gdb/
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "dictionary.h"
49 #include "block.h"
50 #include "gdb_assert.h"
51 #include "mi/mi-common.h"
52 #include "event-top.h"
53 #include "record.h"
54 #include "inline-frame.h"
55 #include "jit.h"
56 #include "tracepoint.h"
57 #include "continuations.h"
58
59 /* Prototypes for local functions */
60
61 static void signals_info (char *, int);
62
63 static void handle_command (char *, int);
64
65 static void sig_print_info (enum target_signal);
66
67 static void sig_print_header (void);
68
69 static void resume_cleanups (void *);
70
71 static int hook_stop_stub (void *);
72
73 static int restore_selected_frame (void *);
74
75 static int follow_fork (void);
76
77 static void set_schedlock_func (char *args, int from_tty,
78 struct cmd_list_element *c);
79
80 static int currently_stepping (struct thread_info *tp);
81
82 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
83 void *data);
84
85 static void xdb_handle_command (char *args, int from_tty);
86
87 static int prepare_to_proceed (int);
88
89 static void print_exited_reason (int exitstatus);
90
91 static void print_signal_exited_reason (enum target_signal siggnal);
92
93 static void print_no_history_reason (void);
94
95 static void print_signal_received_reason (enum target_signal siggnal);
96
97 static void print_end_stepping_range_reason (void);
98
99 void _initialize_infrun (void);
100
101 void nullify_last_target_wait_ptid (void);
102
103 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
104
105 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
106
107 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
108
109 /* When set, stop the 'step' command if we enter a function which has
110 no line number information. The normal behavior is that we step
111 over such function. */
112 int step_stop_if_no_debug = 0;
113 static void
114 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c, const char *value)
116 {
117 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
118 }
119
120 /* In asynchronous mode, but simulating synchronous execution. */
121
122 int sync_execution = 0;
123
124 /* wait_for_inferior and normal_stop use this to notify the user
125 when the inferior stopped in a different thread than it had been
126 running in. */
127
128 static ptid_t previous_inferior_ptid;
129
130 /* Default behavior is to detach newly forked processes (legacy). */
131 int detach_fork = 1;
132
133 int debug_displaced = 0;
134 static void
135 show_debug_displaced (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137 {
138 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
139 }
140
141 int debug_infrun = 0;
142 static void
143 show_debug_infrun (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
147 }
148
149 /* If the program uses ELF-style shared libraries, then calls to
150 functions in shared libraries go through stubs, which live in a
151 table called the PLT (Procedure Linkage Table). The first time the
152 function is called, the stub sends control to the dynamic linker,
153 which looks up the function's real address, patches the stub so
154 that future calls will go directly to the function, and then passes
155 control to the function.
156
157 If we are stepping at the source level, we don't want to see any of
158 this --- we just want to skip over the stub and the dynamic linker.
159 The simple approach is to single-step until control leaves the
160 dynamic linker.
161
162 However, on some systems (e.g., Red Hat's 5.2 distribution) the
163 dynamic linker calls functions in the shared C library, so you
164 can't tell from the PC alone whether the dynamic linker is still
165 running. In this case, we use a step-resume breakpoint to get us
166 past the dynamic linker, as if we were using "next" to step over a
167 function call.
168
169 in_solib_dynsym_resolve_code() says whether we're in the dynamic
170 linker code or not. Normally, this means we single-step. However,
171 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
172 address where we can place a step-resume breakpoint to get past the
173 linker's symbol resolution function.
174
175 in_solib_dynsym_resolve_code() can generally be implemented in a
176 pretty portable way, by comparing the PC against the address ranges
177 of the dynamic linker's sections.
178
179 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
180 it depends on internal details of the dynamic linker. It's usually
181 not too hard to figure out where to put a breakpoint, but it
182 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
183 sanity checking. If it can't figure things out, returning zero and
184 getting the (possibly confusing) stepping behavior is better than
185 signalling an error, which will obscure the change in the
186 inferior's state. */
187
188 /* This function returns TRUE if pc is the address of an instruction
189 that lies within the dynamic linker (such as the event hook, or the
190 dld itself).
191
192 This function must be used only when a dynamic linker event has
193 been caught, and the inferior is being stepped out of the hook, or
194 undefined results are guaranteed. */
195
196 #ifndef SOLIB_IN_DYNAMIC_LINKER
197 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
198 #endif
199
200 /* "Observer mode" is somewhat like a more extreme version of
201 non-stop, in which all GDB operations that might affect the
202 target's execution have been disabled. */
203
204 static int non_stop_1 = 0;
205
206 int observer_mode = 0;
207 static int observer_mode_1 = 0;
208
209 static void
210 set_observer_mode (char *args, int from_tty,
211 struct cmd_list_element *c)
212 {
213 extern int pagination_enabled;
214
215 if (target_has_execution)
216 {
217 observer_mode_1 = observer_mode;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 observer_mode = observer_mode_1;
222
223 may_write_registers = !observer_mode;
224 may_write_memory = !observer_mode;
225 may_insert_breakpoints = !observer_mode;
226 may_insert_tracepoints = !observer_mode;
227 /* We can insert fast tracepoints in or out of observer mode,
228 but enable them if we're going into this mode. */
229 if (observer_mode)
230 may_insert_fast_tracepoints = 1;
231 may_stop = !observer_mode;
232 update_target_permissions ();
233
234 /* Going *into* observer mode we must force non-stop, then
235 going out we leave it that way. */
236 if (observer_mode)
237 {
238 target_async_permitted = 1;
239 pagination_enabled = 0;
240 non_stop = non_stop_1 = 1;
241 }
242
243 if (from_tty)
244 printf_filtered (_("Observer mode is now %s.\n"),
245 (observer_mode ? "on" : "off"));
246 }
247
248 static void
249 show_observer_mode (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
253 }
254
255 /* This updates the value of observer mode based on changes in
256 permissions. Note that we are deliberately ignoring the values of
257 may-write-registers and may-write-memory, since the user may have
258 reason to enable these during a session, for instance to turn on a
259 debugging-related global. */
260
261 void
262 update_observer_mode (void)
263 {
264 int newval;
265
266 newval = (!may_insert_breakpoints
267 && !may_insert_tracepoints
268 && may_insert_fast_tracepoints
269 && !may_stop
270 && non_stop);
271
272 /* Let the user know if things change. */
273 if (newval != observer_mode)
274 printf_filtered (_("Observer mode is now %s.\n"),
275 (newval ? "on" : "off"));
276
277 observer_mode = observer_mode_1 = newval;
278 }
279
280 /* Tables of how to react to signals; the user sets them. */
281
282 static unsigned char *signal_stop;
283 static unsigned char *signal_print;
284 static unsigned char *signal_program;
285
286 /* Table of signals that the target may silently handle.
287 This is automatically determined from the flags above,
288 and simply cached here. */
289 static unsigned char *signal_pass;
290
291 #define SET_SIGS(nsigs,sigs,flags) \
292 do { \
293 int signum = (nsigs); \
294 while (signum-- > 0) \
295 if ((sigs)[signum]) \
296 (flags)[signum] = 1; \
297 } while (0)
298
299 #define UNSET_SIGS(nsigs,sigs,flags) \
300 do { \
301 int signum = (nsigs); \
302 while (signum-- > 0) \
303 if ((sigs)[signum]) \
304 (flags)[signum] = 0; \
305 } while (0)
306
307 /* Value to pass to target_resume() to cause all threads to resume. */
308
309 #define RESUME_ALL minus_one_ptid
310
311 /* Command list pointer for the "stop" placeholder. */
312
313 static struct cmd_list_element *stop_command;
314
315 /* Function inferior was in as of last step command. */
316
317 static struct symbol *step_start_function;
318
319 /* Nonzero if we want to give control to the user when we're notified
320 of shared library events by the dynamic linker. */
321 int stop_on_solib_events;
322 static void
323 show_stop_on_solib_events (struct ui_file *file, int from_tty,
324 struct cmd_list_element *c, const char *value)
325 {
326 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
327 value);
328 }
329
330 /* Nonzero means expecting a trace trap
331 and should stop the inferior and return silently when it happens. */
332
333 int stop_after_trap;
334
335 /* Save register contents here when executing a "finish" command or are
336 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
337 Thus this contains the return value from the called function (assuming
338 values are returned in a register). */
339
340 struct regcache *stop_registers;
341
342 /* Nonzero after stop if current stack frame should be printed. */
343
344 static int stop_print_frame;
345
346 /* This is a cached copy of the pid/waitstatus of the last event
347 returned by target_wait()/deprecated_target_wait_hook(). This
348 information is returned by get_last_target_status(). */
349 static ptid_t target_last_wait_ptid;
350 static struct target_waitstatus target_last_waitstatus;
351
352 static void context_switch (ptid_t ptid);
353
354 void init_thread_stepping_state (struct thread_info *tss);
355
356 void init_infwait_state (void);
357
358 static const char follow_fork_mode_child[] = "child";
359 static const char follow_fork_mode_parent[] = "parent";
360
361 static const char *follow_fork_mode_kind_names[] = {
362 follow_fork_mode_child,
363 follow_fork_mode_parent,
364 NULL
365 };
366
367 static const char *follow_fork_mode_string = follow_fork_mode_parent;
368 static void
369 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
370 struct cmd_list_element *c, const char *value)
371 {
372 fprintf_filtered (file,
373 _("Debugger response to a program "
374 "call of fork or vfork is \"%s\".\n"),
375 value);
376 }
377 \f
378
379 /* Tell the target to follow the fork we're stopped at. Returns true
380 if the inferior should be resumed; false, if the target for some
381 reason decided it's best not to resume. */
382
383 static int
384 follow_fork (void)
385 {
386 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
387 int should_resume = 1;
388 struct thread_info *tp;
389
390 /* Copy user stepping state to the new inferior thread. FIXME: the
391 followed fork child thread should have a copy of most of the
392 parent thread structure's run control related fields, not just these.
393 Initialized to avoid "may be used uninitialized" warnings from gcc. */
394 struct breakpoint *step_resume_breakpoint = NULL;
395 struct breakpoint *exception_resume_breakpoint = NULL;
396 CORE_ADDR step_range_start = 0;
397 CORE_ADDR step_range_end = 0;
398 struct frame_id step_frame_id = { 0 };
399
400 if (!non_stop)
401 {
402 ptid_t wait_ptid;
403 struct target_waitstatus wait_status;
404
405 /* Get the last target status returned by target_wait(). */
406 get_last_target_status (&wait_ptid, &wait_status);
407
408 /* If not stopped at a fork event, then there's nothing else to
409 do. */
410 if (wait_status.kind != TARGET_WAITKIND_FORKED
411 && wait_status.kind != TARGET_WAITKIND_VFORKED)
412 return 1;
413
414 /* Check if we switched over from WAIT_PTID, since the event was
415 reported. */
416 if (!ptid_equal (wait_ptid, minus_one_ptid)
417 && !ptid_equal (inferior_ptid, wait_ptid))
418 {
419 /* We did. Switch back to WAIT_PTID thread, to tell the
420 target to follow it (in either direction). We'll
421 afterwards refuse to resume, and inform the user what
422 happened. */
423 switch_to_thread (wait_ptid);
424 should_resume = 0;
425 }
426 }
427
428 tp = inferior_thread ();
429
430 /* If there were any forks/vforks that were caught and are now to be
431 followed, then do so now. */
432 switch (tp->pending_follow.kind)
433 {
434 case TARGET_WAITKIND_FORKED:
435 case TARGET_WAITKIND_VFORKED:
436 {
437 ptid_t parent, child;
438
439 /* If the user did a next/step, etc, over a fork call,
440 preserve the stepping state in the fork child. */
441 if (follow_child && should_resume)
442 {
443 step_resume_breakpoint = clone_momentary_breakpoint
444 (tp->control.step_resume_breakpoint);
445 step_range_start = tp->control.step_range_start;
446 step_range_end = tp->control.step_range_end;
447 step_frame_id = tp->control.step_frame_id;
448 exception_resume_breakpoint
449 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
450
451 /* For now, delete the parent's sr breakpoint, otherwise,
452 parent/child sr breakpoints are considered duplicates,
453 and the child version will not be installed. Remove
454 this when the breakpoints module becomes aware of
455 inferiors and address spaces. */
456 delete_step_resume_breakpoint (tp);
457 tp->control.step_range_start = 0;
458 tp->control.step_range_end = 0;
459 tp->control.step_frame_id = null_frame_id;
460 delete_exception_resume_breakpoint (tp);
461 }
462
463 parent = inferior_ptid;
464 child = tp->pending_follow.value.related_pid;
465
466 /* Tell the target to do whatever is necessary to follow
467 either parent or child. */
468 if (target_follow_fork (follow_child))
469 {
470 /* Target refused to follow, or there's some other reason
471 we shouldn't resume. */
472 should_resume = 0;
473 }
474 else
475 {
476 /* This pending follow fork event is now handled, one way
477 or another. The previous selected thread may be gone
478 from the lists by now, but if it is still around, need
479 to clear the pending follow request. */
480 tp = find_thread_ptid (parent);
481 if (tp)
482 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
483
484 /* This makes sure we don't try to apply the "Switched
485 over from WAIT_PID" logic above. */
486 nullify_last_target_wait_ptid ();
487
488 /* If we followed the child, switch to it... */
489 if (follow_child)
490 {
491 switch_to_thread (child);
492
493 /* ... and preserve the stepping state, in case the
494 user was stepping over the fork call. */
495 if (should_resume)
496 {
497 tp = inferior_thread ();
498 tp->control.step_resume_breakpoint
499 = step_resume_breakpoint;
500 tp->control.step_range_start = step_range_start;
501 tp->control.step_range_end = step_range_end;
502 tp->control.step_frame_id = step_frame_id;
503 tp->control.exception_resume_breakpoint
504 = exception_resume_breakpoint;
505 }
506 else
507 {
508 /* If we get here, it was because we're trying to
509 resume from a fork catchpoint, but, the user
510 has switched threads away from the thread that
511 forked. In that case, the resume command
512 issued is most likely not applicable to the
513 child, so just warn, and refuse to resume. */
514 warning (_("Not resuming: switched threads "
515 "before following fork child.\n"));
516 }
517
518 /* Reset breakpoints in the child as appropriate. */
519 follow_inferior_reset_breakpoints ();
520 }
521 else
522 switch_to_thread (parent);
523 }
524 }
525 break;
526 case TARGET_WAITKIND_SPURIOUS:
527 /* Nothing to follow. */
528 break;
529 default:
530 internal_error (__FILE__, __LINE__,
531 "Unexpected pending_follow.kind %d\n",
532 tp->pending_follow.kind);
533 break;
534 }
535
536 return should_resume;
537 }
538
539 void
540 follow_inferior_reset_breakpoints (void)
541 {
542 struct thread_info *tp = inferior_thread ();
543
544 /* Was there a step_resume breakpoint? (There was if the user
545 did a "next" at the fork() call.) If so, explicitly reset its
546 thread number.
547
548 step_resumes are a form of bp that are made to be per-thread.
549 Since we created the step_resume bp when the parent process
550 was being debugged, and now are switching to the child process,
551 from the breakpoint package's viewpoint, that's a switch of
552 "threads". We must update the bp's notion of which thread
553 it is for, or it'll be ignored when it triggers. */
554
555 if (tp->control.step_resume_breakpoint)
556 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
557
558 if (tp->control.exception_resume_breakpoint)
559 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
560
561 /* Reinsert all breakpoints in the child. The user may have set
562 breakpoints after catching the fork, in which case those
563 were never set in the child, but only in the parent. This makes
564 sure the inserted breakpoints match the breakpoint list. */
565
566 breakpoint_re_set ();
567 insert_breakpoints ();
568 }
569
570 /* The child has exited or execed: resume threads of the parent the
571 user wanted to be executing. */
572
573 static int
574 proceed_after_vfork_done (struct thread_info *thread,
575 void *arg)
576 {
577 int pid = * (int *) arg;
578
579 if (ptid_get_pid (thread->ptid) == pid
580 && is_running (thread->ptid)
581 && !is_executing (thread->ptid)
582 && !thread->stop_requested
583 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
584 {
585 if (debug_infrun)
586 fprintf_unfiltered (gdb_stdlog,
587 "infrun: resuming vfork parent thread %s\n",
588 target_pid_to_str (thread->ptid));
589
590 switch_to_thread (thread->ptid);
591 clear_proceed_status ();
592 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
593 }
594
595 return 0;
596 }
597
598 /* Called whenever we notice an exec or exit event, to handle
599 detaching or resuming a vfork parent. */
600
601 static void
602 handle_vfork_child_exec_or_exit (int exec)
603 {
604 struct inferior *inf = current_inferior ();
605
606 if (inf->vfork_parent)
607 {
608 int resume_parent = -1;
609
610 /* This exec or exit marks the end of the shared memory region
611 between the parent and the child. If the user wanted to
612 detach from the parent, now is the time. */
613
614 if (inf->vfork_parent->pending_detach)
615 {
616 struct thread_info *tp;
617 struct cleanup *old_chain;
618 struct program_space *pspace;
619 struct address_space *aspace;
620
621 /* follow-fork child, detach-on-fork on. */
622
623 old_chain = make_cleanup_restore_current_thread ();
624
625 /* We're letting loose of the parent. */
626 tp = any_live_thread_of_process (inf->vfork_parent->pid);
627 switch_to_thread (tp->ptid);
628
629 /* We're about to detach from the parent, which implicitly
630 removes breakpoints from its address space. There's a
631 catch here: we want to reuse the spaces for the child,
632 but, parent/child are still sharing the pspace at this
633 point, although the exec in reality makes the kernel give
634 the child a fresh set of new pages. The problem here is
635 that the breakpoints module being unaware of this, would
636 likely chose the child process to write to the parent
637 address space. Swapping the child temporarily away from
638 the spaces has the desired effect. Yes, this is "sort
639 of" a hack. */
640
641 pspace = inf->pspace;
642 aspace = inf->aspace;
643 inf->aspace = NULL;
644 inf->pspace = NULL;
645
646 if (debug_infrun || info_verbose)
647 {
648 target_terminal_ours ();
649
650 if (exec)
651 fprintf_filtered (gdb_stdlog,
652 "Detaching vfork parent process "
653 "%d after child exec.\n",
654 inf->vfork_parent->pid);
655 else
656 fprintf_filtered (gdb_stdlog,
657 "Detaching vfork parent process "
658 "%d after child exit.\n",
659 inf->vfork_parent->pid);
660 }
661
662 target_detach (NULL, 0);
663
664 /* Put it back. */
665 inf->pspace = pspace;
666 inf->aspace = aspace;
667
668 do_cleanups (old_chain);
669 }
670 else if (exec)
671 {
672 /* We're staying attached to the parent, so, really give the
673 child a new address space. */
674 inf->pspace = add_program_space (maybe_new_address_space ());
675 inf->aspace = inf->pspace->aspace;
676 inf->removable = 1;
677 set_current_program_space (inf->pspace);
678
679 resume_parent = inf->vfork_parent->pid;
680
681 /* Break the bonds. */
682 inf->vfork_parent->vfork_child = NULL;
683 }
684 else
685 {
686 struct cleanup *old_chain;
687 struct program_space *pspace;
688
689 /* If this is a vfork child exiting, then the pspace and
690 aspaces were shared with the parent. Since we're
691 reporting the process exit, we'll be mourning all that is
692 found in the address space, and switching to null_ptid,
693 preparing to start a new inferior. But, since we don't
694 want to clobber the parent's address/program spaces, we
695 go ahead and create a new one for this exiting
696 inferior. */
697
698 /* Switch to null_ptid, so that clone_program_space doesn't want
699 to read the selected frame of a dead process. */
700 old_chain = save_inferior_ptid ();
701 inferior_ptid = null_ptid;
702
703 /* This inferior is dead, so avoid giving the breakpoints
704 module the option to write through to it (cloning a
705 program space resets breakpoints). */
706 inf->aspace = NULL;
707 inf->pspace = NULL;
708 pspace = add_program_space (maybe_new_address_space ());
709 set_current_program_space (pspace);
710 inf->removable = 1;
711 clone_program_space (pspace, inf->vfork_parent->pspace);
712 inf->pspace = pspace;
713 inf->aspace = pspace->aspace;
714
715 /* Put back inferior_ptid. We'll continue mourning this
716 inferior. */
717 do_cleanups (old_chain);
718
719 resume_parent = inf->vfork_parent->pid;
720 /* Break the bonds. */
721 inf->vfork_parent->vfork_child = NULL;
722 }
723
724 inf->vfork_parent = NULL;
725
726 gdb_assert (current_program_space == inf->pspace);
727
728 if (non_stop && resume_parent != -1)
729 {
730 /* If the user wanted the parent to be running, let it go
731 free now. */
732 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
733
734 if (debug_infrun)
735 fprintf_unfiltered (gdb_stdlog,
736 "infrun: resuming vfork parent process %d\n",
737 resume_parent);
738
739 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
740
741 do_cleanups (old_chain);
742 }
743 }
744 }
745
746 /* Enum strings for "set|show displaced-stepping". */
747
748 static const char follow_exec_mode_new[] = "new";
749 static const char follow_exec_mode_same[] = "same";
750 static const char *follow_exec_mode_names[] =
751 {
752 follow_exec_mode_new,
753 follow_exec_mode_same,
754 NULL,
755 };
756
757 static const char *follow_exec_mode_string = follow_exec_mode_same;
758 static void
759 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
760 struct cmd_list_element *c, const char *value)
761 {
762 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
763 }
764
765 /* EXECD_PATHNAME is assumed to be non-NULL. */
766
767 static void
768 follow_exec (ptid_t pid, char *execd_pathname)
769 {
770 struct thread_info *th = inferior_thread ();
771 struct inferior *inf = current_inferior ();
772
773 /* This is an exec event that we actually wish to pay attention to.
774 Refresh our symbol table to the newly exec'd program, remove any
775 momentary bp's, etc.
776
777 If there are breakpoints, they aren't really inserted now,
778 since the exec() transformed our inferior into a fresh set
779 of instructions.
780
781 We want to preserve symbolic breakpoints on the list, since
782 we have hopes that they can be reset after the new a.out's
783 symbol table is read.
784
785 However, any "raw" breakpoints must be removed from the list
786 (e.g., the solib bp's), since their address is probably invalid
787 now.
788
789 And, we DON'T want to call delete_breakpoints() here, since
790 that may write the bp's "shadow contents" (the instruction
791 value that was overwritten witha TRAP instruction). Since
792 we now have a new a.out, those shadow contents aren't valid. */
793
794 mark_breakpoints_out ();
795
796 update_breakpoints_after_exec ();
797
798 /* If there was one, it's gone now. We cannot truly step-to-next
799 statement through an exec(). */
800 th->control.step_resume_breakpoint = NULL;
801 th->control.exception_resume_breakpoint = NULL;
802 th->control.step_range_start = 0;
803 th->control.step_range_end = 0;
804
805 /* The target reports the exec event to the main thread, even if
806 some other thread does the exec, and even if the main thread was
807 already stopped --- if debugging in non-stop mode, it's possible
808 the user had the main thread held stopped in the previous image
809 --- release it now. This is the same behavior as step-over-exec
810 with scheduler-locking on in all-stop mode. */
811 th->stop_requested = 0;
812
813 /* What is this a.out's name? */
814 printf_unfiltered (_("%s is executing new program: %s\n"),
815 target_pid_to_str (inferior_ptid),
816 execd_pathname);
817
818 /* We've followed the inferior through an exec. Therefore, the
819 inferior has essentially been killed & reborn. */
820
821 gdb_flush (gdb_stdout);
822
823 breakpoint_init_inferior (inf_execd);
824
825 if (gdb_sysroot && *gdb_sysroot)
826 {
827 char *name = alloca (strlen (gdb_sysroot)
828 + strlen (execd_pathname)
829 + 1);
830
831 strcpy (name, gdb_sysroot);
832 strcat (name, execd_pathname);
833 execd_pathname = name;
834 }
835
836 /* Reset the shared library package. This ensures that we get a
837 shlib event when the child reaches "_start", at which point the
838 dld will have had a chance to initialize the child. */
839 /* Also, loading a symbol file below may trigger symbol lookups, and
840 we don't want those to be satisfied by the libraries of the
841 previous incarnation of this process. */
842 no_shared_libraries (NULL, 0);
843
844 if (follow_exec_mode_string == follow_exec_mode_new)
845 {
846 struct program_space *pspace;
847
848 /* The user wants to keep the old inferior and program spaces
849 around. Create a new fresh one, and switch to it. */
850
851 inf = add_inferior (current_inferior ()->pid);
852 pspace = add_program_space (maybe_new_address_space ());
853 inf->pspace = pspace;
854 inf->aspace = pspace->aspace;
855
856 exit_inferior_num_silent (current_inferior ()->num);
857
858 set_current_inferior (inf);
859 set_current_program_space (pspace);
860 }
861
862 gdb_assert (current_program_space == inf->pspace);
863
864 /* That a.out is now the one to use. */
865 exec_file_attach (execd_pathname, 0);
866
867 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
868 (Position Independent Executable) main symbol file will get applied by
869 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
870 the breakpoints with the zero displacement. */
871
872 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
873 NULL, 0);
874
875 set_initial_language ();
876
877 #ifdef SOLIB_CREATE_INFERIOR_HOOK
878 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
879 #else
880 solib_create_inferior_hook (0);
881 #endif
882
883 jit_inferior_created_hook ();
884
885 breakpoint_re_set ();
886
887 /* Reinsert all breakpoints. (Those which were symbolic have
888 been reset to the proper address in the new a.out, thanks
889 to symbol_file_command...). */
890 insert_breakpoints ();
891
892 /* The next resume of this inferior should bring it to the shlib
893 startup breakpoints. (If the user had also set bp's on
894 "main" from the old (parent) process, then they'll auto-
895 matically get reset there in the new process.). */
896 }
897
898 /* Non-zero if we just simulating a single-step. This is needed
899 because we cannot remove the breakpoints in the inferior process
900 until after the `wait' in `wait_for_inferior'. */
901 static int singlestep_breakpoints_inserted_p = 0;
902
903 /* The thread we inserted single-step breakpoints for. */
904 static ptid_t singlestep_ptid;
905
906 /* PC when we started this single-step. */
907 static CORE_ADDR singlestep_pc;
908
909 /* If another thread hit the singlestep breakpoint, we save the original
910 thread here so that we can resume single-stepping it later. */
911 static ptid_t saved_singlestep_ptid;
912 static int stepping_past_singlestep_breakpoint;
913
914 /* If not equal to null_ptid, this means that after stepping over breakpoint
915 is finished, we need to switch to deferred_step_ptid, and step it.
916
917 The use case is when one thread has hit a breakpoint, and then the user
918 has switched to another thread and issued 'step'. We need to step over
919 breakpoint in the thread which hit the breakpoint, but then continue
920 stepping the thread user has selected. */
921 static ptid_t deferred_step_ptid;
922 \f
923 /* Displaced stepping. */
924
925 /* In non-stop debugging mode, we must take special care to manage
926 breakpoints properly; in particular, the traditional strategy for
927 stepping a thread past a breakpoint it has hit is unsuitable.
928 'Displaced stepping' is a tactic for stepping one thread past a
929 breakpoint it has hit while ensuring that other threads running
930 concurrently will hit the breakpoint as they should.
931
932 The traditional way to step a thread T off a breakpoint in a
933 multi-threaded program in all-stop mode is as follows:
934
935 a0) Initially, all threads are stopped, and breakpoints are not
936 inserted.
937 a1) We single-step T, leaving breakpoints uninserted.
938 a2) We insert breakpoints, and resume all threads.
939
940 In non-stop debugging, however, this strategy is unsuitable: we
941 don't want to have to stop all threads in the system in order to
942 continue or step T past a breakpoint. Instead, we use displaced
943 stepping:
944
945 n0) Initially, T is stopped, other threads are running, and
946 breakpoints are inserted.
947 n1) We copy the instruction "under" the breakpoint to a separate
948 location, outside the main code stream, making any adjustments
949 to the instruction, register, and memory state as directed by
950 T's architecture.
951 n2) We single-step T over the instruction at its new location.
952 n3) We adjust the resulting register and memory state as directed
953 by T's architecture. This includes resetting T's PC to point
954 back into the main instruction stream.
955 n4) We resume T.
956
957 This approach depends on the following gdbarch methods:
958
959 - gdbarch_max_insn_length and gdbarch_displaced_step_location
960 indicate where to copy the instruction, and how much space must
961 be reserved there. We use these in step n1.
962
963 - gdbarch_displaced_step_copy_insn copies a instruction to a new
964 address, and makes any necessary adjustments to the instruction,
965 register contents, and memory. We use this in step n1.
966
967 - gdbarch_displaced_step_fixup adjusts registers and memory after
968 we have successfuly single-stepped the instruction, to yield the
969 same effect the instruction would have had if we had executed it
970 at its original address. We use this in step n3.
971
972 - gdbarch_displaced_step_free_closure provides cleanup.
973
974 The gdbarch_displaced_step_copy_insn and
975 gdbarch_displaced_step_fixup functions must be written so that
976 copying an instruction with gdbarch_displaced_step_copy_insn,
977 single-stepping across the copied instruction, and then applying
978 gdbarch_displaced_insn_fixup should have the same effects on the
979 thread's memory and registers as stepping the instruction in place
980 would have. Exactly which responsibilities fall to the copy and
981 which fall to the fixup is up to the author of those functions.
