gdb/
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "inline-frame.h"
53 #include "jit.h"
54 #include "tracepoint.h"
55 #include "continuations.h"
56 #include "interps.h"
57 #include "skip.h"
58 #include "probe.h"
59 #include "objfiles.h"
60
61 /* Prototypes for local functions */
62
63 static void signals_info (char *, int);
64
65 static void handle_command (char *, int);
66
67 static void sig_print_info (enum gdb_signal);
68
69 static void sig_print_header (void);
70
71 static void resume_cleanups (void *);
72
73 static int hook_stop_stub (void *);
74
75 static int restore_selected_frame (void *);
76
77 static int follow_fork (void);
78
79 static void set_schedlock_func (char *args, int from_tty,
80 struct cmd_list_element *c);
81
82 static int currently_stepping (struct thread_info *tp);
83
84 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
85 void *data);
86
87 static void xdb_handle_command (char *args, int from_tty);
88
89 static int prepare_to_proceed (int);
90
91 static void print_exited_reason (int exitstatus);
92
93 static void print_signal_exited_reason (enum gdb_signal siggnal);
94
95 static void print_no_history_reason (void);
96
97 static void print_signal_received_reason (enum gdb_signal siggnal);
98
99 static void print_end_stepping_range_reason (void);
100
101 void _initialize_infrun (void);
102
103 void nullify_last_target_wait_ptid (void);
104
105 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
106
107 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
108
109 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
110
111 /* When set, stop the 'step' command if we enter a function which has
112 no line number information. The normal behavior is that we step
113 over such function. */
114 int step_stop_if_no_debug = 0;
115 static void
116 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118 {
119 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
120 }
121
122 /* In asynchronous mode, but simulating synchronous execution. */
123
124 int sync_execution = 0;
125
126 /* wait_for_inferior and normal_stop use this to notify the user
127 when the inferior stopped in a different thread than it had been
128 running in. */
129
130 static ptid_t previous_inferior_ptid;
131
132 /* Default behavior is to detach newly forked processes (legacy). */
133 int detach_fork = 1;
134
135 int debug_displaced = 0;
136 static void
137 show_debug_displaced (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139 {
140 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
141 }
142
143 unsigned int debug_infrun = 0;
144 static void
145 show_debug_infrun (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
149 }
150
151
152 /* Support for disabling address space randomization. */
153
154 int disable_randomization = 1;
155
156 static void
157 show_disable_randomization (struct ui_file *file, int from_tty,
158 struct cmd_list_element *c, const char *value)
159 {
160 if (target_supports_disable_randomization ())
161 fprintf_filtered (file,
162 _("Disabling randomization of debuggee's "
163 "virtual address space is %s.\n"),
164 value);
165 else
166 fputs_filtered (_("Disabling randomization of debuggee's "
167 "virtual address space is unsupported on\n"
168 "this platform.\n"), file);
169 }
170
171 static void
172 set_disable_randomization (char *args, int from_tty,
173 struct cmd_list_element *c)
174 {
175 if (!target_supports_disable_randomization ())
176 error (_("Disabling randomization of debuggee's "
177 "virtual address space is unsupported on\n"
178 "this platform."));
179 }
180
181
182 /* If the program uses ELF-style shared libraries, then calls to
183 functions in shared libraries go through stubs, which live in a
184 table called the PLT (Procedure Linkage Table). The first time the
185 function is called, the stub sends control to the dynamic linker,
186 which looks up the function's real address, patches the stub so
187 that future calls will go directly to the function, and then passes
188 control to the function.
189
190 If we are stepping at the source level, we don't want to see any of
191 this --- we just want to skip over the stub and the dynamic linker.
192 The simple approach is to single-step until control leaves the
193 dynamic linker.
194
195 However, on some systems (e.g., Red Hat's 5.2 distribution) the
196 dynamic linker calls functions in the shared C library, so you
197 can't tell from the PC alone whether the dynamic linker is still
198 running. In this case, we use a step-resume breakpoint to get us
199 past the dynamic linker, as if we were using "next" to step over a
200 function call.
201
202 in_solib_dynsym_resolve_code() says whether we're in the dynamic
203 linker code or not. Normally, this means we single-step. However,
204 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
205 address where we can place a step-resume breakpoint to get past the
206 linker's symbol resolution function.
207
208 in_solib_dynsym_resolve_code() can generally be implemented in a
209 pretty portable way, by comparing the PC against the address ranges
210 of the dynamic linker's sections.
211
212 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
213 it depends on internal details of the dynamic linker. It's usually
214 not too hard to figure out where to put a breakpoint, but it
215 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
216 sanity checking. If it can't figure things out, returning zero and
217 getting the (possibly confusing) stepping behavior is better than
218 signalling an error, which will obscure the change in the
219 inferior's state. */
220
221 /* This function returns TRUE if pc is the address of an instruction
222 that lies within the dynamic linker (such as the event hook, or the
223 dld itself).
224
225 This function must be used only when a dynamic linker event has
226 been caught, and the inferior is being stepped out of the hook, or
227 undefined results are guaranteed. */
228
229 #ifndef SOLIB_IN_DYNAMIC_LINKER
230 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
231 #endif
232
233 /* "Observer mode" is somewhat like a more extreme version of
234 non-stop, in which all GDB operations that might affect the
235 target's execution have been disabled. */
236
237 static int non_stop_1 = 0;
238
239 int observer_mode = 0;
240 static int observer_mode_1 = 0;
241
242 static void
243 set_observer_mode (char *args, int from_tty,
244 struct cmd_list_element *c)
245 {
246 extern int pagination_enabled;
247
248 if (target_has_execution)
249 {
250 observer_mode_1 = observer_mode;
251 error (_("Cannot change this setting while the inferior is running."));
252 }
253
254 observer_mode = observer_mode_1;
255
256 may_write_registers = !observer_mode;
257 may_write_memory = !observer_mode;
258 may_insert_breakpoints = !observer_mode;
259 may_insert_tracepoints = !observer_mode;
260 /* We can insert fast tracepoints in or out of observer mode,
261 but enable them if we're going into this mode. */
262 if (observer_mode)
263 may_insert_fast_tracepoints = 1;
264 may_stop = !observer_mode;
265 update_target_permissions ();
266
267 /* Going *into* observer mode we must force non-stop, then
268 going out we leave it that way. */
269 if (observer_mode)
270 {
271 target_async_permitted = 1;
272 pagination_enabled = 0;
273 non_stop = non_stop_1 = 1;
274 }
275
276 if (from_tty)
277 printf_filtered (_("Observer mode is now %s.\n"),
278 (observer_mode ? "on" : "off"));
279 }
280
281 static void
282 show_observer_mode (struct ui_file *file, int from_tty,
283 struct cmd_list_element *c, const char *value)
284 {
285 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
286 }
287
288 /* This updates the value of observer mode based on changes in
289 permissions. Note that we are deliberately ignoring the values of
290 may-write-registers and may-write-memory, since the user may have
291 reason to enable these during a session, for instance to turn on a
292 debugging-related global. */
293
294 void
295 update_observer_mode (void)
296 {
297 int newval;
298
299 newval = (!may_insert_breakpoints
300 && !may_insert_tracepoints
301 && may_insert_fast_tracepoints
302 && !may_stop
303 && non_stop);
304
305 /* Let the user know if things change. */
306 if (newval != observer_mode)
307 printf_filtered (_("Observer mode is now %s.\n"),
308 (newval ? "on" : "off"));
309
310 observer_mode = observer_mode_1 = newval;
311 }
312
313 /* Tables of how to react to signals; the user sets them. */
314
315 static unsigned char *signal_stop;
316 static unsigned char *signal_print;
317 static unsigned char *signal_program;
318
319 /* Table of signals that the target may silently handle.
320 This is automatically determined from the flags above,
321 and simply cached here. */
322 static unsigned char *signal_pass;
323
324 #define SET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 1; \
330 } while (0)
331
332 #define UNSET_SIGS(nsigs,sigs,flags) \
333 do { \
334 int signum = (nsigs); \
335 while (signum-- > 0) \
336 if ((sigs)[signum]) \
337 (flags)[signum] = 0; \
338 } while (0)
339
340 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
341 this function is to avoid exporting `signal_program'. */
342
343 void
344 update_signals_program_target (void)
345 {
346 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
347 }
348
349 /* Value to pass to target_resume() to cause all threads to resume. */
350
351 #define RESUME_ALL minus_one_ptid
352
353 /* Command list pointer for the "stop" placeholder. */
354
355 static struct cmd_list_element *stop_command;
356
357 /* Function inferior was in as of last step command. */
358
359 static struct symbol *step_start_function;
360
361 /* Nonzero if we want to give control to the user when we're notified
362 of shared library events by the dynamic linker. */
363 int stop_on_solib_events;
364 static void
365 show_stop_on_solib_events (struct ui_file *file, int from_tty,
366 struct cmd_list_element *c, const char *value)
367 {
368 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
369 value);
370 }
371
372 /* Nonzero means expecting a trace trap
373 and should stop the inferior and return silently when it happens. */
374
375 int stop_after_trap;
376
377 /* Save register contents here when executing a "finish" command or are
378 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
379 Thus this contains the return value from the called function (assuming
380 values are returned in a register). */
381
382 struct regcache *stop_registers;
383
384 /* Nonzero after stop if current stack frame should be printed. */
385
386 static int stop_print_frame;
387
388 /* This is a cached copy of the pid/waitstatus of the last event
389 returned by target_wait()/deprecated_target_wait_hook(). This
390 information is returned by get_last_target_status(). */
391 static ptid_t target_last_wait_ptid;
392 static struct target_waitstatus target_last_waitstatus;
393
394 static void context_switch (ptid_t ptid);
395
396 void init_thread_stepping_state (struct thread_info *tss);
397
398 void init_infwait_state (void);
399
400 static const char follow_fork_mode_child[] = "child";
401 static const char follow_fork_mode_parent[] = "parent";
402
403 static const char *const follow_fork_mode_kind_names[] = {
404 follow_fork_mode_child,
405 follow_fork_mode_parent,
406 NULL
407 };
408
409 static const char *follow_fork_mode_string = follow_fork_mode_parent;
410 static void
411 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
412 struct cmd_list_element *c, const char *value)
413 {
414 fprintf_filtered (file,
415 _("Debugger response to a program "
416 "call of fork or vfork is \"%s\".\n"),
417 value);
418 }
419 \f
420
421 /* Tell the target to follow the fork we're stopped at. Returns true
422 if the inferior should be resumed; false, if the target for some
423 reason decided it's best not to resume. */
424
425 static int
426 follow_fork (void)
427 {
428 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
429 int should_resume = 1;
430 struct thread_info *tp;
431
432 /* Copy user stepping state to the new inferior thread. FIXME: the
433 followed fork child thread should have a copy of most of the
434 parent thread structure's run control related fields, not just these.
435 Initialized to avoid "may be used uninitialized" warnings from gcc. */
436 struct breakpoint *step_resume_breakpoint = NULL;
437 struct breakpoint *exception_resume_breakpoint = NULL;
438 CORE_ADDR step_range_start = 0;
439 CORE_ADDR step_range_end = 0;
440 struct frame_id step_frame_id = { 0 };
441
442 if (!non_stop)
443 {
444 ptid_t wait_ptid;
445 struct target_waitstatus wait_status;
446
447 /* Get the last target status returned by target_wait(). */
448 get_last_target_status (&wait_ptid, &wait_status);
449
450 /* If not stopped at a fork event, then there's nothing else to
451 do. */
452 if (wait_status.kind != TARGET_WAITKIND_FORKED
453 && wait_status.kind != TARGET_WAITKIND_VFORKED)
454 return 1;
455
456 /* Check if we switched over from WAIT_PTID, since the event was
457 reported. */
458 if (!ptid_equal (wait_ptid, minus_one_ptid)
459 && !ptid_equal (inferior_ptid, wait_ptid))
460 {
461 /* We did. Switch back to WAIT_PTID thread, to tell the
462 target to follow it (in either direction). We'll
463 afterwards refuse to resume, and inform the user what
464 happened. */
465 switch_to_thread (wait_ptid);
466 should_resume = 0;
467 }
468 }
469
470 tp = inferior_thread ();
471
472 /* If there were any forks/vforks that were caught and are now to be
473 followed, then do so now. */
474 switch (tp->pending_follow.kind)
475 {
476 case TARGET_WAITKIND_FORKED:
477 case TARGET_WAITKIND_VFORKED:
478 {
479 ptid_t parent, child;
480
481 /* If the user did a next/step, etc, over a fork call,
482 preserve the stepping state in the fork child. */
483 if (follow_child && should_resume)
484 {
485 step_resume_breakpoint = clone_momentary_breakpoint
486 (tp->control.step_resume_breakpoint);
487 step_range_start = tp->control.step_range_start;
488 step_range_end = tp->control.step_range_end;
489 step_frame_id = tp->control.step_frame_id;
490 exception_resume_breakpoint
491 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
492
493 /* For now, delete the parent's sr breakpoint, otherwise,
494 parent/child sr breakpoints are considered duplicates,
495 and the child version will not be installed. Remove
496 this when the breakpoints module becomes aware of
497 inferiors and address spaces. */
498 delete_step_resume_breakpoint (tp);
499 tp->control.step_range_start = 0;
500 tp->control.step_range_end = 0;
501 tp->control.step_frame_id = null_frame_id;
502 delete_exception_resume_breakpoint (tp);
503 }
504
505 parent = inferior_ptid;
506 child = tp->pending_follow.value.related_pid;
507
508 /* Tell the target to do whatever is necessary to follow
509 either parent or child. */
510 if (target_follow_fork (follow_child))
511 {
512 /* Target refused to follow, or there's some other reason
513 we shouldn't resume. */
514 should_resume = 0;
515 }
516 else
517 {
518 /* This pending follow fork event is now handled, one way
519 or another. The previous selected thread may be gone
520 from the lists by now, but if it is still around, need
521 to clear the pending follow request. */
522 tp = find_thread_ptid (parent);
523 if (tp)
524 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
525
526 /* This makes sure we don't try to apply the "Switched
527 over from WAIT_PID" logic above. */
528 nullify_last_target_wait_ptid ();
529
530 /* If we followed the child, switch to it... */
531 if (follow_child)
532 {
533 switch_to_thread (child);
534
535 /* ... and preserve the stepping state, in case the
536 user was stepping over the fork call. */
537 if (should_resume)
538 {
539 tp = inferior_thread ();
540 tp->control.step_resume_breakpoint
541 = step_resume_breakpoint;
542 tp->control.step_range_start = step_range_start;
543 tp->control.step_range_end = step_range_end;
544 tp->control.step_frame_id = step_frame_id;
545 tp->control.exception_resume_breakpoint
546 = exception_resume_breakpoint;
547 }
548 else
549 {
550 /* If we get here, it was because we're trying to
551 resume from a fork catchpoint, but, the user
552 has switched threads away from the thread that
553 forked. In that case, the resume command
554 issued is most likely not applicable to the
555 child, so just warn, and refuse to resume. */
556 warning (_("Not resuming: switched threads "
557 "before following fork child.\n"));
558 }
559
560 /* Reset breakpoints in the child as appropriate. */
561 follow_inferior_reset_breakpoints ();
562 }
563 else
564 switch_to_thread (parent);
565 }
566 }
567 break;
568 case TARGET_WAITKIND_SPURIOUS:
569 /* Nothing to follow. */
570 break;
571 default:
572 internal_error (__FILE__, __LINE__,
573 "Unexpected pending_follow.kind %d\n",
574 tp->pending_follow.kind);
575 break;
576 }
577
578 return should_resume;
579 }
580
581 void
582 follow_inferior_reset_breakpoints (void)
583 {
584 struct thread_info *tp = inferior_thread ();
585
586 /* Was there a step_resume breakpoint? (There was if the user
587 did a "next" at the fork() call.) If so, explicitly reset its
588 thread number.
589
590 step_resumes are a form of bp that are made to be per-thread.
591 Since we created the step_resume bp when the parent process
592 was being debugged, and now are switching to the child process,
593 from the breakpoint package's viewpoint, that's a switch of
594 "threads". We must update the bp's notion of which thread
595 it is for, or it'll be ignored when it triggers. */
596
597 if (tp->control.step_resume_breakpoint)
598 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
599
600 if (tp->control.exception_resume_breakpoint)
601 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
602
603 /* Reinsert all breakpoints in the child. The user may have set
604 breakpoints after catching the fork, in which case those
605 were never set in the child, but only in the parent. This makes
606 sure the inserted breakpoints match the breakpoint list. */
607
608 breakpoint_re_set ();
609 insert_breakpoints ();
610 }
611
612 /* The child has exited or execed: resume threads of the parent the
613 user wanted to be executing. */
614
615 static int
616 proceed_after_vfork_done (struct thread_info *thread,
617 void *arg)
618 {
619 int pid = * (int *) arg;
620
621 if (ptid_get_pid (thread->ptid) == pid
622 && is_running (thread->ptid)
623 && !is_executing (thread->ptid)
624 && !thread->stop_requested
625 && thread->suspend.stop_signal == GDB_SIGNAL_0)
626 {
627 if (debug_infrun)
628 fprintf_unfiltered (gdb_stdlog,
629 "infrun: resuming vfork parent thread %s\n",
630 target_pid_to_str (thread->ptid));
631
632 switch_to_thread (thread->ptid);
633 clear_proceed_status ();
634 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
635 }
636
637 return 0;
638 }
639
640 /* Called whenever we notice an exec or exit event, to handle
641 detaching or resuming a vfork parent. */
642
643 static void
644 handle_vfork_child_exec_or_exit (int exec)
645 {
646 struct inferior *inf = current_inferior ();
647
648 if (inf->vfork_parent)
649 {
650 int resume_parent = -1;
651
652 /* This exec or exit marks the end of the shared memory region
653 between the parent and the child. If the user wanted to
654 detach from the parent, now is the time. */
655
656 if (inf->vfork_parent->pending_detach)
657 {
658 struct thread_info *tp;
659 struct cleanup *old_chain;
660 struct program_space *pspace;
661 struct address_space *aspace;
662
663 /* follow-fork child, detach-on-fork on. */
664
665 old_chain = make_cleanup_restore_current_thread ();
666
667 /* We're letting loose of the parent. */
668 tp = any_live_thread_of_process (inf->vfork_parent->pid);
669 switch_to_thread (tp->ptid);
670
671 /* We're about to detach from the parent, which implicitly
672 removes breakpoints from its address space. There's a
673 catch here: we want to reuse the spaces for the child,
674 but, parent/child are still sharing the pspace at this
675 point, although the exec in reality makes the kernel give
676 the child a fresh set of new pages. The problem here is
677 that the breakpoints module being unaware of this, would
678 likely chose the child process to write to the parent
679 address space. Swapping the child temporarily away from
680 the spaces has the desired effect. Yes, this is "sort
681 of" a hack. */
682
683 pspace = inf->pspace;
684 aspace = inf->aspace;
685 inf->aspace = NULL;
686 inf->pspace = NULL;
687
688 if (debug_infrun || info_verbose)
689 {
690 target_terminal_ours ();
691
692 if (exec)
693 fprintf_filtered (gdb_stdlog,
694 "Detaching vfork parent process "
695 "%d after child exec.\n",
696 inf->vfork_parent->pid);
697 else
698 fprintf_filtered (gdb_stdlog,
699 "Detaching vfork parent process "
700 "%d after child exit.\n",
701 inf->vfork_parent->pid);
702 }
703
704 target_detach (NULL, 0);
705
706 /* Put it back. */
707 inf->pspace = pspace;
708 inf->aspace = aspace;
709
710 do_cleanups (old_chain);
711 }
712 else if (exec)
713 {
714 /* We're staying attached to the parent, so, really give the
715 child a new address space. */
716 inf->pspace = add_program_space (maybe_new_address_space ());
717 inf->aspace = inf->pspace->aspace;
718 inf->removable = 1;
719 set_current_program_space (inf->pspace);
720
721 resume_parent = inf->vfork_parent->pid;
722
723 /* Break the bonds. */
724 inf->vfork_parent->vfork_child = NULL;
725 }
726 else
727 {
728 struct cleanup *old_chain;
729 struct program_space *pspace;
730
731 /* If this is a vfork child exiting, then the pspace and
732 aspaces were shared with the parent. Since we're
733 reporting the process exit, we'll be mourning all that is
734 found in the address space, and switching to null_ptid,
735 preparing to start a new inferior. But, since we don't
736 want to clobber the parent's address/program spaces, we
737 go ahead and create a new one for this exiting
738 inferior. */
739
740 /* Switch to null_ptid, so that clone_program_space doesn't want
741 to read the selected frame of a dead process. */
742 old_chain = save_inferior_ptid ();
743 inferior_ptid = null_ptid;
744
745 /* This inferior is dead, so avoid giving the breakpoints
746 module the option to write through to it (cloning a
747 program space resets breakpoints). */
748 inf->aspace = NULL;
749 inf->pspace = NULL;
750 pspace = add_program_space (maybe_new_address_space ());
751 set_current_program_space (pspace);
752 inf->removable = 1;
753 inf->symfile_flags = SYMFILE_NO_READ;
754 clone_program_space (pspace, inf->vfork_parent->pspace);
755 inf->pspace = pspace;
756 inf->aspace = pspace->aspace;
757
758 /* Put back inferior_ptid. We'll continue mourning this
759 inferior. */
760 do_cleanups (old_chain);
761
762 resume_parent = inf->vfork_parent->pid;
763 /* Break the bonds. */
764 inf->vfork_parent->vfork_child = NULL;
765 }
766
767 inf->vfork_parent = NULL;
768
769 gdb_assert (current_program_space == inf->pspace);
770
771 if (non_stop && resume_parent != -1)
772 {
773 /* If the user wanted the parent to be running, let it go
774 free now. */
775 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
776
777 if (debug_infrun)
778 fprintf_unfiltered (gdb_stdlog,
779 "infrun: resuming vfork parent process %d\n",
780 resume_parent);
781
782 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
783
784 do_cleanups (old_chain);
785 }
786 }
787 }
788
789 /* Enum strings for "set|show displaced-stepping". */
790
791 static const char follow_exec_mode_new[] = "new";
792 static const char follow_exec_mode_same[] = "same";
793 static const char *const follow_exec_mode_names[] =
794 {
795 follow_exec_mode_new,
796 follow_exec_mode_same,
797 NULL,
798 };
799
800 static const char *follow_exec_mode_string = follow_exec_mode_same;
801 static void
802 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
803 struct cmd_list_element *c, const char *value)
804 {
805 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
806 }
807
808 /* EXECD_PATHNAME is assumed to be non-NULL. */
809
810 static void
811 follow_exec (ptid_t pid, char *execd_pathname)
812 {
813 struct thread_info *th = inferior_thread ();
814 struct inferior *inf = current_inferior ();
815
816 /* This is an exec event that we actually wish to pay attention to.
817 Refresh our symbol table to the newly exec'd program, remove any
818 momentary bp's, etc.
819
820 If there are breakpoints, they aren't really inserted now,
821 since the exec() transformed our inferior into a fresh set
822 of instructions.
823
824 We want to preserve symbolic breakpoints on the list, since
825 we have hopes that they can be reset after the new a.out's
826 symbol table is read.
827
828 However, any "raw" breakpoints must be removed from the list
829 (e.g., the solib bp's), since their address is probably invalid
830 now.
831
832 And, we DON'T want to call delete_breakpoints() here, since
833 that may write the bp's "shadow contents" (the instruction
834 value that was overwritten witha TRAP instruction). Since
835 we now have a new a.out, those shadow contents aren't valid. */
836
837 mark_breakpoints_out ();
838
839 update_breakpoints_after_exec ();
840
841 /* If there was one, it's gone now. We cannot truly step-to-next
842 statement through an exec(). */
843 th->control.step_resume_breakpoint = NULL;
844 th->control.exception_resume_breakpoint = NULL;
845 th->control.step_range_start = 0;
846 th->control.step_range_end = 0;
847
848 /* The target reports the exec event to the main thread, even if
849 some other thread does the exec, and even if the main thread was
850 already stopped --- if debugging in non-stop mode, it's possible
851 the user had the main thread held stopped in the previous image
852 --- release it now. This is the same behavior as step-over-exec
853 with scheduler-locking on in all-stop mode. */
854 th->stop_requested = 0;
855
856 /* What is this a.out's name? */
857 printf_unfiltered (_("%s is executing new program: %s\n"),
858 target_pid_to_str (inferior_ptid),
859 execd_pathname);
860
861 /* We've followed the inferior through an exec. Therefore, the
862 inferior has essentially been killed & reborn. */
863
864 gdb_flush (gdb_stdout);
865
866 breakpoint_init_inferior (inf_execd);
867
868 if (gdb_sysroot && *gdb_sysroot)
869 {
870 char *name = alloca (strlen (gdb_sysroot)
871 + strlen (execd_pathname)
872 + 1);
873
874 strcpy (name, gdb_sysroot);
875 strcat (name, execd_pathname);
876 execd_pathname = name;
877 }
878
879 /* Reset the shared library package. This ensures that we get a
880 shlib event when the child reaches "_start", at which point the
881 dld will have had a chance to initialize the child. */
882 /* Also, loading a symbol file below may trigger symbol lookups, and
883 we don't want those to be satisfied by the libraries of the
884 previous incarnation of this process. */
885 no_shared_libraries (NULL, 0);
886
887 if (follow_exec_mode_string == follow_exec_mode_new)
888 {
889 struct program_space *pspace;
890
891 /* The user wants to keep the old inferior and program spaces
892 around. Create a new fresh one, and switch to it. */
893
894 inf = add_inferior (current_inferior ()->pid);
895 pspace = add_program_space (maybe_new_address_space ());
896 inf->pspace = pspace;
897 inf->aspace = pspace->aspace;
898
899 exit_inferior_num_silent (current_inferior ()->num);
900
901 set_current_inferior (inf);
902 set_current_program_space (pspace);
903 }
904
905 gdb_assert (current_program_space == inf->pspace);
906
907 /* That a.out is now the one to use. */
908 exec_file_attach (execd_pathname, 0);
909
910 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
911 (Position Independent Executable) main symbol file will get applied by
912 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
913 the breakpoints with the zero displacement. */
914
915 symbol_file_add (execd_pathname,
916 (inf->symfile_flags
917 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
918 NULL, 0);
919
920 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
921 set_initial_language ();
922
923 #ifdef SOLIB_CREATE_INFERIOR_HOOK
924 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
925 #else
926 solib_create_inferior_hook (0);
927 #endif
928
929 jit_inferior_created_hook ();
930
931 breakpoint_re_set ();
932
933 /* Reinsert all breakpoints. (Those which were symbolic have
934 been reset to the proper address in the new a.out, thanks
935 to symbol_file_command...). */
936 insert_breakpoints ();
937
938 /* The next resume of this inferior should bring it to the shlib
939 startup breakpoints. (If the user had also set bp's on
940 "main" from the old (parent) process, then they'll auto-
941 matically get reset there in the new process.). */
942 }
943
944 /* Non-zero if we just simulating a single-step. This is needed
945 because we cannot remove the breakpoints in the inferior process
946 until after the `wait' in `wait_for_inferior'. */
947 static int singlestep_breakpoints_inserted_p = 0;
948
949 /* The thread we inserted single-step breakpoints for. */
950 static ptid_t singlestep_ptid;
951
952 /* PC when we started this single-step. */
953 static CORE_ADDR singlestep_pc;
954
955 /* If another thread hit the singlestep breakpoint, we save the original
956 thread here so that we can resume single-stepping it later. */
957 static ptid_t saved_singlestep_ptid;
958 static int stepping_past_singlestep_breakpoint;
959
960 /* If not equal to null_ptid, this means that after stepping over breakpoint
961 is finished, we need to switch to deferred_step_ptid, and step it.
962
963 The use case is when one thread has hit a breakpoint, and then the user
964 has switched to another thread and issued 'step'. We need to step over
965 breakpoint in the thread which hit the breakpoint, but then continue
966 stepping the thread user has selected. */
967 static ptid_t deferred_step_ptid;
968 \f
969 /* Displaced stepping. */
970
971 /* In non-stop debugging mode, we must take special care to manage
972 breakpoints properly; in particular, the traditional strategy for
973 stepping a thread past a breakpoint it has hit is unsuitable.
974 'Displaced stepping' is a tactic for stepping one thread past a
975 breakpoint it has hit while ensuring that other threads running
976 concurrently will hit the breakpoint as they should.
977
978 The traditional way to step a thread T off a breakpoint in a
979 multi-threaded program in all-stop mode is as follows:
980
981 a0) Initially, all threads are stopped, and breakpoints are not
982 inserted.
983 a1) We single-step T, leaving breakpoints uninserted.
984 a2) We insert breakpoints, and resume all threads.
985
986 In non-stop debugging, however, this strategy is unsuitable: we
987 don't want to have to stop all threads in the system in order to
988 continue or step T past a breakpoint. Instead, we use displaced
989 stepping:
990
991 n0) Initially, T is stopped, other threads are running, and
992 breakpoints are inserted.
993 n1) We copy the instruction "under" the breakpoint to a separate
994 location, outside the main code stream, making any adjustments
995 to the instruction, register, and memory state as directed by
996 T's architecture.
997 n2) We single-step T over the instruction at its new location.
998 n3) We adjust the resulting register and memory state as directed
999 by T's architecture. This includes resetting T's PC to point
1000 back into the main instruction stream.
1001 n4) We resume T.
1002
1003 This approach depends on the following gdbarch methods:
1004
1005 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1006 indicate where to copy the instruction, and how much space must
1007 be reserved there. We use these in step n1.
1008
1009 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1010 address, and makes any necessary adjustments to the instruction,
1011 register contents, and memory. We use this in step n1.
