* h8300-tdep.c (sim_load, sim_kill, sim_open, sim_set_args):
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior process.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1992, 1993
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Notes on the algorithm used in wait_for_inferior to determine if we
22 just did a subroutine call when stepping. We have the following
23 information at that point:
24
25 Current and previous (just before this step) pc.
26 Current and previous sp.
27 Current and previous start of current function.
28
29 If the starts of the functions don't match, then
30
31 a) We did a subroutine call.
32
33 In this case, the pc will be at the beginning of a function.
34
35 b) We did a subroutine return.
36
37 Otherwise.
38
39 c) We did a longjmp.
40
41 If we did a longjump, we were doing "nexti", since a next would
42 have attempted to skip over the assembly language routine in which
43 the longjmp is coded and would have simply been the equivalent of a
44 continue. I consider this ok behaivior. We'd like one of two
45 things to happen if we are doing a nexti through the longjmp()
46 routine: 1) It behaves as a stepi, or 2) It acts like a continue as
47 above. Given that this is a special case, and that anybody who
48 thinks that the concept of sub calls is meaningful in the context
49 of a longjmp, I'll take either one. Let's see what happens.
50
51 Acts like a subroutine return. I can handle that with no problem
52 at all.
53
54 -->So: If the current and previous beginnings of the current
55 function don't match, *and* the pc is at the start of a function,
56 we've done a subroutine call. If the pc is not at the start of a
57 function, we *didn't* do a subroutine call.
58
59 -->If the beginnings of the current and previous function do match,
60 either:
61
62 a) We just did a recursive call.
63
64 In this case, we would be at the very beginning of a
65 function and 1) it will have a prologue (don't jump to
66 before prologue, or 2) (we assume here that it doesn't have
67 a prologue) there will have been a change in the stack
68 pointer over the last instruction. (Ie. it's got to put
69 the saved pc somewhere. The stack is the usual place. In
70 a recursive call a register is only an option if there's a
71 prologue to do something with it. This is even true on
72 register window machines; the prologue sets up the new
73 window. It might not be true on a register window machine
74 where the call instruction moved the register window
75 itself. Hmmm. One would hope that the stack pointer would
76 also change. If it doesn't, somebody send me a note, and
77 I'll work out a more general theory.
78 bug-gdb@prep.ai.mit.edu). This is true (albeit slipperly
79 so) on all machines I'm aware of:
80
81 m68k: Call changes stack pointer. Regular jumps don't.
82
83 sparc: Recursive calls must have frames and therefor,
84 prologues.
85
86 vax: All calls have frames and hence change the
87 stack pointer.
88
89 b) We did a return from a recursive call. I don't see that we
90 have either the ability or the need to distinguish this
91 from an ordinary jump. The stack frame will be printed
92 when and if the frame pointer changes; if we are in a
93 function without a frame pointer, it's the users own
94 lookout.
95
96 c) We did a jump within a function. We assume that this is
97 true if we didn't do a recursive call.
98
99 d) We are in no-man's land ("I see no symbols here"). We
100 don't worry about this; it will make calls look like simple
101 jumps (and the stack frames will be printed when the frame
102 pointer moves), which is a reasonably non-violent response.
103 */
104
105 #include "defs.h"
106 #include <string.h>
107 #include <ctype.h>
108 #include "symtab.h"
109 #include "frame.h"
110 #include "inferior.h"
111 #include "breakpoint.h"
112 #include "wait.h"
113 #include "gdbcore.h"
114 #include "gdbcmd.h"
115 #include "target.h"
116
117 #include <signal.h>
118
119 /* unistd.h is needed to #define X_OK */
120 #ifdef USG
121 #include <unistd.h>
122 #else
123 #include <sys/file.h>
124 #endif
125
126 /* Prototypes for local functions */
127
128 static void
129 signals_info PARAMS ((char *, int));
130
131 static void
132 handle_command PARAMS ((char *, int));
133
134 static void
135 sig_print_info PARAMS ((int));
136
137 static void
138 sig_print_header PARAMS ((void));
139
140 static void
141 resume_cleanups PARAMS ((int));
142
143 static int
144 hook_stop_stub PARAMS ((char *));
145
146 /* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
147 program. It needs to examine the jmp_buf argument and extract the PC
148 from it. The return value is non-zero on success, zero otherwise. */
149 #ifndef GET_LONGJMP_TARGET
150 #define GET_LONGJMP_TARGET(PC_ADDR) 0
151 #endif
152
153
154 /* Some machines have trampoline code that sits between function callers
155 and the actual functions themselves. If this machine doesn't have
156 such things, disable their processing. */
157 #ifndef SKIP_TRAMPOLINE_CODE
158 #define SKIP_TRAMPOLINE_CODE(pc) 0
159 #endif
160
161 /* For SVR4 shared libraries, each call goes through a small piece of
162 trampoline code in the ".init" section. IN_SOLIB_TRAMPOLINE evaluates
163 to nonzero if we are current stopped in one of these. */
164 #ifndef IN_SOLIB_TRAMPOLINE
165 #define IN_SOLIB_TRAMPOLINE(pc,name) 0
166 #endif
167
168 /* On some systems, the PC may be left pointing at an instruction that won't
169 actually be executed. This is usually indicated by a bit in the PSW. If
170 we find ourselves in such a state, then we step the target beyond the
171 nullified instruction before returning control to the user so as to avoid
172 confusion. */
173
174 #ifndef INSTRUCTION_NULLIFIED
175 #define INSTRUCTION_NULLIFIED 0
176 #endif
177
178 /* Tables of how to react to signals; the user sets them. */
179
180 static unsigned char *signal_stop;
181 static unsigned char *signal_print;
182 static unsigned char *signal_program;
183
184 #define SET_SIGS(nsigs,sigs,flags) \
185 do { \
186 int signum = (nsigs); \
187 while (signum-- > 0) \
188 if ((sigs)[signum]) \
189 (flags)[signum] = 1; \
190 } while (0)
191
192 #define UNSET_SIGS(nsigs,sigs,flags) \
193 do { \
194 int signum = (nsigs); \
195 while (signum-- > 0) \
196 if ((sigs)[signum]) \
197 (flags)[signum] = 0; \
198 } while (0)
199
200
201 /* Command list pointer for the "stop" placeholder. */
202
203 static struct cmd_list_element *stop_command;
204
205 /* Nonzero if breakpoints are now inserted in the inferior. */
206
207 static int breakpoints_inserted;
208
209 /* Function inferior was in as of last step command. */
210
211 static struct symbol *step_start_function;
212
213 /* Nonzero if we are expecting a trace trap and should proceed from it. */
214
215 static int trap_expected;
216
217 /* Nonzero if the next time we try to continue the inferior, it will
218 step one instruction and generate a spurious trace trap.
219 This is used to compensate for a bug in HP-UX. */
220
221 static int trap_expected_after_continue;
222
223 /* Nonzero means expecting a trace trap
224 and should stop the inferior and return silently when it happens. */
225
226 int stop_after_trap;
227
228 /* Nonzero means expecting a trap and caller will handle it themselves.
229 It is used after attach, due to attaching to a process;
230 when running in the shell before the child program has been exec'd;
231 and when running some kinds of remote stuff (FIXME?). */
232
233 int stop_soon_quietly;
234
235 /* Nonzero if proceed is being used for a "finish" command or a similar
236 situation when stop_registers should be saved. */
237
238 int proceed_to_finish;
239
240 /* Save register contents here when about to pop a stack dummy frame,
241 if-and-only-if proceed_to_finish is set.
