infrun.c: Don't set ecs->random_signal for "catchpoint" events (eliminate ecs->random...
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "record-full.h"
53 #include "inline-frame.h"
54 #include "jit.h"
55 #include "tracepoint.h"
56 #include "continuations.h"
57 #include "interps.h"
58 #include "skip.h"
59 #include "probe.h"
60 #include "objfiles.h"
61 #include "completer.h"
62 #include "target-descriptions.h"
63
64 /* Prototypes for local functions */
65
66 static void signals_info (char *, int);
67
68 static void handle_command (char *, int);
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static void resume_cleanups (void *);
75
76 static int hook_stop_stub (void *);
77
78 static int restore_selected_frame (void *);
79
80 static int follow_fork (void);
81
82 static void set_schedlock_func (char *args, int from_tty,
83 struct cmd_list_element *c);
84
85 static int currently_stepping (struct thread_info *tp);
86
87 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 void *data);
89
90 static void xdb_handle_command (char *args, int from_tty);
91
92 static int prepare_to_proceed (int);
93
94 static void print_exited_reason (int exitstatus);
95
96 static void print_signal_exited_reason (enum gdb_signal siggnal);
97
98 static void print_no_history_reason (void);
99
100 static void print_signal_received_reason (enum gdb_signal siggnal);
101
102 static void print_end_stepping_range_reason (void);
103
104 void _initialize_infrun (void);
105
106 void nullify_last_target_wait_ptid (void);
107
108 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
109
110 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111
112 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113
114 /* When set, stop the 'step' command if we enter a function which has
115 no line number information. The normal behavior is that we step
116 over such function. */
117 int step_stop_if_no_debug = 0;
118 static void
119 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123 }
124
125 /* In asynchronous mode, but simulating synchronous execution. */
126
127 int sync_execution = 0;
128
129 /* wait_for_inferior and normal_stop use this to notify the user
130 when the inferior stopped in a different thread than it had been
131 running in. */
132
133 static ptid_t previous_inferior_ptid;
134
135 /* If set (default for legacy reasons), when following a fork, GDB
136 will detach from one of the fork branches, child or parent.
137 Exactly which branch is detached depends on 'set follow-fork-mode'
138 setting. */
139
140 static int detach_fork = 1;
141
142 int debug_displaced = 0;
143 static void
144 show_debug_displaced (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
148 }
149
150 unsigned int debug_infrun = 0;
151 static void
152 show_debug_infrun (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
156 }
157
158
159 /* Support for disabling address space randomization. */
160
161 int disable_randomization = 1;
162
163 static void
164 show_disable_randomization (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 if (target_supports_disable_randomization ())
168 fprintf_filtered (file,
169 _("Disabling randomization of debuggee's "
170 "virtual address space is %s.\n"),
171 value);
172 else
173 fputs_filtered (_("Disabling randomization of debuggee's "
174 "virtual address space is unsupported on\n"
175 "this platform.\n"), file);
176 }
177
178 static void
179 set_disable_randomization (char *args, int from_tty,
180 struct cmd_list_element *c)
181 {
182 if (!target_supports_disable_randomization ())
183 error (_("Disabling randomization of debuggee's "
184 "virtual address space is unsupported on\n"
185 "this platform."));
186 }
187
188 /* User interface for non-stop mode. */
189
190 int non_stop = 0;
191 static int non_stop_1 = 0;
192
193 static void
194 set_non_stop (char *args, int from_tty,
195 struct cmd_list_element *c)
196 {
197 if (target_has_execution)
198 {
199 non_stop_1 = non_stop;
200 error (_("Cannot change this setting while the inferior is running."));
201 }
202
203 non_stop = non_stop_1;
204 }
205
206 static void
207 show_non_stop (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file,
211 _("Controlling the inferior in non-stop mode is %s.\n"),
212 value);
213 }
214
215 /* "Observer mode" is somewhat like a more extreme version of
216 non-stop, in which all GDB operations that might affect the
217 target's execution have been disabled. */
218
219 int observer_mode = 0;
220 static int observer_mode_1 = 0;
221
222 static void
223 set_observer_mode (char *args, int from_tty,
224 struct cmd_list_element *c)
225 {
226 if (target_has_execution)
227 {
228 observer_mode_1 = observer_mode;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 observer_mode = observer_mode_1;
233
234 may_write_registers = !observer_mode;
235 may_write_memory = !observer_mode;
236 may_insert_breakpoints = !observer_mode;
237 may_insert_tracepoints = !observer_mode;
238 /* We can insert fast tracepoints in or out of observer mode,
239 but enable them if we're going into this mode. */
240 if (observer_mode)
241 may_insert_fast_tracepoints = 1;
242 may_stop = !observer_mode;
243 update_target_permissions ();
244
245 /* Going *into* observer mode we must force non-stop, then
246 going out we leave it that way. */
247 if (observer_mode)
248 {
249 target_async_permitted = 1;
250 pagination_enabled = 0;
251 non_stop = non_stop_1 = 1;
252 }
253
254 if (from_tty)
255 printf_filtered (_("Observer mode is now %s.\n"),
256 (observer_mode ? "on" : "off"));
257 }
258
259 static void
260 show_observer_mode (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
264 }
265
266 /* This updates the value of observer mode based on changes in
267 permissions. Note that we are deliberately ignoring the values of
268 may-write-registers and may-write-memory, since the user may have
269 reason to enable these during a session, for instance to turn on a
270 debugging-related global. */
271
272 void
273 update_observer_mode (void)
274 {
275 int newval;
276
277 newval = (!may_insert_breakpoints
278 && !may_insert_tracepoints
279 && may_insert_fast_tracepoints
280 && !may_stop
281 && non_stop);
282
283 /* Let the user know if things change. */
284 if (newval != observer_mode)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (newval ? "on" : "off"));
287
288 observer_mode = observer_mode_1 = newval;
289 }
290
291 /* Tables of how to react to signals; the user sets them. */
292
293 static unsigned char *signal_stop;
294 static unsigned char *signal_print;
295 static unsigned char *signal_program;
296
297 /* Table of signals that are registered with "catch signal". A
298 non-zero entry indicates that the signal is caught by some "catch
299 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
300 signals. */
301 static unsigned char *signal_catch;
302
303 /* Table of signals that the target may silently handle.
304 This is automatically determined from the flags above,
305 and simply cached here. */
306 static unsigned char *signal_pass;
307
308 #define SET_SIGS(nsigs,sigs,flags) \
309 do { \
310 int signum = (nsigs); \
311 while (signum-- > 0) \
312 if ((sigs)[signum]) \
313 (flags)[signum] = 1; \
314 } while (0)
315
316 #define UNSET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 0; \
322 } while (0)
323
324 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
325 this function is to avoid exporting `signal_program'. */
326
327 void
328 update_signals_program_target (void)
329 {
330 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
331 }
332
333 /* Value to pass to target_resume() to cause all threads to resume. */
334
335 #define RESUME_ALL minus_one_ptid
336
337 /* Command list pointer for the "stop" placeholder. */
338
339 static struct cmd_list_element *stop_command;
340
341 /* Function inferior was in as of last step command. */
342
343 static struct symbol *step_start_function;
344
345 /* Nonzero if we want to give control to the user when we're notified
346 of shared library events by the dynamic linker. */
347 int stop_on_solib_events;
348
349 /* Enable or disable optional shared library event breakpoints
350 as appropriate when the above flag is changed. */
351
352 static void
353 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
354 {
355 update_solib_breakpoints ();
356 }
357
358 static void
359 show_stop_on_solib_events (struct ui_file *file, int from_tty,
360 struct cmd_list_element *c, const char *value)
361 {
362 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
363 value);
364 }
365
366 /* Nonzero means expecting a trace trap
367 and should stop the inferior and return silently when it happens. */
368
369 int stop_after_trap;
370
371 /* Save register contents here when executing a "finish" command or are
372 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
373 Thus this contains the return value from the called function (assuming
374 values are returned in a register). */
375
376 struct regcache *stop_registers;
377
378 /* Nonzero after stop if current stack frame should be printed. */
379
380 static int stop_print_frame;
381
382 /* This is a cached copy of the pid/waitstatus of the last event
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
385 static ptid_t target_last_wait_ptid;
386 static struct target_waitstatus target_last_waitstatus;
387
388 static void context_switch (ptid_t ptid);
389
390 void init_thread_stepping_state (struct thread_info *tss);
391
392 static void init_infwait_state (void);
393
394 static const char follow_fork_mode_child[] = "child";
395 static const char follow_fork_mode_parent[] = "parent";
396
397 static const char *const follow_fork_mode_kind_names[] = {
398 follow_fork_mode_child,
399 follow_fork_mode_parent,
400 NULL
401 };
402
403 static const char *follow_fork_mode_string = follow_fork_mode_parent;
404 static void
405 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
406 struct cmd_list_element *c, const char *value)
407 {
408 fprintf_filtered (file,
409 _("Debugger response to a program "
410 "call of fork or vfork is \"%s\".\n"),
411 value);
412 }
413 \f
414
415 /* Tell the target to follow the fork we're stopped at. Returns true
416 if the inferior should be resumed; false, if the target for some
417 reason decided it's best not to resume. */
418
419 static int
420 follow_fork (void)
421 {
422 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
423 int should_resume = 1;
424 struct thread_info *tp;
425
426 /* Copy user stepping state to the new inferior thread. FIXME: the
427 followed fork child thread should have a copy of most of the
428 parent thread structure's run control related fields, not just these.
429 Initialized to avoid "may be used uninitialized" warnings from gcc. */
430 struct breakpoint *step_resume_breakpoint = NULL;
431 struct breakpoint *exception_resume_breakpoint = NULL;
432 CORE_ADDR step_range_start = 0;
433 CORE_ADDR step_range_end = 0;
434 struct frame_id step_frame_id = { 0 };
435
436 if (!non_stop)
437 {
438 ptid_t wait_ptid;
439 struct target_waitstatus wait_status;
440
441 /* Get the last target status returned by target_wait(). */
442 get_last_target_status (&wait_ptid, &wait_status);
443
444 /* If not stopped at a fork event, then there's nothing else to
445 do. */
446 if (wait_status.kind != TARGET_WAITKIND_FORKED
447 && wait_status.kind != TARGET_WAITKIND_VFORKED)
448 return 1;
449
450 /* Check if we switched over from WAIT_PTID, since the event was
451 reported. */
452 if (!ptid_equal (wait_ptid, minus_one_ptid)
453 && !ptid_equal (inferior_ptid, wait_ptid))
454 {
455 /* We did. Switch back to WAIT_PTID thread, to tell the
456 target to follow it (in either direction). We'll
457 afterwards refuse to resume, and inform the user what
458 happened. */
459 switch_to_thread (wait_ptid);
460 should_resume = 0;
461 }
462 }
463
464 tp = inferior_thread ();
465
466 /* If there were any forks/vforks that were caught and are now to be
467 followed, then do so now. */
468 switch (tp->pending_follow.kind)
469 {
470 case TARGET_WAITKIND_FORKED:
471 case TARGET_WAITKIND_VFORKED:
472 {
473 ptid_t parent, child;
474
475 /* If the user did a next/step, etc, over a fork call,
476 preserve the stepping state in the fork child. */
477 if (follow_child && should_resume)
478 {
479 step_resume_breakpoint = clone_momentary_breakpoint
480 (tp->control.step_resume_breakpoint);
481 step_range_start = tp->control.step_range_start;
482 step_range_end = tp->control.step_range_end;
483 step_frame_id = tp->control.step_frame_id;
484 exception_resume_breakpoint
485 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
486
487 /* For now, delete the parent's sr breakpoint, otherwise,
488 parent/child sr breakpoints are considered duplicates,
489 and the child version will not be installed. Remove
490 this when the breakpoints module becomes aware of
491 inferiors and address spaces. */
492 delete_step_resume_breakpoint (tp);
493 tp->control.step_range_start = 0;
494 tp->control.step_range_end = 0;
495 tp->control.step_frame_id = null_frame_id;
496 delete_exception_resume_breakpoint (tp);
497 }
498
499 parent = inferior_ptid;
500 child = tp->pending_follow.value.related_pid;
501
502 /* Tell the target to do whatever is necessary to follow
503 either parent or child. */
504 if (target_follow_fork (follow_child, detach_fork))
505 {
506 /* Target refused to follow, or there's some other reason
507 we shouldn't resume. */
508 should_resume = 0;
509 }
510 else
511 {
512 /* This pending follow fork event is now handled, one way
513 or another. The previous selected thread may be gone
514 from the lists by now, but if it is still around, need
515 to clear the pending follow request. */
516 tp = find_thread_ptid (parent);
517 if (tp)
518 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
519
520 /* This makes sure we don't try to apply the "Switched
521 over from WAIT_PID" logic above. */
522 nullify_last_target_wait_ptid ();
523
524 /* If we followed the child, switch to it... */
525 if (follow_child)
526 {
527 switch_to_thread (child);
528
529 /* ... and preserve the stepping state, in case the
530 user was stepping over the fork call. */
531 if (should_resume)
532 {
533 tp = inferior_thread ();
534 tp->control.step_resume_breakpoint
535 = step_resume_breakpoint;
536 tp->control.step_range_start = step_range_start;
537 tp->control.step_range_end = step_range_end;
538 tp->control.step_frame_id = step_frame_id;
539 tp->control.exception_resume_breakpoint
540 = exception_resume_breakpoint;
541 }
542 else
543 {
544 /* If we get here, it was because we're trying to
545 resume from a fork catchpoint, but, the user
546 has switched threads away from the thread that
547 forked. In that case, the resume command
548 issued is most likely not applicable to the
549 child, so just warn, and refuse to resume. */
550 warning (_("Not resuming: switched threads "
551 "before following fork child.\n"));
552 }
553
554 /* Reset breakpoints in the child as appropriate. */
555 follow_inferior_reset_breakpoints ();
556 }
557 else
558 switch_to_thread (parent);
559 }
560 }
561 break;
562 case TARGET_WAITKIND_SPURIOUS:
563 /* Nothing to follow. */
564 break;
565 default:
566 internal_error (__FILE__, __LINE__,
567 "Unexpected pending_follow.kind %d\n",
568 tp->pending_follow.kind);
569 break;
570 }
571
572 return should_resume;
573 }
574
575 void
576 follow_inferior_reset_breakpoints (void)
577 {
578 struct thread_info *tp = inferior_thread ();
579
580 /* Was there a step_resume breakpoint? (There was if the user
581 did a "next" at the fork() call.) If so, explicitly reset its
582 thread number.
583
584 step_resumes are a form of bp that are made to be per-thread.
585 Since we created the step_resume bp when the parent process
586 was being debugged, and now are switching to the child process,
587 from the breakpoint package's viewpoint, that's a switch of
588 "threads". We must update the bp's notion of which thread
589 it is for, or it'll be ignored when it triggers. */
590
591 if (tp->control.step_resume_breakpoint)
592 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
593
594 if (tp->control.exception_resume_breakpoint)
595 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
596
597 /* Reinsert all breakpoints in the child. The user may have set
598 breakpoints after catching the fork, in which case those
599 were never set in the child, but only in the parent. This makes
600 sure the inserted breakpoints match the breakpoint list. */
601
602 breakpoint_re_set ();
603 insert_breakpoints ();
604 }
605
606 /* The child has exited or execed: resume threads of the parent the
607 user wanted to be executing. */
608
609 static int
610 proceed_after_vfork_done (struct thread_info *thread,
611 void *arg)
612 {
613 int pid = * (int *) arg;
614
615 if (ptid_get_pid (thread->ptid) == pid
616 && is_running (thread->ptid)
617 && !is_executing (thread->ptid)
618 && !thread->stop_requested
619 && thread->suspend.stop_signal == GDB_SIGNAL_0)
620 {
621 if (debug_infrun)
622 fprintf_unfiltered (gdb_stdlog,
623 "infrun: resuming vfork parent thread %s\n",
624 target_pid_to_str (thread->ptid));
625
626 switch_to_thread (thread->ptid);
627 clear_proceed_status ();
628 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
629 }
630
631 return 0;
632 }
633
634 /* Called whenever we notice an exec or exit event, to handle
635 detaching or resuming a vfork parent. */
636
637 static void
638 handle_vfork_child_exec_or_exit (int exec)
639 {
640 struct inferior *inf = current_inferior ();
641
642 if (inf->vfork_parent)
643 {
644 int resume_parent = -1;
645
646 /* This exec or exit marks the end of the shared memory region
647 between the parent and the child. If the user wanted to
648 detach from the parent, now is the time. */
649
650 if (inf->vfork_parent->pending_detach)
651 {
652 struct thread_info *tp;
653 struct cleanup *old_chain;
654 struct program_space *pspace;
655 struct address_space *aspace;
656
657 /* follow-fork child, detach-on-fork on. */
658
659 inf->vfork_parent->pending_detach = 0;
660
661 if (!exec)
662 {
663 /* If we're handling a child exit, then inferior_ptid
664 points at the inferior's pid, not to a thread. */
665 old_chain = save_inferior_ptid ();
666 save_current_program_space ();
667 save_current_inferior ();
668 }
669 else
670 old_chain = save_current_space_and_thread ();
671
672 /* We're letting loose of the parent. */
673 tp = any_live_thread_of_process (inf->vfork_parent->pid);
674 switch_to_thread (tp->ptid);
675
676 /* We're about to detach from the parent, which implicitly
677 removes breakpoints from its address space. There's a
678 catch here: we want to reuse the spaces for the child,
679 but, parent/child are still sharing the pspace at this
680 point, although the exec in reality makes the kernel give
681 the child a fresh set of new pages. The problem here is
682 that the breakpoints module being unaware of this, would
683 likely chose the child process to write to the parent
684 address space. Swapping the child temporarily away from
685 the spaces has the desired effect. Yes, this is "sort
686 of" a hack. */
687
688 pspace = inf->pspace;
689 aspace = inf->aspace;
690 inf->aspace = NULL;
691 inf->pspace = NULL;
692
693 if (debug_infrun || info_verbose)
694 {
695 target_terminal_ours ();
696
697 if (exec)
698 fprintf_filtered (gdb_stdlog,
699 "Detaching vfork parent process "
700 "%d after child exec.\n",
701 inf->vfork_parent->pid);
702 else
703 fprintf_filtered (gdb_stdlog,
704 "Detaching vfork parent process "
705 "%d after child exit.\n",
706 inf->vfork_parent->pid);
707 }
708
709 target_detach (NULL, 0);
710
711 /* Put it back. */
712 inf->pspace = pspace;
713 inf->aspace = aspace;
714
715 do_cleanups (old_chain);
716 }
717 else if (exec)
718 {
719 /* We're staying attached to the parent, so, really give the
720 child a new address space. */
721 inf->pspace = add_program_space (maybe_new_address_space ());
722 inf->aspace = inf->pspace->aspace;
723 inf->removable = 1;
724 set_current_program_space (inf->pspace);
725
726 resume_parent = inf->vfork_parent->pid;
727
728 /* Break the bonds. */
729 inf->vfork_parent->vfork_child = NULL;
730 }
731 else
732 {
733 struct cleanup *old_chain;
734 struct program_space *pspace;
735
736 /* If this is a vfork child exiting, then the pspace and
737 aspaces were shared with the parent. Since we're
738 reporting the process exit, we'll be mourning all that is
739 found in the address space, and switching to null_ptid,
740 preparing to start a new inferior. But, since we don't
741 want to clobber the parent's address/program spaces, we
742 go ahead and create a new one for this exiting
743 inferior. */
744
745 /* Switch to null_ptid, so that clone_program_space doesn't want
746 to read the selected frame of a dead process. */
747 old_chain = save_inferior_ptid ();
748 inferior_ptid = null_ptid;
749
750 /* This inferior is dead, so avoid giving the breakpoints
751 module the option to write through to it (cloning a
752 program space resets breakpoints). */
753 inf->aspace = NULL;
754 inf->pspace = NULL;
755 pspace = add_program_space (maybe_new_address_space ());
756 set_current_program_space (pspace);
757 inf->removable = 1;
758 inf->symfile_flags = SYMFILE_NO_READ;
759 clone_program_space (pspace, inf->vfork_parent->pspace);
760 inf->pspace = pspace;
761 inf->aspace = pspace->aspace;
762
763 /* Put back inferior_ptid. We'll continue mourning this
764 inferior. */
765 do_cleanups (old_chain);
766
767 resume_parent = inf->vfork_parent->pid;
768 /* Break the bonds. */
769 inf->vfork_parent->vfork_child = NULL;
770 }
771
772 inf->vfork_parent = NULL;
773
774 gdb_assert (current_program_space == inf->pspace);
775
776 if (non_stop && resume_parent != -1)
777 {
778 /* If the user wanted the parent to be running, let it go
779 free now. */
780 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
781
782 if (debug_infrun)
783 fprintf_unfiltered (gdb_stdlog,
784 "infrun: resuming vfork parent process %d\n",
785 resume_parent);
786
787 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
788
789 do_cleanups (old_chain);
790 }
791 }
792 }
793
794 /* Enum strings for "set|show follow-exec-mode". */
795
796 static const char follow_exec_mode_new[] = "new";
797 static const char follow_exec_mode_same[] = "same";
798 static const char *const follow_exec_mode_names[] =
799 {
800 follow_exec_mode_new,
801 follow_exec_mode_same,
802 NULL,
803 };
804
805 static const char *follow_exec_mode_string = follow_exec_mode_same;
806 static void
807 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
808 struct cmd_list_element *c, const char *value)
809 {
810 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
811 }
812
813 /* EXECD_PATHNAME is assumed to be non-NULL. */
814
815 static void
816 follow_exec (ptid_t pid, char *execd_pathname)
817 {
818 struct thread_info *th = inferior_thread ();
819 struct inferior *inf = current_inferior ();
820
821 /* This is an exec event that we actually wish to pay attention to.
822 Refresh our symbol table to the newly exec'd program, remove any
823 momentary bp's, etc.
824
825 If there are breakpoints, they aren't really inserted now,
826 since the exec() transformed our inferior into a fresh set
827 of instructions.
828
829 We want to preserve symbolic breakpoints on the list, since
830 we have hopes that they can be reset after the new a.out's
831 symbol table is read.
832
833 However, any "raw" breakpoints must be removed from the list
834 (e.g., the solib bp's), since their address is probably invalid
835 now.
836
837 And, we DON'T want to call delete_breakpoints() here, since
838 that may write the bp's "shadow contents" (the instruction
839 value that was overwritten witha TRAP instruction). Since
840 we now have a new a.out, those shadow contents aren't valid. */
841
842 mark_breakpoints_out ();
843
844 update_breakpoints_after_exec ();
845
846 /* If there was one, it's gone now. We cannot truly step-to-next
847 statement through an exec(). */
848 th->control.step_resume_breakpoint = NULL;
849 th->control.exception_resume_breakpoint = NULL;
850 th->control.step_range_start = 0;
851 th->control.step_range_end = 0;
852
853 /* The target reports the exec event to the main thread, even if
854 some other thread does the exec, and even if the main thread was
855 already stopped --- if debugging in non-stop mode, it's possible
856 the user had the main thread held stopped in the previous image
857 --- release it now. This is the same behavior as step-over-exec
858 with scheduler-locking on in all-stop mode. */
859 th->stop_requested = 0;
860
861 /* What is this a.out's name? */
862 printf_unfiltered (_("%s is executing new program: %s\n"),
863 target_pid_to_str (inferior_ptid),
864 execd_pathname);
865
866 /* We've followed the inferior through an exec. Therefore, the
867 inferior has essentially been killed & reborn. */
868
869 gdb_flush (gdb_stdout);
870
871 breakpoint_init_inferior (inf_execd);
872
873 if (gdb_sysroot && *gdb_sysroot)
874 {
875 char *name = alloca (strlen (gdb_sysroot)
876 + strlen (execd_pathname)
877 + 1);
878
879 strcpy (name, gdb_sysroot);
880 strcat (name, execd_pathname);
881 execd_pathname = name;
882 }
883
884 /* Reset the shared library package. This ensures that we get a
885 shlib event when the child reaches "_start", at which point the
886 dld will have had a chance to initialize the child. */
887 /* Also, loading a symbol file below may trigger symbol lookups, and
888 we don't want those to be satisfied by the libraries of the
889 previous incarnation of this process. */
890 no_shared_libraries (NULL, 0);
891
892 if (follow_exec_mode_string == follow_exec_mode_new)
893 {
894 struct program_space *pspace;
895
896 /* The user wants to keep the old inferior and program spaces
897 around. Create a new fresh one, and switch to it. */
898
899 inf = add_inferior (current_inferior ()->pid);
900 pspace = add_program_space (maybe_new_address_space ());
901 inf->pspace = pspace;
902 inf->aspace = pspace->aspace;
903
904 exit_inferior_num_silent (current_inferior ()->num);
905
906 set_current_inferior (inf);
907 set_current_program_space (pspace);
908 }
909 else
910 {
911 /* The old description may no longer be fit for the new image.
912 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
913 old description; we'll read a new one below. No need to do
914 this on "follow-exec-mode new", as the old inferior stays
915 around (its description is later cleared/refetched on
916 restart). */
917 target_clear_description ();
918 }
919
920 gdb_assert (current_program_space == inf->pspace);
921
922 /* That a.out is now the one to use. */
923 exec_file_attach (execd_pathname, 0);
924
925 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
926 (Position Independent Executable) main symbol file will get applied by
927 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
928 the breakpoints with the zero displacement. */
929
930 symbol_file_add (execd_pathname,
931 (inf->symfile_flags
932 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
933 NULL, 0);
934
935 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
936 set_initial_language ();
937
938 /* If the target can specify a description, read it. Must do this
939 after flipping to the new executable (because the target supplied
940 description must be compatible with the executable's
941 architecture, and the old executable may e.g., be 32-bit, while
942 the new one 64-bit), and before anything involving memory or
943 registers. */
944 target_find_description ();
945
946 solib_create_inferior_hook (0);
947
948 jit_inferior_created_hook ();
949
950 breakpoint_re_set ();
951
952 /* Reinsert all breakpoints. (Those which were symbolic have
953 been reset to the proper address in the new a.out, thanks
954 to symbol_file_command...). */
955 insert_breakpoints ();
956
957 /* The next resume of this inferior should bring it to the shlib
958 startup breakpoints. (If the user had also set bp's on
959 "main" from the old (parent) process, then they'll auto-
960 matically get reset there in the new process.). */
961 }
962
963 /* Non-zero if we just simulating a single-step. This is needed
964 because we cannot remove the breakpoints in the inferior process
965 until after the `wait' in `wait_for_inferior'. */
966 static int singlestep_breakpoints_inserted_p = 0;
967
968 /* The thread we inserted single-step breakpoints for. */
969 static ptid_t singlestep_ptid;
970
971 /* PC when we started this single-step. */
972 static CORE_ADDR singlestep_pc;
973
974 /* If another thread hit the singlestep breakpoint, we save the original
975 thread here so that we can resume single-stepping it later. */
976 static ptid_t saved_singlestep_ptid;
977 static int stepping_past_singlestep_breakpoint;
978
979 /* If not equal to null_ptid, this means that after stepping over breakpoint
980 is finished, we need to switch to deferred_step_ptid, and step it.
981
982 The use case is when one thread has hit a breakpoint, and then the user
983 has switched to another thread and issued 'step'. We need to step over
984 breakpoint in the thread which hit the breakpoint, but then continue
985 stepping the thread user has selected. */
986 static ptid_t deferred_step_ptid;
987 \f
988 /* Displaced stepping. */
989
990 /* In non-stop debugging mode, we must take special care to manage
991 breakpoints properly; in particular, the traditional strategy for
992 stepping a thread past a breakpoint it has hit is unsuitable.
993 'Displaced stepping' is a tactic for stepping one thread past a
994 breakpoint it has hit while ensuring that other threads running
995 concurrently will hit the breakpoint as they should.
996
997 The traditional way to step a thread T off a breakpoint in a
998 multi-threaded program in all-stop mode is as follows:
999
1000 a0) Initially, all threads are stopped, and breakpoints are not
1001 inserted.
1002 a1) We single-step T, leaving breakpoints uninserted.
1003 a2) We insert breakpoints, and resume all threads.
1004
1005 In non-stop debugging, however, this strategy is unsuitable: we
1006 don't want to have to stop all threads in the system in order to
1007 continue or step T past a breakpoint. Instead, we use displaced
1008 stepping:
1009
1010 n0) Initially, T is stopped, other threads are running, and
1011 breakpoints are inserted.
1012 n1) We copy the instruction "under" the breakpoint to a separate
1013 location, outside the main code stream, making any adjustments
1014 to the instruction, register, and memory state as directed by
1015 T's architecture.
1016 n2) We single-step T over the instruction at its new location.
1017 n3) We adjust the resulting register and memory state as directed
1018 by T's architecture. This includes resetting T's PC to point
1019 back into the main instruction stream.
1020 n4) We resume T.
1021
1022 This approach depends on the following gdbarch methods:
1023
1024 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1025 indicate where to copy the instruction, and how much space must
1026 be reserved there. We use these in step n1.
1027
1028 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1029 address, and makes any necessary adjustments to the instruction,
1030 register contents, and memory. We use this in step n1.
1031
1032 - gdbarch_displaced_step_fixup adjusts registers and memory after
1033 we have successfuly single-stepped the instruction, to yield the
1034 same effect the instruction would have had if we had executed it
1035 at its original address. We use this in step n3.
1036
1037 - gdbarch_displaced_step_free_closure provides cleanup.
1038
1039 The gdbarch_displaced_step_copy_insn and
1040 gdbarch_displaced_step_fixup functions must be written so that
1041 copying an instruction with gdbarch_displaced_step_copy_insn,
1042 single-stepping across the copied instruction, and then applying
1043 gdbarch_displaced_insn_fixup should have the same effects on the
1044 thread's memory and registers as stepping the instruction in place
1045 would have. Exactly which responsibilities fall to the copy and
1046 which fall to the fixup is up to the author of those functions.
