gdb/
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51 #include "event-top.h"
52
53 /* Prototypes for local functions */
54
55 static void signals_info (char *, int);
56
57 static void handle_command (char *, int);
58
59 static void sig_print_info (enum target_signal);
60
61 static void sig_print_header (void);
62
63 static void resume_cleanups (void *);
64
65 static int hook_stop_stub (void *);
66
67 static int restore_selected_frame (void *);
68
69 static void build_infrun (void);
70
71 static int follow_fork (void);
72
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
75
76 static int currently_stepping (struct thread_info *tp);
77
78 static void xdb_handle_command (char *args, int from_tty);
79
80 static int prepare_to_proceed (int);
81
82 void _initialize_infrun (void);
83
84 /* When set, stop the 'step' command if we enter a function which has
85 no line number information. The normal behavior is that we step
86 over such function. */
87 int step_stop_if_no_debug = 0;
88 static void
89 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
90 struct cmd_list_element *c, const char *value)
91 {
92 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
93 }
94
95 /* In asynchronous mode, but simulating synchronous execution. */
96
97 int sync_execution = 0;
98
99 /* wait_for_inferior and normal_stop use this to notify the user
100 when the inferior stopped in a different thread than it had been
101 running in. */
102
103 static ptid_t previous_inferior_ptid;
104
105 int debug_displaced = 0;
106 static void
107 show_debug_displaced (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109 {
110 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
111 }
112
113 static int debug_infrun = 0;
114 static void
115 show_debug_infrun (struct ui_file *file, int from_tty,
116 struct cmd_list_element *c, const char *value)
117 {
118 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
119 }
120
121 /* If the program uses ELF-style shared libraries, then calls to
122 functions in shared libraries go through stubs, which live in a
123 table called the PLT (Procedure Linkage Table). The first time the
124 function is called, the stub sends control to the dynamic linker,
125 which looks up the function's real address, patches the stub so
126 that future calls will go directly to the function, and then passes
127 control to the function.
128
129 If we are stepping at the source level, we don't want to see any of
130 this --- we just want to skip over the stub and the dynamic linker.
131 The simple approach is to single-step until control leaves the
132 dynamic linker.
133
134 However, on some systems (e.g., Red Hat's 5.2 distribution) the
135 dynamic linker calls functions in the shared C library, so you
136 can't tell from the PC alone whether the dynamic linker is still
137 running. In this case, we use a step-resume breakpoint to get us
138 past the dynamic linker, as if we were using "next" to step over a
139 function call.
140
141 in_solib_dynsym_resolve_code() says whether we're in the dynamic
142 linker code or not. Normally, this means we single-step. However,
143 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
144 address where we can place a step-resume breakpoint to get past the
145 linker's symbol resolution function.
146
147 in_solib_dynsym_resolve_code() can generally be implemented in a
148 pretty portable way, by comparing the PC against the address ranges
149 of the dynamic linker's sections.
150
151 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
152 it depends on internal details of the dynamic linker. It's usually
153 not too hard to figure out where to put a breakpoint, but it
154 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
155 sanity checking. If it can't figure things out, returning zero and
156 getting the (possibly confusing) stepping behavior is better than
157 signalling an error, which will obscure the change in the
158 inferior's state. */
159
160 /* This function returns TRUE if pc is the address of an instruction
161 that lies within the dynamic linker (such as the event hook, or the
162 dld itself).
163
164 This function must be used only when a dynamic linker event has
165 been caught, and the inferior is being stepped out of the hook, or
166 undefined results are guaranteed. */
167
168 #ifndef SOLIB_IN_DYNAMIC_LINKER
169 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
170 #endif
171
172
173 /* Convert the #defines into values. This is temporary until wfi control
174 flow is completely sorted out. */
175
176 #ifndef CANNOT_STEP_HW_WATCHPOINTS
177 #define CANNOT_STEP_HW_WATCHPOINTS 0
178 #else
179 #undef CANNOT_STEP_HW_WATCHPOINTS
180 #define CANNOT_STEP_HW_WATCHPOINTS 1
181 #endif
182
183 /* Tables of how to react to signals; the user sets them. */
184
185 static unsigned char *signal_stop;
186 static unsigned char *signal_print;
187 static unsigned char *signal_program;
188
189 #define SET_SIGS(nsigs,sigs,flags) \
190 do { \
191 int signum = (nsigs); \
192 while (signum-- > 0) \
193 if ((sigs)[signum]) \
194 (flags)[signum] = 1; \
195 } while (0)
196
197 #define UNSET_SIGS(nsigs,sigs,flags) \
198 do { \
199 int signum = (nsigs); \
200 while (signum-- > 0) \
201 if ((sigs)[signum]) \
202 (flags)[signum] = 0; \
203 } while (0)
204
205 /* Value to pass to target_resume() to cause all threads to resume */
206
207 #define RESUME_ALL (pid_to_ptid (-1))
208
209 /* Command list pointer for the "stop" placeholder. */
210
211 static struct cmd_list_element *stop_command;
212
213 /* Function inferior was in as of last step command. */
214
215 static struct symbol *step_start_function;
216
217 /* Nonzero if we want to give control to the user when we're notified
218 of shared library events by the dynamic linker. */
219 static int stop_on_solib_events;
220 static void
221 show_stop_on_solib_events (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223 {
224 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
225 value);
226 }
227
228 /* Nonzero means expecting a trace trap
229 and should stop the inferior and return silently when it happens. */
230
231 int stop_after_trap;
232
233 /* Nonzero means expecting a trap and caller will handle it themselves.
234 It is used after attach, due to attaching to a process;
235 when running in the shell before the child program has been exec'd;
236 and when running some kinds of remote stuff (FIXME?). */
237
238 enum stop_kind stop_soon;
239
240 /* Save register contents here when about to pop a stack dummy frame,
241 if-and-only-if proceed_to_finish is set.
242 Thus this contains the return value from the called function (assuming
243 values are returned in a register). */
244
245 struct regcache *stop_registers;
246
247 /* Nonzero after stop if current stack frame should be printed. */
248
249 static int stop_print_frame;
250
251 /* This is a cached copy of the pid/waitstatus of the last event
252 returned by target_wait()/deprecated_target_wait_hook(). This
253 information is returned by get_last_target_status(). */
254 static ptid_t target_last_wait_ptid;
255 static struct target_waitstatus target_last_waitstatus;
256
257 static void context_switch (ptid_t ptid);
258
259 void init_thread_stepping_state (struct thread_info *tss);
260
261 void init_infwait_state (void);
262
263 /* This is used to remember when a fork, vfork or exec event
264 was caught by a catchpoint, and thus the event is to be
265 followed at the next resume of the inferior, and not
266 immediately. */
267 static struct
268 {
269 enum target_waitkind kind;
270 struct
271 {
272 ptid_t parent_pid;
273 ptid_t child_pid;
274 }
275 fork_event;
276 char *execd_pathname;
277 }
278 pending_follow;
279
280 static const char follow_fork_mode_child[] = "child";
281 static const char follow_fork_mode_parent[] = "parent";
282
283 static const char *follow_fork_mode_kind_names[] = {
284 follow_fork_mode_child,
285 follow_fork_mode_parent,
286 NULL
287 };
288
289 static const char *follow_fork_mode_string = follow_fork_mode_parent;
290 static void
291 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
292 struct cmd_list_element *c, const char *value)
293 {
294 fprintf_filtered (file, _("\
295 Debugger response to a program call of fork or vfork is \"%s\".\n"),
296 value);
297 }
298 \f
299
300 static int
301 follow_fork (void)
302 {
303 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
304
305 return target_follow_fork (follow_child);
306 }
307
308 void
309 follow_inferior_reset_breakpoints (void)
310 {
311 struct thread_info *tp = inferior_thread ();
312
313 /* Was there a step_resume breakpoint? (There was if the user
314 did a "next" at the fork() call.) If so, explicitly reset its
315 thread number.
316
317 step_resumes are a form of bp that are made to be per-thread.
318 Since we created the step_resume bp when the parent process
319 was being debugged, and now are switching to the child process,
320 from the breakpoint package's viewpoint, that's a switch of
321 "threads". We must update the bp's notion of which thread
322 it is for, or it'll be ignored when it triggers. */
323
324 if (tp->step_resume_breakpoint)
325 breakpoint_re_set_thread (tp->step_resume_breakpoint);
326
327 /* Reinsert all breakpoints in the child. The user may have set
328 breakpoints after catching the fork, in which case those
329 were never set in the child, but only in the parent. This makes
330 sure the inserted breakpoints match the breakpoint list. */
331
332 breakpoint_re_set ();
333 insert_breakpoints ();
334 }
335
336 /* EXECD_PATHNAME is assumed to be non-NULL. */
337
338 static void
339 follow_exec (ptid_t pid, char *execd_pathname)
340 {
341 ptid_t saved_pid = pid;
342 struct target_ops *tgt;
343 struct thread_info *th = inferior_thread ();
344
345 /* This is an exec event that we actually wish to pay attention to.
346 Refresh our symbol table to the newly exec'd program, remove any
347 momentary bp's, etc.
348
349 If there are breakpoints, they aren't really inserted now,
350 since the exec() transformed our inferior into a fresh set
351 of instructions.
352
353 We want to preserve symbolic breakpoints on the list, since
354 we have hopes that they can be reset after the new a.out's
355 symbol table is read.
356
357 However, any "raw" breakpoints must be removed from the list
358 (e.g., the solib bp's), since their address is probably invalid
359 now.
360
361 And, we DON'T want to call delete_breakpoints() here, since
362 that may write the bp's "shadow contents" (the instruction
363 value that was overwritten witha TRAP instruction). Since
364 we now have a new a.out, those shadow contents aren't valid. */
365 update_breakpoints_after_exec ();
366
367 /* If there was one, it's gone now. We cannot truly step-to-next
368 statement through an exec(). */
369 th->step_resume_breakpoint = NULL;
370 th->step_range_start = 0;
371 th->step_range_end = 0;
372
373 /* What is this a.out's name? */
374 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
375
376 /* We've followed the inferior through an exec. Therefore, the
377 inferior has essentially been killed & reborn. */
378
379 gdb_flush (gdb_stdout);
380 generic_mourn_inferior ();
381 /* Because mourn_inferior resets inferior_ptid. */
382 inferior_ptid = saved_pid;
383
384 if (gdb_sysroot && *gdb_sysroot)
385 {
386 char *name = alloca (strlen (gdb_sysroot)
387 + strlen (execd_pathname)
388 + 1);
389 strcpy (name, gdb_sysroot);
390 strcat (name, execd_pathname);
391 execd_pathname = name;
392 }
393
394 /* That a.out is now the one to use. */
395 exec_file_attach (execd_pathname, 0);
396
397 /* Reset the shared library package. This ensures that we get a
398 shlib event when the child reaches "_start", at which point the
399 dld will have had a chance to initialize the child. */
400 /* Also, loading a symbol file below may trigger symbol lookups, and
401 we don't want those to be satisfied by the libraries of the
402 previous incarnation of this process. */
403 no_shared_libraries (NULL, 0);
404
405 /* Load the main file's symbols. */
406 symbol_file_add_main (execd_pathname, 0);
407
408 #ifdef SOLIB_CREATE_INFERIOR_HOOK
409 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
410 #else
411 solib_create_inferior_hook ();
412 #endif
413
414 /* Reinsert all breakpoints. (Those which were symbolic have
415 been reset to the proper address in the new a.out, thanks
416 to symbol_file_command...) */
417 insert_breakpoints ();
418
419 /* The next resume of this inferior should bring it to the shlib
420 startup breakpoints. (If the user had also set bp's on
421 "main" from the old (parent) process, then they'll auto-
422 matically get reset there in the new process.) */
423 }
424
425 /* Non-zero if we just simulating a single-step. This is needed
426 because we cannot remove the breakpoints in the inferior process
427 until after the `wait' in `wait_for_inferior'. */
428 static int singlestep_breakpoints_inserted_p = 0;
429
430 /* The thread we inserted single-step breakpoints for. */
431 static ptid_t singlestep_ptid;
432
433 /* PC when we started this single-step. */
434 static CORE_ADDR singlestep_pc;
435
436 /* If another thread hit the singlestep breakpoint, we save the original
437 thread here so that we can resume single-stepping it later. */
438 static ptid_t saved_singlestep_ptid;
439 static int stepping_past_singlestep_breakpoint;
440
441 /* If not equal to null_ptid, this means that after stepping over breakpoint
442 is finished, we need to switch to deferred_step_ptid, and step it.
443
444 The use case is when one thread has hit a breakpoint, and then the user
445 has switched to another thread and issued 'step'. We need to step over
446 breakpoint in the thread which hit the breakpoint, but then continue
447 stepping the thread user has selected. */
448 static ptid_t deferred_step_ptid;
449 \f
450 /* Displaced stepping. */
451
452 /* In non-stop debugging mode, we must take special care to manage
453 breakpoints properly; in particular, the traditional strategy for
454 stepping a thread past a breakpoint it has hit is unsuitable.
455 'Displaced stepping' is a tactic for stepping one thread past a
456 breakpoint it has hit while ensuring that other threads running
457 concurrently will hit the breakpoint as they should.
458
459 The traditional way to step a thread T off a breakpoint in a
460 multi-threaded program in all-stop mode is as follows:
461
462 a0) Initially, all threads are stopped, and breakpoints are not
463 inserted.
464 a1) We single-step T, leaving breakpoints uninserted.
465 a2) We insert breakpoints, and resume all threads.
466
467 In non-stop debugging, however, this strategy is unsuitable: we
468 don't want to have to stop all threads in the system in order to
469 continue or step T past a breakpoint. Instead, we use displaced
470 stepping:
471
472 n0) Initially, T is stopped, other threads are running, and
473 breakpoints are inserted.
474 n1) We copy the instruction "under" the breakpoint to a separate
475 location, outside the main code stream, making any adjustments
476 to the instruction, register, and memory state as directed by
477 T's architecture.
478 n2) We single-step T over the instruction at its new location.
479 n3) We adjust the resulting register and memory state as directed
480 by T's architecture. This includes resetting T's PC to point
481 back into the main instruction stream.
482 n4) We resume T.
483
484 This approach depends on the following gdbarch methods:
485
486 - gdbarch_max_insn_length and gdbarch_displaced_step_location
487 indicate where to copy the instruction, and how much space must
488 be reserved there. We use these in step n1.
489
490 - gdbarch_displaced_step_copy_insn copies a instruction to a new
491 address, and makes any necessary adjustments to the instruction,
492 register contents, and memory. We use this in step n1.
493
494 - gdbarch_displaced_step_fixup adjusts registers and memory after
495 we have successfuly single-stepped the instruction, to yield the
496 same effect the instruction would have had if we had executed it
497 at its original address. We use this in step n3.
498
499 - gdbarch_displaced_step_free_closure provides cleanup.
500
501 The gdbarch_displaced_step_copy_insn and
502 gdbarch_displaced_step_fixup functions must be written so that
503 copying an instruction with gdbarch_displaced_step_copy_insn,
504 single-stepping across the copied instruction, and then applying
505 gdbarch_displaced_insn_fixup should have the same effects on the
506 thread's memory and registers as stepping the instruction in place
507 would have. Exactly which responsibilities fall to the copy and
508 which fall to the fixup is up to the author of those functions.
509
510 See the comments in gdbarch.sh for details.
511
512 Note that displaced stepping and software single-step cannot
513 currently be used in combination, although with some care I think
514 they could be made to. Software single-step works by placing
515 breakpoints on all possible subsequent instructions; if the
516 displaced instruction is a PC-relative jump, those breakpoints
517 could fall in very strange places --- on pages that aren't
518 executable, or at addresses that are not proper instruction
519 boundaries. (We do generally let other threads run while we wait
520 to hit the software single-step breakpoint, and they might
521 encounter such a corrupted instruction.) One way to work around
522 this would be to have gdbarch_displaced_step_copy_insn fully
523 simulate the effect of PC-relative instructions (and return NULL)
524 on architectures that use software single-stepping.
525
526 In non-stop mode, we can have independent and simultaneous step
527 requests, so more than one thread may need to simultaneously step
528 over a breakpoint. The current implementation assumes there is
529 only one scratch space per process. In this case, we have to
530 serialize access to the scratch space. If thread A wants to step
531 over a breakpoint, but we are currently waiting for some other
532 thread to complete a displaced step, we leave thread A stopped and
533 place it in the displaced_step_request_queue. Whenever a displaced
534 step finishes, we pick the next thread in the queue and start a new
535 displaced step operation on it. See displaced_step_prepare and
536 displaced_step_fixup for details. */
537
538 /* If this is not null_ptid, this is the thread carrying out a
539 displaced single-step. This thread's state will require fixing up
540 once it has completed its step. */
541 static ptid_t displaced_step_ptid;
542
543 struct displaced_step_request
544 {
545 ptid_t ptid;
546 struct displaced_step_request *next;
547 };
548
549 /* A queue of pending displaced stepping requests. */
550 struct displaced_step_request *displaced_step_request_queue;
551
552 /* The architecture the thread had when we stepped it. */
553 static struct gdbarch *displaced_step_gdbarch;
554
555 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
556 for post-step cleanup. */
557 static struct displaced_step_closure *displaced_step_closure;
558
559 /* The address of the original instruction, and the copy we made. */
560 static CORE_ADDR displaced_step_original, displaced_step_copy;
561
562 /* Saved contents of copy area. */
563 static gdb_byte *displaced_step_saved_copy;
564
565 /* When this is non-zero, we are allowed to use displaced stepping, if
566 the architecture supports it. When this is zero, we use
567 traditional the hold-and-step approach. */
568 int can_use_displaced_stepping = 1;
569 static void
570 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
571 struct cmd_list_element *c,
572 const char *value)
573 {
574 fprintf_filtered (file, _("\
575 Debugger's willingness to use displaced stepping to step over "
576 "breakpoints is %s.\n"), value);
577 }
578
579 /* Return non-zero if displaced stepping is enabled, and can be used
580 with GDBARCH. */
581 static int
582 use_displaced_stepping (struct gdbarch *gdbarch)
583 {
584 return (can_use_displaced_stepping
585 && gdbarch_displaced_step_copy_insn_p (gdbarch));
586 }
587
588 /* Clean out any stray displaced stepping state. */
589 static void
590 displaced_step_clear (void)
591 {
592 /* Indicate that there is no cleanup pending. */
593 displaced_step_ptid = null_ptid;
594
595 if (displaced_step_closure)
596 {
597 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
598 displaced_step_closure);
599 displaced_step_closure = NULL;
600 }
601 }
602
603 static void
604 cleanup_displaced_step_closure (void *ptr)
605 {
606 struct displaced_step_closure *closure = ptr;
607
608 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
609 }
610
611 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
612 void
613 displaced_step_dump_bytes (struct ui_file *file,
614 const gdb_byte *buf,
615 size_t len)
616 {
617 int i;
618
619 for (i = 0; i < len; i++)
620 fprintf_unfiltered (file, "%02x ", buf[i]);
621 fputs_unfiltered ("\n", file);
622 }
623
624 /* Prepare to single-step, using displaced stepping.
625
626 Note that we cannot use displaced stepping when we have a signal to
627 deliver. If we have a signal to deliver and an instruction to step
628 over, then after the step, there will be no indication from the
629 target whether the thread entered a signal handler or ignored the
630 signal and stepped over the instruction successfully --- both cases
631 result in a simple SIGTRAP. In the first case we mustn't do a
632 fixup, and in the second case we must --- but we can't tell which.
633 Comments in the code for 'random signals' in handle_inferior_event
634 explain how we handle this case instead.