242 Thus this contains the return value from the called function (assuming
243 values are returned in a register). */
244
245 char stop_registers[REGISTER_BYTES];
246
247 /* Nonzero if program stopped due to error trying to insert breakpoints. */
248
249 static int breakpoints_failed;
250
251 /* Nonzero after stop if current stack frame should be printed. */
252
253 static int stop_print_frame;
254
255 #ifdef NO_SINGLE_STEP
256 extern int one_stepped; /* From machine dependent code */
257 extern void single_step (); /* Same. */
258 #endif /* NO_SINGLE_STEP */
259
260 \f
261 /* Things to clean up if we QUIT out of resume (). */
262 /* ARGSUSED */
263 static void
264 resume_cleanups (arg)
265 int arg;
266 {
267 normal_stop ();
268 }
269
270 /* Resume the inferior, but allow a QUIT. This is useful if the user
271 wants to interrupt some lengthy single-stepping operation
272 (for child processes, the SIGINT goes to the inferior, and so
273 we get a SIGINT random_signal, but for remote debugging and perhaps
274 other targets, that's not true).
275
276 STEP nonzero if we should step (zero to continue instead).
277 SIG is the signal to give the inferior (zero for none). */
278 void
279 resume (step, sig)
280 int step;
281 int sig;
282 {
283 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
284 QUIT;
285
286 #ifdef CANNOT_STEP_BREAKPOINT
287 /* Most targets can step a breakpoint instruction, thus executing it
288 normally. But if this one cannot, just continue and we will hit
289 it anyway. */
290 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
291 step = 0;
292 #endif
293
294 #ifdef NO_SINGLE_STEP
295 if (step) {
296 single_step(sig); /* Do it the hard way, w/temp breakpoints */
297 step = 0; /* ...and don't ask hardware to do it. */
298 }
299 #endif
300
301 /* Handle any optimized stores to the inferior NOW... */
302 #ifdef DO_DEFERRED_STORES
303 DO_DEFERRED_STORES;
304 #endif
305
306 /* Install inferior's terminal modes. */
307 target_terminal_inferior ();
308
309 target_resume (inferior_pid, step, sig);
310 discard_cleanups (old_cleanups);
311 }
312
313 \f
314 /* Clear out all variables saying what to do when inferior is continued.
315 First do this, then set the ones you want, then call `proceed'. */
316
317 void
318 clear_proceed_status ()
319 {
320 trap_expected = 0;
321 step_range_start = 0;
322 step_range_end = 0;
323 step_frame_address = 0;
324 step_over_calls = -1;
325 stop_after_trap = 0;
326 stop_soon_quietly = 0;
327 proceed_to_finish = 0;
328 breakpoint_proceeded = 1; /* We're about to proceed... */
329
330 /* Discard any remaining commands or status from previous stop. */
331 bpstat_clear (&stop_bpstat);
332 }
333
334 /* Basic routine for continuing the program in various fashions.
335
336 ADDR is the address to resume at, or -1 for resume where stopped.
337 SIGGNAL is the signal to give it, or 0 for none,
338 or -1 for act according to how it stopped.
339 STEP is nonzero if should trap after one instruction.
340 -1 means return after that and print nothing.
341 You should probably set various step_... variables
342 before calling here, if you are stepping.
343
344 You should call clear_proceed_status before calling proceed. */
345
346 void
347 proceed (addr, siggnal, step)
348 CORE_ADDR addr;
349 int siggnal;
350 int step;
351 {
352 int oneproc = 0;
353
354 if (step > 0)
355 step_start_function = find_pc_function (read_pc ());
356 if (step < 0)
357 stop_after_trap = 1;
358
359 if (addr == (CORE_ADDR)-1)
360 {
361 /* If there is a breakpoint at the address we will resume at,
362 step one instruction before inserting breakpoints
363 so that we do not stop right away. */
364
365 if (breakpoint_here_p (read_pc ()))
366 oneproc = 1;
367 }
368 else
369 write_pc (addr);
370
371 if (trap_expected_after_continue)
372 {
373 /* If (step == 0), a trap will be automatically generated after
374 the first instruction is executed. Force step one
375 instruction to clear this condition. This should not occur
376 if step is nonzero, but it is harmless in that case. */
377 oneproc = 1;
378 trap_expected_after_continue = 0;
379 }
380
381 if (oneproc)
382 /* We will get a trace trap after one instruction.
383 Continue it automatically and insert breakpoints then. */
384 trap_expected = 1;
385 else
386 {
387 int temp = insert_breakpoints ();
388 if (temp)
389 {
390 print_sys_errmsg ("ptrace", temp);
391 error ("Cannot insert breakpoints.\n\
392 The same program may be running in another process.");
393 }
394 breakpoints_inserted = 1;
395 }
396
397 if (siggnal >= 0)
398 stop_signal = siggnal;
399 /* If this signal should not be seen by program,
400 give it zero. Used for debugging signals. */
401 else if (stop_signal < NSIG && !signal_program[stop_signal])
402 stop_signal= 0;
403
404 /* Resume inferior. */
405 resume (oneproc || step || bpstat_should_step (), stop_signal);
406
407 /* Wait for it to stop (if not standalone)
408 and in any case decode why it stopped, and act accordingly. */
409
410 wait_for_inferior ();
411 normal_stop ();
412 }
413
414 /* Record the pc and sp of the program the last time it stopped.
415 These are just used internally by wait_for_inferior, but need
416 to be preserved over calls to it and cleared when the inferior
417 is started. */
418 static CORE_ADDR prev_pc;
419 static CORE_ADDR prev_sp;
420 static CORE_ADDR prev_func_start;
421 static char *prev_func_name;
422
423 \f
424 /* Start remote-debugging of a machine over a serial link. */
425
426 void
427 start_remote ()
428 {
429 init_wait_for_inferior ();
430 clear_proceed_status ();
431 stop_soon_quietly = 1;
432 trap_expected = 0;
433 wait_for_inferior ();
434 normal_stop ();
435 }
436
437 /* Initialize static vars when a new inferior begins. */
438
439 void
440 init_wait_for_inferior ()
441 {
442 /* These are meaningless until the first time through wait_for_inferior. */
443 prev_pc = 0;
444 prev_sp = 0;
445 prev_func_start = 0;
446 prev_func_name = NULL;
447
448 trap_expected_after_continue = 0;
449 breakpoints_inserted = 0;
450 breakpoint_init_inferior ();
451 stop_signal = 0; /* Don't confuse first call to proceed(). */
452 }
453
454 static void
455 delete_breakpoint_current_contents (arg)
456 PTR arg;
457 {
458 struct breakpoint **breakpointp = (struct breakpoint **)arg;
459 if (*breakpointp != NULL)
460 delete_breakpoint (*breakpointp);
461 }
462 \f
463 /* Wait for control to return from inferior to debugger.
464 If inferior gets a signal, we may decide to start it up again
465 instead of returning. That is why there is a loop in this function.
466 When this function actually returns it means the inferior
467 should be left stopped and GDB should read more commands. */
468
469 void
470 wait_for_inferior ()
471 {
472 struct cleanup *old_cleanups;
473 WAITTYPE w;
474 int another_trap;
475 int random_signal;
476 CORE_ADDR stop_sp = 0;
477 CORE_ADDR stop_func_start;
478 CORE_ADDR stop_func_end;
479 char *stop_func_name;
480 CORE_ADDR prologue_pc = 0, tmp;
481 struct symtab_and_line sal;
482 int remove_breakpoints_on_following_step = 0;
483 int current_line;
484 int handling_longjmp = 0; /* FIXME */
485 struct breakpoint *step_resume_breakpoint = NULL;
486 int pid;
487
488 old_cleanups = make_cleanup (delete_breakpoint_current_contents,
489 &step_resume_breakpoint);
490 sal = find_pc_line(prev_pc, 0);
491 current_line = sal.line;
492
493 /* Are we stepping? */
494 #define CURRENTLY_STEPPING() ((step_resume_breakpoint == NULL \
495 && !handling_longjmp \
496 && (step_range_end \
497 || trap_expected)) \
498 || bpstat_should_step ())
499
500 while (1)
501 {
502 /* Clean up saved state that will become invalid. */
503 flush_cached_frames ();
504 registers_changed ();
505
506 pid = target_wait (&w);
507
508 #ifdef SIGTRAP_STOP_AFTER_LOAD
509
510 /* Somebody called load(2), and it gave us a "trap signal after load".
