Always process target events in the main UI
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2016 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67
68 /* Prototypes for local functions */
69
70 static void signals_info (char *, int);
71
72 static void handle_command (char *, int);
73
74 static void sig_print_info (enum gdb_signal);
75
76 static void sig_print_header (void);
77
78 static void resume_cleanups (void *);
79
80 static int hook_stop_stub (void *);
81
82 static int restore_selected_frame (void *);
83
84 static int follow_fork (void);
85
86 static int follow_fork_inferior (int follow_child, int detach_fork);
87
88 static void follow_inferior_reset_breakpoints (void);
89
90 static void set_schedlock_func (char *args, int from_tty,
91 struct cmd_list_element *c);
92
93 static int currently_stepping (struct thread_info *tp);
94
95 void _initialize_infrun (void);
96
97 void nullify_last_target_wait_ptid (void);
98
99 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
100
101 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
103 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
105 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
107 /* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109 static struct async_event_handler *infrun_async_inferior_event_token;
110
111 /* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113 static int infrun_is_async = -1;
114
115 /* See infrun.h. */
116
117 void
118 infrun_async (int enable)
119 {
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134 }
135
136 /* See infrun.h. */
137
138 void
139 mark_infrun_async_event_handler (void)
140 {
141 mark_async_event_handler (infrun_async_inferior_event_token);
142 }
143
144 /* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147 int step_stop_if_no_debug = 0;
148 static void
149 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153 }
154
155 /* In asynchronous mode, but simulating synchronous execution. */
156
157 int sync_execution = 0;
158
159 /* proceed and normal_stop use this to notify the user when the
160 inferior stopped in a different thread than it had been running
161 in. */
162
163 static ptid_t previous_inferior_ptid;
164
165 /* If set (default for legacy reasons), when following a fork, GDB
166 will detach from one of the fork branches, child or parent.
167 Exactly which branch is detached depends on 'set follow-fork-mode'
168 setting. */
169
170 static int detach_fork = 1;
171
172 int debug_displaced = 0;
173 static void
174 show_debug_displaced (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176 {
177 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
178 }
179
180 unsigned int debug_infrun = 0;
181 static void
182 show_debug_infrun (struct ui_file *file, int from_tty,
183 struct cmd_list_element *c, const char *value)
184 {
185 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
186 }
187
188
189 /* Support for disabling address space randomization. */
190
191 int disable_randomization = 1;
192
193 static void
194 show_disable_randomization (struct ui_file *file, int from_tty,
195 struct cmd_list_element *c, const char *value)
196 {
197 if (target_supports_disable_randomization ())
198 fprintf_filtered (file,
199 _("Disabling randomization of debuggee's "
200 "virtual address space is %s.\n"),
201 value);
202 else
203 fputs_filtered (_("Disabling randomization of debuggee's "
204 "virtual address space is unsupported on\n"
205 "this platform.\n"), file);
206 }
207
208 static void
209 set_disable_randomization (char *args, int from_tty,
210 struct cmd_list_element *c)
211 {
212 if (!target_supports_disable_randomization ())
213 error (_("Disabling randomization of debuggee's "
214 "virtual address space is unsupported on\n"
215 "this platform."));
216 }
217
218 /* User interface for non-stop mode. */
219
220 int non_stop = 0;
221 static int non_stop_1 = 0;
222
223 static void
224 set_non_stop (char *args, int from_tty,
225 struct cmd_list_element *c)
226 {
227 if (target_has_execution)
228 {
229 non_stop_1 = non_stop;
230 error (_("Cannot change this setting while the inferior is running."));
231 }
232
233 non_stop = non_stop_1;
234 }
235
236 static void
237 show_non_stop (struct ui_file *file, int from_tty,
238 struct cmd_list_element *c, const char *value)
239 {
240 fprintf_filtered (file,
241 _("Controlling the inferior in non-stop mode is %s.\n"),
242 value);
243 }
244
245 /* "Observer mode" is somewhat like a more extreme version of
246 non-stop, in which all GDB operations that might affect the
247 target's execution have been disabled. */
248
249 int observer_mode = 0;
250 static int observer_mode_1 = 0;
251
252 static void
253 set_observer_mode (char *args, int from_tty,
254 struct cmd_list_element *c)
255 {
256 if (target_has_execution)
257 {
258 observer_mode_1 = observer_mode;
259 error (_("Cannot change this setting while the inferior is running."));
260 }
261
262 observer_mode = observer_mode_1;
263
264 may_write_registers = !observer_mode;
265 may_write_memory = !observer_mode;
266 may_insert_breakpoints = !observer_mode;
267 may_insert_tracepoints = !observer_mode;
268 /* We can insert fast tracepoints in or out of observer mode,
269 but enable them if we're going into this mode. */
270 if (observer_mode)
271 may_insert_fast_tracepoints = 1;
272 may_stop = !observer_mode;
273 update_target_permissions ();
274
275 /* Going *into* observer mode we must force non-stop, then
276 going out we leave it that way. */
277 if (observer_mode)
278 {
279 pagination_enabled = 0;
280 non_stop = non_stop_1 = 1;
281 }
282
283 if (from_tty)
284 printf_filtered (_("Observer mode is now %s.\n"),
285 (observer_mode ? "on" : "off"));
286 }
287
288 static void
289 show_observer_mode (struct ui_file *file, int from_tty,
290 struct cmd_list_element *c, const char *value)
291 {
292 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
293 }
294
295 /* This updates the value of observer mode based on changes in
296 permissions. Note that we are deliberately ignoring the values of
297 may-write-registers and may-write-memory, since the user may have
298 reason to enable these during a session, for instance to turn on a
299 debugging-related global. */
300
301 void
302 update_observer_mode (void)
303 {
304 int newval;
305
306 newval = (!may_insert_breakpoints
307 && !may_insert_tracepoints
308 && may_insert_fast_tracepoints
309 && !may_stop
310 && non_stop);
311
312 /* Let the user know if things change. */
313 if (newval != observer_mode)
314 printf_filtered (_("Observer mode is now %s.\n"),
315 (newval ? "on" : "off"));
316
317 observer_mode = observer_mode_1 = newval;
318 }
319
320 /* Tables of how to react to signals; the user sets them. */
321
322 static unsigned char *signal_stop;
323 static unsigned char *signal_print;
324 static unsigned char *signal_program;
325
326 /* Table of signals that are registered with "catch signal". A
327 non-zero entry indicates that the signal is caught by some "catch
328 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
329 signals. */
330 static unsigned char *signal_catch;
331
332 /* Table of signals that the target may silently handle.
333 This is automatically determined from the flags above,
334 and simply cached here. */
335 static unsigned char *signal_pass;
336
337 #define SET_SIGS(nsigs,sigs,flags) \
338 do { \
339 int signum = (nsigs); \
340 while (signum-- > 0) \
341 if ((sigs)[signum]) \
342 (flags)[signum] = 1; \
343 } while (0)
344
345 #define UNSET_SIGS(nsigs,sigs,flags) \
346 do { \
347 int signum = (nsigs); \
348 while (signum-- > 0) \
349 if ((sigs)[signum]) \
350 (flags)[signum] = 0; \
351 } while (0)
352
353 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
354 this function is to avoid exporting `signal_program'. */
355
356 void
357 update_signals_program_target (void)
358 {
359 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
360 }
361
362 /* Value to pass to target_resume() to cause all threads to resume. */
363
364 #define RESUME_ALL minus_one_ptid
365
366 /* Command list pointer for the "stop" placeholder. */
367
368 static struct cmd_list_element *stop_command;
369
370 /* Nonzero if we want to give control to the user when we're notified
371 of shared library events by the dynamic linker. */
372 int stop_on_solib_events;
373
374 /* Enable or disable optional shared library event breakpoints
375 as appropriate when the above flag is changed. */
376
377 static void
378 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
379 {
380 update_solib_breakpoints ();
381 }
382
383 static void
384 show_stop_on_solib_events (struct ui_file *file, int from_tty,
385 struct cmd_list_element *c, const char *value)
386 {
387 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
388 value);
389 }
390
391 /* Nonzero after stop if current stack frame should be printed. */
392
393 static int stop_print_frame;
394
395 /* This is a cached copy of the pid/waitstatus of the last event
396 returned by target_wait()/deprecated_target_wait_hook(). This
397 information is returned by get_last_target_status(). */
398 static ptid_t target_last_wait_ptid;
399 static struct target_waitstatus target_last_waitstatus;
400
401 static void context_switch (ptid_t ptid);
402
403 void init_thread_stepping_state (struct thread_info *tss);
404
405 static const char follow_fork_mode_child[] = "child";
406 static const char follow_fork_mode_parent[] = "parent";
407
408 static const char *const follow_fork_mode_kind_names[] = {
409 follow_fork_mode_child,
410 follow_fork_mode_parent,
411 NULL
412 };
413
414 static const char *follow_fork_mode_string = follow_fork_mode_parent;
415 static void
416 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
417 struct cmd_list_element *c, const char *value)
418 {
419 fprintf_filtered (file,
420 _("Debugger response to a program "
421 "call of fork or vfork is \"%s\".\n"),
422 value);
423 }
424 \f
425
426 /* Handle changes to the inferior list based on the type of fork,
427 which process is being followed, and whether the other process
428 should be detached. On entry inferior_ptid must be the ptid of
429 the fork parent. At return inferior_ptid is the ptid of the
430 followed inferior. */
431
432 static int
433 follow_fork_inferior (int follow_child, int detach_fork)
434 {
435 int has_vforked;
436 ptid_t parent_ptid, child_ptid;
437
438 has_vforked = (inferior_thread ()->pending_follow.kind
439 == TARGET_WAITKIND_VFORKED);
440 parent_ptid = inferior_ptid;
441 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
442
443 if (has_vforked
444 && !non_stop /* Non-stop always resumes both branches. */
445 && (!target_is_async_p () || sync_execution)
446 && !(follow_child || detach_fork || sched_multi))
447 {
448 /* The parent stays blocked inside the vfork syscall until the
449 child execs or exits. If we don't let the child run, then
450 the parent stays blocked. If we're telling the parent to run
451 in the foreground, the user will not be able to ctrl-c to get
452 back the terminal, effectively hanging the debug session. */
453 fprintf_filtered (gdb_stderr, _("\
454 Can not resume the parent process over vfork in the foreground while\n\
455 holding the child stopped. Try \"set detach-on-fork\" or \
456 \"set schedule-multiple\".\n"));
457 /* FIXME output string > 80 columns. */
458 return 1;
459 }
460
461 if (!follow_child)
462 {
463 /* Detach new forked process? */
464 if (detach_fork)
465 {
466 /* Before detaching from the child, remove all breakpoints
467 from it. If we forked, then this has already been taken
468 care of by infrun.c. If we vforked however, any
469 breakpoint inserted in the parent is visible in the
470 child, even those added while stopped in a vfork
471 catchpoint. This will remove the breakpoints from the
472 parent also, but they'll be reinserted below. */
473 if (has_vforked)
474 {
475 /* Keep breakpoints list in sync. */
476 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
477 }
478
479 if (info_verbose || debug_infrun)
480 {
481 /* Ensure that we have a process ptid. */
482 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
483
484 target_terminal_ours_for_output ();
485 fprintf_filtered (gdb_stdlog,
486 _("Detaching after %s from child %s.\n"),
487 has_vforked ? "vfork" : "fork",
488 target_pid_to_str (process_ptid));
489 }
490 }
491 else
492 {
493 struct inferior *parent_inf, *child_inf;
494 struct cleanup *old_chain;
495
496 /* Add process to GDB's tables. */
497 child_inf = add_inferior (ptid_get_pid (child_ptid));
498
499 parent_inf = current_inferior ();
500 child_inf->attach_flag = parent_inf->attach_flag;
501 copy_terminal_info (child_inf, parent_inf);
502 child_inf->gdbarch = parent_inf->gdbarch;
503 copy_inferior_target_desc_info (child_inf, parent_inf);
504
505 old_chain = save_inferior_ptid ();
506 save_current_program_space ();
507
508 inferior_ptid = child_ptid;
509 add_thread (inferior_ptid);
510 child_inf->symfile_flags = SYMFILE_NO_READ;
511
512 /* If this is a vfork child, then the address-space is
513 shared with the parent. */
514 if (has_vforked)
515 {
516 child_inf->pspace = parent_inf->pspace;
517 child_inf->aspace = parent_inf->aspace;
518
519 /* The parent will be frozen until the child is done
520 with the shared region. Keep track of the
521 parent. */
522 child_inf->vfork_parent = parent_inf;
523 child_inf->pending_detach = 0;
524 parent_inf->vfork_child = child_inf;
525 parent_inf->pending_detach = 0;
526 }
527 else
528 {
529 child_inf->aspace = new_address_space ();
530 child_inf->pspace = add_program_space (child_inf->aspace);
531 child_inf->removable = 1;
532 set_current_program_space (child_inf->pspace);
533 clone_program_space (child_inf->pspace, parent_inf->pspace);
534
535 /* Let the shared library layer (e.g., solib-svr4) learn
536 about this new process, relocate the cloned exec, pull
537 in shared libraries, and install the solib event
538 breakpoint. If a "cloned-VM" event was propagated
539 better throughout the core, this wouldn't be
540 required. */
541 solib_create_inferior_hook (0);
542 }
543
544 do_cleanups (old_chain);
545 }
546
547 if (has_vforked)
548 {
549 struct inferior *parent_inf;
550
551 parent_inf = current_inferior ();
552
553 /* If we detached from the child, then we have to be careful
554 to not insert breakpoints in the parent until the child
555 is done with the shared memory region. However, if we're
556 staying attached to the child, then we can and should
557 insert breakpoints, so that we can debug it. A
558 subsequent child exec or exit is enough to know when does
559 the child stops using the parent's address space. */
560 parent_inf->waiting_for_vfork_done = detach_fork;
561 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
562 }
563 }
564 else
565 {
566 /* Follow the child. */
567 struct inferior *parent_inf, *child_inf;
568 struct program_space *parent_pspace;
569
570 if (info_verbose || debug_infrun)
571 {
572 target_terminal_ours_for_output ();
573 fprintf_filtered (gdb_stdlog,
574 _("Attaching after %s %s to child %s.\n"),
575 target_pid_to_str (parent_ptid),
576 has_vforked ? "vfork" : "fork",
577 target_pid_to_str (child_ptid));
578 }
579
580 /* Add the new inferior first, so that the target_detach below
581 doesn't unpush the target. */
582
583 child_inf = add_inferior (ptid_get_pid (child_ptid));
584
585 parent_inf = current_inferior ();
586 child_inf->attach_flag = parent_inf->attach_flag;
587 copy_terminal_info (child_inf, parent_inf);
588 child_inf->gdbarch = parent_inf->gdbarch;
589 copy_inferior_target_desc_info (child_inf, parent_inf);
590
591 parent_pspace = parent_inf->pspace;
592
593 /* If we're vforking, we want to hold on to the parent until the
594 child exits or execs. At child exec or exit time we can
595 remove the old breakpoints from the parent and detach or
596 resume debugging it. Otherwise, detach the parent now; we'll
597 want to reuse it's program/address spaces, but we can't set
598 them to the child before removing breakpoints from the
599 parent, otherwise, the breakpoints module could decide to
600 remove breakpoints from the wrong process (since they'd be
601 assigned to the same address space). */
602
603 if (has_vforked)
604 {
605 gdb_assert (child_inf->vfork_parent == NULL);
606 gdb_assert (parent_inf->vfork_child == NULL);
607 child_inf->vfork_parent = parent_inf;
608 child_inf->pending_detach = 0;
609 parent_inf->vfork_child = child_inf;
610 parent_inf->pending_detach = detach_fork;
611 parent_inf->waiting_for_vfork_done = 0;
612 }
613 else if (detach_fork)
614 {
615 if (info_verbose || debug_infrun)
616 {
617 /* Ensure that we have a process ptid. */
618 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
619
620 target_terminal_ours_for_output ();
621 fprintf_filtered (gdb_stdlog,
622 _("Detaching after fork from "
623 "child %s.\n"),
624 target_pid_to_str (process_ptid));
625 }
626
627 target_detach (NULL, 0);
628 }
629
630 /* Note that the detach above makes PARENT_INF dangling. */
631
632 /* Add the child thread to the appropriate lists, and switch to
633 this new thread, before cloning the program space, and
634 informing the solib layer about this new process. */
635
636 inferior_ptid = child_ptid;
637 add_thread (inferior_ptid);
638
639 /* If this is a vfork child, then the address-space is shared
640 with the parent. If we detached from the parent, then we can
641 reuse the parent's program/address spaces. */
642 if (has_vforked || detach_fork)
643 {
644 child_inf->pspace = parent_pspace;
645 child_inf->aspace = child_inf->pspace->aspace;
646 }
647 else
648 {
649 child_inf->aspace = new_address_space ();
650 child_inf->pspace = add_program_space (child_inf->aspace);
651 child_inf->removable = 1;
652 child_inf->symfile_flags = SYMFILE_NO_READ;
653 set_current_program_space (child_inf->pspace);
654 clone_program_space (child_inf->pspace, parent_pspace);
655
656 /* Let the shared library layer (e.g., solib-svr4) learn
657 about this new process, relocate the cloned exec, pull in
658 shared libraries, and install the solib event breakpoint.
659 If a "cloned-VM" event was propagated better throughout
660 the core, this wouldn't be required. */
661 solib_create_inferior_hook (0);
662 }
663 }
664
665 return target_follow_fork (follow_child, detach_fork);
666 }
667
668 /* Tell the target to follow the fork we're stopped at. Returns true
669 if the inferior should be resumed; false, if the target for some
670 reason decided it's best not to resume. */
671
672 static int
673 follow_fork (void)
674 {
675 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
676 int should_resume = 1;
677 struct thread_info *tp;
678
679 /* Copy user stepping state to the new inferior thread. FIXME: the
680 followed fork child thread should have a copy of most of the
681 parent thread structure's run control related fields, not just these.
682 Initialized to avoid "may be used uninitialized" warnings from gcc. */
683 struct breakpoint *step_resume_breakpoint = NULL;
684 struct breakpoint *exception_resume_breakpoint = NULL;
685 CORE_ADDR step_range_start = 0;
686 CORE_ADDR step_range_end = 0;
687 struct frame_id step_frame_id = { 0 };
688 struct interp *command_interp = NULL;
689
690 if (!non_stop)
691 {
692 ptid_t wait_ptid;
693 struct target_waitstatus wait_status;
694
695 /* Get the last target status returned by target_wait(). */
696 get_last_target_status (&wait_ptid, &wait_status);
697
698 /* If not stopped at a fork event, then there's nothing else to
699 do. */
700 if (wait_status.kind != TARGET_WAITKIND_FORKED
701 && wait_status.kind != TARGET_WAITKIND_VFORKED)
702 return 1;
703
704 /* Check if we switched over from WAIT_PTID, since the event was
705 reported. */
706 if (!ptid_equal (wait_ptid, minus_one_ptid)
707 && !ptid_equal (inferior_ptid, wait_ptid))
708 {
709 /* We did. Switch back to WAIT_PTID thread, to tell the
710 target to follow it (in either direction). We'll
711 afterwards refuse to resume, and inform the user what
712 happened. */
713 switch_to_thread (wait_ptid);
714 should_resume = 0;
715 }
716 }
717
718 tp = inferior_thread ();
719
720 /* If there were any forks/vforks that were caught and are now to be
721 followed, then do so now. */
722 switch (tp->pending_follow.kind)
723 {
724 case TARGET_WAITKIND_FORKED:
725 case TARGET_WAITKIND_VFORKED:
726 {
727 ptid_t parent, child;
728
729 /* If the user did a next/step, etc, over a fork call,
730 preserve the stepping state in the fork child. */
731 if (follow_child && should_resume)
732 {
733 step_resume_breakpoint = clone_momentary_breakpoint
734 (tp->control.step_resume_breakpoint);
735 step_range_start = tp->control.step_range_start;
736 step_range_end = tp->control.step_range_end;
737 step_frame_id = tp->control.step_frame_id;
738 exception_resume_breakpoint
739 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
740 command_interp = tp->control.command_interp;
741
742 /* For now, delete the parent's sr breakpoint, otherwise,
743 parent/child sr breakpoints are considered duplicates,
744 and the child version will not be installed. Remove
745 this when the breakpoints module becomes aware of
746 inferiors and address spaces. */
747 delete_step_resume_breakpoint (tp);
748 tp->control.step_range_start = 0;
749 tp->control.step_range_end = 0;
750 tp->control.step_frame_id = null_frame_id;
751 delete_exception_resume_breakpoint (tp);
752 tp->control.command_interp = NULL;
753 }
754
755 parent = inferior_ptid;
756 child = tp->pending_follow.value.related_pid;
757
758 /* Set up inferior(s) as specified by the caller, and tell the
759 target to do whatever is necessary to follow either parent
760 or child. */
761 if (follow_fork_inferior (follow_child, detach_fork))
762 {
763 /* Target refused to follow, or there's some other reason
764 we shouldn't resume. */
765 should_resume = 0;
766 }
767 else
768 {
769 /* This pending follow fork event is now handled, one way
770 or another. The previous selected thread may be gone
771 from the lists by now, but if it is still around, need
772 to clear the pending follow request. */
773 tp = find_thread_ptid (parent);
774 if (tp)
775 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
776
777 /* This makes sure we don't try to apply the "Switched
778 over from WAIT_PID" logic above. */
779 nullify_last_target_wait_ptid ();
780
781 /* If we followed the child, switch to it... */
782 if (follow_child)
783 {
784 switch_to_thread (child);
785
786 /* ... and preserve the stepping state, in case the
787 user was stepping over the fork call. */
788 if (should_resume)
789 {
790 tp = inferior_thread ();
791 tp->control.step_resume_breakpoint
792 = step_resume_breakpoint;
793 tp->control.step_range_start = step_range_start;
794 tp->control.step_range_end = step_range_end;
795 tp->control.step_frame_id = step_frame_id;
796 tp->control.exception_resume_breakpoint
797 = exception_resume_breakpoint;
798 tp->control.command_interp = command_interp;
799 }
800 else
801 {
802 /* If we get here, it was because we're trying to
803 resume from a fork catchpoint, but, the user
804 has switched threads away from the thread that
805 forked. In that case, the resume command
806 issued is most likely not applicable to the
807 child, so just warn, and refuse to resume. */
808 warning (_("Not resuming: switched threads "
809 "before following fork child."));
810 }
811
812 /* Reset breakpoints in the child as appropriate. */
813 follow_inferior_reset_breakpoints ();
814 }
815 else
816 switch_to_thread (parent);
817 }
818 }
819 break;
820 case TARGET_WAITKIND_SPURIOUS:
821 /* Nothing to follow. */
822 break;
823 default:
824 internal_error (__FILE__, __LINE__,
825 "Unexpected pending_follow.kind %d\n",
826 tp->pending_follow.kind);
827 break;
828 }
829
830 return should_resume;
831 }
832
833 static void
834 follow_inferior_reset_breakpoints (void)
835 {
836 struct thread_info *tp = inferior_thread ();
837
838 /* Was there a step_resume breakpoint? (There was if the user
839 did a "next" at the fork() call.) If so, explicitly reset its
840 thread number. Cloned step_resume breakpoints are disabled on
841 creation, so enable it here now that it is associated with the
842 correct thread.
843
844 step_resumes are a form of bp that are made to be per-thread.
845 Since we created the step_resume bp when the parent process
846 was being debugged, and now are switching to the child process,
847 from the breakpoint package's viewpoint, that's a switch of
848 "threads". We must update the bp's notion of which thread
849 it is for, or it'll be ignored when it triggers. */
850
851 if (tp->control.step_resume_breakpoint)
852 {
853 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
854 tp->control.step_resume_breakpoint->loc->enabled = 1;
855 }
856
857 /* Treat exception_resume breakpoints like step_resume breakpoints. */
858 if (tp->control.exception_resume_breakpoint)
859 {
860 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
861 tp->control.exception_resume_breakpoint->loc->enabled = 1;
862 }
863
864 /* Reinsert all breakpoints in the child. The user may have set
865 breakpoints after catching the fork, in which case those
866 were never set in the child, but only in the parent. This makes
867 sure the inserted breakpoints match the breakpoint list. */
868
869 breakpoint_re_set ();
870 insert_breakpoints ();
871 }
872
873 /* The child has exited or execed: resume threads of the parent the
874 user wanted to be executing. */
875
876 static int
877 proceed_after_vfork_done (struct thread_info *thread,
878 void *arg)
879 {
880 int pid = * (int *) arg;
881
882 if (ptid_get_pid (thread->ptid) == pid
883 && is_running (thread->ptid)
884 && !is_executing (thread->ptid)
885 && !thread->stop_requested
886 && thread->suspend.stop_signal == GDB_SIGNAL_0)
887 {
888 if (debug_infrun)
889 fprintf_unfiltered (gdb_stdlog,
890 "infrun: resuming vfork parent thread %s\n",
891 target_pid_to_str (thread->ptid));
892
893 switch_to_thread (thread->ptid);
894 clear_proceed_status (0);
895 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
896 }
897
898 return 0;
899 }
900
901 /* Called whenever we notice an exec or exit event, to handle
902 detaching or resuming a vfork parent. */
903
904 static void
905 handle_vfork_child_exec_or_exit (int exec)
906 {
907 struct inferior *inf = current_inferior ();
908
909 if (inf->vfork_parent)
910 {
911 int resume_parent = -1;
912
913 /* This exec or exit marks the end of the shared memory region
914 between the parent and the child. If the user wanted to
915 detach from the parent, now is the time. */
916
917 if (inf->vfork_parent->pending_detach)
918 {
919 struct thread_info *tp;
920 struct cleanup *old_chain;
921 struct program_space *pspace;
922 struct address_space *aspace;
923
924 /* follow-fork child, detach-on-fork on. */
925
926 inf->vfork_parent->pending_detach = 0;
927
928 if (!exec)
929 {
930 /* If we're handling a child exit, then inferior_ptid
931 points at the inferior's pid, not to a thread. */
932 old_chain = save_inferior_ptid ();
933 save_current_program_space ();
934 save_current_inferior ();
935 }
936 else
937 old_chain = save_current_space_and_thread ();
938
939 /* We're letting loose of the parent. */
940 tp = any_live_thread_of_process (inf->vfork_parent->pid);
941 switch_to_thread (tp->ptid);
942
943 /* We're about to detach from the parent, which implicitly
944 removes breakpoints from its address space. There's a
945 catch here: we want to reuse the spaces for the child,
946 but, parent/child are still sharing the pspace at this
947 point, although the exec in reality makes the kernel give
948 the child a fresh set of new pages. The problem here is
949 that the breakpoints module being unaware of this, would
950 likely chose the child process to write to the parent
951 address space. Swapping the child temporarily away from
952 the spaces has the desired effect. Yes, this is "sort
953 of" a hack. */
954
955 pspace = inf->pspace;
956 aspace = inf->aspace;
957 inf->aspace = NULL;
958 inf->pspace = NULL;
959
960 if (debug_infrun || info_verbose)
961 {
962 target_terminal_ours_for_output ();
963
964 if (exec)
965 {
966 fprintf_filtered (gdb_stdlog,
967 _("Detaching vfork parent process "
968 "%d after child exec.\n"),
969 inf->vfork_parent->pid);
970 }
971 else
972 {
973 fprintf_filtered (gdb_stdlog,
974 _("Detaching vfork parent process "
975 "%d after child exit.\n"),
976 inf->vfork_parent->pid);
977 }
978 }
979
980 target_detach (NULL, 0);
981
982 /* Put it back. */
983 inf->pspace = pspace;
984 inf->aspace = aspace;
985
986 do_cleanups (old_chain);
987 }
988 else if (exec)
989 {
990 /* We're staying attached to the parent, so, really give the
991 child a new address space. */
992 inf->pspace = add_program_space (maybe_new_address_space ());
993 inf->aspace = inf->pspace->aspace;
994 inf->removable = 1;
995 set_current_program_space (inf->pspace);
996
997 resume_parent = inf->vfork_parent->pid;
998
999 /* Break the bonds. */
1000 inf->vfork_parent->vfork_child = NULL;
1001 }
1002 else
1003 {
1004 struct cleanup *old_chain;
1005 struct program_space *pspace;
1006
1007 /* If this is a vfork child exiting, then the pspace and
1008 aspaces were shared with the parent. Since we're
1009 reporting the process exit, we'll be mourning all that is
1010 found in the address space, and switching to null_ptid,
1011 preparing to start a new inferior. But, since we don't
1012 want to clobber the parent's address/program spaces, we
1013 go ahead and create a new one for this exiting
1014 inferior. */
1015
1016 /* Switch to null_ptid, so that clone_program_space doesn't want
1017 to read the selected frame of a dead process. */
1018 old_chain = save_inferior_ptid ();
1019 inferior_ptid = null_ptid;
1020
1021 /* This inferior is dead, so avoid giving the breakpoints
1022 module the option to write through to it (cloning a
1023 program space resets breakpoints). */
1024 inf->aspace = NULL;
1025 inf->pspace = NULL;
1026 pspace = add_program_space (maybe_new_address_space ());
1027 set_current_program_space (pspace);
1028 inf->removable = 1;
1029 inf->symfile_flags = SYMFILE_NO_READ;
1030 clone_program_space (pspace, inf->vfork_parent->pspace);
1031 inf->pspace = pspace;
1032 inf->aspace = pspace->aspace;
1033
1034 /* Put back inferior_ptid. We'll continue mourning this
1035 inferior. */
1036 do_cleanups (old_chain);
1037
1038 resume_parent = inf->vfork_parent->pid;
1039 /* Break the bonds. */
1040 inf->vfork_parent->vfork_child = NULL;
1041 }
1042
1043 inf->vfork_parent = NULL;
1044
1045 gdb_assert (current_program_space == inf->pspace);
1046
1047 if (non_stop && resume_parent != -1)
1048 {
1049 /* If the user wanted the parent to be running, let it go
1050 free now. */
1051 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1052
1053 if (debug_infrun)
1054 fprintf_unfiltered (gdb_stdlog,
1055 "infrun: resuming vfork parent process %d\n",
1056 resume_parent);
1057
1058 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1059
1060 do_cleanups (old_chain);
1061 }
1062 }
1063 }
1064
1065 /* Enum strings for "set|show follow-exec-mode". */
1066
1067 static const char follow_exec_mode_new[] = "new";
1068 static const char follow_exec_mode_same[] = "same";
1069 static const char *const follow_exec_mode_names[] =
1070 {
1071 follow_exec_mode_new,
1072 follow_exec_mode_same,
1073 NULL,
1074 };
1075
1076 static const char *follow_exec_mode_string = follow_exec_mode_same;
1077 static void
1078 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1079 struct cmd_list_element *c, const char *value)
1080 {
1081 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1082 }
1083
1084 /* EXECD_PATHNAME is assumed to be non-NULL. */
1085
1086 static void
1087 follow_exec (ptid_t ptid, char *execd_pathname)
1088 {
1089 struct thread_info *th, *tmp;
1090 struct inferior *inf = current_inferior ();
1091 int pid = ptid_get_pid (ptid);
1092 ptid_t process_ptid;
1093
1094 /* This is an exec event that we actually wish to pay attention to.
1095 Refresh our symbol table to the newly exec'd program, remove any
1096 momentary bp's, etc.
1097
1098 If there are breakpoints, they aren't really inserted now,
1099 since the exec() transformed our inferior into a fresh set
1100 of instructions.
1101
1102 We want to preserve symbolic breakpoints on the list, since
1103 we have hopes that they can be reset after the new a.out's
1104 symbol table is read.
1105
1106 However, any "raw" breakpoints must be removed from the list
1107 (e.g., the solib bp's), since their address is probably invalid
1108 now.
1109
1110 And, we DON'T want to call delete_breakpoints() here, since
1111 that may write the bp's "shadow contents" (the instruction
1112 value that was overwritten witha TRAP instruction). Since
1113 we now have a new a.out, those shadow contents aren't valid. */
1114
1115 mark_breakpoints_out ();
1116
1117 /* The target reports the exec event to the main thread, even if
1118 some other thread does the exec, and even if the main thread was
1119 stopped or already gone. We may still have non-leader threads of
1120 the process on our list. E.g., on targets that don't have thread
1121 exit events (like remote); or on native Linux in non-stop mode if
1122 there were only two threads in the inferior and the non-leader
1123 one is the one that execs (and nothing forces an update of the
1124 thread list up to here). When debugging remotely, it's best to
1125 avoid extra traffic, when possible, so avoid syncing the thread
1126 list with the target, and instead go ahead and delete all threads
1127 of the process but one that reported the event. Note this must
1128 be done before calling update_breakpoints_after_exec, as
1129 otherwise clearing the threads' resources would reference stale
1130 thread breakpoints -- it may have been one of these threads that
1131 stepped across the exec. We could just clear their stepping
1132 states, but as long as we're iterating, might as well delete
1133 them. Deleting them now rather than at the next user-visible
1134 stop provides a nicer sequence of events for user and MI
1135 notifications. */
1136 ALL_THREADS_SAFE (th, tmp)
1137 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1138 delete_thread (th->ptid);
1139
1140 /* We also need to clear any left over stale state for the
1141 leader/event thread. E.g., if there was any step-resume
1142 breakpoint or similar, it's gone now. We cannot truly
1143 step-to-next statement through an exec(). */
1144 th = inferior_thread ();
1145 th->control.step_resume_breakpoint = NULL;
1146 th->control.exception_resume_breakpoint = NULL;
1147 th->control.single_step_breakpoints = NULL;
1148 th->control.step_range_start = 0;
1149 th->control.step_range_end = 0;
1150
1151 /* The user may have had the main thread held stopped in the
1152 previous image (e.g., schedlock on, or non-stop). Release
1153 it now. */
1154 th->stop_requested = 0;
1155
1156 update_breakpoints_after_exec ();
1157
1158 /* What is this a.out's name? */
1159 process_ptid = pid_to_ptid (pid);
1160 printf_unfiltered (_("%s is executing new program: %s\n"),
1161 target_pid_to_str (process_ptid),
1162 execd_pathname);
1163
1164 /* We've followed the inferior through an exec. Therefore, the
1165 inferior has essentially been killed & reborn. */
1166
1167 gdb_flush (gdb_stdout);
1168
1169 breakpoint_init_inferior (inf_execd);
1170
1171 if (*gdb_sysroot != '\0')
1172 {
1173 char *name = exec_file_find (execd_pathname, NULL);
1174
1175 execd_pathname = (char *) alloca (strlen (name) + 1);
1176 strcpy (execd_pathname, name);
1177 xfree (name);
1178 }
1179
1180 /* Reset the shared library package. This ensures that we get a
1181 shlib event when the child reaches "_start", at which point the
1182 dld will have had a chance to initialize the child. */
1183 /* Also, loading a symbol file below may trigger symbol lookups, and
1184 we don't want those to be satisfied by the libraries of the
1185 previous incarnation of this process. */
1186 no_shared_libraries (NULL, 0);
1187
1188 if (follow_exec_mode_string == follow_exec_mode_new)
1189 {
1190 /* The user wants to keep the old inferior and program spaces
1191 around. Create a new fresh one, and switch to it. */
1192
1193 /* Do exit processing for the original inferior before adding
1194 the new inferior so we don't have two active inferiors with
1195 the same ptid, which can confuse find_inferior_ptid. */
1196 exit_inferior_num_silent (current_inferior ()->num);
1197
1198 inf = add_inferior_with_spaces ();
1199 inf->pid = pid;
1200 target_follow_exec (inf, execd_pathname);
1201
1202 set_current_inferior (inf);
1203 set_current_program_space (inf->pspace);
1204 add_thread (ptid);
1205 }
1206 else
1207 {
1208 /* The old description may no longer be fit for the new image.
1209 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1210 old description; we'll read a new one below. No need to do
1211 this on "follow-exec-mode new", as the old inferior stays
1212 around (its description is later cleared/refetched on
1213 restart). */
1214 target_clear_description ();
1215 }
1216
1217 gdb_assert (current_program_space == inf->pspace);
1218
1219 /* That a.out is now the one to use. */
1220 exec_file_attach (execd_pathname, 0);
1221
1222 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1223 (Position Independent Executable) main symbol file will get applied by
1224 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1225 the breakpoints with the zero displacement. */
1226
1227 symbol_file_add (execd_pathname,
1228 (inf->symfile_flags
1229 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1230 NULL, 0);
1231
1232 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1233 set_initial_language ();
1234
1235 /* If the target can specify a description, read it. Must do this
1236 after flipping to the new executable (because the target supplied
1237 description must be compatible with the executable's
1238 architecture, and the old executable may e.g., be 32-bit, while
1239 the new one 64-bit), and before anything involving memory or
1240 registers. */
1241 target_find_description ();
1242
1243 solib_create_inferior_hook (0);
1244
1245 jit_inferior_created_hook ();
1246
1247 breakpoint_re_set ();
1248
1249 /* Reinsert all breakpoints. (Those which were symbolic have
1250 been reset to the proper address in the new a.out, thanks
1251 to symbol_file_command...). */
1252 insert_breakpoints ();
1253
1254 /* The next resume of this inferior should bring it to the shlib
1255 startup breakpoints. (If the user had also set bp's on
1256 "main" from the old (parent) process, then they'll auto-
1257 matically get reset there in the new process.). */
1258 }
1259
1260 /* The queue of threads that need to do a step-over operation to get
1261 past e.g., a breakpoint. What technique is used to step over the
1262 breakpoint/watchpoint does not matter -- all threads end up in the
1263 same queue, to maintain rough temporal order of execution, in order
1264 to avoid starvation, otherwise, we could e.g., find ourselves
1265 constantly stepping the same couple threads past their breakpoints
1266 over and over, if the single-step finish fast enough. */
1267 struct thread_info *step_over_queue_head;
1268
1269 /* Bit flags indicating what the thread needs to step over. */
1270
1271 enum step_over_what_flag
1272 {
1273 /* Step over a breakpoint. */
1274 STEP_OVER_BREAKPOINT = 1,
1275
1276 /* Step past a non-continuable watchpoint, in order to let the
1277 instruction execute so we can evaluate the watchpoint
1278 expression. */
1279 STEP_OVER_WATCHPOINT = 2
1280 };
1281 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1282
1283 /* Info about an instruction that is being stepped over. */
1284
1285 struct step_over_info
1286 {
1287 /* If we're stepping past a breakpoint, this is the address space
1288 and address of the instruction the breakpoint is set at. We'll
1289 skip inserting all breakpoints here. Valid iff ASPACE is
1290 non-NULL. */
1291 struct address_space *aspace;
1292 CORE_ADDR address;
1293
1294 /* The instruction being stepped over triggers a nonsteppable
1295 watchpoint. If true, we'll skip inserting watchpoints. */
1296 int nonsteppable_watchpoint_p;
1297
1298 /* The thread's global number. */
1299 int thread;
1300 };
1301
1302 /* The step-over info of the location that is being stepped over.
