* gdbthread.h (struct thread_info): Add comments around
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51 #include "event-top.h"
52
53 /* Prototypes for local functions */
54
55 static void signals_info (char *, int);
56
57 static void handle_command (char *, int);
58
59 static void sig_print_info (enum target_signal);
60
61 static void sig_print_header (void);
62
63 static void resume_cleanups (void *);
64
65 static int hook_stop_stub (void *);
66
67 static int restore_selected_frame (void *);
68
69 static void build_infrun (void);
70
71 static int follow_fork (void);
72
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
75
76 static int currently_stepping (struct thread_info *tp);
77
78 static void xdb_handle_command (char *args, int from_tty);
79
80 static int prepare_to_proceed (int);
81
82 void _initialize_infrun (void);
83
84 /* When set, stop the 'step' command if we enter a function which has
85 no line number information. The normal behavior is that we step
86 over such function. */
87 int step_stop_if_no_debug = 0;
88 static void
89 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
90 struct cmd_list_element *c, const char *value)
91 {
92 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
93 }
94
95 /* In asynchronous mode, but simulating synchronous execution. */
96
97 int sync_execution = 0;
98
99 /* wait_for_inferior and normal_stop use this to notify the user
100 when the inferior stopped in a different thread than it had been
101 running in. */
102
103 static ptid_t previous_inferior_ptid;
104
105 int debug_displaced = 0;
106 static void
107 show_debug_displaced (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109 {
110 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
111 }
112
113 static int debug_infrun = 0;
114 static void
115 show_debug_infrun (struct ui_file *file, int from_tty,
116 struct cmd_list_element *c, const char *value)
117 {
118 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
119 }
120
121 /* If the program uses ELF-style shared libraries, then calls to
122 functions in shared libraries go through stubs, which live in a
123 table called the PLT (Procedure Linkage Table). The first time the
124 function is called, the stub sends control to the dynamic linker,
125 which looks up the function's real address, patches the stub so
126 that future calls will go directly to the function, and then passes
127 control to the function.
128
129 If we are stepping at the source level, we don't want to see any of
130 this --- we just want to skip over the stub and the dynamic linker.
131 The simple approach is to single-step until control leaves the
132 dynamic linker.
133
134 However, on some systems (e.g., Red Hat's 5.2 distribution) the
135 dynamic linker calls functions in the shared C library, so you
136 can't tell from the PC alone whether the dynamic linker is still
137 running. In this case, we use a step-resume breakpoint to get us
138 past the dynamic linker, as if we were using "next" to step over a
139 function call.
140
141 in_solib_dynsym_resolve_code() says whether we're in the dynamic
142 linker code or not. Normally, this means we single-step. However,
143 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
144 address where we can place a step-resume breakpoint to get past the
145 linker's symbol resolution function.
146
147 in_solib_dynsym_resolve_code() can generally be implemented in a
148 pretty portable way, by comparing the PC against the address ranges
149 of the dynamic linker's sections.
150
151 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
152 it depends on internal details of the dynamic linker. It's usually
153 not too hard to figure out where to put a breakpoint, but it
154 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
155 sanity checking. If it can't figure things out, returning zero and
156 getting the (possibly confusing) stepping behavior is better than
157 signalling an error, which will obscure the change in the
158 inferior's state. */
159
160 /* This function returns TRUE if pc is the address of an instruction
161 that lies within the dynamic linker (such as the event hook, or the
162 dld itself).
163
164 This function must be used only when a dynamic linker event has
165 been caught, and the inferior is being stepped out of the hook, or
166 undefined results are guaranteed. */
167
168 #ifndef SOLIB_IN_DYNAMIC_LINKER
169 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
170 #endif
171
172
173 /* Convert the #defines into values. This is temporary until wfi control
174 flow is completely sorted out. */
175
176 #ifndef CANNOT_STEP_HW_WATCHPOINTS
177 #define CANNOT_STEP_HW_WATCHPOINTS 0
178 #else
179 #undef CANNOT_STEP_HW_WATCHPOINTS
180 #define CANNOT_STEP_HW_WATCHPOINTS 1
181 #endif
182
183 /* Tables of how to react to signals; the user sets them. */
184
185 static unsigned char *signal_stop;
186 static unsigned char *signal_print;
187 static unsigned char *signal_program;
188
189 #define SET_SIGS(nsigs,sigs,flags) \
190 do { \
191 int signum = (nsigs); \
192 while (signum-- > 0) \
193 if ((sigs)[signum]) \
194 (flags)[signum] = 1; \
195 } while (0)
196
197 #define UNSET_SIGS(nsigs,sigs,flags) \
198 do { \
199 int signum = (nsigs); \
200 while (signum-- > 0) \
201 if ((sigs)[signum]) \
202 (flags)[signum] = 0; \
203 } while (0)
204
205 /* Value to pass to target_resume() to cause all threads to resume */
206
207 #define RESUME_ALL (pid_to_ptid (-1))
208
209 /* Command list pointer for the "stop" placeholder. */
210
211 static struct cmd_list_element *stop_command;
212
213 /* Function inferior was in as of last step command. */
214
215 static struct symbol *step_start_function;
216
217 /* Nonzero if we want to give control to the user when we're notified
218 of shared library events by the dynamic linker. */
219 static int stop_on_solib_events;
220 static void
221 show_stop_on_solib_events (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223 {
224 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
225 value);
226 }
227
228 /* Nonzero means expecting a trace trap
229 and should stop the inferior and return silently when it happens. */
230
231 int stop_after_trap;
232
233 /* Nonzero means expecting a trap and caller will handle it themselves.
234 It is used after attach, due to attaching to a process;
235 when running in the shell before the child program has been exec'd;
236 and when running some kinds of remote stuff (FIXME?). */
237
238 enum stop_kind stop_soon;
239
240 /* Save register contents here when about to pop a stack dummy frame,
241 if-and-only-if proceed_to_finish is set.
242 Thus this contains the return value from the called function (assuming
243 values are returned in a register). */
244
245 struct regcache *stop_registers;
246
247 /* Nonzero after stop if current stack frame should be printed. */
248
249 static int stop_print_frame;
250
251 /* This is a cached copy of the pid/waitstatus of the last event
252 returned by target_wait()/deprecated_target_wait_hook(). This
253 information is returned by get_last_target_status(). */
254 static ptid_t target_last_wait_ptid;
255 static struct target_waitstatus target_last_waitstatus;
256
257 static void context_switch (ptid_t ptid);
258
259 void init_thread_stepping_state (struct thread_info *tss);
260
261 void init_infwait_state (void);
262
263 /* This is used to remember when a fork, vfork or exec event
264 was caught by a catchpoint, and thus the event is to be
265 followed at the next resume of the inferior, and not
266 immediately. */
267 static struct
268 {
269 enum target_waitkind kind;
270 struct
271 {
272 ptid_t parent_pid;
273 ptid_t child_pid;
274 }
275 fork_event;
276 char *execd_pathname;
277 }
278 pending_follow;
279
280 static const char follow_fork_mode_child[] = "child";
281 static const char follow_fork_mode_parent[] = "parent";
282
283 static const char *follow_fork_mode_kind_names[] = {
284 follow_fork_mode_child,
285 follow_fork_mode_parent,
286 NULL
287 };
288
289 static const char *follow_fork_mode_string = follow_fork_mode_parent;
290 static void
291 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
292 struct cmd_list_element *c, const char *value)
293 {
294 fprintf_filtered (file, _("\
295 Debugger response to a program call of fork or vfork is \"%s\".\n"),
296 value);
297 }
298 \f
299
300 static int
301 follow_fork (void)
302 {
303 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
304
305 return target_follow_fork (follow_child);
306 }
307
308 void
309 follow_inferior_reset_breakpoints (void)
310 {
311 struct thread_info *tp = inferior_thread ();
312
313 /* Was there a step_resume breakpoint? (There was if the user
314 did a "next" at the fork() call.) If so, explicitly reset its
315 thread number.
316
317 step_resumes are a form of bp that are made to be per-thread.
318 Since we created the step_resume bp when the parent process
319 was being debugged, and now are switching to the child process,
320 from the breakpoint package's viewpoint, that's a switch of
321 "threads". We must update the bp's notion of which thread
322 it is for, or it'll be ignored when it triggers. */
323
324 if (tp->step_resume_breakpoint)
325 breakpoint_re_set_thread (tp->step_resume_breakpoint);
326
327 /* Reinsert all breakpoints in the child. The user may have set
328 breakpoints after catching the fork, in which case those
329 were never set in the child, but only in the parent. This makes
330 sure the inserted breakpoints match the breakpoint list. */
331
332 breakpoint_re_set ();
333 insert_breakpoints ();
334 }
335
336 /* EXECD_PATHNAME is assumed to be non-NULL. */
337
338 static void
339 follow_exec (ptid_t pid, char *execd_pathname)
340 {
341 ptid_t saved_pid = pid;
342 struct target_ops *tgt;
343 struct thread_info *th = inferior_thread ();
344
345 /* This is an exec event that we actually wish to pay attention to.
346 Refresh our symbol table to the newly exec'd program, remove any
347 momentary bp's, etc.
348
349 If there are breakpoints, they aren't really inserted now,
350 since the exec() transformed our inferior into a fresh set
351 of instructions.
352
353 We want to preserve symbolic breakpoints on the list, since
354 we have hopes that they can be reset after the new a.out's
355 symbol table is read.
356
357 However, any "raw" breakpoints must be removed from the list
358 (e.g., the solib bp's), since their address is probably invalid
359 now.
360
361 And, we DON'T want to call delete_breakpoints() here, since
362 that may write the bp's "shadow contents" (the instruction
363 value that was overwritten witha TRAP instruction). Since
364 we now have a new a.out, those shadow contents aren't valid. */
365 update_breakpoints_after_exec ();
366
367 /* If there was one, it's gone now. We cannot truly step-to-next
368 statement through an exec(). */
369 th->step_resume_breakpoint = NULL;
370 th->step_range_start = 0;
371 th->step_range_end = 0;
372
373 /* What is this a.out's name? */
374 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
375
376 /* We've followed the inferior through an exec. Therefore, the
377 inferior has essentially been killed & reborn. */
378
379 gdb_flush (gdb_stdout);
380 generic_mourn_inferior ();
381 /* Because mourn_inferior resets inferior_ptid. */
382 inferior_ptid = saved_pid;
383
384 if (gdb_sysroot && *gdb_sysroot)
385 {
386 char *name = alloca (strlen (gdb_sysroot)
387 + strlen (execd_pathname)
388 + 1);
389 strcpy (name, gdb_sysroot);
390 strcat (name, execd_pathname);
391 execd_pathname = name;
392 }
393
394 /* That a.out is now the one to use. */
395 exec_file_attach (execd_pathname, 0);
396
397 /* Reset the shared library package. This ensures that we get a
398 shlib event when the child reaches "_start", at which point the
399 dld will have had a chance to initialize the child. */
400 /* Also, loading a symbol file below may trigger symbol lookups, and
401 we don't want those to be satisfied by the libraries of the
402 previous incarnation of this process. */
403 no_shared_libraries (NULL, 0);
404
405 /* Load the main file's symbols. */
406 symbol_file_add_main (execd_pathname, 0);
407
408 #ifdef SOLIB_CREATE_INFERIOR_HOOK
409 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
410 #else
411 solib_create_inferior_hook ();
412 #endif
413
414 /* Reinsert all breakpoints. (Those which were symbolic have
415 been reset to the proper address in the new a.out, thanks
416 to symbol_file_command...) */
417 insert_breakpoints ();
418
419 /* The next resume of this inferior should bring it to the shlib
420 startup breakpoints. (If the user had also set bp's on
421 "main" from the old (parent) process, then they'll auto-
422 matically get reset there in the new process.) */
423 }
424
425 /* Non-zero if we just simulating a single-step. This is needed
426 because we cannot remove the breakpoints in the inferior process
427 until after the `wait' in `wait_for_inferior'. */
428 static int singlestep_breakpoints_inserted_p = 0;
429
430 /* The thread we inserted single-step breakpoints for. */
431 static ptid_t singlestep_ptid;
432
433 /* PC when we started this single-step. */
434 static CORE_ADDR singlestep_pc;
435
436 /* If another thread hit the singlestep breakpoint, we save the original
437 thread here so that we can resume single-stepping it later. */
438 static ptid_t saved_singlestep_ptid;
439 static int stepping_past_singlestep_breakpoint;
440
441 /* If not equal to null_ptid, this means that after stepping over breakpoint
442 is finished, we need to switch to deferred_step_ptid, and step it.
443
444 The use case is when one thread has hit a breakpoint, and then the user
445 has switched to another thread and issued 'step'. We need to step over
446 breakpoint in the thread which hit the breakpoint, but then continue
447 stepping the thread user has selected. */
448 static ptid_t deferred_step_ptid;
449 \f
450 /* Displaced stepping. */
451
452 /* In non-stop debugging mode, we must take special care to manage
453 breakpoints properly; in particular, the traditional strategy for
454 stepping a thread past a breakpoint it has hit is unsuitable.
455 'Displaced stepping' is a tactic for stepping one thread past a
456 breakpoint it has hit while ensuring that other threads running
457 concurrently will hit the breakpoint as they should.
458
459 The traditional way to step a thread T off a breakpoint in a
460 multi-threaded program in all-stop mode is as follows:
461
462 a0) Initially, all threads are stopped, and breakpoints are not
463 inserted.
464 a1) We single-step T, leaving breakpoints uninserted.
465 a2) We insert breakpoints, and resume all threads.
466
467 In non-stop debugging, however, this strategy is unsuitable: we
468 don't want to have to stop all threads in the system in order to
469 continue or step T past a breakpoint. Instead, we use displaced
470 stepping:
471
472 n0) Initially, T is stopped, other threads are running, and
473 breakpoints are inserted.
474 n1) We copy the instruction "under" the breakpoint to a separate
475 location, outside the main code stream, making any adjustments
476 to the instruction, register, and memory state as directed by
477 T's architecture.
478 n2) We single-step T over the instruction at its new location.
479 n3) We adjust the resulting register and memory state as directed
480 by T's architecture. This includes resetting T's PC to point
481 back into the main instruction stream.
482 n4) We resume T.
483
484 This approach depends on the following gdbarch methods:
485
486 - gdbarch_max_insn_length and gdbarch_displaced_step_location
487 indicate where to copy the instruction, and how much space must
488 be reserved there. We use these in step n1.
489
490 - gdbarch_displaced_step_copy_insn copies a instruction to a new
491 address, and makes any necessary adjustments to the instruction,
492 register contents, and memory. We use this in step n1.
493
494 - gdbarch_displaced_step_fixup adjusts registers and memory after
495 we have successfuly single-stepped the instruction, to yield the
496 same effect the instruction would have had if we had executed it
497 at its original address. We use this in step n3.
498
499 - gdbarch_displaced_step_free_closure provides cleanup.
500
501 The gdbarch_displaced_step_copy_insn and
502 gdbarch_displaced_step_fixup functions must be written so that
503 copying an instruction with gdbarch_displaced_step_copy_insn,
504 single-stepping across the copied instruction, and then applying
505 gdbarch_displaced_insn_fixup should have the same effects on the
506 thread's memory and registers as stepping the instruction in place
507 would have. Exactly which responsibilities fall to the copy and
508 which fall to the fixup is up to the author of those functions.
509
510 See the comments in gdbarch.sh for details.
511
512 Note that displaced stepping and software single-step cannot
513 currently be used in combination, although with some care I think
514 they could be made to. Software single-step works by placing
515 breakpoints on all possible subsequent instructions; if the
516 displaced instruction is a PC-relative jump, those breakpoints
517 could fall in very strange places --- on pages that aren't
518 executable, or at addresses that are not proper instruction
519 boundaries. (We do generally let other threads run while we wait
520 to hit the software single-step breakpoint, and they might
521 encounter such a corrupted instruction.) One way to work around
522 this would be to have gdbarch_displaced_step_copy_insn fully
523 simulate the effect of PC-relative instructions (and return NULL)
524 on architectures that use software single-stepping.
525
526 In non-stop mode, we can have independent and simultaneous step
527 requests, so more than one thread may need to simultaneously step
528 over a breakpoint. The current implementation assumes there is
529 only one scratch space per process. In this case, we have to
530 serialize access to the scratch space. If thread A wants to step
531 over a breakpoint, but we are currently waiting for some other
532 thread to complete a displaced step, we leave thread A stopped and
533 place it in the displaced_step_request_queue. Whenever a displaced
534 step finishes, we pick the next thread in the queue and start a new
535 displaced step operation on it. See displaced_step_prepare and
536 displaced_step_fixup for details. */
537
538 /* If this is not null_ptid, this is the thread carrying out a
539 displaced single-step. This thread's state will require fixing up
540 once it has completed its step. */
541 static ptid_t displaced_step_ptid;
542
543 struct displaced_step_request
544 {
545 ptid_t ptid;
546 struct displaced_step_request *next;
547 };
548
549 /* A queue of pending displaced stepping requests. */
550 struct displaced_step_request *displaced_step_request_queue;
551
552 /* The architecture the thread had when we stepped it. */
553 static struct gdbarch *displaced_step_gdbarch;
554
555 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
556 for post-step cleanup. */
557 static struct displaced_step_closure *displaced_step_closure;
558
559 /* The address of the original instruction, and the copy we made. */
560 static CORE_ADDR displaced_step_original, displaced_step_copy;
561
562 /* Saved contents of copy area. */
563 static gdb_byte *displaced_step_saved_copy;
564
565 /* When this is non-zero, we are allowed to use displaced stepping, if
566 the architecture supports it. When this is zero, we use
567 traditional the hold-and-step approach. */
568 int can_use_displaced_stepping = 1;
569 static void
570 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
571 struct cmd_list_element *c,
572 const char *value)
573 {
574 fprintf_filtered (file, _("\
575 Debugger's willingness to use displaced stepping to step over "
576 "breakpoints is %s.\n"), value);
577 }
578
579 /* Return non-zero if displaced stepping is enabled, and can be used
580 with GDBARCH. */
581 static int
582 use_displaced_stepping (struct gdbarch *gdbarch)
583 {
584 return (can_use_displaced_stepping
585 && gdbarch_displaced_step_copy_insn_p (gdbarch));
586 }
587
588 /* Clean out any stray displaced stepping state. */
589 static void
590 displaced_step_clear (void)
591 {
592 /* Indicate that there is no cleanup pending. */
593 displaced_step_ptid = null_ptid;
594
595 if (displaced_step_closure)
596 {
597 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
598 displaced_step_closure);
599 displaced_step_closure = NULL;
600 }
601 }
602
603 static void
604 cleanup_displaced_step_closure (void *ptr)
605 {
606 struct displaced_step_closure *closure = ptr;
607
608 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
609 }
610
611 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
612 void
613 displaced_step_dump_bytes (struct ui_file *file,
614 const gdb_byte *buf,
615 size_t len)
616 {
617 int i;
618
619 for (i = 0; i < len; i++)
620 fprintf_unfiltered (file, "%02x ", buf[i]);
621 fputs_unfiltered ("\n", file);
622 }
623
624 /* Prepare to single-step, using displaced stepping.
625
626 Note that we cannot use displaced stepping when we have a signal to
627 deliver. If we have a signal to deliver and an instruction to step
628 over, then after the step, there will be no indication from the
629 target whether the thread entered a signal handler or ignored the
630 signal and stepped over the instruction successfully --- both cases
631 result in a simple SIGTRAP. In the first case we mustn't do a
632 fixup, and in the second case we must --- but we can't tell which.
633 Comments in the code for 'random signals' in handle_inferior_event
634 explain how we handle this case instead.
