gdb: add inferior_execd observable
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "target-connection.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34 #include "symfile.h"
35 #include "top.h"
36 #include "inf-loop.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "language.h"
41 #include "solib.h"
42 #include "main.h"
43 #include "block.h"
44 #include "mi/mi-common.h"
45 #include "event-top.h"
46 #include "record.h"
47 #include "record-full.h"
48 #include "inline-frame.h"
49 #include "jit.h"
50 #include "tracepoint.h"
51 #include "skip.h"
52 #include "probe.h"
53 #include "objfiles.h"
54 #include "completer.h"
55 #include "target-descriptions.h"
56 #include "target-dcache.h"
57 #include "terminal.h"
58 #include "solist.h"
59 #include "gdbsupport/event-loop.h"
60 #include "thread-fsm.h"
61 #include "gdbsupport/enum-flags.h"
62 #include "progspace-and-thread.h"
63 #include "gdbsupport/gdb_optional.h"
64 #include "arch-utils.h"
65 #include "gdbsupport/scope-exit.h"
66 #include "gdbsupport/forward-scope-exit.h"
67 #include "gdbsupport/gdb_select.h"
68 #include <unordered_map>
69 #include "async-event.h"
70 #include "gdbsupport/selftest.h"
71 #include "scoped-mock-context.h"
72 #include "test-target.h"
73 #include "gdbsupport/common-debug.h"
74
75 /* Prototypes for local functions */
76
77 static void sig_print_info (enum gdb_signal);
78
79 static void sig_print_header (void);
80
81 static void follow_inferior_reset_breakpoints (void);
82
83 static bool currently_stepping (struct thread_info *tp);
84
85 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
86
87 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
88
89 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
90
91 static bool maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
92
93 static void resume (gdb_signal sig);
94
95 static void wait_for_inferior (inferior *inf);
96
97 /* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99 static struct async_event_handler *infrun_async_inferior_event_token;
100
101 /* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103 static int infrun_is_async = -1;
104
105 /* See infrun.h. */
106
107 void
108 infrun_async (int enable)
109 {
110 if (infrun_is_async != enable)
111 {
112 infrun_is_async = enable;
113
114 infrun_debug_printf ("enable=%d", enable);
115
116 if (enable)
117 mark_async_event_handler (infrun_async_inferior_event_token);
118 else
119 clear_async_event_handler (infrun_async_inferior_event_token);
120 }
121 }
122
123 /* See infrun.h. */
124
125 void
126 mark_infrun_async_event_handler (void)
127 {
128 mark_async_event_handler (infrun_async_inferior_event_token);
129 }
130
131 /* When set, stop the 'step' command if we enter a function which has
132 no line number information. The normal behavior is that we step
133 over such function. */
134 bool step_stop_if_no_debug = false;
135 static void
136 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138 {
139 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
140 }
141
142 /* proceed and normal_stop use this to notify the user when the
143 inferior stopped in a different thread than it had been running
144 in. */
145
146 static ptid_t previous_inferior_ptid;
147
148 /* If set (default for legacy reasons), when following a fork, GDB
149 will detach from one of the fork branches, child or parent.
150 Exactly which branch is detached depends on 'set follow-fork-mode'
151 setting. */
152
153 static bool detach_fork = true;
154
155 bool debug_displaced = false;
156 static void
157 show_debug_displaced (struct ui_file *file, int from_tty,
158 struct cmd_list_element *c, const char *value)
159 {
160 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
161 }
162
163 unsigned int debug_infrun = 0;
164 static void
165 show_debug_infrun (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
169 }
170
171 /* Support for disabling address space randomization. */
172
173 bool disable_randomization = true;
174
175 static void
176 show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188 }
189
190 static void
191 set_disable_randomization (const char *args, int from_tty,
192 struct cmd_list_element *c)
193 {
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198 }
199
200 /* User interface for non-stop mode. */
201
202 bool non_stop = false;
203 static bool non_stop_1 = false;
204
205 static void
206 set_non_stop (const char *args, int from_tty,
207 struct cmd_list_element *c)
208 {
209 if (target_has_execution ())
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216 }
217
218 static void
219 show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221 {
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225 }
226
227 /* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
231 bool observer_mode = false;
232 static bool observer_mode_1 = false;
233
234 static void
235 set_observer_mode (const char *args, int from_tty,
236 struct cmd_list_element *c)
237 {
238 if (target_has_execution ())
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
253 may_insert_fast_tracepoints = true;
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
261 pagination_enabled = 0;
262 non_stop = non_stop_1 = true;
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268 }
269
270 static void
271 show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273 {
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275 }
276
277 /* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283 void
284 update_observer_mode (void)
285 {
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298 }
299
300 /* Tables of how to react to signals; the user sets them. */
301
302 static unsigned char signal_stop[GDB_SIGNAL_LAST];
303 static unsigned char signal_print[GDB_SIGNAL_LAST];
304 static unsigned char signal_program[GDB_SIGNAL_LAST];
305
306 /* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
308 signal" command. */
309 static unsigned char signal_catch[GDB_SIGNAL_LAST];
310
311 /* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
314 static unsigned char signal_pass[GDB_SIGNAL_LAST];
315
316 #define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324 #define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
332 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335 void
336 update_signals_program_target (void)
337 {
338 target_program_signals (signal_program);
339 }
340
341 /* Value to pass to target_resume() to cause all threads to resume. */
342
343 #define RESUME_ALL minus_one_ptid
344
345 /* Command list pointer for the "stop" placeholder. */
346
347 static struct cmd_list_element *stop_command;
348
349 /* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
351 int stop_on_solib_events;
352
353 /* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356 static void
357 set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
359 {
360 update_solib_breakpoints ();
361 }
362
363 static void
364 show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366 {
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369 }
370
371 /* True after stop if current stack frame should be printed. */
372
373 static bool stop_print_frame;
374
375 /* This is a cached copy of the target/ptid/waitstatus of the last
376 event returned by target_wait()/deprecated_target_wait_hook().
377 This information is returned by get_last_target_status(). */
378 static process_stratum_target *target_last_proc_target;
379 static ptid_t target_last_wait_ptid;
380 static struct target_waitstatus target_last_waitstatus;
381
382 void init_thread_stepping_state (struct thread_info *tss);
383
384 static const char follow_fork_mode_child[] = "child";
385 static const char follow_fork_mode_parent[] = "parent";
386
387 static const char *const follow_fork_mode_kind_names[] = {
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
391 };
392
393 static const char *follow_fork_mode_string = follow_fork_mode_parent;
394 static void
395 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397 {
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
401 value);
402 }
403 \f
404
405 /* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
411 static bool
412 follow_fork_inferior (bool follow_child, bool detach_fork)
413 {
414 int has_vforked;
415 ptid_t parent_ptid, child_ptid;
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
424 && current_ui->prompt_state == PROMPT_BLOCKED
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433 Can not resume the parent process over vfork in the foreground while\n\
434 holding the child stopped. Try \"set detach-on-fork\" or \
435 \"set schedule-multiple\".\n"));
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
454 remove_breakpoints_inf (current_inferior ());
455 }
456
457 if (print_inferior_events)
458 {
459 /* Ensure that we have a process ptid. */
460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
461
462 target_terminal::ours_for_output ();
463 fprintf_filtered (gdb_stdlog,
464 _("[Detaching after %s from child %s]\n"),
465 has_vforked ? "vfork" : "fork",
466 target_pid_to_str (process_ptid).c_str ());
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
472
473 /* Add process to GDB's tables. */
474 child_inf = add_inferior (child_ptid.pid ());
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
483
484 set_current_inferior (child_inf);
485 switch_to_no_thread ();
486 child_inf->symfile_flags = SYMFILE_NO_READ;
487 push_target (parent_inf->process_target ());
488 thread_info *child_thr
489 = add_thread_silent (child_inf->process_target (), child_ptid);
490
491 /* If this is a vfork child, then the address-space is
492 shared with the parent. */
493 if (has_vforked)
494 {
495 child_inf->pspace = parent_inf->pspace;
496 child_inf->aspace = parent_inf->aspace;
497
498 exec_on_vfork ();
499
500 /* The parent will be frozen until the child is done
501 with the shared region. Keep track of the
502 parent. */
503 child_inf->vfork_parent = parent_inf;
504 child_inf->pending_detach = 0;
505 parent_inf->vfork_child = child_inf;
506 parent_inf->pending_detach = 0;
507
508 /* Now that the inferiors and program spaces are all
509 wired up, we can switch to the child thread (which
510 switches inferior and program space too). */
511 switch_to_thread (child_thr);
512 }
513 else
514 {
515 child_inf->aspace = new_address_space ();
516 child_inf->pspace = new program_space (child_inf->aspace);
517 child_inf->removable = 1;
518 set_current_program_space (child_inf->pspace);
519 clone_program_space (child_inf->pspace, parent_inf->pspace);
520
521 /* solib_create_inferior_hook relies on the current
522 thread. */
523 switch_to_thread (child_thr);
524
525 /* Let the shared library layer (e.g., solib-svr4) learn
526 about this new process, relocate the cloned exec, pull
527 in shared libraries, and install the solib event
528 breakpoint. If a "cloned-VM" event was propagated
529 better throughout the core, this wouldn't be
530 required. */
531 solib_create_inferior_hook (0);
532 }
533 }
534
535 if (has_vforked)
536 {
537 struct inferior *parent_inf;
538
539 parent_inf = current_inferior ();
540
541 /* If we detached from the child, then we have to be careful
542 to not insert breakpoints in the parent until the child
543 is done with the shared memory region. However, if we're
544 staying attached to the child, then we can and should
545 insert breakpoints, so that we can debug it. A
546 subsequent child exec or exit is enough to know when does
547 the child stops using the parent's address space. */
548 parent_inf->waiting_for_vfork_done = detach_fork;
549 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
550 }
551 }
552 else
553 {
554 /* Follow the child. */
555 struct inferior *parent_inf, *child_inf;
556 struct program_space *parent_pspace;
557
558 if (print_inferior_events)
559 {
560 std::string parent_pid = target_pid_to_str (parent_ptid);
561 std::string child_pid = target_pid_to_str (child_ptid);
562
563 target_terminal::ours_for_output ();
564 fprintf_filtered (gdb_stdlog,
565 _("[Attaching after %s %s to child %s]\n"),
566 parent_pid.c_str (),
567 has_vforked ? "vfork" : "fork",
568 child_pid.c_str ());
569 }
570
571 /* Add the new inferior first, so that the target_detach below
572 doesn't unpush the target. */
573
574 child_inf = add_inferior (child_ptid.pid ());
575
576 parent_inf = current_inferior ();
577 child_inf->attach_flag = parent_inf->attach_flag;
578 copy_terminal_info (child_inf, parent_inf);
579 child_inf->gdbarch = parent_inf->gdbarch;
580 copy_inferior_target_desc_info (child_inf, parent_inf);
581
582 parent_pspace = parent_inf->pspace;
583
584 process_stratum_target *target = parent_inf->process_target ();
585
586 {
587 /* Hold a strong reference to the target while (maybe)
588 detaching the parent. Otherwise detaching could close the
589 target. */
590 auto target_ref = target_ops_ref::new_reference (target);
591
592 /* If we're vforking, we want to hold on to the parent until
593 the child exits or execs. At child exec or exit time we
594 can remove the old breakpoints from the parent and detach
595 or resume debugging it. Otherwise, detach the parent now;
596 we'll want to reuse it's program/address spaces, but we
597 can't set them to the child before removing breakpoints
598 from the parent, otherwise, the breakpoints module could
599 decide to remove breakpoints from the wrong process (since
600 they'd be assigned to the same address space). */
601
602 if (has_vforked)
603 {
604 gdb_assert (child_inf->vfork_parent == NULL);
605 gdb_assert (parent_inf->vfork_child == NULL);
606 child_inf->vfork_parent = parent_inf;
607 child_inf->pending_detach = 0;
608 parent_inf->vfork_child = child_inf;
609 parent_inf->pending_detach = detach_fork;
610 parent_inf->waiting_for_vfork_done = 0;
611 }
612 else if (detach_fork)
613 {
614 if (print_inferior_events)
615 {
616 /* Ensure that we have a process ptid. */
617 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
618
619 target_terminal::ours_for_output ();
620 fprintf_filtered (gdb_stdlog,
621 _("[Detaching after fork from "
622 "parent %s]\n"),
623 target_pid_to_str (process_ptid).c_str ());
624 }
625
626 target_detach (parent_inf, 0);
627 parent_inf = NULL;
628 }
629
630 /* Note that the detach above makes PARENT_INF dangling. */
631
632 /* Add the child thread to the appropriate lists, and switch
633 to this new thread, before cloning the program space, and
634 informing the solib layer about this new process. */
635
636 set_current_inferior (child_inf);
637 push_target (target);
638 }
639
640 thread_info *child_thr = add_thread_silent (target, child_ptid);
641
642 /* If this is a vfork child, then the address-space is shared
643 with the parent. If we detached from the parent, then we can
644 reuse the parent's program/address spaces. */
645 if (has_vforked || detach_fork)
646 {
647 child_inf->pspace = parent_pspace;
648 child_inf->aspace = child_inf->pspace->aspace;
649
650 exec_on_vfork ();
651 }
652 else
653 {
654 child_inf->aspace = new_address_space ();
655 child_inf->pspace = new program_space (child_inf->aspace);
656 child_inf->removable = 1;
657 child_inf->symfile_flags = SYMFILE_NO_READ;
658 set_current_program_space (child_inf->pspace);
659 clone_program_space (child_inf->pspace, parent_pspace);
660
661 /* Let the shared library layer (e.g., solib-svr4) learn
662 about this new process, relocate the cloned exec, pull in
663 shared libraries, and install the solib event breakpoint.
664 If a "cloned-VM" event was propagated better throughout
665 the core, this wouldn't be required. */
666 solib_create_inferior_hook (0);
667 }
668
669 switch_to_thread (child_thr);
670 }
671
672 return target_follow_fork (follow_child, detach_fork);
673 }
674
675 /* Tell the target to follow the fork we're stopped at. Returns true
676 if the inferior should be resumed; false, if the target for some
677 reason decided it's best not to resume. */
678
679 static bool
680 follow_fork ()
681 {
682 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
683 bool should_resume = true;
684 struct thread_info *tp;
685
686 /* Copy user stepping state to the new inferior thread. FIXME: the
687 followed fork child thread should have a copy of most of the
688 parent thread structure's run control related fields, not just these.
689 Initialized to avoid "may be used uninitialized" warnings from gcc. */
690 struct breakpoint *step_resume_breakpoint = NULL;
691 struct breakpoint *exception_resume_breakpoint = NULL;
692 CORE_ADDR step_range_start = 0;
693 CORE_ADDR step_range_end = 0;
694 int current_line = 0;
695 symtab *current_symtab = NULL;
696 struct frame_id step_frame_id = { 0 };
697 struct thread_fsm *thread_fsm = NULL;
698
699 if (!non_stop)
700 {
701 process_stratum_target *wait_target;
702 ptid_t wait_ptid;
703 struct target_waitstatus wait_status;
704
705 /* Get the last target status returned by target_wait(). */
706 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
707
708 /* If not stopped at a fork event, then there's nothing else to
709 do. */
710 if (wait_status.kind != TARGET_WAITKIND_FORKED
711 && wait_status.kind != TARGET_WAITKIND_VFORKED)
712 return 1;
713
714 /* Check if we switched over from WAIT_PTID, since the event was
715 reported. */
716 if (wait_ptid != minus_one_ptid
717 && (current_inferior ()->process_target () != wait_target
718 || inferior_ptid != wait_ptid))
719 {
720 /* We did. Switch back to WAIT_PTID thread, to tell the
721 target to follow it (in either direction). We'll
722 afterwards refuse to resume, and inform the user what
723 happened. */
724 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
725 switch_to_thread (wait_thread);
726 should_resume = false;
727 }
728 }
729
730 tp = inferior_thread ();
731
732 /* If there were any forks/vforks that were caught and are now to be
733 followed, then do so now. */
734 switch (tp->pending_follow.kind)
735 {
736 case TARGET_WAITKIND_FORKED:
737 case TARGET_WAITKIND_VFORKED:
738 {
739 ptid_t parent, child;
740
741 /* If the user did a next/step, etc, over a fork call,
742 preserve the stepping state in the fork child. */
743 if (follow_child && should_resume)
744 {
745 step_resume_breakpoint = clone_momentary_breakpoint
746 (tp->control.step_resume_breakpoint);
747 step_range_start = tp->control.step_range_start;
748 step_range_end = tp->control.step_range_end;
749 current_line = tp->current_line;
750 current_symtab = tp->current_symtab;
751 step_frame_id = tp->control.step_frame_id;
752 exception_resume_breakpoint
753 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
754 thread_fsm = tp->thread_fsm;
755
756 /* For now, delete the parent's sr breakpoint, otherwise,
757 parent/child sr breakpoints are considered duplicates,
758 and the child version will not be installed. Remove
759 this when the breakpoints module becomes aware of
760 inferiors and address spaces. */
761 delete_step_resume_breakpoint (tp);
762 tp->control.step_range_start = 0;
763 tp->control.step_range_end = 0;
764 tp->control.step_frame_id = null_frame_id;
765 delete_exception_resume_breakpoint (tp);
766 tp->thread_fsm = NULL;
767 }
768
769 parent = inferior_ptid;
770 child = tp->pending_follow.value.related_pid;
771
772 process_stratum_target *parent_targ = tp->inf->process_target ();
773 /* Set up inferior(s) as specified by the caller, and tell the
774 target to do whatever is necessary to follow either parent
775 or child. */
776 if (follow_fork_inferior (follow_child, detach_fork))
777 {
778 /* Target refused to follow, or there's some other reason
779 we shouldn't resume. */
780 should_resume = 0;
781 }
782 else
783 {
784 /* This pending follow fork event is now handled, one way
785 or another. The previous selected thread may be gone
786 from the lists by now, but if it is still around, need
787 to clear the pending follow request. */
788 tp = find_thread_ptid (parent_targ, parent);
789 if (tp)
790 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
791
792 /* This makes sure we don't try to apply the "Switched
793 over from WAIT_PID" logic above. */
794 nullify_last_target_wait_ptid ();
795
796 /* If we followed the child, switch to it... */
797 if (follow_child)
798 {
799 thread_info *child_thr = find_thread_ptid (parent_targ, child);
800 switch_to_thread (child_thr);
801
802 /* ... and preserve the stepping state, in case the
803 user was stepping over the fork call. */
804 if (should_resume)
805 {
806 tp = inferior_thread ();
807 tp->control.step_resume_breakpoint
808 = step_resume_breakpoint;
809 tp->control.step_range_start = step_range_start;
810 tp->control.step_range_end = step_range_end;
811 tp->current_line = current_line;
812 tp->current_symtab = current_symtab;
813 tp->control.step_frame_id = step_frame_id;
814 tp->control.exception_resume_breakpoint
815 = exception_resume_breakpoint;
816 tp->thread_fsm = thread_fsm;
817 }
818 else
819 {
820 /* If we get here, it was because we're trying to
821 resume from a fork catchpoint, but, the user
822 has switched threads away from the thread that
823 forked. In that case, the resume command
824 issued is most likely not applicable to the
825 child, so just warn, and refuse to resume. */
826 warning (_("Not resuming: switched threads "
827 "before following fork child."));
828 }
829
830 /* Reset breakpoints in the child as appropriate. */
831 follow_inferior_reset_breakpoints ();
832 }
833 }
834 }
835 break;
836 case TARGET_WAITKIND_SPURIOUS:
837 /* Nothing to follow. */
838 break;
839 default:
840 internal_error (__FILE__, __LINE__,
841 "Unexpected pending_follow.kind %d\n",
842 tp->pending_follow.kind);
843 break;
844 }
845
846 return should_resume;
847 }
848
849 static void
850 follow_inferior_reset_breakpoints (void)
851 {
852 struct thread_info *tp = inferior_thread ();
853
854 /* Was there a step_resume breakpoint? (There was if the user
855 did a "next" at the fork() call.) If so, explicitly reset its
856 thread number. Cloned step_resume breakpoints are disabled on
857 creation, so enable it here now that it is associated with the
858 correct thread.
859
860 step_resumes are a form of bp that are made to be per-thread.
861 Since we created the step_resume bp when the parent process
862 was being debugged, and now are switching to the child process,
863 from the breakpoint package's viewpoint, that's a switch of
864 "threads". We must update the bp's notion of which thread
865 it is for, or it'll be ignored when it triggers. */
866
867 if (tp->control.step_resume_breakpoint)
868 {
869 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
870 tp->control.step_resume_breakpoint->loc->enabled = 1;
871 }
872
873 /* Treat exception_resume breakpoints like step_resume breakpoints. */
874 if (tp->control.exception_resume_breakpoint)
875 {
876 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
877 tp->control.exception_resume_breakpoint->loc->enabled = 1;
878 }
879
880 /* Reinsert all breakpoints in the child. The user may have set
881 breakpoints after catching the fork, in which case those
882 were never set in the child, but only in the parent. This makes
883 sure the inserted breakpoints match the breakpoint list. */
884
885 breakpoint_re_set ();
886 insert_breakpoints ();
887 }
888
889 /* The child has exited or execed: resume threads of the parent the
890 user wanted to be executing. */
891
892 static int
893 proceed_after_vfork_done (struct thread_info *thread,
894 void *arg)
895 {
896 int pid = * (int *) arg;
897
898 if (thread->ptid.pid () == pid
899 && thread->state == THREAD_RUNNING
900 && !thread->executing
901 && !thread->stop_requested
902 && thread->suspend.stop_signal == GDB_SIGNAL_0)
903 {
904 infrun_debug_printf ("resuming vfork parent thread %s",
905 target_pid_to_str (thread->ptid).c_str ());
906
907 switch_to_thread (thread);
908 clear_proceed_status (0);
909 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
910 }
911
912 return 0;
913 }
914
915 /* Called whenever we notice an exec or exit event, to handle
916 detaching or resuming a vfork parent. */
917
918 static void
919 handle_vfork_child_exec_or_exit (int exec)
920 {
921 struct inferior *inf = current_inferior ();
922
923 if (inf->vfork_parent)
924 {
925 int resume_parent = -1;
926
927 /* This exec or exit marks the end of the shared memory region
928 between the parent and the child. Break the bonds. */
929 inferior *vfork_parent = inf->vfork_parent;
930 inf->vfork_parent->vfork_child = NULL;
931 inf->vfork_parent = NULL;
932
933 /* If the user wanted to detach from the parent, now is the
934 time. */
935 if (vfork_parent->pending_detach)
936 {
937 struct program_space *pspace;
938 struct address_space *aspace;
939
940 /* follow-fork child, detach-on-fork on. */
941
942 vfork_parent->pending_detach = 0;
943
944 scoped_restore_current_pspace_and_thread restore_thread;
945
946 /* We're letting loose of the parent. */
947 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
948 switch_to_thread (tp);
949
950 /* We're about to detach from the parent, which implicitly
951 removes breakpoints from its address space. There's a
952 catch here: we want to reuse the spaces for the child,
953 but, parent/child are still sharing the pspace at this
954 point, although the exec in reality makes the kernel give
955 the child a fresh set of new pages. The problem here is
956 that the breakpoints module being unaware of this, would
957 likely chose the child process to write to the parent
958 address space. Swapping the child temporarily away from
959 the spaces has the desired effect. Yes, this is "sort
960 of" a hack. */
961
962 pspace = inf->pspace;
963 aspace = inf->aspace;
964 inf->aspace = NULL;
965 inf->pspace = NULL;
966
967 if (print_inferior_events)
968 {
969 std::string pidstr
970 = target_pid_to_str (ptid_t (vfork_parent->pid));
971
972 target_terminal::ours_for_output ();
973
974 if (exec)
975 {
976 fprintf_filtered (gdb_stdlog,
977 _("[Detaching vfork parent %s "
978 "after child exec]\n"), pidstr.c_str ());
979 }
980 else
981 {
982 fprintf_filtered (gdb_stdlog,
983 _("[Detaching vfork parent %s "
984 "after child exit]\n"), pidstr.c_str ());
985 }
986 }
987
988 target_detach (vfork_parent, 0);
989
990 /* Put it back. */
991 inf->pspace = pspace;
992 inf->aspace = aspace;
993 }
994 else if (exec)
995 {
996 /* We're staying attached to the parent, so, really give the
997 child a new address space. */
998 inf->pspace = new program_space (maybe_new_address_space ());
999 inf->aspace = inf->pspace->aspace;
1000 inf->removable = 1;
1001 set_current_program_space (inf->pspace);
1002
1003 resume_parent = vfork_parent->pid;
1004 }
1005 else
1006 {
1007 /* If this is a vfork child exiting, then the pspace and
1008 aspaces were shared with the parent. Since we're
1009 reporting the process exit, we'll be mourning all that is
1010 found in the address space, and switching to null_ptid,
1011 preparing to start a new inferior. But, since we don't
1012 want to clobber the parent's address/program spaces, we
1013 go ahead and create a new one for this exiting
1014 inferior. */
1015
1016 /* Switch to no-thread while running clone_program_space, so
1017 that clone_program_space doesn't want to read the
1018 selected frame of a dead process. */
1019 scoped_restore_current_thread restore_thread;
1020 switch_to_no_thread ();
1021
1022 inf->pspace = new program_space (maybe_new_address_space ());
1023 inf->aspace = inf->pspace->aspace;
1024 set_current_program_space (inf->pspace);
1025 inf->removable = 1;
1026 inf->symfile_flags = SYMFILE_NO_READ;
1027 clone_program_space (inf->pspace, vfork_parent->pspace);
1028
1029 resume_parent = vfork_parent->pid;
1030 }
1031
1032 gdb_assert (current_program_space == inf->pspace);
1033
1034 if (non_stop && resume_parent != -1)
1035 {
1036 /* If the user wanted the parent to be running, let it go
1037 free now. */
1038 scoped_restore_current_thread restore_thread;
1039
1040 infrun_debug_printf ("resuming vfork parent process %d",
1041 resume_parent);
1042
1043 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1044 }
1045 }
1046 }
1047
1048 /* Enum strings for "set|show follow-exec-mode". */
1049
1050 static const char follow_exec_mode_new[] = "new";
1051 static const char follow_exec_mode_same[] = "same";
1052 static const char *const follow_exec_mode_names[] =
1053 {
1054 follow_exec_mode_new,
1055 follow_exec_mode_same,
1056 NULL,
1057 };
1058
1059 static const char *follow_exec_mode_string = follow_exec_mode_same;
1060 static void
1061 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1062 struct cmd_list_element *c, const char *value)
1063 {
1064 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1065 }
1066
1067 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1068
1069 static void
1070 follow_exec (ptid_t ptid, const char *exec_file_target)
1071 {
1072 struct inferior *inf = current_inferior ();
1073 int pid = ptid.pid ();
1074 ptid_t process_ptid;
1075
1076 /* Switch terminal for any messages produced e.g. by
1077 breakpoint_re_set. */
1078 target_terminal::ours_for_output ();
1079
1080 /* This is an exec event that we actually wish to pay attention to.
1081 Refresh our symbol table to the newly exec'd program, remove any
1082 momentary bp's, etc.
1083
1084 If there are breakpoints, they aren't really inserted now,
1085 since the exec() transformed our inferior into a fresh set
1086 of instructions.
1087
1088 We want to preserve symbolic breakpoints on the list, since
1089 we have hopes that they can be reset after the new a.out's
1090 symbol table is read.
1091
1092 However, any "raw" breakpoints must be removed from the list
1093 (e.g., the solib bp's), since their address is probably invalid
1094 now.
1095
1096 And, we DON'T want to call delete_breakpoints() here, since
1097 that may write the bp's "shadow contents" (the instruction
1098 value that was overwritten with a TRAP instruction). Since
1099 we now have a new a.out, those shadow contents aren't valid. */
1100
1101 mark_breakpoints_out ();
1102
1103 /* The target reports the exec event to the main thread, even if
1104 some other thread does the exec, and even if the main thread was
1105 stopped or already gone. We may still have non-leader threads of
1106 the process on our list. E.g., on targets that don't have thread
1107 exit events (like remote); or on native Linux in non-stop mode if
1108 there were only two threads in the inferior and the non-leader
1109 one is the one that execs (and nothing forces an update of the
1110 thread list up to here). When debugging remotely, it's best to
1111 avoid extra traffic, when possible, so avoid syncing the thread
1112 list with the target, and instead go ahead and delete all threads
1113 of the process but one that reported the event. Note this must
1114 be done before calling update_breakpoints_after_exec, as
1115 otherwise clearing the threads' resources would reference stale
1116 thread breakpoints -- it may have been one of these threads that
1117 stepped across the exec. We could just clear their stepping
1118 states, but as long as we're iterating, might as well delete
1119 them. Deleting them now rather than at the next user-visible
1120 stop provides a nicer sequence of events for user and MI
1121 notifications. */
1122 for (thread_info *th : all_threads_safe ())
1123 if (th->ptid.pid () == pid && th->ptid != ptid)
1124 delete_thread (th);
1125
1126 /* We also need to clear any left over stale state for the
1127 leader/event thread. E.g., if there was any step-resume
1128 breakpoint or similar, it's gone now. We cannot truly
1129 step-to-next statement through an exec(). */
1130 thread_info *th = inferior_thread ();
1131 th->control.step_resume_breakpoint = NULL;
1132 th->control.exception_resume_breakpoint = NULL;
1133 th->control.single_step_breakpoints = NULL;
1134 th->control.step_range_start = 0;
1135 th->control.step_range_end = 0;
1136
1137 /* The user may have had the main thread held stopped in the
1138 previous image (e.g., schedlock on, or non-stop). Release
1139 it now. */
1140 th->stop_requested = 0;
1141
1142 update_breakpoints_after_exec ();
1143
1144 /* What is this a.out's name? */
1145 process_ptid = ptid_t (pid);
1146 printf_unfiltered (_("%s is executing new program: %s\n"),
1147 target_pid_to_str (process_ptid).c_str (),
1148 exec_file_target);
1149
1150 /* We've followed the inferior through an exec. Therefore, the
1151 inferior has essentially been killed & reborn. */
1152
1153 breakpoint_init_inferior (inf_execd);
1154
1155 gdb::unique_xmalloc_ptr<char> exec_file_host
1156 = exec_file_find (exec_file_target, NULL);
1157
1158 /* If we were unable to map the executable target pathname onto a host
1159 pathname, tell the user that. Otherwise GDB's subsequent behavior
1160 is confusing. Maybe it would even be better to stop at this point
1161 so that the user can specify a file manually before continuing. */
1162 if (exec_file_host == NULL)
1163 warning (_("Could not load symbols for executable %s.\n"
1164 "Do you need \"set sysroot\"?"),
1165 exec_file_target);
1166
1167 /* Reset the shared library package. This ensures that we get a
1168 shlib event when the child reaches "_start", at which point the
1169 dld will have had a chance to initialize the child. */
1170 /* Also, loading a symbol file below may trigger symbol lookups, and
1171 we don't want those to be satisfied by the libraries of the
1172 previous incarnation of this process. */
1173 no_shared_libraries (NULL, 0);
1174
1175 if (follow_exec_mode_string == follow_exec_mode_new)
1176 {
1177 /* The user wants to keep the old inferior and program spaces
1178 around. Create a new fresh one, and switch to it. */
1179
1180 /* Do exit processing for the original inferior before setting the new
1181 inferior's pid. Having two inferiors with the same pid would confuse
1182 find_inferior_p(t)id. Transfer the terminal state and info from the
1183 old to the new inferior. */
1184 inf = add_inferior_with_spaces ();
1185 swap_terminal_info (inf, current_inferior ());
1186 exit_inferior_silent (current_inferior ());
1187
1188 inf->pid = pid;
1189 target_follow_exec (inf, exec_file_target);
1190
1191 inferior *org_inferior = current_inferior ();
1192 switch_to_inferior_no_thread (inf);
1193 push_target (org_inferior->process_target ());
1194 thread_info *thr = add_thread (inf->process_target (), ptid);
1195 switch_to_thread (thr);
1196 }
1197 else
1198 {
1199 /* The old description may no longer be fit for the new image.
1200 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1201 old description; we'll read a new one below. No need to do
1202 this on "follow-exec-mode new", as the old inferior stays
1203 around (its description is later cleared/refetched on
1204 restart). */
1205 target_clear_description ();
1206 }
1207
1208 gdb_assert (current_program_space == inf->pspace);
1209
1210 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1211 because the proper displacement for a PIE (Position Independent
1212 Executable) main symbol file will only be computed by
1213 solib_create_inferior_hook below. breakpoint_re_set would fail
1214 to insert the breakpoints with the zero displacement. */
1215 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1216
1217 /* If the target can specify a description, read it. Must do this
1218 after flipping to the new executable (because the target supplied
1219 description must be compatible with the executable's
1220 architecture, and the old executable may e.g., be 32-bit, while
1221 the new one 64-bit), and before anything involving memory or
1222 registers. */
1223 target_find_description ();
1224
1225 gdb::observers::inferior_execd.notify (inf);
1226
1227 breakpoint_re_set ();
1228
1229 /* Reinsert all breakpoints. (Those which were symbolic have
1230 been reset to the proper address in the new a.out, thanks
1231 to symbol_file_command...). */
1232 insert_breakpoints ();
1233
1234 /* The next resume of this inferior should bring it to the shlib
1235 startup breakpoints. (If the user had also set bp's on
1236 "main" from the old (parent) process, then they'll auto-
1237 matically get reset there in the new process.). */
1238 }
1239
1240 /* The queue of threads that need to do a step-over operation to get
1241 past e.g., a breakpoint. What technique is used to step over the
1242 breakpoint/watchpoint does not matter -- all threads end up in the
1243 same queue, to maintain rough temporal order of execution, in order
1244 to avoid starvation, otherwise, we could e.g., find ourselves
1245 constantly stepping the same couple threads past their breakpoints
1246 over and over, if the single-step finish fast enough. */
1247 struct thread_info *step_over_queue_head;
1248
1249 /* Bit flags indicating what the thread needs to step over. */
1250
1251 enum step_over_what_flag
1252 {
1253 /* Step over a breakpoint. */
1254 STEP_OVER_BREAKPOINT = 1,
1255
1256 /* Step past a non-continuable watchpoint, in order to let the
1257 instruction execute so we can evaluate the watchpoint
1258 expression. */
1259 STEP_OVER_WATCHPOINT = 2
1260 };
1261 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1262
1263 /* Info about an instruction that is being stepped over. */
1264
1265 struct step_over_info
1266 {
1267 /* If we're stepping past a breakpoint, this is the address space
1268 and address of the instruction the breakpoint is set at. We'll
1269 skip inserting all breakpoints here. Valid iff ASPACE is
1270 non-NULL. */
1271 const address_space *aspace;
1272 CORE_ADDR address;
1273
1274 /* The instruction being stepped over triggers a nonsteppable
1275 watchpoint. If true, we'll skip inserting watchpoints. */
1276 int nonsteppable_watchpoint_p;
1277
1278 /* The thread's global number. */
1279 int thread;
1280 };
1281
1282 /* The step-over info of the location that is being stepped over.
1283
1284 Note that with async/breakpoint always-inserted mode, a user might
1285 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1286 being stepped over. As setting a new breakpoint inserts all
1287 breakpoints, we need to make sure the breakpoint being stepped over
1288 isn't inserted then. We do that by only clearing the step-over
1289 info when the step-over is actually finished (or aborted).
1290
1291 Presently GDB can only step over one breakpoint at any given time.
1292 Given threads that can't run code in the same address space as the
1293 breakpoint's can't really miss the breakpoint, GDB could be taught
1294 to step-over at most one breakpoint per address space (so this info
1295 could move to the address space object if/when GDB is extended).
1296 The set of breakpoints being stepped over will normally be much
1297 smaller than the set of all breakpoints, so a flag in the
1298 breakpoint location structure would be wasteful. A separate list
1299 also saves complexity and run-time, as otherwise we'd have to go
1300 through all breakpoint locations clearing their flag whenever we
1301 start a new sequence. Similar considerations weigh against storing
1302 this info in the thread object. Plus, not all step overs actually
1303 have breakpoint locations -- e.g., stepping past a single-step
1304 breakpoint, or stepping to complete a non-continuable
1305 watchpoint. */
1306 static struct step_over_info step_over_info;
1307
1308 /* Record the address of the breakpoint/instruction we're currently
1309 stepping over.
1310 N.B. We record the aspace and address now, instead of say just the thread,
1311 because when we need the info later the thread may be running. */
1312
1313 static void
1314 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1315 int nonsteppable_watchpoint_p,
1316 int thread)
1317 {
1318 step_over_info.aspace = aspace;
1319 step_over_info.address = address;
1320 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1321 step_over_info.thread = thread;
1322 }
1323
1324 /* Called when we're not longer stepping over a breakpoint / an
1325 instruction, so all breakpoints are free to be (re)inserted. */
1326
1327 static void
1328 clear_step_over_info (void)
1329 {
1330 infrun_debug_printf ("clearing step over info");
1331 step_over_info.aspace = NULL;
1332 step_over_info.address = 0;
1333 step_over_info.nonsteppable_watchpoint_p = 0;
1334 step_over_info.thread = -1;
1335 }
1336
1337 /* See infrun.h. */
1338
1339 int
1340 stepping_past_instruction_at (struct address_space *aspace,
1341 CORE_ADDR address)
1342 {
1343 return (step_over_info.aspace != NULL
1344 && breakpoint_address_match (aspace, address,
1345 step_over_info.aspace,
1346 step_over_info.address));
1347 }
1348
1349 /* See infrun.h. */
1350
1351 int
1352 thread_is_stepping_over_breakpoint (int thread)
1353 {
1354 return (step_over_info.thread != -1
1355 && thread == step_over_info.thread);
1356 }
1357
1358 /* See infrun.h. */
1359
1360 int
1361 stepping_past_nonsteppable_watchpoint (void)
1362 {
1363 return step_over_info.nonsteppable_watchpoint_p;
1364 }
1365
1366 /* Returns true if step-over info is valid. */
1367
1368 static bool
1369 step_over_info_valid_p (void)
1370 {
1371 return (step_over_info.aspace != NULL
1372 || stepping_past_nonsteppable_watchpoint ());
1373 }
1374
1375 \f
1376 /* Displaced stepping. */
1377
1378 /* In non-stop debugging mode, we must take special care to manage
1379 breakpoints properly; in particular, the traditional strategy for
1380 stepping a thread past a breakpoint it has hit is unsuitable.