511 Ignore it gracefully. */
512
513 SIGTRAP_STOP_AFTER_LOAD (w);
514 #endif
515
516 /* See if the process still exists; clean up if it doesn't. */
517 if (WIFEXITED (w))
518 {
519 target_terminal_ours (); /* Must do this before mourn anyway */
520 if (WEXITSTATUS (w))
521 printf_filtered ("\nProgram exited with code 0%o.\n",
522 (unsigned int)WEXITSTATUS (w));
523 else
524 if (!batch_mode())
525 printf_filtered ("\nProgram exited normally.\n");
526 fflush (stdout);
527 target_mourn_inferior ();
528 #ifdef NO_SINGLE_STEP
529 one_stepped = 0;
530 #endif
531 stop_print_frame = 0;
532 break;
533 }
534 else if (!WIFSTOPPED (w))
535 {
536 char *signame;
537
538 stop_print_frame = 0;
539 stop_signal = WTERMSIG (w);
540 target_terminal_ours (); /* Must do this before mourn anyway */
541 target_kill (); /* kill mourns as well */
542 #ifdef PRINT_RANDOM_SIGNAL
543 printf_filtered ("\nProgram terminated: ");
544 PRINT_RANDOM_SIGNAL (stop_signal);
545 #else
546 printf_filtered ("\nProgram terminated with signal ");
547 signame = strsigno (stop_signal);
548 if (signame == NULL)
549 printf_filtered ("%d", stop_signal);
550 else
551 /* Do we need to print the number in addition to the name? */
552 printf_filtered ("%s (%d)", signame, stop_signal);
553 printf_filtered (", %s\n", safe_strsignal (stop_signal));
554 #endif
555 printf_filtered ("The program no longer exists.\n");
556 fflush (stdout);
557 #ifdef NO_SINGLE_STEP
558 one_stepped = 0;
559 #endif
560 break;
561 }
562
563 if (pid != inferior_pid)
564 {
565 int printed = 0;
566
567 if (!in_thread_list (pid))
568 {
569 fprintf (stderr, "[New %s]\n", target_pid_to_str (pid));
570 add_thread (pid);
571
572 target_resume (pid, 0, 0);
573 continue;
574 }
575 else
576 {
577 stop_signal = WSTOPSIG (w);
578
579 if (stop_signal >= NSIG || signal_print[stop_signal])
580 {
581 char *signame;
582
583 printed = 1;
584 target_terminal_ours_for_output ();
585 printf_filtered ("\nProgram received signal ");
586 signame = strsigno (stop_signal);
587 if (signame == NULL)
588 printf_filtered ("%d", stop_signal);
589 else
590 printf_filtered ("%s (%d)", signame, stop_signal);
591 printf_filtered (", %s\n", safe_strsignal (stop_signal));
592
593 fflush (stdout);
594 }
595
596 if (stop_signal >= NSIG || signal_stop[stop_signal])
597 {
598 inferior_pid = pid;
599 printf_filtered ("[Switching to %s]\n", target_pid_to_str (pid));
600
601 flush_cached_frames ();
602 registers_changed ();
603 trap_expected = 0;
604 if (step_resume_breakpoint)
605 {
606 delete_breakpoint (step_resume_breakpoint);
607 step_resume_breakpoint = NULL;
608 }
609 prev_pc = 0;
610 prev_sp = 0;
611 prev_func_name = NULL;
612 step_range_start = 0;
613 step_range_end = 0;
614 step_frame_address = 0;
615 handling_longjmp = 0;
616 another_trap = 0;
617 }
618 else
619 {
620 if (printed)
621 target_terminal_inferior ();
622
623 /* Clear the signal if it should not be passed. */
624 if (signal_program[stop_signal] == 0)
625 stop_signal = 0;
626
627 target_resume (pid, 0, stop_signal);
628 continue;
629 }
630 }
631 }
632
633 #ifdef NO_SINGLE_STEP
634 if (one_stepped)
635 single_step (0); /* This actually cleans up the ss */
636 #endif /* NO_SINGLE_STEP */
637
638 /* If PC is pointing at a nullified instruction, then step beyond it so that
639 the user won't be confused when GDB appears to be ready to execute it. */
640
641 if (INSTRUCTION_NULLIFIED)
642 {
643 resume (1, 0);
644 continue;
645 }
646
647 stop_pc = read_pc ();
648 set_current_frame ( create_new_frame (read_fp (), stop_pc));
649
650 stop_frame_address = FRAME_FP (get_current_frame ());
651 stop_sp = read_sp ();
652 stop_func_start = 0;
653 stop_func_end = 0;
654 stop_func_name = 0;
655 /* Don't care about return value; stop_func_start and stop_func_name
656 will both be 0 if it doesn't work. */
657 find_pc_partial_function (stop_pc, &stop_func_name, &stop_func_start,
658 &stop_func_end);
659 stop_func_start += FUNCTION_START_OFFSET;
660 another_trap = 0;
661 bpstat_clear (&stop_bpstat);
662 stop_step = 0;
663 stop_stack_dummy = 0;
664 stop_print_frame = 1;
665 random_signal = 0;
666 stopped_by_random_signal = 0;
667 breakpoints_failed = 0;
668
669 /* Look at the cause of the stop, and decide what to do.
670 The alternatives are:
671 1) break; to really stop and return to the debugger,
672 2) drop through to start up again
673 (set another_trap to 1 to single step once)
674 3) set random_signal to 1, and the decision between 1 and 2
675 will be made according to the signal handling tables. */
676
677 stop_signal = WSTOPSIG (w);
678
679 /* First, distinguish signals caused by the debugger from signals
680 that have to do with the program's own actions.
681 Note that breakpoint insns may cause SIGTRAP or SIGILL
682 or SIGEMT, depending on the operating system version.
683 Here we detect when a SIGILL or SIGEMT is really a breakpoint
684 and change it to SIGTRAP. */
685
686 if (stop_signal == SIGTRAP
687 || (breakpoints_inserted &&
688 (stop_signal == SIGILL
689 #ifdef SIGEMT
690 || stop_signal == SIGEMT
691 #endif
692 ))
693 || stop_soon_quietly)
694 {
695 if (stop_signal == SIGTRAP && stop_after_trap)
696 {
697 stop_print_frame = 0;
698 break;
699 }
700 if (stop_soon_quietly)
701 break;
702
703 /* Don't even think about breakpoints
704 if just proceeded over a breakpoint.
705
706 However, if we are trying to proceed over a breakpoint
707 and end up in sigtramp, then step_resume_breakpoint
708 will be set and we should check whether we've hit the
709 step breakpoint. */
710 if (stop_signal == SIGTRAP && trap_expected
711 && step_resume_breakpoint == NULL)
712 bpstat_clear (&stop_bpstat);
713 else
714 {
715 /* See if there is a breakpoint at the current PC. */
716 stop_bpstat = bpstat_stop_status
717 (&stop_pc, stop_frame_address,
718 #if DECR_PC_AFTER_BREAK
719 /* Notice the case of stepping through a jump
720 that lands just after a breakpoint.