635
636 Returns 1 if preparing was successful -- this thread is going to be
637 stepped now; or 0 if displaced stepping this thread got queued. */
638 static int
639 displaced_step_prepare (ptid_t ptid)
640 {
641 struct cleanup *old_cleanups;
642 struct regcache *regcache = get_thread_regcache (ptid);
643 struct gdbarch *gdbarch = get_regcache_arch (regcache);
644 CORE_ADDR original, copy;
645 ULONGEST len;
646 struct displaced_step_closure *closure;
647
648 /* We should never reach this function if the architecture does not
649 support displaced stepping. */
650 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
651
652 /* For the first cut, we're displaced stepping one thread at a
653 time. */
654
655 if (!ptid_equal (displaced_step_ptid, null_ptid))
656 {
657 /* Already waiting for a displaced step to finish. Defer this
658 request and place in queue. */
659 struct displaced_step_request *req, *new_req;
660
661 if (debug_displaced)
662 fprintf_unfiltered (gdb_stdlog,
663 "displaced: defering step of %s\n",
664 target_pid_to_str (ptid));
665
666 new_req = xmalloc (sizeof (*new_req));
667 new_req->ptid = ptid;
668 new_req->next = NULL;
669
670 if (displaced_step_request_queue)
671 {
672 for (req = displaced_step_request_queue;
673 req && req->next;
674 req = req->next)
675 ;
676 req->next = new_req;
677 }
678 else
679 displaced_step_request_queue = new_req;
680
681 return 0;
682 }
683 else
684 {
685 if (debug_displaced)
686 fprintf_unfiltered (gdb_stdlog,
687 "displaced: stepping %s now\n",
688 target_pid_to_str (ptid));
689 }
690
691 displaced_step_clear ();
692
693 original = regcache_read_pc (regcache);
694
695 copy = gdbarch_displaced_step_location (gdbarch);
696 len = gdbarch_max_insn_length (gdbarch);
697
698 /* Save the original contents of the copy area. */
699 displaced_step_saved_copy = xmalloc (len);
700 old_cleanups = make_cleanup (free_current_contents,
701 &displaced_step_saved_copy);
702 read_memory (copy, displaced_step_saved_copy, len);
703 if (debug_displaced)
704 {
705 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
706 paddr_nz (copy));
707 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
708 };
709
710 closure = gdbarch_displaced_step_copy_insn (gdbarch,
711 original, copy, regcache);
712
713 /* We don't support the fully-simulated case at present. */
714 gdb_assert (closure);
715
716 make_cleanup (cleanup_displaced_step_closure, closure);
717
718 /* Resume execution at the copy. */
719 regcache_write_pc (regcache, copy);
720
721 discard_cleanups (old_cleanups);
722
723 if (debug_displaced)
724 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
725 paddr_nz (copy));
726
727 /* Save the information we need to fix things up if the step
728 succeeds. */
729 displaced_step_ptid = ptid;
730 displaced_step_gdbarch = gdbarch;
731 displaced_step_closure = closure;
732 displaced_step_original = original;
733 displaced_step_copy = copy;
734 return 1;
735 }
736
737 static void
738 displaced_step_clear_cleanup (void *ignore)
739 {
740 displaced_step_clear ();
741 }
742
743 static void
744 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
745 {
746 struct cleanup *ptid_cleanup = save_inferior_ptid ();
747 inferior_ptid = ptid;
748 write_memory (memaddr, myaddr, len);
749 do_cleanups (ptid_cleanup);
750 }
751
752 static void
753 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
754 {
755 struct cleanup *old_cleanups;
756
757 /* Was this event for the pid we displaced? */
758 if (ptid_equal (displaced_step_ptid, null_ptid)
759 || ! ptid_equal (displaced_step_ptid, event_ptid))
760 return;
761
762 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
763
764 /* Restore the contents of the copy area. */
765 {
766 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
767 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
768 displaced_step_saved_copy, len);
769 if (debug_displaced)
770 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
771 paddr_nz (displaced_step_copy));
772 }
773
774 /* Did the instruction complete successfully? */
775 if (signal == TARGET_SIGNAL_TRAP)
776 {
777 /* Fix up the resulting state. */
778 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
779 displaced_step_closure,
780 displaced_step_original,
781 displaced_step_copy,
782 get_thread_regcache (displaced_step_ptid));
783 }
784 else
785 {
786 /* Since the instruction didn't complete, all we can do is
787 relocate the PC. */
788 struct regcache *regcache = get_thread_regcache (event_ptid);
789 CORE_ADDR pc = regcache_read_pc (regcache);
790 pc = displaced_step_original + (pc - displaced_step_copy);
791 regcache_write_pc (regcache, pc);
792 }
793
794 do_cleanups (old_cleanups);
795
796 /* Are there any pending displaced stepping requests? If so, run
797 one now. */
798 if (displaced_step_request_queue)
799 {
800 struct displaced_step_request *head;
801 ptid_t ptid;
802
803 head = displaced_step_request_queue;
804 ptid = head->ptid;
805 displaced_step_request_queue = head->next;
806 xfree (head);
807
808 if (debug_displaced)
809 fprintf_unfiltered (gdb_stdlog,
810 "displaced: stepping queued %s now\n",
811 target_pid_to_str (ptid));
812
813
814 displaced_step_ptid = null_ptid;
815 displaced_step_prepare (ptid);
816 target_resume (ptid, 1, TARGET_SIGNAL_0);
817 }
818 }
819
820 /* Update global variables holding ptids to hold NEW_PTID if they were
821 holding OLD_PTID. */
822 static void
823 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
824 {
825 struct displaced_step_request *it;
826
827 if (ptid_equal (inferior_ptid, old_ptid))
828 inferior_ptid = new_ptid;
829
830 if (ptid_equal (singlestep_ptid, old_ptid))
831 singlestep_ptid = new_ptid;
832
833 if (ptid_equal (displaced_step_ptid, old_ptid))
834 displaced_step_ptid = new_ptid;
835
836 if (ptid_equal (deferred_step_ptid, old_ptid))
837 deferred_step_ptid = new_ptid;
838
839 for (it = displaced_step_request_queue; it; it = it->next)
840 if (ptid_equal (it->ptid, old_ptid))
841 it->ptid = new_ptid;
842 }
843
844 \f
845 /* Resuming. */
846
847 /* Things to clean up if we QUIT out of resume (). */
848 static void
849 resume_cleanups (void *ignore)
850 {
851 normal_stop ();
852 }
853
854 static const char schedlock_off[] = "off";
855 static const char schedlock_on[] = "on";
856 static const char schedlock_step[] = "step";
857 static const char *scheduler_enums[] = {
858 schedlock_off,
859 schedlock_on,
860 schedlock_step,
861 NULL
862 };
863 static const char *scheduler_mode = schedlock_off;
864 static void
865 show_scheduler_mode (struct ui_file *file, int from_tty,
866 struct cmd_list_element *c, const char *value)
867 {
868 fprintf_filtered (file, _("\
869 Mode for locking scheduler during execution is \"%s\".\n"),
870 value);
871 }
872
873 static void
874 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
875 {
876 if (!target_can_lock_scheduler)
877 {
878 scheduler_mode = schedlock_off;
879 error (_("Target '%s' cannot support this command."), target_shortname);
880 }
881 }
882
883
884 /* Resume the inferior, but allow a QUIT. This is useful if the user
885 wants to interrupt some lengthy single-stepping operation
886 (for child processes, the SIGINT goes to the inferior, and so
887 we get a SIGINT random_signal, but for remote debugging and perhaps
888 other targets, that's not true).
889
890 STEP nonzero if we should step (zero to continue instead).
891 SIG is the signal to give the inferior (zero for none). */
892 void
893 resume (int step, enum target_signal sig)
894 {
895 int should_resume = 1;
896 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
897 struct regcache *regcache = get_current_regcache ();
898 struct gdbarch *gdbarch = get_regcache_arch (regcache);
899 struct thread_info *tp = inferior_thread ();
900 CORE_ADDR pc = regcache_read_pc (regcache);
901 QUIT;
902
903 if (debug_infrun)
904 fprintf_unfiltered (gdb_stdlog,
905 "infrun: resume (step=%d, signal=%d), "
906 "trap_expected=%d\n",
907 step, sig, tp->trap_expected);
908
909 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
910 over an instruction that causes a page fault without triggering
911 a hardware watchpoint. The kernel properly notices that it shouldn't
912 stop, because the hardware watchpoint is not triggered, but it forgets
913 the step request and continues the program normally.
914 Work around the problem by removing hardware watchpoints if a step is
915 requested, GDB will check for a hardware watchpoint trigger after the
916 step anyway. */
917 if (CANNOT_STEP_HW_WATCHPOINTS && step)
918 remove_hw_watchpoints ();
919
920
921 /* Normally, by the time we reach `resume', the breakpoints are either
922 removed or inserted, as appropriate. The exception is if we're sitting
923 at a permanent breakpoint; we need to step over it, but permanent
924 breakpoints can't be removed. So we have to test for it here. */
925 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
926 {
927 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
928 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
929 else
930 error (_("\
931 The program is stopped at a permanent breakpoint, but GDB does not know\n\
932 how to step past a permanent breakpoint on this architecture. Try using\n\
933 a command like `return' or `jump' to continue execution."));
934 }
935
936 /* If enabled, step over breakpoints by executing a copy of the
937 instruction at a different address.
938
939 We can't use displaced stepping when we have a signal to deliver;
940 the comments for displaced_step_prepare explain why. The
941 comments in the handle_inferior event for dealing with 'random
942 signals' explain what we do instead. */
943 if (use_displaced_stepping (gdbarch)
944 && tp->trap_expected
945 && sig == TARGET_SIGNAL_0)
946 {
947 if (!displaced_step_prepare (inferior_ptid))
948 {
949 /* Got placed in displaced stepping queue. Will be resumed
950 later when all the currently queued displaced stepping
951 requests finish. The thread is not executing at this point,
952 and the call to set_executing will be made later. But we
953 need to call set_running here, since from frontend point of view,
954 the thread is running. */
955 set_running (inferior_ptid, 1);
956 discard_cleanups (old_cleanups);
957 return;
958 }
959 }
960
961 if (step && gdbarch_software_single_step_p (gdbarch))
962 {
963 /* Do it the hard way, w/temp breakpoints */
964 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
965 {
966 /* ...and don't ask hardware to do it. */
967 step = 0;
968 /* and do not pull these breakpoints until after a `wait' in
969 `wait_for_inferior' */
970 singlestep_breakpoints_inserted_p = 1;
971 singlestep_ptid = inferior_ptid;
972 singlestep_pc = pc;
973 }
974 }
975
976 /* If there were any forks/vforks/execs that were caught and are
977 now to be followed, then do so. */
978 switch (pending_follow.kind)
979 {
980 case TARGET_WAITKIND_FORKED:
981 case TARGET_WAITKIND_VFORKED:
982 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
983 if (follow_fork ())
984 should_resume = 0;
985 break;
986
987 case TARGET_WAITKIND_EXECD:
988 /* follow_exec is called as soon as the exec event is seen. */
989 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
990 break;
991
992 default:
993 break;
994 }
995
996 /* Install inferior's terminal modes. */
997 target_terminal_inferior ();
998
999 if (should_resume)
1000 {
1001 ptid_t resume_ptid;
1002
1003 resume_ptid = RESUME_ALL; /* Default */
1004
1005 /* If STEP is set, it's a request to use hardware stepping
1006 facilities. But in that case, we should never
1007 use singlestep breakpoint. */
1008 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1009
1010 if (singlestep_breakpoints_inserted_p
1011 && stepping_past_singlestep_breakpoint)
1012 {
1013 /* The situation here is as follows. In thread T1 we wanted to
1014 single-step. Lacking hardware single-stepping we've
1015 set breakpoint at the PC of the next instruction -- call it
1016 P. After resuming, we've hit that breakpoint in thread T2.
1017 Now we've removed original breakpoint, inserted breakpoint
1018 at P+1, and try to step to advance T2 past breakpoint.
1019 We need to step only T2, as if T1 is allowed to freely run,
1020 it can run past P, and if other threads are allowed to run,
1021 they can hit breakpoint at P+1, and nested hits of single-step
1022 breakpoints is not something we'd want -- that's complicated
1023 to support, and has no value. */
1024 resume_ptid = inferior_ptid;
1025 }
1026
1027 if ((step || singlestep_breakpoints_inserted_p)
1028 && tp->trap_expected)
1029 {
1030 /* We're allowing a thread to run past a breakpoint it has
1031 hit, by single-stepping the thread with the breakpoint
1032 removed. In which case, we need to single-step only this
1033 thread, and keep others stopped, as they can miss this
1034 breakpoint if allowed to run.
1035
1036 The current code actually removes all breakpoints when
1037 doing this, not just the one being stepped over, so if we
1038 let other threads run, we can actually miss any
1039 breakpoint, not just the one at PC. */
1040 resume_ptid = inferior_ptid;
1041 }
1042
1043 if (non_stop)
1044 {
1045 /* With non-stop mode on, threads are always handled
1046 individually. */
1047 resume_ptid = inferior_ptid;
1048 }
1049 else if ((scheduler_mode == schedlock_on)
1050 || (scheduler_mode == schedlock_step
1051 && (step || singlestep_breakpoints_inserted_p)))
1052 {
1053 /* User-settable 'scheduler' mode requires solo thread resume. */
1054 resume_ptid = inferior_ptid;
1055 }
1056
1057 if (gdbarch_cannot_step_breakpoint (gdbarch))
1058 {
1059 /* Most targets can step a breakpoint instruction, thus
1060 executing it normally. But if this one cannot, just
1061 continue and we will hit it anyway. */
1062 if (step && breakpoint_inserted_here_p (pc))
1063 step = 0;
1064 }
1065
1066 if (debug_displaced
1067 && use_displaced_stepping (gdbarch)
1068 && tp->trap_expected)
1069 {
1070 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1071 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1072 gdb_byte buf[4];
1073
1074 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1075 paddr_nz (actual_pc));
1076 read_memory (actual_pc, buf, sizeof (buf));
1077 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1078 }
1079
1080 target_resume (resume_ptid, step, sig);
1081 }
1082
1083 discard_cleanups (old_cleanups);
1084 }
1085 \f
1086 /* Proceeding. */
1087
1088 /* Clear out all variables saying what to do when inferior is continued.
1089 First do this, then set the ones you want, then call `proceed'. */
1090
1091 void
1092 clear_proceed_status (void)
1093 {
1094 if (!ptid_equal (inferior_ptid, null_ptid))
1095 {
1096 struct thread_info *tp = inferior_thread ();
1097
1098 tp->trap_expected = 0;
1099 tp->step_range_start = 0;
1100 tp->step_range_end = 0;
1101 tp->step_frame_id = null_frame_id;
1102 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1103
1104 tp->proceed_to_finish = 0;
1105
1106 /* Discard any remaining commands or status from previous
1107 stop. */
1108 bpstat_clear (&tp->stop_bpstat);
1109 }
1110
1111 stop_after_trap = 0;
1112 stop_soon = NO_STOP_QUIETLY;
1113 breakpoint_proceeded = 1; /* We're about to proceed... */
1114
1115 if (stop_registers)
1116 {
1117 regcache_xfree (stop_registers);
1118 stop_registers = NULL;
1119 }
1120 }
1121
1122 /* This should be suitable for any targets that support threads. */
1123
1124 static int
1125 prepare_to_proceed (int step)
1126 {
1127 ptid_t wait_ptid;
1128 struct target_waitstatus wait_status;
1129
1130 /* Get the last target status returned by target_wait(). */
1131 get_last_target_status (&wait_ptid, &wait_status);
1132
1133 /* Make sure we were stopped at a breakpoint. */
1134 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1135 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1136 {
1137 return 0;
1138 }
1139
1140 /* Switched over from WAIT_PID. */
1141 if (!ptid_equal (wait_ptid, minus_one_ptid)
1142 && !ptid_equal (inferior_ptid, wait_ptid))
1143 {
1144 struct regcache *regcache = get_thread_regcache (wait_ptid);
1145
1146 if (breakpoint_here_p (regcache_read_pc (regcache)))
1147 {
1148 /* If stepping, remember current thread to switch back to. */
1149 if (step)
1150 deferred_step_ptid = inferior_ptid;
1151
1152 /* Switch back to WAIT_PID thread. */
1153 switch_to_thread (wait_ptid);
1154
1155 /* We return 1 to indicate that there is a breakpoint here,
1156 so we need to step over it before continuing to avoid
1157 hitting it straight away. */
1158 return 1;
1159 }
1160 }
1161
1162 return 0;
1163 }
1164
1165 /* Basic routine for continuing the program in various fashions.
1166
1167 ADDR is the address to resume at, or -1 for resume where stopped.
1168 SIGGNAL is the signal to give it, or 0 for none,
1169 or -1 for act according to how it stopped.
1170 STEP is nonzero if should trap after one instruction.
1171 -1 means return after that and print nothing.
1172 You should probably set various step_... variables
1173 before calling here, if you are stepping.
1174
1175 You should call clear_proceed_status before calling proceed. */
1176
1177 void
1178 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1179 {
1180 struct regcache *regcache = get_current_regcache ();
1181 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1182 struct thread_info *tp;
1183 CORE_ADDR pc = regcache_read_pc (regcache);
1184 int oneproc = 0;
1185
1186 if (step > 0)
1187 step_start_function = find_pc_function (pc);
1188 if (step < 0)
1189 stop_after_trap = 1;
1190
1191 if (addr == (CORE_ADDR) -1)
1192 {
1193 if (pc == stop_pc && breakpoint_here_p (pc))
1194 /* There is a breakpoint at the address we will resume at,
1195 step one instruction before inserting breakpoints so that
1196 we do not stop right away (and report a second hit at this
1197 breakpoint). */
1198 oneproc = 1;
1199 else if (gdbarch_single_step_through_delay_p (gdbarch)
1200 && gdbarch_single_step_through_delay (gdbarch,
1201 get_current_frame ()))
1202 /* We stepped onto an instruction that needs to be stepped
1203 again before re-inserting the breakpoint, do so. */
1204 oneproc = 1;
1205 }
1206 else
1207 {
1208 regcache_write_pc (regcache, addr);
1209 }
1210
1211 if (debug_infrun)
1212 fprintf_unfiltered (gdb_stdlog,
1213 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1214 paddr_nz (addr), siggnal, step);
1215
1216 if (non_stop)
1217 /* In non-stop, each thread is handled individually. The context
1218 must already be set to the right thread here. */
1219 ;
1220 else
1221 {
1222 /* In a multi-threaded task we may select another thread and
1223 then continue or step.
1224
1225 But if the old thread was stopped at a breakpoint, it will
1226 immediately cause another breakpoint stop without any
1227 execution (i.e. it will report a breakpoint hit incorrectly).
1228 So we must step over it first.
1229
1230 prepare_to_proceed checks the current thread against the
1231 thread that reported the most recent event. If a step-over
1232 is required it returns TRUE and sets the current thread to
1233 the old thread. */
1234 if (prepare_to_proceed (step))
1235 oneproc = 1;
1236 }
1237
1238 /* prepare_to_proceed may change the current thread. */
1239 tp = inferior_thread ();
1240
1241 if (oneproc)
1242 {
1243 tp->trap_expected = 1;
1244 /* If displaced stepping is enabled, we can step over the
1245 breakpoint without hitting it, so leave all breakpoints
1246 inserted. Otherwise we need to disable all breakpoints, step
1247 one instruction, and then re-add them when that step is
1248 finished. */
1249 if (!use_displaced_stepping (gdbarch))
1250 remove_breakpoints ();
1251 }
1252
1253 /* We can insert breakpoints if we're not trying to step over one,
1254 or if we are stepping over one but we're using displaced stepping
1255 to do so. */
1256 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1257 insert_breakpoints ();
1258
1259 if (siggnal != TARGET_SIGNAL_DEFAULT)
1260 stop_signal = siggnal;
1261 /* If this signal should not be seen by program,
1262 give it zero. Used for debugging signals. */
1263 else if (!signal_program[stop_signal])
1264 stop_signal = TARGET_SIGNAL_0;
1265
1266 annotate_starting ();
1267
1268 /* Make sure that output from GDB appears before output from the
1269 inferior. */
1270 gdb_flush (gdb_stdout);
1271
1272 /* Refresh prev_pc value just prior to resuming. This used to be
1273 done in stop_stepping, however, setting prev_pc there did not handle
1274 scenarios such as inferior function calls or returning from
1275 a function via the return command. In those cases, the prev_pc
1276 value was not set properly for subsequent commands. The prev_pc value
1277 is used to initialize the starting line number in the ecs. With an
1278 invalid value, the gdb next command ends up stopping at the position
1279 represented by the next line table entry past our start position.
