2009-10-20 Michael Snyder <msnyder@msnyder-server.eng.vmware.com>
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "inline-frame.h"
53 #include "jit.h"
54
55 /* Prototypes for local functions */
56
57 static void signals_info (char *, int);
58
59 static void handle_command (char *, int);
60
61 static void sig_print_info (enum target_signal);
62
63 static void sig_print_header (void);
64
65 static void resume_cleanups (void *);
66
67 static int hook_stop_stub (void *);
68
69 static int restore_selected_frame (void *);
70
71 static void build_infrun (void);
72
73 static int follow_fork (void);
74
75 static void set_schedlock_func (char *args, int from_tty,
76 struct cmd_list_element *c);
77
78 static int currently_stepping (struct thread_info *tp);
79
80 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
81 void *data);
82
83 static void xdb_handle_command (char *args, int from_tty);
84
85 static int prepare_to_proceed (int);
86
87 void _initialize_infrun (void);
88
89 void nullify_last_target_wait_ptid (void);
90
91 /* When set, stop the 'step' command if we enter a function which has
92 no line number information. The normal behavior is that we step
93 over such function. */
94 int step_stop_if_no_debug = 0;
95 static void
96 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98 {
99 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
100 }
101
102 /* In asynchronous mode, but simulating synchronous execution. */
103
104 int sync_execution = 0;
105
106 /* wait_for_inferior and normal_stop use this to notify the user
107 when the inferior stopped in a different thread than it had been
108 running in. */
109
110 static ptid_t previous_inferior_ptid;
111
112 /* Default behavior is to detach newly forked processes (legacy). */
113 int detach_fork = 1;
114
115 int debug_displaced = 0;
116 static void
117 show_debug_displaced (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
121 }
122
123 static int debug_infrun = 0;
124 static void
125 show_debug_infrun (struct ui_file *file, int from_tty,
126 struct cmd_list_element *c, const char *value)
127 {
128 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
129 }
130
131 /* If the program uses ELF-style shared libraries, then calls to
132 functions in shared libraries go through stubs, which live in a
133 table called the PLT (Procedure Linkage Table). The first time the
134 function is called, the stub sends control to the dynamic linker,
135 which looks up the function's real address, patches the stub so
136 that future calls will go directly to the function, and then passes
137 control to the function.
138
139 If we are stepping at the source level, we don't want to see any of
140 this --- we just want to skip over the stub and the dynamic linker.
141 The simple approach is to single-step until control leaves the
142 dynamic linker.
143
144 However, on some systems (e.g., Red Hat's 5.2 distribution) the
145 dynamic linker calls functions in the shared C library, so you
146 can't tell from the PC alone whether the dynamic linker is still
147 running. In this case, we use a step-resume breakpoint to get us
148 past the dynamic linker, as if we were using "next" to step over a
149 function call.
150
151 in_solib_dynsym_resolve_code() says whether we're in the dynamic
152 linker code or not. Normally, this means we single-step. However,
153 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
154 address where we can place a step-resume breakpoint to get past the
155 linker's symbol resolution function.
156
157 in_solib_dynsym_resolve_code() can generally be implemented in a
158 pretty portable way, by comparing the PC against the address ranges
159 of the dynamic linker's sections.
160
161 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
162 it depends on internal details of the dynamic linker. It's usually
163 not too hard to figure out where to put a breakpoint, but it
164 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
165 sanity checking. If it can't figure things out, returning zero and
166 getting the (possibly confusing) stepping behavior is better than
167 signalling an error, which will obscure the change in the
168 inferior's state. */
169
170 /* This function returns TRUE if pc is the address of an instruction
171 that lies within the dynamic linker (such as the event hook, or the
172 dld itself).
173
174 This function must be used only when a dynamic linker event has
175 been caught, and the inferior is being stepped out of the hook, or
176 undefined results are guaranteed. */
177
178 #ifndef SOLIB_IN_DYNAMIC_LINKER
179 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
180 #endif
181
182
183 /* Convert the #defines into values. This is temporary until wfi control
184 flow is completely sorted out. */
185
186 #ifndef CANNOT_STEP_HW_WATCHPOINTS
187 #define CANNOT_STEP_HW_WATCHPOINTS 0
188 #else
189 #undef CANNOT_STEP_HW_WATCHPOINTS
190 #define CANNOT_STEP_HW_WATCHPOINTS 1
191 #endif
192
193 /* Tables of how to react to signals; the user sets them. */
194
195 static unsigned char *signal_stop;
196 static unsigned char *signal_print;
197 static unsigned char *signal_program;
198
199 #define SET_SIGS(nsigs,sigs,flags) \
200 do { \
201 int signum = (nsigs); \
202 while (signum-- > 0) \
203 if ((sigs)[signum]) \
204 (flags)[signum] = 1; \
205 } while (0)
206
207 #define UNSET_SIGS(nsigs,sigs,flags) \
208 do { \
209 int signum = (nsigs); \
210 while (signum-- > 0) \
211 if ((sigs)[signum]) \
212 (flags)[signum] = 0; \
213 } while (0)
214
215 /* Value to pass to target_resume() to cause all threads to resume */
216
217 #define RESUME_ALL minus_one_ptid
218
219 /* Command list pointer for the "stop" placeholder. */
220
221 static struct cmd_list_element *stop_command;
222
223 /* Function inferior was in as of last step command. */
224
225 static struct symbol *step_start_function;
226
227 /* Nonzero if we want to give control to the user when we're notified
228 of shared library events by the dynamic linker. */
229 static int stop_on_solib_events;
230 static void
231 show_stop_on_solib_events (struct ui_file *file, int from_tty,
232 struct cmd_list_element *c, const char *value)
233 {
234 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
235 value);
236 }
237
238 /* Nonzero means expecting a trace trap
239 and should stop the inferior and return silently when it happens. */
240
241 int stop_after_trap;
242
243 /* Save register contents here when executing a "finish" command or are
244 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
245 Thus this contains the return value from the called function (assuming
246 values are returned in a register). */
247
248 struct regcache *stop_registers;
249
250 /* Nonzero after stop if current stack frame should be printed. */
251
252 static int stop_print_frame;
253
254 /* This is a cached copy of the pid/waitstatus of the last event
255 returned by target_wait()/deprecated_target_wait_hook(). This
256 information is returned by get_last_target_status(). */
257 static ptid_t target_last_wait_ptid;
258 static struct target_waitstatus target_last_waitstatus;
259
260 static void context_switch (ptid_t ptid);
261
262 void init_thread_stepping_state (struct thread_info *tss);
263
264 void init_infwait_state (void);
265
266 static const char follow_fork_mode_child[] = "child";
267 static const char follow_fork_mode_parent[] = "parent";
268
269 static const char *follow_fork_mode_kind_names[] = {
270 follow_fork_mode_child,
271 follow_fork_mode_parent,
272 NULL
273 };
274
275 static const char *follow_fork_mode_string = follow_fork_mode_parent;
276 static void
277 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
278 struct cmd_list_element *c, const char *value)
279 {
280 fprintf_filtered (file, _("\
281 Debugger response to a program call of fork or vfork is \"%s\".\n"),
282 value);
283 }
284 \f
285
286 /* Tell the target to follow the fork we're stopped at. Returns true
287 if the inferior should be resumed; false, if the target for some
288 reason decided it's best not to resume. */
289
290 static int
291 follow_fork (void)
292 {
293 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
294 int should_resume = 1;
295 struct thread_info *tp;
296
297 /* Copy user stepping state to the new inferior thread. FIXME: the
298 followed fork child thread should have a copy of most of the
299 parent thread structure's run control related fields, not just these.
300 Initialized to avoid "may be used uninitialized" warnings from gcc. */
301 struct breakpoint *step_resume_breakpoint = NULL;
302 CORE_ADDR step_range_start = 0;
303 CORE_ADDR step_range_end = 0;
304 struct frame_id step_frame_id = { 0 };
305
306 if (!non_stop)
307 {
308 ptid_t wait_ptid;
309 struct target_waitstatus wait_status;
310
311 /* Get the last target status returned by target_wait(). */
312 get_last_target_status (&wait_ptid, &wait_status);
313
314 /* If not stopped at a fork event, then there's nothing else to
315 do. */
316 if (wait_status.kind != TARGET_WAITKIND_FORKED
317 && wait_status.kind != TARGET_WAITKIND_VFORKED)
318 return 1;
319
320 /* Check if we switched over from WAIT_PTID, since the event was
321 reported. */
322 if (!ptid_equal (wait_ptid, minus_one_ptid)
323 && !ptid_equal (inferior_ptid, wait_ptid))
324 {
325 /* We did. Switch back to WAIT_PTID thread, to tell the
326 target to follow it (in either direction). We'll
327 afterwards refuse to resume, and inform the user what
328 happened. */
329 switch_to_thread (wait_ptid);
330 should_resume = 0;
331 }
332 }
333
334 tp = inferior_thread ();
335
336 /* If there were any forks/vforks that were caught and are now to be
337 followed, then do so now. */
338 switch (tp->pending_follow.kind)
339 {
340 case TARGET_WAITKIND_FORKED:
341 case TARGET_WAITKIND_VFORKED:
342 {
343 ptid_t parent, child;
344
345 /* If the user did a next/step, etc, over a fork call,
346 preserve the stepping state in the fork child. */
347 if (follow_child && should_resume)
348 {
349 step_resume_breakpoint
350 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
351 step_range_start = tp->step_range_start;
352 step_range_end = tp->step_range_end;
353 step_frame_id = tp->step_frame_id;
354
355 /* For now, delete the parent's sr breakpoint, otherwise,
356 parent/child sr breakpoints are considered duplicates,
357 and the child version will not be installed. Remove
358 this when the breakpoints module becomes aware of
359 inferiors and address spaces. */
360 delete_step_resume_breakpoint (tp);
361 tp->step_range_start = 0;
362 tp->step_range_end = 0;
363 tp->step_frame_id = null_frame_id;
364 }
365
366 parent = inferior_ptid;
367 child = tp->pending_follow.value.related_pid;
368
369 /* Tell the target to do whatever is necessary to follow
370 either parent or child. */
371 if (target_follow_fork (follow_child))
372 {
373 /* Target refused to follow, or there's some other reason
374 we shouldn't resume. */
375 should_resume = 0;
376 }
377 else
378 {
379 /* This pending follow fork event is now handled, one way
380 or another. The previous selected thread may be gone
381 from the lists by now, but if it is still around, need
382 to clear the pending follow request. */
383 tp = find_thread_ptid (parent);
384 if (tp)
385 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
386
387 /* This makes sure we don't try to apply the "Switched
388 over from WAIT_PID" logic above. */
389 nullify_last_target_wait_ptid ();
390
391 /* If we followed the child, switch to it... */
392 if (follow_child)
393 {
394 switch_to_thread (child);
395
396 /* ... and preserve the stepping state, in case the
397 user was stepping over the fork call. */
398 if (should_resume)
399 {
400 tp = inferior_thread ();
401 tp->step_resume_breakpoint = step_resume_breakpoint;
402 tp->step_range_start = step_range_start;
403 tp->step_range_end = step_range_end;
404 tp->step_frame_id = step_frame_id;
405 }
406 else
407 {
408 /* If we get here, it was because we're trying to
409 resume from a fork catchpoint, but, the user
410 has switched threads away from the thread that
411 forked. In that case, the resume command
412 issued is most likely not applicable to the
413 child, so just warn, and refuse to resume. */
414 warning (_("\
415 Not resuming: switched threads before following fork child.\n"));
416 }
417
418 /* Reset breakpoints in the child as appropriate. */
419 follow_inferior_reset_breakpoints ();
420 }
421 else
422 switch_to_thread (parent);
423 }
424 }
425 break;
426 case TARGET_WAITKIND_SPURIOUS:
427 /* Nothing to follow. */
428 break;
429 default:
430 internal_error (__FILE__, __LINE__,
431 "Unexpected pending_follow.kind %d\n",
432 tp->pending_follow.kind);
433 break;
434 }
435
436 return should_resume;
437 }
438
439 void
440 follow_inferior_reset_breakpoints (void)
441 {
442 struct thread_info *tp = inferior_thread ();
443
444 /* Was there a step_resume breakpoint? (There was if the user
445 did a "next" at the fork() call.) If so, explicitly reset its
446 thread number.
447
448 step_resumes are a form of bp that are made to be per-thread.
449 Since we created the step_resume bp when the parent process
450 was being debugged, and now are switching to the child process,
451 from the breakpoint package's viewpoint, that's a switch of
452 "threads". We must update the bp's notion of which thread
453 it is for, or it'll be ignored when it triggers. */
454
455 if (tp->step_resume_breakpoint)
456 breakpoint_re_set_thread (tp->step_resume_breakpoint);
457
458 /* Reinsert all breakpoints in the child. The user may have set
459 breakpoints after catching the fork, in which case those
460 were never set in the child, but only in the parent. This makes
461 sure the inserted breakpoints match the breakpoint list. */
462
463 breakpoint_re_set ();
464 insert_breakpoints ();
465 }
466
467 /* The child has exited or execed: resume threads of the parent the
468 user wanted to be executing. */
469
470 static int
471 proceed_after_vfork_done (struct thread_info *thread,
472 void *arg)
473 {
474 int pid = * (int *) arg;
475
476 if (ptid_get_pid (thread->ptid) == pid
477 && is_running (thread->ptid)
478 && !is_executing (thread->ptid)
479 && !thread->stop_requested
480 && thread->stop_signal == TARGET_SIGNAL_0)
481 {
482 if (debug_infrun)
483 fprintf_unfiltered (gdb_stdlog,
484 "infrun: resuming vfork parent thread %s\n",
485 target_pid_to_str (thread->ptid));
486
487 switch_to_thread (thread->ptid);
488 clear_proceed_status ();
489 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
490 }
491
492 return 0;
493 }
494
495 /* Called whenever we notice an exec or exit event, to handle
496 detaching or resuming a vfork parent. */
497
498 static void
499 handle_vfork_child_exec_or_exit (int exec)
500 {
501 struct inferior *inf = current_inferior ();
502
503 if (inf->vfork_parent)
504 {
505 int resume_parent = -1;
506
507 /* This exec or exit marks the end of the shared memory region
508 between the parent and the child. If the user wanted to
509 detach from the parent, now is the time. */
510
511 if (inf->vfork_parent->pending_detach)
512 {
513 struct thread_info *tp;
514 struct cleanup *old_chain;
515 struct program_space *pspace;
516 struct address_space *aspace;
517
518 /* follow-fork child, detach-on-fork on */
519
520 old_chain = make_cleanup_restore_current_thread ();
521
522 /* We're letting loose of the parent. */
523 tp = any_live_thread_of_process (inf->vfork_parent->pid);
524 switch_to_thread (tp->ptid);
525
526 /* We're about to detach from the parent, which implicitly
527 removes breakpoints from its address space. There's a
528 catch here: we want to reuse the spaces for the child,
529 but, parent/child are still sharing the pspace at this
530 point, although the exec in reality makes the kernel give
531 the child a fresh set of new pages. The problem here is
532 that the breakpoints module being unaware of this, would
533 likely chose the child process to write to the parent
534 address space. Swapping the child temporarily away from
535 the spaces has the desired effect. Yes, this is "sort
536 of" a hack. */
537
538 pspace = inf->pspace;
539 aspace = inf->aspace;
540 inf->aspace = NULL;
541 inf->pspace = NULL;
542
543 if (debug_infrun || info_verbose)
544 {
545 target_terminal_ours ();
546
547 if (exec)
548 fprintf_filtered (gdb_stdlog,
549 "Detaching vfork parent process %d after child exec.\n",
550 inf->vfork_parent->pid);
551 else
552 fprintf_filtered (gdb_stdlog,
553 "Detaching vfork parent process %d after child exit.\n",
554 inf->vfork_parent->pid);
555 }
556
557 target_detach (NULL, 0);
558
559 /* Put it back. */
560 inf->pspace = pspace;
561 inf->aspace = aspace;
562
563 do_cleanups (old_chain);
564 }
565 else if (exec)
566 {
567 /* We're staying attached to the parent, so, really give the
568 child a new address space. */
569 inf->pspace = add_program_space (maybe_new_address_space ());
570 inf->aspace = inf->pspace->aspace;
571 inf->removable = 1;
572 set_current_program_space (inf->pspace);
573
574 resume_parent = inf->vfork_parent->pid;
575
576 /* Break the bonds. */
577 inf->vfork_parent->vfork_child = NULL;
578 }
579 else
580 {
581 struct cleanup *old_chain;
582 struct program_space *pspace;
583
584 /* If this is a vfork child exiting, then the pspace and
585 aspaces were shared with the parent. Since we're
586 reporting the process exit, we'll be mourning all that is
587 found in the address space, and switching to null_ptid,
588 preparing to start a new inferior. But, since we don't
589 want to clobber the parent's address/program spaces, we
590 go ahead and create a new one for this exiting
591 inferior. */
592
593 /* Switch to null_ptid, so that clone_program_space doesn't want
594 to read the selected frame of a dead process. */
595 old_chain = save_inferior_ptid ();
596 inferior_ptid = null_ptid;
597
598 /* This inferior is dead, so avoid giving the breakpoints
599 module the option to write through to it (cloning a
600 program space resets breakpoints). */
601 inf->aspace = NULL;
602 inf->pspace = NULL;
603 pspace = add_program_space (maybe_new_address_space ());
604 set_current_program_space (pspace);
605 inf->removable = 1;
606 clone_program_space (pspace, inf->vfork_parent->pspace);
607 inf->pspace = pspace;
608 inf->aspace = pspace->aspace;
609
610 /* Put back inferior_ptid. We'll continue mourning this
611 inferior. */
612 do_cleanups (old_chain);
613
614 resume_parent = inf->vfork_parent->pid;
615 /* Break the bonds. */
616 inf->vfork_parent->vfork_child = NULL;
617 }
618
619 inf->vfork_parent = NULL;
620
621 gdb_assert (current_program_space == inf->pspace);
622
623 if (non_stop && resume_parent != -1)
624 {
625 /* If the user wanted the parent to be running, let it go
626 free now. */
627 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
628
629 if (debug_infrun)
630 fprintf_unfiltered (gdb_stdlog, "infrun: resuming vfork parent process %d\n",
631 resume_parent);
632
633 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
634
635 do_cleanups (old_chain);
636 }
637 }
638 }
639
640 /* Enum strings for "set|show displaced-stepping". */
641
642 static const char follow_exec_mode_new[] = "new";
643 static const char follow_exec_mode_same[] = "same";
644 static const char *follow_exec_mode_names[] =
645 {
646 follow_exec_mode_new,
647 follow_exec_mode_same,
648 NULL,
649 };
650
651 static const char *follow_exec_mode_string = follow_exec_mode_same;
652 static void
653 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
654 struct cmd_list_element *c, const char *value)
655 {
656 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
657 }
658
659 /* EXECD_PATHNAME is assumed to be non-NULL. */
660
661 static void
662 follow_exec (ptid_t pid, char *execd_pathname)
663 {
664 struct target_ops *tgt;
665 struct thread_info *th = inferior_thread ();
666 struct inferior *inf = current_inferior ();
667
668 /* This is an exec event that we actually wish to pay attention to.
669 Refresh our symbol table to the newly exec'd program, remove any
670 momentary bp's, etc.
671
672 If there are breakpoints, they aren't really inserted now,
673 since the exec() transformed our inferior into a fresh set
674 of instructions.
675
676 We want to preserve symbolic breakpoints on the list, since
677 we have hopes that they can be reset after the new a.out's
678 symbol table is read.
679
680 However, any "raw" breakpoints must be removed from the list
681 (e.g., the solib bp's), since their address is probably invalid
682 now.
683
684 And, we DON'T want to call delete_breakpoints() here, since
685 that may write the bp's "shadow contents" (the instruction
686 value that was overwritten witha TRAP instruction). Since
687 we now have a new a.out, those shadow contents aren't valid. */
688
689 mark_breakpoints_out ();
690
691 update_breakpoints_after_exec ();
692
693 /* If there was one, it's gone now. We cannot truly step-to-next
694 statement through an exec(). */
695 th->step_resume_breakpoint = NULL;
696 th->step_range_start = 0;
697 th->step_range_end = 0;
698
699 /* The target reports the exec event to the main thread, even if
700 some other thread does the exec, and even if the main thread was
701 already stopped --- if debugging in non-stop mode, it's possible
702 the user had the main thread held stopped in the previous image
703 --- release it now. This is the same behavior as step-over-exec
704 with scheduler-locking on in all-stop mode. */
705 th->stop_requested = 0;
706
707 /* What is this a.out's name? */
708 printf_unfiltered (_("%s is executing new program: %s\n"),
709 target_pid_to_str (inferior_ptid),
710 execd_pathname);
711
712 /* We've followed the inferior through an exec. Therefore, the
713 inferior has essentially been killed & reborn. */
714
715 gdb_flush (gdb_stdout);
716
717 breakpoint_init_inferior (inf_execd);
718
719 if (gdb_sysroot && *gdb_sysroot)
720 {
721 char *name = alloca (strlen (gdb_sysroot)
722 + strlen (execd_pathname)
723 + 1);
724 strcpy (name, gdb_sysroot);
725 strcat (name, execd_pathname);
726 execd_pathname = name;
727 }
728
729 /* Reset the shared library package. This ensures that we get a
730 shlib event when the child reaches "_start", at which point the
731 dld will have had a chance to initialize the child. */
732 /* Also, loading a symbol file below may trigger symbol lookups, and
733 we don't want those to be satisfied by the libraries of the
734 previous incarnation of this process. */
735 no_shared_libraries (NULL, 0);
736
737 if (follow_exec_mode_string == follow_exec_mode_new)
738 {
739 struct program_space *pspace;
740 struct inferior *new_inf;
741
742 /* The user wants to keep the old inferior and program spaces
743 around. Create a new fresh one, and switch to it. */
744
745 inf = add_inferior (current_inferior ()->pid);
746 pspace = add_program_space (maybe_new_address_space ());
747 inf->pspace = pspace;
748 inf->aspace = pspace->aspace;
749
750 exit_inferior_num_silent (current_inferior ()->num);
751
752 set_current_inferior (inf);
753 set_current_program_space (pspace);
754 }
755
756 gdb_assert (current_program_space == inf->pspace);
757
758 /* That a.out is now the one to use. */
759 exec_file_attach (execd_pathname, 0);
760
761 /* Load the main file's symbols. */
762 symbol_file_add_main (execd_pathname, 0);
763
764 #ifdef SOLIB_CREATE_INFERIOR_HOOK
765 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
766 #else
767 solib_create_inferior_hook ();
768 #endif
769
770 jit_inferior_created_hook ();
771
772 /* Reinsert all breakpoints. (Those which were symbolic have
773 been reset to the proper address in the new a.out, thanks
774 to symbol_file_command...) */
775 insert_breakpoints ();
776
777 /* The next resume of this inferior should bring it to the shlib
778 startup breakpoints. (If the user had also set bp's on
779 "main" from the old (parent) process, then they'll auto-
780 matically get reset there in the new process.) */
781 }
782
783 /* Non-zero if we just simulating a single-step. This is needed
784 because we cannot remove the breakpoints in the inferior process
785 until after the `wait' in `wait_for_inferior'. */
786 static int singlestep_breakpoints_inserted_p = 0;
787
788 /* The thread we inserted single-step breakpoints for. */
789 static ptid_t singlestep_ptid;
790
791 /* PC when we started this single-step. */
792 static CORE_ADDR singlestep_pc;
793
794 /* If another thread hit the singlestep breakpoint, we save the original
795 thread here so that we can resume single-stepping it later. */
796 static ptid_t saved_singlestep_ptid;
797 static int stepping_past_singlestep_breakpoint;
798
799 /* If not equal to null_ptid, this means that after stepping over breakpoint
800 is finished, we need to switch to deferred_step_ptid, and step it.
801
802 The use case is when one thread has hit a breakpoint, and then the user
803 has switched to another thread and issued 'step'. We need to step over
804 breakpoint in the thread which hit the breakpoint, but then continue
805 stepping the thread user has selected. */
806 static ptid_t deferred_step_ptid;
807 \f
808 /* Displaced stepping. */
809
810 /* In non-stop debugging mode, we must take special care to manage
811 breakpoints properly; in particular, the traditional strategy for
812 stepping a thread past a breakpoint it has hit is unsuitable.
813 'Displaced stepping' is a tactic for stepping one thread past a
814 breakpoint it has hit while ensuring that other threads running
815 concurrently will hit the breakpoint as they should.
816
817 The traditional way to step a thread T off a breakpoint in a
818 multi-threaded program in all-stop mode is as follows:
819
820 a0) Initially, all threads are stopped, and breakpoints are not
821 inserted.
822 a1) We single-step T, leaving breakpoints uninserted.
823 a2) We insert breakpoints, and resume all threads.
824
825 In non-stop debugging, however, this strategy is unsuitable: we
826 don't want to have to stop all threads in the system in order to
827 continue or step T past a breakpoint. Instead, we use displaced
828 stepping:
829
830 n0) Initially, T is stopped, other threads are running, and
831 breakpoints are inserted.
832 n1) We copy the instruction "under" the breakpoint to a separate
833 location, outside the main code stream, making any adjustments
834 to the instruction, register, and memory state as directed by
835 T's architecture.
836 n2) We single-step T over the instruction at its new location.
837 n3) We adjust the resulting register and memory state as directed
838 by T's architecture. This includes resetting T's PC to point
839 back into the main instruction stream.
840 n4) We resume T.
841
842 This approach depends on the following gdbarch methods:
843
844 - gdbarch_max_insn_length and gdbarch_displaced_step_location
845 indicate where to copy the instruction, and how much space must
846 be reserved there. We use these in step n1.
847
848 - gdbarch_displaced_step_copy_insn copies a instruction to a new
849 address, and makes any necessary adjustments to the instruction,
850 register contents, and memory. We use this in step n1.
851
852 - gdbarch_displaced_step_fixup adjusts registers and memory after
853 we have successfuly single-stepped the instruction, to yield the
854 same effect the instruction would have had if we had executed it
855 at its original address. We use this in step n3.
856
857 - gdbarch_displaced_step_free_closure provides cleanup.
858
859 The gdbarch_displaced_step_copy_insn and
860 gdbarch_displaced_step_fixup functions must be written so that
861 copying an instruction with gdbarch_displaced_step_copy_insn,
862 single-stepping across the copied instruction, and then applying
863 gdbarch_displaced_insn_fixup should have the same effects on the
864 thread's memory and registers as stepping the instruction in place
865 would have. Exactly which responsibilities fall to the copy and
866 which fall to the fixup is up to the author of those functions.
