* infrun.c (resume): If following a fork, reread the current
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51 #include "event-top.h"
52
53 /* Prototypes for local functions */
54
55 static void signals_info (char *, int);
56
57 static void handle_command (char *, int);
58
59 static void sig_print_info (enum target_signal);
60
61 static void sig_print_header (void);
62
63 static void resume_cleanups (void *);
64
65 static int hook_stop_stub (void *);
66
67 static int restore_selected_frame (void *);
68
69 static void build_infrun (void);
70
71 static int follow_fork (void);
72
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
75
76 static int currently_stepping (struct thread_info *tp);
77
78 static int currently_stepping_callback (struct thread_info *tp, void *data);
79
80 static void xdb_handle_command (char *args, int from_tty);
81
82 static int prepare_to_proceed (int);
83
84 void _initialize_infrun (void);
85
86 /* When set, stop the 'step' command if we enter a function which has
87 no line number information. The normal behavior is that we step
88 over such function. */
89 int step_stop_if_no_debug = 0;
90 static void
91 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
92 struct cmd_list_element *c, const char *value)
93 {
94 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
95 }
96
97 /* In asynchronous mode, but simulating synchronous execution. */
98
99 int sync_execution = 0;
100
101 /* wait_for_inferior and normal_stop use this to notify the user
102 when the inferior stopped in a different thread than it had been
103 running in. */
104
105 static ptid_t previous_inferior_ptid;
106
107 int debug_displaced = 0;
108 static void
109 show_debug_displaced (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
111 {
112 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
113 }
114
115 static int debug_infrun = 0;
116 static void
117 show_debug_infrun (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
121 }
122
123 /* If the program uses ELF-style shared libraries, then calls to
124 functions in shared libraries go through stubs, which live in a
125 table called the PLT (Procedure Linkage Table). The first time the
126 function is called, the stub sends control to the dynamic linker,
127 which looks up the function's real address, patches the stub so
128 that future calls will go directly to the function, and then passes
129 control to the function.
130
131 If we are stepping at the source level, we don't want to see any of
132 this --- we just want to skip over the stub and the dynamic linker.
133 The simple approach is to single-step until control leaves the
134 dynamic linker.
135
136 However, on some systems (e.g., Red Hat's 5.2 distribution) the
137 dynamic linker calls functions in the shared C library, so you
138 can't tell from the PC alone whether the dynamic linker is still
139 running. In this case, we use a step-resume breakpoint to get us
140 past the dynamic linker, as if we were using "next" to step over a
141 function call.
142
143 in_solib_dynsym_resolve_code() says whether we're in the dynamic
144 linker code or not. Normally, this means we single-step. However,
145 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
146 address where we can place a step-resume breakpoint to get past the
147 linker's symbol resolution function.
148
149 in_solib_dynsym_resolve_code() can generally be implemented in a
150 pretty portable way, by comparing the PC against the address ranges
151 of the dynamic linker's sections.
152
153 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
154 it depends on internal details of the dynamic linker. It's usually
155 not too hard to figure out where to put a breakpoint, but it
156 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
157 sanity checking. If it can't figure things out, returning zero and
158 getting the (possibly confusing) stepping behavior is better than
159 signalling an error, which will obscure the change in the
160 inferior's state. */
161
162 /* This function returns TRUE if pc is the address of an instruction
163 that lies within the dynamic linker (such as the event hook, or the
164 dld itself).
165
166 This function must be used only when a dynamic linker event has
167 been caught, and the inferior is being stepped out of the hook, or
168 undefined results are guaranteed. */
169
170 #ifndef SOLIB_IN_DYNAMIC_LINKER
171 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
172 #endif
173
174
175 /* Convert the #defines into values. This is temporary until wfi control
176 flow is completely sorted out. */
177
178 #ifndef CANNOT_STEP_HW_WATCHPOINTS
179 #define CANNOT_STEP_HW_WATCHPOINTS 0
180 #else
181 #undef CANNOT_STEP_HW_WATCHPOINTS
182 #define CANNOT_STEP_HW_WATCHPOINTS 1
183 #endif
184
185 /* Tables of how to react to signals; the user sets them. */
186
187 static unsigned char *signal_stop;
188 static unsigned char *signal_print;
189 static unsigned char *signal_program;
190
191 #define SET_SIGS(nsigs,sigs,flags) \
192 do { \
193 int signum = (nsigs); \
194 while (signum-- > 0) \
195 if ((sigs)[signum]) \
196 (flags)[signum] = 1; \
197 } while (0)
198
199 #define UNSET_SIGS(nsigs,sigs,flags) \
200 do { \
201 int signum = (nsigs); \
202 while (signum-- > 0) \
203 if ((sigs)[signum]) \
204 (flags)[signum] = 0; \
205 } while (0)
206
207 /* Value to pass to target_resume() to cause all threads to resume */
208
209 #define RESUME_ALL (pid_to_ptid (-1))
210
211 /* Command list pointer for the "stop" placeholder. */
212
213 static struct cmd_list_element *stop_command;
214
215 /* Function inferior was in as of last step command. */
216
217 static struct symbol *step_start_function;
218
219 /* Nonzero if we want to give control to the user when we're notified
220 of shared library events by the dynamic linker. */
221 static int stop_on_solib_events;
222 static void
223 show_stop_on_solib_events (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
227 value);
228 }
229
230 /* Nonzero means expecting a trace trap
231 and should stop the inferior and return silently when it happens. */
232
233 int stop_after_trap;
234
235 /* Save register contents here when executing a "finish" command or are
236 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
237 Thus this contains the return value from the called function (assuming
238 values are returned in a register). */
239
240 struct regcache *stop_registers;
241
242 /* Nonzero after stop if current stack frame should be printed. */
243
244 static int stop_print_frame;
245
246 /* This is a cached copy of the pid/waitstatus of the last event
247 returned by target_wait()/deprecated_target_wait_hook(). This
248 information is returned by get_last_target_status(). */
249 static ptid_t target_last_wait_ptid;
250 static struct target_waitstatus target_last_waitstatus;
251
252 static void context_switch (ptid_t ptid);
253
254 void init_thread_stepping_state (struct thread_info *tss);
255
256 void init_infwait_state (void);
257
258 /* This is used to remember when a fork, vfork or exec event
259 was caught by a catchpoint, and thus the event is to be
260 followed at the next resume of the inferior, and not
261 immediately. */
262 static struct
263 {
264 enum target_waitkind kind;
265 struct
266 {
267 ptid_t parent_pid;
268 ptid_t child_pid;
269 }
270 fork_event;
271 char *execd_pathname;
272 }
273 pending_follow;
274
275 static const char follow_fork_mode_child[] = "child";
276 static const char follow_fork_mode_parent[] = "parent";
277
278 static const char *follow_fork_mode_kind_names[] = {
279 follow_fork_mode_child,
280 follow_fork_mode_parent,
281 NULL
282 };
283
284 static const char *follow_fork_mode_string = follow_fork_mode_parent;
285 static void
286 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
287 struct cmd_list_element *c, const char *value)
288 {
289 fprintf_filtered (file, _("\
290 Debugger response to a program call of fork or vfork is \"%s\".\n"),
291 value);
292 }
293 \f
294
295 static int
296 follow_fork (void)
297 {
298 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
299
300 return target_follow_fork (follow_child);
301 }
302
303 void
304 follow_inferior_reset_breakpoints (void)
305 {
306 struct thread_info *tp = inferior_thread ();
307
308 /* Was there a step_resume breakpoint? (There was if the user
309 did a "next" at the fork() call.) If so, explicitly reset its
310 thread number.
311
312 step_resumes are a form of bp that are made to be per-thread.
313 Since we created the step_resume bp when the parent process
314 was being debugged, and now are switching to the child process,
315 from the breakpoint package's viewpoint, that's a switch of
316 "threads". We must update the bp's notion of which thread
317 it is for, or it'll be ignored when it triggers. */
318
319 if (tp->step_resume_breakpoint)
320 breakpoint_re_set_thread (tp->step_resume_breakpoint);
321
322 /* Reinsert all breakpoints in the child. The user may have set
323 breakpoints after catching the fork, in which case those
324 were never set in the child, but only in the parent. This makes
325 sure the inserted breakpoints match the breakpoint list. */
326
327 breakpoint_re_set ();
328 insert_breakpoints ();
329 }
330
331 /* EXECD_PATHNAME is assumed to be non-NULL. */
332
333 static void
334 follow_exec (ptid_t pid, char *execd_pathname)
335 {
336 struct target_ops *tgt;
337 struct thread_info *th = inferior_thread ();
338
339 /* This is an exec event that we actually wish to pay attention to.
340 Refresh our symbol table to the newly exec'd program, remove any
341 momentary bp's, etc.
342
343 If there are breakpoints, they aren't really inserted now,
344 since the exec() transformed our inferior into a fresh set
345 of instructions.
346
347 We want to preserve symbolic breakpoints on the list, since
348 we have hopes that they can be reset after the new a.out's
349 symbol table is read.
350
351 However, any "raw" breakpoints must be removed from the list
352 (e.g., the solib bp's), since their address is probably invalid
353 now.
354
355 And, we DON'T want to call delete_breakpoints() here, since
356 that may write the bp's "shadow contents" (the instruction
357 value that was overwritten witha TRAP instruction). Since
358 we now have a new a.out, those shadow contents aren't valid. */
359 update_breakpoints_after_exec ();
360
361 /* If there was one, it's gone now. We cannot truly step-to-next
362 statement through an exec(). */
363 th->step_resume_breakpoint = NULL;
364 th->step_range_start = 0;
365 th->step_range_end = 0;
366
367 /* What is this a.out's name? */
368 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
369
370 /* We've followed the inferior through an exec. Therefore, the
371 inferior has essentially been killed & reborn. */
372
373 gdb_flush (gdb_stdout);
374
375 breakpoint_init_inferior (inf_execd);
376
377 if (gdb_sysroot && *gdb_sysroot)
378 {
379 char *name = alloca (strlen (gdb_sysroot)
380 + strlen (execd_pathname)
381 + 1);
382 strcpy (name, gdb_sysroot);
383 strcat (name, execd_pathname);
384 execd_pathname = name;
385 }
386
387 /* That a.out is now the one to use. */
388 exec_file_attach (execd_pathname, 0);
389
390 /* Reset the shared library package. This ensures that we get a
391 shlib event when the child reaches "_start", at which point the
392 dld will have had a chance to initialize the child. */
393 /* Also, loading a symbol file below may trigger symbol lookups, and
394 we don't want those to be satisfied by the libraries of the
395 previous incarnation of this process. */
396 no_shared_libraries (NULL, 0);
397
398 /* Load the main file's symbols. */
399 symbol_file_add_main (execd_pathname, 0);
400
401 #ifdef SOLIB_CREATE_INFERIOR_HOOK
402 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
403 #else
404 solib_create_inferior_hook ();
405 #endif
406
407 /* Reinsert all breakpoints. (Those which were symbolic have
408 been reset to the proper address in the new a.out, thanks
409 to symbol_file_command...) */
410 insert_breakpoints ();
411
412 /* The next resume of this inferior should bring it to the shlib
413 startup breakpoints. (If the user had also set bp's on
414 "main" from the old (parent) process, then they'll auto-
415 matically get reset there in the new process.) */
416 }
417
418 /* Non-zero if we just simulating a single-step. This is needed
419 because we cannot remove the breakpoints in the inferior process
420 until after the `wait' in `wait_for_inferior'. */
421 static int singlestep_breakpoints_inserted_p = 0;
422
423 /* The thread we inserted single-step breakpoints for. */
424 static ptid_t singlestep_ptid;
425
426 /* PC when we started this single-step. */
427 static CORE_ADDR singlestep_pc;
428
429 /* If another thread hit the singlestep breakpoint, we save the original
430 thread here so that we can resume single-stepping it later. */
431 static ptid_t saved_singlestep_ptid;
432 static int stepping_past_singlestep_breakpoint;
433
434 /* If not equal to null_ptid, this means that after stepping over breakpoint
435 is finished, we need to switch to deferred_step_ptid, and step it.
436
437 The use case is when one thread has hit a breakpoint, and then the user
438 has switched to another thread and issued 'step'. We need to step over
439 breakpoint in the thread which hit the breakpoint, but then continue
440 stepping the thread user has selected. */
441 static ptid_t deferred_step_ptid;
442 \f
443 /* Displaced stepping. */
444
445 /* In non-stop debugging mode, we must take special care to manage
446 breakpoints properly; in particular, the traditional strategy for
447 stepping a thread past a breakpoint it has hit is unsuitable.
448 'Displaced stepping' is a tactic for stepping one thread past a
449 breakpoint it has hit while ensuring that other threads running
450 concurrently will hit the breakpoint as they should.
451
452 The traditional way to step a thread T off a breakpoint in a
453 multi-threaded program in all-stop mode is as follows:
454
455 a0) Initially, all threads are stopped, and breakpoints are not
456 inserted.
457 a1) We single-step T, leaving breakpoints uninserted.
458 a2) We insert breakpoints, and resume all threads.
459
460 In non-stop debugging, however, this strategy is unsuitable: we
461 don't want to have to stop all threads in the system in order to
462 continue or step T past a breakpoint. Instead, we use displaced
463 stepping:
464
465 n0) Initially, T is stopped, other threads are running, and
466 breakpoints are inserted.
467 n1) We copy the instruction "under" the breakpoint to a separate
468 location, outside the main code stream, making any adjustments
469 to the instruction, register, and memory state as directed by
470 T's architecture.
471 n2) We single-step T over the instruction at its new location.
472 n3) We adjust the resulting register and memory state as directed
473 by T's architecture. This includes resetting T's PC to point
474 back into the main instruction stream.
475 n4) We resume T.
476
477 This approach depends on the following gdbarch methods:
478
479 - gdbarch_max_insn_length and gdbarch_displaced_step_location
480 indicate where to copy the instruction, and how much space must
481 be reserved there. We use these in step n1.
482
483 - gdbarch_displaced_step_copy_insn copies a instruction to a new
484 address, and makes any necessary adjustments to the instruction,
485 register contents, and memory. We use this in step n1.
486
487 - gdbarch_displaced_step_fixup adjusts registers and memory after
488 we have successfuly single-stepped the instruction, to yield the
489 same effect the instruction would have had if we had executed it
490 at its original address. We use this in step n3.
491
492 - gdbarch_displaced_step_free_closure provides cleanup.
493
494 The gdbarch_displaced_step_copy_insn and
495 gdbarch_displaced_step_fixup functions must be written so that
496 copying an instruction with gdbarch_displaced_step_copy_insn,
497 single-stepping across the copied instruction, and then applying
498 gdbarch_displaced_insn_fixup should have the same effects on the
499 thread's memory and registers as stepping the instruction in place
500 would have. Exactly which responsibilities fall to the copy and
501 which fall to the fixup is up to the author of those functions.
502
503 See the comments in gdbarch.sh for details.
504
505 Note that displaced stepping and software single-step cannot
506 currently be used in combination, although with some care I think
507 they could be made to. Software single-step works by placing
508 breakpoints on all possible subsequent instructions; if the
509 displaced instruction is a PC-relative jump, those breakpoints
510 could fall in very strange places --- on pages that aren't
511 executable, or at addresses that are not proper instruction
512 boundaries. (We do generally let other threads run while we wait
513 to hit the software single-step breakpoint, and they might
514 encounter such a corrupted instruction.) One way to work around
515 this would be to have gdbarch_displaced_step_copy_insn fully
516 simulate the effect of PC-relative instructions (and return NULL)
517 on architectures that use software single-stepping.
518
519 In non-stop mode, we can have independent and simultaneous step
520 requests, so more than one thread may need to simultaneously step
521 over a breakpoint. The current implementation assumes there is
522 only one scratch space per process. In this case, we have to
523 serialize access to the scratch space. If thread A wants to step
524 over a breakpoint, but we are currently waiting for some other
525 thread to complete a displaced step, we leave thread A stopped and
526 place it in the displaced_step_request_queue. Whenever a displaced
527 step finishes, we pick the next thread in the queue and start a new
528 displaced step operation on it. See displaced_step_prepare and
529 displaced_step_fixup for details. */
530
531 /* If this is not null_ptid, this is the thread carrying out a
532 displaced single-step. This thread's state will require fixing up
533 once it has completed its step. */
534 static ptid_t displaced_step_ptid;
535
536 struct displaced_step_request
537 {
538 ptid_t ptid;
539 struct displaced_step_request *next;
540 };
541
542 /* A queue of pending displaced stepping requests. */
543 struct displaced_step_request *displaced_step_request_queue;
544
545 /* The architecture the thread had when we stepped it. */
546 static struct gdbarch *displaced_step_gdbarch;
547
548 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
549 for post-step cleanup. */
550 static struct displaced_step_closure *displaced_step_closure;
551
552 /* The address of the original instruction, and the copy we made. */
553 static CORE_ADDR displaced_step_original, displaced_step_copy;
554
555 /* Saved contents of copy area. */
556 static gdb_byte *displaced_step_saved_copy;
557
558 /* Enum strings for "set|show displaced-stepping". */
559
560 static const char can_use_displaced_stepping_auto[] = "auto";
561 static const char can_use_displaced_stepping_on[] = "on";
562 static const char can_use_displaced_stepping_off[] = "off";
563 static const char *can_use_displaced_stepping_enum[] =
564 {
565 can_use_displaced_stepping_auto,
566 can_use_displaced_stepping_on,
567 can_use_displaced_stepping_off,
568 NULL,
569 };
570
571 /* If ON, and the architecture supports it, GDB will use displaced
572 stepping to step over breakpoints. If OFF, or if the architecture
573 doesn't support it, GDB will instead use the traditional
574 hold-and-step approach. If AUTO (which is the default), GDB will
575 decide which technique to use to step over breakpoints depending on
576 which of all-stop or non-stop mode is active --- displaced stepping
577 in non-stop mode; hold-and-step in all-stop mode. */
578
579 static const char *can_use_displaced_stepping =
580 can_use_displaced_stepping_auto;
581
582 static void
583 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
584 struct cmd_list_element *c,
585 const char *value)
586 {
587 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
588 fprintf_filtered (file, _("\
589 Debugger's willingness to use displaced stepping to step over \
590 breakpoints is %s (currently %s).\n"),
591 value, non_stop ? "on" : "off");
592 else
593 fprintf_filtered (file, _("\
594 Debugger's willingness to use displaced stepping to step over \
595 breakpoints is %s.\n"), value);
596 }
597
598 /* Return non-zero if displaced stepping can/should be used to step
599 over breakpoints. */
600
601 static int
602 use_displaced_stepping (struct gdbarch *gdbarch)
603 {
604 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
605 && non_stop)
606 || can_use_displaced_stepping == can_use_displaced_stepping_on)
607 && gdbarch_displaced_step_copy_insn_p (gdbarch));
608 }
609
610 /* Clean out any stray displaced stepping state. */
611 static void
612 displaced_step_clear (void)
613 {
614 /* Indicate that there is no cleanup pending. */
615 displaced_step_ptid = null_ptid;
616
617 if (displaced_step_closure)
618 {
619 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
620 displaced_step_closure);
621 displaced_step_closure = NULL;
622 }
623 }
624
625 static void
626 cleanup_displaced_step_closure (void *ptr)
627 {
628 struct displaced_step_closure *closure = ptr;
629
630 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
631 }
632
633 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
634 void
635 displaced_step_dump_bytes (struct ui_file *file,
636 const gdb_byte *buf,
637 size_t len)
638 {
639 int i;
640
641 for (i = 0; i < len; i++)
642 fprintf_unfiltered (file, "%02x ", buf[i]);
643 fputs_unfiltered ("\n", file);
644 }
645
646 /* Prepare to single-step, using displaced stepping.
647
648 Note that we cannot use displaced stepping when we have a signal to
649 deliver. If we have a signal to deliver and an instruction to step
650 over, then after the step, there will be no indication from the
651 target whether the thread entered a signal handler or ignored the
652 signal and stepped over the instruction successfully --- both cases
653 result in a simple SIGTRAP. In the first case we mustn't do a
654 fixup, and in the second case we must --- but we can't tell which.
655 Comments in the code for 'random signals' in handle_inferior_event
656 explain how we handle this case instead.