1280 On platforms that generate one line table entry per line, this
1281 is not a problem. However, on the ia64, the compiler generates
1282 extraneous line table entries that do not increase the line number.
1283 When we issue the gdb next command on the ia64 after an inferior call
1284 or a return command, we often end up a few instructions forward, still
1285 within the original line we started.
1286
1287 An attempt was made to have init_execution_control_state () refresh
1288 the prev_pc value before calculating the line number. This approach
1289 did not work because on platforms that use ptrace, the pc register
1290 cannot be read unless the inferior is stopped. At that point, we
1291 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1292 call can fail. Setting the prev_pc value here ensures the value is
1293 updated correctly when the inferior is stopped. */
1294 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1295
1296 /* Fill in with reasonable starting values. */
1297 init_thread_stepping_state (tp);
1298
1299 /* Reset to normal state. */
1300 init_infwait_state ();
1301
1302 /* Resume inferior. */
1303 resume (oneproc || step || bpstat_should_step (), stop_signal);
1304
1305 /* Wait for it to stop (if not standalone)
1306 and in any case decode why it stopped, and act accordingly. */
1307 /* Do this only if we are not using the event loop, or if the target
1308 does not support asynchronous execution. */
1309 if (!target_can_async_p ())
1310 {
1311 wait_for_inferior (0);
1312 normal_stop ();
1313 }
1314 }
1315 \f
1316
1317 /* Start remote-debugging of a machine over a serial link. */
1318
1319 void
1320 start_remote (int from_tty)
1321 {
1322 init_wait_for_inferior ();
1323 stop_soon = STOP_QUIETLY_REMOTE;
1324
1325 /* Always go on waiting for the target, regardless of the mode. */
1326 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1327 indicate to wait_for_inferior that a target should timeout if
1328 nothing is returned (instead of just blocking). Because of this,
1329 targets expecting an immediate response need to, internally, set
1330 things up so that the target_wait() is forced to eventually
1331 timeout. */
1332 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1333 differentiate to its caller what the state of the target is after
1334 the initial open has been performed. Here we're assuming that
1335 the target has stopped. It should be possible to eventually have
1336 target_open() return to the caller an indication that the target
1337 is currently running and GDB state should be set to the same as
1338 for an async run. */
1339 wait_for_inferior (0);
1340
1341 /* Now that the inferior has stopped, do any bookkeeping like
1342 loading shared libraries. We want to do this before normal_stop,
1343 so that the displayed frame is up to date. */
1344 post_create_inferior (&current_target, from_tty);
1345
1346 normal_stop ();
1347 }
1348
1349 /* Initialize static vars when a new inferior begins. */
1350
1351 void
1352 init_wait_for_inferior (void)
1353 {
1354 /* These are meaningless until the first time through wait_for_inferior. */
1355
1356 breakpoint_init_inferior (inf_starting);
1357
1358 /* Don't confuse first call to proceed(). */
1359 stop_signal = TARGET_SIGNAL_0;
1360
1361 /* The first resume is not following a fork/vfork/exec. */
1362 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1363
1364 clear_proceed_status ();
1365
1366 stepping_past_singlestep_breakpoint = 0;
1367 deferred_step_ptid = null_ptid;
1368
1369 target_last_wait_ptid = minus_one_ptid;
1370
1371 previous_inferior_ptid = null_ptid;
1372 init_infwait_state ();
1373
1374 displaced_step_clear ();
1375 }
1376
1377 \f
1378 /* This enum encodes possible reasons for doing a target_wait, so that
1379 wfi can call target_wait in one place. (Ultimately the call will be
1380 moved out of the infinite loop entirely.) */
1381
1382 enum infwait_states
1383 {
1384 infwait_normal_state,
1385 infwait_thread_hop_state,
1386 infwait_step_watch_state,
1387 infwait_nonstep_watch_state
1388 };
1389
1390 /* Why did the inferior stop? Used to print the appropriate messages
1391 to the interface from within handle_inferior_event(). */
1392 enum inferior_stop_reason
1393 {
1394 /* Step, next, nexti, stepi finished. */
1395 END_STEPPING_RANGE,
1396 /* Inferior terminated by signal. */
1397 SIGNAL_EXITED,
1398 /* Inferior exited. */
1399 EXITED,
1400 /* Inferior received signal, and user asked to be notified. */
1401 SIGNAL_RECEIVED
1402 };
1403
1404 /* The PTID we'll do a target_wait on.*/
1405 ptid_t waiton_ptid;
1406
1407 /* Current inferior wait state. */
1408 enum infwait_states infwait_state;
1409
1410 /* Data to be passed around while handling an event. This data is
1411 discarded between events. */
1412 struct execution_control_state
1413 {
1414 ptid_t ptid;
1415 /* The thread that got the event, if this was a thread event; NULL
1416 otherwise. */
1417 struct thread_info *event_thread;
1418
1419 struct target_waitstatus ws;
1420 int random_signal;
1421 CORE_ADDR stop_func_start;
1422 CORE_ADDR stop_func_end;
1423 char *stop_func_name;
1424 int new_thread_event;
1425 int wait_some_more;
1426 };
1427
1428 void init_execution_control_state (struct execution_control_state *ecs);
1429
1430 void handle_inferior_event (struct execution_control_state *ecs);
1431
1432 static void step_into_function (struct execution_control_state *ecs);
1433 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1434 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1435 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1436 struct frame_id sr_id);
1437 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1438
1439 static void stop_stepping (struct execution_control_state *ecs);
1440 static void prepare_to_wait (struct execution_control_state *ecs);
1441 static void keep_going (struct execution_control_state *ecs);
1442 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1443 int stop_info);
1444
1445 /* Callback for iterate_over_threads. */
1446
1447 static int
1448 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1449 {
1450 if (is_exited (info->ptid))
1451 return 0;
1452
1453 delete_step_resume_breakpoint (info);
1454 return 0;
1455 }
1456
1457 /* In all-stop, delete the step resume breakpoint of any thread that
1458 had one. In non-stop, delete the step resume breakpoint of the
1459 thread that just stopped. */
1460
1461 static void
1462 delete_step_thread_step_resume_breakpoint (void)
1463 {
1464 if (!target_has_execution
1465 || ptid_equal (inferior_ptid, null_ptid))
1466 /* If the inferior has exited, we have already deleted the step
1467 resume breakpoints out of GDB's lists. */
1468 return;
1469
1470 if (non_stop)
1471 {
1472 /* If in non-stop mode, only delete the step-resume or
1473 longjmp-resume breakpoint of the thread that just stopped
1474 stepping. */
1475 struct thread_info *tp = inferior_thread ();
1476 delete_step_resume_breakpoint (tp);
1477 }
1478 else
1479 /* In all-stop mode, delete all step-resume and longjmp-resume
1480 breakpoints of any thread that had them. */
1481 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1482 }
1483
1484 /* A cleanup wrapper. */
1485
1486 static void
1487 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1488 {
1489 delete_step_thread_step_resume_breakpoint ();
1490 }
1491
1492 /* Wait for control to return from inferior to debugger.
1493
1494 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1495 as if they were SIGTRAP signals. This can be useful during
1496 the startup sequence on some targets such as HP/UX, where
1497 we receive an EXEC event instead of the expected SIGTRAP.
1498
1499 If inferior gets a signal, we may decide to start it up again
1500 instead of returning. That is why there is a loop in this function.
1501 When this function actually returns it means the inferior
1502 should be left stopped and GDB should read more commands. */
1503
1504 void
1505 wait_for_inferior (int treat_exec_as_sigtrap)
1506 {
1507 struct cleanup *old_cleanups;
1508 struct execution_control_state ecss;
1509 struct execution_control_state *ecs;
1510
1511 if (debug_infrun)
1512 fprintf_unfiltered
1513 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1514 treat_exec_as_sigtrap);
1515
1516 old_cleanups =
1517 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
1518
1519 ecs = &ecss;
1520 memset (ecs, 0, sizeof (*ecs));
1521
1522 overlay_cache_invalid = 1;
1523
1524 /* We'll update this if & when we switch to a new thread. */
1525 previous_inferior_ptid = inferior_ptid;
1526
1527 /* We have to invalidate the registers BEFORE calling target_wait
1528 because they can be loaded from the target while in target_wait.
1529 This makes remote debugging a bit more efficient for those
1530 targets that provide critical registers as part of their normal
1531 status mechanism. */
1532
1533 registers_changed ();
1534
1535 while (1)
1536 {
1537 if (deprecated_target_wait_hook)
1538 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1539 else
1540 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1541
1542 ecs->event_thread = find_thread_pid (ecs->ptid);
1543
1544 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1545 {
1546 xfree (ecs->ws.value.execd_pathname);
1547 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1548 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1549 }
1550
1551 /* Now figure out what to do with the result of the result. */
1552 handle_inferior_event (ecs);
1553
1554 if (!ecs->wait_some_more)
1555 break;
1556 }
1557
1558 do_cleanups (old_cleanups);
1559 }
1560
1561 /* Asynchronous version of wait_for_inferior. It is called by the
1562 event loop whenever a change of state is detected on the file
1563 descriptor corresponding to the target. It can be called more than
1564 once to complete a single execution command. In such cases we need
1565 to keep the state in a global variable ECSS. If it is the last time
1566 that this function is called for a single execution command, then
1567 report to the user that the inferior has stopped, and do the
1568 necessary cleanups. */
1569
1570 void
1571 fetch_inferior_event (void *client_data)
1572 {
1573 struct execution_control_state ecss;
1574 struct execution_control_state *ecs = &ecss;
1575 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1576 int was_sync = sync_execution;
1577
1578 memset (ecs, 0, sizeof (*ecs));
1579
1580 overlay_cache_invalid = 1;
1581
1582 /* We can only rely on wait_for_more being correct before handling
1583 the event in all-stop, but previous_inferior_ptid isn't used in
1584 non-stop. */
1585 if (!ecs->wait_some_more)
1586 /* We'll update this if & when we switch to a new thread. */
1587 previous_inferior_ptid = inferior_ptid;
1588
1589 if (non_stop)
1590 /* In non-stop mode, the user/frontend should not notice a thread
1591 switch due to internal events. Make sure we reverse to the
1592 user selected thread and frame after handling the event and
1593 running any breakpoint commands. */
1594 make_cleanup_restore_current_thread ();
1595
1596 /* We have to invalidate the registers BEFORE calling target_wait
1597 because they can be loaded from the target while in target_wait.
1598 This makes remote debugging a bit more efficient for those
1599 targets that provide critical registers as part of their normal
1600 status mechanism. */
1601
1602 registers_changed ();
1603
1604 if (deprecated_target_wait_hook)
1605 ecs->ptid =
1606 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1607 else
1608 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1609
1610 if (non_stop
1611 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1612 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1613 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1614 /* In non-stop mode, each thread is handled individually. Switch
1615 early, so the global state is set correctly for this
1616 thread. */
1617 context_switch (ecs->ptid);
1618
1619 ecs->event_thread = find_thread_pid (ecs->ptid);
1620
1621 /* Now figure out what to do with the result of the result. */
1622 handle_inferior_event (ecs);
1623
1624 if (!ecs->wait_some_more)
1625 {
1626 delete_step_thread_step_resume_breakpoint ();
1627
1628 if (stop_soon == NO_STOP_QUIETLY)
1629 normal_stop ();
1630
1631 if (step_multi && stop_step)
1632 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1633 else
1634 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1635 }
1636
1637 /* Revert thread and frame. */
1638 do_cleanups (old_chain);
1639
1640 /* If the inferior was in sync execution mode, and now isn't,
1641 restore the prompt. */
1642 if (was_sync && !sync_execution)
1643 display_gdb_prompt (0);
1644 }
1645
1646 /* Prepare an execution control state for looping through a
1647 wait_for_inferior-type loop. */
1648
1649 void
1650 init_execution_control_state (struct execution_control_state *ecs)
1651 {
1652 ecs->random_signal = 0;
1653 }
1654
1655 /* Clear context switchable stepping state. */
1656
1657 void
1658 init_thread_stepping_state (struct thread_info *tss)
1659 {
1660 struct symtab_and_line sal;
1661
1662 tss->stepping_over_breakpoint = 0;
1663 tss->step_after_step_resume_breakpoint = 0;
1664 tss->stepping_through_solib_after_catch = 0;
1665 tss->stepping_through_solib_catchpoints = NULL;
1666
1667 sal = find_pc_line (tss->prev_pc, 0);
1668 tss->current_line = sal.line;
1669 tss->current_symtab = sal.symtab;
1670 }
1671
1672 /* Return the cached copy of the last pid/waitstatus returned by
1673 target_wait()/deprecated_target_wait_hook(). The data is actually
1674 cached by handle_inferior_event(), which gets called immediately
1675 after target_wait()/deprecated_target_wait_hook(). */
1676
1677 void
1678 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1679 {
1680 *ptidp = target_last_wait_ptid;
1681 *status = target_last_waitstatus;
1682 }
1683
1684 void
1685 nullify_last_target_wait_ptid (void)
1686 {
1687 target_last_wait_ptid = minus_one_ptid;
1688 }
1689
1690 /* Switch thread contexts, maintaining "infrun state". */
1691
1692 static void
1693 context_switch (ptid_t ptid)
1694 {
1695 /* Caution: it may happen that the new thread (or the old one!)
1696 is not in the thread list. In this case we must not attempt
1697 to "switch context", or we run the risk that our context may
1698 be lost. This may happen as a result of the target module
1699 mishandling thread creation. */
1700
1701 if (debug_infrun)
1702 {
1703 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1704 target_pid_to_str (inferior_ptid));
1705 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1706 target_pid_to_str (ptid));
1707 }
1708
1709 if (in_thread_list (inferior_ptid) && in_thread_list (ptid))
1710 { /* Perform infrun state context switch: */
1711 /* Save infrun state for the old thread. */
1712 save_infrun_state (inferior_ptid,
1713 cmd_continuation, intermediate_continuation,
1714 stop_step,
1715 step_multi,
1716 stop_signal);
1717
1718 /* Load infrun state for the new thread. */
1719 load_infrun_state (ptid,
1720 &cmd_continuation, &intermediate_continuation,
1721 &stop_step,
1722 &step_multi,
1723 &stop_signal);
1724 }
1725
1726 switch_to_thread (ptid);
1727 }
1728
1729 /* Context switch to thread PTID. */
1730 ptid_t
1731 context_switch_to (ptid_t ptid)
1732 {
1733 ptid_t current_ptid = inferior_ptid;
1734
1735 /* Context switch to the new thread. */
1736 if (!ptid_equal (ptid, inferior_ptid))
1737 {
1738 context_switch (ptid);
1739 }
1740 return current_ptid;
1741 }
1742
1743 static void
1744 adjust_pc_after_break (struct execution_control_state *ecs)
1745 {
1746 struct regcache *regcache;
1747 struct gdbarch *gdbarch;
1748 CORE_ADDR breakpoint_pc;
1749
1750 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1751 we aren't, just return.
1752
1753 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1754 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1755 implemented by software breakpoints should be handled through the normal
1756 breakpoint layer.
1757
1758 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1759 different signals (SIGILL or SIGEMT for instance), but it is less
1760 clear where the PC is pointing afterwards. It may not match
1761 gdbarch_decr_pc_after_break. I don't know any specific target that
1762 generates these signals at breakpoints (the code has been in GDB since at
1763 least 1992) so I can not guess how to handle them here.
1764
1765 In earlier versions of GDB, a target with
1766 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1767 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1768 target with both of these set in GDB history, and it seems unlikely to be
1769 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1770
1771 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1772 return;
1773
1774 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1775 return;
1776
1777 /* If this target does not decrement the PC after breakpoints, then
1778 we have nothing to do. */
1779 regcache = get_thread_regcache (ecs->ptid);
1780 gdbarch = get_regcache_arch (regcache);
1781 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
1782 return;
1783
1784 /* Find the location where (if we've hit a breakpoint) the
1785 breakpoint would be. */
1786 breakpoint_pc = regcache_read_pc (regcache)
1787 - gdbarch_decr_pc_after_break (gdbarch);
1788
1789 /* Check whether there actually is a software breakpoint inserted
1790 at that location. */
1791 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1792 {
1793 /* When using hardware single-step, a SIGTRAP is reported for both
1794 a completed single-step and a software breakpoint. Need to
1795 differentiate between the two, as the latter needs adjusting
1796 but the former does not.
1797
1798 The SIGTRAP can be due to a completed hardware single-step only if
1799 - we didn't insert software single-step breakpoints
1800 - the thread to be examined is still the current thread
1801 - this thread is currently being stepped
1802
1803 If any of these events did not occur, we must have stopped due
1804 to hitting a software breakpoint, and have to back up to the
1805 breakpoint address.