1303
1304 Note that with async/breakpoint always-inserted mode, a user might
1305 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1306 being stepped over. As setting a new breakpoint inserts all
1307 breakpoints, we need to make sure the breakpoint being stepped over
1308 isn't inserted then. We do that by only clearing the step-over
1309 info when the step-over is actually finished (or aborted).
1310
1311 Presently GDB can only step over one breakpoint at any given time.
1312 Given threads that can't run code in the same address space as the
1313 breakpoint's can't really miss the breakpoint, GDB could be taught
1314 to step-over at most one breakpoint per address space (so this info
1315 could move to the address space object if/when GDB is extended).
1316 The set of breakpoints being stepped over will normally be much
1317 smaller than the set of all breakpoints, so a flag in the
1318 breakpoint location structure would be wasteful. A separate list
1319 also saves complexity and run-time, as otherwise we'd have to go
1320 through all breakpoint locations clearing their flag whenever we
1321 start a new sequence. Similar considerations weigh against storing
1322 this info in the thread object. Plus, not all step overs actually
1323 have breakpoint locations -- e.g., stepping past a single-step
1324 breakpoint, or stepping to complete a non-continuable
1325 watchpoint. */
1326 static struct step_over_info step_over_info;
1327
1328 /* Record the address of the breakpoint/instruction we're currently
1329 stepping over. */
1330
1331 static void
1332 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1333 int nonsteppable_watchpoint_p,
1334 int thread)
1335 {
1336 step_over_info.aspace = aspace;
1337 step_over_info.address = address;
1338 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1339 step_over_info.thread = thread;
1340 }
1341
1342 /* Called when we're not longer stepping over a breakpoint / an
1343 instruction, so all breakpoints are free to be (re)inserted. */
1344
1345 static void
1346 clear_step_over_info (void)
1347 {
1348 if (debug_infrun)
1349 fprintf_unfiltered (gdb_stdlog,
1350 "infrun: clear_step_over_info\n");
1351 step_over_info.aspace = NULL;
1352 step_over_info.address = 0;
1353 step_over_info.nonsteppable_watchpoint_p = 0;
1354 step_over_info.thread = -1;
1355 }
1356
1357 /* See infrun.h. */
1358
1359 int
1360 stepping_past_instruction_at (struct address_space *aspace,
1361 CORE_ADDR address)
1362 {
1363 return (step_over_info.aspace != NULL
1364 && breakpoint_address_match (aspace, address,
1365 step_over_info.aspace,
1366 step_over_info.address));
1367 }
1368
1369 /* See infrun.h. */
1370
1371 int
1372 thread_is_stepping_over_breakpoint (int thread)
1373 {
1374 return (step_over_info.thread != -1
1375 && thread == step_over_info.thread);
1376 }
1377
1378 /* See infrun.h. */
1379
1380 int
1381 stepping_past_nonsteppable_watchpoint (void)
1382 {
1383 return step_over_info.nonsteppable_watchpoint_p;
1384 }
1385
1386 /* Returns true if step-over info is valid. */
1387
1388 static int
1389 step_over_info_valid_p (void)
1390 {
1391 return (step_over_info.aspace != NULL
1392 || stepping_past_nonsteppable_watchpoint ());
1393 }
1394
1395 \f
1396 /* Displaced stepping. */
1397
1398 /* In non-stop debugging mode, we must take special care to manage
1399 breakpoints properly; in particular, the traditional strategy for
1400 stepping a thread past a breakpoint it has hit is unsuitable.
1401 'Displaced stepping' is a tactic for stepping one thread past a
1402 breakpoint it has hit while ensuring that other threads running
1403 concurrently will hit the breakpoint as they should.
1404
1405 The traditional way to step a thread T off a breakpoint in a
1406 multi-threaded program in all-stop mode is as follows:
1407
1408 a0) Initially, all threads are stopped, and breakpoints are not
1409 inserted.
1410 a1) We single-step T, leaving breakpoints uninserted.
1411 a2) We insert breakpoints, and resume all threads.
1412
1413 In non-stop debugging, however, this strategy is unsuitable: we
1414 don't want to have to stop all threads in the system in order to
1415 continue or step T past a breakpoint. Instead, we use displaced
1416 stepping:
1417
1418 n0) Initially, T is stopped, other threads are running, and
1419 breakpoints are inserted.
1420 n1) We copy the instruction "under" the breakpoint to a separate
1421 location, outside the main code stream, making any adjustments
1422 to the instruction, register, and memory state as directed by
1423 T's architecture.
1424 n2) We single-step T over the instruction at its new location.
1425 n3) We adjust the resulting register and memory state as directed
1426 by T's architecture. This includes resetting T's PC to point
1427 back into the main instruction stream.
1428 n4) We resume T.
1429
1430 This approach depends on the following gdbarch methods:
1431
1432 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1433 indicate where to copy the instruction, and how much space must
1434 be reserved there. We use these in step n1.
1435
1436 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1437 address, and makes any necessary adjustments to the instruction,
1438 register contents, and memory. We use this in step n1.
1439
1440 - gdbarch_displaced_step_fixup adjusts registers and memory after
1441 we have successfuly single-stepped the instruction, to yield the
1442 same effect the instruction would have had if we had executed it
1443 at its original address. We use this in step n3.
1444
1445 - gdbarch_displaced_step_free_closure provides cleanup.
1446
1447 The gdbarch_displaced_step_copy_insn and
1448 gdbarch_displaced_step_fixup functions must be written so that
1449 copying an instruction with gdbarch_displaced_step_copy_insn,
1450 single-stepping across the copied instruction, and then applying
1451 gdbarch_displaced_insn_fixup should have the same effects on the
1452 thread's memory and registers as stepping the instruction in place
1453 would have. Exactly which responsibilities fall to the copy and
1454 which fall to the fixup is up to the author of those functions.
1455
1456 See the comments in gdbarch.sh for details.
1457
1458 Note that displaced stepping and software single-step cannot
1459 currently be used in combination, although with some care I think
1460 they could be made to. Software single-step works by placing
1461 breakpoints on all possible subsequent instructions; if the
1462 displaced instruction is a PC-relative jump, those breakpoints
1463 could fall in very strange places --- on pages that aren't
1464 executable, or at addresses that are not proper instruction
1465 boundaries. (We do generally let other threads run while we wait
1466 to hit the software single-step breakpoint, and they might
1467 encounter such a corrupted instruction.) One way to work around
1468 this would be to have gdbarch_displaced_step_copy_insn fully
1469 simulate the effect of PC-relative instructions (and return NULL)
1470 on architectures that use software single-stepping.
1471
1472 In non-stop mode, we can have independent and simultaneous step
1473 requests, so more than one thread may need to simultaneously step
1474 over a breakpoint. The current implementation assumes there is
1475 only one scratch space per process. In this case, we have to
1476 serialize access to the scratch space. If thread A wants to step
1477 over a breakpoint, but we are currently waiting for some other
1478 thread to complete a displaced step, we leave thread A stopped and
1479 place it in the displaced_step_request_queue. Whenever a displaced
1480 step finishes, we pick the next thread in the queue and start a new
1481 displaced step operation on it. See displaced_step_prepare and
1482 displaced_step_fixup for details. */
1483
1484 /* Per-inferior displaced stepping state. */
1485 struct displaced_step_inferior_state
1486 {
1487 /* Pointer to next in linked list. */
1488 struct displaced_step_inferior_state *next;
1489
1490 /* The process this displaced step state refers to. */
1491 int pid;
1492
1493 /* True if preparing a displaced step ever failed. If so, we won't
1494 try displaced stepping for this inferior again. */
1495 int failed_before;
1496
1497 /* If this is not null_ptid, this is the thread carrying out a
1498 displaced single-step in process PID. This thread's state will
1499 require fixing up once it has completed its step. */
1500 ptid_t step_ptid;
1501
1502 /* The architecture the thread had when we stepped it. */
1503 struct gdbarch *step_gdbarch;
1504
1505 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1506 for post-step cleanup. */
1507 struct displaced_step_closure *step_closure;
1508
1509 /* The address of the original instruction, and the copy we
1510 made. */
1511 CORE_ADDR step_original, step_copy;
1512
1513 /* Saved contents of copy area. */
1514 gdb_byte *step_saved_copy;
1515 };
1516
1517 /* The list of states of processes involved in displaced stepping
1518 presently. */
1519 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1520
1521 /* Get the displaced stepping state of process PID. */
1522
1523 static struct displaced_step_inferior_state *
1524 get_displaced_stepping_state (int pid)
1525 {
1526 struct displaced_step_inferior_state *state;
1527
1528 for (state = displaced_step_inferior_states;
1529 state != NULL;
1530 state = state->next)
1531 if (state->pid == pid)
1532 return state;
1533
1534 return NULL;
1535 }
1536
1537 /* Returns true if any inferior has a thread doing a displaced
1538 step. */
1539
1540 static int
1541 displaced_step_in_progress_any_inferior (void)
1542 {
1543 struct displaced_step_inferior_state *state;
1544
1545 for (state = displaced_step_inferior_states;
1546 state != NULL;
1547 state = state->next)
1548 if (!ptid_equal (state->step_ptid, null_ptid))
1549 return 1;
1550
1551 return 0;
1552 }
1553
1554 /* Return true if thread represented by PTID is doing a displaced
1555 step. */
1556
1557 static int
1558 displaced_step_in_progress_thread (ptid_t ptid)
1559 {
1560 struct displaced_step_inferior_state *displaced;
1561
1562 gdb_assert (!ptid_equal (ptid, null_ptid));
1563
1564 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1565
1566 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1567 }
1568
1569 /* Return true if process PID has a thread doing a displaced step. */
1570
1571 static int
1572 displaced_step_in_progress (int pid)
1573 {
1574 struct displaced_step_inferior_state *displaced;
1575
1576 displaced = get_displaced_stepping_state (pid);
1577 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1578 return 1;
1579
1580 return 0;
1581 }
1582
1583 /* Add a new displaced stepping state for process PID to the displaced
1584 stepping state list, or return a pointer to an already existing
1585 entry, if it already exists. Never returns NULL. */
1586
1587 static struct displaced_step_inferior_state *
1588 add_displaced_stepping_state (int pid)
1589 {
1590 struct displaced_step_inferior_state *state;
1591
1592 for (state = displaced_step_inferior_states;
1593 state != NULL;
1594 state = state->next)
1595 if (state->pid == pid)
1596 return state;
1597
1598 state = XCNEW (struct displaced_step_inferior_state);
1599 state->pid = pid;
1600 state->next = displaced_step_inferior_states;
1601 displaced_step_inferior_states = state;
1602
1603 return state;
1604 }
1605
1606 /* If inferior is in displaced stepping, and ADDR equals to starting address
1607 of copy area, return corresponding displaced_step_closure. Otherwise,
1608 return NULL. */
1609
1610 struct displaced_step_closure*
1611 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1612 {
1613 struct displaced_step_inferior_state *displaced
1614 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1615
1616 /* If checking the mode of displaced instruction in copy area. */
1617 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1618 && (displaced->step_copy == addr))
1619 return displaced->step_closure;
1620
1621 return NULL;
1622 }
1623
1624 /* Remove the displaced stepping state of process PID. */
1625
1626 static void
1627 remove_displaced_stepping_state (int pid)
1628 {
1629 struct displaced_step_inferior_state *it, **prev_next_p;
1630
1631 gdb_assert (pid != 0);
1632
1633 it = displaced_step_inferior_states;
1634 prev_next_p = &displaced_step_inferior_states;
1635 while (it)
1636 {
1637 if (it->pid == pid)
1638 {
1639 *prev_next_p = it->next;
1640 xfree (it);
1641 return;
1642 }
1643
1644 prev_next_p = &it->next;
1645 it = *prev_next_p;
1646 }
1647 }
1648
1649 static void
1650 infrun_inferior_exit (struct inferior *inf)
1651 {
1652 remove_displaced_stepping_state (inf->pid);
1653 }
1654
1655 /* If ON, and the architecture supports it, GDB will use displaced
1656 stepping to step over breakpoints. If OFF, or if the architecture
1657 doesn't support it, GDB will instead use the traditional
1658 hold-and-step approach. If AUTO (which is the default), GDB will
1659 decide which technique to use to step over breakpoints depending on
1660 which of all-stop or non-stop mode is active --- displaced stepping
1661 in non-stop mode; hold-and-step in all-stop mode. */
1662
1663 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1664
1665 static void
1666 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1667 struct cmd_list_element *c,
1668 const char *value)
1669 {
1670 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1671 fprintf_filtered (file,
1672 _("Debugger's willingness to use displaced stepping "
1673 "to step over breakpoints is %s (currently %s).\n"),
1674 value, target_is_non_stop_p () ? "on" : "off");
1675 else
1676 fprintf_filtered (file,
1677 _("Debugger's willingness to use displaced stepping "
1678 "to step over breakpoints is %s.\n"), value);
1679 }
1680
1681 /* Return non-zero if displaced stepping can/should be used to step
1682 over breakpoints of thread TP. */
1683
1684 static int
1685 use_displaced_stepping (struct thread_info *tp)
1686 {
1687 struct regcache *regcache = get_thread_regcache (tp->ptid);
1688 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1689 struct displaced_step_inferior_state *displaced_state;
1690
1691 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1692
1693 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1694 && target_is_non_stop_p ())
1695 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1696 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1697 && find_record_target () == NULL
1698 && (displaced_state == NULL
1699 || !displaced_state->failed_before));
1700 }
1701
1702 /* Clean out any stray displaced stepping state. */
1703 static void
1704 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1705 {
1706 /* Indicate that there is no cleanup pending. */
1707 displaced->step_ptid = null_ptid;
1708
1709 if (displaced->step_closure)
1710 {
1711 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1712 displaced->step_closure);
1713 displaced->step_closure = NULL;
1714 }
1715 }
1716
1717 static void
1718 displaced_step_clear_cleanup (void *arg)
1719 {
1720 struct displaced_step_inferior_state *state
1721 = (struct displaced_step_inferior_state *) arg;
1722
1723 displaced_step_clear (state);
1724 }
1725
1726 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1727 void
1728 displaced_step_dump_bytes (struct ui_file *file,
1729 const gdb_byte *buf,
1730 size_t len)
1731 {
1732 int i;
1733
1734 for (i = 0; i < len; i++)
1735 fprintf_unfiltered (file, "%02x ", buf[i]);
1736 fputs_unfiltered ("\n", file);
1737 }
1738
1739 /* Prepare to single-step, using displaced stepping.
1740
1741 Note that we cannot use displaced stepping when we have a signal to
1742 deliver. If we have a signal to deliver and an instruction to step
1743 over, then after the step, there will be no indication from the
1744 target whether the thread entered a signal handler or ignored the
1745 signal and stepped over the instruction successfully --- both cases
1746 result in a simple SIGTRAP. In the first case we mustn't do a
1747 fixup, and in the second case we must --- but we can't tell which.
1748 Comments in the code for 'random signals' in handle_inferior_event
1749 explain how we handle this case instead.
1750
1751 Returns 1 if preparing was successful -- this thread is going to be
1752 stepped now; 0 if displaced stepping this thread got queued; or -1
1753 if this instruction can't be displaced stepped. */
1754
1755 static int
1756 displaced_step_prepare_throw (ptid_t ptid)
1757 {
1758 struct cleanup *old_cleanups, *ignore_cleanups;
1759 struct thread_info *tp = find_thread_ptid (ptid);
1760 struct regcache *regcache = get_thread_regcache (ptid);
1761 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1762 struct address_space *aspace = get_regcache_aspace (regcache);
1763 CORE_ADDR original, copy;
1764 ULONGEST len;
1765 struct displaced_step_closure *closure;
1766 struct displaced_step_inferior_state *displaced;
1767 int status;
1768
1769 /* We should never reach this function if the architecture does not
1770 support displaced stepping. */
1771 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1772
1773 /* Nor if the thread isn't meant to step over a breakpoint. */
1774 gdb_assert (tp->control.trap_expected);
1775
1776 /* Disable range stepping while executing in the scratch pad. We
1777 want a single-step even if executing the displaced instruction in
1778 the scratch buffer lands within the stepping range (e.g., a
1779 jump/branch). */
1780 tp->control.may_range_step = 0;
1781
1782 /* We have to displaced step one thread at a time, as we only have
1783 access to a single scratch space per inferior. */
1784
1785 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1786
1787 if (!ptid_equal (displaced->step_ptid, null_ptid))
1788 {
1789 /* Already waiting for a displaced step to finish. Defer this
1790 request and place in queue. */
1791
1792 if (debug_displaced)
1793 fprintf_unfiltered (gdb_stdlog,
1794 "displaced: deferring step of %s\n",
1795 target_pid_to_str (ptid));
1796
1797 thread_step_over_chain_enqueue (tp);
1798 return 0;
1799 }
1800 else
1801 {
1802 if (debug_displaced)
1803 fprintf_unfiltered (gdb_stdlog,
1804 "displaced: stepping %s now\n",
1805 target_pid_to_str (ptid));
1806 }
1807
1808 displaced_step_clear (displaced);
1809
1810 old_cleanups = save_inferior_ptid ();
1811 inferior_ptid = ptid;
1812
1813 original = regcache_read_pc (regcache);
1814
1815 copy = gdbarch_displaced_step_location (gdbarch);
1816 len = gdbarch_max_insn_length (gdbarch);
1817
1818 if (breakpoint_in_range_p (aspace, copy, len))
1819 {
1820 /* There's a breakpoint set in the scratch pad location range
1821 (which is usually around the entry point). We'd either
1822 install it before resuming, which would overwrite/corrupt the
1823 scratch pad, or if it was already inserted, this displaced
1824 step would overwrite it. The latter is OK in the sense that
1825 we already assume that no thread is going to execute the code
1826 in the scratch pad range (after initial startup) anyway, but
1827 the former is unacceptable. Simply punt and fallback to
1828 stepping over this breakpoint in-line. */
1829 if (debug_displaced)
1830 {
1831 fprintf_unfiltered (gdb_stdlog,
1832 "displaced: breakpoint set in scratch pad. "
1833 "Stepping over breakpoint in-line instead.\n");
1834 }
1835
1836 do_cleanups (old_cleanups);
1837 return -1;
1838 }
1839
1840 /* Save the original contents of the copy area. */
1841 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1842 ignore_cleanups = make_cleanup (free_current_contents,
1843 &displaced->step_saved_copy);
1844 status = target_read_memory (copy, displaced->step_saved_copy, len);
1845 if (status != 0)
1846 throw_error (MEMORY_ERROR,
1847 _("Error accessing memory address %s (%s) for "
1848 "displaced-stepping scratch space."),
1849 paddress (gdbarch, copy), safe_strerror (status));
1850 if (debug_displaced)
1851 {
1852 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1853 paddress (gdbarch, copy));
1854 displaced_step_dump_bytes (gdb_stdlog,
1855 displaced->step_saved_copy,
1856 len);
1857 };
1858
1859 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1860 original, copy, regcache);
1861 if (closure == NULL)
1862 {
1863 /* The architecture doesn't know how or want to displaced step
1864 this instruction or instruction sequence. Fallback to
1865 stepping over the breakpoint in-line. */
1866 do_cleanups (old_cleanups);
1867 return -1;
1868 }
1869
1870 /* Save the information we need to fix things up if the step
1871 succeeds. */
1872 displaced->step_ptid = ptid;
1873 displaced->step_gdbarch = gdbarch;
1874 displaced->step_closure = closure;
1875 displaced->step_original = original;
1876 displaced->step_copy = copy;
1877
1878 make_cleanup (displaced_step_clear_cleanup, displaced);
1879
1880 /* Resume execution at the copy. */
1881 regcache_write_pc (regcache, copy);
1882
1883 discard_cleanups (ignore_cleanups);
1884
1885 do_cleanups (old_cleanups);
1886
1887 if (debug_displaced)
1888 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1889 paddress (gdbarch, copy));
1890
1891 return 1;
1892 }
1893
1894 /* Wrapper for displaced_step_prepare_throw that disabled further
1895 attempts at displaced stepping if we get a memory error. */
1896
1897 static int
1898 displaced_step_prepare (ptid_t ptid)
1899 {
1900 int prepared = -1;
1901
1902 TRY
1903 {
1904 prepared = displaced_step_prepare_throw (ptid);
1905 }
1906 CATCH (ex, RETURN_MASK_ERROR)
1907 {
1908 struct displaced_step_inferior_state *displaced_state;
1909
1910 if (ex.error != MEMORY_ERROR
1911 && ex.error != NOT_SUPPORTED_ERROR)
1912 throw_exception (ex);
1913
1914 if (debug_infrun)
1915 {
1916 fprintf_unfiltered (gdb_stdlog,
1917 "infrun: disabling displaced stepping: %s\n",
1918 ex.message);
1919 }
1920
1921 /* Be verbose if "set displaced-stepping" is "on", silent if
1922 "auto". */
1923 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1924 {
1925 warning (_("disabling displaced stepping: %s"),
1926 ex.message);
1927 }
1928
1929 /* Disable further displaced stepping attempts. */
1930 displaced_state
1931 = get_displaced_stepping_state (ptid_get_pid (ptid));
1932 displaced_state->failed_before = 1;
1933 }
1934 END_CATCH
1935
1936 return prepared;
1937 }
1938
1939 static void
1940 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1941 const gdb_byte *myaddr, int len)
1942 {
1943 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1944
1945 inferior_ptid = ptid;
1946 write_memory (memaddr, myaddr, len);
1947 do_cleanups (ptid_cleanup);
1948 }
1949
1950 /* Restore the contents of the copy area for thread PTID. */
1951
1952 static void
1953 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1954 ptid_t ptid)
1955 {
1956 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1957
1958 write_memory_ptid (ptid, displaced->step_copy,
1959 displaced->step_saved_copy, len);
1960 if (debug_displaced)
1961 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1962 target_pid_to_str (ptid),
1963 paddress (displaced->step_gdbarch,
1964 displaced->step_copy));
1965 }
1966
1967 /* If we displaced stepped an instruction successfully, adjust
1968 registers and memory to yield the same effect the instruction would
1969 have had if we had executed it at its original address, and return
1970 1. If the instruction didn't complete, relocate the PC and return
1971 -1. If the thread wasn't displaced stepping, return 0. */
1972
1973 static int
1974 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1975 {
1976 struct cleanup *old_cleanups;
1977 struct displaced_step_inferior_state *displaced
1978 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1979 int ret;
1980
1981 /* Was any thread of this process doing a displaced step? */
1982 if (displaced == NULL)
1983 return 0;
1984
1985 /* Was this event for the pid we displaced? */
1986 if (ptid_equal (displaced->step_ptid, null_ptid)
1987 || ! ptid_equal (displaced->step_ptid, event_ptid))
1988 return 0;
1989
1990 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1991
1992 displaced_step_restore (displaced, displaced->step_ptid);
1993
1994 /* Fixup may need to read memory/registers. Switch to the thread
1995 that we're fixing up. Also, target_stopped_by_watchpoint checks
1996 the current thread. */
1997 switch_to_thread (event_ptid);
1998
1999 /* Did the instruction complete successfully? */
2000 if (signal == GDB_SIGNAL_TRAP
2001 && !(target_stopped_by_watchpoint ()
2002 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
2003 || target_have_steppable_watchpoint)))
2004 {
2005 /* Fix up the resulting state. */
2006 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2007 displaced->step_closure,
2008 displaced->step_original,
2009 displaced->step_copy,
2010 get_thread_regcache (displaced->step_ptid));
2011 ret = 1;
2012 }
2013 else
2014 {
2015 /* Since the instruction didn't complete, all we can do is
2016 relocate the PC. */
2017 struct regcache *regcache = get_thread_regcache (event_ptid);
2018 CORE_ADDR pc = regcache_read_pc (regcache);
2019
2020 pc = displaced->step_original + (pc - displaced->step_copy);
2021 regcache_write_pc (regcache, pc);
2022 ret = -1;
2023 }
2024
2025 do_cleanups (old_cleanups);
2026
2027 displaced->step_ptid = null_ptid;
2028
2029 return ret;
2030 }
2031
2032 /* Data to be passed around while handling an event. This data is
2033 discarded between events. */
2034 struct execution_control_state
2035 {
2036 ptid_t ptid;
2037 /* The thread that got the event, if this was a thread event; NULL
2038 otherwise. */
2039 struct thread_info *event_thread;
2040
2041 struct target_waitstatus ws;
2042 int stop_func_filled_in;
2043 CORE_ADDR stop_func_start;
2044 CORE_ADDR stop_func_end;
2045 const char *stop_func_name;
2046 int wait_some_more;
2047
2048 /* True if the event thread hit the single-step breakpoint of
2049 another thread. Thus the event doesn't cause a stop, the thread
2050 needs to be single-stepped past the single-step breakpoint before
2051 we can switch back to the original stepping thread. */
2052 int hit_singlestep_breakpoint;
2053 };
2054
2055 /* Clear ECS and set it to point at TP. */
2056
2057 static void
2058 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2059 {
2060 memset (ecs, 0, sizeof (*ecs));
2061 ecs->event_thread = tp;
2062 ecs->ptid = tp->ptid;
2063 }
2064
2065 static void keep_going_pass_signal (struct execution_control_state *ecs);
2066 static void prepare_to_wait (struct execution_control_state *ecs);
2067 static int keep_going_stepped_thread (struct thread_info *tp);
2068 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2069
2070 /* Are there any pending step-over requests? If so, run all we can
2071 now and return true. Otherwise, return false. */
2072
2073 static int
2074 start_step_over (void)
2075 {
2076 struct thread_info *tp, *next;
2077
2078 /* Don't start a new step-over if we already have an in-line
2079 step-over operation ongoing. */
2080 if (step_over_info_valid_p ())
2081 return 0;
2082
2083 for (tp = step_over_queue_head; tp != NULL; tp = next)
2084 {
2085 struct execution_control_state ecss;
2086 struct execution_control_state *ecs = &ecss;
2087 step_over_what step_what;
2088 int must_be_in_line;
2089
2090 next = thread_step_over_chain_next (tp);
2091
2092 /* If this inferior already has a displaced step in process,
2093 don't start a new one. */
2094 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2095 continue;
2096
2097 step_what = thread_still_needs_step_over (tp);
2098 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2099 || ((step_what & STEP_OVER_BREAKPOINT)
2100 && !use_displaced_stepping (tp)));
2101
2102 /* We currently stop all threads of all processes to step-over
2103 in-line. If we need to start a new in-line step-over, let
2104 any pending displaced steps finish first. */
2105 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2106 return 0;
2107
2108 thread_step_over_chain_remove (tp);
2109
2110 if (step_over_queue_head == NULL)
2111 {
2112 if (debug_infrun)
2113 fprintf_unfiltered (gdb_stdlog,
2114 "infrun: step-over queue now empty\n");
2115 }
2116
2117 if (tp->control.trap_expected
2118 || tp->resumed
2119 || tp->executing)
2120 {
2121 internal_error (__FILE__, __LINE__,
2122 "[%s] has inconsistent state: "
2123 "trap_expected=%d, resumed=%d, executing=%d\n",
2124 target_pid_to_str (tp->ptid),
2125 tp->control.trap_expected,
2126 tp->resumed,
2127 tp->executing);
2128 }
2129
2130 if (debug_infrun)
2131 fprintf_unfiltered (gdb_stdlog,
2132 "infrun: resuming [%s] for step-over\n",
2133 target_pid_to_str (tp->ptid));
2134
2135 /* keep_going_pass_signal skips the step-over if the breakpoint
2136 is no longer inserted. In all-stop, we want to keep looking
2137 for a thread that needs a step-over instead of resuming TP,
2138 because we wouldn't be able to resume anything else until the
2139 target stops again. In non-stop, the resume always resumes
2140 only TP, so it's OK to let the thread resume freely. */
2141 if (!target_is_non_stop_p () && !step_what)
2142 continue;
2143
2144 switch_to_thread (tp->ptid);
2145 reset_ecs (ecs, tp);
2146 keep_going_pass_signal (ecs);
2147
2148 if (!ecs->wait_some_more)
2149 error (_("Command aborted."));
2150
2151 gdb_assert (tp->resumed);
2152
2153 /* If we started a new in-line step-over, we're done. */
2154 if (step_over_info_valid_p ())
2155 {
2156 gdb_assert (tp->control.trap_expected);
2157 return 1;
2158 }
2159
2160 if (!target_is_non_stop_p ())
2161 {
2162 /* On all-stop, shouldn't have resumed unless we needed a
2163 step over. */
2164 gdb_assert (tp->control.trap_expected
2165 || tp->step_after_step_resume_breakpoint);
2166
2167 /* With remote targets (at least), in all-stop, we can't
2168 issue any further remote commands until the program stops
2169 again. */
2170 return 1;
2171 }
2172
2173 /* Either the thread no longer needed a step-over, or a new
2174 displaced stepping sequence started. Even in the latter
2175 case, continue looking. Maybe we can also start another
2176 displaced step on a thread of other process. */
2177 }
2178
2179 return 0;
2180 }
2181
2182 /* Update global variables holding ptids to hold NEW_PTID if they were
2183 holding OLD_PTID. */
2184 static void
2185 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2186 {
2187 struct displaced_step_inferior_state *displaced;
2188
2189 if (ptid_equal (inferior_ptid, old_ptid))
2190 inferior_ptid = new_ptid;
2191
2192 for (displaced = displaced_step_inferior_states;
2193 displaced;
2194 displaced = displaced->next)
2195 {
2196 if (ptid_equal (displaced->step_ptid, old_ptid))
2197 displaced->step_ptid = new_ptid;
2198 }
2199 }
2200
2201 \f
2202 /* Resuming. */
2203
2204 /* Things to clean up if we QUIT out of resume (). */
2205 static void
2206 resume_cleanups (void *ignore)
2207 {
2208 if (!ptid_equal (inferior_ptid, null_ptid))
2209 delete_single_step_breakpoints (inferior_thread ());
2210
2211 normal_stop ();
2212 }
2213
2214 static const char schedlock_off[] = "off";
2215 static const char schedlock_on[] = "on";
2216 static const char schedlock_step[] = "step";
2217 static const char schedlock_replay[] = "replay";
2218 static const char *const scheduler_enums[] = {
2219 schedlock_off,
2220 schedlock_on,
2221 schedlock_step,
2222 schedlock_replay,
2223 NULL
2224 };
2225 static const char *scheduler_mode = schedlock_replay;
2226 static void
2227 show_scheduler_mode (struct ui_file *file, int from_tty,
2228 struct cmd_list_element *c, const char *value)
2229 {
2230 fprintf_filtered (file,
2231 _("Mode for locking scheduler "
2232 "during execution is \"%s\".\n"),
2233 value);
2234 }
2235
2236 static void
2237 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2238 {
2239 if (!target_can_lock_scheduler)
2240 {
2241 scheduler_mode = schedlock_off;
2242 error (_("Target '%s' cannot support this command."), target_shortname);
2243 }
2244 }
2245
2246 /* True if execution commands resume all threads of all processes by
2247 default; otherwise, resume only threads of the current inferior
2248 process. */
2249 int sched_multi = 0;
2250
2251 /* Try to setup for software single stepping over the specified location.
2252 Return 1 if target_resume() should use hardware single step.
2253
2254 GDBARCH the current gdbarch.
2255 PC the location to step over. */
2256
2257 static int
2258 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2259 {
2260 int hw_step = 1;
2261
2262 if (execution_direction == EXEC_FORWARD
2263 && gdbarch_software_single_step_p (gdbarch)
2264 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2265 {
2266 hw_step = 0;
2267 }
2268 return hw_step;
2269 }
2270
2271 /* See infrun.h. */
2272
2273 ptid_t
2274 user_visible_resume_ptid (int step)
2275 {
2276 ptid_t resume_ptid;
2277
2278 if (non_stop)
2279 {
2280 /* With non-stop mode on, threads are always handled
2281 individually. */
2282 resume_ptid = inferior_ptid;
2283 }
2284 else if ((scheduler_mode == schedlock_on)
2285 || (scheduler_mode == schedlock_step && step))
2286 {
2287 /* User-settable 'scheduler' mode requires solo thread
2288 resume. */
2289 resume_ptid = inferior_ptid;
2290 }
2291 else if ((scheduler_mode == schedlock_replay)
2292 && target_record_will_replay (minus_one_ptid, execution_direction))
2293 {
2294 /* User-settable 'scheduler' mode requires solo thread resume in replay
2295 mode. */
2296 resume_ptid = inferior_ptid;
2297 }
2298 else if (!sched_multi && target_supports_multi_process ())
2299 {
2300 /* Resume all threads of the current process (and none of other
2301 processes). */
2302 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2303 }
2304 else
2305 {
2306 /* Resume all threads of all processes. */
2307 resume_ptid = RESUME_ALL;
2308 }
2309
2310 return resume_ptid;
2311 }
2312
2313 /* Return a ptid representing the set of threads that we will resume,
2314 in the perspective of the target, assuming run control handling
2315 does not require leaving some threads stopped (e.g., stepping past
2316 breakpoint). USER_STEP indicates whether we're about to start the
2317 target for a stepping command. */
2318
2319 static ptid_t
2320 internal_resume_ptid (int user_step)
2321 {
2322 /* In non-stop, we always control threads individually. Note that
2323 the target may always work in non-stop mode even with "set
2324 non-stop off", in which case user_visible_resume_ptid could
2325 return a wildcard ptid. */
2326 if (target_is_non_stop_p ())
2327 return inferior_ptid;
2328 else
2329 return user_visible_resume_ptid (user_step);
2330 }
2331
2332 /* Wrapper for target_resume, that handles infrun-specific
2333 bookkeeping. */
2334
2335 static void
2336 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2337 {
2338 struct thread_info *tp = inferior_thread ();
2339
2340 /* Install inferior's terminal modes. */
2341 target_terminal_inferior ();
2342
2343 /* Avoid confusing the next resume, if the next stop/resume
2344 happens to apply to another thread. */
2345 tp->suspend.stop_signal = GDB_SIGNAL_0;
2346
2347 /* Advise target which signals may be handled silently.
2348
2349 If we have removed breakpoints because we are stepping over one
2350 in-line (in any thread), we need to receive all signals to avoid
2351 accidentally skipping a breakpoint during execution of a signal
2352 handler.
2353
2354 Likewise if we're displaced stepping, otherwise a trap for a
2355 breakpoint in a signal handler might be confused with the
2356 displaced step finishing. We don't make the displaced_step_fixup
2357 step distinguish the cases instead, because:
2358
2359 - a backtrace while stopped in the signal handler would show the
2360 scratch pad as frame older than the signal handler, instead of
2361 the real mainline code.
2362
2363 - when the thread is later resumed, the signal handler would
2364 return to the scratch pad area, which would no longer be
2365 valid. */
2366 if (step_over_info_valid_p ()
2367 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2368 target_pass_signals (0, NULL);
2369 else
2370 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2371
2372 target_resume (resume_ptid, step, sig);
2373 }
2374
2375 /* Resume the inferior, but allow a QUIT. This is useful if the user
2376 wants to interrupt some lengthy single-stepping operation
2377 (for child processes, the SIGINT goes to the inferior, and so
2378 we get a SIGINT random_signal, but for remote debugging and perhaps
2379 other targets, that's not true).
2380
2381 SIG is the signal to give the inferior (zero for none). */
2382 void
2383 resume (enum gdb_signal sig)
2384 {
2385 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2386 struct regcache *regcache = get_current_regcache ();
2387 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2388 struct thread_info *tp = inferior_thread ();
2389 CORE_ADDR pc = regcache_read_pc (regcache);
2390 struct address_space *aspace = get_regcache_aspace (regcache);
2391 ptid_t resume_ptid;
2392 /* This represents the user's step vs continue request. When
2393 deciding whether "set scheduler-locking step" applies, it's the
2394 user's intention that counts. */
2395 const int user_step = tp->control.stepping_command;
2396 /* This represents what we'll actually request the target to do.
2397 This can decay from a step to a continue, if e.g., we need to
2398 implement single-stepping with breakpoints (software
2399 single-step). */
2400 int step;
2401
2402 gdb_assert (!thread_is_in_step_over_chain (tp));
2403
2404 QUIT;
2405
2406 if (tp->suspend.waitstatus_pending_p)
2407 {
2408 if (debug_infrun)
2409 {
2410 char *statstr;
2411
2412 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2413 fprintf_unfiltered (gdb_stdlog,
2414 "infrun: resume: thread %s has pending wait status %s "
2415 "(currently_stepping=%d).\n",
2416 target_pid_to_str (tp->ptid), statstr,
2417 currently_stepping (tp));
2418 xfree (statstr);
2419 }
2420
2421 tp->resumed = 1;
2422
2423 /* FIXME: What should we do if we are supposed to resume this
2424 thread with a signal? Maybe we should maintain a queue of
2425 pending signals to deliver. */
2426 if (sig != GDB_SIGNAL_0)
2427 {
2428 warning (_("Couldn't deliver signal %s to %s."),
2429 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2430 }
2431
2432 tp->suspend.stop_signal = GDB_SIGNAL_0;
2433 discard_cleanups (old_cleanups);
2434
2435 if (target_can_async_p ())
2436 target_async (1);
2437 return;
2438 }
2439
2440 tp->stepped_breakpoint = 0;
2441
2442 /* Depends on stepped_breakpoint. */
2443 step = currently_stepping (tp);
2444
2445 if (current_inferior ()->waiting_for_vfork_done)
2446 {
2447 /* Don't try to single-step a vfork parent that is waiting for
2448 the child to get out of the shared memory region (by exec'ing
2449 or exiting). This is particularly important on software
2450 single-step archs, as the child process would trip on the
2451 software single step breakpoint inserted for the parent
2452 process. Since the parent will not actually execute any
2453 instruction until the child is out of the shared region (such
2454 are vfork's semantics), it is safe to simply continue it.