1047
1048 See the comments in gdbarch.sh for details.
1049
1050 Note that displaced stepping and software single-step cannot
1051 currently be used in combination, although with some care I think
1052 they could be made to. Software single-step works by placing
1053 breakpoints on all possible subsequent instructions; if the
1054 displaced instruction is a PC-relative jump, those breakpoints
1055 could fall in very strange places --- on pages that aren't
1056 executable, or at addresses that are not proper instruction
1057 boundaries. (We do generally let other threads run while we wait
1058 to hit the software single-step breakpoint, and they might
1059 encounter such a corrupted instruction.) One way to work around
1060 this would be to have gdbarch_displaced_step_copy_insn fully
1061 simulate the effect of PC-relative instructions (and return NULL)
1062 on architectures that use software single-stepping.
1063
1064 In non-stop mode, we can have independent and simultaneous step
1065 requests, so more than one thread may need to simultaneously step
1066 over a breakpoint. The current implementation assumes there is
1067 only one scratch space per process. In this case, we have to
1068 serialize access to the scratch space. If thread A wants to step
1069 over a breakpoint, but we are currently waiting for some other
1070 thread to complete a displaced step, we leave thread A stopped and
1071 place it in the displaced_step_request_queue. Whenever a displaced
1072 step finishes, we pick the next thread in the queue and start a new
1073 displaced step operation on it. See displaced_step_prepare and
1074 displaced_step_fixup for details. */
1075
1076 struct displaced_step_request
1077 {
1078 ptid_t ptid;
1079 struct displaced_step_request *next;
1080 };
1081
1082 /* Per-inferior displaced stepping state. */
1083 struct displaced_step_inferior_state
1084 {
1085 /* Pointer to next in linked list. */
1086 struct displaced_step_inferior_state *next;
1087
1088 /* The process this displaced step state refers to. */
1089 int pid;
1090
1091 /* A queue of pending displaced stepping requests. One entry per
1092 thread that needs to do a displaced step. */
1093 struct displaced_step_request *step_request_queue;
1094
1095 /* If this is not null_ptid, this is the thread carrying out a
1096 displaced single-step in process PID. This thread's state will
1097 require fixing up once it has completed its step. */
1098 ptid_t step_ptid;
1099
1100 /* The architecture the thread had when we stepped it. */
1101 struct gdbarch *step_gdbarch;
1102
1103 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1104 for post-step cleanup. */
1105 struct displaced_step_closure *step_closure;
1106
1107 /* The address of the original instruction, and the copy we
1108 made. */
1109 CORE_ADDR step_original, step_copy;
1110
1111 /* Saved contents of copy area. */
1112 gdb_byte *step_saved_copy;
1113 };
1114
1115 /* The list of states of processes involved in displaced stepping
1116 presently. */
1117 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1118
1119 /* Get the displaced stepping state of process PID. */
1120
1121 static struct displaced_step_inferior_state *
1122 get_displaced_stepping_state (int pid)
1123 {
1124 struct displaced_step_inferior_state *state;
1125
1126 for (state = displaced_step_inferior_states;
1127 state != NULL;
1128 state = state->next)
1129 if (state->pid == pid)
1130 return state;
1131
1132 return NULL;
1133 }
1134
1135 /* Add a new displaced stepping state for process PID to the displaced
1136 stepping state list, or return a pointer to an already existing
1137 entry, if it already exists. Never returns NULL. */
1138
1139 static struct displaced_step_inferior_state *
1140 add_displaced_stepping_state (int pid)
1141 {
1142 struct displaced_step_inferior_state *state;
1143
1144 for (state = displaced_step_inferior_states;
1145 state != NULL;
1146 state = state->next)
1147 if (state->pid == pid)
1148 return state;
1149
1150 state = xcalloc (1, sizeof (*state));
1151 state->pid = pid;
1152 state->next = displaced_step_inferior_states;
1153 displaced_step_inferior_states = state;
1154
1155 return state;
1156 }
1157
1158 /* If inferior is in displaced stepping, and ADDR equals to starting address
1159 of copy area, return corresponding displaced_step_closure. Otherwise,
1160 return NULL. */
1161
1162 struct displaced_step_closure*
1163 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1164 {
1165 struct displaced_step_inferior_state *displaced
1166 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1167
1168 /* If checking the mode of displaced instruction in copy area. */
1169 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1170 && (displaced->step_copy == addr))
1171 return displaced->step_closure;
1172
1173 return NULL;
1174 }
1175
1176 /* Remove the displaced stepping state of process PID. */
1177
1178 static void
1179 remove_displaced_stepping_state (int pid)
1180 {
1181 struct displaced_step_inferior_state *it, **prev_next_p;
1182
1183 gdb_assert (pid != 0);
1184
1185 it = displaced_step_inferior_states;
1186 prev_next_p = &displaced_step_inferior_states;
1187 while (it)
1188 {
1189 if (it->pid == pid)
1190 {
1191 *prev_next_p = it->next;
1192 xfree (it);
1193 return;
1194 }
1195
1196 prev_next_p = &it->next;
1197 it = *prev_next_p;
1198 }
1199 }
1200
1201 static void
1202 infrun_inferior_exit (struct inferior *inf)
1203 {
1204 remove_displaced_stepping_state (inf->pid);
1205 }
1206
1207 /* If ON, and the architecture supports it, GDB will use displaced
1208 stepping to step over breakpoints. If OFF, or if the architecture
1209 doesn't support it, GDB will instead use the traditional
1210 hold-and-step approach. If AUTO (which is the default), GDB will
1211 decide which technique to use to step over breakpoints depending on
1212 which of all-stop or non-stop mode is active --- displaced stepping
1213 in non-stop mode; hold-and-step in all-stop mode. */
1214
1215 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1216
1217 static void
1218 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1219 struct cmd_list_element *c,
1220 const char *value)
1221 {
1222 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1223 fprintf_filtered (file,
1224 _("Debugger's willingness to use displaced stepping "
1225 "to step over breakpoints is %s (currently %s).\n"),
1226 value, non_stop ? "on" : "off");
1227 else
1228 fprintf_filtered (file,
1229 _("Debugger's willingness to use displaced stepping "
1230 "to step over breakpoints is %s.\n"), value);
1231 }
1232
1233 /* Return non-zero if displaced stepping can/should be used to step
1234 over breakpoints. */
1235
1236 static int
1237 use_displaced_stepping (struct gdbarch *gdbarch)
1238 {
1239 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1240 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1241 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1242 && !RECORD_IS_USED);
1243 }
1244
1245 /* Clean out any stray displaced stepping state. */
1246 static void
1247 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1248 {
1249 /* Indicate that there is no cleanup pending. */
1250 displaced->step_ptid = null_ptid;
1251
1252 if (displaced->step_closure)
1253 {
1254 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1255 displaced->step_closure);
1256 displaced->step_closure = NULL;
1257 }
1258 }
1259
1260 static void
1261 displaced_step_clear_cleanup (void *arg)
1262 {
1263 struct displaced_step_inferior_state *state = arg;
1264
1265 displaced_step_clear (state);
1266 }
1267
1268 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1269 void
1270 displaced_step_dump_bytes (struct ui_file *file,
1271 const gdb_byte *buf,
1272 size_t len)
1273 {
1274 int i;
1275
1276 for (i = 0; i < len; i++)
1277 fprintf_unfiltered (file, "%02x ", buf[i]);
1278 fputs_unfiltered ("\n", file);
1279 }
1280
1281 /* Prepare to single-step, using displaced stepping.
1282
1283 Note that we cannot use displaced stepping when we have a signal to
1284 deliver. If we have a signal to deliver and an instruction to step
1285 over, then after the step, there will be no indication from the
1286 target whether the thread entered a signal handler or ignored the
1287 signal and stepped over the instruction successfully --- both cases
1288 result in a simple SIGTRAP. In the first case we mustn't do a
1289 fixup, and in the second case we must --- but we can't tell which.
1290 Comments in the code for 'random signals' in handle_inferior_event
1291 explain how we handle this case instead.
1292
1293 Returns 1 if preparing was successful -- this thread is going to be
1294 stepped now; or 0 if displaced stepping this thread got queued. */
1295 static int
1296 displaced_step_prepare (ptid_t ptid)
1297 {
1298 struct cleanup *old_cleanups, *ignore_cleanups;
1299 struct thread_info *tp = find_thread_ptid (ptid);
1300 struct regcache *regcache = get_thread_regcache (ptid);
1301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1302 CORE_ADDR original, copy;
1303 ULONGEST len;
1304 struct displaced_step_closure *closure;
1305 struct displaced_step_inferior_state *displaced;
1306 int status;
1307
1308 /* We should never reach this function if the architecture does not
1309 support displaced stepping. */
1310 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1311
1312 /* Disable range stepping while executing in the scratch pad. We
1313 want a single-step even if executing the displaced instruction in
1314 the scratch buffer lands within the stepping range (e.g., a
1315 jump/branch). */
1316 tp->control.may_range_step = 0;
1317
1318 /* We have to displaced step one thread at a time, as we only have
1319 access to a single scratch space per inferior. */
1320
1321 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1322
1323 if (!ptid_equal (displaced->step_ptid, null_ptid))
1324 {
1325 /* Already waiting for a displaced step to finish. Defer this
1326 request and place in queue. */
1327 struct displaced_step_request *req, *new_req;
1328
1329 if (debug_displaced)
1330 fprintf_unfiltered (gdb_stdlog,
1331 "displaced: defering step of %s\n",
1332 target_pid_to_str (ptid));
1333
1334 new_req = xmalloc (sizeof (*new_req));
1335 new_req->ptid = ptid;
1336 new_req->next = NULL;
1337
1338 if (displaced->step_request_queue)
1339 {
1340 for (req = displaced->step_request_queue;
1341 req && req->next;
1342 req = req->next)
1343 ;
1344 req->next = new_req;
1345 }
1346 else
1347 displaced->step_request_queue = new_req;
1348
1349 return 0;
1350 }
1351 else
1352 {
1353 if (debug_displaced)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "displaced: stepping %s now\n",
1356 target_pid_to_str (ptid));
1357 }
1358
1359 displaced_step_clear (displaced);
1360
1361 old_cleanups = save_inferior_ptid ();
1362 inferior_ptid = ptid;
1363
1364 original = regcache_read_pc (regcache);
1365
1366 copy = gdbarch_displaced_step_location (gdbarch);
1367 len = gdbarch_max_insn_length (gdbarch);
1368
1369 /* Save the original contents of the copy area. */
1370 displaced->step_saved_copy = xmalloc (len);
1371 ignore_cleanups = make_cleanup (free_current_contents,
1372 &displaced->step_saved_copy);
1373 status = target_read_memory (copy, displaced->step_saved_copy, len);
1374 if (status != 0)
1375 throw_error (MEMORY_ERROR,
1376 _("Error accessing memory address %s (%s) for "
1377 "displaced-stepping scratch space."),
1378 paddress (gdbarch, copy), safe_strerror (status));
1379 if (debug_displaced)
1380 {
1381 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1382 paddress (gdbarch, copy));
1383 displaced_step_dump_bytes (gdb_stdlog,
1384 displaced->step_saved_copy,
1385 len);
1386 };
1387
1388 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1389 original, copy, regcache);
1390
1391 /* We don't support the fully-simulated case at present. */
1392 gdb_assert (closure);
1393
1394 /* Save the information we need to fix things up if the step
1395 succeeds. */
1396 displaced->step_ptid = ptid;
1397 displaced->step_gdbarch = gdbarch;
1398 displaced->step_closure = closure;
1399 displaced->step_original = original;
1400 displaced->step_copy = copy;
1401
1402 make_cleanup (displaced_step_clear_cleanup, displaced);
1403
1404 /* Resume execution at the copy. */
1405 regcache_write_pc (regcache, copy);
1406
1407 discard_cleanups (ignore_cleanups);
1408
1409 do_cleanups (old_cleanups);
1410
1411 if (debug_displaced)
1412 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1413 paddress (gdbarch, copy));
1414
1415 return 1;
1416 }
1417
1418 static void
1419 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1420 const gdb_byte *myaddr, int len)
1421 {
1422 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1423
1424 inferior_ptid = ptid;
1425 write_memory (memaddr, myaddr, len);
1426 do_cleanups (ptid_cleanup);
1427 }
1428
1429 /* Restore the contents of the copy area for thread PTID. */
1430
1431 static void
1432 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1433 ptid_t ptid)
1434 {
1435 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1436
1437 write_memory_ptid (ptid, displaced->step_copy,
1438 displaced->step_saved_copy, len);
1439 if (debug_displaced)
1440 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1441 target_pid_to_str (ptid),
1442 paddress (displaced->step_gdbarch,
1443 displaced->step_copy));
1444 }
1445
1446 static void
1447 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1448 {
1449 struct cleanup *old_cleanups;
1450 struct displaced_step_inferior_state *displaced
1451 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1452
1453 /* Was any thread of this process doing a displaced step? */
1454 if (displaced == NULL)
1455 return;
1456
1457 /* Was this event for the pid we displaced? */
1458 if (ptid_equal (displaced->step_ptid, null_ptid)
1459 || ! ptid_equal (displaced->step_ptid, event_ptid))
1460 return;
1461
1462 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1463
1464 displaced_step_restore (displaced, displaced->step_ptid);
1465
1466 /* Did the instruction complete successfully? */
1467 if (signal == GDB_SIGNAL_TRAP)
1468 {
1469 /* Fix up the resulting state. */
1470 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1471 displaced->step_closure,
1472 displaced->step_original,
1473 displaced->step_copy,
1474 get_thread_regcache (displaced->step_ptid));
1475 }
1476 else
1477 {
1478 /* Since the instruction didn't complete, all we can do is
1479 relocate the PC. */
1480 struct regcache *regcache = get_thread_regcache (event_ptid);
1481 CORE_ADDR pc = regcache_read_pc (regcache);
1482
1483 pc = displaced->step_original + (pc - displaced->step_copy);
1484 regcache_write_pc (regcache, pc);
1485 }
1486
1487 do_cleanups (old_cleanups);
1488
1489 displaced->step_ptid = null_ptid;
1490
1491 /* Are there any pending displaced stepping requests? If so, run
1492 one now. Leave the state object around, since we're likely to
1493 need it again soon. */
1494 while (displaced->step_request_queue)
1495 {
1496 struct displaced_step_request *head;
1497 ptid_t ptid;
1498 struct regcache *regcache;
1499 struct gdbarch *gdbarch;
1500 CORE_ADDR actual_pc;
1501 struct address_space *aspace;
1502
1503 head = displaced->step_request_queue;
1504 ptid = head->ptid;
1505 displaced->step_request_queue = head->next;
1506 xfree (head);
1507
1508 context_switch (ptid);
1509
1510 regcache = get_thread_regcache (ptid);
1511 actual_pc = regcache_read_pc (regcache);
1512 aspace = get_regcache_aspace (regcache);
1513
1514 if (breakpoint_here_p (aspace, actual_pc))
1515 {
1516 if (debug_displaced)
1517 fprintf_unfiltered (gdb_stdlog,
1518 "displaced: stepping queued %s now\n",
1519 target_pid_to_str (ptid));
1520
1521 displaced_step_prepare (ptid);
1522
1523 gdbarch = get_regcache_arch (regcache);
1524
1525 if (debug_displaced)
1526 {
1527 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1528 gdb_byte buf[4];
1529
1530 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1531 paddress (gdbarch, actual_pc));
1532 read_memory (actual_pc, buf, sizeof (buf));
1533 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1534 }
1535
1536 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1537 displaced->step_closure))
1538 target_resume (ptid, 1, GDB_SIGNAL_0);
1539 else
1540 target_resume (ptid, 0, GDB_SIGNAL_0);
1541
1542 /* Done, we're stepping a thread. */
1543 break;
1544 }
1545 else
1546 {
1547 int step;
1548 struct thread_info *tp = inferior_thread ();
1549
1550 /* The breakpoint we were sitting under has since been
1551 removed. */
1552 tp->control.trap_expected = 0;
1553
1554 /* Go back to what we were trying to do. */
1555 step = currently_stepping (tp);
1556
1557 if (debug_displaced)
1558 fprintf_unfiltered (gdb_stdlog,
1559 "displaced: breakpoint is gone: %s, step(%d)\n",
1560 target_pid_to_str (tp->ptid), step);
1561
1562 target_resume (ptid, step, GDB_SIGNAL_0);
1563 tp->suspend.stop_signal = GDB_SIGNAL_0;
1564
1565 /* This request was discarded. See if there's any other
1566 thread waiting for its turn. */
1567 }
1568 }
1569 }
1570
1571 /* Update global variables holding ptids to hold NEW_PTID if they were
1572 holding OLD_PTID. */
1573 static void
1574 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1575 {
1576 struct displaced_step_request *it;
1577 struct displaced_step_inferior_state *displaced;
1578
1579 if (ptid_equal (inferior_ptid, old_ptid))
1580 inferior_ptid = new_ptid;
1581
1582 if (ptid_equal (singlestep_ptid, old_ptid))
1583 singlestep_ptid = new_ptid;
1584
1585 if (ptid_equal (deferred_step_ptid, old_ptid))
1586 deferred_step_ptid = new_ptid;
1587
1588 for (displaced = displaced_step_inferior_states;
1589 displaced;
1590 displaced = displaced->next)
1591 {
1592 if (ptid_equal (displaced->step_ptid, old_ptid))
1593 displaced->step_ptid = new_ptid;
1594
1595 for (it = displaced->step_request_queue; it; it = it->next)
1596 if (ptid_equal (it->ptid, old_ptid))
1597 it->ptid = new_ptid;
1598 }
1599 }
1600
1601 \f
1602 /* Resuming. */
1603
1604 /* Things to clean up if we QUIT out of resume (). */
1605 static void
1606 resume_cleanups (void *ignore)
1607 {
1608 normal_stop ();
1609 }
1610
1611 static const char schedlock_off[] = "off";
1612 static const char schedlock_on[] = "on";
1613 static const char schedlock_step[] = "step";
1614 static const char *const scheduler_enums[] = {
1615 schedlock_off,
1616 schedlock_on,
1617 schedlock_step,
1618 NULL
1619 };
1620 static const char *scheduler_mode = schedlock_off;
1621 static void
1622 show_scheduler_mode (struct ui_file *file, int from_tty,
1623 struct cmd_list_element *c, const char *value)
1624 {
1625 fprintf_filtered (file,
1626 _("Mode for locking scheduler "
1627 "during execution is \"%s\".\n"),
1628 value);
1629 }
1630
1631 static void
1632 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1633 {
1634 if (!target_can_lock_scheduler)
1635 {
1636 scheduler_mode = schedlock_off;
1637 error (_("Target '%s' cannot support this command."), target_shortname);
1638 }
1639 }
1640
1641 /* True if execution commands resume all threads of all processes by
1642 default; otherwise, resume only threads of the current inferior
1643 process. */
1644 int sched_multi = 0;
1645
1646 /* Try to setup for software single stepping over the specified location.
1647 Return 1 if target_resume() should use hardware single step.
1648
1649 GDBARCH the current gdbarch.
1650 PC the location to step over. */
1651
1652 static int
1653 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1654 {
1655 int hw_step = 1;
1656
1657 if (execution_direction == EXEC_FORWARD
1658 && gdbarch_software_single_step_p (gdbarch)
1659 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1660 {
1661 hw_step = 0;
1662 /* Do not pull these breakpoints until after a `wait' in
1663 `wait_for_inferior'. */
1664 singlestep_breakpoints_inserted_p = 1;
1665 singlestep_ptid = inferior_ptid;
1666 singlestep_pc = pc;
1667 }
1668 return hw_step;
1669 }
1670
1671 /* Return a ptid representing the set of threads that we will proceed,
1672 in the perspective of the user/frontend. We may actually resume
1673 fewer threads at first, e.g., if a thread is stopped at a
1674 breakpoint that needs stepping-off, but that should not be visible
1675 to the user/frontend, and neither should the frontend/user be
1676 allowed to proceed any of the threads that happen to be stopped for
1677 internal run control handling, if a previous command wanted them
1678 resumed. */
1679
1680 ptid_t
1681 user_visible_resume_ptid (int step)
1682 {
1683 /* By default, resume all threads of all processes. */
1684 ptid_t resume_ptid = RESUME_ALL;
1685
1686 /* Maybe resume only all threads of the current process. */
1687 if (!sched_multi && target_supports_multi_process ())
1688 {
1689 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1690 }
1691
1692 /* Maybe resume a single thread after all. */
1693 if (non_stop)
1694 {
1695 /* With non-stop mode on, threads are always handled
1696 individually. */
1697 resume_ptid = inferior_ptid;
1698 }
1699 else if ((scheduler_mode == schedlock_on)
1700 || (scheduler_mode == schedlock_step
1701 && (step || singlestep_breakpoints_inserted_p)))
1702 {
1703 /* User-settable 'scheduler' mode requires solo thread resume. */
1704 resume_ptid = inferior_ptid;
1705 }
1706
1707 return resume_ptid;
1708 }
1709
1710 /* Resume the inferior, but allow a QUIT. This is useful if the user
1711 wants to interrupt some lengthy single-stepping operation
1712 (for child processes, the SIGINT goes to the inferior, and so
1713 we get a SIGINT random_signal, but for remote debugging and perhaps
1714 other targets, that's not true).
1715
1716 STEP nonzero if we should step (zero to continue instead).
1717 SIG is the signal to give the inferior (zero for none). */
1718 void
1719 resume (int step, enum gdb_signal sig)
1720 {
1721 int should_resume = 1;
1722 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1723 struct regcache *regcache = get_current_regcache ();
1724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1725 struct thread_info *tp = inferior_thread ();
1726 CORE_ADDR pc = regcache_read_pc (regcache);
1727 struct address_space *aspace = get_regcache_aspace (regcache);
1728
1729 QUIT;
1730
1731 if (current_inferior ()->waiting_for_vfork_done)
1732 {
1733 /* Don't try to single-step a vfork parent that is waiting for
1734 the child to get out of the shared memory region (by exec'ing
1735 or exiting). This is particularly important on software
1736 single-step archs, as the child process would trip on the
1737 software single step breakpoint inserted for the parent
1738 process. Since the parent will not actually execute any
1739 instruction until the child is out of the shared region (such
1740 are vfork's semantics), it is safe to simply continue it.
1741 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1742 the parent, and tell it to `keep_going', which automatically
1743 re-sets it stepping. */
1744 if (debug_infrun)
1745 fprintf_unfiltered (gdb_stdlog,
1746 "infrun: resume : clear step\n");
1747 step = 0;
1748 }
1749
1750 if (debug_infrun)
1751 fprintf_unfiltered (gdb_stdlog,
1752 "infrun: resume (step=%d, signal=%s), "
1753 "trap_expected=%d, current thread [%s] at %s\n",
1754 step, gdb_signal_to_symbol_string (sig),
1755 tp->control.trap_expected,
1756 target_pid_to_str (inferior_ptid),
1757 paddress (gdbarch, pc));
1758
1759 /* Normally, by the time we reach `resume', the breakpoints are either
1760 removed or inserted, as appropriate. The exception is if we're sitting
1761 at a permanent breakpoint; we need to step over it, but permanent
1762 breakpoints can't be removed. So we have to test for it here. */
1763 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1764 {
1765 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1766 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1767 else
1768 error (_("\
1769 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1770 how to step past a permanent breakpoint on this architecture. Try using\n\
1771 a command like `return' or `jump' to continue execution."));
1772 }
1773
1774 /* If we have a breakpoint to step over, make sure to do a single
1775 step only. Same if we have software watchpoints. */
1776 if (tp->control.trap_expected || bpstat_should_step ())
1777 tp->control.may_range_step = 0;
1778
1779 /* If enabled, step over breakpoints by executing a copy of the
1780 instruction at a different address.
1781
1782 We can't use displaced stepping when we have a signal to deliver;
1783 the comments for displaced_step_prepare explain why. The
1784 comments in the handle_inferior event for dealing with 'random
1785 signals' explain what we do instead.
1786
1787 We can't use displaced stepping when we are waiting for vfork_done
1788 event, displaced stepping breaks the vfork child similarly as single
1789 step software breakpoint. */
1790 if (use_displaced_stepping (gdbarch)
1791 && (tp->control.trap_expected
1792 || (step && gdbarch_software_single_step_p (gdbarch)))
1793 && sig == GDB_SIGNAL_0
1794 && !current_inferior ()->waiting_for_vfork_done)
1795 {
1796 struct displaced_step_inferior_state *displaced;
1797
1798 if (!displaced_step_prepare (inferior_ptid))
1799 {
1800 /* Got placed in displaced stepping queue. Will be resumed
1801 later when all the currently queued displaced stepping
1802 requests finish. The thread is not executing at this point,
1803 and the call to set_executing will be made later. But we
1804 need to call set_running here, since from frontend point of view,
1805 the thread is running. */
1806 set_running (inferior_ptid, 1);
1807 discard_cleanups (old_cleanups);
1808 return;
1809 }
1810
1811 /* Update pc to reflect the new address from which we will execute
1812 instructions due to displaced stepping. */
1813 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1814
1815 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1816 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1817 displaced->step_closure);
1818 }
1819
1820 /* Do we need to do it the hard way, w/temp breakpoints? */
1821 else if (step)
1822 step = maybe_software_singlestep (gdbarch, pc);
1823
1824 /* Currently, our software single-step implementation leads to different
1825 results than hardware single-stepping in one situation: when stepping
1826 into delivering a signal which has an associated signal handler,
1827 hardware single-step will stop at the first instruction of the handler,
1828 while software single-step will simply skip execution of the handler.
1829
1830 For now, this difference in behavior is accepted since there is no
1831 easy way to actually implement single-stepping into a signal handler
1832 without kernel support.
1833
1834 However, there is one scenario where this difference leads to follow-on
1835 problems: if we're stepping off a breakpoint by removing all breakpoints
1836 and then single-stepping. In this case, the software single-step
1837 behavior means that even if there is a *breakpoint* in the signal
1838 handler, GDB still would not stop.
1839
1840 Fortunately, we can at least fix this particular issue. We detect
1841 here the case where we are about to deliver a signal while software
1842 single-stepping with breakpoints removed. In this situation, we
1843 revert the decisions to remove all breakpoints and insert single-
1844 step breakpoints, and instead we install a step-resume breakpoint
1845 at the current address, deliver the signal without stepping, and
1846 once we arrive back at the step-resume breakpoint, actually step
1847 over the breakpoint we originally wanted to step over. */
1848 if (singlestep_breakpoints_inserted_p
1849 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1850 {
1851 /* If we have nested signals or a pending signal is delivered
1852 immediately after a handler returns, might might already have
1853 a step-resume breakpoint set on the earlier handler. We cannot
1854 set another step-resume breakpoint; just continue on until the
1855 original breakpoint is hit. */
1856 if (tp->control.step_resume_breakpoint == NULL)
1857 {
1858 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1859 tp->step_after_step_resume_breakpoint = 1;
1860 }
1861
1862 remove_single_step_breakpoints ();
1863 singlestep_breakpoints_inserted_p = 0;
1864
1865 insert_breakpoints ();
1866 tp->control.trap_expected = 0;
1867 }
1868
1869 if (should_resume)
1870 {
1871 ptid_t resume_ptid;
1872
1873 /* If STEP is set, it's a request to use hardware stepping
1874 facilities. But in that case, we should never
1875 use singlestep breakpoint. */
1876 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1877
1878 /* Decide the set of threads to ask the target to resume. Start
1879 by assuming everything will be resumed, than narrow the set
1880 by applying increasingly restricting conditions. */
1881 resume_ptid = user_visible_resume_ptid (step);
1882
1883 /* Maybe resume a single thread after all. */
1884 if (singlestep_breakpoints_inserted_p
1885 && stepping_past_singlestep_breakpoint)
1886 {
1887 /* The situation here is as follows. In thread T1 we wanted to
1888 single-step. Lacking hardware single-stepping we've
1889 set breakpoint at the PC of the next instruction -- call it
1890 P. After resuming, we've hit that breakpoint in thread T2.
1891 Now we've removed original breakpoint, inserted breakpoint
1892 at P+1, and try to step to advance T2 past breakpoint.
1893 We need to step only T2, as if T1 is allowed to freely run,
1894 it can run past P, and if other threads are allowed to run,
1895 they can hit breakpoint at P+1, and nested hits of single-step
1896 breakpoints is not something we'd want -- that's complicated
1897 to support, and has no value. */
1898 resume_ptid = inferior_ptid;
1899 }
1900 else if ((step || singlestep_breakpoints_inserted_p)
1901 && tp->control.trap_expected)
1902 {
1903 /* We're allowing a thread to run past a breakpoint it has
1904 hit, by single-stepping the thread with the breakpoint
1905 removed. In which case, we need to single-step only this
1906 thread, and keep others stopped, as they can miss this
1907 breakpoint if allowed to run.
1908
1909 The current code actually removes all breakpoints when
1910 doing this, not just the one being stepped over, so if we
1911 let other threads run, we can actually miss any
1912 breakpoint, not just the one at PC. */
1913 resume_ptid = inferior_ptid;
1914 }
1915
1916 if (gdbarch_cannot_step_breakpoint (gdbarch))
1917 {
1918 /* Most targets can step a breakpoint instruction, thus
1919 executing it normally. But if this one cannot, just
1920 continue and we will hit it anyway. */
1921 if (step && breakpoint_inserted_here_p (aspace, pc))
1922 step = 0;
1923 }
1924
1925 if (debug_displaced
1926 && use_displaced_stepping (gdbarch)
1927 && tp->control.trap_expected)
1928 {
1929 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1930 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1931 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1932 gdb_byte buf[4];
1933
1934 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1935 paddress (resume_gdbarch, actual_pc));
1936 read_memory (actual_pc, buf, sizeof (buf));
1937 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1938 }
1939
1940 if (tp->control.may_range_step)
1941 {
1942 /* If we're resuming a thread with the PC out of the step
1943 range, then we're doing some nested/finer run control
1944 operation, like stepping the thread out of the dynamic
1945 linker or the displaced stepping scratch pad. We
1946 shouldn't have allowed a range step then. */
1947 gdb_assert (pc_in_thread_step_range (pc, tp));
1948 }
1949
1950 /* Install inferior's terminal modes. */
1951 target_terminal_inferior ();
1952
1953 /* Avoid confusing the next resume, if the next stop/resume
1954 happens to apply to another thread. */
1955 tp->suspend.stop_signal = GDB_SIGNAL_0;
1956
1957 /* Advise target which signals may be handled silently. If we have
1958 removed breakpoints because we are stepping over one (which can
1959 happen only if we are not using displaced stepping), we need to
1960 receive all signals to avoid accidentally skipping a breakpoint
1961 during execution of a signal handler. */
1962 if ((step || singlestep_breakpoints_inserted_p)
1963 && tp->control.trap_expected
1964 && !use_displaced_stepping (gdbarch))
1965 target_pass_signals (0, NULL);
1966 else
1967 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1968
1969 target_resume (resume_ptid, step, sig);
1970 }
1971
1972 discard_cleanups (old_cleanups);
1973 }
1974 \f
1975 /* Proceeding. */
1976
1977 /* Clear out all variables saying what to do when inferior is continued.