1381 'Displaced stepping' is a tactic for stepping one thread past a
1382 breakpoint it has hit while ensuring that other threads running
1383 concurrently will hit the breakpoint as they should.
1384
1385 The traditional way to step a thread T off a breakpoint in a
1386 multi-threaded program in all-stop mode is as follows:
1387
1388 a0) Initially, all threads are stopped, and breakpoints are not
1389 inserted.
1390 a1) We single-step T, leaving breakpoints uninserted.
1391 a2) We insert breakpoints, and resume all threads.
1392
1393 In non-stop debugging, however, this strategy is unsuitable: we
1394 don't want to have to stop all threads in the system in order to
1395 continue or step T past a breakpoint. Instead, we use displaced
1396 stepping:
1397
1398 n0) Initially, T is stopped, other threads are running, and
1399 breakpoints are inserted.
1400 n1) We copy the instruction "under" the breakpoint to a separate
1401 location, outside the main code stream, making any adjustments
1402 to the instruction, register, and memory state as directed by
1403 T's architecture.
1404 n2) We single-step T over the instruction at its new location.
1405 n3) We adjust the resulting register and memory state as directed
1406 by T's architecture. This includes resetting T's PC to point
1407 back into the main instruction stream.
1408 n4) We resume T.
1409
1410 This approach depends on the following gdbarch methods:
1411
1412 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1413 indicate where to copy the instruction, and how much space must
1414 be reserved there. We use these in step n1.
1415
1416 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1417 address, and makes any necessary adjustments to the instruction,
1418 register contents, and memory. We use this in step n1.
1419
1420 - gdbarch_displaced_step_fixup adjusts registers and memory after
1421 we have successfully single-stepped the instruction, to yield the
1422 same effect the instruction would have had if we had executed it
1423 at its original address. We use this in step n3.
1424
1425 The gdbarch_displaced_step_copy_insn and
1426 gdbarch_displaced_step_fixup functions must be written so that
1427 copying an instruction with gdbarch_displaced_step_copy_insn,
1428 single-stepping across the copied instruction, and then applying
1429 gdbarch_displaced_insn_fixup should have the same effects on the
1430 thread's memory and registers as stepping the instruction in place
1431 would have. Exactly which responsibilities fall to the copy and
1432 which fall to the fixup is up to the author of those functions.
1433
1434 See the comments in gdbarch.sh for details.
1435
1436 Note that displaced stepping and software single-step cannot
1437 currently be used in combination, although with some care I think
1438 they could be made to. Software single-step works by placing
1439 breakpoints on all possible subsequent instructions; if the
1440 displaced instruction is a PC-relative jump, those breakpoints
1441 could fall in very strange places --- on pages that aren't
1442 executable, or at addresses that are not proper instruction
1443 boundaries. (We do generally let other threads run while we wait
1444 to hit the software single-step breakpoint, and they might
1445 encounter such a corrupted instruction.) One way to work around
1446 this would be to have gdbarch_displaced_step_copy_insn fully
1447 simulate the effect of PC-relative instructions (and return NULL)
1448 on architectures that use software single-stepping.
1449
1450 In non-stop mode, we can have independent and simultaneous step
1451 requests, so more than one thread may need to simultaneously step
1452 over a breakpoint. The current implementation assumes there is
1453 only one scratch space per process. In this case, we have to
1454 serialize access to the scratch space. If thread A wants to step
1455 over a breakpoint, but we are currently waiting for some other
1456 thread to complete a displaced step, we leave thread A stopped and
1457 place it in the displaced_step_request_queue. Whenever a displaced
1458 step finishes, we pick the next thread in the queue and start a new
1459 displaced step operation on it. See displaced_step_prepare and
1460 displaced_step_fixup for details. */
1461
1462 /* Default destructor for displaced_step_closure. */
1463
1464 displaced_step_closure::~displaced_step_closure () = default;
1465
1466 /* Get the displaced stepping state of inferior INF. */
1467
1468 static displaced_step_inferior_state *
1469 get_displaced_stepping_state (inferior *inf)
1470 {
1471 return &inf->displaced_step_state;
1472 }
1473
1474 /* Returns true if any inferior has a thread doing a displaced
1475 step. */
1476
1477 static bool
1478 displaced_step_in_progress_any_inferior ()
1479 {
1480 for (inferior *i : all_inferiors ())
1481 {
1482 if (i->displaced_step_state.step_thread != nullptr)
1483 return true;
1484 }
1485
1486 return false;
1487 }
1488
1489 /* Return true if THREAD is doing a displaced step. */
1490
1491 static bool
1492 displaced_step_in_progress_thread (thread_info *thread)
1493 {
1494 gdb_assert (thread != NULL);
1495
1496 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1497 }
1498
1499 /* Return true if INF has a thread doing a displaced step. */
1500
1501 static bool
1502 displaced_step_in_progress (inferior *inf)
1503 {
1504 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1505 }
1506
1507 /* If inferior is in displaced stepping, and ADDR equals to starting address
1508 of copy area, return corresponding displaced_step_closure. Otherwise,
1509 return NULL. */
1510
1511 struct displaced_step_closure*
1512 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1513 {
1514 displaced_step_inferior_state *displaced
1515 = get_displaced_stepping_state (current_inferior ());
1516
1517 /* If checking the mode of displaced instruction in copy area. */
1518 if (displaced->step_thread != nullptr
1519 && displaced->step_copy == addr)
1520 return displaced->step_closure.get ();
1521
1522 return NULL;
1523 }
1524
1525 static void
1526 infrun_inferior_exit (struct inferior *inf)
1527 {
1528 inf->displaced_step_state.reset ();
1529 }
1530
1531 /* If ON, and the architecture supports it, GDB will use displaced
1532 stepping to step over breakpoints. If OFF, or if the architecture
1533 doesn't support it, GDB will instead use the traditional
1534 hold-and-step approach. If AUTO (which is the default), GDB will
1535 decide which technique to use to step over breakpoints depending on
1536 whether the target works in a non-stop way (see use_displaced_stepping). */
1537
1538 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1539
1540 static void
1541 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1542 struct cmd_list_element *c,
1543 const char *value)
1544 {
1545 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1546 fprintf_filtered (file,
1547 _("Debugger's willingness to use displaced stepping "
1548 "to step over breakpoints is %s (currently %s).\n"),
1549 value, target_is_non_stop_p () ? "on" : "off");
1550 else
1551 fprintf_filtered (file,
1552 _("Debugger's willingness to use displaced stepping "
1553 "to step over breakpoints is %s.\n"), value);
1554 }
1555
1556 /* Return true if the gdbarch implements the required methods to use
1557 displaced stepping. */
1558
1559 static bool
1560 gdbarch_supports_displaced_stepping (gdbarch *arch)
1561 {
1562 /* Only check for the presence of step_copy_insn. Other required methods
1563 are checked by the gdbarch validation. */
1564 return gdbarch_displaced_step_copy_insn_p (arch);
1565 }
1566
1567 /* Return non-zero if displaced stepping can/should be used to step
1568 over breakpoints of thread TP. */
1569
1570 static bool
1571 use_displaced_stepping (thread_info *tp)
1572 {
1573 /* If the user disabled it explicitly, don't use displaced stepping. */
1574 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1575 return false;
1576
1577 /* If "auto", only use displaced stepping if the target operates in a non-stop
1578 way. */
1579 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1580 && !target_is_non_stop_p ())
1581 return false;
1582
1583 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1584
1585 /* If the architecture doesn't implement displaced stepping, don't use
1586 it. */
1587 if (!gdbarch_supports_displaced_stepping (gdbarch))
1588 return false;
1589
1590 /* If recording, don't use displaced stepping. */
1591 if (find_record_target () != nullptr)
1592 return false;
1593
1594 displaced_step_inferior_state *displaced_state
1595 = get_displaced_stepping_state (tp->inf);
1596
1597 /* If displaced stepping failed before for this inferior, don't bother trying
1598 again. */
1599 if (displaced_state->failed_before)
1600 return false;
1601
1602 return true;
1603 }
1604
1605 /* Simple function wrapper around displaced_step_inferior_state::reset. */
1606
1607 static void
1608 displaced_step_reset (displaced_step_inferior_state *displaced)
1609 {
1610 displaced->reset ();
1611 }
1612
1613 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1614 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1615
1616 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1617
1618 /* See infrun.h. */
1619
1620 std::string
1621 displaced_step_dump_bytes (const gdb_byte *buf, size_t len)
1622 {
1623 std::string ret;
1624
1625 for (size_t i = 0; i < len; i++)
1626 {
1627 if (i == 0)
1628 ret += string_printf ("%02x", buf[i]);
1629 else
1630 ret += string_printf (" %02x", buf[i]);
1631 }
1632
1633 return ret;
1634 }
1635
1636 /* Prepare to single-step, using displaced stepping.
1637
1638 Note that we cannot use displaced stepping when we have a signal to
1639 deliver. If we have a signal to deliver and an instruction to step
1640 over, then after the step, there will be no indication from the
1641 target whether the thread entered a signal handler or ignored the
1642 signal and stepped over the instruction successfully --- both cases
1643 result in a simple SIGTRAP. In the first case we mustn't do a
1644 fixup, and in the second case we must --- but we can't tell which.
1645 Comments in the code for 'random signals' in handle_inferior_event
1646 explain how we handle this case instead.
1647
1648 Returns 1 if preparing was successful -- this thread is going to be
1649 stepped now; 0 if displaced stepping this thread got queued; or -1
1650 if this instruction can't be displaced stepped. */
1651
1652 static int
1653 displaced_step_prepare_throw (thread_info *tp)
1654 {
1655 regcache *regcache = get_thread_regcache (tp);
1656 struct gdbarch *gdbarch = regcache->arch ();
1657 const address_space *aspace = regcache->aspace ();
1658 CORE_ADDR original, copy;
1659 ULONGEST len;
1660 int status;
1661
1662 /* We should never reach this function if the architecture does not
1663 support displaced stepping. */
1664 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1665
1666 /* Nor if the thread isn't meant to step over a breakpoint. */
1667 gdb_assert (tp->control.trap_expected);
1668
1669 /* Disable range stepping while executing in the scratch pad. We
1670 want a single-step even if executing the displaced instruction in
1671 the scratch buffer lands within the stepping range (e.g., a
1672 jump/branch). */
1673 tp->control.may_range_step = 0;
1674
1675 /* We have to displaced step one thread at a time, as we only have
1676 access to a single scratch space per inferior. */
1677
1678 displaced_step_inferior_state *displaced
1679 = get_displaced_stepping_state (tp->inf);
1680
1681 if (displaced->step_thread != nullptr)
1682 {
1683 /* Already waiting for a displaced step to finish. Defer this
1684 request and place in queue. */
1685
1686 displaced_debug_printf ("deferring step of %s",
1687 target_pid_to_str (tp->ptid).c_str ());
1688
1689 thread_step_over_chain_enqueue (tp);
1690 return 0;
1691 }
1692 else
1693 displaced_debug_printf ("stepping %s now",
1694 target_pid_to_str (tp->ptid).c_str ());
1695
1696 displaced_step_reset (displaced);
1697
1698 scoped_restore_current_thread restore_thread;
1699
1700 switch_to_thread (tp);
1701
1702 original = regcache_read_pc (regcache);
1703
1704 copy = gdbarch_displaced_step_location (gdbarch);
1705 len = gdbarch_max_insn_length (gdbarch);
1706
1707 if (breakpoint_in_range_p (aspace, copy, len))
1708 {
1709 /* There's a breakpoint set in the scratch pad location range
1710 (which is usually around the entry point). We'd either
1711 install it before resuming, which would overwrite/corrupt the
1712 scratch pad, or if it was already inserted, this displaced
1713 step would overwrite it. The latter is OK in the sense that
1714 we already assume that no thread is going to execute the code
1715 in the scratch pad range (after initial startup) anyway, but
1716 the former is unacceptable. Simply punt and fallback to
1717 stepping over this breakpoint in-line. */
1718 displaced_debug_printf ("breakpoint set in scratch pad. "
1719 "Stepping over breakpoint in-line instead.");
1720
1721 return -1;
1722 }
1723
1724 /* Save the original contents of the copy area. */
1725 displaced->step_saved_copy.resize (len);
1726 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1727 if (status != 0)
1728 throw_error (MEMORY_ERROR,
1729 _("Error accessing memory address %s (%s) for "
1730 "displaced-stepping scratch space."),
1731 paddress (gdbarch, copy), safe_strerror (status));
1732
1733 displaced_debug_printf ("saved %s: %s",
1734 paddress (gdbarch, copy),
1735 displaced_step_dump_bytes
1736 (displaced->step_saved_copy.data (), len).c_str ());
1737
1738 displaced->step_closure
1739 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1740 if (displaced->step_closure == NULL)
1741 {
1742 /* The architecture doesn't know how or want to displaced step
1743 this instruction or instruction sequence. Fallback to
1744 stepping over the breakpoint in-line. */
1745 return -1;
1746 }
1747
1748 /* Save the information we need to fix things up if the step
1749 succeeds. */
1750 displaced->step_thread = tp;
1751 displaced->step_gdbarch = gdbarch;
1752 displaced->step_original = original;
1753 displaced->step_copy = copy;
1754
1755 {
1756 displaced_step_reset_cleanup cleanup (displaced);
1757
1758 /* Resume execution at the copy. */
1759 regcache_write_pc (regcache, copy);
1760
1761 cleanup.release ();
1762 }
1763
1764 displaced_debug_printf ("displaced pc to %s", paddress (gdbarch, copy));
1765
1766 return 1;
1767 }
1768
1769 /* Wrapper for displaced_step_prepare_throw that disabled further
1770 attempts at displaced stepping if we get a memory error. */
1771
1772 static int
1773 displaced_step_prepare (thread_info *thread)
1774 {
1775 int prepared = -1;
1776
1777 try
1778 {
1779 prepared = displaced_step_prepare_throw (thread);
1780 }
1781 catch (const gdb_exception_error &ex)
1782 {
1783 struct displaced_step_inferior_state *displaced_state;
1784
1785 if (ex.error != MEMORY_ERROR
1786 && ex.error != NOT_SUPPORTED_ERROR)
1787 throw;
1788
1789 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1790 ex.what ());
1791
1792 /* Be verbose if "set displaced-stepping" is "on", silent if
1793 "auto". */
1794 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1795 {
1796 warning (_("disabling displaced stepping: %s"),
1797 ex.what ());
1798 }
1799
1800 /* Disable further displaced stepping attempts. */
1801 displaced_state
1802 = get_displaced_stepping_state (thread->inf);
1803 displaced_state->failed_before = 1;
1804 }
1805
1806 return prepared;
1807 }
1808
1809 static void
1810 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1811 const gdb_byte *myaddr, int len)
1812 {
1813 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1814
1815 inferior_ptid = ptid;
1816 write_memory (memaddr, myaddr, len);
1817 }
1818
1819 /* Restore the contents of the copy area for thread PTID. */
1820
1821 static void
1822 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1823 ptid_t ptid)
1824 {
1825 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1826
1827 write_memory_ptid (ptid, displaced->step_copy,
1828 displaced->step_saved_copy.data (), len);
1829
1830 displaced_debug_printf ("restored %s %s",
1831 target_pid_to_str (ptid).c_str (),
1832 paddress (displaced->step_gdbarch,
1833 displaced->step_copy));
1834 }
1835
1836 /* If we displaced stepped an instruction successfully, adjust
1837 registers and memory to yield the same effect the instruction would
1838 have had if we had executed it at its original address, and return
1839 1. If the instruction didn't complete, relocate the PC and return
1840 -1. If the thread wasn't displaced stepping, return 0. */
1841
1842 static int
1843 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1844 {
1845 struct displaced_step_inferior_state *displaced
1846 = get_displaced_stepping_state (event_thread->inf);
1847 int ret;
1848
1849 /* Was this event for the thread we displaced? */
1850 if (displaced->step_thread != event_thread)
1851 return 0;
1852
1853 /* Fixup may need to read memory/registers. Switch to the thread
1854 that we're fixing up. Also, target_stopped_by_watchpoint checks
1855 the current thread, and displaced_step_restore performs ptid-dependent
1856 memory accesses using current_inferior() and current_top_target(). */
1857 switch_to_thread (event_thread);
1858
1859 displaced_step_reset_cleanup cleanup (displaced);
1860
1861 displaced_step_restore (displaced, displaced->step_thread->ptid);
1862
1863 /* Did the instruction complete successfully? */
1864 if (signal == GDB_SIGNAL_TRAP
1865 && !(target_stopped_by_watchpoint ()
1866 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1867 || target_have_steppable_watchpoint ())))
1868 {
1869 /* Fix up the resulting state. */
1870 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1871 displaced->step_closure.get (),
1872 displaced->step_original,
1873 displaced->step_copy,
1874 get_thread_regcache (displaced->step_thread));
1875 ret = 1;
1876 }
1877 else
1878 {
1879 /* Since the instruction didn't complete, all we can do is
1880 relocate the PC. */
1881 struct regcache *regcache = get_thread_regcache (event_thread);
1882 CORE_ADDR pc = regcache_read_pc (regcache);
1883
1884 pc = displaced->step_original + (pc - displaced->step_copy);
1885 regcache_write_pc (regcache, pc);
1886 ret = -1;
1887 }
1888
1889 return ret;
1890 }
1891
1892 /* Data to be passed around while handling an event. This data is
1893 discarded between events. */
1894 struct execution_control_state
1895 {
1896 process_stratum_target *target;
1897 ptid_t ptid;
1898 /* The thread that got the event, if this was a thread event; NULL
1899 otherwise. */
1900 struct thread_info *event_thread;
1901
1902 struct target_waitstatus ws;
1903 int stop_func_filled_in;
1904 CORE_ADDR stop_func_start;
1905 CORE_ADDR stop_func_end;
1906 const char *stop_func_name;
1907 int wait_some_more;
1908
1909 /* True if the event thread hit the single-step breakpoint of
1910 another thread. Thus the event doesn't cause a stop, the thread
1911 needs to be single-stepped past the single-step breakpoint before
1912 we can switch back to the original stepping thread. */
1913 int hit_singlestep_breakpoint;
1914 };
1915
1916 /* Clear ECS and set it to point at TP. */
1917
1918 static void
1919 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1920 {
1921 memset (ecs, 0, sizeof (*ecs));
1922 ecs->event_thread = tp;
1923 ecs->ptid = tp->ptid;
1924 }
1925
1926 static void keep_going_pass_signal (struct execution_control_state *ecs);
1927 static void prepare_to_wait (struct execution_control_state *ecs);
1928 static bool keep_going_stepped_thread (struct thread_info *tp);
1929 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1930
1931 /* Are there any pending step-over requests? If so, run all we can
1932 now and return true. Otherwise, return false. */
1933
1934 static bool
1935 start_step_over (void)
1936 {
1937 struct thread_info *tp, *next;
1938
1939 /* Don't start a new step-over if we already have an in-line
1940 step-over operation ongoing. */
1941 if (step_over_info_valid_p ())
1942 return false;
1943
1944 for (tp = step_over_queue_head; tp != NULL; tp = next)
1945 {
1946 struct execution_control_state ecss;
1947 struct execution_control_state *ecs = &ecss;
1948 step_over_what step_what;
1949 int must_be_in_line;
1950
1951 gdb_assert (!tp->stop_requested);
1952
1953 next = thread_step_over_chain_next (tp);
1954
1955 /* If this inferior already has a displaced step in process,
1956 don't start a new one. */
1957 if (displaced_step_in_progress (tp->inf))
1958 continue;
1959
1960 step_what = thread_still_needs_step_over (tp);
1961 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1962 || ((step_what & STEP_OVER_BREAKPOINT)
1963 && !use_displaced_stepping (tp)));
1964
1965 /* We currently stop all threads of all processes to step-over
1966 in-line. If we need to start a new in-line step-over, let
1967 any pending displaced steps finish first. */
1968 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1969 return false;
1970
1971 thread_step_over_chain_remove (tp);
1972
1973 if (step_over_queue_head == NULL)
1974 infrun_debug_printf ("step-over queue now empty");
1975
1976 if (tp->control.trap_expected
1977 || tp->resumed
1978 || tp->executing)
1979 {
1980 internal_error (__FILE__, __LINE__,
1981 "[%s] has inconsistent state: "
1982 "trap_expected=%d, resumed=%d, executing=%d\n",
1983 target_pid_to_str (tp->ptid).c_str (),
1984 tp->control.trap_expected,
1985 tp->resumed,
1986 tp->executing);
1987 }
1988
1989 infrun_debug_printf ("resuming [%s] for step-over",
1990 target_pid_to_str (tp->ptid).c_str ());
1991
1992 /* keep_going_pass_signal skips the step-over if the breakpoint
1993 is no longer inserted. In all-stop, we want to keep looking
1994 for a thread that needs a step-over instead of resuming TP,
1995 because we wouldn't be able to resume anything else until the
1996 target stops again. In non-stop, the resume always resumes
1997 only TP, so it's OK to let the thread resume freely. */
1998 if (!target_is_non_stop_p () && !step_what)
1999 continue;
2000
2001 switch_to_thread (tp);
2002 reset_ecs (ecs, tp);
2003 keep_going_pass_signal (ecs);
2004
2005 if (!ecs->wait_some_more)
2006 error (_("Command aborted."));
2007
2008 gdb_assert (tp->resumed);
2009
2010 /* If we started a new in-line step-over, we're done. */
2011 if (step_over_info_valid_p ())
2012 {
2013 gdb_assert (tp->control.trap_expected);
2014 return true;
2015 }
2016
2017 if (!target_is_non_stop_p ())
2018 {
2019 /* On all-stop, shouldn't have resumed unless we needed a
2020 step over. */
2021 gdb_assert (tp->control.trap_expected
2022 || tp->step_after_step_resume_breakpoint);
2023
2024 /* With remote targets (at least), in all-stop, we can't
2025 issue any further remote commands until the program stops
2026 again. */
2027 return true;
2028 }
2029
2030 /* Either the thread no longer needed a step-over, or a new
2031 displaced stepping sequence started. Even in the latter
2032 case, continue looking. Maybe we can also start another
2033 displaced step on a thread of other process. */
2034 }
2035
2036 return false;
2037 }
2038
2039 /* Update global variables holding ptids to hold NEW_PTID if they were
2040 holding OLD_PTID. */
2041 static void
2042 infrun_thread_ptid_changed (process_stratum_target *target,
2043 ptid_t old_ptid, ptid_t new_ptid)
2044 {
2045 if (inferior_ptid == old_ptid
2046 && current_inferior ()->process_target () == target)
2047 inferior_ptid = new_ptid;
2048 }
2049
2050 \f
2051
2052 static const char schedlock_off[] = "off";
2053 static const char schedlock_on[] = "on";
2054 static const char schedlock_step[] = "step";
2055 static const char schedlock_replay[] = "replay";
2056 static const char *const scheduler_enums[] = {
2057 schedlock_off,
2058 schedlock_on,
2059 schedlock_step,
2060 schedlock_replay,
2061 NULL
2062 };
2063 static const char *scheduler_mode = schedlock_replay;
2064 static void
2065 show_scheduler_mode (struct ui_file *file, int from_tty,
2066 struct cmd_list_element *c, const char *value)
2067 {
2068 fprintf_filtered (file,
2069 _("Mode for locking scheduler "
2070 "during execution is \"%s\".\n"),
2071 value);
2072 }
2073
2074 static void
2075 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2076 {
2077 if (!target_can_lock_scheduler ())
2078 {
2079 scheduler_mode = schedlock_off;
2080 error (_("Target '%s' cannot support this command."), target_shortname);
2081 }
2082 }
2083
2084 /* True if execution commands resume all threads of all processes by
2085 default; otherwise, resume only threads of the current inferior
2086 process. */
2087 bool sched_multi = false;
2088
2089 /* Try to setup for software single stepping over the specified location.
2090 Return true if target_resume() should use hardware single step.
2091
2092 GDBARCH the current gdbarch.
2093 PC the location to step over. */
2094
2095 static bool
2096 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2097 {
2098 bool hw_step = true;
2099
2100 if (execution_direction == EXEC_FORWARD
2101 && gdbarch_software_single_step_p (gdbarch))
2102 hw_step = !insert_single_step_breakpoints (gdbarch);
2103
2104 return hw_step;
2105 }
2106
2107 /* See infrun.h. */
2108
2109 ptid_t
2110 user_visible_resume_ptid (int step)
2111 {
2112 ptid_t resume_ptid;
2113
2114 if (non_stop)
2115 {
2116 /* With non-stop mode on, threads are always handled
2117 individually. */
2118 resume_ptid = inferior_ptid;
2119 }
2120 else if ((scheduler_mode == schedlock_on)
2121 || (scheduler_mode == schedlock_step && step))
2122 {
2123 /* User-settable 'scheduler' mode requires solo thread
2124 resume. */
2125 resume_ptid = inferior_ptid;
2126 }
2127 else if ((scheduler_mode == schedlock_replay)
2128 && target_record_will_replay (minus_one_ptid, execution_direction))
2129 {
2130 /* User-settable 'scheduler' mode requires solo thread resume in replay
2131 mode. */
2132 resume_ptid = inferior_ptid;
2133 }
2134 else if (!sched_multi && target_supports_multi_process ())
2135 {
2136 /* Resume all threads of the current process (and none of other
2137 processes). */
2138 resume_ptid = ptid_t (inferior_ptid.pid ());
2139 }
2140 else
2141 {
2142 /* Resume all threads of all processes. */
2143 resume_ptid = RESUME_ALL;
2144 }
2145
2146 return resume_ptid;
2147 }
2148
2149 /* See infrun.h. */
2150
2151 process_stratum_target *
2152 user_visible_resume_target (ptid_t resume_ptid)
2153 {
2154 return (resume_ptid == minus_one_ptid && sched_multi
2155 ? NULL
2156 : current_inferior ()->process_target ());
2157 }
2158
2159 /* Return a ptid representing the set of threads that we will resume,
2160 in the perspective of the target, assuming run control handling
2161 does not require leaving some threads stopped (e.g., stepping past
2162 breakpoint). USER_STEP indicates whether we're about to start the
2163 target for a stepping command. */
2164
2165 static ptid_t
2166 internal_resume_ptid (int user_step)
2167 {
2168 /* In non-stop, we always control threads individually. Note that
2169 the target may always work in non-stop mode even with "set
2170 non-stop off", in which case user_visible_resume_ptid could
2171 return a wildcard ptid. */
2172 if (target_is_non_stop_p ())
2173 return inferior_ptid;
2174 else
2175 return user_visible_resume_ptid (user_step);
2176 }
2177
2178 /* Wrapper for target_resume, that handles infrun-specific
2179 bookkeeping. */
2180
2181 static void
2182 do_target_resume (ptid_t resume_ptid, bool step, enum gdb_signal sig)
2183 {
2184 struct thread_info *tp = inferior_thread ();
2185
2186 gdb_assert (!tp->stop_requested);
2187
2188 /* Install inferior's terminal modes. */
2189 target_terminal::inferior ();
2190
2191 /* Avoid confusing the next resume, if the next stop/resume
2192 happens to apply to another thread. */
2193 tp->suspend.stop_signal = GDB_SIGNAL_0;
2194
2195 /* Advise target which signals may be handled silently.
2196
2197 If we have removed breakpoints because we are stepping over one
2198 in-line (in any thread), we need to receive all signals to avoid
2199 accidentally skipping a breakpoint during execution of a signal
2200 handler.
2201
2202 Likewise if we're displaced stepping, otherwise a trap for a
2203 breakpoint in a signal handler might be confused with the
2204 displaced step finishing. We don't make the displaced_step_fixup
2205 step distinguish the cases instead, because:
2206
2207 - a backtrace while stopped in the signal handler would show the
2208 scratch pad as frame older than the signal handler, instead of
2209 the real mainline code.
2210
2211 - when the thread is later resumed, the signal handler would
2212 return to the scratch pad area, which would no longer be
2213 valid. */
2214 if (step_over_info_valid_p ()
2215 || displaced_step_in_progress (tp->inf))
2216 target_pass_signals ({});
2217 else
2218 target_pass_signals (signal_pass);
2219
2220 target_resume (resume_ptid, step, sig);
2221
2222 target_commit_resume ();
2223
2224 if (target_can_async_p ())
2225 target_async (1);
2226 }
2227
2228 /* Resume the inferior. SIG is the signal to give the inferior
2229 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2230 call 'resume', which handles exceptions. */
2231
2232 static void
2233 resume_1 (enum gdb_signal sig)
2234 {
2235 struct regcache *regcache = get_current_regcache ();
2236 struct gdbarch *gdbarch = regcache->arch ();
2237 struct thread_info *tp = inferior_thread ();
2238 const address_space *aspace = regcache->aspace ();
2239 ptid_t resume_ptid;
2240 /* This represents the user's step vs continue request. When
2241 deciding whether "set scheduler-locking step" applies, it's the
2242 user's intention that counts. */
2243 const int user_step = tp->control.stepping_command;
2244 /* This represents what we'll actually request the target to do.
2245 This can decay from a step to a continue, if e.g., we need to
2246 implement single-stepping with breakpoints (software
2247 single-step). */
2248 bool step;
2249
2250 gdb_assert (!tp->stop_requested);
2251 gdb_assert (!thread_is_in_step_over_chain (tp));
2252
2253 if (tp->suspend.waitstatus_pending_p)
2254 {
2255 infrun_debug_printf
2256 ("thread %s has pending wait "
2257 "status %s (currently_stepping=%d).",
2258 target_pid_to_str (tp->ptid).c_str (),
2259 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2260 currently_stepping (tp));
2261
2262 tp->inf->process_target ()->threads_executing = true;
2263 tp->resumed = true;
2264
2265 /* FIXME: What should we do if we are supposed to resume this
2266 thread with a signal? Maybe we should maintain a queue of
2267 pending signals to deliver. */
2268 if (sig != GDB_SIGNAL_0)
2269 {
2270 warning (_("Couldn't deliver signal %s to %s."),
2271 gdb_signal_to_name (sig),
2272 target_pid_to_str (tp->ptid).c_str ());
2273 }
2274
2275 tp->suspend.stop_signal = GDB_SIGNAL_0;
2276
2277 if (target_can_async_p ())
2278 {
2279 target_async (1);
2280 /* Tell the event loop we have an event to process. */
2281 mark_async_event_handler (infrun_async_inferior_event_token);
2282 }
2283 return;
2284 }
2285
2286 tp->stepped_breakpoint = 0;
2287
2288 /* Depends on stepped_breakpoint. */
2289 step = currently_stepping (tp);
2290
2291 if (current_inferior ()->waiting_for_vfork_done)
2292 {
2293 /* Don't try to single-step a vfork parent that is waiting for
2294 the child to get out of the shared memory region (by exec'ing
2295 or exiting). This is particularly important on software
2296 single-step archs, as the child process would trip on the
2297 software single step breakpoint inserted for the parent
2298 process. Since the parent will not actually execute any
2299 instruction until the child is out of the shared region (such
2300 are vfork's semantics), it is safe to simply continue it.
2301 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2302 the parent, and tell it to `keep_going', which automatically
2303 re-sets it stepping. */
2304 infrun_debug_printf ("resume : clear step");
2305 step = false;
2306 }
2307
2308 CORE_ADDR pc = regcache_read_pc (regcache);
2309
2310 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2311 "current thread [%s] at %s",
2312 step, gdb_signal_to_symbol_string (sig),
2313 tp->control.trap_expected,
2314 target_pid_to_str (inferior_ptid).c_str (),
2315 paddress (gdbarch, pc));
2316
2317 /* Normally, by the time we reach `resume', the breakpoints are either
2318 removed or inserted, as appropriate. The exception is if we're sitting
2319 at a permanent breakpoint; we need to step over it, but permanent
2320 breakpoints can't be removed. So we have to test for it here. */
2321 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2322 {
2323 if (sig != GDB_SIGNAL_0)
2324 {
2325 /* We have a signal to pass to the inferior. The resume
2326 may, or may not take us to the signal handler. If this
2327 is a step, we'll need to stop in the signal handler, if
2328 there's one, (if the target supports stepping into
2329 handlers), or in the next mainline instruction, if
2330 there's no handler. If this is a continue, we need to be
2331 sure to run the handler with all breakpoints inserted.
2332 In all cases, set a breakpoint at the current address
2333 (where the handler returns to), and once that breakpoint
2334 is hit, resume skipping the permanent breakpoint. If
2335 that breakpoint isn't hit, then we've stepped into the
2336 signal handler (or hit some other event). We'll delete
2337 the step-resume breakpoint then. */
2338
2339 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2340 "deliver signal first");
2341
2342 clear_step_over_info ();
2343 tp->control.trap_expected = 0;
2344
2345 if (tp->control.step_resume_breakpoint == NULL)
2346 {
2347 /* Set a "high-priority" step-resume, as we don't want
2348 user breakpoints at PC to trigger (again) when this
2349 hits. */
2350 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2351 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2352
2353 tp->step_after_step_resume_breakpoint = step;
2354 }
2355
2356 insert_breakpoints ();
2357 }
2358 else
2359 {
2360 /* There's no signal to pass, we can go ahead and skip the
2361 permanent breakpoint manually. */
2362 infrun_debug_printf ("skipping permanent breakpoint");
2363 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2364 /* Update pc to reflect the new address from which we will
2365 execute instructions. */
2366 pc = regcache_read_pc (regcache);
2367
2368 if (step)
2369 {
2370 /* We've already advanced the PC, so the stepping part
2371 is done. Now we need to arrange for a trap to be
2372 reported to handle_inferior_event. Set a breakpoint
2373 at the current PC, and run to it. Don't update
2374 prev_pc, because if we end in
2375 switch_back_to_stepped_thread, we want the "expected
2376 thread advanced also" branch to be taken. IOW, we
2377 don't want this thread to step further from PC
2378 (overstep). */
2379 gdb_assert (!step_over_info_valid_p ());
2380 insert_single_step_breakpoint (gdbarch, aspace, pc);
2381 insert_breakpoints ();
2382
2383 resume_ptid = internal_resume_ptid (user_step);
2384 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
2385 tp->resumed = true;
2386 return;
2387 }
2388 }
2389 }
2390
2391 /* If we have a breakpoint to step over, make sure to do a single
2392 step only. Same if we have software watchpoints. */
2393 if (tp->control.trap_expected || bpstat_should_step ())
2394 tp->control.may_range_step = 0;
2395
2396 /* If displaced stepping is enabled, step over breakpoints by executing a
2397 copy of the instruction at a different address.
2398
2399 We can't use displaced stepping when we have a signal to deliver;
2400 the comments for displaced_step_prepare explain why. The
2401 comments in the handle_inferior event for dealing with 'random
2402 signals' explain what we do instead.
2403
2404 We can't use displaced stepping when we are waiting for vfork_done
2405 event, displaced stepping breaks the vfork child similarly as single
2406 step software breakpoint. */
2407 if (tp->control.trap_expected
2408 && use_displaced_stepping (tp)
2409 && !step_over_info_valid_p ()
2410 && sig == GDB_SIGNAL_0
2411 && !current_inferior ()->waiting_for_vfork_done)
2412 {
2413 int prepared = displaced_step_prepare (tp);
2414
2415 if (prepared == 0)
2416 {
2417 infrun_debug_printf ("Got placed in step-over queue");
2418
2419 tp->control.trap_expected = 0;
2420 return;
2421 }
2422 else if (prepared < 0)
2423 {
2424 /* Fallback to stepping over the breakpoint in-line. */
2425
2426 if (target_is_non_stop_p ())
2427 stop_all_threads ();
2428
2429 set_step_over_info (regcache->aspace (),
2430 regcache_read_pc (regcache), 0, tp->global_num);
2431
2432 step = maybe_software_singlestep (gdbarch, pc);
2433
2434 insert_breakpoints ();
2435 }
2436 else if (prepared > 0)
2437 {
2438 /* Update pc to reflect the new address from which we will
2439 execute instructions due to displaced stepping. */
2440 pc = regcache_read_pc (get_thread_regcache (tp));
2441
2442 step = gdbarch_displaced_step_hw_singlestep (gdbarch);
2443 }
2444 }
2445
2446 /* Do we need to do it the hard way, w/temp breakpoints? */
2447 else if (step)
2448 step = maybe_software_singlestep (gdbarch, pc);
2449
2450 /* Currently, our software single-step implementation leads to different
2451 results than hardware single-stepping in one situation: when stepping
2452 into delivering a signal which has an associated signal handler,
2453 hardware single-step will stop at the first instruction of the handler,
2454 while software single-step will simply skip execution of the handler.
2455
2456 For now, this difference in behavior is accepted since there is no
2457 easy way to actually implement single-stepping into a signal handler
2458 without kernel support.
2459
2460 However, there is one scenario where this difference leads to follow-on
2461 problems: if we're stepping off a breakpoint by removing all breakpoints
2462 and then single-stepping. In this case, the software single-step
2463 behavior means that even if there is a *breakpoint* in the signal
2464 handler, GDB still would not stop.
