* infrun.c (wait_for_inferior): When we hit a breakpoint for the
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior process.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include <string.h>
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "thread.h"
33 #include "annotate.h"
34
35 #include <signal.h>
36
37 /* unistd.h is needed to #define X_OK */
38 #ifdef USG
39 #include <unistd.h>
40 #else
41 #include <sys/file.h>
42 #endif
43
44 /* Prototypes for local functions */
45
46 static void signals_info PARAMS ((char *, int));
47
48 static void handle_command PARAMS ((char *, int));
49
50 static void sig_print_info PARAMS ((enum target_signal));
51
52 static void sig_print_header PARAMS ((void));
53
54 static void resume_cleanups PARAMS ((int));
55
56 static int hook_stop_stub PARAMS ((char *));
57
58 /* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
59 program. It needs to examine the jmp_buf argument and extract the PC
60 from it. The return value is non-zero on success, zero otherwise. */
61
62 #ifndef GET_LONGJMP_TARGET
63 #define GET_LONGJMP_TARGET(PC_ADDR) 0
64 #endif
65
66
67 /* Some machines have trampoline code that sits between function callers
68 and the actual functions themselves. If this machine doesn't have
69 such things, disable their processing. */
70
71 #ifndef SKIP_TRAMPOLINE_CODE
72 #define SKIP_TRAMPOLINE_CODE(pc) 0
73 #endif
74
75 /* For SVR4 shared libraries, each call goes through a small piece of
76 trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
77 to nonzero if we are current stopped in one of these. */
78
79 #ifndef IN_SOLIB_CALL_TRAMPOLINE
80 #define IN_SOLIB_CALL_TRAMPOLINE(pc,name) 0
81 #endif
82
83 /* In some shared library schemes, the return path from a shared library
84 call may need to go through a trampoline too. */
85
86 #ifndef IN_SOLIB_RETURN_TRAMPOLINE
87 #define IN_SOLIB_RETURN_TRAMPOLINE(pc,name) 0
88 #endif
89
90 /* On some systems, the PC may be left pointing at an instruction that won't
91 actually be executed. This is usually indicated by a bit in the PSW. If
92 we find ourselves in such a state, then we step the target beyond the
93 nullified instruction before returning control to the user so as to avoid
94 confusion. */
95
96 #ifndef INSTRUCTION_NULLIFIED
97 #define INSTRUCTION_NULLIFIED 0
98 #endif
99
100 /* Tables of how to react to signals; the user sets them. */
101
102 static unsigned char *signal_stop;
103 static unsigned char *signal_print;
104 static unsigned char *signal_program;
105
106 #define SET_SIGS(nsigs,sigs,flags) \
107 do { \
108 int signum = (nsigs); \
109 while (signum-- > 0) \
110 if ((sigs)[signum]) \
111 (flags)[signum] = 1; \
112 } while (0)
113
114 #define UNSET_SIGS(nsigs,sigs,flags) \
115 do { \
116 int signum = (nsigs); \
117 while (signum-- > 0) \
118 if ((sigs)[signum]) \
119 (flags)[signum] = 0; \
120 } while (0)
121
122
123 /* Command list pointer for the "stop" placeholder. */
124
125 static struct cmd_list_element *stop_command;
126
127 /* Nonzero if breakpoints are now inserted in the inferior. */
128
129 static int breakpoints_inserted;
130
131 /* Function inferior was in as of last step command. */
132
133 static struct symbol *step_start_function;
134
135 /* Nonzero if we are expecting a trace trap and should proceed from it. */
136
137 static int trap_expected;
138
139 #ifdef HP_OS_BUG
140 /* Nonzero if the next time we try to continue the inferior, it will
141 step one instruction and generate a spurious trace trap.
142 This is used to compensate for a bug in HP-UX. */
143
144 static int trap_expected_after_continue;
145 #endif
146
147 /* Nonzero means expecting a trace trap
148 and should stop the inferior and return silently when it happens. */
149
150 int stop_after_trap;
151
152 /* Nonzero means expecting a trap and caller will handle it themselves.
153 It is used after attach, due to attaching to a process;
154 when running in the shell before the child program has been exec'd;
155 and when running some kinds of remote stuff (FIXME?). */
156
157 int stop_soon_quietly;
158
159 /* Nonzero if proceed is being used for a "finish" command or a similar
160 situation when stop_registers should be saved. */
161
162 int proceed_to_finish;
163
164 /* Save register contents here when about to pop a stack dummy frame,
165 if-and-only-if proceed_to_finish is set.
166 Thus this contains the return value from the called function (assuming
167 values are returned in a register). */
168
169 char stop_registers[REGISTER_BYTES];
170
171 /* Nonzero if program stopped due to error trying to insert breakpoints. */
172
173 static int breakpoints_failed;
174
175 /* Nonzero after stop if current stack frame should be printed. */
176
177 static int stop_print_frame;
178
179 #ifdef NO_SINGLE_STEP
180 extern int one_stepped; /* From machine dependent code */
181 extern void single_step (); /* Same. */
182 #endif /* NO_SINGLE_STEP */
183
184 \f
185 /* Things to clean up if we QUIT out of resume (). */
186 /* ARGSUSED */
187 static void
188 resume_cleanups (arg)
189 int arg;
190 {
191 normal_stop ();
192 }
193
194 /* Resume the inferior, but allow a QUIT. This is useful if the user
195 wants to interrupt some lengthy single-stepping operation
196 (for child processes, the SIGINT goes to the inferior, and so
197 we get a SIGINT random_signal, but for remote debugging and perhaps
198 other targets, that's not true).
199
200 STEP nonzero if we should step (zero to continue instead).
201 SIG is the signal to give the inferior (zero for none). */
202 void
203 resume (step, sig)
204 int step;
205 enum target_signal sig;
206 {
207 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
208 QUIT;
209
210 #ifdef CANNOT_STEP_BREAKPOINT
211 /* Most targets can step a breakpoint instruction, thus executing it
212 normally. But if this one cannot, just continue and we will hit
213 it anyway. */
214 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
215 step = 0;
216 #endif
217
218 #ifdef NO_SINGLE_STEP
219 if (step) {
220 single_step(sig); /* Do it the hard way, w/temp breakpoints */
221 step = 0; /* ...and don't ask hardware to do it. */
222 }
223 #endif
224
225 /* Handle any optimized stores to the inferior NOW... */
226 #ifdef DO_DEFERRED_STORES
227 DO_DEFERRED_STORES;
228 #endif
229
230 /* Install inferior's terminal modes. */
231 target_terminal_inferior ();
232
233 target_resume (-1, step, sig);
234 discard_cleanups (old_cleanups);
235 }
236
237 \f
238 /* Clear out all variables saying what to do when inferior is continued.
239 First do this, then set the ones you want, then call `proceed'. */
240
241 void
242 clear_proceed_status ()
243 {
244 trap_expected = 0;
245 step_range_start = 0;
246 step_range_end = 0;
247 step_frame_address = 0;
248 step_over_calls = -1;
249 stop_after_trap = 0;
250 stop_soon_quietly = 0;
251 proceed_to_finish = 0;
252 breakpoint_proceeded = 1; /* We're about to proceed... */
253
254 /* Discard any remaining commands or status from previous stop. */
255 bpstat_clear (&stop_bpstat);
256 }
257
258 /* Basic routine for continuing the program in various fashions.
259
260 ADDR is the address to resume at, or -1 for resume where stopped.
261 SIGGNAL is the signal to give it, or 0 for none,
262 or -1 for act according to how it stopped.
263 STEP is nonzero if should trap after one instruction.
264 -1 means return after that and print nothing.
265 You should probably set various step_... variables
266 before calling here, if you are stepping.
267
268 You should call clear_proceed_status before calling proceed. */
269
270 void
271 proceed (addr, siggnal, step)
272 CORE_ADDR addr;
273 enum target_signal siggnal;
274 int step;
275 {
276 int oneproc = 0;
277
278 if (step > 0)
279 step_start_function = find_pc_function (read_pc ());
280 if (step < 0)
281 stop_after_trap = 1;
282
283 if (addr == (CORE_ADDR)-1)
284 {
285 /* If there is a breakpoint at the address we will resume at,
286 step one instruction before inserting breakpoints
287 so that we do not stop right away. */
288
289 if (breakpoint_here_p (read_pc ()))
290 oneproc = 1;
291
292 #ifdef STEP_SKIPS_DELAY
293 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
294 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
295 is slow (it needs to read memory from the target). */
296 if (breakpoint_here_p (read_pc () + 4)
297 && STEP_SKIPS_DELAY (read_pc ()))
298 oneproc = 1;
299 #endif /* STEP_SKIPS_DELAY */
300 }
301 else
302 write_pc (addr);
303
304 #ifdef PREPARE_TO_PROCEED
305 /* In a multi-threaded task we may select another thread and then continue.