1978 First do this, then set the ones you want, then call `proceed'. */
1979
1980 static void
1981 clear_proceed_status_thread (struct thread_info *tp)
1982 {
1983 if (debug_infrun)
1984 fprintf_unfiltered (gdb_stdlog,
1985 "infrun: clear_proceed_status_thread (%s)\n",
1986 target_pid_to_str (tp->ptid));
1987
1988 tp->control.trap_expected = 0;
1989 tp->control.step_range_start = 0;
1990 tp->control.step_range_end = 0;
1991 tp->control.may_range_step = 0;
1992 tp->control.step_frame_id = null_frame_id;
1993 tp->control.step_stack_frame_id = null_frame_id;
1994 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1995 tp->stop_requested = 0;
1996
1997 tp->control.stop_step = 0;
1998
1999 tp->control.proceed_to_finish = 0;
2000
2001 /* Discard any remaining commands or status from previous stop. */
2002 bpstat_clear (&tp->control.stop_bpstat);
2003 }
2004
2005 static int
2006 clear_proceed_status_callback (struct thread_info *tp, void *data)
2007 {
2008 if (is_exited (tp->ptid))
2009 return 0;
2010
2011 clear_proceed_status_thread (tp);
2012 return 0;
2013 }
2014
2015 void
2016 clear_proceed_status (void)
2017 {
2018 if (!non_stop)
2019 {
2020 /* In all-stop mode, delete the per-thread status of all
2021 threads, even if inferior_ptid is null_ptid, there may be
2022 threads on the list. E.g., we may be launching a new
2023 process, while selecting the executable. */
2024 iterate_over_threads (clear_proceed_status_callback, NULL);
2025 }
2026
2027 if (!ptid_equal (inferior_ptid, null_ptid))
2028 {
2029 struct inferior *inferior;
2030
2031 if (non_stop)
2032 {
2033 /* If in non-stop mode, only delete the per-thread status of
2034 the current thread. */
2035 clear_proceed_status_thread (inferior_thread ());
2036 }
2037
2038 inferior = current_inferior ();
2039 inferior->control.stop_soon = NO_STOP_QUIETLY;
2040 }
2041
2042 stop_after_trap = 0;
2043
2044 observer_notify_about_to_proceed ();
2045
2046 if (stop_registers)
2047 {
2048 regcache_xfree (stop_registers);
2049 stop_registers = NULL;
2050 }
2051 }
2052
2053 /* Check the current thread against the thread that reported the most recent
2054 event. If a step-over is required return TRUE and set the current thread
2055 to the old thread. Otherwise return FALSE.
2056
2057 This should be suitable for any targets that support threads. */
2058
2059 static int
2060 prepare_to_proceed (int step)
2061 {
2062 ptid_t wait_ptid;
2063 struct target_waitstatus wait_status;
2064 int schedlock_enabled;
2065
2066 /* With non-stop mode on, threads are always handled individually. */
2067 gdb_assert (! non_stop);
2068
2069 /* Get the last target status returned by target_wait(). */
2070 get_last_target_status (&wait_ptid, &wait_status);
2071
2072 /* Make sure we were stopped at a breakpoint. */
2073 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2074 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2075 && wait_status.value.sig != GDB_SIGNAL_ILL
2076 && wait_status.value.sig != GDB_SIGNAL_SEGV
2077 && wait_status.value.sig != GDB_SIGNAL_EMT))
2078 {
2079 return 0;
2080 }
2081
2082 schedlock_enabled = (scheduler_mode == schedlock_on
2083 || (scheduler_mode == schedlock_step
2084 && step));
2085
2086 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2087 if (schedlock_enabled)
2088 return 0;
2089
2090 /* Don't switch over if we're about to resume some other process
2091 other than WAIT_PTID's, and schedule-multiple is off. */
2092 if (!sched_multi
2093 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2094 return 0;
2095
2096 /* Switched over from WAIT_PID. */
2097 if (!ptid_equal (wait_ptid, minus_one_ptid)
2098 && !ptid_equal (inferior_ptid, wait_ptid))
2099 {
2100 struct regcache *regcache = get_thread_regcache (wait_ptid);
2101
2102 if (breakpoint_here_p (get_regcache_aspace (regcache),
2103 regcache_read_pc (regcache)))
2104 {
2105 /* If stepping, remember current thread to switch back to. */
2106 if (step)
2107 deferred_step_ptid = inferior_ptid;
2108
2109 /* Switch back to WAIT_PID thread. */
2110 switch_to_thread (wait_ptid);
2111
2112 if (debug_infrun)
2113 fprintf_unfiltered (gdb_stdlog,
2114 "infrun: prepare_to_proceed (step=%d), "
2115 "switched to [%s]\n",
2116 step, target_pid_to_str (inferior_ptid));
2117
2118 /* We return 1 to indicate that there is a breakpoint here,
2119 so we need to step over it before continuing to avoid
2120 hitting it straight away. */
2121 return 1;
2122 }
2123 }
2124
2125 return 0;
2126 }
2127
2128 /* Basic routine for continuing the program in various fashions.
2129
2130 ADDR is the address to resume at, or -1 for resume where stopped.
2131 SIGGNAL is the signal to give it, or 0 for none,
2132 or -1 for act according to how it stopped.
2133 STEP is nonzero if should trap after one instruction.
2134 -1 means return after that and print nothing.
2135 You should probably set various step_... variables
2136 before calling here, if you are stepping.
2137
2138 You should call clear_proceed_status before calling proceed. */
2139
2140 void
2141 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2142 {
2143 struct regcache *regcache;
2144 struct gdbarch *gdbarch;
2145 struct thread_info *tp;
2146 CORE_ADDR pc;
2147 struct address_space *aspace;
2148 /* GDB may force the inferior to step due to various reasons. */
2149 int force_step = 0;
2150
2151 /* If we're stopped at a fork/vfork, follow the branch set by the
2152 "set follow-fork-mode" command; otherwise, we'll just proceed
2153 resuming the current thread. */
2154 if (!follow_fork ())
2155 {
2156 /* The target for some reason decided not to resume. */
2157 normal_stop ();
2158 if (target_can_async_p ())
2159 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2160 return;
2161 }
2162
2163 /* We'll update this if & when we switch to a new thread. */
2164 previous_inferior_ptid = inferior_ptid;
2165
2166 regcache = get_current_regcache ();
2167 gdbarch = get_regcache_arch (regcache);
2168 aspace = get_regcache_aspace (regcache);
2169 pc = regcache_read_pc (regcache);
2170
2171 if (step > 0)
2172 step_start_function = find_pc_function (pc);
2173 if (step < 0)
2174 stop_after_trap = 1;
2175
2176 if (addr == (CORE_ADDR) -1)
2177 {
2178 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2179 && execution_direction != EXEC_REVERSE)
2180 /* There is a breakpoint at the address we will resume at,
2181 step one instruction before inserting breakpoints so that
2182 we do not stop right away (and report a second hit at this
2183 breakpoint).
2184
2185 Note, we don't do this in reverse, because we won't
2186 actually be executing the breakpoint insn anyway.
2187 We'll be (un-)executing the previous instruction. */
2188
2189 force_step = 1;
2190 else if (gdbarch_single_step_through_delay_p (gdbarch)
2191 && gdbarch_single_step_through_delay (gdbarch,
2192 get_current_frame ()))
2193 /* We stepped onto an instruction that needs to be stepped
2194 again before re-inserting the breakpoint, do so. */
2195 force_step = 1;
2196 }
2197 else
2198 {
2199 regcache_write_pc (regcache, addr);
2200 }
2201
2202 if (debug_infrun)
2203 fprintf_unfiltered (gdb_stdlog,
2204 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2205 paddress (gdbarch, addr),
2206 gdb_signal_to_symbol_string (siggnal), step);
2207
2208 if (non_stop)
2209 /* In non-stop, each thread is handled individually. The context
2210 must already be set to the right thread here. */
2211 ;
2212 else
2213 {
2214 /* In a multi-threaded task we may select another thread and
2215 then continue or step.
2216
2217 But if the old thread was stopped at a breakpoint, it will
2218 immediately cause another breakpoint stop without any
2219 execution (i.e. it will report a breakpoint hit incorrectly).
2220 So we must step over it first.
2221
2222 prepare_to_proceed checks the current thread against the
2223 thread that reported the most recent event. If a step-over
2224 is required it returns TRUE and sets the current thread to
2225 the old thread. */
2226 if (prepare_to_proceed (step))
2227 force_step = 1;
2228 }
2229
2230 /* prepare_to_proceed may change the current thread. */
2231 tp = inferior_thread ();
2232
2233 if (force_step)
2234 {
2235 tp->control.trap_expected = 1;
2236 /* If displaced stepping is enabled, we can step over the
2237 breakpoint without hitting it, so leave all breakpoints
2238 inserted. Otherwise we need to disable all breakpoints, step
2239 one instruction, and then re-add them when that step is
2240 finished. */
2241 if (!use_displaced_stepping (gdbarch))
2242 remove_breakpoints ();
2243 }
2244
2245 /* We can insert breakpoints if we're not trying to step over one,
2246 or if we are stepping over one but we're using displaced stepping
2247 to do so. */
2248 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2249 insert_breakpoints ();
2250
2251 if (!non_stop)
2252 {
2253 /* Pass the last stop signal to the thread we're resuming,
2254 irrespective of whether the current thread is the thread that
2255 got the last event or not. This was historically GDB's
2256 behaviour before keeping a stop_signal per thread. */
2257
2258 struct thread_info *last_thread;
2259 ptid_t last_ptid;
2260 struct target_waitstatus last_status;
2261
2262 get_last_target_status (&last_ptid, &last_status);
2263 if (!ptid_equal (inferior_ptid, last_ptid)
2264 && !ptid_equal (last_ptid, null_ptid)
2265 && !ptid_equal (last_ptid, minus_one_ptid))
2266 {
2267 last_thread = find_thread_ptid (last_ptid);
2268 if (last_thread)
2269 {
2270 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2271 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2272 }
2273 }
2274 }
2275
2276 if (siggnal != GDB_SIGNAL_DEFAULT)
2277 tp->suspend.stop_signal = siggnal;
2278 /* If this signal should not be seen by program,
2279 give it zero. Used for debugging signals. */
2280 else if (!signal_program[tp->suspend.stop_signal])
2281 tp->suspend.stop_signal = GDB_SIGNAL_0;
2282
2283 annotate_starting ();
2284
2285 /* Make sure that output from GDB appears before output from the
2286 inferior. */
2287 gdb_flush (gdb_stdout);
2288
2289 /* Refresh prev_pc value just prior to resuming. This used to be
2290 done in stop_stepping, however, setting prev_pc there did not handle
2291 scenarios such as inferior function calls or returning from
2292 a function via the return command. In those cases, the prev_pc
2293 value was not set properly for subsequent commands. The prev_pc value
2294 is used to initialize the starting line number in the ecs. With an
2295 invalid value, the gdb next command ends up stopping at the position
2296 represented by the next line table entry past our start position.
2297 On platforms that generate one line table entry per line, this
2298 is not a problem. However, on the ia64, the compiler generates
2299 extraneous line table entries that do not increase the line number.
2300 When we issue the gdb next command on the ia64 after an inferior call
2301 or a return command, we often end up a few instructions forward, still
2302 within the original line we started.
2303
2304 An attempt was made to refresh the prev_pc at the same time the
2305 execution_control_state is initialized (for instance, just before
2306 waiting for an inferior event). But this approach did not work
2307 because of platforms that use ptrace, where the pc register cannot
2308 be read unless the inferior is stopped. At that point, we are not
2309 guaranteed the inferior is stopped and so the regcache_read_pc() call
2310 can fail. Setting the prev_pc value here ensures the value is updated
2311 correctly when the inferior is stopped. */
2312 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2313
2314 /* Fill in with reasonable starting values. */
2315 init_thread_stepping_state (tp);
2316
2317 /* Reset to normal state. */
2318 init_infwait_state ();
2319
2320 /* Resume inferior. */
2321 resume (force_step || step || bpstat_should_step (),
2322 tp->suspend.stop_signal);
2323
2324 /* Wait for it to stop (if not standalone)
2325 and in any case decode why it stopped, and act accordingly. */
2326 /* Do this only if we are not using the event loop, or if the target
2327 does not support asynchronous execution. */
2328 if (!target_can_async_p ())
2329 {
2330 wait_for_inferior ();
2331 normal_stop ();
2332 }
2333 }
2334 \f
2335
2336 /* Start remote-debugging of a machine over a serial link. */
2337
2338 void
2339 start_remote (int from_tty)
2340 {
2341 struct inferior *inferior;
2342
2343 inferior = current_inferior ();
2344 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2345
2346 /* Always go on waiting for the target, regardless of the mode. */
2347 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2348 indicate to wait_for_inferior that a target should timeout if
2349 nothing is returned (instead of just blocking). Because of this,
2350 targets expecting an immediate response need to, internally, set
2351 things up so that the target_wait() is forced to eventually
2352 timeout. */
2353 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2354 differentiate to its caller what the state of the target is after
2355 the initial open has been performed. Here we're assuming that
2356 the target has stopped. It should be possible to eventually have
2357 target_open() return to the caller an indication that the target
2358 is currently running and GDB state should be set to the same as
2359 for an async run. */
2360 wait_for_inferior ();
2361
2362 /* Now that the inferior has stopped, do any bookkeeping like
2363 loading shared libraries. We want to do this before normal_stop,
2364 so that the displayed frame is up to date. */
2365 post_create_inferior (&current_target, from_tty);
2366
2367 normal_stop ();
2368 }
2369
2370 /* Initialize static vars when a new inferior begins. */
2371
2372 void
2373 init_wait_for_inferior (void)
2374 {
2375 /* These are meaningless until the first time through wait_for_inferior. */
2376
2377 breakpoint_init_inferior (inf_starting);
2378
2379 clear_proceed_status ();
2380
2381 stepping_past_singlestep_breakpoint = 0;
2382 deferred_step_ptid = null_ptid;
2383
2384 target_last_wait_ptid = minus_one_ptid;
2385
2386 previous_inferior_ptid = inferior_ptid;
2387 init_infwait_state ();
2388
2389 /* Discard any skipped inlined frames. */
2390 clear_inline_frame_state (minus_one_ptid);
2391 }
2392
2393 \f
2394 /* This enum encodes possible reasons for doing a target_wait, so that
2395 wfi can call target_wait in one place. (Ultimately the call will be
2396 moved out of the infinite loop entirely.) */
2397
2398 enum infwait_states
2399 {
2400 infwait_normal_state,
2401 infwait_thread_hop_state,
2402 infwait_step_watch_state,
2403 infwait_nonstep_watch_state
2404 };
2405
2406 /* The PTID we'll do a target_wait on.*/
2407 ptid_t waiton_ptid;
2408
2409 /* Current inferior wait state. */
2410 static enum infwait_states infwait_state;
2411
2412 /* Data to be passed around while handling an event. This data is
2413 discarded between events. */
2414 struct execution_control_state
2415 {
2416 ptid_t ptid;
2417 /* The thread that got the event, if this was a thread event; NULL
2418 otherwise. */
2419 struct thread_info *event_thread;
2420
2421 struct target_waitstatus ws;
2422 int stop_func_filled_in;
2423 CORE_ADDR stop_func_start;
2424 CORE_ADDR stop_func_end;
2425 const char *stop_func_name;
2426 int wait_some_more;
2427 };
2428
2429 static void handle_inferior_event (struct execution_control_state *ecs);
2430
2431 static void handle_step_into_function (struct gdbarch *gdbarch,
2432 struct execution_control_state *ecs);
2433 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2434 struct execution_control_state *ecs);
2435 static void check_exception_resume (struct execution_control_state *,
2436 struct frame_info *);
2437
2438 static void stop_stepping (struct execution_control_state *ecs);
2439 static void prepare_to_wait (struct execution_control_state *ecs);
2440 static void keep_going (struct execution_control_state *ecs);
2441 static void process_event_stop_test (struct execution_control_state *ecs);
2442 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
2443
2444 /* Callback for iterate over threads. If the thread is stopped, but
2445 the user/frontend doesn't know about that yet, go through
2446 normal_stop, as if the thread had just stopped now. ARG points at
2447 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2448 ptid_is_pid(PTID) is true, applies to all threads of the process
2449 pointed at by PTID. Otherwise, apply only to the thread pointed by
2450 PTID. */
2451
2452 static int
2453 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2454 {
2455 ptid_t ptid = * (ptid_t *) arg;
2456
2457 if ((ptid_equal (info->ptid, ptid)
2458 || ptid_equal (minus_one_ptid, ptid)
2459 || (ptid_is_pid (ptid)
2460 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2461 && is_running (info->ptid)
2462 && !is_executing (info->ptid))
2463 {
2464 struct cleanup *old_chain;
2465 struct execution_control_state ecss;
2466 struct execution_control_state *ecs = &ecss;
2467
2468 memset (ecs, 0, sizeof (*ecs));
2469
2470 old_chain = make_cleanup_restore_current_thread ();
2471
2472 /* Go through handle_inferior_event/normal_stop, so we always
2473 have consistent output as if the stop event had been
2474 reported. */
2475 ecs->ptid = info->ptid;
2476 ecs->event_thread = find_thread_ptid (info->ptid);
2477 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2478 ecs->ws.value.sig = GDB_SIGNAL_0;
2479
2480 handle_inferior_event (ecs);
2481
2482 if (!ecs->wait_some_more)
2483 {
2484 struct thread_info *tp;
2485
2486 normal_stop ();
2487
2488 /* Finish off the continuations. */
2489 tp = inferior_thread ();
2490 do_all_intermediate_continuations_thread (tp, 1);
2491 do_all_continuations_thread (tp, 1);
2492 }
2493
2494 do_cleanups (old_chain);
2495 }
2496
2497 return 0;
2498 }
2499
2500 /* This function is attached as a "thread_stop_requested" observer.
2501 Cleanup local state that assumed the PTID was to be resumed, and
2502 report the stop to the frontend. */
2503
2504 static void
2505 infrun_thread_stop_requested (ptid_t ptid)
2506 {
2507 struct displaced_step_inferior_state *displaced;
2508
2509 /* PTID was requested to stop. Remove it from the displaced
2510 stepping queue, so we don't try to resume it automatically. */
2511
2512 for (displaced = displaced_step_inferior_states;
2513 displaced;
2514 displaced = displaced->next)
2515 {
2516 struct displaced_step_request *it, **prev_next_p;
2517
2518 it = displaced->step_request_queue;
2519 prev_next_p = &displaced->step_request_queue;
2520 while (it)
2521 {
2522 if (ptid_match (it->ptid, ptid))
2523 {
2524 *prev_next_p = it->next;
2525 it->next = NULL;
2526 xfree (it);
2527 }
2528 else
2529 {
2530 prev_next_p = &it->next;
2531 }
2532
2533 it = *prev_next_p;
2534 }
2535 }
2536
2537 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2538 }
2539
2540 static void
2541 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2542 {
2543 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2544 nullify_last_target_wait_ptid ();
2545 }
2546
2547 /* Callback for iterate_over_threads. */
2548
2549 static int
2550 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2551 {
2552 if (is_exited (info->ptid))
2553 return 0;
2554
2555 delete_step_resume_breakpoint (info);
2556 delete_exception_resume_breakpoint (info);
2557 return 0;
2558 }
2559
2560 /* In all-stop, delete the step resume breakpoint of any thread that
2561 had one. In non-stop, delete the step resume breakpoint of the
2562 thread that just stopped. */
2563
2564 static void
2565 delete_step_thread_step_resume_breakpoint (void)
2566 {
2567 if (!target_has_execution
2568 || ptid_equal (inferior_ptid, null_ptid))
2569 /* If the inferior has exited, we have already deleted the step
2570 resume breakpoints out of GDB's lists. */
2571 return;
2572
2573 if (non_stop)
2574 {
2575 /* If in non-stop mode, only delete the step-resume or
2576 longjmp-resume breakpoint of the thread that just stopped
2577 stepping. */
2578 struct thread_info *tp = inferior_thread ();
2579
2580 delete_step_resume_breakpoint (tp);
2581 delete_exception_resume_breakpoint (tp);
2582 }
2583 else
2584 /* In all-stop mode, delete all step-resume and longjmp-resume
2585 breakpoints of any thread that had them. */
2586 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2587 }
2588
2589 /* A cleanup wrapper. */
2590
2591 static void
2592 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2593 {
2594 delete_step_thread_step_resume_breakpoint ();
2595 }
2596
2597 /* Pretty print the results of target_wait, for debugging purposes. */
2598
2599 static void
2600 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2601 const struct target_waitstatus *ws)
2602 {
2603 char *status_string = target_waitstatus_to_string (ws);
2604 struct ui_file *tmp_stream = mem_fileopen ();
2605 char *text;
2606
2607 /* The text is split over several lines because it was getting too long.
2608 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2609 output as a unit; we want only one timestamp printed if debug_timestamp
2610 is set. */
2611
2612 fprintf_unfiltered (tmp_stream,
2613 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2614 if (ptid_get_pid (waiton_ptid) != -1)
2615 fprintf_unfiltered (tmp_stream,
2616 " [%s]", target_pid_to_str (waiton_ptid));
2617 fprintf_unfiltered (tmp_stream, ", status) =\n");
2618 fprintf_unfiltered (tmp_stream,
2619 "infrun: %d [%s],\n",
2620 ptid_get_pid (result_ptid),
2621 target_pid_to_str (result_ptid));
2622 fprintf_unfiltered (tmp_stream,
2623 "infrun: %s\n",
2624 status_string);
2625
2626 text = ui_file_xstrdup (tmp_stream, NULL);
2627
2628 /* This uses %s in part to handle %'s in the text, but also to avoid
2629 a gcc error: the format attribute requires a string literal. */
2630 fprintf_unfiltered (gdb_stdlog, "%s", text);
2631
2632 xfree (status_string);
2633 xfree (text);
2634 ui_file_delete (tmp_stream);
2635 }
2636
2637 /* Prepare and stabilize the inferior for detaching it. E.g.,
2638 detaching while a thread is displaced stepping is a recipe for
2639 crashing it, as nothing would readjust the PC out of the scratch
2640 pad. */
2641
2642 void
2643 prepare_for_detach (void)
2644 {
2645 struct inferior *inf = current_inferior ();
2646 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2647 struct cleanup *old_chain_1;
2648 struct displaced_step_inferior_state *displaced;
2649
2650 displaced = get_displaced_stepping_state (inf->pid);
2651
2652 /* Is any thread of this process displaced stepping? If not,
2653 there's nothing else to do. */
2654 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2655 return;
2656
2657 if (debug_infrun)
2658 fprintf_unfiltered (gdb_stdlog,
2659 "displaced-stepping in-process while detaching");
2660
2661 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2662 inf->detaching = 1;
2663
2664 while (!ptid_equal (displaced->step_ptid, null_ptid))
2665 {
2666 struct cleanup *old_chain_2;
2667 struct execution_control_state ecss;
2668 struct execution_control_state *ecs;
2669
2670 ecs = &ecss;
2671 memset (ecs, 0, sizeof (*ecs));
2672
2673 overlay_cache_invalid = 1;
2674
2675 if (deprecated_target_wait_hook)
2676 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2677 else
2678 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2679
2680 if (debug_infrun)
2681 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2682
2683 /* If an error happens while handling the event, propagate GDB's
2684 knowledge of the executing state to the frontend/user running
2685 state. */
2686 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2687 &minus_one_ptid);
2688
2689 /* Now figure out what to do with the result of the result. */
2690 handle_inferior_event (ecs);
2691
2692 /* No error, don't finish the state yet. */
2693 discard_cleanups (old_chain_2);
2694
2695 /* Breakpoints and watchpoints are not installed on the target
2696 at this point, and signals are passed directly to the
2697 inferior, so this must mean the process is gone. */
2698 if (!ecs->wait_some_more)
2699 {
2700 discard_cleanups (old_chain_1);
2701 error (_("Program exited while detaching"));
2702 }
2703 }
2704
2705 discard_cleanups (old_chain_1);
2706 }
2707
2708 /* Wait for control to return from inferior to debugger.
2709
2710 If inferior gets a signal, we may decide to start it up again
2711 instead of returning. That is why there is a loop in this function.
2712 When this function actually returns it means the inferior
2713 should be left stopped and GDB should read more commands. */
2714
2715 void
2716 wait_for_inferior (void)
2717 {
2718 struct cleanup *old_cleanups;
2719
2720 if (debug_infrun)
2721 fprintf_unfiltered
2722 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2723
2724 old_cleanups =
2725 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2726
2727 while (1)
2728 {
2729 struct execution_control_state ecss;
2730 struct execution_control_state *ecs = &ecss;
2731 struct cleanup *old_chain;
2732
2733 memset (ecs, 0, sizeof (*ecs));
2734
2735 overlay_cache_invalid = 1;
2736
2737 if (deprecated_target_wait_hook)
2738 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2739 else
2740 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2741
2742 if (debug_infrun)
2743 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2744
2745 /* If an error happens while handling the event, propagate GDB's
2746 knowledge of the executing state to the frontend/user running
2747 state. */
2748 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2749
2750 /* Now figure out what to do with the result of the result. */
2751 handle_inferior_event (ecs);
2752
2753 /* No error, don't finish the state yet. */
2754 discard_cleanups (old_chain);
2755
2756 if (!ecs->wait_some_more)
2757 break;
2758 }
2759
2760 do_cleanups (old_cleanups);
2761 }
2762
2763 /* Asynchronous version of wait_for_inferior. It is called by the
2764 event loop whenever a change of state is detected on the file
2765 descriptor corresponding to the target. It can be called more than
2766 once to complete a single execution command. In such cases we need
2767 to keep the state in a global variable ECSS. If it is the last time
2768 that this function is called for a single execution command, then
2769 report to the user that the inferior has stopped, and do the
2770 necessary cleanups. */
2771
2772 void
2773 fetch_inferior_event (void *client_data)
2774 {
2775 struct execution_control_state ecss;
2776 struct execution_control_state *ecs = &ecss;
2777 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2778 struct cleanup *ts_old_chain;
2779 int was_sync = sync_execution;
2780 int cmd_done = 0;
2781
2782 memset (ecs, 0, sizeof (*ecs));
2783
2784 /* We're handling a live event, so make sure we're doing live
2785 debugging. If we're looking at traceframes while the target is
2786 running, we're going to need to get back to that mode after
2787 handling the event. */
2788 if (non_stop)
2789 {
2790 make_cleanup_restore_current_traceframe ();
2791 set_current_traceframe (-1);
2792 }
2793
2794 if (non_stop)
2795 /* In non-stop mode, the user/frontend should not notice a thread
2796 switch due to internal events. Make sure we reverse to the
2797 user selected thread and frame after handling the event and
2798 running any breakpoint commands. */
2799 make_cleanup_restore_current_thread ();
2800
2801 overlay_cache_invalid = 1;
2802
2803 make_cleanup_restore_integer (&execution_direction);
2804 execution_direction = target_execution_direction ();
2805
2806 if (deprecated_target_wait_hook)
2807 ecs->ptid =
2808 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2809 else
2810 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2811
2812 if (debug_infrun)
2813 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2814
2815 /* If an error happens while handling the event, propagate GDB's
2816 knowledge of the executing state to the frontend/user running
2817 state. */
2818 if (!non_stop)
2819 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2820 else
2821 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2822
2823 /* Get executed before make_cleanup_restore_current_thread above to apply
2824 still for the thread which has thrown the exception. */
2825 make_bpstat_clear_actions_cleanup ();
2826
2827 /* Now figure out what to do with the result of the result. */
2828 handle_inferior_event (ecs);
2829
2830 if (!ecs->wait_some_more)
2831 {
2832 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2833
2834 delete_step_thread_step_resume_breakpoint ();
2835
2836 /* We may not find an inferior if this was a process exit. */
2837 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2838 normal_stop ();
2839
2840 if (target_has_execution
2841 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2842 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2843 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2844 && ecs->event_thread->step_multi
2845 && ecs->event_thread->control.stop_step)
2846 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2847 else
2848 {
2849 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2850 cmd_done = 1;
2851 }
2852 }
2853
2854 /* No error, don't finish the thread states yet. */
2855 discard_cleanups (ts_old_chain);
2856
2857 /* Revert thread and frame. */
2858 do_cleanups (old_chain);
2859
2860 /* If the inferior was in sync execution mode, and now isn't,
2861 restore the prompt (a synchronous execution command has finished,
2862 and we're ready for input). */
2863 if (interpreter_async && was_sync && !sync_execution)
2864 display_gdb_prompt (0);
2865
2866 if (cmd_done
2867 && !was_sync
2868 && exec_done_display_p
2869 && (ptid_equal (inferior_ptid, null_ptid)
2870 || !is_running (inferior_ptid)))
2871 printf_unfiltered (_("completed.\n"));
2872 }
2873
2874 /* Record the frame and location we're currently stepping through. */
2875 void
2876 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2877 {
2878 struct thread_info *tp = inferior_thread ();
2879
2880 tp->control.step_frame_id = get_frame_id (frame);
2881 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2882
2883 tp->current_symtab = sal.symtab;
2884 tp->current_line = sal.line;
2885 }
2886
2887 /* Clear context switchable stepping state. */
2888
2889 void
2890 init_thread_stepping_state (struct thread_info *tss)
2891 {
2892 tss->stepping_over_breakpoint = 0;
2893 tss->step_after_step_resume_breakpoint = 0;
2894 }
2895
2896 /* Return the cached copy of the last pid/waitstatus returned by
2897 target_wait()/deprecated_target_wait_hook(). The data is actually
2898 cached by handle_inferior_event(), which gets called immediately
2899 after target_wait()/deprecated_target_wait_hook(). */
2900
2901 void
2902 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2903 {
2904 *ptidp = target_last_wait_ptid;
2905 *status = target_last_waitstatus;
2906 }
2907
2908 void
2909 nullify_last_target_wait_ptid (void)
2910 {
2911 target_last_wait_ptid = minus_one_ptid;
2912 }
2913
2914 /* Switch thread contexts. */
2915
2916 static void
2917 context_switch (ptid_t ptid)
2918 {
2919 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2920 {
2921 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2922 target_pid_to_str (inferior_ptid));
2923 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2924 target_pid_to_str (ptid));
2925 }
2926
2927 switch_to_thread (ptid);
2928 }
2929
2930 static void
2931 adjust_pc_after_break (struct execution_control_state *ecs)
2932 {
2933 struct regcache *regcache;
2934 struct gdbarch *gdbarch;
2935 struct address_space *aspace;
2936 CORE_ADDR breakpoint_pc;
2937
2938 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2939 we aren't, just return.
