* infrun.c (handle_inferior_event): Remove redundant resetting of
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51 #include "event-top.h"
52
53 /* Prototypes for local functions */
54
55 static void signals_info (char *, int);
56
57 static void handle_command (char *, int);
58
59 static void sig_print_info (enum target_signal);
60
61 static void sig_print_header (void);
62
63 static void resume_cleanups (void *);
64
65 static int hook_stop_stub (void *);
66
67 static int restore_selected_frame (void *);
68
69 static void build_infrun (void);
70
71 static int follow_fork (void);
72
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
75
76 static int currently_stepping (struct thread_info *tp);
77
78 static int currently_stepping_callback (struct thread_info *tp, void *data);
79
80 static void xdb_handle_command (char *args, int from_tty);
81
82 static int prepare_to_proceed (int);
83
84 void _initialize_infrun (void);
85
86 /* When set, stop the 'step' command if we enter a function which has
87 no line number information. The normal behavior is that we step
88 over such function. */
89 int step_stop_if_no_debug = 0;
90 static void
91 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
92 struct cmd_list_element *c, const char *value)
93 {
94 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
95 }
96
97 /* In asynchronous mode, but simulating synchronous execution. */
98
99 int sync_execution = 0;
100
101 /* wait_for_inferior and normal_stop use this to notify the user
102 when the inferior stopped in a different thread than it had been
103 running in. */
104
105 static ptid_t previous_inferior_ptid;
106
107 int debug_displaced = 0;
108 static void
109 show_debug_displaced (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
111 {
112 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
113 }
114
115 static int debug_infrun = 0;
116 static void
117 show_debug_infrun (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
121 }
122
123 /* If the program uses ELF-style shared libraries, then calls to
124 functions in shared libraries go through stubs, which live in a
125 table called the PLT (Procedure Linkage Table). The first time the
126 function is called, the stub sends control to the dynamic linker,
127 which looks up the function's real address, patches the stub so
128 that future calls will go directly to the function, and then passes
129 control to the function.
130
131 If we are stepping at the source level, we don't want to see any of
132 this --- we just want to skip over the stub and the dynamic linker.
133 The simple approach is to single-step until control leaves the
134 dynamic linker.
135
136 However, on some systems (e.g., Red Hat's 5.2 distribution) the
137 dynamic linker calls functions in the shared C library, so you
138 can't tell from the PC alone whether the dynamic linker is still
139 running. In this case, we use a step-resume breakpoint to get us
140 past the dynamic linker, as if we were using "next" to step over a
141 function call.
142
143 in_solib_dynsym_resolve_code() says whether we're in the dynamic
144 linker code or not. Normally, this means we single-step. However,
145 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
146 address where we can place a step-resume breakpoint to get past the
147 linker's symbol resolution function.
148
149 in_solib_dynsym_resolve_code() can generally be implemented in a
150 pretty portable way, by comparing the PC against the address ranges
151 of the dynamic linker's sections.
152
153 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
154 it depends on internal details of the dynamic linker. It's usually
155 not too hard to figure out where to put a breakpoint, but it
156 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
157 sanity checking. If it can't figure things out, returning zero and
158 getting the (possibly confusing) stepping behavior is better than
159 signalling an error, which will obscure the change in the
160 inferior's state. */
161
162 /* This function returns TRUE if pc is the address of an instruction
163 that lies within the dynamic linker (such as the event hook, or the
164 dld itself).
165
166 This function must be used only when a dynamic linker event has
167 been caught, and the inferior is being stepped out of the hook, or
168 undefined results are guaranteed. */
169
170 #ifndef SOLIB_IN_DYNAMIC_LINKER
171 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
172 #endif
173
174
175 /* Convert the #defines into values. This is temporary until wfi control
176 flow is completely sorted out. */
177
178 #ifndef CANNOT_STEP_HW_WATCHPOINTS
179 #define CANNOT_STEP_HW_WATCHPOINTS 0
180 #else
181 #undef CANNOT_STEP_HW_WATCHPOINTS
182 #define CANNOT_STEP_HW_WATCHPOINTS 1
183 #endif
184
185 /* Tables of how to react to signals; the user sets them. */
186
187 static unsigned char *signal_stop;
188 static unsigned char *signal_print;
189 static unsigned char *signal_program;
190
191 #define SET_SIGS(nsigs,sigs,flags) \
192 do { \
193 int signum = (nsigs); \
194 while (signum-- > 0) \
195 if ((sigs)[signum]) \
196 (flags)[signum] = 1; \
197 } while (0)
198
199 #define UNSET_SIGS(nsigs,sigs,flags) \
200 do { \
201 int signum = (nsigs); \
202 while (signum-- > 0) \
203 if ((sigs)[signum]) \
204 (flags)[signum] = 0; \
205 } while (0)
206
207 /* Value to pass to target_resume() to cause all threads to resume */
208
209 #define RESUME_ALL (pid_to_ptid (-1))
210
211 /* Command list pointer for the "stop" placeholder. */
212
213 static struct cmd_list_element *stop_command;
214
215 /* Function inferior was in as of last step command. */
216
217 static struct symbol *step_start_function;
218
219 /* Nonzero if we want to give control to the user when we're notified
220 of shared library events by the dynamic linker. */
221 static int stop_on_solib_events;
222 static void
223 show_stop_on_solib_events (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
227 value);
228 }
229
230 /* Nonzero means expecting a trace trap
231 and should stop the inferior and return silently when it happens. */
232
233 int stop_after_trap;
234
235 /* Save register contents here when executing a "finish" command or are
236 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
237 Thus this contains the return value from the called function (assuming
238 values are returned in a register). */
239
240 struct regcache *stop_registers;
241
242 /* Nonzero after stop if current stack frame should be printed. */
243
244 static int stop_print_frame;
245
246 /* This is a cached copy of the pid/waitstatus of the last event
247 returned by target_wait()/deprecated_target_wait_hook(). This
248 information is returned by get_last_target_status(). */
249 static ptid_t target_last_wait_ptid;
250 static struct target_waitstatus target_last_waitstatus;
251
252 static void context_switch (ptid_t ptid);
253
254 void init_thread_stepping_state (struct thread_info *tss);
255
256 void init_infwait_state (void);
257
258 /* This is used to remember when a fork, vfork or exec event
259 was caught by a catchpoint, and thus the event is to be
260 followed at the next resume of the inferior, and not
261 immediately. */
262 static struct
263 {
264 enum target_waitkind kind;
265 struct
266 {
267 ptid_t parent_pid;
268 ptid_t child_pid;
269 }
270 fork_event;
271 char *execd_pathname;
272 }
273 pending_follow;
274
275 static const char follow_fork_mode_child[] = "child";
276 static const char follow_fork_mode_parent[] = "parent";
277
278 static const char *follow_fork_mode_kind_names[] = {
279 follow_fork_mode_child,
280 follow_fork_mode_parent,
281 NULL
282 };
283
284 static const char *follow_fork_mode_string = follow_fork_mode_parent;
285 static void
286 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
287 struct cmd_list_element *c, const char *value)
288 {
289 fprintf_filtered (file, _("\
290 Debugger response to a program call of fork or vfork is \"%s\".\n"),
291 value);
292 }
293 \f
294
295 static int
296 follow_fork (void)
297 {
298 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
299
300 return target_follow_fork (follow_child);
301 }
302
303 void
304 follow_inferior_reset_breakpoints (void)
305 {
306 struct thread_info *tp = inferior_thread ();
307
308 /* Was there a step_resume breakpoint? (There was if the user
309 did a "next" at the fork() call.) If so, explicitly reset its
310 thread number.
311
312 step_resumes are a form of bp that are made to be per-thread.
313 Since we created the step_resume bp when the parent process
314 was being debugged, and now are switching to the child process,
315 from the breakpoint package's viewpoint, that's a switch of
316 "threads". We must update the bp's notion of which thread
317 it is for, or it'll be ignored when it triggers. */
318
319 if (tp->step_resume_breakpoint)
320 breakpoint_re_set_thread (tp->step_resume_breakpoint);
321
322 /* Reinsert all breakpoints in the child. The user may have set
323 breakpoints after catching the fork, in which case those
324 were never set in the child, but only in the parent. This makes
325 sure the inserted breakpoints match the breakpoint list. */
326
327 breakpoint_re_set ();
328 insert_breakpoints ();
329 }
330
331 /* EXECD_PATHNAME is assumed to be non-NULL. */
332
333 static void
334 follow_exec (ptid_t pid, char *execd_pathname)
335 {
336 struct target_ops *tgt;
337 struct thread_info *th = inferior_thread ();
338
339 /* This is an exec event that we actually wish to pay attention to.
340 Refresh our symbol table to the newly exec'd program, remove any
341 momentary bp's, etc.
342
343 If there are breakpoints, they aren't really inserted now,
344 since the exec() transformed our inferior into a fresh set
345 of instructions.
346
347 We want to preserve symbolic breakpoints on the list, since
348 we have hopes that they can be reset after the new a.out's
349 symbol table is read.
350
351 However, any "raw" breakpoints must be removed from the list
352 (e.g., the solib bp's), since their address is probably invalid
353 now.
354
355 And, we DON'T want to call delete_breakpoints() here, since
356 that may write the bp's "shadow contents" (the instruction
357 value that was overwritten witha TRAP instruction). Since
358 we now have a new a.out, those shadow contents aren't valid. */
359 update_breakpoints_after_exec ();
360
361 /* If there was one, it's gone now. We cannot truly step-to-next
362 statement through an exec(). */
363 th->step_resume_breakpoint = NULL;
364 th->step_range_start = 0;
365 th->step_range_end = 0;
366
367 /* What is this a.out's name? */
368 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
369
370 /* We've followed the inferior through an exec. Therefore, the
371 inferior has essentially been killed & reborn. */
372
373 gdb_flush (gdb_stdout);
374
375 breakpoint_init_inferior (inf_execd);
376
377 if (gdb_sysroot && *gdb_sysroot)
378 {
379 char *name = alloca (strlen (gdb_sysroot)
380 + strlen (execd_pathname)
381 + 1);
382 strcpy (name, gdb_sysroot);
383 strcat (name, execd_pathname);
384 execd_pathname = name;
385 }
386
387 /* That a.out is now the one to use. */
388 exec_file_attach (execd_pathname, 0);
389
390 /* Reset the shared library package. This ensures that we get a
391 shlib event when the child reaches "_start", at which point the
392 dld will have had a chance to initialize the child. */
393 /* Also, loading a symbol file below may trigger symbol lookups, and
394 we don't want those to be satisfied by the libraries of the
395 previous incarnation of this process. */
396 no_shared_libraries (NULL, 0);
397
398 /* Load the main file's symbols. */
399 symbol_file_add_main (execd_pathname, 0);
400
401 #ifdef SOLIB_CREATE_INFERIOR_HOOK
402 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
403 #else
404 solib_create_inferior_hook ();
405 #endif
406
407 /* Reinsert all breakpoints. (Those which were symbolic have
408 been reset to the proper address in the new a.out, thanks
409 to symbol_file_command...) */
410 insert_breakpoints ();
411
412 /* The next resume of this inferior should bring it to the shlib
413 startup breakpoints. (If the user had also set bp's on
414 "main" from the old (parent) process, then they'll auto-
415 matically get reset there in the new process.) */
416 }
417
418 /* Non-zero if we just simulating a single-step. This is needed
419 because we cannot remove the breakpoints in the inferior process
420 until after the `wait' in `wait_for_inferior'. */
421 static int singlestep_breakpoints_inserted_p = 0;
422
423 /* The thread we inserted single-step breakpoints for. */
424 static ptid_t singlestep_ptid;
425
426 /* PC when we started this single-step. */
427 static CORE_ADDR singlestep_pc;
428
429 /* If another thread hit the singlestep breakpoint, we save the original
430 thread here so that we can resume single-stepping it later. */
431 static ptid_t saved_singlestep_ptid;
432 static int stepping_past_singlestep_breakpoint;
433
434 /* If not equal to null_ptid, this means that after stepping over breakpoint
435 is finished, we need to switch to deferred_step_ptid, and step it.
436
437 The use case is when one thread has hit a breakpoint, and then the user
438 has switched to another thread and issued 'step'. We need to step over
439 breakpoint in the thread which hit the breakpoint, but then continue
440 stepping the thread user has selected. */
441 static ptid_t deferred_step_ptid;
442 \f
443 /* Displaced stepping. */
444
445 /* In non-stop debugging mode, we must take special care to manage
446 breakpoints properly; in particular, the traditional strategy for
447 stepping a thread past a breakpoint it has hit is unsuitable.
448 'Displaced stepping' is a tactic for stepping one thread past a
449 breakpoint it has hit while ensuring that other threads running
450 concurrently will hit the breakpoint as they should.
451
452 The traditional way to step a thread T off a breakpoint in a
453 multi-threaded program in all-stop mode is as follows:
454
455 a0) Initially, all threads are stopped, and breakpoints are not
456 inserted.
457 a1) We single-step T, leaving breakpoints uninserted.
458 a2) We insert breakpoints, and resume all threads.
459
460 In non-stop debugging, however, this strategy is unsuitable: we
461 don't want to have to stop all threads in the system in order to
462 continue or step T past a breakpoint. Instead, we use displaced
463 stepping:
464
465 n0) Initially, T is stopped, other threads are running, and
466 breakpoints are inserted.
467 n1) We copy the instruction "under" the breakpoint to a separate
468 location, outside the main code stream, making any adjustments
469 to the instruction, register, and memory state as directed by
470 T's architecture.
471 n2) We single-step T over the instruction at its new location.
472 n3) We adjust the resulting register and memory state as directed
473 by T's architecture. This includes resetting T's PC to point
474 back into the main instruction stream.
475 n4) We resume T.
476
477 This approach depends on the following gdbarch methods:
478
479 - gdbarch_max_insn_length and gdbarch_displaced_step_location
480 indicate where to copy the instruction, and how much space must
481 be reserved there. We use these in step n1.
482
483 - gdbarch_displaced_step_copy_insn copies a instruction to a new
484 address, and makes any necessary adjustments to the instruction,
485 register contents, and memory. We use this in step n1.
486
487 - gdbarch_displaced_step_fixup adjusts registers and memory after
488 we have successfuly single-stepped the instruction, to yield the
489 same effect the instruction would have had if we had executed it
490 at its original address. We use this in step n3.
491
492 - gdbarch_displaced_step_free_closure provides cleanup.
493
494 The gdbarch_displaced_step_copy_insn and
495 gdbarch_displaced_step_fixup functions must be written so that
496 copying an instruction with gdbarch_displaced_step_copy_insn,
497 single-stepping across the copied instruction, and then applying
498 gdbarch_displaced_insn_fixup should have the same effects on the
499 thread's memory and registers as stepping the instruction in place
500 would have. Exactly which responsibilities fall to the copy and
501 which fall to the fixup is up to the author of those functions.
502
503 See the comments in gdbarch.sh for details.
504
505 Note that displaced stepping and software single-step cannot
506 currently be used in combination, although with some care I think
507 they could be made to. Software single-step works by placing
508 breakpoints on all possible subsequent instructions; if the
509 displaced instruction is a PC-relative jump, those breakpoints
510 could fall in very strange places --- on pages that aren't
511 executable, or at addresses that are not proper instruction
512 boundaries. (We do generally let other threads run while we wait
513 to hit the software single-step breakpoint, and they might
514 encounter such a corrupted instruction.) One way to work around
515 this would be to have gdbarch_displaced_step_copy_insn fully
516 simulate the effect of PC-relative instructions (and return NULL)
517 on architectures that use software single-stepping.
518
519 In non-stop mode, we can have independent and simultaneous step
520 requests, so more than one thread may need to simultaneously step
521 over a breakpoint. The current implementation assumes there is
522 only one scratch space per process. In this case, we have to
523 serialize access to the scratch space. If thread A wants to step
524 over a breakpoint, but we are currently waiting for some other
525 thread to complete a displaced step, we leave thread A stopped and
526 place it in the displaced_step_request_queue. Whenever a displaced
527 step finishes, we pick the next thread in the queue and start a new
528 displaced step operation on it. See displaced_step_prepare and
529 displaced_step_fixup for details. */
530
531 /* If this is not null_ptid, this is the thread carrying out a
532 displaced single-step. This thread's state will require fixing up
533 once it has completed its step. */
534 static ptid_t displaced_step_ptid;
535
536 struct displaced_step_request
537 {
538 ptid_t ptid;
539 struct displaced_step_request *next;
540 };
541
542 /* A queue of pending displaced stepping requests. */
543 struct displaced_step_request *displaced_step_request_queue;
544
545 /* The architecture the thread had when we stepped it. */
546 static struct gdbarch *displaced_step_gdbarch;
547
548 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
549 for post-step cleanup. */
550 static struct displaced_step_closure *displaced_step_closure;
551
552 /* The address of the original instruction, and the copy we made. */
553 static CORE_ADDR displaced_step_original, displaced_step_copy;
554
555 /* Saved contents of copy area. */
556 static gdb_byte *displaced_step_saved_copy;
557
558 /* Enum strings for "set|show displaced-stepping". */
559
560 static const char can_use_displaced_stepping_auto[] = "auto";
561 static const char can_use_displaced_stepping_on[] = "on";
562 static const char can_use_displaced_stepping_off[] = "off";
563 static const char *can_use_displaced_stepping_enum[] =
564 {
565 can_use_displaced_stepping_auto,
566 can_use_displaced_stepping_on,
567 can_use_displaced_stepping_off,
568 NULL,
569 };
570
571 /* If ON, and the architecture supports it, GDB will use displaced
572 stepping to step over breakpoints. If OFF, or if the architecture
573 doesn't support it, GDB will instead use the traditional
574 hold-and-step approach. If AUTO (which is the default), GDB will
575 decide which technique to use to step over breakpoints depending on
576 which of all-stop or non-stop mode is active --- displaced stepping
577 in non-stop mode; hold-and-step in all-stop mode. */
578
579 static const char *can_use_displaced_stepping =
580 can_use_displaced_stepping_auto;
581
582 static void
583 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
584 struct cmd_list_element *c,
585 const char *value)
586 {
587 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
588 fprintf_filtered (file, _("\
589 Debugger's willingness to use displaced stepping to step over \
590 breakpoints is %s (currently %s).\n"),
591 value, non_stop ? "on" : "off");
592 else
593 fprintf_filtered (file, _("\
594 Debugger's willingness to use displaced stepping to step over \
595 breakpoints is %s.\n"), value);
596 }
597
598 /* Return non-zero if displaced stepping can/should be used to step
599 over breakpoints. */
600
601 static int
602 use_displaced_stepping (struct gdbarch *gdbarch)
603 {
604 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
605 && non_stop)
606 || can_use_displaced_stepping == can_use_displaced_stepping_on)
607 && gdbarch_displaced_step_copy_insn_p (gdbarch));
608 }
609
610 /* Clean out any stray displaced stepping state. */
611 static void
612 displaced_step_clear (void)
613 {
614 /* Indicate that there is no cleanup pending. */
615 displaced_step_ptid = null_ptid;
616
617 if (displaced_step_closure)
618 {
619 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
620 displaced_step_closure);
621 displaced_step_closure = NULL;
622 }
623 }
624
625 static void
626 cleanup_displaced_step_closure (void *ptr)
627 {
628 struct displaced_step_closure *closure = ptr;
629
630 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
631 }
632
633 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
634 void
635 displaced_step_dump_bytes (struct ui_file *file,
636 const gdb_byte *buf,
637 size_t len)
638 {
639 int i;
640
641 for (i = 0; i < len; i++)
642 fprintf_unfiltered (file, "%02x ", buf[i]);
643 fputs_unfiltered ("\n", file);
644 }
645
646 /* Prepare to single-step, using displaced stepping.
647
648 Note that we cannot use displaced stepping when we have a signal to
649 deliver. If we have a signal to deliver and an instruction to step
650 over, then after the step, there will be no indication from the
651 target whether the thread entered a signal handler or ignored the
652 signal and stepped over the instruction successfully --- both cases
653 result in a simple SIGTRAP. In the first case we mustn't do a
654 fixup, and in the second case we must --- but we can't tell which.
655 Comments in the code for 'random signals' in handle_inferior_event
656 explain how we handle this case instead.