306
307 In this case the thread that stopped at a breakpoint will immediately
308 cause another stop, if it is not stepped over first. On the other hand,
309 if (ADDR != -1) we only want to single step over the breakpoint if we did
310 switch to another thread.
311
312 If we are single stepping, don't do any of the above.
313 (Note that in the current implementation single stepping another
314 thread after a breakpoint and then continuing will cause the original
315 breakpoint to be hit again, but you can always continue, so it's not
316 a big deal.) */
317
318 if (! step && PREPARE_TO_PROCEED (1) && breakpoint_here_p (read_pc ()))
319 oneproc = 1;
320 #endif /* PREPARE_TO_PROCEED */
321
322 #ifdef HP_OS_BUG
323 if (trap_expected_after_continue)
324 {
325 /* If (step == 0), a trap will be automatically generated after
326 the first instruction is executed. Force step one
327 instruction to clear this condition. This should not occur
328 if step is nonzero, but it is harmless in that case. */
329 oneproc = 1;
330 trap_expected_after_continue = 0;
331 }
332 #endif /* HP_OS_BUG */
333
334 if (oneproc)
335 /* We will get a trace trap after one instruction.
336 Continue it automatically and insert breakpoints then. */
337 trap_expected = 1;
338 else
339 {
340 int temp = insert_breakpoints ();
341 if (temp)
342 {
343 print_sys_errmsg ("ptrace", temp);
344 error ("Cannot insert breakpoints.\n\
345 The same program may be running in another process.");
346 }
347 breakpoints_inserted = 1;
348 }
349
350 if (siggnal != TARGET_SIGNAL_DEFAULT)
351 stop_signal = siggnal;
352 /* If this signal should not be seen by program,
353 give it zero. Used for debugging signals. */
354 else if (!signal_program[stop_signal])
355 stop_signal = TARGET_SIGNAL_0;
356
357 annotate_starting ();
358
359 /* Make sure that output from GDB appears before output from the
360 inferior. */
361 gdb_flush (gdb_stdout);
362
363 /* Resume inferior. */
364 resume (oneproc || step || bpstat_should_step (), stop_signal);
365
366 /* Wait for it to stop (if not standalone)
367 and in any case decode why it stopped, and act accordingly. */
368
369 wait_for_inferior ();
370 normal_stop ();
371 }
372
373 /* Record the pc and sp of the program the last time it stopped.
374 These are just used internally by wait_for_inferior, but need
375 to be preserved over calls to it and cleared when the inferior
376 is started. */
377 static CORE_ADDR prev_pc;
378 static CORE_ADDR prev_func_start;
379 static char *prev_func_name;
380
381 \f
382 /* Start remote-debugging of a machine over a serial link. */
383
384 void
385 start_remote ()
386 {
387 init_thread_list ();
388 init_wait_for_inferior ();
389 clear_proceed_status ();
390 stop_soon_quietly = 1;
391 trap_expected = 0;
392 wait_for_inferior ();
393 normal_stop ();
394 }
395
396 /* Initialize static vars when a new inferior begins. */
397
398 void
399 init_wait_for_inferior ()
400 {
401 /* These are meaningless until the first time through wait_for_inferior. */
402 prev_pc = 0;
403 prev_func_start = 0;
404 prev_func_name = NULL;
405
406 #ifdef HP_OS_BUG
407 trap_expected_after_continue = 0;
408 #endif
409 breakpoints_inserted = 0;
410 breakpoint_init_inferior ();
411
412 /* Don't confuse first call to proceed(). */
413 stop_signal = TARGET_SIGNAL_0;
414 }
415
416 static void
417 delete_breakpoint_current_contents (arg)
418 PTR arg;
419 {
420 struct breakpoint **breakpointp = (struct breakpoint **)arg;
421 if (*breakpointp != NULL)
422 delete_breakpoint (*breakpointp);
423 }
424 \f
425 /* Wait for control to return from inferior to debugger.
426 If inferior gets a signal, we may decide to start it up again
427 instead of returning. That is why there is a loop in this function.
428 When this function actually returns it means the inferior
429 should be left stopped and GDB should read more commands. */
430
431 void
432 wait_for_inferior ()
433 {
434 struct cleanup *old_cleanups;
435 struct target_waitstatus w;
436 int another_trap;
437 int random_signal;
438 CORE_ADDR stop_func_start;
439 CORE_ADDR stop_func_end;
440 char *stop_func_name;
441 CORE_ADDR prologue_pc = 0, tmp;
442 struct symtab_and_line sal;
443 int remove_breakpoints_on_following_step = 0;
444 int current_line;
445 struct symtab *current_symtab;
446 int handling_longjmp = 0; /* FIXME */
447 struct breakpoint *step_resume_breakpoint = NULL;
448 struct breakpoint *through_sigtramp_breakpoint = NULL;
449 int pid;
450 int update_step_sp = 0;
451
452 old_cleanups = make_cleanup (delete_breakpoint_current_contents,
453 &step_resume_breakpoint);
454 make_cleanup (delete_breakpoint_current_contents,
455 &through_sigtramp_breakpoint);
456 sal = find_pc_line(prev_pc, 0);
457 current_line = sal.line;
458 current_symtab = sal.symtab;
459
460 /* Are we stepping? */
461 #define CURRENTLY_STEPPING() \
462 ((through_sigtramp_breakpoint == NULL \
463 && !handling_longjmp \
464 && ((step_range_end && step_resume_breakpoint == NULL) \
465 || trap_expected)) \
466 || bpstat_should_step ())
467
468 while (1)
469 {
470 /* We have to invalidate the registers BEFORE calling target_wait because
471 they can be loaded from the target while in target_wait. This makes
472 remote debugging a bit more efficient for those targets that provide
473 critical registers as part of their normal status mechanism. */
474
475 registers_changed ();
476
477 if (target_wait_hook)
478 pid = target_wait_hook (-1, &w);
479 else
480 pid = target_wait (-1, &w);
481
482 have_waited:
483
484 flush_cached_frames ();
485
486 /* If it's a new process, add it to the thread database */
487
488 if (pid != inferior_pid
489 && !in_thread_list (pid))
490 {
491 fprintf_unfiltered (gdb_stderr, "[New %s]\n", target_pid_to_str (pid));
492 add_thread (pid);
493
494 /* We may want to consider not doing a resume here in order to give
495 the user a chance to play with the new thread. It might be good
496 to make that a user-settable option. */
497
498 /* At this point, all threads are stopped (happens automatically in
499 either the OS or the native code). Therefore we need to continue
500 all threads in order to make progress. */
501
502 target_resume (-1, 0, TARGET_SIGNAL_0);
503 continue;
504 }
505
506 switch (w.kind)
507 {
508 case TARGET_WAITKIND_LOADED:
509 /* Ignore it gracefully. */
510 if (breakpoints_inserted)
511 {
512 mark_breakpoints_out ();
513 insert_breakpoints ();
514 }
515 resume (0, TARGET_SIGNAL_0);
516 continue;
517
518 case TARGET_WAITKIND_SPURIOUS:
519 resume (0, TARGET_SIGNAL_0);
520 continue;
521
522 case TARGET_WAITKIND_EXITED:
523 target_terminal_ours (); /* Must do this before mourn anyway */
524 annotate_exited (w.value.integer);
525 if (w.value.integer)
526 printf_filtered ("\nProgram exited with code 0%o.\n",
527 (unsigned int)w.value.integer);
528 else
529 printf_filtered ("\nProgram exited normally.\n");
530 gdb_flush (gdb_stdout);
531 target_mourn_inferior ();
532 #ifdef NO_SINGLE_STEP
533 one_stepped = 0;
534 #endif
535 stop_print_frame = 0;
536 goto stop_stepping;
537
538 case TARGET_WAITKIND_SIGNALLED:
539 stop_print_frame = 0;
540 stop_signal = w.value.sig;
541 target_terminal_ours (); /* Must do this before mourn anyway */
542 annotate_signalled ();
543
544 /* This looks pretty bogus to me. Doesn't TARGET_WAITKIND_SIGNALLED
545 mean it is already dead? This has been here since GDB 2.8, so
546 perhaps it means rms didn't understand unix waitstatuses?
