* infcall.c (run_inferior_call): Remove references to
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51
52 /* Prototypes for local functions */
53
54 static void signals_info (char *, int);
55
56 static void handle_command (char *, int);
57
58 static void sig_print_info (enum target_signal);
59
60 static void sig_print_header (void);
61
62 static void resume_cleanups (void *);
63
64 static int hook_stop_stub (void *);
65
66 static int restore_selected_frame (void *);
67
68 static void build_infrun (void);
69
70 static int follow_fork (void);
71
72 static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75 static int currently_stepping (struct thread_info *tp);
76
77 static int currently_stepping_callback (struct thread_info *tp, void *data);
78
79 static void xdb_handle_command (char *args, int from_tty);
80
81 static int prepare_to_proceed (int);
82
83 void _initialize_infrun (void);
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89 static void
90 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
91 struct cmd_list_element *c, const char *value)
92 {
93 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
94 }
95
96 /* In asynchronous mode, but simulating synchronous execution. */
97
98 int sync_execution = 0;
99
100 /* wait_for_inferior and normal_stop use this to notify the user
101 when the inferior stopped in a different thread than it had been
102 running in. */
103
104 static ptid_t previous_inferior_ptid;
105
106 int debug_displaced = 0;
107 static void
108 show_debug_displaced (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
112 }
113
114 static int debug_infrun = 0;
115 static void
116 show_debug_infrun (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118 {
119 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
120 }
121
122 /* If the program uses ELF-style shared libraries, then calls to
123 functions in shared libraries go through stubs, which live in a
124 table called the PLT (Procedure Linkage Table). The first time the
125 function is called, the stub sends control to the dynamic linker,
126 which looks up the function's real address, patches the stub so
127 that future calls will go directly to the function, and then passes
128 control to the function.
129
130 If we are stepping at the source level, we don't want to see any of
131 this --- we just want to skip over the stub and the dynamic linker.
132 The simple approach is to single-step until control leaves the
133 dynamic linker.
134
135 However, on some systems (e.g., Red Hat's 5.2 distribution) the
136 dynamic linker calls functions in the shared C library, so you
137 can't tell from the PC alone whether the dynamic linker is still
138 running. In this case, we use a step-resume breakpoint to get us
139 past the dynamic linker, as if we were using "next" to step over a
140 function call.
141
142 in_solib_dynsym_resolve_code() says whether we're in the dynamic
143 linker code or not. Normally, this means we single-step. However,
144 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
145 address where we can place a step-resume breakpoint to get past the
146 linker's symbol resolution function.
147
148 in_solib_dynsym_resolve_code() can generally be implemented in a
149 pretty portable way, by comparing the PC against the address ranges
150 of the dynamic linker's sections.
151
152 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
153 it depends on internal details of the dynamic linker. It's usually
154 not too hard to figure out where to put a breakpoint, but it
155 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
156 sanity checking. If it can't figure things out, returning zero and
157 getting the (possibly confusing) stepping behavior is better than
158 signalling an error, which will obscure the change in the
159 inferior's state. */
160
161 /* This function returns TRUE if pc is the address of an instruction
162 that lies within the dynamic linker (such as the event hook, or the
163 dld itself).
164
165 This function must be used only when a dynamic linker event has
166 been caught, and the inferior is being stepped out of the hook, or
167 undefined results are guaranteed. */
168
169 #ifndef SOLIB_IN_DYNAMIC_LINKER
170 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
171 #endif
172
173
174 /* Convert the #defines into values. This is temporary until wfi control
175 flow is completely sorted out. */
176
177 #ifndef CANNOT_STEP_HW_WATCHPOINTS
178 #define CANNOT_STEP_HW_WATCHPOINTS 0
179 #else
180 #undef CANNOT_STEP_HW_WATCHPOINTS
181 #define CANNOT_STEP_HW_WATCHPOINTS 1
182 #endif
183
184 /* Tables of how to react to signals; the user sets them. */
185
186 static unsigned char *signal_stop;
187 static unsigned char *signal_print;
188 static unsigned char *signal_program;
189
190 #define SET_SIGS(nsigs,sigs,flags) \
191 do { \
192 int signum = (nsigs); \
193 while (signum-- > 0) \
194 if ((sigs)[signum]) \
195 (flags)[signum] = 1; \
196 } while (0)
197
198 #define UNSET_SIGS(nsigs,sigs,flags) \
199 do { \
200 int signum = (nsigs); \
201 while (signum-- > 0) \
202 if ((sigs)[signum]) \
203 (flags)[signum] = 0; \
204 } while (0)
205
206 /* Value to pass to target_resume() to cause all threads to resume */
207
208 #define RESUME_ALL (pid_to_ptid (-1))
209
210 /* Command list pointer for the "stop" placeholder. */
211
212 static struct cmd_list_element *stop_command;
213
214 /* Function inferior was in as of last step command. */
215
216 static struct symbol *step_start_function;
217
218 /* Nonzero if we want to give control to the user when we're notified
219 of shared library events by the dynamic linker. */
220 static int stop_on_solib_events;
221 static void
222 show_stop_on_solib_events (struct ui_file *file, int from_tty,
223 struct cmd_list_element *c, const char *value)
224 {
225 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
226 value);
227 }
228
229 /* Nonzero means expecting a trace trap
230 and should stop the inferior and return silently when it happens. */
231
232 int stop_after_trap;
233
234 /* Save register contents here when executing a "finish" command or are
235 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
236 Thus this contains the return value from the called function (assuming
237 values are returned in a register). */
238
239 struct regcache *stop_registers;
240
241 /* Nonzero after stop if current stack frame should be printed. */
242
243 static int stop_print_frame;
244
245 /* This is a cached copy of the pid/waitstatus of the last event
246 returned by target_wait()/deprecated_target_wait_hook(). This
247 information is returned by get_last_target_status(). */
248 static ptid_t target_last_wait_ptid;
249 static struct target_waitstatus target_last_waitstatus;
250
251 static void context_switch (ptid_t ptid);
252
253 void init_thread_stepping_state (struct thread_info *tss);
254
255 void init_infwait_state (void);
256
257 /* This is used to remember when a fork, vfork or exec event
258 was caught by a catchpoint, and thus the event is to be
259 followed at the next resume of the inferior, and not
260 immediately. */
261 static struct
262 {
263 enum target_waitkind kind;
264 struct
265 {
266 ptid_t parent_pid;
267 ptid_t child_pid;
268 }
269 fork_event;
270 char *execd_pathname;
271 }
272 pending_follow;
273
274 static const char follow_fork_mode_child[] = "child";
275 static const char follow_fork_mode_parent[] = "parent";
276
277 static const char *follow_fork_mode_kind_names[] = {
278 follow_fork_mode_child,
279 follow_fork_mode_parent,
280 NULL
281 };
282
283 static const char *follow_fork_mode_string = follow_fork_mode_parent;
284 static void
285 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287 {
288 fprintf_filtered (file, _("\
289 Debugger response to a program call of fork or vfork is \"%s\".\n"),
290 value);
291 }
292 \f
293
294 static int
295 follow_fork (void)
296 {
297 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
298
299 return target_follow_fork (follow_child);
300 }
301
302 void
303 follow_inferior_reset_breakpoints (void)
304 {
305 struct thread_info *tp = inferior_thread ();
306
307 /* Was there a step_resume breakpoint? (There was if the user
308 did a "next" at the fork() call.) If so, explicitly reset its
309 thread number.
310
311 step_resumes are a form of bp that are made to be per-thread.
312 Since we created the step_resume bp when the parent process
313 was being debugged, and now are switching to the child process,
314 from the breakpoint package's viewpoint, that's a switch of
315 "threads". We must update the bp's notion of which thread
316 it is for, or it'll be ignored when it triggers. */
317
318 if (tp->step_resume_breakpoint)
319 breakpoint_re_set_thread (tp->step_resume_breakpoint);
320
321 /* Reinsert all breakpoints in the child. The user may have set
322 breakpoints after catching the fork, in which case those
323 were never set in the child, but only in the parent. This makes
324 sure the inserted breakpoints match the breakpoint list. */
325
326 breakpoint_re_set ();
327 insert_breakpoints ();
328 }
329
330 /* EXECD_PATHNAME is assumed to be non-NULL. */
331
332 static void
333 follow_exec (ptid_t pid, char *execd_pathname)
334 {
335 struct target_ops *tgt;
336 struct thread_info *th = inferior_thread ();
337
338 /* This is an exec event that we actually wish to pay attention to.
339 Refresh our symbol table to the newly exec'd program, remove any
340 momentary bp's, etc.
341
342 If there are breakpoints, they aren't really inserted now,
343 since the exec() transformed our inferior into a fresh set
344 of instructions.
345
346 We want to preserve symbolic breakpoints on the list, since
347 we have hopes that they can be reset after the new a.out's
348 symbol table is read.
349
350 However, any "raw" breakpoints must be removed from the list
351 (e.g., the solib bp's), since their address is probably invalid
352 now.
353
354 And, we DON'T want to call delete_breakpoints() here, since
355 that may write the bp's "shadow contents" (the instruction
356 value that was overwritten witha TRAP instruction). Since
357 we now have a new a.out, those shadow contents aren't valid. */
358 update_breakpoints_after_exec ();
359
360 /* If there was one, it's gone now. We cannot truly step-to-next
361 statement through an exec(). */
362 th->step_resume_breakpoint = NULL;
363 th->step_range_start = 0;
364 th->step_range_end = 0;
365
366 /* What is this a.out's name? */
367 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
368
369 /* We've followed the inferior through an exec. Therefore, the
370 inferior has essentially been killed & reborn. */
371
372 gdb_flush (gdb_stdout);
373
374 breakpoint_init_inferior (inf_execd);
375
376 if (gdb_sysroot && *gdb_sysroot)
377 {
378 char *name = alloca (strlen (gdb_sysroot)
379 + strlen (execd_pathname)
380 + 1);
381 strcpy (name, gdb_sysroot);
382 strcat (name, execd_pathname);
383 execd_pathname = name;
384 }
385
386 /* That a.out is now the one to use. */
387 exec_file_attach (execd_pathname, 0);
388
389 /* Reset the shared library package. This ensures that we get a
390 shlib event when the child reaches "_start", at which point the
391 dld will have had a chance to initialize the child. */
392 /* Also, loading a symbol file below may trigger symbol lookups, and
393 we don't want those to be satisfied by the libraries of the
394 previous incarnation of this process. */
395 no_shared_libraries (NULL, 0);
396
397 /* Load the main file's symbols. */
398 symbol_file_add_main (execd_pathname, 0);
399
400 #ifdef SOLIB_CREATE_INFERIOR_HOOK
401 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
402 #else
403 solib_create_inferior_hook ();
404 #endif
405
406 /* Reinsert all breakpoints. (Those which were symbolic have
407 been reset to the proper address in the new a.out, thanks
408 to symbol_file_command...) */
409 insert_breakpoints ();
410
411 /* The next resume of this inferior should bring it to the shlib
412 startup breakpoints. (If the user had also set bp's on
413 "main" from the old (parent) process, then they'll auto-
414 matically get reset there in the new process.) */
415 }
416
417 /* Non-zero if we just simulating a single-step. This is needed
418 because we cannot remove the breakpoints in the inferior process
419 until after the `wait' in `wait_for_inferior'. */
420 static int singlestep_breakpoints_inserted_p = 0;
421
422 /* The thread we inserted single-step breakpoints for. */
423 static ptid_t singlestep_ptid;
424
425 /* PC when we started this single-step. */
426 static CORE_ADDR singlestep_pc;
427
428 /* If another thread hit the singlestep breakpoint, we save the original
429 thread here so that we can resume single-stepping it later. */
430 static ptid_t saved_singlestep_ptid;
431 static int stepping_past_singlestep_breakpoint;
432
433 /* If not equal to null_ptid, this means that after stepping over breakpoint
434 is finished, we need to switch to deferred_step_ptid, and step it.
435
436 The use case is when one thread has hit a breakpoint, and then the user
437 has switched to another thread and issued 'step'. We need to step over
438 breakpoint in the thread which hit the breakpoint, but then continue
439 stepping the thread user has selected. */
440 static ptid_t deferred_step_ptid;
441 \f
442 /* Displaced stepping. */
443
444 /* In non-stop debugging mode, we must take special care to manage
445 breakpoints properly; in particular, the traditional strategy for
446 stepping a thread past a breakpoint it has hit is unsuitable.
447 'Displaced stepping' is a tactic for stepping one thread past a
448 breakpoint it has hit while ensuring that other threads running
449 concurrently will hit the breakpoint as they should.
450
451 The traditional way to step a thread T off a breakpoint in a
452 multi-threaded program in all-stop mode is as follows:
453
454 a0) Initially, all threads are stopped, and breakpoints are not
455 inserted.
456 a1) We single-step T, leaving breakpoints uninserted.
457 a2) We insert breakpoints, and resume all threads.
458
459 In non-stop debugging, however, this strategy is unsuitable: we
460 don't want to have to stop all threads in the system in order to
461 continue or step T past a breakpoint. Instead, we use displaced
462 stepping:
463
464 n0) Initially, T is stopped, other threads are running, and
465 breakpoints are inserted.
466 n1) We copy the instruction "under" the breakpoint to a separate
467 location, outside the main code stream, making any adjustments
468 to the instruction, register, and memory state as directed by
469 T's architecture.
470 n2) We single-step T over the instruction at its new location.
471 n3) We adjust the resulting register and memory state as directed
472 by T's architecture. This includes resetting T's PC to point
473 back into the main instruction stream.
474 n4) We resume T.
475
476 This approach depends on the following gdbarch methods:
477
478 - gdbarch_max_insn_length and gdbarch_displaced_step_location
479 indicate where to copy the instruction, and how much space must
480 be reserved there. We use these in step n1.
481
482 - gdbarch_displaced_step_copy_insn copies a instruction to a new
483 address, and makes any necessary adjustments to the instruction,
484 register contents, and memory. We use this in step n1.
485
486 - gdbarch_displaced_step_fixup adjusts registers and memory after
487 we have successfuly single-stepped the instruction, to yield the
488 same effect the instruction would have had if we had executed it
489 at its original address. We use this in step n3.
490
491 - gdbarch_displaced_step_free_closure provides cleanup.
492
493 The gdbarch_displaced_step_copy_insn and
494 gdbarch_displaced_step_fixup functions must be written so that
495 copying an instruction with gdbarch_displaced_step_copy_insn,
496 single-stepping across the copied instruction, and then applying
497 gdbarch_displaced_insn_fixup should have the same effects on the
498 thread's memory and registers as stepping the instruction in place
499 would have. Exactly which responsibilities fall to the copy and
500 which fall to the fixup is up to the author of those functions.
501
502 See the comments in gdbarch.sh for details.
503
504 Note that displaced stepping and software single-step cannot
505 currently be used in combination, although with some care I think
506 they could be made to. Software single-step works by placing
507 breakpoints on all possible subsequent instructions; if the
508 displaced instruction is a PC-relative jump, those breakpoints
509 could fall in very strange places --- on pages that aren't
510 executable, or at addresses that are not proper instruction
511 boundaries. (We do generally let other threads run while we wait
512 to hit the software single-step breakpoint, and they might
513 encounter such a corrupted instruction.) One way to work around
514 this would be to have gdbarch_displaced_step_copy_insn fully
515 simulate the effect of PC-relative instructions (and return NULL)
516 on architectures that use software single-stepping.
517
518 In non-stop mode, we can have independent and simultaneous step
519 requests, so more than one thread may need to simultaneously step
520 over a breakpoint. The current implementation assumes there is
521 only one scratch space per process. In this case, we have to
522 serialize access to the scratch space. If thread A wants to step
523 over a breakpoint, but we are currently waiting for some other
524 thread to complete a displaced step, we leave thread A stopped and
525 place it in the displaced_step_request_queue. Whenever a displaced
526 step finishes, we pick the next thread in the queue and start a new
527 displaced step operation on it. See displaced_step_prepare and
528 displaced_step_fixup for details. */
529
530 /* If this is not null_ptid, this is the thread carrying out a
531 displaced single-step. This thread's state will require fixing up
532 once it has completed its step. */
533 static ptid_t displaced_step_ptid;
534
535 struct displaced_step_request
536 {
537 ptid_t ptid;
538 struct displaced_step_request *next;
539 };
540
541 /* A queue of pending displaced stepping requests. */
542 struct displaced_step_request *displaced_step_request_queue;
543
544 /* The architecture the thread had when we stepped it. */
545 static struct gdbarch *displaced_step_gdbarch;
546
547 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
548 for post-step cleanup. */
549 static struct displaced_step_closure *displaced_step_closure;
550
551 /* The address of the original instruction, and the copy we made. */
552 static CORE_ADDR displaced_step_original, displaced_step_copy;
553
554 /* Saved contents of copy area. */
555 static gdb_byte *displaced_step_saved_copy;
556
557 /* Enum strings for "set|show displaced-stepping". */
558
559 static const char can_use_displaced_stepping_auto[] = "auto";
560 static const char can_use_displaced_stepping_on[] = "on";
561 static const char can_use_displaced_stepping_off[] = "off";
562 static const char *can_use_displaced_stepping_enum[] =
563 {
564 can_use_displaced_stepping_auto,
565 can_use_displaced_stepping_on,
566 can_use_displaced_stepping_off,
567 NULL,
568 };
569
570 /* If ON, and the architecture supports it, GDB will use displaced
571 stepping to step over breakpoints. If OFF, or if the architecture
572 doesn't support it, GDB will instead use the traditional
573 hold-and-step approach. If AUTO (which is the default), GDB will
574 decide which technique to use to step over breakpoints depending on
575 which of all-stop or non-stop mode is active --- displaced stepping
576 in non-stop mode; hold-and-step in all-stop mode. */
577
578 static const char *can_use_displaced_stepping =
579 can_use_displaced_stepping_auto;
580
581 static void
582 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
583 struct cmd_list_element *c,
584 const char *value)
585 {
586 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
587 fprintf_filtered (file, _("\
588 Debugger's willingness to use displaced stepping to step over \
589 breakpoints is %s (currently %s).\n"),
590 value, non_stop ? "on" : "off");
591 else
592 fprintf_filtered (file, _("\
593 Debugger's willingness to use displaced stepping to step over \
594 breakpoints is %s.\n"), value);
595 }
596
597 /* Return non-zero if displaced stepping can/should be used to step
598 over breakpoints. */
599
600 static int
601 use_displaced_stepping (struct gdbarch *gdbarch)
602 {
603 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
604 && non_stop)
605 || can_use_displaced_stepping == can_use_displaced_stepping_on)
606 && gdbarch_displaced_step_copy_insn_p (gdbarch));
607 }
608
609 /* Clean out any stray displaced stepping state. */
610 static void
611 displaced_step_clear (void)
612 {
613 /* Indicate that there is no cleanup pending. */
614 displaced_step_ptid = null_ptid;
615
616 if (displaced_step_closure)
617 {
618 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
619 displaced_step_closure);
620 displaced_step_closure = NULL;
621 }
622 }
623
624 static void
625 cleanup_displaced_step_closure (void *ptr)
626 {
627 struct displaced_step_closure *closure = ptr;
628
629 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
630 }
631
632 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
633 void
634 displaced_step_dump_bytes (struct ui_file *file,
635 const gdb_byte *buf,
636 size_t len)
637 {
638 int i;
639
640 for (i = 0; i < len; i++)
641 fprintf_unfiltered (file, "%02x ", buf[i]);
642 fputs_unfiltered ("\n", file);
643 }
644
645 /* Prepare to single-step, using displaced stepping.
646
647 Note that we cannot use displaced stepping when we have a signal to
648 deliver. If we have a signal to deliver and an instruction to step
649 over, then after the step, there will be no indication from the
650 target whether the thread entered a signal handler or ignored the
651 signal and stepped over the instruction successfully --- both cases
652 result in a simple SIGTRAP. In the first case we mustn't do a
653 fixup, and in the second case we must --- but we can't tell which.
654 Comments in the code for 'random signals' in handle_inferior_event
655 explain how we handle this case instead.