867
868 See the comments in gdbarch.sh for details.
869
870 Note that displaced stepping and software single-step cannot
871 currently be used in combination, although with some care I think
872 they could be made to. Software single-step works by placing
873 breakpoints on all possible subsequent instructions; if the
874 displaced instruction is a PC-relative jump, those breakpoints
875 could fall in very strange places --- on pages that aren't
876 executable, or at addresses that are not proper instruction
877 boundaries. (We do generally let other threads run while we wait
878 to hit the software single-step breakpoint, and they might
879 encounter such a corrupted instruction.) One way to work around
880 this would be to have gdbarch_displaced_step_copy_insn fully
881 simulate the effect of PC-relative instructions (and return NULL)
882 on architectures that use software single-stepping.
883
884 In non-stop mode, we can have independent and simultaneous step
885 requests, so more than one thread may need to simultaneously step
886 over a breakpoint. The current implementation assumes there is
887 only one scratch space per process. In this case, we have to
888 serialize access to the scratch space. If thread A wants to step
889 over a breakpoint, but we are currently waiting for some other
890 thread to complete a displaced step, we leave thread A stopped and
891 place it in the displaced_step_request_queue. Whenever a displaced
892 step finishes, we pick the next thread in the queue and start a new
893 displaced step operation on it. See displaced_step_prepare and
894 displaced_step_fixup for details. */
895
896 /* If this is not null_ptid, this is the thread carrying out a
897 displaced single-step. This thread's state will require fixing up
898 once it has completed its step. */
899 static ptid_t displaced_step_ptid;
900
901 struct displaced_step_request
902 {
903 ptid_t ptid;
904 struct displaced_step_request *next;
905 };
906
907 /* A queue of pending displaced stepping requests. */
908 struct displaced_step_request *displaced_step_request_queue;
909
910 /* The architecture the thread had when we stepped it. */
911 static struct gdbarch *displaced_step_gdbarch;
912
913 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
914 for post-step cleanup. */
915 static struct displaced_step_closure *displaced_step_closure;
916
917 /* The address of the original instruction, and the copy we made. */
918 static CORE_ADDR displaced_step_original, displaced_step_copy;
919
920 /* Saved contents of copy area. */
921 static gdb_byte *displaced_step_saved_copy;
922
923 /* Enum strings for "set|show displaced-stepping". */
924
925 static const char can_use_displaced_stepping_auto[] = "auto";
926 static const char can_use_displaced_stepping_on[] = "on";
927 static const char can_use_displaced_stepping_off[] = "off";
928 static const char *can_use_displaced_stepping_enum[] =
929 {
930 can_use_displaced_stepping_auto,
931 can_use_displaced_stepping_on,
932 can_use_displaced_stepping_off,
933 NULL,
934 };
935
936 /* If ON, and the architecture supports it, GDB will use displaced
937 stepping to step over breakpoints. If OFF, or if the architecture
938 doesn't support it, GDB will instead use the traditional
939 hold-and-step approach. If AUTO (which is the default), GDB will
940 decide which technique to use to step over breakpoints depending on
941 which of all-stop or non-stop mode is active --- displaced stepping
942 in non-stop mode; hold-and-step in all-stop mode. */
943
944 static const char *can_use_displaced_stepping =
945 can_use_displaced_stepping_auto;
946
947 static void
948 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
949 struct cmd_list_element *c,
950 const char *value)
951 {
952 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
953 fprintf_filtered (file, _("\
954 Debugger's willingness to use displaced stepping to step over \
955 breakpoints is %s (currently %s).\n"),
956 value, non_stop ? "on" : "off");
957 else
958 fprintf_filtered (file, _("\
959 Debugger's willingness to use displaced stepping to step over \
960 breakpoints is %s.\n"), value);
961 }
962
963 /* Return non-zero if displaced stepping can/should be used to step
964 over breakpoints. */
965
966 static int
967 use_displaced_stepping (struct gdbarch *gdbarch)
968 {
969 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
970 && non_stop)
971 || can_use_displaced_stepping == can_use_displaced_stepping_on)
972 && gdbarch_displaced_step_copy_insn_p (gdbarch)
973 && !RECORD_IS_USED);
974 }
975
976 /* Clean out any stray displaced stepping state. */
977 static void
978 displaced_step_clear (void)
979 {
980 /* Indicate that there is no cleanup pending. */
981 displaced_step_ptid = null_ptid;
982
983 if (displaced_step_closure)
984 {
985 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
986 displaced_step_closure);
987 displaced_step_closure = NULL;
988 }
989 }
990
991 static void
992 displaced_step_clear_cleanup (void *ignore)
993 {
994 displaced_step_clear ();
995 }
996
997 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
998 void
999 displaced_step_dump_bytes (struct ui_file *file,
1000 const gdb_byte *buf,
1001 size_t len)
1002 {
1003 int i;
1004
1005 for (i = 0; i < len; i++)
1006 fprintf_unfiltered (file, "%02x ", buf[i]);
1007 fputs_unfiltered ("\n", file);
1008 }
1009
1010 /* Prepare to single-step, using displaced stepping.
1011
1012 Note that we cannot use displaced stepping when we have a signal to
1013 deliver. If we have a signal to deliver and an instruction to step
1014 over, then after the step, there will be no indication from the
1015 target whether the thread entered a signal handler or ignored the
1016 signal and stepped over the instruction successfully --- both cases
1017 result in a simple SIGTRAP. In the first case we mustn't do a
1018 fixup, and in the second case we must --- but we can't tell which.
1019 Comments in the code for 'random signals' in handle_inferior_event
1020 explain how we handle this case instead.
1021
1022 Returns 1 if preparing was successful -- this thread is going to be
1023 stepped now; or 0 if displaced stepping this thread got queued. */
1024 static int
1025 displaced_step_prepare (ptid_t ptid)
1026 {
1027 struct cleanup *old_cleanups, *ignore_cleanups;
1028 struct regcache *regcache = get_thread_regcache (ptid);
1029 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1030 CORE_ADDR original, copy;
1031 ULONGEST len;
1032 struct displaced_step_closure *closure;
1033
1034 /* We should never reach this function if the architecture does not
1035 support displaced stepping. */
1036 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1037
1038 /* For the first cut, we're displaced stepping one thread at a
1039 time. */
1040
1041 if (!ptid_equal (displaced_step_ptid, null_ptid))
1042 {
1043 /* Already waiting for a displaced step to finish. Defer this
1044 request and place in queue. */
1045 struct displaced_step_request *req, *new_req;
1046
1047 if (debug_displaced)
1048 fprintf_unfiltered (gdb_stdlog,
1049 "displaced: defering step of %s\n",
1050 target_pid_to_str (ptid));
1051
1052 new_req = xmalloc (sizeof (*new_req));
1053 new_req->ptid = ptid;
1054 new_req->next = NULL;
1055
1056 if (displaced_step_request_queue)
1057 {
1058 for (req = displaced_step_request_queue;
1059 req && req->next;
1060 req = req->next)
1061 ;
1062 req->next = new_req;
1063 }
1064 else
1065 displaced_step_request_queue = new_req;
1066
1067 return 0;
1068 }
1069 else
1070 {
1071 if (debug_displaced)
1072 fprintf_unfiltered (gdb_stdlog,
1073 "displaced: stepping %s now\n",
1074 target_pid_to_str (ptid));
1075 }
1076
1077 displaced_step_clear ();
1078
1079 old_cleanups = save_inferior_ptid ();
1080 inferior_ptid = ptid;
1081
1082 original = regcache_read_pc (regcache);
1083
1084 copy = gdbarch_displaced_step_location (gdbarch);
1085 len = gdbarch_max_insn_length (gdbarch);
1086
1087 /* Save the original contents of the copy area. */
1088 displaced_step_saved_copy = xmalloc (len);
1089 ignore_cleanups = make_cleanup (free_current_contents,
1090 &displaced_step_saved_copy);
1091 read_memory (copy, displaced_step_saved_copy, len);
1092 if (debug_displaced)
1093 {
1094 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1095 paddress (gdbarch, copy));
1096 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
1097 };
1098
1099 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1100 original, copy, regcache);
1101
1102 /* We don't support the fully-simulated case at present. */
1103 gdb_assert (closure);
1104
1105 /* Save the information we need to fix things up if the step
1106 succeeds. */
1107 displaced_step_ptid = ptid;
1108 displaced_step_gdbarch = gdbarch;
1109 displaced_step_closure = closure;
1110 displaced_step_original = original;
1111 displaced_step_copy = copy;
1112
1113 make_cleanup (displaced_step_clear_cleanup, 0);
1114
1115 /* Resume execution at the copy. */
1116 regcache_write_pc (regcache, copy);
1117
1118 discard_cleanups (ignore_cleanups);
1119
1120 do_cleanups (old_cleanups);
1121
1122 if (debug_displaced)
1123 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1124 paddress (gdbarch, copy));
1125
1126 return 1;
1127 }
1128
1129 static void
1130 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1131 {
1132 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1133 inferior_ptid = ptid;
1134 write_memory (memaddr, myaddr, len);
1135 do_cleanups (ptid_cleanup);
1136 }
1137
1138 static void
1139 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1140 {
1141 struct cleanup *old_cleanups;
1142
1143 /* Was this event for the pid we displaced? */
1144 if (ptid_equal (displaced_step_ptid, null_ptid)
1145 || ! ptid_equal (displaced_step_ptid, event_ptid))
1146 return;
1147
1148 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
1149
1150 /* Restore the contents of the copy area. */
1151 {
1152 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
1153 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
1154 displaced_step_saved_copy, len);
1155 if (debug_displaced)
1156 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
1157 paddress (displaced_step_gdbarch,
1158 displaced_step_copy));
1159 }
1160
1161 /* Did the instruction complete successfully? */
1162 if (signal == TARGET_SIGNAL_TRAP)
1163 {
1164 /* Fix up the resulting state. */
1165 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
1166 displaced_step_closure,
1167 displaced_step_original,
1168 displaced_step_copy,
1169 get_thread_regcache (displaced_step_ptid));
1170 }
1171 else
1172 {
1173 /* Since the instruction didn't complete, all we can do is
1174 relocate the PC. */
1175 struct regcache *regcache = get_thread_regcache (event_ptid);
1176 CORE_ADDR pc = regcache_read_pc (regcache);
1177 pc = displaced_step_original + (pc - displaced_step_copy);
1178 regcache_write_pc (regcache, pc);
1179 }
1180
1181 do_cleanups (old_cleanups);
1182
1183 displaced_step_ptid = null_ptid;
1184
1185 /* Are there any pending displaced stepping requests? If so, run
1186 one now. */
1187 while (displaced_step_request_queue)
1188 {
1189 struct displaced_step_request *head;
1190 ptid_t ptid;
1191 struct regcache *regcache;
1192 struct gdbarch *gdbarch;
1193 CORE_ADDR actual_pc;
1194 struct address_space *aspace;
1195
1196 head = displaced_step_request_queue;
1197 ptid = head->ptid;
1198 displaced_step_request_queue = head->next;
1199 xfree (head);
1200
1201 context_switch (ptid);
1202
1203 regcache = get_thread_regcache (ptid);
1204 actual_pc = regcache_read_pc (regcache);
1205 aspace = get_regcache_aspace (regcache);
1206
1207 if (breakpoint_here_p (aspace, actual_pc))
1208 {
1209 if (debug_displaced)
1210 fprintf_unfiltered (gdb_stdlog,
1211 "displaced: stepping queued %s now\n",
1212 target_pid_to_str (ptid));
1213
1214 displaced_step_prepare (ptid);
1215
1216 gdbarch = get_regcache_arch (regcache);
1217
1218 if (debug_displaced)
1219 {
1220 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1221 gdb_byte buf[4];
1222
1223 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1224 paddress (gdbarch, actual_pc));
1225 read_memory (actual_pc, buf, sizeof (buf));
1226 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1227 }
1228
1229 if (gdbarch_displaced_step_hw_singlestep
1230 (gdbarch, displaced_step_closure))
1231 target_resume (ptid, 1, TARGET_SIGNAL_0);
1232 else
1233 target_resume (ptid, 0, TARGET_SIGNAL_0);
1234
1235 /* Done, we're stepping a thread. */
1236 break;
1237 }
1238 else
1239 {
1240 int step;
1241 struct thread_info *tp = inferior_thread ();
1242
1243 /* The breakpoint we were sitting under has since been
1244 removed. */
1245 tp->trap_expected = 0;
1246
1247 /* Go back to what we were trying to do. */
1248 step = currently_stepping (tp);
1249
1250 if (debug_displaced)
1251 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1252 target_pid_to_str (tp->ptid), step);
1253
1254 target_resume (ptid, step, TARGET_SIGNAL_0);
1255 tp->stop_signal = TARGET_SIGNAL_0;
1256
1257 /* This request was discarded. See if there's any other
1258 thread waiting for its turn. */
1259 }
1260 }
1261 }
1262
1263 /* Update global variables holding ptids to hold NEW_PTID if they were
1264 holding OLD_PTID. */
1265 static void
1266 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1267 {
1268 struct displaced_step_request *it;
1269
1270 if (ptid_equal (inferior_ptid, old_ptid))
1271 inferior_ptid = new_ptid;
1272
1273 if (ptid_equal (singlestep_ptid, old_ptid))
1274 singlestep_ptid = new_ptid;
1275
1276 if (ptid_equal (displaced_step_ptid, old_ptid))
1277 displaced_step_ptid = new_ptid;
1278
1279 if (ptid_equal (deferred_step_ptid, old_ptid))
1280 deferred_step_ptid = new_ptid;
1281
1282 for (it = displaced_step_request_queue; it; it = it->next)
1283 if (ptid_equal (it->ptid, old_ptid))
1284 it->ptid = new_ptid;
1285 }
1286
1287 \f
1288 /* Resuming. */
1289
1290 /* Things to clean up if we QUIT out of resume (). */
1291 static void
1292 resume_cleanups (void *ignore)
1293 {
1294 normal_stop ();
1295 }
1296
1297 static const char schedlock_off[] = "off";
1298 static const char schedlock_on[] = "on";
1299 static const char schedlock_step[] = "step";
1300 static const char *scheduler_enums[] = {
1301 schedlock_off,
1302 schedlock_on,
1303 schedlock_step,
1304 NULL
1305 };
1306 static const char *scheduler_mode = schedlock_off;
1307 static void
1308 show_scheduler_mode (struct ui_file *file, int from_tty,
1309 struct cmd_list_element *c, const char *value)
1310 {
1311 fprintf_filtered (file, _("\
1312 Mode for locking scheduler during execution is \"%s\".\n"),
1313 value);
1314 }
1315
1316 static void
1317 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1318 {
1319 if (!target_can_lock_scheduler)
1320 {
1321 scheduler_mode = schedlock_off;
1322 error (_("Target '%s' cannot support this command."), target_shortname);
1323 }
1324 }
1325
1326 /* True if execution commands resume all threads of all processes by
1327 default; otherwise, resume only threads of the current inferior
1328 process. */
1329 int sched_multi = 0;
1330
1331 /* Try to setup for software single stepping over the specified location.
1332 Return 1 if target_resume() should use hardware single step.
1333
1334 GDBARCH the current gdbarch.
1335 PC the location to step over. */
1336
1337 static int
1338 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1339 {
1340 int hw_step = 1;
1341
1342 if (gdbarch_software_single_step_p (gdbarch)
1343 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1344 {
1345 hw_step = 0;
1346 /* Do not pull these breakpoints until after a `wait' in
1347 `wait_for_inferior' */
1348 singlestep_breakpoints_inserted_p = 1;
1349 singlestep_ptid = inferior_ptid;
1350 singlestep_pc = pc;
1351 }
1352 return hw_step;
1353 }
1354
1355 /* Resume the inferior, but allow a QUIT. This is useful if the user
1356 wants to interrupt some lengthy single-stepping operation
1357 (for child processes, the SIGINT goes to the inferior, and so
1358 we get a SIGINT random_signal, but for remote debugging and perhaps
1359 other targets, that's not true).
1360
1361 STEP nonzero if we should step (zero to continue instead).
1362 SIG is the signal to give the inferior (zero for none). */
1363 void
1364 resume (int step, enum target_signal sig)
1365 {
1366 int should_resume = 1;
1367 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1368 struct regcache *regcache = get_current_regcache ();
1369 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1370 struct thread_info *tp = inferior_thread ();
1371 CORE_ADDR pc = regcache_read_pc (regcache);
1372 struct address_space *aspace = get_regcache_aspace (regcache);
1373
1374 QUIT;
1375
1376 if (debug_infrun)
1377 fprintf_unfiltered (gdb_stdlog,
1378 "infrun: resume (step=%d, signal=%d), "
1379 "trap_expected=%d\n",
1380 step, sig, tp->trap_expected);
1381
1382 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
1383 over an instruction that causes a page fault without triggering
1384 a hardware watchpoint. The kernel properly notices that it shouldn't
1385 stop, because the hardware watchpoint is not triggered, but it forgets
1386 the step request and continues the program normally.
1387 Work around the problem by removing hardware watchpoints if a step is
1388 requested, GDB will check for a hardware watchpoint trigger after the
1389 step anyway. */
1390 if (CANNOT_STEP_HW_WATCHPOINTS && step)
1391 remove_hw_watchpoints ();
1392
1393
1394 /* Normally, by the time we reach `resume', the breakpoints are either
1395 removed or inserted, as appropriate. The exception is if we're sitting
1396 at a permanent breakpoint; we need to step over it, but permanent
1397 breakpoints can't be removed. So we have to test for it here. */
1398 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1399 {
1400 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1401 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1402 else
1403 error (_("\
1404 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1405 how to step past a permanent breakpoint on this architecture. Try using\n\
1406 a command like `return' or `jump' to continue execution."));
1407 }
1408
1409 /* If enabled, step over breakpoints by executing a copy of the
1410 instruction at a different address.
1411
1412 We can't use displaced stepping when we have a signal to deliver;
1413 the comments for displaced_step_prepare explain why. The
1414 comments in the handle_inferior event for dealing with 'random
1415 signals' explain what we do instead. */
1416 if (use_displaced_stepping (gdbarch)
1417 && (tp->trap_expected
1418 || (step && gdbarch_software_single_step_p (gdbarch)))
1419 && sig == TARGET_SIGNAL_0)
1420 {
1421 if (!displaced_step_prepare (inferior_ptid))
1422 {
1423 /* Got placed in displaced stepping queue. Will be resumed
1424 later when all the currently queued displaced stepping
1425 requests finish. The thread is not executing at this point,
1426 and the call to set_executing will be made later. But we
1427 need to call set_running here, since from frontend point of view,
1428 the thread is running. */
1429 set_running (inferior_ptid, 1);
1430 discard_cleanups (old_cleanups);
1431 return;
1432 }
1433
1434 step = gdbarch_displaced_step_hw_singlestep
1435 (gdbarch, displaced_step_closure);
1436 }
1437
1438 /* Do we need to do it the hard way, w/temp breakpoints? */
1439 else if (step)
1440 step = maybe_software_singlestep (gdbarch, pc);
1441
1442 if (should_resume)
1443 {
1444 ptid_t resume_ptid;
1445
1446 /* If STEP is set, it's a request to use hardware stepping
1447 facilities. But in that case, we should never
1448 use singlestep breakpoint. */
1449 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1450
1451 /* Decide the set of threads to ask the target to resume. Start
1452 by assuming everything will be resumed, than narrow the set
1453 by applying increasingly restricting conditions. */
1454
1455 /* By default, resume all threads of all processes. */
1456 resume_ptid = RESUME_ALL;
1457
1458 /* Maybe resume only all threads of the current process. */
1459 if (!sched_multi && target_supports_multi_process ())
1460 {
1461 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1462 }
1463
1464 /* Maybe resume a single thread after all. */
1465 if (singlestep_breakpoints_inserted_p
1466 && stepping_past_singlestep_breakpoint)
1467 {
1468 /* The situation here is as follows. In thread T1 we wanted to
1469 single-step. Lacking hardware single-stepping we've
1470 set breakpoint at the PC of the next instruction -- call it
1471 P. After resuming, we've hit that breakpoint in thread T2.
1472 Now we've removed original breakpoint, inserted breakpoint
1473 at P+1, and try to step to advance T2 past breakpoint.
1474 We need to step only T2, as if T1 is allowed to freely run,
1475 it can run past P, and if other threads are allowed to run,
1476 they can hit breakpoint at P+1, and nested hits of single-step
1477 breakpoints is not something we'd want -- that's complicated
1478 to support, and has no value. */
1479 resume_ptid = inferior_ptid;
1480 }
1481 else if ((step || singlestep_breakpoints_inserted_p)
1482 && tp->trap_expected)
1483 {
1484 /* We're allowing a thread to run past a breakpoint it has
1485 hit, by single-stepping the thread with the breakpoint
1486 removed. In which case, we need to single-step only this
1487 thread, and keep others stopped, as they can miss this
1488 breakpoint if allowed to run.
1489
1490 The current code actually removes all breakpoints when
1491 doing this, not just the one being stepped over, so if we
1492 let other threads run, we can actually miss any
1493 breakpoint, not just the one at PC. */
1494 resume_ptid = inferior_ptid;
1495 }
1496 else if (non_stop)
1497 {
1498 /* With non-stop mode on, threads are always handled
1499 individually. */
1500 resume_ptid = inferior_ptid;
1501 }
1502 else if ((scheduler_mode == schedlock_on)
1503 || (scheduler_mode == schedlock_step
1504 && (step || singlestep_breakpoints_inserted_p)))
1505 {
1506 /* User-settable 'scheduler' mode requires solo thread resume. */
1507 resume_ptid = inferior_ptid;
1508 }
1509
1510 if (gdbarch_cannot_step_breakpoint (gdbarch))
1511 {
1512 /* Most targets can step a breakpoint instruction, thus
1513 executing it normally. But if this one cannot, just
1514 continue and we will hit it anyway. */
1515 if (step && breakpoint_inserted_here_p (aspace, pc))
1516 step = 0;
1517 }
1518
1519 if (debug_displaced
1520 && use_displaced_stepping (gdbarch)
1521 && tp->trap_expected)
1522 {
1523 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1524 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1525 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1526 gdb_byte buf[4];
1527
1528 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1529 paddress (resume_gdbarch, actual_pc));
1530 read_memory (actual_pc, buf, sizeof (buf));
1531 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1532 }
1533
1534 /* Install inferior's terminal modes. */
1535 target_terminal_inferior ();
1536
1537 /* Avoid confusing the next resume, if the next stop/resume
1538 happens to apply to another thread. */
1539 tp->stop_signal = TARGET_SIGNAL_0;
1540
1541 target_resume (resume_ptid, step, sig);
1542 }
1543
1544 discard_cleanups (old_cleanups);
1545 }
1546 \f
1547 /* Proceeding. */
1548
1549 /* Clear out all variables saying what to do when inferior is continued.
1550 First do this, then set the ones you want, then call `proceed'. */
1551
1552 static void
1553 clear_proceed_status_thread (struct thread_info *tp)
1554 {
1555 if (debug_infrun)
1556 fprintf_unfiltered (gdb_stdlog,
1557 "infrun: clear_proceed_status_thread (%s)\n",
1558 target_pid_to_str (tp->ptid));
1559
1560 tp->trap_expected = 0;
1561 tp->step_range_start = 0;
1562 tp->step_range_end = 0;
1563 tp->step_frame_id = null_frame_id;
1564 tp->step_stack_frame_id = null_frame_id;
1565 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1566 tp->stop_requested = 0;
1567
1568 tp->stop_step = 0;
1569
1570 tp->proceed_to_finish = 0;
1571
1572 /* Discard any remaining commands or status from previous stop. */
1573 bpstat_clear (&tp->stop_bpstat);
1574 }
1575
1576 static int
1577 clear_proceed_status_callback (struct thread_info *tp, void *data)
1578 {
1579 if (is_exited (tp->ptid))
1580 return 0;
1581
1582 clear_proceed_status_thread (tp);
1583 return 0;
1584 }
1585
1586 void
1587 clear_proceed_status (void)
1588 {
1589 if (!non_stop)
1590 {
1591 /* In all-stop mode, delete the per-thread status of all
1592 threads, even if inferior_ptid is null_ptid, there may be
1593 threads on the list. E.g., we may be launching a new
1594 process, while selecting the executable. */
1595 iterate_over_threads (clear_proceed_status_callback, NULL);
1596 }
1597
1598 if (!ptid_equal (inferior_ptid, null_ptid))
1599 {
1600 struct inferior *inferior;
1601
1602 if (non_stop)
1603 {
1604 /* If in non-stop mode, only delete the per-thread status of
1605 the current thread. */
1606 clear_proceed_status_thread (inferior_thread ());
1607 }
1608
1609 inferior = current_inferior ();
1610 inferior->stop_soon = NO_STOP_QUIETLY;
1611 }
1612
1613 stop_after_trap = 0;
1614
1615 observer_notify_about_to_proceed ();
1616
1617 if (stop_registers)
1618 {
1619 regcache_xfree (stop_registers);
1620 stop_registers = NULL;
1621 }
1622 }
1623
1624 /* Check the current thread against the thread that reported the most recent
1625 event. If a step-over is required return TRUE and set the current thread
1626 to the old thread. Otherwise return FALSE.
1627
1628 This should be suitable for any targets that support threads. */
1629
1630 static int
1631 prepare_to_proceed (int step)
1632 {
1633 ptid_t wait_ptid;
1634 struct target_waitstatus wait_status;
1635 int schedlock_enabled;
1636
1637 /* With non-stop mode on, threads are always handled individually. */
1638 gdb_assert (! non_stop);
1639
1640 /* Get the last target status returned by target_wait(). */
1641 get_last_target_status (&wait_ptid, &wait_status);
1642
1643 /* Make sure we were stopped at a breakpoint. */
1644 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1645 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1646 {
1647 return 0;
1648 }
1649
1650 schedlock_enabled = (scheduler_mode == schedlock_on
1651 || (scheduler_mode == schedlock_step
1652 && step));
1653
1654 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1655 if (schedlock_enabled)
1656 return 0;
1657
1658 /* Don't switch over if we're about to resume some other process
1659 other than WAIT_PTID's, and schedule-multiple is off. */
1660 if (!sched_multi
1661 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1662 return 0;
1663
1664 /* Switched over from WAIT_PID. */
1665 if (!ptid_equal (wait_ptid, minus_one_ptid)
1666 && !ptid_equal (inferior_ptid, wait_ptid))
1667 {
1668 struct regcache *regcache = get_thread_regcache (wait_ptid);
1669
1670 if (breakpoint_here_p (get_regcache_aspace (regcache),
1671 regcache_read_pc (regcache)))
1672 {
1673 /* If stepping, remember current thread to switch back to. */
1674 if (step)
1675 deferred_step_ptid = inferior_ptid;
1676
1677 /* Switch back to WAIT_PID thread. */
1678 switch_to_thread (wait_ptid);
1679
1680 /* We return 1 to indicate that there is a breakpoint here,
1681 so we need to step over it before continuing to avoid
1682 hitting it straight away. */
1683 return 1;
1684 }
1685 }
1686
1687 return 0;
1688 }
1689
1690 /* Basic routine for continuing the program in various fashions.
