2012-06-06 Pedro Alves <palves@redhat.com>
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "inline-frame.h"
53 #include "jit.h"
54 #include "tracepoint.h"
55 #include "continuations.h"
56 #include "interps.h"
57 #include "skip.h"
58 #include "probe.h"
59 #include "objfiles.h"
60
61 /* Prototypes for local functions */
62
63 static void signals_info (char *, int);
64
65 static void handle_command (char *, int);
66
67 static void sig_print_info (enum gdb_signal);
68
69 static void sig_print_header (void);
70
71 static void resume_cleanups (void *);
72
73 static int hook_stop_stub (void *);
74
75 static int restore_selected_frame (void *);
76
77 static int follow_fork (void);
78
79 static void set_schedlock_func (char *args, int from_tty,
80 struct cmd_list_element *c);
81
82 static int currently_stepping (struct thread_info *tp);
83
84 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
85 void *data);
86
87 static void xdb_handle_command (char *args, int from_tty);
88
89 static int prepare_to_proceed (int);
90
91 static void print_exited_reason (int exitstatus);
92
93 static void print_signal_exited_reason (enum gdb_signal siggnal);
94
95 static void print_no_history_reason (void);
96
97 static void print_signal_received_reason (enum gdb_signal siggnal);
98
99 static void print_end_stepping_range_reason (void);
100
101 void _initialize_infrun (void);
102
103 void nullify_last_target_wait_ptid (void);
104
105 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
106
107 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
108
109 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
110
111 /* When set, stop the 'step' command if we enter a function which has
112 no line number information. The normal behavior is that we step
113 over such function. */
114 int step_stop_if_no_debug = 0;
115 static void
116 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118 {
119 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
120 }
121
122 /* In asynchronous mode, but simulating synchronous execution. */
123
124 int sync_execution = 0;
125
126 /* wait_for_inferior and normal_stop use this to notify the user
127 when the inferior stopped in a different thread than it had been
128 running in. */
129
130 static ptid_t previous_inferior_ptid;
131
132 /* Default behavior is to detach newly forked processes (legacy). */
133 int detach_fork = 1;
134
135 int debug_displaced = 0;
136 static void
137 show_debug_displaced (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139 {
140 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
141 }
142
143 int debug_infrun = 0;
144 static void
145 show_debug_infrun (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
149 }
150
151
152 /* Support for disabling address space randomization. */
153
154 int disable_randomization = 1;
155
156 static void
157 show_disable_randomization (struct ui_file *file, int from_tty,
158 struct cmd_list_element *c, const char *value)
159 {
160 if (target_supports_disable_randomization ())
161 fprintf_filtered (file,
162 _("Disabling randomization of debuggee's "
163 "virtual address space is %s.\n"),
164 value);
165 else
166 fputs_filtered (_("Disabling randomization of debuggee's "
167 "virtual address space is unsupported on\n"
168 "this platform.\n"), file);
169 }
170
171 static void
172 set_disable_randomization (char *args, int from_tty,
173 struct cmd_list_element *c)
174 {
175 if (!target_supports_disable_randomization ())
176 error (_("Disabling randomization of debuggee's "
177 "virtual address space is unsupported on\n"
178 "this platform."));
179 }
180
181
182 /* If the program uses ELF-style shared libraries, then calls to
183 functions in shared libraries go through stubs, which live in a
184 table called the PLT (Procedure Linkage Table). The first time the
185 function is called, the stub sends control to the dynamic linker,
186 which looks up the function's real address, patches the stub so
187 that future calls will go directly to the function, and then passes
188 control to the function.
189
190 If we are stepping at the source level, we don't want to see any of
191 this --- we just want to skip over the stub and the dynamic linker.
192 The simple approach is to single-step until control leaves the
193 dynamic linker.
194
195 However, on some systems (e.g., Red Hat's 5.2 distribution) the
196 dynamic linker calls functions in the shared C library, so you
197 can't tell from the PC alone whether the dynamic linker is still
198 running. In this case, we use a step-resume breakpoint to get us
199 past the dynamic linker, as if we were using "next" to step over a
200 function call.
201
202 in_solib_dynsym_resolve_code() says whether we're in the dynamic
203 linker code or not. Normally, this means we single-step. However,
204 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
205 address where we can place a step-resume breakpoint to get past the
206 linker's symbol resolution function.
207
208 in_solib_dynsym_resolve_code() can generally be implemented in a
209 pretty portable way, by comparing the PC against the address ranges
210 of the dynamic linker's sections.
211
212 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
213 it depends on internal details of the dynamic linker. It's usually
214 not too hard to figure out where to put a breakpoint, but it
215 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
216 sanity checking. If it can't figure things out, returning zero and
217 getting the (possibly confusing) stepping behavior is better than
218 signalling an error, which will obscure the change in the
219 inferior's state. */
220
221 /* This function returns TRUE if pc is the address of an instruction
222 that lies within the dynamic linker (such as the event hook, or the
223 dld itself).
224
225 This function must be used only when a dynamic linker event has
226 been caught, and the inferior is being stepped out of the hook, or
227 undefined results are guaranteed. */
228
229 #ifndef SOLIB_IN_DYNAMIC_LINKER
230 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
231 #endif
232
233 /* "Observer mode" is somewhat like a more extreme version of
234 non-stop, in which all GDB operations that might affect the
235 target's execution have been disabled. */
236
237 static int non_stop_1 = 0;
238
239 int observer_mode = 0;
240 static int observer_mode_1 = 0;
241
242 static void
243 set_observer_mode (char *args, int from_tty,
244 struct cmd_list_element *c)
245 {
246 extern int pagination_enabled;
247
248 if (target_has_execution)
249 {
250 observer_mode_1 = observer_mode;
251 error (_("Cannot change this setting while the inferior is running."));
252 }
253
254 observer_mode = observer_mode_1;
255
256 may_write_registers = !observer_mode;
257 may_write_memory = !observer_mode;
258 may_insert_breakpoints = !observer_mode;
259 may_insert_tracepoints = !observer_mode;
260 /* We can insert fast tracepoints in or out of observer mode,
261 but enable them if we're going into this mode. */
262 if (observer_mode)
263 may_insert_fast_tracepoints = 1;
264 may_stop = !observer_mode;
265 update_target_permissions ();
266
267 /* Going *into* observer mode we must force non-stop, then
268 going out we leave it that way. */
269 if (observer_mode)
270 {
271 target_async_permitted = 1;
272 pagination_enabled = 0;
273 non_stop = non_stop_1 = 1;
274 }
275
276 if (from_tty)
277 printf_filtered (_("Observer mode is now %s.\n"),
278 (observer_mode ? "on" : "off"));
279 }
280
281 static void
282 show_observer_mode (struct ui_file *file, int from_tty,
283 struct cmd_list_element *c, const char *value)
284 {
285 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
286 }
287
288 /* This updates the value of observer mode based on changes in
289 permissions. Note that we are deliberately ignoring the values of
290 may-write-registers and may-write-memory, since the user may have
291 reason to enable these during a session, for instance to turn on a
292 debugging-related global. */
293
294 void
295 update_observer_mode (void)
296 {
297 int newval;
298
299 newval = (!may_insert_breakpoints
300 && !may_insert_tracepoints
301 && may_insert_fast_tracepoints
302 && !may_stop
303 && non_stop);
304
305 /* Let the user know if things change. */
306 if (newval != observer_mode)
307 printf_filtered (_("Observer mode is now %s.\n"),
308 (newval ? "on" : "off"));
309
310 observer_mode = observer_mode_1 = newval;
311 }
312
313 /* Tables of how to react to signals; the user sets them. */
314
315 static unsigned char *signal_stop;
316 static unsigned char *signal_print;
317 static unsigned char *signal_program;
318
319 /* Table of signals that the target may silently handle.
320 This is automatically determined from the flags above,
321 and simply cached here. */
322 static unsigned char *signal_pass;
323
324 #define SET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 1; \
330 } while (0)
331
332 #define UNSET_SIGS(nsigs,sigs,flags) \
333 do { \
334 int signum = (nsigs); \
335 while (signum-- > 0) \
336 if ((sigs)[signum]) \
337 (flags)[signum] = 0; \
338 } while (0)
339
340 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
341 this function is to avoid exporting `signal_program'. */
342
343 void
344 update_signals_program_target (void)
345 {
346 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
347 }
348
349 /* Value to pass to target_resume() to cause all threads to resume. */
350
351 #define RESUME_ALL minus_one_ptid
352
353 /* Command list pointer for the "stop" placeholder. */
354
355 static struct cmd_list_element *stop_command;
356
357 /* Function inferior was in as of last step command. */
358
359 static struct symbol *step_start_function;
360
361 /* Nonzero if we want to give control to the user when we're notified
362 of shared library events by the dynamic linker. */
363 int stop_on_solib_events;
364 static void
365 show_stop_on_solib_events (struct ui_file *file, int from_tty,
366 struct cmd_list_element *c, const char *value)
367 {
368 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
369 value);
370 }
371
372 /* Nonzero means expecting a trace trap
373 and should stop the inferior and return silently when it happens. */
374
375 int stop_after_trap;
376
377 /* Save register contents here when executing a "finish" command or are
378 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
379 Thus this contains the return value from the called function (assuming
380 values are returned in a register). */
381
382 struct regcache *stop_registers;
383
384 /* Nonzero after stop if current stack frame should be printed. */
385
386 static int stop_print_frame;
387
388 /* This is a cached copy of the pid/waitstatus of the last event
389 returned by target_wait()/deprecated_target_wait_hook(). This
390 information is returned by get_last_target_status(). */
391 static ptid_t target_last_wait_ptid;
392 static struct target_waitstatus target_last_waitstatus;
393
394 static void context_switch (ptid_t ptid);
395
396 void init_thread_stepping_state (struct thread_info *tss);
397
398 void init_infwait_state (void);
399
400 static const char follow_fork_mode_child[] = "child";
401 static const char follow_fork_mode_parent[] = "parent";
402
403 static const char *const follow_fork_mode_kind_names[] = {
404 follow_fork_mode_child,
405 follow_fork_mode_parent,
406 NULL
407 };
408
409 static const char *follow_fork_mode_string = follow_fork_mode_parent;
410 static void
411 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
412 struct cmd_list_element *c, const char *value)
413 {
414 fprintf_filtered (file,
415 _("Debugger response to a program "
416 "call of fork or vfork is \"%s\".\n"),
417 value);
418 }
419 \f
420
421 /* Tell the target to follow the fork we're stopped at. Returns true
422 if the inferior should be resumed; false, if the target for some
423 reason decided it's best not to resume. */
424
425 static int
426 follow_fork (void)
427 {
428 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
429 int should_resume = 1;
430 struct thread_info *tp;
431
432 /* Copy user stepping state to the new inferior thread. FIXME: the
433 followed fork child thread should have a copy of most of the
434 parent thread structure's run control related fields, not just these.
435 Initialized to avoid "may be used uninitialized" warnings from gcc. */
436 struct breakpoint *step_resume_breakpoint = NULL;
437 struct breakpoint *exception_resume_breakpoint = NULL;
438 CORE_ADDR step_range_start = 0;
439 CORE_ADDR step_range_end = 0;
440 struct frame_id step_frame_id = { 0 };
441
442 if (!non_stop)
443 {
444 ptid_t wait_ptid;
445 struct target_waitstatus wait_status;
446
447 /* Get the last target status returned by target_wait(). */
448 get_last_target_status (&wait_ptid, &wait_status);
449
450 /* If not stopped at a fork event, then there's nothing else to
451 do. */
452 if (wait_status.kind != TARGET_WAITKIND_FORKED
453 && wait_status.kind != TARGET_WAITKIND_VFORKED)
454 return 1;
455
456 /* Check if we switched over from WAIT_PTID, since the event was
457 reported. */
458 if (!ptid_equal (wait_ptid, minus_one_ptid)
459 && !ptid_equal (inferior_ptid, wait_ptid))
460 {
461 /* We did. Switch back to WAIT_PTID thread, to tell the
462 target to follow it (in either direction). We'll
463 afterwards refuse to resume, and inform the user what
464 happened. */
465 switch_to_thread (wait_ptid);
466 should_resume = 0;
467 }
468 }
469
470 tp = inferior_thread ();
471
472 /* If there were any forks/vforks that were caught and are now to be
473 followed, then do so now. */
474 switch (tp->pending_follow.kind)
475 {
476 case TARGET_WAITKIND_FORKED:
477 case TARGET_WAITKIND_VFORKED:
478 {
479 ptid_t parent, child;
480
481 /* If the user did a next/step, etc, over a fork call,
482 preserve the stepping state in the fork child. */
483 if (follow_child && should_resume)
484 {
485 step_resume_breakpoint = clone_momentary_breakpoint
486 (tp->control.step_resume_breakpoint);
487 step_range_start = tp->control.step_range_start;
488 step_range_end = tp->control.step_range_end;
489 step_frame_id = tp->control.step_frame_id;
490 exception_resume_breakpoint
491 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
492
493 /* For now, delete the parent's sr breakpoint, otherwise,
494 parent/child sr breakpoints are considered duplicates,
495 and the child version will not be installed. Remove
496 this when the breakpoints module becomes aware of
497 inferiors and address spaces. */
498 delete_step_resume_breakpoint (tp);
499 tp->control.step_range_start = 0;
500 tp->control.step_range_end = 0;
501 tp->control.step_frame_id = null_frame_id;
502 delete_exception_resume_breakpoint (tp);
503 }
504
505 parent = inferior_ptid;
506 child = tp->pending_follow.value.related_pid;
507
508 /* Tell the target to do whatever is necessary to follow
509 either parent or child. */
510 if (target_follow_fork (follow_child))
511 {
512 /* Target refused to follow, or there's some other reason
513 we shouldn't resume. */
514 should_resume = 0;
515 }
516 else
517 {
518 /* This pending follow fork event is now handled, one way
519 or another. The previous selected thread may be gone
520 from the lists by now, but if it is still around, need
521 to clear the pending follow request. */
522 tp = find_thread_ptid (parent);
523 if (tp)
524 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
525
526 /* This makes sure we don't try to apply the "Switched
527 over from WAIT_PID" logic above. */
528 nullify_last_target_wait_ptid ();
529
530 /* If we followed the child, switch to it... */
531 if (follow_child)
532 {
533 switch_to_thread (child);
534
535 /* ... and preserve the stepping state, in case the
536 user was stepping over the fork call. */
537 if (should_resume)
538 {
539 tp = inferior_thread ();
540 tp->control.step_resume_breakpoint
541 = step_resume_breakpoint;
542 tp->control.step_range_start = step_range_start;
543 tp->control.step_range_end = step_range_end;
544 tp->control.step_frame_id = step_frame_id;
545 tp->control.exception_resume_breakpoint
546 = exception_resume_breakpoint;
547 }
548 else
549 {
550 /* If we get here, it was because we're trying to
551 resume from a fork catchpoint, but, the user
552 has switched threads away from the thread that
553 forked. In that case, the resume command
554 issued is most likely not applicable to the
555 child, so just warn, and refuse to resume. */
556 warning (_("Not resuming: switched threads "
557 "before following fork child.\n"));
558 }
559
560 /* Reset breakpoints in the child as appropriate. */
561 follow_inferior_reset_breakpoints ();
562 }
563 else
564 switch_to_thread (parent);
565 }
566 }
567 break;
568 case TARGET_WAITKIND_SPURIOUS:
569 /* Nothing to follow. */
570 break;
571 default:
572 internal_error (__FILE__, __LINE__,
573 "Unexpected pending_follow.kind %d\n",
574 tp->pending_follow.kind);
575 break;
576 }
577
578 return should_resume;
579 }
580
581 void
582 follow_inferior_reset_breakpoints (void)
583 {
584 struct thread_info *tp = inferior_thread ();
585
586 /* Was there a step_resume breakpoint? (There was if the user
587 did a "next" at the fork() call.) If so, explicitly reset its
588 thread number.
589
590 step_resumes are a form of bp that are made to be per-thread.
591 Since we created the step_resume bp when the parent process
592 was being debugged, and now are switching to the child process,
593 from the breakpoint package's viewpoint, that's a switch of
594 "threads". We must update the bp's notion of which thread
595 it is for, or it'll be ignored when it triggers. */
596
597 if (tp->control.step_resume_breakpoint)
598 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
599
600 if (tp->control.exception_resume_breakpoint)
601 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
602
603 /* Reinsert all breakpoints in the child. The user may have set
604 breakpoints after catching the fork, in which case those
605 were never set in the child, but only in the parent. This makes
606 sure the inserted breakpoints match the breakpoint list. */
607
608 breakpoint_re_set ();
609 insert_breakpoints ();
610 }
611
612 /* The child has exited or execed: resume threads of the parent the
613 user wanted to be executing. */
614
615 static int
616 proceed_after_vfork_done (struct thread_info *thread,
617 void *arg)
618 {
619 int pid = * (int *) arg;
620
621 if (ptid_get_pid (thread->ptid) == pid
622 && is_running (thread->ptid)
623 && !is_executing (thread->ptid)
624 && !thread->stop_requested
625 && thread->suspend.stop_signal == GDB_SIGNAL_0)
626 {
627 if (debug_infrun)
628 fprintf_unfiltered (gdb_stdlog,
629 "infrun: resuming vfork parent thread %s\n",
630 target_pid_to_str (thread->ptid));
631
632 switch_to_thread (thread->ptid);
633 clear_proceed_status ();
634 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
635 }
636
637 return 0;
638 }
639
640 /* Called whenever we notice an exec or exit event, to handle
641 detaching or resuming a vfork parent. */
642
643 static void
644 handle_vfork_child_exec_or_exit (int exec)
645 {
646 struct inferior *inf = current_inferior ();
647
648 if (inf->vfork_parent)
649 {
650 int resume_parent = -1;
651
652 /* This exec or exit marks the end of the shared memory region
653 between the parent and the child. If the user wanted to
654 detach from the parent, now is the time. */
655
656 if (inf->vfork_parent->pending_detach)
657 {
658 struct thread_info *tp;
659 struct cleanup *old_chain;
660 struct program_space *pspace;
661 struct address_space *aspace;
662
663 /* follow-fork child, detach-on-fork on. */
664
665 old_chain = make_cleanup_restore_current_thread ();
666
667 /* We're letting loose of the parent. */
668 tp = any_live_thread_of_process (inf->vfork_parent->pid);
669 switch_to_thread (tp->ptid);
670
671 /* We're about to detach from the parent, which implicitly
672 removes breakpoints from its address space. There's a
673 catch here: we want to reuse the spaces for the child,
674 but, parent/child are still sharing the pspace at this
675 point, although the exec in reality makes the kernel give
676 the child a fresh set of new pages. The problem here is
677 that the breakpoints module being unaware of this, would
678 likely chose the child process to write to the parent
679 address space. Swapping the child temporarily away from
680 the spaces has the desired effect. Yes, this is "sort
681 of" a hack. */
682
683 pspace = inf->pspace;
684 aspace = inf->aspace;
685 inf->aspace = NULL;
686 inf->pspace = NULL;
687
688 if (debug_infrun || info_verbose)
689 {
690 target_terminal_ours ();
691
692 if (exec)
693 fprintf_filtered (gdb_stdlog,
694 "Detaching vfork parent process "
695 "%d after child exec.\n",
696 inf->vfork_parent->pid);
697 else
698 fprintf_filtered (gdb_stdlog,
699 "Detaching vfork parent process "
700 "%d after child exit.\n",
701 inf->vfork_parent->pid);
702 }
703
704 target_detach (NULL, 0);
705
706 /* Put it back. */
707 inf->pspace = pspace;
708 inf->aspace = aspace;
709
710 do_cleanups (old_chain);
711 }
712 else if (exec)
713 {
714 /* We're staying attached to the parent, so, really give the
715 child a new address space. */
716 inf->pspace = add_program_space (maybe_new_address_space ());
717 inf->aspace = inf->pspace->aspace;
718 inf->removable = 1;
719 set_current_program_space (inf->pspace);
720
721 resume_parent = inf->vfork_parent->pid;
722
723 /* Break the bonds. */
724 inf->vfork_parent->vfork_child = NULL;
725 }
726 else
727 {
728 struct cleanup *old_chain;
729 struct program_space *pspace;
730
731 /* If this is a vfork child exiting, then the pspace and
732 aspaces were shared with the parent. Since we're
733 reporting the process exit, we'll be mourning all that is
734 found in the address space, and switching to null_ptid,
735 preparing to start a new inferior. But, since we don't
736 want to clobber the parent's address/program spaces, we
737 go ahead and create a new one for this exiting
738 inferior. */
739
740 /* Switch to null_ptid, so that clone_program_space doesn't want
741 to read the selected frame of a dead process. */
742 old_chain = save_inferior_ptid ();
743 inferior_ptid = null_ptid;
744
745 /* This inferior is dead, so avoid giving the breakpoints
746 module the option to write through to it (cloning a
747 program space resets breakpoints). */
748 inf->aspace = NULL;
749 inf->pspace = NULL;
750 pspace = add_program_space (maybe_new_address_space ());
751 set_current_program_space (pspace);
752 inf->removable = 1;
753 inf->symfile_flags = SYMFILE_NO_READ;
754 clone_program_space (pspace, inf->vfork_parent->pspace);
755 inf->pspace = pspace;
756 inf->aspace = pspace->aspace;
757
758 /* Put back inferior_ptid. We'll continue mourning this
759 inferior. */
760 do_cleanups (old_chain);
761
762 resume_parent = inf->vfork_parent->pid;
763 /* Break the bonds. */
764 inf->vfork_parent->vfork_child = NULL;
765 }
766
767 inf->vfork_parent = NULL;
768
769 gdb_assert (current_program_space == inf->pspace);
770
771 if (non_stop && resume_parent != -1)
772 {
773 /* If the user wanted the parent to be running, let it go
774 free now. */
775 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
776
777 if (debug_infrun)
778 fprintf_unfiltered (gdb_stdlog,
779 "infrun: resuming vfork parent process %d\n",
780 resume_parent);
781
782 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
783
784 do_cleanups (old_chain);
785 }
786 }
787 }
788
789 /* Enum strings for "set|show displaced-stepping". */
790
791 static const char follow_exec_mode_new[] = "new";
792 static const char follow_exec_mode_same[] = "same";
793 static const char *const follow_exec_mode_names[] =
794 {
795 follow_exec_mode_new,
796 follow_exec_mode_same,
797 NULL,
798 };
799
800 static const char *follow_exec_mode_string = follow_exec_mode_same;
801 static void
802 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
803 struct cmd_list_element *c, const char *value)
804 {
805 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
806 }
807
808 /* EXECD_PATHNAME is assumed to be non-NULL. */
809
810 static void
811 follow_exec (ptid_t pid, char *execd_pathname)
812 {
813 struct thread_info *th = inferior_thread ();
814 struct inferior *inf = current_inferior ();
815
816 /* This is an exec event that we actually wish to pay attention to.
817 Refresh our symbol table to the newly exec'd program, remove any
818 momentary bp's, etc.
819
820 If there are breakpoints, they aren't really inserted now,
821 since the exec() transformed our inferior into a fresh set
822 of instructions.
823
824 We want to preserve symbolic breakpoints on the list, since
825 we have hopes that they can be reset after the new a.out's
826 symbol table is read.
827
828 However, any "raw" breakpoints must be removed from the list
829 (e.g., the solib bp's), since their address is probably invalid
830 now.
831
832 And, we DON'T want to call delete_breakpoints() here, since
833 that may write the bp's "shadow contents" (the instruction
834 value that was overwritten witha TRAP instruction). Since
835 we now have a new a.out, those shadow contents aren't valid. */
836
837 mark_breakpoints_out ();
838
839 update_breakpoints_after_exec ();
840
841 /* If there was one, it's gone now. We cannot truly step-to-next
842 statement through an exec(). */
843 th->control.step_resume_breakpoint = NULL;
844 th->control.exception_resume_breakpoint = NULL;
845 th->control.step_range_start = 0;
846 th->control.step_range_end = 0;
847
848 /* The target reports the exec event to the main thread, even if
849 some other thread does the exec, and even if the main thread was
850 already stopped --- if debugging in non-stop mode, it's possible
851 the user had the main thread held stopped in the previous image
852 --- release it now. This is the same behavior as step-over-exec
853 with scheduler-locking on in all-stop mode. */
854 th->stop_requested = 0;
855
856 /* What is this a.out's name? */
857 printf_unfiltered (_("%s is executing new program: %s\n"),
858 target_pid_to_str (inferior_ptid),
859 execd_pathname);
860
861 /* We've followed the inferior through an exec. Therefore, the
862 inferior has essentially been killed & reborn. */
863
864 gdb_flush (gdb_stdout);
865
866 breakpoint_init_inferior (inf_execd);
867
868 if (gdb_sysroot && *gdb_sysroot)
869 {
870 char *name = alloca (strlen (gdb_sysroot)
871 + strlen (execd_pathname)
872 + 1);
873
874 strcpy (name, gdb_sysroot);
875 strcat (name, execd_pathname);
876 execd_pathname = name;
877 }
878
879 /* Reset the shared library package. This ensures that we get a
880 shlib event when the child reaches "_start", at which point the
881 dld will have had a chance to initialize the child. */
882 /* Also, loading a symbol file below may trigger symbol lookups, and
883 we don't want those to be satisfied by the libraries of the
884 previous incarnation of this process. */
885 no_shared_libraries (NULL, 0);
886
887 if (follow_exec_mode_string == follow_exec_mode_new)
888 {
889 struct program_space *pspace;
890
891 /* The user wants to keep the old inferior and program spaces
892 around. Create a new fresh one, and switch to it. */
893
894 inf = add_inferior (current_inferior ()->pid);
895 pspace = add_program_space (maybe_new_address_space ());
896 inf->pspace = pspace;
897 inf->aspace = pspace->aspace;
898
899 exit_inferior_num_silent (current_inferior ()->num);
900
901 set_current_inferior (inf);
902 set_current_program_space (pspace);
903 }
904
905 gdb_assert (current_program_space == inf->pspace);
906
907 /* That a.out is now the one to use. */
908 exec_file_attach (execd_pathname, 0);
909
910 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
911 (Position Independent Executable) main symbol file will get applied by
912 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
913 the breakpoints with the zero displacement. */
914
915 symbol_file_add (execd_pathname,
916 (inf->symfile_flags
917 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
918 NULL, 0);
919
920 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
921 set_initial_language ();
922
923 #ifdef SOLIB_CREATE_INFERIOR_HOOK
924 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
925 #else
926 solib_create_inferior_hook (0);
927 #endif
928
929 jit_inferior_created_hook ();
930
931 breakpoint_re_set ();
932
933 /* Reinsert all breakpoints. (Those which were symbolic have
934 been reset to the proper address in the new a.out, thanks
935 to symbol_file_command...). */
936 insert_breakpoints ();
937
938 /* The next resume of this inferior should bring it to the shlib
939 startup breakpoints. (If the user had also set bp's on
940 "main" from the old (parent) process, then they'll auto-
941 matically get reset there in the new process.). */
942 }
943
944 /* Non-zero if we just simulating a single-step. This is needed
945 because we cannot remove the breakpoints in the inferior process
946 until after the `wait' in `wait_for_inferior'. */
947 static int singlestep_breakpoints_inserted_p = 0;
948
949 /* The thread we inserted single-step breakpoints for. */
950 static ptid_t singlestep_ptid;
951
952 /* PC when we started this single-step. */
953 static CORE_ADDR singlestep_pc;
954
955 /* If another thread hit the singlestep breakpoint, we save the original
956 thread here so that we can resume single-stepping it later. */
957 static ptid_t saved_singlestep_ptid;
958 static int stepping_past_singlestep_breakpoint;
959
960 /* If not equal to null_ptid, this means that after stepping over breakpoint
961 is finished, we need to switch to deferred_step_ptid, and step it.
962
963 The use case is when one thread has hit a breakpoint, and then the user
964 has switched to another thread and issued 'step'. We need to step over
965 breakpoint in the thread which hit the breakpoint, but then continue
966 stepping the thread user has selected. */
967 static ptid_t deferred_step_ptid;
968 \f
969 /* Displaced stepping. */
970
971 /* In non-stop debugging mode, we must take special care to manage
972 breakpoints properly; in particular, the traditional strategy for
973 stepping a thread past a breakpoint it has hit is unsuitable.
974 'Displaced stepping' is a tactic for stepping one thread past a
975 breakpoint it has hit while ensuring that other threads running
976 concurrently will hit the breakpoint as they should.
977
978 The traditional way to step a thread T off a breakpoint in a
979 multi-threaded program in all-stop mode is as follows:
980
981 a0) Initially, all threads are stopped, and breakpoints are not
982 inserted.
983 a1) We single-step T, leaving breakpoints uninserted.
984 a2) We insert breakpoints, and resume all threads.
985
986 In non-stop debugging, however, this strategy is unsuitable: we
987 don't want to have to stop all threads in the system in order to
988 continue or step T past a breakpoint. Instead, we use displaced
989 stepping:
990
991 n0) Initially, T is stopped, other threads are running, and
992 breakpoints are inserted.
993 n1) We copy the instruction "under" the breakpoint to a separate
994 location, outside the main code stream, making any adjustments
995 to the instruction, register, and memory state as directed by
996 T's architecture.
997 n2) We single-step T over the instruction at its new location.
998 n3) We adjust the resulting register and memory state as directed
999 by T's architecture. This includes resetting T's PC to point
1000 back into the main instruction stream.
1001 n4) We resume T.
1002
1003 This approach depends on the following gdbarch methods:
1004
1005 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1006 indicate where to copy the instruction, and how much space must
1007 be reserved there. We use these in step n1.
1008
1009 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1010 address, and makes any necessary adjustments to the instruction,
1011 register contents, and memory. We use this in step n1.
