The PTID the event was for. */
4449 ptid_t ptid;
4450
4451 /* The waitstatus. */
4452 target_waitstatus ws;
4453 };
4454
4455 /* Wait for one event out of any target. */
4456
4457 static wait_one_event
4458 wait_one ()
4459 {
4460 while (1)
4461 {
4462 for (inferior *inf : all_inferiors ())
4463 {
4464 process_stratum_target *target = inf->process_target ();
4465 if (target == NULL
4466 || !target->is_async_p ()
4467 || !target->threads_executing)
4468 continue;
4469
4470 switch_to_inferior_no_thread (inf);
4471
4472 wait_one_event event;
4473 event.target = target;
4474 event.ptid = poll_one_curr_target (&event.ws);
4475
4476 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4477 {
4478 /* If nothing is resumed, remove the target from the
4479 event loop. */
4480 target_async (0);
4481 }
4482 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4483 return event;
4484 }
4485
4486 /* Block waiting for some event. */
4487
4488 fd_set readfds;
4489 int nfds = 0;
4490
4491 FD_ZERO (&readfds);
4492
4493 for (inferior *inf : all_inferiors ())
4494 {
4495 process_stratum_target *target = inf->process_target ();
4496 if (target == NULL
4497 || !target->is_async_p ()
4498 || !target->threads_executing)
4499 continue;
4500
4501 int fd = target->async_wait_fd ();
4502 FD_SET (fd, &readfds);
4503 if (nfds <= fd)
4504 nfds = fd + 1;
4505 }
4506
4507 if (nfds == 0)
4508 {
4509 /* No waitable targets left. All must be stopped. */
4510 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4511 }
4512
4513 QUIT;
4514
4515 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4516 if (numfds < 0)
4517 {
4518 if (errno == EINTR)
4519 continue;
4520 else
4521 perror_with_name ("interruptible_select");
4522 }
4523 }
4524 }
4525
4526 /* Save the thread's event and stop reason to process it later. */
4527
4528 static void
4529 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4530 {
4531 infrun_debug_printf ("saving status %s for %d.%ld.%ld",
4532 target_waitstatus_to_string (ws).c_str (),
4533 tp->ptid.pid (),
4534 tp->ptid.lwp (),
4535 tp->ptid.tid ());
4536
4537 /* Record for later. */
4538 tp->suspend.waitstatus = *ws;
4539 tp->suspend.waitstatus_pending_p = 1;
4540
4541 struct regcache *regcache = get_thread_regcache (tp);
4542 const address_space *aspace = regcache->aspace ();
4543
4544 if (ws->kind == TARGET_WAITKIND_STOPPED
4545 && ws->value.sig == GDB_SIGNAL_TRAP)
4546 {
4547 CORE_ADDR pc = regcache_read_pc (regcache);
4548
4549 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4550
4551 scoped_restore_current_thread restore_thread;
4552 switch_to_thread (tp);
4553
4554 if (target_stopped_by_watchpoint ())
4555 {
4556 tp->suspend.stop_reason
4557 = TARGET_STOPPED_BY_WATCHPOINT;
4558 }
4559 else if (target_supports_stopped_by_sw_breakpoint ()
4560 && target_stopped_by_sw_breakpoint ())
4561 {
4562 tp->suspend.stop_reason
4563 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4564 }
4565 else if (target_supports_stopped_by_hw_breakpoint ()
4566 && target_stopped_by_hw_breakpoint ())
4567 {
4568 tp->suspend.stop_reason
4569 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4570 }
4571 else if (!target_supports_stopped_by_hw_breakpoint ()
4572 && hardware_breakpoint_inserted_here_p (aspace,
4573 pc))
4574 {
4575 tp->suspend.stop_reason
4576 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4577 }
4578 else if (!target_supports_stopped_by_sw_breakpoint ()
4579 && software_breakpoint_inserted_here_p (aspace,
4580 pc))
4581 {
4582 tp->suspend.stop_reason
4583 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4584 }
4585 else if (!thread_has_single_step_breakpoints_set (tp)
4586 && currently_stepping (tp))
4587 {
4588 tp->suspend.stop_reason
4589 = TARGET_STOPPED_BY_SINGLE_STEP;
4590 }
4591 }
4592 }
4593
4594 /* Mark the non-executing threads accordingly. In all-stop, all
4595 threads of all processes are stopped when we get any event
4596 reported. In non-stop mode, only the event thread stops. */
4597
4598 static void
4599 mark_non_executing_threads (process_stratum_target *target,
4600 ptid_t event_ptid,
4601 struct target_waitstatus ws)
4602 {
4603 ptid_t mark_ptid;
4604
4605 if (!target_is_non_stop_p ())
4606 mark_ptid = minus_one_ptid;
4607 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4608 || ws.kind == TARGET_WAITKIND_EXITED)
4609 {
4610 /* If we're handling a process exit in non-stop mode, even
4611 though threads haven't been deleted yet, one would think
4612 that there is nothing to do, as threads of the dead process
4613 will be soon deleted, and threads of any other process were
4614 left running. However, on some targets, threads survive a
4615 process exit event. E.g., for the "checkpoint" command,
4616 when the current checkpoint/fork exits, linux-fork.c
4617 automatically switches to another fork from within
4618 target_mourn_inferior, by associating the same
4619 inferior/thread to another fork. We haven't mourned yet at
4620 this point, but we must mark any threads left in the
4621 process as not-executing so that finish_thread_state marks
4622 them stopped (in the user's perspective) if/when we present
4623 the stop to the user. */
4624 mark_ptid = ptid_t (event_ptid.pid ());
4625 }
4626 else
4627 mark_ptid = event_ptid;
4628
4629 set_executing (target, mark_ptid, false);
4630
4631 /* Likewise the resumed flag. */
4632 set_resumed (target, mark_ptid, false);
4633 }
4634
4635 /* See infrun.h. */
4636
4637 void
4638 stop_all_threads (void)
4639 {
4640 /* We may need multiple passes to discover all threads. */
4641 int pass;
4642 int iterations = 0;
4643
4644 gdb_assert (exists_non_stop_target ());
4645
4646 infrun_debug_printf ("starting");
4647
4648 scoped_restore_current_thread restore_thread;
4649
4650 /* Enable thread events of all targets. */
4651 for (auto *target : all_non_exited_process_targets ())
4652 {
4653 switch_to_target_no_thread (target);
4654 target_thread_events (true);
4655 }
4656
4657 SCOPE_EXIT
4658 {
4659 /* Disable thread events of all targets. */
4660 for (auto *target : all_non_exited_process_targets ())
4661 {
4662 switch_to_target_no_thread (target);
4663 target_thread_events (false);
4664 }
4665
4666 /* Use infrun_debug_printf_1 directly to get a meaningful function
4667 name. */
4668 if (debug_infrun)
4669 infrun_debug_printf_1 ("stop_all_threads", "done");
4670 };
4671
4672 /* Request threads to stop, and then wait for the stops. Because
4673 threads we already know about can spawn more threads while we're
4674 trying to stop them, and we only learn about new threads when we
4675 update the thread list, do this in a loop, and keep iterating
4676 until two passes find no threads that need to be stopped. */
4677 for (pass = 0; pass < 2; pass++, iterations++)
4678 {
4679 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
4680 while (1)
4681 {
4682 int waits_needed = 0;
4683
4684 for (auto *target : all_non_exited_process_targets ())
4685 {
4686 switch_to_target_no_thread (target);
4687 update_thread_list ();
4688 }
4689
4690 /* Go through all threads looking for threads that we need
4691 to tell the target to stop. */
4692 for (thread_info *t : all_non_exited_threads ())
4693 {
4694 /* For a single-target setting with an all-stop target,
4695 we would not even arrive here. For a multi-target
4696 setting, until GDB is able to handle a mixture of
4697 all-stop and non-stop targets, simply skip all-stop
4698 targets' threads. This should be fine due to the
4699 protection of 'check_multi_target_resumption'. */
4700
4701 switch_to_thread_no_regs (t);
4702 if (!target_is_non_stop_p ())
4703 continue;
4704
4705 if (t->executing)
4706 {
4707 /* If already stopping, don't request a stop again.
4708 We just haven't seen the notification yet. */
4709 if (!t->stop_requested)
4710 {
4711 infrun_debug_printf (" %s executing, need stop",
4712 target_pid_to_str (t->ptid).c_str ());
4713 target_stop (t->ptid);
4714 t->stop_requested = 1;
4715 }
4716 else
4717 {
4718 infrun_debug_printf (" %s executing, already stopping",
4719 target_pid_to_str (t->ptid).c_str ());
4720 }
4721
4722 if (t->stop_requested)
4723 waits_needed++;
4724 }
4725 else
4726 {
4727 infrun_debug_printf (" %s not executing",
4728 target_pid_to_str (t->ptid).c_str ());
4729
4730 /* The thread may be not executing, but still be
4731 resumed with a pending status to process. */
4732 t->resumed = false;
4733 }
4734 }
4735
4736 if (waits_needed == 0)
4737 break;
4738
4739 /* If we find new threads on the second iteration, restart
4740 over. We want to see two iterations in a row with all
4741 threads stopped. */
4742 if (pass > 0)
4743 pass = -1;
4744
4745 for (int i = 0; i < waits_needed; i++)
4746 {
4747 wait_one_event event = wait_one ();
4748
4749 infrun_debug_printf
4750 ("%s %s", target_waitstatus_to_string (&event.ws).c_str (),
4751 target_pid_to_str (event.ptid).c_str ());
4752
4753 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4754 {
4755 /* All resumed threads exited. */
4756 break;
4757 }
4758 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4759 || event.ws.kind == TARGET_WAITKIND_EXITED
4760 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4761 {
4762 /* One thread/process exited/signalled. */
4763
4764 thread_info *t = nullptr;
4765
4766 /* The target may have reported just a pid. If so, try
4767 the first non-exited thread. */
4768 if (event.ptid.is_pid ())
4769 {
4770 int pid = event.ptid.pid ();
4771 inferior *inf = find_inferior_pid (event.target, pid);
4772 for (thread_info *tp : inf->non_exited_threads ())
4773 {
4774 t = tp;
4775 break;
4776 }
4777
4778 /* If there is no available thread, the event would
4779 have to be appended to a per-inferior event list,
4780 which does not exist (and if it did, we'd have
4781 to adjust run control command to be able to
4782 resume such an inferior). We assert here instead
4783 of going into an infinite loop. */
4784 gdb_assert (t != nullptr);
4785
4786 infrun_debug_printf
4787 ("using %s", target_pid_to_str (t->ptid).c_str ());
4788 }
4789 else
4790 {
4791 t = find_thread_ptid (event.target, event.ptid);
4792 /* Check if this is the first time we see this thread.
4793 Don't bother adding if it individually exited. */
4794 if (t == nullptr
4795 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4796 t = add_thread (event.target, event.ptid);
4797 }
4798
4799 if (t != nullptr)
4800 {
4801 /* Set the threads as non-executing to avoid
4802 another stop attempt on them. */
4803 switch_to_thread_no_regs (t);
4804 mark_non_executing_threads (event.target, event.ptid,
4805 event.ws);
4806 save_waitstatus (t, &event.ws);
4807 t->stop_requested = false;
4808 }
4809 }
4810 else
4811 {
4812 thread_info *t = find_thread_ptid (event.target, event.ptid);
4813 if (t == NULL)
4814 t = add_thread (event.target, event.ptid);
4815
4816 t->stop_requested = 0;
4817 t->executing = 0;
4818 t->resumed = false;
4819 t->control.may_range_step = 0;
4820
4821 /* This may be the first time we see the inferior report
4822 a stop. */
4823 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4824 if (inf->needs_setup)
4825 {
4826 switch_to_thread_no_regs (t);
4827 setup_inferior (0);
4828 }
4829
4830 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4831 && event.ws.value.sig == GDB_SIGNAL_0)
4832 {
4833 /* We caught the event that we intended to catch, so
4834 there's no event pending. */
4835 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4836 t->suspend.waitstatus_pending_p = 0;
4837
4838 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4839 {
4840 /* Add it back to the step-over queue. */
4841 infrun_debug_printf
4842 ("displaced-step of %s canceled: adding back to "
4843 "the step-over queue",
4844 target_pid_to_str (t->ptid).c_str ());
4845
4846 t->control.trap_expected = 0;
4847 thread_step_over_chain_enqueue (t);
4848 }
4849 }
4850 else
4851 {
4852 enum gdb_signal sig;
4853 struct regcache *regcache;
4854
4855 infrun_debug_printf
4856 ("target_wait %s, saving status for %d.%ld.%ld",
4857 target_waitstatus_to_string (&event.ws).c_str (),
4858 t->ptid.pid (), t->ptid.lwp (), t->ptid.tid ());
4859
4860 /* Record for later. */
4861 save_waitstatus (t, &event.ws);
4862
4863 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4864 ? event.ws.value.sig : GDB_SIGNAL_0);
4865
4866 if (displaced_step_fixup (t, sig) < 0)
4867 {
4868 /* Add it back to the step-over queue. */
4869 t->control.trap_expected = 0;
4870 thread_step_over_chain_enqueue (t);
4871 }
4872
4873 regcache = get_thread_regcache (t);
4874 t->suspend.stop_pc = regcache_read_pc (regcache);
4875
4876 infrun_debug_printf ("saved stop_pc=%s for %s "
4877 "(currently_stepping=%d)",
4878 paddress (target_gdbarch (),
4879 t->suspend.stop_pc),
4880 target_pid_to_str (t->ptid).c_str (),
4881 currently_stepping (t));
4882 }
4883 }
4884 }
4885 }
4886 }
4887 }
4888
4889 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4890
4891 static int
4892 handle_no_resumed (struct execution_control_state *ecs)
4893 {
4894 if (target_can_async_p ())
4895 {
4896 int any_sync = 0;
4897
4898 for (ui *ui : all_uis ())
4899 {
4900 if (ui->prompt_state == PROMPT_BLOCKED)
4901 {
4902 any_sync = 1;
4903 break;
4904 }
4905 }
4906 if (!any_sync)
4907 {
4908 /* There were no unwaited-for children left in the target, but,
4909 we're not synchronously waiting for events either. Just
4910 ignore. */
4911
4912 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
4913 prepare_to_wait (ecs);
4914 return 1;
4915 }
4916 }
4917
4918 /* Otherwise, if we were running a synchronous execution command, we
4919 may need to cancel it and give the user back the terminal.
4920
4921 In non-stop mode, the target can't tell whether we've already
4922 consumed previous stop events, so it can end up sending us a
4923 no-resumed event like so:
4924
4925 #0 - thread 1 is left stopped
4926
4927 #1 - thread 2 is resumed and hits breakpoint
4928 -> TARGET_WAITKIND_STOPPED
4929
4930 #2 - thread 3 is resumed and exits
4931 this is the last resumed thread, so
4932 -> TARGET_WAITKIND_NO_RESUMED
4933
4934 #3 - gdb processes stop for thread 2 and decides to re-resume
4935 it.
4936
4937 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4938 thread 2 is now resumed, so the event should be ignored.
4939
4940 IOW, if the stop for thread 2 doesn't end a foreground command,
4941 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4942 event. But it could be that the event meant that thread 2 itself
4943 (or whatever other thread was the last resumed thread) exited.
4944
4945 To address this we refresh the thread list and check whether we
4946 have resumed threads _now_. In the example above, this removes
4947 thread 3 from the thread list. If thread 2 was re-resumed, we
4948 ignore this event. If we find no thread resumed, then we cancel
4949 the synchronous command and show "no unwaited-for " to the
4950 user. */
4951
4952 inferior *curr_inf = current_inferior ();
4953
4954 scoped_restore_current_thread restore_thread;
4955
4956 for (auto *target : all_non_exited_process_targets ())
4957 {
4958 switch_to_target_no_thread (target);
4959 update_thread_list ();
4960 }
4961
4962 /* If:
4963
4964 - the current target has no thread executing, and
4965 - the current inferior is native, and
4966 - the current inferior is the one which has the terminal, and
4967 - we did nothing,
4968
4969 then a Ctrl-C from this point on would remain stuck in the
4970 kernel, until a thread resumes and dequeues it. That would
4971 result in the GDB CLI not reacting to Ctrl-C, not able to
4972 interrupt the program. To address this, if the current inferior
4973 no longer has any thread executing, we give the terminal to some
4974 other inferior that has at least one thread executing. */
4975 bool swap_terminal = true;
4976
4977 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
4978 whether to report it to the user. */
4979 bool ignore_event = false;
4980
4981 for (thread_info *thread : all_non_exited_threads ())
4982 {
4983 if (swap_terminal && thread->executing)
4984 {
4985 if (thread->inf != curr_inf)
4986 {
4987 target_terminal::ours ();
4988
4989 switch_to_thread (thread);
4990 target_terminal::inferior ();
4991 }
4992 swap_terminal = false;
4993 }
4994
4995 if (!ignore_event
4996 && (thread->executing
4997 || thread->suspend.waitstatus_pending_p))
4998 {
4999 /* Either there were no unwaited-for children left in the
5000 target at some point, but there are now, or some target
5001 other than the eventing one has unwaited-for children
5002 left. Just ignore. */
5003 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
5004 "(ignoring: found resumed)");
5005
5006 ignore_event = true;
5007 }
5008
5009 if (ignore_event && !swap_terminal)
5010 break;
5011 }
5012
5013 if (ignore_event)
5014 {
5015 switch_to_inferior_no_thread (curr_inf);
5016 prepare_to_wait (ecs);
5017 return 1;
5018 }
5019
5020 /* Go ahead and report the event. */
5021 return 0;
5022 }
5023
5024 /* Given an execution control state that has been freshly filled in by
5025 an event from the inferior, figure out what it means and take
5026 appropriate action.
5027
5028 The alternatives are:
5029
5030 1) stop_waiting and return; to really stop and return to the
5031 debugger.
5032
5033 2) keep_going and return; to wait for the next event (set
5034 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5035 once). */
5036
5037 static void
5038 handle_inferior_event (struct execution_control_state *ecs)
5039 {
5040 /* Make sure that all temporary struct value objects that were
5041 created during the handling of the event get deleted at the
5042 end. */
5043 scoped_value_mark free_values;
5044
5045 enum stop_kind stop_soon;
5046
5047 infrun_debug_printf ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
5048
5049 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5050 {
5051 /* We had an event in the inferior, but we are not interested in
5052 handling it at this level. The lower layers have already
5053 done what needs to be done, if anything.