1691
1692 ADDR is the address to resume at, or -1 for resume where stopped.
1693 SIGGNAL is the signal to give it, or 0 for none,
1694 or -1 for act according to how it stopped.
1695 STEP is nonzero if should trap after one instruction.
1696 -1 means return after that and print nothing.
1697 You should probably set various step_... variables
1698 before calling here, if you are stepping.
1699
1700 You should call clear_proceed_status before calling proceed. */
1701
1702 void
1703 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1704 {
1705 struct regcache *regcache;
1706 struct gdbarch *gdbarch;
1707 struct thread_info *tp;
1708 CORE_ADDR pc;
1709 struct address_space *aspace;
1710 int oneproc = 0;
1711
1712 /* If we're stopped at a fork/vfork, follow the branch set by the
1713 "set follow-fork-mode" command; otherwise, we'll just proceed
1714 resuming the current thread. */
1715 if (!follow_fork ())
1716 {
1717 /* The target for some reason decided not to resume. */
1718 normal_stop ();
1719 return;
1720 }
1721
1722 regcache = get_current_regcache ();
1723 gdbarch = get_regcache_arch (regcache);
1724 aspace = get_regcache_aspace (regcache);
1725 pc = regcache_read_pc (regcache);
1726
1727 if (step > 0)
1728 step_start_function = find_pc_function (pc);
1729 if (step < 0)
1730 stop_after_trap = 1;
1731
1732 if (addr == (CORE_ADDR) -1)
1733 {
1734 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
1735 && execution_direction != EXEC_REVERSE)
1736 /* There is a breakpoint at the address we will resume at,
1737 step one instruction before inserting breakpoints so that
1738 we do not stop right away (and report a second hit at this
1739 breakpoint).
1740
1741 Note, we don't do this in reverse, because we won't
1742 actually be executing the breakpoint insn anyway.
1743 We'll be (un-)executing the previous instruction. */
1744
1745 oneproc = 1;
1746 else if (gdbarch_single_step_through_delay_p (gdbarch)
1747 && gdbarch_single_step_through_delay (gdbarch,
1748 get_current_frame ()))
1749 /* We stepped onto an instruction that needs to be stepped
1750 again before re-inserting the breakpoint, do so. */
1751 oneproc = 1;
1752 }
1753 else
1754 {
1755 regcache_write_pc (regcache, addr);
1756 }
1757
1758 if (debug_infrun)
1759 fprintf_unfiltered (gdb_stdlog,
1760 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
1761 paddress (gdbarch, addr), siggnal, step);
1762
1763 if (non_stop)
1764 /* In non-stop, each thread is handled individually. The context
1765 must already be set to the right thread here. */
1766 ;
1767 else
1768 {
1769 /* In a multi-threaded task we may select another thread and
1770 then continue or step.
1771
1772 But if the old thread was stopped at a breakpoint, it will
1773 immediately cause another breakpoint stop without any
1774 execution (i.e. it will report a breakpoint hit incorrectly).
1775 So we must step over it first.
1776
1777 prepare_to_proceed checks the current thread against the
1778 thread that reported the most recent event. If a step-over
1779 is required it returns TRUE and sets the current thread to
1780 the old thread. */
1781 if (prepare_to_proceed (step))
1782 oneproc = 1;
1783 }
1784
1785 /* prepare_to_proceed may change the current thread. */
1786 tp = inferior_thread ();
1787
1788 if (oneproc)
1789 {
1790 tp->trap_expected = 1;
1791 /* If displaced stepping is enabled, we can step over the
1792 breakpoint without hitting it, so leave all breakpoints
1793 inserted. Otherwise we need to disable all breakpoints, step
1794 one instruction, and then re-add them when that step is
1795 finished. */
1796 if (!use_displaced_stepping (gdbarch))
1797 remove_breakpoints ();
1798 }
1799
1800 /* We can insert breakpoints if we're not trying to step over one,
1801 or if we are stepping over one but we're using displaced stepping
1802 to do so. */
1803 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1804 insert_breakpoints ();
1805
1806 if (!non_stop)
1807 {
1808 /* Pass the last stop signal to the thread we're resuming,
1809 irrespective of whether the current thread is the thread that
1810 got the last event or not. This was historically GDB's
1811 behaviour before keeping a stop_signal per thread. */
1812
1813 struct thread_info *last_thread;
1814 ptid_t last_ptid;
1815 struct target_waitstatus last_status;
1816
1817 get_last_target_status (&last_ptid, &last_status);
1818 if (!ptid_equal (inferior_ptid, last_ptid)
1819 && !ptid_equal (last_ptid, null_ptid)
1820 && !ptid_equal (last_ptid, minus_one_ptid))
1821 {
1822 last_thread = find_thread_ptid (last_ptid);
1823 if (last_thread)
1824 {
1825 tp->stop_signal = last_thread->stop_signal;
1826 last_thread->stop_signal = TARGET_SIGNAL_0;
1827 }
1828 }
1829 }
1830
1831 if (siggnal != TARGET_SIGNAL_DEFAULT)
1832 tp->stop_signal = siggnal;
1833 /* If this signal should not be seen by program,
1834 give it zero. Used for debugging signals. */
1835 else if (!signal_program[tp->stop_signal])
1836 tp->stop_signal = TARGET_SIGNAL_0;
1837
1838 annotate_starting ();
1839
1840 /* Make sure that output from GDB appears before output from the
1841 inferior. */
1842 gdb_flush (gdb_stdout);
1843
1844 /* Refresh prev_pc value just prior to resuming. This used to be
1845 done in stop_stepping, however, setting prev_pc there did not handle
1846 scenarios such as inferior function calls or returning from
1847 a function via the return command. In those cases, the prev_pc
1848 value was not set properly for subsequent commands. The prev_pc value
1849 is used to initialize the starting line number in the ecs. With an
1850 invalid value, the gdb next command ends up stopping at the position
1851 represented by the next line table entry past our start position.
1852 On platforms that generate one line table entry per line, this
1853 is not a problem. However, on the ia64, the compiler generates
1854 extraneous line table entries that do not increase the line number.
1855 When we issue the gdb next command on the ia64 after an inferior call
1856 or a return command, we often end up a few instructions forward, still
1857 within the original line we started.
1858
1859 An attempt was made to have init_execution_control_state () refresh
1860 the prev_pc value before calculating the line number. This approach
1861 did not work because on platforms that use ptrace, the pc register
1862 cannot be read unless the inferior is stopped. At that point, we
1863 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1864 call can fail. Setting the prev_pc value here ensures the value is
1865 updated correctly when the inferior is stopped. */
1866 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1867
1868 /* Fill in with reasonable starting values. */
1869 init_thread_stepping_state (tp);
1870
1871 /* Reset to normal state. */
1872 init_infwait_state ();
1873
1874 /* Resume inferior. */
1875 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
1876
1877 /* Wait for it to stop (if not standalone)
1878 and in any case decode why it stopped, and act accordingly. */
1879 /* Do this only if we are not using the event loop, or if the target
1880 does not support asynchronous execution. */
1881 if (!target_can_async_p ())
1882 {
1883 wait_for_inferior (0);
1884 normal_stop ();
1885 }
1886 }
1887 \f
1888
1889 /* Start remote-debugging of a machine over a serial link. */
1890
1891 void
1892 start_remote (int from_tty)
1893 {
1894 struct inferior *inferior;
1895 init_wait_for_inferior ();
1896
1897 inferior = current_inferior ();
1898 inferior->stop_soon = STOP_QUIETLY_REMOTE;
1899
1900 /* Always go on waiting for the target, regardless of the mode. */
1901 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1902 indicate to wait_for_inferior that a target should timeout if
1903 nothing is returned (instead of just blocking). Because of this,
1904 targets expecting an immediate response need to, internally, set
1905 things up so that the target_wait() is forced to eventually
1906 timeout. */
1907 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1908 differentiate to its caller what the state of the target is after
1909 the initial open has been performed. Here we're assuming that
1910 the target has stopped. It should be possible to eventually have
1911 target_open() return to the caller an indication that the target
1912 is currently running and GDB state should be set to the same as
1913 for an async run. */
1914 wait_for_inferior (0);
1915
1916 /* Now that the inferior has stopped, do any bookkeeping like
1917 loading shared libraries. We want to do this before normal_stop,
1918 so that the displayed frame is up to date. */
1919 post_create_inferior (&current_target, from_tty);
1920
1921 normal_stop ();
1922 }
1923
1924 /* Initialize static vars when a new inferior begins. */
1925
1926 void
1927 init_wait_for_inferior (void)
1928 {
1929 /* These are meaningless until the first time through wait_for_inferior. */
1930
1931 breakpoint_init_inferior (inf_starting);
1932
1933 clear_proceed_status ();
1934
1935 stepping_past_singlestep_breakpoint = 0;
1936 deferred_step_ptid = null_ptid;
1937
1938 target_last_wait_ptid = minus_one_ptid;
1939
1940 previous_inferior_ptid = null_ptid;
1941 init_infwait_state ();
1942
1943 displaced_step_clear ();
1944
1945 /* Discard any skipped inlined frames. */
1946 clear_inline_frame_state (minus_one_ptid);
1947 }
1948
1949 \f
1950 /* This enum encodes possible reasons for doing a target_wait, so that
1951 wfi can call target_wait in one place. (Ultimately the call will be
1952 moved out of the infinite loop entirely.) */
1953
1954 enum infwait_states
1955 {
1956 infwait_normal_state,
1957 infwait_thread_hop_state,
1958 infwait_step_watch_state,
1959 infwait_nonstep_watch_state
1960 };
1961
1962 /* Why did the inferior stop? Used to print the appropriate messages
1963 to the interface from within handle_inferior_event(). */
1964 enum inferior_stop_reason
1965 {
1966 /* Step, next, nexti, stepi finished. */
1967 END_STEPPING_RANGE,
1968 /* Inferior terminated by signal. */
1969 SIGNAL_EXITED,
1970 /* Inferior exited. */
1971 EXITED,
1972 /* Inferior received signal, and user asked to be notified. */
1973 SIGNAL_RECEIVED,
1974 /* Reverse execution -- target ran out of history info. */
1975 NO_HISTORY
1976 };
1977
1978 /* The PTID we'll do a target_wait on.*/
1979 ptid_t waiton_ptid;
1980
1981 /* Current inferior wait state. */
1982 enum infwait_states infwait_state;
1983
1984 /* Data to be passed around while handling an event. This data is
1985 discarded between events. */
1986 struct execution_control_state
1987 {
1988 ptid_t ptid;
1989 /* The thread that got the event, if this was a thread event; NULL
1990 otherwise. */
1991 struct thread_info *event_thread;
1992
1993 struct target_waitstatus ws;
1994 int random_signal;
1995 CORE_ADDR stop_func_start;
1996 CORE_ADDR stop_func_end;
1997 char *stop_func_name;
1998 int new_thread_event;
1999 int wait_some_more;
2000 };
2001
2002 static void init_execution_control_state (struct execution_control_state *ecs);
2003
2004 static void handle_inferior_event (struct execution_control_state *ecs);
2005
2006 static void handle_step_into_function (struct gdbarch *gdbarch,
2007 struct execution_control_state *ecs);
2008 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2009 struct execution_control_state *ecs);
2010 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
2011 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
2012 static void insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
2013 struct symtab_and_line sr_sal,
2014 struct frame_id sr_id);
2015 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
2016
2017 static void stop_stepping (struct execution_control_state *ecs);
2018 static void prepare_to_wait (struct execution_control_state *ecs);
2019 static void keep_going (struct execution_control_state *ecs);
2020 static void print_stop_reason (enum inferior_stop_reason stop_reason,
2021 int stop_info);
2022
2023 /* Callback for iterate over threads. If the thread is stopped, but
2024 the user/frontend doesn't know about that yet, go through
2025 normal_stop, as if the thread had just stopped now. ARG points at
2026 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2027 ptid_is_pid(PTID) is true, applies to all threads of the process
2028 pointed at by PTID. Otherwise, apply only to the thread pointed by
2029 PTID. */
2030
2031 static int
2032 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2033 {
2034 ptid_t ptid = * (ptid_t *) arg;
2035
2036 if ((ptid_equal (info->ptid, ptid)
2037 || ptid_equal (minus_one_ptid, ptid)
2038 || (ptid_is_pid (ptid)
2039 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2040 && is_running (info->ptid)
2041 && !is_executing (info->ptid))
2042 {
2043 struct cleanup *old_chain;
2044 struct execution_control_state ecss;
2045 struct execution_control_state *ecs = &ecss;
2046
2047 memset (ecs, 0, sizeof (*ecs));
2048
2049 old_chain = make_cleanup_restore_current_thread ();
2050
2051 switch_to_thread (info->ptid);
2052
2053 /* Go through handle_inferior_event/normal_stop, so we always
2054 have consistent output as if the stop event had been
2055 reported. */
2056 ecs->ptid = info->ptid;
2057 ecs->event_thread = find_thread_ptid (info->ptid);
2058 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2059 ecs->ws.value.sig = TARGET_SIGNAL_0;
2060
2061 handle_inferior_event (ecs);
2062
2063 if (!ecs->wait_some_more)
2064 {
2065 struct thread_info *tp;
2066
2067 normal_stop ();
2068
2069 /* Finish off the continuations. The continations
2070 themselves are responsible for realising the thread
2071 didn't finish what it was supposed to do. */
2072 tp = inferior_thread ();
2073 do_all_intermediate_continuations_thread (tp);
2074 do_all_continuations_thread (tp);
2075 }
2076
2077 do_cleanups (old_chain);
2078 }
2079
2080 return 0;
2081 }
2082
2083 /* This function is attached as a "thread_stop_requested" observer.
2084 Cleanup local state that assumed the PTID was to be resumed, and
2085 report the stop to the frontend. */
2086
2087 static void
2088 infrun_thread_stop_requested (ptid_t ptid)
2089 {
2090 struct displaced_step_request *it, *next, *prev = NULL;
2091
2092 /* PTID was requested to stop. Remove it from the displaced
2093 stepping queue, so we don't try to resume it automatically. */
2094 for (it = displaced_step_request_queue; it; it = next)
2095 {
2096 next = it->next;
2097
2098 if (ptid_equal (it->ptid, ptid)
2099 || ptid_equal (minus_one_ptid, ptid)
2100 || (ptid_is_pid (ptid)
2101 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
2102 {
2103 if (displaced_step_request_queue == it)
2104 displaced_step_request_queue = it->next;
2105 else
2106 prev->next = it->next;
2107
2108 xfree (it);
2109 }
2110 else
2111 prev = it;
2112 }
2113
2114 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2115 }
2116
2117 static void
2118 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2119 {
2120 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2121 nullify_last_target_wait_ptid ();
2122 }
2123
2124 /* Callback for iterate_over_threads. */
2125
2126 static int
2127 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2128 {
2129 if (is_exited (info->ptid))
2130 return 0;
2131
2132 delete_step_resume_breakpoint (info);
2133 return 0;
2134 }
2135
2136 /* In all-stop, delete the step resume breakpoint of any thread that
2137 had one. In non-stop, delete the step resume breakpoint of the
2138 thread that just stopped. */
2139
2140 static void
2141 delete_step_thread_step_resume_breakpoint (void)
2142 {
2143 if (!target_has_execution
2144 || ptid_equal (inferior_ptid, null_ptid))
2145 /* If the inferior has exited, we have already deleted the step
2146 resume breakpoints out of GDB's lists. */
2147 return;
2148
2149 if (non_stop)
2150 {
2151 /* If in non-stop mode, only delete the step-resume or
2152 longjmp-resume breakpoint of the thread that just stopped
2153 stepping. */
2154 struct thread_info *tp = inferior_thread ();
2155 delete_step_resume_breakpoint (tp);
2156 }
2157 else
2158 /* In all-stop mode, delete all step-resume and longjmp-resume
2159 breakpoints of any thread that had them. */
2160 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2161 }
2162
2163 /* A cleanup wrapper. */
2164
2165 static void
2166 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2167 {
2168 delete_step_thread_step_resume_breakpoint ();
2169 }
2170
2171 /* Pretty print the results of target_wait, for debugging purposes. */
2172
2173 static void
2174 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2175 const struct target_waitstatus *ws)
2176 {
2177 char *status_string = target_waitstatus_to_string (ws);
2178 struct ui_file *tmp_stream = mem_fileopen ();
2179 char *text;
2180
2181 /* The text is split over several lines because it was getting too long.
2182 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2183 output as a unit; we want only one timestamp printed if debug_timestamp
2184 is set. */
2185
2186 fprintf_unfiltered (tmp_stream,
2187 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2188 if (PIDGET (waiton_ptid) != -1)
2189 fprintf_unfiltered (tmp_stream,
2190 " [%s]", target_pid_to_str (waiton_ptid));
2191 fprintf_unfiltered (tmp_stream, ", status) =\n");
2192 fprintf_unfiltered (tmp_stream,
2193 "infrun: %d [%s],\n",
2194 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2195 fprintf_unfiltered (tmp_stream,
2196 "infrun: %s\n",
2197 status_string);
2198
2199 text = ui_file_xstrdup (tmp_stream, NULL);
2200
2201 /* This uses %s in part to handle %'s in the text, but also to avoid
2202 a gcc error: the format attribute requires a string literal. */
2203 fprintf_unfiltered (gdb_stdlog, "%s", text);
2204
2205 xfree (status_string);
2206 xfree (text);
2207 ui_file_delete (tmp_stream);
2208 }
2209
2210 /* Wait for control to return from inferior to debugger.
2211
2212 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
2213 as if they were SIGTRAP signals. This can be useful during
2214 the startup sequence on some targets such as HP/UX, where
2215 we receive an EXEC event instead of the expected SIGTRAP.
2216
2217 If inferior gets a signal, we may decide to start it up again
2218 instead of returning. That is why there is a loop in this function.
2219 When this function actually returns it means the inferior
2220 should be left stopped and GDB should read more commands. */
2221
2222 void
2223 wait_for_inferior (int treat_exec_as_sigtrap)
2224 {
2225 struct cleanup *old_cleanups;
2226 struct execution_control_state ecss;
2227 struct execution_control_state *ecs;
2228
2229 if (debug_infrun)
2230 fprintf_unfiltered
2231 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
2232 treat_exec_as_sigtrap);
2233
2234 old_cleanups =
2235 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2236
2237 ecs = &ecss;
2238 memset (ecs, 0, sizeof (*ecs));
2239
2240 /* We'll update this if & when we switch to a new thread. */
2241 previous_inferior_ptid = inferior_ptid;
2242
2243 while (1)
2244 {
2245 struct cleanup *old_chain;
2246
2247 /* We have to invalidate the registers BEFORE calling target_wait
2248 because they can be loaded from the target while in target_wait.
2249 This makes remote debugging a bit more efficient for those
2250 targets that provide critical registers as part of their normal
2251 status mechanism. */
2252
2253 overlay_cache_invalid = 1;
2254 registers_changed ();
2255
2256 if (deprecated_target_wait_hook)
2257 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2258 else
2259 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2260
2261 if (debug_infrun)
2262 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2263
2264 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2265 {
2266 xfree (ecs->ws.value.execd_pathname);
2267 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2268 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2269 }
2270
2271 /* If an error happens while handling the event, propagate GDB's
2272 knowledge of the executing state to the frontend/user running
2273 state. */
2274 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2275
2276 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2277 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2278 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2279
2280 /* Now figure out what to do with the result of the result. */
2281 handle_inferior_event (ecs);
2282
2283 /* No error, don't finish the state yet. */
2284 discard_cleanups (old_chain);
2285
2286 if (!ecs->wait_some_more)
2287 break;
2288 }
2289
2290 do_cleanups (old_cleanups);
2291 }
2292
2293 /* Asynchronous version of wait_for_inferior. It is called by the
2294 event loop whenever a change of state is detected on the file
2295 descriptor corresponding to the target. It can be called more than
2296 once to complete a single execution command. In such cases we need
2297 to keep the state in a global variable ECSS. If it is the last time
2298 that this function is called for a single execution command, then
2299 report to the user that the inferior has stopped, and do the
2300 necessary cleanups. */
2301
2302 void
2303 fetch_inferior_event (void *client_data)
2304 {
2305 struct execution_control_state ecss;
2306 struct execution_control_state *ecs = &ecss;
2307 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2308 struct cleanup *ts_old_chain;
2309 int was_sync = sync_execution;
2310
2311 memset (ecs, 0, sizeof (*ecs));
2312
2313 /* We'll update this if & when we switch to a new thread. */
2314 previous_inferior_ptid = inferior_ptid;
2315
2316 if (non_stop)
2317 /* In non-stop mode, the user/frontend should not notice a thread
2318 switch due to internal events. Make sure we reverse to the
2319 user selected thread and frame after handling the event and
2320 running any breakpoint commands. */
2321 make_cleanup_restore_current_thread ();
2322
2323 /* We have to invalidate the registers BEFORE calling target_wait
2324 because they can be loaded from the target while in target_wait.
2325 This makes remote debugging a bit more efficient for those
2326 targets that provide critical registers as part of their normal
2327 status mechanism. */
2328
2329 overlay_cache_invalid = 1;
2330 registers_changed ();
2331
2332 if (deprecated_target_wait_hook)
2333 ecs->ptid =
2334 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2335 else
2336 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2337
2338 if (debug_infrun)
2339 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2340
2341 if (non_stop
2342 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2343 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2344 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2345 /* In non-stop mode, each thread is handled individually. Switch
2346 early, so the global state is set correctly for this
2347 thread. */
2348 context_switch (ecs->ptid);
2349
2350 /* If an error happens while handling the event, propagate GDB's
2351 knowledge of the executing state to the frontend/user running
2352 state. */
2353 if (!non_stop)
2354 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2355 else
2356 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2357
2358 /* Now figure out what to do with the result of the result. */
2359 handle_inferior_event (ecs);
2360
2361 if (!ecs->wait_some_more)
2362 {
2363 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2364
2365 delete_step_thread_step_resume_breakpoint ();
2366
2367 /* We may not find an inferior if this was a process exit. */
2368 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
2369 normal_stop ();
2370
2371 if (target_has_execution
2372 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2373 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2374 && ecs->event_thread->step_multi
2375 && ecs->event_thread->stop_step)
2376 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2377 else
2378 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2379 }
2380
2381 /* No error, don't finish the thread states yet. */
2382 discard_cleanups (ts_old_chain);
2383
2384 /* Revert thread and frame. */
2385 do_cleanups (old_chain);
2386
2387 /* If the inferior was in sync execution mode, and now isn't,
2388 restore the prompt. */
2389 if (was_sync && !sync_execution)
2390 display_gdb_prompt (0);
2391 }
2392
2393 /* Record the frame and location we're currently stepping through. */
2394 void
2395 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2396 {
2397 struct thread_info *tp = inferior_thread ();
2398
2399 tp->step_frame_id = get_frame_id (frame);
2400 tp->step_stack_frame_id = get_stack_frame_id (frame);
2401
2402 tp->current_symtab = sal.symtab;
2403 tp->current_line = sal.line;
2404 }
2405
2406 /* Prepare an execution control state for looping through a
2407 wait_for_inferior-type loop. */
2408
2409 static void
2410 init_execution_control_state (struct execution_control_state *ecs)
2411 {
2412 ecs->random_signal = 0;
2413 }
2414
2415 /* Clear context switchable stepping state. */
2416
2417 void
2418 init_thread_stepping_state (struct thread_info *tss)
2419 {
2420 tss->stepping_over_breakpoint = 0;
2421 tss->step_after_step_resume_breakpoint = 0;
2422 tss->stepping_through_solib_after_catch = 0;
2423 tss->stepping_through_solib_catchpoints = NULL;
2424 }
2425
2426 /* Return the cached copy of the last pid/waitstatus returned by
2427 target_wait()/deprecated_target_wait_hook(). The data is actually
2428 cached by handle_inferior_event(), which gets called immediately
2429 after target_wait()/deprecated_target_wait_hook(). */
2430
2431 void
2432 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2433 {
2434 *ptidp = target_last_wait_ptid;
2435 *status = target_last_waitstatus;
2436 }
2437
2438 void
2439 nullify_last_target_wait_ptid (void)
2440 {
2441 target_last_wait_ptid = minus_one_ptid;
2442 }
2443
2444 /* Switch thread contexts. */
2445
2446 static void
2447 context_switch (ptid_t ptid)
2448 {
2449 if (debug_infrun)
2450 {
2451 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2452 target_pid_to_str (inferior_ptid));
2453 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2454 target_pid_to_str (ptid));
2455 }
2456
2457 switch_to_thread (ptid);
2458 }
2459
2460 static void
2461 adjust_pc_after_break (struct execution_control_state *ecs)
2462 {
2463 struct regcache *regcache;
2464 struct gdbarch *gdbarch;
2465 struct address_space *aspace;
2466 CORE_ADDR breakpoint_pc;
2467
2468 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2469 we aren't, just return.
2470
2471 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2472 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2473 implemented by software breakpoints should be handled through the normal
2474 breakpoint layer.
2475
2476 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2477 different signals (SIGILL or SIGEMT for instance), but it is less
2478 clear where the PC is pointing afterwards. It may not match
2479 gdbarch_decr_pc_after_break. I don't know any specific target that
2480 generates these signals at breakpoints (the code has been in GDB since at
2481 least 1992) so I can not guess how to handle them here.
2482
2483 In earlier versions of GDB, a target with
2484 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2485 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2486 target with both of these set in GDB history, and it seems unlikely to be
2487 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2488
2489 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2490 return;
2491
2492 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2493 return;
2494
2495 /* In reverse execution, when a breakpoint is hit, the instruction
2496 under it has already been de-executed. The reported PC always
2497 points at the breakpoint address, so adjusting it further would
2498 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2499 architecture:
2500
2501 B1 0x08000000 : INSN1
2502 B2 0x08000001 : INSN2
2503 0x08000002 : INSN3
2504 PC -> 0x08000003 : INSN4
2505
2506 Say you're stopped at 0x08000003 as above. Reverse continuing
2507 from that point should hit B2 as below. Reading the PC when the
2508 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2509 been de-executed already.