2465
2466 Fortunately, we can at least fix this particular issue. We detect
2467 here the case where we are about to deliver a signal while software
2468 single-stepping with breakpoints removed. In this situation, we
2469 revert the decisions to remove all breakpoints and insert single-
2470 step breakpoints, and instead we install a step-resume breakpoint
2471 at the current address, deliver the signal without stepping, and
2472 once we arrive back at the step-resume breakpoint, actually step
2473 over the breakpoint we originally wanted to step over. */
2474 if (thread_has_single_step_breakpoints_set (tp)
2475 && sig != GDB_SIGNAL_0
2476 && step_over_info_valid_p ())
2477 {
2478 /* If we have nested signals or a pending signal is delivered
2479 immediately after a handler returns, might already have
2480 a step-resume breakpoint set on the earlier handler. We cannot
2481 set another step-resume breakpoint; just continue on until the
2482 original breakpoint is hit. */
2483 if (tp->control.step_resume_breakpoint == NULL)
2484 {
2485 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2486 tp->step_after_step_resume_breakpoint = 1;
2487 }
2488
2489 delete_single_step_breakpoints (tp);
2490
2491 clear_step_over_info ();
2492 tp->control.trap_expected = 0;
2493
2494 insert_breakpoints ();
2495 }
2496
2497 /* If STEP is set, it's a request to use hardware stepping
2498 facilities. But in that case, we should never
2499 use singlestep breakpoint. */
2500 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2501
2502 /* Decide the set of threads to ask the target to resume. */
2503 if (tp->control.trap_expected)
2504 {
2505 /* We're allowing a thread to run past a breakpoint it has
2506 hit, either by single-stepping the thread with the breakpoint
2507 removed, or by displaced stepping, with the breakpoint inserted.
2508 In the former case, we need to single-step only this thread,
2509 and keep others stopped, as they can miss this breakpoint if
2510 allowed to run. That's not really a problem for displaced
2511 stepping, but, we still keep other threads stopped, in case
2512 another thread is also stopped for a breakpoint waiting for
2513 its turn in the displaced stepping queue. */
2514 resume_ptid = inferior_ptid;
2515 }
2516 else
2517 resume_ptid = internal_resume_ptid (user_step);
2518
2519 if (execution_direction != EXEC_REVERSE
2520 && step && breakpoint_inserted_here_p (aspace, pc))
2521 {
2522 /* There are two cases where we currently need to step a
2523 breakpoint instruction when we have a signal to deliver:
2524
2525 - See handle_signal_stop where we handle random signals that
2526 could take out us out of the stepping range. Normally, in
2527 that case we end up continuing (instead of stepping) over the
2528 signal handler with a breakpoint at PC, but there are cases
2529 where we should _always_ single-step, even if we have a
2530 step-resume breakpoint, like when a software watchpoint is
2531 set. Assuming single-stepping and delivering a signal at the
2532 same time would takes us to the signal handler, then we could
2533 have removed the breakpoint at PC to step over it. However,
2534 some hardware step targets (like e.g., Mac OS) can't step
2535 into signal handlers, and for those, we need to leave the
2536 breakpoint at PC inserted, as otherwise if the handler
2537 recurses and executes PC again, it'll miss the breakpoint.
2538 So we leave the breakpoint inserted anyway, but we need to
2539 record that we tried to step a breakpoint instruction, so
2540 that adjust_pc_after_break doesn't end up confused.
2541
2542 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2543 in one thread after another thread that was stepping had been
2544 momentarily paused for a step-over. When we re-resume the
2545 stepping thread, it may be resumed from that address with a
2546 breakpoint that hasn't trapped yet. Seen with
2547 gdb.threads/non-stop-fair-events.exp, on targets that don't
2548 do displaced stepping. */
2549
2550 infrun_debug_printf ("resume: [%s] stepped breakpoint",
2551 target_pid_to_str (tp->ptid).c_str ());
2552
2553 tp->stepped_breakpoint = 1;
2554
2555 /* Most targets can step a breakpoint instruction, thus
2556 executing it normally. But if this one cannot, just
2557 continue and we will hit it anyway. */
2558 if (gdbarch_cannot_step_breakpoint (gdbarch))
2559 step = false;
2560 }
2561
2562 if (debug_displaced
2563 && tp->control.trap_expected
2564 && use_displaced_stepping (tp)
2565 && !step_over_info_valid_p ())
2566 {
2567 struct regcache *resume_regcache = get_thread_regcache (tp);
2568 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2569 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2570 gdb_byte buf[4];
2571
2572 read_memory (actual_pc, buf, sizeof (buf));
2573 displaced_debug_printf ("run %s: %s",
2574 paddress (resume_gdbarch, actual_pc),
2575 displaced_step_dump_bytes
2576 (buf, sizeof (buf)).c_str ());
2577 }
2578
2579 if (tp->control.may_range_step)
2580 {
2581 /* If we're resuming a thread with the PC out of the step
2582 range, then we're doing some nested/finer run control
2583 operation, like stepping the thread out of the dynamic
2584 linker or the displaced stepping scratch pad. We
2585 shouldn't have allowed a range step then. */
2586 gdb_assert (pc_in_thread_step_range (pc, tp));
2587 }
2588
2589 do_target_resume (resume_ptid, step, sig);
2590 tp->resumed = true;
2591 }
2592
2593 /* Resume the inferior. SIG is the signal to give the inferior
2594 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2595 rolls back state on error. */
2596
2597 static void
2598 resume (gdb_signal sig)
2599 {
2600 try
2601 {
2602 resume_1 (sig);
2603 }
2604 catch (const gdb_exception &ex)
2605 {
2606 /* If resuming is being aborted for any reason, delete any
2607 single-step breakpoint resume_1 may have created, to avoid
2608 confusing the following resumption, and to avoid leaving
2609 single-step breakpoints perturbing other threads, in case
2610 we're running in non-stop mode. */
2611 if (inferior_ptid != null_ptid)
2612 delete_single_step_breakpoints (inferior_thread ());
2613 throw;
2614 }
2615 }
2616
2617 \f
2618 /* Proceeding. */
2619
2620 /* See infrun.h. */
2621
2622 /* Counter that tracks number of user visible stops. This can be used
2623 to tell whether a command has proceeded the inferior past the
2624 current location. This allows e.g., inferior function calls in
2625 breakpoint commands to not interrupt the command list. When the
2626 call finishes successfully, the inferior is standing at the same
2627 breakpoint as if nothing happened (and so we don't call
2628 normal_stop). */
2629 static ULONGEST current_stop_id;
2630
2631 /* See infrun.h. */
2632
2633 ULONGEST
2634 get_stop_id (void)
2635 {
2636 return current_stop_id;
2637 }
2638
2639 /* Called when we report a user visible stop. */
2640
2641 static void
2642 new_stop_id (void)
2643 {
2644 current_stop_id++;
2645 }
2646
2647 /* Clear out all variables saying what to do when inferior is continued.
2648 First do this, then set the ones you want, then call `proceed'. */
2649
2650 static void
2651 clear_proceed_status_thread (struct thread_info *tp)
2652 {
2653 infrun_debug_printf ("%s", target_pid_to_str (tp->ptid).c_str ());
2654
2655 /* If we're starting a new sequence, then the previous finished
2656 single-step is no longer relevant. */
2657 if (tp->suspend.waitstatus_pending_p)
2658 {
2659 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2660 {
2661 infrun_debug_printf ("pending event of %s was a finished step. "
2662 "Discarding.",
2663 target_pid_to_str (tp->ptid).c_str ());
2664
2665 tp->suspend.waitstatus_pending_p = 0;
2666 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2667 }
2668 else
2669 {
2670 infrun_debug_printf
2671 ("thread %s has pending wait status %s (currently_stepping=%d).",
2672 target_pid_to_str (tp->ptid).c_str (),
2673 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2674 currently_stepping (tp));
2675 }
2676 }
2677
2678 /* If this signal should not be seen by program, give it zero.
2679 Used for debugging signals. */
2680 if (!signal_pass_state (tp->suspend.stop_signal))
2681 tp->suspend.stop_signal = GDB_SIGNAL_0;
2682
2683 delete tp->thread_fsm;
2684 tp->thread_fsm = NULL;
2685
2686 tp->control.trap_expected = 0;
2687 tp->control.step_range_start = 0;
2688 tp->control.step_range_end = 0;
2689 tp->control.may_range_step = 0;
2690 tp->control.step_frame_id = null_frame_id;
2691 tp->control.step_stack_frame_id = null_frame_id;
2692 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2693 tp->control.step_start_function = NULL;
2694 tp->stop_requested = 0;
2695
2696 tp->control.stop_step = 0;
2697
2698 tp->control.proceed_to_finish = 0;
2699
2700 tp->control.stepping_command = 0;
2701
2702 /* Discard any remaining commands or status from previous stop. */
2703 bpstat_clear (&tp->control.stop_bpstat);
2704 }
2705
2706 void
2707 clear_proceed_status (int step)
2708 {
2709 /* With scheduler-locking replay, stop replaying other threads if we're
2710 not replaying the user-visible resume ptid.
2711
2712 This is a convenience feature to not require the user to explicitly
2713 stop replaying the other threads. We're assuming that the user's
2714 intent is to resume tracing the recorded process. */
2715 if (!non_stop && scheduler_mode == schedlock_replay
2716 && target_record_is_replaying (minus_one_ptid)
2717 && !target_record_will_replay (user_visible_resume_ptid (step),
2718 execution_direction))
2719 target_record_stop_replaying ();
2720
2721 if (!non_stop && inferior_ptid != null_ptid)
2722 {
2723 ptid_t resume_ptid = user_visible_resume_ptid (step);
2724 process_stratum_target *resume_target
2725 = user_visible_resume_target (resume_ptid);
2726
2727 /* In all-stop mode, delete the per-thread status of all threads
2728 we're about to resume, implicitly and explicitly. */
2729 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2730 clear_proceed_status_thread (tp);
2731 }
2732
2733 if (inferior_ptid != null_ptid)
2734 {
2735 struct inferior *inferior;
2736
2737 if (non_stop)
2738 {
2739 /* If in non-stop mode, only delete the per-thread status of
2740 the current thread. */
2741 clear_proceed_status_thread (inferior_thread ());
2742 }
2743
2744 inferior = current_inferior ();
2745 inferior->control.stop_soon = NO_STOP_QUIETLY;
2746 }
2747
2748 gdb::observers::about_to_proceed.notify ();
2749 }
2750
2751 /* Returns true if TP is still stopped at a breakpoint that needs
2752 stepping-over in order to make progress. If the breakpoint is gone
2753 meanwhile, we can skip the whole step-over dance. */
2754
2755 static bool
2756 thread_still_needs_step_over_bp (struct thread_info *tp)
2757 {
2758 if (tp->stepping_over_breakpoint)
2759 {
2760 struct regcache *regcache = get_thread_regcache (tp);
2761
2762 if (breakpoint_here_p (regcache->aspace (),
2763 regcache_read_pc (regcache))
2764 == ordinary_breakpoint_here)
2765 return true;
2766
2767 tp->stepping_over_breakpoint = 0;
2768 }
2769
2770 return false;
2771 }
2772
2773 /* Check whether thread TP still needs to start a step-over in order
2774 to make progress when resumed. Returns an bitwise or of enum
2775 step_over_what bits, indicating what needs to be stepped over. */
2776
2777 static step_over_what
2778 thread_still_needs_step_over (struct thread_info *tp)
2779 {
2780 step_over_what what = 0;
2781
2782 if (thread_still_needs_step_over_bp (tp))
2783 what |= STEP_OVER_BREAKPOINT;
2784
2785 if (tp->stepping_over_watchpoint
2786 && !target_have_steppable_watchpoint ())
2787 what |= STEP_OVER_WATCHPOINT;
2788
2789 return what;
2790 }
2791
2792 /* Returns true if scheduler locking applies. STEP indicates whether
2793 we're about to do a step/next-like command to a thread. */
2794
2795 static bool
2796 schedlock_applies (struct thread_info *tp)
2797 {
2798 return (scheduler_mode == schedlock_on
2799 || (scheduler_mode == schedlock_step
2800 && tp->control.stepping_command)
2801 || (scheduler_mode == schedlock_replay
2802 && target_record_will_replay (minus_one_ptid,
2803 execution_direction)));
2804 }
2805
2806 /* Calls target_commit_resume on all targets. */
2807
2808 static void
2809 commit_resume_all_targets ()
2810 {
2811 scoped_restore_current_thread restore_thread;
2812
2813 /* Map between process_target and a representative inferior. This
2814 is to avoid committing a resume in the same target more than
2815 once. Resumptions must be idempotent, so this is an
2816 optimization. */
2817 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2818
2819 for (inferior *inf : all_non_exited_inferiors ())
2820 if (inf->has_execution ())
2821 conn_inf[inf->process_target ()] = inf;
2822
2823 for (const auto &ci : conn_inf)
2824 {
2825 inferior *inf = ci.second;
2826 switch_to_inferior_no_thread (inf);
2827 target_commit_resume ();
2828 }
2829 }
2830
2831 /* Check that all the targets we're about to resume are in non-stop
2832 mode. Ideally, we'd only care whether all targets support
2833 target-async, but we're not there yet. E.g., stop_all_threads
2834 doesn't know how to handle all-stop targets. Also, the remote
2835 protocol in all-stop mode is synchronous, irrespective of
2836 target-async, which means that things like a breakpoint re-set
2837 triggered by one target would try to read memory from all targets
2838 and fail. */
2839
2840 static void
2841 check_multi_target_resumption (process_stratum_target *resume_target)
2842 {
2843 if (!non_stop && resume_target == nullptr)
2844 {
2845 scoped_restore_current_thread restore_thread;
2846
2847 /* This is used to track whether we're resuming more than one
2848 target. */
2849 process_stratum_target *first_connection = nullptr;
2850
2851 /* The first inferior we see with a target that does not work in
2852 always-non-stop mode. */
2853 inferior *first_not_non_stop = nullptr;
2854
2855 for (inferior *inf : all_non_exited_inferiors (resume_target))
2856 {
2857 switch_to_inferior_no_thread (inf);
2858
2859 if (!target_has_execution ())
2860 continue;
2861
2862 process_stratum_target *proc_target
2863 = current_inferior ()->process_target();
2864
2865 if (!target_is_non_stop_p ())
2866 first_not_non_stop = inf;
2867
2868 if (first_connection == nullptr)
2869 first_connection = proc_target;
2870 else if (first_connection != proc_target
2871 && first_not_non_stop != nullptr)
2872 {
2873 switch_to_inferior_no_thread (first_not_non_stop);
2874
2875 proc_target = current_inferior ()->process_target();
2876
2877 error (_("Connection %d (%s) does not support "
2878 "multi-target resumption."),
2879 proc_target->connection_number,
2880 make_target_connection_string (proc_target).c_str ());
2881 }
2882 }
2883 }
2884 }
2885
2886 /* Basic routine for continuing the program in various fashions.
2887
2888 ADDR is the address to resume at, or -1 for resume where stopped.
2889 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2890 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2891
2892 You should call clear_proceed_status before calling proceed. */
2893
2894 void
2895 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2896 {
2897 struct regcache *regcache;
2898 struct gdbarch *gdbarch;
2899 CORE_ADDR pc;
2900 struct execution_control_state ecss;
2901 struct execution_control_state *ecs = &ecss;
2902 bool started;
2903
2904 /* If we're stopped at a fork/vfork, follow the branch set by the
2905 "set follow-fork-mode" command; otherwise, we'll just proceed
2906 resuming the current thread. */
2907 if (!follow_fork ())
2908 {
2909 /* The target for some reason decided not to resume. */
2910 normal_stop ();
2911 if (target_can_async_p ())
2912 inferior_event_handler (INF_EXEC_COMPLETE);
2913 return;
2914 }
2915
2916 /* We'll update this if & when we switch to a new thread. */
2917 previous_inferior_ptid = inferior_ptid;
2918
2919 regcache = get_current_regcache ();
2920 gdbarch = regcache->arch ();
2921 const address_space *aspace = regcache->aspace ();
2922
2923 pc = regcache_read_pc_protected (regcache);
2924
2925 thread_info *cur_thr = inferior_thread ();
2926
2927 /* Fill in with reasonable starting values. */
2928 init_thread_stepping_state (cur_thr);
2929
2930 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2931
2932 ptid_t resume_ptid
2933 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2934 process_stratum_target *resume_target
2935 = user_visible_resume_target (resume_ptid);
2936
2937 check_multi_target_resumption (resume_target);
2938
2939 if (addr == (CORE_ADDR) -1)
2940 {
2941 if (pc == cur_thr->suspend.stop_pc
2942 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2943 && execution_direction != EXEC_REVERSE)
2944 /* There is a breakpoint at the address we will resume at,
2945 step one instruction before inserting breakpoints so that
2946 we do not stop right away (and report a second hit at this
2947 breakpoint).
2948
2949 Note, we don't do this in reverse, because we won't
2950 actually be executing the breakpoint insn anyway.
2951 We'll be (un-)executing the previous instruction. */
2952 cur_thr->stepping_over_breakpoint = 1;
2953 else if (gdbarch_single_step_through_delay_p (gdbarch)
2954 && gdbarch_single_step_through_delay (gdbarch,
2955 get_current_frame ()))
2956 /* We stepped onto an instruction that needs to be stepped
2957 again before re-inserting the breakpoint, do so. */
2958 cur_thr->stepping_over_breakpoint = 1;
2959 }
2960 else
2961 {
2962 regcache_write_pc (regcache, addr);
2963 }
2964
2965 if (siggnal != GDB_SIGNAL_DEFAULT)
2966 cur_thr->suspend.stop_signal = siggnal;
2967
2968 /* If an exception is thrown from this point on, make sure to
2969 propagate GDB's knowledge of the executing state to the
2970 frontend/user running state. */
2971 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
2972
2973 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2974 threads (e.g., we might need to set threads stepping over
2975 breakpoints first), from the user/frontend's point of view, all
2976 threads in RESUME_PTID are now running. Unless we're calling an
2977 inferior function, as in that case we pretend the inferior
2978 doesn't run at all. */
2979 if (!cur_thr->control.in_infcall)
2980 set_running (resume_target, resume_ptid, true);
2981
2982 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
2983 gdb_signal_to_symbol_string (siggnal));
2984
2985 annotate_starting ();
2986
2987 /* Make sure that output from GDB appears before output from the
2988 inferior. */
2989 gdb_flush (gdb_stdout);
2990
2991 /* Since we've marked the inferior running, give it the terminal. A
2992 QUIT/Ctrl-C from here on is forwarded to the target (which can
2993 still detect attempts to unblock a stuck connection with repeated
2994 Ctrl-C from within target_pass_ctrlc). */
2995 target_terminal::inferior ();
2996
2997 /* In a multi-threaded task we may select another thread and
2998 then continue or step.
2999
3000 But if a thread that we're resuming had stopped at a breakpoint,
3001 it will immediately cause another breakpoint stop without any
3002 execution (i.e. it will report a breakpoint hit incorrectly). So
3003 we must step over it first.
3004
3005 Look for threads other than the current (TP) that reported a
3006 breakpoint hit and haven't been resumed yet since. */
3007
3008 /* If scheduler locking applies, we can avoid iterating over all
3009 threads. */
3010 if (!non_stop && !schedlock_applies (cur_thr))
3011 {
3012 for (thread_info *tp : all_non_exited_threads (resume_target,
3013 resume_ptid))
3014 {
3015 switch_to_thread_no_regs (tp);
3016
3017 /* Ignore the current thread here. It's handled
3018 afterwards. */
3019 if (tp == cur_thr)
3020 continue;
3021
3022 if (!thread_still_needs_step_over (tp))
3023 continue;
3024
3025 gdb_assert (!thread_is_in_step_over_chain (tp));
3026
3027 infrun_debug_printf ("need to step-over [%s] first",
3028 target_pid_to_str (tp->ptid).c_str ());
3029
3030 thread_step_over_chain_enqueue (tp);
3031 }
3032
3033 switch_to_thread (cur_thr);
3034 }
3035
3036 /* Enqueue the current thread last, so that we move all other
3037 threads over their breakpoints first. */
3038 if (cur_thr->stepping_over_breakpoint)
3039 thread_step_over_chain_enqueue (cur_thr);
3040
3041 /* If the thread isn't started, we'll still need to set its prev_pc,
3042 so that switch_back_to_stepped_thread knows the thread hasn't
3043 advanced. Must do this before resuming any thread, as in
3044 all-stop/remote, once we resume we can't send any other packet
3045 until the target stops again. */
3046 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3047
3048 {
3049 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3050
3051 started = start_step_over ();
3052
3053 if (step_over_info_valid_p ())
3054 {
3055 /* Either this thread started a new in-line step over, or some
3056 other thread was already doing one. In either case, don't
3057 resume anything else until the step-over is finished. */
3058 }
3059 else if (started && !target_is_non_stop_p ())
3060 {
3061 /* A new displaced stepping sequence was started. In all-stop,
3062 we can't talk to the target anymore until it next stops. */
3063 }
3064 else if (!non_stop && target_is_non_stop_p ())
3065 {
3066 /* In all-stop, but the target is always in non-stop mode.
3067 Start all other threads that are implicitly resumed too. */
3068 for (thread_info *tp : all_non_exited_threads (resume_target,
3069 resume_ptid))
3070 {
3071 switch_to_thread_no_regs (tp);
3072
3073 if (!tp->inf->has_execution ())
3074 {
3075 infrun_debug_printf ("[%s] target has no execution",
3076 target_pid_to_str (tp->ptid).c_str ());
3077 continue;
3078 }
3079
3080 if (tp->resumed)
3081 {
3082 infrun_debug_printf ("[%s] resumed",
3083 target_pid_to_str (tp->ptid).c_str ());
3084 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3085 continue;
3086 }
3087
3088 if (thread_is_in_step_over_chain (tp))
3089 {
3090 infrun_debug_printf ("[%s] needs step-over",
3091 target_pid_to_str (tp->ptid).c_str ());
3092 continue;
3093 }
3094
3095 infrun_debug_printf ("resuming %s",
3096 target_pid_to_str (tp->ptid).c_str ());
3097
3098 reset_ecs (ecs, tp);
3099 switch_to_thread (tp);
3100 keep_going_pass_signal (ecs);
3101 if (!ecs->wait_some_more)
3102 error (_("Command aborted."));
3103 }
3104 }
3105 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3106 {
3107 /* The thread wasn't started, and isn't queued, run it now. */
3108 reset_ecs (ecs, cur_thr);
3109 switch_to_thread (cur_thr);
3110 keep_going_pass_signal (ecs);
3111 if (!ecs->wait_some_more)
3112 error (_("Command aborted."));
3113 }
3114 }
3115
3116 commit_resume_all_targets ();
3117
3118 finish_state.release ();
3119
3120 /* If we've switched threads above, switch back to the previously
3121 current thread. We don't want the user to see a different
3122 selected thread. */
3123 switch_to_thread (cur_thr);
3124
3125 /* Tell the event loop to wait for it to stop. If the target
3126 supports asynchronous execution, it'll do this from within
3127 target_resume. */
3128 if (!target_can_async_p ())
3129 mark_async_event_handler (infrun_async_inferior_event_token);
3130 }
3131 \f
3132
3133 /* Start remote-debugging of a machine over a serial link. */
3134
3135 void
3136 start_remote (int from_tty)
3137 {
3138 inferior *inf = current_inferior ();
3139 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3140
3141 /* Always go on waiting for the target, regardless of the mode. */
3142 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3143 indicate to wait_for_inferior that a target should timeout if
3144 nothing is returned (instead of just blocking). Because of this,
3145 targets expecting an immediate response need to, internally, set
3146 things up so that the target_wait() is forced to eventually
3147 timeout. */
3148 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3149 differentiate to its caller what the state of the target is after
3150 the initial open has been performed. Here we're assuming that
3151 the target has stopped. It should be possible to eventually have
3152 target_open() return to the caller an indication that the target
3153 is currently running and GDB state should be set to the same as
3154 for an async run. */
3155 wait_for_inferior (inf);
3156
3157 /* Now that the inferior has stopped, do any bookkeeping like
3158 loading shared libraries. We want to do this before normal_stop,
3159 so that the displayed frame is up to date. */
3160 post_create_inferior (from_tty);
3161
3162 normal_stop ();
3163 }
3164
3165 /* Initialize static vars when a new inferior begins. */
3166
3167 void
3168 init_wait_for_inferior (void)
3169 {
3170 /* These are meaningless until the first time through wait_for_inferior. */
3171
3172 breakpoint_init_inferior (inf_starting);
3173
3174 clear_proceed_status (0);
3175
3176 nullify_last_target_wait_ptid ();
3177
3178 previous_inferior_ptid = inferior_ptid;
3179 }
3180
3181 \f
3182
3183 static void handle_inferior_event (struct execution_control_state *ecs);
3184
3185 static void handle_step_into_function (struct gdbarch *gdbarch,
3186 struct execution_control_state *ecs);
3187 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3188 struct execution_control_state *ecs);
3189 static void handle_signal_stop (struct execution_control_state *ecs);
3190 static void check_exception_resume (struct execution_control_state *,
3191 struct frame_info *);
3192
3193 static void end_stepping_range (struct execution_control_state *ecs);
3194 static void stop_waiting (struct execution_control_state *ecs);
3195 static void keep_going (struct execution_control_state *ecs);
3196 static void process_event_stop_test (struct execution_control_state *ecs);
3197 static bool switch_back_to_stepped_thread (struct execution_control_state *ecs);
3198
3199 /* This function is attached as a "thread_stop_requested" observer.
3200 Cleanup local state that assumed the PTID was to be resumed, and
3201 report the stop to the frontend. */
3202
3203 static void
3204 infrun_thread_stop_requested (ptid_t ptid)
3205 {
3206 process_stratum_target *curr_target = current_inferior ()->process_target ();
3207
3208 /* PTID was requested to stop. If the thread was already stopped,
3209 but the user/frontend doesn't know about that yet (e.g., the
3210 thread had been temporarily paused for some step-over), set up
3211 for reporting the stop now. */
3212 for (thread_info *tp : all_threads (curr_target, ptid))
3213 {
3214 if (tp->state != THREAD_RUNNING)
3215 continue;
3216 if (tp->executing)
3217 continue;
3218
3219 /* Remove matching threads from the step-over queue, so
3220 start_step_over doesn't try to resume them
3221 automatically. */
3222 if (thread_is_in_step_over_chain (tp))
3223 thread_step_over_chain_remove (tp);
3224
3225 /* If the thread is stopped, but the user/frontend doesn't
3226 know about that yet, queue a pending event, as if the
3227 thread had just stopped now. Unless the thread already had
3228 a pending event. */
3229 if (!tp->suspend.waitstatus_pending_p)
3230 {
3231 tp->suspend.waitstatus_pending_p = 1;
3232 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3233 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3234 }
3235
3236 /* Clear the inline-frame state, since we're re-processing the
3237 stop. */
3238 clear_inline_frame_state (tp);
3239
3240 /* If this thread was paused because some other thread was
3241 doing an inline-step over, let that finish first. Once
3242 that happens, we'll restart all threads and consume pending
3243 stop events then. */
3244 if (step_over_info_valid_p ())
3245 continue;
3246
3247 /* Otherwise we can process the (new) pending event now. Set
3248 it so this pending event is considered by
3249 do_target_wait. */
3250 tp->resumed = true;
3251 }
3252 }
3253
3254 static void
3255 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3256 {
3257 if (target_last_proc_target == tp->inf->process_target ()
3258 && target_last_wait_ptid == tp->ptid)
3259 nullify_last_target_wait_ptid ();
3260 }
3261
3262 /* Delete the step resume, single-step and longjmp/exception resume
3263 breakpoints of TP. */
3264
3265 static void
3266 delete_thread_infrun_breakpoints (struct thread_info *tp)
3267 {
3268 delete_step_resume_breakpoint (tp);
3269 delete_exception_resume_breakpoint (tp);
3270 delete_single_step_breakpoints (tp);
3271 }
3272
3273 /* If the target still has execution, call FUNC for each thread that
3274 just stopped. In all-stop, that's all the non-exited threads; in
3275 non-stop, that's the current thread, only. */
3276
3277 typedef void (*for_each_just_stopped_thread_callback_func)
3278 (struct thread_info *tp);
3279
3280 static void
3281 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3282 {
3283 if (!target_has_execution () || inferior_ptid == null_ptid)
3284 return;
3285
3286 if (target_is_non_stop_p ())
3287 {
3288 /* If in non-stop mode, only the current thread stopped. */
3289 func (inferior_thread ());
3290 }
3291 else
3292 {
3293 /* In all-stop mode, all threads have stopped. */
3294 for (thread_info *tp : all_non_exited_threads ())
3295 func (tp);
3296 }
3297 }
3298
3299 /* Delete the step resume and longjmp/exception resume breakpoints of
3300 the threads that just stopped. */
3301
3302 static void
3303 delete_just_stopped_threads_infrun_breakpoints (void)
3304 {
3305 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3306 }
3307
3308 /* Delete the single-step breakpoints of the threads that just
3309 stopped. */
3310
3311 static void
3312 delete_just_stopped_threads_single_step_breakpoints (void)
3313 {
3314 for_each_just_stopped_thread (delete_single_step_breakpoints);
3315 }
3316
3317 /* See infrun.h. */
3318
3319 void
3320 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3321 const struct target_waitstatus *ws)
3322 {
3323 std::string status_string = target_waitstatus_to_string (ws);
3324 string_file stb;
3325
3326 /* The text is split over several lines because it was getting too long.
3327 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3328 output as a unit; we want only one timestamp printed if debug_timestamp
3329 is set. */
3330
3331 stb.printf ("[infrun] target_wait (%d.%ld.%ld",
3332 waiton_ptid.pid (),
3333 waiton_ptid.lwp (),
3334 waiton_ptid.tid ());
3335 if (waiton_ptid.pid () != -1)
3336 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3337 stb.printf (", status) =\n");
3338 stb.printf ("[infrun] %d.%ld.%ld [%s],\n",
3339 result_ptid.pid (),
3340 result_ptid.lwp (),
3341 result_ptid.tid (),
3342 target_pid_to_str (result_ptid).c_str ());
3343 stb.printf ("[infrun] %s\n", status_string.c_str ());
3344
3345 /* This uses %s in part to handle %'s in the text, but also to avoid
3346 a gcc error: the format attribute requires a string literal. */
3347 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3348 }
3349
3350 /* Select a thread at random, out of those which are resumed and have
3351 had events. */
3352
3353 static struct thread_info *
3354 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3355 {
3356 int num_events = 0;
3357
3358 auto has_event = [&] (thread_info *tp)
3359 {
3360 return (tp->ptid.matches (waiton_ptid)
3361 && tp->resumed
3362 && tp->suspend.waitstatus_pending_p);
3363 };
3364
3365 /* First see how many events we have. Count only resumed threads
3366 that have an event pending. */
3367 for (thread_info *tp : inf->non_exited_threads ())
3368 if (has_event (tp))
3369 num_events++;
3370
3371 if (num_events == 0)
3372 return NULL;
3373
3374 /* Now randomly pick a thread out of those that have had events. */
3375 int random_selector = (int) ((num_events * (double) rand ())
3376 / (RAND_MAX + 1.0));
3377
3378 if (num_events > 1)
3379 infrun_debug_printf ("Found %d events, selecting #%d",
3380 num_events, random_selector);
3381
3382 /* Select the Nth thread that has had an event. */
3383 for (thread_info *tp : inf->non_exited_threads ())
3384 if (has_event (tp))
3385 if (random_selector-- == 0)
3386 return tp;
3387
3388 gdb_assert_not_reached ("event thread not found");
3389 }
3390
3391 /* Wrapper for target_wait that first checks whether threads have
3392 pending statuses to report before actually asking the target for
3393 more events. INF is the inferior we're using to call target_wait
3394 on. */
3395
3396 static ptid_t
3397 do_target_wait_1 (inferior *inf, ptid_t ptid,
3398 target_waitstatus *status, target_wait_flags options)
3399 {
3400 ptid_t event_ptid;
3401 struct thread_info *tp;
3402
3403 /* We know that we are looking for an event in the target of inferior
3404 INF, but we don't know which thread the event might come from. As
3405 such we want to make sure that INFERIOR_PTID is reset so that none of
3406 the wait code relies on it - doing so is always a mistake. */
3407 switch_to_inferior_no_thread (inf);
3408
3409 /* First check if there is a resumed thread with a wait status
3410 pending. */
3411 if (ptid == minus_one_ptid || ptid.is_pid ())
3412 {
3413 tp = random_pending_event_thread (inf, ptid);
3414 }
3415 else
3416 {
3417 infrun_debug_printf ("Waiting for specific thread %s.",
3418 target_pid_to_str (ptid).c_str ());
3419
3420 /* We have a specific thread to check. */
3421 tp = find_thread_ptid (inf, ptid);
3422 gdb_assert (tp != NULL);
3423 if (!tp->suspend.waitstatus_pending_p)
3424 tp = NULL;
3425 }
3426
3427 if (tp != NULL
3428 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3429 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3430 {
3431 struct regcache *regcache = get_thread_regcache (tp);
3432 struct gdbarch *gdbarch = regcache->arch ();
3433 CORE_ADDR pc;
3434 int discard = 0;
3435
3436 pc = regcache_read_pc (regcache);
3437
3438 if (pc != tp->suspend.stop_pc)
3439 {
3440 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
3441 target_pid_to_str (tp->ptid).c_str (),
3442 paddress (gdbarch, tp->suspend.stop_pc),
3443 paddress (gdbarch, pc));
3444 discard = 1;
3445 }
3446 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3447 {
3448 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3449 target_pid_to_str (tp->ptid).c_str (),
3450 paddress (gdbarch, pc));
3451
3452 discard = 1;
3453 }
3454
3455 if (discard)
3456 {
3457 infrun_debug_printf ("pending event of %s cancelled.",
3458 target_pid_to_str (tp->ptid).c_str ());
3459
3460 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3461 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3462 }
3463 }
3464
3465 if (tp != NULL)
3466 {
3467 infrun_debug_printf ("Using pending wait status %s for %s.",
3468 target_waitstatus_to_string
3469 (&tp->suspend.waitstatus).c_str (),
3470 target_pid_to_str (tp->ptid).c_str ());
3471
3472 /* Now that we've selected our final event LWP, un-adjust its PC
3473 if it was a software breakpoint (and the target doesn't
3474 always adjust the PC itself). */
3475 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3476 && !target_supports_stopped_by_sw_breakpoint ())
3477 {
3478 struct regcache *regcache;
3479 struct gdbarch *gdbarch;
3480 int decr_pc;
3481
3482 regcache = get_thread_regcache (tp);
3483 gdbarch = regcache->arch ();
3484
3485 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3486 if (decr_pc != 0)
3487 {
3488 CORE_ADDR pc;
3489
3490 pc = regcache_read_pc (regcache);
3491 regcache_write_pc (regcache, pc + decr_pc);
3492 }
3493 }
3494
3495 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3496 *status = tp->suspend.waitstatus;
3497 tp->suspend.waitstatus_pending_p = 0;
3498
3499 /* Wake up the event loop again, until all pending events are
3500 processed. */
3501 if (target_is_async_p ())
3502 mark_async_event_handler (infrun_async_inferior_event_token);
3503 return tp->ptid;
3504 }
3505
3506 /* But if we don't find one, we'll have to wait. */
3507
3508 /* We can't ask a non-async target to do a non-blocking wait, so this will be
3509 a blocking wait. */
3510 if (!target_can_async_p ())
3511 options &= ~TARGET_WNOHANG;
3512
3513 if (deprecated_target_wait_hook)
3514 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3515 else
3516 event_ptid = target_wait (ptid, status, options);
3517
3518 return event_ptid;
3519 }
3520
3521 /* Wrapper for target_wait that first checks whether threads have
3522 pending statuses to report before actually asking the target for
3523 more events. Polls for events from all inferiors/targets. */
3524
3525 static bool
3526 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs,
3527 target_wait_flags options)
3528 {
3529 int num_inferiors = 0;
3530 int random_selector;
3531
3532 /* For fairness, we pick the first inferior/target to poll at random
3533 out of all inferiors that may report events, and then continue
3534 polling the rest of the inferior list starting from that one in a
3535 circular fashion until the whole list is polled once. */
3536
3537 auto inferior_matches = [&wait_ptid] (inferior *inf)
3538 {
3539 return (inf->process_target () != NULL
3540 && ptid_t (inf->pid).matches (wait_ptid));
3541 };
3542
3543 /* First see how many matching inferiors we have. */
3544 for (inferior *inf : all_inferiors ())
3545 if (inferior_matches (inf))
3546 num_inferiors++;
3547
3548 if (num_inferiors == 0)
3549 {
3550 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3551 return false;
3552 }
3553
3554 /* Now randomly pick an inferior out of those that matched. */
3555 random_selector = (int)
3556 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3557
3558 if (num_inferiors > 1)
3559 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3560 num_inferiors, random_selector);
3561
3562 /* Select the Nth inferior that matched. */
3563
3564 inferior *selected = nullptr;
3565
3566 for (inferior *inf : all_inferiors ())
3567 if (inferior_matches (inf))
3568 if (random_selector-- == 0)
3569 {
3570 selected = inf;
3571 break;
3572 }
3573
3574 /* Now poll for events out of each of the matching inferior's
3575 targets, starting from the selected one. */
3576
3577 auto do_wait = [&] (inferior *inf)
3578 {
3579 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3580 ecs->target = inf->process_target ();
3581 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3582 };
3583
3584 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3585 here spuriously after the target is all stopped and we've already
3586 reported the stop to the user, polling for events. */
3587 scoped_restore_current_thread restore_thread;
3588
3589 int inf_num = selected->num;
3590 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3591 if (inferior_matches (inf))
3592 if (do_wait (inf))
3593 return true;
3594
3595 for (inferior *inf = inferior_list;
3596 inf != NULL && inf->num < inf_num;
3597 inf = inf->next)
3598 if (inferior_matches (inf))
3599 if (do_wait (inf))
3600 return true;
3601
3602 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3603 return false;
3604 }
3605
3606 /* Prepare and stabilize the inferior for detaching it. E.g.,
3607 detaching while a thread is displaced stepping is a recipe for
3608 crashing it, as nothing would readjust the PC out of the scratch
3609 pad. */
3610
3611 void
3612 prepare_for_detach (void)
3613 {
3614 struct inferior *inf = current_inferior ();
3615 ptid_t pid_ptid = ptid_t (inf->pid);
3616
3617 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3618
3619 /* Is any thread of this process displaced stepping? If not,
3620 there's nothing else to do. */
3621 if (displaced->step_thread == nullptr)
3622 return;
3623
3624 infrun_debug_printf ("displaced-stepping in-process while detaching");
3625
3626 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3627
3628 while (displaced->step_thread != nullptr)
3629 {
3630 struct execution_control_state ecss;
3631 struct execution_control_state *ecs;
3632
3633 ecs = &ecss;
3634 memset (ecs, 0, sizeof (*ecs));
3635
3636 overlay_cache_invalid = 1;
3637 /* Flush target cache before starting to handle each event.