5054
5055 One of the possible circumstances for this is when the
5056 inferior produces output for the console. The inferior has
5057 not stopped, and we are ignoring the event. Another possible
5058 circumstance is any event which the lower level knows will be
5059 reported multiple times without an intervening resume. */
5060 prepare_to_wait (ecs);
5061 return;
5062 }
5063
5064 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5065 {
5066 prepare_to_wait (ecs);
5067 return;
5068 }
5069
5070 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5071 && handle_no_resumed (ecs))
5072 return;
5073
5074 /* Cache the last target/ptid/waitstatus. */
5075 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5076
5077 /* Always clear state belonging to the previous time we stopped. */
5078 stop_stack_dummy = STOP_NONE;
5079
5080 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5081 {
5082 /* No unwaited-for children left. IOW, all resumed children
5083 have exited. */
5084 stop_print_frame = 0;
5085 stop_waiting (ecs);
5086 return;
5087 }
5088
5089 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5090 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5091 {
5092 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5093 /* If it's a new thread, add it to the thread database. */
5094 if (ecs->event_thread == NULL)
5095 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5096
5097 /* Disable range stepping. If the next step request could use a
5098 range, this will be end up re-enabled then. */
5099 ecs->event_thread->control.may_range_step = 0;
5100 }
5101
5102 /* Dependent on valid ECS->EVENT_THREAD. */
5103 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5104
5105 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5106 reinit_frame_cache ();
5107
5108 breakpoint_retire_moribund ();
5109
5110 /* First, distinguish signals caused by the debugger from signals
5111 that have to do with the program's own actions. Note that
5112 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5113 on the operating system version. Here we detect when a SIGILL or
5114 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5115 something similar for SIGSEGV, since a SIGSEGV will be generated
5116 when we're trying to execute a breakpoint instruction on a
5117 non-executable stack. This happens for call dummy breakpoints
5118 for architectures like SPARC that place call dummies on the
5119 stack. */
5120 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5121 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5122 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5123 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5124 {
5125 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5126
5127 if (breakpoint_inserted_here_p (regcache->aspace (),
5128 regcache_read_pc (regcache)))
5129 {
5130 infrun_debug_printf ("Treating signal as SIGTRAP");
5131 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5132 }
5133 }
5134
5135 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5136
5137 switch (ecs->ws.kind)
5138 {
5139 case TARGET_WAITKIND_LOADED:
5140 context_switch (ecs);
5141 /* Ignore gracefully during startup of the inferior, as it might
5142 be the shell which has just loaded some objects, otherwise
5143 add the symbols for the newly loaded objects. Also ignore at
5144 the beginning of an attach or remote session; we will query
5145 the full list of libraries once the connection is
5146 established. */
5147
5148 stop_soon = get_inferior_stop_soon (ecs);
5149 if (stop_soon == NO_STOP_QUIETLY)
5150 {
5151 struct regcache *regcache;
5152
5153 regcache = get_thread_regcache (ecs->event_thread);
5154
5155 handle_solib_event ();
5156
5157 ecs->event_thread->control.stop_bpstat
5158 = bpstat_stop_status (regcache->aspace (),
5159 ecs->event_thread->suspend.stop_pc,
5160 ecs->event_thread, &ecs->ws);
5161
5162 if (handle_stop_requested (ecs))
5163 return;
5164
5165 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5166 {
5167 /* A catchpoint triggered. */
5168 process_event_stop_test (ecs);
5169 return;
5170 }
5171
5172 /* If requested, stop when the dynamic linker notifies
5173 gdb of events. This allows the user to get control
5174 and place breakpoints in initializer routines for
5175 dynamically loaded objects (among other things). */
5176 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5177 if (stop_on_solib_events)
5178 {
5179 /* Make sure we print "Stopped due to solib-event" in
5180 normal_stop. */
5181 stop_print_frame = 1;
5182
5183 stop_waiting (ecs);
5184 return;
5185 }
5186 }
5187
5188 /* If we are skipping through a shell, or through shared library
5189 loading that we aren't interested in, resume the program. If
5190 we're running the program normally, also resume. */
5191 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5192 {
5193 /* Loading of shared libraries might have changed breakpoint
5194 addresses. Make sure new breakpoints are inserted. */
5195 if (stop_soon == NO_STOP_QUIETLY)
5196 insert_breakpoints ();
5197 resume (GDB_SIGNAL_0);
5198 prepare_to_wait (ecs);
5199 return;
5200 }
5201
5202 /* But stop if we're attaching or setting up a remote
5203 connection. */
5204 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5205 || stop_soon == STOP_QUIETLY_REMOTE)
5206 {
5207 infrun_debug_printf ("quietly stopped");
5208 stop_waiting (ecs);
5209 return;
5210 }
5211
5212 internal_error (__FILE__, __LINE__,
5213 _("unhandled stop_soon: %d"), (int) stop_soon);
5214
5215 case TARGET_WAITKIND_SPURIOUS:
5216 if (handle_stop_requested (ecs))
5217 return;
5218 context_switch (ecs);
5219 resume (GDB_SIGNAL_0);
5220 prepare_to_wait (ecs);
5221 return;
5222
5223 case TARGET_WAITKIND_THREAD_CREATED:
5224 if (handle_stop_requested (ecs))
5225 return;
5226 context_switch (ecs);
5227 if (!switch_back_to_stepped_thread (ecs))
5228 keep_going (ecs);
5229 return;
5230
5231 case TARGET_WAITKIND_EXITED:
5232 case TARGET_WAITKIND_SIGNALLED:
5233 {
5234 /* Depending on the system, ecs->ptid may point to a thread or
5235 to a process. On some targets, target_mourn_inferior may
5236 need to have access to the just-exited thread. That is the
5237 case of GNU/Linux's "checkpoint" support, for example.
5238 Call the switch_to_xxx routine as appropriate. */
5239 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5240 if (thr != nullptr)
5241 switch_to_thread (thr);
5242 else
5243 {
5244 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5245 switch_to_inferior_no_thread (inf);
5246 }
5247 }
5248 handle_vfork_child_exec_or_exit (0);
5249 target_terminal::ours (); /* Must do this before mourn anyway. */
5250
5251 /* Clearing any previous state of convenience variables. */
5252 clear_exit_convenience_vars ();
5253
5254 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5255 {
5256 /* Record the exit code in the convenience variable $_exitcode, so
5257 that the user can inspect this again later. */
5258 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5259 (LONGEST) ecs->ws.value.integer);
5260
5261 /* Also record this in the inferior itself. */
5262 current_inferior ()->has_exit_code = 1;
5263 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5264
5265 /* Support the --return-child-result option. */
5266 return_child_result_value = ecs->ws.value.integer;
5267
5268 gdb::observers::exited.notify (ecs->ws.value.integer);
5269 }
5270 else
5271 {
5272 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5273
5274 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5275 {
5276 /* Set the value of the internal variable $_exitsignal,
5277 which holds the signal uncaught by the inferior. */
5278 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5279 gdbarch_gdb_signal_to_target (gdbarch,
5280 ecs->ws.value.sig));
5281 }
5282 else
5283 {
5284 /* We don't have access to the target's method used for
5285 converting between signal numbers (GDB's internal
5286 representation <-> target's representation).
5287 Therefore, we cannot do a good job at displaying this
5288 information to the user. It's better to just warn
5289 her about it (if infrun debugging is enabled), and
5290 give up. */
5291 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5292 "signal number.");
5293 }
5294
5295 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5296 }
5297
5298 gdb_flush (gdb_stdout);
5299 target_mourn_inferior (inferior_ptid);
5300 stop_print_frame = 0;
5301 stop_waiting (ecs);
5302 return;
5303
5304 case TARGET_WAITKIND_FORKED:
5305 case TARGET_WAITKIND_VFORKED:
5306 /* Check whether the inferior is displaced stepping. */
5307 {
5308 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5309 struct gdbarch *gdbarch = regcache->arch ();
5310
5311 /* If checking displaced stepping is supported, and thread
5312 ecs->ptid is displaced stepping. */
5313 if (displaced_step_in_progress_thread (ecs->event_thread))
5314 {
5315 struct inferior *parent_inf
5316 = find_inferior_ptid (ecs->target, ecs->ptid);
5317 struct regcache *child_regcache;
5318 CORE_ADDR parent_pc;
5319
5320 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5321 {
5322 struct displaced_step_inferior_state *displaced
5323 = get_displaced_stepping_state (parent_inf);
5324
5325 /* Restore scratch pad for child process. */
5326 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5327 }
5328
5329 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5330 indicating that the displaced stepping of syscall instruction
5331 has been done. Perform cleanup for parent process here. Note
5332 that this operation also cleans up the child process for vfork,
5333 because their pages are shared. */
5334 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5335 /* Start a new step-over in another thread if there's one
5336 that needs it. */
5337 start_step_over ();
5338
5339 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5340 the child's PC is also within the scratchpad. Set the child's PC
5341 to the parent's PC value, which has already been fixed up.
5342 FIXME: we use the parent's aspace here, although we're touching
5343 the child, because the child hasn't been added to the inferior
5344 list yet at this point. */
5345
5346 child_regcache
5347 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5348 ecs->ws.value.related_pid,
5349 gdbarch,
5350 parent_inf->aspace);
5351 /* Read PC value of parent process. */
5352 parent_pc = regcache_read_pc (regcache);
5353
5354 if (debug_displaced)
5355 fprintf_unfiltered (gdb_stdlog,
5356 "displaced: write child pc from %s to %s\n",
5357 paddress (gdbarch,
5358 regcache_read_pc (child_regcache)),
5359 paddress (gdbarch, parent_pc));
5360
5361 regcache_write_pc (child_regcache, parent_pc);
5362 }
5363 }
5364
5365 context_switch (ecs);
5366
5367 /* Immediately detach breakpoints from the child before there's
5368 any chance of letting the user delete breakpoints from the
5369 breakpoint lists. If we don't do this early, it's easy to
5370 leave left over traps in the child, vis: "break foo; catch
5371 fork; c; <fork>; del; c; <child calls foo>". We only follow
5372 the fork on the last `continue', and by that time the
5373 breakpoint at "foo" is long gone from the breakpoint table.
5374 If we vforked, then we don't need to unpatch here, since both
5375 parent and child are sharing the same memory pages; we'll
5376 need to unpatch at follow/detach time instead to be certain
5377 that new breakpoints added between catchpoint hit time and
5378 vfork follow are detached. */
5379 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5380 {
5381 /* This won't actually modify the breakpoint list, but will
5382 physically remove the breakpoints from the child. */
5383 detach_breakpoints (ecs->ws.value.related_pid);
5384 }
5385
5386 delete_just_stopped_threads_single_step_breakpoints ();
5387
5388 /* In case the event is caught by a catchpoint, remember that
5389 the event is to be followed at the next resume of the thread,
5390 and not immediately. */
5391 ecs->event_thread->pending_follow = ecs->ws;
5392
5393 ecs->event_thread->suspend.stop_pc
5394 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5395
5396 ecs->event_thread->control.stop_bpstat
5397 = bpstat_stop_status (get_current_regcache ()->aspace (),
5398 ecs->event_thread->suspend.stop_pc,
5399 ecs->event_thread, &ecs->ws);
5400
5401 if (handle_stop_requested (ecs))
5402 return;
5403
5404 /* If no catchpoint triggered for this, then keep going. Note
5405 that we're interested in knowing the bpstat actually causes a
5406 stop, not just if it may explain the signal. Software
5407 watchpoints, for example, always appear in the bpstat. */
5408 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5409 {
5410 bool follow_child
5411 = (follow_fork_mode_string == follow_fork_mode_child);
5412
5413 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5414
5415 process_stratum_target *targ
5416 = ecs->event_thread->inf->process_target ();
5417
5418 bool should_resume = follow_fork ();
5419
5420 /* Note that one of these may be an invalid pointer,
5421 depending on detach_fork. */
5422 thread_info *parent = ecs->event_thread;
5423 thread_info *child
5424 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5425
5426 /* At this point, the parent is marked running, and the
5427 child is marked stopped. */
5428
5429 /* If not resuming the parent, mark it stopped. */
5430 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5431 parent->set_running (false);
5432
5433 /* If resuming the child, mark it running. */
5434 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5435 child->set_running (true);
5436
5437 /* In non-stop mode, also resume the other branch. */
5438 if (!detach_fork && (non_stop
5439 || (sched_multi && target_is_non_stop_p ())))
5440 {
5441 if (follow_child)
5442 switch_to_thread (parent);
5443 else
5444 switch_to_thread (child);
5445
5446 ecs->event_thread = inferior_thread ();
5447 ecs->ptid = inferior_ptid;
5448 keep_going (ecs);
5449 }
5450
5451 if (follow_child)
5452 switch_to_thread (child);
5453 else
5454 switch_to_thread (parent);
5455
5456 ecs->event_thread = inferior_thread ();
5457 ecs->ptid = inferior_ptid;
5458
5459 if (should_resume)
5460 keep_going (ecs);
5461 else
5462 stop_waiting (ecs);
5463 return;
5464 }
5465 process_event_stop_test (ecs);
5466 return;
5467
5468 case TARGET_WAITKIND_VFORK_DONE:
5469 /* Done with the shared memory region. Re-insert breakpoints in
5470 the parent, and keep going. */
5471
5472 context_switch (ecs);
5473
5474 current_inferior ()->waiting_for_vfork_done = 0;
5475 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5476
5477 if (handle_stop_requested (ecs))
5478 return;
5479
5480 /* This also takes care of reinserting breakpoints in the
5481 previously locked inferior. */
5482 keep_going (ecs);
5483 return;
5484
5485 case TARGET_WAITKIND_EXECD:
5486
5487 /* Note we can't read registers yet (the stop_pc), because we
5488 don't yet know the inferior's post-exec architecture.
5489 'stop_pc' is explicitly read below instead. */
5490 switch_to_thread_no_regs (ecs->event_thread);
5491
5492 /* Do whatever is necessary to the parent branch of the vfork. */
5493 handle_vfork_child_exec_or_exit (1);
5494
5495 /* This causes the eventpoints and symbol table to be reset.
5496 Must do this now, before trying to determine whether to
5497 stop. */
5498 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5499
5500 /* In follow_exec we may have deleted the original thread and
5501 created a new one. Make sure that the event thread is the
5502 execd thread for that case (this is a nop otherwise). */
5503 ecs->event_thread = inferior_thread ();
5504
5505 ecs->event_thread->suspend.stop_pc
5506 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5507
5508 ecs->event_thread->control.stop_bpstat
5509 = bpstat_stop_status (get_current_regcache ()->aspace (),
5510 ecs->event_thread->suspend.stop_pc,
5511 ecs->event_thread, &ecs->ws);
5512
5513 /* Note that this may be referenced from inside
5514 bpstat_stop_status above, through inferior_has_execd. */
5515 xfree (ecs->ws.value.execd_pathname);
5516 ecs->ws.value.execd_pathname = NULL;
5517
5518 if (handle_stop_requested (ecs))
5519 return;
5520
5521 /* If no catchpoint triggered for this, then keep going. */
5522 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5523 {
5524 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5525 keep_going (ecs);
5526 return;
5527 }
5528 process_event_stop_test (ecs);
5529 return;
5530
5531 /* Be careful not to try to gather much state about a thread
5532 that's in a syscall. It's frequently a losing proposition. */
5533 case TARGET_WAITKIND_SYSCALL_ENTRY:
5534 /* Getting the current syscall number. */
5535 if (handle_syscall_event (ecs) == 0)
5536 process_event_stop_test (ecs);
5537 return;
5538
5539 /* Before examining the threads further, step this thread to
5540 get it entirely out of the syscall. (We get notice of the
5541 event when the thread is just on the verge of exiting a
5542 syscall. Stepping one instruction seems to get it back
5543 into user code.) */
5544 case TARGET_WAITKIND_SYSCALL_RETURN:
5545 if (handle_syscall_event (ecs) == 0)
5546 process_event_stop_test (ecs);
5547 return;
5548
5549 case TARGET_WAITKIND_STOPPED:
5550 handle_signal_stop (ecs);
5551 return;
5552
5553 case TARGET_WAITKIND_NO_HISTORY:
5554 /* Reverse execution: target ran out of history info. */
5555
5556 /* Switch to the stopped thread. */
5557 context_switch (ecs);
5558 infrun_debug_printf ("stopped");
5559
5560 delete_just_stopped_threads_single_step_breakpoints ();
5561 ecs->event_thread->suspend.stop_pc
5562 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5563
5564 if (handle_stop_requested (ecs))
5565 return;
5566
5567 gdb::observers::no_history.notify ();
5568 stop_waiting (ecs);
5569 return;
5570 }
5571 }
5572
5573 /* Restart threads back to what they were trying to do back when we
5574 paused them for an in-line step-over. The EVENT_THREAD thread is
5575 ignored. */
5576
5577 static void
5578 restart_threads (struct thread_info *event_thread)
5579 {
5580 /* In case the instruction just stepped spawned a new thread. */
5581 update_thread_list ();
5582
5583 for (thread_info *tp : all_non_exited_threads ())
5584 {
5585 switch_to_thread_no_regs (tp);
5586
5587 if (tp == event_thread)
5588 {
5589 infrun_debug_printf ("restart threads: [%s] is event thread",
5590 target_pid_to_str (tp->ptid).c_str ());
5591 continue;
5592 }
5593
5594 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5595 {
5596 infrun_debug_printf ("restart threads: [%s] not meant to be running",
5597 target_pid_to_str (tp->ptid).c_str ());
5598 continue;
5599 }
5600
5601 if (tp->resumed)
5602 {
5603 infrun_debug_printf ("restart threads: [%s] resumed",
5604 target_pid_to_str (tp->ptid).c_str ());
5605 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5606 continue;
5607 }
5608
5609 if (thread_is_in_step_over_chain (tp))
5610 {
5611 infrun_debug_printf ("restart threads: [%s] needs step-over",
5612 target_pid_to_str (tp->ptid).c_str ());
5613 gdb_assert (!tp->resumed);
5614 continue;
5615 }
5616
5617
5618 if (tp->suspend.waitstatus_pending_p)
5619 {
5620 infrun_debug_printf ("restart threads: [%s] has pending status",
5621 target_pid_to_str (tp->ptid).c_str ());
5622 tp->resumed = true;
5623 continue;
5624 }
5625
5626 gdb_assert (!tp->stop_requested);
5627
5628 /* If some thread needs to start a step-over at this point, it
5629 should still be in the step-over queue, and thus skipped
5630 above. */
5631 if (thread_still_needs_step_over (tp))
5632 {
5633 internal_error (__FILE__, __LINE__,
5634 "thread [%s] needs a step-over, but not in "
5635 "step-over queue\n",
5636 target_pid_to_str (tp->ptid).c_str ());
5637 }
5638
5639 if (currently_stepping (tp))
5640 {
5641 infrun_debug_printf ("restart threads: [%s] was stepping",
5642 target_pid_to_str (tp->ptid).c_str ());
5643 keep_going_stepped_thread (tp);
5644 }
5645 else
5646 {
5647 struct execution_control_state ecss;
5648 struct execution_control_state *ecs = &ecss;
5649
5650 infrun_debug_printf ("restart threads: [%s] continuing",
5651 target_pid_to_str (tp->ptid).c_str ());
5652 reset_ecs (ecs, tp);
5653 switch_to_thread (tp);
5654 keep_going_pass_signal (ecs);
5655 }
5656 }
5657 }
5658
5659 /* Callback for iterate_over_threads. Find a resumed thread that has
5660 a pending waitstatus. */
5661
5662 static int
5663 resumed_thread_with_pending_status (struct thread_info *tp,
5664 void *arg)
5665 {
5666 return (tp->resumed
5667 && tp->suspend.waitstatus_pending_p);
5668 }
5669
5670 /* Called when we get an event that may finish an in-line or
5671 out-of-line (displaced stepping) step-over started previously.
5672 Return true if the event is processed and we should go back to the
5673 event loop; false if the caller should continue processing the
5674 event. */
5675
5676 static int
5677 finish_step_over (struct execution_control_state *ecs)
5678 {
5679 int had_step_over_info;
5680
5681 displaced_step_fixup (ecs->event_thread,
5682 ecs->event_thread->suspend.stop_signal);
5683
5684 had_step_over_info = step_over_info_valid_p ();
5685
5686 if (had_step_over_info)
5687 {
5688 /* If we're stepping over a breakpoint with all threads locked,
5689 then only the thread that was stepped should be reporting
5690 back an event. */
5691 gdb_assert (ecs->event_thread->control.trap_expected);
5692
5693 clear_step_over_info ();
5694 }
5695
5696 if (!target_is_non_stop_p ())
5697 return 0;
5698
5699 /* Start a new step-over in another thread if there's one that
5700 needs it. */
5701 start_step_over ();
5702
5703 /* If we were stepping over a breakpoint before, and haven't started
5704 a new in-line step-over sequence, then restart all other threads
5705 (except the event thread). We can't do this in all-stop, as then
5706 e.g., we wouldn't be able to issue any other remote packet until
5707 these other threads stop. */
5708 if (had_step_over_info && !step_over_info_valid_p ())
5709 {
5710 struct thread_info *pending;
5711
5712 /* If we only have threads with pending statuses, the restart
5713 below won't restart any thread and so nothing re-inserts the
5714 breakpoint we just stepped over. But we need it inserted
5715 when we later process the pending events, otherwise if
5716 another thread has a pending event for this breakpoint too,
5717 we'd discard its event (because the breakpoint that
5718 originally caused the event was no longer inserted). */
5719 context_switch (ecs);
5720 insert_breakpoints ();
5721
5722 restart_threads (ecs->event_thread);
5723
5724 /* If we have events pending, go through handle_inferior_event
5725 again, picking up a pending event at random. This avoids
5726 thread starvation. */
5727
5728 /* But not if we just stepped over a watchpoint in order to let
5729 the instruction execute so we can evaluate its expression.
5730 The set of watchpoints that triggered is recorded in the
5731 breakpoint objects themselves (see bp->watchpoint_triggered).
