2008-10-19 Hui Zhu <teawater@gmail.com>
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51 #include "event-top.h"
52
53 /* Prototypes for local functions */
54
55 static void signals_info (char *, int);
56
57 static void handle_command (char *, int);
58
59 static void sig_print_info (enum target_signal);
60
61 static void sig_print_header (void);
62
63 static void resume_cleanups (void *);
64
65 static int hook_stop_stub (void *);
66
67 static int restore_selected_frame (void *);
68
69 static void build_infrun (void);
70
71 static int follow_fork (void);
72
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
75
76 static int currently_stepping (struct thread_info *tp);
77
78 static void xdb_handle_command (char *args, int from_tty);
79
80 static int prepare_to_proceed (int);
81
82 void _initialize_infrun (void);
83
84 /* When set, stop the 'step' command if we enter a function which has
85 no line number information. The normal behavior is that we step
86 over such function. */
87 int step_stop_if_no_debug = 0;
88 static void
89 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
90 struct cmd_list_element *c, const char *value)
91 {
92 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
93 }
94
95 /* In asynchronous mode, but simulating synchronous execution. */
96
97 int sync_execution = 0;
98
99 /* wait_for_inferior and normal_stop use this to notify the user
100 when the inferior stopped in a different thread than it had been
101 running in. */
102
103 static ptid_t previous_inferior_ptid;
104
105 int debug_displaced = 0;
106 static void
107 show_debug_displaced (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109 {
110 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
111 }
112
113 static int debug_infrun = 0;
114 static void
115 show_debug_infrun (struct ui_file *file, int from_tty,
116 struct cmd_list_element *c, const char *value)
117 {
118 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
119 }
120
121 /* If the program uses ELF-style shared libraries, then calls to
122 functions in shared libraries go through stubs, which live in a
123 table called the PLT (Procedure Linkage Table). The first time the
124 function is called, the stub sends control to the dynamic linker,
125 which looks up the function's real address, patches the stub so
126 that future calls will go directly to the function, and then passes
127 control to the function.
128
129 If we are stepping at the source level, we don't want to see any of
130 this --- we just want to skip over the stub and the dynamic linker.
131 The simple approach is to single-step until control leaves the
132 dynamic linker.
133
134 However, on some systems (e.g., Red Hat's 5.2 distribution) the
135 dynamic linker calls functions in the shared C library, so you
136 can't tell from the PC alone whether the dynamic linker is still
137 running. In this case, we use a step-resume breakpoint to get us
138 past the dynamic linker, as if we were using "next" to step over a
139 function call.
140
141 in_solib_dynsym_resolve_code() says whether we're in the dynamic
142 linker code or not. Normally, this means we single-step. However,
143 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
144 address where we can place a step-resume breakpoint to get past the
145 linker's symbol resolution function.
146
147 in_solib_dynsym_resolve_code() can generally be implemented in a
148 pretty portable way, by comparing the PC against the address ranges
149 of the dynamic linker's sections.
150
151 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
152 it depends on internal details of the dynamic linker. It's usually
153 not too hard to figure out where to put a breakpoint, but it
154 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
155 sanity checking. If it can't figure things out, returning zero and
156 getting the (possibly confusing) stepping behavior is better than
157 signalling an error, which will obscure the change in the
158 inferior's state. */
159
160 /* This function returns TRUE if pc is the address of an instruction
161 that lies within the dynamic linker (such as the event hook, or the
162 dld itself).
163
164 This function must be used only when a dynamic linker event has
165 been caught, and the inferior is being stepped out of the hook, or
166 undefined results are guaranteed. */
167
168 #ifndef SOLIB_IN_DYNAMIC_LINKER
169 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
170 #endif
171
172
173 /* Convert the #defines into values. This is temporary until wfi control
174 flow is completely sorted out. */
175
176 #ifndef CANNOT_STEP_HW_WATCHPOINTS
177 #define CANNOT_STEP_HW_WATCHPOINTS 0
178 #else
179 #undef CANNOT_STEP_HW_WATCHPOINTS
180 #define CANNOT_STEP_HW_WATCHPOINTS 1
181 #endif
182
183 /* Tables of how to react to signals; the user sets them. */
184
185 static unsigned char *signal_stop;
186 static unsigned char *signal_print;
187 static unsigned char *signal_program;
188
189 #define SET_SIGS(nsigs,sigs,flags) \
190 do { \
191 int signum = (nsigs); \
192 while (signum-- > 0) \
193 if ((sigs)[signum]) \
194 (flags)[signum] = 1; \
195 } while (0)
196
197 #define UNSET_SIGS(nsigs,sigs,flags) \
198 do { \
199 int signum = (nsigs); \
200 while (signum-- > 0) \
201 if ((sigs)[signum]) \
202 (flags)[signum] = 0; \
203 } while (0)
204
205 /* Value to pass to target_resume() to cause all threads to resume */
206
207 #define RESUME_ALL (pid_to_ptid (-1))
208
209 /* Command list pointer for the "stop" placeholder. */
210
211 static struct cmd_list_element *stop_command;
212
213 /* Function inferior was in as of last step command. */
214
215 static struct symbol *step_start_function;
216
217 /* Nonzero if we want to give control to the user when we're notified
218 of shared library events by the dynamic linker. */
219 static int stop_on_solib_events;
220 static void
221 show_stop_on_solib_events (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223 {
224 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
225 value);
226 }
227
228 /* Nonzero means expecting a trace trap
229 and should stop the inferior and return silently when it happens. */
230
231 int stop_after_trap;
232
233 /* Save register contents here when about to pop a stack dummy frame,
234 if-and-only-if proceed_to_finish is set.
235 Thus this contains the return value from the called function (assuming
236 values are returned in a register). */
237
238 struct regcache *stop_registers;
239
240 /* Nonzero after stop if current stack frame should be printed. */
241
242 static int stop_print_frame;
243
244 /* This is a cached copy of the pid/waitstatus of the last event
245 returned by target_wait()/deprecated_target_wait_hook(). This
246 information is returned by get_last_target_status(). */
247 static ptid_t target_last_wait_ptid;
248 static struct target_waitstatus target_last_waitstatus;
249
250 static void context_switch (ptid_t ptid);
251
252 void init_thread_stepping_state (struct thread_info *tss);
253
254 void init_infwait_state (void);
255
256 /* This is used to remember when a fork, vfork or exec event
257 was caught by a catchpoint, and thus the event is to be
258 followed at the next resume of the inferior, and not
259 immediately. */
260 static struct
261 {
262 enum target_waitkind kind;
263 struct
264 {
265 ptid_t parent_pid;
266 ptid_t child_pid;
267 }
268 fork_event;
269 char *execd_pathname;
270 }
271 pending_follow;
272
273 static const char follow_fork_mode_child[] = "child";
274 static const char follow_fork_mode_parent[] = "parent";
275
276 static const char *follow_fork_mode_kind_names[] = {
277 follow_fork_mode_child,
278 follow_fork_mode_parent,
279 NULL
280 };
281
282 static const char *follow_fork_mode_string = follow_fork_mode_parent;
283 static void
284 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
285 struct cmd_list_element *c, const char *value)
286 {
287 fprintf_filtered (file, _("\
288 Debugger response to a program call of fork or vfork is \"%s\".\n"),
289 value);
290 }
291 \f
292
293 static int
294 follow_fork (void)
295 {
296 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
297
298 return target_follow_fork (follow_child);
299 }
300
301 void
302 follow_inferior_reset_breakpoints (void)
303 {
304 struct thread_info *tp = inferior_thread ();
305
306 /* Was there a step_resume breakpoint? (There was if the user
307 did a "next" at the fork() call.) If so, explicitly reset its
308 thread number.
309
310 step_resumes are a form of bp that are made to be per-thread.
311 Since we created the step_resume bp when the parent process
312 was being debugged, and now are switching to the child process,
313 from the breakpoint package's viewpoint, that's a switch of
314 "threads". We must update the bp's notion of which thread
315 it is for, or it'll be ignored when it triggers. */
316
317 if (tp->step_resume_breakpoint)
318 breakpoint_re_set_thread (tp->step_resume_breakpoint);
319
320 /* Reinsert all breakpoints in the child. The user may have set
321 breakpoints after catching the fork, in which case those
322 were never set in the child, but only in the parent. This makes
323 sure the inserted breakpoints match the breakpoint list. */
324
325 breakpoint_re_set ();
326 insert_breakpoints ();
327 }
328
329 /* EXECD_PATHNAME is assumed to be non-NULL. */
330
331 static void
332 follow_exec (ptid_t pid, char *execd_pathname)
333 {
334 struct target_ops *tgt;
335 struct thread_info *th = inferior_thread ();
336
337 /* This is an exec event that we actually wish to pay attention to.
338 Refresh our symbol table to the newly exec'd program, remove any
339 momentary bp's, etc.
340
341 If there are breakpoints, they aren't really inserted now,
342 since the exec() transformed our inferior into a fresh set
343 of instructions.
344
345 We want to preserve symbolic breakpoints on the list, since
346 we have hopes that they can be reset after the new a.out's
347 symbol table is read.
348
349 However, any "raw" breakpoints must be removed from the list
350 (e.g., the solib bp's), since their address is probably invalid
351 now.
352
353 And, we DON'T want to call delete_breakpoints() here, since
354 that may write the bp's "shadow contents" (the instruction
355 value that was overwritten witha TRAP instruction). Since
356 we now have a new a.out, those shadow contents aren't valid. */
357 update_breakpoints_after_exec ();
358
359 /* If there was one, it's gone now. We cannot truly step-to-next
360 statement through an exec(). */
361 th->step_resume_breakpoint = NULL;
362 th->step_range_start = 0;
363 th->step_range_end = 0;
364
365 /* What is this a.out's name? */
366 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
367
368 /* We've followed the inferior through an exec. Therefore, the
369 inferior has essentially been killed & reborn. */
370
371 gdb_flush (gdb_stdout);
372
373 breakpoint_init_inferior (inf_execd);
374
375 if (gdb_sysroot && *gdb_sysroot)
376 {
377 char *name = alloca (strlen (gdb_sysroot)
378 + strlen (execd_pathname)
379 + 1);
380 strcpy (name, gdb_sysroot);
381 strcat (name, execd_pathname);
382 execd_pathname = name;
383 }
384
385 /* That a.out is now the one to use. */
386 exec_file_attach (execd_pathname, 0);
387
388 /* Reset the shared library package. This ensures that we get a
389 shlib event when the child reaches "_start", at which point the
390 dld will have had a chance to initialize the child. */
391 /* Also, loading a symbol file below may trigger symbol lookups, and
392 we don't want those to be satisfied by the libraries of the
393 previous incarnation of this process. */
394 no_shared_libraries (NULL, 0);
395
396 /* Load the main file's symbols. */
397 symbol_file_add_main (execd_pathname, 0);
398
399 #ifdef SOLIB_CREATE_INFERIOR_HOOK
400 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
401 #else
402 solib_create_inferior_hook ();
403 #endif
404
405 /* Reinsert all breakpoints. (Those which were symbolic have
406 been reset to the proper address in the new a.out, thanks
407 to symbol_file_command...) */
408 insert_breakpoints ();
409
410 /* The next resume of this inferior should bring it to the shlib
411 startup breakpoints. (If the user had also set bp's on
412 "main" from the old (parent) process, then they'll auto-
413 matically get reset there in the new process.) */
414 }
415
416 /* Non-zero if we just simulating a single-step. This is needed
417 because we cannot remove the breakpoints in the inferior process
418 until after the `wait' in `wait_for_inferior'. */
419 static int singlestep_breakpoints_inserted_p = 0;
420
421 /* The thread we inserted single-step breakpoints for. */
422 static ptid_t singlestep_ptid;
423
424 /* PC when we started this single-step. */
425 static CORE_ADDR singlestep_pc;
426
427 /* If another thread hit the singlestep breakpoint, we save the original
428 thread here so that we can resume single-stepping it later. */
429 static ptid_t saved_singlestep_ptid;
430 static int stepping_past_singlestep_breakpoint;
431
432 /* If not equal to null_ptid, this means that after stepping over breakpoint
433 is finished, we need to switch to deferred_step_ptid, and step it.
434
435 The use case is when one thread has hit a breakpoint, and then the user
436 has switched to another thread and issued 'step'. We need to step over
437 breakpoint in the thread which hit the breakpoint, but then continue
438 stepping the thread user has selected. */
439 static ptid_t deferred_step_ptid;
440 \f
441 /* Displaced stepping. */
442
443 /* In non-stop debugging mode, we must take special care to manage
444 breakpoints properly; in particular, the traditional strategy for
445 stepping a thread past a breakpoint it has hit is unsuitable.
446 'Displaced stepping' is a tactic for stepping one thread past a
447 breakpoint it has hit while ensuring that other threads running
448 concurrently will hit the breakpoint as they should.
449
450 The traditional way to step a thread T off a breakpoint in a
451 multi-threaded program in all-stop mode is as follows:
452
453 a0) Initially, all threads are stopped, and breakpoints are not
454 inserted.
455 a1) We single-step T, leaving breakpoints uninserted.
456 a2) We insert breakpoints, and resume all threads.
457
458 In non-stop debugging, however, this strategy is unsuitable: we
459 don't want to have to stop all threads in the system in order to
460 continue or step T past a breakpoint. Instead, we use displaced
461 stepping:
462
463 n0) Initially, T is stopped, other threads are running, and
464 breakpoints are inserted.
465 n1) We copy the instruction "under" the breakpoint to a separate
466 location, outside the main code stream, making any adjustments
467 to the instruction, register, and memory state as directed by
468 T's architecture.
469 n2) We single-step T over the instruction at its new location.
470 n3) We adjust the resulting register and memory state as directed
471 by T's architecture. This includes resetting T's PC to point
472 back into the main instruction stream.
473 n4) We resume T.
474
475 This approach depends on the following gdbarch methods:
476
477 - gdbarch_max_insn_length and gdbarch_displaced_step_location
478 indicate where to copy the instruction, and how much space must
479 be reserved there. We use these in step n1.
480
481 - gdbarch_displaced_step_copy_insn copies a instruction to a new
482 address, and makes any necessary adjustments to the instruction,
483 register contents, and memory. We use this in step n1.
484
485 - gdbarch_displaced_step_fixup adjusts registers and memory after
486 we have successfuly single-stepped the instruction, to yield the
487 same effect the instruction would have had if we had executed it
488 at its original address. We use this in step n3.
489
490 - gdbarch_displaced_step_free_closure provides cleanup.
491
492 The gdbarch_displaced_step_copy_insn and
493 gdbarch_displaced_step_fixup functions must be written so that
494 copying an instruction with gdbarch_displaced_step_copy_insn,
495 single-stepping across the copied instruction, and then applying
496 gdbarch_displaced_insn_fixup should have the same effects on the
497 thread's memory and registers as stepping the instruction in place
498 would have. Exactly which responsibilities fall to the copy and
499 which fall to the fixup is up to the author of those functions.
500
501 See the comments in gdbarch.sh for details.
502
503 Note that displaced stepping and software single-step cannot
504 currently be used in combination, although with some care I think
505 they could be made to. Software single-step works by placing
506 breakpoints on all possible subsequent instructions; if the
507 displaced instruction is a PC-relative jump, those breakpoints
508 could fall in very strange places --- on pages that aren't
509 executable, or at addresses that are not proper instruction
510 boundaries. (We do generally let other threads run while we wait
511 to hit the software single-step breakpoint, and they might
512 encounter such a corrupted instruction.) One way to work around
513 this would be to have gdbarch_displaced_step_copy_insn fully
514 simulate the effect of PC-relative instructions (and return NULL)
515 on architectures that use software single-stepping.
516
517 In non-stop mode, we can have independent and simultaneous step
518 requests, so more than one thread may need to simultaneously step
519 over a breakpoint. The current implementation assumes there is
520 only one scratch space per process. In this case, we have to
521 serialize access to the scratch space. If thread A wants to step
522 over a breakpoint, but we are currently waiting for some other
523 thread to complete a displaced step, we leave thread A stopped and
524 place it in the displaced_step_request_queue. Whenever a displaced
525 step finishes, we pick the next thread in the queue and start a new
526 displaced step operation on it. See displaced_step_prepare and
527 displaced_step_fixup for details. */
528
529 /* If this is not null_ptid, this is the thread carrying out a
530 displaced single-step. This thread's state will require fixing up
531 once it has completed its step. */
532 static ptid_t displaced_step_ptid;
533
534 struct displaced_step_request
535 {
536 ptid_t ptid;
537 struct displaced_step_request *next;
538 };
539
540 /* A queue of pending displaced stepping requests. */
541 struct displaced_step_request *displaced_step_request_queue;
542
543 /* The architecture the thread had when we stepped it. */
544 static struct gdbarch *displaced_step_gdbarch;
545
546 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
547 for post-step cleanup. */
548 static struct displaced_step_closure *displaced_step_closure;
549
550 /* The address of the original instruction, and the copy we made. */
551 static CORE_ADDR displaced_step_original, displaced_step_copy;
552
553 /* Saved contents of copy area. */
554 static gdb_byte *displaced_step_saved_copy;
555
556 /* When this is non-zero, we are allowed to use displaced stepping, if
557 the architecture supports it. When this is zero, we use
558 traditional the hold-and-step approach. */
559 int can_use_displaced_stepping = 1;
560 static void
561 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
562 struct cmd_list_element *c,
563 const char *value)
564 {
565 fprintf_filtered (file, _("\
566 Debugger's willingness to use displaced stepping to step over "
567 "breakpoints is %s.\n"), value);
568 }
569
570 /* Return non-zero if displaced stepping is enabled, and can be used
571 with GDBARCH. */
572 static int
573 use_displaced_stepping (struct gdbarch *gdbarch)
574 {
575 return (can_use_displaced_stepping
576 && gdbarch_displaced_step_copy_insn_p (gdbarch));
577 }
578
579 /* Clean out any stray displaced stepping state. */
580 static void
581 displaced_step_clear (void)
582 {
583 /* Indicate that there is no cleanup pending. */
584 displaced_step_ptid = null_ptid;
585
586 if (displaced_step_closure)
587 {
588 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
589 displaced_step_closure);
590 displaced_step_closure = NULL;
591 }
592 }
593
594 static void
595 cleanup_displaced_step_closure (void *ptr)
596 {
597 struct displaced_step_closure *closure = ptr;
598
599 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
600 }
601
602 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
603 void
604 displaced_step_dump_bytes (struct ui_file *file,
605 const gdb_byte *buf,
606 size_t len)
607 {
608 int i;
609
610 for (i = 0; i < len; i++)
611 fprintf_unfiltered (file, "%02x ", buf[i]);
612 fputs_unfiltered ("\n", file);
613 }
614
615 /* Prepare to single-step, using displaced stepping.
616
617 Note that we cannot use displaced stepping when we have a signal to
618 deliver. If we have a signal to deliver and an instruction to step
619 over, then after the step, there will be no indication from the
620 target whether the thread entered a signal handler or ignored the
621 signal and stepped over the instruction successfully --- both cases
622 result in a simple SIGTRAP. In the first case we mustn't do a
623 fixup, and in the second case we must --- but we can't tell which.
624 Comments in the code for 'random signals' in handle_inferior_event
625 explain how we handle this case instead.