547 For the moment I'm just kludging around this in remote.c
548 rather than trying to change it here --kingdon, 5 Dec 1994. */
549 target_kill (); /* kill mourns as well */
550
551 printf_filtered ("\nProgram terminated with signal ");
552 annotate_signal_name ();
553 printf_filtered ("%s", target_signal_to_name (stop_signal));
554 annotate_signal_name_end ();
555 printf_filtered (", ");
556 annotate_signal_string ();
557 printf_filtered ("%s", target_signal_to_string (stop_signal));
558 annotate_signal_string_end ();
559 printf_filtered (".\n");
560
561 printf_filtered ("The program no longer exists.\n");
562 gdb_flush (gdb_stdout);
563 #ifdef NO_SINGLE_STEP
564 one_stepped = 0;
565 #endif
566 goto stop_stepping;
567
568 case TARGET_WAITKIND_STOPPED:
569 /* This is the only case in which we keep going; the above cases
570 end in a continue or goto. */
571 break;
572 }
573
574 stop_signal = w.value.sig;
575
576 stop_pc = read_pc_pid (pid);
577
578 /* See if a thread hit a thread-specific breakpoint that was meant for
579 another thread. If so, then step that thread past the breakpoint,
580 and continue it. */
581
582 if (stop_signal == TARGET_SIGNAL_TRAP
583 && breakpoints_inserted
584 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
585 {
586 random_signal = 0;
587 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK, pid))
588 {
589 /* Saw a breakpoint, but it was hit by the wrong thread. Just continue. */
590 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK, pid);
591
592 remove_breakpoints ();
593 target_resume (pid, 1, TARGET_SIGNAL_0); /* Single step */
594 /* FIXME: What if a signal arrives instead of the single-step
595 happening? */
596
597 if (target_wait_hook)
598 target_wait_hook (pid, &w);
599 else
600 target_wait (pid, &w);
601 insert_breakpoints ();
602
603 /* We need to restart all the threads now. */
604 target_resume (-1, 0, TARGET_SIGNAL_0);
605 continue;
606 }
607 }
608 else
609 random_signal = 1;
610
611 /* See if something interesting happened to the non-current thread. If
612 so, then switch to that thread, and eventually give control back to
613 the user. */
614
615 if (pid != inferior_pid)
616 {
617 int printed = 0;
618
619 /* If it's a random signal for a non-current thread, notify user
620 if he's expressed an interest. */
621
622 if (random_signal
623 && signal_print[stop_signal])
624 {
625 printed = 1;
626 target_terminal_ours_for_output ();
627 printf_filtered ("\nProgram received signal %s, %s.\n",
628 target_signal_to_name (stop_signal),
629 target_signal_to_string (stop_signal));
630 gdb_flush (gdb_stdout);
631 }
632
633 /* If it's not SIGTRAP and not a signal we want to stop for, then
634 continue the thread. */
635
636 if (stop_signal != TARGET_SIGNAL_TRAP
637 && !signal_stop[stop_signal])
638 {
639 if (printed)
640 target_terminal_inferior ();
641
642 /* Clear the signal if it should not be passed. */
643 if (signal_program[stop_signal] == 0)
644 stop_signal = TARGET_SIGNAL_0;
645
646 target_resume (pid, 0, stop_signal);
647 continue;
648 }
649
650 /* It's a SIGTRAP or a signal we're interested in. Switch threads,
651 and fall into the rest of wait_for_inferior(). */
652
653 inferior_pid = pid;
654 printf_filtered ("[Switching to %s]\n", target_pid_to_str (pid));
655
656 flush_cached_frames ();
657 trap_expected = 0;
658 if (step_resume_breakpoint)
659 {
660 delete_breakpoint (step_resume_breakpoint);
661 step_resume_breakpoint = NULL;
662 }
663
664 /* Not sure whether we need to blow this away too,
665 but probably it is like the step-resume
666 breakpoint. */
667 if (through_sigtramp_breakpoint)
668 {
669 delete_breakpoint (through_sigtramp_breakpoint);
670 through_sigtramp_breakpoint = NULL;
671 }
672 prev_pc = 0;
673 prev_func_name = NULL;
674 step_range_start = 0;
675 step_range_end = 0;
676 step_frame_address = 0;
677 handling_longjmp = 0;
678 another_trap = 0;
679 }
680
681 #ifdef NO_SINGLE_STEP
682 if (one_stepped)
683 single_step (0); /* This actually cleans up the ss */
684 #endif /* NO_SINGLE_STEP */
685
686 /* If PC is pointing at a nullified instruction, then step beyond
687 it so that the user won't be confused when GDB appears to be ready
688 to execute it. */
689
690 if (INSTRUCTION_NULLIFIED)
691 {
692 resume (1, 0);
693 continue;
694 }
695
696 #ifdef HAVE_STEPPABLE_WATCHPOINT
697 /* It may not be necessary to disable the watchpoint to stop over
698 it. For example, the PA can (with some kernel cooperation)
699 single step over a watchpoint without disabling the watchpoint. */
700 if (STOPPED_BY_WATCHPOINT (w))
701 {
702 resume (1, 0);
703 continue;
704 }
705 #endif
706
707 #ifdef HAVE_NONSTEPPABLE_WATCHPOINT
708 /* It is far more common to need to disable a watchpoint
709 to step the inferior over it. FIXME. What else might
710 a debug register or page protection watchpoint scheme need
711 here? */
712 if (STOPPED_BY_WATCHPOINT (w))
713 {
714 /* At this point, we are stopped at an instruction which has attempted to write
715 to a piece of memory under control of a watchpoint. The instruction hasn't
716 actually executed yet. If we were to evaluate the watchpoint expression
717 now, we would get the old value, and therefore no change would seem to have
718 occurred.
719
720 In order to make watchpoints work `right', we really need to complete the
721 memory write, and then evaluate the watchpoint expression. The following
722 code does that by removing the watchpoint (actually, all watchpoints and
723 breakpoints), single-stepping the target, re-inserting watchpoints, and then
724 falling through to let normal single-step processing handle proceed. Since
725 this includes evaluating watchpoints, things will come to a stop in the
726 correct manner. */
727
728 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
729
730 remove_breakpoints ();
731 target_resume (pid, 1, TARGET_SIGNAL_0); /* Single step */
732
733 if (target_wait_hook)
734 target_wait_hook (pid, &w);
735 else
736 target_wait (pid, &w);
737 insert_breakpoints ();
738 /* FIXME-maybe: is this cleaner than setting a flag? Does it
739 handle things like signals arriving and other things happening
740 in combination correctly? */
741 goto have_waited;
742 }
743 #endif
744
745 #ifdef HAVE_CONTINUABLE_WATCHPOINT
746 /* It may be possible to simply continue after a watchpoint. */
747 STOPPED_BY_WATCHPOINT (w);
748 #endif
749
750 stop_func_start = 0;
751 stop_func_name = 0;
752 /* Don't care about return value; stop_func_start and stop_func_name
753 will both be 0 if it doesn't work. */
754 find_pc_partial_function (stop_pc, &stop_func_name, &stop_func_start,
755 &stop_func_end);
756 stop_func_start += FUNCTION_START_OFFSET;
757 another_trap = 0;
758 bpstat_clear (&stop_bpstat);
759 stop_step = 0;
760 stop_stack_dummy = 0;
761 stop_print_frame = 1;
762 random_signal = 0;
763 stopped_by_random_signal = 0;
764 breakpoints_failed = 0;
765
766 /* Look at the cause of the stop, and decide what to do.
767 The alternatives are:
768 1) break; to really stop and return to the debugger,
769 2) drop through to start up again
770 (set another_trap to 1 to single step once)
771 3) set random_signal to 1, and the decision between 1 and 2
772 will be made according to the signal handling tables. */
773
774 /* First, distinguish signals caused by the debugger from signals
775 that have to do with the program's own actions.
776 Note that breakpoint insns may cause SIGTRAP or SIGILL
777 or SIGEMT, depending on the operating system version.
778 Here we detect when a SIGILL or SIGEMT is really a breakpoint
779 and change it to SIGTRAP. */
780
781 if (stop_signal == TARGET_SIGNAL_TRAP
782 || (breakpoints_inserted &&
783 (stop_signal == TARGET_SIGNAL_ILL
784 || stop_signal == TARGET_SIGNAL_EMT
785 ))
786 || stop_soon_quietly)
787 {
788 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
789 {
790 stop_print_frame = 0;
791 break;
792 }
793 if (stop_soon_quietly)
794 break;
795
796 /* Don't even think about breakpoints
797 if just proceeded over a breakpoint.
798
799 However, if we are trying to proceed over a breakpoint
800 and end up in sigtramp, then through_sigtramp_breakpoint
801 will be set and we should check whether we've hit the
802 step breakpoint. */
803 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
804 && through_sigtramp_breakpoint == NULL)
805 bpstat_clear (&stop_bpstat);
806 else
807 {
808 /* See if there is a breakpoint at the current PC. */
809 stop_bpstat = bpstat_stop_status
810 (&stop_pc,
811 #if DECR_PC_AFTER_BREAK
812 /* Notice the case of stepping through a jump
813 that lands just after a breakpoint.
