gdb: remove BLOCK_ENTRY_PC macro
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2022 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "displaced-stepping.h"
23 #include "infrun.h"
24 #include <ctype.h>
25 #include "symtab.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "breakpoint.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "target-connection.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include "inf-loop.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "observable.h"
41 #include "language.h"
42 #include "solib.h"
43 #include "main.h"
44 #include "block.h"
45 #include "mi/mi-common.h"
46 #include "event-top.h"
47 #include "record.h"
48 #include "record-full.h"
49 #include "inline-frame.h"
50 #include "jit.h"
51 #include "tracepoint.h"
52 #include "skip.h"
53 #include "probe.h"
54 #include "objfiles.h"
55 #include "completer.h"
56 #include "target-descriptions.h"
57 #include "target-dcache.h"
58 #include "terminal.h"
59 #include "solist.h"
60 #include "gdbsupport/event-loop.h"
61 #include "thread-fsm.h"
62 #include "gdbsupport/enum-flags.h"
63 #include "progspace-and-thread.h"
64 #include "gdbsupport/gdb_optional.h"
65 #include "arch-utils.h"
66 #include "gdbsupport/scope-exit.h"
67 #include "gdbsupport/forward-scope-exit.h"
68 #include "gdbsupport/gdb_select.h"
69 #include <unordered_map>
70 #include "async-event.h"
71 #include "gdbsupport/selftest.h"
72 #include "scoped-mock-context.h"
73 #include "test-target.h"
74 #include "gdbsupport/common-debug.h"
75 #include "gdbsupport/buildargv.h"
76
77 /* Prototypes for local functions */
78
79 static void sig_print_info (enum gdb_signal);
80
81 static void sig_print_header (void);
82
83 static void follow_inferior_reset_breakpoints (void);
84
85 static bool currently_stepping (struct thread_info *tp);
86
87 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
88
89 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
90
91 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
92
93 static bool maybe_software_singlestep (struct gdbarch *gdbarch);
94
95 static void resume (gdb_signal sig);
96
97 static void wait_for_inferior (inferior *inf);
98
99 static void restart_threads (struct thread_info *event_thread,
100 inferior *inf = nullptr);
101
102 static bool start_step_over (void);
103
104 static bool step_over_info_valid_p (void);
105
106 /* Asynchronous signal handler registered as event loop source for
107 when we have pending events ready to be passed to the core. */
108 static struct async_event_handler *infrun_async_inferior_event_token;
109
110 /* Stores whether infrun_async was previously enabled or disabled.
111 Starts off as -1, indicating "never enabled/disabled". */
112 static int infrun_is_async = -1;
113
114 /* See infrun.h. */
115
116 void
117 infrun_async (int enable)
118 {
119 if (infrun_is_async != enable)
120 {
121 infrun_is_async = enable;
122
123 infrun_debug_printf ("enable=%d", enable);
124
125 if (enable)
126 mark_async_event_handler (infrun_async_inferior_event_token);
127 else
128 clear_async_event_handler (infrun_async_inferior_event_token);
129 }
130 }
131
132 /* See infrun.h. */
133
134 void
135 mark_infrun_async_event_handler (void)
136 {
137 mark_async_event_handler (infrun_async_inferior_event_token);
138 }
139
140 /* When set, stop the 'step' command if we enter a function which has
141 no line number information. The normal behavior is that we step
142 over such function. */
143 bool step_stop_if_no_debug = false;
144 static void
145 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 gdb_printf (file, _("Mode of the step operation is %s.\n"), value);
149 }
150
151 /* proceed and normal_stop use this to notify the user when the
152 inferior stopped in a different thread than it had been running
153 in. */
154
155 static ptid_t previous_inferior_ptid;
156
157 /* If set (default for legacy reasons), when following a fork, GDB
158 will detach from one of the fork branches, child or parent.
159 Exactly which branch is detached depends on 'set follow-fork-mode'
160 setting. */
161
162 static bool detach_fork = true;
163
164 bool debug_infrun = false;
165 static void
166 show_debug_infrun (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 gdb_printf (file, _("Inferior debugging is %s.\n"), value);
170 }
171
172 /* Support for disabling address space randomization. */
173
174 bool disable_randomization = true;
175
176 static void
177 show_disable_randomization (struct ui_file *file, int from_tty,
178 struct cmd_list_element *c, const char *value)
179 {
180 if (target_supports_disable_randomization ())
181 gdb_printf (file,
182 _("Disabling randomization of debuggee's "
183 "virtual address space is %s.\n"),
184 value);
185 else
186 gdb_puts (_("Disabling randomization of debuggee's "
187 "virtual address space is unsupported on\n"
188 "this platform.\n"), file);
189 }
190
191 static void
192 set_disable_randomization (const char *args, int from_tty,
193 struct cmd_list_element *c)
194 {
195 if (!target_supports_disable_randomization ())
196 error (_("Disabling randomization of debuggee's "
197 "virtual address space is unsupported on\n"
198 "this platform."));
199 }
200
201 /* User interface for non-stop mode. */
202
203 bool non_stop = false;
204 static bool non_stop_1 = false;
205
206 static void
207 set_non_stop (const char *args, int from_tty,
208 struct cmd_list_element *c)
209 {
210 if (target_has_execution ())
211 {
212 non_stop_1 = non_stop;
213 error (_("Cannot change this setting while the inferior is running."));
214 }
215
216 non_stop = non_stop_1;
217 }
218
219 static void
220 show_non_stop (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222 {
223 gdb_printf (file,
224 _("Controlling the inferior in non-stop mode is %s.\n"),
225 value);
226 }
227
228 /* "Observer mode" is somewhat like a more extreme version of
229 non-stop, in which all GDB operations that might affect the
230 target's execution have been disabled. */
231
232 static bool observer_mode = false;
233 static bool observer_mode_1 = false;
234
235 static void
236 set_observer_mode (const char *args, int from_tty,
237 struct cmd_list_element *c)
238 {
239 if (target_has_execution ())
240 {
241 observer_mode_1 = observer_mode;
242 error (_("Cannot change this setting while the inferior is running."));
243 }
244
245 observer_mode = observer_mode_1;
246
247 may_write_registers = !observer_mode;
248 may_write_memory = !observer_mode;
249 may_insert_breakpoints = !observer_mode;
250 may_insert_tracepoints = !observer_mode;
251 /* We can insert fast tracepoints in or out of observer mode,
252 but enable them if we're going into this mode. */
253 if (observer_mode)
254 may_insert_fast_tracepoints = true;
255 may_stop = !observer_mode;
256 update_target_permissions ();
257
258 /* Going *into* observer mode we must force non-stop, then
259 going out we leave it that way. */
260 if (observer_mode)
261 {
262 pagination_enabled = 0;
263 non_stop = non_stop_1 = true;
264 }
265
266 if (from_tty)
267 gdb_printf (_("Observer mode is now %s.\n"),
268 (observer_mode ? "on" : "off"));
269 }
270
271 static void
272 show_observer_mode (struct ui_file *file, int from_tty,
273 struct cmd_list_element *c, const char *value)
274 {
275 gdb_printf (file, _("Observer mode is %s.\n"), value);
276 }
277
278 /* This updates the value of observer mode based on changes in
279 permissions. Note that we are deliberately ignoring the values of
280 may-write-registers and may-write-memory, since the user may have
281 reason to enable these during a session, for instance to turn on a
282 debugging-related global. */
283
284 void
285 update_observer_mode (void)
286 {
287 bool newval = (!may_insert_breakpoints
288 && !may_insert_tracepoints
289 && may_insert_fast_tracepoints
290 && !may_stop
291 && non_stop);
292
293 /* Let the user know if things change. */
294 if (newval != observer_mode)
295 gdb_printf (_("Observer mode is now %s.\n"),
296 (newval ? "on" : "off"));
297
298 observer_mode = observer_mode_1 = newval;
299 }
300
301 /* Tables of how to react to signals; the user sets them. */
302
303 static unsigned char signal_stop[GDB_SIGNAL_LAST];
304 static unsigned char signal_print[GDB_SIGNAL_LAST];
305 static unsigned char signal_program[GDB_SIGNAL_LAST];
306
307 /* Table of signals that are registered with "catch signal". A
308 non-zero entry indicates that the signal is caught by some "catch
309 signal" command. */
310 static unsigned char signal_catch[GDB_SIGNAL_LAST];
311
312 /* Table of signals that the target may silently handle.
313 This is automatically determined from the flags above,
314 and simply cached here. */
315 static unsigned char signal_pass[GDB_SIGNAL_LAST];
316
317 #define SET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 1; \
323 } while (0)
324
325 #define UNSET_SIGS(nsigs,sigs,flags) \
326 do { \
327 int signum = (nsigs); \
328 while (signum-- > 0) \
329 if ((sigs)[signum]) \
330 (flags)[signum] = 0; \
331 } while (0)
332
333 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
334 this function is to avoid exporting `signal_program'. */
335
336 void
337 update_signals_program_target (void)
338 {
339 target_program_signals (signal_program);
340 }
341
342 /* Value to pass to target_resume() to cause all threads to resume. */
343
344 #define RESUME_ALL minus_one_ptid
345
346 /* Command list pointer for the "stop" placeholder. */
347
348 static struct cmd_list_element *stop_command;
349
350 /* Nonzero if we want to give control to the user when we're notified
351 of shared library events by the dynamic linker. */
352 int stop_on_solib_events;
353
354 /* Enable or disable optional shared library event breakpoints
355 as appropriate when the above flag is changed. */
356
357 static void
358 set_stop_on_solib_events (const char *args,
359 int from_tty, struct cmd_list_element *c)
360 {
361 update_solib_breakpoints ();
362 }
363
364 static void
365 show_stop_on_solib_events (struct ui_file *file, int from_tty,
366 struct cmd_list_element *c, const char *value)
367 {
368 gdb_printf (file, _("Stopping for shared library events is %s.\n"),
369 value);
370 }
371
372 /* True after stop if current stack frame should be printed. */
373
374 static bool stop_print_frame;
375
376 /* This is a cached copy of the target/ptid/waitstatus of the last
377 event returned by target_wait().
378 This information is returned by get_last_target_status(). */
379 static process_stratum_target *target_last_proc_target;
380 static ptid_t target_last_wait_ptid;
381 static struct target_waitstatus target_last_waitstatus;
382
383 void init_thread_stepping_state (struct thread_info *tss);
384
385 static const char follow_fork_mode_child[] = "child";
386 static const char follow_fork_mode_parent[] = "parent";
387
388 static const char *const follow_fork_mode_kind_names[] = {
389 follow_fork_mode_child,
390 follow_fork_mode_parent,
391 NULL
392 };
393
394 static const char *follow_fork_mode_string = follow_fork_mode_parent;
395 static void
396 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
397 struct cmd_list_element *c, const char *value)
398 {
399 gdb_printf (file,
400 _("Debugger response to a program "
401 "call of fork or vfork is \"%s\".\n"),
402 value);
403 }
404 \f
405
406 /* Handle changes to the inferior list based on the type of fork,
407 which process is being followed, and whether the other process
408 should be detached. On entry inferior_ptid must be the ptid of
409 the fork parent. At return inferior_ptid is the ptid of the
410 followed inferior. */
411
412 static bool
413 follow_fork_inferior (bool follow_child, bool detach_fork)
414 {
415 target_waitkind fork_kind = inferior_thread ()->pending_follow.kind ();
416 gdb_assert (fork_kind == TARGET_WAITKIND_FORKED
417 || fork_kind == TARGET_WAITKIND_VFORKED);
418 bool has_vforked = fork_kind == TARGET_WAITKIND_VFORKED;
419 ptid_t parent_ptid = inferior_ptid;
420 ptid_t child_ptid = inferior_thread ()->pending_follow.child_ptid ();
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
424 && current_ui->prompt_state == PROMPT_BLOCKED
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 gdb_printf (gdb_stderr, _("\
433 Can not resume the parent process over vfork in the foreground while\n\
434 holding the child stopped. Try \"set detach-on-fork\" or \
435 \"set schedule-multiple\".\n"));
436 return true;
437 }
438
439 inferior *parent_inf = current_inferior ();
440 inferior *child_inf = nullptr;
441
442 gdb_assert (parent_inf->thread_waiting_for_vfork_done == nullptr);
443
444 if (!follow_child)
445 {
446 /* Detach new forked process? */
447 if (detach_fork)
448 {
449 /* Before detaching from the child, remove all breakpoints
450 from it. If we forked, then this has already been taken
451 care of by infrun.c. If we vforked however, any
452 breakpoint inserted in the parent is visible in the
453 child, even those added while stopped in a vfork
454 catchpoint. This will remove the breakpoints from the
455 parent also, but they'll be reinserted below. */
456 if (has_vforked)
457 {
458 /* Keep breakpoints list in sync. */
459 remove_breakpoints_inf (current_inferior ());
460 }
461
462 if (print_inferior_events)
463 {
464 /* Ensure that we have a process ptid. */
465 ptid_t process_ptid = ptid_t (child_ptid.pid ());
466
467 target_terminal::ours_for_output ();
468 gdb_printf (_("[Detaching after %s from child %s]\n"),
469 has_vforked ? "vfork" : "fork",
470 target_pid_to_str (process_ptid).c_str ());
471 }
472 }
473 else
474 {
475 /* Add process to GDB's tables. */
476 child_inf = add_inferior (child_ptid.pid ());
477
478 child_inf->attach_flag = parent_inf->attach_flag;
479 copy_terminal_info (child_inf, parent_inf);
480 child_inf->gdbarch = parent_inf->gdbarch;
481 copy_inferior_target_desc_info (child_inf, parent_inf);
482
483 child_inf->symfile_flags = SYMFILE_NO_READ;
484
485 /* If this is a vfork child, then the address-space is
486 shared with the parent. */
487 if (has_vforked)
488 {
489 child_inf->pspace = parent_inf->pspace;
490 child_inf->aspace = parent_inf->aspace;
491
492 exec_on_vfork (child_inf);
493
494 /* The parent will be frozen until the child is done
495 with the shared region. Keep track of the
496 parent. */
497 child_inf->vfork_parent = parent_inf;
498 child_inf->pending_detach = 0;
499 parent_inf->vfork_child = child_inf;
500 parent_inf->pending_detach = 0;
501 }
502 else
503 {
504 child_inf->aspace = new_address_space ();
505 child_inf->pspace = new program_space (child_inf->aspace);
506 child_inf->removable = 1;
507 clone_program_space (child_inf->pspace, parent_inf->pspace);
508 }
509 }
510
511 if (has_vforked)
512 {
513 /* If we detached from the child, then we have to be careful
514 to not insert breakpoints in the parent until the child
515 is done with the shared memory region. However, if we're
516 staying attached to the child, then we can and should
517 insert breakpoints, so that we can debug it. A
518 subsequent child exec or exit is enough to know when does
519 the child stops using the parent's address space. */
520 parent_inf->thread_waiting_for_vfork_done
521 = detach_fork ? inferior_thread () : nullptr;
522 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
523 }
524 }
525 else
526 {
527 /* Follow the child. */
528
529 if (print_inferior_events)
530 {
531 std::string parent_pid = target_pid_to_str (parent_ptid);
532 std::string child_pid = target_pid_to_str (child_ptid);
533
534 target_terminal::ours_for_output ();
535 gdb_printf (_("[Attaching after %s %s to child %s]\n"),
536 parent_pid.c_str (),
537 has_vforked ? "vfork" : "fork",
538 child_pid.c_str ());
539 }
540
541 /* Add the new inferior first, so that the target_detach below
542 doesn't unpush the target. */
543
544 child_inf = add_inferior (child_ptid.pid ());
545
546 child_inf->attach_flag = parent_inf->attach_flag;
547 copy_terminal_info (child_inf, parent_inf);
548 child_inf->gdbarch = parent_inf->gdbarch;
549 copy_inferior_target_desc_info (child_inf, parent_inf);
550
551 if (has_vforked)
552 {
553 /* If this is a vfork child, then the address-space is shared
554 with the parent. */
555 child_inf->aspace = parent_inf->aspace;
556 child_inf->pspace = parent_inf->pspace;
557
558 exec_on_vfork (child_inf);
559 }
560 else if (detach_fork)
561 {
562 /* We follow the child and detach from the parent: move the parent's
563 program space to the child. This simplifies some things, like
564 doing "next" over fork() and landing on the expected line in the
565 child (note, that is broken with "set detach-on-fork off").
566
567 Before assigning brand new spaces for the parent, remove
568 breakpoints from it: because the new pspace won't match
569 currently inserted locations, the normal detach procedure
570 wouldn't remove them, and we would leave them inserted when
571 detaching. */
572 remove_breakpoints_inf (parent_inf);
573
574 child_inf->aspace = parent_inf->aspace;
575 child_inf->pspace = parent_inf->pspace;
576 parent_inf->aspace = new_address_space ();
577 parent_inf->pspace = new program_space (parent_inf->aspace);
578 clone_program_space (parent_inf->pspace, child_inf->pspace);
579
580 /* The parent inferior is still the current one, so keep things
581 in sync. */
582 set_current_program_space (parent_inf->pspace);
583 }
584 else
585 {
586 child_inf->aspace = new_address_space ();
587 child_inf->pspace = new program_space (child_inf->aspace);
588 child_inf->removable = 1;
589 child_inf->symfile_flags = SYMFILE_NO_READ;
590 clone_program_space (child_inf->pspace, parent_inf->pspace);
591 }
592 }
593
594 gdb_assert (current_inferior () == parent_inf);
595
596 /* If we are setting up an inferior for the child, target_follow_fork is
597 responsible for pushing the appropriate targets on the new inferior's
598 target stack and adding the initial thread (with ptid CHILD_PTID).
599
600 If we are not setting up an inferior for the child (because following
601 the parent and detach_fork is true), it is responsible for detaching
602 from CHILD_PTID. */
603 target_follow_fork (child_inf, child_ptid, fork_kind, follow_child,
604 detach_fork);
605
606 /* target_follow_fork must leave the parent as the current inferior. If we
607 want to follow the child, we make it the current one below. */
608 gdb_assert (current_inferior () == parent_inf);
609
610 /* If there is a child inferior, target_follow_fork must have created a thread
611 for it. */
612 if (child_inf != nullptr)
613 gdb_assert (!child_inf->thread_list.empty ());
614
615 /* Clear the parent thread's pending follow field. Do this before calling
616 target_detach, so that the target can differentiate the two following
617 cases:
618
619 - We continue past a fork with "follow-fork-mode == child" &&
620 "detach-on-fork on", and therefore detach the parent. In that
621 case the target should not detach the fork child.
622 - We run to a fork catchpoint and the user types "detach". In that
623 case, the target should detach the fork child in addition to the
624 parent.
625
626 The former case will have pending_follow cleared, the later will have
627 pending_follow set. */
628 thread_info *parent_thread = find_thread_ptid (parent_inf, parent_ptid);
629 gdb_assert (parent_thread != nullptr);
630 parent_thread->pending_follow.set_spurious ();
631
632 /* Detach the parent if needed. */
633 if (follow_child)
634 {
635 /* If we're vforking, we want to hold on to the parent until
636 the child exits or execs. At child exec or exit time we
637 can remove the old breakpoints from the parent and detach
638 or resume debugging it. Otherwise, detach the parent now;
639 we'll want to reuse it's program/address spaces, but we
640 can't set them to the child before removing breakpoints
641 from the parent, otherwise, the breakpoints module could
642 decide to remove breakpoints from the wrong process (since
643 they'd be assigned to the same address space). */
644
645 if (has_vforked)
646 {
647 gdb_assert (child_inf->vfork_parent == NULL);
648 gdb_assert (parent_inf->vfork_child == NULL);
649 child_inf->vfork_parent = parent_inf;
650 child_inf->pending_detach = 0;
651 parent_inf->vfork_child = child_inf;
652 parent_inf->pending_detach = detach_fork;
653 }
654 else if (detach_fork)
655 {
656 if (print_inferior_events)
657 {
658 /* Ensure that we have a process ptid. */
659 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
660
661 target_terminal::ours_for_output ();
662 gdb_printf (_("[Detaching after fork from "
663 "parent %s]\n"),
664 target_pid_to_str (process_ptid).c_str ());
665 }
666
667 target_detach (parent_inf, 0);
668 }
669 }
670
671 /* If we ended up creating a new inferior, call post_create_inferior to inform
672 the various subcomponents. */
673 if (child_inf != nullptr)
674 {
675 /* If FOLLOW_CHILD, we leave CHILD_INF as the current inferior
676 (do not restore the parent as the current inferior). */
677 gdb::optional<scoped_restore_current_thread> maybe_restore;
678
679 if (!follow_child)
680 maybe_restore.emplace ();
681
682 switch_to_thread (*child_inf->threads ().begin ());
683 post_create_inferior (0);
684 }
685
686 return false;
687 }
688
689 /* Tell the target to follow the fork we're stopped at. Returns true
690 if the inferior should be resumed; false, if the target for some
691 reason decided it's best not to resume. */
692
693 static bool
694 follow_fork ()
695 {
696 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
697 bool should_resume = true;
698
699 /* Copy user stepping state to the new inferior thread. FIXME: the
700 followed fork child thread should have a copy of most of the
701 parent thread structure's run control related fields, not just these.
702 Initialized to avoid "may be used uninitialized" warnings from gcc. */
703 struct breakpoint *step_resume_breakpoint = NULL;
704 struct breakpoint *exception_resume_breakpoint = NULL;
705 CORE_ADDR step_range_start = 0;
706 CORE_ADDR step_range_end = 0;
707 int current_line = 0;
708 symtab *current_symtab = NULL;
709 struct frame_id step_frame_id = { 0 };
710
711 if (!non_stop)
712 {
713 process_stratum_target *wait_target;
714 ptid_t wait_ptid;
715 struct target_waitstatus wait_status;
716
717 /* Get the last target status returned by target_wait(). */
718 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
719
720 /* If not stopped at a fork event, then there's nothing else to
721 do. */
722 if (wait_status.kind () != TARGET_WAITKIND_FORKED
723 && wait_status.kind () != TARGET_WAITKIND_VFORKED)
724 return 1;
725
726 /* Check if we switched over from WAIT_PTID, since the event was
727 reported. */
728 if (wait_ptid != minus_one_ptid
729 && (current_inferior ()->process_target () != wait_target
730 || inferior_ptid != wait_ptid))
731 {
732 /* We did. Switch back to WAIT_PTID thread, to tell the
733 target to follow it (in either direction). We'll
734 afterwards refuse to resume, and inform the user what
735 happened. */
736 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
737 switch_to_thread (wait_thread);
738 should_resume = false;
739 }
740 }
741
742 thread_info *tp = inferior_thread ();
743
744 /* If there were any forks/vforks that were caught and are now to be
745 followed, then do so now. */
746 switch (tp->pending_follow.kind ())
747 {
748 case TARGET_WAITKIND_FORKED:
749 case TARGET_WAITKIND_VFORKED:
750 {
751 ptid_t parent, child;
752 std::unique_ptr<struct thread_fsm> thread_fsm;
753
754 /* If the user did a next/step, etc, over a fork call,
755 preserve the stepping state in the fork child. */
756 if (follow_child && should_resume)
757 {
758 step_resume_breakpoint = clone_momentary_breakpoint
759 (tp->control.step_resume_breakpoint);
760 step_range_start = tp->control.step_range_start;
761 step_range_end = tp->control.step_range_end;
762 current_line = tp->current_line;
763 current_symtab = tp->current_symtab;
764 step_frame_id = tp->control.step_frame_id;
765 exception_resume_breakpoint
766 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
767 thread_fsm = tp->release_thread_fsm ();
768
769 /* For now, delete the parent's sr breakpoint, otherwise,
770 parent/child sr breakpoints are considered duplicates,
771 and the child version will not be installed. Remove
772 this when the breakpoints module becomes aware of
773 inferiors and address spaces. */
774 delete_step_resume_breakpoint (tp);
775 tp->control.step_range_start = 0;
776 tp->control.step_range_end = 0;
777 tp->control.step_frame_id = null_frame_id;
778 delete_exception_resume_breakpoint (tp);
779 }
780
781 parent = inferior_ptid;
782 child = tp->pending_follow.child_ptid ();
783
784 /* If handling a vfork, stop all the inferior's threads, they will be
785 restarted when the vfork shared region is complete. */
786 if (tp->pending_follow.kind () == TARGET_WAITKIND_VFORKED
787 && target_is_non_stop_p ())
788 stop_all_threads ("handling vfork", tp->inf);
789
790 process_stratum_target *parent_targ = tp->inf->process_target ();
791 /* Set up inferior(s) as specified by the caller, and tell the
792 target to do whatever is necessary to follow either parent
793 or child. */
794 if (follow_fork_inferior (follow_child, detach_fork))
795 {
796 /* Target refused to follow, or there's some other reason
797 we shouldn't resume. */
798 should_resume = 0;
799 }
800 else
801 {
802 /* This makes sure we don't try to apply the "Switched
803 over from WAIT_PID" logic above. */
804 nullify_last_target_wait_ptid ();
805
806 /* If we followed the child, switch to it... */
807 if (follow_child)
808 {
809 thread_info *child_thr = find_thread_ptid (parent_targ, child);
810 switch_to_thread (child_thr);
811
812 /* ... and preserve the stepping state, in case the
813 user was stepping over the fork call. */
814 if (should_resume)
815 {
816 tp = inferior_thread ();
817 tp->control.step_resume_breakpoint
818 = step_resume_breakpoint;
819 tp->control.step_range_start = step_range_start;
820 tp->control.step_range_end = step_range_end;
821 tp->current_line = current_line;
822 tp->current_symtab = current_symtab;
823 tp->control.step_frame_id = step_frame_id;
824 tp->control.exception_resume_breakpoint
825 = exception_resume_breakpoint;
826 tp->set_thread_fsm (std::move (thread_fsm));
827 }
828 else
829 {
830 /* If we get here, it was because we're trying to
831 resume from a fork catchpoint, but, the user
832 has switched threads away from the thread that
833 forked. In that case, the resume command
834 issued is most likely not applicable to the
835 child, so just warn, and refuse to resume. */
836 warning (_("Not resuming: switched threads "
837 "before following fork child."));
838 }
839
840 /* Reset breakpoints in the child as appropriate. */
841 follow_inferior_reset_breakpoints ();
842 }
843 }
844 }
845 break;
846 case TARGET_WAITKIND_SPURIOUS:
847 /* Nothing to follow. */
848 break;
849 default:
850 internal_error (__FILE__, __LINE__,
851 "Unexpected pending_follow.kind %d\n",
852 tp->pending_follow.kind ());
853 break;
854 }
855
856 return should_resume;
857 }
858
859 static void
860 follow_inferior_reset_breakpoints (void)
861 {
862 struct thread_info *tp = inferior_thread ();
863
864 /* Was there a step_resume breakpoint? (There was if the user
865 did a "next" at the fork() call.) If so, explicitly reset its
866 thread number. Cloned step_resume breakpoints are disabled on
867 creation, so enable it here now that it is associated with the
868 correct thread.
869
870 step_resumes are a form of bp that are made to be per-thread.
871 Since we created the step_resume bp when the parent process
872 was being debugged, and now are switching to the child process,
873 from the breakpoint package's viewpoint, that's a switch of
874 "threads". We must update the bp's notion of which thread
875 it is for, or it'll be ignored when it triggers. */
876
877 if (tp->control.step_resume_breakpoint)
878 {
879 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
880 tp->control.step_resume_breakpoint->loc->enabled = 1;
881 }
882
883 /* Treat exception_resume breakpoints like step_resume breakpoints. */
884 if (tp->control.exception_resume_breakpoint)
885 {
886 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
887 tp->control.exception_resume_breakpoint->loc->enabled = 1;
888 }
889
890 /* Reinsert all breakpoints in the child. The user may have set
891 breakpoints after catching the fork, in which case those
892 were never set in the child, but only in the parent. This makes
893 sure the inserted breakpoints match the breakpoint list. */
894
895 breakpoint_re_set ();
896 insert_breakpoints ();
897 }
898
899 /* The child has exited or execed: resume THREAD, a thread of the parent,
900 if it was meant to be executing. */
901
902 static void
903 proceed_after_vfork_done (thread_info *thread)
904 {
905 if (thread->state == THREAD_RUNNING
906 && !thread->executing ()
907 && !thread->stop_requested
908 && thread->stop_signal () == GDB_SIGNAL_0)
909 {
910 infrun_debug_printf ("resuming vfork parent thread %s",
911 thread->ptid.to_string ().c_str ());
912
913 switch_to_thread (thread);
914 clear_proceed_status (0);
915 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
916 }
917 }
918
919 /* Called whenever we notice an exec or exit event, to handle
920 detaching or resuming a vfork parent. */
921
922 static void
923 handle_vfork_child_exec_or_exit (int exec)
924 {
925 struct inferior *inf = current_inferior ();
926
927 if (inf->vfork_parent)
928 {
929 inferior *resume_parent = nullptr;
930
931 /* This exec or exit marks the end of the shared memory region
932 between the parent and the child. Break the bonds. */
933 inferior *vfork_parent = inf->vfork_parent;
934 inf->vfork_parent->vfork_child = NULL;
935 inf->vfork_parent = NULL;
936
937 /* If the user wanted to detach from the parent, now is the
938 time. */
939 if (vfork_parent->pending_detach)
940 {
941 struct program_space *pspace;
942 struct address_space *aspace;
943
944 /* follow-fork child, detach-on-fork on. */
945
946 vfork_parent->pending_detach = 0;
947
948 scoped_restore_current_pspace_and_thread restore_thread;
949
950 /* We're letting loose of the parent. */
951 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
952 switch_to_thread (tp);
953
954 /* We're about to detach from the parent, which implicitly
955 removes breakpoints from its address space. There's a
956 catch here: we want to reuse the spaces for the child,
957 but, parent/child are still sharing the pspace at this
958 point, although the exec in reality makes the kernel give
959 the child a fresh set of new pages. The problem here is
960 that the breakpoints module being unaware of this, would
961 likely chose the child process to write to the parent
962 address space. Swapping the child temporarily away from
963 the spaces has the desired effect. Yes, this is "sort
964 of" a hack. */
965
966 pspace = inf->pspace;
967 aspace = inf->aspace;
968 inf->aspace = NULL;
969 inf->pspace = NULL;
970
971 if (print_inferior_events)
972 {
973 std::string pidstr
974 = target_pid_to_str (ptid_t (vfork_parent->pid));
975
976 target_terminal::ours_for_output ();
977
978 if (exec)
979 {
980 gdb_printf (_("[Detaching vfork parent %s "
981 "after child exec]\n"), pidstr.c_str ());
982 }
983 else
984 {
985 gdb_printf (_("[Detaching vfork parent %s "
986 "after child exit]\n"), pidstr.c_str ());
987 }
988 }
989
990 target_detach (vfork_parent, 0);
991
992 /* Put it back. */
993 inf->pspace = pspace;
994 inf->aspace = aspace;
995 }
996 else if (exec)
997 {
998 /* We're staying attached to the parent, so, really give the
999 child a new address space. */
1000 inf->pspace = new program_space (maybe_new_address_space ());
1001 inf->aspace = inf->pspace->aspace;
1002 inf->removable = 1;
1003 set_current_program_space (inf->pspace);
1004
1005 resume_parent = vfork_parent;
1006 }
1007 else
1008 {
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
1018 /* Switch to no-thread while running clone_program_space, so
1019 that clone_program_space doesn't want to read the
1020 selected frame of a dead process. */
1021 scoped_restore_current_thread restore_thread;
1022 switch_to_no_thread ();
1023
1024 inf->pspace = new program_space (maybe_new_address_space ());
1025 inf->aspace = inf->pspace->aspace;
1026 set_current_program_space (inf->pspace);
1027 inf->removable = 1;
1028 inf->symfile_flags = SYMFILE_NO_READ;
1029 clone_program_space (inf->pspace, vfork_parent->pspace);
1030
1031 resume_parent = vfork_parent;
1032 }
1033
1034 gdb_assert (current_program_space == inf->pspace);
1035
1036 if (non_stop && resume_parent != nullptr)
1037 {
1038 /* If the user wanted the parent to be running, let it go
1039 free now. */
1040 scoped_restore_current_thread restore_thread;
1041
1042 infrun_debug_printf ("resuming vfork parent process %d",
1043 resume_parent->pid);
1044
1045 for (thread_info *thread : resume_parent->threads ())
1046 proceed_after_vfork_done (thread);
1047 }
1048 }
1049 }
1050
1051 /* Handle TARGET_WAITKIND_VFORK_DONE. */
1052
1053 static void
1054 handle_vfork_done (thread_info *event_thread)
1055 {
1056 /* We only care about this event if inferior::thread_waiting_for_vfork_done is
1057 set, that is if we are waiting for a vfork child not under our control
1058 (because we detached it) to exec or exit.
1059
1060 If an inferior has vforked and we are debugging the child, we don't use
1061 the vfork-done event to get notified about the end of the shared address
1062 space window. We rely instead on the child's exec or exit event, and the
1063 inferior::vfork_{parent,child} fields are used instead. See
1064 handle_vfork_child_exec_or_exit for that. */
1065 if (event_thread->inf->thread_waiting_for_vfork_done == nullptr)
1066 {
1067 infrun_debug_printf ("not waiting for a vfork-done event");
1068 return;
1069 }
1070
1071 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
1072
1073 /* We stopped all threads (other than the vforking thread) of the inferior in
1074 follow_fork and kept them stopped until now. It should therefore not be
1075 possible for another thread to have reported a vfork during that window.
1076 If THREAD_WAITING_FOR_VFORK_DONE is set, it has to be the same thread whose
1077 vfork-done we are handling right now. */
1078 gdb_assert (event_thread->inf->thread_waiting_for_vfork_done == event_thread);
1079
1080 event_thread->inf->thread_waiting_for_vfork_done = nullptr;
1081 event_thread->inf->pspace->breakpoints_not_allowed = 0;
1082
1083 /* On non-stop targets, we stopped all the inferior's threads in follow_fork,
1084 resume them now. On all-stop targets, everything that needs to be resumed
1085 will be when we resume the event thread. */
1086 if (target_is_non_stop_p ())
1087 {
1088 /* restart_threads and start_step_over may change the current thread, make
1089 sure we leave the event thread as the current thread. */
1090 scoped_restore_current_thread restore_thread;
1091
1092 insert_breakpoints ();
1093 start_step_over ();
1094
1095 if (!step_over_info_valid_p ())
1096 restart_threads (event_thread, event_thread->inf);
1097 }
1098 }
1099
1100 /* Enum strings for "set|show follow-exec-mode". */
1101
1102 static const char follow_exec_mode_new[] = "new";
1103 static const char follow_exec_mode_same[] = "same";
1104 static const char *const follow_exec_mode_names[] =
1105 {
1106 follow_exec_mode_new,
1107 follow_exec_mode_same,
1108 NULL,
1109 };
1110
1111 static const char *follow_exec_mode_string = follow_exec_mode_same;
1112 static void
1113 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1114 struct cmd_list_element *c, const char *value)
1115 {
1116 gdb_printf (file, _("Follow exec mode is \"%s\".\n"), value);
1117 }
1118
1119 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1120
1121 static void
1122 follow_exec (ptid_t ptid, const char *exec_file_target)
1123 {
1124 int pid = ptid.pid ();
1125 ptid_t process_ptid;
1126
1127 /* Switch terminal for any messages produced e.g. by
1128 breakpoint_re_set. */
1129 target_terminal::ours_for_output ();
1130
1131 /* This is an exec event that we actually wish to pay attention to.
1132 Refresh our symbol table to the newly exec'd program, remove any
1133 momentary bp's, etc.
1134
1135 If there are breakpoints, they aren't really inserted now,
1136 since the exec() transformed our inferior into a fresh set
1137 of instructions.
1138
1139 We want to preserve symbolic breakpoints on the list, since
1140 we have hopes that they can be reset after the new a.out's
1141 symbol table is read.
1142
1143 However, any "raw" breakpoints must be removed from the list
1144 (e.g., the solib bp's), since their address is probably invalid
1145 now.
1146
1147 And, we DON'T want to call delete_breakpoints() here, since
1148 that may write the bp's "shadow contents" (the instruction
1149 value that was overwritten with a TRAP instruction). Since
1150 we now have a new a.out, those shadow contents aren't valid. */
1151
1152 mark_breakpoints_out ();
1153
1154 /* The target reports the exec event to the main thread, even if
1155 some other thread does the exec, and even if the main thread was
1156 stopped or already gone. We may still have non-leader threads of
1157 the process on our list. E.g., on targets that don't have thread
1158 exit events (like remote); or on native Linux in non-stop mode if
1159 there were only two threads in the inferior and the non-leader
1160 one is the one that execs (and nothing forces an update of the
1161 thread list up to here). When debugging remotely, it's best to
1162 avoid extra traffic, when possible, so avoid syncing the thread
1163 list with the target, and instead go ahead and delete all threads
1164 of the process but one that reported the event. Note this must
1165 be done before calling update_breakpoints_after_exec, as
1166 otherwise clearing the threads' resources would reference stale
1167 thread breakpoints -- it may have been one of these threads that
1168 stepped across the exec. We could just clear their stepping
1169 states, but as long as we're iterating, might as well delete
1170 them. Deleting them now rather than at the next user-visible
1171 stop provides a nicer sequence of events for user and MI
1172 notifications. */
1173 for (thread_info *th : all_threads_safe ())
1174 if (th->ptid.pid () == pid && th->ptid != ptid)
1175 delete_thread (th);
1176
1177 /* We also need to clear any left over stale state for the
1178 leader/event thread. E.g., if there was any step-resume
1179 breakpoint or similar, it's gone now. We cannot truly
1180 step-to-next statement through an exec(). */
1181 thread_info *th = inferior_thread ();
1182 th->control.step_resume_breakpoint = NULL;
1183 th->control.exception_resume_breakpoint = NULL;
1184 th->control.single_step_breakpoints = NULL;
1185 th->control.step_range_start = 0;
1186 th->control.step_range_end = 0;
1187
1188 /* The user may have had the main thread held stopped in the
1189 previous image (e.g., schedlock on, or non-stop). Release
1190 it now. */
1191 th->stop_requested = 0;
1192
1193 update_breakpoints_after_exec ();
1194
1195 /* What is this a.out's name? */
1196 process_ptid = ptid_t (pid);
1197 gdb_printf (_("%s is executing new program: %s\n"),
1198 target_pid_to_str (process_ptid).c_str (),
1199 exec_file_target);
1200
1201 /* We've followed the inferior through an exec. Therefore, the
1202 inferior has essentially been killed & reborn. */
1203
1204 breakpoint_init_inferior (inf_execd);
1205
1206 gdb::unique_xmalloc_ptr<char> exec_file_host
1207 = exec_file_find (exec_file_target, NULL);
1208
1209 /* If we were unable to map the executable target pathname onto a host
1210 pathname, tell the user that. Otherwise GDB's subsequent behavior
1211 is confusing. Maybe it would even be better to stop at this point
1212 so that the user can specify a file manually before continuing. */
1213 if (exec_file_host == NULL)
1214 warning (_("Could not load symbols for executable %s.\n"
1215 "Do you need \"set sysroot\"?"),
1216 exec_file_target);
1217
1218 /* Reset the shared library package. This ensures that we get a
1219 shlib event when the child reaches "_start", at which point the
1220 dld will have had a chance to initialize the child. */
1221 /* Also, loading a symbol file below may trigger symbol lookups, and
1222 we don't want those to be satisfied by the libraries of the
1223 previous incarnation of this process. */
1224 no_shared_libraries (NULL, 0);
1225
1226 struct inferior *inf = current_inferior ();
1227
1228 if (follow_exec_mode_string == follow_exec_mode_new)
1229 {
1230 /* The user wants to keep the old inferior and program spaces
1231 around. Create a new fresh one, and switch to it. */
1232
1233 /* Do exit processing for the original inferior before setting the new
1234 inferior's pid. Having two inferiors with the same pid would confuse
1235 find_inferior_p(t)id. Transfer the terminal state and info from the
1236 old to the new inferior. */
1237 inferior *new_inferior = add_inferior_with_spaces ();
1238
1239 swap_terminal_info (new_inferior, inf);
1240 exit_inferior_silent (inf);
1241
1242 new_inferior->pid = pid;
1243 target_follow_exec (new_inferior, ptid, exec_file_target);
1244
1245 /* We continue with the new inferior. */
1246 inf = new_inferior;
1247 }
1248 else
1249 {
1250 /* The old description may no longer be fit for the new image.