626
627 Returns 1 if preparing was successful -- this thread is going to be
628 stepped now; or 0 if displaced stepping this thread got queued. */
629 static int
630 displaced_step_prepare (ptid_t ptid)
631 {
632 struct cleanup *old_cleanups, *ignore_cleanups;
633 struct regcache *regcache = get_thread_regcache (ptid);
634 struct gdbarch *gdbarch = get_regcache_arch (regcache);
635 CORE_ADDR original, copy;
636 ULONGEST len;
637 struct displaced_step_closure *closure;
638
639 /* We should never reach this function if the architecture does not
640 support displaced stepping. */
641 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
642
643 /* For the first cut, we're displaced stepping one thread at a
644 time. */
645
646 if (!ptid_equal (displaced_step_ptid, null_ptid))
647 {
648 /* Already waiting for a displaced step to finish. Defer this
649 request and place in queue. */
650 struct displaced_step_request *req, *new_req;
651
652 if (debug_displaced)
653 fprintf_unfiltered (gdb_stdlog,
654 "displaced: defering step of %s\n",
655 target_pid_to_str (ptid));
656
657 new_req = xmalloc (sizeof (*new_req));
658 new_req->ptid = ptid;
659 new_req->next = NULL;
660
661 if (displaced_step_request_queue)
662 {
663 for (req = displaced_step_request_queue;
664 req && req->next;
665 req = req->next)
666 ;
667 req->next = new_req;
668 }
669 else
670 displaced_step_request_queue = new_req;
671
672 return 0;
673 }
674 else
675 {
676 if (debug_displaced)
677 fprintf_unfiltered (gdb_stdlog,
678 "displaced: stepping %s now\n",
679 target_pid_to_str (ptid));
680 }
681
682 displaced_step_clear ();
683
684 old_cleanups = save_inferior_ptid ();
685 inferior_ptid = ptid;
686
687 original = regcache_read_pc (regcache);
688
689 copy = gdbarch_displaced_step_location (gdbarch);
690 len = gdbarch_max_insn_length (gdbarch);
691
692 /* Save the original contents of the copy area. */
693 displaced_step_saved_copy = xmalloc (len);
694 ignore_cleanups = make_cleanup (free_current_contents,
695 &displaced_step_saved_copy);
696 read_memory (copy, displaced_step_saved_copy, len);
697 if (debug_displaced)
698 {
699 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
700 paddr_nz (copy));
701 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
702 };
703
704 closure = gdbarch_displaced_step_copy_insn (gdbarch,
705 original, copy, regcache);
706
707 /* We don't support the fully-simulated case at present. */
708 gdb_assert (closure);
709
710 make_cleanup (cleanup_displaced_step_closure, closure);
711
712 /* Resume execution at the copy. */
713 regcache_write_pc (regcache, copy);
714
715 discard_cleanups (ignore_cleanups);
716
717 do_cleanups (old_cleanups);
718
719 if (debug_displaced)
720 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
721 paddr_nz (copy));
722
723 /* Save the information we need to fix things up if the step
724 succeeds. */
725 displaced_step_ptid = ptid;
726 displaced_step_gdbarch = gdbarch;
727 displaced_step_closure = closure;
728 displaced_step_original = original;
729 displaced_step_copy = copy;
730 return 1;
731 }
732
733 static void
734 displaced_step_clear_cleanup (void *ignore)
735 {
736 displaced_step_clear ();
737 }
738
739 static void
740 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
741 {
742 struct cleanup *ptid_cleanup = save_inferior_ptid ();
743 inferior_ptid = ptid;
744 write_memory (memaddr, myaddr, len);
745 do_cleanups (ptid_cleanup);
746 }
747
748 static void
749 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
750 {
751 struct cleanup *old_cleanups;
752
753 /* Was this event for the pid we displaced? */
754 if (ptid_equal (displaced_step_ptid, null_ptid)
755 || ! ptid_equal (displaced_step_ptid, event_ptid))
756 return;
757
758 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
759
760 /* Restore the contents of the copy area. */
761 {
762 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
763 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
764 displaced_step_saved_copy, len);
765 if (debug_displaced)
766 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
767 paddr_nz (displaced_step_copy));
768 }
769
770 /* Did the instruction complete successfully? */
771 if (signal == TARGET_SIGNAL_TRAP)
772 {
773 /* Fix up the resulting state. */
774 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
775 displaced_step_closure,
776 displaced_step_original,
777 displaced_step_copy,
778 get_thread_regcache (displaced_step_ptid));
779 }
780 else
781 {
782 /* Since the instruction didn't complete, all we can do is
783 relocate the PC. */
784 struct regcache *regcache = get_thread_regcache (event_ptid);
785 CORE_ADDR pc = regcache_read_pc (regcache);
786 pc = displaced_step_original + (pc - displaced_step_copy);
787 regcache_write_pc (regcache, pc);
788 }
789
790 do_cleanups (old_cleanups);
791
792 displaced_step_ptid = null_ptid;
793
794 /* Are there any pending displaced stepping requests? If so, run
795 one now. */
796 while (displaced_step_request_queue)
797 {
798 struct displaced_step_request *head;
799 ptid_t ptid;
800 CORE_ADDR actual_pc;
801
802 head = displaced_step_request_queue;
803 ptid = head->ptid;
804 displaced_step_request_queue = head->next;
805 xfree (head);
806
807 context_switch (ptid);
808
809 actual_pc = read_pc ();
810
811 if (breakpoint_here_p (actual_pc))
812 {
813 if (debug_displaced)
814 fprintf_unfiltered (gdb_stdlog,
815 "displaced: stepping queued %s now\n",
816 target_pid_to_str (ptid));
817
818 displaced_step_prepare (ptid);
819
820 if (debug_displaced)
821 {
822 gdb_byte buf[4];
823
824 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
825 paddr_nz (actual_pc));
826 read_memory (actual_pc, buf, sizeof (buf));
827 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
828 }
829
830 target_resume (ptid, 1, TARGET_SIGNAL_0);
831
832 /* Done, we're stepping a thread. */
833 break;
834 }
835 else
836 {
837 int step;
838 struct thread_info *tp = inferior_thread ();
839
840 /* The breakpoint we were sitting under has since been
841 removed. */
842 tp->trap_expected = 0;
843
844 /* Go back to what we were trying to do. */
845 step = currently_stepping (tp);
846
847 if (debug_displaced)
848 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
849 target_pid_to_str (tp->ptid), step);
850
851 target_resume (ptid, step, TARGET_SIGNAL_0);
852 tp->stop_signal = TARGET_SIGNAL_0;
853
854 /* This request was discarded. See if there's any other
855 thread waiting for its turn. */
856 }
857 }
858 }
859
860 /* Update global variables holding ptids to hold NEW_PTID if they were
861 holding OLD_PTID. */
862 static void
863 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
864 {
865 struct displaced_step_request *it;
866
867 if (ptid_equal (inferior_ptid, old_ptid))
868 inferior_ptid = new_ptid;
869
870 if (ptid_equal (singlestep_ptid, old_ptid))
871 singlestep_ptid = new_ptid;
872
873 if (ptid_equal (displaced_step_ptid, old_ptid))
874 displaced_step_ptid = new_ptid;
875
876 if (ptid_equal (deferred_step_ptid, old_ptid))
877 deferred_step_ptid = new_ptid;
878
879 for (it = displaced_step_request_queue; it; it = it->next)
880 if (ptid_equal (it->ptid, old_ptid))
881 it->ptid = new_ptid;
882 }
883
884 \f
885 /* Resuming. */
886
887 /* Things to clean up if we QUIT out of resume (). */
888 static void
889 resume_cleanups (void *ignore)
890 {
891 normal_stop ();
892 }
893
894 static const char schedlock_off[] = "off";
895 static const char schedlock_on[] = "on";
896 static const char schedlock_step[] = "step";
897 static const char *scheduler_enums[] = {
898 schedlock_off,
899 schedlock_on,
900 schedlock_step,
901 NULL
902 };
903 static const char *scheduler_mode = schedlock_off;
904 static void
905 show_scheduler_mode (struct ui_file *file, int from_tty,
906 struct cmd_list_element *c, const char *value)
907 {
908 fprintf_filtered (file, _("\
909 Mode for locking scheduler during execution is \"%s\".\n"),
910 value);
911 }
912
913 static void
914 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
915 {
916 if (!target_can_lock_scheduler)
917 {
918 scheduler_mode = schedlock_off;
919 error (_("Target '%s' cannot support this command."), target_shortname);
920 }
921 }
922
923
924 /* Resume the inferior, but allow a QUIT. This is useful if the user
925 wants to interrupt some lengthy single-stepping operation
926 (for child processes, the SIGINT goes to the inferior, and so
927 we get a SIGINT random_signal, but for remote debugging and perhaps
928 other targets, that's not true).
929
930 STEP nonzero if we should step (zero to continue instead).
931 SIG is the signal to give the inferior (zero for none). */
932 void
933 resume (int step, enum target_signal sig)
934 {
935 int should_resume = 1;
936 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
937 struct regcache *regcache = get_current_regcache ();
938 struct gdbarch *gdbarch = get_regcache_arch (regcache);
939 struct thread_info *tp = inferior_thread ();
940 CORE_ADDR pc = regcache_read_pc (regcache);
941 QUIT;
942
943 if (debug_infrun)
944 fprintf_unfiltered (gdb_stdlog,
945 "infrun: resume (step=%d, signal=%d), "
946 "trap_expected=%d\n",
947 step, sig, tp->trap_expected);
948
949 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
950 over an instruction that causes a page fault without triggering
951 a hardware watchpoint. The kernel properly notices that it shouldn't
952 stop, because the hardware watchpoint is not triggered, but it forgets
953 the step request and continues the program normally.
954 Work around the problem by removing hardware watchpoints if a step is
955 requested, GDB will check for a hardware watchpoint trigger after the
956 step anyway. */
957 if (CANNOT_STEP_HW_WATCHPOINTS && step)
958 remove_hw_watchpoints ();
959
960
961 /* Normally, by the time we reach `resume', the breakpoints are either
962 removed or inserted, as appropriate. The exception is if we're sitting
963 at a permanent breakpoint; we need to step over it, but permanent
964 breakpoints can't be removed. So we have to test for it here. */
965 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
966 {
967 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
968 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
969 else
970 error (_("\
971 The program is stopped at a permanent breakpoint, but GDB does not know\n\
972 how to step past a permanent breakpoint on this architecture. Try using\n\
973 a command like `return' or `jump' to continue execution."));
974 }
975
976 /* If enabled, step over breakpoints by executing a copy of the
977 instruction at a different address.
978
979 We can't use displaced stepping when we have a signal to deliver;
980 the comments for displaced_step_prepare explain why. The
981 comments in the handle_inferior event for dealing with 'random
982 signals' explain what we do instead. */
983 if (use_displaced_stepping (gdbarch)
984 && tp->trap_expected
985 && sig == TARGET_SIGNAL_0)
986 {
987 if (!displaced_step_prepare (inferior_ptid))
988 {
989 /* Got placed in displaced stepping queue. Will be resumed
990 later when all the currently queued displaced stepping
991 requests finish. The thread is not executing at this point,
992 and the call to set_executing will be made later. But we
993 need to call set_running here, since from frontend point of view,
994 the thread is running. */
995 set_running (inferior_ptid, 1);
996 discard_cleanups (old_cleanups);
997 return;
998 }
999 }
1000
1001 if (step && gdbarch_software_single_step_p (gdbarch))
1002 {
1003 /* Do it the hard way, w/temp breakpoints */
1004 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
1005 {
1006 /* ...and don't ask hardware to do it. */
1007 step = 0;
1008 /* and do not pull these breakpoints until after a `wait' in
1009 `wait_for_inferior' */
1010 singlestep_breakpoints_inserted_p = 1;
1011 singlestep_ptid = inferior_ptid;
1012 singlestep_pc = pc;
1013 }
1014 }
1015
1016 /* If there were any forks/vforks/execs that were caught and are
1017 now to be followed, then do so. */
1018 switch (pending_follow.kind)
1019 {
1020 case TARGET_WAITKIND_FORKED:
1021 case TARGET_WAITKIND_VFORKED:
1022 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1023 if (follow_fork ())
1024 should_resume = 0;
1025 break;
1026
1027 case TARGET_WAITKIND_EXECD:
1028 /* follow_exec is called as soon as the exec event is seen. */
1029 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1030 break;
1031
1032 default:
1033 break;
1034 }
1035
1036 /* Install inferior's terminal modes. */
1037 target_terminal_inferior ();
1038
1039 if (should_resume)
1040 {
1041 ptid_t resume_ptid;
1042
1043 resume_ptid = RESUME_ALL; /* Default */
1044
1045 /* If STEP is set, it's a request to use hardware stepping
1046 facilities. But in that case, we should never
1047 use singlestep breakpoint. */
1048 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1049
1050 if (singlestep_breakpoints_inserted_p
1051 && stepping_past_singlestep_breakpoint)
1052 {
1053 /* The situation here is as follows. In thread T1 we wanted to
1054 single-step. Lacking hardware single-stepping we've
1055 set breakpoint at the PC of the next instruction -- call it
1056 P. After resuming, we've hit that breakpoint in thread T2.
1057 Now we've removed original breakpoint, inserted breakpoint
1058 at P+1, and try to step to advance T2 past breakpoint.
1059 We need to step only T2, as if T1 is allowed to freely run,
1060 it can run past P, and if other threads are allowed to run,
1061 they can hit breakpoint at P+1, and nested hits of single-step
1062 breakpoints is not something we'd want -- that's complicated
1063 to support, and has no value. */
1064 resume_ptid = inferior_ptid;
1065 }
1066
1067 if ((step || singlestep_breakpoints_inserted_p)
1068 && tp->trap_expected)
1069 {
1070 /* We're allowing a thread to run past a breakpoint it has
1071 hit, by single-stepping the thread with the breakpoint
1072 removed. In which case, we need to single-step only this
1073 thread, and keep others stopped, as they can miss this
1074 breakpoint if allowed to run.
1075
1076 The current code actually removes all breakpoints when
1077 doing this, not just the one being stepped over, so if we
1078 let other threads run, we can actually miss any
1079 breakpoint, not just the one at PC. */
1080 resume_ptid = inferior_ptid;
1081 }
1082
1083 if (non_stop)
1084 {
1085 /* With non-stop mode on, threads are always handled
1086 individually. */
1087 resume_ptid = inferior_ptid;
1088 }
1089 else if ((scheduler_mode == schedlock_on)
1090 || (scheduler_mode == schedlock_step
1091 && (step || singlestep_breakpoints_inserted_p)))
1092 {
1093 /* User-settable 'scheduler' mode requires solo thread resume. */
1094 resume_ptid = inferior_ptid;
1095 }
1096
1097 if (gdbarch_cannot_step_breakpoint (gdbarch))
1098 {
1099 /* Most targets can step a breakpoint instruction, thus
1100 executing it normally. But if this one cannot, just
1101 continue and we will hit it anyway. */
1102 if (step && breakpoint_inserted_here_p (pc))
1103 step = 0;
1104 }
1105
1106 if (debug_displaced
1107 && use_displaced_stepping (gdbarch)
1108 && tp->trap_expected)
1109 {
1110 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1111 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1112 gdb_byte buf[4];
1113
1114 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1115 paddr_nz (actual_pc));
1116 read_memory (actual_pc, buf, sizeof (buf));
1117 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1118 }
1119
1120 target_resume (resume_ptid, step, sig);
1121
1122 /* Avoid confusing the next resume, if the next stop/resume
1123 happens to apply to another thread. */
1124 tp->stop_signal = TARGET_SIGNAL_0;
1125 }
1126
1127 discard_cleanups (old_cleanups);
1128 }
1129 \f
1130 /* Proceeding. */
1131
1132 /* Clear out all variables saying what to do when inferior is continued.
1133 First do this, then set the ones you want, then call `proceed'. */
1134
1135 void
1136 clear_proceed_status (void)
1137 {
1138 if (!ptid_equal (inferior_ptid, null_ptid))
1139 {
1140 struct thread_info *tp;
1141 struct inferior *inferior;
1142
1143 tp = inferior_thread ();
1144
1145 tp->trap_expected = 0;
1146 tp->step_range_start = 0;
1147 tp->step_range_end = 0;
1148 tp->step_frame_id = null_frame_id;
1149 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1150
1151 tp->stop_step = 0;
1152
1153 tp->proceed_to_finish = 0;
1154
1155 /* Discard any remaining commands or status from previous
1156 stop. */
1157 bpstat_clear (&tp->stop_bpstat);
1158
1159 inferior = current_inferior ();
1160 inferior->stop_soon = NO_STOP_QUIETLY;
1161 }
1162
1163 stop_after_trap = 0;
1164 breakpoint_proceeded = 1; /* We're about to proceed... */
1165
1166 if (stop_registers)
1167 {
1168 regcache_xfree (stop_registers);
1169 stop_registers = NULL;
1170 }
1171 }
1172
1173 /* This should be suitable for any targets that support threads. */
1174
1175 static int
1176 prepare_to_proceed (int step)
1177 {
1178 ptid_t wait_ptid;
1179 struct target_waitstatus wait_status;
1180
1181 /* Get the last target status returned by target_wait(). */
1182 get_last_target_status (&wait_ptid, &wait_status);
1183
1184 /* Make sure we were stopped at a breakpoint. */
1185 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1186 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1187 {
1188 return 0;
1189 }
1190
1191 /* Switched over from WAIT_PID. */
1192 if (!ptid_equal (wait_ptid, minus_one_ptid)
1193 && !ptid_equal (inferior_ptid, wait_ptid))
1194 {
1195 struct regcache *regcache = get_thread_regcache (wait_ptid);
1196
1197 if (breakpoint_here_p (regcache_read_pc (regcache)))
1198 {
1199 /* If stepping, remember current thread to switch back to. */
1200 if (step)
1201 deferred_step_ptid = inferior_ptid;
1202
1203 /* Switch back to WAIT_PID thread. */
1204 switch_to_thread (wait_ptid);
1205
1206 /* We return 1 to indicate that there is a breakpoint here,
1207 so we need to step over it before continuing to avoid
1208 hitting it straight away. */
1209 return 1;
1210 }
1211 }
1212
1213 return 0;
1214 }
1215
1216 /* Basic routine for continuing the program in various fashions.
1217
1218 ADDR is the address to resume at, or -1 for resume where stopped.
1219 SIGGNAL is the signal to give it, or 0 for none,
1220 or -1 for act according to how it stopped.
1221 STEP is nonzero if should trap after one instruction.
1222 -1 means return after that and print nothing.
1223 You should probably set various step_... variables
1224 before calling here, if you are stepping.
1225
1226 You should call clear_proceed_status before calling proceed. */
1227
1228 void
1229 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1230 {
1231 struct regcache *regcache = get_current_regcache ();
1232 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1233 struct thread_info *tp;
1234 CORE_ADDR pc = regcache_read_pc (regcache);
1235 int oneproc = 0;
1236 enum target_signal stop_signal;
1237
1238 if (step > 0)
1239 step_start_function = find_pc_function (pc);
1240 if (step < 0)
1241 stop_after_trap = 1;
1242
1243 if (addr == (CORE_ADDR) -1)
1244 {
1245 if (pc == stop_pc && breakpoint_here_p (pc)
1246 && execution_direction != EXEC_REVERSE)
1247 /* There is a breakpoint at the address we will resume at,
1248 step one instruction before inserting breakpoints so that
1249 we do not stop right away (and report a second hit at this
1250 breakpoint).
1251
1252 Note, we don't do this in reverse, because we won't
1253 actually be executing the breakpoint insn anyway.
1254 We'll be (un-)executing the previous instruction. */
1255
1256 oneproc = 1;
1257 else if (gdbarch_single_step_through_delay_p (gdbarch)
1258 && gdbarch_single_step_through_delay (gdbarch,
1259 get_current_frame ()))
1260 /* We stepped onto an instruction that needs to be stepped
1261 again before re-inserting the breakpoint, do so. */
1262 oneproc = 1;
1263 }
1264 else
1265 {
1266 regcache_write_pc (regcache, addr);
1267 }
1268
1269 if (debug_infrun)
1270 fprintf_unfiltered (gdb_stdlog,
1271 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1272 paddr_nz (addr), siggnal, step);
1273
1274 if (non_stop)
1275 /* In non-stop, each thread is handled individually. The context
1276 must already be set to the right thread here. */
1277 ;
1278 else
1279 {
1280 /* In a multi-threaded task we may select another thread and
1281 then continue or step.
1282
1283 But if the old thread was stopped at a breakpoint, it will
1284 immediately cause another breakpoint stop without any
1285 execution (i.e. it will report a breakpoint hit incorrectly).
1286 So we must step over it first.
1287
1288 prepare_to_proceed checks the current thread against the
1289 thread that reported the most recent event. If a step-over
1290 is required it returns TRUE and sets the current thread to
1291 the old thread. */
1292 if (prepare_to_proceed (step))
1293 oneproc = 1;
1294 }
1295
1296 /* prepare_to_proceed may change the current thread. */
1297 tp = inferior_thread ();
1298
1299 if (oneproc)
1300 {
1301 tp->trap_expected = 1;
1302 /* If displaced stepping is enabled, we can step over the
1303 breakpoint without hitting it, so leave all breakpoints
1304 inserted. Otherwise we need to disable all breakpoints, step
1305 one instruction, and then re-add them when that step is
1306 finished. */
1307 if (!use_displaced_stepping (gdbarch))
1308 remove_breakpoints ();
1309 }
1310
1311 /* We can insert breakpoints if we're not trying to step over one,
1312 or if we are stepping over one but we're using displaced stepping
1313 to do so. */
1314 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1315 insert_breakpoints ();
1316
1317 if (!non_stop)
1318 {
1319 /* Pass the last stop signal to the thread we're resuming,
1320 irrespective of whether the current thread is the thread that
1321 got the last event or not. This was historically GDB's
1322 behaviour before keeping a stop_signal per thread. */
1323
1324 struct thread_info *last_thread;
1325 ptid_t last_ptid;
1326 struct target_waitstatus last_status;
1327
1328 get_last_target_status (&last_ptid, &last_status);
1329 if (!ptid_equal (inferior_ptid, last_ptid)
1330 && !ptid_equal (last_ptid, null_ptid)
1331 && !ptid_equal (last_ptid, minus_one_ptid))
1332 {
1333 last_thread = find_thread_pid (last_ptid);
1334 if (last_thread)
1335 {
1336 tp->stop_signal = last_thread->stop_signal;
1337 last_thread->stop_signal = TARGET_SIGNAL_0;
1338 }
1339 }
1340 }
1341
1342 if (siggnal != TARGET_SIGNAL_DEFAULT)
1343 tp->stop_signal = siggnal;
1344 /* If this signal should not be seen by program,
1345 give it zero. Used for debugging signals. */
1346 else if (!signal_program[tp->stop_signal])
1347 tp->stop_signal = TARGET_SIGNAL_0;
1348
1349 annotate_starting ();
1350
1351 /* Make sure that output from GDB appears before output from the
1352 inferior. */
1353 gdb_flush (gdb_stdout);
1354
1355 /* Refresh prev_pc value just prior to resuming. This used to be
1356 done in stop_stepping, however, setting prev_pc there did not handle
1357 scenarios such as inferior function calls or returning from
1358 a function via the return command. In those cases, the prev_pc
1359 value was not set properly for subsequent commands. The prev_pc value
1360 is used to initialize the starting line number in the ecs. With an
1361 invalid value, the gdb next command ends up stopping at the position
1362 represented by the next line table entry past our start position.