657
658 Returns 1 if preparing was successful -- this thread is going to be
659 stepped now; or 0 if displaced stepping this thread got queued. */
660 static int
661 displaced_step_prepare (ptid_t ptid)
662 {
663 struct cleanup *old_cleanups, *ignore_cleanups;
664 struct regcache *regcache = get_thread_regcache (ptid);
665 struct gdbarch *gdbarch = get_regcache_arch (regcache);
666 CORE_ADDR original, copy;
667 ULONGEST len;
668 struct displaced_step_closure *closure;
669
670 /* We should never reach this function if the architecture does not
671 support displaced stepping. */
672 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
673
674 /* For the first cut, we're displaced stepping one thread at a
675 time. */
676
677 if (!ptid_equal (displaced_step_ptid, null_ptid))
678 {
679 /* Already waiting for a displaced step to finish. Defer this
680 request and place in queue. */
681 struct displaced_step_request *req, *new_req;
682
683 if (debug_displaced)
684 fprintf_unfiltered (gdb_stdlog,
685 "displaced: defering step of %s\n",
686 target_pid_to_str (ptid));
687
688 new_req = xmalloc (sizeof (*new_req));
689 new_req->ptid = ptid;
690 new_req->next = NULL;
691
692 if (displaced_step_request_queue)
693 {
694 for (req = displaced_step_request_queue;
695 req && req->next;
696 req = req->next)
697 ;
698 req->next = new_req;
699 }
700 else
701 displaced_step_request_queue = new_req;
702
703 return 0;
704 }
705 else
706 {
707 if (debug_displaced)
708 fprintf_unfiltered (gdb_stdlog,
709 "displaced: stepping %s now\n",
710 target_pid_to_str (ptid));
711 }
712
713 displaced_step_clear ();
714
715 old_cleanups = save_inferior_ptid ();
716 inferior_ptid = ptid;
717
718 original = regcache_read_pc (regcache);
719
720 copy = gdbarch_displaced_step_location (gdbarch);
721 len = gdbarch_max_insn_length (gdbarch);
722
723 /* Save the original contents of the copy area. */
724 displaced_step_saved_copy = xmalloc (len);
725 ignore_cleanups = make_cleanup (free_current_contents,
726 &displaced_step_saved_copy);
727 read_memory (copy, displaced_step_saved_copy, len);
728 if (debug_displaced)
729 {
730 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
731 paddr_nz (copy));
732 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
733 };
734
735 closure = gdbarch_displaced_step_copy_insn (gdbarch,
736 original, copy, regcache);
737
738 /* We don't support the fully-simulated case at present. */
739 gdb_assert (closure);
740
741 make_cleanup (cleanup_displaced_step_closure, closure);
742
743 /* Resume execution at the copy. */
744 regcache_write_pc (regcache, copy);
745
746 discard_cleanups (ignore_cleanups);
747
748 do_cleanups (old_cleanups);
749
750 if (debug_displaced)
751 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
752 paddr_nz (copy));
753
754 /* Save the information we need to fix things up if the step
755 succeeds. */
756 displaced_step_ptid = ptid;
757 displaced_step_gdbarch = gdbarch;
758 displaced_step_closure = closure;
759 displaced_step_original = original;
760 displaced_step_copy = copy;
761 return 1;
762 }
763
764 static void
765 displaced_step_clear_cleanup (void *ignore)
766 {
767 displaced_step_clear ();
768 }
769
770 static void
771 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
772 {
773 struct cleanup *ptid_cleanup = save_inferior_ptid ();
774 inferior_ptid = ptid;
775 write_memory (memaddr, myaddr, len);
776 do_cleanups (ptid_cleanup);
777 }
778
779 static void
780 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
781 {
782 struct cleanup *old_cleanups;
783
784 /* Was this event for the pid we displaced? */
785 if (ptid_equal (displaced_step_ptid, null_ptid)
786 || ! ptid_equal (displaced_step_ptid, event_ptid))
787 return;
788
789 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
790
791 /* Restore the contents of the copy area. */
792 {
793 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
794 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
795 displaced_step_saved_copy, len);
796 if (debug_displaced)
797 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
798 paddr_nz (displaced_step_copy));
799 }
800
801 /* Did the instruction complete successfully? */
802 if (signal == TARGET_SIGNAL_TRAP)
803 {
804 /* Fix up the resulting state. */
805 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
806 displaced_step_closure,
807 displaced_step_original,
808 displaced_step_copy,
809 get_thread_regcache (displaced_step_ptid));
810 }
811 else
812 {
813 /* Since the instruction didn't complete, all we can do is
814 relocate the PC. */
815 struct regcache *regcache = get_thread_regcache (event_ptid);
816 CORE_ADDR pc = regcache_read_pc (regcache);
817 pc = displaced_step_original + (pc - displaced_step_copy);
818 regcache_write_pc (regcache, pc);
819 }
820
821 do_cleanups (old_cleanups);
822
823 displaced_step_ptid = null_ptid;
824
825 /* Are there any pending displaced stepping requests? If so, run
826 one now. */
827 while (displaced_step_request_queue)
828 {
829 struct displaced_step_request *head;
830 ptid_t ptid;
831 CORE_ADDR actual_pc;
832
833 head = displaced_step_request_queue;
834 ptid = head->ptid;
835 displaced_step_request_queue = head->next;
836 xfree (head);
837
838 context_switch (ptid);
839
840 actual_pc = read_pc ();
841
842 if (breakpoint_here_p (actual_pc))
843 {
844 if (debug_displaced)
845 fprintf_unfiltered (gdb_stdlog,
846 "displaced: stepping queued %s now\n",
847 target_pid_to_str (ptid));
848
849 displaced_step_prepare (ptid);
850
851 if (debug_displaced)
852 {
853 gdb_byte buf[4];
854
855 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
856 paddr_nz (actual_pc));
857 read_memory (actual_pc, buf, sizeof (buf));
858 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
859 }
860
861 target_resume (ptid, 1, TARGET_SIGNAL_0);
862
863 /* Done, we're stepping a thread. */
864 break;
865 }
866 else
867 {
868 int step;
869 struct thread_info *tp = inferior_thread ();
870
871 /* The breakpoint we were sitting under has since been
872 removed. */
873 tp->trap_expected = 0;
874
875 /* Go back to what we were trying to do. */
876 step = currently_stepping (tp);
877
878 if (debug_displaced)
879 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
880 target_pid_to_str (tp->ptid), step);
881
882 target_resume (ptid, step, TARGET_SIGNAL_0);
883 tp->stop_signal = TARGET_SIGNAL_0;
884
885 /* This request was discarded. See if there's any other
886 thread waiting for its turn. */
887 }
888 }
889 }
890
891 /* Update global variables holding ptids to hold NEW_PTID if they were
892 holding OLD_PTID. */
893 static void
894 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
895 {
896 struct displaced_step_request *it;
897
898 if (ptid_equal (inferior_ptid, old_ptid))
899 inferior_ptid = new_ptid;
900
901 if (ptid_equal (singlestep_ptid, old_ptid))
902 singlestep_ptid = new_ptid;
903
904 if (ptid_equal (displaced_step_ptid, old_ptid))
905 displaced_step_ptid = new_ptid;
906
907 if (ptid_equal (deferred_step_ptid, old_ptid))
908 deferred_step_ptid = new_ptid;
909
910 for (it = displaced_step_request_queue; it; it = it->next)
911 if (ptid_equal (it->ptid, old_ptid))
912 it->ptid = new_ptid;
913 }
914
915 \f
916 /* Resuming. */
917
918 /* Things to clean up if we QUIT out of resume (). */
919 static void
920 resume_cleanups (void *ignore)
921 {
922 normal_stop ();
923 }
924
925 static const char schedlock_off[] = "off";
926 static const char schedlock_on[] = "on";
927 static const char schedlock_step[] = "step";
928 static const char *scheduler_enums[] = {
929 schedlock_off,
930 schedlock_on,
931 schedlock_step,
932 NULL
933 };
934 static const char *scheduler_mode = schedlock_off;
935 static void
936 show_scheduler_mode (struct ui_file *file, int from_tty,
937 struct cmd_list_element *c, const char *value)
938 {
939 fprintf_filtered (file, _("\
940 Mode for locking scheduler during execution is \"%s\".\n"),
941 value);
942 }
943
944 static void
945 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
946 {
947 if (!target_can_lock_scheduler)
948 {
949 scheduler_mode = schedlock_off;
950 error (_("Target '%s' cannot support this command."), target_shortname);
951 }
952 }
953
954
955 /* Resume the inferior, but allow a QUIT. This is useful if the user
956 wants to interrupt some lengthy single-stepping operation
957 (for child processes, the SIGINT goes to the inferior, and so
958 we get a SIGINT random_signal, but for remote debugging and perhaps
959 other targets, that's not true).
960
961 STEP nonzero if we should step (zero to continue instead).
962 SIG is the signal to give the inferior (zero for none). */
963 void
964 resume (int step, enum target_signal sig)
965 {
966 int should_resume = 1;
967 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
968 struct regcache *regcache = get_current_regcache ();
969 struct gdbarch *gdbarch = get_regcache_arch (regcache);
970 struct thread_info *tp = inferior_thread ();
971 CORE_ADDR pc = regcache_read_pc (regcache);
972 QUIT;
973
974 if (debug_infrun)
975 fprintf_unfiltered (gdb_stdlog,
976 "infrun: resume (step=%d, signal=%d), "
977 "trap_expected=%d\n",
978 step, sig, tp->trap_expected);
979
980 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
981 over an instruction that causes a page fault without triggering
982 a hardware watchpoint. The kernel properly notices that it shouldn't
983 stop, because the hardware watchpoint is not triggered, but it forgets
984 the step request and continues the program normally.
985 Work around the problem by removing hardware watchpoints if a step is
986 requested, GDB will check for a hardware watchpoint trigger after the
987 step anyway. */
988 if (CANNOT_STEP_HW_WATCHPOINTS && step)
989 remove_hw_watchpoints ();
990
991
992 /* Normally, by the time we reach `resume', the breakpoints are either
993 removed or inserted, as appropriate. The exception is if we're sitting
994 at a permanent breakpoint; we need to step over it, but permanent
995 breakpoints can't be removed. So we have to test for it here. */
996 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
997 {
998 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
999 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1000 else
1001 error (_("\
1002 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1003 how to step past a permanent breakpoint on this architecture. Try using\n\
1004 a command like `return' or `jump' to continue execution."));
1005 }
1006
1007 /* If enabled, step over breakpoints by executing a copy of the
1008 instruction at a different address.
1009
1010 We can't use displaced stepping when we have a signal to deliver;
1011 the comments for displaced_step_prepare explain why. The
1012 comments in the handle_inferior event for dealing with 'random
1013 signals' explain what we do instead. */
1014 if (use_displaced_stepping (gdbarch)
1015 && tp->trap_expected
1016 && sig == TARGET_SIGNAL_0)
1017 {
1018 if (!displaced_step_prepare (inferior_ptid))
1019 {
1020 /* Got placed in displaced stepping queue. Will be resumed
1021 later when all the currently queued displaced stepping
1022 requests finish. The thread is not executing at this point,
1023 and the call to set_executing will be made later. But we
1024 need to call set_running here, since from frontend point of view,
1025 the thread is running. */
1026 set_running (inferior_ptid, 1);
1027 discard_cleanups (old_cleanups);
1028 return;
1029 }
1030 }
1031
1032 if (step && gdbarch_software_single_step_p (gdbarch))
1033 {
1034 /* Do it the hard way, w/temp breakpoints */
1035 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
1036 {
1037 /* ...and don't ask hardware to do it. */
1038 step = 0;
1039 /* and do not pull these breakpoints until after a `wait' in
1040 `wait_for_inferior' */
1041 singlestep_breakpoints_inserted_p = 1;
1042 singlestep_ptid = inferior_ptid;
1043 singlestep_pc = pc;
1044 }
1045 }
1046
1047 /* If there were any forks/vforks/execs that were caught and are
1048 now to be followed, then do so. */
1049 switch (pending_follow.kind)
1050 {
1051 case TARGET_WAITKIND_FORKED:
1052 case TARGET_WAITKIND_VFORKED:
1053 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1054 if (follow_fork ())
1055 should_resume = 0;
1056
1057 /* Following a child fork will change our notion of current
1058 thread. */
1059 tp = inferior_thread ();
1060 break;
1061
1062 case TARGET_WAITKIND_EXECD:
1063 /* follow_exec is called as soon as the exec event is seen. */
1064 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1065 break;
1066
1067 default:
1068 break;
1069 }
1070
1071 /* Install inferior's terminal modes. */
1072 target_terminal_inferior ();
1073
1074 if (should_resume)
1075 {
1076 ptid_t resume_ptid;
1077
1078 resume_ptid = RESUME_ALL; /* Default */
1079
1080 /* If STEP is set, it's a request to use hardware stepping
1081 facilities. But in that case, we should never
1082 use singlestep breakpoint. */
1083 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1084
1085 if (singlestep_breakpoints_inserted_p
1086 && stepping_past_singlestep_breakpoint)
1087 {
1088 /* The situation here is as follows. In thread T1 we wanted to
1089 single-step. Lacking hardware single-stepping we've
1090 set breakpoint at the PC of the next instruction -- call it
1091 P. After resuming, we've hit that breakpoint in thread T2.
1092 Now we've removed original breakpoint, inserted breakpoint
1093 at P+1, and try to step to advance T2 past breakpoint.
1094 We need to step only T2, as if T1 is allowed to freely run,
1095 it can run past P, and if other threads are allowed to run,
1096 they can hit breakpoint at P+1, and nested hits of single-step
1097 breakpoints is not something we'd want -- that's complicated
1098 to support, and has no value. */
1099 resume_ptid = inferior_ptid;
1100 }
1101
1102 if ((step || singlestep_breakpoints_inserted_p)
1103 && tp->trap_expected)
1104 {
1105 /* We're allowing a thread to run past a breakpoint it has
1106 hit, by single-stepping the thread with the breakpoint
1107 removed. In which case, we need to single-step only this
1108 thread, and keep others stopped, as they can miss this
1109 breakpoint if allowed to run.
1110
1111 The current code actually removes all breakpoints when
1112 doing this, not just the one being stepped over, so if we
1113 let other threads run, we can actually miss any
1114 breakpoint, not just the one at PC. */
1115 resume_ptid = inferior_ptid;
1116 }
1117
1118 if (non_stop)
1119 {
1120 /* With non-stop mode on, threads are always handled
1121 individually. */
1122 resume_ptid = inferior_ptid;
1123 }
1124 else if ((scheduler_mode == schedlock_on)
1125 || (scheduler_mode == schedlock_step
1126 && (step || singlestep_breakpoints_inserted_p)))
1127 {
1128 /* User-settable 'scheduler' mode requires solo thread resume. */
1129 resume_ptid = inferior_ptid;
1130 }
1131
1132 if (gdbarch_cannot_step_breakpoint (gdbarch))
1133 {
1134 /* Most targets can step a breakpoint instruction, thus
1135 executing it normally. But if this one cannot, just
1136 continue and we will hit it anyway. */
1137 if (step && breakpoint_inserted_here_p (pc))
1138 step = 0;
1139 }
1140
1141 if (debug_displaced
1142 && use_displaced_stepping (gdbarch)
1143 && tp->trap_expected)
1144 {
1145 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1146 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1147 gdb_byte buf[4];
1148
1149 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1150 paddr_nz (actual_pc));
1151 read_memory (actual_pc, buf, sizeof (buf));
1152 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1153 }
1154
1155 /* Avoid confusing the next resume, if the next stop/resume
1156 happens to apply to another thread. */
1157 tp->stop_signal = TARGET_SIGNAL_0;
1158
1159 target_resume (resume_ptid, step, sig);
1160 }
1161
1162 discard_cleanups (old_cleanups);
1163 }
1164 \f
1165 /* Proceeding. */
1166
1167 /* Clear out all variables saying what to do when inferior is continued.
1168 First do this, then set the ones you want, then call `proceed'. */
1169
1170 static void
1171 clear_proceed_status_thread (struct thread_info *tp)
1172 {
1173 if (debug_infrun)
1174 fprintf_unfiltered (gdb_stdlog,
1175 "infrun: clear_proceed_status_thread (%s)\n",
1176 target_pid_to_str (tp->ptid));
1177
1178 tp->trap_expected = 0;
1179 tp->step_range_start = 0;
1180 tp->step_range_end = 0;
1181 tp->step_frame_id = null_frame_id;
1182 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1183 tp->stop_requested = 0;
1184
1185 tp->stop_step = 0;
1186
1187 tp->proceed_to_finish = 0;
1188
1189 /* Discard any remaining commands or status from previous stop. */
1190 bpstat_clear (&tp->stop_bpstat);
1191 }
1192
1193 static int
1194 clear_proceed_status_callback (struct thread_info *tp, void *data)
1195 {
1196 if (is_exited (tp->ptid))
1197 return 0;
1198
1199 clear_proceed_status_thread (tp);
1200 return 0;
1201 }
1202
1203 void
1204 clear_proceed_status (void)
1205 {
1206 if (!ptid_equal (inferior_ptid, null_ptid))
1207 {
1208 struct inferior *inferior;
1209
1210 if (non_stop)
1211 {
1212 /* If in non-stop mode, only delete the per-thread status
1213 of the current thread. */
1214 clear_proceed_status_thread (inferior_thread ());
1215 }
1216 else
1217 {
1218 /* In all-stop mode, delete the per-thread status of
1219 *all* threads. */
1220 iterate_over_threads (clear_proceed_status_callback, NULL);
1221 }
1222
1223 inferior = current_inferior ();
1224 inferior->stop_soon = NO_STOP_QUIETLY;
1225 }
1226
1227 stop_after_trap = 0;
1228 breakpoint_proceeded = 1; /* We're about to proceed... */
1229
1230 if (stop_registers)
1231 {
1232 regcache_xfree (stop_registers);
1233 stop_registers = NULL;
1234 }
1235 }
1236
1237 /* This should be suitable for any targets that support threads. */
1238
1239 static int
1240 prepare_to_proceed (int step)
1241 {
1242 ptid_t wait_ptid;
1243 struct target_waitstatus wait_status;
1244
1245 /* Get the last target status returned by target_wait(). */
1246 get_last_target_status (&wait_ptid, &wait_status);
1247
1248 /* Make sure we were stopped at a breakpoint. */
1249 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1250 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1251 {
1252 return 0;
1253 }
1254
1255 /* Switched over from WAIT_PID. */
1256 if (!ptid_equal (wait_ptid, minus_one_ptid)
1257 && !ptid_equal (inferior_ptid, wait_ptid))
1258 {
1259 struct regcache *regcache = get_thread_regcache (wait_ptid);
1260
1261 if (breakpoint_here_p (regcache_read_pc (regcache)))
1262 {
1263 /* If stepping, remember current thread to switch back to. */
1264 if (step)
1265 deferred_step_ptid = inferior_ptid;
1266
1267 /* Switch back to WAIT_PID thread. */
1268 switch_to_thread (wait_ptid);
1269
1270 /* We return 1 to indicate that there is a breakpoint here,
1271 so we need to step over it before continuing to avoid
1272 hitting it straight away. */
1273 return 1;
1274 }
1275 }
1276
1277 return 0;
1278 }
1279
1280 /* Basic routine for continuing the program in various fashions.
1281
1282 ADDR is the address to resume at, or -1 for resume where stopped.
1283 SIGGNAL is the signal to give it, or 0 for none,
1284 or -1 for act according to how it stopped.
1285 STEP is nonzero if should trap after one instruction.
1286 -1 means return after that and print nothing.
1287 You should probably set various step_... variables
1288 before calling here, if you are stepping.
1289
1290 You should call clear_proceed_status before calling proceed. */
1291
1292 void
1293 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1294 {
1295 struct regcache *regcache = get_current_regcache ();
1296 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1297 struct thread_info *tp;
1298 CORE_ADDR pc = regcache_read_pc (regcache);
1299 int oneproc = 0;
1300 enum target_signal stop_signal;
1301
1302 if (step > 0)
1303 step_start_function = find_pc_function (pc);
1304 if (step < 0)
1305 stop_after_trap = 1;
1306
1307 if (addr == (CORE_ADDR) -1)
1308 {
1309 if (pc == stop_pc && breakpoint_here_p (pc)
1310 && execution_direction != EXEC_REVERSE)
1311 /* There is a breakpoint at the address we will resume at,
1312 step one instruction before inserting breakpoints so that
1313 we do not stop right away (and report a second hit at this
1314 breakpoint).
1315
1316 Note, we don't do this in reverse, because we won't
1317 actually be executing the breakpoint insn anyway.
1318 We'll be (un-)executing the previous instruction. */
1319
1320 oneproc = 1;
1321 else if (gdbarch_single_step_through_delay_p (gdbarch)
1322 && gdbarch_single_step_through_delay (gdbarch,
1323 get_current_frame ()))
1324 /* We stepped onto an instruction that needs to be stepped
1325 again before re-inserting the breakpoint, do so. */
1326 oneproc = 1;
1327 }
1328 else
1329 {
1330 regcache_write_pc (regcache, addr);
1331 }
1332
1333 if (debug_infrun)
1334 fprintf_unfiltered (gdb_stdlog,
1335 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1336 paddr_nz (addr), siggnal, step);
1337
1338 if (non_stop)
1339 /* In non-stop, each thread is handled individually. The context
1340 must already be set to the right thread here. */
1341 ;
1342 else
1343 {
1344 /* In a multi-threaded task we may select another thread and
1345 then continue or step.
1346
1347 But if the old thread was stopped at a breakpoint, it will
1348 immediately cause another breakpoint stop without any
1349 execution (i.e. it will report a breakpoint hit incorrectly).
1350 So we must step over it first.
1351
1352 prepare_to_proceed checks the current thread against the
1353 thread that reported the most recent event. If a step-over
1354 is required it returns TRUE and sets the current thread to
1355 the old thread. */
1356 if (prepare_to_proceed (step))
1357 oneproc = 1;
1358 }
1359
1360 /* prepare_to_proceed may change the current thread. */
1361 tp = inferior_thread ();
1362
1363 if (oneproc)
1364 {
1365 tp->trap_expected = 1;
1366 /* If displaced stepping is enabled, we can step over the
1367 breakpoint without hitting it, so leave all breakpoints
1368 inserted. Otherwise we need to disable all breakpoints, step
1369 one instruction, and then re-add them when that step is
1370 finished. */
1371 if (!use_displaced_stepping (gdbarch))
1372 remove_breakpoints ();
1373 }
1374
1375 /* We can insert breakpoints if we're not trying to step over one,
1376 or if we are stepping over one but we're using displaced stepping
1377 to do so. */
1378 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1379 insert_breakpoints ();
1380
1381 if (!non_stop)
1382 {
1383 /* Pass the last stop signal to the thread we're resuming,
1384 irrespective of whether the current thread is the thread that
1385 got the last event or not. This was historically GDB's
1386 behaviour before keeping a stop_signal per thread. */
1387
1388 struct thread_info *last_thread;
1389 ptid_t last_ptid;
1390 struct target_waitstatus last_status;
1391
1392 get_last_target_status (&last_ptid, &last_status);
1393 if (!ptid_equal (inferior_ptid, last_ptid)
1394 && !ptid_equal (last_ptid, null_ptid)
1395 && !ptid_equal (last_ptid, minus_one_ptid))
1396 {
1397 last_thread = find_thread_pid (last_ptid);
1398 if (last_thread)
1399 {
1400 tp->stop_signal = last_thread->stop_signal;
1401 last_thread->stop_signal = TARGET_SIGNAL_0;
1402 }
1403 }
1404 }
1405
1406 if (siggnal != TARGET_SIGNAL_DEFAULT)
1407 tp->stop_signal = siggnal;
1408 /* If this signal should not be seen by program,
1409 give it zero. Used for debugging signals. */
1410 else if (!signal_program[tp->stop_signal])
1411 tp->stop_signal = TARGET_SIGNAL_0;
1412
1413 annotate_starting ();
1414
1415 /* Make sure that output from GDB appears before output from the
1416 inferior. */
1417 gdb_flush (gdb_stdout);
1418
1419 /* Refresh prev_pc value just prior to resuming. This used to be
1420 done in stop_stepping, however, setting prev_pc there did not handle
1421 scenarios such as inferior function calls or returning from
1422 a function via the return command. In those cases, the prev_pc
1423 value was not set properly for subsequent commands. The prev_pc value
1424 is used to initialize the starting line number in the ecs. With an
1425 invalid value, the gdb next command ends up stopping at the position
1426 represented by the next line table entry past our start position.