1012
1013 - gdbarch_displaced_step_fixup adjusts registers and memory after
1014 we have successfuly single-stepped the instruction, to yield the
1015 same effect the instruction would have had if we had executed it
1016 at its original address. We use this in step n3.
1017
1018 - gdbarch_displaced_step_free_closure provides cleanup.
1019
1020 The gdbarch_displaced_step_copy_insn and
1021 gdbarch_displaced_step_fixup functions must be written so that
1022 copying an instruction with gdbarch_displaced_step_copy_insn,
1023 single-stepping across the copied instruction, and then applying
1024 gdbarch_displaced_insn_fixup should have the same effects on the
1025 thread's memory and registers as stepping the instruction in place
1026 would have. Exactly which responsibilities fall to the copy and
1027 which fall to the fixup is up to the author of those functions.
1028
1029 See the comments in gdbarch.sh for details.
1030
1031 Note that displaced stepping and software single-step cannot
1032 currently be used in combination, although with some care I think
1033 they could be made to. Software single-step works by placing
1034 breakpoints on all possible subsequent instructions; if the
1035 displaced instruction is a PC-relative jump, those breakpoints
1036 could fall in very strange places --- on pages that aren't
1037 executable, or at addresses that are not proper instruction
1038 boundaries. (We do generally let other threads run while we wait
1039 to hit the software single-step breakpoint, and they might
1040 encounter such a corrupted instruction.) One way to work around
1041 this would be to have gdbarch_displaced_step_copy_insn fully
1042 simulate the effect of PC-relative instructions (and return NULL)
1043 on architectures that use software single-stepping.
1044
1045 In non-stop mode, we can have independent and simultaneous step
1046 requests, so more than one thread may need to simultaneously step
1047 over a breakpoint. The current implementation assumes there is
1048 only one scratch space per process. In this case, we have to
1049 serialize access to the scratch space. If thread A wants to step
1050 over a breakpoint, but we are currently waiting for some other
1051 thread to complete a displaced step, we leave thread A stopped and
1052 place it in the displaced_step_request_queue. Whenever a displaced
1053 step finishes, we pick the next thread in the queue and start a new
1054 displaced step operation on it. See displaced_step_prepare and
1055 displaced_step_fixup for details. */
1056
1057 struct displaced_step_request
1058 {
1059 ptid_t ptid;
1060 struct displaced_step_request *next;
1061 };
1062
1063 /* Per-inferior displaced stepping state. */
1064 struct displaced_step_inferior_state
1065 {
1066 /* Pointer to next in linked list. */
1067 struct displaced_step_inferior_state *next;
1068
1069 /* The process this displaced step state refers to. */
1070 int pid;
1071
1072 /* A queue of pending displaced stepping requests. One entry per
1073 thread that needs to do a displaced step. */
1074 struct displaced_step_request *step_request_queue;
1075
1076 /* If this is not null_ptid, this is the thread carrying out a
1077 displaced single-step in process PID. This thread's state will
1078 require fixing up once it has completed its step. */
1079 ptid_t step_ptid;
1080
1081 /* The architecture the thread had when we stepped it. */
1082 struct gdbarch *step_gdbarch;
1083
1084 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1085 for post-step cleanup. */
1086 struct displaced_step_closure *step_closure;
1087
1088 /* The address of the original instruction, and the copy we
1089 made. */
1090 CORE_ADDR step_original, step_copy;
1091
1092 /* Saved contents of copy area. */
1093 gdb_byte *step_saved_copy;
1094 };
1095
1096 /* The list of states of processes involved in displaced stepping
1097 presently. */
1098 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1099
1100 /* Get the displaced stepping state of process PID. */
1101
1102 static struct displaced_step_inferior_state *
1103 get_displaced_stepping_state (int pid)
1104 {
1105 struct displaced_step_inferior_state *state;
1106
1107 for (state = displaced_step_inferior_states;
1108 state != NULL;
1109 state = state->next)
1110 if (state->pid == pid)
1111 return state;
1112
1113 return NULL;
1114 }
1115
1116 /* Add a new displaced stepping state for process PID to the displaced
1117 stepping state list, or return a pointer to an already existing
1118 entry, if it already exists. Never returns NULL. */
1119
1120 static struct displaced_step_inferior_state *
1121 add_displaced_stepping_state (int pid)
1122 {
1123 struct displaced_step_inferior_state *state;
1124
1125 for (state = displaced_step_inferior_states;
1126 state != NULL;
1127 state = state->next)
1128 if (state->pid == pid)
1129 return state;
1130
1131 state = xcalloc (1, sizeof (*state));
1132 state->pid = pid;
1133 state->next = displaced_step_inferior_states;
1134 displaced_step_inferior_states = state;
1135
1136 return state;
1137 }
1138
1139 /* If inferior is in displaced stepping, and ADDR equals to starting address
1140 of copy area, return corresponding displaced_step_closure. Otherwise,
1141 return NULL. */
1142
1143 struct displaced_step_closure*
1144 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1145 {
1146 struct displaced_step_inferior_state *displaced
1147 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1148
1149 /* If checking the mode of displaced instruction in copy area. */
1150 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1151 && (displaced->step_copy == addr))
1152 return displaced->step_closure;
1153
1154 return NULL;
1155 }
1156
1157 /* Remove the displaced stepping state of process PID. */
1158
1159 static void
1160 remove_displaced_stepping_state (int pid)
1161 {
1162 struct displaced_step_inferior_state *it, **prev_next_p;
1163
1164 gdb_assert (pid != 0);
1165
1166 it = displaced_step_inferior_states;
1167 prev_next_p = &displaced_step_inferior_states;
1168 while (it)
1169 {
1170 if (it->pid == pid)
1171 {
1172 *prev_next_p = it->next;
1173 xfree (it);
1174 return;
1175 }
1176
1177 prev_next_p = &it->next;
1178 it = *prev_next_p;
1179 }
1180 }
1181
1182 static void
1183 infrun_inferior_exit (struct inferior *inf)
1184 {
1185 remove_displaced_stepping_state (inf->pid);
1186 }
1187
1188 /* If ON, and the architecture supports it, GDB will use displaced
1189 stepping to step over breakpoints. If OFF, or if the architecture
1190 doesn't support it, GDB will instead use the traditional
1191 hold-and-step approach. If AUTO (which is the default), GDB will
1192 decide which technique to use to step over breakpoints depending on
1193 which of all-stop or non-stop mode is active --- displaced stepping
1194 in non-stop mode; hold-and-step in all-stop mode. */
1195
1196 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1197
1198 static void
1199 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1200 struct cmd_list_element *c,
1201 const char *value)
1202 {
1203 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1204 fprintf_filtered (file,
1205 _("Debugger's willingness to use displaced stepping "
1206 "to step over breakpoints is %s (currently %s).\n"),
1207 value, non_stop ? "on" : "off");
1208 else
1209 fprintf_filtered (file,
1210 _("Debugger's willingness to use displaced stepping "
1211 "to step over breakpoints is %s.\n"), value);
1212 }
1213
1214 /* Return non-zero if displaced stepping can/should be used to step
1215 over breakpoints. */
1216
1217 static int
1218 use_displaced_stepping (struct gdbarch *gdbarch)
1219 {
1220 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1221 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1222 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1223 && !RECORD_IS_USED);
1224 }
1225
1226 /* Clean out any stray displaced stepping state. */
1227 static void
1228 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1229 {
1230 /* Indicate that there is no cleanup pending. */
1231 displaced->step_ptid = null_ptid;
1232
1233 if (displaced->step_closure)
1234 {
1235 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1236 displaced->step_closure);
1237 displaced->step_closure = NULL;
1238 }
1239 }
1240
1241 static void
1242 displaced_step_clear_cleanup (void *arg)
1243 {
1244 struct displaced_step_inferior_state *state = arg;
1245
1246 displaced_step_clear (state);
1247 }
1248
1249 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1250 void
1251 displaced_step_dump_bytes (struct ui_file *file,
1252 const gdb_byte *buf,
1253 size_t len)
1254 {
1255 int i;
1256
1257 for (i = 0; i < len; i++)
1258 fprintf_unfiltered (file, "%02x ", buf[i]);
1259 fputs_unfiltered ("\n", file);
1260 }
1261
1262 /* Prepare to single-step, using displaced stepping.
1263
1264 Note that we cannot use displaced stepping when we have a signal to
1265 deliver. If we have a signal to deliver and an instruction to step
1266 over, then after the step, there will be no indication from the
1267 target whether the thread entered a signal handler or ignored the
1268 signal and stepped over the instruction successfully --- both cases
1269 result in a simple SIGTRAP. In the first case we mustn't do a
1270 fixup, and in the second case we must --- but we can't tell which.
1271 Comments in the code for 'random signals' in handle_inferior_event
1272 explain how we handle this case instead.
1273
1274 Returns 1 if preparing was successful -- this thread is going to be
1275 stepped now; or 0 if displaced stepping this thread got queued. */
1276 static int
1277 displaced_step_prepare (ptid_t ptid)
1278 {
1279 struct cleanup *old_cleanups, *ignore_cleanups;
1280 struct regcache *regcache = get_thread_regcache (ptid);
1281 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1282 CORE_ADDR original, copy;
1283 ULONGEST len;
1284 struct displaced_step_closure *closure;
1285 struct displaced_step_inferior_state *displaced;
1286 int status;
1287
1288 /* We should never reach this function if the architecture does not
1289 support displaced stepping. */
1290 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1291
1292 /* We have to displaced step one thread at a time, as we only have
1293 access to a single scratch space per inferior. */
1294
1295 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1296
1297 if (!ptid_equal (displaced->step_ptid, null_ptid))
1298 {
1299 /* Already waiting for a displaced step to finish. Defer this
1300 request and place in queue. */
1301 struct displaced_step_request *req, *new_req;
1302
1303 if (debug_displaced)
1304 fprintf_unfiltered (gdb_stdlog,
1305 "displaced: defering step of %s\n",
1306 target_pid_to_str (ptid));
1307
1308 new_req = xmalloc (sizeof (*new_req));
1309 new_req->ptid = ptid;
1310 new_req->next = NULL;
1311
1312 if (displaced->step_request_queue)
1313 {
1314 for (req = displaced->step_request_queue;
1315 req && req->next;
1316 req = req->next)
1317 ;
1318 req->next = new_req;
1319 }
1320 else
1321 displaced->step_request_queue = new_req;
1322
1323 return 0;
1324 }
1325 else
1326 {
1327 if (debug_displaced)
1328 fprintf_unfiltered (gdb_stdlog,
1329 "displaced: stepping %s now\n",
1330 target_pid_to_str (ptid));
1331 }
1332
1333 displaced_step_clear (displaced);
1334
1335 old_cleanups = save_inferior_ptid ();
1336 inferior_ptid = ptid;
1337
1338 original = regcache_read_pc (regcache);
1339
1340 copy = gdbarch_displaced_step_location (gdbarch);
1341 len = gdbarch_max_insn_length (gdbarch);
1342
1343 /* Save the original contents of the copy area. */
1344 displaced->step_saved_copy = xmalloc (len);
1345 ignore_cleanups = make_cleanup (free_current_contents,
1346 &displaced->step_saved_copy);
1347 status = target_read_memory (copy, displaced->step_saved_copy, len);
1348 if (status != 0)
1349 throw_error (MEMORY_ERROR,
1350 _("Error accessing memory address %s (%s) for "
1351 "displaced-stepping scratch space."),
1352 paddress (gdbarch, copy), safe_strerror (status));
1353 if (debug_displaced)
1354 {
1355 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1356 paddress (gdbarch, copy));
1357 displaced_step_dump_bytes (gdb_stdlog,
1358 displaced->step_saved_copy,
1359 len);
1360 };
1361
1362 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1363 original, copy, regcache);
1364
1365 /* We don't support the fully-simulated case at present. */
1366 gdb_assert (closure);
1367
1368 /* Save the information we need to fix things up if the step
1369 succeeds. */
1370 displaced->step_ptid = ptid;
1371 displaced->step_gdbarch = gdbarch;
1372 displaced->step_closure = closure;
1373 displaced->step_original = original;
1374 displaced->step_copy = copy;
1375
1376 make_cleanup (displaced_step_clear_cleanup, displaced);
1377
1378 /* Resume execution at the copy. */
1379 regcache_write_pc (regcache, copy);
1380
1381 discard_cleanups (ignore_cleanups);
1382
1383 do_cleanups (old_cleanups);
1384
1385 if (debug_displaced)
1386 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1387 paddress (gdbarch, copy));
1388
1389 return 1;
1390 }
1391
1392 static void
1393 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1394 const gdb_byte *myaddr, int len)
1395 {
1396 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1397
1398 inferior_ptid = ptid;
1399 write_memory (memaddr, myaddr, len);
1400 do_cleanups (ptid_cleanup);
1401 }
1402
1403 /* Restore the contents of the copy area for thread PTID. */
1404
1405 static void
1406 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1407 ptid_t ptid)
1408 {
1409 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1410
1411 write_memory_ptid (ptid, displaced->step_copy,
1412 displaced->step_saved_copy, len);
1413 if (debug_displaced)
1414 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1415 target_pid_to_str (ptid),
1416 paddress (displaced->step_gdbarch,
1417 displaced->step_copy));
1418 }
1419
1420 static void
1421 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1422 {
1423 struct cleanup *old_cleanups;
1424 struct displaced_step_inferior_state *displaced
1425 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1426
1427 /* Was any thread of this process doing a displaced step? */
1428 if (displaced == NULL)
1429 return;
1430
1431 /* Was this event for the pid we displaced? */
1432 if (ptid_equal (displaced->step_ptid, null_ptid)
1433 || ! ptid_equal (displaced->step_ptid, event_ptid))
1434 return;
1435
1436 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1437
1438 displaced_step_restore (displaced, displaced->step_ptid);
1439
1440 /* Did the instruction complete successfully? */
1441 if (signal == GDB_SIGNAL_TRAP)
1442 {
1443 /* Fix up the resulting state. */
1444 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1445 displaced->step_closure,
1446 displaced->step_original,
1447 displaced->step_copy,
1448 get_thread_regcache (displaced->step_ptid));
1449 }
1450 else
1451 {
1452 /* Since the instruction didn't complete, all we can do is
1453 relocate the PC. */
1454 struct regcache *regcache = get_thread_regcache (event_ptid);
1455 CORE_ADDR pc = regcache_read_pc (regcache);
1456
1457 pc = displaced->step_original + (pc - displaced->step_copy);
1458 regcache_write_pc (regcache, pc);
1459 }
1460
1461 do_cleanups (old_cleanups);
1462
1463 displaced->step_ptid = null_ptid;
1464
1465 /* Are there any pending displaced stepping requests? If so, run
1466 one now. Leave the state object around, since we're likely to
1467 need it again soon. */
1468 while (displaced->step_request_queue)
1469 {
1470 struct displaced_step_request *head;
1471 ptid_t ptid;
1472 struct regcache *regcache;
1473 struct gdbarch *gdbarch;
1474 CORE_ADDR actual_pc;
1475 struct address_space *aspace;
1476
1477 head = displaced->step_request_queue;
1478 ptid = head->ptid;
1479 displaced->step_request_queue = head->next;
1480 xfree (head);
1481
1482 context_switch (ptid);
1483
1484 regcache = get_thread_regcache (ptid);
1485 actual_pc = regcache_read_pc (regcache);
1486 aspace = get_regcache_aspace (regcache);
1487
1488 if (breakpoint_here_p (aspace, actual_pc))
1489 {
1490 if (debug_displaced)
1491 fprintf_unfiltered (gdb_stdlog,
1492 "displaced: stepping queued %s now\n",
1493 target_pid_to_str (ptid));
1494
1495 displaced_step_prepare (ptid);
1496
1497 gdbarch = get_regcache_arch (regcache);
1498
1499 if (debug_displaced)
1500 {
1501 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1502 gdb_byte buf[4];
1503
1504 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1505 paddress (gdbarch, actual_pc));
1506 read_memory (actual_pc, buf, sizeof (buf));
1507 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1508 }
1509
1510 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1511 displaced->step_closure))
1512 target_resume (ptid, 1, GDB_SIGNAL_0);
1513 else
1514 target_resume (ptid, 0, GDB_SIGNAL_0);
1515
1516 /* Done, we're stepping a thread. */
1517 break;
1518 }
1519 else
1520 {
1521 int step;
1522 struct thread_info *tp = inferior_thread ();
1523
1524 /* The breakpoint we were sitting under has since been
1525 removed. */
1526 tp->control.trap_expected = 0;
1527
1528 /* Go back to what we were trying to do. */
1529 step = currently_stepping (tp);
1530
1531 if (debug_displaced)
1532 fprintf_unfiltered (gdb_stdlog,
1533 "displaced: breakpoint is gone: %s, step(%d)\n",
1534 target_pid_to_str (tp->ptid), step);
1535
1536 target_resume (ptid, step, GDB_SIGNAL_0);
1537 tp->suspend.stop_signal = GDB_SIGNAL_0;
1538
1539 /* This request was discarded. See if there's any other
1540 thread waiting for its turn. */
1541 }
1542 }
1543 }
1544
1545 /* Update global variables holding ptids to hold NEW_PTID if they were
1546 holding OLD_PTID. */
1547 static void
1548 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1549 {
1550 struct displaced_step_request *it;
1551 struct displaced_step_inferior_state *displaced;
1552
1553 if (ptid_equal (inferior_ptid, old_ptid))
1554 inferior_ptid = new_ptid;
1555
1556 if (ptid_equal (singlestep_ptid, old_ptid))
1557 singlestep_ptid = new_ptid;
1558
1559 if (ptid_equal (deferred_step_ptid, old_ptid))
1560 deferred_step_ptid = new_ptid;
1561
1562 for (displaced = displaced_step_inferior_states;
1563 displaced;
1564 displaced = displaced->next)
1565 {
1566 if (ptid_equal (displaced->step_ptid, old_ptid))
1567 displaced->step_ptid = new_ptid;
1568
1569 for (it = displaced->step_request_queue; it; it = it->next)
1570 if (ptid_equal (it->ptid, old_ptid))
1571 it->ptid = new_ptid;
1572 }
1573 }
1574
1575 \f
1576 /* Resuming. */
1577
1578 /* Things to clean up if we QUIT out of resume (). */
1579 static void
1580 resume_cleanups (void *ignore)
1581 {
1582 normal_stop ();
1583 }
1584
1585 static const char schedlock_off[] = "off";
1586 static const char schedlock_on[] = "on";
1587 static const char schedlock_step[] = "step";
1588 static const char *const scheduler_enums[] = {
1589 schedlock_off,
1590 schedlock_on,
1591 schedlock_step,
1592 NULL
1593 };
1594 static const char *scheduler_mode = schedlock_off;
1595 static void
1596 show_scheduler_mode (struct ui_file *file, int from_tty,
1597 struct cmd_list_element *c, const char *value)
1598 {
1599 fprintf_filtered (file,
1600 _("Mode for locking scheduler "
1601 "during execution is \"%s\".\n"),
1602 value);
1603 }
1604
1605 static void
1606 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1607 {
1608 if (!target_can_lock_scheduler)
1609 {
1610 scheduler_mode = schedlock_off;
1611 error (_("Target '%s' cannot support this command."), target_shortname);
1612 }
1613 }
1614
1615 /* True if execution commands resume all threads of all processes by
1616 default; otherwise, resume only threads of the current inferior
1617 process. */
1618 int sched_multi = 0;
1619
1620 /* Try to setup for software single stepping over the specified location.
1621 Return 1 if target_resume() should use hardware single step.
1622
1623 GDBARCH the current gdbarch.
1624 PC the location to step over. */
1625
1626 static int
1627 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1628 {
1629 int hw_step = 1;
1630
1631 if (execution_direction == EXEC_FORWARD
1632 && gdbarch_software_single_step_p (gdbarch)
1633 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1634 {
1635 hw_step = 0;
1636 /* Do not pull these breakpoints until after a `wait' in
1637 `wait_for_inferior'. */
1638 singlestep_breakpoints_inserted_p = 1;
1639 singlestep_ptid = inferior_ptid;
1640 singlestep_pc = pc;
1641 }
1642 return hw_step;
1643 }
1644
1645 /* Return a ptid representing the set of threads that we will proceed,
1646 in the perspective of the user/frontend. We may actually resume
1647 fewer threads at first, e.g., if a thread is stopped at a
1648 breakpoint that needs stepping-off, but that should not be visible
1649 to the user/frontend, and neither should the frontend/user be
1650 allowed to proceed any of the threads that happen to be stopped for
1651 internal run control handling, if a previous command wanted them
1652 resumed. */
1653
1654 ptid_t
1655 user_visible_resume_ptid (int step)
1656 {
1657 /* By default, resume all threads of all processes. */
1658 ptid_t resume_ptid = RESUME_ALL;
1659
1660 /* Maybe resume only all threads of the current process. */
1661 if (!sched_multi && target_supports_multi_process ())
1662 {
1663 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1664 }
1665
1666 /* Maybe resume a single thread after all. */
1667 if (non_stop)
1668 {
1669 /* With non-stop mode on, threads are always handled
1670 individually. */
1671 resume_ptid = inferior_ptid;
1672 }
1673 else if ((scheduler_mode == schedlock_on)
1674 || (scheduler_mode == schedlock_step
1675 && (step || singlestep_breakpoints_inserted_p)))
1676 {
1677 /* User-settable 'scheduler' mode requires solo thread resume. */
1678 resume_ptid = inferior_ptid;
1679 }
1680
1681 return resume_ptid;
1682 }
1683
1684 /* Resume the inferior, but allow a QUIT. This is useful if the user
1685 wants to interrupt some lengthy single-stepping operation
1686 (for child processes, the SIGINT goes to the inferior, and so
1687 we get a SIGINT random_signal, but for remote debugging and perhaps
1688 other targets, that's not true).
1689
1690 STEP nonzero if we should step (zero to continue instead).
1691 SIG is the signal to give the inferior (zero for none). */
1692 void
1693 resume (int step, enum gdb_signal sig)
1694 {
1695 int should_resume = 1;
1696 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1697 struct regcache *regcache = get_current_regcache ();
1698 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1699 struct thread_info *tp = inferior_thread ();
1700 CORE_ADDR pc = regcache_read_pc (regcache);
1701 struct address_space *aspace = get_regcache_aspace (regcache);
1702
1703 QUIT;
1704
1705 if (current_inferior ()->waiting_for_vfork_done)
1706 {
1707 /* Don't try to single-step a vfork parent that is waiting for
1708 the child to get out of the shared memory region (by exec'ing
1709 or exiting). This is particularly important on software
1710 single-step archs, as the child process would trip on the
1711 software single step breakpoint inserted for the parent
1712 process. Since the parent will not actually execute any
1713 instruction until the child is out of the shared region (such
1714 are vfork's semantics), it is safe to simply continue it.
1715 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1716 the parent, and tell it to `keep_going', which automatically
1717 re-sets it stepping. */
1718 if (debug_infrun)
1719 fprintf_unfiltered (gdb_stdlog,
1720 "infrun: resume : clear step\n");
1721 step = 0;
1722 }
1723
1724 if (debug_infrun)
1725 fprintf_unfiltered (gdb_stdlog,
1726 "infrun: resume (step=%d, signal=%d), "
1727 "trap_expected=%d, current thread [%s] at %s\n",
1728 step, sig, tp->control.trap_expected,
1729 target_pid_to_str (inferior_ptid),
1730 paddress (gdbarch, pc));
1731
1732 /* Normally, by the time we reach `resume', the breakpoints are either
1733 removed or inserted, as appropriate. The exception is if we're sitting
1734 at a permanent breakpoint; we need to step over it, but permanent
1735 breakpoints can't be removed. So we have to test for it here. */
1736 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1737 {
1738 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1739 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1740 else
1741 error (_("\
1742 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1743 how to step past a permanent breakpoint on this architecture. Try using\n\
1744 a command like `return' or `jump' to continue execution."));
1745 }
1746
1747 /* If enabled, step over breakpoints by executing a copy of the
1748 instruction at a different address.
1749
1750 We can't use displaced stepping when we have a signal to deliver;
1751 the comments for displaced_step_prepare explain why. The
1752 comments in the handle_inferior event for dealing with 'random
1753 signals' explain what we do instead.
1754
1755 We can't use displaced stepping when we are waiting for vfork_done
1756 event, displaced stepping breaks the vfork child similarly as single
1757 step software breakpoint. */
1758 if (use_displaced_stepping (gdbarch)
1759 && (tp->control.trap_expected
1760 || (step && gdbarch_software_single_step_p (gdbarch)))
1761 && sig == GDB_SIGNAL_0
1762 && !current_inferior ()->waiting_for_vfork_done)
1763 {
1764 struct displaced_step_inferior_state *displaced;
1765
1766 if (!displaced_step_prepare (inferior_ptid))
1767 {
1768 /* Got placed in displaced stepping queue. Will be resumed
1769 later when all the currently queued displaced stepping
1770 requests finish. The thread is not executing at this point,
1771 and the call to set_executing will be made later. But we
1772 need to call set_running here, since from frontend point of view,
1773 the thread is running. */
1774 set_running (inferior_ptid, 1);
1775 discard_cleanups (old_cleanups);
1776 return;
1777 }
1778
1779 /* Update pc to reflect the new address from which we will execute
1780 instructions due to displaced stepping. */
1781 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1782
1783 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1784 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1785 displaced->step_closure);
1786 }
1787
1788 /* Do we need to do it the hard way, w/temp breakpoints? */
1789 else if (step)
1790 step = maybe_software_singlestep (gdbarch, pc);
1791
1792 /* Currently, our software single-step implementation leads to different
1793 results than hardware single-stepping in one situation: when stepping
1794 into delivering a signal which has an associated signal handler,
1795 hardware single-step will stop at the first instruction of the handler,
1796 while software single-step will simply skip execution of the handler.
1797
1798 For now, this difference in behavior is accepted since there is no
1799 easy way to actually implement single-stepping into a signal handler
1800 without kernel support.
1801
1802 However, there is one scenario where this difference leads to follow-on
1803 problems: if we're stepping off a breakpoint by removing all breakpoints
1804 and then single-stepping. In this case, the software single-step
1805 behavior means that even if there is a *breakpoint* in the signal
1806 handler, GDB still would not stop.
1807
1808 Fortunately, we can at least fix this particular issue. We detect
1809 here the case where we are about to deliver a signal while software
1810 single-stepping with breakpoints removed. In this situation, we
1811 revert the decisions to remove all breakpoints and insert single-
1812 step breakpoints, and instead we install a step-resume breakpoint
1813 at the current address, deliver the signal without stepping, and
1814 once we arrive back at the step-resume breakpoint, actually step
1815 over the breakpoint we originally wanted to step over. */
1816 if (singlestep_breakpoints_inserted_p
1817 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1818 {
1819 /* If we have nested signals or a pending signal is delivered
1820 immediately after a handler returns, might might already have
1821 a step-resume breakpoint set on the earlier handler. We cannot
1822 set another step-resume breakpoint; just continue on until the
1823 original breakpoint is hit. */
1824 if (tp->control.step_resume_breakpoint == NULL)
1825 {
1826 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1827 tp->step_after_step_resume_breakpoint = 1;
1828 }
1829
1830 remove_single_step_breakpoints ();
1831 singlestep_breakpoints_inserted_p = 0;
1832
1833 insert_breakpoints ();
1834 tp->control.trap_expected = 0;
1835 }
1836
1837 if (should_resume)
1838 {
1839 ptid_t resume_ptid;
1840
1841 /* If STEP is set, it's a request to use hardware stepping
1842 facilities. But in that case, we should never
1843 use singlestep breakpoint. */
1844 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1845
1846 /* Decide the set of threads to ask the target to resume. Start
1847 by assuming everything will be resumed, than narrow the set
1848 by applying increasingly restricting conditions. */
1849 resume_ptid = user_visible_resume_ptid (step);
1850
1851 /* Maybe resume a single thread after all. */
1852 if (singlestep_breakpoints_inserted_p
1853 && stepping_past_singlestep_breakpoint)
1854 {
1855 /* The situation here is as follows. In thread T1 we wanted to
1856 single-step. Lacking hardware single-stepping we've
1857 set breakpoint at the PC of the next instruction -- call it
1858 P. After resuming, we've hit that breakpoint in thread T2.
1859 Now we've removed original breakpoint, inserted breakpoint
1860 at P+1, and try to step to advance T2 past breakpoint.
1861 We need to step only T2, as if T1 is allowed to freely run,
1862 it can run past P, and if other threads are allowed to run,
1863 they can hit breakpoint at P+1, and nested hits of single-step
1864 breakpoints is not something we'd want -- that's complicated
1865 to support, and has no value. */
1866 resume_ptid = inferior_ptid;
1867 }
1868 else if ((step || singlestep_breakpoints_inserted_p)
1869 && tp->control.trap_expected)
1870 {
1871 /* We're allowing a thread to run past a breakpoint it has
1872 hit, by single-stepping the thread with the breakpoint
1873 removed. In which case, we need to single-step only this
1874 thread, and keep others stopped, as they can miss this
1875 breakpoint if allowed to run.
