2009-11-13 Pedro Alves <pedro@codesourcery.com>
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "inline-frame.h"
53 #include "jit.h"
54
55 /* Prototypes for local functions */
56
57 static void signals_info (char *, int);
58
59 static void handle_command (char *, int);
60
61 static void sig_print_info (enum target_signal);
62
63 static void sig_print_header (void);
64
65 static void resume_cleanups (void *);
66
67 static int hook_stop_stub (void *);
68
69 static int restore_selected_frame (void *);
70
71 static void build_infrun (void);
72
73 static int follow_fork (void);
74
75 static void set_schedlock_func (char *args, int from_tty,
76 struct cmd_list_element *c);
77
78 static int currently_stepping (struct thread_info *tp);
79
80 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
81 void *data);
82
83 static void xdb_handle_command (char *args, int from_tty);
84
85 static int prepare_to_proceed (int);
86
87 void _initialize_infrun (void);
88
89 void nullify_last_target_wait_ptid (void);
90
91 /* When set, stop the 'step' command if we enter a function which has
92 no line number information. The normal behavior is that we step
93 over such function. */
94 int step_stop_if_no_debug = 0;
95 static void
96 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98 {
99 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
100 }
101
102 /* In asynchronous mode, but simulating synchronous execution. */
103
104 int sync_execution = 0;
105
106 /* wait_for_inferior and normal_stop use this to notify the user
107 when the inferior stopped in a different thread than it had been
108 running in. */
109
110 static ptid_t previous_inferior_ptid;
111
112 /* Default behavior is to detach newly forked processes (legacy). */
113 int detach_fork = 1;
114
115 int debug_displaced = 0;
116 static void
117 show_debug_displaced (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
121 }
122
123 static int debug_infrun = 0;
124 static void
125 show_debug_infrun (struct ui_file *file, int from_tty,
126 struct cmd_list_element *c, const char *value)
127 {
128 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
129 }
130
131 /* If the program uses ELF-style shared libraries, then calls to
132 functions in shared libraries go through stubs, which live in a
133 table called the PLT (Procedure Linkage Table). The first time the
134 function is called, the stub sends control to the dynamic linker,
135 which looks up the function's real address, patches the stub so
136 that future calls will go directly to the function, and then passes
137 control to the function.
138
139 If we are stepping at the source level, we don't want to see any of
140 this --- we just want to skip over the stub and the dynamic linker.
141 The simple approach is to single-step until control leaves the
142 dynamic linker.
143
144 However, on some systems (e.g., Red Hat's 5.2 distribution) the
145 dynamic linker calls functions in the shared C library, so you
146 can't tell from the PC alone whether the dynamic linker is still
147 running. In this case, we use a step-resume breakpoint to get us
148 past the dynamic linker, as if we were using "next" to step over a
149 function call.
150
151 in_solib_dynsym_resolve_code() says whether we're in the dynamic
152 linker code or not. Normally, this means we single-step. However,
153 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
154 address where we can place a step-resume breakpoint to get past the
155 linker's symbol resolution function.
156
157 in_solib_dynsym_resolve_code() can generally be implemented in a
158 pretty portable way, by comparing the PC against the address ranges
159 of the dynamic linker's sections.
160
161 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
162 it depends on internal details of the dynamic linker. It's usually
163 not too hard to figure out where to put a breakpoint, but it
164 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
165 sanity checking. If it can't figure things out, returning zero and
166 getting the (possibly confusing) stepping behavior is better than
167 signalling an error, which will obscure the change in the
168 inferior's state. */
169
170 /* This function returns TRUE if pc is the address of an instruction
171 that lies within the dynamic linker (such as the event hook, or the
172 dld itself).
173
174 This function must be used only when a dynamic linker event has
175 been caught, and the inferior is being stepped out of the hook, or
176 undefined results are guaranteed. */
177
178 #ifndef SOLIB_IN_DYNAMIC_LINKER
179 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
180 #endif
181
182
183 /* Convert the #defines into values. This is temporary until wfi control
184 flow is completely sorted out. */
185
186 #ifndef CANNOT_STEP_HW_WATCHPOINTS
187 #define CANNOT_STEP_HW_WATCHPOINTS 0
188 #else
189 #undef CANNOT_STEP_HW_WATCHPOINTS
190 #define CANNOT_STEP_HW_WATCHPOINTS 1
191 #endif
192
193 /* Tables of how to react to signals; the user sets them. */
194
195 static unsigned char *signal_stop;
196 static unsigned char *signal_print;
197 static unsigned char *signal_program;
198
199 #define SET_SIGS(nsigs,sigs,flags) \
200 do { \
201 int signum = (nsigs); \
202 while (signum-- > 0) \
203 if ((sigs)[signum]) \
204 (flags)[signum] = 1; \
205 } while (0)
206
207 #define UNSET_SIGS(nsigs,sigs,flags) \
208 do { \
209 int signum = (nsigs); \
210 while (signum-- > 0) \
211 if ((sigs)[signum]) \
212 (flags)[signum] = 0; \
213 } while (0)
214
215 /* Value to pass to target_resume() to cause all threads to resume */
216
217 #define RESUME_ALL minus_one_ptid
218
219 /* Command list pointer for the "stop" placeholder. */
220
221 static struct cmd_list_element *stop_command;
222
223 /* Function inferior was in as of last step command. */
224
225 static struct symbol *step_start_function;
226
227 /* Nonzero if we want to give control to the user when we're notified
228 of shared library events by the dynamic linker. */
229 static int stop_on_solib_events;
230 static void
231 show_stop_on_solib_events (struct ui_file *file, int from_tty,
232 struct cmd_list_element *c, const char *value)
233 {
234 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
235 value);
236 }
237
238 /* Nonzero means expecting a trace trap
239 and should stop the inferior and return silently when it happens. */
240
241 int stop_after_trap;
242
243 /* Save register contents here when executing a "finish" command or are
244 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
245 Thus this contains the return value from the called function (assuming
246 values are returned in a register). */
247
248 struct regcache *stop_registers;
249
250 /* Nonzero after stop if current stack frame should be printed. */
251
252 static int stop_print_frame;
253
254 /* This is a cached copy of the pid/waitstatus of the last event
255 returned by target_wait()/deprecated_target_wait_hook(). This
256 information is returned by get_last_target_status(). */
257 static ptid_t target_last_wait_ptid;
258 static struct target_waitstatus target_last_waitstatus;
259
260 static void context_switch (ptid_t ptid);
261
262 void init_thread_stepping_state (struct thread_info *tss);
263
264 void init_infwait_state (void);
265
266 static const char follow_fork_mode_child[] = "child";
267 static const char follow_fork_mode_parent[] = "parent";
268
269 static const char *follow_fork_mode_kind_names[] = {
270 follow_fork_mode_child,
271 follow_fork_mode_parent,
272 NULL
273 };
274
275 static const char *follow_fork_mode_string = follow_fork_mode_parent;
276 static void
277 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
278 struct cmd_list_element *c, const char *value)
279 {
280 fprintf_filtered (file, _("\
281 Debugger response to a program call of fork or vfork is \"%s\".\n"),
282 value);
283 }
284 \f
285
286 /* Tell the target to follow the fork we're stopped at. Returns true
287 if the inferior should be resumed; false, if the target for some
288 reason decided it's best not to resume. */
289
290 static int
291 follow_fork (void)
292 {
293 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
294 int should_resume = 1;
295 struct thread_info *tp;
296
297 /* Copy user stepping state to the new inferior thread. FIXME: the
298 followed fork child thread should have a copy of most of the
299 parent thread structure's run control related fields, not just these.
300 Initialized to avoid "may be used uninitialized" warnings from gcc. */
301 struct breakpoint *step_resume_breakpoint = NULL;
302 CORE_ADDR step_range_start = 0;
303 CORE_ADDR step_range_end = 0;
304 struct frame_id step_frame_id = { 0 };
305
306 if (!non_stop)
307 {
308 ptid_t wait_ptid;
309 struct target_waitstatus wait_status;
310
311 /* Get the last target status returned by target_wait(). */
312 get_last_target_status (&wait_ptid, &wait_status);
313
314 /* If not stopped at a fork event, then there's nothing else to
315 do. */
316 if (wait_status.kind != TARGET_WAITKIND_FORKED
317 && wait_status.kind != TARGET_WAITKIND_VFORKED)
318 return 1;
319
320 /* Check if we switched over from WAIT_PTID, since the event was
321 reported. */
322 if (!ptid_equal (wait_ptid, minus_one_ptid)
323 && !ptid_equal (inferior_ptid, wait_ptid))
324 {
325 /* We did. Switch back to WAIT_PTID thread, to tell the
326 target to follow it (in either direction). We'll
327 afterwards refuse to resume, and inform the user what
328 happened. */
329 switch_to_thread (wait_ptid);
330 should_resume = 0;
331 }
332 }
333
334 tp = inferior_thread ();
335
336 /* If there were any forks/vforks that were caught and are now to be
337 followed, then do so now. */
338 switch (tp->pending_follow.kind)
339 {
340 case TARGET_WAITKIND_FORKED:
341 case TARGET_WAITKIND_VFORKED:
342 {
343 ptid_t parent, child;
344
345 /* If the user did a next/step, etc, over a fork call,
346 preserve the stepping state in the fork child. */
347 if (follow_child && should_resume)
348 {
349 step_resume_breakpoint
350 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
351 step_range_start = tp->step_range_start;
352 step_range_end = tp->step_range_end;
353 step_frame_id = tp->step_frame_id;
354
355 /* For now, delete the parent's sr breakpoint, otherwise,
356 parent/child sr breakpoints are considered duplicates,
357 and the child version will not be installed. Remove
358 this when the breakpoints module becomes aware of
359 inferiors and address spaces. */
360 delete_step_resume_breakpoint (tp);
361 tp->step_range_start = 0;
362 tp->step_range_end = 0;
363 tp->step_frame_id = null_frame_id;
364 }
365
366 parent = inferior_ptid;
367 child = tp->pending_follow.value.related_pid;
368
369 /* Tell the target to do whatever is necessary to follow
370 either parent or child. */
371 if (target_follow_fork (follow_child))
372 {
373 /* Target refused to follow, or there's some other reason
374 we shouldn't resume. */
375 should_resume = 0;
376 }
377 else
378 {
379 /* This pending follow fork event is now handled, one way
380 or another. The previous selected thread may be gone
381 from the lists by now, but if it is still around, need
382 to clear the pending follow request. */
383 tp = find_thread_ptid (parent);
384 if (tp)
385 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
386
387 /* This makes sure we don't try to apply the "Switched
388 over from WAIT_PID" logic above. */
389 nullify_last_target_wait_ptid ();
390
391 /* If we followed the child, switch to it... */
392 if (follow_child)
393 {
394 switch_to_thread (child);
395
396 /* ... and preserve the stepping state, in case the
397 user was stepping over the fork call. */
398 if (should_resume)
399 {
400 tp = inferior_thread ();
401 tp->step_resume_breakpoint = step_resume_breakpoint;
402 tp->step_range_start = step_range_start;
403 tp->step_range_end = step_range_end;
404 tp->step_frame_id = step_frame_id;
405 }
406 else
407 {
408 /* If we get here, it was because we're trying to
409 resume from a fork catchpoint, but, the user
410 has switched threads away from the thread that
411 forked. In that case, the resume command
412 issued is most likely not applicable to the
413 child, so just warn, and refuse to resume. */
414 warning (_("\
415 Not resuming: switched threads before following fork child.\n"));
416 }
417
418 /* Reset breakpoints in the child as appropriate. */
419 follow_inferior_reset_breakpoints ();
420 }
421 else
422 switch_to_thread (parent);
423 }
424 }
425 break;
426 case TARGET_WAITKIND_SPURIOUS:
427 /* Nothing to follow. */
428 break;
429 default:
430 internal_error (__FILE__, __LINE__,
431 "Unexpected pending_follow.kind %d\n",
432 tp->pending_follow.kind);
433 break;
434 }
435
436 return should_resume;
437 }
438
439 void
440 follow_inferior_reset_breakpoints (void)
441 {
442 struct thread_info *tp = inferior_thread ();
443
444 /* Was there a step_resume breakpoint? (There was if the user
445 did a "next" at the fork() call.) If so, explicitly reset its
446 thread number.
447
448 step_resumes are a form of bp that are made to be per-thread.
449 Since we created the step_resume bp when the parent process
450 was being debugged, and now are switching to the child process,
451 from the breakpoint package's viewpoint, that's a switch of
452 "threads". We must update the bp's notion of which thread
453 it is for, or it'll be ignored when it triggers. */
454
455 if (tp->step_resume_breakpoint)
456 breakpoint_re_set_thread (tp->step_resume_breakpoint);
457
458 /* Reinsert all breakpoints in the child. The user may have set
459 breakpoints after catching the fork, in which case those
460 were never set in the child, but only in the parent. This makes
461 sure the inserted breakpoints match the breakpoint list. */
462
463 breakpoint_re_set ();
464 insert_breakpoints ();
465 }
466
467 /* The child has exited or execed: resume threads of the parent the
468 user wanted to be executing. */
469
470 static int
471 proceed_after_vfork_done (struct thread_info *thread,
472 void *arg)
473 {
474 int pid = * (int *) arg;
475
476 if (ptid_get_pid (thread->ptid) == pid
477 && is_running (thread->ptid)
478 && !is_executing (thread->ptid)
479 && !thread->stop_requested
480 && thread->stop_signal == TARGET_SIGNAL_0)
481 {
482 if (debug_infrun)
483 fprintf_unfiltered (gdb_stdlog,
484 "infrun: resuming vfork parent thread %s\n",
485 target_pid_to_str (thread->ptid));
486
487 switch_to_thread (thread->ptid);
488 clear_proceed_status ();
489 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
490 }
491
492 return 0;
493 }
494
495 /* Called whenever we notice an exec or exit event, to handle
496 detaching or resuming a vfork parent. */
497
498 static void
499 handle_vfork_child_exec_or_exit (int exec)
500 {
501 struct inferior *inf = current_inferior ();
502
503 if (inf->vfork_parent)
504 {
505 int resume_parent = -1;
506
507 /* This exec or exit marks the end of the shared memory region
508 between the parent and the child. If the user wanted to
509 detach from the parent, now is the time. */
510
511 if (inf->vfork_parent->pending_detach)
512 {
513 struct thread_info *tp;
514 struct cleanup *old_chain;
515 struct program_space *pspace;
516 struct address_space *aspace;
517
518 /* follow-fork child, detach-on-fork on */
519
520 old_chain = make_cleanup_restore_current_thread ();
521
522 /* We're letting loose of the parent. */
523 tp = any_live_thread_of_process (inf->vfork_parent->pid);
524 switch_to_thread (tp->ptid);
525
526 /* We're about to detach from the parent, which implicitly
527 removes breakpoints from its address space. There's a
528 catch here: we want to reuse the spaces for the child,
529 but, parent/child are still sharing the pspace at this
530 point, although the exec in reality makes the kernel give
531 the child a fresh set of new pages. The problem here is
532 that the breakpoints module being unaware of this, would
533 likely chose the child process to write to the parent
534 address space. Swapping the child temporarily away from
535 the spaces has the desired effect. Yes, this is "sort
536 of" a hack. */
537
538 pspace = inf->pspace;
539 aspace = inf->aspace;
540 inf->aspace = NULL;
541 inf->pspace = NULL;
542
543 if (debug_infrun || info_verbose)
544 {
545 target_terminal_ours ();
546
547 if (exec)
548 fprintf_filtered (gdb_stdlog,
549 "Detaching vfork parent process %d after child exec.\n",
550 inf->vfork_parent->pid);
551 else
552 fprintf_filtered (gdb_stdlog,
553 "Detaching vfork parent process %d after child exit.\n",
554 inf->vfork_parent->pid);
555 }
556
557 target_detach (NULL, 0);
558
559 /* Put it back. */
560 inf->pspace = pspace;
561 inf->aspace = aspace;
562
563 do_cleanups (old_chain);
564 }
565 else if (exec)
566 {
567 /* We're staying attached to the parent, so, really give the
568 child a new address space. */
569 inf->pspace = add_program_space (maybe_new_address_space ());
570 inf->aspace = inf->pspace->aspace;
571 inf->removable = 1;
572 set_current_program_space (inf->pspace);
573
574 resume_parent = inf->vfork_parent->pid;
575
576 /* Break the bonds. */
577 inf->vfork_parent->vfork_child = NULL;
578 }
579 else
580 {
581 struct cleanup *old_chain;
582 struct program_space *pspace;
583
584 /* If this is a vfork child exiting, then the pspace and
585 aspaces were shared with the parent. Since we're
586 reporting the process exit, we'll be mourning all that is
587 found in the address space, and switching to null_ptid,
588 preparing to start a new inferior. But, since we don't
589 want to clobber the parent's address/program spaces, we
590 go ahead and create a new one for this exiting
591 inferior. */
592
593 /* Switch to null_ptid, so that clone_program_space doesn't want
594 to read the selected frame of a dead process. */
595 old_chain = save_inferior_ptid ();
596 inferior_ptid = null_ptid;
597
598 /* This inferior is dead, so avoid giving the breakpoints
599 module the option to write through to it (cloning a
600 program space resets breakpoints). */
601 inf->aspace = NULL;
602 inf->pspace = NULL;
603 pspace = add_program_space (maybe_new_address_space ());
604 set_current_program_space (pspace);
605 inf->removable = 1;
606 clone_program_space (pspace, inf->vfork_parent->pspace);
607 inf->pspace = pspace;
608 inf->aspace = pspace->aspace;
609
610 /* Put back inferior_ptid. We'll continue mourning this
611 inferior. */
612 do_cleanups (old_chain);
613
614 resume_parent = inf->vfork_parent->pid;
615 /* Break the bonds. */
616 inf->vfork_parent->vfork_child = NULL;
617 }
618
619 inf->vfork_parent = NULL;
620
621 gdb_assert (current_program_space == inf->pspace);
622
623 if (non_stop && resume_parent != -1)
624 {
625 /* If the user wanted the parent to be running, let it go
626 free now. */
627 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
628
629 if (debug_infrun)
630 fprintf_unfiltered (gdb_stdlog, "infrun: resuming vfork parent process %d\n",
631 resume_parent);
632
633 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
634
635 do_cleanups (old_chain);
636 }
637 }
638 }
639
640 /* Enum strings for "set|show displaced-stepping". */
641
642 static const char follow_exec_mode_new[] = "new";
643 static const char follow_exec_mode_same[] = "same";
644 static const char *follow_exec_mode_names[] =
645 {
646 follow_exec_mode_new,
647 follow_exec_mode_same,
648 NULL,
649 };
650
651 static const char *follow_exec_mode_string = follow_exec_mode_same;
652 static void
653 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
654 struct cmd_list_element *c, const char *value)
655 {
656 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
657 }
658
659 /* EXECD_PATHNAME is assumed to be non-NULL. */
660
661 static void
662 follow_exec (ptid_t pid, char *execd_pathname)
663 {
664 struct target_ops *tgt;
665 struct thread_info *th = inferior_thread ();
666 struct inferior *inf = current_inferior ();
667
668 /* This is an exec event that we actually wish to pay attention to.
669 Refresh our symbol table to the newly exec'd program, remove any
670 momentary bp's, etc.
671
672 If there are breakpoints, they aren't really inserted now,
673 since the exec() transformed our inferior into a fresh set
674 of instructions.
675
676 We want to preserve symbolic breakpoints on the list, since
677 we have hopes that they can be reset after the new a.out's
678 symbol table is read.
679
680 However, any "raw" breakpoints must be removed from the list
681 (e.g., the solib bp's), since their address is probably invalid
682 now.
683
684 And, we DON'T want to call delete_breakpoints() here, since
685 that may write the bp's "shadow contents" (the instruction
686 value that was overwritten witha TRAP instruction). Since
687 we now have a new a.out, those shadow contents aren't valid. */
688
689 mark_breakpoints_out ();
690
691 update_breakpoints_after_exec ();
692
693 /* If there was one, it's gone now. We cannot truly step-to-next
694 statement through an exec(). */
695 th->step_resume_breakpoint = NULL;
696 th->step_range_start = 0;
697 th->step_range_end = 0;
698
699 /* The target reports the exec event to the main thread, even if
700 some other thread does the exec, and even if the main thread was
701 already stopped --- if debugging in non-stop mode, it's possible
702 the user had the main thread held stopped in the previous image
703 --- release it now. This is the same behavior as step-over-exec
704 with scheduler-locking on in all-stop mode. */
705 th->stop_requested = 0;
706
707 /* What is this a.out's name? */
708 printf_unfiltered (_("%s is executing new program: %s\n"),
709 target_pid_to_str (inferior_ptid),
710 execd_pathname);
711
712 /* We've followed the inferior through an exec. Therefore, the
713 inferior has essentially been killed & reborn. */
714
715 gdb_flush (gdb_stdout);
716
717 breakpoint_init_inferior (inf_execd);
718
719 if (gdb_sysroot && *gdb_sysroot)
720 {
721 char *name = alloca (strlen (gdb_sysroot)
722 + strlen (execd_pathname)
723 + 1);
724 strcpy (name, gdb_sysroot);
725 strcat (name, execd_pathname);
726 execd_pathname = name;
727 }
728
729 /* Reset the shared library package. This ensures that we get a
730 shlib event when the child reaches "_start", at which point the
731 dld will have had a chance to initialize the child. */
732 /* Also, loading a symbol file below may trigger symbol lookups, and
733 we don't want those to be satisfied by the libraries of the
734 previous incarnation of this process. */
735 no_shared_libraries (NULL, 0);
736
737 if (follow_exec_mode_string == follow_exec_mode_new)
738 {
739 struct program_space *pspace;
740 struct inferior *new_inf;
741
742 /* The user wants to keep the old inferior and program spaces
743 around. Create a new fresh one, and switch to it. */
744
745 inf = add_inferior (current_inferior ()->pid);
746 pspace = add_program_space (maybe_new_address_space ());
747 inf->pspace = pspace;
748 inf->aspace = pspace->aspace;
749
750 exit_inferior_num_silent (current_inferior ()->num);
751
752 set_current_inferior (inf);
753 set_current_program_space (pspace);
754 }
755
756 gdb_assert (current_program_space == inf->pspace);
757
758 /* That a.out is now the one to use. */
759 exec_file_attach (execd_pathname, 0);
760
761 /* Load the main file's symbols. */
762 symbol_file_add_main (execd_pathname, 0);
763
764 #ifdef SOLIB_CREATE_INFERIOR_HOOK
765 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
766 #else
767 solib_create_inferior_hook ();
768 #endif
769
770 jit_inferior_created_hook ();
771
772 /* Reinsert all breakpoints. (Those which were symbolic have
773 been reset to the proper address in the new a.out, thanks
774 to symbol_file_command...) */
775 insert_breakpoints ();
776
777 /* The next resume of this inferior should bring it to the shlib
778 startup breakpoints. (If the user had also set bp's on
779 "main" from the old (parent) process, then they'll auto-
780 matically get reset there in the new process.) */
781 }
782
783 /* Non-zero if we just simulating a single-step. This is needed
784 because we cannot remove the breakpoints in the inferior process
785 until after the `wait' in `wait_for_inferior'. */
786 static int singlestep_breakpoints_inserted_p = 0;
787
788 /* The thread we inserted single-step breakpoints for. */
789 static ptid_t singlestep_ptid;
790
791 /* PC when we started this single-step. */
792 static CORE_ADDR singlestep_pc;
793
794 /* If another thread hit the singlestep breakpoint, we save the original
795 thread here so that we can resume single-stepping it later. */
796 static ptid_t saved_singlestep_ptid;
797 static int stepping_past_singlestep_breakpoint;
798
799 /* If not equal to null_ptid, this means that after stepping over breakpoint
800 is finished, we need to switch to deferred_step_ptid, and step it.
801
802 The use case is when one thread has hit a breakpoint, and then the user
803 has switched to another thread and issued 'step'. We need to step over
804 breakpoint in the thread which hit the breakpoint, but then continue
805 stepping the thread user has selected. */
806 static ptid_t deferred_step_ptid;
807 \f
808 /* Displaced stepping. */
809
810 /* In non-stop debugging mode, we must take special care to manage
811 breakpoints properly; in particular, the traditional strategy for
812 stepping a thread past a breakpoint it has hit is unsuitable.
813 'Displaced stepping' is a tactic for stepping one thread past a
814 breakpoint it has hit while ensuring that other threads running
815 concurrently will hit the breakpoint as they should.
816
817 The traditional way to step a thread T off a breakpoint in a
818 multi-threaded program in all-stop mode is as follows:
819
820 a0) Initially, all threads are stopped, and breakpoints are not
821 inserted.
822 a1) We single-step T, leaving breakpoints uninserted.
823 a2) We insert breakpoints, and resume all threads.
824
825 In non-stop debugging, however, this strategy is unsuitable: we
826 don't want to have to stop all threads in the system in order to
827 continue or step T past a breakpoint. Instead, we use displaced
828 stepping:
829
830 n0) Initially, T is stopped, other threads are running, and
831 breakpoints are inserted.
832 n1) We copy the instruction "under" the breakpoint to a separate
833 location, outside the main code stream, making any adjustments
834 to the instruction, register, and memory state as directed by
835 T's architecture.
836 n2) We single-step T over the instruction at its new location.
837 n3) We adjust the resulting register and memory state as directed
838 by T's architecture. This includes resetting T's PC to point
839 back into the main instruction stream.
840 n4) We resume T.
841
842 This approach depends on the following gdbarch methods:
843
844 - gdbarch_max_insn_length and gdbarch_displaced_step_location
845 indicate where to copy the instruction, and how much space must
846 be reserved there. We use these in step n1.
847
848 - gdbarch_displaced_step_copy_insn copies a instruction to a new
849 address, and makes any necessary adjustments to the instruction,
850 register contents, and memory. We use this in step n1.
851
852 - gdbarch_displaced_step_fixup adjusts registers and memory after
853 we have successfuly single-stepped the instruction, to yield the
854 same effect the instruction would have had if we had executed it
855 at its original address. We use this in step n3.
856
857 - gdbarch_displaced_step_free_closure provides cleanup.
858
859 The gdbarch_displaced_step_copy_insn and
860 gdbarch_displaced_step_fixup functions must be written so that
861 copying an instruction with gdbarch_displaced_step_copy_insn,
862 single-stepping across the copied instruction, and then applying
863 gdbarch_displaced_insn_fixup should have the same effects on the
864 thread's memory and registers as stepping the instruction in place
865 would have. Exactly which responsibilities fall to the copy and
866 which fall to the fixup is up to the author of those functions.