3638 Target was running and cache could be stale. This is just a
3639 heuristic. Running threads may modify target memory, but we
3640 don't get any event. */
3641 target_dcache_invalidate ();
3642
3643 do_target_wait (pid_ptid, ecs, 0);
3644
3645 if (debug_infrun)
3646 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3647
3648 /* If an error happens while handling the event, propagate GDB's
3649 knowledge of the executing state to the frontend/user running
3650 state. */
3651 scoped_finish_thread_state finish_state (inf->process_target (),
3652 minus_one_ptid);
3653
3654 /* Now figure out what to do with the result of the result. */
3655 handle_inferior_event (ecs);
3656
3657 /* No error, don't finish the state yet. */
3658 finish_state.release ();
3659
3660 /* Breakpoints and watchpoints are not installed on the target
3661 at this point, and signals are passed directly to the
3662 inferior, so this must mean the process is gone. */
3663 if (!ecs->wait_some_more)
3664 {
3665 restore_detaching.release ();
3666 error (_("Program exited while detaching"));
3667 }
3668 }
3669
3670 restore_detaching.release ();
3671 }
3672
3673 /* Wait for control to return from inferior to debugger.
3674
3675 If inferior gets a signal, we may decide to start it up again
3676 instead of returning. That is why there is a loop in this function.
3677 When this function actually returns it means the inferior
3678 should be left stopped and GDB should read more commands. */
3679
3680 static void
3681 wait_for_inferior (inferior *inf)
3682 {
3683 infrun_debug_printf ("wait_for_inferior ()");
3684
3685 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3686
3687 /* If an error happens while handling the event, propagate GDB's
3688 knowledge of the executing state to the frontend/user running
3689 state. */
3690 scoped_finish_thread_state finish_state
3691 (inf->process_target (), minus_one_ptid);
3692
3693 while (1)
3694 {
3695 struct execution_control_state ecss;
3696 struct execution_control_state *ecs = &ecss;
3697
3698 memset (ecs, 0, sizeof (*ecs));
3699
3700 overlay_cache_invalid = 1;
3701
3702 /* Flush target cache before starting to handle each event.
3703 Target was running and cache could be stale. This is just a
3704 heuristic. Running threads may modify target memory, but we
3705 don't get any event. */
3706 target_dcache_invalidate ();
3707
3708 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3709 ecs->target = inf->process_target ();
3710
3711 if (debug_infrun)
3712 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3713
3714 /* Now figure out what to do with the result of the result. */
3715 handle_inferior_event (ecs);
3716
3717 if (!ecs->wait_some_more)
3718 break;
3719 }
3720
3721 /* No error, don't finish the state yet. */
3722 finish_state.release ();
3723 }
3724
3725 /* Cleanup that reinstalls the readline callback handler, if the
3726 target is running in the background. If while handling the target
3727 event something triggered a secondary prompt, like e.g., a
3728 pagination prompt, we'll have removed the callback handler (see
3729 gdb_readline_wrapper_line). Need to do this as we go back to the
3730 event loop, ready to process further input. Note this has no
3731 effect if the handler hasn't actually been removed, because calling
3732 rl_callback_handler_install resets the line buffer, thus losing
3733 input. */
3734
3735 static void
3736 reinstall_readline_callback_handler_cleanup ()
3737 {
3738 struct ui *ui = current_ui;
3739
3740 if (!ui->async)
3741 {
3742 /* We're not going back to the top level event loop yet. Don't
3743 install the readline callback, as it'd prep the terminal,
3744 readline-style (raw, noecho) (e.g., --batch). We'll install
3745 it the next time the prompt is displayed, when we're ready
3746 for input. */
3747 return;
3748 }
3749
3750 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3751 gdb_rl_callback_handler_reinstall ();
3752 }
3753
3754 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3755 that's just the event thread. In all-stop, that's all threads. */
3756
3757 static void
3758 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3759 {
3760 if (ecs->event_thread != NULL
3761 && ecs->event_thread->thread_fsm != NULL)
3762 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3763
3764 if (!non_stop)
3765 {
3766 for (thread_info *thr : all_non_exited_threads ())
3767 {
3768 if (thr->thread_fsm == NULL)
3769 continue;
3770 if (thr == ecs->event_thread)
3771 continue;
3772
3773 switch_to_thread (thr);
3774 thr->thread_fsm->clean_up (thr);
3775 }
3776
3777 if (ecs->event_thread != NULL)
3778 switch_to_thread (ecs->event_thread);
3779 }
3780 }
3781
3782 /* Helper for all_uis_check_sync_execution_done that works on the
3783 current UI. */
3784
3785 static void
3786 check_curr_ui_sync_execution_done (void)
3787 {
3788 struct ui *ui = current_ui;
3789
3790 if (ui->prompt_state == PROMPT_NEEDED
3791 && ui->async
3792 && !gdb_in_secondary_prompt_p (ui))
3793 {
3794 target_terminal::ours ();
3795 gdb::observers::sync_execution_done.notify ();
3796 ui_register_input_event_handler (ui);
3797 }
3798 }
3799
3800 /* See infrun.h. */
3801
3802 void
3803 all_uis_check_sync_execution_done (void)
3804 {
3805 SWITCH_THRU_ALL_UIS ()
3806 {
3807 check_curr_ui_sync_execution_done ();
3808 }
3809 }
3810
3811 /* See infrun.h. */
3812
3813 void
3814 all_uis_on_sync_execution_starting (void)
3815 {
3816 SWITCH_THRU_ALL_UIS ()
3817 {
3818 if (current_ui->prompt_state == PROMPT_NEEDED)
3819 async_disable_stdin ();
3820 }
3821 }
3822
3823 /* Asynchronous version of wait_for_inferior. It is called by the
3824 event loop whenever a change of state is detected on the file
3825 descriptor corresponding to the target. It can be called more than
3826 once to complete a single execution command. In such cases we need
3827 to keep the state in a global variable ECSS. If it is the last time
3828 that this function is called for a single execution command, then
3829 report to the user that the inferior has stopped, and do the
3830 necessary cleanups. */
3831
3832 void
3833 fetch_inferior_event ()
3834 {
3835 struct execution_control_state ecss;
3836 struct execution_control_state *ecs = &ecss;
3837 int cmd_done = 0;
3838
3839 memset (ecs, 0, sizeof (*ecs));
3840
3841 /* Events are always processed with the main UI as current UI. This
3842 way, warnings, debug output, etc. are always consistently sent to
3843 the main console. */
3844 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3845
3846 /* Temporarily disable pagination. Otherwise, the user would be
3847 given an option to press 'q' to quit, which would cause an early
3848 exit and could leave GDB in a half-baked state. */
3849 scoped_restore save_pagination
3850 = make_scoped_restore (&pagination_enabled, false);
3851
3852 /* End up with readline processing input, if necessary. */
3853 {
3854 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3855
3856 /* We're handling a live event, so make sure we're doing live
3857 debugging. If we're looking at traceframes while the target is
3858 running, we're going to need to get back to that mode after
3859 handling the event. */
3860 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3861 if (non_stop)
3862 {
3863 maybe_restore_traceframe.emplace ();
3864 set_current_traceframe (-1);
3865 }
3866
3867 /* The user/frontend should not notice a thread switch due to
3868 internal events. Make sure we revert to the user selected
3869 thread and frame after handling the event and running any
3870 breakpoint commands. */
3871 scoped_restore_current_thread restore_thread;
3872
3873 overlay_cache_invalid = 1;
3874 /* Flush target cache before starting to handle each event. Target
3875 was running and cache could be stale. This is just a heuristic.
3876 Running threads may modify target memory, but we don't get any
3877 event. */
3878 target_dcache_invalidate ();
3879
3880 scoped_restore save_exec_dir
3881 = make_scoped_restore (&execution_direction,
3882 target_execution_direction ());
3883
3884 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3885 return;
3886
3887 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3888
3889 /* Switch to the target that generated the event, so we can do
3890 target calls. */
3891 switch_to_target_no_thread (ecs->target);
3892
3893 if (debug_infrun)
3894 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3895
3896 /* If an error happens while handling the event, propagate GDB's
3897 knowledge of the executing state to the frontend/user running
3898 state. */
3899 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3900 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
3901
3902 /* Get executed before scoped_restore_current_thread above to apply
3903 still for the thread which has thrown the exception. */
3904 auto defer_bpstat_clear
3905 = make_scope_exit (bpstat_clear_actions);
3906 auto defer_delete_threads
3907 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3908
3909 /* Now figure out what to do with the result of the result. */
3910 handle_inferior_event (ecs);
3911
3912 if (!ecs->wait_some_more)
3913 {
3914 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
3915 bool should_stop = true;
3916 struct thread_info *thr = ecs->event_thread;
3917
3918 delete_just_stopped_threads_infrun_breakpoints ();
3919
3920 if (thr != NULL)
3921 {
3922 struct thread_fsm *thread_fsm = thr->thread_fsm;
3923
3924 if (thread_fsm != NULL)
3925 should_stop = thread_fsm->should_stop (thr);
3926 }
3927
3928 if (!should_stop)
3929 {
3930 keep_going (ecs);
3931 }
3932 else
3933 {
3934 bool should_notify_stop = true;
3935 int proceeded = 0;
3936
3937 clean_up_just_stopped_threads_fsms (ecs);
3938
3939 if (thr != NULL && thr->thread_fsm != NULL)
3940 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3941
3942 if (should_notify_stop)
3943 {
3944 /* We may not find an inferior if this was a process exit. */
3945 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3946 proceeded = normal_stop ();
3947 }
3948
3949 if (!proceeded)
3950 {
3951 inferior_event_handler (INF_EXEC_COMPLETE);
3952 cmd_done = 1;
3953 }
3954
3955 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3956 previously selected thread is gone. We have two
3957 choices - switch to no thread selected, or restore the
3958 previously selected thread (now exited). We chose the
3959 later, just because that's what GDB used to do. After
3960 this, "info threads" says "The current thread <Thread
3961 ID 2> has terminated." instead of "No thread
3962 selected.". */
3963 if (!non_stop
3964 && cmd_done
3965 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3966 restore_thread.dont_restore ();
3967 }
3968 }
3969
3970 defer_delete_threads.release ();
3971 defer_bpstat_clear.release ();
3972
3973 /* No error, don't finish the thread states yet. */
3974 finish_state.release ();
3975
3976 /* This scope is used to ensure that readline callbacks are
3977 reinstalled here. */
3978 }
3979
3980 /* If a UI was in sync execution mode, and now isn't, restore its
3981 prompt (a synchronous execution command has finished, and we're
3982 ready for input). */
3983 all_uis_check_sync_execution_done ();
3984
3985 if (cmd_done
3986 && exec_done_display_p
3987 && (inferior_ptid == null_ptid
3988 || inferior_thread ()->state != THREAD_RUNNING))
3989 printf_unfiltered (_("completed.\n"));
3990 }
3991
3992 /* See infrun.h. */
3993
3994 void
3995 set_step_info (thread_info *tp, struct frame_info *frame,
3996 struct symtab_and_line sal)
3997 {
3998 /* This can be removed once this function no longer implicitly relies on the
3999 inferior_ptid value. */
4000 gdb_assert (inferior_ptid == tp->ptid);
4001
4002 tp->control.step_frame_id = get_frame_id (frame);
4003 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4004
4005 tp->current_symtab = sal.symtab;
4006 tp->current_line = sal.line;
4007 }
4008
4009 /* Clear context switchable stepping state. */
4010
4011 void
4012 init_thread_stepping_state (struct thread_info *tss)
4013 {
4014 tss->stepped_breakpoint = 0;
4015 tss->stepping_over_breakpoint = 0;
4016 tss->stepping_over_watchpoint = 0;
4017 tss->step_after_step_resume_breakpoint = 0;
4018 }
4019
4020 /* See infrun.h. */
4021
4022 void
4023 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4024 target_waitstatus status)
4025 {
4026 target_last_proc_target = target;
4027 target_last_wait_ptid = ptid;
4028 target_last_waitstatus = status;
4029 }
4030
4031 /* See infrun.h. */
4032
4033 void
4034 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4035 target_waitstatus *status)
4036 {
4037 if (target != nullptr)
4038 *target = target_last_proc_target;
4039 if (ptid != nullptr)
4040 *ptid = target_last_wait_ptid;
4041 if (status != nullptr)
4042 *status = target_last_waitstatus;
4043 }
4044
4045 /* See infrun.h. */
4046
4047 void
4048 nullify_last_target_wait_ptid (void)
4049 {
4050 target_last_proc_target = nullptr;
4051 target_last_wait_ptid = minus_one_ptid;
4052 target_last_waitstatus = {};
4053 }
4054
4055 /* Switch thread contexts. */
4056
4057 static void
4058 context_switch (execution_control_state *ecs)
4059 {
4060 if (ecs->ptid != inferior_ptid
4061 && (inferior_ptid == null_ptid
4062 || ecs->event_thread != inferior_thread ()))
4063 {
4064 infrun_debug_printf ("Switching context from %s to %s",
4065 target_pid_to_str (inferior_ptid).c_str (),
4066 target_pid_to_str (ecs->ptid).c_str ());
4067 }
4068
4069 switch_to_thread (ecs->event_thread);
4070 }
4071
4072 /* If the target can't tell whether we've hit breakpoints
4073 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4074 check whether that could have been caused by a breakpoint. If so,
4075 adjust the PC, per gdbarch_decr_pc_after_break. */
4076
4077 static void
4078 adjust_pc_after_break (struct thread_info *thread,
4079 struct target_waitstatus *ws)
4080 {
4081 struct regcache *regcache;
4082 struct gdbarch *gdbarch;
4083 CORE_ADDR breakpoint_pc, decr_pc;
4084
4085 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4086 we aren't, just return.
4087
4088 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4089 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4090 implemented by software breakpoints should be handled through the normal
4091 breakpoint layer.
4092
4093 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4094 different signals (SIGILL or SIGEMT for instance), but it is less
4095 clear where the PC is pointing afterwards. It may not match
4096 gdbarch_decr_pc_after_break. I don't know any specific target that
4097 generates these signals at breakpoints (the code has been in GDB since at
4098 least 1992) so I can not guess how to handle them here.
4099
4100 In earlier versions of GDB, a target with
4101 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4102 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4103 target with both of these set in GDB history, and it seems unlikely to be
4104 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4105
4106 if (ws->kind != TARGET_WAITKIND_STOPPED)
4107 return;
4108
4109 if (ws->value.sig != GDB_SIGNAL_TRAP)
4110 return;
4111
4112 /* In reverse execution, when a breakpoint is hit, the instruction
4113 under it has already been de-executed. The reported PC always
4114 points at the breakpoint address, so adjusting it further would
4115 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4116 architecture:
4117
4118 B1 0x08000000 : INSN1
4119 B2 0x08000001 : INSN2
4120 0x08000002 : INSN3
4121 PC -> 0x08000003 : INSN4
4122
4123 Say you're stopped at 0x08000003 as above. Reverse continuing
4124 from that point should hit B2 as below. Reading the PC when the
4125 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4126 been de-executed already.
4127
4128 B1 0x08000000 : INSN1
4129 B2 PC -> 0x08000001 : INSN2
4130 0x08000002 : INSN3
4131 0x08000003 : INSN4
4132
4133 We can't apply the same logic as for forward execution, because
4134 we would wrongly adjust the PC to 0x08000000, since there's a
4135 breakpoint at PC - 1. We'd then report a hit on B1, although
4136 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4137 behaviour. */
4138 if (execution_direction == EXEC_REVERSE)
4139 return;
4140
4141 /* If the target can tell whether the thread hit a SW breakpoint,
4142 trust it. Targets that can tell also adjust the PC
4143 themselves. */
4144 if (target_supports_stopped_by_sw_breakpoint ())
4145 return;
4146
4147 /* Note that relying on whether a breakpoint is planted in memory to
4148 determine this can fail. E.g,. the breakpoint could have been
4149 removed since. Or the thread could have been told to step an
4150 instruction the size of a breakpoint instruction, and only
4151 _after_ was a breakpoint inserted at its address. */
4152
4153 /* If this target does not decrement the PC after breakpoints, then
4154 we have nothing to do. */
4155 regcache = get_thread_regcache (thread);
4156 gdbarch = regcache->arch ();
4157
4158 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4159 if (decr_pc == 0)
4160 return;
4161
4162 const address_space *aspace = regcache->aspace ();
4163
4164 /* Find the location where (if we've hit a breakpoint) the
4165 breakpoint would be. */
4166 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4167
4168 /* If the target can't tell whether a software breakpoint triggered,
4169 fallback to figuring it out based on breakpoints we think were
4170 inserted in the target, and on whether the thread was stepped or
4171 continued. */
4172
4173 /* Check whether there actually is a software breakpoint inserted at
4174 that location.
4175
4176 If in non-stop mode, a race condition is possible where we've
4177 removed a breakpoint, but stop events for that breakpoint were
4178 already queued and arrive later. To suppress those spurious
4179 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4180 and retire them after a number of stop events are reported. Note
4181 this is an heuristic and can thus get confused. The real fix is
4182 to get the "stopped by SW BP and needs adjustment" info out of
4183 the target/kernel (and thus never reach here; see above). */
4184 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4185 || (target_is_non_stop_p ()
4186 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4187 {
4188 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4189
4190 if (record_full_is_used ())
4191 restore_operation_disable.emplace
4192 (record_full_gdb_operation_disable_set ());
4193
4194 /* When using hardware single-step, a SIGTRAP is reported for both
4195 a completed single-step and a software breakpoint. Need to
4196 differentiate between the two, as the latter needs adjusting
4197 but the former does not.
4198
4199 The SIGTRAP can be due to a completed hardware single-step only if
4200 - we didn't insert software single-step breakpoints
4201 - this thread is currently being stepped
4202
4203 If any of these events did not occur, we must have stopped due
4204 to hitting a software breakpoint, and have to back up to the
4205 breakpoint address.
4206
4207 As a special case, we could have hardware single-stepped a
4208 software breakpoint. In this case (prev_pc == breakpoint_pc),
4209 we also need to back up to the breakpoint address. */
4210
4211 if (thread_has_single_step_breakpoints_set (thread)
4212 || !currently_stepping (thread)
4213 || (thread->stepped_breakpoint
4214 && thread->prev_pc == breakpoint_pc))
4215 regcache_write_pc (regcache, breakpoint_pc);
4216 }
4217 }
4218
4219 static bool
4220 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4221 {
4222 for (frame = get_prev_frame (frame);
4223 frame != NULL;
4224 frame = get_prev_frame (frame))
4225 {
4226 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4227 return true;
4228
4229 if (get_frame_type (frame) != INLINE_FRAME)
4230 break;
4231 }
4232
4233 return false;
4234 }
4235
4236 /* Look for an inline frame that is marked for skip.
4237 If PREV_FRAME is TRUE start at the previous frame,
4238 otherwise start at the current frame. Stop at the
4239 first non-inline frame, or at the frame where the
4240 step started. */
4241
4242 static bool
4243 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4244 {
4245 struct frame_info *frame = get_current_frame ();
4246
4247 if (prev_frame)
4248 frame = get_prev_frame (frame);
4249
4250 for (; frame != NULL; frame = get_prev_frame (frame))
4251 {
4252 const char *fn = NULL;
4253 symtab_and_line sal;
4254 struct symbol *sym;
4255
4256 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4257 break;
4258 if (get_frame_type (frame) != INLINE_FRAME)
4259 break;
4260
4261 sal = find_frame_sal (frame);
4262 sym = get_frame_function (frame);
4263
4264 if (sym != NULL)
4265 fn = sym->print_name ();
4266
4267 if (sal.line != 0
4268 && function_name_is_marked_for_skip (fn, sal))
4269 return true;
4270 }
4271
4272 return false;
4273 }
4274
4275 /* If the event thread has the stop requested flag set, pretend it
4276 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4277 target_stop). */
4278
4279 static bool
4280 handle_stop_requested (struct execution_control_state *ecs)
4281 {
4282 if (ecs->event_thread->stop_requested)
4283 {
4284 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4285 ecs->ws.value.sig = GDB_SIGNAL_0;
4286 handle_signal_stop (ecs);
4287 return true;
4288 }
4289 return false;
4290 }
4291
4292 /* Auxiliary function that handles syscall entry/return events.
4293 It returns true if the inferior should keep going (and GDB
4294 should ignore the event), or false if the event deserves to be
4295 processed. */
4296
4297 static bool
4298 handle_syscall_event (struct execution_control_state *ecs)
4299 {
4300 struct regcache *regcache;
4301 int syscall_number;
4302
4303 context_switch (ecs);
4304
4305 regcache = get_thread_regcache (ecs->event_thread);
4306 syscall_number = ecs->ws.value.syscall_number;
4307 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4308
4309 if (catch_syscall_enabled () > 0
4310 && catching_syscall_number (syscall_number) > 0)
4311 {
4312 infrun_debug_printf ("syscall number=%d", syscall_number);
4313
4314 ecs->event_thread->control.stop_bpstat
4315 = bpstat_stop_status (regcache->aspace (),
4316 ecs->event_thread->suspend.stop_pc,
4317 ecs->event_thread, &ecs->ws);
4318
4319 if (handle_stop_requested (ecs))
4320 return false;
4321
4322 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4323 {
4324 /* Catchpoint hit. */
4325 return false;
4326 }
4327 }
4328
4329 if (handle_stop_requested (ecs))
4330 return false;
4331
4332 /* If no catchpoint triggered for this, then keep going. */
4333 keep_going (ecs);
4334
4335 return true;
4336 }
4337
4338 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4339
4340 static void
4341 fill_in_stop_func (struct gdbarch *gdbarch,
4342 struct execution_control_state *ecs)
4343 {
4344 if (!ecs->stop_func_filled_in)
4345 {
4346 const block *block;
4347 const general_symbol_info *gsi;
4348
4349 /* Don't care about return value; stop_func_start and stop_func_name
4350 will both be 0 if it doesn't work. */
4351 find_pc_partial_function_sym (ecs->event_thread->suspend.stop_pc,
4352 &gsi,
4353 &ecs->stop_func_start,
4354 &ecs->stop_func_end,
4355 &block);
4356 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
4357
4358 /* The call to find_pc_partial_function, above, will set
4359 stop_func_start and stop_func_end to the start and end
4360 of the range containing the stop pc. If this range
4361 contains the entry pc for the block (which is always the
4362 case for contiguous blocks), advance stop_func_start past
4363 the function's start offset and entrypoint. Note that
4364 stop_func_start is NOT advanced when in a range of a
4365 non-contiguous block that does not contain the entry pc. */
4366 if (block != nullptr
4367 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4368 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4369 {
4370 ecs->stop_func_start
4371 += gdbarch_deprecated_function_start_offset (gdbarch);
4372
4373 if (gdbarch_skip_entrypoint_p (gdbarch))
4374 ecs->stop_func_start
4375 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4376 }
4377
4378 ecs->stop_func_filled_in = 1;
4379 }
4380 }
4381
4382
4383 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4384
4385 static enum stop_kind
4386 get_inferior_stop_soon (execution_control_state *ecs)
4387 {
4388 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4389
4390 gdb_assert (inf != NULL);
4391 return inf->control.stop_soon;
4392 }
4393
4394 /* Poll for one event out of the current target. Store the resulting
4395 waitstatus in WS, and return the event ptid. Does not block. */
4396
4397 static ptid_t
4398 poll_one_curr_target (struct target_waitstatus *ws)
4399 {
4400 ptid_t event_ptid;
4401
4402 overlay_cache_invalid = 1;
4403
4404 /* Flush target cache before starting to handle each event.
4405 Target was running and cache could be stale. This is just a
4406 heuristic. Running threads may modify target memory, but we
4407 don't get any event. */
4408 target_dcache_invalidate ();
4409
4410 if (deprecated_target_wait_hook)
4411 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4412 else
4413 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4414
4415 if (debug_infrun)
4416 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4417
4418 return event_ptid;
4419 }
4420
4421 /* An event reported by wait_one. */
4422
4423 struct wait_one_event
4424 {
4425 /* The target the event came out of. */
4426 process_stratum_target *target;
4427
4428 /* The PTID the event was for. */
4429 ptid_t ptid;
4430
4431 /* The waitstatus. */
4432 target_waitstatus ws;
4433 };
4434
4435 /* Wait for one event out of any target. */
4436
4437 static wait_one_event
4438 wait_one ()
4439 {
4440 while (1)
4441 {
4442 for (inferior *inf : all_inferiors ())
4443 {
4444 process_stratum_target *target = inf->process_target ();
4445 if (target == NULL
4446 || !target->is_async_p ()
4447 || !target->threads_executing)
4448 continue;
4449
4450 switch_to_inferior_no_thread (inf);
4451
4452 wait_one_event event;
4453 event.target = target;
4454 event.ptid = poll_one_curr_target (&event.ws);
4455
4456 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4457 {
4458 /* If nothing is resumed, remove the target from the
4459 event loop. */
4460 target_async (0);
4461 }
4462 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4463 return event;
4464 }
4465
4466 /* Block waiting for some event. */
4467
4468 fd_set readfds;
4469 int nfds = 0;
4470
4471 FD_ZERO (&readfds);
4472
4473 for (inferior *inf : all_inferiors ())
4474 {
4475 process_stratum_target *target = inf->process_target ();
4476 if (target == NULL
4477 || !target->is_async_p ()
4478 || !target->threads_executing)
4479 continue;
4480
4481 int fd = target->async_wait_fd ();
4482 FD_SET (fd, &readfds);
4483 if (nfds <= fd)
4484 nfds = fd + 1;
4485 }
4486
4487 if (nfds == 0)
4488 {
4489 /* No waitable targets left. All must be stopped. */
4490 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4491 }
4492
4493 QUIT;
4494
4495 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4496 if (numfds < 0)
4497 {
4498 if (errno == EINTR)
4499 continue;
4500 else
4501 perror_with_name ("interruptible_select");
4502 }
4503 }
4504 }
4505
4506 /* Save the thread's event and stop reason to process it later. */
4507
4508 static void
4509 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4510 {
4511 infrun_debug_printf ("saving status %s for %d.%ld.%ld",
4512 target_waitstatus_to_string (ws).c_str (),
4513 tp->ptid.pid (),
4514 tp->ptid.lwp (),
4515 tp->ptid.tid ());
4516
4517 /* Record for later. */
4518 tp->suspend.waitstatus = *ws;
4519 tp->suspend.waitstatus_pending_p = 1;
4520
4521 struct regcache *regcache = get_thread_regcache (tp);
4522 const address_space *aspace = regcache->aspace ();
4523
4524 if (ws->kind == TARGET_WAITKIND_STOPPED
4525 && ws->value.sig == GDB_SIGNAL_TRAP)
4526 {
4527 CORE_ADDR pc = regcache_read_pc (regcache);
4528
4529 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4530
4531 scoped_restore_current_thread restore_thread;
4532 switch_to_thread (tp);
4533
4534 if (target_stopped_by_watchpoint ())
4535 {
4536 tp->suspend.stop_reason
4537 = TARGET_STOPPED_BY_WATCHPOINT;
4538 }
4539 else if (target_supports_stopped_by_sw_breakpoint ()
4540 && target_stopped_by_sw_breakpoint ())
4541 {
4542 tp->suspend.stop_reason
4543 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4544 }
4545 else if (target_supports_stopped_by_hw_breakpoint ()
4546 && target_stopped_by_hw_breakpoint ())
4547 {
4548 tp->suspend.stop_reason
4549 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4550 }
4551 else if (!target_supports_stopped_by_hw_breakpoint ()
4552 && hardware_breakpoint_inserted_here_p (aspace,
4553 pc))
4554 {
4555 tp->suspend.stop_reason
4556 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4557 }
4558 else if (!target_supports_stopped_by_sw_breakpoint ()
4559 && software_breakpoint_inserted_here_p (aspace,
4560 pc))
4561 {
4562 tp->suspend.stop_reason
4563 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4564 }
4565 else if (!thread_has_single_step_breakpoints_set (tp)
4566 && currently_stepping (tp))
4567 {
4568 tp->suspend.stop_reason
4569 = TARGET_STOPPED_BY_SINGLE_STEP;
4570 }
4571 }
4572 }
4573
4574 /* Mark the non-executing threads accordingly. In all-stop, all
4575 threads of all processes are stopped when we get any event
4576 reported. In non-stop mode, only the event thread stops. */
4577
4578 static void
4579 mark_non_executing_threads (process_stratum_target *target,
4580 ptid_t event_ptid,
4581 struct target_waitstatus ws)
4582 {
4583 ptid_t mark_ptid;
4584
4585 if (!target_is_non_stop_p ())
4586 mark_ptid = minus_one_ptid;
4587 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4588 || ws.kind == TARGET_WAITKIND_EXITED)
4589 {
4590 /* If we're handling a process exit in non-stop mode, even
4591 though threads haven't been deleted yet, one would think
4592 that there is nothing to do, as threads of the dead process
4593 will be soon deleted, and threads of any other process were
4594 left running. However, on some targets, threads survive a
4595 process exit event. E.g., for the "checkpoint" command,
4596 when the current checkpoint/fork exits, linux-fork.c
4597 automatically switches to another fork from within
4598 target_mourn_inferior, by associating the same
4599 inferior/thread to another fork. We haven't mourned yet at
4600 this point, but we must mark any threads left in the
4601 process as not-executing so that finish_thread_state marks
4602 them stopped (in the user's perspective) if/when we present
4603 the stop to the user. */
4604 mark_ptid = ptid_t (event_ptid.pid ());
4605 }
4606 else
4607 mark_ptid = event_ptid;
4608
4609 set_executing (target, mark_ptid, false);
4610
4611 /* Likewise the resumed flag. */
4612 set_resumed (target, mark_ptid, false);
4613 }
4614
4615 /* See infrun.h. */
4616
4617 void
4618 stop_all_threads (void)
4619 {
4620 /* We may need multiple passes to discover all threads. */
4621 int pass;
4622 int iterations = 0;
4623
4624 gdb_assert (exists_non_stop_target ());
4625
4626 infrun_debug_printf ("starting");
4627
4628 scoped_restore_current_thread restore_thread;
4629
4630 /* Enable thread events of all targets. */
4631 for (auto *target : all_non_exited_process_targets ())
4632 {
4633 switch_to_target_no_thread (target);
4634 target_thread_events (true);
4635 }
4636
4637 SCOPE_EXIT
4638 {
4639 /* Disable thread events of all targets. */
4640 for (auto *target : all_non_exited_process_targets ())
4641 {
4642 switch_to_target_no_thread (target);
4643 target_thread_events (false);
4644 }
4645
4646 /* Use debug_prefixed_printf directly to get a meaningful function
4647 name. */
4648 if (debug_infrun)
4649 debug_prefixed_printf ("infrun", "stop_all_threads", "done");
4650 };
4651
4652 /* Request threads to stop, and then wait for the stops. Because
4653 threads we already know about can spawn more threads while we're
4654 trying to stop them, and we only learn about new threads when we
4655 update the thread list, do this in a loop, and keep iterating
4656 until two passes find no threads that need to be stopped. */
4657 for (pass = 0; pass < 2; pass++, iterations++)
4658 {
4659 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
4660 while (1)
4661 {
4662 int waits_needed = 0;
4663
4664 for (auto *target : all_non_exited_process_targets ())
4665 {
4666 switch_to_target_no_thread (target);
4667 update_thread_list ();
4668 }
4669
4670 /* Go through all threads looking for threads that we need
4671 to tell the target to stop. */
4672 for (thread_info *t : all_non_exited_threads ())
4673 {
4674 /* For a single-target setting with an all-stop target,
4675 we would not even arrive here. For a multi-target
4676 setting, until GDB is able to handle a mixture of
4677 all-stop and non-stop targets, simply skip all-stop
4678 targets' threads. This should be fine due to the
4679 protection of 'check_multi_target_resumption'. */
4680
4681 switch_to_thread_no_regs (t);
4682 if (!target_is_non_stop_p ())
4683 continue;
4684
4685 if (t->executing)
4686 {
4687 /* If already stopping, don't request a stop again.
4688 We just haven't seen the notification yet. */
4689 if (!t->stop_requested)
4690 {
4691 infrun_debug_printf (" %s executing, need stop",
4692 target_pid_to_str (t->ptid).c_str ());
4693 target_stop (t->ptid);
4694 t->stop_requested = 1;
4695 }
4696 else
4697 {
4698 infrun_debug_printf (" %s executing, already stopping",
4699 target_pid_to_str (t->ptid).c_str ());
4700 }
4701
4702 if (t->stop_requested)
4703 waits_needed++;
4704 }
4705 else
4706 {
4707 infrun_debug_printf (" %s not executing",
4708 target_pid_to_str (t->ptid).c_str ());
4709
4710 /* The thread may be not executing, but still be
4711 resumed with a pending status to process. */
4712 t->resumed = false;
4713 }
4714 }
4715
4716 if (waits_needed == 0)
4717 break;
4718
4719 /* If we find new threads on the second iteration, restart
4720 over. We want to see two iterations in a row with all
4721 threads stopped. */
4722 if (pass > 0)
4723 pass = -1;
4724
4725 for (int i = 0; i < waits_needed; i++)
4726 {
4727 wait_one_event event = wait_one ();
4728
4729 infrun_debug_printf
4730 ("%s %s", target_waitstatus_to_string (&event.ws).c_str (),
4731 target_pid_to_str (event.ptid).c_str ());
4732
4733 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4734 {
4735 /* All resumed threads exited. */
4736 break;
4737 }
4738 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4739 || event.ws.kind == TARGET_WAITKIND_EXITED
4740 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4741 {
4742 /* One thread/process exited/signalled. */
4743
4744 thread_info *t = nullptr;
4745
4746 /* The target may have reported just a pid. If so, try
4747 the first non-exited thread. */
4748 if (event.ptid.is_pid ())
4749 {
4750 int pid = event.ptid.pid ();
4751 inferior *inf = find_inferior_pid (event.target, pid);
4752 for (thread_info *tp : inf->non_exited_threads ())
4753 {
4754 t = tp;
4755 break;
4756 }
4757
4758 /* If there is no available thread, the event would
4759 have to be appended to a per-inferior event list,
4760 which does not exist (and if it did, we'd have
4761 to adjust run control command to be able to
4762 resume such an inferior). We assert here instead
4763 of going into an infinite loop. */
4764 gdb_assert (t != nullptr);
4765
4766 infrun_debug_printf
4767 ("using %s", target_pid_to_str (t->ptid).c_str ());
4768 }
4769 else
4770 {
4771 t = find_thread_ptid (event.target, event.ptid);
4772 /* Check if this is the first time we see this thread.
4773 Don't bother adding if it individually exited. */
4774 if (t == nullptr
4775 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4776 t = add_thread (event.target, event.ptid);
4777 }
4778
4779 if (t != nullptr)
4780 {
4781 /* Set the threads as non-executing to avoid
4782 another stop attempt on them. */
4783 switch_to_thread_no_regs (t);
4784 mark_non_executing_threads (event.target, event.ptid,
4785 event.ws);
4786 save_waitstatus (t, &event.ws);
4787 t->stop_requested = false;
4788 }
4789 }
4790 else
4791 {
4792 thread_info *t = find_thread_ptid (event.target, event.ptid);
4793 if (t == NULL)
4794 t = add_thread (event.target, event.ptid);
4795
4796 t->stop_requested = 0;
4797 t->executing = 0;
4798 t->resumed = false;
4799 t->control.may_range_step = 0;
4800
4801 /* This may be the first time we see the inferior report
4802 a stop. */
4803 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4804 if (inf->needs_setup)
4805 {
4806 switch_to_thread_no_regs (t);
4807 setup_inferior (0);
4808 }
4809
4810 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4811 && event.ws.value.sig == GDB_SIGNAL_0)
4812 {
4813 /* We caught the event that we intended to catch, so
4814 there's no event pending. */
4815 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4816 t->suspend.waitstatus_pending_p = 0;
4817
4818 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4819 {
4820 /* Add it back to the step-over queue. */
4821 infrun_debug_printf
4822 ("displaced-step of %s canceled: adding back to "
4823 "the step-over queue",
4824 target_pid_to_str (t->ptid).c_str ());
4825
4826 t->control.trap_expected = 0;
4827 thread_step_over_chain_enqueue (t);
4828 }
4829 }
4830 else
4831 {
4832 enum gdb_signal sig;
4833 struct regcache *regcache;
4834
4835 infrun_debug_printf
4836 ("target_wait %s, saving status for %d.%ld.%ld",
4837 target_waitstatus_to_string (&event.ws).c_str (),
4838 t->ptid.pid (), t->ptid.lwp (), t->ptid.tid ());
4839
4840 /* Record for later. */
4841 save_waitstatus (t, &event.ws);
4842
4843 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4844 ? event.ws.value.sig : GDB_SIGNAL_0);
4845
4846 if (displaced_step_fixup (t, sig) < 0)
4847 {
4848 /* Add it back to the step-over queue. */
4849 t->control.trap_expected = 0;
4850 thread_step_over_chain_enqueue (t);
4851 }
4852
4853 regcache = get_thread_regcache (t);
4854 t->suspend.stop_pc = regcache_read_pc (regcache);
4855
4856 infrun_debug_printf ("saved stop_pc=%s for %s "
4857 "(currently_stepping=%d)",
4858 paddress (target_gdbarch (),
4859 t->suspend.stop_pc),
4860 target_pid_to_str (t->ptid).c_str (),
4861 currently_stepping (t));
4862 }
4863 }
4864 }
4865 }
4866 }
4867 }
4868
4869 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4870
4871 static bool
4872 handle_no_resumed (struct execution_control_state *ecs)
4873 {
4874 if (target_can_async_p ())
4875 {
4876 bool any_sync = false;
4877
4878 for (ui *ui : all_uis ())
4879 {
4880 if (ui->prompt_state == PROMPT_BLOCKED)
4881 {
4882 any_sync = true;
4883 break;
4884 }
4885 }
4886 if (!any_sync)
4887 {
4888 /* There were no unwaited-for children left in the target, but,
4889 we're not synchronously waiting for events either. Just
4890 ignore. */
4891
4892 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
4893 prepare_to_wait (ecs);
4894 return true;
4895 }
4896 }
4897
4898 /* Otherwise, if we were running a synchronous execution command, we
4899 may need to cancel it and give the user back the terminal.