656
657 Returns 1 if preparing was successful -- this thread is going to be
658 stepped now; or 0 if displaced stepping this thread got queued. */
659 static int
660 displaced_step_prepare (ptid_t ptid)
661 {
662 struct cleanup *old_cleanups, *ignore_cleanups;
663 struct regcache *regcache = get_thread_regcache (ptid);
664 struct gdbarch *gdbarch = get_regcache_arch (regcache);
665 CORE_ADDR original, copy;
666 ULONGEST len;
667 struct displaced_step_closure *closure;
668
669 /* We should never reach this function if the architecture does not
670 support displaced stepping. */
671 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
672
673 /* For the first cut, we're displaced stepping one thread at a
674 time. */
675
676 if (!ptid_equal (displaced_step_ptid, null_ptid))
677 {
678 /* Already waiting for a displaced step to finish. Defer this
679 request and place in queue. */
680 struct displaced_step_request *req, *new_req;
681
682 if (debug_displaced)
683 fprintf_unfiltered (gdb_stdlog,
684 "displaced: defering step of %s\n",
685 target_pid_to_str (ptid));
686
687 new_req = xmalloc (sizeof (*new_req));
688 new_req->ptid = ptid;
689 new_req->next = NULL;
690
691 if (displaced_step_request_queue)
692 {
693 for (req = displaced_step_request_queue;
694 req && req->next;
695 req = req->next)
696 ;
697 req->next = new_req;
698 }
699 else
700 displaced_step_request_queue = new_req;
701
702 return 0;
703 }
704 else
705 {
706 if (debug_displaced)
707 fprintf_unfiltered (gdb_stdlog,
708 "displaced: stepping %s now\n",
709 target_pid_to_str (ptid));
710 }
711
712 displaced_step_clear ();
713
714 old_cleanups = save_inferior_ptid ();
715 inferior_ptid = ptid;
716
717 original = regcache_read_pc (regcache);
718
719 copy = gdbarch_displaced_step_location (gdbarch);
720 len = gdbarch_max_insn_length (gdbarch);
721
722 /* Save the original contents of the copy area. */
723 displaced_step_saved_copy = xmalloc (len);
724 ignore_cleanups = make_cleanup (free_current_contents,
725 &displaced_step_saved_copy);
726 read_memory (copy, displaced_step_saved_copy, len);
727 if (debug_displaced)
728 {
729 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
730 paddr_nz (copy));
731 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
732 };
733
734 closure = gdbarch_displaced_step_copy_insn (gdbarch,
735 original, copy, regcache);
736
737 /* We don't support the fully-simulated case at present. */
738 gdb_assert (closure);
739
740 make_cleanup (cleanup_displaced_step_closure, closure);
741
742 /* Resume execution at the copy. */
743 regcache_write_pc (regcache, copy);
744
745 discard_cleanups (ignore_cleanups);
746
747 do_cleanups (old_cleanups);
748
749 if (debug_displaced)
750 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
751 paddr_nz (copy));
752
753 /* Save the information we need to fix things up if the step
754 succeeds. */
755 displaced_step_ptid = ptid;
756 displaced_step_gdbarch = gdbarch;
757 displaced_step_closure = closure;
758 displaced_step_original = original;
759 displaced_step_copy = copy;
760 return 1;
761 }
762
763 static void
764 displaced_step_clear_cleanup (void *ignore)
765 {
766 displaced_step_clear ();
767 }
768
769 static void
770 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
771 {
772 struct cleanup *ptid_cleanup = save_inferior_ptid ();
773 inferior_ptid = ptid;
774 write_memory (memaddr, myaddr, len);
775 do_cleanups (ptid_cleanup);
776 }
777
778 static void
779 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
780 {
781 struct cleanup *old_cleanups;
782
783 /* Was this event for the pid we displaced? */
784 if (ptid_equal (displaced_step_ptid, null_ptid)
785 || ! ptid_equal (displaced_step_ptid, event_ptid))
786 return;
787
788 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
789
790 /* Restore the contents of the copy area. */
791 {
792 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
793 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
794 displaced_step_saved_copy, len);
795 if (debug_displaced)
796 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
797 paddr_nz (displaced_step_copy));
798 }
799
800 /* Did the instruction complete successfully? */
801 if (signal == TARGET_SIGNAL_TRAP)
802 {
803 /* Fix up the resulting state. */
804 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
805 displaced_step_closure,
806 displaced_step_original,
807 displaced_step_copy,
808 get_thread_regcache (displaced_step_ptid));
809 }
810 else
811 {
812 /* Since the instruction didn't complete, all we can do is
813 relocate the PC. */
814 struct regcache *regcache = get_thread_regcache (event_ptid);
815 CORE_ADDR pc = regcache_read_pc (regcache);
816 pc = displaced_step_original + (pc - displaced_step_copy);
817 regcache_write_pc (regcache, pc);
818 }
819
820 do_cleanups (old_cleanups);
821
822 displaced_step_ptid = null_ptid;
823
824 /* Are there any pending displaced stepping requests? If so, run
825 one now. */
826 while (displaced_step_request_queue)
827 {
828 struct displaced_step_request *head;
829 ptid_t ptid;
830 CORE_ADDR actual_pc;
831
832 head = displaced_step_request_queue;
833 ptid = head->ptid;
834 displaced_step_request_queue = head->next;
835 xfree (head);
836
837 context_switch (ptid);
838
839 actual_pc = read_pc ();
840
841 if (breakpoint_here_p (actual_pc))
842 {
843 if (debug_displaced)
844 fprintf_unfiltered (gdb_stdlog,
845 "displaced: stepping queued %s now\n",
846 target_pid_to_str (ptid));
847
848 displaced_step_prepare (ptid);
849
850 if (debug_displaced)
851 {
852 gdb_byte buf[4];
853
854 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
855 paddr_nz (actual_pc));
856 read_memory (actual_pc, buf, sizeof (buf));
857 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
858 }
859
860 target_resume (ptid, 1, TARGET_SIGNAL_0);
861
862 /* Done, we're stepping a thread. */
863 break;
864 }
865 else
866 {
867 int step;
868 struct thread_info *tp = inferior_thread ();
869
870 /* The breakpoint we were sitting under has since been
871 removed. */
872 tp->trap_expected = 0;
873
874 /* Go back to what we were trying to do. */
875 step = currently_stepping (tp);
876
877 if (debug_displaced)
878 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
879 target_pid_to_str (tp->ptid), step);
880
881 target_resume (ptid, step, TARGET_SIGNAL_0);
882 tp->stop_signal = TARGET_SIGNAL_0;
883
884 /* This request was discarded. See if there's any other
885 thread waiting for its turn. */
886 }
887 }
888 }
889
890 /* Update global variables holding ptids to hold NEW_PTID if they were
891 holding OLD_PTID. */
892 static void
893 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
894 {
895 struct displaced_step_request *it;
896
897 if (ptid_equal (inferior_ptid, old_ptid))
898 inferior_ptid = new_ptid;
899
900 if (ptid_equal (singlestep_ptid, old_ptid))
901 singlestep_ptid = new_ptid;
902
903 if (ptid_equal (displaced_step_ptid, old_ptid))
904 displaced_step_ptid = new_ptid;
905
906 if (ptid_equal (deferred_step_ptid, old_ptid))
907 deferred_step_ptid = new_ptid;
908
909 for (it = displaced_step_request_queue; it; it = it->next)
910 if (ptid_equal (it->ptid, old_ptid))
911 it->ptid = new_ptid;
912 }
913
914 \f
915 /* Resuming. */
916
917 /* Things to clean up if we QUIT out of resume (). */
918 static void
919 resume_cleanups (void *ignore)
920 {
921 normal_stop ();
922 }
923
924 static const char schedlock_off[] = "off";
925 static const char schedlock_on[] = "on";
926 static const char schedlock_step[] = "step";
927 static const char *scheduler_enums[] = {
928 schedlock_off,
929 schedlock_on,
930 schedlock_step,
931 NULL
932 };
933 static const char *scheduler_mode = schedlock_off;
934 static void
935 show_scheduler_mode (struct ui_file *file, int from_tty,
936 struct cmd_list_element *c, const char *value)
937 {
938 fprintf_filtered (file, _("\
939 Mode for locking scheduler during execution is \"%s\".\n"),
940 value);
941 }
942
943 static void
944 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
945 {
946 if (!target_can_lock_scheduler)
947 {
948 scheduler_mode = schedlock_off;
949 error (_("Target '%s' cannot support this command."), target_shortname);
950 }
951 }
952
953
954 /* Resume the inferior, but allow a QUIT. This is useful if the user
955 wants to interrupt some lengthy single-stepping operation
956 (for child processes, the SIGINT goes to the inferior, and so
957 we get a SIGINT random_signal, but for remote debugging and perhaps
958 other targets, that's not true).
959
960 STEP nonzero if we should step (zero to continue instead).
961 SIG is the signal to give the inferior (zero for none). */
962 void
963 resume (int step, enum target_signal sig)
964 {
965 int should_resume = 1;
966 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
967
968 /* Note that these must be reset if we follow a fork below. */
969 struct regcache *regcache = get_current_regcache ();
970 struct gdbarch *gdbarch = get_regcache_arch (regcache);
971 struct thread_info *tp = inferior_thread ();
972 CORE_ADDR pc = regcache_read_pc (regcache);
973
974 QUIT;
975
976 if (debug_infrun)
977 fprintf_unfiltered (gdb_stdlog,
978 "infrun: resume (step=%d, signal=%d), "
979 "trap_expected=%d\n",
980 step, sig, tp->trap_expected);
981
982 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
983 over an instruction that causes a page fault without triggering
984 a hardware watchpoint. The kernel properly notices that it shouldn't
985 stop, because the hardware watchpoint is not triggered, but it forgets
986 the step request and continues the program normally.
987 Work around the problem by removing hardware watchpoints if a step is
988 requested, GDB will check for a hardware watchpoint trigger after the
989 step anyway. */
990 if (CANNOT_STEP_HW_WATCHPOINTS && step)
991 remove_hw_watchpoints ();
992
993
994 /* Normally, by the time we reach `resume', the breakpoints are either
995 removed or inserted, as appropriate. The exception is if we're sitting
996 at a permanent breakpoint; we need to step over it, but permanent
997 breakpoints can't be removed. So we have to test for it here. */
998 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
999 {
1000 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1001 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1002 else
1003 error (_("\
1004 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1005 how to step past a permanent breakpoint on this architecture. Try using\n\
1006 a command like `return' or `jump' to continue execution."));
1007 }
1008
1009 /* If enabled, step over breakpoints by executing a copy of the
1010 instruction at a different address.
1011
1012 We can't use displaced stepping when we have a signal to deliver;
1013 the comments for displaced_step_prepare explain why. The
1014 comments in the handle_inferior event for dealing with 'random
1015 signals' explain what we do instead. */
1016 if (use_displaced_stepping (gdbarch)
1017 && tp->trap_expected
1018 && sig == TARGET_SIGNAL_0)
1019 {
1020 if (!displaced_step_prepare (inferior_ptid))
1021 {
1022 /* Got placed in displaced stepping queue. Will be resumed
1023 later when all the currently queued displaced stepping
1024 requests finish. The thread is not executing at this point,
1025 and the call to set_executing will be made later. But we
1026 need to call set_running here, since from frontend point of view,
1027 the thread is running. */
1028 set_running (inferior_ptid, 1);
1029 discard_cleanups (old_cleanups);
1030 return;
1031 }
1032 }
1033
1034 if (step && gdbarch_software_single_step_p (gdbarch))
1035 {
1036 /* Do it the hard way, w/temp breakpoints */
1037 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
1038 {
1039 /* ...and don't ask hardware to do it. */
1040 step = 0;
1041 /* and do not pull these breakpoints until after a `wait' in
1042 `wait_for_inferior' */
1043 singlestep_breakpoints_inserted_p = 1;
1044 singlestep_ptid = inferior_ptid;
1045 singlestep_pc = pc;
1046 }
1047 }
1048
1049 /* If there were any forks/vforks/execs that were caught and are
1050 now to be followed, then do so. */
1051 switch (pending_follow.kind)
1052 {
1053 case TARGET_WAITKIND_FORKED:
1054 case TARGET_WAITKIND_VFORKED:
1055 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1056 if (follow_fork ())
1057 should_resume = 0;
1058
1059 /* Following a child fork will change our notion of current
1060 thread. */
1061 tp = inferior_thread ();
1062 regcache = get_current_regcache ();
1063 gdbarch = get_regcache_arch (regcache);
1064 pc = regcache_read_pc (regcache);
1065 break;
1066
1067 case TARGET_WAITKIND_EXECD:
1068 /* follow_exec is called as soon as the exec event is seen. */
1069 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1070 break;
1071
1072 default:
1073 break;
1074 }
1075
1076 /* Install inferior's terminal modes. */
1077 target_terminal_inferior ();
1078
1079 if (should_resume)
1080 {
1081 ptid_t resume_ptid;
1082
1083 resume_ptid = RESUME_ALL; /* Default */
1084
1085 /* If STEP is set, it's a request to use hardware stepping
1086 facilities. But in that case, we should never
1087 use singlestep breakpoint. */
1088 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1089
1090 if (singlestep_breakpoints_inserted_p
1091 && stepping_past_singlestep_breakpoint)
1092 {
1093 /* The situation here is as follows. In thread T1 we wanted to
1094 single-step. Lacking hardware single-stepping we've
1095 set breakpoint at the PC of the next instruction -- call it
1096 P. After resuming, we've hit that breakpoint in thread T2.
1097 Now we've removed original breakpoint, inserted breakpoint
1098 at P+1, and try to step to advance T2 past breakpoint.
1099 We need to step only T2, as if T1 is allowed to freely run,
1100 it can run past P, and if other threads are allowed to run,
1101 they can hit breakpoint at P+1, and nested hits of single-step
1102 breakpoints is not something we'd want -- that's complicated
1103 to support, and has no value. */
1104 resume_ptid = inferior_ptid;
1105 }
1106
1107 if ((step || singlestep_breakpoints_inserted_p)
1108 && tp->trap_expected)
1109 {
1110 /* We're allowing a thread to run past a breakpoint it has
1111 hit, by single-stepping the thread with the breakpoint
1112 removed. In which case, we need to single-step only this
1113 thread, and keep others stopped, as they can miss this
1114 breakpoint if allowed to run.
1115
1116 The current code actually removes all breakpoints when
1117 doing this, not just the one being stepped over, so if we
1118 let other threads run, we can actually miss any
1119 breakpoint, not just the one at PC. */
1120 resume_ptid = inferior_ptid;
1121 }
1122
1123 if (non_stop)
1124 {
1125 /* With non-stop mode on, threads are always handled
1126 individually. */
1127 resume_ptid = inferior_ptid;
1128 }
1129 else if ((scheduler_mode == schedlock_on)
1130 || (scheduler_mode == schedlock_step
1131 && (step || singlestep_breakpoints_inserted_p)))
1132 {
1133 /* User-settable 'scheduler' mode requires solo thread resume. */
1134 resume_ptid = inferior_ptid;
1135 }
1136
1137 if (gdbarch_cannot_step_breakpoint (gdbarch))
1138 {
1139 /* Most targets can step a breakpoint instruction, thus
1140 executing it normally. But if this one cannot, just
1141 continue and we will hit it anyway. */
1142 if (step && breakpoint_inserted_here_p (pc))
1143 step = 0;
1144 }
1145
1146 if (debug_displaced
1147 && use_displaced_stepping (gdbarch)
1148 && tp->trap_expected)
1149 {
1150 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1151 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1152 gdb_byte buf[4];
1153
1154 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1155 paddr_nz (actual_pc));
1156 read_memory (actual_pc, buf, sizeof (buf));
1157 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1158 }
1159
1160 /* Avoid confusing the next resume, if the next stop/resume
1161 happens to apply to another thread. */
1162 tp->stop_signal = TARGET_SIGNAL_0;
1163
1164 target_resume (resume_ptid, step, sig);
1165 }
1166
1167 discard_cleanups (old_cleanups);
1168 }
1169 \f
1170 /* Proceeding. */
1171
1172 /* Clear out all variables saying what to do when inferior is continued.
1173 First do this, then set the ones you want, then call `proceed'. */
1174
1175 static void
1176 clear_proceed_status_thread (struct thread_info *tp)
1177 {
1178 if (debug_infrun)
1179 fprintf_unfiltered (gdb_stdlog,
1180 "infrun: clear_proceed_status_thread (%s)\n",
1181 target_pid_to_str (tp->ptid));
1182
1183 tp->trap_expected = 0;
1184 tp->step_range_start = 0;
1185 tp->step_range_end = 0;
1186 tp->step_frame_id = null_frame_id;
1187 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1188 tp->stop_requested = 0;
1189
1190 tp->stop_step = 0;
1191
1192 tp->proceed_to_finish = 0;
1193
1194 /* Discard any remaining commands or status from previous stop. */
1195 bpstat_clear (&tp->stop_bpstat);
1196 }
1197
1198 static int
1199 clear_proceed_status_callback (struct thread_info *tp, void *data)
1200 {
1201 if (is_exited (tp->ptid))
1202 return 0;
1203
1204 clear_proceed_status_thread (tp);
1205 return 0;
1206 }
1207
1208 void
1209 clear_proceed_status (void)
1210 {
1211 if (!ptid_equal (inferior_ptid, null_ptid))
1212 {
1213 struct inferior *inferior;
1214
1215 if (non_stop)
1216 {
1217 /* If in non-stop mode, only delete the per-thread status
1218 of the current thread. */
1219 clear_proceed_status_thread (inferior_thread ());
1220 }
1221 else
1222 {
1223 /* In all-stop mode, delete the per-thread status of
1224 *all* threads. */
1225 iterate_over_threads (clear_proceed_status_callback, NULL);
1226 }
1227
1228 inferior = current_inferior ();
1229 inferior->stop_soon = NO_STOP_QUIETLY;
1230 }
1231
1232 stop_after_trap = 0;
1233 breakpoint_proceeded = 1; /* We're about to proceed... */
1234
1235 if (stop_registers)
1236 {
1237 regcache_xfree (stop_registers);
1238 stop_registers = NULL;
1239 }
1240 }
1241
1242 /* This should be suitable for any targets that support threads. */
1243
1244 static int
1245 prepare_to_proceed (int step)
1246 {
1247 ptid_t wait_ptid;
1248 struct target_waitstatus wait_status;
1249
1250 /* Get the last target status returned by target_wait(). */
1251 get_last_target_status (&wait_ptid, &wait_status);
1252
1253 /* Make sure we were stopped at a breakpoint. */
1254 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1255 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1256 {
1257 return 0;
1258 }
1259
1260 /* Switched over from WAIT_PID. */
1261 if (!ptid_equal (wait_ptid, minus_one_ptid)
1262 && !ptid_equal (inferior_ptid, wait_ptid))
1263 {
1264 struct regcache *regcache = get_thread_regcache (wait_ptid);
1265
1266 if (breakpoint_here_p (regcache_read_pc (regcache)))
1267 {
1268 /* If stepping, remember current thread to switch back to. */
1269 if (step)
1270 deferred_step_ptid = inferior_ptid;
1271
1272 /* Switch back to WAIT_PID thread. */
1273 switch_to_thread (wait_ptid);
1274
1275 /* We return 1 to indicate that there is a breakpoint here,
1276 so we need to step over it before continuing to avoid
1277 hitting it straight away. */
1278 return 1;
1279 }
1280 }
1281
1282 return 0;
1283 }
1284
1285 /* Basic routine for continuing the program in various fashions.
1286
1287 ADDR is the address to resume at, or -1 for resume where stopped.
1288 SIGGNAL is the signal to give it, or 0 for none,
1289 or -1 for act according to how it stopped.
1290 STEP is nonzero if should trap after one instruction.
1291 -1 means return after that and print nothing.
1292 You should probably set various step_... variables
1293 before calling here, if you are stepping.
1294
1295 You should call clear_proceed_status before calling proceed. */
1296
1297 void
1298 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1299 {
1300 struct regcache *regcache = get_current_regcache ();
1301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1302 struct thread_info *tp;
1303 CORE_ADDR pc = regcache_read_pc (regcache);
1304 int oneproc = 0;
1305
1306 if (step > 0)
1307 step_start_function = find_pc_function (pc);
1308 if (step < 0)
1309 stop_after_trap = 1;
1310
1311 if (addr == (CORE_ADDR) -1)
1312 {
1313 if (pc == stop_pc && breakpoint_here_p (pc)
1314 && execution_direction != EXEC_REVERSE)
1315 /* There is a breakpoint at the address we will resume at,
1316 step one instruction before inserting breakpoints so that
1317 we do not stop right away (and report a second hit at this
1318 breakpoint).
1319
1320 Note, we don't do this in reverse, because we won't
1321 actually be executing the breakpoint insn anyway.
1322 We'll be (un-)executing the previous instruction. */
1323
1324 oneproc = 1;
1325 else if (gdbarch_single_step_through_delay_p (gdbarch)
1326 && gdbarch_single_step_through_delay (gdbarch,
1327 get_current_frame ()))
1328 /* We stepped onto an instruction that needs to be stepped
1329 again before re-inserting the breakpoint, do so. */
1330 oneproc = 1;
1331 }
1332 else
1333 {
1334 regcache_write_pc (regcache, addr);
1335 }
1336
1337 if (debug_infrun)
1338 fprintf_unfiltered (gdb_stdlog,
1339 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1340 paddr_nz (addr), siggnal, step);
1341
1342 if (non_stop)
1343 /* In non-stop, each thread is handled individually. The context
1344 must already be set to the right thread here. */
1345 ;
1346 else
1347 {
1348 /* In a multi-threaded task we may select another thread and
1349 then continue or step.
1350
1351 But if the old thread was stopped at a breakpoint, it will
1352 immediately cause another breakpoint stop without any
1353 execution (i.e. it will report a breakpoint hit incorrectly).
1354 So we must step over it first.
1355
1356 prepare_to_proceed checks the current thread against the
1357 thread that reported the most recent event. If a step-over
1358 is required it returns TRUE and sets the current thread to
1359 the old thread. */
1360 if (prepare_to_proceed (step))
1361 oneproc = 1;
1362 }
1363
1364 /* prepare_to_proceed may change the current thread. */
1365 tp = inferior_thread ();
1366
1367 if (oneproc)
1368 {
1369 tp->trap_expected = 1;
1370 /* If displaced stepping is enabled, we can step over the
1371 breakpoint without hitting it, so leave all breakpoints
1372 inserted. Otherwise we need to disable all breakpoints, step
1373 one instruction, and then re-add them when that step is
1374 finished. */
1375 if (!use_displaced_stepping (gdbarch))
1376 remove_breakpoints ();
1377 }
1378
1379 /* We can insert breakpoints if we're not trying to step over one,
1380 or if we are stepping over one but we're using displaced stepping
1381 to do so. */
1382 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1383 insert_breakpoints ();
1384
1385 if (!non_stop)
1386 {
1387 /* Pass the last stop signal to the thread we're resuming,
1388 irrespective of whether the current thread is the thread that
1389 got the last event or not. This was historically GDB's
1390 behaviour before keeping a stop_signal per thread. */
1391
1392 struct thread_info *last_thread;
1393 ptid_t last_ptid;
1394 struct target_waitstatus last_status;
1395
1396 get_last_target_status (&last_ptid, &last_status);
1397 if (!ptid_equal (inferior_ptid, last_ptid)
1398 && !ptid_equal (last_ptid, null_ptid)
1399 && !ptid_equal (last_ptid, minus_one_ptid))
1400 {
1401 last_thread = find_thread_pid (last_ptid);
1402 if (last_thread)
1403 {
1404 tp->stop_signal = last_thread->stop_signal;
1405 last_thread->stop_signal = TARGET_SIGNAL_0;
1406 }
1407 }
1408 }
1409
1410 if (siggnal != TARGET_SIGNAL_DEFAULT)
1411 tp->stop_signal = siggnal;
1412 /* If this signal should not be seen by program,
1413 give it zero. Used for debugging signals. */
1414 else if (!signal_program[tp->stop_signal])
1415 tp->stop_signal = TARGET_SIGNAL_0;
1416
1417 annotate_starting ();
1418
1419 /* Make sure that output from GDB appears before output from the
1420 inferior. */
1421 gdb_flush (gdb_stdout);
1422
1423 /* Refresh prev_pc value just prior to resuming. This used to be
1424 done in stop_stepping, however, setting prev_pc there did not handle
1425 scenarios such as inferior function calls or returning from
1426 a function via the return command. In those cases, the prev_pc
1427 value was not set properly for subsequent commands. The prev_pc value
1428 is used to initialize the starting line number in the ecs. With an
1429 invalid value, the gdb next command ends up stopping at the position
1430 represented by the next line table entry past our start position.
1431 On platforms that generate one line table entry per line, this
1432 is not a problem. However, on the ia64, the compiler generates
1433 extraneous line table entries that do not increase the line number.
1434 When we issue the gdb next command on the ia64 after an inferior call
1435 or a return command, we often end up a few instructions forward, still
1436 within the original line we started.