1427 On platforms that generate one line table entry per line, this
1428 is not a problem. However, on the ia64, the compiler generates
1429 extraneous line table entries that do not increase the line number.
1430 When we issue the gdb next command on the ia64 after an inferior call
1431 or a return command, we often end up a few instructions forward, still
1432 within the original line we started.
1433
1434 An attempt was made to have init_execution_control_state () refresh
1435 the prev_pc value before calculating the line number. This approach
1436 did not work because on platforms that use ptrace, the pc register
1437 cannot be read unless the inferior is stopped. At that point, we
1438 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1439 call can fail. Setting the prev_pc value here ensures the value is
1440 updated correctly when the inferior is stopped. */
1441 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1442
1443 /* Fill in with reasonable starting values. */
1444 init_thread_stepping_state (tp);
1445
1446 /* Reset to normal state. */
1447 init_infwait_state ();
1448
1449 /* Resume inferior. */
1450 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
1451
1452 /* Wait for it to stop (if not standalone)
1453 and in any case decode why it stopped, and act accordingly. */
1454 /* Do this only if we are not using the event loop, or if the target
1455 does not support asynchronous execution. */
1456 if (!target_can_async_p ())
1457 {
1458 wait_for_inferior (0);
1459 normal_stop ();
1460 }
1461 }
1462 \f
1463
1464 /* Start remote-debugging of a machine over a serial link. */
1465
1466 void
1467 start_remote (int from_tty)
1468 {
1469 struct inferior *inferior;
1470 init_wait_for_inferior ();
1471
1472 inferior = current_inferior ();
1473 inferior->stop_soon = STOP_QUIETLY_REMOTE;
1474
1475 /* Always go on waiting for the target, regardless of the mode. */
1476 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1477 indicate to wait_for_inferior that a target should timeout if
1478 nothing is returned (instead of just blocking). Because of this,
1479 targets expecting an immediate response need to, internally, set
1480 things up so that the target_wait() is forced to eventually
1481 timeout. */
1482 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1483 differentiate to its caller what the state of the target is after
1484 the initial open has been performed. Here we're assuming that
1485 the target has stopped. It should be possible to eventually have
1486 target_open() return to the caller an indication that the target
1487 is currently running and GDB state should be set to the same as
1488 for an async run. */
1489 wait_for_inferior (0);
1490
1491 /* Now that the inferior has stopped, do any bookkeeping like
1492 loading shared libraries. We want to do this before normal_stop,
1493 so that the displayed frame is up to date. */
1494 post_create_inferior (&current_target, from_tty);
1495
1496 normal_stop ();
1497 }
1498
1499 /* Initialize static vars when a new inferior begins. */
1500
1501 void
1502 init_wait_for_inferior (void)
1503 {
1504 /* These are meaningless until the first time through wait_for_inferior. */
1505
1506 breakpoint_init_inferior (inf_starting);
1507
1508 /* The first resume is not following a fork/vfork/exec. */
1509 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1510
1511 clear_proceed_status ();
1512
1513 stepping_past_singlestep_breakpoint = 0;
1514 deferred_step_ptid = null_ptid;
1515
1516 target_last_wait_ptid = minus_one_ptid;
1517
1518 previous_inferior_ptid = null_ptid;
1519 init_infwait_state ();
1520
1521 displaced_step_clear ();
1522 }
1523
1524 \f
1525 /* This enum encodes possible reasons for doing a target_wait, so that
1526 wfi can call target_wait in one place. (Ultimately the call will be
1527 moved out of the infinite loop entirely.) */
1528
1529 enum infwait_states
1530 {
1531 infwait_normal_state,
1532 infwait_thread_hop_state,
1533 infwait_step_watch_state,
1534 infwait_nonstep_watch_state
1535 };
1536
1537 /* Why did the inferior stop? Used to print the appropriate messages
1538 to the interface from within handle_inferior_event(). */
1539 enum inferior_stop_reason
1540 {
1541 /* Step, next, nexti, stepi finished. */
1542 END_STEPPING_RANGE,
1543 /* Inferior terminated by signal. */
1544 SIGNAL_EXITED,
1545 /* Inferior exited. */
1546 EXITED,
1547 /* Inferior received signal, and user asked to be notified. */
1548 SIGNAL_RECEIVED,
1549 /* Reverse execution -- target ran out of history info. */
1550 NO_HISTORY
1551 };
1552
1553 /* The PTID we'll do a target_wait on.*/
1554 ptid_t waiton_ptid;
1555
1556 /* Current inferior wait state. */
1557 enum infwait_states infwait_state;
1558
1559 /* Data to be passed around while handling an event. This data is
1560 discarded between events. */
1561 struct execution_control_state
1562 {
1563 ptid_t ptid;
1564 /* The thread that got the event, if this was a thread event; NULL
1565 otherwise. */
1566 struct thread_info *event_thread;
1567
1568 struct target_waitstatus ws;
1569 int random_signal;
1570 CORE_ADDR stop_func_start;
1571 CORE_ADDR stop_func_end;
1572 char *stop_func_name;
1573 int new_thread_event;
1574 int wait_some_more;
1575 };
1576
1577 void init_execution_control_state (struct execution_control_state *ecs);
1578
1579 void handle_inferior_event (struct execution_control_state *ecs);
1580
1581 static void handle_step_into_function (struct execution_control_state *ecs);
1582 static void handle_step_into_function_backward (struct execution_control_state *ecs);
1583 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1584 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1585 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1586 struct frame_id sr_id);
1587 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1588
1589 static void stop_stepping (struct execution_control_state *ecs);
1590 static void prepare_to_wait (struct execution_control_state *ecs);
1591 static void keep_going (struct execution_control_state *ecs);
1592 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1593 int stop_info);
1594
1595 /* Callback for iterate over threads. If the thread is stopped, but
1596 the user/frontend doesn't know about that yet, go through
1597 normal_stop, as if the thread had just stopped now. ARG points at
1598 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1599 ptid_is_pid(PTID) is true, applies to all threads of the process
1600 pointed at by PTID. Otherwise, apply only to the thread pointed by
1601 PTID. */
1602
1603 static int
1604 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1605 {
1606 ptid_t ptid = * (ptid_t *) arg;
1607
1608 if ((ptid_equal (info->ptid, ptid)
1609 || ptid_equal (minus_one_ptid, ptid)
1610 || (ptid_is_pid (ptid)
1611 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1612 && is_running (info->ptid)
1613 && !is_executing (info->ptid))
1614 {
1615 struct cleanup *old_chain;
1616 struct execution_control_state ecss;
1617 struct execution_control_state *ecs = &ecss;
1618
1619 memset (ecs, 0, sizeof (*ecs));
1620
1621 old_chain = make_cleanup_restore_current_thread ();
1622
1623 switch_to_thread (info->ptid);
1624
1625 /* Go through handle_inferior_event/normal_stop, so we always
1626 have consistent output as if the stop event had been
1627 reported. */
1628 ecs->ptid = info->ptid;
1629 ecs->event_thread = find_thread_pid (info->ptid);
1630 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1631 ecs->ws.value.sig = TARGET_SIGNAL_0;
1632
1633 handle_inferior_event (ecs);
1634
1635 if (!ecs->wait_some_more)
1636 {
1637 struct thread_info *tp;
1638
1639 normal_stop ();
1640
1641 /* Finish off the continuations. The continations
1642 themselves are responsible for realising the thread
1643 didn't finish what it was supposed to do. */
1644 tp = inferior_thread ();
1645 do_all_intermediate_continuations_thread (tp);
1646 do_all_continuations_thread (tp);
1647 }
1648
1649 do_cleanups (old_chain);
1650 }
1651
1652 return 0;
1653 }
1654
1655 /* This function is attached as a "thread_stop_requested" observer.
1656 Cleanup local state that assumed the PTID was to be resumed, and
1657 report the stop to the frontend. */
1658
1659 void
1660 infrun_thread_stop_requested (ptid_t ptid)
1661 {
1662 struct displaced_step_request *it, *next, *prev = NULL;
1663
1664 /* PTID was requested to stop. Remove it from the displaced
1665 stepping queue, so we don't try to resume it automatically. */
1666 for (it = displaced_step_request_queue; it; it = next)
1667 {
1668 next = it->next;
1669
1670 if (ptid_equal (it->ptid, ptid)
1671 || ptid_equal (minus_one_ptid, ptid)
1672 || (ptid_is_pid (ptid)
1673 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1674 {
1675 if (displaced_step_request_queue == it)
1676 displaced_step_request_queue = it->next;
1677 else
1678 prev->next = it->next;
1679
1680 xfree (it);
1681 }
1682 else
1683 prev = it;
1684 }
1685
1686 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1687 }
1688
1689 /* Callback for iterate_over_threads. */
1690
1691 static int
1692 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1693 {
1694 if (is_exited (info->ptid))
1695 return 0;
1696
1697 delete_step_resume_breakpoint (info);
1698 return 0;
1699 }
1700
1701 /* In all-stop, delete the step resume breakpoint of any thread that
1702 had one. In non-stop, delete the step resume breakpoint of the
1703 thread that just stopped. */
1704
1705 static void
1706 delete_step_thread_step_resume_breakpoint (void)
1707 {
1708 if (!target_has_execution
1709 || ptid_equal (inferior_ptid, null_ptid))
1710 /* If the inferior has exited, we have already deleted the step
1711 resume breakpoints out of GDB's lists. */
1712 return;
1713
1714 if (non_stop)
1715 {
1716 /* If in non-stop mode, only delete the step-resume or
1717 longjmp-resume breakpoint of the thread that just stopped
1718 stepping. */
1719 struct thread_info *tp = inferior_thread ();
1720 delete_step_resume_breakpoint (tp);
1721 }
1722 else
1723 /* In all-stop mode, delete all step-resume and longjmp-resume
1724 breakpoints of any thread that had them. */
1725 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1726 }
1727
1728 /* A cleanup wrapper. */
1729
1730 static void
1731 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1732 {
1733 delete_step_thread_step_resume_breakpoint ();
1734 }
1735
1736 /* Wait for control to return from inferior to debugger.
1737
1738 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1739 as if they were SIGTRAP signals. This can be useful during
1740 the startup sequence on some targets such as HP/UX, where
1741 we receive an EXEC event instead of the expected SIGTRAP.
1742
1743 If inferior gets a signal, we may decide to start it up again
1744 instead of returning. That is why there is a loop in this function.
1745 When this function actually returns it means the inferior
1746 should be left stopped and GDB should read more commands. */
1747
1748 void
1749 wait_for_inferior (int treat_exec_as_sigtrap)
1750 {
1751 struct cleanup *old_cleanups;
1752 struct execution_control_state ecss;
1753 struct execution_control_state *ecs;
1754
1755 if (debug_infrun)
1756 fprintf_unfiltered
1757 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1758 treat_exec_as_sigtrap);
1759
1760 old_cleanups =
1761 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
1762
1763 ecs = &ecss;
1764 memset (ecs, 0, sizeof (*ecs));
1765
1766 overlay_cache_invalid = 1;
1767
1768 /* We'll update this if & when we switch to a new thread. */
1769 previous_inferior_ptid = inferior_ptid;
1770
1771 /* We have to invalidate the registers BEFORE calling target_wait
1772 because they can be loaded from the target while in target_wait.
1773 This makes remote debugging a bit more efficient for those
1774 targets that provide critical registers as part of their normal
1775 status mechanism. */
1776
1777 registers_changed ();
1778
1779 while (1)
1780 {
1781 if (deprecated_target_wait_hook)
1782 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1783 else
1784 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1785
1786 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1787 {
1788 xfree (ecs->ws.value.execd_pathname);
1789 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1790 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1791 }
1792
1793 /* Now figure out what to do with the result of the result. */
1794 handle_inferior_event (ecs);
1795
1796 if (!ecs->wait_some_more)
1797 break;
1798 }
1799
1800 do_cleanups (old_cleanups);
1801 }
1802
1803 /* Asynchronous version of wait_for_inferior. It is called by the
1804 event loop whenever a change of state is detected on the file
1805 descriptor corresponding to the target. It can be called more than
1806 once to complete a single execution command. In such cases we need
1807 to keep the state in a global variable ECSS. If it is the last time
1808 that this function is called for a single execution command, then
1809 report to the user that the inferior has stopped, and do the
1810 necessary cleanups. */
1811
1812 void
1813 fetch_inferior_event (void *client_data)
1814 {
1815 struct execution_control_state ecss;
1816 struct execution_control_state *ecs = &ecss;
1817 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1818 int was_sync = sync_execution;
1819
1820 memset (ecs, 0, sizeof (*ecs));
1821
1822 overlay_cache_invalid = 1;
1823
1824 /* We can only rely on wait_for_more being correct before handling
1825 the event in all-stop, but previous_inferior_ptid isn't used in
1826 non-stop. */
1827 if (!ecs->wait_some_more)
1828 /* We'll update this if & when we switch to a new thread. */
1829 previous_inferior_ptid = inferior_ptid;
1830
1831 if (non_stop)
1832 /* In non-stop mode, the user/frontend should not notice a thread
1833 switch due to internal events. Make sure we reverse to the
1834 user selected thread and frame after handling the event and
1835 running any breakpoint commands. */
1836 make_cleanup_restore_current_thread ();
1837
1838 /* We have to invalidate the registers BEFORE calling target_wait
1839 because they can be loaded from the target while in target_wait.
1840 This makes remote debugging a bit more efficient for those
1841 targets that provide critical registers as part of their normal
1842 status mechanism. */
1843
1844 registers_changed ();
1845
1846 if (deprecated_target_wait_hook)
1847 ecs->ptid =
1848 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1849 else
1850 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1851
1852 if (non_stop
1853 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1854 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1855 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1856 /* In non-stop mode, each thread is handled individually. Switch
1857 early, so the global state is set correctly for this
1858 thread. */
1859 context_switch (ecs->ptid);
1860
1861 /* Now figure out what to do with the result of the result. */
1862 handle_inferior_event (ecs);
1863
1864 if (!ecs->wait_some_more)
1865 {
1866 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
1867
1868 delete_step_thread_step_resume_breakpoint ();
1869
1870 /* We may not find an inferior if this was a process exit. */
1871 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
1872 normal_stop ();
1873
1874 if (target_has_execution
1875 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1876 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1877 && ecs->event_thread->step_multi
1878 && ecs->event_thread->stop_step)
1879 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1880 else
1881 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1882 }
1883
1884 /* Revert thread and frame. */
1885 do_cleanups (old_chain);
1886
1887 /* If the inferior was in sync execution mode, and now isn't,
1888 restore the prompt. */
1889 if (was_sync && !sync_execution)
1890 display_gdb_prompt (0);
1891 }
1892
1893 /* Prepare an execution control state for looping through a
1894 wait_for_inferior-type loop. */
1895
1896 void
1897 init_execution_control_state (struct execution_control_state *ecs)
1898 {
1899 ecs->random_signal = 0;
1900 }
1901
1902 /* Clear context switchable stepping state. */
1903
1904 void
1905 init_thread_stepping_state (struct thread_info *tss)
1906 {
1907 struct symtab_and_line sal;
1908
1909 tss->stepping_over_breakpoint = 0;
1910 tss->step_after_step_resume_breakpoint = 0;
1911 tss->stepping_through_solib_after_catch = 0;
1912 tss->stepping_through_solib_catchpoints = NULL;
1913
1914 sal = find_pc_line (tss->prev_pc, 0);
1915 tss->current_line = sal.line;
1916 tss->current_symtab = sal.symtab;
1917 }
1918
1919 /* Return the cached copy of the last pid/waitstatus returned by
1920 target_wait()/deprecated_target_wait_hook(). The data is actually
1921 cached by handle_inferior_event(), which gets called immediately
1922 after target_wait()/deprecated_target_wait_hook(). */
1923
1924 void
1925 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1926 {
1927 *ptidp = target_last_wait_ptid;
1928 *status = target_last_waitstatus;
1929 }
1930
1931 void
1932 nullify_last_target_wait_ptid (void)
1933 {
1934 target_last_wait_ptid = minus_one_ptid;
1935 }
1936
1937 /* Switch thread contexts. */
1938
1939 static void
1940 context_switch (ptid_t ptid)
1941 {
1942 if (debug_infrun)
1943 {
1944 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1945 target_pid_to_str (inferior_ptid));
1946 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1947 target_pid_to_str (ptid));
1948 }
1949
1950 switch_to_thread (ptid);
1951 }
1952
1953 static void
1954 adjust_pc_after_break (struct execution_control_state *ecs)
1955 {
1956 struct regcache *regcache;
1957 struct gdbarch *gdbarch;
1958 CORE_ADDR breakpoint_pc;
1959
1960 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1961 we aren't, just return.
1962
1963 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1964 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1965 implemented by software breakpoints should be handled through the normal
1966 breakpoint layer.
1967
1968 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1969 different signals (SIGILL or SIGEMT for instance), but it is less
1970 clear where the PC is pointing afterwards. It may not match
1971 gdbarch_decr_pc_after_break. I don't know any specific target that
1972 generates these signals at breakpoints (the code has been in GDB since at
1973 least 1992) so I can not guess how to handle them here.
1974
1975 In earlier versions of GDB, a target with
1976 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1977 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1978 target with both of these set in GDB history, and it seems unlikely to be
1979 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1980
1981 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1982 return;
1983
1984 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1985 return;
1986
1987 /* In reverse execution, when a breakpoint is hit, the instruction
1988 under it has already been de-executed. The reported PC always
1989 points at the breakpoint address, so adjusting it further would
1990 be wrong. E.g., consider this case on a decr_pc_after_break == 1
1991 architecture:
1992
1993 B1 0x08000000 : INSN1
1994 B2 0x08000001 : INSN2
1995 0x08000002 : INSN3
1996 PC -> 0x08000003 : INSN4
1997
1998 Say you're stopped at 0x08000003 as above. Reverse continuing
1999 from that point should hit B2 as below. Reading the PC when the
2000 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2001 been de-executed already.
2002
2003 B1 0x08000000 : INSN1
2004 B2 PC -> 0x08000001 : INSN2
2005 0x08000002 : INSN3
2006 0x08000003 : INSN4
2007
2008 We can't apply the same logic as for forward execution, because
2009 we would wrongly adjust the PC to 0x08000000, since there's a
2010 breakpoint at PC - 1. We'd then report a hit on B1, although
2011 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2012 behaviour. */
2013 if (execution_direction == EXEC_REVERSE)
2014 return;
2015
2016 /* If this target does not decrement the PC after breakpoints, then
2017 we have nothing to do. */
2018 regcache = get_thread_regcache (ecs->ptid);
2019 gdbarch = get_regcache_arch (regcache);
2020 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2021 return;
2022
2023 /* Find the location where (if we've hit a breakpoint) the
2024 breakpoint would be. */
2025 breakpoint_pc = regcache_read_pc (regcache)
2026 - gdbarch_decr_pc_after_break (gdbarch);
2027
2028 /* Check whether there actually is a software breakpoint inserted at
2029 that location.
2030
2031 If in non-stop mode, a race condition is possible where we've
2032 removed a breakpoint, but stop events for that breakpoint were
2033 already queued and arrive later. To suppress those spurious
2034 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2035 and retire them after a number of stop events are reported. */
2036 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2037 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
2038 {
2039 /* When using hardware single-step, a SIGTRAP is reported for both
2040 a completed single-step and a software breakpoint. Need to
2041 differentiate between the two, as the latter needs adjusting
2042 but the former does not.
2043
2044 The SIGTRAP can be due to a completed hardware single-step only if
2045 - we didn't insert software single-step breakpoints
2046 - the thread to be examined is still the current thread
2047 - this thread is currently being stepped
2048
2049 If any of these events did not occur, we must have stopped due
2050 to hitting a software breakpoint, and have to back up to the
2051 breakpoint address.
