gdb:
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "inline-frame.h"
53 #include "jit.h"
54 #include "tracepoint.h"
55 #include "continuations.h"
56 #include "interps.h"
57 #include "skip.h"
58 #include "probe.h"
59 #include "objfiles.h"
60
61 /* Prototypes for local functions */
62
63 static void signals_info (char *, int);
64
65 static void handle_command (char *, int);
66
67 static void sig_print_info (enum gdb_signal);
68
69 static void sig_print_header (void);
70
71 static void resume_cleanups (void *);
72
73 static int hook_stop_stub (void *);
74
75 static int restore_selected_frame (void *);
76
77 static int follow_fork (void);
78
79 static void set_schedlock_func (char *args, int from_tty,
80 struct cmd_list_element *c);
81
82 static int currently_stepping (struct thread_info *tp);
83
84 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
85 void *data);
86
87 static void xdb_handle_command (char *args, int from_tty);
88
89 static int prepare_to_proceed (int);
90
91 static void print_exited_reason (int exitstatus);
92
93 static void print_signal_exited_reason (enum gdb_signal siggnal);
94
95 static void print_no_history_reason (void);
96
97 static void print_signal_received_reason (enum gdb_signal siggnal);
98
99 static void print_end_stepping_range_reason (void);
100
101 void _initialize_infrun (void);
102
103 void nullify_last_target_wait_ptid (void);
104
105 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
106
107 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
108
109 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
110
111 /* When set, stop the 'step' command if we enter a function which has
112 no line number information. The normal behavior is that we step
113 over such function. */
114 int step_stop_if_no_debug = 0;
115 static void
116 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118 {
119 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
120 }
121
122 /* In asynchronous mode, but simulating synchronous execution. */
123
124 int sync_execution = 0;
125
126 /* wait_for_inferior and normal_stop use this to notify the user
127 when the inferior stopped in a different thread than it had been
128 running in. */
129
130 static ptid_t previous_inferior_ptid;
131
132 /* Default behavior is to detach newly forked processes (legacy). */
133 int detach_fork = 1;
134
135 int debug_displaced = 0;
136 static void
137 show_debug_displaced (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139 {
140 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
141 }
142
143 int debug_infrun = 0;
144 static void
145 show_debug_infrun (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
149 }
150
151
152 /* Support for disabling address space randomization. */
153
154 int disable_randomization = 1;
155
156 static void
157 show_disable_randomization (struct ui_file *file, int from_tty,
158 struct cmd_list_element *c, const char *value)
159 {
160 if (target_supports_disable_randomization ())
161 fprintf_filtered (file,
162 _("Disabling randomization of debuggee's "
163 "virtual address space is %s.\n"),
164 value);
165 else
166 fputs_filtered (_("Disabling randomization of debuggee's "
167 "virtual address space is unsupported on\n"
168 "this platform.\n"), file);
169 }
170
171 static void
172 set_disable_randomization (char *args, int from_tty,
173 struct cmd_list_element *c)
174 {
175 if (!target_supports_disable_randomization ())
176 error (_("Disabling randomization of debuggee's "
177 "virtual address space is unsupported on\n"
178 "this platform."));
179 }
180
181
182 /* If the program uses ELF-style shared libraries, then calls to
183 functions in shared libraries go through stubs, which live in a
184 table called the PLT (Procedure Linkage Table). The first time the
185 function is called, the stub sends control to the dynamic linker,
186 which looks up the function's real address, patches the stub so
187 that future calls will go directly to the function, and then passes
188 control to the function.
189
190 If we are stepping at the source level, we don't want to see any of
191 this --- we just want to skip over the stub and the dynamic linker.
192 The simple approach is to single-step until control leaves the
193 dynamic linker.
194
195 However, on some systems (e.g., Red Hat's 5.2 distribution) the
196 dynamic linker calls functions in the shared C library, so you
197 can't tell from the PC alone whether the dynamic linker is still
198 running. In this case, we use a step-resume breakpoint to get us
199 past the dynamic linker, as if we were using "next" to step over a
200 function call.
201
202 in_solib_dynsym_resolve_code() says whether we're in the dynamic
203 linker code or not. Normally, this means we single-step. However,
204 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
205 address where we can place a step-resume breakpoint to get past the
206 linker's symbol resolution function.
207
208 in_solib_dynsym_resolve_code() can generally be implemented in a
209 pretty portable way, by comparing the PC against the address ranges
210 of the dynamic linker's sections.
211
212 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
213 it depends on internal details of the dynamic linker. It's usually
214 not too hard to figure out where to put a breakpoint, but it
215 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
216 sanity checking. If it can't figure things out, returning zero and
217 getting the (possibly confusing) stepping behavior is better than
218 signalling an error, which will obscure the change in the
219 inferior's state. */
220
221 /* This function returns TRUE if pc is the address of an instruction
222 that lies within the dynamic linker (such as the event hook, or the
223 dld itself).
224
225 This function must be used only when a dynamic linker event has
226 been caught, and the inferior is being stepped out of the hook, or
227 undefined results are guaranteed. */
228
229 #ifndef SOLIB_IN_DYNAMIC_LINKER
230 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
231 #endif
232
233 /* "Observer mode" is somewhat like a more extreme version of
234 non-stop, in which all GDB operations that might affect the
235 target's execution have been disabled. */
236
237 static int non_stop_1 = 0;
238
239 int observer_mode = 0;
240 static int observer_mode_1 = 0;
241
242 static void
243 set_observer_mode (char *args, int from_tty,
244 struct cmd_list_element *c)
245 {
246 extern int pagination_enabled;
247
248 if (target_has_execution)
249 {
250 observer_mode_1 = observer_mode;
251 error (_("Cannot change this setting while the inferior is running."));
252 }
253
254 observer_mode = observer_mode_1;
255
256 may_write_registers = !observer_mode;
257 may_write_memory = !observer_mode;
258 may_insert_breakpoints = !observer_mode;
259 may_insert_tracepoints = !observer_mode;
260 /* We can insert fast tracepoints in or out of observer mode,
261 but enable them if we're going into this mode. */
262 if (observer_mode)
263 may_insert_fast_tracepoints = 1;
264 may_stop = !observer_mode;
265 update_target_permissions ();
266
267 /* Going *into* observer mode we must force non-stop, then
268 going out we leave it that way. */
269 if (observer_mode)
270 {
271 target_async_permitted = 1;
272 pagination_enabled = 0;
273 non_stop = non_stop_1 = 1;
274 }
275
276 if (from_tty)
277 printf_filtered (_("Observer mode is now %s.\n"),
278 (observer_mode ? "on" : "off"));
279 }
280
281 static void
282 show_observer_mode (struct ui_file *file, int from_tty,
283 struct cmd_list_element *c, const char *value)
284 {
285 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
286 }
287
288 /* This updates the value of observer mode based on changes in
289 permissions. Note that we are deliberately ignoring the values of
290 may-write-registers and may-write-memory, since the user may have
291 reason to enable these during a session, for instance to turn on a
292 debugging-related global. */
293
294 void
295 update_observer_mode (void)
296 {
297 int newval;
298
299 newval = (!may_insert_breakpoints
300 && !may_insert_tracepoints
301 && may_insert_fast_tracepoints
302 && !may_stop
303 && non_stop);
304
305 /* Let the user know if things change. */
306 if (newval != observer_mode)
307 printf_filtered (_("Observer mode is now %s.\n"),
308 (newval ? "on" : "off"));
309
310 observer_mode = observer_mode_1 = newval;
311 }
312
313 /* Tables of how to react to signals; the user sets them. */
314
315 static unsigned char *signal_stop;
316 static unsigned char *signal_print;
317 static unsigned char *signal_program;
318
319 /* Table of signals that the target may silently handle.
320 This is automatically determined from the flags above,
321 and simply cached here. */
322 static unsigned char *signal_pass;
323
324 #define SET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 1; \
330 } while (0)
331
332 #define UNSET_SIGS(nsigs,sigs,flags) \
333 do { \
334 int signum = (nsigs); \
335 while (signum-- > 0) \
336 if ((sigs)[signum]) \
337 (flags)[signum] = 0; \
338 } while (0)
339
340 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
341 this function is to avoid exporting `signal_program'. */
342
343 void
344 update_signals_program_target (void)
345 {
346 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
347 }
348
349 /* Value to pass to target_resume() to cause all threads to resume. */
350
351 #define RESUME_ALL minus_one_ptid
352
353 /* Command list pointer for the "stop" placeholder. */
354
355 static struct cmd_list_element *stop_command;
356
357 /* Function inferior was in as of last step command. */
358
359 static struct symbol *step_start_function;
360
361 /* Nonzero if we want to give control to the user when we're notified
362 of shared library events by the dynamic linker. */
363 int stop_on_solib_events;
364 static void
365 show_stop_on_solib_events (struct ui_file *file, int from_tty,
366 struct cmd_list_element *c, const char *value)
367 {
368 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
369 value);
370 }
371
372 /* Nonzero means expecting a trace trap
373 and should stop the inferior and return silently when it happens. */
374
375 int stop_after_trap;
376
377 /* Save register contents here when executing a "finish" command or are
378 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
379 Thus this contains the return value from the called function (assuming
380 values are returned in a register). */
381
382 struct regcache *stop_registers;
383
384 /* Nonzero after stop if current stack frame should be printed. */
385
386 static int stop_print_frame;
387
388 /* This is a cached copy of the pid/waitstatus of the last event
389 returned by target_wait()/deprecated_target_wait_hook(). This
390 information is returned by get_last_target_status(). */
391 static ptid_t target_last_wait_ptid;
392 static struct target_waitstatus target_last_waitstatus;
393
394 static void context_switch (ptid_t ptid);
395
396 void init_thread_stepping_state (struct thread_info *tss);
397
398 void init_infwait_state (void);
399
400 static const char follow_fork_mode_child[] = "child";
401 static const char follow_fork_mode_parent[] = "parent";
402
403 static const char *const follow_fork_mode_kind_names[] = {
404 follow_fork_mode_child,
405 follow_fork_mode_parent,
406 NULL
407 };
408
409 static const char *follow_fork_mode_string = follow_fork_mode_parent;
410 static void
411 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
412 struct cmd_list_element *c, const char *value)
413 {
414 fprintf_filtered (file,
415 _("Debugger response to a program "
416 "call of fork or vfork is \"%s\".\n"),
417 value);
418 }
419 \f
420
421 /* Tell the target to follow the fork we're stopped at. Returns true
422 if the inferior should be resumed; false, if the target for some
423 reason decided it's best not to resume. */
424
425 static int
426 follow_fork (void)
427 {
428 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
429 int should_resume = 1;
430 struct thread_info *tp;
431
432 /* Copy user stepping state to the new inferior thread. FIXME: the
433 followed fork child thread should have a copy of most of the
434 parent thread structure's run control related fields, not just these.
435 Initialized to avoid "may be used uninitialized" warnings from gcc. */
436 struct breakpoint *step_resume_breakpoint = NULL;
437 struct breakpoint *exception_resume_breakpoint = NULL;
438 CORE_ADDR step_range_start = 0;
439 CORE_ADDR step_range_end = 0;
440 struct frame_id step_frame_id = { 0 };
441
442 if (!non_stop)
443 {
444 ptid_t wait_ptid;
445 struct target_waitstatus wait_status;
446
447 /* Get the last target status returned by target_wait(). */
448 get_last_target_status (&wait_ptid, &wait_status);
449
450 /* If not stopped at a fork event, then there's nothing else to
451 do. */
452 if (wait_status.kind != TARGET_WAITKIND_FORKED
453 && wait_status.kind != TARGET_WAITKIND_VFORKED)
454 return 1;
455
456 /* Check if we switched over from WAIT_PTID, since the event was
457 reported. */
458 if (!ptid_equal (wait_ptid, minus_one_ptid)
459 && !ptid_equal (inferior_ptid, wait_ptid))
460 {
461 /* We did. Switch back to WAIT_PTID thread, to tell the
462 target to follow it (in either direction). We'll
463 afterwards refuse to resume, and inform the user what
464 happened. */
465 switch_to_thread (wait_ptid);
466 should_resume = 0;
467 }
468 }
469
470 tp = inferior_thread ();
471
472 /* If there were any forks/vforks that were caught and are now to be
473 followed, then do so now. */
474 switch (tp->pending_follow.kind)
475 {
476 case TARGET_WAITKIND_FORKED:
477 case TARGET_WAITKIND_VFORKED:
478 {
479 ptid_t parent, child;
480
481 /* If the user did a next/step, etc, over a fork call,
482 preserve the stepping state in the fork child. */
483 if (follow_child && should_resume)
484 {
485 step_resume_breakpoint = clone_momentary_breakpoint
486 (tp->control.step_resume_breakpoint);
487 step_range_start = tp->control.step_range_start;
488 step_range_end = tp->control.step_range_end;
489 step_frame_id = tp->control.step_frame_id;
490 exception_resume_breakpoint
491 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
492
493 /* For now, delete the parent's sr breakpoint, otherwise,
494 parent/child sr breakpoints are considered duplicates,
495 and the child version will not be installed. Remove
496 this when the breakpoints module becomes aware of
497 inferiors and address spaces. */
498 delete_step_resume_breakpoint (tp);
499 tp->control.step_range_start = 0;
500 tp->control.step_range_end = 0;
501 tp->control.step_frame_id = null_frame_id;
502 delete_exception_resume_breakpoint (tp);
503 }
504
505 parent = inferior_ptid;
506 child = tp->pending_follow.value.related_pid;
507
508 /* Tell the target to do whatever is necessary to follow
509 either parent or child. */
510 if (target_follow_fork (follow_child))
511 {
512 /* Target refused to follow, or there's some other reason
513 we shouldn't resume. */
514 should_resume = 0;
515 }
516 else
517 {
518 /* This pending follow fork event is now handled, one way
519 or another. The previous selected thread may be gone
520 from the lists by now, but if it is still around, need
521 to clear the pending follow request. */
522 tp = find_thread_ptid (parent);
523 if (tp)
524 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
525
526 /* This makes sure we don't try to apply the "Switched
527 over from WAIT_PID" logic above. */
528 nullify_last_target_wait_ptid ();
529
530 /* If we followed the child, switch to it... */
531 if (follow_child)
532 {
533 switch_to_thread (child);
534
535 /* ... and preserve the stepping state, in case the
536 user was stepping over the fork call. */
537 if (should_resume)
538 {
539 tp = inferior_thread ();
540 tp->control.step_resume_breakpoint
541 = step_resume_breakpoint;
542 tp->control.step_range_start = step_range_start;
543 tp->control.step_range_end = step_range_end;
544 tp->control.step_frame_id = step_frame_id;
545 tp->control.exception_resume_breakpoint
546 = exception_resume_breakpoint;
547 }
548 else
549 {
550 /* If we get here, it was because we're trying to
551 resume from a fork catchpoint, but, the user
552 has switched threads away from the thread that
553 forked. In that case, the resume command
554 issued is most likely not applicable to the
555 child, so just warn, and refuse to resume. */
556 warning (_("Not resuming: switched threads "
557 "before following fork child.\n"));
558 }
559
560 /* Reset breakpoints in the child as appropriate. */
561 follow_inferior_reset_breakpoints ();
562 }
563 else
564 switch_to_thread (parent);
565 }
566 }
567 break;
568 case TARGET_WAITKIND_SPURIOUS:
569 /* Nothing to follow. */
570 break;
571 default:
572 internal_error (__FILE__, __LINE__,
573 "Unexpected pending_follow.kind %d\n",
574 tp->pending_follow.kind);
575 break;
576 }
577
578 return should_resume;
579 }
580
581 void
582 follow_inferior_reset_breakpoints (void)
583 {
584 struct thread_info *tp = inferior_thread ();
585
586 /* Was there a step_resume breakpoint? (There was if the user
587 did a "next" at the fork() call.) If so, explicitly reset its
588 thread number.
589
590 step_resumes are a form of bp that are made to be per-thread.
591 Since we created the step_resume bp when the parent process
592 was being debugged, and now are switching to the child process,
593 from the breakpoint package's viewpoint, that's a switch of
594 "threads". We must update the bp's notion of which thread
595 it is for, or it'll be ignored when it triggers. */
596
597 if (tp->control.step_resume_breakpoint)
598 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
599
600 if (tp->control.exception_resume_breakpoint)
601 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
602
603 /* Reinsert all breakpoints in the child. The user may have set
604 breakpoints after catching the fork, in which case those
605 were never set in the child, but only in the parent. This makes
606 sure the inserted breakpoints match the breakpoint list. */
607
608 breakpoint_re_set ();
609 insert_breakpoints ();
610 }
611
612 /* The child has exited or execed: resume threads of the parent the
613 user wanted to be executing. */
614
615 static int
616 proceed_after_vfork_done (struct thread_info *thread,
617 void *arg)
618 {
619 int pid = * (int *) arg;
620
621 if (ptid_get_pid (thread->ptid) == pid
622 && is_running (thread->ptid)
623 && !is_executing (thread->ptid)
624 && !thread->stop_requested
625 && thread->suspend.stop_signal == GDB_SIGNAL_0)
626 {
627 if (debug_infrun)
628 fprintf_unfiltered (gdb_stdlog,
629 "infrun: resuming vfork parent thread %s\n",
630 target_pid_to_str (thread->ptid));
631
632 switch_to_thread (thread->ptid);
633 clear_proceed_status ();
634 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
635 }
636
637 return 0;
638 }
639
640 /* Called whenever we notice an exec or exit event, to handle
641 detaching or resuming a vfork parent. */
642
643 static void
644 handle_vfork_child_exec_or_exit (int exec)
645 {
646 struct inferior *inf = current_inferior ();
647
648 if (inf->vfork_parent)
649 {
650 int resume_parent = -1;
651
652 /* This exec or exit marks the end of the shared memory region
653 between the parent and the child. If the user wanted to
654 detach from the parent, now is the time. */
655
656 if (inf->vfork_parent->pending_detach)
657 {
658 struct thread_info *tp;
659 struct cleanup *old_chain;
660 struct program_space *pspace;
661 struct address_space *aspace;
662
663 /* follow-fork child, detach-on-fork on. */
664
665 old_chain = make_cleanup_restore_current_thread ();
666
667 /* We're letting loose of the parent. */
668 tp = any_live_thread_of_process (inf->vfork_parent->pid);
669 switch_to_thread (tp->ptid);
670
671 /* We're about to detach from the parent, which implicitly
672 removes breakpoints from its address space. There's a
673 catch here: we want to reuse the spaces for the child,
674 but, parent/child are still sharing the pspace at this
675 point, although the exec in reality makes the kernel give
676 the child a fresh set of new pages. The problem here is
677 that the breakpoints module being unaware of this, would
678 likely chose the child process to write to the parent
679 address space. Swapping the child temporarily away from
680 the spaces has the desired effect. Yes, this is "sort
681 of" a hack. */
682
683 pspace = inf->pspace;
684 aspace = inf->aspace;
685 inf->aspace = NULL;
686 inf->pspace = NULL;
687
688 if (debug_infrun || info_verbose)
689 {
690 target_terminal_ours ();
691
692 if (exec)
693 fprintf_filtered (gdb_stdlog,
694 "Detaching vfork parent process "
695 "%d after child exec.\n",
696 inf->vfork_parent->pid);
697 else
698 fprintf_filtered (gdb_stdlog,
699 "Detaching vfork parent process "
700 "%d after child exit.\n",
701 inf->vfork_parent->pid);
702 }
703
704 target_detach (NULL, 0);
705
706 /* Put it back. */
707 inf->pspace = pspace;
708 inf->aspace = aspace;
709
710 do_cleanups (old_chain);
711 }
712 else if (exec)
713 {
714 /* We're staying attached to the parent, so, really give the
715 child a new address space. */
716 inf->pspace = add_program_space (maybe_new_address_space ());
717 inf->aspace = inf->pspace->aspace;
718 inf->removable = 1;
719 set_current_program_space (inf->pspace);
720
721 resume_parent = inf->vfork_parent->pid;
722
723 /* Break the bonds. */
724 inf->vfork_parent->vfork_child = NULL;
725 }
726 else
727 {
728 struct cleanup *old_chain;
729 struct program_space *pspace;
730
731 /* If this is a vfork child exiting, then the pspace and
732 aspaces were shared with the parent. Since we're
733 reporting the process exit, we'll be mourning all that is
734 found in the address space, and switching to null_ptid,
735 preparing to start a new inferior. But, since we don't
736 want to clobber the parent's address/program spaces, we
737 go ahead and create a new one for this exiting
738 inferior. */
739
740 /* Switch to null_ptid, so that clone_program_space doesn't want
741 to read the selected frame of a dead process. */
742 old_chain = save_inferior_ptid ();
743 inferior_ptid = null_ptid;
744
745 /* This inferior is dead, so avoid giving the breakpoints
746 module the option to write through to it (cloning a
747 program space resets breakpoints). */
748 inf->aspace = NULL;
749 inf->pspace = NULL;
750 pspace = add_program_space (maybe_new_address_space ());
751 set_current_program_space (pspace);
752 inf->removable = 1;
753 inf->symfile_flags = SYMFILE_NO_READ;
754 clone_program_space (pspace, inf->vfork_parent->pspace);
755 inf->pspace = pspace;
756 inf->aspace = pspace->aspace;
757
758 /* Put back inferior_ptid. We'll continue mourning this
759 inferior. */
760 do_cleanups (old_chain);
761
762 resume_parent = inf->vfork_parent->pid;
763 /* Break the bonds. */
764 inf->vfork_parent->vfork_child = NULL;
765 }
766
767 inf->vfork_parent = NULL;
768
769 gdb_assert (current_program_space == inf->pspace);
770
771 if (non_stop && resume_parent != -1)
772 {
773 /* If the user wanted the parent to be running, let it go
774 free now. */
775 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
776
777 if (debug_infrun)
778 fprintf_unfiltered (gdb_stdlog,
779 "infrun: resuming vfork parent process %d\n",
780 resume_parent);
781
782 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
783
784 do_cleanups (old_chain);
785 }
786 }
787 }
788
789 /* Enum strings for "set|show displaced-stepping". */
790
791 static const char follow_exec_mode_new[] = "new";
792 static const char follow_exec_mode_same[] = "same";
793 static const char *const follow_exec_mode_names[] =
794 {
795 follow_exec_mode_new,
796 follow_exec_mode_same,
797 NULL,
798 };
799
800 static const char *follow_exec_mode_string = follow_exec_mode_same;
801 static void
802 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
803 struct cmd_list_element *c, const char *value)
804 {
805 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
806 }
807
808 /* EXECD_PATHNAME is assumed to be non-NULL. */
809
810 static void
811 follow_exec (ptid_t pid, char *execd_pathname)
812 {
813 struct thread_info *th = inferior_thread ();
814 struct inferior *inf = current_inferior ();
815
816 /* This is an exec event that we actually wish to pay attention to.
817 Refresh our symbol table to the newly exec'd program, remove any
818 momentary bp's, etc.
819
820 If there are breakpoints, they aren't really inserted now,
821 since the exec() transformed our inferior into a fresh set
822 of instructions.
823
824 We want to preserve symbolic breakpoints on the list, since
825 we have hopes that they can be reset after the new a.out's
826 symbol table is read.
827
828 However, any "raw" breakpoints must be removed from the list
829 (e.g., the solib bp's), since their address is probably invalid
830 now.
831
832 And, we DON'T want to call delete_breakpoints() here, since
833 that may write the bp's "shadow contents" (the instruction
834 value that was overwritten witha TRAP instruction). Since
835 we now have a new a.out, those shadow contents aren't valid. */
836
837 mark_breakpoints_out ();
838
839 update_breakpoints_after_exec ();
840
841 /* If there was one, it's gone now. We cannot truly step-to-next
842 statement through an exec(). */
843 th->control.step_resume_breakpoint = NULL;
844 th->control.exception_resume_breakpoint = NULL;
845 th->control.step_range_start = 0;
846 th->control.step_range_end = 0;
847
848 /* The target reports the exec event to the main thread, even if
849 some other thread does the exec, and even if the main thread was
850 already stopped --- if debugging in non-stop mode, it's possible
851 the user had the main thread held stopped in the previous image
852 --- release it now. This is the same behavior as step-over-exec
853 with scheduler-locking on in all-stop mode. */
854 th->stop_requested = 0;
855
856 /* What is this a.out's name? */
857 printf_unfiltered (_("%s is executing new program: %s\n"),
858 target_pid_to_str (inferior_ptid),
859 execd_pathname);
860
861 /* We've followed the inferior through an exec. Therefore, the
862 inferior has essentially been killed & reborn. */
863
864 gdb_flush (gdb_stdout);
865
866 breakpoint_init_inferior (inf_execd);
867
868 if (gdb_sysroot && *gdb_sysroot)
869 {
870 char *name = alloca (strlen (gdb_sysroot)
871 + strlen (execd_pathname)
872 + 1);
873
874 strcpy (name, gdb_sysroot);
875 strcat (name, execd_pathname);
876 execd_pathname = name;
877 }
878
879 /* Reset the shared library package. This ensures that we get a
880 shlib event when the child reaches "_start", at which point the
881 dld will have had a chance to initialize the child. */
882 /* Also, loading a symbol file below may trigger symbol lookups, and
883 we don't want those to be satisfied by the libraries of the
884 previous incarnation of this process. */
885 no_shared_libraries (NULL, 0);
886
887 if (follow_exec_mode_string == follow_exec_mode_new)
888 {
889 struct program_space *pspace;
890
891 /* The user wants to keep the old inferior and program spaces
892 around. Create a new fresh one, and switch to it. */
893
894 inf = add_inferior (current_inferior ()->pid);
895 pspace = add_program_space (maybe_new_address_space ());
896 inf->pspace = pspace;
897 inf->aspace = pspace->aspace;
898
899 exit_inferior_num_silent (current_inferior ()->num);
900
901 set_current_inferior (inf);
902 set_current_program_space (pspace);
903 }
904
905 gdb_assert (current_program_space == inf->pspace);
906
907 /* That a.out is now the one to use. */
908 exec_file_attach (execd_pathname, 0);
909
910 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
911 (Position Independent Executable) main symbol file will get applied by
912 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
913 the breakpoints with the zero displacement. */
914
915 symbol_file_add (execd_pathname,
916 (inf->symfile_flags
917 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
918 NULL, 0);
919
920 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
921 set_initial_language ();
922
923 #ifdef SOLIB_CREATE_INFERIOR_HOOK
924 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
925 #else
926 solib_create_inferior_hook (0);
927 #endif
928
929 jit_inferior_created_hook ();
930
931 breakpoint_re_set ();
932
933 /* Reinsert all breakpoints. (Those which were symbolic have
934 been reset to the proper address in the new a.out, thanks
935 to symbol_file_command...). */
936 insert_breakpoints ();
937
938 /* The next resume of this inferior should bring it to the shlib
939 startup breakpoints. (If the user had also set bp's on
940 "main" from the old (parent) process, then they'll auto-
941 matically get reset there in the new process.). */
942 }
943
944 /* Non-zero if we just simulating a single-step. This is needed
945 because we cannot remove the breakpoints in the inferior process
946 until after the `wait' in `wait_for_inferior'. */
947 static int singlestep_breakpoints_inserted_p = 0;
948
949 /* The thread we inserted single-step breakpoints for. */
950 static ptid_t singlestep_ptid;
951
952 /* PC when we started this single-step. */
953 static CORE_ADDR singlestep_pc;
954
955 /* If another thread hit the singlestep breakpoint, we save the original
956 thread here so that we can resume single-stepping it later. */
957 static ptid_t saved_singlestep_ptid;
958 static int stepping_past_singlestep_breakpoint;
959
960 /* If not equal to null_ptid, this means that after stepping over breakpoint
961 is finished, we need to switch to deferred_step_ptid, and step it.
962
963 The use case is when one thread has hit a breakpoint, and then the user
964 has switched to another thread and issued 'step'. We need to step over
965 breakpoint in the thread which hit the breakpoint, but then continue
966 stepping the thread user has selected. */
967 static ptid_t deferred_step_ptid;
968 \f
969 /* Displaced stepping. */
970
971 /* In non-stop debugging mode, we must take special care to manage
972 breakpoints properly; in particular, the traditional strategy for
973 stepping a thread past a breakpoint it has hit is unsuitable.
974 'Displaced stepping' is a tactic for stepping one thread past a
975 breakpoint it has hit while ensuring that other threads running
976 concurrently will hit the breakpoint as they should.
977
978 The traditional way to step a thread T off a breakpoint in a
979 multi-threaded program in all-stop mode is as follows:
980
981 a0) Initially, all threads are stopped, and breakpoints are not
982 inserted.
983 a1) We single-step T, leaving breakpoints uninserted.
984 a2) We insert breakpoints, and resume all threads.
985
986 In non-stop debugging, however, this strategy is unsuitable: we
987 don't want to have to stop all threads in the system in order to
988 continue or step T past a breakpoint. Instead, we use displaced
989 stepping:
990
991 n0) Initially, T is stopped, other threads are running, and
992 breakpoints are inserted.
993 n1) We copy the instruction "under" the breakpoint to a separate
994 location, outside the main code stream, making any adjustments
995 to the instruction, register, and memory state as directed by
996 T's architecture.
997 n2) We single-step T over the instruction at its new location.
998 n3) We adjust the resulting register and memory state as directed
999 by T's architecture. This includes resetting T's PC to point
1000 back into the main instruction stream.
1001 n4) We resume T.
1002
1003 This approach depends on the following gdbarch methods:
1004
1005 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1006 indicate where to copy the instruction, and how much space must
1007 be reserved there. We use these in step n1.
1008
1009 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1010 address, and makes any necessary adjustments to the instruction,
1011 register contents, and memory. We use this in step n1.
