2003-03-29 Andrew Cagney <cagney@redhat.com>
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
6 Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "breakpoint.h"
32 #include "gdb_wait.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "cli/cli-script.h"
36 #include "target.h"
37 #include "gdbthread.h"
38 #include "annotate.h"
39 #include "symfile.h"
40 #include "top.h"
41 #include <signal.h>
42 #include "inf-loop.h"
43 #include "regcache.h"
44 #include "value.h"
45 #include "observer.h"
46 #include "language.h"
47
48 /* Prototypes for local functions */
49
50 static void signals_info (char *, int);
51
52 static void handle_command (char *, int);
53
54 static void sig_print_info (enum target_signal);
55
56 static void sig_print_header (void);
57
58 static void resume_cleanups (void *);
59
60 static int hook_stop_stub (void *);
61
62 static void delete_breakpoint_current_contents (void *);
63
64 static void set_follow_fork_mode_command (char *arg, int from_tty,
65 struct cmd_list_element *c);
66
67 static int restore_selected_frame (void *);
68
69 static void build_infrun (void);
70
71 static int follow_fork (void);
72
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
75
76 struct execution_control_state;
77
78 static int currently_stepping (struct execution_control_state *ecs);
79
80 static void xdb_handle_command (char *args, int from_tty);
81
82 void _initialize_infrun (void);
83
84 int inferior_ignoring_startup_exec_events = 0;
85 int inferior_ignoring_leading_exec_events = 0;
86
87 /* When set, stop the 'step' command if we enter a function which has
88 no line number information. The normal behavior is that we step
89 over such function. */
90 int step_stop_if_no_debug = 0;
91
92 /* In asynchronous mode, but simulating synchronous execution. */
93
94 int sync_execution = 0;
95
96 /* wait_for_inferior and normal_stop use this to notify the user
97 when the inferior stopped in a different thread than it had been
98 running in. */
99
100 static ptid_t previous_inferior_ptid;
101
102 /* This is true for configurations that may follow through execl() and
103 similar functions. At present this is only true for HP-UX native. */
104
105 #ifndef MAY_FOLLOW_EXEC
106 #define MAY_FOLLOW_EXEC (0)
107 #endif
108
109 static int may_follow_exec = MAY_FOLLOW_EXEC;
110
111 /* If the program uses ELF-style shared libraries, then calls to
112 functions in shared libraries go through stubs, which live in a
113 table called the PLT (Procedure Linkage Table). The first time the
114 function is called, the stub sends control to the dynamic linker,
115 which looks up the function's real address, patches the stub so
116 that future calls will go directly to the function, and then passes
117 control to the function.
118
119 If we are stepping at the source level, we don't want to see any of
120 this --- we just want to skip over the stub and the dynamic linker.
121 The simple approach is to single-step until control leaves the
122 dynamic linker.
123
124 However, on some systems (e.g., Red Hat's 5.2 distribution) the
125 dynamic linker calls functions in the shared C library, so you
126 can't tell from the PC alone whether the dynamic linker is still
127 running. In this case, we use a step-resume breakpoint to get us
128 past the dynamic linker, as if we were using "next" to step over a
129 function call.
130
131 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
132 linker code or not. Normally, this means we single-step. However,
133 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
134 address where we can place a step-resume breakpoint to get past the
135 linker's symbol resolution function.
136
137 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
138 pretty portable way, by comparing the PC against the address ranges
139 of the dynamic linker's sections.
140
141 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
142 it depends on internal details of the dynamic linker. It's usually
143 not too hard to figure out where to put a breakpoint, but it
144 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
145 sanity checking. If it can't figure things out, returning zero and
146 getting the (possibly confusing) stepping behavior is better than
147 signalling an error, which will obscure the change in the
148 inferior's state. */
149
150 #ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
151 #define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
152 #endif
153
154 #ifndef SKIP_SOLIB_RESOLVER
155 #define SKIP_SOLIB_RESOLVER(pc) 0
156 #endif
157
158 /* This function returns TRUE if pc is the address of an instruction
159 that lies within the dynamic linker (such as the event hook, or the
160 dld itself).
161
162 This function must be used only when a dynamic linker event has
163 been caught, and the inferior is being stepped out of the hook, or
164 undefined results are guaranteed. */
165
166 #ifndef SOLIB_IN_DYNAMIC_LINKER
167 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
168 #endif
169
170 /* On MIPS16, a function that returns a floating point value may call
171 a library helper function to copy the return value to a floating point
172 register. The IGNORE_HELPER_CALL macro returns non-zero if we
173 should ignore (i.e. step over) this function call. */
174 #ifndef IGNORE_HELPER_CALL
175 #define IGNORE_HELPER_CALL(pc) 0
176 #endif
177
178 /* On some systems, the PC may be left pointing at an instruction that won't
179 actually be executed. This is usually indicated by a bit in the PSW. If
180 we find ourselves in such a state, then we step the target beyond the
181 nullified instruction before returning control to the user so as to avoid
182 confusion. */
183
184 #ifndef INSTRUCTION_NULLIFIED
185 #define INSTRUCTION_NULLIFIED 0
186 #endif
187
188 /* We can't step off a permanent breakpoint in the ordinary way, because we
189 can't remove it. Instead, we have to advance the PC to the next
190 instruction. This macro should expand to a pointer to a function that
191 does that, or zero if we have no such function. If we don't have a
192 definition for it, we have to report an error. */
193 #ifndef SKIP_PERMANENT_BREAKPOINT
194 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
195 static void
196 default_skip_permanent_breakpoint (void)
197 {
198 error ("\
199 The program is stopped at a permanent breakpoint, but GDB does not know\n\
200 how to step past a permanent breakpoint on this architecture. Try using\n\
201 a command like `return' or `jump' to continue execution.");
202 }
203 #endif
204
205
206 /* Convert the #defines into values. This is temporary until wfi control
207 flow is completely sorted out. */
208
209 #ifndef HAVE_STEPPABLE_WATCHPOINT
210 #define HAVE_STEPPABLE_WATCHPOINT 0
211 #else
212 #undef HAVE_STEPPABLE_WATCHPOINT
213 #define HAVE_STEPPABLE_WATCHPOINT 1
214 #endif
215
216 #ifndef CANNOT_STEP_HW_WATCHPOINTS
217 #define CANNOT_STEP_HW_WATCHPOINTS 0
218 #else
219 #undef CANNOT_STEP_HW_WATCHPOINTS
220 #define CANNOT_STEP_HW_WATCHPOINTS 1
221 #endif
222
223 /* Tables of how to react to signals; the user sets them. */
224
225 static unsigned char *signal_stop;
226 static unsigned char *signal_print;
227 static unsigned char *signal_program;
228
229 #define SET_SIGS(nsigs,sigs,flags) \
230 do { \
231 int signum = (nsigs); \
232 while (signum-- > 0) \
233 if ((sigs)[signum]) \
234 (flags)[signum] = 1; \
235 } while (0)
236
237 #define UNSET_SIGS(nsigs,sigs,flags) \
238 do { \
239 int signum = (nsigs); \
240 while (signum-- > 0) \
241 if ((sigs)[signum]) \
242 (flags)[signum] = 0; \
243 } while (0)
244
245 /* Value to pass to target_resume() to cause all threads to resume */
246
247 #define RESUME_ALL (pid_to_ptid (-1))
248
249 /* Command list pointer for the "stop" placeholder. */
250
251 static struct cmd_list_element *stop_command;
252
253 /* Nonzero if breakpoints are now inserted in the inferior. */
254
255 static int breakpoints_inserted;
256
257 /* Function inferior was in as of last step command. */
258
259 static struct symbol *step_start_function;
260
261 /* Nonzero if we are expecting a trace trap and should proceed from it. */
262
263 static int trap_expected;
264
265 #ifdef SOLIB_ADD
266 /* Nonzero if we want to give control to the user when we're notified
267 of shared library events by the dynamic linker. */
268 static int stop_on_solib_events;
269 #endif
270
271 #ifdef HP_OS_BUG
272 /* Nonzero if the next time we try to continue the inferior, it will
273 step one instruction and generate a spurious trace trap.
274 This is used to compensate for a bug in HP-UX. */
275
276 static int trap_expected_after_continue;
277 #endif
278
279 /* Nonzero means expecting a trace trap
280 and should stop the inferior and return silently when it happens. */
281
282 int stop_after_trap;
283
284 /* Nonzero means expecting a trap and caller will handle it themselves.
285 It is used after attach, due to attaching to a process;
286 when running in the shell before the child program has been exec'd;
287 and when running some kinds of remote stuff (FIXME?). */
288
289 int stop_soon_quietly;
290
291 /* Nonzero if proceed is being used for a "finish" command or a similar
292 situation when stop_registers should be saved. */
293
294 int proceed_to_finish;
295
296 /* Save register contents here when about to pop a stack dummy frame,
297 if-and-only-if proceed_to_finish is set.
298 Thus this contains the return value from the called function (assuming
299 values are returned in a register). */
300
301 struct regcache *stop_registers;
302
303 /* Nonzero if program stopped due to error trying to insert breakpoints. */
304
305 static int breakpoints_failed;
306
307 /* Nonzero after stop if current stack frame should be printed. */
308
309 static int stop_print_frame;
310
311 static struct breakpoint *step_resume_breakpoint = NULL;
312 static struct breakpoint *through_sigtramp_breakpoint = NULL;
313
314 /* On some platforms (e.g., HP-UX), hardware watchpoints have bad
315 interactions with an inferior that is running a kernel function
316 (aka, a system call or "syscall"). wait_for_inferior therefore
317 may have a need to know when the inferior is in a syscall. This
318 is a count of the number of inferior threads which are known to
319 currently be running in a syscall. */
320 static int number_of_threads_in_syscalls;
321
322 /* This is a cached copy of the pid/waitstatus of the last event
323 returned by target_wait()/target_wait_hook(). This information is
324 returned by get_last_target_status(). */
325 static ptid_t target_last_wait_ptid;
326 static struct target_waitstatus target_last_waitstatus;
327
328 /* This is used to remember when a fork, vfork or exec event
329 was caught by a catchpoint, and thus the event is to be
330 followed at the next resume of the inferior, and not
331 immediately. */
332 static struct
333 {
334 enum target_waitkind kind;
335 struct
336 {
337 int parent_pid;
338 int child_pid;
339 }
340 fork_event;
341 char *execd_pathname;
342 }
343 pending_follow;
344
345 static const char follow_fork_mode_ask[] = "ask";
346 static const char follow_fork_mode_child[] = "child";
347 static const char follow_fork_mode_parent[] = "parent";
348
349 static const char *follow_fork_mode_kind_names[] = {
350 follow_fork_mode_ask,
351 follow_fork_mode_child,
352 follow_fork_mode_parent,
353 NULL
354 };
355
356 static const char *follow_fork_mode_string = follow_fork_mode_parent;
357 \f
358
359 static int
360 follow_fork (void)
361 {
362 const char *follow_mode = follow_fork_mode_string;
363 int follow_child = (follow_mode == follow_fork_mode_child);
364
365 /* Or, did the user not know, and want us to ask? */
366 if (follow_fork_mode_string == follow_fork_mode_ask)
367 {
368 internal_error (__FILE__, __LINE__,
369 "follow_inferior_fork: \"ask\" mode not implemented");
370 /* follow_mode = follow_fork_mode_...; */
371 }
372
373 return target_follow_fork (follow_child);
374 }
375
376 void
377 follow_inferior_reset_breakpoints (void)
378 {
379 /* Was there a step_resume breakpoint? (There was if the user
380 did a "next" at the fork() call.) If so, explicitly reset its
381 thread number.
382
383 step_resumes are a form of bp that are made to be per-thread.
384 Since we created the step_resume bp when the parent process
385 was being debugged, and now are switching to the child process,
386 from the breakpoint package's viewpoint, that's a switch of
387 "threads". We must update the bp's notion of which thread
388 it is for, or it'll be ignored when it triggers. */
389
390 if (step_resume_breakpoint)
391 breakpoint_re_set_thread (step_resume_breakpoint);
392
393 /* Reinsert all breakpoints in the child. The user may have set
394 breakpoints after catching the fork, in which case those
395 were never set in the child, but only in the parent. This makes
396 sure the inserted breakpoints match the breakpoint list. */
397
398 breakpoint_re_set ();
399 insert_breakpoints ();
400 }
401
402 /* EXECD_PATHNAME is assumed to be non-NULL. */
403
404 static void
405 follow_exec (int pid, char *execd_pathname)
406 {
407 int saved_pid = pid;
408 struct target_ops *tgt;
409
410 if (!may_follow_exec)
411 return;
412
413 /* This is an exec event that we actually wish to pay attention to.
414 Refresh our symbol table to the newly exec'd program, remove any
415 momentary bp's, etc.
416
417 If there are breakpoints, they aren't really inserted now,
418 since the exec() transformed our inferior into a fresh set
419 of instructions.
420
421 We want to preserve symbolic breakpoints on the list, since
422 we have hopes that they can be reset after the new a.out's
423 symbol table is read.
424
425 However, any "raw" breakpoints must be removed from the list
426 (e.g., the solib bp's), since their address is probably invalid
427 now.
428
429 And, we DON'T want to call delete_breakpoints() here, since
430 that may write the bp's "shadow contents" (the instruction
431 value that was overwritten witha TRAP instruction). Since
432 we now have a new a.out, those shadow contents aren't valid. */
433 update_breakpoints_after_exec ();
434
435 /* If there was one, it's gone now. We cannot truly step-to-next
436 statement through an exec(). */
437 step_resume_breakpoint = NULL;
438 step_range_start = 0;
439 step_range_end = 0;
440
441 /* If there was one, it's gone now. */
442 through_sigtramp_breakpoint = NULL;
443
444 /* What is this a.out's name? */
445 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
446
447 /* We've followed the inferior through an exec. Therefore, the
448 inferior has essentially been killed & reborn. */
449
450 /* First collect the run target in effect. */
451 tgt = find_run_target ();
452 /* If we can't find one, things are in a very strange state... */
453 if (tgt == NULL)
454 error ("Could find run target to save before following exec");
455
456 gdb_flush (gdb_stdout);
457 target_mourn_inferior ();
458 inferior_ptid = pid_to_ptid (saved_pid);
459 /* Because mourn_inferior resets inferior_ptid. */
460 push_target (tgt);
461
462 /* That a.out is now the one to use. */
463 exec_file_attach (execd_pathname, 0);
464
465 /* And also is where symbols can be found. */
466 symbol_file_add_main (execd_pathname, 0);
467
468 /* Reset the shared library package. This ensures that we get
469 a shlib event when the child reaches "_start", at which point
470 the dld will have had a chance to initialize the child. */
471 #if defined(SOLIB_RESTART)
472 SOLIB_RESTART ();
473 #endif
474 #ifdef SOLIB_CREATE_INFERIOR_HOOK
475 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
476 #endif
477
478 /* Reinsert all breakpoints. (Those which were symbolic have
479 been reset to the proper address in the new a.out, thanks
480 to symbol_file_command...) */
481 insert_breakpoints ();
482
483 /* The next resume of this inferior should bring it to the shlib
484 startup breakpoints. (If the user had also set bp's on
485 "main" from the old (parent) process, then they'll auto-
486 matically get reset there in the new process.) */
487 }
488
489 /* Non-zero if we just simulating a single-step. This is needed
490 because we cannot remove the breakpoints in the inferior process
491 until after the `wait' in `wait_for_inferior'. */
492 static int singlestep_breakpoints_inserted_p = 0;
493 \f
494
495 /* Things to clean up if we QUIT out of resume (). */
496 /* ARGSUSED */
497 static void
498 resume_cleanups (void *ignore)
499 {
500 normal_stop ();
501 }
502
503 static const char schedlock_off[] = "off";
504 static const char schedlock_on[] = "on";
505 static const char schedlock_step[] = "step";
506 static const char *scheduler_mode = schedlock_off;
507 static const char *scheduler_enums[] = {
508 schedlock_off,
509 schedlock_on,
510 schedlock_step,
511 NULL
512 };
513
514 static void
515 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
516 {
517 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
518 the set command passed as a parameter. The clone operation will
519 include (BUG?) any ``set'' command callback, if present.
520 Commands like ``info set'' call all the ``show'' command
521 callbacks. Unfortunatly, for ``show'' commands cloned from
522 ``set'', this includes callbacks belonging to ``set'' commands.
523 Making this worse, this only occures if add_show_from_set() is
524 called after add_cmd_sfunc() (BUG?). */
525 if (cmd_type (c) == set_cmd)
526 if (!target_can_lock_scheduler)
527 {
528 scheduler_mode = schedlock_off;
529 error ("Target '%s' cannot support this command.", target_shortname);
530 }
531 }
532
533
534 /* Resume the inferior, but allow a QUIT. This is useful if the user
535 wants to interrupt some lengthy single-stepping operation
536 (for child processes, the SIGINT goes to the inferior, and so
537 we get a SIGINT random_signal, but for remote debugging and perhaps
538 other targets, that's not true).