1437
1438 An attempt was made to have init_execution_control_state () refresh
1439 the prev_pc value before calculating the line number. This approach
1440 did not work because on platforms that use ptrace, the pc register
1441 cannot be read unless the inferior is stopped. At that point, we
1442 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1443 call can fail. Setting the prev_pc value here ensures the value is
1444 updated correctly when the inferior is stopped. */
1445 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1446
1447 /* Fill in with reasonable starting values. */
1448 init_thread_stepping_state (tp);
1449
1450 /* Reset to normal state. */
1451 init_infwait_state ();
1452
1453 /* Resume inferior. */
1454 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
1455
1456 /* Wait for it to stop (if not standalone)
1457 and in any case decode why it stopped, and act accordingly. */
1458 /* Do this only if we are not using the event loop, or if the target
1459 does not support asynchronous execution. */
1460 if (!target_can_async_p ())
1461 {
1462 wait_for_inferior (0);
1463 normal_stop ();
1464 }
1465 }
1466 \f
1467
1468 /* Start remote-debugging of a machine over a serial link. */
1469
1470 void
1471 start_remote (int from_tty)
1472 {
1473 struct inferior *inferior;
1474 init_wait_for_inferior ();
1475
1476 inferior = current_inferior ();
1477 inferior->stop_soon = STOP_QUIETLY_REMOTE;
1478
1479 /* Always go on waiting for the target, regardless of the mode. */
1480 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1481 indicate to wait_for_inferior that a target should timeout if
1482 nothing is returned (instead of just blocking). Because of this,
1483 targets expecting an immediate response need to, internally, set
1484 things up so that the target_wait() is forced to eventually
1485 timeout. */
1486 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1487 differentiate to its caller what the state of the target is after
1488 the initial open has been performed. Here we're assuming that
1489 the target has stopped. It should be possible to eventually have
1490 target_open() return to the caller an indication that the target
1491 is currently running and GDB state should be set to the same as
1492 for an async run. */
1493 wait_for_inferior (0);
1494
1495 /* Now that the inferior has stopped, do any bookkeeping like
1496 loading shared libraries. We want to do this before normal_stop,
1497 so that the displayed frame is up to date. */
1498 post_create_inferior (&current_target, from_tty);
1499
1500 normal_stop ();
1501 }
1502
1503 /* Initialize static vars when a new inferior begins. */
1504
1505 void
1506 init_wait_for_inferior (void)
1507 {
1508 /* These are meaningless until the first time through wait_for_inferior. */
1509
1510 breakpoint_init_inferior (inf_starting);
1511
1512 /* The first resume is not following a fork/vfork/exec. */
1513 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1514
1515 clear_proceed_status ();
1516
1517 stepping_past_singlestep_breakpoint = 0;
1518 deferred_step_ptid = null_ptid;
1519
1520 target_last_wait_ptid = minus_one_ptid;
1521
1522 previous_inferior_ptid = null_ptid;
1523 init_infwait_state ();
1524
1525 displaced_step_clear ();
1526 }
1527
1528 \f
1529 /* This enum encodes possible reasons for doing a target_wait, so that
1530 wfi can call target_wait in one place. (Ultimately the call will be
1531 moved out of the infinite loop entirely.) */
1532
1533 enum infwait_states
1534 {
1535 infwait_normal_state,
1536 infwait_thread_hop_state,
1537 infwait_step_watch_state,
1538 infwait_nonstep_watch_state
1539 };
1540
1541 /* Why did the inferior stop? Used to print the appropriate messages
1542 to the interface from within handle_inferior_event(). */
1543 enum inferior_stop_reason
1544 {
1545 /* Step, next, nexti, stepi finished. */
1546 END_STEPPING_RANGE,
1547 /* Inferior terminated by signal. */
1548 SIGNAL_EXITED,
1549 /* Inferior exited. */
1550 EXITED,
1551 /* Inferior received signal, and user asked to be notified. */
1552 SIGNAL_RECEIVED,
1553 /* Reverse execution -- target ran out of history info. */
1554 NO_HISTORY
1555 };
1556
1557 /* The PTID we'll do a target_wait on.*/
1558 ptid_t waiton_ptid;
1559
1560 /* Current inferior wait state. */
1561 enum infwait_states infwait_state;
1562
1563 /* Data to be passed around while handling an event. This data is
1564 discarded between events. */
1565 struct execution_control_state
1566 {
1567 ptid_t ptid;
1568 /* The thread that got the event, if this was a thread event; NULL
1569 otherwise. */
1570 struct thread_info *event_thread;
1571
1572 struct target_waitstatus ws;
1573 int random_signal;
1574 CORE_ADDR stop_func_start;
1575 CORE_ADDR stop_func_end;
1576 char *stop_func_name;
1577 int new_thread_event;
1578 int wait_some_more;
1579 };
1580
1581 void init_execution_control_state (struct execution_control_state *ecs);
1582
1583 void handle_inferior_event (struct execution_control_state *ecs);
1584
1585 static void handle_step_into_function (struct execution_control_state *ecs);
1586 static void handle_step_into_function_backward (struct execution_control_state *ecs);
1587 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1588 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1589 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1590 struct frame_id sr_id);
1591 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1592
1593 static void stop_stepping (struct execution_control_state *ecs);
1594 static void prepare_to_wait (struct execution_control_state *ecs);
1595 static void keep_going (struct execution_control_state *ecs);
1596 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1597 int stop_info);
1598
1599 /* Callback for iterate over threads. If the thread is stopped, but
1600 the user/frontend doesn't know about that yet, go through
1601 normal_stop, as if the thread had just stopped now. ARG points at
1602 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1603 ptid_is_pid(PTID) is true, applies to all threads of the process
1604 pointed at by PTID. Otherwise, apply only to the thread pointed by
1605 PTID. */
1606
1607 static int
1608 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1609 {
1610 ptid_t ptid = * (ptid_t *) arg;
1611
1612 if ((ptid_equal (info->ptid, ptid)
1613 || ptid_equal (minus_one_ptid, ptid)
1614 || (ptid_is_pid (ptid)
1615 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1616 && is_running (info->ptid)
1617 && !is_executing (info->ptid))
1618 {
1619 struct cleanup *old_chain;
1620 struct execution_control_state ecss;
1621 struct execution_control_state *ecs = &ecss;
1622
1623 memset (ecs, 0, sizeof (*ecs));
1624
1625 old_chain = make_cleanup_restore_current_thread ();
1626
1627 switch_to_thread (info->ptid);
1628
1629 /* Go through handle_inferior_event/normal_stop, so we always
1630 have consistent output as if the stop event had been
1631 reported. */
1632 ecs->ptid = info->ptid;
1633 ecs->event_thread = find_thread_pid (info->ptid);
1634 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1635 ecs->ws.value.sig = TARGET_SIGNAL_0;
1636
1637 handle_inferior_event (ecs);
1638
1639 if (!ecs->wait_some_more)
1640 {
1641 struct thread_info *tp;
1642
1643 normal_stop ();
1644
1645 /* Finish off the continuations. The continations
1646 themselves are responsible for realising the thread
1647 didn't finish what it was supposed to do. */
1648 tp = inferior_thread ();
1649 do_all_intermediate_continuations_thread (tp);
1650 do_all_continuations_thread (tp);
1651 }
1652
1653 do_cleanups (old_chain);
1654 }
1655
1656 return 0;
1657 }
1658
1659 /* This function is attached as a "thread_stop_requested" observer.
1660 Cleanup local state that assumed the PTID was to be resumed, and
1661 report the stop to the frontend. */
1662
1663 static void
1664 infrun_thread_stop_requested (ptid_t ptid)
1665 {
1666 struct displaced_step_request *it, *next, *prev = NULL;
1667
1668 /* PTID was requested to stop. Remove it from the displaced
1669 stepping queue, so we don't try to resume it automatically. */
1670 for (it = displaced_step_request_queue; it; it = next)
1671 {
1672 next = it->next;
1673
1674 if (ptid_equal (it->ptid, ptid)
1675 || ptid_equal (minus_one_ptid, ptid)
1676 || (ptid_is_pid (ptid)
1677 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1678 {
1679 if (displaced_step_request_queue == it)
1680 displaced_step_request_queue = it->next;
1681 else
1682 prev->next = it->next;
1683
1684 xfree (it);
1685 }
1686 else
1687 prev = it;
1688 }
1689
1690 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1691 }
1692
1693 /* Callback for iterate_over_threads. */
1694
1695 static int
1696 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1697 {
1698 if (is_exited (info->ptid))
1699 return 0;
1700
1701 delete_step_resume_breakpoint (info);
1702 return 0;
1703 }
1704
1705 /* In all-stop, delete the step resume breakpoint of any thread that
1706 had one. In non-stop, delete the step resume breakpoint of the
1707 thread that just stopped. */
1708
1709 static void
1710 delete_step_thread_step_resume_breakpoint (void)
1711 {
1712 if (!target_has_execution
1713 || ptid_equal (inferior_ptid, null_ptid))
1714 /* If the inferior has exited, we have already deleted the step
1715 resume breakpoints out of GDB's lists. */
1716 return;
1717
1718 if (non_stop)
1719 {
1720 /* If in non-stop mode, only delete the step-resume or
1721 longjmp-resume breakpoint of the thread that just stopped
1722 stepping. */
1723 struct thread_info *tp = inferior_thread ();
1724 delete_step_resume_breakpoint (tp);
1725 }
1726 else
1727 /* In all-stop mode, delete all step-resume and longjmp-resume
1728 breakpoints of any thread that had them. */
1729 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1730 }
1731
1732 /* A cleanup wrapper. */
1733
1734 static void
1735 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1736 {
1737 delete_step_thread_step_resume_breakpoint ();
1738 }
1739
1740 /* Pretty print the results of target_wait, for debugging purposes. */
1741
1742 static void
1743 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
1744 const struct target_waitstatus *ws)
1745 {
1746 char *status_string = target_waitstatus_to_string (ws);
1747 struct ui_file *tmp_stream = mem_fileopen ();
1748 char *text;
1749 long len;
1750
1751 /* The text is split over several lines because it was getting too long.
1752 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
1753 output as a unit; we want only one timestamp printed if debug_timestamp
1754 is set. */
1755
1756 fprintf_unfiltered (tmp_stream,
1757 "infrun: target_wait (%d", PIDGET (waiton_ptid));
1758 if (PIDGET (waiton_ptid) != -1)
1759 fprintf_unfiltered (tmp_stream,
1760 " [%s]", target_pid_to_str (waiton_ptid));
1761 fprintf_unfiltered (tmp_stream, ", status) =\n");
1762 fprintf_unfiltered (tmp_stream,
1763 "infrun: %d [%s],\n",
1764 PIDGET (result_ptid), target_pid_to_str (result_ptid));
1765 fprintf_unfiltered (tmp_stream,
1766 "infrun: %s\n",
1767 status_string);
1768
1769 text = ui_file_xstrdup (tmp_stream, &len);
1770
1771 /* This uses %s in part to handle %'s in the text, but also to avoid
1772 a gcc error: the format attribute requires a string literal. */
1773 fprintf_unfiltered (gdb_stdlog, "%s", text);
1774
1775 xfree (status_string);
1776 xfree (text);
1777 ui_file_delete (tmp_stream);
1778 }
1779
1780 /* Wait for control to return from inferior to debugger.
1781
1782 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1783 as if they were SIGTRAP signals. This can be useful during
1784 the startup sequence on some targets such as HP/UX, where
1785 we receive an EXEC event instead of the expected SIGTRAP.
1786
1787 If inferior gets a signal, we may decide to start it up again
1788 instead of returning. That is why there is a loop in this function.
1789 When this function actually returns it means the inferior
1790 should be left stopped and GDB should read more commands. */
1791
1792 void
1793 wait_for_inferior (int treat_exec_as_sigtrap)
1794 {
1795 struct cleanup *old_cleanups;
1796 struct execution_control_state ecss;
1797 struct execution_control_state *ecs;
1798
1799 if (debug_infrun)
1800 fprintf_unfiltered
1801 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1802 treat_exec_as_sigtrap);
1803
1804 old_cleanups =
1805 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
1806
1807 ecs = &ecss;
1808 memset (ecs, 0, sizeof (*ecs));
1809
1810 overlay_cache_invalid = 1;
1811
1812 /* We'll update this if & when we switch to a new thread. */
1813 previous_inferior_ptid = inferior_ptid;
1814
1815 /* We have to invalidate the registers BEFORE calling target_wait
1816 because they can be loaded from the target while in target_wait.
1817 This makes remote debugging a bit more efficient for those
1818 targets that provide critical registers as part of their normal
1819 status mechanism. */
1820
1821 registers_changed ();
1822
1823 while (1)
1824 {
1825 struct cleanup *old_chain;
1826
1827 if (deprecated_target_wait_hook)
1828 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1829 else
1830 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1831
1832 if (debug_infrun)
1833 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
1834
1835 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1836 {
1837 xfree (ecs->ws.value.execd_pathname);
1838 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1839 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1840 }
1841
1842 /* If an error happens while handling the event, propagate GDB's
1843 knowledge of the executing state to the frontend/user running
1844 state. */
1845 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
1846
1847 /* Now figure out what to do with the result of the result. */
1848 handle_inferior_event (ecs);
1849
1850 /* No error, don't finish the state yet. */
1851 discard_cleanups (old_chain);
1852
1853 if (!ecs->wait_some_more)
1854 break;
1855 }
1856
1857 do_cleanups (old_cleanups);
1858 }
1859
1860 /* Asynchronous version of wait_for_inferior. It is called by the
1861 event loop whenever a change of state is detected on the file
1862 descriptor corresponding to the target. It can be called more than
1863 once to complete a single execution command. In such cases we need
1864 to keep the state in a global variable ECSS. If it is the last time
1865 that this function is called for a single execution command, then
1866 report to the user that the inferior has stopped, and do the
1867 necessary cleanups. */
1868
1869 void
1870 fetch_inferior_event (void *client_data)
1871 {
1872 struct execution_control_state ecss;
1873 struct execution_control_state *ecs = &ecss;
1874 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1875 struct cleanup *ts_old_chain;
1876 int was_sync = sync_execution;
1877
1878 memset (ecs, 0, sizeof (*ecs));
1879
1880 overlay_cache_invalid = 1;
1881
1882 /* We can only rely on wait_for_more being correct before handling
1883 the event in all-stop, but previous_inferior_ptid isn't used in
1884 non-stop. */
1885 if (!ecs->wait_some_more)
1886 /* We'll update this if & when we switch to a new thread. */
1887 previous_inferior_ptid = inferior_ptid;
1888
1889 if (non_stop)
1890 /* In non-stop mode, the user/frontend should not notice a thread
1891 switch due to internal events. Make sure we reverse to the
1892 user selected thread and frame after handling the event and
1893 running any breakpoint commands. */
1894 make_cleanup_restore_current_thread ();
1895
1896 /* We have to invalidate the registers BEFORE calling target_wait
1897 because they can be loaded from the target while in target_wait.
1898 This makes remote debugging a bit more efficient for those
1899 targets that provide critical registers as part of their normal
1900 status mechanism. */
1901
1902 registers_changed ();
1903
1904 if (deprecated_target_wait_hook)
1905 ecs->ptid =
1906 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1907 else
1908 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1909
1910 if (debug_infrun)
1911 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
1912
1913 if (non_stop
1914 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1915 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1916 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1917 /* In non-stop mode, each thread is handled individually. Switch
1918 early, so the global state is set correctly for this
1919 thread. */
1920 context_switch (ecs->ptid);
1921
1922 /* If an error happens while handling the event, propagate GDB's
1923 knowledge of the executing state to the frontend/user running
1924 state. */
1925 if (!non_stop)
1926 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
1927 else
1928 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
1929
1930 /* Now figure out what to do with the result of the result. */
1931 handle_inferior_event (ecs);
1932
1933 if (!ecs->wait_some_more)
1934 {
1935 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
1936
1937 delete_step_thread_step_resume_breakpoint ();
1938
1939 /* We may not find an inferior if this was a process exit. */
1940 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
1941 normal_stop ();
1942
1943 if (target_has_execution
1944 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1945 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1946 && ecs->event_thread->step_multi
1947 && ecs->event_thread->stop_step)
1948 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1949 else
1950 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1951 }
1952
1953 /* No error, don't finish the thread states yet. */
1954 discard_cleanups (ts_old_chain);
1955
1956 /* Revert thread and frame. */
1957 do_cleanups (old_chain);
1958
1959 /* If the inferior was in sync execution mode, and now isn't,
1960 restore the prompt. */
1961 if (was_sync && !sync_execution)
1962 display_gdb_prompt (0);
1963 }
1964
1965 /* Prepare an execution control state for looping through a
1966 wait_for_inferior-type loop. */
1967
1968 void
1969 init_execution_control_state (struct execution_control_state *ecs)
1970 {
1971 ecs->random_signal = 0;
1972 }
1973
1974 /* Clear context switchable stepping state. */
1975
1976 void
1977 init_thread_stepping_state (struct thread_info *tss)
1978 {
1979 struct symtab_and_line sal;
1980
1981 tss->stepping_over_breakpoint = 0;
1982 tss->step_after_step_resume_breakpoint = 0;
1983 tss->stepping_through_solib_after_catch = 0;
1984 tss->stepping_through_solib_catchpoints = NULL;
1985
1986 sal = find_pc_line (tss->prev_pc, 0);
1987 tss->current_line = sal.line;
1988 tss->current_symtab = sal.symtab;
1989 }
1990
1991 /* Return the cached copy of the last pid/waitstatus returned by
1992 target_wait()/deprecated_target_wait_hook(). The data is actually
1993 cached by handle_inferior_event(), which gets called immediately
1994 after target_wait()/deprecated_target_wait_hook(). */
1995
1996 void
1997 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1998 {
1999 *ptidp = target_last_wait_ptid;
2000 *status = target_last_waitstatus;
2001 }
2002
2003 void
2004 nullify_last_target_wait_ptid (void)
2005 {
2006 target_last_wait_ptid = minus_one_ptid;
2007 }
2008
2009 /* Switch thread contexts. */
2010
2011 static void
2012 context_switch (ptid_t ptid)
2013 {
2014 if (debug_infrun)
2015 {
2016 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2017 target_pid_to_str (inferior_ptid));
2018 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2019 target_pid_to_str (ptid));
2020 }
2021
2022 switch_to_thread (ptid);
2023 }
2024
2025 static void
2026 adjust_pc_after_break (struct execution_control_state *ecs)
2027 {
2028 struct regcache *regcache;
2029 struct gdbarch *gdbarch;
2030 CORE_ADDR breakpoint_pc;
2031
2032 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2033 we aren't, just return.
2034
2035 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2036 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2037 implemented by software breakpoints should be handled through the normal
2038 breakpoint layer.
2039
2040 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2041 different signals (SIGILL or SIGEMT for instance), but it is less
2042 clear where the PC is pointing afterwards. It may not match
2043 gdbarch_decr_pc_after_break. I don't know any specific target that
2044 generates these signals at breakpoints (the code has been in GDB since at
2045 least 1992) so I can not guess how to handle them here.
2046
2047 In earlier versions of GDB, a target with
2048 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2049 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2050 target with both of these set in GDB history, and it seems unlikely to be
2051 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2052
2053 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2054 return;
2055
2056 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2057 return;
2058
2059 /* In reverse execution, when a breakpoint is hit, the instruction
2060 under it has already been de-executed. The reported PC always
2061 points at the breakpoint address, so adjusting it further would
2062 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2063 architecture:
2064
2065 B1 0x08000000 : INSN1
2066 B2 0x08000001 : INSN2
2067 0x08000002 : INSN3
2068 PC -> 0x08000003 : INSN4
2069
2070 Say you're stopped at 0x08000003 as above. Reverse continuing
2071 from that point should hit B2 as below. Reading the PC when the
2072 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2073 been de-executed already.
2074
2075 B1 0x08000000 : INSN1
2076 B2 PC -> 0x08000001 : INSN2
2077 0x08000002 : INSN3
2078 0x08000003 : INSN4
2079
2080 We can't apply the same logic as for forward execution, because
2081 we would wrongly adjust the PC to 0x08000000, since there's a
2082 breakpoint at PC - 1. We'd then report a hit on B1, although
2083 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2084 behaviour. */
2085 if (execution_direction == EXEC_REVERSE)
2086 return;
2087
2088 /* If this target does not decrement the PC after breakpoints, then
2089 we have nothing to do. */
2090 regcache = get_thread_regcache (ecs->ptid);
2091 gdbarch = get_regcache_arch (regcache);
2092 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2093 return;
2094
2095 /* Find the location where (if we've hit a breakpoint) the
2096 breakpoint would be. */
2097 breakpoint_pc = regcache_read_pc (regcache)
2098 - gdbarch_decr_pc_after_break (gdbarch);
2099
2100 /* Check whether there actually is a software breakpoint inserted at
2101 that location.
2102
2103 If in non-stop mode, a race condition is possible where we've
2104 removed a breakpoint, but stop events for that breakpoint were
2105 already queued and arrive later. To suppress those spurious
2106 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2107 and retire them after a number of stop events are reported. */
2108 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2109 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
2110 {
2111 /* When using hardware single-step, a SIGTRAP is reported for both
2112 a completed single-step and a software breakpoint. Need to
2113 differentiate between the two, as the latter needs adjusting
2114 but the former does not.
2115
2116 The SIGTRAP can be due to a completed hardware single-step only if
2117 - we didn't insert software single-step breakpoints
2118 - the thread to be examined is still the current thread
2119 - this thread is currently being stepped
2120
2121 If any of these events did not occur, we must have stopped due
2122 to hitting a software breakpoint, and have to back up to the
2123 breakpoint address.