1363 On platforms that generate one line table entry per line, this
1364 is not a problem. However, on the ia64, the compiler generates
1365 extraneous line table entries that do not increase the line number.
1366 When we issue the gdb next command on the ia64 after an inferior call
1367 or a return command, we often end up a few instructions forward, still
1368 within the original line we started.
1369
1370 An attempt was made to have init_execution_control_state () refresh
1371 the prev_pc value before calculating the line number. This approach
1372 did not work because on platforms that use ptrace, the pc register
1373 cannot be read unless the inferior is stopped. At that point, we
1374 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1375 call can fail. Setting the prev_pc value here ensures the value is
1376 updated correctly when the inferior is stopped. */
1377 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1378
1379 /* Fill in with reasonable starting values. */
1380 init_thread_stepping_state (tp);
1381
1382 /* Reset to normal state. */
1383 init_infwait_state ();
1384
1385 /* Resume inferior. */
1386 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
1387
1388 /* Wait for it to stop (if not standalone)
1389 and in any case decode why it stopped, and act accordingly. */
1390 /* Do this only if we are not using the event loop, or if the target
1391 does not support asynchronous execution. */
1392 if (!target_can_async_p ())
1393 {
1394 wait_for_inferior (0);
1395 normal_stop ();
1396 }
1397 }
1398 \f
1399
1400 /* Start remote-debugging of a machine over a serial link. */
1401
1402 void
1403 start_remote (int from_tty)
1404 {
1405 struct inferior *inferior;
1406 init_wait_for_inferior ();
1407
1408 inferior = current_inferior ();
1409 inferior->stop_soon = STOP_QUIETLY_REMOTE;
1410
1411 /* Always go on waiting for the target, regardless of the mode. */
1412 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1413 indicate to wait_for_inferior that a target should timeout if
1414 nothing is returned (instead of just blocking). Because of this,
1415 targets expecting an immediate response need to, internally, set
1416 things up so that the target_wait() is forced to eventually
1417 timeout. */
1418 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1419 differentiate to its caller what the state of the target is after
1420 the initial open has been performed. Here we're assuming that
1421 the target has stopped. It should be possible to eventually have
1422 target_open() return to the caller an indication that the target
1423 is currently running and GDB state should be set to the same as
1424 for an async run. */
1425 wait_for_inferior (0);
1426
1427 /* Now that the inferior has stopped, do any bookkeeping like
1428 loading shared libraries. We want to do this before normal_stop,
1429 so that the displayed frame is up to date. */
1430 post_create_inferior (&current_target, from_tty);
1431
1432 normal_stop ();
1433 }
1434
1435 /* Initialize static vars when a new inferior begins. */
1436
1437 void
1438 init_wait_for_inferior (void)
1439 {
1440 /* These are meaningless until the first time through wait_for_inferior. */
1441
1442 breakpoint_init_inferior (inf_starting);
1443
1444 /* The first resume is not following a fork/vfork/exec. */
1445 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1446
1447 clear_proceed_status ();
1448
1449 stepping_past_singlestep_breakpoint = 0;
1450 deferred_step_ptid = null_ptid;
1451
1452 target_last_wait_ptid = minus_one_ptid;
1453
1454 previous_inferior_ptid = null_ptid;
1455 init_infwait_state ();
1456
1457 displaced_step_clear ();
1458 }
1459
1460 \f
1461 /* This enum encodes possible reasons for doing a target_wait, so that
1462 wfi can call target_wait in one place. (Ultimately the call will be
1463 moved out of the infinite loop entirely.) */
1464
1465 enum infwait_states
1466 {
1467 infwait_normal_state,
1468 infwait_thread_hop_state,
1469 infwait_step_watch_state,
1470 infwait_nonstep_watch_state
1471 };
1472
1473 /* Why did the inferior stop? Used to print the appropriate messages
1474 to the interface from within handle_inferior_event(). */
1475 enum inferior_stop_reason
1476 {
1477 /* Step, next, nexti, stepi finished. */
1478 END_STEPPING_RANGE,
1479 /* Inferior terminated by signal. */
1480 SIGNAL_EXITED,
1481 /* Inferior exited. */
1482 EXITED,
1483 /* Inferior received signal, and user asked to be notified. */
1484 SIGNAL_RECEIVED,
1485 /* Reverse execution -- target ran out of history info. */
1486 NO_HISTORY
1487 };
1488
1489 /* The PTID we'll do a target_wait on.*/
1490 ptid_t waiton_ptid;
1491
1492 /* Current inferior wait state. */
1493 enum infwait_states infwait_state;
1494
1495 /* Data to be passed around while handling an event. This data is
1496 discarded between events. */
1497 struct execution_control_state
1498 {
1499 ptid_t ptid;
1500 /* The thread that got the event, if this was a thread event; NULL
1501 otherwise. */
1502 struct thread_info *event_thread;
1503
1504 struct target_waitstatus ws;
1505 int random_signal;
1506 CORE_ADDR stop_func_start;
1507 CORE_ADDR stop_func_end;
1508 char *stop_func_name;
1509 int new_thread_event;
1510 int wait_some_more;
1511 };
1512
1513 void init_execution_control_state (struct execution_control_state *ecs);
1514
1515 void handle_inferior_event (struct execution_control_state *ecs);
1516
1517 static void handle_step_into_function (struct execution_control_state *ecs);
1518 static void handle_step_into_function_backward (struct execution_control_state *ecs);
1519 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1520 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1521 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1522 struct frame_id sr_id);
1523 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1524
1525 static void stop_stepping (struct execution_control_state *ecs);
1526 static void prepare_to_wait (struct execution_control_state *ecs);
1527 static void keep_going (struct execution_control_state *ecs);
1528 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1529 int stop_info);
1530
1531 /* Callback for iterate_over_threads. */
1532
1533 static int
1534 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1535 {
1536 if (is_exited (info->ptid))
1537 return 0;
1538
1539 delete_step_resume_breakpoint (info);
1540 return 0;
1541 }
1542
1543 /* In all-stop, delete the step resume breakpoint of any thread that
1544 had one. In non-stop, delete the step resume breakpoint of the
1545 thread that just stopped. */
1546
1547 static void
1548 delete_step_thread_step_resume_breakpoint (void)
1549 {
1550 if (!target_has_execution
1551 || ptid_equal (inferior_ptid, null_ptid))
1552 /* If the inferior has exited, we have already deleted the step
1553 resume breakpoints out of GDB's lists. */
1554 return;
1555
1556 if (non_stop)
1557 {
1558 /* If in non-stop mode, only delete the step-resume or
1559 longjmp-resume breakpoint of the thread that just stopped
1560 stepping. */
1561 struct thread_info *tp = inferior_thread ();
1562 delete_step_resume_breakpoint (tp);
1563 }
1564 else
1565 /* In all-stop mode, delete all step-resume and longjmp-resume
1566 breakpoints of any thread that had them. */
1567 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1568 }
1569
1570 /* A cleanup wrapper. */
1571
1572 static void
1573 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1574 {
1575 delete_step_thread_step_resume_breakpoint ();
1576 }
1577
1578 /* Wait for control to return from inferior to debugger.
1579
1580 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1581 as if they were SIGTRAP signals. This can be useful during
1582 the startup sequence on some targets such as HP/UX, where
1583 we receive an EXEC event instead of the expected SIGTRAP.
1584
1585 If inferior gets a signal, we may decide to start it up again
1586 instead of returning. That is why there is a loop in this function.
1587 When this function actually returns it means the inferior
1588 should be left stopped and GDB should read more commands. */
1589
1590 void
1591 wait_for_inferior (int treat_exec_as_sigtrap)
1592 {
1593 struct cleanup *old_cleanups;
1594 struct execution_control_state ecss;
1595 struct execution_control_state *ecs;
1596
1597 if (debug_infrun)
1598 fprintf_unfiltered
1599 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1600 treat_exec_as_sigtrap);
1601
1602 old_cleanups =
1603 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
1604
1605 ecs = &ecss;
1606 memset (ecs, 0, sizeof (*ecs));
1607
1608 overlay_cache_invalid = 1;
1609
1610 /* We'll update this if & when we switch to a new thread. */
1611 previous_inferior_ptid = inferior_ptid;
1612
1613 /* We have to invalidate the registers BEFORE calling target_wait
1614 because they can be loaded from the target while in target_wait.
1615 This makes remote debugging a bit more efficient for those
1616 targets that provide critical registers as part of their normal
1617 status mechanism. */
1618
1619 registers_changed ();
1620
1621 while (1)
1622 {
1623 if (deprecated_target_wait_hook)
1624 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1625 else
1626 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1627
1628 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1629 {
1630 xfree (ecs->ws.value.execd_pathname);
1631 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1632 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1633 }
1634
1635 /* Now figure out what to do with the result of the result. */
1636 handle_inferior_event (ecs);
1637
1638 if (!ecs->wait_some_more)
1639 break;
1640 }
1641
1642 do_cleanups (old_cleanups);
1643 }
1644
1645 /* Asynchronous version of wait_for_inferior. It is called by the
1646 event loop whenever a change of state is detected on the file
1647 descriptor corresponding to the target. It can be called more than
1648 once to complete a single execution command. In such cases we need
1649 to keep the state in a global variable ECSS. If it is the last time
1650 that this function is called for a single execution command, then
1651 report to the user that the inferior has stopped, and do the
1652 necessary cleanups. */
1653
1654 void
1655 fetch_inferior_event (void *client_data)
1656 {
1657 struct execution_control_state ecss;
1658 struct execution_control_state *ecs = &ecss;
1659 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1660 int was_sync = sync_execution;
1661
1662 memset (ecs, 0, sizeof (*ecs));
1663
1664 overlay_cache_invalid = 1;
1665
1666 /* We can only rely on wait_for_more being correct before handling
1667 the event in all-stop, but previous_inferior_ptid isn't used in
1668 non-stop. */
1669 if (!ecs->wait_some_more)
1670 /* We'll update this if & when we switch to a new thread. */
1671 previous_inferior_ptid = inferior_ptid;
1672
1673 if (non_stop)
1674 /* In non-stop mode, the user/frontend should not notice a thread
1675 switch due to internal events. Make sure we reverse to the
1676 user selected thread and frame after handling the event and
1677 running any breakpoint commands. */
1678 make_cleanup_restore_current_thread ();
1679
1680 /* We have to invalidate the registers BEFORE calling target_wait
1681 because they can be loaded from the target while in target_wait.
1682 This makes remote debugging a bit more efficient for those
1683 targets that provide critical registers as part of their normal
1684 status mechanism. */
1685
1686 registers_changed ();
1687
1688 if (deprecated_target_wait_hook)
1689 ecs->ptid =
1690 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1691 else
1692 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1693
1694 if (non_stop
1695 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1696 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1697 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1698 /* In non-stop mode, each thread is handled individually. Switch
1699 early, so the global state is set correctly for this
1700 thread. */
1701 context_switch (ecs->ptid);
1702
1703 /* Now figure out what to do with the result of the result. */
1704 handle_inferior_event (ecs);
1705
1706 if (!ecs->wait_some_more)
1707 {
1708 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
1709
1710 delete_step_thread_step_resume_breakpoint ();
1711
1712 /* We may not find an inferior if this was a process exit. */
1713 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
1714 normal_stop ();
1715
1716 if (target_has_execution
1717 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1718 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1719 && ecs->event_thread->step_multi
1720 && ecs->event_thread->stop_step)
1721 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1722 else
1723 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1724 }
1725
1726 /* Revert thread and frame. */
1727 do_cleanups (old_chain);
1728
1729 /* If the inferior was in sync execution mode, and now isn't,
1730 restore the prompt. */
1731 if (was_sync && !sync_execution)
1732 display_gdb_prompt (0);
1733 }
1734
1735 /* Prepare an execution control state for looping through a
1736 wait_for_inferior-type loop. */
1737
1738 void
1739 init_execution_control_state (struct execution_control_state *ecs)
1740 {
1741 ecs->random_signal = 0;
1742 }
1743
1744 /* Clear context switchable stepping state. */
1745
1746 void
1747 init_thread_stepping_state (struct thread_info *tss)
1748 {
1749 struct symtab_and_line sal;
1750
1751 tss->stepping_over_breakpoint = 0;
1752 tss->step_after_step_resume_breakpoint = 0;
1753 tss->stepping_through_solib_after_catch = 0;
1754 tss->stepping_through_solib_catchpoints = NULL;
1755
1756 sal = find_pc_line (tss->prev_pc, 0);
1757 tss->current_line = sal.line;
1758 tss->current_symtab = sal.symtab;
1759 }
1760
1761 /* Return the cached copy of the last pid/waitstatus returned by
1762 target_wait()/deprecated_target_wait_hook(). The data is actually
1763 cached by handle_inferior_event(), which gets called immediately
1764 after target_wait()/deprecated_target_wait_hook(). */
1765
1766 void
1767 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1768 {
1769 *ptidp = target_last_wait_ptid;
1770 *status = target_last_waitstatus;
1771 }
1772
1773 void
1774 nullify_last_target_wait_ptid (void)
1775 {
1776 target_last_wait_ptid = minus_one_ptid;
1777 }
1778
1779 /* Switch thread contexts. */
1780
1781 static void
1782 context_switch (ptid_t ptid)
1783 {
1784 if (debug_infrun)
1785 {
1786 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1787 target_pid_to_str (inferior_ptid));
1788 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1789 target_pid_to_str (ptid));
1790 }
1791
1792 switch_to_thread (ptid);
1793 }
1794
1795 static void
1796 adjust_pc_after_break (struct execution_control_state *ecs)
1797 {
1798 struct regcache *regcache;
1799 struct gdbarch *gdbarch;
1800 CORE_ADDR breakpoint_pc;
1801
1802 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1803 we aren't, just return.
1804
1805 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1806 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1807 implemented by software breakpoints should be handled through the normal
1808 breakpoint layer.
1809
1810 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1811 different signals (SIGILL or SIGEMT for instance), but it is less
1812 clear where the PC is pointing afterwards. It may not match
1813 gdbarch_decr_pc_after_break. I don't know any specific target that
1814 generates these signals at breakpoints (the code has been in GDB since at
1815 least 1992) so I can not guess how to handle them here.
1816
1817 In earlier versions of GDB, a target with
1818 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1819 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1820 target with both of these set in GDB history, and it seems unlikely to be
1821 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1822
1823 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1824 return;
1825
1826 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1827 return;
1828
1829 /* In reverse execution, when a breakpoint is hit, the instruction
1830 under it has already been de-executed. The reported PC always
1831 points at the breakpoint address, so adjusting it further would
1832 be wrong. E.g., consider this case on a decr_pc_after_break == 1
1833 architecture:
1834
1835 B1 0x08000000 : INSN1
1836 B2 0x08000001 : INSN2
1837 0x08000002 : INSN3
1838 PC -> 0x08000003 : INSN4
1839
1840 Say you're stopped at 0x08000003 as above. Reverse continuing
1841 from that point should hit B2 as below. Reading the PC when the
1842 SIGTRAP is reported should read 0x08000001 and INSN2 should have
1843 been de-executed already.
1844
1845 B1 0x08000000 : INSN1
1846 B2 PC -> 0x08000001 : INSN2
1847 0x08000002 : INSN3
1848 0x08000003 : INSN4
1849
1850 We can't apply the same logic as for forward execution, because
1851 we would wrongly adjust the PC to 0x08000000, since there's a
1852 breakpoint at PC - 1. We'd then report a hit on B1, although
1853 INSN1 hadn't been de-executed yet. Doing nothing is the correct
1854 behaviour. */
1855 if (execution_direction == EXEC_REVERSE)
1856 return;
1857
1858 /* If this target does not decrement the PC after breakpoints, then
1859 we have nothing to do. */
1860 regcache = get_thread_regcache (ecs->ptid);
1861 gdbarch = get_regcache_arch (regcache);
1862 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
1863 return;
1864
1865 /* Find the location where (if we've hit a breakpoint) the
1866 breakpoint would be. */
1867 breakpoint_pc = regcache_read_pc (regcache)
1868 - gdbarch_decr_pc_after_break (gdbarch);
1869
1870 /* Check whether there actually is a software breakpoint inserted at
1871 that location.
1872
1873 If in non-stop mode, a race condition is possible where we've
1874 removed a breakpoint, but stop events for that breakpoint were
1875 already queued and arrive later. To suppress those spurious
1876 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1877 and retire them after a number of stop events are reported. */
1878 if (software_breakpoint_inserted_here_p (breakpoint_pc)
1879 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
1880 {
1881 /* When using hardware single-step, a SIGTRAP is reported for both
1882 a completed single-step and a software breakpoint. Need to
1883 differentiate between the two, as the latter needs adjusting
1884 but the former does not.
1885
1886 The SIGTRAP can be due to a completed hardware single-step only if
1887 - we didn't insert software single-step breakpoints
1888 - the thread to be examined is still the current thread
1889 - this thread is currently being stepped
1890
1891 If any of these events did not occur, we must have stopped due
1892 to hitting a software breakpoint, and have to back up to the
1893 breakpoint address.