1012
1013 - gdbarch_displaced_step_fixup adjusts registers and memory after
1014 we have successfuly single-stepped the instruction, to yield the
1015 same effect the instruction would have had if we had executed it
1016 at its original address. We use this in step n3.
1017
1018 - gdbarch_displaced_step_free_closure provides cleanup.
1019
1020 The gdbarch_displaced_step_copy_insn and
1021 gdbarch_displaced_step_fixup functions must be written so that
1022 copying an instruction with gdbarch_displaced_step_copy_insn,
1023 single-stepping across the copied instruction, and then applying
1024 gdbarch_displaced_insn_fixup should have the same effects on the
1025 thread's memory and registers as stepping the instruction in place
1026 would have. Exactly which responsibilities fall to the copy and
1027 which fall to the fixup is up to the author of those functions.
1028
1029 See the comments in gdbarch.sh for details.
1030
1031 Note that displaced stepping and software single-step cannot
1032 currently be used in combination, although with some care I think
1033 they could be made to. Software single-step works by placing
1034 breakpoints on all possible subsequent instructions; if the
1035 displaced instruction is a PC-relative jump, those breakpoints
1036 could fall in very strange places --- on pages that aren't
1037 executable, or at addresses that are not proper instruction
1038 boundaries. (We do generally let other threads run while we wait
1039 to hit the software single-step breakpoint, and they might
1040 encounter such a corrupted instruction.) One way to work around
1041 this would be to have gdbarch_displaced_step_copy_insn fully
1042 simulate the effect of PC-relative instructions (and return NULL)
1043 on architectures that use software single-stepping.
1044
1045 In non-stop mode, we can have independent and simultaneous step
1046 requests, so more than one thread may need to simultaneously step
1047 over a breakpoint. The current implementation assumes there is
1048 only one scratch space per process. In this case, we have to
1049 serialize access to the scratch space. If thread A wants to step
1050 over a breakpoint, but we are currently waiting for some other
1051 thread to complete a displaced step, we leave thread A stopped and
1052 place it in the displaced_step_request_queue. Whenever a displaced
1053 step finishes, we pick the next thread in the queue and start a new
1054 displaced step operation on it. See displaced_step_prepare and
1055 displaced_step_fixup for details. */
1056
1057 struct displaced_step_request
1058 {
1059 ptid_t ptid;
1060 struct displaced_step_request *next;
1061 };
1062
1063 /* Per-inferior displaced stepping state. */
1064 struct displaced_step_inferior_state
1065 {
1066 /* Pointer to next in linked list. */
1067 struct displaced_step_inferior_state *next;
1068
1069 /* The process this displaced step state refers to. */
1070 int pid;
1071
1072 /* A queue of pending displaced stepping requests. One entry per
1073 thread that needs to do a displaced step. */
1074 struct displaced_step_request *step_request_queue;
1075
1076 /* If this is not null_ptid, this is the thread carrying out a
1077 displaced single-step in process PID. This thread's state will
1078 require fixing up once it has completed its step. */
1079 ptid_t step_ptid;
1080
1081 /* The architecture the thread had when we stepped it. */
1082 struct gdbarch *step_gdbarch;
1083
1084 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1085 for post-step cleanup. */
1086 struct displaced_step_closure *step_closure;
1087
1088 /* The address of the original instruction, and the copy we
1089 made. */
1090 CORE_ADDR step_original, step_copy;
1091
1092 /* Saved contents of copy area. */
1093 gdb_byte *step_saved_copy;
1094 };
1095
1096 /* The list of states of processes involved in displaced stepping
1097 presently. */
1098 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1099
1100 /* Get the displaced stepping state of process PID. */
1101
1102 static struct displaced_step_inferior_state *
1103 get_displaced_stepping_state (int pid)
1104 {
1105 struct displaced_step_inferior_state *state;
1106
1107 for (state = displaced_step_inferior_states;
1108 state != NULL;
1109 state = state->next)
1110 if (state->pid == pid)
1111 return state;
1112
1113 return NULL;
1114 }
1115
1116 /* Add a new displaced stepping state for process PID to the displaced
1117 stepping state list, or return a pointer to an already existing
1118 entry, if it already exists. Never returns NULL. */
1119
1120 static struct displaced_step_inferior_state *
1121 add_displaced_stepping_state (int pid)
1122 {
1123 struct displaced_step_inferior_state *state;
1124
1125 for (state = displaced_step_inferior_states;
1126 state != NULL;
1127 state = state->next)
1128 if (state->pid == pid)
1129 return state;
1130
1131 state = xcalloc (1, sizeof (*state));
1132 state->pid = pid;
1133 state->next = displaced_step_inferior_states;
1134 displaced_step_inferior_states = state;
1135
1136 return state;
1137 }
1138
1139 /* If inferior is in displaced stepping, and ADDR equals to starting address
1140 of copy area, return corresponding displaced_step_closure. Otherwise,
1141 return NULL. */
1142
1143 struct displaced_step_closure*
1144 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1145 {
1146 struct displaced_step_inferior_state *displaced
1147 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1148
1149 /* If checking the mode of displaced instruction in copy area. */
1150 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1151 && (displaced->step_copy == addr))
1152 return displaced->step_closure;
1153
1154 return NULL;
1155 }
1156
1157 /* Remove the displaced stepping state of process PID. */
1158
1159 static void
1160 remove_displaced_stepping_state (int pid)
1161 {
1162 struct displaced_step_inferior_state *it, **prev_next_p;
1163
1164 gdb_assert (pid != 0);
1165
1166 it = displaced_step_inferior_states;
1167 prev_next_p = &displaced_step_inferior_states;
1168 while (it)
1169 {
1170 if (it->pid == pid)
1171 {
1172 *prev_next_p = it->next;
1173 xfree (it);
1174 return;
1175 }
1176
1177 prev_next_p = &it->next;
1178 it = *prev_next_p;
1179 }
1180 }
1181
1182 static void
1183 infrun_inferior_exit (struct inferior *inf)
1184 {
1185 remove_displaced_stepping_state (inf->pid);
1186 }
1187
1188 /* Enum strings for "set|show displaced-stepping". */
1189
1190 static const char can_use_displaced_stepping_auto[] = "auto";
1191 static const char can_use_displaced_stepping_on[] = "on";
1192 static const char can_use_displaced_stepping_off[] = "off";
1193 static const char *const can_use_displaced_stepping_enum[] =
1194 {
1195 can_use_displaced_stepping_auto,
1196 can_use_displaced_stepping_on,
1197 can_use_displaced_stepping_off,
1198 NULL,
1199 };
1200
1201 /* If ON, and the architecture supports it, GDB will use displaced
1202 stepping to step over breakpoints. If OFF, or if the architecture
1203 doesn't support it, GDB will instead use the traditional
1204 hold-and-step approach. If AUTO (which is the default), GDB will
1205 decide which technique to use to step over breakpoints depending on
1206 which of all-stop or non-stop mode is active --- displaced stepping
1207 in non-stop mode; hold-and-step in all-stop mode. */
1208
1209 static const char *can_use_displaced_stepping =
1210 can_use_displaced_stepping_auto;
1211
1212 static void
1213 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1214 struct cmd_list_element *c,
1215 const char *value)
1216 {
1217 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1218 fprintf_filtered (file,
1219 _("Debugger's willingness to use displaced stepping "
1220 "to step over breakpoints is %s (currently %s).\n"),
1221 value, non_stop ? "on" : "off");
1222 else
1223 fprintf_filtered (file,
1224 _("Debugger's willingness to use displaced stepping "
1225 "to step over breakpoints is %s.\n"), value);
1226 }
1227
1228 /* Return non-zero if displaced stepping can/should be used to step
1229 over breakpoints. */
1230
1231 static int
1232 use_displaced_stepping (struct gdbarch *gdbarch)
1233 {
1234 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1235 && non_stop)
1236 || can_use_displaced_stepping == can_use_displaced_stepping_on)
1237 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1238 && !RECORD_IS_USED);
1239 }
1240
1241 /* Clean out any stray displaced stepping state. */
1242 static void
1243 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1244 {
1245 /* Indicate that there is no cleanup pending. */
1246 displaced->step_ptid = null_ptid;
1247
1248 if (displaced->step_closure)
1249 {
1250 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1251 displaced->step_closure);
1252 displaced->step_closure = NULL;
1253 }
1254 }
1255
1256 static void
1257 displaced_step_clear_cleanup (void *arg)
1258 {
1259 struct displaced_step_inferior_state *state = arg;
1260
1261 displaced_step_clear (state);
1262 }
1263
1264 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1265 void
1266 displaced_step_dump_bytes (struct ui_file *file,
1267 const gdb_byte *buf,
1268 size_t len)
1269 {
1270 int i;
1271
1272 for (i = 0; i < len; i++)
1273 fprintf_unfiltered (file, "%02x ", buf[i]);
1274 fputs_unfiltered ("\n", file);
1275 }
1276
1277 /* Prepare to single-step, using displaced stepping.
1278
1279 Note that we cannot use displaced stepping when we have a signal to
1280 deliver. If we have a signal to deliver and an instruction to step
1281 over, then after the step, there will be no indication from the
1282 target whether the thread entered a signal handler or ignored the
1283 signal and stepped over the instruction successfully --- both cases
1284 result in a simple SIGTRAP. In the first case we mustn't do a
1285 fixup, and in the second case we must --- but we can't tell which.
1286 Comments in the code for 'random signals' in handle_inferior_event
1287 explain how we handle this case instead.
1288
1289 Returns 1 if preparing was successful -- this thread is going to be
1290 stepped now; or 0 if displaced stepping this thread got queued. */
1291 static int
1292 displaced_step_prepare (ptid_t ptid)
1293 {
1294 struct cleanup *old_cleanups, *ignore_cleanups;
1295 struct regcache *regcache = get_thread_regcache (ptid);
1296 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1297 CORE_ADDR original, copy;
1298 ULONGEST len;
1299 struct displaced_step_closure *closure;
1300 struct displaced_step_inferior_state *displaced;
1301 int status;
1302
1303 /* We should never reach this function if the architecture does not
1304 support displaced stepping. */
1305 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1306
1307 /* We have to displaced step one thread at a time, as we only have
1308 access to a single scratch space per inferior. */
1309
1310 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1311
1312 if (!ptid_equal (displaced->step_ptid, null_ptid))
1313 {
1314 /* Already waiting for a displaced step to finish. Defer this
1315 request and place in queue. */
1316 struct displaced_step_request *req, *new_req;
1317
1318 if (debug_displaced)
1319 fprintf_unfiltered (gdb_stdlog,
1320 "displaced: defering step of %s\n",
1321 target_pid_to_str (ptid));
1322
1323 new_req = xmalloc (sizeof (*new_req));
1324 new_req->ptid = ptid;
1325 new_req->next = NULL;
1326
1327 if (displaced->step_request_queue)
1328 {
1329 for (req = displaced->step_request_queue;
1330 req && req->next;
1331 req = req->next)
1332 ;
1333 req->next = new_req;
1334 }
1335 else
1336 displaced->step_request_queue = new_req;
1337
1338 return 0;
1339 }
1340 else
1341 {
1342 if (debug_displaced)
1343 fprintf_unfiltered (gdb_stdlog,
1344 "displaced: stepping %s now\n",
1345 target_pid_to_str (ptid));
1346 }
1347
1348 displaced_step_clear (displaced);
1349
1350 old_cleanups = save_inferior_ptid ();
1351 inferior_ptid = ptid;
1352
1353 original = regcache_read_pc (regcache);
1354
1355 copy = gdbarch_displaced_step_location (gdbarch);
1356 len = gdbarch_max_insn_length (gdbarch);
1357
1358 /* Save the original contents of the copy area. */
1359 displaced->step_saved_copy = xmalloc (len);
1360 ignore_cleanups = make_cleanup (free_current_contents,
1361 &displaced->step_saved_copy);
1362 status = target_read_memory (copy, displaced->step_saved_copy, len);
1363 if (status != 0)
1364 throw_error (MEMORY_ERROR,
1365 _("Error accessing memory address %s (%s) for "
1366 "displaced-stepping scratch space."),
1367 paddress (gdbarch, copy), safe_strerror (status));
1368 if (debug_displaced)
1369 {
1370 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1371 paddress (gdbarch, copy));
1372 displaced_step_dump_bytes (gdb_stdlog,
1373 displaced->step_saved_copy,
1374 len);
1375 };
1376
1377 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1378 original, copy, regcache);
1379
1380 /* We don't support the fully-simulated case at present. */
1381 gdb_assert (closure);
1382
1383 /* Save the information we need to fix things up if the step
1384 succeeds. */
1385 displaced->step_ptid = ptid;
1386 displaced->step_gdbarch = gdbarch;
1387 displaced->step_closure = closure;
1388 displaced->step_original = original;
1389 displaced->step_copy = copy;
1390
1391 make_cleanup (displaced_step_clear_cleanup, displaced);
1392
1393 /* Resume execution at the copy. */
1394 regcache_write_pc (regcache, copy);
1395
1396 discard_cleanups (ignore_cleanups);
1397
1398 do_cleanups (old_cleanups);
1399
1400 if (debug_displaced)
1401 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1402 paddress (gdbarch, copy));
1403
1404 return 1;
1405 }
1406
1407 static void
1408 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1409 const gdb_byte *myaddr, int len)
1410 {
1411 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1412
1413 inferior_ptid = ptid;
1414 write_memory (memaddr, myaddr, len);
1415 do_cleanups (ptid_cleanup);
1416 }
1417
1418 /* Restore the contents of the copy area for thread PTID. */
1419
1420 static void
1421 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1422 ptid_t ptid)
1423 {
1424 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1425
1426 write_memory_ptid (ptid, displaced->step_copy,
1427 displaced->step_saved_copy, len);
1428 if (debug_displaced)
1429 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1430 target_pid_to_str (ptid),
1431 paddress (displaced->step_gdbarch,
1432 displaced->step_copy));
1433 }
1434
1435 static void
1436 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1437 {
1438 struct cleanup *old_cleanups;
1439 struct displaced_step_inferior_state *displaced
1440 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1441
1442 /* Was any thread of this process doing a displaced step? */
1443 if (displaced == NULL)
1444 return;
1445
1446 /* Was this event for the pid we displaced? */
1447 if (ptid_equal (displaced->step_ptid, null_ptid)
1448 || ! ptid_equal (displaced->step_ptid, event_ptid))
1449 return;
1450
1451 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1452
1453 displaced_step_restore (displaced, displaced->step_ptid);
1454
1455 /* Did the instruction complete successfully? */
1456 if (signal == GDB_SIGNAL_TRAP)
1457 {
1458 /* Fix up the resulting state. */
1459 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1460 displaced->step_closure,
1461 displaced->step_original,
1462 displaced->step_copy,
1463 get_thread_regcache (displaced->step_ptid));
1464 }
1465 else
1466 {
1467 /* Since the instruction didn't complete, all we can do is
1468 relocate the PC. */
1469 struct regcache *regcache = get_thread_regcache (event_ptid);
1470 CORE_ADDR pc = regcache_read_pc (regcache);
1471
1472 pc = displaced->step_original + (pc - displaced->step_copy);
1473 regcache_write_pc (regcache, pc);
1474 }
1475
1476 do_cleanups (old_cleanups);
1477
1478 displaced->step_ptid = null_ptid;
1479
1480 /* Are there any pending displaced stepping requests? If so, run
1481 one now. Leave the state object around, since we're likely to
1482 need it again soon. */
1483 while (displaced->step_request_queue)
1484 {
1485 struct displaced_step_request *head;
1486 ptid_t ptid;
1487 struct regcache *regcache;
1488 struct gdbarch *gdbarch;
1489 CORE_ADDR actual_pc;
1490 struct address_space *aspace;
1491
1492 head = displaced->step_request_queue;
1493 ptid = head->ptid;
1494 displaced->step_request_queue = head->next;
1495 xfree (head);
1496
1497 context_switch (ptid);
1498
1499 regcache = get_thread_regcache (ptid);
1500 actual_pc = regcache_read_pc (regcache);
1501 aspace = get_regcache_aspace (regcache);
1502
1503 if (breakpoint_here_p (aspace, actual_pc))
1504 {
1505 if (debug_displaced)
1506 fprintf_unfiltered (gdb_stdlog,
1507 "displaced: stepping queued %s now\n",
1508 target_pid_to_str (ptid));
1509
1510 displaced_step_prepare (ptid);
1511
1512 gdbarch = get_regcache_arch (regcache);
1513
1514 if (debug_displaced)
1515 {
1516 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1517 gdb_byte buf[4];
1518
1519 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1520 paddress (gdbarch, actual_pc));
1521 read_memory (actual_pc, buf, sizeof (buf));
1522 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1523 }
1524
1525 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1526 displaced->step_closure))
1527 target_resume (ptid, 1, GDB_SIGNAL_0);
1528 else
1529 target_resume (ptid, 0, GDB_SIGNAL_0);
1530
1531 /* Done, we're stepping a thread. */
1532 break;
1533 }
1534 else
1535 {
1536 int step;
1537 struct thread_info *tp = inferior_thread ();
1538
1539 /* The breakpoint we were sitting under has since been
1540 removed. */
1541 tp->control.trap_expected = 0;
1542
1543 /* Go back to what we were trying to do. */
1544 step = currently_stepping (tp);
1545
1546 if (debug_displaced)
1547 fprintf_unfiltered (gdb_stdlog,
1548 "displaced: breakpoint is gone: %s, step(%d)\n",
1549 target_pid_to_str (tp->ptid), step);
1550
1551 target_resume (ptid, step, GDB_SIGNAL_0);
1552 tp->suspend.stop_signal = GDB_SIGNAL_0;
1553
1554 /* This request was discarded. See if there's any other
1555 thread waiting for its turn. */
1556 }
1557 }
1558 }
1559
1560 /* Update global variables holding ptids to hold NEW_PTID if they were
1561 holding OLD_PTID. */
1562 static void
1563 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1564 {
1565 struct displaced_step_request *it;
1566 struct displaced_step_inferior_state *displaced;
1567
1568 if (ptid_equal (inferior_ptid, old_ptid))
1569 inferior_ptid = new_ptid;
1570
1571 if (ptid_equal (singlestep_ptid, old_ptid))
1572 singlestep_ptid = new_ptid;
1573
1574 if (ptid_equal (deferred_step_ptid, old_ptid))
1575 deferred_step_ptid = new_ptid;
1576
1577 for (displaced = displaced_step_inferior_states;
1578 displaced;
1579 displaced = displaced->next)
1580 {
1581 if (ptid_equal (displaced->step_ptid, old_ptid))
1582 displaced->step_ptid = new_ptid;
1583
1584 for (it = displaced->step_request_queue; it; it = it->next)
1585 if (ptid_equal (it->ptid, old_ptid))
1586 it->ptid = new_ptid;
1587 }
1588 }
1589
1590 \f
1591 /* Resuming. */
1592
1593 /* Things to clean up if we QUIT out of resume (). */
1594 static void
1595 resume_cleanups (void *ignore)
1596 {
1597 normal_stop ();
1598 }
1599
1600 static const char schedlock_off[] = "off";
1601 static const char schedlock_on[] = "on";
1602 static const char schedlock_step[] = "step";
1603 static const char *const scheduler_enums[] = {
1604 schedlock_off,
1605 schedlock_on,
1606 schedlock_step,
1607 NULL
1608 };
1609 static const char *scheduler_mode = schedlock_off;
1610 static void
1611 show_scheduler_mode (struct ui_file *file, int from_tty,
1612 struct cmd_list_element *c, const char *value)
1613 {
1614 fprintf_filtered (file,
1615 _("Mode for locking scheduler "
1616 "during execution is \"%s\".\n"),
1617 value);
1618 }
1619
1620 static void
1621 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1622 {
1623 if (!target_can_lock_scheduler)
1624 {
1625 scheduler_mode = schedlock_off;
1626 error (_("Target '%s' cannot support this command."), target_shortname);
1627 }
1628 }
1629
1630 /* True if execution commands resume all threads of all processes by
1631 default; otherwise, resume only threads of the current inferior
1632 process. */
1633 int sched_multi = 0;
1634
1635 /* Try to setup for software single stepping over the specified location.
1636 Return 1 if target_resume() should use hardware single step.
1637
1638 GDBARCH the current gdbarch.
1639 PC the location to step over. */
1640
1641 static int
1642 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1643 {
1644 int hw_step = 1;
1645
1646 if (execution_direction == EXEC_FORWARD
1647 && gdbarch_software_single_step_p (gdbarch)
1648 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1649 {
1650 hw_step = 0;
1651 /* Do not pull these breakpoints until after a `wait' in
1652 `wait_for_inferior'. */
1653 singlestep_breakpoints_inserted_p = 1;
1654 singlestep_ptid = inferior_ptid;
1655 singlestep_pc = pc;
1656 }
1657 return hw_step;
1658 }
1659
1660 /* Return a ptid representing the set of threads that we will proceed,
1661 in the perspective of the user/frontend. We may actually resume
1662 fewer threads at first, e.g., if a thread is stopped at a
1663 breakpoint that needs stepping-off, but that should not be visible
1664 to the user/frontend, and neither should the frontend/user be
1665 allowed to proceed any of the threads that happen to be stopped for
1666 internal run control handling, if a previous command wanted them
1667 resumed. */
1668
1669 ptid_t
1670 user_visible_resume_ptid (int step)
1671 {
1672 /* By default, resume all threads of all processes. */
1673 ptid_t resume_ptid = RESUME_ALL;
1674
1675 /* Maybe resume only all threads of the current process. */
1676 if (!sched_multi && target_supports_multi_process ())
1677 {
1678 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1679 }
1680
1681 /* Maybe resume a single thread after all. */
1682 if (non_stop)
1683 {
1684 /* With non-stop mode on, threads are always handled
1685 individually. */
1686 resume_ptid = inferior_ptid;
1687 }
1688 else if ((scheduler_mode == schedlock_on)
1689 || (scheduler_mode == schedlock_step
1690 && (step || singlestep_breakpoints_inserted_p)))
1691 {
1692 /* User-settable 'scheduler' mode requires solo thread resume. */
1693 resume_ptid = inferior_ptid;
1694 }
1695
1696 return resume_ptid;
1697 }
1698
1699 /* Resume the inferior, but allow a QUIT. This is useful if the user
1700 wants to interrupt some lengthy single-stepping operation
1701 (for child processes, the SIGINT goes to the inferior, and so
1702 we get a SIGINT random_signal, but for remote debugging and perhaps
1703 other targets, that's not true).
1704
1705 STEP nonzero if we should step (zero to continue instead).
1706 SIG is the signal to give the inferior (zero for none). */
1707 void
1708 resume (int step, enum gdb_signal sig)
1709 {
1710 int should_resume = 1;
1711 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1712 struct regcache *regcache = get_current_regcache ();
1713 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1714 struct thread_info *tp = inferior_thread ();
1715 CORE_ADDR pc = regcache_read_pc (regcache);
1716 struct address_space *aspace = get_regcache_aspace (regcache);
1717
1718 QUIT;
1719
1720 if (current_inferior ()->waiting_for_vfork_done)
1721 {
1722 /* Don't try to single-step a vfork parent that is waiting for
1723 the child to get out of the shared memory region (by exec'ing
1724 or exiting). This is particularly important on software
1725 single-step archs, as the child process would trip on the
1726 software single step breakpoint inserted for the parent
1727 process. Since the parent will not actually execute any
1728 instruction until the child is out of the shared region (such
1729 are vfork's semantics), it is safe to simply continue it.
1730 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1731 the parent, and tell it to `keep_going', which automatically
1732 re-sets it stepping. */
1733 if (debug_infrun)
1734 fprintf_unfiltered (gdb_stdlog,
1735 "infrun: resume : clear step\n");
1736 step = 0;
1737 }
1738
1739 if (debug_infrun)
1740 fprintf_unfiltered (gdb_stdlog,
1741 "infrun: resume (step=%d, signal=%d), "
1742 "trap_expected=%d, current thread [%s] at %s\n",
1743 step, sig, tp->control.trap_expected,
1744 target_pid_to_str (inferior_ptid),
1745 paddress (gdbarch, pc));
1746
1747 /* Normally, by the time we reach `resume', the breakpoints are either
1748 removed or inserted, as appropriate. The exception is if we're sitting
1749 at a permanent breakpoint; we need to step over it, but permanent
1750 breakpoints can't be removed. So we have to test for it here. */
1751 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1752 {
1753 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1754 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1755 else
1756 error (_("\
1757 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1758 how to step past a permanent breakpoint on this architecture. Try using\n\
1759 a command like `return' or `jump' to continue execution."));
1760 }
1761
1762 /* If enabled, step over breakpoints by executing a copy of the
1763 instruction at a different address.
1764
1765 We can't use displaced stepping when we have a signal to deliver;
1766 the comments for displaced_step_prepare explain why. The
1767 comments in the handle_inferior event for dealing with 'random
1768 signals' explain what we do instead.
1769
1770 We can't use displaced stepping when we are waiting for vfork_done
1771 event, displaced stepping breaks the vfork child similarly as single
1772 step software breakpoint. */
1773 if (use_displaced_stepping (gdbarch)
1774 && (tp->control.trap_expected
1775 || (step && gdbarch_software_single_step_p (gdbarch)))
1776 && sig == GDB_SIGNAL_0
1777 && !current_inferior ()->waiting_for_vfork_done)
1778 {
1779 struct displaced_step_inferior_state *displaced;
1780
1781 if (!displaced_step_prepare (inferior_ptid))
1782 {
1783 /* Got placed in displaced stepping queue. Will be resumed
1784 later when all the currently queued displaced stepping
1785 requests finish. The thread is not executing at this point,
1786 and the call to set_executing will be made later. But we
1787 need to call set_running here, since from frontend point of view,
1788 the thread is running. */
1789 set_running (inferior_ptid, 1);
1790 discard_cleanups (old_cleanups);
1791 return;
1792 }
1793
1794 /* Update pc to reflect the new address from which we will execute
1795 instructions due to displaced stepping. */
1796 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1797
1798 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1799 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1800 displaced->step_closure);
1801 }
1802
1803 /* Do we need to do it the hard way, w/temp breakpoints? */
1804 else if (step)
1805 step = maybe_software_singlestep (gdbarch, pc);
1806
1807 /* Currently, our software single-step implementation leads to different
1808 results than hardware single-stepping in one situation: when stepping
1809 into delivering a signal which has an associated signal handler,
1810 hardware single-step will stop at the first instruction of the handler,
1811 while software single-step will simply skip execution of the handler.
1812
1813 For now, this difference in behavior is accepted since there is no
1814 easy way to actually implement single-stepping into a signal handler
1815 without kernel support.
1816
1817 However, there is one scenario where this difference leads to follow-on
1818 problems: if we're stepping off a breakpoint by removing all breakpoints
1819 and then single-stepping. In this case, the software single-step
1820 behavior means that even if there is a *breakpoint* in the signal
1821 handler, GDB still would not stop.
1822
1823 Fortunately, we can at least fix this particular issue. We detect
1824 here the case where we are about to deliver a signal while software
1825 single-stepping with breakpoints removed. In this situation, we
1826 revert the decisions to remove all breakpoints and insert single-
1827 step breakpoints, and instead we install a step-resume breakpoint
1828 at the current address, deliver the signal without stepping, and
1829 once we arrive back at the step-resume breakpoint, actually step
1830 over the breakpoint we originally wanted to step over. */
1831 if (singlestep_breakpoints_inserted_p
1832 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1833 {
1834 /* If we have nested signals or a pending signal is delivered
1835 immediately after a handler returns, might might already have
1836 a step-resume breakpoint set on the earlier handler. We cannot
1837 set another step-resume breakpoint; just continue on until the
1838 original breakpoint is hit. */
1839 if (tp->control.step_resume_breakpoint == NULL)
1840 {
1841 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1842 tp->step_after_step_resume_breakpoint = 1;
1843 }
1844
1845 remove_single_step_breakpoints ();
1846 singlestep_breakpoints_inserted_p = 0;
1847
1848 insert_breakpoints ();
1849 tp->control.trap_expected = 0;
1850 }
1851
1852 if (should_resume)
1853 {
1854 ptid_t resume_ptid;
1855
1856 /* If STEP is set, it's a request to use hardware stepping
1857 facilities. But in that case, we should never
1858 use singlestep breakpoint. */
1859 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1860
1861 /* Decide the set of threads to ask the target to resume. Start
1862 by assuming everything will be resumed, than narrow the set
1863 by applying increasingly restricting conditions. */
1864 resume_ptid = user_visible_resume_ptid (step);
1865
1866 /* Maybe resume a single thread after all. */
1867 if (singlestep_breakpoints_inserted_p
1868 && stepping_past_singlestep_breakpoint)
1869 {
1870 /* The situation here is as follows. In thread T1 we wanted to
1871 single-step. Lacking hardware single-stepping we've
1872 set breakpoint at the PC of the next instruction -- call it
1873 P. After resuming, we've hit that breakpoint in thread T2.
1874 Now we've removed original breakpoint, inserted breakpoint
1875 at P+1, and try to step to advance T2 past breakpoint.
1876 We need to step only T2, as if T1 is allowed to freely run,
1877 it can run past P, and if other threads are allowed to run,
1878 they can hit breakpoint at P+1, and nested hits of single-step
1879 breakpoints is not something we'd want -- that's complicated
1880 to support, and has no value. */
1881 resume_ptid = inferior_ptid;
1882 }
1883 else if ((step || singlestep_breakpoints_inserted_p)
1884 && tp->control.trap_expected)
1885 {
1886 /* We're allowing a thread to run past a breakpoint it has
1887 hit, by single-stepping the thread with the breakpoint
1888 removed. In which case, we need to single-step only this
1889 thread, and keep others stopped, as they can miss this
1890 breakpoint if allowed to run.