2124
2125 As a special case, we could have hardware single-stepped a
2126 software breakpoint. In this case (prev_pc == breakpoint_pc),
2127 we also need to back up to the breakpoint address. */
2128
2129 if (singlestep_breakpoints_inserted_p
2130 || !ptid_equal (ecs->ptid, inferior_ptid)
2131 || !currently_stepping (ecs->event_thread)
2132 || ecs->event_thread->prev_pc == breakpoint_pc)
2133 regcache_write_pc (regcache, breakpoint_pc);
2134 }
2135 }
2136
2137 void
2138 init_infwait_state (void)
2139 {
2140 waiton_ptid = pid_to_ptid (-1);
2141 infwait_state = infwait_normal_state;
2142 }
2143
2144 void
2145 error_is_running (void)
2146 {
2147 error (_("\
2148 Cannot execute this command while the selected thread is running."));
2149 }
2150
2151 void
2152 ensure_not_running (void)
2153 {
2154 if (is_running (inferior_ptid))
2155 error_is_running ();
2156 }
2157
2158 /* Given an execution control state that has been freshly filled in
2159 by an event from the inferior, figure out what it means and take
2160 appropriate action. */
2161
2162 void
2163 handle_inferior_event (struct execution_control_state *ecs)
2164 {
2165 int sw_single_step_trap_p = 0;
2166 int stopped_by_watchpoint;
2167 int stepped_after_stopped_by_watchpoint = 0;
2168 struct symtab_and_line stop_pc_sal;
2169 enum stop_kind stop_soon;
2170
2171 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2172 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2173 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2174 {
2175 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2176 gdb_assert (inf);
2177 stop_soon = inf->stop_soon;
2178 }
2179 else
2180 stop_soon = NO_STOP_QUIETLY;
2181
2182 /* Cache the last pid/waitstatus. */
2183 target_last_wait_ptid = ecs->ptid;
2184 target_last_waitstatus = ecs->ws;
2185
2186 /* Always clear state belonging to the previous time we stopped. */
2187 stop_stack_dummy = 0;
2188
2189 /* If it's a new process, add it to the thread database */
2190
2191 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2192 && !ptid_equal (ecs->ptid, minus_one_ptid)
2193 && !in_thread_list (ecs->ptid));
2194
2195 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2196 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2197 add_thread (ecs->ptid);
2198
2199 ecs->event_thread = find_thread_pid (ecs->ptid);
2200
2201 /* Dependent on valid ECS->EVENT_THREAD. */
2202 adjust_pc_after_break (ecs);
2203
2204 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2205 reinit_frame_cache ();
2206
2207 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2208 {
2209 breakpoint_retire_moribund ();
2210
2211 /* Mark the non-executing threads accordingly. In all-stop, all
2212 threads of all processes are stopped when we get any event
2213 reported. In non-stop mode, only the event thread stops. If
2214 we're handling a process exit in non-stop mode, there's
2215 nothing to do, as threads of the dead process are gone, and
2216 threads of any other process were left running. */
2217 if (!non_stop)
2218 set_executing (minus_one_ptid, 0);
2219 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2220 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2221 set_executing (inferior_ptid, 0);
2222 }
2223
2224 switch (infwait_state)
2225 {
2226 case infwait_thread_hop_state:
2227 if (debug_infrun)
2228 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
2229 /* Cancel the waiton_ptid. */
2230 waiton_ptid = pid_to_ptid (-1);
2231 break;
2232
2233 case infwait_normal_state:
2234 if (debug_infrun)
2235 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
2236 break;
2237
2238 case infwait_step_watch_state:
2239 if (debug_infrun)
2240 fprintf_unfiltered (gdb_stdlog,
2241 "infrun: infwait_step_watch_state\n");
2242
2243 stepped_after_stopped_by_watchpoint = 1;
2244 break;
2245
2246 case infwait_nonstep_watch_state:
2247 if (debug_infrun)
2248 fprintf_unfiltered (gdb_stdlog,
2249 "infrun: infwait_nonstep_watch_state\n");
2250 insert_breakpoints ();
2251
2252 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2253 handle things like signals arriving and other things happening
2254 in combination correctly? */
2255 stepped_after_stopped_by_watchpoint = 1;
2256 break;
2257
2258 default:
2259 internal_error (__FILE__, __LINE__, _("bad switch"));
2260 }
2261 infwait_state = infwait_normal_state;
2262
2263 switch (ecs->ws.kind)
2264 {
2265 case TARGET_WAITKIND_LOADED:
2266 if (debug_infrun)
2267 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
2268 /* Ignore gracefully during startup of the inferior, as it might
2269 be the shell which has just loaded some objects, otherwise
2270 add the symbols for the newly loaded objects. Also ignore at
2271 the beginning of an attach or remote session; we will query
2272 the full list of libraries once the connection is
2273 established. */
2274 if (stop_soon == NO_STOP_QUIETLY)
2275 {
2276 /* Check for any newly added shared libraries if we're
2277 supposed to be adding them automatically. Switch
2278 terminal for any messages produced by
2279 breakpoint_re_set. */
2280 target_terminal_ours_for_output ();
2281 /* NOTE: cagney/2003-11-25: Make certain that the target
2282 stack's section table is kept up-to-date. Architectures,
2283 (e.g., PPC64), use the section table to perform
2284 operations such as address => section name and hence
2285 require the table to contain all sections (including
2286 those found in shared libraries). */
2287 /* NOTE: cagney/2003-11-25: Pass current_target and not
2288 exec_ops to SOLIB_ADD. This is because current GDB is
2289 only tooled to propagate section_table changes out from
2290 the "current_target" (see target_resize_to_sections), and
2291 not up from the exec stratum. This, of course, isn't
2292 right. "infrun.c" should only interact with the
2293 exec/process stratum, instead relying on the target stack
2294 to propagate relevant changes (stop, section table
2295 changed, ...) up to other layers. */
2296 #ifdef SOLIB_ADD
2297 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2298 #else
2299 solib_add (NULL, 0, &current_target, auto_solib_add);
2300 #endif
2301 target_terminal_inferior ();
2302
2303 /* If requested, stop when the dynamic linker notifies
2304 gdb of events. This allows the user to get control
2305 and place breakpoints in initializer routines for
2306 dynamically loaded objects (among other things). */
2307 if (stop_on_solib_events)
2308 {
2309 stop_stepping (ecs);
2310 return;
2311 }
2312
2313 /* NOTE drow/2007-05-11: This might be a good place to check
2314 for "catch load". */
2315 }
2316
2317 /* If we are skipping through a shell, or through shared library
2318 loading that we aren't interested in, resume the program. If
2319 we're running the program normally, also resume. But stop if
2320 we're attaching or setting up a remote connection. */
2321 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2322 {
2323 /* Loading of shared libraries might have changed breakpoint
2324 addresses. Make sure new breakpoints are inserted. */
2325 if (stop_soon == NO_STOP_QUIETLY
2326 && !breakpoints_always_inserted_mode ())
2327 insert_breakpoints ();
2328 resume (0, TARGET_SIGNAL_0);
2329 prepare_to_wait (ecs);
2330 return;
2331 }
2332
2333 break;
2334
2335 case TARGET_WAITKIND_SPURIOUS:
2336 if (debug_infrun)
2337 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2338 resume (0, TARGET_SIGNAL_0);
2339 prepare_to_wait (ecs);
2340 return;
2341
2342 case TARGET_WAITKIND_EXITED:
2343 if (debug_infrun)
2344 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2345 inferior_ptid = ecs->ptid;
2346 target_terminal_ours (); /* Must do this before mourn anyway */
2347 print_stop_reason (EXITED, ecs->ws.value.integer);
2348
2349 /* Record the exit code in the convenience variable $_exitcode, so
2350 that the user can inspect this again later. */
2351 set_internalvar (lookup_internalvar ("_exitcode"),
2352 value_from_longest (builtin_type_int32,
2353 (LONGEST) ecs->ws.value.integer));
2354 gdb_flush (gdb_stdout);
2355 target_mourn_inferior ();
2356 singlestep_breakpoints_inserted_p = 0;
2357 stop_print_frame = 0;
2358 stop_stepping (ecs);
2359 return;
2360
2361 case TARGET_WAITKIND_SIGNALLED:
2362 if (debug_infrun)
2363 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2364 inferior_ptid = ecs->ptid;
2365 stop_print_frame = 0;
2366 target_terminal_ours (); /* Must do this before mourn anyway */
2367
2368 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2369 reach here unless the inferior is dead. However, for years
2370 target_kill() was called here, which hints that fatal signals aren't
2371 really fatal on some systems. If that's true, then some changes
2372 may be needed. */
2373 target_mourn_inferior ();
2374
2375 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
2376 singlestep_breakpoints_inserted_p = 0;
2377 stop_stepping (ecs);
2378 return;
2379
2380 /* The following are the only cases in which we keep going;
2381 the above cases end in a continue or goto. */
2382 case TARGET_WAITKIND_FORKED:
2383 case TARGET_WAITKIND_VFORKED:
2384 if (debug_infrun)
2385 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2386 pending_follow.kind = ecs->ws.kind;
2387
2388 pending_follow.fork_event.parent_pid = ecs->ptid;
2389 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
2390
2391 if (!ptid_equal (ecs->ptid, inferior_ptid))
2392 {
2393 context_switch (ecs->ptid);
2394 reinit_frame_cache ();
2395 }
2396
2397 stop_pc = read_pc ();
2398
2399 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2400
2401 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2402
2403 /* If no catchpoint triggered for this, then keep going. */
2404 if (ecs->random_signal)
2405 {
2406 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2407 keep_going (ecs);
2408 return;
2409 }
2410 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2411 goto process_event_stop_test;
2412
2413 case TARGET_WAITKIND_EXECD:
2414 if (debug_infrun)
2415 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2416 pending_follow.execd_pathname =
2417 savestring (ecs->ws.value.execd_pathname,
2418 strlen (ecs->ws.value.execd_pathname));
2419
2420 if (!ptid_equal (ecs->ptid, inferior_ptid))
2421 {
2422 context_switch (ecs->ptid);
2423 reinit_frame_cache ();
2424 }
2425
2426 stop_pc = read_pc ();
2427
2428 /* This causes the eventpoints and symbol table to be reset.
2429 Must do this now, before trying to determine whether to
2430 stop. */
2431 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2432 xfree (pending_follow.execd_pathname);
2433
2434 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2435 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2436
2437 /* If no catchpoint triggered for this, then keep going. */
2438 if (ecs->random_signal)
2439 {
2440 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2441 keep_going (ecs);
2442 return;
2443 }
2444 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2445 goto process_event_stop_test;
2446
2447 /* Be careful not to try to gather much state about a thread
2448 that's in a syscall. It's frequently a losing proposition. */
2449 case TARGET_WAITKIND_SYSCALL_ENTRY:
2450 if (debug_infrun)
2451 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2452 resume (0, TARGET_SIGNAL_0);
2453 prepare_to_wait (ecs);
2454 return;
2455
2456 /* Before examining the threads further, step this thread to
2457 get it entirely out of the syscall. (We get notice of the
2458 event when the thread is just on the verge of exiting a
2459 syscall. Stepping one instruction seems to get it back
2460 into user code.) */
2461 case TARGET_WAITKIND_SYSCALL_RETURN:
2462 if (debug_infrun)
2463 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2464 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2465 prepare_to_wait (ecs);
2466 return;
2467
2468 case TARGET_WAITKIND_STOPPED:
2469 if (debug_infrun)
2470 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2471 ecs->event_thread->stop_signal = ecs->ws.value.sig;
2472 break;
2473
2474 case TARGET_WAITKIND_NO_HISTORY:
2475 /* Reverse execution: target ran out of history info. */
2476 stop_pc = read_pc ();
2477 print_stop_reason (NO_HISTORY, 0);
2478 stop_stepping (ecs);
2479 return;
2480
2481 /* We had an event in the inferior, but we are not interested
2482 in handling it at this level. The lower layers have already
2483 done what needs to be done, if anything.
2484
2485 One of the possible circumstances for this is when the
2486 inferior produces output for the console. The inferior has
2487 not stopped, and we are ignoring the event. Another possible
2488 circumstance is any event which the lower level knows will be
2489 reported multiple times without an intervening resume. */
2490 case TARGET_WAITKIND_IGNORE:
2491 if (debug_infrun)
2492 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2493 prepare_to_wait (ecs);
2494 return;
2495 }
2496
2497 if (ecs->new_thread_event)
2498 {
2499 if (non_stop)
2500 /* Non-stop assumes that the target handles adding new threads
2501 to the thread list. */
2502 internal_error (__FILE__, __LINE__, "\
2503 targets should add new threads to the thread list themselves in non-stop mode.");
2504
2505 /* We may want to consider not doing a resume here in order to
2506 give the user a chance to play with the new thread. It might
2507 be good to make that a user-settable option. */
2508
2509 /* At this point, all threads are stopped (happens automatically
2510 in either the OS or the native code). Therefore we need to
2511 continue all threads in order to make progress. */
2512
2513 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2514 prepare_to_wait (ecs);
2515 return;
2516 }
2517
2518 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
2519 {
2520 /* Do we need to clean up the state of a thread that has
2521 completed a displaced single-step? (Doing so usually affects
2522 the PC, so do it here, before we set stop_pc.) */
2523 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2524
2525 /* If we either finished a single-step or hit a breakpoint, but
2526 the user wanted this thread to be stopped, pretend we got a
2527 SIG0 (generic unsignaled stop). */
2528
2529 if (ecs->event_thread->stop_requested
2530 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2531 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2532 }
2533
2534 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2535
2536 if (debug_infrun)
2537 {
2538 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2539 paddr_nz (stop_pc));
2540 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2541 {
2542 CORE_ADDR addr;
2543 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2544
2545 if (target_stopped_data_address (&current_target, &addr))
2546 fprintf_unfiltered (gdb_stdlog,
2547 "infrun: stopped data address = 0x%s\n",
2548 paddr_nz (addr));
2549 else
2550 fprintf_unfiltered (gdb_stdlog,
2551 "infrun: (no data address available)\n");
2552 }
2553 }
2554
2555 if (stepping_past_singlestep_breakpoint)
2556 {
2557 gdb_assert (singlestep_breakpoints_inserted_p);
2558 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2559 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2560
2561 stepping_past_singlestep_breakpoint = 0;
2562
2563 /* We've either finished single-stepping past the single-step
2564 breakpoint, or stopped for some other reason. It would be nice if
2565 we could tell, but we can't reliably. */
2566 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2567 {
2568 if (debug_infrun)
2569 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2570 /* Pull the single step breakpoints out of the target. */
2571 remove_single_step_breakpoints ();
2572 singlestep_breakpoints_inserted_p = 0;
2573
2574 ecs->random_signal = 0;
2575
2576 context_switch (saved_singlestep_ptid);
2577 if (deprecated_context_hook)
2578 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2579
2580 resume (1, TARGET_SIGNAL_0);
2581 prepare_to_wait (ecs);
2582 return;
2583 }
2584 }
2585
2586 if (!ptid_equal (deferred_step_ptid, null_ptid))
2587 {
2588 /* In non-stop mode, there's never a deferred_step_ptid set. */
2589 gdb_assert (!non_stop);
2590
2591 /* If we stopped for some other reason than single-stepping, ignore
2592 the fact that we were supposed to switch back. */
2593 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2594 {
2595 if (debug_infrun)
2596 fprintf_unfiltered (gdb_stdlog,
2597 "infrun: handling deferred step\n");
2598
2599 /* Pull the single step breakpoints out of the target. */
2600 if (singlestep_breakpoints_inserted_p)
2601 {
2602 remove_single_step_breakpoints ();
2603 singlestep_breakpoints_inserted_p = 0;
2604 }
2605
2606 /* Note: We do not call context_switch at this point, as the
2607 context is already set up for stepping the original thread. */
2608 switch_to_thread (deferred_step_ptid);
2609 deferred_step_ptid = null_ptid;
2610 /* Suppress spurious "Switching to ..." message. */
2611 previous_inferior_ptid = inferior_ptid;
2612
2613 resume (1, TARGET_SIGNAL_0);
2614 prepare_to_wait (ecs);
2615 return;
2616 }
2617
2618 deferred_step_ptid = null_ptid;
2619 }
2620
2621 /* See if a thread hit a thread-specific breakpoint that was meant for
2622 another thread. If so, then step that thread past the breakpoint,
2623 and continue it. */
2624
2625 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2626 {
2627 int thread_hop_needed = 0;
2628
2629 /* Check if a regular breakpoint has been hit before checking
2630 for a potential single step breakpoint. Otherwise, GDB will
2631 not see this breakpoint hit when stepping onto breakpoints. */
2632 if (regular_breakpoint_inserted_here_p (stop_pc))
2633 {
2634 ecs->random_signal = 0;
2635 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2636 thread_hop_needed = 1;
2637 }
2638 else if (singlestep_breakpoints_inserted_p)
2639 {
2640 /* We have not context switched yet, so this should be true
2641 no matter which thread hit the singlestep breakpoint. */
2642 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2643 if (debug_infrun)
2644 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2645 "trap for %s\n",
2646 target_pid_to_str (ecs->ptid));
2647
2648 ecs->random_signal = 0;
2649 /* The call to in_thread_list is necessary because PTIDs sometimes
2650 change when we go from single-threaded to multi-threaded. If
2651 the singlestep_ptid is still in the list, assume that it is
2652 really different from ecs->ptid. */
2653 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2654 && in_thread_list (singlestep_ptid))
2655 {
2656 /* If the PC of the thread we were trying to single-step
2657 has changed, discard this event (which we were going
2658 to ignore anyway), and pretend we saw that thread
2659 trap. This prevents us continuously moving the
2660 single-step breakpoint forward, one instruction at a
2661 time. If the PC has changed, then the thread we were
2662 trying to single-step has trapped or been signalled,
2663 but the event has not been reported to GDB yet.
2664
2665 There might be some cases where this loses signal
2666 information, if a signal has arrived at exactly the
2667 same time that the PC changed, but this is the best
2668 we can do with the information available. Perhaps we
2669 should arrange to report all events for all threads
2670 when they stop, or to re-poll the remote looking for
2671 this particular thread (i.e. temporarily enable
2672 schedlock). */
2673
2674 CORE_ADDR new_singlestep_pc
2675 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2676
2677 if (new_singlestep_pc != singlestep_pc)
2678 {
2679 enum target_signal stop_signal;
2680
2681 if (debug_infrun)
2682 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2683 " but expected thread advanced also\n");
2684
2685 /* The current context still belongs to
2686 singlestep_ptid. Don't swap here, since that's
2687 the context we want to use. Just fudge our
2688 state and continue. */
2689 stop_signal = ecs->event_thread->stop_signal;
2690 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2691 ecs->ptid = singlestep_ptid;
2692 ecs->event_thread = find_thread_pid (ecs->ptid);
2693 ecs->event_thread->stop_signal = stop_signal;
2694 stop_pc = new_singlestep_pc;
2695 }
2696 else
2697 {
2698 if (debug_infrun)
2699 fprintf_unfiltered (gdb_stdlog,
2700 "infrun: unexpected thread\n");
2701
2702 thread_hop_needed = 1;
2703 stepping_past_singlestep_breakpoint = 1;
2704 saved_singlestep_ptid = singlestep_ptid;
2705 }
2706 }
2707 }
2708
2709 if (thread_hop_needed)
2710 {
2711 int remove_status = 0;
2712
2713 if (debug_infrun)
2714 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2715
2716 /* Saw a breakpoint, but it was hit by the wrong thread.
2717 Just continue. */
2718
2719 if (singlestep_breakpoints_inserted_p)
2720 {
2721 /* Pull the single step breakpoints out of the target. */
2722 remove_single_step_breakpoints ();
2723 singlestep_breakpoints_inserted_p = 0;
2724 }
2725
2726 /* If the arch can displace step, don't remove the
2727 breakpoints. */
2728 if (!use_displaced_stepping (current_gdbarch))
2729 remove_status = remove_breakpoints ();
2730
2731 /* Did we fail to remove breakpoints? If so, try
2732 to set the PC past the bp. (There's at least
2733 one situation in which we can fail to remove
2734 the bp's: On HP-UX's that use ttrace, we can't
2735 change the address space of a vforking child
2736 process until the child exits (well, okay, not
2737 then either :-) or execs. */
2738 if (remove_status != 0)
2739 error (_("Cannot step over breakpoint hit in wrong thread"));
2740 else
2741 { /* Single step */
2742 if (!ptid_equal (inferior_ptid, ecs->ptid))
2743 context_switch (ecs->ptid);
2744
2745 if (!non_stop)
2746 {
2747 /* Only need to require the next event from this
2748 thread in all-stop mode. */
2749 waiton_ptid = ecs->ptid;
2750 infwait_state = infwait_thread_hop_state;
2751 }
2752
2753 ecs->event_thread->stepping_over_breakpoint = 1;
2754 keep_going (ecs);
2755 registers_changed ();
2756 return;
2757 }
2758 }
2759 else if (singlestep_breakpoints_inserted_p)
2760 {
2761 sw_single_step_trap_p = 1;
2762 ecs->random_signal = 0;
2763 }
2764 }
2765 else
2766 ecs->random_signal = 1;
2767
2768 /* See if something interesting happened to the non-current thread. If
2769 so, then switch to that thread. */
2770 if (!ptid_equal (ecs->ptid, inferior_ptid))
2771 {
2772 if (debug_infrun)
2773 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2774
2775 context_switch (ecs->ptid);
2776
2777 if (deprecated_context_hook)
2778 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2779 }
2780
2781 if (singlestep_breakpoints_inserted_p)
2782 {
2783 /* Pull the single step breakpoints out of the target. */
2784 remove_single_step_breakpoints ();
2785 singlestep_breakpoints_inserted_p = 0;
2786 }
2787
2788 if (stepped_after_stopped_by_watchpoint)
2789 stopped_by_watchpoint = 0;
2790 else
2791 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2792
2793 /* If necessary, step over this watchpoint. We'll be back to display
2794 it in a moment. */
2795 if (stopped_by_watchpoint
2796 && (HAVE_STEPPABLE_WATCHPOINT
2797 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2798 {
2799 /* At this point, we are stopped at an instruction which has
2800 attempted to write to a piece of memory under control of
2801 a watchpoint. The instruction hasn't actually executed
2802 yet. If we were to evaluate the watchpoint expression
2803 now, we would get the old value, and therefore no change
2804 would seem to have occurred.
2805
2806 In order to make watchpoints work `right', we really need
2807 to complete the memory write, and then evaluate the
2808 watchpoint expression. We do this by single-stepping the
2809 target.
2810
2811 It may not be necessary to disable the watchpoint to stop over
2812 it. For example, the PA can (with some kernel cooperation)
2813 single step over a watchpoint without disabling the watchpoint.
2814
2815 It is far more common to need to disable a watchpoint to step
2816 the inferior over it. If we have non-steppable watchpoints,
2817 we must disable the current watchpoint; it's simplest to
2818 disable all watchpoints and breakpoints. */
2819
2820 if (!HAVE_STEPPABLE_WATCHPOINT)
2821 remove_breakpoints ();
2822 registers_changed ();
2823 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2824 waiton_ptid = ecs->ptid;
2825 if (HAVE_STEPPABLE_WATCHPOINT)
2826 infwait_state = infwait_step_watch_state;
2827 else
2828 infwait_state = infwait_nonstep_watch_state;
2829 prepare_to_wait (ecs);
2830 return;
2831 }
2832
2833 ecs->stop_func_start = 0;
2834 ecs->stop_func_end = 0;
2835 ecs->stop_func_name = 0;
2836 /* Don't care about return value; stop_func_start and stop_func_name
2837 will both be 0 if it doesn't work. */
2838 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2839 &ecs->stop_func_start, &ecs->stop_func_end);
2840 ecs->stop_func_start
2841 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2842 ecs->event_thread->stepping_over_breakpoint = 0;
2843 bpstat_clear (&ecs->event_thread->stop_bpstat);
2844 ecs->event_thread->stop_step = 0;
2845 stop_print_frame = 1;
2846 ecs->random_signal = 0;
2847 stopped_by_random_signal = 0;
2848
2849 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2850 && ecs->event_thread->trap_expected
2851 && gdbarch_single_step_through_delay_p (current_gdbarch)
2852 && currently_stepping (ecs->event_thread))
2853 {
2854 /* We're trying to step off a breakpoint. Turns out that we're
2855 also on an instruction that needs to be stepped multiple
2856 times before it's been fully executing. E.g., architectures
2857 with a delay slot. It needs to be stepped twice, once for
2858 the instruction and once for the delay slot. */
2859 int step_through_delay
2860 = gdbarch_single_step_through_delay (current_gdbarch,
2861 get_current_frame ());
2862 if (debug_infrun && step_through_delay)
2863 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2864 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
2865 {
2866 /* The user issued a continue when stopped at a breakpoint.