635
636 Returns 1 if preparing was successful -- this thread is going to be
637 stepped now; or 0 if displaced stepping this thread got queued. */
638 static int
639 displaced_step_prepare (ptid_t ptid)
640 {
641 struct cleanup *old_cleanups;
642 struct regcache *regcache = get_thread_regcache (ptid);
643 struct gdbarch *gdbarch = get_regcache_arch (regcache);
644 CORE_ADDR original, copy;
645 ULONGEST len;
646 struct displaced_step_closure *closure;
647
648 /* We should never reach this function if the architecture does not
649 support displaced stepping. */
650 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
651
652 /* For the first cut, we're displaced stepping one thread at a
653 time. */
654
655 if (!ptid_equal (displaced_step_ptid, null_ptid))
656 {
657 /* Already waiting for a displaced step to finish. Defer this
658 request and place in queue. */
659 struct displaced_step_request *req, *new_req;
660
661 if (debug_displaced)
662 fprintf_unfiltered (gdb_stdlog,
663 "displaced: defering step of %s\n",
664 target_pid_to_str (ptid));
665
666 new_req = xmalloc (sizeof (*new_req));
667 new_req->ptid = ptid;
668 new_req->next = NULL;
669
670 if (displaced_step_request_queue)
671 {
672 for (req = displaced_step_request_queue;
673 req && req->next;
674 req = req->next)
675 ;
676 req->next = new_req;
677 }
678 else
679 displaced_step_request_queue = new_req;
680
681 return 0;
682 }
683 else
684 {
685 if (debug_displaced)
686 fprintf_unfiltered (gdb_stdlog,
687 "displaced: stepping %s now\n",
688 target_pid_to_str (ptid));
689 }
690
691 displaced_step_clear ();
692
693 original = regcache_read_pc (regcache);
694
695 copy = gdbarch_displaced_step_location (gdbarch);
696 len = gdbarch_max_insn_length (gdbarch);
697
698 /* Save the original contents of the copy area. */
699 displaced_step_saved_copy = xmalloc (len);
700 old_cleanups = make_cleanup (free_current_contents,
701 &displaced_step_saved_copy);
702 read_memory (copy, displaced_step_saved_copy, len);
703 if (debug_displaced)
704 {
705 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
706 paddr_nz (copy));
707 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
708 };
709
710 closure = gdbarch_displaced_step_copy_insn (gdbarch,
711 original, copy, regcache);
712
713 /* We don't support the fully-simulated case at present. */
714 gdb_assert (closure);
715
716 make_cleanup (cleanup_displaced_step_closure, closure);
717
718 /* Resume execution at the copy. */
719 regcache_write_pc (regcache, copy);
720
721 discard_cleanups (old_cleanups);
722
723 if (debug_displaced)
724 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
725 paddr_nz (copy));
726
727 /* Save the information we need to fix things up if the step
728 succeeds. */
729 displaced_step_ptid = ptid;
730 displaced_step_gdbarch = gdbarch;
731 displaced_step_closure = closure;
732 displaced_step_original = original;
733 displaced_step_copy = copy;
734 return 1;
735 }
736
737 static void
738 displaced_step_clear_cleanup (void *ignore)
739 {
740 displaced_step_clear ();
741 }
742
743 static void
744 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
745 {
746 struct cleanup *ptid_cleanup = save_inferior_ptid ();
747 inferior_ptid = ptid;
748 write_memory (memaddr, myaddr, len);
749 do_cleanups (ptid_cleanup);
750 }
751
752 static void
753 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
754 {
755 struct cleanup *old_cleanups;
756
757 /* Was this event for the pid we displaced? */
758 if (ptid_equal (displaced_step_ptid, null_ptid)
759 || ! ptid_equal (displaced_step_ptid, event_ptid))
760 return;
761
762 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
763
764 /* Restore the contents of the copy area. */
765 {
766 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
767 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
768 displaced_step_saved_copy, len);
769 if (debug_displaced)
770 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
771 paddr_nz (displaced_step_copy));
772 }
773
774 /* Did the instruction complete successfully? */
775 if (signal == TARGET_SIGNAL_TRAP)
776 {
777 /* Fix up the resulting state. */
778 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
779 displaced_step_closure,
780 displaced_step_original,
781 displaced_step_copy,
782 get_thread_regcache (displaced_step_ptid));
783 }
784 else
785 {
786 /* Since the instruction didn't complete, all we can do is
787 relocate the PC. */
788 struct regcache *regcache = get_thread_regcache (event_ptid);
789 CORE_ADDR pc = regcache_read_pc (regcache);
790 pc = displaced_step_original + (pc - displaced_step_copy);
791 regcache_write_pc (regcache, pc);
792 }
793
794 do_cleanups (old_cleanups);
795
796 /* Are there any pending displaced stepping requests? If so, run
797 one now. */
798 if (displaced_step_request_queue)
799 {
800 struct displaced_step_request *head;
801 ptid_t ptid;
802
803 head = displaced_step_request_queue;
804 ptid = head->ptid;
805 displaced_step_request_queue = head->next;
806 xfree (head);
807
808 if (debug_displaced)
809 fprintf_unfiltered (gdb_stdlog,
810 "displaced: stepping queued %s now\n",
811 target_pid_to_str (ptid));
812
813
814 displaced_step_ptid = null_ptid;
815 displaced_step_prepare (ptid);
816 target_resume (ptid, 1, TARGET_SIGNAL_0);
817 }
818 }
819
820 /* Update global variables holding ptids to hold NEW_PTID if they were
821 holding OLD_PTID. */
822 static void
823 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
824 {
825 struct displaced_step_request *it;
826
827 if (ptid_equal (inferior_ptid, old_ptid))
828 inferior_ptid = new_ptid;
829
830 if (ptid_equal (singlestep_ptid, old_ptid))
831 singlestep_ptid = new_ptid;
832
833 if (ptid_equal (displaced_step_ptid, old_ptid))
834 displaced_step_ptid = new_ptid;
835
836 if (ptid_equal (deferred_step_ptid, old_ptid))
837 deferred_step_ptid = new_ptid;
838
839 for (it = displaced_step_request_queue; it; it = it->next)
840 if (ptid_equal (it->ptid, old_ptid))
841 it->ptid = new_ptid;
842 }
843
844 \f
845 /* Resuming. */
846
847 /* Things to clean up if we QUIT out of resume (). */
848 static void
849 resume_cleanups (void *ignore)
850 {
851 normal_stop ();
852 }
853
854 static const char schedlock_off[] = "off";
855 static const char schedlock_on[] = "on";
856 static const char schedlock_step[] = "step";
857 static const char *scheduler_enums[] = {
858 schedlock_off,
859 schedlock_on,
860 schedlock_step,
861 NULL
862 };
863 static const char *scheduler_mode = schedlock_off;
864 static void
865 show_scheduler_mode (struct ui_file *file, int from_tty,
866 struct cmd_list_element *c, const char *value)
867 {
868 fprintf_filtered (file, _("\
869 Mode for locking scheduler during execution is \"%s\".\n"),
870 value);
871 }
872
873 static void
874 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
875 {
876 if (!target_can_lock_scheduler)
877 {
878 scheduler_mode = schedlock_off;
879 error (_("Target '%s' cannot support this command."), target_shortname);
880 }
881 }
882
883
884 /* Resume the inferior, but allow a QUIT. This is useful if the user
885 wants to interrupt some lengthy single-stepping operation
886 (for child processes, the SIGINT goes to the inferior, and so
887 we get a SIGINT random_signal, but for remote debugging and perhaps
888 other targets, that's not true).
889
890 STEP nonzero if we should step (zero to continue instead).
891 SIG is the signal to give the inferior (zero for none). */
892 void
893 resume (int step, enum target_signal sig)
894 {
895 int should_resume = 1;
896 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
897 struct regcache *regcache = get_current_regcache ();
898 struct gdbarch *gdbarch = get_regcache_arch (regcache);
899 struct thread_info *tp = inferior_thread ();
900 CORE_ADDR pc = regcache_read_pc (regcache);
901 QUIT;
902
903 if (debug_infrun)
904 fprintf_unfiltered (gdb_stdlog,
905 "infrun: resume (step=%d, signal=%d), "
906 "trap_expected=%d\n",
907 step, sig, tp->trap_expected);
908
909 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
910 over an instruction that causes a page fault without triggering
911 a hardware watchpoint. The kernel properly notices that it shouldn't
912 stop, because the hardware watchpoint is not triggered, but it forgets
913 the step request and continues the program normally.
914 Work around the problem by removing hardware watchpoints if a step is
915 requested, GDB will check for a hardware watchpoint trigger after the
916 step anyway. */
917 if (CANNOT_STEP_HW_WATCHPOINTS && step)
918 remove_hw_watchpoints ();
919
920
921 /* Normally, by the time we reach `resume', the breakpoints are either
922 removed or inserted, as appropriate. The exception is if we're sitting
923 at a permanent breakpoint; we need to step over it, but permanent
924 breakpoints can't be removed. So we have to test for it here. */
925 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
926 {
927 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
928 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
929 else
930 error (_("\
931 The program is stopped at a permanent breakpoint, but GDB does not know\n\
932 how to step past a permanent breakpoint on this architecture. Try using\n\
933 a command like `return' or `jump' to continue execution."));
934 }
935
936 /* If enabled, step over breakpoints by executing a copy of the
937 instruction at a different address.
938
939 We can't use displaced stepping when we have a signal to deliver;
940 the comments for displaced_step_prepare explain why. The
941 comments in the handle_inferior event for dealing with 'random
942 signals' explain what we do instead. */
943 if (use_displaced_stepping (gdbarch)
944 && tp->trap_expected
945 && sig == TARGET_SIGNAL_0)
946 {
947 if (!displaced_step_prepare (inferior_ptid))
948 {
949 /* Got placed in displaced stepping queue. Will be resumed
950 later when all the currently queued displaced stepping
951 requests finish. The thread is not executing at this point,
952 and the call to set_executing will be made later. But we
953 need to call set_running here, since from frontend point of view,
954 the thread is running. */
955 set_running (inferior_ptid, 1);
956 discard_cleanups (old_cleanups);
957 return;
958 }
959 }
960
961 if (step && gdbarch_software_single_step_p (gdbarch))
962 {
963 /* Do it the hard way, w/temp breakpoints */
964 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
965 {
966 /* ...and don't ask hardware to do it. */
967 step = 0;
968 /* and do not pull these breakpoints until after a `wait' in
969 `wait_for_inferior' */
970 singlestep_breakpoints_inserted_p = 1;
971 singlestep_ptid = inferior_ptid;
972 singlestep_pc = pc;
973 }
974 }
975
976 /* If there were any forks/vforks/execs that were caught and are
977 now to be followed, then do so. */
978 switch (pending_follow.kind)
979 {
980 case TARGET_WAITKIND_FORKED:
981 case TARGET_WAITKIND_VFORKED:
982 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
983 if (follow_fork ())
984 should_resume = 0;
985 break;
986
987 case TARGET_WAITKIND_EXECD:
988 /* follow_exec is called as soon as the exec event is seen. */
989 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
990 break;
991
992 default:
993 break;
994 }
995
996 /* Install inferior's terminal modes. */
997 target_terminal_inferior ();
998
999 if (should_resume)
1000 {
1001 ptid_t resume_ptid;
1002
1003 resume_ptid = RESUME_ALL; /* Default */
1004
1005 /* If STEP is set, it's a request to use hardware stepping
1006 facilities. But in that case, we should never
1007 use singlestep breakpoint. */
1008 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1009
1010 if (singlestep_breakpoints_inserted_p
1011 && stepping_past_singlestep_breakpoint)
1012 {
1013 /* The situation here is as follows. In thread T1 we wanted to
1014 single-step. Lacking hardware single-stepping we've
1015 set breakpoint at the PC of the next instruction -- call it
1016 P. After resuming, we've hit that breakpoint in thread T2.
1017 Now we've removed original breakpoint, inserted breakpoint
1018 at P+1, and try to step to advance T2 past breakpoint.
1019 We need to step only T2, as if T1 is allowed to freely run,
1020 it can run past P, and if other threads are allowed to run,
1021 they can hit breakpoint at P+1, and nested hits of single-step
1022 breakpoints is not something we'd want -- that's complicated
1023 to support, and has no value. */
1024 resume_ptid = inferior_ptid;
1025 }
1026
1027 if ((step || singlestep_breakpoints_inserted_p)
1028 && tp->trap_expected)
1029 {
1030 /* We're allowing a thread to run past a breakpoint it has
1031 hit, by single-stepping the thread with the breakpoint
1032 removed. In which case, we need to single-step only this
1033 thread, and keep others stopped, as they can miss this
1034 breakpoint if allowed to run.
1035
1036 The current code actually removes all breakpoints when
1037 doing this, not just the one being stepped over, so if we
1038 let other threads run, we can actually miss any
1039 breakpoint, not just the one at PC. */
1040 resume_ptid = inferior_ptid;
1041 }
1042
1043 if (non_stop)
1044 {
1045 /* With non-stop mode on, threads are always handled
1046 individually. */
1047 resume_ptid = inferior_ptid;
1048 }
1049 else if ((scheduler_mode == schedlock_on)
1050 || (scheduler_mode == schedlock_step
1051 && (step || singlestep_breakpoints_inserted_p)))
1052 {
1053 /* User-settable 'scheduler' mode requires solo thread resume. */
1054 resume_ptid = inferior_ptid;
1055 }
1056
1057 if (gdbarch_cannot_step_breakpoint (gdbarch))
1058 {
1059 /* Most targets can step a breakpoint instruction, thus
1060 executing it normally. But if this one cannot, just
1061 continue and we will hit it anyway. */
1062 if (step && breakpoint_inserted_here_p (pc))
1063 step = 0;
1064 }
1065
1066 if (debug_displaced
1067 && use_displaced_stepping (gdbarch)
1068 && tp->trap_expected)
1069 {
1070 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1071 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1072 gdb_byte buf[4];
1073
1074 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1075 paddr_nz (actual_pc));
1076 read_memory (actual_pc, buf, sizeof (buf));
1077 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1078 }
1079
1080 target_resume (resume_ptid, step, sig);
1081
1082 /* Avoid confusing the next resume, if the next stop/resume
1083 happens to apply to another thread. */
1084 tp->stop_signal = TARGET_SIGNAL_0;
1085 }
1086
1087 discard_cleanups (old_cleanups);
1088 }
1089 \f
1090 /* Proceeding. */
1091
1092 /* Clear out all variables saying what to do when inferior is continued.
1093 First do this, then set the ones you want, then call `proceed'. */
1094
1095 void
1096 clear_proceed_status (void)
1097 {
1098 if (!ptid_equal (inferior_ptid, null_ptid))
1099 {
1100 struct thread_info *tp = inferior_thread ();
1101
1102 tp->trap_expected = 0;
1103 tp->step_range_start = 0;
1104 tp->step_range_end = 0;
1105 tp->step_frame_id = null_frame_id;
1106 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1107
1108 tp->stop_step = 0;
1109
1110 tp->proceed_to_finish = 0;
1111
1112 /* Discard any remaining commands or status from previous
1113 stop. */
1114 bpstat_clear (&tp->stop_bpstat);
1115 }
1116
1117 stop_after_trap = 0;
1118 stop_soon = NO_STOP_QUIETLY;
1119 breakpoint_proceeded = 1; /* We're about to proceed... */
1120
1121 if (stop_registers)
1122 {
1123 regcache_xfree (stop_registers);
1124 stop_registers = NULL;
1125 }
1126 }
1127
1128 /* This should be suitable for any targets that support threads. */
1129
1130 static int
1131 prepare_to_proceed (int step)
1132 {
1133 ptid_t wait_ptid;
1134 struct target_waitstatus wait_status;
1135
1136 /* Get the last target status returned by target_wait(). */
1137 get_last_target_status (&wait_ptid, &wait_status);
1138
1139 /* Make sure we were stopped at a breakpoint. */
1140 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1141 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1142 {
1143 return 0;
1144 }
1145
1146 /* Switched over from WAIT_PID. */
1147 if (!ptid_equal (wait_ptid, minus_one_ptid)
1148 && !ptid_equal (inferior_ptid, wait_ptid))
1149 {
1150 struct regcache *regcache = get_thread_regcache (wait_ptid);
1151
1152 if (breakpoint_here_p (regcache_read_pc (regcache)))
1153 {
1154 /* If stepping, remember current thread to switch back to. */
1155 if (step)
1156 deferred_step_ptid = inferior_ptid;
1157
1158 /* Switch back to WAIT_PID thread. */
1159 switch_to_thread (wait_ptid);
1160
1161 /* We return 1 to indicate that there is a breakpoint here,
1162 so we need to step over it before continuing to avoid
1163 hitting it straight away. */
1164 return 1;
1165 }
1166 }
1167
1168 return 0;
1169 }
1170
1171 /* Basic routine for continuing the program in various fashions.
1172
1173 ADDR is the address to resume at, or -1 for resume where stopped.
1174 SIGGNAL is the signal to give it, or 0 for none,
1175 or -1 for act according to how it stopped.
1176 STEP is nonzero if should trap after one instruction.
1177 -1 means return after that and print nothing.
1178 You should probably set various step_... variables
1179 before calling here, if you are stepping.
1180
1181 You should call clear_proceed_status before calling proceed. */
1182
1183 void
1184 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1185 {
1186 struct regcache *regcache = get_current_regcache ();
1187 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1188 struct thread_info *tp;
1189 CORE_ADDR pc = regcache_read_pc (regcache);
1190 int oneproc = 0;
1191 enum target_signal stop_signal;
1192
1193 if (step > 0)
1194 step_start_function = find_pc_function (pc);
1195 if (step < 0)
1196 stop_after_trap = 1;
1197
1198 if (addr == (CORE_ADDR) -1)
1199 {
1200 if (pc == stop_pc && breakpoint_here_p (pc))
1201 /* There is a breakpoint at the address we will resume at,
1202 step one instruction before inserting breakpoints so that
1203 we do not stop right away (and report a second hit at this
1204 breakpoint). */
1205 oneproc = 1;
1206 else if (gdbarch_single_step_through_delay_p (gdbarch)
1207 && gdbarch_single_step_through_delay (gdbarch,
1208 get_current_frame ()))
1209 /* We stepped onto an instruction that needs to be stepped
1210 again before re-inserting the breakpoint, do so. */
1211 oneproc = 1;
1212 }
1213 else
1214 {
1215 regcache_write_pc (regcache, addr);
1216 }
1217
1218 if (debug_infrun)
1219 fprintf_unfiltered (gdb_stdlog,
1220 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1221 paddr_nz (addr), siggnal, step);
1222
1223 if (non_stop)
1224 /* In non-stop, each thread is handled individually. The context
1225 must already be set to the right thread here. */
1226 ;
1227 else
1228 {
1229 /* In a multi-threaded task we may select another thread and
1230 then continue or step.
1231
1232 But if the old thread was stopped at a breakpoint, it will
1233 immediately cause another breakpoint stop without any
1234 execution (i.e. it will report a breakpoint hit incorrectly).