4900
4901 In non-stop mode, the target can't tell whether we've already
4902 consumed previous stop events, so it can end up sending us a
4903 no-resumed event like so:
4904
4905 #0 - thread 1 is left stopped
4906
4907 #1 - thread 2 is resumed and hits breakpoint
4908 -> TARGET_WAITKIND_STOPPED
4909
4910 #2 - thread 3 is resumed and exits
4911 this is the last resumed thread, so
4912 -> TARGET_WAITKIND_NO_RESUMED
4913
4914 #3 - gdb processes stop for thread 2 and decides to re-resume
4915 it.
4916
4917 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4918 thread 2 is now resumed, so the event should be ignored.
4919
4920 IOW, if the stop for thread 2 doesn't end a foreground command,
4921 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4922 event. But it could be that the event meant that thread 2 itself
4923 (or whatever other thread was the last resumed thread) exited.
4924
4925 To address this we refresh the thread list and check whether we
4926 have resumed threads _now_. In the example above, this removes
4927 thread 3 from the thread list. If thread 2 was re-resumed, we
4928 ignore this event. If we find no thread resumed, then we cancel
4929 the synchronous command and show "no unwaited-for " to the
4930 user. */
4931
4932 inferior *curr_inf = current_inferior ();
4933
4934 scoped_restore_current_thread restore_thread;
4935
4936 for (auto *target : all_non_exited_process_targets ())
4937 {
4938 switch_to_target_no_thread (target);
4939 update_thread_list ();
4940 }
4941
4942 /* If:
4943
4944 - the current target has no thread executing, and
4945 - the current inferior is native, and
4946 - the current inferior is the one which has the terminal, and
4947 - we did nothing,
4948
4949 then a Ctrl-C from this point on would remain stuck in the
4950 kernel, until a thread resumes and dequeues it. That would
4951 result in the GDB CLI not reacting to Ctrl-C, not able to
4952 interrupt the program. To address this, if the current inferior
4953 no longer has any thread executing, we give the terminal to some
4954 other inferior that has at least one thread executing. */
4955 bool swap_terminal = true;
4956
4957 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
4958 whether to report it to the user. */
4959 bool ignore_event = false;
4960
4961 for (thread_info *thread : all_non_exited_threads ())
4962 {
4963 if (swap_terminal && thread->executing)
4964 {
4965 if (thread->inf != curr_inf)
4966 {
4967 target_terminal::ours ();
4968
4969 switch_to_thread (thread);
4970 target_terminal::inferior ();
4971 }
4972 swap_terminal = false;
4973 }
4974
4975 if (!ignore_event
4976 && (thread->executing
4977 || thread->suspend.waitstatus_pending_p))
4978 {
4979 /* Either there were no unwaited-for children left in the
4980 target at some point, but there are now, or some target
4981 other than the eventing one has unwaited-for children
4982 left. Just ignore. */
4983 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
4984 "(ignoring: found resumed)");
4985
4986 ignore_event = true;
4987 }
4988
4989 if (ignore_event && !swap_terminal)
4990 break;
4991 }
4992
4993 if (ignore_event)
4994 {
4995 switch_to_inferior_no_thread (curr_inf);
4996 prepare_to_wait (ecs);
4997 return true;
4998 }
4999
5000 /* Go ahead and report the event. */
5001 return false;
5002 }
5003
5004 /* Given an execution control state that has been freshly filled in by
5005 an event from the inferior, figure out what it means and take
5006 appropriate action.
5007
5008 The alternatives are:
5009
5010 1) stop_waiting and return; to really stop and return to the
5011 debugger.
5012
5013 2) keep_going and return; to wait for the next event (set
5014 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5015 once). */
5016
5017 static void
5018 handle_inferior_event (struct execution_control_state *ecs)
5019 {
5020 /* Make sure that all temporary struct value objects that were
5021 created during the handling of the event get deleted at the
5022 end. */
5023 scoped_value_mark free_values;
5024
5025 enum stop_kind stop_soon;
5026
5027 infrun_debug_printf ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
5028
5029 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5030 {
5031 /* We had an event in the inferior, but we are not interested in
5032 handling it at this level. The lower layers have already
5033 done what needs to be done, if anything.
5034
5035 One of the possible circumstances for this is when the
5036 inferior produces output for the console. The inferior has
5037 not stopped, and we are ignoring the event. Another possible
5038 circumstance is any event which the lower level knows will be
5039 reported multiple times without an intervening resume. */
5040 prepare_to_wait (ecs);
5041 return;
5042 }
5043
5044 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5045 {
5046 prepare_to_wait (ecs);
5047 return;
5048 }
5049
5050 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5051 && handle_no_resumed (ecs))
5052 return;
5053
5054 /* Cache the last target/ptid/waitstatus. */
5055 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5056
5057 /* Always clear state belonging to the previous time we stopped. */
5058 stop_stack_dummy = STOP_NONE;
5059
5060 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5061 {
5062 /* No unwaited-for children left. IOW, all resumed children
5063 have exited. */
5064 stop_print_frame = false;
5065 stop_waiting (ecs);
5066 return;
5067 }
5068
5069 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5070 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5071 {
5072 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5073 /* If it's a new thread, add it to the thread database. */
5074 if (ecs->event_thread == NULL)
5075 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5076
5077 /* Disable range stepping. If the next step request could use a
5078 range, this will be end up re-enabled then. */
5079 ecs->event_thread->control.may_range_step = 0;
5080 }
5081
5082 /* Dependent on valid ECS->EVENT_THREAD. */
5083 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5084
5085 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5086 reinit_frame_cache ();
5087
5088 breakpoint_retire_moribund ();
5089
5090 /* First, distinguish signals caused by the debugger from signals
5091 that have to do with the program's own actions. Note that
5092 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5093 on the operating system version. Here we detect when a SIGILL or
5094 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5095 something similar for SIGSEGV, since a SIGSEGV will be generated
5096 when we're trying to execute a breakpoint instruction on a
5097 non-executable stack. This happens for call dummy breakpoints
5098 for architectures like SPARC that place call dummies on the
5099 stack. */
5100 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5101 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5102 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5103 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5104 {
5105 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5106
5107 if (breakpoint_inserted_here_p (regcache->aspace (),
5108 regcache_read_pc (regcache)))
5109 {
5110 infrun_debug_printf ("Treating signal as SIGTRAP");
5111 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5112 }
5113 }
5114
5115 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5116
5117 switch (ecs->ws.kind)
5118 {
5119 case TARGET_WAITKIND_LOADED:
5120 context_switch (ecs);
5121 /* Ignore gracefully during startup of the inferior, as it might
5122 be the shell which has just loaded some objects, otherwise
5123 add the symbols for the newly loaded objects. Also ignore at
5124 the beginning of an attach or remote session; we will query
5125 the full list of libraries once the connection is
5126 established. */
5127
5128 stop_soon = get_inferior_stop_soon (ecs);
5129 if (stop_soon == NO_STOP_QUIETLY)
5130 {
5131 struct regcache *regcache;
5132
5133 regcache = get_thread_regcache (ecs->event_thread);
5134
5135 handle_solib_event ();
5136
5137 ecs->event_thread->control.stop_bpstat
5138 = bpstat_stop_status (regcache->aspace (),
5139 ecs->event_thread->suspend.stop_pc,
5140 ecs->event_thread, &ecs->ws);
5141
5142 if (handle_stop_requested (ecs))
5143 return;
5144
5145 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5146 {
5147 /* A catchpoint triggered. */
5148 process_event_stop_test (ecs);
5149 return;
5150 }
5151
5152 /* If requested, stop when the dynamic linker notifies
5153 gdb of events. This allows the user to get control
5154 and place breakpoints in initializer routines for
5155 dynamically loaded objects (among other things). */
5156 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5157 if (stop_on_solib_events)
5158 {
5159 /* Make sure we print "Stopped due to solib-event" in
5160 normal_stop. */
5161 stop_print_frame = true;
5162
5163 stop_waiting (ecs);
5164 return;
5165 }
5166 }
5167
5168 /* If we are skipping through a shell, or through shared library
5169 loading that we aren't interested in, resume the program. If
5170 we're running the program normally, also resume. */
5171 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5172 {
5173 /* Loading of shared libraries might have changed breakpoint
5174 addresses. Make sure new breakpoints are inserted. */
5175 if (stop_soon == NO_STOP_QUIETLY)
5176 insert_breakpoints ();
5177 resume (GDB_SIGNAL_0);
5178 prepare_to_wait (ecs);
5179 return;
5180 }
5181
5182 /* But stop if we're attaching or setting up a remote
5183 connection. */
5184 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5185 || stop_soon == STOP_QUIETLY_REMOTE)
5186 {
5187 infrun_debug_printf ("quietly stopped");
5188 stop_waiting (ecs);
5189 return;
5190 }
5191
5192 internal_error (__FILE__, __LINE__,
5193 _("unhandled stop_soon: %d"), (int) stop_soon);
5194
5195 case TARGET_WAITKIND_SPURIOUS:
5196 if (handle_stop_requested (ecs))
5197 return;
5198 context_switch (ecs);
5199 resume (GDB_SIGNAL_0);
5200 prepare_to_wait (ecs);
5201 return;
5202
5203 case TARGET_WAITKIND_THREAD_CREATED:
5204 if (handle_stop_requested (ecs))
5205 return;
5206 context_switch (ecs);
5207 if (!switch_back_to_stepped_thread (ecs))
5208 keep_going (ecs);
5209 return;
5210
5211 case TARGET_WAITKIND_EXITED:
5212 case TARGET_WAITKIND_SIGNALLED:
5213 {
5214 /* Depending on the system, ecs->ptid may point to a thread or
5215 to a process. On some targets, target_mourn_inferior may
5216 need to have access to the just-exited thread. That is the
5217 case of GNU/Linux's "checkpoint" support, for example.
5218 Call the switch_to_xxx routine as appropriate. */
5219 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5220 if (thr != nullptr)
5221 switch_to_thread (thr);
5222 else
5223 {
5224 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5225 switch_to_inferior_no_thread (inf);
5226 }
5227 }
5228 handle_vfork_child_exec_or_exit (0);
5229 target_terminal::ours (); /* Must do this before mourn anyway. */
5230
5231 /* Clearing any previous state of convenience variables. */
5232 clear_exit_convenience_vars ();
5233
5234 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5235 {
5236 /* Record the exit code in the convenience variable $_exitcode, so
5237 that the user can inspect this again later. */
5238 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5239 (LONGEST) ecs->ws.value.integer);
5240
5241 /* Also record this in the inferior itself. */
5242 current_inferior ()->has_exit_code = 1;
5243 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5244
5245 /* Support the --return-child-result option. */
5246 return_child_result_value = ecs->ws.value.integer;
5247
5248 gdb::observers::exited.notify (ecs->ws.value.integer);
5249 }
5250 else
5251 {
5252 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5253
5254 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5255 {
5256 /* Set the value of the internal variable $_exitsignal,
5257 which holds the signal uncaught by the inferior. */
5258 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5259 gdbarch_gdb_signal_to_target (gdbarch,
5260 ecs->ws.value.sig));
5261 }
5262 else
5263 {
5264 /* We don't have access to the target's method used for
5265 converting between signal numbers (GDB's internal
5266 representation <-> target's representation).
5267 Therefore, we cannot do a good job at displaying this
5268 information to the user. It's better to just warn
5269 her about it (if infrun debugging is enabled), and
5270 give up. */
5271 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5272 "signal number.");
5273 }
5274
5275 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5276 }
5277
5278 gdb_flush (gdb_stdout);
5279 target_mourn_inferior (inferior_ptid);
5280 stop_print_frame = false;
5281 stop_waiting (ecs);
5282 return;
5283
5284 case TARGET_WAITKIND_FORKED:
5285 case TARGET_WAITKIND_VFORKED:
5286 /* Check whether the inferior is displaced stepping. */
5287 {
5288 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5289 struct gdbarch *gdbarch = regcache->arch ();
5290
5291 /* If checking displaced stepping is supported, and thread
5292 ecs->ptid is displaced stepping. */
5293 if (displaced_step_in_progress_thread (ecs->event_thread))
5294 {
5295 struct inferior *parent_inf
5296 = find_inferior_ptid (ecs->target, ecs->ptid);
5297 struct regcache *child_regcache;
5298 CORE_ADDR parent_pc;
5299
5300 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5301 {
5302 struct displaced_step_inferior_state *displaced
5303 = get_displaced_stepping_state (parent_inf);
5304
5305 /* Restore scratch pad for child process. */
5306 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5307 }
5308
5309 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5310 indicating that the displaced stepping of syscall instruction
5311 has been done. Perform cleanup for parent process here. Note
5312 that this operation also cleans up the child process for vfork,
5313 because their pages are shared. */
5314 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5315 /* Start a new step-over in another thread if there's one
5316 that needs it. */
5317 start_step_over ();
5318
5319 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5320 the child's PC is also within the scratchpad. Set the child's PC
5321 to the parent's PC value, which has already been fixed up.
5322 FIXME: we use the parent's aspace here, although we're touching
5323 the child, because the child hasn't been added to the inferior
5324 list yet at this point. */
5325
5326 child_regcache
5327 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5328 ecs->ws.value.related_pid,
5329 gdbarch,
5330 parent_inf->aspace);
5331 /* Read PC value of parent process. */
5332 parent_pc = regcache_read_pc (regcache);
5333
5334 displaced_debug_printf ("write child pc from %s to %s",
5335 paddress (gdbarch,
5336 regcache_read_pc (child_regcache)),
5337 paddress (gdbarch, parent_pc));
5338
5339 regcache_write_pc (child_regcache, parent_pc);
5340 }
5341 }
5342
5343 context_switch (ecs);
5344
5345 /* Immediately detach breakpoints from the child before there's
5346 any chance of letting the user delete breakpoints from the
5347 breakpoint lists. If we don't do this early, it's easy to
5348 leave left over traps in the child, vis: "break foo; catch
5349 fork; c; <fork>; del; c; <child calls foo>". We only follow
5350 the fork on the last `continue', and by that time the
5351 breakpoint at "foo" is long gone from the breakpoint table.
5352 If we vforked, then we don't need to unpatch here, since both
5353 parent and child are sharing the same memory pages; we'll
5354 need to unpatch at follow/detach time instead to be certain
5355 that new breakpoints added between catchpoint hit time and
5356 vfork follow are detached. */
5357 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5358 {
5359 /* This won't actually modify the breakpoint list, but will
5360 physically remove the breakpoints from the child. */
5361 detach_breakpoints (ecs->ws.value.related_pid);
5362 }
5363
5364 delete_just_stopped_threads_single_step_breakpoints ();
5365
5366 /* In case the event is caught by a catchpoint, remember that
5367 the event is to be followed at the next resume of the thread,
5368 and not immediately. */
5369 ecs->event_thread->pending_follow = ecs->ws;
5370
5371 ecs->event_thread->suspend.stop_pc
5372 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5373
5374 ecs->event_thread->control.stop_bpstat
5375 = bpstat_stop_status (get_current_regcache ()->aspace (),
5376 ecs->event_thread->suspend.stop_pc,
5377 ecs->event_thread, &ecs->ws);
5378
5379 if (handle_stop_requested (ecs))
5380 return;
5381
5382 /* If no catchpoint triggered for this, then keep going. Note
5383 that we're interested in knowing the bpstat actually causes a
5384 stop, not just if it may explain the signal. Software
5385 watchpoints, for example, always appear in the bpstat. */
5386 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5387 {
5388 bool follow_child
5389 = (follow_fork_mode_string == follow_fork_mode_child);
5390
5391 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5392
5393 process_stratum_target *targ
5394 = ecs->event_thread->inf->process_target ();
5395
5396 bool should_resume = follow_fork ();
5397
5398 /* Note that one of these may be an invalid pointer,
5399 depending on detach_fork. */
5400 thread_info *parent = ecs->event_thread;
5401 thread_info *child
5402 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5403
5404 /* At this point, the parent is marked running, and the
5405 child is marked stopped. */
5406
5407 /* If not resuming the parent, mark it stopped. */
5408 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5409 parent->set_running (false);
5410
5411 /* If resuming the child, mark it running. */
5412 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5413 child->set_running (true);
5414
5415 /* In non-stop mode, also resume the other branch. */
5416 if (!detach_fork && (non_stop
5417 || (sched_multi && target_is_non_stop_p ())))
5418 {
5419 if (follow_child)
5420 switch_to_thread (parent);
5421 else
5422 switch_to_thread (child);
5423
5424 ecs->event_thread = inferior_thread ();
5425 ecs->ptid = inferior_ptid;
5426 keep_going (ecs);
5427 }
5428
5429 if (follow_child)
5430 switch_to_thread (child);
5431 else
5432 switch_to_thread (parent);
5433
5434 ecs->event_thread = inferior_thread ();
5435 ecs->ptid = inferior_ptid;
5436
5437 if (should_resume)
5438 keep_going (ecs);
5439 else
5440 stop_waiting (ecs);
5441 return;
5442 }
5443 process_event_stop_test (ecs);
5444 return;
5445
5446 case TARGET_WAITKIND_VFORK_DONE:
5447 /* Done with the shared memory region. Re-insert breakpoints in
5448 the parent, and keep going. */
5449
5450 context_switch (ecs);
5451
5452 current_inferior ()->waiting_for_vfork_done = 0;
5453 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5454
5455 if (handle_stop_requested (ecs))
5456 return;
5457
5458 /* This also takes care of reinserting breakpoints in the
5459 previously locked inferior. */
5460 keep_going (ecs);
5461 return;
5462
5463 case TARGET_WAITKIND_EXECD:
5464
5465 /* Note we can't read registers yet (the stop_pc), because we
5466 don't yet know the inferior's post-exec architecture.
5467 'stop_pc' is explicitly read below instead. */
5468 switch_to_thread_no_regs (ecs->event_thread);
5469
5470 /* Do whatever is necessary to the parent branch of the vfork. */
5471 handle_vfork_child_exec_or_exit (1);
5472
5473 /* This causes the eventpoints and symbol table to be reset.
5474 Must do this now, before trying to determine whether to
5475 stop. */
5476 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5477
5478 /* In follow_exec we may have deleted the original thread and
5479 created a new one. Make sure that the event thread is the
5480 execd thread for that case (this is a nop otherwise). */
5481 ecs->event_thread = inferior_thread ();
5482
5483 ecs->event_thread->suspend.stop_pc
5484 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5485
5486 ecs->event_thread->control.stop_bpstat
5487 = bpstat_stop_status (get_current_regcache ()->aspace (),
5488 ecs->event_thread->suspend.stop_pc,
5489 ecs->event_thread, &ecs->ws);
5490
5491 /* Note that this may be referenced from inside
5492 bpstat_stop_status above, through inferior_has_execd. */
5493 xfree (ecs->ws.value.execd_pathname);
5494 ecs->ws.value.execd_pathname = NULL;
5495
5496 if (handle_stop_requested (ecs))
5497 return;
5498
5499 /* If no catchpoint triggered for this, then keep going. */
5500 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5501 {
5502 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5503 keep_going (ecs);
5504 return;
5505 }
5506 process_event_stop_test (ecs);
5507 return;
5508
5509 /* Be careful not to try to gather much state about a thread
5510 that's in a syscall. It's frequently a losing proposition. */
5511 case TARGET_WAITKIND_SYSCALL_ENTRY:
5512 /* Getting the current syscall number. */
5513 if (handle_syscall_event (ecs) == 0)
5514 process_event_stop_test (ecs);
5515 return;
5516
5517 /* Before examining the threads further, step this thread to
5518 get it entirely out of the syscall. (We get notice of the
5519 event when the thread is just on the verge of exiting a
5520 syscall. Stepping one instruction seems to get it back
5521 into user code.) */
5522 case TARGET_WAITKIND_SYSCALL_RETURN:
5523 if (handle_syscall_event (ecs) == 0)
5524 process_event_stop_test (ecs);
5525 return;
5526
5527 case TARGET_WAITKIND_STOPPED:
5528 handle_signal_stop (ecs);
5529 return;
5530
5531 case TARGET_WAITKIND_NO_HISTORY:
5532 /* Reverse execution: target ran out of history info. */
5533
5534 /* Switch to the stopped thread. */
5535 context_switch (ecs);
5536 infrun_debug_printf ("stopped");
5537
5538 delete_just_stopped_threads_single_step_breakpoints ();
5539 ecs->event_thread->suspend.stop_pc
5540 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5541
5542 if (handle_stop_requested (ecs))
5543 return;
5544
5545 gdb::observers::no_history.notify ();
5546 stop_waiting (ecs);
5547 return;
5548 }
5549 }
5550
5551 /* Restart threads back to what they were trying to do back when we
5552 paused them for an in-line step-over. The EVENT_THREAD thread is
5553 ignored. */
5554
5555 static void
5556 restart_threads (struct thread_info *event_thread)
5557 {
5558 /* In case the instruction just stepped spawned a new thread. */
5559 update_thread_list ();
5560
5561 for (thread_info *tp : all_non_exited_threads ())
5562 {
5563 switch_to_thread_no_regs (tp);
5564
5565 if (tp == event_thread)
5566 {
5567 infrun_debug_printf ("restart threads: [%s] is event thread",
5568 target_pid_to_str (tp->ptid).c_str ());
5569 continue;
5570 }
5571
5572 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5573 {
5574 infrun_debug_printf ("restart threads: [%s] not meant to be running",
5575 target_pid_to_str (tp->ptid).c_str ());
5576 continue;
5577 }
5578
5579 if (tp->resumed)
5580 {
5581 infrun_debug_printf ("restart threads: [%s] resumed",
5582 target_pid_to_str (tp->ptid).c_str ());
5583 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5584 continue;
5585 }
5586
5587 if (thread_is_in_step_over_chain (tp))
5588 {
5589 infrun_debug_printf ("restart threads: [%s] needs step-over",
5590 target_pid_to_str (tp->ptid).c_str ());
5591 gdb_assert (!tp->resumed);
5592 continue;
5593 }
5594
5595
5596 if (tp->suspend.waitstatus_pending_p)
5597 {
5598 infrun_debug_printf ("restart threads: [%s] has pending status",
5599 target_pid_to_str (tp->ptid).c_str ());
5600 tp->resumed = true;
5601 continue;
5602 }
5603
5604 gdb_assert (!tp->stop_requested);
5605
5606 /* If some thread needs to start a step-over at this point, it
5607 should still be in the step-over queue, and thus skipped
5608 above. */
5609 if (thread_still_needs_step_over (tp))
5610 {
5611 internal_error (__FILE__, __LINE__,
5612 "thread [%s] needs a step-over, but not in "
5613 "step-over queue\n",
5614 target_pid_to_str (tp->ptid).c_str ());
5615 }
5616
5617 if (currently_stepping (tp))
5618 {
5619 infrun_debug_printf ("restart threads: [%s] was stepping",
5620 target_pid_to_str (tp->ptid).c_str ());
5621 keep_going_stepped_thread (tp);
5622 }
5623 else
5624 {
5625 struct execution_control_state ecss;
5626 struct execution_control_state *ecs = &ecss;
5627
5628 infrun_debug_printf ("restart threads: [%s] continuing",
5629 target_pid_to_str (tp->ptid).c_str ());
5630 reset_ecs (ecs, tp);
5631 switch_to_thread (tp);
5632 keep_going_pass_signal (ecs);
5633 }
5634 }
5635 }
5636
5637 /* Callback for iterate_over_threads. Find a resumed thread that has
5638 a pending waitstatus. */
5639
5640 static int
5641 resumed_thread_with_pending_status (struct thread_info *tp,
5642 void *arg)
5643 {
5644 return (tp->resumed
5645 && tp->suspend.waitstatus_pending_p);
5646 }
5647
5648 /* Called when we get an event that may finish an in-line or
5649 out-of-line (displaced stepping) step-over started previously.
5650 Return true if the event is processed and we should go back to the
5651 event loop; false if the caller should continue processing the
5652 event. */
5653
5654 static int
5655 finish_step_over (struct execution_control_state *ecs)
5656 {
5657 displaced_step_fixup (ecs->event_thread,
5658 ecs->event_thread->suspend.stop_signal);
5659
5660 bool had_step_over_info = step_over_info_valid_p ();
5661
5662 if (had_step_over_info)
5663 {
5664 /* If we're stepping over a breakpoint with all threads locked,
5665 then only the thread that was stepped should be reporting
5666 back an event. */
5667 gdb_assert (ecs->event_thread->control.trap_expected);
5668
5669 clear_step_over_info ();
5670 }
5671
5672 if (!target_is_non_stop_p ())
5673 return 0;
5674
5675 /* Start a new step-over in another thread if there's one that
5676 needs it. */
5677 start_step_over ();
5678
5679 /* If we were stepping over a breakpoint before, and haven't started
5680 a new in-line step-over sequence, then restart all other threads
5681 (except the event thread). We can't do this in all-stop, as then
5682 e.g., we wouldn't be able to issue any other remote packet until
5683 these other threads stop. */
5684 if (had_step_over_info && !step_over_info_valid_p ())
5685 {
5686 struct thread_info *pending;
5687
5688 /* If we only have threads with pending statuses, the restart
5689 below won't restart any thread and so nothing re-inserts the
5690 breakpoint we just stepped over. But we need it inserted
5691 when we later process the pending events, otherwise if
5692 another thread has a pending event for this breakpoint too,
5693 we'd discard its event (because the breakpoint that
5694 originally caused the event was no longer inserted). */
5695 context_switch (ecs);
5696 insert_breakpoints ();
5697
5698 restart_threads (ecs->event_thread);
5699
5700 /* If we have events pending, go through handle_inferior_event
5701 again, picking up a pending event at random. This avoids
5702 thread starvation. */
5703
5704 /* But not if we just stepped over a watchpoint in order to let
5705 the instruction execute so we can evaluate its expression.
5706 The set of watchpoints that triggered is recorded in the
5707 breakpoint objects themselves (see bp->watchpoint_triggered).
5708 If we processed another event first, that other event could
5709 clobber this info. */
5710 if (ecs->event_thread->stepping_over_watchpoint)
5711 return 0;
5712
5713 pending = iterate_over_threads (resumed_thread_with_pending_status,
5714 NULL);
5715 if (pending != NULL)
5716 {
5717 struct thread_info *tp = ecs->event_thread;
5718 struct regcache *regcache;
5719
5720 infrun_debug_printf ("found resumed threads with "
5721 "pending events, saving status");
5722
5723 gdb_assert (pending != tp);
5724
5725 /* Record the event thread's event for later. */
5726 save_waitstatus (tp, &ecs->ws);
5727 /* This was cleared early, by handle_inferior_event. Set it
5728 so this pending event is considered by
5729 do_target_wait. */
5730 tp->resumed = true;
5731
5732 gdb_assert (!tp->executing);
5733
5734 regcache = get_thread_regcache (tp);
5735 tp->suspend.stop_pc = regcache_read_pc (regcache);
5736
5737 infrun_debug_printf ("saved stop_pc=%s for %s "
5738 "(currently_stepping=%d)",
5739 paddress (target_gdbarch (),
5740 tp->suspend.stop_pc),
5741 target_pid_to_str (tp->ptid).c_str (),
5742 currently_stepping (tp));
5743
5744 /* This in-line step-over finished; clear this so we won't
5745 start a new one. This is what handle_signal_stop would
5746 do, if we returned false. */
5747 tp->stepping_over_breakpoint = 0;
5748
5749 /* Wake up the event loop again. */
5750 mark_async_event_handler (infrun_async_inferior_event_token);
5751
5752 prepare_to_wait (ecs);
5753 return 1;
5754 }
5755 }
5756
5757 return 0;
5758 }
5759
5760 /* Come here when the program has stopped with a signal. */
5761
5762 static void
5763 handle_signal_stop (struct execution_control_state *ecs)
5764 {
5765 struct frame_info *frame;
5766 struct gdbarch *gdbarch;
5767 int stopped_by_watchpoint;
5768 enum stop_kind stop_soon;
5769 int random_signal;
5770
5771 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5772
5773 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5774
5775 /* Do we need to clean up the state of a thread that has
5776 completed a displaced single-step? (Doing so usually affects
5777 the PC, so do it here, before we set stop_pc.) */
5778 if (finish_step_over (ecs))
5779 return;
5780
5781 /* If we either finished a single-step or hit a breakpoint, but
5782 the user wanted this thread to be stopped, pretend we got a
5783 SIG0 (generic unsignaled stop). */
5784 if (ecs->event_thread->stop_requested
5785 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5786 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5787
5788 ecs->event_thread->suspend.stop_pc
5789 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5790
5791 if (debug_infrun)
5792 {
5793 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5794 struct gdbarch *reg_gdbarch = regcache->arch ();
5795
5796 switch_to_thread (ecs->event_thread);
5797
5798 infrun_debug_printf ("stop_pc=%s",
5799 paddress (reg_gdbarch,
5800 ecs->event_thread->suspend.stop_pc));
5801 if (target_stopped_by_watchpoint ())
5802 {
5803 CORE_ADDR addr;
5804
5805 infrun_debug_printf ("stopped by watchpoint");
5806
5807 if (target_stopped_data_address (current_top_target (), &addr))
5808 infrun_debug_printf ("stopped data address=%s",
5809 paddress (reg_gdbarch, addr));
5810 else
5811 infrun_debug_printf ("(no data address available)");
5812 }
5813 }
5814
5815 /* This is originated from start_remote(), start_inferior() and
5816 shared libraries hook functions. */
5817 stop_soon = get_inferior_stop_soon (ecs);
5818 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5819 {
5820 context_switch (ecs);
5821 infrun_debug_printf ("quietly stopped");
5822 stop_print_frame = true;
5823 stop_waiting (ecs);
5824 return;
5825 }
5826
5827 /* This originates from attach_command(). We need to overwrite
5828 the stop_signal here, because some kernels don't ignore a
5829 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5830 See more comments in inferior.h. On the other hand, if we
5831 get a non-SIGSTOP, report it to the user - assume the backend
5832 will handle the SIGSTOP if it should show up later.
5833
5834 Also consider that the attach is complete when we see a
5835 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5836 target extended-remote report it instead of a SIGSTOP
5837 (e.g. gdbserver). We already rely on SIGTRAP being our
5838 signal, so this is no exception.
5839
5840 Also consider that the attach is complete when we see a
5841 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5842 the target to stop all threads of the inferior, in case the
5843 low level attach operation doesn't stop them implicitly. If
5844 they weren't stopped implicitly, then the stub will report a
5845 GDB_SIGNAL_0, meaning: stopped for no particular reason
5846 other than GDB's request. */
5847 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5848 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5849 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5850 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5851 {
5852 stop_print_frame = true;
5853 stop_waiting (ecs);
5854 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5855 return;
5856 }
5857
5858 /* See if something interesting happened to the non-current thread. If
5859 so, then switch to that thread. */
5860 if (ecs->ptid != inferior_ptid)
5861 {
5862 infrun_debug_printf ("context switch");
5863
5864 context_switch (ecs);
5865
5866 if (deprecated_context_hook)
5867 deprecated_context_hook (ecs->event_thread->global_num);
5868 }
5869
5870 /* At this point, get hold of the now-current thread's frame. */
5871 frame = get_current_frame ();
5872 gdbarch = get_frame_arch (frame);
5873
5874 /* Pull the single step breakpoints out of the target. */
5875 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5876 {
5877 struct regcache *regcache;
5878 CORE_ADDR pc;
5879
5880 regcache = get_thread_regcache (ecs->event_thread);
5881 const address_space *aspace = regcache->aspace ();
5882
5883 pc = regcache_read_pc (regcache);
5884
5885 /* However, before doing so, if this single-step breakpoint was
5886 actually for another thread, set this thread up for moving
5887 past it. */
5888 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5889 aspace, pc))
5890 {
5891 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5892 {
5893 infrun_debug_printf ("[%s] hit another thread's single-step "
5894 "breakpoint",
5895 target_pid_to_str (ecs->ptid).c_str ());
5896 ecs->hit_singlestep_breakpoint = 1;
5897 }
5898 }
5899 else
5900 {
5901 infrun_debug_printf ("[%s] hit its single-step breakpoint",
5902 target_pid_to_str (ecs->ptid).c_str ());
5903 }
5904 }
5905 delete_just_stopped_threads_single_step_breakpoints ();
5906
5907 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5908 && ecs->event_thread->control.trap_expected
5909 && ecs->event_thread->stepping_over_watchpoint)
5910 stopped_by_watchpoint = 0;
5911 else
5912 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5913
5914 /* If necessary, step over this watchpoint. We'll be back to display
5915 it in a moment. */
5916 if (stopped_by_watchpoint
5917 && (target_have_steppable_watchpoint ()
5918 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5919 {
5920 /* At this point, we are stopped at an instruction which has
5921 attempted to write to a piece of memory under control of
5922 a watchpoint. The instruction hasn't actually executed
5923 yet. If we were to evaluate the watchpoint expression
5924 now, we would get the old value, and therefore no change
5925 would seem to have occurred.
5926
5927 In order to make watchpoints work `right', we really need
5928 to complete the memory write, and then evaluate the
5929 watchpoint expression. We do this by single-stepping the
5930 target.
5931
5932 It may not be necessary to disable the watchpoint to step over
5933 it. For example, the PA can (with some kernel cooperation)
5934 single step over a watchpoint without disabling the watchpoint.
5935
5936 It is far more common to need to disable a watchpoint to step
5937 the inferior over it. If we have non-steppable watchpoints,
5938 we must disable the current watchpoint; it's simplest to
5939 disable all watchpoints.
5940
5941 Any breakpoint at PC must also be stepped over -- if there's
5942 one, it will have already triggered before the watchpoint
5943 triggered, and we either already reported it to the user, or
5944 it didn't cause a stop and we called keep_going. In either
5945 case, if there was a breakpoint at PC, we must be trying to
5946 step past it. */
5947 ecs->event_thread->stepping_over_watchpoint = 1;
5948 keep_going (ecs);
5949 return;
5950 }
5951
5952 ecs->event_thread->stepping_over_breakpoint = 0;
5953 ecs->event_thread->stepping_over_watchpoint = 0;
5954 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5955 ecs->event_thread->control.stop_step = 0;
5956 stop_print_frame = true;
5957 stopped_by_random_signal = 0;
5958 bpstat stop_chain = NULL;
5959
5960 /* Hide inlined functions starting here, unless we just performed stepi or
5961 nexti. After stepi and nexti, always show the innermost frame (not any
5962 inline function call sites). */
5963 if (ecs->event_thread->control.step_range_end != 1)
5964 {
5965 const address_space *aspace
5966 = get_thread_regcache (ecs->event_thread)->aspace ();
5967
5968 /* skip_inline_frames is expensive, so we avoid it if we can
5969 determine that the address is one where functions cannot have
5970 been inlined. This improves performance with inferiors that
5971 load a lot of shared libraries, because the solib event
5972 breakpoint is defined as the address of a function (i.e. not
5973 inline). Note that we have to check the previous PC as well
5974 as the current one to catch cases when we have just
5975 single-stepped off a breakpoint prior to reinstating it.
5976 Note that we're assuming that the code we single-step to is
5977 not inline, but that's not definitive: there's nothing
5978 preventing the event breakpoint function from containing
5979 inlined code, and the single-step ending up there. If the
5980 user had set a breakpoint on that inlined code, the missing
5981 skip_inline_frames call would break things. Fortunately
5982 that's an extremely unlikely scenario. */
5983 if (!pc_at_non_inline_function (aspace,
5984 ecs->event_thread->suspend.stop_pc,
5985 &ecs->ws)
5986 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5987 && ecs->event_thread->control.trap_expected
5988 && pc_at_non_inline_function (aspace,
5989 ecs->event_thread->prev_pc,
5990 &ecs->ws)))
5991 {
5992 stop_chain = build_bpstat_chain (aspace,
5993 ecs->event_thread->suspend.stop_pc,
5994 &ecs->ws);
5995 skip_inline_frames (ecs->event_thread, stop_chain);
5996
5997 /* Re-fetch current thread's frame in case that invalidated
5998 the frame cache. */
5999 frame = get_current_frame ();
6000 gdbarch = get_frame_arch (frame);
6001 }
6002 }
6003
6004 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6005 && ecs->event_thread->control.trap_expected
6006 && gdbarch_single_step_through_delay_p (gdbarch)
6007 && currently_stepping (ecs->event_thread))
6008 {
6009 /* We're trying to step off a breakpoint. Turns out that we're
6010 also on an instruction that needs to be stepped multiple
6011 times before it's been fully executing. E.g., architectures
6012 with a delay slot. It needs to be stepped twice, once for
6013 the instruction and once for the delay slot. */
6014 int step_through_delay
6015 = gdbarch_single_step_through_delay (gdbarch, frame);
6016
6017 if (step_through_delay)
6018 infrun_debug_printf ("step through delay");
6019
6020 if (ecs->event_thread->control.step_range_end == 0
6021 && step_through_delay)
6022 {
6023 /* The user issued a continue when stopped at a breakpoint.