539
540 STEP nonzero if we should step (zero to continue instead).
541 SIG is the signal to give the inferior (zero for none). */
542 void
543 resume (int step, enum target_signal sig)
544 {
545 int should_resume = 1;
546 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
547 QUIT;
548
549 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
550
551
552 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
553 over an instruction that causes a page fault without triggering
554 a hardware watchpoint. The kernel properly notices that it shouldn't
555 stop, because the hardware watchpoint is not triggered, but it forgets
556 the step request and continues the program normally.
557 Work around the problem by removing hardware watchpoints if a step is
558 requested, GDB will check for a hardware watchpoint trigger after the
559 step anyway. */
560 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
561 remove_hw_watchpoints ();
562
563
564 /* Normally, by the time we reach `resume', the breakpoints are either
565 removed or inserted, as appropriate. The exception is if we're sitting
566 at a permanent breakpoint; we need to step over it, but permanent
567 breakpoints can't be removed. So we have to test for it here. */
568 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
569 SKIP_PERMANENT_BREAKPOINT ();
570
571 if (SOFTWARE_SINGLE_STEP_P () && step)
572 {
573 /* Do it the hard way, w/temp breakpoints */
574 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
575 /* ...and don't ask hardware to do it. */
576 step = 0;
577 /* and do not pull these breakpoints until after a `wait' in
578 `wait_for_inferior' */
579 singlestep_breakpoints_inserted_p = 1;
580 }
581
582 /* Handle any optimized stores to the inferior NOW... */
583 #ifdef DO_DEFERRED_STORES
584 DO_DEFERRED_STORES;
585 #endif
586
587 /* If there were any forks/vforks/execs that were caught and are
588 now to be followed, then do so. */
589 switch (pending_follow.kind)
590 {
591 case TARGET_WAITKIND_FORKED:
592 case TARGET_WAITKIND_VFORKED:
593 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
594 if (follow_fork ())
595 should_resume = 0;
596 break;
597
598 case TARGET_WAITKIND_EXECD:
599 /* follow_exec is called as soon as the exec event is seen. */
600 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
601 break;
602
603 default:
604 break;
605 }
606
607 /* Install inferior's terminal modes. */
608 target_terminal_inferior ();
609
610 if (should_resume)
611 {
612 ptid_t resume_ptid;
613
614 resume_ptid = RESUME_ALL; /* Default */
615
616 if ((step || singlestep_breakpoints_inserted_p) &&
617 !breakpoints_inserted && breakpoint_here_p (read_pc ()))
618 {
619 /* Stepping past a breakpoint without inserting breakpoints.
620 Make sure only the current thread gets to step, so that
621 other threads don't sneak past breakpoints while they are
622 not inserted. */
623
624 resume_ptid = inferior_ptid;
625 }
626
627 if ((scheduler_mode == schedlock_on) ||
628 (scheduler_mode == schedlock_step &&
629 (step || singlestep_breakpoints_inserted_p)))
630 {
631 /* User-settable 'scheduler' mode requires solo thread resume. */
632 resume_ptid = inferior_ptid;
633 }
634
635 if (CANNOT_STEP_BREAKPOINT)
636 {
637 /* Most targets can step a breakpoint instruction, thus
638 executing it normally. But if this one cannot, just
639 continue and we will hit it anyway. */
640 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
641 step = 0;
642 }
643 target_resume (resume_ptid, step, sig);
644 }
645
646 discard_cleanups (old_cleanups);
647 }
648 \f
649
650 /* Clear out all variables saying what to do when inferior is continued.
651 First do this, then set the ones you want, then call `proceed'. */
652
653 void
654 clear_proceed_status (void)
655 {
656 trap_expected = 0;
657 step_range_start = 0;
658 step_range_end = 0;
659 step_frame_id = null_frame_id;
660 step_over_calls = STEP_OVER_UNDEBUGGABLE;
661 stop_after_trap = 0;
662 stop_soon_quietly = 0;
663 proceed_to_finish = 0;
664 breakpoint_proceeded = 1; /* We're about to proceed... */
665
666 /* Discard any remaining commands or status from previous stop. */
667 bpstat_clear (&stop_bpstat);
668 }
669
670 /* Basic routine for continuing the program in various fashions.
671
672 ADDR is the address to resume at, or -1 for resume where stopped.
673 SIGGNAL is the signal to give it, or 0 for none,
674 or -1 for act according to how it stopped.
675 STEP is nonzero if should trap after one instruction.
676 -1 means return after that and print nothing.
677 You should probably set various step_... variables
678 before calling here, if you are stepping.
679
680 You should call clear_proceed_status before calling proceed. */
681
682 void
683 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
684 {
685 int oneproc = 0;
686
687 if (step > 0)
688 step_start_function = find_pc_function (read_pc ());
689 if (step < 0)
690 stop_after_trap = 1;
691
692 if (addr == (CORE_ADDR) -1)
693 {
694 /* If there is a breakpoint at the address we will resume at,
695 step one instruction before inserting breakpoints
696 so that we do not stop right away (and report a second
697 hit at this breakpoint). */
698
699 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
700 oneproc = 1;
701
702 #ifndef STEP_SKIPS_DELAY
703 #define STEP_SKIPS_DELAY(pc) (0)
704 #define STEP_SKIPS_DELAY_P (0)
705 #endif
706 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
707 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
708 is slow (it needs to read memory from the target). */
709 if (STEP_SKIPS_DELAY_P
710 && breakpoint_here_p (read_pc () + 4)
711 && STEP_SKIPS_DELAY (read_pc ()))
712 oneproc = 1;
713 }
714 else
715 {
716 write_pc (addr);
717 }
718
719 #ifdef PREPARE_TO_PROCEED
720 /* In a multi-threaded task we may select another thread
721 and then continue or step.
722
723 But if the old thread was stopped at a breakpoint, it
724 will immediately cause another breakpoint stop without
725 any execution (i.e. it will report a breakpoint hit
726 incorrectly). So we must step over it first.
727
728 PREPARE_TO_PROCEED checks the current thread against the thread
729 that reported the most recent event. If a step-over is required
730 it returns TRUE and sets the current thread to the old thread. */
731 if (PREPARE_TO_PROCEED (1) && breakpoint_here_p (read_pc ()))
732 {
733 oneproc = 1;
734 }
735
736 #endif /* PREPARE_TO_PROCEED */
737
738 #ifdef HP_OS_BUG
739 if (trap_expected_after_continue)
740 {
741 /* If (step == 0), a trap will be automatically generated after
742 the first instruction is executed. Force step one
743 instruction to clear this condition. This should not occur
744 if step is nonzero, but it is harmless in that case. */
745 oneproc = 1;
746 trap_expected_after_continue = 0;
747 }
748 #endif /* HP_OS_BUG */
749
750 if (oneproc)
751 /* We will get a trace trap after one instruction.
752 Continue it automatically and insert breakpoints then. */
753 trap_expected = 1;
754 else
755 {
756 insert_breakpoints ();
757 /* If we get here there was no call to error() in
758 insert breakpoints -- so they were inserted. */
759 breakpoints_inserted = 1;
760 }
761
762 if (siggnal != TARGET_SIGNAL_DEFAULT)
763 stop_signal = siggnal;
764 /* If this signal should not be seen by program,
765 give it zero. Used for debugging signals. */
766 else if (!signal_program[stop_signal])
767 stop_signal = TARGET_SIGNAL_0;
768
769 annotate_starting ();
770
771 /* Make sure that output from GDB appears before output from the
772 inferior. */
773 gdb_flush (gdb_stdout);
774
775 /* Resume inferior. */
776 resume (oneproc || step || bpstat_should_step (), stop_signal);
777
778 /* Wait for it to stop (if not standalone)
779 and in any case decode why it stopped, and act accordingly. */
780 /* Do this only if we are not using the event loop, or if the target
781 does not support asynchronous execution. */
782 if (!event_loop_p || !target_can_async_p ())
783 {
784 wait_for_inferior ();
785 normal_stop ();
786 }
787 }
788
789 /* Record the pc and sp of the program the last time it stopped.
790 These are just used internally by wait_for_inferior, but need
791 to be preserved over calls to it and cleared when the inferior
792 is started. */
793 static CORE_ADDR prev_pc;
794 static CORE_ADDR prev_func_start;
795 static char *prev_func_name;
796 \f
797
798 /* Start remote-debugging of a machine over a serial link. */
799
800 void
801 start_remote (void)
802 {
803 init_thread_list ();
804 init_wait_for_inferior ();
805 stop_soon_quietly = 1;
806 trap_expected = 0;
807
808 /* Always go on waiting for the target, regardless of the mode. */
809 /* FIXME: cagney/1999-09-23: At present it isn't possible to
810 indicate to wait_for_inferior that a target should timeout if
811 nothing is returned (instead of just blocking). Because of this,
812 targets expecting an immediate response need to, internally, set
813 things up so that the target_wait() is forced to eventually
814 timeout. */
815 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
816 differentiate to its caller what the state of the target is after
817 the initial open has been performed. Here we're assuming that
818 the target has stopped. It should be possible to eventually have
819 target_open() return to the caller an indication that the target
820 is currently running and GDB state should be set to the same as
821 for an async run. */
822 wait_for_inferior ();
823 normal_stop ();
824 }
825
826 /* Initialize static vars when a new inferior begins. */
827
828 void
829 init_wait_for_inferior (void)
830 {
831 /* These are meaningless until the first time through wait_for_inferior. */
832 prev_pc = 0;
833 prev_func_start = 0;
834 prev_func_name = NULL;
835
836 #ifdef HP_OS_BUG
837 trap_expected_after_continue = 0;
838 #endif
839 breakpoints_inserted = 0;
840 breakpoint_init_inferior (inf_starting);
841
842 /* Don't confuse first call to proceed(). */
843 stop_signal = TARGET_SIGNAL_0;
844
845 /* The first resume is not following a fork/vfork/exec. */
846 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
847
848 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
849 number_of_threads_in_syscalls = 0;
850
851 clear_proceed_status ();
852 }
853
854 static void
855 delete_breakpoint_current_contents (void *arg)
856 {
857 struct breakpoint **breakpointp = (struct breakpoint **) arg;
858 if (*breakpointp != NULL)
859 {
860 delete_breakpoint (*breakpointp);
861 *breakpointp = NULL;
862 }
863 }
864 \f
865 /* This enum encodes possible reasons for doing a target_wait, so that
866 wfi can call target_wait in one place. (Ultimately the call will be
867 moved out of the infinite loop entirely.) */
868
869 enum infwait_states
870 {
871 infwait_normal_state,
872 infwait_thread_hop_state,
873 infwait_nullified_state,
874 infwait_nonstep_watch_state
875 };
876
877 /* Why did the inferior stop? Used to print the appropriate messages
878 to the interface from within handle_inferior_event(). */
879 enum inferior_stop_reason
880 {
881 /* We don't know why. */
882 STOP_UNKNOWN,
883 /* Step, next, nexti, stepi finished. */
884 END_STEPPING_RANGE,
885 /* Found breakpoint. */
886 BREAKPOINT_HIT,
887 /* Inferior terminated by signal. */
888 SIGNAL_EXITED,
889 /* Inferior exited. */
890 EXITED,
891 /* Inferior received signal, and user asked to be notified. */
892 SIGNAL_RECEIVED
893 };
894
895 /* This structure contains what used to be local variables in
896 wait_for_inferior. Probably many of them can return to being
897 locals in handle_inferior_event. */
898
899 struct execution_control_state
900 {
901 struct target_waitstatus ws;
902 struct target_waitstatus *wp;
903 int another_trap;
904 int random_signal;
905 CORE_ADDR stop_func_start;
906 CORE_ADDR stop_func_end;
907 char *stop_func_name;
908 struct symtab_and_line sal;
909 int remove_breakpoints_on_following_step;
910 int current_line;
911 struct symtab *current_symtab;
912 int handling_longjmp; /* FIXME */
913 ptid_t ptid;
914 ptid_t saved_inferior_ptid;
915 int update_step_sp;
916 int stepping_through_solib_after_catch;
917 bpstat stepping_through_solib_catchpoints;
918 int enable_hw_watchpoints_after_wait;
919 int stepping_through_sigtramp;
920 int new_thread_event;
921 struct target_waitstatus tmpstatus;
922 enum infwait_states infwait_state;
923 ptid_t waiton_ptid;
924 int wait_some_more;
925 };
926
927 void init_execution_control_state (struct execution_control_state *ecs);
928
929 void handle_inferior_event (struct execution_control_state *ecs);
930
931 static void check_sigtramp2 (struct execution_control_state *ecs);
932 static void step_into_function (struct execution_control_state *ecs);
933 static void step_over_function (struct execution_control_state *ecs);
934 static void stop_stepping (struct execution_control_state *ecs);
935 static void prepare_to_wait (struct execution_control_state *ecs);
936 static void keep_going (struct execution_control_state *ecs);
937 static void print_stop_reason (enum inferior_stop_reason stop_reason,
938 int stop_info);
939
940 /* Wait for control to return from inferior to debugger.
941 If inferior gets a signal, we may decide to start it up again
942 instead of returning. That is why there is a loop in this function.
943 When this function actually returns it means the inferior
944 should be left stopped and GDB should read more commands. */
945
946 void
947 wait_for_inferior (void)
948 {
949 struct cleanup *old_cleanups;
950 struct execution_control_state ecss;
951 struct execution_control_state *ecs;
952
953 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
954 &step_resume_breakpoint);
955 make_cleanup (delete_breakpoint_current_contents,
956 &through_sigtramp_breakpoint);
957
958 /* wfi still stays in a loop, so it's OK just to take the address of
959 a local to get the ecs pointer. */
960 ecs = &ecss;
961
962 /* Fill in with reasonable starting values. */
963 init_execution_control_state (ecs);
964
965 /* We'll update this if & when we switch to a new thread. */
966 previous_inferior_ptid = inferior_ptid;
967
968 overlay_cache_invalid = 1;
969
970 /* We have to invalidate the registers BEFORE calling target_wait
971 because they can be loaded from the target while in target_wait.
972 This makes remote debugging a bit more efficient for those
973 targets that provide critical registers as part of their normal
974 status mechanism. */
975
976 registers_changed ();
977
978 while (1)
979 {
980 if (target_wait_hook)
981 ecs->ptid = target_wait_hook (ecs->waiton_ptid, ecs->wp);
982 else
983 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
984
985 /* Now figure out what to do with the result of the result. */
986 handle_inferior_event (ecs);
987
988 if (!ecs->wait_some_more)
989 break;
990 }
991 do_cleanups (old_cleanups);
992 }
993
994 /* Asynchronous version of wait_for_inferior. It is called by the
995 event loop whenever a change of state is detected on the file
996 descriptor corresponding to the target. It can be called more than
997 once to complete a single execution command. In such cases we need
998 to keep the state in a global variable ASYNC_ECSS. If it is the
999 last time that this function is called for a single execution
1000 command, then report to the user that the inferior has stopped, and
1001 do the necessary cleanups. */
1002
1003 struct execution_control_state async_ecss;
1004 struct execution_control_state *async_ecs;
1005
1006 void
1007 fetch_inferior_event (void *client_data)
1008 {
1009 static struct cleanup *old_cleanups;
1010
1011 async_ecs = &async_ecss;
1012
1013 if (!async_ecs->wait_some_more)
1014 {
1015 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1016 &step_resume_breakpoint);
1017 make_exec_cleanup (delete_breakpoint_current_contents,
1018 &through_sigtramp_breakpoint);
1019
1020 /* Fill in with reasonable starting values. */
1021 init_execution_control_state (async_ecs);
1022
1023 /* We'll update this if & when we switch to a new thread. */
1024 previous_inferior_ptid = inferior_ptid;
1025
1026 overlay_cache_invalid = 1;
1027
1028 /* We have to invalidate the registers BEFORE calling target_wait
1029 because they can be loaded from the target while in target_wait.