982
983 See the comments in gdbarch.sh for details.
984
985 Note that displaced stepping and software single-step cannot
986 currently be used in combination, although with some care I think
987 they could be made to. Software single-step works by placing
988 breakpoints on all possible subsequent instructions; if the
989 displaced instruction is a PC-relative jump, those breakpoints
990 could fall in very strange places --- on pages that aren't
991 executable, or at addresses that are not proper instruction
992 boundaries. (We do generally let other threads run while we wait
993 to hit the software single-step breakpoint, and they might
994 encounter such a corrupted instruction.) One way to work around
995 this would be to have gdbarch_displaced_step_copy_insn fully
996 simulate the effect of PC-relative instructions (and return NULL)
997 on architectures that use software single-stepping.
998
999 In non-stop mode, we can have independent and simultaneous step
1000 requests, so more than one thread may need to simultaneously step
1001 over a breakpoint. The current implementation assumes there is
1002 only one scratch space per process. In this case, we have to
1003 serialize access to the scratch space. If thread A wants to step
1004 over a breakpoint, but we are currently waiting for some other
1005 thread to complete a displaced step, we leave thread A stopped and
1006 place it in the displaced_step_request_queue. Whenever a displaced
1007 step finishes, we pick the next thread in the queue and start a new
1008 displaced step operation on it. See displaced_step_prepare and
1009 displaced_step_fixup for details. */
1010
1011 struct displaced_step_request
1012 {
1013 ptid_t ptid;
1014 struct displaced_step_request *next;
1015 };
1016
1017 /* Per-inferior displaced stepping state. */
1018 struct displaced_step_inferior_state
1019 {
1020 /* Pointer to next in linked list. */
1021 struct displaced_step_inferior_state *next;
1022
1023 /* The process this displaced step state refers to. */
1024 int pid;
1025
1026 /* A queue of pending displaced stepping requests. One entry per
1027 thread that needs to do a displaced step. */
1028 struct displaced_step_request *step_request_queue;
1029
1030 /* If this is not null_ptid, this is the thread carrying out a
1031 displaced single-step in process PID. This thread's state will
1032 require fixing up once it has completed its step. */
1033 ptid_t step_ptid;
1034
1035 /* The architecture the thread had when we stepped it. */
1036 struct gdbarch *step_gdbarch;
1037
1038 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1039 for post-step cleanup. */
1040 struct displaced_step_closure *step_closure;
1041
1042 /* The address of the original instruction, and the copy we
1043 made. */
1044 CORE_ADDR step_original, step_copy;
1045
1046 /* Saved contents of copy area. */
1047 gdb_byte *step_saved_copy;
1048 };
1049
1050 /* The list of states of processes involved in displaced stepping
1051 presently. */
1052 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1053
1054 /* Get the displaced stepping state of process PID. */
1055
1056 static struct displaced_step_inferior_state *
1057 get_displaced_stepping_state (int pid)
1058 {
1059 struct displaced_step_inferior_state *state;
1060
1061 for (state = displaced_step_inferior_states;
1062 state != NULL;
1063 state = state->next)
1064 if (state->pid == pid)
1065 return state;
1066
1067 return NULL;
1068 }
1069
1070 /* Add a new displaced stepping state for process PID to the displaced
1071 stepping state list, or return a pointer to an already existing
1072 entry, if it already exists. Never returns NULL. */
1073
1074 static struct displaced_step_inferior_state *
1075 add_displaced_stepping_state (int pid)
1076 {
1077 struct displaced_step_inferior_state *state;
1078
1079 for (state = displaced_step_inferior_states;
1080 state != NULL;
1081 state = state->next)
1082 if (state->pid == pid)
1083 return state;
1084
1085 state = xcalloc (1, sizeof (*state));
1086 state->pid = pid;
1087 state->next = displaced_step_inferior_states;
1088 displaced_step_inferior_states = state;
1089
1090 return state;
1091 }
1092
1093 /* If inferior is in displaced stepping, and ADDR equals to starting address
1094 of copy area, return corresponding displaced_step_closure. Otherwise,
1095 return NULL. */
1096
1097 struct displaced_step_closure*
1098 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1099 {
1100 struct displaced_step_inferior_state *displaced
1101 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1102
1103 /* If checking the mode of displaced instruction in copy area. */
1104 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1105 && (displaced->step_copy == addr))
1106 return displaced->step_closure;
1107
1108 return NULL;
1109 }
1110
1111 /* Remove the displaced stepping state of process PID. */
1112
1113 static void
1114 remove_displaced_stepping_state (int pid)
1115 {
1116 struct displaced_step_inferior_state *it, **prev_next_p;
1117
1118 gdb_assert (pid != 0);
1119
1120 it = displaced_step_inferior_states;
1121 prev_next_p = &displaced_step_inferior_states;
1122 while (it)
1123 {
1124 if (it->pid == pid)
1125 {
1126 *prev_next_p = it->next;
1127 xfree (it);
1128 return;
1129 }
1130
1131 prev_next_p = &it->next;
1132 it = *prev_next_p;
1133 }
1134 }
1135
1136 static void
1137 infrun_inferior_exit (struct inferior *inf)
1138 {
1139 remove_displaced_stepping_state (inf->pid);
1140 }
1141
1142 /* Enum strings for "set|show displaced-stepping". */
1143
1144 static const char can_use_displaced_stepping_auto[] = "auto";
1145 static const char can_use_displaced_stepping_on[] = "on";
1146 static const char can_use_displaced_stepping_off[] = "off";
1147 static const char *can_use_displaced_stepping_enum[] =
1148 {
1149 can_use_displaced_stepping_auto,
1150 can_use_displaced_stepping_on,
1151 can_use_displaced_stepping_off,
1152 NULL,
1153 };
1154
1155 /* If ON, and the architecture supports it, GDB will use displaced
1156 stepping to step over breakpoints. If OFF, or if the architecture
1157 doesn't support it, GDB will instead use the traditional
1158 hold-and-step approach. If AUTO (which is the default), GDB will
1159 decide which technique to use to step over breakpoints depending on
1160 which of all-stop or non-stop mode is active --- displaced stepping
1161 in non-stop mode; hold-and-step in all-stop mode. */
1162
1163 static const char *can_use_displaced_stepping =
1164 can_use_displaced_stepping_auto;
1165
1166 static void
1167 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1168 struct cmd_list_element *c,
1169 const char *value)
1170 {
1171 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1172 fprintf_filtered (file,
1173 _("Debugger's willingness to use displaced stepping "
1174 "to step over breakpoints is %s (currently %s).\n"),
1175 value, non_stop ? "on" : "off");
1176 else
1177 fprintf_filtered (file,
1178 _("Debugger's willingness to use displaced stepping "
1179 "to step over breakpoints is %s.\n"), value);
1180 }
1181
1182 /* Return non-zero if displaced stepping can/should be used to step
1183 over breakpoints. */
1184
1185 static int
1186 use_displaced_stepping (struct gdbarch *gdbarch)
1187 {
1188 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1189 && non_stop)
1190 || can_use_displaced_stepping == can_use_displaced_stepping_on)
1191 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1192 && !RECORD_IS_USED);
1193 }
1194
1195 /* Clean out any stray displaced stepping state. */
1196 static void
1197 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1198 {
1199 /* Indicate that there is no cleanup pending. */
1200 displaced->step_ptid = null_ptid;
1201
1202 if (displaced->step_closure)
1203 {
1204 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1205 displaced->step_closure);
1206 displaced->step_closure = NULL;
1207 }
1208 }
1209
1210 static void
1211 displaced_step_clear_cleanup (void *arg)
1212 {
1213 struct displaced_step_inferior_state *state = arg;
1214
1215 displaced_step_clear (state);
1216 }
1217
1218 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1219 void
1220 displaced_step_dump_bytes (struct ui_file *file,
1221 const gdb_byte *buf,
1222 size_t len)
1223 {
1224 int i;
1225
1226 for (i = 0; i < len; i++)
1227 fprintf_unfiltered (file, "%02x ", buf[i]);
1228 fputs_unfiltered ("\n", file);
1229 }
1230
1231 /* Prepare to single-step, using displaced stepping.
1232
1233 Note that we cannot use displaced stepping when we have a signal to
1234 deliver. If we have a signal to deliver and an instruction to step
1235 over, then after the step, there will be no indication from the
1236 target whether the thread entered a signal handler or ignored the
1237 signal and stepped over the instruction successfully --- both cases
1238 result in a simple SIGTRAP. In the first case we mustn't do a
1239 fixup, and in the second case we must --- but we can't tell which.
1240 Comments in the code for 'random signals' in handle_inferior_event
1241 explain how we handle this case instead.
1242
1243 Returns 1 if preparing was successful -- this thread is going to be
1244 stepped now; or 0 if displaced stepping this thread got queued. */
1245 static int
1246 displaced_step_prepare (ptid_t ptid)
1247 {
1248 struct cleanup *old_cleanups, *ignore_cleanups;
1249 struct regcache *regcache = get_thread_regcache (ptid);
1250 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1251 CORE_ADDR original, copy;
1252 ULONGEST len;
1253 struct displaced_step_closure *closure;
1254 struct displaced_step_inferior_state *displaced;
1255
1256 /* We should never reach this function if the architecture does not
1257 support displaced stepping. */
1258 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1259
1260 /* We have to displaced step one thread at a time, as we only have
1261 access to a single scratch space per inferior. */
1262
1263 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1264
1265 if (!ptid_equal (displaced->step_ptid, null_ptid))
1266 {
1267 /* Already waiting for a displaced step to finish. Defer this
1268 request and place in queue. */
1269 struct displaced_step_request *req, *new_req;
1270
1271 if (debug_displaced)
1272 fprintf_unfiltered (gdb_stdlog,
1273 "displaced: defering step of %s\n",
1274 target_pid_to_str (ptid));
1275
1276 new_req = xmalloc (sizeof (*new_req));
1277 new_req->ptid = ptid;
1278 new_req->next = NULL;
1279
1280 if (displaced->step_request_queue)
1281 {
1282 for (req = displaced->step_request_queue;
1283 req && req->next;
1284 req = req->next)
1285 ;
1286 req->next = new_req;
1287 }
1288 else
1289 displaced->step_request_queue = new_req;
1290
1291 return 0;
1292 }
1293 else
1294 {
1295 if (debug_displaced)
1296 fprintf_unfiltered (gdb_stdlog,
1297 "displaced: stepping %s now\n",
1298 target_pid_to_str (ptid));
1299 }
1300
1301 displaced_step_clear (displaced);
1302
1303 old_cleanups = save_inferior_ptid ();
1304 inferior_ptid = ptid;
1305
1306 original = regcache_read_pc (regcache);
1307
1308 copy = gdbarch_displaced_step_location (gdbarch);
1309 len = gdbarch_max_insn_length (gdbarch);
1310
1311 /* Save the original contents of the copy area. */
1312 displaced->step_saved_copy = xmalloc (len);
1313 ignore_cleanups = make_cleanup (free_current_contents,
1314 &displaced->step_saved_copy);
1315 read_memory (copy, displaced->step_saved_copy, len);
1316 if (debug_displaced)
1317 {
1318 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1319 paddress (gdbarch, copy));
1320 displaced_step_dump_bytes (gdb_stdlog,
1321 displaced->step_saved_copy,
1322 len);
1323 };
1324
1325 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1326 original, copy, regcache);
1327
1328 /* We don't support the fully-simulated case at present. */
1329 gdb_assert (closure);
1330
1331 /* Save the information we need to fix things up if the step
1332 succeeds. */
1333 displaced->step_ptid = ptid;
1334 displaced->step_gdbarch = gdbarch;
1335 displaced->step_closure = closure;
1336 displaced->step_original = original;
1337 displaced->step_copy = copy;
1338
1339 make_cleanup (displaced_step_clear_cleanup, displaced);
1340
1341 /* Resume execution at the copy. */
1342 regcache_write_pc (regcache, copy);
1343
1344 discard_cleanups (ignore_cleanups);
1345
1346 do_cleanups (old_cleanups);
1347
1348 if (debug_displaced)
1349 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1350 paddress (gdbarch, copy));
1351
1352 return 1;
1353 }
1354
1355 static void
1356 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1357 const gdb_byte *myaddr, int len)
1358 {
1359 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1360
1361 inferior_ptid = ptid;
1362 write_memory (memaddr, myaddr, len);
1363 do_cleanups (ptid_cleanup);
1364 }
1365
1366 static void
1367 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1368 {
1369 struct cleanup *old_cleanups;
1370 struct displaced_step_inferior_state *displaced
1371 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1372
1373 /* Was any thread of this process doing a displaced step? */
1374 if (displaced == NULL)
1375 return;
1376
1377 /* Was this event for the pid we displaced? */
1378 if (ptid_equal (displaced->step_ptid, null_ptid)
1379 || ! ptid_equal (displaced->step_ptid, event_ptid))
1380 return;
1381
1382 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1383
1384 /* Restore the contents of the copy area. */
1385 {
1386 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1387
1388 write_memory_ptid (displaced->step_ptid, displaced->step_copy,
1389 displaced->step_saved_copy, len);
1390 if (debug_displaced)
1391 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
1392 paddress (displaced->step_gdbarch,
1393 displaced->step_copy));
1394 }
1395
1396 /* Did the instruction complete successfully? */
1397 if (signal == TARGET_SIGNAL_TRAP)
1398 {
1399 /* Fix up the resulting state. */
1400 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1401 displaced->step_closure,
1402 displaced->step_original,
1403 displaced->step_copy,
1404 get_thread_regcache (displaced->step_ptid));
1405 }
1406 else
1407 {
1408 /* Since the instruction didn't complete, all we can do is
1409 relocate the PC. */
1410 struct regcache *regcache = get_thread_regcache (event_ptid);
1411 CORE_ADDR pc = regcache_read_pc (regcache);
1412
1413 pc = displaced->step_original + (pc - displaced->step_copy);
1414 regcache_write_pc (regcache, pc);
1415 }
1416
1417 do_cleanups (old_cleanups);
1418
1419 displaced->step_ptid = null_ptid;
1420
1421 /* Are there any pending displaced stepping requests? If so, run
1422 one now. Leave the state object around, since we're likely to
1423 need it again soon. */
1424 while (displaced->step_request_queue)
1425 {
1426 struct displaced_step_request *head;
1427 ptid_t ptid;
1428 struct regcache *regcache;
1429 struct gdbarch *gdbarch;
1430 CORE_ADDR actual_pc;
1431 struct address_space *aspace;
1432
1433 head = displaced->step_request_queue;
1434 ptid = head->ptid;
1435 displaced->step_request_queue = head->next;
1436 xfree (head);
1437
1438 context_switch (ptid);
1439
1440 regcache = get_thread_regcache (ptid);
1441 actual_pc = regcache_read_pc (regcache);
1442 aspace = get_regcache_aspace (regcache);
1443
1444 if (breakpoint_here_p (aspace, actual_pc))
1445 {
1446 if (debug_displaced)
1447 fprintf_unfiltered (gdb_stdlog,
1448 "displaced: stepping queued %s now\n",
1449 target_pid_to_str (ptid));
1450
1451 displaced_step_prepare (ptid);
1452
1453 gdbarch = get_regcache_arch (regcache);
1454
1455 if (debug_displaced)
1456 {
1457 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1458 gdb_byte buf[4];
1459
1460 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1461 paddress (gdbarch, actual_pc));
1462 read_memory (actual_pc, buf, sizeof (buf));
1463 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1464 }
1465
1466 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1467 displaced->step_closure))
1468 target_resume (ptid, 1, TARGET_SIGNAL_0);
1469 else
1470 target_resume (ptid, 0, TARGET_SIGNAL_0);
1471
1472 /* Done, we're stepping a thread. */
1473 break;
1474 }
1475 else
1476 {
1477 int step;
1478 struct thread_info *tp = inferior_thread ();
1479
1480 /* The breakpoint we were sitting under has since been
1481 removed. */
1482 tp->control.trap_expected = 0;
1483
1484 /* Go back to what we were trying to do. */
1485 step = currently_stepping (tp);
1486
1487 if (debug_displaced)
1488 fprintf_unfiltered (gdb_stdlog,
1489 "breakpoint is gone %s: step(%d)\n",
1490 target_pid_to_str (tp->ptid), step);
1491
1492 target_resume (ptid, step, TARGET_SIGNAL_0);
1493 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1494
1495 /* This request was discarded. See if there's any other
1496 thread waiting for its turn. */
1497 }
1498 }
1499 }
1500
1501 /* Update global variables holding ptids to hold NEW_PTID if they were
1502 holding OLD_PTID. */
1503 static void
1504 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1505 {
1506 struct displaced_step_request *it;
1507 struct displaced_step_inferior_state *displaced;
1508
1509 if (ptid_equal (inferior_ptid, old_ptid))
1510 inferior_ptid = new_ptid;
1511
1512 if (ptid_equal (singlestep_ptid, old_ptid))
1513 singlestep_ptid = new_ptid;
1514
1515 if (ptid_equal (deferred_step_ptid, old_ptid))
1516 deferred_step_ptid = new_ptid;
1517
1518 for (displaced = displaced_step_inferior_states;
1519 displaced;
1520 displaced = displaced->next)
1521 {
1522 if (ptid_equal (displaced->step_ptid, old_ptid))
1523 displaced->step_ptid = new_ptid;
1524
1525 for (it = displaced->step_request_queue; it; it = it->next)
1526 if (ptid_equal (it->ptid, old_ptid))
1527 it->ptid = new_ptid;
1528 }
1529 }
1530
1531 \f
1532 /* Resuming. */
1533
1534 /* Things to clean up if we QUIT out of resume (). */
1535 static void
1536 resume_cleanups (void *ignore)
1537 {
1538 normal_stop ();
1539 }
1540
1541 static const char schedlock_off[] = "off";
1542 static const char schedlock_on[] = "on";
1543 static const char schedlock_step[] = "step";
1544 static const char *scheduler_enums[] = {
1545 schedlock_off,
1546 schedlock_on,
1547 schedlock_step,
1548 NULL
1549 };
1550 static const char *scheduler_mode = schedlock_off;
1551 static void
1552 show_scheduler_mode (struct ui_file *file, int from_tty,
1553 struct cmd_list_element *c, const char *value)
1554 {
1555 fprintf_filtered (file,
1556 _("Mode for locking scheduler "
1557 "during execution is \"%s\".\n"),
1558 value);
1559 }
1560
1561 static void
1562 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1563 {
1564 if (!target_can_lock_scheduler)
1565 {
1566 scheduler_mode = schedlock_off;
1567 error (_("Target '%s' cannot support this command."), target_shortname);
1568 }
1569 }
1570
1571 /* True if execution commands resume all threads of all processes by
1572 default; otherwise, resume only threads of the current inferior
1573 process. */
1574 int sched_multi = 0;
1575
1576 /* Try to setup for software single stepping over the specified location.
1577 Return 1 if target_resume() should use hardware single step.
1578
1579 GDBARCH the current gdbarch.
1580 PC the location to step over. */
1581
1582 static int
1583 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1584 {
1585 int hw_step = 1;
1586
1587 if (execution_direction == EXEC_FORWARD
1588 && gdbarch_software_single_step_p (gdbarch)
1589 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1590 {
1591 hw_step = 0;
1592 /* Do not pull these breakpoints until after a `wait' in
1593 `wait_for_inferior'. */
1594 singlestep_breakpoints_inserted_p = 1;
1595 singlestep_ptid = inferior_ptid;
1596 singlestep_pc = pc;
1597 }
1598 return hw_step;
1599 }
1600
1601 /* Return a ptid representing the set of threads that we will proceed,
1602 in the perspective of the user/frontend. We may actually resume
1603 fewer threads at first, e.g., if a thread is stopped at a
1604 breakpoint that needs stepping-off, but that should not be visible
1605 to the user/frontend, and neither should the frontend/user be
1606 allowed to proceed any of the threads that happen to be stopped for
1607 internal run control handling, if a previous command wanted them
1608 resumed. */
1609
1610 ptid_t
1611 user_visible_resume_ptid (int step)
1612 {
1613 /* By default, resume all threads of all processes. */
1614 ptid_t resume_ptid = RESUME_ALL;
1615
1616 /* Maybe resume only all threads of the current process. */
1617 if (!sched_multi && target_supports_multi_process ())
1618 {
1619 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1620 }
1621
1622 /* Maybe resume a single thread after all. */
1623 if (non_stop)
1624 {
1625 /* With non-stop mode on, threads are always handled
1626 individually. */
1627 resume_ptid = inferior_ptid;
1628 }
1629 else if ((scheduler_mode == schedlock_on)
1630 || (scheduler_mode == schedlock_step
1631 && (step || singlestep_breakpoints_inserted_p)))
1632 {
1633 /* User-settable 'scheduler' mode requires solo thread resume. */
1634 resume_ptid = inferior_ptid;
1635 }
1636
1637 return resume_ptid;
1638 }
1639
1640 /* Resume the inferior, but allow a QUIT. This is useful if the user
1641 wants to interrupt some lengthy single-stepping operation
1642 (for child processes, the SIGINT goes to the inferior, and so
1643 we get a SIGINT random_signal, but for remote debugging and perhaps
1644 other targets, that's not true).
1645
1646 STEP nonzero if we should step (zero to continue instead).
1647 SIG is the signal to give the inferior (zero for none). */
1648 void
1649 resume (int step, enum target_signal sig)
1650 {
1651 int should_resume = 1;
1652 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1653 struct regcache *regcache = get_current_regcache ();
1654 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1655 struct thread_info *tp = inferior_thread ();
1656 CORE_ADDR pc = regcache_read_pc (regcache);
1657 struct address_space *aspace = get_regcache_aspace (regcache);
1658
1659 QUIT;
1660
1661 if (current_inferior ()->waiting_for_vfork_done)
1662 {
1663 /* Don't try to single-step a vfork parent that is waiting for
1664 the child to get out of the shared memory region (by exec'ing
1665 or exiting). This is particularly important on software
1666 single-step archs, as the child process would trip on the
1667 software single step breakpoint inserted for the parent
1668 process. Since the parent will not actually execute any
1669 instruction until the child is out of the shared region (such
1670 are vfork's semantics), it is safe to simply continue it.
1671 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1672 the parent, and tell it to `keep_going', which automatically
1673 re-sets it stepping. */
1674 if (debug_infrun)
1675 fprintf_unfiltered (gdb_stdlog,
1676 "infrun: resume : clear step\n");
1677 step = 0;
1678 }
1679
1680 if (debug_infrun)
1681 fprintf_unfiltered (gdb_stdlog,
1682 "infrun: resume (step=%d, signal=%d), "
1683 "trap_expected=%d, current thread [%s] at %s\n",
1684 step, sig, tp->control.trap_expected,
1685 target_pid_to_str (inferior_ptid),
1686 paddress (gdbarch, pc));
1687
1688 /* Normally, by the time we reach `resume', the breakpoints are either
1689 removed or inserted, as appropriate. The exception is if we're sitting
1690 at a permanent breakpoint; we need to step over it, but permanent
1691 breakpoints can't be removed. So we have to test for it here. */
1692 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1693 {
1694 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1695 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1696 else
1697 error (_("\
1698 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1699 how to step past a permanent breakpoint on this architecture. Try using\n\
1700 a command like `return' or `jump' to continue execution."));
1701 }
1702
1703 /* If enabled, step over breakpoints by executing a copy of the
1704 instruction at a different address.
1705
1706 We can't use displaced stepping when we have a signal to deliver;
1707 the comments for displaced_step_prepare explain why. The
1708 comments in the handle_inferior event for dealing with 'random
1709 signals' explain what we do instead.
1710
1711 We can't use displaced stepping when we are waiting for vfork_done
1712 event, displaced stepping breaks the vfork child similarly as single
1713 step software breakpoint. */
1714 if (use_displaced_stepping (gdbarch)
1715 && (tp->control.trap_expected
1716 || (step && gdbarch_software_single_step_p (gdbarch)))
1717 && sig == TARGET_SIGNAL_0
1718 && !current_inferior ()->waiting_for_vfork_done)
1719 {
1720 struct displaced_step_inferior_state *displaced;
1721
1722 if (!displaced_step_prepare (inferior_ptid))
1723 {
1724 /* Got placed in displaced stepping queue. Will be resumed
1725 later when all the currently queued displaced stepping
1726 requests finish. The thread is not executing at this point,
1727 and the call to set_executing will be made later. But we
1728 need to call set_running here, since from frontend point of view,
1729 the thread is running. */
1730 set_running (inferior_ptid, 1);
1731 discard_cleanups (old_cleanups);
1732 return;
1733 }
1734
1735 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1736 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1737 displaced->step_closure);
1738 }
1739
1740 /* Do we need to do it the hard way, w/temp breakpoints? */
1741 else if (step)
1742 step = maybe_software_singlestep (gdbarch, pc);
1743
1744 /* Currently, our software single-step implementation leads to different
1745 results than hardware single-stepping in one situation: when stepping
1746 into delivering a signal which has an associated signal handler,
1747 hardware single-step will stop at the first instruction of the handler,
1748 while software single-step will simply skip execution of the handler.
1749
1750 For now, this difference in behavior is accepted since there is no
1751 easy way to actually implement single-stepping into a signal handler
1752 without kernel support.
1753
1754 However, there is one scenario where this difference leads to follow-on
1755 problems: if we're stepping off a breakpoint by removing all breakpoints
1756 and then single-stepping. In this case, the software single-step
1757 behavior means that even if there is a *breakpoint* in the signal
1758 handler, GDB still would not stop.
1759
1760 Fortunately, we can at least fix this particular issue. We detect
1761 here the case where we are about to deliver a signal while software
1762 single-stepping with breakpoints removed. In this situation, we
1763 revert the decisions to remove all breakpoints and insert single-
1764 step breakpoints, and instead we install a step-resume breakpoint
1765 at the current address, deliver the signal without stepping, and
1766 once we arrive back at the step-resume breakpoint, actually step
1767 over the breakpoint we originally wanted to step over. */
1768 if (singlestep_breakpoints_inserted_p
1769 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1770 {
1771 /* If we have nested signals or a pending signal is delivered
1772 immediately after a handler returns, might might already have
1773 a step-resume breakpoint set on the earlier handler. We cannot
1774 set another step-resume breakpoint; just continue on until the
1775 original breakpoint is hit. */
1776 if (tp->control.step_resume_breakpoint == NULL)
1777 {
1778 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1779 tp->step_after_step_resume_breakpoint = 1;
1780 }
1781
1782 remove_single_step_breakpoints ();
1783 singlestep_breakpoints_inserted_p = 0;
1784
1785 insert_breakpoints ();
1786 tp->control.trap_expected = 0;
1787 }
1788
1789 if (should_resume)
1790 {
1791 ptid_t resume_ptid;
1792
1793 /* If STEP is set, it's a request to use hardware stepping
1794 facilities. But in that case, we should never
1795 use singlestep breakpoint. */
1796 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1797
1798 /* Decide the set of threads to ask the target to resume. Start
1799 by assuming everything will be resumed, than narrow the set
1800 by applying increasingly restricting conditions. */
1801 resume_ptid = user_visible_resume_ptid (step);
1802
1803 /* Maybe resume a single thread after all. */
1804 if (singlestep_breakpoints_inserted_p
1805 && stepping_past_singlestep_breakpoint)
1806 {
1807 /* The situation here is as follows. In thread T1 we wanted to
1808 single-step. Lacking hardware single-stepping we've
1809 set breakpoint at the PC of the next instruction -- call it
1810 P. After resuming, we've hit that breakpoint in thread T2.
1811 Now we've removed original breakpoint, inserted breakpoint
1812 at P+1, and try to step to advance T2 past breakpoint.
1813 We need to step only T2, as if T1 is allowed to freely run,
1814 it can run past P, and if other threads are allowed to run,
1815 they can hit breakpoint at P+1, and nested hits of single-step
1816 breakpoints is not something we'd want -- that's complicated
1817 to support, and has no value. */
1818 resume_ptid = inferior_ptid;
1819 }
1820 else if ((step || singlestep_breakpoints_inserted_p)
1821 && tp->control.trap_expected)
1822 {
1823 /* We're allowing a thread to run past a breakpoint it has
1824 hit, by single-stepping the thread with the breakpoint
1825 removed. In which case, we need to single-step only this
1826 thread, and keep others stopped, as they can miss this
1827 breakpoint if allowed to run.