2052
2053 As a special case, we could have hardware single-stepped a
2054 software breakpoint. In this case (prev_pc == breakpoint_pc),
2055 we also need to back up to the breakpoint address. */
2056
2057 if (singlestep_breakpoints_inserted_p
2058 || !ptid_equal (ecs->ptid, inferior_ptid)
2059 || !currently_stepping (ecs->event_thread)
2060 || ecs->event_thread->prev_pc == breakpoint_pc)
2061 regcache_write_pc (regcache, breakpoint_pc);
2062 }
2063 }
2064
2065 void
2066 init_infwait_state (void)
2067 {
2068 waiton_ptid = pid_to_ptid (-1);
2069 infwait_state = infwait_normal_state;
2070 }
2071
2072 void
2073 error_is_running (void)
2074 {
2075 error (_("\
2076 Cannot execute this command while the selected thread is running."));
2077 }
2078
2079 void
2080 ensure_not_running (void)
2081 {
2082 if (is_running (inferior_ptid))
2083 error_is_running ();
2084 }
2085
2086 /* Given an execution control state that has been freshly filled in
2087 by an event from the inferior, figure out what it means and take
2088 appropriate action. */
2089
2090 void
2091 handle_inferior_event (struct execution_control_state *ecs)
2092 {
2093 int sw_single_step_trap_p = 0;
2094 int stopped_by_watchpoint;
2095 int stepped_after_stopped_by_watchpoint = 0;
2096 struct symtab_and_line stop_pc_sal;
2097 enum stop_kind stop_soon;
2098
2099 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2100 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2101 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2102 {
2103 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2104 gdb_assert (inf);
2105 stop_soon = inf->stop_soon;
2106 }
2107 else
2108 stop_soon = NO_STOP_QUIETLY;
2109
2110 /* Cache the last pid/waitstatus. */
2111 target_last_wait_ptid = ecs->ptid;
2112 target_last_waitstatus = ecs->ws;
2113
2114 /* Always clear state belonging to the previous time we stopped. */
2115 stop_stack_dummy = 0;
2116
2117 /* If it's a new process, add it to the thread database */
2118
2119 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2120 && !ptid_equal (ecs->ptid, minus_one_ptid)
2121 && !in_thread_list (ecs->ptid));
2122
2123 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2124 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2125 add_thread (ecs->ptid);
2126
2127 ecs->event_thread = find_thread_pid (ecs->ptid);
2128
2129 /* Dependent on valid ECS->EVENT_THREAD. */
2130 adjust_pc_after_break (ecs);
2131
2132 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2133 reinit_frame_cache ();
2134
2135 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2136 {
2137 breakpoint_retire_moribund ();
2138
2139 /* Mark the non-executing threads accordingly. */
2140 if (!non_stop
2141 || ecs->ws.kind == TARGET_WAITKIND_EXITED
2142 || ecs->ws.kind == TARGET_WAITKIND_SIGNALLED)
2143 set_executing (pid_to_ptid (-1), 0);
2144 else
2145 set_executing (ecs->ptid, 0);
2146 }
2147
2148 switch (infwait_state)
2149 {
2150 case infwait_thread_hop_state:
2151 if (debug_infrun)
2152 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
2153 /* Cancel the waiton_ptid. */
2154 waiton_ptid = pid_to_ptid (-1);
2155 break;
2156
2157 case infwait_normal_state:
2158 if (debug_infrun)
2159 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
2160 break;
2161
2162 case infwait_step_watch_state:
2163 if (debug_infrun)
2164 fprintf_unfiltered (gdb_stdlog,
2165 "infrun: infwait_step_watch_state\n");
2166
2167 stepped_after_stopped_by_watchpoint = 1;
2168 break;
2169
2170 case infwait_nonstep_watch_state:
2171 if (debug_infrun)
2172 fprintf_unfiltered (gdb_stdlog,
2173 "infrun: infwait_nonstep_watch_state\n");
2174 insert_breakpoints ();
2175
2176 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2177 handle things like signals arriving and other things happening
2178 in combination correctly? */
2179 stepped_after_stopped_by_watchpoint = 1;
2180 break;
2181
2182 default:
2183 internal_error (__FILE__, __LINE__, _("bad switch"));
2184 }
2185 infwait_state = infwait_normal_state;
2186
2187 switch (ecs->ws.kind)
2188 {
2189 case TARGET_WAITKIND_LOADED:
2190 if (debug_infrun)
2191 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
2192 /* Ignore gracefully during startup of the inferior, as it might
2193 be the shell which has just loaded some objects, otherwise
2194 add the symbols for the newly loaded objects. Also ignore at
2195 the beginning of an attach or remote session; we will query
2196 the full list of libraries once the connection is
2197 established. */
2198 if (stop_soon == NO_STOP_QUIETLY)
2199 {
2200 /* Check for any newly added shared libraries if we're
2201 supposed to be adding them automatically. Switch
2202 terminal for any messages produced by
2203 breakpoint_re_set. */
2204 target_terminal_ours_for_output ();
2205 /* NOTE: cagney/2003-11-25: Make certain that the target
2206 stack's section table is kept up-to-date. Architectures,
2207 (e.g., PPC64), use the section table to perform
2208 operations such as address => section name and hence
2209 require the table to contain all sections (including
2210 those found in shared libraries). */
2211 /* NOTE: cagney/2003-11-25: Pass current_target and not
2212 exec_ops to SOLIB_ADD. This is because current GDB is
2213 only tooled to propagate section_table changes out from
2214 the "current_target" (see target_resize_to_sections), and
2215 not up from the exec stratum. This, of course, isn't
2216 right. "infrun.c" should only interact with the
2217 exec/process stratum, instead relying on the target stack
2218 to propagate relevant changes (stop, section table
2219 changed, ...) up to other layers. */
2220 #ifdef SOLIB_ADD
2221 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2222 #else
2223 solib_add (NULL, 0, &current_target, auto_solib_add);
2224 #endif
2225 target_terminal_inferior ();
2226
2227 /* If requested, stop when the dynamic linker notifies
2228 gdb of events. This allows the user to get control
2229 and place breakpoints in initializer routines for
2230 dynamically loaded objects (among other things). */
2231 if (stop_on_solib_events)
2232 {
2233 stop_stepping (ecs);
2234 return;
2235 }
2236
2237 /* NOTE drow/2007-05-11: This might be a good place to check
2238 for "catch load". */
2239 }
2240
2241 /* If we are skipping through a shell, or through shared library
2242 loading that we aren't interested in, resume the program. If
2243 we're running the program normally, also resume. But stop if
2244 we're attaching or setting up a remote connection. */
2245 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2246 {
2247 /* Loading of shared libraries might have changed breakpoint
2248 addresses. Make sure new breakpoints are inserted. */
2249 if (stop_soon == NO_STOP_QUIETLY
2250 && !breakpoints_always_inserted_mode ())
2251 insert_breakpoints ();
2252 resume (0, TARGET_SIGNAL_0);
2253 prepare_to_wait (ecs);
2254 return;
2255 }
2256
2257 break;
2258
2259 case TARGET_WAITKIND_SPURIOUS:
2260 if (debug_infrun)
2261 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2262 resume (0, TARGET_SIGNAL_0);
2263 prepare_to_wait (ecs);
2264 return;
2265
2266 case TARGET_WAITKIND_EXITED:
2267 if (debug_infrun)
2268 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2269 target_terminal_ours (); /* Must do this before mourn anyway */
2270 print_stop_reason (EXITED, ecs->ws.value.integer);
2271
2272 /* Record the exit code in the convenience variable $_exitcode, so
2273 that the user can inspect this again later. */
2274 set_internalvar (lookup_internalvar ("_exitcode"),
2275 value_from_longest (builtin_type_int32,
2276 (LONGEST) ecs->ws.value.integer));
2277 gdb_flush (gdb_stdout);
2278 target_mourn_inferior ();
2279 singlestep_breakpoints_inserted_p = 0;
2280 stop_print_frame = 0;
2281 stop_stepping (ecs);
2282 return;
2283
2284 case TARGET_WAITKIND_SIGNALLED:
2285 if (debug_infrun)
2286 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2287 stop_print_frame = 0;
2288 target_terminal_ours (); /* Must do this before mourn anyway */
2289
2290 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2291 reach here unless the inferior is dead. However, for years
2292 target_kill() was called here, which hints that fatal signals aren't
2293 really fatal on some systems. If that's true, then some changes
2294 may be needed. */
2295 target_mourn_inferior ();
2296
2297 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
2298 singlestep_breakpoints_inserted_p = 0;
2299 stop_stepping (ecs);
2300 return;
2301
2302 /* The following are the only cases in which we keep going;
2303 the above cases end in a continue or goto. */
2304 case TARGET_WAITKIND_FORKED:
2305 case TARGET_WAITKIND_VFORKED:
2306 if (debug_infrun)
2307 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2308 pending_follow.kind = ecs->ws.kind;
2309
2310 pending_follow.fork_event.parent_pid = ecs->ptid;
2311 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
2312
2313 if (!ptid_equal (ecs->ptid, inferior_ptid))
2314 {
2315 context_switch (ecs->ptid);
2316 reinit_frame_cache ();
2317 }
2318
2319 stop_pc = read_pc ();
2320
2321 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2322
2323 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2324
2325 /* If no catchpoint triggered for this, then keep going. */
2326 if (ecs->random_signal)
2327 {
2328 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2329 keep_going (ecs);
2330 return;
2331 }
2332 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2333 goto process_event_stop_test;
2334
2335 case TARGET_WAITKIND_EXECD:
2336 if (debug_infrun)
2337 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2338 pending_follow.execd_pathname =
2339 savestring (ecs->ws.value.execd_pathname,
2340 strlen (ecs->ws.value.execd_pathname));
2341
2342 if (!ptid_equal (ecs->ptid, inferior_ptid))
2343 {
2344 context_switch (ecs->ptid);
2345 reinit_frame_cache ();
2346 }
2347
2348 stop_pc = read_pc ();
2349
2350 /* This causes the eventpoints and symbol table to be reset.
2351 Must do this now, before trying to determine whether to
2352 stop. */
2353 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2354 xfree (pending_follow.execd_pathname);
2355
2356 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2357 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2358
2359 /* If no catchpoint triggered for this, then keep going. */
2360 if (ecs->random_signal)
2361 {
2362 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2363 keep_going (ecs);
2364 return;
2365 }
2366 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2367 goto process_event_stop_test;
2368
2369 /* Be careful not to try to gather much state about a thread
2370 that's in a syscall. It's frequently a losing proposition. */
2371 case TARGET_WAITKIND_SYSCALL_ENTRY:
2372 if (debug_infrun)
2373 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2374 resume (0, TARGET_SIGNAL_0);
2375 prepare_to_wait (ecs);
2376 return;
2377
2378 /* Before examining the threads further, step this thread to
2379 get it entirely out of the syscall. (We get notice of the
2380 event when the thread is just on the verge of exiting a
2381 syscall. Stepping one instruction seems to get it back
2382 into user code.) */
2383 case TARGET_WAITKIND_SYSCALL_RETURN:
2384 if (debug_infrun)
2385 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2386 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2387 prepare_to_wait (ecs);
2388 return;
2389
2390 case TARGET_WAITKIND_STOPPED:
2391 if (debug_infrun)
2392 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2393 ecs->event_thread->stop_signal = ecs->ws.value.sig;
2394 break;
2395
2396 case TARGET_WAITKIND_NO_HISTORY:
2397 /* Reverse execution: target ran out of history info. */
2398 stop_pc = read_pc ();
2399 print_stop_reason (NO_HISTORY, 0);
2400 stop_stepping (ecs);
2401 return;
2402
2403 /* We had an event in the inferior, but we are not interested
2404 in handling it at this level. The lower layers have already
2405 done what needs to be done, if anything.
2406
2407 One of the possible circumstances for this is when the
2408 inferior produces output for the console. The inferior has
2409 not stopped, and we are ignoring the event. Another possible
2410 circumstance is any event which the lower level knows will be
2411 reported multiple times without an intervening resume. */
2412 case TARGET_WAITKIND_IGNORE:
2413 if (debug_infrun)
2414 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2415 prepare_to_wait (ecs);
2416 return;
2417 }
2418
2419 if (ecs->new_thread_event)
2420 {
2421 if (non_stop)
2422 /* Non-stop assumes that the target handles adding new threads
2423 to the thread list. */
2424 internal_error (__FILE__, __LINE__, "\
2425 targets should add new threads to the thread list themselves in non-stop mode.");
2426
2427 /* We may want to consider not doing a resume here in order to
2428 give the user a chance to play with the new thread. It might
2429 be good to make that a user-settable option. */
2430
2431 /* At this point, all threads are stopped (happens automatically
2432 in either the OS or the native code). Therefore we need to
2433 continue all threads in order to make progress. */
2434
2435 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2436 prepare_to_wait (ecs);
2437 return;
2438 }
2439
2440 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
2441 {
2442 /* Do we need to clean up the state of a thread that has
2443 completed a displaced single-step? (Doing so usually affects
2444 the PC, so do it here, before we set stop_pc.) */
2445 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2446
2447 /* If we either finished a single-step or hit a breakpoint, but
2448 the user wanted this thread to be stopped, pretend we got a
2449 SIG0 (generic unsignaled stop). */
2450
2451 if (ecs->event_thread->stop_requested
2452 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2453 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2454 }
2455
2456 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2457
2458 if (debug_infrun)
2459 {
2460 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2461 paddr_nz (stop_pc));
2462 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2463 {
2464 CORE_ADDR addr;
2465 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2466
2467 if (target_stopped_data_address (&current_target, &addr))
2468 fprintf_unfiltered (gdb_stdlog,
2469 "infrun: stopped data address = 0x%s\n",
2470 paddr_nz (addr));
2471 else
2472 fprintf_unfiltered (gdb_stdlog,
2473 "infrun: (no data address available)\n");
2474 }
2475 }
2476
2477 if (stepping_past_singlestep_breakpoint)
2478 {
2479 gdb_assert (singlestep_breakpoints_inserted_p);
2480 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2481 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2482
2483 stepping_past_singlestep_breakpoint = 0;
2484
2485 /* We've either finished single-stepping past the single-step
2486 breakpoint, or stopped for some other reason. It would be nice if
2487 we could tell, but we can't reliably. */
2488 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2489 {
2490 if (debug_infrun)
2491 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2492 /* Pull the single step breakpoints out of the target. */
2493 remove_single_step_breakpoints ();
2494 singlestep_breakpoints_inserted_p = 0;
2495
2496 ecs->random_signal = 0;
2497
2498 context_switch (saved_singlestep_ptid);
2499 if (deprecated_context_hook)
2500 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2501
2502 resume (1, TARGET_SIGNAL_0);
2503 prepare_to_wait (ecs);
2504 return;
2505 }
2506 }
2507
2508 stepping_past_singlestep_breakpoint = 0;
2509
2510 if (!ptid_equal (deferred_step_ptid, null_ptid))
2511 {
2512 /* In non-stop mode, there's never a deferred_step_ptid set. */
2513 gdb_assert (!non_stop);
2514
2515 /* If we stopped for some other reason than single-stepping, ignore
2516 the fact that we were supposed to switch back. */
2517 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2518 {
2519 struct thread_info *tp;
2520
2521 if (debug_infrun)
2522 fprintf_unfiltered (gdb_stdlog,
2523 "infrun: handling deferred step\n");
2524
2525 /* Pull the single step breakpoints out of the target. */
2526 if (singlestep_breakpoints_inserted_p)
2527 {
2528 remove_single_step_breakpoints ();
2529 singlestep_breakpoints_inserted_p = 0;
2530 }
2531
2532 /* Note: We do not call context_switch at this point, as the
2533 context is already set up for stepping the original thread. */
2534 switch_to_thread (deferred_step_ptid);
2535 deferred_step_ptid = null_ptid;
2536 /* Suppress spurious "Switching to ..." message. */
2537 previous_inferior_ptid = inferior_ptid;
2538
2539 resume (1, TARGET_SIGNAL_0);
2540 prepare_to_wait (ecs);
2541 return;
2542 }
2543
2544 deferred_step_ptid = null_ptid;
2545 }
2546
2547 /* See if a thread hit a thread-specific breakpoint that was meant for
2548 another thread. If so, then step that thread past the breakpoint,
2549 and continue it. */
2550
2551 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2552 {
2553 int thread_hop_needed = 0;
2554
2555 /* Check if a regular breakpoint has been hit before checking
2556 for a potential single step breakpoint. Otherwise, GDB will
2557 not see this breakpoint hit when stepping onto breakpoints. */
2558 if (regular_breakpoint_inserted_here_p (stop_pc))
2559 {
2560 ecs->random_signal = 0;
2561 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2562 thread_hop_needed = 1;
2563 }
2564 else if (singlestep_breakpoints_inserted_p)
2565 {
2566 /* We have not context switched yet, so this should be true
2567 no matter which thread hit the singlestep breakpoint. */
2568 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2569 if (debug_infrun)
2570 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2571 "trap for %s\n",
2572 target_pid_to_str (ecs->ptid));
2573
2574 ecs->random_signal = 0;
2575 /* The call to in_thread_list is necessary because PTIDs sometimes
2576 change when we go from single-threaded to multi-threaded. If
2577 the singlestep_ptid is still in the list, assume that it is
2578 really different from ecs->ptid. */
2579 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2580 && in_thread_list (singlestep_ptid))
2581 {
2582 /* If the PC of the thread we were trying to single-step
2583 has changed, discard this event (which we were going
2584 to ignore anyway), and pretend we saw that thread
2585 trap. This prevents us continuously moving the
2586 single-step breakpoint forward, one instruction at a
2587 time. If the PC has changed, then the thread we were
2588 trying to single-step has trapped or been signalled,
2589 but the event has not been reported to GDB yet.
2590
2591 There might be some cases where this loses signal
2592 information, if a signal has arrived at exactly the
2593 same time that the PC changed, but this is the best
2594 we can do with the information available. Perhaps we
2595 should arrange to report all events for all threads
2596 when they stop, or to re-poll the remote looking for
2597 this particular thread (i.e. temporarily enable
2598 schedlock). */
2599
2600 CORE_ADDR new_singlestep_pc
2601 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2602
2603 if (new_singlestep_pc != singlestep_pc)
2604 {
2605 enum target_signal stop_signal;
2606
2607 if (debug_infrun)
2608 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2609 " but expected thread advanced also\n");
2610
2611 /* The current context still belongs to
2612 singlestep_ptid. Don't swap here, since that's
2613 the context we want to use. Just fudge our
2614 state and continue. */
2615 stop_signal = ecs->event_thread->stop_signal;
2616 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2617 ecs->ptid = singlestep_ptid;
2618 ecs->event_thread = find_thread_pid (ecs->ptid);
2619 ecs->event_thread->stop_signal = stop_signal;
2620 stop_pc = new_singlestep_pc;
2621 }
2622 else
2623 {
2624 if (debug_infrun)
2625 fprintf_unfiltered (gdb_stdlog,
2626 "infrun: unexpected thread\n");
2627
2628 thread_hop_needed = 1;
2629 stepping_past_singlestep_breakpoint = 1;
2630 saved_singlestep_ptid = singlestep_ptid;
2631 }
2632 }
2633 }
2634
2635 if (thread_hop_needed)
2636 {
2637 int remove_status = 0;
2638
2639 if (debug_infrun)
2640 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2641
2642 /* Saw a breakpoint, but it was hit by the wrong thread.
2643 Just continue. */
2644
2645 if (singlestep_breakpoints_inserted_p)
2646 {
2647 /* Pull the single step breakpoints out of the target. */
2648 remove_single_step_breakpoints ();
2649 singlestep_breakpoints_inserted_p = 0;
2650 }
2651
2652 /* If the arch can displace step, don't remove the
2653 breakpoints. */
2654 if (!use_displaced_stepping (current_gdbarch))
2655 remove_status = remove_breakpoints ();
2656
2657 /* Did we fail to remove breakpoints? If so, try
2658 to set the PC past the bp. (There's at least
2659 one situation in which we can fail to remove
2660 the bp's: On HP-UX's that use ttrace, we can't
2661 change the address space of a vforking child
2662 process until the child exits (well, okay, not
2663 then either :-) or execs. */
2664 if (remove_status != 0)
2665 error (_("Cannot step over breakpoint hit in wrong thread"));
2666 else
2667 { /* Single step */
2668 if (!ptid_equal (inferior_ptid, ecs->ptid))
2669 context_switch (ecs->ptid);
2670
2671 if (!non_stop)
2672 {
2673 /* Only need to require the next event from this
2674 thread in all-stop mode. */
2675 waiton_ptid = ecs->ptid;
2676 infwait_state = infwait_thread_hop_state;
2677 }
2678
2679 ecs->event_thread->stepping_over_breakpoint = 1;
2680 keep_going (ecs);
2681 registers_changed ();
2682 return;
2683 }
2684 }
2685 else if (singlestep_breakpoints_inserted_p)
2686 {
2687 sw_single_step_trap_p = 1;
2688 ecs->random_signal = 0;
2689 }
2690 }
2691 else
2692 ecs->random_signal = 1;
2693
2694 /* See if something interesting happened to the non-current thread. If
2695 so, then switch to that thread. */
2696 if (!ptid_equal (ecs->ptid, inferior_ptid))
2697 {
2698 if (debug_infrun)
2699 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2700
2701 context_switch (ecs->ptid);
2702
2703 if (deprecated_context_hook)
2704 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2705 }
2706
2707 if (singlestep_breakpoints_inserted_p)
2708 {
2709 /* Pull the single step breakpoints out of the target. */
2710 remove_single_step_breakpoints ();
2711 singlestep_breakpoints_inserted_p = 0;
2712 }
2713
2714 if (stepped_after_stopped_by_watchpoint)
2715 stopped_by_watchpoint = 0;
2716 else
2717 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2718
2719 /* If necessary, step over this watchpoint. We'll be back to display
2720 it in a moment. */
2721 if (stopped_by_watchpoint
2722 && (HAVE_STEPPABLE_WATCHPOINT
2723 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2724 {
2725 /* At this point, we are stopped at an instruction which has
2726 attempted to write to a piece of memory under control of
2727 a watchpoint. The instruction hasn't actually executed
2728 yet. If we were to evaluate the watchpoint expression
2729 now, we would get the old value, and therefore no change
2730 would seem to have occurred.
2731
2732 In order to make watchpoints work `right', we really need
2733 to complete the memory write, and then evaluate the
2734 watchpoint expression. We do this by single-stepping the
2735 target.
2736
2737 It may not be necessary to disable the watchpoint to stop over
2738 it. For example, the PA can (with some kernel cooperation)
2739 single step over a watchpoint without disabling the watchpoint.