2455 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2456 the parent, and tell it to `keep_going', which automatically
2457 re-sets it stepping. */
2458 if (debug_infrun)
2459 fprintf_unfiltered (gdb_stdlog,
2460 "infrun: resume : clear step\n");
2461 step = 0;
2462 }
2463
2464 if (debug_infrun)
2465 fprintf_unfiltered (gdb_stdlog,
2466 "infrun: resume (step=%d, signal=%s), "
2467 "trap_expected=%d, current thread [%s] at %s\n",
2468 step, gdb_signal_to_symbol_string (sig),
2469 tp->control.trap_expected,
2470 target_pid_to_str (inferior_ptid),
2471 paddress (gdbarch, pc));
2472
2473 /* Normally, by the time we reach `resume', the breakpoints are either
2474 removed or inserted, as appropriate. The exception is if we're sitting
2475 at a permanent breakpoint; we need to step over it, but permanent
2476 breakpoints can't be removed. So we have to test for it here. */
2477 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2478 {
2479 if (sig != GDB_SIGNAL_0)
2480 {
2481 /* We have a signal to pass to the inferior. The resume
2482 may, or may not take us to the signal handler. If this
2483 is a step, we'll need to stop in the signal handler, if
2484 there's one, (if the target supports stepping into
2485 handlers), or in the next mainline instruction, if
2486 there's no handler. If this is a continue, we need to be
2487 sure to run the handler with all breakpoints inserted.
2488 In all cases, set a breakpoint at the current address
2489 (where the handler returns to), and once that breakpoint
2490 is hit, resume skipping the permanent breakpoint. If
2491 that breakpoint isn't hit, then we've stepped into the
2492 signal handler (or hit some other event). We'll delete
2493 the step-resume breakpoint then. */
2494
2495 if (debug_infrun)
2496 fprintf_unfiltered (gdb_stdlog,
2497 "infrun: resume: skipping permanent breakpoint, "
2498 "deliver signal first\n");
2499
2500 clear_step_over_info ();
2501 tp->control.trap_expected = 0;
2502
2503 if (tp->control.step_resume_breakpoint == NULL)
2504 {
2505 /* Set a "high-priority" step-resume, as we don't want
2506 user breakpoints at PC to trigger (again) when this
2507 hits. */
2508 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2509 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2510
2511 tp->step_after_step_resume_breakpoint = step;
2512 }
2513
2514 insert_breakpoints ();
2515 }
2516 else
2517 {
2518 /* There's no signal to pass, we can go ahead and skip the
2519 permanent breakpoint manually. */
2520 if (debug_infrun)
2521 fprintf_unfiltered (gdb_stdlog,
2522 "infrun: resume: skipping permanent breakpoint\n");
2523 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2524 /* Update pc to reflect the new address from which we will
2525 execute instructions. */
2526 pc = regcache_read_pc (regcache);
2527
2528 if (step)
2529 {
2530 /* We've already advanced the PC, so the stepping part
2531 is done. Now we need to arrange for a trap to be
2532 reported to handle_inferior_event. Set a breakpoint
2533 at the current PC, and run to it. Don't update
2534 prev_pc, because if we end in
2535 switch_back_to_stepped_thread, we want the "expected
2536 thread advanced also" branch to be taken. IOW, we
2537 don't want this thread to step further from PC
2538 (overstep). */
2539 gdb_assert (!step_over_info_valid_p ());
2540 insert_single_step_breakpoint (gdbarch, aspace, pc);
2541 insert_breakpoints ();
2542
2543 resume_ptid = internal_resume_ptid (user_step);
2544 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2545 discard_cleanups (old_cleanups);
2546 tp->resumed = 1;
2547 return;
2548 }
2549 }
2550 }
2551
2552 /* If we have a breakpoint to step over, make sure to do a single
2553 step only. Same if we have software watchpoints. */
2554 if (tp->control.trap_expected || bpstat_should_step ())
2555 tp->control.may_range_step = 0;
2556
2557 /* If enabled, step over breakpoints by executing a copy of the
2558 instruction at a different address.
2559
2560 We can't use displaced stepping when we have a signal to deliver;
2561 the comments for displaced_step_prepare explain why. The
2562 comments in the handle_inferior event for dealing with 'random
2563 signals' explain what we do instead.
2564
2565 We can't use displaced stepping when we are waiting for vfork_done
2566 event, displaced stepping breaks the vfork child similarly as single
2567 step software breakpoint. */
2568 if (tp->control.trap_expected
2569 && use_displaced_stepping (tp)
2570 && !step_over_info_valid_p ()
2571 && sig == GDB_SIGNAL_0
2572 && !current_inferior ()->waiting_for_vfork_done)
2573 {
2574 int prepared = displaced_step_prepare (inferior_ptid);
2575
2576 if (prepared == 0)
2577 {
2578 if (debug_infrun)
2579 fprintf_unfiltered (gdb_stdlog,
2580 "Got placed in step-over queue\n");
2581
2582 tp->control.trap_expected = 0;
2583 discard_cleanups (old_cleanups);
2584 return;
2585 }
2586 else if (prepared < 0)
2587 {
2588 /* Fallback to stepping over the breakpoint in-line. */
2589
2590 if (target_is_non_stop_p ())
2591 stop_all_threads ();
2592
2593 set_step_over_info (get_regcache_aspace (regcache),
2594 regcache_read_pc (regcache), 0, tp->global_num);
2595
2596 step = maybe_software_singlestep (gdbarch, pc);
2597
2598 insert_breakpoints ();
2599 }
2600 else if (prepared > 0)
2601 {
2602 struct displaced_step_inferior_state *displaced;
2603
2604 /* Update pc to reflect the new address from which we will
2605 execute instructions due to displaced stepping. */
2606 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2607
2608 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2609 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2610 displaced->step_closure);
2611 }
2612 }
2613
2614 /* Do we need to do it the hard way, w/temp breakpoints? */
2615 else if (step)
2616 step = maybe_software_singlestep (gdbarch, pc);
2617
2618 /* Currently, our software single-step implementation leads to different
2619 results than hardware single-stepping in one situation: when stepping
2620 into delivering a signal which has an associated signal handler,
2621 hardware single-step will stop at the first instruction of the handler,
2622 while software single-step will simply skip execution of the handler.
2623
2624 For now, this difference in behavior is accepted since there is no
2625 easy way to actually implement single-stepping into a signal handler
2626 without kernel support.
2627
2628 However, there is one scenario where this difference leads to follow-on
2629 problems: if we're stepping off a breakpoint by removing all breakpoints
2630 and then single-stepping. In this case, the software single-step
2631 behavior means that even if there is a *breakpoint* in the signal
2632 handler, GDB still would not stop.
2633
2634 Fortunately, we can at least fix this particular issue. We detect
2635 here the case where we are about to deliver a signal while software
2636 single-stepping with breakpoints removed. In this situation, we
2637 revert the decisions to remove all breakpoints and insert single-
2638 step breakpoints, and instead we install a step-resume breakpoint
2639 at the current address, deliver the signal without stepping, and
2640 once we arrive back at the step-resume breakpoint, actually step
2641 over the breakpoint we originally wanted to step over. */
2642 if (thread_has_single_step_breakpoints_set (tp)
2643 && sig != GDB_SIGNAL_0
2644 && step_over_info_valid_p ())
2645 {
2646 /* If we have nested signals or a pending signal is delivered
2647 immediately after a handler returns, might might already have
2648 a step-resume breakpoint set on the earlier handler. We cannot
2649 set another step-resume breakpoint; just continue on until the
2650 original breakpoint is hit. */
2651 if (tp->control.step_resume_breakpoint == NULL)
2652 {
2653 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2654 tp->step_after_step_resume_breakpoint = 1;
2655 }
2656
2657 delete_single_step_breakpoints (tp);
2658
2659 clear_step_over_info ();
2660 tp->control.trap_expected = 0;
2661
2662 insert_breakpoints ();
2663 }
2664
2665 /* If STEP is set, it's a request to use hardware stepping
2666 facilities. But in that case, we should never
2667 use singlestep breakpoint. */
2668 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2669
2670 /* Decide the set of threads to ask the target to resume. */
2671 if (tp->control.trap_expected)
2672 {
2673 /* We're allowing a thread to run past a breakpoint it has
2674 hit, either by single-stepping the thread with the breakpoint
2675 removed, or by displaced stepping, with the breakpoint inserted.
2676 In the former case, we need to single-step only this thread,
2677 and keep others stopped, as they can miss this breakpoint if
2678 allowed to run. That's not really a problem for displaced
2679 stepping, but, we still keep other threads stopped, in case
2680 another thread is also stopped for a breakpoint waiting for
2681 its turn in the displaced stepping queue. */
2682 resume_ptid = inferior_ptid;
2683 }
2684 else
2685 resume_ptid = internal_resume_ptid (user_step);
2686
2687 if (execution_direction != EXEC_REVERSE
2688 && step && breakpoint_inserted_here_p (aspace, pc))
2689 {
2690 /* There are two cases where we currently need to step a
2691 breakpoint instruction when we have a signal to deliver:
2692
2693 - See handle_signal_stop where we handle random signals that
2694 could take out us out of the stepping range. Normally, in
2695 that case we end up continuing (instead of stepping) over the
2696 signal handler with a breakpoint at PC, but there are cases
2697 where we should _always_ single-step, even if we have a
2698 step-resume breakpoint, like when a software watchpoint is
2699 set. Assuming single-stepping and delivering a signal at the
2700 same time would takes us to the signal handler, then we could
2701 have removed the breakpoint at PC to step over it. However,
2702 some hardware step targets (like e.g., Mac OS) can't step
2703 into signal handlers, and for those, we need to leave the
2704 breakpoint at PC inserted, as otherwise if the handler
2705 recurses and executes PC again, it'll miss the breakpoint.
2706 So we leave the breakpoint inserted anyway, but we need to
2707 record that we tried to step a breakpoint instruction, so
2708 that adjust_pc_after_break doesn't end up confused.
2709
2710 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2711 in one thread after another thread that was stepping had been
2712 momentarily paused for a step-over. When we re-resume the
2713 stepping thread, it may be resumed from that address with a
2714 breakpoint that hasn't trapped yet. Seen with
2715 gdb.threads/non-stop-fair-events.exp, on targets that don't
2716 do displaced stepping. */
2717
2718 if (debug_infrun)
2719 fprintf_unfiltered (gdb_stdlog,
2720 "infrun: resume: [%s] stepped breakpoint\n",
2721 target_pid_to_str (tp->ptid));
2722
2723 tp->stepped_breakpoint = 1;
2724
2725 /* Most targets can step a breakpoint instruction, thus
2726 executing it normally. But if this one cannot, just
2727 continue and we will hit it anyway. */
2728 if (gdbarch_cannot_step_breakpoint (gdbarch))
2729 step = 0;
2730 }
2731
2732 if (debug_displaced
2733 && tp->control.trap_expected
2734 && use_displaced_stepping (tp)
2735 && !step_over_info_valid_p ())
2736 {
2737 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2738 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2739 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2740 gdb_byte buf[4];
2741
2742 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2743 paddress (resume_gdbarch, actual_pc));
2744 read_memory (actual_pc, buf, sizeof (buf));
2745 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2746 }
2747
2748 if (tp->control.may_range_step)
2749 {
2750 /* If we're resuming a thread with the PC out of the step
2751 range, then we're doing some nested/finer run control
2752 operation, like stepping the thread out of the dynamic
2753 linker or the displaced stepping scratch pad. We
2754 shouldn't have allowed a range step then. */
2755 gdb_assert (pc_in_thread_step_range (pc, tp));
2756 }
2757
2758 do_target_resume (resume_ptid, step, sig);
2759 tp->resumed = 1;
2760 discard_cleanups (old_cleanups);
2761 }
2762 \f
2763 /* Proceeding. */
2764
2765 /* See infrun.h. */
2766
2767 /* Counter that tracks number of user visible stops. This can be used
2768 to tell whether a command has proceeded the inferior past the
2769 current location. This allows e.g., inferior function calls in
2770 breakpoint commands to not interrupt the command list. When the
2771 call finishes successfully, the inferior is standing at the same
2772 breakpoint as if nothing happened (and so we don't call
2773 normal_stop). */
2774 static ULONGEST current_stop_id;
2775
2776 /* See infrun.h. */
2777
2778 ULONGEST
2779 get_stop_id (void)
2780 {
2781 return current_stop_id;
2782 }
2783
2784 /* Called when we report a user visible stop. */
2785
2786 static void
2787 new_stop_id (void)
2788 {
2789 current_stop_id++;
2790 }
2791
2792 /* Clear out all variables saying what to do when inferior is continued.
2793 First do this, then set the ones you want, then call `proceed'. */
2794
2795 static void
2796 clear_proceed_status_thread (struct thread_info *tp)
2797 {
2798 if (debug_infrun)
2799 fprintf_unfiltered (gdb_stdlog,
2800 "infrun: clear_proceed_status_thread (%s)\n",
2801 target_pid_to_str (tp->ptid));
2802
2803 /* If we're starting a new sequence, then the previous finished
2804 single-step is no longer relevant. */
2805 if (tp->suspend.waitstatus_pending_p)
2806 {
2807 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2808 {
2809 if (debug_infrun)
2810 fprintf_unfiltered (gdb_stdlog,
2811 "infrun: clear_proceed_status: pending "
2812 "event of %s was a finished step. "
2813 "Discarding.\n",
2814 target_pid_to_str (tp->ptid));
2815
2816 tp->suspend.waitstatus_pending_p = 0;
2817 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2818 }
2819 else if (debug_infrun)
2820 {
2821 char *statstr;
2822
2823 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2824 fprintf_unfiltered (gdb_stdlog,
2825 "infrun: clear_proceed_status_thread: thread %s "
2826 "has pending wait status %s "
2827 "(currently_stepping=%d).\n",
2828 target_pid_to_str (tp->ptid), statstr,
2829 currently_stepping (tp));
2830 xfree (statstr);
2831 }
2832 }
2833
2834 /* If this signal should not be seen by program, give it zero.
2835 Used for debugging signals. */
2836 if (!signal_pass_state (tp->suspend.stop_signal))
2837 tp->suspend.stop_signal = GDB_SIGNAL_0;
2838
2839 thread_fsm_delete (tp->thread_fsm);
2840 tp->thread_fsm = NULL;
2841
2842 tp->control.trap_expected = 0;
2843 tp->control.step_range_start = 0;
2844 tp->control.step_range_end = 0;
2845 tp->control.may_range_step = 0;
2846 tp->control.step_frame_id = null_frame_id;
2847 tp->control.step_stack_frame_id = null_frame_id;
2848 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2849 tp->control.step_start_function = NULL;
2850 tp->stop_requested = 0;
2851
2852 tp->control.stop_step = 0;
2853
2854 tp->control.proceed_to_finish = 0;
2855
2856 tp->control.command_interp = NULL;
2857 tp->control.stepping_command = 0;
2858
2859 /* Discard any remaining commands or status from previous stop. */
2860 bpstat_clear (&tp->control.stop_bpstat);
2861 }
2862
2863 void
2864 clear_proceed_status (int step)
2865 {
2866 /* With scheduler-locking replay, stop replaying other threads if we're
2867 not replaying the user-visible resume ptid.
2868
2869 This is a convenience feature to not require the user to explicitly
2870 stop replaying the other threads. We're assuming that the user's
2871 intent is to resume tracing the recorded process. */
2872 if (!non_stop && scheduler_mode == schedlock_replay
2873 && target_record_is_replaying (minus_one_ptid)
2874 && !target_record_will_replay (user_visible_resume_ptid (step),
2875 execution_direction))
2876 target_record_stop_replaying ();
2877
2878 if (!non_stop)
2879 {
2880 struct thread_info *tp;
2881 ptid_t resume_ptid;
2882
2883 resume_ptid = user_visible_resume_ptid (step);
2884
2885 /* In all-stop mode, delete the per-thread status of all threads
2886 we're about to resume, implicitly and explicitly. */
2887 ALL_NON_EXITED_THREADS (tp)
2888 {
2889 if (!ptid_match (tp->ptid, resume_ptid))
2890 continue;
2891 clear_proceed_status_thread (tp);
2892 }
2893 }
2894
2895 if (!ptid_equal (inferior_ptid, null_ptid))
2896 {
2897 struct inferior *inferior;
2898
2899 if (non_stop)
2900 {
2901 /* If in non-stop mode, only delete the per-thread status of
2902 the current thread. */
2903 clear_proceed_status_thread (inferior_thread ());
2904 }
2905
2906 inferior = current_inferior ();
2907 inferior->control.stop_soon = NO_STOP_QUIETLY;
2908 }
2909
2910 observer_notify_about_to_proceed ();
2911 }
2912
2913 /* Returns true if TP is still stopped at a breakpoint that needs
2914 stepping-over in order to make progress. If the breakpoint is gone
2915 meanwhile, we can skip the whole step-over dance. */
2916
2917 static int
2918 thread_still_needs_step_over_bp (struct thread_info *tp)
2919 {
2920 if (tp->stepping_over_breakpoint)
2921 {
2922 struct regcache *regcache = get_thread_regcache (tp->ptid);
2923
2924 if (breakpoint_here_p (get_regcache_aspace (regcache),
2925 regcache_read_pc (regcache))
2926 == ordinary_breakpoint_here)
2927 return 1;
2928
2929 tp->stepping_over_breakpoint = 0;
2930 }
2931
2932 return 0;
2933 }
2934
2935 /* Check whether thread TP still needs to start a step-over in order
2936 to make progress when resumed. Returns an bitwise or of enum
2937 step_over_what bits, indicating what needs to be stepped over. */
2938
2939 static step_over_what
2940 thread_still_needs_step_over (struct thread_info *tp)
2941 {
2942 step_over_what what = 0;
2943
2944 if (thread_still_needs_step_over_bp (tp))
2945 what |= STEP_OVER_BREAKPOINT;
2946
2947 if (tp->stepping_over_watchpoint
2948 && !target_have_steppable_watchpoint)
2949 what |= STEP_OVER_WATCHPOINT;
2950
2951 return what;
2952 }
2953
2954 /* Returns true if scheduler locking applies. STEP indicates whether
2955 we're about to do a step/next-like command to a thread. */
2956
2957 static int
2958 schedlock_applies (struct thread_info *tp)
2959 {
2960 return (scheduler_mode == schedlock_on
2961 || (scheduler_mode == schedlock_step
2962 && tp->control.stepping_command)
2963 || (scheduler_mode == schedlock_replay
2964 && target_record_will_replay (minus_one_ptid,
2965 execution_direction)));
2966 }
2967
2968 /* Basic routine for continuing the program in various fashions.
2969
2970 ADDR is the address to resume at, or -1 for resume where stopped.
2971 SIGGNAL is the signal to give it, or 0 for none,
2972 or -1 for act according to how it stopped.
2973 STEP is nonzero if should trap after one instruction.
2974 -1 means return after that and print nothing.
2975 You should probably set various step_... variables
2976 before calling here, if you are stepping.
2977
2978 You should call clear_proceed_status before calling proceed. */
2979
2980 void
2981 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2982 {
2983 struct regcache *regcache;
2984 struct gdbarch *gdbarch;
2985 struct thread_info *tp;
2986 CORE_ADDR pc;
2987 struct address_space *aspace;
2988 ptid_t resume_ptid;
2989 struct execution_control_state ecss;
2990 struct execution_control_state *ecs = &ecss;
2991 struct cleanup *old_chain;
2992 int started;
2993
2994 /* If we're stopped at a fork/vfork, follow the branch set by the
2995 "set follow-fork-mode" command; otherwise, we'll just proceed
2996 resuming the current thread. */
2997 if (!follow_fork ())
2998 {
2999 /* The target for some reason decided not to resume. */
3000 normal_stop ();
3001 if (target_can_async_p ())
3002 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3003 return;
3004 }
3005
3006 /* We'll update this if & when we switch to a new thread. */
3007 previous_inferior_ptid = inferior_ptid;
3008
3009 regcache = get_current_regcache ();
3010 gdbarch = get_regcache_arch (regcache);
3011 aspace = get_regcache_aspace (regcache);
3012 pc = regcache_read_pc (regcache);
3013 tp = inferior_thread ();
3014
3015 /* Fill in with reasonable starting values. */
3016 init_thread_stepping_state (tp);
3017
3018 gdb_assert (!thread_is_in_step_over_chain (tp));
3019
3020 if (addr == (CORE_ADDR) -1)
3021 {
3022 if (pc == stop_pc
3023 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3024 && execution_direction != EXEC_REVERSE)
3025 /* There is a breakpoint at the address we will resume at,
3026 step one instruction before inserting breakpoints so that
3027 we do not stop right away (and report a second hit at this
3028 breakpoint).
3029
3030 Note, we don't do this in reverse, because we won't
3031 actually be executing the breakpoint insn anyway.
3032 We'll be (un-)executing the previous instruction. */
3033 tp->stepping_over_breakpoint = 1;
3034 else if (gdbarch_single_step_through_delay_p (gdbarch)
3035 && gdbarch_single_step_through_delay (gdbarch,
3036 get_current_frame ()))
3037 /* We stepped onto an instruction that needs to be stepped
3038 again before re-inserting the breakpoint, do so. */
3039 tp->stepping_over_breakpoint = 1;
3040 }
3041 else
3042 {
3043 regcache_write_pc (regcache, addr);
3044 }
3045
3046 if (siggnal != GDB_SIGNAL_DEFAULT)
3047 tp->suspend.stop_signal = siggnal;
3048
3049 /* Record the interpreter that issued the execution command that
3050 caused this thread to resume. If the top level interpreter is
3051 MI/async, and the execution command was a CLI command
3052 (next/step/etc.), we'll want to print stop event output to the MI
3053 console channel (the stepped-to line, etc.), as if the user
3054 entered the execution command on a real GDB console. */
3055 tp->control.command_interp = command_interp ();
3056
3057 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3058
3059 /* If an exception is thrown from this point on, make sure to
3060 propagate GDB's knowledge of the executing state to the
3061 frontend/user running state. */
3062 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3063
3064 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3065 threads (e.g., we might need to set threads stepping over
3066 breakpoints first), from the user/frontend's point of view, all
3067 threads in RESUME_PTID are now running. Unless we're calling an
3068 inferior function, as in that case we pretend the inferior
3069 doesn't run at all. */
3070 if (!tp->control.in_infcall)
3071 set_running (resume_ptid, 1);
3072
3073 if (debug_infrun)
3074 fprintf_unfiltered (gdb_stdlog,
3075 "infrun: proceed (addr=%s, signal=%s)\n",
3076 paddress (gdbarch, addr),
3077 gdb_signal_to_symbol_string (siggnal));
3078
3079 annotate_starting ();
3080
3081 /* Make sure that output from GDB appears before output from the
3082 inferior. */
3083 gdb_flush (gdb_stdout);
3084
3085 /* In a multi-threaded task we may select another thread and
3086 then continue or step.
3087
3088 But if a thread that we're resuming had stopped at a breakpoint,
3089 it will immediately cause another breakpoint stop without any
3090 execution (i.e. it will report a breakpoint hit incorrectly). So
3091 we must step over it first.
3092
3093 Look for threads other than the current (TP) that reported a
3094 breakpoint hit and haven't been resumed yet since. */
3095
3096 /* If scheduler locking applies, we can avoid iterating over all
3097 threads. */
3098 if (!non_stop && !schedlock_applies (tp))
3099 {
3100 struct thread_info *current = tp;
3101
3102 ALL_NON_EXITED_THREADS (tp)
3103 {
3104 /* Ignore the current thread here. It's handled
3105 afterwards. */
3106 if (tp == current)
3107 continue;
3108
3109 /* Ignore threads of processes we're not resuming. */
3110 if (!ptid_match (tp->ptid, resume_ptid))
3111 continue;
3112
3113 if (!thread_still_needs_step_over (tp))
3114 continue;
3115
3116 gdb_assert (!thread_is_in_step_over_chain (tp));
3117
3118 if (debug_infrun)
3119 fprintf_unfiltered (gdb_stdlog,
3120 "infrun: need to step-over [%s] first\n",
3121 target_pid_to_str (tp->ptid));
3122
3123 thread_step_over_chain_enqueue (tp);
3124 }
3125
3126 tp = current;
3127 }
3128
3129 /* Enqueue the current thread last, so that we move all other
3130 threads over their breakpoints first. */
3131 if (tp->stepping_over_breakpoint)
3132 thread_step_over_chain_enqueue (tp);
3133
3134 /* If the thread isn't started, we'll still need to set its prev_pc,
3135 so that switch_back_to_stepped_thread knows the thread hasn't
3136 advanced. Must do this before resuming any thread, as in
3137 all-stop/remote, once we resume we can't send any other packet
3138 until the target stops again. */
3139 tp->prev_pc = regcache_read_pc (regcache);
3140
3141 started = start_step_over ();
3142
3143 if (step_over_info_valid_p ())
3144 {
3145 /* Either this thread started a new in-line step over, or some
3146 other thread was already doing one. In either case, don't
3147 resume anything else until the step-over is finished. */
3148 }
3149 else if (started && !target_is_non_stop_p ())
3150 {
3151 /* A new displaced stepping sequence was started. In all-stop,
3152 we can't talk to the target anymore until it next stops. */
3153 }
3154 else if (!non_stop && target_is_non_stop_p ())
3155 {
3156 /* In all-stop, but the target is always in non-stop mode.
3157 Start all other threads that are implicitly resumed too. */
3158 ALL_NON_EXITED_THREADS (tp)
3159 {
3160 /* Ignore threads of processes we're not resuming. */
3161 if (!ptid_match (tp->ptid, resume_ptid))
3162 continue;
3163
3164 if (tp->resumed)
3165 {
3166 if (debug_infrun)
3167 fprintf_unfiltered (gdb_stdlog,
3168 "infrun: proceed: [%s] resumed\n",
3169 target_pid_to_str (tp->ptid));
3170 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3171 continue;
3172 }
3173
3174 if (thread_is_in_step_over_chain (tp))
3175 {
3176 if (debug_infrun)
3177 fprintf_unfiltered (gdb_stdlog,
3178 "infrun: proceed: [%s] needs step-over\n",
3179 target_pid_to_str (tp->ptid));
3180 continue;
3181 }
3182
3183 if (debug_infrun)
3184 fprintf_unfiltered (gdb_stdlog,
3185 "infrun: proceed: resuming %s\n",
3186 target_pid_to_str (tp->ptid));
3187
3188 reset_ecs (ecs, tp);
3189 switch_to_thread (tp->ptid);
3190 keep_going_pass_signal (ecs);
3191 if (!ecs->wait_some_more)
3192 error (_("Command aborted."));
3193 }
3194 }
3195 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3196 {
3197 /* The thread wasn't started, and isn't queued, run it now. */
3198 reset_ecs (ecs, tp);
3199 switch_to_thread (tp->ptid);
3200 keep_going_pass_signal (ecs);
3201 if (!ecs->wait_some_more)
3202 error (_("Command aborted."));
3203 }
3204
3205 discard_cleanups (old_chain);
3206
3207 /* Tell the event loop to wait for it to stop. If the target
3208 supports asynchronous execution, it'll do this from within
3209 target_resume. */
3210 if (!target_can_async_p ())
3211 mark_async_event_handler (infrun_async_inferior_event_token);
3212 }
3213 \f
3214
3215 /* Start remote-debugging of a machine over a serial link. */
3216
3217 void
3218 start_remote (int from_tty)
3219 {
3220 struct inferior *inferior;
3221
3222 inferior = current_inferior ();
3223 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3224
3225 /* Always go on waiting for the target, regardless of the mode. */
3226 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3227 indicate to wait_for_inferior that a target should timeout if
3228 nothing is returned (instead of just blocking). Because of this,
3229 targets expecting an immediate response need to, internally, set
3230 things up so that the target_wait() is forced to eventually
3231 timeout. */
3232 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3233 differentiate to its caller what the state of the target is after
3234 the initial open has been performed. Here we're assuming that
3235 the target has stopped. It should be possible to eventually have
3236 target_open() return to the caller an indication that the target
3237 is currently running and GDB state should be set to the same as
3238 for an async run. */
3239 wait_for_inferior ();
3240
3241 /* Now that the inferior has stopped, do any bookkeeping like
3242 loading shared libraries. We want to do this before normal_stop,
3243 so that the displayed frame is up to date. */
3244 post_create_inferior (&current_target, from_tty);
3245
3246 normal_stop ();
3247 }
3248
3249 /* Initialize static vars when a new inferior begins. */
3250
3251 void
3252 init_wait_for_inferior (void)
3253 {
3254 /* These are meaningless until the first time through wait_for_inferior. */
3255
3256 breakpoint_init_inferior (inf_starting);
3257
3258 clear_proceed_status (0);
3259
3260 target_last_wait_ptid = minus_one_ptid;
3261
3262 previous_inferior_ptid = inferior_ptid;
3263
3264 /* Discard any skipped inlined frames. */
3265 clear_inline_frame_state (minus_one_ptid);
3266 }
3267
3268 \f
3269
3270 static void handle_inferior_event (struct execution_control_state *ecs);
3271
3272 static void handle_step_into_function (struct gdbarch *gdbarch,
3273 struct execution_control_state *ecs);
3274 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3275 struct execution_control_state *ecs);
3276 static void handle_signal_stop (struct execution_control_state *ecs);
3277 static void check_exception_resume (struct execution_control_state *,
3278 struct frame_info *);
3279
3280 static void end_stepping_range (struct execution_control_state *ecs);
3281 static void stop_waiting (struct execution_control_state *ecs);
3282 static void keep_going (struct execution_control_state *ecs);
3283 static void process_event_stop_test (struct execution_control_state *ecs);
3284 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3285
3286 /* Callback for iterate over threads. If the thread is stopped, but
3287 the user/frontend doesn't know about that yet, go through
3288 normal_stop, as if the thread had just stopped now. ARG points at
3289 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3290 ptid_is_pid(PTID) is true, applies to all threads of the process
3291 pointed at by PTID. Otherwise, apply only to the thread pointed by
3292 PTID. */
3293
3294 static int
3295 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3296 {
3297 ptid_t ptid = * (ptid_t *) arg;
3298
3299 if ((ptid_equal (info->ptid, ptid)
3300 || ptid_equal (minus_one_ptid, ptid)
3301 || (ptid_is_pid (ptid)
3302 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3303 && is_running (info->ptid)
3304 && !is_executing (info->ptid))
3305 {
3306 struct cleanup *old_chain;
3307 struct execution_control_state ecss;
3308 struct execution_control_state *ecs = &ecss;
3309
3310 memset (ecs, 0, sizeof (*ecs));
3311
3312 old_chain = make_cleanup_restore_current_thread ();
3313
3314 overlay_cache_invalid = 1;
3315 /* Flush target cache before starting to handle each event.
3316 Target was running and cache could be stale. This is just a
3317 heuristic. Running threads may modify target memory, but we
3318 don't get any event. */
3319 target_dcache_invalidate ();
3320
3321 /* Go through handle_inferior_event/normal_stop, so we always
3322 have consistent output as if the stop event had been
3323 reported. */
3324 ecs->ptid = info->ptid;
3325 ecs->event_thread = info;
3326 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
3327 ecs->ws.value.sig = GDB_SIGNAL_0;
3328
3329 handle_inferior_event (ecs);
3330
3331 if (!ecs->wait_some_more)
3332 {
3333 /* Cancel any running execution command. */
3334 thread_cancel_execution_command (info);
3335
3336 normal_stop ();
3337 }
3338
3339 do_cleanups (old_chain);
3340 }
3341
3342 return 0;
3343 }
3344
3345 /* This function is attached as a "thread_stop_requested" observer.
3346 Cleanup local state that assumed the PTID was to be resumed, and
3347 report the stop to the frontend. */
3348
3349 static void
3350 infrun_thread_stop_requested (ptid_t ptid)
3351 {
3352 struct thread_info *tp;
3353
3354 /* PTID was requested to stop. Remove matching threads from the
3355 step-over queue, so we don't try to resume them
3356 automatically. */
3357 ALL_NON_EXITED_THREADS (tp)
3358 if (ptid_match (tp->ptid, ptid))
3359 {
3360 if (thread_is_in_step_over_chain (tp))
3361 thread_step_over_chain_remove (tp);
3362 }
3363
3364 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3365 }
3366
3367 static void
3368 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3369 {
3370 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3371 nullify_last_target_wait_ptid ();
3372 }
3373
3374 /* Delete the step resume, single-step and longjmp/exception resume
3375 breakpoints of TP. */
3376
3377 static void
3378 delete_thread_infrun_breakpoints (struct thread_info *tp)
3379 {
3380 delete_step_resume_breakpoint (tp);
3381 delete_exception_resume_breakpoint (tp);
3382 delete_single_step_breakpoints (tp);
3383 }
3384
3385 /* If the target still has execution, call FUNC for each thread that
3386 just stopped. In all-stop, that's all the non-exited threads; in
3387 non-stop, that's the current thread, only. */
3388
3389 typedef void (*for_each_just_stopped_thread_callback_func)
3390 (struct thread_info *tp);
3391
3392 static void
3393 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3394 {
3395 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3396 return;
3397
3398 if (target_is_non_stop_p ())
3399 {
3400 /* If in non-stop mode, only the current thread stopped. */
3401 func (inferior_thread ());
3402 }
3403 else
3404 {
3405 struct thread_info *tp;
3406
3407 /* In all-stop mode, all threads have stopped. */
3408 ALL_NON_EXITED_THREADS (tp)
3409 {
3410 func (tp);
3411 }
3412 }
3413 }
3414
3415 /* Delete the step resume and longjmp/exception resume breakpoints of
3416 the threads that just stopped. */
3417
3418 static void
3419 delete_just_stopped_threads_infrun_breakpoints (void)
3420 {
3421 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3422 }
3423
3424 /* Delete the single-step breakpoints of the threads that just
3425 stopped. */
3426
3427 static void
3428 delete_just_stopped_threads_single_step_breakpoints (void)
3429 {
3430 for_each_just_stopped_thread (delete_single_step_breakpoints);
3431 }
3432
3433 /* A cleanup wrapper. */
3434
3435 static void
3436 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3437 {
3438 delete_just_stopped_threads_infrun_breakpoints ();
3439 }
3440
3441 /* See infrun.h. */
3442
3443 void
3444 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3445 const struct target_waitstatus *ws)
3446 {
3447 char *status_string = target_waitstatus_to_string (ws);
3448 struct ui_file *tmp_stream = mem_fileopen ();
3449 char *text;
3450
3451 /* The text is split over several lines because it was getting too long.