1806
1807 As a special case, we could have hardware single-stepped a
1808 software breakpoint. In this case (prev_pc == breakpoint_pc),
1809 we also need to back up to the breakpoint address. */
1810
1811 if (singlestep_breakpoints_inserted_p
1812 || !ptid_equal (ecs->ptid, inferior_ptid)
1813 || !currently_stepping (ecs->event_thread)
1814 || ecs->event_thread->prev_pc == breakpoint_pc)
1815 regcache_write_pc (regcache, breakpoint_pc);
1816 }
1817 }
1818
1819 void
1820 init_infwait_state (void)
1821 {
1822 waiton_ptid = pid_to_ptid (-1);
1823 infwait_state = infwait_normal_state;
1824 }
1825
1826 void
1827 error_is_running (void)
1828 {
1829 error (_("\
1830 Cannot execute this command while the selected thread is running."));
1831 }
1832
1833 void
1834 ensure_not_running (void)
1835 {
1836 if (is_running (inferior_ptid))
1837 error_is_running ();
1838 }
1839
1840 /* Given an execution control state that has been freshly filled in
1841 by an event from the inferior, figure out what it means and take
1842 appropriate action. */
1843
1844 void
1845 handle_inferior_event (struct execution_control_state *ecs)
1846 {
1847 int sw_single_step_trap_p = 0;
1848 int stopped_by_watchpoint;
1849 int stepped_after_stopped_by_watchpoint = 0;
1850 struct symtab_and_line stop_pc_sal;
1851
1852 breakpoint_retire_moribund ();
1853
1854 /* Cache the last pid/waitstatus. */
1855 target_last_wait_ptid = ecs->ptid;
1856 target_last_waitstatus = ecs->ws;
1857
1858 /* Always clear state belonging to the previous time we stopped. */
1859 stop_stack_dummy = 0;
1860
1861 adjust_pc_after_break (ecs);
1862
1863 reinit_frame_cache ();
1864
1865 /* If it's a new process, add it to the thread database */
1866
1867 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1868 && !ptid_equal (ecs->ptid, minus_one_ptid)
1869 && !in_thread_list (ecs->ptid));
1870
1871 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1872 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1873 add_thread (ecs->ptid);
1874
1875 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
1876 {
1877 /* Mark the non-executing threads accordingly. */
1878 if (!non_stop
1879 || ecs->ws.kind == TARGET_WAITKIND_EXITED
1880 || ecs->ws.kind == TARGET_WAITKIND_SIGNALLED)
1881 set_executing (pid_to_ptid (-1), 0);
1882 else
1883 set_executing (ecs->ptid, 0);
1884 }
1885
1886 switch (infwait_state)
1887 {
1888 case infwait_thread_hop_state:
1889 if (debug_infrun)
1890 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1891 /* Cancel the waiton_ptid. */
1892 waiton_ptid = pid_to_ptid (-1);
1893 break;
1894
1895 case infwait_normal_state:
1896 if (debug_infrun)
1897 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1898 break;
1899
1900 case infwait_step_watch_state:
1901 if (debug_infrun)
1902 fprintf_unfiltered (gdb_stdlog,
1903 "infrun: infwait_step_watch_state\n");
1904
1905 stepped_after_stopped_by_watchpoint = 1;
1906 break;
1907
1908 case infwait_nonstep_watch_state:
1909 if (debug_infrun)
1910 fprintf_unfiltered (gdb_stdlog,
1911 "infrun: infwait_nonstep_watch_state\n");
1912 insert_breakpoints ();
1913
1914 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1915 handle things like signals arriving and other things happening
1916 in combination correctly? */
1917 stepped_after_stopped_by_watchpoint = 1;
1918 break;
1919
1920 default:
1921 internal_error (__FILE__, __LINE__, _("bad switch"));
1922 }
1923 infwait_state = infwait_normal_state;
1924
1925 switch (ecs->ws.kind)
1926 {
1927 case TARGET_WAITKIND_LOADED:
1928 if (debug_infrun)
1929 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1930 /* Ignore gracefully during startup of the inferior, as it might
1931 be the shell which has just loaded some objects, otherwise
1932 add the symbols for the newly loaded objects. Also ignore at
1933 the beginning of an attach or remote session; we will query
1934 the full list of libraries once the connection is
1935 established. */
1936 if (stop_soon == NO_STOP_QUIETLY)
1937 {
1938 /* Check for any newly added shared libraries if we're
1939 supposed to be adding them automatically. Switch
1940 terminal for any messages produced by
1941 breakpoint_re_set. */
1942 target_terminal_ours_for_output ();
1943 /* NOTE: cagney/2003-11-25: Make certain that the target
1944 stack's section table is kept up-to-date. Architectures,
1945 (e.g., PPC64), use the section table to perform
1946 operations such as address => section name and hence
1947 require the table to contain all sections (including
1948 those found in shared libraries). */
1949 /* NOTE: cagney/2003-11-25: Pass current_target and not
1950 exec_ops to SOLIB_ADD. This is because current GDB is
1951 only tooled to propagate section_table changes out from
1952 the "current_target" (see target_resize_to_sections), and
1953 not up from the exec stratum. This, of course, isn't
1954 right. "infrun.c" should only interact with the
1955 exec/process stratum, instead relying on the target stack
1956 to propagate relevant changes (stop, section table
1957 changed, ...) up to other layers. */
1958 #ifdef SOLIB_ADD
1959 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1960 #else
1961 solib_add (NULL, 0, &current_target, auto_solib_add);
1962 #endif
1963 target_terminal_inferior ();
1964
1965 /* If requested, stop when the dynamic linker notifies
1966 gdb of events. This allows the user to get control
1967 and place breakpoints in initializer routines for
1968 dynamically loaded objects (among other things). */
1969 if (stop_on_solib_events)
1970 {
1971 stop_stepping (ecs);
1972 return;
1973 }
1974
1975 /* NOTE drow/2007-05-11: This might be a good place to check
1976 for "catch load". */
1977 }
1978
1979 /* If we are skipping through a shell, or through shared library
1980 loading that we aren't interested in, resume the program. If
1981 we're running the program normally, also resume. But stop if
1982 we're attaching or setting up a remote connection. */
1983 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1984 {
1985 /* Loading of shared libraries might have changed breakpoint
1986 addresses. Make sure new breakpoints are inserted. */
1987 if (stop_soon == NO_STOP_QUIETLY
1988 && !breakpoints_always_inserted_mode ())
1989 insert_breakpoints ();
1990 resume (0, TARGET_SIGNAL_0);
1991 prepare_to_wait (ecs);
1992 return;
1993 }
1994
1995 break;
1996
1997 case TARGET_WAITKIND_SPURIOUS:
1998 if (debug_infrun)
1999 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2000 resume (0, TARGET_SIGNAL_0);
2001 prepare_to_wait (ecs);
2002 return;
2003
2004 case TARGET_WAITKIND_EXITED:
2005 if (debug_infrun)
2006 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2007 target_terminal_ours (); /* Must do this before mourn anyway */
2008 print_stop_reason (EXITED, ecs->ws.value.integer);
2009
2010 /* Record the exit code in the convenience variable $_exitcode, so
2011 that the user can inspect this again later. */
2012 set_internalvar (lookup_internalvar ("_exitcode"),
2013 value_from_longest (builtin_type_int,
2014 (LONGEST) ecs->ws.value.integer));
2015 gdb_flush (gdb_stdout);
2016 target_mourn_inferior ();
2017 singlestep_breakpoints_inserted_p = 0;
2018 stop_print_frame = 0;
2019 stop_stepping (ecs);
2020 return;
2021
2022 case TARGET_WAITKIND_SIGNALLED:
2023 if (debug_infrun)
2024 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2025 stop_print_frame = 0;
2026 stop_signal = ecs->ws.value.sig;
2027 target_terminal_ours (); /* Must do this before mourn anyway */
2028
2029 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2030 reach here unless the inferior is dead. However, for years
2031 target_kill() was called here, which hints that fatal signals aren't
2032 really fatal on some systems. If that's true, then some changes
2033 may be needed. */
2034 target_mourn_inferior ();
2035
2036 print_stop_reason (SIGNAL_EXITED, stop_signal);
2037 singlestep_breakpoints_inserted_p = 0;
2038 stop_stepping (ecs);
2039 return;
2040
2041 /* The following are the only cases in which we keep going;
2042 the above cases end in a continue or goto. */
2043 case TARGET_WAITKIND_FORKED:
2044 case TARGET_WAITKIND_VFORKED:
2045 if (debug_infrun)
2046 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2047 stop_signal = TARGET_SIGNAL_TRAP;
2048 pending_follow.kind = ecs->ws.kind;
2049
2050 pending_follow.fork_event.parent_pid = ecs->ptid;
2051 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
2052
2053 if (!ptid_equal (ecs->ptid, inferior_ptid))
2054 {
2055 context_switch (ecs->ptid);
2056 reinit_frame_cache ();
2057 }
2058
2059 stop_pc = read_pc ();
2060
2061 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2062
2063 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2064
2065 /* If no catchpoint triggered for this, then keep going. */
2066 if (ecs->random_signal)
2067 {
2068 stop_signal = TARGET_SIGNAL_0;
2069 keep_going (ecs);
2070 return;
2071 }
2072 goto process_event_stop_test;
2073
2074 case TARGET_WAITKIND_EXECD:
2075 if (debug_infrun)
2076 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2077 stop_signal = TARGET_SIGNAL_TRAP;
2078
2079 pending_follow.execd_pathname =
2080 savestring (ecs->ws.value.execd_pathname,
2081 strlen (ecs->ws.value.execd_pathname));
2082
2083 /* This causes the eventpoints and symbol table to be reset. Must
2084 do this now, before trying to determine whether to stop. */
2085 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2086 xfree (pending_follow.execd_pathname);
2087
2088 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2089
2090 {
2091 /* The breakpoints module may need to touch the inferior's
2092 memory. Switch to the (stopped) event ptid
2093 momentarily. */
2094 ptid_t saved_inferior_ptid = inferior_ptid;
2095 inferior_ptid = ecs->ptid;
2096
2097 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2098
2099 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2100 inferior_ptid = saved_inferior_ptid;
2101 }
2102
2103 if (!ptid_equal (ecs->ptid, inferior_ptid))
2104 {
2105 context_switch (ecs->ptid);
2106 reinit_frame_cache ();
2107 }
2108
2109 /* If no catchpoint triggered for this, then keep going. */
2110 if (ecs->random_signal)
2111 {
2112 stop_signal = TARGET_SIGNAL_0;
2113 keep_going (ecs);
2114 return;
2115 }
2116 goto process_event_stop_test;
2117
2118 /* Be careful not to try to gather much state about a thread
2119 that's in a syscall. It's frequently a losing proposition. */
2120 case TARGET_WAITKIND_SYSCALL_ENTRY:
2121 if (debug_infrun)
2122 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2123 resume (0, TARGET_SIGNAL_0);
2124 prepare_to_wait (ecs);
2125 return;
2126
2127 /* Before examining the threads further, step this thread to
2128 get it entirely out of the syscall. (We get notice of the
2129 event when the thread is just on the verge of exiting a
2130 syscall. Stepping one instruction seems to get it back
2131 into user code.) */
2132 case TARGET_WAITKIND_SYSCALL_RETURN:
2133 if (debug_infrun)
2134 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2135 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2136 prepare_to_wait (ecs);
2137 return;
2138
2139 case TARGET_WAITKIND_STOPPED:
2140 if (debug_infrun)
2141 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2142 stop_signal = ecs->ws.value.sig;
2143 break;
2144
2145 /* We had an event in the inferior, but we are not interested
2146 in handling it at this level. The lower layers have already
2147 done what needs to be done, if anything.
2148
2149 One of the possible circumstances for this is when the
2150 inferior produces output for the console. The inferior has
2151 not stopped, and we are ignoring the event. Another possible
2152 circumstance is any event which the lower level knows will be
2153 reported multiple times without an intervening resume. */
2154 case TARGET_WAITKIND_IGNORE:
2155 if (debug_infrun)
2156 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2157 prepare_to_wait (ecs);
2158 return;
2159 }
2160
2161 if (ecs->new_thread_event)
2162 {
2163 if (non_stop)
2164 /* Non-stop assumes that the target handles adding new threads
2165 to the thread list. */
2166 internal_error (__FILE__, __LINE__, "\
2167 targets should add new threads to the thread list themselves in non-stop mode.");
2168
2169 /* We may want to consider not doing a resume here in order to
2170 give the user a chance to play with the new thread. It might
2171 be good to make that a user-settable option. */
2172
2173 /* At this point, all threads are stopped (happens automatically
2174 in either the OS or the native code). Therefore we need to
2175 continue all threads in order to make progress. */
2176
2177 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2178 prepare_to_wait (ecs);
2179 return;
2180 }
2181
2182 /* Do we need to clean up the state of a thread that has completed a
2183 displaced single-step? (Doing so usually affects the PC, so do
2184 it here, before we set stop_pc.) */
2185 displaced_step_fixup (ecs->ptid, stop_signal);
2186
2187 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2188
2189 if (debug_infrun)
2190 {
2191 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2192 paddr_nz (stop_pc));
2193 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2194 {
2195 CORE_ADDR addr;
2196 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2197
2198 if (target_stopped_data_address (&current_target, &addr))
2199 fprintf_unfiltered (gdb_stdlog,
2200 "infrun: stopped data address = 0x%s\n",
2201 paddr_nz (addr));
2202 else
2203 fprintf_unfiltered (gdb_stdlog,
2204 "infrun: (no data address available)\n");
2205 }
2206 }
2207
2208 if (stepping_past_singlestep_breakpoint)
2209 {
2210 gdb_assert (singlestep_breakpoints_inserted_p);
2211 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2212 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2213
2214 stepping_past_singlestep_breakpoint = 0;
2215
2216 /* We've either finished single-stepping past the single-step
2217 breakpoint, or stopped for some other reason. It would be nice if
2218 we could tell, but we can't reliably. */
2219 if (stop_signal == TARGET_SIGNAL_TRAP)
2220 {
2221 if (debug_infrun)
2222 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2223 /* Pull the single step breakpoints out of the target. */
2224 remove_single_step_breakpoints ();
2225 singlestep_breakpoints_inserted_p = 0;
2226
2227 ecs->random_signal = 0;
2228
2229 context_switch (saved_singlestep_ptid);
2230 if (deprecated_context_hook)
2231 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2232
2233 resume (1, TARGET_SIGNAL_0);
2234 prepare_to_wait (ecs);
2235 return;
2236 }
2237 }
2238
2239 stepping_past_singlestep_breakpoint = 0;
2240
2241 if (!ptid_equal (deferred_step_ptid, null_ptid))
2242 {
2243 /* In non-stop mode, there's never a deferred_step_ptid set. */
2244 gdb_assert (!non_stop);
2245
2246 /* If we stopped for some other reason than single-stepping, ignore
2247 the fact that we were supposed to switch back. */
2248 if (stop_signal == TARGET_SIGNAL_TRAP)
2249 {
2250 struct thread_info *tp;
2251
2252 if (debug_infrun)
2253 fprintf_unfiltered (gdb_stdlog,
2254 "infrun: handling deferred step\n");
2255
2256 /* Pull the single step breakpoints out of the target. */
2257 if (singlestep_breakpoints_inserted_p)
2258 {
2259 remove_single_step_breakpoints ();
2260 singlestep_breakpoints_inserted_p = 0;
2261 }
2262
2263 /* Note: We do not call context_switch at this point, as the
2264 context is already set up for stepping the original thread. */
2265 switch_to_thread (deferred_step_ptid);
2266 deferred_step_ptid = null_ptid;
2267 /* Suppress spurious "Switching to ..." message. */
2268 previous_inferior_ptid = inferior_ptid;
2269
2270 resume (1, TARGET_SIGNAL_0);
2271 prepare_to_wait (ecs);
2272 return;
2273 }
2274
2275 deferred_step_ptid = null_ptid;
2276 }
2277
2278 /* See if a thread hit a thread-specific breakpoint that was meant for
2279 another thread. If so, then step that thread past the breakpoint,
2280 and continue it. */
2281
2282 if (stop_signal == TARGET_SIGNAL_TRAP)
2283 {
2284 int thread_hop_needed = 0;
2285
2286 /* Check if a regular breakpoint has been hit before checking
2287 for a potential single step breakpoint. Otherwise, GDB will
2288 not see this breakpoint hit when stepping onto breakpoints. */
2289 if (regular_breakpoint_inserted_here_p (stop_pc))
2290 {
2291 ecs->random_signal = 0;
2292 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2293 thread_hop_needed = 1;
2294 }
2295 else if (singlestep_breakpoints_inserted_p)
2296 {
2297 /* We have not context switched yet, so this should be true
2298 no matter which thread hit the singlestep breakpoint. */
2299 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2300 if (debug_infrun)
2301 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2302 "trap for %s\n",
2303 target_pid_to_str (ecs->ptid));
2304
2305 ecs->random_signal = 0;
2306 /* The call to in_thread_list is necessary because PTIDs sometimes
2307 change when we go from single-threaded to multi-threaded. If
2308 the singlestep_ptid is still in the list, assume that it is
2309 really different from ecs->ptid. */
2310 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2311 && in_thread_list (singlestep_ptid))
2312 {
2313 /* If the PC of the thread we were trying to single-step
2314 has changed, discard this event (which we were going
2315 to ignore anyway), and pretend we saw that thread
2316 trap. This prevents us continuously moving the
2317 single-step breakpoint forward, one instruction at a
2318 time. If the PC has changed, then the thread we were
2319 trying to single-step has trapped or been signalled,
2320 but the event has not been reported to GDB yet.
2321
2322 There might be some cases where this loses signal
2323 information, if a signal has arrived at exactly the
2324 same time that the PC changed, but this is the best
2325 we can do with the information available. Perhaps we
2326 should arrange to report all events for all threads
2327 when they stop, or to re-poll the remote looking for
2328 this particular thread (i.e. temporarily enable
2329 schedlock). */
2330
2331 CORE_ADDR new_singlestep_pc
2332 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2333
2334 if (new_singlestep_pc != singlestep_pc)
2335 {
2336 if (debug_infrun)
2337 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2338 " but expected thread advanced also\n");
2339
2340 /* The current context still belongs to
2341 singlestep_ptid. Don't swap here, since that's
2342 the context we want to use. Just fudge our
2343 state and continue. */
2344 ecs->ptid = singlestep_ptid;
2345 ecs->event_thread = find_thread_pid (ecs->ptid);
2346 stop_pc = new_singlestep_pc;
2347 }
2348 else
2349 {
2350 if (debug_infrun)
2351 fprintf_unfiltered (gdb_stdlog,
2352 "infrun: unexpected thread\n");
2353
2354 thread_hop_needed = 1;
2355 stepping_past_singlestep_breakpoint = 1;
2356 saved_singlestep_ptid = singlestep_ptid;
2357 }
2358 }
2359 }
2360
2361 if (thread_hop_needed)
2362 {
2363 int remove_status = 0;
2364
2365 if (debug_infrun)
2366 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2367
2368 /* Saw a breakpoint, but it was hit by the wrong thread.
2369 Just continue. */
2370
2371 if (singlestep_breakpoints_inserted_p)
2372 {
2373 /* Pull the single step breakpoints out of the target. */
2374 remove_single_step_breakpoints ();
2375 singlestep_breakpoints_inserted_p = 0;
2376 }
2377
2378 /* If the arch can displace step, don't remove the
2379 breakpoints. */
2380 if (!use_displaced_stepping (current_gdbarch))
2381 remove_status = remove_breakpoints ();
2382
2383 /* Did we fail to remove breakpoints? If so, try
2384 to set the PC past the bp. (There's at least
2385 one situation in which we can fail to remove
2386 the bp's: On HP-UX's that use ttrace, we can't
2387 change the address space of a vforking child
2388 process until the child exits (well, okay, not
2389 then either :-) or execs. */
2390 if (remove_status != 0)
2391 error (_("Cannot step over breakpoint hit in wrong thread"));
2392 else
2393 { /* Single step */
2394 if (!ptid_equal (inferior_ptid, ecs->ptid))
2395 context_switch (ecs->ptid);
2396
2397 if (!non_stop)
2398 {
2399 /* Only need to require the next event from this
2400 thread in all-stop mode. */
2401 waiton_ptid = ecs->ptid;
2402 infwait_state = infwait_thread_hop_state;
2403 }
2404
2405 ecs->event_thread->stepping_over_breakpoint = 1;
2406 keep_going (ecs);
2407 registers_changed ();
2408 return;
2409 }
2410 }
2411 else if (singlestep_breakpoints_inserted_p)
2412 {
2413 sw_single_step_trap_p = 1;
2414 ecs->random_signal = 0;
2415 }
2416 }
2417 else
2418 ecs->random_signal = 1;
2419
2420 /* See if something interesting happened to the non-current thread. If
2421 so, then switch to that thread. */
2422 if (!ptid_equal (ecs->ptid, inferior_ptid))
2423 {
2424 if (debug_infrun)
2425 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2426
2427 context_switch (ecs->ptid);
2428
2429 if (deprecated_context_hook)
2430 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2431 }
2432
2433 if (singlestep_breakpoints_inserted_p)
2434 {
2435 /* Pull the single step breakpoints out of the target. */
2436 remove_single_step_breakpoints ();
2437 singlestep_breakpoints_inserted_p = 0;
2438 }
2439
2440 if (stepped_after_stopped_by_watchpoint)
2441 stopped_by_watchpoint = 0;
2442 else
2443 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2444
2445 /* If necessary, step over this watchpoint. We'll be back to display
2446 it in a moment. */
2447 if (stopped_by_watchpoint
2448 && (HAVE_STEPPABLE_WATCHPOINT
2449 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2450 {
2451 /* At this point, we are stopped at an instruction which has
2452 attempted to write to a piece of memory under control of
2453 a watchpoint. The instruction hasn't actually executed
2454 yet. If we were to evaluate the watchpoint expression
2455 now, we would get the old value, and therefore no change
2456 would seem to have occurred.
2457
2458 In order to make watchpoints work `right', we really need
2459 to complete the memory write, and then evaluate the
2460 watchpoint expression. We do this by single-stepping the
2461 target.
2462
2463 It may not be necessary to disable the watchpoint to stop over
2464 it. For example, the PA can (with some kernel cooperation)
2465 single step over a watchpoint without disabling the watchpoint.