2740
2741 It is far more common to need to disable a watchpoint to step
2742 the inferior over it. If we have non-steppable watchpoints,
2743 we must disable the current watchpoint; it's simplest to
2744 disable all watchpoints and breakpoints. */
2745
2746 if (!HAVE_STEPPABLE_WATCHPOINT)
2747 remove_breakpoints ();
2748 registers_changed ();
2749 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2750 waiton_ptid = ecs->ptid;
2751 if (HAVE_STEPPABLE_WATCHPOINT)
2752 infwait_state = infwait_step_watch_state;
2753 else
2754 infwait_state = infwait_nonstep_watch_state;
2755 prepare_to_wait (ecs);
2756 return;
2757 }
2758
2759 ecs->stop_func_start = 0;
2760 ecs->stop_func_end = 0;
2761 ecs->stop_func_name = 0;
2762 /* Don't care about return value; stop_func_start and stop_func_name
2763 will both be 0 if it doesn't work. */
2764 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2765 &ecs->stop_func_start, &ecs->stop_func_end);
2766 ecs->stop_func_start
2767 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2768 ecs->event_thread->stepping_over_breakpoint = 0;
2769 bpstat_clear (&ecs->event_thread->stop_bpstat);
2770 ecs->event_thread->stop_step = 0;
2771 stop_print_frame = 1;
2772 ecs->random_signal = 0;
2773 stopped_by_random_signal = 0;
2774
2775 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2776 && ecs->event_thread->trap_expected
2777 && gdbarch_single_step_through_delay_p (current_gdbarch)
2778 && currently_stepping (ecs->event_thread))
2779 {
2780 /* We're trying to step off a breakpoint. Turns out that we're
2781 also on an instruction that needs to be stepped multiple
2782 times before it's been fully executing. E.g., architectures
2783 with a delay slot. It needs to be stepped twice, once for
2784 the instruction and once for the delay slot. */
2785 int step_through_delay
2786 = gdbarch_single_step_through_delay (current_gdbarch,
2787 get_current_frame ());
2788 if (debug_infrun && step_through_delay)
2789 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2790 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
2791 {
2792 /* The user issued a continue when stopped at a breakpoint.
2793 Set up for another trap and get out of here. */
2794 ecs->event_thread->stepping_over_breakpoint = 1;
2795 keep_going (ecs);
2796 return;
2797 }
2798 else if (step_through_delay)
2799 {
2800 /* The user issued a step when stopped at a breakpoint.
2801 Maybe we should stop, maybe we should not - the delay
2802 slot *might* correspond to a line of source. In any
2803 case, don't decide that here, just set
2804 ecs->stepping_over_breakpoint, making sure we
2805 single-step again before breakpoints are re-inserted. */
2806 ecs->event_thread->stepping_over_breakpoint = 1;
2807 }
2808 }
2809
2810 /* Look at the cause of the stop, and decide what to do.
2811 The alternatives are:
2812 1) stop_stepping and return; to really stop and return to the debugger,
2813 2) keep_going and return to start up again
2814 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
2815 3) set ecs->random_signal to 1, and the decision between 1 and 2
2816 will be made according to the signal handling tables. */
2817
2818 /* First, distinguish signals caused by the debugger from signals
2819 that have to do with the program's own actions. Note that
2820 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2821 on the operating system version. Here we detect when a SIGILL or
2822 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2823 something similar for SIGSEGV, since a SIGSEGV will be generated
2824 when we're trying to execute a breakpoint instruction on a
2825 non-executable stack. This happens for call dummy breakpoints
2826 for architectures like SPARC that place call dummies on the
2827 stack.
2828
2829 If we're doing a displaced step past a breakpoint, then the
2830 breakpoint is always inserted at the original instruction;
2831 non-standard signals can't be explained by the breakpoint. */
2832 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2833 || (! ecs->event_thread->trap_expected
2834 && breakpoint_inserted_here_p (stop_pc)
2835 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
2836 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
2837 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
2838 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2839 || stop_soon == STOP_QUIETLY_REMOTE)
2840 {
2841 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2842 {
2843 if (debug_infrun)
2844 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2845 stop_print_frame = 0;
2846 stop_stepping (ecs);
2847 return;
2848 }
2849
2850 /* This is originated from start_remote(), start_inferior() and
2851 shared libraries hook functions. */
2852 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2853 {
2854 if (debug_infrun)
2855 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2856 stop_stepping (ecs);
2857 return;
2858 }
2859
2860 /* This originates from attach_command(). We need to overwrite
2861 the stop_signal here, because some kernels don't ignore a
2862 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2863 See more comments in inferior.h. On the other hand, if we
2864 get a non-SIGSTOP, report it to the user - assume the backend
2865 will handle the SIGSTOP if it should show up later.
2866
2867 Also consider that the attach is complete when we see a
2868 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2869 target extended-remote report it instead of a SIGSTOP
2870 (e.g. gdbserver). We already rely on SIGTRAP being our
2871 signal, so this is no exception.
2872
2873 Also consider that the attach is complete when we see a
2874 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
2875 the target to stop all threads of the inferior, in case the
2876 low level attach operation doesn't stop them implicitly. If
2877 they weren't stopped implicitly, then the stub will report a
2878 TARGET_SIGNAL_0, meaning: stopped for no particular reason
2879 other than GDB's request. */
2880 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2881 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
2882 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2883 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
2884 {
2885 stop_stepping (ecs);
2886 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2887 return;
2888 }
2889
2890 /* See if there is a breakpoint at the current PC. */
2891 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2892
2893 /* Following in case break condition called a
2894 function. */
2895 stop_print_frame = 1;
2896
2897 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2898 at one stage in the past included checks for an inferior
2899 function call's call dummy's return breakpoint. The original
2900 comment, that went with the test, read:
2901
2902 ``End of a stack dummy. Some systems (e.g. Sony news) give
2903 another signal besides SIGTRAP, so check here as well as
2904 above.''
2905
2906 If someone ever tries to get call dummys on a
2907 non-executable stack to work (where the target would stop
2908 with something like a SIGSEGV), then those tests might need
2909 to be re-instated. Given, however, that the tests were only
2910 enabled when momentary breakpoints were not being used, I
2911 suspect that it won't be the case.
2912
2913 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2914 be necessary for call dummies on a non-executable stack on
2915 SPARC. */
2916
2917 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2918 ecs->random_signal
2919 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
2920 || ecs->event_thread->trap_expected
2921 || (ecs->event_thread->step_range_end
2922 && ecs->event_thread->step_resume_breakpoint == NULL));
2923 else
2924 {
2925 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2926 if (!ecs->random_signal)
2927 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2928 }
2929 }
2930
2931 /* When we reach this point, we've pretty much decided
2932 that the reason for stopping must've been a random
2933 (unexpected) signal. */
2934
2935 else
2936 ecs->random_signal = 1;
2937
2938 process_event_stop_test:
2939 /* For the program's own signals, act according to
2940 the signal handling tables. */
2941
2942 if (ecs->random_signal)
2943 {
2944 /* Signal not for debugging purposes. */
2945 int printed = 0;
2946
2947 if (debug_infrun)
2948 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
2949 ecs->event_thread->stop_signal);
2950
2951 stopped_by_random_signal = 1;
2952
2953 if (signal_print[ecs->event_thread->stop_signal])
2954 {
2955 printed = 1;
2956 target_terminal_ours_for_output ();
2957 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
2958 }
2959 /* Always stop on signals if we're either just gaining control
2960 of the program, or the user explicitly requested this thread
2961 to remain stopped. */
2962 if (stop_soon != NO_STOP_QUIETLY
2963 || ecs->event_thread->stop_requested
2964 || signal_stop_state (ecs->event_thread->stop_signal))
2965 {
2966 stop_stepping (ecs);
2967 return;
2968 }
2969 /* If not going to stop, give terminal back
2970 if we took it away. */
2971 else if (printed)
2972 target_terminal_inferior ();
2973
2974 /* Clear the signal if it should not be passed. */
2975 if (signal_program[ecs->event_thread->stop_signal] == 0)
2976 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2977
2978 if (ecs->event_thread->prev_pc == read_pc ()
2979 && ecs->event_thread->trap_expected
2980 && ecs->event_thread->step_resume_breakpoint == NULL)
2981 {
2982 /* We were just starting a new sequence, attempting to
2983 single-step off of a breakpoint and expecting a SIGTRAP.
2984 Instead this signal arrives. This signal will take us out
2985 of the stepping range so GDB needs to remember to, when
2986 the signal handler returns, resume stepping off that
2987 breakpoint. */
2988 /* To simplify things, "continue" is forced to use the same
2989 code paths as single-step - set a breakpoint at the
2990 signal return address and then, once hit, step off that
2991 breakpoint. */
2992 if (debug_infrun)
2993 fprintf_unfiltered (gdb_stdlog,
2994 "infrun: signal arrived while stepping over "
2995 "breakpoint\n");
2996
2997 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2998 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2999 keep_going (ecs);
3000 return;
3001 }
3002
3003 if (ecs->event_thread->step_range_end != 0
3004 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
3005 && (ecs->event_thread->step_range_start <= stop_pc
3006 && stop_pc < ecs->event_thread->step_range_end)
3007 && frame_id_eq (get_frame_id (get_current_frame ()),
3008 ecs->event_thread->step_frame_id)
3009 && ecs->event_thread->step_resume_breakpoint == NULL)
3010 {
3011 /* The inferior is about to take a signal that will take it
3012 out of the single step range. Set a breakpoint at the
3013 current PC (which is presumably where the signal handler
3014 will eventually return) and then allow the inferior to
3015 run free.
3016
3017 Note that this is only needed for a signal delivered
3018 while in the single-step range. Nested signals aren't a
3019 problem as they eventually all return. */
3020 if (debug_infrun)
3021 fprintf_unfiltered (gdb_stdlog,
3022 "infrun: signal may take us out of "
3023 "single-step range\n");
3024
3025 insert_step_resume_breakpoint_at_frame (get_current_frame ());
3026 keep_going (ecs);
3027 return;
3028 }
3029
3030 /* Note: step_resume_breakpoint may be non-NULL. This occures
3031 when either there's a nested signal, or when there's a
3032 pending signal enabled just as the signal handler returns
3033 (leaving the inferior at the step-resume-breakpoint without
3034 actually executing it). Either way continue until the
3035 breakpoint is really hit. */
3036 keep_going (ecs);
3037 return;
3038 }
3039
3040 /* Handle cases caused by hitting a breakpoint. */
3041 {
3042 CORE_ADDR jmp_buf_pc;
3043 struct bpstat_what what;
3044
3045 what = bpstat_what (ecs->event_thread->stop_bpstat);
3046
3047 if (what.call_dummy)
3048 {
3049 stop_stack_dummy = 1;
3050 }
3051
3052 switch (what.main_action)
3053 {
3054 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
3055 /* If we hit the breakpoint at longjmp while stepping, we
3056 install a momentary breakpoint at the target of the
3057 jmp_buf. */
3058
3059 if (debug_infrun)
3060 fprintf_unfiltered (gdb_stdlog,
3061 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3062
3063 ecs->event_thread->stepping_over_breakpoint = 1;
3064
3065 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
3066 || !gdbarch_get_longjmp_target (current_gdbarch,
3067 get_current_frame (), &jmp_buf_pc))
3068 {
3069 if (debug_infrun)
3070 fprintf_unfiltered (gdb_stdlog, "\
3071 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
3072 keep_going (ecs);
3073 return;
3074 }
3075
3076 /* We're going to replace the current step-resume breakpoint
3077 with a longjmp-resume breakpoint. */
3078 delete_step_resume_breakpoint (ecs->event_thread);
3079
3080 /* Insert a breakpoint at resume address. */
3081 insert_longjmp_resume_breakpoint (jmp_buf_pc);
3082
3083 keep_going (ecs);
3084 return;
3085
3086 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
3087 if (debug_infrun)
3088 fprintf_unfiltered (gdb_stdlog,
3089 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3090
3091 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3092 delete_step_resume_breakpoint (ecs->event_thread);
3093
3094 ecs->event_thread->stop_step = 1;
3095 print_stop_reason (END_STEPPING_RANGE, 0);
3096 stop_stepping (ecs);
3097 return;
3098
3099 case BPSTAT_WHAT_SINGLE:
3100 if (debug_infrun)
3101 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
3102 ecs->event_thread->stepping_over_breakpoint = 1;
3103 /* Still need to check other stuff, at least the case
3104 where we are stepping and step out of the right range. */
3105 break;
3106
3107 case BPSTAT_WHAT_STOP_NOISY:
3108 if (debug_infrun)
3109 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
3110 stop_print_frame = 1;
3111
3112 /* We are about to nuke the step_resume_breakpointt via the
3113 cleanup chain, so no need to worry about it here. */
3114
3115 stop_stepping (ecs);
3116 return;
3117
3118 case BPSTAT_WHAT_STOP_SILENT:
3119 if (debug_infrun)
3120 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
3121 stop_print_frame = 0;
3122
3123 /* We are about to nuke the step_resume_breakpoin via the
3124 cleanup chain, so no need to worry about it here. */
3125
3126 stop_stepping (ecs);
3127 return;
3128
3129 case BPSTAT_WHAT_STEP_RESUME:
3130 if (debug_infrun)
3131 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
3132
3133 delete_step_resume_breakpoint (ecs->event_thread);
3134 if (ecs->event_thread->step_after_step_resume_breakpoint)
3135 {
3136 /* Back when the step-resume breakpoint was inserted, we
3137 were trying to single-step off a breakpoint. Go back
3138 to doing that. */
3139 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3140 ecs->event_thread->stepping_over_breakpoint = 1;
3141 keep_going (ecs);
3142 return;
3143 }
3144 if (stop_pc == ecs->stop_func_start
3145 && execution_direction == EXEC_REVERSE)
3146 {
3147 /* We are stepping over a function call in reverse, and
3148 just hit the step-resume breakpoint at the start
3149 address of the function. Go back to single-stepping,
3150 which should take us back to the function call. */
3151 ecs->event_thread->stepping_over_breakpoint = 1;
3152 keep_going (ecs);
3153 return;
3154 }
3155 break;
3156
3157 case BPSTAT_WHAT_CHECK_SHLIBS:
3158 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
3159 {
3160 if (debug_infrun)
3161 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
3162
3163 /* Check for any newly added shared libraries if we're
3164 supposed to be adding them automatically. Switch
3165 terminal for any messages produced by
3166 breakpoint_re_set. */
3167 target_terminal_ours_for_output ();
3168 /* NOTE: cagney/2003-11-25: Make certain that the target
3169 stack's section table is kept up-to-date. Architectures,
3170 (e.g., PPC64), use the section table to perform
3171 operations such as address => section name and hence
3172 require the table to contain all sections (including
3173 those found in shared libraries). */
3174 /* NOTE: cagney/2003-11-25: Pass current_target and not
3175 exec_ops to SOLIB_ADD. This is because current GDB is
3176 only tooled to propagate section_table changes out from
3177 the "current_target" (see target_resize_to_sections), and
3178 not up from the exec stratum. This, of course, isn't
3179 right. "infrun.c" should only interact with the
3180 exec/process stratum, instead relying on the target stack
3181 to propagate relevant changes (stop, section table
3182 changed, ...) up to other layers. */
3183 #ifdef SOLIB_ADD
3184 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3185 #else
3186 solib_add (NULL, 0, &current_target, auto_solib_add);
3187 #endif
3188 target_terminal_inferior ();
3189
3190 /* If requested, stop when the dynamic linker notifies
3191 gdb of events. This allows the user to get control
3192 and place breakpoints in initializer routines for
3193 dynamically loaded objects (among other things). */
3194 if (stop_on_solib_events || stop_stack_dummy)
3195 {
3196 stop_stepping (ecs);
3197 return;
3198 }
3199 else
3200 {
3201 /* We want to step over this breakpoint, then keep going. */
3202 ecs->event_thread->stepping_over_breakpoint = 1;
3203 break;
3204 }
3205 }
3206 break;
3207
3208 case BPSTAT_WHAT_LAST:
3209 /* Not a real code, but listed here to shut up gcc -Wall. */
3210
3211 case BPSTAT_WHAT_KEEP_CHECKING:
3212 break;
3213 }
3214 }
3215
3216 /* We come here if we hit a breakpoint but should not
3217 stop for it. Possibly we also were stepping
3218 and should stop for that. So fall through and
3219 test for stepping. But, if not stepping,
3220 do not stop. */
3221
3222 /* In all-stop mode, if we're currently stepping but have stopped in
3223 some other thread, we need to switch back to the stepped thread. */
3224 if (!non_stop)
3225 {
3226 struct thread_info *tp;
3227 tp = iterate_over_threads (currently_stepping_callback,
3228 ecs->event_thread);
3229 if (tp)
3230 {
3231 /* However, if the current thread is blocked on some internal
3232 breakpoint, and we simply need to step over that breakpoint
3233 to get it going again, do that first. */
3234 if ((ecs->event_thread->trap_expected
3235 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3236 || ecs->event_thread->stepping_over_breakpoint)
3237 {
3238 keep_going (ecs);
3239 return;
3240 }
3241
3242 /* Otherwise, we no longer expect a trap in the current thread.
3243 Clear the trap_expected flag before switching back -- this is
3244 what keep_going would do as well, if we called it. */
3245 ecs->event_thread->trap_expected = 0;
3246
3247 if (debug_infrun)
3248 fprintf_unfiltered (gdb_stdlog,
3249 "infrun: switching back to stepped thread\n");
3250
3251 ecs->event_thread = tp;
3252 ecs->ptid = tp->ptid;
3253 context_switch (ecs->ptid);
3254 keep_going (ecs);
3255 return;
3256 }
3257 }
3258
3259 /* Are we stepping to get the inferior out of the dynamic linker's
3260 hook (and possibly the dld itself) after catching a shlib
3261 event? */
3262 if (ecs->event_thread->stepping_through_solib_after_catch)
3263 {
3264 #if defined(SOLIB_ADD)
3265 /* Have we reached our destination? If not, keep going. */
3266 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3267 {
3268 if (debug_infrun)
3269 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
3270 ecs->event_thread->stepping_over_breakpoint = 1;
3271 keep_going (ecs);
3272 return;
3273 }
3274 #endif
3275 if (debug_infrun)
3276 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
3277 /* Else, stop and report the catchpoint(s) whose triggering
3278 caused us to begin stepping. */
3279 ecs->event_thread->stepping_through_solib_after_catch = 0;
3280 bpstat_clear (&ecs->event_thread->stop_bpstat);
3281 ecs->event_thread->stop_bpstat
3282 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
3283 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
3284 stop_print_frame = 1;
3285 stop_stepping (ecs);
3286 return;
3287 }
3288
3289 if (ecs->event_thread->step_resume_breakpoint)
3290 {
3291 if (debug_infrun)
3292 fprintf_unfiltered (gdb_stdlog,
3293 "infrun: step-resume breakpoint is inserted\n");
3294
3295 /* Having a step-resume breakpoint overrides anything
3296 else having to do with stepping commands until
3297 that breakpoint is reached. */
3298 keep_going (ecs);
3299 return;
3300 }
3301
3302 if (ecs->event_thread->step_range_end == 0)
3303 {
3304 if (debug_infrun)
3305 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3306 /* Likewise if we aren't even stepping. */
3307 keep_going (ecs);
3308 return;
3309 }
3310
3311 /* If stepping through a line, keep going if still within it.
3312
3313 Note that step_range_end is the address of the first instruction
3314 beyond the step range, and NOT the address of the last instruction
3315 within it! */
3316 if (stop_pc >= ecs->event_thread->step_range_start
3317 && stop_pc < ecs->event_thread->step_range_end)
3318 {
3319 if (debug_infrun)
3320 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3321 paddr_nz (ecs->event_thread->step_range_start),
3322 paddr_nz (ecs->event_thread->step_range_end));
3323
3324 /* When stepping backward, stop at beginning of line range
3325 (unless it's the function entry point, in which case
3326 keep going back to the call point). */
3327 if (stop_pc == ecs->event_thread->step_range_start
3328 && stop_pc != ecs->stop_func_start
3329 && execution_direction == EXEC_REVERSE)
3330 {
3331 ecs->event_thread->stop_step = 1;
3332 print_stop_reason (END_STEPPING_RANGE, 0);
3333 stop_stepping (ecs);
3334 }
3335 else
3336 keep_going (ecs);
3337
3338 return;
3339 }
3340
3341 /* We stepped out of the stepping range. */
3342
3343 /* If we are stepping at the source level and entered the runtime
3344 loader dynamic symbol resolution code, we keep on single stepping
3345 until we exit the run time loader code and reach the callee's
3346 address. */
3347 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3348 && in_solib_dynsym_resolve_code (stop_pc))
3349 {
3350 CORE_ADDR pc_after_resolver =
3351 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
3352
3353 if (debug_infrun)
3354 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3355
3356 if (pc_after_resolver)
3357 {
3358 /* Set up a step-resume breakpoint at the address
3359 indicated by SKIP_SOLIB_RESOLVER. */
3360 struct symtab_and_line sr_sal;
3361 init_sal (&sr_sal);
3362 sr_sal.pc = pc_after_resolver;
3363
3364 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3365 }
3366
3367 keep_going (ecs);
3368 return;
3369 }
3370
3371 if (ecs->event_thread->step_range_end != 1
3372 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3373 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3374 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
3375 {
3376 if (debug_infrun)
3377 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3378 /* The inferior, while doing a "step" or "next", has ended up in
3379 a signal trampoline (either by a signal being delivered or by
3380 the signal handler returning). Just single-step until the
3381 inferior leaves the trampoline (either by calling the handler
3382 or returning). */
3383 keep_going (ecs);
3384 return;
3385 }
3386
3387 /* Check for subroutine calls. The check for the current frame
3388 equalling the step ID is not necessary - the check of the
3389 previous frame's ID is sufficient - but it is a common case and
3390 cheaper than checking the previous frame's ID.