867
868 See the comments in gdbarch.sh for details.
869
870 Note that displaced stepping and software single-step cannot
871 currently be used in combination, although with some care I think
872 they could be made to. Software single-step works by placing
873 breakpoints on all possible subsequent instructions; if the
874 displaced instruction is a PC-relative jump, those breakpoints
875 could fall in very strange places --- on pages that aren't
876 executable, or at addresses that are not proper instruction
877 boundaries. (We do generally let other threads run while we wait
878 to hit the software single-step breakpoint, and they might
879 encounter such a corrupted instruction.) One way to work around
880 this would be to have gdbarch_displaced_step_copy_insn fully
881 simulate the effect of PC-relative instructions (and return NULL)
882 on architectures that use software single-stepping.
883
884 In non-stop mode, we can have independent and simultaneous step
885 requests, so more than one thread may need to simultaneously step
886 over a breakpoint. The current implementation assumes there is
887 only one scratch space per process. In this case, we have to
888 serialize access to the scratch space. If thread A wants to step
889 over a breakpoint, but we are currently waiting for some other
890 thread to complete a displaced step, we leave thread A stopped and
891 place it in the displaced_step_request_queue. Whenever a displaced
892 step finishes, we pick the next thread in the queue and start a new
893 displaced step operation on it. See displaced_step_prepare and
894 displaced_step_fixup for details. */
895
896 /* If this is not null_ptid, this is the thread carrying out a
897 displaced single-step. This thread's state will require fixing up
898 once it has completed its step. */
899 static ptid_t displaced_step_ptid;
900
901 struct displaced_step_request
902 {
903 ptid_t ptid;
904 struct displaced_step_request *next;
905 };
906
907 /* A queue of pending displaced stepping requests. */
908 struct displaced_step_request *displaced_step_request_queue;
909
910 /* The architecture the thread had when we stepped it. */
911 static struct gdbarch *displaced_step_gdbarch;
912
913 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
914 for post-step cleanup. */
915 static struct displaced_step_closure *displaced_step_closure;
916
917 /* The address of the original instruction, and the copy we made. */
918 static CORE_ADDR displaced_step_original, displaced_step_copy;
919
920 /* Saved contents of copy area. */
921 static gdb_byte *displaced_step_saved_copy;
922
923 /* Enum strings for "set|show displaced-stepping". */
924
925 static const char can_use_displaced_stepping_auto[] = "auto";
926 static const char can_use_displaced_stepping_on[] = "on";
927 static const char can_use_displaced_stepping_off[] = "off";
928 static const char *can_use_displaced_stepping_enum[] =
929 {
930 can_use_displaced_stepping_auto,
931 can_use_displaced_stepping_on,
932 can_use_displaced_stepping_off,
933 NULL,
934 };
935
936 /* If ON, and the architecture supports it, GDB will use displaced
937 stepping to step over breakpoints. If OFF, or if the architecture
938 doesn't support it, GDB will instead use the traditional
939 hold-and-step approach. If AUTO (which is the default), GDB will
940 decide which technique to use to step over breakpoints depending on
941 which of all-stop or non-stop mode is active --- displaced stepping
942 in non-stop mode; hold-and-step in all-stop mode. */
943
944 static const char *can_use_displaced_stepping =
945 can_use_displaced_stepping_auto;
946
947 static void
948 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
949 struct cmd_list_element *c,
950 const char *value)
951 {
952 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
953 fprintf_filtered (file, _("\
954 Debugger's willingness to use displaced stepping to step over \
955 breakpoints is %s (currently %s).\n"),
956 value, non_stop ? "on" : "off");
957 else
958 fprintf_filtered (file, _("\
959 Debugger's willingness to use displaced stepping to step over \
960 breakpoints is %s.\n"), value);
961 }
962
963 /* Return non-zero if displaced stepping can/should be used to step
964 over breakpoints. */
965
966 static int
967 use_displaced_stepping (struct gdbarch *gdbarch)
968 {
969 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
970 && non_stop)
971 || can_use_displaced_stepping == can_use_displaced_stepping_on)
972 && gdbarch_displaced_step_copy_insn_p (gdbarch)
973 && !RECORD_IS_USED);
974 }
975
976 /* Clean out any stray displaced stepping state. */
977 static void
978 displaced_step_clear (void)
979 {
980 /* Indicate that there is no cleanup pending. */
981 displaced_step_ptid = null_ptid;
982
983 if (displaced_step_closure)
984 {
985 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
986 displaced_step_closure);
987 displaced_step_closure = NULL;
988 }
989 }
990
991 static void
992 displaced_step_clear_cleanup (void *ignore)
993 {
994 displaced_step_clear ();
995 }
996
997 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
998 void
999 displaced_step_dump_bytes (struct ui_file *file,
1000 const gdb_byte *buf,
1001 size_t len)
1002 {
1003 int i;
1004
1005 for (i = 0; i < len; i++)
1006 fprintf_unfiltered (file, "%02x ", buf[i]);
1007 fputs_unfiltered ("\n", file);
1008 }
1009
1010 /* Prepare to single-step, using displaced stepping.
1011
1012 Note that we cannot use displaced stepping when we have a signal to
1013 deliver. If we have a signal to deliver and an instruction to step
1014 over, then after the step, there will be no indication from the
1015 target whether the thread entered a signal handler or ignored the
1016 signal and stepped over the instruction successfully --- both cases
1017 result in a simple SIGTRAP. In the first case we mustn't do a
1018 fixup, and in the second case we must --- but we can't tell which.
1019 Comments in the code for 'random signals' in handle_inferior_event
1020 explain how we handle this case instead.
1021
1022 Returns 1 if preparing was successful -- this thread is going to be
1023 stepped now; or 0 if displaced stepping this thread got queued. */
1024 static int
1025 displaced_step_prepare (ptid_t ptid)
1026 {
1027 struct cleanup *old_cleanups, *ignore_cleanups;
1028 struct regcache *regcache = get_thread_regcache (ptid);
1029 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1030 CORE_ADDR original, copy;
1031 ULONGEST len;
1032 struct displaced_step_closure *closure;
1033
1034 /* We should never reach this function if the architecture does not
1035 support displaced stepping. */
1036 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1037
1038 /* For the first cut, we're displaced stepping one thread at a
1039 time. */
1040
1041 if (!ptid_equal (displaced_step_ptid, null_ptid))
1042 {
1043 /* Already waiting for a displaced step to finish. Defer this
1044 request and place in queue. */
1045 struct displaced_step_request *req, *new_req;
1046
1047 if (debug_displaced)
1048 fprintf_unfiltered (gdb_stdlog,
1049 "displaced: defering step of %s\n",
1050 target_pid_to_str (ptid));
1051
1052 new_req = xmalloc (sizeof (*new_req));
1053 new_req->ptid = ptid;
1054 new_req->next = NULL;
1055
1056 if (displaced_step_request_queue)
1057 {
1058 for (req = displaced_step_request_queue;
1059 req && req->next;
1060 req = req->next)
1061 ;
1062 req->next = new_req;
1063 }
1064 else
1065 displaced_step_request_queue = new_req;
1066
1067 return 0;
1068 }
1069 else
1070 {
1071 if (debug_displaced)
1072 fprintf_unfiltered (gdb_stdlog,
1073 "displaced: stepping %s now\n",
1074 target_pid_to_str (ptid));
1075 }
1076
1077 displaced_step_clear ();
1078
1079 old_cleanups = save_inferior_ptid ();
1080 inferior_ptid = ptid;
1081
1082 original = regcache_read_pc (regcache);
1083
1084 copy = gdbarch_displaced_step_location (gdbarch);
1085 len = gdbarch_max_insn_length (gdbarch);
1086
1087 /* Save the original contents of the copy area. */
1088 displaced_step_saved_copy = xmalloc (len);
1089 ignore_cleanups = make_cleanup (free_current_contents,
1090 &displaced_step_saved_copy);
1091 read_memory (copy, displaced_step_saved_copy, len);
1092 if (debug_displaced)
1093 {
1094 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1095 paddress (gdbarch, copy));
1096 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
1097 };
1098
1099 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1100 original, copy, regcache);
1101
1102 /* We don't support the fully-simulated case at present. */
1103 gdb_assert (closure);
1104
1105 /* Save the information we need to fix things up if the step
1106 succeeds. */
1107 displaced_step_ptid = ptid;
1108 displaced_step_gdbarch = gdbarch;
1109 displaced_step_closure = closure;
1110 displaced_step_original = original;
1111 displaced_step_copy = copy;
1112
1113 make_cleanup (displaced_step_clear_cleanup, 0);
1114
1115 /* Resume execution at the copy. */
1116 regcache_write_pc (regcache, copy);
1117
1118 discard_cleanups (ignore_cleanups);
1119
1120 do_cleanups (old_cleanups);
1121
1122 if (debug_displaced)
1123 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1124 paddress (gdbarch, copy));
1125
1126 return 1;
1127 }
1128
1129 static void
1130 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1131 {
1132 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1133 inferior_ptid = ptid;
1134 write_memory (memaddr, myaddr, len);
1135 do_cleanups (ptid_cleanup);
1136 }
1137
1138 static void
1139 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1140 {
1141 struct cleanup *old_cleanups;
1142
1143 /* Was this event for the pid we displaced? */
1144 if (ptid_equal (displaced_step_ptid, null_ptid)
1145 || ! ptid_equal (displaced_step_ptid, event_ptid))
1146 return;
1147
1148 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
1149
1150 /* Restore the contents of the copy area. */
1151 {
1152 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
1153 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
1154 displaced_step_saved_copy, len);
1155 if (debug_displaced)
1156 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
1157 paddress (displaced_step_gdbarch,
1158 displaced_step_copy));
1159 }
1160
1161 /* Did the instruction complete successfully? */
1162 if (signal == TARGET_SIGNAL_TRAP)
1163 {
1164 /* Fix up the resulting state. */
1165 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
1166 displaced_step_closure,
1167 displaced_step_original,
1168 displaced_step_copy,
1169 get_thread_regcache (displaced_step_ptid));
1170 }
1171 else
1172 {
1173 /* Since the instruction didn't complete, all we can do is
1174 relocate the PC. */
1175 struct regcache *regcache = get_thread_regcache (event_ptid);
1176 CORE_ADDR pc = regcache_read_pc (regcache);
1177 pc = displaced_step_original + (pc - displaced_step_copy);
1178 regcache_write_pc (regcache, pc);
1179 }
1180
1181 do_cleanups (old_cleanups);
1182
1183 displaced_step_ptid = null_ptid;
1184
1185 /* Are there any pending displaced stepping requests? If so, run
1186 one now. */
1187 while (displaced_step_request_queue)
1188 {
1189 struct displaced_step_request *head;
1190 ptid_t ptid;
1191 struct regcache *regcache;
1192 struct gdbarch *gdbarch;
1193 CORE_ADDR actual_pc;
1194 struct address_space *aspace;
1195
1196 head = displaced_step_request_queue;
1197 ptid = head->ptid;
1198 displaced_step_request_queue = head->next;
1199 xfree (head);
1200
1201 context_switch (ptid);
1202
1203 regcache = get_thread_regcache (ptid);
1204 actual_pc = regcache_read_pc (regcache);
1205 aspace = get_regcache_aspace (regcache);
1206
1207 if (breakpoint_here_p (aspace, actual_pc))
1208 {
1209 if (debug_displaced)
1210 fprintf_unfiltered (gdb_stdlog,
1211 "displaced: stepping queued %s now\n",
1212 target_pid_to_str (ptid));
1213
1214 displaced_step_prepare (ptid);
1215
1216 gdbarch = get_regcache_arch (regcache);
1217
1218 if (debug_displaced)
1219 {
1220 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1221 gdb_byte buf[4];
1222
1223 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1224 paddress (gdbarch, actual_pc));
1225 read_memory (actual_pc, buf, sizeof (buf));
1226 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1227 }
1228
1229 if (gdbarch_displaced_step_hw_singlestep
1230 (gdbarch, displaced_step_closure))
1231 target_resume (ptid, 1, TARGET_SIGNAL_0);
1232 else
1233 target_resume (ptid, 0, TARGET_SIGNAL_0);
1234
1235 /* Done, we're stepping a thread. */
1236 break;
1237 }
1238 else
1239 {
1240 int step;
1241 struct thread_info *tp = inferior_thread ();
1242
1243 /* The breakpoint we were sitting under has since been
1244 removed. */
1245 tp->trap_expected = 0;
1246
1247 /* Go back to what we were trying to do. */
1248 step = currently_stepping (tp);
1249
1250 if (debug_displaced)
1251 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1252 target_pid_to_str (tp->ptid), step);
1253
1254 target_resume (ptid, step, TARGET_SIGNAL_0);
1255 tp->stop_signal = TARGET_SIGNAL_0;
1256
1257 /* This request was discarded. See if there's any other
1258 thread waiting for its turn. */
1259 }
1260 }
1261 }
1262
1263 /* Update global variables holding ptids to hold NEW_PTID if they were
1264 holding OLD_PTID. */
1265 static void
1266 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1267 {
1268 struct displaced_step_request *it;
1269
1270 if (ptid_equal (inferior_ptid, old_ptid))
1271 inferior_ptid = new_ptid;
1272
1273 if (ptid_equal (singlestep_ptid, old_ptid))
1274 singlestep_ptid = new_ptid;
1275
1276 if (ptid_equal (displaced_step_ptid, old_ptid))
1277 displaced_step_ptid = new_ptid;
1278
1279 if (ptid_equal (deferred_step_ptid, old_ptid))
1280 deferred_step_ptid = new_ptid;
1281
1282 for (it = displaced_step_request_queue; it; it = it->next)
1283 if (ptid_equal (it->ptid, old_ptid))
1284 it->ptid = new_ptid;
1285 }
1286
1287 \f
1288 /* Resuming. */
1289
1290 /* Things to clean up if we QUIT out of resume (). */
1291 static void
1292 resume_cleanups (void *ignore)
1293 {
1294 normal_stop ();
1295 }
1296
1297 static const char schedlock_off[] = "off";
1298 static const char schedlock_on[] = "on";
1299 static const char schedlock_step[] = "step";
1300 static const char *scheduler_enums[] = {
1301 schedlock_off,
1302 schedlock_on,
1303 schedlock_step,
1304 NULL
1305 };
1306 static const char *scheduler_mode = schedlock_off;
1307 static void
1308 show_scheduler_mode (struct ui_file *file, int from_tty,
1309 struct cmd_list_element *c, const char *value)
1310 {
1311 fprintf_filtered (file, _("\
1312 Mode for locking scheduler during execution is \"%s\".\n"),
1313 value);
1314 }
1315
1316 static void
1317 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1318 {
1319 if (!target_can_lock_scheduler)
1320 {
1321 scheduler_mode = schedlock_off;
1322 error (_("Target '%s' cannot support this command."), target_shortname);
1323 }
1324 }
1325
1326 /* True if execution commands resume all threads of all processes by
1327 default; otherwise, resume only threads of the current inferior
1328 process. */
1329 int sched_multi = 0;
1330
1331 /* Try to setup for software single stepping over the specified location.
1332 Return 1 if target_resume() should use hardware single step.
1333
1334 GDBARCH the current gdbarch.
1335 PC the location to step over. */
1336
1337 static int
1338 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1339 {
1340 int hw_step = 1;
1341
1342 if (gdbarch_software_single_step_p (gdbarch)
1343 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1344 {
1345 hw_step = 0;
1346 /* Do not pull these breakpoints until after a `wait' in
1347 `wait_for_inferior' */
1348 singlestep_breakpoints_inserted_p = 1;
1349 singlestep_ptid = inferior_ptid;
1350 singlestep_pc = pc;
1351 }
1352 return hw_step;
1353 }
1354
1355 /* Resume the inferior, but allow a QUIT. This is useful if the user
1356 wants to interrupt some lengthy single-stepping operation
1357 (for child processes, the SIGINT goes to the inferior, and so
1358 we get a SIGINT random_signal, but for remote debugging and perhaps
1359 other targets, that's not true).
1360
1361 STEP nonzero if we should step (zero to continue instead).
1362 SIG is the signal to give the inferior (zero for none). */
1363 void
1364 resume (int step, enum target_signal sig)
1365 {
1366 int should_resume = 1;
1367 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1368 struct regcache *regcache = get_current_regcache ();
1369 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1370 struct thread_info *tp = inferior_thread ();
1371 CORE_ADDR pc = regcache_read_pc (regcache);
1372 struct address_space *aspace = get_regcache_aspace (regcache);
1373
1374 QUIT;
1375
1376 if (debug_infrun)
1377 fprintf_unfiltered (gdb_stdlog,
1378 "infrun: resume (step=%d, signal=%d), "
1379 "trap_expected=%d\n",
1380 step, sig, tp->trap_expected);
1381
1382 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
1383 over an instruction that causes a page fault without triggering
1384 a hardware watchpoint. The kernel properly notices that it shouldn't
1385 stop, because the hardware watchpoint is not triggered, but it forgets
1386 the step request and continues the program normally.
1387 Work around the problem by removing hardware watchpoints if a step is
1388 requested, GDB will check for a hardware watchpoint trigger after the
1389 step anyway. */
1390 if (CANNOT_STEP_HW_WATCHPOINTS && step)
1391 remove_hw_watchpoints ();
1392
1393
1394 /* Normally, by the time we reach `resume', the breakpoints are either
1395 removed or inserted, as appropriate. The exception is if we're sitting
1396 at a permanent breakpoint; we need to step over it, but permanent
1397 breakpoints can't be removed. So we have to test for it here. */
1398 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1399 {
1400 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1401 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1402 else
1403 error (_("\
1404 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1405 how to step past a permanent breakpoint on this architecture. Try using\n\
1406 a command like `return' or `jump' to continue execution."));
1407 }
1408
1409 /* If enabled, step over breakpoints by executing a copy of the
1410 instruction at a different address.
1411
1412 We can't use displaced stepping when we have a signal to deliver;
1413 the comments for displaced_step_prepare explain why. The
1414 comments in the handle_inferior event for dealing with 'random
1415 signals' explain what we do instead. */
1416 if (use_displaced_stepping (gdbarch)
1417 && (tp->trap_expected
1418 || (step && gdbarch_software_single_step_p (gdbarch)))
1419 && sig == TARGET_SIGNAL_0)
1420 {
1421 if (!displaced_step_prepare (inferior_ptid))
1422 {
1423 /* Got placed in displaced stepping queue. Will be resumed
1424 later when all the currently queued displaced stepping
1425 requests finish. The thread is not executing at this point,
1426 and the call to set_executing will be made later. But we
1427 need to call set_running here, since from frontend point of view,
1428 the thread is running. */
1429 set_running (inferior_ptid, 1);
1430 discard_cleanups (old_cleanups);
1431 return;
1432 }
1433
1434 step = gdbarch_displaced_step_hw_singlestep
1435 (gdbarch, displaced_step_closure);
1436 }
1437
1438 /* Do we need to do it the hard way, w/temp breakpoints? */
1439 else if (step)
1440 step = maybe_software_singlestep (gdbarch, pc);
1441
1442 if (should_resume)
1443 {
1444 ptid_t resume_ptid;
1445
1446 /* If STEP is set, it's a request to use hardware stepping
1447 facilities. But in that case, we should never
1448 use singlestep breakpoint. */
1449 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1450
1451 /* Decide the set of threads to ask the target to resume. Start
1452 by assuming everything will be resumed, than narrow the set
1453 by applying increasingly restricting conditions. */
1454
1455 /* By default, resume all threads of all processes. */
1456 resume_ptid = RESUME_ALL;
1457
1458 /* Maybe resume only all threads of the current process. */
1459 if (!sched_multi && target_supports_multi_process ())
1460 {
1461 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1462 }
1463
1464 /* Maybe resume a single thread after all. */
1465 if (singlestep_breakpoints_inserted_p
1466 && stepping_past_singlestep_breakpoint)
1467 {
1468 /* The situation here is as follows. In thread T1 we wanted to
1469 single-step. Lacking hardware single-stepping we've
1470 set breakpoint at the PC of the next instruction -- call it
1471 P. After resuming, we've hit that breakpoint in thread T2.
1472 Now we've removed original breakpoint, inserted breakpoint
1473 at P+1, and try to step to advance T2 past breakpoint.
1474 We need to step only T2, as if T1 is allowed to freely run,
1475 it can run past P, and if other threads are allowed to run,
1476 they can hit breakpoint at P+1, and nested hits of single-step
1477 breakpoints is not something we'd want -- that's complicated
1478 to support, and has no value. */
1479 resume_ptid = inferior_ptid;
1480 }
1481 else if ((step || singlestep_breakpoints_inserted_p)
1482 && tp->trap_expected)
1483 {
1484 /* We're allowing a thread to run past a breakpoint it has
1485 hit, by single-stepping the thread with the breakpoint
1486 removed. In which case, we need to single-step only this
1487 thread, and keep others stopped, as they can miss this
1488 breakpoint if allowed to run.
1489
1490 The current code actually removes all breakpoints when
1491 doing this, not just the one being stepped over, so if we
1492 let other threads run, we can actually miss any
1493 breakpoint, not just the one at PC. */
1494 resume_ptid = inferior_ptid;
1495 }
1496 else if (non_stop)
1497 {
1498 /* With non-stop mode on, threads are always handled
1499 individually. */
1500 resume_ptid = inferior_ptid;
1501 }
1502 else if ((scheduler_mode == schedlock_on)
1503 || (scheduler_mode == schedlock_step
1504 && (step || singlestep_breakpoints_inserted_p)))
1505 {
1506 /* User-settable 'scheduler' mode requires solo thread resume. */
1507 resume_ptid = inferior_ptid;
1508 }
1509
1510 if (gdbarch_cannot_step_breakpoint (gdbarch))
1511 {
1512 /* Most targets can step a breakpoint instruction, thus
1513 executing it normally. But if this one cannot, just
1514 continue and we will hit it anyway. */
1515 if (step && breakpoint_inserted_here_p (aspace, pc))
1516 step = 0;
1517 }
1518
1519 if (debug_displaced
1520 && use_displaced_stepping (gdbarch)
1521 && tp->trap_expected)
1522 {
1523 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1524 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1525 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1526 gdb_byte buf[4];
1527
1528 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1529 paddress (resume_gdbarch, actual_pc));
1530 read_memory (actual_pc, buf, sizeof (buf));
1531 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1532 }
1533
1534 /* Install inferior's terminal modes. */
1535 target_terminal_inferior ();
1536
1537 /* Avoid confusing the next resume, if the next stop/resume
1538 happens to apply to another thread. */
1539 tp->stop_signal = TARGET_SIGNAL_0;
1540
1541 target_resume (resume_ptid, step, sig);
1542 }
1543
1544 discard_cleanups (old_cleanups);
1545 }
1546 \f
1547 /* Proceeding. */
1548
1549 /* Clear out all variables saying what to do when inferior is continued.
1550 First do this, then set the ones you want, then call `proceed'. */
1551
1552 static void
1553 clear_proceed_status_thread (struct thread_info *tp)
1554 {
1555 if (debug_infrun)
1556 fprintf_unfiltered (gdb_stdlog,
1557 "infrun: clear_proceed_status_thread (%s)\n",
1558 target_pid_to_str (tp->ptid));
1559
1560 tp->trap_expected = 0;
1561 tp->step_range_start = 0;
1562 tp->step_range_end = 0;
1563 tp->step_frame_id = null_frame_id;
1564 tp->step_stack_frame_id = null_frame_id;
1565 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1566 tp->stop_requested = 0;
1567
1568 tp->stop_step = 0;
1569
1570 tp->proceed_to_finish = 0;
1571
1572 /* Discard any remaining commands or status from previous stop. */
1573 bpstat_clear (&tp->stop_bpstat);
1574 }
1575
1576 static int
1577 clear_proceed_status_callback (struct thread_info *tp, void *data)
1578 {
1579 if (is_exited (tp->ptid))
1580 return 0;
1581
1582 clear_proceed_status_thread (tp);
1583 return 0;
1584 }
1585
1586 void
1587 clear_proceed_status (void)
1588 {
1589 if (!non_stop)
1590 {
1591 /* In all-stop mode, delete the per-thread status of all
1592 threads, even if inferior_ptid is null_ptid, there may be
1593 threads on the list. E.g., we may be launching a new
1594 process, while selecting the executable. */
1595 iterate_over_threads (clear_proceed_status_callback, NULL);
1596 }
1597
1598 if (!ptid_equal (inferior_ptid, null_ptid))
1599 {
1600 struct inferior *inferior;
1601
1602 if (non_stop)
1603 {
1604 /* If in non-stop mode, only delete the per-thread status of
1605 the current thread. */
1606 clear_proceed_status_thread (inferior_thread ());
1607 }
1608
1609 inferior = current_inferior ();
1610 inferior->stop_soon = NO_STOP_QUIETLY;
1611 }
1612
1613 stop_after_trap = 0;
1614
1615 observer_notify_about_to_proceed ();
1616
1617 if (stop_registers)
1618 {
1619 regcache_xfree (stop_registers);
1620 stop_registers = NULL;
1621 }
1622 }
1623
1624 /* Check the current thread against the thread that reported the most recent
1625 event. If a step-over is required return TRUE and set the current thread
1626 to the old thread. Otherwise return FALSE.
1627
1628 This should be suitable for any targets that support threads. */
1629
1630 static int
1631 prepare_to_proceed (int step)
1632 {
1633 ptid_t wait_ptid;
1634 struct target_waitstatus wait_status;
1635 int schedlock_enabled;
1636
1637 /* With non-stop mode on, threads are always handled individually. */
1638 gdb_assert (! non_stop);
1639
1640 /* Get the last target status returned by target_wait(). */
1641 get_last_target_status (&wait_ptid, &wait_status);
1642
1643 /* Make sure we were stopped at a breakpoint. */
1644 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1645 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1646 {
1647 return 0;
1648 }
1649
1650 schedlock_enabled = (scheduler_mode == schedlock_on
1651 || (scheduler_mode == schedlock_step
1652 && step));
1653
1654 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1655 if (schedlock_enabled)
1656 return 0;
1657
1658 /* Don't switch over if we're about to resume some other process
1659 other than WAIT_PTID's, and schedule-multiple is off. */
1660 if (!sched_multi
1661 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1662 return 0;
1663
1664 /* Switched over from WAIT_PID. */
1665 if (!ptid_equal (wait_ptid, minus_one_ptid)
1666 && !ptid_equal (inferior_ptid, wait_ptid))
1667 {
1668 struct regcache *regcache = get_thread_regcache (wait_ptid);
1669
1670 if (breakpoint_here_p (get_regcache_aspace (regcache),
1671 regcache_read_pc (regcache)))
1672 {
1673 /* If stepping, remember current thread to switch back to. */
1674 if (step)
1675 deferred_step_ptid = inferior_ptid;
1676
1677 /* Switch back to WAIT_PID thread. */
1678 switch_to_thread (wait_ptid);
1679
1680 /* We return 1 to indicate that there is a breakpoint here,
1681 so we need to step over it before continuing to avoid
1682 hitting it straight away. */
1683 return 1;
1684 }
1685 }
1686
1687 return 0;
1688 }
1689
1690 /* Basic routine for continuing the program in various fashions.