1828
1829 The current code actually removes all breakpoints when
1830 doing this, not just the one being stepped over, so if we
1831 let other threads run, we can actually miss any
1832 breakpoint, not just the one at PC. */
1833 resume_ptid = inferior_ptid;
1834 }
1835
1836 if (gdbarch_cannot_step_breakpoint (gdbarch))
1837 {
1838 /* Most targets can step a breakpoint instruction, thus
1839 executing it normally. But if this one cannot, just
1840 continue and we will hit it anyway. */
1841 if (step && breakpoint_inserted_here_p (aspace, pc))
1842 step = 0;
1843 }
1844
1845 if (debug_displaced
1846 && use_displaced_stepping (gdbarch)
1847 && tp->control.trap_expected)
1848 {
1849 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1850 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1851 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1852 gdb_byte buf[4];
1853
1854 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1855 paddress (resume_gdbarch, actual_pc));
1856 read_memory (actual_pc, buf, sizeof (buf));
1857 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1858 }
1859
1860 /* Install inferior's terminal modes. */
1861 target_terminal_inferior ();
1862
1863 /* Avoid confusing the next resume, if the next stop/resume
1864 happens to apply to another thread. */
1865 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1866
1867 /* Advise target which signals may be handled silently. If we have
1868 removed breakpoints because we are stepping over one (which can
1869 happen only if we are not using displaced stepping), we need to
1870 receive all signals to avoid accidentally skipping a breakpoint
1871 during execution of a signal handler. */
1872 if ((step || singlestep_breakpoints_inserted_p)
1873 && tp->control.trap_expected
1874 && !use_displaced_stepping (gdbarch))
1875 target_pass_signals (0, NULL);
1876 else
1877 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1878
1879 target_resume (resume_ptid, step, sig);
1880 }
1881
1882 discard_cleanups (old_cleanups);
1883 }
1884 \f
1885 /* Proceeding. */
1886
1887 /* Clear out all variables saying what to do when inferior is continued.
1888 First do this, then set the ones you want, then call `proceed'. */
1889
1890 static void
1891 clear_proceed_status_thread (struct thread_info *tp)
1892 {
1893 if (debug_infrun)
1894 fprintf_unfiltered (gdb_stdlog,
1895 "infrun: clear_proceed_status_thread (%s)\n",
1896 target_pid_to_str (tp->ptid));
1897
1898 tp->control.trap_expected = 0;
1899 tp->control.step_range_start = 0;
1900 tp->control.step_range_end = 0;
1901 tp->control.step_frame_id = null_frame_id;
1902 tp->control.step_stack_frame_id = null_frame_id;
1903 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1904 tp->stop_requested = 0;
1905
1906 tp->control.stop_step = 0;
1907
1908 tp->control.proceed_to_finish = 0;
1909
1910 /* Discard any remaining commands or status from previous stop. */
1911 bpstat_clear (&tp->control.stop_bpstat);
1912 }
1913
1914 static int
1915 clear_proceed_status_callback (struct thread_info *tp, void *data)
1916 {
1917 if (is_exited (tp->ptid))
1918 return 0;
1919
1920 clear_proceed_status_thread (tp);
1921 return 0;
1922 }
1923
1924 void
1925 clear_proceed_status (void)
1926 {
1927 if (!non_stop)
1928 {
1929 /* In all-stop mode, delete the per-thread status of all
1930 threads, even if inferior_ptid is null_ptid, there may be
1931 threads on the list. E.g., we may be launching a new
1932 process, while selecting the executable. */
1933 iterate_over_threads (clear_proceed_status_callback, NULL);
1934 }
1935
1936 if (!ptid_equal (inferior_ptid, null_ptid))
1937 {
1938 struct inferior *inferior;
1939
1940 if (non_stop)
1941 {
1942 /* If in non-stop mode, only delete the per-thread status of
1943 the current thread. */
1944 clear_proceed_status_thread (inferior_thread ());
1945 }
1946
1947 inferior = current_inferior ();
1948 inferior->control.stop_soon = NO_STOP_QUIETLY;
1949 }
1950
1951 stop_after_trap = 0;
1952
1953 observer_notify_about_to_proceed ();
1954
1955 if (stop_registers)
1956 {
1957 regcache_xfree (stop_registers);
1958 stop_registers = NULL;
1959 }
1960 }
1961
1962 /* Check the current thread against the thread that reported the most recent
1963 event. If a step-over is required return TRUE and set the current thread
1964 to the old thread. Otherwise return FALSE.
1965
1966 This should be suitable for any targets that support threads. */
1967
1968 static int
1969 prepare_to_proceed (int step)
1970 {
1971 ptid_t wait_ptid;
1972 struct target_waitstatus wait_status;
1973 int schedlock_enabled;
1974
1975 /* With non-stop mode on, threads are always handled individually. */
1976 gdb_assert (! non_stop);
1977
1978 /* Get the last target status returned by target_wait(). */
1979 get_last_target_status (&wait_ptid, &wait_status);
1980
1981 /* Make sure we were stopped at a breakpoint. */
1982 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1983 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1984 && wait_status.value.sig != TARGET_SIGNAL_ILL
1985 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1986 && wait_status.value.sig != TARGET_SIGNAL_EMT))
1987 {
1988 return 0;
1989 }
1990
1991 schedlock_enabled = (scheduler_mode == schedlock_on
1992 || (scheduler_mode == schedlock_step
1993 && step));
1994
1995 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1996 if (schedlock_enabled)
1997 return 0;
1998
1999 /* Don't switch over if we're about to resume some other process
2000 other than WAIT_PTID's, and schedule-multiple is off. */
2001 if (!sched_multi
2002 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2003 return 0;
2004
2005 /* Switched over from WAIT_PID. */
2006 if (!ptid_equal (wait_ptid, minus_one_ptid)
2007 && !ptid_equal (inferior_ptid, wait_ptid))
2008 {
2009 struct regcache *regcache = get_thread_regcache (wait_ptid);
2010
2011 if (breakpoint_here_p (get_regcache_aspace (regcache),
2012 regcache_read_pc (regcache)))
2013 {
2014 /* If stepping, remember current thread to switch back to. */
2015 if (step)
2016 deferred_step_ptid = inferior_ptid;
2017
2018 /* Switch back to WAIT_PID thread. */
2019 switch_to_thread (wait_ptid);
2020
2021 if (debug_infrun)
2022 fprintf_unfiltered (gdb_stdlog,
2023 "infrun: prepare_to_proceed (step=%d), "
2024 "switched to [%s]\n",
2025 step, target_pid_to_str (inferior_ptid));
2026
2027 /* We return 1 to indicate that there is a breakpoint here,
2028 so we need to step over it before continuing to avoid
2029 hitting it straight away. */
2030 return 1;
2031 }
2032 }
2033
2034 return 0;
2035 }
2036
2037 /* Basic routine for continuing the program in various fashions.
2038
2039 ADDR is the address to resume at, or -1 for resume where stopped.
2040 SIGGNAL is the signal to give it, or 0 for none,
2041 or -1 for act according to how it stopped.
2042 STEP is nonzero if should trap after one instruction.
2043 -1 means return after that and print nothing.
2044 You should probably set various step_... variables
2045 before calling here, if you are stepping.
2046
2047 You should call clear_proceed_status before calling proceed. */
2048
2049 void
2050 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
2051 {
2052 struct regcache *regcache;
2053 struct gdbarch *gdbarch;
2054 struct thread_info *tp;
2055 CORE_ADDR pc;
2056 struct address_space *aspace;
2057 int oneproc = 0;
2058
2059 /* If we're stopped at a fork/vfork, follow the branch set by the
2060 "set follow-fork-mode" command; otherwise, we'll just proceed
2061 resuming the current thread. */
2062 if (!follow_fork ())
2063 {
2064 /* The target for some reason decided not to resume. */
2065 normal_stop ();
2066 if (target_can_async_p ())
2067 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2068 return;
2069 }
2070
2071 /* We'll update this if & when we switch to a new thread. */
2072 previous_inferior_ptid = inferior_ptid;
2073
2074 regcache = get_current_regcache ();
2075 gdbarch = get_regcache_arch (regcache);
2076 aspace = get_regcache_aspace (regcache);
2077 pc = regcache_read_pc (regcache);
2078
2079 if (step > 0)
2080 step_start_function = find_pc_function (pc);
2081 if (step < 0)
2082 stop_after_trap = 1;
2083
2084 if (addr == (CORE_ADDR) -1)
2085 {
2086 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2087 && execution_direction != EXEC_REVERSE)
2088 /* There is a breakpoint at the address we will resume at,
2089 step one instruction before inserting breakpoints so that
2090 we do not stop right away (and report a second hit at this
2091 breakpoint).
2092
2093 Note, we don't do this in reverse, because we won't
2094 actually be executing the breakpoint insn anyway.
2095 We'll be (un-)executing the previous instruction. */
2096
2097 oneproc = 1;
2098 else if (gdbarch_single_step_through_delay_p (gdbarch)
2099 && gdbarch_single_step_through_delay (gdbarch,
2100 get_current_frame ()))
2101 /* We stepped onto an instruction that needs to be stepped
2102 again before re-inserting the breakpoint, do so. */
2103 oneproc = 1;
2104 }
2105 else
2106 {
2107 regcache_write_pc (regcache, addr);
2108 }
2109
2110 if (debug_infrun)
2111 fprintf_unfiltered (gdb_stdlog,
2112 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2113 paddress (gdbarch, addr), siggnal, step);
2114
2115 if (non_stop)
2116 /* In non-stop, each thread is handled individually. The context
2117 must already be set to the right thread here. */
2118 ;
2119 else
2120 {
2121 /* In a multi-threaded task we may select another thread and
2122 then continue or step.
2123
2124 But if the old thread was stopped at a breakpoint, it will
2125 immediately cause another breakpoint stop without any
2126 execution (i.e. it will report a breakpoint hit incorrectly).
2127 So we must step over it first.
2128
2129 prepare_to_proceed checks the current thread against the
2130 thread that reported the most recent event. If a step-over
2131 is required it returns TRUE and sets the current thread to
2132 the old thread. */
2133 if (prepare_to_proceed (step))
2134 oneproc = 1;
2135 }
2136
2137 /* prepare_to_proceed may change the current thread. */
2138 tp = inferior_thread ();
2139
2140 if (oneproc)
2141 {
2142 tp->control.trap_expected = 1;
2143 /* If displaced stepping is enabled, we can step over the
2144 breakpoint without hitting it, so leave all breakpoints
2145 inserted. Otherwise we need to disable all breakpoints, step
2146 one instruction, and then re-add them when that step is
2147 finished. */
2148 if (!use_displaced_stepping (gdbarch))
2149 remove_breakpoints ();
2150 }
2151
2152 /* We can insert breakpoints if we're not trying to step over one,
2153 or if we are stepping over one but we're using displaced stepping
2154 to do so. */
2155 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2156 insert_breakpoints ();
2157
2158 if (!non_stop)
2159 {
2160 /* Pass the last stop signal to the thread we're resuming,
2161 irrespective of whether the current thread is the thread that
2162 got the last event or not. This was historically GDB's
2163 behaviour before keeping a stop_signal per thread. */
2164
2165 struct thread_info *last_thread;
2166 ptid_t last_ptid;
2167 struct target_waitstatus last_status;
2168
2169 get_last_target_status (&last_ptid, &last_status);
2170 if (!ptid_equal (inferior_ptid, last_ptid)
2171 && !ptid_equal (last_ptid, null_ptid)
2172 && !ptid_equal (last_ptid, minus_one_ptid))
2173 {
2174 last_thread = find_thread_ptid (last_ptid);
2175 if (last_thread)
2176 {
2177 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2178 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2179 }
2180 }
2181 }
2182
2183 if (siggnal != TARGET_SIGNAL_DEFAULT)
2184 tp->suspend.stop_signal = siggnal;
2185 /* If this signal should not be seen by program,
2186 give it zero. Used for debugging signals. */
2187 else if (!signal_program[tp->suspend.stop_signal])
2188 tp->suspend.stop_signal = TARGET_SIGNAL_0;
2189
2190 annotate_starting ();
2191
2192 /* Make sure that output from GDB appears before output from the
2193 inferior. */
2194 gdb_flush (gdb_stdout);
2195
2196 /* Refresh prev_pc value just prior to resuming. This used to be
2197 done in stop_stepping, however, setting prev_pc there did not handle
2198 scenarios such as inferior function calls or returning from
2199 a function via the return command. In those cases, the prev_pc
2200 value was not set properly for subsequent commands. The prev_pc value
2201 is used to initialize the starting line number in the ecs. With an
2202 invalid value, the gdb next command ends up stopping at the position
2203 represented by the next line table entry past our start position.
2204 On platforms that generate one line table entry per line, this
2205 is not a problem. However, on the ia64, the compiler generates
2206 extraneous line table entries that do not increase the line number.
2207 When we issue the gdb next command on the ia64 after an inferior call
2208 or a return command, we often end up a few instructions forward, still
2209 within the original line we started.
2210
2211 An attempt was made to refresh the prev_pc at the same time the
2212 execution_control_state is initialized (for instance, just before
2213 waiting for an inferior event). But this approach did not work
2214 because of platforms that use ptrace, where the pc register cannot
2215 be read unless the inferior is stopped. At that point, we are not
2216 guaranteed the inferior is stopped and so the regcache_read_pc() call
2217 can fail. Setting the prev_pc value here ensures the value is updated
2218 correctly when the inferior is stopped. */
2219 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2220
2221 /* Fill in with reasonable starting values. */
2222 init_thread_stepping_state (tp);
2223
2224 /* Reset to normal state. */
2225 init_infwait_state ();
2226
2227 /* Resume inferior. */
2228 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2229
2230 /* Wait for it to stop (if not standalone)
2231 and in any case decode why it stopped, and act accordingly. */
2232 /* Do this only if we are not using the event loop, or if the target
2233 does not support asynchronous execution. */
2234 if (!target_can_async_p ())
2235 {
2236 wait_for_inferior ();
2237 normal_stop ();
2238 }
2239 }
2240 \f
2241
2242 /* Start remote-debugging of a machine over a serial link. */
2243
2244 void
2245 start_remote (int from_tty)
2246 {
2247 struct inferior *inferior;
2248
2249 inferior = current_inferior ();
2250 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2251
2252 /* Always go on waiting for the target, regardless of the mode. */
2253 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2254 indicate to wait_for_inferior that a target should timeout if
2255 nothing is returned (instead of just blocking). Because of this,
2256 targets expecting an immediate response need to, internally, set
2257 things up so that the target_wait() is forced to eventually
2258 timeout. */
2259 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2260 differentiate to its caller what the state of the target is after
2261 the initial open has been performed. Here we're assuming that
2262 the target has stopped. It should be possible to eventually have
2263 target_open() return to the caller an indication that the target
2264 is currently running and GDB state should be set to the same as
2265 for an async run. */
2266 wait_for_inferior ();
2267
2268 /* Now that the inferior has stopped, do any bookkeeping like
2269 loading shared libraries. We want to do this before normal_stop,
2270 so that the displayed frame is up to date. */
2271 post_create_inferior (&current_target, from_tty);
2272
2273 normal_stop ();
2274 }
2275
2276 /* Initialize static vars when a new inferior begins. */
2277
2278 void
2279 init_wait_for_inferior (void)
2280 {
2281 /* These are meaningless until the first time through wait_for_inferior. */
2282
2283 breakpoint_init_inferior (inf_starting);
2284
2285 clear_proceed_status ();
2286
2287 stepping_past_singlestep_breakpoint = 0;
2288 deferred_step_ptid = null_ptid;
2289
2290 target_last_wait_ptid = minus_one_ptid;
2291
2292 previous_inferior_ptid = inferior_ptid;
2293 init_infwait_state ();
2294
2295 /* Discard any skipped inlined frames. */
2296 clear_inline_frame_state (minus_one_ptid);
2297 }
2298
2299 \f
2300 /* This enum encodes possible reasons for doing a target_wait, so that
2301 wfi can call target_wait in one place. (Ultimately the call will be
2302 moved out of the infinite loop entirely.) */
2303
2304 enum infwait_states
2305 {
2306 infwait_normal_state,
2307 infwait_thread_hop_state,
2308 infwait_step_watch_state,
2309 infwait_nonstep_watch_state
2310 };
2311
2312 /* The PTID we'll do a target_wait on.*/
2313 ptid_t waiton_ptid;
2314
2315 /* Current inferior wait state. */
2316 enum infwait_states infwait_state;
2317
2318 /* Data to be passed around while handling an event. This data is
2319 discarded between events. */
2320 struct execution_control_state
2321 {
2322 ptid_t ptid;
2323 /* The thread that got the event, if this was a thread event; NULL
2324 otherwise. */
2325 struct thread_info *event_thread;
2326
2327 struct target_waitstatus ws;
2328 int random_signal;
2329 CORE_ADDR stop_func_start;
2330 CORE_ADDR stop_func_end;
2331 char *stop_func_name;
2332 int new_thread_event;
2333 int wait_some_more;
2334 };
2335
2336 static void handle_inferior_event (struct execution_control_state *ecs);
2337
2338 static void handle_step_into_function (struct gdbarch *gdbarch,
2339 struct execution_control_state *ecs);
2340 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2341 struct execution_control_state *ecs);
2342 static void check_exception_resume (struct execution_control_state *,
2343 struct frame_info *, struct symbol *);
2344
2345 static void stop_stepping (struct execution_control_state *ecs);
2346 static void prepare_to_wait (struct execution_control_state *ecs);
2347 static void keep_going (struct execution_control_state *ecs);
2348
2349 /* Callback for iterate over threads. If the thread is stopped, but
2350 the user/frontend doesn't know about that yet, go through
2351 normal_stop, as if the thread had just stopped now. ARG points at
2352 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2353 ptid_is_pid(PTID) is true, applies to all threads of the process
2354 pointed at by PTID. Otherwise, apply only to the thread pointed by
2355 PTID. */
2356
2357 static int
2358 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2359 {
2360 ptid_t ptid = * (ptid_t *) arg;
2361
2362 if ((ptid_equal (info->ptid, ptid)
2363 || ptid_equal (minus_one_ptid, ptid)
2364 || (ptid_is_pid (ptid)
2365 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2366 && is_running (info->ptid)
2367 && !is_executing (info->ptid))
2368 {
2369 struct cleanup *old_chain;
2370 struct execution_control_state ecss;
2371 struct execution_control_state *ecs = &ecss;
2372
2373 memset (ecs, 0, sizeof (*ecs));
2374
2375 old_chain = make_cleanup_restore_current_thread ();
2376
2377 switch_to_thread (info->ptid);
2378
2379 /* Go through handle_inferior_event/normal_stop, so we always
2380 have consistent output as if the stop event had been
2381 reported. */
2382 ecs->ptid = info->ptid;
2383 ecs->event_thread = find_thread_ptid (info->ptid);
2384 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2385 ecs->ws.value.sig = TARGET_SIGNAL_0;
2386
2387 handle_inferior_event (ecs);
2388
2389 if (!ecs->wait_some_more)
2390 {
2391 struct thread_info *tp;
2392
2393 normal_stop ();
2394
2395 /* Finish off the continuations. */
2396 tp = inferior_thread ();
2397 do_all_intermediate_continuations_thread (tp, 1);
2398 do_all_continuations_thread (tp, 1);
2399 }
2400
2401 do_cleanups (old_chain);
2402 }
2403
2404 return 0;
2405 }
2406
2407 /* This function is attached as a "thread_stop_requested" observer.
2408 Cleanup local state that assumed the PTID was to be resumed, and
2409 report the stop to the frontend. */
2410
2411 static void
2412 infrun_thread_stop_requested (ptid_t ptid)
2413 {
2414 struct displaced_step_inferior_state *displaced;
2415
2416 /* PTID was requested to stop. Remove it from the displaced
2417 stepping queue, so we don't try to resume it automatically. */
2418
2419 for (displaced = displaced_step_inferior_states;
2420 displaced;
2421 displaced = displaced->next)
2422 {
2423 struct displaced_step_request *it, **prev_next_p;
2424
2425 it = displaced->step_request_queue;
2426 prev_next_p = &displaced->step_request_queue;
2427 while (it)
2428 {
2429 if (ptid_match (it->ptid, ptid))
2430 {
2431 *prev_next_p = it->next;
2432 it->next = NULL;
2433 xfree (it);
2434 }
2435 else
2436 {
2437 prev_next_p = &it->next;
2438 }
2439
2440 it = *prev_next_p;
2441 }
2442 }
2443
2444 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2445 }
2446
2447 static void
2448 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2449 {
2450 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2451 nullify_last_target_wait_ptid ();
2452 }
2453
2454 /* Callback for iterate_over_threads. */
2455
2456 static int
2457 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2458 {
2459 if (is_exited (info->ptid))
2460 return 0;
2461
2462 delete_step_resume_breakpoint (info);
2463 delete_exception_resume_breakpoint (info);
2464 return 0;
2465 }
2466
2467 /* In all-stop, delete the step resume breakpoint of any thread that
2468 had one. In non-stop, delete the step resume breakpoint of the
2469 thread that just stopped. */
2470
2471 static void
2472 delete_step_thread_step_resume_breakpoint (void)
2473 {
2474 if (!target_has_execution
2475 || ptid_equal (inferior_ptid, null_ptid))
2476 /* If the inferior has exited, we have already deleted the step
2477 resume breakpoints out of GDB's lists. */
2478 return;
2479
2480 if (non_stop)
2481 {
2482 /* If in non-stop mode, only delete the step-resume or
2483 longjmp-resume breakpoint of the thread that just stopped
2484 stepping. */
2485 struct thread_info *tp = inferior_thread ();
2486
2487 delete_step_resume_breakpoint (tp);
2488 delete_exception_resume_breakpoint (tp);
2489 }
2490 else
2491 /* In all-stop mode, delete all step-resume and longjmp-resume
2492 breakpoints of any thread that had them. */
2493 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2494 }
2495
2496 /* A cleanup wrapper. */
2497
2498 static void
2499 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2500 {
2501 delete_step_thread_step_resume_breakpoint ();
2502 }
2503
2504 /* Pretty print the results of target_wait, for debugging purposes. */
2505
2506 static void
2507 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2508 const struct target_waitstatus *ws)
2509 {
2510 char *status_string = target_waitstatus_to_string (ws);
2511 struct ui_file *tmp_stream = mem_fileopen ();
2512 char *text;
2513
2514 /* The text is split over several lines because it was getting too long.
2515 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2516 output as a unit; we want only one timestamp printed if debug_timestamp
2517 is set. */
2518
2519 fprintf_unfiltered (tmp_stream,
2520 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2521 if (PIDGET (waiton_ptid) != -1)
2522 fprintf_unfiltered (tmp_stream,
2523 " [%s]", target_pid_to_str (waiton_ptid));
2524 fprintf_unfiltered (tmp_stream, ", status) =\n");
2525 fprintf_unfiltered (tmp_stream,
2526 "infrun: %d [%s],\n",
2527 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2528 fprintf_unfiltered (tmp_stream,
2529 "infrun: %s\n",
2530 status_string);
2531
2532 text = ui_file_xstrdup (tmp_stream, NULL);
2533
2534 /* This uses %s in part to handle %'s in the text, but also to avoid
2535 a gcc error: the format attribute requires a string literal. */
2536 fprintf_unfiltered (gdb_stdlog, "%s", text);
2537
2538 xfree (status_string);
2539 xfree (text);
2540 ui_file_delete (tmp_stream);
2541 }
2542
2543 /* Prepare and stabilize the inferior for detaching it. E.g.,
2544 detaching while a thread is displaced stepping is a recipe for
2545 crashing it, as nothing would readjust the PC out of the scratch
2546 pad. */
2547
2548 void
2549 prepare_for_detach (void)
2550 {
2551 struct inferior *inf = current_inferior ();
2552 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2553 struct cleanup *old_chain_1;
2554 struct displaced_step_inferior_state *displaced;
2555
2556 displaced = get_displaced_stepping_state (inf->pid);
2557
2558 /* Is any thread of this process displaced stepping? If not,
2559 there's nothing else to do. */
2560 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2561 return;
2562
2563 if (debug_infrun)
2564 fprintf_unfiltered (gdb_stdlog,
2565 "displaced-stepping in-process while detaching");
2566
2567 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2568 inf->detaching = 1;
2569
2570 while (!ptid_equal (displaced->step_ptid, null_ptid))
2571 {
2572 struct cleanup *old_chain_2;
2573 struct execution_control_state ecss;
2574 struct execution_control_state *ecs;
2575
2576 ecs = &ecss;
2577 memset (ecs, 0, sizeof (*ecs));
2578
2579 overlay_cache_invalid = 1;
2580
2581 /* We have to invalidate the registers BEFORE calling
2582 target_wait because they can be loaded from the target while
2583 in target_wait. This makes remote debugging a bit more
2584 efficient for those targets that provide critical registers
2585 as part of their normal status mechanism. */
2586
2587 registers_changed ();
2588
2589 if (deprecated_target_wait_hook)
2590 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2591 else
2592 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2593
2594 if (debug_infrun)
2595 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2596
2597 /* If an error happens while handling the event, propagate GDB's
2598 knowledge of the executing state to the frontend/user running
2599 state. */
2600 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2601 &minus_one_ptid);
2602
2603 /* In non-stop mode, each thread is handled individually.
2604 Switch early, so the global state is set correctly for this
2605 thread. */
2606 if (non_stop
2607 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2608 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2609 context_switch (ecs->ptid);
2610
2611 /* Now figure out what to do with the result of the result. */
2612 handle_inferior_event (ecs);
2613
2614 /* No error, don't finish the state yet. */
2615 discard_cleanups (old_chain_2);
2616
2617 /* Breakpoints and watchpoints are not installed on the target
2618 at this point, and signals are passed directly to the
2619 inferior, so this must mean the process is gone. */
2620 if (!ecs->wait_some_more)
2621 {
2622 discard_cleanups (old_chain_1);
2623 error (_("Program exited while detaching"));
2624 }
2625 }
2626
2627 discard_cleanups (old_chain_1);
2628 }
2629
2630 /* Wait for control to return from inferior to debugger.
2631
2632 If inferior gets a signal, we may decide to start it up again
2633 instead of returning. That is why there is a loop in this function.
2634 When this function actually returns it means the inferior
2635 should be left stopped and GDB should read more commands. */
2636
2637 void
2638 wait_for_inferior (void)
2639 {
2640 struct cleanup *old_cleanups;
2641 struct execution_control_state ecss;
2642 struct execution_control_state *ecs;
2643
2644 if (debug_infrun)
2645 fprintf_unfiltered
2646 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2647
2648 old_cleanups =
2649 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2650
2651 ecs = &ecss;
2652 memset (ecs, 0, sizeof (*ecs));
2653
2654 while (1)
2655 {
2656 struct cleanup *old_chain;
2657
2658 /* We have to invalidate the registers BEFORE calling target_wait
2659 because they can be loaded from the target while in target_wait.
2660 This makes remote debugging a bit more efficient for those
2661 targets that provide critical registers as part of their normal
2662 status mechanism. */
2663
2664 overlay_cache_invalid = 1;
2665 registers_changed ();
2666
2667 if (deprecated_target_wait_hook)
2668 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2669 else
2670 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2671
2672 if (debug_infrun)
2673 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2674
2675 /* If an error happens while handling the event, propagate GDB's
2676 knowledge of the executing state to the frontend/user running
2677 state. */
2678 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2679
2680 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2681 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2682 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2683
2684 /* Now figure out what to do with the result of the result. */
2685 handle_inferior_event (ecs);
2686
2687 /* No error, don't finish the state yet. */
2688 discard_cleanups (old_chain);
2689
2690 if (!ecs->wait_some_more)
2691 break;
2692 }
2693
2694 do_cleanups (old_cleanups);
2695 }
2696
2697 /* Asynchronous version of wait_for_inferior. It is called by the
2698 event loop whenever a change of state is detected on the file
2699 descriptor corresponding to the target. It can be called more than
2700 once to complete a single execution command. In such cases we need
2701 to keep the state in a global variable ECSS. If it is the last time
2702 that this function is called for a single execution command, then
2703 report to the user that the inferior has stopped, and do the
2704 necessary cleanups. */
2705
2706 void
2707 fetch_inferior_event (void *client_data)
2708 {
2709 struct execution_control_state ecss;
2710 struct execution_control_state *ecs = &ecss;
2711 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2712 struct cleanup *ts_old_chain;
2713 int was_sync = sync_execution;
2714
2715 memset (ecs, 0, sizeof (*ecs));
2716
2717 /* We're handling a live event, so make sure we're doing live
2718 debugging. If we're looking at traceframes while the target is
2719 running, we're going to need to get back to that mode after
2720 handling the event. */
2721 if (non_stop)
2722 {
2723 make_cleanup_restore_current_traceframe ();
2724 set_current_traceframe (-1);
2725 }
2726
2727 if (non_stop)
2728 /* In non-stop mode, the user/frontend should not notice a thread
2729 switch due to internal events. Make sure we reverse to the
2730 user selected thread and frame after handling the event and
2731 running any breakpoint commands. */
2732 make_cleanup_restore_current_thread ();
2733
2734 /* We have to invalidate the registers BEFORE calling target_wait
2735 because they can be loaded from the target while in target_wait.