1876
1877 The current code actually removes all breakpoints when
1878 doing this, not just the one being stepped over, so if we
1879 let other threads run, we can actually miss any
1880 breakpoint, not just the one at PC. */
1881 resume_ptid = inferior_ptid;
1882 }
1883
1884 if (gdbarch_cannot_step_breakpoint (gdbarch))
1885 {
1886 /* Most targets can step a breakpoint instruction, thus
1887 executing it normally. But if this one cannot, just
1888 continue and we will hit it anyway. */
1889 if (step && breakpoint_inserted_here_p (aspace, pc))
1890 step = 0;
1891 }
1892
1893 if (debug_displaced
1894 && use_displaced_stepping (gdbarch)
1895 && tp->control.trap_expected)
1896 {
1897 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1898 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1899 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1900 gdb_byte buf[4];
1901
1902 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1903 paddress (resume_gdbarch, actual_pc));
1904 read_memory (actual_pc, buf, sizeof (buf));
1905 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1906 }
1907
1908 /* Install inferior's terminal modes. */
1909 target_terminal_inferior ();
1910
1911 /* Avoid confusing the next resume, if the next stop/resume
1912 happens to apply to another thread. */
1913 tp->suspend.stop_signal = GDB_SIGNAL_0;
1914
1915 /* Advise target which signals may be handled silently. If we have
1916 removed breakpoints because we are stepping over one (which can
1917 happen only if we are not using displaced stepping), we need to
1918 receive all signals to avoid accidentally skipping a breakpoint
1919 during execution of a signal handler. */
1920 if ((step || singlestep_breakpoints_inserted_p)
1921 && tp->control.trap_expected
1922 && !use_displaced_stepping (gdbarch))
1923 target_pass_signals (0, NULL);
1924 else
1925 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1926
1927 target_resume (resume_ptid, step, sig);
1928 }
1929
1930 discard_cleanups (old_cleanups);
1931 }
1932 \f
1933 /* Proceeding. */
1934
1935 /* Clear out all variables saying what to do when inferior is continued.
1936 First do this, then set the ones you want, then call `proceed'. */
1937
1938 static void
1939 clear_proceed_status_thread (struct thread_info *tp)
1940 {
1941 if (debug_infrun)
1942 fprintf_unfiltered (gdb_stdlog,
1943 "infrun: clear_proceed_status_thread (%s)\n",
1944 target_pid_to_str (tp->ptid));
1945
1946 tp->control.trap_expected = 0;
1947 tp->control.step_range_start = 0;
1948 tp->control.step_range_end = 0;
1949 tp->control.step_frame_id = null_frame_id;
1950 tp->control.step_stack_frame_id = null_frame_id;
1951 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1952 tp->stop_requested = 0;
1953
1954 tp->control.stop_step = 0;
1955
1956 tp->control.proceed_to_finish = 0;
1957
1958 /* Discard any remaining commands or status from previous stop. */
1959 bpstat_clear (&tp->control.stop_bpstat);
1960 }
1961
1962 static int
1963 clear_proceed_status_callback (struct thread_info *tp, void *data)
1964 {
1965 if (is_exited (tp->ptid))
1966 return 0;
1967
1968 clear_proceed_status_thread (tp);
1969 return 0;
1970 }
1971
1972 void
1973 clear_proceed_status (void)
1974 {
1975 if (!non_stop)
1976 {
1977 /* In all-stop mode, delete the per-thread status of all
1978 threads, even if inferior_ptid is null_ptid, there may be
1979 threads on the list. E.g., we may be launching a new
1980 process, while selecting the executable. */
1981 iterate_over_threads (clear_proceed_status_callback, NULL);
1982 }
1983
1984 if (!ptid_equal (inferior_ptid, null_ptid))
1985 {
1986 struct inferior *inferior;
1987
1988 if (non_stop)
1989 {
1990 /* If in non-stop mode, only delete the per-thread status of
1991 the current thread. */
1992 clear_proceed_status_thread (inferior_thread ());
1993 }
1994
1995 inferior = current_inferior ();
1996 inferior->control.stop_soon = NO_STOP_QUIETLY;
1997 }
1998
1999 stop_after_trap = 0;
2000
2001 observer_notify_about_to_proceed ();
2002
2003 if (stop_registers)
2004 {
2005 regcache_xfree (stop_registers);
2006 stop_registers = NULL;
2007 }
2008 }
2009
2010 /* Check the current thread against the thread that reported the most recent
2011 event. If a step-over is required return TRUE and set the current thread
2012 to the old thread. Otherwise return FALSE.
2013
2014 This should be suitable for any targets that support threads. */
2015
2016 static int
2017 prepare_to_proceed (int step)
2018 {
2019 ptid_t wait_ptid;
2020 struct target_waitstatus wait_status;
2021 int schedlock_enabled;
2022
2023 /* With non-stop mode on, threads are always handled individually. */
2024 gdb_assert (! non_stop);
2025
2026 /* Get the last target status returned by target_wait(). */
2027 get_last_target_status (&wait_ptid, &wait_status);
2028
2029 /* Make sure we were stopped at a breakpoint. */
2030 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2031 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2032 && wait_status.value.sig != GDB_SIGNAL_ILL
2033 && wait_status.value.sig != GDB_SIGNAL_SEGV
2034 && wait_status.value.sig != GDB_SIGNAL_EMT))
2035 {
2036 return 0;
2037 }
2038
2039 schedlock_enabled = (scheduler_mode == schedlock_on
2040 || (scheduler_mode == schedlock_step
2041 && step));
2042
2043 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2044 if (schedlock_enabled)
2045 return 0;
2046
2047 /* Don't switch over if we're about to resume some other process
2048 other than WAIT_PTID's, and schedule-multiple is off. */
2049 if (!sched_multi
2050 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2051 return 0;
2052
2053 /* Switched over from WAIT_PID. */
2054 if (!ptid_equal (wait_ptid, minus_one_ptid)
2055 && !ptid_equal (inferior_ptid, wait_ptid))
2056 {
2057 struct regcache *regcache = get_thread_regcache (wait_ptid);
2058
2059 if (breakpoint_here_p (get_regcache_aspace (regcache),
2060 regcache_read_pc (regcache)))
2061 {
2062 /* If stepping, remember current thread to switch back to. */
2063 if (step)
2064 deferred_step_ptid = inferior_ptid;
2065
2066 /* Switch back to WAIT_PID thread. */
2067 switch_to_thread (wait_ptid);
2068
2069 if (debug_infrun)
2070 fprintf_unfiltered (gdb_stdlog,
2071 "infrun: prepare_to_proceed (step=%d), "
2072 "switched to [%s]\n",
2073 step, target_pid_to_str (inferior_ptid));
2074
2075 /* We return 1 to indicate that there is a breakpoint here,
2076 so we need to step over it before continuing to avoid
2077 hitting it straight away. */
2078 return 1;
2079 }
2080 }
2081
2082 return 0;
2083 }
2084
2085 /* Basic routine for continuing the program in various fashions.
2086
2087 ADDR is the address to resume at, or -1 for resume where stopped.
2088 SIGGNAL is the signal to give it, or 0 for none,
2089 or -1 for act according to how it stopped.
2090 STEP is nonzero if should trap after one instruction.
2091 -1 means return after that and print nothing.
2092 You should probably set various step_... variables
2093 before calling here, if you are stepping.
2094
2095 You should call clear_proceed_status before calling proceed. */
2096
2097 void
2098 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2099 {
2100 struct regcache *regcache;
2101 struct gdbarch *gdbarch;
2102 struct thread_info *tp;
2103 CORE_ADDR pc;
2104 struct address_space *aspace;
2105 int oneproc = 0;
2106
2107 /* If we're stopped at a fork/vfork, follow the branch set by the
2108 "set follow-fork-mode" command; otherwise, we'll just proceed
2109 resuming the current thread. */
2110 if (!follow_fork ())
2111 {
2112 /* The target for some reason decided not to resume. */
2113 normal_stop ();
2114 if (target_can_async_p ())
2115 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2116 return;
2117 }
2118
2119 /* We'll update this if & when we switch to a new thread. */
2120 previous_inferior_ptid = inferior_ptid;
2121
2122 regcache = get_current_regcache ();
2123 gdbarch = get_regcache_arch (regcache);
2124 aspace = get_regcache_aspace (regcache);
2125 pc = regcache_read_pc (regcache);
2126
2127 if (step > 0)
2128 step_start_function = find_pc_function (pc);
2129 if (step < 0)
2130 stop_after_trap = 1;
2131
2132 if (addr == (CORE_ADDR) -1)
2133 {
2134 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2135 && execution_direction != EXEC_REVERSE)
2136 /* There is a breakpoint at the address we will resume at,
2137 step one instruction before inserting breakpoints so that
2138 we do not stop right away (and report a second hit at this
2139 breakpoint).
2140
2141 Note, we don't do this in reverse, because we won't
2142 actually be executing the breakpoint insn anyway.
2143 We'll be (un-)executing the previous instruction. */
2144
2145 oneproc = 1;
2146 else if (gdbarch_single_step_through_delay_p (gdbarch)
2147 && gdbarch_single_step_through_delay (gdbarch,
2148 get_current_frame ()))
2149 /* We stepped onto an instruction that needs to be stepped
2150 again before re-inserting the breakpoint, do so. */
2151 oneproc = 1;
2152 }
2153 else
2154 {
2155 regcache_write_pc (regcache, addr);
2156 }
2157
2158 if (debug_infrun)
2159 fprintf_unfiltered (gdb_stdlog,
2160 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2161 paddress (gdbarch, addr), siggnal, step);
2162
2163 if (non_stop)
2164 /* In non-stop, each thread is handled individually. The context
2165 must already be set to the right thread here. */
2166 ;
2167 else
2168 {
2169 /* In a multi-threaded task we may select another thread and
2170 then continue or step.
2171
2172 But if the old thread was stopped at a breakpoint, it will
2173 immediately cause another breakpoint stop without any
2174 execution (i.e. it will report a breakpoint hit incorrectly).
2175 So we must step over it first.
2176
2177 prepare_to_proceed checks the current thread against the
2178 thread that reported the most recent event. If a step-over
2179 is required it returns TRUE and sets the current thread to
2180 the old thread. */
2181 if (prepare_to_proceed (step))
2182 oneproc = 1;
2183 }
2184
2185 /* prepare_to_proceed may change the current thread. */
2186 tp = inferior_thread ();
2187
2188 if (oneproc)
2189 {
2190 tp->control.trap_expected = 1;
2191 /* If displaced stepping is enabled, we can step over the
2192 breakpoint without hitting it, so leave all breakpoints
2193 inserted. Otherwise we need to disable all breakpoints, step
2194 one instruction, and then re-add them when that step is
2195 finished. */
2196 if (!use_displaced_stepping (gdbarch))
2197 remove_breakpoints ();
2198 }
2199
2200 /* We can insert breakpoints if we're not trying to step over one,
2201 or if we are stepping over one but we're using displaced stepping
2202 to do so. */
2203 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2204 insert_breakpoints ();
2205
2206 if (!non_stop)
2207 {
2208 /* Pass the last stop signal to the thread we're resuming,
2209 irrespective of whether the current thread is the thread that
2210 got the last event or not. This was historically GDB's
2211 behaviour before keeping a stop_signal per thread. */
2212
2213 struct thread_info *last_thread;
2214 ptid_t last_ptid;
2215 struct target_waitstatus last_status;
2216
2217 get_last_target_status (&last_ptid, &last_status);
2218 if (!ptid_equal (inferior_ptid, last_ptid)
2219 && !ptid_equal (last_ptid, null_ptid)
2220 && !ptid_equal (last_ptid, minus_one_ptid))
2221 {
2222 last_thread = find_thread_ptid (last_ptid);
2223 if (last_thread)
2224 {
2225 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2226 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2227 }
2228 }
2229 }
2230
2231 if (siggnal != GDB_SIGNAL_DEFAULT)
2232 tp->suspend.stop_signal = siggnal;
2233 /* If this signal should not be seen by program,
2234 give it zero. Used for debugging signals. */
2235 else if (!signal_program[tp->suspend.stop_signal])
2236 tp->suspend.stop_signal = GDB_SIGNAL_0;
2237
2238 annotate_starting ();
2239
2240 /* Make sure that output from GDB appears before output from the
2241 inferior. */
2242 gdb_flush (gdb_stdout);
2243
2244 /* Refresh prev_pc value just prior to resuming. This used to be
2245 done in stop_stepping, however, setting prev_pc there did not handle
2246 scenarios such as inferior function calls or returning from
2247 a function via the return command. In those cases, the prev_pc
2248 value was not set properly for subsequent commands. The prev_pc value
2249 is used to initialize the starting line number in the ecs. With an
2250 invalid value, the gdb next command ends up stopping at the position
2251 represented by the next line table entry past our start position.
2252 On platforms that generate one line table entry per line, this
2253 is not a problem. However, on the ia64, the compiler generates
2254 extraneous line table entries that do not increase the line number.
2255 When we issue the gdb next command on the ia64 after an inferior call
2256 or a return command, we often end up a few instructions forward, still
2257 within the original line we started.
2258
2259 An attempt was made to refresh the prev_pc at the same time the
2260 execution_control_state is initialized (for instance, just before
2261 waiting for an inferior event). But this approach did not work
2262 because of platforms that use ptrace, where the pc register cannot
2263 be read unless the inferior is stopped. At that point, we are not
2264 guaranteed the inferior is stopped and so the regcache_read_pc() call
2265 can fail. Setting the prev_pc value here ensures the value is updated
2266 correctly when the inferior is stopped. */
2267 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2268
2269 /* Fill in with reasonable starting values. */
2270 init_thread_stepping_state (tp);
2271
2272 /* Reset to normal state. */
2273 init_infwait_state ();
2274
2275 /* Resume inferior. */
2276 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2277
2278 /* Wait for it to stop (if not standalone)
2279 and in any case decode why it stopped, and act accordingly. */
2280 /* Do this only if we are not using the event loop, or if the target
2281 does not support asynchronous execution. */
2282 if (!target_can_async_p ())
2283 {
2284 wait_for_inferior ();
2285 normal_stop ();
2286 }
2287 }
2288 \f
2289
2290 /* Start remote-debugging of a machine over a serial link. */
2291
2292 void
2293 start_remote (int from_tty)
2294 {
2295 struct inferior *inferior;
2296
2297 inferior = current_inferior ();
2298 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2299
2300 /* Always go on waiting for the target, regardless of the mode. */
2301 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2302 indicate to wait_for_inferior that a target should timeout if
2303 nothing is returned (instead of just blocking). Because of this,
2304 targets expecting an immediate response need to, internally, set
2305 things up so that the target_wait() is forced to eventually
2306 timeout. */
2307 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2308 differentiate to its caller what the state of the target is after
2309 the initial open has been performed. Here we're assuming that
2310 the target has stopped. It should be possible to eventually have
2311 target_open() return to the caller an indication that the target
2312 is currently running and GDB state should be set to the same as
2313 for an async run. */
2314 wait_for_inferior ();
2315
2316 /* Now that the inferior has stopped, do any bookkeeping like
2317 loading shared libraries. We want to do this before normal_stop,
2318 so that the displayed frame is up to date. */
2319 post_create_inferior (&current_target, from_tty);
2320
2321 normal_stop ();
2322 }
2323
2324 /* Initialize static vars when a new inferior begins. */
2325
2326 void
2327 init_wait_for_inferior (void)
2328 {
2329 /* These are meaningless until the first time through wait_for_inferior. */
2330
2331 breakpoint_init_inferior (inf_starting);
2332
2333 clear_proceed_status ();
2334
2335 stepping_past_singlestep_breakpoint = 0;
2336 deferred_step_ptid = null_ptid;
2337
2338 target_last_wait_ptid = minus_one_ptid;
2339
2340 previous_inferior_ptid = inferior_ptid;
2341 init_infwait_state ();
2342
2343 /* Discard any skipped inlined frames. */
2344 clear_inline_frame_state (minus_one_ptid);
2345 }
2346
2347 \f
2348 /* This enum encodes possible reasons for doing a target_wait, so that
2349 wfi can call target_wait in one place. (Ultimately the call will be
2350 moved out of the infinite loop entirely.) */
2351
2352 enum infwait_states
2353 {
2354 infwait_normal_state,
2355 infwait_thread_hop_state,
2356 infwait_step_watch_state,
2357 infwait_nonstep_watch_state
2358 };
2359
2360 /* The PTID we'll do a target_wait on.*/
2361 ptid_t waiton_ptid;
2362
2363 /* Current inferior wait state. */
2364 enum infwait_states infwait_state;
2365
2366 /* Data to be passed around while handling an event. This data is
2367 discarded between events. */
2368 struct execution_control_state
2369 {
2370 ptid_t ptid;
2371 /* The thread that got the event, if this was a thread event; NULL
2372 otherwise. */
2373 struct thread_info *event_thread;
2374
2375 struct target_waitstatus ws;
2376 int random_signal;
2377 int stop_func_filled_in;
2378 CORE_ADDR stop_func_start;
2379 CORE_ADDR stop_func_end;
2380 const char *stop_func_name;
2381 int wait_some_more;
2382 };
2383
2384 static void handle_inferior_event (struct execution_control_state *ecs);
2385
2386 static void handle_step_into_function (struct gdbarch *gdbarch,
2387 struct execution_control_state *ecs);
2388 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2389 struct execution_control_state *ecs);
2390 static void check_exception_resume (struct execution_control_state *,
2391 struct frame_info *);
2392
2393 static void stop_stepping (struct execution_control_state *ecs);
2394 static void prepare_to_wait (struct execution_control_state *ecs);
2395 static void keep_going (struct execution_control_state *ecs);
2396
2397 /* Callback for iterate over threads. If the thread is stopped, but
2398 the user/frontend doesn't know about that yet, go through
2399 normal_stop, as if the thread had just stopped now. ARG points at
2400 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2401 ptid_is_pid(PTID) is true, applies to all threads of the process
2402 pointed at by PTID. Otherwise, apply only to the thread pointed by
2403 PTID. */
2404
2405 static int
2406 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2407 {
2408 ptid_t ptid = * (ptid_t *) arg;
2409
2410 if ((ptid_equal (info->ptid, ptid)
2411 || ptid_equal (minus_one_ptid, ptid)
2412 || (ptid_is_pid (ptid)
2413 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2414 && is_running (info->ptid)
2415 && !is_executing (info->ptid))
2416 {
2417 struct cleanup *old_chain;
2418 struct execution_control_state ecss;
2419 struct execution_control_state *ecs = &ecss;
2420
2421 memset (ecs, 0, sizeof (*ecs));
2422
2423 old_chain = make_cleanup_restore_current_thread ();
2424
2425 /* Go through handle_inferior_event/normal_stop, so we always
2426 have consistent output as if the stop event had been
2427 reported. */
2428 ecs->ptid = info->ptid;
2429 ecs->event_thread = find_thread_ptid (info->ptid);
2430 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2431 ecs->ws.value.sig = GDB_SIGNAL_0;
2432
2433 handle_inferior_event (ecs);
2434
2435 if (!ecs->wait_some_more)
2436 {
2437 struct thread_info *tp;
2438
2439 normal_stop ();
2440
2441 /* Finish off the continuations. */
2442 tp = inferior_thread ();
2443 do_all_intermediate_continuations_thread (tp, 1);
2444 do_all_continuations_thread (tp, 1);
2445 }
2446
2447 do_cleanups (old_chain);
2448 }
2449
2450 return 0;
2451 }
2452
2453 /* This function is attached as a "thread_stop_requested" observer.
2454 Cleanup local state that assumed the PTID was to be resumed, and
2455 report the stop to the frontend. */
2456
2457 static void
2458 infrun_thread_stop_requested (ptid_t ptid)
2459 {
2460 struct displaced_step_inferior_state *displaced;
2461
2462 /* PTID was requested to stop. Remove it from the displaced
2463 stepping queue, so we don't try to resume it automatically. */
2464
2465 for (displaced = displaced_step_inferior_states;
2466 displaced;
2467 displaced = displaced->next)
2468 {
2469 struct displaced_step_request *it, **prev_next_p;
2470
2471 it = displaced->step_request_queue;
2472 prev_next_p = &displaced->step_request_queue;
2473 while (it)
2474 {
2475 if (ptid_match (it->ptid, ptid))
2476 {
2477 *prev_next_p = it->next;
2478 it->next = NULL;
2479 xfree (it);
2480 }
2481 else
2482 {
2483 prev_next_p = &it->next;
2484 }
2485
2486 it = *prev_next_p;
2487 }
2488 }
2489
2490 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2491 }
2492
2493 static void
2494 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2495 {
2496 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2497 nullify_last_target_wait_ptid ();
2498 }
2499
2500 /* Callback for iterate_over_threads. */
2501
2502 static int
2503 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2504 {
2505 if (is_exited (info->ptid))
2506 return 0;
2507
2508 delete_step_resume_breakpoint (info);
2509 delete_exception_resume_breakpoint (info);
2510 return 0;
2511 }
2512
2513 /* In all-stop, delete the step resume breakpoint of any thread that
2514 had one. In non-stop, delete the step resume breakpoint of the
2515 thread that just stopped. */
2516
2517 static void
2518 delete_step_thread_step_resume_breakpoint (void)
2519 {
2520 if (!target_has_execution
2521 || ptid_equal (inferior_ptid, null_ptid))
2522 /* If the inferior has exited, we have already deleted the step
2523 resume breakpoints out of GDB's lists. */
2524 return;
2525
2526 if (non_stop)
2527 {
2528 /* If in non-stop mode, only delete the step-resume or
2529 longjmp-resume breakpoint of the thread that just stopped
2530 stepping. */
2531 struct thread_info *tp = inferior_thread ();
2532
2533 delete_step_resume_breakpoint (tp);
2534 delete_exception_resume_breakpoint (tp);
2535 }
2536 else
2537 /* In all-stop mode, delete all step-resume and longjmp-resume
2538 breakpoints of any thread that had them. */
2539 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2540 }
2541
2542 /* A cleanup wrapper. */
2543
2544 static void
2545 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2546 {
2547 delete_step_thread_step_resume_breakpoint ();
2548 }
2549
2550 /* Pretty print the results of target_wait, for debugging purposes. */
2551
2552 static void
2553 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2554 const struct target_waitstatus *ws)
2555 {
2556 char *status_string = target_waitstatus_to_string (ws);
2557 struct ui_file *tmp_stream = mem_fileopen ();
2558 char *text;
2559
2560 /* The text is split over several lines because it was getting too long.
2561 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2562 output as a unit; we want only one timestamp printed if debug_timestamp
2563 is set. */
2564
2565 fprintf_unfiltered (tmp_stream,
2566 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2567 if (PIDGET (waiton_ptid) != -1)
2568 fprintf_unfiltered (tmp_stream,
2569 " [%s]", target_pid_to_str (waiton_ptid));
2570 fprintf_unfiltered (tmp_stream, ", status) =\n");
2571 fprintf_unfiltered (tmp_stream,
2572 "infrun: %d [%s],\n",
2573 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2574 fprintf_unfiltered (tmp_stream,
2575 "infrun: %s\n",
2576 status_string);
2577
2578 text = ui_file_xstrdup (tmp_stream, NULL);
2579
2580 /* This uses %s in part to handle %'s in the text, but also to avoid
2581 a gcc error: the format attribute requires a string literal. */
2582 fprintf_unfiltered (gdb_stdlog, "%s", text);
2583
2584 xfree (status_string);
2585 xfree (text);
2586 ui_file_delete (tmp_stream);
2587 }
2588
2589 /* Prepare and stabilize the inferior for detaching it. E.g.,
2590 detaching while a thread is displaced stepping is a recipe for
2591 crashing it, as nothing would readjust the PC out of the scratch
2592 pad. */
2593
2594 void
2595 prepare_for_detach (void)
2596 {
2597 struct inferior *inf = current_inferior ();
2598 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2599 struct cleanup *old_chain_1;
2600 struct displaced_step_inferior_state *displaced;
2601
2602 displaced = get_displaced_stepping_state (inf->pid);
2603
2604 /* Is any thread of this process displaced stepping? If not,
2605 there's nothing else to do. */
2606 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2607 return;
2608
2609 if (debug_infrun)
2610 fprintf_unfiltered (gdb_stdlog,
2611 "displaced-stepping in-process while detaching");
2612
2613 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2614 inf->detaching = 1;
2615
2616 while (!ptid_equal (displaced->step_ptid, null_ptid))
2617 {
2618 struct cleanup *old_chain_2;
2619 struct execution_control_state ecss;
2620 struct execution_control_state *ecs;
2621
2622 ecs = &ecss;
2623 memset (ecs, 0, sizeof (*ecs));
2624
2625 overlay_cache_invalid = 1;
2626
2627 if (deprecated_target_wait_hook)
2628 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2629 else
2630 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2631
2632 if (debug_infrun)
2633 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2634
2635 /* If an error happens while handling the event, propagate GDB's
2636 knowledge of the executing state to the frontend/user running
2637 state. */
2638 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2639 &minus_one_ptid);
2640
2641 /* Now figure out what to do with the result of the result. */
2642 handle_inferior_event (ecs);
2643
2644 /* No error, don't finish the state yet. */
2645 discard_cleanups (old_chain_2);
2646
2647 /* Breakpoints and watchpoints are not installed on the target
2648 at this point, and signals are passed directly to the
2649 inferior, so this must mean the process is gone. */
2650 if (!ecs->wait_some_more)
2651 {
2652 discard_cleanups (old_chain_1);
2653 error (_("Program exited while detaching"));
2654 }
2655 }
2656
2657 discard_cleanups (old_chain_1);
2658 }
2659
2660 /* Wait for control to return from inferior to debugger.
2661
2662 If inferior gets a signal, we may decide to start it up again
2663 instead of returning. That is why there is a loop in this function.
2664 When this function actually returns it means the inferior
2665 should be left stopped and GDB should read more commands. */
2666
2667 void
2668 wait_for_inferior (void)
2669 {
2670 struct cleanup *old_cleanups;
2671
2672 if (debug_infrun)
2673 fprintf_unfiltered
2674 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2675
2676 old_cleanups =
2677 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2678
2679 while (1)
2680 {
2681 struct execution_control_state ecss;
2682 struct execution_control_state *ecs = &ecss;
2683 struct cleanup *old_chain;
2684
2685 memset (ecs, 0, sizeof (*ecs));
2686
2687 overlay_cache_invalid = 1;
2688
2689 if (deprecated_target_wait_hook)
2690 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2691 else
2692 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2693
2694 if (debug_infrun)
2695 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2696
2697 /* If an error happens while handling the event, propagate GDB's
2698 knowledge of the executing state to the frontend/user running
2699 state. */
2700 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2701
2702 /* Now figure out what to do with the result of the result. */
2703 handle_inferior_event (ecs);
2704
2705 /* No error, don't finish the state yet. */
2706 discard_cleanups (old_chain);
2707
2708 if (!ecs->wait_some_more)
2709 break;
2710 }
2711
2712 do_cleanups (old_cleanups);
2713 }
2714
2715 /* Asynchronous version of wait_for_inferior. It is called by the
2716 event loop whenever a change of state is detected on the file
2717 descriptor corresponding to the target. It can be called more than
2718 once to complete a single execution command. In such cases we need
2719 to keep the state in a global variable ECSS. If it is the last time
2720 that this function is called for a single execution command, then
2721 report to the user that the inferior has stopped, and do the
2722 necessary cleanups. */
2723
2724 void
2725 fetch_inferior_event (void *client_data)
2726 {
2727 struct execution_control_state ecss;
2728 struct execution_control_state *ecs = &ecss;
2729 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2730 struct cleanup *ts_old_chain;
2731 int was_sync = sync_execution;
2732 int cmd_done = 0;
2733
2734 memset (ecs, 0, sizeof (*ecs));
2735
2736 /* We're handling a live event, so make sure we're doing live
2737 debugging. If we're looking at traceframes while the target is
2738 running, we're going to need to get back to that mode after
2739 handling the event. */
2740 if (non_stop)
2741 {
2742 make_cleanup_restore_current_traceframe ();
2743 set_current_traceframe (-1);
2744 }
2745
2746 if (non_stop)
2747 /* In non-stop mode, the user/frontend should not notice a thread
2748 switch due to internal events. Make sure we reverse to the
2749 user selected thread and frame after handling the event and
2750 running any breakpoint commands. */
2751 make_cleanup_restore_current_thread ();
2752
2753 overlay_cache_invalid = 1;
2754
2755 make_cleanup_restore_integer (&execution_direction);
2756 execution_direction = target_execution_direction ();
2757
2758 if (deprecated_target_wait_hook)
2759 ecs->ptid =
2760 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2761 else
2762 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2763
2764 if (debug_infrun)
2765 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2766
2767 /* If an error happens while handling the event, propagate GDB's
2768 knowledge of the executing state to the frontend/user running
2769 state. */
2770 if (!non_stop)
2771 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2772 else
2773 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2774
2775 /* Get executed before make_cleanup_restore_current_thread above to apply
2776 still for the thread which has thrown the exception. */
2777 make_bpstat_clear_actions_cleanup ();
2778
2779 /* Now figure out what to do with the result of the result. */
2780 handle_inferior_event (ecs);
2781
2782 if (!ecs->wait_some_more)
2783 {
2784 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2785
2786 delete_step_thread_step_resume_breakpoint ();
2787
2788 /* We may not find an inferior if this was a process exit. */
2789 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2790 normal_stop ();
2791
2792 if (target_has_execution
2793 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2794 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2795 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2796 && ecs->event_thread->step_multi
2797 && ecs->event_thread->control.stop_step)
2798 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2799 else
2800 {
2801 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2802 cmd_done = 1;
2803 }
2804 }
2805
2806 /* No error, don't finish the thread states yet. */
2807 discard_cleanups (ts_old_chain);
2808
2809 /* Revert thread and frame. */
2810 do_cleanups (old_chain);
2811
2812 /* If the inferior was in sync execution mode, and now isn't,
2813 restore the prompt (a synchronous execution command has finished,
2814 and we're ready for input). */
2815 if (interpreter_async && was_sync && !sync_execution)
2816 display_gdb_prompt (0);
2817
2818 if (cmd_done
2819 && !was_sync
2820 && exec_done_display_p
2821 && (ptid_equal (inferior_ptid, null_ptid)
2822 || !is_running (inferior_ptid)))
2823 printf_unfiltered (_("completed.\n"));
2824 }
2825
2826 /* Record the frame and location we're currently stepping through. */
2827 void
2828 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2829 {
2830 struct thread_info *tp = inferior_thread ();
2831
2832 tp->control.step_frame_id = get_frame_id (frame);
2833 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2834
2835 tp->current_symtab = sal.symtab;
2836 tp->current_line = sal.line;
2837 }
2838
2839 /* Clear context switchable stepping state. */
2840
2841 void
2842 init_thread_stepping_state (struct thread_info *tss)
2843 {
2844 tss->stepping_over_breakpoint = 0;
2845 tss->step_after_step_resume_breakpoint = 0;
2846 }
2847
2848 /* Return the cached copy of the last pid/waitstatus returned by
2849 target_wait()/deprecated_target_wait_hook(). The data is actually
2850 cached by handle_inferior_event(), which gets called immediately
2851 after target_wait()/deprecated_target_wait_hook(). */
2852
2853 void
2854 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2855 {
2856 *ptidp = target_last_wait_ptid;
2857 *status = target_last_waitstatus;
2858 }
2859
2860 void
2861 nullify_last_target_wait_ptid (void)
2862 {
2863 target_last_wait_ptid = minus_one_ptid;
2864 }
2865
2866 /* Switch thread contexts. */
2867
2868 static void
2869 context_switch (ptid_t ptid)
2870 {
2871 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2872 {
2873 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2874 target_pid_to_str (inferior_ptid));
2875 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2876 target_pid_to_str (ptid));
2877 }
2878
2879 switch_to_thread (ptid);
2880 }
2881
2882 static void
2883 adjust_pc_after_break (struct execution_control_state *ecs)
2884 {
2885 struct regcache *regcache;
2886 struct gdbarch *gdbarch;
2887 struct address_space *aspace;
2888 CORE_ADDR breakpoint_pc;
2889
2890 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2891 we aren't, just return.