1030 This makes remote debugging a bit more efficient for those
1031 targets that provide critical registers as part of their normal
1032 status mechanism. */
1033
1034 registers_changed ();
1035 }
1036
1037 if (target_wait_hook)
1038 async_ecs->ptid =
1039 target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1040 else
1041 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1042
1043 /* Now figure out what to do with the result of the result. */
1044 handle_inferior_event (async_ecs);
1045
1046 if (!async_ecs->wait_some_more)
1047 {
1048 /* Do only the cleanups that have been added by this
1049 function. Let the continuations for the commands do the rest,
1050 if there are any. */
1051 do_exec_cleanups (old_cleanups);
1052 normal_stop ();
1053 if (step_multi && stop_step)
1054 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1055 else
1056 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1057 }
1058 }
1059
1060 /* Prepare an execution control state for looping through a
1061 wait_for_inferior-type loop. */
1062
1063 void
1064 init_execution_control_state (struct execution_control_state *ecs)
1065 {
1066 /* ecs->another_trap? */
1067 ecs->random_signal = 0;
1068 ecs->remove_breakpoints_on_following_step = 0;
1069 ecs->handling_longjmp = 0; /* FIXME */
1070 ecs->update_step_sp = 0;
1071 ecs->stepping_through_solib_after_catch = 0;
1072 ecs->stepping_through_solib_catchpoints = NULL;
1073 ecs->enable_hw_watchpoints_after_wait = 0;
1074 ecs->stepping_through_sigtramp = 0;
1075 ecs->sal = find_pc_line (prev_pc, 0);
1076 ecs->current_line = ecs->sal.line;
1077 ecs->current_symtab = ecs->sal.symtab;
1078 ecs->infwait_state = infwait_normal_state;
1079 ecs->waiton_ptid = pid_to_ptid (-1);
1080 ecs->wp = &(ecs->ws);
1081 }
1082
1083 /* Call this function before setting step_resume_breakpoint, as a
1084 sanity check. There should never be more than one step-resume
1085 breakpoint per thread, so we should never be setting a new
1086 step_resume_breakpoint when one is already active. */
1087 static void
1088 check_for_old_step_resume_breakpoint (void)
1089 {
1090 if (step_resume_breakpoint)
1091 warning
1092 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
1093 }
1094
1095 /* Return the cached copy of the last pid/waitstatus returned by
1096 target_wait()/target_wait_hook(). The data is actually cached by
1097 handle_inferior_event(), which gets called immediately after
1098 target_wait()/target_wait_hook(). */
1099
1100 void
1101 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1102 {
1103 *ptidp = target_last_wait_ptid;
1104 *status = target_last_waitstatus;
1105 }
1106
1107 /* Switch thread contexts, maintaining "infrun state". */
1108
1109 static void
1110 context_switch (struct execution_control_state *ecs)
1111 {
1112 /* Caution: it may happen that the new thread (or the old one!)
1113 is not in the thread list. In this case we must not attempt
1114 to "switch context", or we run the risk that our context may
1115 be lost. This may happen as a result of the target module
1116 mishandling thread creation. */
1117
1118 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1119 { /* Perform infrun state context switch: */
1120 /* Save infrun state for the old thread. */
1121 save_infrun_state (inferior_ptid, prev_pc,
1122 prev_func_start, prev_func_name,
1123 trap_expected, step_resume_breakpoint,
1124 through_sigtramp_breakpoint, step_range_start,
1125 step_range_end, &step_frame_id,
1126 ecs->handling_longjmp, ecs->another_trap,
1127 ecs->stepping_through_solib_after_catch,
1128 ecs->stepping_through_solib_catchpoints,
1129 ecs->stepping_through_sigtramp,
1130 ecs->current_line, ecs->current_symtab, step_sp);
1131
1132 /* Load infrun state for the new thread. */
1133 load_infrun_state (ecs->ptid, &prev_pc,
1134 &prev_func_start, &prev_func_name,
1135 &trap_expected, &step_resume_breakpoint,
1136 &through_sigtramp_breakpoint, &step_range_start,
1137 &step_range_end, &step_frame_id,
1138 &ecs->handling_longjmp, &ecs->another_trap,
1139 &ecs->stepping_through_solib_after_catch,
1140 &ecs->stepping_through_solib_catchpoints,
1141 &ecs->stepping_through_sigtramp,
1142 &ecs->current_line, &ecs->current_symtab, &step_sp);
1143 }
1144 inferior_ptid = ecs->ptid;
1145 }
1146
1147
1148 /* Given an execution control state that has been freshly filled in
1149 by an event from the inferior, figure out what it means and take
1150 appropriate action. */
1151
1152 void
1153 handle_inferior_event (struct execution_control_state *ecs)
1154 {
1155 CORE_ADDR real_stop_pc;
1156 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1157 thinking that the variable stepped_after_stopped_by_watchpoint
1158 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1159 defined in the file "config/pa/nm-hppah.h", accesses the variable
1160 indirectly. Mutter something rude about the HP merge. */
1161 int stepped_after_stopped_by_watchpoint;
1162 int sw_single_step_trap_p = 0;
1163
1164 /* Cache the last pid/waitstatus. */
1165 target_last_wait_ptid = ecs->ptid;
1166 target_last_waitstatus = *ecs->wp;
1167
1168 switch (ecs->infwait_state)
1169 {
1170 case infwait_thread_hop_state:
1171 /* Cancel the waiton_ptid. */
1172 ecs->waiton_ptid = pid_to_ptid (-1);
1173 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1174 is serviced in this loop, below. */
1175 if (ecs->enable_hw_watchpoints_after_wait)
1176 {
1177 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1178 ecs->enable_hw_watchpoints_after_wait = 0;
1179 }
1180 stepped_after_stopped_by_watchpoint = 0;
1181 break;
1182
1183 case infwait_normal_state:
1184 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1185 is serviced in this loop, below. */
1186 if (ecs->enable_hw_watchpoints_after_wait)
1187 {
1188 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1189 ecs->enable_hw_watchpoints_after_wait = 0;
1190 }
1191 stepped_after_stopped_by_watchpoint = 0;
1192 break;
1193
1194 case infwait_nullified_state:
1195 stepped_after_stopped_by_watchpoint = 0;
1196 break;
1197
1198 case infwait_nonstep_watch_state:
1199 insert_breakpoints ();
1200
1201 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1202 handle things like signals arriving and other things happening
1203 in combination correctly? */
1204 stepped_after_stopped_by_watchpoint = 1;
1205 break;
1206
1207 default:
1208 internal_error (__FILE__, __LINE__, "bad switch");
1209 }
1210 ecs->infwait_state = infwait_normal_state;
1211
1212 flush_cached_frames ();
1213
1214 /* If it's a new process, add it to the thread database */
1215
1216 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1217 && !in_thread_list (ecs->ptid));
1218
1219 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1220 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1221 {
1222 add_thread (ecs->ptid);
1223
1224 ui_out_text (uiout, "[New ");
1225 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1226 ui_out_text (uiout, "]\n");
1227
1228 #if 0
1229 /* NOTE: This block is ONLY meant to be invoked in case of a
1230 "thread creation event"! If it is invoked for any other
1231 sort of event (such as a new thread landing on a breakpoint),
1232 the event will be discarded, which is almost certainly
1233 a bad thing!
1234
1235 To avoid this, the low-level module (eg. target_wait)
1236 should call in_thread_list and add_thread, so that the
1237 new thread is known by the time we get here. */
1238
1239 /* We may want to consider not doing a resume here in order
1240 to give the user a chance to play with the new thread.
1241 It might be good to make that a user-settable option. */
1242
1243 /* At this point, all threads are stopped (happens
1244 automatically in either the OS or the native code).
1245 Therefore we need to continue all threads in order to
1246 make progress. */
1247
1248 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1249 prepare_to_wait (ecs);
1250 return;
1251 #endif
1252 }
1253
1254 switch (ecs->ws.kind)
1255 {
1256 case TARGET_WAITKIND_LOADED:
1257 /* Ignore gracefully during startup of the inferior, as it
1258 might be the shell which has just loaded some objects,
1259 otherwise add the symbols for the newly loaded objects. */
1260 #ifdef SOLIB_ADD
1261 if (!stop_soon_quietly)
1262 {
1263 /* Remove breakpoints, SOLIB_ADD might adjust
1264 breakpoint addresses via breakpoint_re_set. */
1265 if (breakpoints_inserted)
1266 remove_breakpoints ();
1267
1268 /* Check for any newly added shared libraries if we're
1269 supposed to be adding them automatically. Switch
1270 terminal for any messages produced by
1271 breakpoint_re_set. */
1272 target_terminal_ours_for_output ();
1273 SOLIB_ADD (NULL, 0, NULL, auto_solib_add);
1274 target_terminal_inferior ();
1275
1276 /* Reinsert breakpoints and continue. */
1277 if (breakpoints_inserted)
1278 insert_breakpoints ();
1279 }
1280 #endif
1281 resume (0, TARGET_SIGNAL_0);
1282 prepare_to_wait (ecs);
1283 return;
1284
1285 case TARGET_WAITKIND_SPURIOUS:
1286 resume (0, TARGET_SIGNAL_0);
1287 prepare_to_wait (ecs);
1288 return;
1289
1290 case TARGET_WAITKIND_EXITED:
1291 target_terminal_ours (); /* Must do this before mourn anyway */
1292 print_stop_reason (EXITED, ecs->ws.value.integer);
1293
1294 /* Record the exit code in the convenience variable $_exitcode, so
1295 that the user can inspect this again later. */
1296 set_internalvar (lookup_internalvar ("_exitcode"),
1297 value_from_longest (builtin_type_int,
1298 (LONGEST) ecs->ws.value.integer));
1299 gdb_flush (gdb_stdout);
1300 target_mourn_inferior ();
1301 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1302 stop_print_frame = 0;
1303 stop_stepping (ecs);
1304 return;
1305
1306 case TARGET_WAITKIND_SIGNALLED:
1307 stop_print_frame = 0;
1308 stop_signal = ecs->ws.value.sig;
1309 target_terminal_ours (); /* Must do this before mourn anyway */
1310
1311 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1312 reach here unless the inferior is dead. However, for years
1313 target_kill() was called here, which hints that fatal signals aren't
1314 really fatal on some systems. If that's true, then some changes
1315 may be needed. */
1316 target_mourn_inferior ();
1317
1318 print_stop_reason (SIGNAL_EXITED, stop_signal);
1319 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1320 stop_stepping (ecs);
1321 return;
1322
1323 /* The following are the only cases in which we keep going;
1324 the above cases end in a continue or goto. */
1325 case TARGET_WAITKIND_FORKED:
1326 case TARGET_WAITKIND_VFORKED:
1327 stop_signal = TARGET_SIGNAL_TRAP;
1328 pending_follow.kind = ecs->ws.kind;
1329
1330 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1331 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1332
1333 stop_pc = read_pc ();
1334
1335 /* Assume that catchpoints are not really software breakpoints. If
1336 some future target implements them using software breakpoints then
1337 that target is responsible for fudging DECR_PC_AFTER_BREAK. Thus
1338 we pass 1 for the NOT_A_SW_BREAKPOINT argument, so that
1339 bpstat_stop_status will not decrement the PC. */
1340
1341 stop_bpstat = bpstat_stop_status (&stop_pc, 1);
1342
1343 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1344
1345 /* If no catchpoint triggered for this, then keep going. */
1346 if (ecs->random_signal)
1347 {
1348 stop_signal = TARGET_SIGNAL_0;
1349 keep_going (ecs);
1350 return;
1351 }
1352 goto process_event_stop_test;
1353
1354 case TARGET_WAITKIND_EXECD:
1355 stop_signal = TARGET_SIGNAL_TRAP;
1356
1357 /* NOTE drow/2002-12-05: This code should be pushed down into the
1358 target_wait function. Until then following vfork on HP/UX 10.20
1359 is probably broken by this. Of course, it's broken anyway. */
1360 /* Is this a target which reports multiple exec events per actual
1361 call to exec()? (HP-UX using ptrace does, for example.) If so,
1362 ignore all but the last one. Just resume the exec'r, and wait
1363 for the next exec event. */
1364 if (inferior_ignoring_leading_exec_events)
1365 {
1366 inferior_ignoring_leading_exec_events--;
1367 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1368 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1369 parent_pid);
1370 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1371 prepare_to_wait (ecs);
1372 return;
1373 }
1374 inferior_ignoring_leading_exec_events =
1375 target_reported_exec_events_per_exec_call () - 1;
1376
1377 pending_follow.execd_pathname =
1378 savestring (ecs->ws.value.execd_pathname,
1379 strlen (ecs->ws.value.execd_pathname));
1380
1381 /* This causes the eventpoints and symbol table to be reset. Must
1382 do this now, before trying to determine whether to stop. */
1383 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1384 xfree (pending_follow.execd_pathname);
1385
1386 stop_pc = read_pc_pid (ecs->ptid);
1387 ecs->saved_inferior_ptid = inferior_ptid;
1388 inferior_ptid = ecs->ptid;
1389
1390 /* Assume that catchpoints are not really software breakpoints. If
1391 some future target implements them using software breakpoints then
1392 that target is responsible for fudging DECR_PC_AFTER_BREAK. Thus
1393 we pass 1 for the NOT_A_SW_BREAKPOINT argument, so that
1394 bpstat_stop_status will not decrement the PC. */
1395
1396 stop_bpstat = bpstat_stop_status (&stop_pc, 1);
1397
1398 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1399 inferior_ptid = ecs->saved_inferior_ptid;
1400
1401 /* If no catchpoint triggered for this, then keep going. */
1402 if (ecs->random_signal)
1403 {
1404 stop_signal = TARGET_SIGNAL_0;
1405 keep_going (ecs);
1406 return;
1407 }
1408 goto process_event_stop_test;
1409
1410 /* These syscall events are returned on HP-UX, as part of its
1411 implementation of page-protection-based "hardware" watchpoints.
1412 HP-UX has unfortunate interactions between page-protections and
1413 some system calls. Our solution is to disable hardware watches
1414 when a system call is entered, and reenable them when the syscall
1415 completes. The downside of this is that we may miss the precise
1416 point at which a watched piece of memory is modified. "Oh well."
1417
1418 Note that we may have multiple threads running, which may each
1419 enter syscalls at roughly the same time. Since we don't have a
1420 good notion currently of whether a watched piece of memory is
1421 thread-private, we'd best not have any page-protections active
1422 when any thread is in a syscall. Thus, we only want to reenable
1423 hardware watches when no threads are in a syscall.
1424
1425 Also, be careful not to try to gather much state about a thread
1426 that's in a syscall. It's frequently a losing proposition. */
1427 case TARGET_WAITKIND_SYSCALL_ENTRY:
1428 number_of_threads_in_syscalls++;
1429 if (number_of_threads_in_syscalls == 1)
1430 {
1431 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1432 }
1433 resume (0, TARGET_SIGNAL_0);
1434 prepare_to_wait (ecs);
1435 return;
1436
1437 /* Before examining the threads further, step this thread to
1438 get it entirely out of the syscall. (We get notice of the
1439 event when the thread is just on the verge of exiting a
1440 syscall. Stepping one instruction seems to get it back
1441 into user code.)
1442
1443 Note that although the logical place to reenable h/w watches
1444 is here, we cannot. We cannot reenable them before stepping
1445 the thread (this causes the next wait on the thread to hang).
1446
1447 Nor can we enable them after stepping until we've done a wait.
1448 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1449 here, which will be serviced immediately after the target
1450 is waited on. */
1451 case TARGET_WAITKIND_SYSCALL_RETURN:
1452 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1453
1454 if (number_of_threads_in_syscalls > 0)
1455 {
1456 number_of_threads_in_syscalls--;
1457 ecs->enable_hw_watchpoints_after_wait =
1458 (number_of_threads_in_syscalls == 0);
1459 }
1460 prepare_to_wait (ecs);
1461 return;
1462
1463 case TARGET_WAITKIND_STOPPED:
1464 stop_signal = ecs->ws.value.sig;
1465 break;
1466
1467 /* We had an event in the inferior, but we are not interested
1468 in handling it at this level. The lower layers have already
1469 done what needs to be done, if anything.
1470
1471 One of the possible circumstances for this is when the
1472 inferior produces output for the console. The inferior has
1473 not stopped, and we are ignoring the event. Another possible
1474 circumstance is any event which the lower level knows will be
1475 reported multiple times without an intervening resume. */
1476 case TARGET_WAITKIND_IGNORE:
1477 prepare_to_wait (ecs);
1478 return;
1479 }
1480
1481 /* We may want to consider not doing a resume here in order to give
1482 the user a chance to play with the new thread. It might be good
1483 to make that a user-settable option. */
1484
1485 /* At this point, all threads are stopped (happens automatically in
1486 either the OS or the native code). Therefore we need to continue
1487 all threads in order to make progress. */
1488 if (ecs->new_thread_event)
1489 {
1490 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1491 prepare_to_wait (ecs);
1492 return;
1493 }
1494
1495 stop_pc = read_pc_pid (ecs->ptid);
1496
1497 /* See if a thread hit a thread-specific breakpoint that was meant for
1498 another thread. If so, then step that thread past the breakpoint,
1499 and continue it. */
1500
1501 if (stop_signal == TARGET_SIGNAL_TRAP)
1502 {
1503 /* Check if a regular breakpoint has been hit before checking
1504 for a potential single step breakpoint. Otherwise, GDB will
1505 not see this breakpoint hit when stepping onto breakpoints. */
1506 if (breakpoints_inserted
1507 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
1508 {
1509 ecs->random_signal = 0;
1510 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK,
1511 ecs->ptid))
1512 {
1513 int remove_status;
1514
1515 /* Saw a breakpoint, but it was hit by the wrong thread.