1891
1892 The current code actually removes all breakpoints when
1893 doing this, not just the one being stepped over, so if we
1894 let other threads run, we can actually miss any
1895 breakpoint, not just the one at PC. */
1896 resume_ptid = inferior_ptid;
1897 }
1898
1899 if (gdbarch_cannot_step_breakpoint (gdbarch))
1900 {
1901 /* Most targets can step a breakpoint instruction, thus
1902 executing it normally. But if this one cannot, just
1903 continue and we will hit it anyway. */
1904 if (step && breakpoint_inserted_here_p (aspace, pc))
1905 step = 0;
1906 }
1907
1908 if (debug_displaced
1909 && use_displaced_stepping (gdbarch)
1910 && tp->control.trap_expected)
1911 {
1912 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1913 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1914 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1915 gdb_byte buf[4];
1916
1917 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1918 paddress (resume_gdbarch, actual_pc));
1919 read_memory (actual_pc, buf, sizeof (buf));
1920 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1921 }
1922
1923 /* Install inferior's terminal modes. */
1924 target_terminal_inferior ();
1925
1926 /* Avoid confusing the next resume, if the next stop/resume
1927 happens to apply to another thread. */
1928 tp->suspend.stop_signal = GDB_SIGNAL_0;
1929
1930 /* Advise target which signals may be handled silently. If we have
1931 removed breakpoints because we are stepping over one (which can
1932 happen only if we are not using displaced stepping), we need to
1933 receive all signals to avoid accidentally skipping a breakpoint
1934 during execution of a signal handler. */
1935 if ((step || singlestep_breakpoints_inserted_p)
1936 && tp->control.trap_expected
1937 && !use_displaced_stepping (gdbarch))
1938 target_pass_signals (0, NULL);
1939 else
1940 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1941
1942 target_resume (resume_ptid, step, sig);
1943 }
1944
1945 discard_cleanups (old_cleanups);
1946 }
1947 \f
1948 /* Proceeding. */
1949
1950 /* Clear out all variables saying what to do when inferior is continued.
1951 First do this, then set the ones you want, then call `proceed'. */
1952
1953 static void
1954 clear_proceed_status_thread (struct thread_info *tp)
1955 {
1956 if (debug_infrun)
1957 fprintf_unfiltered (gdb_stdlog,
1958 "infrun: clear_proceed_status_thread (%s)\n",
1959 target_pid_to_str (tp->ptid));
1960
1961 tp->control.trap_expected = 0;
1962 tp->control.step_range_start = 0;
1963 tp->control.step_range_end = 0;
1964 tp->control.step_frame_id = null_frame_id;
1965 tp->control.step_stack_frame_id = null_frame_id;
1966 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1967 tp->stop_requested = 0;
1968
1969 tp->control.stop_step = 0;
1970
1971 tp->control.proceed_to_finish = 0;
1972
1973 /* Discard any remaining commands or status from previous stop. */
1974 bpstat_clear (&tp->control.stop_bpstat);
1975 }
1976
1977 static int
1978 clear_proceed_status_callback (struct thread_info *tp, void *data)
1979 {
1980 if (is_exited (tp->ptid))
1981 return 0;
1982
1983 clear_proceed_status_thread (tp);
1984 return 0;
1985 }
1986
1987 void
1988 clear_proceed_status (void)
1989 {
1990 if (!non_stop)
1991 {
1992 /* In all-stop mode, delete the per-thread status of all
1993 threads, even if inferior_ptid is null_ptid, there may be
1994 threads on the list. E.g., we may be launching a new
1995 process, while selecting the executable. */
1996 iterate_over_threads (clear_proceed_status_callback, NULL);
1997 }
1998
1999 if (!ptid_equal (inferior_ptid, null_ptid))
2000 {
2001 struct inferior *inferior;
2002
2003 if (non_stop)
2004 {
2005 /* If in non-stop mode, only delete the per-thread status of
2006 the current thread. */
2007 clear_proceed_status_thread (inferior_thread ());
2008 }
2009
2010 inferior = current_inferior ();
2011 inferior->control.stop_soon = NO_STOP_QUIETLY;
2012 }
2013
2014 stop_after_trap = 0;
2015
2016 observer_notify_about_to_proceed ();
2017
2018 if (stop_registers)
2019 {
2020 regcache_xfree (stop_registers);
2021 stop_registers = NULL;
2022 }
2023 }
2024
2025 /* Check the current thread against the thread that reported the most recent
2026 event. If a step-over is required return TRUE and set the current thread
2027 to the old thread. Otherwise return FALSE.
2028
2029 This should be suitable for any targets that support threads. */
2030
2031 static int
2032 prepare_to_proceed (int step)
2033 {
2034 ptid_t wait_ptid;
2035 struct target_waitstatus wait_status;
2036 int schedlock_enabled;
2037
2038 /* With non-stop mode on, threads are always handled individually. */
2039 gdb_assert (! non_stop);
2040
2041 /* Get the last target status returned by target_wait(). */
2042 get_last_target_status (&wait_ptid, &wait_status);
2043
2044 /* Make sure we were stopped at a breakpoint. */
2045 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2046 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2047 && wait_status.value.sig != GDB_SIGNAL_ILL
2048 && wait_status.value.sig != GDB_SIGNAL_SEGV
2049 && wait_status.value.sig != GDB_SIGNAL_EMT))
2050 {
2051 return 0;
2052 }
2053
2054 schedlock_enabled = (scheduler_mode == schedlock_on
2055 || (scheduler_mode == schedlock_step
2056 && step));
2057
2058 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2059 if (schedlock_enabled)
2060 return 0;
2061
2062 /* Don't switch over if we're about to resume some other process
2063 other than WAIT_PTID's, and schedule-multiple is off. */
2064 if (!sched_multi
2065 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2066 return 0;
2067
2068 /* Switched over from WAIT_PID. */
2069 if (!ptid_equal (wait_ptid, minus_one_ptid)
2070 && !ptid_equal (inferior_ptid, wait_ptid))
2071 {
2072 struct regcache *regcache = get_thread_regcache (wait_ptid);
2073
2074 if (breakpoint_here_p (get_regcache_aspace (regcache),
2075 regcache_read_pc (regcache)))
2076 {
2077 /* If stepping, remember current thread to switch back to. */
2078 if (step)
2079 deferred_step_ptid = inferior_ptid;
2080
2081 /* Switch back to WAIT_PID thread. */
2082 switch_to_thread (wait_ptid);
2083
2084 if (debug_infrun)
2085 fprintf_unfiltered (gdb_stdlog,
2086 "infrun: prepare_to_proceed (step=%d), "
2087 "switched to [%s]\n",
2088 step, target_pid_to_str (inferior_ptid));
2089
2090 /* We return 1 to indicate that there is a breakpoint here,
2091 so we need to step over it before continuing to avoid
2092 hitting it straight away. */
2093 return 1;
2094 }
2095 }
2096
2097 return 0;
2098 }
2099
2100 /* Basic routine for continuing the program in various fashions.
2101
2102 ADDR is the address to resume at, or -1 for resume where stopped.
2103 SIGGNAL is the signal to give it, or 0 for none,
2104 or -1 for act according to how it stopped.
2105 STEP is nonzero if should trap after one instruction.
2106 -1 means return after that and print nothing.
2107 You should probably set various step_... variables
2108 before calling here, if you are stepping.
2109
2110 You should call clear_proceed_status before calling proceed. */
2111
2112 void
2113 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2114 {
2115 struct regcache *regcache;
2116 struct gdbarch *gdbarch;
2117 struct thread_info *tp;
2118 CORE_ADDR pc;
2119 struct address_space *aspace;
2120 int oneproc = 0;
2121
2122 /* If we're stopped at a fork/vfork, follow the branch set by the
2123 "set follow-fork-mode" command; otherwise, we'll just proceed
2124 resuming the current thread. */
2125 if (!follow_fork ())
2126 {
2127 /* The target for some reason decided not to resume. */
2128 normal_stop ();
2129 if (target_can_async_p ())
2130 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2131 return;
2132 }
2133
2134 /* We'll update this if & when we switch to a new thread. */
2135 previous_inferior_ptid = inferior_ptid;
2136
2137 regcache = get_current_regcache ();
2138 gdbarch = get_regcache_arch (regcache);
2139 aspace = get_regcache_aspace (regcache);
2140 pc = regcache_read_pc (regcache);
2141
2142 if (step > 0)
2143 step_start_function = find_pc_function (pc);
2144 if (step < 0)
2145 stop_after_trap = 1;
2146
2147 if (addr == (CORE_ADDR) -1)
2148 {
2149 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2150 && execution_direction != EXEC_REVERSE)
2151 /* There is a breakpoint at the address we will resume at,
2152 step one instruction before inserting breakpoints so that
2153 we do not stop right away (and report a second hit at this
2154 breakpoint).
2155
2156 Note, we don't do this in reverse, because we won't
2157 actually be executing the breakpoint insn anyway.
2158 We'll be (un-)executing the previous instruction. */
2159
2160 oneproc = 1;
2161 else if (gdbarch_single_step_through_delay_p (gdbarch)
2162 && gdbarch_single_step_through_delay (gdbarch,
2163 get_current_frame ()))
2164 /* We stepped onto an instruction that needs to be stepped
2165 again before re-inserting the breakpoint, do so. */
2166 oneproc = 1;
2167 }
2168 else
2169 {
2170 regcache_write_pc (regcache, addr);
2171 }
2172
2173 if (debug_infrun)
2174 fprintf_unfiltered (gdb_stdlog,
2175 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2176 paddress (gdbarch, addr), siggnal, step);
2177
2178 if (non_stop)
2179 /* In non-stop, each thread is handled individually. The context
2180 must already be set to the right thread here. */
2181 ;
2182 else
2183 {
2184 /* In a multi-threaded task we may select another thread and
2185 then continue or step.
2186
2187 But if the old thread was stopped at a breakpoint, it will
2188 immediately cause another breakpoint stop without any
2189 execution (i.e. it will report a breakpoint hit incorrectly).
2190 So we must step over it first.
2191
2192 prepare_to_proceed checks the current thread against the
2193 thread that reported the most recent event. If a step-over
2194 is required it returns TRUE and sets the current thread to
2195 the old thread. */
2196 if (prepare_to_proceed (step))
2197 oneproc = 1;
2198 }
2199
2200 /* prepare_to_proceed may change the current thread. */
2201 tp = inferior_thread ();
2202
2203 if (oneproc)
2204 {
2205 tp->control.trap_expected = 1;
2206 /* If displaced stepping is enabled, we can step over the
2207 breakpoint without hitting it, so leave all breakpoints
2208 inserted. Otherwise we need to disable all breakpoints, step
2209 one instruction, and then re-add them when that step is
2210 finished. */
2211 if (!use_displaced_stepping (gdbarch))
2212 remove_breakpoints ();
2213 }
2214
2215 /* We can insert breakpoints if we're not trying to step over one,
2216 or if we are stepping over one but we're using displaced stepping
2217 to do so. */
2218 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2219 insert_breakpoints ();
2220
2221 if (!non_stop)
2222 {
2223 /* Pass the last stop signal to the thread we're resuming,
2224 irrespective of whether the current thread is the thread that
2225 got the last event or not. This was historically GDB's
2226 behaviour before keeping a stop_signal per thread. */
2227
2228 struct thread_info *last_thread;
2229 ptid_t last_ptid;
2230 struct target_waitstatus last_status;
2231
2232 get_last_target_status (&last_ptid, &last_status);
2233 if (!ptid_equal (inferior_ptid, last_ptid)
2234 && !ptid_equal (last_ptid, null_ptid)
2235 && !ptid_equal (last_ptid, minus_one_ptid))
2236 {
2237 last_thread = find_thread_ptid (last_ptid);
2238 if (last_thread)
2239 {
2240 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2241 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2242 }
2243 }
2244 }
2245
2246 if (siggnal != GDB_SIGNAL_DEFAULT)
2247 tp->suspend.stop_signal = siggnal;
2248 /* If this signal should not be seen by program,
2249 give it zero. Used for debugging signals. */
2250 else if (!signal_program[tp->suspend.stop_signal])
2251 tp->suspend.stop_signal = GDB_SIGNAL_0;
2252
2253 annotate_starting ();
2254
2255 /* Make sure that output from GDB appears before output from the
2256 inferior. */
2257 gdb_flush (gdb_stdout);
2258
2259 /* Refresh prev_pc value just prior to resuming. This used to be
2260 done in stop_stepping, however, setting prev_pc there did not handle
2261 scenarios such as inferior function calls or returning from
2262 a function via the return command. In those cases, the prev_pc
2263 value was not set properly for subsequent commands. The prev_pc value
2264 is used to initialize the starting line number in the ecs. With an
2265 invalid value, the gdb next command ends up stopping at the position
2266 represented by the next line table entry past our start position.
2267 On platforms that generate one line table entry per line, this
2268 is not a problem. However, on the ia64, the compiler generates
2269 extraneous line table entries that do not increase the line number.
2270 When we issue the gdb next command on the ia64 after an inferior call
2271 or a return command, we often end up a few instructions forward, still
2272 within the original line we started.
2273
2274 An attempt was made to refresh the prev_pc at the same time the
2275 execution_control_state is initialized (for instance, just before
2276 waiting for an inferior event). But this approach did not work
2277 because of platforms that use ptrace, where the pc register cannot
2278 be read unless the inferior is stopped. At that point, we are not
2279 guaranteed the inferior is stopped and so the regcache_read_pc() call
2280 can fail. Setting the prev_pc value here ensures the value is updated
2281 correctly when the inferior is stopped. */
2282 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2283
2284 /* Fill in with reasonable starting values. */
2285 init_thread_stepping_state (tp);
2286
2287 /* Reset to normal state. */
2288 init_infwait_state ();
2289
2290 /* Resume inferior. */
2291 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2292
2293 /* Wait for it to stop (if not standalone)
2294 and in any case decode why it stopped, and act accordingly. */
2295 /* Do this only if we are not using the event loop, or if the target
2296 does not support asynchronous execution. */
2297 if (!target_can_async_p ())
2298 {
2299 wait_for_inferior ();
2300 normal_stop ();
2301 }
2302 }
2303 \f
2304
2305 /* Start remote-debugging of a machine over a serial link. */
2306
2307 void
2308 start_remote (int from_tty)
2309 {
2310 struct inferior *inferior;
2311
2312 inferior = current_inferior ();
2313 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2314
2315 /* Always go on waiting for the target, regardless of the mode. */
2316 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2317 indicate to wait_for_inferior that a target should timeout if
2318 nothing is returned (instead of just blocking). Because of this,
2319 targets expecting an immediate response need to, internally, set
2320 things up so that the target_wait() is forced to eventually
2321 timeout. */
2322 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2323 differentiate to its caller what the state of the target is after
2324 the initial open has been performed. Here we're assuming that
2325 the target has stopped. It should be possible to eventually have
2326 target_open() return to the caller an indication that the target
2327 is currently running and GDB state should be set to the same as
2328 for an async run. */
2329 wait_for_inferior ();
2330
2331 /* Now that the inferior has stopped, do any bookkeeping like
2332 loading shared libraries. We want to do this before normal_stop,
2333 so that the displayed frame is up to date. */
2334 post_create_inferior (&current_target, from_tty);
2335
2336 normal_stop ();
2337 }
2338
2339 /* Initialize static vars when a new inferior begins. */
2340
2341 void
2342 init_wait_for_inferior (void)
2343 {
2344 /* These are meaningless until the first time through wait_for_inferior. */
2345
2346 breakpoint_init_inferior (inf_starting);
2347
2348 clear_proceed_status ();
2349
2350 stepping_past_singlestep_breakpoint = 0;
2351 deferred_step_ptid = null_ptid;
2352
2353 target_last_wait_ptid = minus_one_ptid;
2354
2355 previous_inferior_ptid = inferior_ptid;
2356 init_infwait_state ();
2357
2358 /* Discard any skipped inlined frames. */
2359 clear_inline_frame_state (minus_one_ptid);
2360 }
2361
2362 \f
2363 /* This enum encodes possible reasons for doing a target_wait, so that
2364 wfi can call target_wait in one place. (Ultimately the call will be
2365 moved out of the infinite loop entirely.) */
2366
2367 enum infwait_states
2368 {
2369 infwait_normal_state,
2370 infwait_thread_hop_state,
2371 infwait_step_watch_state,
2372 infwait_nonstep_watch_state
2373 };
2374
2375 /* The PTID we'll do a target_wait on.*/
2376 ptid_t waiton_ptid;
2377
2378 /* Current inferior wait state. */
2379 enum infwait_states infwait_state;
2380
2381 /* Data to be passed around while handling an event. This data is
2382 discarded between events. */
2383 struct execution_control_state
2384 {
2385 ptid_t ptid;
2386 /* The thread that got the event, if this was a thread event; NULL
2387 otherwise. */
2388 struct thread_info *event_thread;
2389
2390 struct target_waitstatus ws;
2391 int random_signal;
2392 int stop_func_filled_in;
2393 CORE_ADDR stop_func_start;
2394 CORE_ADDR stop_func_end;
2395 const char *stop_func_name;
2396 int wait_some_more;
2397 };
2398
2399 static void handle_inferior_event (struct execution_control_state *ecs);
2400
2401 static void handle_step_into_function (struct gdbarch *gdbarch,
2402 struct execution_control_state *ecs);
2403 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2404 struct execution_control_state *ecs);
2405 static void check_exception_resume (struct execution_control_state *,
2406 struct frame_info *);
2407
2408 static void stop_stepping (struct execution_control_state *ecs);
2409 static void prepare_to_wait (struct execution_control_state *ecs);
2410 static void keep_going (struct execution_control_state *ecs);
2411
2412 /* Callback for iterate over threads. If the thread is stopped, but
2413 the user/frontend doesn't know about that yet, go through
2414 normal_stop, as if the thread had just stopped now. ARG points at
2415 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2416 ptid_is_pid(PTID) is true, applies to all threads of the process
2417 pointed at by PTID. Otherwise, apply only to the thread pointed by
2418 PTID. */
2419
2420 static int
2421 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2422 {
2423 ptid_t ptid = * (ptid_t *) arg;
2424
2425 if ((ptid_equal (info->ptid, ptid)
2426 || ptid_equal (minus_one_ptid, ptid)
2427 || (ptid_is_pid (ptid)
2428 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2429 && is_running (info->ptid)
2430 && !is_executing (info->ptid))
2431 {
2432 struct cleanup *old_chain;
2433 struct execution_control_state ecss;
2434 struct execution_control_state *ecs = &ecss;
2435
2436 memset (ecs, 0, sizeof (*ecs));
2437
2438 old_chain = make_cleanup_restore_current_thread ();
2439
2440 switch_to_thread (info->ptid);
2441
2442 /* Go through handle_inferior_event/normal_stop, so we always
2443 have consistent output as if the stop event had been
2444 reported. */
2445 ecs->ptid = info->ptid;
2446 ecs->event_thread = find_thread_ptid (info->ptid);
2447 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2448 ecs->ws.value.sig = GDB_SIGNAL_0;
2449
2450 handle_inferior_event (ecs);
2451
2452 if (!ecs->wait_some_more)
2453 {
2454 struct thread_info *tp;
2455
2456 normal_stop ();
2457
2458 /* Finish off the continuations. */
2459 tp = inferior_thread ();
2460 do_all_intermediate_continuations_thread (tp, 1);
2461 do_all_continuations_thread (tp, 1);
2462 }
2463
2464 do_cleanups (old_chain);
2465 }
2466
2467 return 0;
2468 }
2469
2470 /* This function is attached as a "thread_stop_requested" observer.
2471 Cleanup local state that assumed the PTID was to be resumed, and
2472 report the stop to the frontend. */
2473
2474 static void
2475 infrun_thread_stop_requested (ptid_t ptid)
2476 {
2477 struct displaced_step_inferior_state *displaced;
2478
2479 /* PTID was requested to stop. Remove it from the displaced
2480 stepping queue, so we don't try to resume it automatically. */
2481
2482 for (displaced = displaced_step_inferior_states;
2483 displaced;
2484 displaced = displaced->next)
2485 {
2486 struct displaced_step_request *it, **prev_next_p;
2487
2488 it = displaced->step_request_queue;
2489 prev_next_p = &displaced->step_request_queue;
2490 while (it)
2491 {
2492 if (ptid_match (it->ptid, ptid))
2493 {
2494 *prev_next_p = it->next;
2495 it->next = NULL;
2496 xfree (it);
2497 }
2498 else
2499 {
2500 prev_next_p = &it->next;
2501 }
2502
2503 it = *prev_next_p;
2504 }
2505 }
2506
2507 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2508 }
2509
2510 static void
2511 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2512 {
2513 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2514 nullify_last_target_wait_ptid ();
2515 }
2516
2517 /* Callback for iterate_over_threads. */
2518
2519 static int
2520 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2521 {
2522 if (is_exited (info->ptid))
2523 return 0;
2524
2525 delete_step_resume_breakpoint (info);
2526 delete_exception_resume_breakpoint (info);
2527 return 0;
2528 }
2529
2530 /* In all-stop, delete the step resume breakpoint of any thread that
2531 had one. In non-stop, delete the step resume breakpoint of the
2532 thread that just stopped. */
2533
2534 static void
2535 delete_step_thread_step_resume_breakpoint (void)
2536 {
2537 if (!target_has_execution
2538 || ptid_equal (inferior_ptid, null_ptid))
2539 /* If the inferior has exited, we have already deleted the step
2540 resume breakpoints out of GDB's lists. */
2541 return;
2542
2543 if (non_stop)
2544 {
2545 /* If in non-stop mode, only delete the step-resume or
2546 longjmp-resume breakpoint of the thread that just stopped
2547 stepping. */
2548 struct thread_info *tp = inferior_thread ();
2549
2550 delete_step_resume_breakpoint (tp);
2551 delete_exception_resume_breakpoint (tp);
2552 }
2553 else
2554 /* In all-stop mode, delete all step-resume and longjmp-resume
2555 breakpoints of any thread that had them. */
2556 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2557 }
2558
2559 /* A cleanup wrapper. */
2560
2561 static void
2562 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2563 {
2564 delete_step_thread_step_resume_breakpoint ();
2565 }
2566
2567 /* Pretty print the results of target_wait, for debugging purposes. */
2568
2569 static void
2570 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2571 const struct target_waitstatus *ws)
2572 {
2573 char *status_string = target_waitstatus_to_string (ws);
2574 struct ui_file *tmp_stream = mem_fileopen ();
2575 char *text;
2576
2577 /* The text is split over several lines because it was getting too long.
2578 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2579 output as a unit; we want only one timestamp printed if debug_timestamp
2580 is set. */
2581
2582 fprintf_unfiltered (tmp_stream,
2583 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2584 if (PIDGET (waiton_ptid) != -1)
2585 fprintf_unfiltered (tmp_stream,
2586 " [%s]", target_pid_to_str (waiton_ptid));
2587 fprintf_unfiltered (tmp_stream, ", status) =\n");
2588 fprintf_unfiltered (tmp_stream,
2589 "infrun: %d [%s],\n",
2590 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2591 fprintf_unfiltered (tmp_stream,
2592 "infrun: %s\n",
2593 status_string);
2594
2595 text = ui_file_xstrdup (tmp_stream, NULL);
2596
2597 /* This uses %s in part to handle %'s in the text, but also to avoid
2598 a gcc error: the format attribute requires a string literal. */
2599 fprintf_unfiltered (gdb_stdlog, "%s", text);
2600
2601 xfree (status_string);
2602 xfree (text);
2603 ui_file_delete (tmp_stream);
2604 }
2605
2606 /* Prepare and stabilize the inferior for detaching it. E.g.,
2607 detaching while a thread is displaced stepping is a recipe for
2608 crashing it, as nothing would readjust the PC out of the scratch
2609 pad. */
2610
2611 void
2612 prepare_for_detach (void)
2613 {
2614 struct inferior *inf = current_inferior ();
2615 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2616 struct cleanup *old_chain_1;
2617 struct displaced_step_inferior_state *displaced;
2618
2619 displaced = get_displaced_stepping_state (inf->pid);
2620
2621 /* Is any thread of this process displaced stepping? If not,
2622 there's nothing else to do. */
2623 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2624 return;
2625
2626 if (debug_infrun)
2627 fprintf_unfiltered (gdb_stdlog,
2628 "displaced-stepping in-process while detaching");
2629
2630 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2631 inf->detaching = 1;
2632
2633 while (!ptid_equal (displaced->step_ptid, null_ptid))
2634 {
2635 struct cleanup *old_chain_2;
2636 struct execution_control_state ecss;
2637 struct execution_control_state *ecs;
2638
2639 ecs = &ecss;
2640 memset (ecs, 0, sizeof (*ecs));
2641
2642 overlay_cache_invalid = 1;
2643
2644 if (deprecated_target_wait_hook)
2645 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2646 else
2647 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2648
2649 if (debug_infrun)
2650 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2651
2652 /* If an error happens while handling the event, propagate GDB's
2653 knowledge of the executing state to the frontend/user running
2654 state. */
2655 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2656 &minus_one_ptid);
2657
2658 /* In non-stop mode, each thread is handled individually.
2659 Switch early, so the global state is set correctly for this
2660 thread. */
2661 if (non_stop
2662 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2663 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2664 context_switch (ecs->ptid);
2665
2666 /* Now figure out what to do with the result of the result. */
2667 handle_inferior_event (ecs);
2668
2669 /* No error, don't finish the state yet. */
2670 discard_cleanups (old_chain_2);
2671
2672 /* Breakpoints and watchpoints are not installed on the target
2673 at this point, and signals are passed directly to the
2674 inferior, so this must mean the process is gone. */
2675 if (!ecs->wait_some_more)
2676 {
2677 discard_cleanups (old_chain_1);
2678 error (_("Program exited while detaching"));
2679 }
2680 }
2681
2682 discard_cleanups (old_chain_1);
2683 }
2684
2685 /* Wait for control to return from inferior to debugger.
2686
2687 If inferior gets a signal, we may decide to start it up again
2688 instead of returning. That is why there is a loop in this function.
2689 When this function actually returns it means the inferior
2690 should be left stopped and GDB should read more commands. */
2691
2692 void
2693 wait_for_inferior (void)
2694 {
2695 struct cleanup *old_cleanups;
2696
2697 if (debug_infrun)
2698 fprintf_unfiltered
2699 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2700
2701 old_cleanups =
2702 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2703
2704 while (1)
2705 {
2706 struct execution_control_state ecss;
2707 struct execution_control_state *ecs = &ecss;
2708 struct cleanup *old_chain;
2709
2710 memset (ecs, 0, sizeof (*ecs));
2711
2712 overlay_cache_invalid = 1;
2713
2714 if (deprecated_target_wait_hook)
2715 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2716 else
2717 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2718
2719 if (debug_infrun)
2720 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2721
2722 /* If an error happens while handling the event, propagate GDB's
2723 knowledge of the executing state to the frontend/user running
2724 state. */
2725 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2726
2727 /* Now figure out what to do with the result of the result. */
2728 handle_inferior_event (ecs);
2729
2730 /* No error, don't finish the state yet. */
2731 discard_cleanups (old_chain);
2732
2733 if (!ecs->wait_some_more)
2734 break;
2735 }
2736
2737 do_cleanups (old_cleanups);
2738 }
2739
2740 /* Asynchronous version of wait_for_inferior. It is called by the
2741 event loop whenever a change of state is detected on the file
2742 descriptor corresponding to the target. It can be called more than
2743 once to complete a single execution command. In such cases we need
2744 to keep the state in a global variable ECSS. If it is the last time
2745 that this function is called for a single execution command, then
2746 report to the user that the inferior has stopped, and do the
2747 necessary cleanups. */
2748
2749 void
2750 fetch_inferior_event (void *client_data)
2751 {
2752 struct execution_control_state ecss;
2753 struct execution_control_state *ecs = &ecss;
2754 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2755 struct cleanup *ts_old_chain;
2756 int was_sync = sync_execution;
2757 int cmd_done = 0;
2758
2759 memset (ecs, 0, sizeof (*ecs));
2760
2761 /* We're handling a live event, so make sure we're doing live
2762 debugging. If we're looking at traceframes while the target is
2763 running, we're going to need to get back to that mode after
2764 handling the event. */
2765 if (non_stop)
2766 {
2767 make_cleanup_restore_current_traceframe ();
2768 set_current_traceframe (-1);
2769 }
2770
2771 if (non_stop)
2772 /* In non-stop mode, the user/frontend should not notice a thread
2773 switch due to internal events. Make sure we reverse to the
2774 user selected thread and frame after handling the event and
2775 running any breakpoint commands. */
2776 make_cleanup_restore_current_thread ();
2777
2778 overlay_cache_invalid = 1;
2779
2780 make_cleanup_restore_integer (&execution_direction);
2781 execution_direction = target_execution_direction ();
2782
2783 if (deprecated_target_wait_hook)
2784 ecs->ptid =
2785 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2786 else
2787 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2788
2789 if (debug_infrun)
2790 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2791
2792 if (non_stop
2793 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2794 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2795 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2796 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2797 /* In non-stop mode, each thread is handled individually. Switch
2798 early, so the global state is set correctly for this
2799 thread. */
2800 context_switch (ecs->ptid);
2801
2802 /* If an error happens while handling the event, propagate GDB's
2803 knowledge of the executing state to the frontend/user running
2804 state. */
2805 if (!non_stop)
2806 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2807 else
2808 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2809
2810 /* Get executed before make_cleanup_restore_current_thread above to apply
2811 still for the thread which has thrown the exception. */
2812 make_bpstat_clear_actions_cleanup ();
2813
2814 /* Now figure out what to do with the result of the result. */
2815 handle_inferior_event (ecs);
2816
2817 if (!ecs->wait_some_more)
2818 {
2819 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2820
2821 delete_step_thread_step_resume_breakpoint ();
2822
2823 /* We may not find an inferior if this was a process exit. */
2824 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2825 normal_stop ();
2826
2827 if (target_has_execution
2828 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2829 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2830 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2831 && ecs->event_thread->step_multi
2832 && ecs->event_thread->control.stop_step)
2833 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2834 else
2835 {
2836 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2837 cmd_done = 1;
2838 }
2839 }
2840
2841 /* No error, don't finish the thread states yet. */
2842 discard_cleanups (ts_old_chain);
2843
2844 /* Revert thread and frame. */
2845 do_cleanups (old_chain);
2846
2847 /* If the inferior was in sync execution mode, and now isn't,
2848 restore the prompt (a synchronous execution command has finished,
2849 and we're ready for input). */
2850 if (interpreter_async && was_sync && !sync_execution)
2851 display_gdb_prompt (0);
2852
2853 if (cmd_done
2854 && !was_sync
2855 && exec_done_display_p
2856 && (ptid_equal (inferior_ptid, null_ptid)
2857 || !is_running (inferior_ptid)))
2858 printf_unfiltered (_("completed.\n"));
2859 }
2860
2861 /* Record the frame and location we're currently stepping through. */
2862 void
2863 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2864 {
2865 struct thread_info *tp = inferior_thread ();
2866
2867 tp->control.step_frame_id = get_frame_id (frame);
2868 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2869
2870 tp->current_symtab = sal.symtab;
2871 tp->current_line = sal.line;
2872 }
2873
2874 /* Clear context switchable stepping state. */
2875
2876 void
2877 init_thread_stepping_state (struct thread_info *tss)
2878 {
2879 tss->stepping_over_breakpoint = 0;
2880 tss->step_after_step_resume_breakpoint = 0;
2881 }
2882
2883 /* Return the cached copy of the last pid/waitstatus returned by
2884 target_wait()/deprecated_target_wait_hook(). The data is actually
2885 cached by handle_inferior_event(), which gets called immediately
2886 after target_wait()/deprecated_target_wait_hook(). */
2887
2888 void
2889 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2890 {
2891 *ptidp = target_last_wait_ptid;
2892 *status = target_last_waitstatus;
2893 }
2894
2895 void
2896 nullify_last_target_wait_ptid (void)
2897 {
2898 target_last_wait_ptid = minus_one_ptid;
2899 }
2900
2901 /* Switch thread contexts. */
2902
2903 static void
2904 context_switch (ptid_t ptid)
2905 {
2906 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2907 {
2908 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2909 target_pid_to_str (inferior_ptid));
2910 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2911 target_pid_to_str (ptid));
2912 }
2913
2914 switch_to_thread (ptid);
2915 }
2916
2917 static void
2918 adjust_pc_after_break (struct execution_control_state *ecs)
2919 {
2920 struct regcache *regcache;
2921 struct gdbarch *gdbarch;
2922 struct address_space *aspace;
2923 CORE_ADDR breakpoint_pc;
2924
2925 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2926 we aren't, just return.