1894
1895 As a special case, we could have hardware single-stepped a
1896 software breakpoint. In this case (prev_pc == breakpoint_pc),
1897 we also need to back up to the breakpoint address. */
1898
1899 if (singlestep_breakpoints_inserted_p
1900 || !ptid_equal (ecs->ptid, inferior_ptid)
1901 || !currently_stepping (ecs->event_thread)
1902 || ecs->event_thread->prev_pc == breakpoint_pc)
1903 regcache_write_pc (regcache, breakpoint_pc);
1904 }
1905 }
1906
1907 void
1908 init_infwait_state (void)
1909 {
1910 waiton_ptid = pid_to_ptid (-1);
1911 infwait_state = infwait_normal_state;
1912 }
1913
1914 void
1915 error_is_running (void)
1916 {
1917 error (_("\
1918 Cannot execute this command while the selected thread is running."));
1919 }
1920
1921 void
1922 ensure_not_running (void)
1923 {
1924 if (is_running (inferior_ptid))
1925 error_is_running ();
1926 }
1927
1928 /* Given an execution control state that has been freshly filled in
1929 by an event from the inferior, figure out what it means and take
1930 appropriate action. */
1931
1932 void
1933 handle_inferior_event (struct execution_control_state *ecs)
1934 {
1935 int sw_single_step_trap_p = 0;
1936 int stopped_by_watchpoint;
1937 int stepped_after_stopped_by_watchpoint = 0;
1938 struct symtab_and_line stop_pc_sal;
1939 enum stop_kind stop_soon;
1940
1941 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1942 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1943 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
1944 {
1945 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
1946 gdb_assert (inf);
1947 stop_soon = inf->stop_soon;
1948 }
1949 else
1950 stop_soon = NO_STOP_QUIETLY;
1951
1952 /* Cache the last pid/waitstatus. */
1953 target_last_wait_ptid = ecs->ptid;
1954 target_last_waitstatus = ecs->ws;
1955
1956 /* Always clear state belonging to the previous time we stopped. */
1957 stop_stack_dummy = 0;
1958
1959 /* If it's a new process, add it to the thread database */
1960
1961 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1962 && !ptid_equal (ecs->ptid, minus_one_ptid)
1963 && !in_thread_list (ecs->ptid));
1964
1965 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1966 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1967 add_thread (ecs->ptid);
1968
1969 ecs->event_thread = find_thread_pid (ecs->ptid);
1970
1971 /* Dependent on valid ECS->EVENT_THREAD. */
1972 adjust_pc_after_break (ecs);
1973
1974 /* Dependent on the current PC value modified by adjust_pc_after_break. */
1975 reinit_frame_cache ();
1976
1977 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
1978 {
1979 breakpoint_retire_moribund ();
1980
1981 /* Mark the non-executing threads accordingly. */
1982 if (!non_stop
1983 || ecs->ws.kind == TARGET_WAITKIND_EXITED
1984 || ecs->ws.kind == TARGET_WAITKIND_SIGNALLED)
1985 set_executing (pid_to_ptid (-1), 0);
1986 else
1987 set_executing (ecs->ptid, 0);
1988 }
1989
1990 switch (infwait_state)
1991 {
1992 case infwait_thread_hop_state:
1993 if (debug_infrun)
1994 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1995 /* Cancel the waiton_ptid. */
1996 waiton_ptid = pid_to_ptid (-1);
1997 break;
1998
1999 case infwait_normal_state:
2000 if (debug_infrun)
2001 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
2002 break;
2003
2004 case infwait_step_watch_state:
2005 if (debug_infrun)
2006 fprintf_unfiltered (gdb_stdlog,
2007 "infrun: infwait_step_watch_state\n");
2008
2009 stepped_after_stopped_by_watchpoint = 1;
2010 break;
2011
2012 case infwait_nonstep_watch_state:
2013 if (debug_infrun)
2014 fprintf_unfiltered (gdb_stdlog,
2015 "infrun: infwait_nonstep_watch_state\n");
2016 insert_breakpoints ();
2017
2018 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2019 handle things like signals arriving and other things happening
2020 in combination correctly? */
2021 stepped_after_stopped_by_watchpoint = 1;
2022 break;
2023
2024 default:
2025 internal_error (__FILE__, __LINE__, _("bad switch"));
2026 }
2027 infwait_state = infwait_normal_state;
2028
2029 switch (ecs->ws.kind)
2030 {
2031 case TARGET_WAITKIND_LOADED:
2032 if (debug_infrun)
2033 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
2034 /* Ignore gracefully during startup of the inferior, as it might
2035 be the shell which has just loaded some objects, otherwise
2036 add the symbols for the newly loaded objects. Also ignore at
2037 the beginning of an attach or remote session; we will query
2038 the full list of libraries once the connection is
2039 established. */
2040 if (stop_soon == NO_STOP_QUIETLY)
2041 {
2042 /* Check for any newly added shared libraries if we're
2043 supposed to be adding them automatically. Switch
2044 terminal for any messages produced by
2045 breakpoint_re_set. */
2046 target_terminal_ours_for_output ();
2047 /* NOTE: cagney/2003-11-25: Make certain that the target
2048 stack's section table is kept up-to-date. Architectures,
2049 (e.g., PPC64), use the section table to perform
2050 operations such as address => section name and hence
2051 require the table to contain all sections (including
2052 those found in shared libraries). */
2053 /* NOTE: cagney/2003-11-25: Pass current_target and not
2054 exec_ops to SOLIB_ADD. This is because current GDB is
2055 only tooled to propagate section_table changes out from
2056 the "current_target" (see target_resize_to_sections), and
2057 not up from the exec stratum. This, of course, isn't
2058 right. "infrun.c" should only interact with the
2059 exec/process stratum, instead relying on the target stack
2060 to propagate relevant changes (stop, section table
2061 changed, ...) up to other layers. */
2062 #ifdef SOLIB_ADD
2063 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2064 #else
2065 solib_add (NULL, 0, &current_target, auto_solib_add);
2066 #endif
2067 target_terminal_inferior ();
2068
2069 /* If requested, stop when the dynamic linker notifies
2070 gdb of events. This allows the user to get control
2071 and place breakpoints in initializer routines for
2072 dynamically loaded objects (among other things). */
2073 if (stop_on_solib_events)
2074 {
2075 stop_stepping (ecs);
2076 return;
2077 }
2078
2079 /* NOTE drow/2007-05-11: This might be a good place to check
2080 for "catch load". */
2081 }
2082
2083 /* If we are skipping through a shell, or through shared library
2084 loading that we aren't interested in, resume the program. If
2085 we're running the program normally, also resume. But stop if
2086 we're attaching or setting up a remote connection. */
2087 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2088 {
2089 /* Loading of shared libraries might have changed breakpoint
2090 addresses. Make sure new breakpoints are inserted. */
2091 if (stop_soon == NO_STOP_QUIETLY
2092 && !breakpoints_always_inserted_mode ())
2093 insert_breakpoints ();
2094 resume (0, TARGET_SIGNAL_0);
2095 prepare_to_wait (ecs);
2096 return;
2097 }
2098
2099 break;
2100
2101 case TARGET_WAITKIND_SPURIOUS:
2102 if (debug_infrun)
2103 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2104 resume (0, TARGET_SIGNAL_0);
2105 prepare_to_wait (ecs);
2106 return;
2107
2108 case TARGET_WAITKIND_EXITED:
2109 if (debug_infrun)
2110 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2111 target_terminal_ours (); /* Must do this before mourn anyway */
2112 print_stop_reason (EXITED, ecs->ws.value.integer);
2113
2114 /* Record the exit code in the convenience variable $_exitcode, so
2115 that the user can inspect this again later. */
2116 set_internalvar (lookup_internalvar ("_exitcode"),
2117 value_from_longest (builtin_type_int32,
2118 (LONGEST) ecs->ws.value.integer));
2119 gdb_flush (gdb_stdout);
2120 target_mourn_inferior ();
2121 singlestep_breakpoints_inserted_p = 0;
2122 stop_print_frame = 0;
2123 stop_stepping (ecs);
2124 return;
2125
2126 case TARGET_WAITKIND_SIGNALLED:
2127 if (debug_infrun)
2128 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2129 stop_print_frame = 0;
2130 target_terminal_ours (); /* Must do this before mourn anyway */
2131
2132 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2133 reach here unless the inferior is dead. However, for years
2134 target_kill() was called here, which hints that fatal signals aren't
2135 really fatal on some systems. If that's true, then some changes
2136 may be needed. */
2137 target_mourn_inferior ();
2138
2139 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
2140 singlestep_breakpoints_inserted_p = 0;
2141 stop_stepping (ecs);
2142 return;
2143
2144 /* The following are the only cases in which we keep going;
2145 the above cases end in a continue or goto. */
2146 case TARGET_WAITKIND_FORKED:
2147 case TARGET_WAITKIND_VFORKED:
2148 if (debug_infrun)
2149 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2150 pending_follow.kind = ecs->ws.kind;
2151
2152 pending_follow.fork_event.parent_pid = ecs->ptid;
2153 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
2154
2155 if (!ptid_equal (ecs->ptid, inferior_ptid))
2156 {
2157 context_switch (ecs->ptid);
2158 reinit_frame_cache ();
2159 }
2160
2161 stop_pc = read_pc ();
2162
2163 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2164
2165 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2166
2167 /* If no catchpoint triggered for this, then keep going. */
2168 if (ecs->random_signal)
2169 {
2170 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2171 keep_going (ecs);
2172 return;
2173 }
2174 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2175 goto process_event_stop_test;
2176
2177 case TARGET_WAITKIND_EXECD:
2178 if (debug_infrun)
2179 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2180 pending_follow.execd_pathname =
2181 savestring (ecs->ws.value.execd_pathname,
2182 strlen (ecs->ws.value.execd_pathname));
2183
2184 if (!ptid_equal (ecs->ptid, inferior_ptid))
2185 {
2186 context_switch (ecs->ptid);
2187 reinit_frame_cache ();
2188 }
2189
2190 stop_pc = read_pc ();
2191
2192 /* This causes the eventpoints and symbol table to be reset.
2193 Must do this now, before trying to determine whether to
2194 stop. */
2195 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2196 xfree (pending_follow.execd_pathname);
2197
2198 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2199 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2200
2201 /* If no catchpoint triggered for this, then keep going. */
2202 if (ecs->random_signal)
2203 {
2204 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2205 keep_going (ecs);
2206 return;
2207 }
2208 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2209 goto process_event_stop_test;
2210
2211 /* Be careful not to try to gather much state about a thread
2212 that's in a syscall. It's frequently a losing proposition. */
2213 case TARGET_WAITKIND_SYSCALL_ENTRY:
2214 if (debug_infrun)
2215 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2216 resume (0, TARGET_SIGNAL_0);
2217 prepare_to_wait (ecs);
2218 return;
2219
2220 /* Before examining the threads further, step this thread to
2221 get it entirely out of the syscall. (We get notice of the
2222 event when the thread is just on the verge of exiting a
2223 syscall. Stepping one instruction seems to get it back
2224 into user code.) */
2225 case TARGET_WAITKIND_SYSCALL_RETURN:
2226 if (debug_infrun)
2227 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2228 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2229 prepare_to_wait (ecs);
2230 return;
2231
2232 case TARGET_WAITKIND_STOPPED:
2233 if (debug_infrun)
2234 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2235 ecs->event_thread->stop_signal = ecs->ws.value.sig;
2236 break;
2237
2238 case TARGET_WAITKIND_NO_HISTORY:
2239 /* Reverse execution: target ran out of history info. */
2240 stop_pc = read_pc ();
2241 print_stop_reason (NO_HISTORY, 0);
2242 stop_stepping (ecs);
2243 return;
2244
2245 /* We had an event in the inferior, but we are not interested
2246 in handling it at this level. The lower layers have already
2247 done what needs to be done, if anything.
2248
2249 One of the possible circumstances for this is when the
2250 inferior produces output for the console. The inferior has
2251 not stopped, and we are ignoring the event. Another possible
2252 circumstance is any event which the lower level knows will be
2253 reported multiple times without an intervening resume. */
2254 case TARGET_WAITKIND_IGNORE:
2255 if (debug_infrun)
2256 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2257 prepare_to_wait (ecs);
2258 return;
2259 }
2260
2261 if (ecs->new_thread_event)
2262 {
2263 if (non_stop)
2264 /* Non-stop assumes that the target handles adding new threads
2265 to the thread list. */
2266 internal_error (__FILE__, __LINE__, "\
2267 targets should add new threads to the thread list themselves in non-stop mode.");
2268
2269 /* We may want to consider not doing a resume here in order to
2270 give the user a chance to play with the new thread. It might
2271 be good to make that a user-settable option. */
2272
2273 /* At this point, all threads are stopped (happens automatically
2274 in either the OS or the native code). Therefore we need to
2275 continue all threads in order to make progress. */
2276
2277 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2278 prepare_to_wait (ecs);
2279 return;
2280 }
2281
2282 /* Do we need to clean up the state of a thread that has completed a
2283 displaced single-step? (Doing so usually affects the PC, so do
2284 it here, before we set stop_pc.) */
2285 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
2286 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2287
2288 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2289
2290 if (debug_infrun)
2291 {
2292 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2293 paddr_nz (stop_pc));
2294 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2295 {
2296 CORE_ADDR addr;
2297 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2298
2299 if (target_stopped_data_address (&current_target, &addr))
2300 fprintf_unfiltered (gdb_stdlog,
2301 "infrun: stopped data address = 0x%s\n",
2302 paddr_nz (addr));
2303 else
2304 fprintf_unfiltered (gdb_stdlog,
2305 "infrun: (no data address available)\n");
2306 }
2307 }
2308
2309 if (stepping_past_singlestep_breakpoint)
2310 {
2311 gdb_assert (singlestep_breakpoints_inserted_p);
2312 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2313 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2314
2315 stepping_past_singlestep_breakpoint = 0;
2316
2317 /* We've either finished single-stepping past the single-step
2318 breakpoint, or stopped for some other reason. It would be nice if
2319 we could tell, but we can't reliably. */
2320 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2321 {
2322 if (debug_infrun)
2323 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2324 /* Pull the single step breakpoints out of the target. */
2325 remove_single_step_breakpoints ();
2326 singlestep_breakpoints_inserted_p = 0;
2327
2328 ecs->random_signal = 0;
2329
2330 context_switch (saved_singlestep_ptid);
2331 if (deprecated_context_hook)
2332 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2333
2334 resume (1, TARGET_SIGNAL_0);
2335 prepare_to_wait (ecs);
2336 return;
2337 }
2338 }
2339
2340 stepping_past_singlestep_breakpoint = 0;
2341
2342 if (!ptid_equal (deferred_step_ptid, null_ptid))
2343 {
2344 /* In non-stop mode, there's never a deferred_step_ptid set. */
2345 gdb_assert (!non_stop);
2346
2347 /* If we stopped for some other reason than single-stepping, ignore
2348 the fact that we were supposed to switch back. */
2349 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2350 {
2351 struct thread_info *tp;
2352
2353 if (debug_infrun)
2354 fprintf_unfiltered (gdb_stdlog,
2355 "infrun: handling deferred step\n");
2356
2357 /* Pull the single step breakpoints out of the target. */
2358 if (singlestep_breakpoints_inserted_p)
2359 {
2360 remove_single_step_breakpoints ();
2361 singlestep_breakpoints_inserted_p = 0;
2362 }
2363
2364 /* Note: We do not call context_switch at this point, as the
2365 context is already set up for stepping the original thread. */
2366 switch_to_thread (deferred_step_ptid);
2367 deferred_step_ptid = null_ptid;
2368 /* Suppress spurious "Switching to ..." message. */
2369 previous_inferior_ptid = inferior_ptid;
2370
2371 resume (1, TARGET_SIGNAL_0);
2372 prepare_to_wait (ecs);
2373 return;
2374 }
2375
2376 deferred_step_ptid = null_ptid;
2377 }
2378
2379 /* See if a thread hit a thread-specific breakpoint that was meant for
2380 another thread. If so, then step that thread past the breakpoint,
2381 and continue it. */
2382
2383 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2384 {
2385 int thread_hop_needed = 0;
2386
2387 /* Check if a regular breakpoint has been hit before checking
2388 for a potential single step breakpoint. Otherwise, GDB will
2389 not see this breakpoint hit when stepping onto breakpoints. */
2390 if (regular_breakpoint_inserted_here_p (stop_pc))
2391 {
2392 ecs->random_signal = 0;
2393 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2394 thread_hop_needed = 1;
2395 }
2396 else if (singlestep_breakpoints_inserted_p)
2397 {
2398 /* We have not context switched yet, so this should be true
2399 no matter which thread hit the singlestep breakpoint. */
2400 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2401 if (debug_infrun)
2402 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2403 "trap for %s\n",
2404 target_pid_to_str (ecs->ptid));
2405
2406 ecs->random_signal = 0;
2407 /* The call to in_thread_list is necessary because PTIDs sometimes
2408 change when we go from single-threaded to multi-threaded. If
2409 the singlestep_ptid is still in the list, assume that it is
2410 really different from ecs->ptid. */
2411 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2412 && in_thread_list (singlestep_ptid))
2413 {
2414 /* If the PC of the thread we were trying to single-step
2415 has changed, discard this event (which we were going
2416 to ignore anyway), and pretend we saw that thread
2417 trap. This prevents us continuously moving the
2418 single-step breakpoint forward, one instruction at a
2419 time. If the PC has changed, then the thread we were
2420 trying to single-step has trapped or been signalled,
2421 but the event has not been reported to GDB yet.
2422
2423 There might be some cases where this loses signal
2424 information, if a signal has arrived at exactly the
2425 same time that the PC changed, but this is the best
2426 we can do with the information available. Perhaps we
2427 should arrange to report all events for all threads
2428 when they stop, or to re-poll the remote looking for
2429 this particular thread (i.e. temporarily enable
2430 schedlock). */
2431
2432 CORE_ADDR new_singlestep_pc
2433 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2434
2435 if (new_singlestep_pc != singlestep_pc)
2436 {
2437 enum target_signal stop_signal;
2438
2439 if (debug_infrun)
2440 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2441 " but expected thread advanced also\n");
2442
2443 /* The current context still belongs to
2444 singlestep_ptid. Don't swap here, since that's
2445 the context we want to use. Just fudge our
2446 state and continue. */
2447 stop_signal = ecs->event_thread->stop_signal;
2448 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2449 ecs->ptid = singlestep_ptid;
2450 ecs->event_thread = find_thread_pid (ecs->ptid);
2451 ecs->event_thread->stop_signal = stop_signal;
2452 stop_pc = new_singlestep_pc;
2453 }
2454 else
2455 {
2456 if (debug_infrun)
2457 fprintf_unfiltered (gdb_stdlog,
2458 "infrun: unexpected thread\n");
2459
2460 thread_hop_needed = 1;
2461 stepping_past_singlestep_breakpoint = 1;
2462 saved_singlestep_ptid = singlestep_ptid;
2463 }
2464 }
2465 }
2466
2467 if (thread_hop_needed)
2468 {
2469 int remove_status = 0;
2470
2471 if (debug_infrun)
2472 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2473
2474 /* Saw a breakpoint, but it was hit by the wrong thread.
2475 Just continue. */
2476
2477 if (singlestep_breakpoints_inserted_p)
2478 {
2479 /* Pull the single step breakpoints out of the target. */
2480 remove_single_step_breakpoints ();
2481 singlestep_breakpoints_inserted_p = 0;
2482 }
2483
2484 /* If the arch can displace step, don't remove the
2485 breakpoints. */
2486 if (!use_displaced_stepping (current_gdbarch))
2487 remove_status = remove_breakpoints ();
2488
2489 /* Did we fail to remove breakpoints? If so, try
2490 to set the PC past the bp. (There's at least
2491 one situation in which we can fail to remove
2492 the bp's: On HP-UX's that use ttrace, we can't
2493 change the address space of a vforking child
2494 process until the child exits (well, okay, not
2495 then either :-) or execs. */
2496 if (remove_status != 0)
2497 error (_("Cannot step over breakpoint hit in wrong thread"));
2498 else
2499 { /* Single step */
2500 if (!ptid_equal (inferior_ptid, ecs->ptid))
2501 context_switch (ecs->ptid);
2502
2503 if (!non_stop)
2504 {
2505 /* Only need to require the next event from this
2506 thread in all-stop mode. */
2507 waiton_ptid = ecs->ptid;
2508 infwait_state = infwait_thread_hop_state;
2509 }
2510
2511 ecs->event_thread->stepping_over_breakpoint = 1;
2512 keep_going (ecs);
2513 registers_changed ();
2514 return;
2515 }
2516 }
2517 else if (singlestep_breakpoints_inserted_p)
2518 {
2519 sw_single_step_trap_p = 1;
2520 ecs->random_signal = 0;
2521 }
2522 }
2523 else
2524 ecs->random_signal = 1;
2525
2526 /* See if something interesting happened to the non-current thread. If
2527 so, then switch to that thread. */
2528 if (!ptid_equal (ecs->ptid, inferior_ptid))
2529 {
2530 if (debug_infrun)
2531 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2532
2533 context_switch (ecs->ptid);
2534
2535 if (deprecated_context_hook)
2536 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2537 }
2538
2539 if (singlestep_breakpoints_inserted_p)
2540 {
2541 /* Pull the single step breakpoints out of the target. */
2542 remove_single_step_breakpoints ();
2543 singlestep_breakpoints_inserted_p = 0;
2544 }
2545
2546 if (stepped_after_stopped_by_watchpoint)
2547 stopped_by_watchpoint = 0;
2548 else
2549 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2550
2551 /* If necessary, step over this watchpoint. We'll be back to display
2552 it in a moment. */
2553 if (stopped_by_watchpoint
2554 && (HAVE_STEPPABLE_WATCHPOINT
2555 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2556 {
2557 /* At this point, we are stopped at an instruction which has
2558 attempted to write to a piece of memory under control of
2559 a watchpoint. The instruction hasn't actually executed
2560 yet. If we were to evaluate the watchpoint expression
2561 now, we would get the old value, and therefore no change
2562 would seem to have occurred.
2563
2564 In order to make watchpoints work `right', we really need
2565 to complete the memory write, and then evaluate the
2566 watchpoint expression. We do this by single-stepping the
2567 target.
2568
2569 It may not be necessary to disable the watchpoint to stop over
2570 it. For example, the PA can (with some kernel cooperation)
2571 single step over a watchpoint without disabling the watchpoint.
2572
2573 It is far more common to need to disable a watchpoint to step
2574 the inferior over it. If we have non-steppable watchpoints,
2575 we must disable the current watchpoint; it's simplest to
2576 disable all watchpoints and breakpoints. */
2577
2578 if (!HAVE_STEPPABLE_WATCHPOINT)
2579 remove_breakpoints ();
2580 registers_changed ();
2581 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2582 waiton_ptid = ecs->ptid;
2583 if (HAVE_STEPPABLE_WATCHPOINT)
2584 infwait_state = infwait_step_watch_state;
2585 else
2586 infwait_state = infwait_nonstep_watch_state;
2587 prepare_to_wait (ecs);
2588 return;
2589 }
2590
2591 ecs->stop_func_start = 0;
2592 ecs->stop_func_end = 0;
2593 ecs->stop_func_name = 0;
2594 /* Don't care about return value; stop_func_start and stop_func_name
2595 will both be 0 if it doesn't work. */
2596 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2597 &ecs->stop_func_start, &ecs->stop_func_end);
2598 ecs->stop_func_start
2599 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2600 ecs->event_thread->stepping_over_breakpoint = 0;
2601 bpstat_clear (&ecs->event_thread->stop_bpstat);
2602 ecs->event_thread->stop_step = 0;
2603 stop_print_frame = 1;
2604 ecs->random_signal = 0;
2605 stopped_by_random_signal = 0;
2606
2607 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2608 && ecs->event_thread->trap_expected
2609 && gdbarch_single_step_through_delay_p (current_gdbarch)
2610 && currently_stepping (ecs->event_thread))
2611 {
2612 /* We're trying to step off a breakpoint. Turns out that we're
2613 also on an instruction that needs to be stepped multiple
2614 times before it's been fully executing. E.g., architectures
2615 with a delay slot. It needs to be stepped twice, once for
2616 the instruction and once for the delay slot. */
2617 int step_through_delay
2618 = gdbarch_single_step_through_delay (current_gdbarch,
2619 get_current_frame ());
2620 if (debug_infrun && step_through_delay)
2621 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2622 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
2623 {
2624 /* The user issued a continue when stopped at a breakpoint.