2510
2511 B1 0x08000000 : INSN1
2512 B2 PC -> 0x08000001 : INSN2
2513 0x08000002 : INSN3
2514 0x08000003 : INSN4
2515
2516 We can't apply the same logic as for forward execution, because
2517 we would wrongly adjust the PC to 0x08000000, since there's a
2518 breakpoint at PC - 1. We'd then report a hit on B1, although
2519 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2520 behaviour. */
2521 if (execution_direction == EXEC_REVERSE)
2522 return;
2523
2524 /* If this target does not decrement the PC after breakpoints, then
2525 we have nothing to do. */
2526 regcache = get_thread_regcache (ecs->ptid);
2527 gdbarch = get_regcache_arch (regcache);
2528 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2529 return;
2530
2531 aspace = get_regcache_aspace (regcache);
2532
2533 /* Find the location where (if we've hit a breakpoint) the
2534 breakpoint would be. */
2535 breakpoint_pc = regcache_read_pc (regcache)
2536 - gdbarch_decr_pc_after_break (gdbarch);
2537
2538 /* Check whether there actually is a software breakpoint inserted at
2539 that location.
2540
2541 If in non-stop mode, a race condition is possible where we've
2542 removed a breakpoint, but stop events for that breakpoint were
2543 already queued and arrive later. To suppress those spurious
2544 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2545 and retire them after a number of stop events are reported. */
2546 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2547 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2548 {
2549 struct cleanup *old_cleanups = NULL;
2550 if (RECORD_IS_USED)
2551 old_cleanups = record_gdb_operation_disable_set ();
2552
2553 /* When using hardware single-step, a SIGTRAP is reported for both
2554 a completed single-step and a software breakpoint. Need to
2555 differentiate between the two, as the latter needs adjusting
2556 but the former does not.
2557
2558 The SIGTRAP can be due to a completed hardware single-step only if
2559 - we didn't insert software single-step breakpoints
2560 - the thread to be examined is still the current thread
2561 - this thread is currently being stepped
2562
2563 If any of these events did not occur, we must have stopped due
2564 to hitting a software breakpoint, and have to back up to the
2565 breakpoint address.
2566
2567 As a special case, we could have hardware single-stepped a
2568 software breakpoint. In this case (prev_pc == breakpoint_pc),
2569 we also need to back up to the breakpoint address. */
2570
2571 if (singlestep_breakpoints_inserted_p
2572 || !ptid_equal (ecs->ptid, inferior_ptid)
2573 || !currently_stepping (ecs->event_thread)
2574 || ecs->event_thread->prev_pc == breakpoint_pc)
2575 regcache_write_pc (regcache, breakpoint_pc);
2576
2577 if (RECORD_IS_USED)
2578 do_cleanups (old_cleanups);
2579 }
2580 }
2581
2582 void
2583 init_infwait_state (void)
2584 {
2585 waiton_ptid = pid_to_ptid (-1);
2586 infwait_state = infwait_normal_state;
2587 }
2588
2589 void
2590 error_is_running (void)
2591 {
2592 error (_("\
2593 Cannot execute this command while the selected thread is running."));
2594 }
2595
2596 void
2597 ensure_not_running (void)
2598 {
2599 if (is_running (inferior_ptid))
2600 error_is_running ();
2601 }
2602
2603 static int
2604 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2605 {
2606 for (frame = get_prev_frame (frame);
2607 frame != NULL;
2608 frame = get_prev_frame (frame))
2609 {
2610 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2611 return 1;
2612 if (get_frame_type (frame) != INLINE_FRAME)
2613 break;
2614 }
2615
2616 return 0;
2617 }
2618
2619 /* Auxiliary function that handles syscall entry/return events.
2620 It returns 1 if the inferior should keep going (and GDB
2621 should ignore the event), or 0 if the event deserves to be
2622 processed. */
2623
2624 static int
2625 handle_syscall_event (struct execution_control_state *ecs)
2626 {
2627 struct regcache *regcache;
2628 struct gdbarch *gdbarch;
2629 int syscall_number;
2630
2631 if (!ptid_equal (ecs->ptid, inferior_ptid))
2632 context_switch (ecs->ptid);
2633
2634 regcache = get_thread_regcache (ecs->ptid);
2635 gdbarch = get_regcache_arch (regcache);
2636 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
2637 stop_pc = regcache_read_pc (regcache);
2638
2639 target_last_waitstatus.value.syscall_number = syscall_number;
2640
2641 if (catch_syscall_enabled () > 0
2642 && catching_syscall_number (syscall_number) > 0)
2643 {
2644 if (debug_infrun)
2645 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
2646 syscall_number);
2647
2648 ecs->event_thread->stop_bpstat
2649 = bpstat_stop_status (get_regcache_aspace (regcache),
2650 stop_pc, ecs->ptid);
2651 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2652
2653 if (!ecs->random_signal)
2654 {
2655 /* Catchpoint hit. */
2656 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2657 return 0;
2658 }
2659 }
2660
2661 /* If no catchpoint triggered for this, then keep going. */
2662 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2663 keep_going (ecs);
2664 return 1;
2665 }
2666
2667 /* Given an execution control state that has been freshly filled in
2668 by an event from the inferior, figure out what it means and take
2669 appropriate action. */
2670
2671 static void
2672 handle_inferior_event (struct execution_control_state *ecs)
2673 {
2674 struct frame_info *frame;
2675 struct gdbarch *gdbarch;
2676 int sw_single_step_trap_p = 0;
2677 int stopped_by_watchpoint;
2678 int stepped_after_stopped_by_watchpoint = 0;
2679 struct symtab_and_line stop_pc_sal;
2680 enum stop_kind stop_soon;
2681
2682 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
2683 {
2684 /* We had an event in the inferior, but we are not interested in
2685 handling it at this level. The lower layers have already
2686 done what needs to be done, if anything.
2687
2688 One of the possible circumstances for this is when the
2689 inferior produces output for the console. The inferior has
2690 not stopped, and we are ignoring the event. Another possible
2691 circumstance is any event which the lower level knows will be
2692 reported multiple times without an intervening resume. */
2693 if (debug_infrun)
2694 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2695 prepare_to_wait (ecs);
2696 return;
2697 }
2698
2699 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2700 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2701 {
2702 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2703 gdb_assert (inf);
2704 stop_soon = inf->stop_soon;
2705 }
2706 else
2707 stop_soon = NO_STOP_QUIETLY;
2708
2709 /* Cache the last pid/waitstatus. */
2710 target_last_wait_ptid = ecs->ptid;
2711 target_last_waitstatus = ecs->ws;
2712
2713 /* Always clear state belonging to the previous time we stopped. */
2714 stop_stack_dummy = 0;
2715
2716 /* If it's a new process, add it to the thread database */
2717
2718 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2719 && !ptid_equal (ecs->ptid, minus_one_ptid)
2720 && !in_thread_list (ecs->ptid));
2721
2722 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2723 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2724 add_thread (ecs->ptid);
2725
2726 ecs->event_thread = find_thread_ptid (ecs->ptid);
2727
2728 /* Dependent on valid ECS->EVENT_THREAD. */
2729 adjust_pc_after_break (ecs);
2730
2731 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2732 reinit_frame_cache ();
2733
2734 breakpoint_retire_moribund ();
2735
2736 /* Mark the non-executing threads accordingly. In all-stop, all
2737 threads of all processes are stopped when we get any event
2738 reported. In non-stop mode, only the event thread stops. If
2739 we're handling a process exit in non-stop mode, there's nothing
2740 to do, as threads of the dead process are gone, and threads of
2741 any other process were left running. */
2742 if (!non_stop)
2743 set_executing (minus_one_ptid, 0);
2744 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2745 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2746 set_executing (inferior_ptid, 0);
2747
2748 switch (infwait_state)
2749 {
2750 case infwait_thread_hop_state:
2751 if (debug_infrun)
2752 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
2753 break;
2754
2755 case infwait_normal_state:
2756 if (debug_infrun)
2757 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
2758 break;
2759
2760 case infwait_step_watch_state:
2761 if (debug_infrun)
2762 fprintf_unfiltered (gdb_stdlog,
2763 "infrun: infwait_step_watch_state\n");
2764
2765 stepped_after_stopped_by_watchpoint = 1;
2766 break;
2767
2768 case infwait_nonstep_watch_state:
2769 if (debug_infrun)
2770 fprintf_unfiltered (gdb_stdlog,
2771 "infrun: infwait_nonstep_watch_state\n");
2772 insert_breakpoints ();
2773
2774 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2775 handle things like signals arriving and other things happening
2776 in combination correctly? */
2777 stepped_after_stopped_by_watchpoint = 1;
2778 break;
2779
2780 default:
2781 internal_error (__FILE__, __LINE__, _("bad switch"));
2782 }
2783
2784 infwait_state = infwait_normal_state;
2785 waiton_ptid = pid_to_ptid (-1);
2786
2787 switch (ecs->ws.kind)
2788 {
2789 case TARGET_WAITKIND_LOADED:
2790 if (debug_infrun)
2791 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
2792 /* Ignore gracefully during startup of the inferior, as it might
2793 be the shell which has just loaded some objects, otherwise
2794 add the symbols for the newly loaded objects. Also ignore at
2795 the beginning of an attach or remote session; we will query
2796 the full list of libraries once the connection is
2797 established. */
2798 if (stop_soon == NO_STOP_QUIETLY)
2799 {
2800 /* Check for any newly added shared libraries if we're
2801 supposed to be adding them automatically. Switch
2802 terminal for any messages produced by
2803 breakpoint_re_set. */
2804 target_terminal_ours_for_output ();
2805 /* NOTE: cagney/2003-11-25: Make certain that the target
2806 stack's section table is kept up-to-date. Architectures,
2807 (e.g., PPC64), use the section table to perform
2808 operations such as address => section name and hence
2809 require the table to contain all sections (including
2810 those found in shared libraries). */
2811 #ifdef SOLIB_ADD
2812 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2813 #else
2814 solib_add (NULL, 0, &current_target, auto_solib_add);
2815 #endif
2816 target_terminal_inferior ();
2817
2818 /* If requested, stop when the dynamic linker notifies
2819 gdb of events. This allows the user to get control
2820 and place breakpoints in initializer routines for
2821 dynamically loaded objects (among other things). */
2822 if (stop_on_solib_events)
2823 {
2824 stop_stepping (ecs);
2825 return;
2826 }
2827
2828 /* NOTE drow/2007-05-11: This might be a good place to check
2829 for "catch load". */
2830 }
2831
2832 /* If we are skipping through a shell, or through shared library
2833 loading that we aren't interested in, resume the program. If
2834 we're running the program normally, also resume. But stop if
2835 we're attaching or setting up a remote connection. */
2836 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2837 {
2838 /* Loading of shared libraries might have changed breakpoint
2839 addresses. Make sure new breakpoints are inserted. */
2840 if (stop_soon == NO_STOP_QUIETLY
2841 && !breakpoints_always_inserted_mode ())
2842 insert_breakpoints ();
2843 resume (0, TARGET_SIGNAL_0);
2844 prepare_to_wait (ecs);
2845 return;
2846 }
2847
2848 break;
2849
2850 case TARGET_WAITKIND_SPURIOUS:
2851 if (debug_infrun)
2852 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2853 resume (0, TARGET_SIGNAL_0);
2854 prepare_to_wait (ecs);
2855 return;
2856
2857 case TARGET_WAITKIND_EXITED:
2858 if (debug_infrun)
2859 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2860 inferior_ptid = ecs->ptid;
2861 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
2862 set_current_program_space (current_inferior ()->pspace);
2863 handle_vfork_child_exec_or_exit (0);
2864 target_terminal_ours (); /* Must do this before mourn anyway */
2865 print_stop_reason (EXITED, ecs->ws.value.integer);
2866
2867 /* Record the exit code in the convenience variable $_exitcode, so
2868 that the user can inspect this again later. */
2869 set_internalvar_integer (lookup_internalvar ("_exitcode"),
2870 (LONGEST) ecs->ws.value.integer);
2871 gdb_flush (gdb_stdout);
2872 target_mourn_inferior ();
2873 singlestep_breakpoints_inserted_p = 0;
2874 stop_print_frame = 0;
2875 stop_stepping (ecs);
2876 return;
2877
2878 case TARGET_WAITKIND_SIGNALLED:
2879 if (debug_infrun)
2880 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2881 inferior_ptid = ecs->ptid;
2882 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
2883 set_current_program_space (current_inferior ()->pspace);
2884 handle_vfork_child_exec_or_exit (0);
2885 stop_print_frame = 0;
2886 target_terminal_ours (); /* Must do this before mourn anyway */
2887
2888 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2889 reach here unless the inferior is dead. However, for years
2890 target_kill() was called here, which hints that fatal signals aren't
2891 really fatal on some systems. If that's true, then some changes
2892 may be needed. */
2893 target_mourn_inferior ();
2894
2895 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
2896 singlestep_breakpoints_inserted_p = 0;
2897 stop_stepping (ecs);
2898 return;
2899
2900 /* The following are the only cases in which we keep going;
2901 the above cases end in a continue or goto. */
2902 case TARGET_WAITKIND_FORKED:
2903 case TARGET_WAITKIND_VFORKED:
2904 if (debug_infrun)
2905 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2906
2907 if (!ptid_equal (ecs->ptid, inferior_ptid))
2908 {
2909 context_switch (ecs->ptid);
2910 reinit_frame_cache ();
2911 }
2912
2913 /* Immediately detach breakpoints from the child before there's
2914 any chance of letting the user delete breakpoints from the
2915 breakpoint lists. If we don't do this early, it's easy to
2916 leave left over traps in the child, vis: "break foo; catch
2917 fork; c; <fork>; del; c; <child calls foo>". We only follow
2918 the fork on the last `continue', and by that time the
2919 breakpoint at "foo" is long gone from the breakpoint table.
2920 If we vforked, then we don't need to unpatch here, since both
2921 parent and child are sharing the same memory pages; we'll
2922 need to unpatch at follow/detach time instead to be certain
2923 that new breakpoints added between catchpoint hit time and
2924 vfork follow are detached. */
2925 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
2926 {
2927 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
2928
2929 /* This won't actually modify the breakpoint list, but will
2930 physically remove the breakpoints from the child. */
2931 detach_breakpoints (child_pid);
2932 }
2933
2934 /* In case the event is caught by a catchpoint, remember that
2935 the event is to be followed at the next resume of the thread,
2936 and not immediately. */
2937 ecs->event_thread->pending_follow = ecs->ws;
2938
2939 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2940
2941 ecs->event_thread->stop_bpstat
2942 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
2943 stop_pc, ecs->ptid);
2944
2945 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2946
2947 /* If no catchpoint triggered for this, then keep going. */
2948 if (ecs->random_signal)
2949 {
2950 ptid_t parent;
2951 ptid_t child;
2952 int should_resume;
2953 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
2954
2955 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2956
2957 should_resume = follow_fork ();
2958
2959 parent = ecs->ptid;
2960 child = ecs->ws.value.related_pid;
2961
2962 /* In non-stop mode, also resume the other branch. */
2963 if (non_stop && !detach_fork)
2964 {
2965 if (follow_child)
2966 switch_to_thread (parent);
2967 else
2968 switch_to_thread (child);
2969
2970 ecs->event_thread = inferior_thread ();
2971 ecs->ptid = inferior_ptid;
2972 keep_going (ecs);
2973 }
2974
2975 if (follow_child)
2976 switch_to_thread (child);
2977 else
2978 switch_to_thread (parent);
2979
2980 ecs->event_thread = inferior_thread ();
2981 ecs->ptid = inferior_ptid;
2982
2983 if (should_resume)
2984 keep_going (ecs);
2985 else
2986 stop_stepping (ecs);
2987 return;
2988 }
2989 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2990 goto process_event_stop_test;
2991
2992 case TARGET_WAITKIND_VFORK_DONE:
2993 /* Done with the shared memory region. Re-insert breakpoints in
2994 the parent, and keep going. */
2995
2996 if (debug_infrun)
2997 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORK_DONE\n");
2998
2999 if (!ptid_equal (ecs->ptid, inferior_ptid))
3000 context_switch (ecs->ptid);
3001
3002 current_inferior ()->waiting_for_vfork_done = 0;
3003 /* This also takes care of reinserting breakpoints in the
3004 previously locked inferior. */
3005 keep_going (ecs);
3006 return;
3007
3008 case TARGET_WAITKIND_EXECD:
3009 if (debug_infrun)
3010 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3011
3012 if (!ptid_equal (ecs->ptid, inferior_ptid))
3013 {
3014 context_switch (ecs->ptid);
3015 reinit_frame_cache ();
3016 }
3017
3018 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3019
3020 /* Do whatever is necessary to the parent branch of the vfork. */
3021 handle_vfork_child_exec_or_exit (1);
3022
3023 /* This causes the eventpoints and symbol table to be reset.
3024 Must do this now, before trying to determine whether to
3025 stop. */
3026 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3027
3028 ecs->event_thread->stop_bpstat
3029 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3030 stop_pc, ecs->ptid);
3031 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
3032
3033 /* Note that this may be referenced from inside
3034 bpstat_stop_status above, through inferior_has_execd. */
3035 xfree (ecs->ws.value.execd_pathname);
3036 ecs->ws.value.execd_pathname = NULL;
3037
3038 /* If no catchpoint triggered for this, then keep going. */
3039 if (ecs->random_signal)
3040 {
3041 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3042 keep_going (ecs);
3043 return;
3044 }
3045 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
3046 goto process_event_stop_test;
3047
3048 /* Be careful not to try to gather much state about a thread
3049 that's in a syscall. It's frequently a losing proposition. */
3050 case TARGET_WAITKIND_SYSCALL_ENTRY:
3051 if (debug_infrun)
3052 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3053 /* Getting the current syscall number */
3054 if (handle_syscall_event (ecs) != 0)
3055 return;
3056 goto process_event_stop_test;
3057
3058 /* Before examining the threads further, step this thread to
3059 get it entirely out of the syscall. (We get notice of the
3060 event when the thread is just on the verge of exiting a
3061 syscall. Stepping one instruction seems to get it back
3062 into user code.) */
3063 case TARGET_WAITKIND_SYSCALL_RETURN:
3064 if (debug_infrun)
3065 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3066 if (handle_syscall_event (ecs) != 0)
3067 return;
3068 goto process_event_stop_test;
3069
3070 case TARGET_WAITKIND_STOPPED:
3071 if (debug_infrun)
3072 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3073 ecs->event_thread->stop_signal = ecs->ws.value.sig;
3074 break;
3075
3076 case TARGET_WAITKIND_NO_HISTORY:
3077 /* Reverse execution: target ran out of history info. */
3078 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3079 print_stop_reason (NO_HISTORY, 0);
3080 stop_stepping (ecs);
3081 return;
3082 }
3083
3084 if (ecs->new_thread_event)
3085 {
3086 if (non_stop)
3087 /* Non-stop assumes that the target handles adding new threads
3088 to the thread list. */
3089 internal_error (__FILE__, __LINE__, "\
3090 targets should add new threads to the thread list themselves in non-stop mode.");
3091
3092 /* We may want to consider not doing a resume here in order to
3093 give the user a chance to play with the new thread. It might
3094 be good to make that a user-settable option. */
3095
3096 /* At this point, all threads are stopped (happens automatically
3097 in either the OS or the native code). Therefore we need to
3098 continue all threads in order to make progress. */
3099
3100 if (!ptid_equal (ecs->ptid, inferior_ptid))
3101 context_switch (ecs->ptid);
3102 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3103 prepare_to_wait (ecs);
3104 return;
3105 }
3106
3107 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3108 {
3109 /* Do we need to clean up the state of a thread that has
3110 completed a displaced single-step? (Doing so usually affects
3111 the PC, so do it here, before we set stop_pc.) */
3112 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
3113
3114 /* If we either finished a single-step or hit a breakpoint, but
3115 the user wanted this thread to be stopped, pretend we got a
3116 SIG0 (generic unsignaled stop). */
3117
3118 if (ecs->event_thread->stop_requested
3119 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3120 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3121 }
3122
3123 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3124
3125 if (debug_infrun)
3126 {
3127 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3128 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3129
3130 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3131 paddress (gdbarch, stop_pc));
3132 if (target_stopped_by_watchpoint ())
3133 {
3134 CORE_ADDR addr;
3135 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3136
3137 if (target_stopped_data_address (&current_target, &addr))
3138 fprintf_unfiltered (gdb_stdlog,
3139 "infrun: stopped data address = %s\n",
3140 paddress (gdbarch, addr));
3141 else
3142 fprintf_unfiltered (gdb_stdlog,
3143 "infrun: (no data address available)\n");
3144 }
3145 }
3146
3147 if (stepping_past_singlestep_breakpoint)
3148 {
3149 gdb_assert (singlestep_breakpoints_inserted_p);
3150 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3151 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3152
3153 stepping_past_singlestep_breakpoint = 0;
3154
3155 /* We've either finished single-stepping past the single-step
3156 breakpoint, or stopped for some other reason. It would be nice if
3157 we could tell, but we can't reliably. */
3158 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3159 {
3160 if (debug_infrun)
3161 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
3162 /* Pull the single step breakpoints out of the target. */
3163 remove_single_step_breakpoints ();
3164 singlestep_breakpoints_inserted_p = 0;
3165
3166 ecs->random_signal = 0;
3167 ecs->event_thread->trap_expected = 0;
3168
3169 context_switch (saved_singlestep_ptid);
3170 if (deprecated_context_hook)
3171 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3172
3173 resume (1, TARGET_SIGNAL_0);
3174 prepare_to_wait (ecs);
3175 return;
3176 }
3177 }
3178
3179 if (!ptid_equal (deferred_step_ptid, null_ptid))
3180 {
3181 /* In non-stop mode, there's never a deferred_step_ptid set. */
3182 gdb_assert (!non_stop);
3183
3184 /* If we stopped for some other reason than single-stepping, ignore
3185 the fact that we were supposed to switch back. */
3186 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3187 {
3188 if (debug_infrun)
3189 fprintf_unfiltered (gdb_stdlog,
3190 "infrun: handling deferred step\n");
3191
3192 /* Pull the single step breakpoints out of the target. */
3193 if (singlestep_breakpoints_inserted_p)
3194 {
3195 remove_single_step_breakpoints ();
3196 singlestep_breakpoints_inserted_p = 0;
3197 }
3198
3199 /* Note: We do not call context_switch at this point, as the
3200 context is already set up for stepping the original thread. */
3201 switch_to_thread (deferred_step_ptid);
3202 deferred_step_ptid = null_ptid;
3203 /* Suppress spurious "Switching to ..." message. */
3204 previous_inferior_ptid = inferior_ptid;
3205
3206 resume (1, TARGET_SIGNAL_0);
3207 prepare_to_wait (ecs);
3208 return;
3209 }
3210
3211 deferred_step_ptid = null_ptid;
3212 }
3213
3214 /* See if a thread hit a thread-specific breakpoint that was meant for
3215 another thread. If so, then step that thread past the breakpoint,
3216 and continue it. */
3217
3218 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3219 {
3220 int thread_hop_needed = 0;
3221 struct address_space *aspace = get_regcache_aspace (get_current_regcache ());
3222
3223 /* Check if a regular breakpoint has been hit before checking
3224 for a potential single step breakpoint. Otherwise, GDB will
3225 not see this breakpoint hit when stepping onto breakpoints. */
3226 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3227 {
3228 ecs->random_signal = 0;
3229 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3230 thread_hop_needed = 1;
3231 }
3232 else if (singlestep_breakpoints_inserted_p)
3233 {
3234 /* We have not context switched yet, so this should be true
3235 no matter which thread hit the singlestep breakpoint. */
3236 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3237 if (debug_infrun)
3238 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3239 "trap for %s\n",
3240 target_pid_to_str (ecs->ptid));
3241
3242 ecs->random_signal = 0;
3243 /* The call to in_thread_list is necessary because PTIDs sometimes
3244 change when we go from single-threaded to multi-threaded. If
3245 the singlestep_ptid is still in the list, assume that it is
3246 really different from ecs->ptid. */
3247 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3248 && in_thread_list (singlestep_ptid))
3249 {
3250 /* If the PC of the thread we were trying to single-step
3251 has changed, discard this event (which we were going
3252 to ignore anyway), and pretend we saw that thread
3253 trap. This prevents us continuously moving the
3254 single-step breakpoint forward, one instruction at a
3255 time. If the PC has changed, then the thread we were
3256 trying to single-step has trapped or been signalled,
3257 but the event has not been reported to GDB yet.
3258
3259 There might be some cases where this loses signal
3260 information, if a signal has arrived at exactly the
3261 same time that the PC changed, but this is the best
3262 we can do with the information available. Perhaps we
3263 should arrange to report all events for all threads
3264 when they stop, or to re-poll the remote looking for
3265 this particular thread (i.e. temporarily enable
3266 schedlock). */
3267
3268 CORE_ADDR new_singlestep_pc
3269 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3270
3271 if (new_singlestep_pc != singlestep_pc)
3272 {
3273 enum target_signal stop_signal;
3274
3275 if (debug_infrun)
3276 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3277 " but expected thread advanced also\n");
3278
3279 /* The current context still belongs to
3280 singlestep_ptid. Don't swap here, since that's
3281 the context we want to use. Just fudge our
3282 state and continue. */
3283 stop_signal = ecs->event_thread->stop_signal;
3284 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3285 ecs->ptid = singlestep_ptid;
3286 ecs->event_thread = find_thread_ptid (ecs->ptid);
3287 ecs->event_thread->stop_signal = stop_signal;
3288 stop_pc = new_singlestep_pc;
3289 }
3290 else
3291 {
3292 if (debug_infrun)
3293 fprintf_unfiltered (gdb_stdlog,
3294 "infrun: unexpected thread\n");
3295
3296 thread_hop_needed = 1;
3297 stepping_past_singlestep_breakpoint = 1;
3298 saved_singlestep_ptid = singlestep_ptid;
3299 }
3300 }
3301 }
3302
3303 if (thread_hop_needed)
3304 {
3305 struct regcache *thread_regcache;
3306 int remove_status = 0;
3307
3308 if (debug_infrun)
3309 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3310
3311 /* Switch context before touching inferior memory, the
3312 previous thread may have exited. */
3313 if (!ptid_equal (inferior_ptid, ecs->ptid))
3314 context_switch (ecs->ptid);
3315
3316 /* Saw a breakpoint, but it was hit by the wrong thread.