6024 Set up for another trap and get out of here. */
6025 ecs->event_thread->stepping_over_breakpoint = 1;
6026 keep_going (ecs);
6027 return;
6028 }
6029 else if (step_through_delay)
6030 {
6031 /* The user issued a step when stopped at a breakpoint.
6032 Maybe we should stop, maybe we should not - the delay
6033 slot *might* correspond to a line of source. In any
6034 case, don't decide that here, just set
6035 ecs->stepping_over_breakpoint, making sure we
6036 single-step again before breakpoints are re-inserted. */
6037 ecs->event_thread->stepping_over_breakpoint = 1;
6038 }
6039 }
6040
6041 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6042 handles this event. */
6043 ecs->event_thread->control.stop_bpstat
6044 = bpstat_stop_status (get_current_regcache ()->aspace (),
6045 ecs->event_thread->suspend.stop_pc,
6046 ecs->event_thread, &ecs->ws, stop_chain);
6047
6048 /* Following in case break condition called a
6049 function. */
6050 stop_print_frame = true;
6051
6052 /* This is where we handle "moribund" watchpoints. Unlike
6053 software breakpoints traps, hardware watchpoint traps are
6054 always distinguishable from random traps. If no high-level
6055 watchpoint is associated with the reported stop data address
6056 anymore, then the bpstat does not explain the signal ---
6057 simply make sure to ignore it if `stopped_by_watchpoint' is
6058 set. */
6059
6060 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6061 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6062 GDB_SIGNAL_TRAP)
6063 && stopped_by_watchpoint)
6064 {
6065 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6066 "ignoring");
6067 }
6068
6069 /* NOTE: cagney/2003-03-29: These checks for a random signal
6070 at one stage in the past included checks for an inferior
6071 function call's call dummy's return breakpoint. The original
6072 comment, that went with the test, read:
6073
6074 ``End of a stack dummy. Some systems (e.g. Sony news) give
6075 another signal besides SIGTRAP, so check here as well as
6076 above.''
6077
6078 If someone ever tries to get call dummys on a
6079 non-executable stack to work (where the target would stop
6080 with something like a SIGSEGV), then those tests might need
6081 to be re-instated. Given, however, that the tests were only
6082 enabled when momentary breakpoints were not being used, I
6083 suspect that it won't be the case.
6084
6085 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6086 be necessary for call dummies on a non-executable stack on
6087 SPARC. */
6088
6089 /* See if the breakpoints module can explain the signal. */
6090 random_signal
6091 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6092 ecs->event_thread->suspend.stop_signal);
6093
6094 /* Maybe this was a trap for a software breakpoint that has since
6095 been removed. */
6096 if (random_signal && target_stopped_by_sw_breakpoint ())
6097 {
6098 if (gdbarch_program_breakpoint_here_p (gdbarch,
6099 ecs->event_thread->suspend.stop_pc))
6100 {
6101 struct regcache *regcache;
6102 int decr_pc;
6103
6104 /* Re-adjust PC to what the program would see if GDB was not
6105 debugging it. */
6106 regcache = get_thread_regcache (ecs->event_thread);
6107 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6108 if (decr_pc != 0)
6109 {
6110 gdb::optional<scoped_restore_tmpl<int>>
6111 restore_operation_disable;
6112
6113 if (record_full_is_used ())
6114 restore_operation_disable.emplace
6115 (record_full_gdb_operation_disable_set ());
6116
6117 regcache_write_pc (regcache,
6118 ecs->event_thread->suspend.stop_pc + decr_pc);
6119 }
6120 }
6121 else
6122 {
6123 /* A delayed software breakpoint event. Ignore the trap. */
6124 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
6125 random_signal = 0;
6126 }
6127 }
6128
6129 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6130 has since been removed. */
6131 if (random_signal && target_stopped_by_hw_breakpoint ())
6132 {
6133 /* A delayed hardware breakpoint event. Ignore the trap. */
6134 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6135 "trap, ignoring");
6136 random_signal = 0;
6137 }
6138
6139 /* If not, perhaps stepping/nexting can. */
6140 if (random_signal)
6141 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6142 && currently_stepping (ecs->event_thread));
6143
6144 /* Perhaps the thread hit a single-step breakpoint of _another_
6145 thread. Single-step breakpoints are transparent to the
6146 breakpoints module. */
6147 if (random_signal)
6148 random_signal = !ecs->hit_singlestep_breakpoint;
6149
6150 /* No? Perhaps we got a moribund watchpoint. */
6151 if (random_signal)
6152 random_signal = !stopped_by_watchpoint;
6153
6154 /* Always stop if the user explicitly requested this thread to
6155 remain stopped. */
6156 if (ecs->event_thread->stop_requested)
6157 {
6158 random_signal = 1;
6159 infrun_debug_printf ("user-requested stop");
6160 }
6161
6162 /* For the program's own signals, act according to
6163 the signal handling tables. */
6164
6165 if (random_signal)
6166 {
6167 /* Signal not for debugging purposes. */
6168 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6169 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6170
6171 infrun_debug_printf ("random signal (%s)",
6172 gdb_signal_to_symbol_string (stop_signal));
6173
6174 stopped_by_random_signal = 1;
6175
6176 /* Always stop on signals if we're either just gaining control
6177 of the program, or the user explicitly requested this thread
6178 to remain stopped. */
6179 if (stop_soon != NO_STOP_QUIETLY
6180 || ecs->event_thread->stop_requested
6181 || (!inf->detaching
6182 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6183 {
6184 stop_waiting (ecs);
6185 return;
6186 }
6187
6188 /* Notify observers the signal has "handle print" set. Note we
6189 returned early above if stopping; normal_stop handles the
6190 printing in that case. */
6191 if (signal_print[ecs->event_thread->suspend.stop_signal])
6192 {
6193 /* The signal table tells us to print about this signal. */
6194 target_terminal::ours_for_output ();
6195 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6196 target_terminal::inferior ();
6197 }
6198
6199 /* Clear the signal if it should not be passed. */
6200 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6201 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6202
6203 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6204 && ecs->event_thread->control.trap_expected
6205 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6206 {
6207 /* We were just starting a new sequence, attempting to
6208 single-step off of a breakpoint and expecting a SIGTRAP.
6209 Instead this signal arrives. This signal will take us out
6210 of the stepping range so GDB needs to remember to, when
6211 the signal handler returns, resume stepping off that
6212 breakpoint. */
6213 /* To simplify things, "continue" is forced to use the same
6214 code paths as single-step - set a breakpoint at the
6215 signal return address and then, once hit, step off that
6216 breakpoint. */
6217 infrun_debug_printf ("signal arrived while stepping over breakpoint");
6218
6219 insert_hp_step_resume_breakpoint_at_frame (frame);
6220 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6221 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6222 ecs->event_thread->control.trap_expected = 0;
6223
6224 /* If we were nexting/stepping some other thread, switch to
6225 it, so that we don't continue it, losing control. */
6226 if (!switch_back_to_stepped_thread (ecs))
6227 keep_going (ecs);
6228 return;
6229 }
6230
6231 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6232 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6233 ecs->event_thread)
6234 || ecs->event_thread->control.step_range_end == 1)
6235 && frame_id_eq (get_stack_frame_id (frame),
6236 ecs->event_thread->control.step_stack_frame_id)
6237 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6238 {
6239 /* The inferior is about to take a signal that will take it
6240 out of the single step range. Set a breakpoint at the
6241 current PC (which is presumably where the signal handler
6242 will eventually return) and then allow the inferior to
6243 run free.
6244
6245 Note that this is only needed for a signal delivered
6246 while in the single-step range. Nested signals aren't a
6247 problem as they eventually all return. */
6248 infrun_debug_printf ("signal may take us out of single-step range");
6249
6250 clear_step_over_info ();
6251 insert_hp_step_resume_breakpoint_at_frame (frame);
6252 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6253 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6254 ecs->event_thread->control.trap_expected = 0;
6255 keep_going (ecs);
6256 return;
6257 }
6258
6259 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6260 when either there's a nested signal, or when there's a
6261 pending signal enabled just as the signal handler returns
6262 (leaving the inferior at the step-resume-breakpoint without
6263 actually executing it). Either way continue until the
6264 breakpoint is really hit. */
6265
6266 if (!switch_back_to_stepped_thread (ecs))
6267 {
6268 infrun_debug_printf ("random signal, keep going");
6269
6270 keep_going (ecs);
6271 }
6272 return;
6273 }
6274
6275 process_event_stop_test (ecs);
6276 }
6277
6278 /* Come here when we've got some debug event / signal we can explain
6279 (IOW, not a random signal), and test whether it should cause a
6280 stop, or whether we should resume the inferior (transparently).
6281 E.g., could be a breakpoint whose condition evaluates false; we
6282 could be still stepping within the line; etc. */
6283
6284 static void
6285 process_event_stop_test (struct execution_control_state *ecs)
6286 {
6287 struct symtab_and_line stop_pc_sal;
6288 struct frame_info *frame;
6289 struct gdbarch *gdbarch;
6290 CORE_ADDR jmp_buf_pc;
6291 struct bpstat_what what;
6292
6293 /* Handle cases caused by hitting a breakpoint. */
6294
6295 frame = get_current_frame ();
6296 gdbarch = get_frame_arch (frame);
6297
6298 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6299
6300 if (what.call_dummy)
6301 {
6302 stop_stack_dummy = what.call_dummy;
6303 }
6304
6305 /* A few breakpoint types have callbacks associated (e.g.,
6306 bp_jit_event). Run them now. */
6307 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6308
6309 /* If we hit an internal event that triggers symbol changes, the
6310 current frame will be invalidated within bpstat_what (e.g., if we
6311 hit an internal solib event). Re-fetch it. */
6312 frame = get_current_frame ();
6313 gdbarch = get_frame_arch (frame);
6314
6315 switch (what.main_action)
6316 {
6317 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6318 /* If we hit the breakpoint at longjmp while stepping, we
6319 install a momentary breakpoint at the target of the
6320 jmp_buf. */
6321
6322 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6323
6324 ecs->event_thread->stepping_over_breakpoint = 1;
6325
6326 if (what.is_longjmp)
6327 {
6328 struct value *arg_value;
6329
6330 /* If we set the longjmp breakpoint via a SystemTap probe,
6331 then use it to extract the arguments. The destination PC
6332 is the third argument to the probe. */
6333 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6334 if (arg_value)
6335 {
6336 jmp_buf_pc = value_as_address (arg_value);
6337 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6338 }
6339 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6340 || !gdbarch_get_longjmp_target (gdbarch,
6341 frame, &jmp_buf_pc))
6342 {
6343 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6344 "(!gdbarch_get_longjmp_target)");
6345 keep_going (ecs);
6346 return;
6347 }
6348
6349 /* Insert a breakpoint at resume address. */
6350 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6351 }
6352 else
6353 check_exception_resume (ecs, frame);
6354 keep_going (ecs);
6355 return;
6356
6357 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6358 {
6359 struct frame_info *init_frame;
6360
6361 /* There are several cases to consider.
6362
6363 1. The initiating frame no longer exists. In this case we
6364 must stop, because the exception or longjmp has gone too
6365 far.
6366
6367 2. The initiating frame exists, and is the same as the
6368 current frame. We stop, because the exception or longjmp
6369 has been caught.
6370
6371 3. The initiating frame exists and is different from the
6372 current frame. This means the exception or longjmp has
6373 been caught beneath the initiating frame, so keep going.
6374
6375 4. longjmp breakpoint has been placed just to protect
6376 against stale dummy frames and user is not interested in
6377 stopping around longjmps. */
6378
6379 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6380
6381 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6382 != NULL);
6383 delete_exception_resume_breakpoint (ecs->event_thread);
6384
6385 if (what.is_longjmp)
6386 {
6387 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6388
6389 if (!frame_id_p (ecs->event_thread->initiating_frame))
6390 {
6391 /* Case 4. */
6392 keep_going (ecs);
6393 return;
6394 }
6395 }
6396
6397 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6398
6399 if (init_frame)
6400 {
6401 struct frame_id current_id
6402 = get_frame_id (get_current_frame ());
6403 if (frame_id_eq (current_id,
6404 ecs->event_thread->initiating_frame))
6405 {
6406 /* Case 2. Fall through. */
6407 }
6408 else
6409 {
6410 /* Case 3. */
6411 keep_going (ecs);
6412 return;
6413 }
6414 }
6415
6416 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6417 exists. */
6418 delete_step_resume_breakpoint (ecs->event_thread);
6419
6420 end_stepping_range (ecs);
6421 }
6422 return;
6423
6424 case BPSTAT_WHAT_SINGLE:
6425 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
6426 ecs->event_thread->stepping_over_breakpoint = 1;
6427 /* Still need to check other stuff, at least the case where we
6428 are stepping and step out of the right range. */
6429 break;
6430
6431 case BPSTAT_WHAT_STEP_RESUME:
6432 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
6433
6434 delete_step_resume_breakpoint (ecs->event_thread);
6435 if (ecs->event_thread->control.proceed_to_finish
6436 && execution_direction == EXEC_REVERSE)
6437 {
6438 struct thread_info *tp = ecs->event_thread;
6439
6440 /* We are finishing a function in reverse, and just hit the
6441 step-resume breakpoint at the start address of the
6442 function, and we're almost there -- just need to back up
6443 by one more single-step, which should take us back to the
6444 function call. */
6445 tp->control.step_range_start = tp->control.step_range_end = 1;
6446 keep_going (ecs);
6447 return;
6448 }
6449 fill_in_stop_func (gdbarch, ecs);
6450 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6451 && execution_direction == EXEC_REVERSE)
6452 {
6453 /* We are stepping over a function call in reverse, and just
6454 hit the step-resume breakpoint at the start address of
6455 the function. Go back to single-stepping, which should
6456 take us back to the function call. */
6457 ecs->event_thread->stepping_over_breakpoint = 1;
6458 keep_going (ecs);
6459 return;
6460 }
6461 break;
6462
6463 case BPSTAT_WHAT_STOP_NOISY:
6464 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
6465 stop_print_frame = true;
6466
6467 /* Assume the thread stopped for a breakpoint. We'll still check
6468 whether a/the breakpoint is there when the thread is next
6469 resumed. */
6470 ecs->event_thread->stepping_over_breakpoint = 1;
6471
6472 stop_waiting (ecs);
6473 return;
6474
6475 case BPSTAT_WHAT_STOP_SILENT:
6476 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
6477 stop_print_frame = false;
6478
6479 /* Assume the thread stopped for a breakpoint. We'll still check
6480 whether a/the breakpoint is there when the thread is next
6481 resumed. */
6482 ecs->event_thread->stepping_over_breakpoint = 1;
6483 stop_waiting (ecs);
6484 return;
6485
6486 case BPSTAT_WHAT_HP_STEP_RESUME:
6487 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
6488
6489 delete_step_resume_breakpoint (ecs->event_thread);
6490 if (ecs->event_thread->step_after_step_resume_breakpoint)
6491 {
6492 /* Back when the step-resume breakpoint was inserted, we
6493 were trying to single-step off a breakpoint. Go back to
6494 doing that. */
6495 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6496 ecs->event_thread->stepping_over_breakpoint = 1;
6497 keep_going (ecs);
6498 return;
6499 }
6500 break;
6501
6502 case BPSTAT_WHAT_KEEP_CHECKING:
6503 break;
6504 }
6505
6506 /* If we stepped a permanent breakpoint and we had a high priority
6507 step-resume breakpoint for the address we stepped, but we didn't
6508 hit it, then we must have stepped into the signal handler. The
6509 step-resume was only necessary to catch the case of _not_
6510 stepping into the handler, so delete it, and fall through to
6511 checking whether the step finished. */
6512 if (ecs->event_thread->stepped_breakpoint)
6513 {
6514 struct breakpoint *sr_bp
6515 = ecs->event_thread->control.step_resume_breakpoint;
6516
6517 if (sr_bp != NULL
6518 && sr_bp->loc->permanent
6519 && sr_bp->type == bp_hp_step_resume
6520 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6521 {
6522 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
6523 delete_step_resume_breakpoint (ecs->event_thread);
6524 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6525 }
6526 }
6527
6528 /* We come here if we hit a breakpoint but should not stop for it.
6529 Possibly we also were stepping and should stop for that. So fall
6530 through and test for stepping. But, if not stepping, do not
6531 stop. */
6532
6533 /* In all-stop mode, if we're currently stepping but have stopped in
6534 some other thread, we need to switch back to the stepped thread. */
6535 if (switch_back_to_stepped_thread (ecs))
6536 return;
6537
6538 if (ecs->event_thread->control.step_resume_breakpoint)
6539 {
6540 infrun_debug_printf ("step-resume breakpoint is inserted");
6541
6542 /* Having a step-resume breakpoint overrides anything
6543 else having to do with stepping commands until
6544 that breakpoint is reached. */
6545 keep_going (ecs);
6546 return;
6547 }
6548
6549 if (ecs->event_thread->control.step_range_end == 0)
6550 {
6551 infrun_debug_printf ("no stepping, continue");
6552 /* Likewise if we aren't even stepping. */
6553 keep_going (ecs);
6554 return;
6555 }
6556
6557 /* Re-fetch current thread's frame in case the code above caused
6558 the frame cache to be re-initialized, making our FRAME variable
6559 a dangling pointer. */
6560 frame = get_current_frame ();
6561 gdbarch = get_frame_arch (frame);
6562 fill_in_stop_func (gdbarch, ecs);
6563
6564 /* If stepping through a line, keep going if still within it.
6565
6566 Note that step_range_end is the address of the first instruction
6567 beyond the step range, and NOT the address of the last instruction
6568 within it!
6569
6570 Note also that during reverse execution, we may be stepping
6571 through a function epilogue and therefore must detect when
6572 the current-frame changes in the middle of a line. */
6573
6574 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6575 ecs->event_thread)
6576 && (execution_direction != EXEC_REVERSE
6577 || frame_id_eq (get_frame_id (frame),
6578 ecs->event_thread->control.step_frame_id)))
6579 {
6580 infrun_debug_printf
6581 ("stepping inside range [%s-%s]",
6582 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6583 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6584
6585 /* Tentatively re-enable range stepping; `resume' disables it if
6586 necessary (e.g., if we're stepping over a breakpoint or we
6587 have software watchpoints). */
6588 ecs->event_thread->control.may_range_step = 1;
6589
6590 /* When stepping backward, stop at beginning of line range
6591 (unless it's the function entry point, in which case
6592 keep going back to the call point). */
6593 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6594 if (stop_pc == ecs->event_thread->control.step_range_start
6595 && stop_pc != ecs->stop_func_start
6596 && execution_direction == EXEC_REVERSE)
6597 end_stepping_range (ecs);
6598 else
6599 keep_going (ecs);
6600
6601 return;
6602 }
6603
6604 /* We stepped out of the stepping range. */
6605
6606 /* If we are stepping at the source level and entered the runtime
6607 loader dynamic symbol resolution code...
6608
6609 EXEC_FORWARD: we keep on single stepping until we exit the run
6610 time loader code and reach the callee's address.
6611
6612 EXEC_REVERSE: we've already executed the callee (backward), and
6613 the runtime loader code is handled just like any other
6614 undebuggable function call. Now we need only keep stepping
6615 backward through the trampoline code, and that's handled further
6616 down, so there is nothing for us to do here. */
6617
6618 if (execution_direction != EXEC_REVERSE
6619 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6620 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6621 {
6622 CORE_ADDR pc_after_resolver =
6623 gdbarch_skip_solib_resolver (gdbarch,
6624 ecs->event_thread->suspend.stop_pc);
6625
6626 infrun_debug_printf ("stepped into dynsym resolve code");
6627
6628 if (pc_after_resolver)
6629 {
6630 /* Set up a step-resume breakpoint at the address
6631 indicated by SKIP_SOLIB_RESOLVER. */
6632 symtab_and_line sr_sal;
6633 sr_sal.pc = pc_after_resolver;
6634 sr_sal.pspace = get_frame_program_space (frame);
6635
6636 insert_step_resume_breakpoint_at_sal (gdbarch,
6637 sr_sal, null_frame_id);
6638 }
6639
6640 keep_going (ecs);
6641 return;
6642 }
6643
6644 /* Step through an indirect branch thunk. */
6645 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6646 && gdbarch_in_indirect_branch_thunk (gdbarch,
6647 ecs->event_thread->suspend.stop_pc))
6648 {
6649 infrun_debug_printf ("stepped into indirect branch thunk");
6650 keep_going (ecs);
6651 return;
6652 }
6653
6654 if (ecs->event_thread->control.step_range_end != 1
6655 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6656 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6657 && get_frame_type (frame) == SIGTRAMP_FRAME)
6658 {
6659 infrun_debug_printf ("stepped into signal trampoline");
6660 /* The inferior, while doing a "step" or "next", has ended up in
6661 a signal trampoline (either by a signal being delivered or by
6662 the signal handler returning). Just single-step until the
6663 inferior leaves the trampoline (either by calling the handler
6664 or returning). */
6665 keep_going (ecs);
6666 return;
6667 }
6668
6669 /* If we're in the return path from a shared library trampoline,
6670 we want to proceed through the trampoline when stepping. */
6671 /* macro/2012-04-25: This needs to come before the subroutine
6672 call check below as on some targets return trampolines look
6673 like subroutine calls (MIPS16 return thunks). */
6674 if (gdbarch_in_solib_return_trampoline (gdbarch,
6675 ecs->event_thread->suspend.stop_pc,
6676 ecs->stop_func_name)
6677 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6678 {
6679 /* Determine where this trampoline returns. */
6680 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6681 CORE_ADDR real_stop_pc
6682 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6683
6684 infrun_debug_printf ("stepped into solib return tramp");
6685
6686 /* Only proceed through if we know where it's going. */
6687 if (real_stop_pc)
6688 {
6689 /* And put the step-breakpoint there and go until there. */
6690 symtab_and_line sr_sal;
6691 sr_sal.pc = real_stop_pc;
6692 sr_sal.section = find_pc_overlay (sr_sal.pc);
6693 sr_sal.pspace = get_frame_program_space (frame);
6694
6695 /* Do not specify what the fp should be when we stop since
6696 on some machines the prologue is where the new fp value
6697 is established. */
6698 insert_step_resume_breakpoint_at_sal (gdbarch,
6699 sr_sal, null_frame_id);
6700
6701 /* Restart without fiddling with the step ranges or
6702 other state. */
6703 keep_going (ecs);
6704 return;
6705 }
6706 }
6707
6708 /* Check for subroutine calls. The check for the current frame
6709 equalling the step ID is not necessary - the check of the
6710 previous frame's ID is sufficient - but it is a common case and
6711 cheaper than checking the previous frame's ID.
6712
6713 NOTE: frame_id_eq will never report two invalid frame IDs as
6714 being equal, so to get into this block, both the current and
6715 previous frame must have valid frame IDs. */
6716 /* The outer_frame_id check is a heuristic to detect stepping
6717 through startup code. If we step over an instruction which
6718 sets the stack pointer from an invalid value to a valid value,
6719 we may detect that as a subroutine call from the mythical
6720 "outermost" function. This could be fixed by marking
6721 outermost frames as !stack_p,code_p,special_p. Then the
6722 initial outermost frame, before sp was valid, would
6723 have code_addr == &_start. See the comment in frame_id_eq
6724 for more. */
6725 if (!frame_id_eq (get_stack_frame_id (frame),
6726 ecs->event_thread->control.step_stack_frame_id)
6727 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6728 ecs->event_thread->control.step_stack_frame_id)
6729 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6730 outer_frame_id)
6731 || (ecs->event_thread->control.step_start_function
6732 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6733 {
6734 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6735 CORE_ADDR real_stop_pc;
6736
6737 infrun_debug_printf ("stepped into subroutine");
6738
6739 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6740 {
6741 /* I presume that step_over_calls is only 0 when we're
6742 supposed to be stepping at the assembly language level
6743 ("stepi"). Just stop. */
6744 /* And this works the same backward as frontward. MVS */
6745 end_stepping_range (ecs);
6746 return;
6747 }
6748
6749 /* Reverse stepping through solib trampolines. */
6750
6751 if (execution_direction == EXEC_REVERSE
6752 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6753 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6754 || (ecs->stop_func_start == 0
6755 && in_solib_dynsym_resolve_code (stop_pc))))
6756 {
6757 /* Any solib trampoline code can be handled in reverse
6758 by simply continuing to single-step. We have already
6759 executed the solib function (backwards), and a few
6760 steps will take us back through the trampoline to the
6761 caller. */
6762 keep_going (ecs);
6763 return;
6764 }
6765
6766 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6767 {
6768 /* We're doing a "next".
6769
6770 Normal (forward) execution: set a breakpoint at the
6771 callee's return address (the address at which the caller
6772 will resume).
6773
6774 Reverse (backward) execution. set the step-resume
6775 breakpoint at the start of the function that we just
6776 stepped into (backwards), and continue to there. When we
6777 get there, we'll need to single-step back to the caller. */
6778
6779 if (execution_direction == EXEC_REVERSE)
6780 {
6781 /* If we're already at the start of the function, we've either
6782 just stepped backward into a single instruction function,
6783 or stepped back out of a signal handler to the first instruction
6784 of the function. Just keep going, which will single-step back
6785 to the caller. */
6786 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6787 {
6788 /* Normal function call return (static or dynamic). */
6789 symtab_and_line sr_sal;
6790 sr_sal.pc = ecs->stop_func_start;
6791 sr_sal.pspace = get_frame_program_space (frame);
6792 insert_step_resume_breakpoint_at_sal (gdbarch,
6793 sr_sal, null_frame_id);
6794 }
6795 }
6796 else
6797 insert_step_resume_breakpoint_at_caller (frame);
6798
6799 keep_going (ecs);
6800 return;
6801 }
6802
6803 /* If we are in a function call trampoline (a stub between the
6804 calling routine and the real function), locate the real
6805 function. That's what tells us (a) whether we want to step
6806 into it at all, and (b) what prologue we want to run to the
6807 end of, if we do step into it. */
6808 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6809 if (real_stop_pc == 0)
6810 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6811 if (real_stop_pc != 0)
6812 ecs->stop_func_start = real_stop_pc;
6813
6814 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6815 {
6816 symtab_and_line sr_sal;
6817 sr_sal.pc = ecs->stop_func_start;
6818 sr_sal.pspace = get_frame_program_space (frame);
6819
6820 insert_step_resume_breakpoint_at_sal (gdbarch,
6821 sr_sal, null_frame_id);
6822 keep_going (ecs);
6823 return;
6824 }
6825
6826 /* If we have line number information for the function we are
6827 thinking of stepping into and the function isn't on the skip
6828 list, step into it.
6829
6830 If there are several symtabs at that PC (e.g. with include
6831 files), just want to know whether *any* of them have line
6832 numbers. find_pc_line handles this. */
6833 {
6834 struct symtab_and_line tmp_sal;
6835
6836 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6837 if (tmp_sal.line != 0
6838 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6839 tmp_sal)
6840 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6841 {
6842 if (execution_direction == EXEC_REVERSE)
6843 handle_step_into_function_backward (gdbarch, ecs);
6844 else
6845 handle_step_into_function (gdbarch, ecs);
6846 return;
6847 }
6848 }
6849
6850 /* If we have no line number and the step-stop-if-no-debug is
6851 set, we stop the step so that the user has a chance to switch
6852 in assembly mode. */
6853 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6854 && step_stop_if_no_debug)
6855 {
6856 end_stepping_range (ecs);
6857 return;
6858 }
6859
6860 if (execution_direction == EXEC_REVERSE)
6861 {
6862 /* If we're already at the start of the function, we've either just
6863 stepped backward into a single instruction function without line
6864 number info, or stepped back out of a signal handler to the first
6865 instruction of the function without line number info. Just keep
6866 going, which will single-step back to the caller. */
6867 if (ecs->stop_func_start != stop_pc)
6868 {
6869 /* Set a breakpoint at callee's start address.
6870 From there we can step once and be back in the caller. */
6871 symtab_and_line sr_sal;
6872 sr_sal.pc = ecs->stop_func_start;
6873 sr_sal.pspace = get_frame_program_space (frame);
6874 insert_step_resume_breakpoint_at_sal (gdbarch,
6875 sr_sal, null_frame_id);
6876 }
6877 }
6878 else
6879 /* Set a breakpoint at callee's return address (the address
6880 at which the caller will resume). */
6881 insert_step_resume_breakpoint_at_caller (frame);
6882
6883 keep_going (ecs);
6884 return;
6885 }
6886
6887 /* Reverse stepping through solib trampolines. */
6888
6889 if (execution_direction == EXEC_REVERSE
6890 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6891 {
6892 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6893
6894 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6895 || (ecs->stop_func_start == 0
6896 && in_solib_dynsym_resolve_code (stop_pc)))
6897 {
6898 /* Any solib trampoline code can be handled in reverse
6899 by simply continuing to single-step. We have already
6900 executed the solib function (backwards), and a few
6901 steps will take us back through the trampoline to the
6902 caller. */
6903 keep_going (ecs);
6904 return;
6905 }
6906 else if (in_solib_dynsym_resolve_code (stop_pc))
6907 {
6908 /* Stepped backward into the solib dynsym resolver.
6909 Set a breakpoint at its start and continue, then
6910 one more step will take us out. */
6911 symtab_and_line sr_sal;
6912 sr_sal.pc = ecs->stop_func_start;
6913 sr_sal.pspace = get_frame_program_space (frame);
6914 insert_step_resume_breakpoint_at_sal (gdbarch,
6915 sr_sal, null_frame_id);
6916 keep_going (ecs);
6917 return;
6918 }
6919 }
6920
6921 /* This always returns the sal for the inner-most frame when we are in a
6922 stack of inlined frames, even if GDB actually believes that it is in a
6923 more outer frame. This is checked for below by calls to
6924 inline_skipped_frames. */
6925 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6926
6927 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6928 the trampoline processing logic, however, there are some trampolines
6929 that have no names, so we should do trampoline handling first. */
6930 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6931 && ecs->stop_func_name == NULL
6932 && stop_pc_sal.line == 0)
6933 {
6934 infrun_debug_printf ("stepped into undebuggable function");
6935
6936 /* The inferior just stepped into, or returned to, an
6937 undebuggable function (where there is no debugging information
6938 and no line number corresponding to the address where the
6939 inferior stopped). Since we want to skip this kind of code,
6940 we keep going until the inferior returns from this
6941 function - unless the user has asked us not to (via
6942 set step-mode) or we no longer know how to get back
6943 to the call site. */
6944 if (step_stop_if_no_debug
6945 || !frame_id_p (frame_unwind_caller_id (frame)))
6946 {
6947 /* If we have no line number and the step-stop-if-no-debug
6948 is set, we stop the step so that the user has a chance to
6949 switch in assembly mode. */
6950 end_stepping_range (ecs);
6951 return;
6952 }
6953 else
6954 {
6955 /* Set a breakpoint at callee's return address (the address
6956 at which the caller will resume). */
6957 insert_step_resume_breakpoint_at_caller (frame);
6958 keep_going (ecs);
6959 return;
6960 }
6961 }
6962
6963 if (ecs->event_thread->control.step_range_end == 1)
6964 {
6965 /* It is stepi or nexti. We always want to stop stepping after
6966 one instruction. */
6967 infrun_debug_printf ("stepi/nexti");
6968 end_stepping_range (ecs);
6969 return;
6970 }
6971
6972 if (stop_pc_sal.line == 0)
6973 {
6974 /* We have no line number information. That means to stop
6975 stepping (does this always happen right after one instruction,
6976 when we do "s" in a function with no line numbers,
6977 or can this happen as a result of a return or longjmp?). */
6978 infrun_debug_printf ("line number info");
6979 end_stepping_range (ecs);
6980 return;
6981 }
6982
6983 /* Look for "calls" to inlined functions, part one. If the inline
6984 frame machinery detected some skipped call sites, we have entered
6985 a new inline function. */
6986
6987 if (frame_id_eq (get_frame_id (get_current_frame ()),
6988 ecs->event_thread->control.step_frame_id)
6989 && inline_skipped_frames (ecs->event_thread))
6990 {
6991 infrun_debug_printf ("stepped into inlined function");
6992
6993 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6994
6995 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6996 {
6997 /* For "step", we're going to stop. But if the call site
6998 for this inlined function is on the same source line as
6999 we were previously stepping, go down into the function
7000 first. Otherwise stop at the call site. */
7001
7002 if (call_sal.line == ecs->event_thread->current_line
7003 && call_sal.symtab == ecs->event_thread->current_symtab)
7004 {
7005 step_into_inline_frame (ecs->event_thread);
7006 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7007 {
7008 keep_going (ecs);
7009 return;
7010 }
7011 }
7012
7013 end_stepping_range (ecs);
7014 return;
7015 }
7016 else
7017 {
7018 /* For "next", we should stop at the call site if it is on a
7019 different source line. Otherwise continue through the
7020 inlined function. */
7021 if (call_sal.line == ecs->event_thread->current_line
7022 && call_sal.symtab == ecs->event_thread->current_symtab)
7023 keep_going (ecs);
7024 else
7025 end_stepping_range (ecs);
7026 return;
7027 }
7028 }
7029
7030 /* Look for "calls" to inlined functions, part two. If we are still
7031 in the same real function we were stepping through, but we have
7032 to go further up to find the exact frame ID, we are stepping
7033 through a more inlined call beyond its call site. */
7034
7035 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7036 && !frame_id_eq (get_frame_id (get_current_frame ()),
7037 ecs->event_thread->control.step_frame_id)
7038 && stepped_in_from (get_current_frame (),
7039 ecs->event_thread->control.step_frame_id))
7040 {
7041 infrun_debug_printf ("stepping through inlined function");
7042
7043 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7044 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7045 keep_going (ecs);
7046 else
7047 end_stepping_range (ecs);
7048 return;
7049 }
7050
7051 bool refresh_step_info = true;
7052 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7053 && (ecs->event_thread->current_line != stop_pc_sal.line
7054 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7055 {
7056 if (stop_pc_sal.is_stmt)
7057 {
7058 /* We are at the start of a different line. So stop. Note that
7059 we don't stop if we step into the middle of a different line.
7060 That is said to make things like for (;;) statements work
7061 better. */
7062 infrun_debug_printf ("stepped to a different line");
7063 end_stepping_range (ecs);
7064 return;
7065 }
7066 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7067 ecs->event_thread->control.step_frame_id))
7068 {
7069 /* We are at the start of a different line, however, this line is
7070 not marked as a statement, and we have not changed frame. We
7071 ignore this line table entry, and continue stepping forward,
7072 looking for a better place to stop. */
7073 refresh_step_info = false;
7074 infrun_debug_printf ("stepped to a different line, but "
7075 "it's not the start of a statement");
7076 }
7077 }
7078
7079 /* We aren't done stepping.
7080
7081 Optimize by setting the stepping range to the line.
7082 (We might not be in the original line, but if we entered a
7083 new line in mid-statement, we continue stepping. This makes
7084 things like for(;;) statements work better.)
7085
7086 If we entered a SAL that indicates a non-statement line table entry,
7087 then we update the stepping range, but we don't update the step info,
7088 which includes things like the line number we are stepping away from.
7089 This means we will stop when we find a line table entry that is marked
7090 as is-statement, even if it matches the non-statement one we just
7091 stepped into. */
7092
7093 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7094 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7095 ecs->event_thread->control.may_range_step = 1;
7096 if (refresh_step_info)
7097 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7098
7099 infrun_debug_printf ("keep going");
7100 keep_going (ecs);
7101 }
7102
7103 /* In all-stop mode, if we're currently stepping but have stopped in
7104 some other thread, we may need to switch back to the stepped
7105 thread. Returns true we set the inferior running, false if we left
7106 it stopped (and the event needs further processing). */
7107
7108 static bool
7109 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7110 {
7111 if (!target_is_non_stop_p ())
7112 {
7113 struct thread_info *stepping_thread;
7114
7115 /* If any thread is blocked on some internal breakpoint, and we
7116 simply need to step over that breakpoint to get it going
7117 again, do that first. */
7118
7119 /* However, if we see an event for the stepping thread, then we
7120 know all other threads have been moved past their breakpoints
7121 already. Let the caller check whether the step is finished,
7122 etc., before deciding to move it past a breakpoint. */
7123 if (ecs->event_thread->control.step_range_end != 0)
7124 return false;
7125
7126 /* Check if the current thread is blocked on an incomplete
7127 step-over, interrupted by a random signal. */
7128 if (ecs->event_thread->control.trap_expected
7129 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7130 {
7131 infrun_debug_printf
7132 ("need to finish step-over of [%s]",
7133 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7134 keep_going (ecs);
7135 return true;
7136 }
7137
7138 /* Check if the current thread is blocked by a single-step
7139 breakpoint of another thread. */
7140 if (ecs->hit_singlestep_breakpoint)
7141 {
7142 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7143 target_pid_to_str (ecs->ptid).c_str ());
7144 keep_going (ecs);
7145 return true;
7146 }
7147
7148 /* If this thread needs yet another step-over (e.g., stepping
7149 through a delay slot), do it first before moving on to
7150 another thread. */
7151 if (thread_still_needs_step_over (ecs->event_thread))
7152 {
7153 infrun_debug_printf
7154 ("thread [%s] still needs step-over",
7155 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7156 keep_going (ecs);
7157 return true;
7158 }
7159
7160 /* If scheduler locking applies even if not stepping, there's no
7161 need to walk over threads. Above we've checked whether the
7162 current thread is stepping. If some other thread not the
7163 event thread is stepping, then it must be that scheduler
7164 locking is not in effect. */
7165 if (schedlock_applies (ecs->event_thread))
7166 return false;
7167
7168 /* Otherwise, we no longer expect a trap in the current thread.