2625 Set up for another trap and get out of here. */
2626 ecs->event_thread->stepping_over_breakpoint = 1;
2627 keep_going (ecs);
2628 return;
2629 }
2630 else if (step_through_delay)
2631 {
2632 /* The user issued a step when stopped at a breakpoint.
2633 Maybe we should stop, maybe we should not - the delay
2634 slot *might* correspond to a line of source. In any
2635 case, don't decide that here, just set
2636 ecs->stepping_over_breakpoint, making sure we
2637 single-step again before breakpoints are re-inserted. */
2638 ecs->event_thread->stepping_over_breakpoint = 1;
2639 }
2640 }
2641
2642 /* Look at the cause of the stop, and decide what to do.
2643 The alternatives are:
2644 1) stop_stepping and return; to really stop and return to the debugger,
2645 2) keep_going and return to start up again
2646 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
2647 3) set ecs->random_signal to 1, and the decision between 1 and 2
2648 will be made according to the signal handling tables. */
2649
2650 /* First, distinguish signals caused by the debugger from signals
2651 that have to do with the program's own actions. Note that
2652 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2653 on the operating system version. Here we detect when a SIGILL or
2654 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2655 something similar for SIGSEGV, since a SIGSEGV will be generated
2656 when we're trying to execute a breakpoint instruction on a
2657 non-executable stack. This happens for call dummy breakpoints
2658 for architectures like SPARC that place call dummies on the
2659 stack.
2660
2661 If we're doing a displaced step past a breakpoint, then the
2662 breakpoint is always inserted at the original instruction;
2663 non-standard signals can't be explained by the breakpoint. */
2664 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2665 || (! ecs->event_thread->trap_expected
2666 && breakpoint_inserted_here_p (stop_pc)
2667 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
2668 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
2669 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
2670 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2671 || stop_soon == STOP_QUIETLY_REMOTE)
2672 {
2673 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2674 {
2675 if (debug_infrun)
2676 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2677 stop_print_frame = 0;
2678 stop_stepping (ecs);
2679 return;
2680 }
2681
2682 /* This is originated from start_remote(), start_inferior() and
2683 shared libraries hook functions. */
2684 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2685 {
2686 if (debug_infrun)
2687 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2688 stop_stepping (ecs);
2689 return;
2690 }
2691
2692 /* This originates from attach_command(). We need to overwrite
2693 the stop_signal here, because some kernels don't ignore a
2694 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2695 See more comments in inferior.h. On the other hand, if we
2696 get a non-SIGSTOP, report it to the user - assume the backend
2697 will handle the SIGSTOP if it should show up later.
2698
2699 Also consider that the attach is complete when we see a
2700 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2701 target extended-remote report it instead of a SIGSTOP
2702 (e.g. gdbserver). We already rely on SIGTRAP being our
2703 signal, so this is no exception. */
2704 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2705 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
2706 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP))
2707 {
2708 stop_stepping (ecs);
2709 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2710 return;
2711 }
2712
2713 /* See if there is a breakpoint at the current PC. */
2714 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2715
2716 /* Following in case break condition called a
2717 function. */
2718 stop_print_frame = 1;
2719
2720 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2721 at one stage in the past included checks for an inferior
2722 function call's call dummy's return breakpoint. The original
2723 comment, that went with the test, read:
2724
2725 ``End of a stack dummy. Some systems (e.g. Sony news) give
2726 another signal besides SIGTRAP, so check here as well as
2727 above.''
2728
2729 If someone ever tries to get call dummys on a
2730 non-executable stack to work (where the target would stop
2731 with something like a SIGSEGV), then those tests might need
2732 to be re-instated. Given, however, that the tests were only
2733 enabled when momentary breakpoints were not being used, I
2734 suspect that it won't be the case.
2735
2736 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2737 be necessary for call dummies on a non-executable stack on
2738 SPARC. */
2739
2740 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2741 ecs->random_signal
2742 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
2743 || ecs->event_thread->trap_expected
2744 || (ecs->event_thread->step_range_end
2745 && ecs->event_thread->step_resume_breakpoint == NULL));
2746 else
2747 {
2748 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2749 if (!ecs->random_signal)
2750 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2751 }
2752 }
2753
2754 /* When we reach this point, we've pretty much decided
2755 that the reason for stopping must've been a random
2756 (unexpected) signal. */
2757
2758 else
2759 ecs->random_signal = 1;
2760
2761 process_event_stop_test:
2762 /* For the program's own signals, act according to
2763 the signal handling tables. */
2764
2765 if (ecs->random_signal)
2766 {
2767 /* Signal not for debugging purposes. */
2768 int printed = 0;
2769
2770 if (debug_infrun)
2771 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
2772 ecs->event_thread->stop_signal);
2773
2774 stopped_by_random_signal = 1;
2775
2776 if (signal_print[ecs->event_thread->stop_signal])
2777 {
2778 printed = 1;
2779 target_terminal_ours_for_output ();
2780 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
2781 }
2782 /* Always stop on signals if we're just gaining control of the
2783 program. */
2784 if (stop_soon != NO_STOP_QUIETLY
2785 || signal_stop_state (ecs->event_thread->stop_signal))
2786 {
2787 stop_stepping (ecs);
2788 return;
2789 }
2790 /* If not going to stop, give terminal back
2791 if we took it away. */
2792 else if (printed)
2793 target_terminal_inferior ();
2794
2795 /* Clear the signal if it should not be passed. */
2796 if (signal_program[ecs->event_thread->stop_signal] == 0)
2797 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2798
2799 if (ecs->event_thread->prev_pc == read_pc ()
2800 && ecs->event_thread->trap_expected
2801 && ecs->event_thread->step_resume_breakpoint == NULL)
2802 {
2803 /* We were just starting a new sequence, attempting to
2804 single-step off of a breakpoint and expecting a SIGTRAP.
2805 Instead this signal arrives. This signal will take us out
2806 of the stepping range so GDB needs to remember to, when
2807 the signal handler returns, resume stepping off that
2808 breakpoint. */
2809 /* To simplify things, "continue" is forced to use the same
2810 code paths as single-step - set a breakpoint at the
2811 signal return address and then, once hit, step off that
2812 breakpoint. */
2813 if (debug_infrun)
2814 fprintf_unfiltered (gdb_stdlog,
2815 "infrun: signal arrived while stepping over "
2816 "breakpoint\n");
2817
2818 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2819 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2820 keep_going (ecs);
2821 return;
2822 }
2823
2824 if (ecs->event_thread->step_range_end != 0
2825 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
2826 && (ecs->event_thread->step_range_start <= stop_pc
2827 && stop_pc < ecs->event_thread->step_range_end)
2828 && frame_id_eq (get_frame_id (get_current_frame ()),
2829 ecs->event_thread->step_frame_id)
2830 && ecs->event_thread->step_resume_breakpoint == NULL)
2831 {
2832 /* The inferior is about to take a signal that will take it
2833 out of the single step range. Set a breakpoint at the
2834 current PC (which is presumably where the signal handler
2835 will eventually return) and then allow the inferior to
2836 run free.
2837
2838 Note that this is only needed for a signal delivered
2839 while in the single-step range. Nested signals aren't a
2840 problem as they eventually all return. */
2841 if (debug_infrun)
2842 fprintf_unfiltered (gdb_stdlog,
2843 "infrun: signal may take us out of "
2844 "single-step range\n");
2845
2846 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2847 keep_going (ecs);
2848 return;
2849 }
2850
2851 /* Note: step_resume_breakpoint may be non-NULL. This occures
2852 when either there's a nested signal, or when there's a
2853 pending signal enabled just as the signal handler returns
2854 (leaving the inferior at the step-resume-breakpoint without
2855 actually executing it). Either way continue until the
2856 breakpoint is really hit. */
2857 keep_going (ecs);
2858 return;
2859 }
2860
2861 /* Handle cases caused by hitting a breakpoint. */
2862 {
2863 CORE_ADDR jmp_buf_pc;
2864 struct bpstat_what what;
2865
2866 what = bpstat_what (ecs->event_thread->stop_bpstat);
2867
2868 if (what.call_dummy)
2869 {
2870 stop_stack_dummy = 1;
2871 }
2872
2873 switch (what.main_action)
2874 {
2875 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2876 /* If we hit the breakpoint at longjmp while stepping, we
2877 install a momentary breakpoint at the target of the
2878 jmp_buf. */
2879
2880 if (debug_infrun)
2881 fprintf_unfiltered (gdb_stdlog,
2882 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2883
2884 ecs->event_thread->stepping_over_breakpoint = 1;
2885
2886 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2887 || !gdbarch_get_longjmp_target (current_gdbarch,
2888 get_current_frame (), &jmp_buf_pc))
2889 {
2890 if (debug_infrun)
2891 fprintf_unfiltered (gdb_stdlog, "\
2892 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
2893 keep_going (ecs);
2894 return;
2895 }
2896
2897 /* We're going to replace the current step-resume breakpoint
2898 with a longjmp-resume breakpoint. */
2899 delete_step_resume_breakpoint (ecs->event_thread);
2900
2901 /* Insert a breakpoint at resume address. */
2902 insert_longjmp_resume_breakpoint (jmp_buf_pc);
2903
2904 keep_going (ecs);
2905 return;
2906
2907 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2908 if (debug_infrun)
2909 fprintf_unfiltered (gdb_stdlog,
2910 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2911
2912 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
2913 delete_step_resume_breakpoint (ecs->event_thread);
2914
2915 ecs->event_thread->stop_step = 1;
2916 print_stop_reason (END_STEPPING_RANGE, 0);
2917 stop_stepping (ecs);
2918 return;
2919
2920 case BPSTAT_WHAT_SINGLE:
2921 if (debug_infrun)
2922 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2923 ecs->event_thread->stepping_over_breakpoint = 1;
2924 /* Still need to check other stuff, at least the case
2925 where we are stepping and step out of the right range. */
2926 break;
2927
2928 case BPSTAT_WHAT_STOP_NOISY:
2929 if (debug_infrun)
2930 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2931 stop_print_frame = 1;
2932
2933 /* We are about to nuke the step_resume_breakpointt via the
2934 cleanup chain, so no need to worry about it here. */
2935
2936 stop_stepping (ecs);
2937 return;
2938
2939 case BPSTAT_WHAT_STOP_SILENT:
2940 if (debug_infrun)
2941 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2942 stop_print_frame = 0;
2943
2944 /* We are about to nuke the step_resume_breakpoin via the
2945 cleanup chain, so no need to worry about it here. */
2946
2947 stop_stepping (ecs);
2948 return;
2949
2950 case BPSTAT_WHAT_STEP_RESUME:
2951 if (debug_infrun)
2952 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2953
2954 delete_step_resume_breakpoint (ecs->event_thread);
2955 if (ecs->event_thread->step_after_step_resume_breakpoint)
2956 {
2957 /* Back when the step-resume breakpoint was inserted, we
2958 were trying to single-step off a breakpoint. Go back
2959 to doing that. */
2960 ecs->event_thread->step_after_step_resume_breakpoint = 0;
2961 ecs->event_thread->stepping_over_breakpoint = 1;
2962 keep_going (ecs);
2963 return;
2964 }
2965 if (stop_pc == ecs->stop_func_start
2966 && execution_direction == EXEC_REVERSE)
2967 {
2968 /* We are stepping over a function call in reverse, and
2969 just hit the step-resume breakpoint at the start
2970 address of the function. Go back to single-stepping,
2971 which should take us back to the function call. */
2972 ecs->event_thread->stepping_over_breakpoint = 1;
2973 keep_going (ecs);
2974 return;
2975 }
2976 break;
2977
2978 case BPSTAT_WHAT_CHECK_SHLIBS:
2979 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2980 {
2981 if (debug_infrun)
2982 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2983
2984 /* Check for any newly added shared libraries if we're
2985 supposed to be adding them automatically. Switch
2986 terminal for any messages produced by
2987 breakpoint_re_set. */
2988 target_terminal_ours_for_output ();
2989 /* NOTE: cagney/2003-11-25: Make certain that the target
2990 stack's section table is kept up-to-date. Architectures,
2991 (e.g., PPC64), use the section table to perform
2992 operations such as address => section name and hence
2993 require the table to contain all sections (including
2994 those found in shared libraries). */
2995 /* NOTE: cagney/2003-11-25: Pass current_target and not
2996 exec_ops to SOLIB_ADD. This is because current GDB is
2997 only tooled to propagate section_table changes out from
2998 the "current_target" (see target_resize_to_sections), and
2999 not up from the exec stratum. This, of course, isn't
3000 right. "infrun.c" should only interact with the
3001 exec/process stratum, instead relying on the target stack
3002 to propagate relevant changes (stop, section table
3003 changed, ...) up to other layers. */
3004 #ifdef SOLIB_ADD
3005 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3006 #else
3007 solib_add (NULL, 0, &current_target, auto_solib_add);
3008 #endif
3009 target_terminal_inferior ();
3010
3011 /* If requested, stop when the dynamic linker notifies
3012 gdb of events. This allows the user to get control
3013 and place breakpoints in initializer routines for
3014 dynamically loaded objects (among other things). */
3015 if (stop_on_solib_events || stop_stack_dummy)
3016 {
3017 stop_stepping (ecs);
3018 return;
3019 }
3020
3021 /* If we stopped due to an explicit catchpoint, then the
3022 (see above) call to SOLIB_ADD pulled in any symbols
3023 from a newly-loaded library, if appropriate.
3024
3025 We do want the inferior to stop, but not where it is
3026 now, which is in the dynamic linker callback. Rather,
3027 we would like it stop in the user's program, just after
3028 the call that caused this catchpoint to trigger. That
3029 gives the user a more useful vantage from which to
3030 examine their program's state. */
3031 else if (what.main_action
3032 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
3033 {
3034 /* ??rehrauer: If I could figure out how to get the
3035 right return PC from here, we could just set a temp
3036 breakpoint and resume. I'm not sure we can without
3037 cracking open the dld's shared libraries and sniffing
3038 their unwind tables and text/data ranges, and that's
3039 not a terribly portable notion.
3040
3041 Until that time, we must step the inferior out of the
3042 dld callback, and also out of the dld itself (and any
3043 code or stubs in libdld.sl, such as "shl_load" and
3044 friends) until we reach non-dld code. At that point,
3045 we can stop stepping. */
3046 bpstat_get_triggered_catchpoints (ecs->event_thread->stop_bpstat,
3047 &ecs->
3048 event_thread->
3049 stepping_through_solib_catchpoints);
3050 ecs->event_thread->stepping_through_solib_after_catch = 1;
3051
3052 /* Be sure to lift all breakpoints, so the inferior does
3053 actually step past this point... */
3054 ecs->event_thread->stepping_over_breakpoint = 1;
3055 break;
3056 }
3057 else
3058 {
3059 /* We want to step over this breakpoint, then keep going. */
3060 ecs->event_thread->stepping_over_breakpoint = 1;
3061 break;
3062 }
3063 }
3064 break;
3065
3066 case BPSTAT_WHAT_LAST:
3067 /* Not a real code, but listed here to shut up gcc -Wall. */
3068
3069 case BPSTAT_WHAT_KEEP_CHECKING:
3070 break;
3071 }
3072 }
3073
3074 /* We come here if we hit a breakpoint but should not
3075 stop for it. Possibly we also were stepping
3076 and should stop for that. So fall through and
3077 test for stepping. But, if not stepping,
3078 do not stop. */
3079
3080 /* Are we stepping to get the inferior out of the dynamic linker's
3081 hook (and possibly the dld itself) after catching a shlib
3082 event? */
3083 if (ecs->event_thread->stepping_through_solib_after_catch)
3084 {
3085 #if defined(SOLIB_ADD)
3086 /* Have we reached our destination? If not, keep going. */
3087 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3088 {
3089 if (debug_infrun)
3090 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
3091 ecs->event_thread->stepping_over_breakpoint = 1;
3092 keep_going (ecs);
3093 return;
3094 }
3095 #endif
3096 if (debug_infrun)
3097 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
3098 /* Else, stop and report the catchpoint(s) whose triggering
3099 caused us to begin stepping. */
3100 ecs->event_thread->stepping_through_solib_after_catch = 0;
3101 bpstat_clear (&ecs->event_thread->stop_bpstat);
3102 ecs->event_thread->stop_bpstat
3103 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
3104 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
3105 stop_print_frame = 1;
3106 stop_stepping (ecs);
3107 return;
3108 }
3109
3110 if (ecs->event_thread->step_resume_breakpoint)
3111 {
3112 if (debug_infrun)
3113 fprintf_unfiltered (gdb_stdlog,
3114 "infrun: step-resume breakpoint is inserted\n");
3115
3116 /* Having a step-resume breakpoint overrides anything
3117 else having to do with stepping commands until
3118 that breakpoint is reached. */
3119 keep_going (ecs);
3120 return;
3121 }
3122
3123 if (ecs->event_thread->step_range_end == 0)
3124 {
3125 if (debug_infrun)
3126 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3127 /* Likewise if we aren't even stepping. */
3128 keep_going (ecs);
3129 return;
3130 }
3131
3132 /* If stepping through a line, keep going if still within it.
3133
3134 Note that step_range_end is the address of the first instruction
3135 beyond the step range, and NOT the address of the last instruction
3136 within it! */
3137 if (stop_pc >= ecs->event_thread->step_range_start
3138 && stop_pc < ecs->event_thread->step_range_end)
3139 {
3140 if (debug_infrun)
3141 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3142 paddr_nz (ecs->event_thread->step_range_start),
3143 paddr_nz (ecs->event_thread->step_range_end));
3144
3145 /* When stepping backward, stop at beginning of line range
3146 (unless it's the function entry point, in which case
3147 keep going back to the call point). */
3148 if (stop_pc == ecs->event_thread->step_range_start
3149 && stop_pc != ecs->stop_func_start
3150 && execution_direction == EXEC_REVERSE)
3151 {
3152 ecs->event_thread->stop_step = 1;
3153 print_stop_reason (END_STEPPING_RANGE, 0);
3154 stop_stepping (ecs);
3155 }
3156 else
3157 keep_going (ecs);
3158
3159 return;
3160 }
3161
3162 /* We stepped out of the stepping range. */
3163
3164 /* If we are stepping at the source level and entered the runtime
3165 loader dynamic symbol resolution code, we keep on single stepping
3166 until we exit the run time loader code and reach the callee's
3167 address. */
3168 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3169 && in_solib_dynsym_resolve_code (stop_pc))
3170 {
3171 CORE_ADDR pc_after_resolver =
3172 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
3173
3174 if (debug_infrun)
3175 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3176
3177 if (pc_after_resolver)
3178 {
3179 /* Set up a step-resume breakpoint at the address
3180 indicated by SKIP_SOLIB_RESOLVER. */
3181 struct symtab_and_line sr_sal;
3182 init_sal (&sr_sal);
3183 sr_sal.pc = pc_after_resolver;
3184
3185 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3186 }
3187
3188 keep_going (ecs);
3189 return;
3190 }
3191
3192 if (ecs->event_thread->step_range_end != 1
3193 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3194 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3195 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
3196 {
3197 if (debug_infrun)
3198 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3199 /* The inferior, while doing a "step" or "next", has ended up in
3200 a signal trampoline (either by a signal being delivered or by
3201 the signal handler returning). Just single-step until the
3202 inferior leaves the trampoline (either by calling the handler
3203 or returning). */
3204 keep_going (ecs);
3205 return;
3206 }
3207
3208 /* Check for subroutine calls. The check for the current frame
3209 equalling the step ID is not necessary - the check of the
3210 previous frame's ID is sufficient - but it is a common case and
3211 cheaper than checking the previous frame's ID.
3212
3213 NOTE: frame_id_eq will never report two invalid frame IDs as
3214 being equal, so to get into this block, both the current and
3215 previous frame must have valid frame IDs. */
3216 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3217 ecs->event_thread->step_frame_id)
3218 && (frame_id_eq (frame_unwind_id (get_current_frame ()),
3219 ecs->event_thread->step_frame_id)
3220 || execution_direction == EXEC_REVERSE))
3221 {
3222 CORE_ADDR real_stop_pc;
3223
3224 if (debug_infrun)
3225 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3226
3227 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
3228 || ((ecs->event_thread->step_range_end == 1)
3229 && in_prologue (ecs->event_thread->prev_pc,
3230 ecs->stop_func_start)))
3231 {
3232 /* I presume that step_over_calls is only 0 when we're
3233 supposed to be stepping at the assembly language level
3234 ("stepi"). Just stop. */
3235 /* Also, maybe we just did a "nexti" inside a prolog, so we
3236 thought it was a subroutine call but it was not. Stop as
3237 well. FENN */
3238 ecs->event_thread->stop_step = 1;
3239 print_stop_reason (END_STEPPING_RANGE, 0);
3240 stop_stepping (ecs);
3241 return;
3242 }
3243
3244 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3245 {
3246 /* We're doing a "next".
