Use RAII to save and restore scalars
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2016 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67
68 /* Prototypes for local functions */
69
70 static void signals_info (char *, int);
71
72 static void handle_command (char *, int);
73
74 static void sig_print_info (enum gdb_signal);
75
76 static void sig_print_header (void);
77
78 static void resume_cleanups (void *);
79
80 static int hook_stop_stub (void *);
81
82 static int restore_selected_frame (void *);
83
84 static int follow_fork (void);
85
86 static int follow_fork_inferior (int follow_child, int detach_fork);
87
88 static void follow_inferior_reset_breakpoints (void);
89
90 static void set_schedlock_func (char *args, int from_tty,
91 struct cmd_list_element *c);
92
93 static int currently_stepping (struct thread_info *tp);
94
95 void _initialize_infrun (void);
96
97 void nullify_last_target_wait_ptid (void);
98
99 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
100
101 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
103 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
105 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
107 /* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109 static struct async_event_handler *infrun_async_inferior_event_token;
110
111 /* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113 static int infrun_is_async = -1;
114
115 /* See infrun.h. */
116
117 void
118 infrun_async (int enable)
119 {
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134 }
135
136 /* See infrun.h. */
137
138 void
139 mark_infrun_async_event_handler (void)
140 {
141 mark_async_event_handler (infrun_async_inferior_event_token);
142 }
143
144 /* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147 int step_stop_if_no_debug = 0;
148 static void
149 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153 }
154
155 /* proceed and normal_stop use this to notify the user when the
156 inferior stopped in a different thread than it had been running
157 in. */
158
159 static ptid_t previous_inferior_ptid;
160
161 /* If set (default for legacy reasons), when following a fork, GDB
162 will detach from one of the fork branches, child or parent.
163 Exactly which branch is detached depends on 'set follow-fork-mode'
164 setting. */
165
166 static int detach_fork = 1;
167
168 int debug_displaced = 0;
169 static void
170 show_debug_displaced (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172 {
173 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
174 }
175
176 unsigned int debug_infrun = 0;
177 static void
178 show_debug_infrun (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
182 }
183
184
185 /* Support for disabling address space randomization. */
186
187 int disable_randomization = 1;
188
189 static void
190 show_disable_randomization (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 if (target_supports_disable_randomization ())
194 fprintf_filtered (file,
195 _("Disabling randomization of debuggee's "
196 "virtual address space is %s.\n"),
197 value);
198 else
199 fputs_filtered (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform.\n"), file);
202 }
203
204 static void
205 set_disable_randomization (char *args, int from_tty,
206 struct cmd_list_element *c)
207 {
208 if (!target_supports_disable_randomization ())
209 error (_("Disabling randomization of debuggee's "
210 "virtual address space is unsupported on\n"
211 "this platform."));
212 }
213
214 /* User interface for non-stop mode. */
215
216 int non_stop = 0;
217 static int non_stop_1 = 0;
218
219 static void
220 set_non_stop (char *args, int from_tty,
221 struct cmd_list_element *c)
222 {
223 if (target_has_execution)
224 {
225 non_stop_1 = non_stop;
226 error (_("Cannot change this setting while the inferior is running."));
227 }
228
229 non_stop = non_stop_1;
230 }
231
232 static void
233 show_non_stop (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file,
237 _("Controlling the inferior in non-stop mode is %s.\n"),
238 value);
239 }
240
241 /* "Observer mode" is somewhat like a more extreme version of
242 non-stop, in which all GDB operations that might affect the
243 target's execution have been disabled. */
244
245 int observer_mode = 0;
246 static int observer_mode_1 = 0;
247
248 static void
249 set_observer_mode (char *args, int from_tty,
250 struct cmd_list_element *c)
251 {
252 if (target_has_execution)
253 {
254 observer_mode_1 = observer_mode;
255 error (_("Cannot change this setting while the inferior is running."));
256 }
257
258 observer_mode = observer_mode_1;
259
260 may_write_registers = !observer_mode;
261 may_write_memory = !observer_mode;
262 may_insert_breakpoints = !observer_mode;
263 may_insert_tracepoints = !observer_mode;
264 /* We can insert fast tracepoints in or out of observer mode,
265 but enable them if we're going into this mode. */
266 if (observer_mode)
267 may_insert_fast_tracepoints = 1;
268 may_stop = !observer_mode;
269 update_target_permissions ();
270
271 /* Going *into* observer mode we must force non-stop, then
272 going out we leave it that way. */
273 if (observer_mode)
274 {
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282 }
283
284 static void
285 show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287 {
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289 }
290
291 /* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297 void
298 update_observer_mode (void)
299 {
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314 }
315
316 /* Tables of how to react to signals; the user sets them. */
317
318 static unsigned char *signal_stop;
319 static unsigned char *signal_print;
320 static unsigned char *signal_program;
321
322 /* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326 static unsigned char *signal_catch;
327
328 /* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331 static unsigned char *signal_pass;
332
333 #define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341 #define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
349 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352 void
353 update_signals_program_target (void)
354 {
355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
356 }
357
358 /* Value to pass to target_resume() to cause all threads to resume. */
359
360 #define RESUME_ALL minus_one_ptid
361
362 /* Command list pointer for the "stop" placeholder. */
363
364 static struct cmd_list_element *stop_command;
365
366 /* Nonzero if we want to give control to the user when we're notified
367 of shared library events by the dynamic linker. */
368 int stop_on_solib_events;
369
370 /* Enable or disable optional shared library event breakpoints
371 as appropriate when the above flag is changed. */
372
373 static void
374 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
375 {
376 update_solib_breakpoints ();
377 }
378
379 static void
380 show_stop_on_solib_events (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c, const char *value)
382 {
383 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
384 value);
385 }
386
387 /* Nonzero after stop if current stack frame should be printed. */
388
389 static int stop_print_frame;
390
391 /* This is a cached copy of the pid/waitstatus of the last event
392 returned by target_wait()/deprecated_target_wait_hook(). This
393 information is returned by get_last_target_status(). */
394 static ptid_t target_last_wait_ptid;
395 static struct target_waitstatus target_last_waitstatus;
396
397 static void context_switch (ptid_t ptid);
398
399 void init_thread_stepping_state (struct thread_info *tss);
400
401 static const char follow_fork_mode_child[] = "child";
402 static const char follow_fork_mode_parent[] = "parent";
403
404 static const char *const follow_fork_mode_kind_names[] = {
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
408 };
409
410 static const char *follow_fork_mode_string = follow_fork_mode_parent;
411 static void
412 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414 {
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
418 value);
419 }
420 \f
421
422 /* Handle changes to the inferior list based on the type of fork,
423 which process is being followed, and whether the other process
424 should be detached. On entry inferior_ptid must be the ptid of
425 the fork parent. At return inferior_ptid is the ptid of the
426 followed inferior. */
427
428 static int
429 follow_fork_inferior (int follow_child, int detach_fork)
430 {
431 int has_vforked;
432 ptid_t parent_ptid, child_ptid;
433
434 has_vforked = (inferior_thread ()->pending_follow.kind
435 == TARGET_WAITKIND_VFORKED);
436 parent_ptid = inferior_ptid;
437 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
438
439 if (has_vforked
440 && !non_stop /* Non-stop always resumes both branches. */
441 && current_ui->prompt_state == PROMPT_BLOCKED
442 && !(follow_child || detach_fork || sched_multi))
443 {
444 /* The parent stays blocked inside the vfork syscall until the
445 child execs or exits. If we don't let the child run, then
446 the parent stays blocked. If we're telling the parent to run
447 in the foreground, the user will not be able to ctrl-c to get
448 back the terminal, effectively hanging the debug session. */
449 fprintf_filtered (gdb_stderr, _("\
450 Can not resume the parent process over vfork in the foreground while\n\
451 holding the child stopped. Try \"set detach-on-fork\" or \
452 \"set schedule-multiple\".\n"));
453 /* FIXME output string > 80 columns. */
454 return 1;
455 }
456
457 if (!follow_child)
458 {
459 /* Detach new forked process? */
460 if (detach_fork)
461 {
462 /* Before detaching from the child, remove all breakpoints
463 from it. If we forked, then this has already been taken
464 care of by infrun.c. If we vforked however, any
465 breakpoint inserted in the parent is visible in the
466 child, even those added while stopped in a vfork
467 catchpoint. This will remove the breakpoints from the
468 parent also, but they'll be reinserted below. */
469 if (has_vforked)
470 {
471 /* Keep breakpoints list in sync. */
472 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
473 }
474
475 if (info_verbose || debug_infrun)
476 {
477 /* Ensure that we have a process ptid. */
478 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
479
480 target_terminal_ours_for_output ();
481 fprintf_filtered (gdb_stdlog,
482 _("Detaching after %s from child %s.\n"),
483 has_vforked ? "vfork" : "fork",
484 target_pid_to_str (process_ptid));
485 }
486 }
487 else
488 {
489 struct inferior *parent_inf, *child_inf;
490 struct cleanup *old_chain;
491
492 /* Add process to GDB's tables. */
493 child_inf = add_inferior (ptid_get_pid (child_ptid));
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 old_chain = save_inferior_ptid ();
502 save_current_program_space ();
503
504 inferior_ptid = child_ptid;
505 add_thread (inferior_ptid);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539
540 do_cleanups (old_chain);
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
572 has_vforked ? "vfork" : "fork",
573 target_pid_to_str (child_ptid));
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
579 child_inf = add_inferior (ptid_get_pid (child_ptid));
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
610 {
611 if (info_verbose || debug_infrun)
612 {
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
619 "child %s.\n"),
620 target_pid_to_str (process_ptid));
621 }
622
623 target_detach (NULL, 0);
624 }
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
632 inferior_ptid = child_ptid;
633 add_thread (inferior_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642 }
643 else
644 {
645 child_inf->aspace = new_address_space ();
646 child_inf->pspace = add_program_space (child_inf->aspace);
647 child_inf->removable = 1;
648 child_inf->symfile_flags = SYMFILE_NO_READ;
649 set_current_program_space (child_inf->pspace);
650 clone_program_space (child_inf->pspace, parent_pspace);
651
652 /* Let the shared library layer (e.g., solib-svr4) learn
653 about this new process, relocate the cloned exec, pull in
654 shared libraries, and install the solib event breakpoint.
655 If a "cloned-VM" event was propagated better throughout
656 the core, this wouldn't be required. */
657 solib_create_inferior_hook (0);
658 }
659 }
660
661 return target_follow_fork (follow_child, detach_fork);
662 }
663
664 /* Tell the target to follow the fork we're stopped at. Returns true
665 if the inferior should be resumed; false, if the target for some
666 reason decided it's best not to resume. */
667
668 static int
669 follow_fork (void)
670 {
671 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
672 int should_resume = 1;
673 struct thread_info *tp;
674
675 /* Copy user stepping state to the new inferior thread. FIXME: the
676 followed fork child thread should have a copy of most of the
677 parent thread structure's run control related fields, not just these.
678 Initialized to avoid "may be used uninitialized" warnings from gcc. */
679 struct breakpoint *step_resume_breakpoint = NULL;
680 struct breakpoint *exception_resume_breakpoint = NULL;
681 CORE_ADDR step_range_start = 0;
682 CORE_ADDR step_range_end = 0;
683 struct frame_id step_frame_id = { 0 };
684 struct thread_fsm *thread_fsm = NULL;
685
686 if (!non_stop)
687 {
688 ptid_t wait_ptid;
689 struct target_waitstatus wait_status;
690
691 /* Get the last target status returned by target_wait(). */
692 get_last_target_status (&wait_ptid, &wait_status);
693
694 /* If not stopped at a fork event, then there's nothing else to
695 do. */
696 if (wait_status.kind != TARGET_WAITKIND_FORKED
697 && wait_status.kind != TARGET_WAITKIND_VFORKED)
698 return 1;
699
700 /* Check if we switched over from WAIT_PTID, since the event was
701 reported. */
702 if (!ptid_equal (wait_ptid, minus_one_ptid)
703 && !ptid_equal (inferior_ptid, wait_ptid))
704 {
705 /* We did. Switch back to WAIT_PTID thread, to tell the
706 target to follow it (in either direction). We'll
707 afterwards refuse to resume, and inform the user what
708 happened. */
709 switch_to_thread (wait_ptid);
710 should_resume = 0;
711 }
712 }
713
714 tp = inferior_thread ();
715
716 /* If there were any forks/vforks that were caught and are now to be
717 followed, then do so now. */
718 switch (tp->pending_follow.kind)
719 {
720 case TARGET_WAITKIND_FORKED:
721 case TARGET_WAITKIND_VFORKED:
722 {
723 ptid_t parent, child;
724
725 /* If the user did a next/step, etc, over a fork call,
726 preserve the stepping state in the fork child. */
727 if (follow_child && should_resume)
728 {
729 step_resume_breakpoint = clone_momentary_breakpoint
730 (tp->control.step_resume_breakpoint);
731 step_range_start = tp->control.step_range_start;
732 step_range_end = tp->control.step_range_end;
733 step_frame_id = tp->control.step_frame_id;
734 exception_resume_breakpoint
735 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
736 thread_fsm = tp->thread_fsm;
737
738 /* For now, delete the parent's sr breakpoint, otherwise,
739 parent/child sr breakpoints are considered duplicates,
740 and the child version will not be installed. Remove
741 this when the breakpoints module becomes aware of
742 inferiors and address spaces. */
743 delete_step_resume_breakpoint (tp);
744 tp->control.step_range_start = 0;
745 tp->control.step_range_end = 0;
746 tp->control.step_frame_id = null_frame_id;
747 delete_exception_resume_breakpoint (tp);
748 tp->thread_fsm = NULL;
749 }
750
751 parent = inferior_ptid;
752 child = tp->pending_follow.value.related_pid;
753
754 /* Set up inferior(s) as specified by the caller, and tell the
755 target to do whatever is necessary to follow either parent
756 or child. */
757 if (follow_fork_inferior (follow_child, detach_fork))
758 {
759 /* Target refused to follow, or there's some other reason
760 we shouldn't resume. */
761 should_resume = 0;
762 }
763 else
764 {
765 /* This pending follow fork event is now handled, one way
766 or another. The previous selected thread may be gone
767 from the lists by now, but if it is still around, need
768 to clear the pending follow request. */
769 tp = find_thread_ptid (parent);
770 if (tp)
771 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
772
773 /* This makes sure we don't try to apply the "Switched
774 over from WAIT_PID" logic above. */
775 nullify_last_target_wait_ptid ();
776
777 /* If we followed the child, switch to it... */
778 if (follow_child)
779 {
780 switch_to_thread (child);
781
782 /* ... and preserve the stepping state, in case the
783 user was stepping over the fork call. */
784 if (should_resume)
785 {
786 tp = inferior_thread ();
787 tp->control.step_resume_breakpoint
788 = step_resume_breakpoint;
789 tp->control.step_range_start = step_range_start;
790 tp->control.step_range_end = step_range_end;
791 tp->control.step_frame_id = step_frame_id;
792 tp->control.exception_resume_breakpoint
793 = exception_resume_breakpoint;
794 tp->thread_fsm = thread_fsm;
795 }
796 else
797 {
798 /* If we get here, it was because we're trying to
799 resume from a fork catchpoint, but, the user
800 has switched threads away from the thread that
801 forked. In that case, the resume command
802 issued is most likely not applicable to the
803 child, so just warn, and refuse to resume. */
804 warning (_("Not resuming: switched threads "
805 "before following fork child."));
806 }
807
808 /* Reset breakpoints in the child as appropriate. */
809 follow_inferior_reset_breakpoints ();
810 }
811 else
812 switch_to_thread (parent);
813 }
814 }
815 break;
816 case TARGET_WAITKIND_SPURIOUS:
817 /* Nothing to follow. */
818 break;
819 default:
820 internal_error (__FILE__, __LINE__,
821 "Unexpected pending_follow.kind %d\n",
822 tp->pending_follow.kind);
823 break;
824 }
825
826 return should_resume;
827 }
828
829 static void
830 follow_inferior_reset_breakpoints (void)
831 {
832 struct thread_info *tp = inferior_thread ();
833
834 /* Was there a step_resume breakpoint? (There was if the user
835 did a "next" at the fork() call.) If so, explicitly reset its
836 thread number. Cloned step_resume breakpoints are disabled on
837 creation, so enable it here now that it is associated with the
838 correct thread.
839
840 step_resumes are a form of bp that are made to be per-thread.
841 Since we created the step_resume bp when the parent process
842 was being debugged, and now are switching to the child process,
843 from the breakpoint package's viewpoint, that's a switch of
844 "threads". We must update the bp's notion of which thread
845 it is for, or it'll be ignored when it triggers. */
846
847 if (tp->control.step_resume_breakpoint)
848 {
849 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
850 tp->control.step_resume_breakpoint->loc->enabled = 1;
851 }
852
853 /* Treat exception_resume breakpoints like step_resume breakpoints. */
854 if (tp->control.exception_resume_breakpoint)
855 {
856 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
857 tp->control.exception_resume_breakpoint->loc->enabled = 1;
858 }
859
860 /* Reinsert all breakpoints in the child. The user may have set
861 breakpoints after catching the fork, in which case those
862 were never set in the child, but only in the parent. This makes
863 sure the inserted breakpoints match the breakpoint list. */
864
865 breakpoint_re_set ();
866 insert_breakpoints ();
867 }
868
869 /* The child has exited or execed: resume threads of the parent the
870 user wanted to be executing. */
871
872 static int
873 proceed_after_vfork_done (struct thread_info *thread,
874 void *arg)
875 {
876 int pid = * (int *) arg;
877
878 if (ptid_get_pid (thread->ptid) == pid
879 && is_running (thread->ptid)
880 && !is_executing (thread->ptid)
881 && !thread->stop_requested
882 && thread->suspend.stop_signal == GDB_SIGNAL_0)
883 {
884 if (debug_infrun)
885 fprintf_unfiltered (gdb_stdlog,
886 "infrun: resuming vfork parent thread %s\n",
887 target_pid_to_str (thread->ptid));
888
889 switch_to_thread (thread->ptid);
890 clear_proceed_status (0);
891 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
892 }
893
894 return 0;
895 }
896
897 /* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900 static void
901 handle_vfork_child_exec_or_exit (int exec)
902 {
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. If the user wanted to
911 detach from the parent, now is the time. */
912
913 if (inf->vfork_parent->pending_detach)
914 {
915 struct thread_info *tp;
916 struct cleanup *old_chain;
917 struct program_space *pspace;
918 struct address_space *aspace;
919
920 /* follow-fork child, detach-on-fork on. */
921
922 inf->vfork_parent->pending_detach = 0;
923
924 if (!exec)
925 {
926 /* If we're handling a child exit, then inferior_ptid
927 points at the inferior's pid, not to a thread. */
928 old_chain = save_inferior_ptid ();
929 save_current_program_space ();
930 save_current_inferior ();
931 }
932 else
933 old_chain = save_current_space_and_thread ();
934
935 /* We're letting loose of the parent. */
936 tp = any_live_thread_of_process (inf->vfork_parent->pid);
937 switch_to_thread (tp->ptid);
938
939 /* We're about to detach from the parent, which implicitly
940 removes breakpoints from its address space. There's a
941 catch here: we want to reuse the spaces for the child,
942 but, parent/child are still sharing the pspace at this
943 point, although the exec in reality makes the kernel give
944 the child a fresh set of new pages. The problem here is
945 that the breakpoints module being unaware of this, would
946 likely chose the child process to write to the parent
947 address space. Swapping the child temporarily away from
948 the spaces has the desired effect. Yes, this is "sort
949 of" a hack. */
950
951 pspace = inf->pspace;
952 aspace = inf->aspace;
953 inf->aspace = NULL;
954 inf->pspace = NULL;
955
956 if (debug_infrun || info_verbose)
957 {
958 target_terminal_ours_for_output ();
959
960 if (exec)
961 {
962 fprintf_filtered (gdb_stdlog,
963 _("Detaching vfork parent process "
964 "%d after child exec.\n"),
965 inf->vfork_parent->pid);
966 }
967 else
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("Detaching vfork parent process "
971 "%d after child exit.\n"),
972 inf->vfork_parent->pid);
973 }
974 }
975
976 target_detach (NULL, 0);
977
978 /* Put it back. */
979 inf->pspace = pspace;
980 inf->aspace = aspace;
981
982 do_cleanups (old_chain);
983 }
984 else if (exec)
985 {
986 /* We're staying attached to the parent, so, really give the
987 child a new address space. */
988 inf->pspace = add_program_space (maybe_new_address_space ());
989 inf->aspace = inf->pspace->aspace;
990 inf->removable = 1;
991 set_current_program_space (inf->pspace);
992
993 resume_parent = inf->vfork_parent->pid;
994
995 /* Break the bonds. */
996 inf->vfork_parent->vfork_child = NULL;
997 }
998 else
999 {
1000 struct cleanup *old_chain;
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
1012 /* Switch to null_ptid, so that clone_program_space doesn't want
1013 to read the selected frame of a dead process. */
1014 old_chain = save_inferior_ptid ();
1015 inferior_ptid = null_ptid;
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = add_program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
1025 inf->symfile_flags = SYMFILE_NO_READ;
1026 clone_program_space (pspace, inf->vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 /* Put back inferior_ptid. We'll continue mourning this
1031 inferior. */
1032 do_cleanups (old_chain);
1033
1034 resume_parent = inf->vfork_parent->pid;
1035 /* Break the bonds. */
1036 inf->vfork_parent->vfork_child = NULL;
1037 }
1038
1039 inf->vfork_parent = NULL;
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
1047 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1048
1049 if (debug_infrun)
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055
1056 do_cleanups (old_chain);
1057 }
1058 }
1059 }
1060
1061 /* Enum strings for "set|show follow-exec-mode". */
1062
1063 static const char follow_exec_mode_new[] = "new";
1064 static const char follow_exec_mode_same[] = "same";
1065 static const char *const follow_exec_mode_names[] =
1066 {
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070 };
1071
1072 static const char *follow_exec_mode_string = follow_exec_mode_same;
1073 static void
1074 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076 {
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078 }
1079
1080 /* EXECD_PATHNAME is assumed to be non-NULL. */
1081
1082 static void
1083 follow_exec (ptid_t ptid, char *execd_pathname)
1084 {
1085 struct thread_info *th, *tmp;
1086 struct inferior *inf = current_inferior ();
1087 int pid = ptid_get_pid (ptid);
1088 ptid_t process_ptid;
1089
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1109 we now have a new a.out, those shadow contents aren't valid. */
1110
1111 mark_breakpoints_out ();
1112
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
1132 ALL_THREADS_SAFE (th, tmp)
1133 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1134 delete_thread (th->ptid);
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
1140 th = inferior_thread ();
1141 th->control.step_resume_breakpoint = NULL;
1142 th->control.exception_resume_breakpoint = NULL;
1143 th->control.single_step_breakpoints = NULL;
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
1146
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
1150 th->stop_requested = 0;
1151
1152 update_breakpoints_after_exec ();
1153
1154 /* What is this a.out's name? */
1155 process_ptid = pid_to_ptid (pid);
1156 printf_unfiltered (_("%s is executing new program: %s\n"),
1157 target_pid_to_str (process_ptid),
1158 execd_pathname);
1159
1160 /* We've followed the inferior through an exec. Therefore, the
1161 inferior has essentially been killed & reborn. */
1162
1163 gdb_flush (gdb_stdout);
1164
1165 breakpoint_init_inferior (inf_execd);
1166
1167 if (*gdb_sysroot != '\0')
1168 {
1169 char *name = exec_file_find (execd_pathname, NULL);
1170
1171 execd_pathname = (char *) alloca (strlen (name) + 1);
1172 strcpy (execd_pathname, name);
1173 xfree (name);
1174 }
1175
1176 /* Reset the shared library package. This ensures that we get a
1177 shlib event when the child reaches "_start", at which point the
1178 dld will have had a chance to initialize the child. */
1179 /* Also, loading a symbol file below may trigger symbol lookups, and
1180 we don't want those to be satisfied by the libraries of the
1181 previous incarnation of this process. */
1182 no_shared_libraries (NULL, 0);
1183
1184 if (follow_exec_mode_string == follow_exec_mode_new)
1185 {
1186 /* The user wants to keep the old inferior and program spaces
1187 around. Create a new fresh one, and switch to it. */
1188
1189 /* Do exit processing for the original inferior before adding
1190 the new inferior so we don't have two active inferiors with
1191 the same ptid, which can confuse find_inferior_ptid. */
1192 exit_inferior_num_silent (current_inferior ()->num);
1193
1194 inf = add_inferior_with_spaces ();
1195 inf->pid = pid;
1196 target_follow_exec (inf, execd_pathname);
1197
1198 set_current_inferior (inf);
1199 set_current_program_space (inf->pspace);
1200 add_thread (ptid);
1201 }
1202 else
1203 {
1204 /* The old description may no longer be fit for the new image.
1205 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1206 old description; we'll read a new one below. No need to do
1207 this on "follow-exec-mode new", as the old inferior stays
1208 around (its description is later cleared/refetched on
1209 restart). */
1210 target_clear_description ();
1211 }
1212
1213 gdb_assert (current_program_space == inf->pspace);
1214
1215 /* That a.out is now the one to use. */
1216 exec_file_attach (execd_pathname, 0);
1217
1218 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1219 (Position Independent Executable) main symbol file will get applied by
1220 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1221 the breakpoints with the zero displacement. */
1222
1223 symbol_file_add (execd_pathname,
1224 (inf->symfile_flags
1225 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1226 NULL, 0);
1227
1228 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1229 set_initial_language ();
1230
1231 /* If the target can specify a description, read it. Must do this
1232 after flipping to the new executable (because the target supplied
1233 description must be compatible with the executable's
1234 architecture, and the old executable may e.g., be 32-bit, while
1235 the new one 64-bit), and before anything involving memory or
1236 registers. */
1237 target_find_description ();
1238
1239 solib_create_inferior_hook (0);
1240
1241 jit_inferior_created_hook ();
1242
1243 breakpoint_re_set ();
1244
1245 /* Reinsert all breakpoints. (Those which were symbolic have
1246 been reset to the proper address in the new a.out, thanks
1247 to symbol_file_command...). */
1248 insert_breakpoints ();
1249
1250 /* The next resume of this inferior should bring it to the shlib
1251 startup breakpoints. (If the user had also set bp's on
1252 "main" from the old (parent) process, then they'll auto-
1253 matically get reset there in the new process.). */
1254 }
1255
1256 /* The queue of threads that need to do a step-over operation to get
1257 past e.g., a breakpoint. What technique is used to step over the
1258 breakpoint/watchpoint does not matter -- all threads end up in the
1259 same queue, to maintain rough temporal order of execution, in order
1260 to avoid starvation, otherwise, we could e.g., find ourselves
1261 constantly stepping the same couple threads past their breakpoints
1262 over and over, if the single-step finish fast enough. */
1263 struct thread_info *step_over_queue_head;
1264
1265 /* Bit flags indicating what the thread needs to step over. */
1266
1267 enum step_over_what_flag
1268 {
1269 /* Step over a breakpoint. */
1270 STEP_OVER_BREAKPOINT = 1,
1271
1272 /* Step past a non-continuable watchpoint, in order to let the
1273 instruction execute so we can evaluate the watchpoint
1274 expression. */
1275 STEP_OVER_WATCHPOINT = 2
1276 };
1277 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1278
1279 /* Info about an instruction that is being stepped over. */
1280
1281 struct step_over_info
1282 {
1283 /* If we're stepping past a breakpoint, this is the address space
1284 and address of the instruction the breakpoint is set at. We'll
1285 skip inserting all breakpoints here. Valid iff ASPACE is
1286 non-NULL. */
1287 struct address_space *aspace;
1288 CORE_ADDR address;
1289
1290 /* The instruction being stepped over triggers a nonsteppable
1291 watchpoint. If true, we'll skip inserting watchpoints. */
1292 int nonsteppable_watchpoint_p;
1293
1294 /* The thread's global number. */
1295 int thread;
1296 };
1297
1298 /* The step-over info of the location that is being stepped over.
1299
1300 Note that with async/breakpoint always-inserted mode, a user might
1301 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1302 being stepped over. As setting a new breakpoint inserts all
1303 breakpoints, we need to make sure the breakpoint being stepped over
1304 isn't inserted then. We do that by only clearing the step-over
1305 info when the step-over is actually finished (or aborted).
1306
1307 Presently GDB can only step over one breakpoint at any given time.
1308 Given threads that can't run code in the same address space as the
1309 breakpoint's can't really miss the breakpoint, GDB could be taught
1310 to step-over at most one breakpoint per address space (so this info
1311 could move to the address space object if/when GDB is extended).
1312 The set of breakpoints being stepped over will normally be much
1313 smaller than the set of all breakpoints, so a flag in the
1314 breakpoint location structure would be wasteful. A separate list
1315 also saves complexity and run-time, as otherwise we'd have to go
1316 through all breakpoint locations clearing their flag whenever we
1317 start a new sequence. Similar considerations weigh against storing
1318 this info in the thread object. Plus, not all step overs actually
1319 have breakpoint locations -- e.g., stepping past a single-step
1320 breakpoint, or stepping to complete a non-continuable
1321 watchpoint. */
1322 static struct step_over_info step_over_info;
1323
1324 /* Record the address of the breakpoint/instruction we're currently
1325 stepping over. */
1326
1327 static void
1328 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1329 int nonsteppable_watchpoint_p,
1330 int thread)
1331 {
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1335 step_over_info.thread = thread;
1336 }
1337
1338 /* Called when we're not longer stepping over a breakpoint / an
1339 instruction, so all breakpoints are free to be (re)inserted. */
1340
1341 static void
1342 clear_step_over_info (void)
1343 {
1344 if (debug_infrun)
1345 fprintf_unfiltered (gdb_stdlog,
1346 "infrun: clear_step_over_info\n");
1347 step_over_info.aspace = NULL;
1348 step_over_info.address = 0;
1349 step_over_info.nonsteppable_watchpoint_p = 0;
1350 step_over_info.thread = -1;
1351 }
1352
1353 /* See infrun.h. */
1354
1355 int
1356 stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358 {
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363 }
1364
1365 /* See infrun.h. */
1366
1367 int
1368 thread_is_stepping_over_breakpoint (int thread)
1369 {
1370 return (step_over_info.thread != -1
1371 && thread == step_over_info.thread);
1372 }
1373
1374 /* See infrun.h. */
1375
1376 int
1377 stepping_past_nonsteppable_watchpoint (void)
1378 {
1379 return step_over_info.nonsteppable_watchpoint_p;
1380 }
1381
1382 /* Returns true if step-over info is valid. */
1383
1384 static int
1385 step_over_info_valid_p (void)
1386 {
1387 return (step_over_info.aspace != NULL
1388 || stepping_past_nonsteppable_watchpoint ());
1389 }
1390
1391 \f
1392 /* Displaced stepping. */
1393
1394 /* In non-stop debugging mode, we must take special care to manage
1395 breakpoints properly; in particular, the traditional strategy for
1396 stepping a thread past a breakpoint it has hit is unsuitable.
1397 'Displaced stepping' is a tactic for stepping one thread past a
1398 breakpoint it has hit while ensuring that other threads running
1399 concurrently will hit the breakpoint as they should.
1400
1401 The traditional way to step a thread T off a breakpoint in a
1402 multi-threaded program in all-stop mode is as follows:
1403
1404 a0) Initially, all threads are stopped, and breakpoints are not
1405 inserted.
1406 a1) We single-step T, leaving breakpoints uninserted.
1407 a2) We insert breakpoints, and resume all threads.
1408
1409 In non-stop debugging, however, this strategy is unsuitable: we
1410 don't want to have to stop all threads in the system in order to
1411 continue or step T past a breakpoint. Instead, we use displaced
1412 stepping:
1413
1414 n0) Initially, T is stopped, other threads are running, and
1415 breakpoints are inserted.
1416 n1) We copy the instruction "under" the breakpoint to a separate
1417 location, outside the main code stream, making any adjustments
1418 to the instruction, register, and memory state as directed by
1419 T's architecture.
1420 n2) We single-step T over the instruction at its new location.
1421 n3) We adjust the resulting register and memory state as directed
1422 by T's architecture. This includes resetting T's PC to point
1423 back into the main instruction stream.
1424 n4) We resume T.
1425
1426 This approach depends on the following gdbarch methods:
1427
1428 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1429 indicate where to copy the instruction, and how much space must
1430 be reserved there. We use these in step n1.
1431
1432 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1433 address, and makes any necessary adjustments to the instruction,
1434 register contents, and memory. We use this in step n1.
1435
1436 - gdbarch_displaced_step_fixup adjusts registers and memory after
1437 we have successfuly single-stepped the instruction, to yield the
1438 same effect the instruction would have had if we had executed it
1439 at its original address. We use this in step n3.
1440
1441 - gdbarch_displaced_step_free_closure provides cleanup.
1442
1443 The gdbarch_displaced_step_copy_insn and
1444 gdbarch_displaced_step_fixup functions must be written so that
1445 copying an instruction with gdbarch_displaced_step_copy_insn,
1446 single-stepping across the copied instruction, and then applying
1447 gdbarch_displaced_insn_fixup should have the same effects on the
1448 thread's memory and registers as stepping the instruction in place
1449 would have. Exactly which responsibilities fall to the copy and
1450 which fall to the fixup is up to the author of those functions.
1451
1452 See the comments in gdbarch.sh for details.
1453
1454 Note that displaced stepping and software single-step cannot
1455 currently be used in combination, although with some care I think
1456 they could be made to. Software single-step works by placing
1457 breakpoints on all possible subsequent instructions; if the
1458 displaced instruction is a PC-relative jump, those breakpoints
1459 could fall in very strange places --- on pages that aren't
1460 executable, or at addresses that are not proper instruction
1461 boundaries. (We do generally let other threads run while we wait
1462 to hit the software single-step breakpoint, and they might
1463 encounter such a corrupted instruction.) One way to work around
1464 this would be to have gdbarch_displaced_step_copy_insn fully
1465 simulate the effect of PC-relative instructions (and return NULL)
1466 on architectures that use software single-stepping.