657
658 Returns 1 if preparing was successful -- this thread is going to be
659 stepped now; or 0 if displaced stepping this thread got queued. */
660 static int
661 displaced_step_prepare (ptid_t ptid)
662 {
663 struct cleanup *old_cleanups, *ignore_cleanups;
664 struct regcache *regcache = get_thread_regcache (ptid);
665 struct gdbarch *gdbarch = get_regcache_arch (regcache);
666 CORE_ADDR original, copy;
667 ULONGEST len;
668 struct displaced_step_closure *closure;
669
670 /* We should never reach this function if the architecture does not
671 support displaced stepping. */
672 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
673
674 /* For the first cut, we're displaced stepping one thread at a
675 time. */
676
677 if (!ptid_equal (displaced_step_ptid, null_ptid))
678 {
679 /* Already waiting for a displaced step to finish. Defer this
680 request and place in queue. */
681 struct displaced_step_request *req, *new_req;
682
683 if (debug_displaced)
684 fprintf_unfiltered (gdb_stdlog,
685 "displaced: defering step of %s\n",
686 target_pid_to_str (ptid));
687
688 new_req = xmalloc (sizeof (*new_req));
689 new_req->ptid = ptid;
690 new_req->next = NULL;
691
692 if (displaced_step_request_queue)
693 {
694 for (req = displaced_step_request_queue;
695 req && req->next;
696 req = req->next)
697 ;
698 req->next = new_req;
699 }
700 else
701 displaced_step_request_queue = new_req;
702
703 return 0;
704 }
705 else
706 {
707 if (debug_displaced)
708 fprintf_unfiltered (gdb_stdlog,
709 "displaced: stepping %s now\n",
710 target_pid_to_str (ptid));
711 }
712
713 displaced_step_clear ();
714
715 old_cleanups = save_inferior_ptid ();
716 inferior_ptid = ptid;
717
718 original = regcache_read_pc (regcache);
719
720 copy = gdbarch_displaced_step_location (gdbarch);
721 len = gdbarch_max_insn_length (gdbarch);
722
723 /* Save the original contents of the copy area. */
724 displaced_step_saved_copy = xmalloc (len);
725 ignore_cleanups = make_cleanup (free_current_contents,
726 &displaced_step_saved_copy);
727 read_memory (copy, displaced_step_saved_copy, len);
728 if (debug_displaced)
729 {
730 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
731 paddr_nz (copy));
732 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
733 };
734
735 closure = gdbarch_displaced_step_copy_insn (gdbarch,
736 original, copy, regcache);
737
738 /* We don't support the fully-simulated case at present. */
739 gdb_assert (closure);
740
741 make_cleanup (cleanup_displaced_step_closure, closure);
742
743 /* Resume execution at the copy. */
744 regcache_write_pc (regcache, copy);
745
746 discard_cleanups (ignore_cleanups);
747
748 do_cleanups (old_cleanups);
749
750 if (debug_displaced)
751 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
752 paddr_nz (copy));
753
754 /* Save the information we need to fix things up if the step
755 succeeds. */
756 displaced_step_ptid = ptid;
757 displaced_step_gdbarch = gdbarch;
758 displaced_step_closure = closure;
759 displaced_step_original = original;
760 displaced_step_copy = copy;
761 return 1;
762 }
763
764 static void
765 displaced_step_clear_cleanup (void *ignore)
766 {
767 displaced_step_clear ();
768 }
769
770 static void
771 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
772 {
773 struct cleanup *ptid_cleanup = save_inferior_ptid ();
774 inferior_ptid = ptid;
775 write_memory (memaddr, myaddr, len);
776 do_cleanups (ptid_cleanup);
777 }
778
779 static void
780 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
781 {
782 struct cleanup *old_cleanups;
783
784 /* Was this event for the pid we displaced? */
785 if (ptid_equal (displaced_step_ptid, null_ptid)
786 || ! ptid_equal (displaced_step_ptid, event_ptid))
787 return;
788
789 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
790
791 /* Restore the contents of the copy area. */
792 {
793 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
794 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
795 displaced_step_saved_copy, len);
796 if (debug_displaced)
797 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
798 paddr_nz (displaced_step_copy));
799 }
800
801 /* Did the instruction complete successfully? */
802 if (signal == TARGET_SIGNAL_TRAP)
803 {
804 /* Fix up the resulting state. */
805 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
806 displaced_step_closure,
807 displaced_step_original,
808 displaced_step_copy,
809 get_thread_regcache (displaced_step_ptid));
810 }
811 else
812 {
813 /* Since the instruction didn't complete, all we can do is
814 relocate the PC. */
815 struct regcache *regcache = get_thread_regcache (event_ptid);
816 CORE_ADDR pc = regcache_read_pc (regcache);
817 pc = displaced_step_original + (pc - displaced_step_copy);
818 regcache_write_pc (regcache, pc);
819 }
820
821 do_cleanups (old_cleanups);
822
823 displaced_step_ptid = null_ptid;
824
825 /* Are there any pending displaced stepping requests? If so, run
826 one now. */
827 while (displaced_step_request_queue)
828 {
829 struct displaced_step_request *head;
830 ptid_t ptid;
831 CORE_ADDR actual_pc;
832
833 head = displaced_step_request_queue;
834 ptid = head->ptid;
835 displaced_step_request_queue = head->next;
836 xfree (head);
837
838 context_switch (ptid);
839
840 actual_pc = read_pc ();
841
842 if (breakpoint_here_p (actual_pc))
843 {
844 if (debug_displaced)
845 fprintf_unfiltered (gdb_stdlog,
846 "displaced: stepping queued %s now\n",
847 target_pid_to_str (ptid));
848
849 displaced_step_prepare (ptid);
850
851 if (debug_displaced)
852 {
853 gdb_byte buf[4];
854
855 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
856 paddr_nz (actual_pc));
857 read_memory (actual_pc, buf, sizeof (buf));
858 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
859 }
860
861 target_resume (ptid, 1, TARGET_SIGNAL_0);
862
863 /* Done, we're stepping a thread. */
864 break;
865 }
866 else
867 {
868 int step;
869 struct thread_info *tp = inferior_thread ();
870
871 /* The breakpoint we were sitting under has since been
872 removed. */
873 tp->trap_expected = 0;
874
875 /* Go back to what we were trying to do. */
876 step = currently_stepping (tp);
877
878 if (debug_displaced)
879 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
880 target_pid_to_str (tp->ptid), step);
881
882 target_resume (ptid, step, TARGET_SIGNAL_0);
883 tp->stop_signal = TARGET_SIGNAL_0;
884
885 /* This request was discarded. See if there's any other
886 thread waiting for its turn. */
887 }
888 }
889 }
890
891 /* Update global variables holding ptids to hold NEW_PTID if they were
892 holding OLD_PTID. */
893 static void
894 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
895 {
896 struct displaced_step_request *it;
897
898 if (ptid_equal (inferior_ptid, old_ptid))
899 inferior_ptid = new_ptid;
900
901 if (ptid_equal (singlestep_ptid, old_ptid))
902 singlestep_ptid = new_ptid;
903
904 if (ptid_equal (displaced_step_ptid, old_ptid))
905 displaced_step_ptid = new_ptid;
906
907 if (ptid_equal (deferred_step_ptid, old_ptid))
908 deferred_step_ptid = new_ptid;
909
910 for (it = displaced_step_request_queue; it; it = it->next)
911 if (ptid_equal (it->ptid, old_ptid))
912 it->ptid = new_ptid;
913 }
914
915 \f
916 /* Resuming. */
917
918 /* Things to clean up if we QUIT out of resume (). */
919 static void
920 resume_cleanups (void *ignore)
921 {
922 normal_stop ();
923 }
924
925 static const char schedlock_off[] = "off";
926 static const char schedlock_on[] = "on";
927 static const char schedlock_step[] = "step";
928 static const char *scheduler_enums[] = {
929 schedlock_off,
930 schedlock_on,
931 schedlock_step,
932 NULL
933 };
934 static const char *scheduler_mode = schedlock_off;
935 static void
936 show_scheduler_mode (struct ui_file *file, int from_tty,
937 struct cmd_list_element *c, const char *value)
938 {
939 fprintf_filtered (file, _("\
940 Mode for locking scheduler during execution is \"%s\".\n"),
941 value);
942 }
943
944 static void
945 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
946 {
947 if (!target_can_lock_scheduler)
948 {
949 scheduler_mode = schedlock_off;
950 error (_("Target '%s' cannot support this command."), target_shortname);
951 }
952 }
953
954
955 /* Resume the inferior, but allow a QUIT. This is useful if the user
956 wants to interrupt some lengthy single-stepping operation
957 (for child processes, the SIGINT goes to the inferior, and so
958 we get a SIGINT random_signal, but for remote debugging and perhaps
959 other targets, that's not true).
960
961 STEP nonzero if we should step (zero to continue instead).
962 SIG is the signal to give the inferior (zero for none). */
963 void
964 resume (int step, enum target_signal sig)
965 {
966 int should_resume = 1;
967 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
968
969 /* Note that these must be reset if we follow a fork below. */
970 struct regcache *regcache = get_current_regcache ();
971 struct gdbarch *gdbarch = get_regcache_arch (regcache);
972 struct thread_info *tp = inferior_thread ();
973 CORE_ADDR pc = regcache_read_pc (regcache);
974
975 QUIT;
976
977 if (debug_infrun)
978 fprintf_unfiltered (gdb_stdlog,
979 "infrun: resume (step=%d, signal=%d), "
980 "trap_expected=%d\n",
981 step, sig, tp->trap_expected);
982
983 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
984 over an instruction that causes a page fault without triggering
985 a hardware watchpoint. The kernel properly notices that it shouldn't
986 stop, because the hardware watchpoint is not triggered, but it forgets
987 the step request and continues the program normally.
988 Work around the problem by removing hardware watchpoints if a step is
989 requested, GDB will check for a hardware watchpoint trigger after the
990 step anyway. */
991 if (CANNOT_STEP_HW_WATCHPOINTS && step)
992 remove_hw_watchpoints ();
993
994
995 /* Normally, by the time we reach `resume', the breakpoints are either
996 removed or inserted, as appropriate. The exception is if we're sitting
997 at a permanent breakpoint; we need to step over it, but permanent
998 breakpoints can't be removed. So we have to test for it here. */
999 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
1000 {
1001 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1002 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1003 else
1004 error (_("\
1005 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1006 how to step past a permanent breakpoint on this architecture. Try using\n\
1007 a command like `return' or `jump' to continue execution."));
1008 }
1009
1010 /* If enabled, step over breakpoints by executing a copy of the
1011 instruction at a different address.
1012
1013 We can't use displaced stepping when we have a signal to deliver;
1014 the comments for displaced_step_prepare explain why. The
1015 comments in the handle_inferior event for dealing with 'random
1016 signals' explain what we do instead. */
1017 if (use_displaced_stepping (gdbarch)
1018 && tp->trap_expected
1019 && sig == TARGET_SIGNAL_0)
1020 {
1021 if (!displaced_step_prepare (inferior_ptid))
1022 {
1023 /* Got placed in displaced stepping queue. Will be resumed
1024 later when all the currently queued displaced stepping
1025 requests finish. The thread is not executing at this point,
1026 and the call to set_executing will be made later. But we
1027 need to call set_running here, since from frontend point of view,
1028 the thread is running. */
1029 set_running (inferior_ptid, 1);
1030 discard_cleanups (old_cleanups);
1031 return;
1032 }
1033 }
1034
1035 if (step && gdbarch_software_single_step_p (gdbarch))
1036 {
1037 /* Do it the hard way, w/temp breakpoints */
1038 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
1039 {
1040 /* ...and don't ask hardware to do it. */
1041 step = 0;
1042 /* and do not pull these breakpoints until after a `wait' in
1043 `wait_for_inferior' */
1044 singlestep_breakpoints_inserted_p = 1;
1045 singlestep_ptid = inferior_ptid;
1046 singlestep_pc = pc;
1047 }
1048 }
1049
1050 /* If there were any forks/vforks/execs that were caught and are
1051 now to be followed, then do so. */
1052 switch (pending_follow.kind)
1053 {
1054 case TARGET_WAITKIND_FORKED:
1055 case TARGET_WAITKIND_VFORKED:
1056 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1057 if (follow_fork ())
1058 should_resume = 0;
1059
1060 /* Following a child fork will change our notion of current
1061 thread. */
1062 tp = inferior_thread ();
1063 regcache = get_current_regcache ();
1064 gdbarch = get_regcache_arch (regcache);
1065 pc = regcache_read_pc (regcache);
1066 break;
1067
1068 case TARGET_WAITKIND_EXECD:
1069 /* follow_exec is called as soon as the exec event is seen. */
1070 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1071 break;
1072
1073 default:
1074 break;
1075 }
1076
1077 /* Install inferior's terminal modes. */
1078 target_terminal_inferior ();
1079
1080 if (should_resume)
1081 {
1082 ptid_t resume_ptid;
1083
1084 resume_ptid = RESUME_ALL; /* Default */
1085
1086 /* If STEP is set, it's a request to use hardware stepping
1087 facilities. But in that case, we should never
1088 use singlestep breakpoint. */
1089 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1090
1091 if (singlestep_breakpoints_inserted_p
1092 && stepping_past_singlestep_breakpoint)
1093 {
1094 /* The situation here is as follows. In thread T1 we wanted to
1095 single-step. Lacking hardware single-stepping we've
1096 set breakpoint at the PC of the next instruction -- call it
1097 P. After resuming, we've hit that breakpoint in thread T2.
1098 Now we've removed original breakpoint, inserted breakpoint
1099 at P+1, and try to step to advance T2 past breakpoint.
1100 We need to step only T2, as if T1 is allowed to freely run,
1101 it can run past P, and if other threads are allowed to run,
1102 they can hit breakpoint at P+1, and nested hits of single-step
1103 breakpoints is not something we'd want -- that's complicated
1104 to support, and has no value. */
1105 resume_ptid = inferior_ptid;
1106 }
1107
1108 if ((step || singlestep_breakpoints_inserted_p)
1109 && tp->trap_expected)
1110 {
1111 /* We're allowing a thread to run past a breakpoint it has
1112 hit, by single-stepping the thread with the breakpoint
1113 removed. In which case, we need to single-step only this
1114 thread, and keep others stopped, as they can miss this
1115 breakpoint if allowed to run.
1116
1117 The current code actually removes all breakpoints when
1118 doing this, not just the one being stepped over, so if we
1119 let other threads run, we can actually miss any
1120 breakpoint, not just the one at PC. */
1121 resume_ptid = inferior_ptid;
1122 }
1123
1124 if (non_stop)
1125 {
1126 /* With non-stop mode on, threads are always handled
1127 individually. */
1128 resume_ptid = inferior_ptid;
1129 }
1130 else if ((scheduler_mode == schedlock_on)
1131 || (scheduler_mode == schedlock_step
1132 && (step || singlestep_breakpoints_inserted_p)))
1133 {
1134 /* User-settable 'scheduler' mode requires solo thread resume. */
1135 resume_ptid = inferior_ptid;
1136 }
1137
1138 if (gdbarch_cannot_step_breakpoint (gdbarch))
1139 {
1140 /* Most targets can step a breakpoint instruction, thus
1141 executing it normally. But if this one cannot, just
1142 continue and we will hit it anyway. */
1143 if (step && breakpoint_inserted_here_p (pc))
1144 step = 0;
1145 }
1146
1147 if (debug_displaced
1148 && use_displaced_stepping (gdbarch)
1149 && tp->trap_expected)
1150 {
1151 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1152 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1153 gdb_byte buf[4];
1154
1155 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1156 paddr_nz (actual_pc));
1157 read_memory (actual_pc, buf, sizeof (buf));
1158 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1159 }
1160
1161 /* Avoid confusing the next resume, if the next stop/resume
1162 happens to apply to another thread. */
1163 tp->stop_signal = TARGET_SIGNAL_0;
1164
1165 target_resume (resume_ptid, step, sig);
1166 }
1167
1168 discard_cleanups (old_cleanups);
1169 }
1170 \f
1171 /* Proceeding. */
1172
1173 /* Clear out all variables saying what to do when inferior is continued.
1174 First do this, then set the ones you want, then call `proceed'. */
1175
1176 static void
1177 clear_proceed_status_thread (struct thread_info *tp)
1178 {
1179 if (debug_infrun)
1180 fprintf_unfiltered (gdb_stdlog,
1181 "infrun: clear_proceed_status_thread (%s)\n",
1182 target_pid_to_str (tp->ptid));
1183
1184 tp->trap_expected = 0;
1185 tp->step_range_start = 0;
1186 tp->step_range_end = 0;
1187 tp->step_frame_id = null_frame_id;
1188 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1189 tp->stop_requested = 0;
1190
1191 tp->stop_step = 0;
1192
1193 tp->proceed_to_finish = 0;
1194
1195 /* Discard any remaining commands or status from previous stop. */
1196 bpstat_clear (&tp->stop_bpstat);
1197 }
1198
1199 static int
1200 clear_proceed_status_callback (struct thread_info *tp, void *data)
1201 {
1202 if (is_exited (tp->ptid))
1203 return 0;
1204
1205 clear_proceed_status_thread (tp);
1206 return 0;
1207 }
1208
1209 void
1210 clear_proceed_status (void)
1211 {
1212 if (!ptid_equal (inferior_ptid, null_ptid))
1213 {
1214 struct inferior *inferior;
1215
1216 if (non_stop)
1217 {
1218 /* If in non-stop mode, only delete the per-thread status
1219 of the current thread. */
1220 clear_proceed_status_thread (inferior_thread ());
1221 }
1222 else
1223 {
1224 /* In all-stop mode, delete the per-thread status of
1225 *all* threads. */
1226 iterate_over_threads (clear_proceed_status_callback, NULL);
1227 }
1228
1229 inferior = current_inferior ();
1230 inferior->stop_soon = NO_STOP_QUIETLY;
1231 }
1232
1233 stop_after_trap = 0;
1234 breakpoint_proceeded = 1; /* We're about to proceed... */
1235
1236 if (stop_registers)
1237 {
1238 regcache_xfree (stop_registers);
1239 stop_registers = NULL;
1240 }
1241 }
1242
1243 /* This should be suitable for any targets that support threads. */
1244
1245 static int
1246 prepare_to_proceed (int step)
1247 {
1248 ptid_t wait_ptid;
1249 struct target_waitstatus wait_status;
1250
1251 /* Get the last target status returned by target_wait(). */
1252 get_last_target_status (&wait_ptid, &wait_status);
1253
1254 /* Make sure we were stopped at a breakpoint. */
1255 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1256 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1257 {
1258 return 0;
1259 }
1260
1261 /* Switched over from WAIT_PID. */
1262 if (!ptid_equal (wait_ptid, minus_one_ptid)
1263 && !ptid_equal (inferior_ptid, wait_ptid))
1264 {
1265 struct regcache *regcache = get_thread_regcache (wait_ptid);
1266
1267 if (breakpoint_here_p (regcache_read_pc (regcache)))
1268 {
1269 /* If stepping, remember current thread to switch back to. */
1270 if (step)
1271 deferred_step_ptid = inferior_ptid;
1272
1273 /* Switch back to WAIT_PID thread. */
1274 switch_to_thread (wait_ptid);
1275
1276 /* We return 1 to indicate that there is a breakpoint here,
1277 so we need to step over it before continuing to avoid
1278 hitting it straight away. */
1279 return 1;
1280 }
1281 }
1282
1283 return 0;
1284 }
1285
1286 /* Basic routine for continuing the program in various fashions.
1287
1288 ADDR is the address to resume at, or -1 for resume where stopped.
1289 SIGGNAL is the signal to give it, or 0 for none,
1290 or -1 for act according to how it stopped.
1291 STEP is nonzero if should trap after one instruction.
1292 -1 means return after that and print nothing.
1293 You should probably set various step_... variables
1294 before calling here, if you are stepping.
1295
1296 You should call clear_proceed_status before calling proceed. */
1297
1298 void
1299 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1300 {
1301 struct regcache *regcache = get_current_regcache ();
1302 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1303 struct thread_info *tp;
1304 CORE_ADDR pc = regcache_read_pc (regcache);
1305 int oneproc = 0;
1306
1307 if (step > 0)
1308 step_start_function = find_pc_function (pc);
1309 if (step < 0)
1310 stop_after_trap = 1;
1311
1312 if (addr == (CORE_ADDR) -1)
1313 {
1314 if (pc == stop_pc && breakpoint_here_p (pc)
1315 && execution_direction != EXEC_REVERSE)
1316 /* There is a breakpoint at the address we will resume at,
1317 step one instruction before inserting breakpoints so that
1318 we do not stop right away (and report a second hit at this
1319 breakpoint).
1320
1321 Note, we don't do this in reverse, because we won't
1322 actually be executing the breakpoint insn anyway.
1323 We'll be (un-)executing the previous instruction. */
1324
1325 oneproc = 1;
1326 else if (gdbarch_single_step_through_delay_p (gdbarch)
1327 && gdbarch_single_step_through_delay (gdbarch,
1328 get_current_frame ()))
1329 /* We stepped onto an instruction that needs to be stepped
1330 again before re-inserting the breakpoint, do so. */
1331 oneproc = 1;
1332 }
1333 else
1334 {
1335 regcache_write_pc (regcache, addr);
1336 }
1337
1338 if (debug_infrun)
1339 fprintf_unfiltered (gdb_stdlog,
1340 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1341 paddr_nz (addr), siggnal, step);
1342
1343 if (non_stop)
1344 /* In non-stop, each thread is handled individually. The context
1345 must already be set to the right thread here. */
1346 ;
1347 else
1348 {
1349 /* In a multi-threaded task we may select another thread and
1350 then continue or step.
1351
1352 But if the old thread was stopped at a breakpoint, it will
1353 immediately cause another breakpoint stop without any
1354 execution (i.e. it will report a breakpoint hit incorrectly).
1355 So we must step over it first.
1356
1357 prepare_to_proceed checks the current thread against the
1358 thread that reported the most recent event. If a step-over
1359 is required it returns TRUE and sets the current thread to
1360 the old thread. */
1361 if (prepare_to_proceed (step))
1362 oneproc = 1;
1363 }
1364
1365 /* prepare_to_proceed may change the current thread. */
1366 tp = inferior_thread ();
1367
1368 if (oneproc)
1369 {
1370 tp->trap_expected = 1;
1371 /* If displaced stepping is enabled, we can step over the
1372 breakpoint without hitting it, so leave all breakpoints
1373 inserted. Otherwise we need to disable all breakpoints, step
1374 one instruction, and then re-add them when that step is
1375 finished. */
1376 if (!use_displaced_stepping (gdbarch))
1377 remove_breakpoints ();
1378 }
1379
1380 /* We can insert breakpoints if we're not trying to step over one,
1381 or if we are stepping over one but we're using displaced stepping
1382 to do so. */
1383 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1384 insert_breakpoints ();
1385
1386 if (!non_stop)
1387 {
1388 /* Pass the last stop signal to the thread we're resuming,
1389 irrespective of whether the current thread is the thread that
1390 got the last event or not. This was historically GDB's
1391 behaviour before keeping a stop_signal per thread. */
1392
1393 struct thread_info *last_thread;
1394 ptid_t last_ptid;
1395 struct target_waitstatus last_status;
1396
1397 get_last_target_status (&last_ptid, &last_status);
1398 if (!ptid_equal (inferior_ptid, last_ptid)
1399 && !ptid_equal (last_ptid, null_ptid)
1400 && !ptid_equal (last_ptid, minus_one_ptid))
1401 {
1402 last_thread = find_thread_pid (last_ptid);
1403 if (last_thread)
1404 {
1405 tp->stop_signal = last_thread->stop_signal;
1406 last_thread->stop_signal = TARGET_SIGNAL_0;
1407 }
1408 }
1409 }
1410
1411 if (siggnal != TARGET_SIGNAL_DEFAULT)
1412 tp->stop_signal = siggnal;
1413 /* If this signal should not be seen by program,
1414 give it zero. Used for debugging signals. */
1415 else if (!signal_program[tp->stop_signal])
1416 tp->stop_signal = TARGET_SIGNAL_0;
1417
1418 annotate_starting ();
1419
1420 /* Make sure that output from GDB appears before output from the
1421 inferior. */
1422 gdb_flush (gdb_stdout);
1423
1424 /* Refresh prev_pc value just prior to resuming. This used to be
1425 done in stop_stepping, however, setting prev_pc there did not handle
1426 scenarios such as inferior function calls or returning from
1427 a function via the return command. In those cases, the prev_pc
1428 value was not set properly for subsequent commands. The prev_pc value
1429 is used to initialize the starting line number in the ecs. With an
1430 invalid value, the gdb next command ends up stopping at the position
1431 represented by the next line table entry past our start position.