3452 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3453 output as a unit; we want only one timestamp printed if debug_timestamp
3454 is set. */
3455
3456 fprintf_unfiltered (tmp_stream,
3457 "infrun: target_wait (%d.%ld.%ld",
3458 ptid_get_pid (waiton_ptid),
3459 ptid_get_lwp (waiton_ptid),
3460 ptid_get_tid (waiton_ptid));
3461 if (ptid_get_pid (waiton_ptid) != -1)
3462 fprintf_unfiltered (tmp_stream,
3463 " [%s]", target_pid_to_str (waiton_ptid));
3464 fprintf_unfiltered (tmp_stream, ", status) =\n");
3465 fprintf_unfiltered (tmp_stream,
3466 "infrun: %d.%ld.%ld [%s],\n",
3467 ptid_get_pid (result_ptid),
3468 ptid_get_lwp (result_ptid),
3469 ptid_get_tid (result_ptid),
3470 target_pid_to_str (result_ptid));
3471 fprintf_unfiltered (tmp_stream,
3472 "infrun: %s\n",
3473 status_string);
3474
3475 text = ui_file_xstrdup (tmp_stream, NULL);
3476
3477 /* This uses %s in part to handle %'s in the text, but also to avoid
3478 a gcc error: the format attribute requires a string literal. */
3479 fprintf_unfiltered (gdb_stdlog, "%s", text);
3480
3481 xfree (status_string);
3482 xfree (text);
3483 ui_file_delete (tmp_stream);
3484 }
3485
3486 /* Select a thread at random, out of those which are resumed and have
3487 had events. */
3488
3489 static struct thread_info *
3490 random_pending_event_thread (ptid_t waiton_ptid)
3491 {
3492 struct thread_info *event_tp;
3493 int num_events = 0;
3494 int random_selector;
3495
3496 /* First see how many events we have. Count only resumed threads
3497 that have an event pending. */
3498 ALL_NON_EXITED_THREADS (event_tp)
3499 if (ptid_match (event_tp->ptid, waiton_ptid)
3500 && event_tp->resumed
3501 && event_tp->suspend.waitstatus_pending_p)
3502 num_events++;
3503
3504 if (num_events == 0)
3505 return NULL;
3506
3507 /* Now randomly pick a thread out of those that have had events. */
3508 random_selector = (int)
3509 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3510
3511 if (debug_infrun && num_events > 1)
3512 fprintf_unfiltered (gdb_stdlog,
3513 "infrun: Found %d events, selecting #%d\n",
3514 num_events, random_selector);
3515
3516 /* Select the Nth thread that has had an event. */
3517 ALL_NON_EXITED_THREADS (event_tp)
3518 if (ptid_match (event_tp->ptid, waiton_ptid)
3519 && event_tp->resumed
3520 && event_tp->suspend.waitstatus_pending_p)
3521 if (random_selector-- == 0)
3522 break;
3523
3524 return event_tp;
3525 }
3526
3527 /* Wrapper for target_wait that first checks whether threads have
3528 pending statuses to report before actually asking the target for
3529 more events. */
3530
3531 static ptid_t
3532 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3533 {
3534 ptid_t event_ptid;
3535 struct thread_info *tp;
3536
3537 /* First check if there is a resumed thread with a wait status
3538 pending. */
3539 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3540 {
3541 tp = random_pending_event_thread (ptid);
3542 }
3543 else
3544 {
3545 if (debug_infrun)
3546 fprintf_unfiltered (gdb_stdlog,
3547 "infrun: Waiting for specific thread %s.\n",
3548 target_pid_to_str (ptid));
3549
3550 /* We have a specific thread to check. */
3551 tp = find_thread_ptid (ptid);
3552 gdb_assert (tp != NULL);
3553 if (!tp->suspend.waitstatus_pending_p)
3554 tp = NULL;
3555 }
3556
3557 if (tp != NULL
3558 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3559 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3560 {
3561 struct regcache *regcache = get_thread_regcache (tp->ptid);
3562 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3563 CORE_ADDR pc;
3564 int discard = 0;
3565
3566 pc = regcache_read_pc (regcache);
3567
3568 if (pc != tp->suspend.stop_pc)
3569 {
3570 if (debug_infrun)
3571 fprintf_unfiltered (gdb_stdlog,
3572 "infrun: PC of %s changed. was=%s, now=%s\n",
3573 target_pid_to_str (tp->ptid),
3574 paddress (gdbarch, tp->prev_pc),
3575 paddress (gdbarch, pc));
3576 discard = 1;
3577 }
3578 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3579 {
3580 if (debug_infrun)
3581 fprintf_unfiltered (gdb_stdlog,
3582 "infrun: previous breakpoint of %s, at %s gone\n",
3583 target_pid_to_str (tp->ptid),
3584 paddress (gdbarch, pc));
3585
3586 discard = 1;
3587 }
3588
3589 if (discard)
3590 {
3591 if (debug_infrun)
3592 fprintf_unfiltered (gdb_stdlog,
3593 "infrun: pending event of %s cancelled.\n",
3594 target_pid_to_str (tp->ptid));
3595
3596 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3597 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3598 }
3599 }
3600
3601 if (tp != NULL)
3602 {
3603 if (debug_infrun)
3604 {
3605 char *statstr;
3606
3607 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3608 fprintf_unfiltered (gdb_stdlog,
3609 "infrun: Using pending wait status %s for %s.\n",
3610 statstr,
3611 target_pid_to_str (tp->ptid));
3612 xfree (statstr);
3613 }
3614
3615 /* Now that we've selected our final event LWP, un-adjust its PC
3616 if it was a software breakpoint (and the target doesn't
3617 always adjust the PC itself). */
3618 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3619 && !target_supports_stopped_by_sw_breakpoint ())
3620 {
3621 struct regcache *regcache;
3622 struct gdbarch *gdbarch;
3623 int decr_pc;
3624
3625 regcache = get_thread_regcache (tp->ptid);
3626 gdbarch = get_regcache_arch (regcache);
3627
3628 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3629 if (decr_pc != 0)
3630 {
3631 CORE_ADDR pc;
3632
3633 pc = regcache_read_pc (regcache);
3634 regcache_write_pc (regcache, pc + decr_pc);
3635 }
3636 }
3637
3638 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3639 *status = tp->suspend.waitstatus;
3640 tp->suspend.waitstatus_pending_p = 0;
3641
3642 /* Wake up the event loop again, until all pending events are
3643 processed. */
3644 if (target_is_async_p ())
3645 mark_async_event_handler (infrun_async_inferior_event_token);
3646 return tp->ptid;
3647 }
3648
3649 /* But if we don't find one, we'll have to wait. */
3650
3651 if (deprecated_target_wait_hook)
3652 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3653 else
3654 event_ptid = target_wait (ptid, status, options);
3655
3656 return event_ptid;
3657 }
3658
3659 /* Prepare and stabilize the inferior for detaching it. E.g.,
3660 detaching while a thread is displaced stepping is a recipe for
3661 crashing it, as nothing would readjust the PC out of the scratch
3662 pad. */
3663
3664 void
3665 prepare_for_detach (void)
3666 {
3667 struct inferior *inf = current_inferior ();
3668 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3669 struct cleanup *old_chain_1;
3670 struct displaced_step_inferior_state *displaced;
3671
3672 displaced = get_displaced_stepping_state (inf->pid);
3673
3674 /* Is any thread of this process displaced stepping? If not,
3675 there's nothing else to do. */
3676 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3677 return;
3678
3679 if (debug_infrun)
3680 fprintf_unfiltered (gdb_stdlog,
3681 "displaced-stepping in-process while detaching");
3682
3683 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3684 inf->detaching = 1;
3685
3686 while (!ptid_equal (displaced->step_ptid, null_ptid))
3687 {
3688 struct cleanup *old_chain_2;
3689 struct execution_control_state ecss;
3690 struct execution_control_state *ecs;
3691
3692 ecs = &ecss;
3693 memset (ecs, 0, sizeof (*ecs));
3694
3695 overlay_cache_invalid = 1;
3696 /* Flush target cache before starting to handle each event.
3697 Target was running and cache could be stale. This is just a
3698 heuristic. Running threads may modify target memory, but we
3699 don't get any event. */
3700 target_dcache_invalidate ();
3701
3702 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3703
3704 if (debug_infrun)
3705 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3706
3707 /* If an error happens while handling the event, propagate GDB's
3708 knowledge of the executing state to the frontend/user running
3709 state. */
3710 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3711 &minus_one_ptid);
3712
3713 /* Now figure out what to do with the result of the result. */
3714 handle_inferior_event (ecs);
3715
3716 /* No error, don't finish the state yet. */
3717 discard_cleanups (old_chain_2);
3718
3719 /* Breakpoints and watchpoints are not installed on the target
3720 at this point, and signals are passed directly to the
3721 inferior, so this must mean the process is gone. */
3722 if (!ecs->wait_some_more)
3723 {
3724 discard_cleanups (old_chain_1);
3725 error (_("Program exited while detaching"));
3726 }
3727 }
3728
3729 discard_cleanups (old_chain_1);
3730 }
3731
3732 /* Wait for control to return from inferior to debugger.
3733
3734 If inferior gets a signal, we may decide to start it up again
3735 instead of returning. That is why there is a loop in this function.
3736 When this function actually returns it means the inferior
3737 should be left stopped and GDB should read more commands. */
3738
3739 void
3740 wait_for_inferior (void)
3741 {
3742 struct cleanup *old_cleanups;
3743 struct cleanup *thread_state_chain;
3744
3745 if (debug_infrun)
3746 fprintf_unfiltered
3747 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3748
3749 old_cleanups
3750 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3751 NULL);
3752
3753 /* If an error happens while handling the event, propagate GDB's
3754 knowledge of the executing state to the frontend/user running
3755 state. */
3756 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3757
3758 while (1)
3759 {
3760 struct execution_control_state ecss;
3761 struct execution_control_state *ecs = &ecss;
3762 ptid_t waiton_ptid = minus_one_ptid;
3763
3764 memset (ecs, 0, sizeof (*ecs));
3765
3766 overlay_cache_invalid = 1;
3767
3768 /* Flush target cache before starting to handle each event.
3769 Target was running and cache could be stale. This is just a
3770 heuristic. Running threads may modify target memory, but we
3771 don't get any event. */
3772 target_dcache_invalidate ();
3773
3774 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3775
3776 if (debug_infrun)
3777 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3778
3779 /* Now figure out what to do with the result of the result. */
3780 handle_inferior_event (ecs);
3781
3782 if (!ecs->wait_some_more)
3783 break;
3784 }
3785
3786 /* No error, don't finish the state yet. */
3787 discard_cleanups (thread_state_chain);
3788
3789 do_cleanups (old_cleanups);
3790 }
3791
3792 /* Cleanup that reinstalls the readline callback handler, if the
3793 target is running in the background. If while handling the target
3794 event something triggered a secondary prompt, like e.g., a
3795 pagination prompt, we'll have removed the callback handler (see
3796 gdb_readline_wrapper_line). Need to do this as we go back to the
3797 event loop, ready to process further input. Note this has no
3798 effect if the handler hasn't actually been removed, because calling
3799 rl_callback_handler_install resets the line buffer, thus losing
3800 input. */
3801
3802 static void
3803 reinstall_readline_callback_handler_cleanup (void *arg)
3804 {
3805 if (!current_ui->async)
3806 {
3807 /* We're not going back to the top level event loop yet. Don't
3808 install the readline callback, as it'd prep the terminal,
3809 readline-style (raw, noecho) (e.g., --batch). We'll install
3810 it the next time the prompt is displayed, when we're ready
3811 for input. */
3812 return;
3813 }
3814
3815 if (current_ui->command_editing && !sync_execution)
3816 gdb_rl_callback_handler_reinstall ();
3817 }
3818
3819 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3820 that's just the event thread. In all-stop, that's all threads. */
3821
3822 static void
3823 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3824 {
3825 struct thread_info *thr = ecs->event_thread;
3826
3827 if (thr != NULL && thr->thread_fsm != NULL)
3828 thread_fsm_clean_up (thr->thread_fsm);
3829
3830 if (!non_stop)
3831 {
3832 ALL_NON_EXITED_THREADS (thr)
3833 {
3834 if (thr->thread_fsm == NULL)
3835 continue;
3836 if (thr == ecs->event_thread)
3837 continue;
3838
3839 switch_to_thread (thr->ptid);
3840 thread_fsm_clean_up (thr->thread_fsm);
3841 }
3842
3843 if (ecs->event_thread != NULL)
3844 switch_to_thread (ecs->event_thread->ptid);
3845 }
3846 }
3847
3848 /* A cleanup that restores the execution direction to the value saved
3849 in *ARG. */
3850
3851 static void
3852 restore_execution_direction (void *arg)
3853 {
3854 enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg;
3855
3856 execution_direction = *save_exec_dir;
3857 }
3858
3859 /* Asynchronous version of wait_for_inferior. It is called by the
3860 event loop whenever a change of state is detected on the file
3861 descriptor corresponding to the target. It can be called more than
3862 once to complete a single execution command. In such cases we need
3863 to keep the state in a global variable ECSS. If it is the last time
3864 that this function is called for a single execution command, then
3865 report to the user that the inferior has stopped, and do the
3866 necessary cleanups. */
3867
3868 void
3869 fetch_inferior_event (void *client_data)
3870 {
3871 struct execution_control_state ecss;
3872 struct execution_control_state *ecs = &ecss;
3873 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3874 struct cleanup *ts_old_chain;
3875 int was_sync = sync_execution;
3876 enum exec_direction_kind save_exec_dir = execution_direction;
3877 int cmd_done = 0;
3878 ptid_t waiton_ptid = minus_one_ptid;
3879
3880 memset (ecs, 0, sizeof (*ecs));
3881
3882 /* Events are always processed with the main UI as current UI. This
3883 way, warnings, debug output, etc. are always consistently sent to
3884 the main console. */
3885 make_cleanup (restore_ui_cleanup, current_ui);
3886 current_ui = main_ui;
3887
3888 /* End up with readline processing input, if necessary. */
3889 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3890
3891 /* We're handling a live event, so make sure we're doing live
3892 debugging. If we're looking at traceframes while the target is
3893 running, we're going to need to get back to that mode after
3894 handling the event. */
3895 if (non_stop)
3896 {
3897 make_cleanup_restore_current_traceframe ();
3898 set_current_traceframe (-1);
3899 }
3900
3901 if (non_stop)
3902 /* In non-stop mode, the user/frontend should not notice a thread
3903 switch due to internal events. Make sure we reverse to the
3904 user selected thread and frame after handling the event and
3905 running any breakpoint commands. */
3906 make_cleanup_restore_current_thread ();
3907
3908 overlay_cache_invalid = 1;
3909 /* Flush target cache before starting to handle each event. Target
3910 was running and cache could be stale. This is just a heuristic.
3911 Running threads may modify target memory, but we don't get any
3912 event. */
3913 target_dcache_invalidate ();
3914
3915 make_cleanup (restore_execution_direction, &save_exec_dir);
3916 execution_direction = target_execution_direction ();
3917
3918 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3919 target_can_async_p () ? TARGET_WNOHANG : 0);
3920
3921 if (debug_infrun)
3922 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3923
3924 /* If an error happens while handling the event, propagate GDB's
3925 knowledge of the executing state to the frontend/user running
3926 state. */
3927 if (!target_is_non_stop_p ())
3928 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3929 else
3930 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3931
3932 /* Get executed before make_cleanup_restore_current_thread above to apply
3933 still for the thread which has thrown the exception. */
3934 make_bpstat_clear_actions_cleanup ();
3935
3936 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3937
3938 /* Now figure out what to do with the result of the result. */
3939 handle_inferior_event (ecs);
3940
3941 if (!ecs->wait_some_more)
3942 {
3943 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3944 int should_stop = 1;
3945 struct thread_info *thr = ecs->event_thread;
3946 int should_notify_stop = 1;
3947
3948 delete_just_stopped_threads_infrun_breakpoints ();
3949
3950 if (thr != NULL)
3951 {
3952 struct thread_fsm *thread_fsm = thr->thread_fsm;
3953
3954 if (thread_fsm != NULL)
3955 should_stop = thread_fsm_should_stop (thread_fsm);
3956 }
3957
3958 if (!should_stop)
3959 {
3960 keep_going (ecs);
3961 }
3962 else
3963 {
3964 clean_up_just_stopped_threads_fsms (ecs);
3965
3966 if (thr != NULL && thr->thread_fsm != NULL)
3967 {
3968 should_notify_stop
3969 = thread_fsm_should_notify_stop (thr->thread_fsm);
3970 }
3971
3972 if (should_notify_stop)
3973 {
3974 int proceeded = 0;
3975
3976 /* We may not find an inferior if this was a process exit. */
3977 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3978 proceeded = normal_stop ();
3979
3980 if (!proceeded)
3981 {
3982 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3983 cmd_done = 1;
3984 }
3985 }
3986 }
3987 }
3988
3989 /* No error, don't finish the thread states yet. */
3990 discard_cleanups (ts_old_chain);
3991
3992 /* Revert thread and frame. */
3993 do_cleanups (old_chain);
3994
3995 /* If the inferior was in sync execution mode, and now isn't,
3996 restore the prompt (a synchronous execution command has finished,
3997 and we're ready for input). */
3998 if (current_ui->async && was_sync && !sync_execution)
3999 observer_notify_sync_execution_done ();
4000
4001 if (cmd_done
4002 && !was_sync
4003 && exec_done_display_p
4004 && (ptid_equal (inferior_ptid, null_ptid)
4005 || !is_running (inferior_ptid)))
4006 printf_unfiltered (_("completed.\n"));
4007 }
4008
4009 /* Record the frame and location we're currently stepping through. */
4010 void
4011 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4012 {
4013 struct thread_info *tp = inferior_thread ();
4014
4015 tp->control.step_frame_id = get_frame_id (frame);
4016 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4017
4018 tp->current_symtab = sal.symtab;
4019 tp->current_line = sal.line;
4020 }
4021
4022 /* Clear context switchable stepping state. */
4023
4024 void
4025 init_thread_stepping_state (struct thread_info *tss)
4026 {
4027 tss->stepped_breakpoint = 0;
4028 tss->stepping_over_breakpoint = 0;
4029 tss->stepping_over_watchpoint = 0;
4030 tss->step_after_step_resume_breakpoint = 0;
4031 }
4032
4033 /* Set the cached copy of the last ptid/waitstatus. */
4034
4035 void
4036 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4037 {
4038 target_last_wait_ptid = ptid;
4039 target_last_waitstatus = status;
4040 }
4041
4042 /* Return the cached copy of the last pid/waitstatus returned by
4043 target_wait()/deprecated_target_wait_hook(). The data is actually
4044 cached by handle_inferior_event(), which gets called immediately
4045 after target_wait()/deprecated_target_wait_hook(). */
4046
4047 void
4048 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4049 {
4050 *ptidp = target_last_wait_ptid;
4051 *status = target_last_waitstatus;
4052 }
4053
4054 void
4055 nullify_last_target_wait_ptid (void)
4056 {
4057 target_last_wait_ptid = minus_one_ptid;
4058 }
4059
4060 /* Switch thread contexts. */
4061
4062 static void
4063 context_switch (ptid_t ptid)
4064 {
4065 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4066 {
4067 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4068 target_pid_to_str (inferior_ptid));
4069 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4070 target_pid_to_str (ptid));
4071 }
4072
4073 switch_to_thread (ptid);
4074 }
4075
4076 /* If the target can't tell whether we've hit breakpoints
4077 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4078 check whether that could have been caused by a breakpoint. If so,
4079 adjust the PC, per gdbarch_decr_pc_after_break. */
4080
4081 static void
4082 adjust_pc_after_break (struct thread_info *thread,
4083 struct target_waitstatus *ws)
4084 {
4085 struct regcache *regcache;
4086 struct gdbarch *gdbarch;
4087 struct address_space *aspace;
4088 CORE_ADDR breakpoint_pc, decr_pc;
4089
4090 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4091 we aren't, just return.
4092
4093 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4094 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4095 implemented by software breakpoints should be handled through the normal
4096 breakpoint layer.
4097
4098 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4099 different signals (SIGILL or SIGEMT for instance), but it is less
4100 clear where the PC is pointing afterwards. It may not match
4101 gdbarch_decr_pc_after_break. I don't know any specific target that
4102 generates these signals at breakpoints (the code has been in GDB since at
4103 least 1992) so I can not guess how to handle them here.
4104
4105 In earlier versions of GDB, a target with
4106 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4107 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4108 target with both of these set in GDB history, and it seems unlikely to be
4109 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4110
4111 if (ws->kind != TARGET_WAITKIND_STOPPED)
4112 return;
4113
4114 if (ws->value.sig != GDB_SIGNAL_TRAP)
4115 return;
4116
4117 /* In reverse execution, when a breakpoint is hit, the instruction
4118 under it has already been de-executed. The reported PC always
4119 points at the breakpoint address, so adjusting it further would
4120 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4121 architecture:
4122
4123 B1 0x08000000 : INSN1
4124 B2 0x08000001 : INSN2
4125 0x08000002 : INSN3
4126 PC -> 0x08000003 : INSN4
4127
4128 Say you're stopped at 0x08000003 as above. Reverse continuing
4129 from that point should hit B2 as below. Reading the PC when the
4130 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4131 been de-executed already.
4132
4133 B1 0x08000000 : INSN1
4134 B2 PC -> 0x08000001 : INSN2
4135 0x08000002 : INSN3
4136 0x08000003 : INSN4
4137
4138 We can't apply the same logic as for forward execution, because
4139 we would wrongly adjust the PC to 0x08000000, since there's a
4140 breakpoint at PC - 1. We'd then report a hit on B1, although
4141 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4142 behaviour. */
4143 if (execution_direction == EXEC_REVERSE)
4144 return;
4145
4146 /* If the target can tell whether the thread hit a SW breakpoint,
4147 trust it. Targets that can tell also adjust the PC
4148 themselves. */
4149 if (target_supports_stopped_by_sw_breakpoint ())
4150 return;
4151
4152 /* Note that relying on whether a breakpoint is planted in memory to
4153 determine this can fail. E.g,. the breakpoint could have been
4154 removed since. Or the thread could have been told to step an
4155 instruction the size of a breakpoint instruction, and only
4156 _after_ was a breakpoint inserted at its address. */
4157
4158 /* If this target does not decrement the PC after breakpoints, then
4159 we have nothing to do. */
4160 regcache = get_thread_regcache (thread->ptid);
4161 gdbarch = get_regcache_arch (regcache);
4162
4163 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4164 if (decr_pc == 0)
4165 return;
4166
4167 aspace = get_regcache_aspace (regcache);
4168
4169 /* Find the location where (if we've hit a breakpoint) the
4170 breakpoint would be. */
4171 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4172
4173 /* If the target can't tell whether a software breakpoint triggered,
4174 fallback to figuring it out based on breakpoints we think were
4175 inserted in the target, and on whether the thread was stepped or
4176 continued. */
4177
4178 /* Check whether there actually is a software breakpoint inserted at
4179 that location.
4180
4181 If in non-stop mode, a race condition is possible where we've
4182 removed a breakpoint, but stop events for that breakpoint were
4183 already queued and arrive later. To suppress those spurious
4184 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4185 and retire them after a number of stop events are reported. Note
4186 this is an heuristic and can thus get confused. The real fix is
4187 to get the "stopped by SW BP and needs adjustment" info out of
4188 the target/kernel (and thus never reach here; see above). */
4189 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4190 || (target_is_non_stop_p ()
4191 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4192 {
4193 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4194
4195 if (record_full_is_used ())
4196 record_full_gdb_operation_disable_set ();
4197
4198 /* When using hardware single-step, a SIGTRAP is reported for both
4199 a completed single-step and a software breakpoint. Need to
4200 differentiate between the two, as the latter needs adjusting
4201 but the former does not.
4202
4203 The SIGTRAP can be due to a completed hardware single-step only if
4204 - we didn't insert software single-step breakpoints
4205 - this thread is currently being stepped
4206
4207 If any of these events did not occur, we must have stopped due
4208 to hitting a software breakpoint, and have to back up to the
4209 breakpoint address.
4210
4211 As a special case, we could have hardware single-stepped a
4212 software breakpoint. In this case (prev_pc == breakpoint_pc),
4213 we also need to back up to the breakpoint address. */
4214
4215 if (thread_has_single_step_breakpoints_set (thread)
4216 || !currently_stepping (thread)
4217 || (thread->stepped_breakpoint
4218 && thread->prev_pc == breakpoint_pc))
4219 regcache_write_pc (regcache, breakpoint_pc);
4220
4221 do_cleanups (old_cleanups);
4222 }
4223 }
4224
4225 static int
4226 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4227 {
4228 for (frame = get_prev_frame (frame);
4229 frame != NULL;
4230 frame = get_prev_frame (frame))
4231 {
4232 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4233 return 1;
4234 if (get_frame_type (frame) != INLINE_FRAME)
4235 break;
4236 }
4237
4238 return 0;
4239 }
4240
4241 /* Auxiliary function that handles syscall entry/return events.
4242 It returns 1 if the inferior should keep going (and GDB
4243 should ignore the event), or 0 if the event deserves to be
4244 processed. */
4245
4246 static int
4247 handle_syscall_event (struct execution_control_state *ecs)
4248 {
4249 struct regcache *regcache;
4250 int syscall_number;
4251
4252 if (!ptid_equal (ecs->ptid, inferior_ptid))
4253 context_switch (ecs->ptid);
4254
4255 regcache = get_thread_regcache (ecs->ptid);
4256 syscall_number = ecs->ws.value.syscall_number;
4257 stop_pc = regcache_read_pc (regcache);
4258
4259 if (catch_syscall_enabled () > 0
4260 && catching_syscall_number (syscall_number) > 0)
4261 {
4262 if (debug_infrun)
4263 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4264 syscall_number);
4265
4266 ecs->event_thread->control.stop_bpstat
4267 = bpstat_stop_status (get_regcache_aspace (regcache),
4268 stop_pc, ecs->ptid, &ecs->ws);
4269
4270 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4271 {
4272 /* Catchpoint hit. */
4273 return 0;
4274 }
4275 }
4276
4277 /* If no catchpoint triggered for this, then keep going. */
4278 keep_going (ecs);
4279 return 1;
4280 }
4281
4282 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4283
4284 static void
4285 fill_in_stop_func (struct gdbarch *gdbarch,
4286 struct execution_control_state *ecs)
4287 {
4288 if (!ecs->stop_func_filled_in)
4289 {
4290 /* Don't care about return value; stop_func_start and stop_func_name
4291 will both be 0 if it doesn't work. */
4292 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4293 &ecs->stop_func_start, &ecs->stop_func_end);
4294 ecs->stop_func_start
4295 += gdbarch_deprecated_function_start_offset (gdbarch);
4296
4297 if (gdbarch_skip_entrypoint_p (gdbarch))
4298 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4299 ecs->stop_func_start);
4300
4301 ecs->stop_func_filled_in = 1;
4302 }
4303 }
4304
4305
4306 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4307
4308 static enum stop_kind
4309 get_inferior_stop_soon (ptid_t ptid)
4310 {
4311 struct inferior *inf = find_inferior_ptid (ptid);
4312
4313 gdb_assert (inf != NULL);
4314 return inf->control.stop_soon;
4315 }
4316
4317 /* Wait for one event. Store the resulting waitstatus in WS, and
4318 return the event ptid. */
4319
4320 static ptid_t
4321 wait_one (struct target_waitstatus *ws)
4322 {
4323 ptid_t event_ptid;
4324 ptid_t wait_ptid = minus_one_ptid;
4325
4326 overlay_cache_invalid = 1;
4327
4328 /* Flush target cache before starting to handle each event.
4329 Target was running and cache could be stale. This is just a
4330 heuristic. Running threads may modify target memory, but we
4331 don't get any event. */
4332 target_dcache_invalidate ();
4333
4334 if (deprecated_target_wait_hook)
4335 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4336 else
4337 event_ptid = target_wait (wait_ptid, ws, 0);
4338
4339 if (debug_infrun)
4340 print_target_wait_results (wait_ptid, event_ptid, ws);
4341
4342 return event_ptid;
4343 }
4344
4345 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4346 instead of the current thread. */
4347 #define THREAD_STOPPED_BY(REASON) \
4348 static int \
4349 thread_stopped_by_ ## REASON (ptid_t ptid) \
4350 { \
4351 struct cleanup *old_chain; \
4352 int res; \
4353 \
4354 old_chain = save_inferior_ptid (); \
4355 inferior_ptid = ptid; \
4356 \
4357 res = target_stopped_by_ ## REASON (); \
4358 \
4359 do_cleanups (old_chain); \
4360 \
4361 return res; \
4362 }
4363
4364 /* Generate thread_stopped_by_watchpoint. */
4365 THREAD_STOPPED_BY (watchpoint)
4366 /* Generate thread_stopped_by_sw_breakpoint. */
4367 THREAD_STOPPED_BY (sw_breakpoint)
4368 /* Generate thread_stopped_by_hw_breakpoint. */
4369 THREAD_STOPPED_BY (hw_breakpoint)
4370
4371 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4372
4373 static void
4374 switch_to_thread_cleanup (void *ptid_p)
4375 {
4376 ptid_t ptid = *(ptid_t *) ptid_p;
4377
4378 switch_to_thread (ptid);
4379 }
4380
4381 /* Save the thread's event and stop reason to process it later. */
4382
4383 static void
4384 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4385 {
4386 struct regcache *regcache;
4387 struct address_space *aspace;
4388
4389 if (debug_infrun)
4390 {
4391 char *statstr;
4392
4393 statstr = target_waitstatus_to_string (ws);
4394 fprintf_unfiltered (gdb_stdlog,
4395 "infrun: saving status %s for %d.%ld.%ld\n",
4396 statstr,
4397 ptid_get_pid (tp->ptid),
4398 ptid_get_lwp (tp->ptid),
4399 ptid_get_tid (tp->ptid));
4400 xfree (statstr);
4401 }
4402
4403 /* Record for later. */
4404 tp->suspend.waitstatus = *ws;
4405 tp->suspend.waitstatus_pending_p = 1;
4406
4407 regcache = get_thread_regcache (tp->ptid);
4408 aspace = get_regcache_aspace (regcache);
4409
4410 if (ws->kind == TARGET_WAITKIND_STOPPED
4411 && ws->value.sig == GDB_SIGNAL_TRAP)
4412 {
4413 CORE_ADDR pc = regcache_read_pc (regcache);
4414
4415 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4416
4417 if (thread_stopped_by_watchpoint (tp->ptid))
4418 {
4419 tp->suspend.stop_reason
4420 = TARGET_STOPPED_BY_WATCHPOINT;
4421 }
4422 else if (target_supports_stopped_by_sw_breakpoint ()
4423 && thread_stopped_by_sw_breakpoint (tp->ptid))
4424 {
4425 tp->suspend.stop_reason
4426 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4427 }
4428 else if (target_supports_stopped_by_hw_breakpoint ()
4429 && thread_stopped_by_hw_breakpoint (tp->ptid))
4430 {
4431 tp->suspend.stop_reason
4432 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4433 }
4434 else if (!target_supports_stopped_by_hw_breakpoint ()
4435 && hardware_breakpoint_inserted_here_p (aspace,
4436 pc))
4437 {
4438 tp->suspend.stop_reason
4439 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4440 }
4441 else if (!target_supports_stopped_by_sw_breakpoint ()
4442 && software_breakpoint_inserted_here_p (aspace,
4443 pc))
4444 {
4445 tp->suspend.stop_reason
4446 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4447 }
4448 else if (!thread_has_single_step_breakpoints_set (tp)
4449 && currently_stepping (tp))
4450 {
4451 tp->suspend.stop_reason
4452 = TARGET_STOPPED_BY_SINGLE_STEP;
4453 }
4454 }
4455 }
4456
4457 /* A cleanup that disables thread create/exit events. */
4458
4459 static void
4460 disable_thread_events (void *arg)
4461 {
4462 target_thread_events (0);
4463 }
4464
4465 /* See infrun.h. */
4466
4467 void
4468 stop_all_threads (void)
4469 {
4470 /* We may need multiple passes to discover all threads. */
4471 int pass;
4472 int iterations = 0;
4473 ptid_t entry_ptid;
4474 struct cleanup *old_chain;
4475
4476 gdb_assert (target_is_non_stop_p ());
4477
4478 if (debug_infrun)
4479 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4480
4481 entry_ptid = inferior_ptid;
4482 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4483
4484 target_thread_events (1);
4485 make_cleanup (disable_thread_events, NULL);
4486
4487 /* Request threads to stop, and then wait for the stops. Because
4488 threads we already know about can spawn more threads while we're
4489 trying to stop them, and we only learn about new threads when we
4490 update the thread list, do this in a loop, and keep iterating
4491 until two passes find no threads that need to be stopped. */
4492 for (pass = 0; pass < 2; pass++, iterations++)
4493 {
4494 if (debug_infrun)
4495 fprintf_unfiltered (gdb_stdlog,
4496 "infrun: stop_all_threads, pass=%d, "
4497 "iterations=%d\n", pass, iterations);
4498 while (1)
4499 {
4500 ptid_t event_ptid;
4501 struct target_waitstatus ws;
4502 int need_wait = 0;
4503 struct thread_info *t;
4504
4505 update_thread_list ();
4506
4507 /* Go through all threads looking for threads that we need
4508 to tell the target to stop. */
4509 ALL_NON_EXITED_THREADS (t)
4510 {
4511 if (t->executing)
4512 {
4513 /* If already stopping, don't request a stop again.
4514 We just haven't seen the notification yet. */
4515 if (!t->stop_requested)
4516 {
4517 if (debug_infrun)
4518 fprintf_unfiltered (gdb_stdlog,
4519 "infrun: %s executing, "
4520 "need stop\n",
4521 target_pid_to_str (t->ptid));
4522 target_stop (t->ptid);
4523 t->stop_requested = 1;
4524 }
4525 else
4526 {
4527 if (debug_infrun)
4528 fprintf_unfiltered (gdb_stdlog,
4529 "infrun: %s executing, "
4530 "already stopping\n",
4531 target_pid_to_str (t->ptid));
4532 }
4533
4534 if (t->stop_requested)
4535 need_wait = 1;
4536 }
4537 else
4538 {
4539 if (debug_infrun)
4540 fprintf_unfiltered (gdb_stdlog,
4541 "infrun: %s not executing\n",
4542 target_pid_to_str (t->ptid));
4543
4544 /* The thread may be not executing, but still be
4545 resumed with a pending status to process. */
4546 t->resumed = 0;
4547 }
4548 }
4549
4550 if (!need_wait)
4551 break;
4552
4553 /* If we find new threads on the second iteration, restart
4554 over. We want to see two iterations in a row with all
4555 threads stopped. */
4556 if (pass > 0)
4557 pass = -1;
4558
4559 event_ptid = wait_one (&ws);
4560 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4561 {
4562 /* All resumed threads exited. */
4563 }
4564 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4565 || ws.kind == TARGET_WAITKIND_EXITED
4566 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4567 {
4568 if (debug_infrun)
4569 {
4570 ptid_t ptid = pid_to_ptid (ws.value.integer);
4571
4572 fprintf_unfiltered (gdb_stdlog,
4573 "infrun: %s exited while "
4574 "stopping threads\n",
4575 target_pid_to_str (ptid));
4576 }
4577 }
4578 else
4579 {
4580 struct inferior *inf;
4581
4582 t = find_thread_ptid (event_ptid);
4583 if (t == NULL)
4584 t = add_thread (event_ptid);
4585
4586 t->stop_requested = 0;
4587 t->executing = 0;
4588 t->resumed = 0;
4589 t->control.may_range_step = 0;
4590
4591 /* This may be the first time we see the inferior report
4592 a stop. */
4593 inf = find_inferior_ptid (event_ptid);
4594 if (inf->needs_setup)
4595 {
4596 switch_to_thread_no_regs (t);
4597 setup_inferior (0);
4598 }
4599
4600 if (ws.kind == TARGET_WAITKIND_STOPPED
4601 && ws.value.sig == GDB_SIGNAL_0)
4602 {
4603 /* We caught the event that we intended to catch, so
4604 there's no event pending. */
4605 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4606 t->suspend.waitstatus_pending_p = 0;
4607
4608 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4609 {
4610 /* Add it back to the step-over queue. */
4611 if (debug_infrun)
4612 {
4613 fprintf_unfiltered (gdb_stdlog,
4614 "infrun: displaced-step of %s "
4615 "canceled: adding back to the "
4616 "step-over queue\n",
4617 target_pid_to_str (t->ptid));
4618 }
4619 t->control.trap_expected = 0;
4620 thread_step_over_chain_enqueue (t);
4621 }
4622 }
4623 else
4624 {
4625 enum gdb_signal sig;
4626 struct regcache *regcache;
4627
4628 if (debug_infrun)
4629 {
4630 char *statstr;
4631
4632 statstr = target_waitstatus_to_string (&ws);
4633 fprintf_unfiltered (gdb_stdlog,
4634 "infrun: target_wait %s, saving "
4635 "status for %d.%ld.%ld\n",
4636 statstr,
4637 ptid_get_pid (t->ptid),
4638 ptid_get_lwp (t->ptid),
4639 ptid_get_tid (t->ptid));
4640 xfree (statstr);
4641 }
4642
4643 /* Record for later. */
4644 save_waitstatus (t, &ws);
4645
4646 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4647 ? ws.value.sig : GDB_SIGNAL_0);
4648
4649 if (displaced_step_fixup (t->ptid, sig) < 0)
4650 {
4651 /* Add it back to the step-over queue. */
4652 t->control.trap_expected = 0;
4653 thread_step_over_chain_enqueue (t);
4654 }
4655
4656 regcache = get_thread_regcache (t->ptid);
4657 t->suspend.stop_pc = regcache_read_pc (regcache);
4658
4659 if (debug_infrun)
4660 {
4661 fprintf_unfiltered (gdb_stdlog,
4662 "infrun: saved stop_pc=%s for %s "
4663 "(currently_stepping=%d)\n",
4664 paddress (target_gdbarch (),
4665 t->suspend.stop_pc),
4666 target_pid_to_str (t->ptid),
4667 currently_stepping (t));
4668 }
4669 }
4670 }
4671 }
4672 }
4673
4674 do_cleanups (old_chain);
4675
4676 if (debug_infrun)
4677 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4678 }
4679
4680 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4681
4682 static int
4683 handle_no_resumed (struct execution_control_state *ecs)
4684 {
4685 struct inferior *inf;
4686 struct thread_info *thread;
4687
4688 if (target_can_async_p () && !sync_execution)
4689 {
4690 /* There were no unwaited-for children left in the target, but,
4691 we're not synchronously waiting for events either. Just
4692 ignore. */
4693
4694 if (debug_infrun)
4695 fprintf_unfiltered (gdb_stdlog,
4696 "infrun: TARGET_WAITKIND_NO_RESUMED " "(ignoring: bg)\n");
4697 prepare_to_wait (ecs);
4698 return 1;
4699 }
4700
4701 /* Otherwise, if we were running a synchronous execution command, we
4702 may need to cancel it and give the user back the terminal.
4703
4704 In non-stop mode, the target can't tell whether we've already
4705 consumed previous stop events, so it can end up sending us a
4706 no-resumed event like so:
4707
4708 #0 - thread 1 is left stopped
4709
4710 #1 - thread 2 is resumed and hits breakpoint
4711 -> TARGET_WAITKIND_STOPPED
4712
4713 #2 - thread 3 is resumed and exits
4714 this is the last resumed thread, so
4715 -> TARGET_WAITKIND_NO_RESUMED
4716
4717 #3 - gdb processes stop for thread 2 and decides to re-resume
4718 it.
4719
4720 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4721 thread 2 is now resumed, so the event should be ignored.
4722
4723 IOW, if the stop for thread 2 doesn't end a foreground command,
4724 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4725 event. But it could be that the event meant that thread 2 itself
4726 (or whatever other thread was the last resumed thread) exited.
4727
4728 To address this we refresh the thread list and check whether we
4729 have resumed threads _now_. In the example above, this removes
4730 thread 3 from the thread list. If thread 2 was re-resumed, we
4731 ignore this event. If we find no thread resumed, then we cancel
4732 the synchronous command show "no unwaited-for " to the user. */
4733 update_thread_list ();
4734
4735 ALL_NON_EXITED_THREADS (thread)
4736 {
4737 if (thread->executing
4738 || thread->suspend.waitstatus_pending_p)
4739 {
4740 /* There were no unwaited-for children left in the target at
4741 some point, but there are now. Just ignore. */
4742 if (debug_infrun)
4743 fprintf_unfiltered (gdb_stdlog,
4744 "infrun: TARGET_WAITKIND_NO_RESUMED "
4745 "(ignoring: found resumed)\n");
4746 prepare_to_wait (ecs);
4747 return 1;
4748 }
4749 }
4750
4751 /* Note however that we may find no resumed thread because the whole
4752 process exited meanwhile (thus updating the thread list results
4753 in an empty thread list). In this case we know we'll be getting
4754 a process exit event shortly. */
4755 ALL_INFERIORS (inf)
4756 {
4757 if (inf->pid == 0)
4758 continue;
4759
4760 thread = any_live_thread_of_process (inf->pid);
4761 if (thread == NULL)
4762 {
4763 if (debug_infrun)
4764 fprintf_unfiltered (gdb_stdlog,
4765 "infrun: TARGET_WAITKIND_NO_RESUMED "
4766 "(expect process exit)\n");
4767 prepare_to_wait (ecs);
4768 return 1;
4769 }
4770 }
4771
4772 /* Go ahead and report the event. */
4773 return 0;
4774 }
4775
4776 /* Given an execution control state that has been freshly filled in by
4777 an event from the inferior, figure out what it means and take
4778 appropriate action.
4779
4780 The alternatives are:
4781
4782 1) stop_waiting and return; to really stop and return to the
4783 debugger.
4784
4785 2) keep_going and return; to wait for the next event (set
4786 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4787 once). */
4788
4789 static void
4790 handle_inferior_event_1 (struct execution_control_state *ecs)
4791 {
4792 enum stop_kind stop_soon;
4793
4794 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4795 {
4796 /* We had an event in the inferior, but we are not interested in
4797 handling it at this level. The lower layers have already
4798 done what needs to be done, if anything.
