* gdbtypes.h (struct builtin_type): Add internal_fn member.
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "inline-frame.h"
53
54 /* Prototypes for local functions */
55
56 static void signals_info (char *, int);
57
58 static void handle_command (char *, int);
59
60 static void sig_print_info (enum target_signal);
61
62 static void sig_print_header (void);
63
64 static void resume_cleanups (void *);
65
66 static int hook_stop_stub (void *);
67
68 static int restore_selected_frame (void *);
69
70 static void build_infrun (void);
71
72 static int follow_fork (void);
73
74 static void set_schedlock_func (char *args, int from_tty,
75 struct cmd_list_element *c);
76
77 static int currently_stepping (struct thread_info *tp);
78
79 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
80 void *data);
81
82 static void xdb_handle_command (char *args, int from_tty);
83
84 static int prepare_to_proceed (int);
85
86 void _initialize_infrun (void);
87
88 void nullify_last_target_wait_ptid (void);
89
90 /* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93 int step_stop_if_no_debug = 0;
94 static void
95 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99 }
100
101 /* In asynchronous mode, but simulating synchronous execution. */
102
103 int sync_execution = 0;
104
105 /* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
107 running in. */
108
109 static ptid_t previous_inferior_ptid;
110
111 int debug_displaced = 0;
112 static void
113 show_debug_displaced (struct ui_file *file, int from_tty,
114 struct cmd_list_element *c, const char *value)
115 {
116 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
117 }
118
119 static int debug_infrun = 0;
120 static void
121 show_debug_infrun (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c, const char *value)
123 {
124 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
125 }
126
127 /* If the program uses ELF-style shared libraries, then calls to
128 functions in shared libraries go through stubs, which live in a
129 table called the PLT (Procedure Linkage Table). The first time the
130 function is called, the stub sends control to the dynamic linker,
131 which looks up the function's real address, patches the stub so
132 that future calls will go directly to the function, and then passes
133 control to the function.
134
135 If we are stepping at the source level, we don't want to see any of
136 this --- we just want to skip over the stub and the dynamic linker.
137 The simple approach is to single-step until control leaves the
138 dynamic linker.
139
140 However, on some systems (e.g., Red Hat's 5.2 distribution) the
141 dynamic linker calls functions in the shared C library, so you
142 can't tell from the PC alone whether the dynamic linker is still
143 running. In this case, we use a step-resume breakpoint to get us
144 past the dynamic linker, as if we were using "next" to step over a
145 function call.
146
147 in_solib_dynsym_resolve_code() says whether we're in the dynamic
148 linker code or not. Normally, this means we single-step. However,
149 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
150 address where we can place a step-resume breakpoint to get past the
151 linker's symbol resolution function.
152
153 in_solib_dynsym_resolve_code() can generally be implemented in a
154 pretty portable way, by comparing the PC against the address ranges
155 of the dynamic linker's sections.
156
157 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
158 it depends on internal details of the dynamic linker. It's usually
159 not too hard to figure out where to put a breakpoint, but it
160 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
161 sanity checking. If it can't figure things out, returning zero and
162 getting the (possibly confusing) stepping behavior is better than
163 signalling an error, which will obscure the change in the
164 inferior's state. */
165
166 /* This function returns TRUE if pc is the address of an instruction
167 that lies within the dynamic linker (such as the event hook, or the
168 dld itself).
169
170 This function must be used only when a dynamic linker event has
171 been caught, and the inferior is being stepped out of the hook, or
172 undefined results are guaranteed. */
173
174 #ifndef SOLIB_IN_DYNAMIC_LINKER
175 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
176 #endif
177
178
179 /* Convert the #defines into values. This is temporary until wfi control
180 flow is completely sorted out. */
181
182 #ifndef CANNOT_STEP_HW_WATCHPOINTS
183 #define CANNOT_STEP_HW_WATCHPOINTS 0
184 #else
185 #undef CANNOT_STEP_HW_WATCHPOINTS
186 #define CANNOT_STEP_HW_WATCHPOINTS 1
187 #endif
188
189 /* Tables of how to react to signals; the user sets them. */
190
191 static unsigned char *signal_stop;
192 static unsigned char *signal_print;
193 static unsigned char *signal_program;
194
195 #define SET_SIGS(nsigs,sigs,flags) \
196 do { \
197 int signum = (nsigs); \
198 while (signum-- > 0) \
199 if ((sigs)[signum]) \
200 (flags)[signum] = 1; \
201 } while (0)
202
203 #define UNSET_SIGS(nsigs,sigs,flags) \
204 do { \
205 int signum = (nsigs); \
206 while (signum-- > 0) \
207 if ((sigs)[signum]) \
208 (flags)[signum] = 0; \
209 } while (0)
210
211 /* Value to pass to target_resume() to cause all threads to resume */
212
213 #define RESUME_ALL minus_one_ptid
214
215 /* Command list pointer for the "stop" placeholder. */
216
217 static struct cmd_list_element *stop_command;
218
219 /* Function inferior was in as of last step command. */
220
221 static struct symbol *step_start_function;
222
223 /* Nonzero if we want to give control to the user when we're notified
224 of shared library events by the dynamic linker. */
225 static int stop_on_solib_events;
226 static void
227 show_stop_on_solib_events (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229 {
230 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
231 value);
232 }
233
234 /* Nonzero means expecting a trace trap
235 and should stop the inferior and return silently when it happens. */
236
237 int stop_after_trap;
238
239 /* Save register contents here when executing a "finish" command or are
240 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
241 Thus this contains the return value from the called function (assuming
242 values are returned in a register). */
243
244 struct regcache *stop_registers;
245
246 /* Nonzero after stop if current stack frame should be printed. */
247
248 static int stop_print_frame;
249
250 /* This is a cached copy of the pid/waitstatus of the last event
251 returned by target_wait()/deprecated_target_wait_hook(). This
252 information is returned by get_last_target_status(). */
253 static ptid_t target_last_wait_ptid;
254 static struct target_waitstatus target_last_waitstatus;
255
256 static void context_switch (ptid_t ptid);
257
258 void init_thread_stepping_state (struct thread_info *tss);
259
260 void init_infwait_state (void);
261
262 static const char follow_fork_mode_child[] = "child";
263 static const char follow_fork_mode_parent[] = "parent";
264
265 static const char *follow_fork_mode_kind_names[] = {
266 follow_fork_mode_child,
267 follow_fork_mode_parent,
268 NULL
269 };
270
271 static const char *follow_fork_mode_string = follow_fork_mode_parent;
272 static void
273 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
274 struct cmd_list_element *c, const char *value)
275 {
276 fprintf_filtered (file, _("\
277 Debugger response to a program call of fork or vfork is \"%s\".\n"),
278 value);
279 }
280 \f
281
282 /* Tell the target to follow the fork we're stopped at. Returns true
283 if the inferior should be resumed; false, if the target for some
284 reason decided it's best not to resume. */
285
286 static int
287 follow_fork (void)
288 {
289 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
290 int should_resume = 1;
291 struct thread_info *tp;
292
293 /* Copy user stepping state to the new inferior thread. FIXME: the
294 followed fork child thread should have a copy of most of the
295 parent thread structure's run control related fields, not just these.
296 Initialized to avoid "may be used uninitialized" warnings from gcc. */
297 struct breakpoint *step_resume_breakpoint = NULL;
298 CORE_ADDR step_range_start = 0;
299 CORE_ADDR step_range_end = 0;
300 struct frame_id step_frame_id = { 0 };
301
302 if (!non_stop)
303 {
304 ptid_t wait_ptid;
305 struct target_waitstatus wait_status;
306
307 /* Get the last target status returned by target_wait(). */
308 get_last_target_status (&wait_ptid, &wait_status);
309
310 /* If not stopped at a fork event, then there's nothing else to
311 do. */
312 if (wait_status.kind != TARGET_WAITKIND_FORKED
313 && wait_status.kind != TARGET_WAITKIND_VFORKED)
314 return 1;
315
316 /* Check if we switched over from WAIT_PTID, since the event was
317 reported. */
318 if (!ptid_equal (wait_ptid, minus_one_ptid)
319 && !ptid_equal (inferior_ptid, wait_ptid))
320 {
321 /* We did. Switch back to WAIT_PTID thread, to tell the
322 target to follow it (in either direction). We'll
323 afterwards refuse to resume, and inform the user what
324 happened. */
325 switch_to_thread (wait_ptid);
326 should_resume = 0;
327 }
328 }
329
330 tp = inferior_thread ();
331
332 /* If there were any forks/vforks that were caught and are now to be
333 followed, then do so now. */
334 switch (tp->pending_follow.kind)
335 {
336 case TARGET_WAITKIND_FORKED:
337 case TARGET_WAITKIND_VFORKED:
338 {
339 ptid_t parent, child;
340
341 /* If the user did a next/step, etc, over a fork call,
342 preserve the stepping state in the fork child. */
343 if (follow_child && should_resume)
344 {
345 step_resume_breakpoint
346 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
347 step_range_start = tp->step_range_start;
348 step_range_end = tp->step_range_end;
349 step_frame_id = tp->step_frame_id;
350
351 /* For now, delete the parent's sr breakpoint, otherwise,
352 parent/child sr breakpoints are considered duplicates,
353 and the child version will not be installed. Remove
354 this when the breakpoints module becomes aware of
355 inferiors and address spaces. */
356 delete_step_resume_breakpoint (tp);
357 tp->step_range_start = 0;
358 tp->step_range_end = 0;
359 tp->step_frame_id = null_frame_id;
360 }
361
362 parent = inferior_ptid;
363 child = tp->pending_follow.value.related_pid;
364
365 /* Tell the target to do whatever is necessary to follow
366 either parent or child. */
367 if (target_follow_fork (follow_child))
368 {
369 /* Target refused to follow, or there's some other reason
370 we shouldn't resume. */
371 should_resume = 0;
372 }
373 else
374 {
375 /* This pending follow fork event is now handled, one way
376 or another. The previous selected thread may be gone
377 from the lists by now, but if it is still around, need
378 to clear the pending follow request. */
379 tp = find_thread_ptid (parent);
380 if (tp)
381 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
382
383 /* This makes sure we don't try to apply the "Switched
384 over from WAIT_PID" logic above. */
385 nullify_last_target_wait_ptid ();
386
387 /* If we followed the child, switch to it... */
388 if (follow_child)
389 {
390 switch_to_thread (child);
391
392 /* ... and preserve the stepping state, in case the
393 user was stepping over the fork call. */
394 if (should_resume)
395 {
396 tp = inferior_thread ();
397 tp->step_resume_breakpoint = step_resume_breakpoint;
398 tp->step_range_start = step_range_start;
399 tp->step_range_end = step_range_end;
400 tp->step_frame_id = step_frame_id;
401 }
402 else
403 {
404 /* If we get here, it was because we're trying to
405 resume from a fork catchpoint, but, the user
406 has switched threads away from the thread that
407 forked. In that case, the resume command
408 issued is most likely not applicable to the
409 child, so just warn, and refuse to resume. */
410 warning (_("\
411 Not resuming: switched threads before following fork child.\n"));
412 }
413
414 /* Reset breakpoints in the child as appropriate. */
415 follow_inferior_reset_breakpoints ();
416 }
417 else
418 switch_to_thread (parent);
419 }
420 }
421 break;
422 case TARGET_WAITKIND_SPURIOUS:
423 /* Nothing to follow. */
424 break;
425 default:
426 internal_error (__FILE__, __LINE__,
427 "Unexpected pending_follow.kind %d\n",
428 tp->pending_follow.kind);
429 break;
430 }
431
432 return should_resume;
433 }
434
435 void
436 follow_inferior_reset_breakpoints (void)
437 {
438 struct thread_info *tp = inferior_thread ();
439
440 /* Was there a step_resume breakpoint? (There was if the user
441 did a "next" at the fork() call.) If so, explicitly reset its
442 thread number.
443
444 step_resumes are a form of bp that are made to be per-thread.
445 Since we created the step_resume bp when the parent process
446 was being debugged, and now are switching to the child process,
447 from the breakpoint package's viewpoint, that's a switch of
448 "threads". We must update the bp's notion of which thread
449 it is for, or it'll be ignored when it triggers. */
450
451 if (tp->step_resume_breakpoint)
452 breakpoint_re_set_thread (tp->step_resume_breakpoint);
453
454 /* Reinsert all breakpoints in the child. The user may have set
455 breakpoints after catching the fork, in which case those
456 were never set in the child, but only in the parent. This makes
457 sure the inserted breakpoints match the breakpoint list. */
458
459 breakpoint_re_set ();
460 insert_breakpoints ();
461 }
462
463 /* EXECD_PATHNAME is assumed to be non-NULL. */
464
465 static void
466 follow_exec (ptid_t pid, char *execd_pathname)
467 {
468 struct target_ops *tgt;
469 struct thread_info *th = inferior_thread ();
470
471 /* This is an exec event that we actually wish to pay attention to.
472 Refresh our symbol table to the newly exec'd program, remove any
473 momentary bp's, etc.
474
475 If there are breakpoints, they aren't really inserted now,
476 since the exec() transformed our inferior into a fresh set
477 of instructions.
478
479 We want to preserve symbolic breakpoints on the list, since
480 we have hopes that they can be reset after the new a.out's
481 symbol table is read.
482
483 However, any "raw" breakpoints must be removed from the list
484 (e.g., the solib bp's), since their address is probably invalid
485 now.
486
487 And, we DON'T want to call delete_breakpoints() here, since
488 that may write the bp's "shadow contents" (the instruction
489 value that was overwritten witha TRAP instruction). Since
490 we now have a new a.out, those shadow contents aren't valid. */
491 update_breakpoints_after_exec ();
492
493 /* If there was one, it's gone now. We cannot truly step-to-next
494 statement through an exec(). */
495 th->step_resume_breakpoint = NULL;
496 th->step_range_start = 0;
497 th->step_range_end = 0;
498
499 /* The target reports the exec event to the main thread, even if
500 some other thread does the exec, and even if the main thread was
501 already stopped --- if debugging in non-stop mode, it's possible
502 the user had the main thread held stopped in the previous image
503 --- release it now. This is the same behavior as step-over-exec
504 with scheduler-locking on in all-stop mode. */
505 th->stop_requested = 0;
506
507 /* What is this a.out's name? */
508 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
509
510 /* We've followed the inferior through an exec. Therefore, the
511 inferior has essentially been killed & reborn. */
512
513 gdb_flush (gdb_stdout);
514
515 breakpoint_init_inferior (inf_execd);
516
517 if (gdb_sysroot && *gdb_sysroot)
518 {
519 char *name = alloca (strlen (gdb_sysroot)
520 + strlen (execd_pathname)
521 + 1);
522 strcpy (name, gdb_sysroot);
523 strcat (name, execd_pathname);
524 execd_pathname = name;
525 }
526
527 /* That a.out is now the one to use. */
528 exec_file_attach (execd_pathname, 0);
529
530 /* Reset the shared library package. This ensures that we get a
531 shlib event when the child reaches "_start", at which point the
532 dld will have had a chance to initialize the child. */
533 /* Also, loading a symbol file below may trigger symbol lookups, and
534 we don't want those to be satisfied by the libraries of the
535 previous incarnation of this process. */
536 no_shared_libraries (NULL, 0);
537
538 /* Load the main file's symbols. */
539 symbol_file_add_main (execd_pathname, 0);
540
541 #ifdef SOLIB_CREATE_INFERIOR_HOOK
542 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
543 #else
544 solib_create_inferior_hook ();
545 #endif
546
547 /* Reinsert all breakpoints. (Those which were symbolic have
548 been reset to the proper address in the new a.out, thanks
549 to symbol_file_command...) */
550 insert_breakpoints ();
551
552 /* The next resume of this inferior should bring it to the shlib
553 startup breakpoints. (If the user had also set bp's on
554 "main" from the old (parent) process, then they'll auto-
555 matically get reset there in the new process.) */
556 }
557
558 /* Non-zero if we just simulating a single-step. This is needed
559 because we cannot remove the breakpoints in the inferior process
560 until after the `wait' in `wait_for_inferior'. */
561 static int singlestep_breakpoints_inserted_p = 0;
562
563 /* The thread we inserted single-step breakpoints for. */
564 static ptid_t singlestep_ptid;
565
566 /* PC when we started this single-step. */
567 static CORE_ADDR singlestep_pc;
568
569 /* If another thread hit the singlestep breakpoint, we save the original
570 thread here so that we can resume single-stepping it later. */
571 static ptid_t saved_singlestep_ptid;
572 static int stepping_past_singlestep_breakpoint;
573
574 /* If not equal to null_ptid, this means that after stepping over breakpoint
575 is finished, we need to switch to deferred_step_ptid, and step it.
576
577 The use case is when one thread has hit a breakpoint, and then the user
578 has switched to another thread and issued 'step'. We need to step over
579 breakpoint in the thread which hit the breakpoint, but then continue
580 stepping the thread user has selected. */
581 static ptid_t deferred_step_ptid;
582 \f
583 /* Displaced stepping. */
584
585 /* In non-stop debugging mode, we must take special care to manage
586 breakpoints properly; in particular, the traditional strategy for
587 stepping a thread past a breakpoint it has hit is unsuitable.
588 'Displaced stepping' is a tactic for stepping one thread past a
589 breakpoint it has hit while ensuring that other threads running
590 concurrently will hit the breakpoint as they should.
591
592 The traditional way to step a thread T off a breakpoint in a
593 multi-threaded program in all-stop mode is as follows:
594
595 a0) Initially, all threads are stopped, and breakpoints are not
596 inserted.
597 a1) We single-step T, leaving breakpoints uninserted.
598 a2) We insert breakpoints, and resume all threads.
599
600 In non-stop debugging, however, this strategy is unsuitable: we
601 don't want to have to stop all threads in the system in order to
602 continue or step T past a breakpoint. Instead, we use displaced
603 stepping:
604
605 n0) Initially, T is stopped, other threads are running, and
606 breakpoints are inserted.
607 n1) We copy the instruction "under" the breakpoint to a separate
608 location, outside the main code stream, making any adjustments
609 to the instruction, register, and memory state as directed by
610 T's architecture.
611 n2) We single-step T over the instruction at its new location.
612 n3) We adjust the resulting register and memory state as directed
613 by T's architecture. This includes resetting T's PC to point
614 back into the main instruction stream.
615 n4) We resume T.
616
617 This approach depends on the following gdbarch methods:
618
619 - gdbarch_max_insn_length and gdbarch_displaced_step_location
620 indicate where to copy the instruction, and how much space must
621 be reserved there. We use these in step n1.
622
623 - gdbarch_displaced_step_copy_insn copies a instruction to a new
624 address, and makes any necessary adjustments to the instruction,
625 register contents, and memory. We use this in step n1.
626
627 - gdbarch_displaced_step_fixup adjusts registers and memory after
628 we have successfuly single-stepped the instruction, to yield the
629 same effect the instruction would have had if we had executed it
630 at its original address. We use this in step n3.
631
632 - gdbarch_displaced_step_free_closure provides cleanup.
633
634 The gdbarch_displaced_step_copy_insn and
635 gdbarch_displaced_step_fixup functions must be written so that
636 copying an instruction with gdbarch_displaced_step_copy_insn,
637 single-stepping across the copied instruction, and then applying
638 gdbarch_displaced_insn_fixup should have the same effects on the
639 thread's memory and registers as stepping the instruction in place
640 would have. Exactly which responsibilities fall to the copy and
641 which fall to the fixup is up to the author of those functions.
642
643 See the comments in gdbarch.sh for details.
644
645 Note that displaced stepping and software single-step cannot
646 currently be used in combination, although with some care I think
647 they could be made to. Software single-step works by placing
648 breakpoints on all possible subsequent instructions; if the
649 displaced instruction is a PC-relative jump, those breakpoints
650 could fall in very strange places --- on pages that aren't
651 executable, or at addresses that are not proper instruction
652 boundaries. (We do generally let other threads run while we wait
653 to hit the software single-step breakpoint, and they might
654 encounter such a corrupted instruction.) One way to work around
655 this would be to have gdbarch_displaced_step_copy_insn fully
656 simulate the effect of PC-relative instructions (and return NULL)
657 on architectures that use software single-stepping.
658
659 In non-stop mode, we can have independent and simultaneous step
660 requests, so more than one thread may need to simultaneously step
661 over a breakpoint. The current implementation assumes there is
662 only one scratch space per process. In this case, we have to
663 serialize access to the scratch space. If thread A wants to step
664 over a breakpoint, but we are currently waiting for some other
665 thread to complete a displaced step, we leave thread A stopped and
666 place it in the displaced_step_request_queue. Whenever a displaced
667 step finishes, we pick the next thread in the queue and start a new
668 displaced step operation on it. See displaced_step_prepare and
669 displaced_step_fixup for details. */
670
671 /* If this is not null_ptid, this is the thread carrying out a
672 displaced single-step. This thread's state will require fixing up
673 once it has completed its step. */
674 static ptid_t displaced_step_ptid;
675
676 struct displaced_step_request
677 {
678 ptid_t ptid;
679 struct displaced_step_request *next;
680 };
681
682 /* A queue of pending displaced stepping requests. */
683 struct displaced_step_request *displaced_step_request_queue;
684
685 /* The architecture the thread had when we stepped it. */
686 static struct gdbarch *displaced_step_gdbarch;
687
688 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
689 for post-step cleanup. */
690 static struct displaced_step_closure *displaced_step_closure;
691
692 /* The address of the original instruction, and the copy we made. */
693 static CORE_ADDR displaced_step_original, displaced_step_copy;
694
695 /* Saved contents of copy area. */
696 static gdb_byte *displaced_step_saved_copy;
697
698 /* Enum strings for "set|show displaced-stepping". */
699
700 static const char can_use_displaced_stepping_auto[] = "auto";
701 static const char can_use_displaced_stepping_on[] = "on";
702 static const char can_use_displaced_stepping_off[] = "off";
703 static const char *can_use_displaced_stepping_enum[] =
704 {
705 can_use_displaced_stepping_auto,
706 can_use_displaced_stepping_on,
707 can_use_displaced_stepping_off,
708 NULL,
709 };
710
711 /* If ON, and the architecture supports it, GDB will use displaced
712 stepping to step over breakpoints. If OFF, or if the architecture
713 doesn't support it, GDB will instead use the traditional
714 hold-and-step approach. If AUTO (which is the default), GDB will
715 decide which technique to use to step over breakpoints depending on
716 which of all-stop or non-stop mode is active --- displaced stepping
717 in non-stop mode; hold-and-step in all-stop mode. */
718
719 static const char *can_use_displaced_stepping =
720 can_use_displaced_stepping_auto;
721
722 static void
723 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
724 struct cmd_list_element *c,
725 const char *value)
726 {
727 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
728 fprintf_filtered (file, _("\
729 Debugger's willingness to use displaced stepping to step over \
730 breakpoints is %s (currently %s).\n"),
731 value, non_stop ? "on" : "off");
732 else
733 fprintf_filtered (file, _("\
734 Debugger's willingness to use displaced stepping to step over \
735 breakpoints is %s.\n"), value);
736 }
737
738 /* Return non-zero if displaced stepping can/should be used to step
739 over breakpoints. */
740
741 static int
742 use_displaced_stepping (struct gdbarch *gdbarch)
743 {
744 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
745 && non_stop)
746 || can_use_displaced_stepping == can_use_displaced_stepping_on)
747 && gdbarch_displaced_step_copy_insn_p (gdbarch)
748 && !RECORD_IS_USED);
749 }
750
751 /* Clean out any stray displaced stepping state. */
752 static void
753 displaced_step_clear (void)
754 {
755 /* Indicate that there is no cleanup pending. */
756 displaced_step_ptid = null_ptid;
757
758 if (displaced_step_closure)
759 {
760 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
761 displaced_step_closure);
762 displaced_step_closure = NULL;
763 }
764 }
765
766 static void
767 displaced_step_clear_cleanup (void *ignore)
768 {
769 displaced_step_clear ();
770 }
771
772 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
773 void
774 displaced_step_dump_bytes (struct ui_file *file,
775 const gdb_byte *buf,
776 size_t len)
777 {
778 int i;
779
780 for (i = 0; i < len; i++)
781 fprintf_unfiltered (file, "%02x ", buf[i]);
782 fputs_unfiltered ("\n", file);
783 }
784
785 /* Prepare to single-step, using displaced stepping.