2736 This makes remote debugging a bit more efficient for those
2737 targets that provide critical registers as part of their normal
2738 status mechanism. */
2739
2740 overlay_cache_invalid = 1;
2741
2742 /* But don't do it if the current thread is already stopped (hence
2743 this is either a delayed event that will result in
2744 TARGET_WAITKIND_IGNORE, or it's an event for another thread (and
2745 we always clear the register and frame caches when the user
2746 switches threads anyway). If we didn't do this, a spurious
2747 delayed event in all-stop mode would make the user lose the
2748 selected frame. */
2749 if (non_stop || is_executing (inferior_ptid))
2750 registers_changed ();
2751
2752 make_cleanup_restore_integer (&execution_direction);
2753 execution_direction = target_execution_direction ();
2754
2755 if (deprecated_target_wait_hook)
2756 ecs->ptid =
2757 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2758 else
2759 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2760
2761 if (debug_infrun)
2762 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2763
2764 if (non_stop
2765 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2766 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2767 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2768 /* In non-stop mode, each thread is handled individually. Switch
2769 early, so the global state is set correctly for this
2770 thread. */
2771 context_switch (ecs->ptid);
2772
2773 /* If an error happens while handling the event, propagate GDB's
2774 knowledge of the executing state to the frontend/user running
2775 state. */
2776 if (!non_stop)
2777 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2778 else
2779 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2780
2781 /* Now figure out what to do with the result of the result. */
2782 handle_inferior_event (ecs);
2783
2784 if (!ecs->wait_some_more)
2785 {
2786 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2787
2788 delete_step_thread_step_resume_breakpoint ();
2789
2790 /* We may not find an inferior if this was a process exit. */
2791 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2792 normal_stop ();
2793
2794 if (target_has_execution
2795 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2796 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2797 && ecs->event_thread->step_multi
2798 && ecs->event_thread->control.stop_step)
2799 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2800 else
2801 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2802 }
2803
2804 /* No error, don't finish the thread states yet. */
2805 discard_cleanups (ts_old_chain);
2806
2807 /* Revert thread and frame. */
2808 do_cleanups (old_chain);
2809
2810 /* If the inferior was in sync execution mode, and now isn't,
2811 restore the prompt. */
2812 if (was_sync && !sync_execution)
2813 display_gdb_prompt (0);
2814 }
2815
2816 /* Record the frame and location we're currently stepping through. */
2817 void
2818 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2819 {
2820 struct thread_info *tp = inferior_thread ();
2821
2822 tp->control.step_frame_id = get_frame_id (frame);
2823 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2824
2825 tp->current_symtab = sal.symtab;
2826 tp->current_line = sal.line;
2827 }
2828
2829 /* Clear context switchable stepping state. */
2830
2831 void
2832 init_thread_stepping_state (struct thread_info *tss)
2833 {
2834 tss->stepping_over_breakpoint = 0;
2835 tss->step_after_step_resume_breakpoint = 0;
2836 tss->stepping_through_solib_after_catch = 0;
2837 tss->stepping_through_solib_catchpoints = NULL;
2838 }
2839
2840 /* Return the cached copy of the last pid/waitstatus returned by
2841 target_wait()/deprecated_target_wait_hook(). The data is actually
2842 cached by handle_inferior_event(), which gets called immediately
2843 after target_wait()/deprecated_target_wait_hook(). */
2844
2845 void
2846 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2847 {
2848 *ptidp = target_last_wait_ptid;
2849 *status = target_last_waitstatus;
2850 }
2851
2852 void
2853 nullify_last_target_wait_ptid (void)
2854 {
2855 target_last_wait_ptid = minus_one_ptid;
2856 }
2857
2858 /* Switch thread contexts. */
2859
2860 static void
2861 context_switch (ptid_t ptid)
2862 {
2863 if (debug_infrun)
2864 {
2865 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2866 target_pid_to_str (inferior_ptid));
2867 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2868 target_pid_to_str (ptid));
2869 }
2870
2871 switch_to_thread (ptid);
2872 }
2873
2874 static void
2875 adjust_pc_after_break (struct execution_control_state *ecs)
2876 {
2877 struct regcache *regcache;
2878 struct gdbarch *gdbarch;
2879 struct address_space *aspace;
2880 CORE_ADDR breakpoint_pc;
2881
2882 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2883 we aren't, just return.
2884
2885 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2886 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2887 implemented by software breakpoints should be handled through the normal
2888 breakpoint layer.
2889
2890 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2891 different signals (SIGILL or SIGEMT for instance), but it is less
2892 clear where the PC is pointing afterwards. It may not match
2893 gdbarch_decr_pc_after_break. I don't know any specific target that
2894 generates these signals at breakpoints (the code has been in GDB since at
2895 least 1992) so I can not guess how to handle them here.
2896
2897 In earlier versions of GDB, a target with
2898 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2899 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2900 target with both of these set in GDB history, and it seems unlikely to be
2901 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2902
2903 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2904 return;
2905
2906 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2907 return;
2908
2909 /* In reverse execution, when a breakpoint is hit, the instruction
2910 under it has already been de-executed. The reported PC always
2911 points at the breakpoint address, so adjusting it further would
2912 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2913 architecture:
2914
2915 B1 0x08000000 : INSN1
2916 B2 0x08000001 : INSN2
2917 0x08000002 : INSN3
2918 PC -> 0x08000003 : INSN4
2919
2920 Say you're stopped at 0x08000003 as above. Reverse continuing
2921 from that point should hit B2 as below. Reading the PC when the
2922 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2923 been de-executed already.
2924
2925 B1 0x08000000 : INSN1
2926 B2 PC -> 0x08000001 : INSN2
2927 0x08000002 : INSN3
2928 0x08000003 : INSN4
2929
2930 We can't apply the same logic as for forward execution, because
2931 we would wrongly adjust the PC to 0x08000000, since there's a
2932 breakpoint at PC - 1. We'd then report a hit on B1, although
2933 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2934 behaviour. */
2935 if (execution_direction == EXEC_REVERSE)
2936 return;
2937
2938 /* If this target does not decrement the PC after breakpoints, then
2939 we have nothing to do. */
2940 regcache = get_thread_regcache (ecs->ptid);
2941 gdbarch = get_regcache_arch (regcache);
2942 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2943 return;
2944
2945 aspace = get_regcache_aspace (regcache);
2946
2947 /* Find the location where (if we've hit a breakpoint) the
2948 breakpoint would be. */
2949 breakpoint_pc = regcache_read_pc (regcache)
2950 - gdbarch_decr_pc_after_break (gdbarch);
2951
2952 /* Check whether there actually is a software breakpoint inserted at
2953 that location.
2954
2955 If in non-stop mode, a race condition is possible where we've
2956 removed a breakpoint, but stop events for that breakpoint were
2957 already queued and arrive later. To suppress those spurious
2958 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2959 and retire them after a number of stop events are reported. */
2960 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2961 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2962 {
2963 struct cleanup *old_cleanups = NULL;
2964
2965 if (RECORD_IS_USED)
2966 old_cleanups = record_gdb_operation_disable_set ();
2967
2968 /* When using hardware single-step, a SIGTRAP is reported for both
2969 a completed single-step and a software breakpoint. Need to
2970 differentiate between the two, as the latter needs adjusting
2971 but the former does not.
2972
2973 The SIGTRAP can be due to a completed hardware single-step only if
2974 - we didn't insert software single-step breakpoints
2975 - the thread to be examined is still the current thread
2976 - this thread is currently being stepped
2977
2978 If any of these events did not occur, we must have stopped due
2979 to hitting a software breakpoint, and have to back up to the
2980 breakpoint address.
2981
2982 As a special case, we could have hardware single-stepped a
2983 software breakpoint. In this case (prev_pc == breakpoint_pc),
2984 we also need to back up to the breakpoint address. */
2985
2986 if (singlestep_breakpoints_inserted_p
2987 || !ptid_equal (ecs->ptid, inferior_ptid)
2988 || !currently_stepping (ecs->event_thread)
2989 || ecs->event_thread->prev_pc == breakpoint_pc)
2990 regcache_write_pc (regcache, breakpoint_pc);
2991
2992 if (RECORD_IS_USED)
2993 do_cleanups (old_cleanups);
2994 }
2995 }
2996
2997 void
2998 init_infwait_state (void)
2999 {
3000 waiton_ptid = pid_to_ptid (-1);
3001 infwait_state = infwait_normal_state;
3002 }
3003
3004 void
3005 error_is_running (void)
3006 {
3007 error (_("Cannot execute this command while "
3008 "the selected thread is running."));
3009 }
3010
3011 void
3012 ensure_not_running (void)
3013 {
3014 if (is_running (inferior_ptid))
3015 error_is_running ();
3016 }
3017
3018 static int
3019 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3020 {
3021 for (frame = get_prev_frame (frame);
3022 frame != NULL;
3023 frame = get_prev_frame (frame))
3024 {
3025 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3026 return 1;
3027 if (get_frame_type (frame) != INLINE_FRAME)
3028 break;
3029 }
3030
3031 return 0;
3032 }
3033
3034 /* Auxiliary function that handles syscall entry/return events.
3035 It returns 1 if the inferior should keep going (and GDB
3036 should ignore the event), or 0 if the event deserves to be
3037 processed. */
3038
3039 static int
3040 handle_syscall_event (struct execution_control_state *ecs)
3041 {
3042 struct regcache *regcache;
3043 struct gdbarch *gdbarch;
3044 int syscall_number;
3045
3046 if (!ptid_equal (ecs->ptid, inferior_ptid))
3047 context_switch (ecs->ptid);
3048
3049 regcache = get_thread_regcache (ecs->ptid);
3050 gdbarch = get_regcache_arch (regcache);
3051 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
3052 stop_pc = regcache_read_pc (regcache);
3053
3054 target_last_waitstatus.value.syscall_number = syscall_number;
3055
3056 if (catch_syscall_enabled () > 0
3057 && catching_syscall_number (syscall_number) > 0)
3058 {
3059 if (debug_infrun)
3060 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3061 syscall_number);
3062
3063 ecs->event_thread->control.stop_bpstat
3064 = bpstat_stop_status (get_regcache_aspace (regcache),
3065 stop_pc, ecs->ptid);
3066 ecs->random_signal
3067 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3068
3069 if (!ecs->random_signal)
3070 {
3071 /* Catchpoint hit. */
3072 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3073 return 0;
3074 }
3075 }
3076
3077 /* If no catchpoint triggered for this, then keep going. */
3078 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3079 keep_going (ecs);
3080 return 1;
3081 }
3082
3083 /* Given an execution control state that has been freshly filled in
3084 by an event from the inferior, figure out what it means and take
3085 appropriate action. */
3086
3087 static void
3088 handle_inferior_event (struct execution_control_state *ecs)
3089 {
3090 struct frame_info *frame;
3091 struct gdbarch *gdbarch;
3092 int stopped_by_watchpoint;
3093 int stepped_after_stopped_by_watchpoint = 0;
3094 struct symtab_and_line stop_pc_sal;
3095 enum stop_kind stop_soon;
3096
3097 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3098 {
3099 /* We had an event in the inferior, but we are not interested in
3100 handling it at this level. The lower layers have already
3101 done what needs to be done, if anything.
3102
3103 One of the possible circumstances for this is when the
3104 inferior produces output for the console. The inferior has
3105 not stopped, and we are ignoring the event. Another possible
3106 circumstance is any event which the lower level knows will be
3107 reported multiple times without an intervening resume. */
3108 if (debug_infrun)
3109 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3110 prepare_to_wait (ecs);
3111 return;
3112 }
3113
3114 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3115 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3116 {
3117 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3118
3119 gdb_assert (inf);
3120 stop_soon = inf->control.stop_soon;
3121 }
3122 else
3123 stop_soon = NO_STOP_QUIETLY;
3124
3125 /* Cache the last pid/waitstatus. */
3126 target_last_wait_ptid = ecs->ptid;
3127 target_last_waitstatus = ecs->ws;
3128
3129 /* Always clear state belonging to the previous time we stopped. */
3130 stop_stack_dummy = STOP_NONE;
3131
3132 /* If it's a new process, add it to the thread database. */
3133
3134 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3135 && !ptid_equal (ecs->ptid, minus_one_ptid)
3136 && !in_thread_list (ecs->ptid));
3137
3138 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3139 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3140 add_thread (ecs->ptid);
3141
3142 ecs->event_thread = find_thread_ptid (ecs->ptid);
3143
3144 /* Dependent on valid ECS->EVENT_THREAD. */
3145 adjust_pc_after_break (ecs);
3146
3147 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3148 reinit_frame_cache ();
3149
3150 breakpoint_retire_moribund ();
3151
3152 /* First, distinguish signals caused by the debugger from signals
3153 that have to do with the program's own actions. Note that
3154 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3155 on the operating system version. Here we detect when a SIGILL or
3156 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3157 something similar for SIGSEGV, since a SIGSEGV will be generated
3158 when we're trying to execute a breakpoint instruction on a
3159 non-executable stack. This happens for call dummy breakpoints
3160 for architectures like SPARC that place call dummies on the
3161 stack. */
3162 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3163 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3164 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
3165 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
3166 {
3167 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3168
3169 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3170 regcache_read_pc (regcache)))
3171 {
3172 if (debug_infrun)
3173 fprintf_unfiltered (gdb_stdlog,
3174 "infrun: Treating signal as SIGTRAP\n");
3175 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3176 }
3177 }
3178
3179 /* Mark the non-executing threads accordingly. In all-stop, all
3180 threads of all processes are stopped when we get any event
3181 reported. In non-stop mode, only the event thread stops. If
3182 we're handling a process exit in non-stop mode, there's nothing
3183 to do, as threads of the dead process are gone, and threads of
3184 any other process were left running. */
3185 if (!non_stop)
3186 set_executing (minus_one_ptid, 0);
3187 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3188 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3189 set_executing (inferior_ptid, 0);
3190
3191 switch (infwait_state)
3192 {
3193 case infwait_thread_hop_state:
3194 if (debug_infrun)
3195 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3196 break;
3197
3198 case infwait_normal_state:
3199 if (debug_infrun)
3200 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3201 break;
3202
3203 case infwait_step_watch_state:
3204 if (debug_infrun)
3205 fprintf_unfiltered (gdb_stdlog,
3206 "infrun: infwait_step_watch_state\n");
3207
3208 stepped_after_stopped_by_watchpoint = 1;
3209 break;
3210
3211 case infwait_nonstep_watch_state:
3212 if (debug_infrun)
3213 fprintf_unfiltered (gdb_stdlog,
3214 "infrun: infwait_nonstep_watch_state\n");
3215 insert_breakpoints ();
3216
3217 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3218 handle things like signals arriving and other things happening
3219 in combination correctly? */
3220 stepped_after_stopped_by_watchpoint = 1;
3221 break;
3222
3223 default:
3224 internal_error (__FILE__, __LINE__, _("bad switch"));
3225 }
3226
3227 infwait_state = infwait_normal_state;
3228 waiton_ptid = pid_to_ptid (-1);
3229
3230 switch (ecs->ws.kind)
3231 {
3232 case TARGET_WAITKIND_LOADED:
3233 if (debug_infrun)
3234 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3235 /* Ignore gracefully during startup of the inferior, as it might
3236 be the shell which has just loaded some objects, otherwise
3237 add the symbols for the newly loaded objects. Also ignore at
3238 the beginning of an attach or remote session; we will query
3239 the full list of libraries once the connection is
3240 established. */
3241 if (stop_soon == NO_STOP_QUIETLY)
3242 {
3243 /* Check for any newly added shared libraries if we're
3244 supposed to be adding them automatically. Switch
3245 terminal for any messages produced by
3246 breakpoint_re_set. */
3247 target_terminal_ours_for_output ();
3248 /* NOTE: cagney/2003-11-25: Make certain that the target
3249 stack's section table is kept up-to-date. Architectures,
3250 (e.g., PPC64), use the section table to perform
3251 operations such as address => section name and hence
3252 require the table to contain all sections (including
3253 those found in shared libraries). */
3254 #ifdef SOLIB_ADD
3255 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3256 #else
3257 solib_add (NULL, 0, &current_target, auto_solib_add);
3258 #endif
3259 target_terminal_inferior ();
3260
3261 /* If requested, stop when the dynamic linker notifies
3262 gdb of events. This allows the user to get control
3263 and place breakpoints in initializer routines for
3264 dynamically loaded objects (among other things). */
3265 if (stop_on_solib_events)
3266 {
3267 /* Make sure we print "Stopped due to solib-event" in
3268 normal_stop. */
3269 stop_print_frame = 1;
3270
3271 stop_stepping (ecs);
3272 return;
3273 }
3274
3275 /* NOTE drow/2007-05-11: This might be a good place to check
3276 for "catch load". */
3277 }
3278
3279 /* If we are skipping through a shell, or through shared library
3280 loading that we aren't interested in, resume the program. If
3281 we're running the program normally, also resume. But stop if
3282 we're attaching or setting up a remote connection. */
3283 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3284 {
3285 /* Loading of shared libraries might have changed breakpoint
3286 addresses. Make sure new breakpoints are inserted. */
3287 if (stop_soon == NO_STOP_QUIETLY
3288 && !breakpoints_always_inserted_mode ())
3289 insert_breakpoints ();
3290 resume (0, TARGET_SIGNAL_0);
3291 prepare_to_wait (ecs);
3292 return;
3293 }
3294
3295 break;
3296
3297 case TARGET_WAITKIND_SPURIOUS:
3298 if (debug_infrun)
3299 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3300 resume (0, TARGET_SIGNAL_0);
3301 prepare_to_wait (ecs);
3302 return;
3303
3304 case TARGET_WAITKIND_EXITED:
3305 if (debug_infrun)
3306 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3307 inferior_ptid = ecs->ptid;
3308 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3309 set_current_program_space (current_inferior ()->pspace);
3310 handle_vfork_child_exec_or_exit (0);
3311 target_terminal_ours (); /* Must do this before mourn anyway. */
3312 print_exited_reason (ecs->ws.value.integer);
3313
3314 /* Record the exit code in the convenience variable $_exitcode, so
3315 that the user can inspect this again later. */
3316 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3317 (LONGEST) ecs->ws.value.integer);
3318
3319 /* Also record this in the inferior itself. */
3320 current_inferior ()->has_exit_code = 1;
3321 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3322
3323 gdb_flush (gdb_stdout);
3324 target_mourn_inferior ();
3325 singlestep_breakpoints_inserted_p = 0;
3326 cancel_single_step_breakpoints ();
3327 stop_print_frame = 0;
3328 stop_stepping (ecs);
3329 return;
3330
3331 case TARGET_WAITKIND_SIGNALLED:
3332 if (debug_infrun)
3333 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3334 inferior_ptid = ecs->ptid;
3335 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3336 set_current_program_space (current_inferior ()->pspace);
3337 handle_vfork_child_exec_or_exit (0);
3338 stop_print_frame = 0;
3339 target_terminal_ours (); /* Must do this before mourn anyway. */
3340
3341 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3342 reach here unless the inferior is dead. However, for years
3343 target_kill() was called here, which hints that fatal signals aren't
3344 really fatal on some systems. If that's true, then some changes
3345 may be needed. */
3346 target_mourn_inferior ();
3347
3348 print_signal_exited_reason (ecs->ws.value.sig);
3349 singlestep_breakpoints_inserted_p = 0;
3350 cancel_single_step_breakpoints ();
3351 stop_stepping (ecs);
3352 return;
3353
3354 /* The following are the only cases in which we keep going;
3355 the above cases end in a continue or goto. */
3356 case TARGET_WAITKIND_FORKED:
3357 case TARGET_WAITKIND_VFORKED:
3358 if (debug_infrun)
3359 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3360
3361 if (!ptid_equal (ecs->ptid, inferior_ptid))
3362 {
3363 context_switch (ecs->ptid);
3364 reinit_frame_cache ();
3365 }
3366
3367 /* Immediately detach breakpoints from the child before there's
3368 any chance of letting the user delete breakpoints from the
3369 breakpoint lists. If we don't do this early, it's easy to
3370 leave left over traps in the child, vis: "break foo; catch
3371 fork; c; <fork>; del; c; <child calls foo>". We only follow
3372 the fork on the last `continue', and by that time the
3373 breakpoint at "foo" is long gone from the breakpoint table.
3374 If we vforked, then we don't need to unpatch here, since both
3375 parent and child are sharing the same memory pages; we'll
3376 need to unpatch at follow/detach time instead to be certain
3377 that new breakpoints added between catchpoint hit time and
3378 vfork follow are detached. */
3379 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3380 {
3381 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3382
3383 /* This won't actually modify the breakpoint list, but will
3384 physically remove the breakpoints from the child. */
3385 detach_breakpoints (child_pid);
3386 }
3387
3388 if (singlestep_breakpoints_inserted_p)
3389 {
3390 /* Pull the single step breakpoints out of the target. */
3391 remove_single_step_breakpoints ();
3392 singlestep_breakpoints_inserted_p = 0;
3393 }
3394
3395 /* In case the event is caught by a catchpoint, remember that
3396 the event is to be followed at the next resume of the thread,
3397 and not immediately. */
3398 ecs->event_thread->pending_follow = ecs->ws;
3399
3400 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3401
3402 ecs->event_thread->control.stop_bpstat
3403 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3404 stop_pc, ecs->ptid);
3405
3406 /* Note that we're interested in knowing the bpstat actually
3407 causes a stop, not just if it may explain the signal.
3408 Software watchpoints, for example, always appear in the
3409 bpstat. */
3410 ecs->random_signal
3411 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3412
3413 /* If no catchpoint triggered for this, then keep going. */
3414 if (ecs->random_signal)
3415 {
3416 ptid_t parent;
3417 ptid_t child;
3418 int should_resume;
3419 int follow_child
3420 = (follow_fork_mode_string == follow_fork_mode_child);
3421
3422 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3423
3424 should_resume = follow_fork ();
3425
3426 parent = ecs->ptid;
3427 child = ecs->ws.value.related_pid;
3428
3429 /* In non-stop mode, also resume the other branch. */
3430 if (non_stop && !detach_fork)
3431 {
3432 if (follow_child)
3433 switch_to_thread (parent);
3434 else
3435 switch_to_thread (child);
3436
3437 ecs->event_thread = inferior_thread ();
3438 ecs->ptid = inferior_ptid;
3439 keep_going (ecs);
3440 }
3441
3442 if (follow_child)
3443 switch_to_thread (child);
3444 else
3445 switch_to_thread (parent);
3446
3447 ecs->event_thread = inferior_thread ();
3448 ecs->ptid = inferior_ptid;
3449
3450 if (should_resume)
3451 keep_going (ecs);
3452 else
3453 stop_stepping (ecs);
3454 return;
3455 }
3456 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3457 goto process_event_stop_test;
3458
3459 case TARGET_WAITKIND_VFORK_DONE:
3460 /* Done with the shared memory region. Re-insert breakpoints in
3461 the parent, and keep going. */
3462
3463 if (debug_infrun)
3464 fprintf_unfiltered (gdb_stdlog,
3465 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3466
3467 if (!ptid_equal (ecs->ptid, inferior_ptid))
3468 context_switch (ecs->ptid);
3469
3470 current_inferior ()->waiting_for_vfork_done = 0;
3471 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3472 /* This also takes care of reinserting breakpoints in the
3473 previously locked inferior. */
3474 keep_going (ecs);
3475 return;
3476
3477 case TARGET_WAITKIND_EXECD:
3478 if (debug_infrun)
3479 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3480
3481 if (!ptid_equal (ecs->ptid, inferior_ptid))
3482 {
3483 context_switch (ecs->ptid);
3484 reinit_frame_cache ();
3485 }
3486
3487 singlestep_breakpoints_inserted_p = 0;
3488 cancel_single_step_breakpoints ();
3489
3490 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3491
3492 /* Do whatever is necessary to the parent branch of the vfork. */
3493 handle_vfork_child_exec_or_exit (1);
3494
3495 /* This causes the eventpoints and symbol table to be reset.
3496 Must do this now, before trying to determine whether to
3497 stop. */
3498 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3499
3500 ecs->event_thread->control.stop_bpstat
3501 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3502 stop_pc, ecs->ptid);
3503 ecs->random_signal
3504 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3505
3506 /* Note that this may be referenced from inside
3507 bpstat_stop_status above, through inferior_has_execd. */
3508 xfree (ecs->ws.value.execd_pathname);
3509 ecs->ws.value.execd_pathname = NULL;
3510
3511 /* If no catchpoint triggered for this, then keep going. */
3512 if (ecs->random_signal)
3513 {
3514 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3515 keep_going (ecs);
3516 return;
3517 }
3518 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3519 goto process_event_stop_test;
3520
3521 /* Be careful not to try to gather much state about a thread
3522 that's in a syscall. It's frequently a losing proposition. */
3523 case TARGET_WAITKIND_SYSCALL_ENTRY:
3524 if (debug_infrun)
3525 fprintf_unfiltered (gdb_stdlog,
3526 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3527 /* Getting the current syscall number. */
3528 if (handle_syscall_event (ecs) != 0)
3529 return;
3530 goto process_event_stop_test;
3531
3532 /* Before examining the threads further, step this thread to
3533 get it entirely out of the syscall. (We get notice of the
3534 event when the thread is just on the verge of exiting a
3535 syscall. Stepping one instruction seems to get it back
3536 into user code.) */
3537 case TARGET_WAITKIND_SYSCALL_RETURN:
3538 if (debug_infrun)
3539 fprintf_unfiltered (gdb_stdlog,
3540 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3541 if (handle_syscall_event (ecs) != 0)
3542 return;
3543 goto process_event_stop_test;
3544
3545 case TARGET_WAITKIND_STOPPED:
3546 if (debug_infrun)
3547 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3548 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3549 break;
3550
3551 case TARGET_WAITKIND_NO_HISTORY:
3552 /* Reverse execution: target ran out of history info. */
3553 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3554 print_no_history_reason ();
3555 stop_stepping (ecs);
3556 return;
3557 }
3558
3559 if (ecs->new_thread_event)
3560 {
3561 if (non_stop)
3562 /* Non-stop assumes that the target handles adding new threads
3563 to the thread list. */
3564 internal_error (__FILE__, __LINE__,
3565 "targets should add new threads to the thread "
3566 "list themselves in non-stop mode.");
3567
3568 /* We may want to consider not doing a resume here in order to
3569 give the user a chance to play with the new thread. It might
3570 be good to make that a user-settable option. */
3571
3572 /* At this point, all threads are stopped (happens automatically
3573 in either the OS or the native code). Therefore we need to
3574 continue all threads in order to make progress. */
3575
3576 if (!ptid_equal (ecs->ptid, inferior_ptid))
3577 context_switch (ecs->ptid);
3578 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3579 prepare_to_wait (ecs);
3580 return;
3581 }
3582
3583 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3584 {
3585 /* Do we need to clean up the state of a thread that has
3586 completed a displaced single-step? (Doing so usually affects
3587 the PC, so do it here, before we set stop_pc.) */
3588 displaced_step_fixup (ecs->ptid,
3589 ecs->event_thread->suspend.stop_signal);
3590
3591 /* If we either finished a single-step or hit a breakpoint, but
3592 the user wanted this thread to be stopped, pretend we got a
3593 SIG0 (generic unsignaled stop). */
3594
3595 if (ecs->event_thread->stop_requested
3596 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3597 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3598 }
3599
3600 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3601
3602 if (debug_infrun)
3603 {
3604 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3605 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3606 struct cleanup *old_chain = save_inferior_ptid ();
3607
3608 inferior_ptid = ecs->ptid;
3609
3610 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3611 paddress (gdbarch, stop_pc));
3612 if (target_stopped_by_watchpoint ())
3613 {
3614 CORE_ADDR addr;
3615
3616 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3617
3618 if (target_stopped_data_address (&current_target, &addr))
3619 fprintf_unfiltered (gdb_stdlog,
3620 "infrun: stopped data address = %s\n",
3621 paddress (gdbarch, addr));
3622 else
3623 fprintf_unfiltered (gdb_stdlog,
3624 "infrun: (no data address available)\n");
3625 }
3626
3627 do_cleanups (old_chain);
3628 }
3629
3630 if (stepping_past_singlestep_breakpoint)
3631 {
3632 gdb_assert (singlestep_breakpoints_inserted_p);
3633 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3634 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3635
3636 stepping_past_singlestep_breakpoint = 0;
3637
3638 /* We've either finished single-stepping past the single-step
3639 breakpoint, or stopped for some other reason. It would be nice if
3640 we could tell, but we can't reliably. */
3641 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3642 {
3643 if (debug_infrun)
3644 fprintf_unfiltered (gdb_stdlog,
3645 "infrun: stepping_past_"
3646 "singlestep_breakpoint\n");
3647 /* Pull the single step breakpoints out of the target. */
3648 remove_single_step_breakpoints ();
3649 singlestep_breakpoints_inserted_p = 0;
3650
3651 ecs->random_signal = 0;
3652 ecs->event_thread->control.trap_expected = 0;
3653
3654 context_switch (saved_singlestep_ptid);
3655 if (deprecated_context_hook)
3656 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3657
3658 resume (1, TARGET_SIGNAL_0);
3659 prepare_to_wait (ecs);
3660 return;
3661 }
3662 }
3663
3664 if (!ptid_equal (deferred_step_ptid, null_ptid))
3665 {
3666 /* In non-stop mode, there's never a deferred_step_ptid set. */
3667 gdb_assert (!non_stop);
3668
3669 /* If we stopped for some other reason than single-stepping, ignore
3670 the fact that we were supposed to switch back. */
3671 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3672 {
3673 if (debug_infrun)
3674 fprintf_unfiltered (gdb_stdlog,
3675 "infrun: handling deferred step\n");
3676
3677 /* Pull the single step breakpoints out of the target. */
3678 if (singlestep_breakpoints_inserted_p)
3679 {
3680 remove_single_step_breakpoints ();
3681 singlestep_breakpoints_inserted_p = 0;
3682 }
3683
3684 ecs->event_thread->control.trap_expected = 0;
3685
3686 /* Note: We do not call context_switch at this point, as the
3687 context is already set up for stepping the original thread. */
3688 switch_to_thread (deferred_step_ptid);
3689 deferred_step_ptid = null_ptid;
3690 /* Suppress spurious "Switching to ..." message. */
3691 previous_inferior_ptid = inferior_ptid;
3692
3693 resume (1, TARGET_SIGNAL_0);
3694 prepare_to_wait (ecs);
3695 return;
3696 }
3697
3698 deferred_step_ptid = null_ptid;
3699 }
3700
3701 /* See if a thread hit a thread-specific breakpoint that was meant for
3702 another thread. If so, then step that thread past the breakpoint,
3703 and continue it. */
3704
3705 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3706 {
3707 int thread_hop_needed = 0;
3708 struct address_space *aspace =
3709 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3710
3711 /* Check if a regular breakpoint has been hit before checking
3712 for a potential single step breakpoint. Otherwise, GDB will
3713 not see this breakpoint hit when stepping onto breakpoints. */
3714 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3715 {
3716 ecs->random_signal = 0;
3717 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3718 thread_hop_needed = 1;
3719 }
3720 else if (singlestep_breakpoints_inserted_p)
3721 {
3722 /* We have not context switched yet, so this should be true
3723 no matter which thread hit the singlestep breakpoint. */
3724 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3725 if (debug_infrun)
3726 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3727 "trap for %s\n",
3728 target_pid_to_str (ecs->ptid));
3729
3730 ecs->random_signal = 0;
3731 /* The call to in_thread_list is necessary because PTIDs sometimes
3732 change when we go from single-threaded to multi-threaded. If
3733 the singlestep_ptid is still in the list, assume that it is
3734 really different from ecs->ptid. */
3735 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3736 && in_thread_list (singlestep_ptid))
3737 {
3738 /* If the PC of the thread we were trying to single-step
3739 has changed, discard this event (which we were going
3740 to ignore anyway), and pretend we saw that thread
3741 trap. This prevents us continuously moving the
3742 single-step breakpoint forward, one instruction at a
3743 time. If the PC has changed, then the thread we were
3744 trying to single-step has trapped or been signalled,
3745 but the event has not been reported to GDB yet.