2892
2893 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2894 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2895 implemented by software breakpoints should be handled through the normal
2896 breakpoint layer.
2897
2898 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2899 different signals (SIGILL or SIGEMT for instance), but it is less
2900 clear where the PC is pointing afterwards. It may not match
2901 gdbarch_decr_pc_after_break. I don't know any specific target that
2902 generates these signals at breakpoints (the code has been in GDB since at
2903 least 1992) so I can not guess how to handle them here.
2904
2905 In earlier versions of GDB, a target with
2906 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2907 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2908 target with both of these set in GDB history, and it seems unlikely to be
2909 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2910
2911 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2912 return;
2913
2914 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2915 return;
2916
2917 /* In reverse execution, when a breakpoint is hit, the instruction
2918 under it has already been de-executed. The reported PC always
2919 points at the breakpoint address, so adjusting it further would
2920 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2921 architecture:
2922
2923 B1 0x08000000 : INSN1
2924 B2 0x08000001 : INSN2
2925 0x08000002 : INSN3
2926 PC -> 0x08000003 : INSN4
2927
2928 Say you're stopped at 0x08000003 as above. Reverse continuing
2929 from that point should hit B2 as below. Reading the PC when the
2930 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2931 been de-executed already.
2932
2933 B1 0x08000000 : INSN1
2934 B2 PC -> 0x08000001 : INSN2
2935 0x08000002 : INSN3
2936 0x08000003 : INSN4
2937
2938 We can't apply the same logic as for forward execution, because
2939 we would wrongly adjust the PC to 0x08000000, since there's a
2940 breakpoint at PC - 1. We'd then report a hit on B1, although
2941 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2942 behaviour. */
2943 if (execution_direction == EXEC_REVERSE)
2944 return;
2945
2946 /* If this target does not decrement the PC after breakpoints, then
2947 we have nothing to do. */
2948 regcache = get_thread_regcache (ecs->ptid);
2949 gdbarch = get_regcache_arch (regcache);
2950 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2951 return;
2952
2953 aspace = get_regcache_aspace (regcache);
2954
2955 /* Find the location where (if we've hit a breakpoint) the
2956 breakpoint would be. */
2957 breakpoint_pc = regcache_read_pc (regcache)
2958 - gdbarch_decr_pc_after_break (gdbarch);
2959
2960 /* Check whether there actually is a software breakpoint inserted at
2961 that location.
2962
2963 If in non-stop mode, a race condition is possible where we've
2964 removed a breakpoint, but stop events for that breakpoint were
2965 already queued and arrive later. To suppress those spurious
2966 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2967 and retire them after a number of stop events are reported. */
2968 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2969 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2970 {
2971 struct cleanup *old_cleanups = NULL;
2972
2973 if (RECORD_IS_USED)
2974 old_cleanups = record_gdb_operation_disable_set ();
2975
2976 /* When using hardware single-step, a SIGTRAP is reported for both
2977 a completed single-step and a software breakpoint. Need to
2978 differentiate between the two, as the latter needs adjusting
2979 but the former does not.
2980
2981 The SIGTRAP can be due to a completed hardware single-step only if
2982 - we didn't insert software single-step breakpoints
2983 - the thread to be examined is still the current thread
2984 - this thread is currently being stepped
2985
2986 If any of these events did not occur, we must have stopped due
2987 to hitting a software breakpoint, and have to back up to the
2988 breakpoint address.
2989
2990 As a special case, we could have hardware single-stepped a
2991 software breakpoint. In this case (prev_pc == breakpoint_pc),
2992 we also need to back up to the breakpoint address. */
2993
2994 if (singlestep_breakpoints_inserted_p
2995 || !ptid_equal (ecs->ptid, inferior_ptid)
2996 || !currently_stepping (ecs->event_thread)
2997 || ecs->event_thread->prev_pc == breakpoint_pc)
2998 regcache_write_pc (regcache, breakpoint_pc);
2999
3000 if (RECORD_IS_USED)
3001 do_cleanups (old_cleanups);
3002 }
3003 }
3004
3005 void
3006 init_infwait_state (void)
3007 {
3008 waiton_ptid = pid_to_ptid (-1);
3009 infwait_state = infwait_normal_state;
3010 }
3011
3012 void
3013 error_is_running (void)
3014 {
3015 error (_("Cannot execute this command while "
3016 "the selected thread is running."));
3017 }
3018
3019 void
3020 ensure_not_running (void)
3021 {
3022 if (is_running (inferior_ptid))
3023 error_is_running ();
3024 }
3025
3026 static int
3027 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3028 {
3029 for (frame = get_prev_frame (frame);
3030 frame != NULL;
3031 frame = get_prev_frame (frame))
3032 {
3033 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3034 return 1;
3035 if (get_frame_type (frame) != INLINE_FRAME)
3036 break;
3037 }
3038
3039 return 0;
3040 }
3041
3042 /* Auxiliary function that handles syscall entry/return events.
3043 It returns 1 if the inferior should keep going (and GDB
3044 should ignore the event), or 0 if the event deserves to be
3045 processed. */
3046
3047 static int
3048 handle_syscall_event (struct execution_control_state *ecs)
3049 {
3050 struct regcache *regcache;
3051 struct gdbarch *gdbarch;
3052 int syscall_number;
3053
3054 if (!ptid_equal (ecs->ptid, inferior_ptid))
3055 context_switch (ecs->ptid);
3056
3057 regcache = get_thread_regcache (ecs->ptid);
3058 gdbarch = get_regcache_arch (regcache);
3059 syscall_number = ecs->ws.value.syscall_number;
3060 stop_pc = regcache_read_pc (regcache);
3061
3062 if (catch_syscall_enabled () > 0
3063 && catching_syscall_number (syscall_number) > 0)
3064 {
3065 if (debug_infrun)
3066 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3067 syscall_number);
3068
3069 ecs->event_thread->control.stop_bpstat
3070 = bpstat_stop_status (get_regcache_aspace (regcache),
3071 stop_pc, ecs->ptid, &ecs->ws);
3072 ecs->random_signal
3073 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3074
3075 if (!ecs->random_signal)
3076 {
3077 /* Catchpoint hit. */
3078 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3079 return 0;
3080 }
3081 }
3082
3083 /* If no catchpoint triggered for this, then keep going. */
3084 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3085 keep_going (ecs);
3086 return 1;
3087 }
3088
3089 /* Clear the supplied execution_control_state's stop_func_* fields. */
3090
3091 static void
3092 clear_stop_func (struct execution_control_state *ecs)
3093 {
3094 ecs->stop_func_filled_in = 0;
3095 ecs->stop_func_start = 0;
3096 ecs->stop_func_end = 0;
3097 ecs->stop_func_name = NULL;
3098 }
3099
3100 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3101
3102 static void
3103 fill_in_stop_func (struct gdbarch *gdbarch,
3104 struct execution_control_state *ecs)
3105 {
3106 if (!ecs->stop_func_filled_in)
3107 {
3108 /* Don't care about return value; stop_func_start and stop_func_name
3109 will both be 0 if it doesn't work. */
3110 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3111 &ecs->stop_func_start, &ecs->stop_func_end);
3112 ecs->stop_func_start
3113 += gdbarch_deprecated_function_start_offset (gdbarch);
3114
3115 ecs->stop_func_filled_in = 1;
3116 }
3117 }
3118
3119 /* Given an execution control state that has been freshly filled in
3120 by an event from the inferior, figure out what it means and take
3121 appropriate action. */
3122
3123 static void
3124 handle_inferior_event (struct execution_control_state *ecs)
3125 {
3126 struct frame_info *frame;
3127 struct gdbarch *gdbarch;
3128 int stopped_by_watchpoint;
3129 int stepped_after_stopped_by_watchpoint = 0;
3130 struct symtab_and_line stop_pc_sal;
3131 enum stop_kind stop_soon;
3132
3133 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3134 {
3135 /* We had an event in the inferior, but we are not interested in
3136 handling it at this level. The lower layers have already
3137 done what needs to be done, if anything.
3138
3139 One of the possible circumstances for this is when the
3140 inferior produces output for the console. The inferior has
3141 not stopped, and we are ignoring the event. Another possible
3142 circumstance is any event which the lower level knows will be
3143 reported multiple times without an intervening resume. */
3144 if (debug_infrun)
3145 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3146 prepare_to_wait (ecs);
3147 return;
3148 }
3149
3150 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3151 && target_can_async_p () && !sync_execution)
3152 {
3153 /* There were no unwaited-for children left in the target, but,
3154 we're not synchronously waiting for events either. Just
3155 ignore. Otherwise, if we were running a synchronous
3156 execution command, we need to cancel it and give the user
3157 back the terminal. */
3158 if (debug_infrun)
3159 fprintf_unfiltered (gdb_stdlog,
3160 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3161 prepare_to_wait (ecs);
3162 return;
3163 }
3164
3165 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3166 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3167 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3168 {
3169 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3170
3171 gdb_assert (inf);
3172 stop_soon = inf->control.stop_soon;
3173 }
3174 else
3175 stop_soon = NO_STOP_QUIETLY;
3176
3177 /* Cache the last pid/waitstatus. */
3178 target_last_wait_ptid = ecs->ptid;
3179 target_last_waitstatus = ecs->ws;
3180
3181 /* Always clear state belonging to the previous time we stopped. */
3182 stop_stack_dummy = STOP_NONE;
3183
3184 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3185 {
3186 /* No unwaited-for children left. IOW, all resumed children
3187 have exited. */
3188 if (debug_infrun)
3189 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3190
3191 stop_print_frame = 0;
3192 stop_stepping (ecs);
3193 return;
3194 }
3195
3196 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3197 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3198 {
3199 ecs->event_thread = find_thread_ptid (ecs->ptid);
3200 /* If it's a new thread, add it to the thread database. */
3201 if (ecs->event_thread == NULL)
3202 ecs->event_thread = add_thread (ecs->ptid);
3203 }
3204
3205 /* Dependent on valid ECS->EVENT_THREAD. */
3206 adjust_pc_after_break (ecs);
3207
3208 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3209 reinit_frame_cache ();
3210
3211 breakpoint_retire_moribund ();
3212
3213 /* First, distinguish signals caused by the debugger from signals
3214 that have to do with the program's own actions. Note that
3215 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3216 on the operating system version. Here we detect when a SIGILL or
3217 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3218 something similar for SIGSEGV, since a SIGSEGV will be generated
3219 when we're trying to execute a breakpoint instruction on a
3220 non-executable stack. This happens for call dummy breakpoints
3221 for architectures like SPARC that place call dummies on the
3222 stack. */
3223 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3224 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3225 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3226 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3227 {
3228 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3229
3230 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3231 regcache_read_pc (regcache)))
3232 {
3233 if (debug_infrun)
3234 fprintf_unfiltered (gdb_stdlog,
3235 "infrun: Treating signal as SIGTRAP\n");
3236 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3237 }
3238 }
3239
3240 /* Mark the non-executing threads accordingly. In all-stop, all
3241 threads of all processes are stopped when we get any event
3242 reported. In non-stop mode, only the event thread stops. If
3243 we're handling a process exit in non-stop mode, there's nothing
3244 to do, as threads of the dead process are gone, and threads of
3245 any other process were left running. */
3246 if (!non_stop)
3247 set_executing (minus_one_ptid, 0);
3248 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3249 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3250 set_executing (ecs->ptid, 0);
3251
3252 switch (infwait_state)
3253 {
3254 case infwait_thread_hop_state:
3255 if (debug_infrun)
3256 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3257 break;
3258
3259 case infwait_normal_state:
3260 if (debug_infrun)
3261 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3262 break;
3263
3264 case infwait_step_watch_state:
3265 if (debug_infrun)
3266 fprintf_unfiltered (gdb_stdlog,
3267 "infrun: infwait_step_watch_state\n");
3268
3269 stepped_after_stopped_by_watchpoint = 1;
3270 break;
3271
3272 case infwait_nonstep_watch_state:
3273 if (debug_infrun)
3274 fprintf_unfiltered (gdb_stdlog,
3275 "infrun: infwait_nonstep_watch_state\n");
3276 insert_breakpoints ();
3277
3278 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3279 handle things like signals arriving and other things happening
3280 in combination correctly? */
3281 stepped_after_stopped_by_watchpoint = 1;
3282 break;
3283
3284 default:
3285 internal_error (__FILE__, __LINE__, _("bad switch"));
3286 }
3287
3288 infwait_state = infwait_normal_state;
3289 waiton_ptid = pid_to_ptid (-1);
3290
3291 switch (ecs->ws.kind)
3292 {
3293 case TARGET_WAITKIND_LOADED:
3294 if (debug_infrun)
3295 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3296 /* Ignore gracefully during startup of the inferior, as it might
3297 be the shell which has just loaded some objects, otherwise
3298 add the symbols for the newly loaded objects. Also ignore at
3299 the beginning of an attach or remote session; we will query
3300 the full list of libraries once the connection is
3301 established. */
3302 if (stop_soon == NO_STOP_QUIETLY)
3303 {
3304 struct regcache *regcache;
3305
3306 if (!ptid_equal (ecs->ptid, inferior_ptid))
3307 context_switch (ecs->ptid);
3308 regcache = get_thread_regcache (ecs->ptid);
3309
3310 handle_solib_event ();
3311
3312 ecs->event_thread->control.stop_bpstat
3313 = bpstat_stop_status (get_regcache_aspace (regcache),
3314 stop_pc, ecs->ptid, &ecs->ws);
3315 ecs->random_signal
3316 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3317
3318 if (!ecs->random_signal)
3319 {
3320 /* A catchpoint triggered. */
3321 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3322 goto process_event_stop_test;
3323 }
3324
3325 /* If requested, stop when the dynamic linker notifies
3326 gdb of events. This allows the user to get control
3327 and place breakpoints in initializer routines for
3328 dynamically loaded objects (among other things). */
3329 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3330 if (stop_on_solib_events)
3331 {
3332 /* Make sure we print "Stopped due to solib-event" in
3333 normal_stop. */
3334 stop_print_frame = 1;
3335
3336 stop_stepping (ecs);
3337 return;
3338 }
3339 }
3340
3341 /* If we are skipping through a shell, or through shared library
3342 loading that we aren't interested in, resume the program. If
3343 we're running the program normally, also resume. But stop if
3344 we're attaching or setting up a remote connection. */
3345 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3346 {
3347 if (!ptid_equal (ecs->ptid, inferior_ptid))
3348 context_switch (ecs->ptid);
3349
3350 /* Loading of shared libraries might have changed breakpoint
3351 addresses. Make sure new breakpoints are inserted. */
3352 if (stop_soon == NO_STOP_QUIETLY
3353 && !breakpoints_always_inserted_mode ())
3354 insert_breakpoints ();
3355 resume (0, GDB_SIGNAL_0);
3356 prepare_to_wait (ecs);
3357 return;
3358 }
3359
3360 break;
3361
3362 case TARGET_WAITKIND_SPURIOUS:
3363 if (debug_infrun)
3364 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3365 if (!ptid_equal (ecs->ptid, inferior_ptid))
3366 context_switch (ecs->ptid);
3367 resume (0, GDB_SIGNAL_0);
3368 prepare_to_wait (ecs);
3369 return;
3370
3371 case TARGET_WAITKIND_EXITED:
3372 if (debug_infrun)
3373 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3374 inferior_ptid = ecs->ptid;
3375 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3376 set_current_program_space (current_inferior ()->pspace);
3377 handle_vfork_child_exec_or_exit (0);
3378 target_terminal_ours (); /* Must do this before mourn anyway. */
3379 print_exited_reason (ecs->ws.value.integer);
3380
3381 /* Record the exit code in the convenience variable $_exitcode, so
3382 that the user can inspect this again later. */
3383 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3384 (LONGEST) ecs->ws.value.integer);
3385
3386 /* Also record this in the inferior itself. */
3387 current_inferior ()->has_exit_code = 1;
3388 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3389
3390 gdb_flush (gdb_stdout);
3391 target_mourn_inferior ();
3392 singlestep_breakpoints_inserted_p = 0;
3393 cancel_single_step_breakpoints ();
3394 stop_print_frame = 0;
3395 stop_stepping (ecs);
3396 return;
3397
3398 case TARGET_WAITKIND_SIGNALLED:
3399 if (debug_infrun)
3400 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3401 inferior_ptid = ecs->ptid;
3402 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3403 set_current_program_space (current_inferior ()->pspace);
3404 handle_vfork_child_exec_or_exit (0);
3405 stop_print_frame = 0;
3406 target_terminal_ours (); /* Must do this before mourn anyway. */
3407
3408 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3409 reach here unless the inferior is dead. However, for years
3410 target_kill() was called here, which hints that fatal signals aren't
3411 really fatal on some systems. If that's true, then some changes
3412 may be needed. */
3413 target_mourn_inferior ();
3414
3415 print_signal_exited_reason (ecs->ws.value.sig);
3416 singlestep_breakpoints_inserted_p = 0;
3417 cancel_single_step_breakpoints ();
3418 stop_stepping (ecs);
3419 return;
3420
3421 /* The following are the only cases in which we keep going;
3422 the above cases end in a continue or goto. */
3423 case TARGET_WAITKIND_FORKED:
3424 case TARGET_WAITKIND_VFORKED:
3425 if (debug_infrun)
3426 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3427
3428 /* Check whether the inferior is displaced stepping. */
3429 {
3430 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3431 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3432 struct displaced_step_inferior_state *displaced
3433 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3434
3435 /* If checking displaced stepping is supported, and thread
3436 ecs->ptid is displaced stepping. */
3437 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3438 {
3439 struct inferior *parent_inf
3440 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3441 struct regcache *child_regcache;
3442 CORE_ADDR parent_pc;
3443
3444 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3445 indicating that the displaced stepping of syscall instruction
3446 has been done. Perform cleanup for parent process here. Note
3447 that this operation also cleans up the child process for vfork,
3448 because their pages are shared. */
3449 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3450
3451 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3452 {
3453 /* Restore scratch pad for child process. */
3454 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3455 }
3456
3457 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3458 the child's PC is also within the scratchpad. Set the child's PC
3459 to the parent's PC value, which has already been fixed up.
3460 FIXME: we use the parent's aspace here, although we're touching
3461 the child, because the child hasn't been added to the inferior
3462 list yet at this point. */
3463
3464 child_regcache
3465 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3466 gdbarch,
3467 parent_inf->aspace);
3468 /* Read PC value of parent process. */
3469 parent_pc = regcache_read_pc (regcache);
3470
3471 if (debug_displaced)
3472 fprintf_unfiltered (gdb_stdlog,
3473 "displaced: write child pc from %s to %s\n",
3474 paddress (gdbarch,
3475 regcache_read_pc (child_regcache)),
3476 paddress (gdbarch, parent_pc));
3477
3478 regcache_write_pc (child_regcache, parent_pc);
3479 }
3480 }
3481
3482 if (!ptid_equal (ecs->ptid, inferior_ptid))
3483 context_switch (ecs->ptid);
3484
3485 /* Immediately detach breakpoints from the child before there's
3486 any chance of letting the user delete breakpoints from the
3487 breakpoint lists. If we don't do this early, it's easy to
3488 leave left over traps in the child, vis: "break foo; catch
3489 fork; c; <fork>; del; c; <child calls foo>". We only follow
3490 the fork on the last `continue', and by that time the
3491 breakpoint at "foo" is long gone from the breakpoint table.
3492 If we vforked, then we don't need to unpatch here, since both
3493 parent and child are sharing the same memory pages; we'll
3494 need to unpatch at follow/detach time instead to be certain
3495 that new breakpoints added between catchpoint hit time and
3496 vfork follow are detached. */
3497 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3498 {
3499 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3500
3501 /* This won't actually modify the breakpoint list, but will
3502 physically remove the breakpoints from the child. */
3503 detach_breakpoints (child_pid);
3504 }
3505
3506 if (singlestep_breakpoints_inserted_p)
3507 {
3508 /* Pull the single step breakpoints out of the target. */
3509 remove_single_step_breakpoints ();
3510 singlestep_breakpoints_inserted_p = 0;
3511 }
3512
3513 /* In case the event is caught by a catchpoint, remember that
3514 the event is to be followed at the next resume of the thread,
3515 and not immediately. */
3516 ecs->event_thread->pending_follow = ecs->ws;
3517
3518 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3519
3520 ecs->event_thread->control.stop_bpstat
3521 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3522 stop_pc, ecs->ptid, &ecs->ws);
3523
3524 /* Note that we're interested in knowing the bpstat actually
3525 causes a stop, not just if it may explain the signal.
3526 Software watchpoints, for example, always appear in the
3527 bpstat. */
3528 ecs->random_signal
3529 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3530
3531 /* If no catchpoint triggered for this, then keep going. */
3532 if (ecs->random_signal)
3533 {
3534 ptid_t parent;
3535 ptid_t child;
3536 int should_resume;
3537 int follow_child
3538 = (follow_fork_mode_string == follow_fork_mode_child);
3539
3540 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3541
3542 should_resume = follow_fork ();
3543
3544 parent = ecs->ptid;
3545 child = ecs->ws.value.related_pid;
3546
3547 /* In non-stop mode, also resume the other branch. */
3548 if (non_stop && !detach_fork)
3549 {
3550 if (follow_child)
3551 switch_to_thread (parent);
3552 else
3553 switch_to_thread (child);
3554
3555 ecs->event_thread = inferior_thread ();
3556 ecs->ptid = inferior_ptid;
3557 keep_going (ecs);
3558 }
3559
3560 if (follow_child)
3561 switch_to_thread (child);
3562 else
3563 switch_to_thread (parent);
3564
3565 ecs->event_thread = inferior_thread ();
3566 ecs->ptid = inferior_ptid;
3567
3568 if (should_resume)
3569 keep_going (ecs);
3570 else
3571 stop_stepping (ecs);
3572 return;
3573 }
3574 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3575 goto process_event_stop_test;
3576
3577 case TARGET_WAITKIND_VFORK_DONE:
3578 /* Done with the shared memory region. Re-insert breakpoints in
3579 the parent, and keep going. */
3580
3581 if (debug_infrun)
3582 fprintf_unfiltered (gdb_stdlog,
3583 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3584
3585 if (!ptid_equal (ecs->ptid, inferior_ptid))
3586 context_switch (ecs->ptid);
3587
3588 current_inferior ()->waiting_for_vfork_done = 0;
3589 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3590 /* This also takes care of reinserting breakpoints in the
3591 previously locked inferior. */
3592 keep_going (ecs);
3593 return;
3594
3595 case TARGET_WAITKIND_EXECD:
3596 if (debug_infrun)
3597 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3598
3599 if (!ptid_equal (ecs->ptid, inferior_ptid))
3600 context_switch (ecs->ptid);
3601
3602 singlestep_breakpoints_inserted_p = 0;
3603 cancel_single_step_breakpoints ();
3604
3605 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3606
3607 /* Do whatever is necessary to the parent branch of the vfork. */
3608 handle_vfork_child_exec_or_exit (1);
3609
3610 /* This causes the eventpoints and symbol table to be reset.
3611 Must do this now, before trying to determine whether to
3612 stop. */
3613 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3614
3615 ecs->event_thread->control.stop_bpstat
3616 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3617 stop_pc, ecs->ptid, &ecs->ws);
3618 ecs->random_signal
3619 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3620
3621 /* Note that this may be referenced from inside
3622 bpstat_stop_status above, through inferior_has_execd. */
3623 xfree (ecs->ws.value.execd_pathname);
3624 ecs->ws.value.execd_pathname = NULL;
3625
3626 /* If no catchpoint triggered for this, then keep going. */
3627 if (ecs->random_signal)
3628 {
3629 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3630 keep_going (ecs);
3631 return;
3632 }
3633 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3634 goto process_event_stop_test;
3635
3636 /* Be careful not to try to gather much state about a thread
3637 that's in a syscall. It's frequently a losing proposition. */
3638 case TARGET_WAITKIND_SYSCALL_ENTRY:
3639 if (debug_infrun)
3640 fprintf_unfiltered (gdb_stdlog,
3641 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3642 /* Getting the current syscall number. */
3643 if (handle_syscall_event (ecs) != 0)
3644 return;
3645 goto process_event_stop_test;
3646
3647 /* Before examining the threads further, step this thread to
3648 get it entirely out of the syscall. (We get notice of the
3649 event when the thread is just on the verge of exiting a
3650 syscall. Stepping one instruction seems to get it back
3651 into user code.) */
3652 case TARGET_WAITKIND_SYSCALL_RETURN:
3653 if (debug_infrun)
3654 fprintf_unfiltered (gdb_stdlog,
3655 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3656 if (handle_syscall_event (ecs) != 0)
3657 return;
3658 goto process_event_stop_test;
3659
3660 case TARGET_WAITKIND_STOPPED:
3661 if (debug_infrun)
3662 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3663 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3664 break;
3665
3666 case TARGET_WAITKIND_NO_HISTORY:
3667 if (debug_infrun)
3668 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3669 /* Reverse execution: target ran out of history info. */
3670
3671 /* Pull the single step breakpoints out of the target. */
3672 if (singlestep_breakpoints_inserted_p)
3673 {
3674 if (!ptid_equal (ecs->ptid, inferior_ptid))
3675 context_switch (ecs->ptid);
3676 remove_single_step_breakpoints ();
3677 singlestep_breakpoints_inserted_p = 0;
3678 }
3679 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3680 print_no_history_reason ();
3681 stop_stepping (ecs);
3682 return;
3683 }
3684
3685 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3686 {
3687 /* Do we need to clean up the state of a thread that has
3688 completed a displaced single-step? (Doing so usually affects
3689 the PC, so do it here, before we set stop_pc.) */
3690 displaced_step_fixup (ecs->ptid,
3691 ecs->event_thread->suspend.stop_signal);
3692
3693 /* If we either finished a single-step or hit a breakpoint, but
3694 the user wanted this thread to be stopped, pretend we got a
3695 SIG0 (generic unsignaled stop). */
3696
3697 if (ecs->event_thread->stop_requested
3698 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3699 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3700 }
3701
3702 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3703
3704 if (debug_infrun)
3705 {
3706 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3707 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3708 struct cleanup *old_chain = save_inferior_ptid ();
3709
3710 inferior_ptid = ecs->ptid;
3711
3712 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3713 paddress (gdbarch, stop_pc));
3714 if (target_stopped_by_watchpoint ())
3715 {
3716 CORE_ADDR addr;
3717
3718 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3719
3720 if (target_stopped_data_address (&current_target, &addr))
3721 fprintf_unfiltered (gdb_stdlog,
3722 "infrun: stopped data address = %s\n",
3723 paddress (gdbarch, addr));
3724 else
3725 fprintf_unfiltered (gdb_stdlog,
3726 "infrun: (no data address available)\n");
3727 }
3728
3729 do_cleanups (old_chain);
3730 }
3731
3732 if (stepping_past_singlestep_breakpoint)
3733 {
3734 gdb_assert (singlestep_breakpoints_inserted_p);
3735 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3736 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3737
3738 stepping_past_singlestep_breakpoint = 0;
3739
3740 /* We've either finished single-stepping past the single-step
3741 breakpoint, or stopped for some other reason. It would be nice if
3742 we could tell, but we can't reliably. */
3743 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3744 {
3745 if (debug_infrun)
3746 fprintf_unfiltered (gdb_stdlog,
3747 "infrun: stepping_past_"
3748 "singlestep_breakpoint\n");
3749 /* Pull the single step breakpoints out of the target. */
3750 if (!ptid_equal (ecs->ptid, inferior_ptid))
3751 context_switch (ecs->ptid);
3752 remove_single_step_breakpoints ();
3753 singlestep_breakpoints_inserted_p = 0;
3754
3755 ecs->random_signal = 0;
3756 ecs->event_thread->control.trap_expected = 0;
3757
3758 context_switch (saved_singlestep_ptid);
3759 if (deprecated_context_hook)
3760 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3761
3762 resume (1, GDB_SIGNAL_0);
3763 prepare_to_wait (ecs);
3764 return;
3765 }
3766 }
3767
3768 if (!ptid_equal (deferred_step_ptid, null_ptid))
3769 {
3770 /* In non-stop mode, there's never a deferred_step_ptid set. */
3771 gdb_assert (!non_stop);
3772
3773 /* If we stopped for some other reason than single-stepping, ignore
3774 the fact that we were supposed to switch back. */
3775 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3776 {
3777 if (debug_infrun)
3778 fprintf_unfiltered (gdb_stdlog,
3779 "infrun: handling deferred step\n");
3780
3781 /* Pull the single step breakpoints out of the target. */
3782 if (singlestep_breakpoints_inserted_p)
3783 {
3784 if (!ptid_equal (ecs->ptid, inferior_ptid))
3785 context_switch (ecs->ptid);
3786 remove_single_step_breakpoints ();
3787 singlestep_breakpoints_inserted_p = 0;
3788 }
3789
3790 ecs->event_thread->control.trap_expected = 0;
3791
3792 context_switch (deferred_step_ptid);
3793 deferred_step_ptid = null_ptid;
3794 /* Suppress spurious "Switching to ..." message. */
3795 previous_inferior_ptid = inferior_ptid;
3796
3797 resume (1, GDB_SIGNAL_0);
3798 prepare_to_wait (ecs);
3799 return;
3800 }
3801
3802 deferred_step_ptid = null_ptid;
3803 }
3804
3805 /* See if a thread hit a thread-specific breakpoint that was meant for
3806 another thread. If so, then step that thread past the breakpoint,
3807 and continue it. */
3808
3809 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3810 {
3811 int thread_hop_needed = 0;
3812 struct address_space *aspace =
3813 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3814
3815 /* Check if a regular breakpoint has been hit before checking
3816 for a potential single step breakpoint. Otherwise, GDB will
3817 not see this breakpoint hit when stepping onto breakpoints. */
3818 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3819 {
3820 ecs->random_signal = 0;
3821 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3822 thread_hop_needed = 1;
3823 }
3824 else if (singlestep_breakpoints_inserted_p)
3825 {
3826 /* We have not context switched yet, so this should be true
3827 no matter which thread hit the singlestep breakpoint. */
3828 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3829 if (debug_infrun)
3830 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3831 "trap for %s\n",
3832 target_pid_to_str (ecs->ptid));
3833
3834 ecs->random_signal = 0;
3835 /* The call to in_thread_list is necessary because PTIDs sometimes
3836 change when we go from single-threaded to multi-threaded. If
3837 the singlestep_ptid is still in the list, assume that it is
3838 really different from ecs->ptid. */
3839 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3840 && in_thread_list (singlestep_ptid))
3841 {
3842 /* If the PC of the thread we were trying to single-step
3843 has changed, discard this event (which we were going
3844 to ignore anyway), and pretend we saw that thread
3845 trap. This prevents us continuously moving the
3846 single-step breakpoint forward, one instruction at a
3847 time. If the PC has changed, then the thread we were
3848 trying to single-step has trapped or been signalled,
3849 but the event has not been reported to GDB yet.