2466
2467 It is far more common to need to disable a watchpoint to step
2468 the inferior over it. If we have non-steppable watchpoints,
2469 we must disable the current watchpoint; it's simplest to
2470 disable all watchpoints and breakpoints. */
2471
2472 if (!HAVE_STEPPABLE_WATCHPOINT)
2473 remove_breakpoints ();
2474 registers_changed ();
2475 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2476 waiton_ptid = ecs->ptid;
2477 if (HAVE_STEPPABLE_WATCHPOINT)
2478 infwait_state = infwait_step_watch_state;
2479 else
2480 infwait_state = infwait_nonstep_watch_state;
2481 prepare_to_wait (ecs);
2482 return;
2483 }
2484
2485 ecs->stop_func_start = 0;
2486 ecs->stop_func_end = 0;
2487 ecs->stop_func_name = 0;
2488 /* Don't care about return value; stop_func_start and stop_func_name
2489 will both be 0 if it doesn't work. */
2490 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2491 &ecs->stop_func_start, &ecs->stop_func_end);
2492 ecs->stop_func_start
2493 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2494 ecs->event_thread->stepping_over_breakpoint = 0;
2495 bpstat_clear (&ecs->event_thread->stop_bpstat);
2496 stop_step = 0;
2497 stop_print_frame = 1;
2498 ecs->random_signal = 0;
2499 stopped_by_random_signal = 0;
2500
2501 if (stop_signal == TARGET_SIGNAL_TRAP
2502 && ecs->event_thread->trap_expected
2503 && gdbarch_single_step_through_delay_p (current_gdbarch)
2504 && currently_stepping (ecs->event_thread))
2505 {
2506 /* We're trying to step off a breakpoint. Turns out that we're
2507 also on an instruction that needs to be stepped multiple
2508 times before it's been fully executing. E.g., architectures
2509 with a delay slot. It needs to be stepped twice, once for
2510 the instruction and once for the delay slot. */
2511 int step_through_delay
2512 = gdbarch_single_step_through_delay (current_gdbarch,
2513 get_current_frame ());
2514 if (debug_infrun && step_through_delay)
2515 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2516 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
2517 {
2518 /* The user issued a continue when stopped at a breakpoint.
2519 Set up for another trap and get out of here. */
2520 ecs->event_thread->stepping_over_breakpoint = 1;
2521 keep_going (ecs);
2522 return;
2523 }
2524 else if (step_through_delay)
2525 {
2526 /* The user issued a step when stopped at a breakpoint.
2527 Maybe we should stop, maybe we should not - the delay
2528 slot *might* correspond to a line of source. In any
2529 case, don't decide that here, just set
2530 ecs->stepping_over_breakpoint, making sure we
2531 single-step again before breakpoints are re-inserted. */
2532 ecs->event_thread->stepping_over_breakpoint = 1;
2533 }
2534 }
2535
2536 /* Look at the cause of the stop, and decide what to do.
2537 The alternatives are:
2538 1) stop_stepping and return; to really stop and return to the debugger,
2539 2) keep_going and return to start up again
2540 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
2541 3) set ecs->random_signal to 1, and the decision between 1 and 2
2542 will be made according to the signal handling tables. */
2543
2544 /* First, distinguish signals caused by the debugger from signals
2545 that have to do with the program's own actions. Note that
2546 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2547 on the operating system version. Here we detect when a SIGILL or
2548 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2549 something similar for SIGSEGV, since a SIGSEGV will be generated
2550 when we're trying to execute a breakpoint instruction on a
2551 non-executable stack. This happens for call dummy breakpoints
2552 for architectures like SPARC that place call dummies on the
2553 stack.
2554
2555 If we're doing a displaced step past a breakpoint, then the
2556 breakpoint is always inserted at the original instruction;
2557 non-standard signals can't be explained by the breakpoint. */
2558 if (stop_signal == TARGET_SIGNAL_TRAP
2559 || (! ecs->event_thread->trap_expected
2560 && breakpoint_inserted_here_p (stop_pc)
2561 && (stop_signal == TARGET_SIGNAL_ILL
2562 || stop_signal == TARGET_SIGNAL_SEGV
2563 || stop_signal == TARGET_SIGNAL_EMT))
2564 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2565 || stop_soon == STOP_QUIETLY_REMOTE)
2566 {
2567 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2568 {
2569 if (debug_infrun)
2570 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2571 stop_print_frame = 0;
2572 stop_stepping (ecs);
2573 return;
2574 }
2575
2576 /* This is originated from start_remote(), start_inferior() and
2577 shared libraries hook functions. */
2578 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2579 {
2580 if (debug_infrun)
2581 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2582 stop_stepping (ecs);
2583 return;
2584 }
2585
2586 /* This originates from attach_command(). We need to overwrite
2587 the stop_signal here, because some kernels don't ignore a
2588 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2589 See more comments in inferior.h. On the other hand, if we
2590 get a non-SIGSTOP, report it to the user - assume the backend
2591 will handle the SIGSTOP if it should show up later.
2592
2593 Also consider that the attach is complete when we see a
2594 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2595 target extended-remote report it instead of a SIGSTOP
2596 (e.g. gdbserver). We already rely on SIGTRAP being our
2597 signal, so this is no exception. */
2598 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2599 && (stop_signal == TARGET_SIGNAL_STOP
2600 || stop_signal == TARGET_SIGNAL_TRAP))
2601 {
2602 stop_stepping (ecs);
2603 stop_signal = TARGET_SIGNAL_0;
2604 return;
2605 }
2606
2607 /* See if there is a breakpoint at the current PC. */
2608 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2609
2610 /* Following in case break condition called a
2611 function. */
2612 stop_print_frame = 1;
2613
2614 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2615 at one stage in the past included checks for an inferior
2616 function call's call dummy's return breakpoint. The original
2617 comment, that went with the test, read:
2618
2619 ``End of a stack dummy. Some systems (e.g. Sony news) give
2620 another signal besides SIGTRAP, so check here as well as
2621 above.''
2622
2623 If someone ever tries to get get call dummys on a
2624 non-executable stack to work (where the target would stop
2625 with something like a SIGSEGV), then those tests might need
2626 to be re-instated. Given, however, that the tests were only
2627 enabled when momentary breakpoints were not being used, I
2628 suspect that it won't be the case.
2629
2630 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2631 be necessary for call dummies on a non-executable stack on
2632 SPARC. */
2633
2634 if (stop_signal == TARGET_SIGNAL_TRAP)
2635 ecs->random_signal
2636 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
2637 || ecs->event_thread->trap_expected
2638 || (ecs->event_thread->step_range_end
2639 && ecs->event_thread->step_resume_breakpoint == NULL));
2640 else
2641 {
2642 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2643 if (!ecs->random_signal)
2644 stop_signal = TARGET_SIGNAL_TRAP;
2645 }
2646 }
2647
2648 /* When we reach this point, we've pretty much decided
2649 that the reason for stopping must've been a random
2650 (unexpected) signal. */
2651
2652 else
2653 ecs->random_signal = 1;
2654
2655 process_event_stop_test:
2656 /* For the program's own signals, act according to
2657 the signal handling tables. */
2658
2659 if (ecs->random_signal)
2660 {
2661 /* Signal not for debugging purposes. */
2662 int printed = 0;
2663
2664 if (debug_infrun)
2665 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2666
2667 stopped_by_random_signal = 1;
2668
2669 if (signal_print[stop_signal])
2670 {
2671 printed = 1;
2672 target_terminal_ours_for_output ();
2673 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2674 }
2675 if (signal_stop_state (stop_signal))
2676 {
2677 stop_stepping (ecs);
2678 return;
2679 }
2680 /* If not going to stop, give terminal back
2681 if we took it away. */
2682 else if (printed)
2683 target_terminal_inferior ();
2684
2685 /* Clear the signal if it should not be passed. */
2686 if (signal_program[stop_signal] == 0)
2687 stop_signal = TARGET_SIGNAL_0;
2688
2689 if (ecs->event_thread->prev_pc == read_pc ()
2690 && ecs->event_thread->trap_expected
2691 && ecs->event_thread->step_resume_breakpoint == NULL)
2692 {
2693 /* We were just starting a new sequence, attempting to
2694 single-step off of a breakpoint and expecting a SIGTRAP.
2695 Instead this signal arrives. This signal will take us out
2696 of the stepping range so GDB needs to remember to, when
2697 the signal handler returns, resume stepping off that
2698 breakpoint. */
2699 /* To simplify things, "continue" is forced to use the same
2700 code paths as single-step - set a breakpoint at the
2701 signal return address and then, once hit, step off that
2702 breakpoint. */
2703 if (debug_infrun)
2704 fprintf_unfiltered (gdb_stdlog,
2705 "infrun: signal arrived while stepping over "
2706 "breakpoint\n");
2707
2708 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2709 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2710 keep_going (ecs);
2711 return;
2712 }
2713
2714 if (ecs->event_thread->step_range_end != 0
2715 && stop_signal != TARGET_SIGNAL_0
2716 && (ecs->event_thread->step_range_start <= stop_pc
2717 && stop_pc < ecs->event_thread->step_range_end)
2718 && frame_id_eq (get_frame_id (get_current_frame ()),
2719 ecs->event_thread->step_frame_id)
2720 && ecs->event_thread->step_resume_breakpoint == NULL)
2721 {
2722 /* The inferior is about to take a signal that will take it
2723 out of the single step range. Set a breakpoint at the
2724 current PC (which is presumably where the signal handler
2725 will eventually return) and then allow the inferior to
2726 run free.
2727
2728 Note that this is only needed for a signal delivered
2729 while in the single-step range. Nested signals aren't a
2730 problem as they eventually all return. */
2731 if (debug_infrun)
2732 fprintf_unfiltered (gdb_stdlog,
2733 "infrun: signal may take us out of "
2734 "single-step range\n");
2735
2736 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2737 keep_going (ecs);
2738 return;
2739 }
2740
2741 /* Note: step_resume_breakpoint may be non-NULL. This occures
2742 when either there's a nested signal, or when there's a
2743 pending signal enabled just as the signal handler returns
2744 (leaving the inferior at the step-resume-breakpoint without
2745 actually executing it). Either way continue until the
2746 breakpoint is really hit. */
2747 keep_going (ecs);
2748 return;
2749 }
2750
2751 /* Handle cases caused by hitting a breakpoint. */
2752 {
2753 CORE_ADDR jmp_buf_pc;
2754 struct bpstat_what what;
2755
2756 what = bpstat_what (ecs->event_thread->stop_bpstat);
2757
2758 if (what.call_dummy)
2759 {
2760 stop_stack_dummy = 1;
2761 }
2762
2763 switch (what.main_action)
2764 {
2765 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2766 /* If we hit the breakpoint at longjmp while stepping, we
2767 install a momentary breakpoint at the target of the
2768 jmp_buf. */
2769
2770 if (debug_infrun)
2771 fprintf_unfiltered (gdb_stdlog,
2772 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2773
2774 ecs->event_thread->stepping_over_breakpoint = 1;
2775
2776 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2777 || !gdbarch_get_longjmp_target (current_gdbarch,
2778 get_current_frame (), &jmp_buf_pc))
2779 {
2780 if (debug_infrun)
2781 fprintf_unfiltered (gdb_stdlog, "\
2782 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
2783 keep_going (ecs);
2784 return;
2785 }
2786
2787 /* We're going to replace the current step-resume breakpoint
2788 with a longjmp-resume breakpoint. */
2789 delete_step_resume_breakpoint (ecs->event_thread);
2790
2791 /* Insert a breakpoint at resume address. */
2792 insert_longjmp_resume_breakpoint (jmp_buf_pc);
2793
2794 keep_going (ecs);
2795 return;
2796
2797 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2798 if (debug_infrun)
2799 fprintf_unfiltered (gdb_stdlog,
2800 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2801
2802 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
2803 delete_step_resume_breakpoint (ecs->event_thread);
2804
2805 stop_step = 1;
2806 print_stop_reason (END_STEPPING_RANGE, 0);
2807 stop_stepping (ecs);
2808 return;
2809
2810 case BPSTAT_WHAT_SINGLE:
2811 if (debug_infrun)
2812 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2813 ecs->event_thread->stepping_over_breakpoint = 1;
2814 /* Still need to check other stuff, at least the case
2815 where we are stepping and step out of the right range. */
2816 break;
2817
2818 case BPSTAT_WHAT_STOP_NOISY:
2819 if (debug_infrun)
2820 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2821 stop_print_frame = 1;
2822
2823 /* We are about to nuke the step_resume_breakpointt via the
2824 cleanup chain, so no need to worry about it here. */
2825
2826 stop_stepping (ecs);
2827 return;
2828
2829 case BPSTAT_WHAT_STOP_SILENT:
2830 if (debug_infrun)
2831 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2832 stop_print_frame = 0;
2833
2834 /* We are about to nuke the step_resume_breakpoin via the
2835 cleanup chain, so no need to worry about it here. */
2836
2837 stop_stepping (ecs);
2838 return;
2839
2840 case BPSTAT_WHAT_STEP_RESUME:
2841 if (debug_infrun)
2842 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2843
2844 delete_step_resume_breakpoint (ecs->event_thread);
2845 if (ecs->event_thread->step_after_step_resume_breakpoint)
2846 {
2847 /* Back when the step-resume breakpoint was inserted, we
2848 were trying to single-step off a breakpoint. Go back
2849 to doing that. */
2850 ecs->event_thread->step_after_step_resume_breakpoint = 0;
2851 ecs->event_thread->stepping_over_breakpoint = 1;
2852 keep_going (ecs);
2853 return;
2854 }
2855 break;
2856
2857 case BPSTAT_WHAT_CHECK_SHLIBS:
2858 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2859 {
2860 if (debug_infrun)
2861 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2862
2863 /* Check for any newly added shared libraries if we're
2864 supposed to be adding them automatically. Switch
2865 terminal for any messages produced by
2866 breakpoint_re_set. */
2867 target_terminal_ours_for_output ();
2868 /* NOTE: cagney/2003-11-25: Make certain that the target
2869 stack's section table is kept up-to-date. Architectures,
2870 (e.g., PPC64), use the section table to perform
2871 operations such as address => section name and hence
2872 require the table to contain all sections (including
2873 those found in shared libraries). */
2874 /* NOTE: cagney/2003-11-25: Pass current_target and not
2875 exec_ops to SOLIB_ADD. This is because current GDB is
2876 only tooled to propagate section_table changes out from
2877 the "current_target" (see target_resize_to_sections), and
2878 not up from the exec stratum. This, of course, isn't
2879 right. "infrun.c" should only interact with the
2880 exec/process stratum, instead relying on the target stack
2881 to propagate relevant changes (stop, section table
2882 changed, ...) up to other layers. */
2883 #ifdef SOLIB_ADD
2884 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2885 #else
2886 solib_add (NULL, 0, &current_target, auto_solib_add);
2887 #endif
2888 target_terminal_inferior ();
2889
2890 /* If requested, stop when the dynamic linker notifies
2891 gdb of events. This allows the user to get control
2892 and place breakpoints in initializer routines for
2893 dynamically loaded objects (among other things). */
2894 if (stop_on_solib_events || stop_stack_dummy)
2895 {
2896 stop_stepping (ecs);
2897 return;
2898 }
2899
2900 /* If we stopped due to an explicit catchpoint, then the
2901 (see above) call to SOLIB_ADD pulled in any symbols
2902 from a newly-loaded library, if appropriate.
2903
2904 We do want the inferior to stop, but not where it is
2905 now, which is in the dynamic linker callback. Rather,
2906 we would like it stop in the user's program, just after
2907 the call that caused this catchpoint to trigger. That
2908 gives the user a more useful vantage from which to
2909 examine their program's state. */
2910 else if (what.main_action
2911 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2912 {
2913 /* ??rehrauer: If I could figure out how to get the
2914 right return PC from here, we could just set a temp
2915 breakpoint and resume. I'm not sure we can without
2916 cracking open the dld's shared libraries and sniffing
2917 their unwind tables and text/data ranges, and that's
2918 not a terribly portable notion.
2919
2920 Until that time, we must step the inferior out of the
2921 dld callback, and also out of the dld itself (and any
2922 code or stubs in libdld.sl, such as "shl_load" and
2923 friends) until we reach non-dld code. At that point,
2924 we can stop stepping. */
2925 bpstat_get_triggered_catchpoints (ecs->event_thread->stop_bpstat,
2926 &ecs->
2927 event_thread->
2928 stepping_through_solib_catchpoints);
2929 ecs->event_thread->stepping_through_solib_after_catch = 1;
2930
2931 /* Be sure to lift all breakpoints, so the inferior does
2932 actually step past this point... */
2933 ecs->event_thread->stepping_over_breakpoint = 1;
2934 break;
2935 }
2936 else
2937 {
2938 /* We want to step over this breakpoint, then keep going. */
2939 ecs->event_thread->stepping_over_breakpoint = 1;
2940 break;
2941 }
2942 }
2943 break;
2944
2945 case BPSTAT_WHAT_LAST:
2946 /* Not a real code, but listed here to shut up gcc -Wall. */
2947
2948 case BPSTAT_WHAT_KEEP_CHECKING:
2949 break;
2950 }
2951 }
2952
2953 /* We come here if we hit a breakpoint but should not
2954 stop for it. Possibly we also were stepping
2955 and should stop for that. So fall through and
2956 test for stepping. But, if not stepping,
2957 do not stop. */
2958
2959 /* Are we stepping to get the inferior out of the dynamic linker's
2960 hook (and possibly the dld itself) after catching a shlib
2961 event? */
2962 if (ecs->event_thread->stepping_through_solib_after_catch)
2963 {
2964 #if defined(SOLIB_ADD)
2965 /* Have we reached our destination? If not, keep going. */
2966 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2967 {
2968 if (debug_infrun)
2969 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2970 ecs->event_thread->stepping_over_breakpoint = 1;
2971 keep_going (ecs);
2972 return;
2973 }
2974 #endif
2975 if (debug_infrun)
2976 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2977 /* Else, stop and report the catchpoint(s) whose triggering
2978 caused us to begin stepping. */
2979 ecs->event_thread->stepping_through_solib_after_catch = 0;
2980 bpstat_clear (&ecs->event_thread->stop_bpstat);
2981 ecs->event_thread->stop_bpstat
2982 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
2983 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
2984 stop_print_frame = 1;
2985 stop_stepping (ecs);
2986 return;
2987 }
2988
2989 if (ecs->event_thread->step_resume_breakpoint)
2990 {
2991 if (debug_infrun)
2992 fprintf_unfiltered (gdb_stdlog,
2993 "infrun: step-resume breakpoint is inserted\n");
2994
2995 /* Having a step-resume breakpoint overrides anything
2996 else having to do with stepping commands until
2997 that breakpoint is reached. */
2998 keep_going (ecs);
2999 return;
3000 }
3001
3002 if (ecs->event_thread->step_range_end == 0)
3003 {
3004 if (debug_infrun)
3005 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3006 /* Likewise if we aren't even stepping. */
3007 keep_going (ecs);
3008 return;
3009 }
3010
3011 /* If stepping through a line, keep going if still within it.
3012
3013 Note that step_range_end is the address of the first instruction
3014 beyond the step range, and NOT the address of the last instruction
3015 within it! */
3016 if (stop_pc >= ecs->event_thread->step_range_start
3017 && stop_pc < ecs->event_thread->step_range_end)
3018 {
3019 if (debug_infrun)
3020 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3021 paddr_nz (ecs->event_thread->step_range_start),
3022 paddr_nz (ecs->event_thread->step_range_end));
3023 keep_going (ecs);
3024 return;
3025 }
3026
3027 /* We stepped out of the stepping range. */
3028
3029 /* If we are stepping at the source level and entered the runtime
3030 loader dynamic symbol resolution code, we keep on single stepping
3031 until we exit the run time loader code and reach the callee's
3032 address. */
3033 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3034 && in_solib_dynsym_resolve_code (stop_pc))
3035 {
3036 CORE_ADDR pc_after_resolver =
3037 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
3038
3039 if (debug_infrun)
3040 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3041
3042 if (pc_after_resolver)
3043 {
3044 /* Set up a step-resume breakpoint at the address
3045 indicated by SKIP_SOLIB_RESOLVER. */
3046 struct symtab_and_line sr_sal;
3047 init_sal (&sr_sal);
3048 sr_sal.pc = pc_after_resolver;
3049
3050 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3051 }
3052
3053 keep_going (ecs);
3054 return;
3055 }
3056
3057 if (ecs->event_thread->step_range_end != 1
3058 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3059 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3060 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
3061 {
3062 if (debug_infrun)
3063 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3064 /* The inferior, while doing a "step" or "next", has ended up in
3065 a signal trampoline (either by a signal being delivered or by
3066 the signal handler returning). Just single-step until the
3067 inferior leaves the trampoline (either by calling the handler
3068 or returning). */
3069 keep_going (ecs);
3070 return;
3071 }
3072
3073 /* Check for subroutine calls. The check for the current frame
3074 equalling the step ID is not necessary - the check of the
3075 previous frame's ID is sufficient - but it is a common case and
3076 cheaper than checking the previous frame's ID.
