infrun.c:keep_going: update comments.
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "record-full.h"
53 #include "inline-frame.h"
54 #include "jit.h"
55 #include "tracepoint.h"
56 #include "continuations.h"
57 #include "interps.h"
58 #include "skip.h"
59 #include "probe.h"
60 #include "objfiles.h"
61 #include "completer.h"
62 #include "target-descriptions.h"
63
64 /* Prototypes for local functions */
65
66 static void signals_info (char *, int);
67
68 static void handle_command (char *, int);
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static void resume_cleanups (void *);
75
76 static int hook_stop_stub (void *);
77
78 static int restore_selected_frame (void *);
79
80 static int follow_fork (void);
81
82 static void set_schedlock_func (char *args, int from_tty,
83 struct cmd_list_element *c);
84
85 static int currently_stepping (struct thread_info *tp);
86
87 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 void *data);
89
90 static void xdb_handle_command (char *args, int from_tty);
91
92 static int prepare_to_proceed (int);
93
94 static void print_exited_reason (int exitstatus);
95
96 static void print_signal_exited_reason (enum gdb_signal siggnal);
97
98 static void print_no_history_reason (void);
99
100 static void print_signal_received_reason (enum gdb_signal siggnal);
101
102 static void print_end_stepping_range_reason (void);
103
104 void _initialize_infrun (void);
105
106 void nullify_last_target_wait_ptid (void);
107
108 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
109
110 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111
112 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113
114 /* When set, stop the 'step' command if we enter a function which has
115 no line number information. The normal behavior is that we step
116 over such function. */
117 int step_stop_if_no_debug = 0;
118 static void
119 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123 }
124
125 /* In asynchronous mode, but simulating synchronous execution. */
126
127 int sync_execution = 0;
128
129 /* wait_for_inferior and normal_stop use this to notify the user
130 when the inferior stopped in a different thread than it had been
131 running in. */
132
133 static ptid_t previous_inferior_ptid;
134
135 /* If set (default for legacy reasons), when following a fork, GDB
136 will detach from one of the fork branches, child or parent.
137 Exactly which branch is detached depends on 'set follow-fork-mode'
138 setting. */
139
140 static int detach_fork = 1;
141
142 int debug_displaced = 0;
143 static void
144 show_debug_displaced (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
148 }
149
150 unsigned int debug_infrun = 0;
151 static void
152 show_debug_infrun (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
156 }
157
158
159 /* Support for disabling address space randomization. */
160
161 int disable_randomization = 1;
162
163 static void
164 show_disable_randomization (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 if (target_supports_disable_randomization ())
168 fprintf_filtered (file,
169 _("Disabling randomization of debuggee's "
170 "virtual address space is %s.\n"),
171 value);
172 else
173 fputs_filtered (_("Disabling randomization of debuggee's "
174 "virtual address space is unsupported on\n"
175 "this platform.\n"), file);
176 }
177
178 static void
179 set_disable_randomization (char *args, int from_tty,
180 struct cmd_list_element *c)
181 {
182 if (!target_supports_disable_randomization ())
183 error (_("Disabling randomization of debuggee's "
184 "virtual address space is unsupported on\n"
185 "this platform."));
186 }
187
188 /* User interface for non-stop mode. */
189
190 int non_stop = 0;
191 static int non_stop_1 = 0;
192
193 static void
194 set_non_stop (char *args, int from_tty,
195 struct cmd_list_element *c)
196 {
197 if (target_has_execution)
198 {
199 non_stop_1 = non_stop;
200 error (_("Cannot change this setting while the inferior is running."));
201 }
202
203 non_stop = non_stop_1;
204 }
205
206 static void
207 show_non_stop (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file,
211 _("Controlling the inferior in non-stop mode is %s.\n"),
212 value);
213 }
214
215 /* "Observer mode" is somewhat like a more extreme version of
216 non-stop, in which all GDB operations that might affect the
217 target's execution have been disabled. */
218
219 int observer_mode = 0;
220 static int observer_mode_1 = 0;
221
222 static void
223 set_observer_mode (char *args, int from_tty,
224 struct cmd_list_element *c)
225 {
226 if (target_has_execution)
227 {
228 observer_mode_1 = observer_mode;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 observer_mode = observer_mode_1;
233
234 may_write_registers = !observer_mode;
235 may_write_memory = !observer_mode;
236 may_insert_breakpoints = !observer_mode;
237 may_insert_tracepoints = !observer_mode;
238 /* We can insert fast tracepoints in or out of observer mode,
239 but enable them if we're going into this mode. */
240 if (observer_mode)
241 may_insert_fast_tracepoints = 1;
242 may_stop = !observer_mode;
243 update_target_permissions ();
244
245 /* Going *into* observer mode we must force non-stop, then
246 going out we leave it that way. */
247 if (observer_mode)
248 {
249 target_async_permitted = 1;
250 pagination_enabled = 0;
251 non_stop = non_stop_1 = 1;
252 }
253
254 if (from_tty)
255 printf_filtered (_("Observer mode is now %s.\n"),
256 (observer_mode ? "on" : "off"));
257 }
258
259 static void
260 show_observer_mode (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
264 }
265
266 /* This updates the value of observer mode based on changes in
267 permissions. Note that we are deliberately ignoring the values of
268 may-write-registers and may-write-memory, since the user may have
269 reason to enable these during a session, for instance to turn on a
270 debugging-related global. */
271
272 void
273 update_observer_mode (void)
274 {
275 int newval;
276
277 newval = (!may_insert_breakpoints
278 && !may_insert_tracepoints
279 && may_insert_fast_tracepoints
280 && !may_stop
281 && non_stop);
282
283 /* Let the user know if things change. */
284 if (newval != observer_mode)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (newval ? "on" : "off"));
287
288 observer_mode = observer_mode_1 = newval;
289 }
290
291 /* Tables of how to react to signals; the user sets them. */
292
293 static unsigned char *signal_stop;
294 static unsigned char *signal_print;
295 static unsigned char *signal_program;
296
297 /* Table of signals that are registered with "catch signal". A
298 non-zero entry indicates that the signal is caught by some "catch
299 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
300 signals. */
301 static unsigned char *signal_catch;
302
303 /* Table of signals that the target may silently handle.
304 This is automatically determined from the flags above,
305 and simply cached here. */
306 static unsigned char *signal_pass;
307
308 #define SET_SIGS(nsigs,sigs,flags) \
309 do { \
310 int signum = (nsigs); \
311 while (signum-- > 0) \
312 if ((sigs)[signum]) \
313 (flags)[signum] = 1; \
314 } while (0)
315
316 #define UNSET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 0; \
322 } while (0)
323
324 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
325 this function is to avoid exporting `signal_program'. */
326
327 void
328 update_signals_program_target (void)
329 {
330 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
331 }
332
333 /* Value to pass to target_resume() to cause all threads to resume. */
334
335 #define RESUME_ALL minus_one_ptid
336
337 /* Command list pointer for the "stop" placeholder. */
338
339 static struct cmd_list_element *stop_command;
340
341 /* Function inferior was in as of last step command. */
342
343 static struct symbol *step_start_function;
344
345 /* Nonzero if we want to give control to the user when we're notified
346 of shared library events by the dynamic linker. */
347 int stop_on_solib_events;
348
349 /* Enable or disable optional shared library event breakpoints
350 as appropriate when the above flag is changed. */
351
352 static void
353 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
354 {
355 update_solib_breakpoints ();
356 }
357
358 static void
359 show_stop_on_solib_events (struct ui_file *file, int from_tty,
360 struct cmd_list_element *c, const char *value)
361 {
362 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
363 value);
364 }
365
366 /* Nonzero means expecting a trace trap
367 and should stop the inferior and return silently when it happens. */
368
369 int stop_after_trap;
370
371 /* Save register contents here when executing a "finish" command or are
372 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
373 Thus this contains the return value from the called function (assuming
374 values are returned in a register). */
375
376 struct regcache *stop_registers;
377
378 /* Nonzero after stop if current stack frame should be printed. */
379
380 static int stop_print_frame;
381
382 /* This is a cached copy of the pid/waitstatus of the last event
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
385 static ptid_t target_last_wait_ptid;
386 static struct target_waitstatus target_last_waitstatus;
387
388 static void context_switch (ptid_t ptid);
389
390 void init_thread_stepping_state (struct thread_info *tss);
391
392 static void init_infwait_state (void);
393
394 static const char follow_fork_mode_child[] = "child";
395 static const char follow_fork_mode_parent[] = "parent";
396
397 static const char *const follow_fork_mode_kind_names[] = {
398 follow_fork_mode_child,
399 follow_fork_mode_parent,
400 NULL
401 };
402
403 static const char *follow_fork_mode_string = follow_fork_mode_parent;
404 static void
405 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
406 struct cmd_list_element *c, const char *value)
407 {
408 fprintf_filtered (file,
409 _("Debugger response to a program "
410 "call of fork or vfork is \"%s\".\n"),
411 value);
412 }
413 \f
414
415 /* Tell the target to follow the fork we're stopped at. Returns true
416 if the inferior should be resumed; false, if the target for some
417 reason decided it's best not to resume. */
418
419 static int
420 follow_fork (void)
421 {
422 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
423 int should_resume = 1;
424 struct thread_info *tp;
425
426 /* Copy user stepping state to the new inferior thread. FIXME: the
427 followed fork child thread should have a copy of most of the
428 parent thread structure's run control related fields, not just these.
429 Initialized to avoid "may be used uninitialized" warnings from gcc. */
430 struct breakpoint *step_resume_breakpoint = NULL;
431 struct breakpoint *exception_resume_breakpoint = NULL;
432 CORE_ADDR step_range_start = 0;
433 CORE_ADDR step_range_end = 0;
434 struct frame_id step_frame_id = { 0 };
435
436 if (!non_stop)
437 {
438 ptid_t wait_ptid;
439 struct target_waitstatus wait_status;
440
441 /* Get the last target status returned by target_wait(). */
442 get_last_target_status (&wait_ptid, &wait_status);
443
444 /* If not stopped at a fork event, then there's nothing else to
445 do. */
446 if (wait_status.kind != TARGET_WAITKIND_FORKED
447 && wait_status.kind != TARGET_WAITKIND_VFORKED)
448 return 1;
449
450 /* Check if we switched over from WAIT_PTID, since the event was
451 reported. */
452 if (!ptid_equal (wait_ptid, minus_one_ptid)
453 && !ptid_equal (inferior_ptid, wait_ptid))
454 {
455 /* We did. Switch back to WAIT_PTID thread, to tell the
456 target to follow it (in either direction). We'll
457 afterwards refuse to resume, and inform the user what
458 happened. */
459 switch_to_thread (wait_ptid);
460 should_resume = 0;
461 }
462 }
463
464 tp = inferior_thread ();
465
466 /* If there were any forks/vforks that were caught and are now to be
467 followed, then do so now. */
468 switch (tp->pending_follow.kind)
469 {
470 case TARGET_WAITKIND_FORKED:
471 case TARGET_WAITKIND_VFORKED:
472 {
473 ptid_t parent, child;
474
475 /* If the user did a next/step, etc, over a fork call,
476 preserve the stepping state in the fork child. */
477 if (follow_child && should_resume)
478 {
479 step_resume_breakpoint = clone_momentary_breakpoint
480 (tp->control.step_resume_breakpoint);
481 step_range_start = tp->control.step_range_start;
482 step_range_end = tp->control.step_range_end;
483 step_frame_id = tp->control.step_frame_id;
484 exception_resume_breakpoint
485 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
486
487 /* For now, delete the parent's sr breakpoint, otherwise,
488 parent/child sr breakpoints are considered duplicates,
489 and the child version will not be installed. Remove
490 this when the breakpoints module becomes aware of
491 inferiors and address spaces. */
492 delete_step_resume_breakpoint (tp);
493 tp->control.step_range_start = 0;
494 tp->control.step_range_end = 0;
495 tp->control.step_frame_id = null_frame_id;
496 delete_exception_resume_breakpoint (tp);
497 }
498
499 parent = inferior_ptid;
500 child = tp->pending_follow.value.related_pid;
501
502 /* Tell the target to do whatever is necessary to follow
503 either parent or child. */
504 if (target_follow_fork (follow_child, detach_fork))
505 {
506 /* Target refused to follow, or there's some other reason
507 we shouldn't resume. */
508 should_resume = 0;
509 }
510 else
511 {
512 /* This pending follow fork event is now handled, one way
513 or another. The previous selected thread may be gone
514 from the lists by now, but if it is still around, need
515 to clear the pending follow request. */
516 tp = find_thread_ptid (parent);
517 if (tp)
518 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
519
520 /* This makes sure we don't try to apply the "Switched
521 over from WAIT_PID" logic above. */
522 nullify_last_target_wait_ptid ();
523
524 /* If we followed the child, switch to it... */
525 if (follow_child)
526 {
527 switch_to_thread (child);
528
529 /* ... and preserve the stepping state, in case the
530 user was stepping over the fork call. */
531 if (should_resume)
532 {
533 tp = inferior_thread ();
534 tp->control.step_resume_breakpoint
535 = step_resume_breakpoint;
536 tp->control.step_range_start = step_range_start;
537 tp->control.step_range_end = step_range_end;
538 tp->control.step_frame_id = step_frame_id;
539 tp->control.exception_resume_breakpoint
540 = exception_resume_breakpoint;
541 }
542 else
543 {
544 /* If we get here, it was because we're trying to
545 resume from a fork catchpoint, but, the user
546 has switched threads away from the thread that
547 forked. In that case, the resume command
548 issued is most likely not applicable to the
549 child, so just warn, and refuse to resume. */
550 warning (_("Not resuming: switched threads "
551 "before following fork child.\n"));
552 }
553
554 /* Reset breakpoints in the child as appropriate. */
555 follow_inferior_reset_breakpoints ();
556 }
557 else
558 switch_to_thread (parent);
559 }
560 }
561 break;
562 case TARGET_WAITKIND_SPURIOUS:
563 /* Nothing to follow. */
564 break;
565 default:
566 internal_error (__FILE__, __LINE__,
567 "Unexpected pending_follow.kind %d\n",
568 tp->pending_follow.kind);
569 break;
570 }
571
572 return should_resume;
573 }
574
575 void
576 follow_inferior_reset_breakpoints (void)
577 {
578 struct thread_info *tp = inferior_thread ();
579
580 /* Was there a step_resume breakpoint? (There was if the user
581 did a "next" at the fork() call.) If so, explicitly reset its
582 thread number.
583
584 step_resumes are a form of bp that are made to be per-thread.
585 Since we created the step_resume bp when the parent process
586 was being debugged, and now are switching to the child process,
587 from the breakpoint package's viewpoint, that's a switch of
588 "threads". We must update the bp's notion of which thread
589 it is for, or it'll be ignored when it triggers. */
590
591 if (tp->control.step_resume_breakpoint)
592 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
593
594 if (tp->control.exception_resume_breakpoint)
595 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
596
597 /* Reinsert all breakpoints in the child. The user may have set
598 breakpoints after catching the fork, in which case those
599 were never set in the child, but only in the parent. This makes
600 sure the inserted breakpoints match the breakpoint list. */
601
602 breakpoint_re_set ();
603 insert_breakpoints ();
604 }
605
606 /* The child has exited or execed: resume threads of the parent the
607 user wanted to be executing. */
608
609 static int
610 proceed_after_vfork_done (struct thread_info *thread,
611 void *arg)
612 {
613 int pid = * (int *) arg;
614
615 if (ptid_get_pid (thread->ptid) == pid
616 && is_running (thread->ptid)
617 && !is_executing (thread->ptid)
618 && !thread->stop_requested
619 && thread->suspend.stop_signal == GDB_SIGNAL_0)
620 {
621 if (debug_infrun)
622 fprintf_unfiltered (gdb_stdlog,
623 "infrun: resuming vfork parent thread %s\n",
624 target_pid_to_str (thread->ptid));
625
626 switch_to_thread (thread->ptid);
627 clear_proceed_status ();
628 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
629 }
630
631 return 0;
632 }
633
634 /* Called whenever we notice an exec or exit event, to handle
635 detaching or resuming a vfork parent. */
636
637 static void
638 handle_vfork_child_exec_or_exit (int exec)
639 {
640 struct inferior *inf = current_inferior ();
641
642 if (inf->vfork_parent)
643 {
644 int resume_parent = -1;
645
646 /* This exec or exit marks the end of the shared memory region
647 between the parent and the child. If the user wanted to
648 detach from the parent, now is the time. */
649
650 if (inf->vfork_parent->pending_detach)
651 {
652 struct thread_info *tp;
653 struct cleanup *old_chain;
654 struct program_space *pspace;
655 struct address_space *aspace;
656
657 /* follow-fork child, detach-on-fork on. */
658
659 inf->vfork_parent->pending_detach = 0;
660
661 if (!exec)
662 {
663 /* If we're handling a child exit, then inferior_ptid
664 points at the inferior's pid, not to a thread. */
665 old_chain = save_inferior_ptid ();
666 save_current_program_space ();
667 save_current_inferior ();
668 }
669 else
670 old_chain = save_current_space_and_thread ();
671
672 /* We're letting loose of the parent. */
673 tp = any_live_thread_of_process (inf->vfork_parent->pid);
674 switch_to_thread (tp->ptid);
675
676 /* We're about to detach from the parent, which implicitly
677 removes breakpoints from its address space. There's a
678 catch here: we want to reuse the spaces for the child,
679 but, parent/child are still sharing the pspace at this
680 point, although the exec in reality makes the kernel give
681 the child a fresh set of new pages. The problem here is
682 that the breakpoints module being unaware of this, would
683 likely chose the child process to write to the parent
684 address space. Swapping the child temporarily away from
685 the spaces has the desired effect. Yes, this is "sort
686 of" a hack. */
687
688 pspace = inf->pspace;
689 aspace = inf->aspace;
690 inf->aspace = NULL;
691 inf->pspace = NULL;
692
693 if (debug_infrun || info_verbose)
694 {
695 target_terminal_ours ();
696
697 if (exec)
698 fprintf_filtered (gdb_stdlog,
699 "Detaching vfork parent process "
700 "%d after child exec.\n",
701 inf->vfork_parent->pid);
702 else
703 fprintf_filtered (gdb_stdlog,
704 "Detaching vfork parent process "
705 "%d after child exit.\n",
706 inf->vfork_parent->pid);
707 }
708
709 target_detach (NULL, 0);
710
711 /* Put it back. */
712 inf->pspace = pspace;
713 inf->aspace = aspace;
714
715 do_cleanups (old_chain);
716 }
717 else if (exec)
718 {
719 /* We're staying attached to the parent, so, really give the
720 child a new address space. */
721 inf->pspace = add_program_space (maybe_new_address_space ());
722 inf->aspace = inf->pspace->aspace;
723 inf->removable = 1;
724 set_current_program_space (inf->pspace);
725
726 resume_parent = inf->vfork_parent->pid;
727
728 /* Break the bonds. */
729 inf->vfork_parent->vfork_child = NULL;
730 }
731 else
732 {
733 struct cleanup *old_chain;
734 struct program_space *pspace;
735
736 /* If this is a vfork child exiting, then the pspace and
737 aspaces were shared with the parent. Since we're
738 reporting the process exit, we'll be mourning all that is
739 found in the address space, and switching to null_ptid,
740 preparing to start a new inferior. But, since we don't
741 want to clobber the parent's address/program spaces, we
742 go ahead and create a new one for this exiting
743 inferior. */
744
745 /* Switch to null_ptid, so that clone_program_space doesn't want
746 to read the selected frame of a dead process. */
747 old_chain = save_inferior_ptid ();
748 inferior_ptid = null_ptid;
749
750 /* This inferior is dead, so avoid giving the breakpoints
751 module the option to write through to it (cloning a
752 program space resets breakpoints). */
753 inf->aspace = NULL;
754 inf->pspace = NULL;
755 pspace = add_program_space (maybe_new_address_space ());
756 set_current_program_space (pspace);
757 inf->removable = 1;
758 inf->symfile_flags = SYMFILE_NO_READ;
759 clone_program_space (pspace, inf->vfork_parent->pspace);
760 inf->pspace = pspace;
761 inf->aspace = pspace->aspace;
762
763 /* Put back inferior_ptid. We'll continue mourning this
764 inferior. */
765 do_cleanups (old_chain);
766
767 resume_parent = inf->vfork_parent->pid;
768 /* Break the bonds. */
769 inf->vfork_parent->vfork_child = NULL;
770 }
771
772 inf->vfork_parent = NULL;
773
774 gdb_assert (current_program_space == inf->pspace);
775
776 if (non_stop && resume_parent != -1)
777 {
778 /* If the user wanted the parent to be running, let it go
779 free now. */
780 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
781
782 if (debug_infrun)
783 fprintf_unfiltered (gdb_stdlog,
784 "infrun: resuming vfork parent process %d\n",
785 resume_parent);
786
787 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
788
789 do_cleanups (old_chain);
790 }
791 }
792 }
793
794 /* Enum strings for "set|show follow-exec-mode". */
795
796 static const char follow_exec_mode_new[] = "new";
797 static const char follow_exec_mode_same[] = "same";
798 static const char *const follow_exec_mode_names[] =
799 {
800 follow_exec_mode_new,
801 follow_exec_mode_same,
802 NULL,
803 };
804
805 static const char *follow_exec_mode_string = follow_exec_mode_same;
806 static void
807 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
808 struct cmd_list_element *c, const char *value)
809 {
810 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
811 }
812
813 /* EXECD_PATHNAME is assumed to be non-NULL. */
814
815 static void
816 follow_exec (ptid_t pid, char *execd_pathname)
817 {
818 struct thread_info *th = inferior_thread ();
819 struct inferior *inf = current_inferior ();
820
821 /* This is an exec event that we actually wish to pay attention to.
822 Refresh our symbol table to the newly exec'd program, remove any
823 momentary bp's, etc.
824
825 If there are breakpoints, they aren't really inserted now,
826 since the exec() transformed our inferior into a fresh set
827 of instructions.
828
829 We want to preserve symbolic breakpoints on the list, since
830 we have hopes that they can be reset after the new a.out's
831 symbol table is read.
832
833 However, any "raw" breakpoints must be removed from the list
834 (e.g., the solib bp's), since their address is probably invalid
835 now.
836
837 And, we DON'T want to call delete_breakpoints() here, since
838 that may write the bp's "shadow contents" (the instruction
839 value that was overwritten witha TRAP instruction). Since
840 we now have a new a.out, those shadow contents aren't valid. */
841
842 mark_breakpoints_out ();
843
844 update_breakpoints_after_exec ();
845
846 /* If there was one, it's gone now. We cannot truly step-to-next
847 statement through an exec(). */
848 th->control.step_resume_breakpoint = NULL;
849 th->control.exception_resume_breakpoint = NULL;
850 th->control.step_range_start = 0;
851 th->control.step_range_end = 0;
852
853 /* The target reports the exec event to the main thread, even if
854 some other thread does the exec, and even if the main thread was
855 already stopped --- if debugging in non-stop mode, it's possible
856 the user had the main thread held stopped in the previous image
857 --- release it now. This is the same behavior as step-over-exec
858 with scheduler-locking on in all-stop mode. */
859 th->stop_requested = 0;
860
861 /* What is this a.out's name? */
862 printf_unfiltered (_("%s is executing new program: %s\n"),
863 target_pid_to_str (inferior_ptid),
864 execd_pathname);
865
866 /* We've followed the inferior through an exec. Therefore, the
867 inferior has essentially been killed & reborn. */
868
869 gdb_flush (gdb_stdout);
870
871 breakpoint_init_inferior (inf_execd);
872
873 if (gdb_sysroot && *gdb_sysroot)
874 {
875 char *name = alloca (strlen (gdb_sysroot)
876 + strlen (execd_pathname)
877 + 1);
878
879 strcpy (name, gdb_sysroot);
880 strcat (name, execd_pathname);
881 execd_pathname = name;
882 }
883
884 /* Reset the shared library package. This ensures that we get a
885 shlib event when the child reaches "_start", at which point the
886 dld will have had a chance to initialize the child. */
887 /* Also, loading a symbol file below may trigger symbol lookups, and
888 we don't want those to be satisfied by the libraries of the
889 previous incarnation of this process. */
890 no_shared_libraries (NULL, 0);
891
892 if (follow_exec_mode_string == follow_exec_mode_new)
893 {
894 struct program_space *pspace;
895
896 /* The user wants to keep the old inferior and program spaces
897 around. Create a new fresh one, and switch to it. */
898
899 inf = add_inferior (current_inferior ()->pid);
900 pspace = add_program_space (maybe_new_address_space ());
901 inf->pspace = pspace;
902 inf->aspace = pspace->aspace;
903
904 exit_inferior_num_silent (current_inferior ()->num);
905
906 set_current_inferior (inf);
907 set_current_program_space (pspace);
908 }
909 else
910 {
911 /* The old description may no longer be fit for the new image.
912 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
913 old description; we'll read a new one below. No need to do
914 this on "follow-exec-mode new", as the old inferior stays
915 around (its description is later cleared/refetched on
916 restart). */
917 target_clear_description ();
918 }
919
920 gdb_assert (current_program_space == inf->pspace);
921
922 /* That a.out is now the one to use. */
923 exec_file_attach (execd_pathname, 0);
924
925 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
926 (Position Independent Executable) main symbol file will get applied by
927 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
928 the breakpoints with the zero displacement. */
929
930 symbol_file_add (execd_pathname,
931 (inf->symfile_flags
932 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
933 NULL, 0);
934
935 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
936 set_initial_language ();
937
938 /* If the target can specify a description, read it. Must do this
939 after flipping to the new executable (because the target supplied
940 description must be compatible with the executable's
941 architecture, and the old executable may e.g., be 32-bit, while
942 the new one 64-bit), and before anything involving memory or
943 registers. */
944 target_find_description ();
945
946 solib_create_inferior_hook (0);
947
948 jit_inferior_created_hook ();
949
950 breakpoint_re_set ();
951
952 /* Reinsert all breakpoints. (Those which were symbolic have
953 been reset to the proper address in the new a.out, thanks
954 to symbol_file_command...). */
955 insert_breakpoints ();
956
957 /* The next resume of this inferior should bring it to the shlib
958 startup breakpoints. (If the user had also set bp's on
959 "main" from the old (parent) process, then they'll auto-
960 matically get reset there in the new process.). */
961 }
962
963 /* Non-zero if we just simulating a single-step. This is needed
964 because we cannot remove the breakpoints in the inferior process
965 until after the `wait' in `wait_for_inferior'. */
966 static int singlestep_breakpoints_inserted_p = 0;
967
968 /* The thread we inserted single-step breakpoints for. */
969 static ptid_t singlestep_ptid;
970
971 /* PC when we started this single-step. */
972 static CORE_ADDR singlestep_pc;
973
974 /* If another thread hit the singlestep breakpoint, we save the original
975 thread here so that we can resume single-stepping it later. */
976 static ptid_t saved_singlestep_ptid;
977 static int stepping_past_singlestep_breakpoint;
978
979 /* If not equal to null_ptid, this means that after stepping over breakpoint
980 is finished, we need to switch to deferred_step_ptid, and step it.
981
982 The use case is when one thread has hit a breakpoint, and then the user
983 has switched to another thread and issued 'step'. We need to step over
984 breakpoint in the thread which hit the breakpoint, but then continue
985 stepping the thread user has selected. */
986 static ptid_t deferred_step_ptid;
987 \f
988 /* Displaced stepping. */
989
990 /* In non-stop debugging mode, we must take special care to manage
991 breakpoints properly; in particular, the traditional strategy for
992 stepping a thread past a breakpoint it has hit is unsuitable.
993 'Displaced stepping' is a tactic for stepping one thread past a
994 breakpoint it has hit while ensuring that other threads running
995 concurrently will hit the breakpoint as they should.
996
997 The traditional way to step a thread T off a breakpoint in a
998 multi-threaded program in all-stop mode is as follows:
999
1000 a0) Initially, all threads are stopped, and breakpoints are not
1001 inserted.
1002 a1) We single-step T, leaving breakpoints uninserted.
1003 a2) We insert breakpoints, and resume all threads.
1004
1005 In non-stop debugging, however, this strategy is unsuitable: we
1006 don't want to have to stop all threads in the system in order to
1007 continue or step T past a breakpoint. Instead, we use displaced
1008 stepping:
1009
1010 n0) Initially, T is stopped, other threads are running, and
1011 breakpoints are inserted.
1012 n1) We copy the instruction "under" the breakpoint to a separate
1013 location, outside the main code stream, making any adjustments
1014 to the instruction, register, and memory state as directed by
1015 T's architecture.
1016 n2) We single-step T over the instruction at its new location.
1017 n3) We adjust the resulting register and memory state as directed
1018 by T's architecture. This includes resetting T's PC to point
1019 back into the main instruction stream.
1020 n4) We resume T.
1021
1022 This approach depends on the following gdbarch methods:
1023
1024 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1025 indicate where to copy the instruction, and how much space must
1026 be reserved there. We use these in step n1.
1027
1028 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1029 address, and makes any necessary adjustments to the instruction,
1030 register contents, and memory. We use this in step n1.
1031
1032 - gdbarch_displaced_step_fixup adjusts registers and memory after
1033 we have successfuly single-stepped the instruction, to yield the
1034 same effect the instruction would have had if we had executed it
1035 at its original address. We use this in step n3.
1036
1037 - gdbarch_displaced_step_free_closure provides cleanup.
1038
1039 The gdbarch_displaced_step_copy_insn and
1040 gdbarch_displaced_step_fixup functions must be written so that
1041 copying an instruction with gdbarch_displaced_step_copy_insn,
1042 single-stepping across the copied instruction, and then applying
1043 gdbarch_displaced_insn_fixup should have the same effects on the
1044 thread's memory and registers as stepping the instruction in place
1045 would have. Exactly which responsibilities fall to the copy and
1046 which fall to the fixup is up to the author of those functions.