2867 Set up for another trap and get out of here. */
2868 ecs->event_thread->stepping_over_breakpoint = 1;
2869 keep_going (ecs);
2870 return;
2871 }
2872 else if (step_through_delay)
2873 {
2874 /* The user issued a step when stopped at a breakpoint.
2875 Maybe we should stop, maybe we should not - the delay
2876 slot *might* correspond to a line of source. In any
2877 case, don't decide that here, just set
2878 ecs->stepping_over_breakpoint, making sure we
2879 single-step again before breakpoints are re-inserted. */
2880 ecs->event_thread->stepping_over_breakpoint = 1;
2881 }
2882 }
2883
2884 /* Look at the cause of the stop, and decide what to do.
2885 The alternatives are:
2886 1) stop_stepping and return; to really stop and return to the debugger,
2887 2) keep_going and return to start up again
2888 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
2889 3) set ecs->random_signal to 1, and the decision between 1 and 2
2890 will be made according to the signal handling tables. */
2891
2892 /* First, distinguish signals caused by the debugger from signals
2893 that have to do with the program's own actions. Note that
2894 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2895 on the operating system version. Here we detect when a SIGILL or
2896 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2897 something similar for SIGSEGV, since a SIGSEGV will be generated
2898 when we're trying to execute a breakpoint instruction on a
2899 non-executable stack. This happens for call dummy breakpoints
2900 for architectures like SPARC that place call dummies on the
2901 stack.
2902
2903 If we're doing a displaced step past a breakpoint, then the
2904 breakpoint is always inserted at the original instruction;
2905 non-standard signals can't be explained by the breakpoint. */
2906 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2907 || (! ecs->event_thread->trap_expected
2908 && breakpoint_inserted_here_p (stop_pc)
2909 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
2910 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
2911 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
2912 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2913 || stop_soon == STOP_QUIETLY_REMOTE)
2914 {
2915 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2916 {
2917 if (debug_infrun)
2918 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2919 stop_print_frame = 0;
2920 stop_stepping (ecs);
2921 return;
2922 }
2923
2924 /* This is originated from start_remote(), start_inferior() and
2925 shared libraries hook functions. */
2926 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2927 {
2928 if (debug_infrun)
2929 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2930 stop_stepping (ecs);
2931 return;
2932 }
2933
2934 /* This originates from attach_command(). We need to overwrite
2935 the stop_signal here, because some kernels don't ignore a
2936 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2937 See more comments in inferior.h. On the other hand, if we
2938 get a non-SIGSTOP, report it to the user - assume the backend
2939 will handle the SIGSTOP if it should show up later.
2940
2941 Also consider that the attach is complete when we see a
2942 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2943 target extended-remote report it instead of a SIGSTOP
2944 (e.g. gdbserver). We already rely on SIGTRAP being our
2945 signal, so this is no exception.
2946
2947 Also consider that the attach is complete when we see a
2948 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
2949 the target to stop all threads of the inferior, in case the
2950 low level attach operation doesn't stop them implicitly. If
2951 they weren't stopped implicitly, then the stub will report a
2952 TARGET_SIGNAL_0, meaning: stopped for no particular reason
2953 other than GDB's request. */
2954 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2955 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
2956 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2957 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
2958 {
2959 stop_stepping (ecs);
2960 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2961 return;
2962 }
2963
2964 /* See if there is a breakpoint at the current PC. */
2965 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2966
2967 /* Following in case break condition called a
2968 function. */
2969 stop_print_frame = 1;
2970
2971 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2972 at one stage in the past included checks for an inferior
2973 function call's call dummy's return breakpoint. The original
2974 comment, that went with the test, read:
2975
2976 ``End of a stack dummy. Some systems (e.g. Sony news) give
2977 another signal besides SIGTRAP, so check here as well as
2978 above.''
2979
2980 If someone ever tries to get call dummys on a
2981 non-executable stack to work (where the target would stop
2982 with something like a SIGSEGV), then those tests might need
2983 to be re-instated. Given, however, that the tests were only
2984 enabled when momentary breakpoints were not being used, I
2985 suspect that it won't be the case.
2986
2987 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2988 be necessary for call dummies on a non-executable stack on
2989 SPARC. */
2990
2991 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2992 ecs->random_signal
2993 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
2994 || ecs->event_thread->trap_expected
2995 || (ecs->event_thread->step_range_end
2996 && ecs->event_thread->step_resume_breakpoint == NULL));
2997 else
2998 {
2999 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
3000 if (!ecs->random_signal)
3001 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
3002 }
3003 }
3004
3005 /* When we reach this point, we've pretty much decided
3006 that the reason for stopping must've been a random
3007 (unexpected) signal. */
3008
3009 else
3010 ecs->random_signal = 1;
3011
3012 process_event_stop_test:
3013 /* For the program's own signals, act according to
3014 the signal handling tables. */
3015
3016 if (ecs->random_signal)
3017 {
3018 /* Signal not for debugging purposes. */
3019 int printed = 0;
3020
3021 if (debug_infrun)
3022 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3023 ecs->event_thread->stop_signal);
3024
3025 stopped_by_random_signal = 1;
3026
3027 if (signal_print[ecs->event_thread->stop_signal])
3028 {
3029 printed = 1;
3030 target_terminal_ours_for_output ();
3031 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
3032 }
3033 /* Always stop on signals if we're either just gaining control
3034 of the program, or the user explicitly requested this thread
3035 to remain stopped. */
3036 if (stop_soon != NO_STOP_QUIETLY
3037 || ecs->event_thread->stop_requested
3038 || signal_stop_state (ecs->event_thread->stop_signal))
3039 {
3040 stop_stepping (ecs);
3041 return;
3042 }
3043 /* If not going to stop, give terminal back
3044 if we took it away. */
3045 else if (printed)
3046 target_terminal_inferior ();
3047
3048 /* Clear the signal if it should not be passed. */
3049 if (signal_program[ecs->event_thread->stop_signal] == 0)
3050 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3051
3052 if (ecs->event_thread->prev_pc == read_pc ()
3053 && ecs->event_thread->trap_expected
3054 && ecs->event_thread->step_resume_breakpoint == NULL)
3055 {
3056 /* We were just starting a new sequence, attempting to
3057 single-step off of a breakpoint and expecting a SIGTRAP.
3058 Instead this signal arrives. This signal will take us out
3059 of the stepping range so GDB needs to remember to, when
3060 the signal handler returns, resume stepping off that
3061 breakpoint. */
3062 /* To simplify things, "continue" is forced to use the same
3063 code paths as single-step - set a breakpoint at the
3064 signal return address and then, once hit, step off that
3065 breakpoint. */
3066 if (debug_infrun)
3067 fprintf_unfiltered (gdb_stdlog,
3068 "infrun: signal arrived while stepping over "
3069 "breakpoint\n");
3070
3071 insert_step_resume_breakpoint_at_frame (get_current_frame ());
3072 ecs->event_thread->step_after_step_resume_breakpoint = 1;
3073 keep_going (ecs);
3074 return;
3075 }
3076
3077 if (ecs->event_thread->step_range_end != 0
3078 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
3079 && (ecs->event_thread->step_range_start <= stop_pc
3080 && stop_pc < ecs->event_thread->step_range_end)
3081 && frame_id_eq (get_frame_id (get_current_frame ()),
3082 ecs->event_thread->step_frame_id)
3083 && ecs->event_thread->step_resume_breakpoint == NULL)
3084 {
3085 /* The inferior is about to take a signal that will take it
3086 out of the single step range. Set a breakpoint at the
3087 current PC (which is presumably where the signal handler
3088 will eventually return) and then allow the inferior to
3089 run free.
3090
3091 Note that this is only needed for a signal delivered
3092 while in the single-step range. Nested signals aren't a
3093 problem as they eventually all return. */
3094 if (debug_infrun)
3095 fprintf_unfiltered (gdb_stdlog,
3096 "infrun: signal may take us out of "
3097 "single-step range\n");
3098
3099 insert_step_resume_breakpoint_at_frame (get_current_frame ());
3100 keep_going (ecs);
3101 return;
3102 }
3103
3104 /* Note: step_resume_breakpoint may be non-NULL. This occures
3105 when either there's a nested signal, or when there's a
3106 pending signal enabled just as the signal handler returns
3107 (leaving the inferior at the step-resume-breakpoint without
3108 actually executing it). Either way continue until the
3109 breakpoint is really hit. */
3110 keep_going (ecs);
3111 return;
3112 }
3113
3114 /* Handle cases caused by hitting a breakpoint. */
3115 {
3116 CORE_ADDR jmp_buf_pc;
3117 struct bpstat_what what;
3118
3119 what = bpstat_what (ecs->event_thread->stop_bpstat);
3120
3121 if (what.call_dummy)
3122 {
3123 stop_stack_dummy = 1;
3124 }
3125
3126 switch (what.main_action)
3127 {
3128 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
3129 /* If we hit the breakpoint at longjmp while stepping, we
3130 install a momentary breakpoint at the target of the
3131 jmp_buf. */
3132
3133 if (debug_infrun)
3134 fprintf_unfiltered (gdb_stdlog,
3135 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3136
3137 ecs->event_thread->stepping_over_breakpoint = 1;
3138
3139 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
3140 || !gdbarch_get_longjmp_target (current_gdbarch,
3141 get_current_frame (), &jmp_buf_pc))
3142 {
3143 if (debug_infrun)
3144 fprintf_unfiltered (gdb_stdlog, "\
3145 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
3146 keep_going (ecs);
3147 return;
3148 }
3149
3150 /* We're going to replace the current step-resume breakpoint
3151 with a longjmp-resume breakpoint. */
3152 delete_step_resume_breakpoint (ecs->event_thread);
3153
3154 /* Insert a breakpoint at resume address. */
3155 insert_longjmp_resume_breakpoint (jmp_buf_pc);
3156
3157 keep_going (ecs);
3158 return;
3159
3160 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
3161 if (debug_infrun)
3162 fprintf_unfiltered (gdb_stdlog,
3163 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3164
3165 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3166 delete_step_resume_breakpoint (ecs->event_thread);
3167
3168 ecs->event_thread->stop_step = 1;
3169 print_stop_reason (END_STEPPING_RANGE, 0);
3170 stop_stepping (ecs);
3171 return;
3172
3173 case BPSTAT_WHAT_SINGLE:
3174 if (debug_infrun)
3175 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
3176 ecs->event_thread->stepping_over_breakpoint = 1;
3177 /* Still need to check other stuff, at least the case
3178 where we are stepping and step out of the right range. */
3179 break;
3180
3181 case BPSTAT_WHAT_STOP_NOISY:
3182 if (debug_infrun)
3183 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
3184 stop_print_frame = 1;
3185
3186 /* We are about to nuke the step_resume_breakpointt via the
3187 cleanup chain, so no need to worry about it here. */
3188
3189 stop_stepping (ecs);
3190 return;
3191
3192 case BPSTAT_WHAT_STOP_SILENT:
3193 if (debug_infrun)
3194 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
3195 stop_print_frame = 0;
3196
3197 /* We are about to nuke the step_resume_breakpoin via the
3198 cleanup chain, so no need to worry about it here. */
3199
3200 stop_stepping (ecs);
3201 return;
3202
3203 case BPSTAT_WHAT_STEP_RESUME:
3204 if (debug_infrun)
3205 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
3206
3207 delete_step_resume_breakpoint (ecs->event_thread);
3208 if (ecs->event_thread->step_after_step_resume_breakpoint)
3209 {
3210 /* Back when the step-resume breakpoint was inserted, we
3211 were trying to single-step off a breakpoint. Go back
3212 to doing that. */
3213 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3214 ecs->event_thread->stepping_over_breakpoint = 1;
3215 keep_going (ecs);
3216 return;
3217 }
3218 if (stop_pc == ecs->stop_func_start
3219 && execution_direction == EXEC_REVERSE)
3220 {
3221 /* We are stepping over a function call in reverse, and
3222 just hit the step-resume breakpoint at the start
3223 address of the function. Go back to single-stepping,
3224 which should take us back to the function call. */
3225 ecs->event_thread->stepping_over_breakpoint = 1;
3226 keep_going (ecs);
3227 return;
3228 }
3229 break;
3230
3231 case BPSTAT_WHAT_CHECK_SHLIBS:
3232 {
3233 if (debug_infrun)
3234 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
3235
3236 /* Check for any newly added shared libraries if we're
3237 supposed to be adding them automatically. Switch
3238 terminal for any messages produced by
3239 breakpoint_re_set. */
3240 target_terminal_ours_for_output ();
3241 /* NOTE: cagney/2003-11-25: Make certain that the target
3242 stack's section table is kept up-to-date. Architectures,
3243 (e.g., PPC64), use the section table to perform
3244 operations such as address => section name and hence
3245 require the table to contain all sections (including
3246 those found in shared libraries). */
3247 /* NOTE: cagney/2003-11-25: Pass current_target and not
3248 exec_ops to SOLIB_ADD. This is because current GDB is
3249 only tooled to propagate section_table changes out from
3250 the "current_target" (see target_resize_to_sections), and
3251 not up from the exec stratum. This, of course, isn't
3252 right. "infrun.c" should only interact with the
3253 exec/process stratum, instead relying on the target stack
3254 to propagate relevant changes (stop, section table
3255 changed, ...) up to other layers. */
3256 #ifdef SOLIB_ADD
3257 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3258 #else
3259 solib_add (NULL, 0, &current_target, auto_solib_add);
3260 #endif
3261 target_terminal_inferior ();
3262
3263 /* If requested, stop when the dynamic linker notifies
3264 gdb of events. This allows the user to get control
3265 and place breakpoints in initializer routines for
3266 dynamically loaded objects (among other things). */
3267 if (stop_on_solib_events || stop_stack_dummy)
3268 {
3269 stop_stepping (ecs);
3270 return;
3271 }
3272 else
3273 {
3274 /* We want to step over this breakpoint, then keep going. */
3275 ecs->event_thread->stepping_over_breakpoint = 1;
3276 break;
3277 }
3278 }
3279 break;
3280
3281 case BPSTAT_WHAT_LAST:
3282 /* Not a real code, but listed here to shut up gcc -Wall. */
3283
3284 case BPSTAT_WHAT_KEEP_CHECKING:
3285 break;
3286 }
3287 }
3288
3289 /* We come here if we hit a breakpoint but should not
3290 stop for it. Possibly we also were stepping
3291 and should stop for that. So fall through and
3292 test for stepping. But, if not stepping,
3293 do not stop. */
3294
3295 /* In all-stop mode, if we're currently stepping but have stopped in
3296 some other thread, we need to switch back to the stepped thread. */
3297 if (!non_stop)
3298 {
3299 struct thread_info *tp;
3300 tp = iterate_over_threads (currently_stepping_callback,
3301 ecs->event_thread);
3302 if (tp)
3303 {
3304 /* However, if the current thread is blocked on some internal
3305 breakpoint, and we simply need to step over that breakpoint
3306 to get it going again, do that first. */
3307 if ((ecs->event_thread->trap_expected
3308 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3309 || ecs->event_thread->stepping_over_breakpoint)
3310 {
3311 keep_going (ecs);
3312 return;
3313 }
3314
3315 /* Otherwise, we no longer expect a trap in the current thread.
3316 Clear the trap_expected flag before switching back -- this is
3317 what keep_going would do as well, if we called it. */
3318 ecs->event_thread->trap_expected = 0;
3319
3320 if (debug_infrun)
3321 fprintf_unfiltered (gdb_stdlog,
3322 "infrun: switching back to stepped thread\n");
3323
3324 ecs->event_thread = tp;
3325 ecs->ptid = tp->ptid;
3326 context_switch (ecs->ptid);
3327 keep_going (ecs);
3328 return;
3329 }
3330 }
3331
3332 /* Are we stepping to get the inferior out of the dynamic linker's
3333 hook (and possibly the dld itself) after catching a shlib
3334 event? */
3335 if (ecs->event_thread->stepping_through_solib_after_catch)
3336 {
3337 #if defined(SOLIB_ADD)
3338 /* Have we reached our destination? If not, keep going. */
3339 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3340 {
3341 if (debug_infrun)
3342 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
3343 ecs->event_thread->stepping_over_breakpoint = 1;
3344 keep_going (ecs);
3345 return;
3346 }
3347 #endif
3348 if (debug_infrun)
3349 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
3350 /* Else, stop and report the catchpoint(s) whose triggering
3351 caused us to begin stepping. */
3352 ecs->event_thread->stepping_through_solib_after_catch = 0;
3353 bpstat_clear (&ecs->event_thread->stop_bpstat);
3354 ecs->event_thread->stop_bpstat
3355 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
3356 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
3357 stop_print_frame = 1;
3358 stop_stepping (ecs);
3359 return;
3360 }
3361
3362 if (ecs->event_thread->step_resume_breakpoint)
3363 {
3364 if (debug_infrun)
3365 fprintf_unfiltered (gdb_stdlog,
3366 "infrun: step-resume breakpoint is inserted\n");
3367
3368 /* Having a step-resume breakpoint overrides anything
3369 else having to do with stepping commands until
3370 that breakpoint is reached. */
3371 keep_going (ecs);
3372 return;
3373 }
3374
3375 if (ecs->event_thread->step_range_end == 0)
3376 {
3377 if (debug_infrun)
3378 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3379 /* Likewise if we aren't even stepping. */
3380 keep_going (ecs);
3381 return;
3382 }
3383
3384 /* If stepping through a line, keep going if still within it.
3385
3386 Note that step_range_end is the address of the first instruction
3387 beyond the step range, and NOT the address of the last instruction
3388 within it! */
3389 if (stop_pc >= ecs->event_thread->step_range_start
3390 && stop_pc < ecs->event_thread->step_range_end)
3391 {
3392 if (debug_infrun)
3393 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3394 paddr_nz (ecs->event_thread->step_range_start),
3395 paddr_nz (ecs->event_thread->step_range_end));
3396
3397 /* When stepping backward, stop at beginning of line range
3398 (unless it's the function entry point, in which case
3399 keep going back to the call point). */
3400 if (stop_pc == ecs->event_thread->step_range_start
3401 && stop_pc != ecs->stop_func_start
3402 && execution_direction == EXEC_REVERSE)
3403 {
3404 ecs->event_thread->stop_step = 1;
3405 print_stop_reason (END_STEPPING_RANGE, 0);
3406 stop_stepping (ecs);
3407 }
3408 else
3409 keep_going (ecs);
3410
3411 return;
3412 }
3413
3414 /* We stepped out of the stepping range. */
3415
3416 /* If we are stepping at the source level and entered the runtime
3417 loader dynamic symbol resolution code, we keep on single stepping
3418 until we exit the run time loader code and reach the callee's
3419 address. */
3420 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3421 && in_solib_dynsym_resolve_code (stop_pc))
3422 {
3423 CORE_ADDR pc_after_resolver =
3424 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
3425
3426 if (debug_infrun)
3427 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3428
3429 if (pc_after_resolver)
3430 {
3431 /* Set up a step-resume breakpoint at the address
3432 indicated by SKIP_SOLIB_RESOLVER. */
3433 struct symtab_and_line sr_sal;
3434 init_sal (&sr_sal);
3435 sr_sal.pc = pc_after_resolver;
3436
3437 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3438 }
3439
3440 keep_going (ecs);
3441 return;
3442 }
3443
3444 if (ecs->event_thread->step_range_end != 1
3445 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3446 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3447 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
3448 {
3449 if (debug_infrun)
3450 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3451 /* The inferior, while doing a "step" or "next", has ended up in
3452 a signal trampoline (either by a signal being delivered or by
3453 the signal handler returning). Just single-step until the
3454 inferior leaves the trampoline (either by calling the handler
3455 or returning). */
3456 keep_going (ecs);
3457 return;
3458 }
3459
3460 /* Check for subroutine calls. The check for the current frame
3461 equalling the step ID is not necessary - the check of the
3462 previous frame's ID is sufficient - but it is a common case and
3463 cheaper than checking the previous frame's ID.
3464
3465 NOTE: frame_id_eq will never report two invalid frame IDs as
3466 being equal, so to get into this block, both the current and
3467 previous frame must have valid frame IDs. */
3468 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3469 ecs->event_thread->step_frame_id)
3470 && (frame_id_eq (frame_unwind_id (get_current_frame ()),
3471 ecs->event_thread->step_frame_id)
3472 || execution_direction == EXEC_REVERSE))
3473 {
3474 CORE_ADDR real_stop_pc;
3475
3476 if (debug_infrun)
3477 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3478
3479 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
3480 || ((ecs->event_thread->step_range_end == 1)
3481 && in_prologue (ecs->event_thread->prev_pc,
3482 ecs->stop_func_start)))
3483 {
3484 /* I presume that step_over_calls is only 0 when we're
3485 supposed to be stepping at the assembly language level
3486 ("stepi"). Just stop. */
3487 /* Also, maybe we just did a "nexti" inside a prolog, so we
3488 thought it was a subroutine call but it was not. Stop as
3489 well. FENN */
3490 ecs->event_thread->stop_step = 1;
3491 print_stop_reason (END_STEPPING_RANGE, 0);
3492 stop_stepping (ecs);
3493 return;
3494 }
3495
3496 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3497 {
3498 /* We're doing a "next".
3499
3500 Normal (forward) execution: set a breakpoint at the
3501 callee's return address (the address at which the caller
3502 will resume).
3503
3504 Reverse (backward) execution. set the step-resume
3505 breakpoint at the start of the function that we just
3506 stepped into (backwards), and continue to there. When we
3507 get there, we'll need to single-step back to the caller. */
3508
3509 if (execution_direction == EXEC_REVERSE)
3510 {
3511 struct symtab_and_line sr_sal;
3512
3513 if (ecs->stop_func_start == 0
3514 && in_solib_dynsym_resolve_code (stop_pc))
3515 {
3516 /* Stepped into runtime loader dynamic symbol
3517 resolution code. Since we're in reverse,
3518 we have already backed up through the runtime
3519 loader and the dynamic function. This is just
3520 the trampoline (jump table).