814 Don't confuse that with hitting the breakpoint.
815 What we check for is that 1) stepping is going on
816 and 2) the pc before the last insn does not match
817 the address of the breakpoint before the current pc. */
818 (prev_pc != stop_pc - DECR_PC_AFTER_BREAK
819 && CURRENTLY_STEPPING ())
820 #else /* DECR_PC_AFTER_BREAK zero */
821 0
822 #endif /* DECR_PC_AFTER_BREAK zero */
823 );
824 /* Following in case break condition called a
825 function. */
826 stop_print_frame = 1;
827 }
828
829 if (stop_signal == TARGET_SIGNAL_TRAP)
830 random_signal
831 = !(bpstat_explains_signal (stop_bpstat)
832 || trap_expected
833 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
834 || PC_IN_CALL_DUMMY (stop_pc, read_sp (),
835 FRAME_FP (get_current_frame ()))
836 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
837 || (step_range_end && step_resume_breakpoint == NULL));
838 else
839 {
840 random_signal
841 = !(bpstat_explains_signal (stop_bpstat)
842 /* End of a stack dummy. Some systems (e.g. Sony
843 news) give another signal besides SIGTRAP,
844 so check here as well as above. */
845 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
846 || PC_IN_CALL_DUMMY (stop_pc, read_sp (),
847 FRAME_FP (get_current_frame ()))
848 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
849 );
850 if (!random_signal)
851 stop_signal = TARGET_SIGNAL_TRAP;
852 }
853 }
854 else
855 random_signal = 1;
856
857 /* For the program's own signals, act according to
858 the signal handling tables. */
859
860 if (random_signal)
861 {
862 /* Signal not for debugging purposes. */
863 int printed = 0;
864
865 stopped_by_random_signal = 1;
866
867 if (signal_print[stop_signal])
868 {
869 printed = 1;
870 target_terminal_ours_for_output ();
871 annotate_signal ();
872 printf_filtered ("\nProgram received signal ");
873 annotate_signal_name ();
874 printf_filtered ("%s", target_signal_to_name (stop_signal));
875 annotate_signal_name_end ();
876 printf_filtered (", ");
877 annotate_signal_string ();
878 printf_filtered ("%s", target_signal_to_string (stop_signal));
879 annotate_signal_string_end ();
880 printf_filtered (".\n");
881 gdb_flush (gdb_stdout);
882 }
883 if (signal_stop[stop_signal])
884 break;
885 /* If not going to stop, give terminal back
886 if we took it away. */
887 else if (printed)
888 target_terminal_inferior ();
889
890 /* Clear the signal if it should not be passed. */
891 if (signal_program[stop_signal] == 0)
892 stop_signal = TARGET_SIGNAL_0;
893
894 /* I'm not sure whether this needs to be check_sigtramp2 or
895 whether it could/should be keep_going. */
896 goto check_sigtramp2;
897 }
898
899 /* Handle cases caused by hitting a breakpoint. */
900 {
901 CORE_ADDR jmp_buf_pc;
902 struct bpstat_what what;
903
904 what = bpstat_what (stop_bpstat);
905
906 if (what.call_dummy)
907 {
908 stop_stack_dummy = 1;
909 #ifdef HP_OS_BUG
910 trap_expected_after_continue = 1;
911 #endif
912 }
913
914 switch (what.main_action)
915 {
916 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
917 /* If we hit the breakpoint at longjmp, disable it for the
918 duration of this command. Then, install a temporary
919 breakpoint at the target of the jmp_buf. */
920 disable_longjmp_breakpoint();
921 remove_breakpoints ();
922 breakpoints_inserted = 0;
923 if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going;
924
925 /* Need to blow away step-resume breakpoint, as it
926 interferes with us */
927 if (step_resume_breakpoint != NULL)
928 {
929 delete_breakpoint (step_resume_breakpoint);
930 step_resume_breakpoint = NULL;
931 }
932 /* Not sure whether we need to blow this away too, but probably
933 it is like the step-resume breakpoint. */
934 if (through_sigtramp_breakpoint != NULL)
935 {
936 delete_breakpoint (through_sigtramp_breakpoint);
937 through_sigtramp_breakpoint = NULL;
938 }
939
940 #if 0
941 /* FIXME - Need to implement nested temporary breakpoints */
942 if (step_over_calls > 0)
943 set_longjmp_resume_breakpoint(jmp_buf_pc,
944 get_current_frame());
945 else
946 #endif /* 0 */
947 set_longjmp_resume_breakpoint(jmp_buf_pc, NULL);
948 handling_longjmp = 1; /* FIXME */
949 goto keep_going;
950
951 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
952 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
953 remove_breakpoints ();
954 breakpoints_inserted = 0;
955 #if 0
956 /* FIXME - Need to implement nested temporary breakpoints */
957 if (step_over_calls
958 && (FRAME_FP (get_current_frame ())
959 INNER_THAN step_frame_address))
960 {
961 another_trap = 1;
962 goto keep_going;
963 }
964 #endif /* 0 */
965 disable_longjmp_breakpoint();
966 handling_longjmp = 0; /* FIXME */
967 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
968 break;
969 /* else fallthrough */
970
971 case BPSTAT_WHAT_SINGLE:
972 if (breakpoints_inserted)
973 remove_breakpoints ();
974 breakpoints_inserted = 0;
975 another_trap = 1;
976 /* Still need to check other stuff, at least the case
977 where we are stepping and step out of the right range. */
978 break;
979
980 case BPSTAT_WHAT_STOP_NOISY:
981 stop_print_frame = 1;
982
983 /* We are about to nuke the step_resume_breakpoint and
984 through_sigtramp_breakpoint via the cleanup chain, so
985 no need to worry about it here. */
986
987 goto stop_stepping;
988
989 case BPSTAT_WHAT_STOP_SILENT:
990 stop_print_frame = 0;
991
992 /* We are about to nuke the step_resume_breakpoint and
993 through_sigtramp_breakpoint via the cleanup chain, so
994 no need to worry about it here. */
995
996 goto stop_stepping;
997
998 case BPSTAT_WHAT_STEP_RESUME:
999 delete_breakpoint (step_resume_breakpoint);
1000 step_resume_breakpoint = NULL;
1001 break;
1002
1003 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
1004 if (through_sigtramp_breakpoint)
1005 delete_breakpoint (through_sigtramp_breakpoint);
1006 through_sigtramp_breakpoint = NULL;
1007
1008 /* If were waiting for a trap, hitting the step_resume_break
1009 doesn't count as getting it. */
1010 if (trap_expected)
1011 another_trap = 1;
1012 break;
1013
1014 case BPSTAT_WHAT_LAST:
1015 /* Not a real code, but listed here to shut up gcc -Wall. */
1016
1017 case BPSTAT_WHAT_KEEP_CHECKING:
1018 break;
1019 }
1020 }
1021
1022 /* We come here if we hit a breakpoint but should not
1023 stop for it. Possibly we also were stepping
1024 and should stop for that. So fall through and
1025 test for stepping. But, if not stepping,
1026 do not stop. */
1027
1028 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
1029 /* This is the old way of detecting the end of the stack dummy.
1030 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
1031 handled above. As soon as we can test it on all of them, all
1032 architectures should define it. */
1033
1034 /* If this is the breakpoint at the end of a stack dummy,
1035 just stop silently, unless the user was doing an si/ni, in which
1036 case she'd better know what she's doing. */
1037
1038 if (PC_IN_CALL_DUMMY (stop_pc, read_sp (), FRAME_FP (get_current_frame ()))
1039 && !step_range_end)
1040 {
1041 stop_print_frame = 0;
1042 stop_stack_dummy = 1;
1043 #ifdef HP_OS_BUG
1044 trap_expected_after_continue = 1;
1045 #endif
1046 break;
1047 }
1048 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
1049
1050 if (step_resume_breakpoint)
1051 /* Having a step-resume breakpoint overrides anything
1052 else having to do with stepping commands until
1053 that breakpoint is reached. */
1054 /* I'm not sure whether this needs to be check_sigtramp2 or
1055 whether it could/should be keep_going. */
1056 goto check_sigtramp2;
1057
1058 if (step_range_end == 0)
1059 /* Likewise if we aren't even stepping. */
1060 /* I'm not sure whether this needs to be check_sigtramp2 or
1061 whether it could/should be keep_going. */
1062 goto check_sigtramp2;
1063
1064 /* If stepping through a line, keep going if still within it. */
1065 if (stop_pc >= step_range_start
1066 && stop_pc < step_range_end
1067 /* The step range might include the start of the
1068 function, so if we are at the start of the
1069 step range and either the stack or frame pointers
1070 just changed, we've stepped outside */
1071 && !(stop_pc == step_range_start
1072 && FRAME_FP (get_current_frame ())
1073 && (read_sp () INNER_THAN step_sp
1074 || FRAME_FP (get_current_frame ()) != step_frame_address)))
1075 {
1076 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
1077 So definately need to check for sigtramp here. */
1078 goto check_sigtramp2;
1079 }
1080
1081 /* We stepped out of the stepping range. */
1082
1083 /* We can't update step_sp every time through the loop, because
1084 reading the stack pointer would slow down stepping too much.