1432 On platforms that generate one line table entry per line, this
1433 is not a problem. However, on the ia64, the compiler generates
1434 extraneous line table entries that do not increase the line number.
1435 When we issue the gdb next command on the ia64 after an inferior call
1436 or a return command, we often end up a few instructions forward, still
1437 within the original line we started.
1438
1439 An attempt was made to have init_execution_control_state () refresh
1440 the prev_pc value before calculating the line number. This approach
1441 did not work because on platforms that use ptrace, the pc register
1442 cannot be read unless the inferior is stopped. At that point, we
1443 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1444 call can fail. Setting the prev_pc value here ensures the value is
1445 updated correctly when the inferior is stopped. */
1446 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1447
1448 /* Fill in with reasonable starting values. */
1449 init_thread_stepping_state (tp);
1450
1451 /* Reset to normal state. */
1452 init_infwait_state ();
1453
1454 /* Resume inferior. */
1455 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
1456
1457 /* Wait for it to stop (if not standalone)
1458 and in any case decode why it stopped, and act accordingly. */
1459 /* Do this only if we are not using the event loop, or if the target
1460 does not support asynchronous execution. */
1461 if (!target_can_async_p ())
1462 {
1463 wait_for_inferior (0);
1464 normal_stop ();
1465 }
1466 }
1467 \f
1468
1469 /* Start remote-debugging of a machine over a serial link. */
1470
1471 void
1472 start_remote (int from_tty)
1473 {
1474 struct inferior *inferior;
1475 init_wait_for_inferior ();
1476
1477 inferior = current_inferior ();
1478 inferior->stop_soon = STOP_QUIETLY_REMOTE;
1479
1480 /* Always go on waiting for the target, regardless of the mode. */
1481 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1482 indicate to wait_for_inferior that a target should timeout if
1483 nothing is returned (instead of just blocking). Because of this,
1484 targets expecting an immediate response need to, internally, set
1485 things up so that the target_wait() is forced to eventually
1486 timeout. */
1487 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1488 differentiate to its caller what the state of the target is after
1489 the initial open has been performed. Here we're assuming that
1490 the target has stopped. It should be possible to eventually have
1491 target_open() return to the caller an indication that the target
1492 is currently running and GDB state should be set to the same as
1493 for an async run. */
1494 wait_for_inferior (0);
1495
1496 /* Now that the inferior has stopped, do any bookkeeping like
1497 loading shared libraries. We want to do this before normal_stop,
1498 so that the displayed frame is up to date. */
1499 post_create_inferior (&current_target, from_tty);
1500
1501 normal_stop ();
1502 }
1503
1504 /* Initialize static vars when a new inferior begins. */
1505
1506 void
1507 init_wait_for_inferior (void)
1508 {
1509 /* These are meaningless until the first time through wait_for_inferior. */
1510
1511 breakpoint_init_inferior (inf_starting);
1512
1513 /* The first resume is not following a fork/vfork/exec. */
1514 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1515
1516 clear_proceed_status ();
1517
1518 stepping_past_singlestep_breakpoint = 0;
1519 deferred_step_ptid = null_ptid;
1520
1521 target_last_wait_ptid = minus_one_ptid;
1522
1523 previous_inferior_ptid = null_ptid;
1524 init_infwait_state ();
1525
1526 displaced_step_clear ();
1527 }
1528
1529 \f
1530 /* This enum encodes possible reasons for doing a target_wait, so that
1531 wfi can call target_wait in one place. (Ultimately the call will be
1532 moved out of the infinite loop entirely.) */
1533
1534 enum infwait_states
1535 {
1536 infwait_normal_state,
1537 infwait_thread_hop_state,
1538 infwait_step_watch_state,
1539 infwait_nonstep_watch_state
1540 };
1541
1542 /* Why did the inferior stop? Used to print the appropriate messages
1543 to the interface from within handle_inferior_event(). */
1544 enum inferior_stop_reason
1545 {
1546 /* Step, next, nexti, stepi finished. */
1547 END_STEPPING_RANGE,
1548 /* Inferior terminated by signal. */
1549 SIGNAL_EXITED,
1550 /* Inferior exited. */
1551 EXITED,
1552 /* Inferior received signal, and user asked to be notified. */
1553 SIGNAL_RECEIVED,
1554 /* Reverse execution -- target ran out of history info. */
1555 NO_HISTORY
1556 };
1557
1558 /* The PTID we'll do a target_wait on.*/
1559 ptid_t waiton_ptid;
1560
1561 /* Current inferior wait state. */
1562 enum infwait_states infwait_state;
1563
1564 /* Data to be passed around while handling an event. This data is
1565 discarded between events. */
1566 struct execution_control_state
1567 {
1568 ptid_t ptid;
1569 /* The thread that got the event, if this was a thread event; NULL
1570 otherwise. */
1571 struct thread_info *event_thread;
1572
1573 struct target_waitstatus ws;
1574 int random_signal;
1575 CORE_ADDR stop_func_start;
1576 CORE_ADDR stop_func_end;
1577 char *stop_func_name;
1578 int new_thread_event;
1579 int wait_some_more;
1580 };
1581
1582 void init_execution_control_state (struct execution_control_state *ecs);
1583
1584 void handle_inferior_event (struct execution_control_state *ecs);
1585
1586 static void handle_step_into_function (struct execution_control_state *ecs);
1587 static void handle_step_into_function_backward (struct execution_control_state *ecs);
1588 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1589 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1590 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1591 struct frame_id sr_id);
1592 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1593
1594 static void stop_stepping (struct execution_control_state *ecs);
1595 static void prepare_to_wait (struct execution_control_state *ecs);
1596 static void keep_going (struct execution_control_state *ecs);
1597 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1598 int stop_info);
1599
1600 /* Callback for iterate over threads. If the thread is stopped, but
1601 the user/frontend doesn't know about that yet, go through
1602 normal_stop, as if the thread had just stopped now. ARG points at
1603 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1604 ptid_is_pid(PTID) is true, applies to all threads of the process
1605 pointed at by PTID. Otherwise, apply only to the thread pointed by
1606 PTID. */
1607
1608 static int
1609 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1610 {
1611 ptid_t ptid = * (ptid_t *) arg;
1612
1613 if ((ptid_equal (info->ptid, ptid)
1614 || ptid_equal (minus_one_ptid, ptid)
1615 || (ptid_is_pid (ptid)
1616 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1617 && is_running (info->ptid)
1618 && !is_executing (info->ptid))
1619 {
1620 struct cleanup *old_chain;
1621 struct execution_control_state ecss;
1622 struct execution_control_state *ecs = &ecss;
1623
1624 memset (ecs, 0, sizeof (*ecs));
1625
1626 old_chain = make_cleanup_restore_current_thread ();
1627
1628 switch_to_thread (info->ptid);
1629
1630 /* Go through handle_inferior_event/normal_stop, so we always
1631 have consistent output as if the stop event had been
1632 reported. */
1633 ecs->ptid = info->ptid;
1634 ecs->event_thread = find_thread_pid (info->ptid);
1635 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1636 ecs->ws.value.sig = TARGET_SIGNAL_0;
1637
1638 handle_inferior_event (ecs);
1639
1640 if (!ecs->wait_some_more)
1641 {
1642 struct thread_info *tp;
1643
1644 normal_stop ();
1645
1646 /* Finish off the continuations. The continations
1647 themselves are responsible for realising the thread
1648 didn't finish what it was supposed to do. */
1649 tp = inferior_thread ();
1650 do_all_intermediate_continuations_thread (tp);
1651 do_all_continuations_thread (tp);
1652 }
1653
1654 do_cleanups (old_chain);
1655 }
1656
1657 return 0;
1658 }
1659
1660 /* This function is attached as a "thread_stop_requested" observer.
1661 Cleanup local state that assumed the PTID was to be resumed, and
1662 report the stop to the frontend. */
1663
1664 void
1665 infrun_thread_stop_requested (ptid_t ptid)
1666 {
1667 struct displaced_step_request *it, *next, *prev = NULL;
1668
1669 /* PTID was requested to stop. Remove it from the displaced
1670 stepping queue, so we don't try to resume it automatically. */
1671 for (it = displaced_step_request_queue; it; it = next)
1672 {
1673 next = it->next;
1674
1675 if (ptid_equal (it->ptid, ptid)
1676 || ptid_equal (minus_one_ptid, ptid)
1677 || (ptid_is_pid (ptid)
1678 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1679 {
1680 if (displaced_step_request_queue == it)
1681 displaced_step_request_queue = it->next;
1682 else
1683 prev->next = it->next;
1684
1685 xfree (it);
1686 }
1687 else
1688 prev = it;
1689 }
1690
1691 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1692 }
1693
1694 /* Callback for iterate_over_threads. */
1695
1696 static int
1697 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1698 {
1699 if (is_exited (info->ptid))
1700 return 0;
1701
1702 delete_step_resume_breakpoint (info);
1703 return 0;
1704 }
1705
1706 /* In all-stop, delete the step resume breakpoint of any thread that
1707 had one. In non-stop, delete the step resume breakpoint of the
1708 thread that just stopped. */
1709
1710 static void
1711 delete_step_thread_step_resume_breakpoint (void)
1712 {
1713 if (!target_has_execution
1714 || ptid_equal (inferior_ptid, null_ptid))
1715 /* If the inferior has exited, we have already deleted the step
1716 resume breakpoints out of GDB's lists. */
1717 return;
1718
1719 if (non_stop)
1720 {
1721 /* If in non-stop mode, only delete the step-resume or
1722 longjmp-resume breakpoint of the thread that just stopped
1723 stepping. */
1724 struct thread_info *tp = inferior_thread ();
1725 delete_step_resume_breakpoint (tp);
1726 }
1727 else
1728 /* In all-stop mode, delete all step-resume and longjmp-resume
1729 breakpoints of any thread that had them. */
1730 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1731 }
1732
1733 /* A cleanup wrapper. */
1734
1735 static void
1736 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1737 {
1738 delete_step_thread_step_resume_breakpoint ();
1739 }
1740
1741 /* Wait for control to return from inferior to debugger.
1742
1743 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1744 as if they were SIGTRAP signals. This can be useful during
1745 the startup sequence on some targets such as HP/UX, where
1746 we receive an EXEC event instead of the expected SIGTRAP.
1747
1748 If inferior gets a signal, we may decide to start it up again
1749 instead of returning. That is why there is a loop in this function.
1750 When this function actually returns it means the inferior
1751 should be left stopped and GDB should read more commands. */
1752
1753 void
1754 wait_for_inferior (int treat_exec_as_sigtrap)
1755 {
1756 struct cleanup *old_cleanups;
1757 struct execution_control_state ecss;
1758 struct execution_control_state *ecs;
1759
1760 if (debug_infrun)
1761 fprintf_unfiltered
1762 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1763 treat_exec_as_sigtrap);
1764
1765 old_cleanups =
1766 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
1767
1768 ecs = &ecss;
1769 memset (ecs, 0, sizeof (*ecs));
1770
1771 overlay_cache_invalid = 1;
1772
1773 /* We'll update this if & when we switch to a new thread. */
1774 previous_inferior_ptid = inferior_ptid;
1775
1776 /* We have to invalidate the registers BEFORE calling target_wait
1777 because they can be loaded from the target while in target_wait.
1778 This makes remote debugging a bit more efficient for those
1779 targets that provide critical registers as part of their normal
1780 status mechanism. */
1781
1782 registers_changed ();
1783
1784 while (1)
1785 {
1786 if (deprecated_target_wait_hook)
1787 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1788 else
1789 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1790
1791 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1792 {
1793 xfree (ecs->ws.value.execd_pathname);
1794 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1795 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1796 }
1797
1798 /* Now figure out what to do with the result of the result. */
1799 handle_inferior_event (ecs);
1800
1801 if (!ecs->wait_some_more)
1802 break;
1803 }
1804
1805 do_cleanups (old_cleanups);
1806 }
1807
1808 /* Asynchronous version of wait_for_inferior. It is called by the
1809 event loop whenever a change of state is detected on the file
1810 descriptor corresponding to the target. It can be called more than
1811 once to complete a single execution command. In such cases we need
1812 to keep the state in a global variable ECSS. If it is the last time
1813 that this function is called for a single execution command, then
1814 report to the user that the inferior has stopped, and do the
1815 necessary cleanups. */
1816
1817 void
1818 fetch_inferior_event (void *client_data)
1819 {
1820 struct execution_control_state ecss;
1821 struct execution_control_state *ecs = &ecss;
1822 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1823 int was_sync = sync_execution;
1824
1825 memset (ecs, 0, sizeof (*ecs));
1826
1827 overlay_cache_invalid = 1;
1828
1829 /* We can only rely on wait_for_more being correct before handling
1830 the event in all-stop, but previous_inferior_ptid isn't used in
1831 non-stop. */
1832 if (!ecs->wait_some_more)
1833 /* We'll update this if & when we switch to a new thread. */
1834 previous_inferior_ptid = inferior_ptid;
1835
1836 if (non_stop)
1837 /* In non-stop mode, the user/frontend should not notice a thread
1838 switch due to internal events. Make sure we reverse to the
1839 user selected thread and frame after handling the event and
1840 running any breakpoint commands. */
1841 make_cleanup_restore_current_thread ();
1842
1843 /* We have to invalidate the registers BEFORE calling target_wait
1844 because they can be loaded from the target while in target_wait.
1845 This makes remote debugging a bit more efficient for those
1846 targets that provide critical registers as part of their normal
1847 status mechanism. */
1848
1849 registers_changed ();
1850
1851 if (deprecated_target_wait_hook)
1852 ecs->ptid =
1853 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1854 else
1855 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1856
1857 if (non_stop
1858 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1859 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1860 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1861 /* In non-stop mode, each thread is handled individually. Switch
1862 early, so the global state is set correctly for this
1863 thread. */
1864 context_switch (ecs->ptid);
1865
1866 /* Now figure out what to do with the result of the result. */
1867 handle_inferior_event (ecs);
1868
1869 if (!ecs->wait_some_more)
1870 {
1871 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
1872
1873 delete_step_thread_step_resume_breakpoint ();
1874
1875 /* We may not find an inferior if this was a process exit. */
1876 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
1877 normal_stop ();
1878
1879 if (target_has_execution
1880 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1881 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1882 && ecs->event_thread->step_multi
1883 && ecs->event_thread->stop_step)
1884 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1885 else
1886 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1887 }
1888
1889 /* Revert thread and frame. */
1890 do_cleanups (old_chain);
1891
1892 /* If the inferior was in sync execution mode, and now isn't,
1893 restore the prompt. */
1894 if (was_sync && !sync_execution)
1895 display_gdb_prompt (0);
1896 }
1897
1898 /* Prepare an execution control state for looping through a
1899 wait_for_inferior-type loop. */
1900
1901 void
1902 init_execution_control_state (struct execution_control_state *ecs)
1903 {
1904 ecs->random_signal = 0;
1905 }
1906
1907 /* Clear context switchable stepping state. */
1908
1909 void
1910 init_thread_stepping_state (struct thread_info *tss)
1911 {
1912 struct symtab_and_line sal;
1913
1914 tss->stepping_over_breakpoint = 0;
1915 tss->step_after_step_resume_breakpoint = 0;
1916 tss->stepping_through_solib_after_catch = 0;
1917 tss->stepping_through_solib_catchpoints = NULL;
1918
1919 sal = find_pc_line (tss->prev_pc, 0);
1920 tss->current_line = sal.line;
1921 tss->current_symtab = sal.symtab;
1922 }
1923
1924 /* Return the cached copy of the last pid/waitstatus returned by
1925 target_wait()/deprecated_target_wait_hook(). The data is actually
1926 cached by handle_inferior_event(), which gets called immediately
1927 after target_wait()/deprecated_target_wait_hook(). */
1928
1929 void
1930 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1931 {
1932 *ptidp = target_last_wait_ptid;
1933 *status = target_last_waitstatus;
1934 }
1935
1936 void
1937 nullify_last_target_wait_ptid (void)
1938 {
1939 target_last_wait_ptid = minus_one_ptid;
1940 }
1941
1942 /* Switch thread contexts. */
1943
1944 static void
1945 context_switch (ptid_t ptid)
1946 {
1947 if (debug_infrun)
1948 {
1949 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1950 target_pid_to_str (inferior_ptid));
1951 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1952 target_pid_to_str (ptid));
1953 }
1954
1955 switch_to_thread (ptid);
1956 }
1957
1958 static void
1959 adjust_pc_after_break (struct execution_control_state *ecs)
1960 {
1961 struct regcache *regcache;
1962 struct gdbarch *gdbarch;
1963 CORE_ADDR breakpoint_pc;
1964
1965 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1966 we aren't, just return.
1967
1968 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1969 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1970 implemented by software breakpoints should be handled through the normal
1971 breakpoint layer.
1972
1973 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1974 different signals (SIGILL or SIGEMT for instance), but it is less
1975 clear where the PC is pointing afterwards. It may not match
1976 gdbarch_decr_pc_after_break. I don't know any specific target that
1977 generates these signals at breakpoints (the code has been in GDB since at
1978 least 1992) so I can not guess how to handle them here.
1979
1980 In earlier versions of GDB, a target with
1981 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1982 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1983 target with both of these set in GDB history, and it seems unlikely to be
1984 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1985
1986 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1987 return;
1988
1989 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1990 return;
1991
1992 /* In reverse execution, when a breakpoint is hit, the instruction
1993 under it has already been de-executed. The reported PC always
1994 points at the breakpoint address, so adjusting it further would
1995 be wrong. E.g., consider this case on a decr_pc_after_break == 1
1996 architecture:
1997
1998 B1 0x08000000 : INSN1
1999 B2 0x08000001 : INSN2
2000 0x08000002 : INSN3
2001 PC -> 0x08000003 : INSN4
2002
2003 Say you're stopped at 0x08000003 as above. Reverse continuing
2004 from that point should hit B2 as below. Reading the PC when the
2005 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2006 been de-executed already.
2007
2008 B1 0x08000000 : INSN1
2009 B2 PC -> 0x08000001 : INSN2
2010 0x08000002 : INSN3
2011 0x08000003 : INSN4
2012
2013 We can't apply the same logic as for forward execution, because
2014 we would wrongly adjust the PC to 0x08000000, since there's a
2015 breakpoint at PC - 1. We'd then report a hit on B1, although
2016 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2017 behaviour. */
2018 if (execution_direction == EXEC_REVERSE)
2019 return;
2020
2021 /* If this target does not decrement the PC after breakpoints, then
2022 we have nothing to do. */
2023 regcache = get_thread_regcache (ecs->ptid);
2024 gdbarch = get_regcache_arch (regcache);
2025 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2026 return;
2027
2028 /* Find the location where (if we've hit a breakpoint) the
2029 breakpoint would be. */
2030 breakpoint_pc = regcache_read_pc (regcache)
2031 - gdbarch_decr_pc_after_break (gdbarch);
2032
2033 /* Check whether there actually is a software breakpoint inserted at
2034 that location.
2035
2036 If in non-stop mode, a race condition is possible where we've
2037 removed a breakpoint, but stop events for that breakpoint were
2038 already queued and arrive later. To suppress those spurious
2039 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2040 and retire them after a number of stop events are reported. */
2041 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2042 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
2043 {
2044 /* When using hardware single-step, a SIGTRAP is reported for both
2045 a completed single-step and a software breakpoint. Need to
2046 differentiate between the two, as the latter needs adjusting
2047 but the former does not.
2048
2049 The SIGTRAP can be due to a completed hardware single-step only if
2050 - we didn't insert software single-step breakpoints
2051 - the thread to be examined is still the current thread
2052 - this thread is currently being stepped
2053
2054 If any of these events did not occur, we must have stopped due
2055 to hitting a software breakpoint, and have to back up to the
2056 breakpoint address.