1691
1692 ADDR is the address to resume at, or -1 for resume where stopped.
1693 SIGGNAL is the signal to give it, or 0 for none,
1694 or -1 for act according to how it stopped.
1695 STEP is nonzero if should trap after one instruction.
1696 -1 means return after that and print nothing.
1697 You should probably set various step_... variables
1698 before calling here, if you are stepping.
1699
1700 You should call clear_proceed_status before calling proceed. */
1701
1702 void
1703 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1704 {
1705 struct regcache *regcache;
1706 struct gdbarch *gdbarch;
1707 struct thread_info *tp;
1708 CORE_ADDR pc;
1709 struct address_space *aspace;
1710 int oneproc = 0;
1711
1712 /* If we're stopped at a fork/vfork, follow the branch set by the
1713 "set follow-fork-mode" command; otherwise, we'll just proceed
1714 resuming the current thread. */
1715 if (!follow_fork ())
1716 {
1717 /* The target for some reason decided not to resume. */
1718 normal_stop ();
1719 return;
1720 }
1721
1722 regcache = get_current_regcache ();
1723 gdbarch = get_regcache_arch (regcache);
1724 aspace = get_regcache_aspace (regcache);
1725 pc = regcache_read_pc (regcache);
1726
1727 if (step > 0)
1728 step_start_function = find_pc_function (pc);
1729 if (step < 0)
1730 stop_after_trap = 1;
1731
1732 if (addr == (CORE_ADDR) -1)
1733 {
1734 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
1735 && execution_direction != EXEC_REVERSE)
1736 /* There is a breakpoint at the address we will resume at,
1737 step one instruction before inserting breakpoints so that
1738 we do not stop right away (and report a second hit at this
1739 breakpoint).
1740
1741 Note, we don't do this in reverse, because we won't
1742 actually be executing the breakpoint insn anyway.
1743 We'll be (un-)executing the previous instruction. */
1744
1745 oneproc = 1;
1746 else if (gdbarch_single_step_through_delay_p (gdbarch)
1747 && gdbarch_single_step_through_delay (gdbarch,
1748 get_current_frame ()))
1749 /* We stepped onto an instruction that needs to be stepped
1750 again before re-inserting the breakpoint, do so. */
1751 oneproc = 1;
1752 }
1753 else
1754 {
1755 regcache_write_pc (regcache, addr);
1756 }
1757
1758 if (debug_infrun)
1759 fprintf_unfiltered (gdb_stdlog,
1760 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
1761 paddress (gdbarch, addr), siggnal, step);
1762
1763 if (non_stop)
1764 /* In non-stop, each thread is handled individually. The context
1765 must already be set to the right thread here. */
1766 ;
1767 else
1768 {
1769 /* In a multi-threaded task we may select another thread and
1770 then continue or step.
1771
1772 But if the old thread was stopped at a breakpoint, it will
1773 immediately cause another breakpoint stop without any
1774 execution (i.e. it will report a breakpoint hit incorrectly).
1775 So we must step over it first.
1776
1777 prepare_to_proceed checks the current thread against the
1778 thread that reported the most recent event. If a step-over
1779 is required it returns TRUE and sets the current thread to
1780 the old thread. */
1781 if (prepare_to_proceed (step))
1782 oneproc = 1;
1783 }
1784
1785 /* prepare_to_proceed may change the current thread. */
1786 tp = inferior_thread ();
1787
1788 if (oneproc)
1789 {
1790 tp->trap_expected = 1;
1791 /* If displaced stepping is enabled, we can step over the
1792 breakpoint without hitting it, so leave all breakpoints
1793 inserted. Otherwise we need to disable all breakpoints, step
1794 one instruction, and then re-add them when that step is
1795 finished. */
1796 if (!use_displaced_stepping (gdbarch))
1797 remove_breakpoints ();
1798 }
1799
1800 /* We can insert breakpoints if we're not trying to step over one,
1801 or if we are stepping over one but we're using displaced stepping
1802 to do so. */
1803 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1804 insert_breakpoints ();
1805
1806 if (!non_stop)
1807 {
1808 /* Pass the last stop signal to the thread we're resuming,
1809 irrespective of whether the current thread is the thread that
1810 got the last event or not. This was historically GDB's
1811 behaviour before keeping a stop_signal per thread. */
1812
1813 struct thread_info *last_thread;
1814 ptid_t last_ptid;
1815 struct target_waitstatus last_status;
1816
1817 get_last_target_status (&last_ptid, &last_status);
1818 if (!ptid_equal (inferior_ptid, last_ptid)
1819 && !ptid_equal (last_ptid, null_ptid)
1820 && !ptid_equal (last_ptid, minus_one_ptid))
1821 {
1822 last_thread = find_thread_ptid (last_ptid);
1823 if (last_thread)
1824 {
1825 tp->stop_signal = last_thread->stop_signal;
1826 last_thread->stop_signal = TARGET_SIGNAL_0;
1827 }
1828 }
1829 }
1830
1831 if (siggnal != TARGET_SIGNAL_DEFAULT)
1832 tp->stop_signal = siggnal;
1833 /* If this signal should not be seen by program,
1834 give it zero. Used for debugging signals. */
1835 else if (!signal_program[tp->stop_signal])
1836 tp->stop_signal = TARGET_SIGNAL_0;
1837
1838 annotate_starting ();
1839
1840 /* Make sure that output from GDB appears before output from the
1841 inferior. */
1842 gdb_flush (gdb_stdout);
1843
1844 /* Refresh prev_pc value just prior to resuming. This used to be
1845 done in stop_stepping, however, setting prev_pc there did not handle
1846 scenarios such as inferior function calls or returning from
1847 a function via the return command. In those cases, the prev_pc
1848 value was not set properly for subsequent commands. The prev_pc value
1849 is used to initialize the starting line number in the ecs. With an
1850 invalid value, the gdb next command ends up stopping at the position
1851 represented by the next line table entry past our start position.
1852 On platforms that generate one line table entry per line, this
1853 is not a problem. However, on the ia64, the compiler generates
1854 extraneous line table entries that do not increase the line number.
1855 When we issue the gdb next command on the ia64 after an inferior call
1856 or a return command, we often end up a few instructions forward, still
1857 within the original line we started.
1858
1859 An attempt was made to have init_execution_control_state () refresh
1860 the prev_pc value before calculating the line number. This approach
1861 did not work because on platforms that use ptrace, the pc register
1862 cannot be read unless the inferior is stopped. At that point, we
1863 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1864 call can fail. Setting the prev_pc value here ensures the value is
1865 updated correctly when the inferior is stopped. */
1866 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1867
1868 /* Fill in with reasonable starting values. */
1869 init_thread_stepping_state (tp);
1870
1871 /* Reset to normal state. */
1872 init_infwait_state ();
1873
1874 /* Resume inferior. */
1875 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
1876
1877 /* Wait for it to stop (if not standalone)
1878 and in any case decode why it stopped, and act accordingly. */
1879 /* Do this only if we are not using the event loop, or if the target
1880 does not support asynchronous execution. */
1881 if (!target_can_async_p ())
1882 {
1883 wait_for_inferior (0);
1884 normal_stop ();
1885 }
1886 }
1887 \f
1888
1889 /* Start remote-debugging of a machine over a serial link. */
1890
1891 void
1892 start_remote (int from_tty)
1893 {
1894 struct inferior *inferior;
1895 init_wait_for_inferior ();
1896
1897 inferior = current_inferior ();
1898 inferior->stop_soon = STOP_QUIETLY_REMOTE;
1899
1900 /* Always go on waiting for the target, regardless of the mode. */
1901 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1902 indicate to wait_for_inferior that a target should timeout if
1903 nothing is returned (instead of just blocking). Because of this,
1904 targets expecting an immediate response need to, internally, set
1905 things up so that the target_wait() is forced to eventually
1906 timeout. */
1907 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1908 differentiate to its caller what the state of the target is after
1909 the initial open has been performed. Here we're assuming that
1910 the target has stopped. It should be possible to eventually have
1911 target_open() return to the caller an indication that the target
1912 is currently running and GDB state should be set to the same as
1913 for an async run. */
1914 wait_for_inferior (0);
1915
1916 /* Now that the inferior has stopped, do any bookkeeping like
1917 loading shared libraries. We want to do this before normal_stop,
1918 so that the displayed frame is up to date. */
1919 post_create_inferior (&current_target, from_tty);
1920
1921 normal_stop ();
1922 }
1923
1924 /* Initialize static vars when a new inferior begins. */
1925
1926 void
1927 init_wait_for_inferior (void)
1928 {
1929 /* These are meaningless until the first time through wait_for_inferior. */
1930
1931 breakpoint_init_inferior (inf_starting);
1932
1933 clear_proceed_status ();
1934
1935 stepping_past_singlestep_breakpoint = 0;
1936 deferred_step_ptid = null_ptid;
1937
1938 target_last_wait_ptid = minus_one_ptid;
1939
1940 previous_inferior_ptid = null_ptid;
1941 init_infwait_state ();
1942
1943 displaced_step_clear ();
1944
1945 /* Discard any skipped inlined frames. */
1946 clear_inline_frame_state (minus_one_ptid);
1947 }
1948
1949 \f
1950 /* This enum encodes possible reasons for doing a target_wait, so that
1951 wfi can call target_wait in one place. (Ultimately the call will be
1952 moved out of the infinite loop entirely.) */
1953
1954 enum infwait_states
1955 {
1956 infwait_normal_state,
1957 infwait_thread_hop_state,
1958 infwait_step_watch_state,
1959 infwait_nonstep_watch_state
1960 };
1961
1962 /* Why did the inferior stop? Used to print the appropriate messages
1963 to the interface from within handle_inferior_event(). */
1964 enum inferior_stop_reason
1965 {
1966 /* Step, next, nexti, stepi finished. */
1967 END_STEPPING_RANGE,
1968 /* Inferior terminated by signal. */
1969 SIGNAL_EXITED,
1970 /* Inferior exited. */
1971 EXITED,
1972 /* Inferior received signal, and user asked to be notified. */
1973 SIGNAL_RECEIVED,
1974 /* Reverse execution -- target ran out of history info. */
1975 NO_HISTORY
1976 };
1977
1978 /* The PTID we'll do a target_wait on.*/
1979 ptid_t waiton_ptid;
1980
1981 /* Current inferior wait state. */
1982 enum infwait_states infwait_state;
1983
1984 /* Data to be passed around while handling an event. This data is
1985 discarded between events. */
1986 struct execution_control_state
1987 {
1988 ptid_t ptid;
1989 /* The thread that got the event, if this was a thread event; NULL
1990 otherwise. */
1991 struct thread_info *event_thread;
1992
1993 struct target_waitstatus ws;
1994 int random_signal;
1995 CORE_ADDR stop_func_start;
1996 CORE_ADDR stop_func_end;
1997 char *stop_func_name;
1998 int new_thread_event;
1999 int wait_some_more;
2000 };
2001
2002 static void init_execution_control_state (struct execution_control_state *ecs);
2003
2004 static void handle_inferior_event (struct execution_control_state *ecs);
2005
2006 static void handle_step_into_function (struct gdbarch *gdbarch,
2007 struct execution_control_state *ecs);
2008 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2009 struct execution_control_state *ecs);
2010 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
2011 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
2012 static void insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
2013 struct symtab_and_line sr_sal,
2014 struct frame_id sr_id);
2015 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
2016
2017 static void stop_stepping (struct execution_control_state *ecs);
2018 static void prepare_to_wait (struct execution_control_state *ecs);
2019 static void keep_going (struct execution_control_state *ecs);
2020 static void print_stop_reason (enum inferior_stop_reason stop_reason,
2021 int stop_info);
2022
2023 /* Callback for iterate over threads. If the thread is stopped, but
2024 the user/frontend doesn't know about that yet, go through
2025 normal_stop, as if the thread had just stopped now. ARG points at
2026 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2027 ptid_is_pid(PTID) is true, applies to all threads of the process
2028 pointed at by PTID. Otherwise, apply only to the thread pointed by
2029 PTID. */
2030
2031 static int
2032 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2033 {
2034 ptid_t ptid = * (ptid_t *) arg;
2035
2036 if ((ptid_equal (info->ptid, ptid)
2037 || ptid_equal (minus_one_ptid, ptid)
2038 || (ptid_is_pid (ptid)
2039 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2040 && is_running (info->ptid)
2041 && !is_executing (info->ptid))
2042 {
2043 struct cleanup *old_chain;
2044 struct execution_control_state ecss;
2045 struct execution_control_state *ecs = &ecss;
2046
2047 memset (ecs, 0, sizeof (*ecs));
2048
2049 old_chain = make_cleanup_restore_current_thread ();
2050
2051 switch_to_thread (info->ptid);
2052
2053 /* Go through handle_inferior_event/normal_stop, so we always
2054 have consistent output as if the stop event had been
2055 reported. */
2056 ecs->ptid = info->ptid;
2057 ecs->event_thread = find_thread_ptid (info->ptid);
2058 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2059 ecs->ws.value.sig = TARGET_SIGNAL_0;
2060
2061 handle_inferior_event (ecs);
2062
2063 if (!ecs->wait_some_more)
2064 {
2065 struct thread_info *tp;
2066
2067 normal_stop ();
2068
2069 /* Finish off the continuations. The continations
2070 themselves are responsible for realising the thread
2071 didn't finish what it was supposed to do. */
2072 tp = inferior_thread ();
2073 do_all_intermediate_continuations_thread (tp);
2074 do_all_continuations_thread (tp);
2075 }
2076
2077 do_cleanups (old_chain);
2078 }
2079
2080 return 0;
2081 }
2082
2083 /* This function is attached as a "thread_stop_requested" observer.
2084 Cleanup local state that assumed the PTID was to be resumed, and
2085 report the stop to the frontend. */
2086
2087 static void
2088 infrun_thread_stop_requested (ptid_t ptid)
2089 {
2090 struct displaced_step_request *it, *next, *prev = NULL;
2091
2092 /* PTID was requested to stop. Remove it from the displaced
2093 stepping queue, so we don't try to resume it automatically. */
2094 for (it = displaced_step_request_queue; it; it = next)
2095 {
2096 next = it->next;
2097
2098 if (ptid_equal (it->ptid, ptid)
2099 || ptid_equal (minus_one_ptid, ptid)
2100 || (ptid_is_pid (ptid)
2101 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
2102 {
2103 if (displaced_step_request_queue == it)
2104 displaced_step_request_queue = it->next;
2105 else
2106 prev->next = it->next;
2107
2108 xfree (it);
2109 }
2110 else
2111 prev = it;
2112 }
2113
2114 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2115 }
2116
2117 static void
2118 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2119 {
2120 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2121 nullify_last_target_wait_ptid ();
2122 }
2123
2124 /* Callback for iterate_over_threads. */
2125
2126 static int
2127 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2128 {
2129 if (is_exited (info->ptid))
2130 return 0;
2131
2132 delete_step_resume_breakpoint (info);
2133 return 0;
2134 }
2135
2136 /* In all-stop, delete the step resume breakpoint of any thread that
2137 had one. In non-stop, delete the step resume breakpoint of the
2138 thread that just stopped. */
2139
2140 static void
2141 delete_step_thread_step_resume_breakpoint (void)
2142 {
2143 if (!target_has_execution
2144 || ptid_equal (inferior_ptid, null_ptid))
2145 /* If the inferior has exited, we have already deleted the step
2146 resume breakpoints out of GDB's lists. */
2147 return;
2148
2149 if (non_stop)
2150 {
2151 /* If in non-stop mode, only delete the step-resume or
2152 longjmp-resume breakpoint of the thread that just stopped
2153 stepping. */
2154 struct thread_info *tp = inferior_thread ();
2155 delete_step_resume_breakpoint (tp);
2156 }
2157 else
2158 /* In all-stop mode, delete all step-resume and longjmp-resume
2159 breakpoints of any thread that had them. */
2160 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2161 }
2162
2163 /* A cleanup wrapper. */
2164
2165 static void
2166 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2167 {
2168 delete_step_thread_step_resume_breakpoint ();
2169 }
2170
2171 /* Pretty print the results of target_wait, for debugging purposes. */
2172
2173 static void
2174 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2175 const struct target_waitstatus *ws)
2176 {
2177 char *status_string = target_waitstatus_to_string (ws);
2178 struct ui_file *tmp_stream = mem_fileopen ();
2179 char *text;
2180
2181 /* The text is split over several lines because it was getting too long.
2182 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2183 output as a unit; we want only one timestamp printed if debug_timestamp
2184 is set. */
2185
2186 fprintf_unfiltered (tmp_stream,
2187 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2188 if (PIDGET (waiton_ptid) != -1)
2189 fprintf_unfiltered (tmp_stream,
2190 " [%s]", target_pid_to_str (waiton_ptid));
2191 fprintf_unfiltered (tmp_stream, ", status) =\n");
2192 fprintf_unfiltered (tmp_stream,
2193 "infrun: %d [%s],\n",
2194 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2195 fprintf_unfiltered (tmp_stream,
2196 "infrun: %s\n",
2197 status_string);
2198
2199 text = ui_file_xstrdup (tmp_stream, NULL);
2200
2201 /* This uses %s in part to handle %'s in the text, but also to avoid
2202 a gcc error: the format attribute requires a string literal. */
2203 fprintf_unfiltered (gdb_stdlog, "%s", text);
2204
2205 xfree (status_string);
2206 xfree (text);
2207 ui_file_delete (tmp_stream);
2208 }
2209
2210 /* Wait for control to return from inferior to debugger.
2211
2212 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
2213 as if they were SIGTRAP signals. This can be useful during
2214 the startup sequence on some targets such as HP/UX, where
2215 we receive an EXEC event instead of the expected SIGTRAP.
2216
2217 If inferior gets a signal, we may decide to start it up again
2218 instead of returning. That is why there is a loop in this function.
2219 When this function actually returns it means the inferior
2220 should be left stopped and GDB should read more commands. */
2221
2222 void
2223 wait_for_inferior (int treat_exec_as_sigtrap)
2224 {
2225 struct cleanup *old_cleanups;
2226 struct execution_control_state ecss;
2227 struct execution_control_state *ecs;
2228
2229 if (debug_infrun)
2230 fprintf_unfiltered
2231 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
2232 treat_exec_as_sigtrap);
2233
2234 old_cleanups =
2235 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2236
2237 ecs = &ecss;
2238 memset (ecs, 0, sizeof (*ecs));
2239
2240 /* We'll update this if & when we switch to a new thread. */
2241 previous_inferior_ptid = inferior_ptid;
2242
2243 while (1)
2244 {
2245 struct cleanup *old_chain;
2246
2247 /* We have to invalidate the registers BEFORE calling target_wait
2248 because they can be loaded from the target while in target_wait.
2249 This makes remote debugging a bit more efficient for those
2250 targets that provide critical registers as part of their normal
2251 status mechanism. */
2252
2253 overlay_cache_invalid = 1;
2254 registers_changed ();
2255
2256 if (deprecated_target_wait_hook)
2257 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2258 else
2259 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2260
2261 if (debug_infrun)
2262 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2263
2264 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2265 {
2266 xfree (ecs->ws.value.execd_pathname);
2267 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2268 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2269 }
2270
2271 /* If an error happens while handling the event, propagate GDB's
2272 knowledge of the executing state to the frontend/user running
2273 state. */
2274 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2275
2276 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2277 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2278 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2279
2280 /* Now figure out what to do with the result of the result. */
2281 handle_inferior_event (ecs);
2282
2283 /* No error, don't finish the state yet. */
2284 discard_cleanups (old_chain);
2285
2286 if (!ecs->wait_some_more)
2287 break;
2288 }
2289
2290 do_cleanups (old_cleanups);
2291 }
2292
2293 /* Asynchronous version of wait_for_inferior. It is called by the
2294 event loop whenever a change of state is detected on the file
2295 descriptor corresponding to the target. It can be called more than
2296 once to complete a single execution command. In such cases we need
2297 to keep the state in a global variable ECSS. If it is the last time
2298 that this function is called for a single execution command, then
2299 report to the user that the inferior has stopped, and do the
2300 necessary cleanups. */
2301
2302 void
2303 fetch_inferior_event (void *client_data)
2304 {
2305 struct execution_control_state ecss;
2306 struct execution_control_state *ecs = &ecss;
2307 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2308 struct cleanup *ts_old_chain;
2309 int was_sync = sync_execution;
2310
2311 memset (ecs, 0, sizeof (*ecs));
2312
2313 /* We'll update this if & when we switch to a new thread. */
2314 previous_inferior_ptid = inferior_ptid;
2315
2316 if (non_stop)
2317 /* In non-stop mode, the user/frontend should not notice a thread
2318 switch due to internal events. Make sure we reverse to the
2319 user selected thread and frame after handling the event and
2320 running any breakpoint commands. */
2321 make_cleanup_restore_current_thread ();
2322
2323 /* We have to invalidate the registers BEFORE calling target_wait
2324 because they can be loaded from the target while in target_wait.
2325 This makes remote debugging a bit more efficient for those
2326 targets that provide critical registers as part of their normal
2327 status mechanism. */
2328
2329 overlay_cache_invalid = 1;
2330 registers_changed ();
2331
2332 if (deprecated_target_wait_hook)
2333 ecs->ptid =
2334 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2335 else
2336 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2337
2338 if (debug_infrun)
2339 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2340
2341 if (non_stop
2342 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2343 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2344 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2345 /* In non-stop mode, each thread is handled individually. Switch
2346 early, so the global state is set correctly for this
2347 thread. */
2348 context_switch (ecs->ptid);
2349
2350 /* If an error happens while handling the event, propagate GDB's
2351 knowledge of the executing state to the frontend/user running
2352 state. */
2353 if (!non_stop)
2354 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2355 else
2356 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2357
2358 /* Now figure out what to do with the result of the result. */
2359 handle_inferior_event (ecs);
2360
2361 if (!ecs->wait_some_more)
2362 {
2363 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2364
2365 delete_step_thread_step_resume_breakpoint ();
2366
2367 /* We may not find an inferior if this was a process exit. */
2368 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
2369 normal_stop ();
2370
2371 if (target_has_execution
2372 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2373 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2374 && ecs->event_thread->step_multi
2375 && ecs->event_thread->stop_step)
2376 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2377 else
2378 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2379 }
2380
2381 /* No error, don't finish the thread states yet. */
2382 discard_cleanups (ts_old_chain);
2383
2384 /* Revert thread and frame. */
2385 do_cleanups (old_chain);
2386
2387 /* If the inferior was in sync execution mode, and now isn't,
2388 restore the prompt. */
2389 if (was_sync && !sync_execution)
2390 display_gdb_prompt (0);
2391 }
2392
2393 /* Record the frame and location we're currently stepping through. */
2394 void
2395 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2396 {
2397 struct thread_info *tp = inferior_thread ();
2398
2399 tp->step_frame_id = get_frame_id (frame);
2400 tp->step_stack_frame_id = get_stack_frame_id (frame);
2401
2402 tp->current_symtab = sal.symtab;
2403 tp->current_line = sal.line;
2404 }
2405
2406 /* Prepare an execution control state for looping through a
2407 wait_for_inferior-type loop. */
2408
2409 static void
2410 init_execution_control_state (struct execution_control_state *ecs)
2411 {
2412 ecs->random_signal = 0;
2413 }
2414
2415 /* Clear context switchable stepping state. */
2416
2417 void
2418 init_thread_stepping_state (struct thread_info *tss)
2419 {
2420 tss->stepping_over_breakpoint = 0;
2421 tss->step_after_step_resume_breakpoint = 0;
2422 tss->stepping_through_solib_after_catch = 0;
2423 tss->stepping_through_solib_catchpoints = NULL;
2424 }
2425
2426 /* Return the cached copy of the last pid/waitstatus returned by
2427 target_wait()/deprecated_target_wait_hook(). The data is actually
2428 cached by handle_inferior_event(), which gets called immediately
2429 after target_wait()/deprecated_target_wait_hook(). */
2430
2431 void
2432 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2433 {
2434 *ptidp = target_last_wait_ptid;
2435 *status = target_last_waitstatus;
2436 }
2437
2438 void
2439 nullify_last_target_wait_ptid (void)
2440 {
2441 target_last_wait_ptid = minus_one_ptid;
2442 }
2443
2444 /* Switch thread contexts. */
2445
2446 static void
2447 context_switch (ptid_t ptid)
2448 {
2449 if (debug_infrun)
2450 {
2451 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2452 target_pid_to_str (inferior_ptid));
2453 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2454 target_pid_to_str (ptid));
2455 }
2456
2457 switch_to_thread (ptid);
2458 }
2459
2460 static void
2461 adjust_pc_after_break (struct execution_control_state *ecs)
2462 {
2463 struct regcache *regcache;
2464 struct gdbarch *gdbarch;
2465 struct address_space *aspace;
2466 CORE_ADDR breakpoint_pc;
2467
2468 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2469 we aren't, just return.
2470
2471 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2472 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2473 implemented by software breakpoints should be handled through the normal
2474 breakpoint layer.
2475
2476 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2477 different signals (SIGILL or SIGEMT for instance), but it is less
2478 clear where the PC is pointing afterwards. It may not match
2479 gdbarch_decr_pc_after_break. I don't know any specific target that
2480 generates these signals at breakpoints (the code has been in GDB since at
2481 least 1992) so I can not guess how to handle them here.
2482
2483 In earlier versions of GDB, a target with
2484 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2485 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2486 target with both of these set in GDB history, and it seems unlikely to be
2487 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2488
2489 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2490 return;
2491
2492 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2493 return;
2494
2495 /* In reverse execution, when a breakpoint is hit, the instruction
2496 under it has already been de-executed. The reported PC always
2497 points at the breakpoint address, so adjusting it further would
2498 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2499 architecture:
2500
2501 B1 0x08000000 : INSN1
2502 B2 0x08000001 : INSN2
2503 0x08000002 : INSN3
2504 PC -> 0x08000003 : INSN4
2505
2506 Say you're stopped at 0x08000003 as above. Reverse continuing
2507 from that point should hit B2 as below. Reading the PC when the
2508 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2509 been de-executed already.