1235 So we must step over it first.
1236
1237 prepare_to_proceed checks the current thread against the
1238 thread that reported the most recent event. If a step-over
1239 is required it returns TRUE and sets the current thread to
1240 the old thread. */
1241 if (prepare_to_proceed (step))
1242 oneproc = 1;
1243 }
1244
1245 /* prepare_to_proceed may change the current thread. */
1246 tp = inferior_thread ();
1247
1248 if (oneproc)
1249 {
1250 tp->trap_expected = 1;
1251 /* If displaced stepping is enabled, we can step over the
1252 breakpoint without hitting it, so leave all breakpoints
1253 inserted. Otherwise we need to disable all breakpoints, step
1254 one instruction, and then re-add them when that step is
1255 finished. */
1256 if (!use_displaced_stepping (gdbarch))
1257 remove_breakpoints ();
1258 }
1259
1260 /* We can insert breakpoints if we're not trying to step over one,
1261 or if we are stepping over one but we're using displaced stepping
1262 to do so. */
1263 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1264 insert_breakpoints ();
1265
1266 if (!non_stop)
1267 {
1268 /* Pass the last stop signal to the thread we're resuming,
1269 irrespective of whether the current thread is the thread that
1270 got the last event or not. This was historically GDB's
1271 behaviour before keeping a stop_signal per thread. */
1272
1273 struct thread_info *last_thread;
1274 ptid_t last_ptid;
1275 struct target_waitstatus last_status;
1276
1277 get_last_target_status (&last_ptid, &last_status);
1278 if (!ptid_equal (inferior_ptid, last_ptid)
1279 && !ptid_equal (last_ptid, null_ptid)
1280 && !ptid_equal (last_ptid, minus_one_ptid))
1281 {
1282 last_thread = find_thread_pid (last_ptid);
1283 if (last_thread)
1284 {
1285 tp->stop_signal = last_thread->stop_signal;
1286 last_thread->stop_signal = TARGET_SIGNAL_0;
1287 }
1288 }
1289 }
1290
1291 if (siggnal != TARGET_SIGNAL_DEFAULT)
1292 tp->stop_signal = siggnal;
1293 /* If this signal should not be seen by program,
1294 give it zero. Used for debugging signals. */
1295 else if (!signal_program[tp->stop_signal])
1296 tp->stop_signal = TARGET_SIGNAL_0;
1297
1298 annotate_starting ();
1299
1300 /* Make sure that output from GDB appears before output from the
1301 inferior. */
1302 gdb_flush (gdb_stdout);
1303
1304 /* Refresh prev_pc value just prior to resuming. This used to be
1305 done in stop_stepping, however, setting prev_pc there did not handle
1306 scenarios such as inferior function calls or returning from
1307 a function via the return command. In those cases, the prev_pc
1308 value was not set properly for subsequent commands. The prev_pc value
1309 is used to initialize the starting line number in the ecs. With an
1310 invalid value, the gdb next command ends up stopping at the position
1311 represented by the next line table entry past our start position.
1312 On platforms that generate one line table entry per line, this
1313 is not a problem. However, on the ia64, the compiler generates
1314 extraneous line table entries that do not increase the line number.
1315 When we issue the gdb next command on the ia64 after an inferior call
1316 or a return command, we often end up a few instructions forward, still
1317 within the original line we started.
1318
1319 An attempt was made to have init_execution_control_state () refresh
1320 the prev_pc value before calculating the line number. This approach
1321 did not work because on platforms that use ptrace, the pc register
1322 cannot be read unless the inferior is stopped. At that point, we
1323 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1324 call can fail. Setting the prev_pc value here ensures the value is
1325 updated correctly when the inferior is stopped. */
1326 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1327
1328 /* Fill in with reasonable starting values. */
1329 init_thread_stepping_state (tp);
1330
1331 /* Reset to normal state. */
1332 init_infwait_state ();
1333
1334 /* Resume inferior. */
1335 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
1336
1337 /* Wait for it to stop (if not standalone)
1338 and in any case decode why it stopped, and act accordingly. */
1339 /* Do this only if we are not using the event loop, or if the target
1340 does not support asynchronous execution. */
1341 if (!target_can_async_p ())
1342 {
1343 wait_for_inferior (0);
1344 normal_stop ();
1345 }
1346 }
1347 \f
1348
1349 /* Start remote-debugging of a machine over a serial link. */
1350
1351 void
1352 start_remote (int from_tty)
1353 {
1354 init_wait_for_inferior ();
1355 stop_soon = STOP_QUIETLY_REMOTE;
1356
1357 /* Always go on waiting for the target, regardless of the mode. */
1358 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1359 indicate to wait_for_inferior that a target should timeout if
1360 nothing is returned (instead of just blocking). Because of this,
1361 targets expecting an immediate response need to, internally, set
1362 things up so that the target_wait() is forced to eventually
1363 timeout. */
1364 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1365 differentiate to its caller what the state of the target is after
1366 the initial open has been performed. Here we're assuming that
1367 the target has stopped. It should be possible to eventually have
1368 target_open() return to the caller an indication that the target
1369 is currently running and GDB state should be set to the same as
1370 for an async run. */
1371 wait_for_inferior (0);
1372
1373 /* Now that the inferior has stopped, do any bookkeeping like
1374 loading shared libraries. We want to do this before normal_stop,
1375 so that the displayed frame is up to date. */
1376 post_create_inferior (&current_target, from_tty);
1377
1378 normal_stop ();
1379 }
1380
1381 /* Initialize static vars when a new inferior begins. */
1382
1383 void
1384 init_wait_for_inferior (void)
1385 {
1386 /* These are meaningless until the first time through wait_for_inferior. */
1387
1388 breakpoint_init_inferior (inf_starting);
1389
1390 /* The first resume is not following a fork/vfork/exec. */
1391 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1392
1393 clear_proceed_status ();
1394
1395 stepping_past_singlestep_breakpoint = 0;
1396 deferred_step_ptid = null_ptid;
1397
1398 target_last_wait_ptid = minus_one_ptid;
1399
1400 previous_inferior_ptid = null_ptid;
1401 init_infwait_state ();
1402
1403 displaced_step_clear ();
1404 }
1405
1406 \f
1407 /* This enum encodes possible reasons for doing a target_wait, so that
1408 wfi can call target_wait in one place. (Ultimately the call will be
1409 moved out of the infinite loop entirely.) */
1410
1411 enum infwait_states
1412 {
1413 infwait_normal_state,
1414 infwait_thread_hop_state,
1415 infwait_step_watch_state,
1416 infwait_nonstep_watch_state
1417 };
1418
1419 /* Why did the inferior stop? Used to print the appropriate messages
1420 to the interface from within handle_inferior_event(). */
1421 enum inferior_stop_reason
1422 {
1423 /* Step, next, nexti, stepi finished. */
1424 END_STEPPING_RANGE,
1425 /* Inferior terminated by signal. */
1426 SIGNAL_EXITED,
1427 /* Inferior exited. */
1428 EXITED,
1429 /* Inferior received signal, and user asked to be notified. */
1430 SIGNAL_RECEIVED
1431 };
1432
1433 /* The PTID we'll do a target_wait on.*/
1434 ptid_t waiton_ptid;
1435
1436 /* Current inferior wait state. */
1437 enum infwait_states infwait_state;
1438
1439 /* Data to be passed around while handling an event. This data is
1440 discarded between events. */
1441 struct execution_control_state
1442 {
1443 ptid_t ptid;
1444 /* The thread that got the event, if this was a thread event; NULL
1445 otherwise. */
1446 struct thread_info *event_thread;
1447
1448 struct target_waitstatus ws;
1449 int random_signal;
1450 CORE_ADDR stop_func_start;
1451 CORE_ADDR stop_func_end;
1452 char *stop_func_name;
1453 int new_thread_event;
1454 int wait_some_more;
1455 };
1456
1457 void init_execution_control_state (struct execution_control_state *ecs);
1458
1459 void handle_inferior_event (struct execution_control_state *ecs);
1460
1461 static void step_into_function (struct execution_control_state *ecs);
1462 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1463 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1464 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1465 struct frame_id sr_id);
1466 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1467
1468 static void stop_stepping (struct execution_control_state *ecs);
1469 static void prepare_to_wait (struct execution_control_state *ecs);
1470 static void keep_going (struct execution_control_state *ecs);
1471 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1472 int stop_info);
1473
1474 /* Callback for iterate_over_threads. */
1475
1476 static int
1477 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1478 {
1479 if (is_exited (info->ptid))
1480 return 0;
1481
1482 delete_step_resume_breakpoint (info);
1483 return 0;
1484 }
1485
1486 /* In all-stop, delete the step resume breakpoint of any thread that
1487 had one. In non-stop, delete the step resume breakpoint of the
1488 thread that just stopped. */
1489
1490 static void
1491 delete_step_thread_step_resume_breakpoint (void)
1492 {
1493 if (!target_has_execution
1494 || ptid_equal (inferior_ptid, null_ptid))
1495 /* If the inferior has exited, we have already deleted the step
1496 resume breakpoints out of GDB's lists. */
1497 return;
1498
1499 if (non_stop)
1500 {
1501 /* If in non-stop mode, only delete the step-resume or
1502 longjmp-resume breakpoint of the thread that just stopped
1503 stepping. */
1504 struct thread_info *tp = inferior_thread ();
1505 delete_step_resume_breakpoint (tp);
1506 }
1507 else
1508 /* In all-stop mode, delete all step-resume and longjmp-resume
1509 breakpoints of any thread that had them. */
1510 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1511 }
1512
1513 /* A cleanup wrapper. */
1514
1515 static void
1516 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1517 {
1518 delete_step_thread_step_resume_breakpoint ();
1519 }
1520
1521 /* Wait for control to return from inferior to debugger.
1522
1523 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1524 as if they were SIGTRAP signals. This can be useful during
1525 the startup sequence on some targets such as HP/UX, where
1526 we receive an EXEC event instead of the expected SIGTRAP.
1527
1528 If inferior gets a signal, we may decide to start it up again
1529 instead of returning. That is why there is a loop in this function.
1530 When this function actually returns it means the inferior
1531 should be left stopped and GDB should read more commands. */
1532
1533 void
1534 wait_for_inferior (int treat_exec_as_sigtrap)
1535 {
1536 struct cleanup *old_cleanups;
1537 struct execution_control_state ecss;
1538 struct execution_control_state *ecs;
1539
1540 if (debug_infrun)
1541 fprintf_unfiltered
1542 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1543 treat_exec_as_sigtrap);
1544
1545 old_cleanups =
1546 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
1547
1548 ecs = &ecss;
1549 memset (ecs, 0, sizeof (*ecs));
1550
1551 overlay_cache_invalid = 1;
1552
1553 /* We'll update this if & when we switch to a new thread. */
1554 previous_inferior_ptid = inferior_ptid;
1555
1556 /* We have to invalidate the registers BEFORE calling target_wait
1557 because they can be loaded from the target while in target_wait.
1558 This makes remote debugging a bit more efficient for those
1559 targets that provide critical registers as part of their normal
1560 status mechanism. */
1561
1562 registers_changed ();
1563
1564 while (1)
1565 {
1566 if (deprecated_target_wait_hook)
1567 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1568 else
1569 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1570
1571 ecs->event_thread = find_thread_pid (ecs->ptid);
1572
1573 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1574 {
1575 xfree (ecs->ws.value.execd_pathname);
1576 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1577 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1578 }
1579
1580 /* Now figure out what to do with the result of the result. */
1581 handle_inferior_event (ecs);
1582
1583 if (!ecs->wait_some_more)
1584 break;
1585 }
1586
1587 do_cleanups (old_cleanups);
1588 }
1589
1590 /* Asynchronous version of wait_for_inferior. It is called by the
1591 event loop whenever a change of state is detected on the file
1592 descriptor corresponding to the target. It can be called more than
1593 once to complete a single execution command. In such cases we need
1594 to keep the state in a global variable ECSS. If it is the last time
1595 that this function is called for a single execution command, then
1596 report to the user that the inferior has stopped, and do the
1597 necessary cleanups. */
1598
1599 void
1600 fetch_inferior_event (void *client_data)
1601 {
1602 struct execution_control_state ecss;
1603 struct execution_control_state *ecs = &ecss;
1604 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1605 int was_sync = sync_execution;
1606
1607 memset (ecs, 0, sizeof (*ecs));
1608
1609 overlay_cache_invalid = 1;
1610
1611 /* We can only rely on wait_for_more being correct before handling
1612 the event in all-stop, but previous_inferior_ptid isn't used in
1613 non-stop. */
1614 if (!ecs->wait_some_more)
1615 /* We'll update this if & when we switch to a new thread. */
1616 previous_inferior_ptid = inferior_ptid;
1617
1618 if (non_stop)
1619 /* In non-stop mode, the user/frontend should not notice a thread
1620 switch due to internal events. Make sure we reverse to the
1621 user selected thread and frame after handling the event and
1622 running any breakpoint commands. */
1623 make_cleanup_restore_current_thread ();
1624
1625 /* We have to invalidate the registers BEFORE calling target_wait
1626 because they can be loaded from the target while in target_wait.
1627 This makes remote debugging a bit more efficient for those
1628 targets that provide critical registers as part of their normal
1629 status mechanism. */
1630
1631 registers_changed ();
1632
1633 if (deprecated_target_wait_hook)
1634 ecs->ptid =
1635 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1636 else
1637 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1638
1639 if (non_stop
1640 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1641 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1642 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1643 /* In non-stop mode, each thread is handled individually. Switch
1644 early, so the global state is set correctly for this
1645 thread. */
1646 context_switch (ecs->ptid);
1647
1648 ecs->event_thread = find_thread_pid (ecs->ptid);
1649
1650 /* Now figure out what to do with the result of the result. */
1651 handle_inferior_event (ecs);
1652
1653 if (!ecs->wait_some_more)
1654 {
1655 delete_step_thread_step_resume_breakpoint ();
1656
1657 if (stop_soon == NO_STOP_QUIETLY)
1658 normal_stop ();
1659
1660 if (target_has_execution
1661 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1662 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1663 && ecs->event_thread->step_multi
1664 && ecs->event_thread->stop_step)
1665 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1666 else
1667 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1668 }
1669
1670 /* Revert thread and frame. */
1671 do_cleanups (old_chain);
1672
1673 /* If the inferior was in sync execution mode, and now isn't,
1674 restore the prompt. */
1675 if (was_sync && !sync_execution)
1676 display_gdb_prompt (0);
1677 }
1678
1679 /* Prepare an execution control state for looping through a
1680 wait_for_inferior-type loop. */
1681
1682 void
1683 init_execution_control_state (struct execution_control_state *ecs)
1684 {
1685 ecs->random_signal = 0;
1686 }
1687
1688 /* Clear context switchable stepping state. */
1689
1690 void
1691 init_thread_stepping_state (struct thread_info *tss)
1692 {
1693 struct symtab_and_line sal;
1694
1695 tss->stepping_over_breakpoint = 0;
1696 tss->step_after_step_resume_breakpoint = 0;
1697 tss->stepping_through_solib_after_catch = 0;
1698 tss->stepping_through_solib_catchpoints = NULL;
1699
1700 sal = find_pc_line (tss->prev_pc, 0);
1701 tss->current_line = sal.line;
1702 tss->current_symtab = sal.symtab;
1703 }
1704
1705 /* Return the cached copy of the last pid/waitstatus returned by
1706 target_wait()/deprecated_target_wait_hook(). The data is actually
1707 cached by handle_inferior_event(), which gets called immediately
1708 after target_wait()/deprecated_target_wait_hook(). */
1709
1710 void
1711 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1712 {
1713 *ptidp = target_last_wait_ptid;
1714 *status = target_last_waitstatus;
1715 }
1716
1717 void
1718 nullify_last_target_wait_ptid (void)
1719 {
1720 target_last_wait_ptid = minus_one_ptid;
1721 }
1722
1723 /* Switch thread contexts. */
1724
1725 static void
1726 context_switch (ptid_t ptid)
1727 {
1728 if (debug_infrun)
1729 {
1730 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1731 target_pid_to_str (inferior_ptid));
1732 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1733 target_pid_to_str (ptid));
1734 }
1735
1736 switch_to_thread (ptid);
1737 }
1738
1739 static void
1740 adjust_pc_after_break (struct execution_control_state *ecs)
1741 {
1742 struct regcache *regcache;
1743 struct gdbarch *gdbarch;
1744 CORE_ADDR breakpoint_pc;
1745
1746 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1747 we aren't, just return.
1748
1749 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1750 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1751 implemented by software breakpoints should be handled through the normal
1752 breakpoint layer.
1753
1754 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1755 different signals (SIGILL or SIGEMT for instance), but it is less
1756 clear where the PC is pointing afterwards. It may not match
1757 gdbarch_decr_pc_after_break. I don't know any specific target that
1758 generates these signals at breakpoints (the code has been in GDB since at
1759 least 1992) so I can not guess how to handle them here.
1760
1761 In earlier versions of GDB, a target with
1762 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1763 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1764 target with both of these set in GDB history, and it seems unlikely to be
1765 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1766
1767 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1768 return;
1769
1770 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1771 return;
1772
1773 /* If this target does not decrement the PC after breakpoints, then
1774 we have nothing to do. */
1775 regcache = get_thread_regcache (ecs->ptid);
1776 gdbarch = get_regcache_arch (regcache);
1777 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
1778 return;
1779
1780 /* Find the location where (if we've hit a breakpoint) the
1781 breakpoint would be. */
1782 breakpoint_pc = regcache_read_pc (regcache)
1783 - gdbarch_decr_pc_after_break (gdbarch);
1784
1785 /* Check whether there actually is a software breakpoint inserted
1786 at that location. */
1787 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1788 {
1789 /* When using hardware single-step, a SIGTRAP is reported for both
1790 a completed single-step and a software breakpoint. Need to
1791 differentiate between the two, as the latter needs adjusting
1792 but the former does not.
1793
1794 The SIGTRAP can be due to a completed hardware single-step only if
1795 - we didn't insert software single-step breakpoints
1796 - the thread to be examined is still the current thread
1797 - this thread is currently being stepped
1798
1799 If any of these events did not occur, we must have stopped due
1800 to hitting a software breakpoint, and have to back up to the
1801 breakpoint address.