3850
3851 There might be some cases where this loses signal
3852 information, if a signal has arrived at exactly the
3853 same time that the PC changed, but this is the best
3854 we can do with the information available. Perhaps we
3855 should arrange to report all events for all threads
3856 when they stop, or to re-poll the remote looking for
3857 this particular thread (i.e. temporarily enable
3858 schedlock). */
3859
3860 CORE_ADDR new_singlestep_pc
3861 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3862
3863 if (new_singlestep_pc != singlestep_pc)
3864 {
3865 enum gdb_signal stop_signal;
3866
3867 if (debug_infrun)
3868 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3869 " but expected thread advanced also\n");
3870
3871 /* The current context still belongs to
3872 singlestep_ptid. Don't swap here, since that's
3873 the context we want to use. Just fudge our
3874 state and continue. */
3875 stop_signal = ecs->event_thread->suspend.stop_signal;
3876 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3877 ecs->ptid = singlestep_ptid;
3878 ecs->event_thread = find_thread_ptid (ecs->ptid);
3879 ecs->event_thread->suspend.stop_signal = stop_signal;
3880 stop_pc = new_singlestep_pc;
3881 }
3882 else
3883 {
3884 if (debug_infrun)
3885 fprintf_unfiltered (gdb_stdlog,
3886 "infrun: unexpected thread\n");
3887
3888 thread_hop_needed = 1;
3889 stepping_past_singlestep_breakpoint = 1;
3890 saved_singlestep_ptid = singlestep_ptid;
3891 }
3892 }
3893 }
3894
3895 if (thread_hop_needed)
3896 {
3897 struct regcache *thread_regcache;
3898 int remove_status = 0;
3899
3900 if (debug_infrun)
3901 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3902
3903 /* Switch context before touching inferior memory, the
3904 previous thread may have exited. */
3905 if (!ptid_equal (inferior_ptid, ecs->ptid))
3906 context_switch (ecs->ptid);
3907
3908 /* Saw a breakpoint, but it was hit by the wrong thread.
3909 Just continue. */
3910
3911 if (singlestep_breakpoints_inserted_p)
3912 {
3913 /* Pull the single step breakpoints out of the target. */
3914 remove_single_step_breakpoints ();
3915 singlestep_breakpoints_inserted_p = 0;
3916 }
3917
3918 /* If the arch can displace step, don't remove the
3919 breakpoints. */
3920 thread_regcache = get_thread_regcache (ecs->ptid);
3921 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3922 remove_status = remove_breakpoints ();
3923
3924 /* Did we fail to remove breakpoints? If so, try
3925 to set the PC past the bp. (There's at least
3926 one situation in which we can fail to remove
3927 the bp's: On HP-UX's that use ttrace, we can't
3928 change the address space of a vforking child
3929 process until the child exits (well, okay, not
3930 then either :-) or execs. */
3931 if (remove_status != 0)
3932 error (_("Cannot step over breakpoint hit in wrong thread"));
3933 else
3934 { /* Single step */
3935 if (!non_stop)
3936 {
3937 /* Only need to require the next event from this
3938 thread in all-stop mode. */
3939 waiton_ptid = ecs->ptid;
3940 infwait_state = infwait_thread_hop_state;
3941 }
3942
3943 ecs->event_thread->stepping_over_breakpoint = 1;
3944 keep_going (ecs);
3945 return;
3946 }
3947 }
3948 else if (singlestep_breakpoints_inserted_p)
3949 {
3950 ecs->random_signal = 0;
3951 }
3952 }
3953 else
3954 ecs->random_signal = 1;
3955
3956 /* See if something interesting happened to the non-current thread. If
3957 so, then switch to that thread. */
3958 if (!ptid_equal (ecs->ptid, inferior_ptid))
3959 {
3960 if (debug_infrun)
3961 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3962
3963 context_switch (ecs->ptid);
3964
3965 if (deprecated_context_hook)
3966 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3967 }
3968
3969 /* At this point, get hold of the now-current thread's frame. */
3970 frame = get_current_frame ();
3971 gdbarch = get_frame_arch (frame);
3972
3973 if (singlestep_breakpoints_inserted_p)
3974 {
3975 /* Pull the single step breakpoints out of the target. */
3976 remove_single_step_breakpoints ();
3977 singlestep_breakpoints_inserted_p = 0;
3978 }
3979
3980 if (stepped_after_stopped_by_watchpoint)
3981 stopped_by_watchpoint = 0;
3982 else
3983 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3984
3985 /* If necessary, step over this watchpoint. We'll be back to display
3986 it in a moment. */
3987 if (stopped_by_watchpoint
3988 && (target_have_steppable_watchpoint
3989 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3990 {
3991 /* At this point, we are stopped at an instruction which has
3992 attempted to write to a piece of memory under control of
3993 a watchpoint. The instruction hasn't actually executed
3994 yet. If we were to evaluate the watchpoint expression
3995 now, we would get the old value, and therefore no change
3996 would seem to have occurred.
3997
3998 In order to make watchpoints work `right', we really need
3999 to complete the memory write, and then evaluate the
4000 watchpoint expression. We do this by single-stepping the
4001 target.
4002
4003 It may not be necessary to disable the watchpoint to stop over
4004 it. For example, the PA can (with some kernel cooperation)
4005 single step over a watchpoint without disabling the watchpoint.
4006
4007 It is far more common to need to disable a watchpoint to step
4008 the inferior over it. If we have non-steppable watchpoints,
4009 we must disable the current watchpoint; it's simplest to
4010 disable all watchpoints and breakpoints. */
4011 int hw_step = 1;
4012
4013 if (!target_have_steppable_watchpoint)
4014 {
4015 remove_breakpoints ();
4016 /* See comment in resume why we need to stop bypassing signals
4017 while breakpoints have been removed. */
4018 target_pass_signals (0, NULL);
4019 }
4020 /* Single step */
4021 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4022 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4023 waiton_ptid = ecs->ptid;
4024 if (target_have_steppable_watchpoint)
4025 infwait_state = infwait_step_watch_state;
4026 else
4027 infwait_state = infwait_nonstep_watch_state;
4028 prepare_to_wait (ecs);
4029 return;
4030 }
4031
4032 clear_stop_func (ecs);
4033 ecs->event_thread->stepping_over_breakpoint = 0;
4034 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4035 ecs->event_thread->control.stop_step = 0;
4036 stop_print_frame = 1;
4037 ecs->random_signal = 0;
4038 stopped_by_random_signal = 0;
4039
4040 /* Hide inlined functions starting here, unless we just performed stepi or
4041 nexti. After stepi and nexti, always show the innermost frame (not any
4042 inline function call sites). */
4043 if (ecs->event_thread->control.step_range_end != 1)
4044 {
4045 struct address_space *aspace =
4046 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4047
4048 /* skip_inline_frames is expensive, so we avoid it if we can
4049 determine that the address is one where functions cannot have
4050 been inlined. This improves performance with inferiors that
4051 load a lot of shared libraries, because the solib event
4052 breakpoint is defined as the address of a function (i.e. not
4053 inline). Note that we have to check the previous PC as well
4054 as the current one to catch cases when we have just
4055 single-stepped off a breakpoint prior to reinstating it.
4056 Note that we're assuming that the code we single-step to is
4057 not inline, but that's not definitive: there's nothing
4058 preventing the event breakpoint function from containing
4059 inlined code, and the single-step ending up there. If the
4060 user had set a breakpoint on that inlined code, the missing
4061 skip_inline_frames call would break things. Fortunately
4062 that's an extremely unlikely scenario. */
4063 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4064 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4065 && ecs->event_thread->control.trap_expected
4066 && pc_at_non_inline_function (aspace,
4067 ecs->event_thread->prev_pc,
4068 &ecs->ws)))
4069 {
4070 skip_inline_frames (ecs->ptid);
4071
4072 /* Re-fetch current thread's frame in case that invalidated
4073 the frame cache. */
4074 frame = get_current_frame ();
4075 gdbarch = get_frame_arch (frame);
4076 }
4077 }
4078
4079 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4080 && ecs->event_thread->control.trap_expected
4081 && gdbarch_single_step_through_delay_p (gdbarch)
4082 && currently_stepping (ecs->event_thread))
4083 {
4084 /* We're trying to step off a breakpoint. Turns out that we're
4085 also on an instruction that needs to be stepped multiple
4086 times before it's been fully executing. E.g., architectures
4087 with a delay slot. It needs to be stepped twice, once for
4088 the instruction and once for the delay slot. */
4089 int step_through_delay
4090 = gdbarch_single_step_through_delay (gdbarch, frame);
4091
4092 if (debug_infrun && step_through_delay)
4093 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4094 if (ecs->event_thread->control.step_range_end == 0
4095 && step_through_delay)
4096 {
4097 /* The user issued a continue when stopped at a breakpoint.
4098 Set up for another trap and get out of here. */
4099 ecs->event_thread->stepping_over_breakpoint = 1;
4100 keep_going (ecs);
4101 return;
4102 }
4103 else if (step_through_delay)
4104 {
4105 /* The user issued a step when stopped at a breakpoint.
4106 Maybe we should stop, maybe we should not - the delay
4107 slot *might* correspond to a line of source. In any
4108 case, don't decide that here, just set
4109 ecs->stepping_over_breakpoint, making sure we
4110 single-step again before breakpoints are re-inserted. */
4111 ecs->event_thread->stepping_over_breakpoint = 1;
4112 }
4113 }
4114
4115 /* Look at the cause of the stop, and decide what to do.
4116 The alternatives are:
4117 1) stop_stepping and return; to really stop and return to the debugger,
4118 2) keep_going and return to start up again
4119 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4120 3) set ecs->random_signal to 1, and the decision between 1 and 2
4121 will be made according to the signal handling tables. */
4122
4123 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4124 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4125 || stop_soon == STOP_QUIETLY_REMOTE)
4126 {
4127 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4128 && stop_after_trap)
4129 {
4130 if (debug_infrun)
4131 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4132 stop_print_frame = 0;
4133 stop_stepping (ecs);
4134 return;
4135 }
4136
4137 /* This is originated from start_remote(), start_inferior() and
4138 shared libraries hook functions. */
4139 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4140 {
4141 if (debug_infrun)
4142 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4143 stop_stepping (ecs);
4144 return;
4145 }
4146
4147 /* This originates from attach_command(). We need to overwrite
4148 the stop_signal here, because some kernels don't ignore a
4149 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4150 See more comments in inferior.h. On the other hand, if we
4151 get a non-SIGSTOP, report it to the user - assume the backend
4152 will handle the SIGSTOP if it should show up later.
4153
4154 Also consider that the attach is complete when we see a
4155 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4156 target extended-remote report it instead of a SIGSTOP
4157 (e.g. gdbserver). We already rely on SIGTRAP being our
4158 signal, so this is no exception.
4159
4160 Also consider that the attach is complete when we see a
4161 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4162 the target to stop all threads of the inferior, in case the
4163 low level attach operation doesn't stop them implicitly. If
4164 they weren't stopped implicitly, then the stub will report a
4165 GDB_SIGNAL_0, meaning: stopped for no particular reason
4166 other than GDB's request. */
4167 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4168 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4169 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4170 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4171 {
4172 stop_stepping (ecs);
4173 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4174 return;
4175 }
4176
4177 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4178 handles this event. */
4179 ecs->event_thread->control.stop_bpstat
4180 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4181 stop_pc, ecs->ptid, &ecs->ws);
4182
4183 /* Following in case break condition called a
4184 function. */
4185 stop_print_frame = 1;
4186
4187 /* This is where we handle "moribund" watchpoints. Unlike
4188 software breakpoints traps, hardware watchpoint traps are
4189 always distinguishable from random traps. If no high-level
4190 watchpoint is associated with the reported stop data address
4191 anymore, then the bpstat does not explain the signal ---
4192 simply make sure to ignore it if `stopped_by_watchpoint' is
4193 set. */
4194
4195 if (debug_infrun
4196 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4197 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4198 && stopped_by_watchpoint)
4199 fprintf_unfiltered (gdb_stdlog,
4200 "infrun: no user watchpoint explains "
4201 "watchpoint SIGTRAP, ignoring\n");
4202
4203 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4204 at one stage in the past included checks for an inferior
4205 function call's call dummy's return breakpoint. The original
4206 comment, that went with the test, read:
4207
4208 ``End of a stack dummy. Some systems (e.g. Sony news) give
4209 another signal besides SIGTRAP, so check here as well as
4210 above.''
4211
4212 If someone ever tries to get call dummys on a
4213 non-executable stack to work (where the target would stop
4214 with something like a SIGSEGV), then those tests might need
4215 to be re-instated. Given, however, that the tests were only
4216 enabled when momentary breakpoints were not being used, I
4217 suspect that it won't be the case.
4218
4219 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4220 be necessary for call dummies on a non-executable stack on
4221 SPARC. */
4222
4223 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4224 ecs->random_signal
4225 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4226 || stopped_by_watchpoint
4227 || ecs->event_thread->control.trap_expected
4228 || (ecs->event_thread->control.step_range_end
4229 && (ecs->event_thread->control.step_resume_breakpoint
4230 == NULL)));
4231 else
4232 {
4233 ecs->random_signal = !bpstat_explains_signal
4234 (ecs->event_thread->control.stop_bpstat);
4235 if (!ecs->random_signal)
4236 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4237 }
4238 }
4239
4240 /* When we reach this point, we've pretty much decided
4241 that the reason for stopping must've been a random
4242 (unexpected) signal. */
4243
4244 else
4245 ecs->random_signal = 1;
4246
4247 process_event_stop_test:
4248
4249 /* Re-fetch current thread's frame in case we did a
4250 "goto process_event_stop_test" above. */
4251 frame = get_current_frame ();
4252 gdbarch = get_frame_arch (frame);
4253
4254 /* For the program's own signals, act according to
4255 the signal handling tables. */
4256
4257 if (ecs->random_signal)
4258 {
4259 /* Signal not for debugging purposes. */
4260 int printed = 0;
4261 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4262
4263 if (debug_infrun)
4264 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4265 ecs->event_thread->suspend.stop_signal);
4266
4267 stopped_by_random_signal = 1;
4268
4269 if (signal_print[ecs->event_thread->suspend.stop_signal])
4270 {
4271 printed = 1;
4272 target_terminal_ours_for_output ();
4273 print_signal_received_reason
4274 (ecs->event_thread->suspend.stop_signal);
4275 }
4276 /* Always stop on signals if we're either just gaining control
4277 of the program, or the user explicitly requested this thread
4278 to remain stopped. */
4279 if (stop_soon != NO_STOP_QUIETLY
4280 || ecs->event_thread->stop_requested
4281 || (!inf->detaching
4282 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4283 {
4284 stop_stepping (ecs);
4285 return;
4286 }
4287 /* If not going to stop, give terminal back
4288 if we took it away. */
4289 else if (printed)
4290 target_terminal_inferior ();
4291
4292 /* Clear the signal if it should not be passed. */
4293 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4294 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4295
4296 if (ecs->event_thread->prev_pc == stop_pc
4297 && ecs->event_thread->control.trap_expected
4298 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4299 {
4300 /* We were just starting a new sequence, attempting to
4301 single-step off of a breakpoint and expecting a SIGTRAP.
4302 Instead this signal arrives. This signal will take us out
4303 of the stepping range so GDB needs to remember to, when
4304 the signal handler returns, resume stepping off that
4305 breakpoint. */
4306 /* To simplify things, "continue" is forced to use the same
4307 code paths as single-step - set a breakpoint at the
4308 signal return address and then, once hit, step off that
4309 breakpoint. */
4310 if (debug_infrun)
4311 fprintf_unfiltered (gdb_stdlog,
4312 "infrun: signal arrived while stepping over "
4313 "breakpoint\n");
4314
4315 insert_hp_step_resume_breakpoint_at_frame (frame);
4316 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4317 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4318 ecs->event_thread->control.trap_expected = 0;
4319 keep_going (ecs);
4320 return;
4321 }
4322
4323 if (ecs->event_thread->control.step_range_end != 0
4324 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4325 && (ecs->event_thread->control.step_range_start <= stop_pc
4326 && stop_pc < ecs->event_thread->control.step_range_end)
4327 && frame_id_eq (get_stack_frame_id (frame),
4328 ecs->event_thread->control.step_stack_frame_id)
4329 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4330 {
4331 /* The inferior is about to take a signal that will take it
4332 out of the single step range. Set a breakpoint at the
4333 current PC (which is presumably where the signal handler
4334 will eventually return) and then allow the inferior to
4335 run free.
4336
4337 Note that this is only needed for a signal delivered
4338 while in the single-step range. Nested signals aren't a
4339 problem as they eventually all return. */
4340 if (debug_infrun)
4341 fprintf_unfiltered (gdb_stdlog,
4342 "infrun: signal may take us out of "
4343 "single-step range\n");
4344
4345 insert_hp_step_resume_breakpoint_at_frame (frame);
4346 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4347 ecs->event_thread->control.trap_expected = 0;
4348 keep_going (ecs);
4349 return;
4350 }
4351
4352 /* Note: step_resume_breakpoint may be non-NULL. This occures
4353 when either there's a nested signal, or when there's a
4354 pending signal enabled just as the signal handler returns
4355 (leaving the inferior at the step-resume-breakpoint without
4356 actually executing it). Either way continue until the
4357 breakpoint is really hit. */
4358 }
4359 else
4360 {
4361 /* Handle cases caused by hitting a breakpoint. */
4362
4363 CORE_ADDR jmp_buf_pc;
4364 struct bpstat_what what;
4365
4366 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4367
4368 if (what.call_dummy)
4369 {
4370 stop_stack_dummy = what.call_dummy;
4371 }
4372
4373 /* If we hit an internal event that triggers symbol changes, the
4374 current frame will be invalidated within bpstat_what (e.g.,
4375 if we hit an internal solib event). Re-fetch it. */
4376 frame = get_current_frame ();
4377 gdbarch = get_frame_arch (frame);
4378
4379 switch (what.main_action)
4380 {
4381 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4382 /* If we hit the breakpoint at longjmp while stepping, we
4383 install a momentary breakpoint at the target of the
4384 jmp_buf. */
4385
4386 if (debug_infrun)
4387 fprintf_unfiltered (gdb_stdlog,
4388 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4389
4390 ecs->event_thread->stepping_over_breakpoint = 1;
4391
4392 if (what.is_longjmp)
4393 {
4394 struct value *arg_value;
4395
4396 /* If we set the longjmp breakpoint via a SystemTap
4397 probe, then use it to extract the arguments. The
4398 destination PC is the third argument to the
4399 probe. */
4400 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4401 if (arg_value)
4402 jmp_buf_pc = value_as_address (arg_value);
4403 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4404 || !gdbarch_get_longjmp_target (gdbarch,
4405 frame, &jmp_buf_pc))
4406 {
4407 if (debug_infrun)
4408 fprintf_unfiltered (gdb_stdlog,
4409 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4410 "(!gdbarch_get_longjmp_target)\n");
4411 keep_going (ecs);
4412 return;
4413 }
4414
4415 /* Insert a breakpoint at resume address. */
4416 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4417 }
4418 else
4419 check_exception_resume (ecs, frame);
4420 keep_going (ecs);
4421 return;
4422
4423 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4424 {
4425 struct frame_info *init_frame;
4426
4427 /* There are several cases to consider.
4428
4429 1. The initiating frame no longer exists. In this case
4430 we must stop, because the exception or longjmp has gone
4431 too far.
4432
4433 2. The initiating frame exists, and is the same as the
4434 current frame. We stop, because the exception or
4435 longjmp has been caught.
4436
4437 3. The initiating frame exists and is different from
4438 the current frame. This means the exception or longjmp
4439 has been caught beneath the initiating frame, so keep
4440 going.
4441
4442 4. longjmp breakpoint has been placed just to protect
4443 against stale dummy frames and user is not interested
4444 in stopping around longjmps. */
4445
4446 if (debug_infrun)
4447 fprintf_unfiltered (gdb_stdlog,
4448 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4449
4450 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4451 != NULL);
4452 delete_exception_resume_breakpoint (ecs->event_thread);
4453
4454 if (what.is_longjmp)
4455 {
4456 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4457
4458 if (!frame_id_p (ecs->event_thread->initiating_frame))
4459 {
4460 /* Case 4. */
4461 keep_going (ecs);
4462 return;
4463 }
4464 }
4465
4466 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4467
4468 if (init_frame)
4469 {
4470 struct frame_id current_id
4471 = get_frame_id (get_current_frame ());
4472 if (frame_id_eq (current_id,
4473 ecs->event_thread->initiating_frame))
4474 {
4475 /* Case 2. Fall through. */
4476 }
4477 else
4478 {
4479 /* Case 3. */
4480 keep_going (ecs);
4481 return;
4482 }
4483 }
4484
4485 /* For Cases 1 and 2, remove the step-resume breakpoint,
4486 if it exists. */
4487 delete_step_resume_breakpoint (ecs->event_thread);
4488
4489 ecs->event_thread->control.stop_step = 1;
4490 print_end_stepping_range_reason ();
4491 stop_stepping (ecs);
4492 }
4493 return;
4494
4495 case BPSTAT_WHAT_SINGLE:
4496 if (debug_infrun)
4497 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4498 ecs->event_thread->stepping_over_breakpoint = 1;
4499 /* Still need to check other stuff, at least the case where
4500 we are stepping and step out of the right range. */
4501 break;
4502
4503 case BPSTAT_WHAT_STEP_RESUME:
4504 if (debug_infrun)
4505 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4506
4507 delete_step_resume_breakpoint (ecs->event_thread);
4508 if (ecs->event_thread->control.proceed_to_finish
4509 && execution_direction == EXEC_REVERSE)
4510 {
4511 struct thread_info *tp = ecs->event_thread;
4512
4513 /* We are finishing a function in reverse, and just hit
4514 the step-resume breakpoint at the start address of
4515 the function, and we're almost there -- just need to
4516 back up by one more single-step, which should take us
4517 back to the function call. */
4518 tp->control.step_range_start = tp->control.step_range_end = 1;
4519 keep_going (ecs);
4520 return;
4521 }
4522 fill_in_stop_func (gdbarch, ecs);
4523 if (stop_pc == ecs->stop_func_start
4524 && execution_direction == EXEC_REVERSE)
4525 {
4526 /* We are stepping over a function call in reverse, and
4527 just hit the step-resume breakpoint at the start
4528 address of the function. Go back to single-stepping,
4529 which should take us back to the function call. */
4530 ecs->event_thread->stepping_over_breakpoint = 1;
4531 keep_going (ecs);
4532 return;
4533 }
4534 break;
4535
4536 case BPSTAT_WHAT_STOP_NOISY:
4537 if (debug_infrun)
4538 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4539 stop_print_frame = 1;
4540
4541 /* We are about to nuke the step_resume_breakpointt via the
4542 cleanup chain, so no need to worry about it here. */
4543
4544 stop_stepping (ecs);
4545 return;
4546
4547 case BPSTAT_WHAT_STOP_SILENT:
4548 if (debug_infrun)
4549 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4550 stop_print_frame = 0;
4551
4552 /* We are about to nuke the step_resume_breakpoin via the
4553 cleanup chain, so no need to worry about it here. */
4554
4555 stop_stepping (ecs);
4556 return;
4557
4558 case BPSTAT_WHAT_HP_STEP_RESUME:
4559 if (debug_infrun)
4560 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4561
4562 delete_step_resume_breakpoint (ecs->event_thread);
4563 if (ecs->event_thread->step_after_step_resume_breakpoint)
4564 {
4565 /* Back when the step-resume breakpoint was inserted, we
4566 were trying to single-step off a breakpoint. Go back
4567 to doing that. */
4568 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4569 ecs->event_thread->stepping_over_breakpoint = 1;
4570 keep_going (ecs);
4571 return;
4572 }
4573 break;
4574
4575 case BPSTAT_WHAT_KEEP_CHECKING:
4576 break;
4577 }
4578 }
4579
4580 /* We come here if we hit a breakpoint but should not
4581 stop for it. Possibly we also were stepping
4582 and should stop for that. So fall through and
4583 test for stepping. But, if not stepping,
4584 do not stop. */
4585
4586 /* In all-stop mode, if we're currently stepping but have stopped in
4587 some other thread, we need to switch back to the stepped thread. */
4588 if (!non_stop)
4589 {
4590 struct thread_info *tp;
4591
4592 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4593 ecs->event_thread);
4594 if (tp)
4595 {
4596 /* However, if the current thread is blocked on some internal
4597 breakpoint, and we simply need to step over that breakpoint
4598 to get it going again, do that first. */
4599 if ((ecs->event_thread->control.trap_expected
4600 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
4601 || ecs->event_thread->stepping_over_breakpoint)
4602 {
4603 keep_going (ecs);
4604 return;
4605 }
4606
4607 /* If the stepping thread exited, then don't try to switch
4608 back and resume it, which could fail in several different
4609 ways depending on the target. Instead, just keep going.
4610
4611 We can find a stepping dead thread in the thread list in
4612 two cases:
4613
4614 - The target supports thread exit events, and when the
4615 target tries to delete the thread from the thread list,
4616 inferior_ptid pointed at the exiting thread. In such
4617 case, calling delete_thread does not really remove the
4618 thread from the list; instead, the thread is left listed,
4619 with 'exited' state.
4620
4621 - The target's debug interface does not support thread
4622 exit events, and so we have no idea whatsoever if the
4623 previously stepping thread is still alive. For that
4624 reason, we need to synchronously query the target
4625 now. */
4626 if (is_exited (tp->ptid)
4627 || !target_thread_alive (tp->ptid))
4628 {
4629 if (debug_infrun)
4630 fprintf_unfiltered (gdb_stdlog,
4631 "infrun: not switching back to "
4632 "stepped thread, it has vanished\n");
4633
4634 delete_thread (tp->ptid);
4635 keep_going (ecs);
4636 return;
4637 }
4638
4639 /* Otherwise, we no longer expect a trap in the current thread.