3391
3392 NOTE: frame_id_eq will never report two invalid frame IDs as
3393 being equal, so to get into this block, both the current and
3394 previous frame must have valid frame IDs. */
3395 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3396 ecs->event_thread->step_frame_id)
3397 && (frame_id_eq (frame_unwind_id (get_current_frame ()),
3398 ecs->event_thread->step_frame_id)
3399 || execution_direction == EXEC_REVERSE))
3400 {
3401 CORE_ADDR real_stop_pc;
3402
3403 if (debug_infrun)
3404 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3405
3406 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
3407 || ((ecs->event_thread->step_range_end == 1)
3408 && in_prologue (ecs->event_thread->prev_pc,
3409 ecs->stop_func_start)))
3410 {
3411 /* I presume that step_over_calls is only 0 when we're
3412 supposed to be stepping at the assembly language level
3413 ("stepi"). Just stop. */
3414 /* Also, maybe we just did a "nexti" inside a prolog, so we
3415 thought it was a subroutine call but it was not. Stop as
3416 well. FENN */
3417 ecs->event_thread->stop_step = 1;
3418 print_stop_reason (END_STEPPING_RANGE, 0);
3419 stop_stepping (ecs);
3420 return;
3421 }
3422
3423 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3424 {
3425 /* We're doing a "next".
3426
3427 Normal (forward) execution: set a breakpoint at the
3428 callee's return address (the address at which the caller
3429 will resume).
3430
3431 Reverse (backward) execution. set the step-resume
3432 breakpoint at the start of the function that we just
3433 stepped into (backwards), and continue to there. When we
3434 get there, we'll need to single-step back to the caller. */
3435
3436 if (execution_direction == EXEC_REVERSE)
3437 {
3438 struct symtab_and_line sr_sal;
3439
3440 if (ecs->stop_func_start == 0
3441 && in_solib_dynsym_resolve_code (stop_pc))
3442 {
3443 /* Stepped into runtime loader dynamic symbol
3444 resolution code. Since we're in reverse,
3445 we have already backed up through the runtime
3446 loader and the dynamic function. This is just
3447 the trampoline (jump table).
3448
3449 Just keep stepping, we'll soon be home.
3450 */
3451 keep_going (ecs);
3452 return;
3453 }
3454 /* Normal (staticly linked) function call return. */
3455 init_sal (&sr_sal);
3456 sr_sal.pc = ecs->stop_func_start;
3457 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3458 }
3459 else
3460 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3461
3462 keep_going (ecs);
3463 return;
3464 }
3465
3466 /* If we are in a function call trampoline (a stub between the
3467 calling routine and the real function), locate the real
3468 function. That's what tells us (a) whether we want to step
3469 into it at all, and (b) what prologue we want to run to the
3470 end of, if we do step into it. */
3471 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
3472 if (real_stop_pc == 0)
3473 real_stop_pc = gdbarch_skip_trampoline_code
3474 (current_gdbarch, get_current_frame (), stop_pc);
3475 if (real_stop_pc != 0)
3476 ecs->stop_func_start = real_stop_pc;
3477
3478 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
3479 {
3480 struct symtab_and_line sr_sal;
3481 init_sal (&sr_sal);
3482 sr_sal.pc = ecs->stop_func_start;
3483
3484 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3485 keep_going (ecs);
3486 return;
3487 }
3488
3489 /* If we have line number information for the function we are
3490 thinking of stepping into, step into it.
3491
3492 If there are several symtabs at that PC (e.g. with include
3493 files), just want to know whether *any* of them have line
3494 numbers. find_pc_line handles this. */
3495 {
3496 struct symtab_and_line tmp_sal;
3497
3498 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3499 if (tmp_sal.line != 0)
3500 {
3501 if (execution_direction == EXEC_REVERSE)
3502 handle_step_into_function_backward (ecs);
3503 else
3504 handle_step_into_function (ecs);
3505 return;
3506 }
3507 }
3508
3509 /* If we have no line number and the step-stop-if-no-debug is
3510 set, we stop the step so that the user has a chance to switch
3511 in assembly mode. */
3512 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3513 && step_stop_if_no_debug)
3514 {
3515 ecs->event_thread->stop_step = 1;
3516 print_stop_reason (END_STEPPING_RANGE, 0);
3517 stop_stepping (ecs);
3518 return;
3519 }
3520
3521 if (execution_direction == EXEC_REVERSE)
3522 {
3523 /* Set a breakpoint at callee's start address.
3524 From there we can step once and be back in the caller. */
3525 struct symtab_and_line sr_sal;
3526 init_sal (&sr_sal);
3527 sr_sal.pc = ecs->stop_func_start;
3528 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3529 }
3530 else
3531 /* Set a breakpoint at callee's return address (the address
3532 at which the caller will resume). */
3533 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3534
3535 keep_going (ecs);
3536 return;
3537 }
3538
3539 /* If we're in the return path from a shared library trampoline,
3540 we want to proceed through the trampoline when stepping. */
3541 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3542 stop_pc, ecs->stop_func_name))
3543 {
3544 /* Determine where this trampoline returns. */
3545 CORE_ADDR real_stop_pc;
3546 real_stop_pc = gdbarch_skip_trampoline_code
3547 (current_gdbarch, get_current_frame (), stop_pc);
3548
3549 if (debug_infrun)
3550 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3551
3552 /* Only proceed through if we know where it's going. */
3553 if (real_stop_pc)
3554 {
3555 /* And put the step-breakpoint there and go until there. */
3556 struct symtab_and_line sr_sal;
3557
3558 init_sal (&sr_sal); /* initialize to zeroes */
3559 sr_sal.pc = real_stop_pc;
3560 sr_sal.section = find_pc_overlay (sr_sal.pc);
3561
3562 /* Do not specify what the fp should be when we stop since
3563 on some machines the prologue is where the new fp value
3564 is established. */
3565 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3566
3567 /* Restart without fiddling with the step ranges or
3568 other state. */
3569 keep_going (ecs);
3570 return;
3571 }
3572 }
3573
3574 stop_pc_sal = find_pc_line (stop_pc, 0);
3575
3576 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3577 the trampoline processing logic, however, there are some trampolines
3578 that have no names, so we should do trampoline handling first. */
3579 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3580 && ecs->stop_func_name == NULL
3581 && stop_pc_sal.line == 0)
3582 {
3583 if (debug_infrun)
3584 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3585
3586 /* The inferior just stepped into, or returned to, an
3587 undebuggable function (where there is no debugging information
3588 and no line number corresponding to the address where the
3589 inferior stopped). Since we want to skip this kind of code,
3590 we keep going until the inferior returns from this
3591 function - unless the user has asked us not to (via
3592 set step-mode) or we no longer know how to get back
3593 to the call site. */
3594 if (step_stop_if_no_debug
3595 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3596 {
3597 /* If we have no line number and the step-stop-if-no-debug
3598 is set, we stop the step so that the user has a chance to
3599 switch in assembly mode. */
3600 ecs->event_thread->stop_step = 1;
3601 print_stop_reason (END_STEPPING_RANGE, 0);
3602 stop_stepping (ecs);
3603 return;
3604 }
3605 else
3606 {
3607 /* Set a breakpoint at callee's return address (the address
3608 at which the caller will resume). */
3609 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3610 keep_going (ecs);
3611 return;
3612 }
3613 }
3614
3615 if (ecs->event_thread->step_range_end == 1)
3616 {
3617 /* It is stepi or nexti. We always want to stop stepping after
3618 one instruction. */
3619 if (debug_infrun)
3620 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3621 ecs->event_thread->stop_step = 1;
3622 print_stop_reason (END_STEPPING_RANGE, 0);
3623 stop_stepping (ecs);
3624 return;
3625 }
3626
3627 if (stop_pc_sal.line == 0)
3628 {
3629 /* We have no line number information. That means to stop
3630 stepping (does this always happen right after one instruction,
3631 when we do "s" in a function with no line numbers,
3632 or can this happen as a result of a return or longjmp?). */
3633 if (debug_infrun)
3634 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3635 ecs->event_thread->stop_step = 1;
3636 print_stop_reason (END_STEPPING_RANGE, 0);
3637 stop_stepping (ecs);
3638 return;
3639 }
3640
3641 if ((stop_pc == stop_pc_sal.pc)
3642 && (ecs->event_thread->current_line != stop_pc_sal.line
3643 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
3644 {
3645 /* We are at the start of a different line. So stop. Note that
3646 we don't stop if we step into the middle of a different line.
3647 That is said to make things like for (;;) statements work
3648 better. */
3649 if (debug_infrun)
3650 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3651 ecs->event_thread->stop_step = 1;
3652 print_stop_reason (END_STEPPING_RANGE, 0);
3653 stop_stepping (ecs);
3654 return;
3655 }
3656
3657 /* We aren't done stepping.
3658
3659 Optimize by setting the stepping range to the line.
3660 (We might not be in the original line, but if we entered a
3661 new line in mid-statement, we continue stepping. This makes
3662 things like for(;;) statements work better.) */
3663
3664 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3665 ecs->event_thread->step_range_end = stop_pc_sal.end;
3666 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3667 ecs->event_thread->current_line = stop_pc_sal.line;
3668 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
3669
3670 if (debug_infrun)
3671 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3672 keep_going (ecs);
3673 }
3674
3675 /* Are we in the middle of stepping? */
3676
3677 static int
3678 currently_stepping_thread (struct thread_info *tp)
3679 {
3680 return (tp->step_range_end && tp->step_resume_breakpoint == NULL)
3681 || tp->trap_expected
3682 || tp->stepping_through_solib_after_catch;
3683 }
3684
3685 static int
3686 currently_stepping_callback (struct thread_info *tp, void *data)
3687 {
3688 /* Return true if any thread *but* the one passed in "data" is
3689 in the middle of stepping. */
3690 return tp != data && currently_stepping_thread (tp);
3691 }
3692
3693 static int
3694 currently_stepping (struct thread_info *tp)
3695 {
3696 return currently_stepping_thread (tp) || bpstat_should_step ();
3697 }
3698
3699 /* Inferior has stepped into a subroutine call with source code that
3700 we should not step over. Do step to the first line of code in
3701 it. */
3702
3703 static void
3704 handle_step_into_function (struct execution_control_state *ecs)
3705 {
3706 struct symtab *s;
3707 struct symtab_and_line stop_func_sal, sr_sal;
3708
3709 s = find_pc_symtab (stop_pc);
3710 if (s && s->language != language_asm)
3711 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3712 ecs->stop_func_start);
3713
3714 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
3715 /* Use the step_resume_break to step until the end of the prologue,
3716 even if that involves jumps (as it seems to on the vax under
3717 4.2). */
3718 /* If the prologue ends in the middle of a source line, continue to
3719 the end of that source line (if it is still within the function).
3720 Otherwise, just go to end of prologue. */
3721 if (stop_func_sal.end
3722 && stop_func_sal.pc != ecs->stop_func_start
3723 && stop_func_sal.end < ecs->stop_func_end)
3724 ecs->stop_func_start = stop_func_sal.end;
3725
3726 /* Architectures which require breakpoint adjustment might not be able
3727 to place a breakpoint at the computed address. If so, the test
3728 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3729 ecs->stop_func_start to an address at which a breakpoint may be
3730 legitimately placed.
3731
3732 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3733 made, GDB will enter an infinite loop when stepping through
3734 optimized code consisting of VLIW instructions which contain
3735 subinstructions corresponding to different source lines. On
3736 FR-V, it's not permitted to place a breakpoint on any but the
3737 first subinstruction of a VLIW instruction. When a breakpoint is
3738 set, GDB will adjust the breakpoint address to the beginning of
3739 the VLIW instruction. Thus, we need to make the corresponding
3740 adjustment here when computing the stop address. */
3741
3742 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3743 {
3744 ecs->stop_func_start
3745 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3746 ecs->stop_func_start);
3747 }
3748
3749 if (ecs->stop_func_start == stop_pc)
3750 {
3751 /* We are already there: stop now. */
3752 ecs->event_thread->stop_step = 1;
3753 print_stop_reason (END_STEPPING_RANGE, 0);
3754 stop_stepping (ecs);
3755 return;
3756 }
3757 else
3758 {
3759 /* Put the step-breakpoint there and go until there. */
3760 init_sal (&sr_sal); /* initialize to zeroes */
3761 sr_sal.pc = ecs->stop_func_start;
3762 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3763
3764 /* Do not specify what the fp should be when we stop since on
3765 some machines the prologue is where the new fp value is
3766 established. */
3767 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3768
3769 /* And make sure stepping stops right away then. */
3770 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
3771 }
3772 keep_going (ecs);
3773 }
3774
3775 /* Inferior has stepped backward into a subroutine call with source
3776 code that we should not step over. Do step to the beginning of the
3777 last line of code in it. */
3778
3779 static void
3780 handle_step_into_function_backward (struct execution_control_state *ecs)
3781 {
3782 struct symtab *s;
3783 struct symtab_and_line stop_func_sal, sr_sal;
3784
3785 s = find_pc_symtab (stop_pc);
3786 if (s && s->language != language_asm)
3787 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3788 ecs->stop_func_start);
3789
3790 stop_func_sal = find_pc_line (stop_pc, 0);
3791
3792 /* OK, we're just going to keep stepping here. */
3793 if (stop_func_sal.pc == stop_pc)
3794 {
3795 /* We're there already. Just stop stepping now. */
3796 ecs->event_thread->stop_step = 1;
3797 print_stop_reason (END_STEPPING_RANGE, 0);
3798 stop_stepping (ecs);
3799 }
3800 else
3801 {
3802 /* Else just reset the step range and keep going.
3803 No step-resume breakpoint, they don't work for
3804 epilogues, which can have multiple entry paths. */
3805 ecs->event_thread->step_range_start = stop_func_sal.pc;
3806 ecs->event_thread->step_range_end = stop_func_sal.end;
3807 keep_going (ecs);
3808 }
3809 return;
3810 }
3811
3812 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3813 This is used to both functions and to skip over code. */
3814
3815 static void
3816 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3817 struct frame_id sr_id)
3818 {
3819 /* There should never be more than one step-resume or longjmp-resume
3820 breakpoint per thread, so we should never be setting a new
3821 step_resume_breakpoint when one is already active. */
3822 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3823
3824 if (debug_infrun)
3825 fprintf_unfiltered (gdb_stdlog,
3826 "infrun: inserting step-resume breakpoint at 0x%s\n",
3827 paddr_nz (sr_sal.pc));
3828
3829 inferior_thread ()->step_resume_breakpoint
3830 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
3831 }
3832
3833 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3834 to skip a potential signal handler.
3835
3836 This is called with the interrupted function's frame. The signal
3837 handler, when it returns, will resume the interrupted function at
3838 RETURN_FRAME.pc. */
3839
3840 static void
3841 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3842 {
3843 struct symtab_and_line sr_sal;
3844
3845 gdb_assert (return_frame != NULL);
3846 init_sal (&sr_sal); /* initialize to zeros */
3847
3848 sr_sal.pc = gdbarch_addr_bits_remove
3849 (current_gdbarch, get_frame_pc (return_frame));
3850 sr_sal.section = find_pc_overlay (sr_sal.pc);
3851
3852 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3853 }
3854
3855 /* Similar to insert_step_resume_breakpoint_at_frame, except
3856 but a breakpoint at the previous frame's PC. This is used to
3857 skip a function after stepping into it (for "next" or if the called
3858 function has no debugging information).
3859
3860 The current function has almost always been reached by single
3861 stepping a call or return instruction. NEXT_FRAME belongs to the
3862 current function, and the breakpoint will be set at the caller's
3863 resume address.
3864
3865 This is a separate function rather than reusing
3866 insert_step_resume_breakpoint_at_frame in order to avoid
3867 get_prev_frame, which may stop prematurely (see the implementation
3868 of frame_unwind_id for an example). */
3869
3870 static void
3871 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3872 {
3873 struct symtab_and_line sr_sal;
3874
3875 /* We shouldn't have gotten here if we don't know where the call site
3876 is. */
3877 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3878
3879 init_sal (&sr_sal); /* initialize to zeros */
3880
3881 sr_sal.pc = gdbarch_addr_bits_remove
3882 (current_gdbarch, frame_pc_unwind (next_frame));
3883 sr_sal.section = find_pc_overlay (sr_sal.pc);
3884
3885 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3886 }
3887
3888 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3889 new breakpoint at the target of a jmp_buf. The handling of
3890 longjmp-resume uses the same mechanisms used for handling
3891 "step-resume" breakpoints. */
3892
3893 static void
3894 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3895 {
3896 /* There should never be more than one step-resume or longjmp-resume
3897 breakpoint per thread, so we should never be setting a new
3898 longjmp_resume_breakpoint when one is already active. */
3899 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3900
3901 if (debug_infrun)
3902 fprintf_unfiltered (gdb_stdlog,
3903 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3904 paddr_nz (pc));
3905
3906 inferior_thread ()->step_resume_breakpoint =
3907 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3908 }
3909
3910 static void
3911 stop_stepping (struct execution_control_state *ecs)
3912 {
3913 if (debug_infrun)
3914 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3915
3916 /* Let callers know we don't want to wait for the inferior anymore. */
3917 ecs->wait_some_more = 0;
3918 }
3919
3920 /* This function handles various cases where we need to continue
3921 waiting for the inferior. */
3922 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3923
3924 static void
3925 keep_going (struct execution_control_state *ecs)
3926 {
3927 /* Save the pc before execution, to compare with pc after stop. */
3928 ecs->event_thread->prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3929
3930 /* If we did not do break;, it means we should keep running the
3931 inferior and not return to debugger. */
3932
3933 if (ecs->event_thread->trap_expected
3934 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3935 {
3936 /* We took a signal (which we are supposed to pass through to
3937 the inferior, else we'd not get here) and we haven't yet
3938 gotten our trap. Simply continue. */
3939 resume (currently_stepping (ecs->event_thread),
3940 ecs->event_thread->stop_signal);
3941 }
3942 else
3943 {
3944 /* Either the trap was not expected, but we are continuing
3945 anyway (the user asked that this signal be passed to the
3946 child)
3947 -- or --
3948 The signal was SIGTRAP, e.g. it was our signal, but we
3949 decided we should resume from it.
3950
3951 We're going to run this baby now!
3952
3953 Note that insert_breakpoints won't try to re-insert
3954 already inserted breakpoints. Therefore, we don't
3955 care if breakpoints were already inserted, or not. */
3956
3957 if (ecs->event_thread->stepping_over_breakpoint)
3958 {
3959 if (! use_displaced_stepping (current_gdbarch))
3960 /* Since we can't do a displaced step, we have to remove
3961 the breakpoint while we step it. To keep things
3962 simple, we remove them all. */
3963 remove_breakpoints ();
3964 }
3965 else
3966 {
3967 struct gdb_exception e;
3968 /* Stop stepping when inserting breakpoints
3969 has failed. */
3970 TRY_CATCH (e, RETURN_MASK_ERROR)
3971 {
3972 insert_breakpoints ();
3973 }
3974 if (e.reason < 0)
3975 {
3976 stop_stepping (ecs);
3977 return;
3978 }
3979 }
3980
3981 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
3982
3983 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3984 specifies that such a signal should be delivered to the
3985 target program).