2510
2511 B1 0x08000000 : INSN1
2512 B2 PC -> 0x08000001 : INSN2
2513 0x08000002 : INSN3
2514 0x08000003 : INSN4
2515
2516 We can't apply the same logic as for forward execution, because
2517 we would wrongly adjust the PC to 0x08000000, since there's a
2518 breakpoint at PC - 1. We'd then report a hit on B1, although
2519 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2520 behaviour. */
2521 if (execution_direction == EXEC_REVERSE)
2522 return;
2523
2524 /* If this target does not decrement the PC after breakpoints, then
2525 we have nothing to do. */
2526 regcache = get_thread_regcache (ecs->ptid);
2527 gdbarch = get_regcache_arch (regcache);
2528 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2529 return;
2530
2531 aspace = get_regcache_aspace (regcache);
2532
2533 /* Find the location where (if we've hit a breakpoint) the
2534 breakpoint would be. */
2535 breakpoint_pc = regcache_read_pc (regcache)
2536 - gdbarch_decr_pc_after_break (gdbarch);
2537
2538 /* Check whether there actually is a software breakpoint inserted at
2539 that location.
2540
2541 If in non-stop mode, a race condition is possible where we've
2542 removed a breakpoint, but stop events for that breakpoint were
2543 already queued and arrive later. To suppress those spurious
2544 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2545 and retire them after a number of stop events are reported. */
2546 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2547 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2548 {
2549 struct cleanup *old_cleanups = NULL;
2550 if (RECORD_IS_USED)
2551 old_cleanups = record_gdb_operation_disable_set ();
2552
2553 /* When using hardware single-step, a SIGTRAP is reported for both
2554 a completed single-step and a software breakpoint. Need to
2555 differentiate between the two, as the latter needs adjusting
2556 but the former does not.
2557
2558 The SIGTRAP can be due to a completed hardware single-step only if
2559 - we didn't insert software single-step breakpoints
2560 - the thread to be examined is still the current thread
2561 - this thread is currently being stepped
2562
2563 If any of these events did not occur, we must have stopped due
2564 to hitting a software breakpoint, and have to back up to the
2565 breakpoint address.
2566
2567 As a special case, we could have hardware single-stepped a
2568 software breakpoint. In this case (prev_pc == breakpoint_pc),
2569 we also need to back up to the breakpoint address. */
2570
2571 if (singlestep_breakpoints_inserted_p
2572 || !ptid_equal (ecs->ptid, inferior_ptid)
2573 || !currently_stepping (ecs->event_thread)
2574 || ecs->event_thread->prev_pc == breakpoint_pc)
2575 regcache_write_pc (regcache, breakpoint_pc);
2576
2577 if (RECORD_IS_USED)
2578 do_cleanups (old_cleanups);
2579 }
2580 }
2581
2582 void
2583 init_infwait_state (void)
2584 {
2585 waiton_ptid = pid_to_ptid (-1);
2586 infwait_state = infwait_normal_state;
2587 }
2588
2589 void
2590 error_is_running (void)
2591 {
2592 error (_("\
2593 Cannot execute this command while the selected thread is running."));
2594 }
2595
2596 void
2597 ensure_not_running (void)
2598 {
2599 if (is_running (inferior_ptid))
2600 error_is_running ();
2601 }
2602
2603 static int
2604 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2605 {
2606 for (frame = get_prev_frame (frame);
2607 frame != NULL;
2608 frame = get_prev_frame (frame))
2609 {
2610 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2611 return 1;
2612 if (get_frame_type (frame) != INLINE_FRAME)
2613 break;
2614 }
2615
2616 return 0;
2617 }
2618
2619 /* Auxiliary function that handles syscall entry/return events.
2620 It returns 1 if the inferior should keep going (and GDB
2621 should ignore the event), or 0 if the event deserves to be
2622 processed. */
2623
2624 static int
2625 handle_syscall_event (struct execution_control_state *ecs)
2626 {
2627 struct regcache *regcache;
2628 struct gdbarch *gdbarch;
2629 int syscall_number;
2630
2631 if (!ptid_equal (ecs->ptid, inferior_ptid))
2632 context_switch (ecs->ptid);
2633
2634 regcache = get_thread_regcache (ecs->ptid);
2635 gdbarch = get_regcache_arch (regcache);
2636 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
2637 stop_pc = regcache_read_pc (regcache);
2638
2639 target_last_waitstatus.value.syscall_number = syscall_number;
2640
2641 if (catch_syscall_enabled () > 0
2642 && catching_syscall_number (syscall_number) > 0)
2643 {
2644 if (debug_infrun)
2645 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
2646 syscall_number);
2647
2648 ecs->event_thread->stop_bpstat
2649 = bpstat_stop_status (get_regcache_aspace (regcache),
2650 stop_pc, ecs->ptid);
2651 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2652
2653 if (!ecs->random_signal)
2654 {
2655 /* Catchpoint hit. */
2656 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2657 return 0;
2658 }
2659 }
2660
2661 /* If no catchpoint triggered for this, then keep going. */
2662 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2663 keep_going (ecs);
2664 return 1;
2665 }
2666
2667 /* Given an execution control state that has been freshly filled in
2668 by an event from the inferior, figure out what it means and take
2669 appropriate action. */
2670
2671 static void
2672 handle_inferior_event (struct execution_control_state *ecs)
2673 {
2674 struct frame_info *frame;
2675 struct gdbarch *gdbarch;
2676 int sw_single_step_trap_p = 0;
2677 int stopped_by_watchpoint;
2678 int stepped_after_stopped_by_watchpoint = 0;
2679 struct symtab_and_line stop_pc_sal;
2680 enum stop_kind stop_soon;
2681
2682 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
2683 {
2684 /* We had an event in the inferior, but we are not interested in
2685 handling it at this level. The lower layers have already
2686 done what needs to be done, if anything.
2687
2688 One of the possible circumstances for this is when the
2689 inferior produces output for the console. The inferior has
2690 not stopped, and we are ignoring the event. Another possible
2691 circumstance is any event which the lower level knows will be
2692 reported multiple times without an intervening resume. */
2693 if (debug_infrun)
2694 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2695 prepare_to_wait (ecs);
2696 return;
2697 }
2698
2699 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2700 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2701 {
2702 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2703 gdb_assert (inf);
2704 stop_soon = inf->stop_soon;
2705 }
2706 else
2707 stop_soon = NO_STOP_QUIETLY;
2708
2709 /* Cache the last pid/waitstatus. */
2710 target_last_wait_ptid = ecs->ptid;
2711 target_last_waitstatus = ecs->ws;
2712
2713 /* Always clear state belonging to the previous time we stopped. */
2714 stop_stack_dummy = 0;
2715
2716 /* If it's a new process, add it to the thread database */
2717
2718 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2719 && !ptid_equal (ecs->ptid, minus_one_ptid)
2720 && !in_thread_list (ecs->ptid));
2721
2722 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2723 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2724 add_thread (ecs->ptid);
2725
2726 ecs->event_thread = find_thread_ptid (ecs->ptid);
2727
2728 /* Dependent on valid ECS->EVENT_THREAD. */
2729 adjust_pc_after_break (ecs);
2730
2731 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2732 reinit_frame_cache ();
2733
2734 breakpoint_retire_moribund ();
2735
2736 /* Mark the non-executing threads accordingly. In all-stop, all
2737 threads of all processes are stopped when we get any event
2738 reported. In non-stop mode, only the event thread stops. If
2739 we're handling a process exit in non-stop mode, there's nothing
2740 to do, as threads of the dead process are gone, and threads of
2741 any other process were left running. */
2742 if (!non_stop)
2743 set_executing (minus_one_ptid, 0);
2744 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2745 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2746 set_executing (inferior_ptid, 0);
2747
2748 switch (infwait_state)
2749 {
2750 case infwait_thread_hop_state:
2751 if (debug_infrun)
2752 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
2753 break;
2754
2755 case infwait_normal_state:
2756 if (debug_infrun)
2757 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
2758 break;
2759
2760 case infwait_step_watch_state:
2761 if (debug_infrun)
2762 fprintf_unfiltered (gdb_stdlog,
2763 "infrun: infwait_step_watch_state\n");
2764
2765 stepped_after_stopped_by_watchpoint = 1;
2766 break;
2767
2768 case infwait_nonstep_watch_state:
2769 if (debug_infrun)
2770 fprintf_unfiltered (gdb_stdlog,
2771 "infrun: infwait_nonstep_watch_state\n");
2772 insert_breakpoints ();
2773
2774 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2775 handle things like signals arriving and other things happening
2776 in combination correctly? */
2777 stepped_after_stopped_by_watchpoint = 1;
2778 break;
2779
2780 default:
2781 internal_error (__FILE__, __LINE__, _("bad switch"));
2782 }
2783
2784 infwait_state = infwait_normal_state;
2785 waiton_ptid = pid_to_ptid (-1);
2786
2787 switch (ecs->ws.kind)
2788 {
2789 case TARGET_WAITKIND_LOADED:
2790 if (debug_infrun)
2791 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
2792 /* Ignore gracefully during startup of the inferior, as it might
2793 be the shell which has just loaded some objects, otherwise
2794 add the symbols for the newly loaded objects. Also ignore at
2795 the beginning of an attach or remote session; we will query
2796 the full list of libraries once the connection is
2797 established. */
2798 if (stop_soon == NO_STOP_QUIETLY)
2799 {
2800 /* Check for any newly added shared libraries if we're
2801 supposed to be adding them automatically. Switch
2802 terminal for any messages produced by
2803 breakpoint_re_set. */
2804 target_terminal_ours_for_output ();
2805 /* NOTE: cagney/2003-11-25: Make certain that the target
2806 stack's section table is kept up-to-date. Architectures,
2807 (e.g., PPC64), use the section table to perform
2808 operations such as address => section name and hence
2809 require the table to contain all sections (including
2810 those found in shared libraries). */
2811 #ifdef SOLIB_ADD
2812 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2813 #else
2814 solib_add (NULL, 0, &current_target, auto_solib_add);
2815 #endif
2816 target_terminal_inferior ();
2817
2818 /* If requested, stop when the dynamic linker notifies
2819 gdb of events. This allows the user to get control
2820 and place breakpoints in initializer routines for
2821 dynamically loaded objects (among other things). */
2822 if (stop_on_solib_events)
2823 {
2824 /* Make sure we print "Stopped due to solib-event" in
2825 normal_stop. */
2826 stop_print_frame = 1;
2827
2828 stop_stepping (ecs);
2829 return;
2830 }
2831
2832 /* NOTE drow/2007-05-11: This might be a good place to check
2833 for "catch load". */
2834 }
2835
2836 /* If we are skipping through a shell, or through shared library
2837 loading that we aren't interested in, resume the program. If
2838 we're running the program normally, also resume. But stop if
2839 we're attaching or setting up a remote connection. */
2840 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2841 {
2842 /* Loading of shared libraries might have changed breakpoint
2843 addresses. Make sure new breakpoints are inserted. */
2844 if (stop_soon == NO_STOP_QUIETLY
2845 && !breakpoints_always_inserted_mode ())
2846 insert_breakpoints ();
2847 resume (0, TARGET_SIGNAL_0);
2848 prepare_to_wait (ecs);
2849 return;
2850 }
2851
2852 break;
2853
2854 case TARGET_WAITKIND_SPURIOUS:
2855 if (debug_infrun)
2856 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2857 resume (0, TARGET_SIGNAL_0);
2858 prepare_to_wait (ecs);
2859 return;
2860
2861 case TARGET_WAITKIND_EXITED:
2862 if (debug_infrun)
2863 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2864 inferior_ptid = ecs->ptid;
2865 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
2866 set_current_program_space (current_inferior ()->pspace);
2867 handle_vfork_child_exec_or_exit (0);
2868 target_terminal_ours (); /* Must do this before mourn anyway */
2869 print_stop_reason (EXITED, ecs->ws.value.integer);
2870
2871 /* Record the exit code in the convenience variable $_exitcode, so
2872 that the user can inspect this again later. */
2873 set_internalvar_integer (lookup_internalvar ("_exitcode"),
2874 (LONGEST) ecs->ws.value.integer);
2875 gdb_flush (gdb_stdout);
2876 target_mourn_inferior ();
2877 singlestep_breakpoints_inserted_p = 0;
2878 stop_print_frame = 0;
2879 stop_stepping (ecs);
2880 return;
2881
2882 case TARGET_WAITKIND_SIGNALLED:
2883 if (debug_infrun)
2884 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2885 inferior_ptid = ecs->ptid;
2886 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
2887 set_current_program_space (current_inferior ()->pspace);
2888 handle_vfork_child_exec_or_exit (0);
2889 stop_print_frame = 0;
2890 target_terminal_ours (); /* Must do this before mourn anyway */
2891
2892 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2893 reach here unless the inferior is dead. However, for years
2894 target_kill() was called here, which hints that fatal signals aren't
2895 really fatal on some systems. If that's true, then some changes
2896 may be needed. */
2897 target_mourn_inferior ();
2898
2899 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
2900 singlestep_breakpoints_inserted_p = 0;
2901 stop_stepping (ecs);
2902 return;
2903
2904 /* The following are the only cases in which we keep going;
2905 the above cases end in a continue or goto. */
2906 case TARGET_WAITKIND_FORKED:
2907 case TARGET_WAITKIND_VFORKED:
2908 if (debug_infrun)
2909 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2910
2911 if (!ptid_equal (ecs->ptid, inferior_ptid))
2912 {
2913 context_switch (ecs->ptid);
2914 reinit_frame_cache ();
2915 }
2916
2917 /* Immediately detach breakpoints from the child before there's
2918 any chance of letting the user delete breakpoints from the
2919 breakpoint lists. If we don't do this early, it's easy to
2920 leave left over traps in the child, vis: "break foo; catch
2921 fork; c; <fork>; del; c; <child calls foo>". We only follow
2922 the fork on the last `continue', and by that time the
2923 breakpoint at "foo" is long gone from the breakpoint table.
2924 If we vforked, then we don't need to unpatch here, since both
2925 parent and child are sharing the same memory pages; we'll
2926 need to unpatch at follow/detach time instead to be certain
2927 that new breakpoints added between catchpoint hit time and
2928 vfork follow are detached. */
2929 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
2930 {
2931 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
2932
2933 /* This won't actually modify the breakpoint list, but will
2934 physically remove the breakpoints from the child. */
2935 detach_breakpoints (child_pid);
2936 }
2937
2938 /* In case the event is caught by a catchpoint, remember that
2939 the event is to be followed at the next resume of the thread,
2940 and not immediately. */
2941 ecs->event_thread->pending_follow = ecs->ws;
2942
2943 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2944
2945 ecs->event_thread->stop_bpstat
2946 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
2947 stop_pc, ecs->ptid);
2948
2949 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2950
2951 /* If no catchpoint triggered for this, then keep going. */
2952 if (ecs->random_signal)
2953 {
2954 ptid_t parent;
2955 ptid_t child;
2956 int should_resume;
2957 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
2958
2959 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2960
2961 should_resume = follow_fork ();
2962
2963 parent = ecs->ptid;
2964 child = ecs->ws.value.related_pid;
2965
2966 /* In non-stop mode, also resume the other branch. */
2967 if (non_stop && !detach_fork)
2968 {
2969 if (follow_child)
2970 switch_to_thread (parent);
2971 else
2972 switch_to_thread (child);
2973
2974 ecs->event_thread = inferior_thread ();
2975 ecs->ptid = inferior_ptid;
2976 keep_going (ecs);
2977 }
2978
2979 if (follow_child)
2980 switch_to_thread (child);
2981 else
2982 switch_to_thread (parent);
2983
2984 ecs->event_thread = inferior_thread ();
2985 ecs->ptid = inferior_ptid;
2986
2987 if (should_resume)
2988 keep_going (ecs);
2989 else
2990 stop_stepping (ecs);
2991 return;
2992 }
2993 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2994 goto process_event_stop_test;
2995
2996 case TARGET_WAITKIND_VFORK_DONE:
2997 /* Done with the shared memory region. Re-insert breakpoints in
2998 the parent, and keep going. */
2999
3000 if (debug_infrun)
3001 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3002
3003 if (!ptid_equal (ecs->ptid, inferior_ptid))
3004 context_switch (ecs->ptid);
3005
3006 current_inferior ()->waiting_for_vfork_done = 0;
3007 /* This also takes care of reinserting breakpoints in the
3008 previously locked inferior. */
3009 keep_going (ecs);
3010 return;
3011
3012 case TARGET_WAITKIND_EXECD:
3013 if (debug_infrun)
3014 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3015
3016 if (!ptid_equal (ecs->ptid, inferior_ptid))
3017 {
3018 context_switch (ecs->ptid);
3019 reinit_frame_cache ();
3020 }
3021
3022 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3023
3024 /* Do whatever is necessary to the parent branch of the vfork. */
3025 handle_vfork_child_exec_or_exit (1);
3026
3027 /* This causes the eventpoints and symbol table to be reset.
3028 Must do this now, before trying to determine whether to
3029 stop. */
3030 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3031
3032 ecs->event_thread->stop_bpstat
3033 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3034 stop_pc, ecs->ptid);
3035 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
3036
3037 /* Note that this may be referenced from inside
3038 bpstat_stop_status above, through inferior_has_execd. */
3039 xfree (ecs->ws.value.execd_pathname);
3040 ecs->ws.value.execd_pathname = NULL;
3041
3042 /* If no catchpoint triggered for this, then keep going. */
3043 if (ecs->random_signal)
3044 {
3045 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3046 keep_going (ecs);
3047 return;
3048 }
3049 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
3050 goto process_event_stop_test;
3051
3052 /* Be careful not to try to gather much state about a thread
3053 that's in a syscall. It's frequently a losing proposition. */
3054 case TARGET_WAITKIND_SYSCALL_ENTRY:
3055 if (debug_infrun)
3056 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3057 /* Getting the current syscall number */
3058 if (handle_syscall_event (ecs) != 0)
3059 return;
3060 goto process_event_stop_test;
3061
3062 /* Before examining the threads further, step this thread to
3063 get it entirely out of the syscall. (We get notice of the
3064 event when the thread is just on the verge of exiting a
3065 syscall. Stepping one instruction seems to get it back
3066 into user code.) */
3067 case TARGET_WAITKIND_SYSCALL_RETURN:
3068 if (debug_infrun)
3069 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3070 if (handle_syscall_event (ecs) != 0)
3071 return;
3072 goto process_event_stop_test;
3073
3074 case TARGET_WAITKIND_STOPPED:
3075 if (debug_infrun)
3076 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3077 ecs->event_thread->stop_signal = ecs->ws.value.sig;
3078 break;
3079
3080 case TARGET_WAITKIND_NO_HISTORY:
3081 /* Reverse execution: target ran out of history info. */
3082 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3083 print_stop_reason (NO_HISTORY, 0);
3084 stop_stepping (ecs);
3085 return;
3086 }
3087
3088 if (ecs->new_thread_event)
3089 {
3090 if (non_stop)
3091 /* Non-stop assumes that the target handles adding new threads
3092 to the thread list. */
3093 internal_error (__FILE__, __LINE__, "\
3094 targets should add new threads to the thread list themselves in non-stop mode.");
3095
3096 /* We may want to consider not doing a resume here in order to
3097 give the user a chance to play with the new thread. It might
3098 be good to make that a user-settable option. */
3099
3100 /* At this point, all threads are stopped (happens automatically
3101 in either the OS or the native code). Therefore we need to
3102 continue all threads in order to make progress. */
3103
3104 if (!ptid_equal (ecs->ptid, inferior_ptid))
3105 context_switch (ecs->ptid);
3106 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3107 prepare_to_wait (ecs);
3108 return;
3109 }
3110
3111 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3112 {
3113 /* Do we need to clean up the state of a thread that has
3114 completed a displaced single-step? (Doing so usually affects
3115 the PC, so do it here, before we set stop_pc.) */
3116 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
3117
3118 /* If we either finished a single-step or hit a breakpoint, but
3119 the user wanted this thread to be stopped, pretend we got a
3120 SIG0 (generic unsignaled stop). */
3121
3122 if (ecs->event_thread->stop_requested
3123 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3124 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3125 }
3126
3127 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3128
3129 if (debug_infrun)
3130 {
3131 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3132 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3133
3134 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3135 paddress (gdbarch, stop_pc));
3136 if (target_stopped_by_watchpoint ())
3137 {
3138 CORE_ADDR addr;
3139 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3140
3141 if (target_stopped_data_address (&current_target, &addr))
3142 fprintf_unfiltered (gdb_stdlog,
3143 "infrun: stopped data address = %s\n",
3144 paddress (gdbarch, addr));
3145 else
3146 fprintf_unfiltered (gdb_stdlog,
3147 "infrun: (no data address available)\n");
3148 }
3149 }
3150
3151 if (stepping_past_singlestep_breakpoint)
3152 {
3153 gdb_assert (singlestep_breakpoints_inserted_p);
3154 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3155 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3156
3157 stepping_past_singlestep_breakpoint = 0;
3158
3159 /* We've either finished single-stepping past the single-step
3160 breakpoint, or stopped for some other reason. It would be nice if
3161 we could tell, but we can't reliably. */
3162 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3163 {
3164 if (debug_infrun)
3165 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
3166 /* Pull the single step breakpoints out of the target. */
3167 remove_single_step_breakpoints ();
3168 singlestep_breakpoints_inserted_p = 0;
3169
3170 ecs->random_signal = 0;
3171 ecs->event_thread->trap_expected = 0;
3172
3173 context_switch (saved_singlestep_ptid);
3174 if (deprecated_context_hook)
3175 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3176
3177 resume (1, TARGET_SIGNAL_0);
3178 prepare_to_wait (ecs);
3179 return;
3180 }
3181 }
3182
3183 if (!ptid_equal (deferred_step_ptid, null_ptid))
3184 {
3185 /* In non-stop mode, there's never a deferred_step_ptid set. */
3186 gdb_assert (!non_stop);
3187
3188 /* If we stopped for some other reason than single-stepping, ignore
3189 the fact that we were supposed to switch back. */
3190 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3191 {
3192 if (debug_infrun)
3193 fprintf_unfiltered (gdb_stdlog,
3194 "infrun: handling deferred step\n");
3195
3196 /* Pull the single step breakpoints out of the target. */
3197 if (singlestep_breakpoints_inserted_p)
3198 {
3199 remove_single_step_breakpoints ();
3200 singlestep_breakpoints_inserted_p = 0;
3201 }
3202
3203 /* Note: We do not call context_switch at this point, as the
3204 context is already set up for stepping the original thread. */
3205 switch_to_thread (deferred_step_ptid);
3206 deferred_step_ptid = null_ptid;
3207 /* Suppress spurious "Switching to ..." message. */
3208 previous_inferior_ptid = inferior_ptid;
3209
3210 resume (1, TARGET_SIGNAL_0);
3211 prepare_to_wait (ecs);
3212 return;
3213 }
3214
3215 deferred_step_ptid = null_ptid;
3216 }
3217
3218 /* See if a thread hit a thread-specific breakpoint that was meant for
3219 another thread. If so, then step that thread past the breakpoint,
3220 and continue it. */
3221
3222 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3223 {
3224 int thread_hop_needed = 0;
3225 struct address_space *aspace = get_regcache_aspace (get_current_regcache ());
3226
3227 /* Check if a regular breakpoint has been hit before checking
3228 for a potential single step breakpoint. Otherwise, GDB will
3229 not see this breakpoint hit when stepping onto breakpoints. */
3230 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3231 {
3232 ecs->random_signal = 0;
3233 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3234 thread_hop_needed = 1;
3235 }
3236 else if (singlestep_breakpoints_inserted_p)
3237 {
3238 /* We have not context switched yet, so this should be true
3239 no matter which thread hit the singlestep breakpoint. */
3240 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3241 if (debug_infrun)
3242 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3243 "trap for %s\n",
3244 target_pid_to_str (ecs->ptid));
3245
3246 ecs->random_signal = 0;
3247 /* The call to in_thread_list is necessary because PTIDs sometimes
3248 change when we go from single-threaded to multi-threaded. If
3249 the singlestep_ptid is still in the list, assume that it is
3250 really different from ecs->ptid. */
3251 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3252 && in_thread_list (singlestep_ptid))
3253 {
3254 /* If the PC of the thread we were trying to single-step
3255 has changed, discard this event (which we were going
3256 to ignore anyway), and pretend we saw that thread
3257 trap. This prevents us continuously moving the
3258 single-step breakpoint forward, one instruction at a
3259 time. If the PC has changed, then the thread we were
3260 trying to single-step has trapped or been signalled,
3261 but the event has not been reported to GDB yet.
3262
3263 There might be some cases where this loses signal
3264 information, if a signal has arrived at exactly the
3265 same time that the PC changed, but this is the best
3266 we can do with the information available. Perhaps we
3267 should arrange to report all events for all threads
3268 when they stop, or to re-poll the remote looking for
3269 this particular thread (i.e. temporarily enable
3270 schedlock). */
3271
3272 CORE_ADDR new_singlestep_pc
3273 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3274
3275 if (new_singlestep_pc != singlestep_pc)
3276 {
3277 enum target_signal stop_signal;
3278
3279 if (debug_infrun)
3280 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3281 " but expected thread advanced also\n");
3282
3283 /* The current context still belongs to
3284 singlestep_ptid. Don't swap here, since that's
3285 the context we want to use. Just fudge our
3286 state and continue. */
3287 stop_signal = ecs->event_thread->stop_signal;
3288 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3289 ecs->ptid = singlestep_ptid;
3290 ecs->event_thread = find_thread_ptid (ecs->ptid);
3291 ecs->event_thread->stop_signal = stop_signal;
3292 stop_pc = new_singlestep_pc;
3293 }
3294 else
3295 {
3296 if (debug_infrun)
3297 fprintf_unfiltered (gdb_stdlog,
3298 "infrun: unexpected thread\n");
3299
3300 thread_hop_needed = 1;
3301 stepping_past_singlestep_breakpoint = 1;
3302 saved_singlestep_ptid = singlestep_ptid;
3303 }
3304 }
3305 }
3306
3307 if (thread_hop_needed)
3308 {
3309 struct regcache *thread_regcache;
3310 int remove_status = 0;
3311
3312 if (debug_infrun)
3313 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3314
3315 /* Switch context before touching inferior memory, the
3316 previous thread may have exited. */
3317 if (!ptid_equal (inferior_ptid, ecs->ptid))
3318 context_switch (ecs->ptid);
3319
3320 /* Saw a breakpoint, but it was hit by the wrong thread.