3317 Just continue. */
3318
3319 if (singlestep_breakpoints_inserted_p)
3320 {
3321 /* Pull the single step breakpoints out of the target. */
3322 remove_single_step_breakpoints ();
3323 singlestep_breakpoints_inserted_p = 0;
3324 }
3325
3326 /* If the arch can displace step, don't remove the
3327 breakpoints. */
3328 thread_regcache = get_thread_regcache (ecs->ptid);
3329 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3330 remove_status = remove_breakpoints ();
3331
3332 /* Did we fail to remove breakpoints? If so, try
3333 to set the PC past the bp. (There's at least
3334 one situation in which we can fail to remove
3335 the bp's: On HP-UX's that use ttrace, we can't
3336 change the address space of a vforking child
3337 process until the child exits (well, okay, not
3338 then either :-) or execs. */
3339 if (remove_status != 0)
3340 error (_("Cannot step over breakpoint hit in wrong thread"));
3341 else
3342 { /* Single step */
3343 if (!non_stop)
3344 {
3345 /* Only need to require the next event from this
3346 thread in all-stop mode. */
3347 waiton_ptid = ecs->ptid;
3348 infwait_state = infwait_thread_hop_state;
3349 }
3350
3351 ecs->event_thread->stepping_over_breakpoint = 1;
3352 keep_going (ecs);
3353 return;
3354 }
3355 }
3356 else if (singlestep_breakpoints_inserted_p)
3357 {
3358 sw_single_step_trap_p = 1;
3359 ecs->random_signal = 0;
3360 }
3361 }
3362 else
3363 ecs->random_signal = 1;
3364
3365 /* See if something interesting happened to the non-current thread. If
3366 so, then switch to that thread. */
3367 if (!ptid_equal (ecs->ptid, inferior_ptid))
3368 {
3369 if (debug_infrun)
3370 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3371
3372 context_switch (ecs->ptid);
3373
3374 if (deprecated_context_hook)
3375 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3376 }
3377
3378 /* At this point, get hold of the now-current thread's frame. */
3379 frame = get_current_frame ();
3380 gdbarch = get_frame_arch (frame);
3381
3382 if (singlestep_breakpoints_inserted_p)
3383 {
3384 /* Pull the single step breakpoints out of the target. */
3385 remove_single_step_breakpoints ();
3386 singlestep_breakpoints_inserted_p = 0;
3387 }
3388
3389 if (stepped_after_stopped_by_watchpoint)
3390 stopped_by_watchpoint = 0;
3391 else
3392 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3393
3394 /* If necessary, step over this watchpoint. We'll be back to display
3395 it in a moment. */
3396 if (stopped_by_watchpoint
3397 && (target_have_steppable_watchpoint
3398 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3399 {
3400 /* At this point, we are stopped at an instruction which has
3401 attempted to write to a piece of memory under control of
3402 a watchpoint. The instruction hasn't actually executed
3403 yet. If we were to evaluate the watchpoint expression
3404 now, we would get the old value, and therefore no change
3405 would seem to have occurred.
3406
3407 In order to make watchpoints work `right', we really need
3408 to complete the memory write, and then evaluate the
3409 watchpoint expression. We do this by single-stepping the
3410 target.
3411
3412 It may not be necessary to disable the watchpoint to stop over
3413 it. For example, the PA can (with some kernel cooperation)
3414 single step over a watchpoint without disabling the watchpoint.
3415
3416 It is far more common to need to disable a watchpoint to step
3417 the inferior over it. If we have non-steppable watchpoints,
3418 we must disable the current watchpoint; it's simplest to
3419 disable all watchpoints and breakpoints. */
3420 int hw_step = 1;
3421
3422 if (!target_have_steppable_watchpoint)
3423 remove_breakpoints ();
3424 /* Single step */
3425 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
3426 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
3427 waiton_ptid = ecs->ptid;
3428 if (target_have_steppable_watchpoint)
3429 infwait_state = infwait_step_watch_state;
3430 else
3431 infwait_state = infwait_nonstep_watch_state;
3432 prepare_to_wait (ecs);
3433 return;
3434 }
3435
3436 ecs->stop_func_start = 0;
3437 ecs->stop_func_end = 0;
3438 ecs->stop_func_name = 0;
3439 /* Don't care about return value; stop_func_start and stop_func_name
3440 will both be 0 if it doesn't work. */
3441 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3442 &ecs->stop_func_start, &ecs->stop_func_end);
3443 ecs->stop_func_start
3444 += gdbarch_deprecated_function_start_offset (gdbarch);
3445 ecs->event_thread->stepping_over_breakpoint = 0;
3446 bpstat_clear (&ecs->event_thread->stop_bpstat);
3447 ecs->event_thread->stop_step = 0;
3448 stop_print_frame = 1;
3449 ecs->random_signal = 0;
3450 stopped_by_random_signal = 0;
3451
3452 /* Hide inlined functions starting here, unless we just performed stepi or
3453 nexti. After stepi and nexti, always show the innermost frame (not any
3454 inline function call sites). */
3455 if (ecs->event_thread->step_range_end != 1)
3456 skip_inline_frames (ecs->ptid);
3457
3458 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3459 && ecs->event_thread->trap_expected
3460 && gdbarch_single_step_through_delay_p (gdbarch)
3461 && currently_stepping (ecs->event_thread))
3462 {
3463 /* We're trying to step off a breakpoint. Turns out that we're
3464 also on an instruction that needs to be stepped multiple
3465 times before it's been fully executing. E.g., architectures
3466 with a delay slot. It needs to be stepped twice, once for
3467 the instruction and once for the delay slot. */
3468 int step_through_delay
3469 = gdbarch_single_step_through_delay (gdbarch, frame);
3470 if (debug_infrun && step_through_delay)
3471 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3472 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3473 {
3474 /* The user issued a continue when stopped at a breakpoint.
3475 Set up for another trap and get out of here. */
3476 ecs->event_thread->stepping_over_breakpoint = 1;
3477 keep_going (ecs);
3478 return;
3479 }
3480 else if (step_through_delay)
3481 {
3482 /* The user issued a step when stopped at a breakpoint.
3483 Maybe we should stop, maybe we should not - the delay
3484 slot *might* correspond to a line of source. In any
3485 case, don't decide that here, just set
3486 ecs->stepping_over_breakpoint, making sure we
3487 single-step again before breakpoints are re-inserted. */
3488 ecs->event_thread->stepping_over_breakpoint = 1;
3489 }
3490 }
3491
3492 /* Look at the cause of the stop, and decide what to do.
3493 The alternatives are:
3494 1) stop_stepping and return; to really stop and return to the debugger,
3495 2) keep_going and return to start up again
3496 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
3497 3) set ecs->random_signal to 1, and the decision between 1 and 2
3498 will be made according to the signal handling tables. */
3499
3500 /* First, distinguish signals caused by the debugger from signals
3501 that have to do with the program's own actions. Note that
3502 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3503 on the operating system version. Here we detect when a SIGILL or
3504 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3505 something similar for SIGSEGV, since a SIGSEGV will be generated
3506 when we're trying to execute a breakpoint instruction on a
3507 non-executable stack. This happens for call dummy breakpoints
3508 for architectures like SPARC that place call dummies on the
3509 stack.
3510
3511 If we're doing a displaced step past a breakpoint, then the
3512 breakpoint is always inserted at the original instruction;
3513 non-standard signals can't be explained by the breakpoint. */
3514 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3515 || (! ecs->event_thread->trap_expected
3516 && breakpoint_inserted_here_p (get_regcache_aspace (get_current_regcache ()),
3517 stop_pc)
3518 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
3519 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
3520 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
3521 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3522 || stop_soon == STOP_QUIETLY_REMOTE)
3523 {
3524 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
3525 {
3526 if (debug_infrun)
3527 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3528 stop_print_frame = 0;
3529 stop_stepping (ecs);
3530 return;
3531 }
3532
3533 /* This is originated from start_remote(), start_inferior() and
3534 shared libraries hook functions. */
3535 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
3536 {
3537 if (debug_infrun)
3538 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3539 stop_stepping (ecs);
3540 return;
3541 }
3542
3543 /* This originates from attach_command(). We need to overwrite
3544 the stop_signal here, because some kernels don't ignore a
3545 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3546 See more comments in inferior.h. On the other hand, if we
3547 get a non-SIGSTOP, report it to the user - assume the backend
3548 will handle the SIGSTOP if it should show up later.
3549
3550 Also consider that the attach is complete when we see a
3551 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3552 target extended-remote report it instead of a SIGSTOP
3553 (e.g. gdbserver). We already rely on SIGTRAP being our
3554 signal, so this is no exception.
3555
3556 Also consider that the attach is complete when we see a
3557 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3558 the target to stop all threads of the inferior, in case the
3559 low level attach operation doesn't stop them implicitly. If
3560 they weren't stopped implicitly, then the stub will report a
3561 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3562 other than GDB's request. */
3563 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3564 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
3565 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3566 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
3567 {
3568 stop_stepping (ecs);
3569 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3570 return;
3571 }
3572
3573 /* See if there is a breakpoint at the current PC. */
3574 ecs->event_thread->stop_bpstat
3575 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3576 stop_pc, ecs->ptid);
3577
3578 /* Following in case break condition called a
3579 function. */
3580 stop_print_frame = 1;
3581
3582 /* NOTE: cagney/2003-03-29: These two checks for a random signal
3583 at one stage in the past included checks for an inferior
3584 function call's call dummy's return breakpoint. The original
3585 comment, that went with the test, read:
3586
3587 ``End of a stack dummy. Some systems (e.g. Sony news) give
3588 another signal besides SIGTRAP, so check here as well as
3589 above.''
3590
3591 If someone ever tries to get call dummys on a
3592 non-executable stack to work (where the target would stop
3593 with something like a SIGSEGV), then those tests might need
3594 to be re-instated. Given, however, that the tests were only
3595 enabled when momentary breakpoints were not being used, I
3596 suspect that it won't be the case.
3597
3598 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3599 be necessary for call dummies on a non-executable stack on
3600 SPARC. */
3601
3602 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3603 ecs->random_signal
3604 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
3605 || ecs->event_thread->trap_expected
3606 || (ecs->event_thread->step_range_end
3607 && ecs->event_thread->step_resume_breakpoint == NULL));
3608 else
3609 {
3610 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
3611 if (!ecs->random_signal)
3612 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
3613 }
3614 }
3615
3616 /* When we reach this point, we've pretty much decided
3617 that the reason for stopping must've been a random
3618 (unexpected) signal. */
3619
3620 else
3621 ecs->random_signal = 1;
3622
3623 process_event_stop_test:
3624
3625 /* Re-fetch current thread's frame in case we did a
3626 "goto process_event_stop_test" above. */
3627 frame = get_current_frame ();
3628 gdbarch = get_frame_arch (frame);
3629
3630 /* For the program's own signals, act according to
3631 the signal handling tables. */
3632
3633 if (ecs->random_signal)
3634 {
3635 /* Signal not for debugging purposes. */
3636 int printed = 0;
3637
3638 if (debug_infrun)
3639 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3640 ecs->event_thread->stop_signal);
3641
3642 stopped_by_random_signal = 1;
3643
3644 if (signal_print[ecs->event_thread->stop_signal])
3645 {
3646 printed = 1;
3647 target_terminal_ours_for_output ();
3648 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
3649 }
3650 /* Always stop on signals if we're either just gaining control
3651 of the program, or the user explicitly requested this thread
3652 to remain stopped. */
3653 if (stop_soon != NO_STOP_QUIETLY
3654 || ecs->event_thread->stop_requested
3655 || signal_stop_state (ecs->event_thread->stop_signal))
3656 {
3657 stop_stepping (ecs);
3658 return;
3659 }
3660 /* If not going to stop, give terminal back
3661 if we took it away. */
3662 else if (printed)
3663 target_terminal_inferior ();
3664
3665 /* Clear the signal if it should not be passed. */
3666 if (signal_program[ecs->event_thread->stop_signal] == 0)
3667 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3668
3669 if (ecs->event_thread->prev_pc == stop_pc
3670 && ecs->event_thread->trap_expected
3671 && ecs->event_thread->step_resume_breakpoint == NULL)
3672 {
3673 /* We were just starting a new sequence, attempting to
3674 single-step off of a breakpoint and expecting a SIGTRAP.
3675 Instead this signal arrives. This signal will take us out
3676 of the stepping range so GDB needs to remember to, when
3677 the signal handler returns, resume stepping off that
3678 breakpoint. */
3679 /* To simplify things, "continue" is forced to use the same
3680 code paths as single-step - set a breakpoint at the
3681 signal return address and then, once hit, step off that
3682 breakpoint. */
3683 if (debug_infrun)
3684 fprintf_unfiltered (gdb_stdlog,
3685 "infrun: signal arrived while stepping over "
3686 "breakpoint\n");
3687
3688 insert_step_resume_breakpoint_at_frame (frame);
3689 ecs->event_thread->step_after_step_resume_breakpoint = 1;
3690 keep_going (ecs);
3691 return;
3692 }
3693
3694 if (ecs->event_thread->step_range_end != 0
3695 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
3696 && (ecs->event_thread->step_range_start <= stop_pc
3697 && stop_pc < ecs->event_thread->step_range_end)
3698 && frame_id_eq (get_stack_frame_id (frame),
3699 ecs->event_thread->step_stack_frame_id)
3700 && ecs->event_thread->step_resume_breakpoint == NULL)
3701 {
3702 /* The inferior is about to take a signal that will take it
3703 out of the single step range. Set a breakpoint at the
3704 current PC (which is presumably where the signal handler
3705 will eventually return) and then allow the inferior to
3706 run free.
3707
3708 Note that this is only needed for a signal delivered
3709 while in the single-step range. Nested signals aren't a
3710 problem as they eventually all return. */
3711 if (debug_infrun)
3712 fprintf_unfiltered (gdb_stdlog,
3713 "infrun: signal may take us out of "
3714 "single-step range\n");
3715
3716 insert_step_resume_breakpoint_at_frame (frame);
3717 keep_going (ecs);
3718 return;
3719 }
3720
3721 /* Note: step_resume_breakpoint may be non-NULL. This occures
3722 when either there's a nested signal, or when there's a
3723 pending signal enabled just as the signal handler returns
3724 (leaving the inferior at the step-resume-breakpoint without
3725 actually executing it). Either way continue until the
3726 breakpoint is really hit. */
3727 keep_going (ecs);
3728 return;
3729 }
3730
3731 /* Handle cases caused by hitting a breakpoint. */
3732 {
3733 CORE_ADDR jmp_buf_pc;
3734 struct bpstat_what what;
3735
3736 what = bpstat_what (ecs->event_thread->stop_bpstat);
3737
3738 if (what.call_dummy)
3739 {
3740 stop_stack_dummy = 1;
3741 }
3742
3743 switch (what.main_action)
3744 {
3745 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
3746 /* If we hit the breakpoint at longjmp while stepping, we
3747 install a momentary breakpoint at the target of the
3748 jmp_buf. */
3749
3750 if (debug_infrun)
3751 fprintf_unfiltered (gdb_stdlog,
3752 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3753
3754 ecs->event_thread->stepping_over_breakpoint = 1;
3755
3756 if (!gdbarch_get_longjmp_target_p (gdbarch)
3757 || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc))
3758 {
3759 if (debug_infrun)
3760 fprintf_unfiltered (gdb_stdlog, "\
3761 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
3762 keep_going (ecs);
3763 return;
3764 }
3765
3766 /* We're going to replace the current step-resume breakpoint
3767 with a longjmp-resume breakpoint. */
3768 delete_step_resume_breakpoint (ecs->event_thread);
3769
3770 /* Insert a breakpoint at resume address. */
3771 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
3772
3773 keep_going (ecs);
3774 return;
3775
3776 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
3777 if (debug_infrun)
3778 fprintf_unfiltered (gdb_stdlog,
3779 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3780
3781 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3782 delete_step_resume_breakpoint (ecs->event_thread);
3783
3784 ecs->event_thread->stop_step = 1;
3785 print_stop_reason (END_STEPPING_RANGE, 0);
3786 stop_stepping (ecs);
3787 return;
3788
3789 case BPSTAT_WHAT_SINGLE:
3790 if (debug_infrun)
3791 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
3792 ecs->event_thread->stepping_over_breakpoint = 1;
3793 /* Still need to check other stuff, at least the case
3794 where we are stepping and step out of the right range. */
3795 break;
3796
3797 case BPSTAT_WHAT_STOP_NOISY:
3798 if (debug_infrun)
3799 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
3800 stop_print_frame = 1;
3801
3802 /* We are about to nuke the step_resume_breakpointt via the
3803 cleanup chain, so no need to worry about it here. */
3804
3805 stop_stepping (ecs);
3806 return;
3807
3808 case BPSTAT_WHAT_STOP_SILENT:
3809 if (debug_infrun)
3810 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
3811 stop_print_frame = 0;
3812
3813 /* We are about to nuke the step_resume_breakpoin via the
3814 cleanup chain, so no need to worry about it here. */
3815
3816 stop_stepping (ecs);
3817 return;
3818
3819 case BPSTAT_WHAT_STEP_RESUME:
3820 if (debug_infrun)
3821 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
3822
3823 delete_step_resume_breakpoint (ecs->event_thread);
3824 if (ecs->event_thread->step_after_step_resume_breakpoint)
3825 {
3826 /* Back when the step-resume breakpoint was inserted, we
3827 were trying to single-step off a breakpoint. Go back
3828 to doing that. */
3829 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3830 ecs->event_thread->stepping_over_breakpoint = 1;
3831 keep_going (ecs);
3832 return;
3833 }
3834 if (stop_pc == ecs->stop_func_start
3835 && execution_direction == EXEC_REVERSE)
3836 {
3837 /* We are stepping over a function call in reverse, and
3838 just hit the step-resume breakpoint at the start
3839 address of the function. Go back to single-stepping,
3840 which should take us back to the function call. */
3841 ecs->event_thread->stepping_over_breakpoint = 1;
3842 keep_going (ecs);
3843 return;
3844 }
3845 break;
3846
3847 case BPSTAT_WHAT_CHECK_SHLIBS:
3848 {
3849 if (debug_infrun)
3850 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
3851
3852 /* Check for any newly added shared libraries if we're
3853 supposed to be adding them automatically. Switch
3854 terminal for any messages produced by
3855 breakpoint_re_set. */
3856 target_terminal_ours_for_output ();
3857 /* NOTE: cagney/2003-11-25: Make certain that the target
3858 stack's section table is kept up-to-date. Architectures,
3859 (e.g., PPC64), use the section table to perform
3860 operations such as address => section name and hence
3861 require the table to contain all sections (including
3862 those found in shared libraries). */
3863 #ifdef SOLIB_ADD
3864 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3865 #else
3866 solib_add (NULL, 0, &current_target, auto_solib_add);
3867 #endif
3868 target_terminal_inferior ();
3869
3870 /* If requested, stop when the dynamic linker notifies
3871 gdb of events. This allows the user to get control
3872 and place breakpoints in initializer routines for
3873 dynamically loaded objects (among other things). */
3874 if (stop_on_solib_events || stop_stack_dummy)
3875 {
3876 stop_stepping (ecs);
3877 return;
3878 }
3879 else
3880 {
3881 /* We want to step over this breakpoint, then keep going. */
3882 ecs->event_thread->stepping_over_breakpoint = 1;
3883 break;
3884 }
3885 }
3886 break;
3887
3888 case BPSTAT_WHAT_CHECK_JIT:
3889 if (debug_infrun)
3890 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_JIT\n");
3891
3892 /* Switch terminal for any messages produced by breakpoint_re_set. */
3893 target_terminal_ours_for_output ();
3894
3895 jit_event_handler (gdbarch);
3896
3897 target_terminal_inferior ();
3898
3899 /* We want to step over this breakpoint, then keep going. */
3900 ecs->event_thread->stepping_over_breakpoint = 1;
3901
3902 break;
3903
3904 case BPSTAT_WHAT_LAST:
3905 /* Not a real code, but listed here to shut up gcc -Wall. */
3906
3907 case BPSTAT_WHAT_KEEP_CHECKING:
3908 break;
3909 }
3910 }
3911
3912 /* We come here if we hit a breakpoint but should not
3913 stop for it. Possibly we also were stepping
3914 and should stop for that. So fall through and
3915 test for stepping. But, if not stepping,
3916 do not stop. */
3917
3918 /* In all-stop mode, if we're currently stepping but have stopped in
3919 some other thread, we need to switch back to the stepped thread. */
3920 if (!non_stop)
3921 {
3922 struct thread_info *tp;
3923 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
3924 ecs->event_thread);
3925 if (tp)
3926 {
3927 /* However, if the current thread is blocked on some internal
3928 breakpoint, and we simply need to step over that breakpoint
3929 to get it going again, do that first. */
3930 if ((ecs->event_thread->trap_expected
3931 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3932 || ecs->event_thread->stepping_over_breakpoint)
3933 {
3934 keep_going (ecs);
3935 return;
3936 }
3937
3938 /* If the stepping thread exited, then don't try to switch
3939 back and resume it, which could fail in several different
3940 ways depending on the target. Instead, just keep going.
3941
3942 We can find a stepping dead thread in the thread list in
3943 two cases:
3944
3945 - The target supports thread exit events, and when the
3946 target tries to delete the thread from the thread list,
3947 inferior_ptid pointed at the exiting thread. In such
3948 case, calling delete_thread does not really remove the
3949 thread from the list; instead, the thread is left listed,
3950 with 'exited' state.
3951
3952 - The target's debug interface does not support thread
3953 exit events, and so we have no idea whatsoever if the
3954 previously stepping thread is still alive. For that
3955 reason, we need to synchronously query the target
3956 now. */
3957 if (is_exited (tp->ptid)
3958 || !target_thread_alive (tp->ptid))
3959 {
3960 if (debug_infrun)
3961 fprintf_unfiltered (gdb_stdlog, "\
3962 infrun: not switching back to stepped thread, it has vanished\n");
3963
3964 delete_thread (tp->ptid);
3965 keep_going (ecs);
3966 return;
3967 }
3968
3969 /* Otherwise, we no longer expect a trap in the current thread.
3970 Clear the trap_expected flag before switching back -- this is
3971 what keep_going would do as well, if we called it. */
3972 ecs->event_thread->trap_expected = 0;
3973
3974 if (debug_infrun)
3975 fprintf_unfiltered (gdb_stdlog,
3976 "infrun: switching back to stepped thread\n");
3977
3978 ecs->event_thread = tp;
3979 ecs->ptid = tp->ptid;
3980 context_switch (ecs->ptid);
3981 keep_going (ecs);
3982 return;
3983 }
3984 }
3985
3986 /* Are we stepping to get the inferior out of the dynamic linker's
3987 hook (and possibly the dld itself) after catching a shlib
3988 event? */
3989 if (ecs->event_thread->stepping_through_solib_after_catch)
3990 {
3991 #if defined(SOLIB_ADD)
3992 /* Have we reached our destination? If not, keep going. */
3993 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3994 {
3995 if (debug_infrun)
3996 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
3997 ecs->event_thread->stepping_over_breakpoint = 1;
3998 keep_going (ecs);
3999 return;
4000 }
4001 #endif
4002 if (debug_infrun)
4003 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
4004 /* Else, stop and report the catchpoint(s) whose triggering
4005 caused us to begin stepping. */
4006 ecs->event_thread->stepping_through_solib_after_catch = 0;
4007 bpstat_clear (&ecs->event_thread->stop_bpstat);
4008 ecs->event_thread->stop_bpstat
4009 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4010 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
4011 stop_print_frame = 1;
4012 stop_stepping (ecs);
4013 return;
4014 }
4015
4016 if (ecs->event_thread->step_resume_breakpoint)
4017 {
4018 if (debug_infrun)
4019 fprintf_unfiltered (gdb_stdlog,
4020 "infrun: step-resume breakpoint is inserted\n");
4021
4022 /* Having a step-resume breakpoint overrides anything
4023 else having to do with stepping commands until
4024 that breakpoint is reached. */
4025 keep_going (ecs);
4026 return;
4027 }
4028
4029 if (ecs->event_thread->step_range_end == 0)
4030 {
4031 if (debug_infrun)
4032 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4033 /* Likewise if we aren't even stepping. */
4034 keep_going (ecs);
4035 return;
4036 }
4037
4038 /* If stepping through a line, keep going if still within it.
4039
4040 Note that step_range_end is the address of the first instruction
4041 beyond the step range, and NOT the address of the last instruction
4042 within it!
4043
4044 Note also that during reverse execution, we may be stepping
4045 through a function epilogue and therefore must detect when
4046 the current-frame changes in the middle of a line. */
4047
4048 if (stop_pc >= ecs->event_thread->step_range_start
4049 && stop_pc < ecs->event_thread->step_range_end
4050 && (execution_direction != EXEC_REVERSE
4051 || frame_id_eq (get_frame_id (frame),
4052 ecs->event_thread->step_frame_id)))
4053 {
4054 if (debug_infrun)
4055 fprintf_unfiltered
4056 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4057 paddress (gdbarch, ecs->event_thread->step_range_start),
4058 paddress (gdbarch, ecs->event_thread->step_range_end));
4059
4060 /* When stepping backward, stop at beginning of line range
4061 (unless it's the function entry point, in which case
4062 keep going back to the call point). */
4063 if (stop_pc == ecs->event_thread->step_range_start
4064 && stop_pc != ecs->stop_func_start
4065 && execution_direction == EXEC_REVERSE)
4066 {
4067 ecs->event_thread->stop_step = 1;
4068 print_stop_reason (END_STEPPING_RANGE, 0);
4069 stop_stepping (ecs);
4070 }
4071 else
4072 keep_going (ecs);
4073
4074 return;
4075 }
4076
4077 /* We stepped out of the stepping range. */
4078
4079 /* If we are stepping at the source level and entered the runtime
4080 loader dynamic symbol resolution code...
4081
4082 EXEC_FORWARD: we keep on single stepping until we exit the run
4083 time loader code and reach the callee's address.