1516 Just continue. */
1517 if (DECR_PC_AFTER_BREAK)
1518 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK, ecs->ptid);
1519
1520 remove_status = remove_breakpoints ();
1521 /* Did we fail to remove breakpoints? If so, try
1522 to set the PC past the bp. (There's at least
1523 one situation in which we can fail to remove
1524 the bp's: On HP-UX's that use ttrace, we can't
1525 change the address space of a vforking child
1526 process until the child exits (well, okay, not
1527 then either :-) or execs. */
1528 if (remove_status != 0)
1529 {
1530 /* FIXME! This is obviously non-portable! */
1531 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK + 4, ecs->ptid);
1532 /* We need to restart all the threads now,
1533 * unles we're running in scheduler-locked mode.
1534 * Use currently_stepping to determine whether to
1535 * step or continue.
1536 */
1537 /* FIXME MVS: is there any reason not to call resume()? */
1538 if (scheduler_mode == schedlock_on)
1539 target_resume (ecs->ptid,
1540 currently_stepping (ecs), TARGET_SIGNAL_0);
1541 else
1542 target_resume (RESUME_ALL,
1543 currently_stepping (ecs), TARGET_SIGNAL_0);
1544 prepare_to_wait (ecs);
1545 return;
1546 }
1547 else
1548 { /* Single step */
1549 breakpoints_inserted = 0;
1550 if (!ptid_equal (inferior_ptid, ecs->ptid))
1551 context_switch (ecs);
1552 ecs->waiton_ptid = ecs->ptid;
1553 ecs->wp = &(ecs->ws);
1554 ecs->another_trap = 1;
1555
1556 ecs->infwait_state = infwait_thread_hop_state;
1557 keep_going (ecs);
1558 registers_changed ();
1559 return;
1560 }
1561 }
1562 }
1563 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1564 {
1565 /* Readjust the stop_pc as it is off by DECR_PC_AFTER_BREAK
1566 compared to the value it would have if the system stepping
1567 capability was used. This allows the rest of the code in
1568 this function to use this address without having to worry
1569 whether software single step is in use or not. */
1570 if (DECR_PC_AFTER_BREAK)
1571 {
1572 stop_pc -= DECR_PC_AFTER_BREAK;
1573 write_pc_pid (stop_pc, ecs->ptid);
1574 }
1575
1576 sw_single_step_trap_p = 1;
1577 ecs->random_signal = 0;
1578 }
1579 }
1580 else
1581 ecs->random_signal = 1;
1582
1583 /* See if something interesting happened to the non-current thread. If
1584 so, then switch to that thread, and eventually give control back to
1585 the user.
1586
1587 Note that if there's any kind of pending follow (i.e., of a fork,
1588 vfork or exec), we don't want to do this now. Rather, we'll let
1589 the next resume handle it. */
1590 if (!ptid_equal (ecs->ptid, inferior_ptid) &&
1591 (pending_follow.kind == TARGET_WAITKIND_SPURIOUS))
1592 {
1593 int printed = 0;
1594
1595 /* If it's a random signal for a non-current thread, notify user
1596 if he's expressed an interest. */
1597 if (ecs->random_signal && signal_print[stop_signal])
1598 {
1599 /* ??rehrauer: I don't understand the rationale for this code. If the
1600 inferior will stop as a result of this signal, then the act of handling
1601 the stop ought to print a message that's couches the stoppage in user
1602 terms, e.g., "Stopped for breakpoint/watchpoint". If the inferior
1603 won't stop as a result of the signal -- i.e., if the signal is merely
1604 a side-effect of something GDB's doing "under the covers" for the
1605 user, such as stepping threads over a breakpoint they shouldn't stop
1606 for -- then the message seems to be a serious annoyance at best.
1607
1608 For now, remove the message altogether. */
1609 #if 0
1610 printed = 1;
1611 target_terminal_ours_for_output ();
1612 printf_filtered ("\nProgram received signal %s, %s.\n",
1613 target_signal_to_name (stop_signal),
1614 target_signal_to_string (stop_signal));
1615 gdb_flush (gdb_stdout);
1616 #endif
1617 }
1618
1619 /* If it's not SIGTRAP and not a signal we want to stop for, then
1620 continue the thread. */
1621
1622 if (stop_signal != TARGET_SIGNAL_TRAP && !signal_stop[stop_signal])
1623 {
1624 if (printed)
1625 target_terminal_inferior ();
1626
1627 /* Clear the signal if it should not be passed. */
1628 if (signal_program[stop_signal] == 0)
1629 stop_signal = TARGET_SIGNAL_0;
1630
1631 target_resume (ecs->ptid, 0, stop_signal);
1632 prepare_to_wait (ecs);
1633 return;
1634 }
1635
1636 /* It's a SIGTRAP or a signal we're interested in. Switch threads,
1637 and fall into the rest of wait_for_inferior(). */
1638
1639 context_switch (ecs);
1640
1641 if (context_hook)
1642 context_hook (pid_to_thread_id (ecs->ptid));
1643
1644 flush_cached_frames ();
1645 }
1646
1647 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1648 {
1649 /* Pull the single step breakpoints out of the target. */
1650 SOFTWARE_SINGLE_STEP (0, 0);
1651 singlestep_breakpoints_inserted_p = 0;
1652 }
1653
1654 /* If PC is pointing at a nullified instruction, then step beyond
1655 it so that the user won't be confused when GDB appears to be ready
1656 to execute it. */
1657
1658 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1659 if (INSTRUCTION_NULLIFIED)
1660 {
1661 registers_changed ();
1662 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1663
1664 /* We may have received a signal that we want to pass to
1665 the inferior; therefore, we must not clobber the waitstatus
1666 in WS. */
1667
1668 ecs->infwait_state = infwait_nullified_state;
1669 ecs->waiton_ptid = ecs->ptid;
1670 ecs->wp = &(ecs->tmpstatus);
1671 prepare_to_wait (ecs);
1672 return;
1673 }
1674
1675 /* It may not be necessary to disable the watchpoint to stop over
1676 it. For example, the PA can (with some kernel cooperation)
1677 single step over a watchpoint without disabling the watchpoint. */
1678 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1679 {
1680 resume (1, 0);
1681 prepare_to_wait (ecs);
1682 return;
1683 }
1684
1685 /* It is far more common to need to disable a watchpoint to step
1686 the inferior over it. FIXME. What else might a debug
1687 register or page protection watchpoint scheme need here? */
1688 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1689 {
1690 /* At this point, we are stopped at an instruction which has
1691 attempted to write to a piece of memory under control of
1692 a watchpoint. The instruction hasn't actually executed
1693 yet. If we were to evaluate the watchpoint expression
1694 now, we would get the old value, and therefore no change
1695 would seem to have occurred.
1696
1697 In order to make watchpoints work `right', we really need
1698 to complete the memory write, and then evaluate the
1699 watchpoint expression. The following code does that by
1700 removing the watchpoint (actually, all watchpoints and
1701 breakpoints), single-stepping the target, re-inserting
1702 watchpoints, and then falling through to let normal
1703 single-step processing handle proceed. Since this
1704 includes evaluating watchpoints, things will come to a
1705 stop in the correct manner. */
1706
1707 if (DECR_PC_AFTER_BREAK)
1708 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
1709
1710 remove_breakpoints ();
1711 registers_changed ();
1712 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1713
1714 ecs->waiton_ptid = ecs->ptid;
1715 ecs->wp = &(ecs->ws);
1716 ecs->infwait_state = infwait_nonstep_watch_state;
1717 prepare_to_wait (ecs);
1718 return;
1719 }
1720
1721 /* It may be possible to simply continue after a watchpoint. */
1722 if (HAVE_CONTINUABLE_WATCHPOINT)
1723 STOPPED_BY_WATCHPOINT (ecs->ws);
1724
1725 ecs->stop_func_start = 0;
1726 ecs->stop_func_end = 0;
1727 ecs->stop_func_name = 0;
1728 /* Don't care about return value; stop_func_start and stop_func_name
1729 will both be 0 if it doesn't work. */
1730 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1731 &ecs->stop_func_start, &ecs->stop_func_end);
1732 ecs->stop_func_start += FUNCTION_START_OFFSET;
1733 ecs->another_trap = 0;
1734 bpstat_clear (&stop_bpstat);
1735 stop_step = 0;
1736 stop_stack_dummy = 0;
1737 stop_print_frame = 1;
1738 ecs->random_signal = 0;
1739 stopped_by_random_signal = 0;
1740 breakpoints_failed = 0;
1741
1742 /* Look at the cause of the stop, and decide what to do.
1743 The alternatives are:
1744 1) break; to really stop and return to the debugger,
1745 2) drop through to start up again
1746 (set ecs->another_trap to 1 to single step once)
1747 3) set ecs->random_signal to 1, and the decision between 1 and 2
1748 will be made according to the signal handling tables. */
1749
1750 /* First, distinguish signals caused by the debugger from signals
1751 that have to do with the program's own actions.
1752 Note that breakpoint insns may cause SIGTRAP or SIGILL
1753 or SIGEMT, depending on the operating system version.
1754 Here we detect when a SIGILL or SIGEMT is really a breakpoint
1755 and change it to SIGTRAP. */
1756
1757 if (stop_signal == TARGET_SIGNAL_TRAP
1758 || (breakpoints_inserted &&
1759 (stop_signal == TARGET_SIGNAL_ILL
1760 || stop_signal == TARGET_SIGNAL_EMT)) || stop_soon_quietly)
1761 {
1762 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1763 {
1764 stop_print_frame = 0;
1765 stop_stepping (ecs);
1766 return;
1767 }
1768 if (stop_soon_quietly)
1769 {
1770 stop_stepping (ecs);
1771 return;
1772 }
1773
1774 /* Don't even think about breakpoints
1775 if just proceeded over a breakpoint.
1776
1777 However, if we are trying to proceed over a breakpoint
1778 and end up in sigtramp, then through_sigtramp_breakpoint
1779 will be set and we should check whether we've hit the
1780 step breakpoint. */
1781 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
1782 && through_sigtramp_breakpoint == NULL)
1783 bpstat_clear (&stop_bpstat);
1784 else
1785 {
1786 /* See if there is a breakpoint at the current PC. */
1787
1788 /* The second argument of bpstat_stop_status is meant to help
1789 distinguish between a breakpoint trap and a singlestep trap.
1790 This is only important on targets where DECR_PC_AFTER_BREAK
1791 is non-zero. The prev_pc test is meant to distinguish between
1792 singlestepping a trap instruction, and singlestepping thru a
1793 jump to the instruction following a trap instruction.
1794
1795 Therefore, pass TRUE if our reason for stopping is
1796 something other than hitting a breakpoint. We do this by
1797 checking that either: we detected earlier a software single
1798 step trap or, 1) stepping is going on and 2) we didn't hit
1799 a breakpoint in a signal handler without an intervening stop
1800 in sigtramp, which is detected by a new stack pointer value
1801 below any usual function calling stack adjustments. */
1802 stop_bpstat =
1803 bpstat_stop_status
1804 (&stop_pc,
1805 sw_single_step_trap_p
1806 || (currently_stepping (ecs)
1807 && prev_pc != stop_pc - DECR_PC_AFTER_BREAK
1808 && !(step_range_end
1809 && INNER_THAN (read_sp (), (step_sp - 16)))));
1810 /* Following in case break condition called a
1811 function. */
1812 stop_print_frame = 1;
1813 }
1814
1815 if (stop_signal == TARGET_SIGNAL_TRAP)
1816 ecs->random_signal
1817 = !(bpstat_explains_signal (stop_bpstat)
1818 || trap_expected
1819 || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
1820 && DEPRECATED_PC_IN_CALL_DUMMY (stop_pc, read_sp (),
1821 get_frame_base (get_current_frame ())))
1822 || (step_range_end && step_resume_breakpoint == NULL));
1823
1824 else
1825 {
1826 ecs->random_signal = !(bpstat_explains_signal (stop_bpstat)
1827 /* End of a stack dummy. Some systems (e.g. Sony
1828 news) give another signal besides SIGTRAP, so
1829 check here as well as above. */
1830 || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
1831 && DEPRECATED_PC_IN_CALL_DUMMY (stop_pc, read_sp (),
1832 get_frame_base
1833 (get_current_frame
1834 ()))));
1835 if (!ecs->random_signal)
1836 stop_signal = TARGET_SIGNAL_TRAP;
1837 }
1838 }
1839
1840 /* When we reach this point, we've pretty much decided
1841 that the reason for stopping must've been a random
1842 (unexpected) signal. */
1843
1844 else
1845 ecs->random_signal = 1;
1846
1847 process_event_stop_test:
1848 /* For the program's own signals, act according to
1849 the signal handling tables. */
1850
1851 if (ecs->random_signal)
1852 {
1853 /* Signal not for debugging purposes. */
1854 int printed = 0;
1855
1856 stopped_by_random_signal = 1;
1857
1858 if (signal_print[stop_signal])
1859 {
1860 printed = 1;
1861 target_terminal_ours_for_output ();
1862 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1863 }
1864 if (signal_stop[stop_signal])
1865 {
1866 stop_stepping (ecs);
1867 return;
1868 }
1869 /* If not going to stop, give terminal back
1870 if we took it away. */
1871 else if (printed)
1872 target_terminal_inferior ();
1873
1874 /* Clear the signal if it should not be passed. */
1875 if (signal_program[stop_signal] == 0)
1876 stop_signal = TARGET_SIGNAL_0;
1877
1878 /* I'm not sure whether this needs to be check_sigtramp2 or
1879 whether it could/should be keep_going.
1880
1881 This used to jump to step_over_function if we are stepping,
1882 which is wrong.
1883
1884 Suppose the user does a `next' over a function call, and while
1885 that call is in progress, the inferior receives a signal for
1886 which GDB does not stop (i.e., signal_stop[SIG] is false). In
1887 that case, when we reach this point, there is already a
1888 step-resume breakpoint established, right where it should be:
1889 immediately after the function call the user is "next"-ing
1890 over. If we call step_over_function now, two bad things
1891 happen:
1892
1893 - we'll create a new breakpoint, at wherever the current
1894 frame's return address happens to be. That could be
1895 anywhere, depending on what function call happens to be on
1896 the top of the stack at that point. Point is, it's probably
1897 not where we need it.
1898
1899 - the existing step-resume breakpoint (which is at the correct
1900 address) will get orphaned: step_resume_breakpoint will point
1901 to the new breakpoint, and the old step-resume breakpoint
1902 will never be cleaned up.
1903
1904 The old behavior was meant to help HP-UX single-step out of
1905 sigtramps. It would place the new breakpoint at prev_pc, which
1906 was certainly wrong. I don't know the details there, so fixing
1907 this probably breaks that. As with anything else, it's up to
1908 the HP-UX maintainer to furnish a fix that doesn't break other
1909 platforms. --JimB, 20 May 1999 */
1910 check_sigtramp2 (ecs);
1911 keep_going (ecs);
1912 return;
1913 }
1914
1915 /* Handle cases caused by hitting a breakpoint. */
1916 {
1917 CORE_ADDR jmp_buf_pc;
1918 struct bpstat_what what;
1919
1920 what = bpstat_what (stop_bpstat);
1921
1922 if (what.call_dummy)
1923 {
1924 stop_stack_dummy = 1;
1925 #ifdef HP_OS_BUG
1926 trap_expected_after_continue = 1;
1927 #endif
1928 }
1929
1930 switch (what.main_action)
1931 {
1932 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
1933 /* If we hit the breakpoint at longjmp, disable it for the
1934 duration of this command. Then, install a temporary
1935 breakpoint at the target of the jmp_buf. */
1936 disable_longjmp_breakpoint ();
1937 remove_breakpoints ();
1938 breakpoints_inserted = 0;
1939 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
1940 {
1941 keep_going (ecs);
1942 return;
1943 }
1944
1945 /* Need to blow away step-resume breakpoint, as it
1946 interferes with us */
1947 if (step_resume_breakpoint != NULL)
1948 {
1949 delete_step_resume_breakpoint (&step_resume_breakpoint);
1950 }
1951 /* Not sure whether we need to blow this away too, but probably
1952 it is like the step-resume breakpoint. */
1953 if (through_sigtramp_breakpoint != NULL)
1954 {
1955 delete_breakpoint (through_sigtramp_breakpoint);
1956 through_sigtramp_breakpoint = NULL;
1957 }
1958
1959 #if 0
1960 /* FIXME - Need to implement nested temporary breakpoints */
1961 if (step_over_calls > 0)
1962 set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
1963 else
1964 #endif /* 0 */
1965 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
1966 ecs->handling_longjmp = 1; /* FIXME */
1967 keep_going (ecs);
1968 return;
1969
1970 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
1971 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
1972 remove_breakpoints ();
1973 breakpoints_inserted = 0;
1974 #if 0
1975 /* FIXME - Need to implement nested temporary breakpoints */
1976 if (step_over_calls
1977 && (frame_id_inner (get_frame_id (get_current_frame ()),
1978 step_frame_id)))
1979 {
1980 ecs->another_trap = 1;
1981 keep_going (ecs);
1982 return;
1983 }
1984 #endif /* 0 */
1985 disable_longjmp_breakpoint ();
1986 ecs->handling_longjmp = 0; /* FIXME */
1987 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
1988 break;
1989 /* else fallthrough */
1990
1991 case BPSTAT_WHAT_SINGLE:
1992 if (breakpoints_inserted)
1993 {
1994 remove_breakpoints ();
1995 }
1996 breakpoints_inserted = 0;
1997 ecs->another_trap = 1;
1998 /* Still need to check other stuff, at least the case
1999 where we are stepping and step out of the right range. */
2000 break;
2001
2002 case BPSTAT_WHAT_STOP_NOISY:
2003 stop_print_frame = 1;
2004
2005 /* We are about to nuke the step_resume_breakpoint and
2006 through_sigtramp_breakpoint via the cleanup chain, so
2007 no need to worry about it here. */
2008
2009 stop_stepping (ecs);
2010 return;
2011
2012 case BPSTAT_WHAT_STOP_SILENT:
2013 stop_print_frame = 0;
2014
2015 /* We are about to nuke the step_resume_breakpoint and
2016 through_sigtramp_breakpoint via the cleanup chain, so
2017 no need to worry about it here. */
2018
2019 stop_stepping (ecs);
2020 return;
2021
2022 case BPSTAT_WHAT_STEP_RESUME:
2023 /* This proably demands a more elegant solution, but, yeah
2024 right...