2940
2941 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2942 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2943 implemented by software breakpoints should be handled through the normal
2944 breakpoint layer.
2945
2946 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2947 different signals (SIGILL or SIGEMT for instance), but it is less
2948 clear where the PC is pointing afterwards. It may not match
2949 gdbarch_decr_pc_after_break. I don't know any specific target that
2950 generates these signals at breakpoints (the code has been in GDB since at
2951 least 1992) so I can not guess how to handle them here.
2952
2953 In earlier versions of GDB, a target with
2954 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2955 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2956 target with both of these set in GDB history, and it seems unlikely to be
2957 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2958
2959 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2960 return;
2961
2962 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2963 return;
2964
2965 /* In reverse execution, when a breakpoint is hit, the instruction
2966 under it has already been de-executed. The reported PC always
2967 points at the breakpoint address, so adjusting it further would
2968 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2969 architecture:
2970
2971 B1 0x08000000 : INSN1
2972 B2 0x08000001 : INSN2
2973 0x08000002 : INSN3
2974 PC -> 0x08000003 : INSN4
2975
2976 Say you're stopped at 0x08000003 as above. Reverse continuing
2977 from that point should hit B2 as below. Reading the PC when the
2978 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2979 been de-executed already.
2980
2981 B1 0x08000000 : INSN1
2982 B2 PC -> 0x08000001 : INSN2
2983 0x08000002 : INSN3
2984 0x08000003 : INSN4
2985
2986 We can't apply the same logic as for forward execution, because
2987 we would wrongly adjust the PC to 0x08000000, since there's a
2988 breakpoint at PC - 1. We'd then report a hit on B1, although
2989 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2990 behaviour. */
2991 if (execution_direction == EXEC_REVERSE)
2992 return;
2993
2994 /* If this target does not decrement the PC after breakpoints, then
2995 we have nothing to do. */
2996 regcache = get_thread_regcache (ecs->ptid);
2997 gdbarch = get_regcache_arch (regcache);
2998 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2999 return;
3000
3001 aspace = get_regcache_aspace (regcache);
3002
3003 /* Find the location where (if we've hit a breakpoint) the
3004 breakpoint would be. */
3005 breakpoint_pc = regcache_read_pc (regcache)
3006 - gdbarch_decr_pc_after_break (gdbarch);
3007
3008 /* Check whether there actually is a software breakpoint inserted at
3009 that location.
3010
3011 If in non-stop mode, a race condition is possible where we've
3012 removed a breakpoint, but stop events for that breakpoint were
3013 already queued and arrive later. To suppress those spurious
3014 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3015 and retire them after a number of stop events are reported. */
3016 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3017 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3018 {
3019 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3020
3021 if (RECORD_IS_USED)
3022 record_full_gdb_operation_disable_set ();
3023
3024 /* When using hardware single-step, a SIGTRAP is reported for both
3025 a completed single-step and a software breakpoint. Need to
3026 differentiate between the two, as the latter needs adjusting
3027 but the former does not.
3028
3029 The SIGTRAP can be due to a completed hardware single-step only if
3030 - we didn't insert software single-step breakpoints
3031 - the thread to be examined is still the current thread
3032 - this thread is currently being stepped
3033
3034 If any of these events did not occur, we must have stopped due
3035 to hitting a software breakpoint, and have to back up to the
3036 breakpoint address.
3037
3038 As a special case, we could have hardware single-stepped a
3039 software breakpoint. In this case (prev_pc == breakpoint_pc),
3040 we also need to back up to the breakpoint address. */
3041
3042 if (singlestep_breakpoints_inserted_p
3043 || !ptid_equal (ecs->ptid, inferior_ptid)
3044 || !currently_stepping (ecs->event_thread)
3045 || ecs->event_thread->prev_pc == breakpoint_pc)
3046 regcache_write_pc (regcache, breakpoint_pc);
3047
3048 do_cleanups (old_cleanups);
3049 }
3050 }
3051
3052 static void
3053 init_infwait_state (void)
3054 {
3055 waiton_ptid = pid_to_ptid (-1);
3056 infwait_state = infwait_normal_state;
3057 }
3058
3059 static int
3060 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3061 {
3062 for (frame = get_prev_frame (frame);
3063 frame != NULL;
3064 frame = get_prev_frame (frame))
3065 {
3066 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3067 return 1;
3068 if (get_frame_type (frame) != INLINE_FRAME)
3069 break;
3070 }
3071
3072 return 0;
3073 }
3074
3075 /* Auxiliary function that handles syscall entry/return events.
3076 It returns 1 if the inferior should keep going (and GDB
3077 should ignore the event), or 0 if the event deserves to be
3078 processed. */
3079
3080 static int
3081 handle_syscall_event (struct execution_control_state *ecs)
3082 {
3083 struct regcache *regcache;
3084 int syscall_number;
3085
3086 if (!ptid_equal (ecs->ptid, inferior_ptid))
3087 context_switch (ecs->ptid);
3088
3089 regcache = get_thread_regcache (ecs->ptid);
3090 syscall_number = ecs->ws.value.syscall_number;
3091 stop_pc = regcache_read_pc (regcache);
3092
3093 if (catch_syscall_enabled () > 0
3094 && catching_syscall_number (syscall_number) > 0)
3095 {
3096 if (debug_infrun)
3097 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3098 syscall_number);
3099
3100 ecs->event_thread->control.stop_bpstat
3101 = bpstat_stop_status (get_regcache_aspace (regcache),
3102 stop_pc, ecs->ptid, &ecs->ws);
3103
3104 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3105 {
3106 /* Catchpoint hit. */
3107 return 0;
3108 }
3109 }
3110
3111 /* If no catchpoint triggered for this, then keep going. */
3112 keep_going (ecs);
3113 return 1;
3114 }
3115
3116 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3117
3118 static void
3119 fill_in_stop_func (struct gdbarch *gdbarch,
3120 struct execution_control_state *ecs)
3121 {
3122 if (!ecs->stop_func_filled_in)
3123 {
3124 /* Don't care about return value; stop_func_start and stop_func_name
3125 will both be 0 if it doesn't work. */
3126 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3127 &ecs->stop_func_start, &ecs->stop_func_end);
3128 ecs->stop_func_start
3129 += gdbarch_deprecated_function_start_offset (gdbarch);
3130
3131 ecs->stop_func_filled_in = 1;
3132 }
3133 }
3134
3135 /* Given an execution control state that has been freshly filled in by
3136 an event from the inferior, figure out what it means and take
3137 appropriate action.
3138
3139 The alternatives are:
3140
3141 1) stop_stepping and return; to really stop and return to the
3142 debugger.
3143
3144 2) keep_going and return; to wait for the next event (set
3145 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3146 once). */
3147
3148 static void
3149 handle_inferior_event (struct execution_control_state *ecs)
3150 {
3151 struct frame_info *frame;
3152 struct gdbarch *gdbarch;
3153 int stopped_by_watchpoint;
3154 int stepped_after_stopped_by_watchpoint = 0;
3155 enum stop_kind stop_soon;
3156 int random_signal;
3157 enum bpstat_signal_value sval;
3158
3159 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3160 {
3161 /* We had an event in the inferior, but we are not interested in
3162 handling it at this level. The lower layers have already
3163 done what needs to be done, if anything.
3164
3165 One of the possible circumstances for this is when the
3166 inferior produces output for the console. The inferior has
3167 not stopped, and we are ignoring the event. Another possible
3168 circumstance is any event which the lower level knows will be
3169 reported multiple times without an intervening resume. */
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3172 prepare_to_wait (ecs);
3173 return;
3174 }
3175
3176 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3177 && target_can_async_p () && !sync_execution)
3178 {
3179 /* There were no unwaited-for children left in the target, but,
3180 we're not synchronously waiting for events either. Just
3181 ignore. Otherwise, if we were running a synchronous
3182 execution command, we need to cancel it and give the user
3183 back the terminal. */
3184 if (debug_infrun)
3185 fprintf_unfiltered (gdb_stdlog,
3186 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3187 prepare_to_wait (ecs);
3188 return;
3189 }
3190
3191 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3192 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3193 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3194 {
3195 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3196
3197 gdb_assert (inf);
3198 stop_soon = inf->control.stop_soon;
3199 }
3200 else
3201 stop_soon = NO_STOP_QUIETLY;
3202
3203 /* Cache the last pid/waitstatus. */
3204 target_last_wait_ptid = ecs->ptid;
3205 target_last_waitstatus = ecs->ws;
3206
3207 /* Always clear state belonging to the previous time we stopped. */
3208 stop_stack_dummy = STOP_NONE;
3209
3210 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3211 {
3212 /* No unwaited-for children left. IOW, all resumed children
3213 have exited. */
3214 if (debug_infrun)
3215 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3216
3217 stop_print_frame = 0;
3218 stop_stepping (ecs);
3219 return;
3220 }
3221
3222 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3223 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3224 {
3225 ecs->event_thread = find_thread_ptid (ecs->ptid);
3226 /* If it's a new thread, add it to the thread database. */
3227 if (ecs->event_thread == NULL)
3228 ecs->event_thread = add_thread (ecs->ptid);
3229
3230 /* Disable range stepping. If the next step request could use a
3231 range, this will be end up re-enabled then. */
3232 ecs->event_thread->control.may_range_step = 0;
3233 }
3234
3235 /* Dependent on valid ECS->EVENT_THREAD. */
3236 adjust_pc_after_break (ecs);
3237
3238 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3239 reinit_frame_cache ();
3240
3241 breakpoint_retire_moribund ();
3242
3243 /* First, distinguish signals caused by the debugger from signals
3244 that have to do with the program's own actions. Note that
3245 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3246 on the operating system version. Here we detect when a SIGILL or
3247 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3248 something similar for SIGSEGV, since a SIGSEGV will be generated
3249 when we're trying to execute a breakpoint instruction on a
3250 non-executable stack. This happens for call dummy breakpoints
3251 for architectures like SPARC that place call dummies on the
3252 stack. */
3253 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3254 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3255 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3256 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3257 {
3258 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3259
3260 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3261 regcache_read_pc (regcache)))
3262 {
3263 if (debug_infrun)
3264 fprintf_unfiltered (gdb_stdlog,
3265 "infrun: Treating signal as SIGTRAP\n");
3266 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3267 }
3268 }
3269
3270 /* Mark the non-executing threads accordingly. In all-stop, all
3271 threads of all processes are stopped when we get any event
3272 reported. In non-stop mode, only the event thread stops. If
3273 we're handling a process exit in non-stop mode, there's nothing
3274 to do, as threads of the dead process are gone, and threads of
3275 any other process were left running. */
3276 if (!non_stop)
3277 set_executing (minus_one_ptid, 0);
3278 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3279 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3280 set_executing (ecs->ptid, 0);
3281
3282 switch (infwait_state)
3283 {
3284 case infwait_thread_hop_state:
3285 if (debug_infrun)
3286 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3287 break;
3288
3289 case infwait_normal_state:
3290 if (debug_infrun)
3291 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3292 break;
3293
3294 case infwait_step_watch_state:
3295 if (debug_infrun)
3296 fprintf_unfiltered (gdb_stdlog,
3297 "infrun: infwait_step_watch_state\n");
3298
3299 stepped_after_stopped_by_watchpoint = 1;
3300 break;
3301
3302 case infwait_nonstep_watch_state:
3303 if (debug_infrun)
3304 fprintf_unfiltered (gdb_stdlog,
3305 "infrun: infwait_nonstep_watch_state\n");
3306 insert_breakpoints ();
3307
3308 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3309 handle things like signals arriving and other things happening
3310 in combination correctly? */
3311 stepped_after_stopped_by_watchpoint = 1;
3312 break;
3313
3314 default:
3315 internal_error (__FILE__, __LINE__, _("bad switch"));
3316 }
3317
3318 infwait_state = infwait_normal_state;
3319 waiton_ptid = pid_to_ptid (-1);
3320
3321 switch (ecs->ws.kind)
3322 {
3323 case TARGET_WAITKIND_LOADED:
3324 if (debug_infrun)
3325 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3326 if (!ptid_equal (ecs->ptid, inferior_ptid))
3327 context_switch (ecs->ptid);
3328 /* Ignore gracefully during startup of the inferior, as it might
3329 be the shell which has just loaded some objects, otherwise
3330 add the symbols for the newly loaded objects. Also ignore at
3331 the beginning of an attach or remote session; we will query
3332 the full list of libraries once the connection is
3333 established. */
3334 if (stop_soon == NO_STOP_QUIETLY)
3335 {
3336 struct regcache *regcache;
3337
3338 regcache = get_thread_regcache (ecs->ptid);
3339
3340 handle_solib_event ();
3341
3342 ecs->event_thread->control.stop_bpstat
3343 = bpstat_stop_status (get_regcache_aspace (regcache),
3344 stop_pc, ecs->ptid, &ecs->ws);
3345
3346 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3347 {
3348 /* A catchpoint triggered. */
3349 process_event_stop_test (ecs);
3350 return;
3351 }
3352
3353 /* If requested, stop when the dynamic linker notifies
3354 gdb of events. This allows the user to get control
3355 and place breakpoints in initializer routines for
3356 dynamically loaded objects (among other things). */
3357 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3358 if (stop_on_solib_events)
3359 {
3360 /* Make sure we print "Stopped due to solib-event" in
3361 normal_stop. */
3362 stop_print_frame = 1;
3363
3364 stop_stepping (ecs);
3365 return;
3366 }
3367 }
3368
3369 /* If we are skipping through a shell, or through shared library
3370 loading that we aren't interested in, resume the program. If
3371 we're running the program normally, also resume. */
3372 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3373 {
3374 /* Loading of shared libraries might have changed breakpoint
3375 addresses. Make sure new breakpoints are inserted. */
3376 if (stop_soon == NO_STOP_QUIETLY
3377 && !breakpoints_always_inserted_mode ())
3378 insert_breakpoints ();
3379 resume (0, GDB_SIGNAL_0);
3380 prepare_to_wait (ecs);
3381 return;
3382 }
3383
3384 /* But stop if we're attaching or setting up a remote
3385 connection. */
3386 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3387 || stop_soon == STOP_QUIETLY_REMOTE)
3388 {
3389 if (debug_infrun)
3390 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3391 stop_stepping (ecs);
3392 return;
3393 }
3394
3395 internal_error (__FILE__, __LINE__,
3396 _("unhandled stop_soon: %d"), (int) stop_soon);
3397
3398 case TARGET_WAITKIND_SPURIOUS:
3399 if (debug_infrun)
3400 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3401 if (!ptid_equal (ecs->ptid, inferior_ptid))
3402 context_switch (ecs->ptid);
3403 resume (0, GDB_SIGNAL_0);
3404 prepare_to_wait (ecs);
3405 return;
3406
3407 case TARGET_WAITKIND_EXITED:
3408 case TARGET_WAITKIND_SIGNALLED:
3409 if (debug_infrun)
3410 {
3411 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3412 fprintf_unfiltered (gdb_stdlog,
3413 "infrun: TARGET_WAITKIND_EXITED\n");
3414 else
3415 fprintf_unfiltered (gdb_stdlog,
3416 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3417 }
3418
3419 inferior_ptid = ecs->ptid;
3420 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3421 set_current_program_space (current_inferior ()->pspace);
3422 handle_vfork_child_exec_or_exit (0);
3423 target_terminal_ours (); /* Must do this before mourn anyway. */
3424
3425 /* Clearing any previous state of convenience variables. */
3426 clear_exit_convenience_vars ();
3427
3428 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3429 {
3430 /* Record the exit code in the convenience variable $_exitcode, so
3431 that the user can inspect this again later. */
3432 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3433 (LONGEST) ecs->ws.value.integer);
3434
3435 /* Also record this in the inferior itself. */
3436 current_inferior ()->has_exit_code = 1;
3437 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3438
3439 print_exited_reason (ecs->ws.value.integer);
3440 }
3441 else
3442 {
3443 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3444 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3445
3446 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3447 {
3448 /* Set the value of the internal variable $_exitsignal,
3449 which holds the signal uncaught by the inferior. */
3450 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3451 gdbarch_gdb_signal_to_target (gdbarch,
3452 ecs->ws.value.sig));
3453 }
3454 else
3455 {
3456 /* We don't have access to the target's method used for
3457 converting between signal numbers (GDB's internal
3458 representation <-> target's representation).
3459 Therefore, we cannot do a good job at displaying this
3460 information to the user. It's better to just warn
3461 her about it (if infrun debugging is enabled), and
3462 give up. */
3463 if (debug_infrun)
3464 fprintf_filtered (gdb_stdlog, _("\
3465 Cannot fill $_exitsignal with the correct signal number.\n"));
3466 }
3467
3468 print_signal_exited_reason (ecs->ws.value.sig);
3469 }
3470
3471 gdb_flush (gdb_stdout);
3472 target_mourn_inferior ();
3473 singlestep_breakpoints_inserted_p = 0;
3474 cancel_single_step_breakpoints ();
3475 stop_print_frame = 0;
3476 stop_stepping (ecs);
3477 return;
3478
3479 /* The following are the only cases in which we keep going;
3480 the above cases end in a continue or goto. */
3481 case TARGET_WAITKIND_FORKED:
3482 case TARGET_WAITKIND_VFORKED:
3483 if (debug_infrun)
3484 {
3485 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3486 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3487 else
3488 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3489 }
3490
3491 /* Check whether the inferior is displaced stepping. */
3492 {
3493 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3494 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3495 struct displaced_step_inferior_state *displaced
3496 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3497
3498 /* If checking displaced stepping is supported, and thread
3499 ecs->ptid is displaced stepping. */
3500 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3501 {
3502 struct inferior *parent_inf
3503 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3504 struct regcache *child_regcache;
3505 CORE_ADDR parent_pc;
3506
3507 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3508 indicating that the displaced stepping of syscall instruction
3509 has been done. Perform cleanup for parent process here. Note
3510 that this operation also cleans up the child process for vfork,
3511 because their pages are shared. */
3512 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3513
3514 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3515 {
3516 /* Restore scratch pad for child process. */
3517 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3518 }
3519
3520 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3521 the child's PC is also within the scratchpad. Set the child's PC
3522 to the parent's PC value, which has already been fixed up.
3523 FIXME: we use the parent's aspace here, although we're touching
3524 the child, because the child hasn't been added to the inferior
3525 list yet at this point. */
3526
3527 child_regcache
3528 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3529 gdbarch,
3530 parent_inf->aspace);
3531 /* Read PC value of parent process. */
3532 parent_pc = regcache_read_pc (regcache);
3533
3534 if (debug_displaced)
3535 fprintf_unfiltered (gdb_stdlog,
3536 "displaced: write child pc from %s to %s\n",
3537 paddress (gdbarch,
3538 regcache_read_pc (child_regcache)),
3539 paddress (gdbarch, parent_pc));
3540
3541 regcache_write_pc (child_regcache, parent_pc);
3542 }
3543 }
3544
3545 if (!ptid_equal (ecs->ptid, inferior_ptid))
3546 context_switch (ecs->ptid);
3547
3548 /* Immediately detach breakpoints from the child before there's
3549 any chance of letting the user delete breakpoints from the
3550 breakpoint lists. If we don't do this early, it's easy to
3551 leave left over traps in the child, vis: "break foo; catch
3552 fork; c; <fork>; del; c; <child calls foo>". We only follow
3553 the fork on the last `continue', and by that time the
3554 breakpoint at "foo" is long gone from the breakpoint table.
3555 If we vforked, then we don't need to unpatch here, since both
3556 parent and child are sharing the same memory pages; we'll
3557 need to unpatch at follow/detach time instead to be certain
3558 that new breakpoints added between catchpoint hit time and
3559 vfork follow are detached. */
3560 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3561 {
3562 /* This won't actually modify the breakpoint list, but will
3563 physically remove the breakpoints from the child. */
3564 detach_breakpoints (ecs->ws.value.related_pid);
3565 }
3566
3567 if (singlestep_breakpoints_inserted_p)
3568 {
3569 /* Pull the single step breakpoints out of the target. */
3570 remove_single_step_breakpoints ();
3571 singlestep_breakpoints_inserted_p = 0;
3572 }
3573
3574 /* In case the event is caught by a catchpoint, remember that
3575 the event is to be followed at the next resume of the thread,
3576 and not immediately. */
3577 ecs->event_thread->pending_follow = ecs->ws;
3578
3579 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3580
3581 ecs->event_thread->control.stop_bpstat
3582 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3583 stop_pc, ecs->ptid, &ecs->ws);
3584
3585 /* If no catchpoint triggered for this, then keep going. Note
3586 that we're interested in knowing the bpstat actually causes a
3587 stop, not just if it may explain the signal. Software
3588 watchpoints, for example, always appear in the bpstat. */
3589 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3590 {
3591 ptid_t parent;
3592 ptid_t child;
3593 int should_resume;
3594 int follow_child
3595 = (follow_fork_mode_string == follow_fork_mode_child);
3596
3597 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3598
3599 should_resume = follow_fork ();
3600
3601 parent = ecs->ptid;
3602 child = ecs->ws.value.related_pid;
3603
3604 /* In non-stop mode, also resume the other branch. */
3605 if (non_stop && !detach_fork)
3606 {
3607 if (follow_child)
3608 switch_to_thread (parent);
3609 else
3610 switch_to_thread (child);
3611
3612 ecs->event_thread = inferior_thread ();
3613 ecs->ptid = inferior_ptid;
3614 keep_going (ecs);
3615 }
3616
3617 if (follow_child)
3618 switch_to_thread (child);
3619 else
3620 switch_to_thread (parent);
3621
3622 ecs->event_thread = inferior_thread ();
3623 ecs->ptid = inferior_ptid;
3624
3625 if (should_resume)
3626 keep_going (ecs);
3627 else
3628 stop_stepping (ecs);
3629 return;
3630 }
3631 process_event_stop_test (ecs);
3632 return;
3633
3634 case TARGET_WAITKIND_VFORK_DONE:
3635 /* Done with the shared memory region. Re-insert breakpoints in
3636 the parent, and keep going. */
3637
3638 if (debug_infrun)
3639 fprintf_unfiltered (gdb_stdlog,
3640 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3641
3642 if (!ptid_equal (ecs->ptid, inferior_ptid))
3643 context_switch (ecs->ptid);
3644
3645 current_inferior ()->waiting_for_vfork_done = 0;
3646 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3647 /* This also takes care of reinserting breakpoints in the
3648 previously locked inferior. */
3649 keep_going (ecs);
3650 return;
3651
3652 case TARGET_WAITKIND_EXECD:
3653 if (debug_infrun)
3654 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3655
3656 if (!ptid_equal (ecs->ptid, inferior_ptid))
3657 context_switch (ecs->ptid);
3658
3659 singlestep_breakpoints_inserted_p = 0;
3660 cancel_single_step_breakpoints ();
3661
3662 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3663
3664 /* Do whatever is necessary to the parent branch of the vfork. */
3665 handle_vfork_child_exec_or_exit (1);
3666
3667 /* This causes the eventpoints and symbol table to be reset.
3668 Must do this now, before trying to determine whether to
3669 stop. */
3670 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3671
3672 ecs->event_thread->control.stop_bpstat
3673 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3674 stop_pc, ecs->ptid, &ecs->ws);
3675
3676 /* Note that this may be referenced from inside
3677 bpstat_stop_status above, through inferior_has_execd. */
3678 xfree (ecs->ws.value.execd_pathname);
3679 ecs->ws.value.execd_pathname = NULL;
3680
3681 /* If no catchpoint triggered for this, then keep going. */
3682 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3683 {
3684 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3685 keep_going (ecs);
3686 return;
3687 }
3688 process_event_stop_test (ecs);
3689 return;
3690
3691 /* Be careful not to try to gather much state about a thread
3692 that's in a syscall. It's frequently a losing proposition. */
3693 case TARGET_WAITKIND_SYSCALL_ENTRY:
3694 if (debug_infrun)
3695 fprintf_unfiltered (gdb_stdlog,
3696 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3697 /* Getting the current syscall number. */
3698 if (handle_syscall_event (ecs) == 0)
3699 process_event_stop_test (ecs);
3700 return;
3701
3702 /* Before examining the threads further, step this thread to
3703 get it entirely out of the syscall. (We get notice of the
3704 event when the thread is just on the verge of exiting a
3705 syscall. Stepping one instruction seems to get it back
3706 into user code.) */
3707 case TARGET_WAITKIND_SYSCALL_RETURN:
3708 if (debug_infrun)
3709 fprintf_unfiltered (gdb_stdlog,
3710 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3711 if (handle_syscall_event (ecs) == 0)
3712 process_event_stop_test (ecs);
3713 return;
3714
3715 case TARGET_WAITKIND_STOPPED:
3716 if (debug_infrun)
3717 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3718 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3719 break;
3720
3721 case TARGET_WAITKIND_NO_HISTORY:
3722 if (debug_infrun)
3723 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3724 /* Reverse execution: target ran out of history info. */
3725
3726 /* Pull the single step breakpoints out of the target. */
3727 if (singlestep_breakpoints_inserted_p)
3728 {
3729 if (!ptid_equal (ecs->ptid, inferior_ptid))
3730 context_switch (ecs->ptid);
3731 remove_single_step_breakpoints ();
3732 singlestep_breakpoints_inserted_p = 0;
3733 }
3734 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3735 print_no_history_reason ();
3736 stop_stepping (ecs);
3737 return;
3738 }
3739
3740 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3741 {
3742 /* Do we need to clean up the state of a thread that has
3743 completed a displaced single-step? (Doing so usually affects
3744 the PC, so do it here, before we set stop_pc.) */
3745 displaced_step_fixup (ecs->ptid,
3746 ecs->event_thread->suspend.stop_signal);
3747
3748 /* If we either finished a single-step or hit a breakpoint, but
3749 the user wanted this thread to be stopped, pretend we got a
3750 SIG0 (generic unsignaled stop). */
3751
3752 if (ecs->event_thread->stop_requested
3753 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3754 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3755 }
3756
3757 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3758
3759 if (debug_infrun)
3760 {
3761 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3762 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3763 struct cleanup *old_chain = save_inferior_ptid ();
3764
3765 inferior_ptid = ecs->ptid;
3766
3767 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3768 paddress (gdbarch, stop_pc));
3769 if (target_stopped_by_watchpoint ())
3770 {
3771 CORE_ADDR addr;
3772
3773 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3774
3775 if (target_stopped_data_address (&current_target, &addr))
3776 fprintf_unfiltered (gdb_stdlog,
3777 "infrun: stopped data address = %s\n",
3778 paddress (gdbarch, addr));
3779 else
3780 fprintf_unfiltered (gdb_stdlog,
3781 "infrun: (no data address available)\n");
3782 }
3783
3784 do_cleanups (old_chain);
3785 }
3786
3787 if (stepping_past_singlestep_breakpoint)
3788 {
3789 gdb_assert (singlestep_breakpoints_inserted_p);
3790 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3791 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3792
3793 stepping_past_singlestep_breakpoint = 0;
3794
3795 /* We've either finished single-stepping past the single-step
3796 breakpoint, or stopped for some other reason. It would be nice if
3797 we could tell, but we can't reliably. */
3798 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3799 {
3800 if (debug_infrun)
3801 fprintf_unfiltered (gdb_stdlog,
3802 "infrun: stepping_past_"
3803 "singlestep_breakpoint\n");
3804 /* Pull the single step breakpoints out of the target. */
3805 if (!ptid_equal (ecs->ptid, inferior_ptid))
3806 context_switch (ecs->ptid);
3807 remove_single_step_breakpoints ();
3808 singlestep_breakpoints_inserted_p = 0;
3809
3810 ecs->event_thread->control.trap_expected = 0;
3811
3812 context_switch (saved_singlestep_ptid);
3813 if (deprecated_context_hook)
3814 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
3815
3816 resume (1, GDB_SIGNAL_0);
3817 prepare_to_wait (ecs);
3818 return;
3819 }
3820 }
3821
3822 if (!ptid_equal (deferred_step_ptid, null_ptid))
3823 {
3824 /* In non-stop mode, there's never a deferred_step_ptid set. */
3825 gdb_assert (!non_stop);
3826
3827 /* If we stopped for some other reason than single-stepping, ignore
3828 the fact that we were supposed to switch back. */
3829 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3830 {
3831 if (debug_infrun)
3832 fprintf_unfiltered (gdb_stdlog,
3833 "infrun: handling deferred step\n");
3834
3835 /* Pull the single step breakpoints out of the target. */
3836 if (singlestep_breakpoints_inserted_p)
3837 {
3838 if (!ptid_equal (ecs->ptid, inferior_ptid))
3839 context_switch (ecs->ptid);
3840 remove_single_step_breakpoints ();
3841 singlestep_breakpoints_inserted_p = 0;
3842 }
3843
3844 ecs->event_thread->control.trap_expected = 0;
3845
3846 context_switch (deferred_step_ptid);
3847 deferred_step_ptid = null_ptid;
3848 /* Suppress spurious "Switching to ..." message. */
3849 previous_inferior_ptid = inferior_ptid;
3850
3851 resume (1, GDB_SIGNAL_0);
3852 prepare_to_wait (ecs);
3853 return;
3854 }
3855
3856 deferred_step_ptid = null_ptid;
3857 }
3858
3859 /* See if a thread hit a thread-specific breakpoint that was meant for
3860 another thread. If so, then step that thread past the breakpoint,
3861 and continue it. */
3862
3863 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3864 {
3865 int thread_hop_needed = 0;
3866 struct address_space *aspace =
3867 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3868
3869 /* Check if a regular breakpoint has been hit before checking
3870 for a potential single step breakpoint. Otherwise, GDB will
3871 not see this breakpoint hit when stepping onto breakpoints. */
3872 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3873 {
3874 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3875 thread_hop_needed = 1;
3876 }
3877 else if (singlestep_breakpoints_inserted_p)
3878 {
3879 /* We have not context switched yet, so this should be true
3880 no matter which thread hit the singlestep breakpoint. */
3881 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3882 if (debug_infrun)
3883 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3884 "trap for %s\n",
3885 target_pid_to_str (ecs->ptid));
3886
3887 /* The call to in_thread_list is necessary because PTIDs sometimes
3888 change when we go from single-threaded to multi-threaded. If
3889 the singlestep_ptid is still in the list, assume that it is
3890 really different from ecs->ptid. */
3891 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3892 && in_thread_list (singlestep_ptid))
3893 {
3894 /* If the PC of the thread we were trying to single-step
3895 has changed, discard this event (which we were going
3896 to ignore anyway), and pretend we saw that thread
3897 trap. This prevents us continuously moving the
3898 single-step breakpoint forward, one instruction at a
3899 time. If the PC has changed, then the thread we were
3900 trying to single-step has trapped or been signalled,
3901 but the event has not been reported to GDB yet.