2927
2928 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2929 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2930 implemented by software breakpoints should be handled through the normal
2931 breakpoint layer.
2932
2933 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2934 different signals (SIGILL or SIGEMT for instance), but it is less
2935 clear where the PC is pointing afterwards. It may not match
2936 gdbarch_decr_pc_after_break. I don't know any specific target that
2937 generates these signals at breakpoints (the code has been in GDB since at
2938 least 1992) so I can not guess how to handle them here.
2939
2940 In earlier versions of GDB, a target with
2941 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2942 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2943 target with both of these set in GDB history, and it seems unlikely to be
2944 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2945
2946 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2947 return;
2948
2949 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2950 return;
2951
2952 /* In reverse execution, when a breakpoint is hit, the instruction
2953 under it has already been de-executed. The reported PC always
2954 points at the breakpoint address, so adjusting it further would
2955 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2956 architecture:
2957
2958 B1 0x08000000 : INSN1
2959 B2 0x08000001 : INSN2
2960 0x08000002 : INSN3
2961 PC -> 0x08000003 : INSN4
2962
2963 Say you're stopped at 0x08000003 as above. Reverse continuing
2964 from that point should hit B2 as below. Reading the PC when the
2965 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2966 been de-executed already.
2967
2968 B1 0x08000000 : INSN1
2969 B2 PC -> 0x08000001 : INSN2
2970 0x08000002 : INSN3
2971 0x08000003 : INSN4
2972
2973 We can't apply the same logic as for forward execution, because
2974 we would wrongly adjust the PC to 0x08000000, since there's a
2975 breakpoint at PC - 1. We'd then report a hit on B1, although
2976 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2977 behaviour. */
2978 if (execution_direction == EXEC_REVERSE)
2979 return;
2980
2981 /* If this target does not decrement the PC after breakpoints, then
2982 we have nothing to do. */
2983 regcache = get_thread_regcache (ecs->ptid);
2984 gdbarch = get_regcache_arch (regcache);
2985 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2986 return;
2987
2988 aspace = get_regcache_aspace (regcache);
2989
2990 /* Find the location where (if we've hit a breakpoint) the
2991 breakpoint would be. */
2992 breakpoint_pc = regcache_read_pc (regcache)
2993 - gdbarch_decr_pc_after_break (gdbarch);
2994
2995 /* Check whether there actually is a software breakpoint inserted at
2996 that location.
2997
2998 If in non-stop mode, a race condition is possible where we've
2999 removed a breakpoint, but stop events for that breakpoint were
3000 already queued and arrive later. To suppress those spurious
3001 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3002 and retire them after a number of stop events are reported. */
3003 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3004 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3005 {
3006 struct cleanup *old_cleanups = NULL;
3007
3008 if (RECORD_IS_USED)
3009 old_cleanups = record_gdb_operation_disable_set ();
3010
3011 /* When using hardware single-step, a SIGTRAP is reported for both
3012 a completed single-step and a software breakpoint. Need to
3013 differentiate between the two, as the latter needs adjusting
3014 but the former does not.
3015
3016 The SIGTRAP can be due to a completed hardware single-step only if
3017 - we didn't insert software single-step breakpoints
3018 - the thread to be examined is still the current thread
3019 - this thread is currently being stepped
3020
3021 If any of these events did not occur, we must have stopped due
3022 to hitting a software breakpoint, and have to back up to the
3023 breakpoint address.
3024
3025 As a special case, we could have hardware single-stepped a
3026 software breakpoint. In this case (prev_pc == breakpoint_pc),
3027 we also need to back up to the breakpoint address. */
3028
3029 if (singlestep_breakpoints_inserted_p
3030 || !ptid_equal (ecs->ptid, inferior_ptid)
3031 || !currently_stepping (ecs->event_thread)
3032 || ecs->event_thread->prev_pc == breakpoint_pc)
3033 regcache_write_pc (regcache, breakpoint_pc);
3034
3035 if (RECORD_IS_USED)
3036 do_cleanups (old_cleanups);
3037 }
3038 }
3039
3040 void
3041 init_infwait_state (void)
3042 {
3043 waiton_ptid = pid_to_ptid (-1);
3044 infwait_state = infwait_normal_state;
3045 }
3046
3047 void
3048 error_is_running (void)
3049 {
3050 error (_("Cannot execute this command while "
3051 "the selected thread is running."));
3052 }
3053
3054 void
3055 ensure_not_running (void)
3056 {
3057 if (is_running (inferior_ptid))
3058 error_is_running ();
3059 }
3060
3061 static int
3062 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3063 {
3064 for (frame = get_prev_frame (frame);
3065 frame != NULL;
3066 frame = get_prev_frame (frame))
3067 {
3068 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3069 return 1;
3070 if (get_frame_type (frame) != INLINE_FRAME)
3071 break;
3072 }
3073
3074 return 0;
3075 }
3076
3077 /* Auxiliary function that handles syscall entry/return events.
3078 It returns 1 if the inferior should keep going (and GDB
3079 should ignore the event), or 0 if the event deserves to be
3080 processed. */
3081
3082 static int
3083 handle_syscall_event (struct execution_control_state *ecs)
3084 {
3085 struct regcache *regcache;
3086 struct gdbarch *gdbarch;
3087 int syscall_number;
3088
3089 if (!ptid_equal (ecs->ptid, inferior_ptid))
3090 context_switch (ecs->ptid);
3091
3092 regcache = get_thread_regcache (ecs->ptid);
3093 gdbarch = get_regcache_arch (regcache);
3094 syscall_number = ecs->ws.value.syscall_number;
3095 stop_pc = regcache_read_pc (regcache);
3096
3097 if (catch_syscall_enabled () > 0
3098 && catching_syscall_number (syscall_number) > 0)
3099 {
3100 if (debug_infrun)
3101 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3102 syscall_number);
3103
3104 ecs->event_thread->control.stop_bpstat
3105 = bpstat_stop_status (get_regcache_aspace (regcache),
3106 stop_pc, ecs->ptid, &ecs->ws);
3107 ecs->random_signal
3108 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3109
3110 if (!ecs->random_signal)
3111 {
3112 /* Catchpoint hit. */
3113 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3114 return 0;
3115 }
3116 }
3117
3118 /* If no catchpoint triggered for this, then keep going. */
3119 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3120 keep_going (ecs);
3121 return 1;
3122 }
3123
3124 /* Clear the supplied execution_control_state's stop_func_* fields. */
3125
3126 static void
3127 clear_stop_func (struct execution_control_state *ecs)
3128 {
3129 ecs->stop_func_filled_in = 0;
3130 ecs->stop_func_start = 0;
3131 ecs->stop_func_end = 0;
3132 ecs->stop_func_name = NULL;
3133 }
3134
3135 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3136
3137 static void
3138 fill_in_stop_func (struct gdbarch *gdbarch,
3139 struct execution_control_state *ecs)
3140 {
3141 if (!ecs->stop_func_filled_in)
3142 {
3143 /* Don't care about return value; stop_func_start and stop_func_name
3144 will both be 0 if it doesn't work. */
3145 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3146 &ecs->stop_func_start, &ecs->stop_func_end);
3147 ecs->stop_func_start
3148 += gdbarch_deprecated_function_start_offset (gdbarch);
3149
3150 ecs->stop_func_filled_in = 1;
3151 }
3152 }
3153
3154 /* Given an execution control state that has been freshly filled in
3155 by an event from the inferior, figure out what it means and take
3156 appropriate action. */
3157
3158 static void
3159 handle_inferior_event (struct execution_control_state *ecs)
3160 {
3161 struct frame_info *frame;
3162 struct gdbarch *gdbarch;
3163 int stopped_by_watchpoint;
3164 int stepped_after_stopped_by_watchpoint = 0;
3165 struct symtab_and_line stop_pc_sal;
3166 enum stop_kind stop_soon;
3167
3168 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3169 {
3170 /* We had an event in the inferior, but we are not interested in
3171 handling it at this level. The lower layers have already
3172 done what needs to be done, if anything.
3173
3174 One of the possible circumstances for this is when the
3175 inferior produces output for the console. The inferior has
3176 not stopped, and we are ignoring the event. Another possible
3177 circumstance is any event which the lower level knows will be
3178 reported multiple times without an intervening resume. */
3179 if (debug_infrun)
3180 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3181 prepare_to_wait (ecs);
3182 return;
3183 }
3184
3185 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3186 && target_can_async_p () && !sync_execution)
3187 {
3188 /* There were no unwaited-for children left in the target, but,
3189 we're not synchronously waiting for events either. Just
3190 ignore. Otherwise, if we were running a synchronous
3191 execution command, we need to cancel it and give the user
3192 back the terminal. */
3193 if (debug_infrun)
3194 fprintf_unfiltered (gdb_stdlog,
3195 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3196 prepare_to_wait (ecs);
3197 return;
3198 }
3199
3200 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3201 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3202 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3203 {
3204 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3205
3206 gdb_assert (inf);
3207 stop_soon = inf->control.stop_soon;
3208 }
3209 else
3210 stop_soon = NO_STOP_QUIETLY;
3211
3212 /* Cache the last pid/waitstatus. */
3213 target_last_wait_ptid = ecs->ptid;
3214 target_last_waitstatus = ecs->ws;
3215
3216 /* Always clear state belonging to the previous time we stopped. */
3217 stop_stack_dummy = STOP_NONE;
3218
3219 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3220 {
3221 /* No unwaited-for children left. IOW, all resumed children
3222 have exited. */
3223 if (debug_infrun)
3224 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3225
3226 stop_print_frame = 0;
3227 stop_stepping (ecs);
3228 return;
3229 }
3230
3231 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3232 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3233 && !ptid_equal (ecs->ptid, minus_one_ptid))
3234 {
3235 ecs->event_thread = find_thread_ptid (ecs->ptid);
3236 /* If it's a new thread, add it to the thread database. */
3237 if (ecs->event_thread == NULL)
3238 ecs->event_thread = add_thread (ecs->ptid);
3239 }
3240
3241 /* Dependent on valid ECS->EVENT_THREAD. */
3242 adjust_pc_after_break (ecs);
3243
3244 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3245 reinit_frame_cache ();
3246
3247 breakpoint_retire_moribund ();
3248
3249 /* First, distinguish signals caused by the debugger from signals
3250 that have to do with the program's own actions. Note that
3251 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3252 on the operating system version. Here we detect when a SIGILL or
3253 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3254 something similar for SIGSEGV, since a SIGSEGV will be generated
3255 when we're trying to execute a breakpoint instruction on a
3256 non-executable stack. This happens for call dummy breakpoints
3257 for architectures like SPARC that place call dummies on the
3258 stack. */
3259 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3260 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3261 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3262 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3263 {
3264 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3265
3266 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3267 regcache_read_pc (regcache)))
3268 {
3269 if (debug_infrun)
3270 fprintf_unfiltered (gdb_stdlog,
3271 "infrun: Treating signal as SIGTRAP\n");
3272 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3273 }
3274 }
3275
3276 /* Mark the non-executing threads accordingly. In all-stop, all
3277 threads of all processes are stopped when we get any event
3278 reported. In non-stop mode, only the event thread stops. If
3279 we're handling a process exit in non-stop mode, there's nothing
3280 to do, as threads of the dead process are gone, and threads of
3281 any other process were left running. */
3282 if (!non_stop)
3283 set_executing (minus_one_ptid, 0);
3284 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3285 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3286 set_executing (ecs->ptid, 0);
3287
3288 switch (infwait_state)
3289 {
3290 case infwait_thread_hop_state:
3291 if (debug_infrun)
3292 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3293 break;
3294
3295 case infwait_normal_state:
3296 if (debug_infrun)
3297 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3298 break;
3299
3300 case infwait_step_watch_state:
3301 if (debug_infrun)
3302 fprintf_unfiltered (gdb_stdlog,
3303 "infrun: infwait_step_watch_state\n");
3304
3305 stepped_after_stopped_by_watchpoint = 1;
3306 break;
3307
3308 case infwait_nonstep_watch_state:
3309 if (debug_infrun)
3310 fprintf_unfiltered (gdb_stdlog,
3311 "infrun: infwait_nonstep_watch_state\n");
3312 insert_breakpoints ();
3313
3314 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3315 handle things like signals arriving and other things happening
3316 in combination correctly? */
3317 stepped_after_stopped_by_watchpoint = 1;
3318 break;
3319
3320 default:
3321 internal_error (__FILE__, __LINE__, _("bad switch"));
3322 }
3323
3324 infwait_state = infwait_normal_state;
3325 waiton_ptid = pid_to_ptid (-1);
3326
3327 switch (ecs->ws.kind)
3328 {
3329 case TARGET_WAITKIND_LOADED:
3330 if (debug_infrun)
3331 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3332 /* Ignore gracefully during startup of the inferior, as it might
3333 be the shell which has just loaded some objects, otherwise
3334 add the symbols for the newly loaded objects. Also ignore at
3335 the beginning of an attach or remote session; we will query
3336 the full list of libraries once the connection is
3337 established. */
3338 if (stop_soon == NO_STOP_QUIETLY)
3339 {
3340 struct regcache *regcache;
3341
3342 if (!ptid_equal (ecs->ptid, inferior_ptid))
3343 context_switch (ecs->ptid);
3344 regcache = get_thread_regcache (ecs->ptid);
3345
3346 handle_solib_event ();
3347
3348 ecs->event_thread->control.stop_bpstat
3349 = bpstat_stop_status (get_regcache_aspace (regcache),
3350 stop_pc, ecs->ptid, &ecs->ws);
3351 ecs->random_signal
3352 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3353
3354 if (!ecs->random_signal)
3355 {
3356 /* A catchpoint triggered. */
3357 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3358 goto process_event_stop_test;
3359 }
3360
3361 /* If requested, stop when the dynamic linker notifies
3362 gdb of events. This allows the user to get control
3363 and place breakpoints in initializer routines for
3364 dynamically loaded objects (among other things). */
3365 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3366 if (stop_on_solib_events)
3367 {
3368 /* Make sure we print "Stopped due to solib-event" in
3369 normal_stop. */
3370 stop_print_frame = 1;
3371
3372 stop_stepping (ecs);
3373 return;
3374 }
3375 }
3376
3377 /* If we are skipping through a shell, or through shared library
3378 loading that we aren't interested in, resume the program. If
3379 we're running the program normally, also resume. But stop if
3380 we're attaching or setting up a remote connection. */
3381 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3382 {
3383 /* Loading of shared libraries might have changed breakpoint
3384 addresses. Make sure new breakpoints are inserted. */
3385 if (stop_soon == NO_STOP_QUIETLY
3386 && !breakpoints_always_inserted_mode ())
3387 insert_breakpoints ();
3388 resume (0, GDB_SIGNAL_0);
3389 prepare_to_wait (ecs);
3390 return;
3391 }
3392
3393 break;
3394
3395 case TARGET_WAITKIND_SPURIOUS:
3396 if (debug_infrun)
3397 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3398 resume (0, GDB_SIGNAL_0);
3399 prepare_to_wait (ecs);
3400 return;
3401
3402 case TARGET_WAITKIND_EXITED:
3403 if (debug_infrun)
3404 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3405 inferior_ptid = ecs->ptid;
3406 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3407 set_current_program_space (current_inferior ()->pspace);
3408 handle_vfork_child_exec_or_exit (0);
3409 target_terminal_ours (); /* Must do this before mourn anyway. */
3410 print_exited_reason (ecs->ws.value.integer);
3411
3412 /* Record the exit code in the convenience variable $_exitcode, so
3413 that the user can inspect this again later. */
3414 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3415 (LONGEST) ecs->ws.value.integer);
3416
3417 /* Also record this in the inferior itself. */
3418 current_inferior ()->has_exit_code = 1;
3419 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3420
3421 gdb_flush (gdb_stdout);
3422 target_mourn_inferior ();
3423 singlestep_breakpoints_inserted_p = 0;
3424 cancel_single_step_breakpoints ();
3425 stop_print_frame = 0;
3426 stop_stepping (ecs);
3427 return;
3428
3429 case TARGET_WAITKIND_SIGNALLED:
3430 if (debug_infrun)
3431 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3432 inferior_ptid = ecs->ptid;
3433 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3434 set_current_program_space (current_inferior ()->pspace);
3435 handle_vfork_child_exec_or_exit (0);
3436 stop_print_frame = 0;
3437 target_terminal_ours (); /* Must do this before mourn anyway. */
3438
3439 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3440 reach here unless the inferior is dead. However, for years
3441 target_kill() was called here, which hints that fatal signals aren't
3442 really fatal on some systems. If that's true, then some changes
3443 may be needed. */
3444 target_mourn_inferior ();
3445
3446 print_signal_exited_reason (ecs->ws.value.sig);
3447 singlestep_breakpoints_inserted_p = 0;
3448 cancel_single_step_breakpoints ();
3449 stop_stepping (ecs);
3450 return;
3451
3452 /* The following are the only cases in which we keep going;
3453 the above cases end in a continue or goto. */
3454 case TARGET_WAITKIND_FORKED:
3455 case TARGET_WAITKIND_VFORKED:
3456 if (debug_infrun)
3457 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3458
3459 /* Check whether the inferior is displaced stepping. */
3460 {
3461 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3462 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3463 struct displaced_step_inferior_state *displaced
3464 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3465
3466 /* If checking displaced stepping is supported, and thread
3467 ecs->ptid is displaced stepping. */
3468 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3469 {
3470 struct inferior *parent_inf
3471 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3472 struct regcache *child_regcache;
3473 CORE_ADDR parent_pc;
3474
3475 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3476 indicating that the displaced stepping of syscall instruction
3477 has been done. Perform cleanup for parent process here. Note
3478 that this operation also cleans up the child process for vfork,
3479 because their pages are shared. */
3480 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3481
3482 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3483 {
3484 /* Restore scratch pad for child process. */
3485 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3486 }
3487
3488 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3489 the child's PC is also within the scratchpad. Set the child's PC
3490 to the parent's PC value, which has already been fixed up.
3491 FIXME: we use the parent's aspace here, although we're touching
3492 the child, because the child hasn't been added to the inferior
3493 list yet at this point. */
3494
3495 child_regcache
3496 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3497 gdbarch,
3498 parent_inf->aspace);
3499 /* Read PC value of parent process. */
3500 parent_pc = regcache_read_pc (regcache);
3501
3502 if (debug_displaced)
3503 fprintf_unfiltered (gdb_stdlog,
3504 "displaced: write child pc from %s to %s\n",
3505 paddress (gdbarch,
3506 regcache_read_pc (child_regcache)),
3507 paddress (gdbarch, parent_pc));
3508
3509 regcache_write_pc (child_regcache, parent_pc);
3510 }
3511 }
3512
3513 if (!ptid_equal (ecs->ptid, inferior_ptid))
3514 context_switch (ecs->ptid);
3515
3516 /* Immediately detach breakpoints from the child before there's
3517 any chance of letting the user delete breakpoints from the
3518 breakpoint lists. If we don't do this early, it's easy to
3519 leave left over traps in the child, vis: "break foo; catch
3520 fork; c; <fork>; del; c; <child calls foo>". We only follow
3521 the fork on the last `continue', and by that time the
3522 breakpoint at "foo" is long gone from the breakpoint table.
3523 If we vforked, then we don't need to unpatch here, since both
3524 parent and child are sharing the same memory pages; we'll
3525 need to unpatch at follow/detach time instead to be certain
3526 that new breakpoints added between catchpoint hit time and
3527 vfork follow are detached. */
3528 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3529 {
3530 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3531
3532 /* This won't actually modify the breakpoint list, but will
3533 physically remove the breakpoints from the child. */
3534 detach_breakpoints (child_pid);
3535 }
3536
3537 if (singlestep_breakpoints_inserted_p)
3538 {
3539 /* Pull the single step breakpoints out of the target. */
3540 remove_single_step_breakpoints ();
3541 singlestep_breakpoints_inserted_p = 0;
3542 }
3543
3544 /* In case the event is caught by a catchpoint, remember that
3545 the event is to be followed at the next resume of the thread,
3546 and not immediately. */
3547 ecs->event_thread->pending_follow = ecs->ws;
3548
3549 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3550
3551 ecs->event_thread->control.stop_bpstat
3552 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3553 stop_pc, ecs->ptid, &ecs->ws);
3554
3555 /* Note that we're interested in knowing the bpstat actually
3556 causes a stop, not just if it may explain the signal.
3557 Software watchpoints, for example, always appear in the
3558 bpstat. */
3559 ecs->random_signal
3560 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3561
3562 /* If no catchpoint triggered for this, then keep going. */
3563 if (ecs->random_signal)
3564 {
3565 ptid_t parent;
3566 ptid_t child;
3567 int should_resume;
3568 int follow_child
3569 = (follow_fork_mode_string == follow_fork_mode_child);
3570
3571 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3572
3573 should_resume = follow_fork ();
3574
3575 parent = ecs->ptid;
3576 child = ecs->ws.value.related_pid;
3577
3578 /* In non-stop mode, also resume the other branch. */
3579 if (non_stop && !detach_fork)
3580 {
3581 if (follow_child)
3582 switch_to_thread (parent);
3583 else
3584 switch_to_thread (child);
3585
3586 ecs->event_thread = inferior_thread ();
3587 ecs->ptid = inferior_ptid;
3588 keep_going (ecs);
3589 }
3590
3591 if (follow_child)
3592 switch_to_thread (child);
3593 else
3594 switch_to_thread (parent);
3595
3596 ecs->event_thread = inferior_thread ();
3597 ecs->ptid = inferior_ptid;
3598
3599 if (should_resume)
3600 keep_going (ecs);
3601 else
3602 stop_stepping (ecs);
3603 return;
3604 }
3605 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3606 goto process_event_stop_test;
3607
3608 case TARGET_WAITKIND_VFORK_DONE:
3609 /* Done with the shared memory region. Re-insert breakpoints in
3610 the parent, and keep going. */
3611
3612 if (debug_infrun)
3613 fprintf_unfiltered (gdb_stdlog,
3614 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3615
3616 if (!ptid_equal (ecs->ptid, inferior_ptid))
3617 context_switch (ecs->ptid);
3618
3619 current_inferior ()->waiting_for_vfork_done = 0;
3620 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3621 /* This also takes care of reinserting breakpoints in the
3622 previously locked inferior. */
3623 keep_going (ecs);
3624 return;
3625
3626 case TARGET_WAITKIND_EXECD:
3627 if (debug_infrun)
3628 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3629
3630 if (!ptid_equal (ecs->ptid, inferior_ptid))
3631 context_switch (ecs->ptid);
3632
3633 singlestep_breakpoints_inserted_p = 0;
3634 cancel_single_step_breakpoints ();
3635
3636 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3637
3638 /* Do whatever is necessary to the parent branch of the vfork. */
3639 handle_vfork_child_exec_or_exit (1);
3640
3641 /* This causes the eventpoints and symbol table to be reset.
3642 Must do this now, before trying to determine whether to
3643 stop. */
3644 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3645
3646 ecs->event_thread->control.stop_bpstat
3647 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3648 stop_pc, ecs->ptid, &ecs->ws);
3649 ecs->random_signal
3650 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3651
3652 /* Note that this may be referenced from inside
3653 bpstat_stop_status above, through inferior_has_execd. */
3654 xfree (ecs->ws.value.execd_pathname);
3655 ecs->ws.value.execd_pathname = NULL;
3656
3657 /* If no catchpoint triggered for this, then keep going. */
3658 if (ecs->random_signal)
3659 {
3660 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3661 keep_going (ecs);
3662 return;
3663 }
3664 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3665 goto process_event_stop_test;
3666
3667 /* Be careful not to try to gather much state about a thread
3668 that's in a syscall. It's frequently a losing proposition. */
3669 case TARGET_WAITKIND_SYSCALL_ENTRY:
3670 if (debug_infrun)
3671 fprintf_unfiltered (gdb_stdlog,
3672 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3673 /* Getting the current syscall number. */
3674 if (handle_syscall_event (ecs) != 0)
3675 return;
3676 goto process_event_stop_test;
3677
3678 /* Before examining the threads further, step this thread to
3679 get it entirely out of the syscall. (We get notice of the
3680 event when the thread is just on the verge of exiting a
3681 syscall. Stepping one instruction seems to get it back
3682 into user code.) */
3683 case TARGET_WAITKIND_SYSCALL_RETURN:
3684 if (debug_infrun)
3685 fprintf_unfiltered (gdb_stdlog,
3686 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3687 if (handle_syscall_event (ecs) != 0)
3688 return;
3689 goto process_event_stop_test;
3690
3691 case TARGET_WAITKIND_STOPPED:
3692 if (debug_infrun)
3693 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3694 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3695 break;
3696
3697 case TARGET_WAITKIND_NO_HISTORY:
3698 if (debug_infrun)
3699 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3700 /* Reverse execution: target ran out of history info. */
3701 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3702 print_no_history_reason ();
3703 stop_stepping (ecs);
3704 return;
3705 }
3706
3707 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3708 {
3709 /* Do we need to clean up the state of a thread that has
3710 completed a displaced single-step? (Doing so usually affects
3711 the PC, so do it here, before we set stop_pc.) */
3712 displaced_step_fixup (ecs->ptid,
3713 ecs->event_thread->suspend.stop_signal);
3714
3715 /* If we either finished a single-step or hit a breakpoint, but
3716 the user wanted this thread to be stopped, pretend we got a
3717 SIG0 (generic unsignaled stop). */
3718
3719 if (ecs->event_thread->stop_requested
3720 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3721 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3722 }
3723
3724 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3725
3726 if (debug_infrun)
3727 {
3728 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3729 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3730 struct cleanup *old_chain = save_inferior_ptid ();
3731
3732 inferior_ptid = ecs->ptid;
3733
3734 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3735 paddress (gdbarch, stop_pc));
3736 if (target_stopped_by_watchpoint ())
3737 {
3738 CORE_ADDR addr;
3739
3740 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3741
3742 if (target_stopped_data_address (&current_target, &addr))
3743 fprintf_unfiltered (gdb_stdlog,
3744 "infrun: stopped data address = %s\n",
3745 paddress (gdbarch, addr));
3746 else
3747 fprintf_unfiltered (gdb_stdlog,
3748 "infrun: (no data address available)\n");
3749 }
3750
3751 do_cleanups (old_chain);
3752 }
3753
3754 if (stepping_past_singlestep_breakpoint)
3755 {
3756 gdb_assert (singlestep_breakpoints_inserted_p);
3757 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3758 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3759
3760 stepping_past_singlestep_breakpoint = 0;
3761
3762 /* We've either finished single-stepping past the single-step
3763 breakpoint, or stopped for some other reason. It would be nice if
3764 we could tell, but we can't reliably. */
3765 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3766 {
3767 if (debug_infrun)
3768 fprintf_unfiltered (gdb_stdlog,
3769 "infrun: stepping_past_"
3770 "singlestep_breakpoint\n");
3771 /* Pull the single step breakpoints out of the target. */
3772 remove_single_step_breakpoints ();
3773 singlestep_breakpoints_inserted_p = 0;
3774
3775 ecs->random_signal = 0;
3776 ecs->event_thread->control.trap_expected = 0;
3777
3778 context_switch (saved_singlestep_ptid);
3779 if (deprecated_context_hook)
3780 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3781
3782 resume (1, GDB_SIGNAL_0);
3783 prepare_to_wait (ecs);
3784 return;
3785 }
3786 }
3787
3788 if (!ptid_equal (deferred_step_ptid, null_ptid))
3789 {
3790 /* In non-stop mode, there's never a deferred_step_ptid set. */
3791 gdb_assert (!non_stop);
3792
3793 /* If we stopped for some other reason than single-stepping, ignore
3794 the fact that we were supposed to switch back. */
3795 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3796 {
3797 if (debug_infrun)
3798 fprintf_unfiltered (gdb_stdlog,
3799 "infrun: handling deferred step\n");
3800
3801 /* Pull the single step breakpoints out of the target. */
3802 if (singlestep_breakpoints_inserted_p)
3803 {
3804 remove_single_step_breakpoints ();
3805 singlestep_breakpoints_inserted_p = 0;
3806 }
3807
3808 ecs->event_thread->control.trap_expected = 0;
3809
3810 context_switch (deferred_step_ptid);
3811 deferred_step_ptid = null_ptid;
3812 /* Suppress spurious "Switching to ..." message. */
3813 previous_inferior_ptid = inferior_ptid;
3814
3815 resume (1, GDB_SIGNAL_0);
3816 prepare_to_wait (ecs);
3817 return;
3818 }
3819
3820 deferred_step_ptid = null_ptid;
3821 }
3822
3823 /* See if a thread hit a thread-specific breakpoint that was meant for
3824 another thread. If so, then step that thread past the breakpoint,
3825 and continue it. */
3826
3827 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3828 {
3829 int thread_hop_needed = 0;
3830 struct address_space *aspace =
3831 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3832
3833 /* Check if a regular breakpoint has been hit before checking
3834 for a potential single step breakpoint. Otherwise, GDB will
3835 not see this breakpoint hit when stepping onto breakpoints. */
3836 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3837 {
3838 ecs->random_signal = 0;
3839 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3840 thread_hop_needed = 1;
3841 }
3842 else if (singlestep_breakpoints_inserted_p)
3843 {
3844 /* We have not context switched yet, so this should be true
3845 no matter which thread hit the singlestep breakpoint. */
3846 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3847 if (debug_infrun)
3848 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3849 "trap for %s\n",
3850 target_pid_to_str (ecs->ptid));
3851
3852 ecs->random_signal = 0;
3853 /* The call to in_thread_list is necessary because PTIDs sometimes
3854 change when we go from single-threaded to multi-threaded. If
3855 the singlestep_ptid is still in the list, assume that it is
3856 really different from ecs->ptid. */
3857 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3858 && in_thread_list (singlestep_ptid))
3859 {
3860 /* If the PC of the thread we were trying to single-step
3861 has changed, discard this event (which we were going
3862 to ignore anyway), and pretend we saw that thread
3863 trap. This prevents us continuously moving the
3864 single-step breakpoint forward, one instruction at a
3865 time. If the PC has changed, then the thread we were
3866 trying to single-step has trapped or been signalled,
3867 but the event has not been reported to GDB yet.