5732 If we processed another event first, that other event could
5733 clobber this info. */
5734 if (ecs->event_thread->stepping_over_watchpoint)
5735 return 0;
5736
5737 pending = iterate_over_threads (resumed_thread_with_pending_status,
5738 NULL);
5739 if (pending != NULL)
5740 {
5741 struct thread_info *tp = ecs->event_thread;
5742 struct regcache *regcache;
5743
5744 infrun_debug_printf ("found resumed threads with "
5745 "pending events, saving status");
5746
5747 gdb_assert (pending != tp);
5748
5749 /* Record the event thread's event for later. */
5750 save_waitstatus (tp, &ecs->ws);
5751 /* This was cleared early, by handle_inferior_event. Set it
5752 so this pending event is considered by
5753 do_target_wait. */
5754 tp->resumed = true;
5755
5756 gdb_assert (!tp->executing);
5757
5758 regcache = get_thread_regcache (tp);
5759 tp->suspend.stop_pc = regcache_read_pc (regcache);
5760
5761 infrun_debug_printf ("saved stop_pc=%s for %s "
5762 "(currently_stepping=%d)",
5763 paddress (target_gdbarch (),
5764 tp->suspend.stop_pc),
5765 target_pid_to_str (tp->ptid).c_str (),
5766 currently_stepping (tp));
5767
5768 /* This in-line step-over finished; clear this so we won't
5769 start a new one. This is what handle_signal_stop would
5770 do, if we returned false. */
5771 tp->stepping_over_breakpoint = 0;
5772
5773 /* Wake up the event loop again. */
5774 mark_async_event_handler (infrun_async_inferior_event_token);
5775
5776 prepare_to_wait (ecs);
5777 return 1;
5778 }
5779 }
5780
5781 return 0;
5782 }
5783
5784 /* Come here when the program has stopped with a signal. */
5785
5786 static void
5787 handle_signal_stop (struct execution_control_state *ecs)
5788 {
5789 struct frame_info *frame;
5790 struct gdbarch *gdbarch;
5791 int stopped_by_watchpoint;
5792 enum stop_kind stop_soon;
5793 int random_signal;
5794
5795 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5796
5797 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5798
5799 /* Do we need to clean up the state of a thread that has
5800 completed a displaced single-step? (Doing so usually affects
5801 the PC, so do it here, before we set stop_pc.) */
5802 if (finish_step_over (ecs))
5803 return;
5804
5805 /* If we either finished a single-step or hit a breakpoint, but
5806 the user wanted this thread to be stopped, pretend we got a
5807 SIG0 (generic unsignaled stop). */
5808 if (ecs->event_thread->stop_requested
5809 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5810 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5811
5812 ecs->event_thread->suspend.stop_pc
5813 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5814
5815 if (debug_infrun)
5816 {
5817 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5818 struct gdbarch *reg_gdbarch = regcache->arch ();
5819
5820 switch_to_thread (ecs->event_thread);
5821
5822 infrun_debug_printf ("stop_pc=%s",
5823 paddress (reg_gdbarch,
5824 ecs->event_thread->suspend.stop_pc));
5825 if (target_stopped_by_watchpoint ())
5826 {
5827 CORE_ADDR addr;
5828
5829 infrun_debug_printf ("stopped by watchpoint");
5830
5831 if (target_stopped_data_address (current_top_target (), &addr))
5832 infrun_debug_printf ("stopped data address=%s",
5833 paddress (reg_gdbarch, addr));
5834 else
5835 infrun_debug_printf ("(no data address available)");
5836 }
5837 }
5838
5839 /* This is originated from start_remote(), start_inferior() and
5840 shared libraries hook functions. */
5841 stop_soon = get_inferior_stop_soon (ecs);
5842 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5843 {
5844 context_switch (ecs);
5845 infrun_debug_printf ("quietly stopped");
5846 stop_print_frame = 1;
5847 stop_waiting (ecs);
5848 return;
5849 }
5850
5851 /* This originates from attach_command(). We need to overwrite
5852 the stop_signal here, because some kernels don't ignore a
5853 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5854 See more comments in inferior.h. On the other hand, if we
5855 get a non-SIGSTOP, report it to the user - assume the backend
5856 will handle the SIGSTOP if it should show up later.
5857
5858 Also consider that the attach is complete when we see a
5859 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5860 target extended-remote report it instead of a SIGSTOP
5861 (e.g. gdbserver). We already rely on SIGTRAP being our
5862 signal, so this is no exception.
5863
5864 Also consider that the attach is complete when we see a
5865 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5866 the target to stop all threads of the inferior, in case the
5867 low level attach operation doesn't stop them implicitly. If
5868 they weren't stopped implicitly, then the stub will report a
5869 GDB_SIGNAL_0, meaning: stopped for no particular reason
5870 other than GDB's request. */
5871 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5872 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5873 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5874 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5875 {
5876 stop_print_frame = 1;
5877 stop_waiting (ecs);
5878 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5879 return;
5880 }
5881
5882 /* See if something interesting happened to the non-current thread. If
5883 so, then switch to that thread. */
5884 if (ecs->ptid != inferior_ptid)
5885 {
5886 infrun_debug_printf ("context switch");
5887
5888 context_switch (ecs);
5889
5890 if (deprecated_context_hook)
5891 deprecated_context_hook (ecs->event_thread->global_num);
5892 }
5893
5894 /* At this point, get hold of the now-current thread's frame. */
5895 frame = get_current_frame ();
5896 gdbarch = get_frame_arch (frame);
5897
5898 /* Pull the single step breakpoints out of the target. */
5899 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5900 {
5901 struct regcache *regcache;
5902 CORE_ADDR pc;
5903
5904 regcache = get_thread_regcache (ecs->event_thread);
5905 const address_space *aspace = regcache->aspace ();
5906
5907 pc = regcache_read_pc (regcache);
5908
5909 /* However, before doing so, if this single-step breakpoint was
5910 actually for another thread, set this thread up for moving
5911 past it. */
5912 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5913 aspace, pc))
5914 {
5915 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5916 {
5917 infrun_debug_printf ("[%s] hit another thread's single-step "
5918 "breakpoint",
5919 target_pid_to_str (ecs->ptid).c_str ());
5920 ecs->hit_singlestep_breakpoint = 1;
5921 }
5922 }
5923 else
5924 {
5925 infrun_debug_printf ("[%s] hit its single-step breakpoint",
5926 target_pid_to_str (ecs->ptid).c_str ());
5927 }
5928 }
5929 delete_just_stopped_threads_single_step_breakpoints ();
5930
5931 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5932 && ecs->event_thread->control.trap_expected
5933 && ecs->event_thread->stepping_over_watchpoint)
5934 stopped_by_watchpoint = 0;
5935 else
5936 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5937
5938 /* If necessary, step over this watchpoint. We'll be back to display
5939 it in a moment. */
5940 if (stopped_by_watchpoint
5941 && (target_have_steppable_watchpoint ()
5942 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5943 {
5944 /* At this point, we are stopped at an instruction which has
5945 attempted to write to a piece of memory under control of
5946 a watchpoint. The instruction hasn't actually executed
5947 yet. If we were to evaluate the watchpoint expression
5948 now, we would get the old value, and therefore no change
5949 would seem to have occurred.
5950
5951 In order to make watchpoints work `right', we really need
5952 to complete the memory write, and then evaluate the
5953 watchpoint expression. We do this by single-stepping the
5954 target.
5955
5956 It may not be necessary to disable the watchpoint to step over
5957 it. For example, the PA can (with some kernel cooperation)
5958 single step over a watchpoint without disabling the watchpoint.
5959
5960 It is far more common to need to disable a watchpoint to step
5961 the inferior over it. If we have non-steppable watchpoints,
5962 we must disable the current watchpoint; it's simplest to
5963 disable all watchpoints.
5964
5965 Any breakpoint at PC must also be stepped over -- if there's
5966 one, it will have already triggered before the watchpoint
5967 triggered, and we either already reported it to the user, or
5968 it didn't cause a stop and we called keep_going. In either
5969 case, if there was a breakpoint at PC, we must be trying to
5970 step past it. */
5971 ecs->event_thread->stepping_over_watchpoint = 1;
5972 keep_going (ecs);
5973 return;
5974 }
5975
5976 ecs->event_thread->stepping_over_breakpoint = 0;
5977 ecs->event_thread->stepping_over_watchpoint = 0;
5978 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5979 ecs->event_thread->control.stop_step = 0;
5980 stop_print_frame = 1;
5981 stopped_by_random_signal = 0;
5982 bpstat stop_chain = NULL;
5983
5984 /* Hide inlined functions starting here, unless we just performed stepi or
5985 nexti. After stepi and nexti, always show the innermost frame (not any
5986 inline function call sites). */
5987 if (ecs->event_thread->control.step_range_end != 1)
5988 {
5989 const address_space *aspace
5990 = get_thread_regcache (ecs->event_thread)->aspace ();
5991
5992 /* skip_inline_frames is expensive, so we avoid it if we can
5993 determine that the address is one where functions cannot have
5994 been inlined. This improves performance with inferiors that
5995 load a lot of shared libraries, because the solib event
5996 breakpoint is defined as the address of a function (i.e. not
5997 inline). Note that we have to check the previous PC as well
5998 as the current one to catch cases when we have just
5999 single-stepped off a breakpoint prior to reinstating it.
6000 Note that we're assuming that the code we single-step to is
6001 not inline, but that's not definitive: there's nothing
6002 preventing the event breakpoint function from containing
6003 inlined code, and the single-step ending up there. If the
6004 user had set a breakpoint on that inlined code, the missing
6005 skip_inline_frames call would break things. Fortunately
6006 that's an extremely unlikely scenario. */
6007 if (!pc_at_non_inline_function (aspace,
6008 ecs->event_thread->suspend.stop_pc,
6009 &ecs->ws)
6010 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6011 && ecs->event_thread->control.trap_expected
6012 && pc_at_non_inline_function (aspace,
6013 ecs->event_thread->prev_pc,
6014 &ecs->ws)))
6015 {
6016 stop_chain = build_bpstat_chain (aspace,
6017 ecs->event_thread->suspend.stop_pc,
6018 &ecs->ws);
6019 skip_inline_frames (ecs->event_thread, stop_chain);
6020
6021 /* Re-fetch current thread's frame in case that invalidated
6022 the frame cache. */
6023 frame = get_current_frame ();
6024 gdbarch = get_frame_arch (frame);
6025 }
6026 }
6027
6028 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6029 && ecs->event_thread->control.trap_expected
6030 && gdbarch_single_step_through_delay_p (gdbarch)
6031 && currently_stepping (ecs->event_thread))
6032 {
6033 /* We're trying to step off a breakpoint. Turns out that we're
6034 also on an instruction that needs to be stepped multiple
6035 times before it's been fully executing. E.g., architectures
6036 with a delay slot. It needs to be stepped twice, once for
6037 the instruction and once for the delay slot. */
6038 int step_through_delay
6039 = gdbarch_single_step_through_delay (gdbarch, frame);
6040
6041 if (step_through_delay)
6042 infrun_debug_printf ("step through delay");
6043
6044 if (ecs->event_thread->control.step_range_end == 0
6045 && step_through_delay)
6046 {
6047 /* The user issued a continue when stopped at a breakpoint.
6048 Set up for another trap and get out of here. */
6049 ecs->event_thread->stepping_over_breakpoint = 1;
6050 keep_going (ecs);
6051 return;
6052 }
6053 else if (step_through_delay)
6054 {
6055 /* The user issued a step when stopped at a breakpoint.
6056 Maybe we should stop, maybe we should not - the delay
6057 slot *might* correspond to a line of source. In any
6058 case, don't decide that here, just set
6059 ecs->stepping_over_breakpoint, making sure we
6060 single-step again before breakpoints are re-inserted. */
6061 ecs->event_thread->stepping_over_breakpoint = 1;
6062 }
6063 }
6064
6065 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6066 handles this event. */
6067 ecs->event_thread->control.stop_bpstat
6068 = bpstat_stop_status (get_current_regcache ()->aspace (),
6069 ecs->event_thread->suspend.stop_pc,
6070 ecs->event_thread, &ecs->ws, stop_chain);
6071
6072 /* Following in case break condition called a
6073 function. */
6074 stop_print_frame = 1;
6075
6076 /* This is where we handle "moribund" watchpoints. Unlike
6077 software breakpoints traps, hardware watchpoint traps are
6078 always distinguishable from random traps. If no high-level
6079 watchpoint is associated with the reported stop data address
6080 anymore, then the bpstat does not explain the signal ---
6081 simply make sure to ignore it if `stopped_by_watchpoint' is
6082 set. */
6083
6084 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6085 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6086 GDB_SIGNAL_TRAP)
6087 && stopped_by_watchpoint)
6088 {
6089 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6090 "ignoring");
6091 }
6092
6093 /* NOTE: cagney/2003-03-29: These checks for a random signal
6094 at one stage in the past included checks for an inferior
6095 function call's call dummy's return breakpoint. The original
6096 comment, that went with the test, read:
6097
6098 ``End of a stack dummy. Some systems (e.g. Sony news) give
6099 another signal besides SIGTRAP, so check here as well as
6100 above.''
6101
6102 If someone ever tries to get call dummys on a
6103 non-executable stack to work (where the target would stop
6104 with something like a SIGSEGV), then those tests might need
6105 to be re-instated. Given, however, that the tests were only
6106 enabled when momentary breakpoints were not being used, I
6107 suspect that it won't be the case.
6108
6109 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6110 be necessary for call dummies on a non-executable stack on
6111 SPARC. */
6112
6113 /* See if the breakpoints module can explain the signal. */
6114 random_signal
6115 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6116 ecs->event_thread->suspend.stop_signal);
6117
6118 /* Maybe this was a trap for a software breakpoint that has since
6119 been removed. */
6120 if (random_signal && target_stopped_by_sw_breakpoint ())
6121 {
6122 if (gdbarch_program_breakpoint_here_p (gdbarch,
6123 ecs->event_thread->suspend.stop_pc))
6124 {
6125 struct regcache *regcache;
6126 int decr_pc;
6127
6128 /* Re-adjust PC to what the program would see if GDB was not
6129 debugging it. */
6130 regcache = get_thread_regcache (ecs->event_thread);
6131 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6132 if (decr_pc != 0)
6133 {
6134 gdb::optional<scoped_restore_tmpl<int>>
6135 restore_operation_disable;
6136
6137 if (record_full_is_used ())
6138 restore_operation_disable.emplace
6139 (record_full_gdb_operation_disable_set ());
6140
6141 regcache_write_pc (regcache,
6142 ecs->event_thread->suspend.stop_pc + decr_pc);
6143 }
6144 }
6145 else
6146 {
6147 /* A delayed software breakpoint event. Ignore the trap. */
6148 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
6149 random_signal = 0;
6150 }
6151 }
6152
6153 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6154 has since been removed. */
6155 if (random_signal && target_stopped_by_hw_breakpoint ())
6156 {
6157 /* A delayed hardware breakpoint event. Ignore the trap. */
6158 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6159 "trap, ignoring");
6160 random_signal = 0;
6161 }
6162
6163 /* If not, perhaps stepping/nexting can. */
6164 if (random_signal)
6165 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6166 && currently_stepping (ecs->event_thread));
6167
6168 /* Perhaps the thread hit a single-step breakpoint of _another_
6169 thread. Single-step breakpoints are transparent to the
6170 breakpoints module. */
6171 if (random_signal)
6172 random_signal = !ecs->hit_singlestep_breakpoint;
6173
6174 /* No? Perhaps we got a moribund watchpoint. */
6175 if (random_signal)
6176 random_signal = !stopped_by_watchpoint;
6177
6178 /* Always stop if the user explicitly requested this thread to
6179 remain stopped. */
6180 if (ecs->event_thread->stop_requested)
6181 {
6182 random_signal = 1;
6183 infrun_debug_printf ("user-requested stop");
6184 }
6185
6186 /* For the program's own signals, act according to
6187 the signal handling tables. */
6188
6189 if (random_signal)
6190 {
6191 /* Signal not for debugging purposes. */
6192 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6193 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6194
6195 infrun_debug_printf ("random signal (%s)",
6196 gdb_signal_to_symbol_string (stop_signal));
6197
6198 stopped_by_random_signal = 1;
6199
6200 /* Always stop on signals if we're either just gaining control
6201 of the program, or the user explicitly requested this thread
6202 to remain stopped. */
6203 if (stop_soon != NO_STOP_QUIETLY
6204 || ecs->event_thread->stop_requested
6205 || (!inf->detaching
6206 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6207 {
6208 stop_waiting (ecs);
6209 return;
6210 }
6211
6212 /* Notify observers the signal has "handle print" set. Note we
6213 returned early above if stopping; normal_stop handles the
6214 printing in that case. */
6215 if (signal_print[ecs->event_thread->suspend.stop_signal])
6216 {
6217 /* The signal table tells us to print about this signal. */
6218 target_terminal::ours_for_output ();
6219 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6220 target_terminal::inferior ();
6221 }
6222
6223 /* Clear the signal if it should not be passed. */
6224 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6225 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6226
6227 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6228 && ecs->event_thread->control.trap_expected
6229 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6230 {
6231 /* We were just starting a new sequence, attempting to
6232 single-step off of a breakpoint and expecting a SIGTRAP.
6233 Instead this signal arrives. This signal will take us out
6234 of the stepping range so GDB needs to remember to, when
6235 the signal handler returns, resume stepping off that
6236 breakpoint. */
6237 /* To simplify things, "continue" is forced to use the same
6238 code paths as single-step - set a breakpoint at the
6239 signal return address and then, once hit, step off that
6240 breakpoint. */
6241 infrun_debug_printf ("signal arrived while stepping over breakpoint");
6242
6243 insert_hp_step_resume_breakpoint_at_frame (frame);
6244 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6245 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6246 ecs->event_thread->control.trap_expected = 0;
6247
6248 /* If we were nexting/stepping some other thread, switch to
6249 it, so that we don't continue it, losing control. */
6250 if (!switch_back_to_stepped_thread (ecs))
6251 keep_going (ecs);
6252 return;
6253 }
6254
6255 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6256 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6257 ecs->event_thread)
6258 || ecs->event_thread->control.step_range_end == 1)
6259 && frame_id_eq (get_stack_frame_id (frame),
6260 ecs->event_thread->control.step_stack_frame_id)
6261 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6262 {
6263 /* The inferior is about to take a signal that will take it
6264 out of the single step range. Set a breakpoint at the
6265 current PC (which is presumably where the signal handler
6266 will eventually return) and then allow the inferior to
6267 run free.
6268
6269 Note that this is only needed for a signal delivered
6270 while in the single-step range. Nested signals aren't a
6271 problem as they eventually all return. */
6272 infrun_debug_printf ("signal may take us out of single-step range");
6273
6274 clear_step_over_info ();
6275 insert_hp_step_resume_breakpoint_at_frame (frame);
6276 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6277 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6278 ecs->event_thread->control.trap_expected = 0;
6279 keep_going (ecs);
6280 return;
6281 }
6282
6283 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6284 when either there's a nested signal, or when there's a
6285 pending signal enabled just as the signal handler returns
6286 (leaving the inferior at the step-resume-breakpoint without
6287 actually executing it). Either way continue until the
6288 breakpoint is really hit. */
6289
6290 if (!switch_back_to_stepped_thread (ecs))
6291 {
6292 infrun_debug_printf ("random signal, keep going");
6293
6294 keep_going (ecs);
6295 }
6296 return;
6297 }
6298
6299 process_event_stop_test (ecs);
6300 }
6301
6302 /* Come here when we've got some debug event / signal we can explain
6303 (IOW, not a random signal), and test whether it should cause a
6304 stop, or whether we should resume the inferior (transparently).
6305 E.g., could be a breakpoint whose condition evaluates false; we
6306 could be still stepping within the line; etc. */
6307
6308 static void
6309 process_event_stop_test (struct execution_control_state *ecs)
6310 {
6311 struct symtab_and_line stop_pc_sal;
6312 struct frame_info *frame;
6313 struct gdbarch *gdbarch;
6314 CORE_ADDR jmp_buf_pc;
6315 struct bpstat_what what;
6316
6317 /* Handle cases caused by hitting a breakpoint. */
6318
6319 frame = get_current_frame ();
6320 gdbarch = get_frame_arch (frame);
6321
6322 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6323
6324 if (what.call_dummy)
6325 {
6326 stop_stack_dummy = what.call_dummy;
6327 }
6328
6329 /* A few breakpoint types have callbacks associated (e.g.,
6330 bp_jit_event). Run them now. */
6331 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6332
6333 /* If we hit an internal event that triggers symbol changes, the
6334 current frame will be invalidated within bpstat_what (e.g., if we
6335 hit an internal solib event). Re-fetch it. */
6336 frame = get_current_frame ();
6337 gdbarch = get_frame_arch (frame);
6338
6339 switch (what.main_action)
6340 {
6341 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6342 /* If we hit the breakpoint at longjmp while stepping, we
6343 install a momentary breakpoint at the target of the
6344 jmp_buf. */
6345
6346 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6347
6348 ecs->event_thread->stepping_over_breakpoint = 1;
6349
6350 if (what.is_longjmp)
6351 {
6352 struct value *arg_value;
6353
6354 /* If we set the longjmp breakpoint via a SystemTap probe,
6355 then use it to extract the arguments. The destination PC
6356 is the third argument to the probe. */
6357 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6358 if (arg_value)
6359 {
6360 jmp_buf_pc = value_as_address (arg_value);
6361 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6362 }
6363 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6364 || !gdbarch_get_longjmp_target (gdbarch,
6365 frame, &jmp_buf_pc))
6366 {
6367 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6368 "(!gdbarch_get_longjmp_target)");
6369 keep_going (ecs);
6370 return;
6371 }
6372
6373 /* Insert a breakpoint at resume address. */
6374 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6375 }
6376 else
6377 check_exception_resume (ecs, frame);
6378 keep_going (ecs);
6379 return;
6380
6381 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6382 {
6383 struct frame_info *init_frame;
6384
6385 /* There are several cases to consider.