4799
4800 One of the possible circumstances for this is when the
4801 inferior produces output for the console. The inferior has
4802 not stopped, and we are ignoring the event. Another possible
4803 circumstance is any event which the lower level knows will be
4804 reported multiple times without an intervening resume. */
4805 if (debug_infrun)
4806 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4807 prepare_to_wait (ecs);
4808 return;
4809 }
4810
4811 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4812 {
4813 if (debug_infrun)
4814 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4815 prepare_to_wait (ecs);
4816 return;
4817 }
4818
4819 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4820 && handle_no_resumed (ecs))
4821 return;
4822
4823 /* Cache the last pid/waitstatus. */
4824 set_last_target_status (ecs->ptid, ecs->ws);
4825
4826 /* Always clear state belonging to the previous time we stopped. */
4827 stop_stack_dummy = STOP_NONE;
4828
4829 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4830 {
4831 /* No unwaited-for children left. IOW, all resumed children
4832 have exited. */
4833 if (debug_infrun)
4834 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4835
4836 stop_print_frame = 0;
4837 stop_waiting (ecs);
4838 return;
4839 }
4840
4841 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4842 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4843 {
4844 ecs->event_thread = find_thread_ptid (ecs->ptid);
4845 /* If it's a new thread, add it to the thread database. */
4846 if (ecs->event_thread == NULL)
4847 ecs->event_thread = add_thread (ecs->ptid);
4848
4849 /* Disable range stepping. If the next step request could use a
4850 range, this will be end up re-enabled then. */
4851 ecs->event_thread->control.may_range_step = 0;
4852 }
4853
4854 /* Dependent on valid ECS->EVENT_THREAD. */
4855 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4856
4857 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4858 reinit_frame_cache ();
4859
4860 breakpoint_retire_moribund ();
4861
4862 /* First, distinguish signals caused by the debugger from signals
4863 that have to do with the program's own actions. Note that
4864 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4865 on the operating system version. Here we detect when a SIGILL or
4866 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4867 something similar for SIGSEGV, since a SIGSEGV will be generated
4868 when we're trying to execute a breakpoint instruction on a
4869 non-executable stack. This happens for call dummy breakpoints
4870 for architectures like SPARC that place call dummies on the
4871 stack. */
4872 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4873 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4874 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4875 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4876 {
4877 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4878
4879 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4880 regcache_read_pc (regcache)))
4881 {
4882 if (debug_infrun)
4883 fprintf_unfiltered (gdb_stdlog,
4884 "infrun: Treating signal as SIGTRAP\n");
4885 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4886 }
4887 }
4888
4889 /* Mark the non-executing threads accordingly. In all-stop, all
4890 threads of all processes are stopped when we get any event
4891 reported. In non-stop mode, only the event thread stops. */
4892 {
4893 ptid_t mark_ptid;
4894
4895 if (!target_is_non_stop_p ())
4896 mark_ptid = minus_one_ptid;
4897 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4898 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4899 {
4900 /* If we're handling a process exit in non-stop mode, even
4901 though threads haven't been deleted yet, one would think
4902 that there is nothing to do, as threads of the dead process
4903 will be soon deleted, and threads of any other process were
4904 left running. However, on some targets, threads survive a
4905 process exit event. E.g., for the "checkpoint" command,
4906 when the current checkpoint/fork exits, linux-fork.c
4907 automatically switches to another fork from within
4908 target_mourn_inferior, by associating the same
4909 inferior/thread to another fork. We haven't mourned yet at
4910 this point, but we must mark any threads left in the
4911 process as not-executing so that finish_thread_state marks
4912 them stopped (in the user's perspective) if/when we present
4913 the stop to the user. */
4914 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4915 }
4916 else
4917 mark_ptid = ecs->ptid;
4918
4919 set_executing (mark_ptid, 0);
4920
4921 /* Likewise the resumed flag. */
4922 set_resumed (mark_ptid, 0);
4923 }
4924
4925 switch (ecs->ws.kind)
4926 {
4927 case TARGET_WAITKIND_LOADED:
4928 if (debug_infrun)
4929 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4930 if (!ptid_equal (ecs->ptid, inferior_ptid))
4931 context_switch (ecs->ptid);
4932 /* Ignore gracefully during startup of the inferior, as it might
4933 be the shell which has just loaded some objects, otherwise
4934 add the symbols for the newly loaded objects. Also ignore at
4935 the beginning of an attach or remote session; we will query
4936 the full list of libraries once the connection is
4937 established. */
4938
4939 stop_soon = get_inferior_stop_soon (ecs->ptid);
4940 if (stop_soon == NO_STOP_QUIETLY)
4941 {
4942 struct regcache *regcache;
4943
4944 regcache = get_thread_regcache (ecs->ptid);
4945
4946 handle_solib_event ();
4947
4948 ecs->event_thread->control.stop_bpstat
4949 = bpstat_stop_status (get_regcache_aspace (regcache),
4950 stop_pc, ecs->ptid, &ecs->ws);
4951
4952 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4953 {
4954 /* A catchpoint triggered. */
4955 process_event_stop_test (ecs);
4956 return;
4957 }
4958
4959 /* If requested, stop when the dynamic linker notifies
4960 gdb of events. This allows the user to get control
4961 and place breakpoints in initializer routines for
4962 dynamically loaded objects (among other things). */
4963 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4964 if (stop_on_solib_events)
4965 {
4966 /* Make sure we print "Stopped due to solib-event" in
4967 normal_stop. */
4968 stop_print_frame = 1;
4969
4970 stop_waiting (ecs);
4971 return;
4972 }
4973 }
4974
4975 /* If we are skipping through a shell, or through shared library
4976 loading that we aren't interested in, resume the program. If
4977 we're running the program normally, also resume. */
4978 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4979 {
4980 /* Loading of shared libraries might have changed breakpoint
4981 addresses. Make sure new breakpoints are inserted. */
4982 if (stop_soon == NO_STOP_QUIETLY)
4983 insert_breakpoints ();
4984 resume (GDB_SIGNAL_0);
4985 prepare_to_wait (ecs);
4986 return;
4987 }
4988
4989 /* But stop if we're attaching or setting up a remote
4990 connection. */
4991 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4992 || stop_soon == STOP_QUIETLY_REMOTE)
4993 {
4994 if (debug_infrun)
4995 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4996 stop_waiting (ecs);
4997 return;
4998 }
4999
5000 internal_error (__FILE__, __LINE__,
5001 _("unhandled stop_soon: %d"), (int) stop_soon);
5002
5003 case TARGET_WAITKIND_SPURIOUS:
5004 if (debug_infrun)
5005 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5006 if (!ptid_equal (ecs->ptid, inferior_ptid))
5007 context_switch (ecs->ptid);
5008 resume (GDB_SIGNAL_0);
5009 prepare_to_wait (ecs);
5010 return;
5011
5012 case TARGET_WAITKIND_THREAD_CREATED:
5013 if (debug_infrun)
5014 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5015 if (!ptid_equal (ecs->ptid, inferior_ptid))
5016 context_switch (ecs->ptid);
5017 if (!switch_back_to_stepped_thread (ecs))
5018 keep_going (ecs);
5019 return;
5020
5021 case TARGET_WAITKIND_EXITED:
5022 case TARGET_WAITKIND_SIGNALLED:
5023 if (debug_infrun)
5024 {
5025 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5026 fprintf_unfiltered (gdb_stdlog,
5027 "infrun: TARGET_WAITKIND_EXITED\n");
5028 else
5029 fprintf_unfiltered (gdb_stdlog,
5030 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5031 }
5032
5033 inferior_ptid = ecs->ptid;
5034 set_current_inferior (find_inferior_ptid (ecs->ptid));
5035 set_current_program_space (current_inferior ()->pspace);
5036 handle_vfork_child_exec_or_exit (0);
5037 target_terminal_ours (); /* Must do this before mourn anyway. */
5038
5039 /* Clearing any previous state of convenience variables. */
5040 clear_exit_convenience_vars ();
5041
5042 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5043 {
5044 /* Record the exit code in the convenience variable $_exitcode, so
5045 that the user can inspect this again later. */
5046 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5047 (LONGEST) ecs->ws.value.integer);
5048
5049 /* Also record this in the inferior itself. */
5050 current_inferior ()->has_exit_code = 1;
5051 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5052
5053 /* Support the --return-child-result option. */
5054 return_child_result_value = ecs->ws.value.integer;
5055
5056 observer_notify_exited (ecs->ws.value.integer);
5057 }
5058 else
5059 {
5060 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5061 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5062
5063 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5064 {
5065 /* Set the value of the internal variable $_exitsignal,
5066 which holds the signal uncaught by the inferior. */
5067 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5068 gdbarch_gdb_signal_to_target (gdbarch,
5069 ecs->ws.value.sig));
5070 }
5071 else
5072 {
5073 /* We don't have access to the target's method used for
5074 converting between signal numbers (GDB's internal
5075 representation <-> target's representation).
5076 Therefore, we cannot do a good job at displaying this
5077 information to the user. It's better to just warn
5078 her about it (if infrun debugging is enabled), and
5079 give up. */
5080 if (debug_infrun)
5081 fprintf_filtered (gdb_stdlog, _("\
5082 Cannot fill $_exitsignal with the correct signal number.\n"));
5083 }
5084
5085 observer_notify_signal_exited (ecs->ws.value.sig);
5086 }
5087
5088 gdb_flush (gdb_stdout);
5089 target_mourn_inferior ();
5090 stop_print_frame = 0;
5091 stop_waiting (ecs);
5092 return;
5093
5094 /* The following are the only cases in which we keep going;
5095 the above cases end in a continue or goto. */
5096 case TARGET_WAITKIND_FORKED:
5097 case TARGET_WAITKIND_VFORKED:
5098 if (debug_infrun)
5099 {
5100 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5101 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5102 else
5103 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5104 }
5105
5106 /* Check whether the inferior is displaced stepping. */
5107 {
5108 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5109 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5110
5111 /* If checking displaced stepping is supported, and thread
5112 ecs->ptid is displaced stepping. */
5113 if (displaced_step_in_progress_thread (ecs->ptid))
5114 {
5115 struct inferior *parent_inf
5116 = find_inferior_ptid (ecs->ptid);
5117 struct regcache *child_regcache;
5118 CORE_ADDR parent_pc;
5119
5120 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5121 indicating that the displaced stepping of syscall instruction
5122 has been done. Perform cleanup for parent process here. Note
5123 that this operation also cleans up the child process for vfork,
5124 because their pages are shared. */
5125 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5126 /* Start a new step-over in another thread if there's one
5127 that needs it. */
5128 start_step_over ();
5129
5130 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5131 {
5132 struct displaced_step_inferior_state *displaced
5133 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5134
5135 /* Restore scratch pad for child process. */
5136 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5137 }
5138
5139 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5140 the child's PC is also within the scratchpad. Set the child's PC
5141 to the parent's PC value, which has already been fixed up.
5142 FIXME: we use the parent's aspace here, although we're touching
5143 the child, because the child hasn't been added to the inferior
5144 list yet at this point. */
5145
5146 child_regcache
5147 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5148 gdbarch,
5149 parent_inf->aspace);
5150 /* Read PC value of parent process. */
5151 parent_pc = regcache_read_pc (regcache);
5152
5153 if (debug_displaced)
5154 fprintf_unfiltered (gdb_stdlog,
5155 "displaced: write child pc from %s to %s\n",
5156 paddress (gdbarch,
5157 regcache_read_pc (child_regcache)),
5158 paddress (gdbarch, parent_pc));
5159
5160 regcache_write_pc (child_regcache, parent_pc);
5161 }
5162 }
5163
5164 if (!ptid_equal (ecs->ptid, inferior_ptid))
5165 context_switch (ecs->ptid);
5166
5167 /* Immediately detach breakpoints from the child before there's
5168 any chance of letting the user delete breakpoints from the
5169 breakpoint lists. If we don't do this early, it's easy to
5170 leave left over traps in the child, vis: "break foo; catch
5171 fork; c; <fork>; del; c; <child calls foo>". We only follow
5172 the fork on the last `continue', and by that time the
5173 breakpoint at "foo" is long gone from the breakpoint table.
5174 If we vforked, then we don't need to unpatch here, since both
5175 parent and child are sharing the same memory pages; we'll
5176 need to unpatch at follow/detach time instead to be certain
5177 that new breakpoints added between catchpoint hit time and
5178 vfork follow are detached. */
5179 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5180 {
5181 /* This won't actually modify the breakpoint list, but will
5182 physically remove the breakpoints from the child. */
5183 detach_breakpoints (ecs->ws.value.related_pid);
5184 }
5185
5186 delete_just_stopped_threads_single_step_breakpoints ();
5187
5188 /* In case the event is caught by a catchpoint, remember that
5189 the event is to be followed at the next resume of the thread,
5190 and not immediately. */
5191 ecs->event_thread->pending_follow = ecs->ws;
5192
5193 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5194
5195 ecs->event_thread->control.stop_bpstat
5196 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5197 stop_pc, ecs->ptid, &ecs->ws);
5198
5199 /* If no catchpoint triggered for this, then keep going. Note
5200 that we're interested in knowing the bpstat actually causes a
5201 stop, not just if it may explain the signal. Software
5202 watchpoints, for example, always appear in the bpstat. */
5203 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5204 {
5205 ptid_t parent;
5206 ptid_t child;
5207 int should_resume;
5208 int follow_child
5209 = (follow_fork_mode_string == follow_fork_mode_child);
5210
5211 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5212
5213 should_resume = follow_fork ();
5214
5215 parent = ecs->ptid;
5216 child = ecs->ws.value.related_pid;
5217
5218 /* At this point, the parent is marked running, and the
5219 child is marked stopped. */
5220
5221 /* If not resuming the parent, mark it stopped. */
5222 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5223 set_running (parent, 0);
5224
5225 /* If resuming the child, mark it running. */
5226 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5227 set_running (child, 1);
5228
5229 /* In non-stop mode, also resume the other branch. */
5230 if (!detach_fork && (non_stop
5231 || (sched_multi && target_is_non_stop_p ())))
5232 {
5233 if (follow_child)
5234 switch_to_thread (parent);
5235 else
5236 switch_to_thread (child);
5237
5238 ecs->event_thread = inferior_thread ();
5239 ecs->ptid = inferior_ptid;
5240 keep_going (ecs);
5241 }
5242
5243 if (follow_child)
5244 switch_to_thread (child);
5245 else
5246 switch_to_thread (parent);
5247
5248 ecs->event_thread = inferior_thread ();
5249 ecs->ptid = inferior_ptid;
5250
5251 if (should_resume)
5252 keep_going (ecs);
5253 else
5254 stop_waiting (ecs);
5255 return;
5256 }
5257 process_event_stop_test (ecs);
5258 return;
5259
5260 case TARGET_WAITKIND_VFORK_DONE:
5261 /* Done with the shared memory region. Re-insert breakpoints in
5262 the parent, and keep going. */
5263
5264 if (debug_infrun)
5265 fprintf_unfiltered (gdb_stdlog,
5266 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5267
5268 if (!ptid_equal (ecs->ptid, inferior_ptid))
5269 context_switch (ecs->ptid);
5270
5271 current_inferior ()->waiting_for_vfork_done = 0;
5272 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5273 /* This also takes care of reinserting breakpoints in the
5274 previously locked inferior. */
5275 keep_going (ecs);
5276 return;
5277
5278 case TARGET_WAITKIND_EXECD:
5279 if (debug_infrun)
5280 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5281
5282 if (!ptid_equal (ecs->ptid, inferior_ptid))
5283 context_switch (ecs->ptid);
5284
5285 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5286
5287 /* Do whatever is necessary to the parent branch of the vfork. */
5288 handle_vfork_child_exec_or_exit (1);
5289
5290 /* This causes the eventpoints and symbol table to be reset.
5291 Must do this now, before trying to determine whether to
5292 stop. */
5293 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5294
5295 /* In follow_exec we may have deleted the original thread and
5296 created a new one. Make sure that the event thread is the
5297 execd thread for that case (this is a nop otherwise). */
5298 ecs->event_thread = inferior_thread ();
5299
5300 ecs->event_thread->control.stop_bpstat
5301 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5302 stop_pc, ecs->ptid, &ecs->ws);
5303
5304 /* Note that this may be referenced from inside
5305 bpstat_stop_status above, through inferior_has_execd. */
5306 xfree (ecs->ws.value.execd_pathname);
5307 ecs->ws.value.execd_pathname = NULL;
5308
5309 /* If no catchpoint triggered for this, then keep going. */
5310 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5311 {
5312 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5313 keep_going (ecs);
5314 return;
5315 }
5316 process_event_stop_test (ecs);
5317 return;
5318
5319 /* Be careful not to try to gather much state about a thread
5320 that's in a syscall. It's frequently a losing proposition. */
5321 case TARGET_WAITKIND_SYSCALL_ENTRY:
5322 if (debug_infrun)
5323 fprintf_unfiltered (gdb_stdlog,
5324 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5325 /* Getting the current syscall number. */
5326 if (handle_syscall_event (ecs) == 0)
5327 process_event_stop_test (ecs);
5328 return;
5329
5330 /* Before examining the threads further, step this thread to
5331 get it entirely out of the syscall. (We get notice of the
5332 event when the thread is just on the verge of exiting a
5333 syscall. Stepping one instruction seems to get it back
5334 into user code.) */
5335 case TARGET_WAITKIND_SYSCALL_RETURN:
5336 if (debug_infrun)
5337 fprintf_unfiltered (gdb_stdlog,
5338 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5339 if (handle_syscall_event (ecs) == 0)
5340 process_event_stop_test (ecs);
5341 return;
5342
5343 case TARGET_WAITKIND_STOPPED:
5344 if (debug_infrun)
5345 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5346 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5347 handle_signal_stop (ecs);
5348 return;
5349
5350 case TARGET_WAITKIND_NO_HISTORY:
5351 if (debug_infrun)
5352 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5353 /* Reverse execution: target ran out of history info. */
5354
5355 /* Switch to the stopped thread. */
5356 if (!ptid_equal (ecs->ptid, inferior_ptid))
5357 context_switch (ecs->ptid);
5358 if (debug_infrun)
5359 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5360
5361 delete_just_stopped_threads_single_step_breakpoints ();
5362 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5363 observer_notify_no_history ();
5364 stop_waiting (ecs);
5365 return;
5366 }
5367 }
5368
5369 /* A wrapper around handle_inferior_event_1, which also makes sure
5370 that all temporary struct value objects that were created during
5371 the handling of the event get deleted at the end. */
5372
5373 static void
5374 handle_inferior_event (struct execution_control_state *ecs)
5375 {
5376 struct value *mark = value_mark ();
5377
5378 handle_inferior_event_1 (ecs);
5379 /* Purge all temporary values created during the event handling,
5380 as it could be a long time before we return to the command level
5381 where such values would otherwise be purged. */
5382 value_free_to_mark (mark);
5383 }
5384
5385 /* Restart threads back to what they were trying to do back when we
5386 paused them for an in-line step-over. The EVENT_THREAD thread is
5387 ignored. */
5388
5389 static void
5390 restart_threads (struct thread_info *event_thread)
5391 {
5392 struct thread_info *tp;
5393
5394 /* In case the instruction just stepped spawned a new thread. */
5395 update_thread_list ();
5396
5397 ALL_NON_EXITED_THREADS (tp)
5398 {
5399 if (tp == event_thread)
5400 {
5401 if (debug_infrun)
5402 fprintf_unfiltered (gdb_stdlog,
5403 "infrun: restart threads: "
5404 "[%s] is event thread\n",
5405 target_pid_to_str (tp->ptid));
5406 continue;
5407 }
5408
5409 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5410 {
5411 if (debug_infrun)
5412 fprintf_unfiltered (gdb_stdlog,
5413 "infrun: restart threads: "
5414 "[%s] not meant to be running\n",
5415 target_pid_to_str (tp->ptid));
5416 continue;
5417 }
5418
5419 if (tp->resumed)
5420 {
5421 if (debug_infrun)
5422 fprintf_unfiltered (gdb_stdlog,
5423 "infrun: restart threads: [%s] resumed\n",
5424 target_pid_to_str (tp->ptid));
5425 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5426 continue;
5427 }
5428
5429 if (thread_is_in_step_over_chain (tp))
5430 {
5431 if (debug_infrun)
5432 fprintf_unfiltered (gdb_stdlog,
5433 "infrun: restart threads: "
5434 "[%s] needs step-over\n",
5435 target_pid_to_str (tp->ptid));
5436 gdb_assert (!tp->resumed);
5437 continue;
5438 }
5439
5440
5441 if (tp->suspend.waitstatus_pending_p)
5442 {
5443 if (debug_infrun)
5444 fprintf_unfiltered (gdb_stdlog,
5445 "infrun: restart threads: "
5446 "[%s] has pending status\n",
5447 target_pid_to_str (tp->ptid));
5448 tp->resumed = 1;
5449 continue;
5450 }
5451
5452 /* If some thread needs to start a step-over at this point, it
5453 should still be in the step-over queue, and thus skipped
5454 above. */
5455 if (thread_still_needs_step_over (tp))
5456 {
5457 internal_error (__FILE__, __LINE__,
5458 "thread [%s] needs a step-over, but not in "
5459 "step-over queue\n",
5460 target_pid_to_str (tp->ptid));
5461 }
5462
5463 if (currently_stepping (tp))
5464 {
5465 if (debug_infrun)
5466 fprintf_unfiltered (gdb_stdlog,
5467 "infrun: restart threads: [%s] was stepping\n",
5468 target_pid_to_str (tp->ptid));
5469 keep_going_stepped_thread (tp);
5470 }
5471 else
5472 {
5473 struct execution_control_state ecss;
5474 struct execution_control_state *ecs = &ecss;
5475
5476 if (debug_infrun)
5477 fprintf_unfiltered (gdb_stdlog,
5478 "infrun: restart threads: [%s] continuing\n",
5479 target_pid_to_str (tp->ptid));
5480 reset_ecs (ecs, tp);
5481 switch_to_thread (tp->ptid);
5482 keep_going_pass_signal (ecs);
5483 }
5484 }
5485 }
5486
5487 /* Callback for iterate_over_threads. Find a resumed thread that has
5488 a pending waitstatus. */
5489
5490 static int
5491 resumed_thread_with_pending_status (struct thread_info *tp,
5492 void *arg)
5493 {
5494 return (tp->resumed
5495 && tp->suspend.waitstatus_pending_p);
5496 }
5497
5498 /* Called when we get an event that may finish an in-line or
5499 out-of-line (displaced stepping) step-over started previously.
5500 Return true if the event is processed and we should go back to the
5501 event loop; false if the caller should continue processing the
5502 event. */
5503
5504 static int
5505 finish_step_over (struct execution_control_state *ecs)
5506 {
5507 int had_step_over_info;
5508
5509 displaced_step_fixup (ecs->ptid,
5510 ecs->event_thread->suspend.stop_signal);
5511
5512 had_step_over_info = step_over_info_valid_p ();
5513
5514 if (had_step_over_info)
5515 {
5516 /* If we're stepping over a breakpoint with all threads locked,
5517 then only the thread that was stepped should be reporting
5518 back an event. */
5519 gdb_assert (ecs->event_thread->control.trap_expected);
5520
5521 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5522 clear_step_over_info ();
5523 }
5524
5525 if (!target_is_non_stop_p ())
5526 return 0;
5527
5528 /* Start a new step-over in another thread if there's one that
5529 needs it. */
5530 start_step_over ();
5531
5532 /* If we were stepping over a breakpoint before, and haven't started
5533 a new in-line step-over sequence, then restart all other threads
5534 (except the event thread). We can't do this in all-stop, as then
5535 e.g., we wouldn't be able to issue any other remote packet until
5536 these other threads stop. */
5537 if (had_step_over_info && !step_over_info_valid_p ())
5538 {
5539 struct thread_info *pending;
5540
5541 /* If we only have threads with pending statuses, the restart
5542 below won't restart any thread and so nothing re-inserts the
5543 breakpoint we just stepped over. But we need it inserted
5544 when we later process the pending events, otherwise if
5545 another thread has a pending event for this breakpoint too,
5546 we'd discard its event (because the breakpoint that
5547 originally caused the event was no longer inserted). */
5548 context_switch (ecs->ptid);
5549 insert_breakpoints ();
5550
5551 restart_threads (ecs->event_thread);
5552
5553 /* If we have events pending, go through handle_inferior_event
5554 again, picking up a pending event at random. This avoids
5555 thread starvation. */
5556
5557 /* But not if we just stepped over a watchpoint in order to let
5558 the instruction execute so we can evaluate its expression.
5559 The set of watchpoints that triggered is recorded in the
5560 breakpoint objects themselves (see bp->watchpoint_triggered).
5561 If we processed another event first, that other event could
5562 clobber this info. */
5563 if (ecs->event_thread->stepping_over_watchpoint)
5564 return 0;
5565
5566 pending = iterate_over_threads (resumed_thread_with_pending_status,
5567 NULL);
5568 if (pending != NULL)
5569 {
5570 struct thread_info *tp = ecs->event_thread;
5571 struct regcache *regcache;
5572
5573 if (debug_infrun)
5574 {
5575 fprintf_unfiltered (gdb_stdlog,
5576 "infrun: found resumed threads with "
5577 "pending events, saving status\n");
5578 }
5579
5580 gdb_assert (pending != tp);
5581
5582 /* Record the event thread's event for later. */
5583 save_waitstatus (tp, &ecs->ws);
5584 /* This was cleared early, by handle_inferior_event. Set it
5585 so this pending event is considered by
5586 do_target_wait. */
5587 tp->resumed = 1;
5588
5589 gdb_assert (!tp->executing);
5590
5591 regcache = get_thread_regcache (tp->ptid);
5592 tp->suspend.stop_pc = regcache_read_pc (regcache);
5593
5594 if (debug_infrun)
5595 {
5596 fprintf_unfiltered (gdb_stdlog,
5597 "infrun: saved stop_pc=%s for %s "
5598 "(currently_stepping=%d)\n",
5599 paddress (target_gdbarch (),
5600 tp->suspend.stop_pc),
5601 target_pid_to_str (tp->ptid),
5602 currently_stepping (tp));
5603 }
5604
5605 /* This in-line step-over finished; clear this so we won't
5606 start a new one. This is what handle_signal_stop would
5607 do, if we returned false. */
5608 tp->stepping_over_breakpoint = 0;
5609
5610 /* Wake up the event loop again. */
5611 mark_async_event_handler (infrun_async_inferior_event_token);
5612
5613 prepare_to_wait (ecs);
5614 return 1;
5615 }
5616 }
5617
5618 return 0;
5619 }
5620
5621 /* Come here when the program has stopped with a signal. */
5622
5623 static void
5624 handle_signal_stop (struct execution_control_state *ecs)
5625 {
5626 struct frame_info *frame;
5627 struct gdbarch *gdbarch;
5628 int stopped_by_watchpoint;
5629 enum stop_kind stop_soon;
5630 int random_signal;
5631
5632 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5633
5634 /* Do we need to clean up the state of a thread that has
5635 completed a displaced single-step? (Doing so usually affects
5636 the PC, so do it here, before we set stop_pc.) */
5637 if (finish_step_over (ecs))
5638 return;
5639
5640 /* If we either finished a single-step or hit a breakpoint, but
5641 the user wanted this thread to be stopped, pretend we got a
5642 SIG0 (generic unsignaled stop). */
5643 if (ecs->event_thread->stop_requested
5644 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5645 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5646
5647 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5648
5649 if (debug_infrun)
5650 {
5651 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5652 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5653 struct cleanup *old_chain = save_inferior_ptid ();
5654
5655 inferior_ptid = ecs->ptid;
5656
5657 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5658 paddress (gdbarch, stop_pc));
5659 if (target_stopped_by_watchpoint ())
5660 {
5661 CORE_ADDR addr;
5662
5663 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5664
5665 if (target_stopped_data_address (&current_target, &addr))
5666 fprintf_unfiltered (gdb_stdlog,
5667 "infrun: stopped data address = %s\n",
5668 paddress (gdbarch, addr));
5669 else
5670 fprintf_unfiltered (gdb_stdlog,
5671 "infrun: (no data address available)\n");
5672 }
5673
5674 do_cleanups (old_chain);
5675 }
5676
5677 /* This is originated from start_remote(), start_inferior() and
5678 shared libraries hook functions. */
5679 stop_soon = get_inferior_stop_soon (ecs->ptid);
5680 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5681 {
5682 if (!ptid_equal (ecs->ptid, inferior_ptid))
5683 context_switch (ecs->ptid);
5684 if (debug_infrun)
5685 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5686 stop_print_frame = 1;
5687 stop_waiting (ecs);
5688 return;
5689 }
5690
5691 /* This originates from attach_command(). We need to overwrite
5692 the stop_signal here, because some kernels don't ignore a
5693 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5694 See more comments in inferior.h. On the other hand, if we
5695 get a non-SIGSTOP, report it to the user - assume the backend
5696 will handle the SIGSTOP if it should show up later.
5697
5698 Also consider that the attach is complete when we see a
5699 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5700 target extended-remote report it instead of a SIGSTOP
5701 (e.g. gdbserver). We already rely on SIGTRAP being our
5702 signal, so this is no exception.
5703
5704 Also consider that the attach is complete when we see a
5705 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5706 the target to stop all threads of the inferior, in case the
5707 low level attach operation doesn't stop them implicitly. If
5708 they weren't stopped implicitly, then the stub will report a
5709 GDB_SIGNAL_0, meaning: stopped for no particular reason
5710 other than GDB's request. */
5711 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5712 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5713 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5714 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5715 {
5716 stop_print_frame = 1;
5717 stop_waiting (ecs);
5718 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5719 return;
5720 }
5721
5722 /* See if something interesting happened to the non-current thread. If
5723 so, then switch to that thread. */
5724 if (!ptid_equal (ecs->ptid, inferior_ptid))
5725 {
5726 if (debug_infrun)
5727 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5728
5729 context_switch (ecs->ptid);
5730
5731 if (deprecated_context_hook)
5732 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5733 }
5734
5735 /* At this point, get hold of the now-current thread's frame. */
5736 frame = get_current_frame ();
5737 gdbarch = get_frame_arch (frame);
5738
5739 /* Pull the single step breakpoints out of the target. */
5740 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5741 {
5742 struct regcache *regcache;
5743 struct address_space *aspace;
5744 CORE_ADDR pc;
5745
5746 regcache = get_thread_regcache (ecs->ptid);
5747 aspace = get_regcache_aspace (regcache);
5748 pc = regcache_read_pc (regcache);
5749
5750 /* However, before doing so, if this single-step breakpoint was
5751 actually for another thread, set this thread up for moving
5752 past it. */
5753 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5754 aspace, pc))
5755 {
5756 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5757 {
5758 if (debug_infrun)
5759 {
5760 fprintf_unfiltered (gdb_stdlog,
5761 "infrun: [%s] hit another thread's "
5762 "single-step breakpoint\n",
5763 target_pid_to_str (ecs->ptid));
5764 }
5765 ecs->hit_singlestep_breakpoint = 1;
5766 }
5767 }
5768 else
5769 {
5770 if (debug_infrun)
5771 {
5772 fprintf_unfiltered (gdb_stdlog,
5773 "infrun: [%s] hit its "
5774 "single-step breakpoint\n",
5775 target_pid_to_str (ecs->ptid));
5776 }
5777 }
5778 }
5779 delete_just_stopped_threads_single_step_breakpoints ();
5780
5781 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5782 && ecs->event_thread->control.trap_expected
5783 && ecs->event_thread->stepping_over_watchpoint)
5784 stopped_by_watchpoint = 0;
5785 else
5786 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5787
5788 /* If necessary, step over this watchpoint. We'll be back to display
5789 it in a moment. */
5790 if (stopped_by_watchpoint
5791 && (target_have_steppable_watchpoint
5792 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5793 {
5794 /* At this point, we are stopped at an instruction which has
5795 attempted to write to a piece of memory under control of
5796 a watchpoint. The instruction hasn't actually executed
5797 yet. If we were to evaluate the watchpoint expression
5798 now, we would get the old value, and therefore no change
5799 would seem to have occurred.
5800
5801 In order to make watchpoints work `right', we really need
5802 to complete the memory write, and then evaluate the
5803 watchpoint expression. We do this by single-stepping the
5804 target.
5805
5806 It may not be necessary to disable the watchpoint to step over
5807 it. For example, the PA can (with some kernel cooperation)
5808 single step over a watchpoint without disabling the watchpoint.
5809
5810 It is far more common to need to disable a watchpoint to step
5811 the inferior over it. If we have non-steppable watchpoints,
5812 we must disable the current watchpoint; it's simplest to
5813 disable all watchpoints.
5814
5815 Any breakpoint at PC must also be stepped over -- if there's
5816 one, it will have already triggered before the watchpoint
5817 triggered, and we either already reported it to the user, or
5818 it didn't cause a stop and we called keep_going. In either
5819 case, if there was a breakpoint at PC, we must be trying to
5820 step past it. */
5821 ecs->event_thread->stepping_over_watchpoint = 1;
5822 keep_going (ecs);
5823 return;
5824 }
5825
5826 ecs->event_thread->stepping_over_breakpoint = 0;
5827 ecs->event_thread->stepping_over_watchpoint = 0;
5828 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5829 ecs->event_thread->control.stop_step = 0;
5830 stop_print_frame = 1;
5831 stopped_by_random_signal = 0;
5832
5833 /* Hide inlined functions starting here, unless we just performed stepi or
5834 nexti. After stepi and nexti, always show the innermost frame (not any
5835 inline function call sites). */
5836 if (ecs->event_thread->control.step_range_end != 1)
5837 {
5838 struct address_space *aspace =
5839 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5840
5841 /* skip_inline_frames is expensive, so we avoid it if we can
5842 determine that the address is one where functions cannot have
5843 been inlined. This improves performance with inferiors that
5844 load a lot of shared libraries, because the solib event
5845 breakpoint is defined as the address of a function (i.e. not
5846 inline). Note that we have to check the previous PC as well
5847 as the current one to catch cases when we have just
5848 single-stepped off a breakpoint prior to reinstating it.
5849 Note that we're assuming that the code we single-step to is
5850 not inline, but that's not definitive: there's nothing
5851 preventing the event breakpoint function from containing
5852 inlined code, and the single-step ending up there. If the
5853 user had set a breakpoint on that inlined code, the missing
5854 skip_inline_frames call would break things. Fortunately
5855 that's an extremely unlikely scenario. */
5856 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5857 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5858 && ecs->event_thread->control.trap_expected
5859 && pc_at_non_inline_function (aspace,
5860 ecs->event_thread->prev_pc,
5861 &ecs->ws)))
5862 {
5863 skip_inline_frames (ecs->ptid);
5864
5865 /* Re-fetch current thread's frame in case that invalidated
5866 the frame cache. */
5867 frame = get_current_frame ();
5868 gdbarch = get_frame_arch (frame);
5869 }
5870 }
5871
5872 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5873 && ecs->event_thread->control.trap_expected
5874 && gdbarch_single_step_through_delay_p (gdbarch)
5875 && currently_stepping (ecs->event_thread))
5876 {
5877 /* We're trying to step off a breakpoint. Turns out that we're
5878 also on an instruction that needs to be stepped multiple
5879 times before it's been fully executing. E.g., architectures
5880 with a delay slot. It needs to be stepped twice, once for
5881 the instruction and once for the delay slot. */
5882 int step_through_delay
5883 = gdbarch_single_step_through_delay (gdbarch, frame);
5884
5885 if (debug_infrun && step_through_delay)
5886 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5887 if (ecs->event_thread->control.step_range_end == 0
5888 && step_through_delay)
5889 {
5890 /* The user issued a continue when stopped at a breakpoint.
5891 Set up for another trap and get out of here. */
5892 ecs->event_thread->stepping_over_breakpoint = 1;
5893 keep_going (ecs);
5894 return;
5895 }
5896 else if (step_through_delay)
5897 {
5898 /* The user issued a step when stopped at a breakpoint.
5899 Maybe we should stop, maybe we should not - the delay
5900 slot *might* correspond to a line of source. In any
5901 case, don't decide that here, just set
5902 ecs->stepping_over_breakpoint, making sure we
5903 single-step again before breakpoints are re-inserted. */
5904 ecs->event_thread->stepping_over_breakpoint = 1;
5905 }
5906 }
5907
5908 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5909 handles this event. */
5910 ecs->event_thread->control.stop_bpstat
5911 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5912 stop_pc, ecs->ptid, &ecs->ws);
5913
5914 /* Following in case break condition called a
5915 function. */
5916 stop_print_frame = 1;
5917
5918 /* This is where we handle "moribund" watchpoints. Unlike
5919 software breakpoints traps, hardware watchpoint traps are
5920 always distinguishable from random traps. If no high-level
5921 watchpoint is associated with the reported stop data address
5922 anymore, then the bpstat does not explain the signal ---
5923 simply make sure to ignore it if `stopped_by_watchpoint' is
5924 set. */
5925
5926 if (debug_infrun
5927 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5928 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5929 GDB_SIGNAL_TRAP)
5930 && stopped_by_watchpoint)
5931 fprintf_unfiltered (gdb_stdlog,
5932 "infrun: no user watchpoint explains "
5933 "watchpoint SIGTRAP, ignoring\n");
5934
5935 /* NOTE: cagney/2003-03-29: These checks for a random signal
5936 at one stage in the past included checks for an inferior
5937 function call's call dummy's return breakpoint. The original
5938 comment, that went with the test, read:
5939
5940 ``End of a stack dummy. Some systems (e.g. Sony news) give
5941 another signal besides SIGTRAP, so check here as well as
5942 above.''
5943
5944 If someone ever tries to get call dummys on a
5945 non-executable stack to work (where the target would stop
5946 with something like a SIGSEGV), then those tests might need
5947 to be re-instated. Given, however, that the tests were only
5948 enabled when momentary breakpoints were not being used, I
5949 suspect that it won't be the case.