3077
3078 NOTE: frame_id_eq will never report two invalid frame IDs as
3079 being equal, so to get into this block, both the current and
3080 previous frame must have valid frame IDs. */
3081 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3082 ecs->event_thread->step_frame_id)
3083 && frame_id_eq (frame_unwind_id (get_current_frame ()),
3084 ecs->event_thread->step_frame_id))
3085 {
3086 CORE_ADDR real_stop_pc;
3087
3088 if (debug_infrun)
3089 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3090
3091 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
3092 || ((ecs->event_thread->step_range_end == 1)
3093 && in_prologue (ecs->event_thread->prev_pc,
3094 ecs->stop_func_start)))
3095 {
3096 /* I presume that step_over_calls is only 0 when we're
3097 supposed to be stepping at the assembly language level
3098 ("stepi"). Just stop. */
3099 /* Also, maybe we just did a "nexti" inside a prolog, so we
3100 thought it was a subroutine call but it was not. Stop as
3101 well. FENN */
3102 stop_step = 1;
3103 print_stop_reason (END_STEPPING_RANGE, 0);
3104 stop_stepping (ecs);
3105 return;
3106 }
3107
3108 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3109 {
3110 /* We're doing a "next", set a breakpoint at callee's return
3111 address (the address at which the caller will
3112 resume). */
3113 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3114 keep_going (ecs);
3115 return;
3116 }
3117
3118 /* If we are in a function call trampoline (a stub between the
3119 calling routine and the real function), locate the real
3120 function. That's what tells us (a) whether we want to step
3121 into it at all, and (b) what prologue we want to run to the
3122 end of, if we do step into it. */
3123 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
3124 if (real_stop_pc == 0)
3125 real_stop_pc = gdbarch_skip_trampoline_code
3126 (current_gdbarch, get_current_frame (), stop_pc);
3127 if (real_stop_pc != 0)
3128 ecs->stop_func_start = real_stop_pc;
3129
3130 if (in_solib_dynsym_resolve_code (ecs->stop_func_start))
3131 {
3132 struct symtab_and_line sr_sal;
3133 init_sal (&sr_sal);
3134 sr_sal.pc = ecs->stop_func_start;
3135
3136 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3137 keep_going (ecs);
3138 return;
3139 }
3140
3141 /* If we have line number information for the function we are
3142 thinking of stepping into, step into it.
3143
3144 If there are several symtabs at that PC (e.g. with include
3145 files), just want to know whether *any* of them have line
3146 numbers. find_pc_line handles this. */
3147 {
3148 struct symtab_and_line tmp_sal;
3149
3150 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3151 if (tmp_sal.line != 0)
3152 {
3153 step_into_function (ecs);
3154 return;
3155 }
3156 }
3157
3158 /* If we have no line number and the step-stop-if-no-debug is
3159 set, we stop the step so that the user has a chance to switch
3160 in assembly mode. */
3161 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3162 && step_stop_if_no_debug)
3163 {
3164 stop_step = 1;
3165 print_stop_reason (END_STEPPING_RANGE, 0);
3166 stop_stepping (ecs);
3167 return;
3168 }
3169
3170 /* Set a breakpoint at callee's return address (the address at
3171 which the caller will resume). */
3172 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3173 keep_going (ecs);
3174 return;
3175 }
3176
3177 /* If we're in the return path from a shared library trampoline,
3178 we want to proceed through the trampoline when stepping. */
3179 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3180 stop_pc, ecs->stop_func_name))
3181 {
3182 /* Determine where this trampoline returns. */
3183 CORE_ADDR real_stop_pc;
3184 real_stop_pc = gdbarch_skip_trampoline_code
3185 (current_gdbarch, get_current_frame (), stop_pc);
3186
3187 if (debug_infrun)
3188 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3189
3190 /* Only proceed through if we know where it's going. */
3191 if (real_stop_pc)
3192 {
3193 /* And put the step-breakpoint there and go until there. */
3194 struct symtab_and_line sr_sal;
3195
3196 init_sal (&sr_sal); /* initialize to zeroes */
3197 sr_sal.pc = real_stop_pc;
3198 sr_sal.section = find_pc_overlay (sr_sal.pc);
3199
3200 /* Do not specify what the fp should be when we stop since
3201 on some machines the prologue is where the new fp value
3202 is established. */
3203 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3204
3205 /* Restart without fiddling with the step ranges or
3206 other state. */
3207 keep_going (ecs);
3208 return;
3209 }
3210 }
3211
3212 stop_pc_sal = find_pc_line (stop_pc, 0);
3213
3214 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3215 the trampoline processing logic, however, there are some trampolines
3216 that have no names, so we should do trampoline handling first. */
3217 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3218 && ecs->stop_func_name == NULL
3219 && stop_pc_sal.line == 0)
3220 {
3221 if (debug_infrun)
3222 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3223
3224 /* The inferior just stepped into, or returned to, an
3225 undebuggable function (where there is no debugging information
3226 and no line number corresponding to the address where the
3227 inferior stopped). Since we want to skip this kind of code,
3228 we keep going until the inferior returns from this
3229 function - unless the user has asked us not to (via
3230 set step-mode) or we no longer know how to get back
3231 to the call site. */
3232 if (step_stop_if_no_debug
3233 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3234 {
3235 /* If we have no line number and the step-stop-if-no-debug
3236 is set, we stop the step so that the user has a chance to
3237 switch in assembly mode. */
3238 stop_step = 1;
3239 print_stop_reason (END_STEPPING_RANGE, 0);
3240 stop_stepping (ecs);
3241 return;
3242 }
3243 else
3244 {
3245 /* Set a breakpoint at callee's return address (the address
3246 at which the caller will resume). */
3247 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3248 keep_going (ecs);
3249 return;
3250 }
3251 }
3252
3253 if (ecs->event_thread->step_range_end == 1)
3254 {
3255 /* It is stepi or nexti. We always want to stop stepping after
3256 one instruction. */
3257 if (debug_infrun)
3258 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3259 stop_step = 1;
3260 print_stop_reason (END_STEPPING_RANGE, 0);
3261 stop_stepping (ecs);
3262 return;
3263 }
3264
3265 if (stop_pc_sal.line == 0)
3266 {
3267 /* We have no line number information. That means to stop
3268 stepping (does this always happen right after one instruction,
3269 when we do "s" in a function with no line numbers,
3270 or can this happen as a result of a return or longjmp?). */
3271 if (debug_infrun)
3272 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3273 stop_step = 1;
3274 print_stop_reason (END_STEPPING_RANGE, 0);
3275 stop_stepping (ecs);
3276 return;
3277 }
3278
3279 if ((stop_pc == stop_pc_sal.pc)
3280 && (ecs->event_thread->current_line != stop_pc_sal.line
3281 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
3282 {
3283 /* We are at the start of a different line. So stop. Note that
3284 we don't stop if we step into the middle of a different line.
3285 That is said to make things like for (;;) statements work
3286 better. */
3287 if (debug_infrun)
3288 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3289 stop_step = 1;
3290 print_stop_reason (END_STEPPING_RANGE, 0);
3291 stop_stepping (ecs);
3292 return;
3293 }
3294
3295 /* We aren't done stepping.
3296
3297 Optimize by setting the stepping range to the line.
3298 (We might not be in the original line, but if we entered a
3299 new line in mid-statement, we continue stepping. This makes
3300 things like for(;;) statements work better.) */
3301
3302 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3303 ecs->event_thread->step_range_end = stop_pc_sal.end;
3304 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3305 ecs->event_thread->current_line = stop_pc_sal.line;
3306 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
3307
3308 if (debug_infrun)
3309 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3310 keep_going (ecs);
3311 }
3312
3313 /* Are we in the middle of stepping? */
3314
3315 static int
3316 currently_stepping (struct thread_info *tp)
3317 {
3318 return (((tp->step_range_end && tp->step_resume_breakpoint == NULL)
3319 || tp->trap_expected)
3320 || tp->stepping_through_solib_after_catch
3321 || bpstat_should_step ());
3322 }
3323
3324 /* Subroutine call with source code we should not step over. Do step
3325 to the first line of code in it. */
3326
3327 static void
3328 step_into_function (struct execution_control_state *ecs)
3329 {
3330 struct symtab *s;
3331 struct symtab_and_line stop_func_sal, sr_sal;
3332
3333 s = find_pc_symtab (stop_pc);
3334 if (s && s->language != language_asm)
3335 ecs->stop_func_start = gdbarch_skip_prologue
3336 (current_gdbarch, ecs->stop_func_start);
3337
3338 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
3339 /* Use the step_resume_break to step until the end of the prologue,
3340 even if that involves jumps (as it seems to on the vax under
3341 4.2). */
3342 /* If the prologue ends in the middle of a source line, continue to
3343 the end of that source line (if it is still within the function).
3344 Otherwise, just go to end of prologue. */
3345 if (stop_func_sal.end
3346 && stop_func_sal.pc != ecs->stop_func_start
3347 && stop_func_sal.end < ecs->stop_func_end)
3348 ecs->stop_func_start = stop_func_sal.end;
3349
3350 /* Architectures which require breakpoint adjustment might not be able
3351 to place a breakpoint at the computed address. If so, the test
3352 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3353 ecs->stop_func_start to an address at which a breakpoint may be
3354 legitimately placed.
3355
3356 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3357 made, GDB will enter an infinite loop when stepping through
3358 optimized code consisting of VLIW instructions which contain
3359 subinstructions corresponding to different source lines. On
3360 FR-V, it's not permitted to place a breakpoint on any but the
3361 first subinstruction of a VLIW instruction. When a breakpoint is
3362 set, GDB will adjust the breakpoint address to the beginning of
3363 the VLIW instruction. Thus, we need to make the corresponding
3364 adjustment here when computing the stop address. */
3365
3366 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3367 {
3368 ecs->stop_func_start
3369 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3370 ecs->stop_func_start);
3371 }
3372
3373 if (ecs->stop_func_start == stop_pc)
3374 {
3375 /* We are already there: stop now. */
3376 stop_step = 1;
3377 print_stop_reason (END_STEPPING_RANGE, 0);
3378 stop_stepping (ecs);
3379 return;
3380 }
3381 else
3382 {
3383 /* Put the step-breakpoint there and go until there. */
3384 init_sal (&sr_sal); /* initialize to zeroes */
3385 sr_sal.pc = ecs->stop_func_start;
3386 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3387
3388 /* Do not specify what the fp should be when we stop since on
3389 some machines the prologue is where the new fp value is
3390 established. */
3391 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3392
3393 /* And make sure stepping stops right away then. */
3394 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
3395 }
3396 keep_going (ecs);
3397 }
3398
3399 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3400 This is used to both functions and to skip over code. */
3401
3402 static void
3403 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3404 struct frame_id sr_id)
3405 {
3406 /* There should never be more than one step-resume or longjmp-resume
3407 breakpoint per thread, so we should never be setting a new
3408 step_resume_breakpoint when one is already active. */
3409 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3410
3411 if (debug_infrun)
3412 fprintf_unfiltered (gdb_stdlog,
3413 "infrun: inserting step-resume breakpoint at 0x%s\n",
3414 paddr_nz (sr_sal.pc));
3415
3416 inferior_thread ()->step_resume_breakpoint
3417 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
3418 }
3419
3420 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3421 to skip a potential signal handler.
3422
3423 This is called with the interrupted function's frame. The signal
3424 handler, when it returns, will resume the interrupted function at
3425 RETURN_FRAME.pc. */
3426
3427 static void
3428 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3429 {
3430 struct symtab_and_line sr_sal;
3431
3432 gdb_assert (return_frame != NULL);
3433 init_sal (&sr_sal); /* initialize to zeros */
3434
3435 sr_sal.pc = gdbarch_addr_bits_remove
3436 (current_gdbarch, get_frame_pc (return_frame));
3437 sr_sal.section = find_pc_overlay (sr_sal.pc);
3438
3439 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3440 }
3441
3442 /* Similar to insert_step_resume_breakpoint_at_frame, except
3443 but a breakpoint at the previous frame's PC. This is used to
3444 skip a function after stepping into it (for "next" or if the called
3445 function has no debugging information).
3446
3447 The current function has almost always been reached by single
3448 stepping a call or return instruction. NEXT_FRAME belongs to the
3449 current function, and the breakpoint will be set at the caller's
3450 resume address.
3451
3452 This is a separate function rather than reusing
3453 insert_step_resume_breakpoint_at_frame in order to avoid
3454 get_prev_frame, which may stop prematurely (see the implementation
3455 of frame_unwind_id for an example). */
3456
3457 static void
3458 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3459 {
3460 struct symtab_and_line sr_sal;
3461
3462 /* We shouldn't have gotten here if we don't know where the call site
3463 is. */
3464 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3465
3466 init_sal (&sr_sal); /* initialize to zeros */
3467
3468 sr_sal.pc = gdbarch_addr_bits_remove
3469 (current_gdbarch, frame_pc_unwind (next_frame));
3470 sr_sal.section = find_pc_overlay (sr_sal.pc);
3471
3472 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3473 }
3474
3475 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3476 new breakpoint at the target of a jmp_buf. The handling of
3477 longjmp-resume uses the same mechanisms used for handling
3478 "step-resume" breakpoints. */
3479
3480 static void
3481 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3482 {
3483 /* There should never be more than one step-resume or longjmp-resume
3484 breakpoint per thread, so we should never be setting a new
3485 longjmp_resume_breakpoint when one is already active. */
3486 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3487
3488 if (debug_infrun)
3489 fprintf_unfiltered (gdb_stdlog,
3490 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3491 paddr_nz (pc));
3492
3493 inferior_thread ()->step_resume_breakpoint =
3494 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3495 }
3496
3497 static void
3498 stop_stepping (struct execution_control_state *ecs)
3499 {
3500 if (debug_infrun)
3501 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3502
3503 /* Let callers know we don't want to wait for the inferior anymore. */
3504 ecs->wait_some_more = 0;
3505 }
3506
3507 /* This function handles various cases where we need to continue
3508 waiting for the inferior. */
3509 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3510
3511 static void
3512 keep_going (struct execution_control_state *ecs)
3513 {
3514 /* Save the pc before execution, to compare with pc after stop. */
3515 ecs->event_thread->prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3516
3517 /* If we did not do break;, it means we should keep running the
3518 inferior and not return to debugger. */
3519
3520 if (ecs->event_thread->trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
3521 {
3522 /* We took a signal (which we are supposed to pass through to
3523 the inferior, else we'd not get here) and we haven't yet
3524 gotten our trap. Simply continue. */
3525 resume (currently_stepping (ecs->event_thread), stop_signal);
3526 }
3527 else
3528 {
3529 /* Either the trap was not expected, but we are continuing
3530 anyway (the user asked that this signal be passed to the
3531 child)
3532 -- or --
3533 The signal was SIGTRAP, e.g. it was our signal, but we
3534 decided we should resume from it.
3535
3536 We're going to run this baby now!
3537
3538 Note that insert_breakpoints won't try to re-insert
3539 already inserted breakpoints. Therefore, we don't
3540 care if breakpoints were already inserted, or not. */
3541
3542 if (ecs->event_thread->stepping_over_breakpoint)
3543 {
3544 if (! use_displaced_stepping (current_gdbarch))
3545 /* Since we can't do a displaced step, we have to remove
3546 the breakpoint while we step it. To keep things
3547 simple, we remove them all. */
3548 remove_breakpoints ();
3549 }
3550 else
3551 {
3552 struct gdb_exception e;
3553 /* Stop stepping when inserting breakpoints
3554 has failed. */
3555 TRY_CATCH (e, RETURN_MASK_ERROR)
3556 {
3557 insert_breakpoints ();
3558 }
3559 if (e.reason < 0)
3560 {
3561 stop_stepping (ecs);
3562 return;
3563 }
3564 }
3565
3566 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
3567
3568 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3569 specifies that such a signal should be delivered to the
3570 target program).
3571
3572 Typically, this would occure when a user is debugging a
3573 target monitor on a simulator: the target monitor sets a
3574 breakpoint; the simulator encounters this break-point and
3575 halts the simulation handing control to GDB; GDB, noteing
3576 that the break-point isn't valid, returns control back to the
3577 simulator; the simulator then delivers the hardware
3578 equivalent of a SIGNAL_TRAP to the program being debugged. */
3579
3580 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
3581 stop_signal = TARGET_SIGNAL_0;
3582
3583
3584 resume (currently_stepping (ecs->event_thread), stop_signal);
3585 }
3586
3587 prepare_to_wait (ecs);
3588 }
3589
3590 /* This function normally comes after a resume, before
3591 handle_inferior_event exits. It takes care of any last bits of
3592 housekeeping, and sets the all-important wait_some_more flag. */
3593
3594 static void
3595 prepare_to_wait (struct execution_control_state *ecs)
3596 {
3597 if (debug_infrun)
3598 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
3599 if (infwait_state == infwait_normal_state)
3600 {
3601 overlay_cache_invalid = 1;
3602
3603 /* We have to invalidate the registers BEFORE calling
3604 target_wait because they can be loaded from the target while
3605 in target_wait. This makes remote debugging a bit more
3606 efficient for those targets that provide critical registers
3607 as part of their normal status mechanism. */
3608
3609 registers_changed ();
3610 waiton_ptid = pid_to_ptid (-1);
3611 }
3612 /* This is the old end of the while loop. Let everybody know we
3613 want to wait for the inferior some more and get called again
3614 soon. */
3615 ecs->wait_some_more = 1;
3616 }
3617
3618 /* Print why the inferior has stopped. We always print something when
3619 the inferior exits, or receives a signal. The rest of the cases are
3620 dealt with later on in normal_stop() and print_it_typical(). Ideally
3621 there should be a call to this function from handle_inferior_event()
3622 each time stop_stepping() is called.*/
3623 static void
3624 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3625 {
3626 switch (stop_reason)
3627 {
3628 case END_STEPPING_RANGE:
3629 /* We are done with a step/next/si/ni command. */
3630 /* For now print nothing. */
3631 /* Print a message only if not in the middle of doing a "step n"
3632 operation for n > 1 */
3633 if (!step_multi || !stop_step)
3634 if (ui_out_is_mi_like_p (uiout))
3635 ui_out_field_string
3636 (uiout, "reason",
3637 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3638 break;
3639 case SIGNAL_EXITED:
3640 /* The inferior was terminated by a signal. */
3641 annotate_signalled ();
3642 if (ui_out_is_mi_like_p (uiout))
3643 ui_out_field_string
3644 (uiout, "reason",
3645 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3646 ui_out_text (uiout, "\nProgram terminated with signal ");
3647 annotate_signal_name ();
3648 ui_out_field_string (uiout, "signal-name",
3649 target_signal_to_name (stop_info));
3650 annotate_signal_name_end ();
3651 ui_out_text (uiout, ", ");
3652 annotate_signal_string ();
3653 ui_out_field_string (uiout, "signal-meaning",
3654 target_signal_to_string (stop_info));
3655 annotate_signal_string_end ();
3656 ui_out_text (uiout, ".\n");
3657 ui_out_text (uiout, "The program no longer exists.\n");
3658 break;
3659 case EXITED:
3660 /* The inferior program is finished. */
3661 annotate_exited (stop_info);
3662 if (stop_info)
3663 {
3664 if (ui_out_is_mi_like_p (uiout))
3665 ui_out_field_string (uiout, "reason",
3666 async_reason_lookup (EXEC_ASYNC_EXITED));
3667 ui_out_text (uiout, "\nProgram exited with code ");
3668 ui_out_field_fmt (uiout, "exit-code", "0%o",
3669 (unsigned int) stop_info);
3670 ui_out_text (uiout, ".\n");
3671 }
3672 else
3673 {
3674 if (ui_out_is_mi_like_p (uiout))
3675 ui_out_field_string
3676 (uiout, "reason",
3677 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3678 ui_out_text (uiout, "\nProgram exited normally.\n");
3679 }
3680 /* Support the --return-child-result option. */
3681 return_child_result_value = stop_info;
3682 break;
3683 case SIGNAL_RECEIVED:
3684 /* Signal received. The signal table tells us to print about
3685 it. */
3686 annotate_signal ();
3687 ui_out_text (uiout, "\nProgram received signal ");
3688 annotate_signal_name ();
3689 if (ui_out_is_mi_like_p (uiout))
3690 ui_out_field_string
3691 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3692 ui_out_field_string (uiout, "signal-name",
3693 target_signal_to_name (stop_info));
3694 annotate_signal_name_end ();
3695 ui_out_text (uiout, ", ");
3696 annotate_signal_string ();
3697 ui_out_field_string (uiout, "signal-meaning",
3698 target_signal_to_string (stop_info));
3699 annotate_signal_string_end ();
3700 ui_out_text (uiout, ".\n");
3701 break;
3702 default:
3703 internal_error (__FILE__, __LINE__,
3704 _("print_stop_reason: unrecognized enum value"));
3705 break;
3706 }
3707 }
3708 \f
3709
3710 /* Here to return control to GDB when the inferior stops for real.