2025
2026 This function's use of the simple variable
2027 step_resume_breakpoint doesn't seem to accomodate
2028 simultaneously active step-resume bp's, although the
2029 breakpoint list certainly can.
2030
2031 If we reach here and step_resume_breakpoint is already
2032 NULL, then apparently we have multiple active
2033 step-resume bp's. We'll just delete the breakpoint we
2034 stopped at, and carry on.
2035
2036 Correction: what the code currently does is delete a
2037 step-resume bp, but it makes no effort to ensure that
2038 the one deleted is the one currently stopped at. MVS */
2039
2040 if (step_resume_breakpoint == NULL)
2041 {
2042 step_resume_breakpoint =
2043 bpstat_find_step_resume_breakpoint (stop_bpstat);
2044 }
2045 delete_step_resume_breakpoint (&step_resume_breakpoint);
2046 break;
2047
2048 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2049 if (through_sigtramp_breakpoint)
2050 delete_breakpoint (through_sigtramp_breakpoint);
2051 through_sigtramp_breakpoint = NULL;
2052
2053 /* If were waiting for a trap, hitting the step_resume_break
2054 doesn't count as getting it. */
2055 if (trap_expected)
2056 ecs->another_trap = 1;
2057 break;
2058
2059 case BPSTAT_WHAT_CHECK_SHLIBS:
2060 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2061 #ifdef SOLIB_ADD
2062 {
2063 /* Remove breakpoints, we eventually want to step over the
2064 shlib event breakpoint, and SOLIB_ADD might adjust
2065 breakpoint addresses via breakpoint_re_set. */
2066 if (breakpoints_inserted)
2067 remove_breakpoints ();
2068 breakpoints_inserted = 0;
2069
2070 /* Check for any newly added shared libraries if we're
2071 supposed to be adding them automatically. Switch
2072 terminal for any messages produced by
2073 breakpoint_re_set. */
2074 target_terminal_ours_for_output ();
2075 SOLIB_ADD (NULL, 0, NULL, auto_solib_add);
2076 target_terminal_inferior ();
2077
2078 /* Try to reenable shared library breakpoints, additional
2079 code segments in shared libraries might be mapped in now. */
2080 re_enable_breakpoints_in_shlibs ();
2081
2082 /* If requested, stop when the dynamic linker notifies
2083 gdb of events. This allows the user to get control
2084 and place breakpoints in initializer routines for
2085 dynamically loaded objects (among other things). */
2086 if (stop_on_solib_events)
2087 {
2088 stop_stepping (ecs);
2089 return;
2090 }
2091
2092 /* If we stopped due to an explicit catchpoint, then the
2093 (see above) call to SOLIB_ADD pulled in any symbols
2094 from a newly-loaded library, if appropriate.
2095
2096 We do want the inferior to stop, but not where it is
2097 now, which is in the dynamic linker callback. Rather,
2098 we would like it stop in the user's program, just after
2099 the call that caused this catchpoint to trigger. That
2100 gives the user a more useful vantage from which to
2101 examine their program's state. */
2102 else if (what.main_action ==
2103 BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2104 {
2105 /* ??rehrauer: If I could figure out how to get the
2106 right return PC from here, we could just set a temp
2107 breakpoint and resume. I'm not sure we can without
2108 cracking open the dld's shared libraries and sniffing
2109 their unwind tables and text/data ranges, and that's
2110 not a terribly portable notion.
2111
2112 Until that time, we must step the inferior out of the
2113 dld callback, and also out of the dld itself (and any
2114 code or stubs in libdld.sl, such as "shl_load" and
2115 friends) until we reach non-dld code. At that point,
2116 we can stop stepping. */
2117 bpstat_get_triggered_catchpoints (stop_bpstat,
2118 &ecs->
2119 stepping_through_solib_catchpoints);
2120 ecs->stepping_through_solib_after_catch = 1;
2121
2122 /* Be sure to lift all breakpoints, so the inferior does
2123 actually step past this point... */
2124 ecs->another_trap = 1;
2125 break;
2126 }
2127 else
2128 {
2129 /* We want to step over this breakpoint, then keep going. */
2130 ecs->another_trap = 1;
2131 break;
2132 }
2133 }
2134 #endif
2135 break;
2136
2137 case BPSTAT_WHAT_LAST:
2138 /* Not a real code, but listed here to shut up gcc -Wall. */
2139
2140 case BPSTAT_WHAT_KEEP_CHECKING:
2141 break;
2142 }
2143 }
2144
2145 /* We come here if we hit a breakpoint but should not
2146 stop for it. Possibly we also were stepping
2147 and should stop for that. So fall through and
2148 test for stepping. But, if not stepping,
2149 do not stop. */
2150
2151 /* Are we stepping to get the inferior out of the dynamic
2152 linker's hook (and possibly the dld itself) after catching
2153 a shlib event? */
2154 if (ecs->stepping_through_solib_after_catch)
2155 {
2156 #if defined(SOLIB_ADD)
2157 /* Have we reached our destination? If not, keep going. */
2158 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2159 {
2160 ecs->another_trap = 1;
2161 keep_going (ecs);
2162 return;
2163 }
2164 #endif
2165 /* Else, stop and report the catchpoint(s) whose triggering
2166 caused us to begin stepping. */
2167 ecs->stepping_through_solib_after_catch = 0;
2168 bpstat_clear (&stop_bpstat);
2169 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2170 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2171 stop_print_frame = 1;
2172 stop_stepping (ecs);
2173 return;
2174 }
2175
2176 if (!CALL_DUMMY_BREAKPOINT_OFFSET_P)
2177 {
2178 /* This is the old way of detecting the end of the stack dummy.
2179 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
2180 handled above. As soon as we can test it on all of them, all
2181 architectures should define it. */
2182
2183 /* If this is the breakpoint at the end of a stack dummy,
2184 just stop silently, unless the user was doing an si/ni, in which
2185 case she'd better know what she's doing. */
2186
2187 if (CALL_DUMMY_HAS_COMPLETED (stop_pc, read_sp (),
2188 get_frame_base (get_current_frame ()))
2189 && !step_range_end)
2190 {
2191 stop_print_frame = 0;
2192 stop_stack_dummy = 1;
2193 #ifdef HP_OS_BUG
2194 trap_expected_after_continue = 1;
2195 #endif
2196 stop_stepping (ecs);
2197 return;
2198 }
2199 }
2200
2201 if (step_resume_breakpoint)
2202 {
2203 /* Having a step-resume breakpoint overrides anything
2204 else having to do with stepping commands until
2205 that breakpoint is reached. */
2206 /* I'm not sure whether this needs to be check_sigtramp2 or
2207 whether it could/should be keep_going. */
2208 check_sigtramp2 (ecs);
2209 keep_going (ecs);
2210 return;
2211 }
2212
2213 if (step_range_end == 0)
2214 {
2215 /* Likewise if we aren't even stepping. */
2216 /* I'm not sure whether this needs to be check_sigtramp2 or
2217 whether it could/should be keep_going. */
2218 check_sigtramp2 (ecs);
2219 keep_going (ecs);
2220 return;
2221 }
2222
2223 /* If stepping through a line, keep going if still within it.
2224
2225 Note that step_range_end is the address of the first instruction
2226 beyond the step range, and NOT the address of the last instruction
2227 within it! */
2228 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2229 {
2230 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
2231 So definately need to check for sigtramp here. */
2232 check_sigtramp2 (ecs);
2233 keep_going (ecs);
2234 return;
2235 }
2236
2237 /* We stepped out of the stepping range. */
2238
2239 /* If we are stepping at the source level and entered the runtime
2240 loader dynamic symbol resolution code, we keep on single stepping
2241 until we exit the run time loader code and reach the callee's
2242 address. */
2243 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2244 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2245 {
2246 CORE_ADDR pc_after_resolver = SKIP_SOLIB_RESOLVER (stop_pc);
2247
2248 if (pc_after_resolver)
2249 {
2250 /* Set up a step-resume breakpoint at the address
2251 indicated by SKIP_SOLIB_RESOLVER. */
2252 struct symtab_and_line sr_sal;
2253 init_sal (&sr_sal);
2254 sr_sal.pc = pc_after_resolver;
2255
2256 check_for_old_step_resume_breakpoint ();
2257 step_resume_breakpoint =
2258 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2259 if (breakpoints_inserted)
2260 insert_breakpoints ();
2261 }
2262
2263 keep_going (ecs);
2264 return;
2265 }
2266
2267 /* We can't update step_sp every time through the loop, because
2268 reading the stack pointer would slow down stepping too much.
2269 But we can update it every time we leave the step range. */
2270 ecs->update_step_sp = 1;
2271
2272 /* Did we just take a signal? */
2273 if (PC_IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2274 && !PC_IN_SIGTRAMP (prev_pc, prev_func_name)
2275 && INNER_THAN (read_sp (), step_sp))
2276 {
2277 /* We've just taken a signal; go until we are back to
2278 the point where we took it and one more. */
2279
2280 /* Note: The test above succeeds not only when we stepped
2281 into a signal handler, but also when we step past the last
2282 statement of a signal handler and end up in the return stub
2283 of the signal handler trampoline. To distinguish between
2284 these two cases, check that the frame is INNER_THAN the
2285 previous one below. pai/1997-09-11 */
2286
2287
2288 {
2289 struct frame_id current_frame = get_frame_id (get_current_frame ());
2290
2291 if (frame_id_inner (current_frame, step_frame_id))
2292 {
2293 /* We have just taken a signal; go until we are back to
2294 the point where we took it and one more. */
2295
2296 /* This code is needed at least in the following case:
2297 The user types "next" and then a signal arrives (before
2298 the "next" is done). */
2299
2300 /* Note that if we are stopped at a breakpoint, then we need
2301 the step_resume breakpoint to override any breakpoints at
2302 the same location, so that we will still step over the
2303 breakpoint even though the signal happened. */
2304 struct symtab_and_line sr_sal;
2305
2306 init_sal (&sr_sal);
2307 sr_sal.symtab = NULL;
2308 sr_sal.line = 0;
2309 sr_sal.pc = prev_pc;
2310 /* We could probably be setting the frame to
2311 step_frame_id; I don't think anyone thought to try it. */
2312 check_for_old_step_resume_breakpoint ();
2313 step_resume_breakpoint =
2314 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2315 if (breakpoints_inserted)
2316 insert_breakpoints ();
2317 }
2318 else
2319 {
2320 /* We just stepped out of a signal handler and into
2321 its calling trampoline.
2322
2323 Normally, we'd call step_over_function from
2324 here, but for some reason GDB can't unwind the
2325 stack correctly to find the real PC for the point
2326 user code where the signal trampoline will return
2327 -- FRAME_SAVED_PC fails, at least on HP-UX 10.20.
2328 But signal trampolines are pretty small stubs of
2329 code, anyway, so it's OK instead to just
2330 single-step out. Note: assuming such trampolines
2331 don't exhibit recursion on any platform... */
2332 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2333 &ecs->stop_func_start,
2334 &ecs->stop_func_end);
2335 /* Readjust stepping range */
2336 step_range_start = ecs->stop_func_start;
2337 step_range_end = ecs->stop_func_end;
2338 ecs->stepping_through_sigtramp = 1;
2339 }
2340 }
2341
2342
2343 /* If this is stepi or nexti, make sure that the stepping range
2344 gets us past that instruction. */
2345 if (step_range_end == 1)
2346 /* FIXME: Does this run afoul of the code below which, if
2347 we step into the middle of a line, resets the stepping
2348 range? */
2349 step_range_end = (step_range_start = prev_pc) + 1;
2350
2351 ecs->remove_breakpoints_on_following_step = 1;
2352 keep_going (ecs);
2353 return;
2354 }
2355
2356 if (stop_pc == ecs->stop_func_start /* Quick test */
2357 || (in_prologue (stop_pc, ecs->stop_func_start) &&
2358 !IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2359 || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, ecs->stop_func_name)
2360 || ecs->stop_func_name == 0)
2361 {
2362 /* It's a subroutine call. */
2363
2364 if ((step_over_calls == STEP_OVER_NONE)
2365 || ((step_range_end == 1)
2366 && in_prologue (prev_pc, ecs->stop_func_start)))
2367 {
2368 /* I presume that step_over_calls is only 0 when we're
2369 supposed to be stepping at the assembly language level
2370 ("stepi"). Just stop. */
2371 /* Also, maybe we just did a "nexti" inside a prolog,
2372 so we thought it was a subroutine call but it was not.
2373 Stop as well. FENN */
2374 stop_step = 1;
2375 print_stop_reason (END_STEPPING_RANGE, 0);
2376 stop_stepping (ecs);
2377 return;
2378 }
2379
2380 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
2381 {
2382 /* We're doing a "next". */
2383
2384 if (PC_IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2385 && frame_id_inner (step_frame_id,
2386 frame_id_build (read_sp (), 0)))
2387 /* We stepped out of a signal handler, and into its
2388 calling trampoline. This is misdetected as a
2389 subroutine call, but stepping over the signal
2390 trampoline isn't such a bad idea. In order to do that,
2391 we have to ignore the value in step_frame_id, since
2392 that doesn't represent the frame that'll reach when we
2393 return from the signal trampoline. Otherwise we'll
2394 probably continue to the end of the program. */
2395 step_frame_id = null_frame_id;
2396
2397 step_over_function (ecs);
2398 keep_going (ecs);
2399 return;
2400 }
2401
2402 /* If we are in a function call trampoline (a stub between
2403 the calling routine and the real function), locate the real
2404 function. That's what tells us (a) whether we want to step
2405 into it at all, and (b) what prologue we want to run to
2406 the end of, if we do step into it. */
2407 real_stop_pc = skip_language_trampoline (stop_pc);
2408 if (real_stop_pc == 0)
2409 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2410 if (real_stop_pc != 0)
2411 ecs->stop_func_start = real_stop_pc;
2412
2413 /* If we have line number information for the function we
2414 are thinking of stepping into, step into it.
2415
2416 If there are several symtabs at that PC (e.g. with include
2417 files), just want to know whether *any* of them have line
2418 numbers. find_pc_line handles this. */
2419 {
2420 struct symtab_and_line tmp_sal;
2421
2422 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2423 if (tmp_sal.line != 0)
2424 {
2425 step_into_function (ecs);
2426 return;
2427 }
2428 }
2429
2430 /* If we have no line number and the step-stop-if-no-debug
2431 is set, we stop the step so that the user has a chance to
2432 switch in assembly mode. */
2433 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2434 {
2435 stop_step = 1;
2436 print_stop_reason (END_STEPPING_RANGE, 0);
2437 stop_stepping (ecs);
2438 return;
2439 }
2440
2441 step_over_function (ecs);
2442 keep_going (ecs);
2443 return;
2444
2445 }
2446
2447 /* We've wandered out of the step range. */
2448
2449 ecs->sal = find_pc_line (stop_pc, 0);
2450
2451 if (step_range_end == 1)
2452 {
2453 /* It is stepi or nexti. We always want to stop stepping after
2454 one instruction. */
2455 stop_step = 1;
2456 print_stop_reason (END_STEPPING_RANGE, 0);
2457 stop_stepping (ecs);
2458 return;
2459 }
2460
2461 /* If we're in the return path from a shared library trampoline,
2462 we want to proceed through the trampoline when stepping. */
2463 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2464 {
2465 /* Determine where this trampoline returns. */
2466 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2467
2468 /* Only proceed through if we know where it's going. */
2469 if (real_stop_pc)
2470 {
2471 /* And put the step-breakpoint there and go until there. */
2472 struct symtab_and_line sr_sal;
2473
2474 init_sal (&sr_sal); /* initialize to zeroes */
2475 sr_sal.pc = real_stop_pc;
2476 sr_sal.section = find_pc_overlay (sr_sal.pc);
2477 /* Do not specify what the fp should be when we stop
2478 since on some machines the prologue
2479 is where the new fp value is established. */
2480 check_for_old_step_resume_breakpoint ();
2481 step_resume_breakpoint =
2482 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2483 if (breakpoints_inserted)
2484 insert_breakpoints ();
2485
2486 /* Restart without fiddling with the step ranges or
2487 other state. */
2488 keep_going (ecs);
2489 return;
2490 }
2491 }
2492
2493 if (ecs->sal.line == 0)
2494 {
2495 /* We have no line number information. That means to stop
2496 stepping (does this always happen right after one instruction,
2497 when we do "s" in a function with no line numbers,
2498 or can this happen as a result of a return or longjmp?). */
2499 stop_step = 1;
2500 print_stop_reason (END_STEPPING_RANGE, 0);
2501 stop_stepping (ecs);
2502 return;
2503 }
2504
2505 if ((stop_pc == ecs->sal.pc)
2506 && (ecs->current_line != ecs->sal.line
2507 || ecs->current_symtab != ecs->sal.symtab))
2508 {
2509 /* We are at the start of a different line. So stop. Note that
2510 we don't stop if we step into the middle of a different line.