1251 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1252 old description; we'll read a new one below. No need to do
1253 this on "follow-exec-mode new", as the old inferior stays
1254 around (its description is later cleared/refetched on
1255 restart). */
1256 target_clear_description ();
1257 target_follow_exec (inf, ptid, exec_file_target);
1258 }
1259
1260 gdb_assert (current_inferior () == inf);
1261 gdb_assert (current_program_space == inf->pspace);
1262
1263 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1264 because the proper displacement for a PIE (Position Independent
1265 Executable) main symbol file will only be computed by
1266 solib_create_inferior_hook below. breakpoint_re_set would fail
1267 to insert the breakpoints with the zero displacement. */
1268 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1269
1270 /* If the target can specify a description, read it. Must do this
1271 after flipping to the new executable (because the target supplied
1272 description must be compatible with the executable's
1273 architecture, and the old executable may e.g., be 32-bit, while
1274 the new one 64-bit), and before anything involving memory or
1275 registers. */
1276 target_find_description ();
1277
1278 gdb::observers::inferior_execd.notify (inf);
1279
1280 breakpoint_re_set ();
1281
1282 /* Reinsert all breakpoints. (Those which were symbolic have
1283 been reset to the proper address in the new a.out, thanks
1284 to symbol_file_command...). */
1285 insert_breakpoints ();
1286
1287 /* The next resume of this inferior should bring it to the shlib
1288 startup breakpoints. (If the user had also set bp's on
1289 "main" from the old (parent) process, then they'll auto-
1290 matically get reset there in the new process.). */
1291 }
1292
1293 /* The chain of threads that need to do a step-over operation to get
1294 past e.g., a breakpoint. What technique is used to step over the
1295 breakpoint/watchpoint does not matter -- all threads end up in the
1296 same queue, to maintain rough temporal order of execution, in order
1297 to avoid starvation, otherwise, we could e.g., find ourselves
1298 constantly stepping the same couple threads past their breakpoints
1299 over and over, if the single-step finish fast enough. */
1300 thread_step_over_list global_thread_step_over_list;
1301
1302 /* Bit flags indicating what the thread needs to step over. */
1303
1304 enum step_over_what_flag
1305 {
1306 /* Step over a breakpoint. */
1307 STEP_OVER_BREAKPOINT = 1,
1308
1309 /* Step past a non-continuable watchpoint, in order to let the
1310 instruction execute so we can evaluate the watchpoint
1311 expression. */
1312 STEP_OVER_WATCHPOINT = 2
1313 };
1314 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1315
1316 /* Info about an instruction that is being stepped over. */
1317
1318 struct step_over_info
1319 {
1320 /* If we're stepping past a breakpoint, this is the address space
1321 and address of the instruction the breakpoint is set at. We'll
1322 skip inserting all breakpoints here. Valid iff ASPACE is
1323 non-NULL. */
1324 const address_space *aspace = nullptr;
1325 CORE_ADDR address = 0;
1326
1327 /* The instruction being stepped over triggers a nonsteppable
1328 watchpoint. If true, we'll skip inserting watchpoints. */
1329 int nonsteppable_watchpoint_p = 0;
1330
1331 /* The thread's global number. */
1332 int thread = -1;
1333 };
1334
1335 /* The step-over info of the location that is being stepped over.
1336
1337 Note that with async/breakpoint always-inserted mode, a user might
1338 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1339 being stepped over. As setting a new breakpoint inserts all
1340 breakpoints, we need to make sure the breakpoint being stepped over
1341 isn't inserted then. We do that by only clearing the step-over
1342 info when the step-over is actually finished (or aborted).
1343
1344 Presently GDB can only step over one breakpoint at any given time.
1345 Given threads that can't run code in the same address space as the
1346 breakpoint's can't really miss the breakpoint, GDB could be taught
1347 to step-over at most one breakpoint per address space (so this info
1348 could move to the address space object if/when GDB is extended).
1349 The set of breakpoints being stepped over will normally be much
1350 smaller than the set of all breakpoints, so a flag in the
1351 breakpoint location structure would be wasteful. A separate list
1352 also saves complexity and run-time, as otherwise we'd have to go
1353 through all breakpoint locations clearing their flag whenever we
1354 start a new sequence. Similar considerations weigh against storing
1355 this info in the thread object. Plus, not all step overs actually
1356 have breakpoint locations -- e.g., stepping past a single-step
1357 breakpoint, or stepping to complete a non-continuable
1358 watchpoint. */
1359 static struct step_over_info step_over_info;
1360
1361 /* Record the address of the breakpoint/instruction we're currently
1362 stepping over.
1363 N.B. We record the aspace and address now, instead of say just the thread,
1364 because when we need the info later the thread may be running. */
1365
1366 static void
1367 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1368 int nonsteppable_watchpoint_p,
1369 int thread)
1370 {
1371 step_over_info.aspace = aspace;
1372 step_over_info.address = address;
1373 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1374 step_over_info.thread = thread;
1375 }
1376
1377 /* Called when we're not longer stepping over a breakpoint / an
1378 instruction, so all breakpoints are free to be (re)inserted. */
1379
1380 static void
1381 clear_step_over_info (void)
1382 {
1383 infrun_debug_printf ("clearing step over info");
1384 step_over_info.aspace = NULL;
1385 step_over_info.address = 0;
1386 step_over_info.nonsteppable_watchpoint_p = 0;
1387 step_over_info.thread = -1;
1388 }
1389
1390 /* See infrun.h. */
1391
1392 int
1393 stepping_past_instruction_at (struct address_space *aspace,
1394 CORE_ADDR address)
1395 {
1396 return (step_over_info.aspace != NULL
1397 && breakpoint_address_match (aspace, address,
1398 step_over_info.aspace,
1399 step_over_info.address));
1400 }
1401
1402 /* See infrun.h. */
1403
1404 int
1405 thread_is_stepping_over_breakpoint (int thread)
1406 {
1407 return (step_over_info.thread != -1
1408 && thread == step_over_info.thread);
1409 }
1410
1411 /* See infrun.h. */
1412
1413 int
1414 stepping_past_nonsteppable_watchpoint (void)
1415 {
1416 return step_over_info.nonsteppable_watchpoint_p;
1417 }
1418
1419 /* Returns true if step-over info is valid. */
1420
1421 static bool
1422 step_over_info_valid_p (void)
1423 {
1424 return (step_over_info.aspace != NULL
1425 || stepping_past_nonsteppable_watchpoint ());
1426 }
1427
1428 \f
1429 /* Displaced stepping. */
1430
1431 /* In non-stop debugging mode, we must take special care to manage
1432 breakpoints properly; in particular, the traditional strategy for
1433 stepping a thread past a breakpoint it has hit is unsuitable.
1434 'Displaced stepping' is a tactic for stepping one thread past a
1435 breakpoint it has hit while ensuring that other threads running
1436 concurrently will hit the breakpoint as they should.
1437
1438 The traditional way to step a thread T off a breakpoint in a
1439 multi-threaded program in all-stop mode is as follows:
1440
1441 a0) Initially, all threads are stopped, and breakpoints are not
1442 inserted.
1443 a1) We single-step T, leaving breakpoints uninserted.
1444 a2) We insert breakpoints, and resume all threads.
1445
1446 In non-stop debugging, however, this strategy is unsuitable: we
1447 don't want to have to stop all threads in the system in order to
1448 continue or step T past a breakpoint. Instead, we use displaced
1449 stepping:
1450
1451 n0) Initially, T is stopped, other threads are running, and
1452 breakpoints are inserted.
1453 n1) We copy the instruction "under" the breakpoint to a separate
1454 location, outside the main code stream, making any adjustments
1455 to the instruction, register, and memory state as directed by
1456 T's architecture.
1457 n2) We single-step T over the instruction at its new location.
1458 n3) We adjust the resulting register and memory state as directed
1459 by T's architecture. This includes resetting T's PC to point
1460 back into the main instruction stream.
1461 n4) We resume T.
1462
1463 This approach depends on the following gdbarch methods:
1464
1465 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1466 indicate where to copy the instruction, and how much space must
1467 be reserved there. We use these in step n1.
1468
1469 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1470 address, and makes any necessary adjustments to the instruction,
1471 register contents, and memory. We use this in step n1.
1472
1473 - gdbarch_displaced_step_fixup adjusts registers and memory after
1474 we have successfully single-stepped the instruction, to yield the
1475 same effect the instruction would have had if we had executed it
1476 at its original address. We use this in step n3.
1477
1478 The gdbarch_displaced_step_copy_insn and
1479 gdbarch_displaced_step_fixup functions must be written so that
1480 copying an instruction with gdbarch_displaced_step_copy_insn,
1481 single-stepping across the copied instruction, and then applying
1482 gdbarch_displaced_insn_fixup should have the same effects on the
1483 thread's memory and registers as stepping the instruction in place
1484 would have. Exactly which responsibilities fall to the copy and
1485 which fall to the fixup is up to the author of those functions.
1486
1487 See the comments in gdbarch.sh for details.
1488
1489 Note that displaced stepping and software single-step cannot
1490 currently be used in combination, although with some care I think
1491 they could be made to. Software single-step works by placing
1492 breakpoints on all possible subsequent instructions; if the
1493 displaced instruction is a PC-relative jump, those breakpoints
1494 could fall in very strange places --- on pages that aren't
1495 executable, or at addresses that are not proper instruction
1496 boundaries. (We do generally let other threads run while we wait
1497 to hit the software single-step breakpoint, and they might
1498 encounter such a corrupted instruction.) One way to work around
1499 this would be to have gdbarch_displaced_step_copy_insn fully
1500 simulate the effect of PC-relative instructions (and return NULL)
1501 on architectures that use software single-stepping.
1502
1503 In non-stop mode, we can have independent and simultaneous step
1504 requests, so more than one thread may need to simultaneously step
1505 over a breakpoint. The current implementation assumes there is
1506 only one scratch space per process. In this case, we have to
1507 serialize access to the scratch space. If thread A wants to step
1508 over a breakpoint, but we are currently waiting for some other
1509 thread to complete a displaced step, we leave thread A stopped and
1510 place it in the displaced_step_request_queue. Whenever a displaced
1511 step finishes, we pick the next thread in the queue and start a new
1512 displaced step operation on it. See displaced_step_prepare and
1513 displaced_step_finish for details. */
1514
1515 /* Return true if THREAD is doing a displaced step. */
1516
1517 static bool
1518 displaced_step_in_progress_thread (thread_info *thread)
1519 {
1520 gdb_assert (thread != NULL);
1521
1522 return thread->displaced_step_state.in_progress ();
1523 }
1524
1525 /* Return true if INF has a thread doing a displaced step. */
1526
1527 static bool
1528 displaced_step_in_progress (inferior *inf)
1529 {
1530 return inf->displaced_step_state.in_progress_count > 0;
1531 }
1532
1533 /* Return true if any thread is doing a displaced step. */
1534
1535 static bool
1536 displaced_step_in_progress_any_thread ()
1537 {
1538 for (inferior *inf : all_non_exited_inferiors ())
1539 {
1540 if (displaced_step_in_progress (inf))
1541 return true;
1542 }
1543
1544 return false;
1545 }
1546
1547 static void
1548 infrun_inferior_exit (struct inferior *inf)
1549 {
1550 inf->displaced_step_state.reset ();
1551 inf->thread_waiting_for_vfork_done = nullptr;
1552 }
1553
1554 static void
1555 infrun_inferior_execd (inferior *inf)
1556 {
1557 /* If some threads where was doing a displaced step in this inferior at the
1558 moment of the exec, they no longer exist. Even if the exec'ing thread
1559 doing a displaced step, we don't want to to any fixup nor restore displaced
1560 stepping buffer bytes. */
1561 inf->displaced_step_state.reset ();
1562
1563 for (thread_info *thread : inf->threads ())
1564 thread->displaced_step_state.reset ();
1565
1566 /* Since an in-line step is done with everything else stopped, if there was
1567 one in progress at the time of the exec, it must have been the exec'ing
1568 thread. */
1569 clear_step_over_info ();
1570
1571 inf->thread_waiting_for_vfork_done = nullptr;
1572 }
1573
1574 /* If ON, and the architecture supports it, GDB will use displaced
1575 stepping to step over breakpoints. If OFF, or if the architecture
1576 doesn't support it, GDB will instead use the traditional
1577 hold-and-step approach. If AUTO (which is the default), GDB will
1578 decide which technique to use to step over breakpoints depending on
1579 whether the target works in a non-stop way (see use_displaced_stepping). */
1580
1581 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1582
1583 static void
1584 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1585 struct cmd_list_element *c,
1586 const char *value)
1587 {
1588 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1589 gdb_printf (file,
1590 _("Debugger's willingness to use displaced stepping "
1591 "to step over breakpoints is %s (currently %s).\n"),
1592 value, target_is_non_stop_p () ? "on" : "off");
1593 else
1594 gdb_printf (file,
1595 _("Debugger's willingness to use displaced stepping "
1596 "to step over breakpoints is %s.\n"), value);
1597 }
1598
1599 /* Return true if the gdbarch implements the required methods to use
1600 displaced stepping. */
1601
1602 static bool
1603 gdbarch_supports_displaced_stepping (gdbarch *arch)
1604 {
1605 /* Only check for the presence of `prepare`. The gdbarch verification ensures
1606 that if `prepare` is provided, so is `finish`. */
1607 return gdbarch_displaced_step_prepare_p (arch);
1608 }
1609
1610 /* Return non-zero if displaced stepping can/should be used to step
1611 over breakpoints of thread TP. */
1612
1613 static bool
1614 use_displaced_stepping (thread_info *tp)
1615 {
1616 /* If the user disabled it explicitly, don't use displaced stepping. */
1617 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1618 return false;
1619
1620 /* If "auto", only use displaced stepping if the target operates in a non-stop
1621 way. */
1622 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1623 && !target_is_non_stop_p ())
1624 return false;
1625
1626 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1627
1628 /* If the architecture doesn't implement displaced stepping, don't use
1629 it. */
1630 if (!gdbarch_supports_displaced_stepping (gdbarch))
1631 return false;
1632
1633 /* If recording, don't use displaced stepping. */
1634 if (find_record_target () != nullptr)
1635 return false;
1636
1637 /* If displaced stepping failed before for this inferior, don't bother trying
1638 again. */
1639 if (tp->inf->displaced_step_state.failed_before)
1640 return false;
1641
1642 return true;
1643 }
1644
1645 /* Simple function wrapper around displaced_step_thread_state::reset. */
1646
1647 static void
1648 displaced_step_reset (displaced_step_thread_state *displaced)
1649 {
1650 displaced->reset ();
1651 }
1652
1653 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1654 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1655
1656 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1657
1658 /* See infrun.h. */
1659
1660 std::string
1661 displaced_step_dump_bytes (const gdb_byte *buf, size_t len)
1662 {
1663 std::string ret;
1664
1665 for (size_t i = 0; i < len; i++)
1666 {
1667 if (i == 0)
1668 ret += string_printf ("%02x", buf[i]);
1669 else
1670 ret += string_printf (" %02x", buf[i]);
1671 }
1672
1673 return ret;
1674 }
1675
1676 /* Prepare to single-step, using displaced stepping.
1677
1678 Note that we cannot use displaced stepping when we have a signal to
1679 deliver. If we have a signal to deliver and an instruction to step
1680 over, then after the step, there will be no indication from the
1681 target whether the thread entered a signal handler or ignored the
1682 signal and stepped over the instruction successfully --- both cases
1683 result in a simple SIGTRAP. In the first case we mustn't do a
1684 fixup, and in the second case we must --- but we can't tell which.
1685 Comments in the code for 'random signals' in handle_inferior_event
1686 explain how we handle this case instead.
1687
1688 Returns DISPLACED_STEP_PREPARE_STATUS_OK if preparing was successful -- this
1689 thread is going to be stepped now; DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE
1690 if displaced stepping this thread got queued; or
1691 DISPLACED_STEP_PREPARE_STATUS_CANT if this instruction can't be displaced
1692 stepped. */
1693
1694 static displaced_step_prepare_status
1695 displaced_step_prepare_throw (thread_info *tp)
1696 {
1697 regcache *regcache = get_thread_regcache (tp);
1698 struct gdbarch *gdbarch = regcache->arch ();
1699 displaced_step_thread_state &disp_step_thread_state
1700 = tp->displaced_step_state;
1701
1702 /* We should never reach this function if the architecture does not
1703 support displaced stepping. */
1704 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1705
1706 /* Nor if the thread isn't meant to step over a breakpoint. */
1707 gdb_assert (tp->control.trap_expected);
1708
1709 /* Disable range stepping while executing in the scratch pad. We
1710 want a single-step even if executing the displaced instruction in
1711 the scratch buffer lands within the stepping range (e.g., a
1712 jump/branch). */
1713 tp->control.may_range_step = 0;
1714
1715 /* We are about to start a displaced step for this thread. If one is already
1716 in progress, something's wrong. */
1717 gdb_assert (!disp_step_thread_state.in_progress ());
1718
1719 if (tp->inf->displaced_step_state.unavailable)
1720 {
1721 /* The gdbarch tells us it's not worth asking to try a prepare because
1722 it is likely that it will return unavailable, so don't bother asking. */
1723
1724 displaced_debug_printf ("deferring step of %s",
1725 tp->ptid.to_string ().c_str ());
1726
1727 global_thread_step_over_chain_enqueue (tp);
1728 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1729 }
1730
1731 displaced_debug_printf ("displaced-stepping %s now",
1732 tp->ptid.to_string ().c_str ());
1733
1734 scoped_restore_current_thread restore_thread;
1735
1736 switch_to_thread (tp);
1737
1738 CORE_ADDR original_pc = regcache_read_pc (regcache);
1739 CORE_ADDR displaced_pc;
1740
1741 displaced_step_prepare_status status
1742 = gdbarch_displaced_step_prepare (gdbarch, tp, displaced_pc);
1743
1744 if (status == DISPLACED_STEP_PREPARE_STATUS_CANT)
1745 {
1746 displaced_debug_printf ("failed to prepare (%s)",
1747 tp->ptid.to_string ().c_str ());
1748
1749 return DISPLACED_STEP_PREPARE_STATUS_CANT;
1750 }
1751 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
1752 {
1753 /* Not enough displaced stepping resources available, defer this
1754 request by placing it the queue. */
1755
1756 displaced_debug_printf ("not enough resources available, "
1757 "deferring step of %s",
1758 tp->ptid.to_string ().c_str ());
1759
1760 global_thread_step_over_chain_enqueue (tp);
1761
1762 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1763 }
1764
1765 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1766
1767 /* Save the information we need to fix things up if the step
1768 succeeds. */
1769 disp_step_thread_state.set (gdbarch);
1770
1771 tp->inf->displaced_step_state.in_progress_count++;
1772
1773 displaced_debug_printf ("prepared successfully thread=%s, "
1774 "original_pc=%s, displaced_pc=%s",
1775 tp->ptid.to_string ().c_str (),
1776 paddress (gdbarch, original_pc),
1777 paddress (gdbarch, displaced_pc));
1778
1779 return DISPLACED_STEP_PREPARE_STATUS_OK;
1780 }
1781
1782 /* Wrapper for displaced_step_prepare_throw that disabled further
1783 attempts at displaced stepping if we get a memory error. */
1784
1785 static displaced_step_prepare_status
1786 displaced_step_prepare (thread_info *thread)
1787 {
1788 displaced_step_prepare_status status
1789 = DISPLACED_STEP_PREPARE_STATUS_CANT;
1790
1791 try
1792 {
1793 status = displaced_step_prepare_throw (thread);
1794 }
1795 catch (const gdb_exception_error &ex)
1796 {
1797 if (ex.error != MEMORY_ERROR
1798 && ex.error != NOT_SUPPORTED_ERROR)
1799 throw;
1800
1801 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1802 ex.what ());
1803
1804 /* Be verbose if "set displaced-stepping" is "on", silent if
1805 "auto". */
1806 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1807 {
1808 warning (_("disabling displaced stepping: %s"),
1809 ex.what ());
1810 }
1811
1812 /* Disable further displaced stepping attempts. */
1813 thread->inf->displaced_step_state.failed_before = 1;
1814 }
1815
1816 return status;
1817 }
1818
1819 /* If we displaced stepped an instruction successfully, adjust registers and
1820 memory to yield the same effect the instruction would have had if we had
1821 executed it at its original address, and return
1822 DISPLACED_STEP_FINISH_STATUS_OK. If the instruction didn't complete,
1823 relocate the PC and return DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED.
1824
1825 If the thread wasn't displaced stepping, return
1826 DISPLACED_STEP_FINISH_STATUS_OK as well. */
1827
1828 static displaced_step_finish_status
1829 displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
1830 {
1831 displaced_step_thread_state *displaced = &event_thread->displaced_step_state;
1832
1833 /* Was this thread performing a displaced step? */
1834 if (!displaced->in_progress ())
1835 return DISPLACED_STEP_FINISH_STATUS_OK;
1836
1837 gdb_assert (event_thread->inf->displaced_step_state.in_progress_count > 0);
1838 event_thread->inf->displaced_step_state.in_progress_count--;
1839
1840 /* Fixup may need to read memory/registers. Switch to the thread
1841 that we're fixing up. Also, target_stopped_by_watchpoint checks
1842 the current thread, and displaced_step_restore performs ptid-dependent
1843 memory accesses using current_inferior(). */
1844 switch_to_thread (event_thread);
1845
1846 displaced_step_reset_cleanup cleanup (displaced);
1847
1848 /* Do the fixup, and release the resources acquired to do the displaced
1849 step. */
1850 return gdbarch_displaced_step_finish (displaced->get_original_gdbarch (),
1851 event_thread, signal);
1852 }
1853
1854 /* Data to be passed around while handling an event. This data is
1855 discarded between events. */
1856 struct execution_control_state
1857 {
1858 execution_control_state ()
1859 {
1860 this->reset ();
1861 }
1862
1863 void reset ()
1864 {
1865 this->target = nullptr;
1866 this->ptid = null_ptid;
1867 this->event_thread = nullptr;
1868 ws = target_waitstatus ();
1869 stop_func_filled_in = 0;
1870 stop_func_start = 0;
1871 stop_func_end = 0;
1872 stop_func_name = nullptr;
1873 wait_some_more = 0;
1874 hit_singlestep_breakpoint = 0;
1875 }
1876
1877 process_stratum_target *target;
1878 ptid_t ptid;
1879 /* The thread that got the event, if this was a thread event; NULL
1880 otherwise. */
1881 struct thread_info *event_thread;
1882
1883 struct target_waitstatus ws;
1884 int stop_func_filled_in;
1885 CORE_ADDR stop_func_start;
1886 CORE_ADDR stop_func_end;
1887 const char *stop_func_name;
1888 int wait_some_more;
1889
1890 /* True if the event thread hit the single-step breakpoint of
1891 another thread. Thus the event doesn't cause a stop, the thread
1892 needs to be single-stepped past the single-step breakpoint before
1893 we can switch back to the original stepping thread. */
1894 int hit_singlestep_breakpoint;
1895 };
1896
1897 /* Clear ECS and set it to point at TP. */
1898
1899 static void
1900 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1901 {
1902 ecs->reset ();
1903 ecs->event_thread = tp;
1904 ecs->ptid = tp->ptid;
1905 }
1906
1907 static void keep_going_pass_signal (struct execution_control_state *ecs);
1908 static void prepare_to_wait (struct execution_control_state *ecs);
1909 static bool keep_going_stepped_thread (struct thread_info *tp);
1910 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1911
1912 /* Are there any pending step-over requests? If so, run all we can
1913 now and return true. Otherwise, return false. */
1914
1915 static bool
1916 start_step_over (void)
1917 {
1918 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
1919
1920 /* Don't start a new step-over if we already have an in-line
1921 step-over operation ongoing. */
1922 if (step_over_info_valid_p ())
1923 return false;
1924
1925 /* Steal the global thread step over chain. As we try to initiate displaced
1926 steps, threads will be enqueued in the global chain if no buffers are
1927 available. If we iterated on the global chain directly, we might iterate
1928 indefinitely. */
1929 thread_step_over_list threads_to_step
1930 = std::move (global_thread_step_over_list);
1931
1932 infrun_debug_printf ("stealing global queue of threads to step, length = %d",
1933 thread_step_over_chain_length (threads_to_step));
1934
1935 bool started = false;
1936
1937 /* On scope exit (whatever the reason, return or exception), if there are
1938 threads left in the THREADS_TO_STEP chain, put back these threads in the
1939 global list. */
1940 SCOPE_EXIT
1941 {
1942 if (threads_to_step.empty ())
1943 infrun_debug_printf ("step-over queue now empty");
1944 else
1945 {
1946 infrun_debug_printf ("putting back %d threads to step in global queue",
1947 thread_step_over_chain_length (threads_to_step));
1948
1949 global_thread_step_over_chain_enqueue_chain
1950 (std::move (threads_to_step));
1951 }
1952 };
1953
1954 thread_step_over_list_safe_range range
1955 = make_thread_step_over_list_safe_range (threads_to_step);
1956
1957 for (thread_info *tp : range)
1958 {
1959 struct execution_control_state ecss;
1960 struct execution_control_state *ecs = &ecss;
1961 step_over_what step_what;
1962 int must_be_in_line;
1963
1964 gdb_assert (!tp->stop_requested);
1965
1966 if (tp->inf->displaced_step_state.unavailable)
1967 {
1968 /* The arch told us to not even try preparing another displaced step
1969 for this inferior. Just leave the thread in THREADS_TO_STEP, it
1970 will get moved to the global chain on scope exit. */
1971 continue;
1972 }
1973
1974 if (tp->inf->thread_waiting_for_vfork_done != nullptr)
1975 {
1976 /* When we stop all threads, handling a vfork, any thread in the step
1977 over chain remains there. A user could also try to continue a
1978 thread stopped at a breakpoint while another thread is waiting for
1979 a vfork-done event. In any case, we don't want to start a step
1980 over right now. */
1981 continue;
1982 }
1983
1984 /* Remove thread from the THREADS_TO_STEP chain. If anything goes wrong
1985 while we try to prepare the displaced step, we don't add it back to
1986 the global step over chain. This is to avoid a thread staying in the
1987 step over chain indefinitely if something goes wrong when resuming it
1988 If the error is intermittent and it still needs a step over, it will
1989 get enqueued again when we try to resume it normally. */
1990 threads_to_step.erase (threads_to_step.iterator_to (*tp));
1991
1992 step_what = thread_still_needs_step_over (tp);
1993 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1994 || ((step_what & STEP_OVER_BREAKPOINT)
1995 && !use_displaced_stepping (tp)));
1996
1997 /* We currently stop all threads of all processes to step-over
1998 in-line. If we need to start a new in-line step-over, let
1999 any pending displaced steps finish first. */
2000 if (must_be_in_line && displaced_step_in_progress_any_thread ())
2001 {
2002 global_thread_step_over_chain_enqueue (tp);
2003 continue;
2004 }
2005
2006 if (tp->control.trap_expected
2007 || tp->resumed ()
2008 || tp->executing ())
2009 {
2010 internal_error (__FILE__, __LINE__,
2011 "[%s] has inconsistent state: "
2012 "trap_expected=%d, resumed=%d, executing=%d\n",
2013 tp->ptid.to_string ().c_str (),
2014 tp->control.trap_expected,
2015 tp->resumed (),
2016 tp->executing ());
2017 }
2018
2019 infrun_debug_printf ("resuming [%s] for step-over",
2020 tp->ptid.to_string ().c_str ());
2021
2022 /* keep_going_pass_signal skips the step-over if the breakpoint
2023 is no longer inserted. In all-stop, we want to keep looking
2024 for a thread that needs a step-over instead of resuming TP,
2025 because we wouldn't be able to resume anything else until the
2026 target stops again. In non-stop, the resume always resumes
2027 only TP, so it's OK to let the thread resume freely. */
2028 if (!target_is_non_stop_p () && !step_what)
2029 continue;
2030
2031 switch_to_thread (tp);
2032 reset_ecs (ecs, tp);
2033 keep_going_pass_signal (ecs);
2034
2035 if (!ecs->wait_some_more)
2036 error (_("Command aborted."));
2037
2038 /* If the thread's step over could not be initiated because no buffers
2039 were available, it was re-added to the global step over chain. */
2040 if (tp->resumed ())
2041 {
2042 infrun_debug_printf ("[%s] was resumed.",
2043 tp->ptid.to_string ().c_str ());
2044 gdb_assert (!thread_is_in_step_over_chain (tp));
2045 }
2046 else
2047 {
2048 infrun_debug_printf ("[%s] was NOT resumed.",
2049 tp->ptid.to_string ().c_str ());
2050 gdb_assert (thread_is_in_step_over_chain (tp));
2051 }
2052
2053 /* If we started a new in-line step-over, we're done. */
2054 if (step_over_info_valid_p ())
2055 {
2056 gdb_assert (tp->control.trap_expected);
2057 started = true;
2058 break;
2059 }
2060
2061 if (!target_is_non_stop_p ())
2062 {
2063 /* On all-stop, shouldn't have resumed unless we needed a
2064 step over. */
2065 gdb_assert (tp->control.trap_expected
2066 || tp->step_after_step_resume_breakpoint);
2067
2068 /* With remote targets (at least), in all-stop, we can't
2069 issue any further remote commands until the program stops
2070 again. */
2071 started = true;
2072 break;
2073 }
2074
2075 /* Either the thread no longer needed a step-over, or a new
2076 displaced stepping sequence started. Even in the latter
2077 case, continue looking. Maybe we can also start another
2078 displaced step on a thread of other process. */
2079 }
2080
2081 return started;
2082 }
2083
2084 /* Update global variables holding ptids to hold NEW_PTID if they were
2085 holding OLD_PTID. */
2086 static void
2087 infrun_thread_ptid_changed (process_stratum_target *target,
2088 ptid_t old_ptid, ptid_t new_ptid)
2089 {
2090 if (inferior_ptid == old_ptid
2091 && current_inferior ()->process_target () == target)
2092 inferior_ptid = new_ptid;
2093 }
2094
2095 \f
2096
2097 static const char schedlock_off[] = "off";
2098 static const char schedlock_on[] = "on";
2099 static const char schedlock_step[] = "step";
2100 static const char schedlock_replay[] = "replay";
2101 static const char *const scheduler_enums[] = {
2102 schedlock_off,
2103 schedlock_on,
2104 schedlock_step,
2105 schedlock_replay,
2106 NULL
2107 };
2108 static const char *scheduler_mode = schedlock_replay;
2109 static void
2110 show_scheduler_mode (struct ui_file *file, int from_tty,
2111 struct cmd_list_element *c, const char *value)
2112 {
2113 gdb_printf (file,
2114 _("Mode for locking scheduler "
2115 "during execution is \"%s\".\n"),
2116 value);
2117 }
2118
2119 static void
2120 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2121 {
2122 if (!target_can_lock_scheduler ())
2123 {
2124 scheduler_mode = schedlock_off;
2125 error (_("Target '%s' cannot support this command."),
2126 target_shortname ());
2127 }
2128 }
2129
2130 /* True if execution commands resume all threads of all processes by
2131 default; otherwise, resume only threads of the current inferior
2132 process. */
2133 bool sched_multi = false;
2134
2135 /* Try to setup for software single stepping. Return true if target_resume()
2136 should use hardware single step.
2137
2138 GDBARCH the current gdbarch. */
2139
2140 static bool
2141 maybe_software_singlestep (struct gdbarch *gdbarch)
2142 {
2143 bool hw_step = true;
2144
2145 if (execution_direction == EXEC_FORWARD
2146 && gdbarch_software_single_step_p (gdbarch))
2147 hw_step = !insert_single_step_breakpoints (gdbarch);
2148
2149 return hw_step;
2150 }
2151
2152 /* See infrun.h. */
2153
2154 ptid_t
2155 user_visible_resume_ptid (int step)
2156 {
2157 ptid_t resume_ptid;
2158
2159 if (non_stop)
2160 {
2161 /* With non-stop mode on, threads are always handled
2162 individually. */
2163 resume_ptid = inferior_ptid;
2164 }
2165 else if ((scheduler_mode == schedlock_on)
2166 || (scheduler_mode == schedlock_step && step))
2167 {
2168 /* User-settable 'scheduler' mode requires solo thread
2169 resume. */
2170 resume_ptid = inferior_ptid;
2171 }
2172 else if ((scheduler_mode == schedlock_replay)
2173 && target_record_will_replay (minus_one_ptid, execution_direction))
2174 {
2175 /* User-settable 'scheduler' mode requires solo thread resume in replay
2176 mode. */
2177 resume_ptid = inferior_ptid;
2178 }
2179 else if (!sched_multi && target_supports_multi_process ())
2180 {
2181 /* Resume all threads of the current process (and none of other
2182 processes). */
2183 resume_ptid = ptid_t (inferior_ptid.pid ());
2184 }
2185 else
2186 {
2187 /* Resume all threads of all processes. */
2188 resume_ptid = RESUME_ALL;
2189 }
2190
2191 return resume_ptid;
2192 }
2193
2194 /* See infrun.h. */
2195
2196 process_stratum_target *
2197 user_visible_resume_target (ptid_t resume_ptid)
2198 {
2199 return (resume_ptid == minus_one_ptid && sched_multi
2200 ? NULL
2201 : current_inferior ()->process_target ());
2202 }
2203
2204 /* Return a ptid representing the set of threads that we will resume,
2205 in the perspective of the target, assuming run control handling
2206 does not require leaving some threads stopped (e.g., stepping past
2207 breakpoint). USER_STEP indicates whether we're about to start the
2208 target for a stepping command. */
2209
2210 static ptid_t
2211 internal_resume_ptid (int user_step)
2212 {
2213 /* In non-stop, we always control threads individually. Note that
2214 the target may always work in non-stop mode even with "set
2215 non-stop off", in which case user_visible_resume_ptid could
2216 return a wildcard ptid. */
2217 if (target_is_non_stop_p ())
2218 return inferior_ptid;
2219
2220 /* The rest of the function assumes non-stop==off and
2221 target-non-stop==off.
2222
2223 If a thread is waiting for a vfork-done event, it means breakpoints are out
2224 for this inferior (well, program space in fact). We don't want to resume
2225 any thread other than the one waiting for vfork done, otherwise these other
2226 threads could miss breakpoints. So if a thread in the resumption set is
2227 waiting for a vfork-done event, resume only that thread.
2228
2229 The resumption set width depends on whether schedule-multiple is on or off.
2230
2231 Note that if the target_resume interface was more flexible, we could be
2232 smarter here when schedule-multiple is on. For example, imagine 3
2233 inferiors with 2 threads each (1.1, 1.2, 2.1, 2.2, 3.1 and 3.2). Threads
2234 2.1 and 3.2 are both waiting for a vfork-done event. Then we could ask the
2235 target(s) to resume:
2236
2237 - All threads of inferior 1
2238 - Thread 2.1
2239 - Thread 3.2
2240
2241 Since we don't have that flexibility (we can only pass one ptid), just
2242 resume the first thread waiting for a vfork-done event we find (e.g. thread
2243 2.1). */
2244 if (sched_multi)
2245 {
2246 for (inferior *inf : all_non_exited_inferiors ())
2247 if (inf->thread_waiting_for_vfork_done != nullptr)
2248 return inf->thread_waiting_for_vfork_done->ptid;
2249 }
2250 else if (current_inferior ()->thread_waiting_for_vfork_done != nullptr)
2251 return current_inferior ()->thread_waiting_for_vfork_done->ptid;
2252
2253 return user_visible_resume_ptid (user_step);
2254 }
2255
2256 /* Wrapper for target_resume, that handles infrun-specific
2257 bookkeeping. */
2258
2259 static void
2260 do_target_resume (ptid_t resume_ptid, bool step, enum gdb_signal sig)
2261 {
2262 struct thread_info *tp = inferior_thread ();
2263
2264 gdb_assert (!tp->stop_requested);
2265
2266 /* Install inferior's terminal modes. */
2267 target_terminal::inferior ();
2268
2269 /* Avoid confusing the next resume, if the next stop/resume
2270 happens to apply to another thread. */
2271 tp->set_stop_signal (GDB_SIGNAL_0);
2272
2273 /* Advise target which signals may be handled silently.
2274
2275 If we have removed breakpoints because we are stepping over one
2276 in-line (in any thread), we need to receive all signals to avoid
2277 accidentally skipping a breakpoint during execution of a signal
2278 handler.
2279
2280 Likewise if we're displaced stepping, otherwise a trap for a
2281 breakpoint in a signal handler might be confused with the
2282 displaced step finishing. We don't make the displaced_step_finish
2283 step distinguish the cases instead, because:
2284
2285 - a backtrace while stopped in the signal handler would show the
2286 scratch pad as frame older than the signal handler, instead of
2287 the real mainline code.
2288
2289 - when the thread is later resumed, the signal handler would
2290 return to the scratch pad area, which would no longer be
2291 valid. */
2292 if (step_over_info_valid_p ()
2293 || displaced_step_in_progress (tp->inf))
2294 target_pass_signals ({});
2295 else
2296 target_pass_signals (signal_pass);
2297
2298 infrun_debug_printf ("resume_ptid=%s, step=%d, sig=%s",
2299 resume_ptid.to_string ().c_str (),
2300 step, gdb_signal_to_symbol_string (sig));
2301
2302 target_resume (resume_ptid, step, sig);
2303 }
2304
2305 /* Resume the inferior. SIG is the signal to give the inferior
2306 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2307 call 'resume', which handles exceptions. */
2308
2309 static void
2310 resume_1 (enum gdb_signal sig)
2311 {
2312 struct regcache *regcache = get_current_regcache ();
2313 struct gdbarch *gdbarch = regcache->arch ();
2314 struct thread_info *tp = inferior_thread ();
2315 const address_space *aspace = regcache->aspace ();
2316 ptid_t resume_ptid;
2317 /* This represents the user's step vs continue request. When
2318 deciding whether "set scheduler-locking step" applies, it's the
2319 user's intention that counts. */
2320 const int user_step = tp->control.stepping_command;
2321 /* This represents what we'll actually request the target to do.
2322 This can decay from a step to a continue, if e.g., we need to
2323 implement single-stepping with breakpoints (software
2324 single-step). */
2325 bool step;
2326
2327 gdb_assert (!tp->stop_requested);
2328 gdb_assert (!thread_is_in_step_over_chain (tp));
2329
2330 if (tp->has_pending_waitstatus ())
2331 {
2332 infrun_debug_printf
2333 ("thread %s has pending wait "
2334 "status %s (currently_stepping=%d).",
2335 tp->ptid.to_string ().c_str (),
2336 tp->pending_waitstatus ().to_string ().c_str (),
2337 currently_stepping (tp));
2338
2339 tp->inf->process_target ()->threads_executing = true;
2340 tp->set_resumed (true);
2341
2342 /* FIXME: What should we do if we are supposed to resume this
2343 thread with a signal? Maybe we should maintain a queue of
2344 pending signals to deliver. */
2345 if (sig != GDB_SIGNAL_0)
2346 {
2347 warning (_("Couldn't deliver signal %s to %s."),
2348 gdb_signal_to_name (sig),
2349 tp->ptid.to_string ().c_str ());
2350 }
2351
2352 tp->set_stop_signal (GDB_SIGNAL_0);
2353
2354 if (target_can_async_p ())
2355 {
2356 target_async (1);
2357 /* Tell the event loop we have an event to process. */
2358 mark_async_event_handler (infrun_async_inferior_event_token);
2359 }
2360 return;
2361 }
2362
2363 tp->stepped_breakpoint = 0;
2364
2365 /* Depends on stepped_breakpoint. */
2366 step = currently_stepping (tp);
2367
2368 if (current_inferior ()->thread_waiting_for_vfork_done != nullptr)
2369 {
2370 /* Don't try to single-step a vfork parent that is waiting for
2371 the child to get out of the shared memory region (by exec'ing
2372 or exiting). This is particularly important on software
2373 single-step archs, as the child process would trip on the
2374 software single step breakpoint inserted for the parent
2375 process. Since the parent will not actually execute any
2376 instruction until the child is out of the shared region (such
2377 are vfork's semantics), it is safe to simply continue it.
2378 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2379 the parent, and tell it to `keep_going', which automatically
2380 re-sets it stepping. */
2381 infrun_debug_printf ("resume : clear step");
2382 step = false;
2383 }
2384
2385 CORE_ADDR pc = regcache_read_pc (regcache);
2386
2387 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2388 "current thread [%s] at %s",
2389 step, gdb_signal_to_symbol_string (sig),
2390 tp->control.trap_expected,
2391 inferior_ptid.to_string ().c_str (),
2392 paddress (gdbarch, pc));
2393
2394 /* Normally, by the time we reach `resume', the breakpoints are either
2395 removed or inserted, as appropriate. The exception is if we're sitting
2396 at a permanent breakpoint; we need to step over it, but permanent
2397 breakpoints can't be removed. So we have to test for it here. */
2398 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2399 {
2400 if (sig != GDB_SIGNAL_0)
2401 {
2402 /* We have a signal to pass to the inferior. The resume
2403 may, or may not take us to the signal handler. If this
2404 is a step, we'll need to stop in the signal handler, if
2405 there's one, (if the target supports stepping into
2406 handlers), or in the next mainline instruction, if
2407 there's no handler. If this is a continue, we need to be
2408 sure to run the handler with all breakpoints inserted.
2409 In all cases, set a breakpoint at the current address
2410 (where the handler returns to), and once that breakpoint
2411 is hit, resume skipping the permanent breakpoint. If
2412 that breakpoint isn't hit, then we've stepped into the
2413 signal handler (or hit some other event). We'll delete
2414 the step-resume breakpoint then. */
2415
2416 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2417 "deliver signal first");
2418
2419 clear_step_over_info ();
2420 tp->control.trap_expected = 0;
2421
2422 if (tp->control.step_resume_breakpoint == NULL)
2423 {
2424 /* Set a "high-priority" step-resume, as we don't want
2425 user breakpoints at PC to trigger (again) when this
2426 hits. */
2427 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2428 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2429
2430 tp->step_after_step_resume_breakpoint = step;
2431 }
2432
2433 insert_breakpoints ();
2434 }
2435 else
2436 {
2437 /* There's no signal to pass, we can go ahead and skip the
2438 permanent breakpoint manually. */
2439 infrun_debug_printf ("skipping permanent breakpoint");
2440 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2441 /* Update pc to reflect the new address from which we will
2442 execute instructions. */
2443 pc = regcache_read_pc (regcache);
2444
2445 if (step)
2446 {
2447 /* We've already advanced the PC, so the stepping part
2448 is done. Now we need to arrange for a trap to be
2449 reported to handle_inferior_event. Set a breakpoint
2450 at the current PC, and run to it. Don't update
2451 prev_pc, because if we end in
2452 switch_back_to_stepped_thread, we want the "expected
2453 thread advanced also" branch to be taken. IOW, we
2454 don't want this thread to step further from PC
2455 (overstep). */
2456 gdb_assert (!step_over_info_valid_p ());
2457 insert_single_step_breakpoint (gdbarch, aspace, pc);
2458 insert_breakpoints ();
2459
2460 resume_ptid = internal_resume_ptid (user_step);
2461 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
2462 tp->set_resumed (true);
2463 return;
2464 }
2465 }
2466 }
2467
2468 /* If we have a breakpoint to step over, make sure to do a single
2469 step only. Same if we have software watchpoints. */
2470 if (tp->control.trap_expected || bpstat_should_step ())
2471 tp->control.may_range_step = 0;
2472
2473 /* If displaced stepping is enabled, step over breakpoints by executing a
2474 copy of the instruction at a different address.