5950
5951 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5952 be necessary for call dummies on a non-executable stack on
5953 SPARC. */
5954
5955 /* See if the breakpoints module can explain the signal. */
5956 random_signal
5957 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5958 ecs->event_thread->suspend.stop_signal);
5959
5960 /* Maybe this was a trap for a software breakpoint that has since
5961 been removed. */
5962 if (random_signal && target_stopped_by_sw_breakpoint ())
5963 {
5964 if (program_breakpoint_here_p (gdbarch, stop_pc))
5965 {
5966 struct regcache *regcache;
5967 int decr_pc;
5968
5969 /* Re-adjust PC to what the program would see if GDB was not
5970 debugging it. */
5971 regcache = get_thread_regcache (ecs->event_thread->ptid);
5972 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5973 if (decr_pc != 0)
5974 {
5975 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5976
5977 if (record_full_is_used ())
5978 record_full_gdb_operation_disable_set ();
5979
5980 regcache_write_pc (regcache, stop_pc + decr_pc);
5981
5982 do_cleanups (old_cleanups);
5983 }
5984 }
5985 else
5986 {
5987 /* A delayed software breakpoint event. Ignore the trap. */
5988 if (debug_infrun)
5989 fprintf_unfiltered (gdb_stdlog,
5990 "infrun: delayed software breakpoint "
5991 "trap, ignoring\n");
5992 random_signal = 0;
5993 }
5994 }
5995
5996 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5997 has since been removed. */
5998 if (random_signal && target_stopped_by_hw_breakpoint ())
5999 {
6000 /* A delayed hardware breakpoint event. Ignore the trap. */
6001 if (debug_infrun)
6002 fprintf_unfiltered (gdb_stdlog,
6003 "infrun: delayed hardware breakpoint/watchpoint "
6004 "trap, ignoring\n");
6005 random_signal = 0;
6006 }
6007
6008 /* If not, perhaps stepping/nexting can. */
6009 if (random_signal)
6010 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6011 && currently_stepping (ecs->event_thread));
6012
6013 /* Perhaps the thread hit a single-step breakpoint of _another_
6014 thread. Single-step breakpoints are transparent to the
6015 breakpoints module. */
6016 if (random_signal)
6017 random_signal = !ecs->hit_singlestep_breakpoint;
6018
6019 /* No? Perhaps we got a moribund watchpoint. */
6020 if (random_signal)
6021 random_signal = !stopped_by_watchpoint;
6022
6023 /* For the program's own signals, act according to
6024 the signal handling tables. */
6025
6026 if (random_signal)
6027 {
6028 /* Signal not for debugging purposes. */
6029 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6030 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6031
6032 if (debug_infrun)
6033 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6034 gdb_signal_to_symbol_string (stop_signal));
6035
6036 stopped_by_random_signal = 1;
6037
6038 /* Always stop on signals if we're either just gaining control
6039 of the program, or the user explicitly requested this thread
6040 to remain stopped. */
6041 if (stop_soon != NO_STOP_QUIETLY
6042 || ecs->event_thread->stop_requested
6043 || (!inf->detaching
6044 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6045 {
6046 stop_waiting (ecs);
6047 return;
6048 }
6049
6050 /* Notify observers the signal has "handle print" set. Note we
6051 returned early above if stopping; normal_stop handles the
6052 printing in that case. */
6053 if (signal_print[ecs->event_thread->suspend.stop_signal])
6054 {
6055 /* The signal table tells us to print about this signal. */
6056 target_terminal_ours_for_output ();
6057 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6058 target_terminal_inferior ();
6059 }
6060
6061 /* Clear the signal if it should not be passed. */
6062 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6063 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6064
6065 if (ecs->event_thread->prev_pc == stop_pc
6066 && ecs->event_thread->control.trap_expected
6067 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6068 {
6069 int was_in_line;
6070
6071 /* We were just starting a new sequence, attempting to
6072 single-step off of a breakpoint and expecting a SIGTRAP.
6073 Instead this signal arrives. This signal will take us out
6074 of the stepping range so GDB needs to remember to, when
6075 the signal handler returns, resume stepping off that
6076 breakpoint. */
6077 /* To simplify things, "continue" is forced to use the same
6078 code paths as single-step - set a breakpoint at the
6079 signal return address and then, once hit, step off that
6080 breakpoint. */
6081 if (debug_infrun)
6082 fprintf_unfiltered (gdb_stdlog,
6083 "infrun: signal arrived while stepping over "
6084 "breakpoint\n");
6085
6086 was_in_line = step_over_info_valid_p ();
6087 clear_step_over_info ();
6088 insert_hp_step_resume_breakpoint_at_frame (frame);
6089 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6090 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6091 ecs->event_thread->control.trap_expected = 0;
6092
6093 if (target_is_non_stop_p ())
6094 {
6095 /* Either "set non-stop" is "on", or the target is
6096 always in non-stop mode. In this case, we have a bit
6097 more work to do. Resume the current thread, and if
6098 we had paused all threads, restart them while the
6099 signal handler runs. */
6100 keep_going (ecs);
6101
6102 if (was_in_line)
6103 {
6104 restart_threads (ecs->event_thread);
6105 }
6106 else if (debug_infrun)
6107 {
6108 fprintf_unfiltered (gdb_stdlog,
6109 "infrun: no need to restart threads\n");
6110 }
6111 return;
6112 }
6113
6114 /* If we were nexting/stepping some other thread, switch to
6115 it, so that we don't continue it, losing control. */
6116 if (!switch_back_to_stepped_thread (ecs))
6117 keep_going (ecs);
6118 return;
6119 }
6120
6121 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6122 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6123 || ecs->event_thread->control.step_range_end == 1)
6124 && frame_id_eq (get_stack_frame_id (frame),
6125 ecs->event_thread->control.step_stack_frame_id)
6126 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6127 {
6128 /* The inferior is about to take a signal that will take it
6129 out of the single step range. Set a breakpoint at the
6130 current PC (which is presumably where the signal handler
6131 will eventually return) and then allow the inferior to
6132 run free.
6133
6134 Note that this is only needed for a signal delivered
6135 while in the single-step range. Nested signals aren't a
6136 problem as they eventually all return. */
6137 if (debug_infrun)
6138 fprintf_unfiltered (gdb_stdlog,
6139 "infrun: signal may take us out of "
6140 "single-step range\n");
6141
6142 clear_step_over_info ();
6143 insert_hp_step_resume_breakpoint_at_frame (frame);
6144 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6145 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6146 ecs->event_thread->control.trap_expected = 0;
6147 keep_going (ecs);
6148 return;
6149 }
6150
6151 /* Note: step_resume_breakpoint may be non-NULL. This occures
6152 when either there's a nested signal, or when there's a
6153 pending signal enabled just as the signal handler returns
6154 (leaving the inferior at the step-resume-breakpoint without
6155 actually executing it). Either way continue until the
6156 breakpoint is really hit. */
6157
6158 if (!switch_back_to_stepped_thread (ecs))
6159 {
6160 if (debug_infrun)
6161 fprintf_unfiltered (gdb_stdlog,
6162 "infrun: random signal, keep going\n");
6163
6164 keep_going (ecs);
6165 }
6166 return;
6167 }
6168
6169 process_event_stop_test (ecs);
6170 }
6171
6172 /* Come here when we've got some debug event / signal we can explain
6173 (IOW, not a random signal), and test whether it should cause a
6174 stop, or whether we should resume the inferior (transparently).
6175 E.g., could be a breakpoint whose condition evaluates false; we
6176 could be still stepping within the line; etc. */
6177
6178 static void
6179 process_event_stop_test (struct execution_control_state *ecs)
6180 {
6181 struct symtab_and_line stop_pc_sal;
6182 struct frame_info *frame;
6183 struct gdbarch *gdbarch;
6184 CORE_ADDR jmp_buf_pc;
6185 struct bpstat_what what;
6186
6187 /* Handle cases caused by hitting a breakpoint. */
6188
6189 frame = get_current_frame ();
6190 gdbarch = get_frame_arch (frame);
6191
6192 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6193
6194 if (what.call_dummy)
6195 {
6196 stop_stack_dummy = what.call_dummy;
6197 }
6198
6199 /* A few breakpoint types have callbacks associated (e.g.,
6200 bp_jit_event). Run them now. */
6201 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6202
6203 /* If we hit an internal event that triggers symbol changes, the
6204 current frame will be invalidated within bpstat_what (e.g., if we
6205 hit an internal solib event). Re-fetch it. */
6206 frame = get_current_frame ();
6207 gdbarch = get_frame_arch (frame);
6208
6209 switch (what.main_action)
6210 {
6211 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6212 /* If we hit the breakpoint at longjmp while stepping, we
6213 install a momentary breakpoint at the target of the
6214 jmp_buf. */
6215
6216 if (debug_infrun)
6217 fprintf_unfiltered (gdb_stdlog,
6218 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6219
6220 ecs->event_thread->stepping_over_breakpoint = 1;
6221
6222 if (what.is_longjmp)
6223 {
6224 struct value *arg_value;
6225
6226 /* If we set the longjmp breakpoint via a SystemTap probe,
6227 then use it to extract the arguments. The destination PC
6228 is the third argument to the probe. */
6229 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6230 if (arg_value)
6231 {
6232 jmp_buf_pc = value_as_address (arg_value);
6233 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6234 }
6235 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6236 || !gdbarch_get_longjmp_target (gdbarch,
6237 frame, &jmp_buf_pc))
6238 {
6239 if (debug_infrun)
6240 fprintf_unfiltered (gdb_stdlog,
6241 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6242 "(!gdbarch_get_longjmp_target)\n");
6243 keep_going (ecs);
6244 return;
6245 }
6246
6247 /* Insert a breakpoint at resume address. */
6248 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6249 }
6250 else
6251 check_exception_resume (ecs, frame);
6252 keep_going (ecs);
6253 return;
6254
6255 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6256 {
6257 struct frame_info *init_frame;
6258
6259 /* There are several cases to consider.
6260
6261 1. The initiating frame no longer exists. In this case we
6262 must stop, because the exception or longjmp has gone too
6263 far.
6264
6265 2. The initiating frame exists, and is the same as the
6266 current frame. We stop, because the exception or longjmp
6267 has been caught.
6268
6269 3. The initiating frame exists and is different from the
6270 current frame. This means the exception or longjmp has
6271 been caught beneath the initiating frame, so keep going.
6272
6273 4. longjmp breakpoint has been placed just to protect
6274 against stale dummy frames and user is not interested in
6275 stopping around longjmps. */
6276
6277 if (debug_infrun)
6278 fprintf_unfiltered (gdb_stdlog,
6279 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6280
6281 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6282 != NULL);
6283 delete_exception_resume_breakpoint (ecs->event_thread);
6284
6285 if (what.is_longjmp)
6286 {
6287 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6288
6289 if (!frame_id_p (ecs->event_thread->initiating_frame))
6290 {
6291 /* Case 4. */
6292 keep_going (ecs);
6293 return;
6294 }
6295 }
6296
6297 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6298
6299 if (init_frame)
6300 {
6301 struct frame_id current_id
6302 = get_frame_id (get_current_frame ());
6303 if (frame_id_eq (current_id,
6304 ecs->event_thread->initiating_frame))
6305 {
6306 /* Case 2. Fall through. */
6307 }
6308 else
6309 {
6310 /* Case 3. */
6311 keep_going (ecs);
6312 return;
6313 }
6314 }
6315
6316 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6317 exists. */
6318 delete_step_resume_breakpoint (ecs->event_thread);
6319
6320 end_stepping_range (ecs);
6321 }
6322 return;
6323
6324 case BPSTAT_WHAT_SINGLE:
6325 if (debug_infrun)
6326 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6327 ecs->event_thread->stepping_over_breakpoint = 1;
6328 /* Still need to check other stuff, at least the case where we
6329 are stepping and step out of the right range. */
6330 break;
6331
6332 case BPSTAT_WHAT_STEP_RESUME:
6333 if (debug_infrun)
6334 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6335
6336 delete_step_resume_breakpoint (ecs->event_thread);
6337 if (ecs->event_thread->control.proceed_to_finish
6338 && execution_direction == EXEC_REVERSE)
6339 {
6340 struct thread_info *tp = ecs->event_thread;
6341
6342 /* We are finishing a function in reverse, and just hit the
6343 step-resume breakpoint at the start address of the
6344 function, and we're almost there -- just need to back up
6345 by one more single-step, which should take us back to the
6346 function call. */
6347 tp->control.step_range_start = tp->control.step_range_end = 1;
6348 keep_going (ecs);
6349 return;
6350 }
6351 fill_in_stop_func (gdbarch, ecs);
6352 if (stop_pc == ecs->stop_func_start
6353 && execution_direction == EXEC_REVERSE)
6354 {
6355 /* We are stepping over a function call in reverse, and just
6356 hit the step-resume breakpoint at the start address of
6357 the function. Go back to single-stepping, which should
6358 take us back to the function call. */
6359 ecs->event_thread->stepping_over_breakpoint = 1;
6360 keep_going (ecs);
6361 return;
6362 }
6363 break;
6364
6365 case BPSTAT_WHAT_STOP_NOISY:
6366 if (debug_infrun)
6367 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6368 stop_print_frame = 1;
6369
6370 /* Assume the thread stopped for a breapoint. We'll still check
6371 whether a/the breakpoint is there when the thread is next
6372 resumed. */
6373 ecs->event_thread->stepping_over_breakpoint = 1;
6374
6375 stop_waiting (ecs);
6376 return;
6377
6378 case BPSTAT_WHAT_STOP_SILENT:
6379 if (debug_infrun)
6380 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6381 stop_print_frame = 0;
6382
6383 /* Assume the thread stopped for a breapoint. We'll still check
6384 whether a/the breakpoint is there when the thread is next
6385 resumed. */
6386 ecs->event_thread->stepping_over_breakpoint = 1;
6387 stop_waiting (ecs);
6388 return;
6389
6390 case BPSTAT_WHAT_HP_STEP_RESUME:
6391 if (debug_infrun)
6392 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6393
6394 delete_step_resume_breakpoint (ecs->event_thread);
6395 if (ecs->event_thread->step_after_step_resume_breakpoint)
6396 {
6397 /* Back when the step-resume breakpoint was inserted, we
6398 were trying to single-step off a breakpoint. Go back to
6399 doing that. */
6400 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6401 ecs->event_thread->stepping_over_breakpoint = 1;
6402 keep_going (ecs);
6403 return;
6404 }
6405 break;
6406
6407 case BPSTAT_WHAT_KEEP_CHECKING:
6408 break;
6409 }
6410
6411 /* If we stepped a permanent breakpoint and we had a high priority
6412 step-resume breakpoint for the address we stepped, but we didn't
6413 hit it, then we must have stepped into the signal handler. The
6414 step-resume was only necessary to catch the case of _not_
6415 stepping into the handler, so delete it, and fall through to
6416 checking whether the step finished. */
6417 if (ecs->event_thread->stepped_breakpoint)
6418 {
6419 struct breakpoint *sr_bp
6420 = ecs->event_thread->control.step_resume_breakpoint;
6421
6422 if (sr_bp != NULL
6423 && sr_bp->loc->permanent
6424 && sr_bp->type == bp_hp_step_resume
6425 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6426 {
6427 if (debug_infrun)
6428 fprintf_unfiltered (gdb_stdlog,
6429 "infrun: stepped permanent breakpoint, stopped in "
6430 "handler\n");
6431 delete_step_resume_breakpoint (ecs->event_thread);
6432 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6433 }
6434 }
6435
6436 /* We come here if we hit a breakpoint but should not stop for it.
6437 Possibly we also were stepping and should stop for that. So fall
6438 through and test for stepping. But, if not stepping, do not
6439 stop. */
6440
6441 /* In all-stop mode, if we're currently stepping but have stopped in
6442 some other thread, we need to switch back to the stepped thread. */
6443 if (switch_back_to_stepped_thread (ecs))
6444 return;
6445
6446 if (ecs->event_thread->control.step_resume_breakpoint)
6447 {
6448 if (debug_infrun)
6449 fprintf_unfiltered (gdb_stdlog,
6450 "infrun: step-resume breakpoint is inserted\n");
6451
6452 /* Having a step-resume breakpoint overrides anything
6453 else having to do with stepping commands until
6454 that breakpoint is reached. */
6455 keep_going (ecs);
6456 return;
6457 }
6458
6459 if (ecs->event_thread->control.step_range_end == 0)
6460 {
6461 if (debug_infrun)
6462 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6463 /* Likewise if we aren't even stepping. */
6464 keep_going (ecs);
6465 return;
6466 }
6467
6468 /* Re-fetch current thread's frame in case the code above caused
6469 the frame cache to be re-initialized, making our FRAME variable
6470 a dangling pointer. */
6471 frame = get_current_frame ();
6472 gdbarch = get_frame_arch (frame);
6473 fill_in_stop_func (gdbarch, ecs);
6474
6475 /* If stepping through a line, keep going if still within it.
6476
6477 Note that step_range_end is the address of the first instruction
6478 beyond the step range, and NOT the address of the last instruction
6479 within it!
6480
6481 Note also that during reverse execution, we may be stepping
6482 through a function epilogue and therefore must detect when
6483 the current-frame changes in the middle of a line. */
6484
6485 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6486 && (execution_direction != EXEC_REVERSE
6487 || frame_id_eq (get_frame_id (frame),
6488 ecs->event_thread->control.step_frame_id)))
6489 {
6490 if (debug_infrun)
6491 fprintf_unfiltered
6492 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6493 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6494 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6495
6496 /* Tentatively re-enable range stepping; `resume' disables it if
6497 necessary (e.g., if we're stepping over a breakpoint or we
6498 have software watchpoints). */
6499 ecs->event_thread->control.may_range_step = 1;
6500
6501 /* When stepping backward, stop at beginning of line range
6502 (unless it's the function entry point, in which case
6503 keep going back to the call point). */
6504 if (stop_pc == ecs->event_thread->control.step_range_start
6505 && stop_pc != ecs->stop_func_start
6506 && execution_direction == EXEC_REVERSE)
6507 end_stepping_range (ecs);
6508 else
6509 keep_going (ecs);
6510
6511 return;
6512 }
6513
6514 /* We stepped out of the stepping range. */
6515
6516 /* If we are stepping at the source level and entered the runtime
6517 loader dynamic symbol resolution code...
6518
6519 EXEC_FORWARD: we keep on single stepping until we exit the run
6520 time loader code and reach the callee's address.
6521
6522 EXEC_REVERSE: we've already executed the callee (backward), and
6523 the runtime loader code is handled just like any other
6524 undebuggable function call. Now we need only keep stepping
6525 backward through the trampoline code, and that's handled further
6526 down, so there is nothing for us to do here. */
6527
6528 if (execution_direction != EXEC_REVERSE
6529 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6530 && in_solib_dynsym_resolve_code (stop_pc))
6531 {
6532 CORE_ADDR pc_after_resolver =
6533 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6534
6535 if (debug_infrun)
6536 fprintf_unfiltered (gdb_stdlog,
6537 "infrun: stepped into dynsym resolve code\n");
6538
6539 if (pc_after_resolver)
6540 {
6541 /* Set up a step-resume breakpoint at the address
6542 indicated by SKIP_SOLIB_RESOLVER. */
6543 struct symtab_and_line sr_sal;
6544
6545 init_sal (&sr_sal);
6546 sr_sal.pc = pc_after_resolver;
6547 sr_sal.pspace = get_frame_program_space (frame);
6548
6549 insert_step_resume_breakpoint_at_sal (gdbarch,
6550 sr_sal, null_frame_id);
6551 }
6552
6553 keep_going (ecs);
6554 return;
6555 }
6556
6557 if (ecs->event_thread->control.step_range_end != 1
6558 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6559 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6560 && get_frame_type (frame) == SIGTRAMP_FRAME)
6561 {
6562 if (debug_infrun)
6563 fprintf_unfiltered (gdb_stdlog,
6564 "infrun: stepped into signal trampoline\n");
6565 /* The inferior, while doing a "step" or "next", has ended up in
6566 a signal trampoline (either by a signal being delivered or by
6567 the signal handler returning). Just single-step until the
6568 inferior leaves the trampoline (either by calling the handler
6569 or returning). */
6570 keep_going (ecs);
6571 return;
6572 }
6573
6574 /* If we're in the return path from a shared library trampoline,
6575 we want to proceed through the trampoline when stepping. */
6576 /* macro/2012-04-25: This needs to come before the subroutine
6577 call check below as on some targets return trampolines look
6578 like subroutine calls (MIPS16 return thunks). */
6579 if (gdbarch_in_solib_return_trampoline (gdbarch,
6580 stop_pc, ecs->stop_func_name)
6581 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6582 {
6583 /* Determine where this trampoline returns. */
6584 CORE_ADDR real_stop_pc;
6585
6586 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6587
6588 if (debug_infrun)
6589 fprintf_unfiltered (gdb_stdlog,
6590 "infrun: stepped into solib return tramp\n");
6591
6592 /* Only proceed through if we know where it's going. */
6593 if (real_stop_pc)
6594 {
6595 /* And put the step-breakpoint there and go until there. */
6596 struct symtab_and_line sr_sal;
6597
6598 init_sal (&sr_sal); /* initialize to zeroes */
6599 sr_sal.pc = real_stop_pc;
6600 sr_sal.section = find_pc_overlay (sr_sal.pc);
6601 sr_sal.pspace = get_frame_program_space (frame);
6602
6603 /* Do not specify what the fp should be when we stop since
6604 on some machines the prologue is where the new fp value
6605 is established. */
6606 insert_step_resume_breakpoint_at_sal (gdbarch,
6607 sr_sal, null_frame_id);
6608
6609 /* Restart without fiddling with the step ranges or
6610 other state. */
6611 keep_going (ecs);
6612 return;
6613 }
6614 }
6615
6616 /* Check for subroutine calls. The check for the current frame
6617 equalling the step ID is not necessary - the check of the
6618 previous frame's ID is sufficient - but it is a common case and
6619 cheaper than checking the previous frame's ID.
6620
6621 NOTE: frame_id_eq will never report two invalid frame IDs as
6622 being equal, so to get into this block, both the current and
6623 previous frame must have valid frame IDs. */
6624 /* The outer_frame_id check is a heuristic to detect stepping
6625 through startup code. If we step over an instruction which
6626 sets the stack pointer from an invalid value to a valid value,
6627 we may detect that as a subroutine call from the mythical
6628 "outermost" function. This could be fixed by marking
6629 outermost frames as !stack_p,code_p,special_p. Then the
6630 initial outermost frame, before sp was valid, would
6631 have code_addr == &_start. See the comment in frame_id_eq
6632 for more. */
6633 if (!frame_id_eq (get_stack_frame_id (frame),
6634 ecs->event_thread->control.step_stack_frame_id)
6635 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6636 ecs->event_thread->control.step_stack_frame_id)
6637 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6638 outer_frame_id)
6639 || (ecs->event_thread->control.step_start_function
6640 != find_pc_function (stop_pc)))))
6641 {
6642 CORE_ADDR real_stop_pc;
6643
6644 if (debug_infrun)
6645 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6646
6647 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6648 {
6649 /* I presume that step_over_calls is only 0 when we're
6650 supposed to be stepping at the assembly language level
6651 ("stepi"). Just stop. */
6652 /* And this works the same backward as frontward. MVS */
6653 end_stepping_range (ecs);
6654 return;
6655 }
6656
6657 /* Reverse stepping through solib trampolines. */
6658
6659 if (execution_direction == EXEC_REVERSE
6660 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6661 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6662 || (ecs->stop_func_start == 0
6663 && in_solib_dynsym_resolve_code (stop_pc))))
6664 {
6665 /* Any solib trampoline code can be handled in reverse
6666 by simply continuing to single-step. We have already
6667 executed the solib function (backwards), and a few
6668 steps will take us back through the trampoline to the
6669 caller. */
6670 keep_going (ecs);
6671 return;
6672 }
6673
6674 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6675 {
6676 /* We're doing a "next".
6677
6678 Normal (forward) execution: set a breakpoint at the
6679 callee's return address (the address at which the caller
6680 will resume).
6681
6682 Reverse (backward) execution. set the step-resume
6683 breakpoint at the start of the function that we just
6684 stepped into (backwards), and continue to there. When we
6685 get there, we'll need to single-step back to the caller. */
6686
6687 if (execution_direction == EXEC_REVERSE)
6688 {
6689 /* If we're already at the start of the function, we've either
6690 just stepped backward into a single instruction function,
6691 or stepped back out of a signal handler to the first instruction
6692 of the function. Just keep going, which will single-step back
6693 to the caller. */
6694 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6695 {
6696 struct symtab_and_line sr_sal;
6697
6698 /* Normal function call return (static or dynamic). */
6699 init_sal (&sr_sal);
6700 sr_sal.pc = ecs->stop_func_start;
6701 sr_sal.pspace = get_frame_program_space (frame);
6702 insert_step_resume_breakpoint_at_sal (gdbarch,
6703 sr_sal, null_frame_id);
6704 }
6705 }
6706 else
6707 insert_step_resume_breakpoint_at_caller (frame);
6708
6709 keep_going (ecs);
6710 return;
6711 }
6712
6713 /* If we are in a function call trampoline (a stub between the
6714 calling routine and the real function), locate the real
6715 function. That's what tells us (a) whether we want to step
6716 into it at all, and (b) what prologue we want to run to the
6717 end of, if we do step into it. */
6718 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6719 if (real_stop_pc == 0)
6720 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6721 if (real_stop_pc != 0)
6722 ecs->stop_func_start = real_stop_pc;
6723
6724 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6725 {
6726 struct symtab_and_line sr_sal;
6727
6728 init_sal (&sr_sal);
6729 sr_sal.pc = ecs->stop_func_start;
6730 sr_sal.pspace = get_frame_program_space (frame);
6731
6732 insert_step_resume_breakpoint_at_sal (gdbarch,
6733 sr_sal, null_frame_id);
6734 keep_going (ecs);
6735 return;
6736 }
6737
6738 /* If we have line number information for the function we are
6739 thinking of stepping into and the function isn't on the skip
6740 list, step into it.
6741
6742 If there are several symtabs at that PC (e.g. with include
6743 files), just want to know whether *any* of them have line
6744 numbers. find_pc_line handles this. */
6745 {
6746 struct symtab_and_line tmp_sal;
6747
6748 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6749 if (tmp_sal.line != 0
6750 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6751 &tmp_sal))
6752 {
6753 if (execution_direction == EXEC_REVERSE)
6754 handle_step_into_function_backward (gdbarch, ecs);
6755 else
6756 handle_step_into_function (gdbarch, ecs);
6757 return;
6758 }
6759 }
6760
6761 /* If we have no line number and the step-stop-if-no-debug is
6762 set, we stop the step so that the user has a chance to switch
6763 in assembly mode. */
6764 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6765 && step_stop_if_no_debug)
6766 {
6767 end_stepping_range (ecs);
6768 return;
6769 }
6770
6771 if (execution_direction == EXEC_REVERSE)
6772 {
6773 /* If we're already at the start of the function, we've either just
6774 stepped backward into a single instruction function without line
6775 number info, or stepped back out of a signal handler to the first
6776 instruction of the function without line number info. Just keep
6777 going, which will single-step back to the caller. */
6778 if (ecs->stop_func_start != stop_pc)
6779 {
6780 /* Set a breakpoint at callee's start address.
6781 From there we can step once and be back in the caller. */
6782 struct symtab_and_line sr_sal;
6783
6784 init_sal (&sr_sal);
6785 sr_sal.pc = ecs->stop_func_start;
6786 sr_sal.pspace = get_frame_program_space (frame);
6787 insert_step_resume_breakpoint_at_sal (gdbarch,
6788 sr_sal, null_frame_id);
6789 }
6790 }
6791 else
6792 /* Set a breakpoint at callee's return address (the address
6793 at which the caller will resume). */
6794 insert_step_resume_breakpoint_at_caller (frame);
6795
6796 keep_going (ecs);
6797 return;
6798 }
6799
6800 /* Reverse stepping through solib trampolines. */
6801
6802 if (execution_direction == EXEC_REVERSE
6803 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6804 {
6805 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6806 || (ecs->stop_func_start == 0
6807 && in_solib_dynsym_resolve_code (stop_pc)))
6808 {
6809 /* Any solib trampoline code can be handled in reverse
6810 by simply continuing to single-step. We have already
6811 executed the solib function (backwards), and a few
6812 steps will take us back through the trampoline to the
6813 caller. */
6814 keep_going (ecs);
6815 return;
6816 }
6817 else if (in_solib_dynsym_resolve_code (stop_pc))
6818 {
6819 /* Stepped backward into the solib dynsym resolver.
6820 Set a breakpoint at its start and continue, then
6821 one more step will take us out. */
6822 struct symtab_and_line sr_sal;
6823
6824 init_sal (&sr_sal);
6825 sr_sal.pc = ecs->stop_func_start;
6826 sr_sal.pspace = get_frame_program_space (frame);
6827 insert_step_resume_breakpoint_at_sal (gdbarch,
6828 sr_sal, null_frame_id);
6829 keep_going (ecs);
6830 return;
6831 }
6832 }
6833
6834 stop_pc_sal = find_pc_line (stop_pc, 0);
6835
6836 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6837 the trampoline processing logic, however, there are some trampolines
6838 that have no names, so we should do trampoline handling first. */
6839 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6840 && ecs->stop_func_name == NULL
6841 && stop_pc_sal.line == 0)
6842 {
6843 if (debug_infrun)
6844 fprintf_unfiltered (gdb_stdlog,
6845 "infrun: stepped into undebuggable function\n");
6846
6847 /* The inferior just stepped into, or returned to, an
6848 undebuggable function (where there is no debugging information
6849 and no line number corresponding to the address where the
6850 inferior stopped). Since we want to skip this kind of code,
6851 we keep going until the inferior returns from this
6852 function - unless the user has asked us not to (via
6853 set step-mode) or we no longer know how to get back
6854 to the call site. */
6855 if (step_stop_if_no_debug
6856 || !frame_id_p (frame_unwind_caller_id (frame)))
6857 {
6858 /* If we have no line number and the step-stop-if-no-debug
6859 is set, we stop the step so that the user has a chance to
6860 switch in assembly mode. */
6861 end_stepping_range (ecs);
6862 return;
6863 }
6864 else
6865 {
6866 /* Set a breakpoint at callee's return address (the address
6867 at which the caller will resume). */
6868 insert_step_resume_breakpoint_at_caller (frame);
6869 keep_going (ecs);
6870 return;
6871 }
6872 }
6873
6874 if (ecs->event_thread->control.step_range_end == 1)
6875 {
6876 /* It is stepi or nexti. We always want to stop stepping after
6877 one instruction. */
6878 if (debug_infrun)
6879 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6880 end_stepping_range (ecs);
6881 return;
6882 }
6883
6884 if (stop_pc_sal.line == 0)
6885 {
6886 /* We have no line number information. That means to stop
6887 stepping (does this always happen right after one instruction,
6888 when we do "s" in a function with no line numbers,
6889 or can this happen as a result of a return or longjmp?). */
6890 if (debug_infrun)
6891 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6892 end_stepping_range (ecs);
6893 return;
6894 }
6895
6896 /* Look for "calls" to inlined functions, part one. If the inline
6897 frame machinery detected some skipped call sites, we have entered
6898 a new inline function. */
6899
6900 if (frame_id_eq (get_frame_id (get_current_frame ()),
6901 ecs->event_thread->control.step_frame_id)
6902 && inline_skipped_frames (ecs->ptid))
6903 {
6904 struct symtab_and_line call_sal;
6905
6906 if (debug_infrun)
6907 fprintf_unfiltered (gdb_stdlog,
6908 "infrun: stepped into inlined function\n");
6909
6910 find_frame_sal (get_current_frame (), &call_sal);
6911
6912 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6913 {
6914 /* For "step", we're going to stop. But if the call site
6915 for this inlined function is on the same source line as
6916 we were previously stepping, go down into the function
6917 first. Otherwise stop at the call site. */
6918
6919 if (call_sal.line == ecs->event_thread->current_line
6920 && call_sal.symtab == ecs->event_thread->current_symtab)
6921 step_into_inline_frame (ecs->ptid);
6922
6923 end_stepping_range (ecs);
6924 return;
6925 }
6926 else
6927 {
6928 /* For "next", we should stop at the call site if it is on a
6929 different source line. Otherwise continue through the
6930 inlined function. */
6931 if (call_sal.line == ecs->event_thread->current_line
6932 && call_sal.symtab == ecs->event_thread->current_symtab)
6933 keep_going (ecs);
6934 else
6935 end_stepping_range (ecs);
6936 return;
6937 }
6938 }
6939
6940 /* Look for "calls" to inlined functions, part two. If we are still
6941 in the same real function we were stepping through, but we have
6942 to go further up to find the exact frame ID, we are stepping
6943 through a more inlined call beyond its call site. */
6944
6945 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6946 && !frame_id_eq (get_frame_id (get_current_frame ()),
6947 ecs->event_thread->control.step_frame_id)
6948 && stepped_in_from (get_current_frame (),
6949 ecs->event_thread->control.step_frame_id))
6950 {
6951 if (debug_infrun)
6952 fprintf_unfiltered (gdb_stdlog,
6953 "infrun: stepping through inlined function\n");
6954
6955 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6956 keep_going (ecs);
6957 else
6958 end_stepping_range (ecs);
6959 return;
6960 }
6961
6962 if ((stop_pc == stop_pc_sal.pc)
6963 && (ecs->event_thread->current_line != stop_pc_sal.line
6964 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6965 {
6966 /* We are at the start of a different line. So stop. Note that
6967 we don't stop if we step into the middle of a different line.
6968 That is said to make things like for (;;) statements work
6969 better. */
6970 if (debug_infrun)
6971 fprintf_unfiltered (gdb_stdlog,
6972 "infrun: stepped to a different line\n");
6973 end_stepping_range (ecs);
6974 return;
6975 }
6976
6977 /* We aren't done stepping.
6978
6979 Optimize by setting the stepping range to the line.
6980 (We might not be in the original line, but if we entered a
6981 new line in mid-statement, we continue stepping. This makes
6982 things like for(;;) statements work better.) */
6983
6984 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6985 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6986 ecs->event_thread->control.may_range_step = 1;
6987 set_step_info (frame, stop_pc_sal);
6988
6989 if (debug_infrun)
6990 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6991 keep_going (ecs);
6992 }
6993
6994 /* In all-stop mode, if we're currently stepping but have stopped in
6995 some other thread, we may need to switch back to the stepped
6996 thread. Returns true we set the inferior running, false if we left
6997 it stopped (and the event needs further processing). */
6998
6999 static int
7000 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7001 {
7002 if (!target_is_non_stop_p ())
7003 {
7004 struct thread_info *tp;
7005 struct thread_info *stepping_thread;
7006
7007 /* If any thread is blocked on some internal breakpoint, and we
7008 simply need to step over that breakpoint to get it going
7009 again, do that first. */
7010
7011 /* However, if we see an event for the stepping thread, then we
7012 know all other threads have been moved past their breakpoints
7013 already. Let the caller check whether the step is finished,
7014 etc., before deciding to move it past a breakpoint. */
7015 if (ecs->event_thread->control.step_range_end != 0)
7016 return 0;
7017
7018 /* Check if the current thread is blocked on an incomplete
7019 step-over, interrupted by a random signal. */
7020 if (ecs->event_thread->control.trap_expected
7021 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7022 {
7023 if (debug_infrun)
7024 {
7025 fprintf_unfiltered (gdb_stdlog,
7026 "infrun: need to finish step-over of [%s]\n",
7027 target_pid_to_str (ecs->event_thread->ptid));
7028 }
7029 keep_going (ecs);
7030 return 1;
7031 }
7032
7033 /* Check if the current thread is blocked by a single-step
7034 breakpoint of another thread. */
7035 if (ecs->hit_singlestep_breakpoint)
7036 {
7037 if (debug_infrun)
7038 {
7039 fprintf_unfiltered (gdb_stdlog,
7040 "infrun: need to step [%s] over single-step "
7041 "breakpoint\n",
7042 target_pid_to_str (ecs->ptid));
7043 }
7044 keep_going (ecs);
7045 return 1;
7046 }
7047
7048 /* If this thread needs yet another step-over (e.g., stepping
7049 through a delay slot), do it first before moving on to
7050 another thread. */
7051 if (thread_still_needs_step_over (ecs->event_thread))
7052 {
7053 if (debug_infrun)
7054 {
7055 fprintf_unfiltered (gdb_stdlog,
7056 "infrun: thread [%s] still needs step-over\n",
7057 target_pid_to_str (ecs->event_thread->ptid));
7058 }
7059 keep_going (ecs);
7060 return 1;
7061 }
7062
7063 /* If scheduler locking applies even if not stepping, there's no
7064 need to walk over threads. Above we've checked whether the
7065 current thread is stepping. If some other thread not the
7066 event thread is stepping, then it must be that scheduler
7067 locking is not in effect. */
7068 if (schedlock_applies (ecs->event_thread))
7069 return 0;
7070
7071 /* Otherwise, we no longer expect a trap in the current thread.
7072 Clear the trap_expected flag before switching back -- this is
7073 what keep_going does as well, if we call it. */
7074 ecs->event_thread->control.trap_expected = 0;
7075
7076 /* Likewise, clear the signal if it should not be passed. */
7077 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7078 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7079
7080 /* Do all pending step-overs before actually proceeding with
7081 step/next/etc. */
7082 if (start_step_over ())
7083 {
7084 prepare_to_wait (ecs);
7085 return 1;
7086 }
7087
7088 /* Look for the stepping/nexting thread. */
7089 stepping_thread = NULL;
7090
7091 ALL_NON_EXITED_THREADS (tp)
7092 {
7093 /* Ignore threads of processes the caller is not
7094 resuming. */
7095 if (!sched_multi
7096 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7097 continue;
7098
7099 /* When stepping over a breakpoint, we lock all threads
7100 except the one that needs to move past the breakpoint.