2511 That is said to make things like for (;;) statements work
2512 better. */
2513 stop_step = 1;
2514 print_stop_reason (END_STEPPING_RANGE, 0);
2515 stop_stepping (ecs);
2516 return;
2517 }
2518
2519 /* We aren't done stepping.
2520
2521 Optimize by setting the stepping range to the line.
2522 (We might not be in the original line, but if we entered a
2523 new line in mid-statement, we continue stepping. This makes
2524 things like for(;;) statements work better.) */
2525
2526 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2527 {
2528 /* If this is the last line of the function, don't keep stepping
2529 (it would probably step us out of the function).
2530 This is particularly necessary for a one-line function,
2531 in which after skipping the prologue we better stop even though
2532 we will be in mid-line. */
2533 stop_step = 1;
2534 print_stop_reason (END_STEPPING_RANGE, 0);
2535 stop_stepping (ecs);
2536 return;
2537 }
2538 step_range_start = ecs->sal.pc;
2539 step_range_end = ecs->sal.end;
2540 step_frame_id = get_frame_id (get_current_frame ());
2541 ecs->current_line = ecs->sal.line;
2542 ecs->current_symtab = ecs->sal.symtab;
2543
2544 /* In the case where we just stepped out of a function into the
2545 middle of a line of the caller, continue stepping, but
2546 step_frame_id must be modified to current frame */
2547 {
2548 struct frame_id current_frame = get_frame_id (get_current_frame ());
2549 if (!(frame_id_inner (current_frame, step_frame_id)))
2550 step_frame_id = current_frame;
2551 }
2552
2553 keep_going (ecs);
2554 }
2555
2556 /* Are we in the middle of stepping? */
2557
2558 static int
2559 currently_stepping (struct execution_control_state *ecs)
2560 {
2561 return ((through_sigtramp_breakpoint == NULL
2562 && !ecs->handling_longjmp
2563 && ((step_range_end && step_resume_breakpoint == NULL)
2564 || trap_expected))
2565 || ecs->stepping_through_solib_after_catch
2566 || bpstat_should_step ());
2567 }
2568
2569 static void
2570 check_sigtramp2 (struct execution_control_state *ecs)
2571 {
2572 if (trap_expected
2573 && PC_IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2574 && !PC_IN_SIGTRAMP (prev_pc, prev_func_name)
2575 && INNER_THAN (read_sp (), step_sp))
2576 {
2577 /* What has happened here is that we have just stepped the
2578 inferior with a signal (because it is a signal which
2579 shouldn't make us stop), thus stepping into sigtramp.
2580
2581 So we need to set a step_resume_break_address breakpoint and
2582 continue until we hit it, and then step. FIXME: This should
2583 be more enduring than a step_resume breakpoint; we should
2584 know that we will later need to keep going rather than
2585 re-hitting the breakpoint here (see the testsuite,
2586 gdb.base/signals.exp where it says "exceedingly difficult"). */
2587
2588 struct symtab_and_line sr_sal;
2589
2590 init_sal (&sr_sal); /* initialize to zeroes */
2591 sr_sal.pc = prev_pc;
2592 sr_sal.section = find_pc_overlay (sr_sal.pc);
2593 /* We perhaps could set the frame if we kept track of what the
2594 frame corresponding to prev_pc was. But we don't, so don't. */
2595 through_sigtramp_breakpoint =
2596 set_momentary_breakpoint (sr_sal, null_frame_id, bp_through_sigtramp);
2597 if (breakpoints_inserted)
2598 insert_breakpoints ();
2599
2600 ecs->remove_breakpoints_on_following_step = 1;
2601 ecs->another_trap = 1;
2602 }
2603 }
2604
2605 /* Subroutine call with source code we should not step over. Do step
2606 to the first line of code in it. */
2607
2608 static void
2609 step_into_function (struct execution_control_state *ecs)
2610 {
2611 struct symtab *s;
2612 struct symtab_and_line sr_sal;
2613
2614 s = find_pc_symtab (stop_pc);
2615 if (s && s->language != language_asm)
2616 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2617
2618 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2619 /* Use the step_resume_break to step until the end of the prologue,
2620 even if that involves jumps (as it seems to on the vax under
2621 4.2). */
2622 /* If the prologue ends in the middle of a source line, continue to
2623 the end of that source line (if it is still within the function).
2624 Otherwise, just go to end of prologue. */
2625 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
2626 /* no, don't either. It skips any code that's legitimately on the
2627 first line. */
2628 #else
2629 if (ecs->sal.end
2630 && ecs->sal.pc != ecs->stop_func_start
2631 && ecs->sal.end < ecs->stop_func_end)
2632 ecs->stop_func_start = ecs->sal.end;
2633 #endif
2634
2635 if (ecs->stop_func_start == stop_pc)
2636 {
2637 /* We are already there: stop now. */
2638 stop_step = 1;
2639 print_stop_reason (END_STEPPING_RANGE, 0);
2640 stop_stepping (ecs);
2641 return;
2642 }
2643 else
2644 {
2645 /* Put the step-breakpoint there and go until there. */
2646 init_sal (&sr_sal); /* initialize to zeroes */
2647 sr_sal.pc = ecs->stop_func_start;
2648 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2649 /* Do not specify what the fp should be when we stop since on
2650 some machines the prologue is where the new fp value is
2651 established. */
2652 check_for_old_step_resume_breakpoint ();
2653 step_resume_breakpoint =
2654 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2655 if (breakpoints_inserted)
2656 insert_breakpoints ();
2657
2658 /* And make sure stepping stops right away then. */
2659 step_range_end = step_range_start;
2660 }
2661 keep_going (ecs);
2662 }
2663
2664 /* We've just entered a callee, and we wish to resume until it returns
2665 to the caller. Setting a step_resume breakpoint on the return
2666 address will catch a return from the callee.
2667
2668 However, if the callee is recursing, we want to be careful not to
2669 catch returns of those recursive calls, but only of THIS instance
2670 of the call.
2671
2672 To do this, we set the step_resume bp's frame to our current
2673 caller's frame (step_frame_id, which is set by the "next" or
2674 "until" command, before execution begins). */
2675
2676 static void
2677 step_over_function (struct execution_control_state *ecs)
2678 {
2679 struct symtab_and_line sr_sal;
2680
2681 init_sal (&sr_sal); /* initialize to zeros */
2682 sr_sal.pc = ADDR_BITS_REMOVE (SAVED_PC_AFTER_CALL (get_current_frame ()));
2683 sr_sal.section = find_pc_overlay (sr_sal.pc);
2684
2685 check_for_old_step_resume_breakpoint ();
2686 step_resume_breakpoint =
2687 set_momentary_breakpoint (sr_sal, get_frame_id (get_current_frame ()),
2688 bp_step_resume);
2689
2690 if (frame_id_p (step_frame_id)
2691 && !IN_SOLIB_DYNSYM_RESOLVE_CODE (sr_sal.pc))
2692 step_resume_breakpoint->frame_id = step_frame_id;
2693
2694 if (breakpoints_inserted)
2695 insert_breakpoints ();
2696 }
2697
2698 static void
2699 stop_stepping (struct execution_control_state *ecs)
2700 {
2701 if (target_has_execution)
2702 {
2703 /* Assuming the inferior still exists, set these up for next
2704 time, just like we did above if we didn't break out of the
2705 loop. */
2706 prev_pc = read_pc ();
2707 prev_func_start = ecs->stop_func_start;
2708 prev_func_name = ecs->stop_func_name;
2709 }
2710
2711 /* Let callers know we don't want to wait for the inferior anymore. */
2712 ecs->wait_some_more = 0;
2713 }
2714
2715 /* This function handles various cases where we need to continue
2716 waiting for the inferior. */
2717 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2718
2719 static void
2720 keep_going (struct execution_control_state *ecs)
2721 {
2722 /* Save the pc before execution, to compare with pc after stop. */
2723 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2724 prev_func_start = ecs->stop_func_start; /* Ok, since if DECR_PC_AFTER
2725 BREAK is defined, the
2726 original pc would not have
2727 been at the start of a
2728 function. */
2729 prev_func_name = ecs->stop_func_name;
2730
2731 if (ecs->update_step_sp)
2732 step_sp = read_sp ();
2733 ecs->update_step_sp = 0;
2734
2735 /* If we did not do break;, it means we should keep running the
2736 inferior and not return to debugger. */
2737
2738 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2739 {
2740 /* We took a signal (which we are supposed to pass through to
2741 the inferior, else we'd have done a break above) and we
2742 haven't yet gotten our trap. Simply continue. */
2743 resume (currently_stepping (ecs), stop_signal);
2744 }
2745 else
2746 {
2747 /* Either the trap was not expected, but we are continuing
2748 anyway (the user asked that this signal be passed to the
2749 child)
2750 -- or --
2751 The signal was SIGTRAP, e.g. it was our signal, but we
2752 decided we should resume from it.
2753
2754 We're going to run this baby now!
2755
2756 Insert breakpoints now, unless we are trying to one-proceed
2757 past a breakpoint. */
2758 /* If we've just finished a special step resume and we don't
2759 want to hit a breakpoint, pull em out. */
2760 if (step_resume_breakpoint == NULL
2761 && through_sigtramp_breakpoint == NULL
2762 && ecs->remove_breakpoints_on_following_step)
2763 {
2764 ecs->remove_breakpoints_on_following_step = 0;
2765 remove_breakpoints ();
2766 breakpoints_inserted = 0;
2767 }
2768 else if (!breakpoints_inserted &&
2769 (through_sigtramp_breakpoint != NULL || !ecs->another_trap))
2770 {
2771 breakpoints_failed = insert_breakpoints ();
2772 if (breakpoints_failed)
2773 {
2774 stop_stepping (ecs);
2775 return;
2776 }
2777 breakpoints_inserted = 1;
2778 }
2779
2780 trap_expected = ecs->another_trap;
2781
2782 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2783 specifies that such a signal should be delivered to the
2784 target program).
2785
2786 Typically, this would occure when a user is debugging a
2787 target monitor on a simulator: the target monitor sets a
2788 breakpoint; the simulator encounters this break-point and
2789 halts the simulation handing control to GDB; GDB, noteing
2790 that the break-point isn't valid, returns control back to the
2791 simulator; the simulator then delivers the hardware
2792 equivalent of a SIGNAL_TRAP to the program being debugged. */
2793
2794 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2795 stop_signal = TARGET_SIGNAL_0;
2796
2797 #ifdef SHIFT_INST_REGS
2798 /* I'm not sure when this following segment applies. I do know,
2799 now, that we shouldn't rewrite the regs when we were stopped
2800 by a random signal from the inferior process. */
2801 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
2802 (this is only used on the 88k). */
2803
2804 if (!bpstat_explains_signal (stop_bpstat)
2805 && (stop_signal != TARGET_SIGNAL_CHLD) && !stopped_by_random_signal)
2806 SHIFT_INST_REGS ();
2807 #endif /* SHIFT_INST_REGS */
2808
2809 resume (currently_stepping (ecs), stop_signal);
2810 }
2811
2812 prepare_to_wait (ecs);
2813 }
2814
2815 /* This function normally comes after a resume, before
2816 handle_inferior_event exits. It takes care of any last bits of
2817 housekeeping, and sets the all-important wait_some_more flag. */
2818
2819 static void
2820 prepare_to_wait (struct execution_control_state *ecs)
2821 {
2822 if (ecs->infwait_state == infwait_normal_state)
2823 {
2824 overlay_cache_invalid = 1;
2825
2826 /* We have to invalidate the registers BEFORE calling
2827 target_wait because they can be loaded from the target while
2828 in target_wait. This makes remote debugging a bit more
2829 efficient for those targets that provide critical registers
2830 as part of their normal status mechanism. */
2831
2832 registers_changed ();
2833 ecs->waiton_ptid = pid_to_ptid (-1);
2834 ecs->wp = &(ecs->ws);
2835 }
2836 /* This is the old end of the while loop. Let everybody know we
2837 want to wait for the inferior some more and get called again
2838 soon. */
2839 ecs->wait_some_more = 1;
2840 }
2841
2842 /* Print why the inferior has stopped. We always print something when
2843 the inferior exits, or receives a signal. The rest of the cases are
2844 dealt with later on in normal_stop() and print_it_typical(). Ideally
2845 there should be a call to this function from handle_inferior_event()
2846 each time stop_stepping() is called.*/
2847 static void
2848 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2849 {
2850 switch (stop_reason)
2851 {
2852 case STOP_UNKNOWN:
2853 /* We don't deal with these cases from handle_inferior_event()
2854 yet. */
2855 break;
2856 case END_STEPPING_RANGE:
2857 /* We are done with a step/next/si/ni command. */
2858 /* For now print nothing. */
2859 /* Print a message only if not in the middle of doing a "step n"
2860 operation for n > 1 */
2861 if (!step_multi || !stop_step)
2862 if (ui_out_is_mi_like_p (uiout))
2863 ui_out_field_string (uiout, "reason", "end-stepping-range");
2864 break;
2865 case BREAKPOINT_HIT:
2866 /* We found a breakpoint. */
2867 /* For now print nothing. */
2868 break;
2869 case SIGNAL_EXITED:
2870 /* The inferior was terminated by a signal. */
2871 annotate_signalled ();
2872 if (ui_out_is_mi_like_p (uiout))
2873 ui_out_field_string (uiout, "reason", "exited-signalled");
2874 ui_out_text (uiout, "\nProgram terminated with signal ");
2875 annotate_signal_name ();
2876 ui_out_field_string (uiout, "signal-name",
2877 target_signal_to_name (stop_info));
2878 annotate_signal_name_end ();
2879 ui_out_text (uiout, ", ");
2880 annotate_signal_string ();
2881 ui_out_field_string (uiout, "signal-meaning",
2882 target_signal_to_string (stop_info));
2883 annotate_signal_string_end ();
2884 ui_out_text (uiout, ".\n");
2885 ui_out_text (uiout, "The program no longer exists.\n");
2886 break;
2887 case EXITED:
2888 /* The inferior program is finished. */
2889 annotate_exited (stop_info);
2890 if (stop_info)
2891 {
2892 if (ui_out_is_mi_like_p (uiout))
2893 ui_out_field_string (uiout, "reason", "exited");
2894 ui_out_text (uiout, "\nProgram exited with code ");
2895 ui_out_field_fmt (uiout, "exit-code", "0%o",
2896 (unsigned int) stop_info);
2897 ui_out_text (uiout, ".\n");
2898 }
2899 else
2900 {
2901 if (ui_out_is_mi_like_p (uiout))
2902 ui_out_field_string (uiout, "reason", "exited-normally");
2903 ui_out_text (uiout, "\nProgram exited normally.\n");
2904 }
2905 break;
2906 case SIGNAL_RECEIVED:
2907 /* Signal received. The signal table tells us to print about
2908 it. */
2909 annotate_signal ();
2910 ui_out_text (uiout, "\nProgram received signal ");
2911 annotate_signal_name ();
2912 if (ui_out_is_mi_like_p (uiout))
2913 ui_out_field_string (uiout, "reason", "signal-received");
2914 ui_out_field_string (uiout, "signal-name",
2915 target_signal_to_name (stop_info));
2916 annotate_signal_name_end ();
2917 ui_out_text (uiout, ", ");
2918 annotate_signal_string ();
2919 ui_out_field_string (uiout, "signal-meaning",
2920 target_signal_to_string (stop_info));
2921 annotate_signal_string_end ();
2922 ui_out_text (uiout, ".\n");
2923 break;
2924 default:
2925 internal_error (__FILE__, __LINE__,
2926 "print_stop_reason: unrecognized enum value");
2927 break;
2928 }
2929 }
2930 \f
2931
2932 /* Here to return control to GDB when the inferior stops for real.