3746
3747 There might be some cases where this loses signal
3748 information, if a signal has arrived at exactly the
3749 same time that the PC changed, but this is the best
3750 we can do with the information available. Perhaps we
3751 should arrange to report all events for all threads
3752 when they stop, or to re-poll the remote looking for
3753 this particular thread (i.e. temporarily enable
3754 schedlock). */
3755
3756 CORE_ADDR new_singlestep_pc
3757 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3758
3759 if (new_singlestep_pc != singlestep_pc)
3760 {
3761 enum target_signal stop_signal;
3762
3763 if (debug_infrun)
3764 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3765 " but expected thread advanced also\n");
3766
3767 /* The current context still belongs to
3768 singlestep_ptid. Don't swap here, since that's
3769 the context we want to use. Just fudge our
3770 state and continue. */
3771 stop_signal = ecs->event_thread->suspend.stop_signal;
3772 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3773 ecs->ptid = singlestep_ptid;
3774 ecs->event_thread = find_thread_ptid (ecs->ptid);
3775 ecs->event_thread->suspend.stop_signal = stop_signal;
3776 stop_pc = new_singlestep_pc;
3777 }
3778 else
3779 {
3780 if (debug_infrun)
3781 fprintf_unfiltered (gdb_stdlog,
3782 "infrun: unexpected thread\n");
3783
3784 thread_hop_needed = 1;
3785 stepping_past_singlestep_breakpoint = 1;
3786 saved_singlestep_ptid = singlestep_ptid;
3787 }
3788 }
3789 }
3790
3791 if (thread_hop_needed)
3792 {
3793 struct regcache *thread_regcache;
3794 int remove_status = 0;
3795
3796 if (debug_infrun)
3797 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3798
3799 /* Switch context before touching inferior memory, the
3800 previous thread may have exited. */
3801 if (!ptid_equal (inferior_ptid, ecs->ptid))
3802 context_switch (ecs->ptid);
3803
3804 /* Saw a breakpoint, but it was hit by the wrong thread.
3805 Just continue. */
3806
3807 if (singlestep_breakpoints_inserted_p)
3808 {
3809 /* Pull the single step breakpoints out of the target. */
3810 remove_single_step_breakpoints ();
3811 singlestep_breakpoints_inserted_p = 0;
3812 }
3813
3814 /* If the arch can displace step, don't remove the
3815 breakpoints. */
3816 thread_regcache = get_thread_regcache (ecs->ptid);
3817 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3818 remove_status = remove_breakpoints ();
3819
3820 /* Did we fail to remove breakpoints? If so, try
3821 to set the PC past the bp. (There's at least
3822 one situation in which we can fail to remove
3823 the bp's: On HP-UX's that use ttrace, we can't
3824 change the address space of a vforking child
3825 process until the child exits (well, okay, not
3826 then either :-) or execs. */
3827 if (remove_status != 0)
3828 error (_("Cannot step over breakpoint hit in wrong thread"));
3829 else
3830 { /* Single step */
3831 if (!non_stop)
3832 {
3833 /* Only need to require the next event from this
3834 thread in all-stop mode. */
3835 waiton_ptid = ecs->ptid;
3836 infwait_state = infwait_thread_hop_state;
3837 }
3838
3839 ecs->event_thread->stepping_over_breakpoint = 1;
3840 keep_going (ecs);
3841 return;
3842 }
3843 }
3844 else if (singlestep_breakpoints_inserted_p)
3845 {
3846 ecs->random_signal = 0;
3847 }
3848 }
3849 else
3850 ecs->random_signal = 1;
3851
3852 /* See if something interesting happened to the non-current thread. If
3853 so, then switch to that thread. */
3854 if (!ptid_equal (ecs->ptid, inferior_ptid))
3855 {
3856 if (debug_infrun)
3857 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3858
3859 context_switch (ecs->ptid);
3860
3861 if (deprecated_context_hook)
3862 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3863 }
3864
3865 /* At this point, get hold of the now-current thread's frame. */
3866 frame = get_current_frame ();
3867 gdbarch = get_frame_arch (frame);
3868
3869 if (singlestep_breakpoints_inserted_p)
3870 {
3871 /* Pull the single step breakpoints out of the target. */
3872 remove_single_step_breakpoints ();
3873 singlestep_breakpoints_inserted_p = 0;
3874 }
3875
3876 if (stepped_after_stopped_by_watchpoint)
3877 stopped_by_watchpoint = 0;
3878 else
3879 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3880
3881 /* If necessary, step over this watchpoint. We'll be back to display
3882 it in a moment. */
3883 if (stopped_by_watchpoint
3884 && (target_have_steppable_watchpoint
3885 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3886 {
3887 /* At this point, we are stopped at an instruction which has
3888 attempted to write to a piece of memory under control of
3889 a watchpoint. The instruction hasn't actually executed
3890 yet. If we were to evaluate the watchpoint expression
3891 now, we would get the old value, and therefore no change
3892 would seem to have occurred.
3893
3894 In order to make watchpoints work `right', we really need
3895 to complete the memory write, and then evaluate the
3896 watchpoint expression. We do this by single-stepping the
3897 target.
3898
3899 It may not be necessary to disable the watchpoint to stop over
3900 it. For example, the PA can (with some kernel cooperation)
3901 single step over a watchpoint without disabling the watchpoint.
3902
3903 It is far more common to need to disable a watchpoint to step
3904 the inferior over it. If we have non-steppable watchpoints,
3905 we must disable the current watchpoint; it's simplest to
3906 disable all watchpoints and breakpoints. */
3907 int hw_step = 1;
3908
3909 if (!target_have_steppable_watchpoint)
3910 {
3911 remove_breakpoints ();
3912 /* See comment in resume why we need to stop bypassing signals
3913 while breakpoints have been removed. */
3914 target_pass_signals (0, NULL);
3915 }
3916 /* Single step */
3917 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
3918 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
3919 waiton_ptid = ecs->ptid;
3920 if (target_have_steppable_watchpoint)
3921 infwait_state = infwait_step_watch_state;
3922 else
3923 infwait_state = infwait_nonstep_watch_state;
3924 prepare_to_wait (ecs);
3925 return;
3926 }
3927
3928 ecs->stop_func_start = 0;
3929 ecs->stop_func_end = 0;
3930 ecs->stop_func_name = 0;
3931 /* Don't care about return value; stop_func_start and stop_func_name
3932 will both be 0 if it doesn't work. */
3933 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3934 &ecs->stop_func_start, &ecs->stop_func_end);
3935 ecs->stop_func_start
3936 += gdbarch_deprecated_function_start_offset (gdbarch);
3937 ecs->event_thread->stepping_over_breakpoint = 0;
3938 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
3939 ecs->event_thread->control.stop_step = 0;
3940 stop_print_frame = 1;
3941 ecs->random_signal = 0;
3942 stopped_by_random_signal = 0;
3943
3944 /* Hide inlined functions starting here, unless we just performed stepi or
3945 nexti. After stepi and nexti, always show the innermost frame (not any
3946 inline function call sites). */
3947 if (ecs->event_thread->control.step_range_end != 1)
3948 skip_inline_frames (ecs->ptid);
3949
3950 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3951 && ecs->event_thread->control.trap_expected
3952 && gdbarch_single_step_through_delay_p (gdbarch)
3953 && currently_stepping (ecs->event_thread))
3954 {
3955 /* We're trying to step off a breakpoint. Turns out that we're
3956 also on an instruction that needs to be stepped multiple
3957 times before it's been fully executing. E.g., architectures
3958 with a delay slot. It needs to be stepped twice, once for
3959 the instruction and once for the delay slot. */
3960 int step_through_delay
3961 = gdbarch_single_step_through_delay (gdbarch, frame);
3962
3963 if (debug_infrun && step_through_delay)
3964 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3965 if (ecs->event_thread->control.step_range_end == 0
3966 && step_through_delay)
3967 {
3968 /* The user issued a continue when stopped at a breakpoint.
3969 Set up for another trap and get out of here. */
3970 ecs->event_thread->stepping_over_breakpoint = 1;
3971 keep_going (ecs);
3972 return;
3973 }
3974 else if (step_through_delay)
3975 {
3976 /* The user issued a step when stopped at a breakpoint.
3977 Maybe we should stop, maybe we should not - the delay
3978 slot *might* correspond to a line of source. In any
3979 case, don't decide that here, just set
3980 ecs->stepping_over_breakpoint, making sure we
3981 single-step again before breakpoints are re-inserted. */
3982 ecs->event_thread->stepping_over_breakpoint = 1;
3983 }
3984 }
3985
3986 /* Look at the cause of the stop, and decide what to do.
3987 The alternatives are:
3988 1) stop_stepping and return; to really stop and return to the debugger,
3989 2) keep_going and return to start up again
3990 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
3991 3) set ecs->random_signal to 1, and the decision between 1 and 2
3992 will be made according to the signal handling tables. */
3993
3994 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3995 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3996 || stop_soon == STOP_QUIETLY_REMOTE)
3997 {
3998 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3999 && stop_after_trap)
4000 {
4001 if (debug_infrun)
4002 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4003 stop_print_frame = 0;
4004 stop_stepping (ecs);
4005 return;
4006 }
4007
4008 /* This is originated from start_remote(), start_inferior() and
4009 shared libraries hook functions. */
4010 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4011 {
4012 if (debug_infrun)
4013 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4014 stop_stepping (ecs);
4015 return;
4016 }
4017
4018 /* This originates from attach_command(). We need to overwrite
4019 the stop_signal here, because some kernels don't ignore a
4020 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4021 See more comments in inferior.h. On the other hand, if we
4022 get a non-SIGSTOP, report it to the user - assume the backend
4023 will handle the SIGSTOP if it should show up later.
4024
4025 Also consider that the attach is complete when we see a
4026 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4027 target extended-remote report it instead of a SIGSTOP
4028 (e.g. gdbserver). We already rely on SIGTRAP being our
4029 signal, so this is no exception.
4030
4031 Also consider that the attach is complete when we see a
4032 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4033 the target to stop all threads of the inferior, in case the
4034 low level attach operation doesn't stop them implicitly. If
4035 they weren't stopped implicitly, then the stub will report a
4036 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4037 other than GDB's request. */
4038 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4039 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4040 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4041 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
4042 {
4043 stop_stepping (ecs);
4044 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4045 return;
4046 }
4047
4048 /* See if there is a breakpoint at the current PC. */
4049 ecs->event_thread->control.stop_bpstat
4050 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4051 stop_pc, ecs->ptid);
4052
4053 /* Following in case break condition called a
4054 function. */
4055 stop_print_frame = 1;
4056
4057 /* This is where we handle "moribund" watchpoints. Unlike
4058 software breakpoints traps, hardware watchpoint traps are
4059 always distinguishable from random traps. If no high-level
4060 watchpoint is associated with the reported stop data address
4061 anymore, then the bpstat does not explain the signal ---
4062 simply make sure to ignore it if `stopped_by_watchpoint' is
4063 set. */
4064
4065 if (debug_infrun
4066 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4067 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4068 && stopped_by_watchpoint)
4069 fprintf_unfiltered (gdb_stdlog,
4070 "infrun: no user watchpoint explains "
4071 "watchpoint SIGTRAP, ignoring\n");
4072
4073 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4074 at one stage in the past included checks for an inferior
4075 function call's call dummy's return breakpoint. The original
4076 comment, that went with the test, read:
4077
4078 ``End of a stack dummy. Some systems (e.g. Sony news) give
4079 another signal besides SIGTRAP, so check here as well as
4080 above.''
4081
4082 If someone ever tries to get call dummys on a
4083 non-executable stack to work (where the target would stop
4084 with something like a SIGSEGV), then those tests might need
4085 to be re-instated. Given, however, that the tests were only
4086 enabled when momentary breakpoints were not being used, I
4087 suspect that it won't be the case.
4088
4089 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4090 be necessary for call dummies on a non-executable stack on
4091 SPARC. */
4092
4093 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
4094 ecs->random_signal
4095 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4096 || stopped_by_watchpoint
4097 || ecs->event_thread->control.trap_expected
4098 || (ecs->event_thread->control.step_range_end
4099 && (ecs->event_thread->control.step_resume_breakpoint
4100 == NULL)));
4101 else
4102 {
4103 ecs->random_signal = !bpstat_explains_signal
4104 (ecs->event_thread->control.stop_bpstat);
4105 if (!ecs->random_signal)
4106 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
4107 }
4108 }
4109
4110 /* When we reach this point, we've pretty much decided
4111 that the reason for stopping must've been a random
4112 (unexpected) signal. */
4113
4114 else
4115 ecs->random_signal = 1;
4116
4117 process_event_stop_test:
4118
4119 /* Re-fetch current thread's frame in case we did a
4120 "goto process_event_stop_test" above. */
4121 frame = get_current_frame ();
4122 gdbarch = get_frame_arch (frame);
4123
4124 /* For the program's own signals, act according to
4125 the signal handling tables. */
4126
4127 if (ecs->random_signal)
4128 {
4129 /* Signal not for debugging purposes. */
4130 int printed = 0;
4131 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4132
4133 if (debug_infrun)
4134 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4135 ecs->event_thread->suspend.stop_signal);
4136
4137 stopped_by_random_signal = 1;
4138
4139 if (signal_print[ecs->event_thread->suspend.stop_signal])
4140 {
4141 printed = 1;
4142 target_terminal_ours_for_output ();
4143 print_signal_received_reason
4144 (ecs->event_thread->suspend.stop_signal);
4145 }
4146 /* Always stop on signals if we're either just gaining control
4147 of the program, or the user explicitly requested this thread
4148 to remain stopped. */
4149 if (stop_soon != NO_STOP_QUIETLY
4150 || ecs->event_thread->stop_requested
4151 || (!inf->detaching
4152 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4153 {
4154 stop_stepping (ecs);
4155 return;
4156 }
4157 /* If not going to stop, give terminal back
4158 if we took it away. */
4159 else if (printed)
4160 target_terminal_inferior ();
4161
4162 /* Clear the signal if it should not be passed. */
4163 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4164 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4165
4166 if (ecs->event_thread->prev_pc == stop_pc
4167 && ecs->event_thread->control.trap_expected
4168 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4169 {
4170 /* We were just starting a new sequence, attempting to
4171 single-step off of a breakpoint and expecting a SIGTRAP.
4172 Instead this signal arrives. This signal will take us out
4173 of the stepping range so GDB needs to remember to, when
4174 the signal handler returns, resume stepping off that
4175 breakpoint. */
4176 /* To simplify things, "continue" is forced to use the same
4177 code paths as single-step - set a breakpoint at the
4178 signal return address and then, once hit, step off that
4179 breakpoint. */
4180 if (debug_infrun)
4181 fprintf_unfiltered (gdb_stdlog,
4182 "infrun: signal arrived while stepping over "
4183 "breakpoint\n");
4184
4185 insert_hp_step_resume_breakpoint_at_frame (frame);
4186 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4187 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4188 ecs->event_thread->control.trap_expected = 0;
4189 keep_going (ecs);
4190 return;
4191 }
4192
4193 if (ecs->event_thread->control.step_range_end != 0
4194 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4195 && (ecs->event_thread->control.step_range_start <= stop_pc
4196 && stop_pc < ecs->event_thread->control.step_range_end)
4197 && frame_id_eq (get_stack_frame_id (frame),
4198 ecs->event_thread->control.step_stack_frame_id)
4199 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4200 {
4201 /* The inferior is about to take a signal that will take it
4202 out of the single step range. Set a breakpoint at the
4203 current PC (which is presumably where the signal handler
4204 will eventually return) and then allow the inferior to
4205 run free.
4206
4207 Note that this is only needed for a signal delivered
4208 while in the single-step range. Nested signals aren't a
4209 problem as they eventually all return. */
4210 if (debug_infrun)
4211 fprintf_unfiltered (gdb_stdlog,
4212 "infrun: signal may take us out of "
4213 "single-step range\n");
4214
4215 insert_hp_step_resume_breakpoint_at_frame (frame);
4216 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4217 ecs->event_thread->control.trap_expected = 0;
4218 keep_going (ecs);
4219 return;
4220 }
4221
4222 /* Note: step_resume_breakpoint may be non-NULL. This occures
4223 when either there's a nested signal, or when there's a
4224 pending signal enabled just as the signal handler returns
4225 (leaving the inferior at the step-resume-breakpoint without
4226 actually executing it). Either way continue until the
4227 breakpoint is really hit. */
4228 keep_going (ecs);
4229 return;
4230 }
4231
4232 /* Handle cases caused by hitting a breakpoint. */
4233 {
4234 CORE_ADDR jmp_buf_pc;
4235 struct bpstat_what what;
4236
4237 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4238
4239 if (what.call_dummy)
4240 {
4241 stop_stack_dummy = what.call_dummy;
4242 }
4243
4244 /* If we hit an internal event that triggers symbol changes, the
4245 current frame will be invalidated within bpstat_what (e.g., if
4246 we hit an internal solib event). Re-fetch it. */
4247 frame = get_current_frame ();
4248 gdbarch = get_frame_arch (frame);
4249
4250 switch (what.main_action)
4251 {
4252 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4253 /* If we hit the breakpoint at longjmp while stepping, we
4254 install a momentary breakpoint at the target of the
4255 jmp_buf. */
4256
4257 if (debug_infrun)
4258 fprintf_unfiltered (gdb_stdlog,
4259 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4260
4261 ecs->event_thread->stepping_over_breakpoint = 1;
4262
4263 if (what.is_longjmp)
4264 {
4265 if (!gdbarch_get_longjmp_target_p (gdbarch)
4266 || !gdbarch_get_longjmp_target (gdbarch,
4267 frame, &jmp_buf_pc))
4268 {
4269 if (debug_infrun)
4270 fprintf_unfiltered (gdb_stdlog,
4271 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4272 "(!gdbarch_get_longjmp_target)\n");
4273 keep_going (ecs);
4274 return;
4275 }
4276
4277 /* We're going to replace the current step-resume breakpoint
4278 with a longjmp-resume breakpoint. */
4279 delete_step_resume_breakpoint (ecs->event_thread);
4280
4281 /* Insert a breakpoint at resume address. */
4282 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4283 }
4284 else
4285 {
4286 struct symbol *func = get_frame_function (frame);
4287
4288 if (func)
4289 check_exception_resume (ecs, frame, func);
4290 }
4291 keep_going (ecs);
4292 return;
4293
4294 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4295 if (debug_infrun)
4296 fprintf_unfiltered (gdb_stdlog,
4297 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4298
4299 if (what.is_longjmp)
4300 {
4301 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4302 != NULL);
4303 delete_step_resume_breakpoint (ecs->event_thread);
4304 }
4305 else
4306 {
4307 /* There are several cases to consider.
4308
4309 1. The initiating frame no longer exists. In this case
4310 we must stop, because the exception has gone too far.
4311
4312 2. The initiating frame exists, and is the same as the
4313 current frame. We stop, because the exception has been
4314 caught.
4315
4316 3. The initiating frame exists and is different from
4317 the current frame. This means the exception has been
4318 caught beneath the initiating frame, so keep going. */
4319 struct frame_info *init_frame
4320 = frame_find_by_id (ecs->event_thread->initiating_frame);
4321
4322 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4323 != NULL);
4324 delete_exception_resume_breakpoint (ecs->event_thread);
4325
4326 if (init_frame)
4327 {
4328 struct frame_id current_id
4329 = get_frame_id (get_current_frame ());
4330 if (frame_id_eq (current_id,
4331 ecs->event_thread->initiating_frame))
4332 {
4333 /* Case 2. Fall through. */
4334 }
4335 else
4336 {
4337 /* Case 3. */
4338 keep_going (ecs);
4339 return;
4340 }
4341 }
4342
4343 /* For Cases 1 and 2, remove the step-resume breakpoint,
4344 if it exists. */
4345 delete_step_resume_breakpoint (ecs->event_thread);
4346 }
4347
4348 ecs->event_thread->control.stop_step = 1;
4349 print_end_stepping_range_reason ();
4350 stop_stepping (ecs);
4351 return;
4352
4353 case BPSTAT_WHAT_SINGLE:
4354 if (debug_infrun)
4355 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4356 ecs->event_thread->stepping_over_breakpoint = 1;
4357 /* Still need to check other stuff, at least the case
4358 where we are stepping and step out of the right range. */
4359 break;
4360
4361 case BPSTAT_WHAT_STEP_RESUME:
4362 if (debug_infrun)
4363 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4364
4365 delete_step_resume_breakpoint (ecs->event_thread);
4366 if (ecs->event_thread->control.proceed_to_finish
4367 && execution_direction == EXEC_REVERSE)
4368 {
4369 struct thread_info *tp = ecs->event_thread;
4370
4371 /* We are finishing a function in reverse, and just hit
4372 the step-resume breakpoint at the start address of the
4373 function, and we're almost there -- just need to back
4374 up by one more single-step, which should take us back
4375 to the function call. */
4376 tp->control.step_range_start = tp->control.step_range_end = 1;
4377 keep_going (ecs);
4378 return;
4379 }
4380 if (stop_pc == ecs->stop_func_start
4381 && execution_direction == EXEC_REVERSE)
4382 {
4383 /* We are stepping over a function call in reverse, and
4384 just hit the step-resume breakpoint at the start
4385 address of the function. Go back to single-stepping,
4386 which should take us back to the function call. */
4387 ecs->event_thread->stepping_over_breakpoint = 1;
4388 keep_going (ecs);
4389 return;
4390 }
4391 break;
4392
4393 case BPSTAT_WHAT_STOP_NOISY:
4394 if (debug_infrun)
4395 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4396 stop_print_frame = 1;
4397
4398 /* We are about to nuke the step_resume_breakpointt via the
4399 cleanup chain, so no need to worry about it here. */
4400
4401 stop_stepping (ecs);
4402 return;
4403
4404 case BPSTAT_WHAT_STOP_SILENT:
4405 if (debug_infrun)
4406 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4407 stop_print_frame = 0;
4408
4409 /* We are about to nuke the step_resume_breakpoin via the
4410 cleanup chain, so no need to worry about it here. */
4411
4412 stop_stepping (ecs);
4413 return;
4414
4415 case BPSTAT_WHAT_HP_STEP_RESUME:
4416 if (debug_infrun)
4417 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4418
4419 delete_step_resume_breakpoint (ecs->event_thread);
4420 if (ecs->event_thread->step_after_step_resume_breakpoint)
4421 {
4422 /* Back when the step-resume breakpoint was inserted, we
4423 were trying to single-step off a breakpoint. Go back
4424 to doing that. */
4425 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4426 ecs->event_thread->stepping_over_breakpoint = 1;
4427 keep_going (ecs);
4428 return;
4429 }
4430 break;
4431
4432 case BPSTAT_WHAT_KEEP_CHECKING:
4433 break;
4434 }
4435 }
4436
4437 /* We come here if we hit a breakpoint but should not
4438 stop for it. Possibly we also were stepping
4439 and should stop for that. So fall through and
4440 test for stepping. But, if not stepping,
4441 do not stop. */
4442
4443 /* In all-stop mode, if we're currently stepping but have stopped in
4444 some other thread, we need to switch back to the stepped thread. */
4445 if (!non_stop)
4446 {
4447 struct thread_info *tp;
4448
4449 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4450 ecs->event_thread);
4451 if (tp)
4452 {
4453 /* However, if the current thread is blocked on some internal
4454 breakpoint, and we simply need to step over that breakpoint
4455 to get it going again, do that first. */
4456 if ((ecs->event_thread->control.trap_expected
4457 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
4458 || ecs->event_thread->stepping_over_breakpoint)
4459 {
4460 keep_going (ecs);
4461 return;
4462 }
4463
4464 /* If the stepping thread exited, then don't try to switch
4465 back and resume it, which could fail in several different
4466 ways depending on the target. Instead, just keep going.
4467
4468 We can find a stepping dead thread in the thread list in
4469 two cases:
4470
4471 - The target supports thread exit events, and when the
4472 target tries to delete the thread from the thread list,
4473 inferior_ptid pointed at the exiting thread. In such
4474 case, calling delete_thread does not really remove the
4475 thread from the list; instead, the thread is left listed,
4476 with 'exited' state.
4477
4478 - The target's debug interface does not support thread
4479 exit events, and so we have no idea whatsoever if the
4480 previously stepping thread is still alive. For that
4481 reason, we need to synchronously query the target
4482 now. */
4483 if (is_exited (tp->ptid)
4484 || !target_thread_alive (tp->ptid))
4485 {
4486 if (debug_infrun)
4487 fprintf_unfiltered (gdb_stdlog,
4488 "infrun: not switching back to "
4489 "stepped thread, it has vanished\n");
4490
4491 delete_thread (tp->ptid);
4492 keep_going (ecs);
4493 return;
4494 }
4495
4496 /* Otherwise, we no longer expect a trap in the current thread.
4497 Clear the trap_expected flag before switching back -- this is
4498 what keep_going would do as well, if we called it. */
4499 ecs->event_thread->control.trap_expected = 0;
4500
4501 if (debug_infrun)
4502 fprintf_unfiltered (gdb_stdlog,
4503 "infrun: switching back to stepped thread\n");
4504
4505 ecs->event_thread = tp;
4506 ecs->ptid = tp->ptid;
4507 context_switch (ecs->ptid);
4508 keep_going (ecs);
4509 return;
4510 }
4511 }
4512
4513 /* Are we stepping to get the inferior out of the dynamic linker's
4514 hook (and possibly the dld itself) after catching a shlib
4515 event? */
4516 if (ecs->event_thread->stepping_through_solib_after_catch)
4517 {
4518 #if defined(SOLIB_ADD)
4519 /* Have we reached our destination? If not, keep going. */
4520 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
4521 {
4522 if (debug_infrun)
4523 fprintf_unfiltered (gdb_stdlog,
4524 "infrun: stepping in dynamic linker\n");
4525 ecs->event_thread->stepping_over_breakpoint = 1;
4526 keep_going (ecs);
4527 return;
4528 }
4529 #endif
4530 if (debug_infrun)
4531 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
4532 /* Else, stop and report the catchpoint(s) whose triggering
4533 caused us to begin stepping. */
4534 ecs->event_thread->stepping_through_solib_after_catch = 0;
4535 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4536 ecs->event_thread->control.stop_bpstat
4537 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4538 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
4539 stop_print_frame = 1;
4540 stop_stepping (ecs);
4541 return;
4542 }
4543
4544 if (ecs->event_thread->control.step_resume_breakpoint)
4545 {
4546 if (debug_infrun)
4547 fprintf_unfiltered (gdb_stdlog,
4548 "infrun: step-resume breakpoint is inserted\n");
4549
4550 /* Having a step-resume breakpoint overrides anything
4551 else having to do with stepping commands until
4552 that breakpoint is reached. */
4553 keep_going (ecs);
4554 return;
4555 }
4556
4557 if (ecs->event_thread->control.step_range_end == 0)
4558 {
4559 if (debug_infrun)
4560 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4561 /* Likewise if we aren't even stepping. */
4562 keep_going (ecs);
4563 return;
4564 }
4565
4566 /* Re-fetch current thread's frame in case the code above caused
4567 the frame cache to be re-initialized, making our FRAME variable
4568 a dangling pointer. */
4569 frame = get_current_frame ();
4570 gdbarch = get_frame_arch (frame);
4571
4572 /* If stepping through a line, keep going if still within it.
4573
4574 Note that step_range_end is the address of the first instruction
4575 beyond the step range, and NOT the address of the last instruction
4576 within it!