4084
4085 EXEC_REVERSE: we've already executed the callee (backward), and
4086 the runtime loader code is handled just like any other
4087 undebuggable function call. Now we need only keep stepping
4088 backward through the trampoline code, and that's handled further
4089 down, so there is nothing for us to do here. */
4090
4091 if (execution_direction != EXEC_REVERSE
4092 && ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4093 && in_solib_dynsym_resolve_code (stop_pc))
4094 {
4095 CORE_ADDR pc_after_resolver =
4096 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4097
4098 if (debug_infrun)
4099 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
4100
4101 if (pc_after_resolver)
4102 {
4103 /* Set up a step-resume breakpoint at the address
4104 indicated by SKIP_SOLIB_RESOLVER. */
4105 struct symtab_and_line sr_sal;
4106 init_sal (&sr_sal);
4107 sr_sal.pc = pc_after_resolver;
4108 sr_sal.pspace = get_frame_program_space (frame);
4109
4110 insert_step_resume_breakpoint_at_sal (gdbarch,
4111 sr_sal, null_frame_id);
4112 }
4113
4114 keep_going (ecs);
4115 return;
4116 }
4117
4118 if (ecs->event_thread->step_range_end != 1
4119 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4120 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4121 && get_frame_type (frame) == SIGTRAMP_FRAME)
4122 {
4123 if (debug_infrun)
4124 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
4125 /* The inferior, while doing a "step" or "next", has ended up in
4126 a signal trampoline (either by a signal being delivered or by
4127 the signal handler returning). Just single-step until the
4128 inferior leaves the trampoline (either by calling the handler
4129 or returning). */
4130 keep_going (ecs);
4131 return;
4132 }
4133
4134 /* Check for subroutine calls. The check for the current frame
4135 equalling the step ID is not necessary - the check of the
4136 previous frame's ID is sufficient - but it is a common case and
4137 cheaper than checking the previous frame's ID.
4138
4139 NOTE: frame_id_eq will never report two invalid frame IDs as
4140 being equal, so to get into this block, both the current and
4141 previous frame must have valid frame IDs. */
4142 /* The outer_frame_id check is a heuristic to detect stepping
4143 through startup code. If we step over an instruction which
4144 sets the stack pointer from an invalid value to a valid value,
4145 we may detect that as a subroutine call from the mythical
4146 "outermost" function. This could be fixed by marking
4147 outermost frames as !stack_p,code_p,special_p. Then the
4148 initial outermost frame, before sp was valid, would
4149 have code_addr == &_start. See the commend in frame_id_eq
4150 for more. */
4151 if (!frame_id_eq (get_stack_frame_id (frame),
4152 ecs->event_thread->step_stack_frame_id)
4153 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4154 ecs->event_thread->step_stack_frame_id)
4155 && (!frame_id_eq (ecs->event_thread->step_stack_frame_id,
4156 outer_frame_id)
4157 || step_start_function != find_pc_function (stop_pc))))
4158 {
4159 CORE_ADDR real_stop_pc;
4160
4161 if (debug_infrun)
4162 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4163
4164 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4165 || ((ecs->event_thread->step_range_end == 1)
4166 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4167 ecs->stop_func_start)))
4168 {
4169 /* I presume that step_over_calls is only 0 when we're
4170 supposed to be stepping at the assembly language level
4171 ("stepi"). Just stop. */
4172 /* Also, maybe we just did a "nexti" inside a prolog, so we
4173 thought it was a subroutine call but it was not. Stop as
4174 well. FENN */
4175 /* And this works the same backward as frontward. MVS */
4176 ecs->event_thread->stop_step = 1;
4177 print_stop_reason (END_STEPPING_RANGE, 0);
4178 stop_stepping (ecs);
4179 return;
4180 }
4181
4182 /* Reverse stepping through solib trampolines. */
4183
4184 if (execution_direction == EXEC_REVERSE
4185 && ecs->event_thread->step_over_calls != STEP_OVER_NONE
4186 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4187 || (ecs->stop_func_start == 0
4188 && in_solib_dynsym_resolve_code (stop_pc))))
4189 {
4190 /* Any solib trampoline code can be handled in reverse
4191 by simply continuing to single-step. We have already
4192 executed the solib function (backwards), and a few
4193 steps will take us back through the trampoline to the
4194 caller. */
4195 keep_going (ecs);
4196 return;
4197 }
4198
4199 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4200 {
4201 /* We're doing a "next".
4202
4203 Normal (forward) execution: set a breakpoint at the
4204 callee's return address (the address at which the caller
4205 will resume).
4206
4207 Reverse (backward) execution. set the step-resume
4208 breakpoint at the start of the function that we just
4209 stepped into (backwards), and continue to there. When we
4210 get there, we'll need to single-step back to the caller. */
4211
4212 if (execution_direction == EXEC_REVERSE)
4213 {
4214 struct symtab_and_line sr_sal;
4215
4216 /* Normal function call return (static or dynamic). */
4217 init_sal (&sr_sal);
4218 sr_sal.pc = ecs->stop_func_start;
4219 sr_sal.pspace = get_frame_program_space (frame);
4220 insert_step_resume_breakpoint_at_sal (gdbarch,
4221 sr_sal, null_frame_id);
4222 }
4223 else
4224 insert_step_resume_breakpoint_at_caller (frame);
4225
4226 keep_going (ecs);
4227 return;
4228 }
4229
4230 /* If we are in a function call trampoline (a stub between the
4231 calling routine and the real function), locate the real
4232 function. That's what tells us (a) whether we want to step
4233 into it at all, and (b) what prologue we want to run to the
4234 end of, if we do step into it. */
4235 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4236 if (real_stop_pc == 0)
4237 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4238 if (real_stop_pc != 0)
4239 ecs->stop_func_start = real_stop_pc;
4240
4241 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4242 {
4243 struct symtab_and_line sr_sal;
4244 init_sal (&sr_sal);
4245 sr_sal.pc = ecs->stop_func_start;
4246 sr_sal.pspace = get_frame_program_space (frame);
4247
4248 insert_step_resume_breakpoint_at_sal (gdbarch,
4249 sr_sal, null_frame_id);
4250 keep_going (ecs);
4251 return;
4252 }
4253
4254 /* If we have line number information for the function we are
4255 thinking of stepping into, step into it.
4256
4257 If there are several symtabs at that PC (e.g. with include
4258 files), just want to know whether *any* of them have line
4259 numbers. find_pc_line handles this. */
4260 {
4261 struct symtab_and_line tmp_sal;
4262
4263 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4264 tmp_sal.pspace = get_frame_program_space (frame);
4265 if (tmp_sal.line != 0)
4266 {
4267 if (execution_direction == EXEC_REVERSE)
4268 handle_step_into_function_backward (gdbarch, ecs);
4269 else
4270 handle_step_into_function (gdbarch, ecs);
4271 return;
4272 }
4273 }
4274
4275 /* If we have no line number and the step-stop-if-no-debug is
4276 set, we stop the step so that the user has a chance to switch
4277 in assembly mode. */
4278 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4279 && step_stop_if_no_debug)
4280 {
4281 ecs->event_thread->stop_step = 1;
4282 print_stop_reason (END_STEPPING_RANGE, 0);
4283 stop_stepping (ecs);
4284 return;
4285 }
4286
4287 if (execution_direction == EXEC_REVERSE)
4288 {
4289 /* Set a breakpoint at callee's start address.
4290 From there we can step once and be back in the caller. */
4291 struct symtab_and_line sr_sal;
4292 init_sal (&sr_sal);
4293 sr_sal.pc = ecs->stop_func_start;
4294 sr_sal.pspace = get_frame_program_space (frame);
4295 insert_step_resume_breakpoint_at_sal (gdbarch,
4296 sr_sal, null_frame_id);
4297 }
4298 else
4299 /* Set a breakpoint at callee's return address (the address
4300 at which the caller will resume). */
4301 insert_step_resume_breakpoint_at_caller (frame);
4302
4303 keep_going (ecs);
4304 return;
4305 }
4306
4307 /* Reverse stepping through solib trampolines. */
4308
4309 if (execution_direction == EXEC_REVERSE
4310 && ecs->event_thread->step_over_calls != STEP_OVER_NONE)
4311 {
4312 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4313 || (ecs->stop_func_start == 0
4314 && in_solib_dynsym_resolve_code (stop_pc)))
4315 {
4316 /* Any solib trampoline code can be handled in reverse
4317 by simply continuing to single-step. We have already
4318 executed the solib function (backwards), and a few
4319 steps will take us back through the trampoline to the
4320 caller. */
4321 keep_going (ecs);
4322 return;
4323 }
4324 else if (in_solib_dynsym_resolve_code (stop_pc))
4325 {
4326 /* Stepped backward into the solib dynsym resolver.
4327 Set a breakpoint at its start and continue, then
4328 one more step will take us out. */
4329 struct symtab_and_line sr_sal;
4330 init_sal (&sr_sal);
4331 sr_sal.pc = ecs->stop_func_start;
4332 sr_sal.pspace = get_frame_program_space (frame);
4333 insert_step_resume_breakpoint_at_sal (gdbarch,
4334 sr_sal, null_frame_id);
4335 keep_going (ecs);
4336 return;
4337 }
4338 }
4339
4340 /* If we're in the return path from a shared library trampoline,
4341 we want to proceed through the trampoline when stepping. */
4342 if (gdbarch_in_solib_return_trampoline (gdbarch,
4343 stop_pc, ecs->stop_func_name))
4344 {
4345 /* Determine where this trampoline returns. */
4346 CORE_ADDR real_stop_pc;
4347 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4348
4349 if (debug_infrun)
4350 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
4351
4352 /* Only proceed through if we know where it's going. */
4353 if (real_stop_pc)
4354 {
4355 /* And put the step-breakpoint there and go until there. */
4356 struct symtab_and_line sr_sal;
4357
4358 init_sal (&sr_sal); /* initialize to zeroes */
4359 sr_sal.pc = real_stop_pc;
4360 sr_sal.section = find_pc_overlay (sr_sal.pc);
4361 sr_sal.pspace = get_frame_program_space (frame);
4362
4363 /* Do not specify what the fp should be when we stop since
4364 on some machines the prologue is where the new fp value
4365 is established. */
4366 insert_step_resume_breakpoint_at_sal (gdbarch,
4367 sr_sal, null_frame_id);
4368
4369 /* Restart without fiddling with the step ranges or
4370 other state. */
4371 keep_going (ecs);
4372 return;
4373 }
4374 }
4375
4376 stop_pc_sal = find_pc_line (stop_pc, 0);
4377
4378 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4379 the trampoline processing logic, however, there are some trampolines
4380 that have no names, so we should do trampoline handling first. */
4381 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4382 && ecs->stop_func_name == NULL
4383 && stop_pc_sal.line == 0)
4384 {
4385 if (debug_infrun)
4386 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
4387
4388 /* The inferior just stepped into, or returned to, an
4389 undebuggable function (where there is no debugging information
4390 and no line number corresponding to the address where the
4391 inferior stopped). Since we want to skip this kind of code,
4392 we keep going until the inferior returns from this
4393 function - unless the user has asked us not to (via
4394 set step-mode) or we no longer know how to get back
4395 to the call site. */
4396 if (step_stop_if_no_debug
4397 || !frame_id_p (frame_unwind_caller_id (frame)))
4398 {
4399 /* If we have no line number and the step-stop-if-no-debug
4400 is set, we stop the step so that the user has a chance to
4401 switch in assembly mode. */
4402 ecs->event_thread->stop_step = 1;
4403 print_stop_reason (END_STEPPING_RANGE, 0);
4404 stop_stepping (ecs);
4405 return;
4406 }
4407 else
4408 {
4409 /* Set a breakpoint at callee's return address (the address
4410 at which the caller will resume). */
4411 insert_step_resume_breakpoint_at_caller (frame);
4412 keep_going (ecs);
4413 return;
4414 }
4415 }
4416
4417 if (ecs->event_thread->step_range_end == 1)
4418 {
4419 /* It is stepi or nexti. We always want to stop stepping after
4420 one instruction. */
4421 if (debug_infrun)
4422 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
4423 ecs->event_thread->stop_step = 1;
4424 print_stop_reason (END_STEPPING_RANGE, 0);
4425 stop_stepping (ecs);
4426 return;
4427 }
4428
4429 if (stop_pc_sal.line == 0)
4430 {
4431 /* We have no line number information. That means to stop
4432 stepping (does this always happen right after one instruction,
4433 when we do "s" in a function with no line numbers,
4434 or can this happen as a result of a return or longjmp?). */
4435 if (debug_infrun)
4436 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
4437 ecs->event_thread->stop_step = 1;
4438 print_stop_reason (END_STEPPING_RANGE, 0);
4439 stop_stepping (ecs);
4440 return;
4441 }
4442
4443 /* Look for "calls" to inlined functions, part one. If the inline
4444 frame machinery detected some skipped call sites, we have entered
4445 a new inline function. */
4446
4447 if (frame_id_eq (get_frame_id (get_current_frame ()),
4448 ecs->event_thread->step_frame_id)
4449 && inline_skipped_frames (ecs->ptid))
4450 {
4451 struct symtab_and_line call_sal;
4452
4453 if (debug_infrun)
4454 fprintf_unfiltered (gdb_stdlog,
4455 "infrun: stepped into inlined function\n");
4456
4457 find_frame_sal (get_current_frame (), &call_sal);
4458
4459 if (ecs->event_thread->step_over_calls != STEP_OVER_ALL)
4460 {
4461 /* For "step", we're going to stop. But if the call site
4462 for this inlined function is on the same source line as
4463 we were previously stepping, go down into the function
4464 first. Otherwise stop at the call site. */
4465
4466 if (call_sal.line == ecs->event_thread->current_line
4467 && call_sal.symtab == ecs->event_thread->current_symtab)
4468 step_into_inline_frame (ecs->ptid);
4469
4470 ecs->event_thread->stop_step = 1;
4471 print_stop_reason (END_STEPPING_RANGE, 0);
4472 stop_stepping (ecs);
4473 return;
4474 }
4475 else
4476 {
4477 /* For "next", we should stop at the call site if it is on a
4478 different source line. Otherwise continue through the
4479 inlined function. */
4480 if (call_sal.line == ecs->event_thread->current_line
4481 && call_sal.symtab == ecs->event_thread->current_symtab)
4482 keep_going (ecs);
4483 else
4484 {
4485 ecs->event_thread->stop_step = 1;
4486 print_stop_reason (END_STEPPING_RANGE, 0);
4487 stop_stepping (ecs);
4488 }
4489 return;
4490 }
4491 }
4492
4493 /* Look for "calls" to inlined functions, part two. If we are still
4494 in the same real function we were stepping through, but we have
4495 to go further up to find the exact frame ID, we are stepping
4496 through a more inlined call beyond its call site. */
4497
4498 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4499 && !frame_id_eq (get_frame_id (get_current_frame ()),
4500 ecs->event_thread->step_frame_id)
4501 && stepped_in_from (get_current_frame (),
4502 ecs->event_thread->step_frame_id))
4503 {
4504 if (debug_infrun)
4505 fprintf_unfiltered (gdb_stdlog,
4506 "infrun: stepping through inlined function\n");
4507
4508 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4509 keep_going (ecs);
4510 else
4511 {
4512 ecs->event_thread->stop_step = 1;
4513 print_stop_reason (END_STEPPING_RANGE, 0);
4514 stop_stepping (ecs);
4515 }
4516 return;
4517 }
4518
4519 if ((stop_pc == stop_pc_sal.pc)
4520 && (ecs->event_thread->current_line != stop_pc_sal.line
4521 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
4522 {
4523 /* We are at the start of a different line. So stop. Note that
4524 we don't stop if we step into the middle of a different line.
4525 That is said to make things like for (;;) statements work
4526 better. */
4527 if (debug_infrun)
4528 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
4529 ecs->event_thread->stop_step = 1;
4530 print_stop_reason (END_STEPPING_RANGE, 0);
4531 stop_stepping (ecs);
4532 return;
4533 }
4534
4535 /* We aren't done stepping.
4536
4537 Optimize by setting the stepping range to the line.
4538 (We might not be in the original line, but if we entered a
4539 new line in mid-statement, we continue stepping. This makes
4540 things like for(;;) statements work better.) */
4541
4542 ecs->event_thread->step_range_start = stop_pc_sal.pc;
4543 ecs->event_thread->step_range_end = stop_pc_sal.end;
4544 set_step_info (frame, stop_pc_sal);
4545
4546 if (debug_infrun)
4547 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
4548 keep_going (ecs);
4549 }
4550
4551 /* Is thread TP in the middle of single-stepping? */
4552
4553 static int
4554 currently_stepping (struct thread_info *tp)
4555 {
4556 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
4557 || tp->trap_expected
4558 || tp->stepping_through_solib_after_catch
4559 || bpstat_should_step ());
4560 }
4561
4562 /* Returns true if any thread *but* the one passed in "data" is in the
4563 middle of stepping or of handling a "next". */
4564
4565 static int
4566 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
4567 {
4568 if (tp == data)
4569 return 0;
4570
4571 return (tp->step_range_end
4572 || tp->trap_expected
4573 || tp->stepping_through_solib_after_catch);
4574 }
4575
4576 /* Inferior has stepped into a subroutine call with source code that
4577 we should not step over. Do step to the first line of code in
4578 it. */
4579
4580 static void
4581 handle_step_into_function (struct gdbarch *gdbarch,
4582 struct execution_control_state *ecs)
4583 {
4584 struct symtab *s;
4585 struct symtab_and_line stop_func_sal, sr_sal;
4586
4587 s = find_pc_symtab (stop_pc);
4588 if (s && s->language != language_asm)
4589 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
4590 ecs->stop_func_start);
4591
4592 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
4593 /* Use the step_resume_break to step until the end of the prologue,
4594 even if that involves jumps (as it seems to on the vax under
4595 4.2). */
4596 /* If the prologue ends in the middle of a source line, continue to
4597 the end of that source line (if it is still within the function).
4598 Otherwise, just go to end of prologue. */
4599 if (stop_func_sal.end
4600 && stop_func_sal.pc != ecs->stop_func_start
4601 && stop_func_sal.end < ecs->stop_func_end)
4602 ecs->stop_func_start = stop_func_sal.end;
4603
4604 /* Architectures which require breakpoint adjustment might not be able
4605 to place a breakpoint at the computed address. If so, the test
4606 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4607 ecs->stop_func_start to an address at which a breakpoint may be
4608 legitimately placed.
4609
4610 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4611 made, GDB will enter an infinite loop when stepping through
4612 optimized code consisting of VLIW instructions which contain
4613 subinstructions corresponding to different source lines. On
4614 FR-V, it's not permitted to place a breakpoint on any but the
4615 first subinstruction of a VLIW instruction. When a breakpoint is
4616 set, GDB will adjust the breakpoint address to the beginning of
4617 the VLIW instruction. Thus, we need to make the corresponding
4618 adjustment here when computing the stop address. */
4619
4620 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
4621 {
4622 ecs->stop_func_start
4623 = gdbarch_adjust_breakpoint_address (gdbarch,
4624 ecs->stop_func_start);
4625 }
4626
4627 if (ecs->stop_func_start == stop_pc)
4628 {
4629 /* We are already there: stop now. */
4630 ecs->event_thread->stop_step = 1;
4631 print_stop_reason (END_STEPPING_RANGE, 0);
4632 stop_stepping (ecs);
4633 return;
4634 }
4635 else
4636 {
4637 /* Put the step-breakpoint there and go until there. */
4638 init_sal (&sr_sal); /* initialize to zeroes */
4639 sr_sal.pc = ecs->stop_func_start;
4640 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
4641 sr_sal.pspace = get_frame_program_space (get_current_frame ());
4642
4643 /* Do not specify what the fp should be when we stop since on
4644 some machines the prologue is where the new fp value is
4645 established. */
4646 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
4647
4648 /* And make sure stepping stops right away then. */
4649 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
4650 }
4651 keep_going (ecs);
4652 }
4653
4654 /* Inferior has stepped backward into a subroutine call with source
4655 code that we should not step over. Do step to the beginning of the
4656 last line of code in it. */
4657
4658 static void
4659 handle_step_into_function_backward (struct gdbarch *gdbarch,
4660 struct execution_control_state *ecs)
4661 {
4662 struct symtab *s;
4663 struct symtab_and_line stop_func_sal, sr_sal;
4664
4665 s = find_pc_symtab (stop_pc);
4666 if (s && s->language != language_asm)
4667 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
4668 ecs->stop_func_start);
4669
4670 stop_func_sal = find_pc_line (stop_pc, 0);
4671
4672 /* OK, we're just going to keep stepping here. */
4673 if (stop_func_sal.pc == stop_pc)
4674 {
4675 /* We're there already. Just stop stepping now. */
4676 ecs->event_thread->stop_step = 1;
4677 print_stop_reason (END_STEPPING_RANGE, 0);
4678 stop_stepping (ecs);
4679 }
4680 else
4681 {
4682 /* Else just reset the step range and keep going.
4683 No step-resume breakpoint, they don't work for
4684 epilogues, which can have multiple entry paths. */
4685 ecs->event_thread->step_range_start = stop_func_sal.pc;
4686 ecs->event_thread->step_range_end = stop_func_sal.end;
4687 keep_going (ecs);
4688 }
4689 return;
4690 }
4691
4692 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
4693 This is used to both functions and to skip over code. */
4694
4695 static void
4696 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
4697 struct symtab_and_line sr_sal,
4698 struct frame_id sr_id)
4699 {
4700 /* There should never be more than one step-resume or longjmp-resume
4701 breakpoint per thread, so we should never be setting a new
4702 step_resume_breakpoint when one is already active. */
4703 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
4704
4705 if (debug_infrun)
4706 fprintf_unfiltered (gdb_stdlog,
4707 "infrun: inserting step-resume breakpoint at %s\n",
4708 paddress (gdbarch, sr_sal.pc));
4709
4710 inferior_thread ()->step_resume_breakpoint
4711 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
4712 }
4713
4714 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
4715 to skip a potential signal handler.
4716
4717 This is called with the interrupted function's frame. The signal
4718 handler, when it returns, will resume the interrupted function at
4719 RETURN_FRAME.pc. */
4720
4721 static void
4722 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
4723 {
4724 struct symtab_and_line sr_sal;
4725 struct gdbarch *gdbarch;
4726
4727 gdb_assert (return_frame != NULL);
4728 init_sal (&sr_sal); /* initialize to zeros */
4729
4730 gdbarch = get_frame_arch (return_frame);
4731 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
4732 sr_sal.section = find_pc_overlay (sr_sal.pc);
4733 sr_sal.pspace = get_frame_program_space (return_frame);
4734
4735 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
4736 get_stack_frame_id (return_frame));
4737 }
4738
4739 /* Similar to insert_step_resume_breakpoint_at_frame, except
4740 but a breakpoint at the previous frame's PC. This is used to
4741 skip a function after stepping into it (for "next" or if the called
4742 function has no debugging information).
4743
4744 The current function has almost always been reached by single
4745 stepping a call or return instruction. NEXT_FRAME belongs to the
4746 current function, and the breakpoint will be set at the caller's
4747 resume address.
4748
4749 This is a separate function rather than reusing
4750 insert_step_resume_breakpoint_at_frame in order to avoid
4751 get_prev_frame, which may stop prematurely (see the implementation
4752 of frame_unwind_caller_id for an example). */
4753
4754 static void
4755 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4756 {
4757 struct symtab_and_line sr_sal;
4758 struct gdbarch *gdbarch;
4759
4760 /* We shouldn't have gotten here if we don't know where the call site
4761 is. */
4762 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
4763
4764 init_sal (&sr_sal); /* initialize to zeros */
4765
4766 gdbarch = frame_unwind_caller_arch (next_frame);
4767 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
4768 frame_unwind_caller_pc (next_frame));
4769 sr_sal.section = find_pc_overlay (sr_sal.pc);
4770 sr_sal.pspace = frame_unwind_program_space (next_frame);
4771
4772 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
4773 frame_unwind_caller_id (next_frame));
4774 }
4775
4776 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4777 new breakpoint at the target of a jmp_buf. The handling of
4778 longjmp-resume uses the same mechanisms used for handling
4779 "step-resume" breakpoints. */
4780
4781 static void
4782 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
4783 {
4784 /* There should never be more than one step-resume or longjmp-resume
4785 breakpoint per thread, so we should never be setting a new
4786 longjmp_resume_breakpoint when one is already active. */
4787 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
4788
4789 if (debug_infrun)
4790 fprintf_unfiltered (gdb_stdlog,
4791 "infrun: inserting longjmp-resume breakpoint at %s\n",
4792 paddress (gdbarch, pc));
4793
4794 inferior_thread ()->step_resume_breakpoint =
4795 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
4796 }
4797
4798 static void
4799 stop_stepping (struct execution_control_state *ecs)
4800 {
4801 if (debug_infrun)
4802 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
4803
4804 /* Let callers know we don't want to wait for the inferior anymore. */
4805 ecs->wait_some_more = 0;
4806 }
4807
4808 /* This function handles various cases where we need to continue
4809 waiting for the inferior. */
4810 /* (Used to be the keep_going: label in the old wait_for_inferior) */
4811
4812 static void
4813 keep_going (struct execution_control_state *ecs)
4814 {
4815 /* Save the pc before execution, to compare with pc after stop. */
4816 ecs->event_thread->prev_pc
4817 = regcache_read_pc (get_thread_regcache (ecs->ptid));
4818
4819 /* If we did not do break;, it means we should keep running the
4820 inferior and not return to debugger. */
4821
4822 if (ecs->event_thread->trap_expected
4823 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
4824 {
4825 /* We took a signal (which we are supposed to pass through to
4826 the inferior, else we'd not get here) and we haven't yet
4827 gotten our trap. Simply continue. */
4828 resume (currently_stepping (ecs->event_thread),
4829 ecs->event_thread->stop_signal);
4830 }
4831 else
4832 {
4833 /* Either the trap was not expected, but we are continuing
4834 anyway (the user asked that this signal be passed to the
4835 child)
4836 -- or --
4837 The signal was SIGTRAP, e.g. it was our signal, but we
4838 decided we should resume from it.
4839
4840 We're going to run this baby now!
4841
4842 Note that insert_breakpoints won't try to re-insert
4843 already inserted breakpoints. Therefore, we don't
4844 care if breakpoints were already inserted, or not. */
4845
4846 if (ecs->event_thread->stepping_over_breakpoint)
4847 {
4848 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
4849 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
4850 /* Since we can't do a displaced step, we have to remove
4851 the breakpoint while we step it. To keep things
4852 simple, we remove them all. */
4853 remove_breakpoints ();
4854 }
4855 else
4856 {
4857 struct gdb_exception e;
4858 /* Stop stepping when inserting breakpoints
4859 has failed. */
4860 TRY_CATCH (e, RETURN_MASK_ERROR)
4861 {
4862 insert_breakpoints ();
4863 }
4864 if (e.reason < 0)
4865 {
4866 stop_stepping (ecs);
4867 return;
4868 }
4869 }
4870
4871 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
4872
4873 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
4874 specifies that such a signal should be delivered to the
4875 target program).