786
787 Note that we cannot use displaced stepping when we have a signal to
788 deliver. If we have a signal to deliver and an instruction to step
789 over, then after the step, there will be no indication from the
790 target whether the thread entered a signal handler or ignored the
791 signal and stepped over the instruction successfully --- both cases
792 result in a simple SIGTRAP. In the first case we mustn't do a
793 fixup, and in the second case we must --- but we can't tell which.
794 Comments in the code for 'random signals' in handle_inferior_event
795 explain how we handle this case instead.
796
797 Returns 1 if preparing was successful -- this thread is going to be
798 stepped now; or 0 if displaced stepping this thread got queued. */
799 static int
800 displaced_step_prepare (ptid_t ptid)
801 {
802 struct cleanup *old_cleanups, *ignore_cleanups;
803 struct regcache *regcache = get_thread_regcache (ptid);
804 struct gdbarch *gdbarch = get_regcache_arch (regcache);
805 CORE_ADDR original, copy;
806 ULONGEST len;
807 struct displaced_step_closure *closure;
808
809 /* We should never reach this function if the architecture does not
810 support displaced stepping. */
811 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
812
813 /* For the first cut, we're displaced stepping one thread at a
814 time. */
815
816 if (!ptid_equal (displaced_step_ptid, null_ptid))
817 {
818 /* Already waiting for a displaced step to finish. Defer this
819 request and place in queue. */
820 struct displaced_step_request *req, *new_req;
821
822 if (debug_displaced)
823 fprintf_unfiltered (gdb_stdlog,
824 "displaced: defering step of %s\n",
825 target_pid_to_str (ptid));
826
827 new_req = xmalloc (sizeof (*new_req));
828 new_req->ptid = ptid;
829 new_req->next = NULL;
830
831 if (displaced_step_request_queue)
832 {
833 for (req = displaced_step_request_queue;
834 req && req->next;
835 req = req->next)
836 ;
837 req->next = new_req;
838 }
839 else
840 displaced_step_request_queue = new_req;
841
842 return 0;
843 }
844 else
845 {
846 if (debug_displaced)
847 fprintf_unfiltered (gdb_stdlog,
848 "displaced: stepping %s now\n",
849 target_pid_to_str (ptid));
850 }
851
852 displaced_step_clear ();
853
854 old_cleanups = save_inferior_ptid ();
855 inferior_ptid = ptid;
856
857 original = regcache_read_pc (regcache);
858
859 copy = gdbarch_displaced_step_location (gdbarch);
860 len = gdbarch_max_insn_length (gdbarch);
861
862 /* Save the original contents of the copy area. */
863 displaced_step_saved_copy = xmalloc (len);
864 ignore_cleanups = make_cleanup (free_current_contents,
865 &displaced_step_saved_copy);
866 read_memory (copy, displaced_step_saved_copy, len);
867 if (debug_displaced)
868 {
869 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
870 paddr_nz (copy));
871 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
872 };
873
874 closure = gdbarch_displaced_step_copy_insn (gdbarch,
875 original, copy, regcache);
876
877 /* We don't support the fully-simulated case at present. */
878 gdb_assert (closure);
879
880 /* Save the information we need to fix things up if the step
881 succeeds. */
882 displaced_step_ptid = ptid;
883 displaced_step_gdbarch = gdbarch;
884 displaced_step_closure = closure;
885 displaced_step_original = original;
886 displaced_step_copy = copy;
887
888 make_cleanup (displaced_step_clear_cleanup, 0);
889
890 /* Resume execution at the copy. */
891 regcache_write_pc (regcache, copy);
892
893 discard_cleanups (ignore_cleanups);
894
895 do_cleanups (old_cleanups);
896
897 if (debug_displaced)
898 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
899 paddr_nz (copy));
900
901 return 1;
902 }
903
904 static void
905 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
906 {
907 struct cleanup *ptid_cleanup = save_inferior_ptid ();
908 inferior_ptid = ptid;
909 write_memory (memaddr, myaddr, len);
910 do_cleanups (ptid_cleanup);
911 }
912
913 static void
914 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
915 {
916 struct cleanup *old_cleanups;
917
918 /* Was this event for the pid we displaced? */
919 if (ptid_equal (displaced_step_ptid, null_ptid)
920 || ! ptid_equal (displaced_step_ptid, event_ptid))
921 return;
922
923 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
924
925 /* Restore the contents of the copy area. */
926 {
927 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
928 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
929 displaced_step_saved_copy, len);
930 if (debug_displaced)
931 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
932 paddr_nz (displaced_step_copy));
933 }
934
935 /* Did the instruction complete successfully? */
936 if (signal == TARGET_SIGNAL_TRAP)
937 {
938 /* Fix up the resulting state. */
939 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
940 displaced_step_closure,
941 displaced_step_original,
942 displaced_step_copy,
943 get_thread_regcache (displaced_step_ptid));
944 }
945 else
946 {
947 /* Since the instruction didn't complete, all we can do is
948 relocate the PC. */
949 struct regcache *regcache = get_thread_regcache (event_ptid);
950 CORE_ADDR pc = regcache_read_pc (regcache);
951 pc = displaced_step_original + (pc - displaced_step_copy);
952 regcache_write_pc (regcache, pc);
953 }
954
955 do_cleanups (old_cleanups);
956
957 displaced_step_ptid = null_ptid;
958
959 /* Are there any pending displaced stepping requests? If so, run
960 one now. */
961 while (displaced_step_request_queue)
962 {
963 struct displaced_step_request *head;
964 ptid_t ptid;
965 CORE_ADDR actual_pc;
966
967 head = displaced_step_request_queue;
968 ptid = head->ptid;
969 displaced_step_request_queue = head->next;
970 xfree (head);
971
972 context_switch (ptid);
973
974 actual_pc = regcache_read_pc (get_thread_regcache (ptid));
975
976 if (breakpoint_here_p (actual_pc))
977 {
978 if (debug_displaced)
979 fprintf_unfiltered (gdb_stdlog,
980 "displaced: stepping queued %s now\n",
981 target_pid_to_str (ptid));
982
983 displaced_step_prepare (ptid);
984
985 if (debug_displaced)
986 {
987 gdb_byte buf[4];
988
989 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
990 paddr_nz (actual_pc));
991 read_memory (actual_pc, buf, sizeof (buf));
992 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
993 }
994
995 target_resume (ptid, 1, TARGET_SIGNAL_0);
996
997 /* Done, we're stepping a thread. */
998 break;
999 }
1000 else
1001 {
1002 int step;
1003 struct thread_info *tp = inferior_thread ();
1004
1005 /* The breakpoint we were sitting under has since been
1006 removed. */
1007 tp->trap_expected = 0;
1008
1009 /* Go back to what we were trying to do. */
1010 step = currently_stepping (tp);
1011
1012 if (debug_displaced)
1013 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1014 target_pid_to_str (tp->ptid), step);
1015
1016 target_resume (ptid, step, TARGET_SIGNAL_0);
1017 tp->stop_signal = TARGET_SIGNAL_0;
1018
1019 /* This request was discarded. See if there's any other
1020 thread waiting for its turn. */
1021 }
1022 }
1023 }
1024
1025 /* Update global variables holding ptids to hold NEW_PTID if they were
1026 holding OLD_PTID. */
1027 static void
1028 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1029 {
1030 struct displaced_step_request *it;
1031
1032 if (ptid_equal (inferior_ptid, old_ptid))
1033 inferior_ptid = new_ptid;
1034
1035 if (ptid_equal (singlestep_ptid, old_ptid))
1036 singlestep_ptid = new_ptid;
1037
1038 if (ptid_equal (displaced_step_ptid, old_ptid))
1039 displaced_step_ptid = new_ptid;
1040
1041 if (ptid_equal (deferred_step_ptid, old_ptid))
1042 deferred_step_ptid = new_ptid;
1043
1044 for (it = displaced_step_request_queue; it; it = it->next)
1045 if (ptid_equal (it->ptid, old_ptid))
1046 it->ptid = new_ptid;
1047 }
1048
1049 \f
1050 /* Resuming. */
1051
1052 /* Things to clean up if we QUIT out of resume (). */
1053 static void
1054 resume_cleanups (void *ignore)
1055 {
1056 normal_stop ();
1057 }
1058
1059 static const char schedlock_off[] = "off";
1060 static const char schedlock_on[] = "on";
1061 static const char schedlock_step[] = "step";
1062 static const char *scheduler_enums[] = {
1063 schedlock_off,
1064 schedlock_on,
1065 schedlock_step,
1066 NULL
1067 };
1068 static const char *scheduler_mode = schedlock_off;
1069 static void
1070 show_scheduler_mode (struct ui_file *file, int from_tty,
1071 struct cmd_list_element *c, const char *value)
1072 {
1073 fprintf_filtered (file, _("\
1074 Mode for locking scheduler during execution is \"%s\".\n"),
1075 value);
1076 }
1077
1078 static void
1079 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1080 {
1081 if (!target_can_lock_scheduler)
1082 {
1083 scheduler_mode = schedlock_off;
1084 error (_("Target '%s' cannot support this command."), target_shortname);
1085 }
1086 }
1087
1088 /* True if execution commands resume all threads of all processes by
1089 default; otherwise, resume only threads of the current inferior
1090 process. */
1091 int sched_multi = 0;
1092
1093 /* Try to setup for software single stepping over the specified location.
1094 Return 1 if target_resume() should use hardware single step.
1095
1096 GDBARCH the current gdbarch.
1097 PC the location to step over. */
1098
1099 static int
1100 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1101 {
1102 int hw_step = 1;
1103
1104 if (gdbarch_software_single_step_p (gdbarch)
1105 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1106 {
1107 hw_step = 0;
1108 /* Do not pull these breakpoints until after a `wait' in
1109 `wait_for_inferior' */
1110 singlestep_breakpoints_inserted_p = 1;
1111 singlestep_ptid = inferior_ptid;
1112 singlestep_pc = pc;
1113 }
1114 return hw_step;
1115 }
1116
1117 /* Resume the inferior, but allow a QUIT. This is useful if the user
1118 wants to interrupt some lengthy single-stepping operation
1119 (for child processes, the SIGINT goes to the inferior, and so
1120 we get a SIGINT random_signal, but for remote debugging and perhaps
1121 other targets, that's not true).
1122
1123 STEP nonzero if we should step (zero to continue instead).
1124 SIG is the signal to give the inferior (zero for none). */
1125 void
1126 resume (int step, enum target_signal sig)
1127 {
1128 int should_resume = 1;
1129 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1130 struct regcache *regcache = get_current_regcache ();
1131 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1132 struct thread_info *tp = inferior_thread ();
1133 CORE_ADDR pc = regcache_read_pc (regcache);
1134
1135 QUIT;
1136
1137 if (debug_infrun)
1138 fprintf_unfiltered (gdb_stdlog,
1139 "infrun: resume (step=%d, signal=%d), "
1140 "trap_expected=%d\n",
1141 step, sig, tp->trap_expected);
1142
1143 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
1144 over an instruction that causes a page fault without triggering
1145 a hardware watchpoint. The kernel properly notices that it shouldn't
1146 stop, because the hardware watchpoint is not triggered, but it forgets
1147 the step request and continues the program normally.
1148 Work around the problem by removing hardware watchpoints if a step is
1149 requested, GDB will check for a hardware watchpoint trigger after the
1150 step anyway. */
1151 if (CANNOT_STEP_HW_WATCHPOINTS && step)
1152 remove_hw_watchpoints ();
1153
1154
1155 /* Normally, by the time we reach `resume', the breakpoints are either
1156 removed or inserted, as appropriate. The exception is if we're sitting
1157 at a permanent breakpoint; we need to step over it, but permanent
1158 breakpoints can't be removed. So we have to test for it here. */
1159 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
1160 {
1161 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1162 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1163 else
1164 error (_("\
1165 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1166 how to step past a permanent breakpoint on this architecture. Try using\n\
1167 a command like `return' or `jump' to continue execution."));
1168 }
1169
1170 /* If enabled, step over breakpoints by executing a copy of the
1171 instruction at a different address.
1172
1173 We can't use displaced stepping when we have a signal to deliver;
1174 the comments for displaced_step_prepare explain why. The
1175 comments in the handle_inferior event for dealing with 'random
1176 signals' explain what we do instead. */
1177 if (use_displaced_stepping (gdbarch)
1178 && tp->trap_expected
1179 && sig == TARGET_SIGNAL_0)
1180 {
1181 if (!displaced_step_prepare (inferior_ptid))
1182 {
1183 /* Got placed in displaced stepping queue. Will be resumed
1184 later when all the currently queued displaced stepping
1185 requests finish. The thread is not executing at this point,
1186 and the call to set_executing will be made later. But we
1187 need to call set_running here, since from frontend point of view,
1188 the thread is running. */
1189 set_running (inferior_ptid, 1);
1190 discard_cleanups (old_cleanups);
1191 return;
1192 }
1193 }
1194
1195 /* Do we need to do it the hard way, w/temp breakpoints? */
1196 if (step)
1197 step = maybe_software_singlestep (gdbarch, pc);
1198
1199 if (should_resume)
1200 {
1201 ptid_t resume_ptid;
1202
1203 /* If STEP is set, it's a request to use hardware stepping
1204 facilities. But in that case, we should never
1205 use singlestep breakpoint. */
1206 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1207
1208 /* Decide the set of threads to ask the target to resume. Start
1209 by assuming everything will be resumed, than narrow the set
1210 by applying increasingly restricting conditions. */
1211
1212 /* By default, resume all threads of all processes. */
1213 resume_ptid = RESUME_ALL;
1214
1215 /* Maybe resume only all threads of the current process. */
1216 if (!sched_multi && target_supports_multi_process ())
1217 {
1218 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1219 }
1220
1221 /* Maybe resume a single thread after all. */
1222 if (singlestep_breakpoints_inserted_p
1223 && stepping_past_singlestep_breakpoint)
1224 {
1225 /* The situation here is as follows. In thread T1 we wanted to
1226 single-step. Lacking hardware single-stepping we've
1227 set breakpoint at the PC of the next instruction -- call it
1228 P. After resuming, we've hit that breakpoint in thread T2.
1229 Now we've removed original breakpoint, inserted breakpoint
1230 at P+1, and try to step to advance T2 past breakpoint.
1231 We need to step only T2, as if T1 is allowed to freely run,
1232 it can run past P, and if other threads are allowed to run,
1233 they can hit breakpoint at P+1, and nested hits of single-step
1234 breakpoints is not something we'd want -- that's complicated
1235 to support, and has no value. */
1236 resume_ptid = inferior_ptid;
1237 }
1238 else if ((step || singlestep_breakpoints_inserted_p)
1239 && tp->trap_expected)
1240 {
1241 /* We're allowing a thread to run past a breakpoint it has
1242 hit, by single-stepping the thread with the breakpoint
1243 removed. In which case, we need to single-step only this
1244 thread, and keep others stopped, as they can miss this
1245 breakpoint if allowed to run.
1246
1247 The current code actually removes all breakpoints when
1248 doing this, not just the one being stepped over, so if we
1249 let other threads run, we can actually miss any
1250 breakpoint, not just the one at PC. */
1251 resume_ptid = inferior_ptid;
1252 }
1253 else if (non_stop)
1254 {
1255 /* With non-stop mode on, threads are always handled
1256 individually. */
1257 resume_ptid = inferior_ptid;
1258 }
1259 else if ((scheduler_mode == schedlock_on)
1260 || (scheduler_mode == schedlock_step
1261 && (step || singlestep_breakpoints_inserted_p)))
1262 {
1263 /* User-settable 'scheduler' mode requires solo thread resume. */
1264 resume_ptid = inferior_ptid;
1265 }
1266
1267 if (gdbarch_cannot_step_breakpoint (gdbarch))
1268 {
1269 /* Most targets can step a breakpoint instruction, thus
1270 executing it normally. But if this one cannot, just
1271 continue and we will hit it anyway. */
1272 if (step && breakpoint_inserted_here_p (pc))
1273 step = 0;
1274 }
1275
1276 if (debug_displaced
1277 && use_displaced_stepping (gdbarch)
1278 && tp->trap_expected)
1279 {
1280 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1281 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1282 gdb_byte buf[4];
1283
1284 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1285 paddr_nz (actual_pc));
1286 read_memory (actual_pc, buf, sizeof (buf));
1287 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1288 }
1289
1290 /* Install inferior's terminal modes. */
1291 target_terminal_inferior ();
1292
1293 /* Avoid confusing the next resume, if the next stop/resume
1294 happens to apply to another thread. */
1295 tp->stop_signal = TARGET_SIGNAL_0;
1296
1297 target_resume (resume_ptid, step, sig);
1298 }
1299
1300 discard_cleanups (old_cleanups);
1301 }
1302 \f
1303 /* Proceeding. */
1304
1305 /* Clear out all variables saying what to do when inferior is continued.
1306 First do this, then set the ones you want, then call `proceed'. */
1307
1308 static void
1309 clear_proceed_status_thread (struct thread_info *tp)
1310 {
1311 if (debug_infrun)
1312 fprintf_unfiltered (gdb_stdlog,
1313 "infrun: clear_proceed_status_thread (%s)\n",
1314 target_pid_to_str (tp->ptid));
1315
1316 tp->trap_expected = 0;
1317 tp->step_range_start = 0;
1318 tp->step_range_end = 0;
1319 tp->step_frame_id = null_frame_id;
1320 tp->step_stack_frame_id = null_frame_id;
1321 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1322 tp->stop_requested = 0;
1323
1324 tp->stop_step = 0;
1325
1326 tp->proceed_to_finish = 0;
1327
1328 /* Discard any remaining commands or status from previous stop. */
1329 bpstat_clear (&tp->stop_bpstat);
1330 }
1331
1332 static int
1333 clear_proceed_status_callback (struct thread_info *tp, void *data)
1334 {
1335 if (is_exited (tp->ptid))
1336 return 0;
1337
1338 clear_proceed_status_thread (tp);
1339 return 0;
1340 }
1341
1342 void
1343 clear_proceed_status (void)
1344 {
1345 if (!ptid_equal (inferior_ptid, null_ptid))
1346 {
1347 struct inferior *inferior;
1348
1349 if (non_stop)
1350 {
1351 /* If in non-stop mode, only delete the per-thread status
1352 of the current thread. */
1353 clear_proceed_status_thread (inferior_thread ());
1354 }
1355 else
1356 {
1357 /* In all-stop mode, delete the per-thread status of
1358 *all* threads. */
1359 iterate_over_threads (clear_proceed_status_callback, NULL);
1360 }
1361
1362 inferior = current_inferior ();
1363 inferior->stop_soon = NO_STOP_QUIETLY;
1364 }
1365
1366 stop_after_trap = 0;
1367
1368 observer_notify_about_to_proceed ();
1369
1370 if (stop_registers)
1371 {
1372 regcache_xfree (stop_registers);
1373 stop_registers = NULL;
1374 }
1375 }
1376
1377 /* Check the current thread against the thread that reported the most recent
1378 event. If a step-over is required return TRUE and set the current thread
1379 to the old thread. Otherwise return FALSE.
1380
1381 This should be suitable for any targets that support threads. */
1382
1383 static int
1384 prepare_to_proceed (int step)
1385 {
1386 ptid_t wait_ptid;
1387 struct target_waitstatus wait_status;
1388 int schedlock_enabled;
1389
1390 /* With non-stop mode on, threads are always handled individually. */
1391 gdb_assert (! non_stop);
1392
1393 /* Get the last target status returned by target_wait(). */
1394 get_last_target_status (&wait_ptid, &wait_status);
1395
1396 /* Make sure we were stopped at a breakpoint. */
1397 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1398 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1399 {
1400 return 0;
1401 }
1402
1403 schedlock_enabled = (scheduler_mode == schedlock_on
1404 || (scheduler_mode == schedlock_step
1405 && step));
1406
1407 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1408 if (schedlock_enabled)
1409 return 0;
1410
1411 /* Don't switch over if we're about to resume some other process
1412 other than WAIT_PTID's, and schedule-multiple is off. */
1413 if (!sched_multi
1414 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1415 return 0;
1416
1417 /* Switched over from WAIT_PID. */
1418 if (!ptid_equal (wait_ptid, minus_one_ptid)
1419 && !ptid_equal (inferior_ptid, wait_ptid))
1420 {
1421 struct regcache *regcache = get_thread_regcache (wait_ptid);
1422
1423 if (breakpoint_here_p (regcache_read_pc (regcache)))
1424 {
1425 /* If stepping, remember current thread to switch back to. */
1426 if (step)
1427 deferred_step_ptid = inferior_ptid;
1428
1429 /* Switch back to WAIT_PID thread. */
1430 switch_to_thread (wait_ptid);
1431
1432 /* We return 1 to indicate that there is a breakpoint here,
1433 so we need to step over it before continuing to avoid
1434 hitting it straight away. */
1435 return 1;
1436 }
1437 }
1438
1439 return 0;
1440 }
1441
1442 /* Basic routine for continuing the program in various fashions.
1443
1444 ADDR is the address to resume at, or -1 for resume where stopped.
1445 SIGGNAL is the signal to give it, or 0 for none,
1446 or -1 for act according to how it stopped.
1447 STEP is nonzero if should trap after one instruction.
1448 -1 means return after that and print nothing.
1449 You should probably set various step_... variables
1450 before calling here, if you are stepping.
1451
1452 You should call clear_proceed_status before calling proceed. */
1453
1454 void
1455 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1456 {
1457 struct regcache *regcache;
1458 struct gdbarch *gdbarch;
1459 struct thread_info *tp;
1460 CORE_ADDR pc;
1461 int oneproc = 0;
1462
1463 /* If we're stopped at a fork/vfork, follow the branch set by the
1464 "set follow-fork-mode" command; otherwise, we'll just proceed
1465 resuming the current thread. */
1466 if (!follow_fork ())
1467 {
1468 /* The target for some reason decided not to resume. */
1469 normal_stop ();
1470 return;
1471 }
1472
1473 regcache = get_current_regcache ();
1474 gdbarch = get_regcache_arch (regcache);
1475 pc = regcache_read_pc (regcache);
1476
1477 if (step > 0)
1478 step_start_function = find_pc_function (pc);
1479 if (step < 0)
1480 stop_after_trap = 1;
1481
1482 if (addr == (CORE_ADDR) -1)
1483 {
1484 if (pc == stop_pc && breakpoint_here_p (pc)
1485 && execution_direction != EXEC_REVERSE)
1486 /* There is a breakpoint at the address we will resume at,
1487 step one instruction before inserting breakpoints so that
1488 we do not stop right away (and report a second hit at this
1489 breakpoint).
1490
1491 Note, we don't do this in reverse, because we won't
1492 actually be executing the breakpoint insn anyway.
1493 We'll be (un-)executing the previous instruction. */
1494
1495 oneproc = 1;
1496 else if (gdbarch_single_step_through_delay_p (gdbarch)
1497 && gdbarch_single_step_through_delay (gdbarch,
1498 get_current_frame ()))
1499 /* We stepped onto an instruction that needs to be stepped
1500 again before re-inserting the breakpoint, do so. */
1501 oneproc = 1;
1502 }
1503 else
1504 {
1505 regcache_write_pc (regcache, addr);
1506 }
1507
1508 if (debug_infrun)
1509 fprintf_unfiltered (gdb_stdlog,
1510 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1511 paddr_nz (addr), siggnal, step);
1512
1513 if (non_stop)
1514 /* In non-stop, each thread is handled individually. The context
1515 must already be set to the right thread here. */
1516 ;
1517 else
1518 {
1519 /* In a multi-threaded task we may select another thread and
1520 then continue or step.
1521
1522 But if the old thread was stopped at a breakpoint, it will
1523 immediately cause another breakpoint stop without any
1524 execution (i.e. it will report a breakpoint hit incorrectly).