2933 Print appropriate messages, remove breakpoints, give terminal our modes.
2934
2935 STOP_PRINT_FRAME nonzero means print the executing frame
2936 (pc, function, args, file, line number and line text).
2937 BREAKPOINTS_FAILED nonzero means stop was due to error
2938 attempting to insert breakpoints. */
2939
2940 void
2941 normal_stop (void)
2942 {
2943 /* As with the notification of thread events, we want to delay
2944 notifying the user that we've switched thread context until
2945 the inferior actually stops.
2946
2947 (Note that there's no point in saying anything if the inferior
2948 has exited!) */
2949 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
2950 && target_has_execution)
2951 {
2952 target_terminal_ours_for_output ();
2953 printf_filtered ("[Switching to %s]\n",
2954 target_pid_or_tid_to_str (inferior_ptid));
2955 previous_inferior_ptid = inferior_ptid;
2956 }
2957
2958 /* Make sure that the current_frame's pc is correct. This
2959 is a correction for setting up the frame info before doing
2960 DECR_PC_AFTER_BREAK */
2961 if (target_has_execution)
2962 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
2963 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
2964 frame code to check for this and sort out any resultant mess.
2965 DECR_PC_AFTER_BREAK needs to just go away. */
2966 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
2967
2968 if (target_has_execution && breakpoints_inserted)
2969 {
2970 if (remove_breakpoints ())
2971 {
2972 target_terminal_ours_for_output ();
2973 printf_filtered ("Cannot remove breakpoints because ");
2974 printf_filtered ("program is no longer writable.\n");
2975 printf_filtered ("It might be running in another process.\n");
2976 printf_filtered ("Further execution is probably impossible.\n");
2977 }
2978 }
2979 breakpoints_inserted = 0;
2980
2981 /* Delete the breakpoint we stopped at, if it wants to be deleted.
2982 Delete any breakpoint that is to be deleted at the next stop. */
2983
2984 breakpoint_auto_delete (stop_bpstat);
2985
2986 /* If an auto-display called a function and that got a signal,
2987 delete that auto-display to avoid an infinite recursion. */
2988
2989 if (stopped_by_random_signal)
2990 disable_current_display ();
2991
2992 /* Don't print a message if in the middle of doing a "step n"
2993 operation for n > 1 */
2994 if (step_multi && stop_step)
2995 goto done;
2996
2997 target_terminal_ours ();
2998
2999 /* Look up the hook_stop and run it (CLI internally handles problem
3000 of stop_command's pre-hook not existing). */
3001 if (stop_command)
3002 catch_errors (hook_stop_stub, stop_command,
3003 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3004
3005 if (!target_has_stack)
3006 {
3007
3008 goto done;
3009 }
3010
3011 /* Select innermost stack frame - i.e., current frame is frame 0,
3012 and current location is based on that.
3013 Don't do this on return from a stack dummy routine,
3014 or if the program has exited. */
3015
3016 if (!stop_stack_dummy)
3017 {
3018 select_frame (get_current_frame ());
3019
3020 /* Print current location without a level number, if
3021 we have changed functions or hit a breakpoint.
3022 Print source line if we have one.
3023 bpstat_print() contains the logic deciding in detail
3024 what to print, based on the event(s) that just occurred. */
3025
3026 if (stop_print_frame && deprecated_selected_frame)
3027 {
3028 int bpstat_ret;
3029 int source_flag;
3030 int do_frame_printing = 1;
3031
3032 bpstat_ret = bpstat_print (stop_bpstat);
3033 switch (bpstat_ret)
3034 {
3035 case PRINT_UNKNOWN:
3036 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3037 (or should) carry around the function and does (or
3038 should) use that when doing a frame comparison. */
3039 if (stop_step
3040 && frame_id_eq (step_frame_id,
3041 get_frame_id (get_current_frame ()))
3042 && step_start_function == find_pc_function (stop_pc))
3043 source_flag = SRC_LINE; /* finished step, just print source line */
3044 else
3045 source_flag = SRC_AND_LOC; /* print location and source line */
3046 break;
3047 case PRINT_SRC_AND_LOC:
3048 source_flag = SRC_AND_LOC; /* print location and source line */
3049 break;
3050 case PRINT_SRC_ONLY:
3051 source_flag = SRC_LINE;
3052 break;
3053 case PRINT_NOTHING:
3054 source_flag = SRC_LINE; /* something bogus */
3055 do_frame_printing = 0;
3056 break;
3057 default:
3058 internal_error (__FILE__, __LINE__, "Unknown value.");
3059 }
3060 /* For mi, have the same behavior every time we stop:
3061 print everything but the source line. */
3062 if (ui_out_is_mi_like_p (uiout))
3063 source_flag = LOC_AND_ADDRESS;
3064
3065 if (ui_out_is_mi_like_p (uiout))
3066 ui_out_field_int (uiout, "thread-id",
3067 pid_to_thread_id (inferior_ptid));
3068 /* The behavior of this routine with respect to the source
3069 flag is:
3070 SRC_LINE: Print only source line
3071 LOCATION: Print only location
3072 SRC_AND_LOC: Print location and source line */
3073 if (do_frame_printing)
3074 print_stack_frame (deprecated_selected_frame, -1, source_flag);
3075
3076 /* Display the auto-display expressions. */
3077 do_displays ();
3078 }
3079 }
3080
3081 /* Save the function value return registers, if we care.
3082 We might be about to restore their previous contents. */
3083 if (proceed_to_finish)
3084 /* NB: The copy goes through to the target picking up the value of
3085 all the registers. */
3086 regcache_cpy (stop_registers, current_regcache);
3087
3088 if (stop_stack_dummy)
3089 {
3090 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3091 ends with a setting of the current frame, so we can use that
3092 next. */
3093 frame_pop (get_current_frame ());
3094 /* Set stop_pc to what it was before we called the function.
3095 Can't rely on restore_inferior_status because that only gets
3096 called if we don't stop in the called function. */
3097 stop_pc = read_pc ();
3098 select_frame (get_current_frame ());
3099 }
3100
3101 done:
3102 annotate_stopped ();
3103 observer_notify_normal_stop ();
3104 }
3105
3106 static int
3107 hook_stop_stub (void *cmd)
3108 {
3109 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3110 return (0);
3111 }
3112 \f
3113 int
3114 signal_stop_state (int signo)
3115 {
3116 return signal_stop[signo];
3117 }
3118
3119 int
3120 signal_print_state (int signo)
3121 {
3122 return signal_print[signo];
3123 }
3124
3125 int
3126 signal_pass_state (int signo)
3127 {
3128 return signal_program[signo];
3129 }
3130
3131 int
3132 signal_stop_update (int signo, int state)
3133 {
3134 int ret = signal_stop[signo];
3135 signal_stop[signo] = state;
3136 return ret;
3137 }
3138
3139 int
3140 signal_print_update (int signo, int state)
3141 {
3142 int ret = signal_print[signo];
3143 signal_print[signo] = state;
3144 return ret;
3145 }
3146
3147 int
3148 signal_pass_update (int signo, int state)
3149 {
3150 int ret = signal_program[signo];
3151 signal_program[signo] = state;
3152 return ret;
3153 }
3154
3155 static void
3156 sig_print_header (void)
3157 {
3158 printf_filtered ("\
3159 Signal Stop\tPrint\tPass to program\tDescription\n");
3160 }
3161
3162 static void
3163 sig_print_info (enum target_signal oursig)
3164 {
3165 char *name = target_signal_to_name (oursig);
3166 int name_padding = 13 - strlen (name);
3167
3168 if (name_padding <= 0)
3169 name_padding = 0;
3170
3171 printf_filtered ("%s", name);
3172 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3173 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3174 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3175 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3176 printf_filtered ("%s\n", target_signal_to_string (oursig));
3177 }
3178
3179 /* Specify how various signals in the inferior should be handled. */
3180
3181 static void
3182 handle_command (char *args, int from_tty)
3183 {
3184 char **argv;
3185 int digits, wordlen;
3186 int sigfirst, signum, siglast;
3187 enum target_signal oursig;
3188 int allsigs;
3189 int nsigs;
3190 unsigned char *sigs;
3191 struct cleanup *old_chain;
3192
3193 if (args == NULL)
3194 {
3195 error_no_arg ("signal to handle");
3196 }
3197
3198 /* Allocate and zero an array of flags for which signals to handle. */
3199
3200 nsigs = (int) TARGET_SIGNAL_LAST;
3201 sigs = (unsigned char *) alloca (nsigs);
3202 memset (sigs, 0, nsigs);
3203
3204 /* Break the command line up into args. */
3205
3206 argv = buildargv (args);
3207 if (argv == NULL)
3208 {
3209 nomem (0);
3210 }
3211 old_chain = make_cleanup_freeargv (argv);
3212
3213 /* Walk through the args, looking for signal oursigs, signal names, and
3214 actions. Signal numbers and signal names may be interspersed with
3215 actions, with the actions being performed for all signals cumulatively
3216 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3217
3218 while (*argv != NULL)
3219 {
3220 wordlen = strlen (*argv);
3221 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3222 {;
3223 }
3224 allsigs = 0;
3225 sigfirst = siglast = -1;
3226
3227 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3228 {
3229 /* Apply action to all signals except those used by the
3230 debugger. Silently skip those. */
3231 allsigs = 1;
3232 sigfirst = 0;
3233 siglast = nsigs - 1;
3234 }
3235 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3236 {
3237 SET_SIGS (nsigs, sigs, signal_stop);
3238 SET_SIGS (nsigs, sigs, signal_print);
3239 }
3240 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3241 {
3242 UNSET_SIGS (nsigs, sigs, signal_program);
3243 }
3244 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3245 {
3246 SET_SIGS (nsigs, sigs, signal_print);
3247 }
3248 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3249 {
3250 SET_SIGS (nsigs, sigs, signal_program);
3251 }
3252 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3253 {
3254 UNSET_SIGS (nsigs, sigs, signal_stop);
3255 }
3256 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3257 {
3258 SET_SIGS (nsigs, sigs, signal_program);
3259 }
3260 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3261 {
3262 UNSET_SIGS (nsigs, sigs, signal_print);
3263 UNSET_SIGS (nsigs, sigs, signal_stop);
3264 }
3265 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3266 {
3267 UNSET_SIGS (nsigs, sigs, signal_program);
3268 }
3269 else if (digits > 0)
3270 {
3271 /* It is numeric. The numeric signal refers to our own
3272 internal signal numbering from target.h, not to host/target
3273 signal number. This is a feature; users really should be
3274 using symbolic names anyway, and the common ones like
3275 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3276
3277 sigfirst = siglast = (int)
3278 target_signal_from_command (atoi (*argv));
3279 if ((*argv)[digits] == '-')
3280 {
3281 siglast = (int)
3282 target_signal_from_command (atoi ((*argv) + digits + 1));
3283 }
3284 if (sigfirst > siglast)
3285 {
3286 /* Bet he didn't figure we'd think of this case... */
3287 signum = sigfirst;
3288 sigfirst = siglast;
3289 siglast = signum;
3290 }
3291 }
3292 else
3293 {
3294 oursig = target_signal_from_name (*argv);
3295 if (oursig != TARGET_SIGNAL_UNKNOWN)
3296 {
3297 sigfirst = siglast = (int) oursig;
3298 }
3299 else
3300 {
3301 /* Not a number and not a recognized flag word => complain. */
3302 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3303 }
3304 }
3305
3306 /* If any signal numbers or symbol names were found, set flags for
3307 which signals to apply actions to. */
3308
3309 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3310 {
3311 switch ((enum target_signal) signum)
3312 {
3313 case TARGET_SIGNAL_TRAP:
3314 case TARGET_SIGNAL_INT:
3315 if (!allsigs && !sigs[signum])
3316 {
3317 if (query ("%s is used by the debugger.\n\
3318 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3319 {
3320 sigs[signum] = 1;
3321 }
3322 else
3323 {
3324 printf_unfiltered ("Not confirmed, unchanged.\n");
3325 gdb_flush (gdb_stdout);
3326 }
3327 }
3328 break;
3329 case TARGET_SIGNAL_0:
3330 case TARGET_SIGNAL_DEFAULT:
3331 case TARGET_SIGNAL_UNKNOWN:
3332 /* Make sure that "all" doesn't print these. */
3333 break;
3334 default:
3335 sigs[signum] = 1;
3336 break;
3337 }
3338 }
3339
3340 argv++;
3341 }
3342
3343 target_notice_signals (inferior_ptid);
3344
3345 if (from_tty)
3346 {
3347 /* Show the results. */
3348 sig_print_header ();
3349 for (signum = 0; signum < nsigs; signum++)
3350 {
3351 if (sigs[signum])
3352 {
3353 sig_print_info (signum);
3354 }
3355 }
3356 }
3357
3358 do_cleanups (old_chain);
3359 }
3360
3361 static void
3362 xdb_handle_command (char *args, int from_tty)
3363 {
3364 char **argv;
3365 struct cleanup *old_chain;
3366
3367 /* Break the command line up into args. */
3368
3369 argv = buildargv (args);
3370 if (argv == NULL)
3371 {
3372 nomem (0);
3373 }
3374 old_chain = make_cleanup_freeargv (argv);
3375 if (argv[1] != (char *) NULL)
3376 {
3377 char *argBuf;
3378 int bufLen;
3379
3380 bufLen = strlen (argv[0]) + 20;
3381 argBuf = (char *) xmalloc (bufLen);
3382 if (argBuf)
3383 {
3384 int validFlag = 1;
3385 enum target_signal oursig;
3386
3387 oursig = target_signal_from_name (argv[0]);
3388 memset (argBuf, 0, bufLen);
3389 if (strcmp (argv[1], "Q") == 0)
3390 sprintf (argBuf, "%s %s", argv[0], "noprint");
3391 else
3392 {
3393 if (strcmp (argv[1], "s") == 0)
3394 {
3395 if (!signal_stop[oursig])
3396 sprintf (argBuf, "%s %s", argv[0], "stop");
3397 else
3398 sprintf (argBuf, "%s %s", argv[0], "nostop");
3399 }
3400 else if (strcmp (argv[1], "i") == 0)
3401 {
3402 if (!signal_program[oursig])
3403 sprintf (argBuf, "%s %s", argv[0], "pass");
3404 else
3405 sprintf (argBuf, "%s %s", argv[0], "nopass");
3406 }
3407 else if (strcmp (argv[1], "r") == 0)
3408 {
3409 if (!signal_print[oursig])
3410 sprintf (argBuf, "%s %s", argv[0], "print");
3411 else
3412 sprintf (argBuf, "%s %s", argv[0], "noprint");
3413 }
3414 else
3415 validFlag = 0;
3416 }
3417 if (validFlag)
3418 handle_command (argBuf, from_tty);
3419 else
3420 printf_filtered ("Invalid signal handling flag.\n");
3421 if (argBuf)
3422 xfree (argBuf);
3423 }
3424 }
3425 do_cleanups (old_chain);
3426 }
3427
3428 /* Print current contents of the tables set by the handle command.
3429 It is possible we should just be printing signals actually used
3430 by the current target (but for things to work right when switching
3431 targets, all signals should be in the signal tables). */
3432
3433 static void
3434 signals_info (char *signum_exp, int from_tty)
3435 {
3436 enum target_signal oursig;
3437 sig_print_header ();
3438
3439 if (signum_exp)
3440 {
3441 /* First see if this is a symbol name. */
3442 oursig = target_signal_from_name (signum_exp);
3443 if (oursig == TARGET_SIGNAL_UNKNOWN)
3444 {
3445 /* No, try numeric. */
3446 oursig =
3447 target_signal_from_command (parse_and_eval_long (signum_exp));
3448 }
3449 sig_print_info (oursig);
3450 return;
3451 }
3452
3453 printf_filtered ("\n");
3454 /* These ugly casts brought to you by the native VAX compiler. */
3455 for (oursig = TARGET_SIGNAL_FIRST;
3456 (int) oursig < (int) TARGET_SIGNAL_LAST;
3457 oursig = (enum target_signal) ((int) oursig + 1))
3458 {
3459 QUIT;
3460
3461 if (oursig != TARGET_SIGNAL_UNKNOWN
3462 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3463 sig_print_info (oursig);
3464 }
3465
3466 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3467 }
3468 \f
3469 struct inferior_status
3470 {
3471 enum target_signal stop_signal;
3472 CORE_ADDR stop_pc;
3473 bpstat stop_bpstat;
3474 int stop_step;
3475 int stop_stack_dummy;
3476 int stopped_by_random_signal;
3477 int trap_expected;
3478 CORE_ADDR step_range_start;
3479 CORE_ADDR step_range_end;
3480 struct frame_id step_frame_id;
3481 enum step_over_calls_kind step_over_calls;
3482 CORE_ADDR step_resume_break_address;
3483 int stop_after_trap;
3484 int stop_soon_quietly;
3485 struct regcache *stop_registers;
3486
3487 /* These are here because if call_function_by_hand has written some
3488 registers and then decides to call error(), we better not have changed
3489 any registers. */
3490 struct regcache *registers;
3491
3492 /* A frame unique identifier. */
3493 struct frame_id selected_frame_id;
3494
3495 int breakpoint_proceeded;
3496 int restore_stack_info;
3497 int proceed_to_finish;
3498 };
3499
3500 void
3501 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3502 LONGEST val)
3503 {
3504 int size = REGISTER_RAW_SIZE (regno);
3505 void *buf = alloca (size);
3506 store_signed_integer (buf, size, val);
3507 regcache_raw_write (inf_status->registers, regno, buf);
3508 }
3509
3510 /* Save all of the information associated with the inferior<==>gdb
3511 connection. INF_STATUS is a pointer to a "struct inferior_status"
3512 (defined in inferior.h). */
3513
3514 struct inferior_status *
3515 save_inferior_status (int restore_stack_info)
3516 {
3517 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3518
3519 inf_status->stop_signal = stop_signal;
3520 inf_status->stop_pc = stop_pc;
3521 inf_status->stop_step = stop_step;
3522 inf_status->stop_stack_dummy = stop_stack_dummy;
3523 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3524 inf_status->trap_expected = trap_expected;
3525 inf_status->step_range_start = step_range_start;
3526 inf_status->step_range_end = step_range_end;
3527 inf_status->step_frame_id = step_frame_id;
3528 inf_status->step_over_calls = step_over_calls;
3529 inf_status->stop_after_trap = stop_after_trap;
3530 inf_status->stop_soon_quietly = stop_soon_quietly;
3531 /* Save original bpstat chain here; replace it with copy of chain.