3868
3869 There might be some cases where this loses signal
3870 information, if a signal has arrived at exactly the
3871 same time that the PC changed, but this is the best
3872 we can do with the information available. Perhaps we
3873 should arrange to report all events for all threads
3874 when they stop, or to re-poll the remote looking for
3875 this particular thread (i.e. temporarily enable
3876 schedlock). */
3877
3878 CORE_ADDR new_singlestep_pc
3879 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3880
3881 if (new_singlestep_pc != singlestep_pc)
3882 {
3883 enum gdb_signal stop_signal;
3884
3885 if (debug_infrun)
3886 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3887 " but expected thread advanced also\n");
3888
3889 /* The current context still belongs to
3890 singlestep_ptid. Don't swap here, since that's
3891 the context we want to use. Just fudge our
3892 state and continue. */
3893 stop_signal = ecs->event_thread->suspend.stop_signal;
3894 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3895 ecs->ptid = singlestep_ptid;
3896 ecs->event_thread = find_thread_ptid (ecs->ptid);
3897 ecs->event_thread->suspend.stop_signal = stop_signal;
3898 stop_pc = new_singlestep_pc;
3899 }
3900 else
3901 {
3902 if (debug_infrun)
3903 fprintf_unfiltered (gdb_stdlog,
3904 "infrun: unexpected thread\n");
3905
3906 thread_hop_needed = 1;
3907 stepping_past_singlestep_breakpoint = 1;
3908 saved_singlestep_ptid = singlestep_ptid;
3909 }
3910 }
3911 }
3912
3913 if (thread_hop_needed)
3914 {
3915 struct regcache *thread_regcache;
3916 int remove_status = 0;
3917
3918 if (debug_infrun)
3919 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3920
3921 /* Switch context before touching inferior memory, the
3922 previous thread may have exited. */
3923 if (!ptid_equal (inferior_ptid, ecs->ptid))
3924 context_switch (ecs->ptid);
3925
3926 /* Saw a breakpoint, but it was hit by the wrong thread.
3927 Just continue. */
3928
3929 if (singlestep_breakpoints_inserted_p)
3930 {
3931 /* Pull the single step breakpoints out of the target. */
3932 remove_single_step_breakpoints ();
3933 singlestep_breakpoints_inserted_p = 0;
3934 }
3935
3936 /* If the arch can displace step, don't remove the
3937 breakpoints. */
3938 thread_regcache = get_thread_regcache (ecs->ptid);
3939 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3940 remove_status = remove_breakpoints ();
3941
3942 /* Did we fail to remove breakpoints? If so, try
3943 to set the PC past the bp. (There's at least
3944 one situation in which we can fail to remove
3945 the bp's: On HP-UX's that use ttrace, we can't
3946 change the address space of a vforking child
3947 process until the child exits (well, okay, not
3948 then either :-) or execs. */
3949 if (remove_status != 0)
3950 error (_("Cannot step over breakpoint hit in wrong thread"));
3951 else
3952 { /* Single step */
3953 if (!non_stop)
3954 {
3955 /* Only need to require the next event from this
3956 thread in all-stop mode. */
3957 waiton_ptid = ecs->ptid;
3958 infwait_state = infwait_thread_hop_state;
3959 }
3960
3961 ecs->event_thread->stepping_over_breakpoint = 1;
3962 keep_going (ecs);
3963 return;
3964 }
3965 }
3966 else if (singlestep_breakpoints_inserted_p)
3967 {
3968 ecs->random_signal = 0;
3969 }
3970 }
3971 else
3972 ecs->random_signal = 1;
3973
3974 /* See if something interesting happened to the non-current thread. If
3975 so, then switch to that thread. */
3976 if (!ptid_equal (ecs->ptid, inferior_ptid))
3977 {
3978 if (debug_infrun)
3979 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3980
3981 context_switch (ecs->ptid);
3982
3983 if (deprecated_context_hook)
3984 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3985 }
3986
3987 /* At this point, get hold of the now-current thread's frame. */
3988 frame = get_current_frame ();
3989 gdbarch = get_frame_arch (frame);
3990
3991 if (singlestep_breakpoints_inserted_p)
3992 {
3993 /* Pull the single step breakpoints out of the target. */
3994 remove_single_step_breakpoints ();
3995 singlestep_breakpoints_inserted_p = 0;
3996 }
3997
3998 if (stepped_after_stopped_by_watchpoint)
3999 stopped_by_watchpoint = 0;
4000 else
4001 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4002
4003 /* If necessary, step over this watchpoint. We'll be back to display
4004 it in a moment. */
4005 if (stopped_by_watchpoint
4006 && (target_have_steppable_watchpoint
4007 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4008 {
4009 /* At this point, we are stopped at an instruction which has
4010 attempted to write to a piece of memory under control of
4011 a watchpoint. The instruction hasn't actually executed
4012 yet. If we were to evaluate the watchpoint expression
4013 now, we would get the old value, and therefore no change
4014 would seem to have occurred.
4015
4016 In order to make watchpoints work `right', we really need
4017 to complete the memory write, and then evaluate the
4018 watchpoint expression. We do this by single-stepping the
4019 target.
4020
4021 It may not be necessary to disable the watchpoint to stop over
4022 it. For example, the PA can (with some kernel cooperation)
4023 single step over a watchpoint without disabling the watchpoint.
4024
4025 It is far more common to need to disable a watchpoint to step
4026 the inferior over it. If we have non-steppable watchpoints,
4027 we must disable the current watchpoint; it's simplest to
4028 disable all watchpoints and breakpoints. */
4029 int hw_step = 1;
4030
4031 if (!target_have_steppable_watchpoint)
4032 {
4033 remove_breakpoints ();
4034 /* See comment in resume why we need to stop bypassing signals
4035 while breakpoints have been removed. */
4036 target_pass_signals (0, NULL);
4037 }
4038 /* Single step */
4039 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4040 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4041 waiton_ptid = ecs->ptid;
4042 if (target_have_steppable_watchpoint)
4043 infwait_state = infwait_step_watch_state;
4044 else
4045 infwait_state = infwait_nonstep_watch_state;
4046 prepare_to_wait (ecs);
4047 return;
4048 }
4049
4050 clear_stop_func (ecs);
4051 ecs->event_thread->stepping_over_breakpoint = 0;
4052 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4053 ecs->event_thread->control.stop_step = 0;
4054 stop_print_frame = 1;
4055 ecs->random_signal = 0;
4056 stopped_by_random_signal = 0;
4057
4058 /* Hide inlined functions starting here, unless we just performed stepi or
4059 nexti. After stepi and nexti, always show the innermost frame (not any
4060 inline function call sites). */
4061 if (ecs->event_thread->control.step_range_end != 1)
4062 {
4063 struct address_space *aspace =
4064 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4065
4066 /* skip_inline_frames is expensive, so we avoid it if we can
4067 determine that the address is one where functions cannot have
4068 been inlined. This improves performance with inferiors that
4069 load a lot of shared libraries, because the solib event
4070 breakpoint is defined as the address of a function (i.e. not
4071 inline). Note that we have to check the previous PC as well
4072 as the current one to catch cases when we have just
4073 single-stepped off a breakpoint prior to reinstating it.
4074 Note that we're assuming that the code we single-step to is
4075 not inline, but that's not definitive: there's nothing
4076 preventing the event breakpoint function from containing
4077 inlined code, and the single-step ending up there. If the
4078 user had set a breakpoint on that inlined code, the missing
4079 skip_inline_frames call would break things. Fortunately
4080 that's an extremely unlikely scenario. */
4081 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4082 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4083 && ecs->event_thread->control.trap_expected
4084 && pc_at_non_inline_function (aspace,
4085 ecs->event_thread->prev_pc,
4086 &ecs->ws)))
4087 skip_inline_frames (ecs->ptid);
4088 }
4089
4090 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4091 && ecs->event_thread->control.trap_expected
4092 && gdbarch_single_step_through_delay_p (gdbarch)
4093 && currently_stepping (ecs->event_thread))
4094 {
4095 /* We're trying to step off a breakpoint. Turns out that we're
4096 also on an instruction that needs to be stepped multiple
4097 times before it's been fully executing. E.g., architectures
4098 with a delay slot. It needs to be stepped twice, once for
4099 the instruction and once for the delay slot. */
4100 int step_through_delay
4101 = gdbarch_single_step_through_delay (gdbarch, frame);
4102
4103 if (debug_infrun && step_through_delay)
4104 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4105 if (ecs->event_thread->control.step_range_end == 0
4106 && step_through_delay)
4107 {
4108 /* The user issued a continue when stopped at a breakpoint.
4109 Set up for another trap and get out of here. */
4110 ecs->event_thread->stepping_over_breakpoint = 1;
4111 keep_going (ecs);
4112 return;
4113 }
4114 else if (step_through_delay)
4115 {
4116 /* The user issued a step when stopped at a breakpoint.
4117 Maybe we should stop, maybe we should not - the delay
4118 slot *might* correspond to a line of source. In any
4119 case, don't decide that here, just set
4120 ecs->stepping_over_breakpoint, making sure we
4121 single-step again before breakpoints are re-inserted. */
4122 ecs->event_thread->stepping_over_breakpoint = 1;
4123 }
4124 }
4125
4126 /* Look at the cause of the stop, and decide what to do.
4127 The alternatives are:
4128 1) stop_stepping and return; to really stop and return to the debugger,
4129 2) keep_going and return to start up again
4130 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4131 3) set ecs->random_signal to 1, and the decision between 1 and 2
4132 will be made according to the signal handling tables. */
4133
4134 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4135 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4136 || stop_soon == STOP_QUIETLY_REMOTE)
4137 {
4138 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4139 && stop_after_trap)
4140 {
4141 if (debug_infrun)
4142 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4143 stop_print_frame = 0;
4144 stop_stepping (ecs);
4145 return;
4146 }
4147
4148 /* This is originated from start_remote(), start_inferior() and
4149 shared libraries hook functions. */
4150 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4151 {
4152 if (debug_infrun)
4153 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4154 stop_stepping (ecs);
4155 return;
4156 }
4157
4158 /* This originates from attach_command(). We need to overwrite
4159 the stop_signal here, because some kernels don't ignore a
4160 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4161 See more comments in inferior.h. On the other hand, if we
4162 get a non-SIGSTOP, report it to the user - assume the backend
4163 will handle the SIGSTOP if it should show up later.
4164
4165 Also consider that the attach is complete when we see a
4166 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4167 target extended-remote report it instead of a SIGSTOP
4168 (e.g. gdbserver). We already rely on SIGTRAP being our
4169 signal, so this is no exception.
4170
4171 Also consider that the attach is complete when we see a
4172 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4173 the target to stop all threads of the inferior, in case the
4174 low level attach operation doesn't stop them implicitly. If
4175 they weren't stopped implicitly, then the stub will report a
4176 GDB_SIGNAL_0, meaning: stopped for no particular reason
4177 other than GDB's request. */
4178 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4179 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4180 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4181 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4182 {
4183 stop_stepping (ecs);
4184 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4185 return;
4186 }
4187
4188 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4189 handles this event. */
4190 ecs->event_thread->control.stop_bpstat
4191 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4192 stop_pc, ecs->ptid, &ecs->ws);
4193
4194 /* Following in case break condition called a
4195 function. */
4196 stop_print_frame = 1;
4197
4198 /* This is where we handle "moribund" watchpoints. Unlike
4199 software breakpoints traps, hardware watchpoint traps are
4200 always distinguishable from random traps. If no high-level
4201 watchpoint is associated with the reported stop data address
4202 anymore, then the bpstat does not explain the signal ---
4203 simply make sure to ignore it if `stopped_by_watchpoint' is
4204 set. */
4205
4206 if (debug_infrun
4207 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4208 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4209 && stopped_by_watchpoint)
4210 fprintf_unfiltered (gdb_stdlog,
4211 "infrun: no user watchpoint explains "
4212 "watchpoint SIGTRAP, ignoring\n");
4213
4214 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4215 at one stage in the past included checks for an inferior
4216 function call's call dummy's return breakpoint. The original
4217 comment, that went with the test, read:
4218
4219 ``End of a stack dummy. Some systems (e.g. Sony news) give
4220 another signal besides SIGTRAP, so check here as well as
4221 above.''
4222
4223 If someone ever tries to get call dummys on a
4224 non-executable stack to work (where the target would stop
4225 with something like a SIGSEGV), then those tests might need
4226 to be re-instated. Given, however, that the tests were only
4227 enabled when momentary breakpoints were not being used, I
4228 suspect that it won't be the case.
4229
4230 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4231 be necessary for call dummies on a non-executable stack on
4232 SPARC. */
4233
4234 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4235 ecs->random_signal
4236 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4237 || stopped_by_watchpoint
4238 || ecs->event_thread->control.trap_expected
4239 || (ecs->event_thread->control.step_range_end
4240 && (ecs->event_thread->control.step_resume_breakpoint
4241 == NULL)));
4242 else
4243 {
4244 ecs->random_signal = !bpstat_explains_signal
4245 (ecs->event_thread->control.stop_bpstat);
4246 if (!ecs->random_signal)
4247 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4248 }
4249 }
4250
4251 /* When we reach this point, we've pretty much decided
4252 that the reason for stopping must've been a random
4253 (unexpected) signal. */
4254
4255 else
4256 ecs->random_signal = 1;
4257
4258 process_event_stop_test:
4259
4260 /* Re-fetch current thread's frame in case we did a
4261 "goto process_event_stop_test" above. */
4262 frame = get_current_frame ();
4263 gdbarch = get_frame_arch (frame);
4264
4265 /* For the program's own signals, act according to
4266 the signal handling tables. */
4267
4268 if (ecs->random_signal)
4269 {
4270 /* Signal not for debugging purposes. */
4271 int printed = 0;
4272 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4273
4274 if (debug_infrun)
4275 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4276 ecs->event_thread->suspend.stop_signal);
4277
4278 stopped_by_random_signal = 1;
4279
4280 if (signal_print[ecs->event_thread->suspend.stop_signal])
4281 {
4282 printed = 1;
4283 target_terminal_ours_for_output ();
4284 print_signal_received_reason
4285 (ecs->event_thread->suspend.stop_signal);
4286 }
4287 /* Always stop on signals if we're either just gaining control
4288 of the program, or the user explicitly requested this thread
4289 to remain stopped. */
4290 if (stop_soon != NO_STOP_QUIETLY
4291 || ecs->event_thread->stop_requested
4292 || (!inf->detaching
4293 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4294 {
4295 stop_stepping (ecs);
4296 return;
4297 }
4298 /* If not going to stop, give terminal back
4299 if we took it away. */
4300 else if (printed)
4301 target_terminal_inferior ();
4302
4303 /* Clear the signal if it should not be passed. */
4304 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4305 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4306
4307 if (ecs->event_thread->prev_pc == stop_pc
4308 && ecs->event_thread->control.trap_expected
4309 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4310 {
4311 /* We were just starting a new sequence, attempting to
4312 single-step off of a breakpoint and expecting a SIGTRAP.
4313 Instead this signal arrives. This signal will take us out
4314 of the stepping range so GDB needs to remember to, when
4315 the signal handler returns, resume stepping off that
4316 breakpoint. */
4317 /* To simplify things, "continue" is forced to use the same
4318 code paths as single-step - set a breakpoint at the
4319 signal return address and then, once hit, step off that
4320 breakpoint. */
4321 if (debug_infrun)
4322 fprintf_unfiltered (gdb_stdlog,
4323 "infrun: signal arrived while stepping over "
4324 "breakpoint\n");
4325
4326 insert_hp_step_resume_breakpoint_at_frame (frame);
4327 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4328 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4329 ecs->event_thread->control.trap_expected = 0;
4330 keep_going (ecs);
4331 return;
4332 }
4333
4334 if (ecs->event_thread->control.step_range_end != 0
4335 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4336 && (ecs->event_thread->control.step_range_start <= stop_pc
4337 && stop_pc < ecs->event_thread->control.step_range_end)
4338 && frame_id_eq (get_stack_frame_id (frame),
4339 ecs->event_thread->control.step_stack_frame_id)
4340 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4341 {
4342 /* The inferior is about to take a signal that will take it
4343 out of the single step range. Set a breakpoint at the
4344 current PC (which is presumably where the signal handler
4345 will eventually return) and then allow the inferior to
4346 run free.
4347
4348 Note that this is only needed for a signal delivered
4349 while in the single-step range. Nested signals aren't a
4350 problem as they eventually all return. */
4351 if (debug_infrun)
4352 fprintf_unfiltered (gdb_stdlog,
4353 "infrun: signal may take us out of "
4354 "single-step range\n");
4355
4356 insert_hp_step_resume_breakpoint_at_frame (frame);
4357 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4358 ecs->event_thread->control.trap_expected = 0;
4359 keep_going (ecs);
4360 return;
4361 }
4362
4363 /* Note: step_resume_breakpoint may be non-NULL. This occures
4364 when either there's a nested signal, or when there's a
4365 pending signal enabled just as the signal handler returns
4366 (leaving the inferior at the step-resume-breakpoint without
4367 actually executing it). Either way continue until the
4368 breakpoint is really hit. */
4369 keep_going (ecs);
4370 return;
4371 }
4372
4373 /* Handle cases caused by hitting a breakpoint. */
4374 {
4375 CORE_ADDR jmp_buf_pc;
4376 struct bpstat_what what;
4377
4378 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4379
4380 if (what.call_dummy)
4381 {
4382 stop_stack_dummy = what.call_dummy;
4383 }
4384
4385 /* If we hit an internal event that triggers symbol changes, the
4386 current frame will be invalidated within bpstat_what (e.g., if
4387 we hit an internal solib event). Re-fetch it. */
4388 frame = get_current_frame ();
4389 gdbarch = get_frame_arch (frame);
4390
4391 switch (what.main_action)
4392 {
4393 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4394 /* If we hit the breakpoint at longjmp while stepping, we
4395 install a momentary breakpoint at the target of the
4396 jmp_buf. */
4397
4398 if (debug_infrun)
4399 fprintf_unfiltered (gdb_stdlog,
4400 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4401
4402 ecs->event_thread->stepping_over_breakpoint = 1;
4403
4404 if (what.is_longjmp)
4405 {
4406 struct value *arg_value;
4407
4408 /* If we set the longjmp breakpoint via a SystemTap probe,
4409 then use it to extract the arguments. The destination
4410 PC is the third argument to the probe. */
4411 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4412 if (arg_value)
4413 jmp_buf_pc = value_as_address (arg_value);
4414 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4415 || !gdbarch_get_longjmp_target (gdbarch,
4416 frame, &jmp_buf_pc))
4417 {
4418 if (debug_infrun)
4419 fprintf_unfiltered (gdb_stdlog,
4420 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4421 "(!gdbarch_get_longjmp_target)\n");
4422 keep_going (ecs);
4423 return;
4424 }
4425
4426 /* We're going to replace the current step-resume breakpoint
4427 with a longjmp-resume breakpoint. */
4428 delete_step_resume_breakpoint (ecs->event_thread);
4429
4430 /* Insert a breakpoint at resume address. */
4431 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4432 }
4433 else
4434 check_exception_resume (ecs, frame);
4435 keep_going (ecs);
4436 return;
4437
4438 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4439 if (debug_infrun)
4440 fprintf_unfiltered (gdb_stdlog,
4441 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4442
4443 if (what.is_longjmp)
4444 {
4445 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4446 != NULL);
4447 delete_step_resume_breakpoint (ecs->event_thread);
4448 }
4449 else
4450 {
4451 /* There are several cases to consider.
4452
4453 1. The initiating frame no longer exists. In this case
4454 we must stop, because the exception has gone too far.
4455
4456 2. The initiating frame exists, and is the same as the
4457 current frame. We stop, because the exception has been
4458 caught.
4459
4460 3. The initiating frame exists and is different from
4461 the current frame. This means the exception has been
4462 caught beneath the initiating frame, so keep going. */
4463 struct frame_info *init_frame
4464 = frame_find_by_id (ecs->event_thread->initiating_frame);
4465
4466 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4467 != NULL);
4468 delete_exception_resume_breakpoint (ecs->event_thread);
4469
4470 if (init_frame)
4471 {
4472 struct frame_id current_id
4473 = get_frame_id (get_current_frame ());
4474 if (frame_id_eq (current_id,
4475 ecs->event_thread->initiating_frame))
4476 {
4477 /* Case 2. Fall through. */
4478 }
4479 else
4480 {
4481 /* Case 3. */
4482 keep_going (ecs);
4483 return;
4484 }
4485 }
4486
4487 /* For Cases 1 and 2, remove the step-resume breakpoint,
4488 if it exists. */
4489 delete_step_resume_breakpoint (ecs->event_thread);
4490 }
4491
4492 ecs->event_thread->control.stop_step = 1;
4493 print_end_stepping_range_reason ();
4494 stop_stepping (ecs);
4495 return;
4496
4497 case BPSTAT_WHAT_SINGLE:
4498 if (debug_infrun)
4499 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4500 ecs->event_thread->stepping_over_breakpoint = 1;
4501 /* Still need to check other stuff, at least the case
4502 where we are stepping and step out of the right range. */
4503 break;
4504
4505 case BPSTAT_WHAT_STEP_RESUME:
4506 if (debug_infrun)
4507 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4508
4509 delete_step_resume_breakpoint (ecs->event_thread);
4510 if (ecs->event_thread->control.proceed_to_finish
4511 && execution_direction == EXEC_REVERSE)
4512 {
4513 struct thread_info *tp = ecs->event_thread;
4514
4515 /* We are finishing a function in reverse, and just hit
4516 the step-resume breakpoint at the start address of the
4517 function, and we're almost there -- just need to back
4518 up by one more single-step, which should take us back
4519 to the function call. */
4520 tp->control.step_range_start = tp->control.step_range_end = 1;
4521 keep_going (ecs);
4522 return;
4523 }
4524 fill_in_stop_func (gdbarch, ecs);
4525 if (stop_pc == ecs->stop_func_start
4526 && execution_direction == EXEC_REVERSE)
4527 {
4528 /* We are stepping over a function call in reverse, and
4529 just hit the step-resume breakpoint at the start
4530 address of the function. Go back to single-stepping,
4531 which should take us back to the function call. */
4532 ecs->event_thread->stepping_over_breakpoint = 1;
4533 keep_going (ecs);
4534 return;
4535 }
4536 break;
4537
4538 case BPSTAT_WHAT_STOP_NOISY:
4539 if (debug_infrun)
4540 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4541 stop_print_frame = 1;
4542
4543 /* We are about to nuke the step_resume_breakpointt via the
4544 cleanup chain, so no need to worry about it here. */
4545
4546 stop_stepping (ecs);
4547 return;
4548
4549 case BPSTAT_WHAT_STOP_SILENT:
4550 if (debug_infrun)
4551 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4552 stop_print_frame = 0;
4553
4554 /* We are about to nuke the step_resume_breakpoin via the
4555 cleanup chain, so no need to worry about it here. */
4556
4557 stop_stepping (ecs);
4558 return;
4559
4560 case BPSTAT_WHAT_HP_STEP_RESUME:
4561 if (debug_infrun)
4562 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4563
4564 delete_step_resume_breakpoint (ecs->event_thread);
4565 if (ecs->event_thread->step_after_step_resume_breakpoint)
4566 {
4567 /* Back when the step-resume breakpoint was inserted, we
4568 were trying to single-step off a breakpoint. Go back
4569 to doing that. */
4570 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4571 ecs->event_thread->stepping_over_breakpoint = 1;
4572 keep_going (ecs);
4573 return;
4574 }
4575 break;
4576
4577 case BPSTAT_WHAT_KEEP_CHECKING:
4578 break;
4579 }
4580 }
4581
4582 /* We come here if we hit a breakpoint but should not
4583 stop for it. Possibly we also were stepping
4584 and should stop for that. So fall through and
4585 test for stepping. But, if not stepping,
4586 do not stop. */
4587
4588 /* In all-stop mode, if we're currently stepping but have stopped in
4589 some other thread, we need to switch back to the stepped thread. */
4590 if (!non_stop)
4591 {
4592 struct thread_info *tp;
4593
4594 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4595 ecs->event_thread);
4596 if (tp)
4597 {
4598 /* However, if the current thread is blocked on some internal
4599 breakpoint, and we simply need to step over that breakpoint
4600 to get it going again, do that first. */
4601 if ((ecs->event_thread->control.trap_expected
4602 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
4603 || ecs->event_thread->stepping_over_breakpoint)
4604 {
4605 keep_going (ecs);
4606 return;
4607 }
4608
4609 /* If the stepping thread exited, then don't try to switch
4610 back and resume it, which could fail in several different
4611 ways depending on the target. Instead, just keep going.
4612
4613 We can find a stepping dead thread in the thread list in
4614 two cases:
4615
4616 - The target supports thread exit events, and when the
4617 target tries to delete the thread from the thread list,
4618 inferior_ptid pointed at the exiting thread. In such
4619 case, calling delete_thread does not really remove the
4620 thread from the list; instead, the thread is left listed,
4621 with 'exited' state.
4622
4623 - The target's debug interface does not support thread
4624 exit events, and so we have no idea whatsoever if the
4625 previously stepping thread is still alive. For that
4626 reason, we need to synchronously query the target
4627 now. */
4628 if (is_exited (tp->ptid)
4629 || !target_thread_alive (tp->ptid))
4630 {
4631 if (debug_infrun)
4632 fprintf_unfiltered (gdb_stdlog,
4633 "infrun: not switching back to "
4634 "stepped thread, it has vanished\n");
4635
4636 delete_thread (tp->ptid);
4637 keep_going (ecs);
4638 return;
4639 }
4640
4641 /* Otherwise, we no longer expect a trap in the current thread.