2475
2476 We can't use displaced stepping when we have a signal to deliver;
2477 the comments for displaced_step_prepare explain why. The
2478 comments in the handle_inferior event for dealing with 'random
2479 signals' explain what we do instead.
2480
2481 We can't use displaced stepping when we are waiting for vfork_done
2482 event, displaced stepping breaks the vfork child similarly as single
2483 step software breakpoint. */
2484 if (tp->control.trap_expected
2485 && use_displaced_stepping (tp)
2486 && !step_over_info_valid_p ()
2487 && sig == GDB_SIGNAL_0
2488 && current_inferior ()->thread_waiting_for_vfork_done == nullptr)
2489 {
2490 displaced_step_prepare_status prepare_status
2491 = displaced_step_prepare (tp);
2492
2493 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
2494 {
2495 infrun_debug_printf ("Got placed in step-over queue");
2496
2497 tp->control.trap_expected = 0;
2498 return;
2499 }
2500 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_CANT)
2501 {
2502 /* Fallback to stepping over the breakpoint in-line. */
2503
2504 if (target_is_non_stop_p ())
2505 stop_all_threads ("displaced stepping falling back on inline stepping");
2506
2507 set_step_over_info (regcache->aspace (),
2508 regcache_read_pc (regcache), 0, tp->global_num);
2509
2510 step = maybe_software_singlestep (gdbarch);
2511
2512 insert_breakpoints ();
2513 }
2514 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
2515 {
2516 /* Update pc to reflect the new address from which we will
2517 execute instructions due to displaced stepping. */
2518 pc = regcache_read_pc (get_thread_regcache (tp));
2519
2520 step = gdbarch_displaced_step_hw_singlestep (gdbarch);
2521 }
2522 else
2523 gdb_assert_not_reached ("Invalid displaced_step_prepare_status "
2524 "value.");
2525 }
2526
2527 /* Do we need to do it the hard way, w/temp breakpoints? */
2528 else if (step)
2529 step = maybe_software_singlestep (gdbarch);
2530
2531 /* Currently, our software single-step implementation leads to different
2532 results than hardware single-stepping in one situation: when stepping
2533 into delivering a signal which has an associated signal handler,
2534 hardware single-step will stop at the first instruction of the handler,
2535 while software single-step will simply skip execution of the handler.
2536
2537 For now, this difference in behavior is accepted since there is no
2538 easy way to actually implement single-stepping into a signal handler
2539 without kernel support.
2540
2541 However, there is one scenario where this difference leads to follow-on
2542 problems: if we're stepping off a breakpoint by removing all breakpoints
2543 and then single-stepping. In this case, the software single-step
2544 behavior means that even if there is a *breakpoint* in the signal
2545 handler, GDB still would not stop.
2546
2547 Fortunately, we can at least fix this particular issue. We detect
2548 here the case where we are about to deliver a signal while software
2549 single-stepping with breakpoints removed. In this situation, we
2550 revert the decisions to remove all breakpoints and insert single-
2551 step breakpoints, and instead we install a step-resume breakpoint
2552 at the current address, deliver the signal without stepping, and
2553 once we arrive back at the step-resume breakpoint, actually step
2554 over the breakpoint we originally wanted to step over. */
2555 if (thread_has_single_step_breakpoints_set (tp)
2556 && sig != GDB_SIGNAL_0
2557 && step_over_info_valid_p ())
2558 {
2559 /* If we have nested signals or a pending signal is delivered
2560 immediately after a handler returns, might already have
2561 a step-resume breakpoint set on the earlier handler. We cannot
2562 set another step-resume breakpoint; just continue on until the
2563 original breakpoint is hit. */
2564 if (tp->control.step_resume_breakpoint == NULL)
2565 {
2566 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2567 tp->step_after_step_resume_breakpoint = 1;
2568 }
2569
2570 delete_single_step_breakpoints (tp);
2571
2572 clear_step_over_info ();
2573 tp->control.trap_expected = 0;
2574
2575 insert_breakpoints ();
2576 }
2577
2578 /* If STEP is set, it's a request to use hardware stepping
2579 facilities. But in that case, we should never
2580 use singlestep breakpoint. */
2581 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2582
2583 /* Decide the set of threads to ask the target to resume. */
2584 if (tp->control.trap_expected)
2585 {
2586 /* We're allowing a thread to run past a breakpoint it has
2587 hit, either by single-stepping the thread with the breakpoint
2588 removed, or by displaced stepping, with the breakpoint inserted.
2589 In the former case, we need to single-step only this thread,
2590 and keep others stopped, as they can miss this breakpoint if
2591 allowed to run. That's not really a problem for displaced
2592 stepping, but, we still keep other threads stopped, in case
2593 another thread is also stopped for a breakpoint waiting for
2594 its turn in the displaced stepping queue. */
2595 resume_ptid = inferior_ptid;
2596 }
2597 else
2598 resume_ptid = internal_resume_ptid (user_step);
2599
2600 if (execution_direction != EXEC_REVERSE
2601 && step && breakpoint_inserted_here_p (aspace, pc))
2602 {
2603 /* There are two cases where we currently need to step a
2604 breakpoint instruction when we have a signal to deliver:
2605
2606 - See handle_signal_stop where we handle random signals that
2607 could take out us out of the stepping range. Normally, in
2608 that case we end up continuing (instead of stepping) over the
2609 signal handler with a breakpoint at PC, but there are cases
2610 where we should _always_ single-step, even if we have a
2611 step-resume breakpoint, like when a software watchpoint is
2612 set. Assuming single-stepping and delivering a signal at the
2613 same time would takes us to the signal handler, then we could
2614 have removed the breakpoint at PC to step over it. However,
2615 some hardware step targets (like e.g., Mac OS) can't step
2616 into signal handlers, and for those, we need to leave the
2617 breakpoint at PC inserted, as otherwise if the handler
2618 recurses and executes PC again, it'll miss the breakpoint.
2619 So we leave the breakpoint inserted anyway, but we need to
2620 record that we tried to step a breakpoint instruction, so
2621 that adjust_pc_after_break doesn't end up confused.
2622
2623 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2624 in one thread after another thread that was stepping had been
2625 momentarily paused for a step-over. When we re-resume the
2626 stepping thread, it may be resumed from that address with a
2627 breakpoint that hasn't trapped yet. Seen with
2628 gdb.threads/non-stop-fair-events.exp, on targets that don't
2629 do displaced stepping. */
2630
2631 infrun_debug_printf ("resume: [%s] stepped breakpoint",
2632 tp->ptid.to_string ().c_str ());
2633
2634 tp->stepped_breakpoint = 1;
2635
2636 /* Most targets can step a breakpoint instruction, thus
2637 executing it normally. But if this one cannot, just
2638 continue and we will hit it anyway. */
2639 if (gdbarch_cannot_step_breakpoint (gdbarch))
2640 step = false;
2641 }
2642
2643 if (debug_displaced
2644 && tp->control.trap_expected
2645 && use_displaced_stepping (tp)
2646 && !step_over_info_valid_p ())
2647 {
2648 struct regcache *resume_regcache = get_thread_regcache (tp);
2649 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2650 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2651 gdb_byte buf[4];
2652
2653 read_memory (actual_pc, buf, sizeof (buf));
2654 displaced_debug_printf ("run %s: %s",
2655 paddress (resume_gdbarch, actual_pc),
2656 displaced_step_dump_bytes
2657 (buf, sizeof (buf)).c_str ());
2658 }
2659
2660 if (tp->control.may_range_step)
2661 {
2662 /* If we're resuming a thread with the PC out of the step
2663 range, then we're doing some nested/finer run control
2664 operation, like stepping the thread out of the dynamic
2665 linker or the displaced stepping scratch pad. We
2666 shouldn't have allowed a range step then. */
2667 gdb_assert (pc_in_thread_step_range (pc, tp));
2668 }
2669
2670 do_target_resume (resume_ptid, step, sig);
2671 tp->set_resumed (true);
2672 }
2673
2674 /* Resume the inferior. SIG is the signal to give the inferior
2675 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2676 rolls back state on error. */
2677
2678 static void
2679 resume (gdb_signal sig)
2680 {
2681 try
2682 {
2683 resume_1 (sig);
2684 }
2685 catch (const gdb_exception &ex)
2686 {
2687 /* If resuming is being aborted for any reason, delete any
2688 single-step breakpoint resume_1 may have created, to avoid
2689 confusing the following resumption, and to avoid leaving
2690 single-step breakpoints perturbing other threads, in case
2691 we're running in non-stop mode. */
2692 if (inferior_ptid != null_ptid)
2693 delete_single_step_breakpoints (inferior_thread ());
2694 throw;
2695 }
2696 }
2697
2698 \f
2699 /* Proceeding. */
2700
2701 /* See infrun.h. */
2702
2703 /* Counter that tracks number of user visible stops. This can be used
2704 to tell whether a command has proceeded the inferior past the
2705 current location. This allows e.g., inferior function calls in
2706 breakpoint commands to not interrupt the command list. When the
2707 call finishes successfully, the inferior is standing at the same
2708 breakpoint as if nothing happened (and so we don't call
2709 normal_stop). */
2710 static ULONGEST current_stop_id;
2711
2712 /* See infrun.h. */
2713
2714 ULONGEST
2715 get_stop_id (void)
2716 {
2717 return current_stop_id;
2718 }
2719
2720 /* Called when we report a user visible stop. */
2721
2722 static void
2723 new_stop_id (void)
2724 {
2725 current_stop_id++;
2726 }
2727
2728 /* Clear out all variables saying what to do when inferior is continued.
2729 First do this, then set the ones you want, then call `proceed'. */
2730
2731 static void
2732 clear_proceed_status_thread (struct thread_info *tp)
2733 {
2734 infrun_debug_printf ("%s", tp->ptid.to_string ().c_str ());
2735
2736 /* If we're starting a new sequence, then the previous finished
2737 single-step is no longer relevant. */
2738 if (tp->has_pending_waitstatus ())
2739 {
2740 if (tp->stop_reason () == TARGET_STOPPED_BY_SINGLE_STEP)
2741 {
2742 infrun_debug_printf ("pending event of %s was a finished step. "
2743 "Discarding.",
2744 tp->ptid.to_string ().c_str ());
2745
2746 tp->clear_pending_waitstatus ();
2747 tp->set_stop_reason (TARGET_STOPPED_BY_NO_REASON);
2748 }
2749 else
2750 {
2751 infrun_debug_printf
2752 ("thread %s has pending wait status %s (currently_stepping=%d).",
2753 tp->ptid.to_string ().c_str (),
2754 tp->pending_waitstatus ().to_string ().c_str (),
2755 currently_stepping (tp));
2756 }
2757 }
2758
2759 /* If this signal should not be seen by program, give it zero.
2760 Used for debugging signals. */
2761 if (!signal_pass_state (tp->stop_signal ()))
2762 tp->set_stop_signal (GDB_SIGNAL_0);
2763
2764 tp->release_thread_fsm ();
2765
2766 tp->control.trap_expected = 0;
2767 tp->control.step_range_start = 0;
2768 tp->control.step_range_end = 0;
2769 tp->control.may_range_step = 0;
2770 tp->control.step_frame_id = null_frame_id;
2771 tp->control.step_stack_frame_id = null_frame_id;
2772 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2773 tp->control.step_start_function = NULL;
2774 tp->stop_requested = 0;
2775
2776 tp->control.stop_step = 0;
2777
2778 tp->control.proceed_to_finish = 0;
2779
2780 tp->control.stepping_command = 0;
2781
2782 /* Discard any remaining commands or status from previous stop. */
2783 bpstat_clear (&tp->control.stop_bpstat);
2784 }
2785
2786 void
2787 clear_proceed_status (int step)
2788 {
2789 /* With scheduler-locking replay, stop replaying other threads if we're
2790 not replaying the user-visible resume ptid.
2791
2792 This is a convenience feature to not require the user to explicitly
2793 stop replaying the other threads. We're assuming that the user's
2794 intent is to resume tracing the recorded process. */
2795 if (!non_stop && scheduler_mode == schedlock_replay
2796 && target_record_is_replaying (minus_one_ptid)
2797 && !target_record_will_replay (user_visible_resume_ptid (step),
2798 execution_direction))
2799 target_record_stop_replaying ();
2800
2801 if (!non_stop && inferior_ptid != null_ptid)
2802 {
2803 ptid_t resume_ptid = user_visible_resume_ptid (step);
2804 process_stratum_target *resume_target
2805 = user_visible_resume_target (resume_ptid);
2806
2807 /* In all-stop mode, delete the per-thread status of all threads
2808 we're about to resume, implicitly and explicitly. */
2809 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2810 clear_proceed_status_thread (tp);
2811 }
2812
2813 if (inferior_ptid != null_ptid)
2814 {
2815 struct inferior *inferior;
2816
2817 if (non_stop)
2818 {
2819 /* If in non-stop mode, only delete the per-thread status of
2820 the current thread. */
2821 clear_proceed_status_thread (inferior_thread ());
2822 }
2823
2824 inferior = current_inferior ();
2825 inferior->control.stop_soon = NO_STOP_QUIETLY;
2826 }
2827
2828 gdb::observers::about_to_proceed.notify ();
2829 }
2830
2831 /* Returns true if TP is still stopped at a breakpoint that needs
2832 stepping-over in order to make progress. If the breakpoint is gone
2833 meanwhile, we can skip the whole step-over dance. */
2834
2835 static bool
2836 thread_still_needs_step_over_bp (struct thread_info *tp)
2837 {
2838 if (tp->stepping_over_breakpoint)
2839 {
2840 struct regcache *regcache = get_thread_regcache (tp);
2841
2842 if (breakpoint_here_p (regcache->aspace (),
2843 regcache_read_pc (regcache))
2844 == ordinary_breakpoint_here)
2845 return true;
2846
2847 tp->stepping_over_breakpoint = 0;
2848 }
2849
2850 return false;
2851 }
2852
2853 /* Check whether thread TP still needs to start a step-over in order
2854 to make progress when resumed. Returns an bitwise or of enum
2855 step_over_what bits, indicating what needs to be stepped over. */
2856
2857 static step_over_what
2858 thread_still_needs_step_over (struct thread_info *tp)
2859 {
2860 step_over_what what = 0;
2861
2862 if (thread_still_needs_step_over_bp (tp))
2863 what |= STEP_OVER_BREAKPOINT;
2864
2865 if (tp->stepping_over_watchpoint
2866 && !target_have_steppable_watchpoint ())
2867 what |= STEP_OVER_WATCHPOINT;
2868
2869 return what;
2870 }
2871
2872 /* Returns true if scheduler locking applies. STEP indicates whether
2873 we're about to do a step/next-like command to a thread. */
2874
2875 static bool
2876 schedlock_applies (struct thread_info *tp)
2877 {
2878 return (scheduler_mode == schedlock_on
2879 || (scheduler_mode == schedlock_step
2880 && tp->control.stepping_command)
2881 || (scheduler_mode == schedlock_replay
2882 && target_record_will_replay (minus_one_ptid,
2883 execution_direction)));
2884 }
2885
2886 /* Set process_stratum_target::COMMIT_RESUMED_STATE in all target
2887 stacks that have threads executing and don't have threads with
2888 pending events. */
2889
2890 static void
2891 maybe_set_commit_resumed_all_targets ()
2892 {
2893 scoped_restore_current_thread restore_thread;
2894
2895 for (inferior *inf : all_non_exited_inferiors ())
2896 {
2897 process_stratum_target *proc_target = inf->process_target ();
2898
2899 if (proc_target->commit_resumed_state)
2900 {
2901 /* We already set this in a previous iteration, via another
2902 inferior sharing the process_stratum target. */
2903 continue;
2904 }
2905
2906 /* If the target has no resumed threads, it would be useless to
2907 ask it to commit the resumed threads. */
2908 if (!proc_target->threads_executing)
2909 {
2910 infrun_debug_printf ("not requesting commit-resumed for target "
2911 "%s, no resumed threads",
2912 proc_target->shortname ());
2913 continue;
2914 }
2915
2916 /* As an optimization, if a thread from this target has some
2917 status to report, handle it before requiring the target to
2918 commit its resumed threads: handling the status might lead to
2919 resuming more threads. */
2920 if (proc_target->has_resumed_with_pending_wait_status ())
2921 {
2922 infrun_debug_printf ("not requesting commit-resumed for target %s, a"
2923 " thread has a pending waitstatus",
2924 proc_target->shortname ());
2925 continue;
2926 }
2927
2928 switch_to_inferior_no_thread (inf);
2929
2930 if (target_has_pending_events ())
2931 {
2932 infrun_debug_printf ("not requesting commit-resumed for target %s, "
2933 "target has pending events",
2934 proc_target->shortname ());
2935 continue;
2936 }
2937
2938 infrun_debug_printf ("enabling commit-resumed for target %s",
2939 proc_target->shortname ());
2940
2941 proc_target->commit_resumed_state = true;
2942 }
2943 }
2944
2945 /* See infrun.h. */
2946
2947 void
2948 maybe_call_commit_resumed_all_targets ()
2949 {
2950 scoped_restore_current_thread restore_thread;
2951
2952 for (inferior *inf : all_non_exited_inferiors ())
2953 {
2954 process_stratum_target *proc_target = inf->process_target ();
2955
2956 if (!proc_target->commit_resumed_state)
2957 continue;
2958
2959 switch_to_inferior_no_thread (inf);
2960
2961 infrun_debug_printf ("calling commit_resumed for target %s",
2962 proc_target->shortname());
2963
2964 target_commit_resumed ();
2965 }
2966 }
2967
2968 /* To track nesting of scoped_disable_commit_resumed objects, ensuring
2969 that only the outermost one attempts to re-enable
2970 commit-resumed. */
2971 static bool enable_commit_resumed = true;
2972
2973 /* See infrun.h. */
2974
2975 scoped_disable_commit_resumed::scoped_disable_commit_resumed
2976 (const char *reason)
2977 : m_reason (reason),
2978 m_prev_enable_commit_resumed (enable_commit_resumed)
2979 {
2980 infrun_debug_printf ("reason=%s", m_reason);
2981
2982 enable_commit_resumed = false;
2983
2984 for (inferior *inf : all_non_exited_inferiors ())
2985 {
2986 process_stratum_target *proc_target = inf->process_target ();
2987
2988 if (m_prev_enable_commit_resumed)
2989 {
2990 /* This is the outermost instance: force all
2991 COMMIT_RESUMED_STATE to false. */
2992 proc_target->commit_resumed_state = false;
2993 }
2994 else
2995 {
2996 /* This is not the outermost instance, we expect
2997 COMMIT_RESUMED_STATE to have been cleared by the
2998 outermost instance. */
2999 gdb_assert (!proc_target->commit_resumed_state);
3000 }
3001 }
3002 }
3003
3004 /* See infrun.h. */
3005
3006 void
3007 scoped_disable_commit_resumed::reset ()
3008 {
3009 if (m_reset)
3010 return;
3011 m_reset = true;
3012
3013 infrun_debug_printf ("reason=%s", m_reason);
3014
3015 gdb_assert (!enable_commit_resumed);
3016
3017 enable_commit_resumed = m_prev_enable_commit_resumed;
3018
3019 if (m_prev_enable_commit_resumed)
3020 {
3021 /* This is the outermost instance, re-enable
3022 COMMIT_RESUMED_STATE on the targets where it's possible. */
3023 maybe_set_commit_resumed_all_targets ();
3024 }
3025 else
3026 {
3027 /* This is not the outermost instance, we expect
3028 COMMIT_RESUMED_STATE to still be false. */
3029 for (inferior *inf : all_non_exited_inferiors ())
3030 {
3031 process_stratum_target *proc_target = inf->process_target ();
3032 gdb_assert (!proc_target->commit_resumed_state);
3033 }
3034 }
3035 }
3036
3037 /* See infrun.h. */
3038
3039 scoped_disable_commit_resumed::~scoped_disable_commit_resumed ()
3040 {
3041 reset ();
3042 }
3043
3044 /* See infrun.h. */
3045
3046 void
3047 scoped_disable_commit_resumed::reset_and_commit ()
3048 {
3049 reset ();
3050 maybe_call_commit_resumed_all_targets ();
3051 }
3052
3053 /* See infrun.h. */
3054
3055 scoped_enable_commit_resumed::scoped_enable_commit_resumed
3056 (const char *reason)
3057 : m_reason (reason),
3058 m_prev_enable_commit_resumed (enable_commit_resumed)
3059 {
3060 infrun_debug_printf ("reason=%s", m_reason);
3061
3062 if (!enable_commit_resumed)
3063 {
3064 enable_commit_resumed = true;
3065
3066 /* Re-enable COMMIT_RESUMED_STATE on the targets where it's
3067 possible. */
3068 maybe_set_commit_resumed_all_targets ();
3069
3070 maybe_call_commit_resumed_all_targets ();
3071 }
3072 }
3073
3074 /* See infrun.h. */
3075
3076 scoped_enable_commit_resumed::~scoped_enable_commit_resumed ()
3077 {
3078 infrun_debug_printf ("reason=%s", m_reason);
3079
3080 gdb_assert (enable_commit_resumed);
3081
3082 enable_commit_resumed = m_prev_enable_commit_resumed;
3083
3084 if (!enable_commit_resumed)
3085 {
3086 /* Force all COMMIT_RESUMED_STATE back to false. */
3087 for (inferior *inf : all_non_exited_inferiors ())
3088 {
3089 process_stratum_target *proc_target = inf->process_target ();
3090 proc_target->commit_resumed_state = false;
3091 }
3092 }
3093 }
3094
3095 /* Check that all the targets we're about to resume are in non-stop
3096 mode. Ideally, we'd only care whether all targets support
3097 target-async, but we're not there yet. E.g., stop_all_threads
3098 doesn't know how to handle all-stop targets. Also, the remote
3099 protocol in all-stop mode is synchronous, irrespective of
3100 target-async, which means that things like a breakpoint re-set
3101 triggered by one target would try to read memory from all targets
3102 and fail. */
3103
3104 static void
3105 check_multi_target_resumption (process_stratum_target *resume_target)
3106 {
3107 if (!non_stop && resume_target == nullptr)
3108 {
3109 scoped_restore_current_thread restore_thread;
3110
3111 /* This is used to track whether we're resuming more than one
3112 target. */
3113 process_stratum_target *first_connection = nullptr;
3114
3115 /* The first inferior we see with a target that does not work in
3116 always-non-stop mode. */
3117 inferior *first_not_non_stop = nullptr;
3118
3119 for (inferior *inf : all_non_exited_inferiors ())
3120 {
3121 switch_to_inferior_no_thread (inf);
3122
3123 if (!target_has_execution ())
3124 continue;
3125
3126 process_stratum_target *proc_target
3127 = current_inferior ()->process_target();
3128
3129 if (!target_is_non_stop_p ())
3130 first_not_non_stop = inf;
3131
3132 if (first_connection == nullptr)
3133 first_connection = proc_target;
3134 else if (first_connection != proc_target
3135 && first_not_non_stop != nullptr)
3136 {
3137 switch_to_inferior_no_thread (first_not_non_stop);
3138
3139 proc_target = current_inferior ()->process_target();
3140
3141 error (_("Connection %d (%s) does not support "
3142 "multi-target resumption."),
3143 proc_target->connection_number,
3144 make_target_connection_string (proc_target).c_str ());
3145 }
3146 }
3147 }
3148 }
3149
3150 /* Basic routine for continuing the program in various fashions.
3151
3152 ADDR is the address to resume at, or -1 for resume where stopped.
3153 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
3154 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
3155
3156 You should call clear_proceed_status before calling proceed. */
3157
3158 void
3159 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
3160 {
3161 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
3162
3163 struct regcache *regcache;
3164 struct gdbarch *gdbarch;
3165 CORE_ADDR pc;
3166 struct execution_control_state ecss;
3167 struct execution_control_state *ecs = &ecss;
3168
3169 /* If we're stopped at a fork/vfork, follow the branch set by the
3170 "set follow-fork-mode" command; otherwise, we'll just proceed
3171 resuming the current thread. */
3172 if (!follow_fork ())
3173 {
3174 /* The target for some reason decided not to resume. */
3175 normal_stop ();
3176 if (target_can_async_p ())
3177 inferior_event_handler (INF_EXEC_COMPLETE);
3178 return;
3179 }
3180
3181 /* We'll update this if & when we switch to a new thread. */
3182 previous_inferior_ptid = inferior_ptid;
3183
3184 regcache = get_current_regcache ();
3185 gdbarch = regcache->arch ();
3186 const address_space *aspace = regcache->aspace ();
3187
3188 pc = regcache_read_pc_protected (regcache);
3189
3190 thread_info *cur_thr = inferior_thread ();
3191
3192 /* Fill in with reasonable starting values. */
3193 init_thread_stepping_state (cur_thr);
3194
3195 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
3196
3197 ptid_t resume_ptid
3198 = user_visible_resume_ptid (cur_thr->control.stepping_command);
3199 process_stratum_target *resume_target
3200 = user_visible_resume_target (resume_ptid);
3201
3202 check_multi_target_resumption (resume_target);
3203
3204 if (addr == (CORE_ADDR) -1)
3205 {
3206 if (cur_thr->stop_pc_p ()
3207 && pc == cur_thr->stop_pc ()
3208 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3209 && execution_direction != EXEC_REVERSE)
3210 /* There is a breakpoint at the address we will resume at,
3211 step one instruction before inserting breakpoints so that
3212 we do not stop right away (and report a second hit at this
3213 breakpoint).
3214
3215 Note, we don't do this in reverse, because we won't
3216 actually be executing the breakpoint insn anyway.
3217 We'll be (un-)executing the previous instruction. */
3218 cur_thr->stepping_over_breakpoint = 1;
3219 else if (gdbarch_single_step_through_delay_p (gdbarch)
3220 && gdbarch_single_step_through_delay (gdbarch,
3221 get_current_frame ()))
3222 /* We stepped onto an instruction that needs to be stepped
3223 again before re-inserting the breakpoint, do so. */
3224 cur_thr->stepping_over_breakpoint = 1;
3225 }
3226 else
3227 {
3228 regcache_write_pc (regcache, addr);
3229 }
3230
3231 if (siggnal != GDB_SIGNAL_DEFAULT)
3232 cur_thr->set_stop_signal (siggnal);
3233
3234 /* If an exception is thrown from this point on, make sure to
3235 propagate GDB's knowledge of the executing state to the
3236 frontend/user running state. */
3237 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3238
3239 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3240 threads (e.g., we might need to set threads stepping over
3241 breakpoints first), from the user/frontend's point of view, all
3242 threads in RESUME_PTID are now running. Unless we're calling an
3243 inferior function, as in that case we pretend the inferior
3244 doesn't run at all. */
3245 if (!cur_thr->control.in_infcall)
3246 set_running (resume_target, resume_ptid, true);
3247
3248 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
3249 gdb_signal_to_symbol_string (siggnal));
3250
3251 annotate_starting ();
3252
3253 /* Make sure that output from GDB appears before output from the
3254 inferior. */
3255 gdb_flush (gdb_stdout);
3256
3257 /* Since we've marked the inferior running, give it the terminal. A
3258 QUIT/Ctrl-C from here on is forwarded to the target (which can
3259 still detect attempts to unblock a stuck connection with repeated
3260 Ctrl-C from within target_pass_ctrlc). */
3261 target_terminal::inferior ();
3262
3263 /* In a multi-threaded task we may select another thread and
3264 then continue or step.
3265
3266 But if a thread that we're resuming had stopped at a breakpoint,
3267 it will immediately cause another breakpoint stop without any
3268 execution (i.e. it will report a breakpoint hit incorrectly). So
3269 we must step over it first.
3270
3271 Look for threads other than the current (TP) that reported a
3272 breakpoint hit and haven't been resumed yet since. */
3273
3274 /* If scheduler locking applies, we can avoid iterating over all
3275 threads. */
3276 if (!non_stop && !schedlock_applies (cur_thr))
3277 {
3278 for (thread_info *tp : all_non_exited_threads (resume_target,
3279 resume_ptid))
3280 {
3281 switch_to_thread_no_regs (tp);
3282
3283 /* Ignore the current thread here. It's handled
3284 afterwards. */
3285 if (tp == cur_thr)
3286 continue;
3287
3288 if (!thread_still_needs_step_over (tp))
3289 continue;
3290
3291 gdb_assert (!thread_is_in_step_over_chain (tp));
3292
3293 infrun_debug_printf ("need to step-over [%s] first",
3294 tp->ptid.to_string ().c_str ());
3295
3296 global_thread_step_over_chain_enqueue (tp);
3297 }
3298
3299 switch_to_thread (cur_thr);
3300 }
3301
3302 /* Enqueue the current thread last, so that we move all other
3303 threads over their breakpoints first. */
3304 if (cur_thr->stepping_over_breakpoint)
3305 global_thread_step_over_chain_enqueue (cur_thr);
3306
3307 /* If the thread isn't started, we'll still need to set its prev_pc,
3308 so that switch_back_to_stepped_thread knows the thread hasn't
3309 advanced. Must do this before resuming any thread, as in
3310 all-stop/remote, once we resume we can't send any other packet
3311 until the target stops again. */
3312 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3313
3314 {
3315 scoped_disable_commit_resumed disable_commit_resumed ("proceeding");
3316 bool step_over_started = start_step_over ();
3317
3318 if (step_over_info_valid_p ())
3319 {
3320 /* Either this thread started a new in-line step over, or some
3321 other thread was already doing one. In either case, don't
3322 resume anything else until the step-over is finished. */
3323 }
3324 else if (step_over_started && !target_is_non_stop_p ())
3325 {
3326 /* A new displaced stepping sequence was started. In all-stop,
3327 we can't talk to the target anymore until it next stops. */
3328 }
3329 else if (!non_stop && target_is_non_stop_p ())
3330 {
3331 INFRUN_SCOPED_DEBUG_START_END
3332 ("resuming threads, all-stop-on-top-of-non-stop");
3333
3334 /* In all-stop, but the target is always in non-stop mode.
3335 Start all other threads that are implicitly resumed too. */
3336 for (thread_info *tp : all_non_exited_threads (resume_target,
3337 resume_ptid))
3338 {
3339 switch_to_thread_no_regs (tp);
3340
3341 if (!tp->inf->has_execution ())
3342 {
3343 infrun_debug_printf ("[%s] target has no execution",
3344 tp->ptid.to_string ().c_str ());
3345 continue;
3346 }
3347
3348 if (tp->resumed ())
3349 {
3350 infrun_debug_printf ("[%s] resumed",
3351 tp->ptid.to_string ().c_str ());
3352 gdb_assert (tp->executing () || tp->has_pending_waitstatus ());
3353 continue;
3354 }
3355
3356 if (thread_is_in_step_over_chain (tp))
3357 {
3358 infrun_debug_printf ("[%s] needs step-over",
3359 tp->ptid.to_string ().c_str ());
3360 continue;
3361 }
3362
3363 /* If a thread of that inferior is waiting for a vfork-done
3364 (for a detached vfork child to exec or exit), breakpoints are
3365 removed. We must not resume any thread of that inferior, other
3366 than the one waiting for the vfork-done. */
3367 if (tp->inf->thread_waiting_for_vfork_done != nullptr
3368 && tp != tp->inf->thread_waiting_for_vfork_done)
3369 {
3370 infrun_debug_printf ("[%s] another thread of this inferior is "
3371 "waiting for vfork-done",
3372 tp->ptid.to_string ().c_str ());
3373 continue;
3374 }
3375
3376 infrun_debug_printf ("resuming %s",
3377 tp->ptid.to_string ().c_str ());
3378
3379 reset_ecs (ecs, tp);
3380 switch_to_thread (tp);
3381 keep_going_pass_signal (ecs);
3382 if (!ecs->wait_some_more)
3383 error (_("Command aborted."));
3384 }
3385 }
3386 else if (!cur_thr->resumed ()
3387 && !thread_is_in_step_over_chain (cur_thr)
3388 /* In non-stop, forbid resuming a thread if some other thread of
3389 that inferior is waiting for a vfork-done event (this means
3390 breakpoints are out for this inferior). */
3391 && !(non_stop
3392 && cur_thr->inf->thread_waiting_for_vfork_done != nullptr))
3393 {
3394 /* The thread wasn't started, and isn't queued, run it now. */
3395 reset_ecs (ecs, cur_thr);
3396 switch_to_thread (cur_thr);
3397 keep_going_pass_signal (ecs);
3398 if (!ecs->wait_some_more)
3399 error (_("Command aborted."));
3400 }
3401
3402 disable_commit_resumed.reset_and_commit ();
3403 }
3404
3405 finish_state.release ();
3406
3407 /* If we've switched threads above, switch back to the previously
3408 current thread. We don't want the user to see a different
3409 selected thread. */
3410 switch_to_thread (cur_thr);
3411
3412 /* Tell the event loop to wait for it to stop. If the target
3413 supports asynchronous execution, it'll do this from within
3414 target_resume. */
3415 if (!target_can_async_p ())
3416 mark_async_event_handler (infrun_async_inferior_event_token);
3417 }
3418 \f
3419
3420 /* Start remote-debugging of a machine over a serial link. */
3421
3422 void
3423 start_remote (int from_tty)
3424 {
3425 inferior *inf = current_inferior ();
3426 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3427
3428 /* Always go on waiting for the target, regardless of the mode. */
3429 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3430 indicate to wait_for_inferior that a target should timeout if
3431 nothing is returned (instead of just blocking). Because of this,
3432 targets expecting an immediate response need to, internally, set
3433 things up so that the target_wait() is forced to eventually
3434 timeout. */
3435 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3436 differentiate to its caller what the state of the target is after
3437 the initial open has been performed. Here we're assuming that
3438 the target has stopped. It should be possible to eventually have
3439 target_open() return to the caller an indication that the target
3440 is currently running and GDB state should be set to the same as
3441 for an async run. */
3442 wait_for_inferior (inf);
3443
3444 /* Now that the inferior has stopped, do any bookkeeping like
3445 loading shared libraries. We want to do this before normal_stop,
3446 so that the displayed frame is up to date. */
3447 post_create_inferior (from_tty);
3448
3449 normal_stop ();
3450 }
3451
3452 /* Initialize static vars when a new inferior begins. */
3453
3454 void
3455 init_wait_for_inferior (void)
3456 {
3457 /* These are meaningless until the first time through wait_for_inferior. */
3458
3459 breakpoint_init_inferior (inf_starting);
3460
3461 clear_proceed_status (0);
3462
3463 nullify_last_target_wait_ptid ();
3464
3465 previous_inferior_ptid = inferior_ptid;
3466 }
3467
3468 \f
3469
3470 static void handle_inferior_event (struct execution_control_state *ecs);
3471
3472 static void handle_step_into_function (struct gdbarch *gdbarch,
3473 struct execution_control_state *ecs);
3474 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3475 struct execution_control_state *ecs);
3476 static void handle_signal_stop (struct execution_control_state *ecs);
3477 static void check_exception_resume (struct execution_control_state *,
3478 struct frame_info *);
3479
3480 static void end_stepping_range (struct execution_control_state *ecs);
3481 static void stop_waiting (struct execution_control_state *ecs);
3482 static void keep_going (struct execution_control_state *ecs);
3483 static void process_event_stop_test (struct execution_control_state *ecs);
3484 static bool switch_back_to_stepped_thread (struct execution_control_state *ecs);
3485
3486 /* This function is attached as a "thread_stop_requested" observer.