3711 Print appropriate messages, remove breakpoints, give terminal our modes.
3712
3713 STOP_PRINT_FRAME nonzero means print the executing frame
3714 (pc, function, args, file, line number and line text).
3715 BREAKPOINTS_FAILED nonzero means stop was due to error
3716 attempting to insert breakpoints. */
3717
3718 void
3719 normal_stop (void)
3720 {
3721 struct target_waitstatus last;
3722 ptid_t last_ptid;
3723
3724 get_last_target_status (&last_ptid, &last);
3725
3726 /* In non-stop mode, we don't want GDB to switch threads behind the
3727 user's back, to avoid races where the user is typing a command to
3728 apply to thread x, but GDB switches to thread y before the user
3729 finishes entering the command. */
3730
3731 /* As with the notification of thread events, we want to delay
3732 notifying the user that we've switched thread context until
3733 the inferior actually stops.
3734
3735 There's no point in saying anything if the inferior has exited.
3736 Note that SIGNALLED here means "exited with a signal", not
3737 "received a signal". */
3738 if (!non_stop
3739 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
3740 && target_has_execution
3741 && last.kind != TARGET_WAITKIND_SIGNALLED
3742 && last.kind != TARGET_WAITKIND_EXITED)
3743 {
3744 target_terminal_ours_for_output ();
3745 printf_filtered (_("[Switching to %s]\n"),
3746 target_pid_to_str (inferior_ptid));
3747 annotate_thread_changed ();
3748 previous_inferior_ptid = inferior_ptid;
3749 }
3750
3751 /* NOTE drow/2004-01-17: Is this still necessary? */
3752 /* Make sure that the current_frame's pc is correct. This
3753 is a correction for setting up the frame info before doing
3754 gdbarch_decr_pc_after_break */
3755 if (target_has_execution)
3756 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3757 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3758 frame code to check for this and sort out any resultant mess.
3759 gdbarch_decr_pc_after_break needs to just go away. */
3760 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3761
3762 if (!breakpoints_always_inserted_mode () && target_has_execution)
3763 {
3764 if (remove_breakpoints ())
3765 {
3766 target_terminal_ours_for_output ();
3767 printf_filtered (_("\
3768 Cannot remove breakpoints because program is no longer writable.\n\
3769 It might be running in another process.\n\
3770 Further execution is probably impossible.\n"));
3771 }
3772 }
3773
3774 /* If an auto-display called a function and that got a signal,
3775 delete that auto-display to avoid an infinite recursion. */
3776
3777 if (stopped_by_random_signal)
3778 disable_current_display ();
3779
3780 /* Don't print a message if in the middle of doing a "step n"
3781 operation for n > 1 */
3782 if (step_multi && stop_step)
3783 goto done;
3784
3785 target_terminal_ours ();
3786
3787 /* Set the current source location. This will also happen if we
3788 display the frame below, but the current SAL will be incorrect
3789 during a user hook-stop function. */
3790 if (target_has_stack && !stop_stack_dummy)
3791 set_current_sal_from_frame (get_current_frame (), 1);
3792
3793 /* Look up the hook_stop and run it (CLI internally handles problem
3794 of stop_command's pre-hook not existing). */
3795 if (stop_command)
3796 catch_errors (hook_stop_stub, stop_command,
3797 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3798
3799 if (!target_has_stack)
3800 {
3801
3802 goto done;
3803 }
3804
3805 if (last.kind == TARGET_WAITKIND_SIGNALLED
3806 || last.kind == TARGET_WAITKIND_EXITED)
3807 goto done;
3808
3809 /* Select innermost stack frame - i.e., current frame is frame 0,
3810 and current location is based on that.
3811 Don't do this on return from a stack dummy routine,
3812 or if the program has exited. */
3813
3814 if (!stop_stack_dummy)
3815 {
3816 select_frame (get_current_frame ());
3817
3818 /* Print current location without a level number, if
3819 we have changed functions or hit a breakpoint.
3820 Print source line if we have one.
3821 bpstat_print() contains the logic deciding in detail
3822 what to print, based on the event(s) that just occurred. */
3823
3824 /* If --batch-silent is enabled then there's no need to print the current
3825 source location, and to try risks causing an error message about
3826 missing source files. */
3827 if (stop_print_frame && !batch_silent)
3828 {
3829 int bpstat_ret;
3830 int source_flag;
3831 int do_frame_printing = 1;
3832 struct thread_info *tp = inferior_thread ();
3833
3834 bpstat_ret = bpstat_print (tp->stop_bpstat);
3835 switch (bpstat_ret)
3836 {
3837 case PRINT_UNKNOWN:
3838 /* If we had hit a shared library event breakpoint,
3839 bpstat_print would print out this message. If we hit
3840 an OS-level shared library event, do the same
3841 thing. */
3842 if (last.kind == TARGET_WAITKIND_LOADED)
3843 {
3844 printf_filtered (_("Stopped due to shared library event\n"));
3845 source_flag = SRC_LINE; /* something bogus */
3846 do_frame_printing = 0;
3847 break;
3848 }
3849
3850 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3851 (or should) carry around the function and does (or
3852 should) use that when doing a frame comparison. */
3853 if (stop_step
3854 && frame_id_eq (tp->step_frame_id,
3855 get_frame_id (get_current_frame ()))
3856 && step_start_function == find_pc_function (stop_pc))
3857 source_flag = SRC_LINE; /* finished step, just print source line */
3858 else
3859 source_flag = SRC_AND_LOC; /* print location and source line */
3860 break;
3861 case PRINT_SRC_AND_LOC:
3862 source_flag = SRC_AND_LOC; /* print location and source line */
3863 break;
3864 case PRINT_SRC_ONLY:
3865 source_flag = SRC_LINE;
3866 break;
3867 case PRINT_NOTHING:
3868 source_flag = SRC_LINE; /* something bogus */
3869 do_frame_printing = 0;
3870 break;
3871 default:
3872 internal_error (__FILE__, __LINE__, _("Unknown value."));
3873 }
3874
3875 if (ui_out_is_mi_like_p (uiout))
3876 {
3877
3878 ui_out_field_int (uiout, "thread-id",
3879 pid_to_thread_id (inferior_ptid));
3880 if (non_stop)
3881 {
3882 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
3883 (uiout, "stopped-threads");
3884 ui_out_field_int (uiout, NULL,
3885 pid_to_thread_id (inferior_ptid));
3886 do_cleanups (back_to);
3887 }
3888 else
3889 ui_out_field_string (uiout, "stopped-threads", "all");
3890 }
3891 /* The behavior of this routine with respect to the source
3892 flag is:
3893 SRC_LINE: Print only source line
3894 LOCATION: Print only location
3895 SRC_AND_LOC: Print location and source line */
3896 if (do_frame_printing)
3897 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3898
3899 /* Display the auto-display expressions. */
3900 do_displays ();
3901 }
3902 }
3903
3904 /* Save the function value return registers, if we care.
3905 We might be about to restore their previous contents. */
3906 if (inferior_thread ()->proceed_to_finish)
3907 {
3908 /* This should not be necessary. */
3909 if (stop_registers)
3910 regcache_xfree (stop_registers);
3911
3912 /* NB: The copy goes through to the target picking up the value of
3913 all the registers. */
3914 stop_registers = regcache_dup (get_current_regcache ());
3915 }
3916
3917 if (stop_stack_dummy)
3918 {
3919 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3920 ends with a setting of the current frame, so we can use that
3921 next. */
3922 frame_pop (get_current_frame ());
3923 /* Set stop_pc to what it was before we called the function.
3924 Can't rely on restore_inferior_status because that only gets
3925 called if we don't stop in the called function. */
3926 stop_pc = read_pc ();
3927 select_frame (get_current_frame ());
3928 }
3929
3930 done:
3931 annotate_stopped ();
3932 if (!suppress_stop_observer && !step_multi)
3933 {
3934 if (!ptid_equal (inferior_ptid, null_ptid))
3935 observer_notify_normal_stop (inferior_thread ()->stop_bpstat);
3936 else
3937 observer_notify_normal_stop (NULL);
3938 }
3939 if (target_has_execution
3940 && last.kind != TARGET_WAITKIND_SIGNALLED
3941 && last.kind != TARGET_WAITKIND_EXITED)
3942 {
3943 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3944 Delete any breakpoint that is to be deleted at the next stop. */
3945 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
3946
3947 if (!non_stop)
3948 set_running (pid_to_ptid (-1), 0);
3949 else
3950 set_running (inferior_ptid, 0);
3951 }
3952 }
3953
3954 static int
3955 hook_stop_stub (void *cmd)
3956 {
3957 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3958 return (0);
3959 }
3960 \f
3961 int
3962 signal_stop_state (int signo)
3963 {
3964 /* Always stop on signals if we're just gaining control of the
3965 program. */
3966 return signal_stop[signo] || stop_soon != NO_STOP_QUIETLY;
3967 }
3968
3969 int
3970 signal_print_state (int signo)
3971 {
3972 return signal_print[signo];
3973 }
3974
3975 int
3976 signal_pass_state (int signo)
3977 {
3978 return signal_program[signo];
3979 }
3980
3981 int
3982 signal_stop_update (int signo, int state)
3983 {
3984 int ret = signal_stop[signo];
3985 signal_stop[signo] = state;
3986 return ret;
3987 }
3988
3989 int
3990 signal_print_update (int signo, int state)
3991 {
3992 int ret = signal_print[signo];
3993 signal_print[signo] = state;
3994 return ret;
3995 }
3996
3997 int
3998 signal_pass_update (int signo, int state)
3999 {
4000 int ret = signal_program[signo];
4001 signal_program[signo] = state;
4002 return ret;
4003 }
4004
4005 static void
4006 sig_print_header (void)
4007 {
4008 printf_filtered (_("\
4009 Signal Stop\tPrint\tPass to program\tDescription\n"));
4010 }
4011
4012 static void
4013 sig_print_info (enum target_signal oursig)
4014 {
4015 char *name = target_signal_to_name (oursig);
4016 int name_padding = 13 - strlen (name);
4017
4018 if (name_padding <= 0)
4019 name_padding = 0;
4020
4021 printf_filtered ("%s", name);
4022 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4023 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4024 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4025 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4026 printf_filtered ("%s\n", target_signal_to_string (oursig));
4027 }
4028
4029 /* Specify how various signals in the inferior should be handled. */
4030
4031 static void
4032 handle_command (char *args, int from_tty)
4033 {
4034 char **argv;
4035 int digits, wordlen;
4036 int sigfirst, signum, siglast;
4037 enum target_signal oursig;
4038 int allsigs;
4039 int nsigs;
4040 unsigned char *sigs;
4041 struct cleanup *old_chain;
4042
4043 if (args == NULL)
4044 {
4045 error_no_arg (_("signal to handle"));
4046 }
4047
4048 /* Allocate and zero an array of flags for which signals to handle. */
4049
4050 nsigs = (int) TARGET_SIGNAL_LAST;
4051 sigs = (unsigned char *) alloca (nsigs);
4052 memset (sigs, 0, nsigs);
4053
4054 /* Break the command line up into args. */
4055
4056 argv = buildargv (args);
4057 if (argv == NULL)
4058 {
4059 nomem (0);
4060 }
4061 old_chain = make_cleanup_freeargv (argv);
4062
4063 /* Walk through the args, looking for signal oursigs, signal names, and
4064 actions. Signal numbers and signal names may be interspersed with
4065 actions, with the actions being performed for all signals cumulatively
4066 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4067
4068 while (*argv != NULL)
4069 {
4070 wordlen = strlen (*argv);
4071 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4072 {;
4073 }
4074 allsigs = 0;
4075 sigfirst = siglast = -1;
4076
4077 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4078 {
4079 /* Apply action to all signals except those used by the
4080 debugger. Silently skip those. */
4081 allsigs = 1;
4082 sigfirst = 0;
4083 siglast = nsigs - 1;
4084 }
4085 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4086 {
4087 SET_SIGS (nsigs, sigs, signal_stop);
4088 SET_SIGS (nsigs, sigs, signal_print);
4089 }
4090 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4091 {
4092 UNSET_SIGS (nsigs, sigs, signal_program);
4093 }
4094 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4095 {
4096 SET_SIGS (nsigs, sigs, signal_print);
4097 }
4098 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4099 {
4100 SET_SIGS (nsigs, sigs, signal_program);
4101 }
4102 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4103 {
4104 UNSET_SIGS (nsigs, sigs, signal_stop);
4105 }
4106 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4107 {
4108 SET_SIGS (nsigs, sigs, signal_program);
4109 }
4110 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4111 {
4112 UNSET_SIGS (nsigs, sigs, signal_print);
4113 UNSET_SIGS (nsigs, sigs, signal_stop);
4114 }
4115 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4116 {
4117 UNSET_SIGS (nsigs, sigs, signal_program);
4118 }
4119 else if (digits > 0)
4120 {
4121 /* It is numeric. The numeric signal refers to our own
4122 internal signal numbering from target.h, not to host/target
4123 signal number. This is a feature; users really should be
4124 using symbolic names anyway, and the common ones like
4125 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4126
4127 sigfirst = siglast = (int)
4128 target_signal_from_command (atoi (*argv));
4129 if ((*argv)[digits] == '-')
4130 {
4131 siglast = (int)
4132 target_signal_from_command (atoi ((*argv) + digits + 1));
4133 }
4134 if (sigfirst > siglast)
4135 {
4136 /* Bet he didn't figure we'd think of this case... */
4137 signum = sigfirst;
4138 sigfirst = siglast;
4139 siglast = signum;
4140 }
4141 }
4142 else
4143 {
4144 oursig = target_signal_from_name (*argv);
4145 if (oursig != TARGET_SIGNAL_UNKNOWN)
4146 {
4147 sigfirst = siglast = (int) oursig;
4148 }
4149 else
4150 {
4151 /* Not a number and not a recognized flag word => complain. */
4152 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4153 }
4154 }
4155
4156 /* If any signal numbers or symbol names were found, set flags for
4157 which signals to apply actions to. */
4158
4159 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4160 {
4161 switch ((enum target_signal) signum)
4162 {
4163 case TARGET_SIGNAL_TRAP:
4164 case TARGET_SIGNAL_INT:
4165 if (!allsigs && !sigs[signum])
4166 {
4167 if (query ("%s is used by the debugger.\n\
4168 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
4169 {
4170 sigs[signum] = 1;
4171 }
4172 else
4173 {
4174 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4175 gdb_flush (gdb_stdout);
4176 }
4177 }
4178 break;
4179 case TARGET_SIGNAL_0:
4180 case TARGET_SIGNAL_DEFAULT:
4181 case TARGET_SIGNAL_UNKNOWN:
4182 /* Make sure that "all" doesn't print these. */
4183 break;
4184 default:
4185 sigs[signum] = 1;
4186 break;
4187 }
4188 }
4189
4190 argv++;
4191 }
4192
4193 target_notice_signals (inferior_ptid);
4194
4195 if (from_tty)
4196 {
4197 /* Show the results. */
4198 sig_print_header ();
4199 for (signum = 0; signum < nsigs; signum++)
4200 {
4201 if (sigs[signum])
4202 {
4203 sig_print_info (signum);
4204 }
4205 }
4206 }
4207
4208 do_cleanups (old_chain);
4209 }
4210
4211 static void
4212 xdb_handle_command (char *args, int from_tty)
4213 {
4214 char **argv;
4215 struct cleanup *old_chain;
4216
4217 /* Break the command line up into args. */
4218
4219 argv = buildargv (args);
4220 if (argv == NULL)
4221 {
4222 nomem (0);
4223 }
4224 old_chain = make_cleanup_freeargv (argv);
4225 if (argv[1] != (char *) NULL)
4226 {
4227 char *argBuf;
4228 int bufLen;
4229
4230 bufLen = strlen (argv[0]) + 20;
4231 argBuf = (char *) xmalloc (bufLen);
4232 if (argBuf)
4233 {
4234 int validFlag = 1;
4235 enum target_signal oursig;
4236
4237 oursig = target_signal_from_name (argv[0]);
4238 memset (argBuf, 0, bufLen);
4239 if (strcmp (argv[1], "Q") == 0)
4240 sprintf (argBuf, "%s %s", argv[0], "noprint");
4241 else
4242 {
4243 if (strcmp (argv[1], "s") == 0)
4244 {
4245 if (!signal_stop[oursig])
4246 sprintf (argBuf, "%s %s", argv[0], "stop");
4247 else
4248 sprintf (argBuf, "%s %s", argv[0], "nostop");
4249 }
4250 else if (strcmp (argv[1], "i") == 0)
4251 {
4252 if (!signal_program[oursig])
4253 sprintf (argBuf, "%s %s", argv[0], "pass");
4254 else
4255 sprintf (argBuf, "%s %s", argv[0], "nopass");
4256 }
4257 else if (strcmp (argv[1], "r") == 0)
4258 {
4259 if (!signal_print[oursig])
4260 sprintf (argBuf, "%s %s", argv[0], "print");
4261 else
4262 sprintf (argBuf, "%s %s", argv[0], "noprint");
4263 }
4264 else
4265 validFlag = 0;
4266 }
4267 if (validFlag)
4268 handle_command (argBuf, from_tty);
4269 else
4270 printf_filtered (_("Invalid signal handling flag.\n"));
4271 if (argBuf)
4272 xfree (argBuf);
4273 }
4274 }
4275 do_cleanups (old_chain);
4276 }
4277
4278 /* Print current contents of the tables set by the handle command.