4642 Clear the trap_expected flag before switching back -- this is
4643 what keep_going would do as well, if we called it. */
4644 ecs->event_thread->control.trap_expected = 0;
4645
4646 if (debug_infrun)
4647 fprintf_unfiltered (gdb_stdlog,
4648 "infrun: switching back to stepped thread\n");
4649
4650 ecs->event_thread = tp;
4651 ecs->ptid = tp->ptid;
4652 context_switch (ecs->ptid);
4653 keep_going (ecs);
4654 return;
4655 }
4656 }
4657
4658 if (ecs->event_thread->control.step_resume_breakpoint)
4659 {
4660 if (debug_infrun)
4661 fprintf_unfiltered (gdb_stdlog,
4662 "infrun: step-resume breakpoint is inserted\n");
4663
4664 /* Having a step-resume breakpoint overrides anything
4665 else having to do with stepping commands until
4666 that breakpoint is reached. */
4667 keep_going (ecs);
4668 return;
4669 }
4670
4671 if (ecs->event_thread->control.step_range_end == 0)
4672 {
4673 if (debug_infrun)
4674 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4675 /* Likewise if we aren't even stepping. */
4676 keep_going (ecs);
4677 return;
4678 }
4679
4680 /* Re-fetch current thread's frame in case the code above caused
4681 the frame cache to be re-initialized, making our FRAME variable
4682 a dangling pointer. */
4683 frame = get_current_frame ();
4684 gdbarch = get_frame_arch (frame);
4685 fill_in_stop_func (gdbarch, ecs);
4686
4687 /* If stepping through a line, keep going if still within it.
4688
4689 Note that step_range_end is the address of the first instruction
4690 beyond the step range, and NOT the address of the last instruction
4691 within it!
4692
4693 Note also that during reverse execution, we may be stepping
4694 through a function epilogue and therefore must detect when
4695 the current-frame changes in the middle of a line. */
4696
4697 if (stop_pc >= ecs->event_thread->control.step_range_start
4698 && stop_pc < ecs->event_thread->control.step_range_end
4699 && (execution_direction != EXEC_REVERSE
4700 || frame_id_eq (get_frame_id (frame),
4701 ecs->event_thread->control.step_frame_id)))
4702 {
4703 if (debug_infrun)
4704 fprintf_unfiltered
4705 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4706 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4707 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4708
4709 /* When stepping backward, stop at beginning of line range
4710 (unless it's the function entry point, in which case
4711 keep going back to the call point). */
4712 if (stop_pc == ecs->event_thread->control.step_range_start
4713 && stop_pc != ecs->stop_func_start
4714 && execution_direction == EXEC_REVERSE)
4715 {
4716 ecs->event_thread->control.stop_step = 1;
4717 print_end_stepping_range_reason ();
4718 stop_stepping (ecs);
4719 }
4720 else
4721 keep_going (ecs);
4722
4723 return;
4724 }
4725
4726 /* We stepped out of the stepping range. */
4727
4728 /* If we are stepping at the source level and entered the runtime
4729 loader dynamic symbol resolution code...
4730
4731 EXEC_FORWARD: we keep on single stepping until we exit the run
4732 time loader code and reach the callee's address.
4733
4734 EXEC_REVERSE: we've already executed the callee (backward), and
4735 the runtime loader code is handled just like any other
4736 undebuggable function call. Now we need only keep stepping
4737 backward through the trampoline code, and that's handled further
4738 down, so there is nothing for us to do here. */
4739
4740 if (execution_direction != EXEC_REVERSE
4741 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4742 && in_solib_dynsym_resolve_code (stop_pc))
4743 {
4744 CORE_ADDR pc_after_resolver =
4745 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4746
4747 if (debug_infrun)
4748 fprintf_unfiltered (gdb_stdlog,
4749 "infrun: stepped into dynsym resolve code\n");
4750
4751 if (pc_after_resolver)
4752 {
4753 /* Set up a step-resume breakpoint at the address
4754 indicated by SKIP_SOLIB_RESOLVER. */
4755 struct symtab_and_line sr_sal;
4756
4757 init_sal (&sr_sal);
4758 sr_sal.pc = pc_after_resolver;
4759 sr_sal.pspace = get_frame_program_space (frame);
4760
4761 insert_step_resume_breakpoint_at_sal (gdbarch,
4762 sr_sal, null_frame_id);
4763 }
4764
4765 keep_going (ecs);
4766 return;
4767 }
4768
4769 if (ecs->event_thread->control.step_range_end != 1
4770 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4771 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4772 && get_frame_type (frame) == SIGTRAMP_FRAME)
4773 {
4774 if (debug_infrun)
4775 fprintf_unfiltered (gdb_stdlog,
4776 "infrun: stepped into signal trampoline\n");
4777 /* The inferior, while doing a "step" or "next", has ended up in
4778 a signal trampoline (either by a signal being delivered or by
4779 the signal handler returning). Just single-step until the
4780 inferior leaves the trampoline (either by calling the handler
4781 or returning). */
4782 keep_going (ecs);
4783 return;
4784 }
4785
4786 /* If we're in the return path from a shared library trampoline,
4787 we want to proceed through the trampoline when stepping. */
4788 /* macro/2012-04-25: This needs to come before the subroutine
4789 call check below as on some targets return trampolines look
4790 like subroutine calls (MIPS16 return thunks). */
4791 if (gdbarch_in_solib_return_trampoline (gdbarch,
4792 stop_pc, ecs->stop_func_name)
4793 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4794 {
4795 /* Determine where this trampoline returns. */
4796 CORE_ADDR real_stop_pc;
4797
4798 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4799
4800 if (debug_infrun)
4801 fprintf_unfiltered (gdb_stdlog,
4802 "infrun: stepped into solib return tramp\n");
4803
4804 /* Only proceed through if we know where it's going. */
4805 if (real_stop_pc)
4806 {
4807 /* And put the step-breakpoint there and go until there. */
4808 struct symtab_and_line sr_sal;
4809
4810 init_sal (&sr_sal); /* initialize to zeroes */
4811 sr_sal.pc = real_stop_pc;
4812 sr_sal.section = find_pc_overlay (sr_sal.pc);
4813 sr_sal.pspace = get_frame_program_space (frame);
4814
4815 /* Do not specify what the fp should be when we stop since
4816 on some machines the prologue is where the new fp value
4817 is established. */
4818 insert_step_resume_breakpoint_at_sal (gdbarch,
4819 sr_sal, null_frame_id);
4820
4821 /* Restart without fiddling with the step ranges or
4822 other state. */
4823 keep_going (ecs);
4824 return;
4825 }
4826 }
4827
4828 /* Check for subroutine calls. The check for the current frame
4829 equalling the step ID is not necessary - the check of the
4830 previous frame's ID is sufficient - but it is a common case and
4831 cheaper than checking the previous frame's ID.
4832
4833 NOTE: frame_id_eq will never report two invalid frame IDs as
4834 being equal, so to get into this block, both the current and
4835 previous frame must have valid frame IDs. */
4836 /* The outer_frame_id check is a heuristic to detect stepping
4837 through startup code. If we step over an instruction which
4838 sets the stack pointer from an invalid value to a valid value,
4839 we may detect that as a subroutine call from the mythical
4840 "outermost" function. This could be fixed by marking
4841 outermost frames as !stack_p,code_p,special_p. Then the
4842 initial outermost frame, before sp was valid, would
4843 have code_addr == &_start. See the comment in frame_id_eq
4844 for more. */
4845 if (!frame_id_eq (get_stack_frame_id (frame),
4846 ecs->event_thread->control.step_stack_frame_id)
4847 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4848 ecs->event_thread->control.step_stack_frame_id)
4849 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4850 outer_frame_id)
4851 || step_start_function != find_pc_function (stop_pc))))
4852 {
4853 CORE_ADDR real_stop_pc;
4854
4855 if (debug_infrun)
4856 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4857
4858 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4859 || ((ecs->event_thread->control.step_range_end == 1)
4860 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4861 ecs->stop_func_start)))
4862 {
4863 /* I presume that step_over_calls is only 0 when we're
4864 supposed to be stepping at the assembly language level
4865 ("stepi"). Just stop. */
4866 /* Also, maybe we just did a "nexti" inside a prolog, so we
4867 thought it was a subroutine call but it was not. Stop as
4868 well. FENN */
4869 /* And this works the same backward as frontward. MVS */
4870 ecs->event_thread->control.stop_step = 1;
4871 print_end_stepping_range_reason ();
4872 stop_stepping (ecs);
4873 return;
4874 }
4875
4876 /* Reverse stepping through solib trampolines. */
4877
4878 if (execution_direction == EXEC_REVERSE
4879 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4880 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4881 || (ecs->stop_func_start == 0
4882 && in_solib_dynsym_resolve_code (stop_pc))))
4883 {
4884 /* Any solib trampoline code can be handled in reverse
4885 by simply continuing to single-step. We have already
4886 executed the solib function (backwards), and a few
4887 steps will take us back through the trampoline to the
4888 caller. */
4889 keep_going (ecs);
4890 return;
4891 }
4892
4893 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4894 {
4895 /* We're doing a "next".
4896
4897 Normal (forward) execution: set a breakpoint at the
4898 callee's return address (the address at which the caller
4899 will resume).
4900
4901 Reverse (backward) execution. set the step-resume
4902 breakpoint at the start of the function that we just
4903 stepped into (backwards), and continue to there. When we
4904 get there, we'll need to single-step back to the caller. */
4905
4906 if (execution_direction == EXEC_REVERSE)
4907 {
4908 struct symtab_and_line sr_sal;
4909
4910 /* Normal function call return (static or dynamic). */
4911 init_sal (&sr_sal);
4912 sr_sal.pc = ecs->stop_func_start;
4913 sr_sal.pspace = get_frame_program_space (frame);
4914 insert_step_resume_breakpoint_at_sal (gdbarch,
4915 sr_sal, null_frame_id);
4916 }
4917 else
4918 insert_step_resume_breakpoint_at_caller (frame);
4919
4920 keep_going (ecs);
4921 return;
4922 }
4923
4924 /* If we are in a function call trampoline (a stub between the
4925 calling routine and the real function), locate the real
4926 function. That's what tells us (a) whether we want to step
4927 into it at all, and (b) what prologue we want to run to the
4928 end of, if we do step into it. */
4929 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4930 if (real_stop_pc == 0)
4931 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4932 if (real_stop_pc != 0)
4933 ecs->stop_func_start = real_stop_pc;
4934
4935 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4936 {
4937 struct symtab_and_line sr_sal;
4938
4939 init_sal (&sr_sal);
4940 sr_sal.pc = ecs->stop_func_start;
4941 sr_sal.pspace = get_frame_program_space (frame);
4942
4943 insert_step_resume_breakpoint_at_sal (gdbarch,
4944 sr_sal, null_frame_id);
4945 keep_going (ecs);
4946 return;
4947 }
4948
4949 /* If we have line number information for the function we are
4950 thinking of stepping into and the function isn't on the skip
4951 list, step into it.
4952
4953 If there are several symtabs at that PC (e.g. with include
4954 files), just want to know whether *any* of them have line
4955 numbers. find_pc_line handles this. */
4956 {
4957 struct symtab_and_line tmp_sal;
4958
4959 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4960 if (tmp_sal.line != 0
4961 && !function_pc_is_marked_for_skip (ecs->stop_func_start))
4962 {
4963 if (execution_direction == EXEC_REVERSE)
4964 handle_step_into_function_backward (gdbarch, ecs);
4965 else
4966 handle_step_into_function (gdbarch, ecs);
4967 return;
4968 }
4969 }
4970
4971 /* If we have no line number and the step-stop-if-no-debug is
4972 set, we stop the step so that the user has a chance to switch
4973 in assembly mode. */
4974 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4975 && step_stop_if_no_debug)
4976 {
4977 ecs->event_thread->control.stop_step = 1;
4978 print_end_stepping_range_reason ();
4979 stop_stepping (ecs);
4980 return;
4981 }
4982
4983 if (execution_direction == EXEC_REVERSE)
4984 {
4985 /* Set a breakpoint at callee's start address.
4986 From there we can step once and be back in the caller. */
4987 struct symtab_and_line sr_sal;
4988
4989 init_sal (&sr_sal);
4990 sr_sal.pc = ecs->stop_func_start;
4991 sr_sal.pspace = get_frame_program_space (frame);
4992 insert_step_resume_breakpoint_at_sal (gdbarch,
4993 sr_sal, null_frame_id);
4994 }
4995 else
4996 /* Set a breakpoint at callee's return address (the address
4997 at which the caller will resume). */
4998 insert_step_resume_breakpoint_at_caller (frame);
4999
5000 keep_going (ecs);
5001 return;
5002 }
5003
5004 /* Reverse stepping through solib trampolines. */
5005
5006 if (execution_direction == EXEC_REVERSE
5007 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5008 {
5009 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5010 || (ecs->stop_func_start == 0
5011 && in_solib_dynsym_resolve_code (stop_pc)))
5012 {
5013 /* Any solib trampoline code can be handled in reverse
5014 by simply continuing to single-step. We have already
5015 executed the solib function (backwards), and a few
5016 steps will take us back through the trampoline to the
5017 caller. */
5018 keep_going (ecs);
5019 return;
5020 }
5021 else if (in_solib_dynsym_resolve_code (stop_pc))
5022 {
5023 /* Stepped backward into the solib dynsym resolver.
5024 Set a breakpoint at its start and continue, then
5025 one more step will take us out. */
5026 struct symtab_and_line sr_sal;
5027
5028 init_sal (&sr_sal);
5029 sr_sal.pc = ecs->stop_func_start;
5030 sr_sal.pspace = get_frame_program_space (frame);
5031 insert_step_resume_breakpoint_at_sal (gdbarch,
5032 sr_sal, null_frame_id);
5033 keep_going (ecs);
5034 return;
5035 }
5036 }
5037
5038 stop_pc_sal = find_pc_line (stop_pc, 0);
5039
5040 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5041 the trampoline processing logic, however, there are some trampolines
5042 that have no names, so we should do trampoline handling first. */
5043 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5044 && ecs->stop_func_name == NULL
5045 && stop_pc_sal.line == 0)
5046 {
5047 if (debug_infrun)
5048 fprintf_unfiltered (gdb_stdlog,
5049 "infrun: stepped into undebuggable function\n");
5050
5051 /* The inferior just stepped into, or returned to, an
5052 undebuggable function (where there is no debugging information
5053 and no line number corresponding to the address where the
5054 inferior stopped). Since we want to skip this kind of code,
5055 we keep going until the inferior returns from this
5056 function - unless the user has asked us not to (via
5057 set step-mode) or we no longer know how to get back
5058 to the call site. */
5059 if (step_stop_if_no_debug
5060 || !frame_id_p (frame_unwind_caller_id (frame)))
5061 {
5062 /* If we have no line number and the step-stop-if-no-debug
5063 is set, we stop the step so that the user has a chance to
5064 switch in assembly mode. */
5065 ecs->event_thread->control.stop_step = 1;
5066 print_end_stepping_range_reason ();
5067 stop_stepping (ecs);
5068 return;
5069 }
5070 else
5071 {
5072 /* Set a breakpoint at callee's return address (the address
5073 at which the caller will resume). */
5074 insert_step_resume_breakpoint_at_caller (frame);
5075 keep_going (ecs);
5076 return;
5077 }
5078 }
5079
5080 if (ecs->event_thread->control.step_range_end == 1)
5081 {
5082 /* It is stepi or nexti. We always want to stop stepping after
5083 one instruction. */
5084 if (debug_infrun)
5085 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5086 ecs->event_thread->control.stop_step = 1;
5087 print_end_stepping_range_reason ();
5088 stop_stepping (ecs);
5089 return;
5090 }
5091
5092 if (stop_pc_sal.line == 0)
5093 {
5094 /* We have no line number information. That means to stop
5095 stepping (does this always happen right after one instruction,
5096 when we do "s" in a function with no line numbers,
5097 or can this happen as a result of a return or longjmp?). */
5098 if (debug_infrun)
5099 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5100 ecs->event_thread->control.stop_step = 1;
5101 print_end_stepping_range_reason ();
5102 stop_stepping (ecs);
5103 return;
5104 }
5105
5106 /* Look for "calls" to inlined functions, part one. If the inline
5107 frame machinery detected some skipped call sites, we have entered
5108 a new inline function. */
5109
5110 if (frame_id_eq (get_frame_id (get_current_frame ()),
5111 ecs->event_thread->control.step_frame_id)
5112 && inline_skipped_frames (ecs->ptid))
5113 {
5114 struct symtab_and_line call_sal;
5115
5116 if (debug_infrun)
5117 fprintf_unfiltered (gdb_stdlog,
5118 "infrun: stepped into inlined function\n");
5119
5120 find_frame_sal (get_current_frame (), &call_sal);
5121
5122 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5123 {
5124 /* For "step", we're going to stop. But if the call site
5125 for this inlined function is on the same source line as
5126 we were previously stepping, go down into the function
5127 first. Otherwise stop at the call site. */
5128
5129 if (call_sal.line == ecs->event_thread->current_line
5130 && call_sal.symtab == ecs->event_thread->current_symtab)
5131 step_into_inline_frame (ecs->ptid);
5132
5133 ecs->event_thread->control.stop_step = 1;
5134 print_end_stepping_range_reason ();
5135 stop_stepping (ecs);
5136 return;
5137 }
5138 else
5139 {
5140 /* For "next", we should stop at the call site if it is on a
5141 different source line. Otherwise continue through the
5142 inlined function. */
5143 if (call_sal.line == ecs->event_thread->current_line
5144 && call_sal.symtab == ecs->event_thread->current_symtab)
5145 keep_going (ecs);
5146 else
5147 {
5148 ecs->event_thread->control.stop_step = 1;
5149 print_end_stepping_range_reason ();
5150 stop_stepping (ecs);
5151 }
5152 return;
5153 }
5154 }
5155
5156 /* Look for "calls" to inlined functions, part two. If we are still
5157 in the same real function we were stepping through, but we have
5158 to go further up to find the exact frame ID, we are stepping
5159 through a more inlined call beyond its call site. */
5160
5161 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5162 && !frame_id_eq (get_frame_id (get_current_frame ()),
5163 ecs->event_thread->control.step_frame_id)
5164 && stepped_in_from (get_current_frame (),
5165 ecs->event_thread->control.step_frame_id))
5166 {
5167 if (debug_infrun)
5168 fprintf_unfiltered (gdb_stdlog,
5169 "infrun: stepping through inlined function\n");
5170
5171 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5172 keep_going (ecs);
5173 else
5174 {
5175 ecs->event_thread->control.stop_step = 1;
5176 print_end_stepping_range_reason ();
5177 stop_stepping (ecs);
5178 }
5179 return;
5180 }
5181
5182 if ((stop_pc == stop_pc_sal.pc)
5183 && (ecs->event_thread->current_line != stop_pc_sal.line
5184 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5185 {
5186 /* We are at the start of a different line. So stop. Note that
5187 we don't stop if we step into the middle of a different line.
5188 That is said to make things like for (;;) statements work
5189 better. */
5190 if (debug_infrun)
5191 fprintf_unfiltered (gdb_stdlog,
5192 "infrun: stepped to a different line\n");
5193 ecs->event_thread->control.stop_step = 1;
5194 print_end_stepping_range_reason ();
5195 stop_stepping (ecs);
5196 return;
5197 }
5198
5199 /* We aren't done stepping.
5200
5201 Optimize by setting the stepping range to the line.
5202 (We might not be in the original line, but if we entered a
5203 new line in mid-statement, we continue stepping. This makes
5204 things like for(;;) statements work better.) */
5205
5206 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5207 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5208 set_step_info (frame, stop_pc_sal);
5209
5210 if (debug_infrun)
5211 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5212 keep_going (ecs);
5213 }
5214
5215 /* Is thread TP in the middle of single-stepping? */
5216
5217 static int
5218 currently_stepping (struct thread_info *tp)
5219 {
5220 return ((tp->control.step_range_end
5221 && tp->control.step_resume_breakpoint == NULL)
5222 || tp->control.trap_expected
5223 || bpstat_should_step ());
5224 }
5225
5226 /* Returns true if any thread *but* the one passed in "data" is in the
5227 middle of stepping or of handling a "next". */
5228
5229 static int
5230 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5231 {
5232 if (tp == data)
5233 return 0;
5234
5235 return (tp->control.step_range_end
5236 || tp->control.trap_expected);
5237 }
5238
5239 /* Inferior has stepped into a subroutine call with source code that
5240 we should not step over. Do step to the first line of code in
5241 it. */
5242
5243 static void
5244 handle_step_into_function (struct gdbarch *gdbarch,
5245 struct execution_control_state *ecs)
5246 {
5247 struct symtab *s;
5248 struct symtab_and_line stop_func_sal, sr_sal;
5249
5250 fill_in_stop_func (gdbarch, ecs);
5251
5252 s = find_pc_symtab (stop_pc);
5253 if (s && s->language != language_asm)
5254 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5255 ecs->stop_func_start);
5256
5257 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5258 /* Use the step_resume_break to step until the end of the prologue,
5259 even if that involves jumps (as it seems to on the vax under
5260 4.2). */
5261 /* If the prologue ends in the middle of a source line, continue to
5262 the end of that source line (if it is still within the function).
5263 Otherwise, just go to end of prologue. */
5264 if (stop_func_sal.end
5265 && stop_func_sal.pc != ecs->stop_func_start
5266 && stop_func_sal.end < ecs->stop_func_end)
5267 ecs->stop_func_start = stop_func_sal.end;
5268
5269 /* Architectures which require breakpoint adjustment might not be able
5270 to place a breakpoint at the computed address. If so, the test
5271 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5272 ecs->stop_func_start to an address at which a breakpoint may be
5273 legitimately placed.
5274
5275 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5276 made, GDB will enter an infinite loop when stepping through
5277 optimized code consisting of VLIW instructions which contain
5278 subinstructions corresponding to different source lines. On
5279 FR-V, it's not permitted to place a breakpoint on any but the
5280 first subinstruction of a VLIW instruction. When a breakpoint is
5281 set, GDB will adjust the breakpoint address to the beginning of
5282 the VLIW instruction. Thus, we need to make the corresponding
5283 adjustment here when computing the stop address. */
5284
5285 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5286 {
5287 ecs->stop_func_start
5288 = gdbarch_adjust_breakpoint_address (gdbarch,
5289 ecs->stop_func_start);
5290 }
5291
5292 if (ecs->stop_func_start == stop_pc)
5293 {
5294 /* We are already there: stop now. */
5295 ecs->event_thread->control.stop_step = 1;
5296 print_end_stepping_range_reason ();
5297 stop_stepping (ecs);
5298 return;
5299 }
5300 else
5301 {
5302 /* Put the step-breakpoint there and go until there. */
5303 init_sal (&sr_sal); /* initialize to zeroes */
5304 sr_sal.pc = ecs->stop_func_start;
5305 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5306 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5307
5308 /* Do not specify what the fp should be when we stop since on
5309 some machines the prologue is where the new fp value is
5310 established. */
5311 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5312
5313 /* And make sure stepping stops right away then. */
5314 ecs->event_thread->control.step_range_end
5315 = ecs->event_thread->control.step_range_start;
5316 }
5317 keep_going (ecs);
5318 }
5319
5320 /* Inferior has stepped backward into a subroutine call with source
5321 code that we should not step over. Do step to the beginning of the
5322 last line of code in it. */
5323
5324 static void
5325 handle_step_into_function_backward (struct gdbarch *gdbarch,
5326 struct execution_control_state *ecs)
5327 {
5328 struct symtab *s;
5329 struct symtab_and_line stop_func_sal;
5330
5331 fill_in_stop_func (gdbarch, ecs);
5332
5333 s = find_pc_symtab (stop_pc);
5334 if (s && s->language != language_asm)
5335 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5336 ecs->stop_func_start);
5337
5338 stop_func_sal = find_pc_line (stop_pc, 0);
5339
5340 /* OK, we're just going to keep stepping here. */
5341 if (stop_func_sal.pc == stop_pc)
5342 {
5343 /* We're there already. Just stop stepping now. */
5344 ecs->event_thread->control.stop_step = 1;
5345 print_end_stepping_range_reason ();
5346 stop_stepping (ecs);
5347 }
5348 else
5349 {
5350 /* Else just reset the step range and keep going.
5351 No step-resume breakpoint, they don't work for
5352 epilogues, which can have multiple entry paths. */
5353 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5354 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5355 keep_going (ecs);
5356 }
5357 return;
5358 }
5359
5360 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5361 This is used to both functions and to skip over code. */
5362
5363 static void
5364 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5365 struct symtab_and_line sr_sal,
5366 struct frame_id sr_id,
5367 enum bptype sr_type)
5368 {
5369 /* There should never be more than one step-resume or longjmp-resume
5370 breakpoint per thread, so we should never be setting a new
5371 step_resume_breakpoint when one is already active. */
5372 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5373 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5374
5375 if (debug_infrun)
5376 fprintf_unfiltered (gdb_stdlog,
5377 "infrun: inserting step-resume breakpoint at %s\n",
5378 paddress (gdbarch, sr_sal.pc));
5379
5380 inferior_thread ()->control.step_resume_breakpoint
5381 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5382 }
5383
5384 void
5385 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5386 struct symtab_and_line sr_sal,
5387 struct frame_id sr_id)
5388 {
5389 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5390 sr_sal, sr_id,
5391 bp_step_resume);
5392 }
5393
5394 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5395 This is used to skip a potential signal handler.
5396
5397 This is called with the interrupted function's frame. The signal
5398 handler, when it returns, will resume the interrupted function at
5399 RETURN_FRAME.pc. */
5400
5401 static void
5402 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5403 {
5404 struct symtab_and_line sr_sal;
5405 struct gdbarch *gdbarch;
5406
5407 gdb_assert (return_frame != NULL);
5408 init_sal (&sr_sal); /* initialize to zeros */
5409
5410 gdbarch = get_frame_arch (return_frame);
5411 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5412 sr_sal.section = find_pc_overlay (sr_sal.pc);
5413 sr_sal.pspace = get_frame_program_space (return_frame);
5414
5415 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5416 get_stack_frame_id (return_frame),
5417 bp_hp_step_resume);
5418 }
5419
5420 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5421 is used to skip a function after stepping into it (for "next" or if
5422 the called function has no debugging information).
5423
5424 The current function has almost always been reached by single
5425 stepping a call or return instruction. NEXT_FRAME belongs to the
5426 current function, and the breakpoint will be set at the caller's
5427 resume address.
5428
5429 This is a separate function rather than reusing
5430 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5431 get_prev_frame, which may stop prematurely (see the implementation
5432 of frame_unwind_caller_id for an example). */
5433
5434 static void
5435 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5436 {
5437 struct symtab_and_line sr_sal;
5438 struct gdbarch *gdbarch;
5439
5440 /* We shouldn't have gotten here if we don't know where the call site
5441 is. */
5442 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5443
5444 init_sal (&sr_sal); /* initialize to zeros */
5445
5446 gdbarch = frame_unwind_caller_arch (next_frame);
5447 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5448 frame_unwind_caller_pc (next_frame));
5449 sr_sal.section = find_pc_overlay (sr_sal.pc);
5450 sr_sal.pspace = frame_unwind_program_space (next_frame);
5451
5452 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5453 frame_unwind_caller_id (next_frame));
5454 }
5455
5456 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5457 new breakpoint at the target of a jmp_buf. The handling of
5458 longjmp-resume uses the same mechanisms used for handling
5459 "step-resume" breakpoints. */
5460
5461 static void
5462 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5463 {
5464 /* There should never be more than one step-resume or longjmp-resume
5465 breakpoint per thread, so we should never be setting a new
5466 longjmp_resume_breakpoint when one is already active. */
5467 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5468
5469 if (debug_infrun)
5470 fprintf_unfiltered (gdb_stdlog,
5471 "infrun: inserting longjmp-resume breakpoint at %s\n",
5472 paddress (gdbarch, pc));
5473
5474 inferior_thread ()->control.step_resume_breakpoint =
5475 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5476 }
5477
5478 /* Insert an exception resume breakpoint. TP is the thread throwing
5479 the exception. The block B is the block of the unwinder debug hook
5480 function. FRAME is the frame corresponding to the call to this
5481 function. SYM is the symbol of the function argument holding the
5482 target PC of the exception. */
5483
5484 static void
5485 insert_exception_resume_breakpoint (struct thread_info *tp,
5486 struct block *b,
5487 struct frame_info *frame,
5488 struct symbol *sym)
5489 {
5490 volatile struct gdb_exception e;
5491
5492 /* We want to ignore errors here. */
5493 TRY_CATCH (e, RETURN_MASK_ERROR)
5494 {
5495 struct symbol *vsym;
5496 struct value *value;
5497 CORE_ADDR handler;
5498 struct breakpoint *bp;
5499
5500 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5501 value = read_var_value (vsym, frame);
5502 /* If the value was optimized out, revert to the old behavior. */
5503 if (! value_optimized_out (value))
5504 {
5505 handler = value_as_address (value);
5506
5507 if (debug_infrun)
5508 fprintf_unfiltered (gdb_stdlog,
5509 "infrun: exception resume at %lx\n",
5510 (unsigned long) handler);
5511
5512 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5513 handler, bp_exception_resume);
5514
5515 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5516 frame = NULL;
5517
5518 bp->thread = tp->num;
5519 inferior_thread ()->control.exception_resume_breakpoint = bp;
5520 }
5521 }
5522 }
5523
5524 /* A helper for check_exception_resume that sets an
5525 exception-breakpoint based on a SystemTap probe. */
5526
5527 static void
5528 insert_exception_resume_from_probe (struct thread_info *tp,
5529 const struct probe *probe,
5530 struct objfile *objfile,
5531 struct frame_info *frame)
5532 {
5533 struct value *arg_value;
5534 CORE_ADDR handler;
5535 struct breakpoint *bp;
5536
5537 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5538 if (!arg_value)
5539 return;
5540
5541 handler = value_as_address (arg_value);
5542
5543 if (debug_infrun)
5544 fprintf_unfiltered (gdb_stdlog,
5545 "infrun: exception resume at %s\n",
5546 paddress (get_objfile_arch (objfile),
5547 handler));
5548
5549 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5550 handler, bp_exception_resume);
5551 bp->thread = tp->num;
5552 inferior_thread ()->control.exception_resume_breakpoint = bp;
5553 }
5554
5555 /* This is called when an exception has been intercepted. Check to
5556 see whether the exception's destination is of interest, and if so,
5557 set an exception resume breakpoint there. */
5558
5559 static void
5560 check_exception_resume (struct execution_control_state *ecs,
5561 struct frame_info *frame)
5562 {
5563 volatile struct gdb_exception e;
5564 struct objfile *objfile;
5565 const struct probe *probe;
5566 struct symbol *func;
5567
5568 /* First see if this exception unwinding breakpoint was set via a
5569 SystemTap probe point. If so, the probe has two arguments: the
5570 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5571 set a breakpoint there. */
5572 probe = find_probe_by_pc (get_frame_pc (frame), &objfile);
5573 if (probe)
5574 {
5575 insert_exception_resume_from_probe (ecs->event_thread, probe,
5576 objfile, frame);
5577 return;
5578 }
5579
5580 func = get_frame_function (frame);
5581 if (!func)
5582 return;
5583
5584 TRY_CATCH (e, RETURN_MASK_ERROR)
5585 {
5586 struct block *b;
5587 struct block_iterator iter;
5588 struct symbol *sym;
5589 int argno = 0;
5590
5591 /* The exception breakpoint is a thread-specific breakpoint on
5592 the unwinder's debug hook, declared as:
5593
5594 void _Unwind_DebugHook (void *cfa, void *handler);
5595
5596 The CFA argument indicates the frame to which control is
5597 about to be transferred. HANDLER is the destination PC.