3902
3903 There might be some cases where this loses signal
3904 information, if a signal has arrived at exactly the
3905 same time that the PC changed, but this is the best
3906 we can do with the information available. Perhaps we
3907 should arrange to report all events for all threads
3908 when they stop, or to re-poll the remote looking for
3909 this particular thread (i.e. temporarily enable
3910 schedlock). */
3911
3912 CORE_ADDR new_singlestep_pc
3913 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3914
3915 if (new_singlestep_pc != singlestep_pc)
3916 {
3917 enum gdb_signal stop_signal;
3918
3919 if (debug_infrun)
3920 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3921 " but expected thread advanced also\n");
3922
3923 /* The current context still belongs to
3924 singlestep_ptid. Don't swap here, since that's
3925 the context we want to use. Just fudge our
3926 state and continue. */
3927 stop_signal = ecs->event_thread->suspend.stop_signal;
3928 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3929 ecs->ptid = singlestep_ptid;
3930 ecs->event_thread = find_thread_ptid (ecs->ptid);
3931 ecs->event_thread->suspend.stop_signal = stop_signal;
3932 stop_pc = new_singlestep_pc;
3933 }
3934 else
3935 {
3936 if (debug_infrun)
3937 fprintf_unfiltered (gdb_stdlog,
3938 "infrun: unexpected thread\n");
3939
3940 thread_hop_needed = 1;
3941 stepping_past_singlestep_breakpoint = 1;
3942 saved_singlestep_ptid = singlestep_ptid;
3943 }
3944 }
3945 }
3946
3947 if (thread_hop_needed)
3948 {
3949 struct regcache *thread_regcache;
3950 int remove_status = 0;
3951
3952 if (debug_infrun)
3953 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3954
3955 /* Switch context before touching inferior memory, the
3956 previous thread may have exited. */
3957 if (!ptid_equal (inferior_ptid, ecs->ptid))
3958 context_switch (ecs->ptid);
3959
3960 /* Saw a breakpoint, but it was hit by the wrong thread.
3961 Just continue. */
3962
3963 if (singlestep_breakpoints_inserted_p)
3964 {
3965 /* Pull the single step breakpoints out of the target. */
3966 remove_single_step_breakpoints ();
3967 singlestep_breakpoints_inserted_p = 0;
3968 }
3969
3970 /* If the arch can displace step, don't remove the
3971 breakpoints. */
3972 thread_regcache = get_thread_regcache (ecs->ptid);
3973 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3974 remove_status = remove_breakpoints ();
3975
3976 /* Did we fail to remove breakpoints? If so, try
3977 to set the PC past the bp. (There's at least
3978 one situation in which we can fail to remove
3979 the bp's: On HP-UX's that use ttrace, we can't
3980 change the address space of a vforking child
3981 process until the child exits (well, okay, not
3982 then either :-) or execs. */
3983 if (remove_status != 0)
3984 error (_("Cannot step over breakpoint hit in wrong thread"));
3985 else
3986 { /* Single step */
3987 if (!non_stop)
3988 {
3989 /* Only need to require the next event from this
3990 thread in all-stop mode. */
3991 waiton_ptid = ecs->ptid;
3992 infwait_state = infwait_thread_hop_state;
3993 }
3994
3995 ecs->event_thread->stepping_over_breakpoint = 1;
3996 keep_going (ecs);
3997 return;
3998 }
3999 }
4000 }
4001
4002 /* See if something interesting happened to the non-current thread. If
4003 so, then switch to that thread. */
4004 if (!ptid_equal (ecs->ptid, inferior_ptid))
4005 {
4006 if (debug_infrun)
4007 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4008
4009 context_switch (ecs->ptid);
4010
4011 if (deprecated_context_hook)
4012 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4013 }
4014
4015 /* At this point, get hold of the now-current thread's frame. */
4016 frame = get_current_frame ();
4017 gdbarch = get_frame_arch (frame);
4018
4019 if (singlestep_breakpoints_inserted_p)
4020 {
4021 /* Pull the single step breakpoints out of the target. */
4022 remove_single_step_breakpoints ();
4023 singlestep_breakpoints_inserted_p = 0;
4024 }
4025
4026 if (stepped_after_stopped_by_watchpoint)
4027 stopped_by_watchpoint = 0;
4028 else
4029 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4030
4031 /* If necessary, step over this watchpoint. We'll be back to display
4032 it in a moment. */
4033 if (stopped_by_watchpoint
4034 && (target_have_steppable_watchpoint
4035 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4036 {
4037 /* At this point, we are stopped at an instruction which has
4038 attempted to write to a piece of memory under control of
4039 a watchpoint. The instruction hasn't actually executed
4040 yet. If we were to evaluate the watchpoint expression
4041 now, we would get the old value, and therefore no change
4042 would seem to have occurred.
4043
4044 In order to make watchpoints work `right', we really need
4045 to complete the memory write, and then evaluate the
4046 watchpoint expression. We do this by single-stepping the
4047 target.
4048
4049 It may not be necessary to disable the watchpoint to stop over
4050 it. For example, the PA can (with some kernel cooperation)
4051 single step over a watchpoint without disabling the watchpoint.
4052
4053 It is far more common to need to disable a watchpoint to step
4054 the inferior over it. If we have non-steppable watchpoints,
4055 we must disable the current watchpoint; it's simplest to
4056 disable all watchpoints and breakpoints. */
4057 int hw_step = 1;
4058
4059 if (!target_have_steppable_watchpoint)
4060 {
4061 remove_breakpoints ();
4062 /* See comment in resume why we need to stop bypassing signals
4063 while breakpoints have been removed. */
4064 target_pass_signals (0, NULL);
4065 }
4066 /* Single step */
4067 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4068 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4069 waiton_ptid = ecs->ptid;
4070 if (target_have_steppable_watchpoint)
4071 infwait_state = infwait_step_watch_state;
4072 else
4073 infwait_state = infwait_nonstep_watch_state;
4074 prepare_to_wait (ecs);
4075 return;
4076 }
4077
4078 ecs->event_thread->stepping_over_breakpoint = 0;
4079 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4080 ecs->event_thread->control.stop_step = 0;
4081 stop_print_frame = 1;
4082 stopped_by_random_signal = 0;
4083
4084 /* Hide inlined functions starting here, unless we just performed stepi or
4085 nexti. After stepi and nexti, always show the innermost frame (not any
4086 inline function call sites). */
4087 if (ecs->event_thread->control.step_range_end != 1)
4088 {
4089 struct address_space *aspace =
4090 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4091
4092 /* skip_inline_frames is expensive, so we avoid it if we can
4093 determine that the address is one where functions cannot have
4094 been inlined. This improves performance with inferiors that
4095 load a lot of shared libraries, because the solib event
4096 breakpoint is defined as the address of a function (i.e. not
4097 inline). Note that we have to check the previous PC as well
4098 as the current one to catch cases when we have just
4099 single-stepped off a breakpoint prior to reinstating it.
4100 Note that we're assuming that the code we single-step to is
4101 not inline, but that's not definitive: there's nothing
4102 preventing the event breakpoint function from containing
4103 inlined code, and the single-step ending up there. If the
4104 user had set a breakpoint on that inlined code, the missing
4105 skip_inline_frames call would break things. Fortunately
4106 that's an extremely unlikely scenario. */
4107 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4108 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4109 && ecs->event_thread->control.trap_expected
4110 && pc_at_non_inline_function (aspace,
4111 ecs->event_thread->prev_pc,
4112 &ecs->ws)))
4113 {
4114 skip_inline_frames (ecs->ptid);
4115
4116 /* Re-fetch current thread's frame in case that invalidated
4117 the frame cache. */
4118 frame = get_current_frame ();
4119 gdbarch = get_frame_arch (frame);
4120 }
4121 }
4122
4123 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4124 && ecs->event_thread->control.trap_expected
4125 && gdbarch_single_step_through_delay_p (gdbarch)
4126 && currently_stepping (ecs->event_thread))
4127 {
4128 /* We're trying to step off a breakpoint. Turns out that we're
4129 also on an instruction that needs to be stepped multiple
4130 times before it's been fully executing. E.g., architectures
4131 with a delay slot. It needs to be stepped twice, once for
4132 the instruction and once for the delay slot. */
4133 int step_through_delay
4134 = gdbarch_single_step_through_delay (gdbarch, frame);
4135
4136 if (debug_infrun && step_through_delay)
4137 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4138 if (ecs->event_thread->control.step_range_end == 0
4139 && step_through_delay)
4140 {
4141 /* The user issued a continue when stopped at a breakpoint.
4142 Set up for another trap and get out of here. */
4143 ecs->event_thread->stepping_over_breakpoint = 1;
4144 keep_going (ecs);
4145 return;
4146 }
4147 else if (step_through_delay)
4148 {
4149 /* The user issued a step when stopped at a breakpoint.
4150 Maybe we should stop, maybe we should not - the delay
4151 slot *might* correspond to a line of source. In any
4152 case, don't decide that here, just set
4153 ecs->stepping_over_breakpoint, making sure we
4154 single-step again before breakpoints are re-inserted. */
4155 ecs->event_thread->stepping_over_breakpoint = 1;
4156 }
4157 }
4158
4159 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4160 && stop_after_trap)
4161 {
4162 if (debug_infrun)
4163 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4164 stop_print_frame = 0;
4165 stop_stepping (ecs);
4166 return;
4167 }
4168
4169 /* This is originated from start_remote(), start_inferior() and
4170 shared libraries hook functions. */
4171 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4172 {
4173 if (debug_infrun)
4174 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4175 stop_stepping (ecs);
4176 return;
4177 }
4178
4179 /* This originates from attach_command(). We need to overwrite
4180 the stop_signal here, because some kernels don't ignore a
4181 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4182 See more comments in inferior.h. On the other hand, if we
4183 get a non-SIGSTOP, report it to the user - assume the backend
4184 will handle the SIGSTOP if it should show up later.
4185
4186 Also consider that the attach is complete when we see a
4187 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4188 target extended-remote report it instead of a SIGSTOP
4189 (e.g. gdbserver). We already rely on SIGTRAP being our
4190 signal, so this is no exception.
4191
4192 Also consider that the attach is complete when we see a
4193 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4194 the target to stop all threads of the inferior, in case the
4195 low level attach operation doesn't stop them implicitly. If
4196 they weren't stopped implicitly, then the stub will report a
4197 GDB_SIGNAL_0, meaning: stopped for no particular reason
4198 other than GDB's request. */
4199 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4200 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4201 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4202 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4203 {
4204 stop_stepping (ecs);
4205 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4206 return;
4207 }
4208
4209 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4210 handles this event. */
4211 ecs->event_thread->control.stop_bpstat
4212 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4213 stop_pc, ecs->ptid, &ecs->ws);
4214
4215 /* Following in case break condition called a
4216 function. */
4217 stop_print_frame = 1;
4218
4219 /* This is where we handle "moribund" watchpoints. Unlike
4220 software breakpoints traps, hardware watchpoint traps are
4221 always distinguishable from random traps. If no high-level
4222 watchpoint is associated with the reported stop data address
4223 anymore, then the bpstat does not explain the signal ---
4224 simply make sure to ignore it if `stopped_by_watchpoint' is
4225 set. */
4226
4227 if (debug_infrun
4228 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4229 && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4230 GDB_SIGNAL_TRAP)
4231 == BPSTAT_SIGNAL_NO)
4232 && stopped_by_watchpoint)
4233 fprintf_unfiltered (gdb_stdlog,
4234 "infrun: no user watchpoint explains "
4235 "watchpoint SIGTRAP, ignoring\n");
4236
4237 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4238 at one stage in the past included checks for an inferior
4239 function call's call dummy's return breakpoint. The original
4240 comment, that went with the test, read:
4241
4242 ``End of a stack dummy. Some systems (e.g. Sony news) give
4243 another signal besides SIGTRAP, so check here as well as
4244 above.''
4245
4246 If someone ever tries to get call dummys on a
4247 non-executable stack to work (where the target would stop
4248 with something like a SIGSEGV), then those tests might need
4249 to be re-instated. Given, however, that the tests were only
4250 enabled when momentary breakpoints were not being used, I
4251 suspect that it won't be the case.
4252
4253 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4254 be necessary for call dummies on a non-executable stack on
4255 SPARC. */
4256
4257 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4258 random_signal
4259 = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4260 GDB_SIGNAL_TRAP)
4261 != BPSTAT_SIGNAL_NO)
4262 || stopped_by_watchpoint
4263 || ecs->event_thread->control.trap_expected
4264 || (ecs->event_thread->control.step_range_end
4265 && (ecs->event_thread->control.step_resume_breakpoint
4266 == NULL)));
4267 else
4268 {
4269 enum bpstat_signal_value sval;
4270
4271 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4272 ecs->event_thread->suspend.stop_signal);
4273 random_signal = (sval == BPSTAT_SIGNAL_NO);
4274
4275 if (sval == BPSTAT_SIGNAL_HIDE)
4276 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4277 }
4278
4279 /* For the program's own signals, act according to
4280 the signal handling tables. */
4281
4282 if (random_signal)
4283 {
4284 /* Signal not for debugging purposes. */
4285 int printed = 0;
4286 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4287 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
4288
4289 if (debug_infrun)
4290 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4291 gdb_signal_to_symbol_string (stop_signal));
4292
4293 stopped_by_random_signal = 1;
4294
4295 if (signal_print[ecs->event_thread->suspend.stop_signal])
4296 {
4297 printed = 1;
4298 target_terminal_ours_for_output ();
4299 print_signal_received_reason
4300 (ecs->event_thread->suspend.stop_signal);
4301 }
4302 /* Always stop on signals if we're either just gaining control
4303 of the program, or the user explicitly requested this thread
4304 to remain stopped. */
4305 if (stop_soon != NO_STOP_QUIETLY
4306 || ecs->event_thread->stop_requested
4307 || (!inf->detaching
4308 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4309 {
4310 stop_stepping (ecs);
4311 return;
4312 }
4313 /* If not going to stop, give terminal back
4314 if we took it away. */
4315 else if (printed)
4316 target_terminal_inferior ();
4317
4318 /* Clear the signal if it should not be passed. */
4319 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4320 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4321
4322 if (ecs->event_thread->prev_pc == stop_pc
4323 && ecs->event_thread->control.trap_expected
4324 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4325 {
4326 /* We were just starting a new sequence, attempting to
4327 single-step off of a breakpoint and expecting a SIGTRAP.
4328 Instead this signal arrives. This signal will take us out
4329 of the stepping range so GDB needs to remember to, when
4330 the signal handler returns, resume stepping off that
4331 breakpoint. */
4332 /* To simplify things, "continue" is forced to use the same
4333 code paths as single-step - set a breakpoint at the
4334 signal return address and then, once hit, step off that
4335 breakpoint. */
4336 if (debug_infrun)
4337 fprintf_unfiltered (gdb_stdlog,
4338 "infrun: signal arrived while stepping over "
4339 "breakpoint\n");
4340
4341 insert_hp_step_resume_breakpoint_at_frame (frame);
4342 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4343 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4344 ecs->event_thread->control.trap_expected = 0;
4345 keep_going (ecs);
4346 return;
4347 }
4348
4349 if (ecs->event_thread->control.step_range_end != 0
4350 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4351 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
4352 && frame_id_eq (get_stack_frame_id (frame),
4353 ecs->event_thread->control.step_stack_frame_id)
4354 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4355 {
4356 /* The inferior is about to take a signal that will take it
4357 out of the single step range. Set a breakpoint at the
4358 current PC (which is presumably where the signal handler
4359 will eventually return) and then allow the inferior to
4360 run free.
4361
4362 Note that this is only needed for a signal delivered
4363 while in the single-step range. Nested signals aren't a
4364 problem as they eventually all return. */
4365 if (debug_infrun)
4366 fprintf_unfiltered (gdb_stdlog,
4367 "infrun: signal may take us out of "
4368 "single-step range\n");
4369
4370 insert_hp_step_resume_breakpoint_at_frame (frame);
4371 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4372 ecs->event_thread->control.trap_expected = 0;
4373 keep_going (ecs);
4374 return;
4375 }
4376
4377 /* Note: step_resume_breakpoint may be non-NULL. This occures
4378 when either there's a nested signal, or when there's a
4379 pending signal enabled just as the signal handler returns
4380 (leaving the inferior at the step-resume-breakpoint without
4381 actually executing it). Either way continue until the
4382 breakpoint is really hit. */
4383
4384 if (!switch_back_to_stepped_thread (ecs))
4385 {
4386 if (debug_infrun)
4387 fprintf_unfiltered (gdb_stdlog,
4388 "infrun: random signal, keep going\n");
4389
4390 keep_going (ecs);
4391 }
4392 return;
4393 }
4394
4395 process_event_stop_test (ecs);
4396 }
4397
4398 /* Come here when we've got some debug event / signal we can explain
4399 (IOW, not a random signal), and test whether it should cause a
4400 stop, or whether we should resume the inferior (transparently).
4401 E.g., could be a breakpoint whose condition evaluates false; we
4402 could be still stepping within the line; etc. */
4403
4404 static void
4405 process_event_stop_test (struct execution_control_state *ecs)
4406 {
4407 struct symtab_and_line stop_pc_sal;
4408 struct frame_info *frame;
4409 struct gdbarch *gdbarch;
4410 CORE_ADDR jmp_buf_pc;
4411 struct bpstat_what what;
4412
4413 /* Handle cases caused by hitting a breakpoint. */
4414
4415 frame = get_current_frame ();
4416 gdbarch = get_frame_arch (frame);
4417
4418 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4419
4420 if (what.call_dummy)
4421 {
4422 stop_stack_dummy = what.call_dummy;
4423 }
4424
4425 /* If we hit an internal event that triggers symbol changes, the
4426 current frame will be invalidated within bpstat_what (e.g., if we
4427 hit an internal solib event). Re-fetch it. */
4428 frame = get_current_frame ();
4429 gdbarch = get_frame_arch (frame);
4430
4431 switch (what.main_action)
4432 {
4433 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4434 /* If we hit the breakpoint at longjmp while stepping, we
4435 install a momentary breakpoint at the target of the
4436 jmp_buf. */
4437
4438 if (debug_infrun)
4439 fprintf_unfiltered (gdb_stdlog,
4440 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4441
4442 ecs->event_thread->stepping_over_breakpoint = 1;
4443
4444 if (what.is_longjmp)
4445 {
4446 struct value *arg_value;
4447
4448 /* If we set the longjmp breakpoint via a SystemTap probe,
4449 then use it to extract the arguments. The destination PC
4450 is the third argument to the probe. */
4451 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4452 if (arg_value)
4453 jmp_buf_pc = value_as_address (arg_value);
4454 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4455 || !gdbarch_get_longjmp_target (gdbarch,
4456 frame, &jmp_buf_pc))
4457 {
4458 if (debug_infrun)
4459 fprintf_unfiltered (gdb_stdlog,
4460 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4461 "(!gdbarch_get_longjmp_target)\n");
4462 keep_going (ecs);
4463 return;
4464 }
4465
4466 /* Insert a breakpoint at resume address. */
4467 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4468 }
4469 else
4470 check_exception_resume (ecs, frame);
4471 keep_going (ecs);
4472 return;
4473
4474 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4475 {
4476 struct frame_info *init_frame;
4477
4478 /* There are several cases to consider.
4479
4480 1. The initiating frame no longer exists. In this case we
4481 must stop, because the exception or longjmp has gone too
4482 far.
4483
4484 2. The initiating frame exists, and is the same as the
4485 current frame. We stop, because the exception or longjmp
4486 has been caught.
4487
4488 3. The initiating frame exists and is different from the
4489 current frame. This means the exception or longjmp has
4490 been caught beneath the initiating frame, so keep going.
4491
4492 4. longjmp breakpoint has been placed just to protect
4493 against stale dummy frames and user is not interested in
4494 stopping around longjmps. */
4495
4496 if (debug_infrun)
4497 fprintf_unfiltered (gdb_stdlog,
4498 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4499
4500 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4501 != NULL);
4502 delete_exception_resume_breakpoint (ecs->event_thread);
4503
4504 if (what.is_longjmp)
4505 {
4506 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4507
4508 if (!frame_id_p (ecs->event_thread->initiating_frame))
4509 {
4510 /* Case 4. */
4511 keep_going (ecs);
4512 return;
4513 }
4514 }
4515
4516 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4517
4518 if (init_frame)
4519 {
4520 struct frame_id current_id
4521 = get_frame_id (get_current_frame ());
4522 if (frame_id_eq (current_id,
4523 ecs->event_thread->initiating_frame))
4524 {
4525 /* Case 2. Fall through. */
4526 }
4527 else
4528 {
4529 /* Case 3. */
4530 keep_going (ecs);
4531 return;
4532 }
4533 }
4534
4535 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4536 exists. */
4537 delete_step_resume_breakpoint (ecs->event_thread);
4538
4539 ecs->event_thread->control.stop_step = 1;
4540 print_end_stepping_range_reason ();
4541 stop_stepping (ecs);
4542 }
4543 return;
4544
4545 case BPSTAT_WHAT_SINGLE:
4546 if (debug_infrun)
4547 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4548 ecs->event_thread->stepping_over_breakpoint = 1;
4549 /* Still need to check other stuff, at least the case where we
4550 are stepping and step out of the right range. */
4551 break;
4552
4553 case BPSTAT_WHAT_STEP_RESUME:
4554 if (debug_infrun)
4555 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4556
4557 delete_step_resume_breakpoint (ecs->event_thread);
4558 if (ecs->event_thread->control.proceed_to_finish
4559 && execution_direction == EXEC_REVERSE)
4560 {
4561 struct thread_info *tp = ecs->event_thread;
4562
4563 /* We are finishing a function in reverse, and just hit the
4564 step-resume breakpoint at the start address of the
4565 function, and we're almost there -- just need to back up
4566 by one more single-step, which should take us back to the
4567 function call. */
4568 tp->control.step_range_start = tp->control.step_range_end = 1;
4569 keep_going (ecs);
4570 return;
4571 }
4572 fill_in_stop_func (gdbarch, ecs);
4573 if (stop_pc == ecs->stop_func_start
4574 && execution_direction == EXEC_REVERSE)
4575 {
4576 /* We are stepping over a function call in reverse, and just
4577 hit the step-resume breakpoint at the start address of
4578 the function. Go back to single-stepping, which should
4579 take us back to the function call. */
4580 ecs->event_thread->stepping_over_breakpoint = 1;
4581 keep_going (ecs);
4582 return;
4583 }
4584 break;
4585
4586 case BPSTAT_WHAT_STOP_NOISY:
4587 if (debug_infrun)
4588 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4589 stop_print_frame = 1;
4590
4591 /* We are about to nuke the step_resume_breakpointt via the
4592 cleanup chain, so no need to worry about it here. */
4593
4594 stop_stepping (ecs);
4595 return;
4596
4597 case BPSTAT_WHAT_STOP_SILENT:
4598 if (debug_infrun)
4599 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4600 stop_print_frame = 0;
4601
4602 /* We are about to nuke the step_resume_breakpoin via the
4603 cleanup chain, so no need to worry about it here. */
4604
4605 stop_stepping (ecs);
4606 return;
4607
4608 case BPSTAT_WHAT_HP_STEP_RESUME:
4609 if (debug_infrun)
4610 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4611
4612 delete_step_resume_breakpoint (ecs->event_thread);
4613 if (ecs->event_thread->step_after_step_resume_breakpoint)
4614 {
4615 /* Back when the step-resume breakpoint was inserted, we
4616 were trying to single-step off a breakpoint. Go back to
4617 doing that. */
4618 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4619 ecs->event_thread->stepping_over_breakpoint = 1;
4620 keep_going (ecs);
4621 return;
4622 }
4623 break;
4624
4625 case BPSTAT_WHAT_KEEP_CHECKING:
4626 break;
4627 }
4628
4629 /* We come here if we hit a breakpoint but should not stop for it.
4630 Possibly we also were stepping and should stop for that. So fall
4631 through and test for stepping. But, if not stepping, do not
4632 stop. */
4633
4634 /* In all-stop mode, if we're currently stepping but have stopped in
4635 some other thread, we need to switch back to the stepped thread. */
4636 if (switch_back_to_stepped_thread (ecs))
4637 return;
4638
4639 if (ecs->event_thread->control.step_resume_breakpoint)
4640 {
4641 if (debug_infrun)
4642 fprintf_unfiltered (gdb_stdlog,
4643 "infrun: step-resume breakpoint is inserted\n");
4644
4645 /* Having a step-resume breakpoint overrides anything
4646 else having to do with stepping commands until
4647 that breakpoint is reached. */
4648 keep_going (ecs);
4649 return;
4650 }
4651
4652 if (ecs->event_thread->control.step_range_end == 0)
4653 {
4654 if (debug_infrun)
4655 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4656 /* Likewise if we aren't even stepping. */
4657 keep_going (ecs);
4658 return;
4659 }
4660
4661 /* Re-fetch current thread's frame in case the code above caused
4662 the frame cache to be re-initialized, making our FRAME variable
4663 a dangling pointer. */
4664 frame = get_current_frame ();
4665 gdbarch = get_frame_arch (frame);
4666 fill_in_stop_func (gdbarch, ecs);
4667
4668 /* If stepping through a line, keep going if still within it.
4669
4670 Note that step_range_end is the address of the first instruction
4671 beyond the step range, and NOT the address of the last instruction
4672 within it!
4673
4674 Note also that during reverse execution, we may be stepping
4675 through a function epilogue and therefore must detect when
4676 the current-frame changes in the middle of a line. */
4677
4678 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4679 && (execution_direction != EXEC_REVERSE
4680 || frame_id_eq (get_frame_id (frame),
4681 ecs->event_thread->control.step_frame_id)))
4682 {
4683 if (debug_infrun)
4684 fprintf_unfiltered
4685 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4686 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4687 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4688
4689 /* Tentatively re-enable range stepping; `resume' disables it if
4690 necessary (e.g., if we're stepping over a breakpoint or we
4691 have software watchpoints). */
4692 ecs->event_thread->control.may_range_step = 1;
4693
4694 /* When stepping backward, stop at beginning of line range
4695 (unless it's the function entry point, in which case
4696 keep going back to the call point). */
4697 if (stop_pc == ecs->event_thread->control.step_range_start
4698 && stop_pc != ecs->stop_func_start
4699 && execution_direction == EXEC_REVERSE)
4700 {
4701 ecs->event_thread->control.stop_step = 1;
4702 print_end_stepping_range_reason ();
4703 stop_stepping (ecs);
4704 }
4705 else
4706 keep_going (ecs);
4707
4708 return;
4709 }
4710
4711 /* We stepped out of the stepping range. */
4712
4713 /* If we are stepping at the source level and entered the runtime
4714 loader dynamic symbol resolution code...
4715
4716 EXEC_FORWARD: we keep on single stepping until we exit the run
4717 time loader code and reach the callee's address.