2057
2058 As a special case, we could have hardware single-stepped a
2059 software breakpoint. In this case (prev_pc == breakpoint_pc),
2060 we also need to back up to the breakpoint address. */
2061
2062 if (singlestep_breakpoints_inserted_p
2063 || !ptid_equal (ecs->ptid, inferior_ptid)
2064 || !currently_stepping (ecs->event_thread)
2065 || ecs->event_thread->prev_pc == breakpoint_pc)
2066 regcache_write_pc (regcache, breakpoint_pc);
2067 }
2068 }
2069
2070 void
2071 init_infwait_state (void)
2072 {
2073 waiton_ptid = pid_to_ptid (-1);
2074 infwait_state = infwait_normal_state;
2075 }
2076
2077 void
2078 error_is_running (void)
2079 {
2080 error (_("\
2081 Cannot execute this command while the selected thread is running."));
2082 }
2083
2084 void
2085 ensure_not_running (void)
2086 {
2087 if (is_running (inferior_ptid))
2088 error_is_running ();
2089 }
2090
2091 /* Given an execution control state that has been freshly filled in
2092 by an event from the inferior, figure out what it means and take
2093 appropriate action. */
2094
2095 void
2096 handle_inferior_event (struct execution_control_state *ecs)
2097 {
2098 int sw_single_step_trap_p = 0;
2099 int stopped_by_watchpoint;
2100 int stepped_after_stopped_by_watchpoint = 0;
2101 struct symtab_and_line stop_pc_sal;
2102 enum stop_kind stop_soon;
2103
2104 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2105 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2106 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2107 {
2108 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2109 gdb_assert (inf);
2110 stop_soon = inf->stop_soon;
2111 }
2112 else
2113 stop_soon = NO_STOP_QUIETLY;
2114
2115 /* Cache the last pid/waitstatus. */
2116 target_last_wait_ptid = ecs->ptid;
2117 target_last_waitstatus = ecs->ws;
2118
2119 /* Always clear state belonging to the previous time we stopped. */
2120 stop_stack_dummy = 0;
2121
2122 /* If it's a new process, add it to the thread database */
2123
2124 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2125 && !ptid_equal (ecs->ptid, minus_one_ptid)
2126 && !in_thread_list (ecs->ptid));
2127
2128 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2129 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2130 add_thread (ecs->ptid);
2131
2132 ecs->event_thread = find_thread_pid (ecs->ptid);
2133
2134 /* Dependent on valid ECS->EVENT_THREAD. */
2135 adjust_pc_after_break (ecs);
2136
2137 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2138 reinit_frame_cache ();
2139
2140 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2141 {
2142 breakpoint_retire_moribund ();
2143
2144 /* Mark the non-executing threads accordingly. */
2145 if (!non_stop
2146 || ecs->ws.kind == TARGET_WAITKIND_EXITED
2147 || ecs->ws.kind == TARGET_WAITKIND_SIGNALLED)
2148 set_executing (pid_to_ptid (-1), 0);
2149 else
2150 set_executing (ecs->ptid, 0);
2151 }
2152
2153 switch (infwait_state)
2154 {
2155 case infwait_thread_hop_state:
2156 if (debug_infrun)
2157 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
2158 /* Cancel the waiton_ptid. */
2159 waiton_ptid = pid_to_ptid (-1);
2160 break;
2161
2162 case infwait_normal_state:
2163 if (debug_infrun)
2164 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
2165 break;
2166
2167 case infwait_step_watch_state:
2168 if (debug_infrun)
2169 fprintf_unfiltered (gdb_stdlog,
2170 "infrun: infwait_step_watch_state\n");
2171
2172 stepped_after_stopped_by_watchpoint = 1;
2173 break;
2174
2175 case infwait_nonstep_watch_state:
2176 if (debug_infrun)
2177 fprintf_unfiltered (gdb_stdlog,
2178 "infrun: infwait_nonstep_watch_state\n");
2179 insert_breakpoints ();
2180
2181 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2182 handle things like signals arriving and other things happening
2183 in combination correctly? */
2184 stepped_after_stopped_by_watchpoint = 1;
2185 break;
2186
2187 default:
2188 internal_error (__FILE__, __LINE__, _("bad switch"));
2189 }
2190 infwait_state = infwait_normal_state;
2191
2192 switch (ecs->ws.kind)
2193 {
2194 case TARGET_WAITKIND_LOADED:
2195 if (debug_infrun)
2196 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
2197 /* Ignore gracefully during startup of the inferior, as it might
2198 be the shell which has just loaded some objects, otherwise
2199 add the symbols for the newly loaded objects. Also ignore at
2200 the beginning of an attach or remote session; we will query
2201 the full list of libraries once the connection is
2202 established. */
2203 if (stop_soon == NO_STOP_QUIETLY)
2204 {
2205 /* Check for any newly added shared libraries if we're
2206 supposed to be adding them automatically. Switch
2207 terminal for any messages produced by
2208 breakpoint_re_set. */
2209 target_terminal_ours_for_output ();
2210 /* NOTE: cagney/2003-11-25: Make certain that the target
2211 stack's section table is kept up-to-date. Architectures,
2212 (e.g., PPC64), use the section table to perform
2213 operations such as address => section name and hence
2214 require the table to contain all sections (including
2215 those found in shared libraries). */
2216 /* NOTE: cagney/2003-11-25: Pass current_target and not
2217 exec_ops to SOLIB_ADD. This is because current GDB is
2218 only tooled to propagate section_table changes out from
2219 the "current_target" (see target_resize_to_sections), and
2220 not up from the exec stratum. This, of course, isn't
2221 right. "infrun.c" should only interact with the
2222 exec/process stratum, instead relying on the target stack
2223 to propagate relevant changes (stop, section table
2224 changed, ...) up to other layers. */
2225 #ifdef SOLIB_ADD
2226 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2227 #else
2228 solib_add (NULL, 0, &current_target, auto_solib_add);
2229 #endif
2230 target_terminal_inferior ();
2231
2232 /* If requested, stop when the dynamic linker notifies
2233 gdb of events. This allows the user to get control
2234 and place breakpoints in initializer routines for
2235 dynamically loaded objects (among other things). */
2236 if (stop_on_solib_events)
2237 {
2238 stop_stepping (ecs);
2239 return;
2240 }
2241
2242 /* NOTE drow/2007-05-11: This might be a good place to check
2243 for "catch load". */
2244 }
2245
2246 /* If we are skipping through a shell, or through shared library
2247 loading that we aren't interested in, resume the program. If
2248 we're running the program normally, also resume. But stop if
2249 we're attaching or setting up a remote connection. */
2250 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2251 {
2252 /* Loading of shared libraries might have changed breakpoint
2253 addresses. Make sure new breakpoints are inserted. */
2254 if (stop_soon == NO_STOP_QUIETLY
2255 && !breakpoints_always_inserted_mode ())
2256 insert_breakpoints ();
2257 resume (0, TARGET_SIGNAL_0);
2258 prepare_to_wait (ecs);
2259 return;
2260 }
2261
2262 break;
2263
2264 case TARGET_WAITKIND_SPURIOUS:
2265 if (debug_infrun)
2266 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2267 resume (0, TARGET_SIGNAL_0);
2268 prepare_to_wait (ecs);
2269 return;
2270
2271 case TARGET_WAITKIND_EXITED:
2272 if (debug_infrun)
2273 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2274 target_terminal_ours (); /* Must do this before mourn anyway */
2275 print_stop_reason (EXITED, ecs->ws.value.integer);
2276
2277 /* Record the exit code in the convenience variable $_exitcode, so
2278 that the user can inspect this again later. */
2279 set_internalvar (lookup_internalvar ("_exitcode"),
2280 value_from_longest (builtin_type_int32,
2281 (LONGEST) ecs->ws.value.integer));
2282 gdb_flush (gdb_stdout);
2283 target_mourn_inferior ();
2284 singlestep_breakpoints_inserted_p = 0;
2285 stop_print_frame = 0;
2286 stop_stepping (ecs);
2287 return;
2288
2289 case TARGET_WAITKIND_SIGNALLED:
2290 if (debug_infrun)
2291 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2292 stop_print_frame = 0;
2293 target_terminal_ours (); /* Must do this before mourn anyway */
2294
2295 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2296 reach here unless the inferior is dead. However, for years
2297 target_kill() was called here, which hints that fatal signals aren't
2298 really fatal on some systems. If that's true, then some changes
2299 may be needed. */
2300 target_mourn_inferior ();
2301
2302 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
2303 singlestep_breakpoints_inserted_p = 0;
2304 stop_stepping (ecs);
2305 return;
2306
2307 /* The following are the only cases in which we keep going;
2308 the above cases end in a continue or goto. */
2309 case TARGET_WAITKIND_FORKED:
2310 case TARGET_WAITKIND_VFORKED:
2311 if (debug_infrun)
2312 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2313 pending_follow.kind = ecs->ws.kind;
2314
2315 pending_follow.fork_event.parent_pid = ecs->ptid;
2316 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
2317
2318 if (!ptid_equal (ecs->ptid, inferior_ptid))
2319 {
2320 context_switch (ecs->ptid);
2321 reinit_frame_cache ();
2322 }
2323
2324 stop_pc = read_pc ();
2325
2326 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2327
2328 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2329
2330 /* If no catchpoint triggered for this, then keep going. */
2331 if (ecs->random_signal)
2332 {
2333 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2334 keep_going (ecs);
2335 return;
2336 }
2337 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2338 goto process_event_stop_test;
2339
2340 case TARGET_WAITKIND_EXECD:
2341 if (debug_infrun)
2342 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2343 pending_follow.execd_pathname =
2344 savestring (ecs->ws.value.execd_pathname,
2345 strlen (ecs->ws.value.execd_pathname));
2346
2347 if (!ptid_equal (ecs->ptid, inferior_ptid))
2348 {
2349 context_switch (ecs->ptid);
2350 reinit_frame_cache ();
2351 }
2352
2353 stop_pc = read_pc ();
2354
2355 /* This causes the eventpoints and symbol table to be reset.
2356 Must do this now, before trying to determine whether to
2357 stop. */
2358 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2359 xfree (pending_follow.execd_pathname);
2360
2361 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2362 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2363
2364 /* If no catchpoint triggered for this, then keep going. */
2365 if (ecs->random_signal)
2366 {
2367 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2368 keep_going (ecs);
2369 return;
2370 }
2371 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2372 goto process_event_stop_test;
2373
2374 /* Be careful not to try to gather much state about a thread
2375 that's in a syscall. It's frequently a losing proposition. */
2376 case TARGET_WAITKIND_SYSCALL_ENTRY:
2377 if (debug_infrun)
2378 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2379 resume (0, TARGET_SIGNAL_0);
2380 prepare_to_wait (ecs);
2381 return;
2382
2383 /* Before examining the threads further, step this thread to
2384 get it entirely out of the syscall. (We get notice of the
2385 event when the thread is just on the verge of exiting a
2386 syscall. Stepping one instruction seems to get it back
2387 into user code.) */
2388 case TARGET_WAITKIND_SYSCALL_RETURN:
2389 if (debug_infrun)
2390 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2391 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2392 prepare_to_wait (ecs);
2393 return;
2394
2395 case TARGET_WAITKIND_STOPPED:
2396 if (debug_infrun)
2397 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2398 ecs->event_thread->stop_signal = ecs->ws.value.sig;
2399 break;
2400
2401 case TARGET_WAITKIND_NO_HISTORY:
2402 /* Reverse execution: target ran out of history info. */
2403 stop_pc = read_pc ();
2404 print_stop_reason (NO_HISTORY, 0);
2405 stop_stepping (ecs);
2406 return;
2407
2408 /* We had an event in the inferior, but we are not interested
2409 in handling it at this level. The lower layers have already
2410 done what needs to be done, if anything.
2411
2412 One of the possible circumstances for this is when the
2413 inferior produces output for the console. The inferior has
2414 not stopped, and we are ignoring the event. Another possible
2415 circumstance is any event which the lower level knows will be
2416 reported multiple times without an intervening resume. */
2417 case TARGET_WAITKIND_IGNORE:
2418 if (debug_infrun)
2419 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2420 prepare_to_wait (ecs);
2421 return;
2422 }
2423
2424 if (ecs->new_thread_event)
2425 {
2426 if (non_stop)
2427 /* Non-stop assumes that the target handles adding new threads
2428 to the thread list. */
2429 internal_error (__FILE__, __LINE__, "\
2430 targets should add new threads to the thread list themselves in non-stop mode.");
2431
2432 /* We may want to consider not doing a resume here in order to
2433 give the user a chance to play with the new thread. It might
2434 be good to make that a user-settable option. */
2435
2436 /* At this point, all threads are stopped (happens automatically
2437 in either the OS or the native code). Therefore we need to
2438 continue all threads in order to make progress. */
2439
2440 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2441 prepare_to_wait (ecs);
2442 return;
2443 }
2444
2445 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
2446 {
2447 /* Do we need to clean up the state of a thread that has
2448 completed a displaced single-step? (Doing so usually affects
2449 the PC, so do it here, before we set stop_pc.) */
2450 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2451
2452 /* If we either finished a single-step or hit a breakpoint, but
2453 the user wanted this thread to be stopped, pretend we got a
2454 SIG0 (generic unsignaled stop). */
2455
2456 if (ecs->event_thread->stop_requested
2457 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2458 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2459 }
2460
2461 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2462
2463 if (debug_infrun)
2464 {
2465 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2466 paddr_nz (stop_pc));
2467 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2468 {
2469 CORE_ADDR addr;
2470 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2471
2472 if (target_stopped_data_address (&current_target, &addr))
2473 fprintf_unfiltered (gdb_stdlog,
2474 "infrun: stopped data address = 0x%s\n",
2475 paddr_nz (addr));
2476 else
2477 fprintf_unfiltered (gdb_stdlog,
2478 "infrun: (no data address available)\n");
2479 }
2480 }
2481
2482 if (stepping_past_singlestep_breakpoint)
2483 {
2484 gdb_assert (singlestep_breakpoints_inserted_p);
2485 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2486 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2487
2488 stepping_past_singlestep_breakpoint = 0;
2489
2490 /* We've either finished single-stepping past the single-step
2491 breakpoint, or stopped for some other reason. It would be nice if
2492 we could tell, but we can't reliably. */
2493 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2494 {
2495 if (debug_infrun)
2496 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2497 /* Pull the single step breakpoints out of the target. */
2498 remove_single_step_breakpoints ();
2499 singlestep_breakpoints_inserted_p = 0;
2500
2501 ecs->random_signal = 0;
2502
2503 context_switch (saved_singlestep_ptid);
2504 if (deprecated_context_hook)
2505 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2506
2507 resume (1, TARGET_SIGNAL_0);
2508 prepare_to_wait (ecs);
2509 return;
2510 }
2511 }
2512
2513 if (!ptid_equal (deferred_step_ptid, null_ptid))
2514 {
2515 /* In non-stop mode, there's never a deferred_step_ptid set. */
2516 gdb_assert (!non_stop);
2517
2518 /* If we stopped for some other reason than single-stepping, ignore
2519 the fact that we were supposed to switch back. */
2520 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2521 {
2522 if (debug_infrun)
2523 fprintf_unfiltered (gdb_stdlog,
2524 "infrun: handling deferred step\n");
2525
2526 /* Pull the single step breakpoints out of the target. */
2527 if (singlestep_breakpoints_inserted_p)
2528 {
2529 remove_single_step_breakpoints ();
2530 singlestep_breakpoints_inserted_p = 0;
2531 }
2532
2533 /* Note: We do not call context_switch at this point, as the
2534 context is already set up for stepping the original thread. */
2535 switch_to_thread (deferred_step_ptid);
2536 deferred_step_ptid = null_ptid;
2537 /* Suppress spurious "Switching to ..." message. */
2538 previous_inferior_ptid = inferior_ptid;
2539
2540 resume (1, TARGET_SIGNAL_0);
2541 prepare_to_wait (ecs);
2542 return;
2543 }
2544
2545 deferred_step_ptid = null_ptid;
2546 }
2547
2548 /* See if a thread hit a thread-specific breakpoint that was meant for
2549 another thread. If so, then step that thread past the breakpoint,
2550 and continue it. */
2551
2552 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2553 {
2554 int thread_hop_needed = 0;
2555
2556 /* Check if a regular breakpoint has been hit before checking
2557 for a potential single step breakpoint. Otherwise, GDB will
2558 not see this breakpoint hit when stepping onto breakpoints. */
2559 if (regular_breakpoint_inserted_here_p (stop_pc))
2560 {
2561 ecs->random_signal = 0;
2562 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2563 thread_hop_needed = 1;
2564 }
2565 else if (singlestep_breakpoints_inserted_p)
2566 {
2567 /* We have not context switched yet, so this should be true
2568 no matter which thread hit the singlestep breakpoint. */
2569 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2570 if (debug_infrun)
2571 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2572 "trap for %s\n",
2573 target_pid_to_str (ecs->ptid));
2574
2575 ecs->random_signal = 0;
2576 /* The call to in_thread_list is necessary because PTIDs sometimes
2577 change when we go from single-threaded to multi-threaded. If
2578 the singlestep_ptid is still in the list, assume that it is
2579 really different from ecs->ptid. */
2580 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2581 && in_thread_list (singlestep_ptid))
2582 {
2583 /* If the PC of the thread we were trying to single-step
2584 has changed, discard this event (which we were going
2585 to ignore anyway), and pretend we saw that thread
2586 trap. This prevents us continuously moving the
2587 single-step breakpoint forward, one instruction at a
2588 time. If the PC has changed, then the thread we were
2589 trying to single-step has trapped or been signalled,
2590 but the event has not been reported to GDB yet.
2591
2592 There might be some cases where this loses signal
2593 information, if a signal has arrived at exactly the
2594 same time that the PC changed, but this is the best
2595 we can do with the information available. Perhaps we
2596 should arrange to report all events for all threads
2597 when they stop, or to re-poll the remote looking for
2598 this particular thread (i.e. temporarily enable
2599 schedlock). */
2600
2601 CORE_ADDR new_singlestep_pc
2602 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2603
2604 if (new_singlestep_pc != singlestep_pc)
2605 {
2606 enum target_signal stop_signal;
2607
2608 if (debug_infrun)
2609 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2610 " but expected thread advanced also\n");
2611
2612 /* The current context still belongs to
2613 singlestep_ptid. Don't swap here, since that's
2614 the context we want to use. Just fudge our
2615 state and continue. */
2616 stop_signal = ecs->event_thread->stop_signal;
2617 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2618 ecs->ptid = singlestep_ptid;
2619 ecs->event_thread = find_thread_pid (ecs->ptid);
2620 ecs->event_thread->stop_signal = stop_signal;
2621 stop_pc = new_singlestep_pc;
2622 }
2623 else
2624 {
2625 if (debug_infrun)
2626 fprintf_unfiltered (gdb_stdlog,
2627 "infrun: unexpected thread\n");
2628
2629 thread_hop_needed = 1;
2630 stepping_past_singlestep_breakpoint = 1;
2631 saved_singlestep_ptid = singlestep_ptid;
2632 }
2633 }
2634 }
2635
2636 if (thread_hop_needed)
2637 {
2638 int remove_status = 0;
2639
2640 if (debug_infrun)
2641 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2642
2643 /* Saw a breakpoint, but it was hit by the wrong thread.
2644 Just continue. */
2645
2646 if (singlestep_breakpoints_inserted_p)
2647 {
2648 /* Pull the single step breakpoints out of the target. */
2649 remove_single_step_breakpoints ();
2650 singlestep_breakpoints_inserted_p = 0;
2651 }
2652
2653 /* If the arch can displace step, don't remove the
2654 breakpoints. */
2655 if (!use_displaced_stepping (current_gdbarch))
2656 remove_status = remove_breakpoints ();
2657
2658 /* Did we fail to remove breakpoints? If so, try
2659 to set the PC past the bp. (There's at least
2660 one situation in which we can fail to remove
2661 the bp's: On HP-UX's that use ttrace, we can't
2662 change the address space of a vforking child
2663 process until the child exits (well, okay, not
2664 then either :-) or execs. */
2665 if (remove_status != 0)
2666 error (_("Cannot step over breakpoint hit in wrong thread"));
2667 else
2668 { /* Single step */
2669 if (!ptid_equal (inferior_ptid, ecs->ptid))
2670 context_switch (ecs->ptid);
2671
2672 if (!non_stop)
2673 {
2674 /* Only need to require the next event from this
2675 thread in all-stop mode. */
2676 waiton_ptid = ecs->ptid;
2677 infwait_state = infwait_thread_hop_state;
2678 }
2679
2680 ecs->event_thread->stepping_over_breakpoint = 1;
2681 keep_going (ecs);
2682 registers_changed ();
2683 return;
2684 }
2685 }
2686 else if (singlestep_breakpoints_inserted_p)
2687 {
2688 sw_single_step_trap_p = 1;
2689 ecs->random_signal = 0;
2690 }
2691 }
2692 else
2693 ecs->random_signal = 1;
2694
2695 /* See if something interesting happened to the non-current thread. If
2696 so, then switch to that thread. */
2697 if (!ptid_equal (ecs->ptid, inferior_ptid))
2698 {
2699 if (debug_infrun)
2700 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2701
2702 context_switch (ecs->ptid);
2703
2704 if (deprecated_context_hook)
2705 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2706 }
2707
2708 if (singlestep_breakpoints_inserted_p)
2709 {
2710 /* Pull the single step breakpoints out of the target. */
2711 remove_single_step_breakpoints ();
2712 singlestep_breakpoints_inserted_p = 0;
2713 }
2714
2715 if (stepped_after_stopped_by_watchpoint)
2716 stopped_by_watchpoint = 0;
2717 else
2718 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2719
2720 /* If necessary, step over this watchpoint. We'll be back to display
2721 it in a moment. */
2722 if (stopped_by_watchpoint
2723 && (HAVE_STEPPABLE_WATCHPOINT
2724 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2725 {
2726 /* At this point, we are stopped at an instruction which has
2727 attempted to write to a piece of memory under control of
2728 a watchpoint. The instruction hasn't actually executed
2729 yet. If we were to evaluate the watchpoint expression
2730 now, we would get the old value, and therefore no change
2731 would seem to have occurred.
2732
2733 In order to make watchpoints work `right', we really need
2734 to complete the memory write, and then evaluate the
2735 watchpoint expression. We do this by single-stepping the
2736 target.
2737
2738 It may not be necessary to disable the watchpoint to stop over
2739 it. For example, the PA can (with some kernel cooperation)
2740 single step over a watchpoint without disabling the watchpoint.