3986
3987 Typically, this would occure when a user is debugging a
3988 target monitor on a simulator: the target monitor sets a
3989 breakpoint; the simulator encounters this break-point and
3990 halts the simulation handing control to GDB; GDB, noteing
3991 that the break-point isn't valid, returns control back to the
3992 simulator; the simulator then delivers the hardware
3993 equivalent of a SIGNAL_TRAP to the program being debugged. */
3994
3995 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3996 && !signal_program[ecs->event_thread->stop_signal])
3997 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3998
3999 resume (currently_stepping (ecs->event_thread),
4000 ecs->event_thread->stop_signal);
4001 }
4002
4003 prepare_to_wait (ecs);
4004 }
4005
4006 /* This function normally comes after a resume, before
4007 handle_inferior_event exits. It takes care of any last bits of
4008 housekeeping, and sets the all-important wait_some_more flag. */
4009
4010 static void
4011 prepare_to_wait (struct execution_control_state *ecs)
4012 {
4013 if (debug_infrun)
4014 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
4015 if (infwait_state == infwait_normal_state)
4016 {
4017 overlay_cache_invalid = 1;
4018
4019 /* We have to invalidate the registers BEFORE calling
4020 target_wait because they can be loaded from the target while
4021 in target_wait. This makes remote debugging a bit more
4022 efficient for those targets that provide critical registers
4023 as part of their normal status mechanism. */
4024
4025 registers_changed ();
4026 waiton_ptid = pid_to_ptid (-1);
4027 }
4028 /* This is the old end of the while loop. Let everybody know we
4029 want to wait for the inferior some more and get called again
4030 soon. */
4031 ecs->wait_some_more = 1;
4032 }
4033
4034 /* Print why the inferior has stopped. We always print something when
4035 the inferior exits, or receives a signal. The rest of the cases are
4036 dealt with later on in normal_stop() and print_it_typical(). Ideally
4037 there should be a call to this function from handle_inferior_event()
4038 each time stop_stepping() is called.*/
4039 static void
4040 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4041 {
4042 switch (stop_reason)
4043 {
4044 case END_STEPPING_RANGE:
4045 /* We are done with a step/next/si/ni command. */
4046 /* For now print nothing. */
4047 /* Print a message only if not in the middle of doing a "step n"
4048 operation for n > 1 */
4049 if (!inferior_thread ()->step_multi
4050 || !inferior_thread ()->stop_step)
4051 if (ui_out_is_mi_like_p (uiout))
4052 ui_out_field_string
4053 (uiout, "reason",
4054 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
4055 break;
4056 case SIGNAL_EXITED:
4057 /* The inferior was terminated by a signal. */
4058 annotate_signalled ();
4059 if (ui_out_is_mi_like_p (uiout))
4060 ui_out_field_string
4061 (uiout, "reason",
4062 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
4063 ui_out_text (uiout, "\nProgram terminated with signal ");
4064 annotate_signal_name ();
4065 ui_out_field_string (uiout, "signal-name",
4066 target_signal_to_name (stop_info));
4067 annotate_signal_name_end ();
4068 ui_out_text (uiout, ", ");
4069 annotate_signal_string ();
4070 ui_out_field_string (uiout, "signal-meaning",
4071 target_signal_to_string (stop_info));
4072 annotate_signal_string_end ();
4073 ui_out_text (uiout, ".\n");
4074 ui_out_text (uiout, "The program no longer exists.\n");
4075 break;
4076 case EXITED:
4077 /* The inferior program is finished. */
4078 annotate_exited (stop_info);
4079 if (stop_info)
4080 {
4081 if (ui_out_is_mi_like_p (uiout))
4082 ui_out_field_string (uiout, "reason",
4083 async_reason_lookup (EXEC_ASYNC_EXITED));
4084 ui_out_text (uiout, "\nProgram exited with code ");
4085 ui_out_field_fmt (uiout, "exit-code", "0%o",
4086 (unsigned int) stop_info);
4087 ui_out_text (uiout, ".\n");
4088 }
4089 else
4090 {
4091 if (ui_out_is_mi_like_p (uiout))
4092 ui_out_field_string
4093 (uiout, "reason",
4094 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
4095 ui_out_text (uiout, "\nProgram exited normally.\n");
4096 }
4097 /* Support the --return-child-result option. */
4098 return_child_result_value = stop_info;
4099 break;
4100 case SIGNAL_RECEIVED:
4101 /* Signal received. The signal table tells us to print about
4102 it. */
4103 annotate_signal ();
4104
4105 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4106 {
4107 struct thread_info *t = inferior_thread ();
4108
4109 ui_out_text (uiout, "\n[");
4110 ui_out_field_string (uiout, "thread-name",
4111 target_pid_to_str (t->ptid));
4112 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4113 ui_out_text (uiout, " stopped");
4114 }
4115 else
4116 {
4117 ui_out_text (uiout, "\nProgram received signal ");
4118 annotate_signal_name ();
4119 if (ui_out_is_mi_like_p (uiout))
4120 ui_out_field_string
4121 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4122 ui_out_field_string (uiout, "signal-name",
4123 target_signal_to_name (stop_info));
4124 annotate_signal_name_end ();
4125 ui_out_text (uiout, ", ");
4126 annotate_signal_string ();
4127 ui_out_field_string (uiout, "signal-meaning",
4128 target_signal_to_string (stop_info));
4129 annotate_signal_string_end ();
4130 }
4131 ui_out_text (uiout, ".\n");
4132 break;
4133 case NO_HISTORY:
4134 /* Reverse execution: target ran out of history info. */
4135 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4136 break;
4137 default:
4138 internal_error (__FILE__, __LINE__,
4139 _("print_stop_reason: unrecognized enum value"));
4140 break;
4141 }
4142 }
4143 \f
4144
4145 /* Here to return control to GDB when the inferior stops for real.
4146 Print appropriate messages, remove breakpoints, give terminal our modes.
4147
4148 STOP_PRINT_FRAME nonzero means print the executing frame
4149 (pc, function, args, file, line number and line text).
4150 BREAKPOINTS_FAILED nonzero means stop was due to error
4151 attempting to insert breakpoints. */
4152
4153 void
4154 normal_stop (void)
4155 {
4156 struct target_waitstatus last;
4157 ptid_t last_ptid;
4158
4159 get_last_target_status (&last_ptid, &last);
4160
4161 /* In non-stop mode, we don't want GDB to switch threads behind the
4162 user's back, to avoid races where the user is typing a command to
4163 apply to thread x, but GDB switches to thread y before the user
4164 finishes entering the command. */
4165
4166 /* As with the notification of thread events, we want to delay
4167 notifying the user that we've switched thread context until
4168 the inferior actually stops.
4169
4170 There's no point in saying anything if the inferior has exited.
4171 Note that SIGNALLED here means "exited with a signal", not
4172 "received a signal". */
4173 if (!non_stop
4174 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
4175 && target_has_execution
4176 && last.kind != TARGET_WAITKIND_SIGNALLED
4177 && last.kind != TARGET_WAITKIND_EXITED)
4178 {
4179 target_terminal_ours_for_output ();
4180 printf_filtered (_("[Switching to %s]\n"),
4181 target_pid_to_str (inferior_ptid));
4182 annotate_thread_changed ();
4183 previous_inferior_ptid = inferior_ptid;
4184 }
4185
4186 /* NOTE drow/2004-01-17: Is this still necessary? */
4187 /* Make sure that the current_frame's pc is correct. This
4188 is a correction for setting up the frame info before doing
4189 gdbarch_decr_pc_after_break */
4190 if (target_has_execution)
4191 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
4192 gdbarch_decr_pc_after_break, the program counter can change. Ask the
4193 frame code to check for this and sort out any resultant mess.
4194 gdbarch_decr_pc_after_break needs to just go away. */
4195 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
4196
4197 if (!breakpoints_always_inserted_mode () && target_has_execution)
4198 {
4199 if (remove_breakpoints ())
4200 {
4201 target_terminal_ours_for_output ();
4202 printf_filtered (_("\
4203 Cannot remove breakpoints because program is no longer writable.\n\
4204 It might be running in another process.\n\
4205 Further execution is probably impossible.\n"));
4206 }
4207 }
4208
4209 /* If an auto-display called a function and that got a signal,
4210 delete that auto-display to avoid an infinite recursion. */
4211
4212 if (stopped_by_random_signal)
4213 disable_current_display ();
4214
4215 /* Don't print a message if in the middle of doing a "step n"
4216 operation for n > 1 */
4217 if (target_has_execution
4218 && last.kind != TARGET_WAITKIND_SIGNALLED
4219 && last.kind != TARGET_WAITKIND_EXITED
4220 && inferior_thread ()->step_multi
4221 && inferior_thread ()->stop_step)
4222 goto done;
4223
4224 target_terminal_ours ();
4225
4226 /* Set the current source location. This will also happen if we
4227 display the frame below, but the current SAL will be incorrect
4228 during a user hook-stop function. */
4229 if (target_has_stack && !stop_stack_dummy)
4230 set_current_sal_from_frame (get_current_frame (), 1);
4231
4232 if (!target_has_stack)
4233 goto done;
4234
4235 if (last.kind == TARGET_WAITKIND_SIGNALLED
4236 || last.kind == TARGET_WAITKIND_EXITED)
4237 goto done;
4238
4239 /* Select innermost stack frame - i.e., current frame is frame 0,
4240 and current location is based on that.
4241 Don't do this on return from a stack dummy routine,
4242 or if the program has exited. */
4243
4244 if (!stop_stack_dummy)
4245 {
4246 select_frame (get_current_frame ());
4247
4248 /* Print current location without a level number, if
4249 we have changed functions or hit a breakpoint.
4250 Print source line if we have one.
4251 bpstat_print() contains the logic deciding in detail
4252 what to print, based on the event(s) that just occurred. */
4253
4254 /* If --batch-silent is enabled then there's no need to print the current
4255 source location, and to try risks causing an error message about
4256 missing source files. */
4257 if (stop_print_frame && !batch_silent)
4258 {
4259 int bpstat_ret;
4260 int source_flag;
4261 int do_frame_printing = 1;
4262 struct thread_info *tp = inferior_thread ();
4263
4264 bpstat_ret = bpstat_print (tp->stop_bpstat);
4265 switch (bpstat_ret)
4266 {
4267 case PRINT_UNKNOWN:
4268 /* If we had hit a shared library event breakpoint,
4269 bpstat_print would print out this message. If we hit
4270 an OS-level shared library event, do the same
4271 thing. */
4272 if (last.kind == TARGET_WAITKIND_LOADED)
4273 {
4274 printf_filtered (_("Stopped due to shared library event\n"));
4275 source_flag = SRC_LINE; /* something bogus */
4276 do_frame_printing = 0;
4277 break;
4278 }
4279
4280 /* FIXME: cagney/2002-12-01: Given that a frame ID does
4281 (or should) carry around the function and does (or
4282 should) use that when doing a frame comparison. */
4283 if (tp->stop_step
4284 && frame_id_eq (tp->step_frame_id,
4285 get_frame_id (get_current_frame ()))
4286 && step_start_function == find_pc_function (stop_pc))
4287 source_flag = SRC_LINE; /* finished step, just print source line */
4288 else
4289 source_flag = SRC_AND_LOC; /* print location and source line */
4290 break;
4291 case PRINT_SRC_AND_LOC:
4292 source_flag = SRC_AND_LOC; /* print location and source line */
4293 break;
4294 case PRINT_SRC_ONLY:
4295 source_flag = SRC_LINE;
4296 break;
4297 case PRINT_NOTHING:
4298 source_flag = SRC_LINE; /* something bogus */
4299 do_frame_printing = 0;
4300 break;
4301 default:
4302 internal_error (__FILE__, __LINE__, _("Unknown value."));
4303 }
4304
4305 if (ui_out_is_mi_like_p (uiout))
4306 {
4307
4308 ui_out_field_int (uiout, "thread-id",
4309 pid_to_thread_id (inferior_ptid));
4310 if (non_stop)
4311 {
4312 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
4313 (uiout, "stopped-threads");
4314 ui_out_field_int (uiout, NULL,
4315 pid_to_thread_id (inferior_ptid));
4316 do_cleanups (back_to);
4317 }
4318 else
4319 ui_out_field_string (uiout, "stopped-threads", "all");
4320 }
4321 /* The behavior of this routine with respect to the source
4322 flag is:
4323 SRC_LINE: Print only source line
4324 LOCATION: Print only location
4325 SRC_AND_LOC: Print location and source line */
4326 if (do_frame_printing)
4327 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
4328
4329 /* Display the auto-display expressions. */
4330 do_displays ();
4331 }
4332 }
4333
4334 /* Save the function value return registers, if we care.
4335 We might be about to restore their previous contents. */
4336 if (inferior_thread ()->proceed_to_finish)
4337 {
4338 /* This should not be necessary. */
4339 if (stop_registers)
4340 regcache_xfree (stop_registers);
4341
4342 /* NB: The copy goes through to the target picking up the value of
4343 all the registers. */
4344 stop_registers = regcache_dup (get_current_regcache ());
4345 }
4346
4347 if (stop_stack_dummy)
4348 {
4349 /* Pop the empty frame that contains the stack dummy. POP_FRAME
4350 ends with a setting of the current frame, so we can use that
4351 next. */
4352 frame_pop (get_current_frame ());
4353 /* Set stop_pc to what it was before we called the function.
4354 Can't rely on restore_inferior_status because that only gets
4355 called if we don't stop in the called function. */
4356 stop_pc = read_pc ();
4357 select_frame (get_current_frame ());
4358 }
4359
4360 done:
4361 annotate_stopped ();
4362 if (!suppress_stop_observer
4363 && !(target_has_execution
4364 && last.kind != TARGET_WAITKIND_SIGNALLED
4365 && last.kind != TARGET_WAITKIND_EXITED
4366 && inferior_thread ()->step_multi))
4367 {
4368 if (!ptid_equal (inferior_ptid, null_ptid))
4369 observer_notify_normal_stop (inferior_thread ()->stop_bpstat);
4370 else
4371 observer_notify_normal_stop (NULL);
4372 }
4373 if (target_has_execution
4374 && last.kind != TARGET_WAITKIND_SIGNALLED
4375 && last.kind != TARGET_WAITKIND_EXITED)
4376 {
4377 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4378 Delete any breakpoint that is to be deleted at the next stop. */
4379 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
4380
4381 if (!non_stop)
4382 set_running (pid_to_ptid (-1), 0);
4383 else
4384 set_running (inferior_ptid, 0);
4385 }
4386
4387 /* Look up the hook_stop and run it (CLI internally handles problem
4388 of stop_command's pre-hook not existing). */
4389 if (stop_command)
4390 catch_errors (hook_stop_stub, stop_command,
4391 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4392
4393 }
4394
4395 static int
4396 hook_stop_stub (void *cmd)
4397 {
4398 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
4399 return (0);
4400 }
4401 \f
4402 int
4403 signal_stop_state (int signo)
4404 {
4405 return signal_stop[signo];
4406 }
4407
4408 int
4409 signal_print_state (int signo)
4410 {
4411 return signal_print[signo];
4412 }
4413
4414 int
4415 signal_pass_state (int signo)
4416 {
4417 return signal_program[signo];
4418 }
4419
4420 int
4421 signal_stop_update (int signo, int state)
4422 {
4423 int ret = signal_stop[signo];
4424 signal_stop[signo] = state;
4425 return ret;
4426 }
4427
4428 int
4429 signal_print_update (int signo, int state)
4430 {
4431 int ret = signal_print[signo];
4432 signal_print[signo] = state;
4433 return ret;
4434 }
4435
4436 int
4437 signal_pass_update (int signo, int state)
4438 {
4439 int ret = signal_program[signo];
4440 signal_program[signo] = state;
4441 return ret;
4442 }
4443
4444 static void
4445 sig_print_header (void)
4446 {
4447 printf_filtered (_("\
4448 Signal Stop\tPrint\tPass to program\tDescription\n"));
4449 }
4450
4451 static void
4452 sig_print_info (enum target_signal oursig)
4453 {
4454 char *name = target_signal_to_name (oursig);
4455 int name_padding = 13 - strlen (name);
4456
4457 if (name_padding <= 0)
4458 name_padding = 0;
4459
4460 printf_filtered ("%s", name);
4461 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4462 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4463 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4464 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4465 printf_filtered ("%s\n", target_signal_to_string (oursig));
4466 }
4467
4468 /* Specify how various signals in the inferior should be handled. */
4469
4470 static void
4471 handle_command (char *args, int from_tty)
4472 {
4473 char **argv;
4474 int digits, wordlen;
4475 int sigfirst, signum, siglast;
4476 enum target_signal oursig;
4477 int allsigs;
4478 int nsigs;
4479 unsigned char *sigs;
4480 struct cleanup *old_chain;
4481
4482 if (args == NULL)
4483 {
4484 error_no_arg (_("signal to handle"));
4485 }
4486
4487 /* Allocate and zero an array of flags for which signals to handle. */
4488
4489 nsigs = (int) TARGET_SIGNAL_LAST;
4490 sigs = (unsigned char *) alloca (nsigs);
4491 memset (sigs, 0, nsigs);
4492
4493 /* Break the command line up into args. */
4494
4495 argv = gdb_buildargv (args);
4496 old_chain = make_cleanup_freeargv (argv);
4497
4498 /* Walk through the args, looking for signal oursigs, signal names, and
4499 actions. Signal numbers and signal names may be interspersed with
4500 actions, with the actions being performed for all signals cumulatively
4501 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4502
4503 while (*argv != NULL)
4504 {
4505 wordlen = strlen (*argv);
4506 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4507 {;
4508 }
4509 allsigs = 0;
4510 sigfirst = siglast = -1;
4511
4512 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4513 {
4514 /* Apply action to all signals except those used by the
4515 debugger. Silently skip those. */
4516 allsigs = 1;
4517 sigfirst = 0;
4518 siglast = nsigs - 1;
4519 }
4520 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4521 {
4522 SET_SIGS (nsigs, sigs, signal_stop);
4523 SET_SIGS (nsigs, sigs, signal_print);
4524 }
4525 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4526 {
4527 UNSET_SIGS (nsigs, sigs, signal_program);
4528 }
4529 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4530 {
4531 SET_SIGS (nsigs, sigs, signal_print);
4532 }
4533 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4534 {
4535 SET_SIGS (nsigs, sigs, signal_program);
4536 }
4537 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4538 {
4539 UNSET_SIGS (nsigs, sigs, signal_stop);
4540 }
4541 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4542 {
4543 SET_SIGS (nsigs, sigs, signal_program);
4544 }
4545 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4546 {
4547 UNSET_SIGS (nsigs, sigs, signal_print);
4548 UNSET_SIGS (nsigs, sigs, signal_stop);
4549 }
4550 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4551 {
4552 UNSET_SIGS (nsigs, sigs, signal_program);
4553 }
4554 else if (digits > 0)
4555 {
4556 /* It is numeric. The numeric signal refers to our own
4557 internal signal numbering from target.h, not to host/target
4558 signal number. This is a feature; users really should be
4559 using symbolic names anyway, and the common ones like
4560 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4561
4562 sigfirst = siglast = (int)
4563 target_signal_from_command (atoi (*argv));
4564 if ((*argv)[digits] == '-')
4565 {
4566 siglast = (int)
4567 target_signal_from_command (atoi ((*argv) + digits + 1));
4568 }
4569 if (sigfirst > siglast)
4570 {
4571 /* Bet he didn't figure we'd think of this case... */
4572 signum = sigfirst;
4573 sigfirst = siglast;
4574 siglast = signum;
4575 }
4576 }
4577 else
4578 {
4579 oursig = target_signal_from_name (*argv);
4580 if (oursig != TARGET_SIGNAL_UNKNOWN)
4581 {
4582 sigfirst = siglast = (int) oursig;
4583 }
4584 else
4585 {
4586 /* Not a number and not a recognized flag word => complain. */
4587 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4588 }
4589 }
4590
4591 /* If any signal numbers or symbol names were found, set flags for
4592 which signals to apply actions to. */
4593
4594 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4595 {
4596 switch ((enum target_signal) signum)
4597 {
4598 case TARGET_SIGNAL_TRAP:
4599 case TARGET_SIGNAL_INT:
4600 if (!allsigs && !sigs[signum])
4601 {
4602 if (query ("%s is used by the debugger.\n\
4603 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
4604 {
4605 sigs[signum] = 1;
4606 }
4607 else
4608 {
4609 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4610 gdb_flush (gdb_stdout);
4611 }
4612 }
4613 break;
4614 case TARGET_SIGNAL_0:
4615 case TARGET_SIGNAL_DEFAULT:
4616 case TARGET_SIGNAL_UNKNOWN:
4617 /* Make sure that "all" doesn't print these. */
4618 break;
4619 default:
4620 sigs[signum] = 1;
4621 break;
4622 }
4623 }
4624
4625 argv++;
4626 }
4627
4628 target_notice_signals (inferior_ptid);
4629
4630 if (from_tty)
4631 {
4632 /* Show the results. */
4633 sig_print_header ();
4634 for (signum = 0; signum < nsigs; signum++)
4635 {
4636 if (sigs[signum])
4637 {
4638 sig_print_info (signum);
4639 }
4640 }
4641 }
4642
4643 do_cleanups (old_chain);
4644 }
4645
4646 static void
4647 xdb_handle_command (char *args, int from_tty)
4648 {
4649 char **argv;
4650 struct cleanup *old_chain;
4651
4652 if (args == NULL)
4653 error_no_arg (_("xdb command"));
4654
4655 /* Break the command line up into args. */
4656
4657 argv = gdb_buildargv (args);
4658 old_chain = make_cleanup_freeargv (argv);
4659 if (argv[1] != (char *) NULL)
4660 {
4661 char *argBuf;
4662 int bufLen;
4663
4664 bufLen = strlen (argv[0]) + 20;
4665 argBuf = (char *) xmalloc (bufLen);
4666 if (argBuf)
4667 {
4668 int validFlag = 1;
4669 enum target_signal oursig;
4670
4671 oursig = target_signal_from_name (argv[0]);
4672 memset (argBuf, 0, bufLen);
4673 if (strcmp (argv[1], "Q") == 0)
4674 sprintf (argBuf, "%s %s", argv[0], "noprint");
4675 else
4676 {
4677 if (strcmp (argv[1], "s") == 0)
4678 {
4679 if (!signal_stop[oursig])
4680 sprintf (argBuf, "%s %s", argv[0], "stop");
4681 else
4682 sprintf (argBuf, "%s %s", argv[0], "nostop");
4683 }
4684 else if (strcmp (argv[1], "i") == 0)
4685 {
4686 if (!signal_program[oursig])
4687 sprintf (argBuf, "%s %s", argv[0], "pass");
4688 else
4689 sprintf (argBuf, "%s %s", argv[0], "nopass");
4690 }
4691 else if (strcmp (argv[1], "r") == 0)
4692 {
4693 if (!signal_print[oursig])
4694 sprintf (argBuf, "%s %s", argv[0], "print");
4695 else
4696 sprintf (argBuf, "%s %s", argv[0], "noprint");
4697 }
4698 else
4699 validFlag = 0;
4700 }
4701 if (validFlag)
4702 handle_command (argBuf, from_tty);
4703 else
4704 printf_filtered (_("Invalid signal handling flag.\n"));
4705 if (argBuf)
4706 xfree (argBuf);
4707 }
4708 }
4709 do_cleanups (old_chain);
4710 }
4711
4712 /* Print current contents of the tables set by the handle command.