4876
4877 Typically, this would occure when a user is debugging a
4878 target monitor on a simulator: the target monitor sets a
4879 breakpoint; the simulator encounters this break-point and
4880 halts the simulation handing control to GDB; GDB, noteing
4881 that the break-point isn't valid, returns control back to the
4882 simulator; the simulator then delivers the hardware
4883 equivalent of a SIGNAL_TRAP to the program being debugged. */
4884
4885 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4886 && !signal_program[ecs->event_thread->stop_signal])
4887 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
4888
4889 resume (currently_stepping (ecs->event_thread),
4890 ecs->event_thread->stop_signal);
4891 }
4892
4893 prepare_to_wait (ecs);
4894 }
4895
4896 /* This function normally comes after a resume, before
4897 handle_inferior_event exits. It takes care of any last bits of
4898 housekeeping, and sets the all-important wait_some_more flag. */
4899
4900 static void
4901 prepare_to_wait (struct execution_control_state *ecs)
4902 {
4903 if (debug_infrun)
4904 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
4905
4906 /* This is the old end of the while loop. Let everybody know we
4907 want to wait for the inferior some more and get called again
4908 soon. */
4909 ecs->wait_some_more = 1;
4910 }
4911
4912 /* Print why the inferior has stopped. We always print something when
4913 the inferior exits, or receives a signal. The rest of the cases are
4914 dealt with later on in normal_stop() and print_it_typical(). Ideally
4915 there should be a call to this function from handle_inferior_event()
4916 each time stop_stepping() is called.*/
4917 static void
4918 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4919 {
4920 switch (stop_reason)
4921 {
4922 case END_STEPPING_RANGE:
4923 /* We are done with a step/next/si/ni command. */
4924 /* For now print nothing. */
4925 /* Print a message only if not in the middle of doing a "step n"
4926 operation for n > 1 */
4927 if (!inferior_thread ()->step_multi
4928 || !inferior_thread ()->stop_step)
4929 if (ui_out_is_mi_like_p (uiout))
4930 ui_out_field_string
4931 (uiout, "reason",
4932 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
4933 break;
4934 case SIGNAL_EXITED:
4935 /* The inferior was terminated by a signal. */
4936 annotate_signalled ();
4937 if (ui_out_is_mi_like_p (uiout))
4938 ui_out_field_string
4939 (uiout, "reason",
4940 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
4941 ui_out_text (uiout, "\nProgram terminated with signal ");
4942 annotate_signal_name ();
4943 ui_out_field_string (uiout, "signal-name",
4944 target_signal_to_name (stop_info));
4945 annotate_signal_name_end ();
4946 ui_out_text (uiout, ", ");
4947 annotate_signal_string ();
4948 ui_out_field_string (uiout, "signal-meaning",
4949 target_signal_to_string (stop_info));
4950 annotate_signal_string_end ();
4951 ui_out_text (uiout, ".\n");
4952 ui_out_text (uiout, "The program no longer exists.\n");
4953 break;
4954 case EXITED:
4955 /* The inferior program is finished. */
4956 annotate_exited (stop_info);
4957 if (stop_info)
4958 {
4959 if (ui_out_is_mi_like_p (uiout))
4960 ui_out_field_string (uiout, "reason",
4961 async_reason_lookup (EXEC_ASYNC_EXITED));
4962 ui_out_text (uiout, "\nProgram exited with code ");
4963 ui_out_field_fmt (uiout, "exit-code", "0%o",
4964 (unsigned int) stop_info);
4965 ui_out_text (uiout, ".\n");
4966 }
4967 else
4968 {
4969 if (ui_out_is_mi_like_p (uiout))
4970 ui_out_field_string
4971 (uiout, "reason",
4972 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
4973 ui_out_text (uiout, "\nProgram exited normally.\n");
4974 }
4975 /* Support the --return-child-result option. */
4976 return_child_result_value = stop_info;
4977 break;
4978 case SIGNAL_RECEIVED:
4979 /* Signal received. The signal table tells us to print about
4980 it. */
4981 annotate_signal ();
4982
4983 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4984 {
4985 struct thread_info *t = inferior_thread ();
4986
4987 ui_out_text (uiout, "\n[");
4988 ui_out_field_string (uiout, "thread-name",
4989 target_pid_to_str (t->ptid));
4990 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4991 ui_out_text (uiout, " stopped");
4992 }
4993 else
4994 {
4995 ui_out_text (uiout, "\nProgram received signal ");
4996 annotate_signal_name ();
4997 if (ui_out_is_mi_like_p (uiout))
4998 ui_out_field_string
4999 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5000 ui_out_field_string (uiout, "signal-name",
5001 target_signal_to_name (stop_info));
5002 annotate_signal_name_end ();
5003 ui_out_text (uiout, ", ");
5004 annotate_signal_string ();
5005 ui_out_field_string (uiout, "signal-meaning",
5006 target_signal_to_string (stop_info));
5007 annotate_signal_string_end ();
5008 }
5009 ui_out_text (uiout, ".\n");
5010 break;
5011 case NO_HISTORY:
5012 /* Reverse execution: target ran out of history info. */
5013 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
5014 break;
5015 default:
5016 internal_error (__FILE__, __LINE__,
5017 _("print_stop_reason: unrecognized enum value"));
5018 break;
5019 }
5020 }
5021 \f
5022
5023 /* Here to return control to GDB when the inferior stops for real.
5024 Print appropriate messages, remove breakpoints, give terminal our modes.
5025
5026 STOP_PRINT_FRAME nonzero means print the executing frame
5027 (pc, function, args, file, line number and line text).
5028 BREAKPOINTS_FAILED nonzero means stop was due to error
5029 attempting to insert breakpoints. */
5030
5031 void
5032 normal_stop (void)
5033 {
5034 struct target_waitstatus last;
5035 ptid_t last_ptid;
5036 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5037
5038 get_last_target_status (&last_ptid, &last);
5039
5040 /* If an exception is thrown from this point on, make sure to
5041 propagate GDB's knowledge of the executing state to the
5042 frontend/user running state. A QUIT is an easy exception to see
5043 here, so do this before any filtered output. */
5044 if (!non_stop)
5045 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5046 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5047 && last.kind != TARGET_WAITKIND_EXITED)
5048 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5049
5050 /* In non-stop mode, we don't want GDB to switch threads behind the
5051 user's back, to avoid races where the user is typing a command to
5052 apply to thread x, but GDB switches to thread y before the user
5053 finishes entering the command. */
5054
5055 /* As with the notification of thread events, we want to delay
5056 notifying the user that we've switched thread context until
5057 the inferior actually stops.
5058
5059 There's no point in saying anything if the inferior has exited.
5060 Note that SIGNALLED here means "exited with a signal", not
5061 "received a signal". */
5062 if (!non_stop
5063 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5064 && target_has_execution
5065 && last.kind != TARGET_WAITKIND_SIGNALLED
5066 && last.kind != TARGET_WAITKIND_EXITED)
5067 {
5068 target_terminal_ours_for_output ();
5069 printf_filtered (_("[Switching to %s]\n"),
5070 target_pid_to_str (inferior_ptid));
5071 annotate_thread_changed ();
5072 previous_inferior_ptid = inferior_ptid;
5073 }
5074
5075 if (!breakpoints_always_inserted_mode () && target_has_execution)
5076 {
5077 if (remove_breakpoints ())
5078 {
5079 target_terminal_ours_for_output ();
5080 printf_filtered (_("\
5081 Cannot remove breakpoints because program is no longer writable.\n\
5082 Further execution is probably impossible.\n"));
5083 }
5084 }
5085
5086 /* If an auto-display called a function and that got a signal,
5087 delete that auto-display to avoid an infinite recursion. */
5088
5089 if (stopped_by_random_signal)
5090 disable_current_display ();
5091
5092 /* Don't print a message if in the middle of doing a "step n"
5093 operation for n > 1 */
5094 if (target_has_execution
5095 && last.kind != TARGET_WAITKIND_SIGNALLED
5096 && last.kind != TARGET_WAITKIND_EXITED
5097 && inferior_thread ()->step_multi
5098 && inferior_thread ()->stop_step)
5099 goto done;
5100
5101 target_terminal_ours ();
5102
5103 /* Set the current source location. This will also happen if we
5104 display the frame below, but the current SAL will be incorrect
5105 during a user hook-stop function. */
5106 if (has_stack_frames () && !stop_stack_dummy)
5107 set_current_sal_from_frame (get_current_frame (), 1);
5108
5109 /* Let the user/frontend see the threads as stopped. */
5110 do_cleanups (old_chain);
5111
5112 /* Look up the hook_stop and run it (CLI internally handles problem
5113 of stop_command's pre-hook not existing). */
5114 if (stop_command)
5115 catch_errors (hook_stop_stub, stop_command,
5116 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5117
5118 if (!has_stack_frames ())
5119 goto done;
5120
5121 if (last.kind == TARGET_WAITKIND_SIGNALLED
5122 || last.kind == TARGET_WAITKIND_EXITED)
5123 goto done;
5124
5125 /* Select innermost stack frame - i.e., current frame is frame 0,
5126 and current location is based on that.
5127 Don't do this on return from a stack dummy routine,
5128 or if the program has exited. */
5129
5130 if (!stop_stack_dummy)
5131 {
5132 select_frame (get_current_frame ());
5133
5134 /* Print current location without a level number, if
5135 we have changed functions or hit a breakpoint.
5136 Print source line if we have one.
5137 bpstat_print() contains the logic deciding in detail
5138 what to print, based on the event(s) that just occurred. */
5139
5140 /* If --batch-silent is enabled then there's no need to print the current
5141 source location, and to try risks causing an error message about
5142 missing source files. */
5143 if (stop_print_frame && !batch_silent)
5144 {
5145 int bpstat_ret;
5146 int source_flag;
5147 int do_frame_printing = 1;
5148 struct thread_info *tp = inferior_thread ();
5149
5150 bpstat_ret = bpstat_print (tp->stop_bpstat);
5151 switch (bpstat_ret)
5152 {
5153 case PRINT_UNKNOWN:
5154 /* If we had hit a shared library event breakpoint,
5155 bpstat_print would print out this message. If we hit
5156 an OS-level shared library event, do the same
5157 thing. */
5158 if (last.kind == TARGET_WAITKIND_LOADED)
5159 {
5160 printf_filtered (_("Stopped due to shared library event\n"));
5161 source_flag = SRC_LINE; /* something bogus */
5162 do_frame_printing = 0;
5163 break;
5164 }
5165
5166 /* FIXME: cagney/2002-12-01: Given that a frame ID does
5167 (or should) carry around the function and does (or
5168 should) use that when doing a frame comparison. */
5169 if (tp->stop_step
5170 && frame_id_eq (tp->step_frame_id,
5171 get_frame_id (get_current_frame ()))
5172 && step_start_function == find_pc_function (stop_pc))
5173 source_flag = SRC_LINE; /* finished step, just print source line */
5174 else
5175 source_flag = SRC_AND_LOC; /* print location and source line */
5176 break;
5177 case PRINT_SRC_AND_LOC:
5178 source_flag = SRC_AND_LOC; /* print location and source line */
5179 break;
5180 case PRINT_SRC_ONLY:
5181 source_flag = SRC_LINE;
5182 break;
5183 case PRINT_NOTHING:
5184 source_flag = SRC_LINE; /* something bogus */
5185 do_frame_printing = 0;
5186 break;
5187 default:
5188 internal_error (__FILE__, __LINE__, _("Unknown value."));
5189 }
5190
5191 /* The behavior of this routine with respect to the source
5192 flag is:
5193 SRC_LINE: Print only source line
5194 LOCATION: Print only location
5195 SRC_AND_LOC: Print location and source line */
5196 if (do_frame_printing)
5197 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
5198
5199 /* Display the auto-display expressions. */
5200 do_displays ();
5201 }
5202 }
5203
5204 /* Save the function value return registers, if we care.
5205 We might be about to restore their previous contents. */
5206 if (inferior_thread ()->proceed_to_finish)
5207 {
5208 /* This should not be necessary. */
5209 if (stop_registers)
5210 regcache_xfree (stop_registers);
5211
5212 /* NB: The copy goes through to the target picking up the value of
5213 all the registers. */
5214 stop_registers = regcache_dup (get_current_regcache ());
5215 }
5216
5217 if (stop_stack_dummy)
5218 {
5219 /* Pop the empty frame that contains the stack dummy.
5220 This also restores inferior state prior to the call
5221 (struct inferior_thread_state). */
5222 struct frame_info *frame = get_current_frame ();
5223 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5224 frame_pop (frame);
5225 /* frame_pop() calls reinit_frame_cache as the last thing it does
5226 which means there's currently no selected frame. We don't need
5227 to re-establish a selected frame if the dummy call returns normally,
5228 that will be done by restore_inferior_status. However, we do have
5229 to handle the case where the dummy call is returning after being
5230 stopped (e.g. the dummy call previously hit a breakpoint). We
5231 can't know which case we have so just always re-establish a
5232 selected frame here. */
5233 select_frame (get_current_frame ());
5234 }
5235
5236 done:
5237 annotate_stopped ();
5238
5239 /* Suppress the stop observer if we're in the middle of:
5240
5241 - a step n (n > 1), as there still more steps to be done.
5242
5243 - a "finish" command, as the observer will be called in
5244 finish_command_continuation, so it can include the inferior
5245 function's return value.
5246
5247 - calling an inferior function, as we pretend we inferior didn't
5248 run at all. The return value of the call is handled by the
5249 expression evaluator, through call_function_by_hand. */
5250
5251 if (!target_has_execution
5252 || last.kind == TARGET_WAITKIND_SIGNALLED
5253 || last.kind == TARGET_WAITKIND_EXITED
5254 || (!inferior_thread ()->step_multi
5255 && !(inferior_thread ()->stop_bpstat
5256 && inferior_thread ()->proceed_to_finish)
5257 && !inferior_thread ()->in_infcall))
5258 {
5259 if (!ptid_equal (inferior_ptid, null_ptid))
5260 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
5261 stop_print_frame);
5262 else
5263 observer_notify_normal_stop (NULL, stop_print_frame);
5264 }
5265
5266 if (target_has_execution)
5267 {
5268 if (last.kind != TARGET_WAITKIND_SIGNALLED
5269 && last.kind != TARGET_WAITKIND_EXITED)
5270 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5271 Delete any breakpoint that is to be deleted at the next stop. */
5272 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
5273 }
5274
5275 /* Try to get rid of automatically added inferiors that are no
5276 longer needed. Keeping those around slows down things linearly.
5277 Note that this never removes the current inferior. */
5278 prune_inferiors ();
5279 }
5280
5281 static int
5282 hook_stop_stub (void *cmd)
5283 {
5284 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
5285 return (0);
5286 }
5287 \f
5288 int
5289 signal_stop_state (int signo)
5290 {
5291 return signal_stop[signo];
5292 }
5293
5294 int
5295 signal_print_state (int signo)
5296 {
5297 return signal_print[signo];
5298 }
5299
5300 int
5301 signal_pass_state (int signo)
5302 {
5303 return signal_program[signo];
5304 }
5305
5306 int
5307 signal_stop_update (int signo, int state)
5308 {
5309 int ret = signal_stop[signo];
5310 signal_stop[signo] = state;
5311 return ret;
5312 }
5313
5314 int
5315 signal_print_update (int signo, int state)
5316 {
5317 int ret = signal_print[signo];
5318 signal_print[signo] = state;
5319 return ret;
5320 }
5321
5322 int
5323 signal_pass_update (int signo, int state)
5324 {
5325 int ret = signal_program[signo];
5326 signal_program[signo] = state;
5327 return ret;
5328 }
5329
5330 static void
5331 sig_print_header (void)
5332 {
5333 printf_filtered (_("\
5334 Signal Stop\tPrint\tPass to program\tDescription\n"));
5335 }
5336
5337 static void
5338 sig_print_info (enum target_signal oursig)
5339 {
5340 const char *name = target_signal_to_name (oursig);
5341 int name_padding = 13 - strlen (name);
5342
5343 if (name_padding <= 0)
5344 name_padding = 0;
5345
5346 printf_filtered ("%s", name);
5347 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
5348 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
5349 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
5350 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
5351 printf_filtered ("%s\n", target_signal_to_string (oursig));
5352 }
5353
5354 /* Specify how various signals in the inferior should be handled. */
5355
5356 static void
5357 handle_command (char *args, int from_tty)
5358 {
5359 char **argv;
5360 int digits, wordlen;
5361 int sigfirst, signum, siglast;
5362 enum target_signal oursig;
5363 int allsigs;
5364 int nsigs;
5365 unsigned char *sigs;
5366 struct cleanup *old_chain;
5367
5368 if (args == NULL)
5369 {
5370 error_no_arg (_("signal to handle"));
5371 }
5372
5373 /* Allocate and zero an array of flags for which signals to handle. */
5374
5375 nsigs = (int) TARGET_SIGNAL_LAST;
5376 sigs = (unsigned char *) alloca (nsigs);
5377 memset (sigs, 0, nsigs);
5378
5379 /* Break the command line up into args. */
5380
5381 argv = gdb_buildargv (args);
5382 old_chain = make_cleanup_freeargv (argv);
5383
5384 /* Walk through the args, looking for signal oursigs, signal names, and
5385 actions. Signal numbers and signal names may be interspersed with
5386 actions, with the actions being performed for all signals cumulatively
5387 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
5388
5389 while (*argv != NULL)
5390 {
5391 wordlen = strlen (*argv);
5392 for (digits = 0; isdigit ((*argv)[digits]); digits++)
5393 {;
5394 }
5395 allsigs = 0;
5396 sigfirst = siglast = -1;
5397
5398 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
5399 {
5400 /* Apply action to all signals except those used by the
5401 debugger. Silently skip those. */
5402 allsigs = 1;
5403 sigfirst = 0;
5404 siglast = nsigs - 1;
5405 }
5406 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
5407 {
5408 SET_SIGS (nsigs, sigs, signal_stop);
5409 SET_SIGS (nsigs, sigs, signal_print);
5410 }
5411 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
5412 {
5413 UNSET_SIGS (nsigs, sigs, signal_program);
5414 }
5415 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
5416 {
5417 SET_SIGS (nsigs, sigs, signal_print);
5418 }
5419 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
5420 {
5421 SET_SIGS (nsigs, sigs, signal_program);
5422 }
5423 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
5424 {
5425 UNSET_SIGS (nsigs, sigs, signal_stop);
5426 }
5427 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
5428 {
5429 SET_SIGS (nsigs, sigs, signal_program);
5430 }
5431 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5432 {
5433 UNSET_SIGS (nsigs, sigs, signal_print);
5434 UNSET_SIGS (nsigs, sigs, signal_stop);
5435 }
5436 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5437 {
5438 UNSET_SIGS (nsigs, sigs, signal_program);
5439 }
5440 else if (digits > 0)
5441 {
5442 /* It is numeric. The numeric signal refers to our own
5443 internal signal numbering from target.h, not to host/target
5444 signal number. This is a feature; users really should be
5445 using symbolic names anyway, and the common ones like
5446 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
5447
5448 sigfirst = siglast = (int)
5449 target_signal_from_command (atoi (*argv));
5450 if ((*argv)[digits] == '-')
5451 {
5452 siglast = (int)
5453 target_signal_from_command (atoi ((*argv) + digits + 1));
5454 }
5455 if (sigfirst > siglast)
5456 {
5457 /* Bet he didn't figure we'd think of this case... */
5458 signum = sigfirst;
5459 sigfirst = siglast;
5460 siglast = signum;
5461 }
5462 }
5463 else
5464 {
5465 oursig = target_signal_from_name (*argv);
5466 if (oursig != TARGET_SIGNAL_UNKNOWN)
5467 {
5468 sigfirst = siglast = (int) oursig;
5469 }
5470 else
5471 {
5472 /* Not a number and not a recognized flag word => complain. */
5473 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
5474 }
5475 }
5476
5477 /* If any signal numbers or symbol names were found, set flags for
5478 which signals to apply actions to. */
5479
5480 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
5481 {
5482 switch ((enum target_signal) signum)
5483 {
5484 case TARGET_SIGNAL_TRAP:
5485 case TARGET_SIGNAL_INT:
5486 if (!allsigs && !sigs[signum])
5487 {
5488 if (query (_("%s is used by the debugger.\n\
5489 Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
5490 {
5491 sigs[signum] = 1;
5492 }
5493 else
5494 {
5495 printf_unfiltered (_("Not confirmed, unchanged.\n"));
5496 gdb_flush (gdb_stdout);
5497 }
5498 }
5499 break;
5500 case TARGET_SIGNAL_0:
5501 case TARGET_SIGNAL_DEFAULT:
5502 case TARGET_SIGNAL_UNKNOWN:
5503 /* Make sure that "all" doesn't print these. */
5504 break;
5505 default:
5506 sigs[signum] = 1;
5507 break;
5508 }
5509 }
5510
5511 argv++;
5512 }
5513
5514 for (signum = 0; signum < nsigs; signum++)
5515 if (sigs[signum])
5516 {
5517 target_notice_signals (inferior_ptid);
5518
5519 if (from_tty)
5520 {
5521 /* Show the results. */
5522 sig_print_header ();
5523 for (; signum < nsigs; signum++)
5524 if (sigs[signum])
5525 sig_print_info (signum);
5526 }
5527
5528 break;
5529 }
5530
5531 do_cleanups (old_chain);
5532 }
5533
5534 static void
5535 xdb_handle_command (char *args, int from_tty)
5536 {
5537 char **argv;
5538 struct cleanup *old_chain;
5539
5540 if (args == NULL)
5541 error_no_arg (_("xdb command"));
5542
5543 /* Break the command line up into args. */
5544
5545 argv = gdb_buildargv (args);
5546 old_chain = make_cleanup_freeargv (argv);
5547 if (argv[1] != (char *) NULL)
5548 {
5549 char *argBuf;
5550 int bufLen;
5551
5552 bufLen = strlen (argv[0]) + 20;
5553 argBuf = (char *) xmalloc (bufLen);
5554 if (argBuf)
5555 {
5556 int validFlag = 1;
5557 enum target_signal oursig;
5558
5559 oursig = target_signal_from_name (argv[0]);
5560 memset (argBuf, 0, bufLen);
5561 if (strcmp (argv[1], "Q") == 0)
5562 sprintf (argBuf, "%s %s", argv[0], "noprint");
5563 else
5564 {
5565 if (strcmp (argv[1], "s") == 0)
5566 {
5567 if (!signal_stop[oursig])
5568 sprintf (argBuf, "%s %s", argv[0], "stop");
5569 else
5570 sprintf (argBuf, "%s %s", argv[0], "nostop");
5571 }
5572 else if (strcmp (argv[1], "i") == 0)
5573 {
5574 if (!signal_program[oursig])
5575 sprintf (argBuf, "%s %s", argv[0], "pass");
5576 else
5577 sprintf (argBuf, "%s %s", argv[0], "nopass");
5578 }
5579 else if (strcmp (argv[1], "r") == 0)
5580 {
5581 if (!signal_print[oursig])
5582 sprintf (argBuf, "%s %s", argv[0], "print");
5583 else
5584 sprintf (argBuf, "%s %s", argv[0], "noprint");
5585 }
5586 else
5587 validFlag = 0;
5588 }
5589 if (validFlag)
5590 handle_command (argBuf, from_tty);
5591 else
5592 printf_filtered (_("Invalid signal handling flag.\n"));
5593 if (argBuf)
5594 xfree (argBuf);
5595 }
5596 }
5597 do_cleanups (old_chain);
5598 }
5599
5600 /* Print current contents of the tables set by the handle command.
5601 It is possible we should just be printing signals actually used
5602 by the current target (but for things to work right when switching
5603 targets, all signals should be in the signal tables). */
5604
5605 static void
5606 signals_info (char *signum_exp, int from_tty)
5607 {
5608 enum target_signal oursig;
5609 sig_print_header ();
5610
5611 if (signum_exp)
5612 {
5613 /* First see if this is a symbol name. */
5614 oursig = target_signal_from_name (signum_exp);
5615 if (oursig == TARGET_SIGNAL_UNKNOWN)
5616 {
5617 /* No, try numeric. */
5618 oursig =
5619 target_signal_from_command (parse_and_eval_long (signum_exp));
5620 }
5621 sig_print_info (oursig);
5622 return;
5623 }
5624
5625 printf_filtered ("\n");
5626 /* These ugly casts brought to you by the native VAX compiler. */
5627 for (oursig = TARGET_SIGNAL_FIRST;
5628 (int) oursig < (int) TARGET_SIGNAL_LAST;
5629 oursig = (enum target_signal) ((int) oursig + 1))
5630 {
5631 QUIT;
5632
5633 if (oursig != TARGET_SIGNAL_UNKNOWN
5634 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
5635 sig_print_info (oursig);
5636 }
5637
5638 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
5639 }
5640
5641 /* The $_siginfo convenience variable is a bit special. We don't know
5642 for sure the type of the value until we actually have a chance to
5643 fetch the data. The type can change depending on gdbarch, so it it
5644 also dependent on which thread you have selected.
5645
5646 1. making $_siginfo be an internalvar that creates a new value on
5647 access.
5648
5649 2. making the value of $_siginfo be an lval_computed value. */
5650
5651 /* This function implements the lval_computed support for reading a
5652 $_siginfo value. */
5653
5654 static void
5655 siginfo_value_read (struct value *v)
5656 {
5657 LONGEST transferred;
5658
5659 transferred =
5660 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5661 NULL,
5662 value_contents_all_raw (v),
5663 value_offset (v),
5664 TYPE_LENGTH (value_type (v)));
5665
5666 if (transferred != TYPE_LENGTH (value_type (v)))
5667 error (_("Unable to read siginfo"));
5668 }
5669
5670 /* This function implements the lval_computed support for writing a
5671 $_siginfo value. */
5672
5673 static void
5674 siginfo_value_write (struct value *v, struct value *fromval)
5675 {
5676 LONGEST transferred;
5677
5678 transferred = target_write (&current_target,
5679 TARGET_OBJECT_SIGNAL_INFO,
5680 NULL,
5681 value_contents_all_raw (fromval),
5682 value_offset (v),
5683 TYPE_LENGTH (value_type (fromval)));
5684
5685 if (transferred != TYPE_LENGTH (value_type (fromval)))
5686 error (_("Unable to write siginfo"));
5687 }
5688
5689 static struct lval_funcs siginfo_value_funcs =
5690 {
5691 siginfo_value_read,
5692 siginfo_value_write
5693 };
5694
5695 /* Return a new value with the correct type for the siginfo object of
5696 the current thread using architecture GDBARCH. Return a void value
5697 if there's no object available. */
5698
5699 static struct value *
5700 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
5701 {
5702 if (target_has_stack
5703 && !ptid_equal (inferior_ptid, null_ptid)
5704 && gdbarch_get_siginfo_type_p (gdbarch))
5705 {
5706 struct type *type = gdbarch_get_siginfo_type (gdbarch);
5707 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
5708 }
5709
5710 return allocate_value (builtin_type (gdbarch)->builtin_void);
5711 }
5712
5713 \f
5714 /* Inferior thread state.