4718
4719 EXEC_REVERSE: we've already executed the callee (backward), and
4720 the runtime loader code is handled just like any other
4721 undebuggable function call. Now we need only keep stepping
4722 backward through the trampoline code, and that's handled further
4723 down, so there is nothing for us to do here. */
4724
4725 if (execution_direction != EXEC_REVERSE
4726 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4727 && in_solib_dynsym_resolve_code (stop_pc))
4728 {
4729 CORE_ADDR pc_after_resolver =
4730 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4731
4732 if (debug_infrun)
4733 fprintf_unfiltered (gdb_stdlog,
4734 "infrun: stepped into dynsym resolve code\n");
4735
4736 if (pc_after_resolver)
4737 {
4738 /* Set up a step-resume breakpoint at the address
4739 indicated by SKIP_SOLIB_RESOLVER. */
4740 struct symtab_and_line sr_sal;
4741
4742 init_sal (&sr_sal);
4743 sr_sal.pc = pc_after_resolver;
4744 sr_sal.pspace = get_frame_program_space (frame);
4745
4746 insert_step_resume_breakpoint_at_sal (gdbarch,
4747 sr_sal, null_frame_id);
4748 }
4749
4750 keep_going (ecs);
4751 return;
4752 }
4753
4754 if (ecs->event_thread->control.step_range_end != 1
4755 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4756 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4757 && get_frame_type (frame) == SIGTRAMP_FRAME)
4758 {
4759 if (debug_infrun)
4760 fprintf_unfiltered (gdb_stdlog,
4761 "infrun: stepped into signal trampoline\n");
4762 /* The inferior, while doing a "step" or "next", has ended up in
4763 a signal trampoline (either by a signal being delivered or by
4764 the signal handler returning). Just single-step until the
4765 inferior leaves the trampoline (either by calling the handler
4766 or returning). */
4767 keep_going (ecs);
4768 return;
4769 }
4770
4771 /* If we're in the return path from a shared library trampoline,
4772 we want to proceed through the trampoline when stepping. */
4773 /* macro/2012-04-25: This needs to come before the subroutine
4774 call check below as on some targets return trampolines look
4775 like subroutine calls (MIPS16 return thunks). */
4776 if (gdbarch_in_solib_return_trampoline (gdbarch,
4777 stop_pc, ecs->stop_func_name)
4778 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4779 {
4780 /* Determine where this trampoline returns. */
4781 CORE_ADDR real_stop_pc;
4782
4783 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4784
4785 if (debug_infrun)
4786 fprintf_unfiltered (gdb_stdlog,
4787 "infrun: stepped into solib return tramp\n");
4788
4789 /* Only proceed through if we know where it's going. */
4790 if (real_stop_pc)
4791 {
4792 /* And put the step-breakpoint there and go until there. */
4793 struct symtab_and_line sr_sal;
4794
4795 init_sal (&sr_sal); /* initialize to zeroes */
4796 sr_sal.pc = real_stop_pc;
4797 sr_sal.section = find_pc_overlay (sr_sal.pc);
4798 sr_sal.pspace = get_frame_program_space (frame);
4799
4800 /* Do not specify what the fp should be when we stop since
4801 on some machines the prologue is where the new fp value
4802 is established. */
4803 insert_step_resume_breakpoint_at_sal (gdbarch,
4804 sr_sal, null_frame_id);
4805
4806 /* Restart without fiddling with the step ranges or
4807 other state. */
4808 keep_going (ecs);
4809 return;
4810 }
4811 }
4812
4813 /* Check for subroutine calls. The check for the current frame
4814 equalling the step ID is not necessary - the check of the
4815 previous frame's ID is sufficient - but it is a common case and
4816 cheaper than checking the previous frame's ID.
4817
4818 NOTE: frame_id_eq will never report two invalid frame IDs as
4819 being equal, so to get into this block, both the current and
4820 previous frame must have valid frame IDs. */
4821 /* The outer_frame_id check is a heuristic to detect stepping
4822 through startup code. If we step over an instruction which
4823 sets the stack pointer from an invalid value to a valid value,
4824 we may detect that as a subroutine call from the mythical
4825 "outermost" function. This could be fixed by marking
4826 outermost frames as !stack_p,code_p,special_p. Then the
4827 initial outermost frame, before sp was valid, would
4828 have code_addr == &_start. See the comment in frame_id_eq
4829 for more. */
4830 if (!frame_id_eq (get_stack_frame_id (frame),
4831 ecs->event_thread->control.step_stack_frame_id)
4832 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4833 ecs->event_thread->control.step_stack_frame_id)
4834 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4835 outer_frame_id)
4836 || step_start_function != find_pc_function (stop_pc))))
4837 {
4838 CORE_ADDR real_stop_pc;
4839
4840 if (debug_infrun)
4841 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4842
4843 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4844 || ((ecs->event_thread->control.step_range_end == 1)
4845 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4846 ecs->stop_func_start)))
4847 {
4848 /* I presume that step_over_calls is only 0 when we're
4849 supposed to be stepping at the assembly language level
4850 ("stepi"). Just stop. */
4851 /* Also, maybe we just did a "nexti" inside a prolog, so we
4852 thought it was a subroutine call but it was not. Stop as
4853 well. FENN */
4854 /* And this works the same backward as frontward. MVS */
4855 ecs->event_thread->control.stop_step = 1;
4856 print_end_stepping_range_reason ();
4857 stop_stepping (ecs);
4858 return;
4859 }
4860
4861 /* Reverse stepping through solib trampolines. */
4862
4863 if (execution_direction == EXEC_REVERSE
4864 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4865 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4866 || (ecs->stop_func_start == 0
4867 && in_solib_dynsym_resolve_code (stop_pc))))
4868 {
4869 /* Any solib trampoline code can be handled in reverse
4870 by simply continuing to single-step. We have already
4871 executed the solib function (backwards), and a few
4872 steps will take us back through the trampoline to the
4873 caller. */
4874 keep_going (ecs);
4875 return;
4876 }
4877
4878 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4879 {
4880 /* We're doing a "next".
4881
4882 Normal (forward) execution: set a breakpoint at the
4883 callee's return address (the address at which the caller
4884 will resume).
4885
4886 Reverse (backward) execution. set the step-resume
4887 breakpoint at the start of the function that we just
4888 stepped into (backwards), and continue to there. When we
4889 get there, we'll need to single-step back to the caller. */
4890
4891 if (execution_direction == EXEC_REVERSE)
4892 {
4893 /* If we're already at the start of the function, we've either
4894 just stepped backward into a single instruction function,
4895 or stepped back out of a signal handler to the first instruction
4896 of the function. Just keep going, which will single-step back
4897 to the caller. */
4898 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
4899 {
4900 struct symtab_and_line sr_sal;
4901
4902 /* Normal function call return (static or dynamic). */
4903 init_sal (&sr_sal);
4904 sr_sal.pc = ecs->stop_func_start;
4905 sr_sal.pspace = get_frame_program_space (frame);
4906 insert_step_resume_breakpoint_at_sal (gdbarch,
4907 sr_sal, null_frame_id);
4908 }
4909 }
4910 else
4911 insert_step_resume_breakpoint_at_caller (frame);
4912
4913 keep_going (ecs);
4914 return;
4915 }
4916
4917 /* If we are in a function call trampoline (a stub between the
4918 calling routine and the real function), locate the real
4919 function. That's what tells us (a) whether we want to step
4920 into it at all, and (b) what prologue we want to run to the
4921 end of, if we do step into it. */
4922 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4923 if (real_stop_pc == 0)
4924 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4925 if (real_stop_pc != 0)
4926 ecs->stop_func_start = real_stop_pc;
4927
4928 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4929 {
4930 struct symtab_and_line sr_sal;
4931
4932 init_sal (&sr_sal);
4933 sr_sal.pc = ecs->stop_func_start;
4934 sr_sal.pspace = get_frame_program_space (frame);
4935
4936 insert_step_resume_breakpoint_at_sal (gdbarch,
4937 sr_sal, null_frame_id);
4938 keep_going (ecs);
4939 return;
4940 }
4941
4942 /* If we have line number information for the function we are
4943 thinking of stepping into and the function isn't on the skip
4944 list, step into it.
4945
4946 If there are several symtabs at that PC (e.g. with include
4947 files), just want to know whether *any* of them have line
4948 numbers. find_pc_line handles this. */
4949 {
4950 struct symtab_and_line tmp_sal;
4951
4952 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4953 if (tmp_sal.line != 0
4954 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4955 &tmp_sal))
4956 {
4957 if (execution_direction == EXEC_REVERSE)
4958 handle_step_into_function_backward (gdbarch, ecs);
4959 else
4960 handle_step_into_function (gdbarch, ecs);
4961 return;
4962 }
4963 }
4964
4965 /* If we have no line number and the step-stop-if-no-debug is
4966 set, we stop the step so that the user has a chance to switch
4967 in assembly mode. */
4968 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4969 && step_stop_if_no_debug)
4970 {
4971 ecs->event_thread->control.stop_step = 1;
4972 print_end_stepping_range_reason ();
4973 stop_stepping (ecs);
4974 return;
4975 }
4976
4977 if (execution_direction == EXEC_REVERSE)
4978 {
4979 /* If we're already at the start of the function, we've either just
4980 stepped backward into a single instruction function without line
4981 number info, or stepped back out of a signal handler to the first
4982 instruction of the function without line number info. Just keep
4983 going, which will single-step back to the caller. */
4984 if (ecs->stop_func_start != stop_pc)
4985 {
4986 /* Set a breakpoint at callee's start address.
4987 From there we can step once and be back in the caller. */
4988 struct symtab_and_line sr_sal;
4989
4990 init_sal (&sr_sal);
4991 sr_sal.pc = ecs->stop_func_start;
4992 sr_sal.pspace = get_frame_program_space (frame);
4993 insert_step_resume_breakpoint_at_sal (gdbarch,
4994 sr_sal, null_frame_id);
4995 }
4996 }
4997 else
4998 /* Set a breakpoint at callee's return address (the address
4999 at which the caller will resume). */
5000 insert_step_resume_breakpoint_at_caller (frame);
5001
5002 keep_going (ecs);
5003 return;
5004 }
5005
5006 /* Reverse stepping through solib trampolines. */
5007
5008 if (execution_direction == EXEC_REVERSE
5009 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5010 {
5011 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5012 || (ecs->stop_func_start == 0
5013 && in_solib_dynsym_resolve_code (stop_pc)))
5014 {
5015 /* Any solib trampoline code can be handled in reverse
5016 by simply continuing to single-step. We have already
5017 executed the solib function (backwards), and a few
5018 steps will take us back through the trampoline to the
5019 caller. */
5020 keep_going (ecs);
5021 return;
5022 }
5023 else if (in_solib_dynsym_resolve_code (stop_pc))
5024 {
5025 /* Stepped backward into the solib dynsym resolver.
5026 Set a breakpoint at its start and continue, then
5027 one more step will take us out. */
5028 struct symtab_and_line sr_sal;
5029
5030 init_sal (&sr_sal);
5031 sr_sal.pc = ecs->stop_func_start;
5032 sr_sal.pspace = get_frame_program_space (frame);
5033 insert_step_resume_breakpoint_at_sal (gdbarch,
5034 sr_sal, null_frame_id);
5035 keep_going (ecs);
5036 return;
5037 }
5038 }
5039
5040 stop_pc_sal = find_pc_line (stop_pc, 0);
5041
5042 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5043 the trampoline processing logic, however, there are some trampolines
5044 that have no names, so we should do trampoline handling first. */
5045 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5046 && ecs->stop_func_name == NULL
5047 && stop_pc_sal.line == 0)
5048 {
5049 if (debug_infrun)
5050 fprintf_unfiltered (gdb_stdlog,
5051 "infrun: stepped into undebuggable function\n");
5052
5053 /* The inferior just stepped into, or returned to, an
5054 undebuggable function (where there is no debugging information
5055 and no line number corresponding to the address where the
5056 inferior stopped). Since we want to skip this kind of code,
5057 we keep going until the inferior returns from this
5058 function - unless the user has asked us not to (via
5059 set step-mode) or we no longer know how to get back
5060 to the call site. */
5061 if (step_stop_if_no_debug
5062 || !frame_id_p (frame_unwind_caller_id (frame)))
5063 {
5064 /* If we have no line number and the step-stop-if-no-debug
5065 is set, we stop the step so that the user has a chance to
5066 switch in assembly mode. */
5067 ecs->event_thread->control.stop_step = 1;
5068 print_end_stepping_range_reason ();
5069 stop_stepping (ecs);
5070 return;
5071 }
5072 else
5073 {
5074 /* Set a breakpoint at callee's return address (the address
5075 at which the caller will resume). */
5076 insert_step_resume_breakpoint_at_caller (frame);
5077 keep_going (ecs);
5078 return;
5079 }
5080 }
5081
5082 if (ecs->event_thread->control.step_range_end == 1)
5083 {
5084 /* It is stepi or nexti. We always want to stop stepping after
5085 one instruction. */
5086 if (debug_infrun)
5087 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5088 ecs->event_thread->control.stop_step = 1;
5089 print_end_stepping_range_reason ();
5090 stop_stepping (ecs);
5091 return;
5092 }
5093
5094 if (stop_pc_sal.line == 0)
5095 {
5096 /* We have no line number information. That means to stop
5097 stepping (does this always happen right after one instruction,
5098 when we do "s" in a function with no line numbers,
5099 or can this happen as a result of a return or longjmp?). */
5100 if (debug_infrun)
5101 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5102 ecs->event_thread->control.stop_step = 1;
5103 print_end_stepping_range_reason ();
5104 stop_stepping (ecs);
5105 return;
5106 }
5107
5108 /* Look for "calls" to inlined functions, part one. If the inline
5109 frame machinery detected some skipped call sites, we have entered
5110 a new inline function. */
5111
5112 if (frame_id_eq (get_frame_id (get_current_frame ()),
5113 ecs->event_thread->control.step_frame_id)
5114 && inline_skipped_frames (ecs->ptid))
5115 {
5116 struct symtab_and_line call_sal;
5117
5118 if (debug_infrun)
5119 fprintf_unfiltered (gdb_stdlog,
5120 "infrun: stepped into inlined function\n");
5121
5122 find_frame_sal (get_current_frame (), &call_sal);
5123
5124 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5125 {
5126 /* For "step", we're going to stop. But if the call site
5127 for this inlined function is on the same source line as
5128 we were previously stepping, go down into the function
5129 first. Otherwise stop at the call site. */
5130
5131 if (call_sal.line == ecs->event_thread->current_line
5132 && call_sal.symtab == ecs->event_thread->current_symtab)
5133 step_into_inline_frame (ecs->ptid);
5134
5135 ecs->event_thread->control.stop_step = 1;
5136 print_end_stepping_range_reason ();
5137 stop_stepping (ecs);
5138 return;
5139 }
5140 else
5141 {
5142 /* For "next", we should stop at the call site if it is on a
5143 different source line. Otherwise continue through the
5144 inlined function. */
5145 if (call_sal.line == ecs->event_thread->current_line
5146 && call_sal.symtab == ecs->event_thread->current_symtab)
5147 keep_going (ecs);
5148 else
5149 {
5150 ecs->event_thread->control.stop_step = 1;
5151 print_end_stepping_range_reason ();
5152 stop_stepping (ecs);
5153 }
5154 return;
5155 }
5156 }
5157
5158 /* Look for "calls" to inlined functions, part two. If we are still
5159 in the same real function we were stepping through, but we have
5160 to go further up to find the exact frame ID, we are stepping
5161 through a more inlined call beyond its call site. */
5162
5163 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5164 && !frame_id_eq (get_frame_id (get_current_frame ()),
5165 ecs->event_thread->control.step_frame_id)
5166 && stepped_in_from (get_current_frame (),
5167 ecs->event_thread->control.step_frame_id))
5168 {
5169 if (debug_infrun)
5170 fprintf_unfiltered (gdb_stdlog,
5171 "infrun: stepping through inlined function\n");
5172
5173 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5174 keep_going (ecs);
5175 else
5176 {
5177 ecs->event_thread->control.stop_step = 1;
5178 print_end_stepping_range_reason ();
5179 stop_stepping (ecs);
5180 }
5181 return;
5182 }
5183
5184 if ((stop_pc == stop_pc_sal.pc)
5185 && (ecs->event_thread->current_line != stop_pc_sal.line
5186 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5187 {
5188 /* We are at the start of a different line. So stop. Note that
5189 we don't stop if we step into the middle of a different line.
5190 That is said to make things like for (;;) statements work
5191 better. */
5192 if (debug_infrun)
5193 fprintf_unfiltered (gdb_stdlog,
5194 "infrun: stepped to a different line\n");
5195 ecs->event_thread->control.stop_step = 1;
5196 print_end_stepping_range_reason ();
5197 stop_stepping (ecs);
5198 return;
5199 }
5200
5201 /* We aren't done stepping.
5202
5203 Optimize by setting the stepping range to the line.
5204 (We might not be in the original line, but if we entered a
5205 new line in mid-statement, we continue stepping. This makes
5206 things like for(;;) statements work better.) */
5207
5208 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5209 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5210 ecs->event_thread->control.may_range_step = 1;
5211 set_step_info (frame, stop_pc_sal);
5212
5213 if (debug_infrun)
5214 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5215 keep_going (ecs);
5216 }
5217
5218 /* In all-stop mode, if we're currently stepping but have stopped in
5219 some other thread, we may need to switch back to the stepped
5220 thread. Returns true we set the inferior running, false if we left
5221 it stopped (and the event needs further processing). */
5222
5223 static int
5224 switch_back_to_stepped_thread (struct execution_control_state *ecs)
5225 {
5226 if (!non_stop)
5227 {
5228 struct thread_info *tp;
5229
5230 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
5231 ecs->event_thread);
5232 if (tp)
5233 {
5234 /* However, if the current thread is blocked on some internal
5235 breakpoint, and we simply need to step over that breakpoint
5236 to get it going again, do that first. */
5237 if ((ecs->event_thread->control.trap_expected
5238 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5239 || ecs->event_thread->stepping_over_breakpoint)
5240 {
5241 keep_going (ecs);
5242 return 1;
5243 }
5244
5245 /* If the stepping thread exited, then don't try to switch
5246 back and resume it, which could fail in several different
5247 ways depending on the target. Instead, just keep going.
5248
5249 We can find a stepping dead thread in the thread list in
5250 two cases:
5251
5252 - The target supports thread exit events, and when the
5253 target tries to delete the thread from the thread list,
5254 inferior_ptid pointed at the exiting thread. In such
5255 case, calling delete_thread does not really remove the
5256 thread from the list; instead, the thread is left listed,
5257 with 'exited' state.
5258
5259 - The target's debug interface does not support thread
5260 exit events, and so we have no idea whatsoever if the
5261 previously stepping thread is still alive. For that
5262 reason, we need to synchronously query the target
5263 now. */
5264 if (is_exited (tp->ptid)
5265 || !target_thread_alive (tp->ptid))
5266 {
5267 if (debug_infrun)
5268 fprintf_unfiltered (gdb_stdlog,
5269 "infrun: not switching back to "
5270 "stepped thread, it has vanished\n");
5271
5272 delete_thread (tp->ptid);
5273 keep_going (ecs);
5274 return 1;
5275 }
5276
5277 /* Otherwise, we no longer expect a trap in the current thread.
5278 Clear the trap_expected flag before switching back -- this is
5279 what keep_going would do as well, if we called it. */
5280 ecs->event_thread->control.trap_expected = 0;
5281
5282 if (debug_infrun)
5283 fprintf_unfiltered (gdb_stdlog,
5284 "infrun: switching back to stepped thread\n");
5285
5286 ecs->event_thread = tp;
5287 ecs->ptid = tp->ptid;
5288 context_switch (ecs->ptid);
5289 keep_going (ecs);
5290 return 1;
5291 }
5292 }
5293 return 0;
5294 }
5295
5296 /* Is thread TP in the middle of single-stepping? */
5297
5298 static int
5299 currently_stepping (struct thread_info *tp)
5300 {
5301 return ((tp->control.step_range_end
5302 && tp->control.step_resume_breakpoint == NULL)
5303 || tp->control.trap_expected
5304 || bpstat_should_step ());
5305 }
5306
5307 /* Returns true if any thread *but* the one passed in "data" is in the
5308 middle of stepping or of handling a "next". */
5309
5310 static int
5311 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5312 {
5313 if (tp == data)
5314 return 0;
5315
5316 return (tp->control.step_range_end
5317 || tp->control.trap_expected);
5318 }
5319
5320 /* Inferior has stepped into a subroutine call with source code that
5321 we should not step over. Do step to the first line of code in
5322 it. */
5323
5324 static void
5325 handle_step_into_function (struct gdbarch *gdbarch,
5326 struct execution_control_state *ecs)
5327 {
5328 struct symtab *s;
5329 struct symtab_and_line stop_func_sal, sr_sal;
5330
5331 fill_in_stop_func (gdbarch, ecs);
5332
5333 s = find_pc_symtab (stop_pc);
5334 if (s && s->language != language_asm)
5335 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5336 ecs->stop_func_start);
5337
5338 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5339 /* Use the step_resume_break to step until the end of the prologue,
5340 even if that involves jumps (as it seems to on the vax under
5341 4.2). */
5342 /* If the prologue ends in the middle of a source line, continue to
5343 the end of that source line (if it is still within the function).
5344 Otherwise, just go to end of prologue. */
5345 if (stop_func_sal.end
5346 && stop_func_sal.pc != ecs->stop_func_start
5347 && stop_func_sal.end < ecs->stop_func_end)
5348 ecs->stop_func_start = stop_func_sal.end;
5349
5350 /* Architectures which require breakpoint adjustment might not be able
5351 to place a breakpoint at the computed address. If so, the test
5352 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5353 ecs->stop_func_start to an address at which a breakpoint may be
5354 legitimately placed.
5355
5356 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5357 made, GDB will enter an infinite loop when stepping through
5358 optimized code consisting of VLIW instructions which contain
5359 subinstructions corresponding to different source lines. On
5360 FR-V, it's not permitted to place a breakpoint on any but the
5361 first subinstruction of a VLIW instruction. When a breakpoint is
5362 set, GDB will adjust the breakpoint address to the beginning of
5363 the VLIW instruction. Thus, we need to make the corresponding
5364 adjustment here when computing the stop address. */
5365
5366 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5367 {
5368 ecs->stop_func_start
5369 = gdbarch_adjust_breakpoint_address (gdbarch,
5370 ecs->stop_func_start);
5371 }
5372
5373 if (ecs->stop_func_start == stop_pc)
5374 {
5375 /* We are already there: stop now. */
5376 ecs->event_thread->control.stop_step = 1;
5377 print_end_stepping_range_reason ();
5378 stop_stepping (ecs);
5379 return;
5380 }
5381 else
5382 {
5383 /* Put the step-breakpoint there and go until there. */
5384 init_sal (&sr_sal); /* initialize to zeroes */
5385 sr_sal.pc = ecs->stop_func_start;
5386 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5387 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5388
5389 /* Do not specify what the fp should be when we stop since on
5390 some machines the prologue is where the new fp value is
5391 established. */
5392 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5393
5394 /* And make sure stepping stops right away then. */
5395 ecs->event_thread->control.step_range_end
5396 = ecs->event_thread->control.step_range_start;
5397 }
5398 keep_going (ecs);
5399 }
5400
5401 /* Inferior has stepped backward into a subroutine call with source
5402 code that we should not step over. Do step to the beginning of the
5403 last line of code in it. */
5404
5405 static void
5406 handle_step_into_function_backward (struct gdbarch *gdbarch,
5407 struct execution_control_state *ecs)
5408 {
5409 struct symtab *s;
5410 struct symtab_and_line stop_func_sal;
5411
5412 fill_in_stop_func (gdbarch, ecs);
5413
5414 s = find_pc_symtab (stop_pc);
5415 if (s && s->language != language_asm)
5416 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5417 ecs->stop_func_start);
5418
5419 stop_func_sal = find_pc_line (stop_pc, 0);
5420
5421 /* OK, we're just going to keep stepping here. */
5422 if (stop_func_sal.pc == stop_pc)
5423 {
5424 /* We're there already. Just stop stepping now. */
5425 ecs->event_thread->control.stop_step = 1;
5426 print_end_stepping_range_reason ();
5427 stop_stepping (ecs);
5428 }
5429 else
5430 {
5431 /* Else just reset the step range and keep going.
5432 No step-resume breakpoint, they don't work for
5433 epilogues, which can have multiple entry paths. */
5434 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5435 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5436 keep_going (ecs);
5437 }
5438 return;
5439 }
5440
5441 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5442 This is used to both functions and to skip over code. */
5443
5444 static void
5445 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5446 struct symtab_and_line sr_sal,
5447 struct frame_id sr_id,
5448 enum bptype sr_type)
5449 {
5450 /* There should never be more than one step-resume or longjmp-resume
5451 breakpoint per thread, so we should never be setting a new
5452 step_resume_breakpoint when one is already active. */
5453 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5454 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5455
5456 if (debug_infrun)
5457 fprintf_unfiltered (gdb_stdlog,
5458 "infrun: inserting step-resume breakpoint at %s\n",
5459 paddress (gdbarch, sr_sal.pc));
5460
5461 inferior_thread ()->control.step_resume_breakpoint
5462 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5463 }
5464
5465 void
5466 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5467 struct symtab_and_line sr_sal,
5468 struct frame_id sr_id)
5469 {
5470 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5471 sr_sal, sr_id,
5472 bp_step_resume);
5473 }
5474
5475 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5476 This is used to skip a potential signal handler.
5477
5478 This is called with the interrupted function's frame. The signal
5479 handler, when it returns, will resume the interrupted function at
5480 RETURN_FRAME.pc. */
5481
5482 static void
5483 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5484 {
5485 struct symtab_and_line sr_sal;
5486 struct gdbarch *gdbarch;
5487
5488 gdb_assert (return_frame != NULL);
5489 init_sal (&sr_sal); /* initialize to zeros */
5490
5491 gdbarch = get_frame_arch (return_frame);
5492 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5493 sr_sal.section = find_pc_overlay (sr_sal.pc);
5494 sr_sal.pspace = get_frame_program_space (return_frame);
5495
5496 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5497 get_stack_frame_id (return_frame),
5498 bp_hp_step_resume);
5499 }
5500
5501 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5502 is used to skip a function after stepping into it (for "next" or if
5503 the called function has no debugging information).
5504
5505 The current function has almost always been reached by single
5506 stepping a call or return instruction. NEXT_FRAME belongs to the
5507 current function, and the breakpoint will be set at the caller's
5508 resume address.
5509
5510 This is a separate function rather than reusing
5511 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5512 get_prev_frame, which may stop prematurely (see the implementation
5513 of frame_unwind_caller_id for an example). */
5514
5515 static void
5516 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5517 {
5518 struct symtab_and_line sr_sal;
5519 struct gdbarch *gdbarch;
5520
5521 /* We shouldn't have gotten here if we don't know where the call site
5522 is. */
5523 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5524
5525 init_sal (&sr_sal); /* initialize to zeros */
5526
5527 gdbarch = frame_unwind_caller_arch (next_frame);
5528 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5529 frame_unwind_caller_pc (next_frame));
5530 sr_sal.section = find_pc_overlay (sr_sal.pc);
5531 sr_sal.pspace = frame_unwind_program_space (next_frame);
5532
5533 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5534 frame_unwind_caller_id (next_frame));
5535 }
5536
5537 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5538 new breakpoint at the target of a jmp_buf. The handling of
5539 longjmp-resume uses the same mechanisms used for handling
5540 "step-resume" breakpoints. */
5541
5542 static void
5543 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5544 {
5545 /* There should never be more than one longjmp-resume breakpoint per
5546 thread, so we should never be setting a new
5547 longjmp_resume_breakpoint when one is already active. */
5548 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5549
5550 if (debug_infrun)
5551 fprintf_unfiltered (gdb_stdlog,
5552 "infrun: inserting longjmp-resume breakpoint at %s\n",
5553 paddress (gdbarch, pc));
5554
5555 inferior_thread ()->control.exception_resume_breakpoint =
5556 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5557 }
5558
5559 /* Insert an exception resume breakpoint. TP is the thread throwing
5560 the exception. The block B is the block of the unwinder debug hook
5561 function. FRAME is the frame corresponding to the call to this
5562 function. SYM is the symbol of the function argument holding the
5563 target PC of the exception. */
5564
5565 static void
5566 insert_exception_resume_breakpoint (struct thread_info *tp,
5567 struct block *b,
5568 struct frame_info *frame,
5569 struct symbol *sym)
5570 {
5571 volatile struct gdb_exception e;
5572
5573 /* We want to ignore errors here. */
5574 TRY_CATCH (e, RETURN_MASK_ERROR)
5575 {
5576 struct symbol *vsym;
5577 struct value *value;
5578 CORE_ADDR handler;
5579 struct breakpoint *bp;
5580
5581 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5582 value = read_var_value (vsym, frame);
5583 /* If the value was optimized out, revert to the old behavior. */
5584 if (! value_optimized_out (value))
5585 {
5586 handler = value_as_address (value);
5587
5588 if (debug_infrun)
5589 fprintf_unfiltered (gdb_stdlog,
5590 "infrun: exception resume at %lx\n",
5591 (unsigned long) handler);
5592
5593 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5594 handler, bp_exception_resume);
5595
5596 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5597 frame = NULL;
5598
5599 bp->thread = tp->num;
5600 inferior_thread ()->control.exception_resume_breakpoint = bp;
5601 }
5602 }
5603 }
5604
5605 /* A helper for check_exception_resume that sets an
5606 exception-breakpoint based on a SystemTap probe. */
5607
5608 static void
5609 insert_exception_resume_from_probe (struct thread_info *tp,
5610 const struct probe *probe,
5611 struct frame_info *frame)
5612 {
5613 struct value *arg_value;
5614 CORE_ADDR handler;
5615 struct breakpoint *bp;
5616
5617 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5618 if (!arg_value)
5619 return;
5620
5621 handler = value_as_address (arg_value);
5622
5623 if (debug_infrun)
5624 fprintf_unfiltered (gdb_stdlog,
5625 "infrun: exception resume at %s\n",
5626 paddress (get_objfile_arch (probe->objfile),
5627 handler));
5628
5629 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5630 handler, bp_exception_resume);
5631 bp->thread = tp->num;
5632 inferior_thread ()->control.exception_resume_breakpoint = bp;
5633 }
5634
5635 /* This is called when an exception has been intercepted. Check to
5636 see whether the exception's destination is of interest, and if so,
5637 set an exception resume breakpoint there. */
5638
5639 static void
5640 check_exception_resume (struct execution_control_state *ecs,
5641 struct frame_info *frame)
5642 {
5643 volatile struct gdb_exception e;
5644 const struct probe *probe;
5645 struct symbol *func;
5646
5647 /* First see if this exception unwinding breakpoint was set via a
5648 SystemTap probe point. If so, the probe has two arguments: the
5649 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5650 set a breakpoint there. */
5651 probe = find_probe_by_pc (get_frame_pc (frame));
5652 if (probe)
5653 {
5654 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
5655 return;
5656 }
5657
5658 func = get_frame_function (frame);
5659 if (!func)
5660 return;
5661
5662 TRY_CATCH (e, RETURN_MASK_ERROR)
5663 {
5664 struct block *b;
5665 struct block_iterator iter;
5666 struct symbol *sym;
5667 int argno = 0;
5668
5669 /* The exception breakpoint is a thread-specific breakpoint on
5670 the unwinder's debug hook, declared as:
5671
5672 void _Unwind_DebugHook (void *cfa, void *handler);
5673
5674 The CFA argument indicates the frame to which control is
5675 about to be transferred. HANDLER is the destination PC.