4279 It is possible we should just be printing signals actually used
4280 by the current target (but for things to work right when switching
4281 targets, all signals should be in the signal tables). */
4282
4283 static void
4284 signals_info (char *signum_exp, int from_tty)
4285 {
4286 enum target_signal oursig;
4287 sig_print_header ();
4288
4289 if (signum_exp)
4290 {
4291 /* First see if this is a symbol name. */
4292 oursig = target_signal_from_name (signum_exp);
4293 if (oursig == TARGET_SIGNAL_UNKNOWN)
4294 {
4295 /* No, try numeric. */
4296 oursig =
4297 target_signal_from_command (parse_and_eval_long (signum_exp));
4298 }
4299 sig_print_info (oursig);
4300 return;
4301 }
4302
4303 printf_filtered ("\n");
4304 /* These ugly casts brought to you by the native VAX compiler. */
4305 for (oursig = TARGET_SIGNAL_FIRST;
4306 (int) oursig < (int) TARGET_SIGNAL_LAST;
4307 oursig = (enum target_signal) ((int) oursig + 1))
4308 {
4309 QUIT;
4310
4311 if (oursig != TARGET_SIGNAL_UNKNOWN
4312 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4313 sig_print_info (oursig);
4314 }
4315
4316 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4317 }
4318 \f
4319 struct inferior_status
4320 {
4321 enum target_signal stop_signal;
4322 CORE_ADDR stop_pc;
4323 bpstat stop_bpstat;
4324 int stop_step;
4325 int stop_stack_dummy;
4326 int stopped_by_random_signal;
4327 int stepping_over_breakpoint;
4328 CORE_ADDR step_range_start;
4329 CORE_ADDR step_range_end;
4330 struct frame_id step_frame_id;
4331 enum step_over_calls_kind step_over_calls;
4332 CORE_ADDR step_resume_break_address;
4333 int stop_after_trap;
4334 int stop_soon;
4335
4336 /* These are here because if call_function_by_hand has written some
4337 registers and then decides to call error(), we better not have changed
4338 any registers. */
4339 struct regcache *registers;
4340
4341 /* A frame unique identifier. */
4342 struct frame_id selected_frame_id;
4343
4344 int breakpoint_proceeded;
4345 int restore_stack_info;
4346 int proceed_to_finish;
4347 };
4348
4349 void
4350 write_inferior_status_register (struct inferior_status *inf_status, int regno,
4351 LONGEST val)
4352 {
4353 int size = register_size (current_gdbarch, regno);
4354 void *buf = alloca (size);
4355 store_signed_integer (buf, size, val);
4356 regcache_raw_write (inf_status->registers, regno, buf);
4357 }
4358
4359 /* Save all of the information associated with the inferior<==>gdb
4360 connection. INF_STATUS is a pointer to a "struct inferior_status"
4361 (defined in inferior.h). */
4362
4363 struct inferior_status *
4364 save_inferior_status (int restore_stack_info)
4365 {
4366 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4367 struct thread_info *tp = inferior_thread ();
4368
4369 inf_status->stop_signal = stop_signal;
4370 inf_status->stop_pc = stop_pc;
4371 inf_status->stop_step = stop_step;
4372 inf_status->stop_stack_dummy = stop_stack_dummy;
4373 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4374 inf_status->stepping_over_breakpoint = tp->trap_expected;
4375 inf_status->step_range_start = tp->step_range_start;
4376 inf_status->step_range_end = tp->step_range_end;
4377 inf_status->step_frame_id = tp->step_frame_id;
4378 inf_status->step_over_calls = tp->step_over_calls;
4379 inf_status->stop_after_trap = stop_after_trap;
4380 inf_status->stop_soon = stop_soon;
4381 /* Save original bpstat chain here; replace it with copy of chain.
4382 If caller's caller is walking the chain, they'll be happier if we
4383 hand them back the original chain when restore_inferior_status is
4384 called. */
4385 inf_status->stop_bpstat = tp->stop_bpstat;
4386 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
4387 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4388 inf_status->restore_stack_info = restore_stack_info;
4389 inf_status->proceed_to_finish = tp->proceed_to_finish;
4390
4391 inf_status->registers = regcache_dup (get_current_regcache ());
4392
4393 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4394 return inf_status;
4395 }
4396
4397 static int
4398 restore_selected_frame (void *args)
4399 {
4400 struct frame_id *fid = (struct frame_id *) args;
4401 struct frame_info *frame;
4402
4403 frame = frame_find_by_id (*fid);
4404
4405 /* If inf_status->selected_frame_id is NULL, there was no previously
4406 selected frame. */
4407 if (frame == NULL)
4408 {
4409 warning (_("Unable to restore previously selected frame."));
4410 return 0;
4411 }
4412
4413 select_frame (frame);
4414
4415 return (1);
4416 }
4417
4418 void
4419 restore_inferior_status (struct inferior_status *inf_status)
4420 {
4421 struct thread_info *tp = inferior_thread ();
4422
4423 stop_signal = inf_status->stop_signal;
4424 stop_pc = inf_status->stop_pc;
4425 stop_step = inf_status->stop_step;
4426 stop_stack_dummy = inf_status->stop_stack_dummy;
4427 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4428 tp->trap_expected = inf_status->stepping_over_breakpoint;
4429 tp->step_range_start = inf_status->step_range_start;
4430 tp->step_range_end = inf_status->step_range_end;
4431 tp->step_frame_id = inf_status->step_frame_id;
4432 tp->step_over_calls = inf_status->step_over_calls;
4433 stop_after_trap = inf_status->stop_after_trap;
4434 stop_soon = inf_status->stop_soon;
4435 bpstat_clear (&tp->stop_bpstat);
4436 tp->stop_bpstat = inf_status->stop_bpstat;
4437 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4438 tp->proceed_to_finish = inf_status->proceed_to_finish;
4439
4440 /* The inferior can be gone if the user types "print exit(0)"
4441 (and perhaps other times). */
4442 if (target_has_execution)
4443 /* NB: The register write goes through to the target. */
4444 regcache_cpy (get_current_regcache (), inf_status->registers);
4445 regcache_xfree (inf_status->registers);
4446
4447 /* FIXME: If we are being called after stopping in a function which
4448 is called from gdb, we should not be trying to restore the
4449 selected frame; it just prints a spurious error message (The
4450 message is useful, however, in detecting bugs in gdb (like if gdb
4451 clobbers the stack)). In fact, should we be restoring the
4452 inferior status at all in that case? . */
4453
4454 if (target_has_stack && inf_status->restore_stack_info)
4455 {
4456 /* The point of catch_errors is that if the stack is clobbered,
4457 walking the stack might encounter a garbage pointer and
4458 error() trying to dereference it. */
4459 if (catch_errors
4460 (restore_selected_frame, &inf_status->selected_frame_id,
4461 "Unable to restore previously selected frame:\n",
4462 RETURN_MASK_ERROR) == 0)
4463 /* Error in restoring the selected frame. Select the innermost
4464 frame. */
4465 select_frame (get_current_frame ());
4466
4467 }
4468
4469 xfree (inf_status);
4470 }
4471
4472 static void
4473 do_restore_inferior_status_cleanup (void *sts)
4474 {
4475 restore_inferior_status (sts);
4476 }
4477
4478 struct cleanup *
4479 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4480 {
4481 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4482 }
4483
4484 void
4485 discard_inferior_status (struct inferior_status *inf_status)
4486 {
4487 /* See save_inferior_status for info on stop_bpstat. */
4488 bpstat_clear (&inf_status->stop_bpstat);
4489 regcache_xfree (inf_status->registers);
4490 xfree (inf_status);
4491 }
4492
4493 int
4494 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
4495 {
4496 struct target_waitstatus last;
4497 ptid_t last_ptid;
4498
4499 get_last_target_status (&last_ptid, &last);
4500
4501 if (last.kind != TARGET_WAITKIND_FORKED)
4502 return 0;
4503
4504 if (!ptid_equal (last_ptid, pid))
4505 return 0;
4506
4507 *child_pid = last.value.related_pid;
4508 return 1;
4509 }
4510
4511 int
4512 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
4513 {
4514 struct target_waitstatus last;
4515 ptid_t last_ptid;
4516
4517 get_last_target_status (&last_ptid, &last);
4518
4519 if (last.kind != TARGET_WAITKIND_VFORKED)
4520 return 0;
4521
4522 if (!ptid_equal (last_ptid, pid))
4523 return 0;
4524
4525 *child_pid = last.value.related_pid;
4526 return 1;
4527 }
4528
4529 int
4530 inferior_has_execd (ptid_t pid, char **execd_pathname)
4531 {
4532 struct target_waitstatus last;
4533 ptid_t last_ptid;
4534
4535 get_last_target_status (&last_ptid, &last);
4536
4537 if (last.kind != TARGET_WAITKIND_EXECD)
4538 return 0;
4539
4540 if (!ptid_equal (last_ptid, pid))
4541 return 0;
4542
4543 *execd_pathname = xstrdup (last.value.execd_pathname);
4544 return 1;
4545 }
4546
4547 /* Oft used ptids */
4548 ptid_t null_ptid;
4549 ptid_t minus_one_ptid;
4550
4551 /* Create a ptid given the necessary PID, LWP, and TID components. */
4552
4553 ptid_t
4554 ptid_build (int pid, long lwp, long tid)
4555 {
4556 ptid_t ptid;
4557
4558 ptid.pid = pid;
4559 ptid.lwp = lwp;
4560 ptid.tid = tid;
4561 return ptid;
4562 }
4563
4564 /* Create a ptid from just a pid. */
4565
4566 ptid_t
4567 pid_to_ptid (int pid)
4568 {
4569 return ptid_build (pid, 0, 0);
4570 }
4571
4572 /* Fetch the pid (process id) component from a ptid. */
4573
4574 int
4575 ptid_get_pid (ptid_t ptid)
4576 {
4577 return ptid.pid;
4578 }
4579
4580 /* Fetch the lwp (lightweight process) component from a ptid. */
4581
4582 long
4583 ptid_get_lwp (ptid_t ptid)
4584 {
4585 return ptid.lwp;
4586 }
4587
4588 /* Fetch the tid (thread id) component from a ptid. */
4589
4590 long
4591 ptid_get_tid (ptid_t ptid)
4592 {
4593 return ptid.tid;
4594 }
4595
4596 /* ptid_equal() is used to test equality of two ptids. */
4597
4598 int
4599 ptid_equal (ptid_t ptid1, ptid_t ptid2)
4600 {
4601 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
4602 && ptid1.tid == ptid2.tid);
4603 }
4604
4605 /* restore_inferior_ptid() will be used by the cleanup machinery
4606 to restore the inferior_ptid value saved in a call to
4607 save_inferior_ptid(). */
4608
4609 static void
4610 restore_inferior_ptid (void *arg)
4611 {
4612 ptid_t *saved_ptid_ptr = arg;
4613 inferior_ptid = *saved_ptid_ptr;
4614 xfree (arg);
4615 }
4616
4617 /* Save the value of inferior_ptid so that it may be restored by a
4618 later call to do_cleanups(). Returns the struct cleanup pointer
4619 needed for later doing the cleanup. */
4620
4621 struct cleanup *
4622 save_inferior_ptid (void)
4623 {
4624 ptid_t *saved_ptid_ptr;
4625
4626 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4627 *saved_ptid_ptr = inferior_ptid;
4628 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4629 }
4630 \f
4631
4632 int non_stop = 0;
4633 static int non_stop_1 = 0;
4634
4635 static void
4636 set_non_stop (char *args, int from_tty,
4637 struct cmd_list_element *c)
4638 {
4639 if (target_has_execution)
4640 {
4641 non_stop_1 = non_stop;
4642 error (_("Cannot change this setting while the inferior is running."));
4643 }
4644
4645 non_stop = non_stop_1;
4646 }
4647
4648 static void
4649 show_non_stop (struct ui_file *file, int from_tty,
4650 struct cmd_list_element *c, const char *value)
4651 {
4652 fprintf_filtered (file,
4653 _("Controlling the inferior in non-stop mode is %s.\n"),
4654 value);
4655 }
4656
4657
4658 void
4659 _initialize_infrun (void)
4660 {
4661 int i;
4662 int numsigs;
4663 struct cmd_list_element *c;
4664
4665 add_info ("signals", signals_info, _("\
4666 What debugger does when program gets various signals.\n\
4667 Specify a signal as argument to print info on that signal only."));
4668 add_info_alias ("handle", "signals", 0);
4669
4670 add_com ("handle", class_run, handle_command, _("\
4671 Specify how to handle a signal.\n\
4672 Args are signals and actions to apply to those signals.\n\
4673 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4674 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4675 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4676 The special arg \"all\" is recognized to mean all signals except those\n\
4677 used by the debugger, typically SIGTRAP and SIGINT.\n\
4678 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4679 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4680 Stop means reenter debugger if this signal happens (implies print).\n\
4681 Print means print a message if this signal happens.\n\
4682 Pass means let program see this signal; otherwise program doesn't know.\n\
4683 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4684 Pass and Stop may be combined."));
4685 if (xdb_commands)
4686 {
4687 add_com ("lz", class_info, signals_info, _("\
4688 What debugger does when program gets various signals.\n\
4689 Specify a signal as argument to print info on that signal only."));
4690 add_com ("z", class_run, xdb_handle_command, _("\
4691 Specify how to handle a signal.\n\
4692 Args are signals and actions to apply to those signals.\n\
4693 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4694 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4695 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4696 The special arg \"all\" is recognized to mean all signals except those\n\
4697 used by the debugger, typically SIGTRAP and SIGINT.\n\
4698 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4699 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4700 nopass), \"Q\" (noprint)\n\
4701 Stop means reenter debugger if this signal happens (implies print).\n\
4702 Print means print a message if this signal happens.\n\
4703 Pass means let program see this signal; otherwise program doesn't know.\n\
4704 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4705 Pass and Stop may be combined."));
4706 }
4707
4708 if (!dbx_commands)
4709 stop_command = add_cmd ("stop", class_obscure,
4710 not_just_help_class_command, _("\
4711 There is no `stop' command, but you can set a hook on `stop'.\n\
4712 This allows you to set a list of commands to be run each time execution\n\
4713 of the program stops."), &cmdlist);
4714
4715 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4716 Set inferior debugging."), _("\
4717 Show inferior debugging."), _("\
4718 When non-zero, inferior specific debugging is enabled."),
4719 NULL,
4720 show_debug_infrun,
4721 &setdebuglist, &showdebuglist);
4722
4723 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
4724 Set displaced stepping debugging."), _("\
4725 Show displaced stepping debugging."), _("\
4726 When non-zero, displaced stepping specific debugging is enabled."),
4727 NULL,
4728 show_debug_displaced,
4729 &setdebuglist, &showdebuglist);
4730
4731 add_setshow_boolean_cmd ("non-stop", no_class,
4732 &non_stop_1, _("\
4733 Set whether gdb controls the inferior in non-stop mode."), _("\
4734 Show whether gdb controls the inferior in non-stop mode."), _("\
4735 When debugging a multi-threaded program and this setting is\n\
4736 off (the default, also called all-stop mode), when one thread stops\n\
4737 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
4738 all other threads in the program while you interact with the thread of\n\
4739 interest. When you continue or step a thread, you can allow the other\n\
4740 threads to run, or have them remain stopped, but while you inspect any\n\
4741 thread's state, all threads stop.\n\
4742 \n\
4743 In non-stop mode, when one thread stops, other threads can continue\n\
4744 to run freely. You'll be able to step each thread independently,\n\
4745 leave it stopped or free to run as needed."),
4746 set_non_stop,
4747 show_non_stop,
4748 &setlist,
4749 &showlist);
4750
4751 numsigs = (int) TARGET_SIGNAL_LAST;
4752 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4753 signal_print = (unsigned char *)
4754 xmalloc (sizeof (signal_print[0]) * numsigs);
4755 signal_program = (unsigned char *)
4756 xmalloc (sizeof (signal_program[0]) * numsigs);
4757 for (i = 0; i < numsigs; i++)
4758 {
4759 signal_stop[i] = 1;
4760 signal_print[i] = 1;
4761 signal_program[i] = 1;
4762 }
4763
4764 /* Signals caused by debugger's own actions
4765 should not be given to the program afterwards. */
4766 signal_program[TARGET_SIGNAL_TRAP] = 0;
4767 signal_program[TARGET_SIGNAL_INT] = 0;
4768
4769 /* Signals that are not errors should not normally enter the debugger. */
4770 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4771 signal_print[TARGET_SIGNAL_ALRM] = 0;
4772 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4773 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4774 signal_stop[TARGET_SIGNAL_PROF] = 0;
4775 signal_print[TARGET_SIGNAL_PROF] = 0;
4776 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4777 signal_print[TARGET_SIGNAL_CHLD] = 0;
4778 signal_stop[TARGET_SIGNAL_IO] = 0;
4779 signal_print[TARGET_SIGNAL_IO] = 0;
4780 signal_stop[TARGET_SIGNAL_POLL] = 0;
4781 signal_print[TARGET_SIGNAL_POLL] = 0;
4782 signal_stop[TARGET_SIGNAL_URG] = 0;
4783 signal_print[TARGET_SIGNAL_URG] = 0;
4784 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4785 signal_print[TARGET_SIGNAL_WINCH] = 0;
4786
4787 /* These signals are used internally by user-level thread
4788 implementations. (See signal(5) on Solaris.) Like the above
4789 signals, a healthy program receives and handles them as part of
4790 its normal operation. */
4791 signal_stop[TARGET_SIGNAL_LWP] = 0;
4792 signal_print[TARGET_SIGNAL_LWP] = 0;
4793 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4794 signal_print[TARGET_SIGNAL_WAITING] = 0;
4795 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4796 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4797
4798 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4799 &stop_on_solib_events, _("\
4800 Set stopping for shared library events."), _("\
4801 Show stopping for shared library events."), _("\
4802 If nonzero, gdb will give control to the user when the dynamic linker\n\
4803 notifies gdb of shared library events. The most common event of interest\n\
4804 to the user would be loading/unloading of a new library."),
4805 NULL,
4806 show_stop_on_solib_events,
4807 &setlist, &showlist);
4808
4809 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4810 follow_fork_mode_kind_names,
4811 &follow_fork_mode_string, _("\
4812 Set debugger response to a program call of fork or vfork."), _("\
4813 Show debugger response to a program call of fork or vfork."), _("\
4814 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4815 parent - the original process is debugged after a fork\n\
4816 child - the new process is debugged after a fork\n\
4817 The unfollowed process will continue to run.\n\
4818 By default, the debugger will follow the parent process."),
4819 NULL,
4820 show_follow_fork_mode_string,
4821 &setlist, &showlist);
4822
4823 add_setshow_enum_cmd ("scheduler-locking", class_run,
4824 scheduler_enums, &scheduler_mode, _("\
4825 Set mode for locking scheduler during execution."), _("\
4826 Show mode for locking scheduler during execution."), _("\
4827 off == no locking (threads may preempt at any time)\n\
4828 on == full locking (no thread except the current thread may run)\n\
4829 step == scheduler locked during every single-step operation.\n\
4830 In this mode, no other thread may run during a step command.\n\
4831 Other threads may run while stepping over a function call ('next')."),
4832 set_schedlock_func, /* traps on target vector */
4833 show_scheduler_mode,
4834 &setlist, &showlist);
4835
4836 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4837 Set mode of the step operation."), _("\
4838 Show mode of the step operation."), _("\
4839 When set, doing a step over a function without debug line information\n\
4840 will stop at the first instruction of that function. Otherwise, the\n\
4841 function is skipped and the step command stops at a different source line."),
4842 NULL,
4843 show_step_stop_if_no_debug,
4844 &setlist, &showlist);
4845
4846 add_setshow_boolean_cmd ("can-use-displaced-stepping", class_maintenance,
4847 &can_use_displaced_stepping, _("\
4848 Set debugger's willingness to use displaced stepping."), _("\
4849 Show debugger's willingness to use displaced stepping."), _("\
4850 If zero, gdb will not use displaced stepping to step over\n\
4851 breakpoints, even if such is supported by the target."),
4852 NULL,
4853 show_can_use_displaced_stepping,
4854 &maintenance_set_cmdlist,
4855 &maintenance_show_cmdlist);
4856
4857 /* ptid initializations */
4858 null_ptid = ptid_build (0, 0, 0);
4859 minus_one_ptid = ptid_build (-1, 0, 0);
4860 inferior_ptid = null_ptid;
4861 target_last_wait_ptid = minus_one_ptid;
4862 displaced_step_ptid = null_ptid;
4863
4864 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
4865 }