3321 Just continue. */
3322
3323 if (singlestep_breakpoints_inserted_p)
3324 {
3325 /* Pull the single step breakpoints out of the target. */
3326 remove_single_step_breakpoints ();
3327 singlestep_breakpoints_inserted_p = 0;
3328 }
3329
3330 /* If the arch can displace step, don't remove the
3331 breakpoints. */
3332 thread_regcache = get_thread_regcache (ecs->ptid);
3333 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3334 remove_status = remove_breakpoints ();
3335
3336 /* Did we fail to remove breakpoints? If so, try
3337 to set the PC past the bp. (There's at least
3338 one situation in which we can fail to remove
3339 the bp's: On HP-UX's that use ttrace, we can't
3340 change the address space of a vforking child
3341 process until the child exits (well, okay, not
3342 then either :-) or execs. */
3343 if (remove_status != 0)
3344 error (_("Cannot step over breakpoint hit in wrong thread"));
3345 else
3346 { /* Single step */
3347 if (!non_stop)
3348 {
3349 /* Only need to require the next event from this
3350 thread in all-stop mode. */
3351 waiton_ptid = ecs->ptid;
3352 infwait_state = infwait_thread_hop_state;
3353 }
3354
3355 ecs->event_thread->stepping_over_breakpoint = 1;
3356 keep_going (ecs);
3357 return;
3358 }
3359 }
3360 else if (singlestep_breakpoints_inserted_p)
3361 {
3362 sw_single_step_trap_p = 1;
3363 ecs->random_signal = 0;
3364 }
3365 }
3366 else
3367 ecs->random_signal = 1;
3368
3369 /* See if something interesting happened to the non-current thread. If
3370 so, then switch to that thread. */
3371 if (!ptid_equal (ecs->ptid, inferior_ptid))
3372 {
3373 if (debug_infrun)
3374 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3375
3376 context_switch (ecs->ptid);
3377
3378 if (deprecated_context_hook)
3379 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3380 }
3381
3382 /* At this point, get hold of the now-current thread's frame. */
3383 frame = get_current_frame ();
3384 gdbarch = get_frame_arch (frame);
3385
3386 if (singlestep_breakpoints_inserted_p)
3387 {
3388 /* Pull the single step breakpoints out of the target. */
3389 remove_single_step_breakpoints ();
3390 singlestep_breakpoints_inserted_p = 0;
3391 }
3392
3393 if (stepped_after_stopped_by_watchpoint)
3394 stopped_by_watchpoint = 0;
3395 else
3396 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3397
3398 /* If necessary, step over this watchpoint. We'll be back to display
3399 it in a moment. */
3400 if (stopped_by_watchpoint
3401 && (target_have_steppable_watchpoint
3402 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3403 {
3404 /* At this point, we are stopped at an instruction which has
3405 attempted to write to a piece of memory under control of
3406 a watchpoint. The instruction hasn't actually executed
3407 yet. If we were to evaluate the watchpoint expression
3408 now, we would get the old value, and therefore no change
3409 would seem to have occurred.
3410
3411 In order to make watchpoints work `right', we really need
3412 to complete the memory write, and then evaluate the
3413 watchpoint expression. We do this by single-stepping the
3414 target.
3415
3416 It may not be necessary to disable the watchpoint to stop over
3417 it. For example, the PA can (with some kernel cooperation)
3418 single step over a watchpoint without disabling the watchpoint.
3419
3420 It is far more common to need to disable a watchpoint to step
3421 the inferior over it. If we have non-steppable watchpoints,
3422 we must disable the current watchpoint; it's simplest to
3423 disable all watchpoints and breakpoints. */
3424 int hw_step = 1;
3425
3426 if (!target_have_steppable_watchpoint)
3427 remove_breakpoints ();
3428 /* Single step */
3429 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
3430 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
3431 waiton_ptid = ecs->ptid;
3432 if (target_have_steppable_watchpoint)
3433 infwait_state = infwait_step_watch_state;
3434 else
3435 infwait_state = infwait_nonstep_watch_state;
3436 prepare_to_wait (ecs);
3437 return;
3438 }
3439
3440 ecs->stop_func_start = 0;
3441 ecs->stop_func_end = 0;
3442 ecs->stop_func_name = 0;
3443 /* Don't care about return value; stop_func_start and stop_func_name
3444 will both be 0 if it doesn't work. */
3445 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3446 &ecs->stop_func_start, &ecs->stop_func_end);
3447 ecs->stop_func_start
3448 += gdbarch_deprecated_function_start_offset (gdbarch);
3449 ecs->event_thread->stepping_over_breakpoint = 0;
3450 bpstat_clear (&ecs->event_thread->stop_bpstat);
3451 ecs->event_thread->stop_step = 0;
3452 stop_print_frame = 1;
3453 ecs->random_signal = 0;
3454 stopped_by_random_signal = 0;
3455
3456 /* Hide inlined functions starting here, unless we just performed stepi or
3457 nexti. After stepi and nexti, always show the innermost frame (not any
3458 inline function call sites). */
3459 if (ecs->event_thread->step_range_end != 1)
3460 skip_inline_frames (ecs->ptid);
3461
3462 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3463 && ecs->event_thread->trap_expected
3464 && gdbarch_single_step_through_delay_p (gdbarch)
3465 && currently_stepping (ecs->event_thread))
3466 {
3467 /* We're trying to step off a breakpoint. Turns out that we're
3468 also on an instruction that needs to be stepped multiple
3469 times before it's been fully executing. E.g., architectures
3470 with a delay slot. It needs to be stepped twice, once for
3471 the instruction and once for the delay slot. */
3472 int step_through_delay
3473 = gdbarch_single_step_through_delay (gdbarch, frame);
3474 if (debug_infrun && step_through_delay)
3475 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3476 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3477 {
3478 /* The user issued a continue when stopped at a breakpoint.
3479 Set up for another trap and get out of here. */
3480 ecs->event_thread->stepping_over_breakpoint = 1;
3481 keep_going (ecs);
3482 return;
3483 }
3484 else if (step_through_delay)
3485 {
3486 /* The user issued a step when stopped at a breakpoint.
3487 Maybe we should stop, maybe we should not - the delay
3488 slot *might* correspond to a line of source. In any
3489 case, don't decide that here, just set
3490 ecs->stepping_over_breakpoint, making sure we
3491 single-step again before breakpoints are re-inserted. */
3492 ecs->event_thread->stepping_over_breakpoint = 1;
3493 }
3494 }
3495
3496 /* Look at the cause of the stop, and decide what to do.
3497 The alternatives are:
3498 1) stop_stepping and return; to really stop and return to the debugger,
3499 2) keep_going and return to start up again
3500 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
3501 3) set ecs->random_signal to 1, and the decision between 1 and 2
3502 will be made according to the signal handling tables. */
3503
3504 /* First, distinguish signals caused by the debugger from signals
3505 that have to do with the program's own actions. Note that
3506 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3507 on the operating system version. Here we detect when a SIGILL or
3508 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3509 something similar for SIGSEGV, since a SIGSEGV will be generated
3510 when we're trying to execute a breakpoint instruction on a
3511 non-executable stack. This happens for call dummy breakpoints
3512 for architectures like SPARC that place call dummies on the
3513 stack.
3514
3515 If we're doing a displaced step past a breakpoint, then the
3516 breakpoint is always inserted at the original instruction;
3517 non-standard signals can't be explained by the breakpoint. */
3518 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3519 || (! ecs->event_thread->trap_expected
3520 && breakpoint_inserted_here_p (get_regcache_aspace (get_current_regcache ()),
3521 stop_pc)
3522 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
3523 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
3524 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
3525 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3526 || stop_soon == STOP_QUIETLY_REMOTE)
3527 {
3528 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
3529 {
3530 if (debug_infrun)
3531 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3532 stop_print_frame = 0;
3533 stop_stepping (ecs);
3534 return;
3535 }
3536
3537 /* This is originated from start_remote(), start_inferior() and
3538 shared libraries hook functions. */
3539 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
3540 {
3541 if (debug_infrun)
3542 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3543 stop_stepping (ecs);
3544 return;
3545 }
3546
3547 /* This originates from attach_command(). We need to overwrite
3548 the stop_signal here, because some kernels don't ignore a
3549 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3550 See more comments in inferior.h. On the other hand, if we
3551 get a non-SIGSTOP, report it to the user - assume the backend
3552 will handle the SIGSTOP if it should show up later.
3553
3554 Also consider that the attach is complete when we see a
3555 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3556 target extended-remote report it instead of a SIGSTOP
3557 (e.g. gdbserver). We already rely on SIGTRAP being our
3558 signal, so this is no exception.
3559
3560 Also consider that the attach is complete when we see a
3561 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3562 the target to stop all threads of the inferior, in case the
3563 low level attach operation doesn't stop them implicitly. If
3564 they weren't stopped implicitly, then the stub will report a
3565 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3566 other than GDB's request. */
3567 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3568 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
3569 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3570 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
3571 {
3572 stop_stepping (ecs);
3573 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3574 return;
3575 }
3576
3577 /* See if there is a breakpoint at the current PC. */
3578 ecs->event_thread->stop_bpstat
3579 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3580 stop_pc, ecs->ptid);
3581
3582 /* Following in case break condition called a
3583 function. */
3584 stop_print_frame = 1;
3585
3586 /* NOTE: cagney/2003-03-29: These two checks for a random signal
3587 at one stage in the past included checks for an inferior
3588 function call's call dummy's return breakpoint. The original
3589 comment, that went with the test, read:
3590
3591 ``End of a stack dummy. Some systems (e.g. Sony news) give
3592 another signal besides SIGTRAP, so check here as well as
3593 above.''
3594
3595 If someone ever tries to get call dummys on a
3596 non-executable stack to work (where the target would stop
3597 with something like a SIGSEGV), then those tests might need
3598 to be re-instated. Given, however, that the tests were only
3599 enabled when momentary breakpoints were not being used, I
3600 suspect that it won't be the case.
3601
3602 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3603 be necessary for call dummies on a non-executable stack on
3604 SPARC. */
3605
3606 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3607 ecs->random_signal
3608 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
3609 || ecs->event_thread->trap_expected
3610 || (ecs->event_thread->step_range_end
3611 && ecs->event_thread->step_resume_breakpoint == NULL));
3612 else
3613 {
3614 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
3615 if (!ecs->random_signal)
3616 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
3617 }
3618 }
3619
3620 /* When we reach this point, we've pretty much decided
3621 that the reason for stopping must've been a random
3622 (unexpected) signal. */
3623
3624 else
3625 ecs->random_signal = 1;
3626
3627 process_event_stop_test:
3628
3629 /* Re-fetch current thread's frame in case we did a
3630 "goto process_event_stop_test" above. */
3631 frame = get_current_frame ();
3632 gdbarch = get_frame_arch (frame);
3633
3634 /* For the program's own signals, act according to
3635 the signal handling tables. */
3636
3637 if (ecs->random_signal)
3638 {
3639 /* Signal not for debugging purposes. */
3640 int printed = 0;
3641
3642 if (debug_infrun)
3643 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3644 ecs->event_thread->stop_signal);
3645
3646 stopped_by_random_signal = 1;
3647
3648 if (signal_print[ecs->event_thread->stop_signal])
3649 {
3650 printed = 1;
3651 target_terminal_ours_for_output ();
3652 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
3653 }
3654 /* Always stop on signals if we're either just gaining control
3655 of the program, or the user explicitly requested this thread
3656 to remain stopped. */
3657 if (stop_soon != NO_STOP_QUIETLY
3658 || ecs->event_thread->stop_requested
3659 || signal_stop_state (ecs->event_thread->stop_signal))
3660 {
3661 stop_stepping (ecs);
3662 return;
3663 }
3664 /* If not going to stop, give terminal back
3665 if we took it away. */
3666 else if (printed)
3667 target_terminal_inferior ();
3668
3669 /* Clear the signal if it should not be passed. */
3670 if (signal_program[ecs->event_thread->stop_signal] == 0)
3671 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3672
3673 if (ecs->event_thread->prev_pc == stop_pc
3674 && ecs->event_thread->trap_expected
3675 && ecs->event_thread->step_resume_breakpoint == NULL)
3676 {
3677 /* We were just starting a new sequence, attempting to
3678 single-step off of a breakpoint and expecting a SIGTRAP.
3679 Instead this signal arrives. This signal will take us out
3680 of the stepping range so GDB needs to remember to, when
3681 the signal handler returns, resume stepping off that
3682 breakpoint. */
3683 /* To simplify things, "continue" is forced to use the same
3684 code paths as single-step - set a breakpoint at the
3685 signal return address and then, once hit, step off that
3686 breakpoint. */
3687 if (debug_infrun)
3688 fprintf_unfiltered (gdb_stdlog,
3689 "infrun: signal arrived while stepping over "
3690 "breakpoint\n");
3691
3692 insert_step_resume_breakpoint_at_frame (frame);
3693 ecs->event_thread->step_after_step_resume_breakpoint = 1;
3694 keep_going (ecs);
3695 return;
3696 }
3697
3698 if (ecs->event_thread->step_range_end != 0
3699 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
3700 && (ecs->event_thread->step_range_start <= stop_pc
3701 && stop_pc < ecs->event_thread->step_range_end)
3702 && frame_id_eq (get_stack_frame_id (frame),
3703 ecs->event_thread->step_stack_frame_id)
3704 && ecs->event_thread->step_resume_breakpoint == NULL)
3705 {
3706 /* The inferior is about to take a signal that will take it
3707 out of the single step range. Set a breakpoint at the
3708 current PC (which is presumably where the signal handler
3709 will eventually return) and then allow the inferior to
3710 run free.
3711
3712 Note that this is only needed for a signal delivered
3713 while in the single-step range. Nested signals aren't a
3714 problem as they eventually all return. */
3715 if (debug_infrun)
3716 fprintf_unfiltered (gdb_stdlog,
3717 "infrun: signal may take us out of "
3718 "single-step range\n");
3719
3720 insert_step_resume_breakpoint_at_frame (frame);
3721 keep_going (ecs);
3722 return;
3723 }
3724
3725 /* Note: step_resume_breakpoint may be non-NULL. This occures
3726 when either there's a nested signal, or when there's a
3727 pending signal enabled just as the signal handler returns
3728 (leaving the inferior at the step-resume-breakpoint without
3729 actually executing it). Either way continue until the
3730 breakpoint is really hit. */
3731 keep_going (ecs);
3732 return;
3733 }
3734
3735 /* Handle cases caused by hitting a breakpoint. */
3736 {
3737 CORE_ADDR jmp_buf_pc;
3738 struct bpstat_what what;
3739
3740 what = bpstat_what (ecs->event_thread->stop_bpstat);
3741
3742 if (what.call_dummy)
3743 {
3744 stop_stack_dummy = 1;
3745 }
3746
3747 switch (what.main_action)
3748 {
3749 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
3750 /* If we hit the breakpoint at longjmp while stepping, we
3751 install a momentary breakpoint at the target of the
3752 jmp_buf. */
3753
3754 if (debug_infrun)
3755 fprintf_unfiltered (gdb_stdlog,
3756 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3757
3758 ecs->event_thread->stepping_over_breakpoint = 1;
3759
3760 if (!gdbarch_get_longjmp_target_p (gdbarch)
3761 || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc))
3762 {
3763 if (debug_infrun)
3764 fprintf_unfiltered (gdb_stdlog, "\
3765 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
3766 keep_going (ecs);
3767 return;
3768 }
3769
3770 /* We're going to replace the current step-resume breakpoint
3771 with a longjmp-resume breakpoint. */
3772 delete_step_resume_breakpoint (ecs->event_thread);
3773
3774 /* Insert a breakpoint at resume address. */
3775 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
3776
3777 keep_going (ecs);
3778 return;
3779
3780 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
3781 if (debug_infrun)
3782 fprintf_unfiltered (gdb_stdlog,
3783 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3784
3785 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3786 delete_step_resume_breakpoint (ecs->event_thread);
3787
3788 ecs->event_thread->stop_step = 1;
3789 print_stop_reason (END_STEPPING_RANGE, 0);
3790 stop_stepping (ecs);
3791 return;
3792
3793 case BPSTAT_WHAT_SINGLE:
3794 if (debug_infrun)
3795 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
3796 ecs->event_thread->stepping_over_breakpoint = 1;
3797 /* Still need to check other stuff, at least the case
3798 where we are stepping and step out of the right range. */
3799 break;
3800
3801 case BPSTAT_WHAT_STOP_NOISY:
3802 if (debug_infrun)
3803 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
3804 stop_print_frame = 1;
3805
3806 /* We are about to nuke the step_resume_breakpointt via the
3807 cleanup chain, so no need to worry about it here. */
3808
3809 stop_stepping (ecs);
3810 return;
3811
3812 case BPSTAT_WHAT_STOP_SILENT:
3813 if (debug_infrun)
3814 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
3815 stop_print_frame = 0;
3816
3817 /* We are about to nuke the step_resume_breakpoin via the
3818 cleanup chain, so no need to worry about it here. */
3819
3820 stop_stepping (ecs);
3821 return;
3822
3823 case BPSTAT_WHAT_STEP_RESUME:
3824 if (debug_infrun)
3825 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
3826
3827 delete_step_resume_breakpoint (ecs->event_thread);
3828 if (ecs->event_thread->step_after_step_resume_breakpoint)
3829 {
3830 /* Back when the step-resume breakpoint was inserted, we
3831 were trying to single-step off a breakpoint. Go back
3832 to doing that. */
3833 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3834 ecs->event_thread->stepping_over_breakpoint = 1;
3835 keep_going (ecs);
3836 return;
3837 }
3838 if (stop_pc == ecs->stop_func_start
3839 && execution_direction == EXEC_REVERSE)
3840 {
3841 /* We are stepping over a function call in reverse, and
3842 just hit the step-resume breakpoint at the start
3843 address of the function. Go back to single-stepping,
3844 which should take us back to the function call. */
3845 ecs->event_thread->stepping_over_breakpoint = 1;
3846 keep_going (ecs);
3847 return;
3848 }
3849 break;
3850
3851 case BPSTAT_WHAT_CHECK_SHLIBS:
3852 {
3853 if (debug_infrun)
3854 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
3855
3856 /* Check for any newly added shared libraries if we're
3857 supposed to be adding them automatically. Switch
3858 terminal for any messages produced by
3859 breakpoint_re_set. */
3860 target_terminal_ours_for_output ();
3861 /* NOTE: cagney/2003-11-25: Make certain that the target
3862 stack's section table is kept up-to-date. Architectures,
3863 (e.g., PPC64), use the section table to perform
3864 operations such as address => section name and hence
3865 require the table to contain all sections (including
3866 those found in shared libraries). */
3867 #ifdef SOLIB_ADD
3868 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3869 #else
3870 solib_add (NULL, 0, &current_target, auto_solib_add);
3871 #endif
3872 target_terminal_inferior ();
3873
3874 /* If requested, stop when the dynamic linker notifies
3875 gdb of events. This allows the user to get control
3876 and place breakpoints in initializer routines for
3877 dynamically loaded objects (among other things). */
3878 if (stop_on_solib_events || stop_stack_dummy)
3879 {
3880 stop_stepping (ecs);
3881 return;
3882 }
3883 else
3884 {
3885 /* We want to step over this breakpoint, then keep going. */
3886 ecs->event_thread->stepping_over_breakpoint = 1;
3887 break;
3888 }
3889 }
3890 break;
3891
3892 case BPSTAT_WHAT_CHECK_JIT:
3893 if (debug_infrun)
3894 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_JIT\n");
3895
3896 /* Switch terminal for any messages produced by breakpoint_re_set. */
3897 target_terminal_ours_for_output ();
3898
3899 jit_event_handler (gdbarch);
3900
3901 target_terminal_inferior ();
3902
3903 /* We want to step over this breakpoint, then keep going. */
3904 ecs->event_thread->stepping_over_breakpoint = 1;
3905
3906 break;
3907
3908 case BPSTAT_WHAT_LAST:
3909 /* Not a real code, but listed here to shut up gcc -Wall. */
3910
3911 case BPSTAT_WHAT_KEEP_CHECKING:
3912 break;
3913 }
3914 }
3915
3916 /* We come here if we hit a breakpoint but should not
3917 stop for it. Possibly we also were stepping
3918 and should stop for that. So fall through and
3919 test for stepping. But, if not stepping,
3920 do not stop. */
3921
3922 /* In all-stop mode, if we're currently stepping but have stopped in
3923 some other thread, we need to switch back to the stepped thread. */
3924 if (!non_stop)
3925 {
3926 struct thread_info *tp;
3927 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
3928 ecs->event_thread);
3929 if (tp)
3930 {
3931 /* However, if the current thread is blocked on some internal
3932 breakpoint, and we simply need to step over that breakpoint
3933 to get it going again, do that first. */
3934 if ((ecs->event_thread->trap_expected
3935 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3936 || ecs->event_thread->stepping_over_breakpoint)
3937 {
3938 keep_going (ecs);
3939 return;
3940 }
3941
3942 /* If the stepping thread exited, then don't try to switch
3943 back and resume it, which could fail in several different
3944 ways depending on the target. Instead, just keep going.
3945
3946 We can find a stepping dead thread in the thread list in
3947 two cases:
3948
3949 - The target supports thread exit events, and when the
3950 target tries to delete the thread from the thread list,
3951 inferior_ptid pointed at the exiting thread. In such
3952 case, calling delete_thread does not really remove the
3953 thread from the list; instead, the thread is left listed,
3954 with 'exited' state.
3955
3956 - The target's debug interface does not support thread
3957 exit events, and so we have no idea whatsoever if the
3958 previously stepping thread is still alive. For that
3959 reason, we need to synchronously query the target
3960 now. */
3961 if (is_exited (tp->ptid)
3962 || !target_thread_alive (tp->ptid))
3963 {
3964 if (debug_infrun)
3965 fprintf_unfiltered (gdb_stdlog, "\
3966 infrun: not switching back to stepped thread, it has vanished\n");
3967
3968 delete_thread (tp->ptid);
3969 keep_going (ecs);
3970 return;
3971 }
3972
3973 /* Otherwise, we no longer expect a trap in the current thread.
3974 Clear the trap_expected flag before switching back -- this is
3975 what keep_going would do as well, if we called it. */
3976 ecs->event_thread->trap_expected = 0;
3977
3978 if (debug_infrun)
3979 fprintf_unfiltered (gdb_stdlog,
3980 "infrun: switching back to stepped thread\n");
3981
3982 ecs->event_thread = tp;
3983 ecs->ptid = tp->ptid;
3984 context_switch (ecs->ptid);
3985 keep_going (ecs);
3986 return;
3987 }
3988 }
3989
3990 /* Are we stepping to get the inferior out of the dynamic linker's
3991 hook (and possibly the dld itself) after catching a shlib
3992 event? */
3993 if (ecs->event_thread->stepping_through_solib_after_catch)
3994 {
3995 #if defined(SOLIB_ADD)
3996 /* Have we reached our destination? If not, keep going. */
3997 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3998 {
3999 if (debug_infrun)
4000 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4001 ecs->event_thread->stepping_over_breakpoint = 1;
4002 keep_going (ecs);
4003 return;
4004 }
4005 #endif
4006 if (debug_infrun)
4007 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
4008 /* Else, stop and report the catchpoint(s) whose triggering
4009 caused us to begin stepping. */
4010 ecs->event_thread->stepping_through_solib_after_catch = 0;
4011 bpstat_clear (&ecs->event_thread->stop_bpstat);
4012 ecs->event_thread->stop_bpstat
4013 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4014 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
4015 stop_print_frame = 1;
4016 stop_stepping (ecs);
4017 return;
4018 }
4019
4020 if (ecs->event_thread->step_resume_breakpoint)
4021 {
4022 if (debug_infrun)
4023 fprintf_unfiltered (gdb_stdlog,
4024 "infrun: step-resume breakpoint is inserted\n");
4025
4026 /* Having a step-resume breakpoint overrides anything
4027 else having to do with stepping commands until
4028 that breakpoint is reached. */
4029 keep_going (ecs);
4030 return;
4031 }
4032
4033 if (ecs->event_thread->step_range_end == 0)
4034 {
4035 if (debug_infrun)
4036 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4037 /* Likewise if we aren't even stepping. */
4038 keep_going (ecs);
4039 return;
4040 }
4041
4042 /* If stepping through a line, keep going if still within it.
4043
4044 Note that step_range_end is the address of the first instruction
4045 beyond the step range, and NOT the address of the last instruction
4046 within it!
4047
4048 Note also that during reverse execution, we may be stepping
4049 through a function epilogue and therefore must detect when
4050 the current-frame changes in the middle of a line. */
4051
4052 if (stop_pc >= ecs->event_thread->step_range_start
4053 && stop_pc < ecs->event_thread->step_range_end
4054 && (execution_direction != EXEC_REVERSE
4055 || frame_id_eq (get_frame_id (frame),
4056 ecs->event_thread->step_frame_id)))
4057 {
4058 if (debug_infrun)
4059 fprintf_unfiltered
4060 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4061 paddress (gdbarch, ecs->event_thread->step_range_start),
4062 paddress (gdbarch, ecs->event_thread->step_range_end));
4063
4064 /* When stepping backward, stop at beginning of line range
4065 (unless it's the function entry point, in which case
4066 keep going back to the call point). */
4067 if (stop_pc == ecs->event_thread->step_range_start
4068 && stop_pc != ecs->stop_func_start
4069 && execution_direction == EXEC_REVERSE)
4070 {
4071 ecs->event_thread->stop_step = 1;
4072 print_stop_reason (END_STEPPING_RANGE, 0);
4073 stop_stepping (ecs);
4074 }
4075 else
4076 keep_going (ecs);
4077
4078 return;
4079 }
4080
4081 /* We stepped out of the stepping range. */
4082
4083 /* If we are stepping at the source level and entered the runtime
4084 loader dynamic symbol resolution code...
4085
4086 EXEC_FORWARD: we keep on single stepping until we exit the run
4087 time loader code and reach the callee's address.