721 Don't confuse that with hitting the breakpoint.
722 What we check for is that 1) stepping is going on
723 and 2) the pc before the last insn does not match
724 the address of the breakpoint before the current pc. */
725 (prev_pc != stop_pc - DECR_PC_AFTER_BREAK
726 && CURRENTLY_STEPPING ())
727 #else /* DECR_PC_AFTER_BREAK zero */
728 0
729 #endif /* DECR_PC_AFTER_BREAK zero */
730 );
731 /* Following in case break condition called a
732 function. */
733 stop_print_frame = 1;
734 }
735
736 if (stop_signal == SIGTRAP)
737 random_signal
738 = !(bpstat_explains_signal (stop_bpstat)
739 || trap_expected
740 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
741 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
742 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
743 || (step_range_end && step_resume_breakpoint == NULL));
744 else
745 {
746 random_signal
747 = !(bpstat_explains_signal (stop_bpstat)
748 /* End of a stack dummy. Some systems (e.g. Sony
749 news) give another signal besides SIGTRAP,
750 so check here as well as above. */
751 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
752 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
753 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
754 );
755 if (!random_signal)
756 stop_signal = SIGTRAP;
757 }
758 }
759 else
760 random_signal = 1;
761
762 /* For the program's own signals, act according to
763 the signal handling tables. */
764
765 if (random_signal)
766 {
767 /* Signal not for debugging purposes. */
768 int printed = 0;
769
770 stopped_by_random_signal = 1;
771
772 if (stop_signal >= NSIG
773 || signal_print[stop_signal])
774 {
775 char *signame;
776 printed = 1;
777 target_terminal_ours_for_output ();
778 #ifdef PRINT_RANDOM_SIGNAL
779 PRINT_RANDOM_SIGNAL (stop_signal);
780 #else
781 printf_filtered ("\nProgram received signal ");
782 signame = strsigno (stop_signal);
783 if (signame == NULL)
784 printf_filtered ("%d", stop_signal);
785 else
786 /* Do we need to print the number as well as the name? */
787 printf_filtered ("%s (%d)", signame, stop_signal);
788 printf_filtered (", %s\n", safe_strsignal (stop_signal));
789 #endif /* PRINT_RANDOM_SIGNAL */
790 fflush (stdout);
791 }
792 if (stop_signal >= NSIG
793 || signal_stop[stop_signal])
794 break;
795 /* If not going to stop, give terminal back
796 if we took it away. */
797 else if (printed)
798 target_terminal_inferior ();
799
800 /* Clear the signal if it should not be passed. */
801 if (signal_program[stop_signal] == 0)
802 stop_signal = 0;
803
804 /* I'm not sure whether this needs to be check_sigtramp2 or
805 whether it could/should be keep_going. */
806 goto check_sigtramp2;
807 }
808
809 /* Handle cases caused by hitting a breakpoint. */
810 {
811 CORE_ADDR jmp_buf_pc;
812 struct bpstat_what what;
813
814 what = bpstat_what (stop_bpstat);
815
816 if (what.call_dummy)
817 {
818 stop_stack_dummy = 1;
819 #ifdef HP_OS_BUG
820 trap_expected_after_continue = 1;
821 #endif
822 }
823
824 switch (what.main_action)
825 {
826 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
827 /* If we hit the breakpoint at longjmp, disable it for the
828 duration of this command. Then, install a temporary
829 breakpoint at the target of the jmp_buf. */
830 disable_longjmp_breakpoint();
831 remove_breakpoints ();
832 breakpoints_inserted = 0;
833 if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going;
834
835 /* Need to blow away step-resume breakpoint, as it
836 interferes with us */
837 if (step_resume_breakpoint != NULL)
838 {
839 delete_breakpoint (step_resume_breakpoint);
840 step_resume_breakpoint = NULL;
841 what.step_resume = 0;
842 }
843
844 #if 0
845 /* FIXME - Need to implement nested temporary breakpoints */
846 if (step_over_calls > 0)
847 set_longjmp_resume_breakpoint(jmp_buf_pc,
848 get_current_frame());
849 else
850 #endif /* 0 */
851 set_longjmp_resume_breakpoint(jmp_buf_pc, NULL);
852 handling_longjmp = 1; /* FIXME */
853 goto keep_going;
854
855 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
856 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
857 remove_breakpoints ();
858 breakpoints_inserted = 0;
859 #if 0
860 /* FIXME - Need to implement nested temporary breakpoints */
861 if (step_over_calls
862 && (stop_frame_address
863 INNER_THAN step_frame_address))
864 {
865 another_trap = 1;
866 goto keep_going;
867 }
868 #endif /* 0 */
869 disable_longjmp_breakpoint();
870 handling_longjmp = 0; /* FIXME */
871 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
872 break;
873 /* else fallthrough */
874
875 case BPSTAT_WHAT_SINGLE:
876 if (breakpoints_inserted)
877 remove_breakpoints ();
878 breakpoints_inserted = 0;
879 another_trap = 1;
880 /* Still need to check other stuff, at least the case
881 where we are stepping and step out of the right range. */
882 break;
883
884 case BPSTAT_WHAT_STOP_NOISY:
885 stop_print_frame = 1;
886 /* We are about to nuke the step_resume_breakpoint via the
887 cleanup chain, so no need to worry about it here. */
888 goto stop_stepping;
889
890 case BPSTAT_WHAT_STOP_SILENT:
891 stop_print_frame = 0;
892 /* We are about to nuke the step_resume_breakpoint via the
893 cleanup chain, so no need to worry about it here. */
894 goto stop_stepping;
895
896 case BPSTAT_WHAT_KEEP_CHECKING:
897 break;
898 }
899
900 if (what.step_resume)
901 {
902 delete_breakpoint (step_resume_breakpoint);
903 step_resume_breakpoint = NULL;
904
905 /* If were waiting for a trap, hitting the step_resume_break
906 doesn't count as getting it. */
907 if (trap_expected)
908 another_trap = 1;
909 }
910 }
911
912 /* We come here if we hit a breakpoint but should not
913 stop for it. Possibly we also were stepping
914 and should stop for that. So fall through and
915 test for stepping. But, if not stepping,
916 do not stop. */
917
918 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
919 /* This is the old way of detecting the end of the stack dummy.