1047
1048 See the comments in gdbarch.sh for details.
1049
1050 Note that displaced stepping and software single-step cannot
1051 currently be used in combination, although with some care I think
1052 they could be made to. Software single-step works by placing
1053 breakpoints on all possible subsequent instructions; if the
1054 displaced instruction is a PC-relative jump, those breakpoints
1055 could fall in very strange places --- on pages that aren't
1056 executable, or at addresses that are not proper instruction
1057 boundaries. (We do generally let other threads run while we wait
1058 to hit the software single-step breakpoint, and they might
1059 encounter such a corrupted instruction.) One way to work around
1060 this would be to have gdbarch_displaced_step_copy_insn fully
1061 simulate the effect of PC-relative instructions (and return NULL)
1062 on architectures that use software single-stepping.
1063
1064 In non-stop mode, we can have independent and simultaneous step
1065 requests, so more than one thread may need to simultaneously step
1066 over a breakpoint. The current implementation assumes there is
1067 only one scratch space per process. In this case, we have to
1068 serialize access to the scratch space. If thread A wants to step
1069 over a breakpoint, but we are currently waiting for some other
1070 thread to complete a displaced step, we leave thread A stopped and
1071 place it in the displaced_step_request_queue. Whenever a displaced
1072 step finishes, we pick the next thread in the queue and start a new
1073 displaced step operation on it. See displaced_step_prepare and
1074 displaced_step_fixup for details. */
1075
1076 struct displaced_step_request
1077 {
1078 ptid_t ptid;
1079 struct displaced_step_request *next;
1080 };
1081
1082 /* Per-inferior displaced stepping state. */
1083 struct displaced_step_inferior_state
1084 {
1085 /* Pointer to next in linked list. */
1086 struct displaced_step_inferior_state *next;
1087
1088 /* The process this displaced step state refers to. */
1089 int pid;
1090
1091 /* A queue of pending displaced stepping requests. One entry per
1092 thread that needs to do a displaced step. */
1093 struct displaced_step_request *step_request_queue;
1094
1095 /* If this is not null_ptid, this is the thread carrying out a
1096 displaced single-step in process PID. This thread's state will
1097 require fixing up once it has completed its step. */
1098 ptid_t step_ptid;
1099
1100 /* The architecture the thread had when we stepped it. */
1101 struct gdbarch *step_gdbarch;
1102
1103 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1104 for post-step cleanup. */
1105 struct displaced_step_closure *step_closure;
1106
1107 /* The address of the original instruction, and the copy we
1108 made. */
1109 CORE_ADDR step_original, step_copy;
1110
1111 /* Saved contents of copy area. */
1112 gdb_byte *step_saved_copy;
1113 };
1114
1115 /* The list of states of processes involved in displaced stepping
1116 presently. */
1117 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1118
1119 /* Get the displaced stepping state of process PID. */
1120
1121 static struct displaced_step_inferior_state *
1122 get_displaced_stepping_state (int pid)
1123 {
1124 struct displaced_step_inferior_state *state;
1125
1126 for (state = displaced_step_inferior_states;
1127 state != NULL;
1128 state = state->next)
1129 if (state->pid == pid)
1130 return state;
1131
1132 return NULL;
1133 }
1134
1135 /* Add a new displaced stepping state for process PID to the displaced
1136 stepping state list, or return a pointer to an already existing
1137 entry, if it already exists. Never returns NULL. */
1138
1139 static struct displaced_step_inferior_state *
1140 add_displaced_stepping_state (int pid)
1141 {
1142 struct displaced_step_inferior_state *state;
1143
1144 for (state = displaced_step_inferior_states;
1145 state != NULL;
1146 state = state->next)
1147 if (state->pid == pid)
1148 return state;
1149
1150 state = xcalloc (1, sizeof (*state));
1151 state->pid = pid;
1152 state->next = displaced_step_inferior_states;
1153 displaced_step_inferior_states = state;
1154
1155 return state;
1156 }
1157
1158 /* If inferior is in displaced stepping, and ADDR equals to starting address
1159 of copy area, return corresponding displaced_step_closure. Otherwise,
1160 return NULL. */
1161
1162 struct displaced_step_closure*
1163 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1164 {
1165 struct displaced_step_inferior_state *displaced
1166 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1167
1168 /* If checking the mode of displaced instruction in copy area. */
1169 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1170 && (displaced->step_copy == addr))
1171 return displaced->step_closure;
1172
1173 return NULL;
1174 }
1175
1176 /* Remove the displaced stepping state of process PID. */
1177
1178 static void
1179 remove_displaced_stepping_state (int pid)
1180 {
1181 struct displaced_step_inferior_state *it, **prev_next_p;
1182
1183 gdb_assert (pid != 0);
1184
1185 it = displaced_step_inferior_states;
1186 prev_next_p = &displaced_step_inferior_states;
1187 while (it)
1188 {
1189 if (it->pid == pid)
1190 {
1191 *prev_next_p = it->next;
1192 xfree (it);
1193 return;
1194 }
1195
1196 prev_next_p = &it->next;
1197 it = *prev_next_p;
1198 }
1199 }
1200
1201 static void
1202 infrun_inferior_exit (struct inferior *inf)
1203 {
1204 remove_displaced_stepping_state (inf->pid);
1205 }
1206
1207 /* If ON, and the architecture supports it, GDB will use displaced
1208 stepping to step over breakpoints. If OFF, or if the architecture
1209 doesn't support it, GDB will instead use the traditional
1210 hold-and-step approach. If AUTO (which is the default), GDB will
1211 decide which technique to use to step over breakpoints depending on
1212 which of all-stop or non-stop mode is active --- displaced stepping
1213 in non-stop mode; hold-and-step in all-stop mode. */
1214
1215 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1216
1217 static void
1218 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1219 struct cmd_list_element *c,
1220 const char *value)
1221 {
1222 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1223 fprintf_filtered (file,
1224 _("Debugger's willingness to use displaced stepping "
1225 "to step over breakpoints is %s (currently %s).\n"),
1226 value, non_stop ? "on" : "off");
1227 else
1228 fprintf_filtered (file,
1229 _("Debugger's willingness to use displaced stepping "
1230 "to step over breakpoints is %s.\n"), value);
1231 }
1232
1233 /* Return non-zero if displaced stepping can/should be used to step
1234 over breakpoints. */
1235
1236 static int
1237 use_displaced_stepping (struct gdbarch *gdbarch)
1238 {
1239 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1240 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1241 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1242 && !RECORD_IS_USED);
1243 }
1244
1245 /* Clean out any stray displaced stepping state. */
1246 static void
1247 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1248 {
1249 /* Indicate that there is no cleanup pending. */
1250 displaced->step_ptid = null_ptid;
1251
1252 if (displaced->step_closure)
1253 {
1254 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1255 displaced->step_closure);
1256 displaced->step_closure = NULL;
1257 }
1258 }
1259
1260 static void
1261 displaced_step_clear_cleanup (void *arg)
1262 {
1263 struct displaced_step_inferior_state *state = arg;
1264
1265 displaced_step_clear (state);
1266 }
1267
1268 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1269 void
1270 displaced_step_dump_bytes (struct ui_file *file,
1271 const gdb_byte *buf,
1272 size_t len)
1273 {
1274 int i;
1275
1276 for (i = 0; i < len; i++)
1277 fprintf_unfiltered (file, "%02x ", buf[i]);
1278 fputs_unfiltered ("\n", file);
1279 }
1280
1281 /* Prepare to single-step, using displaced stepping.
1282
1283 Note that we cannot use displaced stepping when we have a signal to
1284 deliver. If we have a signal to deliver and an instruction to step
1285 over, then after the step, there will be no indication from the
1286 target whether the thread entered a signal handler or ignored the
1287 signal and stepped over the instruction successfully --- both cases
1288 result in a simple SIGTRAP. In the first case we mustn't do a
1289 fixup, and in the second case we must --- but we can't tell which.
1290 Comments in the code for 'random signals' in handle_inferior_event
1291 explain how we handle this case instead.
1292
1293 Returns 1 if preparing was successful -- this thread is going to be
1294 stepped now; or 0 if displaced stepping this thread got queued. */
1295 static int
1296 displaced_step_prepare (ptid_t ptid)
1297 {
1298 struct cleanup *old_cleanups, *ignore_cleanups;
1299 struct thread_info *tp = find_thread_ptid (ptid);
1300 struct regcache *regcache = get_thread_regcache (ptid);
1301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1302 CORE_ADDR original, copy;
1303 ULONGEST len;
1304 struct displaced_step_closure *closure;
1305 struct displaced_step_inferior_state *displaced;
1306 int status;
1307
1308 /* We should never reach this function if the architecture does not
1309 support displaced stepping. */
1310 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1311
1312 /* Disable range stepping while executing in the scratch pad. We
1313 want a single-step even if executing the displaced instruction in
1314 the scratch buffer lands within the stepping range (e.g., a
1315 jump/branch). */
1316 tp->control.may_range_step = 0;
1317
1318 /* We have to displaced step one thread at a time, as we only have
1319 access to a single scratch space per inferior. */
1320
1321 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1322
1323 if (!ptid_equal (displaced->step_ptid, null_ptid))
1324 {
1325 /* Already waiting for a displaced step to finish. Defer this
1326 request and place in queue. */
1327 struct displaced_step_request *req, *new_req;
1328
1329 if (debug_displaced)
1330 fprintf_unfiltered (gdb_stdlog,
1331 "displaced: defering step of %s\n",
1332 target_pid_to_str (ptid));
1333
1334 new_req = xmalloc (sizeof (*new_req));
1335 new_req->ptid = ptid;
1336 new_req->next = NULL;
1337
1338 if (displaced->step_request_queue)
1339 {
1340 for (req = displaced->step_request_queue;
1341 req && req->next;
1342 req = req->next)
1343 ;
1344 req->next = new_req;
1345 }
1346 else
1347 displaced->step_request_queue = new_req;
1348
1349 return 0;
1350 }
1351 else
1352 {
1353 if (debug_displaced)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "displaced: stepping %s now\n",
1356 target_pid_to_str (ptid));
1357 }
1358
1359 displaced_step_clear (displaced);
1360
1361 old_cleanups = save_inferior_ptid ();
1362 inferior_ptid = ptid;
1363
1364 original = regcache_read_pc (regcache);
1365
1366 copy = gdbarch_displaced_step_location (gdbarch);
1367 len = gdbarch_max_insn_length (gdbarch);
1368
1369 /* Save the original contents of the copy area. */
1370 displaced->step_saved_copy = xmalloc (len);
1371 ignore_cleanups = make_cleanup (free_current_contents,
1372 &displaced->step_saved_copy);
1373 status = target_read_memory (copy, displaced->step_saved_copy, len);
1374 if (status != 0)
1375 throw_error (MEMORY_ERROR,
1376 _("Error accessing memory address %s (%s) for "
1377 "displaced-stepping scratch space."),
1378 paddress (gdbarch, copy), safe_strerror (status));
1379 if (debug_displaced)
1380 {
1381 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1382 paddress (gdbarch, copy));
1383 displaced_step_dump_bytes (gdb_stdlog,
1384 displaced->step_saved_copy,
1385 len);
1386 };
1387
1388 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1389 original, copy, regcache);
1390
1391 /* We don't support the fully-simulated case at present. */
1392 gdb_assert (closure);
1393
1394 /* Save the information we need to fix things up if the step
1395 succeeds. */
1396 displaced->step_ptid = ptid;
1397 displaced->step_gdbarch = gdbarch;
1398 displaced->step_closure = closure;
1399 displaced->step_original = original;
1400 displaced->step_copy = copy;
1401
1402 make_cleanup (displaced_step_clear_cleanup, displaced);
1403
1404 /* Resume execution at the copy. */
1405 regcache_write_pc (regcache, copy);
1406
1407 discard_cleanups (ignore_cleanups);
1408
1409 do_cleanups (old_cleanups);
1410
1411 if (debug_displaced)
1412 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1413 paddress (gdbarch, copy));
1414
1415 return 1;
1416 }
1417
1418 static void
1419 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1420 const gdb_byte *myaddr, int len)
1421 {
1422 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1423
1424 inferior_ptid = ptid;
1425 write_memory (memaddr, myaddr, len);
1426 do_cleanups (ptid_cleanup);
1427 }
1428
1429 /* Restore the contents of the copy area for thread PTID. */
1430
1431 static void
1432 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1433 ptid_t ptid)
1434 {
1435 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1436
1437 write_memory_ptid (ptid, displaced->step_copy,
1438 displaced->step_saved_copy, len);
1439 if (debug_displaced)
1440 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1441 target_pid_to_str (ptid),
1442 paddress (displaced->step_gdbarch,
1443 displaced->step_copy));
1444 }
1445
1446 static void
1447 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1448 {
1449 struct cleanup *old_cleanups;
1450 struct displaced_step_inferior_state *displaced
1451 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1452
1453 /* Was any thread of this process doing a displaced step? */
1454 if (displaced == NULL)
1455 return;
1456
1457 /* Was this event for the pid we displaced? */
1458 if (ptid_equal (displaced->step_ptid, null_ptid)
1459 || ! ptid_equal (displaced->step_ptid, event_ptid))
1460 return;
1461
1462 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1463
1464 displaced_step_restore (displaced, displaced->step_ptid);
1465
1466 /* Did the instruction complete successfully? */
1467 if (signal == GDB_SIGNAL_TRAP)
1468 {
1469 /* Fix up the resulting state. */
1470 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1471 displaced->step_closure,
1472 displaced->step_original,
1473 displaced->step_copy,
1474 get_thread_regcache (displaced->step_ptid));
1475 }
1476 else
1477 {
1478 /* Since the instruction didn't complete, all we can do is
1479 relocate the PC. */
1480 struct regcache *regcache = get_thread_regcache (event_ptid);
1481 CORE_ADDR pc = regcache_read_pc (regcache);
1482
1483 pc = displaced->step_original + (pc - displaced->step_copy);
1484 regcache_write_pc (regcache, pc);
1485 }
1486
1487 do_cleanups (old_cleanups);
1488
1489 displaced->step_ptid = null_ptid;
1490
1491 /* Are there any pending displaced stepping requests? If so, run
1492 one now. Leave the state object around, since we're likely to
1493 need it again soon. */
1494 while (displaced->step_request_queue)
1495 {
1496 struct displaced_step_request *head;
1497 ptid_t ptid;
1498 struct regcache *regcache;
1499 struct gdbarch *gdbarch;
1500 CORE_ADDR actual_pc;
1501 struct address_space *aspace;
1502
1503 head = displaced->step_request_queue;
1504 ptid = head->ptid;
1505 displaced->step_request_queue = head->next;
1506 xfree (head);
1507
1508 context_switch (ptid);
1509
1510 regcache = get_thread_regcache (ptid);
1511 actual_pc = regcache_read_pc (regcache);
1512 aspace = get_regcache_aspace (regcache);
1513
1514 if (breakpoint_here_p (aspace, actual_pc))
1515 {
1516 if (debug_displaced)
1517 fprintf_unfiltered (gdb_stdlog,
1518 "displaced: stepping queued %s now\n",
1519 target_pid_to_str (ptid));
1520
1521 displaced_step_prepare (ptid);
1522
1523 gdbarch = get_regcache_arch (regcache);
1524
1525 if (debug_displaced)
1526 {
1527 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1528 gdb_byte buf[4];
1529
1530 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1531 paddress (gdbarch, actual_pc));
1532 read_memory (actual_pc, buf, sizeof (buf));
1533 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1534 }
1535
1536 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1537 displaced->step_closure))
1538 target_resume (ptid, 1, GDB_SIGNAL_0);
1539 else
1540 target_resume (ptid, 0, GDB_SIGNAL_0);
1541
1542 /* Done, we're stepping a thread. */
1543 break;
1544 }
1545 else
1546 {
1547 int step;
1548 struct thread_info *tp = inferior_thread ();
1549
1550 /* The breakpoint we were sitting under has since been
1551 removed. */
1552 tp->control.trap_expected = 0;
1553
1554 /* Go back to what we were trying to do. */
1555 step = currently_stepping (tp);
1556
1557 if (debug_displaced)
1558 fprintf_unfiltered (gdb_stdlog,
1559 "displaced: breakpoint is gone: %s, step(%d)\n",
1560 target_pid_to_str (tp->ptid), step);
1561
1562 target_resume (ptid, step, GDB_SIGNAL_0);
1563 tp->suspend.stop_signal = GDB_SIGNAL_0;
1564
1565 /* This request was discarded. See if there's any other
1566 thread waiting for its turn. */
1567 }
1568 }
1569 }
1570
1571 /* Update global variables holding ptids to hold NEW_PTID if they were
1572 holding OLD_PTID. */
1573 static void
1574 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1575 {
1576 struct displaced_step_request *it;
1577 struct displaced_step_inferior_state *displaced;
1578
1579 if (ptid_equal (inferior_ptid, old_ptid))
1580 inferior_ptid = new_ptid;
1581
1582 if (ptid_equal (singlestep_ptid, old_ptid))
1583 singlestep_ptid = new_ptid;
1584
1585 if (ptid_equal (deferred_step_ptid, old_ptid))
1586 deferred_step_ptid = new_ptid;
1587
1588 for (displaced = displaced_step_inferior_states;
1589 displaced;
1590 displaced = displaced->next)
1591 {
1592 if (ptid_equal (displaced->step_ptid, old_ptid))
1593 displaced->step_ptid = new_ptid;
1594
1595 for (it = displaced->step_request_queue; it; it = it->next)
1596 if (ptid_equal (it->ptid, old_ptid))
1597 it->ptid = new_ptid;
1598 }
1599 }
1600
1601 \f
1602 /* Resuming. */
1603
1604 /* Things to clean up if we QUIT out of resume (). */
1605 static void
1606 resume_cleanups (void *ignore)
1607 {
1608 normal_stop ();
1609 }
1610
1611 static const char schedlock_off[] = "off";
1612 static const char schedlock_on[] = "on";
1613 static const char schedlock_step[] = "step";
1614 static const char *const scheduler_enums[] = {
1615 schedlock_off,
1616 schedlock_on,
1617 schedlock_step,
1618 NULL
1619 };
1620 static const char *scheduler_mode = schedlock_off;
1621 static void
1622 show_scheduler_mode (struct ui_file *file, int from_tty,
1623 struct cmd_list_element *c, const char *value)
1624 {
1625 fprintf_filtered (file,
1626 _("Mode for locking scheduler "
1627 "during execution is \"%s\".\n"),
1628 value);
1629 }
1630
1631 static void
1632 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1633 {
1634 if (!target_can_lock_scheduler)
1635 {
1636 scheduler_mode = schedlock_off;
1637 error (_("Target '%s' cannot support this command."), target_shortname);
1638 }
1639 }
1640
1641 /* True if execution commands resume all threads of all processes by
1642 default; otherwise, resume only threads of the current inferior
1643 process. */
1644 int sched_multi = 0;
1645
1646 /* Try to setup for software single stepping over the specified location.
1647 Return 1 if target_resume() should use hardware single step.
1648
1649 GDBARCH the current gdbarch.
1650 PC the location to step over. */
1651
1652 static int
1653 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1654 {
1655 int hw_step = 1;
1656
1657 if (execution_direction == EXEC_FORWARD
1658 && gdbarch_software_single_step_p (gdbarch)
1659 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1660 {
1661 hw_step = 0;
1662 /* Do not pull these breakpoints until after a `wait' in
1663 `wait_for_inferior'. */
1664 singlestep_breakpoints_inserted_p = 1;
1665 singlestep_ptid = inferior_ptid;
1666 singlestep_pc = pc;
1667 }
1668 return hw_step;
1669 }
1670
1671 /* Return a ptid representing the set of threads that we will proceed,
1672 in the perspective of the user/frontend. We may actually resume
1673 fewer threads at first, e.g., if a thread is stopped at a
1674 breakpoint that needs stepping-off, but that should not be visible
1675 to the user/frontend, and neither should the frontend/user be
1676 allowed to proceed any of the threads that happen to be stopped for
1677 internal run control handling, if a previous command wanted them
1678 resumed. */
1679
1680 ptid_t
1681 user_visible_resume_ptid (int step)
1682 {
1683 /* By default, resume all threads of all processes. */
1684 ptid_t resume_ptid = RESUME_ALL;
1685
1686 /* Maybe resume only all threads of the current process. */
1687 if (!sched_multi && target_supports_multi_process ())
1688 {
1689 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1690 }
1691
1692 /* Maybe resume a single thread after all. */
1693 if (non_stop)
1694 {
1695 /* With non-stop mode on, threads are always handled
1696 individually. */
1697 resume_ptid = inferior_ptid;
1698 }
1699 else if ((scheduler_mode == schedlock_on)
1700 || (scheduler_mode == schedlock_step
1701 && (step || singlestep_breakpoints_inserted_p)))
1702 {
1703 /* User-settable 'scheduler' mode requires solo thread resume. */
1704 resume_ptid = inferior_ptid;
1705 }
1706
1707 return resume_ptid;
1708 }
1709
1710 /* Resume the inferior, but allow a QUIT. This is useful if the user
1711 wants to interrupt some lengthy single-stepping operation
1712 (for child processes, the SIGINT goes to the inferior, and so
1713 we get a SIGINT random_signal, but for remote debugging and perhaps
1714 other targets, that's not true).
1715
1716 STEP nonzero if we should step (zero to continue instead).
1717 SIG is the signal to give the inferior (zero for none). */
1718 void
1719 resume (int step, enum gdb_signal sig)
1720 {
1721 int should_resume = 1;
1722 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1723 struct regcache *regcache = get_current_regcache ();
1724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1725 struct thread_info *tp = inferior_thread ();
1726 CORE_ADDR pc = regcache_read_pc (regcache);
1727 struct address_space *aspace = get_regcache_aspace (regcache);
1728
1729 QUIT;
1730
1731 if (current_inferior ()->waiting_for_vfork_done)
1732 {
1733 /* Don't try to single-step a vfork parent that is waiting for
1734 the child to get out of the shared memory region (by exec'ing
1735 or exiting). This is particularly important on software
1736 single-step archs, as the child process would trip on the
1737 software single step breakpoint inserted for the parent
1738 process. Since the parent will not actually execute any
1739 instruction until the child is out of the shared region (such
1740 are vfork's semantics), it is safe to simply continue it.
1741 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1742 the parent, and tell it to `keep_going', which automatically
1743 re-sets it stepping. */
1744 if (debug_infrun)
1745 fprintf_unfiltered (gdb_stdlog,
1746 "infrun: resume : clear step\n");
1747 step = 0;
1748 }
1749
1750 if (debug_infrun)
1751 fprintf_unfiltered (gdb_stdlog,
1752 "infrun: resume (step=%d, signal=%d), "
1753 "trap_expected=%d, current thread [%s] at %s\n",
1754 step, sig, tp->control.trap_expected,
1755 target_pid_to_str (inferior_ptid),
1756 paddress (gdbarch, pc));
1757
1758 /* Normally, by the time we reach `resume', the breakpoints are either
1759 removed or inserted, as appropriate. The exception is if we're sitting
1760 at a permanent breakpoint; we need to step over it, but permanent
1761 breakpoints can't be removed. So we have to test for it here. */
1762 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1763 {
1764 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1765 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1766 else
1767 error (_("\
1768 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1769 how to step past a permanent breakpoint on this architecture. Try using\n\
1770 a command like `return' or `jump' to continue execution."));
1771 }
1772
1773 /* If we have a breakpoint to step over, make sure to do a single
1774 step only. Same if we have software watchpoints. */
1775 if (tp->control.trap_expected || bpstat_should_step ())
1776 tp->control.may_range_step = 0;
1777
1778 /* If enabled, step over breakpoints by executing a copy of the
1779 instruction at a different address.
1780
1781 We can't use displaced stepping when we have a signal to deliver;
1782 the comments for displaced_step_prepare explain why. The
1783 comments in the handle_inferior event for dealing with 'random
1784 signals' explain what we do instead.
1785
1786 We can't use displaced stepping when we are waiting for vfork_done
1787 event, displaced stepping breaks the vfork child similarly as single
1788 step software breakpoint. */
1789 if (use_displaced_stepping (gdbarch)
1790 && (tp->control.trap_expected
1791 || (step && gdbarch_software_single_step_p (gdbarch)))
1792 && sig == GDB_SIGNAL_0
1793 && !current_inferior ()->waiting_for_vfork_done)
1794 {
1795 struct displaced_step_inferior_state *displaced;
1796
1797 if (!displaced_step_prepare (inferior_ptid))
1798 {
1799 /* Got placed in displaced stepping queue. Will be resumed
1800 later when all the currently queued displaced stepping
1801 requests finish. The thread is not executing at this point,
1802 and the call to set_executing will be made later. But we
1803 need to call set_running here, since from frontend point of view,
1804 the thread is running. */
1805 set_running (inferior_ptid, 1);
1806 discard_cleanups (old_cleanups);
1807 return;
1808 }
1809
1810 /* Update pc to reflect the new address from which we will execute
1811 instructions due to displaced stepping. */
1812 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1813
1814 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1815 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1816 displaced->step_closure);
1817 }
1818
1819 /* Do we need to do it the hard way, w/temp breakpoints? */
1820 else if (step)
1821 step = maybe_software_singlestep (gdbarch, pc);
1822
1823 /* Currently, our software single-step implementation leads to different
1824 results than hardware single-stepping in one situation: when stepping
1825 into delivering a signal which has an associated signal handler,
1826 hardware single-step will stop at the first instruction of the handler,
1827 while software single-step will simply skip execution of the handler.
1828
1829 For now, this difference in behavior is accepted since there is no
1830 easy way to actually implement single-stepping into a signal handler
1831 without kernel support.
1832
1833 However, there is one scenario where this difference leads to follow-on
1834 problems: if we're stepping off a breakpoint by removing all breakpoints
1835 and then single-stepping. In this case, the software single-step
1836 behavior means that even if there is a *breakpoint* in the signal
1837 handler, GDB still would not stop.
1838
1839 Fortunately, we can at least fix this particular issue. We detect
1840 here the case where we are about to deliver a signal while software
1841 single-stepping with breakpoints removed. In this situation, we
1842 revert the decisions to remove all breakpoints and insert single-
1843 step breakpoints, and instead we install a step-resume breakpoint
1844 at the current address, deliver the signal without stepping, and
1845 once we arrive back at the step-resume breakpoint, actually step
1846 over the breakpoint we originally wanted to step over. */
1847 if (singlestep_breakpoints_inserted_p
1848 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1849 {
1850 /* If we have nested signals or a pending signal is delivered
1851 immediately after a handler returns, might might already have
1852 a step-resume breakpoint set on the earlier handler. We cannot
1853 set another step-resume breakpoint; just continue on until the
1854 original breakpoint is hit. */
1855 if (tp->control.step_resume_breakpoint == NULL)
1856 {
1857 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1858 tp->step_after_step_resume_breakpoint = 1;
1859 }
1860
1861 remove_single_step_breakpoints ();
1862 singlestep_breakpoints_inserted_p = 0;
1863
1864 insert_breakpoints ();
1865 tp->control.trap_expected = 0;
1866 }
1867
1868 if (should_resume)
1869 {
1870 ptid_t resume_ptid;
1871
1872 /* If STEP is set, it's a request to use hardware stepping
1873 facilities. But in that case, we should never
1874 use singlestep breakpoint. */
1875 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1876
1877 /* Decide the set of threads to ask the target to resume. Start
1878 by assuming everything will be resumed, than narrow the set
1879 by applying increasingly restricting conditions. */
1880 resume_ptid = user_visible_resume_ptid (step);
1881
1882 /* Maybe resume a single thread after all. */
1883 if (singlestep_breakpoints_inserted_p
1884 && stepping_past_singlestep_breakpoint)
1885 {
1886 /* The situation here is as follows. In thread T1 we wanted to
1887 single-step. Lacking hardware single-stepping we've
1888 set breakpoint at the PC of the next instruction -- call it
1889 P. After resuming, we've hit that breakpoint in thread T2.
1890 Now we've removed original breakpoint, inserted breakpoint
1891 at P+1, and try to step to advance T2 past breakpoint.
1892 We need to step only T2, as if T1 is allowed to freely run,
1893 it can run past P, and if other threads are allowed to run,
1894 they can hit breakpoint at P+1, and nested hits of single-step
1895 breakpoints is not something we'd want -- that's complicated
1896 to support, and has no value. */
1897 resume_ptid = inferior_ptid;
1898 }
1899 else if ((step || singlestep_breakpoints_inserted_p)
1900 && tp->control.trap_expected)
1901 {
1902 /* We're allowing a thread to run past a breakpoint it has
1903 hit, by single-stepping the thread with the breakpoint
1904 removed. In which case, we need to single-step only this
1905 thread, and keep others stopped, as they can miss this
1906 breakpoint if allowed to run.
1907
1908 The current code actually removes all breakpoints when
1909 doing this, not just the one being stepped over, so if we
1910 let other threads run, we can actually miss any
1911 breakpoint, not just the one at PC. */
1912 resume_ptid = inferior_ptid;
1913 }
1914
1915 if (gdbarch_cannot_step_breakpoint (gdbarch))
1916 {
1917 /* Most targets can step a breakpoint instruction, thus
1918 executing it normally. But if this one cannot, just
1919 continue and we will hit it anyway. */
1920 if (step && breakpoint_inserted_here_p (aspace, pc))
1921 step = 0;
1922 }
1923
1924 if (debug_displaced
1925 && use_displaced_stepping (gdbarch)
1926 && tp->control.trap_expected)
1927 {
1928 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1929 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1930 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1931 gdb_byte buf[4];
1932
1933 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1934 paddress (resume_gdbarch, actual_pc));
1935 read_memory (actual_pc, buf, sizeof (buf));
1936 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1937 }
1938
1939 if (tp->control.may_range_step)
1940 {
1941 /* If we're resuming a thread with the PC out of the step
1942 range, then we're doing some nested/finer run control
1943 operation, like stepping the thread out of the dynamic
1944 linker or the displaced stepping scratch pad. We
1945 shouldn't have allowed a range step then. */
1946 gdb_assert (pc_in_thread_step_range (pc, tp));
1947 }
1948
1949 /* Install inferior's terminal modes. */
1950 target_terminal_inferior ();
1951
1952 /* Avoid confusing the next resume, if the next stop/resume
1953 happens to apply to another thread. */
1954 tp->suspend.stop_signal = GDB_SIGNAL_0;
1955
1956 /* Advise target which signals may be handled silently. If we have
1957 removed breakpoints because we are stepping over one (which can
1958 happen only if we are not using displaced stepping), we need to
1959 receive all signals to avoid accidentally skipping a breakpoint
1960 during execution of a signal handler. */
1961 if ((step || singlestep_breakpoints_inserted_p)
1962 && tp->control.trap_expected
1963 && !use_displaced_stepping (gdbarch))
1964 target_pass_signals (0, NULL);
1965 else
1966 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1967
1968 target_resume (resume_ptid, step, sig);
1969 }
1970
1971 discard_cleanups (old_cleanups);
1972 }
1973 \f
1974 /* Proceeding. */
1975
1976 /* Clear out all variables saying what to do when inferior is continued.