2741
2742 It is far more common to need to disable a watchpoint to step
2743 the inferior over it. If we have non-steppable watchpoints,
2744 we must disable the current watchpoint; it's simplest to
2745 disable all watchpoints and breakpoints. */
2746
2747 if (!HAVE_STEPPABLE_WATCHPOINT)
2748 remove_breakpoints ();
2749 registers_changed ();
2750 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2751 waiton_ptid = ecs->ptid;
2752 if (HAVE_STEPPABLE_WATCHPOINT)
2753 infwait_state = infwait_step_watch_state;
2754 else
2755 infwait_state = infwait_nonstep_watch_state;
2756 prepare_to_wait (ecs);
2757 return;
2758 }
2759
2760 ecs->stop_func_start = 0;
2761 ecs->stop_func_end = 0;
2762 ecs->stop_func_name = 0;
2763 /* Don't care about return value; stop_func_start and stop_func_name
2764 will both be 0 if it doesn't work. */
2765 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2766 &ecs->stop_func_start, &ecs->stop_func_end);
2767 ecs->stop_func_start
2768 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2769 ecs->event_thread->stepping_over_breakpoint = 0;
2770 bpstat_clear (&ecs->event_thread->stop_bpstat);
2771 ecs->event_thread->stop_step = 0;
2772 stop_print_frame = 1;
2773 ecs->random_signal = 0;
2774 stopped_by_random_signal = 0;
2775
2776 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2777 && ecs->event_thread->trap_expected
2778 && gdbarch_single_step_through_delay_p (current_gdbarch)
2779 && currently_stepping (ecs->event_thread))
2780 {
2781 /* We're trying to step off a breakpoint. Turns out that we're
2782 also on an instruction that needs to be stepped multiple
2783 times before it's been fully executing. E.g., architectures
2784 with a delay slot. It needs to be stepped twice, once for
2785 the instruction and once for the delay slot. */
2786 int step_through_delay
2787 = gdbarch_single_step_through_delay (current_gdbarch,
2788 get_current_frame ());
2789 if (debug_infrun && step_through_delay)
2790 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2791 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
2792 {
2793 /* The user issued a continue when stopped at a breakpoint.
2794 Set up for another trap and get out of here. */
2795 ecs->event_thread->stepping_over_breakpoint = 1;
2796 keep_going (ecs);
2797 return;
2798 }
2799 else if (step_through_delay)
2800 {
2801 /* The user issued a step when stopped at a breakpoint.
2802 Maybe we should stop, maybe we should not - the delay
2803 slot *might* correspond to a line of source. In any
2804 case, don't decide that here, just set
2805 ecs->stepping_over_breakpoint, making sure we
2806 single-step again before breakpoints are re-inserted. */
2807 ecs->event_thread->stepping_over_breakpoint = 1;
2808 }
2809 }
2810
2811 /* Look at the cause of the stop, and decide what to do.
2812 The alternatives are:
2813 1) stop_stepping and return; to really stop and return to the debugger,
2814 2) keep_going and return to start up again
2815 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
2816 3) set ecs->random_signal to 1, and the decision between 1 and 2
2817 will be made according to the signal handling tables. */
2818
2819 /* First, distinguish signals caused by the debugger from signals
2820 that have to do with the program's own actions. Note that
2821 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2822 on the operating system version. Here we detect when a SIGILL or
2823 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2824 something similar for SIGSEGV, since a SIGSEGV will be generated
2825 when we're trying to execute a breakpoint instruction on a
2826 non-executable stack. This happens for call dummy breakpoints
2827 for architectures like SPARC that place call dummies on the
2828 stack.
2829
2830 If we're doing a displaced step past a breakpoint, then the
2831 breakpoint is always inserted at the original instruction;
2832 non-standard signals can't be explained by the breakpoint. */
2833 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2834 || (! ecs->event_thread->trap_expected
2835 && breakpoint_inserted_here_p (stop_pc)
2836 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
2837 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
2838 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
2839 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2840 || stop_soon == STOP_QUIETLY_REMOTE)
2841 {
2842 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2843 {
2844 if (debug_infrun)
2845 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2846 stop_print_frame = 0;
2847 stop_stepping (ecs);
2848 return;
2849 }
2850
2851 /* This is originated from start_remote(), start_inferior() and
2852 shared libraries hook functions. */
2853 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2854 {
2855 if (debug_infrun)
2856 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2857 stop_stepping (ecs);
2858 return;
2859 }
2860
2861 /* This originates from attach_command(). We need to overwrite
2862 the stop_signal here, because some kernels don't ignore a
2863 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2864 See more comments in inferior.h. On the other hand, if we
2865 get a non-SIGSTOP, report it to the user - assume the backend
2866 will handle the SIGSTOP if it should show up later.
2867
2868 Also consider that the attach is complete when we see a
2869 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2870 target extended-remote report it instead of a SIGSTOP
2871 (e.g. gdbserver). We already rely on SIGTRAP being our
2872 signal, so this is no exception.
2873
2874 Also consider that the attach is complete when we see a
2875 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
2876 the target to stop all threads of the inferior, in case the
2877 low level attach operation doesn't stop them implicitly. If
2878 they weren't stopped implicitly, then the stub will report a
2879 TARGET_SIGNAL_0, meaning: stopped for no particular reason
2880 other than GDB's request. */
2881 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2882 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
2883 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2884 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
2885 {
2886 stop_stepping (ecs);
2887 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2888 return;
2889 }
2890
2891 /* See if there is a breakpoint at the current PC. */
2892 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2893
2894 /* Following in case break condition called a
2895 function. */
2896 stop_print_frame = 1;
2897
2898 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2899 at one stage in the past included checks for an inferior
2900 function call's call dummy's return breakpoint. The original
2901 comment, that went with the test, read:
2902
2903 ``End of a stack dummy. Some systems (e.g. Sony news) give
2904 another signal besides SIGTRAP, so check here as well as
2905 above.''
2906
2907 If someone ever tries to get call dummys on a
2908 non-executable stack to work (where the target would stop
2909 with something like a SIGSEGV), then those tests might need
2910 to be re-instated. Given, however, that the tests were only
2911 enabled when momentary breakpoints were not being used, I
2912 suspect that it won't be the case.
2913
2914 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2915 be necessary for call dummies on a non-executable stack on
2916 SPARC. */
2917
2918 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2919 ecs->random_signal
2920 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
2921 || ecs->event_thread->trap_expected
2922 || (ecs->event_thread->step_range_end
2923 && ecs->event_thread->step_resume_breakpoint == NULL));
2924 else
2925 {
2926 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2927 if (!ecs->random_signal)
2928 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2929 }
2930 }
2931
2932 /* When we reach this point, we've pretty much decided
2933 that the reason for stopping must've been a random
2934 (unexpected) signal. */
2935
2936 else
2937 ecs->random_signal = 1;
2938
2939 process_event_stop_test:
2940 /* For the program's own signals, act according to
2941 the signal handling tables. */
2942
2943 if (ecs->random_signal)
2944 {
2945 /* Signal not for debugging purposes. */
2946 int printed = 0;
2947
2948 if (debug_infrun)
2949 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
2950 ecs->event_thread->stop_signal);
2951
2952 stopped_by_random_signal = 1;
2953
2954 if (signal_print[ecs->event_thread->stop_signal])
2955 {
2956 printed = 1;
2957 target_terminal_ours_for_output ();
2958 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
2959 }
2960 /* Always stop on signals if we're either just gaining control
2961 of the program, or the user explicitly requested this thread
2962 to remain stopped. */
2963 if (stop_soon != NO_STOP_QUIETLY
2964 || ecs->event_thread->stop_requested
2965 || signal_stop_state (ecs->event_thread->stop_signal))
2966 {
2967 stop_stepping (ecs);
2968 return;
2969 }
2970 /* If not going to stop, give terminal back
2971 if we took it away. */
2972 else if (printed)
2973 target_terminal_inferior ();
2974
2975 /* Clear the signal if it should not be passed. */
2976 if (signal_program[ecs->event_thread->stop_signal] == 0)
2977 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2978
2979 if (ecs->event_thread->prev_pc == read_pc ()
2980 && ecs->event_thread->trap_expected
2981 && ecs->event_thread->step_resume_breakpoint == NULL)
2982 {
2983 /* We were just starting a new sequence, attempting to
2984 single-step off of a breakpoint and expecting a SIGTRAP.
2985 Instead this signal arrives. This signal will take us out
2986 of the stepping range so GDB needs to remember to, when
2987 the signal handler returns, resume stepping off that
2988 breakpoint. */
2989 /* To simplify things, "continue" is forced to use the same
2990 code paths as single-step - set a breakpoint at the
2991 signal return address and then, once hit, step off that
2992 breakpoint. */
2993 if (debug_infrun)
2994 fprintf_unfiltered (gdb_stdlog,
2995 "infrun: signal arrived while stepping over "
2996 "breakpoint\n");
2997
2998 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2999 ecs->event_thread->step_after_step_resume_breakpoint = 1;
3000 keep_going (ecs);
3001 return;
3002 }
3003
3004 if (ecs->event_thread->step_range_end != 0
3005 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
3006 && (ecs->event_thread->step_range_start <= stop_pc
3007 && stop_pc < ecs->event_thread->step_range_end)
3008 && frame_id_eq (get_frame_id (get_current_frame ()),
3009 ecs->event_thread->step_frame_id)
3010 && ecs->event_thread->step_resume_breakpoint == NULL)
3011 {
3012 /* The inferior is about to take a signal that will take it
3013 out of the single step range. Set a breakpoint at the
3014 current PC (which is presumably where the signal handler
3015 will eventually return) and then allow the inferior to
3016 run free.
3017
3018 Note that this is only needed for a signal delivered
3019 while in the single-step range. Nested signals aren't a
3020 problem as they eventually all return. */
3021 if (debug_infrun)
3022 fprintf_unfiltered (gdb_stdlog,
3023 "infrun: signal may take us out of "
3024 "single-step range\n");
3025
3026 insert_step_resume_breakpoint_at_frame (get_current_frame ());
3027 keep_going (ecs);
3028 return;
3029 }
3030
3031 /* Note: step_resume_breakpoint may be non-NULL. This occures
3032 when either there's a nested signal, or when there's a
3033 pending signal enabled just as the signal handler returns
3034 (leaving the inferior at the step-resume-breakpoint without
3035 actually executing it). Either way continue until the
3036 breakpoint is really hit. */
3037 keep_going (ecs);
3038 return;
3039 }
3040
3041 /* Handle cases caused by hitting a breakpoint. */
3042 {
3043 CORE_ADDR jmp_buf_pc;
3044 struct bpstat_what what;
3045
3046 what = bpstat_what (ecs->event_thread->stop_bpstat);
3047
3048 if (what.call_dummy)
3049 {
3050 stop_stack_dummy = 1;
3051 }
3052
3053 switch (what.main_action)
3054 {
3055 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
3056 /* If we hit the breakpoint at longjmp while stepping, we
3057 install a momentary breakpoint at the target of the
3058 jmp_buf. */
3059
3060 if (debug_infrun)
3061 fprintf_unfiltered (gdb_stdlog,
3062 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3063
3064 ecs->event_thread->stepping_over_breakpoint = 1;
3065
3066 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
3067 || !gdbarch_get_longjmp_target (current_gdbarch,
3068 get_current_frame (), &jmp_buf_pc))
3069 {
3070 if (debug_infrun)
3071 fprintf_unfiltered (gdb_stdlog, "\
3072 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
3073 keep_going (ecs);
3074 return;
3075 }
3076
3077 /* We're going to replace the current step-resume breakpoint
3078 with a longjmp-resume breakpoint. */
3079 delete_step_resume_breakpoint (ecs->event_thread);
3080
3081 /* Insert a breakpoint at resume address. */
3082 insert_longjmp_resume_breakpoint (jmp_buf_pc);
3083
3084 keep_going (ecs);
3085 return;
3086
3087 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
3088 if (debug_infrun)
3089 fprintf_unfiltered (gdb_stdlog,
3090 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3091
3092 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3093 delete_step_resume_breakpoint (ecs->event_thread);
3094
3095 ecs->event_thread->stop_step = 1;
3096 print_stop_reason (END_STEPPING_RANGE, 0);
3097 stop_stepping (ecs);
3098 return;
3099
3100 case BPSTAT_WHAT_SINGLE:
3101 if (debug_infrun)
3102 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
3103 ecs->event_thread->stepping_over_breakpoint = 1;
3104 /* Still need to check other stuff, at least the case
3105 where we are stepping and step out of the right range. */
3106 break;
3107
3108 case BPSTAT_WHAT_STOP_NOISY:
3109 if (debug_infrun)
3110 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
3111 stop_print_frame = 1;
3112
3113 /* We are about to nuke the step_resume_breakpointt via the
3114 cleanup chain, so no need to worry about it here. */
3115
3116 stop_stepping (ecs);
3117 return;
3118
3119 case BPSTAT_WHAT_STOP_SILENT:
3120 if (debug_infrun)
3121 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
3122 stop_print_frame = 0;
3123
3124 /* We are about to nuke the step_resume_breakpoin via the
3125 cleanup chain, so no need to worry about it here. */
3126
3127 stop_stepping (ecs);
3128 return;
3129
3130 case BPSTAT_WHAT_STEP_RESUME:
3131 if (debug_infrun)
3132 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
3133
3134 delete_step_resume_breakpoint (ecs->event_thread);
3135 if (ecs->event_thread->step_after_step_resume_breakpoint)
3136 {
3137 /* Back when the step-resume breakpoint was inserted, we
3138 were trying to single-step off a breakpoint. Go back
3139 to doing that. */
3140 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3141 ecs->event_thread->stepping_over_breakpoint = 1;
3142 keep_going (ecs);
3143 return;
3144 }
3145 if (stop_pc == ecs->stop_func_start
3146 && execution_direction == EXEC_REVERSE)
3147 {
3148 /* We are stepping over a function call in reverse, and
3149 just hit the step-resume breakpoint at the start
3150 address of the function. Go back to single-stepping,
3151 which should take us back to the function call. */
3152 ecs->event_thread->stepping_over_breakpoint = 1;
3153 keep_going (ecs);
3154 return;
3155 }
3156 break;
3157
3158 case BPSTAT_WHAT_CHECK_SHLIBS:
3159 {
3160 if (debug_infrun)
3161 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
3162
3163 /* Check for any newly added shared libraries if we're
3164 supposed to be adding them automatically. Switch
3165 terminal for any messages produced by
3166 breakpoint_re_set. */
3167 target_terminal_ours_for_output ();
3168 /* NOTE: cagney/2003-11-25: Make certain that the target
3169 stack's section table is kept up-to-date. Architectures,
3170 (e.g., PPC64), use the section table to perform
3171 operations such as address => section name and hence
3172 require the table to contain all sections (including
3173 those found in shared libraries). */
3174 /* NOTE: cagney/2003-11-25: Pass current_target and not
3175 exec_ops to SOLIB_ADD. This is because current GDB is
3176 only tooled to propagate section_table changes out from
3177 the "current_target" (see target_resize_to_sections), and
3178 not up from the exec stratum. This, of course, isn't
3179 right. "infrun.c" should only interact with the
3180 exec/process stratum, instead relying on the target stack
3181 to propagate relevant changes (stop, section table
3182 changed, ...) up to other layers. */
3183 #ifdef SOLIB_ADD
3184 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3185 #else
3186 solib_add (NULL, 0, &current_target, auto_solib_add);
3187 #endif
3188 target_terminal_inferior ();
3189
3190 /* If requested, stop when the dynamic linker notifies
3191 gdb of events. This allows the user to get control
3192 and place breakpoints in initializer routines for
3193 dynamically loaded objects (among other things). */
3194 if (stop_on_solib_events || stop_stack_dummy)
3195 {
3196 stop_stepping (ecs);
3197 return;
3198 }
3199 else
3200 {
3201 /* We want to step over this breakpoint, then keep going. */
3202 ecs->event_thread->stepping_over_breakpoint = 1;
3203 break;
3204 }
3205 }
3206 break;
3207
3208 case BPSTAT_WHAT_LAST:
3209 /* Not a real code, but listed here to shut up gcc -Wall. */
3210
3211 case BPSTAT_WHAT_KEEP_CHECKING:
3212 break;
3213 }
3214 }
3215
3216 /* We come here if we hit a breakpoint but should not
3217 stop for it. Possibly we also were stepping
3218 and should stop for that. So fall through and
3219 test for stepping. But, if not stepping,
3220 do not stop. */
3221
3222 /* In all-stop mode, if we're currently stepping but have stopped in
3223 some other thread, we need to switch back to the stepped thread. */
3224 if (!non_stop)
3225 {
3226 struct thread_info *tp;
3227 tp = iterate_over_threads (currently_stepping_callback,
3228 ecs->event_thread);
3229 if (tp)
3230 {
3231 /* However, if the current thread is blocked on some internal
3232 breakpoint, and we simply need to step over that breakpoint
3233 to get it going again, do that first. */
3234 if ((ecs->event_thread->trap_expected
3235 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3236 || ecs->event_thread->stepping_over_breakpoint)
3237 {
3238 keep_going (ecs);
3239 return;
3240 }
3241
3242 /* Otherwise, we no longer expect a trap in the current thread.
3243 Clear the trap_expected flag before switching back -- this is
3244 what keep_going would do as well, if we called it. */
3245 ecs->event_thread->trap_expected = 0;
3246
3247 if (debug_infrun)
3248 fprintf_unfiltered (gdb_stdlog,
3249 "infrun: switching back to stepped thread\n");
3250
3251 ecs->event_thread = tp;
3252 ecs->ptid = tp->ptid;
3253 context_switch (ecs->ptid);
3254 keep_going (ecs);
3255 return;
3256 }
3257 }
3258
3259 /* Are we stepping to get the inferior out of the dynamic linker's
3260 hook (and possibly the dld itself) after catching a shlib
3261 event? */
3262 if (ecs->event_thread->stepping_through_solib_after_catch)
3263 {
3264 #if defined(SOLIB_ADD)
3265 /* Have we reached our destination? If not, keep going. */
3266 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3267 {
3268 if (debug_infrun)
3269 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
3270 ecs->event_thread->stepping_over_breakpoint = 1;
3271 keep_going (ecs);
3272 return;
3273 }
3274 #endif
3275 if (debug_infrun)
3276 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
3277 /* Else, stop and report the catchpoint(s) whose triggering
3278 caused us to begin stepping. */
3279 ecs->event_thread->stepping_through_solib_after_catch = 0;
3280 bpstat_clear (&ecs->event_thread->stop_bpstat);
3281 ecs->event_thread->stop_bpstat
3282 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
3283 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
3284 stop_print_frame = 1;
3285 stop_stepping (ecs);
3286 return;
3287 }
3288
3289 if (ecs->event_thread->step_resume_breakpoint)
3290 {
3291 if (debug_infrun)
3292 fprintf_unfiltered (gdb_stdlog,
3293 "infrun: step-resume breakpoint is inserted\n");
3294
3295 /* Having a step-resume breakpoint overrides anything
3296 else having to do with stepping commands until
3297 that breakpoint is reached. */
3298 keep_going (ecs);
3299 return;
3300 }
3301
3302 if (ecs->event_thread->step_range_end == 0)
3303 {
3304 if (debug_infrun)
3305 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3306 /* Likewise if we aren't even stepping. */
3307 keep_going (ecs);
3308 return;
3309 }
3310
3311 /* If stepping through a line, keep going if still within it.
3312
3313 Note that step_range_end is the address of the first instruction
3314 beyond the step range, and NOT the address of the last instruction
3315 within it! */
3316 if (stop_pc >= ecs->event_thread->step_range_start
3317 && stop_pc < ecs->event_thread->step_range_end)
3318 {
3319 if (debug_infrun)
3320 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3321 paddr_nz (ecs->event_thread->step_range_start),
3322 paddr_nz (ecs->event_thread->step_range_end));
3323
3324 /* When stepping backward, stop at beginning of line range
3325 (unless it's the function entry point, in which case
3326 keep going back to the call point). */
3327 if (stop_pc == ecs->event_thread->step_range_start
3328 && stop_pc != ecs->stop_func_start
3329 && execution_direction == EXEC_REVERSE)
3330 {
3331 ecs->event_thread->stop_step = 1;
3332 print_stop_reason (END_STEPPING_RANGE, 0);
3333 stop_stepping (ecs);
3334 }
3335 else
3336 keep_going (ecs);
3337
3338 return;
3339 }
3340
3341 /* We stepped out of the stepping range. */
3342
3343 /* If we are stepping at the source level and entered the runtime
3344 loader dynamic symbol resolution code, we keep on single stepping
3345 until we exit the run time loader code and reach the callee's
3346 address. */
3347 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3348 && in_solib_dynsym_resolve_code (stop_pc))
3349 {
3350 CORE_ADDR pc_after_resolver =
3351 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
3352
3353 if (debug_infrun)
3354 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3355
3356 if (pc_after_resolver)
3357 {
3358 /* Set up a step-resume breakpoint at the address
3359 indicated by SKIP_SOLIB_RESOLVER. */
3360 struct symtab_and_line sr_sal;
3361 init_sal (&sr_sal);
3362 sr_sal.pc = pc_after_resolver;
3363
3364 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3365 }
3366
3367 keep_going (ecs);
3368 return;
3369 }
3370
3371 if (ecs->event_thread->step_range_end != 1
3372 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3373 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3374 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
3375 {
3376 if (debug_infrun)
3377 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3378 /* The inferior, while doing a "step" or "next", has ended up in
3379 a signal trampoline (either by a signal being delivered or by
3380 the signal handler returning). Just single-step until the
3381 inferior leaves the trampoline (either by calling the handler
3382 or returning). */
3383 keep_going (ecs);
3384 return;
3385 }
3386
3387 /* Check for subroutine calls. The check for the current frame
3388 equalling the step ID is not necessary - the check of the
3389 previous frame's ID is sufficient - but it is a common case and
3390 cheaper than checking the previous frame's ID.