5676
5677 We ignore the CFA and set a temporary breakpoint at HANDLER.
5678 This is not extremely efficient but it avoids issues in gdb
5679 with computing the DWARF CFA, and it also works even in weird
5680 cases such as throwing an exception from inside a signal
5681 handler. */
5682
5683 b = SYMBOL_BLOCK_VALUE (func);
5684 ALL_BLOCK_SYMBOLS (b, iter, sym)
5685 {
5686 if (!SYMBOL_IS_ARGUMENT (sym))
5687 continue;
5688
5689 if (argno == 0)
5690 ++argno;
5691 else
5692 {
5693 insert_exception_resume_breakpoint (ecs->event_thread,
5694 b, frame, sym);
5695 break;
5696 }
5697 }
5698 }
5699 }
5700
5701 static void
5702 stop_stepping (struct execution_control_state *ecs)
5703 {
5704 if (debug_infrun)
5705 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5706
5707 /* Let callers know we don't want to wait for the inferior anymore. */
5708 ecs->wait_some_more = 0;
5709 }
5710
5711 /* Called when we should continue running the inferior, because the
5712 current event doesn't cause a user visible stop. This does the
5713 resuming part; waiting for the next event is done elsewhere. */
5714
5715 static void
5716 keep_going (struct execution_control_state *ecs)
5717 {
5718 /* Make sure normal_stop is called if we get a QUIT handled before
5719 reaching resume. */
5720 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5721
5722 /* Save the pc before execution, to compare with pc after stop. */
5723 ecs->event_thread->prev_pc
5724 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5725
5726 if (ecs->event_thread->control.trap_expected
5727 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5728 {
5729 /* We haven't yet gotten our trap, and either: intercepted a
5730 non-signal event (e.g., a fork); or took a signal which we
5731 are supposed to pass through to the inferior. Simply
5732 continue. */
5733 discard_cleanups (old_cleanups);
5734 resume (currently_stepping (ecs->event_thread),
5735 ecs->event_thread->suspend.stop_signal);
5736 }
5737 else
5738 {
5739 /* Either the trap was not expected, but we are continuing
5740 anyway (if we got a signal, the user asked it be passed to
5741 the child)
5742 -- or --
5743 We got our expected trap, but decided we should resume from
5744 it.
5745
5746 We're going to run this baby now!
5747
5748 Note that insert_breakpoints won't try to re-insert
5749 already inserted breakpoints. Therefore, we don't
5750 care if breakpoints were already inserted, or not. */
5751
5752 if (ecs->event_thread->stepping_over_breakpoint)
5753 {
5754 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5755
5756 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5757 {
5758 /* Since we can't do a displaced step, we have to remove
5759 the breakpoint while we step it. To keep things
5760 simple, we remove them all. */
5761 remove_breakpoints ();
5762 }
5763 }
5764 else
5765 {
5766 volatile struct gdb_exception e;
5767
5768 /* Stop stepping if inserting breakpoints fails. */
5769 TRY_CATCH (e, RETURN_MASK_ERROR)
5770 {
5771 insert_breakpoints ();
5772 }
5773 if (e.reason < 0)
5774 {
5775 exception_print (gdb_stderr, e);
5776 stop_stepping (ecs);
5777 return;
5778 }
5779 }
5780
5781 ecs->event_thread->control.trap_expected
5782 = ecs->event_thread->stepping_over_breakpoint;
5783
5784 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5785 explicitly specifies that such a signal should be delivered
5786 to the target program). Typically, that would occur when a
5787 user is debugging a target monitor on a simulator: the target
5788 monitor sets a breakpoint; the simulator encounters this
5789 breakpoint and halts the simulation handing control to GDB;
5790 GDB, noting that the stop address doesn't map to any known
5791 breakpoint, returns control back to the simulator; the
5792 simulator then delivers the hardware equivalent of a
5793 GDB_SIGNAL_TRAP to the program being debugged. */
5794 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5795 && !signal_program[ecs->event_thread->suspend.stop_signal])
5796 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5797
5798 discard_cleanups (old_cleanups);
5799 resume (currently_stepping (ecs->event_thread),
5800 ecs->event_thread->suspend.stop_signal);
5801 }
5802
5803 prepare_to_wait (ecs);
5804 }
5805
5806 /* This function normally comes after a resume, before
5807 handle_inferior_event exits. It takes care of any last bits of
5808 housekeeping, and sets the all-important wait_some_more flag. */
5809
5810 static void
5811 prepare_to_wait (struct execution_control_state *ecs)
5812 {
5813 if (debug_infrun)
5814 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5815
5816 /* This is the old end of the while loop. Let everybody know we
5817 want to wait for the inferior some more and get called again
5818 soon. */
5819 ecs->wait_some_more = 1;
5820 }
5821
5822 /* Several print_*_reason functions to print why the inferior has stopped.
5823 We always print something when the inferior exits, or receives a signal.
5824 The rest of the cases are dealt with later on in normal_stop and
5825 print_it_typical. Ideally there should be a call to one of these
5826 print_*_reason functions functions from handle_inferior_event each time
5827 stop_stepping is called. */
5828
5829 /* Print why the inferior has stopped.
5830 We are done with a step/next/si/ni command, print why the inferior has
5831 stopped. For now print nothing. Print a message only if not in the middle
5832 of doing a "step n" operation for n > 1. */
5833
5834 static void
5835 print_end_stepping_range_reason (void)
5836 {
5837 if ((!inferior_thread ()->step_multi
5838 || !inferior_thread ()->control.stop_step)
5839 && ui_out_is_mi_like_p (current_uiout))
5840 ui_out_field_string (current_uiout, "reason",
5841 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5842 }
5843
5844 /* The inferior was terminated by a signal, print why it stopped. */
5845
5846 static void
5847 print_signal_exited_reason (enum gdb_signal siggnal)
5848 {
5849 struct ui_out *uiout = current_uiout;
5850
5851 annotate_signalled ();
5852 if (ui_out_is_mi_like_p (uiout))
5853 ui_out_field_string
5854 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5855 ui_out_text (uiout, "\nProgram terminated with signal ");
5856 annotate_signal_name ();
5857 ui_out_field_string (uiout, "signal-name",
5858 gdb_signal_to_name (siggnal));
5859 annotate_signal_name_end ();
5860 ui_out_text (uiout, ", ");
5861 annotate_signal_string ();
5862 ui_out_field_string (uiout, "signal-meaning",
5863 gdb_signal_to_string (siggnal));
5864 annotate_signal_string_end ();
5865 ui_out_text (uiout, ".\n");
5866 ui_out_text (uiout, "The program no longer exists.\n");
5867 }
5868
5869 /* The inferior program is finished, print why it stopped. */
5870
5871 static void
5872 print_exited_reason (int exitstatus)
5873 {
5874 struct inferior *inf = current_inferior ();
5875 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5876 struct ui_out *uiout = current_uiout;
5877
5878 annotate_exited (exitstatus);
5879 if (exitstatus)
5880 {
5881 if (ui_out_is_mi_like_p (uiout))
5882 ui_out_field_string (uiout, "reason",
5883 async_reason_lookup (EXEC_ASYNC_EXITED));
5884 ui_out_text (uiout, "[Inferior ");
5885 ui_out_text (uiout, plongest (inf->num));
5886 ui_out_text (uiout, " (");
5887 ui_out_text (uiout, pidstr);
5888 ui_out_text (uiout, ") exited with code ");
5889 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5890 ui_out_text (uiout, "]\n");
5891 }
5892 else
5893 {
5894 if (ui_out_is_mi_like_p (uiout))
5895 ui_out_field_string
5896 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5897 ui_out_text (uiout, "[Inferior ");
5898 ui_out_text (uiout, plongest (inf->num));
5899 ui_out_text (uiout, " (");
5900 ui_out_text (uiout, pidstr);
5901 ui_out_text (uiout, ") exited normally]\n");
5902 }
5903 /* Support the --return-child-result option. */
5904 return_child_result_value = exitstatus;
5905 }
5906
5907 /* Signal received, print why the inferior has stopped. The signal table
5908 tells us to print about it. */
5909
5910 static void
5911 print_signal_received_reason (enum gdb_signal siggnal)
5912 {
5913 struct ui_out *uiout = current_uiout;
5914
5915 annotate_signal ();
5916
5917 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5918 {
5919 struct thread_info *t = inferior_thread ();
5920
5921 ui_out_text (uiout, "\n[");
5922 ui_out_field_string (uiout, "thread-name",
5923 target_pid_to_str (t->ptid));
5924 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5925 ui_out_text (uiout, " stopped");
5926 }
5927 else
5928 {
5929 ui_out_text (uiout, "\nProgram received signal ");
5930 annotate_signal_name ();
5931 if (ui_out_is_mi_like_p (uiout))
5932 ui_out_field_string
5933 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5934 ui_out_field_string (uiout, "signal-name",
5935 gdb_signal_to_name (siggnal));
5936 annotate_signal_name_end ();
5937 ui_out_text (uiout, ", ");
5938 annotate_signal_string ();
5939 ui_out_field_string (uiout, "signal-meaning",
5940 gdb_signal_to_string (siggnal));
5941 annotate_signal_string_end ();
5942 }
5943 ui_out_text (uiout, ".\n");
5944 }
5945
5946 /* Reverse execution: target ran out of history info, print why the inferior
5947 has stopped. */
5948
5949 static void
5950 print_no_history_reason (void)
5951 {
5952 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5953 }
5954
5955 /* Here to return control to GDB when the inferior stops for real.
5956 Print appropriate messages, remove breakpoints, give terminal our modes.
5957
5958 STOP_PRINT_FRAME nonzero means print the executing frame
5959 (pc, function, args, file, line number and line text).
5960 BREAKPOINTS_FAILED nonzero means stop was due to error
5961 attempting to insert breakpoints. */
5962
5963 void
5964 normal_stop (void)
5965 {
5966 struct target_waitstatus last;
5967 ptid_t last_ptid;
5968 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5969
5970 get_last_target_status (&last_ptid, &last);
5971
5972 /* If an exception is thrown from this point on, make sure to
5973 propagate GDB's knowledge of the executing state to the
5974 frontend/user running state. A QUIT is an easy exception to see
5975 here, so do this before any filtered output. */
5976 if (!non_stop)
5977 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5978 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5979 && last.kind != TARGET_WAITKIND_EXITED
5980 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5981 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5982
5983 /* In non-stop mode, we don't want GDB to switch threads behind the
5984 user's back, to avoid races where the user is typing a command to
5985 apply to thread x, but GDB switches to thread y before the user
5986 finishes entering the command. */
5987
5988 /* As with the notification of thread events, we want to delay
5989 notifying the user that we've switched thread context until
5990 the inferior actually stops.
5991
5992 There's no point in saying anything if the inferior has exited.
5993 Note that SIGNALLED here means "exited with a signal", not
5994 "received a signal". */
5995 if (!non_stop
5996 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5997 && target_has_execution
5998 && last.kind != TARGET_WAITKIND_SIGNALLED
5999 && last.kind != TARGET_WAITKIND_EXITED
6000 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6001 {
6002 target_terminal_ours_for_output ();
6003 printf_filtered (_("[Switching to %s]\n"),
6004 target_pid_to_str (inferior_ptid));
6005 annotate_thread_changed ();
6006 previous_inferior_ptid = inferior_ptid;
6007 }
6008
6009 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6010 {
6011 gdb_assert (sync_execution || !target_can_async_p ());
6012
6013 target_terminal_ours_for_output ();
6014 printf_filtered (_("No unwaited-for children left.\n"));
6015 }
6016
6017 if (!breakpoints_always_inserted_mode () && target_has_execution)
6018 {
6019 if (remove_breakpoints ())
6020 {
6021 target_terminal_ours_for_output ();
6022 printf_filtered (_("Cannot remove breakpoints because "
6023 "program is no longer writable.\nFurther "
6024 "execution is probably impossible.\n"));
6025 }
6026 }
6027
6028 /* If an auto-display called a function and that got a signal,
6029 delete that auto-display to avoid an infinite recursion. */
6030
6031 if (stopped_by_random_signal)
6032 disable_current_display ();
6033
6034 /* Don't print a message if in the middle of doing a "step n"
6035 operation for n > 1 */
6036 if (target_has_execution
6037 && last.kind != TARGET_WAITKIND_SIGNALLED
6038 && last.kind != TARGET_WAITKIND_EXITED
6039 && inferior_thread ()->step_multi
6040 && inferior_thread ()->control.stop_step)
6041 goto done;
6042
6043 target_terminal_ours ();
6044 async_enable_stdin ();
6045
6046 /* Set the current source location. This will also happen if we
6047 display the frame below, but the current SAL will be incorrect
6048 during a user hook-stop function. */
6049 if (has_stack_frames () && !stop_stack_dummy)
6050 set_current_sal_from_frame (get_current_frame (), 1);
6051
6052 /* Let the user/frontend see the threads as stopped. */
6053 do_cleanups (old_chain);
6054
6055 /* Look up the hook_stop and run it (CLI internally handles problem
6056 of stop_command's pre-hook not existing). */
6057 if (stop_command)
6058 catch_errors (hook_stop_stub, stop_command,
6059 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6060
6061 if (!has_stack_frames ())
6062 goto done;
6063
6064 if (last.kind == TARGET_WAITKIND_SIGNALLED
6065 || last.kind == TARGET_WAITKIND_EXITED)
6066 goto done;
6067
6068 /* Select innermost stack frame - i.e., current frame is frame 0,
6069 and current location is based on that.
6070 Don't do this on return from a stack dummy routine,
6071 or if the program has exited. */
6072
6073 if (!stop_stack_dummy)
6074 {
6075 select_frame (get_current_frame ());
6076
6077 /* Print current location without a level number, if
6078 we have changed functions or hit a breakpoint.
6079 Print source line if we have one.
6080 bpstat_print() contains the logic deciding in detail
6081 what to print, based on the event(s) that just occurred. */
6082
6083 /* If --batch-silent is enabled then there's no need to print the current
6084 source location, and to try risks causing an error message about
6085 missing source files. */
6086 if (stop_print_frame && !batch_silent)
6087 {
6088 int bpstat_ret;
6089 int source_flag;
6090 int do_frame_printing = 1;
6091 struct thread_info *tp = inferior_thread ();
6092
6093 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6094 switch (bpstat_ret)
6095 {
6096 case PRINT_UNKNOWN:
6097 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6098 (or should) carry around the function and does (or
6099 should) use that when doing a frame comparison. */
6100 if (tp->control.stop_step
6101 && frame_id_eq (tp->control.step_frame_id,
6102 get_frame_id (get_current_frame ()))
6103 && step_start_function == find_pc_function (stop_pc))
6104 source_flag = SRC_LINE; /* Finished step, just
6105 print source line. */
6106 else
6107 source_flag = SRC_AND_LOC; /* Print location and
6108 source line. */
6109 break;
6110 case PRINT_SRC_AND_LOC:
6111 source_flag = SRC_AND_LOC; /* Print location and
6112 source line. */
6113 break;
6114 case PRINT_SRC_ONLY:
6115 source_flag = SRC_LINE;
6116 break;
6117 case PRINT_NOTHING:
6118 source_flag = SRC_LINE; /* something bogus */
6119 do_frame_printing = 0;
6120 break;
6121 default:
6122 internal_error (__FILE__, __LINE__, _("Unknown value."));
6123 }
6124
6125 /* The behavior of this routine with respect to the source
6126 flag is:
6127 SRC_LINE: Print only source line
6128 LOCATION: Print only location
6129 SRC_AND_LOC: Print location and source line. */
6130 if (do_frame_printing)
6131 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6132
6133 /* Display the auto-display expressions. */
6134 do_displays ();
6135 }
6136 }
6137
6138 /* Save the function value return registers, if we care.
6139 We might be about to restore their previous contents. */
6140 if (inferior_thread ()->control.proceed_to_finish
6141 && execution_direction != EXEC_REVERSE)
6142 {
6143 /* This should not be necessary. */
6144 if (stop_registers)
6145 regcache_xfree (stop_registers);
6146
6147 /* NB: The copy goes through to the target picking up the value of
6148 all the registers. */
6149 stop_registers = regcache_dup (get_current_regcache ());
6150 }
6151
6152 if (stop_stack_dummy == STOP_STACK_DUMMY)
6153 {
6154 /* Pop the empty frame that contains the stack dummy.
6155 This also restores inferior state prior to the call
6156 (struct infcall_suspend_state). */
6157 struct frame_info *frame = get_current_frame ();
6158
6159 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6160 frame_pop (frame);
6161 /* frame_pop() calls reinit_frame_cache as the last thing it
6162 does which means there's currently no selected frame. We
6163 don't need to re-establish a selected frame if the dummy call
6164 returns normally, that will be done by
6165 restore_infcall_control_state. However, we do have to handle
6166 the case where the dummy call is returning after being
6167 stopped (e.g. the dummy call previously hit a breakpoint).
6168 We can't know which case we have so just always re-establish
6169 a selected frame here. */
6170 select_frame (get_current_frame ());
6171 }
6172
6173 done:
6174 annotate_stopped ();
6175
6176 /* Suppress the stop observer if we're in the middle of:
6177
6178 - a step n (n > 1), as there still more steps to be done.
6179
6180 - a "finish" command, as the observer will be called in
6181 finish_command_continuation, so it can include the inferior
6182 function's return value.
6183
6184 - calling an inferior function, as we pretend we inferior didn't
6185 run at all. The return value of the call is handled by the
6186 expression evaluator, through call_function_by_hand. */
6187
6188 if (!target_has_execution
6189 || last.kind == TARGET_WAITKIND_SIGNALLED
6190 || last.kind == TARGET_WAITKIND_EXITED
6191 || last.kind == TARGET_WAITKIND_NO_RESUMED
6192 || (!(inferior_thread ()->step_multi
6193 && inferior_thread ()->control.stop_step)
6194 && !(inferior_thread ()->control.stop_bpstat
6195 && inferior_thread ()->control.proceed_to_finish)
6196 && !inferior_thread ()->control.in_infcall))
6197 {
6198 if (!ptid_equal (inferior_ptid, null_ptid))
6199 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6200 stop_print_frame);
6201 else
6202 observer_notify_normal_stop (NULL, stop_print_frame);
6203 }
6204
6205 if (target_has_execution)
6206 {
6207 if (last.kind != TARGET_WAITKIND_SIGNALLED
6208 && last.kind != TARGET_WAITKIND_EXITED)
6209 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6210 Delete any breakpoint that is to be deleted at the next stop. */
6211 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6212 }
6213
6214 /* Try to get rid of automatically added inferiors that are no
6215 longer needed. Keeping those around slows down things linearly.
6216 Note that this never removes the current inferior. */
6217 prune_inferiors ();
6218 }
6219
6220 static int
6221 hook_stop_stub (void *cmd)
6222 {
6223 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6224 return (0);
6225 }
6226 \f
6227 int
6228 signal_stop_state (int signo)
6229 {
6230 return signal_stop[signo];
6231 }
6232
6233 int
6234 signal_print_state (int signo)
6235 {
6236 return signal_print[signo];
6237 }
6238
6239 int
6240 signal_pass_state (int signo)
6241 {
6242 return signal_program[signo];
6243 }
6244
6245 static void
6246 signal_cache_update (int signo)
6247 {
6248 if (signo == -1)
6249 {
6250 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6251 signal_cache_update (signo);
6252
6253 return;
6254 }
6255
6256 signal_pass[signo] = (signal_stop[signo] == 0
6257 && signal_print[signo] == 0
6258 && signal_program[signo] == 1
6259 && signal_catch[signo] == 0);
6260 }
6261
6262 int
6263 signal_stop_update (int signo, int state)
6264 {
6265 int ret = signal_stop[signo];
6266
6267 signal_stop[signo] = state;
6268 signal_cache_update (signo);
6269 return ret;
6270 }
6271
6272 int
6273 signal_print_update (int signo, int state)
6274 {
6275 int ret = signal_print[signo];
6276
6277 signal_print[signo] = state;
6278 signal_cache_update (signo);
6279 return ret;
6280 }
6281
6282 int
6283 signal_pass_update (int signo, int state)
6284 {
6285 int ret = signal_program[signo];
6286
6287 signal_program[signo] = state;
6288 signal_cache_update (signo);
6289 return ret;
6290 }
6291
6292 /* Update the global 'signal_catch' from INFO and notify the
6293 target. */
6294
6295 void
6296 signal_catch_update (const unsigned int *info)
6297 {
6298 int i;
6299
6300 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6301 signal_catch[i] = info[i] > 0;
6302 signal_cache_update (-1);
6303 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6304 }
6305
6306 static void
6307 sig_print_header (void)
6308 {
6309 printf_filtered (_("Signal Stop\tPrint\tPass "
6310 "to program\tDescription\n"));
6311 }
6312
6313 static void
6314 sig_print_info (enum gdb_signal oursig)
6315 {
6316 const char *name = gdb_signal_to_name (oursig);
6317 int name_padding = 13 - strlen (name);
6318
6319 if (name_padding <= 0)
6320 name_padding = 0;
6321
6322 printf_filtered ("%s", name);
6323 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6324 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6325 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6326 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6327 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6328 }
6329
6330 /* Specify how various signals in the inferior should be handled. */
6331
6332 static void
6333 handle_command (char *args, int from_tty)
6334 {
6335 char **argv;
6336 int digits, wordlen;
6337 int sigfirst, signum, siglast;
6338 enum gdb_signal oursig;
6339 int allsigs;
6340 int nsigs;
6341 unsigned char *sigs;
6342 struct cleanup *old_chain;
6343
6344 if (args == NULL)
6345 {
6346 error_no_arg (_("signal to handle"));
6347 }
6348
6349 /* Allocate and zero an array of flags for which signals to handle. */
6350
6351 nsigs = (int) GDB_SIGNAL_LAST;
6352 sigs = (unsigned char *) alloca (nsigs);
6353 memset (sigs, 0, nsigs);
6354
6355 /* Break the command line up into args. */
6356
6357 argv = gdb_buildargv (args);
6358 old_chain = make_cleanup_freeargv (argv);
6359
6360 /* Walk through the args, looking for signal oursigs, signal names, and
6361 actions. Signal numbers and signal names may be interspersed with
6362 actions, with the actions being performed for all signals cumulatively
6363 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6364
6365 while (*argv != NULL)
6366 {
6367 wordlen = strlen (*argv);
6368 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6369 {;
6370 }
6371 allsigs = 0;
6372 sigfirst = siglast = -1;
6373
6374 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6375 {
6376 /* Apply action to all signals except those used by the
6377 debugger. Silently skip those. */
6378 allsigs = 1;
6379 sigfirst = 0;
6380 siglast = nsigs - 1;
6381 }
6382 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6383 {
6384 SET_SIGS (nsigs, sigs, signal_stop);
6385 SET_SIGS (nsigs, sigs, signal_print);
6386 }
6387 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6388 {
6389 UNSET_SIGS (nsigs, sigs, signal_program);
6390 }
6391 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6392 {
6393 SET_SIGS (nsigs, sigs, signal_print);
6394 }
6395 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6396 {
6397 SET_SIGS (nsigs, sigs, signal_program);
6398 }
6399 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6400 {
6401 UNSET_SIGS (nsigs, sigs, signal_stop);
6402 }
6403 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6404 {
6405 SET_SIGS (nsigs, sigs, signal_program);
6406 }
6407 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6408 {
6409 UNSET_SIGS (nsigs, sigs, signal_print);
6410 UNSET_SIGS (nsigs, sigs, signal_stop);
6411 }
6412 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6413 {
6414 UNSET_SIGS (nsigs, sigs, signal_program);
6415 }
6416 else if (digits > 0)
6417 {
6418 /* It is numeric. The numeric signal refers to our own
6419 internal signal numbering from target.h, not to host/target
6420 signal number. This is a feature; users really should be
6421 using symbolic names anyway, and the common ones like
6422 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6423
6424 sigfirst = siglast = (int)
6425 gdb_signal_from_command (atoi (*argv));
6426 if ((*argv)[digits] == '-')
6427 {
6428 siglast = (int)
6429 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6430 }
6431 if (sigfirst > siglast)
6432 {
6433 /* Bet he didn't figure we'd think of this case... */
6434 signum = sigfirst;
6435 sigfirst = siglast;
6436 siglast = signum;
6437 }
6438 }
6439 else
6440 {
6441 oursig = gdb_signal_from_name (*argv);
6442 if (oursig != GDB_SIGNAL_UNKNOWN)
6443 {
6444 sigfirst = siglast = (int) oursig;
6445 }
6446 else
6447 {
6448 /* Not a number and not a recognized flag word => complain. */
6449 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6450 }
6451 }
6452
6453 /* If any signal numbers or symbol names were found, set flags for
6454 which signals to apply actions to. */
6455
6456 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6457 {
6458 switch ((enum gdb_signal) signum)
6459 {
6460 case GDB_SIGNAL_TRAP:
6461 case GDB_SIGNAL_INT:
6462 if (!allsigs && !sigs[signum])
6463 {
6464 if (query (_("%s is used by the debugger.\n\
6465 Are you sure you want to change it? "),
6466 gdb_signal_to_name ((enum gdb_signal) signum)))
6467 {
6468 sigs[signum] = 1;
6469 }
6470 else
6471 {
6472 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6473 gdb_flush (gdb_stdout);
6474 }
6475 }
6476 break;
6477 case GDB_SIGNAL_0:
6478 case GDB_SIGNAL_DEFAULT:
6479 case GDB_SIGNAL_UNKNOWN:
6480 /* Make sure that "all" doesn't print these. */
6481 break;
6482 default:
6483 sigs[signum] = 1;
6484 break;
6485 }
6486 }
6487
6488 argv++;
6489 }
6490
6491 for (signum = 0; signum < nsigs; signum++)
6492 if (sigs[signum])
6493 {
6494 signal_cache_update (-1);
6495 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6496 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6497
6498 if (from_tty)
6499 {
6500 /* Show the results. */
6501 sig_print_header ();
6502 for (; signum < nsigs; signum++)
6503 if (sigs[signum])
6504 sig_print_info (signum);
6505 }
6506
6507 break;
6508 }
6509
6510 do_cleanups (old_chain);
6511 }
6512
6513 /* Complete the "handle" command. */
6514
6515 static VEC (char_ptr) *
6516 handle_completer (struct cmd_list_element *ignore,
6517 const char *text, const char *word)
6518 {
6519 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6520 static const char * const keywords[] =
6521 {
6522 "all",
6523 "stop",
6524 "ignore",
6525 "print",
6526 "pass",
6527 "nostop",
6528 "noignore",
6529 "noprint",
6530 "nopass",
6531 NULL,
6532 };
6533
6534 vec_signals = signal_completer (ignore, text, word);
6535 vec_keywords = complete_on_enum (keywords, word, word);
6536
6537 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6538 VEC_free (char_ptr, vec_signals);
6539 VEC_free (char_ptr, vec_keywords);
6540 return return_val;
6541 }
6542
6543 static void
6544 xdb_handle_command (char *args, int from_tty)
6545 {
6546 char **argv;
6547 struct cleanup *old_chain;
6548
6549 if (args == NULL)
6550 error_no_arg (_("xdb command"));
6551
6552 /* Break the command line up into args. */
6553
6554 argv = gdb_buildargv (args);
6555 old_chain = make_cleanup_freeargv (argv);
6556 if (argv[1] != (char *) NULL)
6557 {
6558 char *argBuf;
6559 int bufLen;
6560
6561 bufLen = strlen (argv[0]) + 20;
6562 argBuf = (char *) xmalloc (bufLen);
6563 if (argBuf)
6564 {
6565 int validFlag = 1;
6566 enum gdb_signal oursig;
6567
6568 oursig = gdb_signal_from_name (argv[0]);
6569 memset (argBuf, 0, bufLen);
6570 if (strcmp (argv[1], "Q") == 0)
6571 sprintf (argBuf, "%s %s", argv[0], "noprint");
6572 else
6573 {
6574 if (strcmp (argv[1], "s") == 0)
6575 {
6576 if (!signal_stop[oursig])
6577 sprintf (argBuf, "%s %s", argv[0], "stop");
6578 else
6579 sprintf (argBuf, "%s %s", argv[0], "nostop");
6580 }
6581 else if (strcmp (argv[1], "i") == 0)
6582 {
6583 if (!signal_program[oursig])
6584 sprintf (argBuf, "%s %s", argv[0], "pass");
6585 else
6586 sprintf (argBuf, "%s %s", argv[0], "nopass");
6587 }
6588 else if (strcmp (argv[1], "r") == 0)
6589 {
6590 if (!signal_print[oursig])
6591 sprintf (argBuf, "%s %s", argv[0], "print");
6592 else
6593 sprintf (argBuf, "%s %s", argv[0], "noprint");
6594 }
6595 else
6596 validFlag = 0;
6597 }
6598 if (validFlag)
6599 handle_command (argBuf, from_tty);
6600 else
6601 printf_filtered (_("Invalid signal handling flag.\n"));
6602 if (argBuf)
6603 xfree (argBuf);
6604 }
6605 }
6606 do_cleanups (old_chain);
6607 }
6608
6609 enum gdb_signal
6610 gdb_signal_from_command (int num)
6611 {
6612 if (num >= 1 && num <= 15)
6613 return (enum gdb_signal) num;
6614 error (_("Only signals 1-15 are valid as numeric signals.\n\
6615 Use \"info signals\" for a list of symbolic signals."));
6616 }
6617
6618 /* Print current contents of the tables set by the handle command.