1977 First do this, then set the ones you want, then call `proceed'. */
1978
1979 static void
1980 clear_proceed_status_thread (struct thread_info *tp)
1981 {
1982 if (debug_infrun)
1983 fprintf_unfiltered (gdb_stdlog,
1984 "infrun: clear_proceed_status_thread (%s)\n",
1985 target_pid_to_str (tp->ptid));
1986
1987 tp->control.trap_expected = 0;
1988 tp->control.step_range_start = 0;
1989 tp->control.step_range_end = 0;
1990 tp->control.may_range_step = 0;
1991 tp->control.step_frame_id = null_frame_id;
1992 tp->control.step_stack_frame_id = null_frame_id;
1993 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1994 tp->stop_requested = 0;
1995
1996 tp->control.stop_step = 0;
1997
1998 tp->control.proceed_to_finish = 0;
1999
2000 /* Discard any remaining commands or status from previous stop. */
2001 bpstat_clear (&tp->control.stop_bpstat);
2002 }
2003
2004 static int
2005 clear_proceed_status_callback (struct thread_info *tp, void *data)
2006 {
2007 if (is_exited (tp->ptid))
2008 return 0;
2009
2010 clear_proceed_status_thread (tp);
2011 return 0;
2012 }
2013
2014 void
2015 clear_proceed_status (void)
2016 {
2017 if (!non_stop)
2018 {
2019 /* In all-stop mode, delete the per-thread status of all
2020 threads, even if inferior_ptid is null_ptid, there may be
2021 threads on the list. E.g., we may be launching a new
2022 process, while selecting the executable. */
2023 iterate_over_threads (clear_proceed_status_callback, NULL);
2024 }
2025
2026 if (!ptid_equal (inferior_ptid, null_ptid))
2027 {
2028 struct inferior *inferior;
2029
2030 if (non_stop)
2031 {
2032 /* If in non-stop mode, only delete the per-thread status of
2033 the current thread. */
2034 clear_proceed_status_thread (inferior_thread ());
2035 }
2036
2037 inferior = current_inferior ();
2038 inferior->control.stop_soon = NO_STOP_QUIETLY;
2039 }
2040
2041 stop_after_trap = 0;
2042
2043 observer_notify_about_to_proceed ();
2044
2045 if (stop_registers)
2046 {
2047 regcache_xfree (stop_registers);
2048 stop_registers = NULL;
2049 }
2050 }
2051
2052 /* Check the current thread against the thread that reported the most recent
2053 event. If a step-over is required return TRUE and set the current thread
2054 to the old thread. Otherwise return FALSE.
2055
2056 This should be suitable for any targets that support threads. */
2057
2058 static int
2059 prepare_to_proceed (int step)
2060 {
2061 ptid_t wait_ptid;
2062 struct target_waitstatus wait_status;
2063 int schedlock_enabled;
2064
2065 /* With non-stop mode on, threads are always handled individually. */
2066 gdb_assert (! non_stop);
2067
2068 /* Get the last target status returned by target_wait(). */
2069 get_last_target_status (&wait_ptid, &wait_status);
2070
2071 /* Make sure we were stopped at a breakpoint. */
2072 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2073 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2074 && wait_status.value.sig != GDB_SIGNAL_ILL
2075 && wait_status.value.sig != GDB_SIGNAL_SEGV
2076 && wait_status.value.sig != GDB_SIGNAL_EMT))
2077 {
2078 return 0;
2079 }
2080
2081 schedlock_enabled = (scheduler_mode == schedlock_on
2082 || (scheduler_mode == schedlock_step
2083 && step));
2084
2085 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2086 if (schedlock_enabled)
2087 return 0;
2088
2089 /* Don't switch over if we're about to resume some other process
2090 other than WAIT_PTID's, and schedule-multiple is off. */
2091 if (!sched_multi
2092 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2093 return 0;
2094
2095 /* Switched over from WAIT_PID. */
2096 if (!ptid_equal (wait_ptid, minus_one_ptid)
2097 && !ptid_equal (inferior_ptid, wait_ptid))
2098 {
2099 struct regcache *regcache = get_thread_regcache (wait_ptid);
2100
2101 if (breakpoint_here_p (get_regcache_aspace (regcache),
2102 regcache_read_pc (regcache)))
2103 {
2104 /* If stepping, remember current thread to switch back to. */
2105 if (step)
2106 deferred_step_ptid = inferior_ptid;
2107
2108 /* Switch back to WAIT_PID thread. */
2109 switch_to_thread (wait_ptid);
2110
2111 if (debug_infrun)
2112 fprintf_unfiltered (gdb_stdlog,
2113 "infrun: prepare_to_proceed (step=%d), "
2114 "switched to [%s]\n",
2115 step, target_pid_to_str (inferior_ptid));
2116
2117 /* We return 1 to indicate that there is a breakpoint here,
2118 so we need to step over it before continuing to avoid
2119 hitting it straight away. */
2120 return 1;
2121 }
2122 }
2123
2124 return 0;
2125 }
2126
2127 /* Basic routine for continuing the program in various fashions.
2128
2129 ADDR is the address to resume at, or -1 for resume where stopped.
2130 SIGGNAL is the signal to give it, or 0 for none,
2131 or -1 for act according to how it stopped.
2132 STEP is nonzero if should trap after one instruction.
2133 -1 means return after that and print nothing.
2134 You should probably set various step_... variables
2135 before calling here, if you are stepping.
2136
2137 You should call clear_proceed_status before calling proceed. */
2138
2139 void
2140 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2141 {
2142 struct regcache *regcache;
2143 struct gdbarch *gdbarch;
2144 struct thread_info *tp;
2145 CORE_ADDR pc;
2146 struct address_space *aspace;
2147 /* GDB may force the inferior to step due to various reasons. */
2148 int force_step = 0;
2149
2150 /* If we're stopped at a fork/vfork, follow the branch set by the
2151 "set follow-fork-mode" command; otherwise, we'll just proceed
2152 resuming the current thread. */
2153 if (!follow_fork ())
2154 {
2155 /* The target for some reason decided not to resume. */
2156 normal_stop ();
2157 if (target_can_async_p ())
2158 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2159 return;
2160 }
2161
2162 /* We'll update this if & when we switch to a new thread. */
2163 previous_inferior_ptid = inferior_ptid;
2164
2165 regcache = get_current_regcache ();
2166 gdbarch = get_regcache_arch (regcache);
2167 aspace = get_regcache_aspace (regcache);
2168 pc = regcache_read_pc (regcache);
2169
2170 if (step > 0)
2171 step_start_function = find_pc_function (pc);
2172 if (step < 0)
2173 stop_after_trap = 1;
2174
2175 if (addr == (CORE_ADDR) -1)
2176 {
2177 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2178 && execution_direction != EXEC_REVERSE)
2179 /* There is a breakpoint at the address we will resume at,
2180 step one instruction before inserting breakpoints so that
2181 we do not stop right away (and report a second hit at this
2182 breakpoint).
2183
2184 Note, we don't do this in reverse, because we won't
2185 actually be executing the breakpoint insn anyway.
2186 We'll be (un-)executing the previous instruction. */
2187
2188 force_step = 1;
2189 else if (gdbarch_single_step_through_delay_p (gdbarch)
2190 && gdbarch_single_step_through_delay (gdbarch,
2191 get_current_frame ()))
2192 /* We stepped onto an instruction that needs to be stepped
2193 again before re-inserting the breakpoint, do so. */
2194 force_step = 1;
2195 }
2196 else
2197 {
2198 regcache_write_pc (regcache, addr);
2199 }
2200
2201 if (debug_infrun)
2202 fprintf_unfiltered (gdb_stdlog,
2203 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2204 paddress (gdbarch, addr), siggnal, step);
2205
2206 if (non_stop)
2207 /* In non-stop, each thread is handled individually. The context
2208 must already be set to the right thread here. */
2209 ;
2210 else
2211 {
2212 /* In a multi-threaded task we may select another thread and
2213 then continue or step.
2214
2215 But if the old thread was stopped at a breakpoint, it will
2216 immediately cause another breakpoint stop without any
2217 execution (i.e. it will report a breakpoint hit incorrectly).
2218 So we must step over it first.
2219
2220 prepare_to_proceed checks the current thread against the
2221 thread that reported the most recent event. If a step-over
2222 is required it returns TRUE and sets the current thread to
2223 the old thread. */
2224 if (prepare_to_proceed (step))
2225 force_step = 1;
2226 }
2227
2228 /* prepare_to_proceed may change the current thread. */
2229 tp = inferior_thread ();
2230
2231 if (force_step)
2232 {
2233 tp->control.trap_expected = 1;
2234 /* If displaced stepping is enabled, we can step over the
2235 breakpoint without hitting it, so leave all breakpoints
2236 inserted. Otherwise we need to disable all breakpoints, step
2237 one instruction, and then re-add them when that step is
2238 finished. */
2239 if (!use_displaced_stepping (gdbarch))
2240 remove_breakpoints ();
2241 }
2242
2243 /* We can insert breakpoints if we're not trying to step over one,
2244 or if we are stepping over one but we're using displaced stepping
2245 to do so. */
2246 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2247 insert_breakpoints ();
2248
2249 if (!non_stop)
2250 {
2251 /* Pass the last stop signal to the thread we're resuming,
2252 irrespective of whether the current thread is the thread that
2253 got the last event or not. This was historically GDB's
2254 behaviour before keeping a stop_signal per thread. */
2255
2256 struct thread_info *last_thread;
2257 ptid_t last_ptid;
2258 struct target_waitstatus last_status;
2259
2260 get_last_target_status (&last_ptid, &last_status);
2261 if (!ptid_equal (inferior_ptid, last_ptid)
2262 && !ptid_equal (last_ptid, null_ptid)
2263 && !ptid_equal (last_ptid, minus_one_ptid))
2264 {
2265 last_thread = find_thread_ptid (last_ptid);
2266 if (last_thread)
2267 {
2268 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2269 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2270 }
2271 }
2272 }
2273
2274 if (siggnal != GDB_SIGNAL_DEFAULT)
2275 tp->suspend.stop_signal = siggnal;
2276 /* If this signal should not be seen by program,
2277 give it zero. Used for debugging signals. */
2278 else if (!signal_program[tp->suspend.stop_signal])
2279 tp->suspend.stop_signal = GDB_SIGNAL_0;
2280
2281 annotate_starting ();
2282
2283 /* Make sure that output from GDB appears before output from the
2284 inferior. */
2285 gdb_flush (gdb_stdout);
2286
2287 /* Refresh prev_pc value just prior to resuming. This used to be
2288 done in stop_stepping, however, setting prev_pc there did not handle
2289 scenarios such as inferior function calls or returning from
2290 a function via the return command. In those cases, the prev_pc
2291 value was not set properly for subsequent commands. The prev_pc value
2292 is used to initialize the starting line number in the ecs. With an
2293 invalid value, the gdb next command ends up stopping at the position
2294 represented by the next line table entry past our start position.
2295 On platforms that generate one line table entry per line, this
2296 is not a problem. However, on the ia64, the compiler generates
2297 extraneous line table entries that do not increase the line number.
2298 When we issue the gdb next command on the ia64 after an inferior call
2299 or a return command, we often end up a few instructions forward, still
2300 within the original line we started.
2301
2302 An attempt was made to refresh the prev_pc at the same time the
2303 execution_control_state is initialized (for instance, just before
2304 waiting for an inferior event). But this approach did not work
2305 because of platforms that use ptrace, where the pc register cannot
2306 be read unless the inferior is stopped. At that point, we are not
2307 guaranteed the inferior is stopped and so the regcache_read_pc() call
2308 can fail. Setting the prev_pc value here ensures the value is updated
2309 correctly when the inferior is stopped. */
2310 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2311
2312 /* Fill in with reasonable starting values. */
2313 init_thread_stepping_state (tp);
2314
2315 /* Reset to normal state. */
2316 init_infwait_state ();
2317
2318 /* Resume inferior. */
2319 resume (force_step || step || bpstat_should_step (),
2320 tp->suspend.stop_signal);
2321
2322 /* Wait for it to stop (if not standalone)
2323 and in any case decode why it stopped, and act accordingly. */
2324 /* Do this only if we are not using the event loop, or if the target
2325 does not support asynchronous execution. */
2326 if (!target_can_async_p ())
2327 {
2328 wait_for_inferior ();
2329 normal_stop ();
2330 }
2331 }
2332 \f
2333
2334 /* Start remote-debugging of a machine over a serial link. */
2335
2336 void
2337 start_remote (int from_tty)
2338 {
2339 struct inferior *inferior;
2340
2341 inferior = current_inferior ();
2342 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2343
2344 /* Always go on waiting for the target, regardless of the mode. */
2345 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2346 indicate to wait_for_inferior that a target should timeout if
2347 nothing is returned (instead of just blocking). Because of this,
2348 targets expecting an immediate response need to, internally, set
2349 things up so that the target_wait() is forced to eventually
2350 timeout. */
2351 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2352 differentiate to its caller what the state of the target is after
2353 the initial open has been performed. Here we're assuming that
2354 the target has stopped. It should be possible to eventually have
2355 target_open() return to the caller an indication that the target
2356 is currently running and GDB state should be set to the same as
2357 for an async run. */
2358 wait_for_inferior ();
2359
2360 /* Now that the inferior has stopped, do any bookkeeping like
2361 loading shared libraries. We want to do this before normal_stop,
2362 so that the displayed frame is up to date. */
2363 post_create_inferior (&current_target, from_tty);
2364
2365 normal_stop ();
2366 }
2367
2368 /* Initialize static vars when a new inferior begins. */
2369
2370 void
2371 init_wait_for_inferior (void)
2372 {
2373 /* These are meaningless until the first time through wait_for_inferior. */
2374
2375 breakpoint_init_inferior (inf_starting);
2376
2377 clear_proceed_status ();
2378
2379 stepping_past_singlestep_breakpoint = 0;
2380 deferred_step_ptid = null_ptid;
2381
2382 target_last_wait_ptid = minus_one_ptid;
2383
2384 previous_inferior_ptid = inferior_ptid;
2385 init_infwait_state ();
2386
2387 /* Discard any skipped inlined frames. */
2388 clear_inline_frame_state (minus_one_ptid);
2389 }
2390
2391 \f
2392 /* This enum encodes possible reasons for doing a target_wait, so that
2393 wfi can call target_wait in one place. (Ultimately the call will be
2394 moved out of the infinite loop entirely.) */
2395
2396 enum infwait_states
2397 {
2398 infwait_normal_state,
2399 infwait_thread_hop_state,
2400 infwait_step_watch_state,
2401 infwait_nonstep_watch_state
2402 };
2403
2404 /* The PTID we'll do a target_wait on.*/
2405 ptid_t waiton_ptid;
2406
2407 /* Current inferior wait state. */
2408 static enum infwait_states infwait_state;
2409
2410 /* Data to be passed around while handling an event. This data is
2411 discarded between events. */
2412 struct execution_control_state
2413 {
2414 ptid_t ptid;
2415 /* The thread that got the event, if this was a thread event; NULL
2416 otherwise. */
2417 struct thread_info *event_thread;
2418
2419 struct target_waitstatus ws;
2420 int random_signal;
2421 int stop_func_filled_in;
2422 CORE_ADDR stop_func_start;
2423 CORE_ADDR stop_func_end;
2424 const char *stop_func_name;
2425 int wait_some_more;
2426 };
2427
2428 static void handle_inferior_event (struct execution_control_state *ecs);
2429
2430 static void handle_step_into_function (struct gdbarch *gdbarch,
2431 struct execution_control_state *ecs);
2432 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2433 struct execution_control_state *ecs);
2434 static void check_exception_resume (struct execution_control_state *,
2435 struct frame_info *);
2436
2437 static void stop_stepping (struct execution_control_state *ecs);
2438 static void prepare_to_wait (struct execution_control_state *ecs);
2439 static void keep_going (struct execution_control_state *ecs);
2440
2441 /* Callback for iterate over threads. If the thread is stopped, but
2442 the user/frontend doesn't know about that yet, go through
2443 normal_stop, as if the thread had just stopped now. ARG points at
2444 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2445 ptid_is_pid(PTID) is true, applies to all threads of the process
2446 pointed at by PTID. Otherwise, apply only to the thread pointed by
2447 PTID. */
2448
2449 static int
2450 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2451 {
2452 ptid_t ptid = * (ptid_t *) arg;
2453
2454 if ((ptid_equal (info->ptid, ptid)
2455 || ptid_equal (minus_one_ptid, ptid)
2456 || (ptid_is_pid (ptid)
2457 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2458 && is_running (info->ptid)
2459 && !is_executing (info->ptid))
2460 {
2461 struct cleanup *old_chain;
2462 struct execution_control_state ecss;
2463 struct execution_control_state *ecs = &ecss;
2464
2465 memset (ecs, 0, sizeof (*ecs));
2466
2467 old_chain = make_cleanup_restore_current_thread ();
2468
2469 /* Go through handle_inferior_event/normal_stop, so we always
2470 have consistent output as if the stop event had been
2471 reported. */
2472 ecs->ptid = info->ptid;
2473 ecs->event_thread = find_thread_ptid (info->ptid);
2474 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2475 ecs->ws.value.sig = GDB_SIGNAL_0;
2476
2477 handle_inferior_event (ecs);
2478
2479 if (!ecs->wait_some_more)
2480 {
2481 struct thread_info *tp;
2482
2483 normal_stop ();
2484
2485 /* Finish off the continuations. */
2486 tp = inferior_thread ();
2487 do_all_intermediate_continuations_thread (tp, 1);
2488 do_all_continuations_thread (tp, 1);
2489 }
2490
2491 do_cleanups (old_chain);
2492 }
2493
2494 return 0;
2495 }
2496
2497 /* This function is attached as a "thread_stop_requested" observer.
2498 Cleanup local state that assumed the PTID was to be resumed, and
2499 report the stop to the frontend. */
2500
2501 static void
2502 infrun_thread_stop_requested (ptid_t ptid)
2503 {
2504 struct displaced_step_inferior_state *displaced;
2505
2506 /* PTID was requested to stop. Remove it from the displaced
2507 stepping queue, so we don't try to resume it automatically. */
2508
2509 for (displaced = displaced_step_inferior_states;
2510 displaced;
2511 displaced = displaced->next)
2512 {
2513 struct displaced_step_request *it, **prev_next_p;
2514
2515 it = displaced->step_request_queue;
2516 prev_next_p = &displaced->step_request_queue;
2517 while (it)
2518 {
2519 if (ptid_match (it->ptid, ptid))
2520 {
2521 *prev_next_p = it->next;
2522 it->next = NULL;
2523 xfree (it);
2524 }
2525 else
2526 {
2527 prev_next_p = &it->next;
2528 }
2529
2530 it = *prev_next_p;
2531 }
2532 }
2533
2534 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2535 }
2536
2537 static void
2538 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2539 {
2540 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2541 nullify_last_target_wait_ptid ();
2542 }
2543
2544 /* Callback for iterate_over_threads. */
2545
2546 static int
2547 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2548 {
2549 if (is_exited (info->ptid))
2550 return 0;
2551
2552 delete_step_resume_breakpoint (info);
2553 delete_exception_resume_breakpoint (info);
2554 return 0;
2555 }
2556
2557 /* In all-stop, delete the step resume breakpoint of any thread that
2558 had one. In non-stop, delete the step resume breakpoint of the
2559 thread that just stopped. */
2560
2561 static void
2562 delete_step_thread_step_resume_breakpoint (void)
2563 {
2564 if (!target_has_execution
2565 || ptid_equal (inferior_ptid, null_ptid))
2566 /* If the inferior has exited, we have already deleted the step
2567 resume breakpoints out of GDB's lists. */
2568 return;
2569
2570 if (non_stop)
2571 {
2572 /* If in non-stop mode, only delete the step-resume or
2573 longjmp-resume breakpoint of the thread that just stopped
2574 stepping. */
2575 struct thread_info *tp = inferior_thread ();
2576
2577 delete_step_resume_breakpoint (tp);
2578 delete_exception_resume_breakpoint (tp);
2579 }
2580 else
2581 /* In all-stop mode, delete all step-resume and longjmp-resume
2582 breakpoints of any thread that had them. */
2583 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2584 }
2585
2586 /* A cleanup wrapper. */
2587
2588 static void
2589 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2590 {
2591 delete_step_thread_step_resume_breakpoint ();
2592 }
2593
2594 /* Pretty print the results of target_wait, for debugging purposes. */
2595
2596 static void
2597 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2598 const struct target_waitstatus *ws)
2599 {
2600 char *status_string = target_waitstatus_to_string (ws);
2601 struct ui_file *tmp_stream = mem_fileopen ();
2602 char *text;
2603
2604 /* The text is split over several lines because it was getting too long.
2605 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2606 output as a unit; we want only one timestamp printed if debug_timestamp
2607 is set. */
2608
2609 fprintf_unfiltered (tmp_stream,
2610 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2611 if (ptid_get_pid (waiton_ptid) != -1)
2612 fprintf_unfiltered (tmp_stream,
2613 " [%s]", target_pid_to_str (waiton_ptid));
2614 fprintf_unfiltered (tmp_stream, ", status) =\n");
2615 fprintf_unfiltered (tmp_stream,
2616 "infrun: %d [%s],\n",
2617 ptid_get_pid (result_ptid),
2618 target_pid_to_str (result_ptid));
2619 fprintf_unfiltered (tmp_stream,
2620 "infrun: %s\n",
2621 status_string);
2622
2623 text = ui_file_xstrdup (tmp_stream, NULL);
2624
2625 /* This uses %s in part to handle %'s in the text, but also to avoid
2626 a gcc error: the format attribute requires a string literal. */
2627 fprintf_unfiltered (gdb_stdlog, "%s", text);
2628
2629 xfree (status_string);
2630 xfree (text);
2631 ui_file_delete (tmp_stream);
2632 }
2633
2634 /* Prepare and stabilize the inferior for detaching it. E.g.,
2635 detaching while a thread is displaced stepping is a recipe for
2636 crashing it, as nothing would readjust the PC out of the scratch
2637 pad. */
2638
2639 void
2640 prepare_for_detach (void)
2641 {
2642 struct inferior *inf = current_inferior ();
2643 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2644 struct cleanup *old_chain_1;
2645 struct displaced_step_inferior_state *displaced;
2646
2647 displaced = get_displaced_stepping_state (inf->pid);
2648
2649 /* Is any thread of this process displaced stepping? If not,
2650 there's nothing else to do. */
2651 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2652 return;
2653
2654 if (debug_infrun)
2655 fprintf_unfiltered (gdb_stdlog,
2656 "displaced-stepping in-process while detaching");
2657
2658 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2659 inf->detaching = 1;
2660
2661 while (!ptid_equal (displaced->step_ptid, null_ptid))
2662 {
2663 struct cleanup *old_chain_2;
2664 struct execution_control_state ecss;
2665 struct execution_control_state *ecs;
2666
2667 ecs = &ecss;
2668 memset (ecs, 0, sizeof (*ecs));
2669
2670 overlay_cache_invalid = 1;
2671
2672 if (deprecated_target_wait_hook)
2673 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2674 else
2675 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2676
2677 if (debug_infrun)
2678 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2679
2680 /* If an error happens while handling the event, propagate GDB's
2681 knowledge of the executing state to the frontend/user running
2682 state. */
2683 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2684 &minus_one_ptid);
2685
2686 /* Now figure out what to do with the result of the result. */
2687 handle_inferior_event (ecs);
2688
2689 /* No error, don't finish the state yet. */
2690 discard_cleanups (old_chain_2);
2691
2692 /* Breakpoints and watchpoints are not installed on the target
2693 at this point, and signals are passed directly to the
2694 inferior, so this must mean the process is gone. */
2695 if (!ecs->wait_some_more)
2696 {
2697 discard_cleanups (old_chain_1);
2698 error (_("Program exited while detaching"));
2699 }
2700 }
2701
2702 discard_cleanups (old_chain_1);
2703 }
2704
2705 /* Wait for control to return from inferior to debugger.
2706
2707 If inferior gets a signal, we may decide to start it up again
2708 instead of returning. That is why there is a loop in this function.
2709 When this function actually returns it means the inferior
2710 should be left stopped and GDB should read more commands. */
2711
2712 void
2713 wait_for_inferior (void)
2714 {
2715 struct cleanup *old_cleanups;
2716
2717 if (debug_infrun)
2718 fprintf_unfiltered
2719 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2720
2721 old_cleanups =
2722 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2723
2724 while (1)
2725 {
2726 struct execution_control_state ecss;
2727 struct execution_control_state *ecs = &ecss;
2728 struct cleanup *old_chain;
2729
2730 memset (ecs, 0, sizeof (*ecs));
2731
2732 overlay_cache_invalid = 1;
2733
2734 if (deprecated_target_wait_hook)
2735 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2736 else
2737 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2738
2739 if (debug_infrun)
2740 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2741
2742 /* If an error happens while handling the event, propagate GDB's
2743 knowledge of the executing state to the frontend/user running
2744 state. */
2745 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2746
2747 /* Now figure out what to do with the result of the result. */
2748 handle_inferior_event (ecs);
2749
2750 /* No error, don't finish the state yet. */
2751 discard_cleanups (old_chain);
2752
2753 if (!ecs->wait_some_more)
2754 break;
2755 }
2756
2757 do_cleanups (old_cleanups);
2758 }
2759
2760 /* Asynchronous version of wait_for_inferior. It is called by the
2761 event loop whenever a change of state is detected on the file
2762 descriptor corresponding to the target. It can be called more than
2763 once to complete a single execution command. In such cases we need
2764 to keep the state in a global variable ECSS. If it is the last time
2765 that this function is called for a single execution command, then
2766 report to the user that the inferior has stopped, and do the
2767 necessary cleanups. */
2768
2769 void
2770 fetch_inferior_event (void *client_data)
2771 {
2772 struct execution_control_state ecss;
2773 struct execution_control_state *ecs = &ecss;
2774 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2775 struct cleanup *ts_old_chain;
2776 int was_sync = sync_execution;
2777 int cmd_done = 0;
2778
2779 memset (ecs, 0, sizeof (*ecs));
2780
2781 /* We're handling a live event, so make sure we're doing live
2782 debugging. If we're looking at traceframes while the target is
2783 running, we're going to need to get back to that mode after
2784 handling the event. */
2785 if (non_stop)
2786 {
2787 make_cleanup_restore_current_traceframe ();
2788 set_current_traceframe (-1);
2789 }
2790
2791 if (non_stop)
2792 /* In non-stop mode, the user/frontend should not notice a thread
2793 switch due to internal events. Make sure we reverse to the
2794 user selected thread and frame after handling the event and
2795 running any breakpoint commands. */
2796 make_cleanup_restore_current_thread ();
2797
2798 overlay_cache_invalid = 1;
2799
2800 make_cleanup_restore_integer (&execution_direction);
2801 execution_direction = target_execution_direction ();
2802
2803 if (deprecated_target_wait_hook)
2804 ecs->ptid =
2805 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2806 else
2807 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2808
2809 if (debug_infrun)
2810 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2811
2812 /* If an error happens while handling the event, propagate GDB's
2813 knowledge of the executing state to the frontend/user running
2814 state. */
2815 if (!non_stop)
2816 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2817 else
2818 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2819
2820 /* Get executed before make_cleanup_restore_current_thread above to apply
2821 still for the thread which has thrown the exception. */
2822 make_bpstat_clear_actions_cleanup ();
2823
2824 /* Now figure out what to do with the result of the result. */
2825 handle_inferior_event (ecs);
2826
2827 if (!ecs->wait_some_more)
2828 {
2829 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2830
2831 delete_step_thread_step_resume_breakpoint ();
2832
2833 /* We may not find an inferior if this was a process exit. */
2834 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2835 normal_stop ();
2836
2837 if (target_has_execution
2838 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2839 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2840 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2841 && ecs->event_thread->step_multi
2842 && ecs->event_thread->control.stop_step)
2843 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2844 else
2845 {
2846 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2847 cmd_done = 1;
2848 }
2849 }
2850
2851 /* No error, don't finish the thread states yet. */
2852 discard_cleanups (ts_old_chain);
2853
2854 /* Revert thread and frame. */
2855 do_cleanups (old_chain);
2856
2857 /* If the inferior was in sync execution mode, and now isn't,
2858 restore the prompt (a synchronous execution command has finished,
2859 and we're ready for input). */
2860 if (interpreter_async && was_sync && !sync_execution)
2861 display_gdb_prompt (0);
2862
2863 if (cmd_done
2864 && !was_sync
2865 && exec_done_display_p
2866 && (ptid_equal (inferior_ptid, null_ptid)
2867 || !is_running (inferior_ptid)))
2868 printf_unfiltered (_("completed.\n"));
2869 }
2870
2871 /* Record the frame and location we're currently stepping through. */
2872 void
2873 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2874 {
2875 struct thread_info *tp = inferior_thread ();
2876
2877 tp->control.step_frame_id = get_frame_id (frame);
2878 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2879
2880 tp->current_symtab = sal.symtab;
2881 tp->current_line = sal.line;
2882 }
2883
2884 /* Clear context switchable stepping state. */
2885
2886 void
2887 init_thread_stepping_state (struct thread_info *tss)
2888 {
2889 tss->stepping_over_breakpoint = 0;
2890 tss->step_after_step_resume_breakpoint = 0;
2891 }
2892
2893 /* Return the cached copy of the last pid/waitstatus returned by
2894 target_wait()/deprecated_target_wait_hook(). The data is actually
2895 cached by handle_inferior_event(), which gets called immediately
2896 after target_wait()/deprecated_target_wait_hook(). */
2897
2898 void
2899 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2900 {
2901 *ptidp = target_last_wait_ptid;
2902 *status = target_last_waitstatus;
2903 }
2904
2905 void
2906 nullify_last_target_wait_ptid (void)
2907 {
2908 target_last_wait_ptid = minus_one_ptid;
2909 }
2910
2911 /* Switch thread contexts. */
2912
2913 static void
2914 context_switch (ptid_t ptid)
2915 {
2916 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2917 {
2918 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2919 target_pid_to_str (inferior_ptid));
2920 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2921 target_pid_to_str (ptid));
2922 }
2923
2924 switch_to_thread (ptid);
2925 }
2926
2927 static void
2928 adjust_pc_after_break (struct execution_control_state *ecs)
2929 {
2930 struct regcache *regcache;
2931 struct gdbarch *gdbarch;
2932 struct address_space *aspace;
2933 CORE_ADDR breakpoint_pc;
2934
2935 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2936 we aren't, just return.