1802
1803 As a special case, we could have hardware single-stepped a
1804 software breakpoint. In this case (prev_pc == breakpoint_pc),
1805 we also need to back up to the breakpoint address. */
1806
1807 if (singlestep_breakpoints_inserted_p
1808 || !ptid_equal (ecs->ptid, inferior_ptid)
1809 || !currently_stepping (ecs->event_thread)
1810 || ecs->event_thread->prev_pc == breakpoint_pc)
1811 regcache_write_pc (regcache, breakpoint_pc);
1812 }
1813 }
1814
1815 void
1816 init_infwait_state (void)
1817 {
1818 waiton_ptid = pid_to_ptid (-1);
1819 infwait_state = infwait_normal_state;
1820 }
1821
1822 void
1823 error_is_running (void)
1824 {
1825 error (_("\
1826 Cannot execute this command while the selected thread is running."));
1827 }
1828
1829 void
1830 ensure_not_running (void)
1831 {
1832 if (is_running (inferior_ptid))
1833 error_is_running ();
1834 }
1835
1836 /* Given an execution control state that has been freshly filled in
1837 by an event from the inferior, figure out what it means and take
1838 appropriate action. */
1839
1840 void
1841 handle_inferior_event (struct execution_control_state *ecs)
1842 {
1843 int sw_single_step_trap_p = 0;
1844 int stopped_by_watchpoint;
1845 int stepped_after_stopped_by_watchpoint = 0;
1846 struct symtab_and_line stop_pc_sal;
1847
1848 breakpoint_retire_moribund ();
1849
1850 /* Cache the last pid/waitstatus. */
1851 target_last_wait_ptid = ecs->ptid;
1852 target_last_waitstatus = ecs->ws;
1853
1854 /* Always clear state belonging to the previous time we stopped. */
1855 stop_stack_dummy = 0;
1856
1857 adjust_pc_after_break (ecs);
1858
1859 reinit_frame_cache ();
1860
1861 /* If it's a new process, add it to the thread database */
1862
1863 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1864 && !ptid_equal (ecs->ptid, minus_one_ptid)
1865 && !in_thread_list (ecs->ptid));
1866
1867 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1868 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1869 add_thread (ecs->ptid);
1870
1871 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
1872 {
1873 /* Mark the non-executing threads accordingly. */
1874 if (!non_stop
1875 || ecs->ws.kind == TARGET_WAITKIND_EXITED
1876 || ecs->ws.kind == TARGET_WAITKIND_SIGNALLED)
1877 set_executing (pid_to_ptid (-1), 0);
1878 else
1879 set_executing (ecs->ptid, 0);
1880 }
1881
1882 switch (infwait_state)
1883 {
1884 case infwait_thread_hop_state:
1885 if (debug_infrun)
1886 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1887 /* Cancel the waiton_ptid. */
1888 waiton_ptid = pid_to_ptid (-1);
1889 break;
1890
1891 case infwait_normal_state:
1892 if (debug_infrun)
1893 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1894 break;
1895
1896 case infwait_step_watch_state:
1897 if (debug_infrun)
1898 fprintf_unfiltered (gdb_stdlog,
1899 "infrun: infwait_step_watch_state\n");
1900
1901 stepped_after_stopped_by_watchpoint = 1;
1902 break;
1903
1904 case infwait_nonstep_watch_state:
1905 if (debug_infrun)
1906 fprintf_unfiltered (gdb_stdlog,
1907 "infrun: infwait_nonstep_watch_state\n");
1908 insert_breakpoints ();
1909
1910 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1911 handle things like signals arriving and other things happening
1912 in combination correctly? */
1913 stepped_after_stopped_by_watchpoint = 1;
1914 break;
1915
1916 default:
1917 internal_error (__FILE__, __LINE__, _("bad switch"));
1918 }
1919 infwait_state = infwait_normal_state;
1920
1921 switch (ecs->ws.kind)
1922 {
1923 case TARGET_WAITKIND_LOADED:
1924 if (debug_infrun)
1925 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1926 /* Ignore gracefully during startup of the inferior, as it might
1927 be the shell which has just loaded some objects, otherwise
1928 add the symbols for the newly loaded objects. Also ignore at
1929 the beginning of an attach or remote session; we will query
1930 the full list of libraries once the connection is
1931 established. */
1932 if (stop_soon == NO_STOP_QUIETLY)
1933 {
1934 /* Check for any newly added shared libraries if we're
1935 supposed to be adding them automatically. Switch
1936 terminal for any messages produced by
1937 breakpoint_re_set. */
1938 target_terminal_ours_for_output ();
1939 /* NOTE: cagney/2003-11-25: Make certain that the target
1940 stack's section table is kept up-to-date. Architectures,
1941 (e.g., PPC64), use the section table to perform
1942 operations such as address => section name and hence
1943 require the table to contain all sections (including
1944 those found in shared libraries). */
1945 /* NOTE: cagney/2003-11-25: Pass current_target and not
1946 exec_ops to SOLIB_ADD. This is because current GDB is
1947 only tooled to propagate section_table changes out from
1948 the "current_target" (see target_resize_to_sections), and
1949 not up from the exec stratum. This, of course, isn't
1950 right. "infrun.c" should only interact with the
1951 exec/process stratum, instead relying on the target stack
1952 to propagate relevant changes (stop, section table
1953 changed, ...) up to other layers. */
1954 #ifdef SOLIB_ADD
1955 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1956 #else
1957 solib_add (NULL, 0, &current_target, auto_solib_add);
1958 #endif
1959 target_terminal_inferior ();
1960
1961 /* If requested, stop when the dynamic linker notifies
1962 gdb of events. This allows the user to get control
1963 and place breakpoints in initializer routines for
1964 dynamically loaded objects (among other things). */
1965 if (stop_on_solib_events)
1966 {
1967 stop_stepping (ecs);
1968 return;
1969 }
1970
1971 /* NOTE drow/2007-05-11: This might be a good place to check
1972 for "catch load". */
1973 }
1974
1975 /* If we are skipping through a shell, or through shared library
1976 loading that we aren't interested in, resume the program. If
1977 we're running the program normally, also resume. But stop if
1978 we're attaching or setting up a remote connection. */
1979 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1980 {
1981 /* Loading of shared libraries might have changed breakpoint
1982 addresses. Make sure new breakpoints are inserted. */
1983 if (stop_soon == NO_STOP_QUIETLY
1984 && !breakpoints_always_inserted_mode ())
1985 insert_breakpoints ();
1986 resume (0, TARGET_SIGNAL_0);
1987 prepare_to_wait (ecs);
1988 return;
1989 }
1990
1991 break;
1992
1993 case TARGET_WAITKIND_SPURIOUS:
1994 if (debug_infrun)
1995 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1996 resume (0, TARGET_SIGNAL_0);
1997 prepare_to_wait (ecs);
1998 return;
1999
2000 case TARGET_WAITKIND_EXITED:
2001 if (debug_infrun)
2002 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2003 target_terminal_ours (); /* Must do this before mourn anyway */
2004 print_stop_reason (EXITED, ecs->ws.value.integer);
2005
2006 /* Record the exit code in the convenience variable $_exitcode, so
2007 that the user can inspect this again later. */
2008 set_internalvar (lookup_internalvar ("_exitcode"),
2009 value_from_longest (builtin_type_int,
2010 (LONGEST) ecs->ws.value.integer));
2011 gdb_flush (gdb_stdout);
2012 target_mourn_inferior ();
2013 singlestep_breakpoints_inserted_p = 0;
2014 stop_print_frame = 0;
2015 stop_stepping (ecs);
2016 return;
2017
2018 case TARGET_WAITKIND_SIGNALLED:
2019 if (debug_infrun)
2020 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2021 stop_print_frame = 0;
2022 target_terminal_ours (); /* Must do this before mourn anyway */
2023
2024 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2025 reach here unless the inferior is dead. However, for years
2026 target_kill() was called here, which hints that fatal signals aren't
2027 really fatal on some systems. If that's true, then some changes
2028 may be needed. */
2029 target_mourn_inferior ();
2030
2031 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
2032 singlestep_breakpoints_inserted_p = 0;
2033 stop_stepping (ecs);
2034 return;
2035
2036 /* The following are the only cases in which we keep going;
2037 the above cases end in a continue or goto. */
2038 case TARGET_WAITKIND_FORKED:
2039 case TARGET_WAITKIND_VFORKED:
2040 if (debug_infrun)
2041 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2042 pending_follow.kind = ecs->ws.kind;
2043
2044 pending_follow.fork_event.parent_pid = ecs->ptid;
2045 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
2046
2047 if (!ptid_equal (ecs->ptid, inferior_ptid))
2048 {
2049 context_switch (ecs->ptid);
2050 reinit_frame_cache ();
2051 }
2052
2053 stop_pc = read_pc ();
2054
2055 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2056
2057 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2058
2059 /* If no catchpoint triggered for this, then keep going. */
2060 if (ecs->random_signal)
2061 {
2062 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2063 keep_going (ecs);
2064 return;
2065 }
2066 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2067 goto process_event_stop_test;
2068
2069 case TARGET_WAITKIND_EXECD:
2070 if (debug_infrun)
2071 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2072 pending_follow.execd_pathname =
2073 savestring (ecs->ws.value.execd_pathname,
2074 strlen (ecs->ws.value.execd_pathname));
2075
2076 /* This causes the eventpoints and symbol table to be reset. Must
2077 do this now, before trying to determine whether to stop. */
2078 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2079 xfree (pending_follow.execd_pathname);
2080
2081 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2082
2083 {
2084 /* The breakpoints module may need to touch the inferior's
2085 memory. Switch to the (stopped) event ptid
2086 momentarily. */
2087 ptid_t saved_inferior_ptid = inferior_ptid;
2088 inferior_ptid = ecs->ptid;
2089
2090 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2091
2092 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2093 inferior_ptid = saved_inferior_ptid;
2094 }
2095
2096 if (!ptid_equal (ecs->ptid, inferior_ptid))
2097 {
2098 context_switch (ecs->ptid);
2099 reinit_frame_cache ();
2100 }
2101
2102 /* If no catchpoint triggered for this, then keep going. */
2103 if (ecs->random_signal)
2104 {
2105 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2106 keep_going (ecs);
2107 return;
2108 }
2109 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2110 goto process_event_stop_test;
2111
2112 /* Be careful not to try to gather much state about a thread
2113 that's in a syscall. It's frequently a losing proposition. */
2114 case TARGET_WAITKIND_SYSCALL_ENTRY:
2115 if (debug_infrun)
2116 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2117 resume (0, TARGET_SIGNAL_0);
2118 prepare_to_wait (ecs);
2119 return;
2120
2121 /* Before examining the threads further, step this thread to
2122 get it entirely out of the syscall. (We get notice of the
2123 event when the thread is just on the verge of exiting a
2124 syscall. Stepping one instruction seems to get it back
2125 into user code.) */
2126 case TARGET_WAITKIND_SYSCALL_RETURN:
2127 if (debug_infrun)
2128 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2129 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2130 prepare_to_wait (ecs);
2131 return;
2132
2133 case TARGET_WAITKIND_STOPPED:
2134 if (debug_infrun)
2135 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2136 ecs->event_thread->stop_signal = ecs->ws.value.sig;
2137 break;
2138
2139 /* We had an event in the inferior, but we are not interested
2140 in handling it at this level. The lower layers have already
2141 done what needs to be done, if anything.
2142
2143 One of the possible circumstances for this is when the
2144 inferior produces output for the console. The inferior has
2145 not stopped, and we are ignoring the event. Another possible
2146 circumstance is any event which the lower level knows will be
2147 reported multiple times without an intervening resume. */
2148 case TARGET_WAITKIND_IGNORE:
2149 if (debug_infrun)
2150 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2151 prepare_to_wait (ecs);
2152 return;
2153 }
2154
2155 if (ecs->new_thread_event)
2156 {
2157 if (non_stop)
2158 /* Non-stop assumes that the target handles adding new threads
2159 to the thread list. */
2160 internal_error (__FILE__, __LINE__, "\
2161 targets should add new threads to the thread list themselves in non-stop mode.");
2162
2163 /* We may want to consider not doing a resume here in order to
2164 give the user a chance to play with the new thread. It might
2165 be good to make that a user-settable option. */
2166
2167 /* At this point, all threads are stopped (happens automatically
2168 in either the OS or the native code). Therefore we need to
2169 continue all threads in order to make progress. */
2170
2171 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2172 prepare_to_wait (ecs);
2173 return;
2174 }
2175
2176 /* Do we need to clean up the state of a thread that has completed a
2177 displaced single-step? (Doing so usually affects the PC, so do
2178 it here, before we set stop_pc.) */
2179 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
2180 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2181
2182 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2183
2184 if (debug_infrun)
2185 {
2186 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2187 paddr_nz (stop_pc));
2188 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2189 {
2190 CORE_ADDR addr;
2191 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2192
2193 if (target_stopped_data_address (&current_target, &addr))
2194 fprintf_unfiltered (gdb_stdlog,
2195 "infrun: stopped data address = 0x%s\n",
2196 paddr_nz (addr));
2197 else
2198 fprintf_unfiltered (gdb_stdlog,
2199 "infrun: (no data address available)\n");
2200 }
2201 }
2202
2203 if (stepping_past_singlestep_breakpoint)
2204 {
2205 gdb_assert (singlestep_breakpoints_inserted_p);
2206 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2207 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2208
2209 stepping_past_singlestep_breakpoint = 0;
2210
2211 /* We've either finished single-stepping past the single-step
2212 breakpoint, or stopped for some other reason. It would be nice if
2213 we could tell, but we can't reliably. */
2214 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2215 {
2216 if (debug_infrun)
2217 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2218 /* Pull the single step breakpoints out of the target. */
2219 remove_single_step_breakpoints ();
2220 singlestep_breakpoints_inserted_p = 0;
2221
2222 ecs->random_signal = 0;
2223
2224 context_switch (saved_singlestep_ptid);
2225 if (deprecated_context_hook)
2226 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2227
2228 resume (1, TARGET_SIGNAL_0);
2229 prepare_to_wait (ecs);
2230 return;
2231 }
2232 }
2233
2234 stepping_past_singlestep_breakpoint = 0;
2235
2236 if (!ptid_equal (deferred_step_ptid, null_ptid))
2237 {
2238 /* In non-stop mode, there's never a deferred_step_ptid set. */
2239 gdb_assert (!non_stop);
2240
2241 /* If we stopped for some other reason than single-stepping, ignore
2242 the fact that we were supposed to switch back. */
2243 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2244 {
2245 struct thread_info *tp;
2246
2247 if (debug_infrun)
2248 fprintf_unfiltered (gdb_stdlog,
2249 "infrun: handling deferred step\n");
2250
2251 /* Pull the single step breakpoints out of the target. */
2252 if (singlestep_breakpoints_inserted_p)
2253 {
2254 remove_single_step_breakpoints ();
2255 singlestep_breakpoints_inserted_p = 0;
2256 }
2257
2258 /* Note: We do not call context_switch at this point, as the
2259 context is already set up for stepping the original thread. */
2260 switch_to_thread (deferred_step_ptid);
2261 deferred_step_ptid = null_ptid;
2262 /* Suppress spurious "Switching to ..." message. */
2263 previous_inferior_ptid = inferior_ptid;
2264
2265 resume (1, TARGET_SIGNAL_0);
2266 prepare_to_wait (ecs);
2267 return;
2268 }
2269
2270 deferred_step_ptid = null_ptid;
2271 }
2272
2273 /* See if a thread hit a thread-specific breakpoint that was meant for
2274 another thread. If so, then step that thread past the breakpoint,
2275 and continue it. */
2276
2277 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2278 {
2279 int thread_hop_needed = 0;
2280
2281 /* Check if a regular breakpoint has been hit before checking
2282 for a potential single step breakpoint. Otherwise, GDB will
2283 not see this breakpoint hit when stepping onto breakpoints. */
2284 if (regular_breakpoint_inserted_here_p (stop_pc))
2285 {
2286 ecs->random_signal = 0;
2287 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2288 thread_hop_needed = 1;
2289 }
2290 else if (singlestep_breakpoints_inserted_p)
2291 {
2292 /* We have not context switched yet, so this should be true
2293 no matter which thread hit the singlestep breakpoint. */
2294 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2295 if (debug_infrun)
2296 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2297 "trap for %s\n",
2298 target_pid_to_str (ecs->ptid));
2299
2300 ecs->random_signal = 0;
2301 /* The call to in_thread_list is necessary because PTIDs sometimes
2302 change when we go from single-threaded to multi-threaded. If
2303 the singlestep_ptid is still in the list, assume that it is
2304 really different from ecs->ptid. */
2305 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2306 && in_thread_list (singlestep_ptid))
2307 {
2308 /* If the PC of the thread we were trying to single-step
2309 has changed, discard this event (which we were going
2310 to ignore anyway), and pretend we saw that thread
2311 trap. This prevents us continuously moving the
2312 single-step breakpoint forward, one instruction at a
2313 time. If the PC has changed, then the thread we were
2314 trying to single-step has trapped or been signalled,
2315 but the event has not been reported to GDB yet.
2316
2317 There might be some cases where this loses signal
2318 information, if a signal has arrived at exactly the
2319 same time that the PC changed, but this is the best
2320 we can do with the information available. Perhaps we
2321 should arrange to report all events for all threads
2322 when they stop, or to re-poll the remote looking for
2323 this particular thread (i.e. temporarily enable
2324 schedlock). */
2325
2326 CORE_ADDR new_singlestep_pc
2327 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2328
2329 if (new_singlestep_pc != singlestep_pc)
2330 {
2331 enum target_signal stop_signal;
2332
2333 if (debug_infrun)
2334 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2335 " but expected thread advanced also\n");
2336
2337 /* The current context still belongs to
2338 singlestep_ptid. Don't swap here, since that's
2339 the context we want to use. Just fudge our
2340 state and continue. */
2341 stop_signal = ecs->event_thread->stop_signal;
2342 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2343 ecs->ptid = singlestep_ptid;
2344 ecs->event_thread = find_thread_pid (ecs->ptid);
2345 ecs->event_thread->stop_signal = stop_signal;
2346 stop_pc = new_singlestep_pc;
2347 }
2348 else
2349 {
2350 if (debug_infrun)
2351 fprintf_unfiltered (gdb_stdlog,
2352 "infrun: unexpected thread\n");
2353
2354 thread_hop_needed = 1;
2355 stepping_past_singlestep_breakpoint = 1;
2356 saved_singlestep_ptid = singlestep_ptid;
2357 }
2358 }
2359 }
2360
2361 if (thread_hop_needed)
2362 {
2363 int remove_status = 0;
2364
2365 if (debug_infrun)
2366 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2367
2368 /* Saw a breakpoint, but it was hit by the wrong thread.
2369 Just continue. */
2370
2371 if (singlestep_breakpoints_inserted_p)
2372 {
2373 /* Pull the single step breakpoints out of the target. */
2374 remove_single_step_breakpoints ();
2375 singlestep_breakpoints_inserted_p = 0;
2376 }
2377
2378 /* If the arch can displace step, don't remove the
2379 breakpoints. */
2380 if (!use_displaced_stepping (current_gdbarch))
2381 remove_status = remove_breakpoints ();
2382
2383 /* Did we fail to remove breakpoints? If so, try
2384 to set the PC past the bp. (There's at least
2385 one situation in which we can fail to remove
2386 the bp's: On HP-UX's that use ttrace, we can't
2387 change the address space of a vforking child
2388 process until the child exits (well, okay, not
2389 then either :-) or execs. */
2390 if (remove_status != 0)
2391 error (_("Cannot step over breakpoint hit in wrong thread"));
2392 else
2393 { /* Single step */
2394 if (!ptid_equal (inferior_ptid, ecs->ptid))
2395 context_switch (ecs->ptid);
2396
2397 if (!non_stop)
2398 {
2399 /* Only need to require the next event from this
2400 thread in all-stop mode. */
2401 waiton_ptid = ecs->ptid;
2402 infwait_state = infwait_thread_hop_state;
2403 }
2404
2405 ecs->event_thread->stepping_over_breakpoint = 1;
2406 keep_going (ecs);
2407 registers_changed ();
2408 return;
2409 }
2410 }
2411 else if (singlestep_breakpoints_inserted_p)
2412 {
2413 sw_single_step_trap_p = 1;
2414 ecs->random_signal = 0;
2415 }
2416 }
2417 else
2418 ecs->random_signal = 1;
2419
2420 /* See if something interesting happened to the non-current thread. If
2421 so, then switch to that thread. */
2422 if (!ptid_equal (ecs->ptid, inferior_ptid))
2423 {
2424 if (debug_infrun)
2425 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2426
2427 context_switch (ecs->ptid);
2428
2429 if (deprecated_context_hook)
2430 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2431 }
2432
2433 if (singlestep_breakpoints_inserted_p)
2434 {
2435 /* Pull the single step breakpoints out of the target. */
2436 remove_single_step_breakpoints ();
2437 singlestep_breakpoints_inserted_p = 0;
2438 }
2439
2440 if (stepped_after_stopped_by_watchpoint)
2441 stopped_by_watchpoint = 0;
2442 else
2443 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2444
2445 /* If necessary, step over this watchpoint. We'll be back to display
2446 it in a moment. */
2447 if (stopped_by_watchpoint
2448 && (HAVE_STEPPABLE_WATCHPOINT
2449 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2450 {
2451 /* At this point, we are stopped at an instruction which has
2452 attempted to write to a piece of memory under control of
2453 a watchpoint. The instruction hasn't actually executed
2454 yet. If we were to evaluate the watchpoint expression
2455 now, we would get the old value, and therefore no change
2456 would seem to have occurred.
2457
2458 In order to make watchpoints work `right', we really need
2459 to complete the memory write, and then evaluate the
2460 watchpoint expression. We do this by single-stepping the
2461 target.
2462
2463 It may not be necessary to disable the watchpoint to stop over
2464 it. For example, the PA can (with some kernel cooperation)
2465 single step over a watchpoint without disabling the watchpoint.