1525 So we must step over it first.
1526
1527 prepare_to_proceed checks the current thread against the
1528 thread that reported the most recent event. If a step-over
1529 is required it returns TRUE and sets the current thread to
1530 the old thread. */
1531 if (prepare_to_proceed (step))
1532 oneproc = 1;
1533 }
1534
1535 /* prepare_to_proceed may change the current thread. */
1536 tp = inferior_thread ();
1537
1538 if (oneproc)
1539 {
1540 tp->trap_expected = 1;
1541 /* If displaced stepping is enabled, we can step over the
1542 breakpoint without hitting it, so leave all breakpoints
1543 inserted. Otherwise we need to disable all breakpoints, step
1544 one instruction, and then re-add them when that step is
1545 finished. */
1546 if (!use_displaced_stepping (gdbarch))
1547 remove_breakpoints ();
1548 }
1549
1550 /* We can insert breakpoints if we're not trying to step over one,
1551 or if we are stepping over one but we're using displaced stepping
1552 to do so. */
1553 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1554 insert_breakpoints ();
1555
1556 if (!non_stop)
1557 {
1558 /* Pass the last stop signal to the thread we're resuming,
1559 irrespective of whether the current thread is the thread that
1560 got the last event or not. This was historically GDB's
1561 behaviour before keeping a stop_signal per thread. */
1562
1563 struct thread_info *last_thread;
1564 ptid_t last_ptid;
1565 struct target_waitstatus last_status;
1566
1567 get_last_target_status (&last_ptid, &last_status);
1568 if (!ptid_equal (inferior_ptid, last_ptid)
1569 && !ptid_equal (last_ptid, null_ptid)
1570 && !ptid_equal (last_ptid, minus_one_ptid))
1571 {
1572 last_thread = find_thread_ptid (last_ptid);
1573 if (last_thread)
1574 {
1575 tp->stop_signal = last_thread->stop_signal;
1576 last_thread->stop_signal = TARGET_SIGNAL_0;
1577 }
1578 }
1579 }
1580
1581 if (siggnal != TARGET_SIGNAL_DEFAULT)
1582 tp->stop_signal = siggnal;
1583 /* If this signal should not be seen by program,
1584 give it zero. Used for debugging signals. */
1585 else if (!signal_program[tp->stop_signal])
1586 tp->stop_signal = TARGET_SIGNAL_0;
1587
1588 annotate_starting ();
1589
1590 /* Make sure that output from GDB appears before output from the
1591 inferior. */
1592 gdb_flush (gdb_stdout);
1593
1594 /* Refresh prev_pc value just prior to resuming. This used to be
1595 done in stop_stepping, however, setting prev_pc there did not handle
1596 scenarios such as inferior function calls or returning from
1597 a function via the return command. In those cases, the prev_pc
1598 value was not set properly for subsequent commands. The prev_pc value
1599 is used to initialize the starting line number in the ecs. With an
1600 invalid value, the gdb next command ends up stopping at the position
1601 represented by the next line table entry past our start position.
1602 On platforms that generate one line table entry per line, this
1603 is not a problem. However, on the ia64, the compiler generates
1604 extraneous line table entries that do not increase the line number.
1605 When we issue the gdb next command on the ia64 after an inferior call
1606 or a return command, we often end up a few instructions forward, still
1607 within the original line we started.
1608
1609 An attempt was made to have init_execution_control_state () refresh
1610 the prev_pc value before calculating the line number. This approach
1611 did not work because on platforms that use ptrace, the pc register
1612 cannot be read unless the inferior is stopped. At that point, we
1613 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1614 call can fail. Setting the prev_pc value here ensures the value is
1615 updated correctly when the inferior is stopped. */
1616 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1617
1618 /* Fill in with reasonable starting values. */
1619 init_thread_stepping_state (tp);
1620
1621 /* Reset to normal state. */
1622 init_infwait_state ();
1623
1624 /* Resume inferior. */
1625 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
1626
1627 /* Wait for it to stop (if not standalone)
1628 and in any case decode why it stopped, and act accordingly. */
1629 /* Do this only if we are not using the event loop, or if the target
1630 does not support asynchronous execution. */
1631 if (!target_can_async_p ())
1632 {
1633 wait_for_inferior (0);
1634 normal_stop ();
1635 }
1636 }
1637 \f
1638
1639 /* Start remote-debugging of a machine over a serial link. */
1640
1641 void
1642 start_remote (int from_tty)
1643 {
1644 struct inferior *inferior;
1645 init_wait_for_inferior ();
1646
1647 inferior = current_inferior ();
1648 inferior->stop_soon = STOP_QUIETLY_REMOTE;
1649
1650 /* Always go on waiting for the target, regardless of the mode. */
1651 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1652 indicate to wait_for_inferior that a target should timeout if
1653 nothing is returned (instead of just blocking). Because of this,
1654 targets expecting an immediate response need to, internally, set
1655 things up so that the target_wait() is forced to eventually
1656 timeout. */
1657 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1658 differentiate to its caller what the state of the target is after
1659 the initial open has been performed. Here we're assuming that
1660 the target has stopped. It should be possible to eventually have
1661 target_open() return to the caller an indication that the target
1662 is currently running and GDB state should be set to the same as
1663 for an async run. */
1664 wait_for_inferior (0);
1665
1666 /* Now that the inferior has stopped, do any bookkeeping like
1667 loading shared libraries. We want to do this before normal_stop,
1668 so that the displayed frame is up to date. */
1669 post_create_inferior (&current_target, from_tty);
1670
1671 normal_stop ();
1672 }
1673
1674 /* Initialize static vars when a new inferior begins. */
1675
1676 void
1677 init_wait_for_inferior (void)
1678 {
1679 /* These are meaningless until the first time through wait_for_inferior. */
1680
1681 breakpoint_init_inferior (inf_starting);
1682
1683 clear_proceed_status ();
1684
1685 stepping_past_singlestep_breakpoint = 0;
1686 deferred_step_ptid = null_ptid;
1687
1688 target_last_wait_ptid = minus_one_ptid;
1689
1690 previous_inferior_ptid = null_ptid;
1691 init_infwait_state ();
1692
1693 displaced_step_clear ();
1694
1695 /* Discard any skipped inlined frames. */
1696 clear_inline_frame_state (minus_one_ptid);
1697 }
1698
1699 \f
1700 /* This enum encodes possible reasons for doing a target_wait, so that
1701 wfi can call target_wait in one place. (Ultimately the call will be
1702 moved out of the infinite loop entirely.) */
1703
1704 enum infwait_states
1705 {
1706 infwait_normal_state,
1707 infwait_thread_hop_state,
1708 infwait_step_watch_state,
1709 infwait_nonstep_watch_state
1710 };
1711
1712 /* Why did the inferior stop? Used to print the appropriate messages
1713 to the interface from within handle_inferior_event(). */
1714 enum inferior_stop_reason
1715 {
1716 /* Step, next, nexti, stepi finished. */
1717 END_STEPPING_RANGE,
1718 /* Inferior terminated by signal. */
1719 SIGNAL_EXITED,
1720 /* Inferior exited. */
1721 EXITED,
1722 /* Inferior received signal, and user asked to be notified. */
1723 SIGNAL_RECEIVED,
1724 /* Reverse execution -- target ran out of history info. */
1725 NO_HISTORY
1726 };
1727
1728 /* The PTID we'll do a target_wait on.*/
1729 ptid_t waiton_ptid;
1730
1731 /* Current inferior wait state. */
1732 enum infwait_states infwait_state;
1733
1734 /* Data to be passed around while handling an event. This data is
1735 discarded between events. */
1736 struct execution_control_state
1737 {
1738 ptid_t ptid;
1739 /* The thread that got the event, if this was a thread event; NULL
1740 otherwise. */
1741 struct thread_info *event_thread;
1742
1743 struct target_waitstatus ws;
1744 int random_signal;
1745 CORE_ADDR stop_func_start;
1746 CORE_ADDR stop_func_end;
1747 char *stop_func_name;
1748 int new_thread_event;
1749 int wait_some_more;
1750 };
1751
1752 static void init_execution_control_state (struct execution_control_state *ecs);
1753
1754 void handle_inferior_event (struct execution_control_state *ecs);
1755
1756 static void handle_step_into_function (struct gdbarch *gdbarch,
1757 struct execution_control_state *ecs);
1758 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
1759 struct execution_control_state *ecs);
1760 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1761 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1762 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1763 struct frame_id sr_id);
1764 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1765
1766 static void stop_stepping (struct execution_control_state *ecs);
1767 static void prepare_to_wait (struct execution_control_state *ecs);
1768 static void keep_going (struct execution_control_state *ecs);
1769 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1770 int stop_info);
1771
1772 /* Callback for iterate over threads. If the thread is stopped, but
1773 the user/frontend doesn't know about that yet, go through
1774 normal_stop, as if the thread had just stopped now. ARG points at
1775 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1776 ptid_is_pid(PTID) is true, applies to all threads of the process
1777 pointed at by PTID. Otherwise, apply only to the thread pointed by
1778 PTID. */
1779
1780 static int
1781 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1782 {
1783 ptid_t ptid = * (ptid_t *) arg;
1784
1785 if ((ptid_equal (info->ptid, ptid)
1786 || ptid_equal (minus_one_ptid, ptid)
1787 || (ptid_is_pid (ptid)
1788 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1789 && is_running (info->ptid)
1790 && !is_executing (info->ptid))
1791 {
1792 struct cleanup *old_chain;
1793 struct execution_control_state ecss;
1794 struct execution_control_state *ecs = &ecss;
1795
1796 memset (ecs, 0, sizeof (*ecs));
1797
1798 old_chain = make_cleanup_restore_current_thread ();
1799
1800 switch_to_thread (info->ptid);
1801
1802 /* Go through handle_inferior_event/normal_stop, so we always
1803 have consistent output as if the stop event had been
1804 reported. */
1805 ecs->ptid = info->ptid;
1806 ecs->event_thread = find_thread_ptid (info->ptid);
1807 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1808 ecs->ws.value.sig = TARGET_SIGNAL_0;
1809
1810 handle_inferior_event (ecs);
1811
1812 if (!ecs->wait_some_more)
1813 {
1814 struct thread_info *tp;
1815
1816 normal_stop ();
1817
1818 /* Finish off the continuations. The continations
1819 themselves are responsible for realising the thread
1820 didn't finish what it was supposed to do. */
1821 tp = inferior_thread ();
1822 do_all_intermediate_continuations_thread (tp);
1823 do_all_continuations_thread (tp);
1824 }
1825
1826 do_cleanups (old_chain);
1827 }
1828
1829 return 0;
1830 }
1831
1832 /* This function is attached as a "thread_stop_requested" observer.
1833 Cleanup local state that assumed the PTID was to be resumed, and
1834 report the stop to the frontend. */
1835
1836 static void
1837 infrun_thread_stop_requested (ptid_t ptid)
1838 {
1839 struct displaced_step_request *it, *next, *prev = NULL;
1840
1841 /* PTID was requested to stop. Remove it from the displaced
1842 stepping queue, so we don't try to resume it automatically. */
1843 for (it = displaced_step_request_queue; it; it = next)
1844 {
1845 next = it->next;
1846
1847 if (ptid_equal (it->ptid, ptid)
1848 || ptid_equal (minus_one_ptid, ptid)
1849 || (ptid_is_pid (ptid)
1850 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1851 {
1852 if (displaced_step_request_queue == it)
1853 displaced_step_request_queue = it->next;
1854 else
1855 prev->next = it->next;
1856
1857 xfree (it);
1858 }
1859 else
1860 prev = it;
1861 }
1862
1863 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1864 }
1865
1866 static void
1867 infrun_thread_thread_exit (struct thread_info *tp, int silent)
1868 {
1869 if (ptid_equal (target_last_wait_ptid, tp->ptid))
1870 nullify_last_target_wait_ptid ();
1871 }
1872
1873 /* Callback for iterate_over_threads. */
1874
1875 static int
1876 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1877 {
1878 if (is_exited (info->ptid))
1879 return 0;
1880
1881 delete_step_resume_breakpoint (info);
1882 return 0;
1883 }
1884
1885 /* In all-stop, delete the step resume breakpoint of any thread that
1886 had one. In non-stop, delete the step resume breakpoint of the
1887 thread that just stopped. */
1888
1889 static void
1890 delete_step_thread_step_resume_breakpoint (void)
1891 {
1892 if (!target_has_execution
1893 || ptid_equal (inferior_ptid, null_ptid))
1894 /* If the inferior has exited, we have already deleted the step
1895 resume breakpoints out of GDB's lists. */
1896 return;
1897
1898 if (non_stop)
1899 {
1900 /* If in non-stop mode, only delete the step-resume or
1901 longjmp-resume breakpoint of the thread that just stopped
1902 stepping. */
1903 struct thread_info *tp = inferior_thread ();
1904 delete_step_resume_breakpoint (tp);
1905 }
1906 else
1907 /* In all-stop mode, delete all step-resume and longjmp-resume
1908 breakpoints of any thread that had them. */
1909 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1910 }
1911
1912 /* A cleanup wrapper. */
1913
1914 static void
1915 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1916 {
1917 delete_step_thread_step_resume_breakpoint ();
1918 }
1919
1920 /* Pretty print the results of target_wait, for debugging purposes. */
1921
1922 static void
1923 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
1924 const struct target_waitstatus *ws)
1925 {
1926 char *status_string = target_waitstatus_to_string (ws);
1927 struct ui_file *tmp_stream = mem_fileopen ();
1928 char *text;
1929 long len;
1930
1931 /* The text is split over several lines because it was getting too long.
1932 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
1933 output as a unit; we want only one timestamp printed if debug_timestamp
1934 is set. */
1935
1936 fprintf_unfiltered (tmp_stream,
1937 "infrun: target_wait (%d", PIDGET (waiton_ptid));
1938 if (PIDGET (waiton_ptid) != -1)
1939 fprintf_unfiltered (tmp_stream,
1940 " [%s]", target_pid_to_str (waiton_ptid));
1941 fprintf_unfiltered (tmp_stream, ", status) =\n");
1942 fprintf_unfiltered (tmp_stream,
1943 "infrun: %d [%s],\n",
1944 PIDGET (result_ptid), target_pid_to_str (result_ptid));
1945 fprintf_unfiltered (tmp_stream,
1946 "infrun: %s\n",
1947 status_string);
1948
1949 text = ui_file_xstrdup (tmp_stream, &len);
1950
1951 /* This uses %s in part to handle %'s in the text, but also to avoid
1952 a gcc error: the format attribute requires a string literal. */
1953 fprintf_unfiltered (gdb_stdlog, "%s", text);
1954
1955 xfree (status_string);
1956 xfree (text);
1957 ui_file_delete (tmp_stream);
1958 }
1959
1960 /* Wait for control to return from inferior to debugger.
1961
1962 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1963 as if they were SIGTRAP signals. This can be useful during
1964 the startup sequence on some targets such as HP/UX, where
1965 we receive an EXEC event instead of the expected SIGTRAP.
1966
1967 If inferior gets a signal, we may decide to start it up again
1968 instead of returning. That is why there is a loop in this function.
1969 When this function actually returns it means the inferior
1970 should be left stopped and GDB should read more commands. */
1971
1972 void
1973 wait_for_inferior (int treat_exec_as_sigtrap)
1974 {
1975 struct cleanup *old_cleanups;
1976 struct execution_control_state ecss;
1977 struct execution_control_state *ecs;
1978
1979 if (debug_infrun)
1980 fprintf_unfiltered
1981 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1982 treat_exec_as_sigtrap);
1983
1984 old_cleanups =
1985 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
1986
1987 ecs = &ecss;
1988 memset (ecs, 0, sizeof (*ecs));
1989
1990 overlay_cache_invalid = 1;
1991
1992 /* We'll update this if & when we switch to a new thread. */
1993 previous_inferior_ptid = inferior_ptid;
1994
1995 /* We have to invalidate the registers BEFORE calling target_wait
1996 because they can be loaded from the target while in target_wait.
1997 This makes remote debugging a bit more efficient for those
1998 targets that provide critical registers as part of their normal
1999 status mechanism. */
2000
2001 registers_changed ();
2002
2003 while (1)
2004 {
2005 struct cleanup *old_chain;
2006
2007 if (deprecated_target_wait_hook)
2008 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2009 else
2010 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2011
2012 if (debug_infrun)
2013 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2014
2015 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2016 {
2017 xfree (ecs->ws.value.execd_pathname);
2018 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2019 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2020 }
2021
2022 /* If an error happens while handling the event, propagate GDB's
2023 knowledge of the executing state to the frontend/user running
2024 state. */
2025 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2026
2027 /* Now figure out what to do with the result of the result. */
2028 handle_inferior_event (ecs);
2029
2030 /* No error, don't finish the state yet. */
2031 discard_cleanups (old_chain);
2032
2033 if (!ecs->wait_some_more)
2034 break;
2035 }
2036
2037 do_cleanups (old_cleanups);
2038 }
2039
2040 /* Asynchronous version of wait_for_inferior. It is called by the
2041 event loop whenever a change of state is detected on the file
2042 descriptor corresponding to the target. It can be called more than
2043 once to complete a single execution command. In such cases we need
2044 to keep the state in a global variable ECSS. If it is the last time
2045 that this function is called for a single execution command, then
2046 report to the user that the inferior has stopped, and do the
2047 necessary cleanups. */
2048
2049 void
2050 fetch_inferior_event (void *client_data)
2051 {
2052 struct execution_control_state ecss;
2053 struct execution_control_state *ecs = &ecss;
2054 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2055 struct cleanup *ts_old_chain;
2056 int was_sync = sync_execution;
2057
2058 memset (ecs, 0, sizeof (*ecs));
2059
2060 overlay_cache_invalid = 1;
2061
2062 /* We can only rely on wait_for_more being correct before handling
2063 the event in all-stop, but previous_inferior_ptid isn't used in
2064 non-stop. */
2065 if (!ecs->wait_some_more)
2066 /* We'll update this if & when we switch to a new thread. */
2067 previous_inferior_ptid = inferior_ptid;
2068
2069 if (non_stop)
2070 /* In non-stop mode, the user/frontend should not notice a thread
2071 switch due to internal events. Make sure we reverse to the
2072 user selected thread and frame after handling the event and
2073 running any breakpoint commands. */
2074 make_cleanup_restore_current_thread ();
2075
2076 /* We have to invalidate the registers BEFORE calling target_wait
2077 because they can be loaded from the target while in target_wait.
2078 This makes remote debugging a bit more efficient for those
2079 targets that provide critical registers as part of their normal
2080 status mechanism. */
2081
2082 registers_changed ();
2083
2084 if (deprecated_target_wait_hook)
2085 ecs->ptid =
2086 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2087 else
2088 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2089
2090 if (debug_infrun)
2091 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2092
2093 if (non_stop
2094 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2095 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2096 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2097 /* In non-stop mode, each thread is handled individually. Switch
2098 early, so the global state is set correctly for this
2099 thread. */
2100 context_switch (ecs->ptid);
2101
2102 /* If an error happens while handling the event, propagate GDB's
2103 knowledge of the executing state to the frontend/user running
2104 state. */
2105 if (!non_stop)
2106 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2107 else
2108 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2109
2110 /* Now figure out what to do with the result of the result. */
2111 handle_inferior_event (ecs);
2112
2113 if (!ecs->wait_some_more)
2114 {
2115 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2116
2117 delete_step_thread_step_resume_breakpoint ();
2118
2119 /* We may not find an inferior if this was a process exit. */
2120 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
2121 normal_stop ();
2122
2123 if (target_has_execution
2124 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2125 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2126 && ecs->event_thread->step_multi
2127 && ecs->event_thread->stop_step)
2128 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2129 else
2130 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2131 }
2132
2133 /* No error, don't finish the thread states yet. */
2134 discard_cleanups (ts_old_chain);
2135
2136 /* Revert thread and frame. */
2137 do_cleanups (old_chain);
2138
2139 /* If the inferior was in sync execution mode, and now isn't,
2140 restore the prompt. */
2141 if (was_sync && !sync_execution)
2142 display_gdb_prompt (0);
2143 }
2144
2145 /* Record the frame and location we're currently stepping through. */
2146 void
2147 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2148 {
2149 struct thread_info *tp = inferior_thread ();
2150
2151 tp->step_frame_id = get_frame_id (frame);
2152 tp->step_stack_frame_id = get_stack_frame_id (frame);
2153
2154 tp->current_symtab = sal.symtab;
2155 tp->current_line = sal.line;
2156 }
2157
2158 /* Prepare an execution control state for looping through a
2159 wait_for_inferior-type loop. */
2160
2161 static void
2162 init_execution_control_state (struct execution_control_state *ecs)
2163 {
2164 ecs->random_signal = 0;
2165 }
2166
2167 /* Clear context switchable stepping state. */
2168
2169 void
2170 init_thread_stepping_state (struct thread_info *tss)
2171 {
2172 tss->stepping_over_breakpoint = 0;
2173 tss->step_after_step_resume_breakpoint = 0;
2174 tss->stepping_through_solib_after_catch = 0;
2175 tss->stepping_through_solib_catchpoints = NULL;
2176 }
2177
2178 /* Return the cached copy of the last pid/waitstatus returned by
2179 target_wait()/deprecated_target_wait_hook(). The data is actually
2180 cached by handle_inferior_event(), which gets called immediately
2181 after target_wait()/deprecated_target_wait_hook(). */
2182
2183 void
2184 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2185 {
2186 *ptidp = target_last_wait_ptid;
2187 *status = target_last_waitstatus;
2188 }
2189
2190 void
2191 nullify_last_target_wait_ptid (void)
2192 {
2193 target_last_wait_ptid = minus_one_ptid;
2194 }
2195
2196 /* Switch thread contexts. */
2197
2198 static void
2199 context_switch (ptid_t ptid)
2200 {
2201 if (debug_infrun)
2202 {
2203 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2204 target_pid_to_str (inferior_ptid));
2205 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2206 target_pid_to_str (ptid));
2207 }
2208
2209 switch_to_thread (ptid);
2210 }
2211
2212 static void
2213 adjust_pc_after_break (struct execution_control_state *ecs)
2214 {
2215 struct regcache *regcache;
2216 struct gdbarch *gdbarch;
2217 CORE_ADDR breakpoint_pc;
2218
2219 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2220 we aren't, just return.
2221
2222 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2223 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2224 implemented by software breakpoints should be handled through the normal
2225 breakpoint layer.
2226
2227 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2228 different signals (SIGILL or SIGEMT for instance), but it is less
2229 clear where the PC is pointing afterwards. It may not match
2230 gdbarch_decr_pc_after_break. I don't know any specific target that
2231 generates these signals at breakpoints (the code has been in GDB since at
2232 least 1992) so I can not guess how to handle them here.
2233
2234 In earlier versions of GDB, a target with
2235 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2236 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2237 target with both of these set in GDB history, and it seems unlikely to be
2238 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2239
2240 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2241 return;
2242
2243 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2244 return;
2245
2246 /* In reverse execution, when a breakpoint is hit, the instruction
2247 under it has already been de-executed. The reported PC always
2248 points at the breakpoint address, so adjusting it further would
2249 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2250 architecture:
2251
2252 B1 0x08000000 : INSN1
2253 B2 0x08000001 : INSN2
2254 0x08000002 : INSN3
2255 PC -> 0x08000003 : INSN4
2256
2257 Say you're stopped at 0x08000003 as above. Reverse continuing
2258 from that point should hit B2 as below. Reading the PC when the
2259 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2260 been de-executed already.
2261
2262 B1 0x08000000 : INSN1
2263 B2 PC -> 0x08000001 : INSN2
2264 0x08000002 : INSN3
2265 0x08000003 : INSN4
2266
2267 We can't apply the same logic as for forward execution, because
2268 we would wrongly adjust the PC to 0x08000000, since there's a
2269 breakpoint at PC - 1. We'd then report a hit on B1, although
2270 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2271 behaviour. */
2272 if (execution_direction == EXEC_REVERSE)
2273 return;
2274
2275 /* If this target does not decrement the PC after breakpoints, then
2276 we have nothing to do. */
2277 regcache = get_thread_regcache (ecs->ptid);
2278 gdbarch = get_regcache_arch (regcache);
2279 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2280 return;
2281
2282 /* Find the location where (if we've hit a breakpoint) the
2283 breakpoint would be. */
2284 breakpoint_pc = regcache_read_pc (regcache)
2285 - gdbarch_decr_pc_after_break (gdbarch);
2286
2287 /* Check whether there actually is a software breakpoint inserted at
2288 that location.
2289
2290 If in non-stop mode, a race condition is possible where we've
2291 removed a breakpoint, but stop events for that breakpoint were
2292 already queued and arrive later. To suppress those spurious
2293 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2294 and retire them after a number of stop events are reported. */
2295 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2296 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
2297 {
2298 struct cleanup *old_cleanups = NULL;
2299 if (RECORD_IS_USED)
2300 old_cleanups = record_gdb_operation_disable_set ();
2301
2302 /* When using hardware single-step, a SIGTRAP is reported for both
2303 a completed single-step and a software breakpoint. Need to
2304 differentiate between the two, as the latter needs adjusting
2305 but the former does not.