3391
3392 NOTE: frame_id_eq will never report two invalid frame IDs as
3393 being equal, so to get into this block, both the current and
3394 previous frame must have valid frame IDs. */
3395 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3396 ecs->event_thread->step_frame_id)
3397 && (frame_id_eq (frame_unwind_id (get_current_frame ()),
3398 ecs->event_thread->step_frame_id)
3399 || execution_direction == EXEC_REVERSE))
3400 {
3401 CORE_ADDR real_stop_pc;
3402
3403 if (debug_infrun)
3404 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3405
3406 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
3407 || ((ecs->event_thread->step_range_end == 1)
3408 && in_prologue (ecs->event_thread->prev_pc,
3409 ecs->stop_func_start)))
3410 {
3411 /* I presume that step_over_calls is only 0 when we're
3412 supposed to be stepping at the assembly language level
3413 ("stepi"). Just stop. */
3414 /* Also, maybe we just did a "nexti" inside a prolog, so we
3415 thought it was a subroutine call but it was not. Stop as
3416 well. FENN */
3417 ecs->event_thread->stop_step = 1;
3418 print_stop_reason (END_STEPPING_RANGE, 0);
3419 stop_stepping (ecs);
3420 return;
3421 }
3422
3423 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3424 {
3425 /* We're doing a "next".
3426
3427 Normal (forward) execution: set a breakpoint at the
3428 callee's return address (the address at which the caller
3429 will resume).
3430
3431 Reverse (backward) execution. set the step-resume
3432 breakpoint at the start of the function that we just
3433 stepped into (backwards), and continue to there. When we
3434 get there, we'll need to single-step back to the caller. */
3435
3436 if (execution_direction == EXEC_REVERSE)
3437 {
3438 struct symtab_and_line sr_sal;
3439
3440 if (ecs->stop_func_start == 0
3441 && in_solib_dynsym_resolve_code (stop_pc))
3442 {
3443 /* Stepped into runtime loader dynamic symbol
3444 resolution code. Since we're in reverse,
3445 we have already backed up through the runtime
3446 loader and the dynamic function. This is just
3447 the trampoline (jump table).
3448
3449 Just keep stepping, we'll soon be home.
3450 */
3451 keep_going (ecs);
3452 return;
3453 }
3454 /* Normal (staticly linked) function call return. */
3455 init_sal (&sr_sal);
3456 sr_sal.pc = ecs->stop_func_start;
3457 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3458 }
3459 else
3460 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3461
3462 keep_going (ecs);
3463 return;
3464 }
3465
3466 /* If we are in a function call trampoline (a stub between the
3467 calling routine and the real function), locate the real
3468 function. That's what tells us (a) whether we want to step
3469 into it at all, and (b) what prologue we want to run to the
3470 end of, if we do step into it. */
3471 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
3472 if (real_stop_pc == 0)
3473 real_stop_pc = gdbarch_skip_trampoline_code
3474 (current_gdbarch, get_current_frame (), stop_pc);
3475 if (real_stop_pc != 0)
3476 ecs->stop_func_start = real_stop_pc;
3477
3478 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
3479 {
3480 struct symtab_and_line sr_sal;
3481 init_sal (&sr_sal);
3482 sr_sal.pc = ecs->stop_func_start;
3483
3484 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3485 keep_going (ecs);
3486 return;
3487 }
3488
3489 /* If we have line number information for the function we are
3490 thinking of stepping into, step into it.
3491
3492 If there are several symtabs at that PC (e.g. with include
3493 files), just want to know whether *any* of them have line
3494 numbers. find_pc_line handles this. */
3495 {
3496 struct symtab_and_line tmp_sal;
3497
3498 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3499 if (tmp_sal.line != 0)
3500 {
3501 if (execution_direction == EXEC_REVERSE)
3502 handle_step_into_function_backward (ecs);
3503 else
3504 handle_step_into_function (ecs);
3505 return;
3506 }
3507 }
3508
3509 /* If we have no line number and the step-stop-if-no-debug is
3510 set, we stop the step so that the user has a chance to switch
3511 in assembly mode. */
3512 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3513 && step_stop_if_no_debug)
3514 {
3515 ecs->event_thread->stop_step = 1;
3516 print_stop_reason (END_STEPPING_RANGE, 0);
3517 stop_stepping (ecs);
3518 return;
3519 }
3520
3521 if (execution_direction == EXEC_REVERSE)
3522 {
3523 /* Set a breakpoint at callee's start address.
3524 From there we can step once and be back in the caller. */
3525 struct symtab_and_line sr_sal;
3526 init_sal (&sr_sal);
3527 sr_sal.pc = ecs->stop_func_start;
3528 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3529 }
3530 else
3531 /* Set a breakpoint at callee's return address (the address
3532 at which the caller will resume). */
3533 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3534
3535 keep_going (ecs);
3536 return;
3537 }
3538
3539 /* If we're in the return path from a shared library trampoline,
3540 we want to proceed through the trampoline when stepping. */
3541 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3542 stop_pc, ecs->stop_func_name))
3543 {
3544 /* Determine where this trampoline returns. */
3545 CORE_ADDR real_stop_pc;
3546 real_stop_pc = gdbarch_skip_trampoline_code
3547 (current_gdbarch, get_current_frame (), stop_pc);
3548
3549 if (debug_infrun)
3550 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3551
3552 /* Only proceed through if we know where it's going. */
3553 if (real_stop_pc)
3554 {
3555 /* And put the step-breakpoint there and go until there. */
3556 struct symtab_and_line sr_sal;
3557
3558 init_sal (&sr_sal); /* initialize to zeroes */
3559 sr_sal.pc = real_stop_pc;
3560 sr_sal.section = find_pc_overlay (sr_sal.pc);
3561
3562 /* Do not specify what the fp should be when we stop since
3563 on some machines the prologue is where the new fp value
3564 is established. */
3565 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3566
3567 /* Restart without fiddling with the step ranges or
3568 other state. */
3569 keep_going (ecs);
3570 return;
3571 }
3572 }
3573
3574 stop_pc_sal = find_pc_line (stop_pc, 0);
3575
3576 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3577 the trampoline processing logic, however, there are some trampolines
3578 that have no names, so we should do trampoline handling first. */
3579 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3580 && ecs->stop_func_name == NULL
3581 && stop_pc_sal.line == 0)
3582 {
3583 if (debug_infrun)
3584 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3585
3586 /* The inferior just stepped into, or returned to, an
3587 undebuggable function (where there is no debugging information
3588 and no line number corresponding to the address where the
3589 inferior stopped). Since we want to skip this kind of code,
3590 we keep going until the inferior returns from this
3591 function - unless the user has asked us not to (via
3592 set step-mode) or we no longer know how to get back
3593 to the call site. */
3594 if (step_stop_if_no_debug
3595 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3596 {
3597 /* If we have no line number and the step-stop-if-no-debug
3598 is set, we stop the step so that the user has a chance to
3599 switch in assembly mode. */
3600 ecs->event_thread->stop_step = 1;
3601 print_stop_reason (END_STEPPING_RANGE, 0);
3602 stop_stepping (ecs);
3603 return;
3604 }
3605 else
3606 {
3607 /* Set a breakpoint at callee's return address (the address
3608 at which the caller will resume). */
3609 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3610 keep_going (ecs);
3611 return;
3612 }
3613 }
3614
3615 if (ecs->event_thread->step_range_end == 1)
3616 {
3617 /* It is stepi or nexti. We always want to stop stepping after
3618 one instruction. */
3619 if (debug_infrun)
3620 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3621 ecs->event_thread->stop_step = 1;
3622 print_stop_reason (END_STEPPING_RANGE, 0);
3623 stop_stepping (ecs);
3624 return;
3625 }
3626
3627 if (stop_pc_sal.line == 0)
3628 {
3629 /* We have no line number information. That means to stop
3630 stepping (does this always happen right after one instruction,
3631 when we do "s" in a function with no line numbers,
3632 or can this happen as a result of a return or longjmp?). */
3633 if (debug_infrun)
3634 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3635 ecs->event_thread->stop_step = 1;
3636 print_stop_reason (END_STEPPING_RANGE, 0);
3637 stop_stepping (ecs);
3638 return;
3639 }
3640
3641 if ((stop_pc == stop_pc_sal.pc)
3642 && (ecs->event_thread->current_line != stop_pc_sal.line
3643 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
3644 {
3645 /* We are at the start of a different line. So stop. Note that
3646 we don't stop if we step into the middle of a different line.
3647 That is said to make things like for (;;) statements work
3648 better. */
3649 if (debug_infrun)
3650 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3651 ecs->event_thread->stop_step = 1;
3652 print_stop_reason (END_STEPPING_RANGE, 0);
3653 stop_stepping (ecs);
3654 return;
3655 }
3656
3657 /* We aren't done stepping.
3658
3659 Optimize by setting the stepping range to the line.
3660 (We might not be in the original line, but if we entered a
3661 new line in mid-statement, we continue stepping. This makes
3662 things like for(;;) statements work better.) */
3663
3664 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3665 ecs->event_thread->step_range_end = stop_pc_sal.end;
3666 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3667 ecs->event_thread->current_line = stop_pc_sal.line;
3668 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
3669
3670 if (debug_infrun)
3671 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3672 keep_going (ecs);
3673 }
3674
3675 /* Are we in the middle of stepping? */
3676
3677 static int
3678 currently_stepping_thread (struct thread_info *tp)
3679 {
3680 return (tp->step_range_end && tp->step_resume_breakpoint == NULL)
3681 || tp->trap_expected
3682 || tp->stepping_through_solib_after_catch;
3683 }
3684
3685 static int
3686 currently_stepping_callback (struct thread_info *tp, void *data)
3687 {
3688 /* Return true if any thread *but* the one passed in "data" is
3689 in the middle of stepping. */
3690 return tp != data && currently_stepping_thread (tp);
3691 }
3692
3693 static int
3694 currently_stepping (struct thread_info *tp)
3695 {
3696 return currently_stepping_thread (tp) || bpstat_should_step ();
3697 }
3698
3699 /* Inferior has stepped into a subroutine call with source code that
3700 we should not step over. Do step to the first line of code in
3701 it. */
3702
3703 static void
3704 handle_step_into_function (struct execution_control_state *ecs)
3705 {
3706 struct symtab *s;
3707 struct symtab_and_line stop_func_sal, sr_sal;
3708
3709 s = find_pc_symtab (stop_pc);
3710 if (s && s->language != language_asm)
3711 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3712 ecs->stop_func_start);
3713
3714 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
3715 /* Use the step_resume_break to step until the end of the prologue,
3716 even if that involves jumps (as it seems to on the vax under
3717 4.2). */
3718 /* If the prologue ends in the middle of a source line, continue to
3719 the end of that source line (if it is still within the function).
3720 Otherwise, just go to end of prologue. */
3721 if (stop_func_sal.end
3722 && stop_func_sal.pc != ecs->stop_func_start
3723 && stop_func_sal.end < ecs->stop_func_end)
3724 ecs->stop_func_start = stop_func_sal.end;
3725
3726 /* Architectures which require breakpoint adjustment might not be able
3727 to place a breakpoint at the computed address. If so, the test
3728 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3729 ecs->stop_func_start to an address at which a breakpoint may be
3730 legitimately placed.
3731
3732 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3733 made, GDB will enter an infinite loop when stepping through
3734 optimized code consisting of VLIW instructions which contain
3735 subinstructions corresponding to different source lines. On
3736 FR-V, it's not permitted to place a breakpoint on any but the
3737 first subinstruction of a VLIW instruction. When a breakpoint is
3738 set, GDB will adjust the breakpoint address to the beginning of
3739 the VLIW instruction. Thus, we need to make the corresponding
3740 adjustment here when computing the stop address. */
3741
3742 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3743 {
3744 ecs->stop_func_start
3745 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3746 ecs->stop_func_start);
3747 }
3748
3749 if (ecs->stop_func_start == stop_pc)
3750 {
3751 /* We are already there: stop now. */
3752 ecs->event_thread->stop_step = 1;
3753 print_stop_reason (END_STEPPING_RANGE, 0);
3754 stop_stepping (ecs);
3755 return;
3756 }
3757 else
3758 {
3759 /* Put the step-breakpoint there and go until there. */
3760 init_sal (&sr_sal); /* initialize to zeroes */
3761 sr_sal.pc = ecs->stop_func_start;
3762 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3763
3764 /* Do not specify what the fp should be when we stop since on
3765 some machines the prologue is where the new fp value is
3766 established. */
3767 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3768
3769 /* And make sure stepping stops right away then. */
3770 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
3771 }
3772 keep_going (ecs);
3773 }
3774
3775 /* Inferior has stepped backward into a subroutine call with source
3776 code that we should not step over. Do step to the beginning of the
3777 last line of code in it. */
3778
3779 static void
3780 handle_step_into_function_backward (struct execution_control_state *ecs)
3781 {
3782 struct symtab *s;
3783 struct symtab_and_line stop_func_sal, sr_sal;
3784
3785 s = find_pc_symtab (stop_pc);
3786 if (s && s->language != language_asm)
3787 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3788 ecs->stop_func_start);
3789
3790 stop_func_sal = find_pc_line (stop_pc, 0);
3791
3792 /* OK, we're just going to keep stepping here. */
3793 if (stop_func_sal.pc == stop_pc)
3794 {
3795 /* We're there already. Just stop stepping now. */
3796 ecs->event_thread->stop_step = 1;
3797 print_stop_reason (END_STEPPING_RANGE, 0);
3798 stop_stepping (ecs);
3799 }
3800 else
3801 {
3802 /* Else just reset the step range and keep going.
3803 No step-resume breakpoint, they don't work for
3804 epilogues, which can have multiple entry paths. */
3805 ecs->event_thread->step_range_start = stop_func_sal.pc;
3806 ecs->event_thread->step_range_end = stop_func_sal.end;
3807 keep_going (ecs);
3808 }
3809 return;
3810 }
3811
3812 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3813 This is used to both functions and to skip over code. */
3814
3815 static void
3816 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3817 struct frame_id sr_id)
3818 {
3819 /* There should never be more than one step-resume or longjmp-resume
3820 breakpoint per thread, so we should never be setting a new
3821 step_resume_breakpoint when one is already active. */
3822 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3823
3824 if (debug_infrun)
3825 fprintf_unfiltered (gdb_stdlog,
3826 "infrun: inserting step-resume breakpoint at 0x%s\n",
3827 paddr_nz (sr_sal.pc));
3828
3829 inferior_thread ()->step_resume_breakpoint
3830 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
3831 }
3832
3833 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3834 to skip a potential signal handler.
3835
3836 This is called with the interrupted function's frame. The signal
3837 handler, when it returns, will resume the interrupted function at
3838 RETURN_FRAME.pc. */
3839
3840 static void
3841 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3842 {
3843 struct symtab_and_line sr_sal;
3844
3845 gdb_assert (return_frame != NULL);
3846 init_sal (&sr_sal); /* initialize to zeros */
3847
3848 sr_sal.pc = gdbarch_addr_bits_remove
3849 (current_gdbarch, get_frame_pc (return_frame));
3850 sr_sal.section = find_pc_overlay (sr_sal.pc);
3851
3852 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3853 }
3854
3855 /* Similar to insert_step_resume_breakpoint_at_frame, except
3856 but a breakpoint at the previous frame's PC. This is used to
3857 skip a function after stepping into it (for "next" or if the called
3858 function has no debugging information).
3859
3860 The current function has almost always been reached by single
3861 stepping a call or return instruction. NEXT_FRAME belongs to the
3862 current function, and the breakpoint will be set at the caller's
3863 resume address.
3864
3865 This is a separate function rather than reusing
3866 insert_step_resume_breakpoint_at_frame in order to avoid
3867 get_prev_frame, which may stop prematurely (see the implementation
3868 of frame_unwind_id for an example). */
3869
3870 static void
3871 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3872 {
3873 struct symtab_and_line sr_sal;
3874
3875 /* We shouldn't have gotten here if we don't know where the call site
3876 is. */
3877 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3878
3879 init_sal (&sr_sal); /* initialize to zeros */
3880
3881 sr_sal.pc = gdbarch_addr_bits_remove
3882 (current_gdbarch, frame_pc_unwind (next_frame));
3883 sr_sal.section = find_pc_overlay (sr_sal.pc);
3884
3885 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3886 }
3887
3888 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3889 new breakpoint at the target of a jmp_buf. The handling of
3890 longjmp-resume uses the same mechanisms used for handling
3891 "step-resume" breakpoints. */
3892
3893 static void
3894 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3895 {
3896 /* There should never be more than one step-resume or longjmp-resume
3897 breakpoint per thread, so we should never be setting a new
3898 longjmp_resume_breakpoint when one is already active. */
3899 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3900
3901 if (debug_infrun)
3902 fprintf_unfiltered (gdb_stdlog,
3903 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3904 paddr_nz (pc));
3905
3906 inferior_thread ()->step_resume_breakpoint =
3907 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3908 }
3909
3910 static void
3911 stop_stepping (struct execution_control_state *ecs)
3912 {
3913 if (debug_infrun)
3914 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3915
3916 /* Let callers know we don't want to wait for the inferior anymore. */
3917 ecs->wait_some_more = 0;
3918 }
3919
3920 /* This function handles various cases where we need to continue
3921 waiting for the inferior. */
3922 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3923
3924 static void
3925 keep_going (struct execution_control_state *ecs)
3926 {
3927 /* Save the pc before execution, to compare with pc after stop. */
3928 ecs->event_thread->prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3929
3930 /* If we did not do break;, it means we should keep running the
3931 inferior and not return to debugger. */
3932
3933 if (ecs->event_thread->trap_expected
3934 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3935 {
3936 /* We took a signal (which we are supposed to pass through to
3937 the inferior, else we'd not get here) and we haven't yet
3938 gotten our trap. Simply continue. */
3939 resume (currently_stepping (ecs->event_thread),
3940 ecs->event_thread->stop_signal);
3941 }
3942 else
3943 {
3944 /* Either the trap was not expected, but we are continuing
3945 anyway (the user asked that this signal be passed to the
3946 child)
3947 -- or --
3948 The signal was SIGTRAP, e.g. it was our signal, but we
3949 decided we should resume from it.
3950
3951 We're going to run this baby now!
3952
3953 Note that insert_breakpoints won't try to re-insert
3954 already inserted breakpoints. Therefore, we don't
3955 care if breakpoints were already inserted, or not. */
3956
3957 if (ecs->event_thread->stepping_over_breakpoint)
3958 {
3959 if (! use_displaced_stepping (current_gdbarch))
3960 /* Since we can't do a displaced step, we have to remove
3961 the breakpoint while we step it. To keep things
3962 simple, we remove them all. */
3963 remove_breakpoints ();
3964 }
3965 else
3966 {
3967 struct gdb_exception e;
3968 /* Stop stepping when inserting breakpoints
3969 has failed. */
3970 TRY_CATCH (e, RETURN_MASK_ERROR)
3971 {
3972 insert_breakpoints ();
3973 }
3974 if (e.reason < 0)
3975 {
3976 stop_stepping (ecs);
3977 return;
3978 }
3979 }
3980
3981 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
3982
3983 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3984 specifies that such a signal should be delivered to the
3985 target program).