1085 But we can update it every time we leave the step range. */
1086 update_step_sp = 1;
1087
1088 /* Did we just take a signal? */
1089 if (IN_SIGTRAMP (stop_pc, stop_func_name)
1090 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1091 {
1092 /* We've just taken a signal; go until we are back to
1093 the point where we took it and one more. */
1094
1095 /* This code is needed at least in the following case:
1096 The user types "next" and then a signal arrives (before
1097 the "next" is done). */
1098
1099 /* Note that if we are stopped at a breakpoint, then we need
1100 the step_resume breakpoint to override any breakpoints at
1101 the same location, so that we will still step over the
1102 breakpoint even though the signal happened. */
1103
1104 {
1105 struct symtab_and_line sr_sal;
1106
1107 sr_sal.pc = prev_pc;
1108 sr_sal.symtab = NULL;
1109 sr_sal.line = 0;
1110 /* We could probably be setting the frame to
1111 step_frame_address; I don't think anyone thought to try it. */
1112 step_resume_breakpoint =
1113 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1114 if (breakpoints_inserted)
1115 insert_breakpoints ();
1116 }
1117
1118 /* If this is stepi or nexti, make sure that the stepping range
1119 gets us past that instruction. */
1120 if (step_range_end == 1)
1121 /* FIXME: Does this run afoul of the code below which, if
1122 we step into the middle of a line, resets the stepping
1123 range? */
1124 step_range_end = (step_range_start = prev_pc) + 1;
1125
1126 remove_breakpoints_on_following_step = 1;
1127 goto keep_going;
1128 }
1129
1130 #if 1
1131 /* See if we left the step range due to a subroutine call that
1132 we should proceed to the end of. */
1133
1134 if (stop_func_start)
1135 {
1136 struct symtab *s;
1137
1138 /* Do this after the IN_SIGTRAMP check; it might give
1139 an error. */
1140 prologue_pc = stop_func_start;
1141
1142 /* Don't skip the prologue if this is assembly source */
1143 s = find_pc_symtab (stop_pc);
1144 if (s && s->language != language_asm)
1145 SKIP_PROLOGUE (prologue_pc);
1146 }
1147
1148 if ((/* Might be a non-recursive call. If the symbols are missing
1149 enough that stop_func_start == prev_func_start even though
1150 they are really two functions, we will treat some calls as
1151 jumps. */
1152 stop_func_start != prev_func_start
1153
1154 /* Might be a recursive call if either we have a prologue
1155 or the call instruction itself saves the PC on the stack. */
1156 || prologue_pc != stop_func_start
1157 || read_sp () != step_sp)
1158 && (/* PC is completely out of bounds of any known objfiles. Treat
1159 like a subroutine call. */
1160 ! stop_func_start
1161
1162 /* If we do a call, we will be at the start of a function... */
1163 || stop_pc == stop_func_start
1164
1165 /* ...except on the Alpha with -O (and also Irix 5 and
1166 perhaps others), in which we might call the address
1167 after the load of gp. Since prologues don't contain
1168 calls, we can't return to within one, and we don't
1169 jump back into them, so this check is OK. */
1170
1171 || stop_pc < prologue_pc
1172
1173 /* ...and if it is a leaf function, the prologue might
1174 consist of gp loading only, so the call transfers to
1175 the first instruction after the prologue. */
1176 || (stop_pc == prologue_pc
1177
1178 /* Distinguish this from the case where we jump back
1179 to the first instruction after the prologue,
1180 within a function. */
1181 && stop_func_start != prev_func_start)
1182
1183 /* If we end up in certain places, it means we did a subroutine
1184 call. I'm not completely sure this is necessary now that we
1185 have the above checks with stop_func_start (and now that
1186 find_pc_partial_function is pickier). */
1187 || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, stop_func_name)
1188
1189 /* If none of the above apply, it is a jump within a function,
1190 or a return from a subroutine. The other case is longjmp,
1191 which can no longer happen here as long as the
1192 handling_longjmp stuff is working. */
1193 ))
1194 #else
1195 /* This is experimental code which greatly simplifies the subroutine call
1196 test. I've actually tested on the Alpha, and it works great. -Stu */
1197
1198 if (in_prologue (stop_pc, NULL)
1199 || (prev_func_start != 0
1200 && stop_func_start == 0))
1201 #endif
1202 {
1203 /* It's a subroutine call. */
1204
1205 if (step_over_calls == 0)
1206 {
1207 /* I presume that step_over_calls is only 0 when we're
1208 supposed to be stepping at the assembly language level
1209 ("stepi"). Just stop. */
1210 stop_step = 1;
1211 break;
1212 }
1213
1214 if (step_over_calls > 0)
1215 /* We're doing a "next". */
1216 goto step_over_function;
1217
1218 /* If we are in a function call trampoline (a stub between
1219 the calling routine and the real function), locate the real
1220 function. That's what tells us (a) whether we want to step
1221 into it at all, and (b) what prologue we want to run to
1222 the end of, if we do step into it. */
1223 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
1224 if (tmp != 0)
1225 stop_func_start = tmp;
1226
1227 /* If we have line number information for the function we
1228 are thinking of stepping into, step into it.
1229
1230 If there are several symtabs at that PC (e.g. with include
1231 files), just want to know whether *any* of them have line
1232 numbers. find_pc_line handles this. */
1233 {
1234 struct symtab_and_line tmp_sal;
1235
1236 tmp_sal = find_pc_line (stop_func_start, 0);
1237 if (tmp_sal.line != 0)
1238 goto step_into_function;
1239 }
1240
1241 step_over_function:
1242 /* A subroutine call has happened. */
1243 {
1244 /* Set a special breakpoint after the return */
1245 struct symtab_and_line sr_sal;
1246 sr_sal.pc =
1247 ADDR_BITS_REMOVE
1248 (SAVED_PC_AFTER_CALL (get_current_frame ()));
1249 sr_sal.symtab = NULL;
1250 sr_sal.line = 0;
1251 step_resume_breakpoint =
1252 set_momentary_breakpoint (sr_sal, get_current_frame (),
1253 bp_step_resume);
1254 step_resume_breakpoint->frame = step_frame_address;
1255 if (breakpoints_inserted)
1256 insert_breakpoints ();
1257 }
1258 goto keep_going;
1259
1260 step_into_function:
1261 /* Subroutine call with source code we should not step over.
1262 Do step to the first line of code in it. */
1263 {
1264 struct symtab *s;
1265
1266 s = find_pc_symtab (stop_pc);
1267 if (s && s->language != language_asm)
1268 SKIP_PROLOGUE (stop_func_start);
1269 }
1270 sal = find_pc_line (stop_func_start, 0);
1271 /* Use the step_resume_break to step until
1272 the end of the prologue, even if that involves jumps
1273 (as it seems to on the vax under 4.2). */
1274 /* If the prologue ends in the middle of a source line,
1275 continue to the end of that source line (if it is still
1276 within the function). Otherwise, just go to end of prologue. */
1277 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
1278 /* no, don't either. It skips any code that's
1279 legitimately on the first line. */
1280 #else
1281 if (sal.end && sal.pc != stop_func_start && sal.end < stop_func_end)
1282 stop_func_start = sal.end;
1283 #endif
1284
1285 if (stop_func_start == stop_pc)
1286 {
1287 /* We are already there: stop now. */
1288 stop_step = 1;
1289 break;
1290 }
1291 else
1292 /* Put the step-breakpoint there and go until there. */
1293 {
1294 struct symtab_and_line sr_sal;
1295
1296 sr_sal.pc = stop_func_start;
1297 sr_sal.symtab = NULL;
1298 sr_sal.line = 0;
1299 /* Do not specify what the fp should be when we stop
1300 since on some machines the prologue
1301 is where the new fp value is established. */
1302 step_resume_breakpoint =
1303 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1304 if (breakpoints_inserted)
1305 insert_breakpoints ();
1306
1307 /* And make sure stepping stops right away then. */
1308 step_range_end = step_range_start;
1309 }
1310 goto keep_going;
1311 }
1312
1313 /* We've wandered out of the step range. */
1314
1315 sal = find_pc_line(stop_pc, 0);
1316
1317 if (step_range_end == 1)
1318 {
1319 /* It is stepi or nexti. We always want to stop stepping after
1320 one instruction. */
1321 stop_step = 1;
1322 break;
1323 }
1324
1325 /* If we're in the return path from a shared library trampoline,
1326 we want to proceed through the trampoline when stepping. */
1327 if (IN_SOLIB_RETURN_TRAMPOLINE(stop_pc, stop_func_name))
1328 {
1329 CORE_ADDR tmp;
1330
1331 /* Determine where this trampoline returns. */
1332 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
1333
1334 /* Only proceed through if we know where it's going. */
1335 if (tmp)
1336 {
1337 /* And put the step-breakpoint there and go until there. */
1338 struct symtab_and_line sr_sal;
1339
1340 sr_sal.pc = tmp;
1341 sr_sal.symtab = NULL;
1342 sr_sal.line = 0;
1343 /* Do not specify what the fp should be when we stop
1344 since on some machines the prologue
1345 is where the new fp value is established. */
1346 step_resume_breakpoint =
1347 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1348 if (breakpoints_inserted)
1349 insert_breakpoints ();
1350
1351 /* Restart without fiddling with the step ranges or
1352 other state. */
1353 goto keep_going;
1354 }
1355 }
1356
1357 if (sal.line == 0)
1358 {
1359 /* We have no line number information. That means to stop
1360 stepping (does this always happen right after one instruction,
1361 when we do "s" in a function with no line numbers,
1362 or can this happen as a result of a return or longjmp?). */
1363 stop_step = 1;
1364 break;
1365 }
1366
1367 if (stop_pc == sal.pc
1368 && (current_line != sal.line || current_symtab != sal.symtab))
1369 {
1370 /* We are at the start of a different line. So stop. Note that
1371 we don't stop if we step into the middle of a different line.