2306
2307 The SIGTRAP can be due to a completed hardware single-step only if
2308 - we didn't insert software single-step breakpoints
2309 - the thread to be examined is still the current thread
2310 - this thread is currently being stepped
2311
2312 If any of these events did not occur, we must have stopped due
2313 to hitting a software breakpoint, and have to back up to the
2314 breakpoint address.
2315
2316 As a special case, we could have hardware single-stepped a
2317 software breakpoint. In this case (prev_pc == breakpoint_pc),
2318 we also need to back up to the breakpoint address. */
2319
2320 if (singlestep_breakpoints_inserted_p
2321 || !ptid_equal (ecs->ptid, inferior_ptid)
2322 || !currently_stepping (ecs->event_thread)
2323 || ecs->event_thread->prev_pc == breakpoint_pc)
2324 regcache_write_pc (regcache, breakpoint_pc);
2325
2326 if (RECORD_IS_USED)
2327 do_cleanups (old_cleanups);
2328 }
2329 }
2330
2331 void
2332 init_infwait_state (void)
2333 {
2334 waiton_ptid = pid_to_ptid (-1);
2335 infwait_state = infwait_normal_state;
2336 }
2337
2338 void
2339 error_is_running (void)
2340 {
2341 error (_("\
2342 Cannot execute this command while the selected thread is running."));
2343 }
2344
2345 void
2346 ensure_not_running (void)
2347 {
2348 if (is_running (inferior_ptid))
2349 error_is_running ();
2350 }
2351
2352 static int
2353 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2354 {
2355 for (frame = get_prev_frame (frame);
2356 frame != NULL;
2357 frame = get_prev_frame (frame))
2358 {
2359 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2360 return 1;
2361 if (get_frame_type (frame) != INLINE_FRAME)
2362 break;
2363 }
2364
2365 return 0;
2366 }
2367
2368 /* Given an execution control state that has been freshly filled in
2369 by an event from the inferior, figure out what it means and take
2370 appropriate action. */
2371
2372 void
2373 handle_inferior_event (struct execution_control_state *ecs)
2374 {
2375 struct frame_info *frame;
2376 struct gdbarch *gdbarch;
2377 int sw_single_step_trap_p = 0;
2378 int stopped_by_watchpoint;
2379 int stepped_after_stopped_by_watchpoint = 0;
2380 struct symtab_and_line stop_pc_sal;
2381 enum stop_kind stop_soon;
2382
2383 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2384 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2385 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2386 {
2387 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2388 gdb_assert (inf);
2389 stop_soon = inf->stop_soon;
2390 }
2391 else
2392 stop_soon = NO_STOP_QUIETLY;
2393
2394 /* Cache the last pid/waitstatus. */
2395 target_last_wait_ptid = ecs->ptid;
2396 target_last_waitstatus = ecs->ws;
2397
2398 /* Always clear state belonging to the previous time we stopped. */
2399 stop_stack_dummy = 0;
2400
2401 /* If it's a new process, add it to the thread database */
2402
2403 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2404 && !ptid_equal (ecs->ptid, minus_one_ptid)
2405 && !in_thread_list (ecs->ptid));
2406
2407 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2408 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2409 add_thread (ecs->ptid);
2410
2411 ecs->event_thread = find_thread_ptid (ecs->ptid);
2412
2413 /* Dependent on valid ECS->EVENT_THREAD. */
2414 adjust_pc_after_break (ecs);
2415
2416 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2417 reinit_frame_cache ();
2418
2419 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2420 {
2421 breakpoint_retire_moribund ();
2422
2423 /* Mark the non-executing threads accordingly. In all-stop, all
2424 threads of all processes are stopped when we get any event
2425 reported. In non-stop mode, only the event thread stops. If
2426 we're handling a process exit in non-stop mode, there's
2427 nothing to do, as threads of the dead process are gone, and
2428 threads of any other process were left running. */
2429 if (!non_stop)
2430 set_executing (minus_one_ptid, 0);
2431 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2432 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2433 set_executing (inferior_ptid, 0);
2434 }
2435
2436 switch (infwait_state)
2437 {
2438 case infwait_thread_hop_state:
2439 if (debug_infrun)
2440 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
2441 /* Cancel the waiton_ptid. */
2442 waiton_ptid = pid_to_ptid (-1);
2443 break;
2444
2445 case infwait_normal_state:
2446 if (debug_infrun)
2447 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
2448 break;
2449
2450 case infwait_step_watch_state:
2451 if (debug_infrun)
2452 fprintf_unfiltered (gdb_stdlog,
2453 "infrun: infwait_step_watch_state\n");
2454
2455 stepped_after_stopped_by_watchpoint = 1;
2456 break;
2457
2458 case infwait_nonstep_watch_state:
2459 if (debug_infrun)
2460 fprintf_unfiltered (gdb_stdlog,
2461 "infrun: infwait_nonstep_watch_state\n");
2462 insert_breakpoints ();
2463
2464 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2465 handle things like signals arriving and other things happening
2466 in combination correctly? */
2467 stepped_after_stopped_by_watchpoint = 1;
2468 break;
2469
2470 default:
2471 internal_error (__FILE__, __LINE__, _("bad switch"));
2472 }
2473 infwait_state = infwait_normal_state;
2474
2475 switch (ecs->ws.kind)
2476 {
2477 case TARGET_WAITKIND_LOADED:
2478 if (debug_infrun)
2479 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
2480 /* Ignore gracefully during startup of the inferior, as it might
2481 be the shell which has just loaded some objects, otherwise
2482 add the symbols for the newly loaded objects. Also ignore at
2483 the beginning of an attach or remote session; we will query
2484 the full list of libraries once the connection is
2485 established. */
2486 if (stop_soon == NO_STOP_QUIETLY)
2487 {
2488 /* Check for any newly added shared libraries if we're
2489 supposed to be adding them automatically. Switch
2490 terminal for any messages produced by
2491 breakpoint_re_set. */
2492 target_terminal_ours_for_output ();
2493 /* NOTE: cagney/2003-11-25: Make certain that the target
2494 stack's section table is kept up-to-date. Architectures,
2495 (e.g., PPC64), use the section table to perform
2496 operations such as address => section name and hence
2497 require the table to contain all sections (including
2498 those found in shared libraries). */
2499 #ifdef SOLIB_ADD
2500 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2501 #else
2502 solib_add (NULL, 0, &current_target, auto_solib_add);
2503 #endif
2504 target_terminal_inferior ();
2505
2506 /* If requested, stop when the dynamic linker notifies
2507 gdb of events. This allows the user to get control
2508 and place breakpoints in initializer routines for
2509 dynamically loaded objects (among other things). */
2510 if (stop_on_solib_events)
2511 {
2512 stop_stepping (ecs);
2513 return;
2514 }
2515
2516 /* NOTE drow/2007-05-11: This might be a good place to check
2517 for "catch load". */
2518 }
2519
2520 /* If we are skipping through a shell, or through shared library
2521 loading that we aren't interested in, resume the program. If
2522 we're running the program normally, also resume. But stop if
2523 we're attaching or setting up a remote connection. */
2524 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2525 {
2526 /* Loading of shared libraries might have changed breakpoint
2527 addresses. Make sure new breakpoints are inserted. */
2528 if (stop_soon == NO_STOP_QUIETLY
2529 && !breakpoints_always_inserted_mode ())
2530 insert_breakpoints ();
2531 resume (0, TARGET_SIGNAL_0);
2532 prepare_to_wait (ecs);
2533 return;
2534 }
2535
2536 break;
2537
2538 case TARGET_WAITKIND_SPURIOUS:
2539 if (debug_infrun)
2540 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2541 resume (0, TARGET_SIGNAL_0);
2542 prepare_to_wait (ecs);
2543 return;
2544
2545 case TARGET_WAITKIND_EXITED:
2546 if (debug_infrun)
2547 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2548 inferior_ptid = ecs->ptid;
2549 target_terminal_ours (); /* Must do this before mourn anyway */
2550 print_stop_reason (EXITED, ecs->ws.value.integer);
2551
2552 /* Record the exit code in the convenience variable $_exitcode, so
2553 that the user can inspect this again later. */
2554 set_internalvar_integer (lookup_internalvar ("_exitcode"),
2555 (LONGEST) ecs->ws.value.integer);
2556 gdb_flush (gdb_stdout);
2557 target_mourn_inferior ();
2558 singlestep_breakpoints_inserted_p = 0;
2559 stop_print_frame = 0;
2560 stop_stepping (ecs);
2561 return;
2562
2563 case TARGET_WAITKIND_SIGNALLED:
2564 if (debug_infrun)
2565 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2566 inferior_ptid = ecs->ptid;
2567 stop_print_frame = 0;
2568 target_terminal_ours (); /* Must do this before mourn anyway */
2569
2570 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2571 reach here unless the inferior is dead. However, for years
2572 target_kill() was called here, which hints that fatal signals aren't
2573 really fatal on some systems. If that's true, then some changes
2574 may be needed. */
2575 target_mourn_inferior ();
2576
2577 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
2578 singlestep_breakpoints_inserted_p = 0;
2579 stop_stepping (ecs);
2580 return;
2581
2582 /* The following are the only cases in which we keep going;
2583 the above cases end in a continue or goto. */
2584 case TARGET_WAITKIND_FORKED:
2585 case TARGET_WAITKIND_VFORKED:
2586 if (debug_infrun)
2587 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2588
2589 if (!ptid_equal (ecs->ptid, inferior_ptid))
2590 {
2591 context_switch (ecs->ptid);
2592 reinit_frame_cache ();
2593 }
2594
2595 /* Immediately detach breakpoints from the child before there's
2596 any chance of letting the user delete breakpoints from the
2597 breakpoint lists. If we don't do this early, it's easy to
2598 leave left over traps in the child, vis: "break foo; catch
2599 fork; c; <fork>; del; c; <child calls foo>". We only follow
2600 the fork on the last `continue', and by that time the
2601 breakpoint at "foo" is long gone from the breakpoint table.
2602 If we vforked, then we don't need to unpatch here, since both
2603 parent and child are sharing the same memory pages; we'll
2604 need to unpatch at follow/detach time instead to be certain
2605 that new breakpoints added between catchpoint hit time and
2606 vfork follow are detached. */
2607 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
2608 {
2609 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
2610
2611 /* This won't actually modify the breakpoint list, but will
2612 physically remove the breakpoints from the child. */
2613 detach_breakpoints (child_pid);
2614 }
2615
2616 /* In case the event is caught by a catchpoint, remember that
2617 the event is to be followed at the next resume of the thread,
2618 and not immediately. */
2619 ecs->event_thread->pending_follow = ecs->ws;
2620
2621 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2622
2623 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2624
2625 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2626
2627 /* If no catchpoint triggered for this, then keep going. */
2628 if (ecs->random_signal)
2629 {
2630 int should_resume;
2631
2632 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2633
2634 should_resume = follow_fork ();
2635
2636 ecs->event_thread = inferior_thread ();
2637 ecs->ptid = inferior_ptid;
2638
2639 if (should_resume)
2640 keep_going (ecs);
2641 else
2642 stop_stepping (ecs);
2643 return;
2644 }
2645 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2646 goto process_event_stop_test;
2647
2648 case TARGET_WAITKIND_EXECD:
2649 if (debug_infrun)
2650 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2651
2652 if (!ptid_equal (ecs->ptid, inferior_ptid))
2653 {
2654 context_switch (ecs->ptid);
2655 reinit_frame_cache ();
2656 }
2657
2658 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2659
2660 /* This causes the eventpoints and symbol table to be reset.
2661 Must do this now, before trying to determine whether to
2662 stop. */
2663 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
2664
2665 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2666 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2667
2668 /* Note that this may be referenced from inside
2669 bpstat_stop_status above, through inferior_has_execd. */
2670 xfree (ecs->ws.value.execd_pathname);
2671 ecs->ws.value.execd_pathname = NULL;
2672
2673 /* If no catchpoint triggered for this, then keep going. */
2674 if (ecs->random_signal)
2675 {
2676 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2677 keep_going (ecs);
2678 return;
2679 }
2680 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2681 goto process_event_stop_test;
2682
2683 /* Be careful not to try to gather much state about a thread
2684 that's in a syscall. It's frequently a losing proposition. */
2685 case TARGET_WAITKIND_SYSCALL_ENTRY:
2686 if (debug_infrun)
2687 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2688 resume (0, TARGET_SIGNAL_0);
2689 prepare_to_wait (ecs);
2690 return;
2691
2692 /* Before examining the threads further, step this thread to
2693 get it entirely out of the syscall. (We get notice of the
2694 event when the thread is just on the verge of exiting a
2695 syscall. Stepping one instruction seems to get it back
2696 into user code.) */
2697 case TARGET_WAITKIND_SYSCALL_RETURN:
2698 if (debug_infrun)
2699 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2700 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2701 prepare_to_wait (ecs);
2702 return;
2703
2704 case TARGET_WAITKIND_STOPPED:
2705 if (debug_infrun)
2706 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2707 ecs->event_thread->stop_signal = ecs->ws.value.sig;
2708 break;
2709
2710 case TARGET_WAITKIND_NO_HISTORY:
2711 /* Reverse execution: target ran out of history info. */
2712 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2713 print_stop_reason (NO_HISTORY, 0);
2714 stop_stepping (ecs);
2715 return;
2716
2717 /* We had an event in the inferior, but we are not interested
2718 in handling it at this level. The lower layers have already
2719 done what needs to be done, if anything.
2720
2721 One of the possible circumstances for this is when the
2722 inferior produces output for the console. The inferior has
2723 not stopped, and we are ignoring the event. Another possible
2724 circumstance is any event which the lower level knows will be
2725 reported multiple times without an intervening resume. */
2726 case TARGET_WAITKIND_IGNORE:
2727 if (debug_infrun)
2728 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2729 prepare_to_wait (ecs);
2730 return;
2731 }
2732
2733 if (ecs->new_thread_event)
2734 {
2735 if (non_stop)
2736 /* Non-stop assumes that the target handles adding new threads
2737 to the thread list. */
2738 internal_error (__FILE__, __LINE__, "\
2739 targets should add new threads to the thread list themselves in non-stop mode.");
2740
2741 /* We may want to consider not doing a resume here in order to
2742 give the user a chance to play with the new thread. It might
2743 be good to make that a user-settable option. */
2744
2745 /* At this point, all threads are stopped (happens automatically
2746 in either the OS or the native code). Therefore we need to
2747 continue all threads in order to make progress. */
2748
2749 if (!ptid_equal (ecs->ptid, inferior_ptid))
2750 context_switch (ecs->ptid);
2751 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2752 prepare_to_wait (ecs);
2753 return;
2754 }
2755
2756 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
2757 {
2758 /* Do we need to clean up the state of a thread that has
2759 completed a displaced single-step? (Doing so usually affects
2760 the PC, so do it here, before we set stop_pc.) */
2761 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2762
2763 /* If we either finished a single-step or hit a breakpoint, but
2764 the user wanted this thread to be stopped, pretend we got a
2765 SIG0 (generic unsignaled stop). */
2766
2767 if (ecs->event_thread->stop_requested
2768 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2769 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2770 }
2771
2772 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2773
2774 if (debug_infrun)
2775 {
2776 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2777 paddr_nz (stop_pc));
2778 if (target_stopped_by_watchpoint ())
2779 {
2780 CORE_ADDR addr;
2781 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2782
2783 if (target_stopped_data_address (&current_target, &addr))
2784 fprintf_unfiltered (gdb_stdlog,
2785 "infrun: stopped data address = 0x%s\n",
2786 paddr_nz (addr));
2787 else
2788 fprintf_unfiltered (gdb_stdlog,
2789 "infrun: (no data address available)\n");
2790 }
2791 }
2792
2793 if (stepping_past_singlestep_breakpoint)
2794 {
2795 gdb_assert (singlestep_breakpoints_inserted_p);
2796 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2797 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2798
2799 stepping_past_singlestep_breakpoint = 0;
2800
2801 /* We've either finished single-stepping past the single-step
2802 breakpoint, or stopped for some other reason. It would be nice if
2803 we could tell, but we can't reliably. */
2804 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2805 {
2806 if (debug_infrun)
2807 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2808 /* Pull the single step breakpoints out of the target. */
2809 remove_single_step_breakpoints ();
2810 singlestep_breakpoints_inserted_p = 0;
2811
2812 ecs->random_signal = 0;
2813
2814 context_switch (saved_singlestep_ptid);
2815 if (deprecated_context_hook)
2816 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2817
2818 resume (1, TARGET_SIGNAL_0);
2819 prepare_to_wait (ecs);
2820 return;
2821 }
2822 }
2823
2824 if (!ptid_equal (deferred_step_ptid, null_ptid))
2825 {
2826 /* In non-stop mode, there's never a deferred_step_ptid set. */
2827 gdb_assert (!non_stop);
2828
2829 /* If we stopped for some other reason than single-stepping, ignore
2830 the fact that we were supposed to switch back. */
2831 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2832 {
2833 if (debug_infrun)
2834 fprintf_unfiltered (gdb_stdlog,
2835 "infrun: handling deferred step\n");
2836
2837 /* Pull the single step breakpoints out of the target. */
2838 if (singlestep_breakpoints_inserted_p)
2839 {
2840 remove_single_step_breakpoints ();
2841 singlestep_breakpoints_inserted_p = 0;
2842 }
2843
2844 /* Note: We do not call context_switch at this point, as the
2845 context is already set up for stepping the original thread. */
2846 switch_to_thread (deferred_step_ptid);
2847 deferred_step_ptid = null_ptid;
2848 /* Suppress spurious "Switching to ..." message. */
2849 previous_inferior_ptid = inferior_ptid;
2850
2851 resume (1, TARGET_SIGNAL_0);
2852 prepare_to_wait (ecs);
2853 return;
2854 }
2855
2856 deferred_step_ptid = null_ptid;
2857 }
2858
2859 /* See if a thread hit a thread-specific breakpoint that was meant for
2860 another thread. If so, then step that thread past the breakpoint,
2861 and continue it. */
2862
2863 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2864 {
2865 int thread_hop_needed = 0;
2866
2867 /* Check if a regular breakpoint has been hit before checking
2868 for a potential single step breakpoint. Otherwise, GDB will
2869 not see this breakpoint hit when stepping onto breakpoints. */
2870 if (regular_breakpoint_inserted_here_p (stop_pc))
2871 {
2872 ecs->random_signal = 0;
2873 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2874 thread_hop_needed = 1;
2875 }
2876 else if (singlestep_breakpoints_inserted_p)
2877 {
2878 /* We have not context switched yet, so this should be true
2879 no matter which thread hit the singlestep breakpoint. */
2880 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2881 if (debug_infrun)
2882 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2883 "trap for %s\n",
2884 target_pid_to_str (ecs->ptid));
2885
2886 ecs->random_signal = 0;
2887 /* The call to in_thread_list is necessary because PTIDs sometimes
2888 change when we go from single-threaded to multi-threaded. If
2889 the singlestep_ptid is still in the list, assume that it is
2890 really different from ecs->ptid. */
2891 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2892 && in_thread_list (singlestep_ptid))
2893 {
2894 /* If the PC of the thread we were trying to single-step
2895 has changed, discard this event (which we were going
2896 to ignore anyway), and pretend we saw that thread
2897 trap. This prevents us continuously moving the
2898 single-step breakpoint forward, one instruction at a
2899 time. If the PC has changed, then the thread we were
2900 trying to single-step has trapped or been signalled,
2901 but the event has not been reported to GDB yet.
2902
2903 There might be some cases where this loses signal
2904 information, if a signal has arrived at exactly the
2905 same time that the PC changed, but this is the best
2906 we can do with the information available. Perhaps we
2907 should arrange to report all events for all threads
2908 when they stop, or to re-poll the remote looking for
2909 this particular thread (i.e. temporarily enable
2910 schedlock). */
2911
2912 CORE_ADDR new_singlestep_pc
2913 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2914
2915 if (new_singlestep_pc != singlestep_pc)
2916 {
2917 enum target_signal stop_signal;
2918
2919 if (debug_infrun)
2920 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2921 " but expected thread advanced also\n");
2922
2923 /* The current context still belongs to
2924 singlestep_ptid. Don't swap here, since that's
2925 the context we want to use. Just fudge our
2926 state and continue. */
2927 stop_signal = ecs->event_thread->stop_signal;
2928 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2929 ecs->ptid = singlestep_ptid;
2930 ecs->event_thread = find_thread_ptid (ecs->ptid);
2931 ecs->event_thread->stop_signal = stop_signal;
2932 stop_pc = new_singlestep_pc;
2933 }
2934 else
2935 {
2936 if (debug_infrun)
2937 fprintf_unfiltered (gdb_stdlog,
2938 "infrun: unexpected thread\n");
2939
2940 thread_hop_needed = 1;
2941 stepping_past_singlestep_breakpoint = 1;
2942 saved_singlestep_ptid = singlestep_ptid;
2943 }
2944 }
2945 }
2946
2947 if (thread_hop_needed)
2948 {
2949 struct regcache *thread_regcache;
2950 int remove_status = 0;
2951
2952 if (debug_infrun)
2953 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2954
2955 /* Switch context before touching inferior memory, the
2956 previous thread may have exited. */
2957 if (!ptid_equal (inferior_ptid, ecs->ptid))
2958 context_switch (ecs->ptid);
2959
2960 /* Saw a breakpoint, but it was hit by the wrong thread.
2961 Just continue. */
2962
2963 if (singlestep_breakpoints_inserted_p)
2964 {
2965 /* Pull the single step breakpoints out of the target. */
2966 remove_single_step_breakpoints ();
2967 singlestep_breakpoints_inserted_p = 0;
2968 }
2969
2970 /* If the arch can displace step, don't remove the
2971 breakpoints. */
2972 thread_regcache = get_thread_regcache (ecs->ptid);
2973 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
2974 remove_status = remove_breakpoints ();
2975
2976 /* Did we fail to remove breakpoints? If so, try
2977 to set the PC past the bp. (There's at least
2978 one situation in which we can fail to remove
2979 the bp's: On HP-UX's that use ttrace, we can't
2980 change the address space of a vforking child
2981 process until the child exits (well, okay, not
2982 then either :-) or execs. */
2983 if (remove_status != 0)
2984 error (_("Cannot step over breakpoint hit in wrong thread"));
2985 else
2986 { /* Single step */
2987 if (!non_stop)
2988 {
2989 /* Only need to require the next event from this
2990 thread in all-stop mode. */
2991 waiton_ptid = ecs->ptid;
2992 infwait_state = infwait_thread_hop_state;
2993 }
2994
2995 ecs->event_thread->stepping_over_breakpoint = 1;
2996 keep_going (ecs);
2997 registers_changed ();
2998 return;
2999 }
3000 }
3001 else if (singlestep_breakpoints_inserted_p)
3002 {
3003 sw_single_step_trap_p = 1;
3004 ecs->random_signal = 0;
3005 }
3006 }
3007 else
3008 ecs->random_signal = 1;
3009
3010 /* See if something interesting happened to the non-current thread. If
3011 so, then switch to that thread. */
3012 if (!ptid_equal (ecs->ptid, inferior_ptid))
3013 {
3014 if (debug_infrun)
3015 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3016
3017 context_switch (ecs->ptid);
3018
3019 if (deprecated_context_hook)
3020 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3021 }
3022
3023 /* At this point, get hold of the now-current thread's frame. */
3024 frame = get_current_frame ();
3025 gdbarch = get_frame_arch (frame);
3026
3027 if (singlestep_breakpoints_inserted_p)
3028 {
3029 /* Pull the single step breakpoints out of the target. */
3030 remove_single_step_breakpoints ();
3031 singlestep_breakpoints_inserted_p = 0;
3032 }
3033
3034 if (stepped_after_stopped_by_watchpoint)
3035 stopped_by_watchpoint = 0;
3036 else
3037 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3038
3039 /* If necessary, step over this watchpoint. We'll be back to display
3040 it in a moment. */
3041 if (stopped_by_watchpoint
3042 && (target_have_steppable_watchpoint
3043 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3044 {
3045 /* At this point, we are stopped at an instruction which has
3046 attempted to write to a piece of memory under control of
3047 a watchpoint. The instruction hasn't actually executed
3048 yet. If we were to evaluate the watchpoint expression
3049 now, we would get the old value, and therefore no change
3050 would seem to have occurred.
3051
3052 In order to make watchpoints work `right', we really need
3053 to complete the memory write, and then evaluate the
3054 watchpoint expression. We do this by single-stepping the
3055 target.