1012
1013 - gdbarch_displaced_step_fixup adjusts registers and memory after
1014 we have successfuly single-stepped the instruction, to yield the
1015 same effect the instruction would have had if we had executed it
1016 at its original address. We use this in step n3.
1017
1018 - gdbarch_displaced_step_free_closure provides cleanup.
1019
1020 The gdbarch_displaced_step_copy_insn and
1021 gdbarch_displaced_step_fixup functions must be written so that
1022 copying an instruction with gdbarch_displaced_step_copy_insn,
1023 single-stepping across the copied instruction, and then applying
1024 gdbarch_displaced_insn_fixup should have the same effects on the
1025 thread's memory and registers as stepping the instruction in place
1026 would have. Exactly which responsibilities fall to the copy and
1027 which fall to the fixup is up to the author of those functions.
1028
1029 See the comments in gdbarch.sh for details.
1030
1031 Note that displaced stepping and software single-step cannot
1032 currently be used in combination, although with some care I think
1033 they could be made to. Software single-step works by placing
1034 breakpoints on all possible subsequent instructions; if the
1035 displaced instruction is a PC-relative jump, those breakpoints
1036 could fall in very strange places --- on pages that aren't
1037 executable, or at addresses that are not proper instruction
1038 boundaries. (We do generally let other threads run while we wait
1039 to hit the software single-step breakpoint, and they might
1040 encounter such a corrupted instruction.) One way to work around
1041 this would be to have gdbarch_displaced_step_copy_insn fully
1042 simulate the effect of PC-relative instructions (and return NULL)
1043 on architectures that use software single-stepping.
1044
1045 In non-stop mode, we can have independent and simultaneous step
1046 requests, so more than one thread may need to simultaneously step
1047 over a breakpoint. The current implementation assumes there is
1048 only one scratch space per process. In this case, we have to
1049 serialize access to the scratch space. If thread A wants to step
1050 over a breakpoint, but we are currently waiting for some other
1051 thread to complete a displaced step, we leave thread A stopped and
1052 place it in the displaced_step_request_queue. Whenever a displaced
1053 step finishes, we pick the next thread in the queue and start a new
1054 displaced step operation on it. See displaced_step_prepare and
1055 displaced_step_fixup for details. */
1056
1057 struct displaced_step_request
1058 {
1059 ptid_t ptid;
1060 struct displaced_step_request *next;
1061 };
1062
1063 /* Per-inferior displaced stepping state. */
1064 struct displaced_step_inferior_state
1065 {
1066 /* Pointer to next in linked list. */
1067 struct displaced_step_inferior_state *next;
1068
1069 /* The process this displaced step state refers to. */
1070 int pid;
1071
1072 /* A queue of pending displaced stepping requests. One entry per
1073 thread that needs to do a displaced step. */
1074 struct displaced_step_request *step_request_queue;
1075
1076 /* If this is not null_ptid, this is the thread carrying out a
1077 displaced single-step in process PID. This thread's state will
1078 require fixing up once it has completed its step. */
1079 ptid_t step_ptid;
1080
1081 /* The architecture the thread had when we stepped it. */
1082 struct gdbarch *step_gdbarch;
1083
1084 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1085 for post-step cleanup. */
1086 struct displaced_step_closure *step_closure;
1087
1088 /* The address of the original instruction, and the copy we
1089 made. */
1090 CORE_ADDR step_original, step_copy;
1091
1092 /* Saved contents of copy area. */
1093 gdb_byte *step_saved_copy;
1094 };
1095
1096 /* The list of states of processes involved in displaced stepping
1097 presently. */
1098 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1099
1100 /* Get the displaced stepping state of process PID. */
1101
1102 static struct displaced_step_inferior_state *
1103 get_displaced_stepping_state (int pid)
1104 {
1105 struct displaced_step_inferior_state *state;
1106
1107 for (state = displaced_step_inferior_states;
1108 state != NULL;
1109 state = state->next)
1110 if (state->pid == pid)
1111 return state;
1112
1113 return NULL;
1114 }
1115
1116 /* Add a new displaced stepping state for process PID to the displaced
1117 stepping state list, or return a pointer to an already existing
1118 entry, if it already exists. Never returns NULL. */
1119
1120 static struct displaced_step_inferior_state *
1121 add_displaced_stepping_state (int pid)
1122 {
1123 struct displaced_step_inferior_state *state;
1124
1125 for (state = displaced_step_inferior_states;
1126 state != NULL;
1127 state = state->next)
1128 if (state->pid == pid)
1129 return state;
1130
1131 state = xcalloc (1, sizeof (*state));
1132 state->pid = pid;
1133 state->next = displaced_step_inferior_states;
1134 displaced_step_inferior_states = state;
1135
1136 return state;
1137 }
1138
1139 /* If inferior is in displaced stepping, and ADDR equals to starting address
1140 of copy area, return corresponding displaced_step_closure. Otherwise,
1141 return NULL. */
1142
1143 struct displaced_step_closure*
1144 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1145 {
1146 struct displaced_step_inferior_state *displaced
1147 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1148
1149 /* If checking the mode of displaced instruction in copy area. */
1150 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1151 && (displaced->step_copy == addr))
1152 return displaced->step_closure;
1153
1154 return NULL;
1155 }
1156
1157 /* Remove the displaced stepping state of process PID. */
1158
1159 static void
1160 remove_displaced_stepping_state (int pid)
1161 {
1162 struct displaced_step_inferior_state *it, **prev_next_p;
1163
1164 gdb_assert (pid != 0);
1165
1166 it = displaced_step_inferior_states;
1167 prev_next_p = &displaced_step_inferior_states;
1168 while (it)
1169 {
1170 if (it->pid == pid)
1171 {
1172 *prev_next_p = it->next;
1173 xfree (it);
1174 return;
1175 }
1176
1177 prev_next_p = &it->next;
1178 it = *prev_next_p;
1179 }
1180 }
1181
1182 static void
1183 infrun_inferior_exit (struct inferior *inf)
1184 {
1185 remove_displaced_stepping_state (inf->pid);
1186 }
1187
1188 /* If ON, and the architecture supports it, GDB will use displaced
1189 stepping to step over breakpoints. If OFF, or if the architecture
1190 doesn't support it, GDB will instead use the traditional
1191 hold-and-step approach. If AUTO (which is the default), GDB will
1192 decide which technique to use to step over breakpoints depending on
1193 which of all-stop or non-stop mode is active --- displaced stepping
1194 in non-stop mode; hold-and-step in all-stop mode. */
1195
1196 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1197
1198 static void
1199 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1200 struct cmd_list_element *c,
1201 const char *value)
1202 {
1203 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1204 fprintf_filtered (file,
1205 _("Debugger's willingness to use displaced stepping "
1206 "to step over breakpoints is %s (currently %s).\n"),
1207 value, non_stop ? "on" : "off");
1208 else
1209 fprintf_filtered (file,
1210 _("Debugger's willingness to use displaced stepping "
1211 "to step over breakpoints is %s.\n"), value);
1212 }
1213
1214 /* Return non-zero if displaced stepping can/should be used to step
1215 over breakpoints. */
1216
1217 static int
1218 use_displaced_stepping (struct gdbarch *gdbarch)
1219 {
1220 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1221 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1222 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1223 && !RECORD_IS_USED);
1224 }
1225
1226 /* Clean out any stray displaced stepping state. */
1227 static void
1228 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1229 {
1230 /* Indicate that there is no cleanup pending. */
1231 displaced->step_ptid = null_ptid;
1232
1233 if (displaced->step_closure)
1234 {
1235 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1236 displaced->step_closure);
1237 displaced->step_closure = NULL;
1238 }
1239 }
1240
1241 static void
1242 displaced_step_clear_cleanup (void *arg)
1243 {
1244 struct displaced_step_inferior_state *state = arg;
1245
1246 displaced_step_clear (state);
1247 }
1248
1249 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1250 void
1251 displaced_step_dump_bytes (struct ui_file *file,
1252 const gdb_byte *buf,
1253 size_t len)
1254 {
1255 int i;
1256
1257 for (i = 0; i < len; i++)
1258 fprintf_unfiltered (file, "%02x ", buf[i]);
1259 fputs_unfiltered ("\n", file);
1260 }
1261
1262 /* Prepare to single-step, using displaced stepping.
1263
1264 Note that we cannot use displaced stepping when we have a signal to
1265 deliver. If we have a signal to deliver and an instruction to step
1266 over, then after the step, there will be no indication from the
1267 target whether the thread entered a signal handler or ignored the
1268 signal and stepped over the instruction successfully --- both cases
1269 result in a simple SIGTRAP. In the first case we mustn't do a
1270 fixup, and in the second case we must --- but we can't tell which.
1271 Comments in the code for 'random signals' in handle_inferior_event
1272 explain how we handle this case instead.
1273
1274 Returns 1 if preparing was successful -- this thread is going to be
1275 stepped now; or 0 if displaced stepping this thread got queued. */
1276 static int
1277 displaced_step_prepare (ptid_t ptid)
1278 {
1279 struct cleanup *old_cleanups, *ignore_cleanups;
1280 struct regcache *regcache = get_thread_regcache (ptid);
1281 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1282 CORE_ADDR original, copy;
1283 ULONGEST len;
1284 struct displaced_step_closure *closure;
1285 struct displaced_step_inferior_state *displaced;
1286 int status;
1287
1288 /* We should never reach this function if the architecture does not
1289 support displaced stepping. */
1290 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1291
1292 /* We have to displaced step one thread at a time, as we only have
1293 access to a single scratch space per inferior. */
1294
1295 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1296
1297 if (!ptid_equal (displaced->step_ptid, null_ptid))
1298 {
1299 /* Already waiting for a displaced step to finish. Defer this
1300 request and place in queue. */
1301 struct displaced_step_request *req, *new_req;
1302
1303 if (debug_displaced)
1304 fprintf_unfiltered (gdb_stdlog,
1305 "displaced: defering step of %s\n",
1306 target_pid_to_str (ptid));
1307
1308 new_req = xmalloc (sizeof (*new_req));
1309 new_req->ptid = ptid;
1310 new_req->next = NULL;
1311
1312 if (displaced->step_request_queue)
1313 {
1314 for (req = displaced->step_request_queue;
1315 req && req->next;
1316 req = req->next)
1317 ;
1318 req->next = new_req;
1319 }
1320 else
1321 displaced->step_request_queue = new_req;
1322
1323 return 0;
1324 }
1325 else
1326 {
1327 if (debug_displaced)
1328 fprintf_unfiltered (gdb_stdlog,
1329 "displaced: stepping %s now\n",
1330 target_pid_to_str (ptid));
1331 }
1332
1333 displaced_step_clear (displaced);
1334
1335 old_cleanups = save_inferior_ptid ();
1336 inferior_ptid = ptid;
1337
1338 original = regcache_read_pc (regcache);
1339
1340 copy = gdbarch_displaced_step_location (gdbarch);
1341 len = gdbarch_max_insn_length (gdbarch);
1342
1343 /* Save the original contents of the copy area. */
1344 displaced->step_saved_copy = xmalloc (len);
1345 ignore_cleanups = make_cleanup (free_current_contents,
1346 &displaced->step_saved_copy);
1347 status = target_read_memory (copy, displaced->step_saved_copy, len);
1348 if (status != 0)
1349 throw_error (MEMORY_ERROR,
1350 _("Error accessing memory address %s (%s) for "
1351 "displaced-stepping scratch space."),
1352 paddress (gdbarch, copy), safe_strerror (status));
1353 if (debug_displaced)
1354 {
1355 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1356 paddress (gdbarch, copy));
1357 displaced_step_dump_bytes (gdb_stdlog,
1358 displaced->step_saved_copy,
1359 len);
1360 };
1361
1362 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1363 original, copy, regcache);
1364
1365 /* We don't support the fully-simulated case at present. */
1366 gdb_assert (closure);
1367
1368 /* Save the information we need to fix things up if the step
1369 succeeds. */
1370 displaced->step_ptid = ptid;
1371 displaced->step_gdbarch = gdbarch;
1372 displaced->step_closure = closure;
1373 displaced->step_original = original;
1374 displaced->step_copy = copy;
1375
1376 make_cleanup (displaced_step_clear_cleanup, displaced);
1377
1378 /* Resume execution at the copy. */
1379 regcache_write_pc (regcache, copy);
1380
1381 discard_cleanups (ignore_cleanups);
1382
1383 do_cleanups (old_cleanups);
1384
1385 if (debug_displaced)
1386 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1387 paddress (gdbarch, copy));
1388
1389 return 1;
1390 }
1391
1392 static void
1393 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1394 const gdb_byte *myaddr, int len)
1395 {
1396 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1397
1398 inferior_ptid = ptid;
1399 write_memory (memaddr, myaddr, len);
1400 do_cleanups (ptid_cleanup);
1401 }
1402
1403 /* Restore the contents of the copy area for thread PTID. */
1404
1405 static void
1406 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1407 ptid_t ptid)
1408 {
1409 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1410
1411 write_memory_ptid (ptid, displaced->step_copy,
1412 displaced->step_saved_copy, len);
1413 if (debug_displaced)
1414 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1415 target_pid_to_str (ptid),
1416 paddress (displaced->step_gdbarch,
1417 displaced->step_copy));
1418 }
1419
1420 static void
1421 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1422 {
1423 struct cleanup *old_cleanups;
1424 struct displaced_step_inferior_state *displaced
1425 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1426
1427 /* Was any thread of this process doing a displaced step? */
1428 if (displaced == NULL)
1429 return;
1430
1431 /* Was this event for the pid we displaced? */
1432 if (ptid_equal (displaced->step_ptid, null_ptid)
1433 || ! ptid_equal (displaced->step_ptid, event_ptid))
1434 return;
1435
1436 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1437
1438 displaced_step_restore (displaced, displaced->step_ptid);
1439
1440 /* Did the instruction complete successfully? */
1441 if (signal == GDB_SIGNAL_TRAP)
1442 {
1443 /* Fix up the resulting state. */
1444 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1445 displaced->step_closure,
1446 displaced->step_original,
1447 displaced->step_copy,
1448 get_thread_regcache (displaced->step_ptid));
1449 }
1450 else
1451 {
1452 /* Since the instruction didn't complete, all we can do is
1453 relocate the PC. */
1454 struct regcache *regcache = get_thread_regcache (event_ptid);
1455 CORE_ADDR pc = regcache_read_pc (regcache);
1456
1457 pc = displaced->step_original + (pc - displaced->step_copy);
1458 regcache_write_pc (regcache, pc);
1459 }
1460
1461 do_cleanups (old_cleanups);
1462
1463 displaced->step_ptid = null_ptid;
1464
1465 /* Are there any pending displaced stepping requests? If so, run
1466 one now. Leave the state object around, since we're likely to
1467 need it again soon. */
1468 while (displaced->step_request_queue)
1469 {
1470 struct displaced_step_request *head;
1471 ptid_t ptid;
1472 struct regcache *regcache;
1473 struct gdbarch *gdbarch;
1474 CORE_ADDR actual_pc;
1475 struct address_space *aspace;
1476
1477 head = displaced->step_request_queue;
1478 ptid = head->ptid;
1479 displaced->step_request_queue = head->next;
1480 xfree (head);
1481
1482 context_switch (ptid);
1483
1484 regcache = get_thread_regcache (ptid);
1485 actual_pc = regcache_read_pc (regcache);
1486 aspace = get_regcache_aspace (regcache);
1487
1488 if (breakpoint_here_p (aspace, actual_pc))
1489 {
1490 if (debug_displaced)
1491 fprintf_unfiltered (gdb_stdlog,
1492 "displaced: stepping queued %s now\n",
1493 target_pid_to_str (ptid));
1494
1495 displaced_step_prepare (ptid);
1496
1497 gdbarch = get_regcache_arch (regcache);
1498
1499 if (debug_displaced)
1500 {
1501 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1502 gdb_byte buf[4];
1503
1504 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1505 paddress (gdbarch, actual_pc));
1506 read_memory (actual_pc, buf, sizeof (buf));
1507 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1508 }
1509
1510 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1511 displaced->step_closure))
1512 target_resume (ptid, 1, GDB_SIGNAL_0);
1513 else
1514 target_resume (ptid, 0, GDB_SIGNAL_0);
1515
1516 /* Done, we're stepping a thread. */
1517 break;
1518 }
1519 else
1520 {
1521 int step;
1522 struct thread_info *tp = inferior_thread ();
1523
1524 /* The breakpoint we were sitting under has since been
1525 removed. */
1526 tp->control.trap_expected = 0;
1527
1528 /* Go back to what we were trying to do. */
1529 step = currently_stepping (tp);
1530
1531 if (debug_displaced)
1532 fprintf_unfiltered (gdb_stdlog,
1533 "displaced: breakpoint is gone: %s, step(%d)\n",
1534 target_pid_to_str (tp->ptid), step);
1535
1536 target_resume (ptid, step, GDB_SIGNAL_0);
1537 tp->suspend.stop_signal = GDB_SIGNAL_0;
1538
1539 /* This request was discarded. See if there's any other
1540 thread waiting for its turn. */
1541 }
1542 }
1543 }
1544
1545 /* Update global variables holding ptids to hold NEW_PTID if they were
1546 holding OLD_PTID. */
1547 static void
1548 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1549 {
1550 struct displaced_step_request *it;
1551 struct displaced_step_inferior_state *displaced;
1552
1553 if (ptid_equal (inferior_ptid, old_ptid))
1554 inferior_ptid = new_ptid;
1555
1556 if (ptid_equal (singlestep_ptid, old_ptid))
1557 singlestep_ptid = new_ptid;
1558
1559 if (ptid_equal (deferred_step_ptid, old_ptid))
1560 deferred_step_ptid = new_ptid;
1561
1562 for (displaced = displaced_step_inferior_states;
1563 displaced;
1564 displaced = displaced->next)
1565 {
1566 if (ptid_equal (displaced->step_ptid, old_ptid))
1567 displaced->step_ptid = new_ptid;
1568
1569 for (it = displaced->step_request_queue; it; it = it->next)
1570 if (ptid_equal (it->ptid, old_ptid))
1571 it->ptid = new_ptid;
1572 }
1573 }
1574
1575 \f
1576 /* Resuming. */
1577
1578 /* Things to clean up if we QUIT out of resume (). */
1579 static void
1580 resume_cleanups (void *ignore)
1581 {
1582 normal_stop ();
1583 }
1584
1585 static const char schedlock_off[] = "off";
1586 static const char schedlock_on[] = "on";
1587 static const char schedlock_step[] = "step";
1588 static const char *const scheduler_enums[] = {
1589 schedlock_off,
1590 schedlock_on,
1591 schedlock_step,
1592 NULL
1593 };
1594 static const char *scheduler_mode = schedlock_off;
1595 static void
1596 show_scheduler_mode (struct ui_file *file, int from_tty,
1597 struct cmd_list_element *c, const char *value)
1598 {
1599 fprintf_filtered (file,
1600 _("Mode for locking scheduler "
1601 "during execution is \"%s\".\n"),
1602 value);
1603 }
1604
1605 static void
1606 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1607 {
1608 if (!target_can_lock_scheduler)
1609 {
1610 scheduler_mode = schedlock_off;
1611 error (_("Target '%s' cannot support this command."), target_shortname);
1612 }
1613 }
1614
1615 /* True if execution commands resume all threads of all processes by
1616 default; otherwise, resume only threads of the current inferior
1617 process. */
1618 int sched_multi = 0;
1619
1620 /* Try to setup for software single stepping over the specified location.
1621 Return 1 if target_resume() should use hardware single step.
1622
1623 GDBARCH the current gdbarch.
1624 PC the location to step over. */
1625
1626 static int
1627 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1628 {
1629 int hw_step = 1;
1630
1631 if (execution_direction == EXEC_FORWARD
1632 && gdbarch_software_single_step_p (gdbarch)
1633 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1634 {
1635 hw_step = 0;
1636 /* Do not pull these breakpoints until after a `wait' in
1637 `wait_for_inferior'. */
1638 singlestep_breakpoints_inserted_p = 1;
1639 singlestep_ptid = inferior_ptid;
1640 singlestep_pc = pc;
1641 }
1642 return hw_step;
1643 }
1644
1645 /* Return a ptid representing the set of threads that we will proceed,
1646 in the perspective of the user/frontend. We may actually resume
1647 fewer threads at first, e.g., if a thread is stopped at a
1648 breakpoint that needs stepping-off, but that should not be visible
1649 to the user/frontend, and neither should the frontend/user be
1650 allowed to proceed any of the threads that happen to be stopped for
1651 internal run control handling, if a previous command wanted them
1652 resumed. */
1653
1654 ptid_t
1655 user_visible_resume_ptid (int step)
1656 {
1657 /* By default, resume all threads of all processes. */
1658 ptid_t resume_ptid = RESUME_ALL;
1659
1660 /* Maybe resume only all threads of the current process. */
1661 if (!sched_multi && target_supports_multi_process ())
1662 {
1663 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1664 }
1665
1666 /* Maybe resume a single thread after all. */
1667 if (non_stop)
1668 {
1669 /* With non-stop mode on, threads are always handled
1670 individually. */
1671 resume_ptid = inferior_ptid;
1672 }
1673 else if ((scheduler_mode == schedlock_on)
1674 || (scheduler_mode == schedlock_step
1675 && (step || singlestep_breakpoints_inserted_p)))
1676 {
1677 /* User-settable 'scheduler' mode requires solo thread resume. */
1678 resume_ptid = inferior_ptid;
1679 }
1680
1681 return resume_ptid;
1682 }
1683
1684 /* Resume the inferior, but allow a QUIT. This is useful if the user
1685 wants to interrupt some lengthy single-stepping operation
1686 (for child processes, the SIGINT goes to the inferior, and so
1687 we get a SIGINT random_signal, but for remote debugging and perhaps
1688 other targets, that's not true).
1689
1690 STEP nonzero if we should step (zero to continue instead).
1691 SIG is the signal to give the inferior (zero for none). */
1692 void
1693 resume (int step, enum gdb_signal sig)
1694 {
1695 int should_resume = 1;
1696 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1697 struct regcache *regcache = get_current_regcache ();
1698 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1699 struct thread_info *tp = inferior_thread ();
1700 CORE_ADDR pc = regcache_read_pc (regcache);
1701 struct address_space *aspace = get_regcache_aspace (regcache);
1702
1703 QUIT;
1704
1705 if (current_inferior ()->waiting_for_vfork_done)
1706 {
1707 /* Don't try to single-step a vfork parent that is waiting for
1708 the child to get out of the shared memory region (by exec'ing
1709 or exiting). This is particularly important on software
1710 single-step archs, as the child process would trip on the
1711 software single step breakpoint inserted for the parent
1712 process. Since the parent will not actually execute any
1713 instruction until the child is out of the shared region (such
1714 are vfork's semantics), it is safe to simply continue it.
1715 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1716 the parent, and tell it to `keep_going', which automatically
1717 re-sets it stepping. */
1718 if (debug_infrun)
1719 fprintf_unfiltered (gdb_stdlog,
1720 "infrun: resume : clear step\n");
1721 step = 0;
1722 }
1723
1724 if (debug_infrun)
1725 fprintf_unfiltered (gdb_stdlog,
1726 "infrun: resume (step=%d, signal=%d), "
1727 "trap_expected=%d, current thread [%s] at %s\n",
1728 step, sig, tp->control.trap_expected,
1729 target_pid_to_str (inferior_ptid),
1730 paddress (gdbarch, pc));
1731
1732 /* Normally, by the time we reach `resume', the breakpoints are either
1733 removed or inserted, as appropriate. The exception is if we're sitting
1734 at a permanent breakpoint; we need to step over it, but permanent
1735 breakpoints can't be removed. So we have to test for it here. */
1736 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1737 {
1738 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1739 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1740 else
1741 error (_("\
1742 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1743 how to step past a permanent breakpoint on this architecture. Try using\n\
1744 a command like `return' or `jump' to continue execution."));
1745 }
1746
1747 /* If enabled, step over breakpoints by executing a copy of the
1748 instruction at a different address.
1749
1750 We can't use displaced stepping when we have a signal to deliver;
1751 the comments for displaced_step_prepare explain why. The
1752 comments in the handle_inferior event for dealing with 'random
1753 signals' explain what we do instead.
1754
1755 We can't use displaced stepping when we are waiting for vfork_done
1756 event, displaced stepping breaks the vfork child similarly as single
1757 step software breakpoint. */
1758 if (use_displaced_stepping (gdbarch)
1759 && (tp->control.trap_expected
1760 || (step && gdbarch_software_single_step_p (gdbarch)))
1761 && sig == GDB_SIGNAL_0
1762 && !current_inferior ()->waiting_for_vfork_done)
1763 {
1764 struct displaced_step_inferior_state *displaced;
1765
1766 if (!displaced_step_prepare (inferior_ptid))
1767 {
1768 /* Got placed in displaced stepping queue. Will be resumed
1769 later when all the currently queued displaced stepping
1770 requests finish. The thread is not executing at this point,
1771 and the call to set_executing will be made later. But we
1772 need to call set_running here, since from frontend point of view,
1773 the thread is running. */
1774 set_running (inferior_ptid, 1);
1775 discard_cleanups (old_cleanups);
1776 return;
1777 }
1778
1779 /* Update pc to reflect the new address from which we will execute
1780 instructions due to displaced stepping. */
1781 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1782
1783 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1784 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1785 displaced->step_closure);
1786 }
1787
1788 /* Do we need to do it the hard way, w/temp breakpoints? */
1789 else if (step)
1790 step = maybe_software_singlestep (gdbarch, pc);
1791
1792 /* Currently, our software single-step implementation leads to different
1793 results than hardware single-stepping in one situation: when stepping
1794 into delivering a signal which has an associated signal handler,
1795 hardware single-step will stop at the first instruction of the handler,
1796 while software single-step will simply skip execution of the handler.
1797
1798 For now, this difference in behavior is accepted since there is no
1799 easy way to actually implement single-stepping into a signal handler
1800 without kernel support.
1801
1802 However, there is one scenario where this difference leads to follow-on
1803 problems: if we're stepping off a breakpoint by removing all breakpoints
1804 and then single-stepping. In this case, the software single-step
1805 behavior means that even if there is a *breakpoint* in the signal
1806 handler, GDB still would not stop.
1807
1808 Fortunately, we can at least fix this particular issue. We detect
1809 here the case where we are about to deliver a signal while software
1810 single-stepping with breakpoints removed. In this situation, we
1811 revert the decisions to remove all breakpoints and insert single-
1812 step breakpoints, and instead we install a step-resume breakpoint
1813 at the current address, deliver the signal without stepping, and
1814 once we arrive back at the step-resume breakpoint, actually step
1815 over the breakpoint we originally wanted to step over. */
1816 if (singlestep_breakpoints_inserted_p
1817 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1818 {
1819 /* If we have nested signals or a pending signal is delivered
1820 immediately after a handler returns, might might already have
1821 a step-resume breakpoint set on the earlier handler. We cannot
1822 set another step-resume breakpoint; just continue on until the
1823 original breakpoint is hit. */
1824 if (tp->control.step_resume_breakpoint == NULL)
1825 {
1826 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1827 tp->step_after_step_resume_breakpoint = 1;
1828 }
1829
1830 remove_single_step_breakpoints ();
1831 singlestep_breakpoints_inserted_p = 0;
1832
1833 insert_breakpoints ();
1834 tp->control.trap_expected = 0;
1835 }
1836
1837 if (should_resume)
1838 {
1839 ptid_t resume_ptid;
1840
1841 /* If STEP is set, it's a request to use hardware stepping
1842 facilities. But in that case, we should never
1843 use singlestep breakpoint. */
1844 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1845
1846 /* Decide the set of threads to ask the target to resume. Start
1847 by assuming everything will be resumed, than narrow the set
1848 by applying increasingly restricting conditions. */
1849 resume_ptid = user_visible_resume_ptid (step);
1850
1851 /* Maybe resume a single thread after all. */
1852 if (singlestep_breakpoints_inserted_p
1853 && stepping_past_singlestep_breakpoint)
1854 {
1855 /* The situation here is as follows. In thread T1 we wanted to
1856 single-step. Lacking hardware single-stepping we've
1857 set breakpoint at the PC of the next instruction -- call it
1858 P. After resuming, we've hit that breakpoint in thread T2.
1859 Now we've removed original breakpoint, inserted breakpoint
1860 at P+1, and try to step to advance T2 past breakpoint.
1861 We need to step only T2, as if T1 is allowed to freely run,
1862 it can run past P, and if other threads are allowed to run,
1863 they can hit breakpoint at P+1, and nested hits of single-step
1864 breakpoints is not something we'd want -- that's complicated
1865 to support, and has no value. */
1866 resume_ptid = inferior_ptid;
1867 }
1868 else if ((step || singlestep_breakpoints_inserted_p)
1869 && tp->control.trap_expected)
1870 {
1871 /* We're allowing a thread to run past a breakpoint it has
1872 hit, by single-stepping the thread with the breakpoint
1873 removed. In which case, we need to single-step only this
1874 thread, and keep others stopped, as they can miss this
1875 breakpoint if allowed to run.