6386
6387 1. The initiating frame no longer exists. In this case we
6388 must stop, because the exception or longjmp has gone too
6389 far.
6390
6391 2. The initiating frame exists, and is the same as the
6392 current frame. We stop, because the exception or longjmp
6393 has been caught.
6394
6395 3. The initiating frame exists and is different from the
6396 current frame. This means the exception or longjmp has
6397 been caught beneath the initiating frame, so keep going.
6398
6399 4. longjmp breakpoint has been placed just to protect
6400 against stale dummy frames and user is not interested in
6401 stopping around longjmps. */
6402
6403 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6404
6405 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6406 != NULL);
6407 delete_exception_resume_breakpoint (ecs->event_thread);
6408
6409 if (what.is_longjmp)
6410 {
6411 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6412
6413 if (!frame_id_p (ecs->event_thread->initiating_frame))
6414 {
6415 /* Case 4. */
6416 keep_going (ecs);
6417 return;
6418 }
6419 }
6420
6421 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6422
6423 if (init_frame)
6424 {
6425 struct frame_id current_id
6426 = get_frame_id (get_current_frame ());
6427 if (frame_id_eq (current_id,
6428 ecs->event_thread->initiating_frame))
6429 {
6430 /* Case 2. Fall through. */
6431 }
6432 else
6433 {
6434 /* Case 3. */
6435 keep_going (ecs);
6436 return;
6437 }
6438 }
6439
6440 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6441 exists. */
6442 delete_step_resume_breakpoint (ecs->event_thread);
6443
6444 end_stepping_range (ecs);
6445 }
6446 return;
6447
6448 case BPSTAT_WHAT_SINGLE:
6449 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
6450 ecs->event_thread->stepping_over_breakpoint = 1;
6451 /* Still need to check other stuff, at least the case where we
6452 are stepping and step out of the right range. */
6453 break;
6454
6455 case BPSTAT_WHAT_STEP_RESUME:
6456 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
6457
6458 delete_step_resume_breakpoint (ecs->event_thread);
6459 if (ecs->event_thread->control.proceed_to_finish
6460 && execution_direction == EXEC_REVERSE)
6461 {
6462 struct thread_info *tp = ecs->event_thread;
6463
6464 /* We are finishing a function in reverse, and just hit the
6465 step-resume breakpoint at the start address of the
6466 function, and we're almost there -- just need to back up
6467 by one more single-step, which should take us back to the
6468 function call. */
6469 tp->control.step_range_start = tp->control.step_range_end = 1;
6470 keep_going (ecs);
6471 return;
6472 }
6473 fill_in_stop_func (gdbarch, ecs);
6474 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6475 && execution_direction == EXEC_REVERSE)
6476 {
6477 /* We are stepping over a function call in reverse, and just
6478 hit the step-resume breakpoint at the start address of
6479 the function. Go back to single-stepping, which should
6480 take us back to the function call. */
6481 ecs->event_thread->stepping_over_breakpoint = 1;
6482 keep_going (ecs);
6483 return;
6484 }
6485 break;
6486
6487 case BPSTAT_WHAT_STOP_NOISY:
6488 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
6489 stop_print_frame = 1;
6490
6491 /* Assume the thread stopped for a breakpoint. We'll still check
6492 whether a/the breakpoint is there when the thread is next
6493 resumed. */
6494 ecs->event_thread->stepping_over_breakpoint = 1;
6495
6496 stop_waiting (ecs);
6497 return;
6498
6499 case BPSTAT_WHAT_STOP_SILENT:
6500 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
6501 stop_print_frame = 0;
6502
6503 /* Assume the thread stopped for a breakpoint. We'll still check
6504 whether a/the breakpoint is there when the thread is next
6505 resumed. */
6506 ecs->event_thread->stepping_over_breakpoint = 1;
6507 stop_waiting (ecs);
6508 return;
6509
6510 case BPSTAT_WHAT_HP_STEP_RESUME:
6511 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
6512
6513 delete_step_resume_breakpoint (ecs->event_thread);
6514 if (ecs->event_thread->step_after_step_resume_breakpoint)
6515 {
6516 /* Back when the step-resume breakpoint was inserted, we
6517 were trying to single-step off a breakpoint. Go back to
6518 doing that. */
6519 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6520 ecs->event_thread->stepping_over_breakpoint = 1;
6521 keep_going (ecs);
6522 return;
6523 }
6524 break;
6525
6526 case BPSTAT_WHAT_KEEP_CHECKING:
6527 break;
6528 }
6529
6530 /* If we stepped a permanent breakpoint and we had a high priority
6531 step-resume breakpoint for the address we stepped, but we didn't
6532 hit it, then we must have stepped into the signal handler. The
6533 step-resume was only necessary to catch the case of _not_
6534 stepping into the handler, so delete it, and fall through to
6535 checking whether the step finished. */
6536 if (ecs->event_thread->stepped_breakpoint)
6537 {
6538 struct breakpoint *sr_bp
6539 = ecs->event_thread->control.step_resume_breakpoint;
6540
6541 if (sr_bp != NULL
6542 && sr_bp->loc->permanent
6543 && sr_bp->type == bp_hp_step_resume
6544 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6545 {
6546 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
6547 delete_step_resume_breakpoint (ecs->event_thread);
6548 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6549 }
6550 }
6551
6552 /* We come here if we hit a breakpoint but should not stop for it.
6553 Possibly we also were stepping and should stop for that. So fall
6554 through and test for stepping. But, if not stepping, do not
6555 stop. */
6556
6557 /* In all-stop mode, if we're currently stepping but have stopped in
6558 some other thread, we need to switch back to the stepped thread. */
6559 if (switch_back_to_stepped_thread (ecs))
6560 return;
6561
6562 if (ecs->event_thread->control.step_resume_breakpoint)
6563 {
6564 infrun_debug_printf ("step-resume breakpoint is inserted");
6565
6566 /* Having a step-resume breakpoint overrides anything
6567 else having to do with stepping commands until
6568 that breakpoint is reached. */
6569 keep_going (ecs);
6570 return;
6571 }
6572
6573 if (ecs->event_thread->control.step_range_end == 0)
6574 {
6575 infrun_debug_printf ("no stepping, continue");
6576 /* Likewise if we aren't even stepping. */
6577 keep_going (ecs);
6578 return;
6579 }
6580
6581 /* Re-fetch current thread's frame in case the code above caused
6582 the frame cache to be re-initialized, making our FRAME variable
6583 a dangling pointer. */
6584 frame = get_current_frame ();
6585 gdbarch = get_frame_arch (frame);
6586 fill_in_stop_func (gdbarch, ecs);
6587
6588 /* If stepping through a line, keep going if still within it.
6589
6590 Note that step_range_end is the address of the first instruction
6591 beyond the step range, and NOT the address of the last instruction
6592 within it!
6593
6594 Note also that during reverse execution, we may be stepping
6595 through a function epilogue and therefore must detect when
6596 the current-frame changes in the middle of a line. */
6597
6598 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6599 ecs->event_thread)
6600 && (execution_direction != EXEC_REVERSE
6601 || frame_id_eq (get_frame_id (frame),
6602 ecs->event_thread->control.step_frame_id)))
6603 {
6604 infrun_debug_printf
6605 ("stepping inside range [%s-%s]",
6606 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6607 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6608
6609 /* Tentatively re-enable range stepping; `resume' disables it if
6610 necessary (e.g., if we're stepping over a breakpoint or we
6611 have software watchpoints). */
6612 ecs->event_thread->control.may_range_step = 1;
6613
6614 /* When stepping backward, stop at beginning of line range
6615 (unless it's the function entry point, in which case
6616 keep going back to the call point). */
6617 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6618 if (stop_pc == ecs->event_thread->control.step_range_start
6619 && stop_pc != ecs->stop_func_start
6620 && execution_direction == EXEC_REVERSE)
6621 end_stepping_range (ecs);
6622 else
6623 keep_going (ecs);
6624
6625 return;
6626 }
6627
6628 /* We stepped out of the stepping range. */
6629
6630 /* If we are stepping at the source level and entered the runtime
6631 loader dynamic symbol resolution code...
6632
6633 EXEC_FORWARD: we keep on single stepping until we exit the run
6634 time loader code and reach the callee's address.
6635
6636 EXEC_REVERSE: we've already executed the callee (backward), and
6637 the runtime loader code is handled just like any other
6638 undebuggable function call. Now we need only keep stepping
6639 backward through the trampoline code, and that's handled further
6640 down, so there is nothing for us to do here. */
6641
6642 if (execution_direction != EXEC_REVERSE
6643 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6644 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6645 {
6646 CORE_ADDR pc_after_resolver =
6647 gdbarch_skip_solib_resolver (gdbarch,
6648 ecs->event_thread->suspend.stop_pc);
6649
6650 infrun_debug_printf ("stepped into dynsym resolve code");
6651
6652 if (pc_after_resolver)
6653 {
6654 /* Set up a step-resume breakpoint at the address
6655 indicated by SKIP_SOLIB_RESOLVER. */
6656 symtab_and_line sr_sal;
6657 sr_sal.pc = pc_after_resolver;
6658 sr_sal.pspace = get_frame_program_space (frame);
6659
6660 insert_step_resume_breakpoint_at_sal (gdbarch,
6661 sr_sal, null_frame_id);
6662 }
6663
6664 keep_going (ecs);
6665 return;
6666 }
6667
6668 /* Step through an indirect branch thunk. */
6669 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6670 && gdbarch_in_indirect_branch_thunk (gdbarch,
6671 ecs->event_thread->suspend.stop_pc))
6672 {
6673 infrun_debug_printf ("stepped into indirect branch thunk");
6674 keep_going (ecs);
6675 return;
6676 }
6677
6678 if (ecs->event_thread->control.step_range_end != 1
6679 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6680 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6681 && get_frame_type (frame) == SIGTRAMP_FRAME)
6682 {
6683 infrun_debug_printf ("stepped into signal trampoline");
6684 /* The inferior, while doing a "step" or "next", has ended up in
6685 a signal trampoline (either by a signal being delivered or by
6686 the signal handler returning). Just single-step until the
6687 inferior leaves the trampoline (either by calling the handler
6688 or returning). */
6689 keep_going (ecs);
6690 return;
6691 }
6692
6693 /* If we're in the return path from a shared library trampoline,
6694 we want to proceed through the trampoline when stepping. */
6695 /* macro/2012-04-25: This needs to come before the subroutine
6696 call check below as on some targets return trampolines look
6697 like subroutine calls (MIPS16 return thunks). */
6698 if (gdbarch_in_solib_return_trampoline (gdbarch,
6699 ecs->event_thread->suspend.stop_pc,
6700 ecs->stop_func_name)
6701 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6702 {
6703 /* Determine where this trampoline returns. */
6704 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6705 CORE_ADDR real_stop_pc
6706 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6707
6708 infrun_debug_printf ("stepped into solib return tramp");
6709
6710 /* Only proceed through if we know where it's going. */
6711 if (real_stop_pc)
6712 {
6713 /* And put the step-breakpoint there and go until there. */
6714 symtab_and_line sr_sal;
6715 sr_sal.pc = real_stop_pc;
6716 sr_sal.section = find_pc_overlay (sr_sal.pc);
6717 sr_sal.pspace = get_frame_program_space (frame);
6718
6719 /* Do not specify what the fp should be when we stop since
6720 on some machines the prologue is where the new fp value
6721 is established. */
6722 insert_step_resume_breakpoint_at_sal (gdbarch,
6723 sr_sal, null_frame_id);
6724
6725 /* Restart without fiddling with the step ranges or
6726 other state. */
6727 keep_going (ecs);
6728 return;
6729 }
6730 }
6731
6732 /* Check for subroutine calls. The check for the current frame
6733 equalling the step ID is not necessary - the check of the
6734 previous frame's ID is sufficient - but it is a common case and
6735 cheaper than checking the previous frame's ID.
6736
6737 NOTE: frame_id_eq will never report two invalid frame IDs as
6738 being equal, so to get into this block, both the current and
6739 previous frame must have valid frame IDs. */
6740 /* The outer_frame_id check is a heuristic to detect stepping
6741 through startup code. If we step over an instruction which
6742 sets the stack pointer from an invalid value to a valid value,
6743 we may detect that as a subroutine call from the mythical
6744 "outermost" function. This could be fixed by marking
6745 outermost frames as !stack_p,code_p,special_p. Then the
6746 initial outermost frame, before sp was valid, would
6747 have code_addr == &_start. See the comment in frame_id_eq
6748 for more. */
6749 if (!frame_id_eq (get_stack_frame_id (frame),
6750 ecs->event_thread->control.step_stack_frame_id)
6751 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6752 ecs->event_thread->control.step_stack_frame_id)
6753 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6754 outer_frame_id)
6755 || (ecs->event_thread->control.step_start_function
6756 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6757 {
6758 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6759 CORE_ADDR real_stop_pc;
6760
6761 infrun_debug_printf ("stepped into subroutine");
6762
6763 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6764 {
6765 /* I presume that step_over_calls is only 0 when we're
6766 supposed to be stepping at the assembly language level
6767 ("stepi"). Just stop. */
6768 /* And this works the same backward as frontward. MVS */
6769 end_stepping_range (ecs);
6770 return;
6771 }
6772
6773 /* Reverse stepping through solib trampolines. */
6774
6775 if (execution_direction == EXEC_REVERSE
6776 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6777 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6778 || (ecs->stop_func_start == 0
6779 && in_solib_dynsym_resolve_code (stop_pc))))
6780 {
6781 /* Any solib trampoline code can be handled in reverse
6782 by simply continuing to single-step. We have already
6783 executed the solib function (backwards), and a few
6784 steps will take us back through the trampoline to the
6785 caller. */
6786 keep_going (ecs);
6787 return;
6788 }
6789
6790 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6791 {
6792 /* We're doing a "next".
6793
6794 Normal (forward) execution: set a breakpoint at the
6795 callee's return address (the address at which the caller
6796 will resume).
6797
6798 Reverse (backward) execution. set the step-resume
6799 breakpoint at the start of the function that we just
6800 stepped into (backwards), and continue to there. When we
6801 get there, we'll need to single-step back to the caller. */
6802
6803 if (execution_direction == EXEC_REVERSE)
6804 {
6805 /* If we're already at the start of the function, we've either
6806 just stepped backward into a single instruction function,
6807 or stepped back out of a signal handler to the first instruction
6808 of the function. Just keep going, which will single-step back
6809 to the caller. */
6810 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6811 {
6812 /* Normal function call return (static or dynamic). */
6813 symtab_and_line sr_sal;
6814 sr_sal.pc = ecs->stop_func_start;
6815 sr_sal.pspace = get_frame_program_space (frame);
6816 insert_step_resume_breakpoint_at_sal (gdbarch,
6817 sr_sal, null_frame_id);
6818 }
6819 }
6820 else
6821 insert_step_resume_breakpoint_at_caller (frame);
6822
6823 keep_going (ecs);
6824 return;
6825 }
6826
6827 /* If we are in a function call trampoline (a stub between the
6828 calling routine and the real function), locate the real
6829 function. That's what tells us (a) whether we want to step
6830 into it at all, and (b) what prologue we want to run to the
6831 end of, if we do step into it. */
6832 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6833 if (real_stop_pc == 0)
6834 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6835 if (real_stop_pc != 0)
6836 ecs->stop_func_start = real_stop_pc;
6837
6838 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6839 {
6840 symtab_and_line sr_sal;
6841 sr_sal.pc = ecs->stop_func_start;
6842 sr_sal.pspace = get_frame_program_space (frame);
6843
6844 insert_step_resume_breakpoint_at_sal (gdbarch,
6845 sr_sal, null_frame_id);
6846 keep_going (ecs);
6847 return;
6848 }
6849
6850 /* If we have line number information for the function we are
6851 thinking of stepping into and the function isn't on the skip
6852 list, step into it.
6853
6854 If there are several symtabs at that PC (e.g. with include
6855 files), just want to know whether *any* of them have line
6856 numbers. find_pc_line handles this. */
6857 {
6858 struct symtab_and_line tmp_sal;
6859
6860 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6861 if (tmp_sal.line != 0
6862 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6863 tmp_sal)
6864 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6865 {
6866 if (execution_direction == EXEC_REVERSE)
6867 handle_step_into_function_backward (gdbarch, ecs);
6868 else
6869 handle_step_into_function (gdbarch, ecs);
6870 return;
6871 }
6872 }
6873
6874 /* If we have no line number and the step-stop-if-no-debug is
6875 set, we stop the step so that the user has a chance to switch
6876 in assembly mode. */
6877 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6878 && step_stop_if_no_debug)
6879 {
6880 end_stepping_range (ecs);
6881 return;
6882 }
6883
6884 if (execution_direction == EXEC_REVERSE)
6885 {
6886 /* If we're already at the start of the function, we've either just
6887 stepped backward into a single instruction function without line
6888 number info, or stepped back out of a signal handler to the first
6889 instruction of the function without line number info. Just keep
6890 going, which will single-step back to the caller. */
6891 if (ecs->stop_func_start != stop_pc)
6892 {
6893 /* Set a breakpoint at callee's start address.
6894 From there we can step once and be back in the caller. */
6895 symtab_and_line sr_sal;
6896 sr_sal.pc = ecs->stop_func_start;
6897 sr_sal.pspace = get_frame_program_space (frame);
6898 insert_step_resume_breakpoint_at_sal (gdbarch,
6899 sr_sal, null_frame_id);
6900 }
6901 }
6902 else
6903 /* Set a breakpoint at callee's return address (the address
6904 at which the caller will resume). */
6905 insert_step_resume_breakpoint_at_caller (frame);
6906
6907 keep_going (ecs);
6908 return;
6909 }
6910
6911 /* Reverse stepping through solib trampolines. */
6912
6913 if (execution_direction == EXEC_REVERSE
6914 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6915 {
6916 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6917
6918 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6919 || (ecs->stop_func_start == 0
6920 && in_solib_dynsym_resolve_code (stop_pc)))
6921 {
6922 /* Any solib trampoline code can be handled in reverse
6923 by simply continuing to single-step. We have already
6924 executed the solib function (backwards), and a few
6925 steps will take us back through the trampoline to the
6926 caller. */
6927 keep_going (ecs);
6928 return;
6929 }
6930 else if (in_solib_dynsym_resolve_code (stop_pc))
6931 {
6932 /* Stepped backward into the solib dynsym resolver.