2937
2938 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2939 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2940 implemented by software breakpoints should be handled through the normal
2941 breakpoint layer.
2942
2943 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2944 different signals (SIGILL or SIGEMT for instance), but it is less
2945 clear where the PC is pointing afterwards. It may not match
2946 gdbarch_decr_pc_after_break. I don't know any specific target that
2947 generates these signals at breakpoints (the code has been in GDB since at
2948 least 1992) so I can not guess how to handle them here.
2949
2950 In earlier versions of GDB, a target with
2951 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2952 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2953 target with both of these set in GDB history, and it seems unlikely to be
2954 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2955
2956 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2957 return;
2958
2959 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2960 return;
2961
2962 /* In reverse execution, when a breakpoint is hit, the instruction
2963 under it has already been de-executed. The reported PC always
2964 points at the breakpoint address, so adjusting it further would
2965 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2966 architecture:
2967
2968 B1 0x08000000 : INSN1
2969 B2 0x08000001 : INSN2
2970 0x08000002 : INSN3
2971 PC -> 0x08000003 : INSN4
2972
2973 Say you're stopped at 0x08000003 as above. Reverse continuing
2974 from that point should hit B2 as below. Reading the PC when the
2975 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2976 been de-executed already.
2977
2978 B1 0x08000000 : INSN1
2979 B2 PC -> 0x08000001 : INSN2
2980 0x08000002 : INSN3
2981 0x08000003 : INSN4
2982
2983 We can't apply the same logic as for forward execution, because
2984 we would wrongly adjust the PC to 0x08000000, since there's a
2985 breakpoint at PC - 1. We'd then report a hit on B1, although
2986 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2987 behaviour. */
2988 if (execution_direction == EXEC_REVERSE)
2989 return;
2990
2991 /* If this target does not decrement the PC after breakpoints, then
2992 we have nothing to do. */
2993 regcache = get_thread_regcache (ecs->ptid);
2994 gdbarch = get_regcache_arch (regcache);
2995 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2996 return;
2997
2998 aspace = get_regcache_aspace (regcache);
2999
3000 /* Find the location where (if we've hit a breakpoint) the
3001 breakpoint would be. */
3002 breakpoint_pc = regcache_read_pc (regcache)
3003 - gdbarch_decr_pc_after_break (gdbarch);
3004
3005 /* Check whether there actually is a software breakpoint inserted at
3006 that location.
3007
3008 If in non-stop mode, a race condition is possible where we've
3009 removed a breakpoint, but stop events for that breakpoint were
3010 already queued and arrive later. To suppress those spurious
3011 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3012 and retire them after a number of stop events are reported. */
3013 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3014 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3015 {
3016 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3017
3018 if (RECORD_IS_USED)
3019 record_full_gdb_operation_disable_set ();
3020
3021 /* When using hardware single-step, a SIGTRAP is reported for both
3022 a completed single-step and a software breakpoint. Need to
3023 differentiate between the two, as the latter needs adjusting
3024 but the former does not.
3025
3026 The SIGTRAP can be due to a completed hardware single-step only if
3027 - we didn't insert software single-step breakpoints
3028 - the thread to be examined is still the current thread
3029 - this thread is currently being stepped
3030
3031 If any of these events did not occur, we must have stopped due
3032 to hitting a software breakpoint, and have to back up to the
3033 breakpoint address.
3034
3035 As a special case, we could have hardware single-stepped a
3036 software breakpoint. In this case (prev_pc == breakpoint_pc),
3037 we also need to back up to the breakpoint address. */
3038
3039 if (singlestep_breakpoints_inserted_p
3040 || !ptid_equal (ecs->ptid, inferior_ptid)
3041 || !currently_stepping (ecs->event_thread)
3042 || ecs->event_thread->prev_pc == breakpoint_pc)
3043 regcache_write_pc (regcache, breakpoint_pc);
3044
3045 do_cleanups (old_cleanups);
3046 }
3047 }
3048
3049 static void
3050 init_infwait_state (void)
3051 {
3052 waiton_ptid = pid_to_ptid (-1);
3053 infwait_state = infwait_normal_state;
3054 }
3055
3056 static int
3057 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3058 {
3059 for (frame = get_prev_frame (frame);
3060 frame != NULL;
3061 frame = get_prev_frame (frame))
3062 {
3063 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3064 return 1;
3065 if (get_frame_type (frame) != INLINE_FRAME)
3066 break;
3067 }
3068
3069 return 0;
3070 }
3071
3072 /* Auxiliary function that handles syscall entry/return events.
3073 It returns 1 if the inferior should keep going (and GDB
3074 should ignore the event), or 0 if the event deserves to be
3075 processed. */
3076
3077 static int
3078 handle_syscall_event (struct execution_control_state *ecs)
3079 {
3080 struct regcache *regcache;
3081 int syscall_number;
3082
3083 if (!ptid_equal (ecs->ptid, inferior_ptid))
3084 context_switch (ecs->ptid);
3085
3086 regcache = get_thread_regcache (ecs->ptid);
3087 syscall_number = ecs->ws.value.syscall_number;
3088 stop_pc = regcache_read_pc (regcache);
3089
3090 if (catch_syscall_enabled () > 0
3091 && catching_syscall_number (syscall_number) > 0)
3092 {
3093 enum bpstat_signal_value sval;
3094
3095 if (debug_infrun)
3096 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3097 syscall_number);
3098
3099 ecs->event_thread->control.stop_bpstat
3100 = bpstat_stop_status (get_regcache_aspace (regcache),
3101 stop_pc, ecs->ptid, &ecs->ws);
3102
3103 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3104 GDB_SIGNAL_TRAP);
3105 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
3106
3107 if (!ecs->random_signal)
3108 {
3109 /* Catchpoint hit. */
3110 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3111 return 0;
3112 }
3113 }
3114
3115 /* If no catchpoint triggered for this, then keep going. */
3116 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3117 keep_going (ecs);
3118 return 1;
3119 }
3120
3121 /* Clear the supplied execution_control_state's stop_func_* fields. */
3122
3123 static void
3124 clear_stop_func (struct execution_control_state *ecs)
3125 {
3126 ecs->stop_func_filled_in = 0;
3127 ecs->stop_func_start = 0;
3128 ecs->stop_func_end = 0;
3129 ecs->stop_func_name = NULL;
3130 }
3131
3132 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3133
3134 static void
3135 fill_in_stop_func (struct gdbarch *gdbarch,
3136 struct execution_control_state *ecs)
3137 {
3138 if (!ecs->stop_func_filled_in)
3139 {
3140 /* Don't care about return value; stop_func_start and stop_func_name
3141 will both be 0 if it doesn't work. */
3142 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3143 &ecs->stop_func_start, &ecs->stop_func_end);
3144 ecs->stop_func_start
3145 += gdbarch_deprecated_function_start_offset (gdbarch);
3146
3147 ecs->stop_func_filled_in = 1;
3148 }
3149 }
3150
3151 /* Given an execution control state that has been freshly filled in
3152 by an event from the inferior, figure out what it means and take
3153 appropriate action. */
3154
3155 static void
3156 handle_inferior_event (struct execution_control_state *ecs)
3157 {
3158 struct frame_info *frame;
3159 struct gdbarch *gdbarch;
3160 int stopped_by_watchpoint;
3161 int stepped_after_stopped_by_watchpoint = 0;
3162 struct symtab_and_line stop_pc_sal;
3163 enum stop_kind stop_soon;
3164
3165 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3166 {
3167 /* We had an event in the inferior, but we are not interested in
3168 handling it at this level. The lower layers have already
3169 done what needs to be done, if anything.
3170
3171 One of the possible circumstances for this is when the
3172 inferior produces output for the console. The inferior has
3173 not stopped, and we are ignoring the event. Another possible
3174 circumstance is any event which the lower level knows will be
3175 reported multiple times without an intervening resume. */
3176 if (debug_infrun)
3177 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3178 prepare_to_wait (ecs);
3179 return;
3180 }
3181
3182 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3183 && target_can_async_p () && !sync_execution)
3184 {
3185 /* There were no unwaited-for children left in the target, but,
3186 we're not synchronously waiting for events either. Just
3187 ignore. Otherwise, if we were running a synchronous
3188 execution command, we need to cancel it and give the user
3189 back the terminal. */
3190 if (debug_infrun)
3191 fprintf_unfiltered (gdb_stdlog,
3192 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3193 prepare_to_wait (ecs);
3194 return;
3195 }
3196
3197 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3198 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3199 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3200 {
3201 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3202
3203 gdb_assert (inf);
3204 stop_soon = inf->control.stop_soon;
3205 }
3206 else
3207 stop_soon = NO_STOP_QUIETLY;
3208
3209 /* Cache the last pid/waitstatus. */
3210 target_last_wait_ptid = ecs->ptid;
3211 target_last_waitstatus = ecs->ws;
3212
3213 /* Always clear state belonging to the previous time we stopped. */
3214 stop_stack_dummy = STOP_NONE;
3215
3216 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3217 {
3218 /* No unwaited-for children left. IOW, all resumed children
3219 have exited. */
3220 if (debug_infrun)
3221 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3222
3223 stop_print_frame = 0;
3224 stop_stepping (ecs);
3225 return;
3226 }
3227
3228 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3229 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3230 {
3231 ecs->event_thread = find_thread_ptid (ecs->ptid);
3232 /* If it's a new thread, add it to the thread database. */
3233 if (ecs->event_thread == NULL)
3234 ecs->event_thread = add_thread (ecs->ptid);
3235
3236 /* Disable range stepping. If the next step request could use a
3237 range, this will be end up re-enabled then. */
3238 ecs->event_thread->control.may_range_step = 0;
3239 }
3240
3241 /* Dependent on valid ECS->EVENT_THREAD. */
3242 adjust_pc_after_break (ecs);
3243
3244 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3245 reinit_frame_cache ();
3246
3247 breakpoint_retire_moribund ();
3248
3249 /* First, distinguish signals caused by the debugger from signals
3250 that have to do with the program's own actions. Note that
3251 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3252 on the operating system version. Here we detect when a SIGILL or
3253 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3254 something similar for SIGSEGV, since a SIGSEGV will be generated
3255 when we're trying to execute a breakpoint instruction on a
3256 non-executable stack. This happens for call dummy breakpoints
3257 for architectures like SPARC that place call dummies on the
3258 stack. */
3259 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3260 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3261 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3262 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3263 {
3264 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3265
3266 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3267 regcache_read_pc (regcache)))
3268 {
3269 if (debug_infrun)
3270 fprintf_unfiltered (gdb_stdlog,
3271 "infrun: Treating signal as SIGTRAP\n");
3272 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3273 }
3274 }
3275
3276 /* Mark the non-executing threads accordingly. In all-stop, all
3277 threads of all processes are stopped when we get any event
3278 reported. In non-stop mode, only the event thread stops. If
3279 we're handling a process exit in non-stop mode, there's nothing
3280 to do, as threads of the dead process are gone, and threads of
3281 any other process were left running. */
3282 if (!non_stop)
3283 set_executing (minus_one_ptid, 0);
3284 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3285 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3286 set_executing (ecs->ptid, 0);
3287
3288 switch (infwait_state)
3289 {
3290 case infwait_thread_hop_state:
3291 if (debug_infrun)
3292 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3293 break;
3294
3295 case infwait_normal_state:
3296 if (debug_infrun)
3297 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3298 break;
3299
3300 case infwait_step_watch_state:
3301 if (debug_infrun)
3302 fprintf_unfiltered (gdb_stdlog,
3303 "infrun: infwait_step_watch_state\n");
3304
3305 stepped_after_stopped_by_watchpoint = 1;
3306 break;
3307
3308 case infwait_nonstep_watch_state:
3309 if (debug_infrun)
3310 fprintf_unfiltered (gdb_stdlog,
3311 "infrun: infwait_nonstep_watch_state\n");
3312 insert_breakpoints ();
3313
3314 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3315 handle things like signals arriving and other things happening
3316 in combination correctly? */
3317 stepped_after_stopped_by_watchpoint = 1;
3318 break;
3319
3320 default:
3321 internal_error (__FILE__, __LINE__, _("bad switch"));
3322 }
3323
3324 infwait_state = infwait_normal_state;
3325 waiton_ptid = pid_to_ptid (-1);
3326
3327 switch (ecs->ws.kind)
3328 {
3329 case TARGET_WAITKIND_LOADED:
3330 if (debug_infrun)
3331 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3332 /* Ignore gracefully during startup of the inferior, as it might
3333 be the shell which has just loaded some objects, otherwise
3334 add the symbols for the newly loaded objects. Also ignore at
3335 the beginning of an attach or remote session; we will query
3336 the full list of libraries once the connection is
3337 established. */
3338 if (stop_soon == NO_STOP_QUIETLY)
3339 {
3340 struct regcache *regcache;
3341 enum bpstat_signal_value sval;
3342
3343 if (!ptid_equal (ecs->ptid, inferior_ptid))
3344 context_switch (ecs->ptid);
3345 regcache = get_thread_regcache (ecs->ptid);
3346
3347 handle_solib_event ();
3348
3349 ecs->event_thread->control.stop_bpstat
3350 = bpstat_stop_status (get_regcache_aspace (regcache),
3351 stop_pc, ecs->ptid, &ecs->ws);
3352
3353 sval
3354 = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3355 GDB_SIGNAL_TRAP);
3356 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
3357
3358 if (!ecs->random_signal)
3359 {
3360 /* A catchpoint triggered. */
3361 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3362 goto process_event_stop_test;
3363 }
3364
3365 /* If requested, stop when the dynamic linker notifies
3366 gdb of events. This allows the user to get control
3367 and place breakpoints in initializer routines for
3368 dynamically loaded objects (among other things). */
3369 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3370 if (stop_on_solib_events)
3371 {
3372 /* Make sure we print "Stopped due to solib-event" in
3373 normal_stop. */
3374 stop_print_frame = 1;
3375
3376 stop_stepping (ecs);
3377 return;
3378 }
3379 }
3380
3381 /* If we are skipping through a shell, or through shared library
3382 loading that we aren't interested in, resume the program. If
3383 we're running the program normally, also resume. But stop if
3384 we're attaching or setting up a remote connection. */
3385 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3386 {
3387 if (!ptid_equal (ecs->ptid, inferior_ptid))
3388 context_switch (ecs->ptid);
3389
3390 /* Loading of shared libraries might have changed breakpoint
3391 addresses. Make sure new breakpoints are inserted. */
3392 if (stop_soon == NO_STOP_QUIETLY
3393 && !breakpoints_always_inserted_mode ())
3394 insert_breakpoints ();
3395 resume (0, GDB_SIGNAL_0);
3396 prepare_to_wait (ecs);
3397 return;
3398 }
3399
3400 break;
3401
3402 case TARGET_WAITKIND_SPURIOUS:
3403 if (debug_infrun)
3404 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3405 if (!ptid_equal (ecs->ptid, inferior_ptid))
3406 context_switch (ecs->ptid);
3407 resume (0, GDB_SIGNAL_0);
3408 prepare_to_wait (ecs);
3409 return;
3410
3411 case TARGET_WAITKIND_EXITED:
3412 case TARGET_WAITKIND_SIGNALLED:
3413 if (debug_infrun)
3414 {
3415 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3416 fprintf_unfiltered (gdb_stdlog,
3417 "infrun: TARGET_WAITKIND_EXITED\n");
3418 else
3419 fprintf_unfiltered (gdb_stdlog,
3420 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3421 }
3422
3423 inferior_ptid = ecs->ptid;
3424 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3425 set_current_program_space (current_inferior ()->pspace);
3426 handle_vfork_child_exec_or_exit (0);
3427 target_terminal_ours (); /* Must do this before mourn anyway. */
3428
3429 /* Clearing any previous state of convenience variables. */
3430 clear_exit_convenience_vars ();
3431
3432 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3433 {
3434 /* Record the exit code in the convenience variable $_exitcode, so
3435 that the user can inspect this again later. */
3436 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3437 (LONGEST) ecs->ws.value.integer);
3438
3439 /* Also record this in the inferior itself. */
3440 current_inferior ()->has_exit_code = 1;
3441 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3442
3443 print_exited_reason (ecs->ws.value.integer);
3444 }
3445 else
3446 {
3447 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3448 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3449
3450 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3451 {
3452 /* Set the value of the internal variable $_exitsignal,
3453 which holds the signal uncaught by the inferior. */
3454 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3455 gdbarch_gdb_signal_to_target (gdbarch,
3456 ecs->ws.value.sig));
3457 }
3458 else
3459 {
3460 /* We don't have access to the target's method used for
3461 converting between signal numbers (GDB's internal
3462 representation <-> target's representation).
3463 Therefore, we cannot do a good job at displaying this
3464 information to the user. It's better to just warn
3465 her about it (if infrun debugging is enabled), and
3466 give up. */
3467 if (debug_infrun)
3468 fprintf_filtered (gdb_stdlog, _("\
3469 Cannot fill $_exitsignal with the correct signal number.\n"));
3470 }
3471
3472 print_signal_exited_reason (ecs->ws.value.sig);
3473 }
3474
3475 gdb_flush (gdb_stdout);
3476 target_mourn_inferior ();
3477 singlestep_breakpoints_inserted_p = 0;
3478 cancel_single_step_breakpoints ();
3479 stop_print_frame = 0;
3480 stop_stepping (ecs);
3481 return;
3482
3483 /* The following are the only cases in which we keep going;
3484 the above cases end in a continue or goto. */
3485 case TARGET_WAITKIND_FORKED:
3486 case TARGET_WAITKIND_VFORKED:
3487 if (debug_infrun)
3488 {
3489 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3490 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3491 else
3492 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3493 }
3494
3495 /* Check whether the inferior is displaced stepping. */
3496 {
3497 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3498 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3499 struct displaced_step_inferior_state *displaced
3500 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3501
3502 /* If checking displaced stepping is supported, and thread
3503 ecs->ptid is displaced stepping. */
3504 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3505 {
3506 struct inferior *parent_inf
3507 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3508 struct regcache *child_regcache;
3509 CORE_ADDR parent_pc;
3510
3511 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3512 indicating that the displaced stepping of syscall instruction
3513 has been done. Perform cleanup for parent process here. Note
3514 that this operation also cleans up the child process for vfork,
3515 because their pages are shared. */
3516 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3517
3518 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3519 {
3520 /* Restore scratch pad for child process. */
3521 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3522 }
3523
3524 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3525 the child's PC is also within the scratchpad. Set the child's PC
3526 to the parent's PC value, which has already been fixed up.
3527 FIXME: we use the parent's aspace here, although we're touching
3528 the child, because the child hasn't been added to the inferior
3529 list yet at this point. */
3530
3531 child_regcache
3532 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3533 gdbarch,
3534 parent_inf->aspace);
3535 /* Read PC value of parent process. */
3536 parent_pc = regcache_read_pc (regcache);
3537
3538 if (debug_displaced)
3539 fprintf_unfiltered (gdb_stdlog,
3540 "displaced: write child pc from %s to %s\n",
3541 paddress (gdbarch,
3542 regcache_read_pc (child_regcache)),
3543 paddress (gdbarch, parent_pc));
3544
3545 regcache_write_pc (child_regcache, parent_pc);
3546 }
3547 }
3548
3549 if (!ptid_equal (ecs->ptid, inferior_ptid))
3550 context_switch (ecs->ptid);
3551
3552 /* Immediately detach breakpoints from the child before there's
3553 any chance of letting the user delete breakpoints from the
3554 breakpoint lists. If we don't do this early, it's easy to
3555 leave left over traps in the child, vis: "break foo; catch
3556 fork; c; <fork>; del; c; <child calls foo>". We only follow
3557 the fork on the last `continue', and by that time the
3558 breakpoint at "foo" is long gone from the breakpoint table.
3559 If we vforked, then we don't need to unpatch here, since both
3560 parent and child are sharing the same memory pages; we'll
3561 need to unpatch at follow/detach time instead to be certain
3562 that new breakpoints added between catchpoint hit time and
3563 vfork follow are detached. */
3564 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3565 {
3566 /* This won't actually modify the breakpoint list, but will
3567 physically remove the breakpoints from the child. */
3568 detach_breakpoints (ecs->ws.value.related_pid);
3569 }
3570
3571 if (singlestep_breakpoints_inserted_p)
3572 {
3573 /* Pull the single step breakpoints out of the target. */
3574 remove_single_step_breakpoints ();
3575 singlestep_breakpoints_inserted_p = 0;
3576 }
3577
3578 /* In case the event is caught by a catchpoint, remember that
3579 the event is to be followed at the next resume of the thread,
3580 and not immediately. */
3581 ecs->event_thread->pending_follow = ecs->ws;
3582
3583 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3584
3585 ecs->event_thread->control.stop_bpstat
3586 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3587 stop_pc, ecs->ptid, &ecs->ws);
3588
3589 /* Note that we're interested in knowing the bpstat actually
3590 causes a stop, not just if it may explain the signal.
3591 Software watchpoints, for example, always appear in the
3592 bpstat. */
3593 ecs->random_signal
3594 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3595
3596 /* If no catchpoint triggered for this, then keep going. */
3597 if (ecs->random_signal)
3598 {
3599 ptid_t parent;
3600 ptid_t child;
3601 int should_resume;
3602 int follow_child
3603 = (follow_fork_mode_string == follow_fork_mode_child);
3604
3605 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3606
3607 should_resume = follow_fork ();
3608
3609 parent = ecs->ptid;
3610 child = ecs->ws.value.related_pid;
3611
3612 /* In non-stop mode, also resume the other branch. */
3613 if (non_stop && !detach_fork)
3614 {
3615 if (follow_child)
3616 switch_to_thread (parent);
3617 else
3618 switch_to_thread (child);
3619
3620 ecs->event_thread = inferior_thread ();
3621 ecs->ptid = inferior_ptid;
3622 keep_going (ecs);
3623 }
3624
3625 if (follow_child)
3626 switch_to_thread (child);
3627 else
3628 switch_to_thread (parent);
3629
3630 ecs->event_thread = inferior_thread ();
3631 ecs->ptid = inferior_ptid;
3632
3633 if (should_resume)
3634 keep_going (ecs);
3635 else
3636 stop_stepping (ecs);
3637 return;
3638 }
3639 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3640 goto process_event_stop_test;
3641
3642 case TARGET_WAITKIND_VFORK_DONE:
3643 /* Done with the shared memory region. Re-insert breakpoints in
3644 the parent, and keep going. */
3645
3646 if (debug_infrun)
3647 fprintf_unfiltered (gdb_stdlog,
3648 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3649
3650 if (!ptid_equal (ecs->ptid, inferior_ptid))
3651 context_switch (ecs->ptid);
3652
3653 current_inferior ()->waiting_for_vfork_done = 0;
3654 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3655 /* This also takes care of reinserting breakpoints in the
3656 previously locked inferior. */
3657 keep_going (ecs);
3658 return;
3659
3660 case TARGET_WAITKIND_EXECD:
3661 if (debug_infrun)
3662 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3663
3664 if (!ptid_equal (ecs->ptid, inferior_ptid))
3665 context_switch (ecs->ptid);
3666
3667 singlestep_breakpoints_inserted_p = 0;
3668 cancel_single_step_breakpoints ();
3669
3670 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3671
3672 /* Do whatever is necessary to the parent branch of the vfork. */
3673 handle_vfork_child_exec_or_exit (1);
3674
3675 /* This causes the eventpoints and symbol table to be reset.
3676 Must do this now, before trying to determine whether to
3677 stop. */
3678 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3679
3680 ecs->event_thread->control.stop_bpstat
3681 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3682 stop_pc, ecs->ptid, &ecs->ws);
3683 ecs->random_signal
3684 = (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3685 GDB_SIGNAL_TRAP)
3686 == BPSTAT_SIGNAL_NO);
3687
3688 /* Note that this may be referenced from inside
3689 bpstat_stop_status above, through inferior_has_execd. */
3690 xfree (ecs->ws.value.execd_pathname);
3691 ecs->ws.value.execd_pathname = NULL;
3692
3693 /* If no catchpoint triggered for this, then keep going. */
3694 if (ecs->random_signal)
3695 {
3696 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3697 keep_going (ecs);
3698 return;
3699 }
3700 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3701 goto process_event_stop_test;
3702
3703 /* Be careful not to try to gather much state about a thread
3704 that's in a syscall. It's frequently a losing proposition. */
3705 case TARGET_WAITKIND_SYSCALL_ENTRY:
3706 if (debug_infrun)
3707 fprintf_unfiltered (gdb_stdlog,
3708 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3709 /* Getting the current syscall number. */
3710 if (handle_syscall_event (ecs) != 0)
3711 return;
3712 goto process_event_stop_test;
3713
3714 /* Before examining the threads further, step this thread to
3715 get it entirely out of the syscall. (We get notice of the
3716 event when the thread is just on the verge of exiting a
3717 syscall. Stepping one instruction seems to get it back
3718 into user code.) */
3719 case TARGET_WAITKIND_SYSCALL_RETURN:
3720 if (debug_infrun)
3721 fprintf_unfiltered (gdb_stdlog,
3722 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3723 if (handle_syscall_event (ecs) != 0)
3724 return;
3725 goto process_event_stop_test;
3726
3727 case TARGET_WAITKIND_STOPPED:
3728 if (debug_infrun)
3729 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3730 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3731 break;
3732
3733 case TARGET_WAITKIND_NO_HISTORY:
3734 if (debug_infrun)
3735 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3736 /* Reverse execution: target ran out of history info. */
3737
3738 /* Pull the single step breakpoints out of the target. */
3739 if (singlestep_breakpoints_inserted_p)
3740 {
3741 if (!ptid_equal (ecs->ptid, inferior_ptid))
3742 context_switch (ecs->ptid);
3743 remove_single_step_breakpoints ();
3744 singlestep_breakpoints_inserted_p = 0;
3745 }
3746 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3747 print_no_history_reason ();
3748 stop_stepping (ecs);
3749 return;
3750 }
3751
3752 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3753 {
3754 /* Do we need to clean up the state of a thread that has
3755 completed a displaced single-step? (Doing so usually affects
3756 the PC, so do it here, before we set stop_pc.) */
3757 displaced_step_fixup (ecs->ptid,
3758 ecs->event_thread->suspend.stop_signal);
3759
3760 /* If we either finished a single-step or hit a breakpoint, but
3761 the user wanted this thread to be stopped, pretend we got a
3762 SIG0 (generic unsignaled stop). */
3763
3764 if (ecs->event_thread->stop_requested
3765 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3766 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3767 }
3768
3769 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3770
3771 if (debug_infrun)
3772 {
3773 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3774 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3775 struct cleanup *old_chain = save_inferior_ptid ();
3776
3777 inferior_ptid = ecs->ptid;
3778
3779 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3780 paddress (gdbarch, stop_pc));
3781 if (target_stopped_by_watchpoint ())
3782 {
3783 CORE_ADDR addr;
3784
3785 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3786
3787 if (target_stopped_data_address (&current_target, &addr))
3788 fprintf_unfiltered (gdb_stdlog,
3789 "infrun: stopped data address = %s\n",
3790 paddress (gdbarch, addr));
3791 else
3792 fprintf_unfiltered (gdb_stdlog,
3793 "infrun: (no data address available)\n");
3794 }
3795
3796 do_cleanups (old_chain);
3797 }
3798
3799 if (stepping_past_singlestep_breakpoint)
3800 {
3801 gdb_assert (singlestep_breakpoints_inserted_p);
3802 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3803 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3804
3805 stepping_past_singlestep_breakpoint = 0;
3806
3807 /* We've either finished single-stepping past the single-step
3808 breakpoint, or stopped for some other reason. It would be nice if
3809 we could tell, but we can't reliably. */
3810 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3811 {
3812 if (debug_infrun)
3813 fprintf_unfiltered (gdb_stdlog,
3814 "infrun: stepping_past_"
3815 "singlestep_breakpoint\n");
3816 /* Pull the single step breakpoints out of the target. */
3817 if (!ptid_equal (ecs->ptid, inferior_ptid))
3818 context_switch (ecs->ptid);
3819 remove_single_step_breakpoints ();
3820 singlestep_breakpoints_inserted_p = 0;
3821
3822 ecs->random_signal = 0;
3823 ecs->event_thread->control.trap_expected = 0;
3824
3825 context_switch (saved_singlestep_ptid);
3826 if (deprecated_context_hook)
3827 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
3828
3829 resume (1, GDB_SIGNAL_0);
3830 prepare_to_wait (ecs);
3831 return;
3832 }
3833 }
3834
3835 if (!ptid_equal (deferred_step_ptid, null_ptid))
3836 {
3837 /* In non-stop mode, there's never a deferred_step_ptid set. */
3838 gdb_assert (!non_stop);
3839
3840 /* If we stopped for some other reason than single-stepping, ignore
3841 the fact that we were supposed to switch back. */
3842 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3843 {
3844 if (debug_infrun)
3845 fprintf_unfiltered (gdb_stdlog,
3846 "infrun: handling deferred step\n");
3847
3848 /* Pull the single step breakpoints out of the target. */
3849 if (singlestep_breakpoints_inserted_p)
3850 {
3851 if (!ptid_equal (ecs->ptid, inferior_ptid))
3852 context_switch (ecs->ptid);
3853 remove_single_step_breakpoints ();
3854 singlestep_breakpoints_inserted_p = 0;
3855 }
3856
3857 ecs->event_thread->control.trap_expected = 0;
3858
3859 context_switch (deferred_step_ptid);
3860 deferred_step_ptid = null_ptid;
3861 /* Suppress spurious "Switching to ..." message. */
3862 previous_inferior_ptid = inferior_ptid;
3863
3864 resume (1, GDB_SIGNAL_0);
3865 prepare_to_wait (ecs);
3866 return;
3867 }
3868
3869 deferred_step_ptid = null_ptid;
3870 }
3871
3872 /* See if a thread hit a thread-specific breakpoint that was meant for
3873 another thread. If so, then step that thread past the breakpoint,
3874 and continue it. */
3875
3876 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3877 {
3878 int thread_hop_needed = 0;
3879 struct address_space *aspace =
3880 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3881
3882 /* Check if a regular breakpoint has been hit before checking
3883 for a potential single step breakpoint. Otherwise, GDB will
3884 not see this breakpoint hit when stepping onto breakpoints. */
3885 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3886 {
3887 ecs->random_signal = 0;
3888 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3889 thread_hop_needed = 1;
3890 }
3891 else if (singlestep_breakpoints_inserted_p)
3892 {
3893 /* We have not context switched yet, so this should be true
3894 no matter which thread hit the singlestep breakpoint. */
3895 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3896 if (debug_infrun)
3897 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3898 "trap for %s\n",
3899 target_pid_to_str (ecs->ptid));
3900
3901 ecs->random_signal = 0;
3902 /* The call to in_thread_list is necessary because PTIDs sometimes
3903 change when we go from single-threaded to multi-threaded. If
3904 the singlestep_ptid is still in the list, assume that it is
3905 really different from ecs->ptid. */
3906 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3907 && in_thread_list (singlestep_ptid))
3908 {
3909 /* If the PC of the thread we were trying to single-step
3910 has changed, discard this event (which we were going
3911 to ignore anyway), and pretend we saw that thread
3912 trap. This prevents us continuously moving the
3913 single-step breakpoint forward, one instruction at a
3914 time. If the PC has changed, then the thread we were
3915 trying to single-step has trapped or been signalled,
3916 but the event has not been reported to GDB yet.