1876
1877 The current code actually removes all breakpoints when
1878 doing this, not just the one being stepped over, so if we
1879 let other threads run, we can actually miss any
1880 breakpoint, not just the one at PC. */
1881 resume_ptid = inferior_ptid;
1882 }
1883
1884 if (gdbarch_cannot_step_breakpoint (gdbarch))
1885 {
1886 /* Most targets can step a breakpoint instruction, thus
1887 executing it normally. But if this one cannot, just
1888 continue and we will hit it anyway. */
1889 if (step && breakpoint_inserted_here_p (aspace, pc))
1890 step = 0;
1891 }
1892
1893 if (debug_displaced
1894 && use_displaced_stepping (gdbarch)
1895 && tp->control.trap_expected)
1896 {
1897 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1898 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1899 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1900 gdb_byte buf[4];
1901
1902 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1903 paddress (resume_gdbarch, actual_pc));
1904 read_memory (actual_pc, buf, sizeof (buf));
1905 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1906 }
1907
1908 /* Install inferior's terminal modes. */
1909 target_terminal_inferior ();
1910
1911 /* Avoid confusing the next resume, if the next stop/resume
1912 happens to apply to another thread. */
1913 tp->suspend.stop_signal = GDB_SIGNAL_0;
1914
1915 /* Advise target which signals may be handled silently. If we have
1916 removed breakpoints because we are stepping over one (which can
1917 happen only if we are not using displaced stepping), we need to
1918 receive all signals to avoid accidentally skipping a breakpoint
1919 during execution of a signal handler. */
1920 if ((step || singlestep_breakpoints_inserted_p)
1921 && tp->control.trap_expected
1922 && !use_displaced_stepping (gdbarch))
1923 target_pass_signals (0, NULL);
1924 else
1925 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1926
1927 target_resume (resume_ptid, step, sig);
1928 }
1929
1930 discard_cleanups (old_cleanups);
1931 }
1932 \f
1933 /* Proceeding. */
1934
1935 /* Clear out all variables saying what to do when inferior is continued.
1936 First do this, then set the ones you want, then call `proceed'. */
1937
1938 static void
1939 clear_proceed_status_thread (struct thread_info *tp)
1940 {
1941 if (debug_infrun)
1942 fprintf_unfiltered (gdb_stdlog,
1943 "infrun: clear_proceed_status_thread (%s)\n",
1944 target_pid_to_str (tp->ptid));
1945
1946 tp->control.trap_expected = 0;
1947 tp->control.step_range_start = 0;
1948 tp->control.step_range_end = 0;
1949 tp->control.step_frame_id = null_frame_id;
1950 tp->control.step_stack_frame_id = null_frame_id;
1951 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1952 tp->stop_requested = 0;
1953
1954 tp->control.stop_step = 0;
1955
1956 tp->control.proceed_to_finish = 0;
1957
1958 /* Discard any remaining commands or status from previous stop. */
1959 bpstat_clear (&tp->control.stop_bpstat);
1960 }
1961
1962 static int
1963 clear_proceed_status_callback (struct thread_info *tp, void *data)
1964 {
1965 if (is_exited (tp->ptid))
1966 return 0;
1967
1968 clear_proceed_status_thread (tp);
1969 return 0;
1970 }
1971
1972 void
1973 clear_proceed_status (void)
1974 {
1975 if (!non_stop)
1976 {
1977 /* In all-stop mode, delete the per-thread status of all
1978 threads, even if inferior_ptid is null_ptid, there may be
1979 threads on the list. E.g., we may be launching a new
1980 process, while selecting the executable. */
1981 iterate_over_threads (clear_proceed_status_callback, NULL);
1982 }
1983
1984 if (!ptid_equal (inferior_ptid, null_ptid))
1985 {
1986 struct inferior *inferior;
1987
1988 if (non_stop)
1989 {
1990 /* If in non-stop mode, only delete the per-thread status of
1991 the current thread. */
1992 clear_proceed_status_thread (inferior_thread ());
1993 }
1994
1995 inferior = current_inferior ();
1996 inferior->control.stop_soon = NO_STOP_QUIETLY;
1997 }
1998
1999 stop_after_trap = 0;
2000
2001 observer_notify_about_to_proceed ();
2002
2003 if (stop_registers)
2004 {
2005 regcache_xfree (stop_registers);
2006 stop_registers = NULL;
2007 }
2008 }
2009
2010 /* Check the current thread against the thread that reported the most recent
2011 event. If a step-over is required return TRUE and set the current thread
2012 to the old thread. Otherwise return FALSE.
2013
2014 This should be suitable for any targets that support threads. */
2015
2016 static int
2017 prepare_to_proceed (int step)
2018 {
2019 ptid_t wait_ptid;
2020 struct target_waitstatus wait_status;
2021 int schedlock_enabled;
2022
2023 /* With non-stop mode on, threads are always handled individually. */
2024 gdb_assert (! non_stop);
2025
2026 /* Get the last target status returned by target_wait(). */
2027 get_last_target_status (&wait_ptid, &wait_status);
2028
2029 /* Make sure we were stopped at a breakpoint. */
2030 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2031 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2032 && wait_status.value.sig != GDB_SIGNAL_ILL
2033 && wait_status.value.sig != GDB_SIGNAL_SEGV
2034 && wait_status.value.sig != GDB_SIGNAL_EMT))
2035 {
2036 return 0;
2037 }
2038
2039 schedlock_enabled = (scheduler_mode == schedlock_on
2040 || (scheduler_mode == schedlock_step
2041 && step));
2042
2043 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2044 if (schedlock_enabled)
2045 return 0;
2046
2047 /* Don't switch over if we're about to resume some other process
2048 other than WAIT_PTID's, and schedule-multiple is off. */
2049 if (!sched_multi
2050 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2051 return 0;
2052
2053 /* Switched over from WAIT_PID. */
2054 if (!ptid_equal (wait_ptid, minus_one_ptid)
2055 && !ptid_equal (inferior_ptid, wait_ptid))
2056 {
2057 struct regcache *regcache = get_thread_regcache (wait_ptid);
2058
2059 if (breakpoint_here_p (get_regcache_aspace (regcache),
2060 regcache_read_pc (regcache)))
2061 {
2062 /* If stepping, remember current thread to switch back to. */
2063 if (step)
2064 deferred_step_ptid = inferior_ptid;
2065
2066 /* Switch back to WAIT_PID thread. */
2067 switch_to_thread (wait_ptid);
2068
2069 if (debug_infrun)
2070 fprintf_unfiltered (gdb_stdlog,
2071 "infrun: prepare_to_proceed (step=%d), "
2072 "switched to [%s]\n",
2073 step, target_pid_to_str (inferior_ptid));
2074
2075 /* We return 1 to indicate that there is a breakpoint here,
2076 so we need to step over it before continuing to avoid
2077 hitting it straight away. */
2078 return 1;
2079 }
2080 }
2081
2082 return 0;
2083 }
2084
2085 /* Basic routine for continuing the program in various fashions.
2086
2087 ADDR is the address to resume at, or -1 for resume where stopped.
2088 SIGGNAL is the signal to give it, or 0 for none,
2089 or -1 for act according to how it stopped.
2090 STEP is nonzero if should trap after one instruction.
2091 -1 means return after that and print nothing.
2092 You should probably set various step_... variables
2093 before calling here, if you are stepping.
2094
2095 You should call clear_proceed_status before calling proceed. */
2096
2097 void
2098 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2099 {
2100 struct regcache *regcache;
2101 struct gdbarch *gdbarch;
2102 struct thread_info *tp;
2103 CORE_ADDR pc;
2104 struct address_space *aspace;
2105 int oneproc = 0;
2106
2107 /* If we're stopped at a fork/vfork, follow the branch set by the
2108 "set follow-fork-mode" command; otherwise, we'll just proceed
2109 resuming the current thread. */
2110 if (!follow_fork ())
2111 {
2112 /* The target for some reason decided not to resume. */
2113 normal_stop ();
2114 if (target_can_async_p ())
2115 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2116 return;
2117 }
2118
2119 /* We'll update this if & when we switch to a new thread. */
2120 previous_inferior_ptid = inferior_ptid;
2121
2122 regcache = get_current_regcache ();
2123 gdbarch = get_regcache_arch (regcache);
2124 aspace = get_regcache_aspace (regcache);
2125 pc = regcache_read_pc (regcache);
2126
2127 if (step > 0)
2128 step_start_function = find_pc_function (pc);
2129 if (step < 0)
2130 stop_after_trap = 1;
2131
2132 if (addr == (CORE_ADDR) -1)
2133 {
2134 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2135 && execution_direction != EXEC_REVERSE)
2136 /* There is a breakpoint at the address we will resume at,
2137 step one instruction before inserting breakpoints so that
2138 we do not stop right away (and report a second hit at this
2139 breakpoint).
2140
2141 Note, we don't do this in reverse, because we won't
2142 actually be executing the breakpoint insn anyway.
2143 We'll be (un-)executing the previous instruction. */
2144
2145 oneproc = 1;
2146 else if (gdbarch_single_step_through_delay_p (gdbarch)
2147 && gdbarch_single_step_through_delay (gdbarch,
2148 get_current_frame ()))
2149 /* We stepped onto an instruction that needs to be stepped
2150 again before re-inserting the breakpoint, do so. */
2151 oneproc = 1;
2152 }
2153 else
2154 {
2155 regcache_write_pc (regcache, addr);
2156 }
2157
2158 if (debug_infrun)
2159 fprintf_unfiltered (gdb_stdlog,
2160 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2161 paddress (gdbarch, addr), siggnal, step);
2162
2163 if (non_stop)
2164 /* In non-stop, each thread is handled individually. The context
2165 must already be set to the right thread here. */
2166 ;
2167 else
2168 {
2169 /* In a multi-threaded task we may select another thread and
2170 then continue or step.
2171
2172 But if the old thread was stopped at a breakpoint, it will
2173 immediately cause another breakpoint stop without any
2174 execution (i.e. it will report a breakpoint hit incorrectly).
2175 So we must step over it first.
2176
2177 prepare_to_proceed checks the current thread against the
2178 thread that reported the most recent event. If a step-over
2179 is required it returns TRUE and sets the current thread to
2180 the old thread. */
2181 if (prepare_to_proceed (step))
2182 oneproc = 1;
2183 }
2184
2185 /* prepare_to_proceed may change the current thread. */
2186 tp = inferior_thread ();
2187
2188 if (oneproc)
2189 {
2190 tp->control.trap_expected = 1;
2191 /* If displaced stepping is enabled, we can step over the
2192 breakpoint without hitting it, so leave all breakpoints
2193 inserted. Otherwise we need to disable all breakpoints, step
2194 one instruction, and then re-add them when that step is
2195 finished. */
2196 if (!use_displaced_stepping (gdbarch))
2197 remove_breakpoints ();
2198 }
2199
2200 /* We can insert breakpoints if we're not trying to step over one,
2201 or if we are stepping over one but we're using displaced stepping
2202 to do so. */
2203 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2204 insert_breakpoints ();
2205
2206 if (!non_stop)
2207 {
2208 /* Pass the last stop signal to the thread we're resuming,
2209 irrespective of whether the current thread is the thread that
2210 got the last event or not. This was historically GDB's
2211 behaviour before keeping a stop_signal per thread. */
2212
2213 struct thread_info *last_thread;
2214 ptid_t last_ptid;
2215 struct target_waitstatus last_status;
2216
2217 get_last_target_status (&last_ptid, &last_status);
2218 if (!ptid_equal (inferior_ptid, last_ptid)
2219 && !ptid_equal (last_ptid, null_ptid)
2220 && !ptid_equal (last_ptid, minus_one_ptid))
2221 {
2222 last_thread = find_thread_ptid (last_ptid);
2223 if (last_thread)
2224 {
2225 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2226 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2227 }
2228 }
2229 }
2230
2231 if (siggnal != GDB_SIGNAL_DEFAULT)
2232 tp->suspend.stop_signal = siggnal;
2233 /* If this signal should not be seen by program,
2234 give it zero. Used for debugging signals. */
2235 else if (!signal_program[tp->suspend.stop_signal])
2236 tp->suspend.stop_signal = GDB_SIGNAL_0;
2237
2238 annotate_starting ();
2239
2240 /* Make sure that output from GDB appears before output from the
2241 inferior. */
2242 gdb_flush (gdb_stdout);
2243
2244 /* Refresh prev_pc value just prior to resuming. This used to be
2245 done in stop_stepping, however, setting prev_pc there did not handle
2246 scenarios such as inferior function calls or returning from
2247 a function via the return command. In those cases, the prev_pc
2248 value was not set properly for subsequent commands. The prev_pc value
2249 is used to initialize the starting line number in the ecs. With an
2250 invalid value, the gdb next command ends up stopping at the position
2251 represented by the next line table entry past our start position.
2252 On platforms that generate one line table entry per line, this
2253 is not a problem. However, on the ia64, the compiler generates
2254 extraneous line table entries that do not increase the line number.
2255 When we issue the gdb next command on the ia64 after an inferior call
2256 or a return command, we often end up a few instructions forward, still
2257 within the original line we started.
2258
2259 An attempt was made to refresh the prev_pc at the same time the
2260 execution_control_state is initialized (for instance, just before
2261 waiting for an inferior event). But this approach did not work
2262 because of platforms that use ptrace, where the pc register cannot
2263 be read unless the inferior is stopped. At that point, we are not
2264 guaranteed the inferior is stopped and so the regcache_read_pc() call
2265 can fail. Setting the prev_pc value here ensures the value is updated
2266 correctly when the inferior is stopped. */
2267 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2268
2269 /* Fill in with reasonable starting values. */
2270 init_thread_stepping_state (tp);
2271
2272 /* Reset to normal state. */
2273 init_infwait_state ();
2274
2275 /* Resume inferior. */
2276 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2277
2278 /* Wait for it to stop (if not standalone)
2279 and in any case decode why it stopped, and act accordingly. */
2280 /* Do this only if we are not using the event loop, or if the target
2281 does not support asynchronous execution. */
2282 if (!target_can_async_p ())
2283 {
2284 wait_for_inferior ();
2285 normal_stop ();
2286 }
2287 }
2288 \f
2289
2290 /* Start remote-debugging of a machine over a serial link. */
2291
2292 void
2293 start_remote (int from_tty)
2294 {
2295 struct inferior *inferior;
2296
2297 inferior = current_inferior ();
2298 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2299
2300 /* Always go on waiting for the target, regardless of the mode. */
2301 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2302 indicate to wait_for_inferior that a target should timeout if
2303 nothing is returned (instead of just blocking). Because of this,
2304 targets expecting an immediate response need to, internally, set
2305 things up so that the target_wait() is forced to eventually
2306 timeout. */
2307 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2308 differentiate to its caller what the state of the target is after
2309 the initial open has been performed. Here we're assuming that
2310 the target has stopped. It should be possible to eventually have
2311 target_open() return to the caller an indication that the target
2312 is currently running and GDB state should be set to the same as
2313 for an async run. */
2314 wait_for_inferior ();
2315
2316 /* Now that the inferior has stopped, do any bookkeeping like
2317 loading shared libraries. We want to do this before normal_stop,
2318 so that the displayed frame is up to date. */
2319 post_create_inferior (&current_target, from_tty);
2320
2321 normal_stop ();
2322 }
2323
2324 /* Initialize static vars when a new inferior begins. */
2325
2326 void
2327 init_wait_for_inferior (void)
2328 {
2329 /* These are meaningless until the first time through wait_for_inferior. */
2330
2331 breakpoint_init_inferior (inf_starting);
2332
2333 clear_proceed_status ();
2334
2335 stepping_past_singlestep_breakpoint = 0;
2336 deferred_step_ptid = null_ptid;
2337
2338 target_last_wait_ptid = minus_one_ptid;
2339
2340 previous_inferior_ptid = inferior_ptid;
2341 init_infwait_state ();
2342
2343 /* Discard any skipped inlined frames. */
2344 clear_inline_frame_state (minus_one_ptid);
2345 }
2346
2347 \f
2348 /* This enum encodes possible reasons for doing a target_wait, so that
2349 wfi can call target_wait in one place. (Ultimately the call will be
2350 moved out of the infinite loop entirely.) */
2351
2352 enum infwait_states
2353 {
2354 infwait_normal_state,
2355 infwait_thread_hop_state,
2356 infwait_step_watch_state,
2357 infwait_nonstep_watch_state
2358 };
2359
2360 /* The PTID we'll do a target_wait on.*/
2361 ptid_t waiton_ptid;
2362
2363 /* Current inferior wait state. */
2364 enum infwait_states infwait_state;
2365
2366 /* Data to be passed around while handling an event. This data is
2367 discarded between events. */
2368 struct execution_control_state
2369 {
2370 ptid_t ptid;
2371 /* The thread that got the event, if this was a thread event; NULL
2372 otherwise. */
2373 struct thread_info *event_thread;
2374
2375 struct target_waitstatus ws;
2376 int random_signal;
2377 int stop_func_filled_in;
2378 CORE_ADDR stop_func_start;
2379 CORE_ADDR stop_func_end;
2380 const char *stop_func_name;
2381 int wait_some_more;
2382 };
2383
2384 static void handle_inferior_event (struct execution_control_state *ecs);
2385
2386 static void handle_step_into_function (struct gdbarch *gdbarch,
2387 struct execution_control_state *ecs);
2388 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2389 struct execution_control_state *ecs);
2390 static void check_exception_resume (struct execution_control_state *,
2391 struct frame_info *);
2392
2393 static void stop_stepping (struct execution_control_state *ecs);
2394 static void prepare_to_wait (struct execution_control_state *ecs);
2395 static void keep_going (struct execution_control_state *ecs);
2396
2397 /* Callback for iterate over threads. If the thread is stopped, but
2398 the user/frontend doesn't know about that yet, go through
2399 normal_stop, as if the thread had just stopped now. ARG points at
2400 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2401 ptid_is_pid(PTID) is true, applies to all threads of the process
2402 pointed at by PTID. Otherwise, apply only to the thread pointed by
2403 PTID. */
2404
2405 static int
2406 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2407 {
2408 ptid_t ptid = * (ptid_t *) arg;
2409
2410 if ((ptid_equal (info->ptid, ptid)
2411 || ptid_equal (minus_one_ptid, ptid)
2412 || (ptid_is_pid (ptid)
2413 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2414 && is_running (info->ptid)
2415 && !is_executing (info->ptid))
2416 {
2417 struct cleanup *old_chain;
2418 struct execution_control_state ecss;
2419 struct execution_control_state *ecs = &ecss;
2420
2421 memset (ecs, 0, sizeof (*ecs));
2422
2423 old_chain = make_cleanup_restore_current_thread ();
2424
2425 /* Go through handle_inferior_event/normal_stop, so we always
2426 have consistent output as if the stop event had been
2427 reported. */
2428 ecs->ptid = info->ptid;
2429 ecs->event_thread = find_thread_ptid (info->ptid);
2430 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2431 ecs->ws.value.sig = GDB_SIGNAL_0;
2432
2433 handle_inferior_event (ecs);
2434
2435 if (!ecs->wait_some_more)
2436 {
2437 struct thread_info *tp;
2438
2439 normal_stop ();
2440
2441 /* Finish off the continuations. */
2442 tp = inferior_thread ();
2443 do_all_intermediate_continuations_thread (tp, 1);
2444 do_all_continuations_thread (tp, 1);
2445 }
2446
2447 do_cleanups (old_chain);
2448 }
2449
2450 return 0;
2451 }
2452
2453 /* This function is attached as a "thread_stop_requested" observer.
2454 Cleanup local state that assumed the PTID was to be resumed, and
2455 report the stop to the frontend. */
2456
2457 static void
2458 infrun_thread_stop_requested (ptid_t ptid)
2459 {
2460 struct displaced_step_inferior_state *displaced;
2461
2462 /* PTID was requested to stop. Remove it from the displaced
2463 stepping queue, so we don't try to resume it automatically. */
2464
2465 for (displaced = displaced_step_inferior_states;
2466 displaced;
2467 displaced = displaced->next)
2468 {
2469 struct displaced_step_request *it, **prev_next_p;
2470
2471 it = displaced->step_request_queue;
2472 prev_next_p = &displaced->step_request_queue;
2473 while (it)
2474 {
2475 if (ptid_match (it->ptid, ptid))
2476 {
2477 *prev_next_p = it->next;
2478 it->next = NULL;
2479 xfree (it);
2480 }
2481 else
2482 {
2483 prev_next_p = &it->next;
2484 }
2485
2486 it = *prev_next_p;
2487 }
2488 }
2489
2490 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2491 }
2492
2493 static void
2494 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2495 {
2496 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2497 nullify_last_target_wait_ptid ();
2498 }
2499
2500 /* Callback for iterate_over_threads. */
2501
2502 static int
2503 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2504 {
2505 if (is_exited (info->ptid))
2506 return 0;
2507
2508 delete_step_resume_breakpoint (info);
2509 delete_exception_resume_breakpoint (info);
2510 return 0;
2511 }
2512
2513 /* In all-stop, delete the step resume breakpoint of any thread that
2514 had one. In non-stop, delete the step resume breakpoint of the
2515 thread that just stopped. */
2516
2517 static void
2518 delete_step_thread_step_resume_breakpoint (void)
2519 {
2520 if (!target_has_execution
2521 || ptid_equal (inferior_ptid, null_ptid))
2522 /* If the inferior has exited, we have already deleted the step
2523 resume breakpoints out of GDB's lists. */
2524 return;
2525
2526 if (non_stop)
2527 {
2528 /* If in non-stop mode, only delete the step-resume or
2529 longjmp-resume breakpoint of the thread that just stopped
2530 stepping. */
2531 struct thread_info *tp = inferior_thread ();
2532
2533 delete_step_resume_breakpoint (tp);
2534 delete_exception_resume_breakpoint (tp);
2535 }
2536 else
2537 /* In all-stop mode, delete all step-resume and longjmp-resume
2538 breakpoints of any thread that had them. */
2539 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2540 }
2541
2542 /* A cleanup wrapper. */
2543
2544 static void
2545 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2546 {
2547 delete_step_thread_step_resume_breakpoint ();
2548 }
2549
2550 /* Pretty print the results of target_wait, for debugging purposes. */
2551
2552 static void
2553 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2554 const struct target_waitstatus *ws)
2555 {
2556 char *status_string = target_waitstatus_to_string (ws);
2557 struct ui_file *tmp_stream = mem_fileopen ();
2558 char *text;
2559
2560 /* The text is split over several lines because it was getting too long.
2561 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2562 output as a unit; we want only one timestamp printed if debug_timestamp
2563 is set. */
2564
2565 fprintf_unfiltered (tmp_stream,
2566 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2567 if (PIDGET (waiton_ptid) != -1)
2568 fprintf_unfiltered (tmp_stream,
2569 " [%s]", target_pid_to_str (waiton_ptid));
2570 fprintf_unfiltered (tmp_stream, ", status) =\n");
2571 fprintf_unfiltered (tmp_stream,
2572 "infrun: %d [%s],\n",
2573 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2574 fprintf_unfiltered (tmp_stream,
2575 "infrun: %s\n",
2576 status_string);
2577
2578 text = ui_file_xstrdup (tmp_stream, NULL);
2579
2580 /* This uses %s in part to handle %'s in the text, but also to avoid
2581 a gcc error: the format attribute requires a string literal. */
2582 fprintf_unfiltered (gdb_stdlog, "%s", text);
2583
2584 xfree (status_string);
2585 xfree (text);
2586 ui_file_delete (tmp_stream);
2587 }
2588
2589 /* Prepare and stabilize the inferior for detaching it. E.g.,
2590 detaching while a thread is displaced stepping is a recipe for
2591 crashing it, as nothing would readjust the PC out of the scratch
2592 pad. */
2593
2594 void
2595 prepare_for_detach (void)
2596 {
2597 struct inferior *inf = current_inferior ();
2598 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2599 struct cleanup *old_chain_1;
2600 struct displaced_step_inferior_state *displaced;
2601
2602 displaced = get_displaced_stepping_state (inf->pid);
2603
2604 /* Is any thread of this process displaced stepping? If not,
2605 there's nothing else to do. */
2606 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2607 return;
2608
2609 if (debug_infrun)
2610 fprintf_unfiltered (gdb_stdlog,
2611 "displaced-stepping in-process while detaching");
2612
2613 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2614 inf->detaching = 1;
2615
2616 while (!ptid_equal (displaced->step_ptid, null_ptid))
2617 {
2618 struct cleanup *old_chain_2;
2619 struct execution_control_state ecss;
2620 struct execution_control_state *ecs;
2621
2622 ecs = &ecss;
2623 memset (ecs, 0, sizeof (*ecs));
2624
2625 overlay_cache_invalid = 1;
2626
2627 if (deprecated_target_wait_hook)
2628 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2629 else
2630 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2631
2632 if (debug_infrun)
2633 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2634
2635 /* If an error happens while handling the event, propagate GDB's
2636 knowledge of the executing state to the frontend/user running
2637 state. */
2638 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2639 &minus_one_ptid);
2640
2641 /* Now figure out what to do with the result of the result. */
2642 handle_inferior_event (ecs);
2643
2644 /* No error, don't finish the state yet. */
2645 discard_cleanups (old_chain_2);
2646
2647 /* Breakpoints and watchpoints are not installed on the target
2648 at this point, and signals are passed directly to the
2649 inferior, so this must mean the process is gone. */
2650 if (!ecs->wait_some_more)
2651 {
2652 discard_cleanups (old_chain_1);
2653 error (_("Program exited while detaching"));
2654 }
2655 }
2656
2657 discard_cleanups (old_chain_1);
2658 }
2659
2660 /* Wait for control to return from inferior to debugger.
2661
2662 If inferior gets a signal, we may decide to start it up again
2663 instead of returning. That is why there is a loop in this function.
2664 When this function actually returns it means the inferior
2665 should be left stopped and GDB should read more commands. */
2666
2667 void
2668 wait_for_inferior (void)
2669 {
2670 struct cleanup *old_cleanups;
2671
2672 if (debug_infrun)
2673 fprintf_unfiltered
2674 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2675
2676 old_cleanups =
2677 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2678
2679 while (1)
2680 {
2681 struct execution_control_state ecss;
2682 struct execution_control_state *ecs = &ecss;
2683 struct cleanup *old_chain;
2684
2685 memset (ecs, 0, sizeof (*ecs));
2686
2687 overlay_cache_invalid = 1;
2688
2689 if (deprecated_target_wait_hook)
2690 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2691 else
2692 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2693
2694 if (debug_infrun)
2695 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2696
2697 /* If an error happens while handling the event, propagate GDB's
2698 knowledge of the executing state to the frontend/user running
2699 state. */
2700 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2701
2702 /* Now figure out what to do with the result of the result. */
2703 handle_inferior_event (ecs);
2704
2705 /* No error, don't finish the state yet. */
2706 discard_cleanups (old_chain);
2707
2708 if (!ecs->wait_some_more)
2709 break;
2710 }
2711
2712 do_cleanups (old_cleanups);
2713 }
2714
2715 /* Asynchronous version of wait_for_inferior. It is called by the
2716 event loop whenever a change of state is detected on the file
2717 descriptor corresponding to the target. It can be called more than
2718 once to complete a single execution command. In such cases we need
2719 to keep the state in a global variable ECSS. If it is the last time
2720 that this function is called for a single execution command, then
2721 report to the user that the inferior has stopped, and do the
2722 necessary cleanups. */
2723
2724 void
2725 fetch_inferior_event (void *client_data)
2726 {
2727 struct execution_control_state ecss;
2728 struct execution_control_state *ecs = &ecss;
2729 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2730 struct cleanup *ts_old_chain;
2731 int was_sync = sync_execution;
2732 int cmd_done = 0;
2733
2734 memset (ecs, 0, sizeof (*ecs));
2735
2736 /* We're handling a live event, so make sure we're doing live
2737 debugging. If we're looking at traceframes while the target is
2738 running, we're going to need to get back to that mode after
2739 handling the event. */
2740 if (non_stop)
2741 {
2742 make_cleanup_restore_current_traceframe ();
2743 set_current_traceframe (-1);
2744 }
2745
2746 if (non_stop)
2747 /* In non-stop mode, the user/frontend should not notice a thread
2748 switch due to internal events. Make sure we reverse to the
2749 user selected thread and frame after handling the event and
2750 running any breakpoint commands. */
2751 make_cleanup_restore_current_thread ();
2752
2753 overlay_cache_invalid = 1;
2754
2755 make_cleanup_restore_integer (&execution_direction);
2756 execution_direction = target_execution_direction ();
2757
2758 if (deprecated_target_wait_hook)
2759 ecs->ptid =
2760 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2761 else
2762 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2763
2764 if (debug_infrun)
2765 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2766
2767 /* If an error happens while handling the event, propagate GDB's
2768 knowledge of the executing state to the frontend/user running
2769 state. */
2770 if (!non_stop)
2771 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2772 else
2773 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2774
2775 /* Get executed before make_cleanup_restore_current_thread above to apply
2776 still for the thread which has thrown the exception. */
2777 make_bpstat_clear_actions_cleanup ();
2778
2779 /* Now figure out what to do with the result of the result. */
2780 handle_inferior_event (ecs);
2781
2782 if (!ecs->wait_some_more)
2783 {
2784 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2785
2786 delete_step_thread_step_resume_breakpoint ();
2787
2788 /* We may not find an inferior if this was a process exit. */
2789 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2790 normal_stop ();
2791
2792 if (target_has_execution
2793 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2794 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2795 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2796 && ecs->event_thread->step_multi
2797 && ecs->event_thread->control.stop_step)
2798 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2799 else
2800 {
2801 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2802 cmd_done = 1;
2803 }
2804 }
2805
2806 /* No error, don't finish the thread states yet. */
2807 discard_cleanups (ts_old_chain);
2808
2809 /* Revert thread and frame. */
2810 do_cleanups (old_chain);
2811
2812 /* If the inferior was in sync execution mode, and now isn't,
2813 restore the prompt (a synchronous execution command has finished,
2814 and we're ready for input). */
2815 if (interpreter_async && was_sync && !sync_execution)
2816 display_gdb_prompt (0);
2817
2818 if (cmd_done
2819 && !was_sync
2820 && exec_done_display_p
2821 && (ptid_equal (inferior_ptid, null_ptid)
2822 || !is_running (inferior_ptid)))
2823 printf_unfiltered (_("completed.\n"));
2824 }
2825
2826 /* Record the frame and location we're currently stepping through. */
2827 void
2828 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2829 {
2830 struct thread_info *tp = inferior_thread ();
2831
2832 tp->control.step_frame_id = get_frame_id (frame);
2833 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2834
2835 tp->current_symtab = sal.symtab;
2836 tp->current_line = sal.line;
2837 }
2838
2839 /* Clear context switchable stepping state. */
2840
2841 void
2842 init_thread_stepping_state (struct thread_info *tss)
2843 {
2844 tss->stepping_over_breakpoint = 0;
2845 tss->step_after_step_resume_breakpoint = 0;
2846 }
2847
2848 /* Return the cached copy of the last pid/waitstatus returned by
2849 target_wait()/deprecated_target_wait_hook(). The data is actually
2850 cached by handle_inferior_event(), which gets called immediately
2851 after target_wait()/deprecated_target_wait_hook(). */
2852
2853 void
2854 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2855 {
2856 *ptidp = target_last_wait_ptid;
2857 *status = target_last_waitstatus;
2858 }
2859
2860 void
2861 nullify_last_target_wait_ptid (void)
2862 {
2863 target_last_wait_ptid = minus_one_ptid;
2864 }
2865
2866 /* Switch thread contexts. */
2867
2868 static void
2869 context_switch (ptid_t ptid)
2870 {
2871 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2872 {
2873 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2874 target_pid_to_str (inferior_ptid));
2875 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2876 target_pid_to_str (ptid));
2877 }
2878
2879 switch_to_thread (ptid);
2880 }
2881
2882 static void
2883 adjust_pc_after_break (struct execution_control_state *ecs)
2884 {
2885 struct regcache *regcache;
2886 struct gdbarch *gdbarch;
2887 struct address_space *aspace;
2888 CORE_ADDR breakpoint_pc;
2889
2890 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2891 we aren't, just return.