3056
3057 It may not be necessary to disable the watchpoint to stop over
3058 it. For example, the PA can (with some kernel cooperation)
3059 single step over a watchpoint without disabling the watchpoint.
3060
3061 It is far more common to need to disable a watchpoint to step
3062 the inferior over it. If we have non-steppable watchpoints,
3063 we must disable the current watchpoint; it's simplest to
3064 disable all watchpoints and breakpoints. */
3065 int hw_step = 1;
3066
3067 if (!target_have_steppable_watchpoint)
3068 remove_breakpoints ();
3069 /* Single step */
3070 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
3071 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
3072 registers_changed ();
3073 waiton_ptid = ecs->ptid;
3074 if (target_have_steppable_watchpoint)
3075 infwait_state = infwait_step_watch_state;
3076 else
3077 infwait_state = infwait_nonstep_watch_state;
3078 prepare_to_wait (ecs);
3079 return;
3080 }
3081
3082 ecs->stop_func_start = 0;
3083 ecs->stop_func_end = 0;
3084 ecs->stop_func_name = 0;
3085 /* Don't care about return value; stop_func_start and stop_func_name
3086 will both be 0 if it doesn't work. */
3087 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3088 &ecs->stop_func_start, &ecs->stop_func_end);
3089 ecs->stop_func_start
3090 += gdbarch_deprecated_function_start_offset (gdbarch);
3091 ecs->event_thread->stepping_over_breakpoint = 0;
3092 bpstat_clear (&ecs->event_thread->stop_bpstat);
3093 ecs->event_thread->stop_step = 0;
3094 stop_print_frame = 1;
3095 ecs->random_signal = 0;
3096 stopped_by_random_signal = 0;
3097
3098 /* Hide inlined functions starting here, unless we just performed stepi or
3099 nexti. After stepi and nexti, always show the innermost frame (not any
3100 inline function call sites). */
3101 if (ecs->event_thread->step_range_end != 1)
3102 skip_inline_frames (ecs->ptid);
3103
3104 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3105 && ecs->event_thread->trap_expected
3106 && gdbarch_single_step_through_delay_p (gdbarch)
3107 && currently_stepping (ecs->event_thread))
3108 {
3109 /* We're trying to step off a breakpoint. Turns out that we're
3110 also on an instruction that needs to be stepped multiple
3111 times before it's been fully executing. E.g., architectures
3112 with a delay slot. It needs to be stepped twice, once for
3113 the instruction and once for the delay slot. */
3114 int step_through_delay
3115 = gdbarch_single_step_through_delay (gdbarch, frame);
3116 if (debug_infrun && step_through_delay)
3117 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3118 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3119 {
3120 /* The user issued a continue when stopped at a breakpoint.
3121 Set up for another trap and get out of here. */
3122 ecs->event_thread->stepping_over_breakpoint = 1;
3123 keep_going (ecs);
3124 return;
3125 }
3126 else if (step_through_delay)
3127 {
3128 /* The user issued a step when stopped at a breakpoint.
3129 Maybe we should stop, maybe we should not - the delay
3130 slot *might* correspond to a line of source. In any
3131 case, don't decide that here, just set
3132 ecs->stepping_over_breakpoint, making sure we
3133 single-step again before breakpoints are re-inserted. */
3134 ecs->event_thread->stepping_over_breakpoint = 1;
3135 }
3136 }
3137
3138 /* Look at the cause of the stop, and decide what to do.
3139 The alternatives are:
3140 1) stop_stepping and return; to really stop and return to the debugger,
3141 2) keep_going and return to start up again
3142 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
3143 3) set ecs->random_signal to 1, and the decision between 1 and 2
3144 will be made according to the signal handling tables. */
3145
3146 /* First, distinguish signals caused by the debugger from signals
3147 that have to do with the program's own actions. Note that
3148 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3149 on the operating system version. Here we detect when a SIGILL or
3150 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3151 something similar for SIGSEGV, since a SIGSEGV will be generated
3152 when we're trying to execute a breakpoint instruction on a
3153 non-executable stack. This happens for call dummy breakpoints
3154 for architectures like SPARC that place call dummies on the
3155 stack.
3156
3157 If we're doing a displaced step past a breakpoint, then the
3158 breakpoint is always inserted at the original instruction;
3159 non-standard signals can't be explained by the breakpoint. */
3160 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3161 || (! ecs->event_thread->trap_expected
3162 && breakpoint_inserted_here_p (stop_pc)
3163 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
3164 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
3165 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
3166 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3167 || stop_soon == STOP_QUIETLY_REMOTE)
3168 {
3169 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
3170 {
3171 if (debug_infrun)
3172 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3173 stop_print_frame = 0;
3174 stop_stepping (ecs);
3175 return;
3176 }
3177
3178 /* This is originated from start_remote(), start_inferior() and
3179 shared libraries hook functions. */
3180 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
3181 {
3182 if (debug_infrun)
3183 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3184 stop_stepping (ecs);
3185 return;
3186 }
3187
3188 /* This originates from attach_command(). We need to overwrite
3189 the stop_signal here, because some kernels don't ignore a
3190 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3191 See more comments in inferior.h. On the other hand, if we
3192 get a non-SIGSTOP, report it to the user - assume the backend
3193 will handle the SIGSTOP if it should show up later.
3194
3195 Also consider that the attach is complete when we see a
3196 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3197 target extended-remote report it instead of a SIGSTOP
3198 (e.g. gdbserver). We already rely on SIGTRAP being our
3199 signal, so this is no exception.
3200
3201 Also consider that the attach is complete when we see a
3202 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3203 the target to stop all threads of the inferior, in case the
3204 low level attach operation doesn't stop them implicitly. If
3205 they weren't stopped implicitly, then the stub will report a
3206 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3207 other than GDB's request. */
3208 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3209 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
3210 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3211 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
3212 {
3213 stop_stepping (ecs);
3214 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3215 return;
3216 }
3217
3218 /* See if there is a breakpoint at the current PC. */
3219 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
3220
3221 /* Following in case break condition called a
3222 function. */
3223 stop_print_frame = 1;
3224
3225 /* NOTE: cagney/2003-03-29: These two checks for a random signal
3226 at one stage in the past included checks for an inferior
3227 function call's call dummy's return breakpoint. The original
3228 comment, that went with the test, read:
3229
3230 ``End of a stack dummy. Some systems (e.g. Sony news) give
3231 another signal besides SIGTRAP, so check here as well as
3232 above.''
3233
3234 If someone ever tries to get call dummys on a
3235 non-executable stack to work (where the target would stop
3236 with something like a SIGSEGV), then those tests might need
3237 to be re-instated. Given, however, that the tests were only
3238 enabled when momentary breakpoints were not being used, I
3239 suspect that it won't be the case.
3240
3241 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3242 be necessary for call dummies on a non-executable stack on
3243 SPARC. */
3244
3245 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3246 ecs->random_signal
3247 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
3248 || ecs->event_thread->trap_expected
3249 || (ecs->event_thread->step_range_end
3250 && ecs->event_thread->step_resume_breakpoint == NULL));
3251 else
3252 {
3253 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
3254 if (!ecs->random_signal)
3255 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
3256 }
3257 }
3258
3259 /* When we reach this point, we've pretty much decided
3260 that the reason for stopping must've been a random
3261 (unexpected) signal. */
3262
3263 else
3264 ecs->random_signal = 1;
3265
3266 process_event_stop_test:
3267
3268 /* Re-fetch current thread's frame in case we did a
3269 "goto process_event_stop_test" above. */
3270 frame = get_current_frame ();
3271 gdbarch = get_frame_arch (frame);
3272
3273 /* For the program's own signals, act according to
3274 the signal handling tables. */
3275
3276 if (ecs->random_signal)
3277 {
3278 /* Signal not for debugging purposes. */
3279 int printed = 0;
3280
3281 if (debug_infrun)
3282 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3283 ecs->event_thread->stop_signal);
3284
3285 stopped_by_random_signal = 1;
3286
3287 if (signal_print[ecs->event_thread->stop_signal])
3288 {
3289 printed = 1;
3290 target_terminal_ours_for_output ();
3291 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
3292 }
3293 /* Always stop on signals if we're either just gaining control
3294 of the program, or the user explicitly requested this thread
3295 to remain stopped. */
3296 if (stop_soon != NO_STOP_QUIETLY
3297 || ecs->event_thread->stop_requested
3298 || signal_stop_state (ecs->event_thread->stop_signal))
3299 {
3300 stop_stepping (ecs);
3301 return;
3302 }
3303 /* If not going to stop, give terminal back
3304 if we took it away. */
3305 else if (printed)
3306 target_terminal_inferior ();
3307
3308 /* Clear the signal if it should not be passed. */
3309 if (signal_program[ecs->event_thread->stop_signal] == 0)
3310 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3311
3312 if (ecs->event_thread->prev_pc == stop_pc
3313 && ecs->event_thread->trap_expected
3314 && ecs->event_thread->step_resume_breakpoint == NULL)
3315 {
3316 /* We were just starting a new sequence, attempting to
3317 single-step off of a breakpoint and expecting a SIGTRAP.
3318 Instead this signal arrives. This signal will take us out
3319 of the stepping range so GDB needs to remember to, when
3320 the signal handler returns, resume stepping off that
3321 breakpoint. */
3322 /* To simplify things, "continue" is forced to use the same
3323 code paths as single-step - set a breakpoint at the
3324 signal return address and then, once hit, step off that
3325 breakpoint. */
3326 if (debug_infrun)
3327 fprintf_unfiltered (gdb_stdlog,
3328 "infrun: signal arrived while stepping over "
3329 "breakpoint\n");
3330
3331 insert_step_resume_breakpoint_at_frame (frame);
3332 ecs->event_thread->step_after_step_resume_breakpoint = 1;
3333 keep_going (ecs);
3334 return;
3335 }
3336
3337 if (ecs->event_thread->step_range_end != 0
3338 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
3339 && (ecs->event_thread->step_range_start <= stop_pc
3340 && stop_pc < ecs->event_thread->step_range_end)
3341 && frame_id_eq (get_stack_frame_id (frame),
3342 ecs->event_thread->step_stack_frame_id)
3343 && ecs->event_thread->step_resume_breakpoint == NULL)
3344 {
3345 /* The inferior is about to take a signal that will take it
3346 out of the single step range. Set a breakpoint at the
3347 current PC (which is presumably where the signal handler
3348 will eventually return) and then allow the inferior to
3349 run free.
3350
3351 Note that this is only needed for a signal delivered
3352 while in the single-step range. Nested signals aren't a
3353 problem as they eventually all return. */
3354 if (debug_infrun)
3355 fprintf_unfiltered (gdb_stdlog,
3356 "infrun: signal may take us out of "
3357 "single-step range\n");
3358
3359 insert_step_resume_breakpoint_at_frame (frame);
3360 keep_going (ecs);
3361 return;
3362 }
3363
3364 /* Note: step_resume_breakpoint may be non-NULL. This occures
3365 when either there's a nested signal, or when there's a
3366 pending signal enabled just as the signal handler returns
3367 (leaving the inferior at the step-resume-breakpoint without
3368 actually executing it). Either way continue until the
3369 breakpoint is really hit. */
3370 keep_going (ecs);
3371 return;
3372 }
3373
3374 /* Handle cases caused by hitting a breakpoint. */
3375 {
3376 CORE_ADDR jmp_buf_pc;
3377 struct bpstat_what what;
3378
3379 what = bpstat_what (ecs->event_thread->stop_bpstat);
3380
3381 if (what.call_dummy)
3382 {
3383 stop_stack_dummy = 1;
3384 }
3385
3386 switch (what.main_action)
3387 {
3388 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
3389 /* If we hit the breakpoint at longjmp while stepping, we
3390 install a momentary breakpoint at the target of the
3391 jmp_buf. */
3392
3393 if (debug_infrun)
3394 fprintf_unfiltered (gdb_stdlog,
3395 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3396
3397 ecs->event_thread->stepping_over_breakpoint = 1;
3398
3399 if (!gdbarch_get_longjmp_target_p (gdbarch)
3400 || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc))
3401 {
3402 if (debug_infrun)
3403 fprintf_unfiltered (gdb_stdlog, "\
3404 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
3405 keep_going (ecs);
3406 return;
3407 }
3408
3409 /* We're going to replace the current step-resume breakpoint
3410 with a longjmp-resume breakpoint. */
3411 delete_step_resume_breakpoint (ecs->event_thread);
3412
3413 /* Insert a breakpoint at resume address. */
3414 insert_longjmp_resume_breakpoint (jmp_buf_pc);
3415
3416 keep_going (ecs);
3417 return;
3418
3419 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
3420 if (debug_infrun)
3421 fprintf_unfiltered (gdb_stdlog,
3422 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3423
3424 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3425 delete_step_resume_breakpoint (ecs->event_thread);
3426
3427 ecs->event_thread->stop_step = 1;
3428 print_stop_reason (END_STEPPING_RANGE, 0);
3429 stop_stepping (ecs);
3430 return;
3431
3432 case BPSTAT_WHAT_SINGLE:
3433 if (debug_infrun)
3434 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
3435 ecs->event_thread->stepping_over_breakpoint = 1;
3436 /* Still need to check other stuff, at least the case
3437 where we are stepping and step out of the right range. */
3438 break;
3439
3440 case BPSTAT_WHAT_STOP_NOISY:
3441 if (debug_infrun)
3442 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
3443 stop_print_frame = 1;
3444
3445 /* We are about to nuke the step_resume_breakpointt via the
3446 cleanup chain, so no need to worry about it here. */
3447
3448 stop_stepping (ecs);
3449 return;
3450
3451 case BPSTAT_WHAT_STOP_SILENT:
3452 if (debug_infrun)
3453 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
3454 stop_print_frame = 0;
3455
3456 /* We are about to nuke the step_resume_breakpoin via the
3457 cleanup chain, so no need to worry about it here. */
3458
3459 stop_stepping (ecs);
3460 return;
3461
3462 case BPSTAT_WHAT_STEP_RESUME:
3463 if (debug_infrun)
3464 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
3465
3466 delete_step_resume_breakpoint (ecs->event_thread);
3467 if (ecs->event_thread->step_after_step_resume_breakpoint)
3468 {
3469 /* Back when the step-resume breakpoint was inserted, we
3470 were trying to single-step off a breakpoint. Go back
3471 to doing that. */
3472 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3473 ecs->event_thread->stepping_over_breakpoint = 1;
3474 keep_going (ecs);
3475 return;
3476 }
3477 if (stop_pc == ecs->stop_func_start
3478 && execution_direction == EXEC_REVERSE)
3479 {
3480 /* We are stepping over a function call in reverse, and
3481 just hit the step-resume breakpoint at the start
3482 address of the function. Go back to single-stepping,
3483 which should take us back to the function call. */
3484 ecs->event_thread->stepping_over_breakpoint = 1;
3485 keep_going (ecs);
3486 return;
3487 }
3488 break;
3489
3490 case BPSTAT_WHAT_CHECK_SHLIBS:
3491 {
3492 if (debug_infrun)
3493 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
3494
3495 /* Check for any newly added shared libraries if we're
3496 supposed to be adding them automatically. Switch
3497 terminal for any messages produced by
3498 breakpoint_re_set. */
3499 target_terminal_ours_for_output ();
3500 /* NOTE: cagney/2003-11-25: Make certain that the target
3501 stack's section table is kept up-to-date. Architectures,
3502 (e.g., PPC64), use the section table to perform
3503 operations such as address => section name and hence
3504 require the table to contain all sections (including
3505 those found in shared libraries). */
3506 #ifdef SOLIB_ADD
3507 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3508 #else
3509 solib_add (NULL, 0, &current_target, auto_solib_add);
3510 #endif
3511 target_terminal_inferior ();
3512
3513 /* If requested, stop when the dynamic linker notifies
3514 gdb of events. This allows the user to get control
3515 and place breakpoints in initializer routines for
3516 dynamically loaded objects (among other things). */
3517 if (stop_on_solib_events || stop_stack_dummy)
3518 {
3519 stop_stepping (ecs);
3520 return;
3521 }
3522 else
3523 {
3524 /* We want to step over this breakpoint, then keep going. */
3525 ecs->event_thread->stepping_over_breakpoint = 1;
3526 break;
3527 }
3528 }
3529 break;
3530
3531 case BPSTAT_WHAT_LAST:
3532 /* Not a real code, but listed here to shut up gcc -Wall. */
3533
3534 case BPSTAT_WHAT_KEEP_CHECKING:
3535 break;
3536 }
3537 }
3538
3539 /* We come here if we hit a breakpoint but should not
3540 stop for it. Possibly we also were stepping
3541 and should stop for that. So fall through and
3542 test for stepping. But, if not stepping,
3543 do not stop. */
3544
3545 /* In all-stop mode, if we're currently stepping but have stopped in
3546 some other thread, we need to switch back to the stepped thread. */
3547 if (!non_stop)
3548 {
3549 struct thread_info *tp;
3550 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
3551 ecs->event_thread);
3552 if (tp)
3553 {
3554 /* However, if the current thread is blocked on some internal
3555 breakpoint, and we simply need to step over that breakpoint
3556 to get it going again, do that first. */
3557 if ((ecs->event_thread->trap_expected
3558 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3559 || ecs->event_thread->stepping_over_breakpoint)
3560 {
3561 keep_going (ecs);
3562 return;
3563 }
3564
3565 /* If the stepping thread exited, then don't try to switch
3566 back and resume it, which could fail in several different
3567 ways depending on the target. Instead, just keep going.
3568
3569 We can find a stepping dead thread in the thread list in
3570 two cases:
3571
3572 - The target supports thread exit events, and when the
3573 target tries to delete the thread from the thread list,
3574 inferior_ptid pointed at the exiting thread. In such
3575 case, calling delete_thread does not really remove the
3576 thread from the list; instead, the thread is left listed,
3577 with 'exited' state.
3578
3579 - The target's debug interface does not support thread
3580 exit events, and so we have no idea whatsoever if the
3581 previously stepping thread is still alive. For that
3582 reason, we need to synchronously query the target
3583 now. */
3584 if (is_exited (tp->ptid)
3585 || !target_thread_alive (tp->ptid))
3586 {
3587 if (debug_infrun)
3588 fprintf_unfiltered (gdb_stdlog, "\
3589 infrun: not switching back to stepped thread, it has vanished\n");
3590
3591 delete_thread (tp->ptid);
3592 keep_going (ecs);
3593 return;
3594 }
3595
3596 /* Otherwise, we no longer expect a trap in the current thread.
3597 Clear the trap_expected flag before switching back -- this is
3598 what keep_going would do as well, if we called it. */
3599 ecs->event_thread->trap_expected = 0;
3600
3601 if (debug_infrun)
3602 fprintf_unfiltered (gdb_stdlog,
3603 "infrun: switching back to stepped thread\n");
3604
3605 ecs->event_thread = tp;
3606 ecs->ptid = tp->ptid;
3607 context_switch (ecs->ptid);
3608 keep_going (ecs);
3609 return;
3610 }
3611 }
3612
3613 /* Are we stepping to get the inferior out of the dynamic linker's
3614 hook (and possibly the dld itself) after catching a shlib
3615 event? */
3616 if (ecs->event_thread->stepping_through_solib_after_catch)
3617 {
3618 #if defined(SOLIB_ADD)
3619 /* Have we reached our destination? If not, keep going. */
3620 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3621 {
3622 if (debug_infrun)
3623 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
3624 ecs->event_thread->stepping_over_breakpoint = 1;
3625 keep_going (ecs);
3626 return;
3627 }
3628 #endif
3629 if (debug_infrun)
3630 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
3631 /* Else, stop and report the catchpoint(s) whose triggering
3632 caused us to begin stepping. */
3633 ecs->event_thread->stepping_through_solib_after_catch = 0;
3634 bpstat_clear (&ecs->event_thread->stop_bpstat);
3635 ecs->event_thread->stop_bpstat
3636 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
3637 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
3638 stop_print_frame = 1;
3639 stop_stepping (ecs);
3640 return;
3641 }
3642
3643 if (ecs->event_thread->step_resume_breakpoint)
3644 {
3645 if (debug_infrun)
3646 fprintf_unfiltered (gdb_stdlog,
3647 "infrun: step-resume breakpoint is inserted\n");
3648
3649 /* Having a step-resume breakpoint overrides anything
3650 else having to do with stepping commands until
3651 that breakpoint is reached. */
3652 keep_going (ecs);
3653 return;
3654 }
3655
3656 if (ecs->event_thread->step_range_end == 0)
3657 {
3658 if (debug_infrun)
3659 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3660 /* Likewise if we aren't even stepping. */
3661 keep_going (ecs);
3662 return;
3663 }
3664
3665 /* If stepping through a line, keep going if still within it.
3666
3667 Note that step_range_end is the address of the first instruction
3668 beyond the step range, and NOT the address of the last instruction
3669 within it!
3670
3671 Note also that during reverse execution, we may be stepping
3672 through a function epilogue and therefore must detect when
3673 the current-frame changes in the middle of a line. */
3674
3675 if (stop_pc >= ecs->event_thread->step_range_start
3676 && stop_pc < ecs->event_thread->step_range_end
3677 && (execution_direction != EXEC_REVERSE
3678 || frame_id_eq (get_frame_id (frame),
3679 ecs->event_thread->step_frame_id)))
3680 {
3681 if (debug_infrun)
3682 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3683 paddr_nz (ecs->event_thread->step_range_start),
3684 paddr_nz (ecs->event_thread->step_range_end));
3685
3686 /* When stepping backward, stop at beginning of line range
3687 (unless it's the function entry point, in which case
3688 keep going back to the call point). */
3689 if (stop_pc == ecs->event_thread->step_range_start
3690 && stop_pc != ecs->stop_func_start
3691 && execution_direction == EXEC_REVERSE)
3692 {
3693 ecs->event_thread->stop_step = 1;
3694 print_stop_reason (END_STEPPING_RANGE, 0);
3695 stop_stepping (ecs);
3696 }
3697 else
3698 keep_going (ecs);
3699
3700 return;
3701 }
3702
3703 /* We stepped out of the stepping range. */
3704
3705 /* If we are stepping at the source level and entered the runtime
3706 loader dynamic symbol resolution code...
3707
3708 EXEC_FORWARD: we keep on single stepping until we exit the run
3709 time loader code and reach the callee's address.
3710
3711 EXEC_REVERSE: we've already executed the callee (backward), and
3712 the runtime loader code is handled just like any other
3713 undebuggable function call. Now we need only keep stepping
3714 backward through the trampoline code, and that's handled further
3715 down, so there is nothing for us to do here. */
3716
3717 if (execution_direction != EXEC_REVERSE
3718 && ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3719 && in_solib_dynsym_resolve_code (stop_pc))
3720 {
3721 CORE_ADDR pc_after_resolver =
3722 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
3723
3724 if (debug_infrun)
3725 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3726
3727 if (pc_after_resolver)
3728 {
3729 /* Set up a step-resume breakpoint at the address
3730 indicated by SKIP_SOLIB_RESOLVER. */
3731 struct symtab_and_line sr_sal;
3732 init_sal (&sr_sal);
3733 sr_sal.pc = pc_after_resolver;
3734
3735 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3736 }
3737
3738 keep_going (ecs);
3739 return;
3740 }
3741
3742 if (ecs->event_thread->step_range_end != 1
3743 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3744 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3745 && get_frame_type (frame) == SIGTRAMP_FRAME)
3746 {
3747 if (debug_infrun)
3748 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3749 /* The inferior, while doing a "step" or "next", has ended up in
3750 a signal trampoline (either by a signal being delivered or by
3751 the signal handler returning). Just single-step until the
3752 inferior leaves the trampoline (either by calling the handler
3753 or returning). */
3754 keep_going (ecs);
3755 return;
3756 }
3757
3758 /* Check for subroutine calls. The check for the current frame
3759 equalling the step ID is not necessary - the check of the
3760 previous frame's ID is sufficient - but it is a common case and
3761 cheaper than checking the previous frame's ID.