3917
3918 There might be some cases where this loses signal
3919 information, if a signal has arrived at exactly the
3920 same time that the PC changed, but this is the best
3921 we can do with the information available. Perhaps we
3922 should arrange to report all events for all threads
3923 when they stop, or to re-poll the remote looking for
3924 this particular thread (i.e. temporarily enable
3925 schedlock). */
3926
3927 CORE_ADDR new_singlestep_pc
3928 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3929
3930 if (new_singlestep_pc != singlestep_pc)
3931 {
3932 enum gdb_signal stop_signal;
3933
3934 if (debug_infrun)
3935 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3936 " but expected thread advanced also\n");
3937
3938 /* The current context still belongs to
3939 singlestep_ptid. Don't swap here, since that's
3940 the context we want to use. Just fudge our
3941 state and continue. */
3942 stop_signal = ecs->event_thread->suspend.stop_signal;
3943 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3944 ecs->ptid = singlestep_ptid;
3945 ecs->event_thread = find_thread_ptid (ecs->ptid);
3946 ecs->event_thread->suspend.stop_signal = stop_signal;
3947 stop_pc = new_singlestep_pc;
3948 }
3949 else
3950 {
3951 if (debug_infrun)
3952 fprintf_unfiltered (gdb_stdlog,
3953 "infrun: unexpected thread\n");
3954
3955 thread_hop_needed = 1;
3956 stepping_past_singlestep_breakpoint = 1;
3957 saved_singlestep_ptid = singlestep_ptid;
3958 }
3959 }
3960 }
3961
3962 if (thread_hop_needed)
3963 {
3964 struct regcache *thread_regcache;
3965 int remove_status = 0;
3966
3967 if (debug_infrun)
3968 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3969
3970 /* Switch context before touching inferior memory, the
3971 previous thread may have exited. */
3972 if (!ptid_equal (inferior_ptid, ecs->ptid))
3973 context_switch (ecs->ptid);
3974
3975 /* Saw a breakpoint, but it was hit by the wrong thread.
3976 Just continue. */
3977
3978 if (singlestep_breakpoints_inserted_p)
3979 {
3980 /* Pull the single step breakpoints out of the target. */
3981 remove_single_step_breakpoints ();
3982 singlestep_breakpoints_inserted_p = 0;
3983 }
3984
3985 /* If the arch can displace step, don't remove the
3986 breakpoints. */
3987 thread_regcache = get_thread_regcache (ecs->ptid);
3988 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3989 remove_status = remove_breakpoints ();
3990
3991 /* Did we fail to remove breakpoints? If so, try
3992 to set the PC past the bp. (There's at least
3993 one situation in which we can fail to remove
3994 the bp's: On HP-UX's that use ttrace, we can't
3995 change the address space of a vforking child
3996 process until the child exits (well, okay, not
3997 then either :-) or execs. */
3998 if (remove_status != 0)
3999 error (_("Cannot step over breakpoint hit in wrong thread"));
4000 else
4001 { /* Single step */
4002 if (!non_stop)
4003 {
4004 /* Only need to require the next event from this
4005 thread in all-stop mode. */
4006 waiton_ptid = ecs->ptid;
4007 infwait_state = infwait_thread_hop_state;
4008 }
4009
4010 ecs->event_thread->stepping_over_breakpoint = 1;
4011 keep_going (ecs);
4012 return;
4013 }
4014 }
4015 else if (singlestep_breakpoints_inserted_p)
4016 {
4017 ecs->random_signal = 0;
4018 }
4019 }
4020 else
4021 ecs->random_signal = 1;
4022
4023 /* See if something interesting happened to the non-current thread. If
4024 so, then switch to that thread. */
4025 if (!ptid_equal (ecs->ptid, inferior_ptid))
4026 {
4027 if (debug_infrun)
4028 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4029
4030 context_switch (ecs->ptid);
4031
4032 if (deprecated_context_hook)
4033 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4034 }
4035
4036 /* At this point, get hold of the now-current thread's frame. */
4037 frame = get_current_frame ();
4038 gdbarch = get_frame_arch (frame);
4039
4040 if (singlestep_breakpoints_inserted_p)
4041 {
4042 /* Pull the single step breakpoints out of the target. */
4043 remove_single_step_breakpoints ();
4044 singlestep_breakpoints_inserted_p = 0;
4045 }
4046
4047 if (stepped_after_stopped_by_watchpoint)
4048 stopped_by_watchpoint = 0;
4049 else
4050 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4051
4052 /* If necessary, step over this watchpoint. We'll be back to display
4053 it in a moment. */
4054 if (stopped_by_watchpoint
4055 && (target_have_steppable_watchpoint
4056 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4057 {
4058 /* At this point, we are stopped at an instruction which has
4059 attempted to write to a piece of memory under control of
4060 a watchpoint. The instruction hasn't actually executed
4061 yet. If we were to evaluate the watchpoint expression
4062 now, we would get the old value, and therefore no change
4063 would seem to have occurred.
4064
4065 In order to make watchpoints work `right', we really need
4066 to complete the memory write, and then evaluate the
4067 watchpoint expression. We do this by single-stepping the
4068 target.
4069
4070 It may not be necessary to disable the watchpoint to stop over
4071 it. For example, the PA can (with some kernel cooperation)
4072 single step over a watchpoint without disabling the watchpoint.
4073
4074 It is far more common to need to disable a watchpoint to step
4075 the inferior over it. If we have non-steppable watchpoints,
4076 we must disable the current watchpoint; it's simplest to
4077 disable all watchpoints and breakpoints. */
4078 int hw_step = 1;
4079
4080 if (!target_have_steppable_watchpoint)
4081 {
4082 remove_breakpoints ();
4083 /* See comment in resume why we need to stop bypassing signals
4084 while breakpoints have been removed. */
4085 target_pass_signals (0, NULL);
4086 }
4087 /* Single step */
4088 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4089 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4090 waiton_ptid = ecs->ptid;
4091 if (target_have_steppable_watchpoint)
4092 infwait_state = infwait_step_watch_state;
4093 else
4094 infwait_state = infwait_nonstep_watch_state;
4095 prepare_to_wait (ecs);
4096 return;
4097 }
4098
4099 clear_stop_func (ecs);
4100 ecs->event_thread->stepping_over_breakpoint = 0;
4101 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4102 ecs->event_thread->control.stop_step = 0;
4103 stop_print_frame = 1;
4104 ecs->random_signal = 0;
4105 stopped_by_random_signal = 0;
4106
4107 /* Hide inlined functions starting here, unless we just performed stepi or
4108 nexti. After stepi and nexti, always show the innermost frame (not any
4109 inline function call sites). */
4110 if (ecs->event_thread->control.step_range_end != 1)
4111 {
4112 struct address_space *aspace =
4113 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4114
4115 /* skip_inline_frames is expensive, so we avoid it if we can
4116 determine that the address is one where functions cannot have
4117 been inlined. This improves performance with inferiors that
4118 load a lot of shared libraries, because the solib event
4119 breakpoint is defined as the address of a function (i.e. not
4120 inline). Note that we have to check the previous PC as well
4121 as the current one to catch cases when we have just
4122 single-stepped off a breakpoint prior to reinstating it.
4123 Note that we're assuming that the code we single-step to is
4124 not inline, but that's not definitive: there's nothing
4125 preventing the event breakpoint function from containing
4126 inlined code, and the single-step ending up there. If the
4127 user had set a breakpoint on that inlined code, the missing
4128 skip_inline_frames call would break things. Fortunately
4129 that's an extremely unlikely scenario. */
4130 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4131 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4132 && ecs->event_thread->control.trap_expected
4133 && pc_at_non_inline_function (aspace,
4134 ecs->event_thread->prev_pc,
4135 &ecs->ws)))
4136 {
4137 skip_inline_frames (ecs->ptid);
4138
4139 /* Re-fetch current thread's frame in case that invalidated
4140 the frame cache. */
4141 frame = get_current_frame ();
4142 gdbarch = get_frame_arch (frame);
4143 }
4144 }
4145
4146 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4147 && ecs->event_thread->control.trap_expected
4148 && gdbarch_single_step_through_delay_p (gdbarch)
4149 && currently_stepping (ecs->event_thread))
4150 {
4151 /* We're trying to step off a breakpoint. Turns out that we're
4152 also on an instruction that needs to be stepped multiple
4153 times before it's been fully executing. E.g., architectures
4154 with a delay slot. It needs to be stepped twice, once for
4155 the instruction and once for the delay slot. */
4156 int step_through_delay
4157 = gdbarch_single_step_through_delay (gdbarch, frame);
4158
4159 if (debug_infrun && step_through_delay)
4160 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4161 if (ecs->event_thread->control.step_range_end == 0
4162 && step_through_delay)
4163 {
4164 /* The user issued a continue when stopped at a breakpoint.
4165 Set up for another trap and get out of here. */
4166 ecs->event_thread->stepping_over_breakpoint = 1;
4167 keep_going (ecs);
4168 return;
4169 }
4170 else if (step_through_delay)
4171 {
4172 /* The user issued a step when stopped at a breakpoint.
4173 Maybe we should stop, maybe we should not - the delay
4174 slot *might* correspond to a line of source. In any
4175 case, don't decide that here, just set
4176 ecs->stepping_over_breakpoint, making sure we
4177 single-step again before breakpoints are re-inserted. */
4178 ecs->event_thread->stepping_over_breakpoint = 1;
4179 }
4180 }
4181
4182 /* Look at the cause of the stop, and decide what to do.
4183 The alternatives are:
4184 1) stop_stepping and return; to really stop and return to the debugger,
4185 2) keep_going and return to start up again
4186 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4187 3) set ecs->random_signal to 1, and the decision between 1 and 2
4188 will be made according to the signal handling tables. */
4189
4190 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4191 && stop_after_trap)
4192 {
4193 if (debug_infrun)
4194 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4195 stop_print_frame = 0;
4196 stop_stepping (ecs);
4197 return;
4198 }
4199
4200 /* This is originated from start_remote(), start_inferior() and
4201 shared libraries hook functions. */
4202 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4203 {
4204 if (debug_infrun)
4205 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4206 stop_stepping (ecs);
4207 return;
4208 }
4209
4210 /* This originates from attach_command(). We need to overwrite
4211 the stop_signal here, because some kernels don't ignore a
4212 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4213 See more comments in inferior.h. On the other hand, if we
4214 get a non-SIGSTOP, report it to the user - assume the backend
4215 will handle the SIGSTOP if it should show up later.
4216
4217 Also consider that the attach is complete when we see a
4218 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4219 target extended-remote report it instead of a SIGSTOP
4220 (e.g. gdbserver). We already rely on SIGTRAP being our
4221 signal, so this is no exception.
4222
4223 Also consider that the attach is complete when we see a
4224 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4225 the target to stop all threads of the inferior, in case the
4226 low level attach operation doesn't stop them implicitly. If
4227 they weren't stopped implicitly, then the stub will report a
4228 GDB_SIGNAL_0, meaning: stopped for no particular reason
4229 other than GDB's request. */
4230 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4231 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4232 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4233 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4234 {
4235 stop_stepping (ecs);
4236 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4237 return;
4238 }
4239
4240 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4241 handles this event. */
4242 ecs->event_thread->control.stop_bpstat
4243 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4244 stop_pc, ecs->ptid, &ecs->ws);
4245
4246 /* Following in case break condition called a
4247 function. */
4248 stop_print_frame = 1;
4249
4250 /* This is where we handle "moribund" watchpoints. Unlike
4251 software breakpoints traps, hardware watchpoint traps are
4252 always distinguishable from random traps. If no high-level
4253 watchpoint is associated with the reported stop data address
4254 anymore, then the bpstat does not explain the signal ---
4255 simply make sure to ignore it if `stopped_by_watchpoint' is
4256 set. */
4257
4258 if (debug_infrun
4259 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4260 && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4261 GDB_SIGNAL_TRAP)
4262 == BPSTAT_SIGNAL_NO)
4263 && stopped_by_watchpoint)
4264 fprintf_unfiltered (gdb_stdlog,
4265 "infrun: no user watchpoint explains "
4266 "watchpoint SIGTRAP, ignoring\n");
4267
4268 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4269 at one stage in the past included checks for an inferior
4270 function call's call dummy's return breakpoint. The original
4271 comment, that went with the test, read:
4272
4273 ``End of a stack dummy. Some systems (e.g. Sony news) give
4274 another signal besides SIGTRAP, so check here as well as
4275 above.''
4276
4277 If someone ever tries to get call dummys on a
4278 non-executable stack to work (where the target would stop
4279 with something like a SIGSEGV), then those tests might need
4280 to be re-instated. Given, however, that the tests were only
4281 enabled when momentary breakpoints were not being used, I
4282 suspect that it won't be the case.
4283
4284 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4285 be necessary for call dummies on a non-executable stack on
4286 SPARC. */
4287
4288 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4289 ecs->random_signal
4290 = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4291 GDB_SIGNAL_TRAP)
4292 != BPSTAT_SIGNAL_NO)
4293 || stopped_by_watchpoint
4294 || ecs->event_thread->control.trap_expected
4295 || (ecs->event_thread->control.step_range_end
4296 && (ecs->event_thread->control.step_resume_breakpoint
4297 == NULL)));
4298 else
4299 {
4300 enum bpstat_signal_value sval;
4301
4302 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4303 ecs->event_thread->suspend.stop_signal);
4304 ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);
4305
4306 if (sval == BPSTAT_SIGNAL_HIDE)
4307 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4308 }
4309
4310 process_event_stop_test:
4311
4312 /* Re-fetch current thread's frame in case we did a
4313 "goto process_event_stop_test" above. */
4314 frame = get_current_frame ();
4315 gdbarch = get_frame_arch (frame);
4316
4317 /* For the program's own signals, act according to
4318 the signal handling tables. */
4319
4320 if (ecs->random_signal)
4321 {
4322 /* Signal not for debugging purposes. */
4323 int printed = 0;
4324 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4325
4326 if (debug_infrun)
4327 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4328 ecs->event_thread->suspend.stop_signal);
4329
4330 stopped_by_random_signal = 1;
4331
4332 if (signal_print[ecs->event_thread->suspend.stop_signal])
4333 {
4334 printed = 1;
4335 target_terminal_ours_for_output ();
4336 print_signal_received_reason
4337 (ecs->event_thread->suspend.stop_signal);
4338 }
4339 /* Always stop on signals if we're either just gaining control
4340 of the program, or the user explicitly requested this thread
4341 to remain stopped. */
4342 if (stop_soon != NO_STOP_QUIETLY
4343 || ecs->event_thread->stop_requested
4344 || (!inf->detaching
4345 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4346 {
4347 stop_stepping (ecs);
4348 return;
4349 }
4350 /* If not going to stop, give terminal back
4351 if we took it away. */
4352 else if (printed)
4353 target_terminal_inferior ();
4354
4355 /* Clear the signal if it should not be passed. */
4356 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4357 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4358
4359 if (ecs->event_thread->prev_pc == stop_pc
4360 && ecs->event_thread->control.trap_expected
4361 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4362 {
4363 /* We were just starting a new sequence, attempting to
4364 single-step off of a breakpoint and expecting a SIGTRAP.
4365 Instead this signal arrives. This signal will take us out
4366 of the stepping range so GDB needs to remember to, when
4367 the signal handler returns, resume stepping off that
4368 breakpoint. */
4369 /* To simplify things, "continue" is forced to use the same
4370 code paths as single-step - set a breakpoint at the
4371 signal return address and then, once hit, step off that
4372 breakpoint. */
4373 if (debug_infrun)
4374 fprintf_unfiltered (gdb_stdlog,
4375 "infrun: signal arrived while stepping over "
4376 "breakpoint\n");
4377
4378 insert_hp_step_resume_breakpoint_at_frame (frame);
4379 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4380 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4381 ecs->event_thread->control.trap_expected = 0;
4382 keep_going (ecs);
4383 return;
4384 }
4385
4386 if (ecs->event_thread->control.step_range_end != 0
4387 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4388 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
4389 && frame_id_eq (get_stack_frame_id (frame),
4390 ecs->event_thread->control.step_stack_frame_id)
4391 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4392 {
4393 /* The inferior is about to take a signal that will take it
4394 out of the single step range. Set a breakpoint at the
4395 current PC (which is presumably where the signal handler
4396 will eventually return) and then allow the inferior to
4397 run free.
4398
4399 Note that this is only needed for a signal delivered
4400 while in the single-step range. Nested signals aren't a
4401 problem as they eventually all return. */
4402 if (debug_infrun)
4403 fprintf_unfiltered (gdb_stdlog,
4404 "infrun: signal may take us out of "
4405 "single-step range\n");
4406
4407 insert_hp_step_resume_breakpoint_at_frame (frame);
4408 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4409 ecs->event_thread->control.trap_expected = 0;
4410 keep_going (ecs);
4411 return;
4412 }
4413
4414 /* Note: step_resume_breakpoint may be non-NULL. This occures
4415 when either there's a nested signal, or when there's a
4416 pending signal enabled just as the signal handler returns
4417 (leaving the inferior at the step-resume-breakpoint without
4418 actually executing it). Either way continue until the
4419 breakpoint is really hit. */
4420 }
4421 else
4422 {
4423 /* Handle cases caused by hitting a breakpoint. */
4424
4425 CORE_ADDR jmp_buf_pc;
4426 struct bpstat_what what;
4427
4428 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4429
4430 if (what.call_dummy)
4431 {
4432 stop_stack_dummy = what.call_dummy;
4433 }
4434
4435 /* If we hit an internal event that triggers symbol changes, the
4436 current frame will be invalidated within bpstat_what (e.g.,
4437 if we hit an internal solib event). Re-fetch it. */
4438 frame = get_current_frame ();
4439 gdbarch = get_frame_arch (frame);
4440
4441 switch (what.main_action)
4442 {
4443 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4444 /* If we hit the breakpoint at longjmp while stepping, we
4445 install a momentary breakpoint at the target of the
4446 jmp_buf. */
4447
4448 if (debug_infrun)
4449 fprintf_unfiltered (gdb_stdlog,
4450 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4451
4452 ecs->event_thread->stepping_over_breakpoint = 1;
4453
4454 if (what.is_longjmp)
4455 {
4456 struct value *arg_value;
4457
4458 /* If we set the longjmp breakpoint via a SystemTap
4459 probe, then use it to extract the arguments. The
4460 destination PC is the third argument to the
4461 probe. */
4462 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4463 if (arg_value)
4464 jmp_buf_pc = value_as_address (arg_value);
4465 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4466 || !gdbarch_get_longjmp_target (gdbarch,
4467 frame, &jmp_buf_pc))
4468 {
4469 if (debug_infrun)
4470 fprintf_unfiltered (gdb_stdlog,
4471 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4472 "(!gdbarch_get_longjmp_target)\n");
4473 keep_going (ecs);
4474 return;
4475 }
4476
4477 /* Insert a breakpoint at resume address. */
4478 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4479 }
4480 else
4481 check_exception_resume (ecs, frame);
4482 keep_going (ecs);
4483 return;
4484
4485 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4486 {
4487 struct frame_info *init_frame;
4488
4489 /* There are several cases to consider.
4490
4491 1. The initiating frame no longer exists. In this case
4492 we must stop, because the exception or longjmp has gone
4493 too far.
4494
4495 2. The initiating frame exists, and is the same as the
4496 current frame. We stop, because the exception or
4497 longjmp has been caught.
4498
4499 3. The initiating frame exists and is different from
4500 the current frame. This means the exception or longjmp
4501 has been caught beneath the initiating frame, so keep
4502 going.
4503
4504 4. longjmp breakpoint has been placed just to protect
4505 against stale dummy frames and user is not interested
4506 in stopping around longjmps. */
4507
4508 if (debug_infrun)
4509 fprintf_unfiltered (gdb_stdlog,
4510 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4511
4512 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4513 != NULL);
4514 delete_exception_resume_breakpoint (ecs->event_thread);
4515
4516 if (what.is_longjmp)
4517 {
4518 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4519
4520 if (!frame_id_p (ecs->event_thread->initiating_frame))
4521 {
4522 /* Case 4. */
4523 keep_going (ecs);
4524 return;
4525 }
4526 }
4527
4528 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4529
4530 if (init_frame)
4531 {
4532 struct frame_id current_id
4533 = get_frame_id (get_current_frame ());
4534 if (frame_id_eq (current_id,
4535 ecs->event_thread->initiating_frame))
4536 {
4537 /* Case 2. Fall through. */
4538 }
4539 else
4540 {
4541 /* Case 3. */
4542 keep_going (ecs);
4543 return;
4544 }
4545 }
4546
4547 /* For Cases 1 and 2, remove the step-resume breakpoint,
4548 if it exists. */
4549 delete_step_resume_breakpoint (ecs->event_thread);
4550
4551 ecs->event_thread->control.stop_step = 1;
4552 print_end_stepping_range_reason ();
4553 stop_stepping (ecs);
4554 }
4555 return;
4556
4557 case BPSTAT_WHAT_SINGLE:
4558 if (debug_infrun)
4559 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4560 ecs->event_thread->stepping_over_breakpoint = 1;
4561 /* Still need to check other stuff, at least the case where
4562 we are stepping and step out of the right range. */
4563 break;
4564
4565 case BPSTAT_WHAT_STEP_RESUME:
4566 if (debug_infrun)
4567 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4568
4569 delete_step_resume_breakpoint (ecs->event_thread);
4570 if (ecs->event_thread->control.proceed_to_finish
4571 && execution_direction == EXEC_REVERSE)
4572 {
4573 struct thread_info *tp = ecs->event_thread;
4574
4575 /* We are finishing a function in reverse, and just hit
4576 the step-resume breakpoint at the start address of
4577 the function, and we're almost there -- just need to
4578 back up by one more single-step, which should take us
4579 back to the function call. */
4580 tp->control.step_range_start = tp->control.step_range_end = 1;
4581 keep_going (ecs);
4582 return;
4583 }
4584 fill_in_stop_func (gdbarch, ecs);
4585 if (stop_pc == ecs->stop_func_start
4586 && execution_direction == EXEC_REVERSE)
4587 {
4588 /* We are stepping over a function call in reverse, and
4589 just hit the step-resume breakpoint at the start
4590 address of the function. Go back to single-stepping,
4591 which should take us back to the function call. */
4592 ecs->event_thread->stepping_over_breakpoint = 1;
4593 keep_going (ecs);
4594 return;
4595 }
4596 break;
4597
4598 case BPSTAT_WHAT_STOP_NOISY:
4599 if (debug_infrun)
4600 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4601 stop_print_frame = 1;
4602
4603 /* We are about to nuke the step_resume_breakpointt via the
4604 cleanup chain, so no need to worry about it here. */
4605
4606 stop_stepping (ecs);
4607 return;
4608
4609 case BPSTAT_WHAT_STOP_SILENT:
4610 if (debug_infrun)
4611 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4612 stop_print_frame = 0;
4613
4614 /* We are about to nuke the step_resume_breakpoin via the
4615 cleanup chain, so no need to worry about it here. */
4616
4617 stop_stepping (ecs);
4618 return;
4619
4620 case BPSTAT_WHAT_HP_STEP_RESUME:
4621 if (debug_infrun)
4622 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4623
4624 delete_step_resume_breakpoint (ecs->event_thread);
4625 if (ecs->event_thread->step_after_step_resume_breakpoint)
4626 {
4627 /* Back when the step-resume breakpoint was inserted, we
4628 were trying to single-step off a breakpoint. Go back
4629 to doing that. */
4630 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4631 ecs->event_thread->stepping_over_breakpoint = 1;
4632 keep_going (ecs);
4633 return;
4634 }
4635 break;
4636
4637 case BPSTAT_WHAT_KEEP_CHECKING:
4638 break;
4639 }
4640 }
4641
4642 /* We come here if we hit a breakpoint but should not
4643 stop for it. Possibly we also were stepping
4644 and should stop for that. So fall through and
4645 test for stepping. But, if not stepping,
4646 do not stop. */
4647
4648 /* In all-stop mode, if we're currently stepping but have stopped in
4649 some other thread, we need to switch back to the stepped thread. */
4650 if (!non_stop)
4651 {
4652 struct thread_info *tp;
4653
4654 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4655 ecs->event_thread);
4656 if (tp)
4657 {
4658 /* However, if the current thread is blocked on some internal
4659 breakpoint, and we simply need to step over that breakpoint
4660 to get it going again, do that first. */
4661 if ((ecs->event_thread->control.trap_expected
4662 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
4663 || ecs->event_thread->stepping_over_breakpoint)
4664 {
4665 keep_going (ecs);
4666 return;
4667 }
4668
4669 /* If the stepping thread exited, then don't try to switch
4670 back and resume it, which could fail in several different
4671 ways depending on the target. Instead, just keep going.
4672
4673 We can find a stepping dead thread in the thread list in
4674 two cases:
4675
4676 - The target supports thread exit events, and when the
4677 target tries to delete the thread from the thread list,
4678 inferior_ptid pointed at the exiting thread. In such
4679 case, calling delete_thread does not really remove the
4680 thread from the list; instead, the thread is left listed,
4681 with 'exited' state.
4682
4683 - The target's debug interface does not support thread
4684 exit events, and so we have no idea whatsoever if the
4685 previously stepping thread is still alive. For that
4686 reason, we need to synchronously query the target
4687 now. */
4688 if (is_exited (tp->ptid)
4689 || !target_thread_alive (tp->ptid))
4690 {
4691 if (debug_infrun)
4692 fprintf_unfiltered (gdb_stdlog,
4693 "infrun: not switching back to "
4694 "stepped thread, it has vanished\n");
4695
4696 delete_thread (tp->ptid);
4697 keep_going (ecs);
4698 return;
4699 }
4700
4701 /* Otherwise, we no longer expect a trap in the current thread.
4702 Clear the trap_expected flag before switching back -- this is
4703 what keep_going would do as well, if we called it. */
4704 ecs->event_thread->control.trap_expected = 0;
4705
4706 if (debug_infrun)
4707 fprintf_unfiltered (gdb_stdlog,
4708 "infrun: switching back to stepped thread\n");
4709
4710 ecs->event_thread = tp;
4711 ecs->ptid = tp->ptid;
4712 context_switch (ecs->ptid);
4713 keep_going (ecs);
4714 return;
4715 }
4716 }
4717
4718 if (ecs->random_signal)
4719 {
4720 if (debug_infrun)
4721 fprintf_unfiltered (gdb_stdlog,
4722 "infrun: random signal, keep going\n");
4723
4724 /* Signal not stepping related. */
4725 keep_going (ecs);
4726 return;
4727 }
4728
4729 if (ecs->event_thread->control.step_resume_breakpoint)
4730 {
4731 if (debug_infrun)
4732 fprintf_unfiltered (gdb_stdlog,
4733 "infrun: step-resume breakpoint is inserted\n");
4734
4735 /* Having a step-resume breakpoint overrides anything
4736 else having to do with stepping commands until
4737 that breakpoint is reached. */
4738 keep_going (ecs);
4739 return;
4740 }
4741
4742 if (ecs->event_thread->control.step_range_end == 0)
4743 {
4744 if (debug_infrun)
4745 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4746 /* Likewise if we aren't even stepping. */
4747 keep_going (ecs);
4748 return;
4749 }
4750
4751 /* Re-fetch current thread's frame in case the code above caused
4752 the frame cache to be re-initialized, making our FRAME variable
4753 a dangling pointer. */
4754 frame = get_current_frame ();
4755 gdbarch = get_frame_arch (frame);
4756 fill_in_stop_func (gdbarch, ecs);
4757
4758 /* If stepping through a line, keep going if still within it.
4759
4760 Note that step_range_end is the address of the first instruction
4761 beyond the step range, and NOT the address of the last instruction
4762 within it!