4577
4578 Note also that during reverse execution, we may be stepping
4579 through a function epilogue and therefore must detect when
4580 the current-frame changes in the middle of a line. */
4581
4582 if (stop_pc >= ecs->event_thread->control.step_range_start
4583 && stop_pc < ecs->event_thread->control.step_range_end
4584 && (execution_direction != EXEC_REVERSE
4585 || frame_id_eq (get_frame_id (frame),
4586 ecs->event_thread->control.step_frame_id)))
4587 {
4588 if (debug_infrun)
4589 fprintf_unfiltered
4590 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4591 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4592 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4593
4594 /* When stepping backward, stop at beginning of line range
4595 (unless it's the function entry point, in which case
4596 keep going back to the call point). */
4597 if (stop_pc == ecs->event_thread->control.step_range_start
4598 && stop_pc != ecs->stop_func_start
4599 && execution_direction == EXEC_REVERSE)
4600 {
4601 ecs->event_thread->control.stop_step = 1;
4602 print_end_stepping_range_reason ();
4603 stop_stepping (ecs);
4604 }
4605 else
4606 keep_going (ecs);
4607
4608 return;
4609 }
4610
4611 /* We stepped out of the stepping range. */
4612
4613 /* If we are stepping at the source level and entered the runtime
4614 loader dynamic symbol resolution code...
4615
4616 EXEC_FORWARD: we keep on single stepping until we exit the run
4617 time loader code and reach the callee's address.
4618
4619 EXEC_REVERSE: we've already executed the callee (backward), and
4620 the runtime loader code is handled just like any other
4621 undebuggable function call. Now we need only keep stepping
4622 backward through the trampoline code, and that's handled further
4623 down, so there is nothing for us to do here. */
4624
4625 if (execution_direction != EXEC_REVERSE
4626 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4627 && in_solib_dynsym_resolve_code (stop_pc))
4628 {
4629 CORE_ADDR pc_after_resolver =
4630 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4631
4632 if (debug_infrun)
4633 fprintf_unfiltered (gdb_stdlog,
4634 "infrun: stepped into dynsym resolve code\n");
4635
4636 if (pc_after_resolver)
4637 {
4638 /* Set up a step-resume breakpoint at the address
4639 indicated by SKIP_SOLIB_RESOLVER. */
4640 struct symtab_and_line sr_sal;
4641
4642 init_sal (&sr_sal);
4643 sr_sal.pc = pc_after_resolver;
4644 sr_sal.pspace = get_frame_program_space (frame);
4645
4646 insert_step_resume_breakpoint_at_sal (gdbarch,
4647 sr_sal, null_frame_id);
4648 }
4649
4650 keep_going (ecs);
4651 return;
4652 }
4653
4654 if (ecs->event_thread->control.step_range_end != 1
4655 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4656 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4657 && get_frame_type (frame) == SIGTRAMP_FRAME)
4658 {
4659 if (debug_infrun)
4660 fprintf_unfiltered (gdb_stdlog,
4661 "infrun: stepped into signal trampoline\n");
4662 /* The inferior, while doing a "step" or "next", has ended up in
4663 a signal trampoline (either by a signal being delivered or by
4664 the signal handler returning). Just single-step until the
4665 inferior leaves the trampoline (either by calling the handler
4666 or returning). */
4667 keep_going (ecs);
4668 return;
4669 }
4670
4671 /* Check for subroutine calls. The check for the current frame
4672 equalling the step ID is not necessary - the check of the
4673 previous frame's ID is sufficient - but it is a common case and
4674 cheaper than checking the previous frame's ID.
4675
4676 NOTE: frame_id_eq will never report two invalid frame IDs as
4677 being equal, so to get into this block, both the current and
4678 previous frame must have valid frame IDs. */
4679 /* The outer_frame_id check is a heuristic to detect stepping
4680 through startup code. If we step over an instruction which
4681 sets the stack pointer from an invalid value to a valid value,
4682 we may detect that as a subroutine call from the mythical
4683 "outermost" function. This could be fixed by marking
4684 outermost frames as !stack_p,code_p,special_p. Then the
4685 initial outermost frame, before sp was valid, would
4686 have code_addr == &_start. See the comment in frame_id_eq
4687 for more. */
4688 if (!frame_id_eq (get_stack_frame_id (frame),
4689 ecs->event_thread->control.step_stack_frame_id)
4690 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4691 ecs->event_thread->control.step_stack_frame_id)
4692 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4693 outer_frame_id)
4694 || step_start_function != find_pc_function (stop_pc))))
4695 {
4696 CORE_ADDR real_stop_pc;
4697
4698 if (debug_infrun)
4699 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4700
4701 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4702 || ((ecs->event_thread->control.step_range_end == 1)
4703 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4704 ecs->stop_func_start)))
4705 {
4706 /* I presume that step_over_calls is only 0 when we're
4707 supposed to be stepping at the assembly language level
4708 ("stepi"). Just stop. */
4709 /* Also, maybe we just did a "nexti" inside a prolog, so we
4710 thought it was a subroutine call but it was not. Stop as
4711 well. FENN */
4712 /* And this works the same backward as frontward. MVS */
4713 ecs->event_thread->control.stop_step = 1;
4714 print_end_stepping_range_reason ();
4715 stop_stepping (ecs);
4716 return;
4717 }
4718
4719 /* Reverse stepping through solib trampolines. */
4720
4721 if (execution_direction == EXEC_REVERSE
4722 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4723 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4724 || (ecs->stop_func_start == 0
4725 && in_solib_dynsym_resolve_code (stop_pc))))
4726 {
4727 /* Any solib trampoline code can be handled in reverse
4728 by simply continuing to single-step. We have already
4729 executed the solib function (backwards), and a few
4730 steps will take us back through the trampoline to the
4731 caller. */
4732 keep_going (ecs);
4733 return;
4734 }
4735
4736 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4737 {
4738 /* We're doing a "next".
4739
4740 Normal (forward) execution: set a breakpoint at the
4741 callee's return address (the address at which the caller
4742 will resume).
4743
4744 Reverse (backward) execution. set the step-resume
4745 breakpoint at the start of the function that we just
4746 stepped into (backwards), and continue to there. When we
4747 get there, we'll need to single-step back to the caller. */
4748
4749 if (execution_direction == EXEC_REVERSE)
4750 {
4751 struct symtab_and_line sr_sal;
4752
4753 /* Normal function call return (static or dynamic). */
4754 init_sal (&sr_sal);
4755 sr_sal.pc = ecs->stop_func_start;
4756 sr_sal.pspace = get_frame_program_space (frame);
4757 insert_step_resume_breakpoint_at_sal (gdbarch,
4758 sr_sal, null_frame_id);
4759 }
4760 else
4761 insert_step_resume_breakpoint_at_caller (frame);
4762
4763 keep_going (ecs);
4764 return;
4765 }
4766
4767 /* If we are in a function call trampoline (a stub between the
4768 calling routine and the real function), locate the real
4769 function. That's what tells us (a) whether we want to step
4770 into it at all, and (b) what prologue we want to run to the
4771 end of, if we do step into it. */
4772 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4773 if (real_stop_pc == 0)
4774 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4775 if (real_stop_pc != 0)
4776 ecs->stop_func_start = real_stop_pc;
4777
4778 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4779 {
4780 struct symtab_and_line sr_sal;
4781
4782 init_sal (&sr_sal);
4783 sr_sal.pc = ecs->stop_func_start;
4784 sr_sal.pspace = get_frame_program_space (frame);
4785
4786 insert_step_resume_breakpoint_at_sal (gdbarch,
4787 sr_sal, null_frame_id);
4788 keep_going (ecs);
4789 return;
4790 }
4791
4792 /* If we have line number information for the function we are
4793 thinking of stepping into, step into it.
4794
4795 If there are several symtabs at that PC (e.g. with include
4796 files), just want to know whether *any* of them have line
4797 numbers. find_pc_line handles this. */
4798 {
4799 struct symtab_and_line tmp_sal;
4800
4801 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4802 if (tmp_sal.line != 0)
4803 {
4804 if (execution_direction == EXEC_REVERSE)
4805 handle_step_into_function_backward (gdbarch, ecs);
4806 else
4807 handle_step_into_function (gdbarch, ecs);
4808 return;
4809 }
4810 }
4811
4812 /* If we have no line number and the step-stop-if-no-debug is
4813 set, we stop the step so that the user has a chance to switch
4814 in assembly mode. */
4815 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4816 && step_stop_if_no_debug)
4817 {
4818 ecs->event_thread->control.stop_step = 1;
4819 print_end_stepping_range_reason ();
4820 stop_stepping (ecs);
4821 return;
4822 }
4823
4824 if (execution_direction == EXEC_REVERSE)
4825 {
4826 /* Set a breakpoint at callee's start address.
4827 From there we can step once and be back in the caller. */
4828 struct symtab_and_line sr_sal;
4829
4830 init_sal (&sr_sal);
4831 sr_sal.pc = ecs->stop_func_start;
4832 sr_sal.pspace = get_frame_program_space (frame);
4833 insert_step_resume_breakpoint_at_sal (gdbarch,
4834 sr_sal, null_frame_id);
4835 }
4836 else
4837 /* Set a breakpoint at callee's return address (the address
4838 at which the caller will resume). */
4839 insert_step_resume_breakpoint_at_caller (frame);
4840
4841 keep_going (ecs);
4842 return;
4843 }
4844
4845 /* Reverse stepping through solib trampolines. */
4846
4847 if (execution_direction == EXEC_REVERSE
4848 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4849 {
4850 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4851 || (ecs->stop_func_start == 0
4852 && in_solib_dynsym_resolve_code (stop_pc)))
4853 {
4854 /* Any solib trampoline code can be handled in reverse
4855 by simply continuing to single-step. We have already
4856 executed the solib function (backwards), and a few
4857 steps will take us back through the trampoline to the
4858 caller. */
4859 keep_going (ecs);
4860 return;
4861 }
4862 else if (in_solib_dynsym_resolve_code (stop_pc))
4863 {
4864 /* Stepped backward into the solib dynsym resolver.
4865 Set a breakpoint at its start and continue, then
4866 one more step will take us out. */
4867 struct symtab_and_line sr_sal;
4868
4869 init_sal (&sr_sal);
4870 sr_sal.pc = ecs->stop_func_start;
4871 sr_sal.pspace = get_frame_program_space (frame);
4872 insert_step_resume_breakpoint_at_sal (gdbarch,
4873 sr_sal, null_frame_id);
4874 keep_going (ecs);
4875 return;
4876 }
4877 }
4878
4879 /* If we're in the return path from a shared library trampoline,
4880 we want to proceed through the trampoline when stepping. */
4881 if (gdbarch_in_solib_return_trampoline (gdbarch,
4882 stop_pc, ecs->stop_func_name))
4883 {
4884 /* Determine where this trampoline returns. */
4885 CORE_ADDR real_stop_pc;
4886
4887 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4888
4889 if (debug_infrun)
4890 fprintf_unfiltered (gdb_stdlog,
4891 "infrun: stepped into solib return tramp\n");
4892
4893 /* Only proceed through if we know where it's going. */
4894 if (real_stop_pc)
4895 {
4896 /* And put the step-breakpoint there and go until there. */
4897 struct symtab_and_line sr_sal;
4898
4899 init_sal (&sr_sal); /* initialize to zeroes */
4900 sr_sal.pc = real_stop_pc;
4901 sr_sal.section = find_pc_overlay (sr_sal.pc);
4902 sr_sal.pspace = get_frame_program_space (frame);
4903
4904 /* Do not specify what the fp should be when we stop since
4905 on some machines the prologue is where the new fp value
4906 is established. */
4907 insert_step_resume_breakpoint_at_sal (gdbarch,
4908 sr_sal, null_frame_id);
4909
4910 /* Restart without fiddling with the step ranges or
4911 other state. */
4912 keep_going (ecs);
4913 return;
4914 }
4915 }
4916
4917 stop_pc_sal = find_pc_line (stop_pc, 0);
4918
4919 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4920 the trampoline processing logic, however, there are some trampolines
4921 that have no names, so we should do trampoline handling first. */
4922 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4923 && ecs->stop_func_name == NULL
4924 && stop_pc_sal.line == 0)
4925 {
4926 if (debug_infrun)
4927 fprintf_unfiltered (gdb_stdlog,
4928 "infrun: stepped into undebuggable function\n");
4929
4930 /* The inferior just stepped into, or returned to, an
4931 undebuggable function (where there is no debugging information
4932 and no line number corresponding to the address where the
4933 inferior stopped). Since we want to skip this kind of code,
4934 we keep going until the inferior returns from this
4935 function - unless the user has asked us not to (via
4936 set step-mode) or we no longer know how to get back
4937 to the call site. */
4938 if (step_stop_if_no_debug
4939 || !frame_id_p (frame_unwind_caller_id (frame)))
4940 {
4941 /* If we have no line number and the step-stop-if-no-debug
4942 is set, we stop the step so that the user has a chance to
4943 switch in assembly mode. */
4944 ecs->event_thread->control.stop_step = 1;
4945 print_end_stepping_range_reason ();
4946 stop_stepping (ecs);
4947 return;
4948 }
4949 else
4950 {
4951 /* Set a breakpoint at callee's return address (the address
4952 at which the caller will resume). */
4953 insert_step_resume_breakpoint_at_caller (frame);
4954 keep_going (ecs);
4955 return;
4956 }
4957 }
4958
4959 if (ecs->event_thread->control.step_range_end == 1)
4960 {
4961 /* It is stepi or nexti. We always want to stop stepping after
4962 one instruction. */
4963 if (debug_infrun)
4964 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
4965 ecs->event_thread->control.stop_step = 1;
4966 print_end_stepping_range_reason ();
4967 stop_stepping (ecs);
4968 return;
4969 }
4970
4971 if (stop_pc_sal.line == 0)
4972 {
4973 /* We have no line number information. That means to stop
4974 stepping (does this always happen right after one instruction,
4975 when we do "s" in a function with no line numbers,
4976 or can this happen as a result of a return or longjmp?). */
4977 if (debug_infrun)
4978 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
4979 ecs->event_thread->control.stop_step = 1;
4980 print_end_stepping_range_reason ();
4981 stop_stepping (ecs);
4982 return;
4983 }
4984
4985 /* Look for "calls" to inlined functions, part one. If the inline
4986 frame machinery detected some skipped call sites, we have entered
4987 a new inline function. */
4988
4989 if (frame_id_eq (get_frame_id (get_current_frame ()),
4990 ecs->event_thread->control.step_frame_id)
4991 && inline_skipped_frames (ecs->ptid))
4992 {
4993 struct symtab_and_line call_sal;
4994
4995 if (debug_infrun)
4996 fprintf_unfiltered (gdb_stdlog,
4997 "infrun: stepped into inlined function\n");
4998
4999 find_frame_sal (get_current_frame (), &call_sal);
5000
5001 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5002 {
5003 /* For "step", we're going to stop. But if the call site
5004 for this inlined function is on the same source line as
5005 we were previously stepping, go down into the function
5006 first. Otherwise stop at the call site. */
5007
5008 if (call_sal.line == ecs->event_thread->current_line
5009 && call_sal.symtab == ecs->event_thread->current_symtab)
5010 step_into_inline_frame (ecs->ptid);
5011
5012 ecs->event_thread->control.stop_step = 1;
5013 print_end_stepping_range_reason ();
5014 stop_stepping (ecs);
5015 return;
5016 }
5017 else
5018 {
5019 /* For "next", we should stop at the call site if it is on a
5020 different source line. Otherwise continue through the
5021 inlined function. */
5022 if (call_sal.line == ecs->event_thread->current_line
5023 && call_sal.symtab == ecs->event_thread->current_symtab)
5024 keep_going (ecs);
5025 else
5026 {
5027 ecs->event_thread->control.stop_step = 1;
5028 print_end_stepping_range_reason ();
5029 stop_stepping (ecs);
5030 }
5031 return;
5032 }
5033 }
5034
5035 /* Look for "calls" to inlined functions, part two. If we are still
5036 in the same real function we were stepping through, but we have
5037 to go further up to find the exact frame ID, we are stepping
5038 through a more inlined call beyond its call site. */
5039
5040 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5041 && !frame_id_eq (get_frame_id (get_current_frame ()),
5042 ecs->event_thread->control.step_frame_id)
5043 && stepped_in_from (get_current_frame (),
5044 ecs->event_thread->control.step_frame_id))
5045 {
5046 if (debug_infrun)
5047 fprintf_unfiltered (gdb_stdlog,
5048 "infrun: stepping through inlined function\n");
5049
5050 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5051 keep_going (ecs);
5052 else
5053 {
5054 ecs->event_thread->control.stop_step = 1;
5055 print_end_stepping_range_reason ();
5056 stop_stepping (ecs);
5057 }
5058 return;
5059 }
5060
5061 if ((stop_pc == stop_pc_sal.pc)
5062 && (ecs->event_thread->current_line != stop_pc_sal.line
5063 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5064 {
5065 /* We are at the start of a different line. So stop. Note that
5066 we don't stop if we step into the middle of a different line.
5067 That is said to make things like for (;;) statements work
5068 better. */
5069 if (debug_infrun)
5070 fprintf_unfiltered (gdb_stdlog,
5071 "infrun: stepped to a different line\n");
5072 ecs->event_thread->control.stop_step = 1;
5073 print_end_stepping_range_reason ();
5074 stop_stepping (ecs);
5075 return;
5076 }
5077
5078 /* We aren't done stepping.
5079
5080 Optimize by setting the stepping range to the line.
5081 (We might not be in the original line, but if we entered a
5082 new line in mid-statement, we continue stepping. This makes
5083 things like for(;;) statements work better.) */
5084
5085 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5086 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5087 set_step_info (frame, stop_pc_sal);
5088
5089 if (debug_infrun)
5090 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5091 keep_going (ecs);
5092 }
5093
5094 /* Is thread TP in the middle of single-stepping? */
5095
5096 static int
5097 currently_stepping (struct thread_info *tp)
5098 {
5099 return ((tp->control.step_range_end
5100 && tp->control.step_resume_breakpoint == NULL)
5101 || tp->control.trap_expected
5102 || tp->stepping_through_solib_after_catch
5103 || bpstat_should_step ());
5104 }
5105
5106 /* Returns true if any thread *but* the one passed in "data" is in the
5107 middle of stepping or of handling a "next". */
5108
5109 static int
5110 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5111 {
5112 if (tp == data)
5113 return 0;
5114
5115 return (tp->control.step_range_end
5116 || tp->control.trap_expected
5117 || tp->stepping_through_solib_after_catch);
5118 }
5119
5120 /* Inferior has stepped into a subroutine call with source code that
5121 we should not step over. Do step to the first line of code in
5122 it. */
5123
5124 static void
5125 handle_step_into_function (struct gdbarch *gdbarch,
5126 struct execution_control_state *ecs)
5127 {
5128 struct symtab *s;
5129 struct symtab_and_line stop_func_sal, sr_sal;
5130
5131 s = find_pc_symtab (stop_pc);
5132 if (s && s->language != language_asm)
5133 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5134 ecs->stop_func_start);
5135
5136 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5137 /* Use the step_resume_break to step until the end of the prologue,
5138 even if that involves jumps (as it seems to on the vax under
5139 4.2). */
5140 /* If the prologue ends in the middle of a source line, continue to
5141 the end of that source line (if it is still within the function).
5142 Otherwise, just go to end of prologue. */
5143 if (stop_func_sal.end
5144 && stop_func_sal.pc != ecs->stop_func_start
5145 && stop_func_sal.end < ecs->stop_func_end)
5146 ecs->stop_func_start = stop_func_sal.end;
5147
5148 /* Architectures which require breakpoint adjustment might not be able
5149 to place a breakpoint at the computed address. If so, the test
5150 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5151 ecs->stop_func_start to an address at which a breakpoint may be
5152 legitimately placed.
5153
5154 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5155 made, GDB will enter an infinite loop when stepping through
5156 optimized code consisting of VLIW instructions which contain
5157 subinstructions corresponding to different source lines. On
5158 FR-V, it's not permitted to place a breakpoint on any but the
5159 first subinstruction of a VLIW instruction. When a breakpoint is
5160 set, GDB will adjust the breakpoint address to the beginning of
5161 the VLIW instruction. Thus, we need to make the corresponding
5162 adjustment here when computing the stop address. */
5163
5164 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5165 {
5166 ecs->stop_func_start
5167 = gdbarch_adjust_breakpoint_address (gdbarch,
5168 ecs->stop_func_start);
5169 }
5170
5171 if (ecs->stop_func_start == stop_pc)
5172 {
5173 /* We are already there: stop now. */
5174 ecs->event_thread->control.stop_step = 1;
5175 print_end_stepping_range_reason ();
5176 stop_stepping (ecs);
5177 return;
5178 }
5179 else
5180 {
5181 /* Put the step-breakpoint there and go until there. */
5182 init_sal (&sr_sal); /* initialize to zeroes */
5183 sr_sal.pc = ecs->stop_func_start;
5184 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5185 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5186
5187 /* Do not specify what the fp should be when we stop since on
5188 some machines the prologue is where the new fp value is
5189 established. */
5190 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5191
5192 /* And make sure stepping stops right away then. */
5193 ecs->event_thread->control.step_range_end
5194 = ecs->event_thread->control.step_range_start;
5195 }
5196 keep_going (ecs);
5197 }
5198
5199 /* Inferior has stepped backward into a subroutine call with source
5200 code that we should not step over. Do step to the beginning of the
5201 last line of code in it. */
5202
5203 static void
5204 handle_step_into_function_backward (struct gdbarch *gdbarch,
5205 struct execution_control_state *ecs)
5206 {
5207 struct symtab *s;
5208 struct symtab_and_line stop_func_sal;
5209
5210 s = find_pc_symtab (stop_pc);
5211 if (s && s->language != language_asm)
5212 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5213 ecs->stop_func_start);
5214
5215 stop_func_sal = find_pc_line (stop_pc, 0);
5216
5217 /* OK, we're just going to keep stepping here. */
5218 if (stop_func_sal.pc == stop_pc)
5219 {
5220 /* We're there already. Just stop stepping now. */
5221 ecs->event_thread->control.stop_step = 1;
5222 print_end_stepping_range_reason ();
5223 stop_stepping (ecs);
5224 }
5225 else
5226 {
5227 /* Else just reset the step range and keep going.
5228 No step-resume breakpoint, they don't work for
5229 epilogues, which can have multiple entry paths. */
5230 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5231 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5232 keep_going (ecs);
5233 }
5234 return;
5235 }
5236
5237 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5238 This is used to both functions and to skip over code. */
5239
5240 static void
5241 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5242 struct symtab_and_line sr_sal,
5243 struct frame_id sr_id,
5244 enum bptype sr_type)
5245 {
5246 /* There should never be more than one step-resume or longjmp-resume
5247 breakpoint per thread, so we should never be setting a new
5248 step_resume_breakpoint when one is already active. */
5249 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5250 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5251
5252 if (debug_infrun)
5253 fprintf_unfiltered (gdb_stdlog,
5254 "infrun: inserting step-resume breakpoint at %s\n",
5255 paddress (gdbarch, sr_sal.pc));
5256
5257 inferior_thread ()->control.step_resume_breakpoint
5258 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5259 }
5260
5261 void
5262 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5263 struct symtab_and_line sr_sal,
5264 struct frame_id sr_id)
5265 {
5266 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5267 sr_sal, sr_id,
5268 bp_step_resume);
5269 }
5270
5271 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5272 This is used to skip a potential signal handler.
5273
5274 This is called with the interrupted function's frame. The signal
5275 handler, when it returns, will resume the interrupted function at
5276 RETURN_FRAME.pc. */
5277
5278 static void
5279 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5280 {
5281 struct symtab_and_line sr_sal;
5282 struct gdbarch *gdbarch;
5283
5284 gdb_assert (return_frame != NULL);
5285 init_sal (&sr_sal); /* initialize to zeros */
5286
5287 gdbarch = get_frame_arch (return_frame);
5288 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5289 sr_sal.section = find_pc_overlay (sr_sal.pc);
5290 sr_sal.pspace = get_frame_program_space (return_frame);
5291
5292 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5293 get_stack_frame_id (return_frame),
5294 bp_hp_step_resume);
5295 }
5296
5297 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5298 is used to skip a function after stepping into it (for "next" or if
5299 the called function has no debugging information).
5300
5301 The current function has almost always been reached by single
5302 stepping a call or return instruction. NEXT_FRAME belongs to the
5303 current function, and the breakpoint will be set at the caller's
5304 resume address.
5305
5306 This is a separate function rather than reusing
5307 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5308 get_prev_frame, which may stop prematurely (see the implementation
5309 of frame_unwind_caller_id for an example). */
5310
5311 static void
5312 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5313 {
5314 struct symtab_and_line sr_sal;
5315 struct gdbarch *gdbarch;
5316
5317 /* We shouldn't have gotten here if we don't know where the call site
5318 is. */
5319 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5320
5321 init_sal (&sr_sal); /* initialize to zeros */
5322
5323 gdbarch = frame_unwind_caller_arch (next_frame);
5324 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5325 frame_unwind_caller_pc (next_frame));
5326 sr_sal.section = find_pc_overlay (sr_sal.pc);
5327 sr_sal.pspace = frame_unwind_program_space (next_frame);
5328
5329 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5330 frame_unwind_caller_id (next_frame));
5331 }
5332
5333 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5334 new breakpoint at the target of a jmp_buf. The handling of
5335 longjmp-resume uses the same mechanisms used for handling
5336 "step-resume" breakpoints. */
5337
5338 static void
5339 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5340 {
5341 /* There should never be more than one step-resume or longjmp-resume
5342 breakpoint per thread, so we should never be setting a new
5343 longjmp_resume_breakpoint when one is already active. */
5344 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5345
5346 if (debug_infrun)
5347 fprintf_unfiltered (gdb_stdlog,
5348 "infrun: inserting longjmp-resume breakpoint at %s\n",
5349 paddress (gdbarch, pc));
5350
5351 inferior_thread ()->control.step_resume_breakpoint =
5352 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5353 }
5354
5355 /* Insert an exception resume breakpoint. TP is the thread throwing
5356 the exception. The block B is the block of the unwinder debug hook
5357 function. FRAME is the frame corresponding to the call to this
5358 function. SYM is the symbol of the function argument holding the
5359 target PC of the exception. */
5360
5361 static void
5362 insert_exception_resume_breakpoint (struct thread_info *tp,
5363 struct block *b,
5364 struct frame_info *frame,
5365 struct symbol *sym)
5366 {
5367 struct gdb_exception e;
5368
5369 /* We want to ignore errors here. */
5370 TRY_CATCH (e, RETURN_MASK_ERROR)
5371 {
5372 struct symbol *vsym;
5373 struct value *value;
5374 CORE_ADDR handler;
5375 struct breakpoint *bp;
5376
5377 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5378 value = read_var_value (vsym, frame);
5379 /* If the value was optimized out, revert to the old behavior. */
5380 if (! value_optimized_out (value))
5381 {
5382 handler = value_as_address (value);
5383
5384 if (debug_infrun)
5385 fprintf_unfiltered (gdb_stdlog,
5386 "infrun: exception resume at %lx\n",
5387 (unsigned long) handler);
5388
5389 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5390 handler, bp_exception_resume);
5391 bp->thread = tp->num;
5392 inferior_thread ()->control.exception_resume_breakpoint = bp;
5393 }
5394 }
5395 }
5396
5397 /* This is called when an exception has been intercepted. Check to
5398 see whether the exception's destination is of interest, and if so,
5399 set an exception resume breakpoint there. */
5400
5401 static void
5402 check_exception_resume (struct execution_control_state *ecs,
5403 struct frame_info *frame, struct symbol *func)
5404 {
5405 struct gdb_exception e;
5406
5407 TRY_CATCH (e, RETURN_MASK_ERROR)
5408 {
5409 struct block *b;
5410 struct dict_iterator iter;
5411 struct symbol *sym;
5412 int argno = 0;
5413
5414 /* The exception breakpoint is a thread-specific breakpoint on
5415 the unwinder's debug hook, declared as:
5416
5417 void _Unwind_DebugHook (void *cfa, void *handler);
5418
5419 The CFA argument indicates the frame to which control is
5420 about to be transferred. HANDLER is the destination PC.