1467
1468 In non-stop mode, we can have independent and simultaneous step
1469 requests, so more than one thread may need to simultaneously step
1470 over a breakpoint. The current implementation assumes there is
1471 only one scratch space per process. In this case, we have to
1472 serialize access to the scratch space. If thread A wants to step
1473 over a breakpoint, but we are currently waiting for some other
1474 thread to complete a displaced step, we leave thread A stopped and
1475 place it in the displaced_step_request_queue. Whenever a displaced
1476 step finishes, we pick the next thread in the queue and start a new
1477 displaced step operation on it. See displaced_step_prepare and
1478 displaced_step_fixup for details. */
1479
1480 /* Per-inferior displaced stepping state. */
1481 struct displaced_step_inferior_state
1482 {
1483 /* Pointer to next in linked list. */
1484 struct displaced_step_inferior_state *next;
1485
1486 /* The process this displaced step state refers to. */
1487 int pid;
1488
1489 /* True if preparing a displaced step ever failed. If so, we won't
1490 try displaced stepping for this inferior again. */
1491 int failed_before;
1492
1493 /* If this is not null_ptid, this is the thread carrying out a
1494 displaced single-step in process PID. This thread's state will
1495 require fixing up once it has completed its step. */
1496 ptid_t step_ptid;
1497
1498 /* The architecture the thread had when we stepped it. */
1499 struct gdbarch *step_gdbarch;
1500
1501 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1502 for post-step cleanup. */
1503 struct displaced_step_closure *step_closure;
1504
1505 /* The address of the original instruction, and the copy we
1506 made. */
1507 CORE_ADDR step_original, step_copy;
1508
1509 /* Saved contents of copy area. */
1510 gdb_byte *step_saved_copy;
1511 };
1512
1513 /* The list of states of processes involved in displaced stepping
1514 presently. */
1515 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1516
1517 /* Get the displaced stepping state of process PID. */
1518
1519 static struct displaced_step_inferior_state *
1520 get_displaced_stepping_state (int pid)
1521 {
1522 struct displaced_step_inferior_state *state;
1523
1524 for (state = displaced_step_inferior_states;
1525 state != NULL;
1526 state = state->next)
1527 if (state->pid == pid)
1528 return state;
1529
1530 return NULL;
1531 }
1532
1533 /* Returns true if any inferior has a thread doing a displaced
1534 step. */
1535
1536 static int
1537 displaced_step_in_progress_any_inferior (void)
1538 {
1539 struct displaced_step_inferior_state *state;
1540
1541 for (state = displaced_step_inferior_states;
1542 state != NULL;
1543 state = state->next)
1544 if (!ptid_equal (state->step_ptid, null_ptid))
1545 return 1;
1546
1547 return 0;
1548 }
1549
1550 /* Return true if thread represented by PTID is doing a displaced
1551 step. */
1552
1553 static int
1554 displaced_step_in_progress_thread (ptid_t ptid)
1555 {
1556 struct displaced_step_inferior_state *displaced;
1557
1558 gdb_assert (!ptid_equal (ptid, null_ptid));
1559
1560 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1561
1562 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1563 }
1564
1565 /* Return true if process PID has a thread doing a displaced step. */
1566
1567 static int
1568 displaced_step_in_progress (int pid)
1569 {
1570 struct displaced_step_inferior_state *displaced;
1571
1572 displaced = get_displaced_stepping_state (pid);
1573 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1574 return 1;
1575
1576 return 0;
1577 }
1578
1579 /* Add a new displaced stepping state for process PID to the displaced
1580 stepping state list, or return a pointer to an already existing
1581 entry, if it already exists. Never returns NULL. */
1582
1583 static struct displaced_step_inferior_state *
1584 add_displaced_stepping_state (int pid)
1585 {
1586 struct displaced_step_inferior_state *state;
1587
1588 for (state = displaced_step_inferior_states;
1589 state != NULL;
1590 state = state->next)
1591 if (state->pid == pid)
1592 return state;
1593
1594 state = XCNEW (struct displaced_step_inferior_state);
1595 state->pid = pid;
1596 state->next = displaced_step_inferior_states;
1597 displaced_step_inferior_states = state;
1598
1599 return state;
1600 }
1601
1602 /* If inferior is in displaced stepping, and ADDR equals to starting address
1603 of copy area, return corresponding displaced_step_closure. Otherwise,
1604 return NULL. */
1605
1606 struct displaced_step_closure*
1607 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1608 {
1609 struct displaced_step_inferior_state *displaced
1610 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1611
1612 /* If checking the mode of displaced instruction in copy area. */
1613 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1614 && (displaced->step_copy == addr))
1615 return displaced->step_closure;
1616
1617 return NULL;
1618 }
1619
1620 /* Remove the displaced stepping state of process PID. */
1621
1622 static void
1623 remove_displaced_stepping_state (int pid)
1624 {
1625 struct displaced_step_inferior_state *it, **prev_next_p;
1626
1627 gdb_assert (pid != 0);
1628
1629 it = displaced_step_inferior_states;
1630 prev_next_p = &displaced_step_inferior_states;
1631 while (it)
1632 {
1633 if (it->pid == pid)
1634 {
1635 *prev_next_p = it->next;
1636 xfree (it);
1637 return;
1638 }
1639
1640 prev_next_p = &it->next;
1641 it = *prev_next_p;
1642 }
1643 }
1644
1645 static void
1646 infrun_inferior_exit (struct inferior *inf)
1647 {
1648 remove_displaced_stepping_state (inf->pid);
1649 }
1650
1651 /* If ON, and the architecture supports it, GDB will use displaced
1652 stepping to step over breakpoints. If OFF, or if the architecture
1653 doesn't support it, GDB will instead use the traditional
1654 hold-and-step approach. If AUTO (which is the default), GDB will
1655 decide which technique to use to step over breakpoints depending on
1656 which of all-stop or non-stop mode is active --- displaced stepping
1657 in non-stop mode; hold-and-step in all-stop mode. */
1658
1659 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1660
1661 static void
1662 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1663 struct cmd_list_element *c,
1664 const char *value)
1665 {
1666 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1667 fprintf_filtered (file,
1668 _("Debugger's willingness to use displaced stepping "
1669 "to step over breakpoints is %s (currently %s).\n"),
1670 value, target_is_non_stop_p () ? "on" : "off");
1671 else
1672 fprintf_filtered (file,
1673 _("Debugger's willingness to use displaced stepping "
1674 "to step over breakpoints is %s.\n"), value);
1675 }
1676
1677 /* Return non-zero if displaced stepping can/should be used to step
1678 over breakpoints of thread TP. */
1679
1680 static int
1681 use_displaced_stepping (struct thread_info *tp)
1682 {
1683 struct regcache *regcache = get_thread_regcache (tp->ptid);
1684 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1685 struct displaced_step_inferior_state *displaced_state;
1686
1687 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1688
1689 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1690 && target_is_non_stop_p ())
1691 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1692 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1693 && find_record_target () == NULL
1694 && (displaced_state == NULL
1695 || !displaced_state->failed_before));
1696 }
1697
1698 /* Clean out any stray displaced stepping state. */
1699 static void
1700 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1701 {
1702 /* Indicate that there is no cleanup pending. */
1703 displaced->step_ptid = null_ptid;
1704
1705 if (displaced->step_closure)
1706 {
1707 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1708 displaced->step_closure);
1709 displaced->step_closure = NULL;
1710 }
1711 }
1712
1713 static void
1714 displaced_step_clear_cleanup (void *arg)
1715 {
1716 struct displaced_step_inferior_state *state
1717 = (struct displaced_step_inferior_state *) arg;
1718
1719 displaced_step_clear (state);
1720 }
1721
1722 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1723 void
1724 displaced_step_dump_bytes (struct ui_file *file,
1725 const gdb_byte *buf,
1726 size_t len)
1727 {
1728 int i;
1729
1730 for (i = 0; i < len; i++)
1731 fprintf_unfiltered (file, "%02x ", buf[i]);
1732 fputs_unfiltered ("\n", file);
1733 }
1734
1735 /* Prepare to single-step, using displaced stepping.
1736
1737 Note that we cannot use displaced stepping when we have a signal to
1738 deliver. If we have a signal to deliver and an instruction to step
1739 over, then after the step, there will be no indication from the
1740 target whether the thread entered a signal handler or ignored the
1741 signal and stepped over the instruction successfully --- both cases
1742 result in a simple SIGTRAP. In the first case we mustn't do a
1743 fixup, and in the second case we must --- but we can't tell which.
1744 Comments in the code for 'random signals' in handle_inferior_event
1745 explain how we handle this case instead.
1746
1747 Returns 1 if preparing was successful -- this thread is going to be
1748 stepped now; 0 if displaced stepping this thread got queued; or -1
1749 if this instruction can't be displaced stepped. */
1750
1751 static int
1752 displaced_step_prepare_throw (ptid_t ptid)
1753 {
1754 struct cleanup *old_cleanups, *ignore_cleanups;
1755 struct thread_info *tp = find_thread_ptid (ptid);
1756 struct regcache *regcache = get_thread_regcache (ptid);
1757 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1758 struct address_space *aspace = get_regcache_aspace (regcache);
1759 CORE_ADDR original, copy;
1760 ULONGEST len;
1761 struct displaced_step_closure *closure;
1762 struct displaced_step_inferior_state *displaced;
1763 int status;
1764
1765 /* We should never reach this function if the architecture does not
1766 support displaced stepping. */
1767 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1768
1769 /* Nor if the thread isn't meant to step over a breakpoint. */
1770 gdb_assert (tp->control.trap_expected);
1771
1772 /* Disable range stepping while executing in the scratch pad. We
1773 want a single-step even if executing the displaced instruction in
1774 the scratch buffer lands within the stepping range (e.g., a
1775 jump/branch). */
1776 tp->control.may_range_step = 0;
1777
1778 /* We have to displaced step one thread at a time, as we only have
1779 access to a single scratch space per inferior. */
1780
1781 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1782
1783 if (!ptid_equal (displaced->step_ptid, null_ptid))
1784 {
1785 /* Already waiting for a displaced step to finish. Defer this
1786 request and place in queue. */
1787
1788 if (debug_displaced)
1789 fprintf_unfiltered (gdb_stdlog,
1790 "displaced: deferring step of %s\n",
1791 target_pid_to_str (ptid));
1792
1793 thread_step_over_chain_enqueue (tp);
1794 return 0;
1795 }
1796 else
1797 {
1798 if (debug_displaced)
1799 fprintf_unfiltered (gdb_stdlog,
1800 "displaced: stepping %s now\n",
1801 target_pid_to_str (ptid));
1802 }
1803
1804 displaced_step_clear (displaced);
1805
1806 old_cleanups = save_inferior_ptid ();
1807 inferior_ptid = ptid;
1808
1809 original = regcache_read_pc (regcache);
1810
1811 copy = gdbarch_displaced_step_location (gdbarch);
1812 len = gdbarch_max_insn_length (gdbarch);
1813
1814 if (breakpoint_in_range_p (aspace, copy, len))
1815 {
1816 /* There's a breakpoint set in the scratch pad location range
1817 (which is usually around the entry point). We'd either
1818 install it before resuming, which would overwrite/corrupt the
1819 scratch pad, or if it was already inserted, this displaced
1820 step would overwrite it. The latter is OK in the sense that
1821 we already assume that no thread is going to execute the code
1822 in the scratch pad range (after initial startup) anyway, but
1823 the former is unacceptable. Simply punt and fallback to
1824 stepping over this breakpoint in-line. */
1825 if (debug_displaced)
1826 {
1827 fprintf_unfiltered (gdb_stdlog,
1828 "displaced: breakpoint set in scratch pad. "
1829 "Stepping over breakpoint in-line instead.\n");
1830 }
1831
1832 do_cleanups (old_cleanups);
1833 return -1;
1834 }
1835
1836 /* Save the original contents of the copy area. */
1837 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1838 ignore_cleanups = make_cleanup (free_current_contents,
1839 &displaced->step_saved_copy);
1840 status = target_read_memory (copy, displaced->step_saved_copy, len);
1841 if (status != 0)
1842 throw_error (MEMORY_ERROR,
1843 _("Error accessing memory address %s (%s) for "
1844 "displaced-stepping scratch space."),
1845 paddress (gdbarch, copy), safe_strerror (status));
1846 if (debug_displaced)
1847 {
1848 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1849 paddress (gdbarch, copy));
1850 displaced_step_dump_bytes (gdb_stdlog,
1851 displaced->step_saved_copy,
1852 len);
1853 };
1854
1855 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1856 original, copy, regcache);
1857 if (closure == NULL)
1858 {
1859 /* The architecture doesn't know how or want to displaced step
1860 this instruction or instruction sequence. Fallback to
1861 stepping over the breakpoint in-line. */
1862 do_cleanups (old_cleanups);
1863 return -1;
1864 }
1865
1866 /* Save the information we need to fix things up if the step
1867 succeeds. */
1868 displaced->step_ptid = ptid;
1869 displaced->step_gdbarch = gdbarch;
1870 displaced->step_closure = closure;
1871 displaced->step_original = original;
1872 displaced->step_copy = copy;
1873
1874 make_cleanup (displaced_step_clear_cleanup, displaced);
1875
1876 /* Resume execution at the copy. */
1877 regcache_write_pc (regcache, copy);
1878
1879 discard_cleanups (ignore_cleanups);
1880
1881 do_cleanups (old_cleanups);
1882
1883 if (debug_displaced)
1884 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1885 paddress (gdbarch, copy));
1886
1887 return 1;
1888 }
1889
1890 /* Wrapper for displaced_step_prepare_throw that disabled further
1891 attempts at displaced stepping if we get a memory error. */
1892
1893 static int
1894 displaced_step_prepare (ptid_t ptid)
1895 {
1896 int prepared = -1;
1897
1898 TRY
1899 {
1900 prepared = displaced_step_prepare_throw (ptid);
1901 }
1902 CATCH (ex, RETURN_MASK_ERROR)
1903 {
1904 struct displaced_step_inferior_state *displaced_state;
1905
1906 if (ex.error != MEMORY_ERROR
1907 && ex.error != NOT_SUPPORTED_ERROR)
1908 throw_exception (ex);
1909
1910 if (debug_infrun)
1911 {
1912 fprintf_unfiltered (gdb_stdlog,
1913 "infrun: disabling displaced stepping: %s\n",
1914 ex.message);
1915 }
1916
1917 /* Be verbose if "set displaced-stepping" is "on", silent if
1918 "auto". */
1919 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1920 {
1921 warning (_("disabling displaced stepping: %s"),
1922 ex.message);
1923 }
1924
1925 /* Disable further displaced stepping attempts. */
1926 displaced_state
1927 = get_displaced_stepping_state (ptid_get_pid (ptid));
1928 displaced_state->failed_before = 1;
1929 }
1930 END_CATCH
1931
1932 return prepared;
1933 }
1934
1935 static void
1936 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1937 const gdb_byte *myaddr, int len)
1938 {
1939 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1940
1941 inferior_ptid = ptid;
1942 write_memory (memaddr, myaddr, len);
1943 do_cleanups (ptid_cleanup);
1944 }
1945
1946 /* Restore the contents of the copy area for thread PTID. */
1947
1948 static void
1949 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1950 ptid_t ptid)
1951 {
1952 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1953
1954 write_memory_ptid (ptid, displaced->step_copy,
1955 displaced->step_saved_copy, len);
1956 if (debug_displaced)
1957 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1958 target_pid_to_str (ptid),
1959 paddress (displaced->step_gdbarch,
1960 displaced->step_copy));
1961 }
1962
1963 /* If we displaced stepped an instruction successfully, adjust
1964 registers and memory to yield the same effect the instruction would
1965 have had if we had executed it at its original address, and return
1966 1. If the instruction didn't complete, relocate the PC and return
1967 -1. If the thread wasn't displaced stepping, return 0. */
1968
1969 static int
1970 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1971 {
1972 struct cleanup *old_cleanups;
1973 struct displaced_step_inferior_state *displaced
1974 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1975 int ret;
1976
1977 /* Was any thread of this process doing a displaced step? */
1978 if (displaced == NULL)
1979 return 0;
1980
1981 /* Was this event for the pid we displaced? */
1982 if (ptid_equal (displaced->step_ptid, null_ptid)
1983 || ! ptid_equal (displaced->step_ptid, event_ptid))
1984 return 0;
1985
1986 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1987
1988 displaced_step_restore (displaced, displaced->step_ptid);
1989
1990 /* Fixup may need to read memory/registers. Switch to the thread
1991 that we're fixing up. Also, target_stopped_by_watchpoint checks
1992 the current thread. */
1993 switch_to_thread (event_ptid);
1994
1995 /* Did the instruction complete successfully? */
1996 if (signal == GDB_SIGNAL_TRAP
1997 && !(target_stopped_by_watchpoint ()
1998 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1999 || target_have_steppable_watchpoint)))
2000 {
2001 /* Fix up the resulting state. */
2002 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2003 displaced->step_closure,
2004 displaced->step_original,
2005 displaced->step_copy,
2006 get_thread_regcache (displaced->step_ptid));
2007 ret = 1;
2008 }
2009 else
2010 {
2011 /* Since the instruction didn't complete, all we can do is
2012 relocate the PC. */
2013 struct regcache *regcache = get_thread_regcache (event_ptid);
2014 CORE_ADDR pc = regcache_read_pc (regcache);
2015
2016 pc = displaced->step_original + (pc - displaced->step_copy);
2017 regcache_write_pc (regcache, pc);
2018 ret = -1;
2019 }
2020
2021 do_cleanups (old_cleanups);
2022
2023 displaced->step_ptid = null_ptid;
2024
2025 return ret;
2026 }
2027
2028 /* Data to be passed around while handling an event. This data is
2029 discarded between events. */
2030 struct execution_control_state
2031 {
2032 ptid_t ptid;
2033 /* The thread that got the event, if this was a thread event; NULL
2034 otherwise. */
2035 struct thread_info *event_thread;
2036
2037 struct target_waitstatus ws;
2038 int stop_func_filled_in;
2039 CORE_ADDR stop_func_start;
2040 CORE_ADDR stop_func_end;
2041 const char *stop_func_name;
2042 int wait_some_more;
2043
2044 /* True if the event thread hit the single-step breakpoint of
2045 another thread. Thus the event doesn't cause a stop, the thread
2046 needs to be single-stepped past the single-step breakpoint before
2047 we can switch back to the original stepping thread. */
2048 int hit_singlestep_breakpoint;
2049 };
2050
2051 /* Clear ECS and set it to point at TP. */
2052
2053 static void
2054 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2055 {
2056 memset (ecs, 0, sizeof (*ecs));
2057 ecs->event_thread = tp;
2058 ecs->ptid = tp->ptid;
2059 }
2060
2061 static void keep_going_pass_signal (struct execution_control_state *ecs);
2062 static void prepare_to_wait (struct execution_control_state *ecs);
2063 static int keep_going_stepped_thread (struct thread_info *tp);
2064 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2065
2066 /* Are there any pending step-over requests? If so, run all we can
2067 now and return true. Otherwise, return false. */
2068
2069 static int
2070 start_step_over (void)
2071 {
2072 struct thread_info *tp, *next;
2073
2074 /* Don't start a new step-over if we already have an in-line
2075 step-over operation ongoing. */
2076 if (step_over_info_valid_p ())
2077 return 0;
2078
2079 for (tp = step_over_queue_head; tp != NULL; tp = next)
2080 {
2081 struct execution_control_state ecss;
2082 struct execution_control_state *ecs = &ecss;
2083 step_over_what step_what;
2084 int must_be_in_line;
2085
2086 next = thread_step_over_chain_next (tp);
2087
2088 /* If this inferior already has a displaced step in process,
2089 don't start a new one. */
2090 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2091 continue;
2092
2093 step_what = thread_still_needs_step_over (tp);
2094 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2095 || ((step_what & STEP_OVER_BREAKPOINT)
2096 && !use_displaced_stepping (tp)));
2097
2098 /* We currently stop all threads of all processes to step-over
2099 in-line. If we need to start a new in-line step-over, let
2100 any pending displaced steps finish first. */
2101 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2102 return 0;
2103
2104 thread_step_over_chain_remove (tp);
2105
2106 if (step_over_queue_head == NULL)
2107 {
2108 if (debug_infrun)
2109 fprintf_unfiltered (gdb_stdlog,
2110 "infrun: step-over queue now empty\n");
2111 }
2112
2113 if (tp->control.trap_expected
2114 || tp->resumed
2115 || tp->executing)
2116 {
2117 internal_error (__FILE__, __LINE__,
2118 "[%s] has inconsistent state: "
2119 "trap_expected=%d, resumed=%d, executing=%d\n",
2120 target_pid_to_str (tp->ptid),
2121 tp->control.trap_expected,
2122 tp->resumed,
2123 tp->executing);
2124 }
2125
2126 if (debug_infrun)
2127 fprintf_unfiltered (gdb_stdlog,
2128 "infrun: resuming [%s] for step-over\n",
2129 target_pid_to_str (tp->ptid));
2130
2131 /* keep_going_pass_signal skips the step-over if the breakpoint
2132 is no longer inserted. In all-stop, we want to keep looking
2133 for a thread that needs a step-over instead of resuming TP,
2134 because we wouldn't be able to resume anything else until the
2135 target stops again. In non-stop, the resume always resumes
2136 only TP, so it's OK to let the thread resume freely. */
2137 if (!target_is_non_stop_p () && !step_what)
2138 continue;
2139
2140 switch_to_thread (tp->ptid);
2141 reset_ecs (ecs, tp);
2142 keep_going_pass_signal (ecs);
2143
2144 if (!ecs->wait_some_more)
2145 error (_("Command aborted."));
2146
2147 gdb_assert (tp->resumed);
2148
2149 /* If we started a new in-line step-over, we're done. */
2150 if (step_over_info_valid_p ())
2151 {
2152 gdb_assert (tp->control.trap_expected);
2153 return 1;
2154 }
2155
2156 if (!target_is_non_stop_p ())
2157 {
2158 /* On all-stop, shouldn't have resumed unless we needed a
2159 step over. */
2160 gdb_assert (tp->control.trap_expected
2161 || tp->step_after_step_resume_breakpoint);
2162
2163 /* With remote targets (at least), in all-stop, we can't
2164 issue any further remote commands until the program stops
2165 again. */
2166 return 1;
2167 }
2168
2169 /* Either the thread no longer needed a step-over, or a new
2170 displaced stepping sequence started. Even in the latter
2171 case, continue looking. Maybe we can also start another
2172 displaced step on a thread of other process. */
2173 }
2174
2175 return 0;
2176 }
2177
2178 /* Update global variables holding ptids to hold NEW_PTID if they were
2179 holding OLD_PTID. */
2180 static void
2181 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2182 {
2183 struct displaced_step_inferior_state *displaced;
2184
2185 if (ptid_equal (inferior_ptid, old_ptid))
2186 inferior_ptid = new_ptid;
2187
2188 for (displaced = displaced_step_inferior_states;
2189 displaced;
2190 displaced = displaced->next)
2191 {
2192 if (ptid_equal (displaced->step_ptid, old_ptid))
2193 displaced->step_ptid = new_ptid;
2194 }
2195 }
2196
2197 \f
2198 /* Resuming. */
2199
2200 /* Things to clean up if we QUIT out of resume (). */
2201 static void
2202 resume_cleanups (void *ignore)
2203 {
2204 if (!ptid_equal (inferior_ptid, null_ptid))
2205 delete_single_step_breakpoints (inferior_thread ());
2206
2207 normal_stop ();
2208 }
2209
2210 static const char schedlock_off[] = "off";
2211 static const char schedlock_on[] = "on";
2212 static const char schedlock_step[] = "step";
2213 static const char schedlock_replay[] = "replay";
2214 static const char *const scheduler_enums[] = {
2215 schedlock_off,
2216 schedlock_on,
2217 schedlock_step,
2218 schedlock_replay,
2219 NULL
2220 };
2221 static const char *scheduler_mode = schedlock_replay;
2222 static void
2223 show_scheduler_mode (struct ui_file *file, int from_tty,
2224 struct cmd_list_element *c, const char *value)
2225 {
2226 fprintf_filtered (file,
2227 _("Mode for locking scheduler "
2228 "during execution is \"%s\".\n"),
2229 value);
2230 }
2231
2232 static void
2233 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2234 {
2235 if (!target_can_lock_scheduler)
2236 {
2237 scheduler_mode = schedlock_off;
2238 error (_("Target '%s' cannot support this command."), target_shortname);
2239 }
2240 }
2241
2242 /* True if execution commands resume all threads of all processes by
2243 default; otherwise, resume only threads of the current inferior
2244 process. */
2245 int sched_multi = 0;
2246
2247 /* Try to setup for software single stepping over the specified location.
2248 Return 1 if target_resume() should use hardware single step.
2249
2250 GDBARCH the current gdbarch.
2251 PC the location to step over. */
2252
2253 static int
2254 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2255 {
2256 int hw_step = 1;
2257
2258 if (execution_direction == EXEC_FORWARD
2259 && gdbarch_software_single_step_p (gdbarch)
2260 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2261 {
2262 hw_step = 0;
2263 }
2264 return hw_step;
2265 }
2266
2267 /* See infrun.h. */
2268
2269 ptid_t
2270 user_visible_resume_ptid (int step)
2271 {
2272 ptid_t resume_ptid;
2273
2274 if (non_stop)
2275 {
2276 /* With non-stop mode on, threads are always handled
2277 individually. */
2278 resume_ptid = inferior_ptid;
2279 }
2280 else if ((scheduler_mode == schedlock_on)
2281 || (scheduler_mode == schedlock_step && step))
2282 {
2283 /* User-settable 'scheduler' mode requires solo thread
2284 resume. */
2285 resume_ptid = inferior_ptid;
2286 }
2287 else if ((scheduler_mode == schedlock_replay)
2288 && target_record_will_replay (minus_one_ptid, execution_direction))
2289 {
2290 /* User-settable 'scheduler' mode requires solo thread resume in replay
2291 mode. */
2292 resume_ptid = inferior_ptid;
2293 }
2294 else if (!sched_multi && target_supports_multi_process ())
2295 {
2296 /* Resume all threads of the current process (and none of other
2297 processes). */
2298 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2299 }
2300 else
2301 {
2302 /* Resume all threads of all processes. */
2303 resume_ptid = RESUME_ALL;
2304 }
2305
2306 return resume_ptid;
2307 }
2308
2309 /* Return a ptid representing the set of threads that we will resume,
2310 in the perspective of the target, assuming run control handling
2311 does not require leaving some threads stopped (e.g., stepping past
2312 breakpoint). USER_STEP indicates whether we're about to start the
2313 target for a stepping command. */
2314
2315 static ptid_t
2316 internal_resume_ptid (int user_step)
2317 {
2318 /* In non-stop, we always control threads individually. Note that
2319 the target may always work in non-stop mode even with "set
2320 non-stop off", in which case user_visible_resume_ptid could
2321 return a wildcard ptid. */
2322 if (target_is_non_stop_p ())
2323 return inferior_ptid;
2324 else
2325 return user_visible_resume_ptid (user_step);
2326 }
2327
2328 /* Wrapper for target_resume, that handles infrun-specific
2329 bookkeeping. */
2330
2331 static void
2332 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2333 {
2334 struct thread_info *tp = inferior_thread ();
2335
2336 /* Install inferior's terminal modes. */
2337 target_terminal_inferior ();
2338
2339 /* Avoid confusing the next resume, if the next stop/resume
2340 happens to apply to another thread. */
2341 tp->suspend.stop_signal = GDB_SIGNAL_0;
2342
2343 /* Advise target which signals may be handled silently.
2344
2345 If we have removed breakpoints because we are stepping over one
2346 in-line (in any thread), we need to receive all signals to avoid
2347 accidentally skipping a breakpoint during execution of a signal
2348 handler.
2349
2350 Likewise if we're displaced stepping, otherwise a trap for a
2351 breakpoint in a signal handler might be confused with the
2352 displaced step finishing. We don't make the displaced_step_fixup
2353 step distinguish the cases instead, because:
2354
2355 - a backtrace while stopped in the signal handler would show the
2356 scratch pad as frame older than the signal handler, instead of
2357 the real mainline code.
2358
2359 - when the thread is later resumed, the signal handler would
2360 return to the scratch pad area, which would no longer be
2361 valid. */
2362 if (step_over_info_valid_p ()
2363 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2364 target_pass_signals (0, NULL);
2365 else
2366 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2367
2368 target_resume (resume_ptid, step, sig);
2369 }
2370
2371 /* Resume the inferior, but allow a QUIT. This is useful if the user
2372 wants to interrupt some lengthy single-stepping operation
2373 (for child processes, the SIGINT goes to the inferior, and so
2374 we get a SIGINT random_signal, but for remote debugging and perhaps
2375 other targets, that's not true).
2376
2377 SIG is the signal to give the inferior (zero for none). */
2378 void
2379 resume (enum gdb_signal sig)
2380 {
2381 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2382 struct regcache *regcache = get_current_regcache ();
2383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2384 struct thread_info *tp = inferior_thread ();
2385 CORE_ADDR pc = regcache_read_pc (regcache);
2386 struct address_space *aspace = get_regcache_aspace (regcache);
2387 ptid_t resume_ptid;
2388 /* This represents the user's step vs continue request. When
2389 deciding whether "set scheduler-locking step" applies, it's the
2390 user's intention that counts. */
2391 const int user_step = tp->control.stepping_command;
2392 /* This represents what we'll actually request the target to do.
2393 This can decay from a step to a continue, if e.g., we need to
2394 implement single-stepping with breakpoints (software
2395 single-step). */
2396 int step;
2397
2398 gdb_assert (!thread_is_in_step_over_chain (tp));
2399
2400 QUIT;
2401
2402 if (tp->suspend.waitstatus_pending_p)
2403 {
2404 if (debug_infrun)
2405 {
2406 char *statstr;
2407
2408 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2409 fprintf_unfiltered (gdb_stdlog,
2410 "infrun: resume: thread %s has pending wait status %s "
2411 "(currently_stepping=%d).\n",
2412 target_pid_to_str (tp->ptid), statstr,
2413 currently_stepping (tp));
2414 xfree (statstr);
2415 }
2416
2417 tp->resumed = 1;
2418
2419 /* FIXME: What should we do if we are supposed to resume this
2420 thread with a signal? Maybe we should maintain a queue of
2421 pending signals to deliver. */
2422 if (sig != GDB_SIGNAL_0)
2423 {
2424 warning (_("Couldn't deliver signal %s to %s."),
2425 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2426 }
2427
2428 tp->suspend.stop_signal = GDB_SIGNAL_0;
2429 discard_cleanups (old_cleanups);
2430
2431 if (target_can_async_p ())
2432 target_async (1);
2433 return;
2434 }
2435
2436 tp->stepped_breakpoint = 0;
2437
2438 /* Depends on stepped_breakpoint. */
2439 step = currently_stepping (tp);
2440
2441 if (current_inferior ()->waiting_for_vfork_done)
2442 {
2443 /* Don't try to single-step a vfork parent that is waiting for
2444 the child to get out of the shared memory region (by exec'ing
2445 or exiting). This is particularly important on software
2446 single-step archs, as the child process would trip on the
2447 software single step breakpoint inserted for the parent
2448 process. Since the parent will not actually execute any
2449 instruction until the child is out of the shared region (such
2450 are vfork's semantics), it is safe to simply continue it.
2451 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2452 the parent, and tell it to `keep_going', which automatically
2453 re-sets it stepping. */
2454 if (debug_infrun)
2455 fprintf_unfiltered (gdb_stdlog,
2456 "infrun: resume : clear step\n");
2457 step = 0;
2458 }
2459
2460 if (debug_infrun)
2461 fprintf_unfiltered (gdb_stdlog,
2462 "infrun: resume (step=%d, signal=%s), "
2463 "trap_expected=%d, current thread [%s] at %s\n",
2464 step, gdb_signal_to_symbol_string (sig),
2465 tp->control.trap_expected,
2466 target_pid_to_str (inferior_ptid),
2467 paddress (gdbarch, pc));
2468
2469 /* Normally, by the time we reach `resume', the breakpoints are either
2470 removed or inserted, as appropriate. The exception is if we're sitting
2471 at a permanent breakpoint; we need to step over it, but permanent
2472 breakpoints can't be removed. So we have to test for it here. */
2473 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2474 {
2475 if (sig != GDB_SIGNAL_0)
2476 {
2477 /* We have a signal to pass to the inferior. The resume
2478 may, or may not take us to the signal handler. If this
2479 is a step, we'll need to stop in the signal handler, if
2480 there's one, (if the target supports stepping into
2481 handlers), or in the next mainline instruction, if
2482 there's no handler. If this is a continue, we need to be
2483 sure to run the handler with all breakpoints inserted.
2484 In all cases, set a breakpoint at the current address
2485 (where the handler returns to), and once that breakpoint
2486 is hit, resume skipping the permanent breakpoint. If
2487 that breakpoint isn't hit, then we've stepped into the
2488 signal handler (or hit some other event). We'll delete
2489 the step-resume breakpoint then. */
2490
2491 if (debug_infrun)
2492 fprintf_unfiltered (gdb_stdlog,
2493 "infrun: resume: skipping permanent breakpoint, "
2494 "deliver signal first\n");
2495
2496 clear_step_over_info ();
2497 tp->control.trap_expected = 0;
2498
2499 if (tp->control.step_resume_breakpoint == NULL)
2500 {
2501 /* Set a "high-priority" step-resume, as we don't want
2502 user breakpoints at PC to trigger (again) when this
2503 hits. */
2504 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2505 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2506
2507 tp->step_after_step_resume_breakpoint = step;
2508 }
2509
2510 insert_breakpoints ();
2511 }
2512 else
2513 {
2514 /* There's no signal to pass, we can go ahead and skip the
2515 permanent breakpoint manually. */
2516 if (debug_infrun)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "infrun: resume: skipping permanent breakpoint\n");
2519 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2520 /* Update pc to reflect the new address from which we will
2521 execute instructions. */
2522 pc = regcache_read_pc (regcache);
2523
2524 if (step)
2525 {
2526 /* We've already advanced the PC, so the stepping part
2527 is done. Now we need to arrange for a trap to be
2528 reported to handle_inferior_event. Set a breakpoint
2529 at the current PC, and run to it. Don't update
2530 prev_pc, because if we end in
2531 switch_back_to_stepped_thread, we want the "expected
2532 thread advanced also" branch to be taken. IOW, we
2533 don't want this thread to step further from PC
2534 (overstep). */
2535 gdb_assert (!step_over_info_valid_p ());
2536 insert_single_step_breakpoint (gdbarch, aspace, pc);
2537 insert_breakpoints ();
2538
2539 resume_ptid = internal_resume_ptid (user_step);
2540 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2541 discard_cleanups (old_cleanups);
2542 tp->resumed = 1;
2543 return;
2544 }
2545 }
2546 }
2547
2548 /* If we have a breakpoint to step over, make sure to do a single
2549 step only. Same if we have software watchpoints. */
2550 if (tp->control.trap_expected || bpstat_should_step ())
2551 tp->control.may_range_step = 0;
2552
2553 /* If enabled, step over breakpoints by executing a copy of the
2554 instruction at a different address.
2555
2556 We can't use displaced stepping when we have a signal to deliver;
2557 the comments for displaced_step_prepare explain why. The
2558 comments in the handle_inferior event for dealing with 'random
2559 signals' explain what we do instead.
2560
2561 We can't use displaced stepping when we are waiting for vfork_done
2562 event, displaced stepping breaks the vfork child similarly as single
2563 step software breakpoint. */
2564 if (tp->control.trap_expected
2565 && use_displaced_stepping (tp)
2566 && !step_over_info_valid_p ()
2567 && sig == GDB_SIGNAL_0
2568 && !current_inferior ()->waiting_for_vfork_done)
2569 {
2570 int prepared = displaced_step_prepare (inferior_ptid);
2571
2572 if (prepared == 0)
2573 {
2574 if (debug_infrun)
2575 fprintf_unfiltered (gdb_stdlog,
2576 "Got placed in step-over queue\n");
2577
2578 tp->control.trap_expected = 0;
2579 discard_cleanups (old_cleanups);
2580 return;
2581 }
2582 else if (prepared < 0)
2583 {
2584 /* Fallback to stepping over the breakpoint in-line. */
2585
2586 if (target_is_non_stop_p ())
2587 stop_all_threads ();
2588
2589 set_step_over_info (get_regcache_aspace (regcache),
2590 regcache_read_pc (regcache), 0, tp->global_num);
2591
2592 step = maybe_software_singlestep (gdbarch, pc);
2593
2594 insert_breakpoints ();
2595 }
2596 else if (prepared > 0)
2597 {
2598 struct displaced_step_inferior_state *displaced;
2599
2600 /* Update pc to reflect the new address from which we will
2601 execute instructions due to displaced stepping. */
2602 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2603
2604 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2605 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2606 displaced->step_closure);
2607 }
2608 }
2609
2610 /* Do we need to do it the hard way, w/temp breakpoints? */
2611 else if (step)
2612 step = maybe_software_singlestep (gdbarch, pc);
2613
2614 /* Currently, our software single-step implementation leads to different
2615 results than hardware single-stepping in one situation: when stepping
2616 into delivering a signal which has an associated signal handler,
2617 hardware single-step will stop at the first instruction of the handler,
2618 while software single-step will simply skip execution of the handler.
2619
2620 For now, this difference in behavior is accepted since there is no
2621 easy way to actually implement single-stepping into a signal handler
2622 without kernel support.
2623
2624 However, there is one scenario where this difference leads to follow-on
2625 problems: if we're stepping off a breakpoint by removing all breakpoints
2626 and then single-stepping. In this case, the software single-step
2627 behavior means that even if there is a *breakpoint* in the signal
2628 handler, GDB still would not stop.
2629
2630 Fortunately, we can at least fix this particular issue. We detect
2631 here the case where we are about to deliver a signal while software
2632 single-stepping with breakpoints removed. In this situation, we
2633 revert the decisions to remove all breakpoints and insert single-
2634 step breakpoints, and instead we install a step-resume breakpoint
2635 at the current address, deliver the signal without stepping, and
2636 once we arrive back at the step-resume breakpoint, actually step
2637 over the breakpoint we originally wanted to step over. */
2638 if (thread_has_single_step_breakpoints_set (tp)
2639 && sig != GDB_SIGNAL_0
2640 && step_over_info_valid_p ())
2641 {
2642 /* If we have nested signals or a pending signal is delivered
2643 immediately after a handler returns, might might already have
2644 a step-resume breakpoint set on the earlier handler. We cannot
2645 set another step-resume breakpoint; just continue on until the
2646 original breakpoint is hit. */
2647 if (tp->control.step_resume_breakpoint == NULL)
2648 {
2649 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2650 tp->step_after_step_resume_breakpoint = 1;
2651 }
2652
2653 delete_single_step_breakpoints (tp);
2654
2655 clear_step_over_info ();
2656 tp->control.trap_expected = 0;
2657
2658 insert_breakpoints ();
2659 }
2660
2661 /* If STEP is set, it's a request to use hardware stepping
2662 facilities. But in that case, we should never
2663 use singlestep breakpoint. */
2664 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2665
2666 /* Decide the set of threads to ask the target to resume. */
2667 if (tp->control.trap_expected)
2668 {
2669 /* We're allowing a thread to run past a breakpoint it has
2670 hit, either by single-stepping the thread with the breakpoint
2671 removed, or by displaced stepping, with the breakpoint inserted.