4763
4764 Note also that during reverse execution, we may be stepping
4765 through a function epilogue and therefore must detect when
4766 the current-frame changes in the middle of a line. */
4767
4768 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4769 && (execution_direction != EXEC_REVERSE
4770 || frame_id_eq (get_frame_id (frame),
4771 ecs->event_thread->control.step_frame_id)))
4772 {
4773 if (debug_infrun)
4774 fprintf_unfiltered
4775 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4776 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4777 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4778
4779 /* Tentatively re-enable range stepping; `resume' disables it if
4780 necessary (e.g., if we're stepping over a breakpoint or we
4781 have software watchpoints). */
4782 ecs->event_thread->control.may_range_step = 1;
4783
4784 /* When stepping backward, stop at beginning of line range
4785 (unless it's the function entry point, in which case
4786 keep going back to the call point). */
4787 if (stop_pc == ecs->event_thread->control.step_range_start
4788 && stop_pc != ecs->stop_func_start
4789 && execution_direction == EXEC_REVERSE)
4790 {
4791 ecs->event_thread->control.stop_step = 1;
4792 print_end_stepping_range_reason ();
4793 stop_stepping (ecs);
4794 }
4795 else
4796 keep_going (ecs);
4797
4798 return;
4799 }
4800
4801 /* We stepped out of the stepping range. */
4802
4803 /* If we are stepping at the source level and entered the runtime
4804 loader dynamic symbol resolution code...
4805
4806 EXEC_FORWARD: we keep on single stepping until we exit the run
4807 time loader code and reach the callee's address.
4808
4809 EXEC_REVERSE: we've already executed the callee (backward), and
4810 the runtime loader code is handled just like any other
4811 undebuggable function call. Now we need only keep stepping
4812 backward through the trampoline code, and that's handled further
4813 down, so there is nothing for us to do here. */
4814
4815 if (execution_direction != EXEC_REVERSE
4816 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4817 && in_solib_dynsym_resolve_code (stop_pc))
4818 {
4819 CORE_ADDR pc_after_resolver =
4820 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4821
4822 if (debug_infrun)
4823 fprintf_unfiltered (gdb_stdlog,
4824 "infrun: stepped into dynsym resolve code\n");
4825
4826 if (pc_after_resolver)
4827 {
4828 /* Set up a step-resume breakpoint at the address
4829 indicated by SKIP_SOLIB_RESOLVER. */
4830 struct symtab_and_line sr_sal;
4831
4832 init_sal (&sr_sal);
4833 sr_sal.pc = pc_after_resolver;
4834 sr_sal.pspace = get_frame_program_space (frame);
4835
4836 insert_step_resume_breakpoint_at_sal (gdbarch,
4837 sr_sal, null_frame_id);
4838 }
4839
4840 keep_going (ecs);
4841 return;
4842 }
4843
4844 if (ecs->event_thread->control.step_range_end != 1
4845 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4846 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4847 && get_frame_type (frame) == SIGTRAMP_FRAME)
4848 {
4849 if (debug_infrun)
4850 fprintf_unfiltered (gdb_stdlog,
4851 "infrun: stepped into signal trampoline\n");
4852 /* The inferior, while doing a "step" or "next", has ended up in
4853 a signal trampoline (either by a signal being delivered or by
4854 the signal handler returning). Just single-step until the
4855 inferior leaves the trampoline (either by calling the handler
4856 or returning). */
4857 keep_going (ecs);
4858 return;
4859 }
4860
4861 /* If we're in the return path from a shared library trampoline,
4862 we want to proceed through the trampoline when stepping. */
4863 /* macro/2012-04-25: This needs to come before the subroutine
4864 call check below as on some targets return trampolines look
4865 like subroutine calls (MIPS16 return thunks). */
4866 if (gdbarch_in_solib_return_trampoline (gdbarch,
4867 stop_pc, ecs->stop_func_name)
4868 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4869 {
4870 /* Determine where this trampoline returns. */
4871 CORE_ADDR real_stop_pc;
4872
4873 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4874
4875 if (debug_infrun)
4876 fprintf_unfiltered (gdb_stdlog,
4877 "infrun: stepped into solib return tramp\n");
4878
4879 /* Only proceed through if we know where it's going. */
4880 if (real_stop_pc)
4881 {
4882 /* And put the step-breakpoint there and go until there. */
4883 struct symtab_and_line sr_sal;
4884
4885 init_sal (&sr_sal); /* initialize to zeroes */
4886 sr_sal.pc = real_stop_pc;
4887 sr_sal.section = find_pc_overlay (sr_sal.pc);
4888 sr_sal.pspace = get_frame_program_space (frame);
4889
4890 /* Do not specify what the fp should be when we stop since
4891 on some machines the prologue is where the new fp value
4892 is established. */
4893 insert_step_resume_breakpoint_at_sal (gdbarch,
4894 sr_sal, null_frame_id);
4895
4896 /* Restart without fiddling with the step ranges or
4897 other state. */
4898 keep_going (ecs);
4899 return;
4900 }
4901 }
4902
4903 /* Check for subroutine calls. The check for the current frame
4904 equalling the step ID is not necessary - the check of the
4905 previous frame's ID is sufficient - but it is a common case and
4906 cheaper than checking the previous frame's ID.
4907
4908 NOTE: frame_id_eq will never report two invalid frame IDs as
4909 being equal, so to get into this block, both the current and
4910 previous frame must have valid frame IDs. */
4911 /* The outer_frame_id check is a heuristic to detect stepping
4912 through startup code. If we step over an instruction which
4913 sets the stack pointer from an invalid value to a valid value,
4914 we may detect that as a subroutine call from the mythical
4915 "outermost" function. This could be fixed by marking
4916 outermost frames as !stack_p,code_p,special_p. Then the
4917 initial outermost frame, before sp was valid, would
4918 have code_addr == &_start. See the comment in frame_id_eq
4919 for more. */
4920 if (!frame_id_eq (get_stack_frame_id (frame),
4921 ecs->event_thread->control.step_stack_frame_id)
4922 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4923 ecs->event_thread->control.step_stack_frame_id)
4924 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4925 outer_frame_id)
4926 || step_start_function != find_pc_function (stop_pc))))
4927 {
4928 CORE_ADDR real_stop_pc;
4929
4930 if (debug_infrun)
4931 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4932
4933 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4934 || ((ecs->event_thread->control.step_range_end == 1)
4935 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4936 ecs->stop_func_start)))
4937 {
4938 /* I presume that step_over_calls is only 0 when we're
4939 supposed to be stepping at the assembly language level
4940 ("stepi"). Just stop. */
4941 /* Also, maybe we just did a "nexti" inside a prolog, so we
4942 thought it was a subroutine call but it was not. Stop as
4943 well. FENN */
4944 /* And this works the same backward as frontward. MVS */
4945 ecs->event_thread->control.stop_step = 1;
4946 print_end_stepping_range_reason ();
4947 stop_stepping (ecs);
4948 return;
4949 }
4950
4951 /* Reverse stepping through solib trampolines. */
4952
4953 if (execution_direction == EXEC_REVERSE
4954 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4955 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4956 || (ecs->stop_func_start == 0
4957 && in_solib_dynsym_resolve_code (stop_pc))))
4958 {
4959 /* Any solib trampoline code can be handled in reverse
4960 by simply continuing to single-step. We have already
4961 executed the solib function (backwards), and a few
4962 steps will take us back through the trampoline to the
4963 caller. */
4964 keep_going (ecs);
4965 return;
4966 }
4967
4968 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4969 {
4970 /* We're doing a "next".
4971
4972 Normal (forward) execution: set a breakpoint at the
4973 callee's return address (the address at which the caller
4974 will resume).
4975
4976 Reverse (backward) execution. set the step-resume
4977 breakpoint at the start of the function that we just
4978 stepped into (backwards), and continue to there. When we
4979 get there, we'll need to single-step back to the caller. */
4980
4981 if (execution_direction == EXEC_REVERSE)
4982 {
4983 /* If we're already at the start of the function, we've either
4984 just stepped backward into a single instruction function,
4985 or stepped back out of a signal handler to the first instruction
4986 of the function. Just keep going, which will single-step back
4987 to the caller. */
4988 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
4989 {
4990 struct symtab_and_line sr_sal;
4991
4992 /* Normal function call return (static or dynamic). */
4993 init_sal (&sr_sal);
4994 sr_sal.pc = ecs->stop_func_start;
4995 sr_sal.pspace = get_frame_program_space (frame);
4996 insert_step_resume_breakpoint_at_sal (gdbarch,
4997 sr_sal, null_frame_id);
4998 }
4999 }
5000 else
5001 insert_step_resume_breakpoint_at_caller (frame);
5002
5003 keep_going (ecs);
5004 return;
5005 }
5006
5007 /* If we are in a function call trampoline (a stub between the
5008 calling routine and the real function), locate the real
5009 function. That's what tells us (a) whether we want to step
5010 into it at all, and (b) what prologue we want to run to the
5011 end of, if we do step into it. */
5012 real_stop_pc = skip_language_trampoline (frame, stop_pc);
5013 if (real_stop_pc == 0)
5014 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5015 if (real_stop_pc != 0)
5016 ecs->stop_func_start = real_stop_pc;
5017
5018 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
5019 {
5020 struct symtab_and_line sr_sal;
5021
5022 init_sal (&sr_sal);
5023 sr_sal.pc = ecs->stop_func_start;
5024 sr_sal.pspace = get_frame_program_space (frame);
5025
5026 insert_step_resume_breakpoint_at_sal (gdbarch,
5027 sr_sal, null_frame_id);
5028 keep_going (ecs);
5029 return;
5030 }
5031
5032 /* If we have line number information for the function we are
5033 thinking of stepping into and the function isn't on the skip
5034 list, step into it.
5035
5036 If there are several symtabs at that PC (e.g. with include
5037 files), just want to know whether *any* of them have line
5038 numbers. find_pc_line handles this. */
5039 {
5040 struct symtab_and_line tmp_sal;
5041
5042 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
5043 if (tmp_sal.line != 0
5044 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5045 &tmp_sal))
5046 {
5047 if (execution_direction == EXEC_REVERSE)
5048 handle_step_into_function_backward (gdbarch, ecs);
5049 else
5050 handle_step_into_function (gdbarch, ecs);
5051 return;
5052 }
5053 }
5054
5055 /* If we have no line number and the step-stop-if-no-debug is
5056 set, we stop the step so that the user has a chance to switch
5057 in assembly mode. */
5058 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5059 && step_stop_if_no_debug)
5060 {
5061 ecs->event_thread->control.stop_step = 1;
5062 print_end_stepping_range_reason ();
5063 stop_stepping (ecs);
5064 return;
5065 }
5066
5067 if (execution_direction == EXEC_REVERSE)
5068 {
5069 /* If we're already at the start of the function, we've either just
5070 stepped backward into a single instruction function without line
5071 number info, or stepped back out of a signal handler to the first
5072 instruction of the function without line number info. Just keep
5073 going, which will single-step back to the caller. */
5074 if (ecs->stop_func_start != stop_pc)
5075 {
5076 /* Set a breakpoint at callee's start address.
5077 From there we can step once and be back in the caller. */
5078 struct symtab_and_line sr_sal;
5079
5080 init_sal (&sr_sal);
5081 sr_sal.pc = ecs->stop_func_start;
5082 sr_sal.pspace = get_frame_program_space (frame);
5083 insert_step_resume_breakpoint_at_sal (gdbarch,
5084 sr_sal, null_frame_id);
5085 }
5086 }
5087 else
5088 /* Set a breakpoint at callee's return address (the address
5089 at which the caller will resume). */
5090 insert_step_resume_breakpoint_at_caller (frame);
5091
5092 keep_going (ecs);
5093 return;
5094 }
5095
5096 /* Reverse stepping through solib trampolines. */
5097
5098 if (execution_direction == EXEC_REVERSE
5099 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5100 {
5101 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5102 || (ecs->stop_func_start == 0
5103 && in_solib_dynsym_resolve_code (stop_pc)))
5104 {
5105 /* Any solib trampoline code can be handled in reverse
5106 by simply continuing to single-step. We have already
5107 executed the solib function (backwards), and a few
5108 steps will take us back through the trampoline to the
5109 caller. */
5110 keep_going (ecs);
5111 return;
5112 }
5113 else if (in_solib_dynsym_resolve_code (stop_pc))
5114 {
5115 /* Stepped backward into the solib dynsym resolver.
5116 Set a breakpoint at its start and continue, then
5117 one more step will take us out. */
5118 struct symtab_and_line sr_sal;
5119
5120 init_sal (&sr_sal);
5121 sr_sal.pc = ecs->stop_func_start;
5122 sr_sal.pspace = get_frame_program_space (frame);
5123 insert_step_resume_breakpoint_at_sal (gdbarch,
5124 sr_sal, null_frame_id);
5125 keep_going (ecs);
5126 return;
5127 }
5128 }
5129
5130 stop_pc_sal = find_pc_line (stop_pc, 0);
5131
5132 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5133 the trampoline processing logic, however, there are some trampolines
5134 that have no names, so we should do trampoline handling first. */
5135 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5136 && ecs->stop_func_name == NULL
5137 && stop_pc_sal.line == 0)
5138 {
5139 if (debug_infrun)
5140 fprintf_unfiltered (gdb_stdlog,
5141 "infrun: stepped into undebuggable function\n");
5142
5143 /* The inferior just stepped into, or returned to, an
5144 undebuggable function (where there is no debugging information
5145 and no line number corresponding to the address where the
5146 inferior stopped). Since we want to skip this kind of code,
5147 we keep going until the inferior returns from this
5148 function - unless the user has asked us not to (via
5149 set step-mode) or we no longer know how to get back
5150 to the call site. */
5151 if (step_stop_if_no_debug
5152 || !frame_id_p (frame_unwind_caller_id (frame)))
5153 {
5154 /* If we have no line number and the step-stop-if-no-debug
5155 is set, we stop the step so that the user has a chance to
5156 switch in assembly mode. */
5157 ecs->event_thread->control.stop_step = 1;
5158 print_end_stepping_range_reason ();
5159 stop_stepping (ecs);
5160 return;
5161 }
5162 else
5163 {
5164 /* Set a breakpoint at callee's return address (the address
5165 at which the caller will resume). */
5166 insert_step_resume_breakpoint_at_caller (frame);
5167 keep_going (ecs);
5168 return;
5169 }
5170 }
5171
5172 if (ecs->event_thread->control.step_range_end == 1)
5173 {
5174 /* It is stepi or nexti. We always want to stop stepping after
5175 one instruction. */
5176 if (debug_infrun)
5177 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5178 ecs->event_thread->control.stop_step = 1;
5179 print_end_stepping_range_reason ();
5180 stop_stepping (ecs);
5181 return;
5182 }
5183
5184 if (stop_pc_sal.line == 0)
5185 {
5186 /* We have no line number information. That means to stop
5187 stepping (does this always happen right after one instruction,
5188 when we do "s" in a function with no line numbers,
5189 or can this happen as a result of a return or longjmp?). */
5190 if (debug_infrun)
5191 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5192 ecs->event_thread->control.stop_step = 1;
5193 print_end_stepping_range_reason ();
5194 stop_stepping (ecs);
5195 return;
5196 }
5197
5198 /* Look for "calls" to inlined functions, part one. If the inline
5199 frame machinery detected some skipped call sites, we have entered
5200 a new inline function. */
5201
5202 if (frame_id_eq (get_frame_id (get_current_frame ()),
5203 ecs->event_thread->control.step_frame_id)
5204 && inline_skipped_frames (ecs->ptid))
5205 {
5206 struct symtab_and_line call_sal;
5207
5208 if (debug_infrun)
5209 fprintf_unfiltered (gdb_stdlog,
5210 "infrun: stepped into inlined function\n");
5211
5212 find_frame_sal (get_current_frame (), &call_sal);
5213
5214 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5215 {
5216 /* For "step", we're going to stop. But if the call site
5217 for this inlined function is on the same source line as
5218 we were previously stepping, go down into the function
5219 first. Otherwise stop at the call site. */
5220
5221 if (call_sal.line == ecs->event_thread->current_line
5222 && call_sal.symtab == ecs->event_thread->current_symtab)
5223 step_into_inline_frame (ecs->ptid);
5224
5225 ecs->event_thread->control.stop_step = 1;
5226 print_end_stepping_range_reason ();
5227 stop_stepping (ecs);
5228 return;
5229 }
5230 else
5231 {
5232 /* For "next", we should stop at the call site if it is on a
5233 different source line. Otherwise continue through the
5234 inlined function. */
5235 if (call_sal.line == ecs->event_thread->current_line
5236 && call_sal.symtab == ecs->event_thread->current_symtab)
5237 keep_going (ecs);
5238 else
5239 {
5240 ecs->event_thread->control.stop_step = 1;
5241 print_end_stepping_range_reason ();
5242 stop_stepping (ecs);
5243 }
5244 return;
5245 }
5246 }
5247
5248 /* Look for "calls" to inlined functions, part two. If we are still
5249 in the same real function we were stepping through, but we have
5250 to go further up to find the exact frame ID, we are stepping
5251 through a more inlined call beyond its call site. */
5252
5253 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5254 && !frame_id_eq (get_frame_id (get_current_frame ()),
5255 ecs->event_thread->control.step_frame_id)
5256 && stepped_in_from (get_current_frame (),
5257 ecs->event_thread->control.step_frame_id))
5258 {
5259 if (debug_infrun)
5260 fprintf_unfiltered (gdb_stdlog,
5261 "infrun: stepping through inlined function\n");
5262
5263 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5264 keep_going (ecs);
5265 else
5266 {
5267 ecs->event_thread->control.stop_step = 1;
5268 print_end_stepping_range_reason ();
5269 stop_stepping (ecs);
5270 }
5271 return;
5272 }
5273
5274 if ((stop_pc == stop_pc_sal.pc)
5275 && (ecs->event_thread->current_line != stop_pc_sal.line
5276 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5277 {
5278 /* We are at the start of a different line. So stop. Note that
5279 we don't stop if we step into the middle of a different line.
5280 That is said to make things like for (;;) statements work
5281 better. */
5282 if (debug_infrun)
5283 fprintf_unfiltered (gdb_stdlog,
5284 "infrun: stepped to a different line\n");
5285 ecs->event_thread->control.stop_step = 1;
5286 print_end_stepping_range_reason ();
5287 stop_stepping (ecs);
5288 return;
5289 }
5290
5291 /* We aren't done stepping.
5292
5293 Optimize by setting the stepping range to the line.
5294 (We might not be in the original line, but if we entered a
5295 new line in mid-statement, we continue stepping. This makes
5296 things like for(;;) statements work better.) */
5297
5298 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5299 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5300 ecs->event_thread->control.may_range_step = 1;
5301 set_step_info (frame, stop_pc_sal);
5302
5303 if (debug_infrun)
5304 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5305 keep_going (ecs);
5306 }
5307
5308 /* Is thread TP in the middle of single-stepping? */
5309
5310 static int
5311 currently_stepping (struct thread_info *tp)
5312 {
5313 return ((tp->control.step_range_end
5314 && tp->control.step_resume_breakpoint == NULL)
5315 || tp->control.trap_expected
5316 || bpstat_should_step ());
5317 }
5318
5319 /* Returns true if any thread *but* the one passed in "data" is in the
5320 middle of stepping or of handling a "next". */
5321
5322 static int
5323 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5324 {
5325 if (tp == data)
5326 return 0;
5327
5328 return (tp->control.step_range_end
5329 || tp->control.trap_expected);
5330 }
5331
5332 /* Inferior has stepped into a subroutine call with source code that
5333 we should not step over. Do step to the first line of code in
5334 it. */
5335
5336 static void
5337 handle_step_into_function (struct gdbarch *gdbarch,
5338 struct execution_control_state *ecs)
5339 {
5340 struct symtab *s;
5341 struct symtab_and_line stop_func_sal, sr_sal;
5342
5343 fill_in_stop_func (gdbarch, ecs);
5344
5345 s = find_pc_symtab (stop_pc);
5346 if (s && s->language != language_asm)
5347 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5348 ecs->stop_func_start);
5349
5350 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5351 /* Use the step_resume_break to step until the end of the prologue,
5352 even if that involves jumps (as it seems to on the vax under
5353 4.2). */
5354 /* If the prologue ends in the middle of a source line, continue to
5355 the end of that source line (if it is still within the function).
5356 Otherwise, just go to end of prologue. */
5357 if (stop_func_sal.end
5358 && stop_func_sal.pc != ecs->stop_func_start
5359 && stop_func_sal.end < ecs->stop_func_end)
5360 ecs->stop_func_start = stop_func_sal.end;
5361
5362 /* Architectures which require breakpoint adjustment might not be able
5363 to place a breakpoint at the computed address. If so, the test
5364 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5365 ecs->stop_func_start to an address at which a breakpoint may be
5366 legitimately placed.
5367
5368 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5369 made, GDB will enter an infinite loop when stepping through
5370 optimized code consisting of VLIW instructions which contain
5371 subinstructions corresponding to different source lines. On
5372 FR-V, it's not permitted to place a breakpoint on any but the
5373 first subinstruction of a VLIW instruction. When a breakpoint is
5374 set, GDB will adjust the breakpoint address to the beginning of
5375 the VLIW instruction. Thus, we need to make the corresponding
5376 adjustment here when computing the stop address. */
5377
5378 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5379 {
5380 ecs->stop_func_start
5381 = gdbarch_adjust_breakpoint_address (gdbarch,
5382 ecs->stop_func_start);
5383 }
5384
5385 if (ecs->stop_func_start == stop_pc)
5386 {
5387 /* We are already there: stop now. */
5388 ecs->event_thread->control.stop_step = 1;
5389 print_end_stepping_range_reason ();
5390 stop_stepping (ecs);
5391 return;
5392 }
5393 else
5394 {
5395 /* Put the step-breakpoint there and go until there. */
5396 init_sal (&sr_sal); /* initialize to zeroes */
5397 sr_sal.pc = ecs->stop_func_start;
5398 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5399 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5400
5401 /* Do not specify what the fp should be when we stop since on
5402 some machines the prologue is where the new fp value is
5403 established. */
5404 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5405
5406 /* And make sure stepping stops right away then. */
5407 ecs->event_thread->control.step_range_end
5408 = ecs->event_thread->control.step_range_start;
5409 }
5410 keep_going (ecs);
5411 }
5412
5413 /* Inferior has stepped backward into a subroutine call with source
5414 code that we should not step over. Do step to the beginning of the
5415 last line of code in it. */
5416
5417 static void
5418 handle_step_into_function_backward (struct gdbarch *gdbarch,
5419 struct execution_control_state *ecs)
5420 {
5421 struct symtab *s;
5422 struct symtab_and_line stop_func_sal;
5423
5424 fill_in_stop_func (gdbarch, ecs);
5425
5426 s = find_pc_symtab (stop_pc);
5427 if (s && s->language != language_asm)
5428 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5429 ecs->stop_func_start);
5430
5431 stop_func_sal = find_pc_line (stop_pc, 0);
5432
5433 /* OK, we're just going to keep stepping here. */
5434 if (stop_func_sal.pc == stop_pc)
5435 {
5436 /* We're there already. Just stop stepping now. */
5437 ecs->event_thread->control.stop_step = 1;
5438 print_end_stepping_range_reason ();
5439 stop_stepping (ecs);
5440 }
5441 else
5442 {
5443 /* Else just reset the step range and keep going.
5444 No step-resume breakpoint, they don't work for
5445 epilogues, which can have multiple entry paths. */
5446 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5447 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5448 keep_going (ecs);
5449 }
5450 return;
5451 }
5452
5453 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5454 This is used to both functions and to skip over code. */
5455
5456 static void
5457 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5458 struct symtab_and_line sr_sal,
5459 struct frame_id sr_id,
5460 enum bptype sr_type)
5461 {
5462 /* There should never be more than one step-resume or longjmp-resume
5463 breakpoint per thread, so we should never be setting a new
5464 step_resume_breakpoint when one is already active. */
5465 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5466 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5467
5468 if (debug_infrun)
5469 fprintf_unfiltered (gdb_stdlog,
5470 "infrun: inserting step-resume breakpoint at %s\n",
5471 paddress (gdbarch, sr_sal.pc));
5472
5473 inferior_thread ()->control.step_resume_breakpoint
5474 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5475 }
5476
5477 void
5478 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5479 struct symtab_and_line sr_sal,
5480 struct frame_id sr_id)
5481 {
5482 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5483 sr_sal, sr_id,
5484 bp_step_resume);
5485 }
5486
5487 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5488 This is used to skip a potential signal handler.
5489
5490 This is called with the interrupted function's frame. The signal
5491 handler, when it returns, will resume the interrupted function at
5492 RETURN_FRAME.pc. */
5493
5494 static void
5495 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5496 {
5497 struct symtab_and_line sr_sal;
5498 struct gdbarch *gdbarch;
5499
5500 gdb_assert (return_frame != NULL);
5501 init_sal (&sr_sal); /* initialize to zeros */
5502
5503 gdbarch = get_frame_arch (return_frame);
5504 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5505 sr_sal.section = find_pc_overlay (sr_sal.pc);
5506 sr_sal.pspace = get_frame_program_space (return_frame);
5507
5508 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5509 get_stack_frame_id (return_frame),
5510 bp_hp_step_resume);
5511 }
5512
5513 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5514 is used to skip a function after stepping into it (for "next" or if
5515 the called function has no debugging information).
5516
5517 The current function has almost always been reached by single
5518 stepping a call or return instruction. NEXT_FRAME belongs to the
5519 current function, and the breakpoint will be set at the caller's
5520 resume address.
5521
5522 This is a separate function rather than reusing
5523 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5524 get_prev_frame, which may stop prematurely (see the implementation
5525 of frame_unwind_caller_id for an example). */
5526
5527 static void
5528 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5529 {
5530 struct symtab_and_line sr_sal;
5531 struct gdbarch *gdbarch;
5532
5533 /* We shouldn't have gotten here if we don't know where the call site
5534 is. */
5535 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5536
5537 init_sal (&sr_sal); /* initialize to zeros */
5538
5539 gdbarch = frame_unwind_caller_arch (next_frame);
5540 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5541 frame_unwind_caller_pc (next_frame));
5542 sr_sal.section = find_pc_overlay (sr_sal.pc);
5543 sr_sal.pspace = frame_unwind_program_space (next_frame);
5544
5545 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5546 frame_unwind_caller_id (next_frame));
5547 }
5548
5549 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5550 new breakpoint at the target of a jmp_buf. The handling of
5551 longjmp-resume uses the same mechanisms used for handling
5552 "step-resume" breakpoints. */
5553
5554 static void
5555 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5556 {
5557 /* There should never be more than one longjmp-resume breakpoint per
5558 thread, so we should never be setting a new
5559 longjmp_resume_breakpoint when one is already active. */
5560 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5561
5562 if (debug_infrun)
5563 fprintf_unfiltered (gdb_stdlog,
5564 "infrun: inserting longjmp-resume breakpoint at %s\n",
5565 paddress (gdbarch, pc));
5566
5567 inferior_thread ()->control.exception_resume_breakpoint =
5568 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5569 }
5570
5571 /* Insert an exception resume breakpoint. TP is the thread throwing
5572 the exception. The block B is the block of the unwinder debug hook
5573 function. FRAME is the frame corresponding to the call to this
5574 function. SYM is the symbol of the function argument holding the
5575 target PC of the exception. */
5576
5577 static void
5578 insert_exception_resume_breakpoint (struct thread_info *tp,
5579 struct block *b,
5580 struct frame_info *frame,
5581 struct symbol *sym)
5582 {
5583 volatile struct gdb_exception e;
5584
5585 /* We want to ignore errors here. */
5586 TRY_CATCH (e, RETURN_MASK_ERROR)
5587 {
5588 struct symbol *vsym;
5589 struct value *value;
5590 CORE_ADDR handler;
5591 struct breakpoint *bp;
5592
5593 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5594 value = read_var_value (vsym, frame);
5595 /* If the value was optimized out, revert to the old behavior. */
5596 if (! value_optimized_out (value))
5597 {
5598 handler = value_as_address (value);
5599
5600 if (debug_infrun)
5601 fprintf_unfiltered (gdb_stdlog,
5602 "infrun: exception resume at %lx\n",
5603 (unsigned long) handler);
5604
5605 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5606 handler, bp_exception_resume);
5607
5608 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5609 frame = NULL;
5610
5611 bp->thread = tp->num;
5612 inferior_thread ()->control.exception_resume_breakpoint = bp;
5613 }
5614 }
5615 }
5616
5617 /* A helper for check_exception_resume that sets an
5618 exception-breakpoint based on a SystemTap probe. */
5619
5620 static void
5621 insert_exception_resume_from_probe (struct thread_info *tp,
5622 const struct probe *probe,
5623 struct frame_info *frame)
5624 {
5625 struct value *arg_value;
5626 CORE_ADDR handler;
5627 struct breakpoint *bp;
5628
5629 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5630 if (!arg_value)
5631 return;
5632
5633 handler = value_as_address (arg_value);
5634
5635 if (debug_infrun)
5636 fprintf_unfiltered (gdb_stdlog,
5637 "infrun: exception resume at %s\n",
5638 paddress (get_objfile_arch (probe->objfile),
5639 handler));
5640
5641 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5642 handler, bp_exception_resume);
5643 bp->thread = tp->num;
5644 inferior_thread ()->control.exception_resume_breakpoint = bp;
5645 }
5646
5647 /* This is called when an exception has been intercepted. Check to
5648 see whether the exception's destination is of interest, and if so,
5649 set an exception resume breakpoint there. */
5650
5651 static void
5652 check_exception_resume (struct execution_control_state *ecs,
5653 struct frame_info *frame)
5654 {
5655 volatile struct gdb_exception e;
5656 const struct probe *probe;
5657 struct symbol *func;
5658
5659 /* First see if this exception unwinding breakpoint was set via a
5660 SystemTap probe point. If so, the probe has two arguments: the
5661 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5662 set a breakpoint there. */
5663 probe = find_probe_by_pc (get_frame_pc (frame));
5664 if (probe)
5665 {
5666 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
5667 return;
5668 }
5669
5670 func = get_frame_function (frame);
5671 if (!func)
5672 return;
5673
5674 TRY_CATCH (e, RETURN_MASK_ERROR)
5675 {
5676 struct block *b;
5677 struct block_iterator iter;
5678 struct symbol *sym;
5679 int argno = 0;
5680
5681 /* The exception breakpoint is a thread-specific breakpoint on
5682 the unwinder's debug hook, declared as:
5683
5684 void _Unwind_DebugHook (void *cfa, void *handler);
5685
5686 The CFA argument indicates the frame to which control is
5687 about to be transferred. HANDLER is the destination PC.