4088
4089 EXEC_REVERSE: we've already executed the callee (backward), and
4090 the runtime loader code is handled just like any other
4091 undebuggable function call. Now we need only keep stepping
4092 backward through the trampoline code, and that's handled further
4093 down, so there is nothing for us to do here. */
4094
4095 if (execution_direction != EXEC_REVERSE
4096 && ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4097 && in_solib_dynsym_resolve_code (stop_pc))
4098 {
4099 CORE_ADDR pc_after_resolver =
4100 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4101
4102 if (debug_infrun)
4103 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
4104
4105 if (pc_after_resolver)
4106 {
4107 /* Set up a step-resume breakpoint at the address
4108 indicated by SKIP_SOLIB_RESOLVER. */
4109 struct symtab_and_line sr_sal;
4110 init_sal (&sr_sal);
4111 sr_sal.pc = pc_after_resolver;
4112 sr_sal.pspace = get_frame_program_space (frame);
4113
4114 insert_step_resume_breakpoint_at_sal (gdbarch,
4115 sr_sal, null_frame_id);
4116 }
4117
4118 keep_going (ecs);
4119 return;
4120 }
4121
4122 if (ecs->event_thread->step_range_end != 1
4123 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4124 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4125 && get_frame_type (frame) == SIGTRAMP_FRAME)
4126 {
4127 if (debug_infrun)
4128 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
4129 /* The inferior, while doing a "step" or "next", has ended up in
4130 a signal trampoline (either by a signal being delivered or by
4131 the signal handler returning). Just single-step until the
4132 inferior leaves the trampoline (either by calling the handler
4133 or returning). */
4134 keep_going (ecs);
4135 return;
4136 }
4137
4138 /* Check for subroutine calls. The check for the current frame
4139 equalling the step ID is not necessary - the check of the
4140 previous frame's ID is sufficient - but it is a common case and
4141 cheaper than checking the previous frame's ID.
4142
4143 NOTE: frame_id_eq will never report two invalid frame IDs as
4144 being equal, so to get into this block, both the current and
4145 previous frame must have valid frame IDs. */
4146 /* The outer_frame_id check is a heuristic to detect stepping
4147 through startup code. If we step over an instruction which
4148 sets the stack pointer from an invalid value to a valid value,
4149 we may detect that as a subroutine call from the mythical
4150 "outermost" function. This could be fixed by marking
4151 outermost frames as !stack_p,code_p,special_p. Then the
4152 initial outermost frame, before sp was valid, would
4153 have code_addr == &_start. See the commend in frame_id_eq
4154 for more. */
4155 if (!frame_id_eq (get_stack_frame_id (frame),
4156 ecs->event_thread->step_stack_frame_id)
4157 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4158 ecs->event_thread->step_stack_frame_id)
4159 && (!frame_id_eq (ecs->event_thread->step_stack_frame_id,
4160 outer_frame_id)
4161 || step_start_function != find_pc_function (stop_pc))))
4162 {
4163 CORE_ADDR real_stop_pc;
4164
4165 if (debug_infrun)
4166 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4167
4168 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4169 || ((ecs->event_thread->step_range_end == 1)
4170 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4171 ecs->stop_func_start)))
4172 {
4173 /* I presume that step_over_calls is only 0 when we're
4174 supposed to be stepping at the assembly language level
4175 ("stepi"). Just stop. */
4176 /* Also, maybe we just did a "nexti" inside a prolog, so we
4177 thought it was a subroutine call but it was not. Stop as
4178 well. FENN */
4179 /* And this works the same backward as frontward. MVS */
4180 ecs->event_thread->stop_step = 1;
4181 print_stop_reason (END_STEPPING_RANGE, 0);
4182 stop_stepping (ecs);
4183 return;
4184 }
4185
4186 /* Reverse stepping through solib trampolines. */
4187
4188 if (execution_direction == EXEC_REVERSE
4189 && ecs->event_thread->step_over_calls != STEP_OVER_NONE
4190 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4191 || (ecs->stop_func_start == 0
4192 && in_solib_dynsym_resolve_code (stop_pc))))
4193 {
4194 /* Any solib trampoline code can be handled in reverse
4195 by simply continuing to single-step. We have already
4196 executed the solib function (backwards), and a few
4197 steps will take us back through the trampoline to the
4198 caller. */
4199 keep_going (ecs);
4200 return;
4201 }
4202
4203 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4204 {
4205 /* We're doing a "next".
4206
4207 Normal (forward) execution: set a breakpoint at the
4208 callee's return address (the address at which the caller
4209 will resume).
4210
4211 Reverse (backward) execution. set the step-resume
4212 breakpoint at the start of the function that we just
4213 stepped into (backwards), and continue to there. When we
4214 get there, we'll need to single-step back to the caller. */
4215
4216 if (execution_direction == EXEC_REVERSE)
4217 {
4218 struct symtab_and_line sr_sal;
4219
4220 /* Normal function call return (static or dynamic). */
4221 init_sal (&sr_sal);
4222 sr_sal.pc = ecs->stop_func_start;
4223 sr_sal.pspace = get_frame_program_space (frame);
4224 insert_step_resume_breakpoint_at_sal (gdbarch,
4225 sr_sal, null_frame_id);
4226 }
4227 else
4228 insert_step_resume_breakpoint_at_caller (frame);
4229
4230 keep_going (ecs);
4231 return;
4232 }
4233
4234 /* If we are in a function call trampoline (a stub between the
4235 calling routine and the real function), locate the real
4236 function. That's what tells us (a) whether we want to step
4237 into it at all, and (b) what prologue we want to run to the
4238 end of, if we do step into it. */
4239 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4240 if (real_stop_pc == 0)
4241 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4242 if (real_stop_pc != 0)
4243 ecs->stop_func_start = real_stop_pc;
4244
4245 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4246 {
4247 struct symtab_and_line sr_sal;
4248 init_sal (&sr_sal);
4249 sr_sal.pc = ecs->stop_func_start;
4250 sr_sal.pspace = get_frame_program_space (frame);
4251
4252 insert_step_resume_breakpoint_at_sal (gdbarch,
4253 sr_sal, null_frame_id);
4254 keep_going (ecs);
4255 return;
4256 }
4257
4258 /* If we have line number information for the function we are
4259 thinking of stepping into, step into it.
4260
4261 If there are several symtabs at that PC (e.g. with include
4262 files), just want to know whether *any* of them have line
4263 numbers. find_pc_line handles this. */
4264 {
4265 struct symtab_and_line tmp_sal;
4266
4267 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4268 tmp_sal.pspace = get_frame_program_space (frame);
4269 if (tmp_sal.line != 0)
4270 {
4271 if (execution_direction == EXEC_REVERSE)
4272 handle_step_into_function_backward (gdbarch, ecs);
4273 else
4274 handle_step_into_function (gdbarch, ecs);
4275 return;
4276 }
4277 }
4278
4279 /* If we have no line number and the step-stop-if-no-debug is
4280 set, we stop the step so that the user has a chance to switch
4281 in assembly mode. */
4282 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4283 && step_stop_if_no_debug)
4284 {
4285 ecs->event_thread->stop_step = 1;
4286 print_stop_reason (END_STEPPING_RANGE, 0);
4287 stop_stepping (ecs);
4288 return;
4289 }
4290
4291 if (execution_direction == EXEC_REVERSE)
4292 {
4293 /* Set a breakpoint at callee's start address.
4294 From there we can step once and be back in the caller. */
4295 struct symtab_and_line sr_sal;
4296 init_sal (&sr_sal);
4297 sr_sal.pc = ecs->stop_func_start;
4298 sr_sal.pspace = get_frame_program_space (frame);
4299 insert_step_resume_breakpoint_at_sal (gdbarch,
4300 sr_sal, null_frame_id);
4301 }
4302 else
4303 /* Set a breakpoint at callee's return address (the address
4304 at which the caller will resume). */
4305 insert_step_resume_breakpoint_at_caller (frame);
4306
4307 keep_going (ecs);
4308 return;
4309 }
4310
4311 /* Reverse stepping through solib trampolines. */
4312
4313 if (execution_direction == EXEC_REVERSE
4314 && ecs->event_thread->step_over_calls != STEP_OVER_NONE)
4315 {
4316 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4317 || (ecs->stop_func_start == 0
4318 && in_solib_dynsym_resolve_code (stop_pc)))
4319 {
4320 /* Any solib trampoline code can be handled in reverse
4321 by simply continuing to single-step. We have already
4322 executed the solib function (backwards), and a few
4323 steps will take us back through the trampoline to the
4324 caller. */
4325 keep_going (ecs);
4326 return;
4327 }
4328 else if (in_solib_dynsym_resolve_code (stop_pc))
4329 {
4330 /* Stepped backward into the solib dynsym resolver.
4331 Set a breakpoint at its start and continue, then
4332 one more step will take us out. */
4333 struct symtab_and_line sr_sal;
4334 init_sal (&sr_sal);
4335 sr_sal.pc = ecs->stop_func_start;
4336 sr_sal.pspace = get_frame_program_space (frame);
4337 insert_step_resume_breakpoint_at_sal (gdbarch,
4338 sr_sal, null_frame_id);
4339 keep_going (ecs);
4340 return;
4341 }
4342 }
4343
4344 /* If we're in the return path from a shared library trampoline,
4345 we want to proceed through the trampoline when stepping. */
4346 if (gdbarch_in_solib_return_trampoline (gdbarch,
4347 stop_pc, ecs->stop_func_name))
4348 {
4349 /* Determine where this trampoline returns. */
4350 CORE_ADDR real_stop_pc;
4351 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4352
4353 if (debug_infrun)
4354 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
4355
4356 /* Only proceed through if we know where it's going. */
4357 if (real_stop_pc)
4358 {
4359 /* And put the step-breakpoint there and go until there. */
4360 struct symtab_and_line sr_sal;
4361
4362 init_sal (&sr_sal); /* initialize to zeroes */
4363 sr_sal.pc = real_stop_pc;
4364 sr_sal.section = find_pc_overlay (sr_sal.pc);
4365 sr_sal.pspace = get_frame_program_space (frame);
4366
4367 /* Do not specify what the fp should be when we stop since
4368 on some machines the prologue is where the new fp value
4369 is established. */
4370 insert_step_resume_breakpoint_at_sal (gdbarch,
4371 sr_sal, null_frame_id);
4372
4373 /* Restart without fiddling with the step ranges or
4374 other state. */
4375 keep_going (ecs);
4376 return;
4377 }
4378 }
4379
4380 stop_pc_sal = find_pc_line (stop_pc, 0);
4381
4382 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4383 the trampoline processing logic, however, there are some trampolines
4384 that have no names, so we should do trampoline handling first. */
4385 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4386 && ecs->stop_func_name == NULL
4387 && stop_pc_sal.line == 0)
4388 {
4389 if (debug_infrun)
4390 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
4391
4392 /* The inferior just stepped into, or returned to, an
4393 undebuggable function (where there is no debugging information
4394 and no line number corresponding to the address where the
4395 inferior stopped). Since we want to skip this kind of code,
4396 we keep going until the inferior returns from this
4397 function - unless the user has asked us not to (via
4398 set step-mode) or we no longer know how to get back
4399 to the call site. */
4400 if (step_stop_if_no_debug
4401 || !frame_id_p (frame_unwind_caller_id (frame)))
4402 {
4403 /* If we have no line number and the step-stop-if-no-debug
4404 is set, we stop the step so that the user has a chance to
4405 switch in assembly mode. */
4406 ecs->event_thread->stop_step = 1;
4407 print_stop_reason (END_STEPPING_RANGE, 0);
4408 stop_stepping (ecs);
4409 return;
4410 }
4411 else
4412 {
4413 /* Set a breakpoint at callee's return address (the address
4414 at which the caller will resume). */
4415 insert_step_resume_breakpoint_at_caller (frame);
4416 keep_going (ecs);
4417 return;
4418 }
4419 }
4420
4421 if (ecs->event_thread->step_range_end == 1)
4422 {
4423 /* It is stepi or nexti. We always want to stop stepping after
4424 one instruction. */
4425 if (debug_infrun)
4426 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
4427 ecs->event_thread->stop_step = 1;
4428 print_stop_reason (END_STEPPING_RANGE, 0);
4429 stop_stepping (ecs);
4430 return;
4431 }
4432
4433 if (stop_pc_sal.line == 0)
4434 {
4435 /* We have no line number information. That means to stop
4436 stepping (does this always happen right after one instruction,
4437 when we do "s" in a function with no line numbers,
4438 or can this happen as a result of a return or longjmp?). */
4439 if (debug_infrun)
4440 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
4441 ecs->event_thread->stop_step = 1;
4442 print_stop_reason (END_STEPPING_RANGE, 0);
4443 stop_stepping (ecs);
4444 return;
4445 }
4446
4447 /* Look for "calls" to inlined functions, part one. If the inline
4448 frame machinery detected some skipped call sites, we have entered
4449 a new inline function. */
4450
4451 if (frame_id_eq (get_frame_id (get_current_frame ()),
4452 ecs->event_thread->step_frame_id)
4453 && inline_skipped_frames (ecs->ptid))
4454 {
4455 struct symtab_and_line call_sal;
4456
4457 if (debug_infrun)
4458 fprintf_unfiltered (gdb_stdlog,
4459 "infrun: stepped into inlined function\n");
4460
4461 find_frame_sal (get_current_frame (), &call_sal);
4462
4463 if (ecs->event_thread->step_over_calls != STEP_OVER_ALL)
4464 {
4465 /* For "step", we're going to stop. But if the call site
4466 for this inlined function is on the same source line as
4467 we were previously stepping, go down into the function
4468 first. Otherwise stop at the call site. */
4469
4470 if (call_sal.line == ecs->event_thread->current_line
4471 && call_sal.symtab == ecs->event_thread->current_symtab)
4472 step_into_inline_frame (ecs->ptid);
4473
4474 ecs->event_thread->stop_step = 1;
4475 print_stop_reason (END_STEPPING_RANGE, 0);
4476 stop_stepping (ecs);
4477 return;
4478 }
4479 else
4480 {
4481 /* For "next", we should stop at the call site if it is on a
4482 different source line. Otherwise continue through the
4483 inlined function. */
4484 if (call_sal.line == ecs->event_thread->current_line
4485 && call_sal.symtab == ecs->event_thread->current_symtab)
4486 keep_going (ecs);
4487 else
4488 {
4489 ecs->event_thread->stop_step = 1;
4490 print_stop_reason (END_STEPPING_RANGE, 0);
4491 stop_stepping (ecs);
4492 }
4493 return;
4494 }
4495 }
4496
4497 /* Look for "calls" to inlined functions, part two. If we are still
4498 in the same real function we were stepping through, but we have
4499 to go further up to find the exact frame ID, we are stepping
4500 through a more inlined call beyond its call site. */
4501
4502 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4503 && !frame_id_eq (get_frame_id (get_current_frame ()),
4504 ecs->event_thread->step_frame_id)
4505 && stepped_in_from (get_current_frame (),
4506 ecs->event_thread->step_frame_id))
4507 {
4508 if (debug_infrun)
4509 fprintf_unfiltered (gdb_stdlog,
4510 "infrun: stepping through inlined function\n");
4511
4512 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4513 keep_going (ecs);
4514 else
4515 {
4516 ecs->event_thread->stop_step = 1;
4517 print_stop_reason (END_STEPPING_RANGE, 0);
4518 stop_stepping (ecs);
4519 }
4520 return;
4521 }
4522
4523 if ((stop_pc == stop_pc_sal.pc)
4524 && (ecs->event_thread->current_line != stop_pc_sal.line
4525 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
4526 {
4527 /* We are at the start of a different line. So stop. Note that
4528 we don't stop if we step into the middle of a different line.
4529 That is said to make things like for (;;) statements work
4530 better. */
4531 if (debug_infrun)
4532 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
4533 ecs->event_thread->stop_step = 1;
4534 print_stop_reason (END_STEPPING_RANGE, 0);
4535 stop_stepping (ecs);
4536 return;
4537 }
4538
4539 /* We aren't done stepping.
4540
4541 Optimize by setting the stepping range to the line.
4542 (We might not be in the original line, but if we entered a
4543 new line in mid-statement, we continue stepping. This makes
4544 things like for(;;) statements work better.) */
4545
4546 ecs->event_thread->step_range_start = stop_pc_sal.pc;
4547 ecs->event_thread->step_range_end = stop_pc_sal.end;
4548 set_step_info (frame, stop_pc_sal);
4549
4550 if (debug_infrun)
4551 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
4552 keep_going (ecs);
4553 }
4554
4555 /* Is thread TP in the middle of single-stepping? */
4556
4557 static int
4558 currently_stepping (struct thread_info *tp)
4559 {
4560 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
4561 || tp->trap_expected
4562 || tp->stepping_through_solib_after_catch
4563 || bpstat_should_step ());
4564 }
4565
4566 /* Returns true if any thread *but* the one passed in "data" is in the
4567 middle of stepping or of handling a "next". */
4568
4569 static int
4570 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
4571 {
4572 if (tp == data)
4573 return 0;
4574
4575 return (tp->step_range_end
4576 || tp->trap_expected
4577 || tp->stepping_through_solib_after_catch);
4578 }
4579
4580 /* Inferior has stepped into a subroutine call with source code that
4581 we should not step over. Do step to the first line of code in
4582 it. */
4583
4584 static void
4585 handle_step_into_function (struct gdbarch *gdbarch,
4586 struct execution_control_state *ecs)
4587 {
4588 struct symtab *s;
4589 struct symtab_and_line stop_func_sal, sr_sal;
4590
4591 s = find_pc_symtab (stop_pc);
4592 if (s && s->language != language_asm)
4593 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
4594 ecs->stop_func_start);
4595
4596 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
4597 /* Use the step_resume_break to step until the end of the prologue,
4598 even if that involves jumps (as it seems to on the vax under
4599 4.2). */
4600 /* If the prologue ends in the middle of a source line, continue to
4601 the end of that source line (if it is still within the function).
4602 Otherwise, just go to end of prologue. */
4603 if (stop_func_sal.end
4604 && stop_func_sal.pc != ecs->stop_func_start
4605 && stop_func_sal.end < ecs->stop_func_end)
4606 ecs->stop_func_start = stop_func_sal.end;
4607
4608 /* Architectures which require breakpoint adjustment might not be able
4609 to place a breakpoint at the computed address. If so, the test
4610 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4611 ecs->stop_func_start to an address at which a breakpoint may be
4612 legitimately placed.
4613
4614 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4615 made, GDB will enter an infinite loop when stepping through
4616 optimized code consisting of VLIW instructions which contain
4617 subinstructions corresponding to different source lines. On
4618 FR-V, it's not permitted to place a breakpoint on any but the
4619 first subinstruction of a VLIW instruction. When a breakpoint is
4620 set, GDB will adjust the breakpoint address to the beginning of
4621 the VLIW instruction. Thus, we need to make the corresponding
4622 adjustment here when computing the stop address. */
4623
4624 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
4625 {
4626 ecs->stop_func_start
4627 = gdbarch_adjust_breakpoint_address (gdbarch,
4628 ecs->stop_func_start);
4629 }
4630
4631 if (ecs->stop_func_start == stop_pc)
4632 {
4633 /* We are already there: stop now. */
4634 ecs->event_thread->stop_step = 1;
4635 print_stop_reason (END_STEPPING_RANGE, 0);
4636 stop_stepping (ecs);
4637 return;
4638 }
4639 else
4640 {
4641 /* Put the step-breakpoint there and go until there. */
4642 init_sal (&sr_sal); /* initialize to zeroes */
4643 sr_sal.pc = ecs->stop_func_start;
4644 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
4645 sr_sal.pspace = get_frame_program_space (get_current_frame ());
4646
4647 /* Do not specify what the fp should be when we stop since on
4648 some machines the prologue is where the new fp value is
4649 established. */
4650 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
4651
4652 /* And make sure stepping stops right away then. */
4653 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
4654 }
4655 keep_going (ecs);
4656 }
4657
4658 /* Inferior has stepped backward into a subroutine call with source
4659 code that we should not step over. Do step to the beginning of the
4660 last line of code in it. */
4661
4662 static void
4663 handle_step_into_function_backward (struct gdbarch *gdbarch,
4664 struct execution_control_state *ecs)
4665 {
4666 struct symtab *s;
4667 struct symtab_and_line stop_func_sal, sr_sal;
4668
4669 s = find_pc_symtab (stop_pc);
4670 if (s && s->language != language_asm)
4671 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
4672 ecs->stop_func_start);
4673
4674 stop_func_sal = find_pc_line (stop_pc, 0);
4675
4676 /* OK, we're just going to keep stepping here. */
4677 if (stop_func_sal.pc == stop_pc)
4678 {
4679 /* We're there already. Just stop stepping now. */
4680 ecs->event_thread->stop_step = 1;
4681 print_stop_reason (END_STEPPING_RANGE, 0);
4682 stop_stepping (ecs);
4683 }
4684 else
4685 {
4686 /* Else just reset the step range and keep going.
4687 No step-resume breakpoint, they don't work for
4688 epilogues, which can have multiple entry paths. */
4689 ecs->event_thread->step_range_start = stop_func_sal.pc;
4690 ecs->event_thread->step_range_end = stop_func_sal.end;
4691 keep_going (ecs);
4692 }
4693 return;
4694 }
4695
4696 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
4697 This is used to both functions and to skip over code. */
4698
4699 static void
4700 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
4701 struct symtab_and_line sr_sal,
4702 struct frame_id sr_id)
4703 {
4704 /* There should never be more than one step-resume or longjmp-resume
4705 breakpoint per thread, so we should never be setting a new
4706 step_resume_breakpoint when one is already active. */
4707 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
4708
4709 if (debug_infrun)
4710 fprintf_unfiltered (gdb_stdlog,
4711 "infrun: inserting step-resume breakpoint at %s\n",
4712 paddress (gdbarch, sr_sal.pc));
4713
4714 inferior_thread ()->step_resume_breakpoint
4715 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
4716 }
4717
4718 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
4719 to skip a potential signal handler.
4720
4721 This is called with the interrupted function's frame. The signal
4722 handler, when it returns, will resume the interrupted function at
4723 RETURN_FRAME.pc. */
4724
4725 static void
4726 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
4727 {
4728 struct symtab_and_line sr_sal;
4729 struct gdbarch *gdbarch;
4730
4731 gdb_assert (return_frame != NULL);
4732 init_sal (&sr_sal); /* initialize to zeros */
4733
4734 gdbarch = get_frame_arch (return_frame);
4735 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
4736 sr_sal.section = find_pc_overlay (sr_sal.pc);
4737 sr_sal.pspace = get_frame_program_space (return_frame);
4738
4739 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
4740 get_stack_frame_id (return_frame));
4741 }
4742
4743 /* Similar to insert_step_resume_breakpoint_at_frame, except
4744 but a breakpoint at the previous frame's PC. This is used to
4745 skip a function after stepping into it (for "next" or if the called
4746 function has no debugging information).
4747
4748 The current function has almost always been reached by single
4749 stepping a call or return instruction. NEXT_FRAME belongs to the
4750 current function, and the breakpoint will be set at the caller's
4751 resume address.
4752
4753 This is a separate function rather than reusing
4754 insert_step_resume_breakpoint_at_frame in order to avoid
4755 get_prev_frame, which may stop prematurely (see the implementation
4756 of frame_unwind_caller_id for an example). */
4757
4758 static void
4759 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4760 {
4761 struct symtab_and_line sr_sal;
4762 struct gdbarch *gdbarch;
4763
4764 /* We shouldn't have gotten here if we don't know where the call site
4765 is. */
4766 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
4767
4768 init_sal (&sr_sal); /* initialize to zeros */
4769
4770 gdbarch = frame_unwind_caller_arch (next_frame);
4771 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
4772 frame_unwind_caller_pc (next_frame));
4773 sr_sal.section = find_pc_overlay (sr_sal.pc);
4774 sr_sal.pspace = frame_unwind_program_space (next_frame);
4775
4776 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
4777 frame_unwind_caller_id (next_frame));
4778 }
4779
4780 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4781 new breakpoint at the target of a jmp_buf. The handling of
4782 longjmp-resume uses the same mechanisms used for handling
4783 "step-resume" breakpoints. */
4784
4785 static void
4786 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
4787 {
4788 /* There should never be more than one step-resume or longjmp-resume
4789 breakpoint per thread, so we should never be setting a new
4790 longjmp_resume_breakpoint when one is already active. */
4791 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
4792
4793 if (debug_infrun)
4794 fprintf_unfiltered (gdb_stdlog,
4795 "infrun: inserting longjmp-resume breakpoint at %s\n",
4796 paddress (gdbarch, pc));
4797
4798 inferior_thread ()->step_resume_breakpoint =
4799 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
4800 }
4801
4802 static void
4803 stop_stepping (struct execution_control_state *ecs)
4804 {
4805 if (debug_infrun)
4806 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
4807
4808 /* Let callers know we don't want to wait for the inferior anymore. */
4809 ecs->wait_some_more = 0;
4810 }
4811
4812 /* This function handles various cases where we need to continue
4813 waiting for the inferior. */
4814 /* (Used to be the keep_going: label in the old wait_for_inferior) */
4815
4816 static void
4817 keep_going (struct execution_control_state *ecs)
4818 {
4819 /* Make sure normal_stop is called if we get a QUIT handled before
4820 reaching resume. */
4821 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
4822
4823 /* Save the pc before execution, to compare with pc after stop. */
4824 ecs->event_thread->prev_pc
4825 = regcache_read_pc (get_thread_regcache (ecs->ptid));
4826
4827 /* If we did not do break;, it means we should keep running the
4828 inferior and not return to debugger. */
4829
4830 if (ecs->event_thread->trap_expected
4831 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
4832 {
4833 /* We took a signal (which we are supposed to pass through to
4834 the inferior, else we'd not get here) and we haven't yet
4835 gotten our trap. Simply continue. */
4836
4837 discard_cleanups (old_cleanups);
4838 resume (currently_stepping (ecs->event_thread),
4839 ecs->event_thread->stop_signal);
4840 }
4841 else
4842 {
4843 /* Either the trap was not expected, but we are continuing
4844 anyway (the user asked that this signal be passed to the
4845 child)
4846 -- or --
4847 The signal was SIGTRAP, e.g. it was our signal, but we
4848 decided we should resume from it.
4849
4850 We're going to run this baby now!
4851
4852 Note that insert_breakpoints won't try to re-insert
4853 already inserted breakpoints. Therefore, we don't
4854 care if breakpoints were already inserted, or not. */
4855
4856 if (ecs->event_thread->stepping_over_breakpoint)
4857 {
4858 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
4859 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
4860 /* Since we can't do a displaced step, we have to remove
4861 the breakpoint while we step it. To keep things
4862 simple, we remove them all. */
4863 remove_breakpoints ();
4864 }
4865 else
4866 {
4867 struct gdb_exception e;
4868 /* Stop stepping when inserting breakpoints
4869 has failed. */
4870 TRY_CATCH (e, RETURN_MASK_ERROR)
4871 {
4872 insert_breakpoints ();
4873 }
4874 if (e.reason < 0)
4875 {
4876 exception_print (gdb_stderr, e);
4877 stop_stepping (ecs);
4878 return;
4879 }
4880 }
4881
4882 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
4883
4884 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
4885 specifies that such a signal should be delivered to the
4886 target program).