920 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
921 handled above. As soon as we can test it on all of them, all
922 architectures should define it. */
923
924 /* If this is the breakpoint at the end of a stack dummy,
925 just stop silently, unless the user was doing an si/ni, in which
926 case she'd better know what she's doing. */
927
928 if (PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
929 && !step_range_end)
930 {
931 stop_print_frame = 0;
932 stop_stack_dummy = 1;
933 #ifdef HP_OS_BUG
934 trap_expected_after_continue = 1;
935 #endif
936 break;
937 }
938 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
939
940 if (step_resume_breakpoint)
941 /* Having a step-resume breakpoint overrides anything
942 else having to do with stepping commands until
943 that breakpoint is reached. */
944 /* I suspect this could/should be keep_going, because if the
945 check_sigtramp2 check succeeds, then it will put in another
946 step_resume_breakpoint, and we aren't (yet) prepared to nest
947 them. */
948 goto check_sigtramp2;
949
950 if (step_range_end == 0)
951 /* Likewise if we aren't even stepping. */
952 /* I'm not sure whether this needs to be check_sigtramp2 or
953 whether it could/should be keep_going. */
954 goto check_sigtramp2;
955
956 /* If stepping through a line, keep going if still within it. */
957 if (stop_pc >= step_range_start
958 && stop_pc < step_range_end
959 /* The step range might include the start of the
960 function, so if we are at the start of the
961 step range and either the stack or frame pointers
962 just changed, we've stepped outside */
963 && !(stop_pc == step_range_start
964 && stop_frame_address
965 && (stop_sp INNER_THAN prev_sp
966 || stop_frame_address != step_frame_address)))
967 {
968 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
969 So definately need to check for sigtramp here. */
970 goto check_sigtramp2;
971 }
972
973 /* We stepped out of the stepping range. See if that was due
974 to a subroutine call that we should proceed to the end of. */
975
976 /* Did we just take a signal? */
977 if (IN_SIGTRAMP (stop_pc, stop_func_name)
978 && !IN_SIGTRAMP (prev_pc, prev_func_name))
979 {
980 /* This code is needed at least in the following case:
981 The user types "next" and then a signal arrives (before
982 the "next" is done). */
983 /* We've just taken a signal; go until we are back to
984 the point where we took it and one more. */
985 {
986 struct symtab_and_line sr_sal;
987
988 sr_sal.pc = prev_pc;
989 sr_sal.symtab = NULL;
990 sr_sal.line = 0;
991 step_resume_breakpoint =
992 set_momentary_breakpoint (sr_sal, get_current_frame (),
993 bp_step_resume);
994 if (breakpoints_inserted)
995 insert_breakpoints ();
996 }
997
998 /* If this is stepi or nexti, make sure that the stepping range
999 gets us past that instruction. */
1000 if (step_range_end == 1)
1001 /* FIXME: Does this run afoul of the code below which, if
1002 we step into the middle of a line, resets the stepping
1003 range? */
1004 step_range_end = (step_range_start = prev_pc) + 1;
1005
1006 remove_breakpoints_on_following_step = 1;
1007 goto keep_going;
1008 }
1009
1010 if (stop_func_start)
1011 {
1012 /* Do this after the IN_SIGTRAMP check; it might give
1013 an error. */
1014 prologue_pc = stop_func_start;
1015 SKIP_PROLOGUE (prologue_pc);
1016 }
1017
1018 /* ==> See comments at top of file on this algorithm. <==*/
1019
1020 if ((stop_pc < stop_func_start
1021 || stop_pc >= stop_func_end
1022 || stop_pc == stop_func_start
1023 || IN_SOLIB_TRAMPOLINE (stop_pc, stop_func_name))
1024 && (stop_func_start != prev_func_start
1025 || prologue_pc != stop_func_start
1026 || stop_sp != prev_sp))
1027 {
1028 /* It's a subroutine call. */
1029
1030 if (step_over_calls == 0)
1031 {
1032 /* I presume that step_over_calls is only 0 when we're
1033 supposed to be stepping at the assembly language level
1034 ("stepi"). Just stop. */
1035 stop_step = 1;
1036 break;
1037 }
1038
1039 if (step_over_calls > 0)
1040 /* We're doing a "next". */
1041 goto step_over_function;
1042
1043 /* If we are in a function call trampoline (a stub between
1044 the calling routine and the real function), locate the real
1045 function. That's what tells us (a) whether we want to step
1046 into it at all, and (b) what prologue we want to run to
1047 the end of, if we do step into it. */
1048 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
1049 if (tmp != 0)
1050 stop_func_start = tmp;
1051
1052 /* If we have line number information for the function we
1053 are thinking of stepping into, step into it.
1054
1055 If there are several symtabs at that PC (e.g. with include
1056 files), just want to know whether *any* of them have line
1057 numbers. find_pc_line handles this. */
1058 {
1059 struct symtab_and_line tmp_sal;
1060
1061 tmp_sal = find_pc_line (stop_func_start, 0);
1062 if (tmp_sal.line != 0)
1063 goto step_into_function;
1064 }
1065
1066 step_over_function:
1067 /* A subroutine call has happened. */
1068 {
1069 /* Set a special breakpoint after the return */
1070 struct symtab_and_line sr_sal;
1071 sr_sal.pc =
1072 ADDR_BITS_REMOVE
1073 (SAVED_PC_AFTER_CALL (get_current_frame ()));
1074 sr_sal.symtab = NULL;
1075 sr_sal.line = 0;
1076 step_resume_breakpoint =
1077 set_momentary_breakpoint (sr_sal, get_current_frame (),
1078 bp_step_resume);
1079 if (breakpoints_inserted)
1080 insert_breakpoints ();
1081 }
1082 goto keep_going;
1083
1084 step_into_function:
1085 /* Subroutine call with source code we should not step over.
1086 Do step to the first line of code in it. */
1087 SKIP_PROLOGUE (stop_func_start);
1088 sal = find_pc_line (stop_func_start, 0);
1089 /* Use the step_resume_break to step until
1090 the end of the prologue, even if that involves jumps
1091 (as it seems to on the vax under 4.2). */
1092 /* If the prologue ends in the middle of a source line,
1093 continue to the end of that source line.
1094 Otherwise, just go to end of prologue. */
1095 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
1096 /* no, don't either. It skips any code that's
1097 legitimately on the first line. */
1098 #else
1099 if (sal.end && sal.pc != stop_func_start)
1100 stop_func_start = sal.end;
1101 #endif
1102
1103 if (stop_func_start == stop_pc)
1104 {
1105 /* We are already there: stop now. */
1106 stop_step = 1;
1107 break;
1108 }
1109 else
1110 /* Put the step-breakpoint there and go until there. */
1111 {
1112 struct symtab_and_line sr_sal;
1113
1114 sr_sal.pc = stop_func_start;
1115 sr_sal.symtab = NULL;
1116 sr_sal.line = 0;
1117 /* Do not specify what the fp should be when we stop
1118 since on some machines the prologue
1119 is where the new fp value is established. */
1120 step_resume_breakpoint =
1121 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1122 if (breakpoints_inserted)
1123 insert_breakpoints ();
1124
1125 /* And make sure stepping stops right away then. */
1126 step_range_end = step_range_start;
1127 }
1128 goto keep_going;
1129 }
1130
1131 /* We've wandered out of the step range (but haven't done a
1132 subroutine call or return). (Is that true? I think we get
1133 here if we did a return and maybe a longjmp). */
1134
1135 sal = find_pc_line(stop_pc, 0);
1136
1137 if (step_range_end == 1)
1138 {
1139 /* It is stepi or nexti. We always want to stop stepping after
1140 one instruction. */
1141 stop_step = 1;
1142 break;
1143 }
1144
1145 if (sal.line == 0)
1146 {
1147 /* We have no line number information. That means to stop
1148 stepping (does this always happen right after one instruction,
1149 when we do "s" in a function with no line numbers,
1150 or can this happen as a result of a return or longjmp?). */
1151 stop_step = 1;
1152 break;
1153 }
1154
1155 if (stop_pc == sal.pc && current_line != sal.line)
1156 {
1157 /* We are at the start of a different line. So stop. Note that
1158 we don't stop if we step into the middle of a different line.
1159 That is said to make things like for (;;) statements work
1160 better. */
1161 stop_step = 1;
1162 break;
1163 }
1164
1165 /* We aren't done stepping.
1166
1167 Optimize by setting the stepping range to the line.
1168 (We might not be in the original line, but if we entered a
1169 new line in mid-statement, we continue stepping. This makes
1170 things like for(;;) statements work better.) */
1171 step_range_start = sal.pc;
1172 step_range_end = sal.end;
1173 goto keep_going;
1174
1175 check_sigtramp2:
1176 if (trap_expected
1177 && IN_SIGTRAMP (stop_pc, stop_func_name)
1178 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1179 {
1180 /* What has happened here is that we have just stepped the inferior
1181 with a signal (because it is a signal which shouldn't make
1182 us stop), thus stepping into sigtramp.
1183
1184 So we need to set a step_resume_break_address breakpoint
1185 and continue until we hit it, and then step. FIXME: This should
1186 be more enduring than a step_resume breakpoint; we should know
1187 that we will later need to keep going rather than re-hitting
1188 the breakpoint here (see testsuite/gdb.t06/signals.exp where
1189 it says "exceedingly difficult"). */
1190 struct symtab_and_line sr_sal;
1191
1192 sr_sal.pc = prev_pc;
1193 sr_sal.symtab = NULL;
1194 sr_sal.line = 0;
1195 step_resume_breakpoint =
1196 set_momentary_breakpoint (sr_sal, get_current_frame (),
1197 bp_step_resume);
1198 if (breakpoints_inserted)
1199 insert_breakpoints ();
1200
1201 remove_breakpoints_on_following_step = 1;
1202 another_trap = 1;
1203 }
1204
1205 keep_going:
1206 /* Come to this label when you need to resume the inferior.