5688
5689 We ignore the CFA and set a temporary breakpoint at HANDLER.
5690 This is not extremely efficient but it avoids issues in gdb
5691 with computing the DWARF CFA, and it also works even in weird
5692 cases such as throwing an exception from inside a signal
5693 handler. */
5694
5695 b = SYMBOL_BLOCK_VALUE (func);
5696 ALL_BLOCK_SYMBOLS (b, iter, sym)
5697 {
5698 if (!SYMBOL_IS_ARGUMENT (sym))
5699 continue;
5700
5701 if (argno == 0)
5702 ++argno;
5703 else
5704 {
5705 insert_exception_resume_breakpoint (ecs->event_thread,
5706 b, frame, sym);
5707 break;
5708 }
5709 }
5710 }
5711 }
5712
5713 static void
5714 stop_stepping (struct execution_control_state *ecs)
5715 {
5716 if (debug_infrun)
5717 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5718
5719 /* Let callers know we don't want to wait for the inferior anymore. */
5720 ecs->wait_some_more = 0;
5721 }
5722
5723 /* Called when we should continue running the inferior, because the
5724 current event doesn't cause a user visible stop. This does the
5725 resuming part; waiting for the next event is done elsewhere. */
5726
5727 static void
5728 keep_going (struct execution_control_state *ecs)
5729 {
5730 /* Make sure normal_stop is called if we get a QUIT handled before
5731 reaching resume. */
5732 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5733
5734 /* Save the pc before execution, to compare with pc after stop. */
5735 ecs->event_thread->prev_pc
5736 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5737
5738 if (ecs->event_thread->control.trap_expected
5739 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5740 {
5741 /* We haven't yet gotten our trap, and either: intercepted a
5742 non-signal event (e.g., a fork); or took a signal which we
5743 are supposed to pass through to the inferior. Simply
5744 continue. */
5745 discard_cleanups (old_cleanups);
5746 resume (currently_stepping (ecs->event_thread),
5747 ecs->event_thread->suspend.stop_signal);
5748 }
5749 else
5750 {
5751 /* Either the trap was not expected, but we are continuing
5752 anyway (if we got a signal, the user asked it be passed to
5753 the child)
5754 -- or --
5755 We got our expected trap, but decided we should resume from
5756 it.
5757
5758 We're going to run this baby now!
5759
5760 Note that insert_breakpoints won't try to re-insert
5761 already inserted breakpoints. Therefore, we don't
5762 care if breakpoints were already inserted, or not. */
5763
5764 if (ecs->event_thread->stepping_over_breakpoint)
5765 {
5766 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5767
5768 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5769 {
5770 /* Since we can't do a displaced step, we have to remove
5771 the breakpoint while we step it. To keep things
5772 simple, we remove them all. */
5773 remove_breakpoints ();
5774 }
5775 }
5776 else
5777 {
5778 volatile struct gdb_exception e;
5779
5780 /* Stop stepping if inserting breakpoints fails. */
5781 TRY_CATCH (e, RETURN_MASK_ERROR)
5782 {
5783 insert_breakpoints ();
5784 }
5785 if (e.reason < 0)
5786 {
5787 exception_print (gdb_stderr, e);
5788 stop_stepping (ecs);
5789 return;
5790 }
5791 }
5792
5793 ecs->event_thread->control.trap_expected
5794 = ecs->event_thread->stepping_over_breakpoint;
5795
5796 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5797 explicitly specifies that such a signal should be delivered
5798 to the target program). Typically, that would occur when a
5799 user is debugging a target monitor on a simulator: the target
5800 monitor sets a breakpoint; the simulator encounters this
5801 breakpoint and halts the simulation handing control to GDB;
5802 GDB, noting that the stop address doesn't map to any known
5803 breakpoint, returns control back to the simulator; the
5804 simulator then delivers the hardware equivalent of a
5805 GDB_SIGNAL_TRAP to the program being debugged. */
5806 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5807 && !signal_program[ecs->event_thread->suspend.stop_signal])
5808 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5809
5810 discard_cleanups (old_cleanups);
5811 resume (currently_stepping (ecs->event_thread),
5812 ecs->event_thread->suspend.stop_signal);
5813 }
5814
5815 prepare_to_wait (ecs);
5816 }
5817
5818 /* This function normally comes after a resume, before
5819 handle_inferior_event exits. It takes care of any last bits of
5820 housekeeping, and sets the all-important wait_some_more flag. */
5821
5822 static void
5823 prepare_to_wait (struct execution_control_state *ecs)
5824 {
5825 if (debug_infrun)
5826 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5827
5828 /* This is the old end of the while loop. Let everybody know we
5829 want to wait for the inferior some more and get called again
5830 soon. */
5831 ecs->wait_some_more = 1;
5832 }
5833
5834 /* Several print_*_reason functions to print why the inferior has stopped.
5835 We always print something when the inferior exits, or receives a signal.
5836 The rest of the cases are dealt with later on in normal_stop and
5837 print_it_typical. Ideally there should be a call to one of these
5838 print_*_reason functions functions from handle_inferior_event each time
5839 stop_stepping is called. */
5840
5841 /* Print why the inferior has stopped.
5842 We are done with a step/next/si/ni command, print why the inferior has
5843 stopped. For now print nothing. Print a message only if not in the middle
5844 of doing a "step n" operation for n > 1. */
5845
5846 static void
5847 print_end_stepping_range_reason (void)
5848 {
5849 if ((!inferior_thread ()->step_multi
5850 || !inferior_thread ()->control.stop_step)
5851 && ui_out_is_mi_like_p (current_uiout))
5852 ui_out_field_string (current_uiout, "reason",
5853 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5854 }
5855
5856 /* The inferior was terminated by a signal, print why it stopped. */
5857
5858 static void
5859 print_signal_exited_reason (enum gdb_signal siggnal)
5860 {
5861 struct ui_out *uiout = current_uiout;
5862
5863 annotate_signalled ();
5864 if (ui_out_is_mi_like_p (uiout))
5865 ui_out_field_string
5866 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5867 ui_out_text (uiout, "\nProgram terminated with signal ");
5868 annotate_signal_name ();
5869 ui_out_field_string (uiout, "signal-name",
5870 gdb_signal_to_name (siggnal));
5871 annotate_signal_name_end ();
5872 ui_out_text (uiout, ", ");
5873 annotate_signal_string ();
5874 ui_out_field_string (uiout, "signal-meaning",
5875 gdb_signal_to_string (siggnal));
5876 annotate_signal_string_end ();
5877 ui_out_text (uiout, ".\n");
5878 ui_out_text (uiout, "The program no longer exists.\n");
5879 }
5880
5881 /* The inferior program is finished, print why it stopped. */
5882
5883 static void
5884 print_exited_reason (int exitstatus)
5885 {
5886 struct inferior *inf = current_inferior ();
5887 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5888 struct ui_out *uiout = current_uiout;
5889
5890 annotate_exited (exitstatus);
5891 if (exitstatus)
5892 {
5893 if (ui_out_is_mi_like_p (uiout))
5894 ui_out_field_string (uiout, "reason",
5895 async_reason_lookup (EXEC_ASYNC_EXITED));
5896 ui_out_text (uiout, "[Inferior ");
5897 ui_out_text (uiout, plongest (inf->num));
5898 ui_out_text (uiout, " (");
5899 ui_out_text (uiout, pidstr);
5900 ui_out_text (uiout, ") exited with code ");
5901 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5902 ui_out_text (uiout, "]\n");
5903 }
5904 else
5905 {
5906 if (ui_out_is_mi_like_p (uiout))
5907 ui_out_field_string
5908 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5909 ui_out_text (uiout, "[Inferior ");
5910 ui_out_text (uiout, plongest (inf->num));
5911 ui_out_text (uiout, " (");
5912 ui_out_text (uiout, pidstr);
5913 ui_out_text (uiout, ") exited normally]\n");
5914 }
5915 /* Support the --return-child-result option. */
5916 return_child_result_value = exitstatus;
5917 }
5918
5919 /* Signal received, print why the inferior has stopped. The signal table
5920 tells us to print about it. */
5921
5922 static void
5923 print_signal_received_reason (enum gdb_signal siggnal)
5924 {
5925 struct ui_out *uiout = current_uiout;
5926
5927 annotate_signal ();
5928
5929 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5930 {
5931 struct thread_info *t = inferior_thread ();
5932
5933 ui_out_text (uiout, "\n[");
5934 ui_out_field_string (uiout, "thread-name",
5935 target_pid_to_str (t->ptid));
5936 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5937 ui_out_text (uiout, " stopped");
5938 }
5939 else
5940 {
5941 ui_out_text (uiout, "\nProgram received signal ");
5942 annotate_signal_name ();
5943 if (ui_out_is_mi_like_p (uiout))
5944 ui_out_field_string
5945 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5946 ui_out_field_string (uiout, "signal-name",
5947 gdb_signal_to_name (siggnal));
5948 annotate_signal_name_end ();
5949 ui_out_text (uiout, ", ");
5950 annotate_signal_string ();
5951 ui_out_field_string (uiout, "signal-meaning",
5952 gdb_signal_to_string (siggnal));
5953 annotate_signal_string_end ();
5954 }
5955 ui_out_text (uiout, ".\n");
5956 }
5957
5958 /* Reverse execution: target ran out of history info, print why the inferior
5959 has stopped. */
5960
5961 static void
5962 print_no_history_reason (void)
5963 {
5964 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5965 }
5966
5967 /* Here to return control to GDB when the inferior stops for real.
5968 Print appropriate messages, remove breakpoints, give terminal our modes.
5969
5970 STOP_PRINT_FRAME nonzero means print the executing frame
5971 (pc, function, args, file, line number and line text).
5972 BREAKPOINTS_FAILED nonzero means stop was due to error
5973 attempting to insert breakpoints. */
5974
5975 void
5976 normal_stop (void)
5977 {
5978 struct target_waitstatus last;
5979 ptid_t last_ptid;
5980 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5981
5982 get_last_target_status (&last_ptid, &last);
5983
5984 /* If an exception is thrown from this point on, make sure to
5985 propagate GDB's knowledge of the executing state to the
5986 frontend/user running state. A QUIT is an easy exception to see
5987 here, so do this before any filtered output. */
5988 if (!non_stop)
5989 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5990 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5991 && last.kind != TARGET_WAITKIND_EXITED
5992 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5993 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5994
5995 /* In non-stop mode, we don't want GDB to switch threads behind the
5996 user's back, to avoid races where the user is typing a command to
5997 apply to thread x, but GDB switches to thread y before the user
5998 finishes entering the command. */
5999
6000 /* As with the notification of thread events, we want to delay
6001 notifying the user that we've switched thread context until
6002 the inferior actually stops.
6003
6004 There's no point in saying anything if the inferior has exited.
6005 Note that SIGNALLED here means "exited with a signal", not
6006 "received a signal". */
6007 if (!non_stop
6008 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
6009 && target_has_execution
6010 && last.kind != TARGET_WAITKIND_SIGNALLED
6011 && last.kind != TARGET_WAITKIND_EXITED
6012 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6013 {
6014 target_terminal_ours_for_output ();
6015 printf_filtered (_("[Switching to %s]\n"),
6016 target_pid_to_str (inferior_ptid));
6017 annotate_thread_changed ();
6018 previous_inferior_ptid = inferior_ptid;
6019 }
6020
6021 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6022 {
6023 gdb_assert (sync_execution || !target_can_async_p ());
6024
6025 target_terminal_ours_for_output ();
6026 printf_filtered (_("No unwaited-for children left.\n"));
6027 }
6028
6029 if (!breakpoints_always_inserted_mode () && target_has_execution)
6030 {
6031 if (remove_breakpoints ())
6032 {
6033 target_terminal_ours_for_output ();
6034 printf_filtered (_("Cannot remove breakpoints because "
6035 "program is no longer writable.\nFurther "
6036 "execution is probably impossible.\n"));
6037 }
6038 }
6039
6040 /* If an auto-display called a function and that got a signal,
6041 delete that auto-display to avoid an infinite recursion. */
6042
6043 if (stopped_by_random_signal)
6044 disable_current_display ();
6045
6046 /* Don't print a message if in the middle of doing a "step n"
6047 operation for n > 1 */
6048 if (target_has_execution
6049 && last.kind != TARGET_WAITKIND_SIGNALLED
6050 && last.kind != TARGET_WAITKIND_EXITED
6051 && inferior_thread ()->step_multi
6052 && inferior_thread ()->control.stop_step)
6053 goto done;
6054
6055 target_terminal_ours ();
6056 async_enable_stdin ();
6057
6058 /* Set the current source location. This will also happen if we
6059 display the frame below, but the current SAL will be incorrect
6060 during a user hook-stop function. */
6061 if (has_stack_frames () && !stop_stack_dummy)
6062 set_current_sal_from_frame (get_current_frame (), 1);
6063
6064 /* Let the user/frontend see the threads as stopped. */
6065 do_cleanups (old_chain);
6066
6067 /* Look up the hook_stop and run it (CLI internally handles problem
6068 of stop_command's pre-hook not existing). */
6069 if (stop_command)
6070 catch_errors (hook_stop_stub, stop_command,
6071 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6072
6073 if (!has_stack_frames ())
6074 goto done;
6075
6076 if (last.kind == TARGET_WAITKIND_SIGNALLED
6077 || last.kind == TARGET_WAITKIND_EXITED)
6078 goto done;
6079
6080 /* Select innermost stack frame - i.e., current frame is frame 0,
6081 and current location is based on that.
6082 Don't do this on return from a stack dummy routine,
6083 or if the program has exited. */
6084
6085 if (!stop_stack_dummy)
6086 {
6087 select_frame (get_current_frame ());
6088
6089 /* Print current location without a level number, if
6090 we have changed functions or hit a breakpoint.
6091 Print source line if we have one.
6092 bpstat_print() contains the logic deciding in detail
6093 what to print, based on the event(s) that just occurred. */
6094
6095 /* If --batch-silent is enabled then there's no need to print the current
6096 source location, and to try risks causing an error message about
6097 missing source files. */
6098 if (stop_print_frame && !batch_silent)
6099 {
6100 int bpstat_ret;
6101 int source_flag;
6102 int do_frame_printing = 1;
6103 struct thread_info *tp = inferior_thread ();
6104
6105 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6106 switch (bpstat_ret)
6107 {
6108 case PRINT_UNKNOWN:
6109 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6110 (or should) carry around the function and does (or
6111 should) use that when doing a frame comparison. */
6112 if (tp->control.stop_step
6113 && frame_id_eq (tp->control.step_frame_id,
6114 get_frame_id (get_current_frame ()))
6115 && step_start_function == find_pc_function (stop_pc))
6116 source_flag = SRC_LINE; /* Finished step, just
6117 print source line. */
6118 else
6119 source_flag = SRC_AND_LOC; /* Print location and
6120 source line. */
6121 break;
6122 case PRINT_SRC_AND_LOC:
6123 source_flag = SRC_AND_LOC; /* Print location and
6124 source line. */
6125 break;
6126 case PRINT_SRC_ONLY:
6127 source_flag = SRC_LINE;
6128 break;
6129 case PRINT_NOTHING:
6130 source_flag = SRC_LINE; /* something bogus */
6131 do_frame_printing = 0;
6132 break;
6133 default:
6134 internal_error (__FILE__, __LINE__, _("Unknown value."));
6135 }
6136
6137 /* The behavior of this routine with respect to the source
6138 flag is:
6139 SRC_LINE: Print only source line
6140 LOCATION: Print only location
6141 SRC_AND_LOC: Print location and source line. */
6142 if (do_frame_printing)
6143 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6144
6145 /* Display the auto-display expressions. */
6146 do_displays ();
6147 }
6148 }
6149
6150 /* Save the function value return registers, if we care.
6151 We might be about to restore their previous contents. */
6152 if (inferior_thread ()->control.proceed_to_finish
6153 && execution_direction != EXEC_REVERSE)
6154 {
6155 /* This should not be necessary. */
6156 if (stop_registers)
6157 regcache_xfree (stop_registers);
6158
6159 /* NB: The copy goes through to the target picking up the value of
6160 all the registers. */
6161 stop_registers = regcache_dup (get_current_regcache ());
6162 }
6163
6164 if (stop_stack_dummy == STOP_STACK_DUMMY)
6165 {
6166 /* Pop the empty frame that contains the stack dummy.
6167 This also restores inferior state prior to the call
6168 (struct infcall_suspend_state). */
6169 struct frame_info *frame = get_current_frame ();
6170
6171 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6172 frame_pop (frame);
6173 /* frame_pop() calls reinit_frame_cache as the last thing it
6174 does which means there's currently no selected frame. We
6175 don't need to re-establish a selected frame if the dummy call
6176 returns normally, that will be done by
6177 restore_infcall_control_state. However, we do have to handle
6178 the case where the dummy call is returning after being
6179 stopped (e.g. the dummy call previously hit a breakpoint).
6180 We can't know which case we have so just always re-establish
6181 a selected frame here. */
6182 select_frame (get_current_frame ());
6183 }
6184
6185 done:
6186 annotate_stopped ();
6187
6188 /* Suppress the stop observer if we're in the middle of:
6189
6190 - a step n (n > 1), as there still more steps to be done.
6191
6192 - a "finish" command, as the observer will be called in
6193 finish_command_continuation, so it can include the inferior
6194 function's return value.
6195
6196 - calling an inferior function, as we pretend we inferior didn't
6197 run at all. The return value of the call is handled by the
6198 expression evaluator, through call_function_by_hand. */
6199
6200 if (!target_has_execution
6201 || last.kind == TARGET_WAITKIND_SIGNALLED
6202 || last.kind == TARGET_WAITKIND_EXITED
6203 || last.kind == TARGET_WAITKIND_NO_RESUMED
6204 || (!(inferior_thread ()->step_multi
6205 && inferior_thread ()->control.stop_step)
6206 && !(inferior_thread ()->control.stop_bpstat
6207 && inferior_thread ()->control.proceed_to_finish)
6208 && !inferior_thread ()->control.in_infcall))
6209 {
6210 if (!ptid_equal (inferior_ptid, null_ptid))
6211 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6212 stop_print_frame);
6213 else
6214 observer_notify_normal_stop (NULL, stop_print_frame);
6215 }
6216
6217 if (target_has_execution)
6218 {
6219 if (last.kind != TARGET_WAITKIND_SIGNALLED
6220 && last.kind != TARGET_WAITKIND_EXITED)
6221 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6222 Delete any breakpoint that is to be deleted at the next stop. */
6223 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6224 }
6225
6226 /* Try to get rid of automatically added inferiors that are no
6227 longer needed. Keeping those around slows down things linearly.
6228 Note that this never removes the current inferior. */
6229 prune_inferiors ();
6230 }
6231
6232 static int
6233 hook_stop_stub (void *cmd)
6234 {
6235 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6236 return (0);
6237 }
6238 \f
6239 int
6240 signal_stop_state (int signo)
6241 {
6242 return signal_stop[signo];
6243 }
6244
6245 int
6246 signal_print_state (int signo)
6247 {
6248 return signal_print[signo];
6249 }
6250
6251 int
6252 signal_pass_state (int signo)
6253 {
6254 return signal_program[signo];
6255 }
6256
6257 static void
6258 signal_cache_update (int signo)
6259 {
6260 if (signo == -1)
6261 {
6262 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6263 signal_cache_update (signo);
6264
6265 return;
6266 }
6267
6268 signal_pass[signo] = (signal_stop[signo] == 0
6269 && signal_print[signo] == 0
6270 && signal_program[signo] == 1
6271 && signal_catch[signo] == 0);
6272 }
6273
6274 int
6275 signal_stop_update (int signo, int state)
6276 {
6277 int ret = signal_stop[signo];
6278
6279 signal_stop[signo] = state;
6280 signal_cache_update (signo);
6281 return ret;
6282 }
6283
6284 int
6285 signal_print_update (int signo, int state)
6286 {
6287 int ret = signal_print[signo];
6288
6289 signal_print[signo] = state;
6290 signal_cache_update (signo);
6291 return ret;
6292 }
6293
6294 int
6295 signal_pass_update (int signo, int state)
6296 {
6297 int ret = signal_program[signo];
6298
6299 signal_program[signo] = state;
6300 signal_cache_update (signo);
6301 return ret;
6302 }
6303
6304 /* Update the global 'signal_catch' from INFO and notify the
6305 target. */
6306
6307 void
6308 signal_catch_update (const unsigned int *info)
6309 {
6310 int i;
6311
6312 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6313 signal_catch[i] = info[i] > 0;
6314 signal_cache_update (-1);
6315 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6316 }
6317
6318 static void
6319 sig_print_header (void)
6320 {
6321 printf_filtered (_("Signal Stop\tPrint\tPass "
6322 "to program\tDescription\n"));
6323 }
6324
6325 static void
6326 sig_print_info (enum gdb_signal oursig)
6327 {
6328 const char *name = gdb_signal_to_name (oursig);
6329 int name_padding = 13 - strlen (name);
6330
6331 if (name_padding <= 0)
6332 name_padding = 0;
6333
6334 printf_filtered ("%s", name);
6335 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6336 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6337 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6338 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6339 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6340 }
6341
6342 /* Specify how various signals in the inferior should be handled. */
6343
6344 static void
6345 handle_command (char *args, int from_tty)
6346 {
6347 char **argv;
6348 int digits, wordlen;
6349 int sigfirst, signum, siglast;
6350 enum gdb_signal oursig;
6351 int allsigs;
6352 int nsigs;
6353 unsigned char *sigs;
6354 struct cleanup *old_chain;
6355
6356 if (args == NULL)
6357 {
6358 error_no_arg (_("signal to handle"));
6359 }
6360
6361 /* Allocate and zero an array of flags for which signals to handle. */
6362
6363 nsigs = (int) GDB_SIGNAL_LAST;
6364 sigs = (unsigned char *) alloca (nsigs);
6365 memset (sigs, 0, nsigs);
6366
6367 /* Break the command line up into args. */
6368
6369 argv = gdb_buildargv (args);
6370 old_chain = make_cleanup_freeargv (argv);
6371
6372 /* Walk through the args, looking for signal oursigs, signal names, and
6373 actions. Signal numbers and signal names may be interspersed with
6374 actions, with the actions being performed for all signals cumulatively
6375 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6376
6377 while (*argv != NULL)
6378 {
6379 wordlen = strlen (*argv);
6380 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6381 {;
6382 }
6383 allsigs = 0;
6384 sigfirst = siglast = -1;
6385
6386 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6387 {
6388 /* Apply action to all signals except those used by the
6389 debugger. Silently skip those. */
6390 allsigs = 1;
6391 sigfirst = 0;
6392 siglast = nsigs - 1;
6393 }
6394 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6395 {
6396 SET_SIGS (nsigs, sigs, signal_stop);
6397 SET_SIGS (nsigs, sigs, signal_print);
6398 }
6399 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6400 {
6401 UNSET_SIGS (nsigs, sigs, signal_program);
6402 }
6403 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6404 {
6405 SET_SIGS (nsigs, sigs, signal_print);
6406 }
6407 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6408 {
6409 SET_SIGS (nsigs, sigs, signal_program);
6410 }
6411 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6412 {
6413 UNSET_SIGS (nsigs, sigs, signal_stop);
6414 }
6415 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6416 {
6417 SET_SIGS (nsigs, sigs, signal_program);
6418 }
6419 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6420 {
6421 UNSET_SIGS (nsigs, sigs, signal_print);
6422 UNSET_SIGS (nsigs, sigs, signal_stop);
6423 }
6424 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6425 {
6426 UNSET_SIGS (nsigs, sigs, signal_program);
6427 }
6428 else if (digits > 0)
6429 {
6430 /* It is numeric. The numeric signal refers to our own
6431 internal signal numbering from target.h, not to host/target
6432 signal number. This is a feature; users really should be
6433 using symbolic names anyway, and the common ones like
6434 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6435
6436 sigfirst = siglast = (int)
6437 gdb_signal_from_command (atoi (*argv));
6438 if ((*argv)[digits] == '-')
6439 {
6440 siglast = (int)
6441 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6442 }
6443 if (sigfirst > siglast)
6444 {
6445 /* Bet he didn't figure we'd think of this case... */
6446 signum = sigfirst;
6447 sigfirst = siglast;
6448 siglast = signum;
6449 }
6450 }
6451 else
6452 {
6453 oursig = gdb_signal_from_name (*argv);
6454 if (oursig != GDB_SIGNAL_UNKNOWN)
6455 {
6456 sigfirst = siglast = (int) oursig;
6457 }
6458 else
6459 {
6460 /* Not a number and not a recognized flag word => complain. */
6461 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6462 }
6463 }
6464
6465 /* If any signal numbers or symbol names were found, set flags for
6466 which signals to apply actions to. */
6467
6468 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6469 {
6470 switch ((enum gdb_signal) signum)
6471 {
6472 case GDB_SIGNAL_TRAP:
6473 case GDB_SIGNAL_INT:
6474 if (!allsigs && !sigs[signum])
6475 {
6476 if (query (_("%s is used by the debugger.\n\
6477 Are you sure you want to change it? "),
6478 gdb_signal_to_name ((enum gdb_signal) signum)))
6479 {
6480 sigs[signum] = 1;
6481 }
6482 else
6483 {
6484 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6485 gdb_flush (gdb_stdout);
6486 }
6487 }
6488 break;
6489 case GDB_SIGNAL_0:
6490 case GDB_SIGNAL_DEFAULT:
6491 case GDB_SIGNAL_UNKNOWN:
6492 /* Make sure that "all" doesn't print these. */
6493 break;
6494 default:
6495 sigs[signum] = 1;
6496 break;
6497 }
6498 }
6499
6500 argv++;
6501 }
6502
6503 for (signum = 0; signum < nsigs; signum++)
6504 if (sigs[signum])
6505 {
6506 signal_cache_update (-1);
6507 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6508 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6509
6510 if (from_tty)
6511 {
6512 /* Show the results. */
6513 sig_print_header ();
6514 for (; signum < nsigs; signum++)
6515 if (sigs[signum])
6516 sig_print_info (signum);
6517 }
6518
6519 break;
6520 }
6521
6522 do_cleanups (old_chain);
6523 }
6524
6525 /* Complete the "handle" command. */
6526
6527 static VEC (char_ptr) *
6528 handle_completer (struct cmd_list_element *ignore,
6529 const char *text, const char *word)
6530 {
6531 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6532 static const char * const keywords[] =
6533 {
6534 "all",
6535 "stop",
6536 "ignore",
6537 "print",
6538 "pass",
6539 "nostop",
6540 "noignore",
6541 "noprint",
6542 "nopass",
6543 NULL,
6544 };
6545
6546 vec_signals = signal_completer (ignore, text, word);
6547 vec_keywords = complete_on_enum (keywords, word, word);
6548
6549 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6550 VEC_free (char_ptr, vec_signals);
6551 VEC_free (char_ptr, vec_keywords);
6552 return return_val;
6553 }
6554
6555 static void
6556 xdb_handle_command (char *args, int from_tty)
6557 {
6558 char **argv;
6559 struct cleanup *old_chain;
6560
6561 if (args == NULL)
6562 error_no_arg (_("xdb command"));
6563
6564 /* Break the command line up into args. */
6565
6566 argv = gdb_buildargv (args);
6567 old_chain = make_cleanup_freeargv (argv);
6568 if (argv[1] != (char *) NULL)
6569 {
6570 char *argBuf;
6571 int bufLen;
6572
6573 bufLen = strlen (argv[0]) + 20;
6574 argBuf = (char *) xmalloc (bufLen);
6575 if (argBuf)
6576 {
6577 int validFlag = 1;
6578 enum gdb_signal oursig;
6579
6580 oursig = gdb_signal_from_name (argv[0]);
6581 memset (argBuf, 0, bufLen);
6582 if (strcmp (argv[1], "Q") == 0)
6583 sprintf (argBuf, "%s %s", argv[0], "noprint");
6584 else
6585 {
6586 if (strcmp (argv[1], "s") == 0)
6587 {
6588 if (!signal_stop[oursig])
6589 sprintf (argBuf, "%s %s", argv[0], "stop");
6590 else
6591 sprintf (argBuf, "%s %s", argv[0], "nostop");
6592 }
6593 else if (strcmp (argv[1], "i") == 0)
6594 {
6595 if (!signal_program[oursig])
6596 sprintf (argBuf, "%s %s", argv[0], "pass");
6597 else
6598 sprintf (argBuf, "%s %s", argv[0], "nopass");
6599 }
6600 else if (strcmp (argv[1], "r") == 0)
6601 {
6602 if (!signal_print[oursig])
6603 sprintf (argBuf, "%s %s", argv[0], "print");
6604 else
6605 sprintf (argBuf, "%s %s", argv[0], "noprint");
6606 }
6607 else
6608 validFlag = 0;
6609 }
6610 if (validFlag)
6611 handle_command (argBuf, from_tty);
6612 else
6613 printf_filtered (_("Invalid signal handling flag.\n"));
6614 if (argBuf)
6615 xfree (argBuf);
6616 }
6617 }
6618 do_cleanups (old_chain);
6619 }
6620
6621 enum gdb_signal
6622 gdb_signal_from_command (int num)
6623 {
6624 if (num >= 1 && num <= 15)
6625 return (enum gdb_signal) num;
6626 error (_("Only signals 1-15 are valid as numeric signals.\n\
6627 Use \"info signals\" for a list of symbolic signals."));
6628 }
6629
6630 /* Print current contents of the tables set by the handle command.