4640 Clear the trap_expected flag before switching back -- this is
4641 what keep_going would do as well, if we called it. */
4642 ecs->event_thread->control.trap_expected = 0;
4643
4644 if (debug_infrun)
4645 fprintf_unfiltered (gdb_stdlog,
4646 "infrun: switching back to stepped thread\n");
4647
4648 ecs->event_thread = tp;
4649 ecs->ptid = tp->ptid;
4650 context_switch (ecs->ptid);
4651 keep_going (ecs);
4652 return;
4653 }
4654 }
4655
4656 if (ecs->event_thread->control.step_resume_breakpoint)
4657 {
4658 if (debug_infrun)
4659 fprintf_unfiltered (gdb_stdlog,
4660 "infrun: step-resume breakpoint is inserted\n");
4661
4662 /* Having a step-resume breakpoint overrides anything
4663 else having to do with stepping commands until
4664 that breakpoint is reached. */
4665 keep_going (ecs);
4666 return;
4667 }
4668
4669 if (ecs->event_thread->control.step_range_end == 0)
4670 {
4671 if (debug_infrun)
4672 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4673 /* Likewise if we aren't even stepping. */
4674 keep_going (ecs);
4675 return;
4676 }
4677
4678 /* Re-fetch current thread's frame in case the code above caused
4679 the frame cache to be re-initialized, making our FRAME variable
4680 a dangling pointer. */
4681 frame = get_current_frame ();
4682 gdbarch = get_frame_arch (frame);
4683 fill_in_stop_func (gdbarch, ecs);
4684
4685 /* If stepping through a line, keep going if still within it.
4686
4687 Note that step_range_end is the address of the first instruction
4688 beyond the step range, and NOT the address of the last instruction
4689 within it!
4690
4691 Note also that during reverse execution, we may be stepping
4692 through a function epilogue and therefore must detect when
4693 the current-frame changes in the middle of a line. */
4694
4695 if (stop_pc >= ecs->event_thread->control.step_range_start
4696 && stop_pc < ecs->event_thread->control.step_range_end
4697 && (execution_direction != EXEC_REVERSE
4698 || frame_id_eq (get_frame_id (frame),
4699 ecs->event_thread->control.step_frame_id)))
4700 {
4701 if (debug_infrun)
4702 fprintf_unfiltered
4703 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4704 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4705 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4706
4707 /* When stepping backward, stop at beginning of line range
4708 (unless it's the function entry point, in which case
4709 keep going back to the call point). */
4710 if (stop_pc == ecs->event_thread->control.step_range_start
4711 && stop_pc != ecs->stop_func_start
4712 && execution_direction == EXEC_REVERSE)
4713 {
4714 ecs->event_thread->control.stop_step = 1;
4715 print_end_stepping_range_reason ();
4716 stop_stepping (ecs);
4717 }
4718 else
4719 keep_going (ecs);
4720
4721 return;
4722 }
4723
4724 /* We stepped out of the stepping range. */
4725
4726 /* If we are stepping at the source level and entered the runtime
4727 loader dynamic symbol resolution code...
4728
4729 EXEC_FORWARD: we keep on single stepping until we exit the run
4730 time loader code and reach the callee's address.
4731
4732 EXEC_REVERSE: we've already executed the callee (backward), and
4733 the runtime loader code is handled just like any other
4734 undebuggable function call. Now we need only keep stepping
4735 backward through the trampoline code, and that's handled further
4736 down, so there is nothing for us to do here. */
4737
4738 if (execution_direction != EXEC_REVERSE
4739 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4740 && in_solib_dynsym_resolve_code (stop_pc))
4741 {
4742 CORE_ADDR pc_after_resolver =
4743 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4744
4745 if (debug_infrun)
4746 fprintf_unfiltered (gdb_stdlog,
4747 "infrun: stepped into dynsym resolve code\n");
4748
4749 if (pc_after_resolver)
4750 {
4751 /* Set up a step-resume breakpoint at the address
4752 indicated by SKIP_SOLIB_RESOLVER. */
4753 struct symtab_and_line sr_sal;
4754
4755 init_sal (&sr_sal);
4756 sr_sal.pc = pc_after_resolver;
4757 sr_sal.pspace = get_frame_program_space (frame);
4758
4759 insert_step_resume_breakpoint_at_sal (gdbarch,
4760 sr_sal, null_frame_id);
4761 }
4762
4763 keep_going (ecs);
4764 return;
4765 }
4766
4767 if (ecs->event_thread->control.step_range_end != 1
4768 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4769 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4770 && get_frame_type (frame) == SIGTRAMP_FRAME)
4771 {
4772 if (debug_infrun)
4773 fprintf_unfiltered (gdb_stdlog,
4774 "infrun: stepped into signal trampoline\n");
4775 /* The inferior, while doing a "step" or "next", has ended up in
4776 a signal trampoline (either by a signal being delivered or by
4777 the signal handler returning). Just single-step until the
4778 inferior leaves the trampoline (either by calling the handler
4779 or returning). */
4780 keep_going (ecs);
4781 return;
4782 }
4783
4784 /* If we're in the return path from a shared library trampoline,
4785 we want to proceed through the trampoline when stepping. */
4786 /* macro/2012-04-25: This needs to come before the subroutine
4787 call check below as on some targets return trampolines look
4788 like subroutine calls (MIPS16 return thunks). */
4789 if (gdbarch_in_solib_return_trampoline (gdbarch,
4790 stop_pc, ecs->stop_func_name)
4791 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4792 {
4793 /* Determine where this trampoline returns. */
4794 CORE_ADDR real_stop_pc;
4795
4796 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4797
4798 if (debug_infrun)
4799 fprintf_unfiltered (gdb_stdlog,
4800 "infrun: stepped into solib return tramp\n");
4801
4802 /* Only proceed through if we know where it's going. */
4803 if (real_stop_pc)
4804 {
4805 /* And put the step-breakpoint there and go until there. */
4806 struct symtab_and_line sr_sal;
4807
4808 init_sal (&sr_sal); /* initialize to zeroes */
4809 sr_sal.pc = real_stop_pc;
4810 sr_sal.section = find_pc_overlay (sr_sal.pc);
4811 sr_sal.pspace = get_frame_program_space (frame);
4812
4813 /* Do not specify what the fp should be when we stop since
4814 on some machines the prologue is where the new fp value
4815 is established. */
4816 insert_step_resume_breakpoint_at_sal (gdbarch,
4817 sr_sal, null_frame_id);
4818
4819 /* Restart without fiddling with the step ranges or
4820 other state. */
4821 keep_going (ecs);
4822 return;
4823 }
4824 }
4825
4826 /* Check for subroutine calls. The check for the current frame
4827 equalling the step ID is not necessary - the check of the
4828 previous frame's ID is sufficient - but it is a common case and
4829 cheaper than checking the previous frame's ID.
4830
4831 NOTE: frame_id_eq will never report two invalid frame IDs as
4832 being equal, so to get into this block, both the current and
4833 previous frame must have valid frame IDs. */
4834 /* The outer_frame_id check is a heuristic to detect stepping
4835 through startup code. If we step over an instruction which
4836 sets the stack pointer from an invalid value to a valid value,
4837 we may detect that as a subroutine call from the mythical
4838 "outermost" function. This could be fixed by marking
4839 outermost frames as !stack_p,code_p,special_p. Then the
4840 initial outermost frame, before sp was valid, would
4841 have code_addr == &_start. See the comment in frame_id_eq
4842 for more. */
4843 if (!frame_id_eq (get_stack_frame_id (frame),
4844 ecs->event_thread->control.step_stack_frame_id)
4845 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4846 ecs->event_thread->control.step_stack_frame_id)
4847 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4848 outer_frame_id)
4849 || step_start_function != find_pc_function (stop_pc))))
4850 {
4851 CORE_ADDR real_stop_pc;
4852
4853 if (debug_infrun)
4854 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4855
4856 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4857 || ((ecs->event_thread->control.step_range_end == 1)
4858 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4859 ecs->stop_func_start)))
4860 {
4861 /* I presume that step_over_calls is only 0 when we're
4862 supposed to be stepping at the assembly language level
4863 ("stepi"). Just stop. */
4864 /* Also, maybe we just did a "nexti" inside a prolog, so we
4865 thought it was a subroutine call but it was not. Stop as
4866 well. FENN */
4867 /* And this works the same backward as frontward. MVS */
4868 ecs->event_thread->control.stop_step = 1;
4869 print_end_stepping_range_reason ();
4870 stop_stepping (ecs);
4871 return;
4872 }
4873
4874 /* Reverse stepping through solib trampolines. */
4875
4876 if (execution_direction == EXEC_REVERSE
4877 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4878 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4879 || (ecs->stop_func_start == 0
4880 && in_solib_dynsym_resolve_code (stop_pc))))
4881 {
4882 /* Any solib trampoline code can be handled in reverse
4883 by simply continuing to single-step. We have already
4884 executed the solib function (backwards), and a few
4885 steps will take us back through the trampoline to the
4886 caller. */
4887 keep_going (ecs);
4888 return;
4889 }
4890
4891 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4892 {
4893 /* We're doing a "next".
4894
4895 Normal (forward) execution: set a breakpoint at the
4896 callee's return address (the address at which the caller
4897 will resume).
4898
4899 Reverse (backward) execution. set the step-resume
4900 breakpoint at the start of the function that we just
4901 stepped into (backwards), and continue to there. When we
4902 get there, we'll need to single-step back to the caller. */
4903
4904 if (execution_direction == EXEC_REVERSE)
4905 {
4906 struct symtab_and_line sr_sal;
4907
4908 /* Normal function call return (static or dynamic). */
4909 init_sal (&sr_sal);
4910 sr_sal.pc = ecs->stop_func_start;
4911 sr_sal.pspace = get_frame_program_space (frame);
4912 insert_step_resume_breakpoint_at_sal (gdbarch,
4913 sr_sal, null_frame_id);
4914 }
4915 else
4916 insert_step_resume_breakpoint_at_caller (frame);
4917
4918 keep_going (ecs);
4919 return;
4920 }
4921
4922 /* If we are in a function call trampoline (a stub between the
4923 calling routine and the real function), locate the real
4924 function. That's what tells us (a) whether we want to step
4925 into it at all, and (b) what prologue we want to run to the
4926 end of, if we do step into it. */
4927 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4928 if (real_stop_pc == 0)
4929 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4930 if (real_stop_pc != 0)
4931 ecs->stop_func_start = real_stop_pc;
4932
4933 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4934 {
4935 struct symtab_and_line sr_sal;
4936
4937 init_sal (&sr_sal);
4938 sr_sal.pc = ecs->stop_func_start;
4939 sr_sal.pspace = get_frame_program_space (frame);
4940
4941 insert_step_resume_breakpoint_at_sal (gdbarch,
4942 sr_sal, null_frame_id);
4943 keep_going (ecs);
4944 return;
4945 }
4946
4947 /* If we have line number information for the function we are
4948 thinking of stepping into and the function isn't on the skip
4949 list, step into it.
4950
4951 If there are several symtabs at that PC (e.g. with include
4952 files), just want to know whether *any* of them have line
4953 numbers. find_pc_line handles this. */
4954 {
4955 struct symtab_and_line tmp_sal;
4956
4957 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4958 if (tmp_sal.line != 0
4959 && !function_pc_is_marked_for_skip (ecs->stop_func_start))
4960 {
4961 if (execution_direction == EXEC_REVERSE)
4962 handle_step_into_function_backward (gdbarch, ecs);
4963 else
4964 handle_step_into_function (gdbarch, ecs);
4965 return;
4966 }
4967 }
4968
4969 /* If we have no line number and the step-stop-if-no-debug is
4970 set, we stop the step so that the user has a chance to switch
4971 in assembly mode. */
4972 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4973 && step_stop_if_no_debug)
4974 {
4975 ecs->event_thread->control.stop_step = 1;
4976 print_end_stepping_range_reason ();
4977 stop_stepping (ecs);
4978 return;
4979 }
4980
4981 if (execution_direction == EXEC_REVERSE)
4982 {
4983 /* Set a breakpoint at callee's start address.
4984 From there we can step once and be back in the caller. */
4985 struct symtab_and_line sr_sal;
4986
4987 init_sal (&sr_sal);
4988 sr_sal.pc = ecs->stop_func_start;
4989 sr_sal.pspace = get_frame_program_space (frame);
4990 insert_step_resume_breakpoint_at_sal (gdbarch,
4991 sr_sal, null_frame_id);
4992 }
4993 else
4994 /* Set a breakpoint at callee's return address (the address
4995 at which the caller will resume). */
4996 insert_step_resume_breakpoint_at_caller (frame);
4997
4998 keep_going (ecs);
4999 return;
5000 }
5001
5002 /* Reverse stepping through solib trampolines. */
5003
5004 if (execution_direction == EXEC_REVERSE
5005 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5006 {
5007 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5008 || (ecs->stop_func_start == 0
5009 && in_solib_dynsym_resolve_code (stop_pc)))
5010 {
5011 /* Any solib trampoline code can be handled in reverse
5012 by simply continuing to single-step. We have already
5013 executed the solib function (backwards), and a few
5014 steps will take us back through the trampoline to the
5015 caller. */
5016 keep_going (ecs);
5017 return;
5018 }
5019 else if (in_solib_dynsym_resolve_code (stop_pc))
5020 {
5021 /* Stepped backward into the solib dynsym resolver.
5022 Set a breakpoint at its start and continue, then
5023 one more step will take us out. */
5024 struct symtab_and_line sr_sal;
5025
5026 init_sal (&sr_sal);
5027 sr_sal.pc = ecs->stop_func_start;
5028 sr_sal.pspace = get_frame_program_space (frame);
5029 insert_step_resume_breakpoint_at_sal (gdbarch,
5030 sr_sal, null_frame_id);
5031 keep_going (ecs);
5032 return;
5033 }
5034 }
5035
5036 stop_pc_sal = find_pc_line (stop_pc, 0);
5037
5038 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5039 the trampoline processing logic, however, there are some trampolines
5040 that have no names, so we should do trampoline handling first. */
5041 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5042 && ecs->stop_func_name == NULL
5043 && stop_pc_sal.line == 0)
5044 {
5045 if (debug_infrun)
5046 fprintf_unfiltered (gdb_stdlog,
5047 "infrun: stepped into undebuggable function\n");
5048
5049 /* The inferior just stepped into, or returned to, an
5050 undebuggable function (where there is no debugging information
5051 and no line number corresponding to the address where the
5052 inferior stopped). Since we want to skip this kind of code,
5053 we keep going until the inferior returns from this
5054 function - unless the user has asked us not to (via
5055 set step-mode) or we no longer know how to get back
5056 to the call site. */
5057 if (step_stop_if_no_debug
5058 || !frame_id_p (frame_unwind_caller_id (frame)))
5059 {
5060 /* If we have no line number and the step-stop-if-no-debug
5061 is set, we stop the step so that the user has a chance to
5062 switch in assembly mode. */
5063 ecs->event_thread->control.stop_step = 1;
5064 print_end_stepping_range_reason ();
5065 stop_stepping (ecs);
5066 return;
5067 }
5068 else
5069 {
5070 /* Set a breakpoint at callee's return address (the address
5071 at which the caller will resume). */
5072 insert_step_resume_breakpoint_at_caller (frame);
5073 keep_going (ecs);
5074 return;
5075 }
5076 }
5077
5078 if (ecs->event_thread->control.step_range_end == 1)
5079 {
5080 /* It is stepi or nexti. We always want to stop stepping after
5081 one instruction. */
5082 if (debug_infrun)
5083 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5084 ecs->event_thread->control.stop_step = 1;
5085 print_end_stepping_range_reason ();
5086 stop_stepping (ecs);
5087 return;
5088 }
5089
5090 if (stop_pc_sal.line == 0)
5091 {
5092 /* We have no line number information. That means to stop
5093 stepping (does this always happen right after one instruction,
5094 when we do "s" in a function with no line numbers,
5095 or can this happen as a result of a return or longjmp?). */
5096 if (debug_infrun)
5097 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5098 ecs->event_thread->control.stop_step = 1;
5099 print_end_stepping_range_reason ();
5100 stop_stepping (ecs);
5101 return;
5102 }
5103
5104 /* Look for "calls" to inlined functions, part one. If the inline
5105 frame machinery detected some skipped call sites, we have entered
5106 a new inline function. */
5107
5108 if (frame_id_eq (get_frame_id (get_current_frame ()),
5109 ecs->event_thread->control.step_frame_id)
5110 && inline_skipped_frames (ecs->ptid))
5111 {
5112 struct symtab_and_line call_sal;
5113
5114 if (debug_infrun)
5115 fprintf_unfiltered (gdb_stdlog,
5116 "infrun: stepped into inlined function\n");
5117
5118 find_frame_sal (get_current_frame (), &call_sal);
5119
5120 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5121 {
5122 /* For "step", we're going to stop. But if the call site
5123 for this inlined function is on the same source line as
5124 we were previously stepping, go down into the function
5125 first. Otherwise stop at the call site. */
5126
5127 if (call_sal.line == ecs->event_thread->current_line
5128 && call_sal.symtab == ecs->event_thread->current_symtab)
5129 step_into_inline_frame (ecs->ptid);
5130
5131 ecs->event_thread->control.stop_step = 1;
5132 print_end_stepping_range_reason ();
5133 stop_stepping (ecs);
5134 return;
5135 }
5136 else
5137 {
5138 /* For "next", we should stop at the call site if it is on a
5139 different source line. Otherwise continue through the
5140 inlined function. */
5141 if (call_sal.line == ecs->event_thread->current_line
5142 && call_sal.symtab == ecs->event_thread->current_symtab)
5143 keep_going (ecs);
5144 else
5145 {
5146 ecs->event_thread->control.stop_step = 1;
5147 print_end_stepping_range_reason ();
5148 stop_stepping (ecs);
5149 }
5150 return;
5151 }
5152 }
5153
5154 /* Look for "calls" to inlined functions, part two. If we are still
5155 in the same real function we were stepping through, but we have
5156 to go further up to find the exact frame ID, we are stepping
5157 through a more inlined call beyond its call site. */
5158
5159 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5160 && !frame_id_eq (get_frame_id (get_current_frame ()),
5161 ecs->event_thread->control.step_frame_id)
5162 && stepped_in_from (get_current_frame (),
5163 ecs->event_thread->control.step_frame_id))
5164 {
5165 if (debug_infrun)
5166 fprintf_unfiltered (gdb_stdlog,
5167 "infrun: stepping through inlined function\n");
5168
5169 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5170 keep_going (ecs);
5171 else
5172 {
5173 ecs->event_thread->control.stop_step = 1;
5174 print_end_stepping_range_reason ();
5175 stop_stepping (ecs);
5176 }
5177 return;
5178 }
5179
5180 if ((stop_pc == stop_pc_sal.pc)
5181 && (ecs->event_thread->current_line != stop_pc_sal.line
5182 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5183 {
5184 /* We are at the start of a different line. So stop. Note that
5185 we don't stop if we step into the middle of a different line.
5186 That is said to make things like for (;;) statements work
5187 better. */
5188 if (debug_infrun)
5189 fprintf_unfiltered (gdb_stdlog,
5190 "infrun: stepped to a different line\n");
5191 ecs->event_thread->control.stop_step = 1;
5192 print_end_stepping_range_reason ();
5193 stop_stepping (ecs);
5194 return;
5195 }
5196
5197 /* We aren't done stepping.
5198
5199 Optimize by setting the stepping range to the line.
5200 (We might not be in the original line, but if we entered a
5201 new line in mid-statement, we continue stepping. This makes
5202 things like for(;;) statements work better.) */
5203
5204 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5205 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5206 set_step_info (frame, stop_pc_sal);
5207
5208 if (debug_infrun)
5209 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5210 keep_going (ecs);
5211 }
5212
5213 /* Is thread TP in the middle of single-stepping? */
5214
5215 static int
5216 currently_stepping (struct thread_info *tp)
5217 {
5218 return ((tp->control.step_range_end
5219 && tp->control.step_resume_breakpoint == NULL)
5220 || tp->control.trap_expected
5221 || bpstat_should_step ());
5222 }
5223
5224 /* Returns true if any thread *but* the one passed in "data" is in the
5225 middle of stepping or of handling a "next". */
5226
5227 static int
5228 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5229 {
5230 if (tp == data)
5231 return 0;
5232
5233 return (tp->control.step_range_end
5234 || tp->control.trap_expected);
5235 }
5236
5237 /* Inferior has stepped into a subroutine call with source code that
5238 we should not step over. Do step to the first line of code in
5239 it. */
5240
5241 static void
5242 handle_step_into_function (struct gdbarch *gdbarch,
5243 struct execution_control_state *ecs)
5244 {
5245 struct symtab *s;
5246 struct symtab_and_line stop_func_sal, sr_sal;
5247
5248 fill_in_stop_func (gdbarch, ecs);
5249
5250 s = find_pc_symtab (stop_pc);
5251 if (s && s->language != language_asm)
5252 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5253 ecs->stop_func_start);
5254
5255 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5256 /* Use the step_resume_break to step until the end of the prologue,
5257 even if that involves jumps (as it seems to on the vax under
5258 4.2). */
5259 /* If the prologue ends in the middle of a source line, continue to
5260 the end of that source line (if it is still within the function).
5261 Otherwise, just go to end of prologue. */
5262 if (stop_func_sal.end
5263 && stop_func_sal.pc != ecs->stop_func_start
5264 && stop_func_sal.end < ecs->stop_func_end)
5265 ecs->stop_func_start = stop_func_sal.end;
5266
5267 /* Architectures which require breakpoint adjustment might not be able
5268 to place a breakpoint at the computed address. If so, the test
5269 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5270 ecs->stop_func_start to an address at which a breakpoint may be
5271 legitimately placed.
5272
5273 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5274 made, GDB will enter an infinite loop when stepping through
5275 optimized code consisting of VLIW instructions which contain
5276 subinstructions corresponding to different source lines. On
5277 FR-V, it's not permitted to place a breakpoint on any but the
5278 first subinstruction of a VLIW instruction. When a breakpoint is
5279 set, GDB will adjust the breakpoint address to the beginning of
5280 the VLIW instruction. Thus, we need to make the corresponding
5281 adjustment here when computing the stop address. */
5282
5283 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5284 {
5285 ecs->stop_func_start
5286 = gdbarch_adjust_breakpoint_address (gdbarch,
5287 ecs->stop_func_start);
5288 }
5289
5290 if (ecs->stop_func_start == stop_pc)
5291 {
5292 /* We are already there: stop now. */
5293 ecs->event_thread->control.stop_step = 1;
5294 print_end_stepping_range_reason ();
5295 stop_stepping (ecs);
5296 return;
5297 }
5298 else
5299 {
5300 /* Put the step-breakpoint there and go until there. */
5301 init_sal (&sr_sal); /* initialize to zeroes */
5302 sr_sal.pc = ecs->stop_func_start;
5303 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5304 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5305
5306 /* Do not specify what the fp should be when we stop since on
5307 some machines the prologue is where the new fp value is
5308 established. */
5309 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5310
5311 /* And make sure stepping stops right away then. */
5312 ecs->event_thread->control.step_range_end
5313 = ecs->event_thread->control.step_range_start;
5314 }
5315 keep_going (ecs);
5316 }
5317
5318 /* Inferior has stepped backward into a subroutine call with source
5319 code that we should not step over. Do step to the beginning of the
5320 last line of code in it. */
5321
5322 static void
5323 handle_step_into_function_backward (struct gdbarch *gdbarch,
5324 struct execution_control_state *ecs)
5325 {
5326 struct symtab *s;
5327 struct symtab_and_line stop_func_sal;
5328
5329 fill_in_stop_func (gdbarch, ecs);
5330
5331 s = find_pc_symtab (stop_pc);
5332 if (s && s->language != language_asm)
5333 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5334 ecs->stop_func_start);
5335
5336 stop_func_sal = find_pc_line (stop_pc, 0);
5337
5338 /* OK, we're just going to keep stepping here. */
5339 if (stop_func_sal.pc == stop_pc)
5340 {
5341 /* We're there already. Just stop stepping now. */
5342 ecs->event_thread->control.stop_step = 1;
5343 print_end_stepping_range_reason ();
5344 stop_stepping (ecs);
5345 }
5346 else
5347 {
5348 /* Else just reset the step range and keep going.
5349 No step-resume breakpoint, they don't work for
5350 epilogues, which can have multiple entry paths. */
5351 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5352 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5353 keep_going (ecs);
5354 }
5355 return;
5356 }
5357
5358 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5359 This is used to both functions and to skip over code. */
5360
5361 static void
5362 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5363 struct symtab_and_line sr_sal,
5364 struct frame_id sr_id,
5365 enum bptype sr_type)
5366 {
5367 /* There should never be more than one step-resume or longjmp-resume
5368 breakpoint per thread, so we should never be setting a new
5369 step_resume_breakpoint when one is already active. */
5370 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5371 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5372
5373 if (debug_infrun)
5374 fprintf_unfiltered (gdb_stdlog,
5375 "infrun: inserting step-resume breakpoint at %s\n",
5376 paddress (gdbarch, sr_sal.pc));
5377
5378 inferior_thread ()->control.step_resume_breakpoint
5379 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5380 }
5381
5382 void
5383 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5384 struct symtab_and_line sr_sal,
5385 struct frame_id sr_id)
5386 {
5387 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5388 sr_sal, sr_id,
5389 bp_step_resume);
5390 }
5391
5392 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5393 This is used to skip a potential signal handler.
5394
5395 This is called with the interrupted function's frame. The signal
5396 handler, when it returns, will resume the interrupted function at
5397 RETURN_FRAME.pc. */
5398
5399 static void
5400 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5401 {
5402 struct symtab_and_line sr_sal;
5403 struct gdbarch *gdbarch;
5404
5405 gdb_assert (return_frame != NULL);
5406 init_sal (&sr_sal); /* initialize to zeros */
5407
5408 gdbarch = get_frame_arch (return_frame);
5409 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5410 sr_sal.section = find_pc_overlay (sr_sal.pc);
5411 sr_sal.pspace = get_frame_program_space (return_frame);
5412
5413 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5414 get_stack_frame_id (return_frame),
5415 bp_hp_step_resume);
5416 }
5417
5418 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5419 is used to skip a function after stepping into it (for "next" or if
5420 the called function has no debugging information).
5421
5422 The current function has almost always been reached by single
5423 stepping a call or return instruction. NEXT_FRAME belongs to the
5424 current function, and the breakpoint will be set at the caller's
5425 resume address.
5426
5427 This is a separate function rather than reusing
5428 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5429 get_prev_frame, which may stop prematurely (see the implementation
5430 of frame_unwind_caller_id for an example). */
5431
5432 static void
5433 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5434 {
5435 struct symtab_and_line sr_sal;
5436 struct gdbarch *gdbarch;
5437
5438 /* We shouldn't have gotten here if we don't know where the call site
5439 is. */
5440 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5441
5442 init_sal (&sr_sal); /* initialize to zeros */
5443
5444 gdbarch = frame_unwind_caller_arch (next_frame);
5445 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5446 frame_unwind_caller_pc (next_frame));
5447 sr_sal.section = find_pc_overlay (sr_sal.pc);
5448 sr_sal.pspace = frame_unwind_program_space (next_frame);
5449
5450 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5451 frame_unwind_caller_id (next_frame));
5452 }
5453
5454 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5455 new breakpoint at the target of a jmp_buf. The handling of
5456 longjmp-resume uses the same mechanisms used for handling
5457 "step-resume" breakpoints. */
5458
5459 static void
5460 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5461 {
5462 /* There should never be more than one longjmp-resume breakpoint per
5463 thread, so we should never be setting a new
5464 longjmp_resume_breakpoint when one is already active. */
5465 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5466
5467 if (debug_infrun)
5468 fprintf_unfiltered (gdb_stdlog,
5469 "infrun: inserting longjmp-resume breakpoint at %s\n",
5470 paddress (gdbarch, pc));
5471
5472 inferior_thread ()->control.exception_resume_breakpoint =
5473 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5474 }
5475
5476 /* Insert an exception resume breakpoint. TP is the thread throwing
5477 the exception. The block B is the block of the unwinder debug hook
5478 function. FRAME is the frame corresponding to the call to this
5479 function. SYM is the symbol of the function argument holding the
5480 target PC of the exception. */
5481
5482 static void
5483 insert_exception_resume_breakpoint (struct thread_info *tp,
5484 struct block *b,
5485 struct frame_info *frame,
5486 struct symbol *sym)
5487 {
5488 volatile struct gdb_exception e;
5489
5490 /* We want to ignore errors here. */
5491 TRY_CATCH (e, RETURN_MASK_ERROR)
5492 {
5493 struct symbol *vsym;
5494 struct value *value;
5495 CORE_ADDR handler;
5496 struct breakpoint *bp;
5497
5498 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5499 value = read_var_value (vsym, frame);
5500 /* If the value was optimized out, revert to the old behavior. */
5501 if (! value_optimized_out (value))
5502 {
5503 handler = value_as_address (value);
5504
5505 if (debug_infrun)
5506 fprintf_unfiltered (gdb_stdlog,
5507 "infrun: exception resume at %lx\n",
5508 (unsigned long) handler);
5509
5510 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5511 handler, bp_exception_resume);
5512
5513 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5514 frame = NULL;
5515
5516 bp->thread = tp->num;
5517 inferior_thread ()->control.exception_resume_breakpoint = bp;
5518 }
5519 }
5520 }
5521
5522 /* A helper for check_exception_resume that sets an
5523 exception-breakpoint based on a SystemTap probe. */
5524
5525 static void
5526 insert_exception_resume_from_probe (struct thread_info *tp,
5527 const struct probe *probe,
5528 struct frame_info *frame)
5529 {
5530 struct value *arg_value;
5531 CORE_ADDR handler;
5532 struct breakpoint *bp;
5533
5534 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5535 if (!arg_value)
5536 return;
5537
5538 handler = value_as_address (arg_value);
5539
5540 if (debug_infrun)
5541 fprintf_unfiltered (gdb_stdlog,
5542 "infrun: exception resume at %s\n",
5543 paddress (get_objfile_arch (probe->objfile),
5544 handler));
5545
5546 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5547 handler, bp_exception_resume);
5548 bp->thread = tp->num;
5549 inferior_thread ()->control.exception_resume_breakpoint = bp;
5550 }
5551
5552 /* This is called when an exception has been intercepted. Check to
5553 see whether the exception's destination is of interest, and if so,
5554 set an exception resume breakpoint there. */
5555
5556 static void
5557 check_exception_resume (struct execution_control_state *ecs,
5558 struct frame_info *frame)
5559 {
5560 volatile struct gdb_exception e;
5561 const struct probe *probe;
5562 struct symbol *func;
5563
5564 /* First see if this exception unwinding breakpoint was set via a
5565 SystemTap probe point. If so, the probe has two arguments: the
5566 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5567 set a breakpoint there. */
5568 probe = find_probe_by_pc (get_frame_pc (frame));
5569 if (probe)
5570 {
5571 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
5572 return;
5573 }
5574
5575 func = get_frame_function (frame);
5576 if (!func)
5577 return;
5578
5579 TRY_CATCH (e, RETURN_MASK_ERROR)
5580 {
5581 struct block *b;
5582 struct block_iterator iter;
5583 struct symbol *sym;
5584 int argno = 0;
5585
5586 /* The exception breakpoint is a thread-specific breakpoint on
5587 the unwinder's debug hook, declared as:
5588
5589 void _Unwind_DebugHook (void *cfa, void *handler);
5590
5591 The CFA argument indicates the frame to which control is
5592 about to be transferred. HANDLER is the destination PC.