6933 Set a breakpoint at its start and continue, then
6934 one more step will take us out. */
6935 symtab_and_line sr_sal;
6936 sr_sal.pc = ecs->stop_func_start;
6937 sr_sal.pspace = get_frame_program_space (frame);
6938 insert_step_resume_breakpoint_at_sal (gdbarch,
6939 sr_sal, null_frame_id);
6940 keep_going (ecs);
6941 return;
6942 }
6943 }
6944
6945 /* This always returns the sal for the inner-most frame when we are in a
6946 stack of inlined frames, even if GDB actually believes that it is in a
6947 more outer frame. This is checked for below by calls to
6948 inline_skipped_frames. */
6949 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6950
6951 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6952 the trampoline processing logic, however, there are some trampolines
6953 that have no names, so we should do trampoline handling first. */
6954 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6955 && ecs->stop_func_name == NULL
6956 && stop_pc_sal.line == 0)
6957 {
6958 infrun_debug_printf ("stepped into undebuggable function");
6959
6960 /* The inferior just stepped into, or returned to, an
6961 undebuggable function (where there is no debugging information
6962 and no line number corresponding to the address where the
6963 inferior stopped). Since we want to skip this kind of code,
6964 we keep going until the inferior returns from this
6965 function - unless the user has asked us not to (via
6966 set step-mode) or we no longer know how to get back
6967 to the call site. */
6968 if (step_stop_if_no_debug
6969 || !frame_id_p (frame_unwind_caller_id (frame)))
6970 {
6971 /* If we have no line number and the step-stop-if-no-debug
6972 is set, we stop the step so that the user has a chance to
6973 switch in assembly mode. */
6974 end_stepping_range (ecs);
6975 return;
6976 }
6977 else
6978 {
6979 /* Set a breakpoint at callee's return address (the address
6980 at which the caller will resume). */
6981 insert_step_resume_breakpoint_at_caller (frame);
6982 keep_going (ecs);
6983 return;
6984 }
6985 }
6986
6987 if (ecs->event_thread->control.step_range_end == 1)
6988 {
6989 /* It is stepi or nexti. We always want to stop stepping after
6990 one instruction. */
6991 infrun_debug_printf ("stepi/nexti");
6992 end_stepping_range (ecs);
6993 return;
6994 }
6995
6996 if (stop_pc_sal.line == 0)
6997 {
6998 /* We have no line number information. That means to stop
6999 stepping (does this always happen right after one instruction,
7000 when we do "s" in a function with no line numbers,
7001 or can this happen as a result of a return or longjmp?). */
7002 infrun_debug_printf ("line number info");
7003 end_stepping_range (ecs);
7004 return;
7005 }
7006
7007 /* Look for "calls" to inlined functions, part one. If the inline
7008 frame machinery detected some skipped call sites, we have entered
7009 a new inline function. */
7010
7011 if (frame_id_eq (get_frame_id (get_current_frame ()),
7012 ecs->event_thread->control.step_frame_id)
7013 && inline_skipped_frames (ecs->event_thread))
7014 {
7015 infrun_debug_printf ("stepped into inlined function");
7016
7017 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7018
7019 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7020 {
7021 /* For "step", we're going to stop. But if the call site
7022 for this inlined function is on the same source line as
7023 we were previously stepping, go down into the function
7024 first. Otherwise stop at the call site. */
7025
7026 if (call_sal.line == ecs->event_thread->current_line
7027 && call_sal.symtab == ecs->event_thread->current_symtab)
7028 {
7029 step_into_inline_frame (ecs->event_thread);
7030 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7031 {
7032 keep_going (ecs);
7033 return;
7034 }
7035 }
7036
7037 end_stepping_range (ecs);
7038 return;
7039 }
7040 else
7041 {
7042 /* For "next", we should stop at the call site if it is on a
7043 different source line. Otherwise continue through the
7044 inlined function. */
7045 if (call_sal.line == ecs->event_thread->current_line
7046 && call_sal.symtab == ecs->event_thread->current_symtab)
7047 keep_going (ecs);
7048 else
7049 end_stepping_range (ecs);
7050 return;
7051 }
7052 }
7053
7054 /* Look for "calls" to inlined functions, part two. If we are still
7055 in the same real function we were stepping through, but we have
7056 to go further up to find the exact frame ID, we are stepping
7057 through a more inlined call beyond its call site. */
7058
7059 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7060 && !frame_id_eq (get_frame_id (get_current_frame ()),
7061 ecs->event_thread->control.step_frame_id)
7062 && stepped_in_from (get_current_frame (),
7063 ecs->event_thread->control.step_frame_id))
7064 {
7065 infrun_debug_printf ("stepping through inlined function");
7066
7067 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7068 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7069 keep_going (ecs);
7070 else
7071 end_stepping_range (ecs);
7072 return;
7073 }
7074
7075 bool refresh_step_info = true;
7076 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7077 && (ecs->event_thread->current_line != stop_pc_sal.line
7078 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7079 {
7080 if (stop_pc_sal.is_stmt)
7081 {
7082 /* We are at the start of a different line. So stop. Note that
7083 we don't stop if we step into the middle of a different line.
7084 That is said to make things like for (;;) statements work
7085 better. */
7086 infrun_debug_printf ("stepped to a different line");
7087 end_stepping_range (ecs);
7088 return;
7089 }
7090 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7091 ecs->event_thread->control.step_frame_id))
7092 {
7093 /* We are at the start of a different line, however, this line is
7094 not marked as a statement, and we have not changed frame. We
7095 ignore this line table entry, and continue stepping forward,
7096 looking for a better place to stop. */
7097 refresh_step_info = false;
7098 infrun_debug_printf ("stepped to a different line, but "
7099 "it's not the start of a statement");
7100 }
7101 }
7102
7103 /* We aren't done stepping.
7104
7105 Optimize by setting the stepping range to the line.
7106 (We might not be in the original line, but if we entered a
7107 new line in mid-statement, we continue stepping. This makes
7108 things like for(;;) statements work better.)
7109
7110 If we entered a SAL that indicates a non-statement line table entry,
7111 then we update the stepping range, but we don't update the step info,
7112 which includes things like the line number we are stepping away from.
7113 This means we will stop when we find a line table entry that is marked
7114 as is-statement, even if it matches the non-statement one we just
7115 stepped into. */
7116
7117 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7118 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7119 ecs->event_thread->control.may_range_step = 1;
7120 if (refresh_step_info)
7121 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7122
7123 infrun_debug_printf ("keep going");
7124 keep_going (ecs);
7125 }
7126
7127 /* In all-stop mode, if we're currently stepping but have stopped in
7128 some other thread, we may need to switch back to the stepped
7129 thread. Returns true we set the inferior running, false if we left
7130 it stopped (and the event needs further processing). */
7131
7132 static int
7133 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7134 {
7135 if (!target_is_non_stop_p ())
7136 {
7137 struct thread_info *stepping_thread;
7138
7139 /* If any thread is blocked on some internal breakpoint, and we
7140 simply need to step over that breakpoint to get it going
7141 again, do that first. */
7142
7143 /* However, if we see an event for the stepping thread, then we
7144 know all other threads have been moved past their breakpoints
7145 already. Let the caller check whether the step is finished,
7146 etc., before deciding to move it past a breakpoint. */
7147 if (ecs->event_thread->control.step_range_end != 0)
7148 return 0;
7149
7150 /* Check if the current thread is blocked on an incomplete
7151 step-over, interrupted by a random signal. */
7152 if (ecs->event_thread->control.trap_expected
7153 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7154 {
7155 infrun_debug_printf
7156 ("need to finish step-over of [%s]",
7157 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7158 keep_going (ecs);
7159 return 1;
7160 }
7161
7162 /* Check if the current thread is blocked by a single-step
7163 breakpoint of another thread. */
7164 if (ecs->hit_singlestep_breakpoint)
7165 {
7166 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7167 target_pid_to_str (ecs->ptid).c_str ());
7168 keep_going (ecs);
7169 return 1;
7170 }
7171
7172 /* If this thread needs yet another step-over (e.g., stepping
7173 through a delay slot), do it first before moving on to
7174 another thread. */
7175 if (thread_still_needs_step_over (ecs->event_thread))
7176 {
7177 infrun_debug_printf
7178 ("thread [%s] still needs step-over",
7179 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7180 keep_going (ecs);
7181 return 1;
7182 }
7183
7184 /* If scheduler locking applies even if not stepping, there's no
7185 need to walk over threads. Above we've checked whether the
7186 current thread is stepping. If some other thread not the
7187 event thread is stepping, then it must be that scheduler
7188 locking is not in effect. */
7189 if (schedlock_applies (ecs->event_thread))
7190 return 0;
7191
7192 /* Otherwise, we no longer expect a trap in the current thread.
7193 Clear the trap_expected flag before switching back -- this is
7194 what keep_going does as well, if we call it. */
7195 ecs->event_thread->control.trap_expected = 0;
7196
7197 /* Likewise, clear the signal if it should not be passed. */
7198 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7199 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7200
7201 /* Do all pending step-overs before actually proceeding with
7202 step/next/etc. */
7203 if (start_step_over ())
7204 {
7205 prepare_to_wait (ecs);
7206 return 1;
7207 }
7208
7209 /* Look for the stepping/nexting thread. */
7210 stepping_thread = NULL;
7211
7212 for (thread_info *tp : all_non_exited_threads ())
7213 {
7214 switch_to_thread_no_regs (tp);
7215
7216 /* Ignore threads of processes the caller is not
7217 resuming. */
7218 if (!sched_multi
7219 && (tp->inf->process_target () != ecs->target
7220 || tp->inf->pid != ecs->ptid.pid ()))
7221 continue;
7222
7223 /* When stepping over a breakpoint, we lock all threads
7224 except the one that needs to move past the breakpoint.
7225 If a non-event thread has this set, the "incomplete
7226 step-over" check above should have caught it earlier. */
7227 if (tp->control.trap_expected)
7228 {
7229 internal_error (__FILE__, __LINE__,
7230 "[%s] has inconsistent state: "
7231 "trap_expected=%d\n",
7232 target_pid_to_str (tp->ptid).c_str (),
7233 tp->control.trap_expected);
7234 }
7235
7236 /* Did we find the stepping thread? */
7237 if (tp->control.step_range_end)
7238 {
7239 /* Yep. There should only one though. */
7240 gdb_assert (stepping_thread == NULL);
7241
7242 /* The event thread is handled at the top, before we
7243 enter this loop. */
7244 gdb_assert (tp != ecs->event_thread);
7245
7246 /* If some thread other than the event thread is
7247 stepping, then scheduler locking can't be in effect,
7248 otherwise we wouldn't have resumed the current event
7249 thread in the first place. */
7250 gdb_assert (!schedlock_applies (tp));
7251
7252 stepping_thread = tp;
7253 }
7254 }
7255
7256 if (stepping_thread != NULL)
7257 {
7258 infrun_debug_printf ("switching back to stepped thread");
7259
7260 if (keep_going_stepped_thread (stepping_thread))
7261 {
7262 prepare_to_wait (ecs);
7263 return 1;
7264 }
7265 }
7266
7267 switch_to_thread (ecs->event_thread);
7268 }
7269
7270 return 0;
7271 }
7272
7273 /* Set a previously stepped thread back to stepping. Returns true on
7274 success, false if the resume is not possible (e.g., the thread
7275 vanished). */
7276
7277 static int
7278 keep_going_stepped_thread (struct thread_info *tp)
7279 {
7280 struct frame_info *frame;
7281 struct execution_control_state ecss;
7282 struct execution_control_state *ecs = &ecss;
7283
7284 /* If the stepping thread exited, then don't try to switch back and
7285 resume it, which could fail in several different ways depending
7286 on the target. Instead, just keep going.
7287
7288 We can find a stepping dead thread in the thread list in two
7289 cases:
7290
7291 - The target supports thread exit events, and when the target
7292 tries to delete the thread from the thread list, inferior_ptid
7293 pointed at the exiting thread. In such case, calling
7294 delete_thread does not really remove the thread from the list;
7295 instead, the thread is left listed, with 'exited' state.
7296
7297 - The target's debug interface does not support thread exit
7298 events, and so we have no idea whatsoever if the previously
7299 stepping thread is still alive. For that reason, we need to
7300 synchronously query the target now. */
7301
7302 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7303 {
7304 infrun_debug_printf ("not resuming previously stepped thread, it has "
7305 "vanished");
7306
7307 delete_thread (tp);
7308 return 0;
7309 }
7310
7311 infrun_debug_printf ("resuming previously stepped thread");
7312
7313 reset_ecs (ecs, tp);
7314 switch_to_thread (tp);
7315
7316 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7317 frame = get_current_frame ();
7318
7319 /* If the PC of the thread we were trying to single-step has
7320 changed, then that thread has trapped or been signaled, but the
7321 event has not been reported to GDB yet. Re-poll the target
7322 looking for this particular thread's event (i.e. temporarily
7323 enable schedlock) by:
7324
7325 - setting a break at the current PC
7326 - resuming that particular thread, only (by setting trap
7327 expected)
7328
7329 This prevents us continuously moving the single-step breakpoint
7330 forward, one instruction at a time, overstepping. */
7331
7332 if (tp->suspend.stop_pc != tp->prev_pc)
7333 {
7334 ptid_t resume_ptid;
7335
7336 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7337 paddress (target_gdbarch (), tp->prev_pc),
7338 paddress (target_gdbarch (), tp->suspend.stop_pc));
7339
7340 /* Clear the info of the previous step-over, as it's no longer
7341 valid (if the thread was trying to step over a breakpoint, it
7342 has already succeeded). It's what keep_going would do too,
7343 if we called it. Do this before trying to insert the sss
7344 breakpoint, otherwise if we were previously trying to step
7345 over this exact address in another thread, the breakpoint is
7346 skipped. */
7347 clear_step_over_info ();
7348 tp->control.trap_expected = 0;
7349
7350 insert_single_step_breakpoint (get_frame_arch (frame),
7351 get_frame_address_space (frame),
7352 tp->suspend.stop_pc);
7353
7354 tp->resumed = true;
7355 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7356 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7357 }
7358 else
7359 {
7360 infrun_debug_printf ("expected thread still hasn't advanced");
7361
7362 keep_going_pass_signal (ecs);
7363 }
7364 return 1;
7365 }
7366
7367 /* Is thread TP in the middle of (software or hardware)
7368 single-stepping? (Note the result of this function must never be
7369 passed directly as target_resume's STEP parameter.) */
7370
7371 static int
7372 currently_stepping (struct thread_info *tp)
7373 {
7374 return ((tp->control.step_range_end
7375 && tp->control.step_resume_breakpoint == NULL)
7376 || tp->control.trap_expected
7377 || tp->stepped_breakpoint
7378 || bpstat_should_step ());
7379 }
7380
7381 /* Inferior has stepped into a subroutine call with source code that
7382 we should not step over. Do step to the first line of code in
7383 it. */
7384
7385 static void
7386 handle_step_into_function (struct gdbarch *gdbarch,
7387 struct execution_control_state *ecs)
7388 {
7389 fill_in_stop_func (gdbarch, ecs);
7390
7391 compunit_symtab *cust
7392 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7393 if (cust != NULL && compunit_language (cust) != language_asm)
7394 ecs->stop_func_start
7395 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7396
7397 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7398 /* Use the step_resume_break to step until the end of the prologue,
7399 even if that involves jumps (as it seems to on the vax under
7400 4.2). */
7401 /* If the prologue ends in the middle of a source line, continue to
7402 the end of that source line (if it is still within the function).
7403 Otherwise, just go to end of prologue. */
7404 if (stop_func_sal.end
7405 && stop_func_sal.pc != ecs->stop_func_start
7406 && stop_func_sal.end < ecs->stop_func_end)
7407 ecs->stop_func_start = stop_func_sal.end;
7408
7409 /* Architectures which require breakpoint adjustment might not be able
7410 to place a breakpoint at the computed address. If so, the test
7411 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7412 ecs->stop_func_start to an address at which a breakpoint may be
7413 legitimately placed.
7414
7415 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7416 made, GDB will enter an infinite loop when stepping through
7417 optimized code consisting of VLIW instructions which contain
7418 subinstructions corresponding to different source lines. On
7419 FR-V, it's not permitted to place a breakpoint on any but the
7420 first subinstruction of a VLIW instruction. When a breakpoint is
7421 set, GDB will adjust the breakpoint address to the beginning of
7422 the VLIW instruction. Thus, we need to make the corresponding
7423 adjustment here when computing the stop address. */
7424
7425 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7426 {
7427 ecs->stop_func_start
7428 = gdbarch_adjust_breakpoint_address (gdbarch,
7429 ecs->stop_func_start);
7430 }
7431
7432 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7433 {
7434 /* We are already there: stop now. */
7435 end_stepping_range (ecs);
7436 return;
7437 }
7438 else
7439 {
7440 /* Put the step-breakpoint there and go until there. */
7441 symtab_and_line sr_sal;
7442 sr_sal.pc = ecs->stop_func_start;
7443 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7444 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7445
7446 /* Do not specify what the fp should be when we stop since on
7447 some machines the prologue is where the new fp value is
7448 established. */
7449 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7450
7451 /* And make sure stepping stops right away then. */
7452 ecs->event_thread->control.step_range_end
7453 = ecs->event_thread->control.step_range_start;
7454 }
7455 keep_going (ecs);
7456 }
7457
7458 /* Inferior has stepped backward into a subroutine call with source
7459 code that we should not step over. Do step to the beginning of the
7460 last line of code in it. */
7461
7462 static void
7463 handle_step_into_function_backward (struct gdbarch *gdbarch,
7464 struct execution_control_state *ecs)
7465 {
7466 struct compunit_symtab *cust;
7467 struct symtab_and_line stop_func_sal;
7468
7469 fill_in_stop_func (gdbarch, ecs);
7470
7471 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7472 if (cust != NULL && compunit_language (cust) != language_asm)
7473 ecs->stop_func_start
7474 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7475
7476 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7477
7478 /* OK, we're just going to keep stepping here. */
7479 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7480 {
7481 /* We're there already. Just stop stepping now. */
7482 end_stepping_range (ecs);
7483 }
7484 else
7485 {
7486 /* Else just reset the step range and keep going.
7487 No step-resume breakpoint, they don't work for
7488 epilogues, which can have multiple entry paths. */
7489 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7490 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7491 keep_going (ecs);
7492 }
7493 return;
7494 }
7495
7496 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7497 This is used to both functions and to skip over code. */
7498
7499 static void
7500 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7501 struct symtab_and_line sr_sal,
7502 struct frame_id sr_id,
7503 enum bptype sr_type)
7504 {
7505 /* There should never be more than one step-resume or longjmp-resume
7506 breakpoint per thread, so we should never be setting a new
7507 step_resume_breakpoint when one is already active. */
7508 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7509 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7510
7511 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7512 paddress (gdbarch, sr_sal.pc));
7513
7514 inferior_thread ()->control.step_resume_breakpoint
7515 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7516 }
7517
7518 void
7519 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7520 struct symtab_and_line sr_sal,
7521 struct frame_id sr_id)
7522 {
7523 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7524 sr_sal, sr_id,
7525 bp_step_resume);
7526 }
7527
7528 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7529 This is used to skip a potential signal handler.
7530
7531 This is called with the interrupted function's frame. The signal
7532 handler, when it returns, will resume the interrupted function at
7533 RETURN_FRAME.pc. */
7534
7535 static void
7536 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7537 {
7538 gdb_assert (return_frame != NULL);
7539
7540 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7541
7542 symtab_and_line sr_sal;
7543 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7544 sr_sal.section = find_pc_overlay (sr_sal.pc);
7545 sr_sal.pspace = get_frame_program_space (return_frame);
7546
7547 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7548 get_stack_frame_id (return_frame),
7549 bp_hp_step_resume);
7550 }
7551
7552 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7553 is used to skip a function after stepping into it (for "next" or if
7554 the called function has no debugging information).
7555
7556 The current function has almost always been reached by single
7557 stepping a call or return instruction. NEXT_FRAME belongs to the
7558 current function, and the breakpoint will be set at the caller's
7559 resume address.
7560
7561 This is a separate function rather than reusing
7562 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7563 get_prev_frame, which may stop prematurely (see the implementation
7564 of frame_unwind_caller_id for an example). */
7565
7566 static void
7567 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7568 {
7569 /* We shouldn't have gotten here if we don't know where the call site
7570 is. */
7571 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7572
7573 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7574
7575 symtab_and_line sr_sal;
7576 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7577 frame_unwind_caller_pc (next_frame));
7578 sr_sal.section = find_pc_overlay (sr_sal.pc);
7579 sr_sal.pspace = frame_unwind_program_space (next_frame);
7580
7581 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7582 frame_unwind_caller_id (next_frame));
7583 }
7584
7585 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7586 new breakpoint at the target of a jmp_buf. The handling of
7587 longjmp-resume uses the same mechanisms used for handling
7588 "step-resume" breakpoints. */
7589
7590 static void
7591 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7592 {
7593 /* There should never be more than one longjmp-resume breakpoint per
7594 thread, so we should never be setting a new
7595 longjmp_resume_breakpoint when one is already active. */
7596 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7597
7598 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7599 paddress (gdbarch, pc));
7600
7601 inferior_thread ()->control.exception_resume_breakpoint =
7602 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7603 }
7604
7605 /* Insert an exception resume breakpoint. TP is the thread throwing
7606 the exception. The block B is the block of the unwinder debug hook
7607 function. FRAME is the frame corresponding to the call to this
7608 function. SYM is the symbol of the function argument holding the
7609 target PC of the exception. */
7610
7611 static void
7612 insert_exception_resume_breakpoint (struct thread_info *tp,
7613 const struct block *b,
7614 struct frame_info *frame,
7615 struct symbol *sym)
7616 {
7617 try
7618 {
7619 struct block_symbol vsym;
7620 struct value *value;
7621 CORE_ADDR handler;
7622 struct breakpoint *bp;
7623
7624 vsym = lookup_symbol_search_name (sym->search_name (),
7625 b, VAR_DOMAIN);
7626 value = read_var_value (vsym.symbol, vsym.block, frame);
7627 /* If the value was optimized out, revert to the old behavior. */
7628 if (! value_optimized_out (value))
7629 {
7630 handler = value_as_address (value);
7631
7632 infrun_debug_printf ("exception resume at %lx",
7633 (unsigned long) handler);
7634
7635 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7636 handler,
7637 bp_exception_resume).release ();
7638
7639 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7640 frame = NULL;
7641
7642 bp->thread = tp->global_num;
7643 inferior_thread ()->control.exception_resume_breakpoint = bp;
7644 }
7645 }
7646 catch (const gdb_exception_error &e)
7647 {
7648 /* We want to ignore errors here. */
7649 }
7650 }
7651
7652 /* A helper for check_exception_resume that sets an
7653 exception-breakpoint based on a SystemTap probe. */
7654
7655 static void
7656 insert_exception_resume_from_probe (struct thread_info *tp,
7657 const struct bound_probe *probe,
7658 struct frame_info *frame)
7659 {
7660 struct value *arg_value;
7661 CORE_ADDR handler;
7662 struct breakpoint *bp;
7663
7664 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7665 if (!arg_value)
7666 return;
7667
7668 handler = value_as_address (arg_value);
7669
7670 infrun_debug_printf ("exception resume at %s",
7671 paddress (probe->objfile->arch (), handler));
7672
7673 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7674 handler, bp_exception_resume).release ();
7675 bp->thread = tp->global_num;
7676 inferior_thread ()->control.exception_resume_breakpoint = bp;
7677 }
7678
7679 /* This is called when an exception has been intercepted. Check to
7680 see whether the exception's destination is of interest, and if so,
7681 set an exception resume breakpoint there. */
7682
7683 static void
7684 check_exception_resume (struct execution_control_state *ecs,
7685 struct frame_info *frame)
7686 {
7687 struct bound_probe probe;
7688 struct symbol *func;
7689
7690 /* First see if this exception unwinding breakpoint was set via a
7691 SystemTap probe point. If so, the probe has two arguments: the
7692 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7693 set a breakpoint there. */
7694 probe = find_probe_by_pc (get_frame_pc (frame));
7695 if (probe.prob)
7696 {
7697 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7698 return;
7699 }
7700
7701 func = get_frame_function (frame);
7702 if (!func)
7703 return;
7704
7705 try
7706 {
7707 const struct block *b;
7708 struct block_iterator iter;
7709 struct symbol *sym;
7710 int argno = 0;
7711
7712 /* The exception breakpoint is a thread-specific breakpoint on
7713 the unwinder's debug hook, declared as:
7714
7715 void _Unwind_DebugHook (void *cfa, void *handler);
7716
7717 The CFA argument indicates the frame to which control is
7718 about to be transferred. HANDLER is the destination PC.