7169 Clear the trap_expected flag before switching back -- this is
7170 what keep_going does as well, if we call it. */
7171 ecs->event_thread->control.trap_expected = 0;
7172
7173 /* Likewise, clear the signal if it should not be passed. */
7174 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7175 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7176
7177 /* Do all pending step-overs before actually proceeding with
7178 step/next/etc. */
7179 if (start_step_over ())
7180 {
7181 prepare_to_wait (ecs);
7182 return true;
7183 }
7184
7185 /* Look for the stepping/nexting thread. */
7186 stepping_thread = NULL;
7187
7188 for (thread_info *tp : all_non_exited_threads ())
7189 {
7190 switch_to_thread_no_regs (tp);
7191
7192 /* Ignore threads of processes the caller is not
7193 resuming. */
7194 if (!sched_multi
7195 && (tp->inf->process_target () != ecs->target
7196 || tp->inf->pid != ecs->ptid.pid ()))
7197 continue;
7198
7199 /* When stepping over a breakpoint, we lock all threads
7200 except the one that needs to move past the breakpoint.
7201 If a non-event thread has this set, the "incomplete
7202 step-over" check above should have caught it earlier. */
7203 if (tp->control.trap_expected)
7204 {
7205 internal_error (__FILE__, __LINE__,
7206 "[%s] has inconsistent state: "
7207 "trap_expected=%d\n",
7208 target_pid_to_str (tp->ptid).c_str (),
7209 tp->control.trap_expected);
7210 }
7211
7212 /* Did we find the stepping thread? */
7213 if (tp->control.step_range_end)
7214 {
7215 /* Yep. There should only one though. */
7216 gdb_assert (stepping_thread == NULL);
7217
7218 /* The event thread is handled at the top, before we
7219 enter this loop. */
7220 gdb_assert (tp != ecs->event_thread);
7221
7222 /* If some thread other than the event thread is
7223 stepping, then scheduler locking can't be in effect,
7224 otherwise we wouldn't have resumed the current event
7225 thread in the first place. */
7226 gdb_assert (!schedlock_applies (tp));
7227
7228 stepping_thread = tp;
7229 }
7230 }
7231
7232 if (stepping_thread != NULL)
7233 {
7234 infrun_debug_printf ("switching back to stepped thread");
7235
7236 if (keep_going_stepped_thread (stepping_thread))
7237 {
7238 prepare_to_wait (ecs);
7239 return true;
7240 }
7241 }
7242
7243 switch_to_thread (ecs->event_thread);
7244 }
7245
7246 return false;
7247 }
7248
7249 /* Set a previously stepped thread back to stepping. Returns true on
7250 success, false if the resume is not possible (e.g., the thread
7251 vanished). */
7252
7253 static bool
7254 keep_going_stepped_thread (struct thread_info *tp)
7255 {
7256 struct frame_info *frame;
7257 struct execution_control_state ecss;
7258 struct execution_control_state *ecs = &ecss;
7259
7260 /* If the stepping thread exited, then don't try to switch back and
7261 resume it, which could fail in several different ways depending
7262 on the target. Instead, just keep going.
7263
7264 We can find a stepping dead thread in the thread list in two
7265 cases:
7266
7267 - The target supports thread exit events, and when the target
7268 tries to delete the thread from the thread list, inferior_ptid
7269 pointed at the exiting thread. In such case, calling
7270 delete_thread does not really remove the thread from the list;
7271 instead, the thread is left listed, with 'exited' state.
7272
7273 - The target's debug interface does not support thread exit
7274 events, and so we have no idea whatsoever if the previously
7275 stepping thread is still alive. For that reason, we need to
7276 synchronously query the target now. */
7277
7278 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7279 {
7280 infrun_debug_printf ("not resuming previously stepped thread, it has "
7281 "vanished");
7282
7283 delete_thread (tp);
7284 return false;
7285 }
7286
7287 infrun_debug_printf ("resuming previously stepped thread");
7288
7289 reset_ecs (ecs, tp);
7290 switch_to_thread (tp);
7291
7292 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7293 frame = get_current_frame ();
7294
7295 /* If the PC of the thread we were trying to single-step has
7296 changed, then that thread has trapped or been signaled, but the
7297 event has not been reported to GDB yet. Re-poll the target
7298 looking for this particular thread's event (i.e. temporarily
7299 enable schedlock) by:
7300
7301 - setting a break at the current PC
7302 - resuming that particular thread, only (by setting trap
7303 expected)
7304
7305 This prevents us continuously moving the single-step breakpoint
7306 forward, one instruction at a time, overstepping. */
7307
7308 if (tp->suspend.stop_pc != tp->prev_pc)
7309 {
7310 ptid_t resume_ptid;
7311
7312 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7313 paddress (target_gdbarch (), tp->prev_pc),
7314 paddress (target_gdbarch (), tp->suspend.stop_pc));
7315
7316 /* Clear the info of the previous step-over, as it's no longer
7317 valid (if the thread was trying to step over a breakpoint, it
7318 has already succeeded). It's what keep_going would do too,
7319 if we called it. Do this before trying to insert the sss
7320 breakpoint, otherwise if we were previously trying to step
7321 over this exact address in another thread, the breakpoint is
7322 skipped. */
7323 clear_step_over_info ();
7324 tp->control.trap_expected = 0;
7325
7326 insert_single_step_breakpoint (get_frame_arch (frame),
7327 get_frame_address_space (frame),
7328 tp->suspend.stop_pc);
7329
7330 tp->resumed = true;
7331 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7332 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
7333 }
7334 else
7335 {
7336 infrun_debug_printf ("expected thread still hasn't advanced");
7337
7338 keep_going_pass_signal (ecs);
7339 }
7340
7341 return true;
7342 }
7343
7344 /* Is thread TP in the middle of (software or hardware)
7345 single-stepping? (Note the result of this function must never be
7346 passed directly as target_resume's STEP parameter.) */
7347
7348 static bool
7349 currently_stepping (struct thread_info *tp)
7350 {
7351 return ((tp->control.step_range_end
7352 && tp->control.step_resume_breakpoint == NULL)
7353 || tp->control.trap_expected
7354 || tp->stepped_breakpoint
7355 || bpstat_should_step ());
7356 }
7357
7358 /* Inferior has stepped into a subroutine call with source code that
7359 we should not step over. Do step to the first line of code in
7360 it. */
7361
7362 static void
7363 handle_step_into_function (struct gdbarch *gdbarch,
7364 struct execution_control_state *ecs)
7365 {
7366 fill_in_stop_func (gdbarch, ecs);
7367
7368 compunit_symtab *cust
7369 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7370 if (cust != NULL && compunit_language (cust) != language_asm)
7371 ecs->stop_func_start
7372 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7373
7374 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7375 /* Use the step_resume_break to step until the end of the prologue,
7376 even if that involves jumps (as it seems to on the vax under
7377 4.2). */
7378 /* If the prologue ends in the middle of a source line, continue to
7379 the end of that source line (if it is still within the function).
7380 Otherwise, just go to end of prologue. */
7381 if (stop_func_sal.end
7382 && stop_func_sal.pc != ecs->stop_func_start
7383 && stop_func_sal.end < ecs->stop_func_end)
7384 ecs->stop_func_start = stop_func_sal.end;
7385
7386 /* Architectures which require breakpoint adjustment might not be able
7387 to place a breakpoint at the computed address. If so, the test
7388 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7389 ecs->stop_func_start to an address at which a breakpoint may be
7390 legitimately placed.
7391
7392 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7393 made, GDB will enter an infinite loop when stepping through
7394 optimized code consisting of VLIW instructions which contain
7395 subinstructions corresponding to different source lines. On
7396 FR-V, it's not permitted to place a breakpoint on any but the
7397 first subinstruction of a VLIW instruction. When a breakpoint is
7398 set, GDB will adjust the breakpoint address to the beginning of
7399 the VLIW instruction. Thus, we need to make the corresponding
7400 adjustment here when computing the stop address. */
7401
7402 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7403 {
7404 ecs->stop_func_start
7405 = gdbarch_adjust_breakpoint_address (gdbarch,
7406 ecs->stop_func_start);
7407 }
7408
7409 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7410 {
7411 /* We are already there: stop now. */
7412 end_stepping_range (ecs);
7413 return;
7414 }
7415 else
7416 {
7417 /* Put the step-breakpoint there and go until there. */
7418 symtab_and_line sr_sal;
7419 sr_sal.pc = ecs->stop_func_start;
7420 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7421 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7422
7423 /* Do not specify what the fp should be when we stop since on
7424 some machines the prologue is where the new fp value is
7425 established. */
7426 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7427
7428 /* And make sure stepping stops right away then. */
7429 ecs->event_thread->control.step_range_end
7430 = ecs->event_thread->control.step_range_start;
7431 }
7432 keep_going (ecs);
7433 }
7434
7435 /* Inferior has stepped backward into a subroutine call with source
7436 code that we should not step over. Do step to the beginning of the
7437 last line of code in it. */
7438
7439 static void
7440 handle_step_into_function_backward (struct gdbarch *gdbarch,
7441 struct execution_control_state *ecs)
7442 {
7443 struct compunit_symtab *cust;
7444 struct symtab_and_line stop_func_sal;
7445
7446 fill_in_stop_func (gdbarch, ecs);
7447
7448 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7449 if (cust != NULL && compunit_language (cust) != language_asm)
7450 ecs->stop_func_start
7451 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7452
7453 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7454
7455 /* OK, we're just going to keep stepping here. */
7456 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7457 {
7458 /* We're there already. Just stop stepping now. */
7459 end_stepping_range (ecs);
7460 }
7461 else
7462 {
7463 /* Else just reset the step range and keep going.
7464 No step-resume breakpoint, they don't work for
7465 epilogues, which can have multiple entry paths. */
7466 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7467 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7468 keep_going (ecs);
7469 }
7470 return;
7471 }
7472
7473 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7474 This is used to both functions and to skip over code. */
7475
7476 static void
7477 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7478 struct symtab_and_line sr_sal,
7479 struct frame_id sr_id,
7480 enum bptype sr_type)
7481 {
7482 /* There should never be more than one step-resume or longjmp-resume
7483 breakpoint per thread, so we should never be setting a new
7484 step_resume_breakpoint when one is already active. */
7485 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7486 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7487
7488 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7489 paddress (gdbarch, sr_sal.pc));
7490
7491 inferior_thread ()->control.step_resume_breakpoint
7492 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7493 }
7494
7495 void
7496 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7497 struct symtab_and_line sr_sal,
7498 struct frame_id sr_id)
7499 {
7500 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7501 sr_sal, sr_id,
7502 bp_step_resume);
7503 }
7504
7505 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7506 This is used to skip a potential signal handler.
7507
7508 This is called with the interrupted function's frame. The signal
7509 handler, when it returns, will resume the interrupted function at
7510 RETURN_FRAME.pc. */
7511
7512 static void
7513 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7514 {
7515 gdb_assert (return_frame != NULL);
7516
7517 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7518
7519 symtab_and_line sr_sal;
7520 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7521 sr_sal.section = find_pc_overlay (sr_sal.pc);
7522 sr_sal.pspace = get_frame_program_space (return_frame);
7523
7524 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7525 get_stack_frame_id (return_frame),
7526 bp_hp_step_resume);
7527 }
7528
7529 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7530 is used to skip a function after stepping into it (for "next" or if
7531 the called function has no debugging information).
7532
7533 The current function has almost always been reached by single
7534 stepping a call or return instruction. NEXT_FRAME belongs to the
7535 current function, and the breakpoint will be set at the caller's
7536 resume address.
7537
7538 This is a separate function rather than reusing
7539 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7540 get_prev_frame, which may stop prematurely (see the implementation
7541 of frame_unwind_caller_id for an example). */
7542
7543 static void
7544 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7545 {
7546 /* We shouldn't have gotten here if we don't know where the call site
7547 is. */
7548 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7549
7550 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7551
7552 symtab_and_line sr_sal;
7553 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7554 frame_unwind_caller_pc (next_frame));
7555 sr_sal.section = find_pc_overlay (sr_sal.pc);
7556 sr_sal.pspace = frame_unwind_program_space (next_frame);
7557
7558 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7559 frame_unwind_caller_id (next_frame));
7560 }
7561
7562 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7563 new breakpoint at the target of a jmp_buf. The handling of
7564 longjmp-resume uses the same mechanisms used for handling
7565 "step-resume" breakpoints. */
7566
7567 static void
7568 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7569 {
7570 /* There should never be more than one longjmp-resume breakpoint per
7571 thread, so we should never be setting a new
7572 longjmp_resume_breakpoint when one is already active. */
7573 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7574
7575 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7576 paddress (gdbarch, pc));
7577
7578 inferior_thread ()->control.exception_resume_breakpoint =
7579 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7580 }
7581
7582 /* Insert an exception resume breakpoint. TP is the thread throwing
7583 the exception. The block B is the block of the unwinder debug hook
7584 function. FRAME is the frame corresponding to the call to this
7585 function. SYM is the symbol of the function argument holding the
7586 target PC of the exception. */
7587
7588 static void
7589 insert_exception_resume_breakpoint (struct thread_info *tp,
7590 const struct block *b,
7591 struct frame_info *frame,
7592 struct symbol *sym)
7593 {
7594 try
7595 {
7596 struct block_symbol vsym;
7597 struct value *value;
7598 CORE_ADDR handler;
7599 struct breakpoint *bp;
7600
7601 vsym = lookup_symbol_search_name (sym->search_name (),
7602 b, VAR_DOMAIN);
7603 value = read_var_value (vsym.symbol, vsym.block, frame);
7604 /* If the value was optimized out, revert to the old behavior. */
7605 if (! value_optimized_out (value))
7606 {
7607 handler = value_as_address (value);
7608
7609 infrun_debug_printf ("exception resume at %lx",
7610 (unsigned long) handler);
7611
7612 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7613 handler,
7614 bp_exception_resume).release ();
7615
7616 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7617 frame = NULL;
7618
7619 bp->thread = tp->global_num;
7620 inferior_thread ()->control.exception_resume_breakpoint = bp;
7621 }
7622 }
7623 catch (const gdb_exception_error &e)
7624 {
7625 /* We want to ignore errors here. */
7626 }
7627 }
7628
7629 /* A helper for check_exception_resume that sets an
7630 exception-breakpoint based on a SystemTap probe. */
7631
7632 static void
7633 insert_exception_resume_from_probe (struct thread_info *tp,
7634 const struct bound_probe *probe,
7635 struct frame_info *frame)
7636 {
7637 struct value *arg_value;
7638 CORE_ADDR handler;
7639 struct breakpoint *bp;
7640
7641 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7642 if (!arg_value)
7643 return;
7644
7645 handler = value_as_address (arg_value);
7646
7647 infrun_debug_printf ("exception resume at %s",
7648 paddress (probe->objfile->arch (), handler));
7649
7650 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7651 handler, bp_exception_resume).release ();
7652 bp->thread = tp->global_num;
7653 inferior_thread ()->control.exception_resume_breakpoint = bp;
7654 }
7655
7656 /* This is called when an exception has been intercepted. Check to
7657 see whether the exception's destination is of interest, and if so,
7658 set an exception resume breakpoint there. */
7659
7660 static void
7661 check_exception_resume (struct execution_control_state *ecs,
7662 struct frame_info *frame)
7663 {
7664 struct bound_probe probe;
7665 struct symbol *func;
7666
7667 /* First see if this exception unwinding breakpoint was set via a
7668 SystemTap probe point. If so, the probe has two arguments: the
7669 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7670 set a breakpoint there. */
7671 probe = find_probe_by_pc (get_frame_pc (frame));
7672 if (probe.prob)
7673 {
7674 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7675 return;
7676 }
7677
7678 func = get_frame_function (frame);
7679 if (!func)
7680 return;
7681
7682 try
7683 {
7684 const struct block *b;
7685 struct block_iterator iter;
7686 struct symbol *sym;
7687 int argno = 0;
7688
7689 /* The exception breakpoint is a thread-specific breakpoint on
7690 the unwinder's debug hook, declared as:
7691
7692 void _Unwind_DebugHook (void *cfa, void *handler);
7693
7694 The CFA argument indicates the frame to which control is
7695 about to be transferred. HANDLER is the destination PC.
7696
7697 We ignore the CFA and set a temporary breakpoint at HANDLER.
7698 This is not extremely efficient but it avoids issues in gdb
7699 with computing the DWARF CFA, and it also works even in weird
7700 cases such as throwing an exception from inside a signal
7701 handler. */
7702
7703 b = SYMBOL_BLOCK_VALUE (func);
7704 ALL_BLOCK_SYMBOLS (b, iter, sym)
7705 {
7706 if (!SYMBOL_IS_ARGUMENT (sym))
7707 continue;
7708
7709 if (argno == 0)
7710 ++argno;
7711 else
7712 {
7713 insert_exception_resume_breakpoint (ecs->event_thread,
7714 b, frame, sym);
7715 break;
7716 }
7717 }
7718 }
7719 catch (const gdb_exception_error &e)
7720 {
7721 }
7722 }
7723
7724 static void
7725 stop_waiting (struct execution_control_state *ecs)
7726 {
7727 infrun_debug_printf ("stop_waiting");
7728
7729 /* Let callers know we don't want to wait for the inferior anymore. */
7730 ecs->wait_some_more = 0;
7731
7732 /* If all-stop, but there exists a non-stop target, stop all
7733 threads now that we're presenting the stop to the user. */
7734 if (!non_stop && exists_non_stop_target ())
7735 stop_all_threads ();
7736 }
7737
7738 /* Like keep_going, but passes the signal to the inferior, even if the
7739 signal is set to nopass. */
7740
7741 static void
7742 keep_going_pass_signal (struct execution_control_state *ecs)
7743 {
7744 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7745 gdb_assert (!ecs->event_thread->resumed);
7746
7747 /* Save the pc before execution, to compare with pc after stop. */
7748 ecs->event_thread->prev_pc
7749 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
7750
7751 if (ecs->event_thread->control.trap_expected)
7752 {
7753 struct thread_info *tp = ecs->event_thread;
7754
7755 infrun_debug_printf ("%s has trap_expected set, "
7756 "resuming to collect trap",
7757 target_pid_to_str (tp->ptid).c_str ());
7758
7759 /* We haven't yet gotten our trap, and either: intercepted a
7760 non-signal event (e.g., a fork); or took a signal which we
7761 are supposed to pass through to the inferior. Simply
7762 continue. */
7763 resume (ecs->event_thread->suspend.stop_signal);
7764 }
7765 else if (step_over_info_valid_p ())
7766 {
7767 /* Another thread is stepping over a breakpoint in-line. If
7768 this thread needs a step-over too, queue the request. In
7769 either case, this resume must be deferred for later. */
7770 struct thread_info *tp = ecs->event_thread;
7771
7772 if (ecs->hit_singlestep_breakpoint
7773 || thread_still_needs_step_over (tp))
7774 {
7775 infrun_debug_printf ("step-over already in progress: "
7776 "step-over for %s deferred",
7777 target_pid_to_str (tp->ptid).c_str ());
7778 thread_step_over_chain_enqueue (tp);
7779 }
7780 else
7781 {
7782 infrun_debug_printf ("step-over in progress: resume of %s deferred",
7783 target_pid_to_str (tp->ptid).c_str ());
7784 }
7785 }
7786 else
7787 {
7788 struct regcache *regcache = get_current_regcache ();
7789 int remove_bp;
7790 int remove_wps;
7791 step_over_what step_what;
7792
7793 /* Either the trap was not expected, but we are continuing
7794 anyway (if we got a signal, the user asked it be passed to
7795 the child)
7796 -- or --
7797 We got our expected trap, but decided we should resume from
7798 it.
7799
7800 We're going to run this baby now!
7801
7802 Note that insert_breakpoints won't try to re-insert
7803 already inserted breakpoints. Therefore, we don't
7804 care if breakpoints were already inserted, or not. */
7805
7806 /* If we need to step over a breakpoint, and we're not using
7807 displaced stepping to do so, insert all breakpoints
7808 (watchpoints, etc.) but the one we're stepping over, step one
7809 instruction, and then re-insert the breakpoint when that step
7810 is finished. */
7811
7812 step_what = thread_still_needs_step_over (ecs->event_thread);
7813
7814 remove_bp = (ecs->hit_singlestep_breakpoint
7815 || (step_what & STEP_OVER_BREAKPOINT));
7816 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7817
7818 /* We can't use displaced stepping if we need to step past a
7819 watchpoint. The instruction copied to the scratch pad would
7820 still trigger the watchpoint. */
7821 if (remove_bp
7822 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7823 {
7824 set_step_over_info (regcache->aspace (),
7825 regcache_read_pc (regcache), remove_wps,
7826 ecs->event_thread->global_num);
7827 }
7828 else if (remove_wps)
7829 set_step_over_info (NULL, 0, remove_wps, -1);
7830
7831 /* If we now need to do an in-line step-over, we need to stop
7832 all other threads. Note this must be done before
7833 insert_breakpoints below, because that removes the breakpoint
7834 we're about to step over, otherwise other threads could miss
7835 it. */
7836 if (step_over_info_valid_p () && target_is_non_stop_p ())
7837 stop_all_threads ();
7838
7839 /* Stop stepping if inserting breakpoints fails. */
7840 try
7841 {
7842 insert_breakpoints ();
7843 }
7844 catch (const gdb_exception_error &e)
7845 {
7846 exception_print (gdb_stderr, e);
7847 stop_waiting (ecs);
7848 clear_step_over_info ();
7849 return;
7850 }
7851
7852 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7853
7854 resume (ecs->event_thread->suspend.stop_signal);
7855 }
7856
7857 prepare_to_wait (ecs);
7858 }
7859
7860 /* Called when we should continue running the inferior, because the
7861 current event doesn't cause a user visible stop. This does the
7862 resuming part; waiting for the next event is done elsewhere. */
7863
7864 static void
7865 keep_going (struct execution_control_state *ecs)
7866 {
7867 if (ecs->event_thread->control.trap_expected
7868 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7869 ecs->event_thread->control.trap_expected = 0;
7870
7871 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7872 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7873 keep_going_pass_signal (ecs);
7874 }
7875
7876 /* This function normally comes after a resume, before
7877 handle_inferior_event exits. It takes care of any last bits of
7878 housekeeping, and sets the all-important wait_some_more flag. */
7879
7880 static void
7881 prepare_to_wait (struct execution_control_state *ecs)
7882 {
7883 infrun_debug_printf ("prepare_to_wait");
7884
7885 ecs->wait_some_more = 1;
7886
7887 /* If the target can't async, emulate it by marking the infrun event
7888 handler such that as soon as we get back to the event-loop, we
7889 immediately end up in fetch_inferior_event again calling
7890 target_wait. */
7891 if (!target_can_async_p ())
7892 mark_infrun_async_event_handler ();
7893 }
7894
7895 /* We are done with the step range of a step/next/si/ni command.
7896 Called once for each n of a "step n" operation. */
7897
7898 static void
7899 end_stepping_range (struct execution_control_state *ecs)
7900 {
7901 ecs->event_thread->control.stop_step = 1;
7902 stop_waiting (ecs);
7903 }
7904
7905 /* Several print_*_reason functions to print why the inferior has stopped.
7906 We always print something when the inferior exits, or receives a signal.
7907 The rest of the cases are dealt with later on in normal_stop and
7908 print_it_typical. Ideally there should be a call to one of these
7909 print_*_reason functions functions from handle_inferior_event each time
7910 stop_waiting is called.
7911
7912 Note that we don't call these directly, instead we delegate that to
7913 the interpreters, through observers. Interpreters then call these
7914 with whatever uiout is right. */
7915
7916 void
7917 print_end_stepping_range_reason (struct ui_out *uiout)
7918 {
7919 /* For CLI-like interpreters, print nothing. */
7920
7921 if (uiout->is_mi_like_p ())
7922 {
7923 uiout->field_string ("reason",
7924 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7925 }
7926 }
7927
7928 void
7929 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7930 {
7931 annotate_signalled ();
7932 if (uiout->is_mi_like_p ())
7933 uiout->field_string
7934 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7935 uiout->text ("\nProgram terminated with signal ");
7936 annotate_signal_name ();
7937 uiout->field_string ("signal-name",
7938 gdb_signal_to_name (siggnal));
7939 annotate_signal_name_end ();
7940 uiout->text (", ");
7941 annotate_signal_string ();
7942 uiout->field_string ("signal-meaning",
7943 gdb_signal_to_string (siggnal));
7944 annotate_signal_string_end ();
7945 uiout->text (".\n");
7946 uiout->text ("The program no longer exists.\n");
7947 }
7948
7949 void
7950 print_exited_reason (struct ui_out *uiout, int exitstatus)
7951 {
7952 struct inferior *inf = current_inferior ();
7953 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7954
7955 annotate_exited (exitstatus);
7956 if (exitstatus)
7957 {
7958 if (uiout->is_mi_like_p ())
7959 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7960 std::string exit_code_str
7961 = string_printf ("0%o", (unsigned int) exitstatus);
7962 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7963 plongest (inf->num), pidstr.c_str (),
7964 string_field ("exit-code", exit_code_str.c_str ()));
7965 }
7966 else
7967 {
7968 if (uiout->is_mi_like_p ())
7969 uiout->field_string
7970 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7971 uiout->message ("[Inferior %s (%s) exited normally]\n",
7972 plongest (inf->num), pidstr.c_str ());
7973 }
7974 }
7975
7976 void
7977 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7978 {
7979 struct thread_info *thr = inferior_thread ();
7980
7981 annotate_signal ();
7982
7983 if (uiout->is_mi_like_p ())
7984 ;
7985 else if (show_thread_that_caused_stop ())
7986 {
7987 const char *name;
7988
7989 uiout->text ("\nThread ");
7990 uiout->field_string ("thread-id", print_thread_id (thr));
7991
7992 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7993 if (name != NULL)
7994 {
7995 uiout->text (" \"");
7996 uiout->field_string ("name", name);
7997 uiout->text ("\"");
7998 }
7999 }
8000 else
8001 uiout->text ("\nProgram");
8002
8003 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8004 uiout->text (" stopped");
8005 else
8006 {
8007 uiout->text (" received signal ");
8008 annotate_signal_name ();
8009 if (uiout->is_mi_like_p ())
8010 uiout->field_string
8011 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8012 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8013 annotate_signal_name_end ();
8014 uiout->text (", ");
8015 annotate_signal_string ();
8016 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8017
8018 struct regcache *regcache = get_current_regcache ();
8019 struct gdbarch *gdbarch = regcache->arch ();
8020 if (gdbarch_report_signal_info_p (gdbarch))
8021 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8022
8023 annotate_signal_string_end ();
8024 }
8025 uiout->text (".\n");
8026 }
8027
8028 void
8029 print_no_history_reason (struct ui_out *uiout)
8030 {
8031 uiout->text ("\nNo more reverse-execution history.\n");
8032 }
8033
8034 /* Print current location without a level number, if we have changed
8035 functions or hit a breakpoint. Print source line if we have one.
8036 bpstat_print contains the logic deciding in detail what to print,
8037 based on the event(s) that just occurred. */
8038
8039 static void
8040 print_stop_location (struct target_waitstatus *ws)
8041 {
8042 int bpstat_ret;
8043 enum print_what source_flag;
8044 int do_frame_printing = 1;
8045 struct thread_info *tp = inferior_thread ();
8046
8047 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8048 switch (bpstat_ret)
8049 {
8050 case PRINT_UNKNOWN:
8051 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8052 should) carry around the function and does (or should) use
8053 that when doing a frame comparison. */
8054 if (tp->control.stop_step
8055 && frame_id_eq (tp->control.step_frame_id,
8056 get_frame_id (get_current_frame ()))
8057 && (tp->control.step_start_function
8058 == find_pc_function (tp->suspend.stop_pc)))
8059 {
8060 /* Finished step, just print source line. */
8061 source_flag = SRC_LINE;
8062 }
8063 else
8064 {
8065 /* Print location and source line. */
8066 source_flag = SRC_AND_LOC;
8067 }
8068 break;
8069 case PRINT_SRC_AND_LOC:
8070 /* Print location and source line. */
8071 source_flag = SRC_AND_LOC;
8072 break;
8073 case PRINT_SRC_ONLY:
8074 source_flag = SRC_LINE;
8075 break;
8076 case PRINT_NOTHING:
8077 /* Something bogus. */
8078 source_flag = SRC_LINE;
8079 do_frame_printing = 0;
8080 break;
8081 default:
8082 internal_error (__FILE__, __LINE__, _("Unknown value."));
8083 }
8084
8085 /* The behavior of this routine with respect to the source
8086 flag is:
8087 SRC_LINE: Print only source line
8088 LOCATION: Print only location
8089 SRC_AND_LOC: Print location and source line. */
8090 if (do_frame_printing)
8091 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8092 }
8093
8094 /* See infrun.h. */
8095
8096 void
8097 print_stop_event (struct ui_out *uiout, bool displays)
8098 {
8099 struct target_waitstatus last;
8100 struct thread_info *tp;
8101
8102 get_last_target_status (nullptr, nullptr, &last);
8103
8104 {
8105 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8106
8107 print_stop_location (&last);
8108
8109 /* Display the auto-display expressions. */
8110 if (displays)
8111 do_displays ();
8112 }
8113
8114 tp = inferior_thread ();
8115 if (tp->thread_fsm != NULL
8116 && tp->thread_fsm->finished_p ())
8117 {
8118 struct return_value_info *rv;
8119
8120 rv = tp->thread_fsm->return_value ();
8121 if (rv != NULL)
8122 print_return_value (uiout, rv);
8123 }
8124 }
8125
8126 /* See infrun.h. */
8127
8128 void
8129 maybe_remove_breakpoints (void)
8130 {
8131 if (!breakpoints_should_be_inserted_now () && target_has_execution ())
8132 {
8133 if (remove_breakpoints ())
8134 {
8135 target_terminal::ours_for_output ();
8136 printf_filtered (_("Cannot remove breakpoints because "
8137 "program is no longer writable.\nFurther "
8138 "execution is probably impossible.\n"));
8139 }
8140 }
8141 }
8142
8143 /* The execution context that just caused a normal stop. */
8144
8145 struct stop_context
8146 {
8147 stop_context ();
8148 ~stop_context ();
8149
8150 DISABLE_COPY_AND_ASSIGN (stop_context);
8151
8152 bool changed () const;
8153
8154 /* The stop ID. */
8155 ULONGEST stop_id;
8156
8157 /* The event PTID. */
8158
8159 ptid_t ptid;
8160
8161 /* If stopp for a thread event, this is the thread that caused the
8162 stop. */
8163 struct thread_info *thread;
8164
8165 /* The inferior that caused the stop. */
8166 int inf_num;
8167 };
8168
8169 /* Initializes a new stop context. If stopped for a thread event, this
8170 takes a strong reference to the thread. */
8171
8172 stop_context::stop_context ()
8173 {
8174 stop_id = get_stop_id ();
8175 ptid = inferior_ptid;
8176 inf_num = current_inferior ()->num;
8177
8178 if (inferior_ptid != null_ptid)
8179 {
8180 /* Take a strong reference so that the thread can't be deleted
8181 yet. */
8182 thread = inferior_thread ();
8183 thread->incref ();
8184 }
8185 else
8186 thread = NULL;
8187 }
8188
8189 /* Release a stop context previously created with save_stop_context.
8190 Releases the strong reference to the thread as well. */
8191
8192 stop_context::~stop_context ()
8193 {
8194 if (thread != NULL)
8195 thread->decref ();
8196 }
8197
8198 /* Return true if the current context no longer matches the saved stop
8199 context. */
8200
8201 bool
8202 stop_context::changed () const
8203 {
8204 if (ptid != inferior_ptid)
8205 return true;
8206 if (inf_num != current_inferior ()->num)
8207 return true;
8208 if (thread != NULL && thread->state != THREAD_STOPPED)
8209 return true;
8210 if (get_stop_id () != stop_id)
8211 return true;
8212 return false;
8213 }
8214
8215 /* See infrun.h. */
8216
8217 int
8218 normal_stop (void)
8219 {
8220 struct target_waitstatus last;
8221
8222 get_last_target_status (nullptr, nullptr, &last);
8223
8224 new_stop_id ();
8225
8226 /* If an exception is thrown from this point on, make sure to
8227 propagate GDB's knowledge of the executing state to the
8228 frontend/user running state. A QUIT is an easy exception to see
8229 here, so do this before any filtered output. */
8230
8231 ptid_t finish_ptid = null_ptid;
8232
8233 if (!non_stop)
8234 finish_ptid = minus_one_ptid;
8235 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8236 || last.kind == TARGET_WAITKIND_EXITED)
8237 {
8238 /* On some targets, we may still have live threads in the
8239 inferior when we get a process exit event. E.g., for
8240 "checkpoint", when the current checkpoint/fork exits,
8241 linux-fork.c automatically switches to another fork from
8242 within target_mourn_inferior. */
8243 if (inferior_ptid != null_ptid)
8244 finish_ptid = ptid_t (inferior_ptid.pid ());
8245 }
8246 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8247 finish_ptid = inferior_ptid;
8248
8249 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8250 if (finish_ptid != null_ptid)
8251 {
8252 maybe_finish_thread_state.emplace
8253 (user_visible_resume_target (finish_ptid), finish_ptid);
8254 }
8255
8256 /* As we're presenting a stop, and potentially removing breakpoints,
8257 update the thread list so we can tell whether there are threads
8258 running on the target. With target remote, for example, we can
8259 only learn about new threads when we explicitly update the thread
8260 list. Do this before notifying the interpreters about signal
8261 stops, end of stepping ranges, etc., so that the "new thread"
8262 output is emitted before e.g., "Program received signal FOO",
8263 instead of after. */
8264 update_thread_list ();
8265
8266 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8267 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8268
8269 /* As with the notification of thread events, we want to delay
8270 notifying the user that we've switched thread context until
8271 the inferior actually stops.
8272
8273 There's no point in saying anything if the inferior has exited.
8274 Note that SIGNALLED here means "exited with a signal", not
8275 "received a signal".
8276
8277 Also skip saying anything in non-stop mode. In that mode, as we
8278 don't want GDB to switch threads behind the user's back, to avoid
8279 races where the user is typing a command to apply to thread x,
8280 but GDB switches to thread y before the user finishes entering
8281 the command, fetch_inferior_event installs a cleanup to restore
8282 the current thread back to the thread the user had selected right
8283 after this event is handled, so we're not really switching, only
8284 informing of a stop. */
8285 if (!non_stop
8286 && previous_inferior_ptid != inferior_ptid
8287 && target_has_execution ()
8288 && last.kind != TARGET_WAITKIND_SIGNALLED
8289 && last.kind != TARGET_WAITKIND_EXITED
8290 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8291 {
8292 SWITCH_THRU_ALL_UIS ()
8293 {
8294 target_terminal::ours_for_output ();
8295 printf_filtered (_("[Switching to %s]\n"),
8296 target_pid_to_str (inferior_ptid).c_str ());
8297 annotate_thread_changed ();
8298 }
8299 previous_inferior_ptid = inferior_ptid;
8300 }
8301
8302 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8303 {
8304 SWITCH_THRU_ALL_UIS ()
8305 if (current_ui->prompt_state == PROMPT_BLOCKED)
8306 {
8307 target_terminal::ours_for_output ();
8308 printf_filtered (_("No unwaited-for children left.\n"));
8309 }
8310 }
8311
8312 /* Note: this depends on the update_thread_list call above. */
8313 maybe_remove_breakpoints ();
8314
8315 /* If an auto-display called a function and that got a signal,
8316 delete that auto-display to avoid an infinite recursion. */
8317
8318 if (stopped_by_random_signal)
8319 disable_current_display ();
8320
8321 SWITCH_THRU_ALL_UIS ()
8322 {
8323 async_enable_stdin ();
8324 }
8325
8326 /* Let the user/frontend see the threads as stopped. */
8327 maybe_finish_thread_state.reset ();
8328
8329 /* Select innermost stack frame - i.e., current frame is frame 0,
8330 and current location is based on that. Handle the case where the
8331 dummy call is returning after being stopped. E.g. the dummy call
8332 previously hit a breakpoint. (If the dummy call returns
8333 normally, we won't reach here.) Do this before the stop hook is
8334 run, so that it doesn't get to see the temporary dummy frame,
8335 which is not where we'll present the stop. */
8336 if (has_stack_frames ())
8337 {
8338 if (stop_stack_dummy == STOP_STACK_DUMMY)
8339 {
8340 /* Pop the empty frame that contains the stack dummy. This
8341 also restores inferior state prior to the call (struct
8342 infcall_suspend_state). */
8343 struct frame_info *frame = get_current_frame ();
8344
8345 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8346 frame_pop (frame);
8347 /* frame_pop calls reinit_frame_cache as the last thing it
8348 does which means there's now no selected frame. */
8349 }
8350
8351 select_frame (get_current_frame ());
8352
8353 /* Set the current source location. */
8354 set_current_sal_from_frame (get_current_frame ());
8355 }
8356
8357 /* Look up the hook_stop and run it (CLI internally handles problem
8358 of stop_command's pre-hook not existing). */
8359 if (stop_command != NULL)
8360 {
8361 stop_context saved_context;
8362
8363 try
8364 {
8365 execute_cmd_pre_hook (stop_command);
8366 }
8367 catch (const gdb_exception &ex)
8368 {
8369 exception_fprintf (gdb_stderr, ex,
8370 "Error while running hook_stop:\n");
8371 }
8372
8373 /* If the stop hook resumes the target, then there's no point in
8374 trying to notify about the previous stop; its context is
8375 gone. Likewise if the command switches thread or inferior --
8376 the observers would print a stop for the wrong
8377 thread/inferior. */
8378 if (saved_context.changed ())
8379 return 1;
8380 }
8381
8382 /* Notify observers about the stop. This is where the interpreters
8383 print the stop event. */
8384 if (inferior_ptid != null_ptid)
8385 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8386 stop_print_frame);
8387 else
8388 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8389
8390 annotate_stopped ();
8391
8392 if (target_has_execution ())
8393 {
8394 if (last.kind != TARGET_WAITKIND_SIGNALLED
8395 && last.kind != TARGET_WAITKIND_EXITED
8396 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8397 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8398 Delete any breakpoint that is to be deleted at the next stop. */
8399 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8400 }
8401
8402 /* Try to get rid of automatically added inferiors that are no
8403 longer needed. Keeping those around slows down things linearly.