2672 In the former case, we need to single-step only this thread,
2673 and keep others stopped, as they can miss this breakpoint if
2674 allowed to run. That's not really a problem for displaced
2675 stepping, but, we still keep other threads stopped, in case
2676 another thread is also stopped for a breakpoint waiting for
2677 its turn in the displaced stepping queue. */
2678 resume_ptid = inferior_ptid;
2679 }
2680 else
2681 resume_ptid = internal_resume_ptid (user_step);
2682
2683 if (execution_direction != EXEC_REVERSE
2684 && step && breakpoint_inserted_here_p (aspace, pc))
2685 {
2686 /* There are two cases where we currently need to step a
2687 breakpoint instruction when we have a signal to deliver:
2688
2689 - See handle_signal_stop where we handle random signals that
2690 could take out us out of the stepping range. Normally, in
2691 that case we end up continuing (instead of stepping) over the
2692 signal handler with a breakpoint at PC, but there are cases
2693 where we should _always_ single-step, even if we have a
2694 step-resume breakpoint, like when a software watchpoint is
2695 set. Assuming single-stepping and delivering a signal at the
2696 same time would takes us to the signal handler, then we could
2697 have removed the breakpoint at PC to step over it. However,
2698 some hardware step targets (like e.g., Mac OS) can't step
2699 into signal handlers, and for those, we need to leave the
2700 breakpoint at PC inserted, as otherwise if the handler
2701 recurses and executes PC again, it'll miss the breakpoint.
2702 So we leave the breakpoint inserted anyway, but we need to
2703 record that we tried to step a breakpoint instruction, so
2704 that adjust_pc_after_break doesn't end up confused.
2705
2706 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2707 in one thread after another thread that was stepping had been
2708 momentarily paused for a step-over. When we re-resume the
2709 stepping thread, it may be resumed from that address with a
2710 breakpoint that hasn't trapped yet. Seen with
2711 gdb.threads/non-stop-fair-events.exp, on targets that don't
2712 do displaced stepping. */
2713
2714 if (debug_infrun)
2715 fprintf_unfiltered (gdb_stdlog,
2716 "infrun: resume: [%s] stepped breakpoint\n",
2717 target_pid_to_str (tp->ptid));
2718
2719 tp->stepped_breakpoint = 1;
2720
2721 /* Most targets can step a breakpoint instruction, thus
2722 executing it normally. But if this one cannot, just
2723 continue and we will hit it anyway. */
2724 if (gdbarch_cannot_step_breakpoint (gdbarch))
2725 step = 0;
2726 }
2727
2728 if (debug_displaced
2729 && tp->control.trap_expected
2730 && use_displaced_stepping (tp)
2731 && !step_over_info_valid_p ())
2732 {
2733 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2734 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2735 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2736 gdb_byte buf[4];
2737
2738 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2739 paddress (resume_gdbarch, actual_pc));
2740 read_memory (actual_pc, buf, sizeof (buf));
2741 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2742 }
2743
2744 if (tp->control.may_range_step)
2745 {
2746 /* If we're resuming a thread with the PC out of the step
2747 range, then we're doing some nested/finer run control
2748 operation, like stepping the thread out of the dynamic
2749 linker or the displaced stepping scratch pad. We
2750 shouldn't have allowed a range step then. */
2751 gdb_assert (pc_in_thread_step_range (pc, tp));
2752 }
2753
2754 do_target_resume (resume_ptid, step, sig);
2755 tp->resumed = 1;
2756 discard_cleanups (old_cleanups);
2757 }
2758 \f
2759 /* Proceeding. */
2760
2761 /* See infrun.h. */
2762
2763 /* Counter that tracks number of user visible stops. This can be used
2764 to tell whether a command has proceeded the inferior past the
2765 current location. This allows e.g., inferior function calls in
2766 breakpoint commands to not interrupt the command list. When the
2767 call finishes successfully, the inferior is standing at the same
2768 breakpoint as if nothing happened (and so we don't call
2769 normal_stop). */
2770 static ULONGEST current_stop_id;
2771
2772 /* See infrun.h. */
2773
2774 ULONGEST
2775 get_stop_id (void)
2776 {
2777 return current_stop_id;
2778 }
2779
2780 /* Called when we report a user visible stop. */
2781
2782 static void
2783 new_stop_id (void)
2784 {
2785 current_stop_id++;
2786 }
2787
2788 /* Clear out all variables saying what to do when inferior is continued.
2789 First do this, then set the ones you want, then call `proceed'. */
2790
2791 static void
2792 clear_proceed_status_thread (struct thread_info *tp)
2793 {
2794 if (debug_infrun)
2795 fprintf_unfiltered (gdb_stdlog,
2796 "infrun: clear_proceed_status_thread (%s)\n",
2797 target_pid_to_str (tp->ptid));
2798
2799 /* If we're starting a new sequence, then the previous finished
2800 single-step is no longer relevant. */
2801 if (tp->suspend.waitstatus_pending_p)
2802 {
2803 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2804 {
2805 if (debug_infrun)
2806 fprintf_unfiltered (gdb_stdlog,
2807 "infrun: clear_proceed_status: pending "
2808 "event of %s was a finished step. "
2809 "Discarding.\n",
2810 target_pid_to_str (tp->ptid));
2811
2812 tp->suspend.waitstatus_pending_p = 0;
2813 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2814 }
2815 else if (debug_infrun)
2816 {
2817 char *statstr;
2818
2819 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2820 fprintf_unfiltered (gdb_stdlog,
2821 "infrun: clear_proceed_status_thread: thread %s "
2822 "has pending wait status %s "
2823 "(currently_stepping=%d).\n",
2824 target_pid_to_str (tp->ptid), statstr,
2825 currently_stepping (tp));
2826 xfree (statstr);
2827 }
2828 }
2829
2830 /* If this signal should not be seen by program, give it zero.
2831 Used for debugging signals. */
2832 if (!signal_pass_state (tp->suspend.stop_signal))
2833 tp->suspend.stop_signal = GDB_SIGNAL_0;
2834
2835 thread_fsm_delete (tp->thread_fsm);
2836 tp->thread_fsm = NULL;
2837
2838 tp->control.trap_expected = 0;
2839 tp->control.step_range_start = 0;
2840 tp->control.step_range_end = 0;
2841 tp->control.may_range_step = 0;
2842 tp->control.step_frame_id = null_frame_id;
2843 tp->control.step_stack_frame_id = null_frame_id;
2844 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2845 tp->control.step_start_function = NULL;
2846 tp->stop_requested = 0;
2847
2848 tp->control.stop_step = 0;
2849
2850 tp->control.proceed_to_finish = 0;
2851
2852 tp->control.stepping_command = 0;
2853
2854 /* Discard any remaining commands or status from previous stop. */
2855 bpstat_clear (&tp->control.stop_bpstat);
2856 }
2857
2858 void
2859 clear_proceed_status (int step)
2860 {
2861 /* With scheduler-locking replay, stop replaying other threads if we're
2862 not replaying the user-visible resume ptid.
2863
2864 This is a convenience feature to not require the user to explicitly
2865 stop replaying the other threads. We're assuming that the user's
2866 intent is to resume tracing the recorded process. */
2867 if (!non_stop && scheduler_mode == schedlock_replay
2868 && target_record_is_replaying (minus_one_ptid)
2869 && !target_record_will_replay (user_visible_resume_ptid (step),
2870 execution_direction))
2871 target_record_stop_replaying ();
2872
2873 if (!non_stop)
2874 {
2875 struct thread_info *tp;
2876 ptid_t resume_ptid;
2877
2878 resume_ptid = user_visible_resume_ptid (step);
2879
2880 /* In all-stop mode, delete the per-thread status of all threads
2881 we're about to resume, implicitly and explicitly. */
2882 ALL_NON_EXITED_THREADS (tp)
2883 {
2884 if (!ptid_match (tp->ptid, resume_ptid))
2885 continue;
2886 clear_proceed_status_thread (tp);
2887 }
2888 }
2889
2890 if (!ptid_equal (inferior_ptid, null_ptid))
2891 {
2892 struct inferior *inferior;
2893
2894 if (non_stop)
2895 {
2896 /* If in non-stop mode, only delete the per-thread status of
2897 the current thread. */
2898 clear_proceed_status_thread (inferior_thread ());
2899 }
2900
2901 inferior = current_inferior ();
2902 inferior->control.stop_soon = NO_STOP_QUIETLY;
2903 }
2904
2905 observer_notify_about_to_proceed ();
2906 }
2907
2908 /* Returns true if TP is still stopped at a breakpoint that needs
2909 stepping-over in order to make progress. If the breakpoint is gone
2910 meanwhile, we can skip the whole step-over dance. */
2911
2912 static int
2913 thread_still_needs_step_over_bp (struct thread_info *tp)
2914 {
2915 if (tp->stepping_over_breakpoint)
2916 {
2917 struct regcache *regcache = get_thread_regcache (tp->ptid);
2918
2919 if (breakpoint_here_p (get_regcache_aspace (regcache),
2920 regcache_read_pc (regcache))
2921 == ordinary_breakpoint_here)
2922 return 1;
2923
2924 tp->stepping_over_breakpoint = 0;
2925 }
2926
2927 return 0;
2928 }
2929
2930 /* Check whether thread TP still needs to start a step-over in order
2931 to make progress when resumed. Returns an bitwise or of enum
2932 step_over_what bits, indicating what needs to be stepped over. */
2933
2934 static step_over_what
2935 thread_still_needs_step_over (struct thread_info *tp)
2936 {
2937 step_over_what what = 0;
2938
2939 if (thread_still_needs_step_over_bp (tp))
2940 what |= STEP_OVER_BREAKPOINT;
2941
2942 if (tp->stepping_over_watchpoint
2943 && !target_have_steppable_watchpoint)
2944 what |= STEP_OVER_WATCHPOINT;
2945
2946 return what;
2947 }
2948
2949 /* Returns true if scheduler locking applies. STEP indicates whether
2950 we're about to do a step/next-like command to a thread. */
2951
2952 static int
2953 schedlock_applies (struct thread_info *tp)
2954 {
2955 return (scheduler_mode == schedlock_on
2956 || (scheduler_mode == schedlock_step
2957 && tp->control.stepping_command)
2958 || (scheduler_mode == schedlock_replay
2959 && target_record_will_replay (minus_one_ptid,
2960 execution_direction)));
2961 }
2962
2963 /* Basic routine for continuing the program in various fashions.
2964
2965 ADDR is the address to resume at, or -1 for resume where stopped.
2966 SIGGNAL is the signal to give it, or 0 for none,
2967 or -1 for act according to how it stopped.
2968 STEP is nonzero if should trap after one instruction.
2969 -1 means return after that and print nothing.
2970 You should probably set various step_... variables
2971 before calling here, if you are stepping.
2972
2973 You should call clear_proceed_status before calling proceed. */
2974
2975 void
2976 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2977 {
2978 struct regcache *regcache;
2979 struct gdbarch *gdbarch;
2980 struct thread_info *tp;
2981 CORE_ADDR pc;
2982 struct address_space *aspace;
2983 ptid_t resume_ptid;
2984 struct execution_control_state ecss;
2985 struct execution_control_state *ecs = &ecss;
2986 struct cleanup *old_chain;
2987 int started;
2988
2989 /* If we're stopped at a fork/vfork, follow the branch set by the
2990 "set follow-fork-mode" command; otherwise, we'll just proceed
2991 resuming the current thread. */
2992 if (!follow_fork ())
2993 {
2994 /* The target for some reason decided not to resume. */
2995 normal_stop ();
2996 if (target_can_async_p ())
2997 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2998 return;
2999 }
3000
3001 /* We'll update this if & when we switch to a new thread. */
3002 previous_inferior_ptid = inferior_ptid;
3003
3004 regcache = get_current_regcache ();
3005 gdbarch = get_regcache_arch (regcache);
3006 aspace = get_regcache_aspace (regcache);
3007 pc = regcache_read_pc (regcache);
3008 tp = inferior_thread ();
3009
3010 /* Fill in with reasonable starting values. */
3011 init_thread_stepping_state (tp);
3012
3013 gdb_assert (!thread_is_in_step_over_chain (tp));
3014
3015 if (addr == (CORE_ADDR) -1)
3016 {
3017 if (pc == stop_pc
3018 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3019 && execution_direction != EXEC_REVERSE)
3020 /* There is a breakpoint at the address we will resume at,
3021 step one instruction before inserting breakpoints so that
3022 we do not stop right away (and report a second hit at this
3023 breakpoint).
3024
3025 Note, we don't do this in reverse, because we won't
3026 actually be executing the breakpoint insn anyway.
3027 We'll be (un-)executing the previous instruction. */
3028 tp->stepping_over_breakpoint = 1;
3029 else if (gdbarch_single_step_through_delay_p (gdbarch)
3030 && gdbarch_single_step_through_delay (gdbarch,
3031 get_current_frame ()))
3032 /* We stepped onto an instruction that needs to be stepped
3033 again before re-inserting the breakpoint, do so. */
3034 tp->stepping_over_breakpoint = 1;
3035 }
3036 else
3037 {
3038 regcache_write_pc (regcache, addr);
3039 }
3040
3041 if (siggnal != GDB_SIGNAL_DEFAULT)
3042 tp->suspend.stop_signal = siggnal;
3043
3044 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3045
3046 /* If an exception is thrown from this point on, make sure to
3047 propagate GDB's knowledge of the executing state to the
3048 frontend/user running state. */
3049 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3050
3051 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3052 threads (e.g., we might need to set threads stepping over
3053 breakpoints first), from the user/frontend's point of view, all
3054 threads in RESUME_PTID are now running. Unless we're calling an
3055 inferior function, as in that case we pretend the inferior
3056 doesn't run at all. */
3057 if (!tp->control.in_infcall)
3058 set_running (resume_ptid, 1);
3059
3060 if (debug_infrun)
3061 fprintf_unfiltered (gdb_stdlog,
3062 "infrun: proceed (addr=%s, signal=%s)\n",
3063 paddress (gdbarch, addr),
3064 gdb_signal_to_symbol_string (siggnal));
3065
3066 annotate_starting ();
3067
3068 /* Make sure that output from GDB appears before output from the
3069 inferior. */
3070 gdb_flush (gdb_stdout);
3071
3072 /* In a multi-threaded task we may select another thread and
3073 then continue or step.
3074
3075 But if a thread that we're resuming had stopped at a breakpoint,
3076 it will immediately cause another breakpoint stop without any
3077 execution (i.e. it will report a breakpoint hit incorrectly). So
3078 we must step over it first.
3079
3080 Look for threads other than the current (TP) that reported a
3081 breakpoint hit and haven't been resumed yet since. */
3082
3083 /* If scheduler locking applies, we can avoid iterating over all
3084 threads. */
3085 if (!non_stop && !schedlock_applies (tp))
3086 {
3087 struct thread_info *current = tp;
3088
3089 ALL_NON_EXITED_THREADS (tp)
3090 {
3091 /* Ignore the current thread here. It's handled
3092 afterwards. */
3093 if (tp == current)
3094 continue;
3095
3096 /* Ignore threads of processes we're not resuming. */
3097 if (!ptid_match (tp->ptid, resume_ptid))
3098 continue;
3099
3100 if (!thread_still_needs_step_over (tp))
3101 continue;
3102
3103 gdb_assert (!thread_is_in_step_over_chain (tp));
3104
3105 if (debug_infrun)
3106 fprintf_unfiltered (gdb_stdlog,
3107 "infrun: need to step-over [%s] first\n",
3108 target_pid_to_str (tp->ptid));
3109
3110 thread_step_over_chain_enqueue (tp);
3111 }
3112
3113 tp = current;
3114 }
3115
3116 /* Enqueue the current thread last, so that we move all other
3117 threads over their breakpoints first. */
3118 if (tp->stepping_over_breakpoint)
3119 thread_step_over_chain_enqueue (tp);
3120
3121 /* If the thread isn't started, we'll still need to set its prev_pc,
3122 so that switch_back_to_stepped_thread knows the thread hasn't
3123 advanced. Must do this before resuming any thread, as in
3124 all-stop/remote, once we resume we can't send any other packet
3125 until the target stops again. */
3126 tp->prev_pc = regcache_read_pc (regcache);
3127
3128 started = start_step_over ();
3129
3130 if (step_over_info_valid_p ())
3131 {
3132 /* Either this thread started a new in-line step over, or some
3133 other thread was already doing one. In either case, don't
3134 resume anything else until the step-over is finished. */
3135 }
3136 else if (started && !target_is_non_stop_p ())
3137 {
3138 /* A new displaced stepping sequence was started. In all-stop,
3139 we can't talk to the target anymore until it next stops. */
3140 }
3141 else if (!non_stop && target_is_non_stop_p ())
3142 {
3143 /* In all-stop, but the target is always in non-stop mode.
3144 Start all other threads that are implicitly resumed too. */
3145 ALL_NON_EXITED_THREADS (tp)
3146 {
3147 /* Ignore threads of processes we're not resuming. */
3148 if (!ptid_match (tp->ptid, resume_ptid))
3149 continue;
3150
3151 if (tp->resumed)
3152 {
3153 if (debug_infrun)
3154 fprintf_unfiltered (gdb_stdlog,
3155 "infrun: proceed: [%s] resumed\n",
3156 target_pid_to_str (tp->ptid));
3157 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3158 continue;
3159 }
3160
3161 if (thread_is_in_step_over_chain (tp))
3162 {
3163 if (debug_infrun)
3164 fprintf_unfiltered (gdb_stdlog,
3165 "infrun: proceed: [%s] needs step-over\n",
3166 target_pid_to_str (tp->ptid));
3167 continue;
3168 }
3169
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "infrun: proceed: resuming %s\n",
3173 target_pid_to_str (tp->ptid));
3174
3175 reset_ecs (ecs, tp);
3176 switch_to_thread (tp->ptid);
3177 keep_going_pass_signal (ecs);
3178 if (!ecs->wait_some_more)
3179 error (_("Command aborted."));
3180 }
3181 }
3182 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3183 {
3184 /* The thread wasn't started, and isn't queued, run it now. */
3185 reset_ecs (ecs, tp);
3186 switch_to_thread (tp->ptid);
3187 keep_going_pass_signal (ecs);
3188 if (!ecs->wait_some_more)
3189 error (_("Command aborted."));
3190 }
3191
3192 discard_cleanups (old_chain);
3193
3194 /* Tell the event loop to wait for it to stop. If the target
3195 supports asynchronous execution, it'll do this from within
3196 target_resume. */
3197 if (!target_can_async_p ())
3198 mark_async_event_handler (infrun_async_inferior_event_token);
3199 }
3200 \f
3201
3202 /* Start remote-debugging of a machine over a serial link. */
3203
3204 void
3205 start_remote (int from_tty)
3206 {
3207 struct inferior *inferior;
3208
3209 inferior = current_inferior ();
3210 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3211
3212 /* Always go on waiting for the target, regardless of the mode. */
3213 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3214 indicate to wait_for_inferior that a target should timeout if
3215 nothing is returned (instead of just blocking). Because of this,
3216 targets expecting an immediate response need to, internally, set
3217 things up so that the target_wait() is forced to eventually
3218 timeout. */
3219 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3220 differentiate to its caller what the state of the target is after
3221 the initial open has been performed. Here we're assuming that
3222 the target has stopped. It should be possible to eventually have
3223 target_open() return to the caller an indication that the target
3224 is currently running and GDB state should be set to the same as
3225 for an async run. */
3226 wait_for_inferior ();
3227
3228 /* Now that the inferior has stopped, do any bookkeeping like
3229 loading shared libraries. We want to do this before normal_stop,
3230 so that the displayed frame is up to date. */
3231 post_create_inferior (&current_target, from_tty);
3232
3233 normal_stop ();
3234 }
3235
3236 /* Initialize static vars when a new inferior begins. */
3237
3238 void
3239 init_wait_for_inferior (void)
3240 {
3241 /* These are meaningless until the first time through wait_for_inferior. */
3242
3243 breakpoint_init_inferior (inf_starting);
3244
3245 clear_proceed_status (0);
3246
3247 target_last_wait_ptid = minus_one_ptid;
3248
3249 previous_inferior_ptid = inferior_ptid;
3250
3251 /* Discard any skipped inlined frames. */
3252 clear_inline_frame_state (minus_one_ptid);
3253 }
3254
3255 \f
3256
3257 static void handle_inferior_event (struct execution_control_state *ecs);
3258
3259 static void handle_step_into_function (struct gdbarch *gdbarch,
3260 struct execution_control_state *ecs);
3261 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3262 struct execution_control_state *ecs);
3263 static void handle_signal_stop (struct execution_control_state *ecs);
3264 static void check_exception_resume (struct execution_control_state *,
3265 struct frame_info *);
3266
3267 static void end_stepping_range (struct execution_control_state *ecs);
3268 static void stop_waiting (struct execution_control_state *ecs);
3269 static void keep_going (struct execution_control_state *ecs);
3270 static void process_event_stop_test (struct execution_control_state *ecs);
3271 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3272
3273 /* Callback for iterate over threads. If the thread is stopped, but
3274 the user/frontend doesn't know about that yet, go through
3275 normal_stop, as if the thread had just stopped now. ARG points at
3276 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3277 ptid_is_pid(PTID) is true, applies to all threads of the process
3278 pointed at by PTID. Otherwise, apply only to the thread pointed by
3279 PTID. */
3280
3281 static int
3282 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3283 {
3284 ptid_t ptid = * (ptid_t *) arg;
3285
3286 if ((ptid_equal (info->ptid, ptid)
3287 || ptid_equal (minus_one_ptid, ptid)
3288 || (ptid_is_pid (ptid)
3289 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3290 && is_running (info->ptid)
3291 && !is_executing (info->ptid))
3292 {
3293 struct cleanup *old_chain;
3294 struct execution_control_state ecss;
3295 struct execution_control_state *ecs = &ecss;
3296
3297 memset (ecs, 0, sizeof (*ecs));
3298
3299 old_chain = make_cleanup_restore_current_thread ();
3300
3301 overlay_cache_invalid = 1;
3302 /* Flush target cache before starting to handle each event.
3303 Target was running and cache could be stale. This is just a
3304 heuristic. Running threads may modify target memory, but we
3305 don't get any event. */
3306 target_dcache_invalidate ();
3307
3308 /* Go through handle_inferior_event/normal_stop, so we always
3309 have consistent output as if the stop event had been
3310 reported. */
3311 ecs->ptid = info->ptid;
3312 ecs->event_thread = info;
3313 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
3314 ecs->ws.value.sig = GDB_SIGNAL_0;
3315
3316 handle_inferior_event (ecs);
3317
3318 if (!ecs->wait_some_more)
3319 {
3320 /* Cancel any running execution command. */
3321 thread_cancel_execution_command (info);
3322
3323 normal_stop ();
3324 }
3325
3326 do_cleanups (old_chain);
3327 }
3328
3329 return 0;
3330 }
3331
3332 /* This function is attached as a "thread_stop_requested" observer.
3333 Cleanup local state that assumed the PTID was to be resumed, and
3334 report the stop to the frontend. */
3335
3336 static void
3337 infrun_thread_stop_requested (ptid_t ptid)
3338 {
3339 struct thread_info *tp;
3340
3341 /* PTID was requested to stop. Remove matching threads from the
3342 step-over queue, so we don't try to resume them
3343 automatically. */
3344 ALL_NON_EXITED_THREADS (tp)
3345 if (ptid_match (tp->ptid, ptid))
3346 {
3347 if (thread_is_in_step_over_chain (tp))
3348 thread_step_over_chain_remove (tp);
3349 }
3350
3351 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3352 }
3353
3354 static void
3355 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3356 {
3357 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3358 nullify_last_target_wait_ptid ();
3359 }
3360
3361 /* Delete the step resume, single-step and longjmp/exception resume
3362 breakpoints of TP. */
3363
3364 static void
3365 delete_thread_infrun_breakpoints (struct thread_info *tp)
3366 {
3367 delete_step_resume_breakpoint (tp);
3368 delete_exception_resume_breakpoint (tp);
3369 delete_single_step_breakpoints (tp);
3370 }
3371
3372 /* If the target still has execution, call FUNC for each thread that
3373 just stopped. In all-stop, that's all the non-exited threads; in
3374 non-stop, that's the current thread, only. */
3375
3376 typedef void (*for_each_just_stopped_thread_callback_func)
3377 (struct thread_info *tp);
3378
3379 static void
3380 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3381 {
3382 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3383 return;
3384
3385 if (target_is_non_stop_p ())
3386 {
3387 /* If in non-stop mode, only the current thread stopped. */
3388 func (inferior_thread ());
3389 }
3390 else
3391 {
3392 struct thread_info *tp;
3393
3394 /* In all-stop mode, all threads have stopped. */
3395 ALL_NON_EXITED_THREADS (tp)
3396 {
3397 func (tp);
3398 }
3399 }
3400 }
3401
3402 /* Delete the step resume and longjmp/exception resume breakpoints of
3403 the threads that just stopped. */
3404
3405 static void
3406 delete_just_stopped_threads_infrun_breakpoints (void)
3407 {
3408 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3409 }
3410
3411 /* Delete the single-step breakpoints of the threads that just
3412 stopped. */
3413
3414 static void
3415 delete_just_stopped_threads_single_step_breakpoints (void)
3416 {
3417 for_each_just_stopped_thread (delete_single_step_breakpoints);
3418 }
3419
3420 /* A cleanup wrapper. */
3421
3422 static void
3423 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3424 {
3425 delete_just_stopped_threads_infrun_breakpoints ();
3426 }
3427
3428 /* See infrun.h. */
3429
3430 void
3431 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3432 const struct target_waitstatus *ws)
3433 {
3434 char *status_string = target_waitstatus_to_string (ws);
3435 struct ui_file *tmp_stream = mem_fileopen ();
3436 char *text;
3437
3438 /* The text is split over several lines because it was getting too long.
3439 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3440 output as a unit; we want only one timestamp printed if debug_timestamp
3441 is set. */
3442
3443 fprintf_unfiltered (tmp_stream,
3444 "infrun: target_wait (%d.%ld.%ld",
3445 ptid_get_pid (waiton_ptid),
3446 ptid_get_lwp (waiton_ptid),
3447 ptid_get_tid (waiton_ptid));
3448 if (ptid_get_pid (waiton_ptid) != -1)
3449 fprintf_unfiltered (tmp_stream,
3450 " [%s]", target_pid_to_str (waiton_ptid));
3451 fprintf_unfiltered (tmp_stream, ", status) =\n");
3452 fprintf_unfiltered (tmp_stream,
3453 "infrun: %d.%ld.%ld [%s],\n",
3454 ptid_get_pid (result_ptid),
3455 ptid_get_lwp (result_ptid),
3456 ptid_get_tid (result_ptid),
3457 target_pid_to_str (result_ptid));
3458 fprintf_unfiltered (tmp_stream,
3459 "infrun: %s\n",
3460 status_string);
3461
3462 text = ui_file_xstrdup (tmp_stream, NULL);
3463
3464 /* This uses %s in part to handle %'s in the text, but also to avoid
3465 a gcc error: the format attribute requires a string literal. */
3466 fprintf_unfiltered (gdb_stdlog, "%s", text);
3467
3468 xfree (status_string);
3469 xfree (text);
3470 ui_file_delete (tmp_stream);
3471 }
3472
3473 /* Select a thread at random, out of those which are resumed and have
3474 had events. */
3475
3476 static struct thread_info *
3477 random_pending_event_thread (ptid_t waiton_ptid)
3478 {
3479 struct thread_info *event_tp;
3480 int num_events = 0;
3481 int random_selector;
3482
3483 /* First see how many events we have. Count only resumed threads
3484 that have an event pending. */
3485 ALL_NON_EXITED_THREADS (event_tp)
3486 if (ptid_match (event_tp->ptid, waiton_ptid)
3487 && event_tp->resumed
3488 && event_tp->suspend.waitstatus_pending_p)
3489 num_events++;
3490
3491 if (num_events == 0)
3492 return NULL;
3493
3494 /* Now randomly pick a thread out of those that have had events. */
3495 random_selector = (int)
3496 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3497
3498 if (debug_infrun && num_events > 1)
3499 fprintf_unfiltered (gdb_stdlog,
3500 "infrun: Found %d events, selecting #%d\n",
3501 num_events, random_selector);
3502
3503 /* Select the Nth thread that has had an event. */
3504 ALL_NON_EXITED_THREADS (event_tp)
3505 if (ptid_match (event_tp->ptid, waiton_ptid)
3506 && event_tp->resumed
3507 && event_tp->suspend.waitstatus_pending_p)
3508 if (random_selector-- == 0)
3509 break;
3510
3511 return event_tp;
3512 }
3513
3514 /* Wrapper for target_wait that first checks whether threads have
3515 pending statuses to report before actually asking the target for
3516 more events. */
3517
3518 static ptid_t
3519 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3520 {
3521 ptid_t event_ptid;
3522 struct thread_info *tp;
3523
3524 /* First check if there is a resumed thread with a wait status
3525 pending. */
3526 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3527 {
3528 tp = random_pending_event_thread (ptid);
3529 }
3530 else
3531 {
3532 if (debug_infrun)
3533 fprintf_unfiltered (gdb_stdlog,
3534 "infrun: Waiting for specific thread %s.\n",
3535 target_pid_to_str (ptid));
3536
3537 /* We have a specific thread to check. */
3538 tp = find_thread_ptid (ptid);
3539 gdb_assert (tp != NULL);
3540 if (!tp->suspend.waitstatus_pending_p)
3541 tp = NULL;
3542 }
3543
3544 if (tp != NULL
3545 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3546 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3547 {
3548 struct regcache *regcache = get_thread_regcache (tp->ptid);
3549 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3550 CORE_ADDR pc;
3551 int discard = 0;
3552
3553 pc = regcache_read_pc (regcache);
3554
3555 if (pc != tp->suspend.stop_pc)
3556 {
3557 if (debug_infrun)
3558 fprintf_unfiltered (gdb_stdlog,
3559 "infrun: PC of %s changed. was=%s, now=%s\n",
3560 target_pid_to_str (tp->ptid),
3561 paddress (gdbarch, tp->prev_pc),
3562 paddress (gdbarch, pc));
3563 discard = 1;
3564 }
3565 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3566 {
3567 if (debug_infrun)
3568 fprintf_unfiltered (gdb_stdlog,
3569 "infrun: previous breakpoint of %s, at %s gone\n",
3570 target_pid_to_str (tp->ptid),
3571 paddress (gdbarch, pc));
3572
3573 discard = 1;
3574 }
3575
3576 if (discard)
3577 {
3578 if (debug_infrun)
3579 fprintf_unfiltered (gdb_stdlog,
3580 "infrun: pending event of %s cancelled.\n",
3581 target_pid_to_str (tp->ptid));
3582
3583 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3584 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3585 }
3586 }
3587
3588 if (tp != NULL)
3589 {
3590 if (debug_infrun)
3591 {
3592 char *statstr;
3593
3594 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3595 fprintf_unfiltered (gdb_stdlog,
3596 "infrun: Using pending wait status %s for %s.\n",
3597 statstr,
3598 target_pid_to_str (tp->ptid));
3599 xfree (statstr);
3600 }
3601
3602 /* Now that we've selected our final event LWP, un-adjust its PC
3603 if it was a software breakpoint (and the target doesn't
3604 always adjust the PC itself). */
3605 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3606 && !target_supports_stopped_by_sw_breakpoint ())
3607 {
3608 struct regcache *regcache;
3609 struct gdbarch *gdbarch;
3610 int decr_pc;
3611
3612 regcache = get_thread_regcache (tp->ptid);
3613 gdbarch = get_regcache_arch (regcache);
3614
3615 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3616 if (decr_pc != 0)
3617 {
3618 CORE_ADDR pc;
3619
3620 pc = regcache_read_pc (regcache);
3621 regcache_write_pc (regcache, pc + decr_pc);
3622 }
3623 }
3624
3625 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3626 *status = tp->suspend.waitstatus;
3627 tp->suspend.waitstatus_pending_p = 0;
3628
3629 /* Wake up the event loop again, until all pending events are
3630 processed. */
3631 if (target_is_async_p ())
3632 mark_async_event_handler (infrun_async_inferior_event_token);
3633 return tp->ptid;
3634 }
3635
3636 /* But if we don't find one, we'll have to wait. */
3637
3638 if (deprecated_target_wait_hook)
3639 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3640 else
3641 event_ptid = target_wait (ptid, status, options);
3642
3643 return event_ptid;
3644 }
3645
3646 /* Prepare and stabilize the inferior for detaching it. E.g.,
3647 detaching while a thread is displaced stepping is a recipe for
3648 crashing it, as nothing would readjust the PC out of the scratch
3649 pad. */
3650
3651 void
3652 prepare_for_detach (void)
3653 {
3654 struct inferior *inf = current_inferior ();
3655 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3656 struct cleanup *old_chain_1;
3657 struct displaced_step_inferior_state *displaced;
3658
3659 displaced = get_displaced_stepping_state (inf->pid);
3660
3661 /* Is any thread of this process displaced stepping? If not,
3662 there's nothing else to do. */
3663 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3664 return;
3665
3666 if (debug_infrun)
3667 fprintf_unfiltered (gdb_stdlog,
3668 "displaced-stepping in-process while detaching");
3669
3670 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3671 inf->detaching = 1;
3672
3673 while (!ptid_equal (displaced->step_ptid, null_ptid))
3674 {
3675 struct cleanup *old_chain_2;
3676 struct execution_control_state ecss;
3677 struct execution_control_state *ecs;
3678
3679 ecs = &ecss;
3680 memset (ecs, 0, sizeof (*ecs));
3681
3682 overlay_cache_invalid = 1;
3683 /* Flush target cache before starting to handle each event.
3684 Target was running and cache could be stale. This is just a
3685 heuristic. Running threads may modify target memory, but we
3686 don't get any event. */
3687 target_dcache_invalidate ();
3688
3689 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3690
3691 if (debug_infrun)
3692 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3693
3694 /* If an error happens while handling the event, propagate GDB's
3695 knowledge of the executing state to the frontend/user running
3696 state. */
3697 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3698 &minus_one_ptid);
3699
3700 /* Now figure out what to do with the result of the result. */
3701 handle_inferior_event (ecs);
3702
3703 /* No error, don't finish the state yet. */
3704 discard_cleanups (old_chain_2);
3705
3706 /* Breakpoints and watchpoints are not installed on the target
3707 at this point, and signals are passed directly to the
3708 inferior, so this must mean the process is gone. */
3709 if (!ecs->wait_some_more)
3710 {
3711 discard_cleanups (old_chain_1);
3712 error (_("Program exited while detaching"));
3713 }
3714 }
3715
3716 discard_cleanups (old_chain_1);
3717 }
3718
3719 /* Wait for control to return from inferior to debugger.
3720
3721 If inferior gets a signal, we may decide to start it up again
3722 instead of returning. That is why there is a loop in this function.
3723 When this function actually returns it means the inferior
3724 should be left stopped and GDB should read more commands. */
3725
3726 void
3727 wait_for_inferior (void)
3728 {
3729 struct cleanup *old_cleanups;
3730 struct cleanup *thread_state_chain;
3731
3732 if (debug_infrun)
3733 fprintf_unfiltered
3734 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3735
3736 old_cleanups
3737 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3738 NULL);
3739
3740 /* If an error happens while handling the event, propagate GDB's
3741 knowledge of the executing state to the frontend/user running
3742 state. */
3743 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3744
3745 while (1)
3746 {
3747 struct execution_control_state ecss;
3748 struct execution_control_state *ecs = &ecss;
3749 ptid_t waiton_ptid = minus_one_ptid;
3750
3751 memset (ecs, 0, sizeof (*ecs));
3752
3753 overlay_cache_invalid = 1;
3754
3755 /* Flush target cache before starting to handle each event.