7719
7720 We ignore the CFA and set a temporary breakpoint at HANDLER.
7721 This is not extremely efficient but it avoids issues in gdb
7722 with computing the DWARF CFA, and it also works even in weird
7723 cases such as throwing an exception from inside a signal
7724 handler. */
7725
7726 b = SYMBOL_BLOCK_VALUE (func);
7727 ALL_BLOCK_SYMBOLS (b, iter, sym)
7728 {
7729 if (!SYMBOL_IS_ARGUMENT (sym))
7730 continue;
7731
7732 if (argno == 0)
7733 ++argno;
7734 else
7735 {
7736 insert_exception_resume_breakpoint (ecs->event_thread,
7737 b, frame, sym);
7738 break;
7739 }
7740 }
7741 }
7742 catch (const gdb_exception_error &e)
7743 {
7744 }
7745 }
7746
7747 static void
7748 stop_waiting (struct execution_control_state *ecs)
7749 {
7750 infrun_debug_printf ("stop_waiting");
7751
7752 /* Let callers know we don't want to wait for the inferior anymore. */
7753 ecs->wait_some_more = 0;
7754
7755 /* If all-stop, but there exists a non-stop target, stop all
7756 threads now that we're presenting the stop to the user. */
7757 if (!non_stop && exists_non_stop_target ())
7758 stop_all_threads ();
7759 }
7760
7761 /* Like keep_going, but passes the signal to the inferior, even if the
7762 signal is set to nopass. */
7763
7764 static void
7765 keep_going_pass_signal (struct execution_control_state *ecs)
7766 {
7767 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7768 gdb_assert (!ecs->event_thread->resumed);
7769
7770 /* Save the pc before execution, to compare with pc after stop. */
7771 ecs->event_thread->prev_pc
7772 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
7773
7774 if (ecs->event_thread->control.trap_expected)
7775 {
7776 struct thread_info *tp = ecs->event_thread;
7777
7778 infrun_debug_printf ("%s has trap_expected set, "
7779 "resuming to collect trap",
7780 target_pid_to_str (tp->ptid).c_str ());
7781
7782 /* We haven't yet gotten our trap, and either: intercepted a
7783 non-signal event (e.g., a fork); or took a signal which we
7784 are supposed to pass through to the inferior. Simply
7785 continue. */
7786 resume (ecs->event_thread->suspend.stop_signal);
7787 }
7788 else if (step_over_info_valid_p ())
7789 {
7790 /* Another thread is stepping over a breakpoint in-line. If
7791 this thread needs a step-over too, queue the request. In
7792 either case, this resume must be deferred for later. */
7793 struct thread_info *tp = ecs->event_thread;
7794
7795 if (ecs->hit_singlestep_breakpoint
7796 || thread_still_needs_step_over (tp))
7797 {
7798 infrun_debug_printf ("step-over already in progress: "
7799 "step-over for %s deferred",
7800 target_pid_to_str (tp->ptid).c_str ());
7801 thread_step_over_chain_enqueue (tp);
7802 }
7803 else
7804 {
7805 infrun_debug_printf ("step-over in progress: resume of %s deferred",
7806 target_pid_to_str (tp->ptid).c_str ());
7807 }
7808 }
7809 else
7810 {
7811 struct regcache *regcache = get_current_regcache ();
7812 int remove_bp;
7813 int remove_wps;
7814 step_over_what step_what;
7815
7816 /* Either the trap was not expected, but we are continuing
7817 anyway (if we got a signal, the user asked it be passed to
7818 the child)
7819 -- or --
7820 We got our expected trap, but decided we should resume from
7821 it.
7822
7823 We're going to run this baby now!
7824
7825 Note that insert_breakpoints won't try to re-insert
7826 already inserted breakpoints. Therefore, we don't
7827 care if breakpoints were already inserted, or not. */
7828
7829 /* If we need to step over a breakpoint, and we're not using
7830 displaced stepping to do so, insert all breakpoints
7831 (watchpoints, etc.) but the one we're stepping over, step one
7832 instruction, and then re-insert the breakpoint when that step
7833 is finished. */
7834
7835 step_what = thread_still_needs_step_over (ecs->event_thread);
7836
7837 remove_bp = (ecs->hit_singlestep_breakpoint
7838 || (step_what & STEP_OVER_BREAKPOINT));
7839 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7840
7841 /* We can't use displaced stepping if we need to step past a
7842 watchpoint. The instruction copied to the scratch pad would
7843 still trigger the watchpoint. */
7844 if (remove_bp
7845 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7846 {
7847 set_step_over_info (regcache->aspace (),
7848 regcache_read_pc (regcache), remove_wps,
7849 ecs->event_thread->global_num);
7850 }
7851 else if (remove_wps)
7852 set_step_over_info (NULL, 0, remove_wps, -1);
7853
7854 /* If we now need to do an in-line step-over, we need to stop
7855 all other threads. Note this must be done before
7856 insert_breakpoints below, because that removes the breakpoint
7857 we're about to step over, otherwise other threads could miss
7858 it. */
7859 if (step_over_info_valid_p () && target_is_non_stop_p ())
7860 stop_all_threads ();
7861
7862 /* Stop stepping if inserting breakpoints fails. */
7863 try
7864 {
7865 insert_breakpoints ();
7866 }
7867 catch (const gdb_exception_error &e)
7868 {
7869 exception_print (gdb_stderr, e);
7870 stop_waiting (ecs);
7871 clear_step_over_info ();
7872 return;
7873 }
7874
7875 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7876
7877 resume (ecs->event_thread->suspend.stop_signal);
7878 }
7879
7880 prepare_to_wait (ecs);
7881 }
7882
7883 /* Called when we should continue running the inferior, because the
7884 current event doesn't cause a user visible stop. This does the
7885 resuming part; waiting for the next event is done elsewhere. */
7886
7887 static void
7888 keep_going (struct execution_control_state *ecs)
7889 {
7890 if (ecs->event_thread->control.trap_expected
7891 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7892 ecs->event_thread->control.trap_expected = 0;
7893
7894 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7895 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7896 keep_going_pass_signal (ecs);
7897 }
7898
7899 /* This function normally comes after a resume, before
7900 handle_inferior_event exits. It takes care of any last bits of
7901 housekeeping, and sets the all-important wait_some_more flag. */
7902
7903 static void
7904 prepare_to_wait (struct execution_control_state *ecs)
7905 {
7906 infrun_debug_printf ("prepare_to_wait");
7907
7908 ecs->wait_some_more = 1;
7909
7910 /* If the target can't async, emulate it by marking the infrun event
7911 handler such that as soon as we get back to the event-loop, we
7912 immediately end up in fetch_inferior_event again calling
7913 target_wait. */
7914 if (!target_can_async_p ())
7915 mark_infrun_async_event_handler ();
7916 }
7917
7918 /* We are done with the step range of a step/next/si/ni command.
7919 Called once for each n of a "step n" operation. */
7920
7921 static void
7922 end_stepping_range (struct execution_control_state *ecs)
7923 {
7924 ecs->event_thread->control.stop_step = 1;
7925 stop_waiting (ecs);
7926 }
7927
7928 /* Several print_*_reason functions to print why the inferior has stopped.
7929 We always print something when the inferior exits, or receives a signal.
7930 The rest of the cases are dealt with later on in normal_stop and
7931 print_it_typical. Ideally there should be a call to one of these
7932 print_*_reason functions functions from handle_inferior_event each time
7933 stop_waiting is called.
7934
7935 Note that we don't call these directly, instead we delegate that to
7936 the interpreters, through observers. Interpreters then call these
7937 with whatever uiout is right. */
7938
7939 void
7940 print_end_stepping_range_reason (struct ui_out *uiout)
7941 {
7942 /* For CLI-like interpreters, print nothing. */
7943
7944 if (uiout->is_mi_like_p ())
7945 {
7946 uiout->field_string ("reason",
7947 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7948 }
7949 }
7950
7951 void
7952 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7953 {
7954 annotate_signalled ();
7955 if (uiout->is_mi_like_p ())
7956 uiout->field_string
7957 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7958 uiout->text ("\nProgram terminated with signal ");
7959 annotate_signal_name ();
7960 uiout->field_string ("signal-name",
7961 gdb_signal_to_name (siggnal));
7962 annotate_signal_name_end ();
7963 uiout->text (", ");
7964 annotate_signal_string ();
7965 uiout->field_string ("signal-meaning",
7966 gdb_signal_to_string (siggnal));
7967 annotate_signal_string_end ();
7968 uiout->text (".\n");
7969 uiout->text ("The program no longer exists.\n");
7970 }
7971
7972 void
7973 print_exited_reason (struct ui_out *uiout, int exitstatus)
7974 {
7975 struct inferior *inf = current_inferior ();
7976 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7977
7978 annotate_exited (exitstatus);
7979 if (exitstatus)
7980 {
7981 if (uiout->is_mi_like_p ())
7982 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7983 std::string exit_code_str
7984 = string_printf ("0%o", (unsigned int) exitstatus);
7985 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7986 plongest (inf->num), pidstr.c_str (),
7987 string_field ("exit-code", exit_code_str.c_str ()));
7988 }
7989 else
7990 {
7991 if (uiout->is_mi_like_p ())
7992 uiout->field_string
7993 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7994 uiout->message ("[Inferior %s (%s) exited normally]\n",
7995 plongest (inf->num), pidstr.c_str ());
7996 }
7997 }
7998
7999 void
8000 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8001 {
8002 struct thread_info *thr = inferior_thread ();
8003
8004 annotate_signal ();
8005
8006 if (uiout->is_mi_like_p ())
8007 ;
8008 else if (show_thread_that_caused_stop ())
8009 {
8010 const char *name;
8011
8012 uiout->text ("\nThread ");
8013 uiout->field_string ("thread-id", print_thread_id (thr));
8014
8015 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8016 if (name != NULL)
8017 {
8018 uiout->text (" \"");
8019 uiout->field_string ("name", name);
8020 uiout->text ("\"");
8021 }
8022 }
8023 else
8024 uiout->text ("\nProgram");
8025
8026 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8027 uiout->text (" stopped");
8028 else
8029 {
8030 uiout->text (" received signal ");
8031 annotate_signal_name ();
8032 if (uiout->is_mi_like_p ())
8033 uiout->field_string
8034 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8035 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8036 annotate_signal_name_end ();
8037 uiout->text (", ");
8038 annotate_signal_string ();
8039 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8040
8041 struct regcache *regcache = get_current_regcache ();
8042 struct gdbarch *gdbarch = regcache->arch ();
8043 if (gdbarch_report_signal_info_p (gdbarch))
8044 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8045
8046 annotate_signal_string_end ();
8047 }
8048 uiout->text (".\n");
8049 }
8050
8051 void
8052 print_no_history_reason (struct ui_out *uiout)
8053 {
8054 uiout->text ("\nNo more reverse-execution history.\n");
8055 }
8056
8057 /* Print current location without a level number, if we have changed
8058 functions or hit a breakpoint. Print source line if we have one.
8059 bpstat_print contains the logic deciding in detail what to print,
8060 based on the event(s) that just occurred. */
8061
8062 static void
8063 print_stop_location (struct target_waitstatus *ws)
8064 {
8065 int bpstat_ret;
8066 enum print_what source_flag;
8067 int do_frame_printing = 1;
8068 struct thread_info *tp = inferior_thread ();
8069
8070 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8071 switch (bpstat_ret)
8072 {
8073 case PRINT_UNKNOWN:
8074 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8075 should) carry around the function and does (or should) use
8076 that when doing a frame comparison. */
8077 if (tp->control.stop_step
8078 && frame_id_eq (tp->control.step_frame_id,
8079 get_frame_id (get_current_frame ()))
8080 && (tp->control.step_start_function
8081 == find_pc_function (tp->suspend.stop_pc)))
8082 {
8083 /* Finished step, just print source line. */
8084 source_flag = SRC_LINE;
8085 }
8086 else
8087 {
8088 /* Print location and source line. */
8089 source_flag = SRC_AND_LOC;
8090 }
8091 break;
8092 case PRINT_SRC_AND_LOC:
8093 /* Print location and source line. */
8094 source_flag = SRC_AND_LOC;
8095 break;
8096 case PRINT_SRC_ONLY:
8097 source_flag = SRC_LINE;
8098 break;
8099 case PRINT_NOTHING:
8100 /* Something bogus. */
8101 source_flag = SRC_LINE;
8102 do_frame_printing = 0;
8103 break;
8104 default:
8105 internal_error (__FILE__, __LINE__, _("Unknown value."));
8106 }
8107
8108 /* The behavior of this routine with respect to the source
8109 flag is:
8110 SRC_LINE: Print only source line
8111 LOCATION: Print only location
8112 SRC_AND_LOC: Print location and source line. */
8113 if (do_frame_printing)
8114 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8115 }
8116
8117 /* See infrun.h. */
8118
8119 void
8120 print_stop_event (struct ui_out *uiout, bool displays)
8121 {
8122 struct target_waitstatus last;
8123 struct thread_info *tp;
8124
8125 get_last_target_status (nullptr, nullptr, &last);
8126
8127 {
8128 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8129
8130 print_stop_location (&last);
8131
8132 /* Display the auto-display expressions. */
8133 if (displays)
8134 do_displays ();
8135 }
8136
8137 tp = inferior_thread ();
8138 if (tp->thread_fsm != NULL
8139 && tp->thread_fsm->finished_p ())
8140 {
8141 struct return_value_info *rv;
8142
8143 rv = tp->thread_fsm->return_value ();
8144 if (rv != NULL)
8145 print_return_value (uiout, rv);
8146 }
8147 }
8148
8149 /* See infrun.h. */
8150
8151 void
8152 maybe_remove_breakpoints (void)
8153 {
8154 if (!breakpoints_should_be_inserted_now () && target_has_execution ())
8155 {
8156 if (remove_breakpoints ())
8157 {
8158 target_terminal::ours_for_output ();
8159 printf_filtered (_("Cannot remove breakpoints because "
8160 "program is no longer writable.\nFurther "
8161 "execution is probably impossible.\n"));
8162 }
8163 }
8164 }
8165
8166 /* The execution context that just caused a normal stop. */
8167
8168 struct stop_context
8169 {
8170 stop_context ();
8171 ~stop_context ();
8172
8173 DISABLE_COPY_AND_ASSIGN (stop_context);
8174
8175 bool changed () const;
8176
8177 /* The stop ID. */
8178 ULONGEST stop_id;
8179
8180 /* The event PTID. */
8181
8182 ptid_t ptid;
8183
8184 /* If stopp for a thread event, this is the thread that caused the
8185 stop. */
8186 struct thread_info *thread;
8187
8188 /* The inferior that caused the stop. */
8189 int inf_num;
8190 };
8191
8192 /* Initializes a new stop context. If stopped for a thread event, this
8193 takes a strong reference to the thread. */
8194
8195 stop_context::stop_context ()
8196 {
8197 stop_id = get_stop_id ();
8198 ptid = inferior_ptid;
8199 inf_num = current_inferior ()->num;
8200
8201 if (inferior_ptid != null_ptid)
8202 {
8203 /* Take a strong reference so that the thread can't be deleted
8204 yet. */
8205 thread = inferior_thread ();
8206 thread->incref ();
8207 }
8208 else
8209 thread = NULL;
8210 }
8211
8212 /* Release a stop context previously created with save_stop_context.
8213 Releases the strong reference to the thread as well. */
8214
8215 stop_context::~stop_context ()
8216 {
8217 if (thread != NULL)
8218 thread->decref ();
8219 }
8220
8221 /* Return true if the current context no longer matches the saved stop
8222 context. */
8223
8224 bool
8225 stop_context::changed () const
8226 {
8227 if (ptid != inferior_ptid)
8228 return true;
8229 if (inf_num != current_inferior ()->num)
8230 return true;
8231 if (thread != NULL && thread->state != THREAD_STOPPED)
8232 return true;
8233 if (get_stop_id () != stop_id)
8234 return true;
8235 return false;
8236 }
8237
8238 /* See infrun.h. */
8239
8240 int
8241 normal_stop (void)
8242 {
8243 struct target_waitstatus last;
8244
8245 get_last_target_status (nullptr, nullptr, &last);
8246
8247 new_stop_id ();
8248
8249 /* If an exception is thrown from this point on, make sure to
8250 propagate GDB's knowledge of the executing state to the
8251 frontend/user running state. A QUIT is an easy exception to see
8252 here, so do this before any filtered output. */
8253
8254 ptid_t finish_ptid = null_ptid;
8255
8256 if (!non_stop)
8257 finish_ptid = minus_one_ptid;
8258 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8259 || last.kind == TARGET_WAITKIND_EXITED)
8260 {
8261 /* On some targets, we may still have live threads in the
8262 inferior when we get a process exit event. E.g., for
8263 "checkpoint", when the current checkpoint/fork exits,
8264 linux-fork.c automatically switches to another fork from
8265 within target_mourn_inferior. */
8266 if (inferior_ptid != null_ptid)
8267 finish_ptid = ptid_t (inferior_ptid.pid ());
8268 }
8269 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8270 finish_ptid = inferior_ptid;
8271
8272 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8273 if (finish_ptid != null_ptid)
8274 {
8275 maybe_finish_thread_state.emplace
8276 (user_visible_resume_target (finish_ptid), finish_ptid);
8277 }
8278
8279 /* As we're presenting a stop, and potentially removing breakpoints,
8280 update the thread list so we can tell whether there are threads
8281 running on the target. With target remote, for example, we can
8282 only learn about new threads when we explicitly update the thread
8283 list. Do this before notifying the interpreters about signal
8284 stops, end of stepping ranges, etc., so that the "new thread"
8285 output is emitted before e.g., "Program received signal FOO",
8286 instead of after. */
8287 update_thread_list ();
8288
8289 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8290 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8291
8292 /* As with the notification of thread events, we want to delay
8293 notifying the user that we've switched thread context until
8294 the inferior actually stops.
8295
8296 There's no point in saying anything if the inferior has exited.
8297 Note that SIGNALLED here means "exited with a signal", not
8298 "received a signal".