2466
2467 It is far more common to need to disable a watchpoint to step
2468 the inferior over it. If we have non-steppable watchpoints,
2469 we must disable the current watchpoint; it's simplest to
2470 disable all watchpoints and breakpoints. */
2471
2472 if (!HAVE_STEPPABLE_WATCHPOINT)
2473 remove_breakpoints ();
2474 registers_changed ();
2475 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2476 waiton_ptid = ecs->ptid;
2477 if (HAVE_STEPPABLE_WATCHPOINT)
2478 infwait_state = infwait_step_watch_state;
2479 else
2480 infwait_state = infwait_nonstep_watch_state;
2481 prepare_to_wait (ecs);
2482 return;
2483 }
2484
2485 ecs->stop_func_start = 0;
2486 ecs->stop_func_end = 0;
2487 ecs->stop_func_name = 0;
2488 /* Don't care about return value; stop_func_start and stop_func_name
2489 will both be 0 if it doesn't work. */
2490 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2491 &ecs->stop_func_start, &ecs->stop_func_end);
2492 ecs->stop_func_start
2493 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2494 ecs->event_thread->stepping_over_breakpoint = 0;
2495 bpstat_clear (&ecs->event_thread->stop_bpstat);
2496 ecs->event_thread->stop_step = 0;
2497 stop_print_frame = 1;
2498 ecs->random_signal = 0;
2499 stopped_by_random_signal = 0;
2500
2501 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2502 && ecs->event_thread->trap_expected
2503 && gdbarch_single_step_through_delay_p (current_gdbarch)
2504 && currently_stepping (ecs->event_thread))
2505 {
2506 /* We're trying to step off a breakpoint. Turns out that we're
2507 also on an instruction that needs to be stepped multiple
2508 times before it's been fully executing. E.g., architectures
2509 with a delay slot. It needs to be stepped twice, once for
2510 the instruction and once for the delay slot. */
2511 int step_through_delay
2512 = gdbarch_single_step_through_delay (current_gdbarch,
2513 get_current_frame ());
2514 if (debug_infrun && step_through_delay)
2515 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2516 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
2517 {
2518 /* The user issued a continue when stopped at a breakpoint.
2519 Set up for another trap and get out of here. */
2520 ecs->event_thread->stepping_over_breakpoint = 1;
2521 keep_going (ecs);
2522 return;
2523 }
2524 else if (step_through_delay)
2525 {
2526 /* The user issued a step when stopped at a breakpoint.
2527 Maybe we should stop, maybe we should not - the delay
2528 slot *might* correspond to a line of source. In any
2529 case, don't decide that here, just set
2530 ecs->stepping_over_breakpoint, making sure we
2531 single-step again before breakpoints are re-inserted. */
2532 ecs->event_thread->stepping_over_breakpoint = 1;
2533 }
2534 }
2535
2536 /* Look at the cause of the stop, and decide what to do.
2537 The alternatives are:
2538 1) stop_stepping and return; to really stop and return to the debugger,
2539 2) keep_going and return to start up again
2540 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
2541 3) set ecs->random_signal to 1, and the decision between 1 and 2
2542 will be made according to the signal handling tables. */
2543
2544 /* First, distinguish signals caused by the debugger from signals
2545 that have to do with the program's own actions. Note that
2546 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2547 on the operating system version. Here we detect when a SIGILL or
2548 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2549 something similar for SIGSEGV, since a SIGSEGV will be generated
2550 when we're trying to execute a breakpoint instruction on a
2551 non-executable stack. This happens for call dummy breakpoints
2552 for architectures like SPARC that place call dummies on the
2553 stack.
2554
2555 If we're doing a displaced step past a breakpoint, then the
2556 breakpoint is always inserted at the original instruction;
2557 non-standard signals can't be explained by the breakpoint. */
2558 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2559 || (! ecs->event_thread->trap_expected
2560 && breakpoint_inserted_here_p (stop_pc)
2561 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
2562 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
2563 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
2564 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2565 || stop_soon == STOP_QUIETLY_REMOTE)
2566 {
2567 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2568 {
2569 if (debug_infrun)
2570 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2571 stop_print_frame = 0;
2572 stop_stepping (ecs);
2573 return;
2574 }
2575
2576 /* This is originated from start_remote(), start_inferior() and
2577 shared libraries hook functions. */
2578 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2579 {
2580 if (debug_infrun)
2581 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2582 stop_stepping (ecs);
2583 return;
2584 }
2585
2586 /* This originates from attach_command(). We need to overwrite
2587 the stop_signal here, because some kernels don't ignore a
2588 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2589 See more comments in inferior.h. On the other hand, if we
2590 get a non-SIGSTOP, report it to the user - assume the backend
2591 will handle the SIGSTOP if it should show up later.
2592
2593 Also consider that the attach is complete when we see a
2594 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2595 target extended-remote report it instead of a SIGSTOP
2596 (e.g. gdbserver). We already rely on SIGTRAP being our
2597 signal, so this is no exception. */
2598 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2599 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
2600 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP))
2601 {
2602 stop_stepping (ecs);
2603 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2604 return;
2605 }
2606
2607 /* See if there is a breakpoint at the current PC. */
2608 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2609
2610 /* Following in case break condition called a
2611 function. */
2612 stop_print_frame = 1;
2613
2614 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2615 at one stage in the past included checks for an inferior
2616 function call's call dummy's return breakpoint. The original
2617 comment, that went with the test, read:
2618
2619 ``End of a stack dummy. Some systems (e.g. Sony news) give
2620 another signal besides SIGTRAP, so check here as well as
2621 above.''
2622
2623 If someone ever tries to get get call dummys on a
2624 non-executable stack to work (where the target would stop
2625 with something like a SIGSEGV), then those tests might need
2626 to be re-instated. Given, however, that the tests were only
2627 enabled when momentary breakpoints were not being used, I
2628 suspect that it won't be the case.
2629
2630 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2631 be necessary for call dummies on a non-executable stack on
2632 SPARC. */
2633
2634 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2635 ecs->random_signal
2636 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
2637 || ecs->event_thread->trap_expected
2638 || (ecs->event_thread->step_range_end
2639 && ecs->event_thread->step_resume_breakpoint == NULL));
2640 else
2641 {
2642 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2643 if (!ecs->random_signal)
2644 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2645 }
2646 }
2647
2648 /* When we reach this point, we've pretty much decided
2649 that the reason for stopping must've been a random
2650 (unexpected) signal. */
2651
2652 else
2653 ecs->random_signal = 1;
2654
2655 process_event_stop_test:
2656 /* For the program's own signals, act according to
2657 the signal handling tables. */
2658
2659 if (ecs->random_signal)
2660 {
2661 /* Signal not for debugging purposes. */
2662 int printed = 0;
2663
2664 if (debug_infrun)
2665 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
2666 ecs->event_thread->stop_signal);
2667
2668 stopped_by_random_signal = 1;
2669
2670 if (signal_print[ecs->event_thread->stop_signal])
2671 {
2672 printed = 1;
2673 target_terminal_ours_for_output ();
2674 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
2675 }
2676 if (signal_stop_state (ecs->event_thread->stop_signal))
2677 {
2678 stop_stepping (ecs);
2679 return;
2680 }
2681 /* If not going to stop, give terminal back
2682 if we took it away. */
2683 else if (printed)
2684 target_terminal_inferior ();
2685
2686 /* Clear the signal if it should not be passed. */
2687 if (signal_program[ecs->event_thread->stop_signal] == 0)
2688 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2689
2690 if (ecs->event_thread->prev_pc == read_pc ()
2691 && ecs->event_thread->trap_expected
2692 && ecs->event_thread->step_resume_breakpoint == NULL)
2693 {
2694 /* We were just starting a new sequence, attempting to
2695 single-step off of a breakpoint and expecting a SIGTRAP.
2696 Instead this signal arrives. This signal will take us out
2697 of the stepping range so GDB needs to remember to, when
2698 the signal handler returns, resume stepping off that
2699 breakpoint. */
2700 /* To simplify things, "continue" is forced to use the same
2701 code paths as single-step - set a breakpoint at the
2702 signal return address and then, once hit, step off that
2703 breakpoint. */
2704 if (debug_infrun)
2705 fprintf_unfiltered (gdb_stdlog,
2706 "infrun: signal arrived while stepping over "
2707 "breakpoint\n");
2708
2709 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2710 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2711 keep_going (ecs);
2712 return;
2713 }
2714
2715 if (ecs->event_thread->step_range_end != 0
2716 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
2717 && (ecs->event_thread->step_range_start <= stop_pc
2718 && stop_pc < ecs->event_thread->step_range_end)
2719 && frame_id_eq (get_frame_id (get_current_frame ()),
2720 ecs->event_thread->step_frame_id)
2721 && ecs->event_thread->step_resume_breakpoint == NULL)
2722 {
2723 /* The inferior is about to take a signal that will take it
2724 out of the single step range. Set a breakpoint at the
2725 current PC (which is presumably where the signal handler
2726 will eventually return) and then allow the inferior to
2727 run free.
2728
2729 Note that this is only needed for a signal delivered
2730 while in the single-step range. Nested signals aren't a
2731 problem as they eventually all return. */
2732 if (debug_infrun)
2733 fprintf_unfiltered (gdb_stdlog,
2734 "infrun: signal may take us out of "
2735 "single-step range\n");
2736
2737 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2738 keep_going (ecs);
2739 return;
2740 }
2741
2742 /* Note: step_resume_breakpoint may be non-NULL. This occures
2743 when either there's a nested signal, or when there's a
2744 pending signal enabled just as the signal handler returns
2745 (leaving the inferior at the step-resume-breakpoint without
2746 actually executing it). Either way continue until the
2747 breakpoint is really hit. */
2748 keep_going (ecs);
2749 return;
2750 }
2751
2752 /* Handle cases caused by hitting a breakpoint. */
2753 {
2754 CORE_ADDR jmp_buf_pc;
2755 struct bpstat_what what;
2756
2757 what = bpstat_what (ecs->event_thread->stop_bpstat);
2758
2759 if (what.call_dummy)
2760 {
2761 stop_stack_dummy = 1;
2762 }
2763
2764 switch (what.main_action)
2765 {
2766 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2767 /* If we hit the breakpoint at longjmp while stepping, we
2768 install a momentary breakpoint at the target of the
2769 jmp_buf. */
2770
2771 if (debug_infrun)
2772 fprintf_unfiltered (gdb_stdlog,
2773 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2774
2775 ecs->event_thread->stepping_over_breakpoint = 1;
2776
2777 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2778 || !gdbarch_get_longjmp_target (current_gdbarch,
2779 get_current_frame (), &jmp_buf_pc))
2780 {
2781 if (debug_infrun)
2782 fprintf_unfiltered (gdb_stdlog, "\
2783 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
2784 keep_going (ecs);
2785 return;
2786 }
2787
2788 /* We're going to replace the current step-resume breakpoint
2789 with a longjmp-resume breakpoint. */
2790 delete_step_resume_breakpoint (ecs->event_thread);
2791
2792 /* Insert a breakpoint at resume address. */
2793 insert_longjmp_resume_breakpoint (jmp_buf_pc);
2794
2795 keep_going (ecs);
2796 return;
2797
2798 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2799 if (debug_infrun)
2800 fprintf_unfiltered (gdb_stdlog,
2801 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2802
2803 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
2804 delete_step_resume_breakpoint (ecs->event_thread);
2805
2806 ecs->event_thread->stop_step = 1;
2807 print_stop_reason (END_STEPPING_RANGE, 0);
2808 stop_stepping (ecs);
2809 return;
2810
2811 case BPSTAT_WHAT_SINGLE:
2812 if (debug_infrun)
2813 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2814 ecs->event_thread->stepping_over_breakpoint = 1;
2815 /* Still need to check other stuff, at least the case
2816 where we are stepping and step out of the right range. */
2817 break;
2818
2819 case BPSTAT_WHAT_STOP_NOISY:
2820 if (debug_infrun)
2821 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2822 stop_print_frame = 1;
2823
2824 /* We are about to nuke the step_resume_breakpointt via the
2825 cleanup chain, so no need to worry about it here. */
2826
2827 stop_stepping (ecs);
2828 return;
2829
2830 case BPSTAT_WHAT_STOP_SILENT:
2831 if (debug_infrun)
2832 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2833 stop_print_frame = 0;
2834
2835 /* We are about to nuke the step_resume_breakpoin via the
2836 cleanup chain, so no need to worry about it here. */
2837
2838 stop_stepping (ecs);
2839 return;
2840
2841 case BPSTAT_WHAT_STEP_RESUME:
2842 if (debug_infrun)
2843 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2844
2845 delete_step_resume_breakpoint (ecs->event_thread);
2846 if (ecs->event_thread->step_after_step_resume_breakpoint)
2847 {
2848 /* Back when the step-resume breakpoint was inserted, we
2849 were trying to single-step off a breakpoint. Go back
2850 to doing that. */
2851 ecs->event_thread->step_after_step_resume_breakpoint = 0;
2852 ecs->event_thread->stepping_over_breakpoint = 1;
2853 keep_going (ecs);
2854 return;
2855 }
2856 break;
2857
2858 case BPSTAT_WHAT_CHECK_SHLIBS:
2859 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2860 {
2861 if (debug_infrun)
2862 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2863
2864 /* Check for any newly added shared libraries if we're
2865 supposed to be adding them automatically. Switch
2866 terminal for any messages produced by
2867 breakpoint_re_set. */
2868 target_terminal_ours_for_output ();
2869 /* NOTE: cagney/2003-11-25: Make certain that the target
2870 stack's section table is kept up-to-date. Architectures,
2871 (e.g., PPC64), use the section table to perform
2872 operations such as address => section name and hence
2873 require the table to contain all sections (including
2874 those found in shared libraries). */
2875 /* NOTE: cagney/2003-11-25: Pass current_target and not
2876 exec_ops to SOLIB_ADD. This is because current GDB is
2877 only tooled to propagate section_table changes out from
2878 the "current_target" (see target_resize_to_sections), and
2879 not up from the exec stratum. This, of course, isn't
2880 right. "infrun.c" should only interact with the
2881 exec/process stratum, instead relying on the target stack
2882 to propagate relevant changes (stop, section table
2883 changed, ...) up to other layers. */
2884 #ifdef SOLIB_ADD
2885 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2886 #else
2887 solib_add (NULL, 0, &current_target, auto_solib_add);
2888 #endif
2889 target_terminal_inferior ();
2890
2891 /* If requested, stop when the dynamic linker notifies
2892 gdb of events. This allows the user to get control
2893 and place breakpoints in initializer routines for
2894 dynamically loaded objects (among other things). */
2895 if (stop_on_solib_events || stop_stack_dummy)
2896 {
2897 stop_stepping (ecs);
2898 return;
2899 }
2900
2901 /* If we stopped due to an explicit catchpoint, then the
2902 (see above) call to SOLIB_ADD pulled in any symbols
2903 from a newly-loaded library, if appropriate.
2904
2905 We do want the inferior to stop, but not where it is
2906 now, which is in the dynamic linker callback. Rather,
2907 we would like it stop in the user's program, just after
2908 the call that caused this catchpoint to trigger. That
2909 gives the user a more useful vantage from which to
2910 examine their program's state. */
2911 else if (what.main_action
2912 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2913 {
2914 /* ??rehrauer: If I could figure out how to get the
2915 right return PC from here, we could just set a temp
2916 breakpoint and resume. I'm not sure we can without
2917 cracking open the dld's shared libraries and sniffing
2918 their unwind tables and text/data ranges, and that's
2919 not a terribly portable notion.
2920
2921 Until that time, we must step the inferior out of the
2922 dld callback, and also out of the dld itself (and any
2923 code or stubs in libdld.sl, such as "shl_load" and
2924 friends) until we reach non-dld code. At that point,
2925 we can stop stepping. */
2926 bpstat_get_triggered_catchpoints (ecs->event_thread->stop_bpstat,
2927 &ecs->
2928 event_thread->
2929 stepping_through_solib_catchpoints);
2930 ecs->event_thread->stepping_through_solib_after_catch = 1;
2931
2932 /* Be sure to lift all breakpoints, so the inferior does
2933 actually step past this point... */
2934 ecs->event_thread->stepping_over_breakpoint = 1;
2935 break;
2936 }
2937 else
2938 {
2939 /* We want to step over this breakpoint, then keep going. */
2940 ecs->event_thread->stepping_over_breakpoint = 1;
2941 break;
2942 }
2943 }
2944 break;
2945
2946 case BPSTAT_WHAT_LAST:
2947 /* Not a real code, but listed here to shut up gcc -Wall. */
2948
2949 case BPSTAT_WHAT_KEEP_CHECKING:
2950 break;
2951 }
2952 }
2953
2954 /* We come here if we hit a breakpoint but should not
2955 stop for it. Possibly we also were stepping
2956 and should stop for that. So fall through and
2957 test for stepping. But, if not stepping,
2958 do not stop. */
2959
2960 /* Are we stepping to get the inferior out of the dynamic linker's
2961 hook (and possibly the dld itself) after catching a shlib
2962 event? */
2963 if (ecs->event_thread->stepping_through_solib_after_catch)
2964 {
2965 #if defined(SOLIB_ADD)
2966 /* Have we reached our destination? If not, keep going. */
2967 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2968 {
2969 if (debug_infrun)
2970 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2971 ecs->event_thread->stepping_over_breakpoint = 1;
2972 keep_going (ecs);
2973 return;
2974 }
2975 #endif
2976 if (debug_infrun)
2977 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2978 /* Else, stop and report the catchpoint(s) whose triggering
2979 caused us to begin stepping. */
2980 ecs->event_thread->stepping_through_solib_after_catch = 0;
2981 bpstat_clear (&ecs->event_thread->stop_bpstat);
2982 ecs->event_thread->stop_bpstat
2983 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
2984 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
2985 stop_print_frame = 1;
2986 stop_stepping (ecs);
2987 return;
2988 }
2989
2990 if (ecs->event_thread->step_resume_breakpoint)
2991 {
2992 if (debug_infrun)
2993 fprintf_unfiltered (gdb_stdlog,
2994 "infrun: step-resume breakpoint is inserted\n");
2995
2996 /* Having a step-resume breakpoint overrides anything
2997 else having to do with stepping commands until
2998 that breakpoint is reached. */
2999 keep_going (ecs);
3000 return;
3001 }
3002
3003 if (ecs->event_thread->step_range_end == 0)
3004 {
3005 if (debug_infrun)
3006 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3007 /* Likewise if we aren't even stepping. */
3008 keep_going (ecs);
3009 return;
3010 }
3011
3012 /* If stepping through a line, keep going if still within it.
3013
3014 Note that step_range_end is the address of the first instruction
3015 beyond the step range, and NOT the address of the last instruction
3016 within it! */
3017 if (stop_pc >= ecs->event_thread->step_range_start
3018 && stop_pc < ecs->event_thread->step_range_end)
3019 {
3020 if (debug_infrun)
3021 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3022 paddr_nz (ecs->event_thread->step_range_start),
3023 paddr_nz (ecs->event_thread->step_range_end));
3024 keep_going (ecs);
3025 return;
3026 }
3027
3028 /* We stepped out of the stepping range. */
3029
3030 /* If we are stepping at the source level and entered the runtime
3031 loader dynamic symbol resolution code, we keep on single stepping
3032 until we exit the run time loader code and reach the callee's
3033 address. */
3034 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3035 && in_solib_dynsym_resolve_code (stop_pc))
3036 {
3037 CORE_ADDR pc_after_resolver =
3038 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
3039
3040 if (debug_infrun)
3041 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3042
3043 if (pc_after_resolver)
3044 {
3045 /* Set up a step-resume breakpoint at the address
3046 indicated by SKIP_SOLIB_RESOLVER. */
3047 struct symtab_and_line sr_sal;
3048 init_sal (&sr_sal);
3049 sr_sal.pc = pc_after_resolver;
3050
3051 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3052 }
3053
3054 keep_going (ecs);
3055 return;
3056 }
3057
3058 if (ecs->event_thread->step_range_end != 1
3059 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3060 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3061 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
3062 {
3063 if (debug_infrun)
3064 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3065 /* The inferior, while doing a "step" or "next", has ended up in
3066 a signal trampoline (either by a signal being delivered or by
3067 the signal handler returning). Just single-step until the
3068 inferior leaves the trampoline (either by calling the handler
3069 or returning). */
3070 keep_going (ecs);
3071 return;
3072 }
3073
3074 /* Check for subroutine calls. The check for the current frame
3075 equalling the step ID is not necessary - the check of the
3076 previous frame's ID is sufficient - but it is a common case and
3077 cheaper than checking the previous frame's ID.