1207 It's really much cleaner to do a goto than a maze of if-else
1208 conditions. */
1209
1210 /* Save the pc before execution, to compare with pc after stop. */
1211 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
1212 prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
1213 BREAK is defined, the
1214 original pc would not have
1215 been at the start of a
1216 function. */
1217 prev_func_name = stop_func_name;
1218 prev_sp = stop_sp;
1219
1220 /* If we did not do break;, it means we should keep
1221 running the inferior and not return to debugger. */
1222
1223 if (trap_expected && stop_signal != SIGTRAP)
1224 {
1225 /* We took a signal (which we are supposed to pass through to
1226 the inferior, else we'd have done a break above) and we
1227 haven't yet gotten our trap. Simply continue. */
1228 resume (CURRENTLY_STEPPING (), stop_signal);
1229 }
1230 else
1231 {
1232 /* Either the trap was not expected, but we are continuing
1233 anyway (the user asked that this signal be passed to the
1234 child)
1235 -- or --
1236 The signal was SIGTRAP, e.g. it was our signal, but we
1237 decided we should resume from it.
1238
1239 We're going to run this baby now!
1240
1241 Insert breakpoints now, unless we are trying
1242 to one-proceed past a breakpoint. */
1243 /* If we've just finished a special step resume and we don't
1244 want to hit a breakpoint, pull em out. */
1245 if (step_resume_breakpoint == NULL &&
1246 remove_breakpoints_on_following_step)
1247 {
1248 remove_breakpoints_on_following_step = 0;
1249 remove_breakpoints ();
1250 breakpoints_inserted = 0;
1251 }
1252 else if (!breakpoints_inserted &&
1253 (step_resume_breakpoint != NULL || !another_trap))
1254 {
1255 breakpoints_failed = insert_breakpoints ();
1256 if (breakpoints_failed)
1257 break;
1258 breakpoints_inserted = 1;
1259 }
1260
1261 trap_expected = another_trap;
1262
1263 if (stop_signal == SIGTRAP)
1264 stop_signal = 0;
1265
1266 #ifdef SHIFT_INST_REGS
1267 /* I'm not sure when this following segment applies. I do know, now,
1268 that we shouldn't rewrite the regs when we were stopped by a
1269 random signal from the inferior process. */
1270 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
1271 (this is only used on the 88k). */
1272
1273 if (!bpstat_explains_signal (stop_bpstat)
1274 && (stop_signal != SIGCLD)
1275 && !stopped_by_random_signal)
1276 SHIFT_INST_REGS();
1277 #endif /* SHIFT_INST_REGS */
1278
1279 resume (CURRENTLY_STEPPING (), stop_signal);
1280 }
1281 }
1282
1283 stop_stepping:
1284 if (target_has_execution)
1285 {
1286 /* Assuming the inferior still exists, set these up for next
1287 time, just like we did above if we didn't break out of the
1288 loop. */
1289 prev_pc = read_pc ();
1290 prev_func_start = stop_func_start;
1291 prev_func_name = stop_func_name;
1292 prev_sp = stop_sp;
1293 }
1294 do_cleanups (old_cleanups);
1295 }
1296 \f
1297 /* Here to return control to GDB when the inferior stops for real.
1298 Print appropriate messages, remove breakpoints, give terminal our modes.
1299
1300 STOP_PRINT_FRAME nonzero means print the executing frame
1301 (pc, function, args, file, line number and line text).
1302 BREAKPOINTS_FAILED nonzero means stop was due to error
1303 attempting to insert breakpoints. */
1304
1305 void
1306 normal_stop ()
1307 {
1308 /* Make sure that the current_frame's pc is correct. This
1309 is a correction for setting up the frame info before doing
1310 DECR_PC_AFTER_BREAK */
1311 if (target_has_execution && get_current_frame())
1312 (get_current_frame ())->pc = read_pc ();
1313
1314 if (breakpoints_failed)
1315 {
1316 target_terminal_ours_for_output ();
1317 print_sys_errmsg ("ptrace", breakpoints_failed);
1318 printf_filtered ("Stopped; cannot insert breakpoints.\n\
1319 The same program may be running in another process.\n");
1320 }
1321
1322 if (target_has_execution && breakpoints_inserted)
1323 if (remove_breakpoints ())
1324 {
1325 target_terminal_ours_for_output ();
1326 printf_filtered ("Cannot remove breakpoints because program is no longer writable.\n\
1327 It might be running in another process.\n\
1328 Further execution is probably impossible.\n");
1329 }
1330
1331 breakpoints_inserted = 0;
1332
1333 /* Delete the breakpoint we stopped at, if it wants to be deleted.
1334 Delete any breakpoint that is to be deleted at the next stop. */
1335
1336 breakpoint_auto_delete (stop_bpstat);
1337
1338 /* If an auto-display called a function and that got a signal,
1339 delete that auto-display to avoid an infinite recursion. */
1340
1341 if (stopped_by_random_signal)
1342 disable_current_display ();
1343
1344 if (step_multi && stop_step)
1345 return;
1346
1347 target_terminal_ours ();
1348
1349 /* Look up the hook_stop and run it if it exists. */
1350
1351 if (stop_command->hook)
1352 {
1353 catch_errors (hook_stop_stub, (char *)stop_command->hook,
1354 "Error while running hook_stop:\n", RETURN_MASK_ALL);
1355 }
1356
1357 if (!target_has_stack)
1358 return;
1359
1360 /* Select innermost stack frame except on return from a stack dummy routine,
1361 or if the program has exited. Print it without a level number if
1362 we have changed functions or hit a breakpoint. Print source line
1363 if we have one. */
1364 if (!stop_stack_dummy)
1365 {
1366 select_frame (get_current_frame (), 0);
1367
1368 if (stop_print_frame)
1369 {
1370 int source_only;
1371
1372 source_only = bpstat_print (stop_bpstat);
1373 source_only = source_only ||
1374 ( stop_step
1375 && step_frame_address == stop_frame_address
1376 && step_start_function == find_pc_function (stop_pc));
1377
1378 print_stack_frame (selected_frame, -1, source_only? -1: 1);
1379
1380 /* Display the auto-display expressions. */
1381 do_displays ();
1382 }
1383 }
1384
1385 /* Save the function value return registers, if we care.
1386 We might be about to restore their previous contents. */
1387 if (proceed_to_finish)
1388 read_register_bytes (0, stop_registers, REGISTER_BYTES);
1389
1390 if (stop_stack_dummy)
1391 {
1392 /* Pop the empty frame that contains the stack dummy.