4887
4888 Typically, this would occure when a user is debugging a
4889 target monitor on a simulator: the target monitor sets a
4890 breakpoint; the simulator encounters this break-point and
4891 halts the simulation handing control to GDB; GDB, noteing
4892 that the break-point isn't valid, returns control back to the
4893 simulator; the simulator then delivers the hardware
4894 equivalent of a SIGNAL_TRAP to the program being debugged. */
4895
4896 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4897 && !signal_program[ecs->event_thread->stop_signal])
4898 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
4899
4900 discard_cleanups (old_cleanups);
4901 resume (currently_stepping (ecs->event_thread),
4902 ecs->event_thread->stop_signal);
4903 }
4904
4905 prepare_to_wait (ecs);
4906 }
4907
4908 /* This function normally comes after a resume, before
4909 handle_inferior_event exits. It takes care of any last bits of
4910 housekeeping, and sets the all-important wait_some_more flag. */
4911
4912 static void
4913 prepare_to_wait (struct execution_control_state *ecs)
4914 {
4915 if (debug_infrun)
4916 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
4917
4918 /* This is the old end of the while loop. Let everybody know we
4919 want to wait for the inferior some more and get called again
4920 soon. */
4921 ecs->wait_some_more = 1;
4922 }
4923
4924 /* Print why the inferior has stopped. We always print something when
4925 the inferior exits, or receives a signal. The rest of the cases are
4926 dealt with later on in normal_stop() and print_it_typical(). Ideally
4927 there should be a call to this function from handle_inferior_event()
4928 each time stop_stepping() is called.*/
4929 static void
4930 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4931 {
4932 switch (stop_reason)
4933 {
4934 case END_STEPPING_RANGE:
4935 /* We are done with a step/next/si/ni command. */
4936 /* For now print nothing. */
4937 /* Print a message only if not in the middle of doing a "step n"
4938 operation for n > 1 */
4939 if (!inferior_thread ()->step_multi
4940 || !inferior_thread ()->stop_step)
4941 if (ui_out_is_mi_like_p (uiout))
4942 ui_out_field_string
4943 (uiout, "reason",
4944 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
4945 break;
4946 case SIGNAL_EXITED:
4947 /* The inferior was terminated by a signal. */
4948 annotate_signalled ();
4949 if (ui_out_is_mi_like_p (uiout))
4950 ui_out_field_string
4951 (uiout, "reason",
4952 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
4953 ui_out_text (uiout, "\nProgram terminated with signal ");
4954 annotate_signal_name ();
4955 ui_out_field_string (uiout, "signal-name",
4956 target_signal_to_name (stop_info));
4957 annotate_signal_name_end ();
4958 ui_out_text (uiout, ", ");
4959 annotate_signal_string ();
4960 ui_out_field_string (uiout, "signal-meaning",
4961 target_signal_to_string (stop_info));
4962 annotate_signal_string_end ();
4963 ui_out_text (uiout, ".\n");
4964 ui_out_text (uiout, "The program no longer exists.\n");
4965 break;
4966 case EXITED:
4967 /* The inferior program is finished. */
4968 annotate_exited (stop_info);
4969 if (stop_info)
4970 {
4971 if (ui_out_is_mi_like_p (uiout))
4972 ui_out_field_string (uiout, "reason",
4973 async_reason_lookup (EXEC_ASYNC_EXITED));
4974 ui_out_text (uiout, "\nProgram exited with code ");
4975 ui_out_field_fmt (uiout, "exit-code", "0%o",
4976 (unsigned int) stop_info);
4977 ui_out_text (uiout, ".\n");
4978 }
4979 else
4980 {
4981 if (ui_out_is_mi_like_p (uiout))
4982 ui_out_field_string
4983 (uiout, "reason",
4984 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
4985 ui_out_text (uiout, "\nProgram exited normally.\n");
4986 }
4987 /* Support the --return-child-result option. */
4988 return_child_result_value = stop_info;
4989 break;
4990 case SIGNAL_RECEIVED:
4991 /* Signal received. The signal table tells us to print about
4992 it. */
4993 annotate_signal ();
4994
4995 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4996 {
4997 struct thread_info *t = inferior_thread ();
4998
4999 ui_out_text (uiout, "\n[");
5000 ui_out_field_string (uiout, "thread-name",
5001 target_pid_to_str (t->ptid));
5002 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5003 ui_out_text (uiout, " stopped");
5004 }
5005 else
5006 {
5007 ui_out_text (uiout, "\nProgram received signal ");
5008 annotate_signal_name ();
5009 if (ui_out_is_mi_like_p (uiout))
5010 ui_out_field_string
5011 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5012 ui_out_field_string (uiout, "signal-name",
5013 target_signal_to_name (stop_info));
5014 annotate_signal_name_end ();
5015 ui_out_text (uiout, ", ");
5016 annotate_signal_string ();
5017 ui_out_field_string (uiout, "signal-meaning",
5018 target_signal_to_string (stop_info));
5019 annotate_signal_string_end ();
5020 }
5021 ui_out_text (uiout, ".\n");
5022 break;
5023 case NO_HISTORY:
5024 /* Reverse execution: target ran out of history info. */
5025 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
5026 break;
5027 default:
5028 internal_error (__FILE__, __LINE__,
5029 _("print_stop_reason: unrecognized enum value"));
5030 break;
5031 }
5032 }
5033 \f
5034
5035 /* Here to return control to GDB when the inferior stops for real.
5036 Print appropriate messages, remove breakpoints, give terminal our modes.
5037
5038 STOP_PRINT_FRAME nonzero means print the executing frame
5039 (pc, function, args, file, line number and line text).
5040 BREAKPOINTS_FAILED nonzero means stop was due to error
5041 attempting to insert breakpoints. */
5042
5043 void
5044 normal_stop (void)
5045 {
5046 struct target_waitstatus last;
5047 ptid_t last_ptid;
5048 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5049
5050 get_last_target_status (&last_ptid, &last);
5051
5052 /* If an exception is thrown from this point on, make sure to
5053 propagate GDB's knowledge of the executing state to the
5054 frontend/user running state. A QUIT is an easy exception to see
5055 here, so do this before any filtered output. */
5056 if (!non_stop)
5057 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5058 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5059 && last.kind != TARGET_WAITKIND_EXITED)
5060 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5061
5062 /* In non-stop mode, we don't want GDB to switch threads behind the
5063 user's back, to avoid races where the user is typing a command to
5064 apply to thread x, but GDB switches to thread y before the user
5065 finishes entering the command. */
5066
5067 /* As with the notification of thread events, we want to delay
5068 notifying the user that we've switched thread context until
5069 the inferior actually stops.
5070
5071 There's no point in saying anything if the inferior has exited.
5072 Note that SIGNALLED here means "exited with a signal", not
5073 "received a signal". */
5074 if (!non_stop
5075 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5076 && target_has_execution
5077 && last.kind != TARGET_WAITKIND_SIGNALLED
5078 && last.kind != TARGET_WAITKIND_EXITED)
5079 {
5080 target_terminal_ours_for_output ();
5081 printf_filtered (_("[Switching to %s]\n"),
5082 target_pid_to_str (inferior_ptid));
5083 annotate_thread_changed ();
5084 previous_inferior_ptid = inferior_ptid;
5085 }
5086
5087 if (!breakpoints_always_inserted_mode () && target_has_execution)
5088 {
5089 if (remove_breakpoints ())
5090 {
5091 target_terminal_ours_for_output ();
5092 printf_filtered (_("\
5093 Cannot remove breakpoints because program is no longer writable.\n\
5094 Further execution is probably impossible.\n"));
5095 }
5096 }
5097
5098 /* If an auto-display called a function and that got a signal,
5099 delete that auto-display to avoid an infinite recursion. */
5100
5101 if (stopped_by_random_signal)
5102 disable_current_display ();
5103
5104 /* Don't print a message if in the middle of doing a "step n"
5105 operation for n > 1 */
5106 if (target_has_execution
5107 && last.kind != TARGET_WAITKIND_SIGNALLED
5108 && last.kind != TARGET_WAITKIND_EXITED
5109 && inferior_thread ()->step_multi
5110 && inferior_thread ()->stop_step)
5111 goto done;
5112
5113 target_terminal_ours ();
5114
5115 /* Set the current source location. This will also happen if we
5116 display the frame below, but the current SAL will be incorrect
5117 during a user hook-stop function. */
5118 if (has_stack_frames () && !stop_stack_dummy)
5119 set_current_sal_from_frame (get_current_frame (), 1);
5120
5121 /* Let the user/frontend see the threads as stopped. */
5122 do_cleanups (old_chain);
5123
5124 /* Look up the hook_stop and run it (CLI internally handles problem
5125 of stop_command's pre-hook not existing). */
5126 if (stop_command)
5127 catch_errors (hook_stop_stub, stop_command,
5128 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5129
5130 if (!has_stack_frames ())
5131 goto done;
5132
5133 if (last.kind == TARGET_WAITKIND_SIGNALLED
5134 || last.kind == TARGET_WAITKIND_EXITED)
5135 goto done;
5136
5137 /* Select innermost stack frame - i.e., current frame is frame 0,
5138 and current location is based on that.
5139 Don't do this on return from a stack dummy routine,
5140 or if the program has exited. */
5141
5142 if (!stop_stack_dummy)
5143 {
5144 select_frame (get_current_frame ());
5145
5146 /* Print current location without a level number, if
5147 we have changed functions or hit a breakpoint.
5148 Print source line if we have one.
5149 bpstat_print() contains the logic deciding in detail
5150 what to print, based on the event(s) that just occurred. */
5151
5152 /* If --batch-silent is enabled then there's no need to print the current
5153 source location, and to try risks causing an error message about
5154 missing source files. */
5155 if (stop_print_frame && !batch_silent)
5156 {
5157 int bpstat_ret;
5158 int source_flag;
5159 int do_frame_printing = 1;
5160 struct thread_info *tp = inferior_thread ();
5161
5162 bpstat_ret = bpstat_print (tp->stop_bpstat);
5163 switch (bpstat_ret)
5164 {
5165 case PRINT_UNKNOWN:
5166 /* If we had hit a shared library event breakpoint,
5167 bpstat_print would print out this message. If we hit
5168 an OS-level shared library event, do the same
5169 thing. */
5170 if (last.kind == TARGET_WAITKIND_LOADED)
5171 {
5172 printf_filtered (_("Stopped due to shared library event\n"));
5173 source_flag = SRC_LINE; /* something bogus */
5174 do_frame_printing = 0;
5175 break;
5176 }
5177
5178 /* FIXME: cagney/2002-12-01: Given that a frame ID does
5179 (or should) carry around the function and does (or
5180 should) use that when doing a frame comparison. */
5181 if (tp->stop_step
5182 && frame_id_eq (tp->step_frame_id,
5183 get_frame_id (get_current_frame ()))
5184 && step_start_function == find_pc_function (stop_pc))
5185 source_flag = SRC_LINE; /* finished step, just print source line */
5186 else
5187 source_flag = SRC_AND_LOC; /* print location and source line */
5188 break;
5189 case PRINT_SRC_AND_LOC:
5190 source_flag = SRC_AND_LOC; /* print location and source line */
5191 break;
5192 case PRINT_SRC_ONLY:
5193 source_flag = SRC_LINE;
5194 break;
5195 case PRINT_NOTHING:
5196 source_flag = SRC_LINE; /* something bogus */
5197 do_frame_printing = 0;
5198 break;
5199 default:
5200 internal_error (__FILE__, __LINE__, _("Unknown value."));
5201 }
5202
5203 /* The behavior of this routine with respect to the source
5204 flag is:
5205 SRC_LINE: Print only source line
5206 LOCATION: Print only location
5207 SRC_AND_LOC: Print location and source line */
5208 if (do_frame_printing)
5209 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
5210
5211 /* Display the auto-display expressions. */
5212 do_displays ();
5213 }
5214 }
5215
5216 /* Save the function value return registers, if we care.
5217 We might be about to restore their previous contents. */
5218 if (inferior_thread ()->proceed_to_finish)
5219 {
5220 /* This should not be necessary. */
5221 if (stop_registers)
5222 regcache_xfree (stop_registers);
5223
5224 /* NB: The copy goes through to the target picking up the value of
5225 all the registers. */
5226 stop_registers = regcache_dup (get_current_regcache ());
5227 }
5228
5229 if (stop_stack_dummy)
5230 {
5231 /* Pop the empty frame that contains the stack dummy.
5232 This also restores inferior state prior to the call
5233 (struct inferior_thread_state). */
5234 struct frame_info *frame = get_current_frame ();
5235 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5236 frame_pop (frame);
5237 /* frame_pop() calls reinit_frame_cache as the last thing it does
5238 which means there's currently no selected frame. We don't need
5239 to re-establish a selected frame if the dummy call returns normally,
5240 that will be done by restore_inferior_status. However, we do have
5241 to handle the case where the dummy call is returning after being
5242 stopped (e.g. the dummy call previously hit a breakpoint). We
5243 can't know which case we have so just always re-establish a
5244 selected frame here. */
5245 select_frame (get_current_frame ());
5246 }
5247
5248 done:
5249 annotate_stopped ();
5250
5251 /* Suppress the stop observer if we're in the middle of:
5252
5253 - a step n (n > 1), as there still more steps to be done.
5254
5255 - a "finish" command, as the observer will be called in
5256 finish_command_continuation, so it can include the inferior
5257 function's return value.
5258
5259 - calling an inferior function, as we pretend we inferior didn't
5260 run at all. The return value of the call is handled by the
5261 expression evaluator, through call_function_by_hand. */
5262
5263 if (!target_has_execution
5264 || last.kind == TARGET_WAITKIND_SIGNALLED
5265 || last.kind == TARGET_WAITKIND_EXITED
5266 || (!inferior_thread ()->step_multi
5267 && !(inferior_thread ()->stop_bpstat
5268 && inferior_thread ()->proceed_to_finish)
5269 && !inferior_thread ()->in_infcall))
5270 {
5271 if (!ptid_equal (inferior_ptid, null_ptid))
5272 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
5273 stop_print_frame);
5274 else
5275 observer_notify_normal_stop (NULL, stop_print_frame);
5276 }
5277
5278 if (target_has_execution)
5279 {
5280 if (last.kind != TARGET_WAITKIND_SIGNALLED
5281 && last.kind != TARGET_WAITKIND_EXITED)
5282 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5283 Delete any breakpoint that is to be deleted at the next stop. */
5284 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
5285 }
5286
5287 /* Try to get rid of automatically added inferiors that are no
5288 longer needed. Keeping those around slows down things linearly.
5289 Note that this never removes the current inferior. */
5290 prune_inferiors ();
5291 }
5292
5293 static int
5294 hook_stop_stub (void *cmd)
5295 {
5296 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
5297 return (0);
5298 }
5299 \f
5300 int
5301 signal_stop_state (int signo)
5302 {
5303 return signal_stop[signo];
5304 }
5305
5306 int
5307 signal_print_state (int signo)
5308 {
5309 return signal_print[signo];
5310 }
5311
5312 int
5313 signal_pass_state (int signo)
5314 {
5315 return signal_program[signo];
5316 }
5317
5318 int
5319 signal_stop_update (int signo, int state)
5320 {
5321 int ret = signal_stop[signo];
5322 signal_stop[signo] = state;
5323 return ret;
5324 }
5325
5326 int
5327 signal_print_update (int signo, int state)
5328 {
5329 int ret = signal_print[signo];
5330 signal_print[signo] = state;
5331 return ret;
5332 }
5333
5334 int
5335 signal_pass_update (int signo, int state)
5336 {
5337 int ret = signal_program[signo];
5338 signal_program[signo] = state;
5339 return ret;
5340 }
5341
5342 static void
5343 sig_print_header (void)
5344 {
5345 printf_filtered (_("\
5346 Signal Stop\tPrint\tPass to program\tDescription\n"));
5347 }
5348
5349 static void
5350 sig_print_info (enum target_signal oursig)
5351 {
5352 const char *name = target_signal_to_name (oursig);
5353 int name_padding = 13 - strlen (name);
5354
5355 if (name_padding <= 0)
5356 name_padding = 0;
5357
5358 printf_filtered ("%s", name);
5359 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
5360 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
5361 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
5362 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
5363 printf_filtered ("%s\n", target_signal_to_string (oursig));
5364 }
5365
5366 /* Specify how various signals in the inferior should be handled. */
5367
5368 static void
5369 handle_command (char *args, int from_tty)
5370 {
5371 char **argv;
5372 int digits, wordlen;
5373 int sigfirst, signum, siglast;
5374 enum target_signal oursig;
5375 int allsigs;
5376 int nsigs;
5377 unsigned char *sigs;
5378 struct cleanup *old_chain;
5379
5380 if (args == NULL)
5381 {
5382 error_no_arg (_("signal to handle"));
5383 }
5384
5385 /* Allocate and zero an array of flags for which signals to handle. */
5386
5387 nsigs = (int) TARGET_SIGNAL_LAST;
5388 sigs = (unsigned char *) alloca (nsigs);
5389 memset (sigs, 0, nsigs);
5390
5391 /* Break the command line up into args. */
5392
5393 argv = gdb_buildargv (args);
5394 old_chain = make_cleanup_freeargv (argv);
5395
5396 /* Walk through the args, looking for signal oursigs, signal names, and
5397 actions. Signal numbers and signal names may be interspersed with
5398 actions, with the actions being performed for all signals cumulatively
5399 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
5400
5401 while (*argv != NULL)
5402 {
5403 wordlen = strlen (*argv);
5404 for (digits = 0; isdigit ((*argv)[digits]); digits++)
5405 {;
5406 }
5407 allsigs = 0;
5408 sigfirst = siglast = -1;
5409
5410 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
5411 {
5412 /* Apply action to all signals except those used by the
5413 debugger. Silently skip those. */
5414 allsigs = 1;
5415 sigfirst = 0;
5416 siglast = nsigs - 1;
5417 }
5418 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
5419 {
5420 SET_SIGS (nsigs, sigs, signal_stop);
5421 SET_SIGS (nsigs, sigs, signal_print);
5422 }
5423 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
5424 {
5425 UNSET_SIGS (nsigs, sigs, signal_program);
5426 }
5427 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
5428 {
5429 SET_SIGS (nsigs, sigs, signal_print);
5430 }
5431 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
5432 {
5433 SET_SIGS (nsigs, sigs, signal_program);
5434 }
5435 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
5436 {
5437 UNSET_SIGS (nsigs, sigs, signal_stop);
5438 }
5439 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
5440 {
5441 SET_SIGS (nsigs, sigs, signal_program);
5442 }
5443 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5444 {
5445 UNSET_SIGS (nsigs, sigs, signal_print);
5446 UNSET_SIGS (nsigs, sigs, signal_stop);
5447 }
5448 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5449 {
5450 UNSET_SIGS (nsigs, sigs, signal_program);
5451 }
5452 else if (digits > 0)
5453 {
5454 /* It is numeric. The numeric signal refers to our own
5455 internal signal numbering from target.h, not to host/target
5456 signal number. This is a feature; users really should be
5457 using symbolic names anyway, and the common ones like
5458 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
5459
5460 sigfirst = siglast = (int)
5461 target_signal_from_command (atoi (*argv));
5462 if ((*argv)[digits] == '-')
5463 {
5464 siglast = (int)
5465 target_signal_from_command (atoi ((*argv) + digits + 1));
5466 }
5467 if (sigfirst > siglast)
5468 {
5469 /* Bet he didn't figure we'd think of this case... */
5470 signum = sigfirst;
5471 sigfirst = siglast;
5472 siglast = signum;
5473 }
5474 }
5475 else
5476 {
5477 oursig = target_signal_from_name (*argv);
5478 if (oursig != TARGET_SIGNAL_UNKNOWN)
5479 {
5480 sigfirst = siglast = (int) oursig;
5481 }
5482 else
5483 {
5484 /* Not a number and not a recognized flag word => complain. */
5485 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
5486 }
5487 }
5488
5489 /* If any signal numbers or symbol names were found, set flags for
5490 which signals to apply actions to. */
5491
5492 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
5493 {
5494 switch ((enum target_signal) signum)
5495 {
5496 case TARGET_SIGNAL_TRAP:
5497 case TARGET_SIGNAL_INT:
5498 if (!allsigs && !sigs[signum])
5499 {
5500 if (query (_("%s is used by the debugger.\n\
5501 Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
5502 {
5503 sigs[signum] = 1;
5504 }
5505 else
5506 {
5507 printf_unfiltered (_("Not confirmed, unchanged.\n"));
5508 gdb_flush (gdb_stdout);
5509 }
5510 }
5511 break;
5512 case TARGET_SIGNAL_0:
5513 case TARGET_SIGNAL_DEFAULT:
5514 case TARGET_SIGNAL_UNKNOWN:
5515 /* Make sure that "all" doesn't print these. */
5516 break;
5517 default:
5518 sigs[signum] = 1;
5519 break;
5520 }
5521 }
5522
5523 argv++;
5524 }
5525
5526 for (signum = 0; signum < nsigs; signum++)
5527 if (sigs[signum])
5528 {
5529 target_notice_signals (inferior_ptid);
5530
5531 if (from_tty)
5532 {
5533 /* Show the results. */
5534 sig_print_header ();
5535 for (; signum < nsigs; signum++)
5536 if (sigs[signum])
5537 sig_print_info (signum);
5538 }
5539
5540 break;
5541 }
5542
5543 do_cleanups (old_chain);
5544 }
5545
5546 static void
5547 xdb_handle_command (char *args, int from_tty)
5548 {
5549 char **argv;
5550 struct cleanup *old_chain;
5551
5552 if (args == NULL)
5553 error_no_arg (_("xdb command"));
5554
5555 /* Break the command line up into args. */
5556
5557 argv = gdb_buildargv (args);
5558 old_chain = make_cleanup_freeargv (argv);
5559 if (argv[1] != (char *) NULL)
5560 {
5561 char *argBuf;
5562 int bufLen;
5563
5564 bufLen = strlen (argv[0]) + 20;
5565 argBuf = (char *) xmalloc (bufLen);
5566 if (argBuf)
5567 {
5568 int validFlag = 1;
5569 enum target_signal oursig;
5570
5571 oursig = target_signal_from_name (argv[0]);
5572 memset (argBuf, 0, bufLen);
5573 if (strcmp (argv[1], "Q") == 0)
5574 sprintf (argBuf, "%s %s", argv[0], "noprint");
5575 else
5576 {
5577 if (strcmp (argv[1], "s") == 0)
5578 {
5579 if (!signal_stop[oursig])
5580 sprintf (argBuf, "%s %s", argv[0], "stop");
5581 else
5582 sprintf (argBuf, "%s %s", argv[0], "nostop");
5583 }
5584 else if (strcmp (argv[1], "i") == 0)
5585 {
5586 if (!signal_program[oursig])
5587 sprintf (argBuf, "%s %s", argv[0], "pass");
5588 else
5589 sprintf (argBuf, "%s %s", argv[0], "nopass");
5590 }
5591 else if (strcmp (argv[1], "r") == 0)
5592 {
5593 if (!signal_print[oursig])
5594 sprintf (argBuf, "%s %s", argv[0], "print");
5595 else
5596 sprintf (argBuf, "%s %s", argv[0], "noprint");
5597 }
5598 else
5599 validFlag = 0;
5600 }
5601 if (validFlag)
5602 handle_command (argBuf, from_tty);
5603 else
5604 printf_filtered (_("Invalid signal handling flag.\n"));
5605 if (argBuf)
5606 xfree (argBuf);
5607 }
5608 }
5609 do_cleanups (old_chain);
5610 }
5611
5612 /* Print current contents of the tables set by the handle command.
5613 It is possible we should just be printing signals actually used
5614 by the current target (but for things to work right when switching
5615 targets, all signals should be in the signal tables). */
5616
5617 static void
5618 signals_info (char *signum_exp, int from_tty)
5619 {
5620 enum target_signal oursig;
5621 sig_print_header ();
5622
5623 if (signum_exp)
5624 {
5625 /* First see if this is a symbol name. */
5626 oursig = target_signal_from_name (signum_exp);
5627 if (oursig == TARGET_SIGNAL_UNKNOWN)
5628 {
5629 /* No, try numeric. */
5630 oursig =
5631 target_signal_from_command (parse_and_eval_long (signum_exp));
5632 }
5633 sig_print_info (oursig);
5634 return;
5635 }
5636
5637 printf_filtered ("\n");
5638 /* These ugly casts brought to you by the native VAX compiler. */
5639 for (oursig = TARGET_SIGNAL_FIRST;
5640 (int) oursig < (int) TARGET_SIGNAL_LAST;
5641 oursig = (enum target_signal) ((int) oursig + 1))
5642 {
5643 QUIT;
5644
5645 if (oursig != TARGET_SIGNAL_UNKNOWN
5646 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
5647 sig_print_info (oursig);
5648 }
5649
5650 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
5651 }
5652
5653 /* The $_siginfo convenience variable is a bit special. We don't know
5654 for sure the type of the value until we actually have a chance to
5655 fetch the data. The type can change depending on gdbarch, so it it
5656 also dependent on which thread you have selected.
5657
5658 1. making $_siginfo be an internalvar that creates a new value on
5659 access.
5660
5661 2. making the value of $_siginfo be an lval_computed value. */
5662
5663 /* This function implements the lval_computed support for reading a
5664 $_siginfo value. */
5665
5666 static void
5667 siginfo_value_read (struct value *v)
5668 {
5669 LONGEST transferred;
5670
5671 transferred =
5672 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5673 NULL,
5674 value_contents_all_raw (v),
5675 value_offset (v),
5676 TYPE_LENGTH (value_type (v)));
5677
5678 if (transferred != TYPE_LENGTH (value_type (v)))
5679 error (_("Unable to read siginfo"));
5680 }
5681
5682 /* This function implements the lval_computed support for writing a
5683 $_siginfo value. */
5684
5685 static void
5686 siginfo_value_write (struct value *v, struct value *fromval)
5687 {
5688 LONGEST transferred;
5689
5690 transferred = target_write (&current_target,
5691 TARGET_OBJECT_SIGNAL_INFO,
5692 NULL,
5693 value_contents_all_raw (fromval),
5694 value_offset (v),
5695 TYPE_LENGTH (value_type (fromval)));
5696
5697 if (transferred != TYPE_LENGTH (value_type (fromval)))
5698 error (_("Unable to write siginfo"));
5699 }
5700
5701 static struct lval_funcs siginfo_value_funcs =
5702 {
5703 siginfo_value_read,
5704 siginfo_value_write
5705 };
5706
5707 /* Return a new value with the correct type for the siginfo object of
5708 the current thread using architecture GDBARCH. Return a void value
5709 if there's no object available. */
5710
5711 static struct value *
5712 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
5713 {
5714 if (target_has_stack
5715 && !ptid_equal (inferior_ptid, null_ptid)
5716 && gdbarch_get_siginfo_type_p (gdbarch))
5717 {
5718 struct type *type = gdbarch_get_siginfo_type (gdbarch);
5719 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
5720 }
5721
5722 return allocate_value (builtin_type (gdbarch)->builtin_void);
5723 }
5724
5725 \f
5726 /* Inferior thread state.