1372 That is said to make things like for (;;) statements work
1373 better. */
1374 stop_step = 1;
1375 break;
1376 }
1377
1378 /* We aren't done stepping.
1379
1380 Optimize by setting the stepping range to the line.
1381 (We might not be in the original line, but if we entered a
1382 new line in mid-statement, we continue stepping. This makes
1383 things like for(;;) statements work better.) */
1384
1385 if (stop_func_end && sal.end >= stop_func_end)
1386 {
1387 /* If this is the last line of the function, don't keep stepping
1388 (it would probably step us out of the function).
1389 This is particularly necessary for a one-line function,
1390 in which after skipping the prologue we better stop even though
1391 we will be in mid-line. */
1392 stop_step = 1;
1393 break;
1394 }
1395 step_range_start = sal.pc;
1396 step_range_end = sal.end;
1397 goto keep_going;
1398
1399 check_sigtramp2:
1400 if (trap_expected
1401 && IN_SIGTRAMP (stop_pc, stop_func_name)
1402 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1403 {
1404 /* What has happened here is that we have just stepped the inferior
1405 with a signal (because it is a signal which shouldn't make
1406 us stop), thus stepping into sigtramp.
1407
1408 So we need to set a step_resume_break_address breakpoint
1409 and continue until we hit it, and then step. FIXME: This should
1410 be more enduring than a step_resume breakpoint; we should know
1411 that we will later need to keep going rather than re-hitting
1412 the breakpoint here (see testsuite/gdb.t06/signals.exp where
1413 it says "exceedingly difficult"). */
1414 struct symtab_and_line sr_sal;
1415
1416 sr_sal.pc = prev_pc;
1417 sr_sal.symtab = NULL;
1418 sr_sal.line = 0;
1419 /* We perhaps could set the frame if we kept track of what
1420 the frame corresponding to prev_pc was. But we don't,
1421 so don't. */
1422 through_sigtramp_breakpoint =
1423 set_momentary_breakpoint (sr_sal, NULL, bp_through_sigtramp);
1424 if (breakpoints_inserted)
1425 insert_breakpoints ();
1426
1427 remove_breakpoints_on_following_step = 1;
1428 another_trap = 1;
1429 }
1430
1431 keep_going:
1432 /* Come to this label when you need to resume the inferior.
1433 It's really much cleaner to do a goto than a maze of if-else
1434 conditions. */
1435
1436 /* Save the pc before execution, to compare with pc after stop. */
1437 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
1438 prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
1439 BREAK is defined, the
1440 original pc would not have
1441 been at the start of a
1442 function. */
1443 prev_func_name = stop_func_name;
1444
1445 if (update_step_sp)
1446 step_sp = read_sp ();
1447 update_step_sp = 0;
1448
1449 /* If we did not do break;, it means we should keep
1450 running the inferior and not return to debugger. */
1451
1452 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
1453 {
1454 /* We took a signal (which we are supposed to pass through to
1455 the inferior, else we'd have done a break above) and we
1456 haven't yet gotten our trap. Simply continue. */
1457 resume (CURRENTLY_STEPPING (), stop_signal);
1458 }
1459 else
1460 {
1461 /* Either the trap was not expected, but we are continuing
1462 anyway (the user asked that this signal be passed to the
1463 child)
1464 -- or --
1465 The signal was SIGTRAP, e.g. it was our signal, but we
1466 decided we should resume from it.
1467
1468 We're going to run this baby now!
1469
1470 Insert breakpoints now, unless we are trying
1471 to one-proceed past a breakpoint. */
1472 /* If we've just finished a special step resume and we don't
1473 want to hit a breakpoint, pull em out. */
1474 if (step_resume_breakpoint == NULL
1475 && through_sigtramp_breakpoint == NULL
1476 && remove_breakpoints_on_following_step)
1477 {
1478 remove_breakpoints_on_following_step = 0;
1479 remove_breakpoints ();
1480 breakpoints_inserted = 0;
1481 }
1482 else if (!breakpoints_inserted &&
1483 (through_sigtramp_breakpoint != NULL || !another_trap))
1484 {
1485 breakpoints_failed = insert_breakpoints ();
1486 if (breakpoints_failed)
1487 break;
1488 breakpoints_inserted = 1;
1489 }
1490
1491 trap_expected = another_trap;
1492
1493 if (stop_signal == TARGET_SIGNAL_TRAP)
1494 stop_signal = TARGET_SIGNAL_0;
1495
1496 #ifdef SHIFT_INST_REGS
1497 /* I'm not sure when this following segment applies. I do know, now,
1498 that we shouldn't rewrite the regs when we were stopped by a
1499 random signal from the inferior process. */
1500 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
1501 (this is only used on the 88k). */
1502
1503 if (!bpstat_explains_signal (stop_bpstat)
1504 && (stop_signal != TARGET_SIGNAL_CHLD)
1505 && !stopped_by_random_signal)
1506 SHIFT_INST_REGS();
1507 #endif /* SHIFT_INST_REGS */
1508
1509 resume (CURRENTLY_STEPPING (), stop_signal);
1510 }
1511 }
1512
1513 stop_stepping:
1514 if (target_has_execution)
1515 {
1516 /* Assuming the inferior still exists, set these up for next
1517 time, just like we did above if we didn't break out of the
1518 loop. */
1519 prev_pc = read_pc ();
1520 prev_func_start = stop_func_start;
1521 prev_func_name = stop_func_name;
1522 }
1523 do_cleanups (old_cleanups);
1524 }
1525 \f
1526 /* Here to return control to GDB when the inferior stops for real.
1527 Print appropriate messages, remove breakpoints, give terminal our modes.
1528
1529 STOP_PRINT_FRAME nonzero means print the executing frame
1530 (pc, function, args, file, line number and line text).
1531 BREAKPOINTS_FAILED nonzero means stop was due to error
1532 attempting to insert breakpoints. */
1533
1534 void
1535 normal_stop ()
1536 {
1537 /* Make sure that the current_frame's pc is correct. This
1538 is a correction for setting up the frame info before doing
1539 DECR_PC_AFTER_BREAK */
1540 if (target_has_execution && get_current_frame())
1541 (get_current_frame ())->pc = read_pc ();
1542
1543 if (breakpoints_failed)
1544 {
1545 target_terminal_ours_for_output ();
1546 print_sys_errmsg ("ptrace", breakpoints_failed);
1547 printf_filtered ("Stopped; cannot insert breakpoints.\n\
1548 The same program may be running in another process.\n");
1549 }
1550
1551 if (target_has_execution && breakpoints_inserted)
1552 if (remove_breakpoints ())
1553 {
1554 target_terminal_ours_for_output ();
1555 printf_filtered ("Cannot remove breakpoints because program is no longer writable.\n\
1556 It might be running in another process.\n\
1557 Further execution is probably impossible.\n");
1558 }
1559
1560 breakpoints_inserted = 0;
1561
1562 /* Delete the breakpoint we stopped at, if it wants to be deleted.
1563 Delete any breakpoint that is to be deleted at the next stop. */
1564
1565 breakpoint_auto_delete (stop_bpstat);
1566
1567 /* If an auto-display called a function and that got a signal,
1568 delete that auto-display to avoid an infinite recursion. */
1569
1570 if (stopped_by_random_signal)
1571 disable_current_display ();
1572
1573 if (step_multi && stop_step)
1574 goto done;
1575
1576 target_terminal_ours ();
1577
1578 /* Look up the hook_stop and run it if it exists. */
1579
1580 if (stop_command->hook)
1581 {
1582 catch_errors (hook_stop_stub, (char *)stop_command->hook,
1583 "Error while running hook_stop:\n", RETURN_MASK_ALL);
1584 }
1585
1586 if (!target_has_stack)
1587 goto done;
1588
1589 /* Select innermost stack frame except on return from a stack dummy routine,
1590 or if the program has exited. Print it without a level number if
1591 we have changed functions or hit a breakpoint. Print source line
1592 if we have one. */
1593 if (!stop_stack_dummy)
1594 {
1595 select_frame (get_current_frame (), 0);
1596
1597 if (stop_print_frame)
1598 {
1599 int source_only;
1600
1601 source_only = bpstat_print (stop_bpstat);
1602 source_only = source_only ||
1603 ( stop_step
1604 && step_frame_address == FRAME_FP (get_current_frame ())
1605 && step_start_function == find_pc_function (stop_pc));
1606
1607 print_stack_frame (selected_frame, -1, source_only? -1: 1);
1608
1609 /* Display the auto-display expressions. */
1610 do_displays ();
1611 }
1612 }
1613
1614 /* Save the function value return registers, if we care.