3756 Target was running and cache could be stale. This is just a
3757 heuristic. Running threads may modify target memory, but we
3758 don't get any event. */
3759 target_dcache_invalidate ();
3760
3761 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3762
3763 if (debug_infrun)
3764 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3765
3766 /* Now figure out what to do with the result of the result. */
3767 handle_inferior_event (ecs);
3768
3769 if (!ecs->wait_some_more)
3770 break;
3771 }
3772
3773 /* No error, don't finish the state yet. */
3774 discard_cleanups (thread_state_chain);
3775
3776 do_cleanups (old_cleanups);
3777 }
3778
3779 /* Cleanup that reinstalls the readline callback handler, if the
3780 target is running in the background. If while handling the target
3781 event something triggered a secondary prompt, like e.g., a
3782 pagination prompt, we'll have removed the callback handler (see
3783 gdb_readline_wrapper_line). Need to do this as we go back to the
3784 event loop, ready to process further input. Note this has no
3785 effect if the handler hasn't actually been removed, because calling
3786 rl_callback_handler_install resets the line buffer, thus losing
3787 input. */
3788
3789 static void
3790 reinstall_readline_callback_handler_cleanup (void *arg)
3791 {
3792 struct ui *ui = current_ui;
3793
3794 if (!ui->async)
3795 {
3796 /* We're not going back to the top level event loop yet. Don't
3797 install the readline callback, as it'd prep the terminal,
3798 readline-style (raw, noecho) (e.g., --batch). We'll install
3799 it the next time the prompt is displayed, when we're ready
3800 for input. */
3801 return;
3802 }
3803
3804 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3805 gdb_rl_callback_handler_reinstall ();
3806 }
3807
3808 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3809 that's just the event thread. In all-stop, that's all threads. */
3810
3811 static void
3812 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3813 {
3814 struct thread_info *thr = ecs->event_thread;
3815
3816 if (thr != NULL && thr->thread_fsm != NULL)
3817 thread_fsm_clean_up (thr->thread_fsm, thr);
3818
3819 if (!non_stop)
3820 {
3821 ALL_NON_EXITED_THREADS (thr)
3822 {
3823 if (thr->thread_fsm == NULL)
3824 continue;
3825 if (thr == ecs->event_thread)
3826 continue;
3827
3828 switch_to_thread (thr->ptid);
3829 thread_fsm_clean_up (thr->thread_fsm, thr);
3830 }
3831
3832 if (ecs->event_thread != NULL)
3833 switch_to_thread (ecs->event_thread->ptid);
3834 }
3835 }
3836
3837 /* Helper for all_uis_check_sync_execution_done that works on the
3838 current UI. */
3839
3840 static void
3841 check_curr_ui_sync_execution_done (void)
3842 {
3843 struct ui *ui = current_ui;
3844
3845 if (ui->prompt_state == PROMPT_NEEDED
3846 && ui->async
3847 && !gdb_in_secondary_prompt_p (ui))
3848 {
3849 target_terminal_ours ();
3850 observer_notify_sync_execution_done ();
3851 ui_register_input_event_handler (ui);
3852 }
3853 }
3854
3855 /* See infrun.h. */
3856
3857 void
3858 all_uis_check_sync_execution_done (void)
3859 {
3860 struct switch_thru_all_uis state;
3861
3862 SWITCH_THRU_ALL_UIS (state)
3863 {
3864 check_curr_ui_sync_execution_done ();
3865 }
3866 }
3867
3868 /* See infrun.h. */
3869
3870 void
3871 all_uis_on_sync_execution_starting (void)
3872 {
3873 struct switch_thru_all_uis state;
3874
3875 SWITCH_THRU_ALL_UIS (state)
3876 {
3877 if (current_ui->prompt_state == PROMPT_NEEDED)
3878 async_disable_stdin ();
3879 }
3880 }
3881
3882 /* Asynchronous version of wait_for_inferior. It is called by the
3883 event loop whenever a change of state is detected on the file
3884 descriptor corresponding to the target. It can be called more than
3885 once to complete a single execution command. In such cases we need
3886 to keep the state in a global variable ECSS. If it is the last time
3887 that this function is called for a single execution command, then
3888 report to the user that the inferior has stopped, and do the
3889 necessary cleanups. */
3890
3891 void
3892 fetch_inferior_event (void *client_data)
3893 {
3894 struct execution_control_state ecss;
3895 struct execution_control_state *ecs = &ecss;
3896 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3897 struct cleanup *ts_old_chain;
3898 int cmd_done = 0;
3899 ptid_t waiton_ptid = minus_one_ptid;
3900
3901 memset (ecs, 0, sizeof (*ecs));
3902
3903 /* Events are always processed with the main UI as current UI. This
3904 way, warnings, debug output, etc. are always consistently sent to
3905 the main console. */
3906 make_cleanup_restore_current_ui ();
3907 current_ui = main_ui;
3908
3909 /* End up with readline processing input, if necessary. */
3910 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3911
3912 /* We're handling a live event, so make sure we're doing live
3913 debugging. If we're looking at traceframes while the target is
3914 running, we're going to need to get back to that mode after
3915 handling the event. */
3916 if (non_stop)
3917 {
3918 make_cleanup_restore_current_traceframe ();
3919 set_current_traceframe (-1);
3920 }
3921
3922 if (non_stop)
3923 /* In non-stop mode, the user/frontend should not notice a thread
3924 switch due to internal events. Make sure we reverse to the
3925 user selected thread and frame after handling the event and
3926 running any breakpoint commands. */
3927 make_cleanup_restore_current_thread ();
3928
3929 overlay_cache_invalid = 1;
3930 /* Flush target cache before starting to handle each event. Target
3931 was running and cache could be stale. This is just a heuristic.
3932 Running threads may modify target memory, but we don't get any
3933 event. */
3934 target_dcache_invalidate ();
3935
3936 scoped_restore save_exec_dir
3937 = make_scoped_restore (&execution_direction, target_execution_direction ());
3938
3939 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3940 target_can_async_p () ? TARGET_WNOHANG : 0);
3941
3942 if (debug_infrun)
3943 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3944
3945 /* If an error happens while handling the event, propagate GDB's
3946 knowledge of the executing state to the frontend/user running
3947 state. */
3948 if (!target_is_non_stop_p ())
3949 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3950 else
3951 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3952
3953 /* Get executed before make_cleanup_restore_current_thread above to apply
3954 still for the thread which has thrown the exception. */
3955 make_bpstat_clear_actions_cleanup ();
3956
3957 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3958
3959 /* Now figure out what to do with the result of the result. */
3960 handle_inferior_event (ecs);
3961
3962 if (!ecs->wait_some_more)
3963 {
3964 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3965 int should_stop = 1;
3966 struct thread_info *thr = ecs->event_thread;
3967 int should_notify_stop = 1;
3968
3969 delete_just_stopped_threads_infrun_breakpoints ();
3970
3971 if (thr != NULL)
3972 {
3973 struct thread_fsm *thread_fsm = thr->thread_fsm;
3974
3975 if (thread_fsm != NULL)
3976 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3977 }
3978
3979 if (!should_stop)
3980 {
3981 keep_going (ecs);
3982 }
3983 else
3984 {
3985 clean_up_just_stopped_threads_fsms (ecs);
3986
3987 if (thr != NULL && thr->thread_fsm != NULL)
3988 {
3989 should_notify_stop
3990 = thread_fsm_should_notify_stop (thr->thread_fsm);
3991 }
3992
3993 if (should_notify_stop)
3994 {
3995 int proceeded = 0;
3996
3997 /* We may not find an inferior if this was a process exit. */
3998 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3999 proceeded = normal_stop ();
4000
4001 if (!proceeded)
4002 {
4003 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4004 cmd_done = 1;
4005 }
4006 }
4007 }
4008 }
4009
4010 /* No error, don't finish the thread states yet. */
4011 discard_cleanups (ts_old_chain);
4012
4013 /* Revert thread and frame. */
4014 do_cleanups (old_chain);
4015
4016 /* If a UI was in sync execution mode, and now isn't, restore its
4017 prompt (a synchronous execution command has finished, and we're
4018 ready for input). */
4019 all_uis_check_sync_execution_done ();
4020
4021 if (cmd_done
4022 && exec_done_display_p
4023 && (ptid_equal (inferior_ptid, null_ptid)
4024 || !is_running (inferior_ptid)))
4025 printf_unfiltered (_("completed.\n"));
4026 }
4027
4028 /* Record the frame and location we're currently stepping through. */
4029 void
4030 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4031 {
4032 struct thread_info *tp = inferior_thread ();
4033
4034 tp->control.step_frame_id = get_frame_id (frame);
4035 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4036
4037 tp->current_symtab = sal.symtab;
4038 tp->current_line = sal.line;
4039 }
4040
4041 /* Clear context switchable stepping state. */
4042
4043 void
4044 init_thread_stepping_state (struct thread_info *tss)
4045 {
4046 tss->stepped_breakpoint = 0;
4047 tss->stepping_over_breakpoint = 0;
4048 tss->stepping_over_watchpoint = 0;
4049 tss->step_after_step_resume_breakpoint = 0;
4050 }
4051
4052 /* Set the cached copy of the last ptid/waitstatus. */
4053
4054 void
4055 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4056 {
4057 target_last_wait_ptid = ptid;
4058 target_last_waitstatus = status;
4059 }
4060
4061 /* Return the cached copy of the last pid/waitstatus returned by
4062 target_wait()/deprecated_target_wait_hook(). The data is actually
4063 cached by handle_inferior_event(), which gets called immediately
4064 after target_wait()/deprecated_target_wait_hook(). */
4065
4066 void
4067 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4068 {
4069 *ptidp = target_last_wait_ptid;
4070 *status = target_last_waitstatus;
4071 }
4072
4073 void
4074 nullify_last_target_wait_ptid (void)
4075 {
4076 target_last_wait_ptid = minus_one_ptid;
4077 }
4078
4079 /* Switch thread contexts. */
4080
4081 static void
4082 context_switch (ptid_t ptid)
4083 {
4084 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4085 {
4086 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4087 target_pid_to_str (inferior_ptid));
4088 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4089 target_pid_to_str (ptid));
4090 }
4091
4092 switch_to_thread (ptid);
4093 }
4094
4095 /* If the target can't tell whether we've hit breakpoints
4096 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4097 check whether that could have been caused by a breakpoint. If so,
4098 adjust the PC, per gdbarch_decr_pc_after_break. */
4099
4100 static void
4101 adjust_pc_after_break (struct thread_info *thread,
4102 struct target_waitstatus *ws)
4103 {
4104 struct regcache *regcache;
4105 struct gdbarch *gdbarch;
4106 struct address_space *aspace;
4107 CORE_ADDR breakpoint_pc, decr_pc;
4108
4109 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4110 we aren't, just return.
4111
4112 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4113 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4114 implemented by software breakpoints should be handled through the normal
4115 breakpoint layer.
4116
4117 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4118 different signals (SIGILL or SIGEMT for instance), but it is less
4119 clear where the PC is pointing afterwards. It may not match
4120 gdbarch_decr_pc_after_break. I don't know any specific target that
4121 generates these signals at breakpoints (the code has been in GDB since at
4122 least 1992) so I can not guess how to handle them here.
4123
4124 In earlier versions of GDB, a target with
4125 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4126 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4127 target with both of these set in GDB history, and it seems unlikely to be
4128 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4129
4130 if (ws->kind != TARGET_WAITKIND_STOPPED)
4131 return;
4132
4133 if (ws->value.sig != GDB_SIGNAL_TRAP)
4134 return;
4135
4136 /* In reverse execution, when a breakpoint is hit, the instruction
4137 under it has already been de-executed. The reported PC always
4138 points at the breakpoint address, so adjusting it further would
4139 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4140 architecture:
4141
4142 B1 0x08000000 : INSN1
4143 B2 0x08000001 : INSN2
4144 0x08000002 : INSN3
4145 PC -> 0x08000003 : INSN4
4146
4147 Say you're stopped at 0x08000003 as above. Reverse continuing
4148 from that point should hit B2 as below. Reading the PC when the
4149 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4150 been de-executed already.
4151
4152 B1 0x08000000 : INSN1
4153 B2 PC -> 0x08000001 : INSN2
4154 0x08000002 : INSN3
4155 0x08000003 : INSN4
4156
4157 We can't apply the same logic as for forward execution, because
4158 we would wrongly adjust the PC to 0x08000000, since there's a
4159 breakpoint at PC - 1. We'd then report a hit on B1, although
4160 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4161 behaviour. */
4162 if (execution_direction == EXEC_REVERSE)
4163 return;
4164
4165 /* If the target can tell whether the thread hit a SW breakpoint,
4166 trust it. Targets that can tell also adjust the PC
4167 themselves. */
4168 if (target_supports_stopped_by_sw_breakpoint ())
4169 return;
4170
4171 /* Note that relying on whether a breakpoint is planted in memory to
4172 determine this can fail. E.g,. the breakpoint could have been
4173 removed since. Or the thread could have been told to step an
4174 instruction the size of a breakpoint instruction, and only
4175 _after_ was a breakpoint inserted at its address. */
4176
4177 /* If this target does not decrement the PC after breakpoints, then
4178 we have nothing to do. */
4179 regcache = get_thread_regcache (thread->ptid);
4180 gdbarch = get_regcache_arch (regcache);
4181
4182 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4183 if (decr_pc == 0)
4184 return;
4185
4186 aspace = get_regcache_aspace (regcache);
4187
4188 /* Find the location where (if we've hit a breakpoint) the
4189 breakpoint would be. */
4190 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4191
4192 /* If the target can't tell whether a software breakpoint triggered,
4193 fallback to figuring it out based on breakpoints we think were
4194 inserted in the target, and on whether the thread was stepped or
4195 continued. */
4196
4197 /* Check whether there actually is a software breakpoint inserted at
4198 that location.
4199
4200 If in non-stop mode, a race condition is possible where we've
4201 removed a breakpoint, but stop events for that breakpoint were
4202 already queued and arrive later. To suppress those spurious
4203 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4204 and retire them after a number of stop events are reported. Note
4205 this is an heuristic and can thus get confused. The real fix is
4206 to get the "stopped by SW BP and needs adjustment" info out of
4207 the target/kernel (and thus never reach here; see above). */
4208 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4209 || (target_is_non_stop_p ()
4210 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4211 {
4212 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4213
4214 if (record_full_is_used ())
4215 record_full_gdb_operation_disable_set ();
4216
4217 /* When using hardware single-step, a SIGTRAP is reported for both
4218 a completed single-step and a software breakpoint. Need to
4219 differentiate between the two, as the latter needs adjusting
4220 but the former does not.
4221
4222 The SIGTRAP can be due to a completed hardware single-step only if
4223 - we didn't insert software single-step breakpoints
4224 - this thread is currently being stepped
4225
4226 If any of these events did not occur, we must have stopped due
4227 to hitting a software breakpoint, and have to back up to the
4228 breakpoint address.
4229
4230 As a special case, we could have hardware single-stepped a
4231 software breakpoint. In this case (prev_pc == breakpoint_pc),
4232 we also need to back up to the breakpoint address. */
4233
4234 if (thread_has_single_step_breakpoints_set (thread)
4235 || !currently_stepping (thread)
4236 || (thread->stepped_breakpoint
4237 && thread->prev_pc == breakpoint_pc))
4238 regcache_write_pc (regcache, breakpoint_pc);
4239
4240 do_cleanups (old_cleanups);
4241 }
4242 }
4243
4244 static int
4245 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4246 {
4247 for (frame = get_prev_frame (frame);
4248 frame != NULL;
4249 frame = get_prev_frame (frame))
4250 {
4251 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4252 return 1;
4253 if (get_frame_type (frame) != INLINE_FRAME)
4254 break;
4255 }
4256
4257 return 0;
4258 }
4259
4260 /* Auxiliary function that handles syscall entry/return events.
4261 It returns 1 if the inferior should keep going (and GDB
4262 should ignore the event), or 0 if the event deserves to be
4263 processed. */
4264
4265 static int
4266 handle_syscall_event (struct execution_control_state *ecs)
4267 {
4268 struct regcache *regcache;
4269 int syscall_number;
4270
4271 if (!ptid_equal (ecs->ptid, inferior_ptid))
4272 context_switch (ecs->ptid);
4273
4274 regcache = get_thread_regcache (ecs->ptid);
4275 syscall_number = ecs->ws.value.syscall_number;
4276 stop_pc = regcache_read_pc (regcache);
4277
4278 if (catch_syscall_enabled () > 0
4279 && catching_syscall_number (syscall_number) > 0)
4280 {
4281 if (debug_infrun)
4282 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4283 syscall_number);
4284
4285 ecs->event_thread->control.stop_bpstat
4286 = bpstat_stop_status (get_regcache_aspace (regcache),
4287 stop_pc, ecs->ptid, &ecs->ws);
4288
4289 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4290 {
4291 /* Catchpoint hit. */
4292 return 0;
4293 }
4294 }
4295
4296 /* If no catchpoint triggered for this, then keep going. */
4297 keep_going (ecs);
4298 return 1;
4299 }
4300
4301 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4302
4303 static void
4304 fill_in_stop_func (struct gdbarch *gdbarch,
4305 struct execution_control_state *ecs)
4306 {
4307 if (!ecs->stop_func_filled_in)
4308 {
4309 /* Don't care about return value; stop_func_start and stop_func_name
4310 will both be 0 if it doesn't work. */
4311 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4312 &ecs->stop_func_start, &ecs->stop_func_end);
4313 ecs->stop_func_start
4314 += gdbarch_deprecated_function_start_offset (gdbarch);
4315
4316 if (gdbarch_skip_entrypoint_p (gdbarch))
4317 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4318 ecs->stop_func_start);
4319
4320 ecs->stop_func_filled_in = 1;
4321 }
4322 }
4323
4324
4325 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4326
4327 static enum stop_kind
4328 get_inferior_stop_soon (ptid_t ptid)
4329 {
4330 struct inferior *inf = find_inferior_ptid (ptid);
4331
4332 gdb_assert (inf != NULL);
4333 return inf->control.stop_soon;
4334 }
4335
4336 /* Wait for one event. Store the resulting waitstatus in WS, and
4337 return the event ptid. */
4338
4339 static ptid_t
4340 wait_one (struct target_waitstatus *ws)
4341 {
4342 ptid_t event_ptid;
4343 ptid_t wait_ptid = minus_one_ptid;
4344
4345 overlay_cache_invalid = 1;
4346
4347 /* Flush target cache before starting to handle each event.
4348 Target was running and cache could be stale. This is just a
4349 heuristic. Running threads may modify target memory, but we
4350 don't get any event. */
4351 target_dcache_invalidate ();
4352
4353 if (deprecated_target_wait_hook)
4354 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4355 else
4356 event_ptid = target_wait (wait_ptid, ws, 0);
4357
4358 if (debug_infrun)
4359 print_target_wait_results (wait_ptid, event_ptid, ws);
4360
4361 return event_ptid;
4362 }
4363
4364 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4365 instead of the current thread. */
4366 #define THREAD_STOPPED_BY(REASON) \
4367 static int \
4368 thread_stopped_by_ ## REASON (ptid_t ptid) \
4369 { \
4370 struct cleanup *old_chain; \
4371 int res; \
4372 \
4373 old_chain = save_inferior_ptid (); \
4374 inferior_ptid = ptid; \
4375 \
4376 res = target_stopped_by_ ## REASON (); \
4377 \
4378 do_cleanups (old_chain); \
4379 \
4380 return res; \
4381 }
4382
4383 /* Generate thread_stopped_by_watchpoint. */
4384 THREAD_STOPPED_BY (watchpoint)
4385 /* Generate thread_stopped_by_sw_breakpoint. */
4386 THREAD_STOPPED_BY (sw_breakpoint)
4387 /* Generate thread_stopped_by_hw_breakpoint. */
4388 THREAD_STOPPED_BY (hw_breakpoint)
4389
4390 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4391
4392 static void
4393 switch_to_thread_cleanup (void *ptid_p)
4394 {
4395 ptid_t ptid = *(ptid_t *) ptid_p;
4396
4397 switch_to_thread (ptid);
4398 }
4399
4400 /* Save the thread's event and stop reason to process it later. */
4401
4402 static void
4403 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4404 {
4405 struct regcache *regcache;
4406 struct address_space *aspace;
4407
4408 if (debug_infrun)
4409 {
4410 char *statstr;
4411
4412 statstr = target_waitstatus_to_string (ws);
4413 fprintf_unfiltered (gdb_stdlog,
4414 "infrun: saving status %s for %d.%ld.%ld\n",
4415 statstr,
4416 ptid_get_pid (tp->ptid),
4417 ptid_get_lwp (tp->ptid),
4418 ptid_get_tid (tp->ptid));
4419 xfree (statstr);
4420 }
4421
4422 /* Record for later. */
4423 tp->suspend.waitstatus = *ws;
4424 tp->suspend.waitstatus_pending_p = 1;
4425
4426 regcache = get_thread_regcache (tp->ptid);
4427 aspace = get_regcache_aspace (regcache);
4428
4429 if (ws->kind == TARGET_WAITKIND_STOPPED
4430 && ws->value.sig == GDB_SIGNAL_TRAP)
4431 {
4432 CORE_ADDR pc = regcache_read_pc (regcache);
4433
4434 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4435
4436 if (thread_stopped_by_watchpoint (tp->ptid))
4437 {
4438 tp->suspend.stop_reason
4439 = TARGET_STOPPED_BY_WATCHPOINT;
4440 }
4441 else if (target_supports_stopped_by_sw_breakpoint ()
4442 && thread_stopped_by_sw_breakpoint (tp->ptid))
4443 {
4444 tp->suspend.stop_reason
4445 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4446 }
4447 else if (target_supports_stopped_by_hw_breakpoint ()
4448 && thread_stopped_by_hw_breakpoint (tp->ptid))
4449 {
4450 tp->suspend.stop_reason
4451 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4452 }
4453 else if (!target_supports_stopped_by_hw_breakpoint ()
4454 && hardware_breakpoint_inserted_here_p (aspace,
4455 pc))
4456 {
4457 tp->suspend.stop_reason
4458 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4459 }
4460 else if (!target_supports_stopped_by_sw_breakpoint ()
4461 && software_breakpoint_inserted_here_p (aspace,
4462 pc))
4463 {
4464 tp->suspend.stop_reason
4465 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4466 }
4467 else if (!thread_has_single_step_breakpoints_set (tp)
4468 && currently_stepping (tp))
4469 {
4470 tp->suspend.stop_reason
4471 = TARGET_STOPPED_BY_SINGLE_STEP;
4472 }
4473 }
4474 }
4475
4476 /* A cleanup that disables thread create/exit events. */
4477
4478 static void
4479 disable_thread_events (void *arg)
4480 {
4481 target_thread_events (0);
4482 }
4483
4484 /* See infrun.h. */
4485
4486 void
4487 stop_all_threads (void)
4488 {
4489 /* We may need multiple passes to discover all threads. */
4490 int pass;
4491 int iterations = 0;
4492 ptid_t entry_ptid;
4493 struct cleanup *old_chain;
4494
4495 gdb_assert (target_is_non_stop_p ());
4496
4497 if (debug_infrun)
4498 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4499
4500 entry_ptid = inferior_ptid;
4501 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4502
4503 target_thread_events (1);
4504 make_cleanup (disable_thread_events, NULL);
4505
4506 /* Request threads to stop, and then wait for the stops. Because
4507 threads we already know about can spawn more threads while we're
4508 trying to stop them, and we only learn about new threads when we
4509 update the thread list, do this in a loop, and keep iterating
4510 until two passes find no threads that need to be stopped. */
4511 for (pass = 0; pass < 2; pass++, iterations++)
4512 {
4513 if (debug_infrun)
4514 fprintf_unfiltered (gdb_stdlog,
4515 "infrun: stop_all_threads, pass=%d, "
4516 "iterations=%d\n", pass, iterations);
4517 while (1)
4518 {
4519 ptid_t event_ptid;
4520 struct target_waitstatus ws;
4521 int need_wait = 0;
4522 struct thread_info *t;
4523
4524 update_thread_list ();
4525
4526 /* Go through all threads looking for threads that we need
4527 to tell the target to stop. */
4528 ALL_NON_EXITED_THREADS (t)
4529 {
4530 if (t->executing)
4531 {
4532 /* If already stopping, don't request a stop again.
4533 We just haven't seen the notification yet. */
4534 if (!t->stop_requested)
4535 {
4536 if (debug_infrun)
4537 fprintf_unfiltered (gdb_stdlog,
4538 "infrun: %s executing, "
4539 "need stop\n",
4540 target_pid_to_str (t->ptid));
4541 target_stop (t->ptid);
4542 t->stop_requested = 1;
4543 }
4544 else
4545 {
4546 if (debug_infrun)
4547 fprintf_unfiltered (gdb_stdlog,
4548 "infrun: %s executing, "
4549 "already stopping\n",
4550 target_pid_to_str (t->ptid));
4551 }
4552
4553 if (t->stop_requested)
4554 need_wait = 1;
4555 }
4556 else
4557 {
4558 if (debug_infrun)
4559 fprintf_unfiltered (gdb_stdlog,
4560 "infrun: %s not executing\n",
4561 target_pid_to_str (t->ptid));
4562
4563 /* The thread may be not executing, but still be
4564 resumed with a pending status to process. */
4565 t->resumed = 0;
4566 }
4567 }
4568
4569 if (!need_wait)
4570 break;
4571
4572 /* If we find new threads on the second iteration, restart
4573 over. We want to see two iterations in a row with all
4574 threads stopped. */
4575 if (pass > 0)
4576 pass = -1;
4577
4578 event_ptid = wait_one (&ws);
4579 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4580 {
4581 /* All resumed threads exited. */
4582 }
4583 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4584 || ws.kind == TARGET_WAITKIND_EXITED
4585 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4586 {
4587 if (debug_infrun)
4588 {
4589 ptid_t ptid = pid_to_ptid (ws.value.integer);
4590
4591 fprintf_unfiltered (gdb_stdlog,
4592 "infrun: %s exited while "
4593 "stopping threads\n",
4594 target_pid_to_str (ptid));
4595 }
4596 }
4597 else
4598 {
4599 struct inferior *inf;
4600
4601 t = find_thread_ptid (event_ptid);
4602 if (t == NULL)
4603 t = add_thread (event_ptid);
4604
4605 t->stop_requested = 0;
4606 t->executing = 0;
4607 t->resumed = 0;
4608 t->control.may_range_step = 0;
4609
4610 /* This may be the first time we see the inferior report
4611 a stop. */
4612 inf = find_inferior_ptid (event_ptid);
4613 if (inf->needs_setup)
4614 {
4615 switch_to_thread_no_regs (t);
4616 setup_inferior (0);
4617 }
4618
4619 if (ws.kind == TARGET_WAITKIND_STOPPED
4620 && ws.value.sig == GDB_SIGNAL_0)
4621 {
4622 /* We caught the event that we intended to catch, so
4623 there's no event pending. */
4624 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4625 t->suspend.waitstatus_pending_p = 0;
4626
4627 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4628 {
4629 /* Add it back to the step-over queue. */
4630 if (debug_infrun)
4631 {
4632 fprintf_unfiltered (gdb_stdlog,
4633 "infrun: displaced-step of %s "
4634 "canceled: adding back to the "
4635 "step-over queue\n",
4636 target_pid_to_str (t->ptid));
4637 }
4638 t->control.trap_expected = 0;
4639 thread_step_over_chain_enqueue (t);
4640 }
4641 }
4642 else
4643 {
4644 enum gdb_signal sig;
4645 struct regcache *regcache;
4646
4647 if (debug_infrun)
4648 {
4649 char *statstr;
4650
4651 statstr = target_waitstatus_to_string (&ws);
4652 fprintf_unfiltered (gdb_stdlog,
4653 "infrun: target_wait %s, saving "
4654 "status for %d.%ld.%ld\n",
4655 statstr,
4656 ptid_get_pid (t->ptid),
4657 ptid_get_lwp (t->ptid),
4658 ptid_get_tid (t->ptid));
4659 xfree (statstr);
4660 }
4661
4662 /* Record for later. */
4663 save_waitstatus (t, &ws);
4664
4665 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4666 ? ws.value.sig : GDB_SIGNAL_0);
4667
4668 if (displaced_step_fixup (t->ptid, sig) < 0)
4669 {
4670 /* Add it back to the step-over queue. */
4671 t->control.trap_expected = 0;
4672 thread_step_over_chain_enqueue (t);
4673 }
4674
4675 regcache = get_thread_regcache (t->ptid);
4676 t->suspend.stop_pc = regcache_read_pc (regcache);
4677
4678 if (debug_infrun)
4679 {
4680 fprintf_unfiltered (gdb_stdlog,
4681 "infrun: saved stop_pc=%s for %s "
4682 "(currently_stepping=%d)\n",
4683 paddress (target_gdbarch (),
4684 t->suspend.stop_pc),
4685 target_pid_to_str (t->ptid),
4686 currently_stepping (t));
4687 }
4688 }
4689 }
4690 }
4691 }
4692
4693 do_cleanups (old_chain);
4694
4695 if (debug_infrun)
4696 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4697 }
4698
4699 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4700
4701 static int
4702 handle_no_resumed (struct execution_control_state *ecs)
4703 {
4704 struct inferior *inf;
4705 struct thread_info *thread;
4706
4707 if (target_can_async_p ())
4708 {
4709 struct ui *ui;
4710 int any_sync = 0;
4711
4712 ALL_UIS (ui)
4713 {
4714 if (ui->prompt_state == PROMPT_BLOCKED)
4715 {
4716 any_sync = 1;
4717 break;
4718 }
4719 }
4720 if (!any_sync)
4721 {
4722 /* There were no unwaited-for children left in the target, but,
4723 we're not synchronously waiting for events either. Just
4724 ignore. */
4725
4726 if (debug_infrun)
4727 fprintf_unfiltered (gdb_stdlog,
4728 "infrun: TARGET_WAITKIND_NO_RESUMED "
4729 "(ignoring: bg)\n");
4730 prepare_to_wait (ecs);
4731 return 1;
4732 }
4733 }
4734
4735 /* Otherwise, if we were running a synchronous execution command, we
4736 may need to cancel it and give the user back the terminal.
4737
4738 In non-stop mode, the target can't tell whether we've already
4739 consumed previous stop events, so it can end up sending us a
4740 no-resumed event like so:
4741
4742 #0 - thread 1 is left stopped
4743
4744 #1 - thread 2 is resumed and hits breakpoint
4745 -> TARGET_WAITKIND_STOPPED
4746
4747 #2 - thread 3 is resumed and exits
4748 this is the last resumed thread, so
4749 -> TARGET_WAITKIND_NO_RESUMED
4750
4751 #3 - gdb processes stop for thread 2 and decides to re-resume
4752 it.
4753
4754 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4755 thread 2 is now resumed, so the event should be ignored.
4756
4757 IOW, if the stop for thread 2 doesn't end a foreground command,
4758 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4759 event. But it could be that the event meant that thread 2 itself
4760 (or whatever other thread was the last resumed thread) exited.
4761
4762 To address this we refresh the thread list and check whether we
4763 have resumed threads _now_. In the example above, this removes
4764 thread 3 from the thread list. If thread 2 was re-resumed, we
4765 ignore this event. If we find no thread resumed, then we cancel
4766 the synchronous command show "no unwaited-for " to the user. */
4767 update_thread_list ();
4768
4769 ALL_NON_EXITED_THREADS (thread)
4770 {
4771 if (thread->executing
4772 || thread->suspend.waitstatus_pending_p)
4773 {
4774 /* There were no unwaited-for children left in the target at
4775 some point, but there are now. Just ignore. */
4776 if (debug_infrun)
4777 fprintf_unfiltered (gdb_stdlog,
4778 "infrun: TARGET_WAITKIND_NO_RESUMED "
4779 "(ignoring: found resumed)\n");
4780 prepare_to_wait (ecs);
4781 return 1;
4782 }
4783 }
4784
4785 /* Note however that we may find no resumed thread because the whole
4786 process exited meanwhile (thus updating the thread list results
4787 in an empty thread list). In this case we know we'll be getting
4788 a process exit event shortly. */
4789 ALL_INFERIORS (inf)
4790 {
4791 if (inf->pid == 0)
4792 continue;
4793
4794 thread = any_live_thread_of_process (inf->pid);
4795 if (thread == NULL)
4796 {
4797 if (debug_infrun)
4798 fprintf_unfiltered (gdb_stdlog,
4799 "infrun: TARGET_WAITKIND_NO_RESUMED "
4800 "(expect process exit)\n");
4801 prepare_to_wait (ecs);
4802 return 1;
4803 }
4804 }
4805
4806 /* Go ahead and report the event. */
4807 return 0;
4808 }
4809
4810 /* Given an execution control state that has been freshly filled in by
4811 an event from the inferior, figure out what it means and take
4812 appropriate action.
4813
4814 The alternatives are:
4815
4816 1) stop_waiting and return; to really stop and return to the
4817 debugger.
4818
4819 2) keep_going and return; to wait for the next event (set
4820 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4821 once). */
4822
4823 static void
4824 handle_inferior_event_1 (struct execution_control_state *ecs)
4825 {
4826 enum stop_kind stop_soon;
4827
4828 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4829 {
4830 /* We had an event in the inferior, but we are not interested in
4831 handling it at this level. The lower layers have already
4832 done what needs to be done, if anything.
4833
4834 One of the possible circumstances for this is when the
4835 inferior produces output for the console. The inferior has
4836 not stopped, and we are ignoring the event. Another possible
4837 circumstance is any event which the lower level knows will be
4838 reported multiple times without an intervening resume. */
4839 if (debug_infrun)
4840 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4841 prepare_to_wait (ecs);
4842 return;
4843 }
4844
4845 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4846 {
4847 if (debug_infrun)
4848 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4849 prepare_to_wait (ecs);
4850 return;
4851 }
4852
4853 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4854 && handle_no_resumed (ecs))
4855 return;
4856
4857 /* Cache the last pid/waitstatus. */
4858 set_last_target_status (ecs->ptid, ecs->ws);
4859
4860 /* Always clear state belonging to the previous time we stopped. */
4861 stop_stack_dummy = STOP_NONE;
4862
4863 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4864 {
4865 /* No unwaited-for children left. IOW, all resumed children
4866 have exited. */
4867 if (debug_infrun)
4868 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4869
4870 stop_print_frame = 0;
4871 stop_waiting (ecs);
4872 return;
4873 }
4874
4875 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4876 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4877 {
4878 ecs->event_thread = find_thread_ptid (ecs->ptid);
4879 /* If it's a new thread, add it to the thread database. */
4880 if (ecs->event_thread == NULL)
4881 ecs->event_thread = add_thread (ecs->ptid);
4882
4883 /* Disable range stepping. If the next step request could use a
4884 range, this will be end up re-enabled then. */
4885 ecs->event_thread->control.may_range_step = 0;
4886 }
4887
4888 /* Dependent on valid ECS->EVENT_THREAD. */
4889 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4890
4891 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4892 reinit_frame_cache ();
4893
4894 breakpoint_retire_moribund ();
4895
4896 /* First, distinguish signals caused by the debugger from signals
4897 that have to do with the program's own actions. Note that
4898 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4899 on the operating system version. Here we detect when a SIGILL or
4900 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4901 something similar for SIGSEGV, since a SIGSEGV will be generated
4902 when we're trying to execute a breakpoint instruction on a
4903 non-executable stack. This happens for call dummy breakpoints
4904 for architectures like SPARC that place call dummies on the
4905 stack. */
4906 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4907 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4908 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4909 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4910 {
4911 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4912
4913 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4914 regcache_read_pc (regcache)))
4915 {
4916 if (debug_infrun)
4917 fprintf_unfiltered (gdb_stdlog,
4918 "infrun: Treating signal as SIGTRAP\n");
4919 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4920 }
4921 }
4922
4923 /* Mark the non-executing threads accordingly. In all-stop, all
4924 threads of all processes are stopped when we get any event
4925 reported. In non-stop mode, only the event thread stops. */
4926 {
4927 ptid_t mark_ptid;
4928
4929 if (!target_is_non_stop_p ())
4930 mark_ptid = minus_one_ptid;
4931 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4932 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4933 {
4934 /* If we're handling a process exit in non-stop mode, even
4935 though threads haven't been deleted yet, one would think
4936 that there is nothing to do, as threads of the dead process
4937 will be soon deleted, and threads of any other process were
4938 left running. However, on some targets, threads survive a
4939 process exit event. E.g., for the "checkpoint" command,
4940 when the current checkpoint/fork exits, linux-fork.c
4941 automatically switches to another fork from within
4942 target_mourn_inferior, by associating the same
4943 inferior/thread to another fork. We haven't mourned yet at
4944 this point, but we must mark any threads left in the
4945 process as not-executing so that finish_thread_state marks
4946 them stopped (in the user's perspective) if/when we present
4947 the stop to the user. */
4948 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4949 }
4950 else
4951 mark_ptid = ecs->ptid;
4952
4953 set_executing (mark_ptid, 0);
4954
4955 /* Likewise the resumed flag. */
4956 set_resumed (mark_ptid, 0);
4957 }
4958
4959 switch (ecs->ws.kind)
4960 {
4961 case TARGET_WAITKIND_LOADED:
4962 if (debug_infrun)
4963 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4964 if (!ptid_equal (ecs->ptid, inferior_ptid))
4965 context_switch (ecs->ptid);
4966 /* Ignore gracefully during startup of the inferior, as it might
4967 be the shell which has just loaded some objects, otherwise
4968 add the symbols for the newly loaded objects. Also ignore at
4969 the beginning of an attach or remote session; we will query
4970 the full list of libraries once the connection is
4971 established. */
4972
4973 stop_soon = get_inferior_stop_soon (ecs->ptid);
4974 if (stop_soon == NO_STOP_QUIETLY)
4975 {
4976 struct regcache *regcache;
4977
4978 regcache = get_thread_regcache (ecs->ptid);
4979
4980 handle_solib_event ();
4981
4982 ecs->event_thread->control.stop_bpstat
4983 = bpstat_stop_status (get_regcache_aspace (regcache),
4984 stop_pc, ecs->ptid, &ecs->ws);
4985
4986 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4987 {
4988 /* A catchpoint triggered. */
4989 process_event_stop_test (ecs);
4990 return;
4991 }
4992
4993 /* If requested, stop when the dynamic linker notifies
4994 gdb of events. This allows the user to get control
4995 and place breakpoints in initializer routines for
4996 dynamically loaded objects (among other things). */
4997 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4998 if (stop_on_solib_events)
4999 {
5000 /* Make sure we print "Stopped due to solib-event" in
5001 normal_stop. */
5002 stop_print_frame = 1;
5003
5004 stop_waiting (ecs);
5005 return;
5006 }
5007 }
5008
5009 /* If we are skipping through a shell, or through shared library
5010 loading that we aren't interested in, resume the program. If
5011 we're running the program normally, also resume. */
5012 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5013 {
5014 /* Loading of shared libraries might have changed breakpoint
5015 addresses. Make sure new breakpoints are inserted. */
5016 if (stop_soon == NO_STOP_QUIETLY)
5017 insert_breakpoints ();
5018 resume (GDB_SIGNAL_0);
5019 prepare_to_wait (ecs);
5020 return;
5021 }
5022
5023 /* But stop if we're attaching or setting up a remote
5024 connection. */
5025 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5026 || stop_soon == STOP_QUIETLY_REMOTE)
5027 {
5028 if (debug_infrun)
5029 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5030 stop_waiting (ecs);
5031 return;
5032 }
5033
5034 internal_error (__FILE__, __LINE__,
5035 _("unhandled stop_soon: %d"), (int) stop_soon);
5036
5037 case TARGET_WAITKIND_SPURIOUS:
5038 if (debug_infrun)
5039 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5040 if (!ptid_equal (ecs->ptid, inferior_ptid))
5041 context_switch (ecs->ptid);
5042 resume (GDB_SIGNAL_0);
5043 prepare_to_wait (ecs);
5044 return;
5045
5046 case TARGET_WAITKIND_THREAD_CREATED:
5047 if (debug_infrun)
5048 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5049 if (!ptid_equal (ecs->ptid, inferior_ptid))
5050 context_switch (ecs->ptid);
5051 if (!switch_back_to_stepped_thread (ecs))
5052 keep_going (ecs);
5053 return;
5054
5055 case TARGET_WAITKIND_EXITED:
5056 case TARGET_WAITKIND_SIGNALLED:
5057 if (debug_infrun)
5058 {
5059 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5060 fprintf_unfiltered (gdb_stdlog,
5061 "infrun: TARGET_WAITKIND_EXITED\n");
5062 else
5063 fprintf_unfiltered (gdb_stdlog,
5064 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5065 }
5066
5067 inferior_ptid = ecs->ptid;
5068 set_current_inferior (find_inferior_ptid (ecs->ptid));
5069 set_current_program_space (current_inferior ()->pspace);
5070 handle_vfork_child_exec_or_exit (0);
5071 target_terminal_ours (); /* Must do this before mourn anyway. */
5072
5073 /* Clearing any previous state of convenience variables. */
5074 clear_exit_convenience_vars ();
5075
5076 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5077 {
5078 /* Record the exit code in the convenience variable $_exitcode, so
5079 that the user can inspect this again later. */
5080 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5081 (LONGEST) ecs->ws.value.integer);
5082
5083 /* Also record this in the inferior itself. */
5084 current_inferior ()->has_exit_code = 1;
5085 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5086
5087 /* Support the --return-child-result option. */
5088 return_child_result_value = ecs->ws.value.integer;
5089
5090 observer_notify_exited (ecs->ws.value.integer);
5091 }
5092 else
5093 {
5094 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5095 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5096
5097 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5098 {
5099 /* Set the value of the internal variable $_exitsignal,
5100 which holds the signal uncaught by the inferior. */
5101 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5102 gdbarch_gdb_signal_to_target (gdbarch,
5103 ecs->ws.value.sig));
5104 }
5105 else
5106 {
5107 /* We don't have access to the target's method used for
5108 converting between signal numbers (GDB's internal
5109 representation <-> target's representation).