5421
5422 We ignore the CFA and set a temporary breakpoint at HANDLER.
5423 This is not extremely efficient but it avoids issues in gdb
5424 with computing the DWARF CFA, and it also works even in weird
5425 cases such as throwing an exception from inside a signal
5426 handler. */
5427
5428 b = SYMBOL_BLOCK_VALUE (func);
5429 ALL_BLOCK_SYMBOLS (b, iter, sym)
5430 {
5431 if (!SYMBOL_IS_ARGUMENT (sym))
5432 continue;
5433
5434 if (argno == 0)
5435 ++argno;
5436 else
5437 {
5438 insert_exception_resume_breakpoint (ecs->event_thread,
5439 b, frame, sym);
5440 break;
5441 }
5442 }
5443 }
5444 }
5445
5446 static void
5447 stop_stepping (struct execution_control_state *ecs)
5448 {
5449 if (debug_infrun)
5450 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5451
5452 /* Let callers know we don't want to wait for the inferior anymore. */
5453 ecs->wait_some_more = 0;
5454 }
5455
5456 /* This function handles various cases where we need to continue
5457 waiting for the inferior. */
5458 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5459
5460 static void
5461 keep_going (struct execution_control_state *ecs)
5462 {
5463 /* Make sure normal_stop is called if we get a QUIT handled before
5464 reaching resume. */
5465 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5466
5467 /* Save the pc before execution, to compare with pc after stop. */
5468 ecs->event_thread->prev_pc
5469 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5470
5471 /* If we did not do break;, it means we should keep running the
5472 inferior and not return to debugger. */
5473
5474 if (ecs->event_thread->control.trap_expected
5475 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
5476 {
5477 /* We took a signal (which we are supposed to pass through to
5478 the inferior, else we'd not get here) and we haven't yet
5479 gotten our trap. Simply continue. */
5480
5481 discard_cleanups (old_cleanups);
5482 resume (currently_stepping (ecs->event_thread),
5483 ecs->event_thread->suspend.stop_signal);
5484 }
5485 else
5486 {
5487 /* Either the trap was not expected, but we are continuing
5488 anyway (the user asked that this signal be passed to the
5489 child)
5490 -- or --
5491 The signal was SIGTRAP, e.g. it was our signal, but we
5492 decided we should resume from it.
5493
5494 We're going to run this baby now!
5495
5496 Note that insert_breakpoints won't try to re-insert
5497 already inserted breakpoints. Therefore, we don't
5498 care if breakpoints were already inserted, or not. */
5499
5500 if (ecs->event_thread->stepping_over_breakpoint)
5501 {
5502 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5503
5504 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5505 /* Since we can't do a displaced step, we have to remove
5506 the breakpoint while we step it. To keep things
5507 simple, we remove them all. */
5508 remove_breakpoints ();
5509 }
5510 else
5511 {
5512 struct gdb_exception e;
5513
5514 /* Stop stepping when inserting breakpoints
5515 has failed. */
5516 TRY_CATCH (e, RETURN_MASK_ERROR)
5517 {
5518 insert_breakpoints ();
5519 }
5520 if (e.reason < 0)
5521 {
5522 exception_print (gdb_stderr, e);
5523 stop_stepping (ecs);
5524 return;
5525 }
5526 }
5527
5528 ecs->event_thread->control.trap_expected
5529 = ecs->event_thread->stepping_over_breakpoint;
5530
5531 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5532 specifies that such a signal should be delivered to the
5533 target program).
5534
5535 Typically, this would occure when a user is debugging a
5536 target monitor on a simulator: the target monitor sets a
5537 breakpoint; the simulator encounters this break-point and
5538 halts the simulation handing control to GDB; GDB, noteing
5539 that the break-point isn't valid, returns control back to the
5540 simulator; the simulator then delivers the hardware
5541 equivalent of a SIGNAL_TRAP to the program being debugged. */
5542
5543 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5544 && !signal_program[ecs->event_thread->suspend.stop_signal])
5545 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
5546
5547 discard_cleanups (old_cleanups);
5548 resume (currently_stepping (ecs->event_thread),
5549 ecs->event_thread->suspend.stop_signal);
5550 }
5551
5552 prepare_to_wait (ecs);
5553 }
5554
5555 /* This function normally comes after a resume, before
5556 handle_inferior_event exits. It takes care of any last bits of
5557 housekeeping, and sets the all-important wait_some_more flag. */
5558
5559 static void
5560 prepare_to_wait (struct execution_control_state *ecs)
5561 {
5562 if (debug_infrun)
5563 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5564
5565 /* This is the old end of the while loop. Let everybody know we
5566 want to wait for the inferior some more and get called again
5567 soon. */
5568 ecs->wait_some_more = 1;
5569 }
5570
5571 /* Several print_*_reason functions to print why the inferior has stopped.
5572 We always print something when the inferior exits, or receives a signal.
5573 The rest of the cases are dealt with later on in normal_stop and
5574 print_it_typical. Ideally there should be a call to one of these
5575 print_*_reason functions functions from handle_inferior_event each time
5576 stop_stepping is called. */
5577
5578 /* Print why the inferior has stopped.
5579 We are done with a step/next/si/ni command, print why the inferior has
5580 stopped. For now print nothing. Print a message only if not in the middle
5581 of doing a "step n" operation for n > 1. */
5582
5583 static void
5584 print_end_stepping_range_reason (void)
5585 {
5586 if ((!inferior_thread ()->step_multi
5587 || !inferior_thread ()->control.stop_step)
5588 && ui_out_is_mi_like_p (uiout))
5589 ui_out_field_string (uiout, "reason",
5590 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5591 }
5592
5593 /* The inferior was terminated by a signal, print why it stopped. */
5594
5595 static void
5596 print_signal_exited_reason (enum target_signal siggnal)
5597 {
5598 annotate_signalled ();
5599 if (ui_out_is_mi_like_p (uiout))
5600 ui_out_field_string
5601 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5602 ui_out_text (uiout, "\nProgram terminated with signal ");
5603 annotate_signal_name ();
5604 ui_out_field_string (uiout, "signal-name",
5605 target_signal_to_name (siggnal));
5606 annotate_signal_name_end ();
5607 ui_out_text (uiout, ", ");
5608 annotate_signal_string ();
5609 ui_out_field_string (uiout, "signal-meaning",
5610 target_signal_to_string (siggnal));
5611 annotate_signal_string_end ();
5612 ui_out_text (uiout, ".\n");
5613 ui_out_text (uiout, "The program no longer exists.\n");
5614 }
5615
5616 /* The inferior program is finished, print why it stopped. */
5617
5618 static void
5619 print_exited_reason (int exitstatus)
5620 {
5621 struct inferior *inf = current_inferior ();
5622 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5623
5624 annotate_exited (exitstatus);
5625 if (exitstatus)
5626 {
5627 if (ui_out_is_mi_like_p (uiout))
5628 ui_out_field_string (uiout, "reason",
5629 async_reason_lookup (EXEC_ASYNC_EXITED));
5630 ui_out_text (uiout, "[Inferior ");
5631 ui_out_text (uiout, plongest (inf->num));
5632 ui_out_text (uiout, " (");
5633 ui_out_text (uiout, pidstr);
5634 ui_out_text (uiout, ") exited with code ");
5635 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5636 ui_out_text (uiout, "]\n");
5637 }
5638 else
5639 {
5640 if (ui_out_is_mi_like_p (uiout))
5641 ui_out_field_string
5642 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5643 ui_out_text (uiout, "[Inferior ");
5644 ui_out_text (uiout, plongest (inf->num));
5645 ui_out_text (uiout, " (");
5646 ui_out_text (uiout, pidstr);
5647 ui_out_text (uiout, ") exited normally]\n");
5648 }
5649 /* Support the --return-child-result option. */
5650 return_child_result_value = exitstatus;
5651 }
5652
5653 /* Signal received, print why the inferior has stopped. The signal table
5654 tells us to print about it. */
5655
5656 static void
5657 print_signal_received_reason (enum target_signal siggnal)
5658 {
5659 annotate_signal ();
5660
5661 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5662 {
5663 struct thread_info *t = inferior_thread ();
5664
5665 ui_out_text (uiout, "\n[");
5666 ui_out_field_string (uiout, "thread-name",
5667 target_pid_to_str (t->ptid));
5668 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5669 ui_out_text (uiout, " stopped");
5670 }
5671 else
5672 {
5673 ui_out_text (uiout, "\nProgram received signal ");
5674 annotate_signal_name ();
5675 if (ui_out_is_mi_like_p (uiout))
5676 ui_out_field_string
5677 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5678 ui_out_field_string (uiout, "signal-name",
5679 target_signal_to_name (siggnal));
5680 annotate_signal_name_end ();
5681 ui_out_text (uiout, ", ");
5682 annotate_signal_string ();
5683 ui_out_field_string (uiout, "signal-meaning",
5684 target_signal_to_string (siggnal));
5685 annotate_signal_string_end ();
5686 }
5687 ui_out_text (uiout, ".\n");
5688 }
5689
5690 /* Reverse execution: target ran out of history info, print why the inferior
5691 has stopped. */
5692
5693 static void
5694 print_no_history_reason (void)
5695 {
5696 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
5697 }
5698
5699 /* Here to return control to GDB when the inferior stops for real.
5700 Print appropriate messages, remove breakpoints, give terminal our modes.
5701
5702 STOP_PRINT_FRAME nonzero means print the executing frame
5703 (pc, function, args, file, line number and line text).
5704 BREAKPOINTS_FAILED nonzero means stop was due to error
5705 attempting to insert breakpoints. */
5706
5707 void
5708 normal_stop (void)
5709 {
5710 struct target_waitstatus last;
5711 ptid_t last_ptid;
5712 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5713
5714 get_last_target_status (&last_ptid, &last);
5715
5716 /* If an exception is thrown from this point on, make sure to
5717 propagate GDB's knowledge of the executing state to the
5718 frontend/user running state. A QUIT is an easy exception to see
5719 here, so do this before any filtered output. */
5720 if (!non_stop)
5721 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5722 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5723 && last.kind != TARGET_WAITKIND_EXITED)
5724 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5725
5726 /* In non-stop mode, we don't want GDB to switch threads behind the
5727 user's back, to avoid races where the user is typing a command to
5728 apply to thread x, but GDB switches to thread y before the user
5729 finishes entering the command. */
5730
5731 /* As with the notification of thread events, we want to delay
5732 notifying the user that we've switched thread context until
5733 the inferior actually stops.
5734
5735 There's no point in saying anything if the inferior has exited.
5736 Note that SIGNALLED here means "exited with a signal", not
5737 "received a signal". */
5738 if (!non_stop
5739 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5740 && target_has_execution
5741 && last.kind != TARGET_WAITKIND_SIGNALLED
5742 && last.kind != TARGET_WAITKIND_EXITED)
5743 {
5744 target_terminal_ours_for_output ();
5745 printf_filtered (_("[Switching to %s]\n"),
5746 target_pid_to_str (inferior_ptid));
5747 annotate_thread_changed ();
5748 previous_inferior_ptid = inferior_ptid;
5749 }
5750
5751 if (!breakpoints_always_inserted_mode () && target_has_execution)
5752 {
5753 if (remove_breakpoints ())
5754 {
5755 target_terminal_ours_for_output ();
5756 printf_filtered (_("Cannot remove breakpoints because "
5757 "program is no longer writable.\nFurther "
5758 "execution is probably impossible.\n"));
5759 }
5760 }
5761
5762 /* If an auto-display called a function and that got a signal,
5763 delete that auto-display to avoid an infinite recursion. */
5764
5765 if (stopped_by_random_signal)
5766 disable_current_display ();
5767
5768 /* Don't print a message if in the middle of doing a "step n"
5769 operation for n > 1 */
5770 if (target_has_execution
5771 && last.kind != TARGET_WAITKIND_SIGNALLED
5772 && last.kind != TARGET_WAITKIND_EXITED
5773 && inferior_thread ()->step_multi
5774 && inferior_thread ()->control.stop_step)
5775 goto done;
5776
5777 target_terminal_ours ();
5778
5779 /* Set the current source location. This will also happen if we
5780 display the frame below, but the current SAL will be incorrect
5781 during a user hook-stop function. */
5782 if (has_stack_frames () && !stop_stack_dummy)
5783 set_current_sal_from_frame (get_current_frame (), 1);
5784
5785 /* Let the user/frontend see the threads as stopped. */
5786 do_cleanups (old_chain);
5787
5788 /* Look up the hook_stop and run it (CLI internally handles problem
5789 of stop_command's pre-hook not existing). */
5790 if (stop_command)
5791 catch_errors (hook_stop_stub, stop_command,
5792 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5793
5794 if (!has_stack_frames ())
5795 goto done;
5796
5797 if (last.kind == TARGET_WAITKIND_SIGNALLED
5798 || last.kind == TARGET_WAITKIND_EXITED)
5799 goto done;
5800
5801 /* Select innermost stack frame - i.e., current frame is frame 0,
5802 and current location is based on that.
5803 Don't do this on return from a stack dummy routine,
5804 or if the program has exited. */
5805
5806 if (!stop_stack_dummy)
5807 {
5808 select_frame (get_current_frame ());
5809
5810 /* Print current location without a level number, if
5811 we have changed functions or hit a breakpoint.
5812 Print source line if we have one.
5813 bpstat_print() contains the logic deciding in detail
5814 what to print, based on the event(s) that just occurred. */
5815
5816 /* If --batch-silent is enabled then there's no need to print the current
5817 source location, and to try risks causing an error message about
5818 missing source files. */
5819 if (stop_print_frame && !batch_silent)
5820 {
5821 int bpstat_ret;
5822 int source_flag;
5823 int do_frame_printing = 1;
5824 struct thread_info *tp = inferior_thread ();
5825
5826 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
5827 switch (bpstat_ret)
5828 {
5829 case PRINT_UNKNOWN:
5830 /* If we had hit a shared library event breakpoint,
5831 bpstat_print would print out this message. If we hit
5832 an OS-level shared library event, do the same
5833 thing. */
5834 if (last.kind == TARGET_WAITKIND_LOADED)
5835 {
5836 printf_filtered (_("Stopped due to shared library event\n"));
5837 source_flag = SRC_LINE; /* something bogus */
5838 do_frame_printing = 0;
5839 break;
5840 }
5841
5842 /* FIXME: cagney/2002-12-01: Given that a frame ID does
5843 (or should) carry around the function and does (or
5844 should) use that when doing a frame comparison. */
5845 if (tp->control.stop_step
5846 && frame_id_eq (tp->control.step_frame_id,
5847 get_frame_id (get_current_frame ()))
5848 && step_start_function == find_pc_function (stop_pc))
5849 source_flag = SRC_LINE; /* Finished step, just
5850 print source line. */
5851 else
5852 source_flag = SRC_AND_LOC; /* Print location and
5853 source line. */
5854 break;
5855 case PRINT_SRC_AND_LOC:
5856 source_flag = SRC_AND_LOC; /* Print location and
5857 source line. */
5858 break;
5859 case PRINT_SRC_ONLY:
5860 source_flag = SRC_LINE;
5861 break;
5862 case PRINT_NOTHING:
5863 source_flag = SRC_LINE; /* something bogus */
5864 do_frame_printing = 0;
5865 break;
5866 default:
5867 internal_error (__FILE__, __LINE__, _("Unknown value."));
5868 }
5869
5870 /* The behavior of this routine with respect to the source
5871 flag is:
5872 SRC_LINE: Print only source line
5873 LOCATION: Print only location
5874 SRC_AND_LOC: Print location and source line. */
5875 if (do_frame_printing)
5876 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
5877
5878 /* Display the auto-display expressions. */
5879 do_displays ();
5880 }
5881 }
5882
5883 /* Save the function value return registers, if we care.
5884 We might be about to restore their previous contents. */
5885 if (inferior_thread ()->control.proceed_to_finish
5886 && execution_direction != EXEC_REVERSE)
5887 {
5888 /* This should not be necessary. */
5889 if (stop_registers)
5890 regcache_xfree (stop_registers);
5891
5892 /* NB: The copy goes through to the target picking up the value of
5893 all the registers. */
5894 stop_registers = regcache_dup (get_current_regcache ());
5895 }
5896
5897 if (stop_stack_dummy == STOP_STACK_DUMMY)
5898 {
5899 /* Pop the empty frame that contains the stack dummy.
5900 This also restores inferior state prior to the call
5901 (struct infcall_suspend_state). */
5902 struct frame_info *frame = get_current_frame ();
5903
5904 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5905 frame_pop (frame);
5906 /* frame_pop() calls reinit_frame_cache as the last thing it
5907 does which means there's currently no selected frame. We
5908 don't need to re-establish a selected frame if the dummy call
5909 returns normally, that will be done by
5910 restore_infcall_control_state. However, we do have to handle
5911 the case where the dummy call is returning after being
5912 stopped (e.g. the dummy call previously hit a breakpoint).
5913 We can't know which case we have so just always re-establish
5914 a selected frame here. */
5915 select_frame (get_current_frame ());
5916 }
5917
5918 done:
5919 annotate_stopped ();
5920
5921 /* Suppress the stop observer if we're in the middle of:
5922
5923 - a step n (n > 1), as there still more steps to be done.
5924
5925 - a "finish" command, as the observer will be called in
5926 finish_command_continuation, so it can include the inferior
5927 function's return value.
5928
5929 - calling an inferior function, as we pretend we inferior didn't
5930 run at all. The return value of the call is handled by the
5931 expression evaluator, through call_function_by_hand. */
5932
5933 if (!target_has_execution
5934 || last.kind == TARGET_WAITKIND_SIGNALLED
5935 || last.kind == TARGET_WAITKIND_EXITED
5936 || (!inferior_thread ()->step_multi
5937 && !(inferior_thread ()->control.stop_bpstat
5938 && inferior_thread ()->control.proceed_to_finish)
5939 && !inferior_thread ()->control.in_infcall))
5940 {
5941 if (!ptid_equal (inferior_ptid, null_ptid))
5942 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
5943 stop_print_frame);
5944 else
5945 observer_notify_normal_stop (NULL, stop_print_frame);
5946 }
5947
5948 if (target_has_execution)
5949 {
5950 if (last.kind != TARGET_WAITKIND_SIGNALLED
5951 && last.kind != TARGET_WAITKIND_EXITED)
5952 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5953 Delete any breakpoint that is to be deleted at the next stop. */
5954 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
5955 }
5956
5957 /* Try to get rid of automatically added inferiors that are no
5958 longer needed. Keeping those around slows down things linearly.
5959 Note that this never removes the current inferior. */
5960 prune_inferiors ();
5961 }
5962
5963 static int
5964 hook_stop_stub (void *cmd)
5965 {
5966 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
5967 return (0);
5968 }
5969 \f
5970 int
5971 signal_stop_state (int signo)
5972 {
5973 return signal_stop[signo];
5974 }
5975
5976 int
5977 signal_print_state (int signo)
5978 {
5979 return signal_print[signo];
5980 }
5981
5982 int
5983 signal_pass_state (int signo)
5984 {
5985 return signal_program[signo];
5986 }
5987
5988 static void
5989 signal_cache_update (int signo)
5990 {
5991 if (signo == -1)
5992 {
5993 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
5994 signal_cache_update (signo);
5995
5996 return;
5997 }
5998
5999 signal_pass[signo] = (signal_stop[signo] == 0
6000 && signal_print[signo] == 0
6001 && signal_program[signo] == 1);
6002 }
6003
6004 int
6005 signal_stop_update (int signo, int state)
6006 {
6007 int ret = signal_stop[signo];
6008
6009 signal_stop[signo] = state;
6010 signal_cache_update (signo);
6011 return ret;
6012 }
6013
6014 int
6015 signal_print_update (int signo, int state)
6016 {
6017 int ret = signal_print[signo];
6018
6019 signal_print[signo] = state;
6020 signal_cache_update (signo);
6021 return ret;
6022 }
6023
6024 int
6025 signal_pass_update (int signo, int state)
6026 {
6027 int ret = signal_program[signo];
6028
6029 signal_program[signo] = state;
6030 signal_cache_update (signo);
6031 return ret;
6032 }
6033
6034 static void
6035 sig_print_header (void)
6036 {
6037 printf_filtered (_("Signal Stop\tPrint\tPass "
6038 "to program\tDescription\n"));
6039 }
6040
6041 static void
6042 sig_print_info (enum target_signal oursig)
6043 {
6044 const char *name = target_signal_to_name (oursig);
6045 int name_padding = 13 - strlen (name);
6046
6047 if (name_padding <= 0)
6048 name_padding = 0;
6049
6050 printf_filtered ("%s", name);
6051 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6052 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6053 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6054 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6055 printf_filtered ("%s\n", target_signal_to_string (oursig));
6056 }
6057
6058 /* Specify how various signals in the inferior should be handled. */
6059
6060 static void
6061 handle_command (char *args, int from_tty)
6062 {
6063 char **argv;
6064 int digits, wordlen;
6065 int sigfirst, signum, siglast;
6066 enum target_signal oursig;
6067 int allsigs;
6068 int nsigs;
6069 unsigned char *sigs;
6070 struct cleanup *old_chain;
6071
6072 if (args == NULL)
6073 {
6074 error_no_arg (_("signal to handle"));
6075 }
6076
6077 /* Allocate and zero an array of flags for which signals to handle. */
6078
6079 nsigs = (int) TARGET_SIGNAL_LAST;
6080 sigs = (unsigned char *) alloca (nsigs);
6081 memset (sigs, 0, nsigs);
6082
6083 /* Break the command line up into args. */
6084
6085 argv = gdb_buildargv (args);
6086 old_chain = make_cleanup_freeargv (argv);
6087
6088 /* Walk through the args, looking for signal oursigs, signal names, and
6089 actions. Signal numbers and signal names may be interspersed with
6090 actions, with the actions being performed for all signals cumulatively
6091 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6092
6093 while (*argv != NULL)
6094 {
6095 wordlen = strlen (*argv);
6096 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6097 {;
6098 }
6099 allsigs = 0;
6100 sigfirst = siglast = -1;
6101
6102 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6103 {
6104 /* Apply action to all signals except those used by the
6105 debugger. Silently skip those. */
6106 allsigs = 1;
6107 sigfirst = 0;
6108 siglast = nsigs - 1;
6109 }
6110 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6111 {
6112 SET_SIGS (nsigs, sigs, signal_stop);
6113 SET_SIGS (nsigs, sigs, signal_print);
6114 }
6115 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6116 {
6117 UNSET_SIGS (nsigs, sigs, signal_program);
6118 }
6119 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6120 {
6121 SET_SIGS (nsigs, sigs, signal_print);
6122 }
6123 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6124 {
6125 SET_SIGS (nsigs, sigs, signal_program);
6126 }
6127 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6128 {
6129 UNSET_SIGS (nsigs, sigs, signal_stop);
6130 }
6131 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6132 {
6133 SET_SIGS (nsigs, sigs, signal_program);
6134 }
6135 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6136 {
6137 UNSET_SIGS (nsigs, sigs, signal_print);
6138 UNSET_SIGS (nsigs, sigs, signal_stop);
6139 }
6140 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6141 {
6142 UNSET_SIGS (nsigs, sigs, signal_program);
6143 }
6144 else if (digits > 0)
6145 {
6146 /* It is numeric. The numeric signal refers to our own
6147 internal signal numbering from target.h, not to host/target
6148 signal number. This is a feature; users really should be
6149 using symbolic names anyway, and the common ones like
6150 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6151
6152 sigfirst = siglast = (int)
6153 target_signal_from_command (atoi (*argv));
6154 if ((*argv)[digits] == '-')
6155 {
6156 siglast = (int)
6157 target_signal_from_command (atoi ((*argv) + digits + 1));
6158 }
6159 if (sigfirst > siglast)
6160 {
6161 /* Bet he didn't figure we'd think of this case... */
6162 signum = sigfirst;
6163 sigfirst = siglast;
6164 siglast = signum;
6165 }
6166 }
6167 else
6168 {
6169 oursig = target_signal_from_name (*argv);
6170 if (oursig != TARGET_SIGNAL_UNKNOWN)
6171 {
6172 sigfirst = siglast = (int) oursig;
6173 }
6174 else
6175 {
6176 /* Not a number and not a recognized flag word => complain. */
6177 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6178 }
6179 }
6180
6181 /* If any signal numbers or symbol names were found, set flags for
6182 which signals to apply actions to. */
6183
6184 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6185 {
6186 switch ((enum target_signal) signum)
6187 {
6188 case TARGET_SIGNAL_TRAP:
6189 case TARGET_SIGNAL_INT:
6190 if (!allsigs && !sigs[signum])
6191 {
6192 if (query (_("%s is used by the debugger.\n\
6193 Are you sure you want to change it? "),
6194 target_signal_to_name ((enum target_signal) signum)))
6195 {
6196 sigs[signum] = 1;
6197 }
6198 else
6199 {
6200 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6201 gdb_flush (gdb_stdout);
6202 }
6203 }
6204 break;
6205 case TARGET_SIGNAL_0:
6206 case TARGET_SIGNAL_DEFAULT:
6207 case TARGET_SIGNAL_UNKNOWN:
6208 /* Make sure that "all" doesn't print these. */
6209 break;
6210 default:
6211 sigs[signum] = 1;
6212 break;
6213 }
6214 }
6215
6216 argv++;
6217 }
6218
6219 for (signum = 0; signum < nsigs; signum++)
6220 if (sigs[signum])
6221 {
6222 signal_cache_update (-1);
6223 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
6224
6225 if (from_tty)
6226 {
6227 /* Show the results. */
6228 sig_print_header ();
6229 for (; signum < nsigs; signum++)
6230 if (sigs[signum])
6231 sig_print_info (signum);
6232 }
6233
6234 break;
6235 }
6236
6237 do_cleanups (old_chain);
6238 }
6239
6240 static void
6241 xdb_handle_command (char *args, int from_tty)
6242 {
6243 char **argv;
6244 struct cleanup *old_chain;
6245
6246 if (args == NULL)
6247 error_no_arg (_("xdb command"));
6248
6249 /* Break the command line up into args. */
6250
6251 argv = gdb_buildargv (args);
6252 old_chain = make_cleanup_freeargv (argv);
6253 if (argv[1] != (char *) NULL)
6254 {
6255 char *argBuf;
6256 int bufLen;
6257
6258 bufLen = strlen (argv[0]) + 20;
6259 argBuf = (char *) xmalloc (bufLen);
6260 if (argBuf)
6261 {
6262 int validFlag = 1;
6263 enum target_signal oursig;
6264
6265 oursig = target_signal_from_name (argv[0]);
6266 memset (argBuf, 0, bufLen);
6267 if (strcmp (argv[1], "Q") == 0)
6268 sprintf (argBuf, "%s %s", argv[0], "noprint");
6269 else
6270 {
6271 if (strcmp (argv[1], "s") == 0)
6272 {
6273 if (!signal_stop[oursig])
6274 sprintf (argBuf, "%s %s", argv[0], "stop");
6275 else
6276 sprintf (argBuf, "%s %s", argv[0], "nostop");
6277 }
6278 else if (strcmp (argv[1], "i") == 0)
6279 {
6280 if (!signal_program[oursig])
6281 sprintf (argBuf, "%s %s", argv[0], "pass");
6282 else
6283 sprintf (argBuf, "%s %s", argv[0], "nopass");
6284 }
6285 else if (strcmp (argv[1], "r") == 0)
6286 {
6287 if (!signal_print[oursig])
6288 sprintf (argBuf, "%s %s", argv[0], "print");
6289 else
6290 sprintf (argBuf, "%s %s", argv[0], "noprint");
6291 }
6292 else
6293 validFlag = 0;
6294 }
6295 if (validFlag)
6296 handle_command (argBuf, from_tty);
6297 else
6298 printf_filtered (_("Invalid signal handling flag.\n"));
6299 if (argBuf)
6300 xfree (argBuf);
6301 }
6302 }
6303 do_cleanups (old_chain);
6304 }
6305
6306 /* Print current contents of the tables set by the handle command.
6307 It is possible we should just be printing signals actually used
6308 by the current target (but for things to work right when switching
6309 targets, all signals should be in the signal tables). */
6310
6311 static void
6312 signals_info (char *signum_exp, int from_tty)
6313 {
6314 enum target_signal oursig;
6315
6316 sig_print_header ();
6317
6318 if (signum_exp)
6319 {
6320 /* First see if this is a symbol name. */
6321 oursig = target_signal_from_name (signum_exp);
6322 if (oursig == TARGET_SIGNAL_UNKNOWN)
6323 {
6324 /* No, try numeric. */
6325 oursig =
6326 target_signal_from_command (parse_and_eval_long (signum_exp));
6327 }
6328 sig_print_info (oursig);
6329 return;
6330 }
6331
6332 printf_filtered ("\n");
6333 /* These ugly casts brought to you by the native VAX compiler. */
6334 for (oursig = TARGET_SIGNAL_FIRST;
6335 (int) oursig < (int) TARGET_SIGNAL_LAST;
6336 oursig = (enum target_signal) ((int) oursig + 1))
6337 {
6338 QUIT;
6339
6340 if (oursig != TARGET_SIGNAL_UNKNOWN
6341 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
6342 sig_print_info (oursig);
6343 }
6344
6345 printf_filtered (_("\nUse the \"handle\" command "
6346 "to change these tables.\n"));
6347 }
6348
6349 /* The $_siginfo convenience variable is a bit special. We don't know
6350 for sure the type of the value until we actually have a chance to
6351 fetch the data. The type can change depending on gdbarch, so it is
6352 also dependent on which thread you have selected.
6353
6354 1. making $_siginfo be an internalvar that creates a new value on
6355 access.