3762
3763 NOTE: frame_id_eq will never report two invalid frame IDs as
3764 being equal, so to get into this block, both the current and
3765 previous frame must have valid frame IDs. */
3766 if (!frame_id_eq (get_stack_frame_id (frame),
3767 ecs->event_thread->step_stack_frame_id)
3768 && (frame_id_eq (frame_unwind_caller_id (frame),
3769 ecs->event_thread->step_stack_frame_id)
3770 || execution_direction == EXEC_REVERSE))
3771 {
3772 CORE_ADDR real_stop_pc;
3773
3774 if (debug_infrun)
3775 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3776
3777 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
3778 || ((ecs->event_thread->step_range_end == 1)
3779 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
3780 ecs->stop_func_start)))
3781 {
3782 /* I presume that step_over_calls is only 0 when we're
3783 supposed to be stepping at the assembly language level
3784 ("stepi"). Just stop. */
3785 /* Also, maybe we just did a "nexti" inside a prolog, so we
3786 thought it was a subroutine call but it was not. Stop as
3787 well. FENN */
3788 /* And this works the same backward as frontward. MVS */
3789 ecs->event_thread->stop_step = 1;
3790 print_stop_reason (END_STEPPING_RANGE, 0);
3791 stop_stepping (ecs);
3792 return;
3793 }
3794
3795 /* Reverse stepping through solib trampolines. */
3796
3797 if (execution_direction == EXEC_REVERSE
3798 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
3799 || (ecs->stop_func_start == 0
3800 && in_solib_dynsym_resolve_code (stop_pc))))
3801 {
3802 /* Any solib trampoline code can be handled in reverse
3803 by simply continuing to single-step. We have already
3804 executed the solib function (backwards), and a few
3805 steps will take us back through the trampoline to the
3806 caller. */
3807 keep_going (ecs);
3808 return;
3809 }
3810
3811 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3812 {
3813 /* We're doing a "next".
3814
3815 Normal (forward) execution: set a breakpoint at the
3816 callee's return address (the address at which the caller
3817 will resume).
3818
3819 Reverse (backward) execution. set the step-resume
3820 breakpoint at the start of the function that we just
3821 stepped into (backwards), and continue to there. When we
3822 get there, we'll need to single-step back to the caller. */
3823
3824 if (execution_direction == EXEC_REVERSE)
3825 {
3826 struct symtab_and_line sr_sal;
3827
3828 /* Normal function call return (static or dynamic). */
3829 init_sal (&sr_sal);
3830 sr_sal.pc = ecs->stop_func_start;
3831 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3832 }
3833 else
3834 insert_step_resume_breakpoint_at_caller (frame);
3835
3836 keep_going (ecs);
3837 return;
3838 }
3839
3840 /* If we are in a function call trampoline (a stub between the
3841 calling routine and the real function), locate the real
3842 function. That's what tells us (a) whether we want to step
3843 into it at all, and (b) what prologue we want to run to the
3844 end of, if we do step into it. */
3845 real_stop_pc = skip_language_trampoline (frame, stop_pc);
3846 if (real_stop_pc == 0)
3847 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
3848 if (real_stop_pc != 0)
3849 ecs->stop_func_start = real_stop_pc;
3850
3851 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
3852 {
3853 struct symtab_and_line sr_sal;
3854 init_sal (&sr_sal);
3855 sr_sal.pc = ecs->stop_func_start;
3856
3857 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3858 keep_going (ecs);
3859 return;
3860 }
3861
3862 /* If we have line number information for the function we are
3863 thinking of stepping into, step into it.
3864
3865 If there are several symtabs at that PC (e.g. with include
3866 files), just want to know whether *any* of them have line
3867 numbers. find_pc_line handles this. */
3868 {
3869 struct symtab_and_line tmp_sal;
3870
3871 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3872 if (tmp_sal.line != 0)
3873 {
3874 if (execution_direction == EXEC_REVERSE)
3875 handle_step_into_function_backward (gdbarch, ecs);
3876 else
3877 handle_step_into_function (gdbarch, ecs);
3878 return;
3879 }
3880 }
3881
3882 /* If we have no line number and the step-stop-if-no-debug is
3883 set, we stop the step so that the user has a chance to switch
3884 in assembly mode. */
3885 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3886 && step_stop_if_no_debug)
3887 {
3888 ecs->event_thread->stop_step = 1;
3889 print_stop_reason (END_STEPPING_RANGE, 0);
3890 stop_stepping (ecs);
3891 return;
3892 }
3893
3894 if (execution_direction == EXEC_REVERSE)
3895 {
3896 /* Set a breakpoint at callee's start address.
3897 From there we can step once and be back in the caller. */
3898 struct symtab_and_line sr_sal;
3899 init_sal (&sr_sal);
3900 sr_sal.pc = ecs->stop_func_start;
3901 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3902 }
3903 else
3904 /* Set a breakpoint at callee's return address (the address
3905 at which the caller will resume). */
3906 insert_step_resume_breakpoint_at_caller (frame);
3907
3908 keep_going (ecs);
3909 return;
3910 }
3911
3912 /* If we're in the return path from a shared library trampoline,
3913 we want to proceed through the trampoline when stepping. */
3914 if (gdbarch_in_solib_return_trampoline (gdbarch,
3915 stop_pc, ecs->stop_func_name))
3916 {
3917 /* Determine where this trampoline returns. */
3918 CORE_ADDR real_stop_pc;
3919 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
3920
3921 if (debug_infrun)
3922 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3923
3924 /* Only proceed through if we know where it's going. */
3925 if (real_stop_pc)
3926 {
3927 /* And put the step-breakpoint there and go until there. */
3928 struct symtab_and_line sr_sal;
3929
3930 init_sal (&sr_sal); /* initialize to zeroes */
3931 sr_sal.pc = real_stop_pc;
3932 sr_sal.section = find_pc_overlay (sr_sal.pc);
3933
3934 /* Do not specify what the fp should be when we stop since
3935 on some machines the prologue is where the new fp value
3936 is established. */
3937 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3938
3939 /* Restart without fiddling with the step ranges or
3940 other state. */
3941 keep_going (ecs);
3942 return;
3943 }
3944 }
3945
3946 stop_pc_sal = find_pc_line (stop_pc, 0);
3947
3948 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3949 the trampoline processing logic, however, there are some trampolines
3950 that have no names, so we should do trampoline handling first. */
3951 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3952 && ecs->stop_func_name == NULL
3953 && stop_pc_sal.line == 0)
3954 {
3955 if (debug_infrun)
3956 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3957
3958 /* The inferior just stepped into, or returned to, an
3959 undebuggable function (where there is no debugging information
3960 and no line number corresponding to the address where the
3961 inferior stopped). Since we want to skip this kind of code,
3962 we keep going until the inferior returns from this
3963 function - unless the user has asked us not to (via
3964 set step-mode) or we no longer know how to get back
3965 to the call site. */
3966 if (step_stop_if_no_debug
3967 || !frame_id_p (frame_unwind_caller_id (frame)))
3968 {
3969 /* If we have no line number and the step-stop-if-no-debug
3970 is set, we stop the step so that the user has a chance to
3971 switch in assembly mode. */
3972 ecs->event_thread->stop_step = 1;
3973 print_stop_reason (END_STEPPING_RANGE, 0);
3974 stop_stepping (ecs);
3975 return;
3976 }
3977 else
3978 {
3979 /* Set a breakpoint at callee's return address (the address
3980 at which the caller will resume). */
3981 insert_step_resume_breakpoint_at_caller (frame);
3982 keep_going (ecs);
3983 return;
3984 }
3985 }
3986
3987 if (ecs->event_thread->step_range_end == 1)
3988 {
3989 /* It is stepi or nexti. We always want to stop stepping after
3990 one instruction. */
3991 if (debug_infrun)
3992 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3993 ecs->event_thread->stop_step = 1;
3994 print_stop_reason (END_STEPPING_RANGE, 0);
3995 stop_stepping (ecs);
3996 return;
3997 }
3998
3999 if (stop_pc_sal.line == 0)
4000 {
4001 /* We have no line number information. That means to stop
4002 stepping (does this always happen right after one instruction,
4003 when we do "s" in a function with no line numbers,
4004 or can this happen as a result of a return or longjmp?). */
4005 if (debug_infrun)
4006 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
4007 ecs->event_thread->stop_step = 1;
4008 print_stop_reason (END_STEPPING_RANGE, 0);
4009 stop_stepping (ecs);
4010 return;
4011 }
4012
4013 /* Look for "calls" to inlined functions, part one. If the inline
4014 frame machinery detected some skipped call sites, we have entered
4015 a new inline function. */
4016
4017 if (frame_id_eq (get_frame_id (get_current_frame ()),
4018 ecs->event_thread->step_frame_id)
4019 && inline_skipped_frames (ecs->ptid))
4020 {
4021 struct symtab_and_line call_sal;
4022
4023 if (debug_infrun)
4024 fprintf_unfiltered (gdb_stdlog,
4025 "infrun: stepped into inlined function\n");
4026
4027 find_frame_sal (get_current_frame (), &call_sal);
4028
4029 if (ecs->event_thread->step_over_calls != STEP_OVER_ALL)
4030 {
4031 /* For "step", we're going to stop. But if the call site
4032 for this inlined function is on the same source line as
4033 we were previously stepping, go down into the function
4034 first. Otherwise stop at the call site. */
4035
4036 if (call_sal.line == ecs->event_thread->current_line
4037 && call_sal.symtab == ecs->event_thread->current_symtab)
4038 step_into_inline_frame (ecs->ptid);
4039
4040 ecs->event_thread->stop_step = 1;
4041 print_stop_reason (END_STEPPING_RANGE, 0);
4042 stop_stepping (ecs);
4043 return;
4044 }
4045 else
4046 {
4047 /* For "next", we should stop at the call site if it is on a
4048 different source line. Otherwise continue through the
4049 inlined function. */
4050 if (call_sal.line == ecs->event_thread->current_line
4051 && call_sal.symtab == ecs->event_thread->current_symtab)
4052 keep_going (ecs);
4053 else
4054 {
4055 ecs->event_thread->stop_step = 1;
4056 print_stop_reason (END_STEPPING_RANGE, 0);
4057 stop_stepping (ecs);
4058 }
4059 return;
4060 }
4061 }
4062
4063 /* Look for "calls" to inlined functions, part two. If we are still
4064 in the same real function we were stepping through, but we have
4065 to go further up to find the exact frame ID, we are stepping
4066 through a more inlined call beyond its call site. */
4067
4068 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4069 && !frame_id_eq (get_frame_id (get_current_frame ()),
4070 ecs->event_thread->step_frame_id)
4071 && stepped_in_from (get_current_frame (),
4072 ecs->event_thread->step_frame_id))
4073 {
4074 if (debug_infrun)
4075 fprintf_unfiltered (gdb_stdlog,
4076 "infrun: stepping through inlined function\n");
4077
4078 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4079 keep_going (ecs);
4080 else
4081 {
4082 ecs->event_thread->stop_step = 1;
4083 print_stop_reason (END_STEPPING_RANGE, 0);
4084 stop_stepping (ecs);
4085 }
4086 return;
4087 }
4088
4089 if ((stop_pc == stop_pc_sal.pc)
4090 && (ecs->event_thread->current_line != stop_pc_sal.line
4091 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
4092 {
4093 /* We are at the start of a different line. So stop. Note that
4094 we don't stop if we step into the middle of a different line.
4095 That is said to make things like for (;;) statements work
4096 better. */
4097 if (debug_infrun)
4098 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
4099 ecs->event_thread->stop_step = 1;
4100 print_stop_reason (END_STEPPING_RANGE, 0);
4101 stop_stepping (ecs);
4102 return;
4103 }
4104
4105 /* We aren't done stepping.
4106
4107 Optimize by setting the stepping range to the line.
4108 (We might not be in the original line, but if we entered a
4109 new line in mid-statement, we continue stepping. This makes
4110 things like for(;;) statements work better.) */
4111
4112 ecs->event_thread->step_range_start = stop_pc_sal.pc;
4113 ecs->event_thread->step_range_end = stop_pc_sal.end;
4114 set_step_info (frame, stop_pc_sal);
4115
4116 if (debug_infrun)
4117 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
4118 keep_going (ecs);
4119 }
4120
4121 /* Is thread TP in the middle of single-stepping? */
4122
4123 static int
4124 currently_stepping (struct thread_info *tp)
4125 {
4126 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
4127 || tp->trap_expected
4128 || tp->stepping_through_solib_after_catch
4129 || bpstat_should_step ());
4130 }
4131
4132 /* Returns true if any thread *but* the one passed in "data" is in the
4133 middle of stepping or of handling a "next". */
4134
4135 static int
4136 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
4137 {
4138 if (tp == data)
4139 return 0;
4140
4141 return (tp->step_range_end
4142 || tp->trap_expected
4143 || tp->stepping_through_solib_after_catch);
4144 }
4145
4146 /* Inferior has stepped into a subroutine call with source code that
4147 we should not step over. Do step to the first line of code in
4148 it. */
4149
4150 static void
4151 handle_step_into_function (struct gdbarch *gdbarch,
4152 struct execution_control_state *ecs)
4153 {
4154 struct symtab *s;
4155 struct symtab_and_line stop_func_sal, sr_sal;
4156
4157 s = find_pc_symtab (stop_pc);
4158 if (s && s->language != language_asm)
4159 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
4160 ecs->stop_func_start);
4161
4162 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
4163 /* Use the step_resume_break to step until the end of the prologue,
4164 even if that involves jumps (as it seems to on the vax under
4165 4.2). */
4166 /* If the prologue ends in the middle of a source line, continue to
4167 the end of that source line (if it is still within the function).
4168 Otherwise, just go to end of prologue. */
4169 if (stop_func_sal.end
4170 && stop_func_sal.pc != ecs->stop_func_start
4171 && stop_func_sal.end < ecs->stop_func_end)
4172 ecs->stop_func_start = stop_func_sal.end;
4173
4174 /* Architectures which require breakpoint adjustment might not be able
4175 to place a breakpoint at the computed address. If so, the test
4176 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4177 ecs->stop_func_start to an address at which a breakpoint may be
4178 legitimately placed.
4179
4180 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4181 made, GDB will enter an infinite loop when stepping through
4182 optimized code consisting of VLIW instructions which contain
4183 subinstructions corresponding to different source lines. On
4184 FR-V, it's not permitted to place a breakpoint on any but the
4185 first subinstruction of a VLIW instruction. When a breakpoint is
4186 set, GDB will adjust the breakpoint address to the beginning of
4187 the VLIW instruction. Thus, we need to make the corresponding
4188 adjustment here when computing the stop address. */
4189
4190 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
4191 {
4192 ecs->stop_func_start
4193 = gdbarch_adjust_breakpoint_address (gdbarch,
4194 ecs->stop_func_start);
4195 }
4196
4197 if (ecs->stop_func_start == stop_pc)
4198 {
4199 /* We are already there: stop now. */
4200 ecs->event_thread->stop_step = 1;
4201 print_stop_reason (END_STEPPING_RANGE, 0);
4202 stop_stepping (ecs);
4203 return;
4204 }
4205 else
4206 {
4207 /* Put the step-breakpoint there and go until there. */
4208 init_sal (&sr_sal); /* initialize to zeroes */
4209 sr_sal.pc = ecs->stop_func_start;
4210 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
4211
4212 /* Do not specify what the fp should be when we stop since on
4213 some machines the prologue is where the new fp value is
4214 established. */
4215 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
4216
4217 /* And make sure stepping stops right away then. */
4218 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
4219 }
4220 keep_going (ecs);
4221 }
4222
4223 /* Inferior has stepped backward into a subroutine call with source
4224 code that we should not step over. Do step to the beginning of the
4225 last line of code in it. */
4226
4227 static void
4228 handle_step_into_function_backward (struct gdbarch *gdbarch,
4229 struct execution_control_state *ecs)
4230 {
4231 struct symtab *s;
4232 struct symtab_and_line stop_func_sal, sr_sal;
4233
4234 s = find_pc_symtab (stop_pc);
4235 if (s && s->language != language_asm)
4236 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
4237 ecs->stop_func_start);
4238
4239 stop_func_sal = find_pc_line (stop_pc, 0);
4240
4241 /* OK, we're just going to keep stepping here. */
4242 if (stop_func_sal.pc == stop_pc)
4243 {
4244 /* We're there already. Just stop stepping now. */
4245 ecs->event_thread->stop_step = 1;
4246 print_stop_reason (END_STEPPING_RANGE, 0);
4247 stop_stepping (ecs);
4248 }
4249 else
4250 {
4251 /* Else just reset the step range and keep going.
4252 No step-resume breakpoint, they don't work for
4253 epilogues, which can have multiple entry paths. */
4254 ecs->event_thread->step_range_start = stop_func_sal.pc;
4255 ecs->event_thread->step_range_end = stop_func_sal.end;
4256 keep_going (ecs);
4257 }
4258 return;
4259 }
4260
4261 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
4262 This is used to both functions and to skip over code. */
4263
4264 static void
4265 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
4266 struct frame_id sr_id)
4267 {
4268 /* There should never be more than one step-resume or longjmp-resume
4269 breakpoint per thread, so we should never be setting a new
4270 step_resume_breakpoint when one is already active. */
4271 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
4272
4273 if (debug_infrun)
4274 fprintf_unfiltered (gdb_stdlog,
4275 "infrun: inserting step-resume breakpoint at 0x%s\n",
4276 paddr_nz (sr_sal.pc));
4277
4278 inferior_thread ()->step_resume_breakpoint
4279 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
4280 }
4281
4282 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
4283 to skip a potential signal handler.
4284
4285 This is called with the interrupted function's frame. The signal
4286 handler, when it returns, will resume the interrupted function at
4287 RETURN_FRAME.pc. */
4288
4289 static void
4290 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
4291 {
4292 struct gdbarch *gdbarch = get_frame_arch (return_frame);
4293 struct symtab_and_line sr_sal;
4294
4295 gdb_assert (return_frame != NULL);
4296 init_sal (&sr_sal); /* initialize to zeros */
4297
4298 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
4299 sr_sal.section = find_pc_overlay (sr_sal.pc);
4300
4301 insert_step_resume_breakpoint_at_sal (sr_sal, get_stack_frame_id (return_frame));
4302 }
4303
4304 /* Similar to insert_step_resume_breakpoint_at_frame, except
4305 but a breakpoint at the previous frame's PC. This is used to
4306 skip a function after stepping into it (for "next" or if the called
4307 function has no debugging information).
4308
4309 The current function has almost always been reached by single
4310 stepping a call or return instruction. NEXT_FRAME belongs to the
4311 current function, and the breakpoint will be set at the caller's
4312 resume address.
4313
4314 This is a separate function rather than reusing
4315 insert_step_resume_breakpoint_at_frame in order to avoid
4316 get_prev_frame, which may stop prematurely (see the implementation
4317 of frame_unwind_caller_id for an example). */
4318
4319 static void
4320 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4321 {
4322 struct gdbarch *gdbarch = get_frame_arch (next_frame);
4323 struct symtab_and_line sr_sal;
4324
4325 /* We shouldn't have gotten here if we don't know where the call site
4326 is. */
4327 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
4328
4329 init_sal (&sr_sal); /* initialize to zeros */
4330
4331 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
4332 frame_unwind_caller_pc (next_frame));
4333 sr_sal.section = find_pc_overlay (sr_sal.pc);
4334
4335 insert_step_resume_breakpoint_at_sal (sr_sal,
4336 frame_unwind_caller_id (next_frame));
4337 }
4338
4339 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4340 new breakpoint at the target of a jmp_buf. The handling of
4341 longjmp-resume uses the same mechanisms used for handling
4342 "step-resume" breakpoints. */
4343
4344 static void
4345 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
4346 {
4347 /* There should never be more than one step-resume or longjmp-resume
4348 breakpoint per thread, so we should never be setting a new
4349 longjmp_resume_breakpoint when one is already active. */
4350 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
4351
4352 if (debug_infrun)
4353 fprintf_unfiltered (gdb_stdlog,
4354 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
4355 paddr_nz (pc));
4356
4357 inferior_thread ()->step_resume_breakpoint =
4358 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
4359 }
4360
4361 static void
4362 stop_stepping (struct execution_control_state *ecs)
4363 {
4364 if (debug_infrun)
4365 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
4366
4367 /* Let callers know we don't want to wait for the inferior anymore. */
4368 ecs->wait_some_more = 0;
4369 }
4370
4371 /* This function handles various cases where we need to continue
4372 waiting for the inferior. */
4373 /* (Used to be the keep_going: label in the old wait_for_inferior) */
4374
4375 static void
4376 keep_going (struct execution_control_state *ecs)
4377 {
4378 /* Save the pc before execution, to compare with pc after stop. */
4379 ecs->event_thread->prev_pc
4380 = regcache_read_pc (get_thread_regcache (ecs->ptid));
4381
4382 /* If we did not do break;, it means we should keep running the
4383 inferior and not return to debugger. */
4384
4385 if (ecs->event_thread->trap_expected
4386 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
4387 {
4388 /* We took a signal (which we are supposed to pass through to
4389 the inferior, else we'd not get here) and we haven't yet
4390 gotten our trap. Simply continue. */
4391 resume (currently_stepping (ecs->event_thread),
4392 ecs->event_thread->stop_signal);
4393 }
4394 else
4395 {
4396 /* Either the trap was not expected, but we are continuing
4397 anyway (the user asked that this signal be passed to the
4398 child)
4399 -- or --
4400 The signal was SIGTRAP, e.g. it was our signal, but we
4401 decided we should resume from it.
4402
4403 We're going to run this baby now!
4404
4405 Note that insert_breakpoints won't try to re-insert
4406 already inserted breakpoints. Therefore, we don't
4407 care if breakpoints were already inserted, or not. */
4408
4409 if (ecs->event_thread->stepping_over_breakpoint)
4410 {
4411 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
4412 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
4413 /* Since we can't do a displaced step, we have to remove
4414 the breakpoint while we step it. To keep things
4415 simple, we remove them all. */
4416 remove_breakpoints ();
4417 }
4418 else
4419 {
4420 struct gdb_exception e;
4421 /* Stop stepping when inserting breakpoints
4422 has failed. */
4423 TRY_CATCH (e, RETURN_MASK_ERROR)
4424 {
4425 insert_breakpoints ();
4426 }
4427 if (e.reason < 0)
4428 {
4429 stop_stepping (ecs);
4430 return;
4431 }
4432 }
4433
4434 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
4435
4436 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
4437 specifies that such a signal should be delivered to the
4438 target program).