5110 Therefore, we cannot do a good job at displaying this
5111 information to the user. It's better to just warn
5112 her about it (if infrun debugging is enabled), and
5113 give up. */
5114 if (debug_infrun)
5115 fprintf_filtered (gdb_stdlog, _("\
5116 Cannot fill $_exitsignal with the correct signal number.\n"));
5117 }
5118
5119 observer_notify_signal_exited (ecs->ws.value.sig);
5120 }
5121
5122 gdb_flush (gdb_stdout);
5123 target_mourn_inferior (inferior_ptid);
5124 stop_print_frame = 0;
5125 stop_waiting (ecs);
5126 return;
5127
5128 /* The following are the only cases in which we keep going;
5129 the above cases end in a continue or goto. */
5130 case TARGET_WAITKIND_FORKED:
5131 case TARGET_WAITKIND_VFORKED:
5132 if (debug_infrun)
5133 {
5134 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5135 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5136 else
5137 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5138 }
5139
5140 /* Check whether the inferior is displaced stepping. */
5141 {
5142 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5143 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5144
5145 /* If checking displaced stepping is supported, and thread
5146 ecs->ptid is displaced stepping. */
5147 if (displaced_step_in_progress_thread (ecs->ptid))
5148 {
5149 struct inferior *parent_inf
5150 = find_inferior_ptid (ecs->ptid);
5151 struct regcache *child_regcache;
5152 CORE_ADDR parent_pc;
5153
5154 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5155 indicating that the displaced stepping of syscall instruction
5156 has been done. Perform cleanup for parent process here. Note
5157 that this operation also cleans up the child process for vfork,
5158 because their pages are shared. */
5159 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5160 /* Start a new step-over in another thread if there's one
5161 that needs it. */
5162 start_step_over ();
5163
5164 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5165 {
5166 struct displaced_step_inferior_state *displaced
5167 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5168
5169 /* Restore scratch pad for child process. */
5170 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5171 }
5172
5173 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5174 the child's PC is also within the scratchpad. Set the child's PC
5175 to the parent's PC value, which has already been fixed up.
5176 FIXME: we use the parent's aspace here, although we're touching
5177 the child, because the child hasn't been added to the inferior
5178 list yet at this point. */
5179
5180 child_regcache
5181 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5182 gdbarch,
5183 parent_inf->aspace);
5184 /* Read PC value of parent process. */
5185 parent_pc = regcache_read_pc (regcache);
5186
5187 if (debug_displaced)
5188 fprintf_unfiltered (gdb_stdlog,
5189 "displaced: write child pc from %s to %s\n",
5190 paddress (gdbarch,
5191 regcache_read_pc (child_regcache)),
5192 paddress (gdbarch, parent_pc));
5193
5194 regcache_write_pc (child_regcache, parent_pc);
5195 }
5196 }
5197
5198 if (!ptid_equal (ecs->ptid, inferior_ptid))
5199 context_switch (ecs->ptid);
5200
5201 /* Immediately detach breakpoints from the child before there's
5202 any chance of letting the user delete breakpoints from the
5203 breakpoint lists. If we don't do this early, it's easy to
5204 leave left over traps in the child, vis: "break foo; catch
5205 fork; c; <fork>; del; c; <child calls foo>". We only follow
5206 the fork on the last `continue', and by that time the
5207 breakpoint at "foo" is long gone from the breakpoint table.
5208 If we vforked, then we don't need to unpatch here, since both
5209 parent and child are sharing the same memory pages; we'll
5210 need to unpatch at follow/detach time instead to be certain
5211 that new breakpoints added between catchpoint hit time and
5212 vfork follow are detached. */
5213 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5214 {
5215 /* This won't actually modify the breakpoint list, but will
5216 physically remove the breakpoints from the child. */
5217 detach_breakpoints (ecs->ws.value.related_pid);
5218 }
5219
5220 delete_just_stopped_threads_single_step_breakpoints ();
5221
5222 /* In case the event is caught by a catchpoint, remember that
5223 the event is to be followed at the next resume of the thread,
5224 and not immediately. */
5225 ecs->event_thread->pending_follow = ecs->ws;
5226
5227 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5228
5229 ecs->event_thread->control.stop_bpstat
5230 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5231 stop_pc, ecs->ptid, &ecs->ws);
5232
5233 /* If no catchpoint triggered for this, then keep going. Note
5234 that we're interested in knowing the bpstat actually causes a
5235 stop, not just if it may explain the signal. Software
5236 watchpoints, for example, always appear in the bpstat. */
5237 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5238 {
5239 ptid_t parent;
5240 ptid_t child;
5241 int should_resume;
5242 int follow_child
5243 = (follow_fork_mode_string == follow_fork_mode_child);
5244
5245 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5246
5247 should_resume = follow_fork ();
5248
5249 parent = ecs->ptid;
5250 child = ecs->ws.value.related_pid;
5251
5252 /* At this point, the parent is marked running, and the
5253 child is marked stopped. */
5254
5255 /* If not resuming the parent, mark it stopped. */
5256 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5257 set_running (parent, 0);
5258
5259 /* If resuming the child, mark it running. */
5260 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5261 set_running (child, 1);
5262
5263 /* In non-stop mode, also resume the other branch. */
5264 if (!detach_fork && (non_stop
5265 || (sched_multi && target_is_non_stop_p ())))
5266 {
5267 if (follow_child)
5268 switch_to_thread (parent);
5269 else
5270 switch_to_thread (child);
5271
5272 ecs->event_thread = inferior_thread ();
5273 ecs->ptid = inferior_ptid;
5274 keep_going (ecs);
5275 }
5276
5277 if (follow_child)
5278 switch_to_thread (child);
5279 else
5280 switch_to_thread (parent);
5281
5282 ecs->event_thread = inferior_thread ();
5283 ecs->ptid = inferior_ptid;
5284
5285 if (should_resume)
5286 keep_going (ecs);
5287 else
5288 stop_waiting (ecs);
5289 return;
5290 }
5291 process_event_stop_test (ecs);
5292 return;
5293
5294 case TARGET_WAITKIND_VFORK_DONE:
5295 /* Done with the shared memory region. Re-insert breakpoints in
5296 the parent, and keep going. */
5297
5298 if (debug_infrun)
5299 fprintf_unfiltered (gdb_stdlog,
5300 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5301
5302 if (!ptid_equal (ecs->ptid, inferior_ptid))
5303 context_switch (ecs->ptid);
5304
5305 current_inferior ()->waiting_for_vfork_done = 0;
5306 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5307 /* This also takes care of reinserting breakpoints in the
5308 previously locked inferior. */
5309 keep_going (ecs);
5310 return;
5311
5312 case TARGET_WAITKIND_EXECD:
5313 if (debug_infrun)
5314 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5315
5316 if (!ptid_equal (ecs->ptid, inferior_ptid))
5317 context_switch (ecs->ptid);
5318
5319 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5320
5321 /* Do whatever is necessary to the parent branch of the vfork. */
5322 handle_vfork_child_exec_or_exit (1);
5323
5324 /* This causes the eventpoints and symbol table to be reset.
5325 Must do this now, before trying to determine whether to
5326 stop. */
5327 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5328
5329 /* In follow_exec we may have deleted the original thread and
5330 created a new one. Make sure that the event thread is the
5331 execd thread for that case (this is a nop otherwise). */
5332 ecs->event_thread = inferior_thread ();
5333
5334 ecs->event_thread->control.stop_bpstat
5335 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5336 stop_pc, ecs->ptid, &ecs->ws);
5337
5338 /* Note that this may be referenced from inside
5339 bpstat_stop_status above, through inferior_has_execd. */
5340 xfree (ecs->ws.value.execd_pathname);
5341 ecs->ws.value.execd_pathname = NULL;
5342
5343 /* If no catchpoint triggered for this, then keep going. */
5344 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5345 {
5346 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5347 keep_going (ecs);
5348 return;
5349 }
5350 process_event_stop_test (ecs);
5351 return;
5352
5353 /* Be careful not to try to gather much state about a thread
5354 that's in a syscall. It's frequently a losing proposition. */
5355 case TARGET_WAITKIND_SYSCALL_ENTRY:
5356 if (debug_infrun)
5357 fprintf_unfiltered (gdb_stdlog,
5358 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5359 /* Getting the current syscall number. */
5360 if (handle_syscall_event (ecs) == 0)
5361 process_event_stop_test (ecs);
5362 return;
5363
5364 /* Before examining the threads further, step this thread to
5365 get it entirely out of the syscall. (We get notice of the
5366 event when the thread is just on the verge of exiting a
5367 syscall. Stepping one instruction seems to get it back
5368 into user code.) */
5369 case TARGET_WAITKIND_SYSCALL_RETURN:
5370 if (debug_infrun)
5371 fprintf_unfiltered (gdb_stdlog,
5372 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5373 if (handle_syscall_event (ecs) == 0)
5374 process_event_stop_test (ecs);
5375 return;
5376
5377 case TARGET_WAITKIND_STOPPED:
5378 if (debug_infrun)
5379 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5380 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5381 handle_signal_stop (ecs);
5382 return;
5383
5384 case TARGET_WAITKIND_NO_HISTORY:
5385 if (debug_infrun)
5386 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5387 /* Reverse execution: target ran out of history info. */
5388
5389 /* Switch to the stopped thread. */
5390 if (!ptid_equal (ecs->ptid, inferior_ptid))
5391 context_switch (ecs->ptid);
5392 if (debug_infrun)
5393 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5394
5395 delete_just_stopped_threads_single_step_breakpoints ();
5396 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5397 observer_notify_no_history ();
5398 stop_waiting (ecs);
5399 return;
5400 }
5401 }
5402
5403 /* A wrapper around handle_inferior_event_1, which also makes sure
5404 that all temporary struct value objects that were created during
5405 the handling of the event get deleted at the end. */
5406
5407 static void
5408 handle_inferior_event (struct execution_control_state *ecs)
5409 {
5410 struct value *mark = value_mark ();
5411
5412 handle_inferior_event_1 (ecs);
5413 /* Purge all temporary values created during the event handling,
5414 as it could be a long time before we return to the command level
5415 where such values would otherwise be purged. */
5416 value_free_to_mark (mark);
5417 }
5418
5419 /* Restart threads back to what they were trying to do back when we
5420 paused them for an in-line step-over. The EVENT_THREAD thread is
5421 ignored. */
5422
5423 static void
5424 restart_threads (struct thread_info *event_thread)
5425 {
5426 struct thread_info *tp;
5427
5428 /* In case the instruction just stepped spawned a new thread. */
5429 update_thread_list ();
5430
5431 ALL_NON_EXITED_THREADS (tp)
5432 {
5433 if (tp == event_thread)
5434 {
5435 if (debug_infrun)
5436 fprintf_unfiltered (gdb_stdlog,
5437 "infrun: restart threads: "
5438 "[%s] is event thread\n",
5439 target_pid_to_str (tp->ptid));
5440 continue;
5441 }
5442
5443 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5444 {
5445 if (debug_infrun)
5446 fprintf_unfiltered (gdb_stdlog,
5447 "infrun: restart threads: "
5448 "[%s] not meant to be running\n",
5449 target_pid_to_str (tp->ptid));
5450 continue;
5451 }
5452
5453 if (tp->resumed)
5454 {
5455 if (debug_infrun)
5456 fprintf_unfiltered (gdb_stdlog,
5457 "infrun: restart threads: [%s] resumed\n",
5458 target_pid_to_str (tp->ptid));
5459 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5460 continue;
5461 }
5462
5463 if (thread_is_in_step_over_chain (tp))
5464 {
5465 if (debug_infrun)
5466 fprintf_unfiltered (gdb_stdlog,
5467 "infrun: restart threads: "
5468 "[%s] needs step-over\n",
5469 target_pid_to_str (tp->ptid));
5470 gdb_assert (!tp->resumed);
5471 continue;
5472 }
5473
5474
5475 if (tp->suspend.waitstatus_pending_p)
5476 {
5477 if (debug_infrun)
5478 fprintf_unfiltered (gdb_stdlog,
5479 "infrun: restart threads: "
5480 "[%s] has pending status\n",
5481 target_pid_to_str (tp->ptid));
5482 tp->resumed = 1;
5483 continue;
5484 }
5485
5486 /* If some thread needs to start a step-over at this point, it
5487 should still be in the step-over queue, and thus skipped
5488 above. */
5489 if (thread_still_needs_step_over (tp))
5490 {
5491 internal_error (__FILE__, __LINE__,
5492 "thread [%s] needs a step-over, but not in "
5493 "step-over queue\n",
5494 target_pid_to_str (tp->ptid));
5495 }
5496
5497 if (currently_stepping (tp))
5498 {
5499 if (debug_infrun)
5500 fprintf_unfiltered (gdb_stdlog,
5501 "infrun: restart threads: [%s] was stepping\n",
5502 target_pid_to_str (tp->ptid));
5503 keep_going_stepped_thread (tp);
5504 }
5505 else
5506 {
5507 struct execution_control_state ecss;
5508 struct execution_control_state *ecs = &ecss;
5509
5510 if (debug_infrun)
5511 fprintf_unfiltered (gdb_stdlog,
5512 "infrun: restart threads: [%s] continuing\n",
5513 target_pid_to_str (tp->ptid));
5514 reset_ecs (ecs, tp);
5515 switch_to_thread (tp->ptid);
5516 keep_going_pass_signal (ecs);
5517 }
5518 }
5519 }
5520
5521 /* Callback for iterate_over_threads. Find a resumed thread that has
5522 a pending waitstatus. */
5523
5524 static int
5525 resumed_thread_with_pending_status (struct thread_info *tp,
5526 void *arg)
5527 {
5528 return (tp->resumed
5529 && tp->suspend.waitstatus_pending_p);
5530 }
5531
5532 /* Called when we get an event that may finish an in-line or
5533 out-of-line (displaced stepping) step-over started previously.
5534 Return true if the event is processed and we should go back to the
5535 event loop; false if the caller should continue processing the
5536 event. */
5537
5538 static int
5539 finish_step_over (struct execution_control_state *ecs)
5540 {
5541 int had_step_over_info;
5542
5543 displaced_step_fixup (ecs->ptid,
5544 ecs->event_thread->suspend.stop_signal);
5545
5546 had_step_over_info = step_over_info_valid_p ();
5547
5548 if (had_step_over_info)
5549 {
5550 /* If we're stepping over a breakpoint with all threads locked,
5551 then only the thread that was stepped should be reporting
5552 back an event. */
5553 gdb_assert (ecs->event_thread->control.trap_expected);
5554
5555 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5556 clear_step_over_info ();
5557 }
5558
5559 if (!target_is_non_stop_p ())
5560 return 0;
5561
5562 /* Start a new step-over in another thread if there's one that
5563 needs it. */
5564 start_step_over ();
5565
5566 /* If we were stepping over a breakpoint before, and haven't started
5567 a new in-line step-over sequence, then restart all other threads
5568 (except the event thread). We can't do this in all-stop, as then
5569 e.g., we wouldn't be able to issue any other remote packet until
5570 these other threads stop. */
5571 if (had_step_over_info && !step_over_info_valid_p ())
5572 {
5573 struct thread_info *pending;
5574
5575 /* If we only have threads with pending statuses, the restart
5576 below won't restart any thread and so nothing re-inserts the
5577 breakpoint we just stepped over. But we need it inserted
5578 when we later process the pending events, otherwise if
5579 another thread has a pending event for this breakpoint too,
5580 we'd discard its event (because the breakpoint that
5581 originally caused the event was no longer inserted). */
5582 context_switch (ecs->ptid);
5583 insert_breakpoints ();
5584
5585 restart_threads (ecs->event_thread);
5586
5587 /* If we have events pending, go through handle_inferior_event
5588 again, picking up a pending event at random. This avoids
5589 thread starvation. */
5590
5591 /* But not if we just stepped over a watchpoint in order to let
5592 the instruction execute so we can evaluate its expression.
5593 The set of watchpoints that triggered is recorded in the
5594 breakpoint objects themselves (see bp->watchpoint_triggered).
5595 If we processed another event first, that other event could
5596 clobber this info. */
5597 if (ecs->event_thread->stepping_over_watchpoint)
5598 return 0;
5599
5600 pending = iterate_over_threads (resumed_thread_with_pending_status,
5601 NULL);
5602 if (pending != NULL)
5603 {
5604 struct thread_info *tp = ecs->event_thread;
5605 struct regcache *regcache;
5606
5607 if (debug_infrun)
5608 {
5609 fprintf_unfiltered (gdb_stdlog,
5610 "infrun: found resumed threads with "
5611 "pending events, saving status\n");
5612 }
5613
5614 gdb_assert (pending != tp);
5615
5616 /* Record the event thread's event for later. */
5617 save_waitstatus (tp, &ecs->ws);
5618 /* This was cleared early, by handle_inferior_event. Set it
5619 so this pending event is considered by
5620 do_target_wait. */
5621 tp->resumed = 1;
5622
5623 gdb_assert (!tp->executing);
5624
5625 regcache = get_thread_regcache (tp->ptid);
5626 tp->suspend.stop_pc = regcache_read_pc (regcache);
5627
5628 if (debug_infrun)
5629 {
5630 fprintf_unfiltered (gdb_stdlog,
5631 "infrun: saved stop_pc=%s for %s "
5632 "(currently_stepping=%d)\n",
5633 paddress (target_gdbarch (),
5634 tp->suspend.stop_pc),
5635 target_pid_to_str (tp->ptid),
5636 currently_stepping (tp));
5637 }
5638
5639 /* This in-line step-over finished; clear this so we won't
5640 start a new one. This is what handle_signal_stop would
5641 do, if we returned false. */
5642 tp->stepping_over_breakpoint = 0;
5643
5644 /* Wake up the event loop again. */
5645 mark_async_event_handler (infrun_async_inferior_event_token);
5646
5647 prepare_to_wait (ecs);
5648 return 1;
5649 }
5650 }
5651
5652 return 0;
5653 }
5654
5655 /* Come here when the program has stopped with a signal. */
5656
5657 static void
5658 handle_signal_stop (struct execution_control_state *ecs)
5659 {
5660 struct frame_info *frame;
5661 struct gdbarch *gdbarch;
5662 int stopped_by_watchpoint;
5663 enum stop_kind stop_soon;
5664 int random_signal;
5665
5666 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5667
5668 /* Do we need to clean up the state of a thread that has
5669 completed a displaced single-step? (Doing so usually affects
5670 the PC, so do it here, before we set stop_pc.) */
5671 if (finish_step_over (ecs))
5672 return;
5673
5674 /* If we either finished a single-step or hit a breakpoint, but
5675 the user wanted this thread to be stopped, pretend we got a
5676 SIG0 (generic unsignaled stop). */
5677 if (ecs->event_thread->stop_requested
5678 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5679 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5680
5681 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5682
5683 if (debug_infrun)
5684 {
5685 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5686 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5687 struct cleanup *old_chain = save_inferior_ptid ();
5688
5689 inferior_ptid = ecs->ptid;
5690
5691 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5692 paddress (gdbarch, stop_pc));
5693 if (target_stopped_by_watchpoint ())
5694 {
5695 CORE_ADDR addr;
5696
5697 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5698
5699 if (target_stopped_data_address (&current_target, &addr))
5700 fprintf_unfiltered (gdb_stdlog,
5701 "infrun: stopped data address = %s\n",
5702 paddress (gdbarch, addr));
5703 else
5704 fprintf_unfiltered (gdb_stdlog,
5705 "infrun: (no data address available)\n");
5706 }
5707
5708 do_cleanups (old_chain);
5709 }
5710
5711 /* This is originated from start_remote(), start_inferior() and
5712 shared libraries hook functions. */
5713 stop_soon = get_inferior_stop_soon (ecs->ptid);
5714 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5715 {
5716 if (!ptid_equal (ecs->ptid, inferior_ptid))
5717 context_switch (ecs->ptid);
5718 if (debug_infrun)
5719 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5720 stop_print_frame = 1;
5721 stop_waiting (ecs);
5722 return;
5723 }
5724
5725 /* This originates from attach_command(). We need to overwrite
5726 the stop_signal here, because some kernels don't ignore a
5727 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5728 See more comments in inferior.h. On the other hand, if we
5729 get a non-SIGSTOP, report it to the user - assume the backend
5730 will handle the SIGSTOP if it should show up later.
5731
5732 Also consider that the attach is complete when we see a
5733 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5734 target extended-remote report it instead of a SIGSTOP
5735 (e.g. gdbserver). We already rely on SIGTRAP being our
5736 signal, so this is no exception.
5737
5738 Also consider that the attach is complete when we see a
5739 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5740 the target to stop all threads of the inferior, in case the
5741 low level attach operation doesn't stop them implicitly. If
5742 they weren't stopped implicitly, then the stub will report a
5743 GDB_SIGNAL_0, meaning: stopped for no particular reason
5744 other than GDB's request. */
5745 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5746 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5747 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5748 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5749 {
5750 stop_print_frame = 1;
5751 stop_waiting (ecs);
5752 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5753 return;
5754 }
5755
5756 /* See if something interesting happened to the non-current thread. If
5757 so, then switch to that thread. */
5758 if (!ptid_equal (ecs->ptid, inferior_ptid))
5759 {
5760 if (debug_infrun)
5761 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5762
5763 context_switch (ecs->ptid);
5764
5765 if (deprecated_context_hook)
5766 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5767 }
5768
5769 /* At this point, get hold of the now-current thread's frame. */
5770 frame = get_current_frame ();
5771 gdbarch = get_frame_arch (frame);
5772
5773 /* Pull the single step breakpoints out of the target. */
5774 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5775 {
5776 struct regcache *regcache;
5777 struct address_space *aspace;
5778 CORE_ADDR pc;
5779
5780 regcache = get_thread_regcache (ecs->ptid);
5781 aspace = get_regcache_aspace (regcache);
5782 pc = regcache_read_pc (regcache);
5783
5784 /* However, before doing so, if this single-step breakpoint was
5785 actually for another thread, set this thread up for moving
5786 past it. */
5787 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5788 aspace, pc))
5789 {
5790 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5791 {
5792 if (debug_infrun)
5793 {
5794 fprintf_unfiltered (gdb_stdlog,
5795 "infrun: [%s] hit another thread's "
5796 "single-step breakpoint\n",
5797 target_pid_to_str (ecs->ptid));
5798 }
5799 ecs->hit_singlestep_breakpoint = 1;
5800 }
5801 }
5802 else
5803 {
5804 if (debug_infrun)
5805 {
5806 fprintf_unfiltered (gdb_stdlog,
5807 "infrun: [%s] hit its "
5808 "single-step breakpoint\n",
5809 target_pid_to_str (ecs->ptid));
5810 }
5811 }
5812 }
5813 delete_just_stopped_threads_single_step_breakpoints ();
5814
5815 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5816 && ecs->event_thread->control.trap_expected
5817 && ecs->event_thread->stepping_over_watchpoint)
5818 stopped_by_watchpoint = 0;
5819 else
5820 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5821
5822 /* If necessary, step over this watchpoint. We'll be back to display
5823 it in a moment. */
5824 if (stopped_by_watchpoint
5825 && (target_have_steppable_watchpoint
5826 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5827 {
5828 /* At this point, we are stopped at an instruction which has
5829 attempted to write to a piece of memory under control of
5830 a watchpoint. The instruction hasn't actually executed
5831 yet. If we were to evaluate the watchpoint expression
5832 now, we would get the old value, and therefore no change
5833 would seem to have occurred.
5834
5835 In order to make watchpoints work `right', we really need
5836 to complete the memory write, and then evaluate the
5837 watchpoint expression. We do this by single-stepping the
5838 target.
5839
5840 It may not be necessary to disable the watchpoint to step over
5841 it. For example, the PA can (with some kernel cooperation)
5842 single step over a watchpoint without disabling the watchpoint.
5843
5844 It is far more common to need to disable a watchpoint to step
5845 the inferior over it. If we have non-steppable watchpoints,
5846 we must disable the current watchpoint; it's simplest to
5847 disable all watchpoints.
5848
5849 Any breakpoint at PC must also be stepped over -- if there's
5850 one, it will have already triggered before the watchpoint
5851 triggered, and we either already reported it to the user, or
5852 it didn't cause a stop and we called keep_going. In either
5853 case, if there was a breakpoint at PC, we must be trying to
5854 step past it. */
5855 ecs->event_thread->stepping_over_watchpoint = 1;
5856 keep_going (ecs);
5857 return;
5858 }
5859
5860 ecs->event_thread->stepping_over_breakpoint = 0;
5861 ecs->event_thread->stepping_over_watchpoint = 0;
5862 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5863 ecs->event_thread->control.stop_step = 0;
5864 stop_print_frame = 1;
5865 stopped_by_random_signal = 0;
5866
5867 /* Hide inlined functions starting here, unless we just performed stepi or
5868 nexti. After stepi and nexti, always show the innermost frame (not any
5869 inline function call sites). */
5870 if (ecs->event_thread->control.step_range_end != 1)
5871 {
5872 struct address_space *aspace =
5873 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5874
5875 /* skip_inline_frames is expensive, so we avoid it if we can
5876 determine that the address is one where functions cannot have
5877 been inlined. This improves performance with inferiors that
5878 load a lot of shared libraries, because the solib event
5879 breakpoint is defined as the address of a function (i.e. not
5880 inline). Note that we have to check the previous PC as well
5881 as the current one to catch cases when we have just
5882 single-stepped off a breakpoint prior to reinstating it.
5883 Note that we're assuming that the code we single-step to is
5884 not inline, but that's not definitive: there's nothing
5885 preventing the event breakpoint function from containing
5886 inlined code, and the single-step ending up there. If the
5887 user had set a breakpoint on that inlined code, the missing
5888 skip_inline_frames call would break things. Fortunately
5889 that's an extremely unlikely scenario. */
5890 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5891 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5892 && ecs->event_thread->control.trap_expected
5893 && pc_at_non_inline_function (aspace,
5894 ecs->event_thread->prev_pc,
5895 &ecs->ws)))
5896 {
5897 skip_inline_frames (ecs->ptid);
5898
5899 /* Re-fetch current thread's frame in case that invalidated
5900 the frame cache. */
5901 frame = get_current_frame ();
5902 gdbarch = get_frame_arch (frame);
5903 }
5904 }
5905
5906 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5907 && ecs->event_thread->control.trap_expected
5908 && gdbarch_single_step_through_delay_p (gdbarch)
5909 && currently_stepping (ecs->event_thread))
5910 {
5911 /* We're trying to step off a breakpoint. Turns out that we're
5912 also on an instruction that needs to be stepped multiple
5913 times before it's been fully executing. E.g., architectures
5914 with a delay slot. It needs to be stepped twice, once for
5915 the instruction and once for the delay slot. */
5916 int step_through_delay
5917 = gdbarch_single_step_through_delay (gdbarch, frame);
5918
5919 if (debug_infrun && step_through_delay)
5920 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5921 if (ecs->event_thread->control.step_range_end == 0
5922 && step_through_delay)
5923 {
5924 /* The user issued a continue when stopped at a breakpoint.
5925 Set up for another trap and get out of here. */
5926 ecs->event_thread->stepping_over_breakpoint = 1;
5927 keep_going (ecs);
5928 return;
5929 }
5930 else if (step_through_delay)
5931 {
5932 /* The user issued a step when stopped at a breakpoint.
5933 Maybe we should stop, maybe we should not - the delay
5934 slot *might* correspond to a line of source. In any
5935 case, don't decide that here, just set
5936 ecs->stepping_over_breakpoint, making sure we
5937 single-step again before breakpoints are re-inserted. */
5938 ecs->event_thread->stepping_over_breakpoint = 1;
5939 }
5940 }
5941
5942 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5943 handles this event. */
5944 ecs->event_thread->control.stop_bpstat
5945 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5946 stop_pc, ecs->ptid, &ecs->ws);
5947
5948 /* Following in case break condition called a
5949 function. */
5950 stop_print_frame = 1;
5951
5952 /* This is where we handle "moribund" watchpoints. Unlike
5953 software breakpoints traps, hardware watchpoint traps are
5954 always distinguishable from random traps. If no high-level
5955 watchpoint is associated with the reported stop data address
5956 anymore, then the bpstat does not explain the signal ---
5957 simply make sure to ignore it if `stopped_by_watchpoint' is
5958 set. */
5959
5960 if (debug_infrun
5961 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5962 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5963 GDB_SIGNAL_TRAP)
5964 && stopped_by_watchpoint)
5965 fprintf_unfiltered (gdb_stdlog,
5966 "infrun: no user watchpoint explains "
5967 "watchpoint SIGTRAP, ignoring\n");
5968
5969 /* NOTE: cagney/2003-03-29: These checks for a random signal
5970 at one stage in the past included checks for an inferior
5971 function call's call dummy's return breakpoint. The original
5972 comment, that went with the test, read:
5973
5974 ``End of a stack dummy. Some systems (e.g. Sony news) give
5975 another signal besides SIGTRAP, so check here as well as
5976 above.''
5977
5978 If someone ever tries to get call dummys on a
5979 non-executable stack to work (where the target would stop
5980 with something like a SIGSEGV), then those tests might need
5981 to be re-instated. Given, however, that the tests were only
5982 enabled when momentary breakpoints were not being used, I
5983 suspect that it won't be the case.
5984
5985 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5986 be necessary for call dummies on a non-executable stack on
5987 SPARC. */
5988
5989 /* See if the breakpoints module can explain the signal. */
5990 random_signal
5991 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5992 ecs->event_thread->suspend.stop_signal);
5993
5994 /* Maybe this was a trap for a software breakpoint that has since
5995 been removed. */
5996 if (random_signal && target_stopped_by_sw_breakpoint ())
5997 {
5998 if (program_breakpoint_here_p (gdbarch, stop_pc))
5999 {
6000 struct regcache *regcache;
6001 int decr_pc;
6002
6003 /* Re-adjust PC to what the program would see if GDB was not
6004 debugging it. */
6005 regcache = get_thread_regcache (ecs->event_thread->ptid);
6006 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6007 if (decr_pc != 0)
6008 {
6009 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6010
6011 if (record_full_is_used ())
6012 record_full_gdb_operation_disable_set ();
6013
6014 regcache_write_pc (regcache, stop_pc + decr_pc);
6015
6016 do_cleanups (old_cleanups);
6017 }
6018 }
6019 else
6020 {
6021 /* A delayed software breakpoint event. Ignore the trap. */
6022 if (debug_infrun)
6023 fprintf_unfiltered (gdb_stdlog,
6024 "infrun: delayed software breakpoint "
6025 "trap, ignoring\n");
6026 random_signal = 0;
6027 }
6028 }
6029
6030 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6031 has since been removed. */
6032 if (random_signal && target_stopped_by_hw_breakpoint ())
6033 {
6034 /* A delayed hardware breakpoint event. Ignore the trap. */
6035 if (debug_infrun)
6036 fprintf_unfiltered (gdb_stdlog,
6037 "infrun: delayed hardware breakpoint/watchpoint "
6038 "trap, ignoring\n");
6039 random_signal = 0;
6040 }
6041
6042 /* If not, perhaps stepping/nexting can. */
6043 if (random_signal)
6044 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6045 && currently_stepping (ecs->event_thread));
6046
6047 /* Perhaps the thread hit a single-step breakpoint of _another_
6048 thread. Single-step breakpoints are transparent to the
6049 breakpoints module. */
6050 if (random_signal)
6051 random_signal = !ecs->hit_singlestep_breakpoint;
6052
6053 /* No? Perhaps we got a moribund watchpoint. */
6054 if (random_signal)
6055 random_signal = !stopped_by_watchpoint;
6056
6057 /* For the program's own signals, act according to
6058 the signal handling tables. */
6059
6060 if (random_signal)
6061 {
6062 /* Signal not for debugging purposes. */
6063 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6064 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6065
6066 if (debug_infrun)
6067 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6068 gdb_signal_to_symbol_string (stop_signal));
6069
6070 stopped_by_random_signal = 1;
6071
6072 /* Always stop on signals if we're either just gaining control
6073 of the program, or the user explicitly requested this thread
6074 to remain stopped. */
6075 if (stop_soon != NO_STOP_QUIETLY
6076 || ecs->event_thread->stop_requested
6077 || (!inf->detaching
6078 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6079 {
6080 stop_waiting (ecs);
6081 return;
6082 }
6083
6084 /* Notify observers the signal has "handle print" set. Note we
6085 returned early above if stopping; normal_stop handles the
6086 printing in that case. */
6087 if (signal_print[ecs->event_thread->suspend.stop_signal])
6088 {
6089 /* The signal table tells us to print about this signal. */
6090 target_terminal_ours_for_output ();
6091 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6092 target_terminal_inferior ();
6093 }
6094
6095 /* Clear the signal if it should not be passed. */
6096 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6097 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6098
6099 if (ecs->event_thread->prev_pc == stop_pc
6100 && ecs->event_thread->control.trap_expected
6101 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6102 {
6103 int was_in_line;
6104
6105 /* We were just starting a new sequence, attempting to
6106 single-step off of a breakpoint and expecting a SIGTRAP.