3247
3248 Normal (forward) execution: set a breakpoint at the
3249 callee's return address (the address at which the caller
3250 will resume).
3251
3252 Reverse (backward) execution. set the step-resume
3253 breakpoint at the start of the function that we just
3254 stepped into (backwards), and continue to there. When we
3255 get there, we'll need to single-step back to the
3256 caller. */
3257
3258 if (execution_direction == EXEC_REVERSE)
3259 {
3260 struct symtab_and_line sr_sal;
3261 init_sal (&sr_sal);
3262 sr_sal.pc = ecs->stop_func_start;
3263 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3264 }
3265 else
3266 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3267
3268 keep_going (ecs);
3269 return;
3270 }
3271
3272 /* If we are in a function call trampoline (a stub between the
3273 calling routine and the real function), locate the real
3274 function. That's what tells us (a) whether we want to step
3275 into it at all, and (b) what prologue we want to run to the
3276 end of, if we do step into it. */
3277 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
3278 if (real_stop_pc == 0)
3279 real_stop_pc = gdbarch_skip_trampoline_code
3280 (current_gdbarch, get_current_frame (), stop_pc);
3281 if (real_stop_pc != 0)
3282 ecs->stop_func_start = real_stop_pc;
3283
3284 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
3285 {
3286 struct symtab_and_line sr_sal;
3287 init_sal (&sr_sal);
3288 sr_sal.pc = ecs->stop_func_start;
3289
3290 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3291 keep_going (ecs);
3292 return;
3293 }
3294
3295 /* If we have line number information for the function we are
3296 thinking of stepping into, step into it.
3297
3298 If there are several symtabs at that PC (e.g. with include
3299 files), just want to know whether *any* of them have line
3300 numbers. find_pc_line handles this. */
3301 {
3302 struct symtab_and_line tmp_sal;
3303
3304 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3305 if (tmp_sal.line != 0)
3306 {
3307 if (execution_direction == EXEC_REVERSE)
3308 handle_step_into_function_backward (ecs);
3309 else
3310 handle_step_into_function (ecs);
3311 return;
3312 }
3313 }
3314
3315 /* If we have no line number and the step-stop-if-no-debug is
3316 set, we stop the step so that the user has a chance to switch
3317 in assembly mode. */
3318 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3319 && step_stop_if_no_debug)
3320 {
3321 ecs->event_thread->stop_step = 1;
3322 print_stop_reason (END_STEPPING_RANGE, 0);
3323 stop_stepping (ecs);
3324 return;
3325 }
3326
3327 if (execution_direction == EXEC_REVERSE)
3328 {
3329 /* Set a breakpoint at callee's start address.
3330 From there we can step once and be back in the caller. */
3331 struct symtab_and_line sr_sal;
3332 init_sal (&sr_sal);
3333 sr_sal.pc = ecs->stop_func_start;
3334 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3335 }
3336 else
3337 /* Set a breakpoint at callee's return address (the address
3338 at which the caller will resume). */
3339 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3340
3341 keep_going (ecs);
3342 return;
3343 }
3344
3345 /* If we're in the return path from a shared library trampoline,
3346 we want to proceed through the trampoline when stepping. */
3347 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3348 stop_pc, ecs->stop_func_name))
3349 {
3350 /* Determine where this trampoline returns. */
3351 CORE_ADDR real_stop_pc;
3352 real_stop_pc = gdbarch_skip_trampoline_code
3353 (current_gdbarch, get_current_frame (), stop_pc);
3354
3355 if (debug_infrun)
3356 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3357
3358 /* Only proceed through if we know where it's going. */
3359 if (real_stop_pc)
3360 {
3361 /* And put the step-breakpoint there and go until there. */
3362 struct symtab_and_line sr_sal;
3363
3364 init_sal (&sr_sal); /* initialize to zeroes */
3365 sr_sal.pc = real_stop_pc;
3366 sr_sal.section = find_pc_overlay (sr_sal.pc);
3367
3368 /* Do not specify what the fp should be when we stop since
3369 on some machines the prologue is where the new fp value
3370 is established. */
3371 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3372
3373 /* Restart without fiddling with the step ranges or
3374 other state. */
3375 keep_going (ecs);
3376 return;
3377 }
3378 }
3379
3380 stop_pc_sal = find_pc_line (stop_pc, 0);
3381
3382 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3383 the trampoline processing logic, however, there are some trampolines
3384 that have no names, so we should do trampoline handling first. */
3385 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3386 && ecs->stop_func_name == NULL
3387 && stop_pc_sal.line == 0)
3388 {
3389 if (debug_infrun)
3390 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3391
3392 /* The inferior just stepped into, or returned to, an
3393 undebuggable function (where there is no debugging information
3394 and no line number corresponding to the address where the
3395 inferior stopped). Since we want to skip this kind of code,
3396 we keep going until the inferior returns from this
3397 function - unless the user has asked us not to (via
3398 set step-mode) or we no longer know how to get back
3399 to the call site. */
3400 if (step_stop_if_no_debug
3401 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3402 {
3403 /* If we have no line number and the step-stop-if-no-debug
3404 is set, we stop the step so that the user has a chance to
3405 switch in assembly mode. */
3406 ecs->event_thread->stop_step = 1;
3407 print_stop_reason (END_STEPPING_RANGE, 0);
3408 stop_stepping (ecs);
3409 return;
3410 }
3411 else
3412 {
3413 /* Set a breakpoint at callee's return address (the address
3414 at which the caller will resume). */
3415 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3416 keep_going (ecs);
3417 return;
3418 }
3419 }
3420
3421 if (ecs->event_thread->step_range_end == 1)
3422 {
3423 /* It is stepi or nexti. We always want to stop stepping after
3424 one instruction. */
3425 if (debug_infrun)
3426 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3427 ecs->event_thread->stop_step = 1;
3428 print_stop_reason (END_STEPPING_RANGE, 0);
3429 stop_stepping (ecs);
3430 return;
3431 }
3432
3433 if (stop_pc_sal.line == 0)
3434 {
3435 /* We have no line number information. That means to stop
3436 stepping (does this always happen right after one instruction,
3437 when we do "s" in a function with no line numbers,
3438 or can this happen as a result of a return or longjmp?). */
3439 if (debug_infrun)
3440 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3441 ecs->event_thread->stop_step = 1;
3442 print_stop_reason (END_STEPPING_RANGE, 0);
3443 stop_stepping (ecs);
3444 return;
3445 }
3446
3447 if ((stop_pc == stop_pc_sal.pc)
3448 && (ecs->event_thread->current_line != stop_pc_sal.line
3449 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
3450 {
3451 /* We are at the start of a different line. So stop. Note that
3452 we don't stop if we step into the middle of a different line.
3453 That is said to make things like for (;;) statements work
3454 better. */
3455 if (debug_infrun)
3456 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3457 ecs->event_thread->stop_step = 1;
3458 print_stop_reason (END_STEPPING_RANGE, 0);
3459 stop_stepping (ecs);
3460 return;
3461 }
3462
3463 /* We aren't done stepping.
3464
3465 Optimize by setting the stepping range to the line.
3466 (We might not be in the original line, but if we entered a
3467 new line in mid-statement, we continue stepping. This makes
3468 things like for(;;) statements work better.) */
3469
3470 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3471 ecs->event_thread->step_range_end = stop_pc_sal.end;
3472 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3473 ecs->event_thread->current_line = stop_pc_sal.line;
3474 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
3475
3476 if (debug_infrun)
3477 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3478 keep_going (ecs);
3479 }
3480
3481 /* Are we in the middle of stepping? */
3482
3483 static int
3484 currently_stepping (struct thread_info *tp)
3485 {
3486 return (((tp->step_range_end && tp->step_resume_breakpoint == NULL)
3487 || tp->trap_expected)
3488 || tp->stepping_through_solib_after_catch
3489 || bpstat_should_step ());
3490 }
3491
3492 /* Inferior has stepped into a subroutine call with source code that
3493 we should not step over. Do step to the first line of code in
3494 it. */
3495
3496 static void
3497 handle_step_into_function (struct execution_control_state *ecs)
3498 {
3499 struct symtab *s;
3500 struct symtab_and_line stop_func_sal, sr_sal;
3501
3502 s = find_pc_symtab (stop_pc);
3503 if (s && s->language != language_asm)
3504 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3505 ecs->stop_func_start);
3506
3507 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
3508 /* Use the step_resume_break to step until the end of the prologue,
3509 even if that involves jumps (as it seems to on the vax under
3510 4.2). */
3511 /* If the prologue ends in the middle of a source line, continue to
3512 the end of that source line (if it is still within the function).
3513 Otherwise, just go to end of prologue. */
3514 if (stop_func_sal.end
3515 && stop_func_sal.pc != ecs->stop_func_start
3516 && stop_func_sal.end < ecs->stop_func_end)
3517 ecs->stop_func_start = stop_func_sal.end;
3518
3519 /* Architectures which require breakpoint adjustment might not be able
3520 to place a breakpoint at the computed address. If so, the test
3521 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3522 ecs->stop_func_start to an address at which a breakpoint may be
3523 legitimately placed.
3524
3525 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3526 made, GDB will enter an infinite loop when stepping through
3527 optimized code consisting of VLIW instructions which contain
3528 subinstructions corresponding to different source lines. On
3529 FR-V, it's not permitted to place a breakpoint on any but the
3530 first subinstruction of a VLIW instruction. When a breakpoint is
3531 set, GDB will adjust the breakpoint address to the beginning of
3532 the VLIW instruction. Thus, we need to make the corresponding
3533 adjustment here when computing the stop address. */
3534
3535 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3536 {
3537 ecs->stop_func_start
3538 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3539 ecs->stop_func_start);
3540 }
3541
3542 if (ecs->stop_func_start == stop_pc)
3543 {
3544 /* We are already there: stop now. */
3545 ecs->event_thread->stop_step = 1;
3546 print_stop_reason (END_STEPPING_RANGE, 0);
3547 stop_stepping (ecs);
3548 return;
3549 }
3550 else
3551 {
3552 /* Put the step-breakpoint there and go until there. */
3553 init_sal (&sr_sal); /* initialize to zeroes */
3554 sr_sal.pc = ecs->stop_func_start;
3555 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3556
3557 /* Do not specify what the fp should be when we stop since on
3558 some machines the prologue is where the new fp value is
3559 established. */
3560 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3561
3562 /* And make sure stepping stops right away then. */
3563 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
3564 }
3565 keep_going (ecs);
3566 }
3567
3568 /* Inferior has stepped backward into a subroutine call with source
3569 code that we should not step over. Do step to the beginning of the
3570 last line of code in it. */
3571
3572 static void
3573 handle_step_into_function_backward (struct execution_control_state *ecs)
3574 {
3575 struct symtab *s;
3576 struct symtab_and_line stop_func_sal, sr_sal;
3577
3578 s = find_pc_symtab (stop_pc);
3579 if (s && s->language != language_asm)
3580 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3581 ecs->stop_func_start);
3582
3583 stop_func_sal = find_pc_line (stop_pc, 0);
3584
3585 /* OK, we're just going to keep stepping here. */
3586 if (stop_func_sal.pc == stop_pc)
3587 {
3588 /* We're there already. Just stop stepping now. */
3589 ecs->event_thread->stop_step = 1;
3590 print_stop_reason (END_STEPPING_RANGE, 0);
3591 stop_stepping (ecs);
3592 }
3593 else
3594 {
3595 /* Else just reset the step range and keep going.
3596 No step-resume breakpoint, they don't work for
3597 epilogues, which can have multiple entry paths. */
3598 ecs->event_thread->step_range_start = stop_func_sal.pc;
3599 ecs->event_thread->step_range_end = stop_func_sal.end;
3600 keep_going (ecs);
3601 }
3602 return;
3603 }
3604
3605 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3606 This is used to both functions and to skip over code. */
3607
3608 static void
3609 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3610 struct frame_id sr_id)
3611 {
3612 /* There should never be more than one step-resume or longjmp-resume
3613 breakpoint per thread, so we should never be setting a new
3614 step_resume_breakpoint when one is already active. */
3615 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3616
3617 if (debug_infrun)
3618 fprintf_unfiltered (gdb_stdlog,
3619 "infrun: inserting step-resume breakpoint at 0x%s\n",
3620 paddr_nz (sr_sal.pc));
3621
3622 inferior_thread ()->step_resume_breakpoint
3623 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
3624 }
3625
3626 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3627 to skip a potential signal handler.
3628
3629 This is called with the interrupted function's frame. The signal
3630 handler, when it returns, will resume the interrupted function at
3631 RETURN_FRAME.pc. */
3632
3633 static void
3634 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3635 {
3636 struct symtab_and_line sr_sal;
3637
3638 gdb_assert (return_frame != NULL);
3639 init_sal (&sr_sal); /* initialize to zeros */
3640
3641 sr_sal.pc = gdbarch_addr_bits_remove
3642 (current_gdbarch, get_frame_pc (return_frame));
3643 sr_sal.section = find_pc_overlay (sr_sal.pc);
3644
3645 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3646 }
3647
3648 /* Similar to insert_step_resume_breakpoint_at_frame, except
3649 but a breakpoint at the previous frame's PC. This is used to
3650 skip a function after stepping into it (for "next" or if the called
3651 function has no debugging information).
3652
3653 The current function has almost always been reached by single
3654 stepping a call or return instruction. NEXT_FRAME belongs to the
3655 current function, and the breakpoint will be set at the caller's
3656 resume address.
3657
3658 This is a separate function rather than reusing
3659 insert_step_resume_breakpoint_at_frame in order to avoid
3660 get_prev_frame, which may stop prematurely (see the implementation
3661 of frame_unwind_id for an example). */
3662
3663 static void
3664 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3665 {
3666 struct symtab_and_line sr_sal;
3667
3668 /* We shouldn't have gotten here if we don't know where the call site
3669 is. */
3670 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3671
3672 init_sal (&sr_sal); /* initialize to zeros */
3673
3674 sr_sal.pc = gdbarch_addr_bits_remove
3675 (current_gdbarch, frame_pc_unwind (next_frame));
3676 sr_sal.section = find_pc_overlay (sr_sal.pc);
3677
3678 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3679 }
3680
3681 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3682 new breakpoint at the target of a jmp_buf. The handling of
3683 longjmp-resume uses the same mechanisms used for handling
3684 "step-resume" breakpoints. */
3685
3686 static void
3687 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3688 {
3689 /* There should never be more than one step-resume or longjmp-resume
3690 breakpoint per thread, so we should never be setting a new
3691 longjmp_resume_breakpoint when one is already active. */
3692 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3693
3694 if (debug_infrun)
3695 fprintf_unfiltered (gdb_stdlog,
3696 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3697 paddr_nz (pc));
3698
3699 inferior_thread ()->step_resume_breakpoint =
3700 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3701 }
3702
3703 static void
3704 stop_stepping (struct execution_control_state *ecs)
3705 {
3706 if (debug_infrun)
3707 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3708
3709 /* Let callers know we don't want to wait for the inferior anymore. */
3710 ecs->wait_some_more = 0;
3711 }
3712
3713 /* This function handles various cases where we need to continue
3714 waiting for the inferior. */
3715 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3716
3717 static void
3718 keep_going (struct execution_control_state *ecs)
3719 {
3720 /* Save the pc before execution, to compare with pc after stop. */
3721 ecs->event_thread->prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3722
3723 /* If we did not do break;, it means we should keep running the
3724 inferior and not return to debugger. */
3725
3726 if (ecs->event_thread->trap_expected
3727 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3728 {
3729 /* We took a signal (which we are supposed to pass through to
3730 the inferior, else we'd not get here) and we haven't yet
3731 gotten our trap. Simply continue. */
3732 resume (currently_stepping (ecs->event_thread),
3733 ecs->event_thread->stop_signal);
3734 }
3735 else
3736 {
3737 /* Either the trap was not expected, but we are continuing
3738 anyway (the user asked that this signal be passed to the
3739 child)
3740 -- or --
3741 The signal was SIGTRAP, e.g. it was our signal, but we
3742 decided we should resume from it.
3743
3744 We're going to run this baby now!
3745
3746 Note that insert_breakpoints won't try to re-insert
3747 already inserted breakpoints. Therefore, we don't
3748 care if breakpoints were already inserted, or not. */
3749
3750 if (ecs->event_thread->stepping_over_breakpoint)
3751 {
3752 if (! use_displaced_stepping (current_gdbarch))
3753 /* Since we can't do a displaced step, we have to remove
3754 the breakpoint while we step it. To keep things
3755 simple, we remove them all. */
3756 remove_breakpoints ();
3757 }
3758 else
3759 {
3760 struct gdb_exception e;
3761 /* Stop stepping when inserting breakpoints
3762 has failed. */
3763 TRY_CATCH (e, RETURN_MASK_ERROR)
3764 {
3765 insert_breakpoints ();
3766 }
3767 if (e.reason < 0)
3768 {
3769 stop_stepping (ecs);
3770 return;
3771 }
3772 }
3773
3774 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
3775
3776 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3777 specifies that such a signal should be delivered to the
3778 target program).
3779
3780 Typically, this would occure when a user is debugging a
3781 target monitor on a simulator: the target monitor sets a
3782 breakpoint; the simulator encounters this break-point and
3783 halts the simulation handing control to GDB; GDB, noteing
3784 that the break-point isn't valid, returns control back to the
3785 simulator; the simulator then delivers the hardware
3786 equivalent of a SIGNAL_TRAP to the program being debugged. */
3787
3788 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3789 && !signal_program[ecs->event_thread->stop_signal])
3790 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3791
3792 resume (currently_stepping (ecs->event_thread),
3793 ecs->event_thread->stop_signal);
3794 }
3795
3796 prepare_to_wait (ecs);
3797 }
3798
3799 /* This function normally comes after a resume, before
3800 handle_inferior_event exits. It takes care of any last bits of
3801 housekeeping, and sets the all-important wait_some_more flag. */
3802
3803 static void
3804 prepare_to_wait (struct execution_control_state *ecs)
3805 {
3806 if (debug_infrun)
3807 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
3808 if (infwait_state == infwait_normal_state)
3809 {
3810 overlay_cache_invalid = 1;
3811
3812 /* We have to invalidate the registers BEFORE calling
3813 target_wait because they can be loaded from the target while
3814 in target_wait. This makes remote debugging a bit more
3815 efficient for those targets that provide critical registers
3816 as part of their normal status mechanism. */
3817
3818 registers_changed ();
3819 waiton_ptid = pid_to_ptid (-1);
3820 }
3821 /* This is the old end of the while loop. Let everybody know we
3822 want to wait for the inferior some more and get called again
3823 soon. */
3824 ecs->wait_some_more = 1;
3825 }
3826
3827 /* Print why the inferior has stopped. We always print something when
3828 the inferior exits, or receives a signal. The rest of the cases are
3829 dealt with later on in normal_stop() and print_it_typical(). Ideally
3830 there should be a call to this function from handle_inferior_event()
3831 each time stop_stepping() is called.*/
3832 static void
3833 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3834 {
3835 switch (stop_reason)
3836 {
3837 case END_STEPPING_RANGE:
3838 /* We are done with a step/next/si/ni command. */
3839 /* For now print nothing. */
3840 /* Print a message only if not in the middle of doing a "step n"
3841 operation for n > 1 */
3842 if (!inferior_thread ()->step_multi
3843 || !inferior_thread ()->stop_step)
3844 if (ui_out_is_mi_like_p (uiout))
3845 ui_out_field_string
3846 (uiout, "reason",
3847 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3848 break;
3849 case SIGNAL_EXITED:
3850 /* The inferior was terminated by a signal. */
3851 annotate_signalled ();
3852 if (ui_out_is_mi_like_p (uiout))
3853 ui_out_field_string
3854 (uiout, "reason",
3855 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3856 ui_out_text (uiout, "\nProgram terminated with signal ");
3857 annotate_signal_name ();
3858 ui_out_field_string (uiout, "signal-name",
3859 target_signal_to_name (stop_info));
3860 annotate_signal_name_end ();
3861 ui_out_text (uiout, ", ");
3862 annotate_signal_string ();
3863 ui_out_field_string (uiout, "signal-meaning",
3864 target_signal_to_string (stop_info));
3865 annotate_signal_string_end ();
3866 ui_out_text (uiout, ".\n");
3867 ui_out_text (uiout, "The program no longer exists.\n");
3868 break;
3869 case EXITED:
3870 /* The inferior program is finished. */
3871 annotate_exited (stop_info);
3872 if (stop_info)
3873 {
3874 if (ui_out_is_mi_like_p (uiout))
3875 ui_out_field_string (uiout, "reason",
3876 async_reason_lookup (EXEC_ASYNC_EXITED));
3877 ui_out_text (uiout, "\nProgram exited with code ");
3878 ui_out_field_fmt (uiout, "exit-code", "0%o",
3879 (unsigned int) stop_info);
3880 ui_out_text (uiout, ".\n");
3881 }
3882 else
3883 {
3884 if (ui_out_is_mi_like_p (uiout))
3885 ui_out_field_string
3886 (uiout, "reason",
3887 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3888 ui_out_text (uiout, "\nProgram exited normally.\n");
3889 }
3890 /* Support the --return-child-result option. */
3891 return_child_result_value = stop_info;
3892 break;
3893 case SIGNAL_RECEIVED:
3894 /* Signal received. The signal table tells us to print about
3895 it. */
3896 annotate_signal ();
3897 ui_out_text (uiout, "\nProgram received signal ");
3898 annotate_signal_name ();
3899 if (ui_out_is_mi_like_p (uiout))
3900 ui_out_field_string
3901 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3902 ui_out_field_string (uiout, "signal-name",
3903 target_signal_to_name (stop_info));
3904 annotate_signal_name_end ();
3905 ui_out_text (uiout, ", ");
3906 annotate_signal_string ();
3907 ui_out_field_string (uiout, "signal-meaning",
3908 target_signal_to_string (stop_info));
3909 annotate_signal_string_end ();
3910 ui_out_text (uiout, ".\n");
3911 break;
3912 case NO_HISTORY:
3913 /* Reverse execution: target ran out of history info. */
3914 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
3915 break;
3916 default:
3917 internal_error (__FILE__, __LINE__,
3918 _("print_stop_reason: unrecognized enum value"));
3919 break;
3920 }
3921 }
3922 \f
3923
3924 /* Here to return control to GDB when the inferior stops for real.