8299
8300 Also skip saying anything in non-stop mode. In that mode, as we
8301 don't want GDB to switch threads behind the user's back, to avoid
8302 races where the user is typing a command to apply to thread x,
8303 but GDB switches to thread y before the user finishes entering
8304 the command, fetch_inferior_event installs a cleanup to restore
8305 the current thread back to the thread the user had selected right
8306 after this event is handled, so we're not really switching, only
8307 informing of a stop. */
8308 if (!non_stop
8309 && previous_inferior_ptid != inferior_ptid
8310 && target_has_execution ()
8311 && last.kind != TARGET_WAITKIND_SIGNALLED
8312 && last.kind != TARGET_WAITKIND_EXITED
8313 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8314 {
8315 SWITCH_THRU_ALL_UIS ()
8316 {
8317 target_terminal::ours_for_output ();
8318 printf_filtered (_("[Switching to %s]\n"),
8319 target_pid_to_str (inferior_ptid).c_str ());
8320 annotate_thread_changed ();
8321 }
8322 previous_inferior_ptid = inferior_ptid;
8323 }
8324
8325 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8326 {
8327 SWITCH_THRU_ALL_UIS ()
8328 if (current_ui->prompt_state == PROMPT_BLOCKED)
8329 {
8330 target_terminal::ours_for_output ();
8331 printf_filtered (_("No unwaited-for children left.\n"));
8332 }
8333 }
8334
8335 /* Note: this depends on the update_thread_list call above. */
8336 maybe_remove_breakpoints ();
8337
8338 /* If an auto-display called a function and that got a signal,
8339 delete that auto-display to avoid an infinite recursion. */
8340
8341 if (stopped_by_random_signal)
8342 disable_current_display ();
8343
8344 SWITCH_THRU_ALL_UIS ()
8345 {
8346 async_enable_stdin ();
8347 }
8348
8349 /* Let the user/frontend see the threads as stopped. */
8350 maybe_finish_thread_state.reset ();
8351
8352 /* Select innermost stack frame - i.e., current frame is frame 0,
8353 and current location is based on that. Handle the case where the
8354 dummy call is returning after being stopped. E.g. the dummy call
8355 previously hit a breakpoint. (If the dummy call returns
8356 normally, we won't reach here.) Do this before the stop hook is
8357 run, so that it doesn't get to see the temporary dummy frame,
8358 which is not where we'll present the stop. */
8359 if (has_stack_frames ())
8360 {
8361 if (stop_stack_dummy == STOP_STACK_DUMMY)
8362 {
8363 /* Pop the empty frame that contains the stack dummy. This
8364 also restores inferior state prior to the call (struct
8365 infcall_suspend_state). */
8366 struct frame_info *frame = get_current_frame ();
8367
8368 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8369 frame_pop (frame);
8370 /* frame_pop calls reinit_frame_cache as the last thing it
8371 does which means there's now no selected frame. */
8372 }
8373
8374 select_frame (get_current_frame ());
8375
8376 /* Set the current source location. */
8377 set_current_sal_from_frame (get_current_frame ());
8378 }
8379
8380 /* Look up the hook_stop and run it (CLI internally handles problem
8381 of stop_command's pre-hook not existing). */
8382 if (stop_command != NULL)
8383 {
8384 stop_context saved_context;
8385
8386 try
8387 {
8388 execute_cmd_pre_hook (stop_command);
8389 }
8390 catch (const gdb_exception &ex)
8391 {
8392 exception_fprintf (gdb_stderr, ex,
8393 "Error while running hook_stop:\n");
8394 }
8395
8396 /* If the stop hook resumes the target, then there's no point in
8397 trying to notify about the previous stop; its context is
8398 gone. Likewise if the command switches thread or inferior --
8399 the observers would print a stop for the wrong
8400 thread/inferior. */
8401 if (saved_context.changed ())
8402 return 1;
8403 }
8404
8405 /* Notify observers about the stop. This is where the interpreters
8406 print the stop event. */
8407 if (inferior_ptid != null_ptid)
8408 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8409 stop_print_frame);
8410 else
8411 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8412
8413 annotate_stopped ();
8414
8415 if (target_has_execution ())
8416 {
8417 if (last.kind != TARGET_WAITKIND_SIGNALLED
8418 && last.kind != TARGET_WAITKIND_EXITED
8419 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8420 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8421 Delete any breakpoint that is to be deleted at the next stop. */
8422 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8423 }
8424
8425 /* Try to get rid of automatically added inferiors that are no
8426 longer needed. Keeping those around slows down things linearly.
8427 Note that this never removes the current inferior. */
8428 prune_inferiors ();
8429
8430 return 0;
8431 }
8432 \f
8433 int
8434 signal_stop_state (int signo)
8435 {
8436 return signal_stop[signo];
8437 }
8438
8439 int
8440 signal_print_state (int signo)
8441 {
8442 return signal_print[signo];
8443 }
8444
8445 int
8446 signal_pass_state (int signo)
8447 {
8448 return signal_program[signo];
8449 }
8450
8451 static void
8452 signal_cache_update (int signo)
8453 {
8454 if (signo == -1)
8455 {
8456 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8457 signal_cache_update (signo);
8458
8459 return;
8460 }
8461
8462 signal_pass[signo] = (signal_stop[signo] == 0
8463 && signal_print[signo] == 0
8464 && signal_program[signo] == 1
8465 && signal_catch[signo] == 0);
8466 }
8467
8468 int
8469 signal_stop_update (int signo, int state)
8470 {
8471 int ret = signal_stop[signo];
8472
8473 signal_stop[signo] = state;
8474 signal_cache_update (signo);
8475 return ret;
8476 }
8477
8478 int
8479 signal_print_update (int signo, int state)
8480 {
8481 int ret = signal_print[signo];
8482
8483 signal_print[signo] = state;
8484 signal_cache_update (signo);
8485 return ret;
8486 }
8487
8488 int
8489 signal_pass_update (int signo, int state)
8490 {
8491 int ret = signal_program[signo];
8492
8493 signal_program[signo] = state;
8494 signal_cache_update (signo);
8495 return ret;
8496 }
8497
8498 /* Update the global 'signal_catch' from INFO and notify the
8499 target. */
8500
8501 void
8502 signal_catch_update (const unsigned int *info)
8503 {
8504 int i;
8505
8506 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8507 signal_catch[i] = info[i] > 0;
8508 signal_cache_update (-1);
8509 target_pass_signals (signal_pass);
8510 }
8511
8512 static void
8513 sig_print_header (void)
8514 {
8515 printf_filtered (_("Signal Stop\tPrint\tPass "
8516 "to program\tDescription\n"));
8517 }
8518
8519 static void
8520 sig_print_info (enum gdb_signal oursig)
8521 {
8522 const char *name = gdb_signal_to_name (oursig);
8523 int name_padding = 13 - strlen (name);
8524
8525 if (name_padding <= 0)
8526 name_padding = 0;
8527
8528 printf_filtered ("%s", name);
8529 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8530 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8531 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8532 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8533 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8534 }
8535
8536 /* Specify how various signals in the inferior should be handled. */
8537
8538 static void
8539 handle_command (const char *args, int from_tty)
8540 {
8541 int digits, wordlen;
8542 int sigfirst, siglast;
8543 enum gdb_signal oursig;
8544 int allsigs;
8545
8546 if (args == NULL)
8547 {
8548 error_no_arg (_("signal to handle"));
8549 }
8550
8551 /* Allocate and zero an array of flags for which signals to handle. */
8552
8553 const size_t nsigs = GDB_SIGNAL_LAST;
8554 unsigned char sigs[nsigs] {};
8555
8556 /* Break the command line up into args. */
8557
8558 gdb_argv built_argv (args);
8559
8560 /* Walk through the args, looking for signal oursigs, signal names, and
8561 actions. Signal numbers and signal names may be interspersed with
8562 actions, with the actions being performed for all signals cumulatively
8563 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8564
8565 for (char *arg : built_argv)
8566 {
8567 wordlen = strlen (arg);
8568 for (digits = 0; isdigit (arg[digits]); digits++)
8569 {;
8570 }
8571 allsigs = 0;
8572 sigfirst = siglast = -1;
8573
8574 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8575 {
8576 /* Apply action to all signals except those used by the
8577 debugger. Silently skip those. */
8578 allsigs = 1;
8579 sigfirst = 0;
8580 siglast = nsigs - 1;
8581 }
8582 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8583 {
8584 SET_SIGS (nsigs, sigs, signal_stop);
8585 SET_SIGS (nsigs, sigs, signal_print);
8586 }
8587 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8588 {
8589 UNSET_SIGS (nsigs, sigs, signal_program);
8590 }
8591 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8592 {
8593 SET_SIGS (nsigs, sigs, signal_print);
8594 }
8595 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8596 {
8597 SET_SIGS (nsigs, sigs, signal_program);
8598 }
8599 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8600 {
8601 UNSET_SIGS (nsigs, sigs, signal_stop);
8602 }
8603 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8604 {
8605 SET_SIGS (nsigs, sigs, signal_program);
8606 }
8607 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8608 {
8609 UNSET_SIGS (nsigs, sigs, signal_print);
8610 UNSET_SIGS (nsigs, sigs, signal_stop);
8611 }
8612 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8613 {
8614 UNSET_SIGS (nsigs, sigs, signal_program);
8615 }
8616 else if (digits > 0)
8617 {
8618 /* It is numeric. The numeric signal refers to our own
8619 internal signal numbering from target.h, not to host/target
8620 signal number. This is a feature; users really should be
8621 using symbolic names anyway, and the common ones like
8622 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8623
8624 sigfirst = siglast = (int)
8625 gdb_signal_from_command (atoi (arg));
8626 if (arg[digits] == '-')
8627 {
8628 siglast = (int)
8629 gdb_signal_from_command (atoi (arg + digits + 1));
8630 }
8631 if (sigfirst > siglast)
8632 {
8633 /* Bet he didn't figure we'd think of this case... */
8634 std::swap (sigfirst, siglast);
8635 }
8636 }
8637 else
8638 {
8639 oursig = gdb_signal_from_name (arg);
8640 if (oursig != GDB_SIGNAL_UNKNOWN)
8641 {
8642 sigfirst = siglast = (int) oursig;
8643 }
8644 else
8645 {
8646 /* Not a number and not a recognized flag word => complain. */
8647 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8648 }
8649 }
8650
8651 /* If any signal numbers or symbol names were found, set flags for
8652 which signals to apply actions to. */
8653
8654 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8655 {
8656 switch ((enum gdb_signal) signum)
8657 {
8658 case GDB_SIGNAL_TRAP:
8659 case GDB_SIGNAL_INT:
8660 if (!allsigs && !sigs[signum])
8661 {
8662 if (query (_("%s is used by the debugger.\n\
8663 Are you sure you want to change it? "),
8664 gdb_signal_to_name ((enum gdb_signal) signum)))
8665 {
8666 sigs[signum] = 1;
8667 }
8668 else
8669 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8670 }
8671 break;
8672 case GDB_SIGNAL_0:
8673 case GDB_SIGNAL_DEFAULT:
8674 case GDB_SIGNAL_UNKNOWN:
8675 /* Make sure that "all" doesn't print these. */
8676 break;
8677 default:
8678 sigs[signum] = 1;
8679 break;
8680 }
8681 }
8682 }
8683
8684 for (int signum = 0; signum < nsigs; signum++)
8685 if (sigs[signum])
8686 {
8687 signal_cache_update (-1);
8688 target_pass_signals (signal_pass);
8689 target_program_signals (signal_program);
8690
8691 if (from_tty)
8692 {
8693 /* Show the results. */
8694 sig_print_header ();
8695 for (; signum < nsigs; signum++)
8696 if (sigs[signum])
8697 sig_print_info ((enum gdb_signal) signum);
8698 }
8699
8700 break;
8701 }
8702 }
8703
8704 /* Complete the "handle" command. */
8705
8706 static void
8707 handle_completer (struct cmd_list_element *ignore,
8708 completion_tracker &tracker,
8709 const char *text, const char *word)
8710 {
8711 static const char * const keywords[] =
8712 {
8713 "all",
8714 "stop",
8715 "ignore",
8716 "print",
8717 "pass",
8718 "nostop",
8719 "noignore",
8720 "noprint",
8721 "nopass",
8722 NULL,
8723 };
8724
8725 signal_completer (ignore, tracker, text, word);
8726 complete_on_enum (tracker, keywords, word, word);
8727 }
8728
8729 enum gdb_signal
8730 gdb_signal_from_command (int num)
8731 {
8732 if (num >= 1 && num <= 15)
8733 return (enum gdb_signal) num;
8734 error (_("Only signals 1-15 are valid as numeric signals.\n\
8735 Use \"info signals\" for a list of symbolic signals."));
8736 }
8737
8738 /* Print current contents of the tables set by the handle command.
8739 It is possible we should just be printing signals actually used
8740 by the current target (but for things to work right when switching
8741 targets, all signals should be in the signal tables). */
8742
8743 static void
8744 info_signals_command (const char *signum_exp, int from_tty)
8745 {
8746 enum gdb_signal oursig;
8747
8748 sig_print_header ();
8749
8750 if (signum_exp)
8751 {
8752 /* First see if this is a symbol name. */
8753 oursig = gdb_signal_from_name (signum_exp);
8754 if (oursig == GDB_SIGNAL_UNKNOWN)
8755 {
8756 /* No, try numeric. */
8757 oursig =
8758 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8759 }
8760 sig_print_info (oursig);
8761 return;
8762 }
8763
8764 printf_filtered ("\n");
8765 /* These ugly casts brought to you by the native VAX compiler. */
8766 for (oursig = GDB_SIGNAL_FIRST;
8767 (int) oursig < (int) GDB_SIGNAL_LAST;
8768 oursig = (enum gdb_signal) ((int) oursig + 1))
8769 {
8770 QUIT;
8771
8772 if (oursig != GDB_SIGNAL_UNKNOWN
8773 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8774 sig_print_info (oursig);
8775 }
8776
8777 printf_filtered (_("\nUse the \"handle\" command "
8778 "to change these tables.\n"));
8779 }
8780
8781 /* The $_siginfo convenience variable is a bit special. We don't know
8782 for sure the type of the value until we actually have a chance to
8783 fetch the data. The type can change depending on gdbarch, so it is
8784 also dependent on which thread you have selected.
8785
8786 1. making $_siginfo be an internalvar that creates a new value on
8787 access.
8788
8789 2. making the value of $_siginfo be an lval_computed value. */
8790
8791 /* This function implements the lval_computed support for reading a
8792 $_siginfo value. */
8793
8794 static void
8795 siginfo_value_read (struct value *v)
8796 {
8797 LONGEST transferred;
8798
8799 /* If we can access registers, so can we access $_siginfo. Likewise
8800 vice versa. */
8801 validate_registers_access ();
8802
8803 transferred =
8804 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8805 NULL,
8806 value_contents_all_raw (v),
8807 value_offset (v),
8808 TYPE_LENGTH (value_type (v)));
8809
8810 if (transferred != TYPE_LENGTH (value_type (v)))
8811 error (_("Unable to read siginfo"));
8812 }
8813
8814 /* This function implements the lval_computed support for writing a
8815 $_siginfo value. */
8816
8817 static void
8818 siginfo_value_write (struct value *v, struct value *fromval)
8819 {
8820 LONGEST transferred;
8821
8822 /* If we can access registers, so can we access $_siginfo. Likewise
8823 vice versa. */
8824 validate_registers_access ();
8825
8826 transferred = target_write (current_top_target (),
8827 TARGET_OBJECT_SIGNAL_INFO,
8828 NULL,
8829 value_contents_all_raw (fromval),
8830 value_offset (v),
8831 TYPE_LENGTH (value_type (fromval)));
8832
8833 if (transferred != TYPE_LENGTH (value_type (fromval)))
8834 error (_("Unable to write siginfo"));
8835 }
8836
8837 static const struct lval_funcs siginfo_value_funcs =
8838 {
8839 siginfo_value_read,
8840 siginfo_value_write
8841 };
8842
8843 /* Return a new value with the correct type for the siginfo object of
8844 the current thread using architecture GDBARCH. Return a void value
8845 if there's no object available. */
8846
8847 static struct value *
8848 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8849 void *ignore)
8850 {
8851 if (target_has_stack ()
8852 && inferior_ptid != null_ptid
8853 && gdbarch_get_siginfo_type_p (gdbarch))
8854 {
8855 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8856
8857 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8858 }
8859
8860 return allocate_value (builtin_type (gdbarch)->builtin_void);
8861 }
8862
8863 \f
8864 /* infcall_suspend_state contains state about the program itself like its
8865 registers and any signal it received when it last stopped.