3487 Cleanup local state that assumed the PTID was to be resumed, and
3488 report the stop to the frontend. */
3489
3490 static void
3491 infrun_thread_stop_requested (ptid_t ptid)
3492 {
3493 process_stratum_target *curr_target = current_inferior ()->process_target ();
3494
3495 /* PTID was requested to stop. If the thread was already stopped,
3496 but the user/frontend doesn't know about that yet (e.g., the
3497 thread had been temporarily paused for some step-over), set up
3498 for reporting the stop now. */
3499 for (thread_info *tp : all_threads (curr_target, ptid))
3500 {
3501 if (tp->state != THREAD_RUNNING)
3502 continue;
3503 if (tp->executing ())
3504 continue;
3505
3506 /* Remove matching threads from the step-over queue, so
3507 start_step_over doesn't try to resume them
3508 automatically. */
3509 if (thread_is_in_step_over_chain (tp))
3510 global_thread_step_over_chain_remove (tp);
3511
3512 /* If the thread is stopped, but the user/frontend doesn't
3513 know about that yet, queue a pending event, as if the
3514 thread had just stopped now. Unless the thread already had
3515 a pending event. */
3516 if (!tp->has_pending_waitstatus ())
3517 {
3518 target_waitstatus ws;
3519 ws.set_stopped (GDB_SIGNAL_0);
3520 tp->set_pending_waitstatus (ws);
3521 }
3522
3523 /* Clear the inline-frame state, since we're re-processing the
3524 stop. */
3525 clear_inline_frame_state (tp);
3526
3527 /* If this thread was paused because some other thread was
3528 doing an inline-step over, let that finish first. Once
3529 that happens, we'll restart all threads and consume pending
3530 stop events then. */
3531 if (step_over_info_valid_p ())
3532 continue;
3533
3534 /* Otherwise we can process the (new) pending event now. Set
3535 it so this pending event is considered by
3536 do_target_wait. */
3537 tp->set_resumed (true);
3538 }
3539 }
3540
3541 static void
3542 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3543 {
3544 if (target_last_proc_target == tp->inf->process_target ()
3545 && target_last_wait_ptid == tp->ptid)
3546 nullify_last_target_wait_ptid ();
3547 }
3548
3549 /* Delete the step resume, single-step and longjmp/exception resume
3550 breakpoints of TP. */
3551
3552 static void
3553 delete_thread_infrun_breakpoints (struct thread_info *tp)
3554 {
3555 delete_step_resume_breakpoint (tp);
3556 delete_exception_resume_breakpoint (tp);
3557 delete_single_step_breakpoints (tp);
3558 }
3559
3560 /* If the target still has execution, call FUNC for each thread that
3561 just stopped. In all-stop, that's all the non-exited threads; in
3562 non-stop, that's the current thread, only. */
3563
3564 typedef void (*for_each_just_stopped_thread_callback_func)
3565 (struct thread_info *tp);
3566
3567 static void
3568 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3569 {
3570 if (!target_has_execution () || inferior_ptid == null_ptid)
3571 return;
3572
3573 if (target_is_non_stop_p ())
3574 {
3575 /* If in non-stop mode, only the current thread stopped. */
3576 func (inferior_thread ());
3577 }
3578 else
3579 {
3580 /* In all-stop mode, all threads have stopped. */
3581 for (thread_info *tp : all_non_exited_threads ())
3582 func (tp);
3583 }
3584 }
3585
3586 /* Delete the step resume and longjmp/exception resume breakpoints of
3587 the threads that just stopped. */
3588
3589 static void
3590 delete_just_stopped_threads_infrun_breakpoints (void)
3591 {
3592 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3593 }
3594
3595 /* Delete the single-step breakpoints of the threads that just
3596 stopped. */
3597
3598 static void
3599 delete_just_stopped_threads_single_step_breakpoints (void)
3600 {
3601 for_each_just_stopped_thread (delete_single_step_breakpoints);
3602 }
3603
3604 /* See infrun.h. */
3605
3606 void
3607 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3608 const struct target_waitstatus &ws)
3609 {
3610 infrun_debug_printf ("target_wait (%s [%s], status) =",
3611 waiton_ptid.to_string ().c_str (),
3612 target_pid_to_str (waiton_ptid).c_str ());
3613 infrun_debug_printf (" %s [%s],",
3614 result_ptid.to_string ().c_str (),
3615 target_pid_to_str (result_ptid).c_str ());
3616 infrun_debug_printf (" %s", ws.to_string ().c_str ());
3617 }
3618
3619 /* Select a thread at random, out of those which are resumed and have
3620 had events. */
3621
3622 static struct thread_info *
3623 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3624 {
3625 process_stratum_target *proc_target = inf->process_target ();
3626 thread_info *thread
3627 = proc_target->random_resumed_with_pending_wait_status (inf, waiton_ptid);
3628
3629 if (thread == nullptr)
3630 {
3631 infrun_debug_printf ("None found.");
3632 return nullptr;
3633 }
3634
3635 infrun_debug_printf ("Found %s.", thread->ptid.to_string ().c_str ());
3636 gdb_assert (thread->resumed ());
3637 gdb_assert (thread->has_pending_waitstatus ());
3638
3639 return thread;
3640 }
3641
3642 /* Wrapper for target_wait that first checks whether threads have
3643 pending statuses to report before actually asking the target for
3644 more events. INF is the inferior we're using to call target_wait
3645 on. */
3646
3647 static ptid_t
3648 do_target_wait_1 (inferior *inf, ptid_t ptid,
3649 target_waitstatus *status, target_wait_flags options)
3650 {
3651 struct thread_info *tp;
3652
3653 /* We know that we are looking for an event in the target of inferior
3654 INF, but we don't know which thread the event might come from. As
3655 such we want to make sure that INFERIOR_PTID is reset so that none of
3656 the wait code relies on it - doing so is always a mistake. */
3657 switch_to_inferior_no_thread (inf);
3658
3659 /* First check if there is a resumed thread with a wait status
3660 pending. */
3661 if (ptid == minus_one_ptid || ptid.is_pid ())
3662 {
3663 tp = random_pending_event_thread (inf, ptid);
3664 }
3665 else
3666 {
3667 infrun_debug_printf ("Waiting for specific thread %s.",
3668 ptid.to_string ().c_str ());
3669
3670 /* We have a specific thread to check. */
3671 tp = find_thread_ptid (inf, ptid);
3672 gdb_assert (tp != NULL);
3673 if (!tp->has_pending_waitstatus ())
3674 tp = NULL;
3675 }
3676
3677 if (tp != NULL
3678 && (tp->stop_reason () == TARGET_STOPPED_BY_SW_BREAKPOINT
3679 || tp->stop_reason () == TARGET_STOPPED_BY_HW_BREAKPOINT))
3680 {
3681 struct regcache *regcache = get_thread_regcache (tp);
3682 struct gdbarch *gdbarch = regcache->arch ();
3683 CORE_ADDR pc;
3684 int discard = 0;
3685
3686 pc = regcache_read_pc (regcache);
3687
3688 if (pc != tp->stop_pc ())
3689 {
3690 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
3691 tp->ptid.to_string ().c_str (),
3692 paddress (gdbarch, tp->stop_pc ()),
3693 paddress (gdbarch, pc));
3694 discard = 1;
3695 }
3696 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3697 {
3698 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3699 tp->ptid.to_string ().c_str (),
3700 paddress (gdbarch, pc));
3701
3702 discard = 1;
3703 }
3704
3705 if (discard)
3706 {
3707 infrun_debug_printf ("pending event of %s cancelled.",
3708 tp->ptid.to_string ().c_str ());
3709
3710 tp->clear_pending_waitstatus ();
3711 target_waitstatus ws;
3712 ws.set_spurious ();
3713 tp->set_pending_waitstatus (ws);
3714 tp->set_stop_reason (TARGET_STOPPED_BY_NO_REASON);
3715 }
3716 }
3717
3718 if (tp != NULL)
3719 {
3720 infrun_debug_printf ("Using pending wait status %s for %s.",
3721 tp->pending_waitstatus ().to_string ().c_str (),
3722 tp->ptid.to_string ().c_str ());
3723
3724 /* Now that we've selected our final event LWP, un-adjust its PC
3725 if it was a software breakpoint (and the target doesn't
3726 always adjust the PC itself). */
3727 if (tp->stop_reason () == TARGET_STOPPED_BY_SW_BREAKPOINT
3728 && !target_supports_stopped_by_sw_breakpoint ())
3729 {
3730 struct regcache *regcache;
3731 struct gdbarch *gdbarch;
3732 int decr_pc;
3733
3734 regcache = get_thread_regcache (tp);
3735 gdbarch = regcache->arch ();
3736
3737 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3738 if (decr_pc != 0)
3739 {
3740 CORE_ADDR pc;
3741
3742 pc = regcache_read_pc (regcache);
3743 regcache_write_pc (regcache, pc + decr_pc);
3744 }
3745 }
3746
3747 tp->set_stop_reason (TARGET_STOPPED_BY_NO_REASON);
3748 *status = tp->pending_waitstatus ();
3749 tp->clear_pending_waitstatus ();
3750
3751 /* Wake up the event loop again, until all pending events are
3752 processed. */
3753 if (target_is_async_p ())
3754 mark_async_event_handler (infrun_async_inferior_event_token);
3755 return tp->ptid;
3756 }
3757
3758 /* But if we don't find one, we'll have to wait. */
3759
3760 /* We can't ask a non-async target to do a non-blocking wait, so this will be
3761 a blocking wait. */
3762 if (!target_can_async_p ())
3763 options &= ~TARGET_WNOHANG;
3764
3765 return target_wait (ptid, status, options);
3766 }
3767
3768 /* Wrapper for target_wait that first checks whether threads have
3769 pending statuses to report before actually asking the target for
3770 more events. Polls for events from all inferiors/targets. */
3771
3772 static bool
3773 do_target_wait (execution_control_state *ecs, target_wait_flags options)
3774 {
3775 int num_inferiors = 0;
3776 int random_selector;
3777
3778 /* For fairness, we pick the first inferior/target to poll at random
3779 out of all inferiors that may report events, and then continue
3780 polling the rest of the inferior list starting from that one in a
3781 circular fashion until the whole list is polled once. */
3782
3783 auto inferior_matches = [] (inferior *inf)
3784 {
3785 return inf->process_target () != nullptr;
3786 };
3787
3788 /* First see how many matching inferiors we have. */
3789 for (inferior *inf : all_inferiors ())
3790 if (inferior_matches (inf))
3791 num_inferiors++;
3792
3793 if (num_inferiors == 0)
3794 {
3795 ecs->ws.set_ignore ();
3796 return false;
3797 }
3798
3799 /* Now randomly pick an inferior out of those that matched. */
3800 random_selector = (int)
3801 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3802
3803 if (num_inferiors > 1)
3804 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3805 num_inferiors, random_selector);
3806
3807 /* Select the Nth inferior that matched. */
3808
3809 inferior *selected = nullptr;
3810
3811 for (inferior *inf : all_inferiors ())
3812 if (inferior_matches (inf))
3813 if (random_selector-- == 0)
3814 {
3815 selected = inf;
3816 break;
3817 }
3818
3819 /* Now poll for events out of each of the matching inferior's
3820 targets, starting from the selected one. */
3821
3822 auto do_wait = [&] (inferior *inf)
3823 {
3824 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, options);
3825 ecs->target = inf->process_target ();
3826 return (ecs->ws.kind () != TARGET_WAITKIND_IGNORE);
3827 };
3828
3829 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3830 here spuriously after the target is all stopped and we've already
3831 reported the stop to the user, polling for events. */
3832 scoped_restore_current_thread restore_thread;
3833
3834 intrusive_list_iterator<inferior> start
3835 = inferior_list.iterator_to (*selected);
3836
3837 for (intrusive_list_iterator<inferior> it = start;
3838 it != inferior_list.end ();
3839 ++it)
3840 {
3841 inferior *inf = &*it;
3842
3843 if (inferior_matches (inf) && do_wait (inf))
3844 return true;
3845 }
3846
3847 for (intrusive_list_iterator<inferior> it = inferior_list.begin ();
3848 it != start;
3849 ++it)
3850 {
3851 inferior *inf = &*it;
3852
3853 if (inferior_matches (inf) && do_wait (inf))
3854 return true;
3855 }
3856
3857 ecs->ws.set_ignore ();
3858 return false;
3859 }
3860
3861 /* An event reported by wait_one. */
3862
3863 struct wait_one_event
3864 {
3865 /* The target the event came out of. */
3866 process_stratum_target *target;
3867
3868 /* The PTID the event was for. */
3869 ptid_t ptid;
3870
3871 /* The waitstatus. */
3872 target_waitstatus ws;
3873 };
3874
3875 static bool handle_one (const wait_one_event &event);
3876
3877 /* Prepare and stabilize the inferior for detaching it. E.g.,
3878 detaching while a thread is displaced stepping is a recipe for
3879 crashing it, as nothing would readjust the PC out of the scratch
3880 pad. */
3881
3882 void
3883 prepare_for_detach (void)
3884 {
3885 struct inferior *inf = current_inferior ();
3886 ptid_t pid_ptid = ptid_t (inf->pid);
3887 scoped_restore_current_thread restore_thread;
3888
3889 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3890
3891 /* Remove all threads of INF from the global step-over chain. We
3892 want to stop any ongoing step-over, not start any new one. */
3893 thread_step_over_list_safe_range range
3894 = make_thread_step_over_list_safe_range (global_thread_step_over_list);
3895
3896 for (thread_info *tp : range)
3897 if (tp->inf == inf)
3898 {
3899 infrun_debug_printf ("removing thread %s from global step over chain",
3900 tp->ptid.to_string ().c_str ());
3901 global_thread_step_over_chain_remove (tp);
3902 }
3903
3904 /* If we were already in the middle of an inline step-over, and the
3905 thread stepping belongs to the inferior we're detaching, we need
3906 to restart the threads of other inferiors. */
3907 if (step_over_info.thread != -1)
3908 {
3909 infrun_debug_printf ("inline step-over in-process while detaching");
3910
3911 thread_info *thr = find_thread_global_id (step_over_info.thread);
3912 if (thr->inf == inf)
3913 {
3914 /* Since we removed threads of INF from the step-over chain,
3915 we know this won't start a step-over for INF. */
3916 clear_step_over_info ();
3917
3918 if (target_is_non_stop_p ())
3919 {
3920 /* Start a new step-over in another thread if there's
3921 one that needs it. */
3922 start_step_over ();
3923
3924 /* Restart all other threads (except the
3925 previously-stepping thread, since that one is still
3926 running). */
3927 if (!step_over_info_valid_p ())
3928 restart_threads (thr);
3929 }
3930 }
3931 }
3932
3933 if (displaced_step_in_progress (inf))
3934 {
3935 infrun_debug_printf ("displaced-stepping in-process while detaching");
3936
3937 /* Stop threads currently displaced stepping, aborting it. */
3938
3939 for (thread_info *thr : inf->non_exited_threads ())
3940 {
3941 if (thr->displaced_step_state.in_progress ())
3942 {
3943 if (thr->executing ())
3944 {
3945 if (!thr->stop_requested)
3946 {
3947 target_stop (thr->ptid);
3948 thr->stop_requested = true;
3949 }
3950 }
3951 else
3952 thr->set_resumed (false);
3953 }
3954 }
3955
3956 while (displaced_step_in_progress (inf))
3957 {
3958 wait_one_event event;
3959
3960 event.target = inf->process_target ();
3961 event.ptid = do_target_wait_1 (inf, pid_ptid, &event.ws, 0);
3962
3963 if (debug_infrun)
3964 print_target_wait_results (pid_ptid, event.ptid, event.ws);
3965
3966 handle_one (event);
3967 }
3968
3969 /* It's OK to leave some of the threads of INF stopped, since
3970 they'll be detached shortly. */
3971 }
3972 }
3973
3974 /* Wait for control to return from inferior to debugger.
3975
3976 If inferior gets a signal, we may decide to start it up again
3977 instead of returning. That is why there is a loop in this function.
3978 When this function actually returns it means the inferior
3979 should be left stopped and GDB should read more commands. */
3980
3981 static void
3982 wait_for_inferior (inferior *inf)
3983 {
3984 infrun_debug_printf ("wait_for_inferior ()");
3985
3986 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3987
3988 /* If an error happens while handling the event, propagate GDB's
3989 knowledge of the executing state to the frontend/user running
3990 state. */
3991 scoped_finish_thread_state finish_state
3992 (inf->process_target (), minus_one_ptid);
3993
3994 while (1)
3995 {
3996 struct execution_control_state ecss;
3997 struct execution_control_state *ecs = &ecss;
3998
3999 overlay_cache_invalid = 1;
4000
4001 /* Flush target cache before starting to handle each event.
4002 Target was running and cache could be stale. This is just a
4003 heuristic. Running threads may modify target memory, but we
4004 don't get any event. */
4005 target_dcache_invalidate ();
4006
4007 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
4008 ecs->target = inf->process_target ();
4009
4010 if (debug_infrun)
4011 print_target_wait_results (minus_one_ptid, ecs->ptid, ecs->ws);
4012
4013 /* Now figure out what to do with the result of the result. */
4014 handle_inferior_event (ecs);
4015
4016 if (!ecs->wait_some_more)
4017 break;
4018 }
4019
4020 /* No error, don't finish the state yet. */
4021 finish_state.release ();
4022 }
4023
4024 /* Cleanup that reinstalls the readline callback handler, if the
4025 target is running in the background. If while handling the target
4026 event something triggered a secondary prompt, like e.g., a
4027 pagination prompt, we'll have removed the callback handler (see
4028 gdb_readline_wrapper_line). Need to do this as we go back to the
4029 event loop, ready to process further input. Note this has no
4030 effect if the handler hasn't actually been removed, because calling
4031 rl_callback_handler_install resets the line buffer, thus losing
4032 input. */
4033
4034 static void
4035 reinstall_readline_callback_handler_cleanup ()
4036 {
4037 struct ui *ui = current_ui;
4038
4039 if (!ui->async)
4040 {
4041 /* We're not going back to the top level event loop yet. Don't
4042 install the readline callback, as it'd prep the terminal,
4043 readline-style (raw, noecho) (e.g., --batch). We'll install
4044 it the next time the prompt is displayed, when we're ready
4045 for input. */
4046 return;
4047 }
4048
4049 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
4050 gdb_rl_callback_handler_reinstall ();
4051 }
4052
4053 /* Clean up the FSMs of threads that are now stopped. In non-stop,
4054 that's just the event thread. In all-stop, that's all threads. */
4055
4056 static void
4057 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
4058 {
4059 if (ecs->event_thread != nullptr
4060 && ecs->event_thread->thread_fsm () != nullptr)
4061 ecs->event_thread->thread_fsm ()->clean_up (ecs->event_thread);
4062
4063 if (!non_stop)
4064 {
4065 for (thread_info *thr : all_non_exited_threads ())
4066 {
4067 if (thr->thread_fsm () == nullptr)
4068 continue;
4069 if (thr == ecs->event_thread)
4070 continue;
4071
4072 switch_to_thread (thr);
4073 thr->thread_fsm ()->clean_up (thr);
4074 }
4075
4076 if (ecs->event_thread != nullptr)
4077 switch_to_thread (ecs->event_thread);
4078 }
4079 }
4080
4081 /* Helper for all_uis_check_sync_execution_done that works on the
4082 current UI. */
4083
4084 static void
4085 check_curr_ui_sync_execution_done (void)
4086 {
4087 struct ui *ui = current_ui;
4088
4089 if (ui->prompt_state == PROMPT_NEEDED
4090 && ui->async
4091 && !gdb_in_secondary_prompt_p (ui))
4092 {
4093 target_terminal::ours ();
4094 gdb::observers::sync_execution_done.notify ();
4095 ui_register_input_event_handler (ui);
4096 }
4097 }
4098
4099 /* See infrun.h. */
4100
4101 void
4102 all_uis_check_sync_execution_done (void)
4103 {
4104 SWITCH_THRU_ALL_UIS ()
4105 {
4106 check_curr_ui_sync_execution_done ();
4107 }
4108 }
4109
4110 /* See infrun.h. */
4111
4112 void
4113 all_uis_on_sync_execution_starting (void)
4114 {
4115 SWITCH_THRU_ALL_UIS ()
4116 {
4117 if (current_ui->prompt_state == PROMPT_NEEDED)
4118 async_disable_stdin ();
4119 }
4120 }
4121
4122 /* Asynchronous version of wait_for_inferior. It is called by the
4123 event loop whenever a change of state is detected on the file
4124 descriptor corresponding to the target. It can be called more than
4125 once to complete a single execution command. In such cases we need
4126 to keep the state in a global variable ECSS. If it is the last time
4127 that this function is called for a single execution command, then
4128 report to the user that the inferior has stopped, and do the
4129 necessary cleanups. */
4130
4131 void
4132 fetch_inferior_event ()
4133 {
4134 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
4135
4136 struct execution_control_state ecss;
4137 struct execution_control_state *ecs = &ecss;
4138 int cmd_done = 0;
4139
4140 /* Events are always processed with the main UI as current UI. This
4141 way, warnings, debug output, etc. are always consistently sent to
4142 the main console. */
4143 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
4144
4145 /* Temporarily disable pagination. Otherwise, the user would be
4146 given an option to press 'q' to quit, which would cause an early
4147 exit and could leave GDB in a half-baked state. */
4148 scoped_restore save_pagination
4149 = make_scoped_restore (&pagination_enabled, false);
4150
4151 /* End up with readline processing input, if necessary. */
4152 {
4153 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
4154
4155 /* We're handling a live event, so make sure we're doing live
4156 debugging. If we're looking at traceframes while the target is
4157 running, we're going to need to get back to that mode after
4158 handling the event. */
4159 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
4160 if (non_stop)
4161 {
4162 maybe_restore_traceframe.emplace ();
4163 set_current_traceframe (-1);
4164 }
4165
4166 /* The user/frontend should not notice a thread switch due to
4167 internal events. Make sure we revert to the user selected
4168 thread and frame after handling the event and running any
4169 breakpoint commands. */
4170 scoped_restore_current_thread restore_thread;
4171
4172 overlay_cache_invalid = 1;
4173 /* Flush target cache before starting to handle each event. Target
4174 was running and cache could be stale. This is just a heuristic.
4175 Running threads may modify target memory, but we don't get any
4176 event. */
4177 target_dcache_invalidate ();
4178
4179 scoped_restore save_exec_dir
4180 = make_scoped_restore (&execution_direction,
4181 target_execution_direction ());
4182
4183 /* Allow targets to pause their resumed threads while we handle
4184 the event. */
4185 scoped_disable_commit_resumed disable_commit_resumed ("handling event");
4186
4187 if (!do_target_wait (ecs, TARGET_WNOHANG))
4188 {
4189 infrun_debug_printf ("do_target_wait returned no event");
4190 disable_commit_resumed.reset_and_commit ();
4191 return;
4192 }
4193
4194 gdb_assert (ecs->ws.kind () != TARGET_WAITKIND_IGNORE);
4195
4196 /* Switch to the target that generated the event, so we can do
4197 target calls. */
4198 switch_to_target_no_thread (ecs->target);
4199
4200 if (debug_infrun)
4201 print_target_wait_results (minus_one_ptid, ecs->ptid, ecs->ws);
4202
4203 /* If an error happens while handling the event, propagate GDB's
4204 knowledge of the executing state to the frontend/user running
4205 state. */
4206 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
4207 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
4208
4209 /* Get executed before scoped_restore_current_thread above to apply
4210 still for the thread which has thrown the exception. */
4211 auto defer_bpstat_clear
4212 = make_scope_exit (bpstat_clear_actions);
4213 auto defer_delete_threads
4214 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4215
4216 /* Now figure out what to do with the result of the result. */
4217 handle_inferior_event (ecs);
4218
4219 if (!ecs->wait_some_more)
4220 {
4221 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4222 bool should_stop = true;
4223 struct thread_info *thr = ecs->event_thread;
4224
4225 delete_just_stopped_threads_infrun_breakpoints ();
4226
4227 if (thr != nullptr && thr->thread_fsm () != nullptr)
4228 should_stop = thr->thread_fsm ()->should_stop (thr);
4229
4230 if (!should_stop)
4231 {
4232 keep_going (ecs);
4233 }
4234 else
4235 {
4236 bool should_notify_stop = true;
4237 int proceeded = 0;
4238
4239 clean_up_just_stopped_threads_fsms (ecs);
4240
4241 if (thr != nullptr && thr->thread_fsm () != nullptr)
4242 should_notify_stop
4243 = thr->thread_fsm ()->should_notify_stop ();
4244
4245 if (should_notify_stop)
4246 {
4247 /* We may not find an inferior if this was a process exit. */
4248 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4249 proceeded = normal_stop ();
4250 }
4251
4252 if (!proceeded)
4253 {
4254 inferior_event_handler (INF_EXEC_COMPLETE);
4255 cmd_done = 1;
4256 }
4257
4258 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4259 previously selected thread is gone. We have two
4260 choices - switch to no thread selected, or restore the
4261 previously selected thread (now exited). We chose the
4262 later, just because that's what GDB used to do. After
4263 this, "info threads" says "The current thread <Thread
4264 ID 2> has terminated." instead of "No thread
4265 selected.". */
4266 if (!non_stop
4267 && cmd_done
4268 && ecs->ws.kind () != TARGET_WAITKIND_NO_RESUMED)
4269 restore_thread.dont_restore ();
4270 }
4271 }
4272
4273 defer_delete_threads.release ();
4274 defer_bpstat_clear.release ();
4275
4276 /* No error, don't finish the thread states yet. */
4277 finish_state.release ();
4278
4279 disable_commit_resumed.reset_and_commit ();
4280
4281 /* This scope is used to ensure that readline callbacks are
4282 reinstalled here. */
4283 }
4284
4285 /* Handling this event might have caused some inferiors to become prunable.
4286 For example, the exit of an inferior that was automatically added. Try
4287 to get rid of them. Keeping those around slows down things linearly.
4288
4289 Note that this never removes the current inferior. Therefore, call this
4290 after RESTORE_THREAD went out of scope, in case the event inferior (which was
4291 temporarily made the current inferior) is meant to be deleted.
4292
4293 Call this before all_uis_check_sync_execution_done, so that notifications about
4294 removed inferiors appear before the prompt. */
4295 prune_inferiors ();
4296
4297 /* If a UI was in sync execution mode, and now isn't, restore its
4298 prompt (a synchronous execution command has finished, and we're
4299 ready for input). */
4300 all_uis_check_sync_execution_done ();
4301
4302 if (cmd_done
4303 && exec_done_display_p
4304 && (inferior_ptid == null_ptid
4305 || inferior_thread ()->state != THREAD_RUNNING))
4306 gdb_printf (_("completed.\n"));
4307 }
4308
4309 /* See infrun.h. */
4310
4311 void
4312 set_step_info (thread_info *tp, struct frame_info *frame,
4313 struct symtab_and_line sal)
4314 {
4315 /* This can be removed once this function no longer implicitly relies on the
4316 inferior_ptid value. */
4317 gdb_assert (inferior_ptid == tp->ptid);
4318
4319 tp->control.step_frame_id = get_frame_id (frame);
4320 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4321
4322 tp->current_symtab = sal.symtab;
4323 tp->current_line = sal.line;
4324
4325 infrun_debug_printf
4326 ("symtab = %s, line = %d, step_frame_id = %s, step_stack_frame_id = %s",
4327 tp->current_symtab != nullptr ? tp->current_symtab->filename : "<null>",
4328 tp->current_line,
4329 tp->control.step_frame_id.to_string ().c_str (),
4330 tp->control.step_stack_frame_id.to_string ().c_str ());
4331 }
4332
4333 /* Clear context switchable stepping state. */
4334
4335 void
4336 init_thread_stepping_state (struct thread_info *tss)
4337 {
4338 tss->stepped_breakpoint = 0;
4339 tss->stepping_over_breakpoint = 0;
4340 tss->stepping_over_watchpoint = 0;
4341 tss->step_after_step_resume_breakpoint = 0;
4342 }
4343
4344 /* See infrun.h. */
4345
4346 void
4347 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4348 const target_waitstatus &status)
4349 {
4350 target_last_proc_target = target;
4351 target_last_wait_ptid = ptid;
4352 target_last_waitstatus = status;
4353 }
4354
4355 /* See infrun.h. */
4356
4357 void
4358 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4359 target_waitstatus *status)
4360 {
4361 if (target != nullptr)
4362 *target = target_last_proc_target;
4363 if (ptid != nullptr)
4364 *ptid = target_last_wait_ptid;
4365 if (status != nullptr)
4366 *status = target_last_waitstatus;
4367 }
4368
4369 /* See infrun.h. */
4370
4371 void
4372 nullify_last_target_wait_ptid (void)
4373 {
4374 target_last_proc_target = nullptr;
4375 target_last_wait_ptid = minus_one_ptid;
4376 target_last_waitstatus = {};
4377 }
4378
4379 /* Switch thread contexts. */
4380
4381 static void
4382 context_switch (execution_control_state *ecs)
4383 {
4384 if (ecs->ptid != inferior_ptid
4385 && (inferior_ptid == null_ptid
4386 || ecs->event_thread != inferior_thread ()))
4387 {
4388 infrun_debug_printf ("Switching context from %s to %s",
4389 inferior_ptid.to_string ().c_str (),
4390 ecs->ptid.to_string ().c_str ());
4391 }
4392
4393 switch_to_thread (ecs->event_thread);
4394 }
4395
4396 /* If the target can't tell whether we've hit breakpoints
4397 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4398 check whether that could have been caused by a breakpoint. If so,
4399 adjust the PC, per gdbarch_decr_pc_after_break. */
4400
4401 static void
4402 adjust_pc_after_break (struct thread_info *thread,
4403 const target_waitstatus &ws)
4404 {
4405 struct regcache *regcache;
4406 struct gdbarch *gdbarch;
4407 CORE_ADDR breakpoint_pc, decr_pc;
4408
4409 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4410 we aren't, just return.
4411
4412 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4413 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4414 implemented by software breakpoints should be handled through the normal
4415 breakpoint layer.
4416
4417 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4418 different signals (SIGILL or SIGEMT for instance), but it is less
4419 clear where the PC is pointing afterwards. It may not match
4420 gdbarch_decr_pc_after_break. I don't know any specific target that
4421 generates these signals at breakpoints (the code has been in GDB since at
4422 least 1992) so I can not guess how to handle them here.
4423
4424 In earlier versions of GDB, a target with
4425 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4426 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4427 target with both of these set in GDB history, and it seems unlikely to be
4428 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4429
4430 if (ws.kind () != TARGET_WAITKIND_STOPPED)
4431 return;
4432
4433 if (ws.sig () != GDB_SIGNAL_TRAP)
4434 return;
4435
4436 /* In reverse execution, when a breakpoint is hit, the instruction
4437 under it has already been de-executed. The reported PC always
4438 points at the breakpoint address, so adjusting it further would
4439 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4440 architecture:
4441
4442 B1 0x08000000 : INSN1
4443 B2 0x08000001 : INSN2
4444 0x08000002 : INSN3
4445 PC -> 0x08000003 : INSN4
4446
4447 Say you're stopped at 0x08000003 as above. Reverse continuing
4448 from that point should hit B2 as below. Reading the PC when the
4449 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4450 been de-executed already.
4451
4452 B1 0x08000000 : INSN1
4453 B2 PC -> 0x08000001 : INSN2
4454 0x08000002 : INSN3
4455 0x08000003 : INSN4
4456
4457 We can't apply the same logic as for forward execution, because
4458 we would wrongly adjust the PC to 0x08000000, since there's a
4459 breakpoint at PC - 1. We'd then report a hit on B1, although
4460 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4461 behaviour. */
4462 if (execution_direction == EXEC_REVERSE)
4463 return;
4464
4465 /* If the target can tell whether the thread hit a SW breakpoint,
4466 trust it. Targets that can tell also adjust the PC
4467 themselves. */
4468 if (target_supports_stopped_by_sw_breakpoint ())
4469 return;
4470
4471 /* Note that relying on whether a breakpoint is planted in memory to
4472 determine this can fail. E.g,. the breakpoint could have been
4473 removed since. Or the thread could have been told to step an
4474 instruction the size of a breakpoint instruction, and only
4475 _after_ was a breakpoint inserted at its address. */
4476
4477 /* If this target does not decrement the PC after breakpoints, then
4478 we have nothing to do. */
4479 regcache = get_thread_regcache (thread);
4480 gdbarch = regcache->arch ();
4481
4482 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4483 if (decr_pc == 0)
4484 return;
4485
4486 const address_space *aspace = regcache->aspace ();
4487
4488 /* Find the location where (if we've hit a breakpoint) the
4489 breakpoint would be. */
4490 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4491
4492 /* If the target can't tell whether a software breakpoint triggered,
4493 fallback to figuring it out based on breakpoints we think were
4494 inserted in the target, and on whether the thread was stepped or
4495 continued. */
4496
4497 /* Check whether there actually is a software breakpoint inserted at
4498 that location.
4499
4500 If in non-stop mode, a race condition is possible where we've
4501 removed a breakpoint, but stop events for that breakpoint were
4502 already queued and arrive later. To suppress those spurious
4503 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4504 and retire them after a number of stop events are reported. Note
4505 this is an heuristic and can thus get confused. The real fix is
4506 to get the "stopped by SW BP and needs adjustment" info out of
4507 the target/kernel (and thus never reach here; see above). */
4508 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4509 || (target_is_non_stop_p ()
4510 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4511 {
4512 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4513
4514 if (record_full_is_used ())
4515 restore_operation_disable.emplace
4516 (record_full_gdb_operation_disable_set ());
4517
4518 /* When using hardware single-step, a SIGTRAP is reported for both
4519 a completed single-step and a software breakpoint. Need to
4520 differentiate between the two, as the latter needs adjusting
4521 but the former does not.
4522
4523 The SIGTRAP can be due to a completed hardware single-step only if
4524 - we didn't insert software single-step breakpoints
4525 - this thread is currently being stepped
4526
4527 If any of these events did not occur, we must have stopped due
4528 to hitting a software breakpoint, and have to back up to the
4529 breakpoint address.
4530
4531 As a special case, we could have hardware single-stepped a
4532 software breakpoint. In this case (prev_pc == breakpoint_pc),
4533 we also need to back up to the breakpoint address. */
4534
4535 if (thread_has_single_step_breakpoints_set (thread)
4536 || !currently_stepping (thread)
4537 || (thread->stepped_breakpoint
4538 && thread->prev_pc == breakpoint_pc))
4539 regcache_write_pc (regcache, breakpoint_pc);
4540 }
4541 }
4542
4543 static bool
4544 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4545 {
4546 for (frame = get_prev_frame (frame);
4547 frame != NULL;
4548 frame = get_prev_frame (frame))
4549 {
4550 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4551 return true;
4552
4553 if (get_frame_type (frame) != INLINE_FRAME)
4554 break;
4555 }
4556
4557 return false;
4558 }
4559
4560 /* Look for an inline frame that is marked for skip.
4561 If PREV_FRAME is TRUE start at the previous frame,
4562 otherwise start at the current frame. Stop at the
4563 first non-inline frame, or at the frame where the
4564 step started. */
4565
4566 static bool
4567 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4568 {
4569 struct frame_info *frame = get_current_frame ();
4570
4571 if (prev_frame)
4572 frame = get_prev_frame (frame);
4573
4574 for (; frame != NULL; frame = get_prev_frame (frame))
4575 {
4576 const char *fn = NULL;
4577 symtab_and_line sal;
4578 struct symbol *sym;
4579
4580 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4581 break;
4582 if (get_frame_type (frame) != INLINE_FRAME)
4583 break;
4584
4585 sal = find_frame_sal (frame);
4586 sym = get_frame_function (frame);
4587
4588 if (sym != NULL)
4589 fn = sym->print_name ();
4590
4591 if (sal.line != 0
4592 && function_name_is_marked_for_skip (fn, sal))
4593 return true;
4594 }
4595
4596 return false;
4597 }
4598
4599 /* If the event thread has the stop requested flag set, pretend it
4600 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4601 target_stop). */
4602
4603 static bool
4604 handle_stop_requested (struct execution_control_state *ecs)
4605 {
4606 if (ecs->event_thread->stop_requested)
4607 {
4608 ecs->ws.set_stopped (GDB_SIGNAL_0);
4609 handle_signal_stop (ecs);
4610 return true;
4611 }
4612 return false;
4613 }
4614
4615 /* Auxiliary function that handles syscall entry/return events.
4616 It returns true if the inferior should keep going (and GDB
4617 should ignore the event), or false if the event deserves to be
4618 processed. */
4619
4620 static bool
4621 handle_syscall_event (struct execution_control_state *ecs)
4622 {
4623 struct regcache *regcache;
4624 int syscall_number;
4625
4626 context_switch (ecs);
4627
4628 regcache = get_thread_regcache (ecs->event_thread);
4629 syscall_number = ecs->ws.syscall_number ();
4630 ecs->event_thread->set_stop_pc (regcache_read_pc (regcache));
4631
4632 if (catch_syscall_enabled () > 0
4633 && catching_syscall_number (syscall_number))
4634 {
4635 infrun_debug_printf ("syscall number=%d", syscall_number);
4636
4637 ecs->event_thread->control.stop_bpstat
4638 = bpstat_stop_status_nowatch (regcache->aspace (),
4639 ecs->event_thread->stop_pc (),
4640 ecs->event_thread, ecs->ws);
4641
4642 if (handle_stop_requested (ecs))
4643 return false;
4644
4645 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4646 {
4647 /* Catchpoint hit. */
4648 return false;
4649 }
4650 }
4651
4652 if (handle_stop_requested (ecs))
4653 return false;
4654
4655 /* If no catchpoint triggered for this, then keep going. */
4656 keep_going (ecs);
4657
4658 return true;
4659 }
4660
4661 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4662
4663 static void
4664 fill_in_stop_func (struct gdbarch *gdbarch,
4665 struct execution_control_state *ecs)
4666 {
4667 if (!ecs->stop_func_filled_in)
4668 {
4669 const block *block;
4670 const general_symbol_info *gsi;
4671
4672 /* Don't care about return value; stop_func_start and stop_func_name
4673 will both be 0 if it doesn't work. */
4674 find_pc_partial_function_sym (ecs->event_thread->stop_pc (),
4675 &gsi,
4676 &ecs->stop_func_start,
4677 &ecs->stop_func_end,
4678 &block);
4679 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
4680
4681 /* The call to find_pc_partial_function, above, will set
4682 stop_func_start and stop_func_end to the start and end
4683 of the range containing the stop pc. If this range
4684 contains the entry pc for the block (which is always the
4685 case for contiguous blocks), advance stop_func_start past
4686 the function's start offset and entrypoint. Note that
4687 stop_func_start is NOT advanced when in a range of a
4688 non-contiguous block that does not contain the entry pc. */
4689 if (block != nullptr
4690 && ecs->stop_func_start <= block->entry_pc ()
4691 && block->entry_pc () < ecs->stop_func_end)
4692 {
4693 ecs->stop_func_start
4694 += gdbarch_deprecated_function_start_offset (gdbarch);
4695
4696 if (gdbarch_skip_entrypoint_p (gdbarch))
4697 ecs->stop_func_start
4698 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4699 }
4700
4701 ecs->stop_func_filled_in = 1;
4702 }
4703 }
4704
4705
4706 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4707
4708 static enum stop_kind
4709 get_inferior_stop_soon (execution_control_state *ecs)
4710 {
4711 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4712
4713 gdb_assert (inf != NULL);
4714 return inf->control.stop_soon;
4715 }
4716
4717 /* Poll for one event out of the current target. Store the resulting
4718 waitstatus in WS, and return the event ptid. Does not block. */
4719
4720 static ptid_t
4721 poll_one_curr_target (struct target_waitstatus *ws)
4722 {
4723 ptid_t event_ptid;
4724
4725 overlay_cache_invalid = 1;
4726
4727 /* Flush target cache before starting to handle each event.
4728 Target was running and cache could be stale. This is just a
4729 heuristic. Running threads may modify target memory, but we
4730 don't get any event. */
4731 target_dcache_invalidate ();
4732
4733 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4734
4735 if (debug_infrun)
4736 print_target_wait_results (minus_one_ptid, event_ptid, *ws);
4737
4738 return event_ptid;
4739 }
4740
4741 /* Wait for one event out of any target. */
4742
4743 static wait_one_event
4744 wait_one ()
4745 {
4746 while (1)
4747 {
4748 for (inferior *inf : all_inferiors ())
4749 {
4750 process_stratum_target *target = inf->process_target ();
4751 if (target == NULL
4752 || !target->is_async_p ()
4753 || !target->threads_executing)
4754 continue;
4755
4756 switch_to_inferior_no_thread (inf);
4757
4758 wait_one_event event;
4759 event.target = target;
4760 event.ptid = poll_one_curr_target (&event.ws);
4761
4762 if (event.ws.kind () == TARGET_WAITKIND_NO_RESUMED)
4763 {
4764 /* If nothing is resumed, remove the target from the
4765 event loop. */
4766 target_async (0);
4767 }
4768 else if (event.ws.kind () != TARGET_WAITKIND_IGNORE)
4769 return event;
4770 }
4771
4772 /* Block waiting for some event. */
4773
4774 fd_set readfds;
4775 int nfds = 0;
4776
4777 FD_ZERO (&readfds);
4778
4779 for (inferior *inf : all_inferiors ())
4780 {
4781 process_stratum_target *target = inf->process_target ();
4782 if (target == NULL
4783 || !target->is_async_p ()
4784 || !target->threads_executing)
4785 continue;
4786
4787 int fd = target->async_wait_fd ();
4788 FD_SET (fd, &readfds);
4789 if (nfds <= fd)
4790 nfds = fd + 1;
4791 }
4792
4793 if (nfds == 0)
4794 {
4795 /* No waitable targets left. All must be stopped. */
4796 target_waitstatus ws;
4797 ws.set_no_resumed ();
4798 return {NULL, minus_one_ptid, std::move (ws)};
4799 }
4800
4801 QUIT;
4802
4803 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4804 if (numfds < 0)
4805 {
4806 if (errno == EINTR)
4807 continue;
4808 else
4809 perror_with_name ("interruptible_select");
4810 }
4811 }
4812 }
4813
4814 /* Save the thread's event and stop reason to process it later. */
4815
4816 static void
4817 save_waitstatus (struct thread_info *tp, const target_waitstatus &ws)
4818 {
4819 infrun_debug_printf ("saving status %s for %s",
4820 ws.to_string ().c_str (),
4821 tp->ptid.to_string ().c_str ());
4822
4823 /* Record for later. */
4824 tp->set_pending_waitstatus (ws);
4825
4826 if (ws.kind () == TARGET_WAITKIND_STOPPED
4827 && ws.sig () == GDB_SIGNAL_TRAP)
4828 {
4829 struct regcache *regcache = get_thread_regcache (tp);
4830 const address_space *aspace = regcache->aspace ();
4831 CORE_ADDR pc = regcache_read_pc (regcache);
4832
4833 adjust_pc_after_break (tp, tp->pending_waitstatus ());
4834
4835 scoped_restore_current_thread restore_thread;
4836 switch_to_thread (tp);
4837
4838 if (target_stopped_by_watchpoint ())
4839 tp->set_stop_reason (TARGET_STOPPED_BY_WATCHPOINT);
4840 else if (target_supports_stopped_by_sw_breakpoint ()
4841 && target_stopped_by_sw_breakpoint ())
4842 tp->set_stop_reason (TARGET_STOPPED_BY_SW_BREAKPOINT);
4843 else if (target_supports_stopped_by_hw_breakpoint ()
4844 && target_stopped_by_hw_breakpoint ())
4845 tp->set_stop_reason (TARGET_STOPPED_BY_HW_BREAKPOINT);
4846 else if (!target_supports_stopped_by_hw_breakpoint ()
4847 && hardware_breakpoint_inserted_here_p (aspace, pc))
4848 tp->set_stop_reason (TARGET_STOPPED_BY_HW_BREAKPOINT);
4849 else if (!target_supports_stopped_by_sw_breakpoint ()
4850 && software_breakpoint_inserted_here_p (aspace, pc))
4851 tp->set_stop_reason (TARGET_STOPPED_BY_SW_BREAKPOINT);
4852 else if (!thread_has_single_step_breakpoints_set (tp)
4853 && currently_stepping (tp))
4854 tp->set_stop_reason (TARGET_STOPPED_BY_SINGLE_STEP);
4855 }
4856 }
4857
4858 /* Mark the non-executing threads accordingly. In all-stop, all
4859 threads of all processes are stopped when we get any event
4860 reported. In non-stop mode, only the event thread stops. */
4861
4862 static void
4863 mark_non_executing_threads (process_stratum_target *target,
4864 ptid_t event_ptid,
4865 const target_waitstatus &ws)
4866 {
4867 ptid_t mark_ptid;
4868
4869 if (!target_is_non_stop_p ())
4870 mark_ptid = minus_one_ptid;
4871 else if (ws.kind () == TARGET_WAITKIND_SIGNALLED
4872 || ws.kind () == TARGET_WAITKIND_EXITED)
4873 {
4874 /* If we're handling a process exit in non-stop mode, even
4875 though threads haven't been deleted yet, one would think
4876 that there is nothing to do, as threads of the dead process
4877 will be soon deleted, and threads of any other process were
4878 left running. However, on some targets, threads survive a
4879 process exit event. E.g., for the "checkpoint" command,
4880 when the current checkpoint/fork exits, linux-fork.c
4881 automatically switches to another fork from within
4882 target_mourn_inferior, by associating the same
4883 inferior/thread to another fork. We haven't mourned yet at
4884 this point, but we must mark any threads left in the
4885 process as not-executing so that finish_thread_state marks
4886 them stopped (in the user's perspective) if/when we present
4887 the stop to the user. */
4888 mark_ptid = ptid_t (event_ptid.pid ());
4889 }
4890 else
4891 mark_ptid = event_ptid;
4892
4893 set_executing (target, mark_ptid, false);
4894
4895 /* Likewise the resumed flag. */
4896 set_resumed (target, mark_ptid, false);
4897 }
4898
4899 /* Handle one event after stopping threads. If the eventing thread
4900 reports back any interesting event, we leave it pending. If the
4901 eventing thread was in the middle of a displaced step, we
4902 cancel/finish it, and unless the thread's inferior is being
4903 detached, put the thread back in the step-over chain. Returns true
4904 if there are no resumed threads left in the target (thus there's no
4905 point in waiting further), false otherwise. */
4906
4907 static bool
4908 handle_one (const wait_one_event &event)
4909 {
4910 infrun_debug_printf
4911 ("%s %s", event.ws.to_string ().c_str (),
4912 event.ptid.to_string ().c_str ());
4913
4914 if (event.ws.kind () == TARGET_WAITKIND_NO_RESUMED)
4915 {
4916 /* All resumed threads exited. */
4917 return true;
4918 }
4919 else if (event.ws.kind () == TARGET_WAITKIND_THREAD_EXITED
4920 || event.ws.kind () == TARGET_WAITKIND_EXITED
4921 || event.ws.kind () == TARGET_WAITKIND_SIGNALLED)
4922 {
4923 /* One thread/process exited/signalled. */
4924
4925 thread_info *t = nullptr;
4926
4927 /* The target may have reported just a pid. If so, try
4928 the first non-exited thread. */
4929 if (event.ptid.is_pid ())
4930 {
4931 int pid = event.ptid.pid ();
4932 inferior *inf = find_inferior_pid (event.target, pid);
4933 for (thread_info *tp : inf->non_exited_threads ())
4934 {
4935 t = tp;
4936 break;
4937 }
4938
4939 /* If there is no available thread, the event would
4940 have to be appended to a per-inferior event list,
4941 which does not exist (and if it did, we'd have
4942 to adjust run control command to be able to
4943 resume such an inferior). We assert here instead
4944 of going into an infinite loop. */
4945 gdb_assert (t != nullptr);
4946
4947 infrun_debug_printf
4948 ("using %s", t->ptid.to_string ().c_str ());
4949 }
4950 else
4951 {
4952 t = find_thread_ptid (event.target, event.ptid);
4953 /* Check if this is the first time we see this thread.