5715 These are details related to the inferior itself, and don't include
5716 things like what frame the user had selected or what gdb was doing
5717 with the target at the time.
5718 For inferior function calls these are things we want to restore
5719 regardless of whether the function call successfully completes
5720 or the dummy frame has to be manually popped. */
5721
5722 struct inferior_thread_state
5723 {
5724 enum target_signal stop_signal;
5725 CORE_ADDR stop_pc;
5726 struct regcache *registers;
5727 };
5728
5729 struct inferior_thread_state *
5730 save_inferior_thread_state (void)
5731 {
5732 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5733 struct thread_info *tp = inferior_thread ();
5734
5735 inf_state->stop_signal = tp->stop_signal;
5736 inf_state->stop_pc = stop_pc;
5737
5738 inf_state->registers = regcache_dup (get_current_regcache ());
5739
5740 return inf_state;
5741 }
5742
5743 /* Restore inferior session state to INF_STATE. */
5744
5745 void
5746 restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5747 {
5748 struct thread_info *tp = inferior_thread ();
5749
5750 tp->stop_signal = inf_state->stop_signal;
5751 stop_pc = inf_state->stop_pc;
5752
5753 /* The inferior can be gone if the user types "print exit(0)"
5754 (and perhaps other times). */
5755 if (target_has_execution)
5756 /* NB: The register write goes through to the target. */
5757 regcache_cpy (get_current_regcache (), inf_state->registers);
5758 regcache_xfree (inf_state->registers);
5759 xfree (inf_state);
5760 }
5761
5762 static void
5763 do_restore_inferior_thread_state_cleanup (void *state)
5764 {
5765 restore_inferior_thread_state (state);
5766 }
5767
5768 struct cleanup *
5769 make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5770 {
5771 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
5772 }
5773
5774 void
5775 discard_inferior_thread_state (struct inferior_thread_state *inf_state)
5776 {
5777 regcache_xfree (inf_state->registers);
5778 xfree (inf_state);
5779 }
5780
5781 struct regcache *
5782 get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
5783 {
5784 return inf_state->registers;
5785 }
5786
5787 /* Session related state for inferior function calls.
5788 These are the additional bits of state that need to be restored
5789 when an inferior function call successfully completes. */
5790
5791 struct inferior_status
5792 {
5793 bpstat stop_bpstat;
5794 int stop_step;
5795 int stop_stack_dummy;
5796 int stopped_by_random_signal;
5797 int stepping_over_breakpoint;
5798 CORE_ADDR step_range_start;
5799 CORE_ADDR step_range_end;
5800 struct frame_id step_frame_id;
5801 struct frame_id step_stack_frame_id;
5802 enum step_over_calls_kind step_over_calls;
5803 CORE_ADDR step_resume_break_address;
5804 int stop_after_trap;
5805 int stop_soon;
5806
5807 /* ID if the selected frame when the inferior function call was made. */
5808 struct frame_id selected_frame_id;
5809
5810 int proceed_to_finish;
5811 int in_infcall;
5812 };
5813
5814 /* Save all of the information associated with the inferior<==>gdb
5815 connection. */
5816
5817 struct inferior_status *
5818 save_inferior_status (void)
5819 {
5820 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
5821 struct thread_info *tp = inferior_thread ();
5822 struct inferior *inf = current_inferior ();
5823
5824 inf_status->stop_step = tp->stop_step;
5825 inf_status->stop_stack_dummy = stop_stack_dummy;
5826 inf_status->stopped_by_random_signal = stopped_by_random_signal;
5827 inf_status->stepping_over_breakpoint = tp->trap_expected;
5828 inf_status->step_range_start = tp->step_range_start;
5829 inf_status->step_range_end = tp->step_range_end;
5830 inf_status->step_frame_id = tp->step_frame_id;
5831 inf_status->step_stack_frame_id = tp->step_stack_frame_id;
5832 inf_status->step_over_calls = tp->step_over_calls;
5833 inf_status->stop_after_trap = stop_after_trap;
5834 inf_status->stop_soon = inf->stop_soon;
5835 /* Save original bpstat chain here; replace it with copy of chain.
5836 If caller's caller is walking the chain, they'll be happier if we
5837 hand them back the original chain when restore_inferior_status is
5838 called. */
5839 inf_status->stop_bpstat = tp->stop_bpstat;
5840 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
5841 inf_status->proceed_to_finish = tp->proceed_to_finish;
5842 inf_status->in_infcall = tp->in_infcall;
5843
5844 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
5845
5846 return inf_status;
5847 }
5848
5849 static int
5850 restore_selected_frame (void *args)
5851 {
5852 struct frame_id *fid = (struct frame_id *) args;
5853 struct frame_info *frame;
5854
5855 frame = frame_find_by_id (*fid);
5856
5857 /* If inf_status->selected_frame_id is NULL, there was no previously
5858 selected frame. */
5859 if (frame == NULL)
5860 {
5861 warning (_("Unable to restore previously selected frame."));
5862 return 0;
5863 }
5864
5865 select_frame (frame);
5866
5867 return (1);
5868 }
5869
5870 /* Restore inferior session state to INF_STATUS. */
5871
5872 void
5873 restore_inferior_status (struct inferior_status *inf_status)
5874 {
5875 struct thread_info *tp = inferior_thread ();
5876 struct inferior *inf = current_inferior ();
5877
5878 tp->stop_step = inf_status->stop_step;
5879 stop_stack_dummy = inf_status->stop_stack_dummy;
5880 stopped_by_random_signal = inf_status->stopped_by_random_signal;
5881 tp->trap_expected = inf_status->stepping_over_breakpoint;
5882 tp->step_range_start = inf_status->step_range_start;
5883 tp->step_range_end = inf_status->step_range_end;
5884 tp->step_frame_id = inf_status->step_frame_id;
5885 tp->step_stack_frame_id = inf_status->step_stack_frame_id;
5886 tp->step_over_calls = inf_status->step_over_calls;
5887 stop_after_trap = inf_status->stop_after_trap;
5888 inf->stop_soon = inf_status->stop_soon;
5889 bpstat_clear (&tp->stop_bpstat);
5890 tp->stop_bpstat = inf_status->stop_bpstat;
5891 inf_status->stop_bpstat = NULL;
5892 tp->proceed_to_finish = inf_status->proceed_to_finish;
5893 tp->in_infcall = inf_status->in_infcall;
5894
5895 if (target_has_stack)
5896 {
5897 /* The point of catch_errors is that if the stack is clobbered,
5898 walking the stack might encounter a garbage pointer and
5899 error() trying to dereference it. */
5900 if (catch_errors
5901 (restore_selected_frame, &inf_status->selected_frame_id,
5902 "Unable to restore previously selected frame:\n",
5903 RETURN_MASK_ERROR) == 0)
5904 /* Error in restoring the selected frame. Select the innermost
5905 frame. */
5906 select_frame (get_current_frame ());
5907 }
5908
5909 xfree (inf_status);
5910 }
5911
5912 static void
5913 do_restore_inferior_status_cleanup (void *sts)
5914 {
5915 restore_inferior_status (sts);
5916 }
5917
5918 struct cleanup *
5919 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5920 {
5921 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5922 }
5923
5924 void
5925 discard_inferior_status (struct inferior_status *inf_status)
5926 {
5927 /* See save_inferior_status for info on stop_bpstat. */
5928 bpstat_clear (&inf_status->stop_bpstat);
5929 xfree (inf_status);
5930 }
5931 \f
5932 int
5933 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
5934 {
5935 struct target_waitstatus last;
5936 ptid_t last_ptid;
5937
5938 get_last_target_status (&last_ptid, &last);
5939
5940 if (last.kind != TARGET_WAITKIND_FORKED)
5941 return 0;
5942
5943 if (!ptid_equal (last_ptid, pid))
5944 return 0;
5945
5946 *child_pid = last.value.related_pid;
5947 return 1;
5948 }
5949
5950 int
5951 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
5952 {
5953 struct target_waitstatus last;
5954 ptid_t last_ptid;
5955
5956 get_last_target_status (&last_ptid, &last);
5957
5958 if (last.kind != TARGET_WAITKIND_VFORKED)
5959 return 0;
5960
5961 if (!ptid_equal (last_ptid, pid))
5962 return 0;
5963
5964 *child_pid = last.value.related_pid;
5965 return 1;
5966 }
5967
5968 int
5969 inferior_has_execd (ptid_t pid, char **execd_pathname)
5970 {
5971 struct target_waitstatus last;
5972 ptid_t last_ptid;
5973
5974 get_last_target_status (&last_ptid, &last);
5975
5976 if (last.kind != TARGET_WAITKIND_EXECD)
5977 return 0;
5978
5979 if (!ptid_equal (last_ptid, pid))
5980 return 0;
5981
5982 *execd_pathname = xstrdup (last.value.execd_pathname);
5983 return 1;
5984 }
5985
5986 int
5987 inferior_has_called_syscall (ptid_t pid, int *syscall_number)
5988 {
5989 struct target_waitstatus last;
5990 ptid_t last_ptid;
5991
5992 get_last_target_status (&last_ptid, &last);
5993
5994 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
5995 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
5996 return 0;
5997
5998 if (!ptid_equal (last_ptid, pid))
5999 return 0;
6000
6001 *syscall_number = last.value.syscall_number;
6002 return 1;
6003 }
6004
6005 /* Oft used ptids */
6006 ptid_t null_ptid;
6007 ptid_t minus_one_ptid;
6008
6009 /* Create a ptid given the necessary PID, LWP, and TID components. */
6010
6011 ptid_t
6012 ptid_build (int pid, long lwp, long tid)
6013 {
6014 ptid_t ptid;
6015
6016 ptid.pid = pid;
6017 ptid.lwp = lwp;
6018 ptid.tid = tid;
6019 return ptid;
6020 }
6021
6022 /* Create a ptid from just a pid. */
6023
6024 ptid_t
6025 pid_to_ptid (int pid)
6026 {
6027 return ptid_build (pid, 0, 0);
6028 }
6029
6030 /* Fetch the pid (process id) component from a ptid. */
6031
6032 int
6033 ptid_get_pid (ptid_t ptid)
6034 {
6035 return ptid.pid;
6036 }
6037
6038 /* Fetch the lwp (lightweight process) component from a ptid. */
6039
6040 long
6041 ptid_get_lwp (ptid_t ptid)
6042 {
6043 return ptid.lwp;
6044 }
6045
6046 /* Fetch the tid (thread id) component from a ptid. */
6047
6048 long
6049 ptid_get_tid (ptid_t ptid)
6050 {
6051 return ptid.tid;
6052 }
6053
6054 /* ptid_equal() is used to test equality of two ptids. */
6055
6056 int
6057 ptid_equal (ptid_t ptid1, ptid_t ptid2)
6058 {
6059 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
6060 && ptid1.tid == ptid2.tid);
6061 }
6062
6063 /* Returns true if PTID represents a process. */
6064
6065 int
6066 ptid_is_pid (ptid_t ptid)
6067 {
6068 if (ptid_equal (minus_one_ptid, ptid))
6069 return 0;
6070 if (ptid_equal (null_ptid, ptid))
6071 return 0;
6072
6073 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
6074 }
6075
6076 /* restore_inferior_ptid() will be used by the cleanup machinery
6077 to restore the inferior_ptid value saved in a call to
6078 save_inferior_ptid(). */
6079
6080 static void
6081 restore_inferior_ptid (void *arg)
6082 {
6083 ptid_t *saved_ptid_ptr = arg;
6084 inferior_ptid = *saved_ptid_ptr;
6085 xfree (arg);
6086 }
6087
6088 /* Save the value of inferior_ptid so that it may be restored by a
6089 later call to do_cleanups(). Returns the struct cleanup pointer
6090 needed for later doing the cleanup. */
6091
6092 struct cleanup *
6093 save_inferior_ptid (void)
6094 {
6095 ptid_t *saved_ptid_ptr;
6096
6097 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6098 *saved_ptid_ptr = inferior_ptid;
6099 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6100 }
6101 \f
6102
6103 /* User interface for reverse debugging:
6104 Set exec-direction / show exec-direction commands
6105 (returns error unless target implements to_set_exec_direction method). */
6106
6107 enum exec_direction_kind execution_direction = EXEC_FORWARD;
6108 static const char exec_forward[] = "forward";
6109 static const char exec_reverse[] = "reverse";
6110 static const char *exec_direction = exec_forward;
6111 static const char *exec_direction_names[] = {
6112 exec_forward,
6113 exec_reverse,
6114 NULL
6115 };
6116
6117 static void
6118 set_exec_direction_func (char *args, int from_tty,
6119 struct cmd_list_element *cmd)
6120 {
6121 if (target_can_execute_reverse)
6122 {
6123 if (!strcmp (exec_direction, exec_forward))
6124 execution_direction = EXEC_FORWARD;
6125 else if (!strcmp (exec_direction, exec_reverse))
6126 execution_direction = EXEC_REVERSE;
6127 }
6128 }
6129
6130 static void
6131 show_exec_direction_func (struct ui_file *out, int from_tty,
6132 struct cmd_list_element *cmd, const char *value)
6133 {
6134 switch (execution_direction) {
6135 case EXEC_FORWARD:
6136 fprintf_filtered (out, _("Forward.\n"));
6137 break;
6138 case EXEC_REVERSE:
6139 fprintf_filtered (out, _("Reverse.\n"));
6140 break;
6141 case EXEC_ERROR:
6142 default:
6143 fprintf_filtered (out,
6144 _("Forward (target `%s' does not support exec-direction).\n"),
6145 target_shortname);
6146 break;
6147 }
6148 }
6149
6150 /* User interface for non-stop mode. */
6151
6152 int non_stop = 0;
6153 static int non_stop_1 = 0;
6154
6155 static void
6156 set_non_stop (char *args, int from_tty,
6157 struct cmd_list_element *c)
6158 {
6159 if (target_has_execution)
6160 {
6161 non_stop_1 = non_stop;
6162 error (_("Cannot change this setting while the inferior is running."));
6163 }
6164
6165 non_stop = non_stop_1;
6166 }
6167
6168 static void
6169 show_non_stop (struct ui_file *file, int from_tty,
6170 struct cmd_list_element *c, const char *value)
6171 {
6172 fprintf_filtered (file,
6173 _("Controlling the inferior in non-stop mode is %s.\n"),
6174 value);
6175 }
6176
6177 static void
6178 show_schedule_multiple (struct ui_file *file, int from_tty,
6179 struct cmd_list_element *c, const char *value)
6180 {
6181 fprintf_filtered (file, _("\
6182 Resuming the execution of threads of all processes is %s.\n"), value);
6183 }
6184
6185 void
6186 _initialize_infrun (void)
6187 {
6188 int i;
6189 int numsigs;
6190 struct cmd_list_element *c;
6191
6192 add_info ("signals", signals_info, _("\
6193 What debugger does when program gets various signals.\n\
6194 Specify a signal as argument to print info on that signal only."));
6195 add_info_alias ("handle", "signals", 0);
6196
6197 add_com ("handle", class_run, handle_command, _("\
6198 Specify how to handle a signal.\n\
6199 Args are signals and actions to apply to those signals.\n\
6200 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6201 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6202 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6203 The special arg \"all\" is recognized to mean all signals except those\n\
6204 used by the debugger, typically SIGTRAP and SIGINT.\n\
6205 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
6206 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6207 Stop means reenter debugger if this signal happens (implies print).\n\
6208 Print means print a message if this signal happens.\n\
6209 Pass means let program see this signal; otherwise program doesn't know.\n\
6210 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6211 Pass and Stop may be combined."));
6212 if (xdb_commands)
6213 {
6214 add_com ("lz", class_info, signals_info, _("\
6215 What debugger does when program gets various signals.\n\
6216 Specify a signal as argument to print info on that signal only."));
6217 add_com ("z", class_run, xdb_handle_command, _("\
6218 Specify how to handle a signal.\n\
6219 Args are signals and actions to apply to those signals.\n\
6220 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6221 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6222 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6223 The special arg \"all\" is recognized to mean all signals except those\n\
6224 used by the debugger, typically SIGTRAP and SIGINT.\n\
6225 Recognized actions include \"s\" (toggles between stop and nostop), \n\
6226 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6227 nopass), \"Q\" (noprint)\n\
6228 Stop means reenter debugger if this signal happens (implies print).\n\
6229 Print means print a message if this signal happens.\n\
6230 Pass means let program see this signal; otherwise program doesn't know.\n\
6231 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6232 Pass and Stop may be combined."));
6233 }
6234
6235 if (!dbx_commands)
6236 stop_command = add_cmd ("stop", class_obscure,
6237 not_just_help_class_command, _("\
6238 There is no `stop' command, but you can set a hook on `stop'.\n\
6239 This allows you to set a list of commands to be run each time execution\n\
6240 of the program stops."), &cmdlist);
6241
6242 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
6243 Set inferior debugging."), _("\
6244 Show inferior debugging."), _("\
6245 When non-zero, inferior specific debugging is enabled."),
6246 NULL,
6247 show_debug_infrun,
6248 &setdebuglist, &showdebuglist);
6249
6250 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
6251 Set displaced stepping debugging."), _("\
6252 Show displaced stepping debugging."), _("\
6253 When non-zero, displaced stepping specific debugging is enabled."),
6254 NULL,
6255 show_debug_displaced,
6256 &setdebuglist, &showdebuglist);
6257
6258 add_setshow_boolean_cmd ("non-stop", no_class,
6259 &non_stop_1, _("\
6260 Set whether gdb controls the inferior in non-stop mode."), _("\
6261 Show whether gdb controls the inferior in non-stop mode."), _("\
6262 When debugging a multi-threaded program and this setting is\n\
6263 off (the default, also called all-stop mode), when one thread stops\n\
6264 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
6265 all other threads in the program while you interact with the thread of\n\
6266 interest. When you continue or step a thread, you can allow the other\n\
6267 threads to run, or have them remain stopped, but while you inspect any\n\
6268 thread's state, all threads stop.\n\
6269 \n\
6270 In non-stop mode, when one thread stops, other threads can continue\n\
6271 to run freely. You'll be able to step each thread independently,\n\
6272 leave it stopped or free to run as needed."),
6273 set_non_stop,
6274 show_non_stop,
6275 &setlist,
6276 &showlist);
6277
6278 numsigs = (int) TARGET_SIGNAL_LAST;
6279 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
6280 signal_print = (unsigned char *)
6281 xmalloc (sizeof (signal_print[0]) * numsigs);
6282 signal_program = (unsigned char *)
6283 xmalloc (sizeof (signal_program[0]) * numsigs);
6284 for (i = 0; i < numsigs; i++)
6285 {
6286 signal_stop[i] = 1;
6287 signal_print[i] = 1;
6288 signal_program[i] = 1;
6289 }
6290
6291 /* Signals caused by debugger's own actions
6292 should not be given to the program afterwards. */
6293 signal_program[TARGET_SIGNAL_TRAP] = 0;
6294 signal_program[TARGET_SIGNAL_INT] = 0;
6295
6296 /* Signals that are not errors should not normally enter the debugger. */
6297 signal_stop[TARGET_SIGNAL_ALRM] = 0;
6298 signal_print[TARGET_SIGNAL_ALRM] = 0;
6299 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
6300 signal_print[TARGET_SIGNAL_VTALRM] = 0;
6301 signal_stop[TARGET_SIGNAL_PROF] = 0;
6302 signal_print[TARGET_SIGNAL_PROF] = 0;
6303 signal_stop[TARGET_SIGNAL_CHLD] = 0;
6304 signal_print[TARGET_SIGNAL_CHLD] = 0;
6305 signal_stop[TARGET_SIGNAL_IO] = 0;
6306 signal_print[TARGET_SIGNAL_IO] = 0;
6307 signal_stop[TARGET_SIGNAL_POLL] = 0;
6308 signal_print[TARGET_SIGNAL_POLL] = 0;
6309 signal_stop[TARGET_SIGNAL_URG] = 0;
6310 signal_print[TARGET_SIGNAL_URG] = 0;
6311 signal_stop[TARGET_SIGNAL_WINCH] = 0;
6312 signal_print[TARGET_SIGNAL_WINCH] = 0;
6313
6314 /* These signals are used internally by user-level thread
6315 implementations. (See signal(5) on Solaris.) Like the above
6316 signals, a healthy program receives and handles them as part of
6317 its normal operation. */
6318 signal_stop[TARGET_SIGNAL_LWP] = 0;
6319 signal_print[TARGET_SIGNAL_LWP] = 0;
6320 signal_stop[TARGET_SIGNAL_WAITING] = 0;
6321 signal_print[TARGET_SIGNAL_WAITING] = 0;
6322 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
6323 signal_print[TARGET_SIGNAL_CANCEL] = 0;
6324
6325 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
6326 &stop_on_solib_events, _("\
6327 Set stopping for shared library events."), _("\
6328 Show stopping for shared library events."), _("\
6329 If nonzero, gdb will give control to the user when the dynamic linker\n\
6330 notifies gdb of shared library events. The most common event of interest\n\
6331 to the user would be loading/unloading of a new library."),
6332 NULL,
6333 show_stop_on_solib_events,
6334 &setlist, &showlist);
6335
6336 add_setshow_enum_cmd ("follow-fork-mode", class_run,
6337 follow_fork_mode_kind_names,
6338 &follow_fork_mode_string, _("\
6339 Set debugger response to a program call of fork or vfork."), _("\
6340 Show debugger response to a program call of fork or vfork."), _("\
6341 A fork or vfork creates a new process. follow-fork-mode can be:\n\
6342 parent - the original process is debugged after a fork\n\
6343 child - the new process is debugged after a fork\n\
6344 The unfollowed process will continue to run.\n\
6345 By default, the debugger will follow the parent process."),
6346 NULL,
6347 show_follow_fork_mode_string,
6348 &setlist, &showlist);
6349
6350 add_setshow_enum_cmd ("follow-exec-mode", class_run,
6351 follow_exec_mode_names,
6352 &follow_exec_mode_string, _("\
6353 Set debugger response to a program call of exec."), _("\
6354 Show debugger response to a program call of exec."), _("\
6355 An exec call replaces the program image of a process.\n\
6356 \n\
6357 follow-exec-mode can be:\n\
6358 \n\
6359 new - the debugger creates a new inferior and rebinds the process \n\
6360 to this new inferior. The program the process was running before\n\
6361 the exec call can be restarted afterwards by restarting the original\n\
6362 inferior.\n\
6363 \n\
6364 same - the debugger keeps the process bound to the same inferior.\n\
6365 The new executable image replaces the previous executable loaded in\n\
6366 the inferior. Restarting the inferior after the exec call restarts\n\
6367 the executable the process was running after the exec call.\n\
6368 \n\
6369 By default, the debugger will use the same inferior."),
6370 NULL,
6371 show_follow_exec_mode_string,
6372 &setlist, &showlist);
6373
6374 add_setshow_enum_cmd ("scheduler-locking", class_run,
6375 scheduler_enums, &scheduler_mode, _("\
6376 Set mode for locking scheduler during execution."), _("\
6377 Show mode for locking scheduler during execution."), _("\
6378 off == no locking (threads may preempt at any time)\n\
6379 on == full locking (no thread except the current thread may run)\n\
6380 step == scheduler locked during every single-step operation.\n\
6381 In this mode, no other thread may run during a step command.\n\
6382 Other threads may run while stepping over a function call ('next')."),
6383 set_schedlock_func, /* traps on target vector */
6384 show_scheduler_mode,
6385 &setlist, &showlist);
6386
6387 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
6388 Set mode for resuming threads of all processes."), _("\
6389 Show mode for resuming threads of all processes."), _("\
6390 When on, execution commands (such as 'continue' or 'next') resume all\n\
6391 threads of all processes. When off (which is the default), execution\n\
6392 commands only resume the threads of the current process. The set of\n\
6393 threads that are resumed is further refined by the scheduler-locking\n\
6394 mode (see help set scheduler-locking)."),
6395 NULL,
6396 show_schedule_multiple,
6397 &setlist, &showlist);
6398
6399 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
6400 Set mode of the step operation."), _("\
6401 Show mode of the step operation."), _("\
6402 When set, doing a step over a function without debug line information\n\
6403 will stop at the first instruction of that function. Otherwise, the\n\
6404 function is skipped and the step command stops at a different source line."),
6405 NULL,
6406 show_step_stop_if_no_debug,
6407 &setlist, &showlist);
6408
6409 add_setshow_enum_cmd ("displaced-stepping", class_run,
6410 can_use_displaced_stepping_enum,
6411 &can_use_displaced_stepping, _("\
6412 Set debugger's willingness to use displaced stepping."), _("\
6413 Show debugger's willingness to use displaced stepping."), _("\
6414 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
6415 supported by the target architecture. If off, gdb will not use displaced\n\
6416 stepping to step over breakpoints, even if such is supported by the target\n\
6417 architecture. If auto (which is the default), gdb will use displaced stepping\n\
6418 if the target architecture supports it and non-stop mode is active, but will not\n\
6419 use it in all-stop mode (see help set non-stop)."),
6420 NULL,
6421 show_can_use_displaced_stepping,
6422 &setlist, &showlist);
6423
6424 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
6425 &exec_direction, _("Set direction of execution.\n\
6426 Options are 'forward' or 'reverse'."),
6427 _("Show direction of execution (forward/reverse)."),
6428 _("Tells gdb whether to execute forward or backward."),
6429 set_exec_direction_func, show_exec_direction_func,
6430 &setlist, &showlist);
6431
6432 /* Set/show detach-on-fork: user-settable mode. */
6433
6434 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
6435 Set whether gdb will detach the child of a fork."), _("\
6436 Show whether gdb will detach the child of a fork."), _("\
6437 Tells gdb whether to detach the child of a fork."),
6438 NULL, NULL, &setlist, &showlist);
6439
6440 /* ptid initializations */
6441 null_ptid = ptid_build (0, 0, 0);
6442 minus_one_ptid = ptid_build (-1, 0, 0);
6443 inferior_ptid = null_ptid;
6444 target_last_wait_ptid = minus_one_ptid;
6445 displaced_step_ptid = null_ptid;
6446
6447 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
6448 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
6449 observer_attach_thread_exit (infrun_thread_thread_exit);
6450
6451 /* Explicitly create without lookup, since that tries to create a
6452 value with a void typed value, and when we get here, gdbarch
6453 isn't initialized yet. At this point, we're quite sure there
6454 isn't another convenience variable of the same name. */
6455 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
6456 }