3521
3522 Just keep stepping, we'll soon be home.
3523 */
3524 keep_going (ecs);
3525 return;
3526 }
3527 /* Normal (staticly linked) function call return. */
3528 init_sal (&sr_sal);
3529 sr_sal.pc = ecs->stop_func_start;
3530 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3531 }
3532 else
3533 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3534
3535 keep_going (ecs);
3536 return;
3537 }
3538
3539 /* If we are in a function call trampoline (a stub between the
3540 calling routine and the real function), locate the real
3541 function. That's what tells us (a) whether we want to step
3542 into it at all, and (b) what prologue we want to run to the
3543 end of, if we do step into it. */
3544 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
3545 if (real_stop_pc == 0)
3546 real_stop_pc = gdbarch_skip_trampoline_code
3547 (current_gdbarch, get_current_frame (), stop_pc);
3548 if (real_stop_pc != 0)
3549 ecs->stop_func_start = real_stop_pc;
3550
3551 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
3552 {
3553 struct symtab_and_line sr_sal;
3554 init_sal (&sr_sal);
3555 sr_sal.pc = ecs->stop_func_start;
3556
3557 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3558 keep_going (ecs);
3559 return;
3560 }
3561
3562 /* If we have line number information for the function we are
3563 thinking of stepping into, step into it.
3564
3565 If there are several symtabs at that PC (e.g. with include
3566 files), just want to know whether *any* of them have line
3567 numbers. find_pc_line handles this. */
3568 {
3569 struct symtab_and_line tmp_sal;
3570
3571 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3572 if (tmp_sal.line != 0)
3573 {
3574 if (execution_direction == EXEC_REVERSE)
3575 handle_step_into_function_backward (ecs);
3576 else
3577 handle_step_into_function (ecs);
3578 return;
3579 }
3580 }
3581
3582 /* If we have no line number and the step-stop-if-no-debug is
3583 set, we stop the step so that the user has a chance to switch
3584 in assembly mode. */
3585 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3586 && step_stop_if_no_debug)
3587 {
3588 ecs->event_thread->stop_step = 1;
3589 print_stop_reason (END_STEPPING_RANGE, 0);
3590 stop_stepping (ecs);
3591 return;
3592 }
3593
3594 if (execution_direction == EXEC_REVERSE)
3595 {
3596 /* Set a breakpoint at callee's start address.
3597 From there we can step once and be back in the caller. */
3598 struct symtab_and_line sr_sal;
3599 init_sal (&sr_sal);
3600 sr_sal.pc = ecs->stop_func_start;
3601 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3602 }
3603 else
3604 /* Set a breakpoint at callee's return address (the address
3605 at which the caller will resume). */
3606 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3607
3608 keep_going (ecs);
3609 return;
3610 }
3611
3612 /* If we're in the return path from a shared library trampoline,
3613 we want to proceed through the trampoline when stepping. */
3614 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3615 stop_pc, ecs->stop_func_name))
3616 {
3617 /* Determine where this trampoline returns. */
3618 CORE_ADDR real_stop_pc;
3619 real_stop_pc = gdbarch_skip_trampoline_code
3620 (current_gdbarch, get_current_frame (), stop_pc);
3621
3622 if (debug_infrun)
3623 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3624
3625 /* Only proceed through if we know where it's going. */
3626 if (real_stop_pc)
3627 {
3628 /* And put the step-breakpoint there and go until there. */
3629 struct symtab_and_line sr_sal;
3630
3631 init_sal (&sr_sal); /* initialize to zeroes */
3632 sr_sal.pc = real_stop_pc;
3633 sr_sal.section = find_pc_overlay (sr_sal.pc);
3634
3635 /* Do not specify what the fp should be when we stop since
3636 on some machines the prologue is where the new fp value
3637 is established. */
3638 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3639
3640 /* Restart without fiddling with the step ranges or
3641 other state. */
3642 keep_going (ecs);
3643 return;
3644 }
3645 }
3646
3647 stop_pc_sal = find_pc_line (stop_pc, 0);
3648
3649 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3650 the trampoline processing logic, however, there are some trampolines
3651 that have no names, so we should do trampoline handling first. */
3652 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3653 && ecs->stop_func_name == NULL
3654 && stop_pc_sal.line == 0)
3655 {
3656 if (debug_infrun)
3657 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3658
3659 /* The inferior just stepped into, or returned to, an
3660 undebuggable function (where there is no debugging information
3661 and no line number corresponding to the address where the
3662 inferior stopped). Since we want to skip this kind of code,
3663 we keep going until the inferior returns from this
3664 function - unless the user has asked us not to (via
3665 set step-mode) or we no longer know how to get back
3666 to the call site. */
3667 if (step_stop_if_no_debug
3668 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3669 {
3670 /* If we have no line number and the step-stop-if-no-debug
3671 is set, we stop the step so that the user has a chance to
3672 switch in assembly mode. */
3673 ecs->event_thread->stop_step = 1;
3674 print_stop_reason (END_STEPPING_RANGE, 0);
3675 stop_stepping (ecs);
3676 return;
3677 }
3678 else
3679 {
3680 /* Set a breakpoint at callee's return address (the address
3681 at which the caller will resume). */
3682 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3683 keep_going (ecs);
3684 return;
3685 }
3686 }
3687
3688 if (ecs->event_thread->step_range_end == 1)
3689 {
3690 /* It is stepi or nexti. We always want to stop stepping after
3691 one instruction. */
3692 if (debug_infrun)
3693 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3694 ecs->event_thread->stop_step = 1;
3695 print_stop_reason (END_STEPPING_RANGE, 0);
3696 stop_stepping (ecs);
3697 return;
3698 }
3699
3700 if (stop_pc_sal.line == 0)
3701 {
3702 /* We have no line number information. That means to stop
3703 stepping (does this always happen right after one instruction,
3704 when we do "s" in a function with no line numbers,
3705 or can this happen as a result of a return or longjmp?). */
3706 if (debug_infrun)
3707 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3708 ecs->event_thread->stop_step = 1;
3709 print_stop_reason (END_STEPPING_RANGE, 0);
3710 stop_stepping (ecs);
3711 return;
3712 }
3713
3714 if ((stop_pc == stop_pc_sal.pc)
3715 && (ecs->event_thread->current_line != stop_pc_sal.line
3716 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
3717 {
3718 /* We are at the start of a different line. So stop. Note that
3719 we don't stop if we step into the middle of a different line.
3720 That is said to make things like for (;;) statements work
3721 better. */
3722 if (debug_infrun)
3723 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3724 ecs->event_thread->stop_step = 1;
3725 print_stop_reason (END_STEPPING_RANGE, 0);
3726 stop_stepping (ecs);
3727 return;
3728 }
3729
3730 /* We aren't done stepping.
3731
3732 Optimize by setting the stepping range to the line.
3733 (We might not be in the original line, but if we entered a
3734 new line in mid-statement, we continue stepping. This makes
3735 things like for(;;) statements work better.) */
3736
3737 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3738 ecs->event_thread->step_range_end = stop_pc_sal.end;
3739 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3740 ecs->event_thread->current_line = stop_pc_sal.line;
3741 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
3742
3743 if (debug_infrun)
3744 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3745 keep_going (ecs);
3746 }
3747
3748 /* Are we in the middle of stepping? */
3749
3750 static int
3751 currently_stepping_thread (struct thread_info *tp)
3752 {
3753 return (tp->step_range_end && tp->step_resume_breakpoint == NULL)
3754 || tp->trap_expected
3755 || tp->stepping_through_solib_after_catch;
3756 }
3757
3758 static int
3759 currently_stepping_callback (struct thread_info *tp, void *data)
3760 {
3761 /* Return true if any thread *but* the one passed in "data" is
3762 in the middle of stepping. */
3763 return tp != data && currently_stepping_thread (tp);
3764 }
3765
3766 static int
3767 currently_stepping (struct thread_info *tp)
3768 {
3769 return currently_stepping_thread (tp) || bpstat_should_step ();
3770 }
3771
3772 /* Inferior has stepped into a subroutine call with source code that
3773 we should not step over. Do step to the first line of code in
3774 it. */
3775
3776 static void
3777 handle_step_into_function (struct execution_control_state *ecs)
3778 {
3779 struct symtab *s;
3780 struct symtab_and_line stop_func_sal, sr_sal;
3781
3782 s = find_pc_symtab (stop_pc);
3783 if (s && s->language != language_asm)
3784 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3785 ecs->stop_func_start);
3786
3787 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
3788 /* Use the step_resume_break to step until the end of the prologue,
3789 even if that involves jumps (as it seems to on the vax under
3790 4.2). */
3791 /* If the prologue ends in the middle of a source line, continue to
3792 the end of that source line (if it is still within the function).
3793 Otherwise, just go to end of prologue. */
3794 if (stop_func_sal.end
3795 && stop_func_sal.pc != ecs->stop_func_start
3796 && stop_func_sal.end < ecs->stop_func_end)
3797 ecs->stop_func_start = stop_func_sal.end;
3798
3799 /* Architectures which require breakpoint adjustment might not be able
3800 to place a breakpoint at the computed address. If so, the test
3801 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3802 ecs->stop_func_start to an address at which a breakpoint may be
3803 legitimately placed.
3804
3805 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3806 made, GDB will enter an infinite loop when stepping through
3807 optimized code consisting of VLIW instructions which contain
3808 subinstructions corresponding to different source lines. On
3809 FR-V, it's not permitted to place a breakpoint on any but the
3810 first subinstruction of a VLIW instruction. When a breakpoint is
3811 set, GDB will adjust the breakpoint address to the beginning of
3812 the VLIW instruction. Thus, we need to make the corresponding
3813 adjustment here when computing the stop address. */
3814
3815 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3816 {
3817 ecs->stop_func_start
3818 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3819 ecs->stop_func_start);
3820 }
3821
3822 if (ecs->stop_func_start == stop_pc)
3823 {
3824 /* We are already there: stop now. */
3825 ecs->event_thread->stop_step = 1;
3826 print_stop_reason (END_STEPPING_RANGE, 0);
3827 stop_stepping (ecs);
3828 return;
3829 }
3830 else
3831 {
3832 /* Put the step-breakpoint there and go until there. */
3833 init_sal (&sr_sal); /* initialize to zeroes */
3834 sr_sal.pc = ecs->stop_func_start;
3835 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3836
3837 /* Do not specify what the fp should be when we stop since on
3838 some machines the prologue is where the new fp value is
3839 established. */
3840 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3841
3842 /* And make sure stepping stops right away then. */
3843 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
3844 }
3845 keep_going (ecs);
3846 }
3847
3848 /* Inferior has stepped backward into a subroutine call with source
3849 code that we should not step over. Do step to the beginning of the
3850 last line of code in it. */
3851
3852 static void
3853 handle_step_into_function_backward (struct execution_control_state *ecs)
3854 {
3855 struct symtab *s;
3856 struct symtab_and_line stop_func_sal, sr_sal;
3857
3858 s = find_pc_symtab (stop_pc);
3859 if (s && s->language != language_asm)
3860 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3861 ecs->stop_func_start);
3862
3863 stop_func_sal = find_pc_line (stop_pc, 0);
3864
3865 /* OK, we're just going to keep stepping here. */
3866 if (stop_func_sal.pc == stop_pc)
3867 {
3868 /* We're there already. Just stop stepping now. */
3869 ecs->event_thread->stop_step = 1;
3870 print_stop_reason (END_STEPPING_RANGE, 0);
3871 stop_stepping (ecs);
3872 }
3873 else
3874 {
3875 /* Else just reset the step range and keep going.
3876 No step-resume breakpoint, they don't work for
3877 epilogues, which can have multiple entry paths. */
3878 ecs->event_thread->step_range_start = stop_func_sal.pc;
3879 ecs->event_thread->step_range_end = stop_func_sal.end;
3880 keep_going (ecs);
3881 }
3882 return;
3883 }
3884
3885 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3886 This is used to both functions and to skip over code. */
3887
3888 static void
3889 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3890 struct frame_id sr_id)
3891 {
3892 /* There should never be more than one step-resume or longjmp-resume
3893 breakpoint per thread, so we should never be setting a new
3894 step_resume_breakpoint when one is already active. */
3895 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3896
3897 if (debug_infrun)
3898 fprintf_unfiltered (gdb_stdlog,
3899 "infrun: inserting step-resume breakpoint at 0x%s\n",
3900 paddr_nz (sr_sal.pc));
3901
3902 inferior_thread ()->step_resume_breakpoint
3903 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
3904 }
3905
3906 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3907 to skip a potential signal handler.
3908
3909 This is called with the interrupted function's frame. The signal
3910 handler, when it returns, will resume the interrupted function at
3911 RETURN_FRAME.pc. */
3912
3913 static void
3914 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3915 {
3916 struct symtab_and_line sr_sal;
3917
3918 gdb_assert (return_frame != NULL);
3919 init_sal (&sr_sal); /* initialize to zeros */
3920
3921 sr_sal.pc = gdbarch_addr_bits_remove
3922 (current_gdbarch, get_frame_pc (return_frame));
3923 sr_sal.section = find_pc_overlay (sr_sal.pc);
3924
3925 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3926 }
3927
3928 /* Similar to insert_step_resume_breakpoint_at_frame, except
3929 but a breakpoint at the previous frame's PC. This is used to
3930 skip a function after stepping into it (for "next" or if the called
3931 function has no debugging information).
3932
3933 The current function has almost always been reached by single
3934 stepping a call or return instruction. NEXT_FRAME belongs to the
3935 current function, and the breakpoint will be set at the caller's
3936 resume address.
3937
3938 This is a separate function rather than reusing
3939 insert_step_resume_breakpoint_at_frame in order to avoid
3940 get_prev_frame, which may stop prematurely (see the implementation
3941 of frame_unwind_id for an example). */
3942
3943 static void
3944 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3945 {
3946 struct symtab_and_line sr_sal;
3947
3948 /* We shouldn't have gotten here if we don't know where the call site
3949 is. */
3950 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3951
3952 init_sal (&sr_sal); /* initialize to zeros */
3953
3954 sr_sal.pc = gdbarch_addr_bits_remove
3955 (current_gdbarch, frame_pc_unwind (next_frame));
3956 sr_sal.section = find_pc_overlay (sr_sal.pc);
3957
3958 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3959 }
3960
3961 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3962 new breakpoint at the target of a jmp_buf. The handling of
3963 longjmp-resume uses the same mechanisms used for handling
3964 "step-resume" breakpoints. */
3965
3966 static void
3967 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3968 {
3969 /* There should never be more than one step-resume or longjmp-resume
3970 breakpoint per thread, so we should never be setting a new
3971 longjmp_resume_breakpoint when one is already active. */
3972 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3973
3974 if (debug_infrun)
3975 fprintf_unfiltered (gdb_stdlog,
3976 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3977 paddr_nz (pc));
3978
3979 inferior_thread ()->step_resume_breakpoint =
3980 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3981 }
3982
3983 static void
3984 stop_stepping (struct execution_control_state *ecs)
3985 {
3986 if (debug_infrun)
3987 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3988
3989 /* Let callers know we don't want to wait for the inferior anymore. */
3990 ecs->wait_some_more = 0;
3991 }
3992
3993 /* This function handles various cases where we need to continue
3994 waiting for the inferior. */
3995 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3996
3997 static void
3998 keep_going (struct execution_control_state *ecs)
3999 {
4000 /* Save the pc before execution, to compare with pc after stop. */
4001 ecs->event_thread->prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
4002
4003 /* If we did not do break;, it means we should keep running the
4004 inferior and not return to debugger. */
4005
4006 if (ecs->event_thread->trap_expected
4007 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
4008 {
4009 /* We took a signal (which we are supposed to pass through to
4010 the inferior, else we'd not get here) and we haven't yet
4011 gotten our trap. Simply continue. */
4012 resume (currently_stepping (ecs->event_thread),
4013 ecs->event_thread->stop_signal);
4014 }
4015 else
4016 {
4017 /* Either the trap was not expected, but we are continuing
4018 anyway (the user asked that this signal be passed to the
4019 child)
4020 -- or --
4021 The signal was SIGTRAP, e.g. it was our signal, but we
4022 decided we should resume from it.
4023
4024 We're going to run this baby now!
4025
4026 Note that insert_breakpoints won't try to re-insert
4027 already inserted breakpoints. Therefore, we don't
4028 care if breakpoints were already inserted, or not. */
4029
4030 if (ecs->event_thread->stepping_over_breakpoint)
4031 {
4032 if (! use_displaced_stepping (current_gdbarch))
4033 /* Since we can't do a displaced step, we have to remove
4034 the breakpoint while we step it. To keep things
4035 simple, we remove them all. */
4036 remove_breakpoints ();
4037 }
4038 else
4039 {
4040 struct gdb_exception e;
4041 /* Stop stepping when inserting breakpoints
4042 has failed. */
4043 TRY_CATCH (e, RETURN_MASK_ERROR)
4044 {
4045 insert_breakpoints ();
4046 }
4047 if (e.reason < 0)
4048 {
4049 stop_stepping (ecs);
4050 return;
4051 }
4052 }
4053
4054 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
4055
4056 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
4057 specifies that such a signal should be delivered to the
4058 target program).
4059
4060 Typically, this would occure when a user is debugging a
4061 target monitor on a simulator: the target monitor sets a
4062 breakpoint; the simulator encounters this break-point and
4063 halts the simulation handing control to GDB; GDB, noteing
4064 that the break-point isn't valid, returns control back to the
4065 simulator; the simulator then delivers the hardware
4066 equivalent of a SIGNAL_TRAP to the program being debugged. */
4067
4068 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4069 && !signal_program[ecs->event_thread->stop_signal])
4070 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
4071
4072 resume (currently_stepping (ecs->event_thread),
4073 ecs->event_thread->stop_signal);
4074 }
4075
4076 prepare_to_wait (ecs);
4077 }
4078
4079 /* This function normally comes after a resume, before
4080 handle_inferior_event exits. It takes care of any last bits of
4081 housekeeping, and sets the all-important wait_some_more flag. */
4082
4083 static void
4084 prepare_to_wait (struct execution_control_state *ecs)
4085 {
4086 if (debug_infrun)
4087 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
4088 if (infwait_state == infwait_normal_state)
4089 {
4090 overlay_cache_invalid = 1;
4091
4092 /* We have to invalidate the registers BEFORE calling
4093 target_wait because they can be loaded from the target while
4094 in target_wait. This makes remote debugging a bit more
4095 efficient for those targets that provide critical registers
4096 as part of their normal status mechanism. */
4097
4098 registers_changed ();
4099 waiton_ptid = pid_to_ptid (-1);
4100 }
4101 /* This is the old end of the while loop. Let everybody know we
4102 want to wait for the inferior some more and get called again
4103 soon. */
4104 ecs->wait_some_more = 1;
4105 }
4106
4107 /* Print why the inferior has stopped. We always print something when
4108 the inferior exits, or receives a signal. The rest of the cases are
4109 dealt with later on in normal_stop() and print_it_typical(). Ideally
4110 there should be a call to this function from handle_inferior_event()
4111 each time stop_stepping() is called.*/
4112 static void
4113 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4114 {
4115 switch (stop_reason)
4116 {
4117 case END_STEPPING_RANGE:
4118 /* We are done with a step/next/si/ni command. */
4119 /* For now print nothing. */
4120 /* Print a message only if not in the middle of doing a "step n"
4121 operation for n > 1 */
4122 if (!inferior_thread ()->step_multi
4123 || !inferior_thread ()->stop_step)
4124 if (ui_out_is_mi_like_p (uiout))
4125 ui_out_field_string
4126 (uiout, "reason",
4127 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
4128 break;
4129 case SIGNAL_EXITED:
4130 /* The inferior was terminated by a signal. */
4131 annotate_signalled ();
4132 if (ui_out_is_mi_like_p (uiout))
4133 ui_out_field_string
4134 (uiout, "reason",
4135 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
4136 ui_out_text (uiout, "\nProgram terminated with signal ");
4137 annotate_signal_name ();
4138 ui_out_field_string (uiout, "signal-name",
4139 target_signal_to_name (stop_info));
4140 annotate_signal_name_end ();
4141 ui_out_text (uiout, ", ");
4142 annotate_signal_string ();
4143 ui_out_field_string (uiout, "signal-meaning",
4144 target_signal_to_string (stop_info));
4145 annotate_signal_string_end ();
4146 ui_out_text (uiout, ".\n");
4147 ui_out_text (uiout, "The program no longer exists.\n");
4148 break;
4149 case EXITED:
4150 /* The inferior program is finished. */
4151 annotate_exited (stop_info);
4152 if (stop_info)
4153 {
4154 if (ui_out_is_mi_like_p (uiout))
4155 ui_out_field_string (uiout, "reason",
4156 async_reason_lookup (EXEC_ASYNC_EXITED));
4157 ui_out_text (uiout, "\nProgram exited with code ");
4158 ui_out_field_fmt (uiout, "exit-code", "0%o",
4159 (unsigned int) stop_info);
4160 ui_out_text (uiout, ".\n");
4161 }
4162 else
4163 {
4164 if (ui_out_is_mi_like_p (uiout))
4165 ui_out_field_string
4166 (uiout, "reason",
4167 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
4168 ui_out_text (uiout, "\nProgram exited normally.\n");
4169 }
4170 /* Support the --return-child-result option. */
4171 return_child_result_value = stop_info;
4172 break;
4173 case SIGNAL_RECEIVED:
4174 /* Signal received. The signal table tells us to print about
4175 it. */
4176 annotate_signal ();
4177
4178 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4179 {
4180 struct thread_info *t = inferior_thread ();
4181
4182 ui_out_text (uiout, "\n[");
4183 ui_out_field_string (uiout, "thread-name",
4184 target_pid_to_str (t->ptid));
4185 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4186 ui_out_text (uiout, " stopped");
4187 }
4188 else
4189 {
4190 ui_out_text (uiout, "\nProgram received signal ");
4191 annotate_signal_name ();
4192 if (ui_out_is_mi_like_p (uiout))
4193 ui_out_field_string
4194 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4195 ui_out_field_string (uiout, "signal-name",
4196 target_signal_to_name (stop_info));
4197 annotate_signal_name_end ();
4198 ui_out_text (uiout, ", ");
4199 annotate_signal_string ();
4200 ui_out_field_string (uiout, "signal-meaning",
4201 target_signal_to_string (stop_info));
4202 annotate_signal_string_end ();
4203 }
4204 ui_out_text (uiout, ".\n");
4205 break;
4206 case NO_HISTORY:
4207 /* Reverse execution: target ran out of history info. */
4208 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4209 break;
4210 default:
4211 internal_error (__FILE__, __LINE__,
4212 _("print_stop_reason: unrecognized enum value"));
4213 break;
4214 }
4215 }
4216 \f
4217
4218 /* Here to return control to GDB when the inferior stops for real.