5593
5594 We ignore the CFA and set a temporary breakpoint at HANDLER.
5595 This is not extremely efficient but it avoids issues in gdb
5596 with computing the DWARF CFA, and it also works even in weird
5597 cases such as throwing an exception from inside a signal
5598 handler. */
5599
5600 b = SYMBOL_BLOCK_VALUE (func);
5601 ALL_BLOCK_SYMBOLS (b, iter, sym)
5602 {
5603 if (!SYMBOL_IS_ARGUMENT (sym))
5604 continue;
5605
5606 if (argno == 0)
5607 ++argno;
5608 else
5609 {
5610 insert_exception_resume_breakpoint (ecs->event_thread,
5611 b, frame, sym);
5612 break;
5613 }
5614 }
5615 }
5616 }
5617
5618 static void
5619 stop_stepping (struct execution_control_state *ecs)
5620 {
5621 if (debug_infrun)
5622 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5623
5624 /* Let callers know we don't want to wait for the inferior anymore. */
5625 ecs->wait_some_more = 0;
5626 }
5627
5628 /* This function handles various cases where we need to continue
5629 waiting for the inferior. */
5630 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5631
5632 static void
5633 keep_going (struct execution_control_state *ecs)
5634 {
5635 /* Make sure normal_stop is called if we get a QUIT handled before
5636 reaching resume. */
5637 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5638
5639 /* Save the pc before execution, to compare with pc after stop. */
5640 ecs->event_thread->prev_pc
5641 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5642
5643 /* If we did not do break;, it means we should keep running the
5644 inferior and not return to debugger. */
5645
5646 if (ecs->event_thread->control.trap_expected
5647 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5648 {
5649 /* We took a signal (which we are supposed to pass through to
5650 the inferior, else we'd not get here) and we haven't yet
5651 gotten our trap. Simply continue. */
5652
5653 discard_cleanups (old_cleanups);
5654 resume (currently_stepping (ecs->event_thread),
5655 ecs->event_thread->suspend.stop_signal);
5656 }
5657 else
5658 {
5659 /* Either the trap was not expected, but we are continuing
5660 anyway (the user asked that this signal be passed to the
5661 child)
5662 -- or --
5663 The signal was SIGTRAP, e.g. it was our signal, but we
5664 decided we should resume from it.
5665
5666 We're going to run this baby now!
5667
5668 Note that insert_breakpoints won't try to re-insert
5669 already inserted breakpoints. Therefore, we don't
5670 care if breakpoints were already inserted, or not. */
5671
5672 if (ecs->event_thread->stepping_over_breakpoint)
5673 {
5674 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5675
5676 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5677 /* Since we can't do a displaced step, we have to remove
5678 the breakpoint while we step it. To keep things
5679 simple, we remove them all. */
5680 remove_breakpoints ();
5681 }
5682 else
5683 {
5684 volatile struct gdb_exception e;
5685
5686 /* Stop stepping when inserting breakpoints
5687 has failed. */
5688 TRY_CATCH (e, RETURN_MASK_ERROR)
5689 {
5690 insert_breakpoints ();
5691 }
5692 if (e.reason < 0)
5693 {
5694 exception_print (gdb_stderr, e);
5695 stop_stepping (ecs);
5696 return;
5697 }
5698 }
5699
5700 ecs->event_thread->control.trap_expected
5701 = ecs->event_thread->stepping_over_breakpoint;
5702
5703 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5704 specifies that such a signal should be delivered to the
5705 target program).
5706
5707 Typically, this would occure when a user is debugging a
5708 target monitor on a simulator: the target monitor sets a
5709 breakpoint; the simulator encounters this break-point and
5710 halts the simulation handing control to GDB; GDB, noteing
5711 that the break-point isn't valid, returns control back to the
5712 simulator; the simulator then delivers the hardware
5713 equivalent of a SIGNAL_TRAP to the program being debugged. */
5714
5715 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5716 && !signal_program[ecs->event_thread->suspend.stop_signal])
5717 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5718
5719 discard_cleanups (old_cleanups);
5720 resume (currently_stepping (ecs->event_thread),
5721 ecs->event_thread->suspend.stop_signal);
5722 }
5723
5724 prepare_to_wait (ecs);
5725 }
5726
5727 /* This function normally comes after a resume, before
5728 handle_inferior_event exits. It takes care of any last bits of
5729 housekeeping, and sets the all-important wait_some_more flag. */
5730
5731 static void
5732 prepare_to_wait (struct execution_control_state *ecs)
5733 {
5734 if (debug_infrun)
5735 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5736
5737 /* This is the old end of the while loop. Let everybody know we
5738 want to wait for the inferior some more and get called again
5739 soon. */
5740 ecs->wait_some_more = 1;
5741 }
5742
5743 /* Several print_*_reason functions to print why the inferior has stopped.
5744 We always print something when the inferior exits, or receives a signal.
5745 The rest of the cases are dealt with later on in normal_stop and
5746 print_it_typical. Ideally there should be a call to one of these
5747 print_*_reason functions functions from handle_inferior_event each time
5748 stop_stepping is called. */
5749
5750 /* Print why the inferior has stopped.
5751 We are done with a step/next/si/ni command, print why the inferior has
5752 stopped. For now print nothing. Print a message only if not in the middle
5753 of doing a "step n" operation for n > 1. */
5754
5755 static void
5756 print_end_stepping_range_reason (void)
5757 {
5758 if ((!inferior_thread ()->step_multi
5759 || !inferior_thread ()->control.stop_step)
5760 && ui_out_is_mi_like_p (current_uiout))
5761 ui_out_field_string (current_uiout, "reason",
5762 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5763 }
5764
5765 /* The inferior was terminated by a signal, print why it stopped. */
5766
5767 static void
5768 print_signal_exited_reason (enum gdb_signal siggnal)
5769 {
5770 struct ui_out *uiout = current_uiout;
5771
5772 annotate_signalled ();
5773 if (ui_out_is_mi_like_p (uiout))
5774 ui_out_field_string
5775 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5776 ui_out_text (uiout, "\nProgram terminated with signal ");
5777 annotate_signal_name ();
5778 ui_out_field_string (uiout, "signal-name",
5779 gdb_signal_to_name (siggnal));
5780 annotate_signal_name_end ();
5781 ui_out_text (uiout, ", ");
5782 annotate_signal_string ();
5783 ui_out_field_string (uiout, "signal-meaning",
5784 gdb_signal_to_string (siggnal));
5785 annotate_signal_string_end ();
5786 ui_out_text (uiout, ".\n");
5787 ui_out_text (uiout, "The program no longer exists.\n");
5788 }
5789
5790 /* The inferior program is finished, print why it stopped. */
5791
5792 static void
5793 print_exited_reason (int exitstatus)
5794 {
5795 struct inferior *inf = current_inferior ();
5796 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5797 struct ui_out *uiout = current_uiout;
5798
5799 annotate_exited (exitstatus);
5800 if (exitstatus)
5801 {
5802 if (ui_out_is_mi_like_p (uiout))
5803 ui_out_field_string (uiout, "reason",
5804 async_reason_lookup (EXEC_ASYNC_EXITED));
5805 ui_out_text (uiout, "[Inferior ");
5806 ui_out_text (uiout, plongest (inf->num));
5807 ui_out_text (uiout, " (");
5808 ui_out_text (uiout, pidstr);
5809 ui_out_text (uiout, ") exited with code ");
5810 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5811 ui_out_text (uiout, "]\n");
5812 }
5813 else
5814 {
5815 if (ui_out_is_mi_like_p (uiout))
5816 ui_out_field_string
5817 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5818 ui_out_text (uiout, "[Inferior ");
5819 ui_out_text (uiout, plongest (inf->num));
5820 ui_out_text (uiout, " (");
5821 ui_out_text (uiout, pidstr);
5822 ui_out_text (uiout, ") exited normally]\n");
5823 }
5824 /* Support the --return-child-result option. */
5825 return_child_result_value = exitstatus;
5826 }
5827
5828 /* Signal received, print why the inferior has stopped. The signal table
5829 tells us to print about it. */
5830
5831 static void
5832 print_signal_received_reason (enum gdb_signal siggnal)
5833 {
5834 struct ui_out *uiout = current_uiout;
5835
5836 annotate_signal ();
5837
5838 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5839 {
5840 struct thread_info *t = inferior_thread ();
5841
5842 ui_out_text (uiout, "\n[");
5843 ui_out_field_string (uiout, "thread-name",
5844 target_pid_to_str (t->ptid));
5845 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5846 ui_out_text (uiout, " stopped");
5847 }
5848 else
5849 {
5850 ui_out_text (uiout, "\nProgram received signal ");
5851 annotate_signal_name ();
5852 if (ui_out_is_mi_like_p (uiout))
5853 ui_out_field_string
5854 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5855 ui_out_field_string (uiout, "signal-name",
5856 gdb_signal_to_name (siggnal));
5857 annotate_signal_name_end ();
5858 ui_out_text (uiout, ", ");
5859 annotate_signal_string ();
5860 ui_out_field_string (uiout, "signal-meaning",
5861 gdb_signal_to_string (siggnal));
5862 annotate_signal_string_end ();
5863 }
5864 ui_out_text (uiout, ".\n");
5865 }
5866
5867 /* Reverse execution: target ran out of history info, print why the inferior
5868 has stopped. */
5869
5870 static void
5871 print_no_history_reason (void)
5872 {
5873 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5874 }
5875
5876 /* Here to return control to GDB when the inferior stops for real.
5877 Print appropriate messages, remove breakpoints, give terminal our modes.
5878
5879 STOP_PRINT_FRAME nonzero means print the executing frame
5880 (pc, function, args, file, line number and line text).
5881 BREAKPOINTS_FAILED nonzero means stop was due to error
5882 attempting to insert breakpoints. */
5883
5884 void
5885 normal_stop (void)
5886 {
5887 struct target_waitstatus last;
5888 ptid_t last_ptid;
5889 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5890
5891 get_last_target_status (&last_ptid, &last);
5892
5893 /* If an exception is thrown from this point on, make sure to
5894 propagate GDB's knowledge of the executing state to the
5895 frontend/user running state. A QUIT is an easy exception to see
5896 here, so do this before any filtered output. */
5897 if (!non_stop)
5898 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5899 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5900 && last.kind != TARGET_WAITKIND_EXITED
5901 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5902 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5903
5904 /* In non-stop mode, we don't want GDB to switch threads behind the
5905 user's back, to avoid races where the user is typing a command to
5906 apply to thread x, but GDB switches to thread y before the user
5907 finishes entering the command. */
5908
5909 /* As with the notification of thread events, we want to delay
5910 notifying the user that we've switched thread context until
5911 the inferior actually stops.
5912
5913 There's no point in saying anything if the inferior has exited.
5914 Note that SIGNALLED here means "exited with a signal", not
5915 "received a signal". */
5916 if (!non_stop
5917 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5918 && target_has_execution
5919 && last.kind != TARGET_WAITKIND_SIGNALLED
5920 && last.kind != TARGET_WAITKIND_EXITED
5921 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5922 {
5923 target_terminal_ours_for_output ();
5924 printf_filtered (_("[Switching to %s]\n"),
5925 target_pid_to_str (inferior_ptid));
5926 annotate_thread_changed ();
5927 previous_inferior_ptid = inferior_ptid;
5928 }
5929
5930 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5931 {
5932 gdb_assert (sync_execution || !target_can_async_p ());
5933
5934 target_terminal_ours_for_output ();
5935 printf_filtered (_("No unwaited-for children left.\n"));
5936 }
5937
5938 if (!breakpoints_always_inserted_mode () && target_has_execution)
5939 {
5940 if (remove_breakpoints ())
5941 {
5942 target_terminal_ours_for_output ();
5943 printf_filtered (_("Cannot remove breakpoints because "
5944 "program is no longer writable.\nFurther "
5945 "execution is probably impossible.\n"));
5946 }
5947 }
5948
5949 /* If an auto-display called a function and that got a signal,
5950 delete that auto-display to avoid an infinite recursion. */
5951
5952 if (stopped_by_random_signal)
5953 disable_current_display ();
5954
5955 /* Don't print a message if in the middle of doing a "step n"
5956 operation for n > 1 */
5957 if (target_has_execution
5958 && last.kind != TARGET_WAITKIND_SIGNALLED
5959 && last.kind != TARGET_WAITKIND_EXITED
5960 && inferior_thread ()->step_multi
5961 && inferior_thread ()->control.stop_step)
5962 goto done;
5963
5964 target_terminal_ours ();
5965 async_enable_stdin ();
5966
5967 /* Set the current source location. This will also happen if we
5968 display the frame below, but the current SAL will be incorrect
5969 during a user hook-stop function. */
5970 if (has_stack_frames () && !stop_stack_dummy)
5971 set_current_sal_from_frame (get_current_frame (), 1);
5972
5973 /* Let the user/frontend see the threads as stopped. */
5974 do_cleanups (old_chain);
5975
5976 /* Look up the hook_stop and run it (CLI internally handles problem
5977 of stop_command's pre-hook not existing). */
5978 if (stop_command)
5979 catch_errors (hook_stop_stub, stop_command,
5980 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5981
5982 if (!has_stack_frames ())
5983 goto done;
5984
5985 if (last.kind == TARGET_WAITKIND_SIGNALLED
5986 || last.kind == TARGET_WAITKIND_EXITED)
5987 goto done;
5988
5989 /* Select innermost stack frame - i.e., current frame is frame 0,
5990 and current location is based on that.
5991 Don't do this on return from a stack dummy routine,
5992 or if the program has exited. */
5993
5994 if (!stop_stack_dummy)
5995 {
5996 select_frame (get_current_frame ());
5997
5998 /* Print current location without a level number, if
5999 we have changed functions or hit a breakpoint.
6000 Print source line if we have one.
6001 bpstat_print() contains the logic deciding in detail
6002 what to print, based on the event(s) that just occurred. */
6003
6004 /* If --batch-silent is enabled then there's no need to print the current
6005 source location, and to try risks causing an error message about
6006 missing source files. */
6007 if (stop_print_frame && !batch_silent)
6008 {
6009 int bpstat_ret;
6010 int source_flag;
6011 int do_frame_printing = 1;
6012 struct thread_info *tp = inferior_thread ();
6013
6014 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6015 switch (bpstat_ret)
6016 {
6017 case PRINT_UNKNOWN:
6018 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6019 (or should) carry around the function and does (or
6020 should) use that when doing a frame comparison. */
6021 if (tp->control.stop_step
6022 && frame_id_eq (tp->control.step_frame_id,
6023 get_frame_id (get_current_frame ()))
6024 && step_start_function == find_pc_function (stop_pc))
6025 source_flag = SRC_LINE; /* Finished step, just
6026 print source line. */
6027 else
6028 source_flag = SRC_AND_LOC; /* Print location and
6029 source line. */
6030 break;
6031 case PRINT_SRC_AND_LOC:
6032 source_flag = SRC_AND_LOC; /* Print location and
6033 source line. */
6034 break;
6035 case PRINT_SRC_ONLY:
6036 source_flag = SRC_LINE;
6037 break;
6038 case PRINT_NOTHING:
6039 source_flag = SRC_LINE; /* something bogus */
6040 do_frame_printing = 0;
6041 break;
6042 default:
6043 internal_error (__FILE__, __LINE__, _("Unknown value."));
6044 }
6045
6046 /* The behavior of this routine with respect to the source
6047 flag is:
6048 SRC_LINE: Print only source line
6049 LOCATION: Print only location
6050 SRC_AND_LOC: Print location and source line. */
6051 if (do_frame_printing)
6052 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
6053
6054 /* Display the auto-display expressions. */
6055 do_displays ();
6056 }
6057 }
6058
6059 /* Save the function value return registers, if we care.
6060 We might be about to restore their previous contents. */
6061 if (inferior_thread ()->control.proceed_to_finish
6062 && execution_direction != EXEC_REVERSE)
6063 {
6064 /* This should not be necessary. */
6065 if (stop_registers)
6066 regcache_xfree (stop_registers);
6067
6068 /* NB: The copy goes through to the target picking up the value of
6069 all the registers. */
6070 stop_registers = regcache_dup (get_current_regcache ());
6071 }
6072
6073 if (stop_stack_dummy == STOP_STACK_DUMMY)
6074 {
6075 /* Pop the empty frame that contains the stack dummy.
6076 This also restores inferior state prior to the call
6077 (struct infcall_suspend_state). */
6078 struct frame_info *frame = get_current_frame ();
6079
6080 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6081 frame_pop (frame);
6082 /* frame_pop() calls reinit_frame_cache as the last thing it
6083 does which means there's currently no selected frame. We
6084 don't need to re-establish a selected frame if the dummy call
6085 returns normally, that will be done by
6086 restore_infcall_control_state. However, we do have to handle
6087 the case where the dummy call is returning after being
6088 stopped (e.g. the dummy call previously hit a breakpoint).
6089 We can't know which case we have so just always re-establish
6090 a selected frame here. */
6091 select_frame (get_current_frame ());
6092 }
6093
6094 done:
6095 annotate_stopped ();
6096
6097 /* Suppress the stop observer if we're in the middle of:
6098
6099 - a step n (n > 1), as there still more steps to be done.
6100
6101 - a "finish" command, as the observer will be called in
6102 finish_command_continuation, so it can include the inferior
6103 function's return value.
6104
6105 - calling an inferior function, as we pretend we inferior didn't
6106 run at all. The return value of the call is handled by the
6107 expression evaluator, through call_function_by_hand. */
6108
6109 if (!target_has_execution
6110 || last.kind == TARGET_WAITKIND_SIGNALLED
6111 || last.kind == TARGET_WAITKIND_EXITED
6112 || last.kind == TARGET_WAITKIND_NO_RESUMED
6113 || (!(inferior_thread ()->step_multi
6114 && inferior_thread ()->control.stop_step)
6115 && !(inferior_thread ()->control.stop_bpstat
6116 && inferior_thread ()->control.proceed_to_finish)
6117 && !inferior_thread ()->control.in_infcall))
6118 {
6119 if (!ptid_equal (inferior_ptid, null_ptid))
6120 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6121 stop_print_frame);
6122 else
6123 observer_notify_normal_stop (NULL, stop_print_frame);
6124 }
6125
6126 if (target_has_execution)
6127 {
6128 if (last.kind != TARGET_WAITKIND_SIGNALLED
6129 && last.kind != TARGET_WAITKIND_EXITED)
6130 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6131 Delete any breakpoint that is to be deleted at the next stop. */
6132 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6133 }
6134
6135 /* Try to get rid of automatically added inferiors that are no
6136 longer needed. Keeping those around slows down things linearly.
6137 Note that this never removes the current inferior. */
6138 prune_inferiors ();
6139 }
6140
6141 static int
6142 hook_stop_stub (void *cmd)
6143 {
6144 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6145 return (0);
6146 }
6147 \f
6148 int
6149 signal_stop_state (int signo)
6150 {
6151 return signal_stop[signo];
6152 }
6153
6154 int
6155 signal_print_state (int signo)
6156 {
6157 return signal_print[signo];
6158 }
6159
6160 int
6161 signal_pass_state (int signo)
6162 {
6163 return signal_program[signo];
6164 }
6165
6166 static void
6167 signal_cache_update (int signo)
6168 {
6169 if (signo == -1)
6170 {
6171 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6172 signal_cache_update (signo);
6173
6174 return;
6175 }
6176
6177 signal_pass[signo] = (signal_stop[signo] == 0
6178 && signal_print[signo] == 0
6179 && signal_program[signo] == 1);
6180 }
6181
6182 int
6183 signal_stop_update (int signo, int state)
6184 {
6185 int ret = signal_stop[signo];
6186
6187 signal_stop[signo] = state;
6188 signal_cache_update (signo);
6189 return ret;
6190 }
6191
6192 int
6193 signal_print_update (int signo, int state)
6194 {
6195 int ret = signal_print[signo];
6196
6197 signal_print[signo] = state;
6198 signal_cache_update (signo);
6199 return ret;
6200 }
6201
6202 int
6203 signal_pass_update (int signo, int state)
6204 {
6205 int ret = signal_program[signo];
6206
6207 signal_program[signo] = state;
6208 signal_cache_update (signo);
6209 return ret;
6210 }
6211
6212 static void
6213 sig_print_header (void)
6214 {
6215 printf_filtered (_("Signal Stop\tPrint\tPass "
6216 "to program\tDescription\n"));
6217 }
6218
6219 static void
6220 sig_print_info (enum gdb_signal oursig)
6221 {
6222 const char *name = gdb_signal_to_name (oursig);
6223 int name_padding = 13 - strlen (name);
6224
6225 if (name_padding <= 0)
6226 name_padding = 0;
6227
6228 printf_filtered ("%s", name);
6229 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6230 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6231 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6232 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6233 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6234 }
6235
6236 /* Specify how various signals in the inferior should be handled. */
6237
6238 static void
6239 handle_command (char *args, int from_tty)
6240 {
6241 char **argv;
6242 int digits, wordlen;
6243 int sigfirst, signum, siglast;
6244 enum gdb_signal oursig;
6245 int allsigs;
6246 int nsigs;
6247 unsigned char *sigs;
6248 struct cleanup *old_chain;
6249
6250 if (args == NULL)
6251 {
6252 error_no_arg (_("signal to handle"));
6253 }
6254
6255 /* Allocate and zero an array of flags for which signals to handle. */
6256
6257 nsigs = (int) GDB_SIGNAL_LAST;
6258 sigs = (unsigned char *) alloca (nsigs);
6259 memset (sigs, 0, nsigs);
6260
6261 /* Break the command line up into args. */
6262
6263 argv = gdb_buildargv (args);
6264 old_chain = make_cleanup_freeargv (argv);
6265
6266 /* Walk through the args, looking for signal oursigs, signal names, and
6267 actions. Signal numbers and signal names may be interspersed with
6268 actions, with the actions being performed for all signals cumulatively
6269 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6270
6271 while (*argv != NULL)
6272 {
6273 wordlen = strlen (*argv);
6274 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6275 {;
6276 }
6277 allsigs = 0;
6278 sigfirst = siglast = -1;
6279
6280 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6281 {
6282 /* Apply action to all signals except those used by the
6283 debugger. Silently skip those. */
6284 allsigs = 1;
6285 sigfirst = 0;
6286 siglast = nsigs - 1;
6287 }
6288 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6289 {
6290 SET_SIGS (nsigs, sigs, signal_stop);
6291 SET_SIGS (nsigs, sigs, signal_print);
6292 }
6293 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6294 {
6295 UNSET_SIGS (nsigs, sigs, signal_program);
6296 }
6297 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6298 {
6299 SET_SIGS (nsigs, sigs, signal_print);
6300 }
6301 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6302 {
6303 SET_SIGS (nsigs, sigs, signal_program);
6304 }
6305 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6306 {
6307 UNSET_SIGS (nsigs, sigs, signal_stop);
6308 }
6309 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6310 {
6311 SET_SIGS (nsigs, sigs, signal_program);
6312 }
6313 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6314 {
6315 UNSET_SIGS (nsigs, sigs, signal_print);
6316 UNSET_SIGS (nsigs, sigs, signal_stop);
6317 }
6318 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6319 {
6320 UNSET_SIGS (nsigs, sigs, signal_program);
6321 }
6322 else if (digits > 0)
6323 {
6324 /* It is numeric. The numeric signal refers to our own
6325 internal signal numbering from target.h, not to host/target
6326 signal number. This is a feature; users really should be
6327 using symbolic names anyway, and the common ones like
6328 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6329
6330 sigfirst = siglast = (int)
6331 gdb_signal_from_command (atoi (*argv));
6332 if ((*argv)[digits] == '-')
6333 {
6334 siglast = (int)
6335 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6336 }
6337 if (sigfirst > siglast)
6338 {
6339 /* Bet he didn't figure we'd think of this case... */
6340 signum = sigfirst;
6341 sigfirst = siglast;
6342 siglast = signum;
6343 }
6344 }
6345 else
6346 {
6347 oursig = gdb_signal_from_name (*argv);
6348 if (oursig != GDB_SIGNAL_UNKNOWN)
6349 {
6350 sigfirst = siglast = (int) oursig;
6351 }
6352 else
6353 {
6354 /* Not a number and not a recognized flag word => complain. */
6355 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6356 }
6357 }
6358
6359 /* If any signal numbers or symbol names were found, set flags for
6360 which signals to apply actions to. */
6361
6362 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6363 {
6364 switch ((enum gdb_signal) signum)
6365 {
6366 case GDB_SIGNAL_TRAP:
6367 case GDB_SIGNAL_INT:
6368 if (!allsigs && !sigs[signum])
6369 {
6370 if (query (_("%s is used by the debugger.\n\
6371 Are you sure you want to change it? "),
6372 gdb_signal_to_name ((enum gdb_signal) signum)))
6373 {
6374 sigs[signum] = 1;
6375 }
6376 else
6377 {
6378 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6379 gdb_flush (gdb_stdout);
6380 }
6381 }
6382 break;
6383 case GDB_SIGNAL_0:
6384 case GDB_SIGNAL_DEFAULT:
6385 case GDB_SIGNAL_UNKNOWN:
6386 /* Make sure that "all" doesn't print these. */
6387 break;
6388 default:
6389 sigs[signum] = 1;
6390 break;
6391 }
6392 }
6393
6394 argv++;
6395 }
6396
6397 for (signum = 0; signum < nsigs; signum++)
6398 if (sigs[signum])
6399 {
6400 signal_cache_update (-1);
6401 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6402 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6403
6404 if (from_tty)
6405 {
6406 /* Show the results. */
6407 sig_print_header ();
6408 for (; signum < nsigs; signum++)
6409 if (sigs[signum])
6410 sig_print_info (signum);
6411 }
6412
6413 break;
6414 }
6415
6416 do_cleanups (old_chain);
6417 }
6418
6419 static void
6420 xdb_handle_command (char *args, int from_tty)
6421 {
6422 char **argv;
6423 struct cleanup *old_chain;
6424
6425 if (args == NULL)
6426 error_no_arg (_("xdb command"));
6427
6428 /* Break the command line up into args. */
6429
6430 argv = gdb_buildargv (args);
6431 old_chain = make_cleanup_freeargv (argv);
6432 if (argv[1] != (char *) NULL)
6433 {
6434 char *argBuf;
6435 int bufLen;
6436
6437 bufLen = strlen (argv[0]) + 20;
6438 argBuf = (char *) xmalloc (bufLen);
6439 if (argBuf)
6440 {
6441 int validFlag = 1;
6442 enum gdb_signal oursig;
6443
6444 oursig = gdb_signal_from_name (argv[0]);
6445 memset (argBuf, 0, bufLen);
6446 if (strcmp (argv[1], "Q") == 0)
6447 sprintf (argBuf, "%s %s", argv[0], "noprint");
6448 else
6449 {
6450 if (strcmp (argv[1], "s") == 0)
6451 {
6452 if (!signal_stop[oursig])
6453 sprintf (argBuf, "%s %s", argv[0], "stop");
6454 else
6455 sprintf (argBuf, "%s %s", argv[0], "nostop");
6456 }
6457 else if (strcmp (argv[1], "i") == 0)
6458 {
6459 if (!signal_program[oursig])
6460 sprintf (argBuf, "%s %s", argv[0], "pass");
6461 else
6462 sprintf (argBuf, "%s %s", argv[0], "nopass");
6463 }
6464 else if (strcmp (argv[1], "r") == 0)
6465 {
6466 if (!signal_print[oursig])
6467 sprintf (argBuf, "%s %s", argv[0], "print");
6468 else
6469 sprintf (argBuf, "%s %s", argv[0], "noprint");
6470 }
6471 else
6472 validFlag = 0;
6473 }
6474 if (validFlag)
6475 handle_command (argBuf, from_tty);
6476 else
6477 printf_filtered (_("Invalid signal handling flag.\n"));
6478 if (argBuf)
6479 xfree (argBuf);
6480 }
6481 }
6482 do_cleanups (old_chain);
6483 }
6484
6485 enum gdb_signal
6486 gdb_signal_from_command (int num)
6487 {
6488 if (num >= 1 && num <= 15)
6489 return (enum gdb_signal) num;
6490 error (_("Only signals 1-15 are valid as numeric signals.\n\
6491 Use \"info signals\" for a list of symbolic signals."));
6492 }
6493
6494 /* Print current contents of the tables set by the handle command.