3925 Print appropriate messages, remove breakpoints, give terminal our modes.
3926
3927 STOP_PRINT_FRAME nonzero means print the executing frame
3928 (pc, function, args, file, line number and line text).
3929 BREAKPOINTS_FAILED nonzero means stop was due to error
3930 attempting to insert breakpoints. */
3931
3932 void
3933 normal_stop (void)
3934 {
3935 struct target_waitstatus last;
3936 ptid_t last_ptid;
3937
3938 get_last_target_status (&last_ptid, &last);
3939
3940 /* In non-stop mode, we don't want GDB to switch threads behind the
3941 user's back, to avoid races where the user is typing a command to
3942 apply to thread x, but GDB switches to thread y before the user
3943 finishes entering the command. */
3944
3945 /* As with the notification of thread events, we want to delay
3946 notifying the user that we've switched thread context until
3947 the inferior actually stops.
3948
3949 There's no point in saying anything if the inferior has exited.
3950 Note that SIGNALLED here means "exited with a signal", not
3951 "received a signal". */
3952 if (!non_stop
3953 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
3954 && target_has_execution
3955 && last.kind != TARGET_WAITKIND_SIGNALLED
3956 && last.kind != TARGET_WAITKIND_EXITED)
3957 {
3958 target_terminal_ours_for_output ();
3959 printf_filtered (_("[Switching to %s]\n"),
3960 target_pid_to_str (inferior_ptid));
3961 annotate_thread_changed ();
3962 previous_inferior_ptid = inferior_ptid;
3963 }
3964
3965 /* NOTE drow/2004-01-17: Is this still necessary? */
3966 /* Make sure that the current_frame's pc is correct. This
3967 is a correction for setting up the frame info before doing
3968 gdbarch_decr_pc_after_break */
3969 if (target_has_execution)
3970 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3971 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3972 frame code to check for this and sort out any resultant mess.
3973 gdbarch_decr_pc_after_break needs to just go away. */
3974 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3975
3976 if (!breakpoints_always_inserted_mode () && target_has_execution)
3977 {
3978 if (remove_breakpoints ())
3979 {
3980 target_terminal_ours_for_output ();
3981 printf_filtered (_("\
3982 Cannot remove breakpoints because program is no longer writable.\n\
3983 It might be running in another process.\n\
3984 Further execution is probably impossible.\n"));
3985 }
3986 }
3987
3988 /* If an auto-display called a function and that got a signal,
3989 delete that auto-display to avoid an infinite recursion. */
3990
3991 if (stopped_by_random_signal)
3992 disable_current_display ();
3993
3994 /* Don't print a message if in the middle of doing a "step n"
3995 operation for n > 1 */
3996 if (target_has_execution
3997 && last.kind != TARGET_WAITKIND_SIGNALLED
3998 && last.kind != TARGET_WAITKIND_EXITED
3999 && inferior_thread ()->step_multi
4000 && inferior_thread ()->stop_step)
4001 goto done;
4002
4003 target_terminal_ours ();
4004
4005 /* Set the current source location. This will also happen if we
4006 display the frame below, but the current SAL will be incorrect
4007 during a user hook-stop function. */
4008 if (target_has_stack && !stop_stack_dummy)
4009 set_current_sal_from_frame (get_current_frame (), 1);
4010
4011 if (!target_has_stack)
4012 goto done;
4013
4014 if (last.kind == TARGET_WAITKIND_SIGNALLED
4015 || last.kind == TARGET_WAITKIND_EXITED)
4016 goto done;
4017
4018 /* Select innermost stack frame - i.e., current frame is frame 0,
4019 and current location is based on that.
4020 Don't do this on return from a stack dummy routine,
4021 or if the program has exited. */
4022
4023 if (!stop_stack_dummy)
4024 {
4025 select_frame (get_current_frame ());
4026
4027 /* Print current location without a level number, if
4028 we have changed functions or hit a breakpoint.
4029 Print source line if we have one.
4030 bpstat_print() contains the logic deciding in detail
4031 what to print, based on the event(s) that just occurred. */
4032
4033 /* If --batch-silent is enabled then there's no need to print the current
4034 source location, and to try risks causing an error message about
4035 missing source files. */
4036 if (stop_print_frame && !batch_silent)
4037 {
4038 int bpstat_ret;
4039 int source_flag;
4040 int do_frame_printing = 1;
4041 struct thread_info *tp = inferior_thread ();
4042
4043 bpstat_ret = bpstat_print (tp->stop_bpstat);
4044 switch (bpstat_ret)
4045 {
4046 case PRINT_UNKNOWN:
4047 /* If we had hit a shared library event breakpoint,
4048 bpstat_print would print out this message. If we hit
4049 an OS-level shared library event, do the same
4050 thing. */
4051 if (last.kind == TARGET_WAITKIND_LOADED)
4052 {
4053 printf_filtered (_("Stopped due to shared library event\n"));
4054 source_flag = SRC_LINE; /* something bogus */
4055 do_frame_printing = 0;
4056 break;
4057 }
4058
4059 /* FIXME: cagney/2002-12-01: Given that a frame ID does
4060 (or should) carry around the function and does (or
4061 should) use that when doing a frame comparison. */
4062 if (tp->stop_step
4063 && frame_id_eq (tp->step_frame_id,
4064 get_frame_id (get_current_frame ()))
4065 && step_start_function == find_pc_function (stop_pc))
4066 source_flag = SRC_LINE; /* finished step, just print source line */
4067 else
4068 source_flag = SRC_AND_LOC; /* print location and source line */
4069 break;
4070 case PRINT_SRC_AND_LOC:
4071 source_flag = SRC_AND_LOC; /* print location and source line */
4072 break;
4073 case PRINT_SRC_ONLY:
4074 source_flag = SRC_LINE;
4075 break;
4076 case PRINT_NOTHING:
4077 source_flag = SRC_LINE; /* something bogus */
4078 do_frame_printing = 0;
4079 break;
4080 default:
4081 internal_error (__FILE__, __LINE__, _("Unknown value."));
4082 }
4083
4084 if (ui_out_is_mi_like_p (uiout))
4085 {
4086
4087 ui_out_field_int (uiout, "thread-id",
4088 pid_to_thread_id (inferior_ptid));
4089 if (non_stop)
4090 {
4091 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
4092 (uiout, "stopped-threads");
4093 ui_out_field_int (uiout, NULL,
4094 pid_to_thread_id (inferior_ptid));
4095 do_cleanups (back_to);
4096 }
4097 else
4098 ui_out_field_string (uiout, "stopped-threads", "all");
4099 }
4100 /* The behavior of this routine with respect to the source
4101 flag is:
4102 SRC_LINE: Print only source line
4103 LOCATION: Print only location
4104 SRC_AND_LOC: Print location and source line */
4105 if (do_frame_printing)
4106 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
4107
4108 /* Display the auto-display expressions. */
4109 do_displays ();
4110 }
4111 }
4112
4113 /* Save the function value return registers, if we care.
4114 We might be about to restore their previous contents. */
4115 if (inferior_thread ()->proceed_to_finish)
4116 {
4117 /* This should not be necessary. */
4118 if (stop_registers)
4119 regcache_xfree (stop_registers);
4120
4121 /* NB: The copy goes through to the target picking up the value of
4122 all the registers. */
4123 stop_registers = regcache_dup (get_current_regcache ());
4124 }
4125
4126 if (stop_stack_dummy)
4127 {
4128 /* Pop the empty frame that contains the stack dummy. POP_FRAME
4129 ends with a setting of the current frame, so we can use that
4130 next. */
4131 frame_pop (get_current_frame ());
4132 /* Set stop_pc to what it was before we called the function.
4133 Can't rely on restore_inferior_status because that only gets
4134 called if we don't stop in the called function. */
4135 stop_pc = read_pc ();
4136 select_frame (get_current_frame ());
4137 }
4138
4139 done:
4140 annotate_stopped ();
4141 if (!suppress_stop_observer
4142 && !(target_has_execution
4143 && last.kind != TARGET_WAITKIND_SIGNALLED
4144 && last.kind != TARGET_WAITKIND_EXITED
4145 && inferior_thread ()->step_multi))
4146 {
4147 if (!ptid_equal (inferior_ptid, null_ptid))
4148 observer_notify_normal_stop (inferior_thread ()->stop_bpstat);
4149 else
4150 observer_notify_normal_stop (NULL);
4151 }
4152 if (target_has_execution
4153 && last.kind != TARGET_WAITKIND_SIGNALLED
4154 && last.kind != TARGET_WAITKIND_EXITED)
4155 {
4156 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4157 Delete any breakpoint that is to be deleted at the next stop. */
4158 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
4159
4160 if (!non_stop)
4161 set_running (pid_to_ptid (-1), 0);
4162 else
4163 set_running (inferior_ptid, 0);
4164 }
4165
4166 /* Look up the hook_stop and run it (CLI internally handles problem
4167 of stop_command's pre-hook not existing). */
4168 if (stop_command)
4169 catch_errors (hook_stop_stub, stop_command,
4170 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4171
4172 }
4173
4174 static int
4175 hook_stop_stub (void *cmd)
4176 {
4177 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
4178 return (0);
4179 }
4180 \f
4181 int
4182 signal_stop_state (int signo)
4183 {
4184 return signal_stop[signo];
4185 }
4186
4187 int
4188 signal_print_state (int signo)
4189 {
4190 return signal_print[signo];
4191 }
4192
4193 int
4194 signal_pass_state (int signo)
4195 {
4196 return signal_program[signo];
4197 }
4198
4199 int
4200 signal_stop_update (int signo, int state)
4201 {
4202 int ret = signal_stop[signo];
4203 signal_stop[signo] = state;
4204 return ret;
4205 }
4206
4207 int
4208 signal_print_update (int signo, int state)
4209 {
4210 int ret = signal_print[signo];
4211 signal_print[signo] = state;
4212 return ret;
4213 }
4214
4215 int
4216 signal_pass_update (int signo, int state)
4217 {
4218 int ret = signal_program[signo];
4219 signal_program[signo] = state;
4220 return ret;
4221 }
4222
4223 static void
4224 sig_print_header (void)
4225 {
4226 printf_filtered (_("\
4227 Signal Stop\tPrint\tPass to program\tDescription\n"));
4228 }
4229
4230 static void
4231 sig_print_info (enum target_signal oursig)
4232 {
4233 char *name = target_signal_to_name (oursig);
4234 int name_padding = 13 - strlen (name);
4235
4236 if (name_padding <= 0)
4237 name_padding = 0;
4238
4239 printf_filtered ("%s", name);
4240 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4241 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4242 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4243 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4244 printf_filtered ("%s\n", target_signal_to_string (oursig));
4245 }
4246
4247 /* Specify how various signals in the inferior should be handled. */
4248
4249 static void
4250 handle_command (char *args, int from_tty)
4251 {
4252 char **argv;
4253 int digits, wordlen;
4254 int sigfirst, signum, siglast;
4255 enum target_signal oursig;
4256 int allsigs;
4257 int nsigs;
4258 unsigned char *sigs;
4259 struct cleanup *old_chain;
4260
4261 if (args == NULL)
4262 {
4263 error_no_arg (_("signal to handle"));
4264 }
4265
4266 /* Allocate and zero an array of flags for which signals to handle. */
4267
4268 nsigs = (int) TARGET_SIGNAL_LAST;
4269 sigs = (unsigned char *) alloca (nsigs);
4270 memset (sigs, 0, nsigs);
4271
4272 /* Break the command line up into args. */
4273
4274 argv = gdb_buildargv (args);
4275 old_chain = make_cleanup_freeargv (argv);
4276
4277 /* Walk through the args, looking for signal oursigs, signal names, and
4278 actions. Signal numbers and signal names may be interspersed with
4279 actions, with the actions being performed for all signals cumulatively
4280 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4281
4282 while (*argv != NULL)
4283 {
4284 wordlen = strlen (*argv);
4285 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4286 {;
4287 }
4288 allsigs = 0;
4289 sigfirst = siglast = -1;
4290
4291 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4292 {
4293 /* Apply action to all signals except those used by the
4294 debugger. Silently skip those. */
4295 allsigs = 1;
4296 sigfirst = 0;
4297 siglast = nsigs - 1;
4298 }
4299 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4300 {
4301 SET_SIGS (nsigs, sigs, signal_stop);
4302 SET_SIGS (nsigs, sigs, signal_print);
4303 }
4304 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4305 {
4306 UNSET_SIGS (nsigs, sigs, signal_program);
4307 }
4308 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4309 {
4310 SET_SIGS (nsigs, sigs, signal_print);
4311 }
4312 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4313 {
4314 SET_SIGS (nsigs, sigs, signal_program);
4315 }
4316 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4317 {
4318 UNSET_SIGS (nsigs, sigs, signal_stop);
4319 }
4320 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4321 {
4322 SET_SIGS (nsigs, sigs, signal_program);
4323 }
4324 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4325 {
4326 UNSET_SIGS (nsigs, sigs, signal_print);
4327 UNSET_SIGS (nsigs, sigs, signal_stop);
4328 }
4329 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4330 {
4331 UNSET_SIGS (nsigs, sigs, signal_program);
4332 }
4333 else if (digits > 0)
4334 {
4335 /* It is numeric. The numeric signal refers to our own
4336 internal signal numbering from target.h, not to host/target
4337 signal number. This is a feature; users really should be
4338 using symbolic names anyway, and the common ones like
4339 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4340
4341 sigfirst = siglast = (int)
4342 target_signal_from_command (atoi (*argv));
4343 if ((*argv)[digits] == '-')
4344 {
4345 siglast = (int)
4346 target_signal_from_command (atoi ((*argv) + digits + 1));
4347 }
4348 if (sigfirst > siglast)
4349 {
4350 /* Bet he didn't figure we'd think of this case... */
4351 signum = sigfirst;
4352 sigfirst = siglast;
4353 siglast = signum;
4354 }
4355 }
4356 else
4357 {
4358 oursig = target_signal_from_name (*argv);
4359 if (oursig != TARGET_SIGNAL_UNKNOWN)
4360 {
4361 sigfirst = siglast = (int) oursig;
4362 }
4363 else
4364 {
4365 /* Not a number and not a recognized flag word => complain. */
4366 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4367 }
4368 }
4369
4370 /* If any signal numbers or symbol names were found, set flags for
4371 which signals to apply actions to. */
4372
4373 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4374 {
4375 switch ((enum target_signal) signum)
4376 {
4377 case TARGET_SIGNAL_TRAP:
4378 case TARGET_SIGNAL_INT:
4379 if (!allsigs && !sigs[signum])
4380 {
4381 if (query ("%s is used by the debugger.\n\
4382 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
4383 {
4384 sigs[signum] = 1;
4385 }
4386 else
4387 {
4388 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4389 gdb_flush (gdb_stdout);
4390 }
4391 }
4392 break;
4393 case TARGET_SIGNAL_0:
4394 case TARGET_SIGNAL_DEFAULT:
4395 case TARGET_SIGNAL_UNKNOWN:
4396 /* Make sure that "all" doesn't print these. */
4397 break;
4398 default:
4399 sigs[signum] = 1;
4400 break;
4401 }
4402 }
4403
4404 argv++;
4405 }
4406
4407 target_notice_signals (inferior_ptid);
4408
4409 if (from_tty)
4410 {
4411 /* Show the results. */
4412 sig_print_header ();
4413 for (signum = 0; signum < nsigs; signum++)
4414 {
4415 if (sigs[signum])
4416 {
4417 sig_print_info (signum);
4418 }
4419 }
4420 }
4421
4422 do_cleanups (old_chain);
4423 }
4424
4425 static void
4426 xdb_handle_command (char *args, int from_tty)
4427 {
4428 char **argv;
4429 struct cleanup *old_chain;
4430
4431 if (args == NULL)
4432 error_no_arg (_("xdb command"));
4433
4434 /* Break the command line up into args. */
4435
4436 argv = gdb_buildargv (args);
4437 old_chain = make_cleanup_freeargv (argv);
4438 if (argv[1] != (char *) NULL)
4439 {
4440 char *argBuf;
4441 int bufLen;
4442
4443 bufLen = strlen (argv[0]) + 20;
4444 argBuf = (char *) xmalloc (bufLen);
4445 if (argBuf)
4446 {
4447 int validFlag = 1;
4448 enum target_signal oursig;
4449
4450 oursig = target_signal_from_name (argv[0]);
4451 memset (argBuf, 0, bufLen);
4452 if (strcmp (argv[1], "Q") == 0)
4453 sprintf (argBuf, "%s %s", argv[0], "noprint");
4454 else
4455 {
4456 if (strcmp (argv[1], "s") == 0)
4457 {
4458 if (!signal_stop[oursig])
4459 sprintf (argBuf, "%s %s", argv[0], "stop");
4460 else
4461 sprintf (argBuf, "%s %s", argv[0], "nostop");
4462 }
4463 else if (strcmp (argv[1], "i") == 0)
4464 {
4465 if (!signal_program[oursig])
4466 sprintf (argBuf, "%s %s", argv[0], "pass");
4467 else
4468 sprintf (argBuf, "%s %s", argv[0], "nopass");
4469 }
4470 else if (strcmp (argv[1], "r") == 0)
4471 {
4472 if (!signal_print[oursig])
4473 sprintf (argBuf, "%s %s", argv[0], "print");
4474 else
4475 sprintf (argBuf, "%s %s", argv[0], "noprint");
4476 }
4477 else
4478 validFlag = 0;
4479 }
4480 if (validFlag)
4481 handle_command (argBuf, from_tty);
4482 else
4483 printf_filtered (_("Invalid signal handling flag.\n"));
4484 if (argBuf)
4485 xfree (argBuf);
4486 }
4487 }
4488 do_cleanups (old_chain);
4489 }
4490
4491 /* Print current contents of the tables set by the handle command.