2892
2893 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2894 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2895 implemented by software breakpoints should be handled through the normal
2896 breakpoint layer.
2897
2898 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2899 different signals (SIGILL or SIGEMT for instance), but it is less
2900 clear where the PC is pointing afterwards. It may not match
2901 gdbarch_decr_pc_after_break. I don't know any specific target that
2902 generates these signals at breakpoints (the code has been in GDB since at
2903 least 1992) so I can not guess how to handle them here.
2904
2905 In earlier versions of GDB, a target with
2906 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2907 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2908 target with both of these set in GDB history, and it seems unlikely to be
2909 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2910
2911 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2912 return;
2913
2914 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2915 return;
2916
2917 /* In reverse execution, when a breakpoint is hit, the instruction
2918 under it has already been de-executed. The reported PC always
2919 points at the breakpoint address, so adjusting it further would
2920 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2921 architecture:
2922
2923 B1 0x08000000 : INSN1
2924 B2 0x08000001 : INSN2
2925 0x08000002 : INSN3
2926 PC -> 0x08000003 : INSN4
2927
2928 Say you're stopped at 0x08000003 as above. Reverse continuing
2929 from that point should hit B2 as below. Reading the PC when the
2930 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2931 been de-executed already.
2932
2933 B1 0x08000000 : INSN1
2934 B2 PC -> 0x08000001 : INSN2
2935 0x08000002 : INSN3
2936 0x08000003 : INSN4
2937
2938 We can't apply the same logic as for forward execution, because
2939 we would wrongly adjust the PC to 0x08000000, since there's a
2940 breakpoint at PC - 1. We'd then report a hit on B1, although
2941 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2942 behaviour. */
2943 if (execution_direction == EXEC_REVERSE)
2944 return;
2945
2946 /* If this target does not decrement the PC after breakpoints, then
2947 we have nothing to do. */
2948 regcache = get_thread_regcache (ecs->ptid);
2949 gdbarch = get_regcache_arch (regcache);
2950 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2951 return;
2952
2953 aspace = get_regcache_aspace (regcache);
2954
2955 /* Find the location where (if we've hit a breakpoint) the
2956 breakpoint would be. */
2957 breakpoint_pc = regcache_read_pc (regcache)
2958 - gdbarch_decr_pc_after_break (gdbarch);
2959
2960 /* Check whether there actually is a software breakpoint inserted at
2961 that location.
2962
2963 If in non-stop mode, a race condition is possible where we've
2964 removed a breakpoint, but stop events for that breakpoint were
2965 already queued and arrive later. To suppress those spurious
2966 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2967 and retire them after a number of stop events are reported. */
2968 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2969 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2970 {
2971 struct cleanup *old_cleanups = NULL;
2972
2973 if (RECORD_IS_USED)
2974 old_cleanups = record_gdb_operation_disable_set ();
2975
2976 /* When using hardware single-step, a SIGTRAP is reported for both
2977 a completed single-step and a software breakpoint. Need to
2978 differentiate between the two, as the latter needs adjusting
2979 but the former does not.
2980
2981 The SIGTRAP can be due to a completed hardware single-step only if
2982 - we didn't insert software single-step breakpoints
2983 - the thread to be examined is still the current thread
2984 - this thread is currently being stepped
2985
2986 If any of these events did not occur, we must have stopped due
2987 to hitting a software breakpoint, and have to back up to the
2988 breakpoint address.
2989
2990 As a special case, we could have hardware single-stepped a
2991 software breakpoint. In this case (prev_pc == breakpoint_pc),
2992 we also need to back up to the breakpoint address. */
2993
2994 if (singlestep_breakpoints_inserted_p
2995 || !ptid_equal (ecs->ptid, inferior_ptid)
2996 || !currently_stepping (ecs->event_thread)
2997 || ecs->event_thread->prev_pc == breakpoint_pc)
2998 regcache_write_pc (regcache, breakpoint_pc);
2999
3000 if (RECORD_IS_USED)
3001 do_cleanups (old_cleanups);
3002 }
3003 }
3004
3005 void
3006 init_infwait_state (void)
3007 {
3008 waiton_ptid = pid_to_ptid (-1);
3009 infwait_state = infwait_normal_state;
3010 }
3011
3012 void
3013 error_is_running (void)
3014 {
3015 error (_("Cannot execute this command while "
3016 "the selected thread is running."));
3017 }
3018
3019 void
3020 ensure_not_running (void)
3021 {
3022 if (is_running (inferior_ptid))
3023 error_is_running ();
3024 }
3025
3026 static int
3027 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3028 {
3029 for (frame = get_prev_frame (frame);
3030 frame != NULL;
3031 frame = get_prev_frame (frame))
3032 {
3033 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3034 return 1;
3035 if (get_frame_type (frame) != INLINE_FRAME)
3036 break;
3037 }
3038
3039 return 0;
3040 }
3041
3042 /* Auxiliary function that handles syscall entry/return events.
3043 It returns 1 if the inferior should keep going (and GDB
3044 should ignore the event), or 0 if the event deserves to be
3045 processed. */
3046
3047 static int
3048 handle_syscall_event (struct execution_control_state *ecs)
3049 {
3050 struct regcache *regcache;
3051 struct gdbarch *gdbarch;
3052 int syscall_number;
3053
3054 if (!ptid_equal (ecs->ptid, inferior_ptid))
3055 context_switch (ecs->ptid);
3056
3057 regcache = get_thread_regcache (ecs->ptid);
3058 gdbarch = get_regcache_arch (regcache);
3059 syscall_number = ecs->ws.value.syscall_number;
3060 stop_pc = regcache_read_pc (regcache);
3061
3062 if (catch_syscall_enabled () > 0
3063 && catching_syscall_number (syscall_number) > 0)
3064 {
3065 if (debug_infrun)
3066 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3067 syscall_number);
3068
3069 ecs->event_thread->control.stop_bpstat
3070 = bpstat_stop_status (get_regcache_aspace (regcache),
3071 stop_pc, ecs->ptid, &ecs->ws);
3072 ecs->random_signal
3073 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3074
3075 if (!ecs->random_signal)
3076 {
3077 /* Catchpoint hit. */
3078 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3079 return 0;
3080 }
3081 }
3082
3083 /* If no catchpoint triggered for this, then keep going. */
3084 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3085 keep_going (ecs);
3086 return 1;
3087 }
3088
3089 /* Clear the supplied execution_control_state's stop_func_* fields. */
3090
3091 static void
3092 clear_stop_func (struct execution_control_state *ecs)
3093 {
3094 ecs->stop_func_filled_in = 0;
3095 ecs->stop_func_start = 0;
3096 ecs->stop_func_end = 0;
3097 ecs->stop_func_name = NULL;
3098 }
3099
3100 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3101
3102 static void
3103 fill_in_stop_func (struct gdbarch *gdbarch,
3104 struct execution_control_state *ecs)
3105 {
3106 if (!ecs->stop_func_filled_in)
3107 {
3108 /* Don't care about return value; stop_func_start and stop_func_name
3109 will both be 0 if it doesn't work. */
3110 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3111 &ecs->stop_func_start, &ecs->stop_func_end);
3112 ecs->stop_func_start
3113 += gdbarch_deprecated_function_start_offset (gdbarch);
3114
3115 ecs->stop_func_filled_in = 1;
3116 }
3117 }
3118
3119 /* Given an execution control state that has been freshly filled in
3120 by an event from the inferior, figure out what it means and take
3121 appropriate action. */
3122
3123 static void
3124 handle_inferior_event (struct execution_control_state *ecs)
3125 {
3126 struct frame_info *frame;
3127 struct gdbarch *gdbarch;
3128 int stopped_by_watchpoint;
3129 int stepped_after_stopped_by_watchpoint = 0;
3130 struct symtab_and_line stop_pc_sal;
3131 enum stop_kind stop_soon;
3132
3133 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3134 {
3135 /* We had an event in the inferior, but we are not interested in
3136 handling it at this level. The lower layers have already
3137 done what needs to be done, if anything.
3138
3139 One of the possible circumstances for this is when the
3140 inferior produces output for the console. The inferior has
3141 not stopped, and we are ignoring the event. Another possible
3142 circumstance is any event which the lower level knows will be
3143 reported multiple times without an intervening resume. */
3144 if (debug_infrun)
3145 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3146 prepare_to_wait (ecs);
3147 return;
3148 }
3149
3150 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3151 && target_can_async_p () && !sync_execution)
3152 {
3153 /* There were no unwaited-for children left in the target, but,
3154 we're not synchronously waiting for events either. Just
3155 ignore. Otherwise, if we were running a synchronous
3156 execution command, we need to cancel it and give the user
3157 back the terminal. */
3158 if (debug_infrun)
3159 fprintf_unfiltered (gdb_stdlog,
3160 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3161 prepare_to_wait (ecs);
3162 return;
3163 }
3164
3165 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3166 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3167 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3168 {
3169 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3170
3171 gdb_assert (inf);
3172 stop_soon = inf->control.stop_soon;
3173 }
3174 else
3175 stop_soon = NO_STOP_QUIETLY;
3176
3177 /* Cache the last pid/waitstatus. */
3178 target_last_wait_ptid = ecs->ptid;
3179 target_last_waitstatus = ecs->ws;
3180
3181 /* Always clear state belonging to the previous time we stopped. */
3182 stop_stack_dummy = STOP_NONE;
3183
3184 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3185 {
3186 /* No unwaited-for children left. IOW, all resumed children
3187 have exited. */
3188 if (debug_infrun)
3189 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3190
3191 stop_print_frame = 0;
3192 stop_stepping (ecs);
3193 return;
3194 }
3195
3196 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3197 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3198 && !ptid_equal (ecs->ptid, minus_one_ptid))
3199 {
3200 ecs->event_thread = find_thread_ptid (ecs->ptid);
3201 /* If it's a new thread, add it to the thread database. */
3202 if (ecs->event_thread == NULL)
3203 ecs->event_thread = add_thread (ecs->ptid);
3204 }
3205
3206 /* Dependent on valid ECS->EVENT_THREAD. */
3207 adjust_pc_after_break (ecs);
3208
3209 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3210 reinit_frame_cache ();
3211
3212 breakpoint_retire_moribund ();
3213
3214 /* First, distinguish signals caused by the debugger from signals
3215 that have to do with the program's own actions. Note that
3216 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3217 on the operating system version. Here we detect when a SIGILL or
3218 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3219 something similar for SIGSEGV, since a SIGSEGV will be generated
3220 when we're trying to execute a breakpoint instruction on a
3221 non-executable stack. This happens for call dummy breakpoints
3222 for architectures like SPARC that place call dummies on the
3223 stack. */
3224 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3225 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3226 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3227 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3228 {
3229 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3230
3231 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3232 regcache_read_pc (regcache)))
3233 {
3234 if (debug_infrun)
3235 fprintf_unfiltered (gdb_stdlog,
3236 "infrun: Treating signal as SIGTRAP\n");
3237 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3238 }
3239 }
3240
3241 /* Mark the non-executing threads accordingly. In all-stop, all
3242 threads of all processes are stopped when we get any event
3243 reported. In non-stop mode, only the event thread stops. If
3244 we're handling a process exit in non-stop mode, there's nothing
3245 to do, as threads of the dead process are gone, and threads of
3246 any other process were left running. */
3247 if (!non_stop)
3248 set_executing (minus_one_ptid, 0);
3249 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3250 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3251 set_executing (ecs->ptid, 0);
3252
3253 switch (infwait_state)
3254 {
3255 case infwait_thread_hop_state:
3256 if (debug_infrun)
3257 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3258 break;
3259
3260 case infwait_normal_state:
3261 if (debug_infrun)
3262 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3263 break;
3264
3265 case infwait_step_watch_state:
3266 if (debug_infrun)
3267 fprintf_unfiltered (gdb_stdlog,
3268 "infrun: infwait_step_watch_state\n");
3269
3270 stepped_after_stopped_by_watchpoint = 1;
3271 break;
3272
3273 case infwait_nonstep_watch_state:
3274 if (debug_infrun)
3275 fprintf_unfiltered (gdb_stdlog,
3276 "infrun: infwait_nonstep_watch_state\n");
3277 insert_breakpoints ();
3278
3279 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3280 handle things like signals arriving and other things happening
3281 in combination correctly? */
3282 stepped_after_stopped_by_watchpoint = 1;
3283 break;
3284
3285 default:
3286 internal_error (__FILE__, __LINE__, _("bad switch"));
3287 }
3288
3289 infwait_state = infwait_normal_state;
3290 waiton_ptid = pid_to_ptid (-1);
3291
3292 switch (ecs->ws.kind)
3293 {
3294 case TARGET_WAITKIND_LOADED:
3295 if (debug_infrun)
3296 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3297 /* Ignore gracefully during startup of the inferior, as it might
3298 be the shell which has just loaded some objects, otherwise
3299 add the symbols for the newly loaded objects. Also ignore at
3300 the beginning of an attach or remote session; we will query
3301 the full list of libraries once the connection is
3302 established. */
3303 if (stop_soon == NO_STOP_QUIETLY)
3304 {
3305 struct regcache *regcache;
3306
3307 if (!ptid_equal (ecs->ptid, inferior_ptid))
3308 context_switch (ecs->ptid);
3309 regcache = get_thread_regcache (ecs->ptid);
3310
3311 handle_solib_event ();
3312
3313 ecs->event_thread->control.stop_bpstat
3314 = bpstat_stop_status (get_regcache_aspace (regcache),
3315 stop_pc, ecs->ptid, &ecs->ws);
3316 ecs->random_signal
3317 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3318
3319 if (!ecs->random_signal)
3320 {
3321 /* A catchpoint triggered. */
3322 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3323 goto process_event_stop_test;
3324 }
3325
3326 /* If requested, stop when the dynamic linker notifies
3327 gdb of events. This allows the user to get control
3328 and place breakpoints in initializer routines for
3329 dynamically loaded objects (among other things). */
3330 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3331 if (stop_on_solib_events)
3332 {
3333 /* Make sure we print "Stopped due to solib-event" in
3334 normal_stop. */
3335 stop_print_frame = 1;
3336
3337 stop_stepping (ecs);
3338 return;
3339 }
3340 }
3341
3342 /* If we are skipping through a shell, or through shared library
3343 loading that we aren't interested in, resume the program. If
3344 we're running the program normally, also resume. But stop if
3345 we're attaching or setting up a remote connection. */
3346 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3347 {
3348 if (!ptid_equal (ecs->ptid, inferior_ptid))
3349 context_switch (ecs->ptid);
3350
3351 /* Loading of shared libraries might have changed breakpoint
3352 addresses. Make sure new breakpoints are inserted. */
3353 if (stop_soon == NO_STOP_QUIETLY
3354 && !breakpoints_always_inserted_mode ())
3355 insert_breakpoints ();
3356 resume (0, GDB_SIGNAL_0);
3357 prepare_to_wait (ecs);
3358 return;
3359 }
3360
3361 break;
3362
3363 case TARGET_WAITKIND_SPURIOUS:
3364 if (debug_infrun)
3365 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3366 if (!ptid_equal (ecs->ptid, inferior_ptid)
3367 && !ptid_equal (ecs->ptid, minus_one_ptid))
3368 context_switch (ecs->ptid);
3369 resume (0, GDB_SIGNAL_0);
3370 prepare_to_wait (ecs);
3371 return;
3372
3373 case TARGET_WAITKIND_EXITED:
3374 if (debug_infrun)
3375 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3376 inferior_ptid = ecs->ptid;
3377 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3378 set_current_program_space (current_inferior ()->pspace);
3379 handle_vfork_child_exec_or_exit (0);
3380 target_terminal_ours (); /* Must do this before mourn anyway. */
3381 print_exited_reason (ecs->ws.value.integer);
3382
3383 /* Record the exit code in the convenience variable $_exitcode, so
3384 that the user can inspect this again later. */
3385 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3386 (LONGEST) ecs->ws.value.integer);
3387
3388 /* Also record this in the inferior itself. */
3389 current_inferior ()->has_exit_code = 1;
3390 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3391
3392 gdb_flush (gdb_stdout);
3393 target_mourn_inferior ();
3394 singlestep_breakpoints_inserted_p = 0;
3395 cancel_single_step_breakpoints ();
3396 stop_print_frame = 0;
3397 stop_stepping (ecs);
3398 return;
3399
3400 case TARGET_WAITKIND_SIGNALLED:
3401 if (debug_infrun)
3402 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3403 inferior_ptid = ecs->ptid;
3404 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3405 set_current_program_space (current_inferior ()->pspace);
3406 handle_vfork_child_exec_or_exit (0);
3407 stop_print_frame = 0;
3408 target_terminal_ours (); /* Must do this before mourn anyway. */
3409
3410 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3411 reach here unless the inferior is dead. However, for years
3412 target_kill() was called here, which hints that fatal signals aren't
3413 really fatal on some systems. If that's true, then some changes
3414 may be needed. */
3415 target_mourn_inferior ();
3416
3417 print_signal_exited_reason (ecs->ws.value.sig);
3418 singlestep_breakpoints_inserted_p = 0;
3419 cancel_single_step_breakpoints ();
3420 stop_stepping (ecs);
3421 return;
3422
3423 /* The following are the only cases in which we keep going;
3424 the above cases end in a continue or goto. */
3425 case TARGET_WAITKIND_FORKED:
3426 case TARGET_WAITKIND_VFORKED:
3427 if (debug_infrun)
3428 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3429
3430 /* Check whether the inferior is displaced stepping. */
3431 {
3432 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3433 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3434 struct displaced_step_inferior_state *displaced
3435 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3436
3437 /* If checking displaced stepping is supported, and thread
3438 ecs->ptid is displaced stepping. */
3439 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3440 {
3441 struct inferior *parent_inf
3442 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3443 struct regcache *child_regcache;
3444 CORE_ADDR parent_pc;
3445
3446 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3447 indicating that the displaced stepping of syscall instruction
3448 has been done. Perform cleanup for parent process here. Note
3449 that this operation also cleans up the child process for vfork,
3450 because their pages are shared. */
3451 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3452
3453 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3454 {
3455 /* Restore scratch pad for child process. */
3456 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3457 }
3458
3459 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3460 the child's PC is also within the scratchpad. Set the child's PC
3461 to the parent's PC value, which has already been fixed up.
3462 FIXME: we use the parent's aspace here, although we're touching
3463 the child, because the child hasn't been added to the inferior
3464 list yet at this point. */
3465
3466 child_regcache
3467 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3468 gdbarch,
3469 parent_inf->aspace);
3470 /* Read PC value of parent process. */
3471 parent_pc = regcache_read_pc (regcache);
3472
3473 if (debug_displaced)
3474 fprintf_unfiltered (gdb_stdlog,
3475 "displaced: write child pc from %s to %s\n",
3476 paddress (gdbarch,
3477 regcache_read_pc (child_regcache)),
3478 paddress (gdbarch, parent_pc));
3479
3480 regcache_write_pc (child_regcache, parent_pc);
3481 }
3482 }
3483
3484 if (!ptid_equal (ecs->ptid, inferior_ptid))
3485 context_switch (ecs->ptid);
3486
3487 /* Immediately detach breakpoints from the child before there's
3488 any chance of letting the user delete breakpoints from the
3489 breakpoint lists. If we don't do this early, it's easy to
3490 leave left over traps in the child, vis: "break foo; catch
3491 fork; c; <fork>; del; c; <child calls foo>". We only follow
3492 the fork on the last `continue', and by that time the
3493 breakpoint at "foo" is long gone from the breakpoint table.
3494 If we vforked, then we don't need to unpatch here, since both
3495 parent and child are sharing the same memory pages; we'll
3496 need to unpatch at follow/detach time instead to be certain
3497 that new breakpoints added between catchpoint hit time and
3498 vfork follow are detached. */
3499 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3500 {
3501 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3502
3503 /* This won't actually modify the breakpoint list, but will
3504 physically remove the breakpoints from the child. */
3505 detach_breakpoints (child_pid);
3506 }
3507
3508 if (singlestep_breakpoints_inserted_p)
3509 {
3510 /* Pull the single step breakpoints out of the target. */
3511 remove_single_step_breakpoints ();
3512 singlestep_breakpoints_inserted_p = 0;
3513 }
3514
3515 /* In case the event is caught by a catchpoint, remember that
3516 the event is to be followed at the next resume of the thread,
3517 and not immediately. */
3518 ecs->event_thread->pending_follow = ecs->ws;
3519
3520 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3521
3522 ecs->event_thread->control.stop_bpstat
3523 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3524 stop_pc, ecs->ptid, &ecs->ws);
3525
3526 /* Note that we're interested in knowing the bpstat actually
3527 causes a stop, not just if it may explain the signal.
3528 Software watchpoints, for example, always appear in the
3529 bpstat. */
3530 ecs->random_signal
3531 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3532
3533 /* If no catchpoint triggered for this, then keep going. */
3534 if (ecs->random_signal)
3535 {
3536 ptid_t parent;
3537 ptid_t child;
3538 int should_resume;
3539 int follow_child
3540 = (follow_fork_mode_string == follow_fork_mode_child);
3541
3542 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3543
3544 should_resume = follow_fork ();
3545
3546 parent = ecs->ptid;
3547 child = ecs->ws.value.related_pid;
3548
3549 /* In non-stop mode, also resume the other branch. */
3550 if (non_stop && !detach_fork)
3551 {
3552 if (follow_child)
3553 switch_to_thread (parent);
3554 else
3555 switch_to_thread (child);
3556
3557 ecs->event_thread = inferior_thread ();
3558 ecs->ptid = inferior_ptid;
3559 keep_going (ecs);
3560 }
3561
3562 if (follow_child)
3563 switch_to_thread (child);
3564 else
3565 switch_to_thread (parent);
3566
3567 ecs->event_thread = inferior_thread ();
3568 ecs->ptid = inferior_ptid;
3569
3570 if (should_resume)
3571 keep_going (ecs);
3572 else
3573 stop_stepping (ecs);
3574 return;
3575 }
3576 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3577 goto process_event_stop_test;
3578
3579 case TARGET_WAITKIND_VFORK_DONE:
3580 /* Done with the shared memory region. Re-insert breakpoints in
3581 the parent, and keep going. */
3582
3583 if (debug_infrun)
3584 fprintf_unfiltered (gdb_stdlog,
3585 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3586
3587 if (!ptid_equal (ecs->ptid, inferior_ptid))
3588 context_switch (ecs->ptid);
3589
3590 current_inferior ()->waiting_for_vfork_done = 0;
3591 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3592 /* This also takes care of reinserting breakpoints in the
3593 previously locked inferior. */
3594 keep_going (ecs);
3595 return;
3596
3597 case TARGET_WAITKIND_EXECD:
3598 if (debug_infrun)
3599 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3600
3601 if (!ptid_equal (ecs->ptid, inferior_ptid))
3602 context_switch (ecs->ptid);
3603
3604 singlestep_breakpoints_inserted_p = 0;
3605 cancel_single_step_breakpoints ();
3606
3607 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3608
3609 /* Do whatever is necessary to the parent branch of the vfork. */
3610 handle_vfork_child_exec_or_exit (1);
3611
3612 /* This causes the eventpoints and symbol table to be reset.
3613 Must do this now, before trying to determine whether to
3614 stop. */
3615 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3616
3617 ecs->event_thread->control.stop_bpstat
3618 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3619 stop_pc, ecs->ptid, &ecs->ws);
3620 ecs->random_signal
3621 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3622
3623 /* Note that this may be referenced from inside
3624 bpstat_stop_status above, through inferior_has_execd. */
3625 xfree (ecs->ws.value.execd_pathname);
3626 ecs->ws.value.execd_pathname = NULL;
3627
3628 /* If no catchpoint triggered for this, then keep going. */
3629 if (ecs->random_signal)
3630 {
3631 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3632 keep_going (ecs);
3633 return;
3634 }
3635 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3636 goto process_event_stop_test;
3637
3638 /* Be careful not to try to gather much state about a thread
3639 that's in a syscall. It's frequently a losing proposition. */
3640 case TARGET_WAITKIND_SYSCALL_ENTRY:
3641 if (debug_infrun)
3642 fprintf_unfiltered (gdb_stdlog,
3643 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3644 /* Getting the current syscall number. */
3645 if (handle_syscall_event (ecs) != 0)
3646 return;
3647 goto process_event_stop_test;
3648
3649 /* Before examining the threads further, step this thread to
3650 get it entirely out of the syscall. (We get notice of the
3651 event when the thread is just on the verge of exiting a
3652 syscall. Stepping one instruction seems to get it back
3653 into user code.) */
3654 case TARGET_WAITKIND_SYSCALL_RETURN:
3655 if (debug_infrun)
3656 fprintf_unfiltered (gdb_stdlog,
3657 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3658 if (handle_syscall_event (ecs) != 0)
3659 return;
3660 goto process_event_stop_test;
3661
3662 case TARGET_WAITKIND_STOPPED:
3663 if (debug_infrun)
3664 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3665 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3666 break;
3667
3668 case TARGET_WAITKIND_NO_HISTORY:
3669 if (debug_infrun)
3670 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3671 /* Reverse execution: target ran out of history info. */
3672 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3673 print_no_history_reason ();
3674 stop_stepping (ecs);
3675 return;
3676 }
3677
3678 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3679 {
3680 /* Do we need to clean up the state of a thread that has
3681 completed a displaced single-step? (Doing so usually affects
3682 the PC, so do it here, before we set stop_pc.) */
3683 displaced_step_fixup (ecs->ptid,
3684 ecs->event_thread->suspend.stop_signal);
3685
3686 /* If we either finished a single-step or hit a breakpoint, but
3687 the user wanted this thread to be stopped, pretend we got a
3688 SIG0 (generic unsignaled stop). */
3689
3690 if (ecs->event_thread->stop_requested
3691 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3692 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3693 }
3694
3695 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3696
3697 if (debug_infrun)
3698 {
3699 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3700 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3701 struct cleanup *old_chain = save_inferior_ptid ();
3702
3703 inferior_ptid = ecs->ptid;
3704
3705 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3706 paddress (gdbarch, stop_pc));
3707 if (target_stopped_by_watchpoint ())
3708 {
3709 CORE_ADDR addr;
3710
3711 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3712
3713 if (target_stopped_data_address (&current_target, &addr))
3714 fprintf_unfiltered (gdb_stdlog,
3715 "infrun: stopped data address = %s\n",
3716 paddress (gdbarch, addr));
3717 else
3718 fprintf_unfiltered (gdb_stdlog,
3719 "infrun: (no data address available)\n");
3720 }
3721
3722 do_cleanups (old_chain);
3723 }
3724
3725 if (stepping_past_singlestep_breakpoint)
3726 {
3727 gdb_assert (singlestep_breakpoints_inserted_p);
3728 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3729 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3730
3731 stepping_past_singlestep_breakpoint = 0;
3732
3733 /* We've either finished single-stepping past the single-step
3734 breakpoint, or stopped for some other reason. It would be nice if
3735 we could tell, but we can't reliably. */
3736 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3737 {
3738 if (debug_infrun)
3739 fprintf_unfiltered (gdb_stdlog,
3740 "infrun: stepping_past_"
3741 "singlestep_breakpoint\n");
3742 /* Pull the single step breakpoints out of the target. */
3743 if (!ptid_equal (ecs->ptid, inferior_ptid))
3744 context_switch (ecs->ptid);
3745 remove_single_step_breakpoints ();
3746 singlestep_breakpoints_inserted_p = 0;
3747
3748 ecs->random_signal = 0;
3749 ecs->event_thread->control.trap_expected = 0;
3750
3751 context_switch (saved_singlestep_ptid);
3752 if (deprecated_context_hook)
3753 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3754
3755 resume (1, GDB_SIGNAL_0);
3756 prepare_to_wait (ecs);
3757 return;
3758 }
3759 }
3760
3761 if (!ptid_equal (deferred_step_ptid, null_ptid))
3762 {
3763 /* In non-stop mode, there's never a deferred_step_ptid set. */
3764 gdb_assert (!non_stop);
3765
3766 /* If we stopped for some other reason than single-stepping, ignore
3767 the fact that we were supposed to switch back. */
3768 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3769 {
3770 if (debug_infrun)
3771 fprintf_unfiltered (gdb_stdlog,
3772 "infrun: handling deferred step\n");
3773
3774 /* Pull the single step breakpoints out of the target. */
3775 if (singlestep_breakpoints_inserted_p)
3776 {
3777 if (!ptid_equal (ecs->ptid, inferior_ptid))
3778 context_switch (ecs->ptid);
3779 remove_single_step_breakpoints ();
3780 singlestep_breakpoints_inserted_p = 0;
3781 }
3782
3783 ecs->event_thread->control.trap_expected = 0;
3784
3785 context_switch (deferred_step_ptid);
3786 deferred_step_ptid = null_ptid;
3787 /* Suppress spurious "Switching to ..." message. */
3788 previous_inferior_ptid = inferior_ptid;
3789
3790 resume (1, GDB_SIGNAL_0);
3791 prepare_to_wait (ecs);
3792 return;
3793 }
3794
3795 deferred_step_ptid = null_ptid;
3796 }
3797
3798 /* See if a thread hit a thread-specific breakpoint that was meant for
3799 another thread. If so, then step that thread past the breakpoint,
3800 and continue it. */
3801
3802 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3803 {
3804 int thread_hop_needed = 0;
3805 struct address_space *aspace =
3806 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3807
3808 /* Check if a regular breakpoint has been hit before checking
3809 for a potential single step breakpoint. Otherwise, GDB will
3810 not see this breakpoint hit when stepping onto breakpoints. */
3811 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3812 {
3813 ecs->random_signal = 0;
3814 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3815 thread_hop_needed = 1;
3816 }
3817 else if (singlestep_breakpoints_inserted_p)
3818 {
3819 /* We have not context switched yet, so this should be true
3820 no matter which thread hit the singlestep breakpoint. */
3821 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3822 if (debug_infrun)
3823 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3824 "trap for %s\n",
3825 target_pid_to_str (ecs->ptid));
3826
3827 ecs->random_signal = 0;
3828 /* The call to in_thread_list is necessary because PTIDs sometimes
3829 change when we go from single-threaded to multi-threaded. If
3830 the singlestep_ptid is still in the list, assume that it is
3831 really different from ecs->ptid. */
3832 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3833 && in_thread_list (singlestep_ptid))
3834 {
3835 /* If the PC of the thread we were trying to single-step
3836 has changed, discard this event (which we were going
3837 to ignore anyway), and pretend we saw that thread
3838 trap. This prevents us continuously moving the
3839 single-step breakpoint forward, one instruction at a
3840 time. If the PC has changed, then the thread we were
3841 trying to single-step has trapped or been signalled,
3842 but the event has not been reported to GDB yet.