6107 Instead this signal arrives. This signal will take us out
6108 of the stepping range so GDB needs to remember to, when
6109 the signal handler returns, resume stepping off that
6110 breakpoint. */
6111 /* To simplify things, "continue" is forced to use the same
6112 code paths as single-step - set a breakpoint at the
6113 signal return address and then, once hit, step off that
6114 breakpoint. */
6115 if (debug_infrun)
6116 fprintf_unfiltered (gdb_stdlog,
6117 "infrun: signal arrived while stepping over "
6118 "breakpoint\n");
6119
6120 was_in_line = step_over_info_valid_p ();
6121 clear_step_over_info ();
6122 insert_hp_step_resume_breakpoint_at_frame (frame);
6123 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6124 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6125 ecs->event_thread->control.trap_expected = 0;
6126
6127 if (target_is_non_stop_p ())
6128 {
6129 /* Either "set non-stop" is "on", or the target is
6130 always in non-stop mode. In this case, we have a bit
6131 more work to do. Resume the current thread, and if
6132 we had paused all threads, restart them while the
6133 signal handler runs. */
6134 keep_going (ecs);
6135
6136 if (was_in_line)
6137 {
6138 restart_threads (ecs->event_thread);
6139 }
6140 else if (debug_infrun)
6141 {
6142 fprintf_unfiltered (gdb_stdlog,
6143 "infrun: no need to restart threads\n");
6144 }
6145 return;
6146 }
6147
6148 /* If we were nexting/stepping some other thread, switch to
6149 it, so that we don't continue it, losing control. */
6150 if (!switch_back_to_stepped_thread (ecs))
6151 keep_going (ecs);
6152 return;
6153 }
6154
6155 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6156 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6157 || ecs->event_thread->control.step_range_end == 1)
6158 && frame_id_eq (get_stack_frame_id (frame),
6159 ecs->event_thread->control.step_stack_frame_id)
6160 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6161 {
6162 /* The inferior is about to take a signal that will take it
6163 out of the single step range. Set a breakpoint at the
6164 current PC (which is presumably where the signal handler
6165 will eventually return) and then allow the inferior to
6166 run free.
6167
6168 Note that this is only needed for a signal delivered
6169 while in the single-step range. Nested signals aren't a
6170 problem as they eventually all return. */
6171 if (debug_infrun)
6172 fprintf_unfiltered (gdb_stdlog,
6173 "infrun: signal may take us out of "
6174 "single-step range\n");
6175
6176 clear_step_over_info ();
6177 insert_hp_step_resume_breakpoint_at_frame (frame);
6178 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6179 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6180 ecs->event_thread->control.trap_expected = 0;
6181 keep_going (ecs);
6182 return;
6183 }
6184
6185 /* Note: step_resume_breakpoint may be non-NULL. This occures
6186 when either there's a nested signal, or when there's a
6187 pending signal enabled just as the signal handler returns
6188 (leaving the inferior at the step-resume-breakpoint without
6189 actually executing it). Either way continue until the
6190 breakpoint is really hit. */
6191
6192 if (!switch_back_to_stepped_thread (ecs))
6193 {
6194 if (debug_infrun)
6195 fprintf_unfiltered (gdb_stdlog,
6196 "infrun: random signal, keep going\n");
6197
6198 keep_going (ecs);
6199 }
6200 return;
6201 }
6202
6203 process_event_stop_test (ecs);
6204 }
6205
6206 /* Come here when we've got some debug event / signal we can explain
6207 (IOW, not a random signal), and test whether it should cause a
6208 stop, or whether we should resume the inferior (transparently).
6209 E.g., could be a breakpoint whose condition evaluates false; we
6210 could be still stepping within the line; etc. */
6211
6212 static void
6213 process_event_stop_test (struct execution_control_state *ecs)
6214 {
6215 struct symtab_and_line stop_pc_sal;
6216 struct frame_info *frame;
6217 struct gdbarch *gdbarch;
6218 CORE_ADDR jmp_buf_pc;
6219 struct bpstat_what what;
6220
6221 /* Handle cases caused by hitting a breakpoint. */
6222
6223 frame = get_current_frame ();
6224 gdbarch = get_frame_arch (frame);
6225
6226 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6227
6228 if (what.call_dummy)
6229 {
6230 stop_stack_dummy = what.call_dummy;
6231 }
6232
6233 /* A few breakpoint types have callbacks associated (e.g.,
6234 bp_jit_event). Run them now. */
6235 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6236
6237 /* If we hit an internal event that triggers symbol changes, the
6238 current frame will be invalidated within bpstat_what (e.g., if we
6239 hit an internal solib event). Re-fetch it. */
6240 frame = get_current_frame ();
6241 gdbarch = get_frame_arch (frame);
6242
6243 switch (what.main_action)
6244 {
6245 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6246 /* If we hit the breakpoint at longjmp while stepping, we
6247 install a momentary breakpoint at the target of the
6248 jmp_buf. */
6249
6250 if (debug_infrun)
6251 fprintf_unfiltered (gdb_stdlog,
6252 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6253
6254 ecs->event_thread->stepping_over_breakpoint = 1;
6255
6256 if (what.is_longjmp)
6257 {
6258 struct value *arg_value;
6259
6260 /* If we set the longjmp breakpoint via a SystemTap probe,
6261 then use it to extract the arguments. The destination PC
6262 is the third argument to the probe. */
6263 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6264 if (arg_value)
6265 {
6266 jmp_buf_pc = value_as_address (arg_value);
6267 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6268 }
6269 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6270 || !gdbarch_get_longjmp_target (gdbarch,
6271 frame, &jmp_buf_pc))
6272 {
6273 if (debug_infrun)
6274 fprintf_unfiltered (gdb_stdlog,
6275 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6276 "(!gdbarch_get_longjmp_target)\n");
6277 keep_going (ecs);
6278 return;
6279 }
6280
6281 /* Insert a breakpoint at resume address. */
6282 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6283 }
6284 else
6285 check_exception_resume (ecs, frame);
6286 keep_going (ecs);
6287 return;
6288
6289 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6290 {
6291 struct frame_info *init_frame;
6292
6293 /* There are several cases to consider.
6294
6295 1. The initiating frame no longer exists. In this case we
6296 must stop, because the exception or longjmp has gone too
6297 far.
6298
6299 2. The initiating frame exists, and is the same as the
6300 current frame. We stop, because the exception or longjmp
6301 has been caught.
6302
6303 3. The initiating frame exists and is different from the
6304 current frame. This means the exception or longjmp has
6305 been caught beneath the initiating frame, so keep going.
6306
6307 4. longjmp breakpoint has been placed just to protect
6308 against stale dummy frames and user is not interested in
6309 stopping around longjmps. */
6310
6311 if (debug_infrun)
6312 fprintf_unfiltered (gdb_stdlog,
6313 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6314
6315 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6316 != NULL);
6317 delete_exception_resume_breakpoint (ecs->event_thread);
6318
6319 if (what.is_longjmp)
6320 {
6321 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6322
6323 if (!frame_id_p (ecs->event_thread->initiating_frame))
6324 {
6325 /* Case 4. */
6326 keep_going (ecs);
6327 return;
6328 }
6329 }
6330
6331 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6332
6333 if (init_frame)
6334 {
6335 struct frame_id current_id
6336 = get_frame_id (get_current_frame ());
6337 if (frame_id_eq (current_id,
6338 ecs->event_thread->initiating_frame))
6339 {
6340 /* Case 2. Fall through. */
6341 }
6342 else
6343 {
6344 /* Case 3. */
6345 keep_going (ecs);
6346 return;
6347 }
6348 }
6349
6350 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6351 exists. */
6352 delete_step_resume_breakpoint (ecs->event_thread);
6353
6354 end_stepping_range (ecs);
6355 }
6356 return;
6357
6358 case BPSTAT_WHAT_SINGLE:
6359 if (debug_infrun)
6360 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6361 ecs->event_thread->stepping_over_breakpoint = 1;
6362 /* Still need to check other stuff, at least the case where we
6363 are stepping and step out of the right range. */
6364 break;
6365
6366 case BPSTAT_WHAT_STEP_RESUME:
6367 if (debug_infrun)
6368 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6369
6370 delete_step_resume_breakpoint (ecs->event_thread);
6371 if (ecs->event_thread->control.proceed_to_finish
6372 && execution_direction == EXEC_REVERSE)
6373 {
6374 struct thread_info *tp = ecs->event_thread;
6375
6376 /* We are finishing a function in reverse, and just hit the
6377 step-resume breakpoint at the start address of the
6378 function, and we're almost there -- just need to back up
6379 by one more single-step, which should take us back to the
6380 function call. */
6381 tp->control.step_range_start = tp->control.step_range_end = 1;
6382 keep_going (ecs);
6383 return;
6384 }
6385 fill_in_stop_func (gdbarch, ecs);
6386 if (stop_pc == ecs->stop_func_start
6387 && execution_direction == EXEC_REVERSE)
6388 {
6389 /* We are stepping over a function call in reverse, and just
6390 hit the step-resume breakpoint at the start address of
6391 the function. Go back to single-stepping, which should
6392 take us back to the function call. */
6393 ecs->event_thread->stepping_over_breakpoint = 1;
6394 keep_going (ecs);
6395 return;
6396 }
6397 break;
6398
6399 case BPSTAT_WHAT_STOP_NOISY:
6400 if (debug_infrun)
6401 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6402 stop_print_frame = 1;
6403
6404 /* Assume the thread stopped for a breapoint. We'll still check
6405 whether a/the breakpoint is there when the thread is next
6406 resumed. */
6407 ecs->event_thread->stepping_over_breakpoint = 1;
6408
6409 stop_waiting (ecs);
6410 return;
6411
6412 case BPSTAT_WHAT_STOP_SILENT:
6413 if (debug_infrun)
6414 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6415 stop_print_frame = 0;
6416
6417 /* Assume the thread stopped for a breapoint. We'll still check
6418 whether a/the breakpoint is there when the thread is next
6419 resumed. */
6420 ecs->event_thread->stepping_over_breakpoint = 1;
6421 stop_waiting (ecs);
6422 return;
6423
6424 case BPSTAT_WHAT_HP_STEP_RESUME:
6425 if (debug_infrun)
6426 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6427
6428 delete_step_resume_breakpoint (ecs->event_thread);
6429 if (ecs->event_thread->step_after_step_resume_breakpoint)
6430 {
6431 /* Back when the step-resume breakpoint was inserted, we
6432 were trying to single-step off a breakpoint. Go back to
6433 doing that. */
6434 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6435 ecs->event_thread->stepping_over_breakpoint = 1;
6436 keep_going (ecs);
6437 return;
6438 }
6439 break;
6440
6441 case BPSTAT_WHAT_KEEP_CHECKING:
6442 break;
6443 }
6444
6445 /* If we stepped a permanent breakpoint and we had a high priority
6446 step-resume breakpoint for the address we stepped, but we didn't
6447 hit it, then we must have stepped into the signal handler. The
6448 step-resume was only necessary to catch the case of _not_
6449 stepping into the handler, so delete it, and fall through to
6450 checking whether the step finished. */
6451 if (ecs->event_thread->stepped_breakpoint)
6452 {
6453 struct breakpoint *sr_bp
6454 = ecs->event_thread->control.step_resume_breakpoint;
6455
6456 if (sr_bp != NULL
6457 && sr_bp->loc->permanent
6458 && sr_bp->type == bp_hp_step_resume
6459 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6460 {
6461 if (debug_infrun)
6462 fprintf_unfiltered (gdb_stdlog,
6463 "infrun: stepped permanent breakpoint, stopped in "
6464 "handler\n");
6465 delete_step_resume_breakpoint (ecs->event_thread);
6466 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6467 }
6468 }
6469
6470 /* We come here if we hit a breakpoint but should not stop for it.
6471 Possibly we also were stepping and should stop for that. So fall
6472 through and test for stepping. But, if not stepping, do not
6473 stop. */
6474
6475 /* In all-stop mode, if we're currently stepping but have stopped in
6476 some other thread, we need to switch back to the stepped thread. */
6477 if (switch_back_to_stepped_thread (ecs))
6478 return;
6479
6480 if (ecs->event_thread->control.step_resume_breakpoint)
6481 {
6482 if (debug_infrun)
6483 fprintf_unfiltered (gdb_stdlog,
6484 "infrun: step-resume breakpoint is inserted\n");
6485
6486 /* Having a step-resume breakpoint overrides anything
6487 else having to do with stepping commands until
6488 that breakpoint is reached. */
6489 keep_going (ecs);
6490 return;
6491 }
6492
6493 if (ecs->event_thread->control.step_range_end == 0)
6494 {
6495 if (debug_infrun)
6496 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6497 /* Likewise if we aren't even stepping. */
6498 keep_going (ecs);
6499 return;
6500 }
6501
6502 /* Re-fetch current thread's frame in case the code above caused
6503 the frame cache to be re-initialized, making our FRAME variable
6504 a dangling pointer. */
6505 frame = get_current_frame ();
6506 gdbarch = get_frame_arch (frame);
6507 fill_in_stop_func (gdbarch, ecs);
6508
6509 /* If stepping through a line, keep going if still within it.
6510
6511 Note that step_range_end is the address of the first instruction
6512 beyond the step range, and NOT the address of the last instruction
6513 within it!
6514
6515 Note also that during reverse execution, we may be stepping
6516 through a function epilogue and therefore must detect when
6517 the current-frame changes in the middle of a line. */
6518
6519 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6520 && (execution_direction != EXEC_REVERSE
6521 || frame_id_eq (get_frame_id (frame),
6522 ecs->event_thread->control.step_frame_id)))
6523 {
6524 if (debug_infrun)
6525 fprintf_unfiltered
6526 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6527 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6528 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6529
6530 /* Tentatively re-enable range stepping; `resume' disables it if
6531 necessary (e.g., if we're stepping over a breakpoint or we
6532 have software watchpoints). */
6533 ecs->event_thread->control.may_range_step = 1;
6534
6535 /* When stepping backward, stop at beginning of line range
6536 (unless it's the function entry point, in which case
6537 keep going back to the call point). */
6538 if (stop_pc == ecs->event_thread->control.step_range_start
6539 && stop_pc != ecs->stop_func_start
6540 && execution_direction == EXEC_REVERSE)
6541 end_stepping_range (ecs);
6542 else
6543 keep_going (ecs);
6544
6545 return;
6546 }
6547
6548 /* We stepped out of the stepping range. */
6549
6550 /* If we are stepping at the source level and entered the runtime
6551 loader dynamic symbol resolution code...
6552
6553 EXEC_FORWARD: we keep on single stepping until we exit the run
6554 time loader code and reach the callee's address.
6555
6556 EXEC_REVERSE: we've already executed the callee (backward), and
6557 the runtime loader code is handled just like any other
6558 undebuggable function call. Now we need only keep stepping
6559 backward through the trampoline code, and that's handled further
6560 down, so there is nothing for us to do here. */
6561
6562 if (execution_direction != EXEC_REVERSE
6563 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6564 && in_solib_dynsym_resolve_code (stop_pc))
6565 {
6566 CORE_ADDR pc_after_resolver =
6567 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6568
6569 if (debug_infrun)
6570 fprintf_unfiltered (gdb_stdlog,
6571 "infrun: stepped into dynsym resolve code\n");
6572
6573 if (pc_after_resolver)
6574 {
6575 /* Set up a step-resume breakpoint at the address
6576 indicated by SKIP_SOLIB_RESOLVER. */
6577 struct symtab_and_line sr_sal;
6578
6579 init_sal (&sr_sal);
6580 sr_sal.pc = pc_after_resolver;
6581 sr_sal.pspace = get_frame_program_space (frame);
6582
6583 insert_step_resume_breakpoint_at_sal (gdbarch,
6584 sr_sal, null_frame_id);
6585 }
6586
6587 keep_going (ecs);
6588 return;
6589 }
6590
6591 if (ecs->event_thread->control.step_range_end != 1
6592 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6593 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6594 && get_frame_type (frame) == SIGTRAMP_FRAME)
6595 {
6596 if (debug_infrun)
6597 fprintf_unfiltered (gdb_stdlog,
6598 "infrun: stepped into signal trampoline\n");
6599 /* The inferior, while doing a "step" or "next", has ended up in
6600 a signal trampoline (either by a signal being delivered or by
6601 the signal handler returning). Just single-step until the
6602 inferior leaves the trampoline (either by calling the handler
6603 or returning). */
6604 keep_going (ecs);
6605 return;
6606 }
6607
6608 /* If we're in the return path from a shared library trampoline,
6609 we want to proceed through the trampoline when stepping. */
6610 /* macro/2012-04-25: This needs to come before the subroutine
6611 call check below as on some targets return trampolines look
6612 like subroutine calls (MIPS16 return thunks). */
6613 if (gdbarch_in_solib_return_trampoline (gdbarch,
6614 stop_pc, ecs->stop_func_name)
6615 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6616 {
6617 /* Determine where this trampoline returns. */
6618 CORE_ADDR real_stop_pc;
6619
6620 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6621
6622 if (debug_infrun)
6623 fprintf_unfiltered (gdb_stdlog,
6624 "infrun: stepped into solib return tramp\n");
6625
6626 /* Only proceed through if we know where it's going. */
6627 if (real_stop_pc)
6628 {
6629 /* And put the step-breakpoint there and go until there. */
6630 struct symtab_and_line sr_sal;
6631
6632 init_sal (&sr_sal); /* initialize to zeroes */
6633 sr_sal.pc = real_stop_pc;
6634 sr_sal.section = find_pc_overlay (sr_sal.pc);
6635 sr_sal.pspace = get_frame_program_space (frame);
6636
6637 /* Do not specify what the fp should be when we stop since
6638 on some machines the prologue is where the new fp value
6639 is established. */
6640 insert_step_resume_breakpoint_at_sal (gdbarch,
6641 sr_sal, null_frame_id);
6642
6643 /* Restart without fiddling with the step ranges or
6644 other state. */
6645 keep_going (ecs);
6646 return;
6647 }
6648 }
6649
6650 /* Check for subroutine calls. The check for the current frame
6651 equalling the step ID is not necessary - the check of the
6652 previous frame's ID is sufficient - but it is a common case and
6653 cheaper than checking the previous frame's ID.
6654
6655 NOTE: frame_id_eq will never report two invalid frame IDs as
6656 being equal, so to get into this block, both the current and
6657 previous frame must have valid frame IDs. */
6658 /* The outer_frame_id check is a heuristic to detect stepping
6659 through startup code. If we step over an instruction which
6660 sets the stack pointer from an invalid value to a valid value,
6661 we may detect that as a subroutine call from the mythical
6662 "outermost" function. This could be fixed by marking
6663 outermost frames as !stack_p,code_p,special_p. Then the
6664 initial outermost frame, before sp was valid, would
6665 have code_addr == &_start. See the comment in frame_id_eq
6666 for more. */
6667 if (!frame_id_eq (get_stack_frame_id (frame),
6668 ecs->event_thread->control.step_stack_frame_id)
6669 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6670 ecs->event_thread->control.step_stack_frame_id)
6671 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6672 outer_frame_id)
6673 || (ecs->event_thread->control.step_start_function
6674 != find_pc_function (stop_pc)))))
6675 {
6676 CORE_ADDR real_stop_pc;
6677
6678 if (debug_infrun)
6679 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6680
6681 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6682 {
6683 /* I presume that step_over_calls is only 0 when we're
6684 supposed to be stepping at the assembly language level
6685 ("stepi"). Just stop. */
6686 /* And this works the same backward as frontward. MVS */
6687 end_stepping_range (ecs);
6688 return;
6689 }
6690
6691 /* Reverse stepping through solib trampolines. */
6692
6693 if (execution_direction == EXEC_REVERSE
6694 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6695 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6696 || (ecs->stop_func_start == 0
6697 && in_solib_dynsym_resolve_code (stop_pc))))
6698 {
6699 /* Any solib trampoline code can be handled in reverse
6700 by simply continuing to single-step. We have already
6701 executed the solib function (backwards), and a few
6702 steps will take us back through the trampoline to the
6703 caller. */
6704 keep_going (ecs);
6705 return;
6706 }
6707
6708 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6709 {
6710 /* We're doing a "next".
6711
6712 Normal (forward) execution: set a breakpoint at the
6713 callee's return address (the address at which the caller
6714 will resume).
6715
6716 Reverse (backward) execution. set the step-resume
6717 breakpoint at the start of the function that we just
6718 stepped into (backwards), and continue to there. When we
6719 get there, we'll need to single-step back to the caller. */
6720
6721 if (execution_direction == EXEC_REVERSE)
6722 {
6723 /* If we're already at the start of the function, we've either
6724 just stepped backward into a single instruction function,
6725 or stepped back out of a signal handler to the first instruction
6726 of the function. Just keep going, which will single-step back
6727 to the caller. */
6728 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6729 {
6730 struct symtab_and_line sr_sal;
6731
6732 /* Normal function call return (static or dynamic). */
6733 init_sal (&sr_sal);
6734 sr_sal.pc = ecs->stop_func_start;
6735 sr_sal.pspace = get_frame_program_space (frame);
6736 insert_step_resume_breakpoint_at_sal (gdbarch,
6737 sr_sal, null_frame_id);
6738 }
6739 }
6740 else
6741 insert_step_resume_breakpoint_at_caller (frame);
6742
6743 keep_going (ecs);
6744 return;
6745 }
6746
6747 /* If we are in a function call trampoline (a stub between the
6748 calling routine and the real function), locate the real
6749 function. That's what tells us (a) whether we want to step
6750 into it at all, and (b) what prologue we want to run to the
6751 end of, if we do step into it. */
6752 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6753 if (real_stop_pc == 0)
6754 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6755 if (real_stop_pc != 0)
6756 ecs->stop_func_start = real_stop_pc;
6757
6758 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6759 {
6760 struct symtab_and_line sr_sal;
6761
6762 init_sal (&sr_sal);
6763 sr_sal.pc = ecs->stop_func_start;
6764 sr_sal.pspace = get_frame_program_space (frame);
6765
6766 insert_step_resume_breakpoint_at_sal (gdbarch,
6767 sr_sal, null_frame_id);
6768 keep_going (ecs);
6769 return;
6770 }
6771
6772 /* If we have line number information for the function we are
6773 thinking of stepping into and the function isn't on the skip
6774 list, step into it.
6775
6776 If there are several symtabs at that PC (e.g. with include
6777 files), just want to know whether *any* of them have line
6778 numbers. find_pc_line handles this. */
6779 {
6780 struct symtab_and_line tmp_sal;
6781
6782 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6783 if (tmp_sal.line != 0
6784 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6785 &tmp_sal))
6786 {
6787 if (execution_direction == EXEC_REVERSE)
6788 handle_step_into_function_backward (gdbarch, ecs);
6789 else
6790 handle_step_into_function (gdbarch, ecs);
6791 return;
6792 }
6793 }
6794
6795 /* If we have no line number and the step-stop-if-no-debug is
6796 set, we stop the step so that the user has a chance to switch
6797 in assembly mode. */
6798 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6799 && step_stop_if_no_debug)
6800 {
6801 end_stepping_range (ecs);
6802 return;
6803 }
6804
6805 if (execution_direction == EXEC_REVERSE)
6806 {
6807 /* If we're already at the start of the function, we've either just
6808 stepped backward into a single instruction function without line
6809 number info, or stepped back out of a signal handler to the first
6810 instruction of the function without line number info. Just keep
6811 going, which will single-step back to the caller. */
6812 if (ecs->stop_func_start != stop_pc)
6813 {
6814 /* Set a breakpoint at callee's start address.
6815 From there we can step once and be back in the caller. */
6816 struct symtab_and_line sr_sal;
6817
6818 init_sal (&sr_sal);
6819 sr_sal.pc = ecs->stop_func_start;
6820 sr_sal.pspace = get_frame_program_space (frame);
6821 insert_step_resume_breakpoint_at_sal (gdbarch,
6822 sr_sal, null_frame_id);
6823 }
6824 }
6825 else
6826 /* Set a breakpoint at callee's return address (the address
6827 at which the caller will resume). */
6828 insert_step_resume_breakpoint_at_caller (frame);
6829
6830 keep_going (ecs);
6831 return;
6832 }
6833
6834 /* Reverse stepping through solib trampolines. */
6835
6836 if (execution_direction == EXEC_REVERSE
6837 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6838 {
6839 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6840 || (ecs->stop_func_start == 0
6841 && in_solib_dynsym_resolve_code (stop_pc)))
6842 {
6843 /* Any solib trampoline code can be handled in reverse
6844 by simply continuing to single-step. We have already
6845 executed the solib function (backwards), and a few
6846 steps will take us back through the trampoline to the
6847 caller. */
6848 keep_going (ecs);
6849 return;
6850 }
6851 else if (in_solib_dynsym_resolve_code (stop_pc))
6852 {
6853 /* Stepped backward into the solib dynsym resolver.
6854 Set a breakpoint at its start and continue, then
6855 one more step will take us out. */
6856 struct symtab_and_line sr_sal;
6857
6858 init_sal (&sr_sal);
6859 sr_sal.pc = ecs->stop_func_start;
6860 sr_sal.pspace = get_frame_program_space (frame);
6861 insert_step_resume_breakpoint_at_sal (gdbarch,
6862 sr_sal, null_frame_id);
6863 keep_going (ecs);
6864 return;
6865 }
6866 }
6867
6868 stop_pc_sal = find_pc_line (stop_pc, 0);
6869
6870 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6871 the trampoline processing logic, however, there are some trampolines
6872 that have no names, so we should do trampoline handling first. */
6873 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6874 && ecs->stop_func_name == NULL
6875 && stop_pc_sal.line == 0)
6876 {
6877 if (debug_infrun)
6878 fprintf_unfiltered (gdb_stdlog,
6879 "infrun: stepped into undebuggable function\n");
6880
6881 /* The inferior just stepped into, or returned to, an
6882 undebuggable function (where there is no debugging information
6883 and no line number corresponding to the address where the
6884 inferior stopped). Since we want to skip this kind of code,
6885 we keep going until the inferior returns from this
6886 function - unless the user has asked us not to (via
6887 set step-mode) or we no longer know how to get back
6888 to the call site. */
6889 if (step_stop_if_no_debug
6890 || !frame_id_p (frame_unwind_caller_id (frame)))
6891 {
6892 /* If we have no line number and the step-stop-if-no-debug
6893 is set, we stop the step so that the user has a chance to
6894 switch in assembly mode. */
6895 end_stepping_range (ecs);
6896 return;
6897 }
6898 else
6899 {
6900 /* Set a breakpoint at callee's return address (the address
6901 at which the caller will resume). */
6902 insert_step_resume_breakpoint_at_caller (frame);
6903 keep_going (ecs);
6904 return;
6905 }
6906 }
6907
6908 if (ecs->event_thread->control.step_range_end == 1)
6909 {
6910 /* It is stepi or nexti. We always want to stop stepping after
6911 one instruction. */
6912 if (debug_infrun)
6913 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6914 end_stepping_range (ecs);
6915 return;
6916 }
6917
6918 if (stop_pc_sal.line == 0)
6919 {
6920 /* We have no line number information. That means to stop
6921 stepping (does this always happen right after one instruction,
6922 when we do "s" in a function with no line numbers,
6923 or can this happen as a result of a return or longjmp?). */
6924 if (debug_infrun)
6925 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6926 end_stepping_range (ecs);
6927 return;
6928 }
6929
6930 /* Look for "calls" to inlined functions, part one. If the inline
6931 frame machinery detected some skipped call sites, we have entered
6932 a new inline function. */
6933
6934 if (frame_id_eq (get_frame_id (get_current_frame ()),
6935 ecs->event_thread->control.step_frame_id)
6936 && inline_skipped_frames (ecs->ptid))
6937 {
6938 struct symtab_and_line call_sal;
6939
6940 if (debug_infrun)
6941 fprintf_unfiltered (gdb_stdlog,
6942 "infrun: stepped into inlined function\n");
6943
6944 find_frame_sal (get_current_frame (), &call_sal);
6945
6946 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6947 {
6948 /* For "step", we're going to stop. But if the call site
6949 for this inlined function is on the same source line as
6950 we were previously stepping, go down into the function
6951 first. Otherwise stop at the call site. */
6952
6953 if (call_sal.line == ecs->event_thread->current_line
6954 && call_sal.symtab == ecs->event_thread->current_symtab)
6955 step_into_inline_frame (ecs->ptid);
6956
6957 end_stepping_range (ecs);
6958 return;
6959 }
6960 else
6961 {
6962 /* For "next", we should stop at the call site if it is on a
6963 different source line. Otherwise continue through the
6964 inlined function. */
6965 if (call_sal.line == ecs->event_thread->current_line
6966 && call_sal.symtab == ecs->event_thread->current_symtab)
6967 keep_going (ecs);
6968 else
6969 end_stepping_range (ecs);
6970 return;
6971 }
6972 }
6973
6974 /* Look for "calls" to inlined functions, part two. If we are still
6975 in the same real function we were stepping through, but we have
6976 to go further up to find the exact frame ID, we are stepping
6977 through a more inlined call beyond its call site. */
6978
6979 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6980 && !frame_id_eq (get_frame_id (get_current_frame ()),
6981 ecs->event_thread->control.step_frame_id)
6982 && stepped_in_from (get_current_frame (),
6983 ecs->event_thread->control.step_frame_id))
6984 {
6985 if (debug_infrun)
6986 fprintf_unfiltered (gdb_stdlog,
6987 "infrun: stepping through inlined function\n");
6988
6989 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6990 keep_going (ecs);
6991 else
6992 end_stepping_range (ecs);
6993 return;
6994 }
6995
6996 if ((stop_pc == stop_pc_sal.pc)
6997 && (ecs->event_thread->current_line != stop_pc_sal.line
6998 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6999 {
7000 /* We are at the start of a different line. So stop. Note that
7001 we don't stop if we step into the middle of a different line.
7002 That is said to make things like for (;;) statements work
7003 better. */
7004 if (debug_infrun)
7005 fprintf_unfiltered (gdb_stdlog,
7006 "infrun: stepped to a different line\n");
7007 end_stepping_range (ecs);
7008 return;
7009 }
7010
7011 /* We aren't done stepping.
7012
7013 Optimize by setting the stepping range to the line.
7014 (We might not be in the original line, but if we entered a
7015 new line in mid-statement, we continue stepping. This makes
7016 things like for(;;) statements work better.) */
7017
7018 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7019 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7020 ecs->event_thread->control.may_range_step = 1;
7021 set_step_info (frame, stop_pc_sal);
7022
7023 if (debug_infrun)
7024 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7025 keep_going (ecs);
7026 }
7027
7028 /* In all-stop mode, if we're currently stepping but have stopped in
7029 some other thread, we may need to switch back to the stepped
7030 thread. Returns true we set the inferior running, false if we left
7031 it stopped (and the event needs further processing). */
7032
7033 static int
7034 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7035 {
7036 if (!target_is_non_stop_p ())
7037 {
7038 struct thread_info *tp;
7039 struct thread_info *stepping_thread;
7040
7041 /* If any thread is blocked on some internal breakpoint, and we
7042 simply need to step over that breakpoint to get it going
7043 again, do that first. */
7044
7045 /* However, if we see an event for the stepping thread, then we
7046 know all other threads have been moved past their breakpoints
7047 already. Let the caller check whether the step is finished,
7048 etc., before deciding to move it past a breakpoint. */
7049 if (ecs->event_thread->control.step_range_end != 0)
7050 return 0;
7051
7052 /* Check if the current thread is blocked on an incomplete
7053 step-over, interrupted by a random signal. */
7054 if (ecs->event_thread->control.trap_expected
7055 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7056 {
7057 if (debug_infrun)
7058 {
7059 fprintf_unfiltered (gdb_stdlog,
7060 "infrun: need to finish step-over of [%s]\n",
7061 target_pid_to_str (ecs->event_thread->ptid));
7062 }
7063 keep_going (ecs);
7064 return 1;
7065 }
7066
7067 /* Check if the current thread is blocked by a single-step
7068 breakpoint of another thread. */
7069 if (ecs->hit_singlestep_breakpoint)
7070 {
7071 if (debug_infrun)
7072 {
7073 fprintf_unfiltered (gdb_stdlog,
7074 "infrun: need to step [%s] over single-step "
7075 "breakpoint\n",
7076 target_pid_to_str (ecs->ptid));
7077 }
7078 keep_going (ecs);
7079 return 1;
7080 }
7081
7082 /* If this thread needs yet another step-over (e.g., stepping
7083 through a delay slot), do it first before moving on to
7084 another thread. */
7085 if (thread_still_needs_step_over (ecs->event_thread))
7086 {
7087 if (debug_infrun)
7088 {
7089 fprintf_unfiltered (gdb_stdlog,
7090 "infrun: thread [%s] still needs step-over\n",
7091 target_pid_to_str (ecs->event_thread->ptid));
7092 }
7093 keep_going (ecs);
7094 return 1;
7095 }
7096
7097 /* If scheduler locking applies even if not stepping, there's no
7098 need to walk over threads. Above we've checked whether the
7099 current thread is stepping. If some other thread not the
7100 event thread is stepping, then it must be that scheduler
7101 locking is not in effect. */
7102 if (schedlock_applies (ecs->event_thread))
7103 return 0;
7104
7105 /* Otherwise, we no longer expect a trap in the current thread.
7106 Clear the trap_expected flag before switching back -- this is
7107 what keep_going does as well, if we call it. */
7108 ecs->event_thread->control.trap_expected = 0;
7109
7110 /* Likewise, clear the signal if it should not be passed. */
7111 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7112 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7113
7114 /* Do all pending step-overs before actually proceeding with
7115 step/next/etc. */
7116 if (start_step_over ())
7117 {
7118 prepare_to_wait (ecs);
7119 return 1;
7120 }
7121
7122 /* Look for the stepping/nexting thread. */
7123 stepping_thread = NULL;
7124
7125 ALL_NON_EXITED_THREADS (tp)
7126 {
7127 /* Ignore threads of processes the caller is not
7128 resuming. */
7129 if (!sched_multi
7130 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7131 continue;
7132
7133 /* When stepping over a breakpoint, we lock all threads
7134 except the one that needs to move past the breakpoint.
7135 If a non-event thread has this set, the "incomplete
7136 step-over" check above should have caught it earlier. */
7137 if (tp->control.trap_expected)
7138 {
7139 internal_error (__FILE__, __LINE__,
7140 "[%s] has inconsistent state: "
7141 "trap_expected=%d\n",
7142 target_pid_to_str (tp->ptid),
7143 tp->control.trap_expected);
7144 }
7145
7146 /* Did we find the stepping thread? */
7147 if (tp->control.step_range_end)
7148 {
7149 /* Yep. There should only one though. */
7150 gdb_assert (stepping_thread == NULL);
7151
7152 /* The event thread is handled at the top, before we
7153 enter this loop. */
7154 gdb_assert (tp != ecs->event_thread);
7155
7156 /* If some thread other than the event thread is
7157 stepping, then scheduler locking can't be in effect,
7158 otherwise we wouldn't have resumed the current event
7159 thread in the first place. */
7160 gdb_assert (!schedlock_applies (tp));
7161
7162 stepping_thread = tp;
7163 }
7164 }
7165
7166 if (stepping_thread != NULL)
7167 {
7168 if (debug_infrun)
7169 fprintf_unfiltered (gdb_stdlog,
7170 "infrun: switching back to stepped thread\n");
7171
7172 if (keep_going_stepped_thread (stepping_thread))
7173 {
7174 prepare_to_wait (ecs);
7175 return 1;
7176 }
7177 }
7178 }
7179
7180 return 0;
7181 }
7182
7183 /* Set a previously stepped thread back to stepping. Returns true on
7184 success, false if the resume is not possible (e.g., the thread
7185 vanished). */
7186
7187 static int
7188 keep_going_stepped_thread (struct thread_info *tp)
7189 {
7190 struct frame_info *frame;
7191 struct execution_control_state ecss;
7192 struct execution_control_state *ecs = &ecss;
7193
7194 /* If the stepping thread exited, then don't try to switch back and
7195 resume it, which could fail in several different ways depending
7196 on the target. Instead, just keep going.
7197
7198 We can find a stepping dead thread in the thread list in two
7199 cases:
7200
7201 - The target supports thread exit events, and when the target
7202 tries to delete the thread from the thread list, inferior_ptid
7203 pointed at the exiting thread. In such case, calling
7204 delete_thread does not really remove the thread from the list;
7205 instead, the thread is left listed, with 'exited' state.