6631 It is possible we should just be printing signals actually used
6632 by the current target (but for things to work right when switching
6633 targets, all signals should be in the signal tables). */
6634
6635 static void
6636 signals_info (char *signum_exp, int from_tty)
6637 {
6638 enum gdb_signal oursig;
6639
6640 sig_print_header ();
6641
6642 if (signum_exp)
6643 {
6644 /* First see if this is a symbol name. */
6645 oursig = gdb_signal_from_name (signum_exp);
6646 if (oursig == GDB_SIGNAL_UNKNOWN)
6647 {
6648 /* No, try numeric. */
6649 oursig =
6650 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6651 }
6652 sig_print_info (oursig);
6653 return;
6654 }
6655
6656 printf_filtered ("\n");
6657 /* These ugly casts brought to you by the native VAX compiler. */
6658 for (oursig = GDB_SIGNAL_FIRST;
6659 (int) oursig < (int) GDB_SIGNAL_LAST;
6660 oursig = (enum gdb_signal) ((int) oursig + 1))
6661 {
6662 QUIT;
6663
6664 if (oursig != GDB_SIGNAL_UNKNOWN
6665 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6666 sig_print_info (oursig);
6667 }
6668
6669 printf_filtered (_("\nUse the \"handle\" command "
6670 "to change these tables.\n"));
6671 }
6672
6673 /* Check if it makes sense to read $_siginfo from the current thread
6674 at this point. If not, throw an error. */
6675
6676 static void
6677 validate_siginfo_access (void)
6678 {
6679 /* No current inferior, no siginfo. */
6680 if (ptid_equal (inferior_ptid, null_ptid))
6681 error (_("No thread selected."));
6682
6683 /* Don't try to read from a dead thread. */
6684 if (is_exited (inferior_ptid))
6685 error (_("The current thread has terminated"));
6686
6687 /* ... or from a spinning thread. */
6688 if (is_running (inferior_ptid))
6689 error (_("Selected thread is running."));
6690 }
6691
6692 /* The $_siginfo convenience variable is a bit special. We don't know
6693 for sure the type of the value until we actually have a chance to
6694 fetch the data. The type can change depending on gdbarch, so it is
6695 also dependent on which thread you have selected.
6696
6697 1. making $_siginfo be an internalvar that creates a new value on
6698 access.
6699
6700 2. making the value of $_siginfo be an lval_computed value. */
6701
6702 /* This function implements the lval_computed support for reading a
6703 $_siginfo value. */
6704
6705 static void
6706 siginfo_value_read (struct value *v)
6707 {
6708 LONGEST transferred;
6709
6710 validate_siginfo_access ();
6711
6712 transferred =
6713 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6714 NULL,
6715 value_contents_all_raw (v),
6716 value_offset (v),
6717 TYPE_LENGTH (value_type (v)));
6718
6719 if (transferred != TYPE_LENGTH (value_type (v)))
6720 error (_("Unable to read siginfo"));
6721 }
6722
6723 /* This function implements the lval_computed support for writing a
6724 $_siginfo value. */
6725
6726 static void
6727 siginfo_value_write (struct value *v, struct value *fromval)
6728 {
6729 LONGEST transferred;
6730
6731 validate_siginfo_access ();
6732
6733 transferred = target_write (&current_target,
6734 TARGET_OBJECT_SIGNAL_INFO,
6735 NULL,
6736 value_contents_all_raw (fromval),
6737 value_offset (v),
6738 TYPE_LENGTH (value_type (fromval)));
6739
6740 if (transferred != TYPE_LENGTH (value_type (fromval)))
6741 error (_("Unable to write siginfo"));
6742 }
6743
6744 static const struct lval_funcs siginfo_value_funcs =
6745 {
6746 siginfo_value_read,
6747 siginfo_value_write
6748 };
6749
6750 /* Return a new value with the correct type for the siginfo object of
6751 the current thread using architecture GDBARCH. Return a void value
6752 if there's no object available. */
6753
6754 static struct value *
6755 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6756 void *ignore)
6757 {
6758 if (target_has_stack
6759 && !ptid_equal (inferior_ptid, null_ptid)
6760 && gdbarch_get_siginfo_type_p (gdbarch))
6761 {
6762 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6763
6764 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6765 }
6766
6767 return allocate_value (builtin_type (gdbarch)->builtin_void);
6768 }
6769
6770 \f
6771 /* infcall_suspend_state contains state about the program itself like its
6772 registers and any signal it received when it last stopped.
6773 This state must be restored regardless of how the inferior function call
6774 ends (either successfully, or after it hits a breakpoint or signal)
6775 if the program is to properly continue where it left off. */
6776
6777 struct infcall_suspend_state
6778 {
6779 struct thread_suspend_state thread_suspend;
6780 #if 0 /* Currently unused and empty structures are not valid C. */
6781 struct inferior_suspend_state inferior_suspend;
6782 #endif
6783
6784 /* Other fields: */
6785 CORE_ADDR stop_pc;
6786 struct regcache *registers;
6787
6788 /* Format of SIGINFO_DATA or NULL if it is not present. */
6789 struct gdbarch *siginfo_gdbarch;
6790
6791 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6792 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6793 content would be invalid. */
6794 gdb_byte *siginfo_data;
6795 };
6796
6797 struct infcall_suspend_state *
6798 save_infcall_suspend_state (void)
6799 {
6800 struct infcall_suspend_state *inf_state;
6801 struct thread_info *tp = inferior_thread ();
6802 #if 0
6803 struct inferior *inf = current_inferior ();
6804 #endif
6805 struct regcache *regcache = get_current_regcache ();
6806 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6807 gdb_byte *siginfo_data = NULL;
6808
6809 if (gdbarch_get_siginfo_type_p (gdbarch))
6810 {
6811 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6812 size_t len = TYPE_LENGTH (type);
6813 struct cleanup *back_to;
6814
6815 siginfo_data = xmalloc (len);
6816 back_to = make_cleanup (xfree, siginfo_data);
6817
6818 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6819 siginfo_data, 0, len) == len)
6820 discard_cleanups (back_to);
6821 else
6822 {
6823 /* Errors ignored. */
6824 do_cleanups (back_to);
6825 siginfo_data = NULL;
6826 }
6827 }
6828
6829 inf_state = XZALLOC (struct infcall_suspend_state);
6830
6831 if (siginfo_data)
6832 {
6833 inf_state->siginfo_gdbarch = gdbarch;
6834 inf_state->siginfo_data = siginfo_data;
6835 }
6836
6837 inf_state->thread_suspend = tp->suspend;
6838 #if 0 /* Currently unused and empty structures are not valid C. */
6839 inf_state->inferior_suspend = inf->suspend;
6840 #endif
6841
6842 /* run_inferior_call will not use the signal due to its `proceed' call with
6843 GDB_SIGNAL_0 anyway. */
6844 tp->suspend.stop_signal = GDB_SIGNAL_0;
6845
6846 inf_state->stop_pc = stop_pc;
6847
6848 inf_state->registers = regcache_dup (regcache);
6849
6850 return inf_state;
6851 }
6852
6853 /* Restore inferior session state to INF_STATE. */
6854
6855 void
6856 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6857 {
6858 struct thread_info *tp = inferior_thread ();
6859 #if 0
6860 struct inferior *inf = current_inferior ();
6861 #endif
6862 struct regcache *regcache = get_current_regcache ();
6863 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6864
6865 tp->suspend = inf_state->thread_suspend;
6866 #if 0 /* Currently unused and empty structures are not valid C. */
6867 inf->suspend = inf_state->inferior_suspend;
6868 #endif
6869
6870 stop_pc = inf_state->stop_pc;
6871
6872 if (inf_state->siginfo_gdbarch == gdbarch)
6873 {
6874 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6875
6876 /* Errors ignored. */
6877 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6878 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
6879 }
6880
6881 /* The inferior can be gone if the user types "print exit(0)"
6882 (and perhaps other times). */
6883 if (target_has_execution)
6884 /* NB: The register write goes through to the target. */
6885 regcache_cpy (regcache, inf_state->registers);
6886
6887 discard_infcall_suspend_state (inf_state);
6888 }
6889
6890 static void
6891 do_restore_infcall_suspend_state_cleanup (void *state)
6892 {
6893 restore_infcall_suspend_state (state);
6894 }
6895
6896 struct cleanup *
6897 make_cleanup_restore_infcall_suspend_state
6898 (struct infcall_suspend_state *inf_state)
6899 {
6900 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6901 }
6902
6903 void
6904 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6905 {
6906 regcache_xfree (inf_state->registers);
6907 xfree (inf_state->siginfo_data);
6908 xfree (inf_state);
6909 }
6910
6911 struct regcache *
6912 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6913 {
6914 return inf_state->registers;
6915 }
6916
6917 /* infcall_control_state contains state regarding gdb's control of the
6918 inferior itself like stepping control. It also contains session state like
6919 the user's currently selected frame. */
6920
6921 struct infcall_control_state
6922 {
6923 struct thread_control_state thread_control;
6924 struct inferior_control_state inferior_control;
6925
6926 /* Other fields: */
6927 enum stop_stack_kind stop_stack_dummy;
6928 int stopped_by_random_signal;
6929 int stop_after_trap;
6930
6931 /* ID if the selected frame when the inferior function call was made. */
6932 struct frame_id selected_frame_id;
6933 };
6934
6935 /* Save all of the information associated with the inferior<==>gdb
6936 connection. */
6937
6938 struct infcall_control_state *
6939 save_infcall_control_state (void)
6940 {
6941 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6942 struct thread_info *tp = inferior_thread ();
6943 struct inferior *inf = current_inferior ();
6944
6945 inf_status->thread_control = tp->control;
6946 inf_status->inferior_control = inf->control;
6947
6948 tp->control.step_resume_breakpoint = NULL;
6949 tp->control.exception_resume_breakpoint = NULL;
6950
6951 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6952 chain. If caller's caller is walking the chain, they'll be happier if we
6953 hand them back the original chain when restore_infcall_control_state is
6954 called. */
6955 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6956
6957 /* Other fields: */
6958 inf_status->stop_stack_dummy = stop_stack_dummy;
6959 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6960 inf_status->stop_after_trap = stop_after_trap;
6961
6962 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6963
6964 return inf_status;
6965 }
6966
6967 static int
6968 restore_selected_frame (void *args)
6969 {
6970 struct frame_id *fid = (struct frame_id *) args;
6971 struct frame_info *frame;
6972
6973 frame = frame_find_by_id (*fid);
6974
6975 /* If inf_status->selected_frame_id is NULL, there was no previously
6976 selected frame. */
6977 if (frame == NULL)
6978 {
6979 warning (_("Unable to restore previously selected frame."));
6980 return 0;
6981 }
6982
6983 select_frame (frame);
6984
6985 return (1);
6986 }
6987
6988 /* Restore inferior session state to INF_STATUS. */
6989
6990 void
6991 restore_infcall_control_state (struct infcall_control_state *inf_status)
6992 {
6993 struct thread_info *tp = inferior_thread ();
6994 struct inferior *inf = current_inferior ();
6995
6996 if (tp->control.step_resume_breakpoint)
6997 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6998
6999 if (tp->control.exception_resume_breakpoint)
7000 tp->control.exception_resume_breakpoint->disposition
7001 = disp_del_at_next_stop;
7002
7003 /* Handle the bpstat_copy of the chain. */
7004 bpstat_clear (&tp->control.stop_bpstat);
7005
7006 tp->control = inf_status->thread_control;
7007 inf->control = inf_status->inferior_control;
7008
7009 /* Other fields: */
7010 stop_stack_dummy = inf_status->stop_stack_dummy;
7011 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7012 stop_after_trap = inf_status->stop_after_trap;
7013
7014 if (target_has_stack)
7015 {
7016 /* The point of catch_errors is that if the stack is clobbered,
7017 walking the stack might encounter a garbage pointer and
7018 error() trying to dereference it. */
7019 if (catch_errors
7020 (restore_selected_frame, &inf_status->selected_frame_id,
7021 "Unable to restore previously selected frame:\n",
7022 RETURN_MASK_ERROR) == 0)
7023 /* Error in restoring the selected frame. Select the innermost
7024 frame. */
7025 select_frame (get_current_frame ());
7026 }
7027
7028 xfree (inf_status);
7029 }
7030
7031 static void
7032 do_restore_infcall_control_state_cleanup (void *sts)
7033 {
7034 restore_infcall_control_state (sts);
7035 }
7036
7037 struct cleanup *
7038 make_cleanup_restore_infcall_control_state
7039 (struct infcall_control_state *inf_status)
7040 {
7041 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7042 }
7043
7044 void
7045 discard_infcall_control_state (struct infcall_control_state *inf_status)
7046 {
7047 if (inf_status->thread_control.step_resume_breakpoint)
7048 inf_status->thread_control.step_resume_breakpoint->disposition
7049 = disp_del_at_next_stop;
7050
7051 if (inf_status->thread_control.exception_resume_breakpoint)
7052 inf_status->thread_control.exception_resume_breakpoint->disposition
7053 = disp_del_at_next_stop;
7054
7055 /* See save_infcall_control_state for info on stop_bpstat. */
7056 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7057
7058 xfree (inf_status);
7059 }
7060 \f
7061 int
7062 ptid_match (ptid_t ptid, ptid_t filter)
7063 {
7064 if (ptid_equal (filter, minus_one_ptid))
7065 return 1;
7066 if (ptid_is_pid (filter)
7067 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7068 return 1;
7069 else if (ptid_equal (ptid, filter))
7070 return 1;
7071
7072 return 0;
7073 }
7074
7075 /* restore_inferior_ptid() will be used by the cleanup machinery
7076 to restore the inferior_ptid value saved in a call to
7077 save_inferior_ptid(). */
7078
7079 static void
7080 restore_inferior_ptid (void *arg)
7081 {
7082 ptid_t *saved_ptid_ptr = arg;
7083
7084 inferior_ptid = *saved_ptid_ptr;
7085 xfree (arg);
7086 }
7087
7088 /* Save the value of inferior_ptid so that it may be restored by a
7089 later call to do_cleanups(). Returns the struct cleanup pointer
7090 needed for later doing the cleanup. */
7091
7092 struct cleanup *
7093 save_inferior_ptid (void)
7094 {
7095 ptid_t *saved_ptid_ptr;
7096
7097 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7098 *saved_ptid_ptr = inferior_ptid;
7099 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7100 }
7101
7102 /* See inferior.h. */
7103
7104 void
7105 clear_exit_convenience_vars (void)
7106 {
7107 clear_internalvar (lookup_internalvar ("_exitsignal"));
7108 clear_internalvar (lookup_internalvar ("_exitcode"));
7109 }
7110 \f
7111
7112 /* User interface for reverse debugging:
7113 Set exec-direction / show exec-direction commands
7114 (returns error unless target implements to_set_exec_direction method). */
7115
7116 int execution_direction = EXEC_FORWARD;
7117 static const char exec_forward[] = "forward";
7118 static const char exec_reverse[] = "reverse";
7119 static const char *exec_direction = exec_forward;
7120 static const char *const exec_direction_names[] = {
7121 exec_forward,
7122 exec_reverse,
7123 NULL
7124 };
7125
7126 static void
7127 set_exec_direction_func (char *args, int from_tty,
7128 struct cmd_list_element *cmd)
7129 {
7130 if (target_can_execute_reverse)
7131 {
7132 if (!strcmp (exec_direction, exec_forward))
7133 execution_direction = EXEC_FORWARD;
7134 else if (!strcmp (exec_direction, exec_reverse))
7135 execution_direction = EXEC_REVERSE;
7136 }
7137 else
7138 {
7139 exec_direction = exec_forward;
7140 error (_("Target does not support this operation."));
7141 }
7142 }
7143
7144 static void
7145 show_exec_direction_func (struct ui_file *out, int from_tty,
7146 struct cmd_list_element *cmd, const char *value)
7147 {
7148 switch (execution_direction) {
7149 case EXEC_FORWARD:
7150 fprintf_filtered (out, _("Forward.\n"));
7151 break;
7152 case EXEC_REVERSE:
7153 fprintf_filtered (out, _("Reverse.\n"));
7154 break;
7155 default:
7156 internal_error (__FILE__, __LINE__,
7157 _("bogus execution_direction value: %d"),
7158 (int) execution_direction);
7159 }
7160 }
7161
7162 static void
7163 show_schedule_multiple (struct ui_file *file, int from_tty,
7164 struct cmd_list_element *c, const char *value)
7165 {
7166 fprintf_filtered (file, _("Resuming the execution of threads "
7167 "of all processes is %s.\n"), value);
7168 }
7169
7170 /* Implementation of `siginfo' variable. */
7171
7172 static const struct internalvar_funcs siginfo_funcs =
7173 {
7174 siginfo_make_value,
7175 NULL,
7176 NULL
7177 };
7178
7179 void
7180 _initialize_infrun (void)
7181 {
7182 int i;
7183 int numsigs;
7184 struct cmd_list_element *c;
7185
7186 add_info ("signals", signals_info, _("\
7187 What debugger does when program gets various signals.\n\
7188 Specify a signal as argument to print info on that signal only."));
7189 add_info_alias ("handle", "signals", 0);
7190
7191 c = add_com ("handle", class_run, handle_command, _("\
7192 Specify how to handle signals.\n\
7193 Usage: handle SIGNAL [ACTIONS]\n\
7194 Args are signals and actions to apply to those signals.\n\
7195 If no actions are specified, the current settings for the specified signals\n\
7196 will be displayed instead.\n\
7197 \n\
7198 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7199 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7200 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7201 The special arg \"all\" is recognized to mean all signals except those\n\
7202 used by the debugger, typically SIGTRAP and SIGINT.\n\
7203 \n\
7204 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7205 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7206 Stop means reenter debugger if this signal happens (implies print).\n\
7207 Print means print a message if this signal happens.\n\
7208 Pass means let program see this signal; otherwise program doesn't know.\n\
7209 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7210 Pass and Stop may be combined.\n\
7211 \n\
7212 Multiple signals may be specified. Signal numbers and signal names\n\
7213 may be interspersed with actions, with the actions being performed for\n\
7214 all signals cumulatively specified."));
7215 set_cmd_completer (c, handle_completer);
7216
7217 if (xdb_commands)
7218 {
7219 add_com ("lz", class_info, signals_info, _("\
7220 What debugger does when program gets various signals.\n\
7221 Specify a signal as argument to print info on that signal only."));
7222 add_com ("z", class_run, xdb_handle_command, _("\
7223 Specify how to handle a signal.\n\
7224 Args are signals and actions to apply to those signals.\n\
7225 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7226 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7227 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7228 The special arg \"all\" is recognized to mean all signals except those\n\
7229 used by the debugger, typically SIGTRAP and SIGINT.\n\
7230 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7231 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7232 nopass), \"Q\" (noprint)\n\
7233 Stop means reenter debugger if this signal happens (implies print).\n\
7234 Print means print a message if this signal happens.\n\
7235 Pass means let program see this signal; otherwise program doesn't know.\n\
7236 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7237 Pass and Stop may be combined."));
7238 }
7239
7240 if (!dbx_commands)
7241 stop_command = add_cmd ("stop", class_obscure,
7242 not_just_help_class_command, _("\
7243 There is no `stop' command, but you can set a hook on `stop'.\n\
7244 This allows you to set a list of commands to be run each time execution\n\
7245 of the program stops."), &cmdlist);
7246
7247 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7248 Set inferior debugging."), _("\
7249 Show inferior debugging."), _("\
7250 When non-zero, inferior specific debugging is enabled."),
7251 NULL,
7252 show_debug_infrun,
7253 &setdebuglist, &showdebuglist);
7254
7255 add_setshow_boolean_cmd ("displaced", class_maintenance,
7256 &debug_displaced, _("\
7257 Set displaced stepping debugging."), _("\
7258 Show displaced stepping debugging."), _("\
7259 When non-zero, displaced stepping specific debugging is enabled."),
7260 NULL,
7261 show_debug_displaced,
7262 &setdebuglist, &showdebuglist);
7263
7264 add_setshow_boolean_cmd ("non-stop", no_class,
7265 &non_stop_1, _("\
7266 Set whether gdb controls the inferior in non-stop mode."), _("\
7267 Show whether gdb controls the inferior in non-stop mode."), _("\
7268 When debugging a multi-threaded program and this setting is\n\
7269 off (the default, also called all-stop mode), when one thread stops\n\
7270 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7271 all other threads in the program while you interact with the thread of\n\
7272 interest. When you continue or step a thread, you can allow the other\n\
7273 threads to run, or have them remain stopped, but while you inspect any\n\
7274 thread's state, all threads stop.\n\
7275 \n\
7276 In non-stop mode, when one thread stops, other threads can continue\n\
7277 to run freely. You'll be able to step each thread independently,\n\
7278 leave it stopped or free to run as needed."),
7279 set_non_stop,
7280 show_non_stop,
7281 &setlist,
7282 &showlist);
7283
7284 numsigs = (int) GDB_SIGNAL_LAST;
7285 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7286 signal_print = (unsigned char *)
7287 xmalloc (sizeof (signal_print[0]) * numsigs);
7288 signal_program = (unsigned char *)
7289 xmalloc (sizeof (signal_program[0]) * numsigs);
7290 signal_catch = (unsigned char *)
7291 xmalloc (sizeof (signal_catch[0]) * numsigs);
7292 signal_pass = (unsigned char *)
7293 xmalloc (sizeof (signal_program[0]) * numsigs);
7294 for (i = 0; i < numsigs; i++)
7295 {
7296 signal_stop[i] = 1;
7297 signal_print[i] = 1;
7298 signal_program[i] = 1;
7299 signal_catch[i] = 0;
7300 }
7301
7302 /* Signals caused by debugger's own actions
7303 should not be given to the program afterwards. */
7304 signal_program[GDB_SIGNAL_TRAP] = 0;
7305 signal_program[GDB_SIGNAL_INT] = 0;
7306
7307 /* Signals that are not errors should not normally enter the debugger. */
7308 signal_stop[GDB_SIGNAL_ALRM] = 0;
7309 signal_print[GDB_SIGNAL_ALRM] = 0;
7310 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7311 signal_print[GDB_SIGNAL_VTALRM] = 0;
7312 signal_stop[GDB_SIGNAL_PROF] = 0;
7313 signal_print[GDB_SIGNAL_PROF] = 0;
7314 signal_stop[GDB_SIGNAL_CHLD] = 0;
7315 signal_print[GDB_SIGNAL_CHLD] = 0;
7316 signal_stop[GDB_SIGNAL_IO] = 0;
7317 signal_print[GDB_SIGNAL_IO] = 0;
7318 signal_stop[GDB_SIGNAL_POLL] = 0;
7319 signal_print[GDB_SIGNAL_POLL] = 0;
7320 signal_stop[GDB_SIGNAL_URG] = 0;
7321 signal_print[GDB_SIGNAL_URG] = 0;
7322 signal_stop[GDB_SIGNAL_WINCH] = 0;
7323 signal_print[GDB_SIGNAL_WINCH] = 0;
7324 signal_stop[GDB_SIGNAL_PRIO] = 0;
7325 signal_print[GDB_SIGNAL_PRIO] = 0;
7326
7327 /* These signals are used internally by user-level thread
7328 implementations. (See signal(5) on Solaris.) Like the above
7329 signals, a healthy program receives and handles them as part of
7330 its normal operation. */
7331 signal_stop[GDB_SIGNAL_LWP] = 0;
7332 signal_print[GDB_SIGNAL_LWP] = 0;
7333 signal_stop[GDB_SIGNAL_WAITING] = 0;
7334 signal_print[GDB_SIGNAL_WAITING] = 0;
7335 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7336 signal_print[GDB_SIGNAL_CANCEL] = 0;
7337
7338 /* Update cached state. */
7339 signal_cache_update (-1);
7340
7341 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7342 &stop_on_solib_events, _("\
7343 Set stopping for shared library events."), _("\
7344 Show stopping for shared library events."), _("\
7345 If nonzero, gdb will give control to the user when the dynamic linker\n\
7346 notifies gdb of shared library events. The most common event of interest\n\
7347 to the user would be loading/unloading of a new library."),
7348 set_stop_on_solib_events,
7349 show_stop_on_solib_events,
7350 &setlist, &showlist);
7351
7352 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7353 follow_fork_mode_kind_names,
7354 &follow_fork_mode_string, _("\
7355 Set debugger response to a program call of fork or vfork."), _("\
7356 Show debugger response to a program call of fork or vfork."), _("\
7357 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7358 parent - the original process is debugged after a fork\n\
7359 child - the new process is debugged after a fork\n\
7360 The unfollowed process will continue to run.\n\
7361 By default, the debugger will follow the parent process."),
7362 NULL,
7363 show_follow_fork_mode_string,
7364 &setlist, &showlist);
7365
7366 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7367 follow_exec_mode_names,
7368 &follow_exec_mode_string, _("\
7369 Set debugger response to a program call of exec."), _("\
7370 Show debugger response to a program call of exec."), _("\
7371 An exec call replaces the program image of a process.\n\
7372 \n\
7373 follow-exec-mode can be:\n\
7374 \n\
7375 new - the debugger creates a new inferior and rebinds the process\n\
7376 to this new inferior. The program the process was running before\n\
7377 the exec call can be restarted afterwards by restarting the original\n\
7378 inferior.\n\
7379 \n\
7380 same - the debugger keeps the process bound to the same inferior.\n\
7381 The new executable image replaces the previous executable loaded in\n\
7382 the inferior. Restarting the inferior after the exec call restarts\n\
7383 the executable the process was running after the exec call.\n\
7384 \n\
7385 By default, the debugger will use the same inferior."),
7386 NULL,
7387 show_follow_exec_mode_string,
7388 &setlist, &showlist);
7389
7390 add_setshow_enum_cmd ("scheduler-locking", class_run,
7391 scheduler_enums, &scheduler_mode, _("\
7392 Set mode for locking scheduler during execution."), _("\
7393 Show mode for locking scheduler during execution."), _("\
7394 off == no locking (threads may preempt at any time)\n\
7395 on == full locking (no thread except the current thread may run)\n\
7396 step == scheduler locked during every single-step operation.\n\
7397 In this mode, no other thread may run during a step command.\n\
7398 Other threads may run while stepping over a function call ('next')."),
7399 set_schedlock_func, /* traps on target vector */
7400 show_scheduler_mode,
7401 &setlist, &showlist);
7402
7403 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7404 Set mode for resuming threads of all processes."), _("\
7405 Show mode for resuming threads of all processes."), _("\
7406 When on, execution commands (such as 'continue' or 'next') resume all\n\
7407 threads of all processes. When off (which is the default), execution\n\
7408 commands only resume the threads of the current process. The set of\n\
7409 threads that are resumed is further refined by the scheduler-locking\n\
7410 mode (see help set scheduler-locking)."),
7411 NULL,
7412 show_schedule_multiple,
7413 &setlist, &showlist);
7414
7415 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7416 Set mode of the step operation."), _("\
7417 Show mode of the step operation."), _("\
7418 When set, doing a step over a function without debug line information\n\
7419 will stop at the first instruction of that function. Otherwise, the\n\
7420 function is skipped and the step command stops at a different source line."),
7421 NULL,
7422 show_step_stop_if_no_debug,
7423 &setlist, &showlist);
7424
7425 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7426 &can_use_displaced_stepping, _("\
7427 Set debugger's willingness to use displaced stepping."), _("\
7428 Show debugger's willingness to use displaced stepping."), _("\
7429 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7430 supported by the target architecture. If off, gdb will not use displaced\n\
7431 stepping to step over breakpoints, even if such is supported by the target\n\
7432 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7433 if the target architecture supports it and non-stop mode is active, but will not\n\
7434 use it in all-stop mode (see help set non-stop)."),
7435 NULL,
7436 show_can_use_displaced_stepping,
7437 &setlist, &showlist);
7438
7439 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7440 &exec_direction, _("Set direction of execution.\n\
7441 Options are 'forward' or 'reverse'."),
7442 _("Show direction of execution (forward/reverse)."),
7443 _("Tells gdb whether to execute forward or backward."),
7444 set_exec_direction_func, show_exec_direction_func,
7445 &setlist, &showlist);
7446
7447 /* Set/show detach-on-fork: user-settable mode. */
7448
7449 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7450 Set whether gdb will detach the child of a fork."), _("\
7451 Show whether gdb will detach the child of a fork."), _("\
7452 Tells gdb whether to detach the child of a fork."),
7453 NULL, NULL, &setlist, &showlist);
7454
7455 /* Set/show disable address space randomization mode. */
7456
7457 add_setshow_boolean_cmd ("disable-randomization", class_support,
7458 &disable_randomization, _("\
7459 Set disabling of debuggee's virtual address space randomization."), _("\
7460 Show disabling of debuggee's virtual address space randomization."), _("\
7461 When this mode is on (which is the default), randomization of the virtual\n\
7462 address space is disabled. Standalone programs run with the randomization\n\
7463 enabled by default on some platforms."),
7464 &set_disable_randomization,
7465 &show_disable_randomization,
7466 &setlist, &showlist);
7467
7468 /* ptid initializations */
7469 inferior_ptid = null_ptid;
7470 target_last_wait_ptid = minus_one_ptid;
7471
7472 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7473 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7474 observer_attach_thread_exit (infrun_thread_thread_exit);
7475 observer_attach_inferior_exit (infrun_inferior_exit);
7476
7477 /* Explicitly create without lookup, since that tries to create a
7478 value with a void typed value, and when we get here, gdbarch
7479 isn't initialized yet. At this point, we're quite sure there
7480 isn't another convenience variable of the same name. */
7481 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7482
7483 add_setshow_boolean_cmd ("observer", no_class,
7484 &observer_mode_1, _("\
7485 Set whether gdb controls the inferior in observer mode."), _("\
7486 Show whether gdb controls the inferior in observer mode."), _("\
7487 In observer mode, GDB can get data from the inferior, but not\n\
7488 affect its execution. Registers and memory may not be changed,\n\
7489 breakpoints may not be set, and the program cannot be interrupted\n\
7490 or signalled."),
7491 set_observer_mode,
7492 show_observer_mode,
7493 &setlist,
7494 &showlist);
7495 }