3843
3844 There might be some cases where this loses signal
3845 information, if a signal has arrived at exactly the
3846 same time that the PC changed, but this is the best
3847 we can do with the information available. Perhaps we
3848 should arrange to report all events for all threads
3849 when they stop, or to re-poll the remote looking for
3850 this particular thread (i.e. temporarily enable
3851 schedlock). */
3852
3853 CORE_ADDR new_singlestep_pc
3854 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3855
3856 if (new_singlestep_pc != singlestep_pc)
3857 {
3858 enum gdb_signal stop_signal;
3859
3860 if (debug_infrun)
3861 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3862 " but expected thread advanced also\n");
3863
3864 /* The current context still belongs to
3865 singlestep_ptid. Don't swap here, since that's
3866 the context we want to use. Just fudge our
3867 state and continue. */
3868 stop_signal = ecs->event_thread->suspend.stop_signal;
3869 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3870 ecs->ptid = singlestep_ptid;
3871 ecs->event_thread = find_thread_ptid (ecs->ptid);
3872 ecs->event_thread->suspend.stop_signal = stop_signal;
3873 stop_pc = new_singlestep_pc;
3874 }
3875 else
3876 {
3877 if (debug_infrun)
3878 fprintf_unfiltered (gdb_stdlog,
3879 "infrun: unexpected thread\n");
3880
3881 thread_hop_needed = 1;
3882 stepping_past_singlestep_breakpoint = 1;
3883 saved_singlestep_ptid = singlestep_ptid;
3884 }
3885 }
3886 }
3887
3888 if (thread_hop_needed)
3889 {
3890 struct regcache *thread_regcache;
3891 int remove_status = 0;
3892
3893 if (debug_infrun)
3894 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3895
3896 /* Switch context before touching inferior memory, the
3897 previous thread may have exited. */
3898 if (!ptid_equal (inferior_ptid, ecs->ptid))
3899 context_switch (ecs->ptid);
3900
3901 /* Saw a breakpoint, but it was hit by the wrong thread.
3902 Just continue. */
3903
3904 if (singlestep_breakpoints_inserted_p)
3905 {
3906 /* Pull the single step breakpoints out of the target. */
3907 remove_single_step_breakpoints ();
3908 singlestep_breakpoints_inserted_p = 0;
3909 }
3910
3911 /* If the arch can displace step, don't remove the
3912 breakpoints. */
3913 thread_regcache = get_thread_regcache (ecs->ptid);
3914 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3915 remove_status = remove_breakpoints ();
3916
3917 /* Did we fail to remove breakpoints? If so, try
3918 to set the PC past the bp. (There's at least
3919 one situation in which we can fail to remove
3920 the bp's: On HP-UX's that use ttrace, we can't
3921 change the address space of a vforking child
3922 process until the child exits (well, okay, not
3923 then either :-) or execs. */
3924 if (remove_status != 0)
3925 error (_("Cannot step over breakpoint hit in wrong thread"));
3926 else
3927 { /* Single step */
3928 if (!non_stop)
3929 {
3930 /* Only need to require the next event from this
3931 thread in all-stop mode. */
3932 waiton_ptid = ecs->ptid;
3933 infwait_state = infwait_thread_hop_state;
3934 }
3935
3936 ecs->event_thread->stepping_over_breakpoint = 1;
3937 keep_going (ecs);
3938 return;
3939 }
3940 }
3941 else if (singlestep_breakpoints_inserted_p)
3942 {
3943 ecs->random_signal = 0;
3944 }
3945 }
3946 else
3947 ecs->random_signal = 1;
3948
3949 /* See if something interesting happened to the non-current thread. If
3950 so, then switch to that thread. */
3951 if (!ptid_equal (ecs->ptid, inferior_ptid))
3952 {
3953 if (debug_infrun)
3954 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3955
3956 context_switch (ecs->ptid);
3957
3958 if (deprecated_context_hook)
3959 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3960 }
3961
3962 /* At this point, get hold of the now-current thread's frame. */
3963 frame = get_current_frame ();
3964 gdbarch = get_frame_arch (frame);
3965
3966 if (singlestep_breakpoints_inserted_p)
3967 {
3968 /* Pull the single step breakpoints out of the target. */
3969 remove_single_step_breakpoints ();
3970 singlestep_breakpoints_inserted_p = 0;
3971 }
3972
3973 if (stepped_after_stopped_by_watchpoint)
3974 stopped_by_watchpoint = 0;
3975 else
3976 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3977
3978 /* If necessary, step over this watchpoint. We'll be back to display
3979 it in a moment. */
3980 if (stopped_by_watchpoint
3981 && (target_have_steppable_watchpoint
3982 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3983 {
3984 /* At this point, we are stopped at an instruction which has
3985 attempted to write to a piece of memory under control of
3986 a watchpoint. The instruction hasn't actually executed
3987 yet. If we were to evaluate the watchpoint expression
3988 now, we would get the old value, and therefore no change
3989 would seem to have occurred.
3990
3991 In order to make watchpoints work `right', we really need
3992 to complete the memory write, and then evaluate the
3993 watchpoint expression. We do this by single-stepping the
3994 target.
3995
3996 It may not be necessary to disable the watchpoint to stop over
3997 it. For example, the PA can (with some kernel cooperation)
3998 single step over a watchpoint without disabling the watchpoint.
3999
4000 It is far more common to need to disable a watchpoint to step
4001 the inferior over it. If we have non-steppable watchpoints,
4002 we must disable the current watchpoint; it's simplest to
4003 disable all watchpoints and breakpoints. */
4004 int hw_step = 1;
4005
4006 if (!target_have_steppable_watchpoint)
4007 {
4008 remove_breakpoints ();
4009 /* See comment in resume why we need to stop bypassing signals
4010 while breakpoints have been removed. */
4011 target_pass_signals (0, NULL);
4012 }
4013 /* Single step */
4014 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4015 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4016 waiton_ptid = ecs->ptid;
4017 if (target_have_steppable_watchpoint)
4018 infwait_state = infwait_step_watch_state;
4019 else
4020 infwait_state = infwait_nonstep_watch_state;
4021 prepare_to_wait (ecs);
4022 return;
4023 }
4024
4025 clear_stop_func (ecs);
4026 ecs->event_thread->stepping_over_breakpoint = 0;
4027 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4028 ecs->event_thread->control.stop_step = 0;
4029 stop_print_frame = 1;
4030 ecs->random_signal = 0;
4031 stopped_by_random_signal = 0;
4032
4033 /* Hide inlined functions starting here, unless we just performed stepi or
4034 nexti. After stepi and nexti, always show the innermost frame (not any
4035 inline function call sites). */
4036 if (ecs->event_thread->control.step_range_end != 1)
4037 {
4038 struct address_space *aspace =
4039 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4040
4041 /* skip_inline_frames is expensive, so we avoid it if we can
4042 determine that the address is one where functions cannot have
4043 been inlined. This improves performance with inferiors that
4044 load a lot of shared libraries, because the solib event
4045 breakpoint is defined as the address of a function (i.e. not
4046 inline). Note that we have to check the previous PC as well
4047 as the current one to catch cases when we have just
4048 single-stepped off a breakpoint prior to reinstating it.
4049 Note that we're assuming that the code we single-step to is
4050 not inline, but that's not definitive: there's nothing
4051 preventing the event breakpoint function from containing
4052 inlined code, and the single-step ending up there. If the
4053 user had set a breakpoint on that inlined code, the missing
4054 skip_inline_frames call would break things. Fortunately
4055 that's an extremely unlikely scenario. */
4056 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4057 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4058 && ecs->event_thread->control.trap_expected
4059 && pc_at_non_inline_function (aspace,
4060 ecs->event_thread->prev_pc,
4061 &ecs->ws)))
4062 {
4063 skip_inline_frames (ecs->ptid);
4064
4065 /* Re-fetch current thread's frame in case that invalidated
4066 the frame cache. */
4067 frame = get_current_frame ();
4068 gdbarch = get_frame_arch (frame);
4069 }
4070 }
4071
4072 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4073 && ecs->event_thread->control.trap_expected
4074 && gdbarch_single_step_through_delay_p (gdbarch)
4075 && currently_stepping (ecs->event_thread))
4076 {
4077 /* We're trying to step off a breakpoint. Turns out that we're
4078 also on an instruction that needs to be stepped multiple
4079 times before it's been fully executing. E.g., architectures
4080 with a delay slot. It needs to be stepped twice, once for
4081 the instruction and once for the delay slot. */
4082 int step_through_delay
4083 = gdbarch_single_step_through_delay (gdbarch, frame);
4084
4085 if (debug_infrun && step_through_delay)
4086 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4087 if (ecs->event_thread->control.step_range_end == 0
4088 && step_through_delay)
4089 {
4090 /* The user issued a continue when stopped at a breakpoint.
4091 Set up for another trap and get out of here. */
4092 ecs->event_thread->stepping_over_breakpoint = 1;
4093 keep_going (ecs);
4094 return;
4095 }
4096 else if (step_through_delay)
4097 {
4098 /* The user issued a step when stopped at a breakpoint.
4099 Maybe we should stop, maybe we should not - the delay
4100 slot *might* correspond to a line of source. In any
4101 case, don't decide that here, just set
4102 ecs->stepping_over_breakpoint, making sure we
4103 single-step again before breakpoints are re-inserted. */
4104 ecs->event_thread->stepping_over_breakpoint = 1;
4105 }
4106 }
4107
4108 /* Look at the cause of the stop, and decide what to do.
4109 The alternatives are:
4110 1) stop_stepping and return; to really stop and return to the debugger,
4111 2) keep_going and return to start up again
4112 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4113 3) set ecs->random_signal to 1, and the decision between 1 and 2
4114 will be made according to the signal handling tables. */
4115
4116 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4117 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4118 || stop_soon == STOP_QUIETLY_REMOTE)
4119 {
4120 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4121 && stop_after_trap)
4122 {
4123 if (debug_infrun)
4124 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4125 stop_print_frame = 0;
4126 stop_stepping (ecs);
4127 return;
4128 }
4129
4130 /* This is originated from start_remote(), start_inferior() and
4131 shared libraries hook functions. */
4132 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4133 {
4134 if (debug_infrun)
4135 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4136 stop_stepping (ecs);
4137 return;
4138 }
4139
4140 /* This originates from attach_command(). We need to overwrite
4141 the stop_signal here, because some kernels don't ignore a
4142 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4143 See more comments in inferior.h. On the other hand, if we
4144 get a non-SIGSTOP, report it to the user - assume the backend
4145 will handle the SIGSTOP if it should show up later.
4146
4147 Also consider that the attach is complete when we see a
4148 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4149 target extended-remote report it instead of a SIGSTOP
4150 (e.g. gdbserver). We already rely on SIGTRAP being our
4151 signal, so this is no exception.
4152
4153 Also consider that the attach is complete when we see a
4154 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4155 the target to stop all threads of the inferior, in case the
4156 low level attach operation doesn't stop them implicitly. If
4157 they weren't stopped implicitly, then the stub will report a
4158 GDB_SIGNAL_0, meaning: stopped for no particular reason
4159 other than GDB's request. */
4160 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4161 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4162 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4163 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4164 {
4165 stop_stepping (ecs);
4166 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4167 return;
4168 }
4169
4170 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4171 handles this event. */
4172 ecs->event_thread->control.stop_bpstat
4173 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4174 stop_pc, ecs->ptid, &ecs->ws);
4175
4176 /* Following in case break condition called a
4177 function. */
4178 stop_print_frame = 1;
4179
4180 /* This is where we handle "moribund" watchpoints. Unlike
4181 software breakpoints traps, hardware watchpoint traps are
4182 always distinguishable from random traps. If no high-level
4183 watchpoint is associated with the reported stop data address
4184 anymore, then the bpstat does not explain the signal ---
4185 simply make sure to ignore it if `stopped_by_watchpoint' is
4186 set. */
4187
4188 if (debug_infrun
4189 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4190 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4191 && stopped_by_watchpoint)
4192 fprintf_unfiltered (gdb_stdlog,
4193 "infrun: no user watchpoint explains "
4194 "watchpoint SIGTRAP, ignoring\n");
4195
4196 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4197 at one stage in the past included checks for an inferior
4198 function call's call dummy's return breakpoint. The original
4199 comment, that went with the test, read:
4200
4201 ``End of a stack dummy. Some systems (e.g. Sony news) give
4202 another signal besides SIGTRAP, so check here as well as
4203 above.''
4204
4205 If someone ever tries to get call dummys on a
4206 non-executable stack to work (where the target would stop
4207 with something like a SIGSEGV), then those tests might need
4208 to be re-instated. Given, however, that the tests were only
4209 enabled when momentary breakpoints were not being used, I
4210 suspect that it won't be the case.
4211
4212 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4213 be necessary for call dummies on a non-executable stack on
4214 SPARC. */
4215
4216 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4217 ecs->random_signal
4218 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4219 || stopped_by_watchpoint
4220 || ecs->event_thread->control.trap_expected
4221 || (ecs->event_thread->control.step_range_end
4222 && (ecs->event_thread->control.step_resume_breakpoint
4223 == NULL)));
4224 else
4225 {
4226 ecs->random_signal = !bpstat_explains_signal
4227 (ecs->event_thread->control.stop_bpstat);
4228 if (!ecs->random_signal)
4229 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4230 }
4231 }
4232
4233 /* When we reach this point, we've pretty much decided
4234 that the reason for stopping must've been a random
4235 (unexpected) signal. */
4236
4237 else
4238 ecs->random_signal = 1;
4239
4240 process_event_stop_test:
4241
4242 /* Re-fetch current thread's frame in case we did a
4243 "goto process_event_stop_test" above. */
4244 frame = get_current_frame ();
4245 gdbarch = get_frame_arch (frame);
4246
4247 /* For the program's own signals, act according to
4248 the signal handling tables. */
4249
4250 if (ecs->random_signal)
4251 {
4252 /* Signal not for debugging purposes. */
4253 int printed = 0;
4254 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4255
4256 if (debug_infrun)
4257 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4258 ecs->event_thread->suspend.stop_signal);
4259
4260 stopped_by_random_signal = 1;
4261
4262 if (signal_print[ecs->event_thread->suspend.stop_signal])
4263 {
4264 printed = 1;
4265 target_terminal_ours_for_output ();
4266 print_signal_received_reason
4267 (ecs->event_thread->suspend.stop_signal);
4268 }
4269 /* Always stop on signals if we're either just gaining control
4270 of the program, or the user explicitly requested this thread
4271 to remain stopped. */
4272 if (stop_soon != NO_STOP_QUIETLY
4273 || ecs->event_thread->stop_requested
4274 || (!inf->detaching
4275 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4276 {
4277 stop_stepping (ecs);
4278 return;
4279 }
4280 /* If not going to stop, give terminal back
4281 if we took it away. */
4282 else if (printed)
4283 target_terminal_inferior ();
4284
4285 /* Clear the signal if it should not be passed. */
4286 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4287 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4288
4289 if (ecs->event_thread->prev_pc == stop_pc
4290 && ecs->event_thread->control.trap_expected
4291 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4292 {
4293 /* We were just starting a new sequence, attempting to
4294 single-step off of a breakpoint and expecting a SIGTRAP.
4295 Instead this signal arrives. This signal will take us out
4296 of the stepping range so GDB needs to remember to, when
4297 the signal handler returns, resume stepping off that
4298 breakpoint. */
4299 /* To simplify things, "continue" is forced to use the same
4300 code paths as single-step - set a breakpoint at the
4301 signal return address and then, once hit, step off that
4302 breakpoint. */
4303 if (debug_infrun)
4304 fprintf_unfiltered (gdb_stdlog,
4305 "infrun: signal arrived while stepping over "
4306 "breakpoint\n");
4307
4308 insert_hp_step_resume_breakpoint_at_frame (frame);
4309 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4310 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4311 ecs->event_thread->control.trap_expected = 0;
4312 keep_going (ecs);
4313 return;
4314 }
4315
4316 if (ecs->event_thread->control.step_range_end != 0
4317 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4318 && (ecs->event_thread->control.step_range_start <= stop_pc
4319 && stop_pc < ecs->event_thread->control.step_range_end)
4320 && frame_id_eq (get_stack_frame_id (frame),
4321 ecs->event_thread->control.step_stack_frame_id)
4322 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4323 {
4324 /* The inferior is about to take a signal that will take it
4325 out of the single step range. Set a breakpoint at the
4326 current PC (which is presumably where the signal handler
4327 will eventually return) and then allow the inferior to
4328 run free.
4329
4330 Note that this is only needed for a signal delivered
4331 while in the single-step range. Nested signals aren't a
4332 problem as they eventually all return. */
4333 if (debug_infrun)
4334 fprintf_unfiltered (gdb_stdlog,
4335 "infrun: signal may take us out of "
4336 "single-step range\n");
4337
4338 insert_hp_step_resume_breakpoint_at_frame (frame);
4339 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4340 ecs->event_thread->control.trap_expected = 0;
4341 keep_going (ecs);
4342 return;
4343 }
4344
4345 /* Note: step_resume_breakpoint may be non-NULL. This occures
4346 when either there's a nested signal, or when there's a
4347 pending signal enabled just as the signal handler returns
4348 (leaving the inferior at the step-resume-breakpoint without
4349 actually executing it). Either way continue until the
4350 breakpoint is really hit. */
4351 }
4352 else
4353 {
4354 /* Handle cases caused by hitting a breakpoint. */
4355
4356 CORE_ADDR jmp_buf_pc;
4357 struct bpstat_what what;
4358
4359 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4360
4361 if (what.call_dummy)
4362 {
4363 stop_stack_dummy = what.call_dummy;
4364 }
4365
4366 /* If we hit an internal event that triggers symbol changes, the
4367 current frame will be invalidated within bpstat_what (e.g.,
4368 if we hit an internal solib event). Re-fetch it. */
4369 frame = get_current_frame ();
4370 gdbarch = get_frame_arch (frame);
4371
4372 switch (what.main_action)
4373 {
4374 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4375 /* If we hit the breakpoint at longjmp while stepping, we
4376 install a momentary breakpoint at the target of the
4377 jmp_buf. */
4378
4379 if (debug_infrun)
4380 fprintf_unfiltered (gdb_stdlog,
4381 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4382
4383 ecs->event_thread->stepping_over_breakpoint = 1;
4384
4385 if (what.is_longjmp)
4386 {
4387 struct value *arg_value;
4388
4389 /* If we set the longjmp breakpoint via a SystemTap
4390 probe, then use it to extract the arguments. The
4391 destination PC is the third argument to the
4392 probe. */
4393 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4394 if (arg_value)
4395 jmp_buf_pc = value_as_address (arg_value);
4396 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4397 || !gdbarch_get_longjmp_target (gdbarch,
4398 frame, &jmp_buf_pc))
4399 {
4400 if (debug_infrun)
4401 fprintf_unfiltered (gdb_stdlog,
4402 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4403 "(!gdbarch_get_longjmp_target)\n");
4404 keep_going (ecs);
4405 return;
4406 }
4407
4408 /* Insert a breakpoint at resume address. */
4409 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4410 }
4411 else
4412 check_exception_resume (ecs, frame);
4413 keep_going (ecs);
4414 return;
4415
4416 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4417 {
4418 struct frame_info *init_frame;
4419
4420 /* There are several cases to consider.
4421
4422 1. The initiating frame no longer exists. In this case
4423 we must stop, because the exception or longjmp has gone
4424 too far.
4425
4426 2. The initiating frame exists, and is the same as the
4427 current frame. We stop, because the exception or
4428 longjmp has been caught.
4429
4430 3. The initiating frame exists and is different from
4431 the current frame. This means the exception or longjmp
4432 has been caught beneath the initiating frame, so keep
4433 going.
4434
4435 4. longjmp breakpoint has been placed just to protect
4436 against stale dummy frames and user is not interested
4437 in stopping around longjmps. */
4438
4439 if (debug_infrun)
4440 fprintf_unfiltered (gdb_stdlog,
4441 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4442
4443 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4444 != NULL);
4445 delete_exception_resume_breakpoint (ecs->event_thread);
4446
4447 if (what.is_longjmp)
4448 {
4449 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4450
4451 if (!frame_id_p (ecs->event_thread->initiating_frame))
4452 {
4453 /* Case 4. */
4454 keep_going (ecs);
4455 return;
4456 }
4457 }
4458
4459 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4460
4461 if (init_frame)
4462 {
4463 struct frame_id current_id
4464 = get_frame_id (get_current_frame ());
4465 if (frame_id_eq (current_id,
4466 ecs->event_thread->initiating_frame))
4467 {
4468 /* Case 2. Fall through. */
4469 }
4470 else
4471 {
4472 /* Case 3. */
4473 keep_going (ecs);
4474 return;
4475 }
4476 }
4477
4478 /* For Cases 1 and 2, remove the step-resume breakpoint,
4479 if it exists. */
4480 delete_step_resume_breakpoint (ecs->event_thread);
4481
4482 ecs->event_thread->control.stop_step = 1;
4483 print_end_stepping_range_reason ();
4484 stop_stepping (ecs);
4485 }
4486 return;
4487
4488 case BPSTAT_WHAT_SINGLE:
4489 if (debug_infrun)
4490 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4491 ecs->event_thread->stepping_over_breakpoint = 1;
4492 /* Still need to check other stuff, at least the case where
4493 we are stepping and step out of the right range. */
4494 break;
4495
4496 case BPSTAT_WHAT_STEP_RESUME:
4497 if (debug_infrun)
4498 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4499
4500 delete_step_resume_breakpoint (ecs->event_thread);
4501 if (ecs->event_thread->control.proceed_to_finish
4502 && execution_direction == EXEC_REVERSE)
4503 {
4504 struct thread_info *tp = ecs->event_thread;
4505
4506 /* We are finishing a function in reverse, and just hit
4507 the step-resume breakpoint at the start address of
4508 the function, and we're almost there -- just need to
4509 back up by one more single-step, which should take us
4510 back to the function call. */
4511 tp->control.step_range_start = tp->control.step_range_end = 1;
4512 keep_going (ecs);
4513 return;
4514 }
4515 fill_in_stop_func (gdbarch, ecs);
4516 if (stop_pc == ecs->stop_func_start
4517 && execution_direction == EXEC_REVERSE)
4518 {
4519 /* We are stepping over a function call in reverse, and
4520 just hit the step-resume breakpoint at the start
4521 address of the function. Go back to single-stepping,
4522 which should take us back to the function call. */
4523 ecs->event_thread->stepping_over_breakpoint = 1;
4524 keep_going (ecs);
4525 return;
4526 }
4527 break;
4528
4529 case BPSTAT_WHAT_STOP_NOISY:
4530 if (debug_infrun)
4531 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4532 stop_print_frame = 1;
4533
4534 /* We are about to nuke the step_resume_breakpointt via the
4535 cleanup chain, so no need to worry about it here. */
4536
4537 stop_stepping (ecs);
4538 return;
4539
4540 case BPSTAT_WHAT_STOP_SILENT:
4541 if (debug_infrun)
4542 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4543 stop_print_frame = 0;
4544
4545 /* We are about to nuke the step_resume_breakpoin via the
4546 cleanup chain, so no need to worry about it here. */
4547
4548 stop_stepping (ecs);
4549 return;
4550
4551 case BPSTAT_WHAT_HP_STEP_RESUME:
4552 if (debug_infrun)
4553 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4554
4555 delete_step_resume_breakpoint (ecs->event_thread);
4556 if (ecs->event_thread->step_after_step_resume_breakpoint)
4557 {
4558 /* Back when the step-resume breakpoint was inserted, we
4559 were trying to single-step off a breakpoint. Go back
4560 to doing that. */
4561 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4562 ecs->event_thread->stepping_over_breakpoint = 1;
4563 keep_going (ecs);
4564 return;
4565 }
4566 break;
4567
4568 case BPSTAT_WHAT_KEEP_CHECKING:
4569 break;
4570 }
4571 }
4572
4573 /* We come here if we hit a breakpoint but should not
4574 stop for it. Possibly we also were stepping
4575 and should stop for that. So fall through and
4576 test for stepping. But, if not stepping,
4577 do not stop. */
4578
4579 /* In all-stop mode, if we're currently stepping but have stopped in
4580 some other thread, we need to switch back to the stepped thread. */
4581 if (!non_stop)
4582 {
4583 struct thread_info *tp;
4584
4585 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4586 ecs->event_thread);
4587 if (tp)
4588 {
4589 /* However, if the current thread is blocked on some internal
4590 breakpoint, and we simply need to step over that breakpoint
4591 to get it going again, do that first. */
4592 if ((ecs->event_thread->control.trap_expected
4593 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
4594 || ecs->event_thread->stepping_over_breakpoint)
4595 {
4596 keep_going (ecs);
4597 return;
4598 }
4599
4600 /* If the stepping thread exited, then don't try to switch
4601 back and resume it, which could fail in several different
4602 ways depending on the target. Instead, just keep going.
4603
4604 We can find a stepping dead thread in the thread list in
4605 two cases:
4606
4607 - The target supports thread exit events, and when the
4608 target tries to delete the thread from the thread list,
4609 inferior_ptid pointed at the exiting thread. In such
4610 case, calling delete_thread does not really remove the
4611 thread from the list; instead, the thread is left listed,
4612 with 'exited' state.
4613
4614 - The target's debug interface does not support thread
4615 exit events, and so we have no idea whatsoever if the
4616 previously stepping thread is still alive. For that
4617 reason, we need to synchronously query the target
4618 now. */
4619 if (is_exited (tp->ptid)
4620 || !target_thread_alive (tp->ptid))
4621 {
4622 if (debug_infrun)
4623 fprintf_unfiltered (gdb_stdlog,
4624 "infrun: not switching back to "
4625 "stepped thread, it has vanished\n");
4626
4627 delete_thread (tp->ptid);
4628 keep_going (ecs);
4629 return;
4630 }
4631
4632 /* Otherwise, we no longer expect a trap in the current thread.
4633 Clear the trap_expected flag before switching back -- this is
4634 what keep_going would do as well, if we called it. */
4635 ecs->event_thread->control.trap_expected = 0;
4636
4637 if (debug_infrun)
4638 fprintf_unfiltered (gdb_stdlog,
4639 "infrun: switching back to stepped thread\n");
4640
4641 ecs->event_thread = tp;
4642 ecs->ptid = tp->ptid;
4643 context_switch (ecs->ptid);
4644 keep_going (ecs);
4645 return;
4646 }
4647 }
4648
4649 if (ecs->event_thread->control.step_resume_breakpoint)
4650 {
4651 if (debug_infrun)
4652 fprintf_unfiltered (gdb_stdlog,
4653 "infrun: step-resume breakpoint is inserted\n");
4654
4655 /* Having a step-resume breakpoint overrides anything
4656 else having to do with stepping commands until
4657 that breakpoint is reached. */
4658 keep_going (ecs);
4659 return;
4660 }
4661
4662 if (ecs->event_thread->control.step_range_end == 0)
4663 {
4664 if (debug_infrun)
4665 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4666 /* Likewise if we aren't even stepping. */
4667 keep_going (ecs);
4668 return;
4669 }
4670
4671 /* Re-fetch current thread's frame in case the code above caused
4672 the frame cache to be re-initialized, making our FRAME variable
4673 a dangling pointer. */
4674 frame = get_current_frame ();
4675 gdbarch = get_frame_arch (frame);
4676 fill_in_stop_func (gdbarch, ecs);
4677
4678 /* If stepping through a line, keep going if still within it.