7206
7207 - The target's debug interface does not support thread exit
7208 events, and so we have no idea whatsoever if the previously
7209 stepping thread is still alive. For that reason, we need to
7210 synchronously query the target now. */
7211
7212 if (is_exited (tp->ptid)
7213 || !target_thread_alive (tp->ptid))
7214 {
7215 if (debug_infrun)
7216 fprintf_unfiltered (gdb_stdlog,
7217 "infrun: not resuming previously "
7218 "stepped thread, it has vanished\n");
7219
7220 delete_thread (tp->ptid);
7221 return 0;
7222 }
7223
7224 if (debug_infrun)
7225 fprintf_unfiltered (gdb_stdlog,
7226 "infrun: resuming previously stepped thread\n");
7227
7228 reset_ecs (ecs, tp);
7229 switch_to_thread (tp->ptid);
7230
7231 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7232 frame = get_current_frame ();
7233
7234 /* If the PC of the thread we were trying to single-step has
7235 changed, then that thread has trapped or been signaled, but the
7236 event has not been reported to GDB yet. Re-poll the target
7237 looking for this particular thread's event (i.e. temporarily
7238 enable schedlock) by:
7239
7240 - setting a break at the current PC
7241 - resuming that particular thread, only (by setting trap
7242 expected)
7243
7244 This prevents us continuously moving the single-step breakpoint
7245 forward, one instruction at a time, overstepping. */
7246
7247 if (stop_pc != tp->prev_pc)
7248 {
7249 ptid_t resume_ptid;
7250
7251 if (debug_infrun)
7252 fprintf_unfiltered (gdb_stdlog,
7253 "infrun: expected thread advanced also (%s -> %s)\n",
7254 paddress (target_gdbarch (), tp->prev_pc),
7255 paddress (target_gdbarch (), stop_pc));
7256
7257 /* Clear the info of the previous step-over, as it's no longer
7258 valid (if the thread was trying to step over a breakpoint, it
7259 has already succeeded). It's what keep_going would do too,
7260 if we called it. Do this before trying to insert the sss
7261 breakpoint, otherwise if we were previously trying to step
7262 over this exact address in another thread, the breakpoint is
7263 skipped. */
7264 clear_step_over_info ();
7265 tp->control.trap_expected = 0;
7266
7267 insert_single_step_breakpoint (get_frame_arch (frame),
7268 get_frame_address_space (frame),
7269 stop_pc);
7270
7271 tp->resumed = 1;
7272 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7273 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7274 }
7275 else
7276 {
7277 if (debug_infrun)
7278 fprintf_unfiltered (gdb_stdlog,
7279 "infrun: expected thread still hasn't advanced\n");
7280
7281 keep_going_pass_signal (ecs);
7282 }
7283 return 1;
7284 }
7285
7286 /* Is thread TP in the middle of (software or hardware)
7287 single-stepping? (Note the result of this function must never be
7288 passed directly as target_resume's STEP parameter.) */
7289
7290 static int
7291 currently_stepping (struct thread_info *tp)
7292 {
7293 return ((tp->control.step_range_end
7294 && tp->control.step_resume_breakpoint == NULL)
7295 || tp->control.trap_expected
7296 || tp->stepped_breakpoint
7297 || bpstat_should_step ());
7298 }
7299
7300 /* Inferior has stepped into a subroutine call with source code that
7301 we should not step over. Do step to the first line of code in
7302 it. */
7303
7304 static void
7305 handle_step_into_function (struct gdbarch *gdbarch,
7306 struct execution_control_state *ecs)
7307 {
7308 struct compunit_symtab *cust;
7309 struct symtab_and_line stop_func_sal, sr_sal;
7310
7311 fill_in_stop_func (gdbarch, ecs);
7312
7313 cust = find_pc_compunit_symtab (stop_pc);
7314 if (cust != NULL && compunit_language (cust) != language_asm)
7315 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7316 ecs->stop_func_start);
7317
7318 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7319 /* Use the step_resume_break to step until the end of the prologue,
7320 even if that involves jumps (as it seems to on the vax under
7321 4.2). */
7322 /* If the prologue ends in the middle of a source line, continue to
7323 the end of that source line (if it is still within the function).
7324 Otherwise, just go to end of prologue. */
7325 if (stop_func_sal.end
7326 && stop_func_sal.pc != ecs->stop_func_start
7327 && stop_func_sal.end < ecs->stop_func_end)
7328 ecs->stop_func_start = stop_func_sal.end;
7329
7330 /* Architectures which require breakpoint adjustment might not be able
7331 to place a breakpoint at the computed address. If so, the test
7332 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7333 ecs->stop_func_start to an address at which a breakpoint may be
7334 legitimately placed.
7335
7336 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7337 made, GDB will enter an infinite loop when stepping through
7338 optimized code consisting of VLIW instructions which contain
7339 subinstructions corresponding to different source lines. On
7340 FR-V, it's not permitted to place a breakpoint on any but the
7341 first subinstruction of a VLIW instruction. When a breakpoint is
7342 set, GDB will adjust the breakpoint address to the beginning of
7343 the VLIW instruction. Thus, we need to make the corresponding
7344 adjustment here when computing the stop address. */
7345
7346 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7347 {
7348 ecs->stop_func_start
7349 = gdbarch_adjust_breakpoint_address (gdbarch,
7350 ecs->stop_func_start);
7351 }
7352
7353 if (ecs->stop_func_start == stop_pc)
7354 {
7355 /* We are already there: stop now. */
7356 end_stepping_range (ecs);
7357 return;
7358 }
7359 else
7360 {
7361 /* Put the step-breakpoint there and go until there. */
7362 init_sal (&sr_sal); /* initialize to zeroes */
7363 sr_sal.pc = ecs->stop_func_start;
7364 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7365 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7366
7367 /* Do not specify what the fp should be when we stop since on
7368 some machines the prologue is where the new fp value is
7369 established. */
7370 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7371
7372 /* And make sure stepping stops right away then. */
7373 ecs->event_thread->control.step_range_end
7374 = ecs->event_thread->control.step_range_start;
7375 }
7376 keep_going (ecs);
7377 }
7378
7379 /* Inferior has stepped backward into a subroutine call with source
7380 code that we should not step over. Do step to the beginning of the
7381 last line of code in it. */
7382
7383 static void
7384 handle_step_into_function_backward (struct gdbarch *gdbarch,
7385 struct execution_control_state *ecs)
7386 {
7387 struct compunit_symtab *cust;
7388 struct symtab_and_line stop_func_sal;
7389
7390 fill_in_stop_func (gdbarch, ecs);
7391
7392 cust = find_pc_compunit_symtab (stop_pc);
7393 if (cust != NULL && compunit_language (cust) != language_asm)
7394 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7395 ecs->stop_func_start);
7396
7397 stop_func_sal = find_pc_line (stop_pc, 0);
7398
7399 /* OK, we're just going to keep stepping here. */
7400 if (stop_func_sal.pc == stop_pc)
7401 {
7402 /* We're there already. Just stop stepping now. */
7403 end_stepping_range (ecs);
7404 }
7405 else
7406 {
7407 /* Else just reset the step range and keep going.
7408 No step-resume breakpoint, they don't work for
7409 epilogues, which can have multiple entry paths. */
7410 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7411 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7412 keep_going (ecs);
7413 }
7414 return;
7415 }
7416
7417 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7418 This is used to both functions and to skip over code. */
7419
7420 static void
7421 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7422 struct symtab_and_line sr_sal,
7423 struct frame_id sr_id,
7424 enum bptype sr_type)
7425 {
7426 /* There should never be more than one step-resume or longjmp-resume
7427 breakpoint per thread, so we should never be setting a new
7428 step_resume_breakpoint when one is already active. */
7429 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7430 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7431
7432 if (debug_infrun)
7433 fprintf_unfiltered (gdb_stdlog,
7434 "infrun: inserting step-resume breakpoint at %s\n",
7435 paddress (gdbarch, sr_sal.pc));
7436
7437 inferior_thread ()->control.step_resume_breakpoint
7438 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7439 }
7440
7441 void
7442 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7443 struct symtab_and_line sr_sal,
7444 struct frame_id sr_id)
7445 {
7446 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7447 sr_sal, sr_id,
7448 bp_step_resume);
7449 }
7450
7451 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7452 This is used to skip a potential signal handler.
7453
7454 This is called with the interrupted function's frame. The signal
7455 handler, when it returns, will resume the interrupted function at
7456 RETURN_FRAME.pc. */
7457
7458 static void
7459 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7460 {
7461 struct symtab_and_line sr_sal;
7462 struct gdbarch *gdbarch;
7463
7464 gdb_assert (return_frame != NULL);
7465 init_sal (&sr_sal); /* initialize to zeros */
7466
7467 gdbarch = get_frame_arch (return_frame);
7468 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7469 sr_sal.section = find_pc_overlay (sr_sal.pc);
7470 sr_sal.pspace = get_frame_program_space (return_frame);
7471
7472 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7473 get_stack_frame_id (return_frame),
7474 bp_hp_step_resume);
7475 }
7476
7477 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7478 is used to skip a function after stepping into it (for "next" or if
7479 the called function has no debugging information).
7480
7481 The current function has almost always been reached by single
7482 stepping a call or return instruction. NEXT_FRAME belongs to the
7483 current function, and the breakpoint will be set at the caller's
7484 resume address.
7485
7486 This is a separate function rather than reusing
7487 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7488 get_prev_frame, which may stop prematurely (see the implementation
7489 of frame_unwind_caller_id for an example). */
7490
7491 static void
7492 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7493 {
7494 struct symtab_and_line sr_sal;
7495 struct gdbarch *gdbarch;
7496
7497 /* We shouldn't have gotten here if we don't know where the call site
7498 is. */
7499 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7500
7501 init_sal (&sr_sal); /* initialize to zeros */
7502
7503 gdbarch = frame_unwind_caller_arch (next_frame);
7504 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7505 frame_unwind_caller_pc (next_frame));
7506 sr_sal.section = find_pc_overlay (sr_sal.pc);
7507 sr_sal.pspace = frame_unwind_program_space (next_frame);
7508
7509 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7510 frame_unwind_caller_id (next_frame));
7511 }
7512
7513 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7514 new breakpoint at the target of a jmp_buf. The handling of
7515 longjmp-resume uses the same mechanisms used for handling
7516 "step-resume" breakpoints. */
7517
7518 static void
7519 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7520 {
7521 /* There should never be more than one longjmp-resume breakpoint per
7522 thread, so we should never be setting a new
7523 longjmp_resume_breakpoint when one is already active. */
7524 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7525
7526 if (debug_infrun)
7527 fprintf_unfiltered (gdb_stdlog,
7528 "infrun: inserting longjmp-resume breakpoint at %s\n",
7529 paddress (gdbarch, pc));
7530
7531 inferior_thread ()->control.exception_resume_breakpoint =
7532 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7533 }
7534
7535 /* Insert an exception resume breakpoint. TP is the thread throwing
7536 the exception. The block B is the block of the unwinder debug hook
7537 function. FRAME is the frame corresponding to the call to this
7538 function. SYM is the symbol of the function argument holding the
7539 target PC of the exception. */
7540
7541 static void
7542 insert_exception_resume_breakpoint (struct thread_info *tp,
7543 const struct block *b,
7544 struct frame_info *frame,
7545 struct symbol *sym)
7546 {
7547 TRY
7548 {
7549 struct block_symbol vsym;
7550 struct value *value;
7551 CORE_ADDR handler;
7552 struct breakpoint *bp;
7553
7554 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7555 value = read_var_value (vsym.symbol, vsym.block, frame);
7556 /* If the value was optimized out, revert to the old behavior. */
7557 if (! value_optimized_out (value))
7558 {
7559 handler = value_as_address (value);
7560
7561 if (debug_infrun)
7562 fprintf_unfiltered (gdb_stdlog,
7563 "infrun: exception resume at %lx\n",
7564 (unsigned long) handler);
7565
7566 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7567 handler, bp_exception_resume);
7568
7569 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7570 frame = NULL;
7571
7572 bp->thread = tp->global_num;
7573 inferior_thread ()->control.exception_resume_breakpoint = bp;
7574 }
7575 }
7576 CATCH (e, RETURN_MASK_ERROR)
7577 {
7578 /* We want to ignore errors here. */
7579 }
7580 END_CATCH
7581 }
7582
7583 /* A helper for check_exception_resume that sets an
7584 exception-breakpoint based on a SystemTap probe. */
7585
7586 static void
7587 insert_exception_resume_from_probe (struct thread_info *tp,
7588 const struct bound_probe *probe,
7589 struct frame_info *frame)
7590 {
7591 struct value *arg_value;
7592 CORE_ADDR handler;
7593 struct breakpoint *bp;
7594
7595 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7596 if (!arg_value)
7597 return;
7598
7599 handler = value_as_address (arg_value);
7600
7601 if (debug_infrun)
7602 fprintf_unfiltered (gdb_stdlog,
7603 "infrun: exception resume at %s\n",
7604 paddress (get_objfile_arch (probe->objfile),
7605 handler));
7606
7607 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7608 handler, bp_exception_resume);
7609 bp->thread = tp->global_num;
7610 inferior_thread ()->control.exception_resume_breakpoint = bp;
7611 }
7612
7613 /* This is called when an exception has been intercepted. Check to
7614 see whether the exception's destination is of interest, and if so,
7615 set an exception resume breakpoint there. */
7616
7617 static void
7618 check_exception_resume (struct execution_control_state *ecs,
7619 struct frame_info *frame)
7620 {
7621 struct bound_probe probe;
7622 struct symbol *func;
7623
7624 /* First see if this exception unwinding breakpoint was set via a
7625 SystemTap probe point. If so, the probe has two arguments: the
7626 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7627 set a breakpoint there. */
7628 probe = find_probe_by_pc (get_frame_pc (frame));
7629 if (probe.probe)
7630 {
7631 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7632 return;
7633 }
7634
7635 func = get_frame_function (frame);
7636 if (!func)
7637 return;
7638
7639 TRY
7640 {
7641 const struct block *b;
7642 struct block_iterator iter;
7643 struct symbol *sym;
7644 int argno = 0;
7645
7646 /* The exception breakpoint is a thread-specific breakpoint on
7647 the unwinder's debug hook, declared as:
7648
7649 void _Unwind_DebugHook (void *cfa, void *handler);
7650
7651 The CFA argument indicates the frame to which control is
7652 about to be transferred. HANDLER is the destination PC.
7653
7654 We ignore the CFA and set a temporary breakpoint at HANDLER.
7655 This is not extremely efficient but it avoids issues in gdb
7656 with computing the DWARF CFA, and it also works even in weird
7657 cases such as throwing an exception from inside a signal
7658 handler. */
7659
7660 b = SYMBOL_BLOCK_VALUE (func);
7661 ALL_BLOCK_SYMBOLS (b, iter, sym)
7662 {
7663 if (!SYMBOL_IS_ARGUMENT (sym))
7664 continue;
7665
7666 if (argno == 0)
7667 ++argno;
7668 else
7669 {
7670 insert_exception_resume_breakpoint (ecs->event_thread,
7671 b, frame, sym);
7672 break;
7673 }
7674 }
7675 }
7676 CATCH (e, RETURN_MASK_ERROR)
7677 {
7678 }
7679 END_CATCH
7680 }
7681
7682 static void
7683 stop_waiting (struct execution_control_state *ecs)
7684 {
7685 if (debug_infrun)
7686 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7687
7688 clear_step_over_info ();
7689
7690 /* Let callers know we don't want to wait for the inferior anymore. */
7691 ecs->wait_some_more = 0;
7692
7693 /* If all-stop, but the target is always in non-stop mode, stop all
7694 threads now that we're presenting the stop to the user. */
7695 if (!non_stop && target_is_non_stop_p ())
7696 stop_all_threads ();
7697 }
7698
7699 /* Like keep_going, but passes the signal to the inferior, even if the
7700 signal is set to nopass. */
7701
7702 static void
7703 keep_going_pass_signal (struct execution_control_state *ecs)
7704 {
7705 /* Make sure normal_stop is called if we get a QUIT handled before
7706 reaching resume. */
7707 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7708
7709 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7710 gdb_assert (!ecs->event_thread->resumed);
7711
7712 /* Save the pc before execution, to compare with pc after stop. */
7713 ecs->event_thread->prev_pc
7714 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7715
7716 if (ecs->event_thread->control.trap_expected)
7717 {
7718 struct thread_info *tp = ecs->event_thread;
7719
7720 if (debug_infrun)
7721 fprintf_unfiltered (gdb_stdlog,
7722 "infrun: %s has trap_expected set, "
7723 "resuming to collect trap\n",
7724 target_pid_to_str (tp->ptid));
7725
7726 /* We haven't yet gotten our trap, and either: intercepted a
7727 non-signal event (e.g., a fork); or took a signal which we
7728 are supposed to pass through to the inferior. Simply
7729 continue. */
7730 discard_cleanups (old_cleanups);
7731 resume (ecs->event_thread->suspend.stop_signal);
7732 }
7733 else if (step_over_info_valid_p ())
7734 {
7735 /* Another thread is stepping over a breakpoint in-line. If
7736 this thread needs a step-over too, queue the request. In
7737 either case, this resume must be deferred for later. */
7738 struct thread_info *tp = ecs->event_thread;
7739
7740 if (ecs->hit_singlestep_breakpoint
7741 || thread_still_needs_step_over (tp))
7742 {
7743 if (debug_infrun)
7744 fprintf_unfiltered (gdb_stdlog,
7745 "infrun: step-over already in progress: "
7746 "step-over for %s deferred\n",
7747 target_pid_to_str (tp->ptid));
7748 thread_step_over_chain_enqueue (tp);
7749 }
7750 else
7751 {
7752 if (debug_infrun)
7753 fprintf_unfiltered (gdb_stdlog,
7754 "infrun: step-over in progress: "
7755 "resume of %s deferred\n",
7756 target_pid_to_str (tp->ptid));
7757 }
7758
7759 discard_cleanups (old_cleanups);
7760 }
7761 else
7762 {
7763 struct regcache *regcache = get_current_regcache ();
7764 int remove_bp;
7765 int remove_wps;
7766 step_over_what step_what;
7767
7768 /* Either the trap was not expected, but we are continuing
7769 anyway (if we got a signal, the user asked it be passed to
7770 the child)
7771 -- or --
7772 We got our expected trap, but decided we should resume from
7773 it.
7774
7775 We're going to run this baby now!
7776
7777 Note that insert_breakpoints won't try to re-insert
7778 already inserted breakpoints. Therefore, we don't
7779 care if breakpoints were already inserted, or not. */
7780
7781 /* If we need to step over a breakpoint, and we're not using
7782 displaced stepping to do so, insert all breakpoints
7783 (watchpoints, etc.) but the one we're stepping over, step one
7784 instruction, and then re-insert the breakpoint when that step
7785 is finished. */
7786
7787 step_what = thread_still_needs_step_over (ecs->event_thread);
7788
7789 remove_bp = (ecs->hit_singlestep_breakpoint
7790 || (step_what & STEP_OVER_BREAKPOINT));
7791 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7792
7793 /* We can't use displaced stepping if we need to step past a
7794 watchpoint. The instruction copied to the scratch pad would
7795 still trigger the watchpoint. */
7796 if (remove_bp
7797 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7798 {
7799 set_step_over_info (get_regcache_aspace (regcache),
7800 regcache_read_pc (regcache), remove_wps,
7801 ecs->event_thread->global_num);
7802 }
7803 else if (remove_wps)
7804 set_step_over_info (NULL, 0, remove_wps, -1);
7805
7806 /* If we now need to do an in-line step-over, we need to stop
7807 all other threads. Note this must be done before
7808 insert_breakpoints below, because that removes the breakpoint
7809 we're about to step over, otherwise other threads could miss
7810 it. */
7811 if (step_over_info_valid_p () && target_is_non_stop_p ())
7812 stop_all_threads ();
7813
7814 /* Stop stepping if inserting breakpoints fails. */
7815 TRY
7816 {
7817 insert_breakpoints ();
7818 }
7819 CATCH (e, RETURN_MASK_ERROR)
7820 {
7821 exception_print (gdb_stderr, e);
7822 stop_waiting (ecs);
7823 discard_cleanups (old_cleanups);
7824 return;
7825 }
7826 END_CATCH
7827
7828 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7829
7830 discard_cleanups (old_cleanups);
7831 resume (ecs->event_thread->suspend.stop_signal);
7832 }
7833
7834 prepare_to_wait (ecs);
7835 }
7836
7837 /* Called when we should continue running the inferior, because the
7838 current event doesn't cause a user visible stop. This does the
7839 resuming part; waiting for the next event is done elsewhere. */
7840
7841 static void
7842 keep_going (struct execution_control_state *ecs)
7843 {
7844 if (ecs->event_thread->control.trap_expected
7845 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7846 ecs->event_thread->control.trap_expected = 0;
7847
7848 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7849 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7850 keep_going_pass_signal (ecs);
7851 }
7852
7853 /* This function normally comes after a resume, before
7854 handle_inferior_event exits. It takes care of any last bits of
7855 housekeeping, and sets the all-important wait_some_more flag. */
7856
7857 static void
7858 prepare_to_wait (struct execution_control_state *ecs)
7859 {
7860 if (debug_infrun)
7861 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7862
7863 ecs->wait_some_more = 1;
7864
7865 if (!target_is_async_p ())
7866 mark_infrun_async_event_handler ();
7867 }
7868
7869 /* We are done with the step range of a step/next/si/ni command.
7870 Called once for each n of a "step n" operation. */
7871
7872 static void
7873 end_stepping_range (struct execution_control_state *ecs)
7874 {
7875 ecs->event_thread->control.stop_step = 1;
7876 stop_waiting (ecs);
7877 }
7878
7879 /* Several print_*_reason functions to print why the inferior has stopped.
7880 We always print something when the inferior exits, or receives a signal.
7881 The rest of the cases are dealt with later on in normal_stop and
7882 print_it_typical. Ideally there should be a call to one of these
7883 print_*_reason functions functions from handle_inferior_event each time
7884 stop_waiting is called.
7885
7886 Note that we don't call these directly, instead we delegate that to
7887 the interpreters, through observers. Interpreters then call these
7888 with whatever uiout is right. */
7889
7890 void
7891 print_end_stepping_range_reason (struct ui_out *uiout)
7892 {
7893 /* For CLI-like interpreters, print nothing. */
7894
7895 if (ui_out_is_mi_like_p (uiout))
7896 {
7897 ui_out_field_string (uiout, "reason",
7898 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7899 }
7900 }
7901
7902 void
7903 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7904 {
7905 annotate_signalled ();
7906 if (ui_out_is_mi_like_p (uiout))
7907 ui_out_field_string
7908 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7909 ui_out_text (uiout, "\nProgram terminated with signal ");
7910 annotate_signal_name ();
7911 ui_out_field_string (uiout, "signal-name",
7912 gdb_signal_to_name (siggnal));
7913 annotate_signal_name_end ();
7914 ui_out_text (uiout, ", ");
7915 annotate_signal_string ();
7916 ui_out_field_string (uiout, "signal-meaning",
7917 gdb_signal_to_string (siggnal));
7918 annotate_signal_string_end ();
7919 ui_out_text (uiout, ".\n");
7920 ui_out_text (uiout, "The program no longer exists.\n");
7921 }
7922
7923 void
7924 print_exited_reason (struct ui_out *uiout, int exitstatus)
7925 {
7926 struct inferior *inf = current_inferior ();
7927 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7928
7929 annotate_exited (exitstatus);
7930 if (exitstatus)
7931 {
7932 if (ui_out_is_mi_like_p (uiout))
7933 ui_out_field_string (uiout, "reason",
7934 async_reason_lookup (EXEC_ASYNC_EXITED));
7935 ui_out_text (uiout, "[Inferior ");
7936 ui_out_text (uiout, plongest (inf->num));
7937 ui_out_text (uiout, " (");
7938 ui_out_text (uiout, pidstr);
7939 ui_out_text (uiout, ") exited with code ");
7940 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
7941 ui_out_text (uiout, "]\n");
7942 }
7943 else
7944 {
7945 if (ui_out_is_mi_like_p (uiout))
7946 ui_out_field_string
7947 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7948 ui_out_text (uiout, "[Inferior ");
7949 ui_out_text (uiout, plongest (inf->num));
7950 ui_out_text (uiout, " (");
7951 ui_out_text (uiout, pidstr);
7952 ui_out_text (uiout, ") exited normally]\n");
7953 }
7954 }
7955
7956 /* Some targets/architectures can do extra processing/display of
7957 segmentation faults. E.g., Intel MPX boundary faults.
7958 Call the architecture dependent function to handle the fault. */
7959
7960 static void
7961 handle_segmentation_fault (struct ui_out *uiout)
7962 {
7963 struct regcache *regcache = get_current_regcache ();
7964 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7965
7966 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7967 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7968 }
7969
7970 void
7971 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7972 {
7973 struct thread_info *thr = inferior_thread ();
7974
7975 annotate_signal ();
7976
7977 if (ui_out_is_mi_like_p (uiout))
7978 ;
7979 else if (show_thread_that_caused_stop ())
7980 {
7981 const char *name;
7982
7983 ui_out_text (uiout, "\nThread ");
7984 ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr));
7985
7986 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7987 if (name != NULL)
7988 {
7989 ui_out_text (uiout, " \"");
7990 ui_out_field_fmt (uiout, "name", "%s", name);
7991 ui_out_text (uiout, "\"");
7992 }
7993 }
7994 else
7995 ui_out_text (uiout, "\nProgram");
7996
7997 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
7998 ui_out_text (uiout, " stopped");
7999 else
8000 {
8001 ui_out_text (uiout, " received signal ");
8002 annotate_signal_name ();
8003 if (ui_out_is_mi_like_p (uiout))
8004 ui_out_field_string
8005 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8006 ui_out_field_string (uiout, "signal-name",
8007 gdb_signal_to_name (siggnal));
8008 annotate_signal_name_end ();
8009 ui_out_text (uiout, ", ");
8010 annotate_signal_string ();
8011 ui_out_field_string (uiout, "signal-meaning",
8012 gdb_signal_to_string (siggnal));
8013
8014 if (siggnal == GDB_SIGNAL_SEGV)
8015 handle_segmentation_fault (uiout);
8016
8017 annotate_signal_string_end ();
8018 }
8019 ui_out_text (uiout, ".\n");
8020 }
8021
8022 void
8023 print_no_history_reason (struct ui_out *uiout)
8024 {
8025 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
8026 }
8027
8028 /* Print current location without a level number, if we have changed
8029 functions or hit a breakpoint. Print source line if we have one.
8030 bpstat_print contains the logic deciding in detail what to print,
8031 based on the event(s) that just occurred. */
8032
8033 static void
8034 print_stop_location (struct target_waitstatus *ws)
8035 {
8036 int bpstat_ret;
8037 enum print_what source_flag;
8038 int do_frame_printing = 1;
8039 struct thread_info *tp = inferior_thread ();
8040
8041 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8042 switch (bpstat_ret)
8043 {
8044 case PRINT_UNKNOWN:
8045 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8046 should) carry around the function and does (or should) use
8047 that when doing a frame comparison. */
8048 if (tp->control.stop_step
8049 && frame_id_eq (tp->control.step_frame_id,
8050 get_frame_id (get_current_frame ()))
8051 && tp->control.step_start_function == find_pc_function (stop_pc))
8052 {
8053 /* Finished step, just print source line. */
8054 source_flag = SRC_LINE;
8055 }
8056 else
8057 {
8058 /* Print location and source line. */
8059 source_flag = SRC_AND_LOC;
8060 }
8061 break;
8062 case PRINT_SRC_AND_LOC:
8063 /* Print location and source line. */
8064 source_flag = SRC_AND_LOC;
8065 break;
8066 case PRINT_SRC_ONLY:
8067 source_flag = SRC_LINE;
8068 break;
8069 case PRINT_NOTHING:
8070 /* Something bogus. */
8071 source_flag = SRC_LINE;
8072 do_frame_printing = 0;
8073 break;
8074 default:
8075 internal_error (__FILE__, __LINE__, _("Unknown value."));
8076 }
8077
8078 /* The behavior of this routine with respect to the source
8079 flag is:
8080 SRC_LINE: Print only source line
8081 LOCATION: Print only location
8082 SRC_AND_LOC: Print location and source line. */
8083 if (do_frame_printing)
8084 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8085 }
8086
8087 /* See infrun.h. */
8088
8089 void
8090 print_stop_event (struct ui_out *uiout)
8091 {
8092 struct cleanup *old_chain;
8093 struct target_waitstatus last;
8094 ptid_t last_ptid;
8095 struct thread_info *tp;
8096
8097 get_last_target_status (&last_ptid, &last);
8098
8099 old_chain = make_cleanup_restore_current_uiout ();
8100 current_uiout = uiout;
8101
8102 print_stop_location (&last);
8103
8104 /* Display the auto-display expressions. */
8105 do_displays ();
8106
8107 do_cleanups (old_chain);
8108
8109 tp = inferior_thread ();
8110 if (tp->thread_fsm != NULL
8111 && thread_fsm_finished_p (tp->thread_fsm))
8112 {
8113 struct return_value_info *rv;
8114
8115 rv = thread_fsm_return_value (tp->thread_fsm);
8116 if (rv != NULL)
8117 print_return_value (uiout, rv);
8118 }
8119 }
8120
8121 /* See infrun.h. */
8122
8123 void
8124 maybe_remove_breakpoints (void)
8125 {
8126 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8127 {
8128 if (remove_breakpoints ())
8129 {
8130 target_terminal_ours_for_output ();
8131 printf_filtered (_("Cannot remove breakpoints because "
8132 "program is no longer writable.\nFurther "
8133 "execution is probably impossible.\n"));
8134 }
8135 }
8136 }
8137
8138 /* The execution context that just caused a normal stop. */
8139
8140 struct stop_context
8141 {
8142 /* The stop ID. */
8143 ULONGEST stop_id;
8144
8145 /* The event PTID. */
8146
8147 ptid_t ptid;
8148
8149 /* If stopp for a thread event, this is the thread that caused the
8150 stop. */
8151 struct thread_info *thread;
8152
8153 /* The inferior that caused the stop. */
8154 int inf_num;
8155 };
8156
8157 /* Returns a new stop context. If stopped for a thread event, this
8158 takes a strong reference to the thread. */
8159
8160 static struct stop_context *
8161 save_stop_context (void)
8162 {
8163 struct stop_context *sc = XNEW (struct stop_context);
8164
8165 sc->stop_id = get_stop_id ();
8166 sc->ptid = inferior_ptid;
8167 sc->inf_num = current_inferior ()->num;
8168
8169 if (!ptid_equal (inferior_ptid, null_ptid))
8170 {
8171 /* Take a strong reference so that the thread can't be deleted
8172 yet. */
8173 sc->thread = inferior_thread ();
8174 sc->thread->refcount++;
8175 }
8176 else
8177 sc->thread = NULL;
8178
8179 return sc;
8180 }
8181
8182 /* Release a stop context previously created with save_stop_context.
8183 Releases the strong reference to the thread as well. */
8184
8185 static void
8186 release_stop_context_cleanup (void *arg)
8187 {
8188 struct stop_context *sc = (struct stop_context *) arg;
8189
8190 if (sc->thread != NULL)
8191 sc->thread->refcount--;
8192 xfree (sc);
8193 }
8194
8195 /* Return true if the current context no longer matches the saved stop
8196 context. */
8197
8198 static int
8199 stop_context_changed (struct stop_context *prev)
8200 {
8201 if (!ptid_equal (prev->ptid, inferior_ptid))
8202 return 1;
8203 if (prev->inf_num != current_inferior ()->num)
8204 return 1;
8205 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8206 return 1;
8207 if (get_stop_id () != prev->stop_id)
8208 return 1;
8209 return 0;
8210 }
8211
8212 /* See infrun.h. */
8213
8214 int
8215 normal_stop (void)
8216 {
8217 struct target_waitstatus last;
8218 ptid_t last_ptid;
8219 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8220 ptid_t pid_ptid;
8221 struct switch_thru_all_uis state;
8222
8223 get_last_target_status (&last_ptid, &last);
8224
8225 new_stop_id ();
8226
8227 /* If an exception is thrown from this point on, make sure to
8228 propagate GDB's knowledge of the executing state to the
8229 frontend/user running state. A QUIT is an easy exception to see
8230 here, so do this before any filtered output. */
8231 if (!non_stop)
8232 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8233 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8234 || last.kind == TARGET_WAITKIND_EXITED)
8235 {
8236 /* On some targets, we may still have live threads in the
8237 inferior when we get a process exit event. E.g., for
8238 "checkpoint", when the current checkpoint/fork exits,
8239 linux-fork.c automatically switches to another fork from
8240 within target_mourn_inferior. */
8241 if (!ptid_equal (inferior_ptid, null_ptid))
8242 {
8243 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8244 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8245 }
8246 }
8247 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8248 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8249
8250 /* As we're presenting a stop, and potentially removing breakpoints,
8251 update the thread list so we can tell whether there are threads
8252 running on the target. With target remote, for example, we can
8253 only learn about new threads when we explicitly update the thread
8254 list. Do this before notifying the interpreters about signal
8255 stops, end of stepping ranges, etc., so that the "new thread"
8256 output is emitted before e.g., "Program received signal FOO",
8257 instead of after. */
8258 update_thread_list ();
8259
8260 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8261 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8262
8263 /* As with the notification of thread events, we want to delay
8264 notifying the user that we've switched thread context until
8265 the inferior actually stops.
8266
8267 There's no point in saying anything if the inferior has exited.
8268 Note that SIGNALLED here means "exited with a signal", not
8269 "received a signal".
8270
8271 Also skip saying anything in non-stop mode. In that mode, as we
8272 don't want GDB to switch threads behind the user's back, to avoid
8273 races where the user is typing a command to apply to thread x,
8274 but GDB switches to thread y before the user finishes entering
8275 the command, fetch_inferior_event installs a cleanup to restore
8276 the current thread back to the thread the user had selected right
8277 after this event is handled, so we're not really switching, only
8278 informing of a stop. */
8279 if (!non_stop
8280 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8281 && target_has_execution
8282 && last.kind != TARGET_WAITKIND_SIGNALLED
8283 && last.kind != TARGET_WAITKIND_EXITED
8284 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8285 {
8286 SWITCH_THRU_ALL_UIS (state)
8287 {
8288 target_terminal_ours_for_output ();
8289 printf_filtered (_("[Switching to %s]\n"),
8290 target_pid_to_str (inferior_ptid));
8291 annotate_thread_changed ();
8292 }
8293 previous_inferior_ptid = inferior_ptid;
8294 }
8295
8296 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8297 {
8298 SWITCH_THRU_ALL_UIS (state)
8299 if (current_ui->prompt_state == PROMPT_BLOCKED)
8300 {
8301 target_terminal_ours_for_output ();
8302 printf_filtered (_("No unwaited-for children left.\n"));
8303 }
8304 }
8305
8306 /* Note: this depends on the update_thread_list call above. */
8307 maybe_remove_breakpoints ();
8308
8309 /* If an auto-display called a function and that got a signal,
8310 delete that auto-display to avoid an infinite recursion. */
8311
8312 if (stopped_by_random_signal)
8313 disable_current_display ();
8314
8315 SWITCH_THRU_ALL_UIS (state)
8316 {
8317 async_enable_stdin ();
8318 }
8319
8320 /* Let the user/frontend see the threads as stopped. */
8321 do_cleanups (old_chain);
8322
8323 /* Select innermost stack frame - i.e., current frame is frame 0,
8324 and current location is based on that. Handle the case where the
8325 dummy call is returning after being stopped. E.g. the dummy call
8326 previously hit a breakpoint. (If the dummy call returns
8327 normally, we won't reach here.) Do this before the stop hook is
8328 run, so that it doesn't get to see the temporary dummy frame,
8329 which is not where we'll present the stop. */
8330 if (has_stack_frames ())
8331 {
8332 if (stop_stack_dummy == STOP_STACK_DUMMY)
8333 {
8334 /* Pop the empty frame that contains the stack dummy. This
8335 also restores inferior state prior to the call (struct
8336 infcall_suspend_state). */
8337 struct frame_info *frame = get_current_frame ();
8338
8339 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8340 frame_pop (frame);
8341 /* frame_pop calls reinit_frame_cache as the last thing it
8342 does which means there's now no selected frame. */
8343 }
8344
8345 select_frame (get_current_frame ());
8346
8347 /* Set the current source location. */
8348 set_current_sal_from_frame (get_current_frame ());
8349 }
8350
8351 /* Look up the hook_stop and run it (CLI internally handles problem
8352 of stop_command's pre-hook not existing). */
8353 if (stop_command != NULL)
8354 {
8355 struct stop_context *saved_context = save_stop_context ();
8356 struct cleanup *old_chain
8357 = make_cleanup (release_stop_context_cleanup, saved_context);
8358
8359 catch_errors (hook_stop_stub, stop_command,
8360 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8361
8362 /* If the stop hook resumes the target, then there's no point in
8363 trying to notify about the previous stop; its context is
8364 gone. Likewise if the command switches thread or inferior --
8365 the observers would print a stop for the wrong
8366 thread/inferior. */
8367 if (stop_context_changed (saved_context))
8368 {
8369 do_cleanups (old_chain);
8370 return 1;
8371 }
8372 do_cleanups (old_chain);
8373 }
8374
8375 /* Notify observers about the stop. This is where the interpreters
8376 print the stop event. */
8377 if (!ptid_equal (inferior_ptid, null_ptid))
8378 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8379 stop_print_frame);
8380 else
8381 observer_notify_normal_stop (NULL, stop_print_frame);
8382
8383 annotate_stopped ();
8384
8385 if (target_has_execution)
8386 {
8387 if (last.kind != TARGET_WAITKIND_SIGNALLED
8388 && last.kind != TARGET_WAITKIND_EXITED)
8389 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8390 Delete any breakpoint that is to be deleted at the next stop. */
8391 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8392 }
8393
8394 /* Try to get rid of automatically added inferiors that are no
8395 longer needed. Keeping those around slows down things linearly.