6356
6357 2. making the value of $_siginfo be an lval_computed value. */
6358
6359 /* This function implements the lval_computed support for reading a
6360 $_siginfo value. */
6361
6362 static void
6363 siginfo_value_read (struct value *v)
6364 {
6365 LONGEST transferred;
6366
6367 transferred =
6368 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6369 NULL,
6370 value_contents_all_raw (v),
6371 value_offset (v),
6372 TYPE_LENGTH (value_type (v)));
6373
6374 if (transferred != TYPE_LENGTH (value_type (v)))
6375 error (_("Unable to read siginfo"));
6376 }
6377
6378 /* This function implements the lval_computed support for writing a
6379 $_siginfo value. */
6380
6381 static void
6382 siginfo_value_write (struct value *v, struct value *fromval)
6383 {
6384 LONGEST transferred;
6385
6386 transferred = target_write (&current_target,
6387 TARGET_OBJECT_SIGNAL_INFO,
6388 NULL,
6389 value_contents_all_raw (fromval),
6390 value_offset (v),
6391 TYPE_LENGTH (value_type (fromval)));
6392
6393 if (transferred != TYPE_LENGTH (value_type (fromval)))
6394 error (_("Unable to write siginfo"));
6395 }
6396
6397 static const struct lval_funcs siginfo_value_funcs =
6398 {
6399 siginfo_value_read,
6400 siginfo_value_write
6401 };
6402
6403 /* Return a new value with the correct type for the siginfo object of
6404 the current thread using architecture GDBARCH. Return a void value
6405 if there's no object available. */
6406
6407 static struct value *
6408 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
6409 {
6410 if (target_has_stack
6411 && !ptid_equal (inferior_ptid, null_ptid)
6412 && gdbarch_get_siginfo_type_p (gdbarch))
6413 {
6414 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6415
6416 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6417 }
6418
6419 return allocate_value (builtin_type (gdbarch)->builtin_void);
6420 }
6421
6422 \f
6423 /* infcall_suspend_state contains state about the program itself like its
6424 registers and any signal it received when it last stopped.
6425 This state must be restored regardless of how the inferior function call
6426 ends (either successfully, or after it hits a breakpoint or signal)
6427 if the program is to properly continue where it left off. */
6428
6429 struct infcall_suspend_state
6430 {
6431 struct thread_suspend_state thread_suspend;
6432 struct inferior_suspend_state inferior_suspend;
6433
6434 /* Other fields: */
6435 CORE_ADDR stop_pc;
6436 struct regcache *registers;
6437
6438 /* Format of SIGINFO_DATA or NULL if it is not present. */
6439 struct gdbarch *siginfo_gdbarch;
6440
6441 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6442 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6443 content would be invalid. */
6444 gdb_byte *siginfo_data;
6445 };
6446
6447 struct infcall_suspend_state *
6448 save_infcall_suspend_state (void)
6449 {
6450 struct infcall_suspend_state *inf_state;
6451 struct thread_info *tp = inferior_thread ();
6452 struct inferior *inf = current_inferior ();
6453 struct regcache *regcache = get_current_regcache ();
6454 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6455 gdb_byte *siginfo_data = NULL;
6456
6457 if (gdbarch_get_siginfo_type_p (gdbarch))
6458 {
6459 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6460 size_t len = TYPE_LENGTH (type);
6461 struct cleanup *back_to;
6462
6463 siginfo_data = xmalloc (len);
6464 back_to = make_cleanup (xfree, siginfo_data);
6465
6466 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6467 siginfo_data, 0, len) == len)
6468 discard_cleanups (back_to);
6469 else
6470 {
6471 /* Errors ignored. */
6472 do_cleanups (back_to);
6473 siginfo_data = NULL;
6474 }
6475 }
6476
6477 inf_state = XZALLOC (struct infcall_suspend_state);
6478
6479 if (siginfo_data)
6480 {
6481 inf_state->siginfo_gdbarch = gdbarch;
6482 inf_state->siginfo_data = siginfo_data;
6483 }
6484
6485 inf_state->thread_suspend = tp->suspend;
6486 inf_state->inferior_suspend = inf->suspend;
6487
6488 /* run_inferior_call will not use the signal due to its `proceed' call with
6489 TARGET_SIGNAL_0 anyway. */
6490 tp->suspend.stop_signal = TARGET_SIGNAL_0;
6491
6492 inf_state->stop_pc = stop_pc;
6493
6494 inf_state->registers = regcache_dup (regcache);
6495
6496 return inf_state;
6497 }
6498
6499 /* Restore inferior session state to INF_STATE. */
6500
6501 void
6502 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6503 {
6504 struct thread_info *tp = inferior_thread ();
6505 struct inferior *inf = current_inferior ();
6506 struct regcache *regcache = get_current_regcache ();
6507 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6508
6509 tp->suspend = inf_state->thread_suspend;
6510 inf->suspend = inf_state->inferior_suspend;
6511
6512 stop_pc = inf_state->stop_pc;
6513
6514 if (inf_state->siginfo_gdbarch == gdbarch)
6515 {
6516 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6517 size_t len = TYPE_LENGTH (type);
6518
6519 /* Errors ignored. */
6520 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6521 inf_state->siginfo_data, 0, len);
6522 }
6523
6524 /* The inferior can be gone if the user types "print exit(0)"
6525 (and perhaps other times). */
6526 if (target_has_execution)
6527 /* NB: The register write goes through to the target. */
6528 regcache_cpy (regcache, inf_state->registers);
6529
6530 discard_infcall_suspend_state (inf_state);
6531 }
6532
6533 static void
6534 do_restore_infcall_suspend_state_cleanup (void *state)
6535 {
6536 restore_infcall_suspend_state (state);
6537 }
6538
6539 struct cleanup *
6540 make_cleanup_restore_infcall_suspend_state
6541 (struct infcall_suspend_state *inf_state)
6542 {
6543 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6544 }
6545
6546 void
6547 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6548 {
6549 regcache_xfree (inf_state->registers);
6550 xfree (inf_state->siginfo_data);
6551 xfree (inf_state);
6552 }
6553
6554 struct regcache *
6555 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6556 {
6557 return inf_state->registers;
6558 }
6559
6560 /* infcall_control_state contains state regarding gdb's control of the
6561 inferior itself like stepping control. It also contains session state like
6562 the user's currently selected frame. */
6563
6564 struct infcall_control_state
6565 {
6566 struct thread_control_state thread_control;
6567 struct inferior_control_state inferior_control;
6568
6569 /* Other fields: */
6570 enum stop_stack_kind stop_stack_dummy;
6571 int stopped_by_random_signal;
6572 int stop_after_trap;
6573
6574 /* ID if the selected frame when the inferior function call was made. */
6575 struct frame_id selected_frame_id;
6576 };
6577
6578 /* Save all of the information associated with the inferior<==>gdb
6579 connection. */
6580
6581 struct infcall_control_state *
6582 save_infcall_control_state (void)
6583 {
6584 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6585 struct thread_info *tp = inferior_thread ();
6586 struct inferior *inf = current_inferior ();
6587
6588 inf_status->thread_control = tp->control;
6589 inf_status->inferior_control = inf->control;
6590
6591 tp->control.step_resume_breakpoint = NULL;
6592 tp->control.exception_resume_breakpoint = NULL;
6593
6594 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6595 chain. If caller's caller is walking the chain, they'll be happier if we
6596 hand them back the original chain when restore_infcall_control_state is
6597 called. */
6598 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6599
6600 /* Other fields: */
6601 inf_status->stop_stack_dummy = stop_stack_dummy;
6602 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6603 inf_status->stop_after_trap = stop_after_trap;
6604
6605 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6606
6607 return inf_status;
6608 }
6609
6610 static int
6611 restore_selected_frame (void *args)
6612 {
6613 struct frame_id *fid = (struct frame_id *) args;
6614 struct frame_info *frame;
6615
6616 frame = frame_find_by_id (*fid);
6617
6618 /* If inf_status->selected_frame_id is NULL, there was no previously
6619 selected frame. */
6620 if (frame == NULL)
6621 {
6622 warning (_("Unable to restore previously selected frame."));
6623 return 0;
6624 }
6625
6626 select_frame (frame);
6627
6628 return (1);
6629 }
6630
6631 /* Restore inferior session state to INF_STATUS. */
6632
6633 void
6634 restore_infcall_control_state (struct infcall_control_state *inf_status)
6635 {
6636 struct thread_info *tp = inferior_thread ();
6637 struct inferior *inf = current_inferior ();
6638
6639 if (tp->control.step_resume_breakpoint)
6640 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6641
6642 if (tp->control.exception_resume_breakpoint)
6643 tp->control.exception_resume_breakpoint->disposition
6644 = disp_del_at_next_stop;
6645
6646 /* Handle the bpstat_copy of the chain. */
6647 bpstat_clear (&tp->control.stop_bpstat);
6648
6649 tp->control = inf_status->thread_control;
6650 inf->control = inf_status->inferior_control;
6651
6652 /* Other fields: */
6653 stop_stack_dummy = inf_status->stop_stack_dummy;
6654 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6655 stop_after_trap = inf_status->stop_after_trap;
6656
6657 if (target_has_stack)
6658 {
6659 /* The point of catch_errors is that if the stack is clobbered,
6660 walking the stack might encounter a garbage pointer and
6661 error() trying to dereference it. */
6662 if (catch_errors
6663 (restore_selected_frame, &inf_status->selected_frame_id,
6664 "Unable to restore previously selected frame:\n",
6665 RETURN_MASK_ERROR) == 0)
6666 /* Error in restoring the selected frame. Select the innermost
6667 frame. */
6668 select_frame (get_current_frame ());
6669 }
6670
6671 xfree (inf_status);
6672 }
6673
6674 static void
6675 do_restore_infcall_control_state_cleanup (void *sts)
6676 {
6677 restore_infcall_control_state (sts);
6678 }
6679
6680 struct cleanup *
6681 make_cleanup_restore_infcall_control_state
6682 (struct infcall_control_state *inf_status)
6683 {
6684 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6685 }
6686
6687 void
6688 discard_infcall_control_state (struct infcall_control_state *inf_status)
6689 {
6690 if (inf_status->thread_control.step_resume_breakpoint)
6691 inf_status->thread_control.step_resume_breakpoint->disposition
6692 = disp_del_at_next_stop;
6693
6694 if (inf_status->thread_control.exception_resume_breakpoint)
6695 inf_status->thread_control.exception_resume_breakpoint->disposition
6696 = disp_del_at_next_stop;
6697
6698 /* See save_infcall_control_state for info on stop_bpstat. */
6699 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6700
6701 xfree (inf_status);
6702 }
6703 \f
6704 int
6705 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
6706 {
6707 struct target_waitstatus last;
6708 ptid_t last_ptid;
6709
6710 get_last_target_status (&last_ptid, &last);
6711
6712 if (last.kind != TARGET_WAITKIND_FORKED)
6713 return 0;
6714
6715 if (!ptid_equal (last_ptid, pid))
6716 return 0;
6717
6718 *child_pid = last.value.related_pid;
6719 return 1;
6720 }
6721
6722 int
6723 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
6724 {
6725 struct target_waitstatus last;
6726 ptid_t last_ptid;
6727
6728 get_last_target_status (&last_ptid, &last);
6729
6730 if (last.kind != TARGET_WAITKIND_VFORKED)
6731 return 0;
6732
6733 if (!ptid_equal (last_ptid, pid))
6734 return 0;
6735
6736 *child_pid = last.value.related_pid;
6737 return 1;
6738 }
6739
6740 int
6741 inferior_has_execd (ptid_t pid, char **execd_pathname)
6742 {
6743 struct target_waitstatus last;
6744 ptid_t last_ptid;
6745
6746 get_last_target_status (&last_ptid, &last);
6747
6748 if (last.kind != TARGET_WAITKIND_EXECD)
6749 return 0;
6750
6751 if (!ptid_equal (last_ptid, pid))
6752 return 0;
6753
6754 *execd_pathname = xstrdup (last.value.execd_pathname);
6755 return 1;
6756 }
6757
6758 int
6759 inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6760 {
6761 struct target_waitstatus last;
6762 ptid_t last_ptid;
6763
6764 get_last_target_status (&last_ptid, &last);
6765
6766 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6767 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6768 return 0;
6769
6770 if (!ptid_equal (last_ptid, pid))
6771 return 0;
6772
6773 *syscall_number = last.value.syscall_number;
6774 return 1;
6775 }
6776
6777 /* Oft used ptids */
6778 ptid_t null_ptid;
6779 ptid_t minus_one_ptid;
6780
6781 /* Create a ptid given the necessary PID, LWP, and TID components. */
6782
6783 ptid_t
6784 ptid_build (int pid, long lwp, long tid)
6785 {
6786 ptid_t ptid;
6787
6788 ptid.pid = pid;
6789 ptid.lwp = lwp;
6790 ptid.tid = tid;
6791 return ptid;
6792 }
6793
6794 /* Create a ptid from just a pid. */
6795
6796 ptid_t
6797 pid_to_ptid (int pid)
6798 {
6799 return ptid_build (pid, 0, 0);
6800 }
6801
6802 /* Fetch the pid (process id) component from a ptid. */
6803
6804 int
6805 ptid_get_pid (ptid_t ptid)
6806 {
6807 return ptid.pid;
6808 }
6809
6810 /* Fetch the lwp (lightweight process) component from a ptid. */
6811
6812 long
6813 ptid_get_lwp (ptid_t ptid)
6814 {
6815 return ptid.lwp;
6816 }
6817
6818 /* Fetch the tid (thread id) component from a ptid. */
6819
6820 long
6821 ptid_get_tid (ptid_t ptid)
6822 {
6823 return ptid.tid;
6824 }
6825
6826 /* ptid_equal() is used to test equality of two ptids. */
6827
6828 int
6829 ptid_equal (ptid_t ptid1, ptid_t ptid2)
6830 {
6831 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
6832 && ptid1.tid == ptid2.tid);
6833 }
6834
6835 /* Returns true if PTID represents a process. */
6836
6837 int
6838 ptid_is_pid (ptid_t ptid)
6839 {
6840 if (ptid_equal (minus_one_ptid, ptid))
6841 return 0;
6842 if (ptid_equal (null_ptid, ptid))
6843 return 0;
6844
6845 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
6846 }
6847
6848 int
6849 ptid_match (ptid_t ptid, ptid_t filter)
6850 {
6851 if (ptid_equal (filter, minus_one_ptid))
6852 return 1;
6853 if (ptid_is_pid (filter)
6854 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6855 return 1;
6856 else if (ptid_equal (ptid, filter))
6857 return 1;
6858
6859 return 0;
6860 }
6861
6862 /* restore_inferior_ptid() will be used by the cleanup machinery
6863 to restore the inferior_ptid value saved in a call to
6864 save_inferior_ptid(). */
6865
6866 static void
6867 restore_inferior_ptid (void *arg)
6868 {
6869 ptid_t *saved_ptid_ptr = arg;
6870
6871 inferior_ptid = *saved_ptid_ptr;
6872 xfree (arg);
6873 }
6874
6875 /* Save the value of inferior_ptid so that it may be restored by a
6876 later call to do_cleanups(). Returns the struct cleanup pointer
6877 needed for later doing the cleanup. */
6878
6879 struct cleanup *
6880 save_inferior_ptid (void)
6881 {
6882 ptid_t *saved_ptid_ptr;
6883
6884 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6885 *saved_ptid_ptr = inferior_ptid;
6886 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6887 }
6888 \f
6889
6890 /* User interface for reverse debugging:
6891 Set exec-direction / show exec-direction commands
6892 (returns error unless target implements to_set_exec_direction method). */
6893
6894 int execution_direction = EXEC_FORWARD;
6895 static const char exec_forward[] = "forward";
6896 static const char exec_reverse[] = "reverse";
6897 static const char *exec_direction = exec_forward;
6898 static const char *exec_direction_names[] = {
6899 exec_forward,
6900 exec_reverse,
6901 NULL
6902 };
6903
6904 static void
6905 set_exec_direction_func (char *args, int from_tty,
6906 struct cmd_list_element *cmd)
6907 {
6908 if (target_can_execute_reverse)
6909 {
6910 if (!strcmp (exec_direction, exec_forward))
6911 execution_direction = EXEC_FORWARD;
6912 else if (!strcmp (exec_direction, exec_reverse))
6913 execution_direction = EXEC_REVERSE;
6914 }
6915 else
6916 {
6917 exec_direction = exec_forward;
6918 error (_("Target does not support this operation."));
6919 }
6920 }
6921
6922 static void
6923 show_exec_direction_func (struct ui_file *out, int from_tty,
6924 struct cmd_list_element *cmd, const char *value)
6925 {
6926 switch (execution_direction) {
6927 case EXEC_FORWARD:
6928 fprintf_filtered (out, _("Forward.\n"));
6929 break;
6930 case EXEC_REVERSE:
6931 fprintf_filtered (out, _("Reverse.\n"));
6932 break;
6933 default:
6934 internal_error (__FILE__, __LINE__,
6935 _("bogus execution_direction value: %d"),
6936 (int) execution_direction);
6937 }
6938 }
6939
6940 /* User interface for non-stop mode. */
6941
6942 int non_stop = 0;
6943
6944 static void
6945 set_non_stop (char *args, int from_tty,
6946 struct cmd_list_element *c)
6947 {
6948 if (target_has_execution)
6949 {
6950 non_stop_1 = non_stop;
6951 error (_("Cannot change this setting while the inferior is running."));
6952 }
6953
6954 non_stop = non_stop_1;
6955 }
6956
6957 static void
6958 show_non_stop (struct ui_file *file, int from_tty,
6959 struct cmd_list_element *c, const char *value)
6960 {
6961 fprintf_filtered (file,
6962 _("Controlling the inferior in non-stop mode is %s.\n"),
6963 value);
6964 }
6965
6966 static void
6967 show_schedule_multiple (struct ui_file *file, int from_tty,
6968 struct cmd_list_element *c, const char *value)
6969 {
6970 fprintf_filtered (file, _("Resuming the execution of threads "
6971 "of all processes is %s.\n"), value);
6972 }
6973
6974 void
6975 _initialize_infrun (void)
6976 {
6977 int i;
6978 int numsigs;
6979
6980 add_info ("signals", signals_info, _("\
6981 What debugger does when program gets various signals.\n\
6982 Specify a signal as argument to print info on that signal only."));
6983 add_info_alias ("handle", "signals", 0);
6984
6985 add_com ("handle", class_run, handle_command, _("\
6986 Specify how to handle a signal.\n\
6987 Args are signals and actions to apply to those signals.\n\
6988 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6989 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6990 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6991 The special arg \"all\" is recognized to mean all signals except those\n\
6992 used by the debugger, typically SIGTRAP and SIGINT.\n\
6993 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
6994 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6995 Stop means reenter debugger if this signal happens (implies print).\n\
6996 Print means print a message if this signal happens.\n\
6997 Pass means let program see this signal; otherwise program doesn't know.\n\
6998 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6999 Pass and Stop may be combined."));
7000 if (xdb_commands)
7001 {
7002 add_com ("lz", class_info, signals_info, _("\
7003 What debugger does when program gets various signals.\n\
7004 Specify a signal as argument to print info on that signal only."));
7005 add_com ("z", class_run, xdb_handle_command, _("\
7006 Specify how to handle a signal.\n\
7007 Args are signals and actions to apply to those signals.\n\
7008 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7009 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7010 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7011 The special arg \"all\" is recognized to mean all signals except those\n\
7012 used by the debugger, typically SIGTRAP and SIGINT.\n\
7013 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7014 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7015 nopass), \"Q\" (noprint)\n\
7016 Stop means reenter debugger if this signal happens (implies print).\n\
7017 Print means print a message if this signal happens.\n\
7018 Pass means let program see this signal; otherwise program doesn't know.\n\
7019 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7020 Pass and Stop may be combined."));
7021 }
7022
7023 if (!dbx_commands)
7024 stop_command = add_cmd ("stop", class_obscure,
7025 not_just_help_class_command, _("\
7026 There is no `stop' command, but you can set a hook on `stop'.\n\
7027 This allows you to set a list of commands to be run each time execution\n\
7028 of the program stops."), &cmdlist);
7029
7030 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7031 Set inferior debugging."), _("\
7032 Show inferior debugging."), _("\
7033 When non-zero, inferior specific debugging is enabled."),
7034 NULL,
7035 show_debug_infrun,
7036 &setdebuglist, &showdebuglist);
7037
7038 add_setshow_boolean_cmd ("displaced", class_maintenance,
7039 &debug_displaced, _("\
7040 Set displaced stepping debugging."), _("\
7041 Show displaced stepping debugging."), _("\
7042 When non-zero, displaced stepping specific debugging is enabled."),
7043 NULL,
7044 show_debug_displaced,
7045 &setdebuglist, &showdebuglist);
7046
7047 add_setshow_boolean_cmd ("non-stop", no_class,
7048 &non_stop_1, _("\
7049 Set whether gdb controls the inferior in non-stop mode."), _("\
7050 Show whether gdb controls the inferior in non-stop mode."), _("\
7051 When debugging a multi-threaded program and this setting is\n\
7052 off (the default, also called all-stop mode), when one thread stops\n\
7053 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7054 all other threads in the program while you interact with the thread of\n\
7055 interest. When you continue or step a thread, you can allow the other\n\
7056 threads to run, or have them remain stopped, but while you inspect any\n\
7057 thread's state, all threads stop.\n\
7058 \n\
7059 In non-stop mode, when one thread stops, other threads can continue\n\
7060 to run freely. You'll be able to step each thread independently,\n\
7061 leave it stopped or free to run as needed."),
7062 set_non_stop,
7063 show_non_stop,
7064 &setlist,
7065 &showlist);
7066
7067 numsigs = (int) TARGET_SIGNAL_LAST;
7068 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7069 signal_print = (unsigned char *)
7070 xmalloc (sizeof (signal_print[0]) * numsigs);
7071 signal_program = (unsigned char *)
7072 xmalloc (sizeof (signal_program[0]) * numsigs);
7073 signal_pass = (unsigned char *)
7074 xmalloc (sizeof (signal_program[0]) * numsigs);
7075 for (i = 0; i < numsigs; i++)
7076 {
7077 signal_stop[i] = 1;
7078 signal_print[i] = 1;
7079 signal_program[i] = 1;
7080 }
7081
7082 /* Signals caused by debugger's own actions
7083 should not be given to the program afterwards. */
7084 signal_program[TARGET_SIGNAL_TRAP] = 0;
7085 signal_program[TARGET_SIGNAL_INT] = 0;
7086
7087 /* Signals that are not errors should not normally enter the debugger. */
7088 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7089 signal_print[TARGET_SIGNAL_ALRM] = 0;
7090 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7091 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7092 signal_stop[TARGET_SIGNAL_PROF] = 0;
7093 signal_print[TARGET_SIGNAL_PROF] = 0;
7094 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7095 signal_print[TARGET_SIGNAL_CHLD] = 0;
7096 signal_stop[TARGET_SIGNAL_IO] = 0;
7097 signal_print[TARGET_SIGNAL_IO] = 0;
7098 signal_stop[TARGET_SIGNAL_POLL] = 0;
7099 signal_print[TARGET_SIGNAL_POLL] = 0;
7100 signal_stop[TARGET_SIGNAL_URG] = 0;
7101 signal_print[TARGET_SIGNAL_URG] = 0;
7102 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7103 signal_print[TARGET_SIGNAL_WINCH] = 0;
7104 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7105 signal_print[TARGET_SIGNAL_PRIO] = 0;
7106
7107 /* These signals are used internally by user-level thread
7108 implementations. (See signal(5) on Solaris.) Like the above
7109 signals, a healthy program receives and handles them as part of
7110 its normal operation. */
7111 signal_stop[TARGET_SIGNAL_LWP] = 0;
7112 signal_print[TARGET_SIGNAL_LWP] = 0;
7113 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7114 signal_print[TARGET_SIGNAL_WAITING] = 0;
7115 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7116 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7117
7118 /* Update cached state. */
7119 signal_cache_update (-1);
7120
7121 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7122 &stop_on_solib_events, _("\
7123 Set stopping for shared library events."), _("\
7124 Show stopping for shared library events."), _("\
7125 If nonzero, gdb will give control to the user when the dynamic linker\n\
7126 notifies gdb of shared library events. The most common event of interest\n\
7127 to the user would be loading/unloading of a new library."),
7128 NULL,
7129 show_stop_on_solib_events,
7130 &setlist, &showlist);
7131
7132 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7133 follow_fork_mode_kind_names,
7134 &follow_fork_mode_string, _("\
7135 Set debugger response to a program call of fork or vfork."), _("\
7136 Show debugger response to a program call of fork or vfork."), _("\
7137 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7138 parent - the original process is debugged after a fork\n\
7139 child - the new process is debugged after a fork\n\
7140 The unfollowed process will continue to run.\n\
7141 By default, the debugger will follow the parent process."),
7142 NULL,
7143 show_follow_fork_mode_string,
7144 &setlist, &showlist);
7145
7146 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7147 follow_exec_mode_names,
7148 &follow_exec_mode_string, _("\
7149 Set debugger response to a program call of exec."), _("\
7150 Show debugger response to a program call of exec."), _("\
7151 An exec call replaces the program image of a process.\n\
7152 \n\
7153 follow-exec-mode can be:\n\
7154 \n\
7155 new - the debugger creates a new inferior and rebinds the process\n\
7156 to this new inferior. The program the process was running before\n\
7157 the exec call can be restarted afterwards by restarting the original\n\
7158 inferior.\n\
7159 \n\
7160 same - the debugger keeps the process bound to the same inferior.\n\
7161 The new executable image replaces the previous executable loaded in\n\
7162 the inferior. Restarting the inferior after the exec call restarts\n\
7163 the executable the process was running after the exec call.\n\
7164 \n\
7165 By default, the debugger will use the same inferior."),
7166 NULL,
7167 show_follow_exec_mode_string,
7168 &setlist, &showlist);
7169
7170 add_setshow_enum_cmd ("scheduler-locking", class_run,
7171 scheduler_enums, &scheduler_mode, _("\
7172 Set mode for locking scheduler during execution."), _("\
7173 Show mode for locking scheduler during execution."), _("\
7174 off == no locking (threads may preempt at any time)\n\
7175 on == full locking (no thread except the current thread may run)\n\
7176 step == scheduler locked during every single-step operation.\n\
7177 In this mode, no other thread may run during a step command.\n\
7178 Other threads may run while stepping over a function call ('next')."),
7179 set_schedlock_func, /* traps on target vector */
7180 show_scheduler_mode,
7181 &setlist, &showlist);
7182
7183 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7184 Set mode for resuming threads of all processes."), _("\
7185 Show mode for resuming threads of all processes."), _("\
7186 When on, execution commands (such as 'continue' or 'next') resume all\n\
7187 threads of all processes. When off (which is the default), execution\n\
7188 commands only resume the threads of the current process. The set of\n\
7189 threads that are resumed is further refined by the scheduler-locking\n\
7190 mode (see help set scheduler-locking)."),
7191 NULL,
7192 show_schedule_multiple,
7193 &setlist, &showlist);
7194
7195 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7196 Set mode of the step operation."), _("\
7197 Show mode of the step operation."), _("\
7198 When set, doing a step over a function without debug line information\n\
7199 will stop at the first instruction of that function. Otherwise, the\n\
7200 function is skipped and the step command stops at a different source line."),
7201 NULL,
7202 show_step_stop_if_no_debug,
7203 &setlist, &showlist);
7204
7205 add_setshow_enum_cmd ("displaced-stepping", class_run,
7206 can_use_displaced_stepping_enum,
7207 &can_use_displaced_stepping, _("\
7208 Set debugger's willingness to use displaced stepping."), _("\
7209 Show debugger's willingness to use displaced stepping."), _("\
7210 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7211 supported by the target architecture. If off, gdb will not use displaced\n\
7212 stepping to step over breakpoints, even if such is supported by the target\n\
7213 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7214 if the target architecture supports it and non-stop mode is active, but will not\n\
7215 use it in all-stop mode (see help set non-stop)."),
7216 NULL,
7217 show_can_use_displaced_stepping,
7218 &setlist, &showlist);
7219
7220 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7221 &exec_direction, _("Set direction of execution.\n\
7222 Options are 'forward' or 'reverse'."),
7223 _("Show direction of execution (forward/reverse)."),
7224 _("Tells gdb whether to execute forward or backward."),
7225 set_exec_direction_func, show_exec_direction_func,
7226 &setlist, &showlist);
7227
7228 /* Set/show detach-on-fork: user-settable mode. */
7229
7230 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7231 Set whether gdb will detach the child of a fork."), _("\
7232 Show whether gdb will detach the child of a fork."), _("\
7233 Tells gdb whether to detach the child of a fork."),
7234 NULL, NULL, &setlist, &showlist);
7235
7236 /* ptid initializations */
7237 null_ptid = ptid_build (0, 0, 0);
7238 minus_one_ptid = ptid_build (-1, 0, 0);
7239 inferior_ptid = null_ptid;
7240 target_last_wait_ptid = minus_one_ptid;
7241
7242 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7243 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7244 observer_attach_thread_exit (infrun_thread_thread_exit);
7245 observer_attach_inferior_exit (infrun_inferior_exit);
7246
7247 /* Explicitly create without lookup, since that tries to create a
7248 value with a void typed value, and when we get here, gdbarch
7249 isn't initialized yet. At this point, we're quite sure there
7250 isn't another convenience variable of the same name. */
7251 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
7252
7253 add_setshow_boolean_cmd ("observer", no_class,
7254 &observer_mode_1, _("\
7255 Set whether gdb controls the inferior in observer mode."), _("\
7256 Show whether gdb controls the inferior in observer mode."), _("\
7257 In observer mode, GDB can get data from the inferior, but not\n\
7258 affect its execution. Registers and memory may not be changed,\n\
7259 breakpoints may not be set, and the program cannot be interrupted\n\
7260 or signalled."),
7261 set_observer_mode,
7262 show_observer_mode,
7263 &setlist,
7264 &showlist);
7265 }