4954 Don't bother adding if it individually exited. */
4955 if (t == nullptr
4956 && event.ws.kind () != TARGET_WAITKIND_THREAD_EXITED)
4957 t = add_thread (event.target, event.ptid);
4958 }
4959
4960 if (t != nullptr)
4961 {
4962 /* Set the threads as non-executing to avoid
4963 another stop attempt on them. */
4964 switch_to_thread_no_regs (t);
4965 mark_non_executing_threads (event.target, event.ptid,
4966 event.ws);
4967 save_waitstatus (t, event.ws);
4968 t->stop_requested = false;
4969 }
4970 }
4971 else
4972 {
4973 thread_info *t = find_thread_ptid (event.target, event.ptid);
4974 if (t == NULL)
4975 t = add_thread (event.target, event.ptid);
4976
4977 t->stop_requested = 0;
4978 t->set_executing (false);
4979 t->set_resumed (false);
4980 t->control.may_range_step = 0;
4981
4982 /* This may be the first time we see the inferior report
4983 a stop. */
4984 if (t->inf->needs_setup)
4985 {
4986 switch_to_thread_no_regs (t);
4987 setup_inferior (0);
4988 }
4989
4990 if (event.ws.kind () == TARGET_WAITKIND_STOPPED
4991 && event.ws.sig () == GDB_SIGNAL_0)
4992 {
4993 /* We caught the event that we intended to catch, so
4994 there's no event to save as pending. */
4995
4996 if (displaced_step_finish (t, GDB_SIGNAL_0)
4997 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4998 {
4999 /* Add it back to the step-over queue. */
5000 infrun_debug_printf
5001 ("displaced-step of %s canceled",
5002 t->ptid.to_string ().c_str ());
5003
5004 t->control.trap_expected = 0;
5005 if (!t->inf->detaching)
5006 global_thread_step_over_chain_enqueue (t);
5007 }
5008 }
5009 else
5010 {
5011 enum gdb_signal sig;
5012 struct regcache *regcache;
5013
5014 infrun_debug_printf
5015 ("target_wait %s, saving status for %s",
5016 event.ws.to_string ().c_str (),
5017 t->ptid.to_string ().c_str ());
5018
5019 /* Record for later. */
5020 save_waitstatus (t, event.ws);
5021
5022 sig = (event.ws.kind () == TARGET_WAITKIND_STOPPED
5023 ? event.ws.sig () : GDB_SIGNAL_0);
5024
5025 if (displaced_step_finish (t, sig)
5026 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
5027 {
5028 /* Add it back to the step-over queue. */
5029 t->control.trap_expected = 0;
5030 if (!t->inf->detaching)
5031 global_thread_step_over_chain_enqueue (t);
5032 }
5033
5034 regcache = get_thread_regcache (t);
5035 t->set_stop_pc (regcache_read_pc (regcache));
5036
5037 infrun_debug_printf ("saved stop_pc=%s for %s "
5038 "(currently_stepping=%d)",
5039 paddress (target_gdbarch (), t->stop_pc ()),
5040 t->ptid.to_string ().c_str (),
5041 currently_stepping (t));
5042 }
5043 }
5044
5045 return false;
5046 }
5047
5048 /* See infrun.h. */
5049
5050 void
5051 stop_all_threads (const char *reason, inferior *inf)
5052 {
5053 /* We may need multiple passes to discover all threads. */
5054 int pass;
5055 int iterations = 0;
5056
5057 gdb_assert (exists_non_stop_target ());
5058
5059 INFRUN_SCOPED_DEBUG_START_END ("reason=%s, inf=%d", reason,
5060 inf != nullptr ? inf->num : -1);
5061
5062 scoped_restore_current_thread restore_thread;
5063
5064 /* Enable thread events on relevant targets. */
5065 for (auto *target : all_non_exited_process_targets ())
5066 {
5067 if (inf != nullptr && inf->process_target () != target)
5068 continue;
5069
5070 switch_to_target_no_thread (target);
5071 target_thread_events (true);
5072 }
5073
5074 SCOPE_EXIT
5075 {
5076 /* Disable thread events on relevant targets. */
5077 for (auto *target : all_non_exited_process_targets ())
5078 {
5079 if (inf != nullptr && inf->process_target () != target)
5080 continue;
5081
5082 switch_to_target_no_thread (target);
5083 target_thread_events (false);
5084 }
5085
5086 /* Use debug_prefixed_printf directly to get a meaningful function
5087 name. */
5088 if (debug_infrun)
5089 debug_prefixed_printf ("infrun", "stop_all_threads", "done");
5090 };
5091
5092 /* Request threads to stop, and then wait for the stops. Because
5093 threads we already know about can spawn more threads while we're
5094 trying to stop them, and we only learn about new threads when we
5095 update the thread list, do this in a loop, and keep iterating
5096 until two passes find no threads that need to be stopped. */
5097 for (pass = 0; pass < 2; pass++, iterations++)
5098 {
5099 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
5100 while (1)
5101 {
5102 int waits_needed = 0;
5103
5104 for (auto *target : all_non_exited_process_targets ())
5105 {
5106 if (inf != nullptr && inf->process_target () != target)
5107 continue;
5108
5109 switch_to_target_no_thread (target);
5110 update_thread_list ();
5111 }
5112
5113 /* Go through all threads looking for threads that we need
5114 to tell the target to stop. */
5115 for (thread_info *t : all_non_exited_threads ())
5116 {
5117 if (inf != nullptr && t->inf != inf)
5118 continue;
5119
5120 /* For a single-target setting with an all-stop target,
5121 we would not even arrive here. For a multi-target
5122 setting, until GDB is able to handle a mixture of
5123 all-stop and non-stop targets, simply skip all-stop
5124 targets' threads. This should be fine due to the
5125 protection of 'check_multi_target_resumption'. */
5126
5127 switch_to_thread_no_regs (t);
5128 if (!target_is_non_stop_p ())
5129 continue;
5130
5131 if (t->executing ())
5132 {
5133 /* If already stopping, don't request a stop again.
5134 We just haven't seen the notification yet. */
5135 if (!t->stop_requested)
5136 {
5137 infrun_debug_printf (" %s executing, need stop",
5138 t->ptid.to_string ().c_str ());
5139 target_stop (t->ptid);
5140 t->stop_requested = 1;
5141 }
5142 else
5143 {
5144 infrun_debug_printf (" %s executing, already stopping",
5145 t->ptid.to_string ().c_str ());
5146 }
5147
5148 if (t->stop_requested)
5149 waits_needed++;
5150 }
5151 else
5152 {
5153 infrun_debug_printf (" %s not executing",
5154 t->ptid.to_string ().c_str ());
5155
5156 /* The thread may be not executing, but still be
5157 resumed with a pending status to process. */
5158 t->set_resumed (false);
5159 }
5160 }
5161
5162 if (waits_needed == 0)
5163 break;
5164
5165 /* If we find new threads on the second iteration, restart
5166 over. We want to see two iterations in a row with all
5167 threads stopped. */
5168 if (pass > 0)
5169 pass = -1;
5170
5171 for (int i = 0; i < waits_needed; i++)
5172 {
5173 wait_one_event event = wait_one ();
5174 if (handle_one (event))
5175 break;
5176 }
5177 }
5178 }
5179 }
5180
5181 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
5182
5183 static bool
5184 handle_no_resumed (struct execution_control_state *ecs)
5185 {
5186 if (target_can_async_p ())
5187 {
5188 bool any_sync = false;
5189
5190 for (ui *ui : all_uis ())
5191 {
5192 if (ui->prompt_state == PROMPT_BLOCKED)
5193 {
5194 any_sync = true;
5195 break;
5196 }
5197 }
5198 if (!any_sync)
5199 {
5200 /* There were no unwaited-for children left in the target, but,
5201 we're not synchronously waiting for events either. Just
5202 ignore. */
5203
5204 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
5205 prepare_to_wait (ecs);
5206 return true;
5207 }
5208 }
5209
5210 /* Otherwise, if we were running a synchronous execution command, we
5211 may need to cancel it and give the user back the terminal.
5212
5213 In non-stop mode, the target can't tell whether we've already
5214 consumed previous stop events, so it can end up sending us a
5215 no-resumed event like so:
5216
5217 #0 - thread 1 is left stopped
5218
5219 #1 - thread 2 is resumed and hits breakpoint
5220 -> TARGET_WAITKIND_STOPPED
5221
5222 #2 - thread 3 is resumed and exits
5223 this is the last resumed thread, so
5224 -> TARGET_WAITKIND_NO_RESUMED
5225
5226 #3 - gdb processes stop for thread 2 and decides to re-resume
5227 it.
5228
5229 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
5230 thread 2 is now resumed, so the event should be ignored.
5231
5232 IOW, if the stop for thread 2 doesn't end a foreground command,
5233 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
5234 event. But it could be that the event meant that thread 2 itself
5235 (or whatever other thread was the last resumed thread) exited.
5236
5237 To address this we refresh the thread list and check whether we
5238 have resumed threads _now_. In the example above, this removes
5239 thread 3 from the thread list. If thread 2 was re-resumed, we
5240 ignore this event. If we find no thread resumed, then we cancel
5241 the synchronous command and show "no unwaited-for " to the
5242 user. */
5243
5244 inferior *curr_inf = current_inferior ();
5245
5246 scoped_restore_current_thread restore_thread;
5247 update_thread_list ();
5248
5249 /* If:
5250
5251 - the current target has no thread executing, and
5252 - the current inferior is native, and
5253 - the current inferior is the one which has the terminal, and
5254 - we did nothing,
5255
5256 then a Ctrl-C from this point on would remain stuck in the
5257 kernel, until a thread resumes and dequeues it. That would
5258 result in the GDB CLI not reacting to Ctrl-C, not able to
5259 interrupt the program. To address this, if the current inferior
5260 no longer has any thread executing, we give the terminal to some
5261 other inferior that has at least one thread executing. */
5262 bool swap_terminal = true;
5263
5264 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
5265 whether to report it to the user. */
5266 bool ignore_event = false;
5267
5268 for (thread_info *thread : all_non_exited_threads ())
5269 {
5270 if (swap_terminal && thread->executing ())
5271 {
5272 if (thread->inf != curr_inf)
5273 {
5274 target_terminal::ours ();
5275
5276 switch_to_thread (thread);
5277 target_terminal::inferior ();
5278 }
5279 swap_terminal = false;
5280 }
5281
5282 if (!ignore_event && thread->resumed ())
5283 {
5284 /* Either there were no unwaited-for children left in the
5285 target at some point, but there are now, or some target
5286 other than the eventing one has unwaited-for children
5287 left. Just ignore. */
5288 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
5289 "(ignoring: found resumed)");
5290
5291 ignore_event = true;
5292 }
5293
5294 if (ignore_event && !swap_terminal)
5295 break;
5296 }
5297
5298 if (ignore_event)
5299 {
5300 switch_to_inferior_no_thread (curr_inf);
5301 prepare_to_wait (ecs);
5302 return true;
5303 }
5304
5305 /* Go ahead and report the event. */
5306 return false;
5307 }
5308
5309 /* Given an execution control state that has been freshly filled in by
5310 an event from the inferior, figure out what it means and take
5311 appropriate action.
5312
5313 The alternatives are:
5314
5315 1) stop_waiting and return; to really stop and return to the
5316 debugger.
5317
5318 2) keep_going and return; to wait for the next event (set
5319 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5320 once). */
5321
5322 static void
5323 handle_inferior_event (struct execution_control_state *ecs)
5324 {
5325 /* Make sure that all temporary struct value objects that were
5326 created during the handling of the event get deleted at the
5327 end. */
5328 scoped_value_mark free_values;
5329
5330 infrun_debug_printf ("%s", ecs->ws.to_string ().c_str ());
5331
5332 if (ecs->ws.kind () == TARGET_WAITKIND_IGNORE)
5333 {
5334 /* We had an event in the inferior, but we are not interested in
5335 handling it at this level. The lower layers have already
5336 done what needs to be done, if anything.
5337
5338 One of the possible circumstances for this is when the
5339 inferior produces output for the console. The inferior has
5340 not stopped, and we are ignoring the event. Another possible
5341 circumstance is any event which the lower level knows will be
5342 reported multiple times without an intervening resume. */
5343 prepare_to_wait (ecs);
5344 return;
5345 }
5346
5347 if (ecs->ws.kind () == TARGET_WAITKIND_THREAD_EXITED)
5348 {
5349 prepare_to_wait (ecs);
5350 return;
5351 }
5352
5353 if (ecs->ws.kind () == TARGET_WAITKIND_NO_RESUMED
5354 && handle_no_resumed (ecs))
5355 return;
5356
5357 /* Cache the last target/ptid/waitstatus. */
5358 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5359
5360 /* Always clear state belonging to the previous time we stopped. */
5361 stop_stack_dummy = STOP_NONE;
5362
5363 if (ecs->ws.kind () == TARGET_WAITKIND_NO_RESUMED)
5364 {
5365 /* No unwaited-for children left. IOW, all resumed children
5366 have exited. */
5367 stop_print_frame = false;
5368 stop_waiting (ecs);
5369 return;
5370 }
5371
5372 if (ecs->ws.kind () != TARGET_WAITKIND_EXITED
5373 && ecs->ws.kind () != TARGET_WAITKIND_SIGNALLED)
5374 {
5375 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5376 /* If it's a new thread, add it to the thread database. */
5377 if (ecs->event_thread == NULL)
5378 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5379
5380 /* Disable range stepping. If the next step request could use a
5381 range, this will be end up re-enabled then. */
5382 ecs->event_thread->control.may_range_step = 0;
5383 }
5384
5385 /* Dependent on valid ECS->EVENT_THREAD. */
5386 adjust_pc_after_break (ecs->event_thread, ecs->ws);
5387
5388 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5389 reinit_frame_cache ();
5390
5391 breakpoint_retire_moribund ();
5392
5393 /* First, distinguish signals caused by the debugger from signals
5394 that have to do with the program's own actions. Note that
5395 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5396 on the operating system version. Here we detect when a SIGILL or
5397 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5398 something similar for SIGSEGV, since a SIGSEGV will be generated
5399 when we're trying to execute a breakpoint instruction on a
5400 non-executable stack. This happens for call dummy breakpoints
5401 for architectures like SPARC that place call dummies on the
5402 stack. */
5403 if (ecs->ws.kind () == TARGET_WAITKIND_STOPPED
5404 && (ecs->ws.sig () == GDB_SIGNAL_ILL
5405 || ecs->ws.sig () == GDB_SIGNAL_SEGV
5406 || ecs->ws.sig () == GDB_SIGNAL_EMT))
5407 {
5408 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5409
5410 if (breakpoint_inserted_here_p (regcache->aspace (),
5411 regcache_read_pc (regcache)))
5412 {
5413 infrun_debug_printf ("Treating signal as SIGTRAP");
5414 ecs->ws.set_stopped (GDB_SIGNAL_TRAP);
5415 }
5416 }
5417
5418 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5419
5420 switch (ecs->ws.kind ())
5421 {
5422 case TARGET_WAITKIND_LOADED:
5423 {
5424 context_switch (ecs);
5425 /* Ignore gracefully during startup of the inferior, as it might
5426 be the shell which has just loaded some objects, otherwise
5427 add the symbols for the newly loaded objects. Also ignore at
5428 the beginning of an attach or remote session; we will query
5429 the full list of libraries once the connection is
5430 established. */
5431
5432 stop_kind stop_soon = get_inferior_stop_soon (ecs);
5433 if (stop_soon == NO_STOP_QUIETLY)
5434 {
5435 struct regcache *regcache;
5436
5437 regcache = get_thread_regcache (ecs->event_thread);
5438
5439 handle_solib_event ();
5440
5441 ecs->event_thread->set_stop_pc (regcache_read_pc (regcache));
5442 ecs->event_thread->control.stop_bpstat
5443 = bpstat_stop_status_nowatch (regcache->aspace (),
5444 ecs->event_thread->stop_pc (),
5445 ecs->event_thread, ecs->ws);
5446
5447 if (handle_stop_requested (ecs))
5448 return;
5449
5450 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5451 {
5452 /* A catchpoint triggered. */
5453 process_event_stop_test (ecs);
5454 return;
5455 }
5456
5457 /* If requested, stop when the dynamic linker notifies
5458 gdb of events. This allows the user to get control
5459 and place breakpoints in initializer routines for
5460 dynamically loaded objects (among other things). */
5461 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
5462 if (stop_on_solib_events)
5463 {
5464 /* Make sure we print "Stopped due to solib-event" in
5465 normal_stop. */
5466 stop_print_frame = true;
5467
5468 stop_waiting (ecs);
5469 return;
5470 }
5471 }
5472
5473 /* If we are skipping through a shell, or through shared library
5474 loading that we aren't interested in, resume the program. If
5475 we're running the program normally, also resume. */
5476 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5477 {
5478 /* Loading of shared libraries might have changed breakpoint
5479 addresses. Make sure new breakpoints are inserted. */
5480 if (stop_soon == NO_STOP_QUIETLY)
5481 insert_breakpoints ();
5482 resume (GDB_SIGNAL_0);
5483 prepare_to_wait (ecs);
5484 return;
5485 }
5486
5487 /* But stop if we're attaching or setting up a remote
5488 connection. */
5489 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5490 || stop_soon == STOP_QUIETLY_REMOTE)
5491 {
5492 infrun_debug_printf ("quietly stopped");
5493 stop_waiting (ecs);
5494 return;
5495 }
5496
5497 internal_error (__FILE__, __LINE__,
5498 _("unhandled stop_soon: %d"), (int) stop_soon);
5499 }
5500
5501 case TARGET_WAITKIND_SPURIOUS:
5502 if (handle_stop_requested (ecs))
5503 return;
5504 context_switch (ecs);
5505 resume (GDB_SIGNAL_0);
5506 prepare_to_wait (ecs);
5507 return;
5508
5509 case TARGET_WAITKIND_THREAD_CREATED:
5510 if (handle_stop_requested (ecs))
5511 return;
5512 context_switch (ecs);
5513 if (!switch_back_to_stepped_thread (ecs))
5514 keep_going (ecs);
5515 return;
5516
5517 case TARGET_WAITKIND_EXITED:
5518 case TARGET_WAITKIND_SIGNALLED:
5519 {
5520 /* Depending on the system, ecs->ptid may point to a thread or
5521 to a process. On some targets, target_mourn_inferior may
5522 need to have access to the just-exited thread. That is the
5523 case of GNU/Linux's "checkpoint" support, for example.
5524 Call the switch_to_xxx routine as appropriate. */
5525 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5526 if (thr != nullptr)
5527 switch_to_thread (thr);
5528 else
5529 {
5530 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5531 switch_to_inferior_no_thread (inf);
5532 }
5533 }
5534 handle_vfork_child_exec_or_exit (0);
5535 target_terminal::ours (); /* Must do this before mourn anyway. */
5536
5537 /* Clearing any previous state of convenience variables. */
5538 clear_exit_convenience_vars ();
5539
5540 if (ecs->ws.kind () == TARGET_WAITKIND_EXITED)
5541 {
5542 /* Record the exit code in the convenience variable $_exitcode, so
5543 that the user can inspect this again later. */
5544 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5545 (LONGEST) ecs->ws.exit_status ());
5546
5547 /* Also record this in the inferior itself. */
5548 current_inferior ()->has_exit_code = 1;
5549 current_inferior ()->exit_code = (LONGEST) ecs->ws.exit_status ();
5550
5551 /* Support the --return-child-result option. */
5552 return_child_result_value = ecs->ws.exit_status ();
5553
5554 gdb::observers::exited.notify (ecs->ws.exit_status ());
5555 }
5556 else
5557 {
5558 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5559
5560 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5561 {
5562 /* Set the value of the internal variable $_exitsignal,
5563 which holds the signal uncaught by the inferior. */
5564 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5565 gdbarch_gdb_signal_to_target (gdbarch,
5566 ecs->ws.sig ()));
5567 }
5568 else
5569 {
5570 /* We don't have access to the target's method used for
5571 converting between signal numbers (GDB's internal
5572 representation <-> target's representation).
5573 Therefore, we cannot do a good job at displaying this
5574 information to the user. It's better to just warn
5575 her about it (if infrun debugging is enabled), and
5576 give up. */
5577 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5578 "signal number.");
5579 }
5580
5581 gdb::observers::signal_exited.notify (ecs->ws.sig ());
5582 }
5583
5584 gdb_flush (gdb_stdout);
5585 target_mourn_inferior (inferior_ptid);
5586 stop_print_frame = false;
5587 stop_waiting (ecs);
5588 return;
5589
5590 case TARGET_WAITKIND_FORKED:
5591 case TARGET_WAITKIND_VFORKED:
5592 /* Check whether the inferior is displaced stepping. */
5593 {
5594 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5595 struct gdbarch *gdbarch = regcache->arch ();
5596 inferior *parent_inf = find_inferior_ptid (ecs->target, ecs->ptid);
5597
5598 /* If this is a fork (child gets its own address space copy)
5599 and some displaced step buffers were in use at the time of
5600 the fork, restore the displaced step buffer bytes in the
5601 child process.
5602
5603 Architectures which support displaced stepping and fork
5604 events must supply an implementation of
5605 gdbarch_displaced_step_restore_all_in_ptid. This is not
5606 enforced during gdbarch validation to support architectures
5607 which support displaced stepping but not forks. */
5608 if (ecs->ws.kind () == TARGET_WAITKIND_FORKED
5609 && gdbarch_supports_displaced_stepping (gdbarch))
5610 gdbarch_displaced_step_restore_all_in_ptid
5611 (gdbarch, parent_inf, ecs->ws.child_ptid ());
5612
5613 /* If displaced stepping is supported, and thread ecs->ptid is
5614 displaced stepping. */
5615 if (displaced_step_in_progress_thread (ecs->event_thread))
5616 {
5617 struct regcache *child_regcache;
5618 CORE_ADDR parent_pc;
5619
5620 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5621 indicating that the displaced stepping of syscall instruction
5622 has been done. Perform cleanup for parent process here. Note
5623 that this operation also cleans up the child process for vfork,
5624 because their pages are shared. */
5625 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
5626 /* Start a new step-over in another thread if there's one
5627 that needs it. */
5628 start_step_over ();
5629
5630 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5631 the child's PC is also within the scratchpad. Set the child's PC
5632 to the parent's PC value, which has already been fixed up.
5633 FIXME: we use the parent's aspace here, although we're touching
5634 the child, because the child hasn't been added to the inferior
5635 list yet at this point. */
5636
5637 child_regcache
5638 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5639 ecs->ws.child_ptid (),
5640 gdbarch,
5641 parent_inf->aspace);
5642 /* Read PC value of parent process. */
5643 parent_pc = regcache_read_pc (regcache);
5644
5645 displaced_debug_printf ("write child pc from %s to %s",
5646 paddress (gdbarch,
5647 regcache_read_pc (child_regcache)),
5648 paddress (gdbarch, parent_pc));
5649
5650 regcache_write_pc (child_regcache, parent_pc);
5651 }
5652 }
5653
5654 context_switch (ecs);
5655
5656 /* Immediately detach breakpoints from the child before there's
5657 any chance of letting the user delete breakpoints from the
5658 breakpoint lists. If we don't do this early, it's easy to
5659 leave left over traps in the child, vis: "break foo; catch
5660 fork; c; <fork>; del; c; <child calls foo>". We only follow
5661 the fork on the last `continue', and by that time the
5662 breakpoint at "foo" is long gone from the breakpoint table.
5663 If we vforked, then we don't need to unpatch here, since both
5664 parent and child are sharing the same memory pages; we'll
5665 need to unpatch at follow/detach time instead to be certain
5666 that new breakpoints added between catchpoint hit time and
5667 vfork follow are detached. */
5668 if (ecs->ws.kind () != TARGET_WAITKIND_VFORKED)
5669 {
5670 /* This won't actually modify the breakpoint list, but will
5671 physically remove the breakpoints from the child. */
5672 detach_breakpoints (ecs->ws.child_ptid ());
5673 }
5674
5675 delete_just_stopped_threads_single_step_breakpoints ();
5676
5677 /* In case the event is caught by a catchpoint, remember that
5678 the event is to be followed at the next resume of the thread,
5679 and not immediately. */
5680 ecs->event_thread->pending_follow = ecs->ws;
5681
5682 ecs->event_thread->set_stop_pc
5683 (regcache_read_pc (get_thread_regcache (ecs->event_thread)));
5684
5685 ecs->event_thread->control.stop_bpstat
5686 = bpstat_stop_status_nowatch (get_current_regcache ()->aspace (),
5687 ecs->event_thread->stop_pc (),
5688 ecs->event_thread, ecs->ws);
5689
5690 if (handle_stop_requested (ecs))
5691 return;
5692
5693 /* If no catchpoint triggered for this, then keep going. Note
5694 that we're interested in knowing the bpstat actually causes a
5695 stop, not just if it may explain the signal. Software
5696 watchpoints, for example, always appear in the bpstat. */
5697 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5698 {
5699 bool follow_child
5700 = (follow_fork_mode_string == follow_fork_mode_child);
5701
5702 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
5703
5704 process_stratum_target *targ
5705 = ecs->event_thread->inf->process_target ();
5706
5707 bool should_resume = follow_fork ();
5708
5709 /* Note that one of these may be an invalid pointer,
5710 depending on detach_fork. */
5711 thread_info *parent = ecs->event_thread;
5712 thread_info *child = find_thread_ptid (targ, ecs->ws.child_ptid ());
5713
5714 /* At this point, the parent is marked running, and the
5715 child is marked stopped. */
5716
5717 /* If not resuming the parent, mark it stopped. */
5718 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5719 parent->set_running (false);
5720
5721 /* If resuming the child, mark it running. */
5722 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5723 child->set_running (true);
5724
5725 /* In non-stop mode, also resume the other branch. */
5726 if (!detach_fork && (non_stop
5727 || (sched_multi && target_is_non_stop_p ())))
5728 {
5729 if (follow_child)
5730 switch_to_thread (parent);
5731 else
5732 switch_to_thread (child);
5733
5734 ecs->event_thread = inferior_thread ();
5735 ecs->ptid = inferior_ptid;
5736 keep_going (ecs);
5737 }
5738
5739 if (follow_child)
5740 switch_to_thread (child);
5741 else
5742 switch_to_thread (parent);
5743
5744 ecs->event_thread = inferior_thread ();
5745 ecs->ptid = inferior_ptid;
5746
5747 if (should_resume)
5748 {
5749 /* Never call switch_back_to_stepped_thread if we are waiting for
5750 vfork-done (waiting for an external vfork child to exec or
5751 exit). We will resume only the vforking thread for the purpose
5752 of collecting the vfork-done event, and we will restart any
5753 step once the critical shared address space window is done. */
5754 if ((!follow_child
5755 && detach_fork
5756 && parent->inf->thread_waiting_for_vfork_done != nullptr)
5757 || !switch_back_to_stepped_thread (ecs))
5758 keep_going (ecs);
5759 }
5760 else
5761 stop_waiting (ecs);
5762 return;
5763 }
5764 process_event_stop_test (ecs);
5765 return;
5766
5767 case TARGET_WAITKIND_VFORK_DONE:
5768 /* Done with the shared memory region. Re-insert breakpoints in
5769 the parent, and keep going. */
5770
5771 context_switch (ecs);
5772
5773 handle_vfork_done (ecs->event_thread);
5774 gdb_assert (inferior_thread () == ecs->event_thread);
5775
5776 if (handle_stop_requested (ecs))
5777 return;
5778
5779 if (!switch_back_to_stepped_thread (ecs))
5780 {
5781 gdb_assert (inferior_thread () == ecs->event_thread);
5782 /* This also takes care of reinserting breakpoints in the
5783 previously locked inferior. */
5784 keep_going (ecs);
5785 }
5786 return;
5787
5788 case TARGET_WAITKIND_EXECD:
5789
5790 /* Note we can't read registers yet (the stop_pc), because we
5791 don't yet know the inferior's post-exec architecture.
5792 'stop_pc' is explicitly read below instead. */
5793 switch_to_thread_no_regs (ecs->event_thread);
5794
5795 /* Do whatever is necessary to the parent branch of the vfork. */
5796 handle_vfork_child_exec_or_exit (1);
5797
5798 /* This causes the eventpoints and symbol table to be reset.
5799 Must do this now, before trying to determine whether to
5800 stop. */
5801 follow_exec (inferior_ptid, ecs->ws.execd_pathname ());
5802
5803 /* In follow_exec we may have deleted the original thread and
5804 created a new one. Make sure that the event thread is the
5805 execd thread for that case (this is a nop otherwise). */
5806 ecs->event_thread = inferior_thread ();
5807
5808 ecs->event_thread->set_stop_pc
5809 (regcache_read_pc (get_thread_regcache (ecs->event_thread)));
5810
5811 ecs->event_thread->control.stop_bpstat
5812 = bpstat_stop_status_nowatch (get_current_regcache ()->aspace (),
5813 ecs->event_thread->stop_pc (),
5814 ecs->event_thread, ecs->ws);
5815
5816 if (handle_stop_requested (ecs))
5817 return;
5818
5819 /* If no catchpoint triggered for this, then keep going. */
5820 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5821 {
5822 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
5823 keep_going (ecs);
5824 return;
5825 }
5826 process_event_stop_test (ecs);
5827 return;
5828
5829 /* Be careful not to try to gather much state about a thread
5830 that's in a syscall. It's frequently a losing proposition. */
5831 case TARGET_WAITKIND_SYSCALL_ENTRY:
5832 /* Getting the current syscall number. */
5833 if (handle_syscall_event (ecs) == 0)
5834 process_event_stop_test (ecs);
5835 return;
5836
5837 /* Before examining the threads further, step this thread to
5838 get it entirely out of the syscall. (We get notice of the
5839 event when the thread is just on the verge of exiting a
5840 syscall. Stepping one instruction seems to get it back
5841 into user code.) */
5842 case TARGET_WAITKIND_SYSCALL_RETURN:
5843 if (handle_syscall_event (ecs) == 0)
5844 process_event_stop_test (ecs);
5845 return;
5846
5847 case TARGET_WAITKIND_STOPPED:
5848 handle_signal_stop (ecs);
5849 return;
5850
5851 case TARGET_WAITKIND_NO_HISTORY:
5852 /* Reverse execution: target ran out of history info. */
5853
5854 /* Switch to the stopped thread. */
5855 context_switch (ecs);
5856 infrun_debug_printf ("stopped");
5857
5858 delete_just_stopped_threads_single_step_breakpoints ();
5859 ecs->event_thread->set_stop_pc
5860 (regcache_read_pc (get_thread_regcache (inferior_thread ())));
5861
5862 if (handle_stop_requested (ecs))
5863 return;
5864
5865 gdb::observers::no_history.notify ();
5866 stop_waiting (ecs);
5867 return;
5868 }
5869 }
5870
5871 /* Restart threads back to what they were trying to do back when we
5872 paused them (because of an in-line step-over or vfork, for example).
5873 The EVENT_THREAD thread is ignored (not restarted).
5874
5875 If INF is non-nullptr, only resume threads from INF. */
5876
5877 static void
5878 restart_threads (struct thread_info *event_thread, inferior *inf)
5879 {
5880 INFRUN_SCOPED_DEBUG_START_END ("event_thread=%s, inf=%d",
5881 event_thread->ptid.to_string ().c_str (),
5882 inf != nullptr ? inf->num : -1);
5883
5884 gdb_assert (!step_over_info_valid_p ());
5885
5886 /* In case the instruction just stepped spawned a new thread. */
5887 update_thread_list ();
5888
5889 for (thread_info *tp : all_non_exited_threads ())
5890 {
5891 if (inf != nullptr && tp->inf != inf)
5892 continue;
5893
5894 if (tp->inf->detaching)
5895 {
5896 infrun_debug_printf ("restart threads: [%s] inferior detaching",
5897 tp->ptid.to_string ().c_str ());
5898 continue;
5899 }
5900
5901 switch_to_thread_no_regs (tp);
5902
5903 if (tp == event_thread)
5904 {
5905 infrun_debug_printf ("restart threads: [%s] is event thread",
5906 tp->ptid.to_string ().c_str ());
5907 continue;
5908 }
5909
5910 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5911 {
5912 infrun_debug_printf ("restart threads: [%s] not meant to be running",
5913 tp->ptid.to_string ().c_str ());
5914 continue;
5915 }
5916
5917 if (tp->resumed ())
5918 {
5919 infrun_debug_printf ("restart threads: [%s] resumed",
5920 tp->ptid.to_string ().c_str ());
5921 gdb_assert (tp->executing () || tp->has_pending_waitstatus ());
5922 continue;
5923 }
5924
5925 if (thread_is_in_step_over_chain (tp))
5926 {
5927 infrun_debug_printf ("restart threads: [%s] needs step-over",
5928 tp->ptid.to_string ().c_str ());
5929 gdb_assert (!tp->resumed ());
5930 continue;
5931 }
5932
5933
5934 if (tp->has_pending_waitstatus ())
5935 {
5936 infrun_debug_printf ("restart threads: [%s] has pending status",
5937 tp->ptid.to_string ().c_str ());
5938 tp->set_resumed (true);
5939 continue;
5940 }
5941
5942 gdb_assert (!tp->stop_requested);
5943
5944 /* If some thread needs to start a step-over at this point, it
5945 should still be in the step-over queue, and thus skipped
5946 above. */
5947 if (thread_still_needs_step_over (tp))
5948 {
5949 internal_error (__FILE__, __LINE__,
5950 "thread [%s] needs a step-over, but not in "
5951 "step-over queue\n",
5952 tp->ptid.to_string ().c_str ());
5953 }
5954
5955 if (currently_stepping (tp))
5956 {
5957 infrun_debug_printf ("restart threads: [%s] was stepping",
5958 tp->ptid.to_string ().c_str ());
5959 keep_going_stepped_thread (tp);
5960 }
5961 else
5962 {
5963 struct execution_control_state ecss;
5964 struct execution_control_state *ecs = &ecss;
5965
5966 infrun_debug_printf ("restart threads: [%s] continuing",
5967 tp->ptid.to_string ().c_str ());
5968 reset_ecs (ecs, tp);
5969 switch_to_thread (tp);
5970 keep_going_pass_signal (ecs);
5971 }
5972 }
5973 }
5974
5975 /* Callback for iterate_over_threads. Find a resumed thread that has
5976 a pending waitstatus. */
5977
5978 static int
5979 resumed_thread_with_pending_status (struct thread_info *tp,
5980 void *arg)
5981 {
5982 return tp->resumed () && tp->has_pending_waitstatus ();
5983 }
5984
5985 /* Called when we get an event that may finish an in-line or
5986 out-of-line (displaced stepping) step-over started previously.
5987 Return true if the event is processed and we should go back to the
5988 event loop; false if the caller should continue processing the
5989 event. */
5990
5991 static int
5992 finish_step_over (struct execution_control_state *ecs)
5993 {
5994 displaced_step_finish (ecs->event_thread, ecs->event_thread->stop_signal ());
5995
5996 bool had_step_over_info = step_over_info_valid_p ();
5997
5998 if (had_step_over_info)
5999 {
6000 /* If we're stepping over a breakpoint with all threads locked,
6001 then only the thread that was stepped should be reporting
6002 back an event. */
6003 gdb_assert (ecs->event_thread->control.trap_expected);
6004
6005 clear_step_over_info ();
6006 }
6007
6008 if (!target_is_non_stop_p ())
6009 return 0;
6010
6011 /* Start a new step-over in another thread if there's one that
6012 needs it. */
6013 start_step_over ();
6014
6015 /* If we were stepping over a breakpoint before, and haven't started
6016 a new in-line step-over sequence, then restart all other threads
6017 (except the event thread). We can't do this in all-stop, as then
6018 e.g., we wouldn't be able to issue any other remote packet until
6019 these other threads stop. */
6020 if (had_step_over_info && !step_over_info_valid_p ())
6021 {
6022 struct thread_info *pending;
6023
6024 /* If we only have threads with pending statuses, the restart
6025 below won't restart any thread and so nothing re-inserts the
6026 breakpoint we just stepped over. But we need it inserted
6027 when we later process the pending events, otherwise if
6028 another thread has a pending event for this breakpoint too,
6029 we'd discard its event (because the breakpoint that
6030 originally caused the event was no longer inserted). */
6031 context_switch (ecs);
6032 insert_breakpoints ();
6033
6034 restart_threads (ecs->event_thread);
6035
6036 /* If we have events pending, go through handle_inferior_event
6037 again, picking up a pending event at random. This avoids
6038 thread starvation. */
6039
6040 /* But not if we just stepped over a watchpoint in order to let
6041 the instruction execute so we can evaluate its expression.
6042 The set of watchpoints that triggered is recorded in the
6043 breakpoint objects themselves (see bp->watchpoint_triggered).
6044 If we processed another event first, that other event could
6045 clobber this info. */
6046 if (ecs->event_thread->stepping_over_watchpoint)
6047 return 0;
6048
6049 pending = iterate_over_threads (resumed_thread_with_pending_status,
6050 NULL);
6051 if (pending != NULL)
6052 {
6053 struct thread_info *tp = ecs->event_thread;
6054 struct regcache *regcache;
6055
6056 infrun_debug_printf ("found resumed threads with "
6057 "pending events, saving status");
6058
6059 gdb_assert (pending != tp);
6060
6061 /* Record the event thread's event for later. */
6062 save_waitstatus (tp, ecs->ws);
6063 /* This was cleared early, by handle_inferior_event. Set it
6064 so this pending event is considered by
6065 do_target_wait. */
6066 tp->set_resumed (true);
6067
6068 gdb_assert (!tp->executing ());
6069
6070 regcache = get_thread_regcache (tp);
6071 tp->set_stop_pc (regcache_read_pc (regcache));
6072
6073 infrun_debug_printf ("saved stop_pc=%s for %s "
6074 "(currently_stepping=%d)",
6075 paddress (target_gdbarch (), tp->stop_pc ()),
6076 tp->ptid.to_string ().c_str (),
6077 currently_stepping (tp));
6078
6079 /* This in-line step-over finished; clear this so we won't
6080 start a new one. This is what handle_signal_stop would
6081 do, if we returned false. */
6082 tp->stepping_over_breakpoint = 0;
6083
6084 /* Wake up the event loop again. */
6085 mark_async_event_handler (infrun_async_inferior_event_token);
6086
6087 prepare_to_wait (ecs);
6088 return 1;
6089 }
6090 }
6091
6092 return 0;
6093 }
6094
6095 /* Come here when the program has stopped with a signal. */
6096
6097 static void
6098 handle_signal_stop (struct execution_control_state *ecs)
6099 {
6100 struct frame_info *frame;
6101 struct gdbarch *gdbarch;
6102 int stopped_by_watchpoint;
6103 enum stop_kind stop_soon;
6104 int random_signal;
6105
6106 gdb_assert (ecs->ws.kind () == TARGET_WAITKIND_STOPPED);
6107
6108 ecs->event_thread->set_stop_signal (ecs->ws.sig ());
6109
6110 /* Do we need to clean up the state of a thread that has
6111 completed a displaced single-step? (Doing so usually affects
6112 the PC, so do it here, before we set stop_pc.) */
6113 if (finish_step_over (ecs))
6114 return;
6115
6116 /* If we either finished a single-step or hit a breakpoint, but
6117 the user wanted this thread to be stopped, pretend we got a
6118 SIG0 (generic unsignaled stop). */
6119 if (ecs->event_thread->stop_requested
6120 && ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP)
6121 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
6122
6123 ecs->event_thread->set_stop_pc
6124 (regcache_read_pc (get_thread_regcache (ecs->event_thread)));
6125
6126 context_switch (ecs);
6127
6128 if (deprecated_context_hook)
6129 deprecated_context_hook (ecs->event_thread->global_num);
6130
6131 if (debug_infrun)
6132 {
6133 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
6134 struct gdbarch *reg_gdbarch = regcache->arch ();
6135
6136 infrun_debug_printf
6137 ("stop_pc=%s", paddress (reg_gdbarch, ecs->event_thread->stop_pc ()));
6138 if (target_stopped_by_watchpoint ())
6139 {
6140 CORE_ADDR addr;
6141
6142 infrun_debug_printf ("stopped by watchpoint");
6143
6144 if (target_stopped_data_address (current_inferior ()->top_target (),
6145 &addr))
6146 infrun_debug_printf ("stopped data address=%s",
6147 paddress (reg_gdbarch, addr));
6148 else
6149 infrun_debug_printf ("(no data address available)");
6150 }
6151 }
6152
6153 /* This is originated from start_remote(), start_inferior() and
6154 shared libraries hook functions. */
6155 stop_soon = get_inferior_stop_soon (ecs);
6156 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
6157 {
6158 infrun_debug_printf ("quietly stopped");
6159 stop_print_frame = true;
6160 stop_waiting (ecs);
6161 return;
6162 }
6163
6164 /* This originates from attach_command(). We need to overwrite
6165 the stop_signal here, because some kernels don't ignore a
6166 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
6167 See more comments in inferior.h. On the other hand, if we
6168 get a non-SIGSTOP, report it to the user - assume the backend
6169 will handle the SIGSTOP if it should show up later.
6170
6171 Also consider that the attach is complete when we see a
6172 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
6173 target extended-remote report it instead of a SIGSTOP
6174 (e.g. gdbserver). We already rely on SIGTRAP being our
6175 signal, so this is no exception.