3986
3987 Typically, this would occure when a user is debugging a
3988 target monitor on a simulator: the target monitor sets a
3989 breakpoint; the simulator encounters this break-point and
3990 halts the simulation handing control to GDB; GDB, noteing
3991 that the break-point isn't valid, returns control back to the
3992 simulator; the simulator then delivers the hardware
3993 equivalent of a SIGNAL_TRAP to the program being debugged. */
3994
3995 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3996 && !signal_program[ecs->event_thread->stop_signal])
3997 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3998
3999 resume (currently_stepping (ecs->event_thread),
4000 ecs->event_thread->stop_signal);
4001 }
4002
4003 prepare_to_wait (ecs);
4004 }
4005
4006 /* This function normally comes after a resume, before
4007 handle_inferior_event exits. It takes care of any last bits of
4008 housekeeping, and sets the all-important wait_some_more flag. */
4009
4010 static void
4011 prepare_to_wait (struct execution_control_state *ecs)
4012 {
4013 if (debug_infrun)
4014 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
4015 if (infwait_state == infwait_normal_state)
4016 {
4017 overlay_cache_invalid = 1;
4018
4019 /* We have to invalidate the registers BEFORE calling
4020 target_wait because they can be loaded from the target while
4021 in target_wait. This makes remote debugging a bit more
4022 efficient for those targets that provide critical registers
4023 as part of their normal status mechanism. */
4024
4025 registers_changed ();
4026 waiton_ptid = pid_to_ptid (-1);
4027 }
4028 /* This is the old end of the while loop. Let everybody know we
4029 want to wait for the inferior some more and get called again
4030 soon. */
4031 ecs->wait_some_more = 1;
4032 }
4033
4034 /* Print why the inferior has stopped. We always print something when
4035 the inferior exits, or receives a signal. The rest of the cases are
4036 dealt with later on in normal_stop() and print_it_typical(). Ideally
4037 there should be a call to this function from handle_inferior_event()
4038 each time stop_stepping() is called.*/
4039 static void
4040 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4041 {
4042 switch (stop_reason)
4043 {
4044 case END_STEPPING_RANGE:
4045 /* We are done with a step/next/si/ni command. */
4046 /* For now print nothing. */
4047 /* Print a message only if not in the middle of doing a "step n"
4048 operation for n > 1 */
4049 if (!inferior_thread ()->step_multi
4050 || !inferior_thread ()->stop_step)
4051 if (ui_out_is_mi_like_p (uiout))
4052 ui_out_field_string
4053 (uiout, "reason",
4054 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
4055 break;
4056 case SIGNAL_EXITED:
4057 /* The inferior was terminated by a signal. */
4058 annotate_signalled ();
4059 if (ui_out_is_mi_like_p (uiout))
4060 ui_out_field_string
4061 (uiout, "reason",
4062 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
4063 ui_out_text (uiout, "\nProgram terminated with signal ");
4064 annotate_signal_name ();
4065 ui_out_field_string (uiout, "signal-name",
4066 target_signal_to_name (stop_info));
4067 annotate_signal_name_end ();
4068 ui_out_text (uiout, ", ");
4069 annotate_signal_string ();
4070 ui_out_field_string (uiout, "signal-meaning",
4071 target_signal_to_string (stop_info));
4072 annotate_signal_string_end ();
4073 ui_out_text (uiout, ".\n");
4074 ui_out_text (uiout, "The program no longer exists.\n");
4075 break;
4076 case EXITED:
4077 /* The inferior program is finished. */
4078 annotate_exited (stop_info);
4079 if (stop_info)
4080 {
4081 if (ui_out_is_mi_like_p (uiout))
4082 ui_out_field_string (uiout, "reason",
4083 async_reason_lookup (EXEC_ASYNC_EXITED));
4084 ui_out_text (uiout, "\nProgram exited with code ");
4085 ui_out_field_fmt (uiout, "exit-code", "0%o",
4086 (unsigned int) stop_info);
4087 ui_out_text (uiout, ".\n");
4088 }
4089 else
4090 {
4091 if (ui_out_is_mi_like_p (uiout))
4092 ui_out_field_string
4093 (uiout, "reason",
4094 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
4095 ui_out_text (uiout, "\nProgram exited normally.\n");
4096 }
4097 /* Support the --return-child-result option. */
4098 return_child_result_value = stop_info;
4099 break;
4100 case SIGNAL_RECEIVED:
4101 /* Signal received. The signal table tells us to print about
4102 it. */
4103 annotate_signal ();
4104
4105 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4106 {
4107 struct thread_info *t = inferior_thread ();
4108
4109 ui_out_text (uiout, "\n[");
4110 ui_out_field_string (uiout, "thread-name",
4111 target_pid_to_str (t->ptid));
4112 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4113 ui_out_text (uiout, " stopped");
4114 }
4115 else
4116 {
4117 ui_out_text (uiout, "\nProgram received signal ");
4118 annotate_signal_name ();
4119 if (ui_out_is_mi_like_p (uiout))
4120 ui_out_field_string
4121 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4122 ui_out_field_string (uiout, "signal-name",
4123 target_signal_to_name (stop_info));
4124 annotate_signal_name_end ();
4125 ui_out_text (uiout, ", ");
4126 annotate_signal_string ();
4127 ui_out_field_string (uiout, "signal-meaning",
4128 target_signal_to_string (stop_info));
4129 annotate_signal_string_end ();
4130 }
4131 ui_out_text (uiout, ".\n");
4132 break;
4133 case NO_HISTORY:
4134 /* Reverse execution: target ran out of history info. */
4135 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4136 break;
4137 default:
4138 internal_error (__FILE__, __LINE__,
4139 _("print_stop_reason: unrecognized enum value"));
4140 break;
4141 }
4142 }
4143 \f
4144
4145 /* Here to return control to GDB when the inferior stops for real.
4146 Print appropriate messages, remove breakpoints, give terminal our modes.
4147
4148 STOP_PRINT_FRAME nonzero means print the executing frame
4149 (pc, function, args, file, line number and line text).
4150 BREAKPOINTS_FAILED nonzero means stop was due to error
4151 attempting to insert breakpoints. */
4152
4153 void
4154 normal_stop (void)
4155 {
4156 struct target_waitstatus last;
4157 ptid_t last_ptid;
4158
4159 get_last_target_status (&last_ptid, &last);
4160
4161 /* In non-stop mode, we don't want GDB to switch threads behind the
4162 user's back, to avoid races where the user is typing a command to
4163 apply to thread x, but GDB switches to thread y before the user
4164 finishes entering the command. */
4165
4166 /* As with the notification of thread events, we want to delay
4167 notifying the user that we've switched thread context until
4168 the inferior actually stops.
4169
4170 There's no point in saying anything if the inferior has exited.
4171 Note that SIGNALLED here means "exited with a signal", not
4172 "received a signal". */
4173 if (!non_stop
4174 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
4175 && target_has_execution
4176 && last.kind != TARGET_WAITKIND_SIGNALLED
4177 && last.kind != TARGET_WAITKIND_EXITED)
4178 {
4179 target_terminal_ours_for_output ();
4180 printf_filtered (_("[Switching to %s]\n"),
4181 target_pid_to_str (inferior_ptid));
4182 annotate_thread_changed ();
4183 previous_inferior_ptid = inferior_ptid;
4184 }
4185
4186 /* NOTE drow/2004-01-17: Is this still necessary? */
4187 /* Make sure that the current_frame's pc is correct. This
4188 is a correction for setting up the frame info before doing
4189 gdbarch_decr_pc_after_break */
4190 if (target_has_execution)
4191 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
4192 gdbarch_decr_pc_after_break, the program counter can change. Ask the
4193 frame code to check for this and sort out any resultant mess.
4194 gdbarch_decr_pc_after_break needs to just go away. */
4195 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
4196
4197 if (!breakpoints_always_inserted_mode () && target_has_execution)
4198 {
4199 if (remove_breakpoints ())
4200 {
4201 target_terminal_ours_for_output ();
4202 printf_filtered (_("\
4203 Cannot remove breakpoints because program is no longer writable.\n\
4204 It might be running in another process.\n\
4205 Further execution is probably impossible.\n"));
4206 }
4207 }
4208
4209 /* If an auto-display called a function and that got a signal,
4210 delete that auto-display to avoid an infinite recursion. */
4211
4212 if (stopped_by_random_signal)
4213 disable_current_display ();
4214
4215 /* Don't print a message if in the middle of doing a "step n"
4216 operation for n > 1 */
4217 if (target_has_execution
4218 && last.kind != TARGET_WAITKIND_SIGNALLED
4219 && last.kind != TARGET_WAITKIND_EXITED
4220 && inferior_thread ()->step_multi
4221 && inferior_thread ()->stop_step)
4222 goto done;
4223
4224 target_terminal_ours ();
4225
4226 /* Set the current source location. This will also happen if we
4227 display the frame below, but the current SAL will be incorrect
4228 during a user hook-stop function. */
4229 if (target_has_stack && !stop_stack_dummy)
4230 set_current_sal_from_frame (get_current_frame (), 1);
4231
4232 if (!target_has_stack)
4233 goto done;
4234
4235 if (last.kind == TARGET_WAITKIND_SIGNALLED
4236 || last.kind == TARGET_WAITKIND_EXITED)
4237 goto done;
4238
4239 /* Select innermost stack frame - i.e., current frame is frame 0,
4240 and current location is based on that.
4241 Don't do this on return from a stack dummy routine,
4242 or if the program has exited. */
4243
4244 if (!stop_stack_dummy)
4245 {
4246 select_frame (get_current_frame ());
4247
4248 /* Print current location without a level number, if
4249 we have changed functions or hit a breakpoint.
4250 Print source line if we have one.
4251 bpstat_print() contains the logic deciding in detail
4252 what to print, based on the event(s) that just occurred. */
4253
4254 /* If --batch-silent is enabled then there's no need to print the current
4255 source location, and to try risks causing an error message about
4256 missing source files. */
4257 if (stop_print_frame && !batch_silent)
4258 {
4259 int bpstat_ret;
4260 int source_flag;
4261 int do_frame_printing = 1;
4262 struct thread_info *tp = inferior_thread ();
4263
4264 bpstat_ret = bpstat_print (tp->stop_bpstat);
4265 switch (bpstat_ret)
4266 {
4267 case PRINT_UNKNOWN:
4268 /* If we had hit a shared library event breakpoint,
4269 bpstat_print would print out this message. If we hit
4270 an OS-level shared library event, do the same
4271 thing. */
4272 if (last.kind == TARGET_WAITKIND_LOADED)
4273 {
4274 printf_filtered (_("Stopped due to shared library event\n"));
4275 source_flag = SRC_LINE; /* something bogus */
4276 do_frame_printing = 0;
4277 break;
4278 }
4279
4280 /* FIXME: cagney/2002-12-01: Given that a frame ID does
4281 (or should) carry around the function and does (or
4282 should) use that when doing a frame comparison. */
4283 if (tp->stop_step
4284 && frame_id_eq (tp->step_frame_id,
4285 get_frame_id (get_current_frame ()))
4286 && step_start_function == find_pc_function (stop_pc))
4287 source_flag = SRC_LINE; /* finished step, just print source line */
4288 else
4289 source_flag = SRC_AND_LOC; /* print location and source line */
4290 break;
4291 case PRINT_SRC_AND_LOC:
4292 source_flag = SRC_AND_LOC; /* print location and source line */
4293 break;
4294 case PRINT_SRC_ONLY:
4295 source_flag = SRC_LINE;
4296 break;
4297 case PRINT_NOTHING:
4298 source_flag = SRC_LINE; /* something bogus */
4299 do_frame_printing = 0;
4300 break;
4301 default:
4302 internal_error (__FILE__, __LINE__, _("Unknown value."));
4303 }
4304
4305 if (ui_out_is_mi_like_p (uiout))
4306 {
4307
4308 ui_out_field_int (uiout, "thread-id",
4309 pid_to_thread_id (inferior_ptid));
4310 if (non_stop)
4311 {
4312 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
4313 (uiout, "stopped-threads");
4314 ui_out_field_int (uiout, NULL,
4315 pid_to_thread_id (inferior_ptid));
4316 do_cleanups (back_to);
4317 }
4318 else
4319 ui_out_field_string (uiout, "stopped-threads", "all");
4320 }
4321 /* The behavior of this routine with respect to the source
4322 flag is:
4323 SRC_LINE: Print only source line
4324 LOCATION: Print only location
4325 SRC_AND_LOC: Print location and source line */
4326 if (do_frame_printing)
4327 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
4328
4329 /* Display the auto-display expressions. */
4330 do_displays ();
4331 }
4332 }
4333
4334 /* Save the function value return registers, if we care.
4335 We might be about to restore their previous contents. */
4336 if (inferior_thread ()->proceed_to_finish)
4337 {
4338 /* This should not be necessary. */
4339 if (stop_registers)
4340 regcache_xfree (stop_registers);
4341
4342 /* NB: The copy goes through to the target picking up the value of
4343 all the registers. */
4344 stop_registers = regcache_dup (get_current_regcache ());
4345 }
4346
4347 if (stop_stack_dummy)
4348 {
4349 /* Pop the empty frame that contains the stack dummy. POP_FRAME
4350 ends with a setting of the current frame, so we can use that
4351 next. */
4352 frame_pop (get_current_frame ());
4353 /* Set stop_pc to what it was before we called the function.
4354 Can't rely on restore_inferior_status because that only gets
4355 called if we don't stop in the called function. */
4356 stop_pc = read_pc ();
4357 select_frame (get_current_frame ());
4358 }
4359
4360 done:
4361 annotate_stopped ();
4362 if (!suppress_stop_observer
4363 && !(target_has_execution
4364 && last.kind != TARGET_WAITKIND_SIGNALLED
4365 && last.kind != TARGET_WAITKIND_EXITED
4366 && inferior_thread ()->step_multi))
4367 {
4368 if (!ptid_equal (inferior_ptid, null_ptid))
4369 observer_notify_normal_stop (inferior_thread ()->stop_bpstat);
4370 else
4371 observer_notify_normal_stop (NULL);
4372 }
4373 if (target_has_execution
4374 && last.kind != TARGET_WAITKIND_SIGNALLED
4375 && last.kind != TARGET_WAITKIND_EXITED)
4376 {
4377 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4378 Delete any breakpoint that is to be deleted at the next stop. */
4379 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
4380
4381 if (!non_stop)
4382 set_running (pid_to_ptid (-1), 0);
4383 else
4384 set_running (inferior_ptid, 0);
4385 }
4386
4387 /* Look up the hook_stop and run it (CLI internally handles problem
4388 of stop_command's pre-hook not existing). */
4389 if (stop_command)
4390 catch_errors (hook_stop_stub, stop_command,
4391 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4392
4393 }
4394
4395 static int
4396 hook_stop_stub (void *cmd)
4397 {
4398 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
4399 return (0);
4400 }
4401 \f
4402 int
4403 signal_stop_state (int signo)
4404 {
4405 return signal_stop[signo];
4406 }
4407
4408 int
4409 signal_print_state (int signo)
4410 {
4411 return signal_print[signo];
4412 }
4413
4414 int
4415 signal_pass_state (int signo)
4416 {
4417 return signal_program[signo];
4418 }
4419
4420 int
4421 signal_stop_update (int signo, int state)
4422 {
4423 int ret = signal_stop[signo];
4424 signal_stop[signo] = state;
4425 return ret;
4426 }
4427
4428 int
4429 signal_print_update (int signo, int state)
4430 {
4431 int ret = signal_print[signo];
4432 signal_print[signo] = state;
4433 return ret;
4434 }
4435
4436 int
4437 signal_pass_update (int signo, int state)
4438 {
4439 int ret = signal_program[signo];
4440 signal_program[signo] = state;
4441 return ret;
4442 }
4443
4444 static void
4445 sig_print_header (void)
4446 {
4447 printf_filtered (_("\
4448 Signal Stop\tPrint\tPass to program\tDescription\n"));
4449 }
4450
4451 static void
4452 sig_print_info (enum target_signal oursig)
4453 {
4454 char *name = target_signal_to_name (oursig);
4455 int name_padding = 13 - strlen (name);
4456
4457 if (name_padding <= 0)
4458 name_padding = 0;
4459
4460 printf_filtered ("%s", name);
4461 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4462 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4463 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4464 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4465 printf_filtered ("%s\n", target_signal_to_string (oursig));
4466 }
4467
4468 /* Specify how various signals in the inferior should be handled. */
4469
4470 static void
4471 handle_command (char *args, int from_tty)
4472 {
4473 char **argv;
4474 int digits, wordlen;
4475 int sigfirst, signum, siglast;
4476 enum target_signal oursig;
4477 int allsigs;
4478 int nsigs;
4479 unsigned char *sigs;
4480 struct cleanup *old_chain;
4481
4482 if (args == NULL)
4483 {
4484 error_no_arg (_("signal to handle"));
4485 }
4486
4487 /* Allocate and zero an array of flags for which signals to handle. */
4488
4489 nsigs = (int) TARGET_SIGNAL_LAST;
4490 sigs = (unsigned char *) alloca (nsigs);
4491 memset (sigs, 0, nsigs);
4492
4493 /* Break the command line up into args. */
4494
4495 argv = gdb_buildargv (args);
4496 old_chain = make_cleanup_freeargv (argv);
4497
4498 /* Walk through the args, looking for signal oursigs, signal names, and
4499 actions. Signal numbers and signal names may be interspersed with
4500 actions, with the actions being performed for all signals cumulatively
4501 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4502
4503 while (*argv != NULL)
4504 {
4505 wordlen = strlen (*argv);
4506 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4507 {;
4508 }
4509 allsigs = 0;
4510 sigfirst = siglast = -1;
4511
4512 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4513 {
4514 /* Apply action to all signals except those used by the
4515 debugger. Silently skip those. */
4516 allsigs = 1;
4517 sigfirst = 0;
4518 siglast = nsigs - 1;
4519 }
4520 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4521 {
4522 SET_SIGS (nsigs, sigs, signal_stop);
4523 SET_SIGS (nsigs, sigs, signal_print);
4524 }
4525 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4526 {
4527 UNSET_SIGS (nsigs, sigs, signal_program);
4528 }
4529 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4530 {
4531 SET_SIGS (nsigs, sigs, signal_print);
4532 }
4533 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4534 {
4535 SET_SIGS (nsigs, sigs, signal_program);
4536 }
4537 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4538 {
4539 UNSET_SIGS (nsigs, sigs, signal_stop);
4540 }
4541 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4542 {
4543 SET_SIGS (nsigs, sigs, signal_program);
4544 }
4545 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4546 {
4547 UNSET_SIGS (nsigs, sigs, signal_print);
4548 UNSET_SIGS (nsigs, sigs, signal_stop);
4549 }
4550 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4551 {
4552 UNSET_SIGS (nsigs, sigs, signal_program);
4553 }
4554 else if (digits > 0)
4555 {
4556 /* It is numeric. The numeric signal refers to our own
4557 internal signal numbering from target.h, not to host/target
4558 signal number. This is a feature; users really should be
4559 using symbolic names anyway, and the common ones like
4560 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4561
4562 sigfirst = siglast = (int)
4563 target_signal_from_command (atoi (*argv));
4564 if ((*argv)[digits] == '-')
4565 {
4566 siglast = (int)
4567 target_signal_from_command (atoi ((*argv) + digits + 1));
4568 }
4569 if (sigfirst > siglast)
4570 {
4571 /* Bet he didn't figure we'd think of this case... */
4572 signum = sigfirst;
4573 sigfirst = siglast;
4574 siglast = signum;
4575 }
4576 }
4577 else
4578 {
4579 oursig = target_signal_from_name (*argv);
4580 if (oursig != TARGET_SIGNAL_UNKNOWN)
4581 {
4582 sigfirst = siglast = (int) oursig;
4583 }
4584 else
4585 {
4586 /* Not a number and not a recognized flag word => complain. */
4587 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4588 }
4589 }
4590
4591 /* If any signal numbers or symbol names were found, set flags for
4592 which signals to apply actions to. */
4593
4594 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4595 {
4596 switch ((enum target_signal) signum)
4597 {
4598 case TARGET_SIGNAL_TRAP:
4599 case TARGET_SIGNAL_INT:
4600 if (!allsigs && !sigs[signum])
4601 {
4602 if (query ("%s is used by the debugger.\n\
4603 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
4604 {
4605 sigs[signum] = 1;
4606 }
4607 else
4608 {
4609 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4610 gdb_flush (gdb_stdout);
4611 }
4612 }
4613 break;
4614 case TARGET_SIGNAL_0:
4615 case TARGET_SIGNAL_DEFAULT:
4616 case TARGET_SIGNAL_UNKNOWN:
4617 /* Make sure that "all" doesn't print these. */
4618 break;
4619 default:
4620 sigs[signum] = 1;
4621 break;
4622 }
4623 }
4624
4625 argv++;
4626 }
4627
4628 target_notice_signals (inferior_ptid);
4629
4630 if (from_tty)
4631 {
4632 /* Show the results. */
4633 sig_print_header ();
4634 for (signum = 0; signum < nsigs; signum++)
4635 {
4636 if (sigs[signum])
4637 {
4638 sig_print_info (signum);
4639 }
4640 }
4641 }
4642
4643 do_cleanups (old_chain);
4644 }
4645
4646 static void
4647 xdb_handle_command (char *args, int from_tty)
4648 {
4649 char **argv;
4650 struct cleanup *old_chain;
4651
4652 if (args == NULL)
4653 error_no_arg (_("xdb command"));
4654
4655 /* Break the command line up into args. */
4656
4657 argv = gdb_buildargv (args);
4658 old_chain = make_cleanup_freeargv (argv);
4659 if (argv[1] != (char *) NULL)
4660 {
4661 char *argBuf;
4662 int bufLen;
4663
4664 bufLen = strlen (argv[0]) + 20;
4665 argBuf = (char *) xmalloc (bufLen);
4666 if (argBuf)
4667 {
4668 int validFlag = 1;
4669 enum target_signal oursig;
4670
4671 oursig = target_signal_from_name (argv[0]);
4672 memset (argBuf, 0, bufLen);
4673 if (strcmp (argv[1], "Q") == 0)
4674 sprintf (argBuf, "%s %s", argv[0], "noprint");
4675 else
4676 {
4677 if (strcmp (argv[1], "s") == 0)
4678 {
4679 if (!signal_stop[oursig])
4680 sprintf (argBuf, "%s %s", argv[0], "stop");
4681 else
4682 sprintf (argBuf, "%s %s", argv[0], "nostop");
4683 }
4684 else if (strcmp (argv[1], "i") == 0)
4685 {
4686 if (!signal_program[oursig])
4687 sprintf (argBuf, "%s %s", argv[0], "pass");
4688 else
4689 sprintf (argBuf, "%s %s", argv[0], "nopass");
4690 }
4691 else if (strcmp (argv[1], "r") == 0)
4692 {
4693 if (!signal_print[oursig])
4694 sprintf (argBuf, "%s %s", argv[0], "print");
4695 else
4696 sprintf (argBuf, "%s %s", argv[0], "noprint");
4697 }
4698 else
4699 validFlag = 0;
4700 }
4701 if (validFlag)
4702 handle_command (argBuf, from_tty);
4703 else
4704 printf_filtered (_("Invalid signal handling flag.\n"));
4705 if (argBuf)
4706 xfree (argBuf);
4707 }
4708 }
4709 do_cleanups (old_chain);
4710 }
4711
4712 /* Print current contents of the tables set by the handle command.