6619 It is possible we should just be printing signals actually used
6620 by the current target (but for things to work right when switching
6621 targets, all signals should be in the signal tables). */
6622
6623 static void
6624 signals_info (char *signum_exp, int from_tty)
6625 {
6626 enum gdb_signal oursig;
6627
6628 sig_print_header ();
6629
6630 if (signum_exp)
6631 {
6632 /* First see if this is a symbol name. */
6633 oursig = gdb_signal_from_name (signum_exp);
6634 if (oursig == GDB_SIGNAL_UNKNOWN)
6635 {
6636 /* No, try numeric. */
6637 oursig =
6638 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6639 }
6640 sig_print_info (oursig);
6641 return;
6642 }
6643
6644 printf_filtered ("\n");
6645 /* These ugly casts brought to you by the native VAX compiler. */
6646 for (oursig = GDB_SIGNAL_FIRST;
6647 (int) oursig < (int) GDB_SIGNAL_LAST;
6648 oursig = (enum gdb_signal) ((int) oursig + 1))
6649 {
6650 QUIT;
6651
6652 if (oursig != GDB_SIGNAL_UNKNOWN
6653 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6654 sig_print_info (oursig);
6655 }
6656
6657 printf_filtered (_("\nUse the \"handle\" command "
6658 "to change these tables.\n"));
6659 }
6660
6661 /* Check if it makes sense to read $_siginfo from the current thread
6662 at this point. If not, throw an error. */
6663
6664 static void
6665 validate_siginfo_access (void)
6666 {
6667 /* No current inferior, no siginfo. */
6668 if (ptid_equal (inferior_ptid, null_ptid))
6669 error (_("No thread selected."));
6670
6671 /* Don't try to read from a dead thread. */
6672 if (is_exited (inferior_ptid))
6673 error (_("The current thread has terminated"));
6674
6675 /* ... or from a spinning thread. */
6676 if (is_running (inferior_ptid))
6677 error (_("Selected thread is running."));
6678 }
6679
6680 /* The $_siginfo convenience variable is a bit special. We don't know
6681 for sure the type of the value until we actually have a chance to
6682 fetch the data. The type can change depending on gdbarch, so it is
6683 also dependent on which thread you have selected.
6684
6685 1. making $_siginfo be an internalvar that creates a new value on
6686 access.
6687
6688 2. making the value of $_siginfo be an lval_computed value. */
6689
6690 /* This function implements the lval_computed support for reading a
6691 $_siginfo value. */
6692
6693 static void
6694 siginfo_value_read (struct value *v)
6695 {
6696 LONGEST transferred;
6697
6698 validate_siginfo_access ();
6699
6700 transferred =
6701 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6702 NULL,
6703 value_contents_all_raw (v),
6704 value_offset (v),
6705 TYPE_LENGTH (value_type (v)));
6706
6707 if (transferred != TYPE_LENGTH (value_type (v)))
6708 error (_("Unable to read siginfo"));
6709 }
6710
6711 /* This function implements the lval_computed support for writing a
6712 $_siginfo value. */
6713
6714 static void
6715 siginfo_value_write (struct value *v, struct value *fromval)
6716 {
6717 LONGEST transferred;
6718
6719 validate_siginfo_access ();
6720
6721 transferred = target_write (&current_target,
6722 TARGET_OBJECT_SIGNAL_INFO,
6723 NULL,
6724 value_contents_all_raw (fromval),
6725 value_offset (v),
6726 TYPE_LENGTH (value_type (fromval)));
6727
6728 if (transferred != TYPE_LENGTH (value_type (fromval)))
6729 error (_("Unable to write siginfo"));
6730 }
6731
6732 static const struct lval_funcs siginfo_value_funcs =
6733 {
6734 siginfo_value_read,
6735 siginfo_value_write
6736 };
6737
6738 /* Return a new value with the correct type for the siginfo object of
6739 the current thread using architecture GDBARCH. Return a void value
6740 if there's no object available. */
6741
6742 static struct value *
6743 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6744 void *ignore)
6745 {
6746 if (target_has_stack
6747 && !ptid_equal (inferior_ptid, null_ptid)
6748 && gdbarch_get_siginfo_type_p (gdbarch))
6749 {
6750 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6751
6752 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6753 }
6754
6755 return allocate_value (builtin_type (gdbarch)->builtin_void);
6756 }
6757
6758 \f
6759 /* infcall_suspend_state contains state about the program itself like its
6760 registers and any signal it received when it last stopped.
6761 This state must be restored regardless of how the inferior function call
6762 ends (either successfully, or after it hits a breakpoint or signal)
6763 if the program is to properly continue where it left off. */
6764
6765 struct infcall_suspend_state
6766 {
6767 struct thread_suspend_state thread_suspend;
6768 #if 0 /* Currently unused and empty structures are not valid C. */
6769 struct inferior_suspend_state inferior_suspend;
6770 #endif
6771
6772 /* Other fields: */
6773 CORE_ADDR stop_pc;
6774 struct regcache *registers;
6775
6776 /* Format of SIGINFO_DATA or NULL if it is not present. */
6777 struct gdbarch *siginfo_gdbarch;
6778
6779 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6780 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6781 content would be invalid. */
6782 gdb_byte *siginfo_data;
6783 };
6784
6785 struct infcall_suspend_state *
6786 save_infcall_suspend_state (void)
6787 {
6788 struct infcall_suspend_state *inf_state;
6789 struct thread_info *tp = inferior_thread ();
6790 #if 0
6791 struct inferior *inf = current_inferior ();
6792 #endif
6793 struct regcache *regcache = get_current_regcache ();
6794 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6795 gdb_byte *siginfo_data = NULL;
6796
6797 if (gdbarch_get_siginfo_type_p (gdbarch))
6798 {
6799 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6800 size_t len = TYPE_LENGTH (type);
6801 struct cleanup *back_to;
6802
6803 siginfo_data = xmalloc (len);
6804 back_to = make_cleanup (xfree, siginfo_data);
6805
6806 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6807 siginfo_data, 0, len) == len)
6808 discard_cleanups (back_to);
6809 else
6810 {
6811 /* Errors ignored. */
6812 do_cleanups (back_to);
6813 siginfo_data = NULL;
6814 }
6815 }
6816
6817 inf_state = XZALLOC (struct infcall_suspend_state);
6818
6819 if (siginfo_data)
6820 {
6821 inf_state->siginfo_gdbarch = gdbarch;
6822 inf_state->siginfo_data = siginfo_data;
6823 }
6824
6825 inf_state->thread_suspend = tp->suspend;
6826 #if 0 /* Currently unused and empty structures are not valid C. */
6827 inf_state->inferior_suspend = inf->suspend;
6828 #endif
6829
6830 /* run_inferior_call will not use the signal due to its `proceed' call with
6831 GDB_SIGNAL_0 anyway. */
6832 tp->suspend.stop_signal = GDB_SIGNAL_0;
6833
6834 inf_state->stop_pc = stop_pc;
6835
6836 inf_state->registers = regcache_dup (regcache);
6837
6838 return inf_state;
6839 }
6840
6841 /* Restore inferior session state to INF_STATE. */
6842
6843 void
6844 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6845 {
6846 struct thread_info *tp = inferior_thread ();
6847 #if 0
6848 struct inferior *inf = current_inferior ();
6849 #endif
6850 struct regcache *regcache = get_current_regcache ();
6851 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6852
6853 tp->suspend = inf_state->thread_suspend;
6854 #if 0 /* Currently unused and empty structures are not valid C. */
6855 inf->suspend = inf_state->inferior_suspend;
6856 #endif
6857
6858 stop_pc = inf_state->stop_pc;
6859
6860 if (inf_state->siginfo_gdbarch == gdbarch)
6861 {
6862 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6863
6864 /* Errors ignored. */
6865 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6866 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
6867 }
6868
6869 /* The inferior can be gone if the user types "print exit(0)"
6870 (and perhaps other times). */
6871 if (target_has_execution)
6872 /* NB: The register write goes through to the target. */
6873 regcache_cpy (regcache, inf_state->registers);
6874
6875 discard_infcall_suspend_state (inf_state);
6876 }
6877
6878 static void
6879 do_restore_infcall_suspend_state_cleanup (void *state)
6880 {
6881 restore_infcall_suspend_state (state);
6882 }
6883
6884 struct cleanup *
6885 make_cleanup_restore_infcall_suspend_state
6886 (struct infcall_suspend_state *inf_state)
6887 {
6888 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6889 }
6890
6891 void
6892 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6893 {
6894 regcache_xfree (inf_state->registers);
6895 xfree (inf_state->siginfo_data);
6896 xfree (inf_state);
6897 }
6898
6899 struct regcache *
6900 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6901 {
6902 return inf_state->registers;
6903 }
6904
6905 /* infcall_control_state contains state regarding gdb's control of the
6906 inferior itself like stepping control. It also contains session state like
6907 the user's currently selected frame. */
6908
6909 struct infcall_control_state
6910 {
6911 struct thread_control_state thread_control;
6912 struct inferior_control_state inferior_control;
6913
6914 /* Other fields: */
6915 enum stop_stack_kind stop_stack_dummy;
6916 int stopped_by_random_signal;
6917 int stop_after_trap;
6918
6919 /* ID if the selected frame when the inferior function call was made. */
6920 struct frame_id selected_frame_id;
6921 };
6922
6923 /* Save all of the information associated with the inferior<==>gdb
6924 connection. */
6925
6926 struct infcall_control_state *
6927 save_infcall_control_state (void)
6928 {
6929 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6930 struct thread_info *tp = inferior_thread ();
6931 struct inferior *inf = current_inferior ();
6932
6933 inf_status->thread_control = tp->control;
6934 inf_status->inferior_control = inf->control;
6935
6936 tp->control.step_resume_breakpoint = NULL;
6937 tp->control.exception_resume_breakpoint = NULL;
6938
6939 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6940 chain. If caller's caller is walking the chain, they'll be happier if we
6941 hand them back the original chain when restore_infcall_control_state is
6942 called. */
6943 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6944
6945 /* Other fields: */
6946 inf_status->stop_stack_dummy = stop_stack_dummy;
6947 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6948 inf_status->stop_after_trap = stop_after_trap;
6949
6950 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6951
6952 return inf_status;
6953 }
6954
6955 static int
6956 restore_selected_frame (void *args)
6957 {
6958 struct frame_id *fid = (struct frame_id *) args;
6959 struct frame_info *frame;
6960
6961 frame = frame_find_by_id (*fid);
6962
6963 /* If inf_status->selected_frame_id is NULL, there was no previously
6964 selected frame. */
6965 if (frame == NULL)
6966 {
6967 warning (_("Unable to restore previously selected frame."));
6968 return 0;
6969 }
6970
6971 select_frame (frame);
6972
6973 return (1);
6974 }
6975
6976 /* Restore inferior session state to INF_STATUS. */
6977
6978 void
6979 restore_infcall_control_state (struct infcall_control_state *inf_status)
6980 {
6981 struct thread_info *tp = inferior_thread ();
6982 struct inferior *inf = current_inferior ();
6983
6984 if (tp->control.step_resume_breakpoint)
6985 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6986
6987 if (tp->control.exception_resume_breakpoint)
6988 tp->control.exception_resume_breakpoint->disposition
6989 = disp_del_at_next_stop;
6990
6991 /* Handle the bpstat_copy of the chain. */
6992 bpstat_clear (&tp->control.stop_bpstat);
6993
6994 tp->control = inf_status->thread_control;
6995 inf->control = inf_status->inferior_control;
6996
6997 /* Other fields: */
6998 stop_stack_dummy = inf_status->stop_stack_dummy;
6999 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7000 stop_after_trap = inf_status->stop_after_trap;
7001
7002 if (target_has_stack)
7003 {
7004 /* The point of catch_errors is that if the stack is clobbered,
7005 walking the stack might encounter a garbage pointer and
7006 error() trying to dereference it. */
7007 if (catch_errors
7008 (restore_selected_frame, &inf_status->selected_frame_id,
7009 "Unable to restore previously selected frame:\n",
7010 RETURN_MASK_ERROR) == 0)
7011 /* Error in restoring the selected frame. Select the innermost
7012 frame. */
7013 select_frame (get_current_frame ());
7014 }
7015
7016 xfree (inf_status);
7017 }
7018
7019 static void
7020 do_restore_infcall_control_state_cleanup (void *sts)
7021 {
7022 restore_infcall_control_state (sts);
7023 }
7024
7025 struct cleanup *
7026 make_cleanup_restore_infcall_control_state
7027 (struct infcall_control_state *inf_status)
7028 {
7029 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7030 }
7031
7032 void
7033 discard_infcall_control_state (struct infcall_control_state *inf_status)
7034 {
7035 if (inf_status->thread_control.step_resume_breakpoint)
7036 inf_status->thread_control.step_resume_breakpoint->disposition
7037 = disp_del_at_next_stop;
7038
7039 if (inf_status->thread_control.exception_resume_breakpoint)
7040 inf_status->thread_control.exception_resume_breakpoint->disposition
7041 = disp_del_at_next_stop;
7042
7043 /* See save_infcall_control_state for info on stop_bpstat. */
7044 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7045
7046 xfree (inf_status);
7047 }
7048 \f
7049 int
7050 ptid_match (ptid_t ptid, ptid_t filter)
7051 {
7052 if (ptid_equal (filter, minus_one_ptid))
7053 return 1;
7054 if (ptid_is_pid (filter)
7055 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7056 return 1;
7057 else if (ptid_equal (ptid, filter))
7058 return 1;
7059
7060 return 0;
7061 }
7062
7063 /* restore_inferior_ptid() will be used by the cleanup machinery
7064 to restore the inferior_ptid value saved in a call to
7065 save_inferior_ptid(). */
7066
7067 static void
7068 restore_inferior_ptid (void *arg)
7069 {
7070 ptid_t *saved_ptid_ptr = arg;
7071
7072 inferior_ptid = *saved_ptid_ptr;
7073 xfree (arg);
7074 }
7075
7076 /* Save the value of inferior_ptid so that it may be restored by a
7077 later call to do_cleanups(). Returns the struct cleanup pointer
7078 needed for later doing the cleanup. */
7079
7080 struct cleanup *
7081 save_inferior_ptid (void)
7082 {
7083 ptid_t *saved_ptid_ptr;
7084
7085 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7086 *saved_ptid_ptr = inferior_ptid;
7087 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7088 }
7089
7090 /* See inferior.h. */
7091
7092 void
7093 clear_exit_convenience_vars (void)
7094 {
7095 clear_internalvar (lookup_internalvar ("_exitsignal"));
7096 clear_internalvar (lookup_internalvar ("_exitcode"));
7097 }
7098 \f
7099
7100 /* User interface for reverse debugging:
7101 Set exec-direction / show exec-direction commands
7102 (returns error unless target implements to_set_exec_direction method). */
7103
7104 int execution_direction = EXEC_FORWARD;
7105 static const char exec_forward[] = "forward";
7106 static const char exec_reverse[] = "reverse";
7107 static const char *exec_direction = exec_forward;
7108 static const char *const exec_direction_names[] = {
7109 exec_forward,
7110 exec_reverse,
7111 NULL
7112 };
7113
7114 static void
7115 set_exec_direction_func (char *args, int from_tty,
7116 struct cmd_list_element *cmd)
7117 {
7118 if (target_can_execute_reverse)
7119 {
7120 if (!strcmp (exec_direction, exec_forward))
7121 execution_direction = EXEC_FORWARD;
7122 else if (!strcmp (exec_direction, exec_reverse))
7123 execution_direction = EXEC_REVERSE;
7124 }
7125 else
7126 {
7127 exec_direction = exec_forward;
7128 error (_("Target does not support this operation."));
7129 }
7130 }
7131
7132 static void
7133 show_exec_direction_func (struct ui_file *out, int from_tty,
7134 struct cmd_list_element *cmd, const char *value)
7135 {
7136 switch (execution_direction) {
7137 case EXEC_FORWARD:
7138 fprintf_filtered (out, _("Forward.\n"));
7139 break;
7140 case EXEC_REVERSE:
7141 fprintf_filtered (out, _("Reverse.\n"));
7142 break;
7143 default:
7144 internal_error (__FILE__, __LINE__,
7145 _("bogus execution_direction value: %d"),
7146 (int) execution_direction);
7147 }
7148 }
7149
7150 static void
7151 show_schedule_multiple (struct ui_file *file, int from_tty,
7152 struct cmd_list_element *c, const char *value)
7153 {
7154 fprintf_filtered (file, _("Resuming the execution of threads "
7155 "of all processes is %s.\n"), value);
7156 }
7157
7158 /* Implementation of `siginfo' variable. */
7159
7160 static const struct internalvar_funcs siginfo_funcs =
7161 {
7162 siginfo_make_value,
7163 NULL,
7164 NULL
7165 };
7166
7167 void
7168 _initialize_infrun (void)
7169 {
7170 int i;
7171 int numsigs;
7172 struct cmd_list_element *c;
7173
7174 add_info ("signals", signals_info, _("\
7175 What debugger does when program gets various signals.\n\
7176 Specify a signal as argument to print info on that signal only."));
7177 add_info_alias ("handle", "signals", 0);
7178
7179 c = add_com ("handle", class_run, handle_command, _("\
7180 Specify how to handle signals.\n\
7181 Usage: handle SIGNAL [ACTIONS]\n\
7182 Args are signals and actions to apply to those signals.\n\
7183 If no actions are specified, the current settings for the specified signals\n\
7184 will be displayed instead.\n\
7185 \n\
7186 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7187 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7188 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7189 The special arg \"all\" is recognized to mean all signals except those\n\
7190 used by the debugger, typically SIGTRAP and SIGINT.\n\
7191 \n\
7192 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7193 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7194 Stop means reenter debugger if this signal happens (implies print).\n\
7195 Print means print a message if this signal happens.\n\
7196 Pass means let program see this signal; otherwise program doesn't know.\n\
7197 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7198 Pass and Stop may be combined.\n\
7199 \n\
7200 Multiple signals may be specified. Signal numbers and signal names\n\
7201 may be interspersed with actions, with the actions being performed for\n\
7202 all signals cumulatively specified."));
7203 set_cmd_completer (c, handle_completer);
7204
7205 if (xdb_commands)
7206 {
7207 add_com ("lz", class_info, signals_info, _("\
7208 What debugger does when program gets various signals.\n\
7209 Specify a signal as argument to print info on that signal only."));
7210 add_com ("z", class_run, xdb_handle_command, _("\
7211 Specify how to handle a signal.\n\
7212 Args are signals and actions to apply to those signals.\n\
7213 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7214 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7215 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7216 The special arg \"all\" is recognized to mean all signals except those\n\
7217 used by the debugger, typically SIGTRAP and SIGINT.\n\
7218 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7219 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7220 nopass), \"Q\" (noprint)\n\
7221 Stop means reenter debugger if this signal happens (implies print).\n\
7222 Print means print a message if this signal happens.\n\
7223 Pass means let program see this signal; otherwise program doesn't know.\n\
7224 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7225 Pass and Stop may be combined."));
7226 }
7227
7228 if (!dbx_commands)
7229 stop_command = add_cmd ("stop", class_obscure,
7230 not_just_help_class_command, _("\
7231 There is no `stop' command, but you can set a hook on `stop'.\n\
7232 This allows you to set a list of commands to be run each time execution\n\
7233 of the program stops."), &cmdlist);
7234
7235 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7236 Set inferior debugging."), _("\
7237 Show inferior debugging."), _("\
7238 When non-zero, inferior specific debugging is enabled."),
7239 NULL,
7240 show_debug_infrun,
7241 &setdebuglist, &showdebuglist);
7242
7243 add_setshow_boolean_cmd ("displaced", class_maintenance,
7244 &debug_displaced, _("\
7245 Set displaced stepping debugging."), _("\
7246 Show displaced stepping debugging."), _("\
7247 When non-zero, displaced stepping specific debugging is enabled."),
7248 NULL,
7249 show_debug_displaced,
7250 &setdebuglist, &showdebuglist);
7251
7252 add_setshow_boolean_cmd ("non-stop", no_class,
7253 &non_stop_1, _("\
7254 Set whether gdb controls the inferior in non-stop mode."), _("\
7255 Show whether gdb controls the inferior in non-stop mode."), _("\
7256 When debugging a multi-threaded program and this setting is\n\
7257 off (the default, also called all-stop mode), when one thread stops\n\
7258 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7259 all other threads in the program while you interact with the thread of\n\
7260 interest. When you continue or step a thread, you can allow the other\n\
7261 threads to run, or have them remain stopped, but while you inspect any\n\
7262 thread's state, all threads stop.\n\
7263 \n\
7264 In non-stop mode, when one thread stops, other threads can continue\n\
7265 to run freely. You'll be able to step each thread independently,\n\
7266 leave it stopped or free to run as needed."),
7267 set_non_stop,
7268 show_non_stop,
7269 &setlist,
7270 &showlist);
7271
7272 numsigs = (int) GDB_SIGNAL_LAST;
7273 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7274 signal_print = (unsigned char *)
7275 xmalloc (sizeof (signal_print[0]) * numsigs);
7276 signal_program = (unsigned char *)
7277 xmalloc (sizeof (signal_program[0]) * numsigs);
7278 signal_catch = (unsigned char *)
7279 xmalloc (sizeof (signal_catch[0]) * numsigs);
7280 signal_pass = (unsigned char *)
7281 xmalloc (sizeof (signal_program[0]) * numsigs);
7282 for (i = 0; i < numsigs; i++)
7283 {
7284 signal_stop[i] = 1;
7285 signal_print[i] = 1;
7286 signal_program[i] = 1;
7287 signal_catch[i] = 0;
7288 }
7289
7290 /* Signals caused by debugger's own actions
7291 should not be given to the program afterwards. */
7292 signal_program[GDB_SIGNAL_TRAP] = 0;
7293 signal_program[GDB_SIGNAL_INT] = 0;
7294
7295 /* Signals that are not errors should not normally enter the debugger. */
7296 signal_stop[GDB_SIGNAL_ALRM] = 0;
7297 signal_print[GDB_SIGNAL_ALRM] = 0;
7298 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7299 signal_print[GDB_SIGNAL_VTALRM] = 0;
7300 signal_stop[GDB_SIGNAL_PROF] = 0;
7301 signal_print[GDB_SIGNAL_PROF] = 0;
7302 signal_stop[GDB_SIGNAL_CHLD] = 0;
7303 signal_print[GDB_SIGNAL_CHLD] = 0;
7304 signal_stop[GDB_SIGNAL_IO] = 0;
7305 signal_print[GDB_SIGNAL_IO] = 0;
7306 signal_stop[GDB_SIGNAL_POLL] = 0;
7307 signal_print[GDB_SIGNAL_POLL] = 0;
7308 signal_stop[GDB_SIGNAL_URG] = 0;
7309 signal_print[GDB_SIGNAL_URG] = 0;
7310 signal_stop[GDB_SIGNAL_WINCH] = 0;
7311 signal_print[GDB_SIGNAL_WINCH] = 0;
7312 signal_stop[GDB_SIGNAL_PRIO] = 0;
7313 signal_print[GDB_SIGNAL_PRIO] = 0;
7314
7315 /* These signals are used internally by user-level thread
7316 implementations. (See signal(5) on Solaris.) Like the above
7317 signals, a healthy program receives and handles them as part of
7318 its normal operation. */
7319 signal_stop[GDB_SIGNAL_LWP] = 0;
7320 signal_print[GDB_SIGNAL_LWP] = 0;
7321 signal_stop[GDB_SIGNAL_WAITING] = 0;
7322 signal_print[GDB_SIGNAL_WAITING] = 0;
7323 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7324 signal_print[GDB_SIGNAL_CANCEL] = 0;
7325
7326 /* Update cached state. */
7327 signal_cache_update (-1);
7328
7329 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7330 &stop_on_solib_events, _("\
7331 Set stopping for shared library events."), _("\
7332 Show stopping for shared library events."), _("\
7333 If nonzero, gdb will give control to the user when the dynamic linker\n\
7334 notifies gdb of shared library events. The most common event of interest\n\
7335 to the user would be loading/unloading of a new library."),
7336 set_stop_on_solib_events,
7337 show_stop_on_solib_events,
7338 &setlist, &showlist);
7339
7340 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7341 follow_fork_mode_kind_names,
7342 &follow_fork_mode_string, _("\
7343 Set debugger response to a program call of fork or vfork."), _("\
7344 Show debugger response to a program call of fork or vfork."), _("\
7345 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7346 parent - the original process is debugged after a fork\n\
7347 child - the new process is debugged after a fork\n\
7348 The unfollowed process will continue to run.\n\
7349 By default, the debugger will follow the parent process."),
7350 NULL,
7351 show_follow_fork_mode_string,
7352 &setlist, &showlist);
7353
7354 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7355 follow_exec_mode_names,
7356 &follow_exec_mode_string, _("\
7357 Set debugger response to a program call of exec."), _("\
7358 Show debugger response to a program call of exec."), _("\
7359 An exec call replaces the program image of a process.\n\
7360 \n\
7361 follow-exec-mode can be:\n\
7362 \n\
7363 new - the debugger creates a new inferior and rebinds the process\n\
7364 to this new inferior. The program the process was running before\n\
7365 the exec call can be restarted afterwards by restarting the original\n\
7366 inferior.\n\
7367 \n\
7368 same - the debugger keeps the process bound to the same inferior.\n\
7369 The new executable image replaces the previous executable loaded in\n\
7370 the inferior. Restarting the inferior after the exec call restarts\n\
7371 the executable the process was running after the exec call.\n\
7372 \n\
7373 By default, the debugger will use the same inferior."),
7374 NULL,
7375 show_follow_exec_mode_string,
7376 &setlist, &showlist);
7377
7378 add_setshow_enum_cmd ("scheduler-locking", class_run,
7379 scheduler_enums, &scheduler_mode, _("\
7380 Set mode for locking scheduler during execution."), _("\
7381 Show mode for locking scheduler during execution."), _("\
7382 off == no locking (threads may preempt at any time)\n\
7383 on == full locking (no thread except the current thread may run)\n\
7384 step == scheduler locked during every single-step operation.\n\
7385 In this mode, no other thread may run during a step command.\n\
7386 Other threads may run while stepping over a function call ('next')."),
7387 set_schedlock_func, /* traps on target vector */
7388 show_scheduler_mode,
7389 &setlist, &showlist);
7390
7391 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7392 Set mode for resuming threads of all processes."), _("\
7393 Show mode for resuming threads of all processes."), _("\
7394 When on, execution commands (such as 'continue' or 'next') resume all\n\
7395 threads of all processes. When off (which is the default), execution\n\
7396 commands only resume the threads of the current process. The set of\n\
7397 threads that are resumed is further refined by the scheduler-locking\n\
7398 mode (see help set scheduler-locking)."),
7399 NULL,
7400 show_schedule_multiple,
7401 &setlist, &showlist);
7402
7403 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7404 Set mode of the step operation."), _("\
7405 Show mode of the step operation."), _("\
7406 When set, doing a step over a function without debug line information\n\
7407 will stop at the first instruction of that function. Otherwise, the\n\
7408 function is skipped and the step command stops at a different source line."),
7409 NULL,
7410 show_step_stop_if_no_debug,
7411 &setlist, &showlist);
7412
7413 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7414 &can_use_displaced_stepping, _("\
7415 Set debugger's willingness to use displaced stepping."), _("\
7416 Show debugger's willingness to use displaced stepping."), _("\
7417 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7418 supported by the target architecture. If off, gdb will not use displaced\n\
7419 stepping to step over breakpoints, even if such is supported by the target\n\
7420 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7421 if the target architecture supports it and non-stop mode is active, but will not\n\
7422 use it in all-stop mode (see help set non-stop)."),
7423 NULL,
7424 show_can_use_displaced_stepping,
7425 &setlist, &showlist);
7426
7427 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7428 &exec_direction, _("Set direction of execution.\n\
7429 Options are 'forward' or 'reverse'."),
7430 _("Show direction of execution (forward/reverse)."),
7431 _("Tells gdb whether to execute forward or backward."),
7432 set_exec_direction_func, show_exec_direction_func,
7433 &setlist, &showlist);
7434
7435 /* Set/show detach-on-fork: user-settable mode. */
7436
7437 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7438 Set whether gdb will detach the child of a fork."), _("\
7439 Show whether gdb will detach the child of a fork."), _("\
7440 Tells gdb whether to detach the child of a fork."),
7441 NULL, NULL, &setlist, &showlist);
7442
7443 /* Set/show disable address space randomization mode. */
7444
7445 add_setshow_boolean_cmd ("disable-randomization", class_support,
7446 &disable_randomization, _("\
7447 Set disabling of debuggee's virtual address space randomization."), _("\
7448 Show disabling of debuggee's virtual address space randomization."), _("\
7449 When this mode is on (which is the default), randomization of the virtual\n\
7450 address space is disabled. Standalone programs run with the randomization\n\
7451 enabled by default on some platforms."),
7452 &set_disable_randomization,
7453 &show_disable_randomization,
7454 &setlist, &showlist);
7455
7456 /* ptid initializations */
7457 inferior_ptid = null_ptid;
7458 target_last_wait_ptid = minus_one_ptid;
7459
7460 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7461 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7462 observer_attach_thread_exit (infrun_thread_thread_exit);
7463 observer_attach_inferior_exit (infrun_inferior_exit);
7464
7465 /* Explicitly create without lookup, since that tries to create a
7466 value with a void typed value, and when we get here, gdbarch
7467 isn't initialized yet. At this point, we're quite sure there
7468 isn't another convenience variable of the same name. */
7469 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7470
7471 add_setshow_boolean_cmd ("observer", no_class,
7472 &observer_mode_1, _("\
7473 Set whether gdb controls the inferior in observer mode."), _("\
7474 Show whether gdb controls the inferior in observer mode."), _("\
7475 In observer mode, GDB can get data from the inferior, but not\n\
7476 affect its execution. Registers and memory may not be changed,\n\
7477 breakpoints may not be set, and the program cannot be interrupted\n\
7478 or signalled."),
7479 set_observer_mode,
7480 show_observer_mode,
7481 &setlist,
7482 &showlist);
7483 }