6176
6177 Also consider that the attach is complete when we see a
6178 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
6179 the target to stop all threads of the inferior, in case the
6180 low level attach operation doesn't stop them implicitly. If
6181 they weren't stopped implicitly, then the stub will report a
6182 GDB_SIGNAL_0, meaning: stopped for no particular reason
6183 other than GDB's request. */
6184 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
6185 && (ecs->event_thread->stop_signal () == GDB_SIGNAL_STOP
6186 || ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
6187 || ecs->event_thread->stop_signal () == GDB_SIGNAL_0))
6188 {
6189 stop_print_frame = true;
6190 stop_waiting (ecs);
6191 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
6192 return;
6193 }
6194
6195 /* At this point, get hold of the now-current thread's frame. */
6196 frame = get_current_frame ();
6197 gdbarch = get_frame_arch (frame);
6198
6199 /* Pull the single step breakpoints out of the target. */
6200 if (ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP)
6201 {
6202 struct regcache *regcache;
6203 CORE_ADDR pc;
6204
6205 regcache = get_thread_regcache (ecs->event_thread);
6206 const address_space *aspace = regcache->aspace ();
6207
6208 pc = regcache_read_pc (regcache);
6209
6210 /* However, before doing so, if this single-step breakpoint was
6211 actually for another thread, set this thread up for moving
6212 past it. */
6213 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
6214 aspace, pc))
6215 {
6216 if (single_step_breakpoint_inserted_here_p (aspace, pc))
6217 {
6218 infrun_debug_printf ("[%s] hit another thread's single-step "
6219 "breakpoint",
6220 ecs->ptid.to_string ().c_str ());
6221 ecs->hit_singlestep_breakpoint = 1;
6222 }
6223 }
6224 else
6225 {
6226 infrun_debug_printf ("[%s] hit its single-step breakpoint",
6227 ecs->ptid.to_string ().c_str ());
6228 }
6229 }
6230 delete_just_stopped_threads_single_step_breakpoints ();
6231
6232 if (ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
6233 && ecs->event_thread->control.trap_expected
6234 && ecs->event_thread->stepping_over_watchpoint)
6235 stopped_by_watchpoint = 0;
6236 else
6237 stopped_by_watchpoint = watchpoints_triggered (ecs->ws);
6238
6239 /* If necessary, step over this watchpoint. We'll be back to display
6240 it in a moment. */
6241 if (stopped_by_watchpoint
6242 && (target_have_steppable_watchpoint ()
6243 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
6244 {
6245 /* At this point, we are stopped at an instruction which has
6246 attempted to write to a piece of memory under control of
6247 a watchpoint. The instruction hasn't actually executed
6248 yet. If we were to evaluate the watchpoint expression
6249 now, we would get the old value, and therefore no change
6250 would seem to have occurred.
6251
6252 In order to make watchpoints work `right', we really need
6253 to complete the memory write, and then evaluate the
6254 watchpoint expression. We do this by single-stepping the
6255 target.
6256
6257 It may not be necessary to disable the watchpoint to step over
6258 it. For example, the PA can (with some kernel cooperation)
6259 single step over a watchpoint without disabling the watchpoint.
6260
6261 It is far more common to need to disable a watchpoint to step
6262 the inferior over it. If we have non-steppable watchpoints,
6263 we must disable the current watchpoint; it's simplest to
6264 disable all watchpoints.
6265
6266 Any breakpoint at PC must also be stepped over -- if there's
6267 one, it will have already triggered before the watchpoint
6268 triggered, and we either already reported it to the user, or
6269 it didn't cause a stop and we called keep_going. In either
6270 case, if there was a breakpoint at PC, we must be trying to
6271 step past it. */
6272 ecs->event_thread->stepping_over_watchpoint = 1;
6273 keep_going (ecs);
6274 return;
6275 }
6276
6277 ecs->event_thread->stepping_over_breakpoint = 0;
6278 ecs->event_thread->stepping_over_watchpoint = 0;
6279 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6280 ecs->event_thread->control.stop_step = 0;
6281 stop_print_frame = true;
6282 stopped_by_random_signal = 0;
6283 bpstat *stop_chain = nullptr;
6284
6285 /* Hide inlined functions starting here, unless we just performed stepi or
6286 nexti. After stepi and nexti, always show the innermost frame (not any
6287 inline function call sites). */
6288 if (ecs->event_thread->control.step_range_end != 1)
6289 {
6290 const address_space *aspace
6291 = get_thread_regcache (ecs->event_thread)->aspace ();
6292
6293 /* skip_inline_frames is expensive, so we avoid it if we can
6294 determine that the address is one where functions cannot have
6295 been inlined. This improves performance with inferiors that
6296 load a lot of shared libraries, because the solib event
6297 breakpoint is defined as the address of a function (i.e. not
6298 inline). Note that we have to check the previous PC as well
6299 as the current one to catch cases when we have just
6300 single-stepped off a breakpoint prior to reinstating it.
6301 Note that we're assuming that the code we single-step to is
6302 not inline, but that's not definitive: there's nothing
6303 preventing the event breakpoint function from containing
6304 inlined code, and the single-step ending up there. If the
6305 user had set a breakpoint on that inlined code, the missing
6306 skip_inline_frames call would break things. Fortunately
6307 that's an extremely unlikely scenario. */
6308 if (!pc_at_non_inline_function (aspace,
6309 ecs->event_thread->stop_pc (),
6310 ecs->ws)
6311 && !(ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
6312 && ecs->event_thread->control.trap_expected
6313 && pc_at_non_inline_function (aspace,
6314 ecs->event_thread->prev_pc,
6315 ecs->ws)))
6316 {
6317 stop_chain = build_bpstat_chain (aspace,
6318 ecs->event_thread->stop_pc (),
6319 ecs->ws);
6320 skip_inline_frames (ecs->event_thread, stop_chain);
6321
6322 /* Re-fetch current thread's frame in case that invalidated
6323 the frame cache. */
6324 frame = get_current_frame ();
6325 gdbarch = get_frame_arch (frame);
6326 }
6327 }
6328
6329 if (ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
6330 && ecs->event_thread->control.trap_expected
6331 && gdbarch_single_step_through_delay_p (gdbarch)
6332 && currently_stepping (ecs->event_thread))
6333 {
6334 /* We're trying to step off a breakpoint. Turns out that we're
6335 also on an instruction that needs to be stepped multiple
6336 times before it's been fully executing. E.g., architectures
6337 with a delay slot. It needs to be stepped twice, once for
6338 the instruction and once for the delay slot. */
6339 int step_through_delay
6340 = gdbarch_single_step_through_delay (gdbarch, frame);
6341
6342 if (step_through_delay)
6343 infrun_debug_printf ("step through delay");
6344
6345 if (ecs->event_thread->control.step_range_end == 0
6346 && step_through_delay)
6347 {
6348 /* The user issued a continue when stopped at a breakpoint.
6349 Set up for another trap and get out of here. */
6350 ecs->event_thread->stepping_over_breakpoint = 1;
6351 keep_going (ecs);
6352 return;
6353 }
6354 else if (step_through_delay)
6355 {
6356 /* The user issued a step when stopped at a breakpoint.
6357 Maybe we should stop, maybe we should not - the delay
6358 slot *might* correspond to a line of source. In any
6359 case, don't decide that here, just set
6360 ecs->stepping_over_breakpoint, making sure we
6361 single-step again before breakpoints are re-inserted. */
6362 ecs->event_thread->stepping_over_breakpoint = 1;
6363 }
6364 }
6365
6366 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6367 handles this event. */
6368 ecs->event_thread->control.stop_bpstat
6369 = bpstat_stop_status (get_current_regcache ()->aspace (),
6370 ecs->event_thread->stop_pc (),
6371 ecs->event_thread, ecs->ws, stop_chain);
6372
6373 /* Following in case break condition called a
6374 function. */
6375 stop_print_frame = true;
6376
6377 /* This is where we handle "moribund" watchpoints. Unlike
6378 software breakpoints traps, hardware watchpoint traps are
6379 always distinguishable from random traps. If no high-level
6380 watchpoint is associated with the reported stop data address
6381 anymore, then the bpstat does not explain the signal ---
6382 simply make sure to ignore it if `stopped_by_watchpoint' is
6383 set. */
6384
6385 if (ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
6386 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6387 GDB_SIGNAL_TRAP)
6388 && stopped_by_watchpoint)
6389 {
6390 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6391 "ignoring");
6392 }
6393
6394 /* NOTE: cagney/2003-03-29: These checks for a random signal
6395 at one stage in the past included checks for an inferior
6396 function call's call dummy's return breakpoint. The original
6397 comment, that went with the test, read:
6398
6399 ``End of a stack dummy. Some systems (e.g. Sony news) give
6400 another signal besides SIGTRAP, so check here as well as
6401 above.''
6402
6403 If someone ever tries to get call dummys on a
6404 non-executable stack to work (where the target would stop
6405 with something like a SIGSEGV), then those tests might need
6406 to be re-instated. Given, however, that the tests were only
6407 enabled when momentary breakpoints were not being used, I
6408 suspect that it won't be the case.
6409
6410 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6411 be necessary for call dummies on a non-executable stack on
6412 SPARC. */
6413
6414 /* See if the breakpoints module can explain the signal. */
6415 random_signal
6416 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6417 ecs->event_thread->stop_signal ());
6418
6419 /* Maybe this was a trap for a software breakpoint that has since
6420 been removed. */
6421 if (random_signal && target_stopped_by_sw_breakpoint ())
6422 {
6423 if (gdbarch_program_breakpoint_here_p (gdbarch,
6424 ecs->event_thread->stop_pc ()))
6425 {
6426 struct regcache *regcache;
6427 int decr_pc;
6428
6429 /* Re-adjust PC to what the program would see if GDB was not
6430 debugging it. */
6431 regcache = get_thread_regcache (ecs->event_thread);
6432 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6433 if (decr_pc != 0)
6434 {
6435 gdb::optional<scoped_restore_tmpl<int>>
6436 restore_operation_disable;
6437
6438 if (record_full_is_used ())
6439 restore_operation_disable.emplace
6440 (record_full_gdb_operation_disable_set ());
6441
6442 regcache_write_pc (regcache,
6443 ecs->event_thread->stop_pc () + decr_pc);
6444 }
6445 }
6446 else
6447 {
6448 /* A delayed software breakpoint event. Ignore the trap. */
6449 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
6450 random_signal = 0;
6451 }
6452 }
6453
6454 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6455 has since been removed. */
6456 if (random_signal && target_stopped_by_hw_breakpoint ())
6457 {
6458 /* A delayed hardware breakpoint event. Ignore the trap. */
6459 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6460 "trap, ignoring");
6461 random_signal = 0;
6462 }
6463
6464 /* If not, perhaps stepping/nexting can. */
6465 if (random_signal)
6466 random_signal = !(ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
6467 && currently_stepping (ecs->event_thread));
6468
6469 /* Perhaps the thread hit a single-step breakpoint of _another_
6470 thread. Single-step breakpoints are transparent to the
6471 breakpoints module. */
6472 if (random_signal)
6473 random_signal = !ecs->hit_singlestep_breakpoint;
6474
6475 /* No? Perhaps we got a moribund watchpoint. */
6476 if (random_signal)
6477 random_signal = !stopped_by_watchpoint;
6478
6479 /* Always stop if the user explicitly requested this thread to
6480 remain stopped. */
6481 if (ecs->event_thread->stop_requested)
6482 {
6483 random_signal = 1;
6484 infrun_debug_printf ("user-requested stop");
6485 }
6486
6487 /* For the program's own signals, act according to
6488 the signal handling tables. */
6489
6490 if (random_signal)
6491 {
6492 /* Signal not for debugging purposes. */
6493 enum gdb_signal stop_signal = ecs->event_thread->stop_signal ();
6494
6495 infrun_debug_printf ("random signal (%s)",
6496 gdb_signal_to_symbol_string (stop_signal));
6497
6498 stopped_by_random_signal = 1;
6499
6500 /* Always stop on signals if we're either just gaining control
6501 of the program, or the user explicitly requested this thread
6502 to remain stopped. */
6503 if (stop_soon != NO_STOP_QUIETLY
6504 || ecs->event_thread->stop_requested
6505 || signal_stop_state (ecs->event_thread->stop_signal ()))
6506 {
6507 stop_waiting (ecs);
6508 return;
6509 }
6510
6511 /* Notify observers the signal has "handle print" set. Note we
6512 returned early above if stopping; normal_stop handles the
6513 printing in that case. */
6514 if (signal_print[ecs->event_thread->stop_signal ()])
6515 {
6516 /* The signal table tells us to print about this signal. */
6517 target_terminal::ours_for_output ();
6518 gdb::observers::signal_received.notify (ecs->event_thread->stop_signal ());
6519 target_terminal::inferior ();
6520 }
6521
6522 /* Clear the signal if it should not be passed. */
6523 if (signal_program[ecs->event_thread->stop_signal ()] == 0)
6524 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
6525
6526 if (ecs->event_thread->prev_pc == ecs->event_thread->stop_pc ()
6527 && ecs->event_thread->control.trap_expected
6528 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6529 {
6530 /* We were just starting a new sequence, attempting to
6531 single-step off of a breakpoint and expecting a SIGTRAP.
6532 Instead this signal arrives. This signal will take us out
6533 of the stepping range so GDB needs to remember to, when
6534 the signal handler returns, resume stepping off that
6535 breakpoint. */
6536 /* To simplify things, "continue" is forced to use the same
6537 code paths as single-step - set a breakpoint at the
6538 signal return address and then, once hit, step off that
6539 breakpoint. */
6540 infrun_debug_printf ("signal arrived while stepping over breakpoint");
6541
6542 insert_hp_step_resume_breakpoint_at_frame (frame);
6543 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6544 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6545 ecs->event_thread->control.trap_expected = 0;
6546
6547 /* If we were nexting/stepping some other thread, switch to
6548 it, so that we don't continue it, losing control. */
6549 if (!switch_back_to_stepped_thread (ecs))
6550 keep_going (ecs);
6551 return;
6552 }
6553
6554 if (ecs->event_thread->stop_signal () != GDB_SIGNAL_0
6555 && (pc_in_thread_step_range (ecs->event_thread->stop_pc (),
6556 ecs->event_thread)
6557 || ecs->event_thread->control.step_range_end == 1)
6558 && frame_id_eq (get_stack_frame_id (frame),
6559 ecs->event_thread->control.step_stack_frame_id)
6560 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6561 {
6562 /* The inferior is about to take a signal that will take it
6563 out of the single step range. Set a breakpoint at the
6564 current PC (which is presumably where the signal handler
6565 will eventually return) and then allow the inferior to
6566 run free.
6567
6568 Note that this is only needed for a signal delivered
6569 while in the single-step range. Nested signals aren't a
6570 problem as they eventually all return. */
6571 infrun_debug_printf ("signal may take us out of single-step range");
6572
6573 clear_step_over_info ();
6574 insert_hp_step_resume_breakpoint_at_frame (frame);
6575 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6576 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6577 ecs->event_thread->control.trap_expected = 0;
6578 keep_going (ecs);
6579 return;
6580 }
6581
6582 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6583 when either there's a nested signal, or when there's a
6584 pending signal enabled just as the signal handler returns
6585 (leaving the inferior at the step-resume-breakpoint without
6586 actually executing it). Either way continue until the
6587 breakpoint is really hit. */
6588
6589 if (!switch_back_to_stepped_thread (ecs))
6590 {
6591 infrun_debug_printf ("random signal, keep going");
6592
6593 keep_going (ecs);
6594 }
6595 return;
6596 }
6597
6598 process_event_stop_test (ecs);
6599 }
6600
6601 /* Come here when we've got some debug event / signal we can explain
6602 (IOW, not a random signal), and test whether it should cause a
6603 stop, or whether we should resume the inferior (transparently).
6604 E.g., could be a breakpoint whose condition evaluates false; we
6605 could be still stepping within the line; etc. */
6606
6607 static void
6608 process_event_stop_test (struct execution_control_state *ecs)
6609 {
6610 struct symtab_and_line stop_pc_sal;
6611 struct frame_info *frame;
6612 struct gdbarch *gdbarch;
6613 CORE_ADDR jmp_buf_pc;
6614 struct bpstat_what what;
6615
6616 /* Handle cases caused by hitting a breakpoint. */
6617
6618 frame = get_current_frame ();
6619 gdbarch = get_frame_arch (frame);
6620
6621 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6622
6623 if (what.call_dummy)
6624 {
6625 stop_stack_dummy = what.call_dummy;
6626 }
6627
6628 /* A few breakpoint types have callbacks associated (e.g.,
6629 bp_jit_event). Run them now. */
6630 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6631
6632 /* If we hit an internal event that triggers symbol changes, the
6633 current frame will be invalidated within bpstat_what (e.g., if we
6634 hit an internal solib event). Re-fetch it. */
6635 frame = get_current_frame ();
6636 gdbarch = get_frame_arch (frame);
6637
6638 switch (what.main_action)
6639 {
6640 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6641 /* If we hit the breakpoint at longjmp while stepping, we
6642 install a momentary breakpoint at the target of the
6643 jmp_buf. */
6644
6645 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6646
6647 ecs->event_thread->stepping_over_breakpoint = 1;
6648
6649 if (what.is_longjmp)
6650 {
6651 struct value *arg_value;
6652
6653 /* If we set the longjmp breakpoint via a SystemTap probe,
6654 then use it to extract the arguments. The destination PC
6655 is the third argument to the probe. */
6656 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6657 if (arg_value)
6658 {
6659 jmp_buf_pc = value_as_address (arg_value);
6660 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6661 }
6662 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6663 || !gdbarch_get_longjmp_target (gdbarch,
6664 frame, &jmp_buf_pc))
6665 {
6666 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6667 "(!gdbarch_get_longjmp_target)");
6668 keep_going (ecs);
6669 return;
6670 }
6671
6672 /* Insert a breakpoint at resume address. */
6673 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6674 }
6675 else
6676 check_exception_resume (ecs, frame);
6677 keep_going (ecs);
6678 return;
6679
6680 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6681 {
6682 struct frame_info *init_frame;
6683
6684 /* There are several cases to consider.
6685
6686 1. The initiating frame no longer exists. In this case we
6687 must stop, because the exception or longjmp has gone too
6688 far.
6689
6690 2. The initiating frame exists, and is the same as the
6691 current frame. We stop, because the exception or longjmp
6692 has been caught.
6693
6694 3. The initiating frame exists and is different from the
6695 current frame. This means the exception or longjmp has
6696 been caught beneath the initiating frame, so keep going.
6697
6698 4. longjmp breakpoint has been placed just to protect
6699 against stale dummy frames and user is not interested in
6700 stopping around longjmps. */
6701
6702 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6703
6704 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6705 != NULL);
6706 delete_exception_resume_breakpoint (ecs->event_thread);
6707
6708 if (what.is_longjmp)
6709 {
6710 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6711
6712 if (!frame_id_p (ecs->event_thread->initiating_frame))
6713 {
6714 /* Case 4. */
6715 keep_going (ecs);
6716 return;
6717 }
6718 }
6719
6720 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6721
6722 if (init_frame)
6723 {
6724 struct frame_id current_id
6725 = get_frame_id (get_current_frame ());
6726 if (frame_id_eq (current_id,
6727 ecs->event_thread->initiating_frame))
6728 {
6729 /* Case 2. Fall through. */
6730 }
6731 else
6732 {
6733 /* Case 3. */
6734 keep_going (ecs);
6735 return;
6736 }
6737 }
6738
6739 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6740 exists. */
6741 delete_step_resume_breakpoint (ecs->event_thread);
6742
6743 end_stepping_range (ecs);
6744 }
6745 return;
6746
6747 case BPSTAT_WHAT_SINGLE:
6748 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
6749 ecs->event_thread->stepping_over_breakpoint = 1;
6750 /* Still need to check other stuff, at least the case where we
6751 are stepping and step out of the right range. */
6752 break;
6753
6754 case BPSTAT_WHAT_STEP_RESUME:
6755 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
6756
6757 delete_step_resume_breakpoint (ecs->event_thread);
6758 if (ecs->event_thread->control.proceed_to_finish
6759 && execution_direction == EXEC_REVERSE)
6760 {
6761 struct thread_info *tp = ecs->event_thread;
6762
6763 /* We are finishing a function in reverse, and just hit the
6764 step-resume breakpoint at the start address of the
6765 function, and we're almost there -- just need to back up
6766 by one more single-step, which should take us back to the
6767 function call. */
6768 tp->control.step_range_start = tp->control.step_range_end = 1;
6769 keep_going (ecs);
6770 return;
6771 }
6772 fill_in_stop_func (gdbarch, ecs);
6773 if (ecs->event_thread->stop_pc () == ecs->stop_func_start
6774 && execution_direction == EXEC_REVERSE)
6775 {
6776 /* We are stepping over a function call in reverse, and just
6777 hit the step-resume breakpoint at the start address of
6778 the function. Go back to single-stepping, which should
6779 take us back to the function call. */
6780 ecs->event_thread->stepping_over_breakpoint = 1;
6781 keep_going (ecs);
6782 return;
6783 }
6784 break;
6785
6786 case BPSTAT_WHAT_STOP_NOISY:
6787 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
6788 stop_print_frame = true;
6789
6790 /* Assume the thread stopped for a breakpoint. We'll still check
6791 whether a/the breakpoint is there when the thread is next
6792 resumed. */
6793 ecs->event_thread->stepping_over_breakpoint = 1;
6794
6795 stop_waiting (ecs);
6796 return;
6797
6798 case BPSTAT_WHAT_STOP_SILENT:
6799 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
6800 stop_print_frame = false;
6801
6802 /* Assume the thread stopped for a breakpoint. We'll still check
6803 whether a/the breakpoint is there when the thread is next
6804 resumed. */
6805 ecs->event_thread->stepping_over_breakpoint = 1;
6806 stop_waiting (ecs);
6807 return;
6808
6809 case BPSTAT_WHAT_HP_STEP_RESUME:
6810 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
6811
6812 delete_step_resume_breakpoint (ecs->event_thread);
6813 if (ecs->event_thread->step_after_step_resume_breakpoint)
6814 {
6815 /* Back when the step-resume breakpoint was inserted, we
6816 were trying to single-step off a breakpoint. Go back to
6817 doing that. */
6818 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6819 ecs->event_thread->stepping_over_breakpoint = 1;
6820 keep_going (ecs);
6821 return;
6822 }
6823 break;
6824
6825 case BPSTAT_WHAT_KEEP_CHECKING:
6826 break;
6827 }
6828
6829 /* If we stepped a permanent breakpoint and we had a high priority
6830 step-resume breakpoint for the address we stepped, but we didn't
6831 hit it, then we must have stepped into the signal handler. The
6832 step-resume was only necessary to catch the case of _not_
6833 stepping into the handler, so delete it, and fall through to
6834 checking whether the step finished. */
6835 if (ecs->event_thread->stepped_breakpoint)
6836 {
6837 struct breakpoint *sr_bp
6838 = ecs->event_thread->control.step_resume_breakpoint;
6839
6840 if (sr_bp != NULL
6841 && sr_bp->loc->permanent
6842 && sr_bp->type == bp_hp_step_resume
6843 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6844 {
6845 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
6846 delete_step_resume_breakpoint (ecs->event_thread);
6847 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6848 }
6849 }
6850
6851 /* We come here if we hit a breakpoint but should not stop for it.
6852 Possibly we also were stepping and should stop for that. So fall
6853 through and test for stepping. But, if not stepping, do not
6854 stop. */
6855
6856 /* In all-stop mode, if we're currently stepping but have stopped in
6857 some other thread, we need to switch back to the stepped thread. */
6858 if (switch_back_to_stepped_thread (ecs))
6859 return;
6860
6861 if (ecs->event_thread->control.step_resume_breakpoint)
6862 {
6863 infrun_debug_printf ("step-resume breakpoint is inserted");
6864
6865 /* Having a step-resume breakpoint overrides anything
6866 else having to do with stepping commands until
6867 that breakpoint is reached. */
6868 keep_going (ecs);
6869 return;
6870 }
6871
6872 if (ecs->event_thread->control.step_range_end == 0)
6873 {
6874 infrun_debug_printf ("no stepping, continue");
6875 /* Likewise if we aren't even stepping. */
6876 keep_going (ecs);
6877 return;
6878 }
6879
6880 /* Re-fetch current thread's frame in case the code above caused
6881 the frame cache to be re-initialized, making our FRAME variable
6882 a dangling pointer. */
6883 frame = get_current_frame ();
6884 gdbarch = get_frame_arch (frame);
6885 fill_in_stop_func (gdbarch, ecs);
6886
6887 /* If stepping through a line, keep going if still within it.
6888
6889 Note that step_range_end is the address of the first instruction
6890 beyond the step range, and NOT the address of the last instruction
6891 within it!
6892
6893 Note also that during reverse execution, we may be stepping
6894 through a function epilogue and therefore must detect when
6895 the current-frame changes in the middle of a line. */
6896
6897 if (pc_in_thread_step_range (ecs->event_thread->stop_pc (),
6898 ecs->event_thread)
6899 && (execution_direction != EXEC_REVERSE
6900 || frame_id_eq (get_frame_id (frame),
6901 ecs->event_thread->control.step_frame_id)))
6902 {
6903 infrun_debug_printf
6904 ("stepping inside range [%s-%s]",
6905 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6906 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6907
6908 /* Tentatively re-enable range stepping; `resume' disables it if
6909 necessary (e.g., if we're stepping over a breakpoint or we
6910 have software watchpoints). */
6911 ecs->event_thread->control.may_range_step = 1;
6912
6913 /* When stepping backward, stop at beginning of line range
6914 (unless it's the function entry point, in which case
6915 keep going back to the call point). */
6916 CORE_ADDR stop_pc = ecs->event_thread->stop_pc ();
6917 if (stop_pc == ecs->event_thread->control.step_range_start
6918 && stop_pc != ecs->stop_func_start
6919 && execution_direction == EXEC_REVERSE)
6920 end_stepping_range (ecs);
6921 else
6922 keep_going (ecs);
6923
6924 return;
6925 }
6926
6927 /* We stepped out of the stepping range. */
6928
6929 /* If we are stepping at the source level and entered the runtime
6930 loader dynamic symbol resolution code...
6931
6932 EXEC_FORWARD: we keep on single stepping until we exit the run
6933 time loader code and reach the callee's address.
6934
6935 EXEC_REVERSE: we've already executed the callee (backward), and
6936 the runtime loader code is handled just like any other
6937 undebuggable function call. Now we need only keep stepping
6938 backward through the trampoline code, and that's handled further
6939 down, so there is nothing for us to do here. */
6940
6941 if (execution_direction != EXEC_REVERSE
6942 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6943 && in_solib_dynsym_resolve_code (ecs->event_thread->stop_pc ()))
6944 {
6945 CORE_ADDR pc_after_resolver =
6946 gdbarch_skip_solib_resolver (gdbarch, ecs->event_thread->stop_pc ());
6947
6948 infrun_debug_printf ("stepped into dynsym resolve code");
6949
6950 if (pc_after_resolver)
6951 {
6952 /* Set up a step-resume breakpoint at the address
6953 indicated by SKIP_SOLIB_RESOLVER. */
6954 symtab_and_line sr_sal;
6955 sr_sal.pc = pc_after_resolver;
6956 sr_sal.pspace = get_frame_program_space (frame);
6957
6958 insert_step_resume_breakpoint_at_sal (gdbarch,
6959 sr_sal, null_frame_id);
6960 }
6961
6962 keep_going (ecs);
6963 return;
6964 }
6965
6966 /* Step through an indirect branch thunk. */
6967 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6968 && gdbarch_in_indirect_branch_thunk (gdbarch,
6969 ecs->event_thread->stop_pc ()))
6970 {
6971 infrun_debug_printf ("stepped into indirect branch thunk");
6972 keep_going (ecs);
6973 return;
6974 }
6975
6976 if (ecs->event_thread->control.step_range_end != 1
6977 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6978 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6979 && get_frame_type (frame) == SIGTRAMP_FRAME)
6980 {
6981 infrun_debug_printf ("stepped into signal trampoline");
6982 /* The inferior, while doing a "step" or "next", has ended up in
6983 a signal trampoline (either by a signal being delivered or by
6984 the signal handler returning). Just single-step until the
6985 inferior leaves the trampoline (either by calling the handler
6986 or returning). */
6987 keep_going (ecs);
6988 return;
6989 }
6990
6991 /* If we're in the return path from a shared library trampoline,
6992 we want to proceed through the trampoline when stepping. */
6993 /* macro/2012-04-25: This needs to come before the subroutine
6994 call check below as on some targets return trampolines look
6995 like subroutine calls (MIPS16 return thunks). */
6996 if (gdbarch_in_solib_return_trampoline (gdbarch,
6997 ecs->event_thread->stop_pc (),
6998 ecs->stop_func_name)
6999 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
7000 {
7001 /* Determine where this trampoline returns. */
7002 CORE_ADDR stop_pc = ecs->event_thread->stop_pc ();
7003 CORE_ADDR real_stop_pc
7004 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
7005
7006 infrun_debug_printf ("stepped into solib return tramp");
7007
7008 /* Only proceed through if we know where it's going. */
7009 if (real_stop_pc)
7010 {
7011 /* And put the step-breakpoint there and go until there. */
7012 symtab_and_line sr_sal;
7013 sr_sal.pc = real_stop_pc;
7014 sr_sal.section = find_pc_overlay (sr_sal.pc);
7015 sr_sal.pspace = get_frame_program_space (frame);
7016
7017 /* Do not specify what the fp should be when we stop since
7018 on some machines the prologue is where the new fp value
7019 is established. */
7020 insert_step_resume_breakpoint_at_sal (gdbarch,
7021 sr_sal, null_frame_id);
7022
7023 /* Restart without fiddling with the step ranges or
7024 other state. */
7025 keep_going (ecs);
7026 return;
7027 }
7028 }
7029
7030 /* Check for subroutine calls. The check for the current frame
7031 equalling the step ID is not necessary - the check of the
7032 previous frame's ID is sufficient - but it is a common case and
7033 cheaper than checking the previous frame's ID.
7034
7035 NOTE: frame_id_eq will never report two invalid frame IDs as
7036 being equal, so to get into this block, both the current and
7037 previous frame must have valid frame IDs. */
7038 /* The outer_frame_id check is a heuristic to detect stepping
7039 through startup code. If we step over an instruction which
7040 sets the stack pointer from an invalid value to a valid value,
7041 we may detect that as a subroutine call from the mythical
7042 "outermost" function. This could be fixed by marking
7043 outermost frames as !stack_p,code_p,special_p. Then the
7044 initial outermost frame, before sp was valid, would
7045 have code_addr == &_start. See the comment in frame_id_eq
7046 for more. */
7047 if (!frame_id_eq (get_stack_frame_id (frame),
7048 ecs->event_thread->control.step_stack_frame_id)
7049 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
7050 ecs->event_thread->control.step_stack_frame_id)
7051 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
7052 outer_frame_id)
7053 || (ecs->event_thread->control.step_start_function
7054 != find_pc_function (ecs->event_thread->stop_pc ())))))
7055 {
7056 CORE_ADDR stop_pc = ecs->event_thread->stop_pc ();
7057 CORE_ADDR real_stop_pc;
7058
7059 infrun_debug_printf ("stepped into subroutine");
7060
7061 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
7062 {
7063 /* I presume that step_over_calls is only 0 when we're
7064 supposed to be stepping at the assembly language level
7065 ("stepi"). Just stop. */
7066 /* And this works the same backward as frontward. MVS */
7067 end_stepping_range (ecs);
7068 return;
7069 }
7070
7071 /* Reverse stepping through solib trampolines. */
7072
7073 if (execution_direction == EXEC_REVERSE
7074 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
7075 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7076 || (ecs->stop_func_start == 0
7077 && in_solib_dynsym_resolve_code (stop_pc))))
7078 {
7079 /* Any solib trampoline code can be handled in reverse
7080 by simply continuing to single-step. We have already
7081 executed the solib function (backwards), and a few
7082 steps will take us back through the trampoline to the
7083 caller. */
7084 keep_going (ecs);
7085 return;
7086 }
7087
7088 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
7089 {
7090 /* We're doing a "next".
7091
7092 Normal (forward) execution: set a breakpoint at the
7093 callee's return address (the address at which the caller
7094 will resume).
7095
7096 Reverse (backward) execution. set the step-resume
7097 breakpoint at the start of the function that we just
7098 stepped into (backwards), and continue to there. When we
7099 get there, we'll need to single-step back to the caller. */
7100
7101 if (execution_direction == EXEC_REVERSE)
7102 {
7103 /* If we're already at the start of the function, we've either
7104 just stepped backward into a single instruction function,
7105 or stepped back out of a signal handler to the first instruction
7106 of the function. Just keep going, which will single-step back
7107 to the caller. */
7108 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
7109 {
7110 /* Normal function call return (static or dynamic). */
7111 symtab_and_line sr_sal;
7112 sr_sal.pc = ecs->stop_func_start;
7113 sr_sal.pspace = get_frame_program_space (frame);
7114 insert_step_resume_breakpoint_at_sal (gdbarch,
7115 sr_sal, null_frame_id);
7116 }
7117 }
7118 else
7119 insert_step_resume_breakpoint_at_caller (frame);
7120
7121 keep_going (ecs);
7122 return;
7123 }
7124
7125 /* If we are in a function call trampoline (a stub between the
7126 calling routine and the real function), locate the real
7127 function. That's what tells us (a) whether we want to step
7128 into it at all, and (b) what prologue we want to run to the
7129 end of, if we do step into it. */
7130 real_stop_pc = skip_language_trampoline (frame, stop_pc);
7131 if (real_stop_pc == 0)
7132 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
7133 if (real_stop_pc != 0)
7134 ecs->stop_func_start = real_stop_pc;
7135
7136 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
7137 {
7138 symtab_and_line sr_sal;
7139 sr_sal.pc = ecs->stop_func_start;
7140 sr_sal.pspace = get_frame_program_space (frame);
7141
7142 insert_step_resume_breakpoint_at_sal (gdbarch,
7143 sr_sal, null_frame_id);
7144 keep_going (ecs);
7145 return;
7146 }
7147
7148 /* If we have line number information for the function we are
7149 thinking of stepping into and the function isn't on the skip
7150 list, step into it.
7151
7152 If there are several symtabs at that PC (e.g. with include
7153 files), just want to know whether *any* of them have line
7154 numbers. find_pc_line handles this. */
7155 {
7156 struct symtab_and_line tmp_sal;
7157
7158 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
7159 if (tmp_sal.line != 0
7160 && !function_name_is_marked_for_skip (ecs->stop_func_name,
7161 tmp_sal)
7162 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
7163 {
7164 if (execution_direction == EXEC_REVERSE)
7165 handle_step_into_function_backward (gdbarch, ecs);
7166 else
7167 handle_step_into_function (gdbarch, ecs);
7168 return;
7169 }
7170 }
7171
7172 /* If we have no line number and the step-stop-if-no-debug is
7173 set, we stop the step so that the user has a chance to switch
7174 in assembly mode. */
7175 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7176 && step_stop_if_no_debug)
7177 {
7178 end_stepping_range (ecs);
7179 return;
7180 }
7181
7182 if (execution_direction == EXEC_REVERSE)
7183 {
7184 /* If we're already at the start of the function, we've either just
7185 stepped backward into a single instruction function without line
7186 number info, or stepped back out of a signal handler to the first
7187 instruction of the function without line number info. Just keep
7188 going, which will single-step back to the caller. */
7189 if (ecs->stop_func_start != stop_pc)
7190 {
7191 /* Set a breakpoint at callee's start address.
7192 From there we can step once and be back in the caller. */
7193 symtab_and_line sr_sal;
7194 sr_sal.pc = ecs->stop_func_start;
7195 sr_sal.pspace = get_frame_program_space (frame);
7196 insert_step_resume_breakpoint_at_sal (gdbarch,
7197 sr_sal, null_frame_id);
7198 }
7199 }
7200 else
7201 /* Set a breakpoint at callee's return address (the address
7202 at which the caller will resume). */
7203 insert_step_resume_breakpoint_at_caller (frame);
7204
7205 keep_going (ecs);
7206 return;
7207 }
7208
7209 /* Reverse stepping through solib trampolines. */
7210
7211 if (execution_direction == EXEC_REVERSE
7212 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
7213 {
7214 CORE_ADDR stop_pc = ecs->event_thread->stop_pc ();
7215
7216 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7217 || (ecs->stop_func_start == 0
7218 && in_solib_dynsym_resolve_code (stop_pc)))
7219 {
7220 /* Any solib trampoline code can be handled in reverse
7221 by simply continuing to single-step. We have already
7222 executed the solib function (backwards), and a few
7223 steps will take us back through the trampoline to the
7224 caller. */
7225 keep_going (ecs);
7226 return;
7227 }
7228 else if (in_solib_dynsym_resolve_code (stop_pc))
7229 {
7230 /* Stepped backward into the solib dynsym resolver.
7231 Set a breakpoint at its start and continue, then
7232 one more step will take us out. */
7233 symtab_and_line sr_sal;
7234 sr_sal.pc = ecs->stop_func_start;
7235 sr_sal.pspace = get_frame_program_space (frame);
7236 insert_step_resume_breakpoint_at_sal (gdbarch,
7237 sr_sal, null_frame_id);
7238 keep_going (ecs);
7239 return;
7240 }
7241 }
7242
7243 /* This always returns the sal for the inner-most frame when we are in a
7244 stack of inlined frames, even if GDB actually believes that it is in a
7245 more outer frame. This is checked for below by calls to
7246 inline_skipped_frames. */
7247 stop_pc_sal = find_pc_line (ecs->event_thread->stop_pc (), 0);
7248
7249 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7250 the trampoline processing logic, however, there are some trampolines
7251 that have no names, so we should do trampoline handling first. */
7252 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7253 && ecs->stop_func_name == NULL
7254 && stop_pc_sal.line == 0)
7255 {
7256 infrun_debug_printf ("stepped into undebuggable function");
7257
7258 /* The inferior just stepped into, or returned to, an
7259 undebuggable function (where there is no debugging information
7260 and no line number corresponding to the address where the
7261 inferior stopped). Since we want to skip this kind of code,
7262 we keep going until the inferior returns from this
7263 function - unless the user has asked us not to (via
7264 set step-mode) or we no longer know how to get back
7265 to the call site. */
7266 if (step_stop_if_no_debug
7267 || !frame_id_p (frame_unwind_caller_id (frame)))
7268 {
7269 /* If we have no line number and the step-stop-if-no-debug
7270 is set, we stop the step so that the user has a chance to
7271 switch in assembly mode. */
7272 end_stepping_range (ecs);
7273 return;
7274 }
7275 else
7276 {
7277 /* Set a breakpoint at callee's return address (the address
7278 at which the caller will resume). */
7279 insert_step_resume_breakpoint_at_caller (frame);
7280 keep_going (ecs);
7281 return;
7282 }
7283 }
7284
7285 if (ecs->event_thread->control.step_range_end == 1)
7286 {
7287 /* It is stepi or nexti. We always want to stop stepping after
7288 one instruction. */
7289 infrun_debug_printf ("stepi/nexti");
7290 end_stepping_range (ecs);
7291 return;
7292 }
7293
7294 if (stop_pc_sal.line == 0)
7295 {
7296 /* We have no line number information. That means to stop
7297 stepping (does this always happen right after one instruction,
7298 when we do "s" in a function with no line numbers,
7299 or can this happen as a result of a return or longjmp?). */
7300 infrun_debug_printf ("line number info");
7301 end_stepping_range (ecs);
7302 return;
7303 }
7304
7305 /* Look for "calls" to inlined functions, part one. If the inline
7306 frame machinery detected some skipped call sites, we have entered
7307 a new inline function. */
7308
7309 if (frame_id_eq (get_frame_id (get_current_frame ()),
7310 ecs->event_thread->control.step_frame_id)
7311 && inline_skipped_frames (ecs->event_thread))
7312 {
7313 infrun_debug_printf ("stepped into inlined function");
7314
7315 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7316
7317 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7318 {
7319 /* For "step", we're going to stop. But if the call site
7320 for this inlined function is on the same source line as
7321 we were previously stepping, go down into the function
7322 first. Otherwise stop at the call site. */
7323
7324 if (call_sal.line == ecs->event_thread->current_line
7325 && call_sal.symtab == ecs->event_thread->current_symtab)
7326 {
7327 step_into_inline_frame (ecs->event_thread);
7328 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7329 {
7330 keep_going (ecs);
7331 return;
7332 }
7333 }
7334
7335 end_stepping_range (ecs);
7336 return;
7337 }
7338 else
7339 {
7340 /* For "next", we should stop at the call site if it is on a
7341 different source line. Otherwise continue through the
7342 inlined function. */
7343 if (call_sal.line == ecs->event_thread->current_line
7344 && call_sal.symtab == ecs->event_thread->current_symtab)
7345 keep_going (ecs);
7346 else
7347 end_stepping_range (ecs);
7348 return;
7349 }
7350 }
7351
7352 /* Look for "calls" to inlined functions, part two. If we are still
7353 in the same real function we were stepping through, but we have
7354 to go further up to find the exact frame ID, we are stepping
7355 through a more inlined call beyond its call site. */
7356
7357 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7358 && !frame_id_eq (get_frame_id (get_current_frame ()),
7359 ecs->event_thread->control.step_frame_id)
7360 && stepped_in_from (get_current_frame (),
7361 ecs->event_thread->control.step_frame_id))
7362 {
7363 infrun_debug_printf ("stepping through inlined function");
7364
7365 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7366 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7367 keep_going (ecs);
7368 else
7369 end_stepping_range (ecs);
7370 return;
7371 }
7372
7373 bool refresh_step_info = true;
7374 if ((ecs->event_thread->stop_pc () == stop_pc_sal.pc)
7375 && (ecs->event_thread->current_line != stop_pc_sal.line
7376 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7377 {
7378 /* We are at a different line. */
7379
7380 if (stop_pc_sal.is_stmt)
7381 {
7382 /* We are at the start of a statement.