4679
4680 Note that step_range_end is the address of the first instruction
4681 beyond the step range, and NOT the address of the last instruction
4682 within it!
4683
4684 Note also that during reverse execution, we may be stepping
4685 through a function epilogue and therefore must detect when
4686 the current-frame changes in the middle of a line. */
4687
4688 if (stop_pc >= ecs->event_thread->control.step_range_start
4689 && stop_pc < ecs->event_thread->control.step_range_end
4690 && (execution_direction != EXEC_REVERSE
4691 || frame_id_eq (get_frame_id (frame),
4692 ecs->event_thread->control.step_frame_id)))
4693 {
4694 if (debug_infrun)
4695 fprintf_unfiltered
4696 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4697 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4698 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4699
4700 /* When stepping backward, stop at beginning of line range
4701 (unless it's the function entry point, in which case
4702 keep going back to the call point). */
4703 if (stop_pc == ecs->event_thread->control.step_range_start
4704 && stop_pc != ecs->stop_func_start
4705 && execution_direction == EXEC_REVERSE)
4706 {
4707 ecs->event_thread->control.stop_step = 1;
4708 print_end_stepping_range_reason ();
4709 stop_stepping (ecs);
4710 }
4711 else
4712 keep_going (ecs);
4713
4714 return;
4715 }
4716
4717 /* We stepped out of the stepping range. */
4718
4719 /* If we are stepping at the source level and entered the runtime
4720 loader dynamic symbol resolution code...
4721
4722 EXEC_FORWARD: we keep on single stepping until we exit the run
4723 time loader code and reach the callee's address.
4724
4725 EXEC_REVERSE: we've already executed the callee (backward), and
4726 the runtime loader code is handled just like any other
4727 undebuggable function call. Now we need only keep stepping
4728 backward through the trampoline code, and that's handled further
4729 down, so there is nothing for us to do here. */
4730
4731 if (execution_direction != EXEC_REVERSE
4732 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4733 && in_solib_dynsym_resolve_code (stop_pc))
4734 {
4735 CORE_ADDR pc_after_resolver =
4736 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4737
4738 if (debug_infrun)
4739 fprintf_unfiltered (gdb_stdlog,
4740 "infrun: stepped into dynsym resolve code\n");
4741
4742 if (pc_after_resolver)
4743 {
4744 /* Set up a step-resume breakpoint at the address
4745 indicated by SKIP_SOLIB_RESOLVER. */
4746 struct symtab_and_line sr_sal;
4747
4748 init_sal (&sr_sal);
4749 sr_sal.pc = pc_after_resolver;
4750 sr_sal.pspace = get_frame_program_space (frame);
4751
4752 insert_step_resume_breakpoint_at_sal (gdbarch,
4753 sr_sal, null_frame_id);
4754 }
4755
4756 keep_going (ecs);
4757 return;
4758 }
4759
4760 if (ecs->event_thread->control.step_range_end != 1
4761 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4762 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4763 && get_frame_type (frame) == SIGTRAMP_FRAME)
4764 {
4765 if (debug_infrun)
4766 fprintf_unfiltered (gdb_stdlog,
4767 "infrun: stepped into signal trampoline\n");
4768 /* The inferior, while doing a "step" or "next", has ended up in
4769 a signal trampoline (either by a signal being delivered or by
4770 the signal handler returning). Just single-step until the
4771 inferior leaves the trampoline (either by calling the handler
4772 or returning). */
4773 keep_going (ecs);
4774 return;
4775 }
4776
4777 /* If we're in the return path from a shared library trampoline,
4778 we want to proceed through the trampoline when stepping. */
4779 /* macro/2012-04-25: This needs to come before the subroutine
4780 call check below as on some targets return trampolines look
4781 like subroutine calls (MIPS16 return thunks). */
4782 if (gdbarch_in_solib_return_trampoline (gdbarch,
4783 stop_pc, ecs->stop_func_name)
4784 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4785 {
4786 /* Determine where this trampoline returns. */
4787 CORE_ADDR real_stop_pc;
4788
4789 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4790
4791 if (debug_infrun)
4792 fprintf_unfiltered (gdb_stdlog,
4793 "infrun: stepped into solib return tramp\n");
4794
4795 /* Only proceed through if we know where it's going. */
4796 if (real_stop_pc)
4797 {
4798 /* And put the step-breakpoint there and go until there. */
4799 struct symtab_and_line sr_sal;
4800
4801 init_sal (&sr_sal); /* initialize to zeroes */
4802 sr_sal.pc = real_stop_pc;
4803 sr_sal.section = find_pc_overlay (sr_sal.pc);
4804 sr_sal.pspace = get_frame_program_space (frame);
4805
4806 /* Do not specify what the fp should be when we stop since
4807 on some machines the prologue is where the new fp value
4808 is established. */
4809 insert_step_resume_breakpoint_at_sal (gdbarch,
4810 sr_sal, null_frame_id);
4811
4812 /* Restart without fiddling with the step ranges or
4813 other state. */
4814 keep_going (ecs);
4815 return;
4816 }
4817 }
4818
4819 /* Check for subroutine calls. The check for the current frame
4820 equalling the step ID is not necessary - the check of the
4821 previous frame's ID is sufficient - but it is a common case and
4822 cheaper than checking the previous frame's ID.
4823
4824 NOTE: frame_id_eq will never report two invalid frame IDs as
4825 being equal, so to get into this block, both the current and
4826 previous frame must have valid frame IDs. */
4827 /* The outer_frame_id check is a heuristic to detect stepping
4828 through startup code. If we step over an instruction which
4829 sets the stack pointer from an invalid value to a valid value,
4830 we may detect that as a subroutine call from the mythical
4831 "outermost" function. This could be fixed by marking
4832 outermost frames as !stack_p,code_p,special_p. Then the
4833 initial outermost frame, before sp was valid, would
4834 have code_addr == &_start. See the comment in frame_id_eq
4835 for more. */
4836 if (!frame_id_eq (get_stack_frame_id (frame),
4837 ecs->event_thread->control.step_stack_frame_id)
4838 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4839 ecs->event_thread->control.step_stack_frame_id)
4840 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4841 outer_frame_id)
4842 || step_start_function != find_pc_function (stop_pc))))
4843 {
4844 CORE_ADDR real_stop_pc;
4845
4846 if (debug_infrun)
4847 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4848
4849 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4850 || ((ecs->event_thread->control.step_range_end == 1)
4851 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4852 ecs->stop_func_start)))
4853 {
4854 /* I presume that step_over_calls is only 0 when we're
4855 supposed to be stepping at the assembly language level
4856 ("stepi"). Just stop. */
4857 /* Also, maybe we just did a "nexti" inside a prolog, so we
4858 thought it was a subroutine call but it was not. Stop as
4859 well. FENN */
4860 /* And this works the same backward as frontward. MVS */
4861 ecs->event_thread->control.stop_step = 1;
4862 print_end_stepping_range_reason ();
4863 stop_stepping (ecs);
4864 return;
4865 }
4866
4867 /* Reverse stepping through solib trampolines. */
4868
4869 if (execution_direction == EXEC_REVERSE
4870 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4871 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4872 || (ecs->stop_func_start == 0
4873 && in_solib_dynsym_resolve_code (stop_pc))))
4874 {
4875 /* Any solib trampoline code can be handled in reverse
4876 by simply continuing to single-step. We have already
4877 executed the solib function (backwards), and a few
4878 steps will take us back through the trampoline to the
4879 caller. */
4880 keep_going (ecs);
4881 return;
4882 }
4883
4884 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4885 {
4886 /* We're doing a "next".
4887
4888 Normal (forward) execution: set a breakpoint at the
4889 callee's return address (the address at which the caller
4890 will resume).
4891
4892 Reverse (backward) execution. set the step-resume
4893 breakpoint at the start of the function that we just
4894 stepped into (backwards), and continue to there. When we
4895 get there, we'll need to single-step back to the caller. */
4896
4897 if (execution_direction == EXEC_REVERSE)
4898 {
4899 struct symtab_and_line sr_sal;
4900
4901 /* Normal function call return (static or dynamic). */
4902 init_sal (&sr_sal);
4903 sr_sal.pc = ecs->stop_func_start;
4904 sr_sal.pspace = get_frame_program_space (frame);
4905 insert_step_resume_breakpoint_at_sal (gdbarch,
4906 sr_sal, null_frame_id);
4907 }
4908 else
4909 insert_step_resume_breakpoint_at_caller (frame);
4910
4911 keep_going (ecs);
4912 return;
4913 }
4914
4915 /* If we are in a function call trampoline (a stub between the
4916 calling routine and the real function), locate the real
4917 function. That's what tells us (a) whether we want to step
4918 into it at all, and (b) what prologue we want to run to the
4919 end of, if we do step into it. */
4920 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4921 if (real_stop_pc == 0)
4922 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4923 if (real_stop_pc != 0)
4924 ecs->stop_func_start = real_stop_pc;
4925
4926 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4927 {
4928 struct symtab_and_line sr_sal;
4929
4930 init_sal (&sr_sal);
4931 sr_sal.pc = ecs->stop_func_start;
4932 sr_sal.pspace = get_frame_program_space (frame);
4933
4934 insert_step_resume_breakpoint_at_sal (gdbarch,
4935 sr_sal, null_frame_id);
4936 keep_going (ecs);
4937 return;
4938 }
4939
4940 /* If we have line number information for the function we are
4941 thinking of stepping into and the function isn't on the skip
4942 list, step into it.
4943
4944 If there are several symtabs at that PC (e.g. with include
4945 files), just want to know whether *any* of them have line
4946 numbers. find_pc_line handles this. */
4947 {
4948 struct symtab_and_line tmp_sal;
4949
4950 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4951 if (tmp_sal.line != 0
4952 && !function_pc_is_marked_for_skip (ecs->stop_func_start))
4953 {
4954 if (execution_direction == EXEC_REVERSE)
4955 handle_step_into_function_backward (gdbarch, ecs);
4956 else
4957 handle_step_into_function (gdbarch, ecs);
4958 return;
4959 }
4960 }
4961
4962 /* If we have no line number and the step-stop-if-no-debug is
4963 set, we stop the step so that the user has a chance to switch
4964 in assembly mode. */
4965 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4966 && step_stop_if_no_debug)
4967 {
4968 ecs->event_thread->control.stop_step = 1;
4969 print_end_stepping_range_reason ();
4970 stop_stepping (ecs);
4971 return;
4972 }
4973
4974 if (execution_direction == EXEC_REVERSE)
4975 {
4976 /* Set a breakpoint at callee's start address.
4977 From there we can step once and be back in the caller. */
4978 struct symtab_and_line sr_sal;
4979
4980 init_sal (&sr_sal);
4981 sr_sal.pc = ecs->stop_func_start;
4982 sr_sal.pspace = get_frame_program_space (frame);
4983 insert_step_resume_breakpoint_at_sal (gdbarch,
4984 sr_sal, null_frame_id);
4985 }
4986 else
4987 /* Set a breakpoint at callee's return address (the address
4988 at which the caller will resume). */
4989 insert_step_resume_breakpoint_at_caller (frame);
4990
4991 keep_going (ecs);
4992 return;
4993 }
4994
4995 /* Reverse stepping through solib trampolines. */
4996
4997 if (execution_direction == EXEC_REVERSE
4998 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4999 {
5000 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5001 || (ecs->stop_func_start == 0
5002 && in_solib_dynsym_resolve_code (stop_pc)))
5003 {
5004 /* Any solib trampoline code can be handled in reverse
5005 by simply continuing to single-step. We have already
5006 executed the solib function (backwards), and a few
5007 steps will take us back through the trampoline to the
5008 caller. */
5009 keep_going (ecs);
5010 return;
5011 }
5012 else if (in_solib_dynsym_resolve_code (stop_pc))
5013 {
5014 /* Stepped backward into the solib dynsym resolver.
5015 Set a breakpoint at its start and continue, then
5016 one more step will take us out. */
5017 struct symtab_and_line sr_sal;
5018
5019 init_sal (&sr_sal);
5020 sr_sal.pc = ecs->stop_func_start;
5021 sr_sal.pspace = get_frame_program_space (frame);
5022 insert_step_resume_breakpoint_at_sal (gdbarch,
5023 sr_sal, null_frame_id);
5024 keep_going (ecs);
5025 return;
5026 }
5027 }
5028
5029 stop_pc_sal = find_pc_line (stop_pc, 0);
5030
5031 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5032 the trampoline processing logic, however, there are some trampolines
5033 that have no names, so we should do trampoline handling first. */
5034 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5035 && ecs->stop_func_name == NULL
5036 && stop_pc_sal.line == 0)
5037 {
5038 if (debug_infrun)
5039 fprintf_unfiltered (gdb_stdlog,
5040 "infrun: stepped into undebuggable function\n");
5041
5042 /* The inferior just stepped into, or returned to, an
5043 undebuggable function (where there is no debugging information
5044 and no line number corresponding to the address where the
5045 inferior stopped). Since we want to skip this kind of code,
5046 we keep going until the inferior returns from this
5047 function - unless the user has asked us not to (via
5048 set step-mode) or we no longer know how to get back
5049 to the call site. */
5050 if (step_stop_if_no_debug
5051 || !frame_id_p (frame_unwind_caller_id (frame)))
5052 {
5053 /* If we have no line number and the step-stop-if-no-debug
5054 is set, we stop the step so that the user has a chance to
5055 switch in assembly mode. */
5056 ecs->event_thread->control.stop_step = 1;
5057 print_end_stepping_range_reason ();
5058 stop_stepping (ecs);
5059 return;
5060 }
5061 else
5062 {
5063 /* Set a breakpoint at callee's return address (the address
5064 at which the caller will resume). */
5065 insert_step_resume_breakpoint_at_caller (frame);
5066 keep_going (ecs);
5067 return;
5068 }
5069 }
5070
5071 if (ecs->event_thread->control.step_range_end == 1)
5072 {
5073 /* It is stepi or nexti. We always want to stop stepping after
5074 one instruction. */
5075 if (debug_infrun)
5076 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5077 ecs->event_thread->control.stop_step = 1;
5078 print_end_stepping_range_reason ();
5079 stop_stepping (ecs);
5080 return;
5081 }
5082
5083 if (stop_pc_sal.line == 0)
5084 {
5085 /* We have no line number information. That means to stop
5086 stepping (does this always happen right after one instruction,
5087 when we do "s" in a function with no line numbers,
5088 or can this happen as a result of a return or longjmp?). */
5089 if (debug_infrun)
5090 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5091 ecs->event_thread->control.stop_step = 1;
5092 print_end_stepping_range_reason ();
5093 stop_stepping (ecs);
5094 return;
5095 }
5096
5097 /* Look for "calls" to inlined functions, part one. If the inline
5098 frame machinery detected some skipped call sites, we have entered
5099 a new inline function. */
5100
5101 if (frame_id_eq (get_frame_id (get_current_frame ()),
5102 ecs->event_thread->control.step_frame_id)
5103 && inline_skipped_frames (ecs->ptid))
5104 {
5105 struct symtab_and_line call_sal;
5106
5107 if (debug_infrun)
5108 fprintf_unfiltered (gdb_stdlog,
5109 "infrun: stepped into inlined function\n");
5110
5111 find_frame_sal (get_current_frame (), &call_sal);
5112
5113 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5114 {
5115 /* For "step", we're going to stop. But if the call site
5116 for this inlined function is on the same source line as
5117 we were previously stepping, go down into the function
5118 first. Otherwise stop at the call site. */
5119
5120 if (call_sal.line == ecs->event_thread->current_line
5121 && call_sal.symtab == ecs->event_thread->current_symtab)
5122 step_into_inline_frame (ecs->ptid);
5123
5124 ecs->event_thread->control.stop_step = 1;
5125 print_end_stepping_range_reason ();
5126 stop_stepping (ecs);
5127 return;
5128 }
5129 else
5130 {
5131 /* For "next", we should stop at the call site if it is on a
5132 different source line. Otherwise continue through the
5133 inlined function. */
5134 if (call_sal.line == ecs->event_thread->current_line
5135 && call_sal.symtab == ecs->event_thread->current_symtab)
5136 keep_going (ecs);
5137 else
5138 {
5139 ecs->event_thread->control.stop_step = 1;
5140 print_end_stepping_range_reason ();
5141 stop_stepping (ecs);
5142 }
5143 return;
5144 }
5145 }
5146
5147 /* Look for "calls" to inlined functions, part two. If we are still
5148 in the same real function we were stepping through, but we have
5149 to go further up to find the exact frame ID, we are stepping
5150 through a more inlined call beyond its call site. */
5151
5152 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5153 && !frame_id_eq (get_frame_id (get_current_frame ()),
5154 ecs->event_thread->control.step_frame_id)
5155 && stepped_in_from (get_current_frame (),
5156 ecs->event_thread->control.step_frame_id))
5157 {
5158 if (debug_infrun)
5159 fprintf_unfiltered (gdb_stdlog,
5160 "infrun: stepping through inlined function\n");
5161
5162 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5163 keep_going (ecs);
5164 else
5165 {
5166 ecs->event_thread->control.stop_step = 1;
5167 print_end_stepping_range_reason ();
5168 stop_stepping (ecs);
5169 }
5170 return;
5171 }
5172
5173 if ((stop_pc == stop_pc_sal.pc)
5174 && (ecs->event_thread->current_line != stop_pc_sal.line
5175 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5176 {
5177 /* We are at the start of a different line. So stop. Note that
5178 we don't stop if we step into the middle of a different line.
5179 That is said to make things like for (;;) statements work
5180 better. */
5181 if (debug_infrun)
5182 fprintf_unfiltered (gdb_stdlog,
5183 "infrun: stepped to a different line\n");
5184 ecs->event_thread->control.stop_step = 1;
5185 print_end_stepping_range_reason ();
5186 stop_stepping (ecs);
5187 return;
5188 }
5189
5190 /* We aren't done stepping.
5191
5192 Optimize by setting the stepping range to the line.
5193 (We might not be in the original line, but if we entered a
5194 new line in mid-statement, we continue stepping. This makes
5195 things like for(;;) statements work better.) */
5196
5197 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5198 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5199 set_step_info (frame, stop_pc_sal);
5200
5201 if (debug_infrun)
5202 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5203 keep_going (ecs);
5204 }
5205
5206 /* Is thread TP in the middle of single-stepping? */
5207
5208 static int
5209 currently_stepping (struct thread_info *tp)
5210 {
5211 return ((tp->control.step_range_end
5212 && tp->control.step_resume_breakpoint == NULL)
5213 || tp->control.trap_expected
5214 || bpstat_should_step ());
5215 }
5216
5217 /* Returns true if any thread *but* the one passed in "data" is in the
5218 middle of stepping or of handling a "next". */
5219
5220 static int
5221 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5222 {
5223 if (tp == data)
5224 return 0;
5225
5226 return (tp->control.step_range_end
5227 || tp->control.trap_expected);
5228 }
5229
5230 /* Inferior has stepped into a subroutine call with source code that
5231 we should not step over. Do step to the first line of code in
5232 it. */
5233
5234 static void
5235 handle_step_into_function (struct gdbarch *gdbarch,
5236 struct execution_control_state *ecs)
5237 {
5238 struct symtab *s;
5239 struct symtab_and_line stop_func_sal, sr_sal;
5240
5241 fill_in_stop_func (gdbarch, ecs);
5242
5243 s = find_pc_symtab (stop_pc);
5244 if (s && s->language != language_asm)
5245 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5246 ecs->stop_func_start);
5247
5248 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5249 /* Use the step_resume_break to step until the end of the prologue,
5250 even if that involves jumps (as it seems to on the vax under
5251 4.2). */
5252 /* If the prologue ends in the middle of a source line, continue to
5253 the end of that source line (if it is still within the function).
5254 Otherwise, just go to end of prologue. */
5255 if (stop_func_sal.end
5256 && stop_func_sal.pc != ecs->stop_func_start
5257 && stop_func_sal.end < ecs->stop_func_end)
5258 ecs->stop_func_start = stop_func_sal.end;
5259
5260 /* Architectures which require breakpoint adjustment might not be able
5261 to place a breakpoint at the computed address. If so, the test
5262 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5263 ecs->stop_func_start to an address at which a breakpoint may be
5264 legitimately placed.
5265
5266 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5267 made, GDB will enter an infinite loop when stepping through
5268 optimized code consisting of VLIW instructions which contain
5269 subinstructions corresponding to different source lines. On
5270 FR-V, it's not permitted to place a breakpoint on any but the
5271 first subinstruction of a VLIW instruction. When a breakpoint is
5272 set, GDB will adjust the breakpoint address to the beginning of
5273 the VLIW instruction. Thus, we need to make the corresponding
5274 adjustment here when computing the stop address. */
5275
5276 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5277 {
5278 ecs->stop_func_start
5279 = gdbarch_adjust_breakpoint_address (gdbarch,
5280 ecs->stop_func_start);
5281 }
5282
5283 if (ecs->stop_func_start == stop_pc)
5284 {
5285 /* We are already there: stop now. */
5286 ecs->event_thread->control.stop_step = 1;
5287 print_end_stepping_range_reason ();
5288 stop_stepping (ecs);
5289 return;
5290 }
5291 else
5292 {
5293 /* Put the step-breakpoint there and go until there. */
5294 init_sal (&sr_sal); /* initialize to zeroes */
5295 sr_sal.pc = ecs->stop_func_start;
5296 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5297 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5298
5299 /* Do not specify what the fp should be when we stop since on
5300 some machines the prologue is where the new fp value is
5301 established. */
5302 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5303
5304 /* And make sure stepping stops right away then. */
5305 ecs->event_thread->control.step_range_end
5306 = ecs->event_thread->control.step_range_start;
5307 }
5308 keep_going (ecs);
5309 }
5310
5311 /* Inferior has stepped backward into a subroutine call with source
5312 code that we should not step over. Do step to the beginning of the
5313 last line of code in it. */
5314
5315 static void
5316 handle_step_into_function_backward (struct gdbarch *gdbarch,
5317 struct execution_control_state *ecs)
5318 {
5319 struct symtab *s;
5320 struct symtab_and_line stop_func_sal;
5321
5322 fill_in_stop_func (gdbarch, ecs);
5323
5324 s = find_pc_symtab (stop_pc);
5325 if (s && s->language != language_asm)
5326 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5327 ecs->stop_func_start);
5328
5329 stop_func_sal = find_pc_line (stop_pc, 0);
5330
5331 /* OK, we're just going to keep stepping here. */
5332 if (stop_func_sal.pc == stop_pc)
5333 {
5334 /* We're there already. Just stop stepping now. */
5335 ecs->event_thread->control.stop_step = 1;
5336 print_end_stepping_range_reason ();
5337 stop_stepping (ecs);
5338 }
5339 else
5340 {
5341 /* Else just reset the step range and keep going.
5342 No step-resume breakpoint, they don't work for
5343 epilogues, which can have multiple entry paths. */
5344 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5345 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5346 keep_going (ecs);
5347 }
5348 return;
5349 }
5350
5351 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5352 This is used to both functions and to skip over code. */
5353
5354 static void
5355 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5356 struct symtab_and_line sr_sal,
5357 struct frame_id sr_id,
5358 enum bptype sr_type)
5359 {
5360 /* There should never be more than one step-resume or longjmp-resume
5361 breakpoint per thread, so we should never be setting a new
5362 step_resume_breakpoint when one is already active. */
5363 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5364 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5365
5366 if (debug_infrun)
5367 fprintf_unfiltered (gdb_stdlog,
5368 "infrun: inserting step-resume breakpoint at %s\n",
5369 paddress (gdbarch, sr_sal.pc));
5370
5371 inferior_thread ()->control.step_resume_breakpoint
5372 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5373 }
5374
5375 void
5376 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5377 struct symtab_and_line sr_sal,
5378 struct frame_id sr_id)
5379 {
5380 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5381 sr_sal, sr_id,
5382 bp_step_resume);
5383 }
5384
5385 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5386 This is used to skip a potential signal handler.
5387
5388 This is called with the interrupted function's frame. The signal
5389 handler, when it returns, will resume the interrupted function at
5390 RETURN_FRAME.pc. */
5391
5392 static void
5393 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5394 {
5395 struct symtab_and_line sr_sal;
5396 struct gdbarch *gdbarch;
5397
5398 gdb_assert (return_frame != NULL);
5399 init_sal (&sr_sal); /* initialize to zeros */
5400
5401 gdbarch = get_frame_arch (return_frame);
5402 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5403 sr_sal.section = find_pc_overlay (sr_sal.pc);
5404 sr_sal.pspace = get_frame_program_space (return_frame);
5405
5406 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5407 get_stack_frame_id (return_frame),
5408 bp_hp_step_resume);
5409 }
5410
5411 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5412 is used to skip a function after stepping into it (for "next" or if
5413 the called function has no debugging information).
5414
5415 The current function has almost always been reached by single
5416 stepping a call or return instruction. NEXT_FRAME belongs to the
5417 current function, and the breakpoint will be set at the caller's
5418 resume address.
5419
5420 This is a separate function rather than reusing
5421 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5422 get_prev_frame, which may stop prematurely (see the implementation
5423 of frame_unwind_caller_id for an example). */
5424
5425 static void
5426 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5427 {
5428 struct symtab_and_line sr_sal;
5429 struct gdbarch *gdbarch;
5430
5431 /* We shouldn't have gotten here if we don't know where the call site
5432 is. */
5433 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5434
5435 init_sal (&sr_sal); /* initialize to zeros */
5436
5437 gdbarch = frame_unwind_caller_arch (next_frame);
5438 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5439 frame_unwind_caller_pc (next_frame));
5440 sr_sal.section = find_pc_overlay (sr_sal.pc);
5441 sr_sal.pspace = frame_unwind_program_space (next_frame);
5442
5443 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5444 frame_unwind_caller_id (next_frame));
5445 }
5446
5447 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5448 new breakpoint at the target of a jmp_buf. The handling of
5449 longjmp-resume uses the same mechanisms used for handling
5450 "step-resume" breakpoints. */
5451
5452 static void
5453 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5454 {
5455 /* There should never be more than one longjmp-resume breakpoint per
5456 thread, so we should never be setting a new
5457 longjmp_resume_breakpoint when one is already active. */
5458 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5459
5460 if (debug_infrun)
5461 fprintf_unfiltered (gdb_stdlog,
5462 "infrun: inserting longjmp-resume breakpoint at %s\n",
5463 paddress (gdbarch, pc));
5464
5465 inferior_thread ()->control.exception_resume_breakpoint =
5466 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5467 }
5468
5469 /* Insert an exception resume breakpoint. TP is the thread throwing
5470 the exception. The block B is the block of the unwinder debug hook
5471 function. FRAME is the frame corresponding to the call to this
5472 function. SYM is the symbol of the function argument holding the
5473 target PC of the exception. */
5474
5475 static void
5476 insert_exception_resume_breakpoint (struct thread_info *tp,
5477 struct block *b,
5478 struct frame_info *frame,
5479 struct symbol *sym)
5480 {
5481 volatile struct gdb_exception e;
5482
5483 /* We want to ignore errors here. */
5484 TRY_CATCH (e, RETURN_MASK_ERROR)
5485 {
5486 struct symbol *vsym;
5487 struct value *value;
5488 CORE_ADDR handler;
5489 struct breakpoint *bp;
5490
5491 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5492 value = read_var_value (vsym, frame);
5493 /* If the value was optimized out, revert to the old behavior. */
5494 if (! value_optimized_out (value))
5495 {
5496 handler = value_as_address (value);
5497
5498 if (debug_infrun)
5499 fprintf_unfiltered (gdb_stdlog,
5500 "infrun: exception resume at %lx\n",
5501 (unsigned long) handler);
5502
5503 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5504 handler, bp_exception_resume);
5505
5506 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5507 frame = NULL;
5508
5509 bp->thread = tp->num;
5510 inferior_thread ()->control.exception_resume_breakpoint = bp;
5511 }
5512 }
5513 }
5514
5515 /* A helper for check_exception_resume that sets an
5516 exception-breakpoint based on a SystemTap probe. */
5517
5518 static void
5519 insert_exception_resume_from_probe (struct thread_info *tp,
5520 const struct probe *probe,
5521 struct objfile *objfile,
5522 struct frame_info *frame)
5523 {
5524 struct value *arg_value;
5525 CORE_ADDR handler;
5526 struct breakpoint *bp;
5527
5528 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5529 if (!arg_value)
5530 return;
5531
5532 handler = value_as_address (arg_value);
5533
5534 if (debug_infrun)
5535 fprintf_unfiltered (gdb_stdlog,
5536 "infrun: exception resume at %s\n",
5537 paddress (get_objfile_arch (objfile),
5538 handler));
5539
5540 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5541 handler, bp_exception_resume);
5542 bp->thread = tp->num;
5543 inferior_thread ()->control.exception_resume_breakpoint = bp;
5544 }
5545
5546 /* This is called when an exception has been intercepted. Check to
5547 see whether the exception's destination is of interest, and if so,
5548 set an exception resume breakpoint there. */
5549
5550 static void
5551 check_exception_resume (struct execution_control_state *ecs,
5552 struct frame_info *frame)
5553 {
5554 volatile struct gdb_exception e;
5555 struct objfile *objfile;
5556 const struct probe *probe;
5557 struct symbol *func;
5558
5559 /* First see if this exception unwinding breakpoint was set via a
5560 SystemTap probe point. If so, the probe has two arguments: the
5561 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5562 set a breakpoint there. */
5563 probe = find_probe_by_pc (get_frame_pc (frame), &objfile);
5564 if (probe)
5565 {
5566 insert_exception_resume_from_probe (ecs->event_thread, probe,
5567 objfile, frame);
5568 return;
5569 }
5570
5571 func = get_frame_function (frame);
5572 if (!func)
5573 return;
5574
5575 TRY_CATCH (e, RETURN_MASK_ERROR)
5576 {
5577 struct block *b;
5578 struct block_iterator iter;
5579 struct symbol *sym;
5580 int argno = 0;
5581
5582 /* The exception breakpoint is a thread-specific breakpoint on
5583 the unwinder's debug hook, declared as:
5584
5585 void _Unwind_DebugHook (void *cfa, void *handler);
5586
5587 The CFA argument indicates the frame to which control is
5588 about to be transferred. HANDLER is the destination PC.