4713 It is possible we should just be printing signals actually used
4714 by the current target (but for things to work right when switching
4715 targets, all signals should be in the signal tables). */
4716
4717 static void
4718 signals_info (char *signum_exp, int from_tty)
4719 {
4720 enum target_signal oursig;
4721 sig_print_header ();
4722
4723 if (signum_exp)
4724 {
4725 /* First see if this is a symbol name. */
4726 oursig = target_signal_from_name (signum_exp);
4727 if (oursig == TARGET_SIGNAL_UNKNOWN)
4728 {
4729 /* No, try numeric. */
4730 oursig =
4731 target_signal_from_command (parse_and_eval_long (signum_exp));
4732 }
4733 sig_print_info (oursig);
4734 return;
4735 }
4736
4737 printf_filtered ("\n");
4738 /* These ugly casts brought to you by the native VAX compiler. */
4739 for (oursig = TARGET_SIGNAL_FIRST;
4740 (int) oursig < (int) TARGET_SIGNAL_LAST;
4741 oursig = (enum target_signal) ((int) oursig + 1))
4742 {
4743 QUIT;
4744
4745 if (oursig != TARGET_SIGNAL_UNKNOWN
4746 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4747 sig_print_info (oursig);
4748 }
4749
4750 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4751 }
4752 \f
4753 struct inferior_status
4754 {
4755 enum target_signal stop_signal;
4756 CORE_ADDR stop_pc;
4757 bpstat stop_bpstat;
4758 int stop_step;
4759 int stop_stack_dummy;
4760 int stopped_by_random_signal;
4761 int stepping_over_breakpoint;
4762 CORE_ADDR step_range_start;
4763 CORE_ADDR step_range_end;
4764 struct frame_id step_frame_id;
4765 enum step_over_calls_kind step_over_calls;
4766 CORE_ADDR step_resume_break_address;
4767 int stop_after_trap;
4768 int stop_soon;
4769
4770 /* These are here because if call_function_by_hand has written some
4771 registers and then decides to call error(), we better not have changed
4772 any registers. */
4773 struct regcache *registers;
4774
4775 /* A frame unique identifier. */
4776 struct frame_id selected_frame_id;
4777
4778 int breakpoint_proceeded;
4779 int restore_stack_info;
4780 int proceed_to_finish;
4781 };
4782
4783 /* Save all of the information associated with the inferior<==>gdb
4784 connection. INF_STATUS is a pointer to a "struct inferior_status"
4785 (defined in inferior.h). */
4786
4787 struct inferior_status *
4788 save_inferior_status (int restore_stack_info)
4789 {
4790 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4791 struct thread_info *tp = inferior_thread ();
4792 struct inferior *inf = current_inferior ();
4793
4794 inf_status->stop_signal = tp->stop_signal;
4795 inf_status->stop_pc = stop_pc;
4796 inf_status->stop_step = tp->stop_step;
4797 inf_status->stop_stack_dummy = stop_stack_dummy;
4798 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4799 inf_status->stepping_over_breakpoint = tp->trap_expected;
4800 inf_status->step_range_start = tp->step_range_start;
4801 inf_status->step_range_end = tp->step_range_end;
4802 inf_status->step_frame_id = tp->step_frame_id;
4803 inf_status->step_over_calls = tp->step_over_calls;
4804 inf_status->stop_after_trap = stop_after_trap;
4805 inf_status->stop_soon = inf->stop_soon;
4806 /* Save original bpstat chain here; replace it with copy of chain.
4807 If caller's caller is walking the chain, they'll be happier if we
4808 hand them back the original chain when restore_inferior_status is
4809 called. */
4810 inf_status->stop_bpstat = tp->stop_bpstat;
4811 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
4812 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4813 inf_status->restore_stack_info = restore_stack_info;
4814 inf_status->proceed_to_finish = tp->proceed_to_finish;
4815
4816 inf_status->registers = regcache_dup (get_current_regcache ());
4817
4818 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4819 return inf_status;
4820 }
4821
4822 static int
4823 restore_selected_frame (void *args)
4824 {
4825 struct frame_id *fid = (struct frame_id *) args;
4826 struct frame_info *frame;
4827
4828 frame = frame_find_by_id (*fid);
4829
4830 /* If inf_status->selected_frame_id is NULL, there was no previously
4831 selected frame. */
4832 if (frame == NULL)
4833 {
4834 warning (_("Unable to restore previously selected frame."));
4835 return 0;
4836 }
4837
4838 select_frame (frame);
4839
4840 return (1);
4841 }
4842
4843 void
4844 restore_inferior_status (struct inferior_status *inf_status)
4845 {
4846 struct thread_info *tp = inferior_thread ();
4847 struct inferior *inf = current_inferior ();
4848
4849 tp->stop_signal = inf_status->stop_signal;
4850 stop_pc = inf_status->stop_pc;
4851 tp->stop_step = inf_status->stop_step;
4852 stop_stack_dummy = inf_status->stop_stack_dummy;
4853 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4854 tp->trap_expected = inf_status->stepping_over_breakpoint;
4855 tp->step_range_start = inf_status->step_range_start;
4856 tp->step_range_end = inf_status->step_range_end;
4857 tp->step_frame_id = inf_status->step_frame_id;
4858 tp->step_over_calls = inf_status->step_over_calls;
4859 stop_after_trap = inf_status->stop_after_trap;
4860 inf->stop_soon = inf_status->stop_soon;
4861 bpstat_clear (&tp->stop_bpstat);
4862 tp->stop_bpstat = inf_status->stop_bpstat;
4863 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4864 tp->proceed_to_finish = inf_status->proceed_to_finish;
4865
4866 /* The inferior can be gone if the user types "print exit(0)"
4867 (and perhaps other times). */
4868 if (target_has_execution)
4869 /* NB: The register write goes through to the target. */
4870 regcache_cpy (get_current_regcache (), inf_status->registers);
4871 regcache_xfree (inf_status->registers);
4872
4873 /* FIXME: If we are being called after stopping in a function which
4874 is called from gdb, we should not be trying to restore the
4875 selected frame; it just prints a spurious error message (The
4876 message is useful, however, in detecting bugs in gdb (like if gdb
4877 clobbers the stack)). In fact, should we be restoring the
4878 inferior status at all in that case? . */
4879
4880 if (target_has_stack && inf_status->restore_stack_info)
4881 {
4882 /* The point of catch_errors is that if the stack is clobbered,
4883 walking the stack might encounter a garbage pointer and
4884 error() trying to dereference it. */
4885 if (catch_errors
4886 (restore_selected_frame, &inf_status->selected_frame_id,
4887 "Unable to restore previously selected frame:\n",
4888 RETURN_MASK_ERROR) == 0)
4889 /* Error in restoring the selected frame. Select the innermost
4890 frame. */
4891 select_frame (get_current_frame ());
4892
4893 }
4894
4895 xfree (inf_status);
4896 }
4897
4898 static void
4899 do_restore_inferior_status_cleanup (void *sts)
4900 {
4901 restore_inferior_status (sts);
4902 }
4903
4904 struct cleanup *
4905 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4906 {
4907 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4908 }
4909
4910 void
4911 discard_inferior_status (struct inferior_status *inf_status)
4912 {
4913 /* See save_inferior_status for info on stop_bpstat. */
4914 bpstat_clear (&inf_status->stop_bpstat);
4915 regcache_xfree (inf_status->registers);
4916 xfree (inf_status);
4917 }
4918
4919 int
4920 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
4921 {
4922 struct target_waitstatus last;
4923 ptid_t last_ptid;
4924
4925 get_last_target_status (&last_ptid, &last);
4926
4927 if (last.kind != TARGET_WAITKIND_FORKED)
4928 return 0;
4929
4930 if (!ptid_equal (last_ptid, pid))
4931 return 0;
4932
4933 *child_pid = last.value.related_pid;
4934 return 1;
4935 }
4936
4937 int
4938 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
4939 {
4940 struct target_waitstatus last;
4941 ptid_t last_ptid;
4942
4943 get_last_target_status (&last_ptid, &last);
4944
4945 if (last.kind != TARGET_WAITKIND_VFORKED)
4946 return 0;
4947
4948 if (!ptid_equal (last_ptid, pid))
4949 return 0;
4950
4951 *child_pid = last.value.related_pid;
4952 return 1;
4953 }
4954
4955 int
4956 inferior_has_execd (ptid_t pid, char **execd_pathname)
4957 {
4958 struct target_waitstatus last;
4959 ptid_t last_ptid;
4960
4961 get_last_target_status (&last_ptid, &last);
4962
4963 if (last.kind != TARGET_WAITKIND_EXECD)
4964 return 0;
4965
4966 if (!ptid_equal (last_ptid, pid))
4967 return 0;
4968
4969 *execd_pathname = xstrdup (last.value.execd_pathname);
4970 return 1;
4971 }
4972
4973 /* Oft used ptids */
4974 ptid_t null_ptid;
4975 ptid_t minus_one_ptid;
4976
4977 /* Create a ptid given the necessary PID, LWP, and TID components. */
4978
4979 ptid_t
4980 ptid_build (int pid, long lwp, long tid)
4981 {
4982 ptid_t ptid;
4983
4984 ptid.pid = pid;
4985 ptid.lwp = lwp;
4986 ptid.tid = tid;
4987 return ptid;
4988 }
4989
4990 /* Create a ptid from just a pid. */
4991
4992 ptid_t
4993 pid_to_ptid (int pid)
4994 {
4995 return ptid_build (pid, 0, 0);
4996 }
4997
4998 /* Fetch the pid (process id) component from a ptid. */
4999
5000 int
5001 ptid_get_pid (ptid_t ptid)
5002 {
5003 return ptid.pid;
5004 }
5005
5006 /* Fetch the lwp (lightweight process) component from a ptid. */
5007
5008 long
5009 ptid_get_lwp (ptid_t ptid)
5010 {
5011 return ptid.lwp;
5012 }
5013
5014 /* Fetch the tid (thread id) component from a ptid. */
5015
5016 long
5017 ptid_get_tid (ptid_t ptid)
5018 {
5019 return ptid.tid;
5020 }
5021
5022 /* ptid_equal() is used to test equality of two ptids. */
5023
5024 int
5025 ptid_equal (ptid_t ptid1, ptid_t ptid2)
5026 {
5027 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
5028 && ptid1.tid == ptid2.tid);
5029 }
5030
5031 /* Returns true if PTID represents a process. */
5032
5033 int
5034 ptid_is_pid (ptid_t ptid)
5035 {
5036 if (ptid_equal (minus_one_ptid, ptid))
5037 return 0;
5038 if (ptid_equal (null_ptid, ptid))
5039 return 0;
5040
5041 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5042 }
5043
5044 /* restore_inferior_ptid() will be used by the cleanup machinery
5045 to restore the inferior_ptid value saved in a call to
5046 save_inferior_ptid(). */
5047
5048 static void
5049 restore_inferior_ptid (void *arg)
5050 {
5051 ptid_t *saved_ptid_ptr = arg;
5052 inferior_ptid = *saved_ptid_ptr;
5053 xfree (arg);
5054 }
5055
5056 /* Save the value of inferior_ptid so that it may be restored by a
5057 later call to do_cleanups(). Returns the struct cleanup pointer
5058 needed for later doing the cleanup. */
5059
5060 struct cleanup *
5061 save_inferior_ptid (void)
5062 {
5063 ptid_t *saved_ptid_ptr;
5064
5065 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5066 *saved_ptid_ptr = inferior_ptid;
5067 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5068 }
5069 \f
5070
5071 /* User interface for reverse debugging:
5072 Set exec-direction / show exec-direction commands
5073 (returns error unless target implements to_set_exec_direction method). */
5074
5075 enum exec_direction_kind execution_direction = EXEC_FORWARD;
5076 static const char exec_forward[] = "forward";
5077 static const char exec_reverse[] = "reverse";
5078 static const char *exec_direction = exec_forward;
5079 static const char *exec_direction_names[] = {
5080 exec_forward,
5081 exec_reverse,
5082 NULL
5083 };
5084
5085 static void
5086 set_exec_direction_func (char *args, int from_tty,
5087 struct cmd_list_element *cmd)
5088 {
5089 if (target_can_execute_reverse)
5090 {
5091 if (!strcmp (exec_direction, exec_forward))
5092 execution_direction = EXEC_FORWARD;
5093 else if (!strcmp (exec_direction, exec_reverse))
5094 execution_direction = EXEC_REVERSE;
5095 }
5096 }
5097
5098 static void
5099 show_exec_direction_func (struct ui_file *out, int from_tty,
5100 struct cmd_list_element *cmd, const char *value)
5101 {
5102 switch (execution_direction) {
5103 case EXEC_FORWARD:
5104 fprintf_filtered (out, _("Forward.\n"));
5105 break;
5106 case EXEC_REVERSE:
5107 fprintf_filtered (out, _("Reverse.\n"));
5108 break;
5109 case EXEC_ERROR:
5110 default:
5111 fprintf_filtered (out,
5112 _("Forward (target `%s' does not support exec-direction).\n"),
5113 target_shortname);
5114 break;
5115 }
5116 }
5117
5118 /* User interface for non-stop mode. */
5119
5120 int non_stop = 0;
5121 static int non_stop_1 = 0;
5122
5123 static void
5124 set_non_stop (char *args, int from_tty,
5125 struct cmd_list_element *c)
5126 {
5127 if (target_has_execution)
5128 {
5129 non_stop_1 = non_stop;
5130 error (_("Cannot change this setting while the inferior is running."));
5131 }
5132
5133 non_stop = non_stop_1;
5134 }
5135
5136 static void
5137 show_non_stop (struct ui_file *file, int from_tty,
5138 struct cmd_list_element *c, const char *value)
5139 {
5140 fprintf_filtered (file,
5141 _("Controlling the inferior in non-stop mode is %s.\n"),
5142 value);
5143 }
5144
5145
5146 void
5147 _initialize_infrun (void)
5148 {
5149 int i;
5150 int numsigs;
5151 struct cmd_list_element *c;
5152
5153 add_info ("signals", signals_info, _("\
5154 What debugger does when program gets various signals.\n\
5155 Specify a signal as argument to print info on that signal only."));
5156 add_info_alias ("handle", "signals", 0);
5157
5158 add_com ("handle", class_run, handle_command, _("\
5159 Specify how to handle a signal.\n\
5160 Args are signals and actions to apply to those signals.\n\
5161 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5162 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5163 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5164 The special arg \"all\" is recognized to mean all signals except those\n\
5165 used by the debugger, typically SIGTRAP and SIGINT.\n\
5166 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
5167 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5168 Stop means reenter debugger if this signal happens (implies print).\n\
5169 Print means print a message if this signal happens.\n\
5170 Pass means let program see this signal; otherwise program doesn't know.\n\
5171 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5172 Pass and Stop may be combined."));
5173 if (xdb_commands)
5174 {
5175 add_com ("lz", class_info, signals_info, _("\
5176 What debugger does when program gets various signals.\n\
5177 Specify a signal as argument to print info on that signal only."));
5178 add_com ("z", class_run, xdb_handle_command, _("\
5179 Specify how to handle a signal.\n\
5180 Args are signals and actions to apply to those signals.\n\
5181 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5182 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5183 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5184 The special arg \"all\" is recognized to mean all signals except those\n\
5185 used by the debugger, typically SIGTRAP and SIGINT.\n\
5186 Recognized actions include \"s\" (toggles between stop and nostop), \n\
5187 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5188 nopass), \"Q\" (noprint)\n\
5189 Stop means reenter debugger if this signal happens (implies print).\n\
5190 Print means print a message if this signal happens.\n\
5191 Pass means let program see this signal; otherwise program doesn't know.\n\
5192 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5193 Pass and Stop may be combined."));
5194 }
5195
5196 if (!dbx_commands)
5197 stop_command = add_cmd ("stop", class_obscure,
5198 not_just_help_class_command, _("\
5199 There is no `stop' command, but you can set a hook on `stop'.\n\
5200 This allows you to set a list of commands to be run each time execution\n\
5201 of the program stops."), &cmdlist);
5202
5203 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5204 Set inferior debugging."), _("\
5205 Show inferior debugging."), _("\
5206 When non-zero, inferior specific debugging is enabled."),
5207 NULL,
5208 show_debug_infrun,
5209 &setdebuglist, &showdebuglist);
5210
5211 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5212 Set displaced stepping debugging."), _("\
5213 Show displaced stepping debugging."), _("\
5214 When non-zero, displaced stepping specific debugging is enabled."),
5215 NULL,
5216 show_debug_displaced,
5217 &setdebuglist, &showdebuglist);
5218
5219 add_setshow_boolean_cmd ("non-stop", no_class,
5220 &non_stop_1, _("\
5221 Set whether gdb controls the inferior in non-stop mode."), _("\
5222 Show whether gdb controls the inferior in non-stop mode."), _("\
5223 When debugging a multi-threaded program and this setting is\n\
5224 off (the default, also called all-stop mode), when one thread stops\n\
5225 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5226 all other threads in the program while you interact with the thread of\n\
5227 interest. When you continue or step a thread, you can allow the other\n\
5228 threads to run, or have them remain stopped, but while you inspect any\n\
5229 thread's state, all threads stop.\n\
5230 \n\
5231 In non-stop mode, when one thread stops, other threads can continue\n\
5232 to run freely. You'll be able to step each thread independently,\n\
5233 leave it stopped or free to run as needed."),
5234 set_non_stop,
5235 show_non_stop,
5236 &setlist,
5237 &showlist);
5238
5239 numsigs = (int) TARGET_SIGNAL_LAST;
5240 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
5241 signal_print = (unsigned char *)
5242 xmalloc (sizeof (signal_print[0]) * numsigs);
5243 signal_program = (unsigned char *)
5244 xmalloc (sizeof (signal_program[0]) * numsigs);
5245 for (i = 0; i < numsigs; i++)
5246 {
5247 signal_stop[i] = 1;
5248 signal_print[i] = 1;
5249 signal_program[i] = 1;
5250 }
5251
5252 /* Signals caused by debugger's own actions
5253 should not be given to the program afterwards. */
5254 signal_program[TARGET_SIGNAL_TRAP] = 0;
5255 signal_program[TARGET_SIGNAL_INT] = 0;
5256
5257 /* Signals that are not errors should not normally enter the debugger. */
5258 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5259 signal_print[TARGET_SIGNAL_ALRM] = 0;
5260 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5261 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5262 signal_stop[TARGET_SIGNAL_PROF] = 0;
5263 signal_print[TARGET_SIGNAL_PROF] = 0;
5264 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5265 signal_print[TARGET_SIGNAL_CHLD] = 0;
5266 signal_stop[TARGET_SIGNAL_IO] = 0;
5267 signal_print[TARGET_SIGNAL_IO] = 0;
5268 signal_stop[TARGET_SIGNAL_POLL] = 0;
5269 signal_print[TARGET_SIGNAL_POLL] = 0;
5270 signal_stop[TARGET_SIGNAL_URG] = 0;
5271 signal_print[TARGET_SIGNAL_URG] = 0;
5272 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5273 signal_print[TARGET_SIGNAL_WINCH] = 0;
5274
5275 /* These signals are used internally by user-level thread
5276 implementations. (See signal(5) on Solaris.) Like the above
5277 signals, a healthy program receives and handles them as part of
5278 its normal operation. */
5279 signal_stop[TARGET_SIGNAL_LWP] = 0;
5280 signal_print[TARGET_SIGNAL_LWP] = 0;
5281 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5282 signal_print[TARGET_SIGNAL_WAITING] = 0;
5283 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5284 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5285
5286 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5287 &stop_on_solib_events, _("\
5288 Set stopping for shared library events."), _("\
5289 Show stopping for shared library events."), _("\
5290 If nonzero, gdb will give control to the user when the dynamic linker\n\
5291 notifies gdb of shared library events. The most common event of interest\n\
5292 to the user would be loading/unloading of a new library."),
5293 NULL,
5294 show_stop_on_solib_events,
5295 &setlist, &showlist);
5296
5297 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5298 follow_fork_mode_kind_names,
5299 &follow_fork_mode_string, _("\
5300 Set debugger response to a program call of fork or vfork."), _("\
5301 Show debugger response to a program call of fork or vfork."), _("\
5302 A fork or vfork creates a new process. follow-fork-mode can be:\n\
5303 parent - the original process is debugged after a fork\n\
5304 child - the new process is debugged after a fork\n\
5305 The unfollowed process will continue to run.\n\
5306 By default, the debugger will follow the parent process."),
5307 NULL,
5308 show_follow_fork_mode_string,
5309 &setlist, &showlist);
5310
5311 add_setshow_enum_cmd ("scheduler-locking", class_run,
5312 scheduler_enums, &scheduler_mode, _("\
5313 Set mode for locking scheduler during execution."), _("\
5314 Show mode for locking scheduler during execution."), _("\
5315 off == no locking (threads may preempt at any time)\n\
5316 on == full locking (no thread except the current thread may run)\n\
5317 step == scheduler locked during every single-step operation.\n\
5318 In this mode, no other thread may run during a step command.\n\
5319 Other threads may run while stepping over a function call ('next')."),
5320 set_schedlock_func, /* traps on target vector */
5321 show_scheduler_mode,
5322 &setlist, &showlist);
5323
5324 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5325 Set mode of the step operation."), _("\
5326 Show mode of the step operation."), _("\
5327 When set, doing a step over a function without debug line information\n\
5328 will stop at the first instruction of that function. Otherwise, the\n\
5329 function is skipped and the step command stops at a different source line."),
5330 NULL,
5331 show_step_stop_if_no_debug,
5332 &setlist, &showlist);
5333
5334 add_setshow_enum_cmd ("displaced-stepping", class_run,
5335 can_use_displaced_stepping_enum,
5336 &can_use_displaced_stepping, _("\
5337 Set debugger's willingness to use displaced stepping."), _("\
5338 Show debugger's willingness to use displaced stepping."), _("\
5339 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5340 supported by the target architecture. If off, gdb will not use displaced\n\
5341 stepping to step over breakpoints, even if such is supported by the target\n\
5342 architecture. If auto (which is the default), gdb will use displaced stepping\n\
5343 if the target architecture supports it and non-stop mode is active, but will not\n\
5344 use it in all-stop mode (see help set non-stop)."),
5345 NULL,
5346 show_can_use_displaced_stepping,
5347 &setlist, &showlist);
5348
5349 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5350 &exec_direction, _("Set direction of execution.\n\
5351 Options are 'forward' or 'reverse'."),
5352 _("Show direction of execution (forward/reverse)."),
5353 _("Tells gdb whether to execute forward or backward."),
5354 set_exec_direction_func, show_exec_direction_func,
5355 &setlist, &showlist);
5356
5357 /* ptid initializations */
5358 null_ptid = ptid_build (0, 0, 0);
5359 minus_one_ptid = ptid_build (-1, 0, 0);
5360 inferior_ptid = null_ptid;
5361 target_last_wait_ptid = minus_one_ptid;
5362 displaced_step_ptid = null_ptid;
5363
5364 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
5365 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
5366 }