1615 We might be about to restore their previous contents. */
1616 if (proceed_to_finish)
1617 read_register_bytes (0, stop_registers, REGISTER_BYTES);
1618
1619 if (stop_stack_dummy)
1620 {
1621 /* Pop the empty frame that contains the stack dummy.
1622 POP_FRAME ends with a setting of the current frame, so we
1623 can use that next. */
1624 POP_FRAME;
1625 /* Set stop_pc to what it was before we called the function. Can't rely
1626 on restore_inferior_status because that only gets called if we don't
1627 stop in the called function. */
1628 stop_pc = read_pc();
1629 select_frame (get_current_frame (), 0);
1630 }
1631 done:
1632 annotate_stopped ();
1633 }
1634
1635 static int
1636 hook_stop_stub (cmd)
1637 char *cmd;
1638 {
1639 execute_user_command ((struct cmd_list_element *)cmd, 0);
1640 return (0);
1641 }
1642 \f
1643 int signal_stop_state (signo)
1644 int signo;
1645 {
1646 return signal_stop[signo];
1647 }
1648
1649 int signal_print_state (signo)
1650 int signo;
1651 {
1652 return signal_print[signo];
1653 }
1654
1655 int signal_pass_state (signo)
1656 int signo;
1657 {
1658 return signal_program[signo];
1659 }
1660
1661 static void
1662 sig_print_header ()
1663 {
1664 printf_filtered ("\
1665 Signal Stop\tPrint\tPass to program\tDescription\n");
1666 }
1667
1668 static void
1669 sig_print_info (oursig)
1670 enum target_signal oursig;
1671 {
1672 char *name = target_signal_to_name (oursig);
1673 printf_filtered ("%s", name);
1674 printf_filtered ("%*.*s ", 13 - strlen (name), 13 - strlen (name),
1675 " ");
1676 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
1677 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
1678 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
1679 printf_filtered ("%s\n", target_signal_to_string (oursig));
1680 }
1681
1682 /* Specify how various signals in the inferior should be handled. */
1683
1684 static void
1685 handle_command (args, from_tty)
1686 char *args;
1687 int from_tty;
1688 {
1689 char **argv;
1690 int digits, wordlen;
1691 int sigfirst, signum, siglast;
1692 enum target_signal oursig;
1693 int allsigs;
1694 int nsigs;
1695 unsigned char *sigs;
1696 struct cleanup *old_chain;
1697
1698 if (args == NULL)
1699 {
1700 error_no_arg ("signal to handle");
1701 }
1702
1703 /* Allocate and zero an array of flags for which signals to handle. */
1704
1705 nsigs = (int)TARGET_SIGNAL_LAST;
1706 sigs = (unsigned char *) alloca (nsigs);
1707 memset (sigs, 0, nsigs);
1708
1709 /* Break the command line up into args. */
1710
1711 argv = buildargv (args);
1712 if (argv == NULL)
1713 {
1714 nomem (0);
1715 }
1716 old_chain = make_cleanup (freeargv, (char *) argv);
1717
1718 /* Walk through the args, looking for signal oursigs, signal names, and
1719 actions. Signal numbers and signal names may be interspersed with
1720 actions, with the actions being performed for all signals cumulatively
1721 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
1722
1723 while (*argv != NULL)
1724 {
1725 wordlen = strlen (*argv);
1726 for (digits = 0; isdigit ((*argv)[digits]); digits++) {;}
1727 allsigs = 0;
1728 sigfirst = siglast = -1;
1729
1730 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
1731 {
1732 /* Apply action to all signals except those used by the
1733 debugger. Silently skip those. */
1734 allsigs = 1;
1735 sigfirst = 0;
1736 siglast = nsigs - 1;
1737 }
1738 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
1739 {
1740 SET_SIGS (nsigs, sigs, signal_stop);
1741 SET_SIGS (nsigs, sigs, signal_print);
1742 }
1743 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
1744 {
1745 UNSET_SIGS (nsigs, sigs, signal_program);
1746 }
1747 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
1748 {
1749 SET_SIGS (nsigs, sigs, signal_print);
1750 }
1751 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
1752 {
1753 SET_SIGS (nsigs, sigs, signal_program);
1754 }
1755 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
1756 {
1757 UNSET_SIGS (nsigs, sigs, signal_stop);
1758 }
1759 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
1760 {
1761 SET_SIGS (nsigs, sigs, signal_program);
1762 }
1763 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
1764 {
1765 UNSET_SIGS (nsigs, sigs, signal_print);
1766 UNSET_SIGS (nsigs, sigs, signal_stop);
1767 }
1768 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
1769 {
1770 UNSET_SIGS (nsigs, sigs, signal_program);
1771 }
1772 else if (digits > 0)
1773 {
1774 /* It is numeric. The numeric signal refers to our own internal
1775 signal numbering from target.h, not to host/target signal number.
1776 This is a feature; users really should be using symbolic names
1777 anyway, and the common ones like SIGHUP, SIGINT, SIGALRM, etc.
1778 will work right anyway. */
1779
1780 sigfirst = siglast = (int) target_signal_from_command (atoi (*argv));
1781 if ((*argv)[digits] == '-')
1782 {
1783 siglast =
1784 (int) target_signal_from_command (atoi ((*argv) + digits + 1));
1785 }
1786 if (sigfirst > siglast)
1787 {
1788 /* Bet he didn't figure we'd think of this case... */
1789 signum = sigfirst;
1790 sigfirst = siglast;
1791 siglast = signum;
1792 }
1793 }
1794 else
1795 {
1796 oursig = target_signal_from_name (*argv);
1797 if (oursig != TARGET_SIGNAL_UNKNOWN)
1798 {
1799 sigfirst = siglast = (int)oursig;
1800 }
1801 else
1802 {
1803 /* Not a number and not a recognized flag word => complain. */
1804 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
1805 }
1806 }
1807
1808 /* If any signal numbers or symbol names were found, set flags for
1809 which signals to apply actions to. */
1810
1811 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
1812 {
1813 switch ((enum target_signal)signum)
1814 {
1815 case TARGET_SIGNAL_TRAP:
1816 case TARGET_SIGNAL_INT:
1817 if (!allsigs && !sigs[signum])
1818 {
1819 if (query ("%s is used by the debugger.\n\
1820 Are you sure you want to change it? ",
1821 target_signal_to_name
1822 ((enum target_signal)signum)))
1823 {
1824 sigs[signum] = 1;
1825 }
1826 else
1827 {
1828 printf_unfiltered ("Not confirmed, unchanged.\n");
1829 gdb_flush (gdb_stdout);
1830 }
1831 }
1832 break;
1833 case TARGET_SIGNAL_0:
1834 case TARGET_SIGNAL_DEFAULT:
1835 case TARGET_SIGNAL_UNKNOWN:
1836 /* Make sure that "all" doesn't print these. */
1837 break;
1838 default:
1839 sigs[signum] = 1;
1840 break;
1841 }
1842 }
1843
1844 argv++;
1845 }
1846
1847 target_notice_signals(inferior_pid);
1848
1849 if (from_tty)
1850 {
1851 /* Show the results. */
1852 sig_print_header ();
1853 for (signum = 0; signum < nsigs; signum++)
1854 {
1855 if (sigs[signum])
1856 {
1857 sig_print_info (signum);
1858 }
1859 }
1860 }
1861
1862 do_cleanups (old_chain);
1863 }
1864
1865 /* Print current contents of the tables set by the handle command.