4439
4440 Typically, this would occure when a user is debugging a
4441 target monitor on a simulator: the target monitor sets a
4442 breakpoint; the simulator encounters this break-point and
4443 halts the simulation handing control to GDB; GDB, noteing
4444 that the break-point isn't valid, returns control back to the
4445 simulator; the simulator then delivers the hardware
4446 equivalent of a SIGNAL_TRAP to the program being debugged. */
4447
4448 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4449 && !signal_program[ecs->event_thread->stop_signal])
4450 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
4451
4452 resume (currently_stepping (ecs->event_thread),
4453 ecs->event_thread->stop_signal);
4454 }
4455
4456 prepare_to_wait (ecs);
4457 }
4458
4459 /* This function normally comes after a resume, before
4460 handle_inferior_event exits. It takes care of any last bits of
4461 housekeeping, and sets the all-important wait_some_more flag. */
4462
4463 static void
4464 prepare_to_wait (struct execution_control_state *ecs)
4465 {
4466 if (debug_infrun)
4467 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
4468 if (infwait_state == infwait_normal_state)
4469 {
4470 overlay_cache_invalid = 1;
4471
4472 /* We have to invalidate the registers BEFORE calling
4473 target_wait because they can be loaded from the target while
4474 in target_wait. This makes remote debugging a bit more
4475 efficient for those targets that provide critical registers
4476 as part of their normal status mechanism. */
4477
4478 registers_changed ();
4479 waiton_ptid = pid_to_ptid (-1);
4480 }
4481 /* This is the old end of the while loop. Let everybody know we
4482 want to wait for the inferior some more and get called again
4483 soon. */
4484 ecs->wait_some_more = 1;
4485 }
4486
4487 /* Print why the inferior has stopped. We always print something when
4488 the inferior exits, or receives a signal. The rest of the cases are
4489 dealt with later on in normal_stop() and print_it_typical(). Ideally
4490 there should be a call to this function from handle_inferior_event()
4491 each time stop_stepping() is called.*/
4492 static void
4493 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4494 {
4495 switch (stop_reason)
4496 {
4497 case END_STEPPING_RANGE:
4498 /* We are done with a step/next/si/ni command. */
4499 /* For now print nothing. */
4500 /* Print a message only if not in the middle of doing a "step n"
4501 operation for n > 1 */
4502 if (!inferior_thread ()->step_multi
4503 || !inferior_thread ()->stop_step)
4504 if (ui_out_is_mi_like_p (uiout))
4505 ui_out_field_string
4506 (uiout, "reason",
4507 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
4508 break;
4509 case SIGNAL_EXITED:
4510 /* The inferior was terminated by a signal. */
4511 annotate_signalled ();
4512 if (ui_out_is_mi_like_p (uiout))
4513 ui_out_field_string
4514 (uiout, "reason",
4515 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
4516 ui_out_text (uiout, "\nProgram terminated with signal ");
4517 annotate_signal_name ();
4518 ui_out_field_string (uiout, "signal-name",
4519 target_signal_to_name (stop_info));
4520 annotate_signal_name_end ();
4521 ui_out_text (uiout, ", ");
4522 annotate_signal_string ();
4523 ui_out_field_string (uiout, "signal-meaning",
4524 target_signal_to_string (stop_info));
4525 annotate_signal_string_end ();
4526 ui_out_text (uiout, ".\n");
4527 ui_out_text (uiout, "The program no longer exists.\n");
4528 break;
4529 case EXITED:
4530 /* The inferior program is finished. */
4531 annotate_exited (stop_info);
4532 if (stop_info)
4533 {
4534 if (ui_out_is_mi_like_p (uiout))
4535 ui_out_field_string (uiout, "reason",
4536 async_reason_lookup (EXEC_ASYNC_EXITED));
4537 ui_out_text (uiout, "\nProgram exited with code ");
4538 ui_out_field_fmt (uiout, "exit-code", "0%o",
4539 (unsigned int) stop_info);
4540 ui_out_text (uiout, ".\n");
4541 }
4542 else
4543 {
4544 if (ui_out_is_mi_like_p (uiout))
4545 ui_out_field_string
4546 (uiout, "reason",
4547 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
4548 ui_out_text (uiout, "\nProgram exited normally.\n");
4549 }
4550 /* Support the --return-child-result option. */
4551 return_child_result_value = stop_info;
4552 break;
4553 case SIGNAL_RECEIVED:
4554 /* Signal received. The signal table tells us to print about
4555 it. */
4556 annotate_signal ();
4557
4558 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4559 {
4560 struct thread_info *t = inferior_thread ();
4561
4562 ui_out_text (uiout, "\n[");
4563 ui_out_field_string (uiout, "thread-name",
4564 target_pid_to_str (t->ptid));
4565 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4566 ui_out_text (uiout, " stopped");
4567 }
4568 else
4569 {
4570 ui_out_text (uiout, "\nProgram received signal ");
4571 annotate_signal_name ();
4572 if (ui_out_is_mi_like_p (uiout))
4573 ui_out_field_string
4574 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4575 ui_out_field_string (uiout, "signal-name",
4576 target_signal_to_name (stop_info));
4577 annotate_signal_name_end ();
4578 ui_out_text (uiout, ", ");
4579 annotate_signal_string ();
4580 ui_out_field_string (uiout, "signal-meaning",
4581 target_signal_to_string (stop_info));
4582 annotate_signal_string_end ();
4583 }
4584 ui_out_text (uiout, ".\n");
4585 break;
4586 case NO_HISTORY:
4587 /* Reverse execution: target ran out of history info. */
4588 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4589 break;
4590 default:
4591 internal_error (__FILE__, __LINE__,
4592 _("print_stop_reason: unrecognized enum value"));
4593 break;
4594 }
4595 }
4596 \f
4597
4598 /* Here to return control to GDB when the inferior stops for real.
4599 Print appropriate messages, remove breakpoints, give terminal our modes.
4600
4601 STOP_PRINT_FRAME nonzero means print the executing frame
4602 (pc, function, args, file, line number and line text).
4603 BREAKPOINTS_FAILED nonzero means stop was due to error
4604 attempting to insert breakpoints. */
4605
4606 void
4607 normal_stop (void)
4608 {
4609 struct target_waitstatus last;
4610 ptid_t last_ptid;
4611 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4612
4613 get_last_target_status (&last_ptid, &last);
4614
4615 /* If an exception is thrown from this point on, make sure to
4616 propagate GDB's knowledge of the executing state to the
4617 frontend/user running state. A QUIT is an easy exception to see
4618 here, so do this before any filtered output. */
4619 if (!non_stop)
4620 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
4621 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4622 && last.kind != TARGET_WAITKIND_EXITED)
4623 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
4624
4625 /* In non-stop mode, we don't want GDB to switch threads behind the
4626 user's back, to avoid races where the user is typing a command to
4627 apply to thread x, but GDB switches to thread y before the user
4628 finishes entering the command. */
4629
4630 /* As with the notification of thread events, we want to delay
4631 notifying the user that we've switched thread context until
4632 the inferior actually stops.
4633
4634 There's no point in saying anything if the inferior has exited.
4635 Note that SIGNALLED here means "exited with a signal", not
4636 "received a signal". */
4637 if (!non_stop
4638 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
4639 && target_has_execution
4640 && last.kind != TARGET_WAITKIND_SIGNALLED
4641 && last.kind != TARGET_WAITKIND_EXITED)
4642 {
4643 target_terminal_ours_for_output ();
4644 printf_filtered (_("[Switching to %s]\n"),
4645 target_pid_to_str (inferior_ptid));
4646 annotate_thread_changed ();
4647 previous_inferior_ptid = inferior_ptid;
4648 }
4649
4650 if (!breakpoints_always_inserted_mode () && target_has_execution)
4651 {
4652 if (remove_breakpoints ())
4653 {
4654 target_terminal_ours_for_output ();
4655 printf_filtered (_("\
4656 Cannot remove breakpoints because program is no longer writable.\n\
4657 Further execution is probably impossible.\n"));
4658 }
4659 }
4660
4661 /* If an auto-display called a function and that got a signal,
4662 delete that auto-display to avoid an infinite recursion. */
4663
4664 if (stopped_by_random_signal)
4665 disable_current_display ();
4666
4667 /* Don't print a message if in the middle of doing a "step n"
4668 operation for n > 1 */
4669 if (target_has_execution
4670 && last.kind != TARGET_WAITKIND_SIGNALLED
4671 && last.kind != TARGET_WAITKIND_EXITED
4672 && inferior_thread ()->step_multi
4673 && inferior_thread ()->stop_step)
4674 goto done;
4675
4676 target_terminal_ours ();
4677
4678 /* Set the current source location. This will also happen if we
4679 display the frame below, but the current SAL will be incorrect
4680 during a user hook-stop function. */
4681 if (has_stack_frames () && !stop_stack_dummy)
4682 set_current_sal_from_frame (get_current_frame (), 1);
4683
4684 /* Let the user/frontend see the threads as stopped. */
4685 do_cleanups (old_chain);
4686
4687 /* Look up the hook_stop and run it (CLI internally handles problem
4688 of stop_command's pre-hook not existing). */
4689 if (stop_command)
4690 catch_errors (hook_stop_stub, stop_command,
4691 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4692
4693 if (!has_stack_frames ())
4694 goto done;
4695
4696 if (last.kind == TARGET_WAITKIND_SIGNALLED
4697 || last.kind == TARGET_WAITKIND_EXITED)
4698 goto done;
4699
4700 /* Select innermost stack frame - i.e., current frame is frame 0,
4701 and current location is based on that.
4702 Don't do this on return from a stack dummy routine,
4703 or if the program has exited. */
4704
4705 if (!stop_stack_dummy)
4706 {
4707 select_frame (get_current_frame ());
4708
4709 /* Print current location without a level number, if
4710 we have changed functions or hit a breakpoint.
4711 Print source line if we have one.
4712 bpstat_print() contains the logic deciding in detail
4713 what to print, based on the event(s) that just occurred. */
4714
4715 /* If --batch-silent is enabled then there's no need to print the current
4716 source location, and to try risks causing an error message about
4717 missing source files. */
4718 if (stop_print_frame && !batch_silent)
4719 {
4720 int bpstat_ret;
4721 int source_flag;
4722 int do_frame_printing = 1;
4723 struct thread_info *tp = inferior_thread ();
4724
4725 bpstat_ret = bpstat_print (tp->stop_bpstat);
4726 switch (bpstat_ret)
4727 {
4728 case PRINT_UNKNOWN:
4729 /* If we had hit a shared library event breakpoint,
4730 bpstat_print would print out this message. If we hit
4731 an OS-level shared library event, do the same
4732 thing. */
4733 if (last.kind == TARGET_WAITKIND_LOADED)
4734 {
4735 printf_filtered (_("Stopped due to shared library event\n"));
4736 source_flag = SRC_LINE; /* something bogus */
4737 do_frame_printing = 0;
4738 break;
4739 }
4740
4741 /* FIXME: cagney/2002-12-01: Given that a frame ID does
4742 (or should) carry around the function and does (or
4743 should) use that when doing a frame comparison. */
4744 if (tp->stop_step
4745 && frame_id_eq (tp->step_frame_id,
4746 get_frame_id (get_current_frame ()))
4747 && step_start_function == find_pc_function (stop_pc))
4748 source_flag = SRC_LINE; /* finished step, just print source line */
4749 else
4750 source_flag = SRC_AND_LOC; /* print location and source line */
4751 break;
4752 case PRINT_SRC_AND_LOC:
4753 source_flag = SRC_AND_LOC; /* print location and source line */
4754 break;
4755 case PRINT_SRC_ONLY:
4756 source_flag = SRC_LINE;
4757 break;
4758 case PRINT_NOTHING:
4759 source_flag = SRC_LINE; /* something bogus */
4760 do_frame_printing = 0;
4761 break;
4762 default:
4763 internal_error (__FILE__, __LINE__, _("Unknown value."));
4764 }
4765
4766 /* The behavior of this routine with respect to the source
4767 flag is:
4768 SRC_LINE: Print only source line
4769 LOCATION: Print only location
4770 SRC_AND_LOC: Print location and source line */
4771 if (do_frame_printing)
4772 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
4773
4774 /* Display the auto-display expressions. */
4775 do_displays ();
4776 }
4777 }
4778
4779 /* Save the function value return registers, if we care.
4780 We might be about to restore their previous contents. */
4781 if (inferior_thread ()->proceed_to_finish)
4782 {
4783 /* This should not be necessary. */
4784 if (stop_registers)
4785 regcache_xfree (stop_registers);
4786
4787 /* NB: The copy goes through to the target picking up the value of
4788 all the registers. */
4789 stop_registers = regcache_dup (get_current_regcache ());
4790 }
4791
4792 if (stop_stack_dummy)
4793 {
4794 /* Pop the empty frame that contains the stack dummy.
4795 This also restores inferior state prior to the call
4796 (struct inferior_thread_state). */
4797 struct frame_info *frame = get_current_frame ();
4798 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
4799 frame_pop (frame);
4800 /* frame_pop() calls reinit_frame_cache as the last thing it does
4801 which means there's currently no selected frame. We don't need
4802 to re-establish a selected frame if the dummy call returns normally,
4803 that will be done by restore_inferior_status. However, we do have
4804 to handle the case where the dummy call is returning after being
4805 stopped (e.g. the dummy call previously hit a breakpoint). We
4806 can't know which case we have so just always re-establish a
4807 selected frame here. */
4808 select_frame (get_current_frame ());
4809 }
4810
4811 done:
4812 annotate_stopped ();
4813
4814 /* Suppress the stop observer if we're in the middle of:
4815
4816 - a step n (n > 1), as there still more steps to be done.
4817
4818 - a "finish" command, as the observer will be called in
4819 finish_command_continuation, so it can include the inferior
4820 function's return value.
4821
4822 - calling an inferior function, as we pretend we inferior didn't
4823 run at all. The return value of the call is handled by the
4824 expression evaluator, through call_function_by_hand. */
4825
4826 if (!target_has_execution
4827 || last.kind == TARGET_WAITKIND_SIGNALLED
4828 || last.kind == TARGET_WAITKIND_EXITED
4829 || (!inferior_thread ()->step_multi
4830 && !(inferior_thread ()->stop_bpstat
4831 && inferior_thread ()->proceed_to_finish)
4832 && !inferior_thread ()->in_infcall))
4833 {
4834 if (!ptid_equal (inferior_ptid, null_ptid))
4835 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
4836 stop_print_frame);
4837 else
4838 observer_notify_normal_stop (NULL, stop_print_frame);
4839 }
4840
4841 if (target_has_execution)
4842 {
4843 if (last.kind != TARGET_WAITKIND_SIGNALLED
4844 && last.kind != TARGET_WAITKIND_EXITED)
4845 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4846 Delete any breakpoint that is to be deleted at the next stop. */
4847 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
4848 }
4849 }
4850
4851 static int
4852 hook_stop_stub (void *cmd)
4853 {
4854 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
4855 return (0);
4856 }
4857 \f
4858 int
4859 signal_stop_state (int signo)
4860 {
4861 return signal_stop[signo];
4862 }
4863
4864 int
4865 signal_print_state (int signo)
4866 {
4867 return signal_print[signo];
4868 }
4869
4870 int
4871 signal_pass_state (int signo)
4872 {
4873 return signal_program[signo];
4874 }
4875
4876 int
4877 signal_stop_update (int signo, int state)
4878 {
4879 int ret = signal_stop[signo];
4880 signal_stop[signo] = state;
4881 return ret;
4882 }
4883
4884 int
4885 signal_print_update (int signo, int state)
4886 {
4887 int ret = signal_print[signo];
4888 signal_print[signo] = state;
4889 return ret;
4890 }
4891
4892 int
4893 signal_pass_update (int signo, int state)
4894 {
4895 int ret = signal_program[signo];
4896 signal_program[signo] = state;
4897 return ret;
4898 }
4899
4900 static void
4901 sig_print_header (void)
4902 {
4903 printf_filtered (_("\
4904 Signal Stop\tPrint\tPass to program\tDescription\n"));
4905 }
4906
4907 static void
4908 sig_print_info (enum target_signal oursig)
4909 {
4910 const char *name = target_signal_to_name (oursig);
4911 int name_padding = 13 - strlen (name);
4912
4913 if (name_padding <= 0)
4914 name_padding = 0;
4915
4916 printf_filtered ("%s", name);
4917 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4918 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4919 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4920 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4921 printf_filtered ("%s\n", target_signal_to_string (oursig));
4922 }
4923
4924 /* Specify how various signals in the inferior should be handled. */
4925
4926 static void
4927 handle_command (char *args, int from_tty)
4928 {
4929 char **argv;
4930 int digits, wordlen;
4931 int sigfirst, signum, siglast;
4932 enum target_signal oursig;
4933 int allsigs;
4934 int nsigs;
4935 unsigned char *sigs;
4936 struct cleanup *old_chain;
4937
4938 if (args == NULL)
4939 {
4940 error_no_arg (_("signal to handle"));
4941 }
4942
4943 /* Allocate and zero an array of flags for which signals to handle. */
4944
4945 nsigs = (int) TARGET_SIGNAL_LAST;
4946 sigs = (unsigned char *) alloca (nsigs);
4947 memset (sigs, 0, nsigs);
4948
4949 /* Break the command line up into args. */
4950
4951 argv = gdb_buildargv (args);
4952 old_chain = make_cleanup_freeargv (argv);
4953
4954 /* Walk through the args, looking for signal oursigs, signal names, and
4955 actions. Signal numbers and signal names may be interspersed with
4956 actions, with the actions being performed for all signals cumulatively
4957 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4958
4959 while (*argv != NULL)
4960 {
4961 wordlen = strlen (*argv);
4962 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4963 {;
4964 }
4965 allsigs = 0;
4966 sigfirst = siglast = -1;
4967
4968 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4969 {
4970 /* Apply action to all signals except those used by the
4971 debugger. Silently skip those. */
4972 allsigs = 1;
4973 sigfirst = 0;
4974 siglast = nsigs - 1;
4975 }
4976 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4977 {
4978 SET_SIGS (nsigs, sigs, signal_stop);
4979 SET_SIGS (nsigs, sigs, signal_print);
4980 }
4981 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4982 {
4983 UNSET_SIGS (nsigs, sigs, signal_program);
4984 }
4985 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4986 {
4987 SET_SIGS (nsigs, sigs, signal_print);
4988 }
4989 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4990 {
4991 SET_SIGS (nsigs, sigs, signal_program);
4992 }
4993 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4994 {
4995 UNSET_SIGS (nsigs, sigs, signal_stop);
4996 }
4997 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4998 {
4999 SET_SIGS (nsigs, sigs, signal_program);
5000 }
5001 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5002 {
5003 UNSET_SIGS (nsigs, sigs, signal_print);
5004 UNSET_SIGS (nsigs, sigs, signal_stop);
5005 }
5006 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5007 {
5008 UNSET_SIGS (nsigs, sigs, signal_program);
5009 }
5010 else if (digits > 0)
5011 {
5012 /* It is numeric. The numeric signal refers to our own
5013 internal signal numbering from target.h, not to host/target
5014 signal number. This is a feature; users really should be
5015 using symbolic names anyway, and the common ones like
5016 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
5017
5018 sigfirst = siglast = (int)
5019 target_signal_from_command (atoi (*argv));
5020 if ((*argv)[digits] == '-')
5021 {
5022 siglast = (int)
5023 target_signal_from_command (atoi ((*argv) + digits + 1));
5024 }
5025 if (sigfirst > siglast)
5026 {
5027 /* Bet he didn't figure we'd think of this case... */
5028 signum = sigfirst;
5029 sigfirst = siglast;
5030 siglast = signum;
5031 }
5032 }
5033 else
5034 {
5035 oursig = target_signal_from_name (*argv);
5036 if (oursig != TARGET_SIGNAL_UNKNOWN)
5037 {
5038 sigfirst = siglast = (int) oursig;
5039 }
5040 else
5041 {
5042 /* Not a number and not a recognized flag word => complain. */
5043 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
5044 }
5045 }
5046
5047 /* If any signal numbers or symbol names were found, set flags for
5048 which signals to apply actions to. */
5049
5050 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
5051 {
5052 switch ((enum target_signal) signum)
5053 {
5054 case TARGET_SIGNAL_TRAP:
5055 case TARGET_SIGNAL_INT:
5056 if (!allsigs && !sigs[signum])
5057 {
5058 if (query (_("%s is used by the debugger.\n\
5059 Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
5060 {
5061 sigs[signum] = 1;
5062 }
5063 else
5064 {
5065 printf_unfiltered (_("Not confirmed, unchanged.\n"));
5066 gdb_flush (gdb_stdout);
5067 }
5068 }
5069 break;
5070 case TARGET_SIGNAL_0:
5071 case TARGET_SIGNAL_DEFAULT:
5072 case TARGET_SIGNAL_UNKNOWN:
5073 /* Make sure that "all" doesn't print these. */
5074 break;
5075 default:
5076 sigs[signum] = 1;
5077 break;
5078 }
5079 }
5080
5081 argv++;
5082 }
5083
5084 for (signum = 0; signum < nsigs; signum++)
5085 if (sigs[signum])
5086 {
5087 target_notice_signals (inferior_ptid);
5088
5089 if (from_tty)
5090 {
5091 /* Show the results. */
5092 sig_print_header ();
5093 for (; signum < nsigs; signum++)
5094 if (sigs[signum])
5095 sig_print_info (signum);
5096 }
5097
5098 break;
5099 }
5100
5101 do_cleanups (old_chain);
5102 }
5103
5104 static void
5105 xdb_handle_command (char *args, int from_tty)
5106 {
5107 char **argv;
5108 struct cleanup *old_chain;
5109
5110 if (args == NULL)
5111 error_no_arg (_("xdb command"));
5112
5113 /* Break the command line up into args. */
5114
5115 argv = gdb_buildargv (args);
5116 old_chain = make_cleanup_freeargv (argv);
5117 if (argv[1] != (char *) NULL)
5118 {
5119 char *argBuf;
5120 int bufLen;
5121
5122 bufLen = strlen (argv[0]) + 20;
5123 argBuf = (char *) xmalloc (bufLen);
5124 if (argBuf)
5125 {
5126 int validFlag = 1;
5127 enum target_signal oursig;
5128
5129 oursig = target_signal_from_name (argv[0]);
5130 memset (argBuf, 0, bufLen);
5131 if (strcmp (argv[1], "Q") == 0)
5132 sprintf (argBuf, "%s %s", argv[0], "noprint");
5133 else
5134 {
5135 if (strcmp (argv[1], "s") == 0)
5136 {
5137 if (!signal_stop[oursig])
5138 sprintf (argBuf, "%s %s", argv[0], "stop");
5139 else
5140 sprintf (argBuf, "%s %s", argv[0], "nostop");
5141 }
5142 else if (strcmp (argv[1], "i") == 0)
5143 {
5144 if (!signal_program[oursig])
5145 sprintf (argBuf, "%s %s", argv[0], "pass");
5146 else
5147 sprintf (argBuf, "%s %s", argv[0], "nopass");
5148 }
5149 else if (strcmp (argv[1], "r") == 0)
5150 {
5151 if (!signal_print[oursig])
5152 sprintf (argBuf, "%s %s", argv[0], "print");
5153 else
5154 sprintf (argBuf, "%s %s", argv[0], "noprint");
5155 }
5156 else
5157 validFlag = 0;
5158 }
5159 if (validFlag)
5160 handle_command (argBuf, from_tty);
5161 else
5162 printf_filtered (_("Invalid signal handling flag.\n"));
5163 if (argBuf)
5164 xfree (argBuf);
5165 }
5166 }
5167 do_cleanups (old_chain);
5168 }
5169
5170 /* Print current contents of the tables set by the handle command.
5171 It is possible we should just be printing signals actually used
5172 by the current target (but for things to work right when switching
5173 targets, all signals should be in the signal tables). */
5174
5175 static void
5176 signals_info (char *signum_exp, int from_tty)
5177 {
5178 enum target_signal oursig;
5179 sig_print_header ();
5180
5181 if (signum_exp)
5182 {
5183 /* First see if this is a symbol name. */
5184 oursig = target_signal_from_name (signum_exp);
5185 if (oursig == TARGET_SIGNAL_UNKNOWN)
5186 {
5187 /* No, try numeric. */
5188 oursig =
5189 target_signal_from_command (parse_and_eval_long (signum_exp));
5190 }
5191 sig_print_info (oursig);
5192 return;
5193 }
5194
5195 printf_filtered ("\n");
5196 /* These ugly casts brought to you by the native VAX compiler. */
5197 for (oursig = TARGET_SIGNAL_FIRST;
5198 (int) oursig < (int) TARGET_SIGNAL_LAST;
5199 oursig = (enum target_signal) ((int) oursig + 1))
5200 {
5201 QUIT;
5202
5203 if (oursig != TARGET_SIGNAL_UNKNOWN
5204 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
5205 sig_print_info (oursig);
5206 }
5207
5208 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
5209 }
5210
5211 /* The $_siginfo convenience variable is a bit special. We don't know
5212 for sure the type of the value until we actually have a chance to
5213 fetch the data. The type can change depending on gdbarch, so it it
5214 also dependent on which thread you have selected.
5215
5216 1. making $_siginfo be an internalvar that creates a new value on
5217 access.
5218
5219 2. making the value of $_siginfo be an lval_computed value. */
5220
5221 /* This function implements the lval_computed support for reading a
5222 $_siginfo value. */
5223
5224 static void
5225 siginfo_value_read (struct value *v)
5226 {
5227 LONGEST transferred;
5228
5229 transferred =
5230 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5231 NULL,
5232 value_contents_all_raw (v),
5233 value_offset (v),
5234 TYPE_LENGTH (value_type (v)));
5235
5236 if (transferred != TYPE_LENGTH (value_type (v)))
5237 error (_("Unable to read siginfo"));
5238 }
5239
5240 /* This function implements the lval_computed support for writing a
5241 $_siginfo value. */
5242
5243 static void
5244 siginfo_value_write (struct value *v, struct value *fromval)
5245 {
5246 LONGEST transferred;
5247
5248 transferred = target_write (&current_target,
5249 TARGET_OBJECT_SIGNAL_INFO,
5250 NULL,
5251 value_contents_all_raw (fromval),
5252 value_offset (v),
5253 TYPE_LENGTH (value_type (fromval)));
5254
5255 if (transferred != TYPE_LENGTH (value_type (fromval)))
5256 error (_("Unable to write siginfo"));
5257 }
5258
5259 static struct lval_funcs siginfo_value_funcs =
5260 {
5261 siginfo_value_read,
5262 siginfo_value_write
5263 };
5264
5265 /* Return a new value with the correct type for the siginfo object of
5266 the current thread using architecture GDBARCH. Return a void value
5267 if there's no object available. */
5268
5269 static struct value *
5270 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
5271 {
5272 if (target_has_stack
5273 && !ptid_equal (inferior_ptid, null_ptid)
5274 && gdbarch_get_siginfo_type_p (gdbarch))
5275 {
5276 struct type *type = gdbarch_get_siginfo_type (gdbarch);
5277 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
5278 }
5279
5280 return allocate_value (builtin_type (gdbarch)->builtin_void);
5281 }
5282
5283 \f
5284 /* Inferior thread state.