5589
5590 We ignore the CFA and set a temporary breakpoint at HANDLER.
5591 This is not extremely efficient but it avoids issues in gdb
5592 with computing the DWARF CFA, and it also works even in weird
5593 cases such as throwing an exception from inside a signal
5594 handler. */
5595
5596 b = SYMBOL_BLOCK_VALUE (func);
5597 ALL_BLOCK_SYMBOLS (b, iter, sym)
5598 {
5599 if (!SYMBOL_IS_ARGUMENT (sym))
5600 continue;
5601
5602 if (argno == 0)
5603 ++argno;
5604 else
5605 {
5606 insert_exception_resume_breakpoint (ecs->event_thread,
5607 b, frame, sym);
5608 break;
5609 }
5610 }
5611 }
5612 }
5613
5614 static void
5615 stop_stepping (struct execution_control_state *ecs)
5616 {
5617 if (debug_infrun)
5618 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5619
5620 /* Let callers know we don't want to wait for the inferior anymore. */
5621 ecs->wait_some_more = 0;
5622 }
5623
5624 /* This function handles various cases where we need to continue
5625 waiting for the inferior. */
5626 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5627
5628 static void
5629 keep_going (struct execution_control_state *ecs)
5630 {
5631 /* Make sure normal_stop is called if we get a QUIT handled before
5632 reaching resume. */
5633 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5634
5635 /* Save the pc before execution, to compare with pc after stop. */
5636 ecs->event_thread->prev_pc
5637 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5638
5639 /* If we did not do break;, it means we should keep running the
5640 inferior and not return to debugger. */
5641
5642 if (ecs->event_thread->control.trap_expected
5643 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5644 {
5645 /* We took a signal (which we are supposed to pass through to
5646 the inferior, else we'd not get here) and we haven't yet
5647 gotten our trap. Simply continue. */
5648
5649 discard_cleanups (old_cleanups);
5650 resume (currently_stepping (ecs->event_thread),
5651 ecs->event_thread->suspend.stop_signal);
5652 }
5653 else
5654 {
5655 /* Either the trap was not expected, but we are continuing
5656 anyway (the user asked that this signal be passed to the
5657 child)
5658 -- or --
5659 The signal was SIGTRAP, e.g. it was our signal, but we
5660 decided we should resume from it.
5661
5662 We're going to run this baby now!
5663
5664 Note that insert_breakpoints won't try to re-insert
5665 already inserted breakpoints. Therefore, we don't
5666 care if breakpoints were already inserted, or not. */
5667
5668 if (ecs->event_thread->stepping_over_breakpoint)
5669 {
5670 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5671
5672 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5673 /* Since we can't do a displaced step, we have to remove
5674 the breakpoint while we step it. To keep things
5675 simple, we remove them all. */
5676 remove_breakpoints ();
5677 }
5678 else
5679 {
5680 volatile struct gdb_exception e;
5681
5682 /* Stop stepping when inserting breakpoints
5683 has failed. */
5684 TRY_CATCH (e, RETURN_MASK_ERROR)
5685 {
5686 insert_breakpoints ();
5687 }
5688 if (e.reason < 0)
5689 {
5690 exception_print (gdb_stderr, e);
5691 stop_stepping (ecs);
5692 return;
5693 }
5694 }
5695
5696 ecs->event_thread->control.trap_expected
5697 = ecs->event_thread->stepping_over_breakpoint;
5698
5699 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5700 specifies that such a signal should be delivered to the
5701 target program).
5702
5703 Typically, this would occure when a user is debugging a
5704 target monitor on a simulator: the target monitor sets a
5705 breakpoint; the simulator encounters this break-point and
5706 halts the simulation handing control to GDB; GDB, noteing
5707 that the break-point isn't valid, returns control back to the
5708 simulator; the simulator then delivers the hardware
5709 equivalent of a SIGNAL_TRAP to the program being debugged. */
5710
5711 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5712 && !signal_program[ecs->event_thread->suspend.stop_signal])
5713 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5714
5715 discard_cleanups (old_cleanups);
5716 resume (currently_stepping (ecs->event_thread),
5717 ecs->event_thread->suspend.stop_signal);
5718 }
5719
5720 prepare_to_wait (ecs);
5721 }
5722
5723 /* This function normally comes after a resume, before
5724 handle_inferior_event exits. It takes care of any last bits of
5725 housekeeping, and sets the all-important wait_some_more flag. */
5726
5727 static void
5728 prepare_to_wait (struct execution_control_state *ecs)
5729 {
5730 if (debug_infrun)
5731 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5732
5733 /* This is the old end of the while loop. Let everybody know we
5734 want to wait for the inferior some more and get called again
5735 soon. */
5736 ecs->wait_some_more = 1;
5737 }
5738
5739 /* Several print_*_reason functions to print why the inferior has stopped.
5740 We always print something when the inferior exits, or receives a signal.
5741 The rest of the cases are dealt with later on in normal_stop and
5742 print_it_typical. Ideally there should be a call to one of these
5743 print_*_reason functions functions from handle_inferior_event each time
5744 stop_stepping is called. */
5745
5746 /* Print why the inferior has stopped.
5747 We are done with a step/next/si/ni command, print why the inferior has
5748 stopped. For now print nothing. Print a message only if not in the middle
5749 of doing a "step n" operation for n > 1. */
5750
5751 static void
5752 print_end_stepping_range_reason (void)
5753 {
5754 if ((!inferior_thread ()->step_multi
5755 || !inferior_thread ()->control.stop_step)
5756 && ui_out_is_mi_like_p (current_uiout))
5757 ui_out_field_string (current_uiout, "reason",
5758 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5759 }
5760
5761 /* The inferior was terminated by a signal, print why it stopped. */
5762
5763 static void
5764 print_signal_exited_reason (enum gdb_signal siggnal)
5765 {
5766 struct ui_out *uiout = current_uiout;
5767
5768 annotate_signalled ();
5769 if (ui_out_is_mi_like_p (uiout))
5770 ui_out_field_string
5771 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5772 ui_out_text (uiout, "\nProgram terminated with signal ");
5773 annotate_signal_name ();
5774 ui_out_field_string (uiout, "signal-name",
5775 gdb_signal_to_name (siggnal));
5776 annotate_signal_name_end ();
5777 ui_out_text (uiout, ", ");
5778 annotate_signal_string ();
5779 ui_out_field_string (uiout, "signal-meaning",
5780 gdb_signal_to_string (siggnal));
5781 annotate_signal_string_end ();
5782 ui_out_text (uiout, ".\n");
5783 ui_out_text (uiout, "The program no longer exists.\n");
5784 }
5785
5786 /* The inferior program is finished, print why it stopped. */
5787
5788 static void
5789 print_exited_reason (int exitstatus)
5790 {
5791 struct inferior *inf = current_inferior ();
5792 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5793 struct ui_out *uiout = current_uiout;
5794
5795 annotate_exited (exitstatus);
5796 if (exitstatus)
5797 {
5798 if (ui_out_is_mi_like_p (uiout))
5799 ui_out_field_string (uiout, "reason",
5800 async_reason_lookup (EXEC_ASYNC_EXITED));
5801 ui_out_text (uiout, "[Inferior ");
5802 ui_out_text (uiout, plongest (inf->num));
5803 ui_out_text (uiout, " (");
5804 ui_out_text (uiout, pidstr);
5805 ui_out_text (uiout, ") exited with code ");
5806 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5807 ui_out_text (uiout, "]\n");
5808 }
5809 else
5810 {
5811 if (ui_out_is_mi_like_p (uiout))
5812 ui_out_field_string
5813 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5814 ui_out_text (uiout, "[Inferior ");
5815 ui_out_text (uiout, plongest (inf->num));
5816 ui_out_text (uiout, " (");
5817 ui_out_text (uiout, pidstr);
5818 ui_out_text (uiout, ") exited normally]\n");
5819 }
5820 /* Support the --return-child-result option. */
5821 return_child_result_value = exitstatus;
5822 }
5823
5824 /* Signal received, print why the inferior has stopped. The signal table
5825 tells us to print about it. */
5826
5827 static void
5828 print_signal_received_reason (enum gdb_signal siggnal)
5829 {
5830 struct ui_out *uiout = current_uiout;
5831
5832 annotate_signal ();
5833
5834 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5835 {
5836 struct thread_info *t = inferior_thread ();
5837
5838 ui_out_text (uiout, "\n[");
5839 ui_out_field_string (uiout, "thread-name",
5840 target_pid_to_str (t->ptid));
5841 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5842 ui_out_text (uiout, " stopped");
5843 }
5844 else
5845 {
5846 ui_out_text (uiout, "\nProgram received signal ");
5847 annotate_signal_name ();
5848 if (ui_out_is_mi_like_p (uiout))
5849 ui_out_field_string
5850 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5851 ui_out_field_string (uiout, "signal-name",
5852 gdb_signal_to_name (siggnal));
5853 annotate_signal_name_end ();
5854 ui_out_text (uiout, ", ");
5855 annotate_signal_string ();
5856 ui_out_field_string (uiout, "signal-meaning",
5857 gdb_signal_to_string (siggnal));
5858 annotate_signal_string_end ();
5859 }
5860 ui_out_text (uiout, ".\n");
5861 }
5862
5863 /* Reverse execution: target ran out of history info, print why the inferior
5864 has stopped. */
5865
5866 static void
5867 print_no_history_reason (void)
5868 {
5869 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5870 }
5871
5872 /* Here to return control to GDB when the inferior stops for real.
5873 Print appropriate messages, remove breakpoints, give terminal our modes.
5874
5875 STOP_PRINT_FRAME nonzero means print the executing frame
5876 (pc, function, args, file, line number and line text).
5877 BREAKPOINTS_FAILED nonzero means stop was due to error
5878 attempting to insert breakpoints. */
5879
5880 void
5881 normal_stop (void)
5882 {
5883 struct target_waitstatus last;
5884 ptid_t last_ptid;
5885 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5886
5887 get_last_target_status (&last_ptid, &last);
5888
5889 /* If an exception is thrown from this point on, make sure to
5890 propagate GDB's knowledge of the executing state to the
5891 frontend/user running state. A QUIT is an easy exception to see
5892 here, so do this before any filtered output. */
5893 if (!non_stop)
5894 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5895 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5896 && last.kind != TARGET_WAITKIND_EXITED
5897 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5898 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5899
5900 /* In non-stop mode, we don't want GDB to switch threads behind the
5901 user's back, to avoid races where the user is typing a command to
5902 apply to thread x, but GDB switches to thread y before the user
5903 finishes entering the command. */
5904
5905 /* As with the notification of thread events, we want to delay
5906 notifying the user that we've switched thread context until
5907 the inferior actually stops.
5908
5909 There's no point in saying anything if the inferior has exited.
5910 Note that SIGNALLED here means "exited with a signal", not
5911 "received a signal". */
5912 if (!non_stop
5913 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5914 && target_has_execution
5915 && last.kind != TARGET_WAITKIND_SIGNALLED
5916 && last.kind != TARGET_WAITKIND_EXITED
5917 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5918 {
5919 target_terminal_ours_for_output ();
5920 printf_filtered (_("[Switching to %s]\n"),
5921 target_pid_to_str (inferior_ptid));
5922 annotate_thread_changed ();
5923 previous_inferior_ptid = inferior_ptid;
5924 }
5925
5926 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5927 {
5928 gdb_assert (sync_execution || !target_can_async_p ());
5929
5930 target_terminal_ours_for_output ();
5931 printf_filtered (_("No unwaited-for children left.\n"));
5932 }
5933
5934 if (!breakpoints_always_inserted_mode () && target_has_execution)
5935 {
5936 if (remove_breakpoints ())
5937 {
5938 target_terminal_ours_for_output ();
5939 printf_filtered (_("Cannot remove breakpoints because "
5940 "program is no longer writable.\nFurther "
5941 "execution is probably impossible.\n"));
5942 }
5943 }
5944
5945 /* If an auto-display called a function and that got a signal,
5946 delete that auto-display to avoid an infinite recursion. */
5947
5948 if (stopped_by_random_signal)
5949 disable_current_display ();
5950
5951 /* Don't print a message if in the middle of doing a "step n"
5952 operation for n > 1 */
5953 if (target_has_execution
5954 && last.kind != TARGET_WAITKIND_SIGNALLED
5955 && last.kind != TARGET_WAITKIND_EXITED
5956 && inferior_thread ()->step_multi
5957 && inferior_thread ()->control.stop_step)
5958 goto done;
5959
5960 target_terminal_ours ();
5961 async_enable_stdin ();
5962
5963 /* Set the current source location. This will also happen if we
5964 display the frame below, but the current SAL will be incorrect
5965 during a user hook-stop function. */
5966 if (has_stack_frames () && !stop_stack_dummy)
5967 set_current_sal_from_frame (get_current_frame (), 1);
5968
5969 /* Let the user/frontend see the threads as stopped. */
5970 do_cleanups (old_chain);
5971
5972 /* Look up the hook_stop and run it (CLI internally handles problem
5973 of stop_command's pre-hook not existing). */
5974 if (stop_command)
5975 catch_errors (hook_stop_stub, stop_command,
5976 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5977
5978 if (!has_stack_frames ())
5979 goto done;
5980
5981 if (last.kind == TARGET_WAITKIND_SIGNALLED
5982 || last.kind == TARGET_WAITKIND_EXITED)
5983 goto done;
5984
5985 /* Select innermost stack frame - i.e., current frame is frame 0,
5986 and current location is based on that.
5987 Don't do this on return from a stack dummy routine,
5988 or if the program has exited. */
5989
5990 if (!stop_stack_dummy)
5991 {
5992 select_frame (get_current_frame ());
5993
5994 /* Print current location without a level number, if
5995 we have changed functions or hit a breakpoint.
5996 Print source line if we have one.
5997 bpstat_print() contains the logic deciding in detail
5998 what to print, based on the event(s) that just occurred. */
5999
6000 /* If --batch-silent is enabled then there's no need to print the current
6001 source location, and to try risks causing an error message about
6002 missing source files. */
6003 if (stop_print_frame && !batch_silent)
6004 {
6005 int bpstat_ret;
6006 int source_flag;
6007 int do_frame_printing = 1;
6008 struct thread_info *tp = inferior_thread ();
6009
6010 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6011 switch (bpstat_ret)
6012 {
6013 case PRINT_UNKNOWN:
6014 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6015 (or should) carry around the function and does (or
6016 should) use that when doing a frame comparison. */
6017 if (tp->control.stop_step
6018 && frame_id_eq (tp->control.step_frame_id,
6019 get_frame_id (get_current_frame ()))
6020 && step_start_function == find_pc_function (stop_pc))
6021 source_flag = SRC_LINE; /* Finished step, just
6022 print source line. */
6023 else
6024 source_flag = SRC_AND_LOC; /* Print location and
6025 source line. */
6026 break;
6027 case PRINT_SRC_AND_LOC:
6028 source_flag = SRC_AND_LOC; /* Print location and
6029 source line. */
6030 break;
6031 case PRINT_SRC_ONLY:
6032 source_flag = SRC_LINE;
6033 break;
6034 case PRINT_NOTHING:
6035 source_flag = SRC_LINE; /* something bogus */
6036 do_frame_printing = 0;
6037 break;
6038 default:
6039 internal_error (__FILE__, __LINE__, _("Unknown value."));
6040 }
6041
6042 /* The behavior of this routine with respect to the source
6043 flag is:
6044 SRC_LINE: Print only source line
6045 LOCATION: Print only location
6046 SRC_AND_LOC: Print location and source line. */
6047 if (do_frame_printing)
6048 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
6049
6050 /* Display the auto-display expressions. */
6051 do_displays ();
6052 }
6053 }
6054
6055 /* Save the function value return registers, if we care.
6056 We might be about to restore their previous contents. */
6057 if (inferior_thread ()->control.proceed_to_finish
6058 && execution_direction != EXEC_REVERSE)
6059 {
6060 /* This should not be necessary. */
6061 if (stop_registers)
6062 regcache_xfree (stop_registers);
6063
6064 /* NB: The copy goes through to the target picking up the value of
6065 all the registers. */
6066 stop_registers = regcache_dup (get_current_regcache ());
6067 }
6068
6069 if (stop_stack_dummy == STOP_STACK_DUMMY)
6070 {
6071 /* Pop the empty frame that contains the stack dummy.
6072 This also restores inferior state prior to the call
6073 (struct infcall_suspend_state). */
6074 struct frame_info *frame = get_current_frame ();
6075
6076 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6077 frame_pop (frame);
6078 /* frame_pop() calls reinit_frame_cache as the last thing it
6079 does which means there's currently no selected frame. We
6080 don't need to re-establish a selected frame if the dummy call
6081 returns normally, that will be done by
6082 restore_infcall_control_state. However, we do have to handle
6083 the case where the dummy call is returning after being
6084 stopped (e.g. the dummy call previously hit a breakpoint).
6085 We can't know which case we have so just always re-establish
6086 a selected frame here. */
6087 select_frame (get_current_frame ());
6088 }
6089
6090 done:
6091 annotate_stopped ();
6092
6093 /* Suppress the stop observer if we're in the middle of:
6094
6095 - a step n (n > 1), as there still more steps to be done.
6096
6097 - a "finish" command, as the observer will be called in
6098 finish_command_continuation, so it can include the inferior
6099 function's return value.
6100
6101 - calling an inferior function, as we pretend we inferior didn't
6102 run at all. The return value of the call is handled by the
6103 expression evaluator, through call_function_by_hand. */
6104
6105 if (!target_has_execution
6106 || last.kind == TARGET_WAITKIND_SIGNALLED
6107 || last.kind == TARGET_WAITKIND_EXITED
6108 || last.kind == TARGET_WAITKIND_NO_RESUMED
6109 || (!(inferior_thread ()->step_multi
6110 && inferior_thread ()->control.stop_step)
6111 && !(inferior_thread ()->control.stop_bpstat
6112 && inferior_thread ()->control.proceed_to_finish)
6113 && !inferior_thread ()->control.in_infcall))
6114 {
6115 if (!ptid_equal (inferior_ptid, null_ptid))
6116 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6117 stop_print_frame);
6118 else
6119 observer_notify_normal_stop (NULL, stop_print_frame);
6120 }
6121
6122 if (target_has_execution)
6123 {
6124 if (last.kind != TARGET_WAITKIND_SIGNALLED
6125 && last.kind != TARGET_WAITKIND_EXITED)
6126 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6127 Delete any breakpoint that is to be deleted at the next stop. */
6128 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6129 }
6130
6131 /* Try to get rid of automatically added inferiors that are no
6132 longer needed. Keeping those around slows down things linearly.
6133 Note that this never removes the current inferior. */
6134 prune_inferiors ();
6135 }
6136
6137 static int
6138 hook_stop_stub (void *cmd)
6139 {
6140 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6141 return (0);
6142 }
6143 \f
6144 int
6145 signal_stop_state (int signo)
6146 {
6147 return signal_stop[signo];
6148 }
6149
6150 int
6151 signal_print_state (int signo)
6152 {
6153 return signal_print[signo];
6154 }
6155
6156 int
6157 signal_pass_state (int signo)
6158 {
6159 return signal_program[signo];
6160 }
6161
6162 static void
6163 signal_cache_update (int signo)
6164 {
6165 if (signo == -1)
6166 {
6167 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6168 signal_cache_update (signo);
6169
6170 return;
6171 }
6172
6173 signal_pass[signo] = (signal_stop[signo] == 0
6174 && signal_print[signo] == 0
6175 && signal_program[signo] == 1);
6176 }
6177
6178 int
6179 signal_stop_update (int signo, int state)
6180 {
6181 int ret = signal_stop[signo];
6182
6183 signal_stop[signo] = state;
6184 signal_cache_update (signo);
6185 return ret;
6186 }
6187
6188 int
6189 signal_print_update (int signo, int state)
6190 {
6191 int ret = signal_print[signo];
6192
6193 signal_print[signo] = state;
6194 signal_cache_update (signo);
6195 return ret;
6196 }
6197
6198 int
6199 signal_pass_update (int signo, int state)
6200 {
6201 int ret = signal_program[signo];
6202
6203 signal_program[signo] = state;
6204 signal_cache_update (signo);
6205 return ret;
6206 }
6207
6208 static void
6209 sig_print_header (void)
6210 {
6211 printf_filtered (_("Signal Stop\tPrint\tPass "
6212 "to program\tDescription\n"));
6213 }
6214
6215 static void
6216 sig_print_info (enum gdb_signal oursig)
6217 {
6218 const char *name = gdb_signal_to_name (oursig);
6219 int name_padding = 13 - strlen (name);
6220
6221 if (name_padding <= 0)
6222 name_padding = 0;
6223
6224 printf_filtered ("%s", name);
6225 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6226 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6227 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6228 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6229 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6230 }
6231
6232 /* Specify how various signals in the inferior should be handled. */
6233
6234 static void
6235 handle_command (char *args, int from_tty)
6236 {
6237 char **argv;
6238 int digits, wordlen;
6239 int sigfirst, signum, siglast;
6240 enum gdb_signal oursig;
6241 int allsigs;
6242 int nsigs;
6243 unsigned char *sigs;
6244 struct cleanup *old_chain;
6245
6246 if (args == NULL)
6247 {
6248 error_no_arg (_("signal to handle"));
6249 }
6250
6251 /* Allocate and zero an array of flags for which signals to handle. */
6252
6253 nsigs = (int) GDB_SIGNAL_LAST;
6254 sigs = (unsigned char *) alloca (nsigs);
6255 memset (sigs, 0, nsigs);
6256
6257 /* Break the command line up into args. */
6258
6259 argv = gdb_buildargv (args);
6260 old_chain = make_cleanup_freeargv (argv);
6261
6262 /* Walk through the args, looking for signal oursigs, signal names, and
6263 actions. Signal numbers and signal names may be interspersed with
6264 actions, with the actions being performed for all signals cumulatively
6265 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6266
6267 while (*argv != NULL)
6268 {
6269 wordlen = strlen (*argv);
6270 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6271 {;
6272 }
6273 allsigs = 0;
6274 sigfirst = siglast = -1;
6275
6276 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6277 {
6278 /* Apply action to all signals except those used by the
6279 debugger. Silently skip those. */
6280 allsigs = 1;
6281 sigfirst = 0;
6282 siglast = nsigs - 1;
6283 }
6284 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6285 {
6286 SET_SIGS (nsigs, sigs, signal_stop);
6287 SET_SIGS (nsigs, sigs, signal_print);
6288 }
6289 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6290 {
6291 UNSET_SIGS (nsigs, sigs, signal_program);
6292 }
6293 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6294 {
6295 SET_SIGS (nsigs, sigs, signal_print);
6296 }
6297 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6298 {
6299 SET_SIGS (nsigs, sigs, signal_program);
6300 }
6301 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6302 {
6303 UNSET_SIGS (nsigs, sigs, signal_stop);
6304 }
6305 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6306 {
6307 SET_SIGS (nsigs, sigs, signal_program);
6308 }
6309 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6310 {
6311 UNSET_SIGS (nsigs, sigs, signal_print);
6312 UNSET_SIGS (nsigs, sigs, signal_stop);
6313 }
6314 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6315 {
6316 UNSET_SIGS (nsigs, sigs, signal_program);
6317 }
6318 else if (digits > 0)
6319 {
6320 /* It is numeric. The numeric signal refers to our own
6321 internal signal numbering from target.h, not to host/target
6322 signal number. This is a feature; users really should be
6323 using symbolic names anyway, and the common ones like
6324 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6325
6326 sigfirst = siglast = (int)
6327 gdb_signal_from_command (atoi (*argv));
6328 if ((*argv)[digits] == '-')
6329 {
6330 siglast = (int)
6331 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6332 }
6333 if (sigfirst > siglast)
6334 {
6335 /* Bet he didn't figure we'd think of this case... */
6336 signum = sigfirst;
6337 sigfirst = siglast;
6338 siglast = signum;
6339 }
6340 }
6341 else
6342 {
6343 oursig = gdb_signal_from_name (*argv);
6344 if (oursig != GDB_SIGNAL_UNKNOWN)
6345 {
6346 sigfirst = siglast = (int) oursig;
6347 }
6348 else
6349 {
6350 /* Not a number and not a recognized flag word => complain. */
6351 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6352 }
6353 }
6354
6355 /* If any signal numbers or symbol names were found, set flags for
6356 which signals to apply actions to. */
6357
6358 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6359 {
6360 switch ((enum gdb_signal) signum)
6361 {
6362 case GDB_SIGNAL_TRAP:
6363 case GDB_SIGNAL_INT:
6364 if (!allsigs && !sigs[signum])
6365 {
6366 if (query (_("%s is used by the debugger.\n\
6367 Are you sure you want to change it? "),
6368 gdb_signal_to_name ((enum gdb_signal) signum)))
6369 {
6370 sigs[signum] = 1;
6371 }
6372 else
6373 {
6374 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6375 gdb_flush (gdb_stdout);
6376 }
6377 }
6378 break;
6379 case GDB_SIGNAL_0:
6380 case GDB_SIGNAL_DEFAULT:
6381 case GDB_SIGNAL_UNKNOWN:
6382 /* Make sure that "all" doesn't print these. */
6383 break;
6384 default:
6385 sigs[signum] = 1;
6386 break;
6387 }
6388 }
6389
6390 argv++;
6391 }
6392
6393 for (signum = 0; signum < nsigs; signum++)
6394 if (sigs[signum])
6395 {
6396 signal_cache_update (-1);
6397 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6398 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6399
6400 if (from_tty)
6401 {
6402 /* Show the results. */
6403 sig_print_header ();
6404 for (; signum < nsigs; signum++)
6405 if (sigs[signum])
6406 sig_print_info (signum);
6407 }
6408
6409 break;
6410 }
6411
6412 do_cleanups (old_chain);
6413 }
6414
6415 static void
6416 xdb_handle_command (char *args, int from_tty)
6417 {
6418 char **argv;
6419 struct cleanup *old_chain;
6420
6421 if (args == NULL)
6422 error_no_arg (_("xdb command"));
6423
6424 /* Break the command line up into args. */
6425
6426 argv = gdb_buildargv (args);
6427 old_chain = make_cleanup_freeargv (argv);
6428 if (argv[1] != (char *) NULL)
6429 {
6430 char *argBuf;
6431 int bufLen;
6432
6433 bufLen = strlen (argv[0]) + 20;
6434 argBuf = (char *) xmalloc (bufLen);
6435 if (argBuf)
6436 {
6437 int validFlag = 1;
6438 enum gdb_signal oursig;
6439
6440 oursig = gdb_signal_from_name (argv[0]);
6441 memset (argBuf, 0, bufLen);
6442 if (strcmp (argv[1], "Q") == 0)
6443 sprintf (argBuf, "%s %s", argv[0], "noprint");
6444 else
6445 {
6446 if (strcmp (argv[1], "s") == 0)
6447 {
6448 if (!signal_stop[oursig])
6449 sprintf (argBuf, "%s %s", argv[0], "stop");
6450 else
6451 sprintf (argBuf, "%s %s", argv[0], "nostop");
6452 }
6453 else if (strcmp (argv[1], "i") == 0)
6454 {
6455 if (!signal_program[oursig])
6456 sprintf (argBuf, "%s %s", argv[0], "pass");
6457 else
6458 sprintf (argBuf, "%s %s", argv[0], "nopass");
6459 }
6460 else if (strcmp (argv[1], "r") == 0)
6461 {
6462 if (!signal_print[oursig])
6463 sprintf (argBuf, "%s %s", argv[0], "print");
6464 else
6465 sprintf (argBuf, "%s %s", argv[0], "noprint");
6466 }
6467 else
6468 validFlag = 0;
6469 }
6470 if (validFlag)
6471 handle_command (argBuf, from_tty);
6472 else
6473 printf_filtered (_("Invalid signal handling flag.\n"));
6474 if (argBuf)
6475 xfree (argBuf);
6476 }
6477 }
6478 do_cleanups (old_chain);
6479 }
6480
6481 enum gdb_signal
6482 gdb_signal_from_command (int num)
6483 {
6484 if (num >= 1 && num <= 15)
6485 return (enum gdb_signal) num;
6486 error (_("Only signals 1-15 are valid as numeric signals.\n\
6487 Use \"info signals\" for a list of symbolic signals."));
6488 }
6489
6490 /* Print current contents of the tables set by the handle command.