3532 If caller's caller is walking the chain, they'll be happier if we
3533 hand them back the original chain when restore_inferior_status is
3534 called. */
3535 inf_status->stop_bpstat = stop_bpstat;
3536 stop_bpstat = bpstat_copy (stop_bpstat);
3537 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3538 inf_status->restore_stack_info = restore_stack_info;
3539 inf_status->proceed_to_finish = proceed_to_finish;
3540
3541 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3542
3543 inf_status->registers = regcache_dup (current_regcache);
3544
3545 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3546 return inf_status;
3547 }
3548
3549 static int
3550 restore_selected_frame (void *args)
3551 {
3552 struct frame_id *fid = (struct frame_id *) args;
3553 struct frame_info *frame;
3554
3555 frame = frame_find_by_id (*fid);
3556
3557 /* If inf_status->selected_frame_id is NULL, there was no previously
3558 selected frame. */
3559 if (frame == NULL)
3560 {
3561 warning ("Unable to restore previously selected frame.\n");
3562 return 0;
3563 }
3564
3565 select_frame (frame);
3566
3567 return (1);
3568 }
3569
3570 void
3571 restore_inferior_status (struct inferior_status *inf_status)
3572 {
3573 stop_signal = inf_status->stop_signal;
3574 stop_pc = inf_status->stop_pc;
3575 stop_step = inf_status->stop_step;
3576 stop_stack_dummy = inf_status->stop_stack_dummy;
3577 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3578 trap_expected = inf_status->trap_expected;
3579 step_range_start = inf_status->step_range_start;
3580 step_range_end = inf_status->step_range_end;
3581 step_frame_id = inf_status->step_frame_id;
3582 step_over_calls = inf_status->step_over_calls;
3583 stop_after_trap = inf_status->stop_after_trap;
3584 stop_soon_quietly = inf_status->stop_soon_quietly;
3585 bpstat_clear (&stop_bpstat);
3586 stop_bpstat = inf_status->stop_bpstat;
3587 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3588 proceed_to_finish = inf_status->proceed_to_finish;
3589
3590 /* FIXME: Is the restore of stop_registers always needed. */
3591 regcache_xfree (stop_registers);
3592 stop_registers = inf_status->stop_registers;
3593
3594 /* The inferior can be gone if the user types "print exit(0)"
3595 (and perhaps other times). */
3596 if (target_has_execution)
3597 /* NB: The register write goes through to the target. */
3598 regcache_cpy (current_regcache, inf_status->registers);
3599 regcache_xfree (inf_status->registers);
3600
3601 /* FIXME: If we are being called after stopping in a function which
3602 is called from gdb, we should not be trying to restore the
3603 selected frame; it just prints a spurious error message (The
3604 message is useful, however, in detecting bugs in gdb (like if gdb
3605 clobbers the stack)). In fact, should we be restoring the
3606 inferior status at all in that case? . */
3607
3608 if (target_has_stack && inf_status->restore_stack_info)
3609 {
3610 /* The point of catch_errors is that if the stack is clobbered,
3611 walking the stack might encounter a garbage pointer and
3612 error() trying to dereference it. */
3613 if (catch_errors
3614 (restore_selected_frame, &inf_status->selected_frame_id,
3615 "Unable to restore previously selected frame:\n",
3616 RETURN_MASK_ERROR) == 0)
3617 /* Error in restoring the selected frame. Select the innermost
3618 frame. */
3619 select_frame (get_current_frame ());
3620
3621 }
3622
3623 xfree (inf_status);
3624 }
3625
3626 static void
3627 do_restore_inferior_status_cleanup (void *sts)
3628 {
3629 restore_inferior_status (sts);
3630 }
3631
3632 struct cleanup *
3633 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3634 {
3635 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3636 }
3637
3638 void
3639 discard_inferior_status (struct inferior_status *inf_status)
3640 {
3641 /* See save_inferior_status for info on stop_bpstat. */
3642 bpstat_clear (&inf_status->stop_bpstat);
3643 regcache_xfree (inf_status->registers);
3644 regcache_xfree (inf_status->stop_registers);
3645 xfree (inf_status);
3646 }
3647
3648 int
3649 inferior_has_forked (int pid, int *child_pid)
3650 {
3651 struct target_waitstatus last;
3652 ptid_t last_ptid;
3653
3654 get_last_target_status (&last_ptid, &last);
3655
3656 if (last.kind != TARGET_WAITKIND_FORKED)
3657 return 0;
3658
3659 if (ptid_get_pid (last_ptid) != pid)
3660 return 0;
3661
3662 *child_pid = last.value.related_pid;
3663 return 1;
3664 }
3665
3666 int
3667 inferior_has_vforked (int pid, int *child_pid)
3668 {
3669 struct target_waitstatus last;
3670 ptid_t last_ptid;
3671
3672 get_last_target_status (&last_ptid, &last);
3673
3674 if (last.kind != TARGET_WAITKIND_VFORKED)
3675 return 0;
3676
3677 if (ptid_get_pid (last_ptid) != pid)
3678 return 0;
3679
3680 *child_pid = last.value.related_pid;
3681 return 1;
3682 }
3683
3684 int
3685 inferior_has_execd (int pid, char **execd_pathname)
3686 {
3687 struct target_waitstatus last;
3688 ptid_t last_ptid;
3689
3690 get_last_target_status (&last_ptid, &last);
3691
3692 if (last.kind != TARGET_WAITKIND_EXECD)
3693 return 0;
3694
3695 if (ptid_get_pid (last_ptid) != pid)
3696 return 0;
3697
3698 *execd_pathname = xstrdup (last.value.execd_pathname);
3699 return 1;
3700 }
3701
3702 /* Oft used ptids */
3703 ptid_t null_ptid;
3704 ptid_t minus_one_ptid;
3705
3706 /* Create a ptid given the necessary PID, LWP, and TID components. */
3707
3708 ptid_t
3709 ptid_build (int pid, long lwp, long tid)
3710 {
3711 ptid_t ptid;
3712
3713 ptid.pid = pid;
3714 ptid.lwp = lwp;
3715 ptid.tid = tid;
3716 return ptid;
3717 }
3718
3719 /* Create a ptid from just a pid. */
3720
3721 ptid_t
3722 pid_to_ptid (int pid)
3723 {
3724 return ptid_build (pid, 0, 0);
3725 }
3726
3727 /* Fetch the pid (process id) component from a ptid. */
3728
3729 int
3730 ptid_get_pid (ptid_t ptid)
3731 {
3732 return ptid.pid;
3733 }
3734
3735 /* Fetch the lwp (lightweight process) component from a ptid. */
3736
3737 long
3738 ptid_get_lwp (ptid_t ptid)
3739 {
3740 return ptid.lwp;
3741 }
3742
3743 /* Fetch the tid (thread id) component from a ptid. */
3744
3745 long
3746 ptid_get_tid (ptid_t ptid)
3747 {
3748 return ptid.tid;
3749 }
3750
3751 /* ptid_equal() is used to test equality of two ptids. */
3752
3753 int
3754 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3755 {
3756 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3757 && ptid1.tid == ptid2.tid);
3758 }
3759
3760 /* restore_inferior_ptid() will be used by the cleanup machinery
3761 to restore the inferior_ptid value saved in a call to
3762 save_inferior_ptid(). */
3763
3764 static void
3765 restore_inferior_ptid (void *arg)
3766 {
3767 ptid_t *saved_ptid_ptr = arg;
3768 inferior_ptid = *saved_ptid_ptr;
3769 xfree (arg);
3770 }
3771
3772 /* Save the value of inferior_ptid so that it may be restored by a
3773 later call to do_cleanups(). Returns the struct cleanup pointer
3774 needed for later doing the cleanup. */
3775
3776 struct cleanup *
3777 save_inferior_ptid (void)
3778 {
3779 ptid_t *saved_ptid_ptr;
3780
3781 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3782 *saved_ptid_ptr = inferior_ptid;
3783 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3784 }
3785 \f
3786
3787 static void
3788 build_infrun (void)
3789 {
3790 stop_registers = regcache_xmalloc (current_gdbarch);
3791 }
3792
3793 void
3794 _initialize_infrun (void)
3795 {
3796 register int i;
3797 register int numsigs;
3798 struct cmd_list_element *c;
3799
3800 register_gdbarch_swap (&stop_registers, sizeof (stop_registers), NULL);
3801 register_gdbarch_swap (NULL, 0, build_infrun);
3802
3803 add_info ("signals", signals_info,
3804 "What debugger does when program gets various signals.\n\
3805 Specify a signal as argument to print info on that signal only.");
3806 add_info_alias ("handle", "signals", 0);
3807
3808 add_com ("handle", class_run, handle_command,
3809 concat ("Specify how to handle a signal.\n\
3810 Args are signals and actions to apply to those signals.\n\
3811 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3812 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3813 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3814 The special arg \"all\" is recognized to mean all signals except those\n\
3815 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3816 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3817 Stop means reenter debugger if this signal happens (implies print).\n\
3818 Print means print a message if this signal happens.\n\
3819 Pass means let program see this signal; otherwise program doesn't know.\n\
3820 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3821 Pass and Stop may be combined.", NULL));
3822 if (xdb_commands)
3823 {
3824 add_com ("lz", class_info, signals_info,
3825 "What debugger does when program gets various signals.\n\
3826 Specify a signal as argument to print info on that signal only.");
3827 add_com ("z", class_run, xdb_handle_command,
3828 concat ("Specify how to handle a signal.\n\
3829 Args are signals and actions to apply to those signals.\n\
3830 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3831 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3832 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3833 The special arg \"all\" is recognized to mean all signals except those\n\
3834 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
3835 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3836 nopass), \"Q\" (noprint)\n\
3837 Stop means reenter debugger if this signal happens (implies print).\n\
3838 Print means print a message if this signal happens.\n\
3839 Pass means let program see this signal; otherwise program doesn't know.\n\
3840 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3841 Pass and Stop may be combined.", NULL));
3842 }
3843
3844 if (!dbx_commands)
3845 stop_command =
3846 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
3847 This allows you to set a list of commands to be run each time execution\n\
3848 of the program stops.", &cmdlist);
3849
3850 numsigs = (int) TARGET_SIGNAL_LAST;
3851 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3852 signal_print = (unsigned char *)
3853 xmalloc (sizeof (signal_print[0]) * numsigs);
3854 signal_program = (unsigned char *)
3855 xmalloc (sizeof (signal_program[0]) * numsigs);
3856 for (i = 0; i < numsigs; i++)
3857 {
3858 signal_stop[i] = 1;
3859 signal_print[i] = 1;
3860 signal_program[i] = 1;
3861 }
3862
3863 /* Signals caused by debugger's own actions
3864 should not be given to the program afterwards. */
3865 signal_program[TARGET_SIGNAL_TRAP] = 0;
3866 signal_program[TARGET_SIGNAL_INT] = 0;
3867
3868 /* Signals that are not errors should not normally enter the debugger. */
3869 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3870 signal_print[TARGET_SIGNAL_ALRM] = 0;
3871 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3872 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3873 signal_stop[TARGET_SIGNAL_PROF] = 0;
3874 signal_print[TARGET_SIGNAL_PROF] = 0;
3875 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3876 signal_print[TARGET_SIGNAL_CHLD] = 0;
3877 signal_stop[TARGET_SIGNAL_IO] = 0;
3878 signal_print[TARGET_SIGNAL_IO] = 0;
3879 signal_stop[TARGET_SIGNAL_POLL] = 0;
3880 signal_print[TARGET_SIGNAL_POLL] = 0;
3881 signal_stop[TARGET_SIGNAL_URG] = 0;
3882 signal_print[TARGET_SIGNAL_URG] = 0;
3883 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3884 signal_print[TARGET_SIGNAL_WINCH] = 0;
3885
3886 /* These signals are used internally by user-level thread
3887 implementations. (See signal(5) on Solaris.) Like the above
3888 signals, a healthy program receives and handles them as part of
3889 its normal operation. */
3890 signal_stop[TARGET_SIGNAL_LWP] = 0;
3891 signal_print[TARGET_SIGNAL_LWP] = 0;
3892 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3893 signal_print[TARGET_SIGNAL_WAITING] = 0;
3894 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3895 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3896
3897 #ifdef SOLIB_ADD
3898 add_show_from_set
3899 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3900 (char *) &stop_on_solib_events,
3901 "Set stopping for shared library events.\n\
3902 If nonzero, gdb will give control to the user when the dynamic linker\n\
3903 notifies gdb of shared library events. The most common event of interest\n\
3904 to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
3905 #endif
3906
3907 c = add_set_enum_cmd ("follow-fork-mode",
3908 class_run,
3909 follow_fork_mode_kind_names, &follow_fork_mode_string,
3910 /* ??rehrauer: The "both" option is broken, by what may be a 10.20
3911 kernel problem. It's also not terribly useful without a GUI to
3912 help the user drive two debuggers. So for now, I'm disabling
3913 the "both" option. */
3914 /* "Set debugger response to a program call of fork \
3915 or vfork.\n\
3916 A fork or vfork creates a new process. follow-fork-mode can be:\n\
3917 parent - the original process is debugged after a fork\n\
3918 child - the new process is debugged after a fork\n\
3919 both - both the parent and child are debugged after a fork\n\
3920 ask - the debugger will ask for one of the above choices\n\
3921 For \"both\", another copy of the debugger will be started to follow\n\
3922 the new child process. The original debugger will continue to follow\n\
3923 the original parent process. To distinguish their prompts, the\n\
3924 debugger copy's prompt will be changed.\n\
3925 For \"parent\" or \"child\", the unfollowed process will run free.\n\
3926 By default, the debugger will follow the parent process.",
3927 */
3928 "Set debugger response to a program call of fork \
3929 or vfork.\n\
3930 A fork or vfork creates a new process. follow-fork-mode can be:\n\
3931 parent - the original process is debugged after a fork\n\
3932 child - the new process is debugged after a fork\n\
3933 ask - the debugger will ask for one of the above choices\n\
3934 For \"parent\" or \"child\", the unfollowed process will run free.\n\
3935 By default, the debugger will follow the parent process.", &setlist);
3936 add_show_from_set (c, &showlist);
3937
3938 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
3939 &scheduler_mode, /* current mode */
3940 "Set mode for locking scheduler during execution.\n\
3941 off == no locking (threads may preempt at any time)\n\
3942 on == full locking (no thread except the current thread may run)\n\
3943 step == scheduler locked during every single-step operation.\n\
3944 In this mode, no other thread may run during a step command.\n\
3945 Other threads may run while stepping over a function call ('next').", &setlist);
3946
3947 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
3948 add_show_from_set (c, &showlist);
3949
3950 c = add_set_cmd ("step-mode", class_run,
3951 var_boolean, (char *) &step_stop_if_no_debug,
3952 "Set mode of the step operation. When set, doing a step over a\n\
3953 function without debug line information will stop at the first\n\
3954 instruction of that function. Otherwise, the function is skipped and\n\
3955 the step command stops at a different source line.", &setlist);
3956 add_show_from_set (c, &showlist);
3957
3958 /* ptid initializations */
3959 null_ptid = ptid_build (0, 0, 0);
3960 minus_one_ptid = ptid_build (-1, 0, 0);
3961 inferior_ptid = null_ptid;
3962 target_last_wait_ptid = minus_one_ptid;
3963 }