3078
3079 NOTE: frame_id_eq will never report two invalid frame IDs as
3080 being equal, so to get into this block, both the current and
3081 previous frame must have valid frame IDs. */
3082 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3083 ecs->event_thread->step_frame_id)
3084 && frame_id_eq (frame_unwind_id (get_current_frame ()),
3085 ecs->event_thread->step_frame_id))
3086 {
3087 CORE_ADDR real_stop_pc;
3088
3089 if (debug_infrun)
3090 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3091
3092 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
3093 || ((ecs->event_thread->step_range_end == 1)
3094 && in_prologue (ecs->event_thread->prev_pc,
3095 ecs->stop_func_start)))
3096 {
3097 /* I presume that step_over_calls is only 0 when we're
3098 supposed to be stepping at the assembly language level
3099 ("stepi"). Just stop. */
3100 /* Also, maybe we just did a "nexti" inside a prolog, so we
3101 thought it was a subroutine call but it was not. Stop as
3102 well. FENN */
3103 ecs->event_thread->stop_step = 1;
3104 print_stop_reason (END_STEPPING_RANGE, 0);
3105 stop_stepping (ecs);
3106 return;
3107 }
3108
3109 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3110 {
3111 /* We're doing a "next", set a breakpoint at callee's return
3112 address (the address at which the caller will
3113 resume). */
3114 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3115 keep_going (ecs);
3116 return;
3117 }
3118
3119 /* If we are in a function call trampoline (a stub between the
3120 calling routine and the real function), locate the real
3121 function. That's what tells us (a) whether we want to step
3122 into it at all, and (b) what prologue we want to run to the
3123 end of, if we do step into it. */
3124 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
3125 if (real_stop_pc == 0)
3126 real_stop_pc = gdbarch_skip_trampoline_code
3127 (current_gdbarch, get_current_frame (), stop_pc);
3128 if (real_stop_pc != 0)
3129 ecs->stop_func_start = real_stop_pc;
3130
3131 if (in_solib_dynsym_resolve_code (ecs->stop_func_start))
3132 {
3133 struct symtab_and_line sr_sal;
3134 init_sal (&sr_sal);
3135 sr_sal.pc = ecs->stop_func_start;
3136
3137 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3138 keep_going (ecs);
3139 return;
3140 }
3141
3142 /* If we have line number information for the function we are
3143 thinking of stepping into, step into it.
3144
3145 If there are several symtabs at that PC (e.g. with include
3146 files), just want to know whether *any* of them have line
3147 numbers. find_pc_line handles this. */
3148 {
3149 struct symtab_and_line tmp_sal;
3150
3151 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3152 if (tmp_sal.line != 0)
3153 {
3154 step_into_function (ecs);
3155 return;
3156 }
3157 }
3158
3159 /* If we have no line number and the step-stop-if-no-debug is
3160 set, we stop the step so that the user has a chance to switch
3161 in assembly mode. */
3162 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3163 && step_stop_if_no_debug)
3164 {
3165 ecs->event_thread->stop_step = 1;
3166 print_stop_reason (END_STEPPING_RANGE, 0);
3167 stop_stepping (ecs);
3168 return;
3169 }
3170
3171 /* Set a breakpoint at callee's return address (the address at
3172 which the caller will resume). */
3173 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3174 keep_going (ecs);
3175 return;
3176 }
3177
3178 /* If we're in the return path from a shared library trampoline,
3179 we want to proceed through the trampoline when stepping. */
3180 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3181 stop_pc, ecs->stop_func_name))
3182 {
3183 /* Determine where this trampoline returns. */
3184 CORE_ADDR real_stop_pc;
3185 real_stop_pc = gdbarch_skip_trampoline_code
3186 (current_gdbarch, get_current_frame (), stop_pc);
3187
3188 if (debug_infrun)
3189 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3190
3191 /* Only proceed through if we know where it's going. */
3192 if (real_stop_pc)
3193 {
3194 /* And put the step-breakpoint there and go until there. */
3195 struct symtab_and_line sr_sal;
3196
3197 init_sal (&sr_sal); /* initialize to zeroes */
3198 sr_sal.pc = real_stop_pc;
3199 sr_sal.section = find_pc_overlay (sr_sal.pc);
3200
3201 /* Do not specify what the fp should be when we stop since
3202 on some machines the prologue is where the new fp value
3203 is established. */
3204 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3205
3206 /* Restart without fiddling with the step ranges or
3207 other state. */
3208 keep_going (ecs);
3209 return;
3210 }
3211 }
3212
3213 stop_pc_sal = find_pc_line (stop_pc, 0);
3214
3215 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3216 the trampoline processing logic, however, there are some trampolines
3217 that have no names, so we should do trampoline handling first. */
3218 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3219 && ecs->stop_func_name == NULL
3220 && stop_pc_sal.line == 0)
3221 {
3222 if (debug_infrun)
3223 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3224
3225 /* The inferior just stepped into, or returned to, an
3226 undebuggable function (where there is no debugging information
3227 and no line number corresponding to the address where the
3228 inferior stopped). Since we want to skip this kind of code,
3229 we keep going until the inferior returns from this
3230 function - unless the user has asked us not to (via
3231 set step-mode) or we no longer know how to get back
3232 to the call site. */
3233 if (step_stop_if_no_debug
3234 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3235 {
3236 /* If we have no line number and the step-stop-if-no-debug
3237 is set, we stop the step so that the user has a chance to
3238 switch in assembly mode. */
3239 ecs->event_thread->stop_step = 1;
3240 print_stop_reason (END_STEPPING_RANGE, 0);
3241 stop_stepping (ecs);
3242 return;
3243 }
3244 else
3245 {
3246 /* Set a breakpoint at callee's return address (the address
3247 at which the caller will resume). */
3248 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3249 keep_going (ecs);
3250 return;
3251 }
3252 }
3253
3254 if (ecs->event_thread->step_range_end == 1)
3255 {
3256 /* It is stepi or nexti. We always want to stop stepping after
3257 one instruction. */
3258 if (debug_infrun)
3259 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3260 ecs->event_thread->stop_step = 1;
3261 print_stop_reason (END_STEPPING_RANGE, 0);
3262 stop_stepping (ecs);
3263 return;
3264 }
3265
3266 if (stop_pc_sal.line == 0)
3267 {
3268 /* We have no line number information. That means to stop
3269 stepping (does this always happen right after one instruction,
3270 when we do "s" in a function with no line numbers,
3271 or can this happen as a result of a return or longjmp?). */
3272 if (debug_infrun)
3273 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3274 ecs->event_thread->stop_step = 1;
3275 print_stop_reason (END_STEPPING_RANGE, 0);
3276 stop_stepping (ecs);
3277 return;
3278 }
3279
3280 if ((stop_pc == stop_pc_sal.pc)
3281 && (ecs->event_thread->current_line != stop_pc_sal.line
3282 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
3283 {
3284 /* We are at the start of a different line. So stop. Note that
3285 we don't stop if we step into the middle of a different line.
3286 That is said to make things like for (;;) statements work
3287 better. */
3288 if (debug_infrun)
3289 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3290 ecs->event_thread->stop_step = 1;
3291 print_stop_reason (END_STEPPING_RANGE, 0);
3292 stop_stepping (ecs);
3293 return;
3294 }
3295
3296 /* We aren't done stepping.
3297
3298 Optimize by setting the stepping range to the line.
3299 (We might not be in the original line, but if we entered a
3300 new line in mid-statement, we continue stepping. This makes
3301 things like for(;;) statements work better.) */
3302
3303 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3304 ecs->event_thread->step_range_end = stop_pc_sal.end;
3305 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3306 ecs->event_thread->current_line = stop_pc_sal.line;
3307 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
3308
3309 if (debug_infrun)
3310 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3311 keep_going (ecs);
3312 }
3313
3314 /* Are we in the middle of stepping? */
3315
3316 static int
3317 currently_stepping (struct thread_info *tp)
3318 {
3319 return (((tp->step_range_end && tp->step_resume_breakpoint == NULL)
3320 || tp->trap_expected)
3321 || tp->stepping_through_solib_after_catch
3322 || bpstat_should_step ());
3323 }
3324
3325 /* Subroutine call with source code we should not step over. Do step
3326 to the first line of code in it. */
3327
3328 static void
3329 step_into_function (struct execution_control_state *ecs)
3330 {
3331 struct symtab *s;
3332 struct symtab_and_line stop_func_sal, sr_sal;
3333
3334 s = find_pc_symtab (stop_pc);
3335 if (s && s->language != language_asm)
3336 ecs->stop_func_start = gdbarch_skip_prologue
3337 (current_gdbarch, ecs->stop_func_start);
3338
3339 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
3340 /* Use the step_resume_break to step until the end of the prologue,
3341 even if that involves jumps (as it seems to on the vax under
3342 4.2). */
3343 /* If the prologue ends in the middle of a source line, continue to
3344 the end of that source line (if it is still within the function).
3345 Otherwise, just go to end of prologue. */
3346 if (stop_func_sal.end
3347 && stop_func_sal.pc != ecs->stop_func_start
3348 && stop_func_sal.end < ecs->stop_func_end)
3349 ecs->stop_func_start = stop_func_sal.end;
3350
3351 /* Architectures which require breakpoint adjustment might not be able
3352 to place a breakpoint at the computed address. If so, the test
3353 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3354 ecs->stop_func_start to an address at which a breakpoint may be
3355 legitimately placed.
3356
3357 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3358 made, GDB will enter an infinite loop when stepping through
3359 optimized code consisting of VLIW instructions which contain
3360 subinstructions corresponding to different source lines. On
3361 FR-V, it's not permitted to place a breakpoint on any but the
3362 first subinstruction of a VLIW instruction. When a breakpoint is
3363 set, GDB will adjust the breakpoint address to the beginning of
3364 the VLIW instruction. Thus, we need to make the corresponding
3365 adjustment here when computing the stop address. */
3366
3367 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3368 {
3369 ecs->stop_func_start
3370 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3371 ecs->stop_func_start);
3372 }
3373
3374 if (ecs->stop_func_start == stop_pc)
3375 {
3376 /* We are already there: stop now. */
3377 ecs->event_thread->stop_step = 1;
3378 print_stop_reason (END_STEPPING_RANGE, 0);
3379 stop_stepping (ecs);
3380 return;
3381 }
3382 else
3383 {
3384 /* Put the step-breakpoint there and go until there. */
3385 init_sal (&sr_sal); /* initialize to zeroes */
3386 sr_sal.pc = ecs->stop_func_start;
3387 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3388
3389 /* Do not specify what the fp should be when we stop since on
3390 some machines the prologue is where the new fp value is
3391 established. */
3392 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3393
3394 /* And make sure stepping stops right away then. */
3395 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
3396 }
3397 keep_going (ecs);
3398 }
3399
3400 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3401 This is used to both functions and to skip over code. */
3402
3403 static void
3404 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3405 struct frame_id sr_id)
3406 {
3407 /* There should never be more than one step-resume or longjmp-resume
3408 breakpoint per thread, so we should never be setting a new
3409 step_resume_breakpoint when one is already active. */
3410 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3411
3412 if (debug_infrun)
3413 fprintf_unfiltered (gdb_stdlog,
3414 "infrun: inserting step-resume breakpoint at 0x%s\n",
3415 paddr_nz (sr_sal.pc));
3416
3417 inferior_thread ()->step_resume_breakpoint
3418 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
3419 }
3420
3421 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3422 to skip a potential signal handler.
3423
3424 This is called with the interrupted function's frame. The signal
3425 handler, when it returns, will resume the interrupted function at
3426 RETURN_FRAME.pc. */
3427
3428 static void
3429 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3430 {
3431 struct symtab_and_line sr_sal;
3432
3433 gdb_assert (return_frame != NULL);
3434 init_sal (&sr_sal); /* initialize to zeros */
3435
3436 sr_sal.pc = gdbarch_addr_bits_remove
3437 (current_gdbarch, get_frame_pc (return_frame));
3438 sr_sal.section = find_pc_overlay (sr_sal.pc);
3439
3440 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3441 }
3442
3443 /* Similar to insert_step_resume_breakpoint_at_frame, except
3444 but a breakpoint at the previous frame's PC. This is used to
3445 skip a function after stepping into it (for "next" or if the called
3446 function has no debugging information).
3447
3448 The current function has almost always been reached by single
3449 stepping a call or return instruction. NEXT_FRAME belongs to the
3450 current function, and the breakpoint will be set at the caller's
3451 resume address.
3452
3453 This is a separate function rather than reusing
3454 insert_step_resume_breakpoint_at_frame in order to avoid
3455 get_prev_frame, which may stop prematurely (see the implementation
3456 of frame_unwind_id for an example). */
3457
3458 static void
3459 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3460 {
3461 struct symtab_and_line sr_sal;
3462
3463 /* We shouldn't have gotten here if we don't know where the call site
3464 is. */
3465 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3466
3467 init_sal (&sr_sal); /* initialize to zeros */
3468
3469 sr_sal.pc = gdbarch_addr_bits_remove
3470 (current_gdbarch, frame_pc_unwind (next_frame));
3471 sr_sal.section = find_pc_overlay (sr_sal.pc);
3472
3473 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3474 }
3475
3476 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3477 new breakpoint at the target of a jmp_buf. The handling of
3478 longjmp-resume uses the same mechanisms used for handling
3479 "step-resume" breakpoints. */
3480
3481 static void
3482 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3483 {
3484 /* There should never be more than one step-resume or longjmp-resume
3485 breakpoint per thread, so we should never be setting a new
3486 longjmp_resume_breakpoint when one is already active. */
3487 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3488
3489 if (debug_infrun)
3490 fprintf_unfiltered (gdb_stdlog,
3491 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3492 paddr_nz (pc));
3493
3494 inferior_thread ()->step_resume_breakpoint =
3495 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3496 }
3497
3498 static void
3499 stop_stepping (struct execution_control_state *ecs)
3500 {
3501 if (debug_infrun)
3502 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3503
3504 /* Let callers know we don't want to wait for the inferior anymore. */
3505 ecs->wait_some_more = 0;
3506 }
3507
3508 /* This function handles various cases where we need to continue
3509 waiting for the inferior. */
3510 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3511
3512 static void
3513 keep_going (struct execution_control_state *ecs)
3514 {
3515 /* Save the pc before execution, to compare with pc after stop. */
3516 ecs->event_thread->prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3517
3518 /* If we did not do break;, it means we should keep running the
3519 inferior and not return to debugger. */
3520
3521 if (ecs->event_thread->trap_expected
3522 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3523 {
3524 /* We took a signal (which we are supposed to pass through to
3525 the inferior, else we'd not get here) and we haven't yet
3526 gotten our trap. Simply continue. */
3527 resume (currently_stepping (ecs->event_thread),
3528 ecs->event_thread->stop_signal);
3529 }
3530 else
3531 {
3532 /* Either the trap was not expected, but we are continuing
3533 anyway (the user asked that this signal be passed to the
3534 child)
3535 -- or --
3536 The signal was SIGTRAP, e.g. it was our signal, but we
3537 decided we should resume from it.
3538
3539 We're going to run this baby now!
3540
3541 Note that insert_breakpoints won't try to re-insert
3542 already inserted breakpoints. Therefore, we don't
3543 care if breakpoints were already inserted, or not. */
3544
3545 if (ecs->event_thread->stepping_over_breakpoint)
3546 {
3547 if (! use_displaced_stepping (current_gdbarch))
3548 /* Since we can't do a displaced step, we have to remove
3549 the breakpoint while we step it. To keep things
3550 simple, we remove them all. */
3551 remove_breakpoints ();
3552 }
3553 else
3554 {
3555 struct gdb_exception e;
3556 /* Stop stepping when inserting breakpoints
3557 has failed. */
3558 TRY_CATCH (e, RETURN_MASK_ERROR)
3559 {
3560 insert_breakpoints ();
3561 }
3562 if (e.reason < 0)
3563 {
3564 stop_stepping (ecs);
3565 return;
3566 }
3567 }
3568
3569 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
3570
3571 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3572 specifies that such a signal should be delivered to the
3573 target program).
3574
3575 Typically, this would occure when a user is debugging a
3576 target monitor on a simulator: the target monitor sets a
3577 breakpoint; the simulator encounters this break-point and
3578 halts the simulation handing control to GDB; GDB, noteing
3579 that the break-point isn't valid, returns control back to the
3580 simulator; the simulator then delivers the hardware
3581 equivalent of a SIGNAL_TRAP to the program being debugged. */
3582
3583 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3584 && !signal_program[ecs->event_thread->stop_signal])
3585 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3586
3587 resume (currently_stepping (ecs->event_thread),
3588 ecs->event_thread->stop_signal);
3589 }
3590
3591 prepare_to_wait (ecs);
3592 }
3593
3594 /* This function normally comes after a resume, before
3595 handle_inferior_event exits. It takes care of any last bits of
3596 housekeeping, and sets the all-important wait_some_more flag. */
3597
3598 static void
3599 prepare_to_wait (struct execution_control_state *ecs)
3600 {
3601 if (debug_infrun)
3602 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
3603 if (infwait_state == infwait_normal_state)
3604 {
3605 overlay_cache_invalid = 1;
3606
3607 /* We have to invalidate the registers BEFORE calling
3608 target_wait because they can be loaded from the target while
3609 in target_wait. This makes remote debugging a bit more
3610 efficient for those targets that provide critical registers
3611 as part of their normal status mechanism. */
3612
3613 registers_changed ();
3614 waiton_ptid = pid_to_ptid (-1);
3615 }
3616 /* This is the old end of the while loop. Let everybody know we
3617 want to wait for the inferior some more and get called again
3618 soon. */
3619 ecs->wait_some_more = 1;
3620 }
3621
3622 /* Print why the inferior has stopped. We always print something when
3623 the inferior exits, or receives a signal. The rest of the cases are
3624 dealt with later on in normal_stop() and print_it_typical(). Ideally
3625 there should be a call to this function from handle_inferior_event()
3626 each time stop_stepping() is called.*/
3627 static void
3628 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3629 {
3630 switch (stop_reason)
3631 {
3632 case END_STEPPING_RANGE:
3633 /* We are done with a step/next/si/ni command. */
3634 /* For now print nothing. */
3635 /* Print a message only if not in the middle of doing a "step n"
3636 operation for n > 1 */
3637 if (!inferior_thread ()->step_multi
3638 || !inferior_thread ()->stop_step)
3639 if (ui_out_is_mi_like_p (uiout))
3640 ui_out_field_string
3641 (uiout, "reason",
3642 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3643 break;
3644 case SIGNAL_EXITED:
3645 /* The inferior was terminated by a signal. */
3646 annotate_signalled ();
3647 if (ui_out_is_mi_like_p (uiout))
3648 ui_out_field_string
3649 (uiout, "reason",
3650 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3651 ui_out_text (uiout, "\nProgram terminated with signal ");
3652 annotate_signal_name ();
3653 ui_out_field_string (uiout, "signal-name",
3654 target_signal_to_name (stop_info));
3655 annotate_signal_name_end ();
3656 ui_out_text (uiout, ", ");
3657 annotate_signal_string ();
3658 ui_out_field_string (uiout, "signal-meaning",
3659 target_signal_to_string (stop_info));
3660 annotate_signal_string_end ();
3661 ui_out_text (uiout, ".\n");
3662 ui_out_text (uiout, "The program no longer exists.\n");
3663 break;
3664 case EXITED:
3665 /* The inferior program is finished. */
3666 annotate_exited (stop_info);
3667 if (stop_info)
3668 {
3669 if (ui_out_is_mi_like_p (uiout))
3670 ui_out_field_string (uiout, "reason",
3671 async_reason_lookup (EXEC_ASYNC_EXITED));
3672 ui_out_text (uiout, "\nProgram exited with code ");
3673 ui_out_field_fmt (uiout, "exit-code", "0%o",
3674 (unsigned int) stop_info);
3675 ui_out_text (uiout, ".\n");
3676 }
3677 else
3678 {
3679 if (ui_out_is_mi_like_p (uiout))
3680 ui_out_field_string
3681 (uiout, "reason",
3682 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3683 ui_out_text (uiout, "\nProgram exited normally.\n");
3684 }
3685 /* Support the --return-child-result option. */
3686 return_child_result_value = stop_info;
3687 break;
3688 case SIGNAL_RECEIVED:
3689 /* Signal received. The signal table tells us to print about
3690 it. */
3691 annotate_signal ();
3692 ui_out_text (uiout, "\nProgram received signal ");
3693 annotate_signal_name ();
3694 if (ui_out_is_mi_like_p (uiout))
3695 ui_out_field_string
3696 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3697 ui_out_field_string (uiout, "signal-name",
3698 target_signal_to_name (stop_info));
3699 annotate_signal_name_end ();
3700 ui_out_text (uiout, ", ");
3701 annotate_signal_string ();
3702 ui_out_field_string (uiout, "signal-meaning",
3703 target_signal_to_string (stop_info));
3704 annotate_signal_string_end ();
3705 ui_out_text (uiout, ".\n");
3706 break;
3707 default:
3708 internal_error (__FILE__, __LINE__,
3709 _("print_stop_reason: unrecognized enum value"));
3710 break;
3711 }
3712 }
3713 \f
3714
3715 /* Here to return control to GDB when the inferior stops for real.