1393 POP_FRAME ends with a setting of the current frame, so we
1394 can use that next. */
1395 POP_FRAME;
1396 select_frame (get_current_frame (), 0);
1397 }
1398 }
1399
1400 static int
1401 hook_stop_stub (cmd)
1402 char *cmd;
1403 {
1404 execute_user_command ((struct cmd_list_element *)cmd, 0);
1405 return (0);
1406 }
1407 \f
1408 int signal_stop_state (signo)
1409 int signo;
1410 {
1411 return ((signo >= 0 && signo < NSIG) ? signal_stop[signo] : 0);
1412 }
1413
1414 int signal_print_state (signo)
1415 int signo;
1416 {
1417 return ((signo >= 0 && signo < NSIG) ? signal_print[signo] : 0);
1418 }
1419
1420 int signal_pass_state (signo)
1421 int signo;
1422 {
1423 return ((signo >= 0 && signo < NSIG) ? signal_program[signo] : 0);
1424 }
1425
1426 static void
1427 sig_print_header ()
1428 {
1429 printf_filtered ("Signal\t\tStop\tPrint\tPass to program\tDescription\n");
1430 }
1431
1432 static void
1433 sig_print_info (number)
1434 int number;
1435 {
1436 char *name;
1437
1438 if ((name = strsigno (number)) == NULL)
1439 printf_filtered ("%d\t\t", number);
1440 else
1441 printf_filtered ("%s (%d)\t", name, number);
1442 printf_filtered ("%s\t", signal_stop[number] ? "Yes" : "No");
1443 printf_filtered ("%s\t", signal_print[number] ? "Yes" : "No");
1444 printf_filtered ("%s\t\t", signal_program[number] ? "Yes" : "No");
1445 printf_filtered ("%s\n", safe_strsignal (number));
1446 }
1447
1448 /* Specify how various signals in the inferior should be handled. */
1449
1450 static void
1451 handle_command (args, from_tty)
1452 char *args;
1453 int from_tty;
1454 {
1455 char **argv;
1456 int digits, wordlen;
1457 int sigfirst, signum, siglast;
1458 int allsigs;
1459 int nsigs;
1460 unsigned char *sigs;
1461 struct cleanup *old_chain;
1462
1463 if (args == NULL)
1464 {
1465 error_no_arg ("signal to handle");
1466 }
1467
1468 /* Allocate and zero an array of flags for which signals to handle. */
1469
1470 nsigs = signo_max () + 1;
1471 sigs = (unsigned char *) alloca (nsigs);
1472 memset (sigs, 0, nsigs);
1473
1474 /* Break the command line up into args. */
1475
1476 argv = buildargv (args);
1477 if (argv == NULL)
1478 {
1479 nomem (0);
1480 }
1481 old_chain = make_cleanup (freeargv, (char *) argv);
1482
1483 /* Walk through the args, looking for signal numbers, signal names, and
1484 actions. Signal numbers and signal names may be interspersed with
1485 actions, with the actions being performed for all signals cumulatively
1486 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
1487
1488 while (*argv != NULL)
1489 {
1490 wordlen = strlen (*argv);
1491 for (digits = 0; isdigit ((*argv)[digits]); digits++) {;}
1492 allsigs = 0;
1493 sigfirst = siglast = -1;
1494
1495 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
1496 {
1497 /* Apply action to all signals except those used by the
1498 debugger. Silently skip those. */
1499 allsigs = 1;
1500 sigfirst = 0;
1501 siglast = nsigs - 1;
1502 }
1503 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
1504 {
1505 SET_SIGS (nsigs, sigs, signal_stop);
1506 SET_SIGS (nsigs, sigs, signal_print);
1507 }
1508 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
1509 {
1510 UNSET_SIGS (nsigs, sigs, signal_program);
1511 }
1512 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
1513 {
1514 SET_SIGS (nsigs, sigs, signal_print);
1515 }
1516 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
1517 {
1518 SET_SIGS (nsigs, sigs, signal_program);
1519 }
1520 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
1521 {
1522 UNSET_SIGS (nsigs, sigs, signal_stop);
1523 }
1524 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
1525 {
1526 SET_SIGS (nsigs, sigs, signal_program);
1527 }
1528 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
1529 {
1530 UNSET_SIGS (nsigs, sigs, signal_print);
1531 UNSET_SIGS (nsigs, sigs, signal_stop);
1532 }
1533 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
1534 {
1535 UNSET_SIGS (nsigs, sigs, signal_program);
1536 }
1537 else if (digits > 0)
1538 {
1539 sigfirst = siglast = atoi (*argv);
1540 if ((*argv)[digits] == '-')
1541 {
1542 siglast = atoi ((*argv) + digits + 1);
1543 }
1544 if (sigfirst > siglast)
1545 {
1546 /* Bet he didn't figure we'd think of this case... */
1547 signum = sigfirst;
1548 sigfirst = siglast;
1549 siglast = signum;
1550 }
1551 if (sigfirst < 0 || sigfirst >= nsigs)
1552 {
1553 error ("Signal %d not in range 0-%d", sigfirst, nsigs - 1);
1554 }
1555 if (siglast < 0 || siglast >= nsigs)
1556 {
1557 error ("Signal %d not in range 0-%d", siglast, nsigs - 1);
1558 }
1559 }
1560 else if ((signum = strtosigno (*argv)) != 0)
1561 {
1562 sigfirst = siglast = signum;
1563 }
1564 else
1565 {
1566 /* Not a number and not a recognized flag word => complain. */
1567 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
1568 }
1569
1570 /* If any signal numbers or symbol names were found, set flags for
1571 which signals to apply actions to. */
1572
1573 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
1574 {
1575 switch (signum)
1576 {
1577 case SIGTRAP:
1578 case SIGINT:
1579 if (!allsigs && !sigs[signum])
1580 {
1581 if (query ("%s is used by the debugger.\nAre you sure you want to change it? ", strsigno (signum)))
1582 {
1583 sigs[signum] = 1;
1584 }
1585 else
1586 {
1587 printf ("Not confirmed, unchanged.\n");
1588 fflush (stdout);
1589 }
1590 }
1591 break;
1592 default:
1593 sigs[signum] = 1;
1594 break;
1595 }
1596 }
1597
1598 argv++;
1599 }
1600
1601 target_notice_signals();
1602
1603 if (from_tty)
1604 {
1605 /* Show the results. */
1606 sig_print_header ();
1607 for (signum = 0; signum < nsigs; signum++)
1608 {
1609 if (sigs[signum])
1610 {
1611 sig_print_info (signum);
1612 }
1613 }
1614 }
1615
1616 do_cleanups (old_chain);
1617 }
1618
1619 /* Print current contents of the tables set by the handle command. */
1620
1621 static void
1622 signals_info (signum_exp, from_tty)
1623 char *signum_exp;
1624 int from_tty;
1625 {
1626 register int i;
1627 sig_print_header ();
1628
1629 if (signum_exp)
1630 {
1631 /* First see if this is a symbol name. */
1632 i = strtosigno (signum_exp);
1633 if (i == 0)
1634 {
1635 /* Nope, maybe it's an address which evaluates to a signal
1636 number. */
1637 i = parse_and_eval_address (signum_exp);
1638 if (i >= NSIG || i < 0)
1639 error ("Signal number out of bounds.");
1640 }
1641 sig_print_info (i);
1642 return;
1643 }
1644
1645 printf_filtered ("\n");
1646 for (i = 0; i < NSIG; i++)
1647 {
1648 QUIT;
1649
1650 sig_print_info (i);
1651 }
1652
1653 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
1654 }
1655 \f
1656 /* Save all of the information associated with the inferior<==>gdb
1657 connection. INF_STATUS is a pointer to a "struct inferior_status"
1658 (defined in inferior.h). */
1659
1660 void
1661 save_inferior_status (inf_status, restore_stack_info)
1662 struct inferior_status *inf_status;
1663 int restore_stack_info;
1664 {
1665 inf_status->stop_signal = stop_signal;
1666 inf_status->stop_pc = stop_pc;
1667 inf_status->stop_frame_address = stop_frame_address;
1668 inf_status->stop_step = stop_step;
1669 inf_status->stop_stack_dummy = stop_stack_dummy;
1670 inf_status->stopped_by_random_signal = stopped_by_random_signal;
1671 inf_status->trap_expected = trap_expected;
1672 inf_status->step_range_start = step_range_start;
1673 inf_status->step_range_end = step_range_end;
1674 inf_status->step_frame_address = step_frame_address;
1675 inf_status->step_over_calls = step_over_calls;
1676 inf_status->stop_after_trap = stop_after_trap;
1677 inf_status->stop_soon_quietly = stop_soon_quietly;
1678 /* Save original bpstat chain here; replace it with copy of chain.