8396 Note that this never removes the current inferior. */
8397 prune_inferiors ();
8398
8399 return 0;
8400 }
8401
8402 static int
8403 hook_stop_stub (void *cmd)
8404 {
8405 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8406 return (0);
8407 }
8408 \f
8409 int
8410 signal_stop_state (int signo)
8411 {
8412 return signal_stop[signo];
8413 }
8414
8415 int
8416 signal_print_state (int signo)
8417 {
8418 return signal_print[signo];
8419 }
8420
8421 int
8422 signal_pass_state (int signo)
8423 {
8424 return signal_program[signo];
8425 }
8426
8427 static void
8428 signal_cache_update (int signo)
8429 {
8430 if (signo == -1)
8431 {
8432 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8433 signal_cache_update (signo);
8434
8435 return;
8436 }
8437
8438 signal_pass[signo] = (signal_stop[signo] == 0
8439 && signal_print[signo] == 0
8440 && signal_program[signo] == 1
8441 && signal_catch[signo] == 0);
8442 }
8443
8444 int
8445 signal_stop_update (int signo, int state)
8446 {
8447 int ret = signal_stop[signo];
8448
8449 signal_stop[signo] = state;
8450 signal_cache_update (signo);
8451 return ret;
8452 }
8453
8454 int
8455 signal_print_update (int signo, int state)
8456 {
8457 int ret = signal_print[signo];
8458
8459 signal_print[signo] = state;
8460 signal_cache_update (signo);
8461 return ret;
8462 }
8463
8464 int
8465 signal_pass_update (int signo, int state)
8466 {
8467 int ret = signal_program[signo];
8468
8469 signal_program[signo] = state;
8470 signal_cache_update (signo);
8471 return ret;
8472 }
8473
8474 /* Update the global 'signal_catch' from INFO and notify the
8475 target. */
8476
8477 void
8478 signal_catch_update (const unsigned int *info)
8479 {
8480 int i;
8481
8482 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8483 signal_catch[i] = info[i] > 0;
8484 signal_cache_update (-1);
8485 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8486 }
8487
8488 static void
8489 sig_print_header (void)
8490 {
8491 printf_filtered (_("Signal Stop\tPrint\tPass "
8492 "to program\tDescription\n"));
8493 }
8494
8495 static void
8496 sig_print_info (enum gdb_signal oursig)
8497 {
8498 const char *name = gdb_signal_to_name (oursig);
8499 int name_padding = 13 - strlen (name);
8500
8501 if (name_padding <= 0)
8502 name_padding = 0;
8503
8504 printf_filtered ("%s", name);
8505 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8506 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8507 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8508 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8509 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8510 }
8511
8512 /* Specify how various signals in the inferior should be handled. */
8513
8514 static void
8515 handle_command (char *args, int from_tty)
8516 {
8517 char **argv;
8518 int digits, wordlen;
8519 int sigfirst, signum, siglast;
8520 enum gdb_signal oursig;
8521 int allsigs;
8522 int nsigs;
8523 unsigned char *sigs;
8524 struct cleanup *old_chain;
8525
8526 if (args == NULL)
8527 {
8528 error_no_arg (_("signal to handle"));
8529 }
8530
8531 /* Allocate and zero an array of flags for which signals to handle. */
8532
8533 nsigs = (int) GDB_SIGNAL_LAST;
8534 sigs = (unsigned char *) alloca (nsigs);
8535 memset (sigs, 0, nsigs);
8536
8537 /* Break the command line up into args. */
8538
8539 argv = gdb_buildargv (args);
8540 old_chain = make_cleanup_freeargv (argv);
8541
8542 /* Walk through the args, looking for signal oursigs, signal names, and
8543 actions. Signal numbers and signal names may be interspersed with
8544 actions, with the actions being performed for all signals cumulatively
8545 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8546
8547 while (*argv != NULL)
8548 {
8549 wordlen = strlen (*argv);
8550 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8551 {;
8552 }
8553 allsigs = 0;
8554 sigfirst = siglast = -1;
8555
8556 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8557 {
8558 /* Apply action to all signals except those used by the
8559 debugger. Silently skip those. */
8560 allsigs = 1;
8561 sigfirst = 0;
8562 siglast = nsigs - 1;
8563 }
8564 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8565 {
8566 SET_SIGS (nsigs, sigs, signal_stop);
8567 SET_SIGS (nsigs, sigs, signal_print);
8568 }
8569 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8570 {
8571 UNSET_SIGS (nsigs, sigs, signal_program);
8572 }
8573 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8574 {
8575 SET_SIGS (nsigs, sigs, signal_print);
8576 }
8577 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8578 {
8579 SET_SIGS (nsigs, sigs, signal_program);
8580 }
8581 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8582 {
8583 UNSET_SIGS (nsigs, sigs, signal_stop);
8584 }
8585 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8586 {
8587 SET_SIGS (nsigs, sigs, signal_program);
8588 }
8589 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8590 {
8591 UNSET_SIGS (nsigs, sigs, signal_print);
8592 UNSET_SIGS (nsigs, sigs, signal_stop);
8593 }
8594 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8595 {
8596 UNSET_SIGS (nsigs, sigs, signal_program);
8597 }
8598 else if (digits > 0)
8599 {
8600 /* It is numeric. The numeric signal refers to our own
8601 internal signal numbering from target.h, not to host/target
8602 signal number. This is a feature; users really should be
8603 using symbolic names anyway, and the common ones like
8604 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8605
8606 sigfirst = siglast = (int)
8607 gdb_signal_from_command (atoi (*argv));
8608 if ((*argv)[digits] == '-')
8609 {
8610 siglast = (int)
8611 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8612 }
8613 if (sigfirst > siglast)
8614 {
8615 /* Bet he didn't figure we'd think of this case... */
8616 signum = sigfirst;
8617 sigfirst = siglast;
8618 siglast = signum;
8619 }
8620 }
8621 else
8622 {
8623 oursig = gdb_signal_from_name (*argv);
8624 if (oursig != GDB_SIGNAL_UNKNOWN)
8625 {
8626 sigfirst = siglast = (int) oursig;
8627 }
8628 else
8629 {
8630 /* Not a number and not a recognized flag word => complain. */
8631 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8632 }
8633 }
8634
8635 /* If any signal numbers or symbol names were found, set flags for
8636 which signals to apply actions to. */
8637
8638 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8639 {
8640 switch ((enum gdb_signal) signum)
8641 {
8642 case GDB_SIGNAL_TRAP:
8643 case GDB_SIGNAL_INT:
8644 if (!allsigs && !sigs[signum])
8645 {
8646 if (query (_("%s is used by the debugger.\n\
8647 Are you sure you want to change it? "),
8648 gdb_signal_to_name ((enum gdb_signal) signum)))
8649 {
8650 sigs[signum] = 1;
8651 }
8652 else
8653 {
8654 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8655 gdb_flush (gdb_stdout);
8656 }
8657 }
8658 break;
8659 case GDB_SIGNAL_0:
8660 case GDB_SIGNAL_DEFAULT:
8661 case GDB_SIGNAL_UNKNOWN:
8662 /* Make sure that "all" doesn't print these. */
8663 break;
8664 default:
8665 sigs[signum] = 1;
8666 break;
8667 }
8668 }
8669
8670 argv++;
8671 }
8672
8673 for (signum = 0; signum < nsigs; signum++)
8674 if (sigs[signum])
8675 {
8676 signal_cache_update (-1);
8677 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8678 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8679
8680 if (from_tty)
8681 {
8682 /* Show the results. */
8683 sig_print_header ();
8684 for (; signum < nsigs; signum++)
8685 if (sigs[signum])
8686 sig_print_info ((enum gdb_signal) signum);
8687 }
8688
8689 break;
8690 }
8691
8692 do_cleanups (old_chain);
8693 }
8694
8695 /* Complete the "handle" command. */
8696
8697 static VEC (char_ptr) *
8698 handle_completer (struct cmd_list_element *ignore,
8699 const char *text, const char *word)
8700 {
8701 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8702 static const char * const keywords[] =
8703 {
8704 "all",
8705 "stop",
8706 "ignore",
8707 "print",
8708 "pass",
8709 "nostop",
8710 "noignore",
8711 "noprint",
8712 "nopass",
8713 NULL,
8714 };
8715
8716 vec_signals = signal_completer (ignore, text, word);
8717 vec_keywords = complete_on_enum (keywords, word, word);
8718
8719 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8720 VEC_free (char_ptr, vec_signals);
8721 VEC_free (char_ptr, vec_keywords);
8722 return return_val;
8723 }
8724
8725 enum gdb_signal
8726 gdb_signal_from_command (int num)
8727 {
8728 if (num >= 1 && num <= 15)
8729 return (enum gdb_signal) num;
8730 error (_("Only signals 1-15 are valid as numeric signals.\n\
8731 Use \"info signals\" for a list of symbolic signals."));
8732 }
8733
8734 /* Print current contents of the tables set by the handle command.
8735 It is possible we should just be printing signals actually used
8736 by the current target (but for things to work right when switching
8737 targets, all signals should be in the signal tables). */
8738
8739 static void
8740 signals_info (char *signum_exp, int from_tty)
8741 {
8742 enum gdb_signal oursig;
8743
8744 sig_print_header ();
8745
8746 if (signum_exp)
8747 {
8748 /* First see if this is a symbol name. */
8749 oursig = gdb_signal_from_name (signum_exp);
8750 if (oursig == GDB_SIGNAL_UNKNOWN)
8751 {
8752 /* No, try numeric. */
8753 oursig =
8754 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8755 }
8756 sig_print_info (oursig);
8757 return;
8758 }
8759
8760 printf_filtered ("\n");
8761 /* These ugly casts brought to you by the native VAX compiler. */
8762 for (oursig = GDB_SIGNAL_FIRST;
8763 (int) oursig < (int) GDB_SIGNAL_LAST;
8764 oursig = (enum gdb_signal) ((int) oursig + 1))
8765 {
8766 QUIT;
8767
8768 if (oursig != GDB_SIGNAL_UNKNOWN
8769 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8770 sig_print_info (oursig);
8771 }
8772
8773 printf_filtered (_("\nUse the \"handle\" command "
8774 "to change these tables.\n"));
8775 }
8776
8777 /* The $_siginfo convenience variable is a bit special. We don't know
8778 for sure the type of the value until we actually have a chance to
8779 fetch the data. The type can change depending on gdbarch, so it is
8780 also dependent on which thread you have selected.
8781
8782 1. making $_siginfo be an internalvar that creates a new value on
8783 access.
8784
8785 2. making the value of $_siginfo be an lval_computed value. */
8786
8787 /* This function implements the lval_computed support for reading a
8788 $_siginfo value. */
8789
8790 static void
8791 siginfo_value_read (struct value *v)
8792 {
8793 LONGEST transferred;
8794
8795 /* If we can access registers, so can we access $_siginfo. Likewise
8796 vice versa. */
8797 validate_registers_access ();
8798
8799 transferred =
8800 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8801 NULL,
8802 value_contents_all_raw (v),
8803 value_offset (v),
8804 TYPE_LENGTH (value_type (v)));
8805
8806 if (transferred != TYPE_LENGTH (value_type (v)))
8807 error (_("Unable to read siginfo"));
8808 }
8809
8810 /* This function implements the lval_computed support for writing a
8811 $_siginfo value. */
8812
8813 static void
8814 siginfo_value_write (struct value *v, struct value *fromval)
8815 {
8816 LONGEST transferred;
8817
8818 /* If we can access registers, so can we access $_siginfo. Likewise
8819 vice versa. */
8820 validate_registers_access ();
8821
8822 transferred = target_write (&current_target,
8823 TARGET_OBJECT_SIGNAL_INFO,
8824 NULL,
8825 value_contents_all_raw (fromval),
8826 value_offset (v),
8827 TYPE_LENGTH (value_type (fromval)));
8828
8829 if (transferred != TYPE_LENGTH (value_type (fromval)))
8830 error (_("Unable to write siginfo"));
8831 }
8832
8833 static const struct lval_funcs siginfo_value_funcs =
8834 {
8835 siginfo_value_read,
8836 siginfo_value_write
8837 };
8838
8839 /* Return a new value with the correct type for the siginfo object of
8840 the current thread using architecture GDBARCH. Return a void value
8841 if there's no object available. */
8842
8843 static struct value *
8844 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8845 void *ignore)
8846 {
8847 if (target_has_stack
8848 && !ptid_equal (inferior_ptid, null_ptid)
8849 && gdbarch_get_siginfo_type_p (gdbarch))
8850 {
8851 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8852
8853 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8854 }
8855
8856 return allocate_value (builtin_type (gdbarch)->builtin_void);
8857 }
8858
8859 \f
8860 /* infcall_suspend_state contains state about the program itself like its
8861 registers and any signal it received when it last stopped.
8862 This state must be restored regardless of how the inferior function call
8863 ends (either successfully, or after it hits a breakpoint or signal)
8864 if the program is to properly continue where it left off. */
8865
8866 struct infcall_suspend_state
8867 {
8868 struct thread_suspend_state thread_suspend;
8869
8870 /* Other fields: */
8871 CORE_ADDR stop_pc;
8872 struct regcache *registers;
8873
8874 /* Format of SIGINFO_DATA or NULL if it is not present. */
8875 struct gdbarch *siginfo_gdbarch;
8876
8877 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8878 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8879 content would be invalid. */
8880 gdb_byte *siginfo_data;
8881 };
8882
8883 struct infcall_suspend_state *
8884 save_infcall_suspend_state (void)
8885 {
8886 struct infcall_suspend_state *inf_state;
8887 struct thread_info *tp = inferior_thread ();
8888 struct regcache *regcache = get_current_regcache ();
8889 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8890 gdb_byte *siginfo_data = NULL;
8891
8892 if (gdbarch_get_siginfo_type_p (gdbarch))
8893 {
8894 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8895 size_t len = TYPE_LENGTH (type);
8896 struct cleanup *back_to;
8897
8898 siginfo_data = (gdb_byte *) xmalloc (len);
8899 back_to = make_cleanup (xfree, siginfo_data);
8900
8901 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8902 siginfo_data, 0, len) == len)
8903 discard_cleanups (back_to);
8904 else
8905 {
8906 /* Errors ignored. */
8907 do_cleanups (back_to);
8908 siginfo_data = NULL;
8909 }
8910 }
8911
8912 inf_state = XCNEW (struct infcall_suspend_state);
8913
8914 if (siginfo_data)
8915 {
8916 inf_state->siginfo_gdbarch = gdbarch;
8917 inf_state->siginfo_data = siginfo_data;
8918 }
8919
8920 inf_state->thread_suspend = tp->suspend;
8921
8922 /* run_inferior_call will not use the signal due to its `proceed' call with
8923 GDB_SIGNAL_0 anyway. */
8924 tp->suspend.stop_signal = GDB_SIGNAL_0;
8925
8926 inf_state->stop_pc = stop_pc;
8927
8928 inf_state->registers = regcache_dup (regcache);
8929
8930 return inf_state;
8931 }
8932
8933 /* Restore inferior session state to INF_STATE. */
8934
8935 void
8936 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8937 {
8938 struct thread_info *tp = inferior_thread ();
8939 struct regcache *regcache = get_current_regcache ();
8940 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8941
8942 tp->suspend = inf_state->thread_suspend;
8943
8944 stop_pc = inf_state->stop_pc;
8945
8946 if (inf_state->siginfo_gdbarch == gdbarch)
8947 {
8948 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8949
8950 /* Errors ignored. */
8951 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8952 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8953 }
8954
8955 /* The inferior can be gone if the user types "print exit(0)"
8956 (and perhaps other times). */
8957 if (target_has_execution)
8958 /* NB: The register write goes through to the target. */
8959 regcache_cpy (regcache, inf_state->registers);
8960
8961 discard_infcall_suspend_state (inf_state);
8962 }
8963
8964 static void
8965 do_restore_infcall_suspend_state_cleanup (void *state)
8966 {
8967 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8968 }
8969
8970 struct cleanup *
8971 make_cleanup_restore_infcall_suspend_state
8972 (struct infcall_suspend_state *inf_state)
8973 {
8974 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8975 }
8976
8977 void
8978 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8979 {
8980 regcache_xfree (inf_state->registers);
8981 xfree (inf_state->siginfo_data);
8982 xfree (inf_state);
8983 }
8984
8985 struct regcache *
8986 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8987 {
8988 return inf_state->registers;
8989 }
8990
8991 /* infcall_control_state contains state regarding gdb's control of the
8992 inferior itself like stepping control. It also contains session state like
8993 the user's currently selected frame. */
8994
8995 struct infcall_control_state
8996 {
8997 struct thread_control_state thread_control;
8998 struct inferior_control_state inferior_control;
8999
9000 /* Other fields: */
9001 enum stop_stack_kind stop_stack_dummy;
9002 int stopped_by_random_signal;
9003
9004 /* ID if the selected frame when the inferior function call was made. */
9005 struct frame_id selected_frame_id;
9006 };
9007
9008 /* Save all of the information associated with the inferior<==>gdb
9009 connection. */
9010
9011 struct infcall_control_state *
9012 save_infcall_control_state (void)
9013 {
9014 struct infcall_control_state *inf_status =
9015 XNEW (struct infcall_control_state);
9016 struct thread_info *tp = inferior_thread ();
9017 struct inferior *inf = current_inferior ();
9018
9019 inf_status->thread_control = tp->control;
9020 inf_status->inferior_control = inf->control;
9021
9022 tp->control.step_resume_breakpoint = NULL;
9023 tp->control.exception_resume_breakpoint = NULL;
9024
9025 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9026 chain. If caller's caller is walking the chain, they'll be happier if we
9027 hand them back the original chain when restore_infcall_control_state is
9028 called. */
9029 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9030
9031 /* Other fields: */
9032 inf_status->stop_stack_dummy = stop_stack_dummy;
9033 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9034
9035 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9036
9037 return inf_status;
9038 }
9039
9040 static int
9041 restore_selected_frame (void *args)
9042 {
9043 struct frame_id *fid = (struct frame_id *) args;
9044 struct frame_info *frame;
9045
9046 frame = frame_find_by_id (*fid);
9047
9048 /* If inf_status->selected_frame_id is NULL, there was no previously
9049 selected frame. */
9050 if (frame == NULL)
9051 {
9052 warning (_("Unable to restore previously selected frame."));
9053 return 0;
9054 }
9055
9056 select_frame (frame);
9057
9058 return (1);
9059 }
9060
9061 /* Restore inferior session state to INF_STATUS. */
9062
9063 void
9064 restore_infcall_control_state (struct infcall_control_state *inf_status)
9065 {
9066 struct thread_info *tp = inferior_thread ();
9067 struct inferior *inf = current_inferior ();
9068
9069 if (tp->control.step_resume_breakpoint)
9070 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9071
9072 if (tp->control.exception_resume_breakpoint)
9073 tp->control.exception_resume_breakpoint->disposition
9074 = disp_del_at_next_stop;
9075
9076 /* Handle the bpstat_copy of the chain. */
9077 bpstat_clear (&tp->control.stop_bpstat);
9078
9079 tp->control = inf_status->thread_control;
9080 inf->control = inf_status->inferior_control;
9081
9082 /* Other fields: */
9083 stop_stack_dummy = inf_status->stop_stack_dummy;
9084 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9085
9086 if (target_has_stack)
9087 {
9088 /* The point of catch_errors is that if the stack is clobbered,
9089 walking the stack might encounter a garbage pointer and
9090 error() trying to dereference it. */
9091 if (catch_errors
9092 (restore_selected_frame, &inf_status->selected_frame_id,
9093 "Unable to restore previously selected frame:\n",
9094 RETURN_MASK_ERROR) == 0)
9095 /* Error in restoring the selected frame. Select the innermost
9096 frame. */
9097 select_frame (get_current_frame ());
9098 }
9099
9100 xfree (inf_status);
9101 }
9102
9103 static void
9104 do_restore_infcall_control_state_cleanup (void *sts)
9105 {
9106 restore_infcall_control_state ((struct infcall_control_state *) sts);
9107 }
9108
9109 struct cleanup *
9110 make_cleanup_restore_infcall_control_state
9111 (struct infcall_control_state *inf_status)
9112 {
9113 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9114 }
9115
9116 void
9117 discard_infcall_control_state (struct infcall_control_state *inf_status)
9118 {
9119 if (inf_status->thread_control.step_resume_breakpoint)
9120 inf_status->thread_control.step_resume_breakpoint->disposition
9121 = disp_del_at_next_stop;
9122
9123 if (inf_status->thread_control.exception_resume_breakpoint)
9124 inf_status->thread_control.exception_resume_breakpoint->disposition
9125 = disp_del_at_next_stop;
9126
9127 /* See save_infcall_control_state for info on stop_bpstat. */
9128 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9129
9130 xfree (inf_status);
9131 }
9132 \f
9133 /* restore_inferior_ptid() will be used by the cleanup machinery
9134 to restore the inferior_ptid value saved in a call to
9135 save_inferior_ptid(). */
9136
9137 static void
9138 restore_inferior_ptid (void *arg)
9139 {
9140 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
9141
9142 inferior_ptid = *saved_ptid_ptr;
9143 xfree (arg);
9144 }
9145
9146 /* Save the value of inferior_ptid so that it may be restored by a
9147 later call to do_cleanups(). Returns the struct cleanup pointer
9148 needed for later doing the cleanup. */
9149
9150 struct cleanup *
9151 save_inferior_ptid (void)
9152 {
9153 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
9154
9155 *saved_ptid_ptr = inferior_ptid;
9156 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9157 }
9158
9159 /* See infrun.h. */
9160
9161 void
9162 clear_exit_convenience_vars (void)
9163 {
9164 clear_internalvar (lookup_internalvar ("_exitsignal"));
9165 clear_internalvar (lookup_internalvar ("_exitcode"));
9166 }
9167 \f
9168
9169 /* User interface for reverse debugging:
9170 Set exec-direction / show exec-direction commands
9171 (returns error unless target implements to_set_exec_direction method). */
9172
9173 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9174 static const char exec_forward[] = "forward";
9175 static const char exec_reverse[] = "reverse";
9176 static const char *exec_direction = exec_forward;
9177 static const char *const exec_direction_names[] = {
9178 exec_forward,
9179 exec_reverse,
9180 NULL
9181 };
9182
9183 static void
9184 set_exec_direction_func (char *args, int from_tty,
9185 struct cmd_list_element *cmd)
9186 {
9187 if (target_can_execute_reverse)
9188 {
9189 if (!strcmp (exec_direction, exec_forward))
9190 execution_direction = EXEC_FORWARD;
9191 else if (!strcmp (exec_direction, exec_reverse))
9192 execution_direction = EXEC_REVERSE;
9193 }
9194 else
9195 {
9196 exec_direction = exec_forward;
9197 error (_("Target does not support this operation."));
9198 }
9199 }
9200
9201 static void
9202 show_exec_direction_func (struct ui_file *out, int from_tty,
9203 struct cmd_list_element *cmd, const char *value)
9204 {
9205 switch (execution_direction) {
9206 case EXEC_FORWARD:
9207 fprintf_filtered (out, _("Forward.\n"));
9208 break;
9209 case EXEC_REVERSE:
9210 fprintf_filtered (out, _("Reverse.\n"));
9211 break;
9212 default:
9213 internal_error (__FILE__, __LINE__,
9214 _("bogus execution_direction value: %d"),
9215 (int) execution_direction);
9216 }
9217 }
9218
9219 static void
9220 show_schedule_multiple (struct ui_file *file, int from_tty,
9221 struct cmd_list_element *c, const char *value)
9222 {
9223 fprintf_filtered (file, _("Resuming the execution of threads "
9224 "of all processes is %s.\n"), value);
9225 }
9226
9227 /* Implementation of `siginfo' variable. */
9228
9229 static const struct internalvar_funcs siginfo_funcs =
9230 {
9231 siginfo_make_value,
9232 NULL,
9233 NULL
9234 };
9235
9236 /* Callback for infrun's target events source. This is marked when a
9237 thread has a pending status to process. */
9238
9239 static void
9240 infrun_async_inferior_event_handler (gdb_client_data data)
9241 {
9242 inferior_event_handler (INF_REG_EVENT, NULL);
9243 }
9244
9245 void
9246 _initialize_infrun (void)
9247 {
9248 int i;
9249 int numsigs;
9250 struct cmd_list_element *c;
9251
9252 /* Register extra event sources in the event loop. */
9253 infrun_async_inferior_event_token
9254 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9255
9256 add_info ("signals", signals_info, _("\
9257 What debugger does when program gets various signals.\n\
9258 Specify a signal as argument to print info on that signal only."));
9259 add_info_alias ("handle", "signals", 0);
9260
9261 c = add_com ("handle", class_run, handle_command, _("\
9262 Specify how to handle signals.\n\
9263 Usage: handle SIGNAL [ACTIONS]\n\
9264 Args are signals and actions to apply to those signals.\n\
9265 If no actions are specified, the current settings for the specified signals\n\
9266 will be displayed instead.\n\
9267 \n\
9268 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9269 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9270 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9271 The special arg \"all\" is recognized to mean all signals except those\n\
9272 used by the debugger, typically SIGTRAP and SIGINT.\n\
9273 \n\
9274 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9275 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9276 Stop means reenter debugger if this signal happens (implies print).\n\
9277 Print means print a message if this signal happens.\n\
9278 Pass means let program see this signal; otherwise program doesn't know.\n\
9279 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9280 Pass and Stop may be combined.\n\
9281 \n\
9282 Multiple signals may be specified. Signal numbers and signal names\n\
9283 may be interspersed with actions, with the actions being performed for\n\
9284 all signals cumulatively specified."));
9285 set_cmd_completer (c, handle_completer);
9286
9287 if (!dbx_commands)
9288 stop_command = add_cmd ("stop", class_obscure,
9289 not_just_help_class_command, _("\
9290 There is no `stop' command, but you can set a hook on `stop'.\n\
9291 This allows you to set a list of commands to be run each time execution\n\
9292 of the program stops."), &cmdlist);
9293
9294 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9295 Set inferior debugging."), _("\
9296 Show inferior debugging."), _("\
9297 When non-zero, inferior specific debugging is enabled."),
9298 NULL,
9299 show_debug_infrun,
9300 &setdebuglist, &showdebuglist);
9301
9302 add_setshow_boolean_cmd ("displaced", class_maintenance,
9303 &debug_displaced, _("\
9304 Set displaced stepping debugging."), _("\
9305 Show displaced stepping debugging."), _("\
9306 When non-zero, displaced stepping specific debugging is enabled."),
9307 NULL,
9308 show_debug_displaced,
9309 &setdebuglist, &showdebuglist);
9310
9311 add_setshow_boolean_cmd ("non-stop", no_class,
9312 &non_stop_1, _("\
9313 Set whether gdb controls the inferior in non-stop mode."), _("\
9314 Show whether gdb controls the inferior in non-stop mode."), _("\
9315 When debugging a multi-threaded program and this setting is\n\
9316 off (the default, also called all-stop mode), when one thread stops\n\
9317 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9318 all other threads in the program while you interact with the thread of\n\
9319 interest. When you continue or step a thread, you can allow the other\n\
9320 threads to run, or have them remain stopped, but while you inspect any\n\
9321 thread's state, all threads stop.\n\
9322 \n\
9323 In non-stop mode, when one thread stops, other threads can continue\n\
9324 to run freely. You'll be able to step each thread independently,\n\
9325 leave it stopped or free to run as needed."),
9326 set_non_stop,
9327 show_non_stop,
9328 &setlist,
9329 &showlist);
9330
9331 numsigs = (int) GDB_SIGNAL_LAST;
9332 signal_stop = XNEWVEC (unsigned char, numsigs);
9333 signal_print = XNEWVEC (unsigned char, numsigs);
9334 signal_program = XNEWVEC (unsigned char, numsigs);
9335 signal_catch = XNEWVEC (unsigned char, numsigs);
9336 signal_pass = XNEWVEC (unsigned char, numsigs);
9337 for (i = 0; i < numsigs; i++)
9338 {
9339 signal_stop[i] = 1;
9340 signal_print[i] = 1;
9341 signal_program[i] = 1;
9342 signal_catch[i] = 0;
9343 }
9344
9345 /* Signals caused by debugger's own actions should not be given to
9346 the program afterwards.
9347
9348 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9349 explicitly specifies that it should be delivered to the target
9350 program. Typically, that would occur when a user is debugging a
9351 target monitor on a simulator: the target monitor sets a
9352 breakpoint; the simulator encounters this breakpoint and halts
9353 the simulation handing control to GDB; GDB, noting that the stop
9354 address doesn't map to any known breakpoint, returns control back
9355 to the simulator; the simulator then delivers the hardware
9356 equivalent of a GDB_SIGNAL_TRAP to the program being
9357 debugged. */
9358 signal_program[GDB_SIGNAL_TRAP] = 0;
9359 signal_program[GDB_SIGNAL_INT] = 0;
9360
9361 /* Signals that are not errors should not normally enter the debugger. */
9362 signal_stop[GDB_SIGNAL_ALRM] = 0;
9363 signal_print[GDB_SIGNAL_ALRM] = 0;
9364 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9365 signal_print[GDB_SIGNAL_VTALRM] = 0;
9366 signal_stop[GDB_SIGNAL_PROF] = 0;
9367 signal_print[GDB_SIGNAL_PROF] = 0;
9368 signal_stop[GDB_SIGNAL_CHLD] = 0;
9369 signal_print[GDB_SIGNAL_CHLD] = 0;
9370 signal_stop[GDB_SIGNAL_IO] = 0;
9371 signal_print[GDB_SIGNAL_IO] = 0;
9372 signal_stop[GDB_SIGNAL_POLL] = 0;
9373 signal_print[GDB_SIGNAL_POLL] = 0;
9374 signal_stop[GDB_SIGNAL_URG] = 0;
9375 signal_print[GDB_SIGNAL_URG] = 0;
9376 signal_stop[GDB_SIGNAL_WINCH] = 0;
9377 signal_print[GDB_SIGNAL_WINCH] = 0;
9378 signal_stop[GDB_SIGNAL_PRIO] = 0;
9379 signal_print[GDB_SIGNAL_PRIO] = 0;
9380
9381 /* These signals are used internally by user-level thread
9382 implementations. (See signal(5) on Solaris.) Like the above
9383 signals, a healthy program receives and handles them as part of
9384 its normal operation. */
9385 signal_stop[GDB_SIGNAL_LWP] = 0;
9386 signal_print[GDB_SIGNAL_LWP] = 0;
9387 signal_stop[GDB_SIGNAL_WAITING] = 0;
9388 signal_print[GDB_SIGNAL_WAITING] = 0;
9389 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9390 signal_print[GDB_SIGNAL_CANCEL] = 0;
9391 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9392 signal_print[GDB_SIGNAL_LIBRT] = 0;
9393
9394 /* Update cached state. */
9395 signal_cache_update (-1);
9396
9397 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9398 &stop_on_solib_events, _("\
9399 Set stopping for shared library events."), _("\
9400 Show stopping for shared library events."), _("\
9401 If nonzero, gdb will give control to the user when the dynamic linker\n\
9402 notifies gdb of shared library events. The most common event of interest\n\
9403 to the user would be loading/unloading of a new library."),
9404 set_stop_on_solib_events,
9405 show_stop_on_solib_events,
9406 &setlist, &showlist);
9407
9408 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9409 follow_fork_mode_kind_names,
9410 &follow_fork_mode_string, _("\
9411 Set debugger response to a program call of fork or vfork."), _("\
9412 Show debugger response to a program call of fork or vfork."), _("\
9413 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9414 parent - the original process is debugged after a fork\n\
9415 child - the new process is debugged after a fork\n\
9416 The unfollowed process will continue to run.\n\
9417 By default, the debugger will follow the parent process."),
9418 NULL,
9419 show_follow_fork_mode_string,
9420 &setlist, &showlist);
9421
9422 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9423 follow_exec_mode_names,
9424 &follow_exec_mode_string, _("\
9425 Set debugger response to a program call of exec."), _("\
9426 Show debugger response to a program call of exec."), _("\
9427 An exec call replaces the program image of a process.\n\
9428 \n\
9429 follow-exec-mode can be:\n\
9430 \n\
9431 new - the debugger creates a new inferior and rebinds the process\n\
9432 to this new inferior. The program the process was running before\n\
9433 the exec call can be restarted afterwards by restarting the original\n\
9434 inferior.\n\
9435 \n\
9436 same - the debugger keeps the process bound to the same inferior.\n\
9437 The new executable image replaces the previous executable loaded in\n\
9438 the inferior. Restarting the inferior after the exec call restarts\n\
9439 the executable the process was running after the exec call.\n\
9440 \n\
9441 By default, the debugger will use the same inferior."),
9442 NULL,
9443 show_follow_exec_mode_string,
9444 &setlist, &showlist);
9445
9446 add_setshow_enum_cmd ("scheduler-locking", class_run,
9447 scheduler_enums, &scheduler_mode, _("\
9448 Set mode for locking scheduler during execution."), _("\
9449 Show mode for locking scheduler during execution."), _("\
9450 off == no locking (threads may preempt at any time)\n\
9451 on == full locking (no thread except the current thread may run)\n\
9452 This applies to both normal execution and replay mode.\n\
9453 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9454 In this mode, other threads may run during other commands.\n\
9455 This applies to both normal execution and replay mode.\n\
9456 replay == scheduler locked in replay mode and unlocked during normal execution."),
9457 set_schedlock_func, /* traps on target vector */
9458 show_scheduler_mode,
9459 &setlist, &showlist);
9460
9461 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9462 Set mode for resuming threads of all processes."), _("\
9463 Show mode for resuming threads of all processes."), _("\
9464 When on, execution commands (such as 'continue' or 'next') resume all\n\
9465 threads of all processes. When off (which is the default), execution\n\
9466 commands only resume the threads of the current process. The set of\n\
9467 threads that are resumed is further refined by the scheduler-locking\n\
9468 mode (see help set scheduler-locking)."),
9469 NULL,
9470 show_schedule_multiple,
9471 &setlist, &showlist);
9472
9473 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9474 Set mode of the step operation."), _("\
9475 Show mode of the step operation."), _("\
9476 When set, doing a step over a function without debug line information\n\
9477 will stop at the first instruction of that function. Otherwise, the\n\
9478 function is skipped and the step command stops at a different source line."),
9479 NULL,
9480 show_step_stop_if_no_debug,
9481 &setlist, &showlist);
9482
9483 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9484 &can_use_displaced_stepping, _("\
9485 Set debugger's willingness to use displaced stepping."), _("\
9486 Show debugger's willingness to use displaced stepping."), _("\
9487 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9488 supported by the target architecture. If off, gdb will not use displaced\n\
9489 stepping to step over breakpoints, even if such is supported by the target\n\
9490 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9491 if the target architecture supports it and non-stop mode is active, but will not\n\
9492 use it in all-stop mode (see help set non-stop)."),
9493 NULL,
9494 show_can_use_displaced_stepping,
9495 &setlist, &showlist);
9496
9497 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9498 &exec_direction, _("Set direction of execution.\n\
9499 Options are 'forward' or 'reverse'."),
9500 _("Show direction of execution (forward/reverse)."),
9501 _("Tells gdb whether to execute forward or backward."),
9502 set_exec_direction_func, show_exec_direction_func,
9503 &setlist, &showlist);
9504
9505 /* Set/show detach-on-fork: user-settable mode. */
9506
9507 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9508 Set whether gdb will detach the child of a fork."), _("\
9509 Show whether gdb will detach the child of a fork."), _("\
9510 Tells gdb whether to detach the child of a fork."),
9511 NULL, NULL, &setlist, &showlist);
9512
9513 /* Set/show disable address space randomization mode. */
9514
9515 add_setshow_boolean_cmd ("disable-randomization", class_support,
9516 &disable_randomization, _("\
9517 Set disabling of debuggee's virtual address space randomization."), _("\
9518 Show disabling of debuggee's virtual address space randomization."), _("\
9519 When this mode is on (which is the default), randomization of the virtual\n\
9520 address space is disabled. Standalone programs run with the randomization\n\
9521 enabled by default on some platforms."),
9522 &set_disable_randomization,
9523 &show_disable_randomization,
9524 &setlist, &showlist);
9525
9526 /* ptid initializations */
9527 inferior_ptid = null_ptid;
9528 target_last_wait_ptid = minus_one_ptid;
9529
9530 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9531 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9532 observer_attach_thread_exit (infrun_thread_thread_exit);
9533 observer_attach_inferior_exit (infrun_inferior_exit);
9534
9535 /* Explicitly create without lookup, since that tries to create a
9536 value with a void typed value, and when we get here, gdbarch
9537 isn't initialized yet. At this point, we're quite sure there
9538 isn't another convenience variable of the same name. */
9539 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9540
9541 add_setshow_boolean_cmd ("observer", no_class,
9542 &observer_mode_1, _("\
9543 Set whether gdb controls the inferior in observer mode."), _("\
9544 Show whether gdb controls the inferior in observer mode."), _("\
9545 In observer mode, GDB can get data from the inferior, but not\n\
9546 affect its execution. Registers and memory may not be changed,\n\
9547 breakpoints may not be set, and the program cannot be interrupted\n\
9548 or signalled."),
9549 set_observer_mode,
9550 show_observer_mode,
9551 &setlist,
9552 &showlist);
9553 }