4713 It is possible we should just be printing signals actually used
4714 by the current target (but for things to work right when switching
4715 targets, all signals should be in the signal tables). */
4716
4717 static void
4718 signals_info (char *signum_exp, int from_tty)
4719 {
4720 enum target_signal oursig;
4721 sig_print_header ();
4722
4723 if (signum_exp)
4724 {
4725 /* First see if this is a symbol name. */
4726 oursig = target_signal_from_name (signum_exp);
4727 if (oursig == TARGET_SIGNAL_UNKNOWN)
4728 {
4729 /* No, try numeric. */
4730 oursig =
4731 target_signal_from_command (parse_and_eval_long (signum_exp));
4732 }
4733 sig_print_info (oursig);
4734 return;
4735 }
4736
4737 printf_filtered ("\n");
4738 /* These ugly casts brought to you by the native VAX compiler. */
4739 for (oursig = TARGET_SIGNAL_FIRST;
4740 (int) oursig < (int) TARGET_SIGNAL_LAST;
4741 oursig = (enum target_signal) ((int) oursig + 1))
4742 {
4743 QUIT;
4744
4745 if (oursig != TARGET_SIGNAL_UNKNOWN
4746 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4747 sig_print_info (oursig);
4748 }
4749
4750 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4751 }
4752 \f
4753 struct inferior_status
4754 {
4755 enum target_signal stop_signal;
4756 CORE_ADDR stop_pc;
4757 bpstat stop_bpstat;
4758 int stop_step;
4759 int stop_stack_dummy;
4760 int stopped_by_random_signal;
4761 int stepping_over_breakpoint;
4762 CORE_ADDR step_range_start;
4763 CORE_ADDR step_range_end;
4764 struct frame_id step_frame_id;
4765 enum step_over_calls_kind step_over_calls;
4766 CORE_ADDR step_resume_break_address;
4767 int stop_after_trap;
4768 int stop_soon;
4769
4770 /* These are here because if call_function_by_hand has written some
4771 registers and then decides to call error(), we better not have changed
4772 any registers. */
4773 struct regcache *registers;
4774
4775 /* A frame unique identifier. */
4776 struct frame_id selected_frame_id;
4777
4778 int breakpoint_proceeded;
4779 int restore_stack_info;
4780 int proceed_to_finish;
4781 };
4782
4783 /* Save all of the information associated with the inferior<==>gdb
4784 connection. INF_STATUS is a pointer to a "struct inferior_status"
4785 (defined in inferior.h). */
4786
4787 struct inferior_status *
4788 save_inferior_status (int restore_stack_info)
4789 {
4790 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4791 struct thread_info *tp = inferior_thread ();
4792 struct inferior *inf = current_inferior ();
4793
4794 inf_status->stop_signal = tp->stop_signal;
4795 inf_status->stop_pc = stop_pc;
4796 inf_status->stop_step = tp->stop_step;
4797 inf_status->stop_stack_dummy = stop_stack_dummy;
4798 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4799 inf_status->stepping_over_breakpoint = tp->trap_expected;
4800 inf_status->step_range_start = tp->step_range_start;
4801 inf_status->step_range_end = tp->step_range_end;
4802 inf_status->step_frame_id = tp->step_frame_id;
4803 inf_status->step_over_calls = tp->step_over_calls;
4804 inf_status->stop_after_trap = stop_after_trap;
4805 inf_status->stop_soon = inf->stop_soon;
4806 /* Save original bpstat chain here; replace it with copy of chain.
4807 If caller's caller is walking the chain, they'll be happier if we
4808 hand them back the original chain when restore_inferior_status is
4809 called. */
4810 inf_status->stop_bpstat = tp->stop_bpstat;
4811 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
4812 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4813 inf_status->restore_stack_info = restore_stack_info;
4814 inf_status->proceed_to_finish = tp->proceed_to_finish;
4815
4816 inf_status->registers = regcache_dup (get_current_regcache ());
4817
4818 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4819 return inf_status;
4820 }
4821
4822 static int
4823 restore_selected_frame (void *args)
4824 {
4825 struct frame_id *fid = (struct frame_id *) args;
4826 struct frame_info *frame;
4827
4828 frame = frame_find_by_id (*fid);
4829
4830 /* If inf_status->selected_frame_id is NULL, there was no previously
4831 selected frame. */
4832 if (frame == NULL)
4833 {
4834 warning (_("Unable to restore previously selected frame."));
4835 return 0;
4836 }
4837
4838 select_frame (frame);
4839
4840 return (1);
4841 }
4842
4843 void
4844 restore_inferior_status (struct inferior_status *inf_status)
4845 {
4846 struct thread_info *tp = inferior_thread ();
4847 struct inferior *inf = current_inferior ();
4848
4849 tp->stop_signal = inf_status->stop_signal;
4850 stop_pc = inf_status->stop_pc;
4851 tp->stop_step = inf_status->stop_step;
4852 stop_stack_dummy = inf_status->stop_stack_dummy;
4853 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4854 tp->trap_expected = inf_status->stepping_over_breakpoint;
4855 tp->step_range_start = inf_status->step_range_start;
4856 tp->step_range_end = inf_status->step_range_end;
4857 tp->step_frame_id = inf_status->step_frame_id;
4858 tp->step_over_calls = inf_status->step_over_calls;
4859 stop_after_trap = inf_status->stop_after_trap;
4860 inf->stop_soon = inf_status->stop_soon;
4861 bpstat_clear (&tp->stop_bpstat);
4862 tp->stop_bpstat = inf_status->stop_bpstat;
4863 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4864 tp->proceed_to_finish = inf_status->proceed_to_finish;
4865
4866 /* The inferior can be gone if the user types "print exit(0)"
4867 (and perhaps other times). */
4868 if (target_has_execution)
4869 /* NB: The register write goes through to the target. */
4870 regcache_cpy (get_current_regcache (), inf_status->registers);
4871 regcache_xfree (inf_status->registers);
4872
4873 /* FIXME: If we are being called after stopping in a function which
4874 is called from gdb, we should not be trying to restore the
4875 selected frame; it just prints a spurious error message (The
4876 message is useful, however, in detecting bugs in gdb (like if gdb
4877 clobbers the stack)). In fact, should we be restoring the
4878 inferior status at all in that case? . */
4879
4880 if (target_has_stack && inf_status->restore_stack_info)
4881 {
4882 /* The point of catch_errors is that if the stack is clobbered,
4883 walking the stack might encounter a garbage pointer and
4884 error() trying to dereference it. */
4885 if (catch_errors
4886 (restore_selected_frame, &inf_status->selected_frame_id,
4887 "Unable to restore previously selected frame:\n",
4888 RETURN_MASK_ERROR) == 0)
4889 /* Error in restoring the selected frame. Select the innermost
4890 frame. */
4891 select_frame (get_current_frame ());
4892
4893 }
4894
4895 xfree (inf_status);
4896 }
4897
4898 static void
4899 do_restore_inferior_status_cleanup (void *sts)
4900 {
4901 restore_inferior_status (sts);
4902 }
4903
4904 struct cleanup *
4905 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4906 {
4907 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4908 }
4909
4910 void
4911 discard_inferior_status (struct inferior_status *inf_status)
4912 {
4913 /* See save_inferior_status for info on stop_bpstat. */
4914 bpstat_clear (&inf_status->stop_bpstat);
4915 regcache_xfree (inf_status->registers);
4916 xfree (inf_status);
4917 }
4918
4919 int
4920 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
4921 {
4922 struct target_waitstatus last;
4923 ptid_t last_ptid;
4924
4925 get_last_target_status (&last_ptid, &last);
4926
4927 if (last.kind != TARGET_WAITKIND_FORKED)
4928 return 0;
4929
4930 if (!ptid_equal (last_ptid, pid))
4931 return 0;
4932
4933 *child_pid = last.value.related_pid;
4934 return 1;
4935 }
4936
4937 int
4938 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
4939 {
4940 struct target_waitstatus last;
4941 ptid_t last_ptid;
4942
4943 get_last_target_status (&last_ptid, &last);
4944
4945 if (last.kind != TARGET_WAITKIND_VFORKED)
4946 return 0;
4947
4948 if (!ptid_equal (last_ptid, pid))
4949 return 0;
4950
4951 *child_pid = last.value.related_pid;
4952 return 1;
4953 }
4954
4955 int
4956 inferior_has_execd (ptid_t pid, char **execd_pathname)
4957 {
4958 struct target_waitstatus last;
4959 ptid_t last_ptid;
4960
4961 get_last_target_status (&last_ptid, &last);
4962
4963 if (last.kind != TARGET_WAITKIND_EXECD)
4964 return 0;
4965
4966 if (!ptid_equal (last_ptid, pid))
4967 return 0;
4968
4969 *execd_pathname = xstrdup (last.value.execd_pathname);
4970 return 1;
4971 }
4972
4973 /* Oft used ptids */
4974 ptid_t null_ptid;
4975 ptid_t minus_one_ptid;
4976
4977 /* Create a ptid given the necessary PID, LWP, and TID components. */
4978
4979 ptid_t
4980 ptid_build (int pid, long lwp, long tid)
4981 {
4982 ptid_t ptid;
4983
4984 ptid.pid = pid;
4985 ptid.lwp = lwp;
4986 ptid.tid = tid;
4987 return ptid;
4988 }
4989
4990 /* Create a ptid from just a pid. */
4991
4992 ptid_t
4993 pid_to_ptid (int pid)
4994 {
4995 return ptid_build (pid, 0, 0);
4996 }
4997
4998 /* Fetch the pid (process id) component from a ptid. */
4999
5000 int
5001 ptid_get_pid (ptid_t ptid)
5002 {
5003 return ptid.pid;
5004 }
5005
5006 /* Fetch the lwp (lightweight process) component from a ptid. */
5007
5008 long
5009 ptid_get_lwp (ptid_t ptid)
5010 {
5011 return ptid.lwp;
5012 }
5013
5014 /* Fetch the tid (thread id) component from a ptid. */
5015
5016 long
5017 ptid_get_tid (ptid_t ptid)
5018 {
5019 return ptid.tid;
5020 }
5021
5022 /* ptid_equal() is used to test equality of two ptids. */
5023
5024 int
5025 ptid_equal (ptid_t ptid1, ptid_t ptid2)
5026 {
5027 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
5028 && ptid1.tid == ptid2.tid);
5029 }
5030
5031 /* Returns true if PTID represents a process. */
5032
5033 int
5034 ptid_is_pid (ptid_t ptid)
5035 {
5036 if (ptid_equal (minus_one_ptid, ptid))
5037 return 0;
5038 if (ptid_equal (null_ptid, ptid))
5039 return 0;
5040
5041 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5042 }
5043
5044 /* restore_inferior_ptid() will be used by the cleanup machinery
5045 to restore the inferior_ptid value saved in a call to
5046 save_inferior_ptid(). */
5047
5048 static void
5049 restore_inferior_ptid (void *arg)
5050 {
5051 ptid_t *saved_ptid_ptr = arg;
5052 inferior_ptid = *saved_ptid_ptr;
5053 xfree (arg);
5054 }
5055
5056 /* Save the value of inferior_ptid so that it may be restored by a
5057 later call to do_cleanups(). Returns the struct cleanup pointer
5058 needed for later doing the cleanup. */
5059
5060 struct cleanup *
5061 save_inferior_ptid (void)
5062 {
5063 ptid_t *saved_ptid_ptr;
5064
5065 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5066 *saved_ptid_ptr = inferior_ptid;
5067 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5068 }
5069 \f
5070
5071 /* User interface for reverse debugging:
5072 Set exec-direction / show exec-direction commands
5073 (returns error unless target implements to_set_exec_direction method). */
5074
5075 enum exec_direction_kind execution_direction = EXEC_FORWARD;
5076 static const char exec_forward[] = "forward";
5077 static const char exec_reverse[] = "reverse";
5078 static const char *exec_direction = exec_forward;
5079 static const char *exec_direction_names[] = {
5080 exec_forward,
5081 exec_reverse,
5082 NULL
5083 };
5084
5085 static void
5086 set_exec_direction_func (char *args, int from_tty,
5087 struct cmd_list_element *cmd)
5088 {
5089 if (target_can_execute_reverse)
5090 {
5091 if (!strcmp (exec_direction, exec_forward))
5092 execution_direction = EXEC_FORWARD;
5093 else if (!strcmp (exec_direction, exec_reverse))
5094 execution_direction = EXEC_REVERSE;
5095 }
5096 }
5097
5098 static void
5099 show_exec_direction_func (struct ui_file *out, int from_tty,
5100 struct cmd_list_element *cmd, const char *value)
5101 {
5102 switch (execution_direction) {
5103 case EXEC_FORWARD:
5104 fprintf_filtered (out, _("Forward.\n"));
5105 break;
5106 case EXEC_REVERSE:
5107 fprintf_filtered (out, _("Reverse.\n"));
5108 break;
5109 case EXEC_ERROR:
5110 default:
5111 fprintf_filtered (out,
5112 _("Forward (target `%s' does not support exec-direction).\n"),
5113 target_shortname);
5114 break;
5115 }
5116 }
5117
5118 /* User interface for non-stop mode. */
5119
5120 int non_stop = 0;
5121 static int non_stop_1 = 0;
5122
5123 static void
5124 set_non_stop (char *args, int from_tty,
5125 struct cmd_list_element *c)
5126 {
5127 if (target_has_execution)
5128 {
5129 non_stop_1 = non_stop;
5130 error (_("Cannot change this setting while the inferior is running."));
5131 }
5132
5133 non_stop = non_stop_1;
5134 }
5135
5136 static void
5137 show_non_stop (struct ui_file *file, int from_tty,
5138 struct cmd_list_element *c, const char *value)
5139 {
5140 fprintf_filtered (file,
5141 _("Controlling the inferior in non-stop mode is %s.\n"),
5142 value);
5143 }
5144
5145
5146 void
5147 _initialize_infrun (void)
5148 {
5149 int i;
5150 int numsigs;
5151 struct cmd_list_element *c;
5152
5153 add_info ("signals", signals_info, _("\
5154 What debugger does when program gets various signals.\n\
5155 Specify a signal as argument to print info on that signal only."));
5156 add_info_alias ("handle", "signals", 0);
5157
5158 add_com ("handle", class_run, handle_command, _("\
5159 Specify how to handle a signal.\n\
5160 Args are signals and actions to apply to those signals.\n\
5161 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5162 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5163 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5164 The special arg \"all\" is recognized to mean all signals except those\n\
5165 used by the debugger, typically SIGTRAP and SIGINT.\n\
5166 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
5167 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5168 Stop means reenter debugger if this signal happens (implies print).\n\
5169 Print means print a message if this signal happens.\n\
5170 Pass means let program see this signal; otherwise program doesn't know.\n\
5171 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5172 Pass and Stop may be combined."));
5173 if (xdb_commands)
5174 {
5175 add_com ("lz", class_info, signals_info, _("\
5176 What debugger does when program gets various signals.\n\
5177 Specify a signal as argument to print info on that signal only."));
5178 add_com ("z", class_run, xdb_handle_command, _("\
5179 Specify how to handle a signal.\n\
5180 Args are signals and actions to apply to those signals.\n\
5181 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5182 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5183 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5184 The special arg \"all\" is recognized to mean all signals except those\n\
5185 used by the debugger, typically SIGTRAP and SIGINT.\n\
5186 Recognized actions include \"s\" (toggles between stop and nostop), \n\
5187 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5188 nopass), \"Q\" (noprint)\n\
5189 Stop means reenter debugger if this signal happens (implies print).\n\
5190 Print means print a message if this signal happens.\n\
5191 Pass means let program see this signal; otherwise program doesn't know.\n\
5192 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5193 Pass and Stop may be combined."));
5194 }
5195
5196 if (!dbx_commands)
5197 stop_command = add_cmd ("stop", class_obscure,
5198 not_just_help_class_command, _("\
5199 There is no `stop' command, but you can set a hook on `stop'.\n\
5200 This allows you to set a list of commands to be run each time execution\n\
5201 of the program stops."), &cmdlist);
5202
5203 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5204 Set inferior debugging."), _("\
5205 Show inferior debugging."), _("\
5206 When non-zero, inferior specific debugging is enabled."),
5207 NULL,
5208 show_debug_infrun,
5209 &setdebuglist, &showdebuglist);
5210
5211 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5212 Set displaced stepping debugging."), _("\
5213 Show displaced stepping debugging."), _("\
5214 When non-zero, displaced stepping specific debugging is enabled."),
5215 NULL,
5216 show_debug_displaced,
5217 &setdebuglist, &showdebuglist);
5218
5219 add_setshow_boolean_cmd ("non-stop", no_class,
5220 &non_stop_1, _("\
5221 Set whether gdb controls the inferior in non-stop mode."), _("\
5222 Show whether gdb controls the inferior in non-stop mode."), _("\
5223 When debugging a multi-threaded program and this setting is\n\
5224 off (the default, also called all-stop mode), when one thread stops\n\
5225 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5226 all other threads in the program while you interact with the thread of\n\
5227 interest. When you continue or step a thread, you can allow the other\n\
5228 threads to run, or have them remain stopped, but while you inspect any\n\
5229 thread's state, all threads stop.\n\
5230 \n\
5231 In non-stop mode, when one thread stops, other threads can continue\n\
5232 to run freely. You'll be able to step each thread independently,\n\
5233 leave it stopped or free to run as needed."),
5234 set_non_stop,
5235 show_non_stop,
5236 &setlist,
5237 &showlist);
5238
5239 numsigs = (int) TARGET_SIGNAL_LAST;
5240 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
5241 signal_print = (unsigned char *)
5242 xmalloc (sizeof (signal_print[0]) * numsigs);
5243 signal_program = (unsigned char *)
5244 xmalloc (sizeof (signal_program[0]) * numsigs);
5245 for (i = 0; i < numsigs; i++)
5246 {
5247 signal_stop[i] = 1;
5248 signal_print[i] = 1;
5249 signal_program[i] = 1;
5250 }
5251
5252 /* Signals caused by debugger's own actions
5253 should not be given to the program afterwards. */
5254 signal_program[TARGET_SIGNAL_TRAP] = 0;
5255 signal_program[TARGET_SIGNAL_INT] = 0;
5256
5257 /* Signals that are not errors should not normally enter the debugger. */
5258 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5259 signal_print[TARGET_SIGNAL_ALRM] = 0;
5260 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5261 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5262 signal_stop[TARGET_SIGNAL_PROF] = 0;
5263 signal_print[TARGET_SIGNAL_PROF] = 0;
5264 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5265 signal_print[TARGET_SIGNAL_CHLD] = 0;
5266 signal_stop[TARGET_SIGNAL_IO] = 0;
5267 signal_print[TARGET_SIGNAL_IO] = 0;
5268 signal_stop[TARGET_SIGNAL_POLL] = 0;
5269 signal_print[TARGET_SIGNAL_POLL] = 0;
5270 signal_stop[TARGET_SIGNAL_URG] = 0;
5271 signal_print[TARGET_SIGNAL_URG] = 0;
5272 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5273 signal_print[TARGET_SIGNAL_WINCH] = 0;
5274
5275 /* These signals are used internally by user-level thread
5276 implementations. (See signal(5) on Solaris.) Like the above
5277 signals, a healthy program receives and handles them as part of
5278 its normal operation. */
5279 signal_stop[TARGET_SIGNAL_LWP] = 0;
5280 signal_print[TARGET_SIGNAL_LWP] = 0;
5281 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5282 signal_print[TARGET_SIGNAL_WAITING] = 0;
5283 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5284 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5285
5286 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5287 &stop_on_solib_events, _("\
5288 Set stopping for shared library events."), _("\
5289 Show stopping for shared library events."), _("\
5290 If nonzero, gdb will give control to the user when the dynamic linker\n\
5291 notifies gdb of shared library events. The most common event of interest\n\
5292 to the user would be loading/unloading of a new library."),
5293 NULL,
5294 show_stop_on_solib_events,
5295 &setlist, &showlist);
5296
5297 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5298 follow_fork_mode_kind_names,
5299 &follow_fork_mode_string, _("\
5300 Set debugger response to a program call of fork or vfork."), _("\
5301 Show debugger response to a program call of fork or vfork."), _("\
5302 A fork or vfork creates a new process. follow-fork-mode can be:\n\
5303 parent - the original process is debugged after a fork\n\
5304 child - the new process is debugged after a fork\n\
5305 The unfollowed process will continue to run.\n\
5306 By default, the debugger will follow the parent process."),
5307 NULL,
5308 show_follow_fork_mode_string,
5309 &setlist, &showlist);
5310
5311 add_setshow_enum_cmd ("scheduler-locking", class_run,
5312 scheduler_enums, &scheduler_mode, _("\
5313 Set mode for locking scheduler during execution."), _("\
5314 Show mode for locking scheduler during execution."), _("\
5315 off == no locking (threads may preempt at any time)\n\
5316 on == full locking (no thread except the current thread may run)\n\
5317 step == scheduler locked during every single-step operation.\n\
5318 In this mode, no other thread may run during a step command.\n\
5319 Other threads may run while stepping over a function call ('next')."),
5320 set_schedlock_func, /* traps on target vector */
5321 show_scheduler_mode,
5322 &setlist, &showlist);
5323
5324 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5325 Set mode of the step operation."), _("\
5326 Show mode of the step operation."), _("\
5327 When set, doing a step over a function without debug line information\n\
5328 will stop at the first instruction of that function. Otherwise, the\n\
5329 function is skipped and the step command stops at a different source line."),
5330 NULL,
5331 show_step_stop_if_no_debug,
5332 &setlist, &showlist);
5333
5334 add_setshow_enum_cmd ("displaced-stepping", class_run,
5335 can_use_displaced_stepping_enum,
5336 &can_use_displaced_stepping, _("\
5337 Set debugger's willingness to use displaced stepping."), _("\
5338 Show debugger's willingness to use displaced stepping."), _("\
5339 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5340 supported by the target architecture. If off, gdb will not use displaced\n\
5341 stepping to step over breakpoints, even if such is supported by the target\n\
5342 architecture. If auto (which is the default), gdb will use displaced stepping\n\
5343 if the target architecture supports it and non-stop mode is active, but will not\n\
5344 use it in all-stop mode (see help set non-stop)."),
5345 NULL,
5346 show_can_use_displaced_stepping,
5347 &setlist, &showlist);
5348
5349 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5350 &exec_direction, _("Set direction of execution.\n\
5351 Options are 'forward' or 'reverse'."),
5352 _("Show direction of execution (forward/reverse)."),
5353 _("Tells gdb whether to execute forward or backward."),
5354 set_exec_direction_func, show_exec_direction_func,
5355 &setlist, &showlist);
5356
5357 /* ptid initializations */
5358 null_ptid = ptid_build (0, 0, 0);
5359 minus_one_ptid = ptid_build (-1, 0, 0);
5360 inferior_ptid = null_ptid;
5361 target_last_wait_ptid = minus_one_ptid;
5362 displaced_step_ptid = null_ptid;
5363
5364 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
5365 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
5366 }