8404 Note that this never removes the current inferior. */
8405 prune_inferiors ();
8406
8407 return 0;
8408 }
8409 \f
8410 int
8411 signal_stop_state (int signo)
8412 {
8413 return signal_stop[signo];
8414 }
8415
8416 int
8417 signal_print_state (int signo)
8418 {
8419 return signal_print[signo];
8420 }
8421
8422 int
8423 signal_pass_state (int signo)
8424 {
8425 return signal_program[signo];
8426 }
8427
8428 static void
8429 signal_cache_update (int signo)
8430 {
8431 if (signo == -1)
8432 {
8433 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8434 signal_cache_update (signo);
8435
8436 return;
8437 }
8438
8439 signal_pass[signo] = (signal_stop[signo] == 0
8440 && signal_print[signo] == 0
8441 && signal_program[signo] == 1
8442 && signal_catch[signo] == 0);
8443 }
8444
8445 int
8446 signal_stop_update (int signo, int state)
8447 {
8448 int ret = signal_stop[signo];
8449
8450 signal_stop[signo] = state;
8451 signal_cache_update (signo);
8452 return ret;
8453 }
8454
8455 int
8456 signal_print_update (int signo, int state)
8457 {
8458 int ret = signal_print[signo];
8459
8460 signal_print[signo] = state;
8461 signal_cache_update (signo);
8462 return ret;
8463 }
8464
8465 int
8466 signal_pass_update (int signo, int state)
8467 {
8468 int ret = signal_program[signo];
8469
8470 signal_program[signo] = state;
8471 signal_cache_update (signo);
8472 return ret;
8473 }
8474
8475 /* Update the global 'signal_catch' from INFO and notify the
8476 target. */
8477
8478 void
8479 signal_catch_update (const unsigned int *info)
8480 {
8481 int i;
8482
8483 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8484 signal_catch[i] = info[i] > 0;
8485 signal_cache_update (-1);
8486 target_pass_signals (signal_pass);
8487 }
8488
8489 static void
8490 sig_print_header (void)
8491 {
8492 printf_filtered (_("Signal Stop\tPrint\tPass "
8493 "to program\tDescription\n"));
8494 }
8495
8496 static void
8497 sig_print_info (enum gdb_signal oursig)
8498 {
8499 const char *name = gdb_signal_to_name (oursig);
8500 int name_padding = 13 - strlen (name);
8501
8502 if (name_padding <= 0)
8503 name_padding = 0;
8504
8505 printf_filtered ("%s", name);
8506 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8507 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8508 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8509 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8510 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8511 }
8512
8513 /* Specify how various signals in the inferior should be handled. */
8514
8515 static void
8516 handle_command (const char *args, int from_tty)
8517 {
8518 int digits, wordlen;
8519 int sigfirst, siglast;
8520 enum gdb_signal oursig;
8521 int allsigs;
8522
8523 if (args == NULL)
8524 {
8525 error_no_arg (_("signal to handle"));
8526 }
8527
8528 /* Allocate and zero an array of flags for which signals to handle. */
8529
8530 const size_t nsigs = GDB_SIGNAL_LAST;
8531 unsigned char sigs[nsigs] {};
8532
8533 /* Break the command line up into args. */
8534
8535 gdb_argv built_argv (args);
8536
8537 /* Walk through the args, looking for signal oursigs, signal names, and
8538 actions. Signal numbers and signal names may be interspersed with
8539 actions, with the actions being performed for all signals cumulatively
8540 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8541
8542 for (char *arg : built_argv)
8543 {
8544 wordlen = strlen (arg);
8545 for (digits = 0; isdigit (arg[digits]); digits++)
8546 {;
8547 }
8548 allsigs = 0;
8549 sigfirst = siglast = -1;
8550
8551 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8552 {
8553 /* Apply action to all signals except those used by the
8554 debugger. Silently skip those. */
8555 allsigs = 1;
8556 sigfirst = 0;
8557 siglast = nsigs - 1;
8558 }
8559 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8560 {
8561 SET_SIGS (nsigs, sigs, signal_stop);
8562 SET_SIGS (nsigs, sigs, signal_print);
8563 }
8564 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8565 {
8566 UNSET_SIGS (nsigs, sigs, signal_program);
8567 }
8568 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8569 {
8570 SET_SIGS (nsigs, sigs, signal_print);
8571 }
8572 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8573 {
8574 SET_SIGS (nsigs, sigs, signal_program);
8575 }
8576 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8577 {
8578 UNSET_SIGS (nsigs, sigs, signal_stop);
8579 }
8580 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8581 {
8582 SET_SIGS (nsigs, sigs, signal_program);
8583 }
8584 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8585 {
8586 UNSET_SIGS (nsigs, sigs, signal_print);
8587 UNSET_SIGS (nsigs, sigs, signal_stop);
8588 }
8589 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8590 {
8591 UNSET_SIGS (nsigs, sigs, signal_program);
8592 }
8593 else if (digits > 0)
8594 {
8595 /* It is numeric. The numeric signal refers to our own
8596 internal signal numbering from target.h, not to host/target
8597 signal number. This is a feature; users really should be
8598 using symbolic names anyway, and the common ones like
8599 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8600
8601 sigfirst = siglast = (int)
8602 gdb_signal_from_command (atoi (arg));
8603 if (arg[digits] == '-')
8604 {
8605 siglast = (int)
8606 gdb_signal_from_command (atoi (arg + digits + 1));
8607 }
8608 if (sigfirst > siglast)
8609 {
8610 /* Bet he didn't figure we'd think of this case... */
8611 std::swap (sigfirst, siglast);
8612 }
8613 }
8614 else
8615 {
8616 oursig = gdb_signal_from_name (arg);
8617 if (oursig != GDB_SIGNAL_UNKNOWN)
8618 {
8619 sigfirst = siglast = (int) oursig;
8620 }
8621 else
8622 {
8623 /* Not a number and not a recognized flag word => complain. */
8624 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8625 }
8626 }
8627
8628 /* If any signal numbers or symbol names were found, set flags for
8629 which signals to apply actions to. */
8630
8631 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8632 {
8633 switch ((enum gdb_signal) signum)
8634 {
8635 case GDB_SIGNAL_TRAP:
8636 case GDB_SIGNAL_INT:
8637 if (!allsigs && !sigs[signum])
8638 {
8639 if (query (_("%s is used by the debugger.\n\
8640 Are you sure you want to change it? "),
8641 gdb_signal_to_name ((enum gdb_signal) signum)))
8642 {
8643 sigs[signum] = 1;
8644 }
8645 else
8646 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8647 }
8648 break;
8649 case GDB_SIGNAL_0:
8650 case GDB_SIGNAL_DEFAULT:
8651 case GDB_SIGNAL_UNKNOWN:
8652 /* Make sure that "all" doesn't print these. */
8653 break;
8654 default:
8655 sigs[signum] = 1;
8656 break;
8657 }
8658 }
8659 }
8660
8661 for (int signum = 0; signum < nsigs; signum++)
8662 if (sigs[signum])
8663 {
8664 signal_cache_update (-1);
8665 target_pass_signals (signal_pass);
8666 target_program_signals (signal_program);
8667
8668 if (from_tty)
8669 {
8670 /* Show the results. */
8671 sig_print_header ();
8672 for (; signum < nsigs; signum++)
8673 if (sigs[signum])
8674 sig_print_info ((enum gdb_signal) signum);
8675 }
8676
8677 break;
8678 }
8679 }
8680
8681 /* Complete the "handle" command. */
8682
8683 static void
8684 handle_completer (struct cmd_list_element *ignore,
8685 completion_tracker &tracker,
8686 const char *text, const char *word)
8687 {
8688 static const char * const keywords[] =
8689 {
8690 "all",
8691 "stop",
8692 "ignore",
8693 "print",
8694 "pass",
8695 "nostop",
8696 "noignore",
8697 "noprint",
8698 "nopass",
8699 NULL,
8700 };
8701
8702 signal_completer (ignore, tracker, text, word);
8703 complete_on_enum (tracker, keywords, word, word);
8704 }
8705
8706 enum gdb_signal
8707 gdb_signal_from_command (int num)
8708 {
8709 if (num >= 1 && num <= 15)
8710 return (enum gdb_signal) num;
8711 error (_("Only signals 1-15 are valid as numeric signals.\n\
8712 Use \"info signals\" for a list of symbolic signals."));
8713 }
8714
8715 /* Print current contents of the tables set by the handle command.
8716 It is possible we should just be printing signals actually used
8717 by the current target (but for things to work right when switching
8718 targets, all signals should be in the signal tables). */
8719
8720 static void
8721 info_signals_command (const char *signum_exp, int from_tty)
8722 {
8723 enum gdb_signal oursig;
8724
8725 sig_print_header ();
8726
8727 if (signum_exp)
8728 {
8729 /* First see if this is a symbol name. */
8730 oursig = gdb_signal_from_name (signum_exp);
8731 if (oursig == GDB_SIGNAL_UNKNOWN)
8732 {
8733 /* No, try numeric. */
8734 oursig =
8735 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8736 }
8737 sig_print_info (oursig);
8738 return;
8739 }
8740
8741 printf_filtered ("\n");
8742 /* These ugly casts brought to you by the native VAX compiler. */
8743 for (oursig = GDB_SIGNAL_FIRST;
8744 (int) oursig < (int) GDB_SIGNAL_LAST;
8745 oursig = (enum gdb_signal) ((int) oursig + 1))
8746 {
8747 QUIT;
8748
8749 if (oursig != GDB_SIGNAL_UNKNOWN
8750 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8751 sig_print_info (oursig);
8752 }
8753
8754 printf_filtered (_("\nUse the \"handle\" command "
8755 "to change these tables.\n"));
8756 }
8757
8758 /* The $_siginfo convenience variable is a bit special. We don't know
8759 for sure the type of the value until we actually have a chance to
8760 fetch the data. The type can change depending on gdbarch, so it is
8761 also dependent on which thread you have selected.
8762
8763 1. making $_siginfo be an internalvar that creates a new value on
8764 access.
8765
8766 2. making the value of $_siginfo be an lval_computed value. */
8767
8768 /* This function implements the lval_computed support for reading a
8769 $_siginfo value. */
8770
8771 static void
8772 siginfo_value_read (struct value *v)
8773 {
8774 LONGEST transferred;
8775
8776 /* If we can access registers, so can we access $_siginfo. Likewise
8777 vice versa. */
8778 validate_registers_access ();
8779
8780 transferred =
8781 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8782 NULL,
8783 value_contents_all_raw (v),
8784 value_offset (v),
8785 TYPE_LENGTH (value_type (v)));
8786
8787 if (transferred != TYPE_LENGTH (value_type (v)))
8788 error (_("Unable to read siginfo"));
8789 }
8790
8791 /* This function implements the lval_computed support for writing a
8792 $_siginfo value. */
8793
8794 static void
8795 siginfo_value_write (struct value *v, struct value *fromval)
8796 {
8797 LONGEST transferred;
8798
8799 /* If we can access registers, so can we access $_siginfo. Likewise
8800 vice versa. */
8801 validate_registers_access ();
8802
8803 transferred = target_write (current_top_target (),
8804 TARGET_OBJECT_SIGNAL_INFO,
8805 NULL,
8806 value_contents_all_raw (fromval),
8807 value_offset (v),
8808 TYPE_LENGTH (value_type (fromval)));
8809
8810 if (transferred != TYPE_LENGTH (value_type (fromval)))
8811 error (_("Unable to write siginfo"));
8812 }
8813
8814 static const struct lval_funcs siginfo_value_funcs =
8815 {
8816 siginfo_value_read,
8817 siginfo_value_write
8818 };
8819
8820 /* Return a new value with the correct type for the siginfo object of
8821 the current thread using architecture GDBARCH. Return a void value
8822 if there's no object available. */
8823
8824 static struct value *
8825 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8826 void *ignore)
8827 {
8828 if (target_has_stack ()
8829 && inferior_ptid != null_ptid
8830 && gdbarch_get_siginfo_type_p (gdbarch))
8831 {
8832 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8833
8834 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8835 }
8836
8837 return allocate_value (builtin_type (gdbarch)->builtin_void);
8838 }
8839
8840 \f
8841 /* infcall_suspend_state contains state about the program itself like its
8842 registers and any signal it received when it last stopped.
8843 This state must be restored regardless of how the inferior function call
8844 ends (either successfully, or after it hits a breakpoint or signal)
8845 if the program is to properly continue where it left off. */
8846
8847 class infcall_suspend_state
8848 {
8849 public:
8850 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8851 once the inferior function call has finished. */
8852 infcall_suspend_state (struct gdbarch *gdbarch,
8853 const struct thread_info *tp,
8854 struct regcache *regcache)
8855 : m_thread_suspend (tp->suspend),
8856 m_registers (new readonly_detached_regcache (*regcache))
8857 {
8858 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8859
8860 if (gdbarch_get_siginfo_type_p (gdbarch))
8861 {
8862 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8863 size_t len = TYPE_LENGTH (type);
8864
8865 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8866
8867 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8868 siginfo_data.get (), 0, len) != len)
8869 {
8870 /* Errors ignored. */
8871 siginfo_data.reset (nullptr);
8872 }
8873 }
8874
8875 if (siginfo_data)
8876 {
8877 m_siginfo_gdbarch = gdbarch;
8878 m_siginfo_data = std::move (siginfo_data);
8879 }
8880 }
8881
8882 /* Return a pointer to the stored register state. */
8883
8884 readonly_detached_regcache *registers () const
8885 {
8886 return m_registers.get ();
8887 }
8888
8889 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8890
8891 void restore (struct gdbarch *gdbarch,
8892 struct thread_info *tp,
8893 struct regcache *regcache) const
8894 {
8895 tp->suspend = m_thread_suspend;
8896
8897 if (m_siginfo_gdbarch == gdbarch)
8898 {
8899 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8900
8901 /* Errors ignored. */
8902 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8903 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8904 }
8905
8906 /* The inferior can be gone if the user types "print exit(0)"
8907 (and perhaps other times). */
8908 if (target_has_execution ())
8909 /* NB: The register write goes through to the target. */
8910 regcache->restore (registers ());
8911 }
8912
8913 private:
8914 /* How the current thread stopped before the inferior function call was
8915 executed. */
8916 struct thread_suspend_state m_thread_suspend;
8917
8918 /* The registers before the inferior function call was executed. */
8919 std::unique_ptr<readonly_detached_regcache> m_registers;
8920
8921 /* Format of SIGINFO_DATA or NULL if it is not present. */
8922 struct gdbarch *m_siginfo_gdbarch = nullptr;
8923
8924 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8925 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8926 content would be invalid. */
8927 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8928 };
8929
8930 infcall_suspend_state_up
8931 save_infcall_suspend_state ()
8932 {
8933 struct thread_info *tp = inferior_thread ();
8934 struct regcache *regcache = get_current_regcache ();
8935 struct gdbarch *gdbarch = regcache->arch ();
8936
8937 infcall_suspend_state_up inf_state
8938 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8939
8940 /* Having saved the current state, adjust the thread state, discarding
8941 any stop signal information. The stop signal is not useful when
8942 starting an inferior function call, and run_inferior_call will not use
8943 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8944 tp->suspend.stop_signal = GDB_SIGNAL_0;
8945
8946 return inf_state;
8947 }
8948
8949 /* Restore inferior session state to INF_STATE. */
8950
8951 void
8952 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8953 {
8954 struct thread_info *tp = inferior_thread ();
8955 struct regcache *regcache = get_current_regcache ();
8956 struct gdbarch *gdbarch = regcache->arch ();
8957
8958 inf_state->restore (gdbarch, tp, regcache);
8959 discard_infcall_suspend_state (inf_state);
8960 }
8961
8962 void
8963 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8964 {
8965 delete inf_state;
8966 }
8967
8968 readonly_detached_regcache *
8969 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8970 {
8971 return inf_state->registers ();
8972 }
8973
8974 /* infcall_control_state contains state regarding gdb's control of the
8975 inferior itself like stepping control. It also contains session state like
8976 the user's currently selected frame. */
8977
8978 struct infcall_control_state
8979 {
8980 struct thread_control_state thread_control;
8981 struct inferior_control_state inferior_control;
8982
8983 /* Other fields: */
8984 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8985 int stopped_by_random_signal = 0;
8986
8987 /* ID and level of the selected frame when the inferior function
8988 call was made. */
8989 struct frame_id selected_frame_id {};
8990 int selected_frame_level = -1;
8991 };
8992
8993 /* Save all of the information associated with the inferior<==>gdb
8994 connection. */
8995
8996 infcall_control_state_up
8997 save_infcall_control_state ()
8998 {
8999 infcall_control_state_up inf_status (new struct infcall_control_state);
9000 struct thread_info *tp = inferior_thread ();
9001 struct inferior *inf = current_inferior ();
9002
9003 inf_status->thread_control = tp->control;
9004 inf_status->inferior_control = inf->control;
9005
9006 tp->control.step_resume_breakpoint = NULL;
9007 tp->control.exception_resume_breakpoint = NULL;
9008
9009 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9010 chain. If caller's caller is walking the chain, they'll be happier if we
9011 hand them back the original chain when restore_infcall_control_state is
9012 called. */
9013 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9014
9015 /* Other fields: */
9016 inf_status->stop_stack_dummy = stop_stack_dummy;
9017 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9018
9019 save_selected_frame (&inf_status->selected_frame_id,
9020 &inf_status->selected_frame_level);
9021
9022 return inf_status;
9023 }
9024
9025 /* Restore inferior session state to INF_STATUS. */
9026
9027 void
9028 restore_infcall_control_state (struct infcall_control_state *inf_status)
9029 {
9030 struct thread_info *tp = inferior_thread ();
9031 struct inferior *inf = current_inferior ();
9032
9033 if (tp->control.step_resume_breakpoint)
9034 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9035
9036 if (tp->control.exception_resume_breakpoint)
9037 tp->control.exception_resume_breakpoint->disposition
9038 = disp_del_at_next_stop;
9039
9040 /* Handle the bpstat_copy of the chain. */
9041 bpstat_clear (&tp->control.stop_bpstat);
9042
9043 tp->control = inf_status->thread_control;
9044 inf->control = inf_status->inferior_control;
9045
9046 /* Other fields: */
9047 stop_stack_dummy = inf_status->stop_stack_dummy;
9048 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9049
9050 if (target_has_stack ())
9051 {
9052 restore_selected_frame (inf_status->selected_frame_id,
9053 inf_status->selected_frame_level);
9054 }
9055
9056 delete inf_status;
9057 }
9058
9059 void
9060 discard_infcall_control_state (struct infcall_control_state *inf_status)
9061 {
9062 if (inf_status->thread_control.step_resume_breakpoint)
9063 inf_status->thread_control.step_resume_breakpoint->disposition
9064 = disp_del_at_next_stop;
9065
9066 if (inf_status->thread_control.exception_resume_breakpoint)
9067 inf_status->thread_control.exception_resume_breakpoint->disposition
9068 = disp_del_at_next_stop;
9069
9070 /* See save_infcall_control_state for info on stop_bpstat. */
9071 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9072
9073 delete inf_status;
9074 }
9075 \f
9076 /* See infrun.h. */
9077
9078 void
9079 clear_exit_convenience_vars (void)
9080 {
9081 clear_internalvar (lookup_internalvar ("_exitsignal"));
9082 clear_internalvar (lookup_internalvar ("_exitcode"));
9083 }
9084 \f
9085
9086 /* User interface for reverse debugging:
9087 Set exec-direction / show exec-direction commands
9088 (returns error unless target implements to_set_exec_direction method). */
9089
9090 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9091 static const char exec_forward[] = "forward";
9092 static const char exec_reverse[] = "reverse";
9093 static const char *exec_direction = exec_forward;
9094 static const char *const exec_direction_names[] = {
9095 exec_forward,
9096 exec_reverse,
9097 NULL
9098 };
9099
9100 static void
9101 set_exec_direction_func (const char *args, int from_tty,
9102 struct cmd_list_element *cmd)
9103 {
9104 if (target_can_execute_reverse ())
9105 {
9106 if (!strcmp (exec_direction, exec_forward))
9107 execution_direction = EXEC_FORWARD;
9108 else if (!strcmp (exec_direction, exec_reverse))
9109 execution_direction = EXEC_REVERSE;
9110 }
9111 else
9112 {
9113 exec_direction = exec_forward;
9114 error (_("Target does not support this operation."));
9115 }
9116 }
9117
9118 static void
9119 show_exec_direction_func (struct ui_file *out, int from_tty,
9120 struct cmd_list_element *cmd, const char *value)
9121 {
9122 switch (execution_direction) {
9123 case EXEC_FORWARD:
9124 fprintf_filtered (out, _("Forward.\n"));
9125 break;
9126 case EXEC_REVERSE:
9127 fprintf_filtered (out, _("Reverse.\n"));
9128 break;
9129 default:
9130 internal_error (__FILE__, __LINE__,
9131 _("bogus execution_direction value: %d"),
9132 (int) execution_direction);
9133 }
9134 }
9135
9136 static void
9137 show_schedule_multiple (struct ui_file *file, int from_tty,
9138 struct cmd_list_element *c, const char *value)
9139 {
9140 fprintf_filtered (file, _("Resuming the execution of threads "
9141 "of all processes is %s.\n"), value);
9142 }
9143
9144 /* Implementation of `siginfo' variable. */
9145
9146 static const struct internalvar_funcs siginfo_funcs =
9147 {
9148 siginfo_make_value,
9149 NULL,
9150 NULL
9151 };
9152
9153 /* Callback for infrun's target events source. This is marked when a
9154 thread has a pending status to process. */
9155
9156 static void
9157 infrun_async_inferior_event_handler (gdb_client_data data)
9158 {
9159 inferior_event_handler (INF_REG_EVENT);
9160 }
9161
9162 #if GDB_SELF_TEST
9163 namespace selftests
9164 {
9165
9166 /* Verify that when two threads with the same ptid exist (from two different
9167 targets) and one of them changes ptid, we only update inferior_ptid if
9168 it is appropriate. */
9169
9170 static void
9171 infrun_thread_ptid_changed ()
9172 {
9173 gdbarch *arch = current_inferior ()->gdbarch;
9174
9175 /* The thread which inferior_ptid represents changes ptid. */
9176 {
9177 scoped_restore_current_pspace_and_thread restore;
9178
9179 scoped_mock_context<test_target_ops> target1 (arch);
9180 scoped_mock_context<test_target_ops> target2 (arch);
9181 target2.mock_inferior.next = &target1.mock_inferior;
9182
9183 ptid_t old_ptid (111, 222);
9184 ptid_t new_ptid (111, 333);
9185
9186 target1.mock_inferior.pid = old_ptid.pid ();
9187 target1.mock_thread.ptid = old_ptid;
9188 target2.mock_inferior.pid = old_ptid.pid ();
9189 target2.mock_thread.ptid = old_ptid;
9190
9191 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9192 set_current_inferior (&target1.mock_inferior);
9193
9194 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9195
9196 gdb_assert (inferior_ptid == new_ptid);
9197 }
9198
9199 /* A thread with the same ptid as inferior_ptid, but from another target,
9200 changes ptid. */
9201 {
9202 scoped_restore_current_pspace_and_thread restore;
9203
9204 scoped_mock_context<test_target_ops> target1 (arch);
9205 scoped_mock_context<test_target_ops> target2 (arch);
9206 target2.mock_inferior.next = &target1.mock_inferior;
9207
9208 ptid_t old_ptid (111, 222);
9209 ptid_t new_ptid (111, 333);
9210
9211 target1.mock_inferior.pid = old_ptid.pid ();
9212 target1.mock_thread.ptid = old_ptid;
9213 target2.mock_inferior.pid = old_ptid.pid ();
9214 target2.mock_thread.ptid = old_ptid;
9215
9216 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9217 set_current_inferior (&target2.mock_inferior);
9218
9219 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9220
9221 gdb_assert (inferior_ptid == old_ptid);
9222 }
9223 }
9224
9225 } /* namespace selftests */
9226
9227 #endif /* GDB_SELF_TEST */
9228
9229 void _initialize_infrun ();
9230 void
9231 _initialize_infrun ()
9232 {
9233 struct cmd_list_element *c;
9234
9235 /* Register extra event sources in the event loop. */
9236 infrun_async_inferior_event_token
9237 = create_async_event_handler (infrun_async_inferior_event_handler, NULL,
9238 "infrun");
9239
9240 add_info ("signals", info_signals_command, _("\
9241 What debugger does when program gets various signals.\n\
9242 Specify a signal as argument to print info on that signal only."));
9243 add_info_alias ("handle", "signals", 0);
9244
9245 c = add_com ("handle", class_run, handle_command, _("\
9246 Specify how to handle signals.\n\
9247 Usage: handle SIGNAL [ACTIONS]\n\
9248 Args are signals and actions to apply to those signals.\n\
9249 If no actions are specified, the current settings for the specified signals\n\
9250 will be displayed instead.\n\
9251 \n\
9252 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9253 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9254 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9255 The special arg \"all\" is recognized to mean all signals except those\n\
9256 used by the debugger, typically SIGTRAP and SIGINT.\n\
9257 \n\
9258 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9259 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9260 Stop means reenter debugger if this signal happens (implies print).\n\
9261 Print means print a message if this signal happens.\n\
9262 Pass means let program see this signal; otherwise program doesn't know.\n\
9263 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9264 Pass and Stop may be combined.\n\
9265 \n\
9266 Multiple signals may be specified. Signal numbers and signal names\n\
9267 may be interspersed with actions, with the actions being performed for\n\
9268 all signals cumulatively specified."));
9269 set_cmd_completer (c, handle_completer);
9270
9271 if (!dbx_commands)
9272 stop_command = add_cmd ("stop", class_obscure,
9273 not_just_help_class_command, _("\
9274 There is no `stop' command, but you can set a hook on `stop'.\n\
9275 This allows you to set a list of commands to be run each time execution\n\
9276 of the program stops."), &cmdlist);
9277
9278 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9279 Set inferior debugging."), _("\
9280 Show inferior debugging."), _("\
9281 When non-zero, inferior specific debugging is enabled."),
9282 NULL,
9283 show_debug_infrun,
9284 &setdebuglist, &showdebuglist);
9285
9286 add_setshow_boolean_cmd ("displaced", class_maintenance,
9287 &debug_displaced, _("\
9288 Set displaced stepping debugging."), _("\
9289 Show displaced stepping debugging."), _("\
9290 When non-zero, displaced stepping specific debugging is enabled."),
9291 NULL,
9292 show_debug_displaced,
9293 &setdebuglist, &showdebuglist);
9294
9295 add_setshow_boolean_cmd ("non-stop", no_class,
9296 &non_stop_1, _("\
9297 Set whether gdb controls the inferior in non-stop mode."), _("\
9298 Show whether gdb controls the inferior in non-stop mode."), _("\
9299 When debugging a multi-threaded program and this setting is\n\
9300 off (the default, also called all-stop mode), when one thread stops\n\
9301 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9302 all other threads in the program while you interact with the thread of\n\
9303 interest. When you continue or step a thread, you can allow the other\n\
9304 threads to run, or have them remain stopped, but while you inspect any\n\
9305 thread's state, all threads stop.\n\
9306 \n\
9307 In non-stop mode, when one thread stops, other threads can continue\n\
9308 to run freely. You'll be able to step each thread independently,\n\
9309 leave it stopped or free to run as needed."),
9310 set_non_stop,
9311 show_non_stop,
9312 &setlist,
9313 &showlist);
9314
9315 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9316 {
9317 signal_stop[i] = 1;
9318 signal_print[i] = 1;
9319 signal_program[i] = 1;
9320 signal_catch[i] = 0;
9321 }
9322
9323 /* Signals caused by debugger's own actions should not be given to
9324 the program afterwards.
9325
9326 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9327 explicitly specifies that it should be delivered to the target
9328 program. Typically, that would occur when a user is debugging a
9329 target monitor on a simulator: the target monitor sets a
9330 breakpoint; the simulator encounters this breakpoint and halts
9331 the simulation handing control to GDB; GDB, noting that the stop
9332 address doesn't map to any known breakpoint, returns control back
9333 to the simulator; the simulator then delivers the hardware
9334 equivalent of a GDB_SIGNAL_TRAP to the program being
9335 debugged. */
9336 signal_program[GDB_SIGNAL_TRAP] = 0;
9337 signal_program[GDB_SIGNAL_INT] = 0;
9338
9339 /* Signals that are not errors should not normally enter the debugger. */
9340 signal_stop[GDB_SIGNAL_ALRM] = 0;
9341 signal_print[GDB_SIGNAL_ALRM] = 0;
9342 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9343 signal_print[GDB_SIGNAL_VTALRM] = 0;
9344 signal_stop[GDB_SIGNAL_PROF] = 0;
9345 signal_print[GDB_SIGNAL_PROF] = 0;
9346 signal_stop[GDB_SIGNAL_CHLD] = 0;
9347 signal_print[GDB_SIGNAL_CHLD] = 0;
9348 signal_stop[GDB_SIGNAL_IO] = 0;
9349 signal_print[GDB_SIGNAL_IO] = 0;
9350 signal_stop[GDB_SIGNAL_POLL] = 0;
9351 signal_print[GDB_SIGNAL_POLL] = 0;
9352 signal_stop[GDB_SIGNAL_URG] = 0;
9353 signal_print[GDB_SIGNAL_URG] = 0;
9354 signal_stop[GDB_SIGNAL_WINCH] = 0;
9355 signal_print[GDB_SIGNAL_WINCH] = 0;
9356 signal_stop[GDB_SIGNAL_PRIO] = 0;
9357 signal_print[GDB_SIGNAL_PRIO] = 0;
9358
9359 /* These signals are used internally by user-level thread
9360 implementations. (See signal(5) on Solaris.) Like the above
9361 signals, a healthy program receives and handles them as part of
9362 its normal operation. */
9363 signal_stop[GDB_SIGNAL_LWP] = 0;
9364 signal_print[GDB_SIGNAL_LWP] = 0;
9365 signal_stop[GDB_SIGNAL_WAITING] = 0;
9366 signal_print[GDB_SIGNAL_WAITING] = 0;
9367 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9368 signal_print[GDB_SIGNAL_CANCEL] = 0;
9369 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9370 signal_print[GDB_SIGNAL_LIBRT] = 0;
9371
9372 /* Update cached state. */
9373 signal_cache_update (-1);
9374
9375 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9376 &stop_on_solib_events, _("\
9377 Set stopping for shared library events."), _("\
9378 Show stopping for shared library events."), _("\
9379 If nonzero, gdb will give control to the user when the dynamic linker\n\
9380 notifies gdb of shared library events. The most common event of interest\n\
9381 to the user would be loading/unloading of a new library."),
9382 set_stop_on_solib_events,
9383 show_stop_on_solib_events,
9384 &setlist, &showlist);
9385
9386 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9387 follow_fork_mode_kind_names,
9388 &follow_fork_mode_string, _("\
9389 Set debugger response to a program call of fork or vfork."), _("\
9390 Show debugger response to a program call of fork or vfork."), _("\
9391 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9392 parent - the original process is debugged after a fork\n\
9393 child - the new process is debugged after a fork\n\
9394 The unfollowed process will continue to run.\n\
9395 By default, the debugger will follow the parent process."),
9396 NULL,
9397 show_follow_fork_mode_string,
9398 &setlist, &showlist);
9399
9400 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9401 follow_exec_mode_names,
9402 &follow_exec_mode_string, _("\
9403 Set debugger response to a program call of exec."), _("\
9404 Show debugger response to a program call of exec."), _("\
9405 An exec call replaces the program image of a process.\n\
9406 \n\
9407 follow-exec-mode can be:\n\
9408 \n\
9409 new - the debugger creates a new inferior and rebinds the process\n\
9410 to this new inferior. The program the process was running before\n\
9411 the exec call can be restarted afterwards by restarting the original\n\
9412 inferior.\n\
9413 \n\
9414 same - the debugger keeps the process bound to the same inferior.\n\
9415 The new executable image replaces the previous executable loaded in\n\
9416 the inferior. Restarting the inferior after the exec call restarts\n\
9417 the executable the process was running after the exec call.\n\
9418 \n\
9419 By default, the debugger will use the same inferior."),
9420 NULL,
9421 show_follow_exec_mode_string,
9422 &setlist, &showlist);
9423
9424 add_setshow_enum_cmd ("scheduler-locking", class_run,
9425 scheduler_enums, &scheduler_mode, _("\
9426 Set mode for locking scheduler during execution."), _("\
9427 Show mode for locking scheduler during execution."), _("\
9428 off == no locking (threads may preempt at any time)\n\
9429 on == full locking (no thread except the current thread may run)\n\
9430 This applies to both normal execution and replay mode.\n\
9431 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9432 In this mode, other threads may run during other commands.\n\
9433 This applies to both normal execution and replay mode.\n\
9434 replay == scheduler locked in replay mode and unlocked during normal execution."),
9435 set_schedlock_func, /* traps on target vector */
9436 show_scheduler_mode,
9437 &setlist, &showlist);
9438
9439 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9440 Set mode for resuming threads of all processes."), _("\
9441 Show mode for resuming threads of all processes."), _("\
9442 When on, execution commands (such as 'continue' or 'next') resume all\n\
9443 threads of all processes. When off (which is the default), execution\n\
9444 commands only resume the threads of the current process. The set of\n\
9445 threads that are resumed is further refined by the scheduler-locking\n\
9446 mode (see help set scheduler-locking)."),
9447 NULL,
9448 show_schedule_multiple,
9449 &setlist, &showlist);
9450
9451 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9452 Set mode of the step operation."), _("\
9453 Show mode of the step operation."), _("\
9454 When set, doing a step over a function without debug line information\n\
9455 will stop at the first instruction of that function. Otherwise, the\n\
9456 function is skipped and the step command stops at a different source line."),
9457 NULL,
9458 show_step_stop_if_no_debug,
9459 &setlist, &showlist);
9460
9461 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9462 &can_use_displaced_stepping, _("\
9463 Set debugger's willingness to use displaced stepping."), _("\
9464 Show debugger's willingness to use displaced stepping."), _("\
9465 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9466 supported by the target architecture. If off, gdb will not use displaced\n\
9467 stepping to step over breakpoints, even if such is supported by the target\n\
9468 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9469 if the target architecture supports it and non-stop mode is active, but will not\n\
9470 use it in all-stop mode (see help set non-stop)."),
9471 NULL,
9472 show_can_use_displaced_stepping,
9473 &setlist, &showlist);
9474
9475 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9476 &exec_direction, _("Set direction of execution.\n\
9477 Options are 'forward' or 'reverse'."),
9478 _("Show direction of execution (forward/reverse)."),
9479 _("Tells gdb whether to execute forward or backward."),
9480 set_exec_direction_func, show_exec_direction_func,
9481 &setlist, &showlist);
9482
9483 /* Set/show detach-on-fork: user-settable mode. */
9484
9485 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9486 Set whether gdb will detach the child of a fork."), _("\
9487 Show whether gdb will detach the child of a fork."), _("\
9488 Tells gdb whether to detach the child of a fork."),
9489 NULL, NULL, &setlist, &showlist);
9490
9491 /* Set/show disable address space randomization mode. */
9492
9493 add_setshow_boolean_cmd ("disable-randomization", class_support,
9494 &disable_randomization, _("\
9495 Set disabling of debuggee's virtual address space randomization."), _("\
9496 Show disabling of debuggee's virtual address space randomization."), _("\
9497 When this mode is on (which is the default), randomization of the virtual\n\
9498 address space is disabled. Standalone programs run with the randomization\n\
9499 enabled by default on some platforms."),
9500 &set_disable_randomization,
9501 &show_disable_randomization,
9502 &setlist, &showlist);
9503
9504 /* ptid initializations */
9505 inferior_ptid = null_ptid;
9506 target_last_wait_ptid = minus_one_ptid;
9507
9508 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9509 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9510 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9511 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9512
9513 /* Explicitly create without lookup, since that tries to create a
9514 value with a void typed value, and when we get here, gdbarch
9515 isn't initialized yet. At this point, we're quite sure there
9516 isn't another convenience variable of the same name. */
9517 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9518
9519 add_setshow_boolean_cmd ("observer", no_class,
9520 &observer_mode_1, _("\
9521 Set whether gdb controls the inferior in observer mode."), _("\
9522 Show whether gdb controls the inferior in observer mode."), _("\
9523 In observer mode, GDB can get data from the inferior, but not\n\
9524 affect its execution. Registers and memory may not be changed,\n\
9525 breakpoints may not be set, and the program cannot be interrupted\n\
9526 or signalled."),
9527 set_observer_mode,
9528 show_observer_mode,
9529 &setlist,
9530 &showlist);
9531
9532 #if GDB_SELF_TEST
9533 selftests::register_test ("infrun_thread_ptid_changed",
9534 selftests::infrun_thread_ptid_changed);
9535 #endif
9536 }