5285 These are details related to the inferior itself, and don't include
5286 things like what frame the user had selected or what gdb was doing
5287 with the target at the time.
5288 For inferior function calls these are things we want to restore
5289 regardless of whether the function call successfully completes
5290 or the dummy frame has to be manually popped. */
5291
5292 struct inferior_thread_state
5293 {
5294 enum target_signal stop_signal;
5295 CORE_ADDR stop_pc;
5296 struct regcache *registers;
5297 };
5298
5299 struct inferior_thread_state *
5300 save_inferior_thread_state (void)
5301 {
5302 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5303 struct thread_info *tp = inferior_thread ();
5304
5305 inf_state->stop_signal = tp->stop_signal;
5306 inf_state->stop_pc = stop_pc;
5307
5308 inf_state->registers = regcache_dup (get_current_regcache ());
5309
5310 return inf_state;
5311 }
5312
5313 /* Restore inferior session state to INF_STATE. */
5314
5315 void
5316 restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5317 {
5318 struct thread_info *tp = inferior_thread ();
5319
5320 tp->stop_signal = inf_state->stop_signal;
5321 stop_pc = inf_state->stop_pc;
5322
5323 /* The inferior can be gone if the user types "print exit(0)"
5324 (and perhaps other times). */
5325 if (target_has_execution)
5326 /* NB: The register write goes through to the target. */
5327 regcache_cpy (get_current_regcache (), inf_state->registers);
5328 regcache_xfree (inf_state->registers);
5329 xfree (inf_state);
5330 }
5331
5332 static void
5333 do_restore_inferior_thread_state_cleanup (void *state)
5334 {
5335 restore_inferior_thread_state (state);
5336 }
5337
5338 struct cleanup *
5339 make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5340 {
5341 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
5342 }
5343
5344 void
5345 discard_inferior_thread_state (struct inferior_thread_state *inf_state)
5346 {
5347 regcache_xfree (inf_state->registers);
5348 xfree (inf_state);
5349 }
5350
5351 struct regcache *
5352 get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
5353 {
5354 return inf_state->registers;
5355 }
5356
5357 /* Session related state for inferior function calls.
5358 These are the additional bits of state that need to be restored
5359 when an inferior function call successfully completes. */
5360
5361 struct inferior_status
5362 {
5363 bpstat stop_bpstat;
5364 int stop_step;
5365 int stop_stack_dummy;
5366 int stopped_by_random_signal;
5367 int stepping_over_breakpoint;
5368 CORE_ADDR step_range_start;
5369 CORE_ADDR step_range_end;
5370 struct frame_id step_frame_id;
5371 struct frame_id step_stack_frame_id;
5372 enum step_over_calls_kind step_over_calls;
5373 CORE_ADDR step_resume_break_address;
5374 int stop_after_trap;
5375 int stop_soon;
5376
5377 /* ID if the selected frame when the inferior function call was made. */
5378 struct frame_id selected_frame_id;
5379
5380 int proceed_to_finish;
5381 int in_infcall;
5382 };
5383
5384 /* Save all of the information associated with the inferior<==>gdb
5385 connection. */
5386
5387 struct inferior_status *
5388 save_inferior_status (void)
5389 {
5390 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
5391 struct thread_info *tp = inferior_thread ();
5392 struct inferior *inf = current_inferior ();
5393
5394 inf_status->stop_step = tp->stop_step;
5395 inf_status->stop_stack_dummy = stop_stack_dummy;
5396 inf_status->stopped_by_random_signal = stopped_by_random_signal;
5397 inf_status->stepping_over_breakpoint = tp->trap_expected;
5398 inf_status->step_range_start = tp->step_range_start;
5399 inf_status->step_range_end = tp->step_range_end;
5400 inf_status->step_frame_id = tp->step_frame_id;
5401 inf_status->step_stack_frame_id = tp->step_stack_frame_id;
5402 inf_status->step_over_calls = tp->step_over_calls;
5403 inf_status->stop_after_trap = stop_after_trap;
5404 inf_status->stop_soon = inf->stop_soon;
5405 /* Save original bpstat chain here; replace it with copy of chain.
5406 If caller's caller is walking the chain, they'll be happier if we
5407 hand them back the original chain when restore_inferior_status is
5408 called. */
5409 inf_status->stop_bpstat = tp->stop_bpstat;
5410 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
5411 inf_status->proceed_to_finish = tp->proceed_to_finish;
5412 inf_status->in_infcall = tp->in_infcall;
5413
5414 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
5415
5416 return inf_status;
5417 }
5418
5419 static int
5420 restore_selected_frame (void *args)
5421 {
5422 struct frame_id *fid = (struct frame_id *) args;
5423 struct frame_info *frame;
5424
5425 frame = frame_find_by_id (*fid);
5426
5427 /* If inf_status->selected_frame_id is NULL, there was no previously
5428 selected frame. */
5429 if (frame == NULL)
5430 {
5431 warning (_("Unable to restore previously selected frame."));
5432 return 0;
5433 }
5434
5435 select_frame (frame);
5436
5437 return (1);
5438 }
5439
5440 /* Restore inferior session state to INF_STATUS. */
5441
5442 void
5443 restore_inferior_status (struct inferior_status *inf_status)
5444 {
5445 struct thread_info *tp = inferior_thread ();
5446 struct inferior *inf = current_inferior ();
5447
5448 tp->stop_step = inf_status->stop_step;
5449 stop_stack_dummy = inf_status->stop_stack_dummy;
5450 stopped_by_random_signal = inf_status->stopped_by_random_signal;
5451 tp->trap_expected = inf_status->stepping_over_breakpoint;
5452 tp->step_range_start = inf_status->step_range_start;
5453 tp->step_range_end = inf_status->step_range_end;
5454 tp->step_frame_id = inf_status->step_frame_id;
5455 tp->step_stack_frame_id = inf_status->step_stack_frame_id;
5456 tp->step_over_calls = inf_status->step_over_calls;
5457 stop_after_trap = inf_status->stop_after_trap;
5458 inf->stop_soon = inf_status->stop_soon;
5459 bpstat_clear (&tp->stop_bpstat);
5460 tp->stop_bpstat = inf_status->stop_bpstat;
5461 inf_status->stop_bpstat = NULL;
5462 tp->proceed_to_finish = inf_status->proceed_to_finish;
5463 tp->in_infcall = inf_status->in_infcall;
5464
5465 if (target_has_stack)
5466 {
5467 /* The point of catch_errors is that if the stack is clobbered,
5468 walking the stack might encounter a garbage pointer and
5469 error() trying to dereference it. */
5470 if (catch_errors
5471 (restore_selected_frame, &inf_status->selected_frame_id,
5472 "Unable to restore previously selected frame:\n",
5473 RETURN_MASK_ERROR) == 0)
5474 /* Error in restoring the selected frame. Select the innermost
5475 frame. */
5476 select_frame (get_current_frame ());
5477 }
5478
5479 xfree (inf_status);
5480 }
5481
5482 static void
5483 do_restore_inferior_status_cleanup (void *sts)
5484 {
5485 restore_inferior_status (sts);
5486 }
5487
5488 struct cleanup *
5489 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5490 {
5491 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5492 }
5493
5494 void
5495 discard_inferior_status (struct inferior_status *inf_status)
5496 {
5497 /* See save_inferior_status for info on stop_bpstat. */
5498 bpstat_clear (&inf_status->stop_bpstat);
5499 xfree (inf_status);
5500 }
5501 \f
5502 int
5503 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
5504 {
5505 struct target_waitstatus last;
5506 ptid_t last_ptid;
5507
5508 get_last_target_status (&last_ptid, &last);
5509
5510 if (last.kind != TARGET_WAITKIND_FORKED)
5511 return 0;
5512
5513 if (!ptid_equal (last_ptid, pid))
5514 return 0;
5515
5516 *child_pid = last.value.related_pid;
5517 return 1;
5518 }
5519
5520 int
5521 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
5522 {
5523 struct target_waitstatus last;
5524 ptid_t last_ptid;
5525
5526 get_last_target_status (&last_ptid, &last);
5527
5528 if (last.kind != TARGET_WAITKIND_VFORKED)
5529 return 0;
5530
5531 if (!ptid_equal (last_ptid, pid))
5532 return 0;
5533
5534 *child_pid = last.value.related_pid;
5535 return 1;
5536 }
5537
5538 int
5539 inferior_has_execd (ptid_t pid, char **execd_pathname)
5540 {
5541 struct target_waitstatus last;
5542 ptid_t last_ptid;
5543
5544 get_last_target_status (&last_ptid, &last);
5545
5546 if (last.kind != TARGET_WAITKIND_EXECD)
5547 return 0;
5548
5549 if (!ptid_equal (last_ptid, pid))
5550 return 0;
5551
5552 *execd_pathname = xstrdup (last.value.execd_pathname);
5553 return 1;
5554 }
5555
5556 /* Oft used ptids */
5557 ptid_t null_ptid;
5558 ptid_t minus_one_ptid;
5559
5560 /* Create a ptid given the necessary PID, LWP, and TID components. */
5561
5562 ptid_t
5563 ptid_build (int pid, long lwp, long tid)
5564 {
5565 ptid_t ptid;
5566
5567 ptid.pid = pid;
5568 ptid.lwp = lwp;
5569 ptid.tid = tid;
5570 return ptid;
5571 }
5572
5573 /* Create a ptid from just a pid. */
5574
5575 ptid_t
5576 pid_to_ptid (int pid)
5577 {
5578 return ptid_build (pid, 0, 0);
5579 }
5580
5581 /* Fetch the pid (process id) component from a ptid. */
5582
5583 int
5584 ptid_get_pid (ptid_t ptid)
5585 {
5586 return ptid.pid;
5587 }
5588
5589 /* Fetch the lwp (lightweight process) component from a ptid. */
5590
5591 long
5592 ptid_get_lwp (ptid_t ptid)
5593 {
5594 return ptid.lwp;
5595 }
5596
5597 /* Fetch the tid (thread id) component from a ptid. */
5598
5599 long
5600 ptid_get_tid (ptid_t ptid)
5601 {
5602 return ptid.tid;
5603 }
5604
5605 /* ptid_equal() is used to test equality of two ptids. */
5606
5607 int
5608 ptid_equal (ptid_t ptid1, ptid_t ptid2)
5609 {
5610 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
5611 && ptid1.tid == ptid2.tid);
5612 }
5613
5614 /* Returns true if PTID represents a process. */
5615
5616 int
5617 ptid_is_pid (ptid_t ptid)
5618 {
5619 if (ptid_equal (minus_one_ptid, ptid))
5620 return 0;
5621 if (ptid_equal (null_ptid, ptid))
5622 return 0;
5623
5624 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5625 }
5626
5627 /* restore_inferior_ptid() will be used by the cleanup machinery
5628 to restore the inferior_ptid value saved in a call to
5629 save_inferior_ptid(). */
5630
5631 static void
5632 restore_inferior_ptid (void *arg)
5633 {
5634 ptid_t *saved_ptid_ptr = arg;
5635 inferior_ptid = *saved_ptid_ptr;
5636 xfree (arg);
5637 }
5638
5639 /* Save the value of inferior_ptid so that it may be restored by a
5640 later call to do_cleanups(). Returns the struct cleanup pointer
5641 needed for later doing the cleanup. */
5642
5643 struct cleanup *
5644 save_inferior_ptid (void)
5645 {
5646 ptid_t *saved_ptid_ptr;
5647
5648 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5649 *saved_ptid_ptr = inferior_ptid;
5650 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5651 }
5652 \f
5653
5654 /* User interface for reverse debugging:
5655 Set exec-direction / show exec-direction commands
5656 (returns error unless target implements to_set_exec_direction method). */
5657
5658 enum exec_direction_kind execution_direction = EXEC_FORWARD;
5659 static const char exec_forward[] = "forward";
5660 static const char exec_reverse[] = "reverse";
5661 static const char *exec_direction = exec_forward;
5662 static const char *exec_direction_names[] = {
5663 exec_forward,
5664 exec_reverse,
5665 NULL
5666 };
5667
5668 static void
5669 set_exec_direction_func (char *args, int from_tty,
5670 struct cmd_list_element *cmd)
5671 {
5672 if (target_can_execute_reverse)
5673 {
5674 if (!strcmp (exec_direction, exec_forward))
5675 execution_direction = EXEC_FORWARD;
5676 else if (!strcmp (exec_direction, exec_reverse))
5677 execution_direction = EXEC_REVERSE;
5678 }
5679 }
5680
5681 static void
5682 show_exec_direction_func (struct ui_file *out, int from_tty,
5683 struct cmd_list_element *cmd, const char *value)
5684 {
5685 switch (execution_direction) {
5686 case EXEC_FORWARD:
5687 fprintf_filtered (out, _("Forward.\n"));
5688 break;
5689 case EXEC_REVERSE:
5690 fprintf_filtered (out, _("Reverse.\n"));
5691 break;
5692 case EXEC_ERROR:
5693 default:
5694 fprintf_filtered (out,
5695 _("Forward (target `%s' does not support exec-direction).\n"),
5696 target_shortname);
5697 break;
5698 }
5699 }
5700
5701 /* User interface for non-stop mode. */
5702
5703 int non_stop = 0;
5704 static int non_stop_1 = 0;
5705
5706 static void
5707 set_non_stop (char *args, int from_tty,
5708 struct cmd_list_element *c)
5709 {
5710 if (target_has_execution)
5711 {
5712 non_stop_1 = non_stop;
5713 error (_("Cannot change this setting while the inferior is running."));
5714 }
5715
5716 non_stop = non_stop_1;
5717 }
5718
5719 static void
5720 show_non_stop (struct ui_file *file, int from_tty,
5721 struct cmd_list_element *c, const char *value)
5722 {
5723 fprintf_filtered (file,
5724 _("Controlling the inferior in non-stop mode is %s.\n"),
5725 value);
5726 }
5727
5728 static void
5729 show_schedule_multiple (struct ui_file *file, int from_tty,
5730 struct cmd_list_element *c, const char *value)
5731 {
5732 fprintf_filtered (file, _("\
5733 Resuming the execution of threads of all processes is %s.\n"), value);
5734 }
5735
5736 void
5737 _initialize_infrun (void)
5738 {
5739 int i;
5740 int numsigs;
5741 struct cmd_list_element *c;
5742
5743 add_info ("signals", signals_info, _("\
5744 What debugger does when program gets various signals.\n\
5745 Specify a signal as argument to print info on that signal only."));
5746 add_info_alias ("handle", "signals", 0);
5747
5748 add_com ("handle", class_run, handle_command, _("\
5749 Specify how to handle a signal.\n\
5750 Args are signals and actions to apply to those signals.\n\
5751 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5752 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5753 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5754 The special arg \"all\" is recognized to mean all signals except those\n\
5755 used by the debugger, typically SIGTRAP and SIGINT.\n\
5756 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
5757 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5758 Stop means reenter debugger if this signal happens (implies print).\n\
5759 Print means print a message if this signal happens.\n\
5760 Pass means let program see this signal; otherwise program doesn't know.\n\
5761 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5762 Pass and Stop may be combined."));
5763 if (xdb_commands)
5764 {
5765 add_com ("lz", class_info, signals_info, _("\
5766 What debugger does when program gets various signals.\n\
5767 Specify a signal as argument to print info on that signal only."));
5768 add_com ("z", class_run, xdb_handle_command, _("\
5769 Specify how to handle a signal.\n\
5770 Args are signals and actions to apply to those signals.\n\
5771 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5772 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5773 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5774 The special arg \"all\" is recognized to mean all signals except those\n\
5775 used by the debugger, typically SIGTRAP and SIGINT.\n\
5776 Recognized actions include \"s\" (toggles between stop and nostop), \n\
5777 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5778 nopass), \"Q\" (noprint)\n\
5779 Stop means reenter debugger if this signal happens (implies print).\n\
5780 Print means print a message if this signal happens.\n\
5781 Pass means let program see this signal; otherwise program doesn't know.\n\
5782 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5783 Pass and Stop may be combined."));
5784 }
5785
5786 if (!dbx_commands)
5787 stop_command = add_cmd ("stop", class_obscure,
5788 not_just_help_class_command, _("\
5789 There is no `stop' command, but you can set a hook on `stop'.\n\
5790 This allows you to set a list of commands to be run each time execution\n\
5791 of the program stops."), &cmdlist);
5792
5793 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5794 Set inferior debugging."), _("\
5795 Show inferior debugging."), _("\
5796 When non-zero, inferior specific debugging is enabled."),
5797 NULL,
5798 show_debug_infrun,
5799 &setdebuglist, &showdebuglist);
5800
5801 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5802 Set displaced stepping debugging."), _("\
5803 Show displaced stepping debugging."), _("\
5804 When non-zero, displaced stepping specific debugging is enabled."),
5805 NULL,
5806 show_debug_displaced,
5807 &setdebuglist, &showdebuglist);
5808
5809 add_setshow_boolean_cmd ("non-stop", no_class,
5810 &non_stop_1, _("\
5811 Set whether gdb controls the inferior in non-stop mode."), _("\
5812 Show whether gdb controls the inferior in non-stop mode."), _("\
5813 When debugging a multi-threaded program and this setting is\n\
5814 off (the default, also called all-stop mode), when one thread stops\n\
5815 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5816 all other threads in the program while you interact with the thread of\n\
5817 interest. When you continue or step a thread, you can allow the other\n\
5818 threads to run, or have them remain stopped, but while you inspect any\n\
5819 thread's state, all threads stop.\n\
5820 \n\
5821 In non-stop mode, when one thread stops, other threads can continue\n\
5822 to run freely. You'll be able to step each thread independently,\n\
5823 leave it stopped or free to run as needed."),
5824 set_non_stop,
5825 show_non_stop,
5826 &setlist,
5827 &showlist);
5828
5829 numsigs = (int) TARGET_SIGNAL_LAST;
5830 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
5831 signal_print = (unsigned char *)
5832 xmalloc (sizeof (signal_print[0]) * numsigs);
5833 signal_program = (unsigned char *)
5834 xmalloc (sizeof (signal_program[0]) * numsigs);
5835 for (i = 0; i < numsigs; i++)
5836 {
5837 signal_stop[i] = 1;
5838 signal_print[i] = 1;
5839 signal_program[i] = 1;
5840 }
5841
5842 /* Signals caused by debugger's own actions
5843 should not be given to the program afterwards. */
5844 signal_program[TARGET_SIGNAL_TRAP] = 0;
5845 signal_program[TARGET_SIGNAL_INT] = 0;
5846
5847 /* Signals that are not errors should not normally enter the debugger. */
5848 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5849 signal_print[TARGET_SIGNAL_ALRM] = 0;
5850 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5851 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5852 signal_stop[TARGET_SIGNAL_PROF] = 0;
5853 signal_print[TARGET_SIGNAL_PROF] = 0;
5854 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5855 signal_print[TARGET_SIGNAL_CHLD] = 0;
5856 signal_stop[TARGET_SIGNAL_IO] = 0;
5857 signal_print[TARGET_SIGNAL_IO] = 0;
5858 signal_stop[TARGET_SIGNAL_POLL] = 0;
5859 signal_print[TARGET_SIGNAL_POLL] = 0;
5860 signal_stop[TARGET_SIGNAL_URG] = 0;
5861 signal_print[TARGET_SIGNAL_URG] = 0;
5862 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5863 signal_print[TARGET_SIGNAL_WINCH] = 0;
5864
5865 /* These signals are used internally by user-level thread
5866 implementations. (See signal(5) on Solaris.) Like the above
5867 signals, a healthy program receives and handles them as part of
5868 its normal operation. */
5869 signal_stop[TARGET_SIGNAL_LWP] = 0;
5870 signal_print[TARGET_SIGNAL_LWP] = 0;
5871 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5872 signal_print[TARGET_SIGNAL_WAITING] = 0;
5873 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5874 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5875
5876 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5877 &stop_on_solib_events, _("\
5878 Set stopping for shared library events."), _("\
5879 Show stopping for shared library events."), _("\
5880 If nonzero, gdb will give control to the user when the dynamic linker\n\
5881 notifies gdb of shared library events. The most common event of interest\n\
5882 to the user would be loading/unloading of a new library."),
5883 NULL,
5884 show_stop_on_solib_events,
5885 &setlist, &showlist);
5886
5887 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5888 follow_fork_mode_kind_names,
5889 &follow_fork_mode_string, _("\
5890 Set debugger response to a program call of fork or vfork."), _("\
5891 Show debugger response to a program call of fork or vfork."), _("\
5892 A fork or vfork creates a new process. follow-fork-mode can be:\n\
5893 parent - the original process is debugged after a fork\n\
5894 child - the new process is debugged after a fork\n\
5895 The unfollowed process will continue to run.\n\
5896 By default, the debugger will follow the parent process."),
5897 NULL,
5898 show_follow_fork_mode_string,
5899 &setlist, &showlist);
5900
5901 add_setshow_enum_cmd ("scheduler-locking", class_run,
5902 scheduler_enums, &scheduler_mode, _("\
5903 Set mode for locking scheduler during execution."), _("\
5904 Show mode for locking scheduler during execution."), _("\
5905 off == no locking (threads may preempt at any time)\n\
5906 on == full locking (no thread except the current thread may run)\n\
5907 step == scheduler locked during every single-step operation.\n\
5908 In this mode, no other thread may run during a step command.\n\
5909 Other threads may run while stepping over a function call ('next')."),
5910 set_schedlock_func, /* traps on target vector */
5911 show_scheduler_mode,
5912 &setlist, &showlist);
5913
5914 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
5915 Set mode for resuming threads of all processes."), _("\
5916 Show mode for resuming threads of all processes."), _("\
5917 When on, execution commands (such as 'continue' or 'next') resume all\n\
5918 threads of all processes. When off (which is the default), execution\n\
5919 commands only resume the threads of the current process. The set of\n\
5920 threads that are resumed is further refined by the scheduler-locking\n\
5921 mode (see help set scheduler-locking)."),
5922 NULL,
5923 show_schedule_multiple,
5924 &setlist, &showlist);
5925
5926 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5927 Set mode of the step operation."), _("\
5928 Show mode of the step operation."), _("\
5929 When set, doing a step over a function without debug line information\n\
5930 will stop at the first instruction of that function. Otherwise, the\n\
5931 function is skipped and the step command stops at a different source line."),
5932 NULL,
5933 show_step_stop_if_no_debug,
5934 &setlist, &showlist);
5935
5936 add_setshow_enum_cmd ("displaced-stepping", class_run,
5937 can_use_displaced_stepping_enum,
5938 &can_use_displaced_stepping, _("\
5939 Set debugger's willingness to use displaced stepping."), _("\
5940 Show debugger's willingness to use displaced stepping."), _("\
5941 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5942 supported by the target architecture. If off, gdb will not use displaced\n\
5943 stepping to step over breakpoints, even if such is supported by the target\n\
5944 architecture. If auto (which is the default), gdb will use displaced stepping\n\
5945 if the target architecture supports it and non-stop mode is active, but will not\n\
5946 use it in all-stop mode (see help set non-stop)."),
5947 NULL,
5948 show_can_use_displaced_stepping,
5949 &setlist, &showlist);
5950
5951 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5952 &exec_direction, _("Set direction of execution.\n\
5953 Options are 'forward' or 'reverse'."),
5954 _("Show direction of execution (forward/reverse)."),
5955 _("Tells gdb whether to execute forward or backward."),
5956 set_exec_direction_func, show_exec_direction_func,
5957 &setlist, &showlist);
5958
5959 /* ptid initializations */
5960 null_ptid = ptid_build (0, 0, 0);
5961 minus_one_ptid = ptid_build (-1, 0, 0);
5962 inferior_ptid = null_ptid;
5963 target_last_wait_ptid = minus_one_ptid;
5964 displaced_step_ptid = null_ptid;
5965
5966 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
5967 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
5968 observer_attach_thread_exit (infrun_thread_thread_exit);
5969
5970 /* Explicitly create without lookup, since that tries to create a
5971 value with a void typed value, and when we get here, gdbarch
5972 isn't initialized yet. At this point, we're quite sure there
5973 isn't another convenience variable of the same name. */
5974 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
5975 }