1866 It is possible we should just be printing signals actually used
1867 by the current target (but for things to work right when switching
1868 targets, all signals should be in the signal tables). */
1869
1870 static void
1871 signals_info (signum_exp, from_tty)
1872 char *signum_exp;
1873 int from_tty;
1874 {
1875 enum target_signal oursig;
1876 sig_print_header ();
1877
1878 if (signum_exp)
1879 {
1880 /* First see if this is a symbol name. */
1881 oursig = target_signal_from_name (signum_exp);
1882 if (oursig == TARGET_SIGNAL_UNKNOWN)
1883 {
1884 /* No, try numeric. */
1885 oursig =
1886 target_signal_from_command (parse_and_eval_address (signum_exp));
1887 }
1888 sig_print_info (oursig);
1889 return;
1890 }
1891
1892 printf_filtered ("\n");
1893 /* These ugly casts brought to you by the native VAX compiler. */
1894 for (oursig = TARGET_SIGNAL_FIRST;
1895 (int)oursig < (int)TARGET_SIGNAL_LAST;
1896 oursig = (enum target_signal)((int)oursig + 1))
1897 {
1898 QUIT;
1899
1900 if (oursig != TARGET_SIGNAL_UNKNOWN
1901 && oursig != TARGET_SIGNAL_DEFAULT
1902 && oursig != TARGET_SIGNAL_0)
1903 sig_print_info (oursig);
1904 }
1905
1906 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
1907 }
1908 \f
1909 /* Save all of the information associated with the inferior<==>gdb
1910 connection. INF_STATUS is a pointer to a "struct inferior_status"
1911 (defined in inferior.h). */
1912
1913 void
1914 save_inferior_status (inf_status, restore_stack_info)
1915 struct inferior_status *inf_status;
1916 int restore_stack_info;
1917 {
1918 inf_status->stop_signal = stop_signal;
1919 inf_status->stop_pc = stop_pc;
1920 inf_status->stop_step = stop_step;
1921 inf_status->stop_stack_dummy = stop_stack_dummy;
1922 inf_status->stopped_by_random_signal = stopped_by_random_signal;
1923 inf_status->trap_expected = trap_expected;
1924 inf_status->step_range_start = step_range_start;
1925 inf_status->step_range_end = step_range_end;
1926 inf_status->step_frame_address = step_frame_address;
1927 inf_status->step_over_calls = step_over_calls;
1928 inf_status->stop_after_trap = stop_after_trap;
1929 inf_status->stop_soon_quietly = stop_soon_quietly;
1930 /* Save original bpstat chain here; replace it with copy of chain.
1931 If caller's caller is walking the chain, they'll be happier if we
1932 hand them back the original chain when restore_i_s is called. */
1933 inf_status->stop_bpstat = stop_bpstat;
1934 stop_bpstat = bpstat_copy (stop_bpstat);
1935 inf_status->breakpoint_proceeded = breakpoint_proceeded;
1936 inf_status->restore_stack_info = restore_stack_info;
1937 inf_status->proceed_to_finish = proceed_to_finish;
1938
1939 memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
1940
1941 read_register_bytes (0, inf_status->registers, REGISTER_BYTES);
1942
1943 record_selected_frame (&(inf_status->selected_frame_address),
1944 &(inf_status->selected_level));
1945 return;
1946 }
1947
1948 struct restore_selected_frame_args {
1949 CORE_ADDR frame_address;
1950 int level;
1951 };
1952
1953 static int restore_selected_frame PARAMS ((char *));
1954
1955 /* Restore the selected frame. args is really a struct
1956 restore_selected_frame_args * (declared as char * for catch_errors)
1957 telling us what frame to restore. Returns 1 for success, or 0 for
1958 failure. An error message will have been printed on error. */
1959
1960 static int
1961 restore_selected_frame (args)
1962 char *args;
1963 {
1964 struct restore_selected_frame_args *fr =
1965 (struct restore_selected_frame_args *) args;
1966 struct frame_info *frame;
1967 int level = fr->level;
1968
1969 frame = find_relative_frame (get_current_frame (), &level);
1970
1971 /* If inf_status->selected_frame_address is NULL, there was no
1972 previously selected frame. */
1973 if (frame == NULL ||
1974 FRAME_FP (frame) != fr->frame_address ||
1975 level != 0)
1976 {
1977 warning ("Unable to restore previously selected frame.\n");
1978 return 0;
1979 }
1980 select_frame (frame, fr->level);
1981 return(1);
1982 }
1983
1984 void
1985 restore_inferior_status (inf_status)
1986 struct inferior_status *inf_status;
1987 {
1988 stop_signal = inf_status->stop_signal;
1989 stop_pc = inf_status->stop_pc;
1990 stop_step = inf_status->stop_step;
1991 stop_stack_dummy = inf_status->stop_stack_dummy;
1992 stopped_by_random_signal = inf_status->stopped_by_random_signal;
1993 trap_expected = inf_status->trap_expected;
1994 step_range_start = inf_status->step_range_start;
1995 step_range_end = inf_status->step_range_end;
1996 step_frame_address = inf_status->step_frame_address;
1997 step_over_calls = inf_status->step_over_calls;
1998 stop_after_trap = inf_status->stop_after_trap;
1999 stop_soon_quietly = inf_status->stop_soon_quietly;
2000 bpstat_clear (&stop_bpstat);
2001 stop_bpstat = inf_status->stop_bpstat;
2002 breakpoint_proceeded = inf_status->breakpoint_proceeded;
2003 proceed_to_finish = inf_status->proceed_to_finish;
2004
2005 memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
2006
2007 /* The inferior can be gone if the user types "print exit(0)"
2008 (and perhaps other times). */
2009 if (target_has_execution)
2010 write_register_bytes (0, inf_status->registers, REGISTER_BYTES);
2011
2012 /* The inferior can be gone if the user types "print exit(0)"
2013 (and perhaps other times). */
2014
2015 /* FIXME: If we are being called after stopping in a function which
2016 is called from gdb, we should not be trying to restore the
2017 selected frame; it just prints a spurious error message (The
2018 message is useful, however, in detecting bugs in gdb (like if gdb
2019 clobbers the stack)). In fact, should we be restoring the
2020 inferior status at all in that case? . */
2021
2022 if (target_has_stack && inf_status->restore_stack_info)
2023 {
2024 struct restore_selected_frame_args fr;
2025 fr.level = inf_status->selected_level;
2026 fr.frame_address = inf_status->selected_frame_address;
2027 /* The point of catch_errors is that if the stack is clobbered,
2028 walking the stack might encounter a garbage pointer and error()
2029 trying to dereference it. */
2030 if (catch_errors (restore_selected_frame, &fr,
2031 "Unable to restore previously selected frame:\n",
2032 RETURN_MASK_ERROR) == 0)
2033 /* Error in restoring the selected frame. Select the innermost
2034 frame. */
2035 select_frame (get_current_frame (), 0);
2036 }
2037 }
2038
2039 \f
2040 void
2041 _initialize_infrun ()
2042 {
2043 register int i;
2044 register int numsigs;
2045
2046 add_info ("signals", signals_info,
2047 "What debugger does when program gets various signals.\n\
2048 Specify a signal as argument to print info on that signal only.");
2049 add_info_alias ("handle", "signals", 0);
2050
2051 add_com ("handle", class_run, handle_command,
2052 concat ("Specify how to handle a signal.\n\
2053 Args are signals and actions to apply to those signals.\n\
2054 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
2055 from 1-15 are allowed for compatibility with old versions of GDB.\n\
2056 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
2057 The special arg \"all\" is recognized to mean all signals except those\n\
2058 used by the debugger, typically SIGTRAP and SIGINT.\n",
2059 "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
2060 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
2061 Stop means reenter debugger if this signal happens (implies print).\n\
2062 Print means print a message if this signal happens.\n\
2063 Pass means let program see this signal; otherwise program doesn't know.\n\
2064 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
2065 Pass and Stop may be combined.", NULL));
2066
2067 stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
2068 "There is no `stop' command, but you can set a hook on `stop'.\n\
2069 This allows you to set a list of commands to be run each time execution\n\
2070 of the program stops.", &cmdlist);
2071
2072 numsigs = (int)TARGET_SIGNAL_LAST;
2073 signal_stop = (unsigned char *)
2074 xmalloc (sizeof (signal_stop[0]) * numsigs);
2075 signal_print = (unsigned char *)
2076 xmalloc (sizeof (signal_print[0]) * numsigs);
2077 signal_program = (unsigned char *)
2078 xmalloc (sizeof (signal_program[0]) * numsigs);
2079 for (i = 0; i < numsigs; i++)
2080 {
2081 signal_stop[i] = 1;
2082 signal_print[i] = 1;
2083 signal_program[i] = 1;
2084 }
2085
2086 /* Signals caused by debugger's own actions
2087 should not be given to the program afterwards. */
2088 signal_program[TARGET_SIGNAL_TRAP] = 0;
2089 signal_program[TARGET_SIGNAL_INT] = 0;
2090
2091 /* Signals that are not errors should not normally enter the debugger. */
2092 signal_stop[TARGET_SIGNAL_ALRM] = 0;
2093 signal_print[TARGET_SIGNAL_ALRM] = 0;
2094 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
2095 signal_print[TARGET_SIGNAL_VTALRM] = 0;
2096 signal_stop[TARGET_SIGNAL_PROF] = 0;
2097 signal_print[TARGET_SIGNAL_PROF] = 0;
2098 signal_stop[TARGET_SIGNAL_CHLD] = 0;
2099 signal_print[TARGET_SIGNAL_CHLD] = 0;
2100 signal_stop[TARGET_SIGNAL_IO] = 0;
2101 signal_print[TARGET_SIGNAL_IO] = 0;
2102 signal_stop[TARGET_SIGNAL_POLL] = 0;
2103 signal_print[TARGET_SIGNAL_POLL] = 0;
2104 signal_stop[TARGET_SIGNAL_URG] = 0;
2105 signal_print[TARGET_SIGNAL_URG] = 0;
2106 }