5727 These are details related to the inferior itself, and don't include
5728 things like what frame the user had selected or what gdb was doing
5729 with the target at the time.
5730 For inferior function calls these are things we want to restore
5731 regardless of whether the function call successfully completes
5732 or the dummy frame has to be manually popped. */
5733
5734 struct inferior_thread_state
5735 {
5736 enum target_signal stop_signal;
5737 CORE_ADDR stop_pc;
5738 struct regcache *registers;
5739 };
5740
5741 struct inferior_thread_state *
5742 save_inferior_thread_state (void)
5743 {
5744 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5745 struct thread_info *tp = inferior_thread ();
5746
5747 inf_state->stop_signal = tp->stop_signal;
5748 inf_state->stop_pc = stop_pc;
5749
5750 inf_state->registers = regcache_dup (get_current_regcache ());
5751
5752 return inf_state;
5753 }
5754
5755 /* Restore inferior session state to INF_STATE. */
5756
5757 void
5758 restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5759 {
5760 struct thread_info *tp = inferior_thread ();
5761
5762 tp->stop_signal = inf_state->stop_signal;
5763 stop_pc = inf_state->stop_pc;
5764
5765 /* The inferior can be gone if the user types "print exit(0)"
5766 (and perhaps other times). */
5767 if (target_has_execution)
5768 /* NB: The register write goes through to the target. */
5769 regcache_cpy (get_current_regcache (), inf_state->registers);
5770 regcache_xfree (inf_state->registers);
5771 xfree (inf_state);
5772 }
5773
5774 static void
5775 do_restore_inferior_thread_state_cleanup (void *state)
5776 {
5777 restore_inferior_thread_state (state);
5778 }
5779
5780 struct cleanup *
5781 make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5782 {
5783 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
5784 }
5785
5786 void
5787 discard_inferior_thread_state (struct inferior_thread_state *inf_state)
5788 {
5789 regcache_xfree (inf_state->registers);
5790 xfree (inf_state);
5791 }
5792
5793 struct regcache *
5794 get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
5795 {
5796 return inf_state->registers;
5797 }
5798
5799 /* Session related state for inferior function calls.
5800 These are the additional bits of state that need to be restored
5801 when an inferior function call successfully completes. */
5802
5803 struct inferior_status
5804 {
5805 bpstat stop_bpstat;
5806 int stop_step;
5807 int stop_stack_dummy;
5808 int stopped_by_random_signal;
5809 int stepping_over_breakpoint;
5810 CORE_ADDR step_range_start;
5811 CORE_ADDR step_range_end;
5812 struct frame_id step_frame_id;
5813 struct frame_id step_stack_frame_id;
5814 enum step_over_calls_kind step_over_calls;
5815 CORE_ADDR step_resume_break_address;
5816 int stop_after_trap;
5817 int stop_soon;
5818
5819 /* ID if the selected frame when the inferior function call was made. */
5820 struct frame_id selected_frame_id;
5821
5822 int proceed_to_finish;
5823 int in_infcall;
5824 };
5825
5826 /* Save all of the information associated with the inferior<==>gdb
5827 connection. */
5828
5829 struct inferior_status *
5830 save_inferior_status (void)
5831 {
5832 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
5833 struct thread_info *tp = inferior_thread ();
5834 struct inferior *inf = current_inferior ();
5835
5836 inf_status->stop_step = tp->stop_step;
5837 inf_status->stop_stack_dummy = stop_stack_dummy;
5838 inf_status->stopped_by_random_signal = stopped_by_random_signal;
5839 inf_status->stepping_over_breakpoint = tp->trap_expected;
5840 inf_status->step_range_start = tp->step_range_start;
5841 inf_status->step_range_end = tp->step_range_end;
5842 inf_status->step_frame_id = tp->step_frame_id;
5843 inf_status->step_stack_frame_id = tp->step_stack_frame_id;
5844 inf_status->step_over_calls = tp->step_over_calls;
5845 inf_status->stop_after_trap = stop_after_trap;
5846 inf_status->stop_soon = inf->stop_soon;
5847 /* Save original bpstat chain here; replace it with copy of chain.
5848 If caller's caller is walking the chain, they'll be happier if we
5849 hand them back the original chain when restore_inferior_status is
5850 called. */
5851 inf_status->stop_bpstat = tp->stop_bpstat;
5852 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
5853 inf_status->proceed_to_finish = tp->proceed_to_finish;
5854 inf_status->in_infcall = tp->in_infcall;
5855
5856 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
5857
5858 return inf_status;
5859 }
5860
5861 static int
5862 restore_selected_frame (void *args)
5863 {
5864 struct frame_id *fid = (struct frame_id *) args;
5865 struct frame_info *frame;
5866
5867 frame = frame_find_by_id (*fid);
5868
5869 /* If inf_status->selected_frame_id is NULL, there was no previously
5870 selected frame. */
5871 if (frame == NULL)
5872 {
5873 warning (_("Unable to restore previously selected frame."));
5874 return 0;
5875 }
5876
5877 select_frame (frame);
5878
5879 return (1);
5880 }
5881
5882 /* Restore inferior session state to INF_STATUS. */
5883
5884 void
5885 restore_inferior_status (struct inferior_status *inf_status)
5886 {
5887 struct thread_info *tp = inferior_thread ();
5888 struct inferior *inf = current_inferior ();
5889
5890 tp->stop_step = inf_status->stop_step;
5891 stop_stack_dummy = inf_status->stop_stack_dummy;
5892 stopped_by_random_signal = inf_status->stopped_by_random_signal;
5893 tp->trap_expected = inf_status->stepping_over_breakpoint;
5894 tp->step_range_start = inf_status->step_range_start;
5895 tp->step_range_end = inf_status->step_range_end;
5896 tp->step_frame_id = inf_status->step_frame_id;
5897 tp->step_stack_frame_id = inf_status->step_stack_frame_id;
5898 tp->step_over_calls = inf_status->step_over_calls;
5899 stop_after_trap = inf_status->stop_after_trap;
5900 inf->stop_soon = inf_status->stop_soon;
5901 bpstat_clear (&tp->stop_bpstat);
5902 tp->stop_bpstat = inf_status->stop_bpstat;
5903 inf_status->stop_bpstat = NULL;
5904 tp->proceed_to_finish = inf_status->proceed_to_finish;
5905 tp->in_infcall = inf_status->in_infcall;
5906
5907 if (target_has_stack)
5908 {
5909 /* The point of catch_errors is that if the stack is clobbered,
5910 walking the stack might encounter a garbage pointer and
5911 error() trying to dereference it. */
5912 if (catch_errors
5913 (restore_selected_frame, &inf_status->selected_frame_id,
5914 "Unable to restore previously selected frame:\n",
5915 RETURN_MASK_ERROR) == 0)
5916 /* Error in restoring the selected frame. Select the innermost
5917 frame. */
5918 select_frame (get_current_frame ());
5919 }
5920
5921 xfree (inf_status);
5922 }
5923
5924 static void
5925 do_restore_inferior_status_cleanup (void *sts)
5926 {
5927 restore_inferior_status (sts);
5928 }
5929
5930 struct cleanup *
5931 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5932 {
5933 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5934 }
5935
5936 void
5937 discard_inferior_status (struct inferior_status *inf_status)
5938 {
5939 /* See save_inferior_status for info on stop_bpstat. */
5940 bpstat_clear (&inf_status->stop_bpstat);
5941 xfree (inf_status);
5942 }
5943 \f
5944 int
5945 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
5946 {
5947 struct target_waitstatus last;
5948 ptid_t last_ptid;
5949
5950 get_last_target_status (&last_ptid, &last);
5951
5952 if (last.kind != TARGET_WAITKIND_FORKED)
5953 return 0;
5954
5955 if (!ptid_equal (last_ptid, pid))
5956 return 0;
5957
5958 *child_pid = last.value.related_pid;
5959 return 1;
5960 }
5961
5962 int
5963 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
5964 {
5965 struct target_waitstatus last;
5966 ptid_t last_ptid;
5967
5968 get_last_target_status (&last_ptid, &last);
5969
5970 if (last.kind != TARGET_WAITKIND_VFORKED)
5971 return 0;
5972
5973 if (!ptid_equal (last_ptid, pid))
5974 return 0;
5975
5976 *child_pid = last.value.related_pid;
5977 return 1;
5978 }
5979
5980 int
5981 inferior_has_execd (ptid_t pid, char **execd_pathname)
5982 {
5983 struct target_waitstatus last;
5984 ptid_t last_ptid;
5985
5986 get_last_target_status (&last_ptid, &last);
5987
5988 if (last.kind != TARGET_WAITKIND_EXECD)
5989 return 0;
5990
5991 if (!ptid_equal (last_ptid, pid))
5992 return 0;
5993
5994 *execd_pathname = xstrdup (last.value.execd_pathname);
5995 return 1;
5996 }
5997
5998 int
5999 inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6000 {
6001 struct target_waitstatus last;
6002 ptid_t last_ptid;
6003
6004 get_last_target_status (&last_ptid, &last);
6005
6006 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6007 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6008 return 0;
6009
6010 if (!ptid_equal (last_ptid, pid))
6011 return 0;
6012
6013 *syscall_number = last.value.syscall_number;
6014 return 1;
6015 }
6016
6017 /* Oft used ptids */
6018 ptid_t null_ptid;
6019 ptid_t minus_one_ptid;
6020
6021 /* Create a ptid given the necessary PID, LWP, and TID components. */
6022
6023 ptid_t
6024 ptid_build (int pid, long lwp, long tid)
6025 {
6026 ptid_t ptid;
6027
6028 ptid.pid = pid;
6029 ptid.lwp = lwp;
6030 ptid.tid = tid;
6031 return ptid;
6032 }
6033
6034 /* Create a ptid from just a pid. */
6035
6036 ptid_t
6037 pid_to_ptid (int pid)
6038 {
6039 return ptid_build (pid, 0, 0);
6040 }
6041
6042 /* Fetch the pid (process id) component from a ptid. */
6043
6044 int
6045 ptid_get_pid (ptid_t ptid)
6046 {
6047 return ptid.pid;
6048 }
6049
6050 /* Fetch the lwp (lightweight process) component from a ptid. */
6051
6052 long
6053 ptid_get_lwp (ptid_t ptid)
6054 {
6055 return ptid.lwp;
6056 }
6057
6058 /* Fetch the tid (thread id) component from a ptid. */
6059
6060 long
6061 ptid_get_tid (ptid_t ptid)
6062 {
6063 return ptid.tid;
6064 }
6065
6066 /* ptid_equal() is used to test equality of two ptids. */
6067
6068 int
6069 ptid_equal (ptid_t ptid1, ptid_t ptid2)
6070 {
6071 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
6072 && ptid1.tid == ptid2.tid);
6073 }
6074
6075 /* Returns true if PTID represents a process. */
6076
6077 int
6078 ptid_is_pid (ptid_t ptid)
6079 {
6080 if (ptid_equal (minus_one_ptid, ptid))
6081 return 0;
6082 if (ptid_equal (null_ptid, ptid))
6083 return 0;
6084
6085 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
6086 }
6087
6088 /* restore_inferior_ptid() will be used by the cleanup machinery
6089 to restore the inferior_ptid value saved in a call to
6090 save_inferior_ptid(). */
6091
6092 static void
6093 restore_inferior_ptid (void *arg)
6094 {
6095 ptid_t *saved_ptid_ptr = arg;
6096 inferior_ptid = *saved_ptid_ptr;
6097 xfree (arg);
6098 }
6099
6100 /* Save the value of inferior_ptid so that it may be restored by a
6101 later call to do_cleanups(). Returns the struct cleanup pointer
6102 needed for later doing the cleanup. */
6103
6104 struct cleanup *
6105 save_inferior_ptid (void)
6106 {
6107 ptid_t *saved_ptid_ptr;
6108
6109 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6110 *saved_ptid_ptr = inferior_ptid;
6111 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6112 }
6113 \f
6114
6115 /* User interface for reverse debugging:
6116 Set exec-direction / show exec-direction commands
6117 (returns error unless target implements to_set_exec_direction method). */
6118
6119 enum exec_direction_kind execution_direction = EXEC_FORWARD;
6120 static const char exec_forward[] = "forward";
6121 static const char exec_reverse[] = "reverse";
6122 static const char *exec_direction = exec_forward;
6123 static const char *exec_direction_names[] = {
6124 exec_forward,
6125 exec_reverse,
6126 NULL
6127 };
6128
6129 static void
6130 set_exec_direction_func (char *args, int from_tty,
6131 struct cmd_list_element *cmd)
6132 {
6133 if (target_can_execute_reverse)
6134 {
6135 if (!strcmp (exec_direction, exec_forward))
6136 execution_direction = EXEC_FORWARD;
6137 else if (!strcmp (exec_direction, exec_reverse))
6138 execution_direction = EXEC_REVERSE;
6139 }
6140 }
6141
6142 static void
6143 show_exec_direction_func (struct ui_file *out, int from_tty,
6144 struct cmd_list_element *cmd, const char *value)
6145 {
6146 switch (execution_direction) {
6147 case EXEC_FORWARD:
6148 fprintf_filtered (out, _("Forward.\n"));
6149 break;
6150 case EXEC_REVERSE:
6151 fprintf_filtered (out, _("Reverse.\n"));
6152 break;
6153 case EXEC_ERROR:
6154 default:
6155 fprintf_filtered (out,
6156 _("Forward (target `%s' does not support exec-direction).\n"),
6157 target_shortname);
6158 break;
6159 }
6160 }
6161
6162 /* User interface for non-stop mode. */
6163
6164 int non_stop = 0;
6165 static int non_stop_1 = 0;
6166
6167 static void
6168 set_non_stop (char *args, int from_tty,
6169 struct cmd_list_element *c)
6170 {
6171 if (target_has_execution)
6172 {
6173 non_stop_1 = non_stop;
6174 error (_("Cannot change this setting while the inferior is running."));
6175 }
6176
6177 non_stop = non_stop_1;
6178 }
6179
6180 static void
6181 show_non_stop (struct ui_file *file, int from_tty,
6182 struct cmd_list_element *c, const char *value)
6183 {
6184 fprintf_filtered (file,
6185 _("Controlling the inferior in non-stop mode is %s.\n"),
6186 value);
6187 }
6188
6189 static void
6190 show_schedule_multiple (struct ui_file *file, int from_tty,
6191 struct cmd_list_element *c, const char *value)
6192 {
6193 fprintf_filtered (file, _("\
6194 Resuming the execution of threads of all processes is %s.\n"), value);
6195 }
6196
6197 void
6198 _initialize_infrun (void)
6199 {
6200 int i;
6201 int numsigs;
6202 struct cmd_list_element *c;
6203
6204 add_info ("signals", signals_info, _("\
6205 What debugger does when program gets various signals.\n\
6206 Specify a signal as argument to print info on that signal only."));
6207 add_info_alias ("handle", "signals", 0);
6208
6209 add_com ("handle", class_run, handle_command, _("\
6210 Specify how to handle a signal.\n\
6211 Args are signals and actions to apply to those signals.\n\
6212 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6213 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6214 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6215 The special arg \"all\" is recognized to mean all signals except those\n\
6216 used by the debugger, typically SIGTRAP and SIGINT.\n\
6217 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
6218 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6219 Stop means reenter debugger if this signal happens (implies print).\n\
6220 Print means print a message if this signal happens.\n\
6221 Pass means let program see this signal; otherwise program doesn't know.\n\
6222 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6223 Pass and Stop may be combined."));
6224 if (xdb_commands)
6225 {
6226 add_com ("lz", class_info, signals_info, _("\
6227 What debugger does when program gets various signals.\n\
6228 Specify a signal as argument to print info on that signal only."));
6229 add_com ("z", class_run, xdb_handle_command, _("\
6230 Specify how to handle a signal.\n\
6231 Args are signals and actions to apply to those signals.\n\
6232 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6233 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6234 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6235 The special arg \"all\" is recognized to mean all signals except those\n\
6236 used by the debugger, typically SIGTRAP and SIGINT.\n\
6237 Recognized actions include \"s\" (toggles between stop and nostop), \n\
6238 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6239 nopass), \"Q\" (noprint)\n\
6240 Stop means reenter debugger if this signal happens (implies print).\n\
6241 Print means print a message if this signal happens.\n\
6242 Pass means let program see this signal; otherwise program doesn't know.\n\
6243 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6244 Pass and Stop may be combined."));
6245 }
6246
6247 if (!dbx_commands)
6248 stop_command = add_cmd ("stop", class_obscure,
6249 not_just_help_class_command, _("\
6250 There is no `stop' command, but you can set a hook on `stop'.\n\
6251 This allows you to set a list of commands to be run each time execution\n\
6252 of the program stops."), &cmdlist);
6253
6254 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
6255 Set inferior debugging."), _("\
6256 Show inferior debugging."), _("\
6257 When non-zero, inferior specific debugging is enabled."),
6258 NULL,
6259 show_debug_infrun,
6260 &setdebuglist, &showdebuglist);
6261
6262 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
6263 Set displaced stepping debugging."), _("\
6264 Show displaced stepping debugging."), _("\
6265 When non-zero, displaced stepping specific debugging is enabled."),
6266 NULL,
6267 show_debug_displaced,
6268 &setdebuglist, &showdebuglist);
6269
6270 add_setshow_boolean_cmd ("non-stop", no_class,
6271 &non_stop_1, _("\
6272 Set whether gdb controls the inferior in non-stop mode."), _("\
6273 Show whether gdb controls the inferior in non-stop mode."), _("\
6274 When debugging a multi-threaded program and this setting is\n\
6275 off (the default, also called all-stop mode), when one thread stops\n\
6276 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
6277 all other threads in the program while you interact with the thread of\n\
6278 interest. When you continue or step a thread, you can allow the other\n\
6279 threads to run, or have them remain stopped, but while you inspect any\n\
6280 thread's state, all threads stop.\n\
6281 \n\
6282 In non-stop mode, when one thread stops, other threads can continue\n\
6283 to run freely. You'll be able to step each thread independently,\n\
6284 leave it stopped or free to run as needed."),
6285 set_non_stop,
6286 show_non_stop,
6287 &setlist,
6288 &showlist);
6289
6290 numsigs = (int) TARGET_SIGNAL_LAST;
6291 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
6292 signal_print = (unsigned char *)
6293 xmalloc (sizeof (signal_print[0]) * numsigs);
6294 signal_program = (unsigned char *)
6295 xmalloc (sizeof (signal_program[0]) * numsigs);
6296 for (i = 0; i < numsigs; i++)
6297 {
6298 signal_stop[i] = 1;
6299 signal_print[i] = 1;
6300 signal_program[i] = 1;
6301 }
6302
6303 /* Signals caused by debugger's own actions
6304 should not be given to the program afterwards. */
6305 signal_program[TARGET_SIGNAL_TRAP] = 0;
6306 signal_program[TARGET_SIGNAL_INT] = 0;
6307
6308 /* Signals that are not errors should not normally enter the debugger. */
6309 signal_stop[TARGET_SIGNAL_ALRM] = 0;
6310 signal_print[TARGET_SIGNAL_ALRM] = 0;
6311 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
6312 signal_print[TARGET_SIGNAL_VTALRM] = 0;
6313 signal_stop[TARGET_SIGNAL_PROF] = 0;
6314 signal_print[TARGET_SIGNAL_PROF] = 0;
6315 signal_stop[TARGET_SIGNAL_CHLD] = 0;
6316 signal_print[TARGET_SIGNAL_CHLD] = 0;
6317 signal_stop[TARGET_SIGNAL_IO] = 0;
6318 signal_print[TARGET_SIGNAL_IO] = 0;
6319 signal_stop[TARGET_SIGNAL_POLL] = 0;
6320 signal_print[TARGET_SIGNAL_POLL] = 0;
6321 signal_stop[TARGET_SIGNAL_URG] = 0;
6322 signal_print[TARGET_SIGNAL_URG] = 0;
6323 signal_stop[TARGET_SIGNAL_WINCH] = 0;
6324 signal_print[TARGET_SIGNAL_WINCH] = 0;
6325
6326 /* These signals are used internally by user-level thread
6327 implementations. (See signal(5) on Solaris.) Like the above
6328 signals, a healthy program receives and handles them as part of
6329 its normal operation. */
6330 signal_stop[TARGET_SIGNAL_LWP] = 0;
6331 signal_print[TARGET_SIGNAL_LWP] = 0;
6332 signal_stop[TARGET_SIGNAL_WAITING] = 0;
6333 signal_print[TARGET_SIGNAL_WAITING] = 0;
6334 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
6335 signal_print[TARGET_SIGNAL_CANCEL] = 0;
6336
6337 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
6338 &stop_on_solib_events, _("\
6339 Set stopping for shared library events."), _("\
6340 Show stopping for shared library events."), _("\
6341 If nonzero, gdb will give control to the user when the dynamic linker\n\
6342 notifies gdb of shared library events. The most common event of interest\n\
6343 to the user would be loading/unloading of a new library."),
6344 NULL,
6345 show_stop_on_solib_events,
6346 &setlist, &showlist);
6347
6348 add_setshow_enum_cmd ("follow-fork-mode", class_run,
6349 follow_fork_mode_kind_names,
6350 &follow_fork_mode_string, _("\
6351 Set debugger response to a program call of fork or vfork."), _("\
6352 Show debugger response to a program call of fork or vfork."), _("\
6353 A fork or vfork creates a new process. follow-fork-mode can be:\n\
6354 parent - the original process is debugged after a fork\n\
6355 child - the new process is debugged after a fork\n\
6356 The unfollowed process will continue to run.\n\
6357 By default, the debugger will follow the parent process."),
6358 NULL,
6359 show_follow_fork_mode_string,
6360 &setlist, &showlist);
6361
6362 add_setshow_enum_cmd ("follow-exec-mode", class_run,
6363 follow_exec_mode_names,
6364 &follow_exec_mode_string, _("\
6365 Set debugger response to a program call of exec."), _("\
6366 Show debugger response to a program call of exec."), _("\
6367 An exec call replaces the program image of a process.\n\
6368 \n\
6369 follow-exec-mode can be:\n\
6370 \n\
6371 new - the debugger creates a new inferior and rebinds the process \n\
6372 to this new inferior. The program the process was running before\n\
6373 the exec call can be restarted afterwards by restarting the original\n\
6374 inferior.\n\
6375 \n\
6376 same - the debugger keeps the process bound to the same inferior.\n\
6377 The new executable image replaces the previous executable loaded in\n\
6378 the inferior. Restarting the inferior after the exec call restarts\n\
6379 the executable the process was running after the exec call.\n\
6380 \n\
6381 By default, the debugger will use the same inferior."),
6382 NULL,
6383 show_follow_exec_mode_string,
6384 &setlist, &showlist);
6385
6386 add_setshow_enum_cmd ("scheduler-locking", class_run,
6387 scheduler_enums, &scheduler_mode, _("\
6388 Set mode for locking scheduler during execution."), _("\
6389 Show mode for locking scheduler during execution."), _("\
6390 off == no locking (threads may preempt at any time)\n\
6391 on == full locking (no thread except the current thread may run)\n\
6392 step == scheduler locked during every single-step operation.\n\
6393 In this mode, no other thread may run during a step command.\n\
6394 Other threads may run while stepping over a function call ('next')."),
6395 set_schedlock_func, /* traps on target vector */
6396 show_scheduler_mode,
6397 &setlist, &showlist);
6398
6399 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
6400 Set mode for resuming threads of all processes."), _("\
6401 Show mode for resuming threads of all processes."), _("\
6402 When on, execution commands (such as 'continue' or 'next') resume all\n\
6403 threads of all processes. When off (which is the default), execution\n\
6404 commands only resume the threads of the current process. The set of\n\
6405 threads that are resumed is further refined by the scheduler-locking\n\
6406 mode (see help set scheduler-locking)."),
6407 NULL,
6408 show_schedule_multiple,
6409 &setlist, &showlist);
6410
6411 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
6412 Set mode of the step operation."), _("\
6413 Show mode of the step operation."), _("\
6414 When set, doing a step over a function without debug line information\n\
6415 will stop at the first instruction of that function. Otherwise, the\n\
6416 function is skipped and the step command stops at a different source line."),
6417 NULL,
6418 show_step_stop_if_no_debug,
6419 &setlist, &showlist);
6420
6421 add_setshow_enum_cmd ("displaced-stepping", class_run,
6422 can_use_displaced_stepping_enum,
6423 &can_use_displaced_stepping, _("\
6424 Set debugger's willingness to use displaced stepping."), _("\
6425 Show debugger's willingness to use displaced stepping."), _("\
6426 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
6427 supported by the target architecture. If off, gdb will not use displaced\n\
6428 stepping to step over breakpoints, even if such is supported by the target\n\
6429 architecture. If auto (which is the default), gdb will use displaced stepping\n\
6430 if the target architecture supports it and non-stop mode is active, but will not\n\
6431 use it in all-stop mode (see help set non-stop)."),
6432 NULL,
6433 show_can_use_displaced_stepping,
6434 &setlist, &showlist);
6435
6436 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
6437 &exec_direction, _("Set direction of execution.\n\
6438 Options are 'forward' or 'reverse'."),
6439 _("Show direction of execution (forward/reverse)."),
6440 _("Tells gdb whether to execute forward or backward."),
6441 set_exec_direction_func, show_exec_direction_func,
6442 &setlist, &showlist);
6443
6444 /* Set/show detach-on-fork: user-settable mode. */
6445
6446 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
6447 Set whether gdb will detach the child of a fork."), _("\
6448 Show whether gdb will detach the child of a fork."), _("\
6449 Tells gdb whether to detach the child of a fork."),
6450 NULL, NULL, &setlist, &showlist);
6451
6452 /* ptid initializations */
6453 null_ptid = ptid_build (0, 0, 0);
6454 minus_one_ptid = ptid_build (-1, 0, 0);
6455 inferior_ptid = null_ptid;
6456 target_last_wait_ptid = minus_one_ptid;
6457 displaced_step_ptid = null_ptid;
6458
6459 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
6460 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
6461 observer_attach_thread_exit (infrun_thread_thread_exit);
6462
6463 /* Explicitly create without lookup, since that tries to create a
6464 value with a void typed value, and when we get here, gdbarch
6465 isn't initialized yet. At this point, we're quite sure there
6466 isn't another convenience variable of the same name. */
6467 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
6468 }