7383
7384 So stop. Note that we don't stop if we step into the middle of a
7385 statement. That is said to make things like for (;;) statements
7386 work better. */
7387 infrun_debug_printf ("stepped to a different line");
7388 end_stepping_range (ecs);
7389 return;
7390 }
7391 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7392 ecs->event_thread->control.step_frame_id))
7393 {
7394 /* We are not at the start of a statement, and we have not changed
7395 frame.
7396
7397 We ignore this line table entry, and continue stepping forward,
7398 looking for a better place to stop. */
7399 refresh_step_info = false;
7400 infrun_debug_printf ("stepped to a different line, but "
7401 "it's not the start of a statement");
7402 }
7403 else
7404 {
7405 /* We are not the start of a statement, and we have changed frame.
7406
7407 We ignore this line table entry, and continue stepping forward,
7408 looking for a better place to stop. Keep refresh_step_info at
7409 true to note that the frame has changed, but ignore the line
7410 number to make sure we don't ignore a subsequent entry with the
7411 same line number. */
7412 stop_pc_sal.line = 0;
7413 infrun_debug_printf ("stepped to a different frame, but "
7414 "it's not the start of a statement");
7415 }
7416 }
7417
7418 /* We aren't done stepping.
7419
7420 Optimize by setting the stepping range to the line.
7421 (We might not be in the original line, but if we entered a
7422 new line in mid-statement, we continue stepping. This makes
7423 things like for(;;) statements work better.)
7424
7425 If we entered a SAL that indicates a non-statement line table entry,
7426 then we update the stepping range, but we don't update the step info,
7427 which includes things like the line number we are stepping away from.
7428 This means we will stop when we find a line table entry that is marked
7429 as is-statement, even if it matches the non-statement one we just
7430 stepped into. */
7431
7432 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7433 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7434 ecs->event_thread->control.may_range_step = 1;
7435 infrun_debug_printf
7436 ("updated step range, start = %s, end = %s, may_range_step = %d",
7437 paddress (gdbarch, ecs->event_thread->control.step_range_start),
7438 paddress (gdbarch, ecs->event_thread->control.step_range_end),
7439 ecs->event_thread->control.may_range_step);
7440 if (refresh_step_info)
7441 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7442
7443 infrun_debug_printf ("keep going");
7444 keep_going (ecs);
7445 }
7446
7447 static bool restart_stepped_thread (process_stratum_target *resume_target,
7448 ptid_t resume_ptid);
7449
7450 /* In all-stop mode, if we're currently stepping but have stopped in
7451 some other thread, we may need to switch back to the stepped
7452 thread. Returns true we set the inferior running, false if we left
7453 it stopped (and the event needs further processing). */
7454
7455 static bool
7456 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7457 {
7458 if (!target_is_non_stop_p ())
7459 {
7460 /* If any thread is blocked on some internal breakpoint, and we
7461 simply need to step over that breakpoint to get it going
7462 again, do that first. */
7463
7464 /* However, if we see an event for the stepping thread, then we
7465 know all other threads have been moved past their breakpoints
7466 already. Let the caller check whether the step is finished,
7467 etc., before deciding to move it past a breakpoint. */
7468 if (ecs->event_thread->control.step_range_end != 0)
7469 return false;
7470
7471 /* Check if the current thread is blocked on an incomplete
7472 step-over, interrupted by a random signal. */
7473 if (ecs->event_thread->control.trap_expected
7474 && ecs->event_thread->stop_signal () != GDB_SIGNAL_TRAP)
7475 {
7476 infrun_debug_printf
7477 ("need to finish step-over of [%s]",
7478 ecs->event_thread->ptid.to_string ().c_str ());
7479 keep_going (ecs);
7480 return true;
7481 }
7482
7483 /* Check if the current thread is blocked by a single-step
7484 breakpoint of another thread. */
7485 if (ecs->hit_singlestep_breakpoint)
7486 {
7487 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7488 ecs->ptid.to_string ().c_str ());
7489 keep_going (ecs);
7490 return true;
7491 }
7492
7493 /* If this thread needs yet another step-over (e.g., stepping
7494 through a delay slot), do it first before moving on to
7495 another thread. */
7496 if (thread_still_needs_step_over (ecs->event_thread))
7497 {
7498 infrun_debug_printf
7499 ("thread [%s] still needs step-over",
7500 ecs->event_thread->ptid.to_string ().c_str ());
7501 keep_going (ecs);
7502 return true;
7503 }
7504
7505 /* If scheduler locking applies even if not stepping, there's no
7506 need to walk over threads. Above we've checked whether the
7507 current thread is stepping. If some other thread not the
7508 event thread is stepping, then it must be that scheduler
7509 locking is not in effect. */
7510 if (schedlock_applies (ecs->event_thread))
7511 return false;
7512
7513 /* Otherwise, we no longer expect a trap in the current thread.
7514 Clear the trap_expected flag before switching back -- this is
7515 what keep_going does as well, if we call it. */
7516 ecs->event_thread->control.trap_expected = 0;
7517
7518 /* Likewise, clear the signal if it should not be passed. */
7519 if (!signal_program[ecs->event_thread->stop_signal ()])
7520 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
7521
7522 if (restart_stepped_thread (ecs->target, ecs->ptid))
7523 {
7524 prepare_to_wait (ecs);
7525 return true;
7526 }
7527
7528 switch_to_thread (ecs->event_thread);
7529 }
7530
7531 return false;
7532 }
7533
7534 /* Look for the thread that was stepping, and resume it.
7535 RESUME_TARGET / RESUME_PTID indicate the set of threads the caller
7536 is resuming. Return true if a thread was started, false
7537 otherwise. */
7538
7539 static bool
7540 restart_stepped_thread (process_stratum_target *resume_target,
7541 ptid_t resume_ptid)
7542 {
7543 /* Do all pending step-overs before actually proceeding with
7544 step/next/etc. */
7545 if (start_step_over ())
7546 return true;
7547
7548 for (thread_info *tp : all_threads_safe ())
7549 {
7550 if (tp->state == THREAD_EXITED)
7551 continue;
7552
7553 if (tp->has_pending_waitstatus ())
7554 continue;
7555
7556 /* Ignore threads of processes the caller is not
7557 resuming. */
7558 if (!sched_multi
7559 && (tp->inf->process_target () != resume_target
7560 || tp->inf->pid != resume_ptid.pid ()))
7561 continue;
7562
7563 if (tp->control.trap_expected)
7564 {
7565 infrun_debug_printf ("switching back to stepped thread (step-over)");
7566
7567 if (keep_going_stepped_thread (tp))
7568 return true;
7569 }
7570 }
7571
7572 for (thread_info *tp : all_threads_safe ())
7573 {
7574 if (tp->state == THREAD_EXITED)
7575 continue;
7576
7577 if (tp->has_pending_waitstatus ())
7578 continue;
7579
7580 /* Ignore threads of processes the caller is not
7581 resuming. */
7582 if (!sched_multi
7583 && (tp->inf->process_target () != resume_target
7584 || tp->inf->pid != resume_ptid.pid ()))
7585 continue;
7586
7587 /* Did we find the stepping thread? */
7588 if (tp->control.step_range_end)
7589 {
7590 infrun_debug_printf ("switching back to stepped thread (stepping)");
7591
7592 if (keep_going_stepped_thread (tp))
7593 return true;
7594 }
7595 }
7596
7597 return false;
7598 }
7599
7600 /* See infrun.h. */
7601
7602 void
7603 restart_after_all_stop_detach (process_stratum_target *proc_target)
7604 {
7605 /* Note we don't check target_is_non_stop_p() here, because the
7606 current inferior may no longer have a process_stratum target
7607 pushed, as we just detached. */
7608
7609 /* See if we have a THREAD_RUNNING thread that need to be
7610 re-resumed. If we have any thread that is already executing,
7611 then we don't need to resume the target -- it is already been
7612 resumed. With the remote target (in all-stop), it's even
7613 impossible to issue another resumption if the target is already
7614 resumed, until the target reports a stop. */
7615 for (thread_info *thr : all_threads (proc_target))
7616 {
7617 if (thr->state != THREAD_RUNNING)
7618 continue;
7619
7620 /* If we have any thread that is already executing, then we
7621 don't need to resume the target -- it is already been
7622 resumed. */
7623 if (thr->executing ())
7624 return;
7625
7626 /* If we have a pending event to process, skip resuming the
7627 target and go straight to processing it. */
7628 if (thr->resumed () && thr->has_pending_waitstatus ())
7629 return;
7630 }
7631
7632 /* Alright, we need to re-resume the target. If a thread was
7633 stepping, we need to restart it stepping. */
7634 if (restart_stepped_thread (proc_target, minus_one_ptid))
7635 return;
7636
7637 /* Otherwise, find the first THREAD_RUNNING thread and resume
7638 it. */
7639 for (thread_info *thr : all_threads (proc_target))
7640 {
7641 if (thr->state != THREAD_RUNNING)
7642 continue;
7643
7644 execution_control_state ecs;
7645 reset_ecs (&ecs, thr);
7646 switch_to_thread (thr);
7647 keep_going (&ecs);
7648 return;
7649 }
7650 }
7651
7652 /* Set a previously stepped thread back to stepping. Returns true on
7653 success, false if the resume is not possible (e.g., the thread
7654 vanished). */
7655
7656 static bool
7657 keep_going_stepped_thread (struct thread_info *tp)
7658 {
7659 struct frame_info *frame;
7660 struct execution_control_state ecss;
7661 struct execution_control_state *ecs = &ecss;
7662
7663 /* If the stepping thread exited, then don't try to switch back and
7664 resume it, which could fail in several different ways depending
7665 on the target. Instead, just keep going.
7666
7667 We can find a stepping dead thread in the thread list in two
7668 cases:
7669
7670 - The target supports thread exit events, and when the target
7671 tries to delete the thread from the thread list, inferior_ptid
7672 pointed at the exiting thread. In such case, calling
7673 delete_thread does not really remove the thread from the list;
7674 instead, the thread is left listed, with 'exited' state.
7675
7676 - The target's debug interface does not support thread exit
7677 events, and so we have no idea whatsoever if the previously
7678 stepping thread is still alive. For that reason, we need to
7679 synchronously query the target now. */
7680
7681 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7682 {
7683 infrun_debug_printf ("not resuming previously stepped thread, it has "
7684 "vanished");
7685
7686 delete_thread (tp);
7687 return false;
7688 }
7689
7690 infrun_debug_printf ("resuming previously stepped thread");
7691
7692 reset_ecs (ecs, tp);
7693 switch_to_thread (tp);
7694
7695 tp->set_stop_pc (regcache_read_pc (get_thread_regcache (tp)));
7696 frame = get_current_frame ();
7697
7698 /* If the PC of the thread we were trying to single-step has
7699 changed, then that thread has trapped or been signaled, but the
7700 event has not been reported to GDB yet. Re-poll the target
7701 looking for this particular thread's event (i.e. temporarily
7702 enable schedlock) by:
7703
7704 - setting a break at the current PC
7705 - resuming that particular thread, only (by setting trap
7706 expected)
7707
7708 This prevents us continuously moving the single-step breakpoint
7709 forward, one instruction at a time, overstepping. */
7710
7711 if (tp->stop_pc () != tp->prev_pc)
7712 {
7713 ptid_t resume_ptid;
7714
7715 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7716 paddress (target_gdbarch (), tp->prev_pc),
7717 paddress (target_gdbarch (), tp->stop_pc ()));
7718
7719 /* Clear the info of the previous step-over, as it's no longer
7720 valid (if the thread was trying to step over a breakpoint, it
7721 has already succeeded). It's what keep_going would do too,
7722 if we called it. Do this before trying to insert the sss
7723 breakpoint, otherwise if we were previously trying to step
7724 over this exact address in another thread, the breakpoint is
7725 skipped. */
7726 clear_step_over_info ();
7727 tp->control.trap_expected = 0;
7728
7729 insert_single_step_breakpoint (get_frame_arch (frame),
7730 get_frame_address_space (frame),
7731 tp->stop_pc ());
7732
7733 tp->set_resumed (true);
7734 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7735 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
7736 }
7737 else
7738 {
7739 infrun_debug_printf ("expected thread still hasn't advanced");
7740
7741 keep_going_pass_signal (ecs);
7742 }
7743
7744 return true;
7745 }
7746
7747 /* Is thread TP in the middle of (software or hardware)
7748 single-stepping? (Note the result of this function must never be
7749 passed directly as target_resume's STEP parameter.) */
7750
7751 static bool
7752 currently_stepping (struct thread_info *tp)
7753 {
7754 return ((tp->control.step_range_end
7755 && tp->control.step_resume_breakpoint == NULL)
7756 || tp->control.trap_expected
7757 || tp->stepped_breakpoint
7758 || bpstat_should_step ());
7759 }
7760
7761 /* Inferior has stepped into a subroutine call with source code that
7762 we should not step over. Do step to the first line of code in
7763 it. */
7764
7765 static void
7766 handle_step_into_function (struct gdbarch *gdbarch,
7767 struct execution_control_state *ecs)
7768 {
7769 fill_in_stop_func (gdbarch, ecs);
7770
7771 compunit_symtab *cust
7772 = find_pc_compunit_symtab (ecs->event_thread->stop_pc ());
7773 if (cust != NULL && compunit_language (cust) != language_asm)
7774 ecs->stop_func_start
7775 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7776
7777 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7778 /* Use the step_resume_break to step until the end of the prologue,
7779 even if that involves jumps (as it seems to on the vax under
7780 4.2). */
7781 /* If the prologue ends in the middle of a source line, continue to
7782 the end of that source line (if it is still within the function).
7783 Otherwise, just go to end of prologue. */
7784 if (stop_func_sal.end
7785 && stop_func_sal.pc != ecs->stop_func_start
7786 && stop_func_sal.end < ecs->stop_func_end)
7787 ecs->stop_func_start = stop_func_sal.end;
7788
7789 /* Architectures which require breakpoint adjustment might not be able
7790 to place a breakpoint at the computed address. If so, the test
7791 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7792 ecs->stop_func_start to an address at which a breakpoint may be
7793 legitimately placed.
7794
7795 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7796 made, GDB will enter an infinite loop when stepping through
7797 optimized code consisting of VLIW instructions which contain
7798 subinstructions corresponding to different source lines. On
7799 FR-V, it's not permitted to place a breakpoint on any but the
7800 first subinstruction of a VLIW instruction. When a breakpoint is
7801 set, GDB will adjust the breakpoint address to the beginning of
7802 the VLIW instruction. Thus, we need to make the corresponding
7803 adjustment here when computing the stop address. */
7804
7805 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7806 {
7807 ecs->stop_func_start
7808 = gdbarch_adjust_breakpoint_address (gdbarch,
7809 ecs->stop_func_start);
7810 }
7811
7812 if (ecs->stop_func_start == ecs->event_thread->stop_pc ())
7813 {
7814 /* We are already there: stop now. */
7815 end_stepping_range (ecs);
7816 return;
7817 }
7818 else
7819 {
7820 /* Put the step-breakpoint there and go until there. */
7821 symtab_and_line sr_sal;
7822 sr_sal.pc = ecs->stop_func_start;
7823 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7824 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7825
7826 /* Do not specify what the fp should be when we stop since on
7827 some machines the prologue is where the new fp value is
7828 established. */
7829 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7830
7831 /* And make sure stepping stops right away then. */
7832 ecs->event_thread->control.step_range_end
7833 = ecs->event_thread->control.step_range_start;
7834 }
7835 keep_going (ecs);
7836 }
7837
7838 /* Inferior has stepped backward into a subroutine call with source
7839 code that we should not step over. Do step to the beginning of the
7840 last line of code in it. */
7841
7842 static void
7843 handle_step_into_function_backward (struct gdbarch *gdbarch,
7844 struct execution_control_state *ecs)
7845 {
7846 struct compunit_symtab *cust;
7847 struct symtab_and_line stop_func_sal;
7848
7849 fill_in_stop_func (gdbarch, ecs);
7850
7851 cust = find_pc_compunit_symtab (ecs->event_thread->stop_pc ());
7852 if (cust != NULL && compunit_language (cust) != language_asm)
7853 ecs->stop_func_start
7854 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7855
7856 stop_func_sal = find_pc_line (ecs->event_thread->stop_pc (), 0);
7857
7858 /* OK, we're just going to keep stepping here. */
7859 if (stop_func_sal.pc == ecs->event_thread->stop_pc ())
7860 {
7861 /* We're there already. Just stop stepping now. */
7862 end_stepping_range (ecs);
7863 }
7864 else
7865 {
7866 /* Else just reset the step range and keep going.
7867 No step-resume breakpoint, they don't work for
7868 epilogues, which can have multiple entry paths. */
7869 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7870 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7871 keep_going (ecs);
7872 }
7873 return;
7874 }
7875
7876 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7877 This is used to both functions and to skip over code. */
7878
7879 static void
7880 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7881 struct symtab_and_line sr_sal,
7882 struct frame_id sr_id,
7883 enum bptype sr_type)
7884 {
7885 /* There should never be more than one step-resume or longjmp-resume
7886 breakpoint per thread, so we should never be setting a new
7887 step_resume_breakpoint when one is already active. */
7888 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7889 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7890
7891 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7892 paddress (gdbarch, sr_sal.pc));
7893
7894 inferior_thread ()->control.step_resume_breakpoint
7895 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7896 }
7897
7898 void
7899 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7900 struct symtab_and_line sr_sal,
7901 struct frame_id sr_id)
7902 {
7903 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7904 sr_sal, sr_id,
7905 bp_step_resume);
7906 }
7907
7908 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7909 This is used to skip a potential signal handler.
7910
7911 This is called with the interrupted function's frame. The signal
7912 handler, when it returns, will resume the interrupted function at
7913 RETURN_FRAME.pc. */
7914
7915 static void
7916 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7917 {
7918 gdb_assert (return_frame != NULL);
7919
7920 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7921
7922 symtab_and_line sr_sal;
7923 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7924 sr_sal.section = find_pc_overlay (sr_sal.pc);
7925 sr_sal.pspace = get_frame_program_space (return_frame);
7926
7927 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7928 get_stack_frame_id (return_frame),
7929 bp_hp_step_resume);
7930 }
7931
7932 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7933 is used to skip a function after stepping into it (for "next" or if
7934 the called function has no debugging information).
7935
7936 The current function has almost always been reached by single
7937 stepping a call or return instruction. NEXT_FRAME belongs to the
7938 current function, and the breakpoint will be set at the caller's
7939 resume address.
7940
7941 This is a separate function rather than reusing
7942 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7943 get_prev_frame, which may stop prematurely (see the implementation
7944 of frame_unwind_caller_id for an example). */
7945
7946 static void
7947 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7948 {
7949 /* We shouldn't have gotten here if we don't know where the call site
7950 is. */
7951 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7952
7953 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7954
7955 symtab_and_line sr_sal;
7956 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7957 frame_unwind_caller_pc (next_frame));
7958 sr_sal.section = find_pc_overlay (sr_sal.pc);
7959 sr_sal.pspace = frame_unwind_program_space (next_frame);
7960
7961 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7962 frame_unwind_caller_id (next_frame));
7963 }
7964
7965 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7966 new breakpoint at the target of a jmp_buf. The handling of
7967 longjmp-resume uses the same mechanisms used for handling
7968 "step-resume" breakpoints. */
7969
7970 static void
7971 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7972 {
7973 /* There should never be more than one longjmp-resume breakpoint per
7974 thread, so we should never be setting a new
7975 longjmp_resume_breakpoint when one is already active. */
7976 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7977
7978 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7979 paddress (gdbarch, pc));
7980
7981 inferior_thread ()->control.exception_resume_breakpoint =
7982 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7983 }
7984
7985 /* Insert an exception resume breakpoint. TP is the thread throwing
7986 the exception. The block B is the block of the unwinder debug hook
7987 function. FRAME is the frame corresponding to the call to this
7988 function. SYM is the symbol of the function argument holding the
7989 target PC of the exception. */
7990
7991 static void
7992 insert_exception_resume_breakpoint (struct thread_info *tp,
7993 const struct block *b,
7994 struct frame_info *frame,
7995 struct symbol *sym)
7996 {
7997 try
7998 {
7999 struct block_symbol vsym;
8000 struct value *value;
8001 CORE_ADDR handler;
8002 struct breakpoint *bp;
8003
8004 vsym = lookup_symbol_search_name (sym->search_name (),
8005 b, VAR_DOMAIN);
8006 value = read_var_value (vsym.symbol, vsym.block, frame);
8007 /* If the value was optimized out, revert to the old behavior. */
8008 if (! value_optimized_out (value))
8009 {
8010 handler = value_as_address (value);
8011
8012 infrun_debug_printf ("exception resume at %lx",
8013 (unsigned long) handler);
8014
8015 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
8016 handler,
8017 bp_exception_resume).release ();
8018
8019 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
8020 frame = NULL;
8021
8022 bp->thread = tp->global_num;
8023 inferior_thread ()->control.exception_resume_breakpoint = bp;
8024 }
8025 }
8026 catch (const gdb_exception_error &e)
8027 {
8028 /* We want to ignore errors here. */
8029 }
8030 }
8031
8032 /* A helper for check_exception_resume that sets an
8033 exception-breakpoint based on a SystemTap probe. */
8034
8035 static void
8036 insert_exception_resume_from_probe (struct thread_info *tp,
8037 const struct bound_probe *probe,
8038 struct frame_info *frame)
8039 {
8040 struct value *arg_value;
8041 CORE_ADDR handler;
8042 struct breakpoint *bp;
8043
8044 arg_value = probe_safe_evaluate_at_pc (frame, 1);
8045 if (!arg_value)
8046 return;
8047
8048 handler = value_as_address (arg_value);
8049
8050 infrun_debug_printf ("exception resume at %s",
8051 paddress (probe->objfile->arch (), handler));
8052
8053 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
8054 handler, bp_exception_resume).release ();
8055 bp->thread = tp->global_num;
8056 inferior_thread ()->control.exception_resume_breakpoint = bp;
8057 }
8058
8059 /* This is called when an exception has been intercepted. Check to
8060 see whether the exception's destination is of interest, and if so,
8061 set an exception resume breakpoint there. */
8062
8063 static void
8064 check_exception_resume (struct execution_control_state *ecs,
8065 struct frame_info *frame)
8066 {
8067 struct bound_probe probe;
8068 struct symbol *func;
8069
8070 /* First see if this exception unwinding breakpoint was set via a
8071 SystemTap probe point. If so, the probe has two arguments: the
8072 CFA and the HANDLER. We ignore the CFA, extract the handler, and
8073 set a breakpoint there. */
8074 probe = find_probe_by_pc (get_frame_pc (frame));
8075 if (probe.prob)
8076 {
8077 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
8078 return;
8079 }
8080
8081 func = get_frame_function (frame);
8082 if (!func)
8083 return;
8084
8085 try
8086 {
8087 const struct block *b;
8088 struct block_iterator iter;
8089 struct symbol *sym;
8090 int argno = 0;
8091
8092 /* The exception breakpoint is a thread-specific breakpoint on
8093 the unwinder's debug hook, declared as:
8094
8095 void _Unwind_DebugHook (void *cfa, void *handler);
8096
8097 The CFA argument indicates the frame to which control is
8098 about to be transferred. HANDLER is the destination PC.
8099
8100 We ignore the CFA and set a temporary breakpoint at HANDLER.
8101 This is not extremely efficient but it avoids issues in gdb
8102 with computing the DWARF CFA, and it also works even in weird
8103 cases such as throwing an exception from inside a signal
8104 handler. */
8105
8106 b = func->value_block ();
8107 ALL_BLOCK_SYMBOLS (b, iter, sym)
8108 {
8109 if (!sym->is_argument ())
8110 continue;
8111
8112 if (argno == 0)
8113 ++argno;
8114 else
8115 {
8116 insert_exception_resume_breakpoint (ecs->event_thread,
8117 b, frame, sym);
8118 break;
8119 }
8120 }
8121 }
8122 catch (const gdb_exception_error &e)
8123 {
8124 }
8125 }
8126
8127 static void
8128 stop_waiting (struct execution_control_state *ecs)
8129 {
8130 infrun_debug_printf ("stop_waiting");
8131
8132 /* Let callers know we don't want to wait for the inferior anymore. */
8133 ecs->wait_some_more = 0;
8134
8135 /* If all-stop, but there exists a non-stop target, stop all
8136 threads now that we're presenting the stop to the user. */
8137 if (!non_stop && exists_non_stop_target ())
8138 stop_all_threads ("presenting stop to user in all-stop");
8139 }
8140
8141 /* Like keep_going, but passes the signal to the inferior, even if the
8142 signal is set to nopass. */
8143
8144 static void
8145 keep_going_pass_signal (struct execution_control_state *ecs)
8146 {
8147 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
8148 gdb_assert (!ecs->event_thread->resumed ());
8149
8150 /* Save the pc before execution, to compare with pc after stop. */
8151 ecs->event_thread->prev_pc
8152 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
8153
8154 if (ecs->event_thread->control.trap_expected)
8155 {
8156 struct thread_info *tp = ecs->event_thread;
8157
8158 infrun_debug_printf ("%s has trap_expected set, "
8159 "resuming to collect trap",
8160 tp->ptid.to_string ().c_str ());
8161
8162 /* We haven't yet gotten our trap, and either: intercepted a
8163 non-signal event (e.g., a fork); or took a signal which we
8164 are supposed to pass through to the inferior. Simply
8165 continue. */
8166 resume (ecs->event_thread->stop_signal ());
8167 }
8168 else if (step_over_info_valid_p ())
8169 {
8170 /* Another thread is stepping over a breakpoint in-line. If
8171 this thread needs a step-over too, queue the request. In
8172 either case, this resume must be deferred for later. */
8173 struct thread_info *tp = ecs->event_thread;
8174
8175 if (ecs->hit_singlestep_breakpoint
8176 || thread_still_needs_step_over (tp))
8177 {
8178 infrun_debug_printf ("step-over already in progress: "
8179 "step-over for %s deferred",
8180 tp->ptid.to_string ().c_str ());
8181 global_thread_step_over_chain_enqueue (tp);
8182 }
8183 else
8184 infrun_debug_printf ("step-over in progress: resume of %s deferred",
8185 tp->ptid.to_string ().c_str ());
8186 }
8187 else
8188 {
8189 struct regcache *regcache = get_current_regcache ();
8190 int remove_bp;
8191 int remove_wps;
8192 step_over_what step_what;
8193
8194 /* Either the trap was not expected, but we are continuing
8195 anyway (if we got a signal, the user asked it be passed to
8196 the child)
8197 -- or --
8198 We got our expected trap, but decided we should resume from
8199 it.
8200
8201 We're going to run this baby now!
8202
8203 Note that insert_breakpoints won't try to re-insert
8204 already inserted breakpoints. Therefore, we don't
8205 care if breakpoints were already inserted, or not. */
8206
8207 /* If we need to step over a breakpoint, and we're not using
8208 displaced stepping to do so, insert all breakpoints
8209 (watchpoints, etc.) but the one we're stepping over, step one
8210 instruction, and then re-insert the breakpoint when that step
8211 is finished. */
8212
8213 step_what = thread_still_needs_step_over (ecs->event_thread);
8214
8215 remove_bp = (ecs->hit_singlestep_breakpoint
8216 || (step_what & STEP_OVER_BREAKPOINT));
8217 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
8218
8219 /* We can't use displaced stepping if we need to step past a
8220 watchpoint. The instruction copied to the scratch pad would
8221 still trigger the watchpoint. */
8222 if (remove_bp
8223 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
8224 {
8225 set_step_over_info (regcache->aspace (),
8226 regcache_read_pc (regcache), remove_wps,
8227 ecs->event_thread->global_num);
8228 }
8229 else if (remove_wps)
8230 set_step_over_info (NULL, 0, remove_wps, -1);
8231
8232 /* If we now need to do an in-line step-over, we need to stop
8233 all other threads. Note this must be done before
8234 insert_breakpoints below, because that removes the breakpoint
8235 we're about to step over, otherwise other threads could miss
8236 it. */
8237 if (step_over_info_valid_p () && target_is_non_stop_p ())
8238 stop_all_threads ("starting in-line step-over");
8239
8240 /* Stop stepping if inserting breakpoints fails. */
8241 try
8242 {
8243 insert_breakpoints ();
8244 }
8245 catch (const gdb_exception_error &e)
8246 {
8247 exception_print (gdb_stderr, e);
8248 stop_waiting (ecs);
8249 clear_step_over_info ();
8250 return;
8251 }
8252
8253 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
8254
8255 resume (ecs->event_thread->stop_signal ());
8256 }
8257
8258 prepare_to_wait (ecs);
8259 }
8260
8261 /* Called when we should continue running the inferior, because the
8262 current event doesn't cause a user visible stop. This does the
8263 resuming part; waiting for the next event is done elsewhere. */
8264
8265 static void
8266 keep_going (struct execution_control_state *ecs)
8267 {
8268 if (ecs->event_thread->control.trap_expected
8269 && ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP)
8270 ecs->event_thread->control.trap_expected = 0;
8271
8272 if (!signal_program[ecs->event_thread->stop_signal ()])
8273 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
8274 keep_going_pass_signal (ecs);
8275 }
8276
8277 /* This function normally comes after a resume, before
8278 handle_inferior_event exits. It takes care of any last bits of
8279 housekeeping, and sets the all-important wait_some_more flag. */
8280
8281 static void
8282 prepare_to_wait (struct execution_control_state *ecs)
8283 {
8284 infrun_debug_printf ("prepare_to_wait");
8285
8286 ecs->wait_some_more = 1;
8287
8288 /* If the target can't async, emulate it by marking the infrun event
8289 handler such that as soon as we get back to the event-loop, we
8290 immediately end up in fetch_inferior_event again calling
8291 target_wait. */
8292 if (!target_can_async_p ())
8293 mark_infrun_async_event_handler ();
8294 }
8295
8296 /* We are done with the step range of a step/next/si/ni command.
8297 Called once for each n of a "step n" operation. */
8298
8299 static void
8300 end_stepping_range (struct execution_control_state *ecs)
8301 {
8302 ecs->event_thread->control.stop_step = 1;
8303 stop_waiting (ecs);
8304 }
8305
8306 /* Several print_*_reason functions to print why the inferior has stopped.
8307 We always print something when the inferior exits, or receives a signal.
8308 The rest of the cases are dealt with later on in normal_stop and
8309 print_it_typical. Ideally there should be a call to one of these
8310 print_*_reason functions functions from handle_inferior_event each time
8311 stop_waiting is called.
8312
8313 Note that we don't call these directly, instead we delegate that to
8314 the interpreters, through observers. Interpreters then call these
8315 with whatever uiout is right. */
8316
8317 void
8318 print_end_stepping_range_reason (struct ui_out *uiout)
8319 {
8320 /* For CLI-like interpreters, print nothing. */
8321
8322 if (uiout->is_mi_like_p ())
8323 {
8324 uiout->field_string ("reason",
8325 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8326 }
8327 }
8328
8329 void
8330 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8331 {
8332 annotate_signalled ();
8333 if (uiout->is_mi_like_p ())
8334 uiout->field_string
8335 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8336 uiout->text ("\nProgram terminated with signal ");
8337 annotate_signal_name ();
8338 uiout->field_string ("signal-name",
8339 gdb_signal_to_name (siggnal));
8340 annotate_signal_name_end ();
8341 uiout->text (", ");
8342 annotate_signal_string ();
8343 uiout->field_string ("signal-meaning",
8344 gdb_signal_to_string (siggnal));
8345 annotate_signal_string_end ();
8346 uiout->text (".\n");
8347 uiout->text ("The program no longer exists.\n");
8348 }
8349
8350 void
8351 print_exited_reason (struct ui_out *uiout, int exitstatus)
8352 {
8353 struct inferior *inf = current_inferior ();
8354 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
8355
8356 annotate_exited (exitstatus);
8357 if (exitstatus)
8358 {
8359 if (uiout->is_mi_like_p ())
8360 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
8361 std::string exit_code_str
8362 = string_printf ("0%o", (unsigned int) exitstatus);
8363 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8364 plongest (inf->num), pidstr.c_str (),
8365 string_field ("exit-code", exit_code_str.c_str ()));
8366 }
8367 else
8368 {
8369 if (uiout->is_mi_like_p ())
8370 uiout->field_string
8371 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8372 uiout->message ("[Inferior %s (%s) exited normally]\n",
8373 plongest (inf->num), pidstr.c_str ());
8374 }
8375 }
8376
8377 void
8378 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8379 {
8380 struct thread_info *thr = inferior_thread ();
8381
8382 annotate_signal ();
8383
8384 if (uiout->is_mi_like_p ())
8385 ;
8386 else if (show_thread_that_caused_stop ())
8387 {
8388 uiout->text ("\nThread ");
8389 uiout->field_string ("thread-id", print_thread_id (thr));
8390
8391 const char *name = thread_name (thr);
8392 if (name != NULL)
8393 {
8394 uiout->text (" \"");
8395 uiout->field_string ("name", name);
8396 uiout->text ("\"");
8397 }
8398 }
8399 else
8400 uiout->text ("\nProgram");
8401
8402 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8403 uiout->text (" stopped");
8404 else
8405 {
8406 uiout->text (" received signal ");
8407 annotate_signal_name ();
8408 if (uiout->is_mi_like_p ())
8409 uiout->field_string
8410 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8411 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8412 annotate_signal_name_end ();
8413 uiout->text (", ");
8414 annotate_signal_string ();
8415 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8416
8417 struct regcache *regcache = get_current_regcache ();
8418 struct gdbarch *gdbarch = regcache->arch ();
8419 if (gdbarch_report_signal_info_p (gdbarch))
8420 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8421
8422 annotate_signal_string_end ();
8423 }
8424 uiout->text (".\n");
8425 }
8426
8427 void
8428 print_no_history_reason (struct ui_out *uiout)
8429 {
8430 uiout->text ("\nNo more reverse-execution history.\n");
8431 }
8432
8433 /* Print current location without a level number, if we have changed
8434 functions or hit a breakpoint. Print source line if we have one.
8435 bpstat_print contains the logic deciding in detail what to print,
8436 based on the event(s) that just occurred. */
8437
8438 static void
8439 print_stop_location (const target_waitstatus &ws)
8440 {
8441 int bpstat_ret;
8442 enum print_what source_flag;
8443 int do_frame_printing = 1;
8444 struct thread_info *tp = inferior_thread ();
8445
8446 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws.kind ());
8447 switch (bpstat_ret)
8448 {
8449 case PRINT_UNKNOWN:
8450 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8451 should) carry around the function and does (or should) use
8452 that when doing a frame comparison. */
8453 if (tp->control.stop_step
8454 && frame_id_eq (tp->control.step_frame_id,
8455 get_frame_id (get_current_frame ()))
8456 && (tp->control.step_start_function
8457 == find_pc_function (tp->stop_pc ())))
8458 {
8459 /* Finished step, just print source line. */
8460 source_flag = SRC_LINE;
8461 }
8462 else
8463 {
8464 /* Print location and source line. */
8465 source_flag = SRC_AND_LOC;
8466 }
8467 break;
8468 case PRINT_SRC_AND_LOC:
8469 /* Print location and source line. */
8470 source_flag = SRC_AND_LOC;
8471 break;
8472 case PRINT_SRC_ONLY:
8473 source_flag = SRC_LINE;
8474 break;
8475 case PRINT_NOTHING:
8476 /* Something bogus. */
8477 source_flag = SRC_LINE;
8478 do_frame_printing = 0;
8479 break;
8480 default:
8481 internal_error (__FILE__, __LINE__, _("Unknown value."));
8482 }
8483
8484 /* The behavior of this routine with respect to the source
8485 flag is:
8486 SRC_LINE: Print only source line
8487 LOCATION: Print only location
8488 SRC_AND_LOC: Print location and source line. */
8489 if (do_frame_printing)
8490 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8491 }
8492
8493 /* See infrun.h. */
8494
8495 void
8496 print_stop_event (struct ui_out *uiout, bool displays)
8497 {
8498 struct target_waitstatus last;
8499 struct thread_info *tp;
8500
8501 get_last_target_status (nullptr, nullptr, &last);
8502
8503 {
8504 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8505
8506 print_stop_location (last);
8507
8508 /* Display the auto-display expressions. */
8509 if (displays)
8510 do_displays ();
8511 }
8512
8513 tp = inferior_thread ();
8514 if (tp->thread_fsm () != nullptr
8515 && tp->thread_fsm ()->finished_p ())
8516 {
8517 struct return_value_info *rv;
8518
8519 rv = tp->thread_fsm ()->return_value ();
8520 if (rv != nullptr)
8521 print_return_value (uiout, rv);
8522 }
8523 }
8524
8525 /* See infrun.h. */
8526
8527 void
8528 maybe_remove_breakpoints (void)
8529 {
8530 if (!breakpoints_should_be_inserted_now () && target_has_execution ())
8531 {
8532 if (remove_breakpoints ())
8533 {
8534 target_terminal::ours_for_output ();
8535 gdb_printf (_("Cannot remove breakpoints because "
8536 "program is no longer writable.\nFurther "
8537 "execution is probably impossible.\n"));
8538 }
8539 }
8540 }
8541
8542 /* The execution context that just caused a normal stop. */
8543
8544 struct stop_context
8545 {
8546 stop_context ();
8547
8548 DISABLE_COPY_AND_ASSIGN (stop_context);
8549
8550 bool changed () const;
8551
8552 /* The stop ID. */
8553 ULONGEST stop_id;
8554
8555 /* The event PTID. */
8556
8557 ptid_t ptid;
8558
8559 /* If stopp for a thread event, this is the thread that caused the
8560 stop. */
8561 thread_info_ref thread;
8562
8563 /* The inferior that caused the stop. */
8564 int inf_num;
8565 };
8566
8567 /* Initializes a new stop context. If stopped for a thread event, this
8568 takes a strong reference to the thread. */
8569
8570 stop_context::stop_context ()
8571 {
8572 stop_id = get_stop_id ();
8573 ptid = inferior_ptid;
8574 inf_num = current_inferior ()->num;
8575
8576 if (inferior_ptid != null_ptid)
8577 {
8578 /* Take a strong reference so that the thread can't be deleted
8579 yet. */
8580 thread = thread_info_ref::new_reference (inferior_thread ());
8581 }
8582 }
8583
8584 /* Return true if the current context no longer matches the saved stop
8585 context. */
8586
8587 bool
8588 stop_context::changed () const
8589 {
8590 if (ptid != inferior_ptid)
8591 return true;
8592 if (inf_num != current_inferior ()->num)
8593 return true;
8594 if (thread != NULL && thread->state != THREAD_STOPPED)
8595 return true;
8596 if (get_stop_id () != stop_id)
8597 return true;
8598 return false;
8599 }
8600
8601 /* See infrun.h. */
8602
8603 int
8604 normal_stop (void)
8605 {
8606 struct target_waitstatus last;
8607
8608 get_last_target_status (nullptr, nullptr, &last);
8609
8610 new_stop_id ();
8611
8612 /* If an exception is thrown from this point on, make sure to
8613 propagate GDB's knowledge of the executing state to the
8614 frontend/user running state. A QUIT is an easy exception to see
8615 here, so do this before any filtered output. */
8616
8617 ptid_t finish_ptid = null_ptid;
8618
8619 if (!non_stop)
8620 finish_ptid = minus_one_ptid;
8621 else if (last.kind () == TARGET_WAITKIND_SIGNALLED
8622 || last.kind () == TARGET_WAITKIND_EXITED)
8623 {
8624 /* On some targets, we may still have live threads in the
8625 inferior when we get a process exit event. E.g., for
8626 "checkpoint", when the current checkpoint/fork exits,
8627 linux-fork.c automatically switches to another fork from
8628 within target_mourn_inferior. */
8629 if (inferior_ptid != null_ptid)
8630 finish_ptid = ptid_t (inferior_ptid.pid ());
8631 }
8632 else if (last.kind () != TARGET_WAITKIND_NO_RESUMED)
8633 finish_ptid = inferior_ptid;
8634
8635 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8636 if (finish_ptid != null_ptid)
8637 {
8638 maybe_finish_thread_state.emplace
8639 (user_visible_resume_target (finish_ptid), finish_ptid);
8640 }
8641
8642 /* As we're presenting a stop, and potentially removing breakpoints,
8643 update the thread list so we can tell whether there are threads
8644 running on the target. With target remote, for example, we can
8645 only learn about new threads when we explicitly update the thread
8646 list. Do this before notifying the interpreters about signal
8647 stops, end of stepping ranges, etc., so that the "new thread"
8648 output is emitted before e.g., "Program received signal FOO",
8649 instead of after. */
8650 update_thread_list ();
8651
8652 if (last.kind () == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8653 gdb::observers::signal_received.notify (inferior_thread ()->stop_signal ());
8654
8655 /* As with the notification of thread events, we want to delay
8656 notifying the user that we've switched thread context until
8657 the inferior actually stops.
8658
8659 There's no point in saying anything if the inferior has exited.
8660 Note that SIGNALLED here means "exited with a signal", not
8661 "received a signal".