7101 If a non-event thread has this set, the "incomplete
7102 step-over" check above should have caught it earlier. */
7103 if (tp->control.trap_expected)
7104 {
7105 internal_error (__FILE__, __LINE__,
7106 "[%s] has inconsistent state: "
7107 "trap_expected=%d\n",
7108 target_pid_to_str (tp->ptid),
7109 tp->control.trap_expected);
7110 }
7111
7112 /* Did we find the stepping thread? */
7113 if (tp->control.step_range_end)
7114 {
7115 /* Yep. There should only one though. */
7116 gdb_assert (stepping_thread == NULL);
7117
7118 /* The event thread is handled at the top, before we
7119 enter this loop. */
7120 gdb_assert (tp != ecs->event_thread);
7121
7122 /* If some thread other than the event thread is
7123 stepping, then scheduler locking can't be in effect,
7124 otherwise we wouldn't have resumed the current event
7125 thread in the first place. */
7126 gdb_assert (!schedlock_applies (tp));
7127
7128 stepping_thread = tp;
7129 }
7130 }
7131
7132 if (stepping_thread != NULL)
7133 {
7134 if (debug_infrun)
7135 fprintf_unfiltered (gdb_stdlog,
7136 "infrun: switching back to stepped thread\n");
7137
7138 if (keep_going_stepped_thread (stepping_thread))
7139 {
7140 prepare_to_wait (ecs);
7141 return 1;
7142 }
7143 }
7144 }
7145
7146 return 0;
7147 }
7148
7149 /* Set a previously stepped thread back to stepping. Returns true on
7150 success, false if the resume is not possible (e.g., the thread
7151 vanished). */
7152
7153 static int
7154 keep_going_stepped_thread (struct thread_info *tp)
7155 {
7156 struct frame_info *frame;
7157 struct execution_control_state ecss;
7158 struct execution_control_state *ecs = &ecss;
7159
7160 /* If the stepping thread exited, then don't try to switch back and
7161 resume it, which could fail in several different ways depending
7162 on the target. Instead, just keep going.
7163
7164 We can find a stepping dead thread in the thread list in two
7165 cases:
7166
7167 - The target supports thread exit events, and when the target
7168 tries to delete the thread from the thread list, inferior_ptid
7169 pointed at the exiting thread. In such case, calling
7170 delete_thread does not really remove the thread from the list;
7171 instead, the thread is left listed, with 'exited' state.
7172
7173 - The target's debug interface does not support thread exit
7174 events, and so we have no idea whatsoever if the previously
7175 stepping thread is still alive. For that reason, we need to
7176 synchronously query the target now. */
7177
7178 if (is_exited (tp->ptid)
7179 || !target_thread_alive (tp->ptid))
7180 {
7181 if (debug_infrun)
7182 fprintf_unfiltered (gdb_stdlog,
7183 "infrun: not resuming previously "
7184 "stepped thread, it has vanished\n");
7185
7186 delete_thread (tp->ptid);
7187 return 0;
7188 }
7189
7190 if (debug_infrun)
7191 fprintf_unfiltered (gdb_stdlog,
7192 "infrun: resuming previously stepped thread\n");
7193
7194 reset_ecs (ecs, tp);
7195 switch_to_thread (tp->ptid);
7196
7197 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7198 frame = get_current_frame ();
7199
7200 /* If the PC of the thread we were trying to single-step has
7201 changed, then that thread has trapped or been signaled, but the
7202 event has not been reported to GDB yet. Re-poll the target
7203 looking for this particular thread's event (i.e. temporarily
7204 enable schedlock) by:
7205
7206 - setting a break at the current PC
7207 - resuming that particular thread, only (by setting trap
7208 expected)
7209
7210 This prevents us continuously moving the single-step breakpoint
7211 forward, one instruction at a time, overstepping. */
7212
7213 if (stop_pc != tp->prev_pc)
7214 {
7215 ptid_t resume_ptid;
7216
7217 if (debug_infrun)
7218 fprintf_unfiltered (gdb_stdlog,
7219 "infrun: expected thread advanced also (%s -> %s)\n",
7220 paddress (target_gdbarch (), tp->prev_pc),
7221 paddress (target_gdbarch (), stop_pc));
7222
7223 /* Clear the info of the previous step-over, as it's no longer
7224 valid (if the thread was trying to step over a breakpoint, it
7225 has already succeeded). It's what keep_going would do too,
7226 if we called it. Do this before trying to insert the sss
7227 breakpoint, otherwise if we were previously trying to step
7228 over this exact address in another thread, the breakpoint is
7229 skipped. */
7230 clear_step_over_info ();
7231 tp->control.trap_expected = 0;
7232
7233 insert_single_step_breakpoint (get_frame_arch (frame),
7234 get_frame_address_space (frame),
7235 stop_pc);
7236
7237 tp->resumed = 1;
7238 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7239 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7240 }
7241 else
7242 {
7243 if (debug_infrun)
7244 fprintf_unfiltered (gdb_stdlog,
7245 "infrun: expected thread still hasn't advanced\n");
7246
7247 keep_going_pass_signal (ecs);
7248 }
7249 return 1;
7250 }
7251
7252 /* Is thread TP in the middle of (software or hardware)
7253 single-stepping? (Note the result of this function must never be
7254 passed directly as target_resume's STEP parameter.) */
7255
7256 static int
7257 currently_stepping (struct thread_info *tp)
7258 {
7259 return ((tp->control.step_range_end
7260 && tp->control.step_resume_breakpoint == NULL)
7261 || tp->control.trap_expected
7262 || tp->stepped_breakpoint
7263 || bpstat_should_step ());
7264 }
7265
7266 /* Inferior has stepped into a subroutine call with source code that
7267 we should not step over. Do step to the first line of code in
7268 it. */
7269
7270 static void
7271 handle_step_into_function (struct gdbarch *gdbarch,
7272 struct execution_control_state *ecs)
7273 {
7274 struct compunit_symtab *cust;
7275 struct symtab_and_line stop_func_sal, sr_sal;
7276
7277 fill_in_stop_func (gdbarch, ecs);
7278
7279 cust = find_pc_compunit_symtab (stop_pc);
7280 if (cust != NULL && compunit_language (cust) != language_asm)
7281 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7282 ecs->stop_func_start);
7283
7284 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7285 /* Use the step_resume_break to step until the end of the prologue,
7286 even if that involves jumps (as it seems to on the vax under
7287 4.2). */
7288 /* If the prologue ends in the middle of a source line, continue to
7289 the end of that source line (if it is still within the function).
7290 Otherwise, just go to end of prologue. */
7291 if (stop_func_sal.end
7292 && stop_func_sal.pc != ecs->stop_func_start
7293 && stop_func_sal.end < ecs->stop_func_end)
7294 ecs->stop_func_start = stop_func_sal.end;
7295
7296 /* Architectures which require breakpoint adjustment might not be able
7297 to place a breakpoint at the computed address. If so, the test
7298 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7299 ecs->stop_func_start to an address at which a breakpoint may be
7300 legitimately placed.
7301
7302 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7303 made, GDB will enter an infinite loop when stepping through
7304 optimized code consisting of VLIW instructions which contain
7305 subinstructions corresponding to different source lines. On
7306 FR-V, it's not permitted to place a breakpoint on any but the
7307 first subinstruction of a VLIW instruction. When a breakpoint is
7308 set, GDB will adjust the breakpoint address to the beginning of
7309 the VLIW instruction. Thus, we need to make the corresponding
7310 adjustment here when computing the stop address. */
7311
7312 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7313 {
7314 ecs->stop_func_start
7315 = gdbarch_adjust_breakpoint_address (gdbarch,
7316 ecs->stop_func_start);
7317 }
7318
7319 if (ecs->stop_func_start == stop_pc)
7320 {
7321 /* We are already there: stop now. */
7322 end_stepping_range (ecs);
7323 return;
7324 }
7325 else
7326 {
7327 /* Put the step-breakpoint there and go until there. */
7328 init_sal (&sr_sal); /* initialize to zeroes */
7329 sr_sal.pc = ecs->stop_func_start;
7330 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7331 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7332
7333 /* Do not specify what the fp should be when we stop since on
7334 some machines the prologue is where the new fp value is
7335 established. */
7336 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7337
7338 /* And make sure stepping stops right away then. */
7339 ecs->event_thread->control.step_range_end
7340 = ecs->event_thread->control.step_range_start;
7341 }
7342 keep_going (ecs);
7343 }
7344
7345 /* Inferior has stepped backward into a subroutine call with source
7346 code that we should not step over. Do step to the beginning of the
7347 last line of code in it. */
7348
7349 static void
7350 handle_step_into_function_backward (struct gdbarch *gdbarch,
7351 struct execution_control_state *ecs)
7352 {
7353 struct compunit_symtab *cust;
7354 struct symtab_and_line stop_func_sal;
7355
7356 fill_in_stop_func (gdbarch, ecs);
7357
7358 cust = find_pc_compunit_symtab (stop_pc);
7359 if (cust != NULL && compunit_language (cust) != language_asm)
7360 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7361 ecs->stop_func_start);
7362
7363 stop_func_sal = find_pc_line (stop_pc, 0);
7364
7365 /* OK, we're just going to keep stepping here. */
7366 if (stop_func_sal.pc == stop_pc)
7367 {
7368 /* We're there already. Just stop stepping now. */
7369 end_stepping_range (ecs);
7370 }
7371 else
7372 {
7373 /* Else just reset the step range and keep going.
7374 No step-resume breakpoint, they don't work for
7375 epilogues, which can have multiple entry paths. */
7376 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7377 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7378 keep_going (ecs);
7379 }
7380 return;
7381 }
7382
7383 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7384 This is used to both functions and to skip over code. */
7385
7386 static void
7387 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7388 struct symtab_and_line sr_sal,
7389 struct frame_id sr_id,
7390 enum bptype sr_type)
7391 {
7392 /* There should never be more than one step-resume or longjmp-resume
7393 breakpoint per thread, so we should never be setting a new
7394 step_resume_breakpoint when one is already active. */
7395 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7396 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7397
7398 if (debug_infrun)
7399 fprintf_unfiltered (gdb_stdlog,
7400 "infrun: inserting step-resume breakpoint at %s\n",
7401 paddress (gdbarch, sr_sal.pc));
7402
7403 inferior_thread ()->control.step_resume_breakpoint
7404 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7405 }
7406
7407 void
7408 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7409 struct symtab_and_line sr_sal,
7410 struct frame_id sr_id)
7411 {
7412 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7413 sr_sal, sr_id,
7414 bp_step_resume);
7415 }
7416
7417 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7418 This is used to skip a potential signal handler.
7419
7420 This is called with the interrupted function's frame. The signal
7421 handler, when it returns, will resume the interrupted function at
7422 RETURN_FRAME.pc. */
7423
7424 static void
7425 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7426 {
7427 struct symtab_and_line sr_sal;
7428 struct gdbarch *gdbarch;
7429
7430 gdb_assert (return_frame != NULL);
7431 init_sal (&sr_sal); /* initialize to zeros */
7432
7433 gdbarch = get_frame_arch (return_frame);
7434 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7435 sr_sal.section = find_pc_overlay (sr_sal.pc);
7436 sr_sal.pspace = get_frame_program_space (return_frame);
7437
7438 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7439 get_stack_frame_id (return_frame),
7440 bp_hp_step_resume);
7441 }
7442
7443 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7444 is used to skip a function after stepping into it (for "next" or if
7445 the called function has no debugging information).
7446
7447 The current function has almost always been reached by single
7448 stepping a call or return instruction. NEXT_FRAME belongs to the
7449 current function, and the breakpoint will be set at the caller's
7450 resume address.
7451
7452 This is a separate function rather than reusing
7453 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7454 get_prev_frame, which may stop prematurely (see the implementation
7455 of frame_unwind_caller_id for an example). */
7456
7457 static void
7458 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7459 {
7460 struct symtab_and_line sr_sal;
7461 struct gdbarch *gdbarch;
7462
7463 /* We shouldn't have gotten here if we don't know where the call site
7464 is. */
7465 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7466
7467 init_sal (&sr_sal); /* initialize to zeros */
7468
7469 gdbarch = frame_unwind_caller_arch (next_frame);
7470 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7471 frame_unwind_caller_pc (next_frame));
7472 sr_sal.section = find_pc_overlay (sr_sal.pc);
7473 sr_sal.pspace = frame_unwind_program_space (next_frame);
7474
7475 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7476 frame_unwind_caller_id (next_frame));
7477 }
7478
7479 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7480 new breakpoint at the target of a jmp_buf. The handling of
7481 longjmp-resume uses the same mechanisms used for handling
7482 "step-resume" breakpoints. */
7483
7484 static void
7485 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7486 {
7487 /* There should never be more than one longjmp-resume breakpoint per
7488 thread, so we should never be setting a new
7489 longjmp_resume_breakpoint when one is already active. */
7490 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7491
7492 if (debug_infrun)
7493 fprintf_unfiltered (gdb_stdlog,
7494 "infrun: inserting longjmp-resume breakpoint at %s\n",
7495 paddress (gdbarch, pc));
7496
7497 inferior_thread ()->control.exception_resume_breakpoint =
7498 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7499 }
7500
7501 /* Insert an exception resume breakpoint. TP is the thread throwing
7502 the exception. The block B is the block of the unwinder debug hook
7503 function. FRAME is the frame corresponding to the call to this
7504 function. SYM is the symbol of the function argument holding the
7505 target PC of the exception. */
7506
7507 static void
7508 insert_exception_resume_breakpoint (struct thread_info *tp,
7509 const struct block *b,
7510 struct frame_info *frame,
7511 struct symbol *sym)
7512 {
7513 TRY
7514 {
7515 struct block_symbol vsym;
7516 struct value *value;
7517 CORE_ADDR handler;
7518 struct breakpoint *bp;
7519
7520 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7521 value = read_var_value (vsym.symbol, vsym.block, frame);
7522 /* If the value was optimized out, revert to the old behavior. */
7523 if (! value_optimized_out (value))
7524 {
7525 handler = value_as_address (value);
7526
7527 if (debug_infrun)
7528 fprintf_unfiltered (gdb_stdlog,
7529 "infrun: exception resume at %lx\n",
7530 (unsigned long) handler);
7531
7532 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7533 handler, bp_exception_resume);
7534
7535 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7536 frame = NULL;
7537
7538 bp->thread = tp->global_num;
7539 inferior_thread ()->control.exception_resume_breakpoint = bp;
7540 }
7541 }
7542 CATCH (e, RETURN_MASK_ERROR)
7543 {
7544 /* We want to ignore errors here. */
7545 }
7546 END_CATCH
7547 }
7548
7549 /* A helper for check_exception_resume that sets an
7550 exception-breakpoint based on a SystemTap probe. */
7551
7552 static void
7553 insert_exception_resume_from_probe (struct thread_info *tp,
7554 const struct bound_probe *probe,
7555 struct frame_info *frame)
7556 {
7557 struct value *arg_value;
7558 CORE_ADDR handler;
7559 struct breakpoint *bp;
7560
7561 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7562 if (!arg_value)
7563 return;
7564
7565 handler = value_as_address (arg_value);
7566
7567 if (debug_infrun)
7568 fprintf_unfiltered (gdb_stdlog,
7569 "infrun: exception resume at %s\n",
7570 paddress (get_objfile_arch (probe->objfile),
7571 handler));
7572
7573 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7574 handler, bp_exception_resume);
7575 bp->thread = tp->global_num;
7576 inferior_thread ()->control.exception_resume_breakpoint = bp;
7577 }
7578
7579 /* This is called when an exception has been intercepted. Check to
7580 see whether the exception's destination is of interest, and if so,
7581 set an exception resume breakpoint there. */
7582
7583 static void
7584 check_exception_resume (struct execution_control_state *ecs,
7585 struct frame_info *frame)
7586 {
7587 struct bound_probe probe;
7588 struct symbol *func;
7589
7590 /* First see if this exception unwinding breakpoint was set via a
7591 SystemTap probe point. If so, the probe has two arguments: the
7592 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7593 set a breakpoint there. */
7594 probe = find_probe_by_pc (get_frame_pc (frame));
7595 if (probe.probe)
7596 {
7597 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7598 return;
7599 }
7600
7601 func = get_frame_function (frame);
7602 if (!func)
7603 return;
7604
7605 TRY
7606 {
7607 const struct block *b;
7608 struct block_iterator iter;
7609 struct symbol *sym;
7610 int argno = 0;
7611
7612 /* The exception breakpoint is a thread-specific breakpoint on
7613 the unwinder's debug hook, declared as:
7614
7615 void _Unwind_DebugHook (void *cfa, void *handler);
7616
7617 The CFA argument indicates the frame to which control is
7618 about to be transferred. HANDLER is the destination PC.
7619
7620 We ignore the CFA and set a temporary breakpoint at HANDLER.
7621 This is not extremely efficient but it avoids issues in gdb
7622 with computing the DWARF CFA, and it also works even in weird
7623 cases such as throwing an exception from inside a signal
7624 handler. */
7625
7626 b = SYMBOL_BLOCK_VALUE (func);
7627 ALL_BLOCK_SYMBOLS (b, iter, sym)
7628 {
7629 if (!SYMBOL_IS_ARGUMENT (sym))
7630 continue;
7631
7632 if (argno == 0)
7633 ++argno;
7634 else
7635 {
7636 insert_exception_resume_breakpoint (ecs->event_thread,
7637 b, frame, sym);
7638 break;
7639 }
7640 }
7641 }
7642 CATCH (e, RETURN_MASK_ERROR)
7643 {
7644 }
7645 END_CATCH
7646 }
7647
7648 static void
7649 stop_waiting (struct execution_control_state *ecs)
7650 {
7651 if (debug_infrun)
7652 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7653
7654 clear_step_over_info ();
7655
7656 /* Let callers know we don't want to wait for the inferior anymore. */
7657 ecs->wait_some_more = 0;
7658
7659 /* If all-stop, but the target is always in non-stop mode, stop all
7660 threads now that we're presenting the stop to the user. */
7661 if (!non_stop && target_is_non_stop_p ())
7662 stop_all_threads ();
7663 }
7664
7665 /* Like keep_going, but passes the signal to the inferior, even if the
7666 signal is set to nopass. */
7667
7668 static void
7669 keep_going_pass_signal (struct execution_control_state *ecs)
7670 {
7671 /* Make sure normal_stop is called if we get a QUIT handled before
7672 reaching resume. */
7673 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7674
7675 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7676 gdb_assert (!ecs->event_thread->resumed);
7677
7678 /* Save the pc before execution, to compare with pc after stop. */
7679 ecs->event_thread->prev_pc
7680 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7681
7682 if (ecs->event_thread->control.trap_expected)
7683 {
7684 struct thread_info *tp = ecs->event_thread;
7685
7686 if (debug_infrun)
7687 fprintf_unfiltered (gdb_stdlog,
7688 "infrun: %s has trap_expected set, "
7689 "resuming to collect trap\n",
7690 target_pid_to_str (tp->ptid));
7691
7692 /* We haven't yet gotten our trap, and either: intercepted a
7693 non-signal event (e.g., a fork); or took a signal which we
7694 are supposed to pass through to the inferior. Simply
7695 continue. */
7696 discard_cleanups (old_cleanups);
7697 resume (ecs->event_thread->suspend.stop_signal);
7698 }
7699 else if (step_over_info_valid_p ())
7700 {
7701 /* Another thread is stepping over a breakpoint in-line. If
7702 this thread needs a step-over too, queue the request. In
7703 either case, this resume must be deferred for later. */
7704 struct thread_info *tp = ecs->event_thread;
7705
7706 if (ecs->hit_singlestep_breakpoint
7707 || thread_still_needs_step_over (tp))
7708 {
7709 if (debug_infrun)
7710 fprintf_unfiltered (gdb_stdlog,
7711 "infrun: step-over already in progress: "
7712 "step-over for %s deferred\n",
7713 target_pid_to_str (tp->ptid));
7714 thread_step_over_chain_enqueue (tp);
7715 }
7716 else
7717 {
7718 if (debug_infrun)
7719 fprintf_unfiltered (gdb_stdlog,
7720 "infrun: step-over in progress: "
7721 "resume of %s deferred\n",
7722 target_pid_to_str (tp->ptid));
7723 }
7724
7725 discard_cleanups (old_cleanups);
7726 }
7727 else
7728 {
7729 struct regcache *regcache = get_current_regcache ();
7730 int remove_bp;
7731 int remove_wps;
7732 step_over_what step_what;
7733
7734 /* Either the trap was not expected, but we are continuing
7735 anyway (if we got a signal, the user asked it be passed to
7736 the child)
7737 -- or --
7738 We got our expected trap, but decided we should resume from
7739 it.
7740
7741 We're going to run this baby now!
7742
7743 Note that insert_breakpoints won't try to re-insert
7744 already inserted breakpoints. Therefore, we don't
7745 care if breakpoints were already inserted, or not. */
7746
7747 /* If we need to step over a breakpoint, and we're not using
7748 displaced stepping to do so, insert all breakpoints
7749 (watchpoints, etc.) but the one we're stepping over, step one
7750 instruction, and then re-insert the breakpoint when that step
7751 is finished. */
7752
7753 step_what = thread_still_needs_step_over (ecs->event_thread);
7754
7755 remove_bp = (ecs->hit_singlestep_breakpoint
7756 || (step_what & STEP_OVER_BREAKPOINT));
7757 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7758
7759 /* We can't use displaced stepping if we need to step past a
7760 watchpoint. The instruction copied to the scratch pad would
7761 still trigger the watchpoint. */
7762 if (remove_bp
7763 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7764 {
7765 set_step_over_info (get_regcache_aspace (regcache),
7766 regcache_read_pc (regcache), remove_wps,
7767 ecs->event_thread->global_num);
7768 }
7769 else if (remove_wps)
7770 set_step_over_info (NULL, 0, remove_wps, -1);
7771
7772 /* If we now need to do an in-line step-over, we need to stop
7773 all other threads. Note this must be done before
7774 insert_breakpoints below, because that removes the breakpoint
7775 we're about to step over, otherwise other threads could miss
7776 it. */
7777 if (step_over_info_valid_p () && target_is_non_stop_p ())
7778 stop_all_threads ();
7779
7780 /* Stop stepping if inserting breakpoints fails. */
7781 TRY
7782 {
7783 insert_breakpoints ();
7784 }
7785 CATCH (e, RETURN_MASK_ERROR)
7786 {
7787 exception_print (gdb_stderr, e);
7788 stop_waiting (ecs);
7789 discard_cleanups (old_cleanups);
7790 return;
7791 }
7792 END_CATCH
7793
7794 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7795
7796 discard_cleanups (old_cleanups);
7797 resume (ecs->event_thread->suspend.stop_signal);
7798 }
7799
7800 prepare_to_wait (ecs);
7801 }
7802
7803 /* Called when we should continue running the inferior, because the
7804 current event doesn't cause a user visible stop. This does the
7805 resuming part; waiting for the next event is done elsewhere. */
7806
7807 static void
7808 keep_going (struct execution_control_state *ecs)
7809 {
7810 if (ecs->event_thread->control.trap_expected
7811 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7812 ecs->event_thread->control.trap_expected = 0;
7813
7814 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7815 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7816 keep_going_pass_signal (ecs);
7817 }
7818
7819 /* This function normally comes after a resume, before
7820 handle_inferior_event exits. It takes care of any last bits of
7821 housekeeping, and sets the all-important wait_some_more flag. */
7822
7823 static void
7824 prepare_to_wait (struct execution_control_state *ecs)
7825 {
7826 if (debug_infrun)
7827 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7828
7829 ecs->wait_some_more = 1;
7830
7831 if (!target_is_async_p ())
7832 mark_infrun_async_event_handler ();
7833 }
7834
7835 /* We are done with the step range of a step/next/si/ni command.
7836 Called once for each n of a "step n" operation. */
7837
7838 static void
7839 end_stepping_range (struct execution_control_state *ecs)
7840 {
7841 ecs->event_thread->control.stop_step = 1;
7842 stop_waiting (ecs);
7843 }
7844
7845 /* Several print_*_reason functions to print why the inferior has stopped.
7846 We always print something when the inferior exits, or receives a signal.
7847 The rest of the cases are dealt with later on in normal_stop and
7848 print_it_typical. Ideally there should be a call to one of these
7849 print_*_reason functions functions from handle_inferior_event each time
7850 stop_waiting is called.
7851
7852 Note that we don't call these directly, instead we delegate that to
7853 the interpreters, through observers. Interpreters then call these
7854 with whatever uiout is right. */
7855
7856 void
7857 print_end_stepping_range_reason (struct ui_out *uiout)
7858 {
7859 /* For CLI-like interpreters, print nothing. */
7860
7861 if (ui_out_is_mi_like_p (uiout))
7862 {
7863 ui_out_field_string (uiout, "reason",
7864 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7865 }
7866 }
7867
7868 void
7869 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7870 {
7871 annotate_signalled ();
7872 if (ui_out_is_mi_like_p (uiout))
7873 ui_out_field_string
7874 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7875 ui_out_text (uiout, "\nProgram terminated with signal ");
7876 annotate_signal_name ();
7877 ui_out_field_string (uiout, "signal-name",
7878 gdb_signal_to_name (siggnal));
7879 annotate_signal_name_end ();
7880 ui_out_text (uiout, ", ");
7881 annotate_signal_string ();
7882 ui_out_field_string (uiout, "signal-meaning",
7883 gdb_signal_to_string (siggnal));
7884 annotate_signal_string_end ();
7885 ui_out_text (uiout, ".\n");
7886 ui_out_text (uiout, "The program no longer exists.\n");
7887 }
7888
7889 void
7890 print_exited_reason (struct ui_out *uiout, int exitstatus)
7891 {
7892 struct inferior *inf = current_inferior ();
7893 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7894
7895 annotate_exited (exitstatus);
7896 if (exitstatus)
7897 {
7898 if (ui_out_is_mi_like_p (uiout))
7899 ui_out_field_string (uiout, "reason",
7900 async_reason_lookup (EXEC_ASYNC_EXITED));
7901 ui_out_text (uiout, "[Inferior ");
7902 ui_out_text (uiout, plongest (inf->num));
7903 ui_out_text (uiout, " (");
7904 ui_out_text (uiout, pidstr);
7905 ui_out_text (uiout, ") exited with code ");
7906 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
7907 ui_out_text (uiout, "]\n");
7908 }
7909 else
7910 {
7911 if (ui_out_is_mi_like_p (uiout))
7912 ui_out_field_string
7913 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7914 ui_out_text (uiout, "[Inferior ");
7915 ui_out_text (uiout, plongest (inf->num));
7916 ui_out_text (uiout, " (");
7917 ui_out_text (uiout, pidstr);
7918 ui_out_text (uiout, ") exited normally]\n");
7919 }
7920 }
7921
7922 /* Some targets/architectures can do extra processing/display of
7923 segmentation faults. E.g., Intel MPX boundary faults.
7924 Call the architecture dependent function to handle the fault. */
7925
7926 static void
7927 handle_segmentation_fault (struct ui_out *uiout)
7928 {
7929 struct regcache *regcache = get_current_regcache ();
7930 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7931
7932 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7933 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7934 }
7935
7936 void
7937 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7938 {
7939 struct thread_info *thr = inferior_thread ();
7940
7941 annotate_signal ();
7942
7943 if (ui_out_is_mi_like_p (uiout))
7944 ;
7945 else if (show_thread_that_caused_stop ())
7946 {
7947 const char *name;
7948
7949 ui_out_text (uiout, "\nThread ");
7950 ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr));
7951
7952 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7953 if (name != NULL)
7954 {
7955 ui_out_text (uiout, " \"");
7956 ui_out_field_fmt (uiout, "name", "%s", name);
7957 ui_out_text (uiout, "\"");
7958 }
7959 }
7960 else
7961 ui_out_text (uiout, "\nProgram");
7962
7963 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
7964 ui_out_text (uiout, " stopped");
7965 else
7966 {
7967 ui_out_text (uiout, " received signal ");
7968 annotate_signal_name ();
7969 if (ui_out_is_mi_like_p (uiout))
7970 ui_out_field_string
7971 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7972 ui_out_field_string (uiout, "signal-name",
7973 gdb_signal_to_name (siggnal));
7974 annotate_signal_name_end ();
7975 ui_out_text (uiout, ", ");
7976 annotate_signal_string ();
7977 ui_out_field_string (uiout, "signal-meaning",
7978 gdb_signal_to_string (siggnal));
7979
7980 if (siggnal == GDB_SIGNAL_SEGV)
7981 handle_segmentation_fault (uiout);
7982
7983 annotate_signal_string_end ();
7984 }
7985 ui_out_text (uiout, ".\n");
7986 }
7987
7988 void
7989 print_no_history_reason (struct ui_out *uiout)
7990 {
7991 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
7992 }
7993
7994 /* Print current location without a level number, if we have changed
7995 functions or hit a breakpoint. Print source line if we have one.
7996 bpstat_print contains the logic deciding in detail what to print,
7997 based on the event(s) that just occurred. */
7998
7999 static void
8000 print_stop_location (struct target_waitstatus *ws)
8001 {
8002 int bpstat_ret;
8003 enum print_what source_flag;
8004 int do_frame_printing = 1;
8005 struct thread_info *tp = inferior_thread ();
8006
8007 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8008 switch (bpstat_ret)
8009 {
8010 case PRINT_UNKNOWN:
8011 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8012 should) carry around the function and does (or should) use
8013 that when doing a frame comparison. */
8014 if (tp->control.stop_step
8015 && frame_id_eq (tp->control.step_frame_id,
8016 get_frame_id (get_current_frame ()))
8017 && tp->control.step_start_function == find_pc_function (stop_pc))
8018 {
8019 /* Finished step, just print source line. */
8020 source_flag = SRC_LINE;
8021 }
8022 else
8023 {
8024 /* Print location and source line. */
8025 source_flag = SRC_AND_LOC;
8026 }
8027 break;
8028 case PRINT_SRC_AND_LOC:
8029 /* Print location and source line. */
8030 source_flag = SRC_AND_LOC;
8031 break;
8032 case PRINT_SRC_ONLY:
8033 source_flag = SRC_LINE;
8034 break;
8035 case PRINT_NOTHING:
8036 /* Something bogus. */
8037 source_flag = SRC_LINE;
8038 do_frame_printing = 0;
8039 break;
8040 default:
8041 internal_error (__FILE__, __LINE__, _("Unknown value."));
8042 }
8043
8044 /* The behavior of this routine with respect to the source
8045 flag is:
8046 SRC_LINE: Print only source line
8047 LOCATION: Print only location
8048 SRC_AND_LOC: Print location and source line. */
8049 if (do_frame_printing)
8050 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8051 }
8052
8053 /* Cleanup that restores a previous current uiout. */
8054
8055 static void
8056 restore_current_uiout_cleanup (void *arg)
8057 {
8058 struct ui_out *saved_uiout = (struct ui_out *) arg;
8059
8060 current_uiout = saved_uiout;
8061 }
8062
8063 /* See infrun.h. */
8064
8065 void
8066 print_stop_event (struct ui_out *uiout)
8067 {
8068 struct cleanup *old_chain;
8069 struct target_waitstatus last;
8070 ptid_t last_ptid;
8071 struct thread_info *tp;
8072
8073 get_last_target_status (&last_ptid, &last);
8074
8075 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
8076 current_uiout = uiout;
8077
8078 print_stop_location (&last);
8079
8080 /* Display the auto-display expressions. */
8081 do_displays ();
8082
8083 do_cleanups (old_chain);
8084
8085 tp = inferior_thread ();
8086 if (tp->thread_fsm != NULL
8087 && thread_fsm_finished_p (tp->thread_fsm))
8088 {
8089 struct return_value_info *rv;
8090
8091 rv = thread_fsm_return_value (tp->thread_fsm);
8092 if (rv != NULL)
8093 print_return_value (uiout, rv);
8094 }
8095 }
8096
8097 /* See infrun.h. */
8098
8099 void
8100 maybe_remove_breakpoints (void)
8101 {
8102 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8103 {
8104 if (remove_breakpoints ())
8105 {
8106 target_terminal_ours_for_output ();
8107 printf_filtered (_("Cannot remove breakpoints because "
8108 "program is no longer writable.\nFurther "
8109 "execution is probably impossible.\n"));
8110 }
8111 }
8112 }
8113
8114 /* The execution context that just caused a normal stop. */
8115
8116 struct stop_context
8117 {
8118 /* The stop ID. */
8119 ULONGEST stop_id;
8120
8121 /* The event PTID. */
8122
8123 ptid_t ptid;
8124
8125 /* If stopp for a thread event, this is the thread that caused the
8126 stop. */
8127 struct thread_info *thread;
8128
8129 /* The inferior that caused the stop. */
8130 int inf_num;
8131 };
8132
8133 /* Returns a new stop context. If stopped for a thread event, this
8134 takes a strong reference to the thread. */
8135
8136 static struct stop_context *
8137 save_stop_context (void)
8138 {
8139 struct stop_context *sc = XNEW (struct stop_context);
8140
8141 sc->stop_id = get_stop_id ();
8142 sc->ptid = inferior_ptid;
8143 sc->inf_num = current_inferior ()->num;
8144
8145 if (!ptid_equal (inferior_ptid, null_ptid))
8146 {
8147 /* Take a strong reference so that the thread can't be deleted
8148 yet. */
8149 sc->thread = inferior_thread ();
8150 sc->thread->refcount++;
8151 }
8152 else
8153 sc->thread = NULL;
8154
8155 return sc;
8156 }
8157
8158 /* Release a stop context previously created with save_stop_context.
8159 Releases the strong reference to the thread as well. */
8160
8161 static void
8162 release_stop_context_cleanup (void *arg)
8163 {
8164 struct stop_context *sc = (struct stop_context *) arg;
8165
8166 if (sc->thread != NULL)
8167 sc->thread->refcount--;
8168 xfree (sc);
8169 }
8170
8171 /* Return true if the current context no longer matches the saved stop
8172 context. */
8173
8174 static int
8175 stop_context_changed (struct stop_context *prev)
8176 {
8177 if (!ptid_equal (prev->ptid, inferior_ptid))
8178 return 1;
8179 if (prev->inf_num != current_inferior ()->num)
8180 return 1;
8181 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8182 return 1;
8183 if (get_stop_id () != prev->stop_id)
8184 return 1;
8185 return 0;
8186 }
8187
8188 /* See infrun.h. */
8189
8190 int
8191 normal_stop (void)
8192 {
8193 struct target_waitstatus last;
8194 ptid_t last_ptid;
8195 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8196 ptid_t pid_ptid;
8197
8198 get_last_target_status (&last_ptid, &last);
8199
8200 new_stop_id ();
8201
8202 /* If an exception is thrown from this point on, make sure to
8203 propagate GDB's knowledge of the executing state to the
8204 frontend/user running state. A QUIT is an easy exception to see
8205 here, so do this before any filtered output. */
8206 if (!non_stop)
8207 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8208 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8209 || last.kind == TARGET_WAITKIND_EXITED)
8210 {
8211 /* On some targets, we may still have live threads in the
8212 inferior when we get a process exit event. E.g., for
8213 "checkpoint", when the current checkpoint/fork exits,
8214 linux-fork.c automatically switches to another fork from
8215 within target_mourn_inferior. */
8216 if (!ptid_equal (inferior_ptid, null_ptid))
8217 {
8218 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8219 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8220 }
8221 }
8222 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8223 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8224
8225 /* As we're presenting a stop, and potentially removing breakpoints,
8226 update the thread list so we can tell whether there are threads
8227 running on the target. With target remote, for example, we can
8228 only learn about new threads when we explicitly update the thread
8229 list. Do this before notifying the interpreters about signal
8230 stops, end of stepping ranges, etc., so that the "new thread"
8231 output is emitted before e.g., "Program received signal FOO",
8232 instead of after. */
8233 update_thread_list ();
8234
8235 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8236 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8237
8238 /* As with the notification of thread events, we want to delay
8239 notifying the user that we've switched thread context until
8240 the inferior actually stops.
8241
8242 There's no point in saying anything if the inferior has exited.
8243 Note that SIGNALLED here means "exited with a signal", not
8244 "received a signal".
8245
8246 Also skip saying anything in non-stop mode. In that mode, as we
8247 don't want GDB to switch threads behind the user's back, to avoid
8248 races where the user is typing a command to apply to thread x,
8249 but GDB switches to thread y before the user finishes entering
8250 the command, fetch_inferior_event installs a cleanup to restore
8251 the current thread back to the thread the user had selected right
8252 after this event is handled, so we're not really switching, only
8253 informing of a stop. */
8254 if (!non_stop
8255 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8256 && target_has_execution
8257 && last.kind != TARGET_WAITKIND_SIGNALLED
8258 && last.kind != TARGET_WAITKIND_EXITED
8259 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8260 {
8261 target_terminal_ours_for_output ();
8262 printf_filtered (_("[Switching to %s]\n"),
8263 target_pid_to_str (inferior_ptid));
8264 annotate_thread_changed ();
8265 previous_inferior_ptid = inferior_ptid;
8266 }
8267
8268 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8269 {
8270 gdb_assert (sync_execution || !target_can_async_p ());
8271
8272 target_terminal_ours_for_output ();
8273 printf_filtered (_("No unwaited-for children left.\n"));
8274 }
8275
8276 /* Note: this depends on the update_thread_list call above. */
8277 maybe_remove_breakpoints ();
8278
8279 /* If an auto-display called a function and that got a signal,
8280 delete that auto-display to avoid an infinite recursion. */
8281
8282 if (stopped_by_random_signal)
8283 disable_current_display ();
8284
8285 target_terminal_ours ();
8286 async_enable_stdin ();
8287
8288 /* Let the user/frontend see the threads as stopped. */
8289 do_cleanups (old_chain);
8290
8291 /* Select innermost stack frame - i.e., current frame is frame 0,
8292 and current location is based on that. Handle the case where the
8293 dummy call is returning after being stopped. E.g. the dummy call
8294 previously hit a breakpoint. (If the dummy call returns
8295 normally, we won't reach here.) Do this before the stop hook is
8296 run, so that it doesn't get to see the temporary dummy frame,
8297 which is not where we'll present the stop. */
8298 if (has_stack_frames ())
8299 {
8300 if (stop_stack_dummy == STOP_STACK_DUMMY)
8301 {
8302 /* Pop the empty frame that contains the stack dummy. This
8303 also restores inferior state prior to the call (struct
8304 infcall_suspend_state). */
8305 struct frame_info *frame = get_current_frame ();
8306
8307 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8308 frame_pop (frame);
8309 /* frame_pop calls reinit_frame_cache as the last thing it
8310 does which means there's now no selected frame. */
8311 }
8312
8313 select_frame (get_current_frame ());
8314
8315 /* Set the current source location. */
8316 set_current_sal_from_frame (get_current_frame ());
8317 }
8318
8319 /* Look up the hook_stop and run it (CLI internally handles problem
8320 of stop_command's pre-hook not existing). */
8321 if (stop_command != NULL)
8322 {
8323 struct stop_context *saved_context = save_stop_context ();
8324 struct cleanup *old_chain
8325 = make_cleanup (release_stop_context_cleanup, saved_context);
8326
8327 catch_errors (hook_stop_stub, stop_command,
8328 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8329
8330 /* If the stop hook resumes the target, then there's no point in
8331 trying to notify about the previous stop; its context is
8332 gone. Likewise if the command switches thread or inferior --
8333 the observers would print a stop for the wrong
8334 thread/inferior. */
8335 if (stop_context_changed (saved_context))
8336 {
8337 do_cleanups (old_chain);
8338 return 1;
8339 }
8340 do_cleanups (old_chain);
8341 }
8342
8343 /* Notify observers about the stop. This is where the interpreters
8344 print the stop event. */
8345 if (!ptid_equal (inferior_ptid, null_ptid))
8346 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8347 stop_print_frame);
8348 else
8349 observer_notify_normal_stop (NULL, stop_print_frame);
8350
8351 annotate_stopped ();
8352
8353 if (target_has_execution)
8354 {
8355 if (last.kind != TARGET_WAITKIND_SIGNALLED
8356 && last.kind != TARGET_WAITKIND_EXITED)
8357 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8358 Delete any breakpoint that is to be deleted at the next stop. */
8359 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8360 }
8361
8362 /* Try to get rid of automatically added inferiors that are no
8363 longer needed. Keeping those around slows down things linearly.