8866 This state must be restored regardless of how the inferior function call
8867 ends (either successfully, or after it hits a breakpoint or signal)
8868 if the program is to properly continue where it left off. */
8869
8870 class infcall_suspend_state
8871 {
8872 public:
8873 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8874 once the inferior function call has finished. */
8875 infcall_suspend_state (struct gdbarch *gdbarch,
8876 const struct thread_info *tp,
8877 struct regcache *regcache)
8878 : m_thread_suspend (tp->suspend),
8879 m_registers (new readonly_detached_regcache (*regcache))
8880 {
8881 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8882
8883 if (gdbarch_get_siginfo_type_p (gdbarch))
8884 {
8885 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8886 size_t len = TYPE_LENGTH (type);
8887
8888 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8889
8890 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8891 siginfo_data.get (), 0, len) != len)
8892 {
8893 /* Errors ignored. */
8894 siginfo_data.reset (nullptr);
8895 }
8896 }
8897
8898 if (siginfo_data)
8899 {
8900 m_siginfo_gdbarch = gdbarch;
8901 m_siginfo_data = std::move (siginfo_data);
8902 }
8903 }
8904
8905 /* Return a pointer to the stored register state. */
8906
8907 readonly_detached_regcache *registers () const
8908 {
8909 return m_registers.get ();
8910 }
8911
8912 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8913
8914 void restore (struct gdbarch *gdbarch,
8915 struct thread_info *tp,
8916 struct regcache *regcache) const
8917 {
8918 tp->suspend = m_thread_suspend;
8919
8920 if (m_siginfo_gdbarch == gdbarch)
8921 {
8922 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8923
8924 /* Errors ignored. */
8925 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8926 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8927 }
8928
8929 /* The inferior can be gone if the user types "print exit(0)"
8930 (and perhaps other times). */
8931 if (target_has_execution ())
8932 /* NB: The register write goes through to the target. */
8933 regcache->restore (registers ());
8934 }
8935
8936 private:
8937 /* How the current thread stopped before the inferior function call was
8938 executed. */
8939 struct thread_suspend_state m_thread_suspend;
8940
8941 /* The registers before the inferior function call was executed. */
8942 std::unique_ptr<readonly_detached_regcache> m_registers;
8943
8944 /* Format of SIGINFO_DATA or NULL if it is not present. */
8945 struct gdbarch *m_siginfo_gdbarch = nullptr;
8946
8947 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8948 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8949 content would be invalid. */
8950 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8951 };
8952
8953 infcall_suspend_state_up
8954 save_infcall_suspend_state ()
8955 {
8956 struct thread_info *tp = inferior_thread ();
8957 struct regcache *regcache = get_current_regcache ();
8958 struct gdbarch *gdbarch = regcache->arch ();
8959
8960 infcall_suspend_state_up inf_state
8961 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8962
8963 /* Having saved the current state, adjust the thread state, discarding
8964 any stop signal information. The stop signal is not useful when
8965 starting an inferior function call, and run_inferior_call will not use
8966 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8967 tp->suspend.stop_signal = GDB_SIGNAL_0;
8968
8969 return inf_state;
8970 }
8971
8972 /* Restore inferior session state to INF_STATE. */
8973
8974 void
8975 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8976 {
8977 struct thread_info *tp = inferior_thread ();
8978 struct regcache *regcache = get_current_regcache ();
8979 struct gdbarch *gdbarch = regcache->arch ();
8980
8981 inf_state->restore (gdbarch, tp, regcache);
8982 discard_infcall_suspend_state (inf_state);
8983 }
8984
8985 void
8986 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8987 {
8988 delete inf_state;
8989 }
8990
8991 readonly_detached_regcache *
8992 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8993 {
8994 return inf_state->registers ();
8995 }
8996
8997 /* infcall_control_state contains state regarding gdb's control of the
8998 inferior itself like stepping control. It also contains session state like
8999 the user's currently selected frame. */
9000
9001 struct infcall_control_state
9002 {
9003 struct thread_control_state thread_control;
9004 struct inferior_control_state inferior_control;
9005
9006 /* Other fields: */
9007 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9008 int stopped_by_random_signal = 0;
9009
9010 /* ID if the selected frame when the inferior function call was made. */
9011 struct frame_id selected_frame_id {};
9012 };
9013
9014 /* Save all of the information associated with the inferior<==>gdb
9015 connection. */
9016
9017 infcall_control_state_up
9018 save_infcall_control_state ()
9019 {
9020 infcall_control_state_up inf_status (new struct infcall_control_state);
9021 struct thread_info *tp = inferior_thread ();
9022 struct inferior *inf = current_inferior ();
9023
9024 inf_status->thread_control = tp->control;
9025 inf_status->inferior_control = inf->control;
9026
9027 tp->control.step_resume_breakpoint = NULL;
9028 tp->control.exception_resume_breakpoint = NULL;
9029
9030 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9031 chain. If caller's caller is walking the chain, they'll be happier if we
9032 hand them back the original chain when restore_infcall_control_state is
9033 called. */
9034 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9035
9036 /* Other fields: */
9037 inf_status->stop_stack_dummy = stop_stack_dummy;
9038 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9039
9040 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9041
9042 return inf_status;
9043 }
9044
9045 static void
9046 restore_selected_frame (const frame_id &fid)
9047 {
9048 frame_info *frame = frame_find_by_id (fid);
9049
9050 /* If inf_status->selected_frame_id is NULL, there was no previously
9051 selected frame. */
9052 if (frame == NULL)
9053 {
9054 warning (_("Unable to restore previously selected frame."));
9055 return;
9056 }
9057
9058 select_frame (frame);
9059 }
9060
9061 /* Restore inferior session state to INF_STATUS. */
9062
9063 void
9064 restore_infcall_control_state (struct infcall_control_state *inf_status)
9065 {
9066 struct thread_info *tp = inferior_thread ();
9067 struct inferior *inf = current_inferior ();
9068
9069 if (tp->control.step_resume_breakpoint)
9070 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9071
9072 if (tp->control.exception_resume_breakpoint)
9073 tp->control.exception_resume_breakpoint->disposition
9074 = disp_del_at_next_stop;
9075
9076 /* Handle the bpstat_copy of the chain. */
9077 bpstat_clear (&tp->control.stop_bpstat);
9078
9079 tp->control = inf_status->thread_control;
9080 inf->control = inf_status->inferior_control;
9081
9082 /* Other fields: */
9083 stop_stack_dummy = inf_status->stop_stack_dummy;
9084 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9085
9086 if (target_has_stack ())
9087 {
9088 /* The point of the try/catch is that if the stack is clobbered,
9089 walking the stack might encounter a garbage pointer and
9090 error() trying to dereference it. */
9091 try
9092 {
9093 restore_selected_frame (inf_status->selected_frame_id);
9094 }
9095 catch (const gdb_exception_error &ex)
9096 {
9097 exception_fprintf (gdb_stderr, ex,
9098 "Unable to restore previously selected frame:\n");
9099 /* Error in restoring the selected frame. Select the
9100 innermost frame. */
9101 select_frame (get_current_frame ());
9102 }
9103 }
9104
9105 delete inf_status;
9106 }
9107
9108 void
9109 discard_infcall_control_state (struct infcall_control_state *inf_status)
9110 {
9111 if (inf_status->thread_control.step_resume_breakpoint)
9112 inf_status->thread_control.step_resume_breakpoint->disposition
9113 = disp_del_at_next_stop;
9114
9115 if (inf_status->thread_control.exception_resume_breakpoint)
9116 inf_status->thread_control.exception_resume_breakpoint->disposition
9117 = disp_del_at_next_stop;
9118
9119 /* See save_infcall_control_state for info on stop_bpstat. */
9120 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9121
9122 delete inf_status;
9123 }
9124 \f
9125 /* See infrun.h. */
9126
9127 void
9128 clear_exit_convenience_vars (void)
9129 {
9130 clear_internalvar (lookup_internalvar ("_exitsignal"));
9131 clear_internalvar (lookup_internalvar ("_exitcode"));
9132 }
9133 \f
9134
9135 /* User interface for reverse debugging:
9136 Set exec-direction / show exec-direction commands
9137 (returns error unless target implements to_set_exec_direction method). */
9138
9139 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9140 static const char exec_forward[] = "forward";
9141 static const char exec_reverse[] = "reverse";
9142 static const char *exec_direction = exec_forward;
9143 static const char *const exec_direction_names[] = {
9144 exec_forward,
9145 exec_reverse,
9146 NULL
9147 };
9148
9149 static void
9150 set_exec_direction_func (const char *args, int from_tty,
9151 struct cmd_list_element *cmd)
9152 {
9153 if (target_can_execute_reverse ())
9154 {
9155 if (!strcmp (exec_direction, exec_forward))
9156 execution_direction = EXEC_FORWARD;
9157 else if (!strcmp (exec_direction, exec_reverse))
9158 execution_direction = EXEC_REVERSE;
9159 }
9160 else
9161 {
9162 exec_direction = exec_forward;
9163 error (_("Target does not support this operation."));
9164 }
9165 }
9166
9167 static void
9168 show_exec_direction_func (struct ui_file *out, int from_tty,
9169 struct cmd_list_element *cmd, const char *value)
9170 {
9171 switch (execution_direction) {
9172 case EXEC_FORWARD:
9173 fprintf_filtered (out, _("Forward.\n"));
9174 break;
9175 case EXEC_REVERSE:
9176 fprintf_filtered (out, _("Reverse.\n"));
9177 break;
9178 default:
9179 internal_error (__FILE__, __LINE__,
9180 _("bogus execution_direction value: %d"),
9181 (int) execution_direction);
9182 }
9183 }
9184
9185 static void
9186 show_schedule_multiple (struct ui_file *file, int from_tty,
9187 struct cmd_list_element *c, const char *value)
9188 {
9189 fprintf_filtered (file, _("Resuming the execution of threads "
9190 "of all processes is %s.\n"), value);
9191 }
9192
9193 /* Implementation of `siginfo' variable. */
9194
9195 static const struct internalvar_funcs siginfo_funcs =
9196 {
9197 siginfo_make_value,
9198 NULL,
9199 NULL
9200 };
9201
9202 /* Callback for infrun's target events source. This is marked when a
9203 thread has a pending status to process. */
9204
9205 static void
9206 infrun_async_inferior_event_handler (gdb_client_data data)
9207 {
9208 inferior_event_handler (INF_REG_EVENT);
9209 }
9210
9211 #if GDB_SELF_TEST
9212 namespace selftests
9213 {
9214
9215 /* Verify that when two threads with the same ptid exist (from two different
9216 targets) and one of them changes ptid, we only update inferior_ptid if
9217 it is appropriate. */
9218
9219 static void
9220 infrun_thread_ptid_changed ()
9221 {
9222 gdbarch *arch = current_inferior ()->gdbarch;
9223
9224 /* The thread which inferior_ptid represents changes ptid. */
9225 {
9226 scoped_restore_current_pspace_and_thread restore;
9227
9228 scoped_mock_context<test_target_ops> target1 (arch);
9229 scoped_mock_context<test_target_ops> target2 (arch);
9230 target2.mock_inferior.next = &target1.mock_inferior;
9231
9232 ptid_t old_ptid (111, 222);
9233 ptid_t new_ptid (111, 333);
9234
9235 target1.mock_inferior.pid = old_ptid.pid ();
9236 target1.mock_thread.ptid = old_ptid;
9237 target2.mock_inferior.pid = old_ptid.pid ();
9238 target2.mock_thread.ptid = old_ptid;
9239
9240 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9241 set_current_inferior (&target1.mock_inferior);
9242
9243 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9244
9245 gdb_assert (inferior_ptid == new_ptid);
9246 }
9247
9248 /* A thread with the same ptid as inferior_ptid, but from another target,
9249 changes ptid. */
9250 {
9251 scoped_restore_current_pspace_and_thread restore;
9252
9253 scoped_mock_context<test_target_ops> target1 (arch);
9254 scoped_mock_context<test_target_ops> target2 (arch);
9255 target2.mock_inferior.next = &target1.mock_inferior;
9256
9257 ptid_t old_ptid (111, 222);
9258 ptid_t new_ptid (111, 333);
9259
9260 target1.mock_inferior.pid = old_ptid.pid ();
9261 target1.mock_thread.ptid = old_ptid;
9262 target2.mock_inferior.pid = old_ptid.pid ();
9263 target2.mock_thread.ptid = old_ptid;
9264
9265 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9266 set_current_inferior (&target2.mock_inferior);
9267
9268 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9269
9270 gdb_assert (inferior_ptid == old_ptid);
9271 }
9272 }
9273
9274 } /* namespace selftests */
9275
9276 #endif /* GDB_SELF_TEST */
9277
9278 void _initialize_infrun ();
9279 void
9280 _initialize_infrun ()
9281 {
9282 struct cmd_list_element *c;
9283
9284 /* Register extra event sources in the event loop. */
9285 infrun_async_inferior_event_token
9286 = create_async_event_handler (infrun_async_inferior_event_handler, NULL,
9287 "infrun");
9288
9289 add_info ("signals", info_signals_command, _("\
9290 What debugger does when program gets various signals.\n\
9291 Specify a signal as argument to print info on that signal only."));
9292 add_info_alias ("handle", "signals", 0);
9293
9294 c = add_com ("handle", class_run, handle_command, _("\
9295 Specify how to handle signals.\n\
9296 Usage: handle SIGNAL [ACTIONS]\n\
9297 Args are signals and actions to apply to those signals.\n\
9298 If no actions are specified, the current settings for the specified signals\n\
9299 will be displayed instead.\n\
9300 \n\
9301 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9302 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9303 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9304 The special arg \"all\" is recognized to mean all signals except those\n\
9305 used by the debugger, typically SIGTRAP and SIGINT.\n\
9306 \n\
9307 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9308 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9309 Stop means reenter debugger if this signal happens (implies print).\n\
9310 Print means print a message if this signal happens.\n\
9311 Pass means let program see this signal; otherwise program doesn't know.\n\
9312 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9313 Pass and Stop may be combined.\n\
9314 \n\
9315 Multiple signals may be specified. Signal numbers and signal names\n\
9316 may be interspersed with actions, with the actions being performed for\n\
9317 all signals cumulatively specified."));
9318 set_cmd_completer (c, handle_completer);
9319
9320 if (!dbx_commands)
9321 stop_command = add_cmd ("stop", class_obscure,
9322 not_just_help_class_command, _("\
9323 There is no `stop' command, but you can set a hook on `stop'.\n\
9324 This allows you to set a list of commands to be run each time execution\n\
9325 of the program stops."), &cmdlist);
9326
9327 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9328 Set inferior debugging."), _("\
9329 Show inferior debugging."), _("\
9330 When non-zero, inferior specific debugging is enabled."),
9331 NULL,
9332 show_debug_infrun,
9333 &setdebuglist, &showdebuglist);
9334
9335 add_setshow_boolean_cmd ("displaced", class_maintenance,
9336 &debug_displaced, _("\
9337 Set displaced stepping debugging."), _("\
9338 Show displaced stepping debugging."), _("\
9339 When non-zero, displaced stepping specific debugging is enabled."),
9340 NULL,
9341 show_debug_displaced,
9342 &setdebuglist, &showdebuglist);
9343
9344 add_setshow_boolean_cmd ("non-stop", no_class,
9345 &non_stop_1, _("\
9346 Set whether gdb controls the inferior in non-stop mode."), _("\
9347 Show whether gdb controls the inferior in non-stop mode."), _("\
9348 When debugging a multi-threaded program and this setting is\n\
9349 off (the default, also called all-stop mode), when one thread stops\n\
9350 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9351 all other threads in the program while you interact with the thread of\n\
9352 interest. When you continue or step a thread, you can allow the other\n\
9353 threads to run, or have them remain stopped, but while you inspect any\n\
9354 thread's state, all threads stop.\n\
9355 \n\
9356 In non-stop mode, when one thread stops, other threads can continue\n\
9357 to run freely. You'll be able to step each thread independently,\n\
9358 leave it stopped or free to run as needed."),
9359 set_non_stop,
9360 show_non_stop,
9361 &setlist,
9362 &showlist);
9363
9364 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9365 {
9366 signal_stop[i] = 1;
9367 signal_print[i] = 1;
9368 signal_program[i] = 1;
9369 signal_catch[i] = 0;
9370 }
9371
9372 /* Signals caused by debugger's own actions should not be given to
9373 the program afterwards.
9374
9375 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9376 explicitly specifies that it should be delivered to the target
9377 program. Typically, that would occur when a user is debugging a
9378 target monitor on a simulator: the target monitor sets a
9379 breakpoint; the simulator encounters this breakpoint and halts
9380 the simulation handing control to GDB; GDB, noting that the stop
9381 address doesn't map to any known breakpoint, returns control back
9382 to the simulator; the simulator then delivers the hardware
9383 equivalent of a GDB_SIGNAL_TRAP to the program being
9384 debugged. */
9385 signal_program[GDB_SIGNAL_TRAP] = 0;
9386 signal_program[GDB_SIGNAL_INT] = 0;
9387
9388 /* Signals that are not errors should not normally enter the debugger. */
9389 signal_stop[GDB_SIGNAL_ALRM] = 0;
9390 signal_print[GDB_SIGNAL_ALRM] = 0;
9391 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9392 signal_print[GDB_SIGNAL_VTALRM] = 0;
9393 signal_stop[GDB_SIGNAL_PROF] = 0;
9394 signal_print[GDB_SIGNAL_PROF] = 0;
9395 signal_stop[GDB_SIGNAL_CHLD] = 0;
9396 signal_print[GDB_SIGNAL_CHLD] = 0;
9397 signal_stop[GDB_SIGNAL_IO] = 0;
9398 signal_print[GDB_SIGNAL_IO] = 0;
9399 signal_stop[GDB_SIGNAL_POLL] = 0;
9400 signal_print[GDB_SIGNAL_POLL] = 0;
9401 signal_stop[GDB_SIGNAL_URG] = 0;
9402 signal_print[GDB_SIGNAL_URG] = 0;
9403 signal_stop[GDB_SIGNAL_WINCH] = 0;
9404 signal_print[GDB_SIGNAL_WINCH] = 0;
9405 signal_stop[GDB_SIGNAL_PRIO] = 0;
9406 signal_print[GDB_SIGNAL_PRIO] = 0;
9407
9408 /* These signals are used internally by user-level thread
9409 implementations. (See signal(5) on Solaris.) Like the above
9410 signals, a healthy program receives and handles them as part of
9411 its normal operation. */
9412 signal_stop[GDB_SIGNAL_LWP] = 0;
9413 signal_print[GDB_SIGNAL_LWP] = 0;
9414 signal_stop[GDB_SIGNAL_WAITING] = 0;
9415 signal_print[GDB_SIGNAL_WAITING] = 0;
9416 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9417 signal_print[GDB_SIGNAL_CANCEL] = 0;
9418 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9419 signal_print[GDB_SIGNAL_LIBRT] = 0;
9420
9421 /* Update cached state. */
9422 signal_cache_update (-1);
9423
9424 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9425 &stop_on_solib_events, _("\
9426 Set stopping for shared library events."), _("\
9427 Show stopping for shared library events."), _("\
9428 If nonzero, gdb will give control to the user when the dynamic linker\n\
9429 notifies gdb of shared library events. The most common event of interest\n\
9430 to the user would be loading/unloading of a new library."),
9431 set_stop_on_solib_events,
9432 show_stop_on_solib_events,
9433 &setlist, &showlist);
9434
9435 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9436 follow_fork_mode_kind_names,
9437 &follow_fork_mode_string, _("\
9438 Set debugger response to a program call of fork or vfork."), _("\
9439 Show debugger response to a program call of fork or vfork."), _("\
9440 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9441 parent - the original process is debugged after a fork\n\
9442 child - the new process is debugged after a fork\n\
9443 The unfollowed process will continue to run.\n\
9444 By default, the debugger will follow the parent process."),
9445 NULL,
9446 show_follow_fork_mode_string,
9447 &setlist, &showlist);
9448
9449 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9450 follow_exec_mode_names,
9451 &follow_exec_mode_string, _("\
9452 Set debugger response to a program call of exec."), _("\
9453 Show debugger response to a program call of exec."), _("\
9454 An exec call replaces the program image of a process.\n\
9455 \n\
9456 follow-exec-mode can be:\n\
9457 \n\
9458 new - the debugger creates a new inferior and rebinds the process\n\
9459 to this new inferior. The program the process was running before\n\
9460 the exec call can be restarted afterwards by restarting the original\n\
9461 inferior.\n\
9462 \n\
9463 same - the debugger keeps the process bound to the same inferior.\n\
9464 The new executable image replaces the previous executable loaded in\n\
9465 the inferior. Restarting the inferior after the exec call restarts\n\
9466 the executable the process was running after the exec call.\n\
9467 \n\
9468 By default, the debugger will use the same inferior."),
9469 NULL,
9470 show_follow_exec_mode_string,
9471 &setlist, &showlist);
9472
9473 add_setshow_enum_cmd ("scheduler-locking", class_run,
9474 scheduler_enums, &scheduler_mode, _("\
9475 Set mode for locking scheduler during execution."), _("\
9476 Show mode for locking scheduler during execution."), _("\
9477 off == no locking (threads may preempt at any time)\n\
9478 on == full locking (no thread except the current thread may run)\n\
9479 This applies to both normal execution and replay mode.\n\
9480 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9481 In this mode, other threads may run during other commands.\n\
9482 This applies to both normal execution and replay mode.\n\
9483 replay == scheduler locked in replay mode and unlocked during normal execution."),
9484 set_schedlock_func, /* traps on target vector */
9485 show_scheduler_mode,
9486 &setlist, &showlist);
9487
9488 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9489 Set mode for resuming threads of all processes."), _("\
9490 Show mode for resuming threads of all processes."), _("\
9491 When on, execution commands (such as 'continue' or 'next') resume all\n\
9492 threads of all processes. When off (which is the default), execution\n\
9493 commands only resume the threads of the current process. The set of\n\
9494 threads that are resumed is further refined by the scheduler-locking\n\
9495 mode (see help set scheduler-locking)."),
9496 NULL,
9497 show_schedule_multiple,
9498 &setlist, &showlist);
9499
9500 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9501 Set mode of the step operation."), _("\
9502 Show mode of the step operation."), _("\
9503 When set, doing a step over a function without debug line information\n\
9504 will stop at the first instruction of that function. Otherwise, the\n\
9505 function is skipped and the step command stops at a different source line."),
9506 NULL,
9507 show_step_stop_if_no_debug,
9508 &setlist, &showlist);
9509
9510 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9511 &can_use_displaced_stepping, _("\
9512 Set debugger's willingness to use displaced stepping."), _("\
9513 Show debugger's willingness to use displaced stepping."), _("\
9514 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9515 supported by the target architecture. If off, gdb will not use displaced\n\
9516 stepping to step over breakpoints, even if such is supported by the target\n\
9517 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9518 if the target architecture supports it and non-stop mode is active, but will not\n\
9519 use it in all-stop mode (see help set non-stop)."),
9520 NULL,
9521 show_can_use_displaced_stepping,
9522 &setlist, &showlist);
9523
9524 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9525 &exec_direction, _("Set direction of execution.\n\
9526 Options are 'forward' or 'reverse'."),
9527 _("Show direction of execution (forward/reverse)."),
9528 _("Tells gdb whether to execute forward or backward."),
9529 set_exec_direction_func, show_exec_direction_func,
9530 &setlist, &showlist);
9531
9532 /* Set/show detach-on-fork: user-settable mode. */
9533
9534 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9535 Set whether gdb will detach the child of a fork."), _("\
9536 Show whether gdb will detach the child of a fork."), _("\
9537 Tells gdb whether to detach the child of a fork."),
9538 NULL, NULL, &setlist, &showlist);
9539
9540 /* Set/show disable address space randomization mode. */
9541
9542 add_setshow_boolean_cmd ("disable-randomization", class_support,
9543 &disable_randomization, _("\
9544 Set disabling of debuggee's virtual address space randomization."), _("\
9545 Show disabling of debuggee's virtual address space randomization."), _("\
9546 When this mode is on (which is the default), randomization of the virtual\n\
9547 address space is disabled. Standalone programs run with the randomization\n\
9548 enabled by default on some platforms."),
9549 &set_disable_randomization,
9550 &show_disable_randomization,
9551 &setlist, &showlist);
9552
9553 /* ptid initializations */
9554 inferior_ptid = null_ptid;
9555 target_last_wait_ptid = minus_one_ptid;
9556
9557 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9558 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9559 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9560 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9561
9562 /* Explicitly create without lookup, since that tries to create a
9563 value with a void typed value, and when we get here, gdbarch
9564 isn't initialized yet. At this point, we're quite sure there
9565 isn't another convenience variable of the same name. */
9566 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9567
9568 add_setshow_boolean_cmd ("observer", no_class,
9569 &observer_mode_1, _("\
9570 Set whether gdb controls the inferior in observer mode."), _("\
9571 Show whether gdb controls the inferior in observer mode."), _("\
9572 In observer mode, GDB can get data from the inferior, but not\n\
9573 affect its execution. Registers and memory may not be changed,\n\
9574 breakpoints may not be set, and the program cannot be interrupted\n\
9575 or signalled."),
9576 set_observer_mode,
9577 show_observer_mode,
9578 &setlist,
9579 &showlist);
9580
9581 #if GDB_SELF_TEST
9582 selftests::register_test ("infrun_thread_ptid_changed",
9583 selftests::infrun_thread_ptid_changed);
9584 #endif
9585 }