4219 Print appropriate messages, remove breakpoints, give terminal our modes.
4220
4221 STOP_PRINT_FRAME nonzero means print the executing frame
4222 (pc, function, args, file, line number and line text).
4223 BREAKPOINTS_FAILED nonzero means stop was due to error
4224 attempting to insert breakpoints. */
4225
4226 void
4227 normal_stop (void)
4228 {
4229 struct target_waitstatus last;
4230 ptid_t last_ptid;
4231 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4232
4233 get_last_target_status (&last_ptid, &last);
4234
4235 /* If an exception is thrown from this point on, make sure to
4236 propagate GDB's knowledge of the executing state to the
4237 frontend/user running state. A QUIT is an easy exception to see
4238 here, so do this before any filtered output. */
4239 if (target_has_execution)
4240 {
4241 if (!non_stop)
4242 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
4243 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4244 && last.kind != TARGET_WAITKIND_EXITED)
4245 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
4246 }
4247
4248 /* In non-stop mode, we don't want GDB to switch threads behind the
4249 user's back, to avoid races where the user is typing a command to
4250 apply to thread x, but GDB switches to thread y before the user
4251 finishes entering the command. */
4252
4253 /* As with the notification of thread events, we want to delay
4254 notifying the user that we've switched thread context until
4255 the inferior actually stops.
4256
4257 There's no point in saying anything if the inferior has exited.
4258 Note that SIGNALLED here means "exited with a signal", not
4259 "received a signal". */
4260 if (!non_stop
4261 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
4262 && target_has_execution
4263 && last.kind != TARGET_WAITKIND_SIGNALLED
4264 && last.kind != TARGET_WAITKIND_EXITED)
4265 {
4266 target_terminal_ours_for_output ();
4267 printf_filtered (_("[Switching to %s]\n"),
4268 target_pid_to_str (inferior_ptid));
4269 annotate_thread_changed ();
4270 previous_inferior_ptid = inferior_ptid;
4271 }
4272
4273 if (!breakpoints_always_inserted_mode () && target_has_execution)
4274 {
4275 if (remove_breakpoints ())
4276 {
4277 target_terminal_ours_for_output ();
4278 printf_filtered (_("\
4279 Cannot remove breakpoints because program is no longer writable.\n\
4280 Further execution is probably impossible.\n"));
4281 }
4282 }
4283
4284 /* If an auto-display called a function and that got a signal,
4285 delete that auto-display to avoid an infinite recursion. */
4286
4287 if (stopped_by_random_signal)
4288 disable_current_display ();
4289
4290 /* Don't print a message if in the middle of doing a "step n"
4291 operation for n > 1 */
4292 if (target_has_execution
4293 && last.kind != TARGET_WAITKIND_SIGNALLED
4294 && last.kind != TARGET_WAITKIND_EXITED
4295 && inferior_thread ()->step_multi
4296 && inferior_thread ()->stop_step)
4297 goto done;
4298
4299 target_terminal_ours ();
4300
4301 /* Set the current source location. This will also happen if we
4302 display the frame below, but the current SAL will be incorrect
4303 during a user hook-stop function. */
4304 if (target_has_stack && !stop_stack_dummy)
4305 set_current_sal_from_frame (get_current_frame (), 1);
4306
4307 /* Let the user/frontend see the threads as stopped. */
4308 do_cleanups (old_chain);
4309
4310 /* Look up the hook_stop and run it (CLI internally handles problem
4311 of stop_command's pre-hook not existing). */
4312 if (stop_command)
4313 catch_errors (hook_stop_stub, stop_command,
4314 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4315
4316 if (!target_has_stack)
4317 goto done;
4318
4319 if (last.kind == TARGET_WAITKIND_SIGNALLED
4320 || last.kind == TARGET_WAITKIND_EXITED)
4321 goto done;
4322
4323 /* Select innermost stack frame - i.e., current frame is frame 0,
4324 and current location is based on that.
4325 Don't do this on return from a stack dummy routine,
4326 or if the program has exited. */
4327
4328 if (!stop_stack_dummy)
4329 {
4330 select_frame (get_current_frame ());
4331
4332 /* Print current location without a level number, if
4333 we have changed functions or hit a breakpoint.
4334 Print source line if we have one.
4335 bpstat_print() contains the logic deciding in detail
4336 what to print, based on the event(s) that just occurred. */
4337
4338 /* If --batch-silent is enabled then there's no need to print the current
4339 source location, and to try risks causing an error message about
4340 missing source files. */
4341 if (stop_print_frame && !batch_silent)
4342 {
4343 int bpstat_ret;
4344 int source_flag;
4345 int do_frame_printing = 1;
4346 struct thread_info *tp = inferior_thread ();
4347
4348 bpstat_ret = bpstat_print (tp->stop_bpstat);
4349 switch (bpstat_ret)
4350 {
4351 case PRINT_UNKNOWN:
4352 /* If we had hit a shared library event breakpoint,
4353 bpstat_print would print out this message. If we hit
4354 an OS-level shared library event, do the same
4355 thing. */
4356 if (last.kind == TARGET_WAITKIND_LOADED)
4357 {
4358 printf_filtered (_("Stopped due to shared library event\n"));
4359 source_flag = SRC_LINE; /* something bogus */
4360 do_frame_printing = 0;
4361 break;
4362 }
4363
4364 /* FIXME: cagney/2002-12-01: Given that a frame ID does
4365 (or should) carry around the function and does (or
4366 should) use that when doing a frame comparison. */
4367 if (tp->stop_step
4368 && frame_id_eq (tp->step_frame_id,
4369 get_frame_id (get_current_frame ()))
4370 && step_start_function == find_pc_function (stop_pc))
4371 source_flag = SRC_LINE; /* finished step, just print source line */
4372 else
4373 source_flag = SRC_AND_LOC; /* print location and source line */
4374 break;
4375 case PRINT_SRC_AND_LOC:
4376 source_flag = SRC_AND_LOC; /* print location and source line */
4377 break;
4378 case PRINT_SRC_ONLY:
4379 source_flag = SRC_LINE;
4380 break;
4381 case PRINT_NOTHING:
4382 source_flag = SRC_LINE; /* something bogus */
4383 do_frame_printing = 0;
4384 break;
4385 default:
4386 internal_error (__FILE__, __LINE__, _("Unknown value."));
4387 }
4388
4389 /* The behavior of this routine with respect to the source
4390 flag is:
4391 SRC_LINE: Print only source line
4392 LOCATION: Print only location
4393 SRC_AND_LOC: Print location and source line */
4394 if (do_frame_printing)
4395 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
4396
4397 /* Display the auto-display expressions. */
4398 do_displays ();
4399 }
4400 }
4401
4402 /* Save the function value return registers, if we care.
4403 We might be about to restore their previous contents. */
4404 if (inferior_thread ()->proceed_to_finish)
4405 {
4406 /* This should not be necessary. */
4407 if (stop_registers)
4408 regcache_xfree (stop_registers);
4409
4410 /* NB: The copy goes through to the target picking up the value of
4411 all the registers. */
4412 stop_registers = regcache_dup (get_current_regcache ());
4413 }
4414
4415 if (stop_stack_dummy)
4416 {
4417 /* Pop the empty frame that contains the stack dummy.
4418 This also restores inferior state prior to the call
4419 (struct inferior_thread_state). */
4420 struct frame_info *frame = get_current_frame ();
4421 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
4422 frame_pop (frame);
4423 /* frame_pop() calls reinit_frame_cache as the last thing it does
4424 which means there's currently no selected frame. We don't need
4425 to re-establish a selected frame if the dummy call returns normally,
4426 that will be done by restore_inferior_status. However, we do have
4427 to handle the case where the dummy call is returning after being
4428 stopped (e.g. the dummy call previously hit a breakpoint). We
4429 can't know which case we have so just always re-establish a
4430 selected frame here. */
4431 select_frame (get_current_frame ());
4432 }
4433
4434 done:
4435 annotate_stopped ();
4436
4437 /* Suppress the stop observer if we're in the middle of:
4438
4439 - a step n (n > 1), as there still more steps to be done.
4440
4441 - a "finish" command, as the observer will be called in
4442 finish_command_continuation, so it can include the inferior
4443 function's return value.
4444
4445 - calling an inferior function, as we pretend we inferior didn't
4446 run at all. The return value of the call is handled by the
4447 expression evaluator, through call_function_by_hand. */
4448
4449 if (!target_has_execution
4450 || last.kind == TARGET_WAITKIND_SIGNALLED
4451 || last.kind == TARGET_WAITKIND_EXITED
4452 || (!inferior_thread ()->step_multi
4453 && !(inferior_thread ()->stop_bpstat
4454 && inferior_thread ()->proceed_to_finish)))
4455 {
4456 if (!ptid_equal (inferior_ptid, null_ptid))
4457 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
4458 stop_print_frame);
4459 else
4460 observer_notify_normal_stop (NULL, stop_print_frame);
4461 }
4462
4463 if (target_has_execution)
4464 {
4465 if (last.kind != TARGET_WAITKIND_SIGNALLED
4466 && last.kind != TARGET_WAITKIND_EXITED)
4467 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4468 Delete any breakpoint that is to be deleted at the next stop. */
4469 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
4470 }
4471 }
4472
4473 static int
4474 hook_stop_stub (void *cmd)
4475 {
4476 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
4477 return (0);
4478 }
4479 \f
4480 int
4481 signal_stop_state (int signo)
4482 {
4483 return signal_stop[signo];
4484 }
4485
4486 int
4487 signal_print_state (int signo)
4488 {
4489 return signal_print[signo];
4490 }
4491
4492 int
4493 signal_pass_state (int signo)
4494 {
4495 return signal_program[signo];
4496 }
4497
4498 int
4499 signal_stop_update (int signo, int state)
4500 {
4501 int ret = signal_stop[signo];
4502 signal_stop[signo] = state;
4503 return ret;
4504 }
4505
4506 int
4507 signal_print_update (int signo, int state)
4508 {
4509 int ret = signal_print[signo];
4510 signal_print[signo] = state;
4511 return ret;
4512 }
4513
4514 int
4515 signal_pass_update (int signo, int state)
4516 {
4517 int ret = signal_program[signo];
4518 signal_program[signo] = state;
4519 return ret;
4520 }
4521
4522 static void
4523 sig_print_header (void)
4524 {
4525 printf_filtered (_("\
4526 Signal Stop\tPrint\tPass to program\tDescription\n"));
4527 }
4528
4529 static void
4530 sig_print_info (enum target_signal oursig)
4531 {
4532 const char *name = target_signal_to_name (oursig);
4533 int name_padding = 13 - strlen (name);
4534
4535 if (name_padding <= 0)
4536 name_padding = 0;
4537
4538 printf_filtered ("%s", name);
4539 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4540 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4541 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4542 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4543 printf_filtered ("%s\n", target_signal_to_string (oursig));
4544 }
4545
4546 /* Specify how various signals in the inferior should be handled. */
4547
4548 static void
4549 handle_command (char *args, int from_tty)
4550 {
4551 char **argv;
4552 int digits, wordlen;
4553 int sigfirst, signum, siglast;
4554 enum target_signal oursig;
4555 int allsigs;
4556 int nsigs;
4557 unsigned char *sigs;
4558 struct cleanup *old_chain;
4559
4560 if (args == NULL)
4561 {
4562 error_no_arg (_("signal to handle"));
4563 }
4564
4565 /* Allocate and zero an array of flags for which signals to handle. */
4566
4567 nsigs = (int) TARGET_SIGNAL_LAST;
4568 sigs = (unsigned char *) alloca (nsigs);
4569 memset (sigs, 0, nsigs);
4570
4571 /* Break the command line up into args. */
4572
4573 argv = gdb_buildargv (args);
4574 old_chain = make_cleanup_freeargv (argv);
4575
4576 /* Walk through the args, looking for signal oursigs, signal names, and
4577 actions. Signal numbers and signal names may be interspersed with
4578 actions, with the actions being performed for all signals cumulatively
4579 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4580
4581 while (*argv != NULL)
4582 {
4583 wordlen = strlen (*argv);
4584 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4585 {;
4586 }
4587 allsigs = 0;
4588 sigfirst = siglast = -1;
4589
4590 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4591 {
4592 /* Apply action to all signals except those used by the
4593 debugger. Silently skip those. */
4594 allsigs = 1;
4595 sigfirst = 0;
4596 siglast = nsigs - 1;
4597 }
4598 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4599 {
4600 SET_SIGS (nsigs, sigs, signal_stop);
4601 SET_SIGS (nsigs, sigs, signal_print);
4602 }
4603 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4604 {
4605 UNSET_SIGS (nsigs, sigs, signal_program);
4606 }
4607 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4608 {
4609 SET_SIGS (nsigs, sigs, signal_print);
4610 }
4611 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4612 {
4613 SET_SIGS (nsigs, sigs, signal_program);
4614 }
4615 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4616 {
4617 UNSET_SIGS (nsigs, sigs, signal_stop);
4618 }
4619 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4620 {
4621 SET_SIGS (nsigs, sigs, signal_program);
4622 }
4623 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4624 {
4625 UNSET_SIGS (nsigs, sigs, signal_print);
4626 UNSET_SIGS (nsigs, sigs, signal_stop);
4627 }
4628 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4629 {
4630 UNSET_SIGS (nsigs, sigs, signal_program);
4631 }
4632 else if (digits > 0)
4633 {
4634 /* It is numeric. The numeric signal refers to our own
4635 internal signal numbering from target.h, not to host/target
4636 signal number. This is a feature; users really should be
4637 using symbolic names anyway, and the common ones like
4638 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4639
4640 sigfirst = siglast = (int)
4641 target_signal_from_command (atoi (*argv));
4642 if ((*argv)[digits] == '-')
4643 {
4644 siglast = (int)
4645 target_signal_from_command (atoi ((*argv) + digits + 1));
4646 }
4647 if (sigfirst > siglast)
4648 {
4649 /* Bet he didn't figure we'd think of this case... */
4650 signum = sigfirst;
4651 sigfirst = siglast;
4652 siglast = signum;
4653 }
4654 }
4655 else
4656 {
4657 oursig = target_signal_from_name (*argv);
4658 if (oursig != TARGET_SIGNAL_UNKNOWN)
4659 {
4660 sigfirst = siglast = (int) oursig;
4661 }
4662 else
4663 {
4664 /* Not a number and not a recognized flag word => complain. */
4665 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4666 }
4667 }
4668
4669 /* If any signal numbers or symbol names were found, set flags for
4670 which signals to apply actions to. */
4671
4672 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4673 {
4674 switch ((enum target_signal) signum)
4675 {
4676 case TARGET_SIGNAL_TRAP:
4677 case TARGET_SIGNAL_INT:
4678 if (!allsigs && !sigs[signum])
4679 {
4680 if (query (_("%s is used by the debugger.\n\
4681 Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
4682 {
4683 sigs[signum] = 1;
4684 }
4685 else
4686 {
4687 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4688 gdb_flush (gdb_stdout);
4689 }
4690 }
4691 break;
4692 case TARGET_SIGNAL_0:
4693 case TARGET_SIGNAL_DEFAULT:
4694 case TARGET_SIGNAL_UNKNOWN:
4695 /* Make sure that "all" doesn't print these. */
4696 break;
4697 default:
4698 sigs[signum] = 1;
4699 break;
4700 }
4701 }
4702
4703 argv++;
4704 }
4705
4706 for (signum = 0; signum < nsigs; signum++)
4707 if (sigs[signum])
4708 {
4709 target_notice_signals (inferior_ptid);
4710
4711 if (from_tty)
4712 {
4713 /* Show the results. */
4714 sig_print_header ();
4715 for (; signum < nsigs; signum++)
4716 if (sigs[signum])
4717 sig_print_info (signum);
4718 }
4719
4720 break;
4721 }
4722
4723 do_cleanups (old_chain);
4724 }
4725
4726 static void
4727 xdb_handle_command (char *args, int from_tty)
4728 {
4729 char **argv;
4730 struct cleanup *old_chain;
4731
4732 if (args == NULL)
4733 error_no_arg (_("xdb command"));
4734
4735 /* Break the command line up into args. */
4736
4737 argv = gdb_buildargv (args);
4738 old_chain = make_cleanup_freeargv (argv);
4739 if (argv[1] != (char *) NULL)
4740 {
4741 char *argBuf;
4742 int bufLen;
4743
4744 bufLen = strlen (argv[0]) + 20;
4745 argBuf = (char *) xmalloc (bufLen);
4746 if (argBuf)
4747 {
4748 int validFlag = 1;
4749 enum target_signal oursig;
4750
4751 oursig = target_signal_from_name (argv[0]);
4752 memset (argBuf, 0, bufLen);
4753 if (strcmp (argv[1], "Q") == 0)
4754 sprintf (argBuf, "%s %s", argv[0], "noprint");
4755 else
4756 {
4757 if (strcmp (argv[1], "s") == 0)
4758 {
4759 if (!signal_stop[oursig])
4760 sprintf (argBuf, "%s %s", argv[0], "stop");
4761 else
4762 sprintf (argBuf, "%s %s", argv[0], "nostop");
4763 }
4764 else if (strcmp (argv[1], "i") == 0)
4765 {
4766 if (!signal_program[oursig])
4767 sprintf (argBuf, "%s %s", argv[0], "pass");
4768 else
4769 sprintf (argBuf, "%s %s", argv[0], "nopass");
4770 }
4771 else if (strcmp (argv[1], "r") == 0)
4772 {
4773 if (!signal_print[oursig])
4774 sprintf (argBuf, "%s %s", argv[0], "print");
4775 else
4776 sprintf (argBuf, "%s %s", argv[0], "noprint");
4777 }
4778 else
4779 validFlag = 0;
4780 }
4781 if (validFlag)
4782 handle_command (argBuf, from_tty);
4783 else
4784 printf_filtered (_("Invalid signal handling flag.\n"));
4785 if (argBuf)
4786 xfree (argBuf);
4787 }
4788 }
4789 do_cleanups (old_chain);
4790 }
4791
4792 /* Print current contents of the tables set by the handle command.
4793 It is possible we should just be printing signals actually used
4794 by the current target (but for things to work right when switching
4795 targets, all signals should be in the signal tables). */
4796
4797 static void
4798 signals_info (char *signum_exp, int from_tty)
4799 {
4800 enum target_signal oursig;
4801 sig_print_header ();
4802
4803 if (signum_exp)
4804 {
4805 /* First see if this is a symbol name. */
4806 oursig = target_signal_from_name (signum_exp);
4807 if (oursig == TARGET_SIGNAL_UNKNOWN)
4808 {
4809 /* No, try numeric. */
4810 oursig =
4811 target_signal_from_command (parse_and_eval_long (signum_exp));
4812 }
4813 sig_print_info (oursig);
4814 return;
4815 }
4816
4817 printf_filtered ("\n");
4818 /* These ugly casts brought to you by the native VAX compiler. */
4819 for (oursig = TARGET_SIGNAL_FIRST;
4820 (int) oursig < (int) TARGET_SIGNAL_LAST;
4821 oursig = (enum target_signal) ((int) oursig + 1))
4822 {
4823 QUIT;
4824
4825 if (oursig != TARGET_SIGNAL_UNKNOWN
4826 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4827 sig_print_info (oursig);
4828 }
4829
4830 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4831 }
4832
4833 /* The $_siginfo convenience variable is a bit special. We don't know
4834 for sure the type of the value until we actually have a chance to
4835 fetch the data. The type can change depending on gdbarch, so it it
4836 also dependent on which thread you have selected.
4837
4838 1. making $_siginfo be an internalvar that creates a new value on
4839 access.
4840
4841 2. making the value of $_siginfo be an lval_computed value. */
4842
4843 /* This function implements the lval_computed support for reading a
4844 $_siginfo value. */
4845
4846 static void
4847 siginfo_value_read (struct value *v)
4848 {
4849 LONGEST transferred;
4850
4851 transferred =
4852 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
4853 NULL,
4854 value_contents_all_raw (v),
4855 value_offset (v),
4856 TYPE_LENGTH (value_type (v)));
4857
4858 if (transferred != TYPE_LENGTH (value_type (v)))
4859 error (_("Unable to read siginfo"));
4860 }
4861
4862 /* This function implements the lval_computed support for writing a
4863 $_siginfo value. */
4864
4865 static void
4866 siginfo_value_write (struct value *v, struct value *fromval)
4867 {
4868 LONGEST transferred;
4869
4870 transferred = target_write (&current_target,
4871 TARGET_OBJECT_SIGNAL_INFO,
4872 NULL,
4873 value_contents_all_raw (fromval),
4874 value_offset (v),
4875 TYPE_LENGTH (value_type (fromval)));
4876
4877 if (transferred != TYPE_LENGTH (value_type (fromval)))
4878 error (_("Unable to write siginfo"));
4879 }
4880
4881 static struct lval_funcs siginfo_value_funcs =
4882 {
4883 siginfo_value_read,
4884 siginfo_value_write
4885 };
4886
4887 /* Return a new value with the correct type for the siginfo object of
4888 the current thread. Return a void value if there's no object
4889 available. */
4890
4891 static struct value *
4892 siginfo_make_value (struct internalvar *var)
4893 {
4894 struct type *type;
4895 struct gdbarch *gdbarch;
4896
4897 if (target_has_stack
4898 && !ptid_equal (inferior_ptid, null_ptid))
4899 {
4900 gdbarch = get_frame_arch (get_current_frame ());
4901
4902 if (gdbarch_get_siginfo_type_p (gdbarch))
4903 {
4904 type = gdbarch_get_siginfo_type (gdbarch);
4905
4906 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4907 }
4908 }
4909
4910 return allocate_value (builtin_type_void);
4911 }
4912
4913 \f
4914 /* Inferior thread state.
4915 These are details related to the inferior itself, and don't include
4916 things like what frame the user had selected or what gdb was doing
4917 with the target at the time.