3716 Print appropriate messages, remove breakpoints, give terminal our modes.
3717
3718 STOP_PRINT_FRAME nonzero means print the executing frame
3719 (pc, function, args, file, line number and line text).
3720 BREAKPOINTS_FAILED nonzero means stop was due to error
3721 attempting to insert breakpoints. */
3722
3723 void
3724 normal_stop (void)
3725 {
3726 struct target_waitstatus last;
3727 ptid_t last_ptid;
3728
3729 get_last_target_status (&last_ptid, &last);
3730
3731 /* In non-stop mode, we don't want GDB to switch threads behind the
3732 user's back, to avoid races where the user is typing a command to
3733 apply to thread x, but GDB switches to thread y before the user
3734 finishes entering the command. */
3735
3736 /* As with the notification of thread events, we want to delay
3737 notifying the user that we've switched thread context until
3738 the inferior actually stops.
3739
3740 There's no point in saying anything if the inferior has exited.
3741 Note that SIGNALLED here means "exited with a signal", not
3742 "received a signal". */
3743 if (!non_stop
3744 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
3745 && target_has_execution
3746 && last.kind != TARGET_WAITKIND_SIGNALLED
3747 && last.kind != TARGET_WAITKIND_EXITED)
3748 {
3749 target_terminal_ours_for_output ();
3750 printf_filtered (_("[Switching to %s]\n"),
3751 target_pid_to_str (inferior_ptid));
3752 annotate_thread_changed ();
3753 previous_inferior_ptid = inferior_ptid;
3754 }
3755
3756 /* NOTE drow/2004-01-17: Is this still necessary? */
3757 /* Make sure that the current_frame's pc is correct. This
3758 is a correction for setting up the frame info before doing
3759 gdbarch_decr_pc_after_break */
3760 if (target_has_execution)
3761 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3762 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3763 frame code to check for this and sort out any resultant mess.
3764 gdbarch_decr_pc_after_break needs to just go away. */
3765 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3766
3767 if (!breakpoints_always_inserted_mode () && target_has_execution)
3768 {
3769 if (remove_breakpoints ())
3770 {
3771 target_terminal_ours_for_output ();
3772 printf_filtered (_("\
3773 Cannot remove breakpoints because program is no longer writable.\n\
3774 It might be running in another process.\n\
3775 Further execution is probably impossible.\n"));
3776 }
3777 }
3778
3779 /* If an auto-display called a function and that got a signal,
3780 delete that auto-display to avoid an infinite recursion. */
3781
3782 if (stopped_by_random_signal)
3783 disable_current_display ();
3784
3785 /* Don't print a message if in the middle of doing a "step n"
3786 operation for n > 1 */
3787 if (target_has_execution
3788 && last.kind != TARGET_WAITKIND_SIGNALLED
3789 && last.kind != TARGET_WAITKIND_EXITED
3790 && inferior_thread ()->step_multi
3791 && inferior_thread ()->stop_step)
3792 goto done;
3793
3794 target_terminal_ours ();
3795
3796 /* Set the current source location. This will also happen if we
3797 display the frame below, but the current SAL will be incorrect
3798 during a user hook-stop function. */
3799 if (target_has_stack && !stop_stack_dummy)
3800 set_current_sal_from_frame (get_current_frame (), 1);
3801
3802 if (!target_has_stack)
3803 goto done;
3804
3805 if (last.kind == TARGET_WAITKIND_SIGNALLED
3806 || last.kind == TARGET_WAITKIND_EXITED)
3807 goto done;
3808
3809 /* Select innermost stack frame - i.e., current frame is frame 0,
3810 and current location is based on that.
3811 Don't do this on return from a stack dummy routine,
3812 or if the program has exited. */
3813
3814 if (!stop_stack_dummy)
3815 {
3816 select_frame (get_current_frame ());
3817
3818 /* Print current location without a level number, if
3819 we have changed functions or hit a breakpoint.
3820 Print source line if we have one.
3821 bpstat_print() contains the logic deciding in detail
3822 what to print, based on the event(s) that just occurred. */
3823
3824 /* If --batch-silent is enabled then there's no need to print the current
3825 source location, and to try risks causing an error message about
3826 missing source files. */
3827 if (stop_print_frame && !batch_silent)
3828 {
3829 int bpstat_ret;
3830 int source_flag;
3831 int do_frame_printing = 1;
3832 struct thread_info *tp = inferior_thread ();
3833
3834 bpstat_ret = bpstat_print (tp->stop_bpstat);
3835 switch (bpstat_ret)
3836 {
3837 case PRINT_UNKNOWN:
3838 /* If we had hit a shared library event breakpoint,
3839 bpstat_print would print out this message. If we hit
3840 an OS-level shared library event, do the same
3841 thing. */
3842 if (last.kind == TARGET_WAITKIND_LOADED)
3843 {
3844 printf_filtered (_("Stopped due to shared library event\n"));
3845 source_flag = SRC_LINE; /* something bogus */
3846 do_frame_printing = 0;
3847 break;
3848 }
3849
3850 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3851 (or should) carry around the function and does (or
3852 should) use that when doing a frame comparison. */
3853 if (tp->stop_step
3854 && frame_id_eq (tp->step_frame_id,
3855 get_frame_id (get_current_frame ()))
3856 && step_start_function == find_pc_function (stop_pc))
3857 source_flag = SRC_LINE; /* finished step, just print source line */
3858 else
3859 source_flag = SRC_AND_LOC; /* print location and source line */
3860 break;
3861 case PRINT_SRC_AND_LOC:
3862 source_flag = SRC_AND_LOC; /* print location and source line */
3863 break;
3864 case PRINT_SRC_ONLY:
3865 source_flag = SRC_LINE;
3866 break;
3867 case PRINT_NOTHING:
3868 source_flag = SRC_LINE; /* something bogus */
3869 do_frame_printing = 0;
3870 break;
3871 default:
3872 internal_error (__FILE__, __LINE__, _("Unknown value."));
3873 }
3874
3875 if (ui_out_is_mi_like_p (uiout))
3876 {
3877
3878 ui_out_field_int (uiout, "thread-id",
3879 pid_to_thread_id (inferior_ptid));
3880 if (non_stop)
3881 {
3882 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
3883 (uiout, "stopped-threads");
3884 ui_out_field_int (uiout, NULL,
3885 pid_to_thread_id (inferior_ptid));
3886 do_cleanups (back_to);
3887 }
3888 else
3889 ui_out_field_string (uiout, "stopped-threads", "all");
3890 }
3891 /* The behavior of this routine with respect to the source
3892 flag is:
3893 SRC_LINE: Print only source line
3894 LOCATION: Print only location
3895 SRC_AND_LOC: Print location and source line */
3896 if (do_frame_printing)
3897 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3898
3899 /* Display the auto-display expressions. */
3900 do_displays ();
3901 }
3902 }
3903
3904 /* Save the function value return registers, if we care.
3905 We might be about to restore their previous contents. */
3906 if (inferior_thread ()->proceed_to_finish)
3907 {
3908 /* This should not be necessary. */
3909 if (stop_registers)
3910 regcache_xfree (stop_registers);
3911
3912 /* NB: The copy goes through to the target picking up the value of
3913 all the registers. */
3914 stop_registers = regcache_dup (get_current_regcache ());
3915 }
3916
3917 if (stop_stack_dummy)
3918 {
3919 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3920 ends with a setting of the current frame, so we can use that
3921 next. */
3922 frame_pop (get_current_frame ());
3923 /* Set stop_pc to what it was before we called the function.
3924 Can't rely on restore_inferior_status because that only gets
3925 called if we don't stop in the called function. */
3926 stop_pc = read_pc ();
3927 select_frame (get_current_frame ());
3928 }
3929
3930 done:
3931 annotate_stopped ();
3932 if (!suppress_stop_observer
3933 && !(target_has_execution
3934 && last.kind != TARGET_WAITKIND_SIGNALLED
3935 && last.kind != TARGET_WAITKIND_EXITED
3936 && inferior_thread ()->step_multi))
3937 {
3938 if (!ptid_equal (inferior_ptid, null_ptid))
3939 observer_notify_normal_stop (inferior_thread ()->stop_bpstat);
3940 else
3941 observer_notify_normal_stop (NULL);
3942 }
3943 if (target_has_execution
3944 && last.kind != TARGET_WAITKIND_SIGNALLED
3945 && last.kind != TARGET_WAITKIND_EXITED)
3946 {
3947 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3948 Delete any breakpoint that is to be deleted at the next stop. */
3949 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
3950
3951 if (!non_stop)
3952 set_running (pid_to_ptid (-1), 0);
3953 else
3954 set_running (inferior_ptid, 0);
3955 }
3956
3957 /* Look up the hook_stop and run it (CLI internally handles problem
3958 of stop_command's pre-hook not existing). */
3959 if (stop_command)
3960 catch_errors (hook_stop_stub, stop_command,
3961 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3962
3963 }
3964
3965 static int
3966 hook_stop_stub (void *cmd)
3967 {
3968 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3969 return (0);
3970 }
3971 \f
3972 int
3973 signal_stop_state (int signo)
3974 {
3975 /* Always stop on signals if we're just gaining control of the
3976 program. */
3977 return signal_stop[signo] || stop_soon != NO_STOP_QUIETLY;
3978 }
3979
3980 int
3981 signal_print_state (int signo)
3982 {
3983 return signal_print[signo];
3984 }
3985
3986 int
3987 signal_pass_state (int signo)
3988 {
3989 return signal_program[signo];
3990 }
3991
3992 int
3993 signal_stop_update (int signo, int state)
3994 {
3995 int ret = signal_stop[signo];
3996 signal_stop[signo] = state;
3997 return ret;
3998 }
3999
4000 int
4001 signal_print_update (int signo, int state)
4002 {
4003 int ret = signal_print[signo];
4004 signal_print[signo] = state;
4005 return ret;
4006 }
4007
4008 int
4009 signal_pass_update (int signo, int state)
4010 {
4011 int ret = signal_program[signo];
4012 signal_program[signo] = state;
4013 return ret;
4014 }
4015
4016 static void
4017 sig_print_header (void)
4018 {
4019 printf_filtered (_("\
4020 Signal Stop\tPrint\tPass to program\tDescription\n"));
4021 }
4022
4023 static void
4024 sig_print_info (enum target_signal oursig)
4025 {
4026 char *name = target_signal_to_name (oursig);
4027 int name_padding = 13 - strlen (name);
4028
4029 if (name_padding <= 0)
4030 name_padding = 0;
4031
4032 printf_filtered ("%s", name);
4033 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4034 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4035 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4036 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4037 printf_filtered ("%s\n", target_signal_to_string (oursig));
4038 }
4039
4040 /* Specify how various signals in the inferior should be handled. */
4041
4042 static void
4043 handle_command (char *args, int from_tty)
4044 {
4045 char **argv;
4046 int digits, wordlen;
4047 int sigfirst, signum, siglast;
4048 enum target_signal oursig;
4049 int allsigs;
4050 int nsigs;
4051 unsigned char *sigs;
4052 struct cleanup *old_chain;
4053
4054 if (args == NULL)
4055 {
4056 error_no_arg (_("signal to handle"));
4057 }
4058
4059 /* Allocate and zero an array of flags for which signals to handle. */
4060
4061 nsigs = (int) TARGET_SIGNAL_LAST;
4062 sigs = (unsigned char *) alloca (nsigs);
4063 memset (sigs, 0, nsigs);
4064
4065 /* Break the command line up into args. */
4066
4067 argv = buildargv (args);
4068 if (argv == NULL)
4069 {
4070 nomem (0);
4071 }
4072 old_chain = make_cleanup_freeargv (argv);
4073
4074 /* Walk through the args, looking for signal oursigs, signal names, and
4075 actions. Signal numbers and signal names may be interspersed with
4076 actions, with the actions being performed for all signals cumulatively
4077 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4078
4079 while (*argv != NULL)
4080 {
4081 wordlen = strlen (*argv);
4082 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4083 {;
4084 }
4085 allsigs = 0;
4086 sigfirst = siglast = -1;
4087
4088 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4089 {
4090 /* Apply action to all signals except those used by the
4091 debugger. Silently skip those. */
4092 allsigs = 1;
4093 sigfirst = 0;
4094 siglast = nsigs - 1;
4095 }
4096 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4097 {
4098 SET_SIGS (nsigs, sigs, signal_stop);
4099 SET_SIGS (nsigs, sigs, signal_print);
4100 }
4101 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4102 {
4103 UNSET_SIGS (nsigs, sigs, signal_program);
4104 }
4105 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4106 {
4107 SET_SIGS (nsigs, sigs, signal_print);
4108 }
4109 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4110 {
4111 SET_SIGS (nsigs, sigs, signal_program);
4112 }
4113 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4114 {
4115 UNSET_SIGS (nsigs, sigs, signal_stop);
4116 }
4117 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4118 {
4119 SET_SIGS (nsigs, sigs, signal_program);
4120 }
4121 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4122 {
4123 UNSET_SIGS (nsigs, sigs, signal_print);
4124 UNSET_SIGS (nsigs, sigs, signal_stop);
4125 }
4126 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4127 {
4128 UNSET_SIGS (nsigs, sigs, signal_program);
4129 }
4130 else if (digits > 0)
4131 {
4132 /* It is numeric. The numeric signal refers to our own
4133 internal signal numbering from target.h, not to host/target
4134 signal number. This is a feature; users really should be
4135 using symbolic names anyway, and the common ones like
4136 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4137
4138 sigfirst = siglast = (int)
4139 target_signal_from_command (atoi (*argv));
4140 if ((*argv)[digits] == '-')
4141 {
4142 siglast = (int)
4143 target_signal_from_command (atoi ((*argv) + digits + 1));
4144 }
4145 if (sigfirst > siglast)
4146 {
4147 /* Bet he didn't figure we'd think of this case... */
4148 signum = sigfirst;
4149 sigfirst = siglast;
4150 siglast = signum;
4151 }
4152 }
4153 else
4154 {
4155 oursig = target_signal_from_name (*argv);
4156 if (oursig != TARGET_SIGNAL_UNKNOWN)
4157 {
4158 sigfirst = siglast = (int) oursig;
4159 }
4160 else
4161 {
4162 /* Not a number and not a recognized flag word => complain. */
4163 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4164 }
4165 }
4166
4167 /* If any signal numbers or symbol names were found, set flags for
4168 which signals to apply actions to. */
4169
4170 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4171 {
4172 switch ((enum target_signal) signum)
4173 {
4174 case TARGET_SIGNAL_TRAP:
4175 case TARGET_SIGNAL_INT:
4176 if (!allsigs && !sigs[signum])
4177 {
4178 if (query ("%s is used by the debugger.\n\
4179 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
4180 {
4181 sigs[signum] = 1;
4182 }
4183 else
4184 {
4185 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4186 gdb_flush (gdb_stdout);
4187 }
4188 }
4189 break;
4190 case TARGET_SIGNAL_0:
4191 case TARGET_SIGNAL_DEFAULT:
4192 case TARGET_SIGNAL_UNKNOWN:
4193 /* Make sure that "all" doesn't print these. */
4194 break;
4195 default:
4196 sigs[signum] = 1;
4197 break;
4198 }
4199 }
4200
4201 argv++;
4202 }
4203
4204 target_notice_signals (inferior_ptid);
4205
4206 if (from_tty)
4207 {
4208 /* Show the results. */
4209 sig_print_header ();
4210 for (signum = 0; signum < nsigs; signum++)
4211 {
4212 if (sigs[signum])
4213 {
4214 sig_print_info (signum);
4215 }
4216 }
4217 }
4218
4219 do_cleanups (old_chain);
4220 }
4221
4222 static void
4223 xdb_handle_command (char *args, int from_tty)
4224 {
4225 char **argv;
4226 struct cleanup *old_chain;
4227
4228 /* Break the command line up into args. */
4229
4230 argv = buildargv (args);
4231 if (argv == NULL)
4232 {
4233 nomem (0);
4234 }
4235 old_chain = make_cleanup_freeargv (argv);
4236 if (argv[1] != (char *) NULL)
4237 {
4238 char *argBuf;
4239 int bufLen;
4240
4241 bufLen = strlen (argv[0]) + 20;
4242 argBuf = (char *) xmalloc (bufLen);
4243 if (argBuf)
4244 {
4245 int validFlag = 1;
4246 enum target_signal oursig;
4247
4248 oursig = target_signal_from_name (argv[0]);
4249 memset (argBuf, 0, bufLen);
4250 if (strcmp (argv[1], "Q") == 0)
4251 sprintf (argBuf, "%s %s", argv[0], "noprint");
4252 else
4253 {
4254 if (strcmp (argv[1], "s") == 0)
4255 {
4256 if (!signal_stop[oursig])
4257 sprintf (argBuf, "%s %s", argv[0], "stop");
4258 else
4259 sprintf (argBuf, "%s %s", argv[0], "nostop");
4260 }
4261 else if (strcmp (argv[1], "i") == 0)
4262 {
4263 if (!signal_program[oursig])
4264 sprintf (argBuf, "%s %s", argv[0], "pass");
4265 else
4266 sprintf (argBuf, "%s %s", argv[0], "nopass");
4267 }
4268 else if (strcmp (argv[1], "r") == 0)
4269 {
4270 if (!signal_print[oursig])
4271 sprintf (argBuf, "%s %s", argv[0], "print");
4272 else
4273 sprintf (argBuf, "%s %s", argv[0], "noprint");
4274 }
4275 else
4276 validFlag = 0;
4277 }
4278 if (validFlag)
4279 handle_command (argBuf, from_tty);
4280 else
4281 printf_filtered (_("Invalid signal handling flag.\n"));
4282 if (argBuf)
4283 xfree (argBuf);
4284 }
4285 }
4286 do_cleanups (old_chain);
4287 }
4288
4289 /* Print current contents of the tables set by the handle command.