1679 If caller's caller is walking the chain, they'll be happier if we
1680 hand them back the original chain when restore_i_s is called. */
1681 inf_status->stop_bpstat = stop_bpstat;
1682 stop_bpstat = bpstat_copy (stop_bpstat);
1683 inf_status->breakpoint_proceeded = breakpoint_proceeded;
1684 inf_status->restore_stack_info = restore_stack_info;
1685 inf_status->proceed_to_finish = proceed_to_finish;
1686
1687 memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
1688
1689 read_register_bytes (0, inf_status->registers, REGISTER_BYTES);
1690
1691 record_selected_frame (&(inf_status->selected_frame_address),
1692 &(inf_status->selected_level));
1693 return;
1694 }
1695
1696 struct restore_selected_frame_args {
1697 FRAME_ADDR frame_address;
1698 int level;
1699 };
1700
1701 static int restore_selected_frame PARAMS ((char *));
1702
1703 /* Restore the selected frame. args is really a struct
1704 restore_selected_frame_args * (declared as char * for catch_errors)
1705 telling us what frame to restore. Returns 1 for success, or 0 for
1706 failure. An error message will have been printed on error. */
1707 static int
1708 restore_selected_frame (args)
1709 char *args;
1710 {
1711 struct restore_selected_frame_args *fr =
1712 (struct restore_selected_frame_args *) args;
1713 FRAME fid;
1714 int level = fr->level;
1715
1716 fid = find_relative_frame (get_current_frame (), &level);
1717
1718 /* If inf_status->selected_frame_address is NULL, there was no
1719 previously selected frame. */
1720 if (fid == 0 ||
1721 FRAME_FP (fid) != fr->frame_address ||
1722 level != 0)
1723 {
1724 warning ("Unable to restore previously selected frame.\n");
1725 return 0;
1726 }
1727 select_frame (fid, fr->level);
1728 return(1);
1729 }
1730
1731 void
1732 restore_inferior_status (inf_status)
1733 struct inferior_status *inf_status;
1734 {
1735 stop_signal = inf_status->stop_signal;
1736 stop_pc = inf_status->stop_pc;
1737 stop_frame_address = inf_status->stop_frame_address;
1738 stop_step = inf_status->stop_step;
1739 stop_stack_dummy = inf_status->stop_stack_dummy;
1740 stopped_by_random_signal = inf_status->stopped_by_random_signal;
1741 trap_expected = inf_status->trap_expected;
1742 step_range_start = inf_status->step_range_start;
1743 step_range_end = inf_status->step_range_end;
1744 step_frame_address = inf_status->step_frame_address;
1745 step_over_calls = inf_status->step_over_calls;
1746 stop_after_trap = inf_status->stop_after_trap;
1747 stop_soon_quietly = inf_status->stop_soon_quietly;
1748 bpstat_clear (&stop_bpstat);
1749 stop_bpstat = inf_status->stop_bpstat;
1750 breakpoint_proceeded = inf_status->breakpoint_proceeded;
1751 proceed_to_finish = inf_status->proceed_to_finish;
1752
1753 memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
1754
1755 /* The inferior can be gone if the user types "print exit(0)"
1756 (and perhaps other times). */
1757 if (target_has_execution)
1758 write_register_bytes (0, inf_status->registers, REGISTER_BYTES);
1759
1760 /* The inferior can be gone if the user types "print exit(0)"
1761 (and perhaps other times). */
1762
1763 /* FIXME: If we are being called after stopping in a function which
1764 is called from gdb, we should not be trying to restore the
1765 selected frame; it just prints a spurious error message (The
1766 message is useful, however, in detecting bugs in gdb (like if gdb
1767 clobbers the stack)). In fact, should we be restoring the
1768 inferior status at all in that case? . */
1769
1770 if (target_has_stack && inf_status->restore_stack_info)
1771 {
1772 struct restore_selected_frame_args fr;
1773 fr.level = inf_status->selected_level;
1774 fr.frame_address = inf_status->selected_frame_address;
1775 /* The point of catch_errors is that if the stack is clobbered,
1776 walking the stack might encounter a garbage pointer and error()
1777 trying to dereference it. */
1778 if (catch_errors (restore_selected_frame, &fr,
1779 "Unable to restore previously selected frame:\n",
1780 RETURN_MASK_ERROR) == 0)
1781 /* Error in restoring the selected frame. Select the innermost
1782 frame. */
1783 select_frame (get_current_frame (), 0);
1784 }
1785 }
1786
1787 \f
1788 void
1789 _initialize_infrun ()
1790 {
1791 register int i;
1792 register int numsigs;
1793
1794 add_info ("signals", signals_info,
1795 "What debugger does when program gets various signals.\n\
1796 Specify a signal number as argument to print info on that signal only.");
1797 add_info_alias ("handle", "signals", 0);
1798
1799 add_com ("handle", class_run, handle_command,
1800 "Specify how to handle a signal.\n\
1801 Args are signal numbers and actions to apply to those signals.\n\
1802 Signal numbers may be numeric (ex. 11) or symbolic (ex. SIGSEGV).\n\
1803 Numeric ranges may be specified with the form LOW-HIGH (ex. 14-21).\n\
1804 The special arg \"all\" is recognized to mean all signals except those\n\
1805 used by the debugger, typically SIGTRAP and SIGINT.\n\
1806 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
1807 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
1808 Stop means reenter debugger if this signal happens (implies print).\n\
1809 Print means print a message if this signal happens.\n\
1810 Pass means let program see this signal; otherwise program doesn't know.\n\
1811 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1812 Pass and Stop may be combined.");
1813
1814 stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
1815 "There is no `stop' command, but you can set a hook on `stop'.\n\
1816 This allows you to set a list of commands to be run each time execution\n\
1817 of the program stops.", &cmdlist);
1818
1819 numsigs = signo_max () + 1;
1820 signal_stop = (unsigned char *)
1821 xmalloc (sizeof (signal_stop[0]) * numsigs);
1822 signal_print = (unsigned char *)
1823 xmalloc (sizeof (signal_print[0]) * numsigs);
1824 signal_program = (unsigned char *)
1825 xmalloc (sizeof (signal_program[0]) * numsigs);
1826 for (i = 0; i < numsigs; i++)
1827 {
1828 signal_stop[i] = 1;
1829 signal_print[i] = 1;
1830 signal_program[i] = 1;
1831 }
1832
1833 /* Signals caused by debugger's own actions
1834 should not be given to the program afterwards. */
1835 signal_program[SIGTRAP] = 0;
1836 signal_program[SIGINT] = 0;
1837
1838 /* Signals that are not errors should not normally enter the debugger. */
1839 #ifdef SIGALRM
1840 signal_stop[SIGALRM] = 0;
1841 signal_print[SIGALRM] = 0;
1842 #endif /* SIGALRM */
1843 #ifdef SIGVTALRM
1844 signal_stop[SIGVTALRM] = 0;
1845 signal_print[SIGVTALRM] = 0;
1846 #endif /* SIGVTALRM */
1847 #ifdef SIGPROF
1848 signal_stop[SIGPROF] = 0;
1849 signal_print[SIGPROF] = 0;
1850 #endif /* SIGPROF */
1851 #ifdef SIGCHLD
1852 signal_stop[SIGCHLD] = 0;
1853 signal_print[SIGCHLD] = 0;
1854 #endif /* SIGCHLD */
1855 #ifdef SIGCLD
1856 signal_stop[SIGCLD] = 0;
1857 signal_print[SIGCLD] = 0;
1858 #endif /* SIGCLD */
1859 #ifdef SIGIO
1860 signal_stop[SIGIO] = 0;
1861 signal_print[SIGIO] = 0;
1862 #endif /* SIGIO */
1863 #ifdef SIGURG
1864 signal_stop[SIGURG] = 0;
1865 signal_print[SIGURG] = 0;
1866 #endif /* SIGURG */
1867 }