4918 For inferior function calls these are things we want to restore
4919 regardless of whether the function call successfully completes
4920 or the dummy frame has to be manually popped. */
4921
4922 struct inferior_thread_state
4923 {
4924 enum target_signal stop_signal;
4925 CORE_ADDR stop_pc;
4926 struct regcache *registers;
4927 };
4928
4929 struct inferior_thread_state *
4930 save_inferior_thread_state (void)
4931 {
4932 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
4933 struct thread_info *tp = inferior_thread ();
4934
4935 inf_state->stop_signal = tp->stop_signal;
4936 inf_state->stop_pc = stop_pc;
4937
4938 inf_state->registers = regcache_dup (get_current_regcache ());
4939
4940 return inf_state;
4941 }
4942
4943 /* Restore inferior session state to INF_STATE. */
4944
4945 void
4946 restore_inferior_thread_state (struct inferior_thread_state *inf_state)
4947 {
4948 struct thread_info *tp = inferior_thread ();
4949
4950 tp->stop_signal = inf_state->stop_signal;
4951 stop_pc = inf_state->stop_pc;
4952
4953 /* The inferior can be gone if the user types "print exit(0)"
4954 (and perhaps other times). */
4955 if (target_has_execution)
4956 /* NB: The register write goes through to the target. */
4957 regcache_cpy (get_current_regcache (), inf_state->registers);
4958 regcache_xfree (inf_state->registers);
4959 xfree (inf_state);
4960 }
4961
4962 static void
4963 do_restore_inferior_thread_state_cleanup (void *state)
4964 {
4965 restore_inferior_thread_state (state);
4966 }
4967
4968 struct cleanup *
4969 make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
4970 {
4971 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
4972 }
4973
4974 void
4975 discard_inferior_thread_state (struct inferior_thread_state *inf_state)
4976 {
4977 regcache_xfree (inf_state->registers);
4978 xfree (inf_state);
4979 }
4980
4981 struct regcache *
4982 get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
4983 {
4984 return inf_state->registers;
4985 }
4986
4987 /* Session related state for inferior function calls.
4988 These are the additional bits of state that need to be restored
4989 when an inferior function call successfully completes. */
4990
4991 struct inferior_status
4992 {
4993 bpstat stop_bpstat;
4994 int stop_step;
4995 int stop_stack_dummy;
4996 int stopped_by_random_signal;
4997 int stepping_over_breakpoint;
4998 CORE_ADDR step_range_start;
4999 CORE_ADDR step_range_end;
5000 struct frame_id step_frame_id;
5001 enum step_over_calls_kind step_over_calls;
5002 CORE_ADDR step_resume_break_address;
5003 int stop_after_trap;
5004 int stop_soon;
5005
5006 /* ID if the selected frame when the inferior function call was made. */
5007 struct frame_id selected_frame_id;
5008
5009 int breakpoint_proceeded;
5010 int proceed_to_finish;
5011 };
5012
5013 /* Save all of the information associated with the inferior<==>gdb
5014 connection. */
5015
5016 struct inferior_status *
5017 save_inferior_status (void)
5018 {
5019 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
5020 struct thread_info *tp = inferior_thread ();
5021 struct inferior *inf = current_inferior ();
5022
5023 inf_status->stop_step = tp->stop_step;
5024 inf_status->stop_stack_dummy = stop_stack_dummy;
5025 inf_status->stopped_by_random_signal = stopped_by_random_signal;
5026 inf_status->stepping_over_breakpoint = tp->trap_expected;
5027 inf_status->step_range_start = tp->step_range_start;
5028 inf_status->step_range_end = tp->step_range_end;
5029 inf_status->step_frame_id = tp->step_frame_id;
5030 inf_status->step_over_calls = tp->step_over_calls;
5031 inf_status->stop_after_trap = stop_after_trap;
5032 inf_status->stop_soon = inf->stop_soon;
5033 /* Save original bpstat chain here; replace it with copy of chain.
5034 If caller's caller is walking the chain, they'll be happier if we
5035 hand them back the original chain when restore_inferior_status is
5036 called. */
5037 inf_status->stop_bpstat = tp->stop_bpstat;
5038 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
5039 inf_status->breakpoint_proceeded = breakpoint_proceeded;
5040 inf_status->proceed_to_finish = tp->proceed_to_finish;
5041
5042 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
5043
5044 return inf_status;
5045 }
5046
5047 static int
5048 restore_selected_frame (void *args)
5049 {
5050 struct frame_id *fid = (struct frame_id *) args;
5051 struct frame_info *frame;
5052
5053 frame = frame_find_by_id (*fid);
5054
5055 /* If inf_status->selected_frame_id is NULL, there was no previously
5056 selected frame. */
5057 if (frame == NULL)
5058 {
5059 warning (_("Unable to restore previously selected frame."));
5060 return 0;
5061 }
5062
5063 select_frame (frame);
5064
5065 return (1);
5066 }
5067
5068 /* Restore inferior session state to INF_STATUS. */
5069
5070 void
5071 restore_inferior_status (struct inferior_status *inf_status)
5072 {
5073 struct thread_info *tp = inferior_thread ();
5074 struct inferior *inf = current_inferior ();
5075
5076 tp->stop_step = inf_status->stop_step;
5077 stop_stack_dummy = inf_status->stop_stack_dummy;
5078 stopped_by_random_signal = inf_status->stopped_by_random_signal;
5079 tp->trap_expected = inf_status->stepping_over_breakpoint;
5080 tp->step_range_start = inf_status->step_range_start;
5081 tp->step_range_end = inf_status->step_range_end;
5082 tp->step_frame_id = inf_status->step_frame_id;
5083 tp->step_over_calls = inf_status->step_over_calls;
5084 stop_after_trap = inf_status->stop_after_trap;
5085 inf->stop_soon = inf_status->stop_soon;
5086 bpstat_clear (&tp->stop_bpstat);
5087 tp->stop_bpstat = inf_status->stop_bpstat;
5088 inf_status->stop_bpstat = NULL;
5089 breakpoint_proceeded = inf_status->breakpoint_proceeded;
5090 tp->proceed_to_finish = inf_status->proceed_to_finish;
5091
5092 if (target_has_stack)
5093 {
5094 /* The point of catch_errors is that if the stack is clobbered,
5095 walking the stack might encounter a garbage pointer and
5096 error() trying to dereference it. */
5097 if (catch_errors
5098 (restore_selected_frame, &inf_status->selected_frame_id,
5099 "Unable to restore previously selected frame:\n",
5100 RETURN_MASK_ERROR) == 0)
5101 /* Error in restoring the selected frame. Select the innermost
5102 frame. */
5103 select_frame (get_current_frame ());
5104 }
5105
5106 xfree (inf_status);
5107 }
5108
5109 static void
5110 do_restore_inferior_status_cleanup (void *sts)
5111 {
5112 restore_inferior_status (sts);
5113 }
5114
5115 struct cleanup *
5116 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5117 {
5118 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5119 }
5120
5121 void
5122 discard_inferior_status (struct inferior_status *inf_status)
5123 {
5124 /* See save_inferior_status for info on stop_bpstat. */
5125 bpstat_clear (&inf_status->stop_bpstat);
5126 xfree (inf_status);
5127 }
5128 \f
5129 int
5130 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
5131 {
5132 struct target_waitstatus last;
5133 ptid_t last_ptid;
5134
5135 get_last_target_status (&last_ptid, &last);
5136
5137 if (last.kind != TARGET_WAITKIND_FORKED)
5138 return 0;
5139
5140 if (!ptid_equal (last_ptid, pid))
5141 return 0;
5142
5143 *child_pid = last.value.related_pid;
5144 return 1;
5145 }
5146
5147 int
5148 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
5149 {
5150 struct target_waitstatus last;
5151 ptid_t last_ptid;
5152
5153 get_last_target_status (&last_ptid, &last);
5154
5155 if (last.kind != TARGET_WAITKIND_VFORKED)
5156 return 0;
5157
5158 if (!ptid_equal (last_ptid, pid))
5159 return 0;
5160
5161 *child_pid = last.value.related_pid;
5162 return 1;
5163 }
5164
5165 int
5166 inferior_has_execd (ptid_t pid, char **execd_pathname)
5167 {
5168 struct target_waitstatus last;
5169 ptid_t last_ptid;
5170
5171 get_last_target_status (&last_ptid, &last);
5172
5173 if (last.kind != TARGET_WAITKIND_EXECD)
5174 return 0;
5175
5176 if (!ptid_equal (last_ptid, pid))
5177 return 0;
5178
5179 *execd_pathname = xstrdup (last.value.execd_pathname);
5180 return 1;
5181 }
5182
5183 /* Oft used ptids */
5184 ptid_t null_ptid;
5185 ptid_t minus_one_ptid;
5186
5187 /* Create a ptid given the necessary PID, LWP, and TID components. */
5188
5189 ptid_t
5190 ptid_build (int pid, long lwp, long tid)
5191 {
5192 ptid_t ptid;
5193
5194 ptid.pid = pid;
5195 ptid.lwp = lwp;
5196 ptid.tid = tid;
5197 return ptid;
5198 }
5199
5200 /* Create a ptid from just a pid. */
5201
5202 ptid_t
5203 pid_to_ptid (int pid)
5204 {
5205 return ptid_build (pid, 0, 0);
5206 }
5207
5208 /* Fetch the pid (process id) component from a ptid. */
5209
5210 int
5211 ptid_get_pid (ptid_t ptid)
5212 {
5213 return ptid.pid;
5214 }
5215
5216 /* Fetch the lwp (lightweight process) component from a ptid. */
5217
5218 long
5219 ptid_get_lwp (ptid_t ptid)
5220 {
5221 return ptid.lwp;
5222 }
5223
5224 /* Fetch the tid (thread id) component from a ptid. */
5225
5226 long
5227 ptid_get_tid (ptid_t ptid)
5228 {
5229 return ptid.tid;
5230 }
5231
5232 /* ptid_equal() is used to test equality of two ptids. */
5233
5234 int
5235 ptid_equal (ptid_t ptid1, ptid_t ptid2)
5236 {
5237 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
5238 && ptid1.tid == ptid2.tid);
5239 }
5240
5241 /* Returns true if PTID represents a process. */
5242
5243 int
5244 ptid_is_pid (ptid_t ptid)
5245 {
5246 if (ptid_equal (minus_one_ptid, ptid))
5247 return 0;
5248 if (ptid_equal (null_ptid, ptid))
5249 return 0;
5250
5251 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5252 }
5253
5254 /* restore_inferior_ptid() will be used by the cleanup machinery
5255 to restore the inferior_ptid value saved in a call to
5256 save_inferior_ptid(). */
5257
5258 static void
5259 restore_inferior_ptid (void *arg)
5260 {
5261 ptid_t *saved_ptid_ptr = arg;
5262 inferior_ptid = *saved_ptid_ptr;
5263 xfree (arg);
5264 }
5265
5266 /* Save the value of inferior_ptid so that it may be restored by a
5267 later call to do_cleanups(). Returns the struct cleanup pointer
5268 needed for later doing the cleanup. */
5269
5270 struct cleanup *
5271 save_inferior_ptid (void)
5272 {
5273 ptid_t *saved_ptid_ptr;
5274
5275 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5276 *saved_ptid_ptr = inferior_ptid;
5277 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5278 }
5279 \f
5280
5281 /* User interface for reverse debugging:
5282 Set exec-direction / show exec-direction commands
5283 (returns error unless target implements to_set_exec_direction method). */
5284
5285 enum exec_direction_kind execution_direction = EXEC_FORWARD;
5286 static const char exec_forward[] = "forward";
5287 static const char exec_reverse[] = "reverse";
5288 static const char *exec_direction = exec_forward;
5289 static const char *exec_direction_names[] = {
5290 exec_forward,
5291 exec_reverse,
5292 NULL
5293 };
5294
5295 static void
5296 set_exec_direction_func (char *args, int from_tty,
5297 struct cmd_list_element *cmd)
5298 {
5299 if (target_can_execute_reverse)
5300 {
5301 if (!strcmp (exec_direction, exec_forward))
5302 execution_direction = EXEC_FORWARD;
5303 else if (!strcmp (exec_direction, exec_reverse))
5304 execution_direction = EXEC_REVERSE;
5305 }
5306 }
5307
5308 static void
5309 show_exec_direction_func (struct ui_file *out, int from_tty,
5310 struct cmd_list_element *cmd, const char *value)
5311 {
5312 switch (execution_direction) {
5313 case EXEC_FORWARD:
5314 fprintf_filtered (out, _("Forward.\n"));
5315 break;
5316 case EXEC_REVERSE:
5317 fprintf_filtered (out, _("Reverse.\n"));
5318 break;
5319 case EXEC_ERROR:
5320 default:
5321 fprintf_filtered (out,
5322 _("Forward (target `%s' does not support exec-direction).\n"),
5323 target_shortname);
5324 break;
5325 }
5326 }
5327
5328 /* User interface for non-stop mode. */
5329
5330 int non_stop = 0;
5331 static int non_stop_1 = 0;
5332
5333 static void
5334 set_non_stop (char *args, int from_tty,
5335 struct cmd_list_element *c)
5336 {
5337 if (target_has_execution)
5338 {
5339 non_stop_1 = non_stop;
5340 error (_("Cannot change this setting while the inferior is running."));
5341 }
5342
5343 non_stop = non_stop_1;
5344 }
5345
5346 static void
5347 show_non_stop (struct ui_file *file, int from_tty,
5348 struct cmd_list_element *c, const char *value)
5349 {
5350 fprintf_filtered (file,
5351 _("Controlling the inferior in non-stop mode is %s.\n"),
5352 value);
5353 }
5354
5355
5356 void
5357 _initialize_infrun (void)
5358 {
5359 int i;
5360 int numsigs;
5361 struct cmd_list_element *c;
5362
5363 add_info ("signals", signals_info, _("\
5364 What debugger does when program gets various signals.\n\
5365 Specify a signal as argument to print info on that signal only."));
5366 add_info_alias ("handle", "signals", 0);
5367
5368 add_com ("handle", class_run, handle_command, _("\
5369 Specify how to handle a signal.\n\
5370 Args are signals and actions to apply to those signals.\n\
5371 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5372 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5373 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5374 The special arg \"all\" is recognized to mean all signals except those\n\
5375 used by the debugger, typically SIGTRAP and SIGINT.\n\
5376 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
5377 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5378 Stop means reenter debugger if this signal happens (implies print).\n\
5379 Print means print a message if this signal happens.\n\
5380 Pass means let program see this signal; otherwise program doesn't know.\n\
5381 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5382 Pass and Stop may be combined."));
5383 if (xdb_commands)
5384 {
5385 add_com ("lz", class_info, signals_info, _("\
5386 What debugger does when program gets various signals.\n\
5387 Specify a signal as argument to print info on that signal only."));
5388 add_com ("z", class_run, xdb_handle_command, _("\
5389 Specify how to handle a signal.\n\
5390 Args are signals and actions to apply to those signals.\n\
5391 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5392 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5393 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5394 The special arg \"all\" is recognized to mean all signals except those\n\
5395 used by the debugger, typically SIGTRAP and SIGINT.\n\
5396 Recognized actions include \"s\" (toggles between stop and nostop), \n\
5397 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5398 nopass), \"Q\" (noprint)\n\
5399 Stop means reenter debugger if this signal happens (implies print).\n\
5400 Print means print a message if this signal happens.\n\
5401 Pass means let program see this signal; otherwise program doesn't know.\n\
5402 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5403 Pass and Stop may be combined."));
5404 }
5405
5406 if (!dbx_commands)
5407 stop_command = add_cmd ("stop", class_obscure,
5408 not_just_help_class_command, _("\
5409 There is no `stop' command, but you can set a hook on `stop'.\n\
5410 This allows you to set a list of commands to be run each time execution\n\
5411 of the program stops."), &cmdlist);
5412
5413 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5414 Set inferior debugging."), _("\
5415 Show inferior debugging."), _("\
5416 When non-zero, inferior specific debugging is enabled."),
5417 NULL,
5418 show_debug_infrun,
5419 &setdebuglist, &showdebuglist);
5420
5421 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5422 Set displaced stepping debugging."), _("\
5423 Show displaced stepping debugging."), _("\
5424 When non-zero, displaced stepping specific debugging is enabled."),
5425 NULL,
5426 show_debug_displaced,
5427 &setdebuglist, &showdebuglist);
5428
5429 add_setshow_boolean_cmd ("non-stop", no_class,
5430 &non_stop_1, _("\
5431 Set whether gdb controls the inferior in non-stop mode."), _("\
5432 Show whether gdb controls the inferior in non-stop mode."), _("\
5433 When debugging a multi-threaded program and this setting is\n\
5434 off (the default, also called all-stop mode), when one thread stops\n\
5435 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5436 all other threads in the program while you interact with the thread of\n\
5437 interest. When you continue or step a thread, you can allow the other\n\
5438 threads to run, or have them remain stopped, but while you inspect any\n\
5439 thread's state, all threads stop.\n\
5440 \n\
5441 In non-stop mode, when one thread stops, other threads can continue\n\
5442 to run freely. You'll be able to step each thread independently,\n\
5443 leave it stopped or free to run as needed."),
5444 set_non_stop,
5445 show_non_stop,
5446 &setlist,
5447 &showlist);
5448
5449 numsigs = (int) TARGET_SIGNAL_LAST;
5450 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
5451 signal_print = (unsigned char *)
5452 xmalloc (sizeof (signal_print[0]) * numsigs);
5453 signal_program = (unsigned char *)
5454 xmalloc (sizeof (signal_program[0]) * numsigs);
5455 for (i = 0; i < numsigs; i++)
5456 {
5457 signal_stop[i] = 1;
5458 signal_print[i] = 1;
5459 signal_program[i] = 1;
5460 }
5461
5462 /* Signals caused by debugger's own actions
5463 should not be given to the program afterwards. */
5464 signal_program[TARGET_SIGNAL_TRAP] = 0;
5465 signal_program[TARGET_SIGNAL_INT] = 0;
5466
5467 /* Signals that are not errors should not normally enter the debugger. */
5468 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5469 signal_print[TARGET_SIGNAL_ALRM] = 0;
5470 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5471 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5472 signal_stop[TARGET_SIGNAL_PROF] = 0;
5473 signal_print[TARGET_SIGNAL_PROF] = 0;
5474 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5475 signal_print[TARGET_SIGNAL_CHLD] = 0;
5476 signal_stop[TARGET_SIGNAL_IO] = 0;
5477 signal_print[TARGET_SIGNAL_IO] = 0;
5478 signal_stop[TARGET_SIGNAL_POLL] = 0;
5479 signal_print[TARGET_SIGNAL_POLL] = 0;
5480 signal_stop[TARGET_SIGNAL_URG] = 0;
5481 signal_print[TARGET_SIGNAL_URG] = 0;
5482 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5483 signal_print[TARGET_SIGNAL_WINCH] = 0;
5484
5485 /* These signals are used internally by user-level thread
5486 implementations. (See signal(5) on Solaris.) Like the above
5487 signals, a healthy program receives and handles them as part of
5488 its normal operation. */
5489 signal_stop[TARGET_SIGNAL_LWP] = 0;
5490 signal_print[TARGET_SIGNAL_LWP] = 0;
5491 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5492 signal_print[TARGET_SIGNAL_WAITING] = 0;
5493 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5494 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5495
5496 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5497 &stop_on_solib_events, _("\
5498 Set stopping for shared library events."), _("\
5499 Show stopping for shared library events."), _("\
5500 If nonzero, gdb will give control to the user when the dynamic linker\n\
5501 notifies gdb of shared library events. The most common event of interest\n\
5502 to the user would be loading/unloading of a new library."),
5503 NULL,
5504 show_stop_on_solib_events,
5505 &setlist, &showlist);
5506
5507 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5508 follow_fork_mode_kind_names,
5509 &follow_fork_mode_string, _("\
5510 Set debugger response to a program call of fork or vfork."), _("\
5511 Show debugger response to a program call of fork or vfork."), _("\
5512 A fork or vfork creates a new process. follow-fork-mode can be:\n\
5513 parent - the original process is debugged after a fork\n\
5514 child - the new process is debugged after a fork\n\
5515 The unfollowed process will continue to run.\n\
5516 By default, the debugger will follow the parent process."),
5517 NULL,
5518 show_follow_fork_mode_string,
5519 &setlist, &showlist);
5520
5521 add_setshow_enum_cmd ("scheduler-locking", class_run,
5522 scheduler_enums, &scheduler_mode, _("\
5523 Set mode for locking scheduler during execution."), _("\
5524 Show mode for locking scheduler during execution."), _("\
5525 off == no locking (threads may preempt at any time)\n\
5526 on == full locking (no thread except the current thread may run)\n\
5527 step == scheduler locked during every single-step operation.\n\
5528 In this mode, no other thread may run during a step command.\n\
5529 Other threads may run while stepping over a function call ('next')."),
5530 set_schedlock_func, /* traps on target vector */
5531 show_scheduler_mode,
5532 &setlist, &showlist);
5533
5534 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5535 Set mode of the step operation."), _("\
5536 Show mode of the step operation."), _("\
5537 When set, doing a step over a function without debug line information\n\
5538 will stop at the first instruction of that function. Otherwise, the\n\
5539 function is skipped and the step command stops at a different source line."),
5540 NULL,
5541 show_step_stop_if_no_debug,
5542 &setlist, &showlist);
5543
5544 add_setshow_enum_cmd ("displaced-stepping", class_run,
5545 can_use_displaced_stepping_enum,
5546 &can_use_displaced_stepping, _("\
5547 Set debugger's willingness to use displaced stepping."), _("\
5548 Show debugger's willingness to use displaced stepping."), _("\
5549 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5550 supported by the target architecture. If off, gdb will not use displaced\n\
5551 stepping to step over breakpoints, even if such is supported by the target\n\
5552 architecture. If auto (which is the default), gdb will use displaced stepping\n\
5553 if the target architecture supports it and non-stop mode is active, but will not\n\
5554 use it in all-stop mode (see help set non-stop)."),
5555 NULL,
5556 show_can_use_displaced_stepping,
5557 &setlist, &showlist);
5558
5559 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5560 &exec_direction, _("Set direction of execution.\n\
5561 Options are 'forward' or 'reverse'."),
5562 _("Show direction of execution (forward/reverse)."),
5563 _("Tells gdb whether to execute forward or backward."),
5564 set_exec_direction_func, show_exec_direction_func,
5565 &setlist, &showlist);
5566
5567 /* ptid initializations */
5568 null_ptid = ptid_build (0, 0, 0);
5569 minus_one_ptid = ptid_build (-1, 0, 0);
5570 inferior_ptid = null_ptid;
5571 target_last_wait_ptid = minus_one_ptid;
5572 displaced_step_ptid = null_ptid;
5573
5574 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
5575 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
5576
5577 /* Explicitly create without lookup, since that tries to create a
5578 value with a void typed value, and when we get here, gdbarch
5579 isn't initialized yet. At this point, we're quite sure there
5580 isn't another convenience variable of the same name. */
5581 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
5582 }