4492 It is possible we should just be printing signals actually used
4493 by the current target (but for things to work right when switching
4494 targets, all signals should be in the signal tables). */
4495
4496 static void
4497 signals_info (char *signum_exp, int from_tty)
4498 {
4499 enum target_signal oursig;
4500 sig_print_header ();
4501
4502 if (signum_exp)
4503 {
4504 /* First see if this is a symbol name. */
4505 oursig = target_signal_from_name (signum_exp);
4506 if (oursig == TARGET_SIGNAL_UNKNOWN)
4507 {
4508 /* No, try numeric. */
4509 oursig =
4510 target_signal_from_command (parse_and_eval_long (signum_exp));
4511 }
4512 sig_print_info (oursig);
4513 return;
4514 }
4515
4516 printf_filtered ("\n");
4517 /* These ugly casts brought to you by the native VAX compiler. */
4518 for (oursig = TARGET_SIGNAL_FIRST;
4519 (int) oursig < (int) TARGET_SIGNAL_LAST;
4520 oursig = (enum target_signal) ((int) oursig + 1))
4521 {
4522 QUIT;
4523
4524 if (oursig != TARGET_SIGNAL_UNKNOWN
4525 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4526 sig_print_info (oursig);
4527 }
4528
4529 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4530 }
4531 \f
4532 struct inferior_status
4533 {
4534 enum target_signal stop_signal;
4535 CORE_ADDR stop_pc;
4536 bpstat stop_bpstat;
4537 int stop_step;
4538 int stop_stack_dummy;
4539 int stopped_by_random_signal;
4540 int stepping_over_breakpoint;
4541 CORE_ADDR step_range_start;
4542 CORE_ADDR step_range_end;
4543 struct frame_id step_frame_id;
4544 enum step_over_calls_kind step_over_calls;
4545 CORE_ADDR step_resume_break_address;
4546 int stop_after_trap;
4547 int stop_soon;
4548
4549 /* These are here because if call_function_by_hand has written some
4550 registers and then decides to call error(), we better not have changed
4551 any registers. */
4552 struct regcache *registers;
4553
4554 /* A frame unique identifier. */
4555 struct frame_id selected_frame_id;
4556
4557 int breakpoint_proceeded;
4558 int restore_stack_info;
4559 int proceed_to_finish;
4560 };
4561
4562 void
4563 write_inferior_status_register (struct inferior_status *inf_status, int regno,
4564 LONGEST val)
4565 {
4566 int size = register_size (current_gdbarch, regno);
4567 void *buf = alloca (size);
4568 store_signed_integer (buf, size, val);
4569 regcache_raw_write (inf_status->registers, regno, buf);
4570 }
4571
4572 /* Save all of the information associated with the inferior<==>gdb
4573 connection. INF_STATUS is a pointer to a "struct inferior_status"
4574 (defined in inferior.h). */
4575
4576 struct inferior_status *
4577 save_inferior_status (int restore_stack_info)
4578 {
4579 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4580 struct thread_info *tp = inferior_thread ();
4581 struct inferior *inf = current_inferior ();
4582
4583 inf_status->stop_signal = tp->stop_signal;
4584 inf_status->stop_pc = stop_pc;
4585 inf_status->stop_step = tp->stop_step;
4586 inf_status->stop_stack_dummy = stop_stack_dummy;
4587 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4588 inf_status->stepping_over_breakpoint = tp->trap_expected;
4589 inf_status->step_range_start = tp->step_range_start;
4590 inf_status->step_range_end = tp->step_range_end;
4591 inf_status->step_frame_id = tp->step_frame_id;
4592 inf_status->step_over_calls = tp->step_over_calls;
4593 inf_status->stop_after_trap = stop_after_trap;
4594 inf_status->stop_soon = inf->stop_soon;
4595 /* Save original bpstat chain here; replace it with copy of chain.
4596 If caller's caller is walking the chain, they'll be happier if we
4597 hand them back the original chain when restore_inferior_status is
4598 called. */
4599 inf_status->stop_bpstat = tp->stop_bpstat;
4600 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
4601 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4602 inf_status->restore_stack_info = restore_stack_info;
4603 inf_status->proceed_to_finish = tp->proceed_to_finish;
4604
4605 inf_status->registers = regcache_dup (get_current_regcache ());
4606
4607 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4608 return inf_status;
4609 }
4610
4611 static int
4612 restore_selected_frame (void *args)
4613 {
4614 struct frame_id *fid = (struct frame_id *) args;
4615 struct frame_info *frame;
4616
4617 frame = frame_find_by_id (*fid);
4618
4619 /* If inf_status->selected_frame_id is NULL, there was no previously
4620 selected frame. */
4621 if (frame == NULL)
4622 {
4623 warning (_("Unable to restore previously selected frame."));
4624 return 0;
4625 }
4626
4627 select_frame (frame);
4628
4629 return (1);
4630 }
4631
4632 void
4633 restore_inferior_status (struct inferior_status *inf_status)
4634 {
4635 struct thread_info *tp = inferior_thread ();
4636 struct inferior *inf = current_inferior ();
4637
4638 tp->stop_signal = inf_status->stop_signal;
4639 stop_pc = inf_status->stop_pc;
4640 tp->stop_step = inf_status->stop_step;
4641 stop_stack_dummy = inf_status->stop_stack_dummy;
4642 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4643 tp->trap_expected = inf_status->stepping_over_breakpoint;
4644 tp->step_range_start = inf_status->step_range_start;
4645 tp->step_range_end = inf_status->step_range_end;
4646 tp->step_frame_id = inf_status->step_frame_id;
4647 tp->step_over_calls = inf_status->step_over_calls;
4648 stop_after_trap = inf_status->stop_after_trap;
4649 inf->stop_soon = inf_status->stop_soon;
4650 bpstat_clear (&tp->stop_bpstat);
4651 tp->stop_bpstat = inf_status->stop_bpstat;
4652 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4653 tp->proceed_to_finish = inf_status->proceed_to_finish;
4654
4655 /* The inferior can be gone if the user types "print exit(0)"
4656 (and perhaps other times). */
4657 if (target_has_execution)
4658 /* NB: The register write goes through to the target. */
4659 regcache_cpy (get_current_regcache (), inf_status->registers);
4660 regcache_xfree (inf_status->registers);
4661
4662 /* FIXME: If we are being called after stopping in a function which
4663 is called from gdb, we should not be trying to restore the
4664 selected frame; it just prints a spurious error message (The
4665 message is useful, however, in detecting bugs in gdb (like if gdb
4666 clobbers the stack)). In fact, should we be restoring the
4667 inferior status at all in that case? . */
4668
4669 if (target_has_stack && inf_status->restore_stack_info)
4670 {
4671 /* The point of catch_errors is that if the stack is clobbered,
4672 walking the stack might encounter a garbage pointer and
4673 error() trying to dereference it. */
4674 if (catch_errors
4675 (restore_selected_frame, &inf_status->selected_frame_id,
4676 "Unable to restore previously selected frame:\n",
4677 RETURN_MASK_ERROR) == 0)
4678 /* Error in restoring the selected frame. Select the innermost
4679 frame. */
4680 select_frame (get_current_frame ());
4681
4682 }
4683
4684 xfree (inf_status);
4685 }
4686
4687 static void
4688 do_restore_inferior_status_cleanup (void *sts)
4689 {
4690 restore_inferior_status (sts);
4691 }
4692
4693 struct cleanup *
4694 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4695 {
4696 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4697 }
4698
4699 void
4700 discard_inferior_status (struct inferior_status *inf_status)
4701 {
4702 /* See save_inferior_status for info on stop_bpstat. */
4703 bpstat_clear (&inf_status->stop_bpstat);
4704 regcache_xfree (inf_status->registers);
4705 xfree (inf_status);
4706 }
4707
4708 int
4709 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
4710 {
4711 struct target_waitstatus last;
4712 ptid_t last_ptid;
4713
4714 get_last_target_status (&last_ptid, &last);
4715
4716 if (last.kind != TARGET_WAITKIND_FORKED)
4717 return 0;
4718
4719 if (!ptid_equal (last_ptid, pid))
4720 return 0;
4721
4722 *child_pid = last.value.related_pid;
4723 return 1;
4724 }
4725
4726 int
4727 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
4728 {
4729 struct target_waitstatus last;
4730 ptid_t last_ptid;
4731
4732 get_last_target_status (&last_ptid, &last);
4733
4734 if (last.kind != TARGET_WAITKIND_VFORKED)
4735 return 0;
4736
4737 if (!ptid_equal (last_ptid, pid))
4738 return 0;
4739
4740 *child_pid = last.value.related_pid;
4741 return 1;
4742 }
4743
4744 int
4745 inferior_has_execd (ptid_t pid, char **execd_pathname)
4746 {
4747 struct target_waitstatus last;
4748 ptid_t last_ptid;
4749
4750 get_last_target_status (&last_ptid, &last);
4751
4752 if (last.kind != TARGET_WAITKIND_EXECD)
4753 return 0;
4754
4755 if (!ptid_equal (last_ptid, pid))
4756 return 0;
4757
4758 *execd_pathname = xstrdup (last.value.execd_pathname);
4759 return 1;
4760 }
4761
4762 /* Oft used ptids */
4763 ptid_t null_ptid;
4764 ptid_t minus_one_ptid;
4765
4766 /* Create a ptid given the necessary PID, LWP, and TID components. */
4767
4768 ptid_t
4769 ptid_build (int pid, long lwp, long tid)
4770 {
4771 ptid_t ptid;
4772
4773 ptid.pid = pid;
4774 ptid.lwp = lwp;
4775 ptid.tid = tid;
4776 return ptid;
4777 }
4778
4779 /* Create a ptid from just a pid. */
4780
4781 ptid_t
4782 pid_to_ptid (int pid)
4783 {
4784 return ptid_build (pid, 0, 0);
4785 }
4786
4787 /* Fetch the pid (process id) component from a ptid. */
4788
4789 int
4790 ptid_get_pid (ptid_t ptid)
4791 {
4792 return ptid.pid;
4793 }
4794
4795 /* Fetch the lwp (lightweight process) component from a ptid. */
4796
4797 long
4798 ptid_get_lwp (ptid_t ptid)
4799 {
4800 return ptid.lwp;
4801 }
4802
4803 /* Fetch the tid (thread id) component from a ptid. */
4804
4805 long
4806 ptid_get_tid (ptid_t ptid)
4807 {
4808 return ptid.tid;
4809 }
4810
4811 /* ptid_equal() is used to test equality of two ptids. */
4812
4813 int
4814 ptid_equal (ptid_t ptid1, ptid_t ptid2)
4815 {
4816 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
4817 && ptid1.tid == ptid2.tid);
4818 }
4819
4820 /* restore_inferior_ptid() will be used by the cleanup machinery
4821 to restore the inferior_ptid value saved in a call to
4822 save_inferior_ptid(). */
4823
4824 static void
4825 restore_inferior_ptid (void *arg)
4826 {
4827 ptid_t *saved_ptid_ptr = arg;
4828 inferior_ptid = *saved_ptid_ptr;
4829 xfree (arg);
4830 }
4831
4832 /* Save the value of inferior_ptid so that it may be restored by a
4833 later call to do_cleanups(). Returns the struct cleanup pointer
4834 needed for later doing the cleanup. */
4835
4836 struct cleanup *
4837 save_inferior_ptid (void)
4838 {
4839 ptid_t *saved_ptid_ptr;
4840
4841 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4842 *saved_ptid_ptr = inferior_ptid;
4843 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4844 }
4845 \f
4846
4847 /* User interface for reverse debugging:
4848 Set exec-direction / show exec-direction commands
4849 (returns error unless target implements to_set_exec_direction method). */
4850
4851 enum exec_direction_kind execution_direction = EXEC_FORWARD;
4852 static const char exec_forward[] = "forward";
4853 static const char exec_reverse[] = "reverse";
4854 static const char *exec_direction = exec_forward;
4855 static const char *exec_direction_names[] = {
4856 exec_forward,
4857 exec_reverse,
4858 NULL
4859 };
4860
4861 static void
4862 set_exec_direction_func (char *args, int from_tty,
4863 struct cmd_list_element *cmd)
4864 {
4865 if (target_can_execute_reverse)
4866 {
4867 if (!strcmp (exec_direction, exec_forward))
4868 execution_direction = EXEC_FORWARD;
4869 else if (!strcmp (exec_direction, exec_reverse))
4870 execution_direction = EXEC_REVERSE;
4871 }
4872 }
4873
4874 static void
4875 show_exec_direction_func (struct ui_file *out, int from_tty,
4876 struct cmd_list_element *cmd, const char *value)
4877 {
4878 switch (execution_direction) {
4879 case EXEC_FORWARD:
4880 fprintf_filtered (out, _("Forward.\n"));
4881 break;
4882 case EXEC_REVERSE:
4883 fprintf_filtered (out, _("Reverse.\n"));
4884 break;
4885 case EXEC_ERROR:
4886 default:
4887 fprintf_filtered (out,
4888 _("Forward (target `%s' does not support exec-direction).\n"),
4889 target_shortname);
4890 break;
4891 }
4892 }
4893
4894 /* User interface for non-stop mode. */
4895
4896 int non_stop = 0;
4897 static int non_stop_1 = 0;
4898
4899 static void
4900 set_non_stop (char *args, int from_tty,
4901 struct cmd_list_element *c)
4902 {
4903 if (target_has_execution)
4904 {
4905 non_stop_1 = non_stop;
4906 error (_("Cannot change this setting while the inferior is running."));
4907 }
4908
4909 non_stop = non_stop_1;
4910 }
4911
4912 static void
4913 show_non_stop (struct ui_file *file, int from_tty,
4914 struct cmd_list_element *c, const char *value)
4915 {
4916 fprintf_filtered (file,
4917 _("Controlling the inferior in non-stop mode is %s.\n"),
4918 value);
4919 }
4920
4921
4922 void
4923 _initialize_infrun (void)
4924 {
4925 int i;
4926 int numsigs;
4927 struct cmd_list_element *c;
4928
4929 add_info ("signals", signals_info, _("\
4930 What debugger does when program gets various signals.\n\
4931 Specify a signal as argument to print info on that signal only."));
4932 add_info_alias ("handle", "signals", 0);
4933
4934 add_com ("handle", class_run, handle_command, _("\
4935 Specify how to handle a signal.\n\
4936 Args are signals and actions to apply to those signals.\n\
4937 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4938 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4939 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4940 The special arg \"all\" is recognized to mean all signals except those\n\
4941 used by the debugger, typically SIGTRAP and SIGINT.\n\
4942 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4943 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4944 Stop means reenter debugger if this signal happens (implies print).\n\
4945 Print means print a message if this signal happens.\n\
4946 Pass means let program see this signal; otherwise program doesn't know.\n\
4947 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4948 Pass and Stop may be combined."));
4949 if (xdb_commands)
4950 {
4951 add_com ("lz", class_info, signals_info, _("\
4952 What debugger does when program gets various signals.\n\
4953 Specify a signal as argument to print info on that signal only."));
4954 add_com ("z", class_run, xdb_handle_command, _("\
4955 Specify how to handle a signal.\n\
4956 Args are signals and actions to apply to those signals.\n\
4957 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4958 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4959 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4960 The special arg \"all\" is recognized to mean all signals except those\n\
4961 used by the debugger, typically SIGTRAP and SIGINT.\n\
4962 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4963 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4964 nopass), \"Q\" (noprint)\n\
4965 Stop means reenter debugger if this signal happens (implies print).\n\
4966 Print means print a message if this signal happens.\n\
4967 Pass means let program see this signal; otherwise program doesn't know.\n\
4968 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4969 Pass and Stop may be combined."));
4970 }
4971
4972 if (!dbx_commands)
4973 stop_command = add_cmd ("stop", class_obscure,
4974 not_just_help_class_command, _("\
4975 There is no `stop' command, but you can set a hook on `stop'.\n\
4976 This allows you to set a list of commands to be run each time execution\n\
4977 of the program stops."), &cmdlist);
4978
4979 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4980 Set inferior debugging."), _("\
4981 Show inferior debugging."), _("\
4982 When non-zero, inferior specific debugging is enabled."),
4983 NULL,
4984 show_debug_infrun,
4985 &setdebuglist, &showdebuglist);
4986
4987 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
4988 Set displaced stepping debugging."), _("\
4989 Show displaced stepping debugging."), _("\
4990 When non-zero, displaced stepping specific debugging is enabled."),
4991 NULL,
4992 show_debug_displaced,
4993 &setdebuglist, &showdebuglist);
4994
4995 add_setshow_boolean_cmd ("non-stop", no_class,
4996 &non_stop_1, _("\
4997 Set whether gdb controls the inferior in non-stop mode."), _("\
4998 Show whether gdb controls the inferior in non-stop mode."), _("\
4999 When debugging a multi-threaded program and this setting is\n\
5000 off (the default, also called all-stop mode), when one thread stops\n\
5001 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5002 all other threads in the program while you interact with the thread of\n\
5003 interest. When you continue or step a thread, you can allow the other\n\
5004 threads to run, or have them remain stopped, but while you inspect any\n\
5005 thread's state, all threads stop.\n\
5006 \n\
5007 In non-stop mode, when one thread stops, other threads can continue\n\
5008 to run freely. You'll be able to step each thread independently,\n\
5009 leave it stopped or free to run as needed."),
5010 set_non_stop,
5011 show_non_stop,
5012 &setlist,
5013 &showlist);
5014
5015 numsigs = (int) TARGET_SIGNAL_LAST;
5016 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
5017 signal_print = (unsigned char *)
5018 xmalloc (sizeof (signal_print[0]) * numsigs);
5019 signal_program = (unsigned char *)
5020 xmalloc (sizeof (signal_program[0]) * numsigs);
5021 for (i = 0; i < numsigs; i++)
5022 {
5023 signal_stop[i] = 1;
5024 signal_print[i] = 1;
5025 signal_program[i] = 1;
5026 }
5027
5028 /* Signals caused by debugger's own actions
5029 should not be given to the program afterwards. */
5030 signal_program[TARGET_SIGNAL_TRAP] = 0;
5031 signal_program[TARGET_SIGNAL_INT] = 0;
5032
5033 /* Signals that are not errors should not normally enter the debugger. */
5034 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5035 signal_print[TARGET_SIGNAL_ALRM] = 0;
5036 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5037 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5038 signal_stop[TARGET_SIGNAL_PROF] = 0;
5039 signal_print[TARGET_SIGNAL_PROF] = 0;
5040 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5041 signal_print[TARGET_SIGNAL_CHLD] = 0;
5042 signal_stop[TARGET_SIGNAL_IO] = 0;
5043 signal_print[TARGET_SIGNAL_IO] = 0;
5044 signal_stop[TARGET_SIGNAL_POLL] = 0;
5045 signal_print[TARGET_SIGNAL_POLL] = 0;
5046 signal_stop[TARGET_SIGNAL_URG] = 0;
5047 signal_print[TARGET_SIGNAL_URG] = 0;
5048 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5049 signal_print[TARGET_SIGNAL_WINCH] = 0;
5050
5051 /* These signals are used internally by user-level thread
5052 implementations. (See signal(5) on Solaris.) Like the above
5053 signals, a healthy program receives and handles them as part of
5054 its normal operation. */
5055 signal_stop[TARGET_SIGNAL_LWP] = 0;
5056 signal_print[TARGET_SIGNAL_LWP] = 0;
5057 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5058 signal_print[TARGET_SIGNAL_WAITING] = 0;
5059 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5060 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5061
5062 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5063 &stop_on_solib_events, _("\
5064 Set stopping for shared library events."), _("\
5065 Show stopping for shared library events."), _("\
5066 If nonzero, gdb will give control to the user when the dynamic linker\n\
5067 notifies gdb of shared library events. The most common event of interest\n\
5068 to the user would be loading/unloading of a new library."),
5069 NULL,
5070 show_stop_on_solib_events,
5071 &setlist, &showlist);
5072
5073 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5074 follow_fork_mode_kind_names,
5075 &follow_fork_mode_string, _("\
5076 Set debugger response to a program call of fork or vfork."), _("\
5077 Show debugger response to a program call of fork or vfork."), _("\
5078 A fork or vfork creates a new process. follow-fork-mode can be:\n\
5079 parent - the original process is debugged after a fork\n\
5080 child - the new process is debugged after a fork\n\
5081 The unfollowed process will continue to run.\n\
5082 By default, the debugger will follow the parent process."),
5083 NULL,
5084 show_follow_fork_mode_string,
5085 &setlist, &showlist);
5086
5087 add_setshow_enum_cmd ("scheduler-locking", class_run,
5088 scheduler_enums, &scheduler_mode, _("\
5089 Set mode for locking scheduler during execution."), _("\
5090 Show mode for locking scheduler during execution."), _("\
5091 off == no locking (threads may preempt at any time)\n\
5092 on == full locking (no thread except the current thread may run)\n\
5093 step == scheduler locked during every single-step operation.\n\
5094 In this mode, no other thread may run during a step command.\n\
5095 Other threads may run while stepping over a function call ('next')."),
5096 set_schedlock_func, /* traps on target vector */
5097 show_scheduler_mode,
5098 &setlist, &showlist);
5099
5100 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5101 Set mode of the step operation."), _("\
5102 Show mode of the step operation."), _("\
5103 When set, doing a step over a function without debug line information\n\
5104 will stop at the first instruction of that function. Otherwise, the\n\
5105 function is skipped and the step command stops at a different source line."),
5106 NULL,
5107 show_step_stop_if_no_debug,
5108 &setlist, &showlist);
5109
5110 add_setshow_boolean_cmd ("can-use-displaced-stepping", class_maintenance,
5111 &can_use_displaced_stepping, _("\
5112 Set debugger's willingness to use displaced stepping."), _("\
5113 Show debugger's willingness to use displaced stepping."), _("\
5114 If zero, gdb will not use displaced stepping to step over\n\
5115 breakpoints, even if such is supported by the target."),
5116 NULL,
5117 show_can_use_displaced_stepping,
5118 &maintenance_set_cmdlist,
5119 &maintenance_show_cmdlist);
5120
5121 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5122 &exec_direction, _("Set direction of execution.\n\
5123 Options are 'forward' or 'reverse'."),
5124 _("Show direction of execution (forward/reverse)."),
5125 _("Tells gdb whether to execute forward or backward."),
5126 set_exec_direction_func, show_exec_direction_func,
5127 &setlist, &showlist);
5128
5129 /* ptid initializations */
5130 null_ptid = ptid_build (0, 0, 0);
5131 minus_one_ptid = ptid_build (-1, 0, 0);
5132 inferior_ptid = null_ptid;
5133 target_last_wait_ptid = minus_one_ptid;
5134 displaced_step_ptid = null_ptid;
5135
5136 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
5137 }