4290 It is possible we should just be printing signals actually used
4291 by the current target (but for things to work right when switching
4292 targets, all signals should be in the signal tables). */
4293
4294 static void
4295 signals_info (char *signum_exp, int from_tty)
4296 {
4297 enum target_signal oursig;
4298 sig_print_header ();
4299
4300 if (signum_exp)
4301 {
4302 /* First see if this is a symbol name. */
4303 oursig = target_signal_from_name (signum_exp);
4304 if (oursig == TARGET_SIGNAL_UNKNOWN)
4305 {
4306 /* No, try numeric. */
4307 oursig =
4308 target_signal_from_command (parse_and_eval_long (signum_exp));
4309 }
4310 sig_print_info (oursig);
4311 return;
4312 }
4313
4314 printf_filtered ("\n");
4315 /* These ugly casts brought to you by the native VAX compiler. */
4316 for (oursig = TARGET_SIGNAL_FIRST;
4317 (int) oursig < (int) TARGET_SIGNAL_LAST;
4318 oursig = (enum target_signal) ((int) oursig + 1))
4319 {
4320 QUIT;
4321
4322 if (oursig != TARGET_SIGNAL_UNKNOWN
4323 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4324 sig_print_info (oursig);
4325 }
4326
4327 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4328 }
4329 \f
4330 struct inferior_status
4331 {
4332 enum target_signal stop_signal;
4333 CORE_ADDR stop_pc;
4334 bpstat stop_bpstat;
4335 int stop_step;
4336 int stop_stack_dummy;
4337 int stopped_by_random_signal;
4338 int stepping_over_breakpoint;
4339 CORE_ADDR step_range_start;
4340 CORE_ADDR step_range_end;
4341 struct frame_id step_frame_id;
4342 enum step_over_calls_kind step_over_calls;
4343 CORE_ADDR step_resume_break_address;
4344 int stop_after_trap;
4345 int stop_soon;
4346
4347 /* These are here because if call_function_by_hand has written some
4348 registers and then decides to call error(), we better not have changed
4349 any registers. */
4350 struct regcache *registers;
4351
4352 /* A frame unique identifier. */
4353 struct frame_id selected_frame_id;
4354
4355 int breakpoint_proceeded;
4356 int restore_stack_info;
4357 int proceed_to_finish;
4358 };
4359
4360 void
4361 write_inferior_status_register (struct inferior_status *inf_status, int regno,
4362 LONGEST val)
4363 {
4364 int size = register_size (current_gdbarch, regno);
4365 void *buf = alloca (size);
4366 store_signed_integer (buf, size, val);
4367 regcache_raw_write (inf_status->registers, regno, buf);
4368 }
4369
4370 /* Save all of the information associated with the inferior<==>gdb
4371 connection. INF_STATUS is a pointer to a "struct inferior_status"
4372 (defined in inferior.h). */
4373
4374 struct inferior_status *
4375 save_inferior_status (int restore_stack_info)
4376 {
4377 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4378 struct thread_info *tp = inferior_thread ();
4379
4380 inf_status->stop_signal = tp->stop_signal;
4381 inf_status->stop_pc = stop_pc;
4382 inf_status->stop_step = tp->stop_step;
4383 inf_status->stop_stack_dummy = stop_stack_dummy;
4384 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4385 inf_status->stepping_over_breakpoint = tp->trap_expected;
4386 inf_status->step_range_start = tp->step_range_start;
4387 inf_status->step_range_end = tp->step_range_end;
4388 inf_status->step_frame_id = tp->step_frame_id;
4389 inf_status->step_over_calls = tp->step_over_calls;
4390 inf_status->stop_after_trap = stop_after_trap;
4391 inf_status->stop_soon = stop_soon;
4392 /* Save original bpstat chain here; replace it with copy of chain.
4393 If caller's caller is walking the chain, they'll be happier if we
4394 hand them back the original chain when restore_inferior_status is
4395 called. */
4396 inf_status->stop_bpstat = tp->stop_bpstat;
4397 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
4398 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4399 inf_status->restore_stack_info = restore_stack_info;
4400 inf_status->proceed_to_finish = tp->proceed_to_finish;
4401
4402 inf_status->registers = regcache_dup (get_current_regcache ());
4403
4404 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4405 return inf_status;
4406 }
4407
4408 static int
4409 restore_selected_frame (void *args)
4410 {
4411 struct frame_id *fid = (struct frame_id *) args;
4412 struct frame_info *frame;
4413
4414 frame = frame_find_by_id (*fid);
4415
4416 /* If inf_status->selected_frame_id is NULL, there was no previously
4417 selected frame. */
4418 if (frame == NULL)
4419 {
4420 warning (_("Unable to restore previously selected frame."));
4421 return 0;
4422 }
4423
4424 select_frame (frame);
4425
4426 return (1);
4427 }
4428
4429 void
4430 restore_inferior_status (struct inferior_status *inf_status)
4431 {
4432 struct thread_info *tp = inferior_thread ();
4433
4434 tp->stop_signal = inf_status->stop_signal;
4435 stop_pc = inf_status->stop_pc;
4436 tp->stop_step = inf_status->stop_step;
4437 stop_stack_dummy = inf_status->stop_stack_dummy;
4438 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4439 tp->trap_expected = inf_status->stepping_over_breakpoint;
4440 tp->step_range_start = inf_status->step_range_start;
4441 tp->step_range_end = inf_status->step_range_end;
4442 tp->step_frame_id = inf_status->step_frame_id;
4443 tp->step_over_calls = inf_status->step_over_calls;
4444 stop_after_trap = inf_status->stop_after_trap;
4445 stop_soon = inf_status->stop_soon;
4446 bpstat_clear (&tp->stop_bpstat);
4447 tp->stop_bpstat = inf_status->stop_bpstat;
4448 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4449 tp->proceed_to_finish = inf_status->proceed_to_finish;
4450
4451 /* The inferior can be gone if the user types "print exit(0)"
4452 (and perhaps other times). */
4453 if (target_has_execution)
4454 /* NB: The register write goes through to the target. */
4455 regcache_cpy (get_current_regcache (), inf_status->registers);
4456 regcache_xfree (inf_status->registers);
4457
4458 /* FIXME: If we are being called after stopping in a function which
4459 is called from gdb, we should not be trying to restore the
4460 selected frame; it just prints a spurious error message (The
4461 message is useful, however, in detecting bugs in gdb (like if gdb
4462 clobbers the stack)). In fact, should we be restoring the
4463 inferior status at all in that case? . */
4464
4465 if (target_has_stack && inf_status->restore_stack_info)
4466 {
4467 /* The point of catch_errors is that if the stack is clobbered,
4468 walking the stack might encounter a garbage pointer and
4469 error() trying to dereference it. */
4470 if (catch_errors
4471 (restore_selected_frame, &inf_status->selected_frame_id,
4472 "Unable to restore previously selected frame:\n",
4473 RETURN_MASK_ERROR) == 0)
4474 /* Error in restoring the selected frame. Select the innermost
4475 frame. */
4476 select_frame (get_current_frame ());
4477
4478 }
4479
4480 xfree (inf_status);
4481 }
4482
4483 static void
4484 do_restore_inferior_status_cleanup (void *sts)
4485 {
4486 restore_inferior_status (sts);
4487 }
4488
4489 struct cleanup *
4490 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4491 {
4492 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4493 }
4494
4495 void
4496 discard_inferior_status (struct inferior_status *inf_status)
4497 {
4498 /* See save_inferior_status for info on stop_bpstat. */
4499 bpstat_clear (&inf_status->stop_bpstat);
4500 regcache_xfree (inf_status->registers);
4501 xfree (inf_status);
4502 }
4503
4504 int
4505 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
4506 {
4507 struct target_waitstatus last;
4508 ptid_t last_ptid;
4509
4510 get_last_target_status (&last_ptid, &last);
4511
4512 if (last.kind != TARGET_WAITKIND_FORKED)
4513 return 0;
4514
4515 if (!ptid_equal (last_ptid, pid))
4516 return 0;
4517
4518 *child_pid = last.value.related_pid;
4519 return 1;
4520 }
4521
4522 int
4523 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
4524 {
4525 struct target_waitstatus last;
4526 ptid_t last_ptid;
4527
4528 get_last_target_status (&last_ptid, &last);
4529
4530 if (last.kind != TARGET_WAITKIND_VFORKED)
4531 return 0;
4532
4533 if (!ptid_equal (last_ptid, pid))
4534 return 0;
4535
4536 *child_pid = last.value.related_pid;
4537 return 1;
4538 }
4539
4540 int
4541 inferior_has_execd (ptid_t pid, char **execd_pathname)
4542 {
4543 struct target_waitstatus last;
4544 ptid_t last_ptid;
4545
4546 get_last_target_status (&last_ptid, &last);
4547
4548 if (last.kind != TARGET_WAITKIND_EXECD)
4549 return 0;
4550
4551 if (!ptid_equal (last_ptid, pid))
4552 return 0;
4553
4554 *execd_pathname = xstrdup (last.value.execd_pathname);
4555 return 1;
4556 }
4557
4558 /* Oft used ptids */
4559 ptid_t null_ptid;
4560 ptid_t minus_one_ptid;
4561
4562 /* Create a ptid given the necessary PID, LWP, and TID components. */
4563
4564 ptid_t
4565 ptid_build (int pid, long lwp, long tid)
4566 {
4567 ptid_t ptid;
4568
4569 ptid.pid = pid;
4570 ptid.lwp = lwp;
4571 ptid.tid = tid;
4572 return ptid;
4573 }
4574
4575 /* Create a ptid from just a pid. */
4576
4577 ptid_t
4578 pid_to_ptid (int pid)
4579 {
4580 return ptid_build (pid, 0, 0);
4581 }
4582
4583 /* Fetch the pid (process id) component from a ptid. */
4584
4585 int
4586 ptid_get_pid (ptid_t ptid)
4587 {
4588 return ptid.pid;
4589 }
4590
4591 /* Fetch the lwp (lightweight process) component from a ptid. */
4592
4593 long
4594 ptid_get_lwp (ptid_t ptid)
4595 {
4596 return ptid.lwp;
4597 }
4598
4599 /* Fetch the tid (thread id) component from a ptid. */
4600
4601 long
4602 ptid_get_tid (ptid_t ptid)
4603 {
4604 return ptid.tid;
4605 }
4606
4607 /* ptid_equal() is used to test equality of two ptids. */
4608
4609 int
4610 ptid_equal (ptid_t ptid1, ptid_t ptid2)
4611 {
4612 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
4613 && ptid1.tid == ptid2.tid);
4614 }
4615
4616 /* restore_inferior_ptid() will be used by the cleanup machinery
4617 to restore the inferior_ptid value saved in a call to
4618 save_inferior_ptid(). */
4619
4620 static void
4621 restore_inferior_ptid (void *arg)
4622 {
4623 ptid_t *saved_ptid_ptr = arg;
4624 inferior_ptid = *saved_ptid_ptr;
4625 xfree (arg);
4626 }
4627
4628 /* Save the value of inferior_ptid so that it may be restored by a
4629 later call to do_cleanups(). Returns the struct cleanup pointer
4630 needed for later doing the cleanup. */
4631
4632 struct cleanup *
4633 save_inferior_ptid (void)
4634 {
4635 ptid_t *saved_ptid_ptr;
4636
4637 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4638 *saved_ptid_ptr = inferior_ptid;
4639 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4640 }
4641 \f
4642
4643 int non_stop = 0;
4644 static int non_stop_1 = 0;
4645
4646 static void
4647 set_non_stop (char *args, int from_tty,
4648 struct cmd_list_element *c)
4649 {
4650 if (target_has_execution)
4651 {
4652 non_stop_1 = non_stop;
4653 error (_("Cannot change this setting while the inferior is running."));
4654 }
4655
4656 non_stop = non_stop_1;
4657 }
4658
4659 static void
4660 show_non_stop (struct ui_file *file, int from_tty,
4661 struct cmd_list_element *c, const char *value)
4662 {
4663 fprintf_filtered (file,
4664 _("Controlling the inferior in non-stop mode is %s.\n"),
4665 value);
4666 }
4667
4668
4669 void
4670 _initialize_infrun (void)
4671 {
4672 int i;
4673 int numsigs;
4674 struct cmd_list_element *c;
4675
4676 add_info ("signals", signals_info, _("\
4677 What debugger does when program gets various signals.\n\
4678 Specify a signal as argument to print info on that signal only."));
4679 add_info_alias ("handle", "signals", 0);
4680
4681 add_com ("handle", class_run, handle_command, _("\
4682 Specify how to handle a signal.\n\
4683 Args are signals and actions to apply to those signals.\n\
4684 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4685 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4686 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4687 The special arg \"all\" is recognized to mean all signals except those\n\
4688 used by the debugger, typically SIGTRAP and SIGINT.\n\
4689 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4690 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4691 Stop means reenter debugger if this signal happens (implies print).\n\
4692 Print means print a message if this signal happens.\n\
4693 Pass means let program see this signal; otherwise program doesn't know.\n\
4694 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4695 Pass and Stop may be combined."));
4696 if (xdb_commands)
4697 {
4698 add_com ("lz", class_info, signals_info, _("\
4699 What debugger does when program gets various signals.\n\
4700 Specify a signal as argument to print info on that signal only."));
4701 add_com ("z", class_run, xdb_handle_command, _("\
4702 Specify how to handle a signal.\n\
4703 Args are signals and actions to apply to those signals.\n\
4704 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4705 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4706 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4707 The special arg \"all\" is recognized to mean all signals except those\n\
4708 used by the debugger, typically SIGTRAP and SIGINT.\n\
4709 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4710 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4711 nopass), \"Q\" (noprint)\n\
4712 Stop means reenter debugger if this signal happens (implies print).\n\
4713 Print means print a message if this signal happens.\n\
4714 Pass means let program see this signal; otherwise program doesn't know.\n\
4715 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4716 Pass and Stop may be combined."));
4717 }
4718
4719 if (!dbx_commands)
4720 stop_command = add_cmd ("stop", class_obscure,
4721 not_just_help_class_command, _("\
4722 There is no `stop' command, but you can set a hook on `stop'.\n\
4723 This allows you to set a list of commands to be run each time execution\n\
4724 of the program stops."), &cmdlist);
4725
4726 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4727 Set inferior debugging."), _("\
4728 Show inferior debugging."), _("\
4729 When non-zero, inferior specific debugging is enabled."),
4730 NULL,
4731 show_debug_infrun,
4732 &setdebuglist, &showdebuglist);
4733
4734 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
4735 Set displaced stepping debugging."), _("\
4736 Show displaced stepping debugging."), _("\
4737 When non-zero, displaced stepping specific debugging is enabled."),
4738 NULL,
4739 show_debug_displaced,
4740 &setdebuglist, &showdebuglist);
4741
4742 add_setshow_boolean_cmd ("non-stop", no_class,
4743 &non_stop_1, _("\
4744 Set whether gdb controls the inferior in non-stop mode."), _("\
4745 Show whether gdb controls the inferior in non-stop mode."), _("\
4746 When debugging a multi-threaded program and this setting is\n\
4747 off (the default, also called all-stop mode), when one thread stops\n\
4748 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
4749 all other threads in the program while you interact with the thread of\n\
4750 interest. When you continue or step a thread, you can allow the other\n\
4751 threads to run, or have them remain stopped, but while you inspect any\n\
4752 thread's state, all threads stop.\n\
4753 \n\
4754 In non-stop mode, when one thread stops, other threads can continue\n\
4755 to run freely. You'll be able to step each thread independently,\n\
4756 leave it stopped or free to run as needed."),
4757 set_non_stop,
4758 show_non_stop,
4759 &setlist,
4760 &showlist);
4761
4762 numsigs = (int) TARGET_SIGNAL_LAST;
4763 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4764 signal_print = (unsigned char *)
4765 xmalloc (sizeof (signal_print[0]) * numsigs);
4766 signal_program = (unsigned char *)
4767 xmalloc (sizeof (signal_program[0]) * numsigs);
4768 for (i = 0; i < numsigs; i++)
4769 {
4770 signal_stop[i] = 1;
4771 signal_print[i] = 1;
4772 signal_program[i] = 1;
4773 }
4774
4775 /* Signals caused by debugger's own actions
4776 should not be given to the program afterwards. */
4777 signal_program[TARGET_SIGNAL_TRAP] = 0;
4778 signal_program[TARGET_SIGNAL_INT] = 0;
4779
4780 /* Signals that are not errors should not normally enter the debugger. */
4781 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4782 signal_print[TARGET_SIGNAL_ALRM] = 0;
4783 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4784 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4785 signal_stop[TARGET_SIGNAL_PROF] = 0;
4786 signal_print[TARGET_SIGNAL_PROF] = 0;
4787 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4788 signal_print[TARGET_SIGNAL_CHLD] = 0;
4789 signal_stop[TARGET_SIGNAL_IO] = 0;
4790 signal_print[TARGET_SIGNAL_IO] = 0;
4791 signal_stop[TARGET_SIGNAL_POLL] = 0;
4792 signal_print[TARGET_SIGNAL_POLL] = 0;
4793 signal_stop[TARGET_SIGNAL_URG] = 0;
4794 signal_print[TARGET_SIGNAL_URG] = 0;
4795 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4796 signal_print[TARGET_SIGNAL_WINCH] = 0;
4797
4798 /* These signals are used internally by user-level thread
4799 implementations. (See signal(5) on Solaris.) Like the above
4800 signals, a healthy program receives and handles them as part of
4801 its normal operation. */
4802 signal_stop[TARGET_SIGNAL_LWP] = 0;
4803 signal_print[TARGET_SIGNAL_LWP] = 0;
4804 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4805 signal_print[TARGET_SIGNAL_WAITING] = 0;
4806 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4807 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4808
4809 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4810 &stop_on_solib_events, _("\
4811 Set stopping for shared library events."), _("\
4812 Show stopping for shared library events."), _("\
4813 If nonzero, gdb will give control to the user when the dynamic linker\n\
4814 notifies gdb of shared library events. The most common event of interest\n\
4815 to the user would be loading/unloading of a new library."),
4816 NULL,
4817 show_stop_on_solib_events,
4818 &setlist, &showlist);
4819
4820 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4821 follow_fork_mode_kind_names,
4822 &follow_fork_mode_string, _("\
4823 Set debugger response to a program call of fork or vfork."), _("\
4824 Show debugger response to a program call of fork or vfork."), _("\
4825 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4826 parent - the original process is debugged after a fork\n\
4827 child - the new process is debugged after a fork\n\
4828 The unfollowed process will continue to run.\n\
4829 By default, the debugger will follow the parent process."),
4830 NULL,
4831 show_follow_fork_mode_string,
4832 &setlist, &showlist);
4833
4834 add_setshow_enum_cmd ("scheduler-locking", class_run,
4835 scheduler_enums, &scheduler_mode, _("\
4836 Set mode for locking scheduler during execution."), _("\
4837 Show mode for locking scheduler during execution."), _("\
4838 off == no locking (threads may preempt at any time)\n\
4839 on == full locking (no thread except the current thread may run)\n\
4840 step == scheduler locked during every single-step operation.\n\
4841 In this mode, no other thread may run during a step command.\n\
4842 Other threads may run while stepping over a function call ('next')."),
4843 set_schedlock_func, /* traps on target vector */
4844 show_scheduler_mode,
4845 &setlist, &showlist);
4846
4847 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4848 Set mode of the step operation."), _("\
4849 Show mode of the step operation."), _("\
4850 When set, doing a step over a function without debug line information\n\
4851 will stop at the first instruction of that function. Otherwise, the\n\
4852 function is skipped and the step command stops at a different source line."),
4853 NULL,
4854 show_step_stop_if_no_debug,
4855 &setlist, &showlist);
4856
4857 add_setshow_boolean_cmd ("can-use-displaced-stepping", class_maintenance,
4858 &can_use_displaced_stepping, _("\
4859 Set debugger's willingness to use displaced stepping."), _("\
4860 Show debugger's willingness to use displaced stepping."), _("\
4861 If zero, gdb will not use displaced stepping to step over\n\
4862 breakpoints, even if such is supported by the target."),
4863 NULL,
4864 show_can_use_displaced_stepping,
4865 &maintenance_set_cmdlist,
4866 &maintenance_show_cmdlist);
4867
4868 /* ptid initializations */
4869 null_ptid = ptid_build (0, 0, 0);
4870 minus_one_ptid = ptid_build (-1, 0, 0);
4871 inferior_ptid = null_ptid;
4872 target_last_wait_ptid = minus_one_ptid;
4873 displaced_step_ptid = null_ptid;
4874
4875 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
4876 }