6495 It is possible we should just be printing signals actually used
6496 by the current target (but for things to work right when switching
6497 targets, all signals should be in the signal tables). */
6498
6499 static void
6500 signals_info (char *signum_exp, int from_tty)
6501 {
6502 enum gdb_signal oursig;
6503
6504 sig_print_header ();
6505
6506 if (signum_exp)
6507 {
6508 /* First see if this is a symbol name. */
6509 oursig = gdb_signal_from_name (signum_exp);
6510 if (oursig == GDB_SIGNAL_UNKNOWN)
6511 {
6512 /* No, try numeric. */
6513 oursig =
6514 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6515 }
6516 sig_print_info (oursig);
6517 return;
6518 }
6519
6520 printf_filtered ("\n");
6521 /* These ugly casts brought to you by the native VAX compiler. */
6522 for (oursig = GDB_SIGNAL_FIRST;
6523 (int) oursig < (int) GDB_SIGNAL_LAST;
6524 oursig = (enum gdb_signal) ((int) oursig + 1))
6525 {
6526 QUIT;
6527
6528 if (oursig != GDB_SIGNAL_UNKNOWN
6529 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6530 sig_print_info (oursig);
6531 }
6532
6533 printf_filtered (_("\nUse the \"handle\" command "
6534 "to change these tables.\n"));
6535 }
6536
6537 /* Check if it makes sense to read $_siginfo from the current thread
6538 at this point. If not, throw an error. */
6539
6540 static void
6541 validate_siginfo_access (void)
6542 {
6543 /* No current inferior, no siginfo. */
6544 if (ptid_equal (inferior_ptid, null_ptid))
6545 error (_("No thread selected."));
6546
6547 /* Don't try to read from a dead thread. */
6548 if (is_exited (inferior_ptid))
6549 error (_("The current thread has terminated"));
6550
6551 /* ... or from a spinning thread. */
6552 if (is_running (inferior_ptid))
6553 error (_("Selected thread is running."));
6554 }
6555
6556 /* The $_siginfo convenience variable is a bit special. We don't know
6557 for sure the type of the value until we actually have a chance to
6558 fetch the data. The type can change depending on gdbarch, so it is
6559 also dependent on which thread you have selected.
6560
6561 1. making $_siginfo be an internalvar that creates a new value on
6562 access.
6563
6564 2. making the value of $_siginfo be an lval_computed value. */
6565
6566 /* This function implements the lval_computed support for reading a
6567 $_siginfo value. */
6568
6569 static void
6570 siginfo_value_read (struct value *v)
6571 {
6572 LONGEST transferred;
6573
6574 validate_siginfo_access ();
6575
6576 transferred =
6577 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6578 NULL,
6579 value_contents_all_raw (v),
6580 value_offset (v),
6581 TYPE_LENGTH (value_type (v)));
6582
6583 if (transferred != TYPE_LENGTH (value_type (v)))
6584 error (_("Unable to read siginfo"));
6585 }
6586
6587 /* This function implements the lval_computed support for writing a
6588 $_siginfo value. */
6589
6590 static void
6591 siginfo_value_write (struct value *v, struct value *fromval)
6592 {
6593 LONGEST transferred;
6594
6595 validate_siginfo_access ();
6596
6597 transferred = target_write (&current_target,
6598 TARGET_OBJECT_SIGNAL_INFO,
6599 NULL,
6600 value_contents_all_raw (fromval),
6601 value_offset (v),
6602 TYPE_LENGTH (value_type (fromval)));
6603
6604 if (transferred != TYPE_LENGTH (value_type (fromval)))
6605 error (_("Unable to write siginfo"));
6606 }
6607
6608 static const struct lval_funcs siginfo_value_funcs =
6609 {
6610 siginfo_value_read,
6611 siginfo_value_write
6612 };
6613
6614 /* Return a new value with the correct type for the siginfo object of
6615 the current thread using architecture GDBARCH. Return a void value
6616 if there's no object available. */
6617
6618 static struct value *
6619 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6620 void *ignore)
6621 {
6622 if (target_has_stack
6623 && !ptid_equal (inferior_ptid, null_ptid)
6624 && gdbarch_get_siginfo_type_p (gdbarch))
6625 {
6626 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6627
6628 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6629 }
6630
6631 return allocate_value (builtin_type (gdbarch)->builtin_void);
6632 }
6633
6634 \f
6635 /* infcall_suspend_state contains state about the program itself like its
6636 registers and any signal it received when it last stopped.
6637 This state must be restored regardless of how the inferior function call
6638 ends (either successfully, or after it hits a breakpoint or signal)
6639 if the program is to properly continue where it left off. */
6640
6641 struct infcall_suspend_state
6642 {
6643 struct thread_suspend_state thread_suspend;
6644 #if 0 /* Currently unused and empty structures are not valid C. */
6645 struct inferior_suspend_state inferior_suspend;
6646 #endif
6647
6648 /* Other fields: */
6649 CORE_ADDR stop_pc;
6650 struct regcache *registers;
6651
6652 /* Format of SIGINFO_DATA or NULL if it is not present. */
6653 struct gdbarch *siginfo_gdbarch;
6654
6655 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6656 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6657 content would be invalid. */
6658 gdb_byte *siginfo_data;
6659 };
6660
6661 struct infcall_suspend_state *
6662 save_infcall_suspend_state (void)
6663 {
6664 struct infcall_suspend_state *inf_state;
6665 struct thread_info *tp = inferior_thread ();
6666 struct inferior *inf = current_inferior ();
6667 struct regcache *regcache = get_current_regcache ();
6668 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6669 gdb_byte *siginfo_data = NULL;
6670
6671 if (gdbarch_get_siginfo_type_p (gdbarch))
6672 {
6673 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6674 size_t len = TYPE_LENGTH (type);
6675 struct cleanup *back_to;
6676
6677 siginfo_data = xmalloc (len);
6678 back_to = make_cleanup (xfree, siginfo_data);
6679
6680 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6681 siginfo_data, 0, len) == len)
6682 discard_cleanups (back_to);
6683 else
6684 {
6685 /* Errors ignored. */
6686 do_cleanups (back_to);
6687 siginfo_data = NULL;
6688 }
6689 }
6690
6691 inf_state = XZALLOC (struct infcall_suspend_state);
6692
6693 if (siginfo_data)
6694 {
6695 inf_state->siginfo_gdbarch = gdbarch;
6696 inf_state->siginfo_data = siginfo_data;
6697 }
6698
6699 inf_state->thread_suspend = tp->suspend;
6700 #if 0 /* Currently unused and empty structures are not valid C. */
6701 inf_state->inferior_suspend = inf->suspend;
6702 #endif
6703
6704 /* run_inferior_call will not use the signal due to its `proceed' call with
6705 GDB_SIGNAL_0 anyway. */
6706 tp->suspend.stop_signal = GDB_SIGNAL_0;
6707
6708 inf_state->stop_pc = stop_pc;
6709
6710 inf_state->registers = regcache_dup (regcache);
6711
6712 return inf_state;
6713 }
6714
6715 /* Restore inferior session state to INF_STATE. */
6716
6717 void
6718 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6719 {
6720 struct thread_info *tp = inferior_thread ();
6721 struct inferior *inf = current_inferior ();
6722 struct regcache *regcache = get_current_regcache ();
6723 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6724
6725 tp->suspend = inf_state->thread_suspend;
6726 #if 0 /* Currently unused and empty structures are not valid C. */
6727 inf->suspend = inf_state->inferior_suspend;
6728 #endif
6729
6730 stop_pc = inf_state->stop_pc;
6731
6732 if (inf_state->siginfo_gdbarch == gdbarch)
6733 {
6734 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6735 size_t len = TYPE_LENGTH (type);
6736
6737 /* Errors ignored. */
6738 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6739 inf_state->siginfo_data, 0, len);
6740 }
6741
6742 /* The inferior can be gone if the user types "print exit(0)"
6743 (and perhaps other times). */
6744 if (target_has_execution)
6745 /* NB: The register write goes through to the target. */
6746 regcache_cpy (regcache, inf_state->registers);
6747
6748 discard_infcall_suspend_state (inf_state);
6749 }
6750
6751 static void
6752 do_restore_infcall_suspend_state_cleanup (void *state)
6753 {
6754 restore_infcall_suspend_state (state);
6755 }
6756
6757 struct cleanup *
6758 make_cleanup_restore_infcall_suspend_state
6759 (struct infcall_suspend_state *inf_state)
6760 {
6761 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6762 }
6763
6764 void
6765 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6766 {
6767 regcache_xfree (inf_state->registers);
6768 xfree (inf_state->siginfo_data);
6769 xfree (inf_state);
6770 }
6771
6772 struct regcache *
6773 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6774 {
6775 return inf_state->registers;
6776 }
6777
6778 /* infcall_control_state contains state regarding gdb's control of the
6779 inferior itself like stepping control. It also contains session state like
6780 the user's currently selected frame. */
6781
6782 struct infcall_control_state
6783 {
6784 struct thread_control_state thread_control;
6785 struct inferior_control_state inferior_control;
6786
6787 /* Other fields: */
6788 enum stop_stack_kind stop_stack_dummy;
6789 int stopped_by_random_signal;
6790 int stop_after_trap;
6791
6792 /* ID if the selected frame when the inferior function call was made. */
6793 struct frame_id selected_frame_id;
6794 };
6795
6796 /* Save all of the information associated with the inferior<==>gdb
6797 connection. */
6798
6799 struct infcall_control_state *
6800 save_infcall_control_state (void)
6801 {
6802 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6803 struct thread_info *tp = inferior_thread ();
6804 struct inferior *inf = current_inferior ();
6805
6806 inf_status->thread_control = tp->control;
6807 inf_status->inferior_control = inf->control;
6808
6809 tp->control.step_resume_breakpoint = NULL;
6810 tp->control.exception_resume_breakpoint = NULL;
6811
6812 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6813 chain. If caller's caller is walking the chain, they'll be happier if we
6814 hand them back the original chain when restore_infcall_control_state is
6815 called. */
6816 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6817
6818 /* Other fields: */
6819 inf_status->stop_stack_dummy = stop_stack_dummy;
6820 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6821 inf_status->stop_after_trap = stop_after_trap;
6822
6823 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6824
6825 return inf_status;
6826 }
6827
6828 static int
6829 restore_selected_frame (void *args)
6830 {
6831 struct frame_id *fid = (struct frame_id *) args;
6832 struct frame_info *frame;
6833
6834 frame = frame_find_by_id (*fid);
6835
6836 /* If inf_status->selected_frame_id is NULL, there was no previously
6837 selected frame. */
6838 if (frame == NULL)
6839 {
6840 warning (_("Unable to restore previously selected frame."));
6841 return 0;
6842 }
6843
6844 select_frame (frame);
6845
6846 return (1);
6847 }
6848
6849 /* Restore inferior session state to INF_STATUS. */
6850
6851 void
6852 restore_infcall_control_state (struct infcall_control_state *inf_status)
6853 {
6854 struct thread_info *tp = inferior_thread ();
6855 struct inferior *inf = current_inferior ();
6856
6857 if (tp->control.step_resume_breakpoint)
6858 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6859
6860 if (tp->control.exception_resume_breakpoint)
6861 tp->control.exception_resume_breakpoint->disposition
6862 = disp_del_at_next_stop;
6863
6864 /* Handle the bpstat_copy of the chain. */
6865 bpstat_clear (&tp->control.stop_bpstat);
6866
6867 tp->control = inf_status->thread_control;
6868 inf->control = inf_status->inferior_control;
6869
6870 /* Other fields: */
6871 stop_stack_dummy = inf_status->stop_stack_dummy;
6872 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6873 stop_after_trap = inf_status->stop_after_trap;
6874
6875 if (target_has_stack)
6876 {
6877 /* The point of catch_errors is that if the stack is clobbered,
6878 walking the stack might encounter a garbage pointer and
6879 error() trying to dereference it. */
6880 if (catch_errors
6881 (restore_selected_frame, &inf_status->selected_frame_id,
6882 "Unable to restore previously selected frame:\n",
6883 RETURN_MASK_ERROR) == 0)
6884 /* Error in restoring the selected frame. Select the innermost
6885 frame. */
6886 select_frame (get_current_frame ());
6887 }
6888
6889 xfree (inf_status);
6890 }
6891
6892 static void
6893 do_restore_infcall_control_state_cleanup (void *sts)
6894 {
6895 restore_infcall_control_state (sts);
6896 }
6897
6898 struct cleanup *
6899 make_cleanup_restore_infcall_control_state
6900 (struct infcall_control_state *inf_status)
6901 {
6902 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6903 }
6904
6905 void
6906 discard_infcall_control_state (struct infcall_control_state *inf_status)
6907 {
6908 if (inf_status->thread_control.step_resume_breakpoint)
6909 inf_status->thread_control.step_resume_breakpoint->disposition
6910 = disp_del_at_next_stop;
6911
6912 if (inf_status->thread_control.exception_resume_breakpoint)
6913 inf_status->thread_control.exception_resume_breakpoint->disposition
6914 = disp_del_at_next_stop;
6915
6916 /* See save_infcall_control_state for info on stop_bpstat. */
6917 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6918
6919 xfree (inf_status);
6920 }
6921 \f
6922 int
6923 ptid_match (ptid_t ptid, ptid_t filter)
6924 {
6925 if (ptid_equal (filter, minus_one_ptid))
6926 return 1;
6927 if (ptid_is_pid (filter)
6928 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6929 return 1;
6930 else if (ptid_equal (ptid, filter))
6931 return 1;
6932
6933 return 0;
6934 }
6935
6936 /* restore_inferior_ptid() will be used by the cleanup machinery
6937 to restore the inferior_ptid value saved in a call to
6938 save_inferior_ptid(). */
6939
6940 static void
6941 restore_inferior_ptid (void *arg)
6942 {
6943 ptid_t *saved_ptid_ptr = arg;
6944
6945 inferior_ptid = *saved_ptid_ptr;
6946 xfree (arg);
6947 }
6948
6949 /* Save the value of inferior_ptid so that it may be restored by a
6950 later call to do_cleanups(). Returns the struct cleanup pointer
6951 needed for later doing the cleanup. */
6952
6953 struct cleanup *
6954 save_inferior_ptid (void)
6955 {
6956 ptid_t *saved_ptid_ptr;
6957
6958 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6959 *saved_ptid_ptr = inferior_ptid;
6960 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6961 }
6962 \f
6963
6964 /* User interface for reverse debugging:
6965 Set exec-direction / show exec-direction commands
6966 (returns error unless target implements to_set_exec_direction method). */
6967
6968 int execution_direction = EXEC_FORWARD;
6969 static const char exec_forward[] = "forward";
6970 static const char exec_reverse[] = "reverse";
6971 static const char *exec_direction = exec_forward;
6972 static const char *const exec_direction_names[] = {
6973 exec_forward,
6974 exec_reverse,
6975 NULL
6976 };
6977
6978 static void
6979 set_exec_direction_func (char *args, int from_tty,
6980 struct cmd_list_element *cmd)
6981 {
6982 if (target_can_execute_reverse)
6983 {
6984 if (!strcmp (exec_direction, exec_forward))
6985 execution_direction = EXEC_FORWARD;
6986 else if (!strcmp (exec_direction, exec_reverse))
6987 execution_direction = EXEC_REVERSE;
6988 }
6989 else
6990 {
6991 exec_direction = exec_forward;
6992 error (_("Target does not support this operation."));
6993 }
6994 }
6995
6996 static void
6997 show_exec_direction_func (struct ui_file *out, int from_tty,
6998 struct cmd_list_element *cmd, const char *value)
6999 {
7000 switch (execution_direction) {
7001 case EXEC_FORWARD:
7002 fprintf_filtered (out, _("Forward.\n"));
7003 break;
7004 case EXEC_REVERSE:
7005 fprintf_filtered (out, _("Reverse.\n"));
7006 break;
7007 default:
7008 internal_error (__FILE__, __LINE__,
7009 _("bogus execution_direction value: %d"),
7010 (int) execution_direction);
7011 }
7012 }
7013
7014 /* User interface for non-stop mode. */
7015
7016 int non_stop = 0;
7017
7018 static void
7019 set_non_stop (char *args, int from_tty,
7020 struct cmd_list_element *c)
7021 {
7022 if (target_has_execution)
7023 {
7024 non_stop_1 = non_stop;
7025 error (_("Cannot change this setting while the inferior is running."));
7026 }
7027
7028 non_stop = non_stop_1;
7029 }
7030
7031 static void
7032 show_non_stop (struct ui_file *file, int from_tty,
7033 struct cmd_list_element *c, const char *value)
7034 {
7035 fprintf_filtered (file,
7036 _("Controlling the inferior in non-stop mode is %s.\n"),
7037 value);
7038 }
7039
7040 static void
7041 show_schedule_multiple (struct ui_file *file, int from_tty,
7042 struct cmd_list_element *c, const char *value)
7043 {
7044 fprintf_filtered (file, _("Resuming the execution of threads "
7045 "of all processes is %s.\n"), value);
7046 }
7047
7048 /* Implementation of `siginfo' variable. */
7049
7050 static const struct internalvar_funcs siginfo_funcs =
7051 {
7052 siginfo_make_value,
7053 NULL,
7054 NULL
7055 };
7056
7057 void
7058 _initialize_infrun (void)
7059 {
7060 int i;
7061 int numsigs;
7062
7063 add_info ("signals", signals_info, _("\
7064 What debugger does when program gets various signals.\n\
7065 Specify a signal as argument to print info on that signal only."));
7066 add_info_alias ("handle", "signals", 0);
7067
7068 add_com ("handle", class_run, handle_command, _("\
7069 Specify how to handle a signal.\n\
7070 Args are signals and actions to apply to those signals.\n\
7071 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7072 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7073 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7074 The special arg \"all\" is recognized to mean all signals except those\n\
7075 used by the debugger, typically SIGTRAP and SIGINT.\n\
7076 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7077 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7078 Stop means reenter debugger if this signal happens (implies print).\n\
7079 Print means print a message if this signal happens.\n\
7080 Pass means let program see this signal; otherwise program doesn't know.\n\
7081 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7082 Pass and Stop may be combined."));
7083 if (xdb_commands)
7084 {
7085 add_com ("lz", class_info, signals_info, _("\
7086 What debugger does when program gets various signals.\n\
7087 Specify a signal as argument to print info on that signal only."));
7088 add_com ("z", class_run, xdb_handle_command, _("\
7089 Specify how to handle a signal.\n\
7090 Args are signals and actions to apply to those signals.\n\
7091 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7092 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7093 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7094 The special arg \"all\" is recognized to mean all signals except those\n\
7095 used by the debugger, typically SIGTRAP and SIGINT.\n\
7096 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7097 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7098 nopass), \"Q\" (noprint)\n\
7099 Stop means reenter debugger if this signal happens (implies print).\n\
7100 Print means print a message if this signal happens.\n\
7101 Pass means let program see this signal; otherwise program doesn't know.\n\
7102 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7103 Pass and Stop may be combined."));
7104 }
7105
7106 if (!dbx_commands)
7107 stop_command = add_cmd ("stop", class_obscure,
7108 not_just_help_class_command, _("\
7109 There is no `stop' command, but you can set a hook on `stop'.\n\
7110 This allows you to set a list of commands to be run each time execution\n\
7111 of the program stops."), &cmdlist);
7112
7113 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7114 Set inferior debugging."), _("\
7115 Show inferior debugging."), _("\
7116 When non-zero, inferior specific debugging is enabled."),
7117 NULL,
7118 show_debug_infrun,
7119 &setdebuglist, &showdebuglist);
7120
7121 add_setshow_boolean_cmd ("displaced", class_maintenance,
7122 &debug_displaced, _("\
7123 Set displaced stepping debugging."), _("\
7124 Show displaced stepping debugging."), _("\
7125 When non-zero, displaced stepping specific debugging is enabled."),
7126 NULL,
7127 show_debug_displaced,
7128 &setdebuglist, &showdebuglist);
7129
7130 add_setshow_boolean_cmd ("non-stop", no_class,
7131 &non_stop_1, _("\
7132 Set whether gdb controls the inferior in non-stop mode."), _("\
7133 Show whether gdb controls the inferior in non-stop mode."), _("\
7134 When debugging a multi-threaded program and this setting is\n\
7135 off (the default, also called all-stop mode), when one thread stops\n\
7136 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7137 all other threads in the program while you interact with the thread of\n\
7138 interest. When you continue or step a thread, you can allow the other\n\
7139 threads to run, or have them remain stopped, but while you inspect any\n\
7140 thread's state, all threads stop.\n\
7141 \n\
7142 In non-stop mode, when one thread stops, other threads can continue\n\
7143 to run freely. You'll be able to step each thread independently,\n\
7144 leave it stopped or free to run as needed."),
7145 set_non_stop,
7146 show_non_stop,
7147 &setlist,
7148 &showlist);
7149
7150 numsigs = (int) GDB_SIGNAL_LAST;
7151 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7152 signal_print = (unsigned char *)
7153 xmalloc (sizeof (signal_print[0]) * numsigs);
7154 signal_program = (unsigned char *)
7155 xmalloc (sizeof (signal_program[0]) * numsigs);
7156 signal_pass = (unsigned char *)
7157 xmalloc (sizeof (signal_program[0]) * numsigs);
7158 for (i = 0; i < numsigs; i++)
7159 {
7160 signal_stop[i] = 1;
7161 signal_print[i] = 1;
7162 signal_program[i] = 1;
7163 }
7164
7165 /* Signals caused by debugger's own actions
7166 should not be given to the program afterwards. */
7167 signal_program[GDB_SIGNAL_TRAP] = 0;
7168 signal_program[GDB_SIGNAL_INT] = 0;
7169
7170 /* Signals that are not errors should not normally enter the debugger. */
7171 signal_stop[GDB_SIGNAL_ALRM] = 0;
7172 signal_print[GDB_SIGNAL_ALRM] = 0;
7173 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7174 signal_print[GDB_SIGNAL_VTALRM] = 0;
7175 signal_stop[GDB_SIGNAL_PROF] = 0;
7176 signal_print[GDB_SIGNAL_PROF] = 0;
7177 signal_stop[GDB_SIGNAL_CHLD] = 0;
7178 signal_print[GDB_SIGNAL_CHLD] = 0;
7179 signal_stop[GDB_SIGNAL_IO] = 0;
7180 signal_print[GDB_SIGNAL_IO] = 0;
7181 signal_stop[GDB_SIGNAL_POLL] = 0;
7182 signal_print[GDB_SIGNAL_POLL] = 0;
7183 signal_stop[GDB_SIGNAL_URG] = 0;
7184 signal_print[GDB_SIGNAL_URG] = 0;
7185 signal_stop[GDB_SIGNAL_WINCH] = 0;
7186 signal_print[GDB_SIGNAL_WINCH] = 0;
7187 signal_stop[GDB_SIGNAL_PRIO] = 0;
7188 signal_print[GDB_SIGNAL_PRIO] = 0;
7189
7190 /* These signals are used internally by user-level thread
7191 implementations. (See signal(5) on Solaris.) Like the above
7192 signals, a healthy program receives and handles them as part of
7193 its normal operation. */
7194 signal_stop[GDB_SIGNAL_LWP] = 0;
7195 signal_print[GDB_SIGNAL_LWP] = 0;
7196 signal_stop[GDB_SIGNAL_WAITING] = 0;
7197 signal_print[GDB_SIGNAL_WAITING] = 0;
7198 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7199 signal_print[GDB_SIGNAL_CANCEL] = 0;
7200
7201 /* Update cached state. */
7202 signal_cache_update (-1);
7203
7204 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7205 &stop_on_solib_events, _("\
7206 Set stopping for shared library events."), _("\
7207 Show stopping for shared library events."), _("\
7208 If nonzero, gdb will give control to the user when the dynamic linker\n\
7209 notifies gdb of shared library events. The most common event of interest\n\
7210 to the user would be loading/unloading of a new library."),
7211 NULL,
7212 show_stop_on_solib_events,
7213 &setlist, &showlist);
7214
7215 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7216 follow_fork_mode_kind_names,
7217 &follow_fork_mode_string, _("\
7218 Set debugger response to a program call of fork or vfork."), _("\
7219 Show debugger response to a program call of fork or vfork."), _("\
7220 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7221 parent - the original process is debugged after a fork\n\
7222 child - the new process is debugged after a fork\n\
7223 The unfollowed process will continue to run.\n\
7224 By default, the debugger will follow the parent process."),
7225 NULL,
7226 show_follow_fork_mode_string,
7227 &setlist, &showlist);
7228
7229 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7230 follow_exec_mode_names,
7231 &follow_exec_mode_string, _("\
7232 Set debugger response to a program call of exec."), _("\
7233 Show debugger response to a program call of exec."), _("\
7234 An exec call replaces the program image of a process.\n\
7235 \n\
7236 follow-exec-mode can be:\n\
7237 \n\
7238 new - the debugger creates a new inferior and rebinds the process\n\
7239 to this new inferior. The program the process was running before\n\
7240 the exec call can be restarted afterwards by restarting the original\n\
7241 inferior.\n\
7242 \n\
7243 same - the debugger keeps the process bound to the same inferior.\n\
7244 The new executable image replaces the previous executable loaded in\n\
7245 the inferior. Restarting the inferior after the exec call restarts\n\
7246 the executable the process was running after the exec call.\n\
7247 \n\
7248 By default, the debugger will use the same inferior."),
7249 NULL,
7250 show_follow_exec_mode_string,
7251 &setlist, &showlist);
7252
7253 add_setshow_enum_cmd ("scheduler-locking", class_run,
7254 scheduler_enums, &scheduler_mode, _("\
7255 Set mode for locking scheduler during execution."), _("\
7256 Show mode for locking scheduler during execution."), _("\
7257 off == no locking (threads may preempt at any time)\n\
7258 on == full locking (no thread except the current thread may run)\n\
7259 step == scheduler locked during every single-step operation.\n\
7260 In this mode, no other thread may run during a step command.\n\
7261 Other threads may run while stepping over a function call ('next')."),
7262 set_schedlock_func, /* traps on target vector */
7263 show_scheduler_mode,
7264 &setlist, &showlist);
7265
7266 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7267 Set mode for resuming threads of all processes."), _("\
7268 Show mode for resuming threads of all processes."), _("\
7269 When on, execution commands (such as 'continue' or 'next') resume all\n\
7270 threads of all processes. When off (which is the default), execution\n\
7271 commands only resume the threads of the current process. The set of\n\
7272 threads that are resumed is further refined by the scheduler-locking\n\
7273 mode (see help set scheduler-locking)."),
7274 NULL,
7275 show_schedule_multiple,
7276 &setlist, &showlist);
7277
7278 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7279 Set mode of the step operation."), _("\
7280 Show mode of the step operation."), _("\
7281 When set, doing a step over a function without debug line information\n\
7282 will stop at the first instruction of that function. Otherwise, the\n\
7283 function is skipped and the step command stops at a different source line."),
7284 NULL,
7285 show_step_stop_if_no_debug,
7286 &setlist, &showlist);
7287
7288 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7289 &can_use_displaced_stepping, _("\
7290 Set debugger's willingness to use displaced stepping."), _("\
7291 Show debugger's willingness to use displaced stepping."), _("\
7292 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7293 supported by the target architecture. If off, gdb will not use displaced\n\
7294 stepping to step over breakpoints, even if such is supported by the target\n\
7295 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7296 if the target architecture supports it and non-stop mode is active, but will not\n\
7297 use it in all-stop mode (see help set non-stop)."),
7298 NULL,
7299 show_can_use_displaced_stepping,
7300 &setlist, &showlist);
7301
7302 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7303 &exec_direction, _("Set direction of execution.\n\
7304 Options are 'forward' or 'reverse'."),
7305 _("Show direction of execution (forward/reverse)."),
7306 _("Tells gdb whether to execute forward or backward."),
7307 set_exec_direction_func, show_exec_direction_func,
7308 &setlist, &showlist);
7309
7310 /* Set/show detach-on-fork: user-settable mode. */
7311
7312 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7313 Set whether gdb will detach the child of a fork."), _("\
7314 Show whether gdb will detach the child of a fork."), _("\
7315 Tells gdb whether to detach the child of a fork."),
7316 NULL, NULL, &setlist, &showlist);
7317
7318 /* Set/show disable address space randomization mode. */
7319
7320 add_setshow_boolean_cmd ("disable-randomization", class_support,
7321 &disable_randomization, _("\
7322 Set disabling of debuggee's virtual address space randomization."), _("\
7323 Show disabling of debuggee's virtual address space randomization."), _("\
7324 When this mode is on (which is the default), randomization of the virtual\n\
7325 address space is disabled. Standalone programs run with the randomization\n\
7326 enabled by default on some platforms."),
7327 &set_disable_randomization,
7328 &show_disable_randomization,
7329 &setlist, &showlist);
7330
7331 /* ptid initializations */
7332 inferior_ptid = null_ptid;
7333 target_last_wait_ptid = minus_one_ptid;
7334
7335 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7336 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7337 observer_attach_thread_exit (infrun_thread_thread_exit);
7338 observer_attach_inferior_exit (infrun_inferior_exit);
7339
7340 /* Explicitly create without lookup, since that tries to create a
7341 value with a void typed value, and when we get here, gdbarch
7342 isn't initialized yet. At this point, we're quite sure there
7343 isn't another convenience variable of the same name. */
7344 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7345
7346 add_setshow_boolean_cmd ("observer", no_class,
7347 &observer_mode_1, _("\
7348 Set whether gdb controls the inferior in observer mode."), _("\
7349 Show whether gdb controls the inferior in observer mode."), _("\
7350 In observer mode, GDB can get data from the inferior, but not\n\
7351 affect its execution. Registers and memory may not be changed,\n\
7352 breakpoints may not be set, and the program cannot be interrupted\n\
7353 or signalled."),
7354 set_observer_mode,
7355 show_observer_mode,
7356 &setlist,
7357 &showlist);
7358 }