8662
8663 Also skip saying anything in non-stop mode. In that mode, as we
8664 don't want GDB to switch threads behind the user's back, to avoid
8665 races where the user is typing a command to apply to thread x,
8666 but GDB switches to thread y before the user finishes entering
8667 the command, fetch_inferior_event installs a cleanup to restore
8668 the current thread back to the thread the user had selected right
8669 after this event is handled, so we're not really switching, only
8670 informing of a stop. */
8671 if (!non_stop
8672 && previous_inferior_ptid != inferior_ptid
8673 && target_has_execution ()
8674 && last.kind () != TARGET_WAITKIND_SIGNALLED
8675 && last.kind () != TARGET_WAITKIND_EXITED
8676 && last.kind () != TARGET_WAITKIND_NO_RESUMED)
8677 {
8678 SWITCH_THRU_ALL_UIS ()
8679 {
8680 target_terminal::ours_for_output ();
8681 gdb_printf (_("[Switching to %s]\n"),
8682 target_pid_to_str (inferior_ptid).c_str ());
8683 annotate_thread_changed ();
8684 }
8685 previous_inferior_ptid = inferior_ptid;
8686 }
8687
8688 if (last.kind () == TARGET_WAITKIND_NO_RESUMED)
8689 {
8690 SWITCH_THRU_ALL_UIS ()
8691 if (current_ui->prompt_state == PROMPT_BLOCKED)
8692 {
8693 target_terminal::ours_for_output ();
8694 gdb_printf (_("No unwaited-for children left.\n"));
8695 }
8696 }
8697
8698 /* Note: this depends on the update_thread_list call above. */
8699 maybe_remove_breakpoints ();
8700
8701 /* If an auto-display called a function and that got a signal,
8702 delete that auto-display to avoid an infinite recursion. */
8703
8704 if (stopped_by_random_signal)
8705 disable_current_display ();
8706
8707 SWITCH_THRU_ALL_UIS ()
8708 {
8709 async_enable_stdin ();
8710 }
8711
8712 /* Let the user/frontend see the threads as stopped. */
8713 maybe_finish_thread_state.reset ();
8714
8715 /* Select innermost stack frame - i.e., current frame is frame 0,
8716 and current location is based on that. Handle the case where the
8717 dummy call is returning after being stopped. E.g. the dummy call
8718 previously hit a breakpoint. (If the dummy call returns
8719 normally, we won't reach here.) Do this before the stop hook is
8720 run, so that it doesn't get to see the temporary dummy frame,
8721 which is not where we'll present the stop. */
8722 if (has_stack_frames ())
8723 {
8724 if (stop_stack_dummy == STOP_STACK_DUMMY)
8725 {
8726 /* Pop the empty frame that contains the stack dummy. This
8727 also restores inferior state prior to the call (struct
8728 infcall_suspend_state). */
8729 struct frame_info *frame = get_current_frame ();
8730
8731 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8732 frame_pop (frame);
8733 /* frame_pop calls reinit_frame_cache as the last thing it
8734 does which means there's now no selected frame. */
8735 }
8736
8737 select_frame (get_current_frame ());
8738
8739 /* Set the current source location. */
8740 set_current_sal_from_frame (get_current_frame ());
8741 }
8742
8743 /* Look up the hook_stop and run it (CLI internally handles problem
8744 of stop_command's pre-hook not existing). */
8745 stop_context saved_context;
8746
8747 try
8748 {
8749 execute_cmd_pre_hook (stop_command);
8750 }
8751 catch (const gdb_exception &ex)
8752 {
8753 exception_fprintf (gdb_stderr, ex,
8754 "Error while running hook_stop:\n");
8755 }
8756
8757 /* If the stop hook resumes the target, then there's no point in
8758 trying to notify about the previous stop; its context is
8759 gone. Likewise if the command switches thread or inferior --
8760 the observers would print a stop for the wrong
8761 thread/inferior. */
8762 if (saved_context.changed ())
8763 return 1;
8764
8765 /* Notify observers about the stop. This is where the interpreters
8766 print the stop event. */
8767 if (inferior_ptid != null_ptid)
8768 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8769 stop_print_frame);
8770 else
8771 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8772
8773 annotate_stopped ();
8774
8775 if (target_has_execution ())
8776 {
8777 if (last.kind () != TARGET_WAITKIND_SIGNALLED
8778 && last.kind () != TARGET_WAITKIND_EXITED
8779 && last.kind () != TARGET_WAITKIND_NO_RESUMED)
8780 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8781 Delete any breakpoint that is to be deleted at the next stop. */
8782 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8783 }
8784
8785 return 0;
8786 }
8787 \f
8788 int
8789 signal_stop_state (int signo)
8790 {
8791 return signal_stop[signo];
8792 }
8793
8794 int
8795 signal_print_state (int signo)
8796 {
8797 return signal_print[signo];
8798 }
8799
8800 int
8801 signal_pass_state (int signo)
8802 {
8803 return signal_program[signo];
8804 }
8805
8806 static void
8807 signal_cache_update (int signo)
8808 {
8809 if (signo == -1)
8810 {
8811 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8812 signal_cache_update (signo);
8813
8814 return;
8815 }
8816
8817 signal_pass[signo] = (signal_stop[signo] == 0
8818 && signal_print[signo] == 0
8819 && signal_program[signo] == 1
8820 && signal_catch[signo] == 0);
8821 }
8822
8823 int
8824 signal_stop_update (int signo, int state)
8825 {
8826 int ret = signal_stop[signo];
8827
8828 signal_stop[signo] = state;
8829 signal_cache_update (signo);
8830 return ret;
8831 }
8832
8833 int
8834 signal_print_update (int signo, int state)
8835 {
8836 int ret = signal_print[signo];
8837
8838 signal_print[signo] = state;
8839 signal_cache_update (signo);
8840 return ret;
8841 }
8842
8843 int
8844 signal_pass_update (int signo, int state)
8845 {
8846 int ret = signal_program[signo];
8847
8848 signal_program[signo] = state;
8849 signal_cache_update (signo);
8850 return ret;
8851 }
8852
8853 /* Update the global 'signal_catch' from INFO and notify the
8854 target. */
8855
8856 void
8857 signal_catch_update (const unsigned int *info)
8858 {
8859 int i;
8860
8861 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8862 signal_catch[i] = info[i] > 0;
8863 signal_cache_update (-1);
8864 target_pass_signals (signal_pass);
8865 }
8866
8867 static void
8868 sig_print_header (void)
8869 {
8870 gdb_printf (_("Signal Stop\tPrint\tPass "
8871 "to program\tDescription\n"));
8872 }
8873
8874 static void
8875 sig_print_info (enum gdb_signal oursig)
8876 {
8877 const char *name = gdb_signal_to_name (oursig);
8878 int name_padding = 13 - strlen (name);
8879
8880 if (name_padding <= 0)
8881 name_padding = 0;
8882
8883 gdb_printf ("%s", name);
8884 gdb_printf ("%*.*s ", name_padding, name_padding, " ");
8885 gdb_printf ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8886 gdb_printf ("%s\t", signal_print[oursig] ? "Yes" : "No");
8887 gdb_printf ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8888 gdb_printf ("%s\n", gdb_signal_to_string (oursig));
8889 }
8890
8891 /* Specify how various signals in the inferior should be handled. */
8892
8893 static void
8894 handle_command (const char *args, int from_tty)
8895 {
8896 int digits, wordlen;
8897 int sigfirst, siglast;
8898 enum gdb_signal oursig;
8899 int allsigs;
8900
8901 if (args == NULL)
8902 {
8903 error_no_arg (_("signal to handle"));
8904 }
8905
8906 /* Allocate and zero an array of flags for which signals to handle. */
8907
8908 const size_t nsigs = GDB_SIGNAL_LAST;
8909 unsigned char sigs[nsigs] {};
8910
8911 /* Break the command line up into args. */
8912
8913 gdb_argv built_argv (args);
8914
8915 /* Walk through the args, looking for signal oursigs, signal names, and
8916 actions. Signal numbers and signal names may be interspersed with
8917 actions, with the actions being performed for all signals cumulatively
8918 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8919
8920 for (char *arg : built_argv)
8921 {
8922 wordlen = strlen (arg);
8923 for (digits = 0; isdigit (arg[digits]); digits++)
8924 {;
8925 }
8926 allsigs = 0;
8927 sigfirst = siglast = -1;
8928
8929 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8930 {
8931 /* Apply action to all signals except those used by the
8932 debugger. Silently skip those. */
8933 allsigs = 1;
8934 sigfirst = 0;
8935 siglast = nsigs - 1;
8936 }
8937 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8938 {
8939 SET_SIGS (nsigs, sigs, signal_stop);
8940 SET_SIGS (nsigs, sigs, signal_print);
8941 }
8942 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8943 {
8944 UNSET_SIGS (nsigs, sigs, signal_program);
8945 }
8946 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8947 {
8948 SET_SIGS (nsigs, sigs, signal_print);
8949 }
8950 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8951 {
8952 SET_SIGS (nsigs, sigs, signal_program);
8953 }
8954 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8955 {
8956 UNSET_SIGS (nsigs, sigs, signal_stop);
8957 }
8958 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8959 {
8960 SET_SIGS (nsigs, sigs, signal_program);
8961 }
8962 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8963 {
8964 UNSET_SIGS (nsigs, sigs, signal_print);
8965 UNSET_SIGS (nsigs, sigs, signal_stop);
8966 }
8967 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8968 {
8969 UNSET_SIGS (nsigs, sigs, signal_program);
8970 }
8971 else if (digits > 0)
8972 {
8973 /* It is numeric. The numeric signal refers to our own
8974 internal signal numbering from target.h, not to host/target
8975 signal number. This is a feature; users really should be
8976 using symbolic names anyway, and the common ones like
8977 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8978
8979 sigfirst = siglast = (int)
8980 gdb_signal_from_command (atoi (arg));
8981 if (arg[digits] == '-')
8982 {
8983 siglast = (int)
8984 gdb_signal_from_command (atoi (arg + digits + 1));
8985 }
8986 if (sigfirst > siglast)
8987 {
8988 /* Bet he didn't figure we'd think of this case... */
8989 std::swap (sigfirst, siglast);
8990 }
8991 }
8992 else
8993 {
8994 oursig = gdb_signal_from_name (arg);
8995 if (oursig != GDB_SIGNAL_UNKNOWN)
8996 {
8997 sigfirst = siglast = (int) oursig;
8998 }
8999 else
9000 {
9001 /* Not a number and not a recognized flag word => complain. */
9002 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
9003 }
9004 }
9005
9006 /* If any signal numbers or symbol names were found, set flags for
9007 which signals to apply actions to. */
9008
9009 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
9010 {
9011 switch ((enum gdb_signal) signum)
9012 {
9013 case GDB_SIGNAL_TRAP:
9014 case GDB_SIGNAL_INT:
9015 if (!allsigs && !sigs[signum])
9016 {
9017 if (query (_("%s is used by the debugger.\n\
9018 Are you sure you want to change it? "),
9019 gdb_signal_to_name ((enum gdb_signal) signum)))
9020 {
9021 sigs[signum] = 1;
9022 }
9023 else
9024 gdb_printf (_("Not confirmed, unchanged.\n"));
9025 }
9026 break;
9027 case GDB_SIGNAL_0:
9028 case GDB_SIGNAL_DEFAULT:
9029 case GDB_SIGNAL_UNKNOWN:
9030 /* Make sure that "all" doesn't print these. */
9031 break;
9032 default:
9033 sigs[signum] = 1;
9034 break;
9035 }
9036 }
9037 }
9038
9039 for (int signum = 0; signum < nsigs; signum++)
9040 if (sigs[signum])
9041 {
9042 signal_cache_update (-1);
9043 target_pass_signals (signal_pass);
9044 target_program_signals (signal_program);
9045
9046 if (from_tty)
9047 {
9048 /* Show the results. */
9049 sig_print_header ();
9050 for (; signum < nsigs; signum++)
9051 if (sigs[signum])
9052 sig_print_info ((enum gdb_signal) signum);
9053 }
9054
9055 break;
9056 }
9057 }
9058
9059 /* Complete the "handle" command. */
9060
9061 static void
9062 handle_completer (struct cmd_list_element *ignore,
9063 completion_tracker &tracker,
9064 const char *text, const char *word)
9065 {
9066 static const char * const keywords[] =
9067 {
9068 "all",
9069 "stop",
9070 "ignore",
9071 "print",
9072 "pass",
9073 "nostop",
9074 "noignore",
9075 "noprint",
9076 "nopass",
9077 NULL,
9078 };
9079
9080 signal_completer (ignore, tracker, text, word);
9081 complete_on_enum (tracker, keywords, word, word);
9082 }
9083
9084 enum gdb_signal
9085 gdb_signal_from_command (int num)
9086 {
9087 if (num >= 1 && num <= 15)
9088 return (enum gdb_signal) num;
9089 error (_("Only signals 1-15 are valid as numeric signals.\n\
9090 Use \"info signals\" for a list of symbolic signals."));
9091 }
9092
9093 /* Print current contents of the tables set by the handle command.
9094 It is possible we should just be printing signals actually used
9095 by the current target (but for things to work right when switching
9096 targets, all signals should be in the signal tables). */
9097
9098 static void
9099 info_signals_command (const char *signum_exp, int from_tty)
9100 {
9101 enum gdb_signal oursig;
9102
9103 sig_print_header ();
9104
9105 if (signum_exp)
9106 {
9107 /* First see if this is a symbol name. */
9108 oursig = gdb_signal_from_name (signum_exp);
9109 if (oursig == GDB_SIGNAL_UNKNOWN)
9110 {
9111 /* No, try numeric. */
9112 oursig =
9113 gdb_signal_from_command (parse_and_eval_long (signum_exp));
9114 }
9115 sig_print_info (oursig);
9116 return;
9117 }
9118
9119 gdb_printf ("\n");
9120 /* These ugly casts brought to you by the native VAX compiler. */
9121 for (oursig = GDB_SIGNAL_FIRST;
9122 (int) oursig < (int) GDB_SIGNAL_LAST;
9123 oursig = (enum gdb_signal) ((int) oursig + 1))
9124 {
9125 QUIT;
9126
9127 if (oursig != GDB_SIGNAL_UNKNOWN
9128 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
9129 sig_print_info (oursig);
9130 }
9131
9132 gdb_printf (_("\nUse the \"handle\" command "
9133 "to change these tables.\n"));
9134 }
9135
9136 /* The $_siginfo convenience variable is a bit special. We don't know
9137 for sure the type of the value until we actually have a chance to
9138 fetch the data. The type can change depending on gdbarch, so it is
9139 also dependent on which thread you have selected.
9140
9141 1. making $_siginfo be an internalvar that creates a new value on
9142 access.
9143
9144 2. making the value of $_siginfo be an lval_computed value. */
9145
9146 /* This function implements the lval_computed support for reading a
9147 $_siginfo value. */
9148
9149 static void
9150 siginfo_value_read (struct value *v)
9151 {
9152 LONGEST transferred;
9153
9154 /* If we can access registers, so can we access $_siginfo. Likewise
9155 vice versa. */
9156 validate_registers_access ();
9157
9158 transferred =
9159 target_read (current_inferior ()->top_target (),
9160 TARGET_OBJECT_SIGNAL_INFO,
9161 NULL,
9162 value_contents_all_raw (v).data (),
9163 value_offset (v),
9164 TYPE_LENGTH (value_type (v)));
9165
9166 if (transferred != TYPE_LENGTH (value_type (v)))
9167 error (_("Unable to read siginfo"));
9168 }
9169
9170 /* This function implements the lval_computed support for writing a
9171 $_siginfo value. */
9172
9173 static void
9174 siginfo_value_write (struct value *v, struct value *fromval)
9175 {
9176 LONGEST transferred;
9177
9178 /* If we can access registers, so can we access $_siginfo. Likewise
9179 vice versa. */
9180 validate_registers_access ();
9181
9182 transferred = target_write (current_inferior ()->top_target (),
9183 TARGET_OBJECT_SIGNAL_INFO,
9184 NULL,
9185 value_contents_all_raw (fromval).data (),
9186 value_offset (v),
9187 TYPE_LENGTH (value_type (fromval)));
9188
9189 if (transferred != TYPE_LENGTH (value_type (fromval)))
9190 error (_("Unable to write siginfo"));
9191 }
9192
9193 static const struct lval_funcs siginfo_value_funcs =
9194 {
9195 siginfo_value_read,
9196 siginfo_value_write
9197 };
9198
9199 /* Return a new value with the correct type for the siginfo object of
9200 the current thread using architecture GDBARCH. Return a void value
9201 if there's no object available. */
9202
9203 static struct value *
9204 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9205 void *ignore)
9206 {
9207 if (target_has_stack ()
9208 && inferior_ptid != null_ptid
9209 && gdbarch_get_siginfo_type_p (gdbarch))
9210 {
9211 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9212
9213 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
9214 }
9215
9216 return allocate_value (builtin_type (gdbarch)->builtin_void);
9217 }
9218
9219 \f
9220 /* infcall_suspend_state contains state about the program itself like its
9221 registers and any signal it received when it last stopped.
9222 This state must be restored regardless of how the inferior function call
9223 ends (either successfully, or after it hits a breakpoint or signal)
9224 if the program is to properly continue where it left off. */
9225
9226 class infcall_suspend_state
9227 {
9228 public:
9229 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9230 once the inferior function call has finished. */
9231 infcall_suspend_state (struct gdbarch *gdbarch,
9232 const struct thread_info *tp,
9233 struct regcache *regcache)
9234 : m_registers (new readonly_detached_regcache (*regcache))
9235 {
9236 tp->save_suspend_to (m_thread_suspend);
9237
9238 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9239
9240 if (gdbarch_get_siginfo_type_p (gdbarch))
9241 {
9242 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9243 size_t len = TYPE_LENGTH (type);
9244
9245 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9246
9247 if (target_read (current_inferior ()->top_target (),
9248 TARGET_OBJECT_SIGNAL_INFO, NULL,
9249 siginfo_data.get (), 0, len) != len)
9250 {
9251 /* Errors ignored. */
9252 siginfo_data.reset (nullptr);
9253 }
9254 }
9255
9256 if (siginfo_data)
9257 {
9258 m_siginfo_gdbarch = gdbarch;
9259 m_siginfo_data = std::move (siginfo_data);
9260 }
9261 }
9262
9263 /* Return a pointer to the stored register state. */
9264
9265 readonly_detached_regcache *registers () const
9266 {
9267 return m_registers.get ();
9268 }
9269
9270 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9271
9272 void restore (struct gdbarch *gdbarch,
9273 struct thread_info *tp,
9274 struct regcache *regcache) const
9275 {
9276 tp->restore_suspend_from (m_thread_suspend);
9277
9278 if (m_siginfo_gdbarch == gdbarch)
9279 {
9280 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9281
9282 /* Errors ignored. */
9283 target_write (current_inferior ()->top_target (),
9284 TARGET_OBJECT_SIGNAL_INFO, NULL,
9285 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9286 }
9287
9288 /* The inferior can be gone if the user types "print exit(0)"
9289 (and perhaps other times). */
9290 if (target_has_execution ())
9291 /* NB: The register write goes through to the target. */
9292 regcache->restore (registers ());
9293 }
9294
9295 private:
9296 /* How the current thread stopped before the inferior function call was
9297 executed. */
9298 struct thread_suspend_state m_thread_suspend;
9299
9300 /* The registers before the inferior function call was executed. */
9301 std::unique_ptr<readonly_detached_regcache> m_registers;
9302
9303 /* Format of SIGINFO_DATA or NULL if it is not present. */
9304 struct gdbarch *m_siginfo_gdbarch = nullptr;
9305
9306 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9307 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9308 content would be invalid. */
9309 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
9310 };
9311
9312 infcall_suspend_state_up
9313 save_infcall_suspend_state ()
9314 {
9315 struct thread_info *tp = inferior_thread ();
9316 struct regcache *regcache = get_current_regcache ();
9317 struct gdbarch *gdbarch = regcache->arch ();
9318
9319 infcall_suspend_state_up inf_state
9320 (new struct infcall_suspend_state (gdbarch, tp, regcache));
9321
9322 /* Having saved the current state, adjust the thread state, discarding
9323 any stop signal information. The stop signal is not useful when
9324 starting an inferior function call, and run_inferior_call will not use
9325 the signal due to its `proceed' call with GDB_SIGNAL_0. */
9326 tp->set_stop_signal (GDB_SIGNAL_0);
9327
9328 return inf_state;
9329 }
9330
9331 /* Restore inferior session state to INF_STATE. */
9332
9333 void
9334 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9335 {
9336 struct thread_info *tp = inferior_thread ();
9337 struct regcache *regcache = get_current_regcache ();
9338 struct gdbarch *gdbarch = regcache->arch ();
9339
9340 inf_state->restore (gdbarch, tp, regcache);
9341 discard_infcall_suspend_state (inf_state);
9342 }
9343
9344 void
9345 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9346 {
9347 delete inf_state;
9348 }
9349
9350 readonly_detached_regcache *
9351 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9352 {
9353 return inf_state->registers ();
9354 }
9355
9356 /* infcall_control_state contains state regarding gdb's control of the
9357 inferior itself like stepping control. It also contains session state like
9358 the user's currently selected frame. */
9359
9360 struct infcall_control_state
9361 {
9362 struct thread_control_state thread_control;
9363 struct inferior_control_state inferior_control;
9364
9365 /* Other fields: */
9366 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9367 int stopped_by_random_signal = 0;
9368
9369 /* ID and level of the selected frame when the inferior function
9370 call was made. */
9371 struct frame_id selected_frame_id {};
9372 int selected_frame_level = -1;
9373 };
9374
9375 /* Save all of the information associated with the inferior<==>gdb
9376 connection. */
9377
9378 infcall_control_state_up
9379 save_infcall_control_state ()
9380 {
9381 infcall_control_state_up inf_status (new struct infcall_control_state);
9382 struct thread_info *tp = inferior_thread ();
9383 struct inferior *inf = current_inferior ();
9384
9385 inf_status->thread_control = tp->control;
9386 inf_status->inferior_control = inf->control;
9387
9388 tp->control.step_resume_breakpoint = NULL;
9389 tp->control.exception_resume_breakpoint = NULL;
9390
9391 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9392 chain. If caller's caller is walking the chain, they'll be happier if we
9393 hand them back the original chain when restore_infcall_control_state is
9394 called. */
9395 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9396
9397 /* Other fields: */
9398 inf_status->stop_stack_dummy = stop_stack_dummy;
9399 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9400
9401 save_selected_frame (&inf_status->selected_frame_id,
9402 &inf_status->selected_frame_level);
9403
9404 return inf_status;
9405 }
9406
9407 /* Restore inferior session state to INF_STATUS. */
9408
9409 void
9410 restore_infcall_control_state (struct infcall_control_state *inf_status)
9411 {
9412 struct thread_info *tp = inferior_thread ();
9413 struct inferior *inf = current_inferior ();
9414
9415 if (tp->control.step_resume_breakpoint)
9416 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9417
9418 if (tp->control.exception_resume_breakpoint)
9419 tp->control.exception_resume_breakpoint->disposition
9420 = disp_del_at_next_stop;
9421
9422 /* Handle the bpstat_copy of the chain. */
9423 bpstat_clear (&tp->control.stop_bpstat);
9424
9425 tp->control = inf_status->thread_control;
9426 inf->control = inf_status->inferior_control;
9427
9428 /* Other fields: */
9429 stop_stack_dummy = inf_status->stop_stack_dummy;
9430 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9431
9432 if (target_has_stack ())
9433 {
9434 restore_selected_frame (inf_status->selected_frame_id,
9435 inf_status->selected_frame_level);
9436 }
9437
9438 delete inf_status;
9439 }
9440
9441 void
9442 discard_infcall_control_state (struct infcall_control_state *inf_status)
9443 {
9444 if (inf_status->thread_control.step_resume_breakpoint)
9445 inf_status->thread_control.step_resume_breakpoint->disposition
9446 = disp_del_at_next_stop;
9447
9448 if (inf_status->thread_control.exception_resume_breakpoint)
9449 inf_status->thread_control.exception_resume_breakpoint->disposition
9450 = disp_del_at_next_stop;
9451
9452 /* See save_infcall_control_state for info on stop_bpstat. */
9453 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9454
9455 delete inf_status;
9456 }
9457 \f
9458 /* See infrun.h. */
9459
9460 void
9461 clear_exit_convenience_vars (void)
9462 {
9463 clear_internalvar (lookup_internalvar ("_exitsignal"));
9464 clear_internalvar (lookup_internalvar ("_exitcode"));
9465 }
9466 \f
9467
9468 /* User interface for reverse debugging:
9469 Set exec-direction / show exec-direction commands
9470 (returns error unless target implements to_set_exec_direction method). */
9471
9472 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9473 static const char exec_forward[] = "forward";
9474 static const char exec_reverse[] = "reverse";
9475 static const char *exec_direction = exec_forward;
9476 static const char *const exec_direction_names[] = {
9477 exec_forward,
9478 exec_reverse,
9479 NULL
9480 };
9481
9482 static void
9483 set_exec_direction_func (const char *args, int from_tty,
9484 struct cmd_list_element *cmd)
9485 {
9486 if (target_can_execute_reverse ())
9487 {
9488 if (!strcmp (exec_direction, exec_forward))
9489 execution_direction = EXEC_FORWARD;
9490 else if (!strcmp (exec_direction, exec_reverse))
9491 execution_direction = EXEC_REVERSE;
9492 }
9493 else
9494 {
9495 exec_direction = exec_forward;
9496 error (_("Target does not support this operation."));
9497 }
9498 }
9499
9500 static void
9501 show_exec_direction_func (struct ui_file *out, int from_tty,
9502 struct cmd_list_element *cmd, const char *value)
9503 {
9504 switch (execution_direction) {
9505 case EXEC_FORWARD:
9506 gdb_printf (out, _("Forward.\n"));
9507 break;
9508 case EXEC_REVERSE:
9509 gdb_printf (out, _("Reverse.\n"));
9510 break;
9511 default:
9512 internal_error (__FILE__, __LINE__,
9513 _("bogus execution_direction value: %d"),
9514 (int) execution_direction);
9515 }
9516 }
9517
9518 static void
9519 show_schedule_multiple (struct ui_file *file, int from_tty,
9520 struct cmd_list_element *c, const char *value)
9521 {
9522 gdb_printf (file, _("Resuming the execution of threads "
9523 "of all processes is %s.\n"), value);
9524 }
9525
9526 /* Implementation of `siginfo' variable. */
9527
9528 static const struct internalvar_funcs siginfo_funcs =
9529 {
9530 siginfo_make_value,
9531 NULL,
9532 };
9533
9534 /* Callback for infrun's target events source. This is marked when a
9535 thread has a pending status to process. */
9536
9537 static void
9538 infrun_async_inferior_event_handler (gdb_client_data data)
9539 {
9540 clear_async_event_handler (infrun_async_inferior_event_token);
9541 inferior_event_handler (INF_REG_EVENT);
9542 }
9543
9544 #if GDB_SELF_TEST
9545 namespace selftests
9546 {
9547
9548 /* Verify that when two threads with the same ptid exist (from two different
9549 targets) and one of them changes ptid, we only update inferior_ptid if
9550 it is appropriate. */
9551
9552 static void
9553 infrun_thread_ptid_changed ()
9554 {
9555 gdbarch *arch = current_inferior ()->gdbarch;
9556
9557 /* The thread which inferior_ptid represents changes ptid. */
9558 {
9559 scoped_restore_current_pspace_and_thread restore;
9560
9561 scoped_mock_context<test_target_ops> target1 (arch);
9562 scoped_mock_context<test_target_ops> target2 (arch);
9563
9564 ptid_t old_ptid (111, 222);
9565 ptid_t new_ptid (111, 333);
9566
9567 target1.mock_inferior.pid = old_ptid.pid ();
9568 target1.mock_thread.ptid = old_ptid;
9569 target1.mock_inferior.ptid_thread_map.clear ();
9570 target1.mock_inferior.ptid_thread_map[old_ptid] = &target1.mock_thread;
9571
9572 target2.mock_inferior.pid = old_ptid.pid ();
9573 target2.mock_thread.ptid = old_ptid;
9574 target2.mock_inferior.ptid_thread_map.clear ();
9575 target2.mock_inferior.ptid_thread_map[old_ptid] = &target2.mock_thread;
9576
9577 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9578 set_current_inferior (&target1.mock_inferior);
9579
9580 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9581
9582 gdb_assert (inferior_ptid == new_ptid);
9583 }
9584
9585 /* A thread with the same ptid as inferior_ptid, but from another target,
9586 changes ptid. */
9587 {
9588 scoped_restore_current_pspace_and_thread restore;
9589
9590 scoped_mock_context<test_target_ops> target1 (arch);
9591 scoped_mock_context<test_target_ops> target2 (arch);
9592
9593 ptid_t old_ptid (111, 222);
9594 ptid_t new_ptid (111, 333);
9595
9596 target1.mock_inferior.pid = old_ptid.pid ();
9597 target1.mock_thread.ptid = old_ptid;
9598 target1.mock_inferior.ptid_thread_map.clear ();
9599 target1.mock_inferior.ptid_thread_map[old_ptid] = &target1.mock_thread;
9600
9601 target2.mock_inferior.pid = old_ptid.pid ();
9602 target2.mock_thread.ptid = old_ptid;
9603 target2.mock_inferior.ptid_thread_map.clear ();
9604 target2.mock_inferior.ptid_thread_map[old_ptid] = &target2.mock_thread;
9605
9606 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9607 set_current_inferior (&target2.mock_inferior);
9608
9609 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9610
9611 gdb_assert (inferior_ptid == old_ptid);
9612 }
9613 }
9614
9615 } /* namespace selftests */
9616
9617 #endif /* GDB_SELF_TEST */
9618
9619 void _initialize_infrun ();
9620 void
9621 _initialize_infrun ()
9622 {
9623 struct cmd_list_element *c;
9624
9625 /* Register extra event sources in the event loop. */
9626 infrun_async_inferior_event_token
9627 = create_async_event_handler (infrun_async_inferior_event_handler, NULL,
9628 "infrun");
9629
9630 cmd_list_element *info_signals_cmd
9631 = add_info ("signals", info_signals_command, _("\
9632 What debugger does when program gets various signals.\n\
9633 Specify a signal as argument to print info on that signal only."));
9634 add_info_alias ("handle", info_signals_cmd, 0);
9635
9636 c = add_com ("handle", class_run, handle_command, _("\
9637 Specify how to handle signals.\n\
9638 Usage: handle SIGNAL [ACTIONS]\n\
9639 Args are signals and actions to apply to those signals.\n\
9640 If no actions are specified, the current settings for the specified signals\n\
9641 will be displayed instead.\n\
9642 \n\
9643 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9644 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9645 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9646 The special arg \"all\" is recognized to mean all signals except those\n\
9647 used by the debugger, typically SIGTRAP and SIGINT.\n\
9648 \n\
9649 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9650 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9651 Stop means reenter debugger if this signal happens (implies print).\n\
9652 Print means print a message if this signal happens.\n\
9653 Pass means let program see this signal; otherwise program doesn't know.\n\
9654 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9655 Pass and Stop may be combined.\n\
9656 \n\
9657 Multiple signals may be specified. Signal numbers and signal names\n\
9658 may be interspersed with actions, with the actions being performed for\n\
9659 all signals cumulatively specified."));
9660 set_cmd_completer (c, handle_completer);
9661
9662 stop_command = add_cmd ("stop", class_obscure,
9663 not_just_help_class_command, _("\
9664 There is no `stop' command, but you can set a hook on `stop'.\n\
9665 This allows you to set a list of commands to be run each time execution\n\
9666 of the program stops."), &cmdlist);
9667
9668 add_setshow_boolean_cmd
9669 ("infrun", class_maintenance, &debug_infrun,
9670 _("Set inferior debugging."),
9671 _("Show inferior debugging."),
9672 _("When non-zero, inferior specific debugging is enabled."),
9673 NULL, show_debug_infrun, &setdebuglist, &showdebuglist);
9674
9675 add_setshow_boolean_cmd ("non-stop", no_class,
9676 &non_stop_1, _("\
9677 Set whether gdb controls the inferior in non-stop mode."), _("\
9678 Show whether gdb controls the inferior in non-stop mode."), _("\
9679 When debugging a multi-threaded program and this setting is\n\
9680 off (the default, also called all-stop mode), when one thread stops\n\
9681 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9682 all other threads in the program while you interact with the thread of\n\
9683 interest. When you continue or step a thread, you can allow the other\n\
9684 threads to run, or have them remain stopped, but while you inspect any\n\
9685 thread's state, all threads stop.\n\
9686 \n\
9687 In non-stop mode, when one thread stops, other threads can continue\n\
9688 to run freely. You'll be able to step each thread independently,\n\
9689 leave it stopped or free to run as needed."),
9690 set_non_stop,
9691 show_non_stop,
9692 &setlist,
9693 &showlist);
9694
9695 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9696 {
9697 signal_stop[i] = 1;
9698 signal_print[i] = 1;
9699 signal_program[i] = 1;
9700 signal_catch[i] = 0;
9701 }
9702
9703 /* Signals caused by debugger's own actions should not be given to
9704 the program afterwards.
9705
9706 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9707 explicitly specifies that it should be delivered to the target
9708 program. Typically, that would occur when a user is debugging a
9709 target monitor on a simulator: the target monitor sets a
9710 breakpoint; the simulator encounters this breakpoint and halts
9711 the simulation handing control to GDB; GDB, noting that the stop
9712 address doesn't map to any known breakpoint, returns control back
9713 to the simulator; the simulator then delivers the hardware
9714 equivalent of a GDB_SIGNAL_TRAP to the program being
9715 debugged. */
9716 signal_program[GDB_SIGNAL_TRAP] = 0;
9717 signal_program[GDB_SIGNAL_INT] = 0;
9718
9719 /* Signals that are not errors should not normally enter the debugger. */
9720 signal_stop[GDB_SIGNAL_ALRM] = 0;
9721 signal_print[GDB_SIGNAL_ALRM] = 0;
9722 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9723 signal_print[GDB_SIGNAL_VTALRM] = 0;
9724 signal_stop[GDB_SIGNAL_PROF] = 0;
9725 signal_print[GDB_SIGNAL_PROF] = 0;
9726 signal_stop[GDB_SIGNAL_CHLD] = 0;
9727 signal_print[GDB_SIGNAL_CHLD] = 0;
9728 signal_stop[GDB_SIGNAL_IO] = 0;
9729 signal_print[GDB_SIGNAL_IO] = 0;
9730 signal_stop[GDB_SIGNAL_POLL] = 0;
9731 signal_print[GDB_SIGNAL_POLL] = 0;
9732 signal_stop[GDB_SIGNAL_URG] = 0;
9733 signal_print[GDB_SIGNAL_URG] = 0;
9734 signal_stop[GDB_SIGNAL_WINCH] = 0;
9735 signal_print[GDB_SIGNAL_WINCH] = 0;
9736 signal_stop[GDB_SIGNAL_PRIO] = 0;
9737 signal_print[GDB_SIGNAL_PRIO] = 0;
9738
9739 /* These signals are used internally by user-level thread
9740 implementations. (See signal(5) on Solaris.) Like the above
9741 signals, a healthy program receives and handles them as part of
9742 its normal operation. */
9743 signal_stop[GDB_SIGNAL_LWP] = 0;
9744 signal_print[GDB_SIGNAL_LWP] = 0;
9745 signal_stop[GDB_SIGNAL_WAITING] = 0;
9746 signal_print[GDB_SIGNAL_WAITING] = 0;
9747 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9748 signal_print[GDB_SIGNAL_CANCEL] = 0;
9749 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9750 signal_print[GDB_SIGNAL_LIBRT] = 0;
9751
9752 /* Update cached state. */
9753 signal_cache_update (-1);
9754
9755 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9756 &stop_on_solib_events, _("\
9757 Set stopping for shared library events."), _("\
9758 Show stopping for shared library events."), _("\
9759 If nonzero, gdb will give control to the user when the dynamic linker\n\
9760 notifies gdb of shared library events. The most common event of interest\n\
9761 to the user would be loading/unloading of a new library."),
9762 set_stop_on_solib_events,
9763 show_stop_on_solib_events,
9764 &setlist, &showlist);
9765
9766 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9767 follow_fork_mode_kind_names,
9768 &follow_fork_mode_string, _("\
9769 Set debugger response to a program call of fork or vfork."), _("\
9770 Show debugger response to a program call of fork or vfork."), _("\
9771 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9772 parent - the original process is debugged after a fork\n\
9773 child - the new process is debugged after a fork\n\
9774 The unfollowed process will continue to run.\n\
9775 By default, the debugger will follow the parent process."),
9776 NULL,
9777 show_follow_fork_mode_string,
9778 &setlist, &showlist);
9779
9780 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9781 follow_exec_mode_names,
9782 &follow_exec_mode_string, _("\
9783 Set debugger response to a program call of exec."), _("\
9784 Show debugger response to a program call of exec."), _("\
9785 An exec call replaces the program image of a process.\n\
9786 \n\
9787 follow-exec-mode can be:\n\
9788 \n\
9789 new - the debugger creates a new inferior and rebinds the process\n\
9790 to this new inferior. The program the process was running before\n\
9791 the exec call can be restarted afterwards by restarting the original\n\
9792 inferior.\n\
9793 \n\
9794 same - the debugger keeps the process bound to the same inferior.\n\
9795 The new executable image replaces the previous executable loaded in\n\
9796 the inferior. Restarting the inferior after the exec call restarts\n\
9797 the executable the process was running after the exec call.\n\
9798 \n\
9799 By default, the debugger will use the same inferior."),
9800 NULL,
9801 show_follow_exec_mode_string,
9802 &setlist, &showlist);
9803
9804 add_setshow_enum_cmd ("scheduler-locking", class_run,
9805 scheduler_enums, &scheduler_mode, _("\
9806 Set mode for locking scheduler during execution."), _("\
9807 Show mode for locking scheduler during execution."), _("\
9808 off == no locking (threads may preempt at any time)\n\
9809 on == full locking (no thread except the current thread may run)\n\
9810 This applies to both normal execution and replay mode.\n\
9811 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9812 In this mode, other threads may run during other commands.\n\
9813 This applies to both normal execution and replay mode.\n\
9814 replay == scheduler locked in replay mode and unlocked during normal execution."),
9815 set_schedlock_func, /* traps on target vector */
9816 show_scheduler_mode,
9817 &setlist, &showlist);
9818
9819 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9820 Set mode for resuming threads of all processes."), _("\
9821 Show mode for resuming threads of all processes."), _("\
9822 When on, execution commands (such as 'continue' or 'next') resume all\n\
9823 threads of all processes. When off (which is the default), execution\n\
9824 commands only resume the threads of the current process. The set of\n\
9825 threads that are resumed is further refined by the scheduler-locking\n\
9826 mode (see help set scheduler-locking)."),
9827 NULL,
9828 show_schedule_multiple,
9829 &setlist, &showlist);
9830
9831 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9832 Set mode of the step operation."), _("\
9833 Show mode of the step operation."), _("\
9834 When set, doing a step over a function without debug line information\n\
9835 will stop at the first instruction of that function. Otherwise, the\n\
9836 function is skipped and the step command stops at a different source line."),
9837 NULL,
9838 show_step_stop_if_no_debug,
9839 &setlist, &showlist);
9840
9841 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9842 &can_use_displaced_stepping, _("\
9843 Set debugger's willingness to use displaced stepping."), _("\
9844 Show debugger's willingness to use displaced stepping."), _("\
9845 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9846 supported by the target architecture. If off, gdb will not use displaced\n\
9847 stepping to step over breakpoints, even if such is supported by the target\n\
9848 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9849 if the target architecture supports it and non-stop mode is active, but will not\n\
9850 use it in all-stop mode (see help set non-stop)."),
9851 NULL,
9852 show_can_use_displaced_stepping,
9853 &setlist, &showlist);
9854
9855 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9856 &exec_direction, _("Set direction of execution.\n\
9857 Options are 'forward' or 'reverse'."),
9858 _("Show direction of execution (forward/reverse)."),
9859 _("Tells gdb whether to execute forward or backward."),
9860 set_exec_direction_func, show_exec_direction_func,
9861 &setlist, &showlist);
9862
9863 /* Set/show detach-on-fork: user-settable mode. */
9864
9865 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9866 Set whether gdb will detach the child of a fork."), _("\
9867 Show whether gdb will detach the child of a fork."), _("\
9868 Tells gdb whether to detach the child of a fork."),
9869 NULL, NULL, &setlist, &showlist);
9870
9871 /* Set/show disable address space randomization mode. */
9872
9873 add_setshow_boolean_cmd ("disable-randomization", class_support,
9874 &disable_randomization, _("\
9875 Set disabling of debuggee's virtual address space randomization."), _("\
9876 Show disabling of debuggee's virtual address space randomization."), _("\
9877 When this mode is on (which is the default), randomization of the virtual\n\
9878 address space is disabled. Standalone programs run with the randomization\n\
9879 enabled by default on some platforms."),
9880 &set_disable_randomization,
9881 &show_disable_randomization,
9882 &setlist, &showlist);
9883
9884 /* ptid initializations */
9885 inferior_ptid = null_ptid;
9886 target_last_wait_ptid = minus_one_ptid;
9887
9888 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed,
9889 "infrun");
9890 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested,
9891 "infrun");
9892 gdb::observers::thread_exit.attach (infrun_thread_thread_exit, "infrun");
9893 gdb::observers::inferior_exit.attach (infrun_inferior_exit, "infrun");
9894 gdb::observers::inferior_execd.attach (infrun_inferior_execd, "infrun");
9895
9896 /* Explicitly create without lookup, since that tries to create a
9897 value with a void typed value, and when we get here, gdbarch
9898 isn't initialized yet. At this point, we're quite sure there
9899 isn't another convenience variable of the same name. */
9900 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9901
9902 add_setshow_boolean_cmd ("observer", no_class,
9903 &observer_mode_1, _("\
9904 Set whether gdb controls the inferior in observer mode."), _("\
9905 Show whether gdb controls the inferior in observer mode."), _("\
9906 In observer mode, GDB can get data from the inferior, but not\n\
9907 affect its execution. Registers and memory may not be changed,\n\
9908 breakpoints may not be set, and the program cannot be interrupted\n\
9909 or signalled."),
9910 set_observer_mode,
9911 show_observer_mode,
9912 &setlist,
9913 &showlist);
9914
9915 #if GDB_SELF_TEST
9916 selftests::register_test ("infrun_thread_ptid_changed",
9917 selftests::infrun_thread_ptid_changed);
9918 #endif
9919 }