6491 It is possible we should just be printing signals actually used
6492 by the current target (but for things to work right when switching
6493 targets, all signals should be in the signal tables). */
6494
6495 static void
6496 signals_info (char *signum_exp, int from_tty)
6497 {
6498 enum gdb_signal oursig;
6499
6500 sig_print_header ();
6501
6502 if (signum_exp)
6503 {
6504 /* First see if this is a symbol name. */
6505 oursig = gdb_signal_from_name (signum_exp);
6506 if (oursig == GDB_SIGNAL_UNKNOWN)
6507 {
6508 /* No, try numeric. */
6509 oursig =
6510 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6511 }
6512 sig_print_info (oursig);
6513 return;
6514 }
6515
6516 printf_filtered ("\n");
6517 /* These ugly casts brought to you by the native VAX compiler. */
6518 for (oursig = GDB_SIGNAL_FIRST;
6519 (int) oursig < (int) GDB_SIGNAL_LAST;
6520 oursig = (enum gdb_signal) ((int) oursig + 1))
6521 {
6522 QUIT;
6523
6524 if (oursig != GDB_SIGNAL_UNKNOWN
6525 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6526 sig_print_info (oursig);
6527 }
6528
6529 printf_filtered (_("\nUse the \"handle\" command "
6530 "to change these tables.\n"));
6531 }
6532
6533 /* Check if it makes sense to read $_siginfo from the current thread
6534 at this point. If not, throw an error. */
6535
6536 static void
6537 validate_siginfo_access (void)
6538 {
6539 /* No current inferior, no siginfo. */
6540 if (ptid_equal (inferior_ptid, null_ptid))
6541 error (_("No thread selected."));
6542
6543 /* Don't try to read from a dead thread. */
6544 if (is_exited (inferior_ptid))
6545 error (_("The current thread has terminated"));
6546
6547 /* ... or from a spinning thread. */
6548 if (is_running (inferior_ptid))
6549 error (_("Selected thread is running."));
6550 }
6551
6552 /* The $_siginfo convenience variable is a bit special. We don't know
6553 for sure the type of the value until we actually have a chance to
6554 fetch the data. The type can change depending on gdbarch, so it is
6555 also dependent on which thread you have selected.
6556
6557 1. making $_siginfo be an internalvar that creates a new value on
6558 access.
6559
6560 2. making the value of $_siginfo be an lval_computed value. */
6561
6562 /* This function implements the lval_computed support for reading a
6563 $_siginfo value. */
6564
6565 static void
6566 siginfo_value_read (struct value *v)
6567 {
6568 LONGEST transferred;
6569
6570 validate_siginfo_access ();
6571
6572 transferred =
6573 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6574 NULL,
6575 value_contents_all_raw (v),
6576 value_offset (v),
6577 TYPE_LENGTH (value_type (v)));
6578
6579 if (transferred != TYPE_LENGTH (value_type (v)))
6580 error (_("Unable to read siginfo"));
6581 }
6582
6583 /* This function implements the lval_computed support for writing a
6584 $_siginfo value. */
6585
6586 static void
6587 siginfo_value_write (struct value *v, struct value *fromval)
6588 {
6589 LONGEST transferred;
6590
6591 validate_siginfo_access ();
6592
6593 transferred = target_write (&current_target,
6594 TARGET_OBJECT_SIGNAL_INFO,
6595 NULL,
6596 value_contents_all_raw (fromval),
6597 value_offset (v),
6598 TYPE_LENGTH (value_type (fromval)));
6599
6600 if (transferred != TYPE_LENGTH (value_type (fromval)))
6601 error (_("Unable to write siginfo"));
6602 }
6603
6604 static const struct lval_funcs siginfo_value_funcs =
6605 {
6606 siginfo_value_read,
6607 siginfo_value_write
6608 };
6609
6610 /* Return a new value with the correct type for the siginfo object of
6611 the current thread using architecture GDBARCH. Return a void value
6612 if there's no object available. */
6613
6614 static struct value *
6615 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6616 void *ignore)
6617 {
6618 if (target_has_stack
6619 && !ptid_equal (inferior_ptid, null_ptid)
6620 && gdbarch_get_siginfo_type_p (gdbarch))
6621 {
6622 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6623
6624 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6625 }
6626
6627 return allocate_value (builtin_type (gdbarch)->builtin_void);
6628 }
6629
6630 \f
6631 /* infcall_suspend_state contains state about the program itself like its
6632 registers and any signal it received when it last stopped.
6633 This state must be restored regardless of how the inferior function call
6634 ends (either successfully, or after it hits a breakpoint or signal)
6635 if the program is to properly continue where it left off. */
6636
6637 struct infcall_suspend_state
6638 {
6639 struct thread_suspend_state thread_suspend;
6640 #if 0 /* Currently unused and empty structures are not valid C. */
6641 struct inferior_suspend_state inferior_suspend;
6642 #endif
6643
6644 /* Other fields: */
6645 CORE_ADDR stop_pc;
6646 struct regcache *registers;
6647
6648 /* Format of SIGINFO_DATA or NULL if it is not present. */
6649 struct gdbarch *siginfo_gdbarch;
6650
6651 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6652 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6653 content would be invalid. */
6654 gdb_byte *siginfo_data;
6655 };
6656
6657 struct infcall_suspend_state *
6658 save_infcall_suspend_state (void)
6659 {
6660 struct infcall_suspend_state *inf_state;
6661 struct thread_info *tp = inferior_thread ();
6662 struct inferior *inf = current_inferior ();
6663 struct regcache *regcache = get_current_regcache ();
6664 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6665 gdb_byte *siginfo_data = NULL;
6666
6667 if (gdbarch_get_siginfo_type_p (gdbarch))
6668 {
6669 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6670 size_t len = TYPE_LENGTH (type);
6671 struct cleanup *back_to;
6672
6673 siginfo_data = xmalloc (len);
6674 back_to = make_cleanup (xfree, siginfo_data);
6675
6676 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6677 siginfo_data, 0, len) == len)
6678 discard_cleanups (back_to);
6679 else
6680 {
6681 /* Errors ignored. */
6682 do_cleanups (back_to);
6683 siginfo_data = NULL;
6684 }
6685 }
6686
6687 inf_state = XZALLOC (struct infcall_suspend_state);
6688
6689 if (siginfo_data)
6690 {
6691 inf_state->siginfo_gdbarch = gdbarch;
6692 inf_state->siginfo_data = siginfo_data;
6693 }
6694
6695 inf_state->thread_suspend = tp->suspend;
6696 #if 0 /* Currently unused and empty structures are not valid C. */
6697 inf_state->inferior_suspend = inf->suspend;
6698 #endif
6699
6700 /* run_inferior_call will not use the signal due to its `proceed' call with
6701 GDB_SIGNAL_0 anyway. */
6702 tp->suspend.stop_signal = GDB_SIGNAL_0;
6703
6704 inf_state->stop_pc = stop_pc;
6705
6706 inf_state->registers = regcache_dup (regcache);
6707
6708 return inf_state;
6709 }
6710
6711 /* Restore inferior session state to INF_STATE. */
6712
6713 void
6714 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6715 {
6716 struct thread_info *tp = inferior_thread ();
6717 struct inferior *inf = current_inferior ();
6718 struct regcache *regcache = get_current_regcache ();
6719 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6720
6721 tp->suspend = inf_state->thread_suspend;
6722 #if 0 /* Currently unused and empty structures are not valid C. */
6723 inf->suspend = inf_state->inferior_suspend;
6724 #endif
6725
6726 stop_pc = inf_state->stop_pc;
6727
6728 if (inf_state->siginfo_gdbarch == gdbarch)
6729 {
6730 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6731 size_t len = TYPE_LENGTH (type);
6732
6733 /* Errors ignored. */
6734 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6735 inf_state->siginfo_data, 0, len);
6736 }
6737
6738 /* The inferior can be gone if the user types "print exit(0)"
6739 (and perhaps other times). */
6740 if (target_has_execution)
6741 /* NB: The register write goes through to the target. */
6742 regcache_cpy (regcache, inf_state->registers);
6743
6744 discard_infcall_suspend_state (inf_state);
6745 }
6746
6747 static void
6748 do_restore_infcall_suspend_state_cleanup (void *state)
6749 {
6750 restore_infcall_suspend_state (state);
6751 }
6752
6753 struct cleanup *
6754 make_cleanup_restore_infcall_suspend_state
6755 (struct infcall_suspend_state *inf_state)
6756 {
6757 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6758 }
6759
6760 void
6761 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6762 {
6763 regcache_xfree (inf_state->registers);
6764 xfree (inf_state->siginfo_data);
6765 xfree (inf_state);
6766 }
6767
6768 struct regcache *
6769 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6770 {
6771 return inf_state->registers;
6772 }
6773
6774 /* infcall_control_state contains state regarding gdb's control of the
6775 inferior itself like stepping control. It also contains session state like
6776 the user's currently selected frame. */
6777
6778 struct infcall_control_state
6779 {
6780 struct thread_control_state thread_control;
6781 struct inferior_control_state inferior_control;
6782
6783 /* Other fields: */
6784 enum stop_stack_kind stop_stack_dummy;
6785 int stopped_by_random_signal;
6786 int stop_after_trap;
6787
6788 /* ID if the selected frame when the inferior function call was made. */
6789 struct frame_id selected_frame_id;
6790 };
6791
6792 /* Save all of the information associated with the inferior<==>gdb
6793 connection. */
6794
6795 struct infcall_control_state *
6796 save_infcall_control_state (void)
6797 {
6798 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6799 struct thread_info *tp = inferior_thread ();
6800 struct inferior *inf = current_inferior ();
6801
6802 inf_status->thread_control = tp->control;
6803 inf_status->inferior_control = inf->control;
6804
6805 tp->control.step_resume_breakpoint = NULL;
6806 tp->control.exception_resume_breakpoint = NULL;
6807
6808 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6809 chain. If caller's caller is walking the chain, they'll be happier if we
6810 hand them back the original chain when restore_infcall_control_state is
6811 called. */
6812 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6813
6814 /* Other fields: */
6815 inf_status->stop_stack_dummy = stop_stack_dummy;
6816 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6817 inf_status->stop_after_trap = stop_after_trap;
6818
6819 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6820
6821 return inf_status;
6822 }
6823
6824 static int
6825 restore_selected_frame (void *args)
6826 {
6827 struct frame_id *fid = (struct frame_id *) args;
6828 struct frame_info *frame;
6829
6830 frame = frame_find_by_id (*fid);
6831
6832 /* If inf_status->selected_frame_id is NULL, there was no previously
6833 selected frame. */
6834 if (frame == NULL)
6835 {
6836 warning (_("Unable to restore previously selected frame."));
6837 return 0;
6838 }
6839
6840 select_frame (frame);
6841
6842 return (1);
6843 }
6844
6845 /* Restore inferior session state to INF_STATUS. */
6846
6847 void
6848 restore_infcall_control_state (struct infcall_control_state *inf_status)
6849 {
6850 struct thread_info *tp = inferior_thread ();
6851 struct inferior *inf = current_inferior ();
6852
6853 if (tp->control.step_resume_breakpoint)
6854 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6855
6856 if (tp->control.exception_resume_breakpoint)
6857 tp->control.exception_resume_breakpoint->disposition
6858 = disp_del_at_next_stop;
6859
6860 /* Handle the bpstat_copy of the chain. */
6861 bpstat_clear (&tp->control.stop_bpstat);
6862
6863 tp->control = inf_status->thread_control;
6864 inf->control = inf_status->inferior_control;
6865
6866 /* Other fields: */
6867 stop_stack_dummy = inf_status->stop_stack_dummy;
6868 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6869 stop_after_trap = inf_status->stop_after_trap;
6870
6871 if (target_has_stack)
6872 {
6873 /* The point of catch_errors is that if the stack is clobbered,
6874 walking the stack might encounter a garbage pointer and
6875 error() trying to dereference it. */
6876 if (catch_errors
6877 (restore_selected_frame, &inf_status->selected_frame_id,
6878 "Unable to restore previously selected frame:\n",
6879 RETURN_MASK_ERROR) == 0)
6880 /* Error in restoring the selected frame. Select the innermost
6881 frame. */
6882 select_frame (get_current_frame ());
6883 }
6884
6885 xfree (inf_status);
6886 }
6887
6888 static void
6889 do_restore_infcall_control_state_cleanup (void *sts)
6890 {
6891 restore_infcall_control_state (sts);
6892 }
6893
6894 struct cleanup *
6895 make_cleanup_restore_infcall_control_state
6896 (struct infcall_control_state *inf_status)
6897 {
6898 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6899 }
6900
6901 void
6902 discard_infcall_control_state (struct infcall_control_state *inf_status)
6903 {
6904 if (inf_status->thread_control.step_resume_breakpoint)
6905 inf_status->thread_control.step_resume_breakpoint->disposition
6906 = disp_del_at_next_stop;
6907
6908 if (inf_status->thread_control.exception_resume_breakpoint)
6909 inf_status->thread_control.exception_resume_breakpoint->disposition
6910 = disp_del_at_next_stop;
6911
6912 /* See save_infcall_control_state for info on stop_bpstat. */
6913 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6914
6915 xfree (inf_status);
6916 }
6917 \f
6918 int
6919 ptid_match (ptid_t ptid, ptid_t filter)
6920 {
6921 if (ptid_equal (filter, minus_one_ptid))
6922 return 1;
6923 if (ptid_is_pid (filter)
6924 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6925 return 1;
6926 else if (ptid_equal (ptid, filter))
6927 return 1;
6928
6929 return 0;
6930 }
6931
6932 /* restore_inferior_ptid() will be used by the cleanup machinery
6933 to restore the inferior_ptid value saved in a call to
6934 save_inferior_ptid(). */
6935
6936 static void
6937 restore_inferior_ptid (void *arg)
6938 {
6939 ptid_t *saved_ptid_ptr = arg;
6940
6941 inferior_ptid = *saved_ptid_ptr;
6942 xfree (arg);
6943 }
6944
6945 /* Save the value of inferior_ptid so that it may be restored by a
6946 later call to do_cleanups(). Returns the struct cleanup pointer
6947 needed for later doing the cleanup. */
6948
6949 struct cleanup *
6950 save_inferior_ptid (void)
6951 {
6952 ptid_t *saved_ptid_ptr;
6953
6954 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6955 *saved_ptid_ptr = inferior_ptid;
6956 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6957 }
6958 \f
6959
6960 /* User interface for reverse debugging:
6961 Set exec-direction / show exec-direction commands
6962 (returns error unless target implements to_set_exec_direction method). */
6963
6964 int execution_direction = EXEC_FORWARD;
6965 static const char exec_forward[] = "forward";
6966 static const char exec_reverse[] = "reverse";
6967 static const char *exec_direction = exec_forward;
6968 static const char *const exec_direction_names[] = {
6969 exec_forward,
6970 exec_reverse,
6971 NULL
6972 };
6973
6974 static void
6975 set_exec_direction_func (char *args, int from_tty,
6976 struct cmd_list_element *cmd)
6977 {
6978 if (target_can_execute_reverse)
6979 {
6980 if (!strcmp (exec_direction, exec_forward))
6981 execution_direction = EXEC_FORWARD;
6982 else if (!strcmp (exec_direction, exec_reverse))
6983 execution_direction = EXEC_REVERSE;
6984 }
6985 else
6986 {
6987 exec_direction = exec_forward;
6988 error (_("Target does not support this operation."));
6989 }
6990 }
6991
6992 static void
6993 show_exec_direction_func (struct ui_file *out, int from_tty,
6994 struct cmd_list_element *cmd, const char *value)
6995 {
6996 switch (execution_direction) {
6997 case EXEC_FORWARD:
6998 fprintf_filtered (out, _("Forward.\n"));
6999 break;
7000 case EXEC_REVERSE:
7001 fprintf_filtered (out, _("Reverse.\n"));
7002 break;
7003 default:
7004 internal_error (__FILE__, __LINE__,
7005 _("bogus execution_direction value: %d"),
7006 (int) execution_direction);
7007 }
7008 }
7009
7010 /* User interface for non-stop mode. */
7011
7012 int non_stop = 0;
7013
7014 static void
7015 set_non_stop (char *args, int from_tty,
7016 struct cmd_list_element *c)
7017 {
7018 if (target_has_execution)
7019 {
7020 non_stop_1 = non_stop;
7021 error (_("Cannot change this setting while the inferior is running."));
7022 }
7023
7024 non_stop = non_stop_1;
7025 }
7026
7027 static void
7028 show_non_stop (struct ui_file *file, int from_tty,
7029 struct cmd_list_element *c, const char *value)
7030 {
7031 fprintf_filtered (file,
7032 _("Controlling the inferior in non-stop mode is %s.\n"),
7033 value);
7034 }
7035
7036 static void
7037 show_schedule_multiple (struct ui_file *file, int from_tty,
7038 struct cmd_list_element *c, const char *value)
7039 {
7040 fprintf_filtered (file, _("Resuming the execution of threads "
7041 "of all processes is %s.\n"), value);
7042 }
7043
7044 /* Implementation of `siginfo' variable. */
7045
7046 static const struct internalvar_funcs siginfo_funcs =
7047 {
7048 siginfo_make_value,
7049 NULL,
7050 NULL
7051 };
7052
7053 void
7054 _initialize_infrun (void)
7055 {
7056 int i;
7057 int numsigs;
7058
7059 add_info ("signals", signals_info, _("\
7060 What debugger does when program gets various signals.\n\
7061 Specify a signal as argument to print info on that signal only."));
7062 add_info_alias ("handle", "signals", 0);
7063
7064 add_com ("handle", class_run, handle_command, _("\
7065 Specify how to handle a signal.\n\
7066 Args are signals and actions to apply to those signals.\n\
7067 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7068 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7069 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7070 The special arg \"all\" is recognized to mean all signals except those\n\
7071 used by the debugger, typically SIGTRAP and SIGINT.\n\
7072 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7073 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7074 Stop means reenter debugger if this signal happens (implies print).\n\
7075 Print means print a message if this signal happens.\n\
7076 Pass means let program see this signal; otherwise program doesn't know.\n\
7077 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7078 Pass and Stop may be combined."));
7079 if (xdb_commands)
7080 {
7081 add_com ("lz", class_info, signals_info, _("\
7082 What debugger does when program gets various signals.\n\
7083 Specify a signal as argument to print info on that signal only."));
7084 add_com ("z", class_run, xdb_handle_command, _("\
7085 Specify how to handle a signal.\n\
7086 Args are signals and actions to apply to those signals.\n\
7087 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7088 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7089 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7090 The special arg \"all\" is recognized to mean all signals except those\n\
7091 used by the debugger, typically SIGTRAP and SIGINT.\n\
7092 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7093 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7094 nopass), \"Q\" (noprint)\n\
7095 Stop means reenter debugger if this signal happens (implies print).\n\
7096 Print means print a message if this signal happens.\n\
7097 Pass means let program see this signal; otherwise program doesn't know.\n\
7098 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7099 Pass and Stop may be combined."));
7100 }
7101
7102 if (!dbx_commands)
7103 stop_command = add_cmd ("stop", class_obscure,
7104 not_just_help_class_command, _("\
7105 There is no `stop' command, but you can set a hook on `stop'.\n\
7106 This allows you to set a list of commands to be run each time execution\n\
7107 of the program stops."), &cmdlist);
7108
7109 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7110 Set inferior debugging."), _("\
7111 Show inferior debugging."), _("\
7112 When non-zero, inferior specific debugging is enabled."),
7113 NULL,
7114 show_debug_infrun,
7115 &setdebuglist, &showdebuglist);
7116
7117 add_setshow_boolean_cmd ("displaced", class_maintenance,
7118 &debug_displaced, _("\
7119 Set displaced stepping debugging."), _("\
7120 Show displaced stepping debugging."), _("\
7121 When non-zero, displaced stepping specific debugging is enabled."),
7122 NULL,
7123 show_debug_displaced,
7124 &setdebuglist, &showdebuglist);
7125
7126 add_setshow_boolean_cmd ("non-stop", no_class,
7127 &non_stop_1, _("\
7128 Set whether gdb controls the inferior in non-stop mode."), _("\
7129 Show whether gdb controls the inferior in non-stop mode."), _("\
7130 When debugging a multi-threaded program and this setting is\n\
7131 off (the default, also called all-stop mode), when one thread stops\n\
7132 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7133 all other threads in the program while you interact with the thread of\n\
7134 interest. When you continue or step a thread, you can allow the other\n\
7135 threads to run, or have them remain stopped, but while you inspect any\n\
7136 thread's state, all threads stop.\n\
7137 \n\
7138 In non-stop mode, when one thread stops, other threads can continue\n\
7139 to run freely. You'll be able to step each thread independently,\n\
7140 leave it stopped or free to run as needed."),
7141 set_non_stop,
7142 show_non_stop,
7143 &setlist,
7144 &showlist);
7145
7146 numsigs = (int) GDB_SIGNAL_LAST;
7147 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7148 signal_print = (unsigned char *)
7149 xmalloc (sizeof (signal_print[0]) * numsigs);
7150 signal_program = (unsigned char *)
7151 xmalloc (sizeof (signal_program[0]) * numsigs);
7152 signal_pass = (unsigned char *)
7153 xmalloc (sizeof (signal_program[0]) * numsigs);
7154 for (i = 0; i < numsigs; i++)
7155 {
7156 signal_stop[i] = 1;
7157 signal_print[i] = 1;
7158 signal_program[i] = 1;
7159 }
7160
7161 /* Signals caused by debugger's own actions
7162 should not be given to the program afterwards. */
7163 signal_program[GDB_SIGNAL_TRAP] = 0;
7164 signal_program[GDB_SIGNAL_INT] = 0;
7165
7166 /* Signals that are not errors should not normally enter the debugger. */
7167 signal_stop[GDB_SIGNAL_ALRM] = 0;
7168 signal_print[GDB_SIGNAL_ALRM] = 0;
7169 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7170 signal_print[GDB_SIGNAL_VTALRM] = 0;
7171 signal_stop[GDB_SIGNAL_PROF] = 0;
7172 signal_print[GDB_SIGNAL_PROF] = 0;
7173 signal_stop[GDB_SIGNAL_CHLD] = 0;
7174 signal_print[GDB_SIGNAL_CHLD] = 0;
7175 signal_stop[GDB_SIGNAL_IO] = 0;
7176 signal_print[GDB_SIGNAL_IO] = 0;
7177 signal_stop[GDB_SIGNAL_POLL] = 0;
7178 signal_print[GDB_SIGNAL_POLL] = 0;
7179 signal_stop[GDB_SIGNAL_URG] = 0;
7180 signal_print[GDB_SIGNAL_URG] = 0;
7181 signal_stop[GDB_SIGNAL_WINCH] = 0;
7182 signal_print[GDB_SIGNAL_WINCH] = 0;
7183 signal_stop[GDB_SIGNAL_PRIO] = 0;
7184 signal_print[GDB_SIGNAL_PRIO] = 0;
7185
7186 /* These signals are used internally by user-level thread
7187 implementations. (See signal(5) on Solaris.) Like the above
7188 signals, a healthy program receives and handles them as part of
7189 its normal operation. */
7190 signal_stop[GDB_SIGNAL_LWP] = 0;
7191 signal_print[GDB_SIGNAL_LWP] = 0;
7192 signal_stop[GDB_SIGNAL_WAITING] = 0;
7193 signal_print[GDB_SIGNAL_WAITING] = 0;
7194 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7195 signal_print[GDB_SIGNAL_CANCEL] = 0;
7196
7197 /* Update cached state. */
7198 signal_cache_update (-1);
7199
7200 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7201 &stop_on_solib_events, _("\
7202 Set stopping for shared library events."), _("\
7203 Show stopping for shared library events."), _("\
7204 If nonzero, gdb will give control to the user when the dynamic linker\n\
7205 notifies gdb of shared library events. The most common event of interest\n\
7206 to the user would be loading/unloading of a new library."),
7207 NULL,
7208 show_stop_on_solib_events,
7209 &setlist, &showlist);
7210
7211 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7212 follow_fork_mode_kind_names,
7213 &follow_fork_mode_string, _("\
7214 Set debugger response to a program call of fork or vfork."), _("\
7215 Show debugger response to a program call of fork or vfork."), _("\
7216 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7217 parent - the original process is debugged after a fork\n\
7218 child - the new process is debugged after a fork\n\
7219 The unfollowed process will continue to run.\n\
7220 By default, the debugger will follow the parent process."),
7221 NULL,
7222 show_follow_fork_mode_string,
7223 &setlist, &showlist);
7224
7225 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7226 follow_exec_mode_names,
7227 &follow_exec_mode_string, _("\
7228 Set debugger response to a program call of exec."), _("\
7229 Show debugger response to a program call of exec."), _("\
7230 An exec call replaces the program image of a process.\n\
7231 \n\
7232 follow-exec-mode can be:\n\
7233 \n\
7234 new - the debugger creates a new inferior and rebinds the process\n\
7235 to this new inferior. The program the process was running before\n\
7236 the exec call can be restarted afterwards by restarting the original\n\
7237 inferior.\n\
7238 \n\
7239 same - the debugger keeps the process bound to the same inferior.\n\
7240 The new executable image replaces the previous executable loaded in\n\
7241 the inferior. Restarting the inferior after the exec call restarts\n\
7242 the executable the process was running after the exec call.\n\
7243 \n\
7244 By default, the debugger will use the same inferior."),
7245 NULL,
7246 show_follow_exec_mode_string,
7247 &setlist, &showlist);
7248
7249 add_setshow_enum_cmd ("scheduler-locking", class_run,
7250 scheduler_enums, &scheduler_mode, _("\
7251 Set mode for locking scheduler during execution."), _("\
7252 Show mode for locking scheduler during execution."), _("\
7253 off == no locking (threads may preempt at any time)\n\
7254 on == full locking (no thread except the current thread may run)\n\
7255 step == scheduler locked during every single-step operation.\n\
7256 In this mode, no other thread may run during a step command.\n\
7257 Other threads may run while stepping over a function call ('next')."),
7258 set_schedlock_func, /* traps on target vector */
7259 show_scheduler_mode,
7260 &setlist, &showlist);
7261
7262 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7263 Set mode for resuming threads of all processes."), _("\
7264 Show mode for resuming threads of all processes."), _("\
7265 When on, execution commands (such as 'continue' or 'next') resume all\n\
7266 threads of all processes. When off (which is the default), execution\n\
7267 commands only resume the threads of the current process. The set of\n\
7268 threads that are resumed is further refined by the scheduler-locking\n\
7269 mode (see help set scheduler-locking)."),
7270 NULL,
7271 show_schedule_multiple,
7272 &setlist, &showlist);
7273
7274 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7275 Set mode of the step operation."), _("\
7276 Show mode of the step operation."), _("\
7277 When set, doing a step over a function without debug line information\n\
7278 will stop at the first instruction of that function. Otherwise, the\n\
7279 function is skipped and the step command stops at a different source line."),
7280 NULL,
7281 show_step_stop_if_no_debug,
7282 &setlist, &showlist);
7283
7284 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7285 &can_use_displaced_stepping, _("\
7286 Set debugger's willingness to use displaced stepping."), _("\
7287 Show debugger's willingness to use displaced stepping."), _("\
7288 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7289 supported by the target architecture. If off, gdb will not use displaced\n\
7290 stepping to step over breakpoints, even if such is supported by the target\n\
7291 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7292 if the target architecture supports it and non-stop mode is active, but will not\n\
7293 use it in all-stop mode (see help set non-stop)."),
7294 NULL,
7295 show_can_use_displaced_stepping,
7296 &setlist, &showlist);
7297
7298 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7299 &exec_direction, _("Set direction of execution.\n\
7300 Options are 'forward' or 'reverse'."),
7301 _("Show direction of execution (forward/reverse)."),
7302 _("Tells gdb whether to execute forward or backward."),
7303 set_exec_direction_func, show_exec_direction_func,
7304 &setlist, &showlist);
7305
7306 /* Set/show detach-on-fork: user-settable mode. */
7307
7308 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7309 Set whether gdb will detach the child of a fork."), _("\
7310 Show whether gdb will detach the child of a fork."), _("\
7311 Tells gdb whether to detach the child of a fork."),
7312 NULL, NULL, &setlist, &showlist);
7313
7314 /* Set/show disable address space randomization mode. */
7315
7316 add_setshow_boolean_cmd ("disable-randomization", class_support,
7317 &disable_randomization, _("\
7318 Set disabling of debuggee's virtual address space randomization."), _("\
7319 Show disabling of debuggee's virtual address space randomization."), _("\
7320 When this mode is on (which is the default), randomization of the virtual\n\
7321 address space is disabled. Standalone programs run with the randomization\n\
7322 enabled by default on some platforms."),
7323 &set_disable_randomization,
7324 &show_disable_randomization,
7325 &setlist, &showlist);
7326
7327 /* ptid initializations */
7328 inferior_ptid = null_ptid;
7329 target_last_wait_ptid = minus_one_ptid;
7330
7331 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7332 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7333 observer_attach_thread_exit (infrun_thread_thread_exit);
7334 observer_attach_inferior_exit (infrun_inferior_exit);
7335
7336 /* Explicitly create without lookup, since that tries to create a
7337 value with a void typed value, and when we get here, gdbarch
7338 isn't initialized yet. At this point, we're quite sure there
7339 isn't another convenience variable of the same name. */
7340 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7341
7342 add_setshow_boolean_cmd ("observer", no_class,
7343 &observer_mode_1, _("\
7344 Set whether gdb controls the inferior in observer mode."), _("\
7345 Show whether gdb controls the inferior in observer mode."), _("\
7346 In observer mode, GDB can get data from the inferior, but not\n\
7347 affect its execution. Registers and memory may not be changed,\n\
7348 breakpoints may not be set, and the program cannot be interrupted\n\
7349 or signalled."),
7350 set_observer_mode,
7351 show_observer_mode,
7352 &setlist,
7353 &showlist);
7354 }