5598
5599 We ignore the CFA and set a temporary breakpoint at HANDLER.
5600 This is not extremely efficient but it avoids issues in gdb
5601 with computing the DWARF CFA, and it also works even in weird
5602 cases such as throwing an exception from inside a signal
5603 handler. */
5604
5605 b = SYMBOL_BLOCK_VALUE (func);
5606 ALL_BLOCK_SYMBOLS (b, iter, sym)
5607 {
5608 if (!SYMBOL_IS_ARGUMENT (sym))
5609 continue;
5610
5611 if (argno == 0)
5612 ++argno;
5613 else
5614 {
5615 insert_exception_resume_breakpoint (ecs->event_thread,
5616 b, frame, sym);
5617 break;
5618 }
5619 }
5620 }
5621 }
5622
5623 static void
5624 stop_stepping (struct execution_control_state *ecs)
5625 {
5626 if (debug_infrun)
5627 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5628
5629 /* Let callers know we don't want to wait for the inferior anymore. */
5630 ecs->wait_some_more = 0;
5631 }
5632
5633 /* This function handles various cases where we need to continue
5634 waiting for the inferior. */
5635 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5636
5637 static void
5638 keep_going (struct execution_control_state *ecs)
5639 {
5640 /* Make sure normal_stop is called if we get a QUIT handled before
5641 reaching resume. */
5642 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5643
5644 /* Save the pc before execution, to compare with pc after stop. */
5645 ecs->event_thread->prev_pc
5646 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5647
5648 /* If we did not do break;, it means we should keep running the
5649 inferior and not return to debugger. */
5650
5651 if (ecs->event_thread->control.trap_expected
5652 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5653 {
5654 /* We took a signal (which we are supposed to pass through to
5655 the inferior, else we'd not get here) and we haven't yet
5656 gotten our trap. Simply continue. */
5657
5658 discard_cleanups (old_cleanups);
5659 resume (currently_stepping (ecs->event_thread),
5660 ecs->event_thread->suspend.stop_signal);
5661 }
5662 else
5663 {
5664 /* Either the trap was not expected, but we are continuing
5665 anyway (the user asked that this signal be passed to the
5666 child)
5667 -- or --
5668 The signal was SIGTRAP, e.g. it was our signal, but we
5669 decided we should resume from it.
5670
5671 We're going to run this baby now!
5672
5673 Note that insert_breakpoints won't try to re-insert
5674 already inserted breakpoints. Therefore, we don't
5675 care if breakpoints were already inserted, or not. */
5676
5677 if (ecs->event_thread->stepping_over_breakpoint)
5678 {
5679 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5680
5681 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5682 /* Since we can't do a displaced step, we have to remove
5683 the breakpoint while we step it. To keep things
5684 simple, we remove them all. */
5685 remove_breakpoints ();
5686 }
5687 else
5688 {
5689 volatile struct gdb_exception e;
5690
5691 /* Stop stepping when inserting breakpoints
5692 has failed. */
5693 TRY_CATCH (e, RETURN_MASK_ERROR)
5694 {
5695 insert_breakpoints ();
5696 }
5697 if (e.reason < 0)
5698 {
5699 exception_print (gdb_stderr, e);
5700 stop_stepping (ecs);
5701 return;
5702 }
5703 }
5704
5705 ecs->event_thread->control.trap_expected
5706 = ecs->event_thread->stepping_over_breakpoint;
5707
5708 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5709 specifies that such a signal should be delivered to the
5710 target program).
5711
5712 Typically, this would occure when a user is debugging a
5713 target monitor on a simulator: the target monitor sets a
5714 breakpoint; the simulator encounters this break-point and
5715 halts the simulation handing control to GDB; GDB, noteing
5716 that the break-point isn't valid, returns control back to the
5717 simulator; the simulator then delivers the hardware
5718 equivalent of a SIGNAL_TRAP to the program being debugged. */
5719
5720 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5721 && !signal_program[ecs->event_thread->suspend.stop_signal])
5722 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5723
5724 discard_cleanups (old_cleanups);
5725 resume (currently_stepping (ecs->event_thread),
5726 ecs->event_thread->suspend.stop_signal);
5727 }
5728
5729 prepare_to_wait (ecs);
5730 }
5731
5732 /* This function normally comes after a resume, before
5733 handle_inferior_event exits. It takes care of any last bits of
5734 housekeeping, and sets the all-important wait_some_more flag. */
5735
5736 static void
5737 prepare_to_wait (struct execution_control_state *ecs)
5738 {
5739 if (debug_infrun)
5740 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5741
5742 /* This is the old end of the while loop. Let everybody know we
5743 want to wait for the inferior some more and get called again
5744 soon. */
5745 ecs->wait_some_more = 1;
5746 }
5747
5748 /* Several print_*_reason functions to print why the inferior has stopped.
5749 We always print something when the inferior exits, or receives a signal.
5750 The rest of the cases are dealt with later on in normal_stop and
5751 print_it_typical. Ideally there should be a call to one of these
5752 print_*_reason functions functions from handle_inferior_event each time
5753 stop_stepping is called. */
5754
5755 /* Print why the inferior has stopped.
5756 We are done with a step/next/si/ni command, print why the inferior has
5757 stopped. For now print nothing. Print a message only if not in the middle
5758 of doing a "step n" operation for n > 1. */
5759
5760 static void
5761 print_end_stepping_range_reason (void)
5762 {
5763 if ((!inferior_thread ()->step_multi
5764 || !inferior_thread ()->control.stop_step)
5765 && ui_out_is_mi_like_p (current_uiout))
5766 ui_out_field_string (current_uiout, "reason",
5767 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5768 }
5769
5770 /* The inferior was terminated by a signal, print why it stopped. */
5771
5772 static void
5773 print_signal_exited_reason (enum gdb_signal siggnal)
5774 {
5775 struct ui_out *uiout = current_uiout;
5776
5777 annotate_signalled ();
5778 if (ui_out_is_mi_like_p (uiout))
5779 ui_out_field_string
5780 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5781 ui_out_text (uiout, "\nProgram terminated with signal ");
5782 annotate_signal_name ();
5783 ui_out_field_string (uiout, "signal-name",
5784 gdb_signal_to_name (siggnal));
5785 annotate_signal_name_end ();
5786 ui_out_text (uiout, ", ");
5787 annotate_signal_string ();
5788 ui_out_field_string (uiout, "signal-meaning",
5789 gdb_signal_to_string (siggnal));
5790 annotate_signal_string_end ();
5791 ui_out_text (uiout, ".\n");
5792 ui_out_text (uiout, "The program no longer exists.\n");
5793 }
5794
5795 /* The inferior program is finished, print why it stopped. */
5796
5797 static void
5798 print_exited_reason (int exitstatus)
5799 {
5800 struct inferior *inf = current_inferior ();
5801 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5802 struct ui_out *uiout = current_uiout;
5803
5804 annotate_exited (exitstatus);
5805 if (exitstatus)
5806 {
5807 if (ui_out_is_mi_like_p (uiout))
5808 ui_out_field_string (uiout, "reason",
5809 async_reason_lookup (EXEC_ASYNC_EXITED));
5810 ui_out_text (uiout, "[Inferior ");
5811 ui_out_text (uiout, plongest (inf->num));
5812 ui_out_text (uiout, " (");
5813 ui_out_text (uiout, pidstr);
5814 ui_out_text (uiout, ") exited with code ");
5815 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5816 ui_out_text (uiout, "]\n");
5817 }
5818 else
5819 {
5820 if (ui_out_is_mi_like_p (uiout))
5821 ui_out_field_string
5822 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5823 ui_out_text (uiout, "[Inferior ");
5824 ui_out_text (uiout, plongest (inf->num));
5825 ui_out_text (uiout, " (");
5826 ui_out_text (uiout, pidstr);
5827 ui_out_text (uiout, ") exited normally]\n");
5828 }
5829 /* Support the --return-child-result option. */
5830 return_child_result_value = exitstatus;
5831 }
5832
5833 /* Signal received, print why the inferior has stopped. The signal table
5834 tells us to print about it. */
5835
5836 static void
5837 print_signal_received_reason (enum gdb_signal siggnal)
5838 {
5839 struct ui_out *uiout = current_uiout;
5840
5841 annotate_signal ();
5842
5843 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5844 {
5845 struct thread_info *t = inferior_thread ();
5846
5847 ui_out_text (uiout, "\n[");
5848 ui_out_field_string (uiout, "thread-name",
5849 target_pid_to_str (t->ptid));
5850 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5851 ui_out_text (uiout, " stopped");
5852 }
5853 else
5854 {
5855 ui_out_text (uiout, "\nProgram received signal ");
5856 annotate_signal_name ();
5857 if (ui_out_is_mi_like_p (uiout))
5858 ui_out_field_string
5859 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5860 ui_out_field_string (uiout, "signal-name",
5861 gdb_signal_to_name (siggnal));
5862 annotate_signal_name_end ();
5863 ui_out_text (uiout, ", ");
5864 annotate_signal_string ();
5865 ui_out_field_string (uiout, "signal-meaning",
5866 gdb_signal_to_string (siggnal));
5867 annotate_signal_string_end ();
5868 }
5869 ui_out_text (uiout, ".\n");
5870 }
5871
5872 /* Reverse execution: target ran out of history info, print why the inferior
5873 has stopped. */
5874
5875 static void
5876 print_no_history_reason (void)
5877 {
5878 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5879 }
5880
5881 /* Here to return control to GDB when the inferior stops for real.
5882 Print appropriate messages, remove breakpoints, give terminal our modes.
5883
5884 STOP_PRINT_FRAME nonzero means print the executing frame
5885 (pc, function, args, file, line number and line text).
5886 BREAKPOINTS_FAILED nonzero means stop was due to error
5887 attempting to insert breakpoints. */
5888
5889 void
5890 normal_stop (void)
5891 {
5892 struct target_waitstatus last;
5893 ptid_t last_ptid;
5894 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5895
5896 get_last_target_status (&last_ptid, &last);
5897
5898 /* If an exception is thrown from this point on, make sure to
5899 propagate GDB's knowledge of the executing state to the
5900 frontend/user running state. A QUIT is an easy exception to see
5901 here, so do this before any filtered output. */
5902 if (!non_stop)
5903 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5904 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5905 && last.kind != TARGET_WAITKIND_EXITED
5906 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5907 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5908
5909 /* In non-stop mode, we don't want GDB to switch threads behind the
5910 user's back, to avoid races where the user is typing a command to
5911 apply to thread x, but GDB switches to thread y before the user
5912 finishes entering the command. */
5913
5914 /* As with the notification of thread events, we want to delay
5915 notifying the user that we've switched thread context until
5916 the inferior actually stops.
5917
5918 There's no point in saying anything if the inferior has exited.
5919 Note that SIGNALLED here means "exited with a signal", not
5920 "received a signal". */
5921 if (!non_stop
5922 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5923 && target_has_execution
5924 && last.kind != TARGET_WAITKIND_SIGNALLED
5925 && last.kind != TARGET_WAITKIND_EXITED
5926 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5927 {
5928 target_terminal_ours_for_output ();
5929 printf_filtered (_("[Switching to %s]\n"),
5930 target_pid_to_str (inferior_ptid));
5931 annotate_thread_changed ();
5932 previous_inferior_ptid = inferior_ptid;
5933 }
5934
5935 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5936 {
5937 gdb_assert (sync_execution || !target_can_async_p ());
5938
5939 target_terminal_ours_for_output ();
5940 printf_filtered (_("No unwaited-for children left.\n"));
5941 }
5942
5943 if (!breakpoints_always_inserted_mode () && target_has_execution)
5944 {
5945 if (remove_breakpoints ())
5946 {
5947 target_terminal_ours_for_output ();
5948 printf_filtered (_("Cannot remove breakpoints because "
5949 "program is no longer writable.\nFurther "
5950 "execution is probably impossible.\n"));
5951 }
5952 }
5953
5954 /* If an auto-display called a function and that got a signal,
5955 delete that auto-display to avoid an infinite recursion. */
5956
5957 if (stopped_by_random_signal)
5958 disable_current_display ();
5959
5960 /* Don't print a message if in the middle of doing a "step n"
5961 operation for n > 1 */
5962 if (target_has_execution
5963 && last.kind != TARGET_WAITKIND_SIGNALLED
5964 && last.kind != TARGET_WAITKIND_EXITED
5965 && inferior_thread ()->step_multi
5966 && inferior_thread ()->control.stop_step)
5967 goto done;
5968
5969 target_terminal_ours ();
5970 async_enable_stdin ();
5971
5972 /* Set the current source location. This will also happen if we
5973 display the frame below, but the current SAL will be incorrect
5974 during a user hook-stop function. */
5975 if (has_stack_frames () && !stop_stack_dummy)
5976 set_current_sal_from_frame (get_current_frame (), 1);
5977
5978 /* Let the user/frontend see the threads as stopped. */
5979 do_cleanups (old_chain);
5980
5981 /* Look up the hook_stop and run it (CLI internally handles problem
5982 of stop_command's pre-hook not existing). */
5983 if (stop_command)
5984 catch_errors (hook_stop_stub, stop_command,
5985 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5986
5987 if (!has_stack_frames ())
5988 goto done;
5989
5990 if (last.kind == TARGET_WAITKIND_SIGNALLED
5991 || last.kind == TARGET_WAITKIND_EXITED)
5992 goto done;
5993
5994 /* Select innermost stack frame - i.e., current frame is frame 0,
5995 and current location is based on that.
5996 Don't do this on return from a stack dummy routine,
5997 or if the program has exited. */
5998
5999 if (!stop_stack_dummy)
6000 {
6001 select_frame (get_current_frame ());
6002
6003 /* Print current location without a level number, if
6004 we have changed functions or hit a breakpoint.
6005 Print source line if we have one.
6006 bpstat_print() contains the logic deciding in detail
6007 what to print, based on the event(s) that just occurred. */
6008
6009 /* If --batch-silent is enabled then there's no need to print the current
6010 source location, and to try risks causing an error message about
6011 missing source files. */
6012 if (stop_print_frame && !batch_silent)
6013 {
6014 int bpstat_ret;
6015 int source_flag;
6016 int do_frame_printing = 1;
6017 struct thread_info *tp = inferior_thread ();
6018
6019 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6020 switch (bpstat_ret)
6021 {
6022 case PRINT_UNKNOWN:
6023 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6024 (or should) carry around the function and does (or
6025 should) use that when doing a frame comparison. */
6026 if (tp->control.stop_step
6027 && frame_id_eq (tp->control.step_frame_id,
6028 get_frame_id (get_current_frame ()))
6029 && step_start_function == find_pc_function (stop_pc))
6030 source_flag = SRC_LINE; /* Finished step, just
6031 print source line. */
6032 else
6033 source_flag = SRC_AND_LOC; /* Print location and
6034 source line. */
6035 break;
6036 case PRINT_SRC_AND_LOC:
6037 source_flag = SRC_AND_LOC; /* Print location and
6038 source line. */
6039 break;
6040 case PRINT_SRC_ONLY:
6041 source_flag = SRC_LINE;
6042 break;
6043 case PRINT_NOTHING:
6044 source_flag = SRC_LINE; /* something bogus */
6045 do_frame_printing = 0;
6046 break;
6047 default:
6048 internal_error (__FILE__, __LINE__, _("Unknown value."));
6049 }
6050
6051 /* The behavior of this routine with respect to the source
6052 flag is:
6053 SRC_LINE: Print only source line
6054 LOCATION: Print only location
6055 SRC_AND_LOC: Print location and source line. */
6056 if (do_frame_printing)
6057 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
6058
6059 /* Display the auto-display expressions. */
6060 do_displays ();
6061 }
6062 }
6063
6064 /* Save the function value return registers, if we care.
6065 We might be about to restore their previous contents. */
6066 if (inferior_thread ()->control.proceed_to_finish
6067 && execution_direction != EXEC_REVERSE)
6068 {
6069 /* This should not be necessary. */
6070 if (stop_registers)
6071 regcache_xfree (stop_registers);
6072
6073 /* NB: The copy goes through to the target picking up the value of
6074 all the registers. */
6075 stop_registers = regcache_dup (get_current_regcache ());
6076 }
6077
6078 if (stop_stack_dummy == STOP_STACK_DUMMY)
6079 {
6080 /* Pop the empty frame that contains the stack dummy.
6081 This also restores inferior state prior to the call
6082 (struct infcall_suspend_state). */
6083 struct frame_info *frame = get_current_frame ();
6084
6085 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6086 frame_pop (frame);
6087 /* frame_pop() calls reinit_frame_cache as the last thing it
6088 does which means there's currently no selected frame. We
6089 don't need to re-establish a selected frame if the dummy call
6090 returns normally, that will be done by
6091 restore_infcall_control_state. However, we do have to handle
6092 the case where the dummy call is returning after being
6093 stopped (e.g. the dummy call previously hit a breakpoint).
6094 We can't know which case we have so just always re-establish
6095 a selected frame here. */
6096 select_frame (get_current_frame ());
6097 }
6098
6099 done:
6100 annotate_stopped ();
6101
6102 /* Suppress the stop observer if we're in the middle of:
6103
6104 - a step n (n > 1), as there still more steps to be done.
6105
6106 - a "finish" command, as the observer will be called in
6107 finish_command_continuation, so it can include the inferior
6108 function's return value.
6109
6110 - calling an inferior function, as we pretend we inferior didn't
6111 run at all. The return value of the call is handled by the
6112 expression evaluator, through call_function_by_hand. */
6113
6114 if (!target_has_execution
6115 || last.kind == TARGET_WAITKIND_SIGNALLED
6116 || last.kind == TARGET_WAITKIND_EXITED
6117 || last.kind == TARGET_WAITKIND_NO_RESUMED
6118 || (!(inferior_thread ()->step_multi
6119 && inferior_thread ()->control.stop_step)
6120 && !(inferior_thread ()->control.stop_bpstat
6121 && inferior_thread ()->control.proceed_to_finish)
6122 && !inferior_thread ()->control.in_infcall))
6123 {
6124 if (!ptid_equal (inferior_ptid, null_ptid))
6125 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6126 stop_print_frame);
6127 else
6128 observer_notify_normal_stop (NULL, stop_print_frame);
6129 }
6130
6131 if (target_has_execution)
6132 {
6133 if (last.kind != TARGET_WAITKIND_SIGNALLED
6134 && last.kind != TARGET_WAITKIND_EXITED)
6135 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6136 Delete any breakpoint that is to be deleted at the next stop. */
6137 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6138 }
6139
6140 /* Try to get rid of automatically added inferiors that are no
6141 longer needed. Keeping those around slows down things linearly.
6142 Note that this never removes the current inferior. */
6143 prune_inferiors ();
6144 }
6145
6146 static int
6147 hook_stop_stub (void *cmd)
6148 {
6149 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6150 return (0);
6151 }
6152 \f
6153 int
6154 signal_stop_state (int signo)
6155 {
6156 return signal_stop[signo];
6157 }
6158
6159 int
6160 signal_print_state (int signo)
6161 {
6162 return signal_print[signo];
6163 }
6164
6165 int
6166 signal_pass_state (int signo)
6167 {
6168 return signal_program[signo];
6169 }
6170
6171 static void
6172 signal_cache_update (int signo)
6173 {
6174 if (signo == -1)
6175 {
6176 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6177 signal_cache_update (signo);
6178
6179 return;
6180 }
6181
6182 signal_pass[signo] = (signal_stop[signo] == 0
6183 && signal_print[signo] == 0
6184 && signal_program[signo] == 1);
6185 }
6186
6187 int
6188 signal_stop_update (int signo, int state)
6189 {
6190 int ret = signal_stop[signo];
6191
6192 signal_stop[signo] = state;
6193 signal_cache_update (signo);
6194 return ret;
6195 }
6196
6197 int
6198 signal_print_update (int signo, int state)
6199 {
6200 int ret = signal_print[signo];
6201
6202 signal_print[signo] = state;
6203 signal_cache_update (signo);
6204 return ret;
6205 }
6206
6207 int
6208 signal_pass_update (int signo, int state)
6209 {
6210 int ret = signal_program[signo];
6211
6212 signal_program[signo] = state;
6213 signal_cache_update (signo);
6214 return ret;
6215 }
6216
6217 static void
6218 sig_print_header (void)
6219 {
6220 printf_filtered (_("Signal Stop\tPrint\tPass "
6221 "to program\tDescription\n"));
6222 }
6223
6224 static void
6225 sig_print_info (enum gdb_signal oursig)
6226 {
6227 const char *name = gdb_signal_to_name (oursig);
6228 int name_padding = 13 - strlen (name);
6229
6230 if (name_padding <= 0)
6231 name_padding = 0;
6232
6233 printf_filtered ("%s", name);
6234 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6235 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6236 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6237 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6238 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6239 }
6240
6241 /* Specify how various signals in the inferior should be handled. */
6242
6243 static void
6244 handle_command (char *args, int from_tty)
6245 {
6246 char **argv;
6247 int digits, wordlen;
6248 int sigfirst, signum, siglast;
6249 enum gdb_signal oursig;
6250 int allsigs;
6251 int nsigs;
6252 unsigned char *sigs;
6253 struct cleanup *old_chain;
6254
6255 if (args == NULL)
6256 {
6257 error_no_arg (_("signal to handle"));
6258 }
6259
6260 /* Allocate and zero an array of flags for which signals to handle. */
6261
6262 nsigs = (int) GDB_SIGNAL_LAST;
6263 sigs = (unsigned char *) alloca (nsigs);
6264 memset (sigs, 0, nsigs);
6265
6266 /* Break the command line up into args. */
6267
6268 argv = gdb_buildargv (args);
6269 old_chain = make_cleanup_freeargv (argv);
6270
6271 /* Walk through the args, looking for signal oursigs, signal names, and
6272 actions. Signal numbers and signal names may be interspersed with
6273 actions, with the actions being performed for all signals cumulatively
6274 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6275
6276 while (*argv != NULL)
6277 {
6278 wordlen = strlen (*argv);
6279 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6280 {;
6281 }
6282 allsigs = 0;
6283 sigfirst = siglast = -1;
6284
6285 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6286 {
6287 /* Apply action to all signals except those used by the
6288 debugger. Silently skip those. */
6289 allsigs = 1;
6290 sigfirst = 0;
6291 siglast = nsigs - 1;
6292 }
6293 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6294 {
6295 SET_SIGS (nsigs, sigs, signal_stop);
6296 SET_SIGS (nsigs, sigs, signal_print);
6297 }
6298 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6299 {
6300 UNSET_SIGS (nsigs, sigs, signal_program);
6301 }
6302 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6303 {
6304 SET_SIGS (nsigs, sigs, signal_print);
6305 }
6306 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6307 {
6308 SET_SIGS (nsigs, sigs, signal_program);
6309 }
6310 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6311 {
6312 UNSET_SIGS (nsigs, sigs, signal_stop);
6313 }
6314 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6315 {
6316 SET_SIGS (nsigs, sigs, signal_program);
6317 }
6318 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6319 {
6320 UNSET_SIGS (nsigs, sigs, signal_print);
6321 UNSET_SIGS (nsigs, sigs, signal_stop);
6322 }
6323 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6324 {
6325 UNSET_SIGS (nsigs, sigs, signal_program);
6326 }
6327 else if (digits > 0)
6328 {
6329 /* It is numeric. The numeric signal refers to our own
6330 internal signal numbering from target.h, not to host/target
6331 signal number. This is a feature; users really should be
6332 using symbolic names anyway, and the common ones like
6333 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6334
6335 sigfirst = siglast = (int)
6336 gdb_signal_from_command (atoi (*argv));
6337 if ((*argv)[digits] == '-')
6338 {
6339 siglast = (int)
6340 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6341 }
6342 if (sigfirst > siglast)
6343 {
6344 /* Bet he didn't figure we'd think of this case... */
6345 signum = sigfirst;
6346 sigfirst = siglast;
6347 siglast = signum;
6348 }
6349 }
6350 else
6351 {
6352 oursig = gdb_signal_from_name (*argv);
6353 if (oursig != GDB_SIGNAL_UNKNOWN)
6354 {
6355 sigfirst = siglast = (int) oursig;
6356 }
6357 else
6358 {
6359 /* Not a number and not a recognized flag word => complain. */
6360 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6361 }
6362 }
6363
6364 /* If any signal numbers or symbol names were found, set flags for
6365 which signals to apply actions to. */
6366
6367 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6368 {
6369 switch ((enum gdb_signal) signum)
6370 {
6371 case GDB_SIGNAL_TRAP:
6372 case GDB_SIGNAL_INT:
6373 if (!allsigs && !sigs[signum])
6374 {
6375 if (query (_("%s is used by the debugger.\n\
6376 Are you sure you want to change it? "),
6377 gdb_signal_to_name ((enum gdb_signal) signum)))
6378 {
6379 sigs[signum] = 1;
6380 }
6381 else
6382 {
6383 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6384 gdb_flush (gdb_stdout);
6385 }
6386 }
6387 break;
6388 case GDB_SIGNAL_0:
6389 case GDB_SIGNAL_DEFAULT:
6390 case GDB_SIGNAL_UNKNOWN:
6391 /* Make sure that "all" doesn't print these. */
6392 break;
6393 default:
6394 sigs[signum] = 1;
6395 break;
6396 }
6397 }
6398
6399 argv++;
6400 }
6401
6402 for (signum = 0; signum < nsigs; signum++)
6403 if (sigs[signum])
6404 {
6405 signal_cache_update (-1);
6406 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6407 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6408
6409 if (from_tty)
6410 {
6411 /* Show the results. */
6412 sig_print_header ();
6413 for (; signum < nsigs; signum++)
6414 if (sigs[signum])
6415 sig_print_info (signum);
6416 }
6417
6418 break;
6419 }
6420
6421 do_cleanups (old_chain);
6422 }
6423
6424 static void
6425 xdb_handle_command (char *args, int from_tty)
6426 {
6427 char **argv;
6428 struct cleanup *old_chain;
6429
6430 if (args == NULL)
6431 error_no_arg (_("xdb command"));
6432
6433 /* Break the command line up into args. */
6434
6435 argv = gdb_buildargv (args);
6436 old_chain = make_cleanup_freeargv (argv);
6437 if (argv[1] != (char *) NULL)
6438 {
6439 char *argBuf;
6440 int bufLen;
6441
6442 bufLen = strlen (argv[0]) + 20;
6443 argBuf = (char *) xmalloc (bufLen);
6444 if (argBuf)
6445 {
6446 int validFlag = 1;
6447 enum gdb_signal oursig;
6448
6449 oursig = gdb_signal_from_name (argv[0]);
6450 memset (argBuf, 0, bufLen);
6451 if (strcmp (argv[1], "Q") == 0)
6452 sprintf (argBuf, "%s %s", argv[0], "noprint");
6453 else
6454 {
6455 if (strcmp (argv[1], "s") == 0)
6456 {
6457 if (!signal_stop[oursig])
6458 sprintf (argBuf, "%s %s", argv[0], "stop");
6459 else
6460 sprintf (argBuf, "%s %s", argv[0], "nostop");
6461 }
6462 else if (strcmp (argv[1], "i") == 0)
6463 {
6464 if (!signal_program[oursig])
6465 sprintf (argBuf, "%s %s", argv[0], "pass");
6466 else
6467 sprintf (argBuf, "%s %s", argv[0], "nopass");
6468 }
6469 else if (strcmp (argv[1], "r") == 0)
6470 {
6471 if (!signal_print[oursig])
6472 sprintf (argBuf, "%s %s", argv[0], "print");
6473 else
6474 sprintf (argBuf, "%s %s", argv[0], "noprint");
6475 }
6476 else
6477 validFlag = 0;
6478 }
6479 if (validFlag)
6480 handle_command (argBuf, from_tty);
6481 else
6482 printf_filtered (_("Invalid signal handling flag.\n"));
6483 if (argBuf)
6484 xfree (argBuf);
6485 }
6486 }
6487 do_cleanups (old_chain);
6488 }
6489
6490 enum gdb_signal
6491 gdb_signal_from_command (int num)
6492 {
6493 if (num >= 1 && num <= 15)
6494 return (enum gdb_signal) num;
6495 error (_("Only signals 1-15 are valid as numeric signals.\n\
6496 Use \"info signals\" for a list of symbolic signals."));
6497 }
6498
6499 /* Print current contents of the tables set by the handle command.