8364 Note that this never removes the current inferior. */
8365 prune_inferiors ();
8366
8367 return 0;
8368 }
8369
8370 static int
8371 hook_stop_stub (void *cmd)
8372 {
8373 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8374 return (0);
8375 }
8376 \f
8377 int
8378 signal_stop_state (int signo)
8379 {
8380 return signal_stop[signo];
8381 }
8382
8383 int
8384 signal_print_state (int signo)
8385 {
8386 return signal_print[signo];
8387 }
8388
8389 int
8390 signal_pass_state (int signo)
8391 {
8392 return signal_program[signo];
8393 }
8394
8395 static void
8396 signal_cache_update (int signo)
8397 {
8398 if (signo == -1)
8399 {
8400 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8401 signal_cache_update (signo);
8402
8403 return;
8404 }
8405
8406 signal_pass[signo] = (signal_stop[signo] == 0
8407 && signal_print[signo] == 0
8408 && signal_program[signo] == 1
8409 && signal_catch[signo] == 0);
8410 }
8411
8412 int
8413 signal_stop_update (int signo, int state)
8414 {
8415 int ret = signal_stop[signo];
8416
8417 signal_stop[signo] = state;
8418 signal_cache_update (signo);
8419 return ret;
8420 }
8421
8422 int
8423 signal_print_update (int signo, int state)
8424 {
8425 int ret = signal_print[signo];
8426
8427 signal_print[signo] = state;
8428 signal_cache_update (signo);
8429 return ret;
8430 }
8431
8432 int
8433 signal_pass_update (int signo, int state)
8434 {
8435 int ret = signal_program[signo];
8436
8437 signal_program[signo] = state;
8438 signal_cache_update (signo);
8439 return ret;
8440 }
8441
8442 /* Update the global 'signal_catch' from INFO and notify the
8443 target. */
8444
8445 void
8446 signal_catch_update (const unsigned int *info)
8447 {
8448 int i;
8449
8450 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8451 signal_catch[i] = info[i] > 0;
8452 signal_cache_update (-1);
8453 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8454 }
8455
8456 static void
8457 sig_print_header (void)
8458 {
8459 printf_filtered (_("Signal Stop\tPrint\tPass "
8460 "to program\tDescription\n"));
8461 }
8462
8463 static void
8464 sig_print_info (enum gdb_signal oursig)
8465 {
8466 const char *name = gdb_signal_to_name (oursig);
8467 int name_padding = 13 - strlen (name);
8468
8469 if (name_padding <= 0)
8470 name_padding = 0;
8471
8472 printf_filtered ("%s", name);
8473 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8474 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8475 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8476 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8477 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8478 }
8479
8480 /* Specify how various signals in the inferior should be handled. */
8481
8482 static void
8483 handle_command (char *args, int from_tty)
8484 {
8485 char **argv;
8486 int digits, wordlen;
8487 int sigfirst, signum, siglast;
8488 enum gdb_signal oursig;
8489 int allsigs;
8490 int nsigs;
8491 unsigned char *sigs;
8492 struct cleanup *old_chain;
8493
8494 if (args == NULL)
8495 {
8496 error_no_arg (_("signal to handle"));
8497 }
8498
8499 /* Allocate and zero an array of flags for which signals to handle. */
8500
8501 nsigs = (int) GDB_SIGNAL_LAST;
8502 sigs = (unsigned char *) alloca (nsigs);
8503 memset (sigs, 0, nsigs);
8504
8505 /* Break the command line up into args. */
8506
8507 argv = gdb_buildargv (args);
8508 old_chain = make_cleanup_freeargv (argv);
8509
8510 /* Walk through the args, looking for signal oursigs, signal names, and
8511 actions. Signal numbers and signal names may be interspersed with
8512 actions, with the actions being performed for all signals cumulatively
8513 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8514
8515 while (*argv != NULL)
8516 {
8517 wordlen = strlen (*argv);
8518 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8519 {;
8520 }
8521 allsigs = 0;
8522 sigfirst = siglast = -1;
8523
8524 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8525 {
8526 /* Apply action to all signals except those used by the
8527 debugger. Silently skip those. */
8528 allsigs = 1;
8529 sigfirst = 0;
8530 siglast = nsigs - 1;
8531 }
8532 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8533 {
8534 SET_SIGS (nsigs, sigs, signal_stop);
8535 SET_SIGS (nsigs, sigs, signal_print);
8536 }
8537 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8538 {
8539 UNSET_SIGS (nsigs, sigs, signal_program);
8540 }
8541 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8542 {
8543 SET_SIGS (nsigs, sigs, signal_print);
8544 }
8545 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8546 {
8547 SET_SIGS (nsigs, sigs, signal_program);
8548 }
8549 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8550 {
8551 UNSET_SIGS (nsigs, sigs, signal_stop);
8552 }
8553 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8554 {
8555 SET_SIGS (nsigs, sigs, signal_program);
8556 }
8557 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8558 {
8559 UNSET_SIGS (nsigs, sigs, signal_print);
8560 UNSET_SIGS (nsigs, sigs, signal_stop);
8561 }
8562 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8563 {
8564 UNSET_SIGS (nsigs, sigs, signal_program);
8565 }
8566 else if (digits > 0)
8567 {
8568 /* It is numeric. The numeric signal refers to our own
8569 internal signal numbering from target.h, not to host/target
8570 signal number. This is a feature; users really should be
8571 using symbolic names anyway, and the common ones like
8572 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8573
8574 sigfirst = siglast = (int)
8575 gdb_signal_from_command (atoi (*argv));
8576 if ((*argv)[digits] == '-')
8577 {
8578 siglast = (int)
8579 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8580 }
8581 if (sigfirst > siglast)
8582 {
8583 /* Bet he didn't figure we'd think of this case... */
8584 signum = sigfirst;
8585 sigfirst = siglast;
8586 siglast = signum;
8587 }
8588 }
8589 else
8590 {
8591 oursig = gdb_signal_from_name (*argv);
8592 if (oursig != GDB_SIGNAL_UNKNOWN)
8593 {
8594 sigfirst = siglast = (int) oursig;
8595 }
8596 else
8597 {
8598 /* Not a number and not a recognized flag word => complain. */
8599 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8600 }
8601 }
8602
8603 /* If any signal numbers or symbol names were found, set flags for
8604 which signals to apply actions to. */
8605
8606 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8607 {
8608 switch ((enum gdb_signal) signum)
8609 {
8610 case GDB_SIGNAL_TRAP:
8611 case GDB_SIGNAL_INT:
8612 if (!allsigs && !sigs[signum])
8613 {
8614 if (query (_("%s is used by the debugger.\n\
8615 Are you sure you want to change it? "),
8616 gdb_signal_to_name ((enum gdb_signal) signum)))
8617 {
8618 sigs[signum] = 1;
8619 }
8620 else
8621 {
8622 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8623 gdb_flush (gdb_stdout);
8624 }
8625 }
8626 break;
8627 case GDB_SIGNAL_0:
8628 case GDB_SIGNAL_DEFAULT:
8629 case GDB_SIGNAL_UNKNOWN:
8630 /* Make sure that "all" doesn't print these. */
8631 break;
8632 default:
8633 sigs[signum] = 1;
8634 break;
8635 }
8636 }
8637
8638 argv++;
8639 }
8640
8641 for (signum = 0; signum < nsigs; signum++)
8642 if (sigs[signum])
8643 {
8644 signal_cache_update (-1);
8645 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8646 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8647
8648 if (from_tty)
8649 {
8650 /* Show the results. */
8651 sig_print_header ();
8652 for (; signum < nsigs; signum++)
8653 if (sigs[signum])
8654 sig_print_info ((enum gdb_signal) signum);
8655 }
8656
8657 break;
8658 }
8659
8660 do_cleanups (old_chain);
8661 }
8662
8663 /* Complete the "handle" command. */
8664
8665 static VEC (char_ptr) *
8666 handle_completer (struct cmd_list_element *ignore,
8667 const char *text, const char *word)
8668 {
8669 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8670 static const char * const keywords[] =
8671 {
8672 "all",
8673 "stop",
8674 "ignore",
8675 "print",
8676 "pass",
8677 "nostop",
8678 "noignore",
8679 "noprint",
8680 "nopass",
8681 NULL,
8682 };
8683
8684 vec_signals = signal_completer (ignore, text, word);
8685 vec_keywords = complete_on_enum (keywords, word, word);
8686
8687 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8688 VEC_free (char_ptr, vec_signals);
8689 VEC_free (char_ptr, vec_keywords);
8690 return return_val;
8691 }
8692
8693 enum gdb_signal
8694 gdb_signal_from_command (int num)
8695 {
8696 if (num >= 1 && num <= 15)
8697 return (enum gdb_signal) num;
8698 error (_("Only signals 1-15 are valid as numeric signals.\n\
8699 Use \"info signals\" for a list of symbolic signals."));
8700 }
8701
8702 /* Print current contents of the tables set by the handle command.
8703 It is possible we should just be printing signals actually used
8704 by the current target (but for things to work right when switching
8705 targets, all signals should be in the signal tables). */
8706
8707 static void
8708 signals_info (char *signum_exp, int from_tty)
8709 {
8710 enum gdb_signal oursig;
8711
8712 sig_print_header ();
8713
8714 if (signum_exp)
8715 {
8716 /* First see if this is a symbol name. */
8717 oursig = gdb_signal_from_name (signum_exp);
8718 if (oursig == GDB_SIGNAL_UNKNOWN)
8719 {
8720 /* No, try numeric. */
8721 oursig =
8722 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8723 }
8724 sig_print_info (oursig);
8725 return;
8726 }
8727
8728 printf_filtered ("\n");
8729 /* These ugly casts brought to you by the native VAX compiler. */
8730 for (oursig = GDB_SIGNAL_FIRST;
8731 (int) oursig < (int) GDB_SIGNAL_LAST;
8732 oursig = (enum gdb_signal) ((int) oursig + 1))
8733 {
8734 QUIT;
8735
8736 if (oursig != GDB_SIGNAL_UNKNOWN
8737 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8738 sig_print_info (oursig);
8739 }
8740
8741 printf_filtered (_("\nUse the \"handle\" command "
8742 "to change these tables.\n"));
8743 }
8744
8745 /* The $_siginfo convenience variable is a bit special. We don't know
8746 for sure the type of the value until we actually have a chance to
8747 fetch the data. The type can change depending on gdbarch, so it is
8748 also dependent on which thread you have selected.
8749
8750 1. making $_siginfo be an internalvar that creates a new value on
8751 access.
8752
8753 2. making the value of $_siginfo be an lval_computed value. */
8754
8755 /* This function implements the lval_computed support for reading a
8756 $_siginfo value. */
8757
8758 static void
8759 siginfo_value_read (struct value *v)
8760 {
8761 LONGEST transferred;
8762
8763 /* If we can access registers, so can we access $_siginfo. Likewise
8764 vice versa. */
8765 validate_registers_access ();
8766
8767 transferred =
8768 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8769 NULL,
8770 value_contents_all_raw (v),
8771 value_offset (v),
8772 TYPE_LENGTH (value_type (v)));
8773
8774 if (transferred != TYPE_LENGTH (value_type (v)))
8775 error (_("Unable to read siginfo"));
8776 }
8777
8778 /* This function implements the lval_computed support for writing a
8779 $_siginfo value. */
8780
8781 static void
8782 siginfo_value_write (struct value *v, struct value *fromval)
8783 {
8784 LONGEST transferred;
8785
8786 /* If we can access registers, so can we access $_siginfo. Likewise
8787 vice versa. */
8788 validate_registers_access ();
8789
8790 transferred = target_write (&current_target,
8791 TARGET_OBJECT_SIGNAL_INFO,
8792 NULL,
8793 value_contents_all_raw (fromval),
8794 value_offset (v),
8795 TYPE_LENGTH (value_type (fromval)));
8796
8797 if (transferred != TYPE_LENGTH (value_type (fromval)))
8798 error (_("Unable to write siginfo"));
8799 }
8800
8801 static const struct lval_funcs siginfo_value_funcs =
8802 {
8803 siginfo_value_read,
8804 siginfo_value_write
8805 };
8806
8807 /* Return a new value with the correct type for the siginfo object of
8808 the current thread using architecture GDBARCH. Return a void value
8809 if there's no object available. */
8810
8811 static struct value *
8812 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8813 void *ignore)
8814 {
8815 if (target_has_stack
8816 && !ptid_equal (inferior_ptid, null_ptid)
8817 && gdbarch_get_siginfo_type_p (gdbarch))
8818 {
8819 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8820
8821 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8822 }
8823
8824 return allocate_value (builtin_type (gdbarch)->builtin_void);
8825 }
8826
8827 \f
8828 /* infcall_suspend_state contains state about the program itself like its
8829 registers and any signal it received when it last stopped.
8830 This state must be restored regardless of how the inferior function call
8831 ends (either successfully, or after it hits a breakpoint or signal)
8832 if the program is to properly continue where it left off. */
8833
8834 struct infcall_suspend_state
8835 {
8836 struct thread_suspend_state thread_suspend;
8837
8838 /* Other fields: */
8839 CORE_ADDR stop_pc;
8840 struct regcache *registers;
8841
8842 /* Format of SIGINFO_DATA or NULL if it is not present. */
8843 struct gdbarch *siginfo_gdbarch;
8844
8845 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8846 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8847 content would be invalid. */
8848 gdb_byte *siginfo_data;
8849 };
8850
8851 struct infcall_suspend_state *
8852 save_infcall_suspend_state (void)
8853 {
8854 struct infcall_suspend_state *inf_state;
8855 struct thread_info *tp = inferior_thread ();
8856 struct regcache *regcache = get_current_regcache ();
8857 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8858 gdb_byte *siginfo_data = NULL;
8859
8860 if (gdbarch_get_siginfo_type_p (gdbarch))
8861 {
8862 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8863 size_t len = TYPE_LENGTH (type);
8864 struct cleanup *back_to;
8865
8866 siginfo_data = (gdb_byte *) xmalloc (len);
8867 back_to = make_cleanup (xfree, siginfo_data);
8868
8869 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8870 siginfo_data, 0, len) == len)
8871 discard_cleanups (back_to);
8872 else
8873 {
8874 /* Errors ignored. */
8875 do_cleanups (back_to);
8876 siginfo_data = NULL;
8877 }
8878 }
8879
8880 inf_state = XCNEW (struct infcall_suspend_state);
8881
8882 if (siginfo_data)
8883 {
8884 inf_state->siginfo_gdbarch = gdbarch;
8885 inf_state->siginfo_data = siginfo_data;
8886 }
8887
8888 inf_state->thread_suspend = tp->suspend;
8889
8890 /* run_inferior_call will not use the signal due to its `proceed' call with
8891 GDB_SIGNAL_0 anyway. */
8892 tp->suspend.stop_signal = GDB_SIGNAL_0;
8893
8894 inf_state->stop_pc = stop_pc;
8895
8896 inf_state->registers = regcache_dup (regcache);
8897
8898 return inf_state;
8899 }
8900
8901 /* Restore inferior session state to INF_STATE. */
8902
8903 void
8904 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8905 {
8906 struct thread_info *tp = inferior_thread ();
8907 struct regcache *regcache = get_current_regcache ();
8908 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8909
8910 tp->suspend = inf_state->thread_suspend;
8911
8912 stop_pc = inf_state->stop_pc;
8913
8914 if (inf_state->siginfo_gdbarch == gdbarch)
8915 {
8916 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8917
8918 /* Errors ignored. */
8919 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8920 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8921 }
8922
8923 /* The inferior can be gone if the user types "print exit(0)"
8924 (and perhaps other times). */
8925 if (target_has_execution)
8926 /* NB: The register write goes through to the target. */
8927 regcache_cpy (regcache, inf_state->registers);
8928
8929 discard_infcall_suspend_state (inf_state);
8930 }
8931
8932 static void
8933 do_restore_infcall_suspend_state_cleanup (void *state)
8934 {
8935 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8936 }
8937
8938 struct cleanup *
8939 make_cleanup_restore_infcall_suspend_state
8940 (struct infcall_suspend_state *inf_state)
8941 {
8942 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8943 }
8944
8945 void
8946 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8947 {
8948 regcache_xfree (inf_state->registers);
8949 xfree (inf_state->siginfo_data);
8950 xfree (inf_state);
8951 }
8952
8953 struct regcache *
8954 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8955 {
8956 return inf_state->registers;
8957 }
8958
8959 /* infcall_control_state contains state regarding gdb's control of the
8960 inferior itself like stepping control. It also contains session state like
8961 the user's currently selected frame. */
8962
8963 struct infcall_control_state
8964 {
8965 struct thread_control_state thread_control;
8966 struct inferior_control_state inferior_control;
8967
8968 /* Other fields: */
8969 enum stop_stack_kind stop_stack_dummy;
8970 int stopped_by_random_signal;
8971
8972 /* ID if the selected frame when the inferior function call was made. */
8973 struct frame_id selected_frame_id;
8974 };
8975
8976 /* Save all of the information associated with the inferior<==>gdb
8977 connection. */
8978
8979 struct infcall_control_state *
8980 save_infcall_control_state (void)
8981 {
8982 struct infcall_control_state *inf_status =
8983 XNEW (struct infcall_control_state);
8984 struct thread_info *tp = inferior_thread ();
8985 struct inferior *inf = current_inferior ();
8986
8987 inf_status->thread_control = tp->control;
8988 inf_status->inferior_control = inf->control;
8989
8990 tp->control.step_resume_breakpoint = NULL;
8991 tp->control.exception_resume_breakpoint = NULL;
8992
8993 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8994 chain. If caller's caller is walking the chain, they'll be happier if we
8995 hand them back the original chain when restore_infcall_control_state is
8996 called. */
8997 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8998
8999 /* Other fields: */
9000 inf_status->stop_stack_dummy = stop_stack_dummy;
9001 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9002
9003 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9004
9005 return inf_status;
9006 }
9007
9008 static int
9009 restore_selected_frame (void *args)
9010 {
9011 struct frame_id *fid = (struct frame_id *) args;
9012 struct frame_info *frame;
9013
9014 frame = frame_find_by_id (*fid);
9015
9016 /* If inf_status->selected_frame_id is NULL, there was no previously
9017 selected frame. */
9018 if (frame == NULL)
9019 {
9020 warning (_("Unable to restore previously selected frame."));
9021 return 0;
9022 }
9023
9024 select_frame (frame);
9025
9026 return (1);
9027 }
9028
9029 /* Restore inferior session state to INF_STATUS. */
9030
9031 void
9032 restore_infcall_control_state (struct infcall_control_state *inf_status)
9033 {
9034 struct thread_info *tp = inferior_thread ();
9035 struct inferior *inf = current_inferior ();
9036
9037 if (tp->control.step_resume_breakpoint)
9038 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9039
9040 if (tp->control.exception_resume_breakpoint)
9041 tp->control.exception_resume_breakpoint->disposition
9042 = disp_del_at_next_stop;
9043
9044 /* Handle the bpstat_copy of the chain. */
9045 bpstat_clear (&tp->control.stop_bpstat);
9046
9047 tp->control = inf_status->thread_control;
9048 inf->control = inf_status->inferior_control;
9049
9050 /* Other fields: */
9051 stop_stack_dummy = inf_status->stop_stack_dummy;
9052 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9053
9054 if (target_has_stack)
9055 {
9056 /* The point of catch_errors is that if the stack is clobbered,
9057 walking the stack might encounter a garbage pointer and
9058 error() trying to dereference it. */
9059 if (catch_errors
9060 (restore_selected_frame, &inf_status->selected_frame_id,
9061 "Unable to restore previously selected frame:\n",
9062 RETURN_MASK_ERROR) == 0)
9063 /* Error in restoring the selected frame. Select the innermost
9064 frame. */
9065 select_frame (get_current_frame ());
9066 }
9067
9068 xfree (inf_status);
9069 }
9070
9071 static void
9072 do_restore_infcall_control_state_cleanup (void *sts)
9073 {
9074 restore_infcall_control_state ((struct infcall_control_state *) sts);
9075 }
9076
9077 struct cleanup *
9078 make_cleanup_restore_infcall_control_state
9079 (struct infcall_control_state *inf_status)
9080 {
9081 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9082 }
9083
9084 void
9085 discard_infcall_control_state (struct infcall_control_state *inf_status)
9086 {
9087 if (inf_status->thread_control.step_resume_breakpoint)
9088 inf_status->thread_control.step_resume_breakpoint->disposition
9089 = disp_del_at_next_stop;
9090
9091 if (inf_status->thread_control.exception_resume_breakpoint)
9092 inf_status->thread_control.exception_resume_breakpoint->disposition
9093 = disp_del_at_next_stop;
9094
9095 /* See save_infcall_control_state for info on stop_bpstat. */
9096 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9097
9098 xfree (inf_status);
9099 }
9100 \f
9101 /* restore_inferior_ptid() will be used by the cleanup machinery
9102 to restore the inferior_ptid value saved in a call to
9103 save_inferior_ptid(). */
9104
9105 static void
9106 restore_inferior_ptid (void *arg)
9107 {
9108 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
9109
9110 inferior_ptid = *saved_ptid_ptr;
9111 xfree (arg);
9112 }
9113
9114 /* Save the value of inferior_ptid so that it may be restored by a
9115 later call to do_cleanups(). Returns the struct cleanup pointer
9116 needed for later doing the cleanup. */
9117
9118 struct cleanup *
9119 save_inferior_ptid (void)
9120 {
9121 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
9122
9123 *saved_ptid_ptr = inferior_ptid;
9124 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9125 }
9126
9127 /* See infrun.h. */
9128
9129 void
9130 clear_exit_convenience_vars (void)
9131 {
9132 clear_internalvar (lookup_internalvar ("_exitsignal"));
9133 clear_internalvar (lookup_internalvar ("_exitcode"));
9134 }
9135 \f
9136
9137 /* User interface for reverse debugging:
9138 Set exec-direction / show exec-direction commands
9139 (returns error unless target implements to_set_exec_direction method). */
9140
9141 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9142 static const char exec_forward[] = "forward";
9143 static const char exec_reverse[] = "reverse";
9144 static const char *exec_direction = exec_forward;
9145 static const char *const exec_direction_names[] = {
9146 exec_forward,
9147 exec_reverse,
9148 NULL
9149 };
9150
9151 static void
9152 set_exec_direction_func (char *args, int from_tty,
9153 struct cmd_list_element *cmd)
9154 {
9155 if (target_can_execute_reverse)
9156 {
9157 if (!strcmp (exec_direction, exec_forward))
9158 execution_direction = EXEC_FORWARD;
9159 else if (!strcmp (exec_direction, exec_reverse))
9160 execution_direction = EXEC_REVERSE;
9161 }
9162 else
9163 {
9164 exec_direction = exec_forward;
9165 error (_("Target does not support this operation."));
9166 }
9167 }
9168
9169 static void
9170 show_exec_direction_func (struct ui_file *out, int from_tty,
9171 struct cmd_list_element *cmd, const char *value)
9172 {
9173 switch (execution_direction) {
9174 case EXEC_FORWARD:
9175 fprintf_filtered (out, _("Forward.\n"));
9176 break;
9177 case EXEC_REVERSE:
9178 fprintf_filtered (out, _("Reverse.\n"));
9179 break;
9180 default:
9181 internal_error (__FILE__, __LINE__,
9182 _("bogus execution_direction value: %d"),
9183 (int) execution_direction);
9184 }
9185 }
9186
9187 static void
9188 show_schedule_multiple (struct ui_file *file, int from_tty,
9189 struct cmd_list_element *c, const char *value)
9190 {
9191 fprintf_filtered (file, _("Resuming the execution of threads "
9192 "of all processes is %s.\n"), value);
9193 }
9194
9195 /* Implementation of `siginfo' variable. */
9196
9197 static const struct internalvar_funcs siginfo_funcs =
9198 {
9199 siginfo_make_value,
9200 NULL,
9201 NULL
9202 };
9203
9204 /* Callback for infrun's target events source. This is marked when a
9205 thread has a pending status to process. */
9206
9207 static void
9208 infrun_async_inferior_event_handler (gdb_client_data data)
9209 {
9210 inferior_event_handler (INF_REG_EVENT, NULL);
9211 }
9212
9213 void
9214 _initialize_infrun (void)
9215 {
9216 int i;
9217 int numsigs;
9218 struct cmd_list_element *c;
9219
9220 /* Register extra event sources in the event loop. */
9221 infrun_async_inferior_event_token
9222 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9223
9224 add_info ("signals", signals_info, _("\
9225 What debugger does when program gets various signals.\n\
9226 Specify a signal as argument to print info on that signal only."));
9227 add_info_alias ("handle", "signals", 0);
9228
9229 c = add_com ("handle", class_run, handle_command, _("\
9230 Specify how to handle signals.\n\
9231 Usage: handle SIGNAL [ACTIONS]\n\
9232 Args are signals and actions to apply to those signals.\n\
9233 If no actions are specified, the current settings for the specified signals\n\
9234 will be displayed instead.\n\
9235 \n\
9236 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9237 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9238 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9239 The special arg \"all\" is recognized to mean all signals except those\n\
9240 used by the debugger, typically SIGTRAP and SIGINT.\n\
9241 \n\
9242 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9243 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9244 Stop means reenter debugger if this signal happens (implies print).\n\
9245 Print means print a message if this signal happens.\n\
9246 Pass means let program see this signal; otherwise program doesn't know.\n\
9247 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9248 Pass and Stop may be combined.\n\
9249 \n\
9250 Multiple signals may be specified. Signal numbers and signal names\n\
9251 may be interspersed with actions, with the actions being performed for\n\
9252 all signals cumulatively specified."));
9253 set_cmd_completer (c, handle_completer);
9254
9255 if (!dbx_commands)
9256 stop_command = add_cmd ("stop", class_obscure,
9257 not_just_help_class_command, _("\
9258 There is no `stop' command, but you can set a hook on `stop'.\n\
9259 This allows you to set a list of commands to be run each time execution\n\
9260 of the program stops."), &cmdlist);
9261
9262 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9263 Set inferior debugging."), _("\
9264 Show inferior debugging."), _("\
9265 When non-zero, inferior specific debugging is enabled."),
9266 NULL,
9267 show_debug_infrun,
9268 &setdebuglist, &showdebuglist);
9269
9270 add_setshow_boolean_cmd ("displaced", class_maintenance,
9271 &debug_displaced, _("\
9272 Set displaced stepping debugging."), _("\
9273 Show displaced stepping debugging."), _("\
9274 When non-zero, displaced stepping specific debugging is enabled."),
9275 NULL,
9276 show_debug_displaced,
9277 &setdebuglist, &showdebuglist);
9278
9279 add_setshow_boolean_cmd ("non-stop", no_class,
9280 &non_stop_1, _("\
9281 Set whether gdb controls the inferior in non-stop mode."), _("\
9282 Show whether gdb controls the inferior in non-stop mode."), _("\
9283 When debugging a multi-threaded program and this setting is\n\
9284 off (the default, also called all-stop mode), when one thread stops\n\
9285 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9286 all other threads in the program while you interact with the thread of\n\
9287 interest. When you continue or step a thread, you can allow the other\n\
9288 threads to run, or have them remain stopped, but while you inspect any\n\
9289 thread's state, all threads stop.\n\
9290 \n\
9291 In non-stop mode, when one thread stops, other threads can continue\n\
9292 to run freely. You'll be able to step each thread independently,\n\
9293 leave it stopped or free to run as needed."),
9294 set_non_stop,
9295 show_non_stop,
9296 &setlist,
9297 &showlist);
9298
9299 numsigs = (int) GDB_SIGNAL_LAST;
9300 signal_stop = XNEWVEC (unsigned char, numsigs);
9301 signal_print = XNEWVEC (unsigned char, numsigs);
9302 signal_program = XNEWVEC (unsigned char, numsigs);
9303 signal_catch = XNEWVEC (unsigned char, numsigs);
9304 signal_pass = XNEWVEC (unsigned char, numsigs);
9305 for (i = 0; i < numsigs; i++)
9306 {
9307 signal_stop[i] = 1;
9308 signal_print[i] = 1;
9309 signal_program[i] = 1;
9310 signal_catch[i] = 0;
9311 }
9312
9313 /* Signals caused by debugger's own actions should not be given to
9314 the program afterwards.
9315
9316 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9317 explicitly specifies that it should be delivered to the target
9318 program. Typically, that would occur when a user is debugging a
9319 target monitor on a simulator: the target monitor sets a
9320 breakpoint; the simulator encounters this breakpoint and halts
9321 the simulation handing control to GDB; GDB, noting that the stop
9322 address doesn't map to any known breakpoint, returns control back
9323 to the simulator; the simulator then delivers the hardware
9324 equivalent of a GDB_SIGNAL_TRAP to the program being
9325 debugged. */
9326 signal_program[GDB_SIGNAL_TRAP] = 0;
9327 signal_program[GDB_SIGNAL_INT] = 0;
9328
9329 /* Signals that are not errors should not normally enter the debugger. */
9330 signal_stop[GDB_SIGNAL_ALRM] = 0;
9331 signal_print[GDB_SIGNAL_ALRM] = 0;
9332 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9333 signal_print[GDB_SIGNAL_VTALRM] = 0;
9334 signal_stop[GDB_SIGNAL_PROF] = 0;
9335 signal_print[GDB_SIGNAL_PROF] = 0;
9336 signal_stop[GDB_SIGNAL_CHLD] = 0;
9337 signal_print[GDB_SIGNAL_CHLD] = 0;
9338 signal_stop[GDB_SIGNAL_IO] = 0;
9339 signal_print[GDB_SIGNAL_IO] = 0;
9340 signal_stop[GDB_SIGNAL_POLL] = 0;
9341 signal_print[GDB_SIGNAL_POLL] = 0;
9342 signal_stop[GDB_SIGNAL_URG] = 0;
9343 signal_print[GDB_SIGNAL_URG] = 0;
9344 signal_stop[GDB_SIGNAL_WINCH] = 0;
9345 signal_print[GDB_SIGNAL_WINCH] = 0;
9346 signal_stop[GDB_SIGNAL_PRIO] = 0;
9347 signal_print[GDB_SIGNAL_PRIO] = 0;
9348
9349 /* These signals are used internally by user-level thread
9350 implementations. (See signal(5) on Solaris.) Like the above
9351 signals, a healthy program receives and handles them as part of
9352 its normal operation. */
9353 signal_stop[GDB_SIGNAL_LWP] = 0;
9354 signal_print[GDB_SIGNAL_LWP] = 0;
9355 signal_stop[GDB_SIGNAL_WAITING] = 0;
9356 signal_print[GDB_SIGNAL_WAITING] = 0;
9357 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9358 signal_print[GDB_SIGNAL_CANCEL] = 0;
9359
9360 /* Update cached state. */
9361 signal_cache_update (-1);
9362
9363 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9364 &stop_on_solib_events, _("\
9365 Set stopping for shared library events."), _("\
9366 Show stopping for shared library events."), _("\
9367 If nonzero, gdb will give control to the user when the dynamic linker\n\
9368 notifies gdb of shared library events. The most common event of interest\n\
9369 to the user would be loading/unloading of a new library."),
9370 set_stop_on_solib_events,
9371 show_stop_on_solib_events,
9372 &setlist, &showlist);
9373
9374 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9375 follow_fork_mode_kind_names,
9376 &follow_fork_mode_string, _("\
9377 Set debugger response to a program call of fork or vfork."), _("\
9378 Show debugger response to a program call of fork or vfork."), _("\
9379 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9380 parent - the original process is debugged after a fork\n\
9381 child - the new process is debugged after a fork\n\
9382 The unfollowed process will continue to run.\n\
9383 By default, the debugger will follow the parent process."),
9384 NULL,
9385 show_follow_fork_mode_string,
9386 &setlist, &showlist);
9387
9388 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9389 follow_exec_mode_names,
9390 &follow_exec_mode_string, _("\
9391 Set debugger response to a program call of exec."), _("\
9392 Show debugger response to a program call of exec."), _("\
9393 An exec call replaces the program image of a process.\n\
9394 \n\
9395 follow-exec-mode can be:\n\
9396 \n\
9397 new - the debugger creates a new inferior and rebinds the process\n\
9398 to this new inferior. The program the process was running before\n\
9399 the exec call can be restarted afterwards by restarting the original\n\
9400 inferior.\n\
9401 \n\
9402 same - the debugger keeps the process bound to the same inferior.\n\
9403 The new executable image replaces the previous executable loaded in\n\
9404 the inferior. Restarting the inferior after the exec call restarts\n\
9405 the executable the process was running after the exec call.\n\
9406 \n\
9407 By default, the debugger will use the same inferior."),
9408 NULL,
9409 show_follow_exec_mode_string,
9410 &setlist, &showlist);
9411
9412 add_setshow_enum_cmd ("scheduler-locking", class_run,
9413 scheduler_enums, &scheduler_mode, _("\
9414 Set mode for locking scheduler during execution."), _("\
9415 Show mode for locking scheduler during execution."), _("\
9416 off == no locking (threads may preempt at any time)\n\
9417 on == full locking (no thread except the current thread may run)\n\
9418 This applies to both normal execution and replay mode.\n\
9419 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9420 In this mode, other threads may run during other commands.\n\
9421 This applies to both normal execution and replay mode.\n\
9422 replay == scheduler locked in replay mode and unlocked during normal execution."),
9423 set_schedlock_func, /* traps on target vector */
9424 show_scheduler_mode,
9425 &setlist, &showlist);
9426
9427 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9428 Set mode for resuming threads of all processes."), _("\
9429 Show mode for resuming threads of all processes."), _("\
9430 When on, execution commands (such as 'continue' or 'next') resume all\n\
9431 threads of all processes. When off (which is the default), execution\n\
9432 commands only resume the threads of the current process. The set of\n\
9433 threads that are resumed is further refined by the scheduler-locking\n\
9434 mode (see help set scheduler-locking)."),
9435 NULL,
9436 show_schedule_multiple,
9437 &setlist, &showlist);
9438
9439 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9440 Set mode of the step operation."), _("\
9441 Show mode of the step operation."), _("\
9442 When set, doing a step over a function without debug line information\n\
9443 will stop at the first instruction of that function. Otherwise, the\n\
9444 function is skipped and the step command stops at a different source line."),
9445 NULL,
9446 show_step_stop_if_no_debug,
9447 &setlist, &showlist);
9448
9449 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9450 &can_use_displaced_stepping, _("\
9451 Set debugger's willingness to use displaced stepping."), _("\
9452 Show debugger's willingness to use displaced stepping."), _("\
9453 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9454 supported by the target architecture. If off, gdb will not use displaced\n\
9455 stepping to step over breakpoints, even if such is supported by the target\n\
9456 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9457 if the target architecture supports it and non-stop mode is active, but will not\n\
9458 use it in all-stop mode (see help set non-stop)."),
9459 NULL,
9460 show_can_use_displaced_stepping,
9461 &setlist, &showlist);
9462
9463 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9464 &exec_direction, _("Set direction of execution.\n\
9465 Options are 'forward' or 'reverse'."),
9466 _("Show direction of execution (forward/reverse)."),
9467 _("Tells gdb whether to execute forward or backward."),
9468 set_exec_direction_func, show_exec_direction_func,
9469 &setlist, &showlist);
9470
9471 /* Set/show detach-on-fork: user-settable mode. */
9472
9473 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9474 Set whether gdb will detach the child of a fork."), _("\
9475 Show whether gdb will detach the child of a fork."), _("\
9476 Tells gdb whether to detach the child of a fork."),
9477 NULL, NULL, &setlist, &showlist);
9478
9479 /* Set/show disable address space randomization mode. */
9480
9481 add_setshow_boolean_cmd ("disable-randomization", class_support,
9482 &disable_randomization, _("\
9483 Set disabling of debuggee's virtual address space randomization."), _("\
9484 Show disabling of debuggee's virtual address space randomization."), _("\
9485 When this mode is on (which is the default), randomization of the virtual\n\
9486 address space is disabled. Standalone programs run with the randomization\n\
9487 enabled by default on some platforms."),
9488 &set_disable_randomization,
9489 &show_disable_randomization,
9490 &setlist, &showlist);
9491
9492 /* ptid initializations */
9493 inferior_ptid = null_ptid;
9494 target_last_wait_ptid = minus_one_ptid;
9495
9496 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9497 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9498 observer_attach_thread_exit (infrun_thread_thread_exit);
9499 observer_attach_inferior_exit (infrun_inferior_exit);
9500
9501 /* Explicitly create without lookup, since that tries to create a
9502 value with a void typed value, and when we get here, gdbarch
9503 isn't initialized yet. At this point, we're quite sure there
9504 isn't another convenience variable of the same name. */
9505 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9506
9507 add_setshow_boolean_cmd ("observer", no_class,
9508 &observer_mode_1, _("\
9509 Set whether gdb controls the inferior in observer mode."), _("\
9510 Show whether gdb controls the inferior in observer mode."), _("\
9511 In observer mode, GDB can get data from the inferior, but not\n\
9512 affect its execution. Registers and memory may not be changed,\n\
9513 breakpoints may not be set, and the program cannot be interrupted\n\
9514 or signalled."),
9515 set_observer_mode,
9516 show_observer_mode,
9517 &setlist,
9518 &showlist);
9519 }