6500 It is possible we should just be printing signals actually used
6501 by the current target (but for things to work right when switching
6502 targets, all signals should be in the signal tables). */
6503
6504 static void
6505 signals_info (char *signum_exp, int from_tty)
6506 {
6507 enum gdb_signal oursig;
6508
6509 sig_print_header ();
6510
6511 if (signum_exp)
6512 {
6513 /* First see if this is a symbol name. */
6514 oursig = gdb_signal_from_name (signum_exp);
6515 if (oursig == GDB_SIGNAL_UNKNOWN)
6516 {
6517 /* No, try numeric. */
6518 oursig =
6519 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6520 }
6521 sig_print_info (oursig);
6522 return;
6523 }
6524
6525 printf_filtered ("\n");
6526 /* These ugly casts brought to you by the native VAX compiler. */
6527 for (oursig = GDB_SIGNAL_FIRST;
6528 (int) oursig < (int) GDB_SIGNAL_LAST;
6529 oursig = (enum gdb_signal) ((int) oursig + 1))
6530 {
6531 QUIT;
6532
6533 if (oursig != GDB_SIGNAL_UNKNOWN
6534 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6535 sig_print_info (oursig);
6536 }
6537
6538 printf_filtered (_("\nUse the \"handle\" command "
6539 "to change these tables.\n"));
6540 }
6541
6542 /* Check if it makes sense to read $_siginfo from the current thread
6543 at this point. If not, throw an error. */
6544
6545 static void
6546 validate_siginfo_access (void)
6547 {
6548 /* No current inferior, no siginfo. */
6549 if (ptid_equal (inferior_ptid, null_ptid))
6550 error (_("No thread selected."));
6551
6552 /* Don't try to read from a dead thread. */
6553 if (is_exited (inferior_ptid))
6554 error (_("The current thread has terminated"));
6555
6556 /* ... or from a spinning thread. */
6557 if (is_running (inferior_ptid))
6558 error (_("Selected thread is running."));
6559 }
6560
6561 /* The $_siginfo convenience variable is a bit special. We don't know
6562 for sure the type of the value until we actually have a chance to
6563 fetch the data. The type can change depending on gdbarch, so it is
6564 also dependent on which thread you have selected.
6565
6566 1. making $_siginfo be an internalvar that creates a new value on
6567 access.
6568
6569 2. making the value of $_siginfo be an lval_computed value. */
6570
6571 /* This function implements the lval_computed support for reading a
6572 $_siginfo value. */
6573
6574 static void
6575 siginfo_value_read (struct value *v)
6576 {
6577 LONGEST transferred;
6578
6579 validate_siginfo_access ();
6580
6581 transferred =
6582 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6583 NULL,
6584 value_contents_all_raw (v),
6585 value_offset (v),
6586 TYPE_LENGTH (value_type (v)));
6587
6588 if (transferred != TYPE_LENGTH (value_type (v)))
6589 error (_("Unable to read siginfo"));
6590 }
6591
6592 /* This function implements the lval_computed support for writing a
6593 $_siginfo value. */
6594
6595 static void
6596 siginfo_value_write (struct value *v, struct value *fromval)
6597 {
6598 LONGEST transferred;
6599
6600 validate_siginfo_access ();
6601
6602 transferred = target_write (&current_target,
6603 TARGET_OBJECT_SIGNAL_INFO,
6604 NULL,
6605 value_contents_all_raw (fromval),
6606 value_offset (v),
6607 TYPE_LENGTH (value_type (fromval)));
6608
6609 if (transferred != TYPE_LENGTH (value_type (fromval)))
6610 error (_("Unable to write siginfo"));
6611 }
6612
6613 static const struct lval_funcs siginfo_value_funcs =
6614 {
6615 siginfo_value_read,
6616 siginfo_value_write
6617 };
6618
6619 /* Return a new value with the correct type for the siginfo object of
6620 the current thread using architecture GDBARCH. Return a void value
6621 if there's no object available. */
6622
6623 static struct value *
6624 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6625 void *ignore)
6626 {
6627 if (target_has_stack
6628 && !ptid_equal (inferior_ptid, null_ptid)
6629 && gdbarch_get_siginfo_type_p (gdbarch))
6630 {
6631 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6632
6633 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6634 }
6635
6636 return allocate_value (builtin_type (gdbarch)->builtin_void);
6637 }
6638
6639 \f
6640 /* infcall_suspend_state contains state about the program itself like its
6641 registers and any signal it received when it last stopped.
6642 This state must be restored regardless of how the inferior function call
6643 ends (either successfully, or after it hits a breakpoint or signal)
6644 if the program is to properly continue where it left off. */
6645
6646 struct infcall_suspend_state
6647 {
6648 struct thread_suspend_state thread_suspend;
6649 struct inferior_suspend_state inferior_suspend;
6650
6651 /* Other fields: */
6652 CORE_ADDR stop_pc;
6653 struct regcache *registers;
6654
6655 /* Format of SIGINFO_DATA or NULL if it is not present. */
6656 struct gdbarch *siginfo_gdbarch;
6657
6658 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6659 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6660 content would be invalid. */
6661 gdb_byte *siginfo_data;
6662 };
6663
6664 struct infcall_suspend_state *
6665 save_infcall_suspend_state (void)
6666 {
6667 struct infcall_suspend_state *inf_state;
6668 struct thread_info *tp = inferior_thread ();
6669 struct inferior *inf = current_inferior ();
6670 struct regcache *regcache = get_current_regcache ();
6671 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6672 gdb_byte *siginfo_data = NULL;
6673
6674 if (gdbarch_get_siginfo_type_p (gdbarch))
6675 {
6676 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6677 size_t len = TYPE_LENGTH (type);
6678 struct cleanup *back_to;
6679
6680 siginfo_data = xmalloc (len);
6681 back_to = make_cleanup (xfree, siginfo_data);
6682
6683 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6684 siginfo_data, 0, len) == len)
6685 discard_cleanups (back_to);
6686 else
6687 {
6688 /* Errors ignored. */
6689 do_cleanups (back_to);
6690 siginfo_data = NULL;
6691 }
6692 }
6693
6694 inf_state = XZALLOC (struct infcall_suspend_state);
6695
6696 if (siginfo_data)
6697 {
6698 inf_state->siginfo_gdbarch = gdbarch;
6699 inf_state->siginfo_data = siginfo_data;
6700 }
6701
6702 inf_state->thread_suspend = tp->suspend;
6703 inf_state->inferior_suspend = inf->suspend;
6704
6705 /* run_inferior_call will not use the signal due to its `proceed' call with
6706 GDB_SIGNAL_0 anyway. */
6707 tp->suspend.stop_signal = GDB_SIGNAL_0;
6708
6709 inf_state->stop_pc = stop_pc;
6710
6711 inf_state->registers = regcache_dup (regcache);
6712
6713 return inf_state;
6714 }
6715
6716 /* Restore inferior session state to INF_STATE. */
6717
6718 void
6719 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6720 {
6721 struct thread_info *tp = inferior_thread ();
6722 struct inferior *inf = current_inferior ();
6723 struct regcache *regcache = get_current_regcache ();
6724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6725
6726 tp->suspend = inf_state->thread_suspend;
6727 inf->suspend = inf_state->inferior_suspend;
6728
6729 stop_pc = inf_state->stop_pc;
6730
6731 if (inf_state->siginfo_gdbarch == gdbarch)
6732 {
6733 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6734 size_t len = TYPE_LENGTH (type);
6735
6736 /* Errors ignored. */
6737 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6738 inf_state->siginfo_data, 0, len);
6739 }
6740
6741 /* The inferior can be gone if the user types "print exit(0)"
6742 (and perhaps other times). */
6743 if (target_has_execution)
6744 /* NB: The register write goes through to the target. */
6745 regcache_cpy (regcache, inf_state->registers);
6746
6747 discard_infcall_suspend_state (inf_state);
6748 }
6749
6750 static void
6751 do_restore_infcall_suspend_state_cleanup (void *state)
6752 {
6753 restore_infcall_suspend_state (state);
6754 }
6755
6756 struct cleanup *
6757 make_cleanup_restore_infcall_suspend_state
6758 (struct infcall_suspend_state *inf_state)
6759 {
6760 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6761 }
6762
6763 void
6764 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6765 {
6766 regcache_xfree (inf_state->registers);
6767 xfree (inf_state->siginfo_data);
6768 xfree (inf_state);
6769 }
6770
6771 struct regcache *
6772 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6773 {
6774 return inf_state->registers;
6775 }
6776
6777 /* infcall_control_state contains state regarding gdb's control of the
6778 inferior itself like stepping control. It also contains session state like
6779 the user's currently selected frame. */
6780
6781 struct infcall_control_state
6782 {
6783 struct thread_control_state thread_control;
6784 struct inferior_control_state inferior_control;
6785
6786 /* Other fields: */
6787 enum stop_stack_kind stop_stack_dummy;
6788 int stopped_by_random_signal;
6789 int stop_after_trap;
6790
6791 /* ID if the selected frame when the inferior function call was made. */
6792 struct frame_id selected_frame_id;
6793 };
6794
6795 /* Save all of the information associated with the inferior<==>gdb
6796 connection. */
6797
6798 struct infcall_control_state *
6799 save_infcall_control_state (void)
6800 {
6801 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6802 struct thread_info *tp = inferior_thread ();
6803 struct inferior *inf = current_inferior ();
6804
6805 inf_status->thread_control = tp->control;
6806 inf_status->inferior_control = inf->control;
6807
6808 tp->control.step_resume_breakpoint = NULL;
6809 tp->control.exception_resume_breakpoint = NULL;
6810
6811 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6812 chain. If caller's caller is walking the chain, they'll be happier if we
6813 hand them back the original chain when restore_infcall_control_state is
6814 called. */
6815 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6816
6817 /* Other fields: */
6818 inf_status->stop_stack_dummy = stop_stack_dummy;
6819 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6820 inf_status->stop_after_trap = stop_after_trap;
6821
6822 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6823
6824 return inf_status;
6825 }
6826
6827 static int
6828 restore_selected_frame (void *args)
6829 {
6830 struct frame_id *fid = (struct frame_id *) args;
6831 struct frame_info *frame;
6832
6833 frame = frame_find_by_id (*fid);
6834
6835 /* If inf_status->selected_frame_id is NULL, there was no previously
6836 selected frame. */
6837 if (frame == NULL)
6838 {
6839 warning (_("Unable to restore previously selected frame."));
6840 return 0;
6841 }
6842
6843 select_frame (frame);
6844
6845 return (1);
6846 }
6847
6848 /* Restore inferior session state to INF_STATUS. */
6849
6850 void
6851 restore_infcall_control_state (struct infcall_control_state *inf_status)
6852 {
6853 struct thread_info *tp = inferior_thread ();
6854 struct inferior *inf = current_inferior ();
6855
6856 if (tp->control.step_resume_breakpoint)
6857 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6858
6859 if (tp->control.exception_resume_breakpoint)
6860 tp->control.exception_resume_breakpoint->disposition
6861 = disp_del_at_next_stop;
6862
6863 /* Handle the bpstat_copy of the chain. */
6864 bpstat_clear (&tp->control.stop_bpstat);
6865
6866 tp->control = inf_status->thread_control;
6867 inf->control = inf_status->inferior_control;
6868
6869 /* Other fields: */
6870 stop_stack_dummy = inf_status->stop_stack_dummy;
6871 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6872 stop_after_trap = inf_status->stop_after_trap;
6873
6874 if (target_has_stack)
6875 {
6876 /* The point of catch_errors is that if the stack is clobbered,
6877 walking the stack might encounter a garbage pointer and
6878 error() trying to dereference it. */
6879 if (catch_errors
6880 (restore_selected_frame, &inf_status->selected_frame_id,
6881 "Unable to restore previously selected frame:\n",
6882 RETURN_MASK_ERROR) == 0)
6883 /* Error in restoring the selected frame. Select the innermost
6884 frame. */
6885 select_frame (get_current_frame ());
6886 }
6887
6888 xfree (inf_status);
6889 }
6890
6891 static void
6892 do_restore_infcall_control_state_cleanup (void *sts)
6893 {
6894 restore_infcall_control_state (sts);
6895 }
6896
6897 struct cleanup *
6898 make_cleanup_restore_infcall_control_state
6899 (struct infcall_control_state *inf_status)
6900 {
6901 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6902 }
6903
6904 void
6905 discard_infcall_control_state (struct infcall_control_state *inf_status)
6906 {
6907 if (inf_status->thread_control.step_resume_breakpoint)
6908 inf_status->thread_control.step_resume_breakpoint->disposition
6909 = disp_del_at_next_stop;
6910
6911 if (inf_status->thread_control.exception_resume_breakpoint)
6912 inf_status->thread_control.exception_resume_breakpoint->disposition
6913 = disp_del_at_next_stop;
6914
6915 /* See save_infcall_control_state for info on stop_bpstat. */
6916 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6917
6918 xfree (inf_status);
6919 }
6920 \f
6921 int
6922 ptid_match (ptid_t ptid, ptid_t filter)
6923 {
6924 if (ptid_equal (filter, minus_one_ptid))
6925 return 1;
6926 if (ptid_is_pid (filter)
6927 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6928 return 1;
6929 else if (ptid_equal (ptid, filter))
6930 return 1;
6931
6932 return 0;
6933 }
6934
6935 /* restore_inferior_ptid() will be used by the cleanup machinery
6936 to restore the inferior_ptid value saved in a call to
6937 save_inferior_ptid(). */
6938
6939 static void
6940 restore_inferior_ptid (void *arg)
6941 {
6942 ptid_t *saved_ptid_ptr = arg;
6943
6944 inferior_ptid = *saved_ptid_ptr;
6945 xfree (arg);
6946 }
6947
6948 /* Save the value of inferior_ptid so that it may be restored by a
6949 later call to do_cleanups(). Returns the struct cleanup pointer
6950 needed for later doing the cleanup. */
6951
6952 struct cleanup *
6953 save_inferior_ptid (void)
6954 {
6955 ptid_t *saved_ptid_ptr;
6956
6957 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6958 *saved_ptid_ptr = inferior_ptid;
6959 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6960 }
6961 \f
6962
6963 /* User interface for reverse debugging:
6964 Set exec-direction / show exec-direction commands
6965 (returns error unless target implements to_set_exec_direction method). */
6966
6967 int execution_direction = EXEC_FORWARD;
6968 static const char exec_forward[] = "forward";
6969 static const char exec_reverse[] = "reverse";
6970 static const char *exec_direction = exec_forward;
6971 static const char *const exec_direction_names[] = {
6972 exec_forward,
6973 exec_reverse,
6974 NULL
6975 };
6976
6977 static void
6978 set_exec_direction_func (char *args, int from_tty,
6979 struct cmd_list_element *cmd)
6980 {
6981 if (target_can_execute_reverse)
6982 {
6983 if (!strcmp (exec_direction, exec_forward))
6984 execution_direction = EXEC_FORWARD;
6985 else if (!strcmp (exec_direction, exec_reverse))
6986 execution_direction = EXEC_REVERSE;
6987 }
6988 else
6989 {
6990 exec_direction = exec_forward;
6991 error (_("Target does not support this operation."));
6992 }
6993 }
6994
6995 static void
6996 show_exec_direction_func (struct ui_file *out, int from_tty,
6997 struct cmd_list_element *cmd, const char *value)
6998 {
6999 switch (execution_direction) {
7000 case EXEC_FORWARD:
7001 fprintf_filtered (out, _("Forward.\n"));
7002 break;
7003 case EXEC_REVERSE:
7004 fprintf_filtered (out, _("Reverse.\n"));
7005 break;
7006 default:
7007 internal_error (__FILE__, __LINE__,
7008 _("bogus execution_direction value: %d"),
7009 (int) execution_direction);
7010 }
7011 }
7012
7013 /* User interface for non-stop mode. */
7014
7015 int non_stop = 0;
7016
7017 static void
7018 set_non_stop (char *args, int from_tty,
7019 struct cmd_list_element *c)
7020 {
7021 if (target_has_execution)
7022 {
7023 non_stop_1 = non_stop;
7024 error (_("Cannot change this setting while the inferior is running."));
7025 }
7026
7027 non_stop = non_stop_1;
7028 }
7029
7030 static void
7031 show_non_stop (struct ui_file *file, int from_tty,
7032 struct cmd_list_element *c, const char *value)
7033 {
7034 fprintf_filtered (file,
7035 _("Controlling the inferior in non-stop mode is %s.\n"),
7036 value);
7037 }
7038
7039 static void
7040 show_schedule_multiple (struct ui_file *file, int from_tty,
7041 struct cmd_list_element *c, const char *value)
7042 {
7043 fprintf_filtered (file, _("Resuming the execution of threads "
7044 "of all processes is %s.\n"), value);
7045 }
7046
7047 /* Implementation of `siginfo' variable. */
7048
7049 static const struct internalvar_funcs siginfo_funcs =
7050 {
7051 siginfo_make_value,
7052 NULL,
7053 NULL
7054 };
7055
7056 void
7057 _initialize_infrun (void)
7058 {
7059 int i;
7060 int numsigs;
7061
7062 add_info ("signals", signals_info, _("\
7063 What debugger does when program gets various signals.\n\
7064 Specify a signal as argument to print info on that signal only."));
7065 add_info_alias ("handle", "signals", 0);
7066
7067 add_com ("handle", class_run, handle_command, _("\
7068 Specify how to handle a signal.\n\
7069 Args are signals and actions to apply to those signals.\n\
7070 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7071 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7072 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7073 The special arg \"all\" is recognized to mean all signals except those\n\
7074 used by the debugger, typically SIGTRAP and SIGINT.\n\
7075 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7076 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7077 Stop means reenter debugger if this signal happens (implies print).\n\
7078 Print means print a message if this signal happens.\n\
7079 Pass means let program see this signal; otherwise program doesn't know.\n\
7080 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7081 Pass and Stop may be combined."));
7082 if (xdb_commands)
7083 {
7084 add_com ("lz", class_info, signals_info, _("\
7085 What debugger does when program gets various signals.\n\
7086 Specify a signal as argument to print info on that signal only."));
7087 add_com ("z", class_run, xdb_handle_command, _("\
7088 Specify how to handle a signal.\n\
7089 Args are signals and actions to apply to those signals.\n\
7090 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7091 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7092 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7093 The special arg \"all\" is recognized to mean all signals except those\n\
7094 used by the debugger, typically SIGTRAP and SIGINT.\n\
7095 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7096 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7097 nopass), \"Q\" (noprint)\n\
7098 Stop means reenter debugger if this signal happens (implies print).\n\
7099 Print means print a message if this signal happens.\n\
7100 Pass means let program see this signal; otherwise program doesn't know.\n\
7101 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7102 Pass and Stop may be combined."));
7103 }
7104
7105 if (!dbx_commands)
7106 stop_command = add_cmd ("stop", class_obscure,
7107 not_just_help_class_command, _("\
7108 There is no `stop' command, but you can set a hook on `stop'.\n\
7109 This allows you to set a list of commands to be run each time execution\n\
7110 of the program stops."), &cmdlist);
7111
7112 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7113 Set inferior debugging."), _("\
7114 Show inferior debugging."), _("\
7115 When non-zero, inferior specific debugging is enabled."),
7116 NULL,
7117 show_debug_infrun,
7118 &setdebuglist, &showdebuglist);
7119
7120 add_setshow_boolean_cmd ("displaced", class_maintenance,
7121 &debug_displaced, _("\
7122 Set displaced stepping debugging."), _("\
7123 Show displaced stepping debugging."), _("\
7124 When non-zero, displaced stepping specific debugging is enabled."),
7125 NULL,
7126 show_debug_displaced,
7127 &setdebuglist, &showdebuglist);
7128
7129 add_setshow_boolean_cmd ("non-stop", no_class,
7130 &non_stop_1, _("\
7131 Set whether gdb controls the inferior in non-stop mode."), _("\
7132 Show whether gdb controls the inferior in non-stop mode."), _("\
7133 When debugging a multi-threaded program and this setting is\n\
7134 off (the default, also called all-stop mode), when one thread stops\n\
7135 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7136 all other threads in the program while you interact with the thread of\n\
7137 interest. When you continue or step a thread, you can allow the other\n\
7138 threads to run, or have them remain stopped, but while you inspect any\n\
7139 thread's state, all threads stop.\n\
7140 \n\
7141 In non-stop mode, when one thread stops, other threads can continue\n\
7142 to run freely. You'll be able to step each thread independently,\n\
7143 leave it stopped or free to run as needed."),
7144 set_non_stop,
7145 show_non_stop,
7146 &setlist,
7147 &showlist);
7148
7149 numsigs = (int) GDB_SIGNAL_LAST;
7150 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7151 signal_print = (unsigned char *)
7152 xmalloc (sizeof (signal_print[0]) * numsigs);
7153 signal_program = (unsigned char *)
7154 xmalloc (sizeof (signal_program[0]) * numsigs);
7155 signal_pass = (unsigned char *)
7156 xmalloc (sizeof (signal_program[0]) * numsigs);
7157 for (i = 0; i < numsigs; i++)
7158 {
7159 signal_stop[i] = 1;
7160 signal_print[i] = 1;
7161 signal_program[i] = 1;
7162 }
7163
7164 /* Signals caused by debugger's own actions
7165 should not be given to the program afterwards. */
7166 signal_program[GDB_SIGNAL_TRAP] = 0;
7167 signal_program[GDB_SIGNAL_INT] = 0;
7168
7169 /* Signals that are not errors should not normally enter the debugger. */
7170 signal_stop[GDB_SIGNAL_ALRM] = 0;
7171 signal_print[GDB_SIGNAL_ALRM] = 0;
7172 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7173 signal_print[GDB_SIGNAL_VTALRM] = 0;
7174 signal_stop[GDB_SIGNAL_PROF] = 0;
7175 signal_print[GDB_SIGNAL_PROF] = 0;
7176 signal_stop[GDB_SIGNAL_CHLD] = 0;
7177 signal_print[GDB_SIGNAL_CHLD] = 0;
7178 signal_stop[GDB_SIGNAL_IO] = 0;
7179 signal_print[GDB_SIGNAL_IO] = 0;
7180 signal_stop[GDB_SIGNAL_POLL] = 0;
7181 signal_print[GDB_SIGNAL_POLL] = 0;
7182 signal_stop[GDB_SIGNAL_URG] = 0;
7183 signal_print[GDB_SIGNAL_URG] = 0;
7184 signal_stop[GDB_SIGNAL_WINCH] = 0;
7185 signal_print[GDB_SIGNAL_WINCH] = 0;
7186 signal_stop[GDB_SIGNAL_PRIO] = 0;
7187 signal_print[GDB_SIGNAL_PRIO] = 0;
7188
7189 /* These signals are used internally by user-level thread
7190 implementations. (See signal(5) on Solaris.) Like the above
7191 signals, a healthy program receives and handles them as part of
7192 its normal operation. */
7193 signal_stop[GDB_SIGNAL_LWP] = 0;
7194 signal_print[GDB_SIGNAL_LWP] = 0;
7195 signal_stop[GDB_SIGNAL_WAITING] = 0;
7196 signal_print[GDB_SIGNAL_WAITING] = 0;
7197 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7198 signal_print[GDB_SIGNAL_CANCEL] = 0;
7199
7200 /* Update cached state. */
7201 signal_cache_update (-1);
7202
7203 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7204 &stop_on_solib_events, _("\
7205 Set stopping for shared library events."), _("\
7206 Show stopping for shared library events."), _("\
7207 If nonzero, gdb will give control to the user when the dynamic linker\n\
7208 notifies gdb of shared library events. The most common event of interest\n\
7209 to the user would be loading/unloading of a new library."),
7210 NULL,
7211 show_stop_on_solib_events,
7212 &setlist, &showlist);
7213
7214 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7215 follow_fork_mode_kind_names,
7216 &follow_fork_mode_string, _("\
7217 Set debugger response to a program call of fork or vfork."), _("\
7218 Show debugger response to a program call of fork or vfork."), _("\
7219 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7220 parent - the original process is debugged after a fork\n\
7221 child - the new process is debugged after a fork\n\
7222 The unfollowed process will continue to run.\n\
7223 By default, the debugger will follow the parent process."),
7224 NULL,
7225 show_follow_fork_mode_string,
7226 &setlist, &showlist);
7227
7228 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7229 follow_exec_mode_names,
7230 &follow_exec_mode_string, _("\
7231 Set debugger response to a program call of exec."), _("\
7232 Show debugger response to a program call of exec."), _("\
7233 An exec call replaces the program image of a process.\n\
7234 \n\
7235 follow-exec-mode can be:\n\
7236 \n\
7237 new - the debugger creates a new inferior and rebinds the process\n\
7238 to this new inferior. The program the process was running before\n\
7239 the exec call can be restarted afterwards by restarting the original\n\
7240 inferior.\n\
7241 \n\
7242 same - the debugger keeps the process bound to the same inferior.\n\
7243 The new executable image replaces the previous executable loaded in\n\
7244 the inferior. Restarting the inferior after the exec call restarts\n\
7245 the executable the process was running after the exec call.\n\
7246 \n\
7247 By default, the debugger will use the same inferior."),
7248 NULL,
7249 show_follow_exec_mode_string,
7250 &setlist, &showlist);
7251
7252 add_setshow_enum_cmd ("scheduler-locking", class_run,
7253 scheduler_enums, &scheduler_mode, _("\
7254 Set mode for locking scheduler during execution."), _("\
7255 Show mode for locking scheduler during execution."), _("\
7256 off == no locking (threads may preempt at any time)\n\
7257 on == full locking (no thread except the current thread may run)\n\
7258 step == scheduler locked during every single-step operation.\n\
7259 In this mode, no other thread may run during a step command.\n\
7260 Other threads may run while stepping over a function call ('next')."),
7261 set_schedlock_func, /* traps on target vector */
7262 show_scheduler_mode,
7263 &setlist, &showlist);
7264
7265 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7266 Set mode for resuming threads of all processes."), _("\
7267 Show mode for resuming threads of all processes."), _("\
7268 When on, execution commands (such as 'continue' or 'next') resume all\n\
7269 threads of all processes. When off (which is the default), execution\n\
7270 commands only resume the threads of the current process. The set of\n\
7271 threads that are resumed is further refined by the scheduler-locking\n\
7272 mode (see help set scheduler-locking)."),
7273 NULL,
7274 show_schedule_multiple,
7275 &setlist, &showlist);
7276
7277 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7278 Set mode of the step operation."), _("\
7279 Show mode of the step operation."), _("\
7280 When set, doing a step over a function without debug line information\n\
7281 will stop at the first instruction of that function. Otherwise, the\n\
7282 function is skipped and the step command stops at a different source line."),
7283 NULL,
7284 show_step_stop_if_no_debug,
7285 &setlist, &showlist);
7286
7287 add_setshow_enum_cmd ("displaced-stepping", class_run,
7288 can_use_displaced_stepping_enum,
7289 &can_use_displaced_stepping, _("\
7290 Set debugger's willingness to use displaced stepping."), _("\
7291 Show debugger's willingness to use displaced stepping."), _("\
7292 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7293 supported by the target architecture. If off, gdb will not use displaced\n\
7294 stepping to step over breakpoints, even if such is supported by the target\n\
7295 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7296 if the target architecture supports it and non-stop mode is active, but will not\n\
7297 use it in all-stop mode (see help set non-stop)."),
7298 NULL,
7299 show_can_use_displaced_stepping,
7300 &setlist, &showlist);
7301
7302 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7303 &exec_direction, _("Set direction of execution.\n\
7304 Options are 'forward' or 'reverse'."),
7305 _("Show direction of execution (forward/reverse)."),
7306 _("Tells gdb whether to execute forward or backward."),
7307 set_exec_direction_func, show_exec_direction_func,
7308 &setlist, &showlist);
7309
7310 /* Set/show detach-on-fork: user-settable mode. */
7311
7312 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7313 Set whether gdb will detach the child of a fork."), _("\
7314 Show whether gdb will detach the child of a fork."), _("\
7315 Tells gdb whether to detach the child of a fork."),
7316 NULL, NULL, &setlist, &showlist);
7317
7318 /* Set/show disable address space randomization mode. */
7319
7320 add_setshow_boolean_cmd ("disable-randomization", class_support,
7321 &disable_randomization, _("\
7322 Set disabling of debuggee's virtual address space randomization."), _("\
7323 Show disabling of debuggee's virtual address space randomization."), _("\
7324 When this mode is on (which is the default), randomization of the virtual\n\
7325 address space is disabled. Standalone programs run with the randomization\n\
7326 enabled by default on some platforms."),
7327 &set_disable_randomization,
7328 &show_disable_randomization,
7329 &setlist, &showlist);
7330
7331 /* ptid initializations */
7332 inferior_ptid = null_ptid;
7333 target_last_wait_ptid = minus_one_ptid;
7334
7335 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7336 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7337 observer_attach_thread_exit (infrun_thread_thread_exit);
7338 observer_attach_inferior_exit (infrun_inferior_exit);
7339
7340 /* Explicitly create without lookup, since that tries to create a
7341 value with a void typed value, and when we get here, gdbarch
7342 isn't initialized yet. At this point, we're quite sure there
7343 isn't another convenience variable of the same name. */
7344 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7345
7346 add_setshow_boolean_cmd ("observer", no_class,
7347 &observer_mode_1, _("\
7348 Set whether gdb controls the inferior in observer mode."), _("\
7349 Show whether gdb controls the inferior in observer mode."), _("\
7350 In observer mode, GDB can get data from the inferior, but not\n\
7351 affect its execution. Registers and memory may not be changed,\n\
7352 breakpoints may not be set, and the program cannot be interrupted\n\
7353 or signalled."),
7354 set_observer_mode,
7355 show_observer_mode,
7356 &setlist,
7357 &showlist);
7358 }