Make handle_no_resumed transfer terminal
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "target-connection.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34 #include "symfile.h"
35 #include "top.h"
36 #include "inf-loop.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "language.h"
41 #include "solib.h"
42 #include "main.h"
43 #include "block.h"
44 #include "mi/mi-common.h"
45 #include "event-top.h"
46 #include "record.h"
47 #include "record-full.h"
48 #include "inline-frame.h"
49 #include "jit.h"
50 #include "tracepoint.h"
51 #include "skip.h"
52 #include "probe.h"
53 #include "objfiles.h"
54 #include "completer.h"
55 #include "target-descriptions.h"
56 #include "target-dcache.h"
57 #include "terminal.h"
58 #include "solist.h"
59 #include "gdbsupport/event-loop.h"
60 #include "thread-fsm.h"
61 #include "gdbsupport/enum-flags.h"
62 #include "progspace-and-thread.h"
63 #include "gdbsupport/gdb_optional.h"
64 #include "arch-utils.h"
65 #include "gdbsupport/scope-exit.h"
66 #include "gdbsupport/forward-scope-exit.h"
67 #include "gdbsupport/gdb_select.h"
68 #include <unordered_map>
69 #include "async-event.h"
70
71 /* Prototypes for local functions */
72
73 static void sig_print_info (enum gdb_signal);
74
75 static void sig_print_header (void);
76
77 static void follow_inferior_reset_breakpoints (void);
78
79 static int currently_stepping (struct thread_info *tp);
80
81 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
82
83 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
84
85 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
86
87 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
88
89 static void resume (gdb_signal sig);
90
91 static void wait_for_inferior (inferior *inf);
92
93 /* Asynchronous signal handler registered as event loop source for
94 when we have pending events ready to be passed to the core. */
95 static struct async_event_handler *infrun_async_inferior_event_token;
96
97 /* Stores whether infrun_async was previously enabled or disabled.
98 Starts off as -1, indicating "never enabled/disabled". */
99 static int infrun_is_async = -1;
100
101 /* See infrun.h. */
102
103 void
104 infrun_async (int enable)
105 {
106 if (infrun_is_async != enable)
107 {
108 infrun_is_async = enable;
109
110 if (debug_infrun)
111 fprintf_unfiltered (gdb_stdlog,
112 "infrun: infrun_async(%d)\n",
113 enable);
114
115 if (enable)
116 mark_async_event_handler (infrun_async_inferior_event_token);
117 else
118 clear_async_event_handler (infrun_async_inferior_event_token);
119 }
120 }
121
122 /* See infrun.h. */
123
124 void
125 mark_infrun_async_event_handler (void)
126 {
127 mark_async_event_handler (infrun_async_inferior_event_token);
128 }
129
130 /* When set, stop the 'step' command if we enter a function which has
131 no line number information. The normal behavior is that we step
132 over such function. */
133 bool step_stop_if_no_debug = false;
134 static void
135 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137 {
138 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
139 }
140
141 /* proceed and normal_stop use this to notify the user when the
142 inferior stopped in a different thread than it had been running
143 in. */
144
145 static ptid_t previous_inferior_ptid;
146
147 /* If set (default for legacy reasons), when following a fork, GDB
148 will detach from one of the fork branches, child or parent.
149 Exactly which branch is detached depends on 'set follow-fork-mode'
150 setting. */
151
152 static bool detach_fork = true;
153
154 bool debug_displaced = false;
155 static void
156 show_debug_displaced (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
160 }
161
162 unsigned int debug_infrun = 0;
163 static void
164 show_debug_infrun (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
168 }
169
170
171 /* Support for disabling address space randomization. */
172
173 bool disable_randomization = true;
174
175 static void
176 show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188 }
189
190 static void
191 set_disable_randomization (const char *args, int from_tty,
192 struct cmd_list_element *c)
193 {
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198 }
199
200 /* User interface for non-stop mode. */
201
202 bool non_stop = false;
203 static bool non_stop_1 = false;
204
205 static void
206 set_non_stop (const char *args, int from_tty,
207 struct cmd_list_element *c)
208 {
209 if (target_has_execution)
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216 }
217
218 static void
219 show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221 {
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225 }
226
227 /* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
231 bool observer_mode = false;
232 static bool observer_mode_1 = false;
233
234 static void
235 set_observer_mode (const char *args, int from_tty,
236 struct cmd_list_element *c)
237 {
238 if (target_has_execution)
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
253 may_insert_fast_tracepoints = true;
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
261 pagination_enabled = 0;
262 non_stop = non_stop_1 = true;
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268 }
269
270 static void
271 show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273 {
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275 }
276
277 /* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283 void
284 update_observer_mode (void)
285 {
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298 }
299
300 /* Tables of how to react to signals; the user sets them. */
301
302 static unsigned char signal_stop[GDB_SIGNAL_LAST];
303 static unsigned char signal_print[GDB_SIGNAL_LAST];
304 static unsigned char signal_program[GDB_SIGNAL_LAST];
305
306 /* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
308 signal" command. */
309 static unsigned char signal_catch[GDB_SIGNAL_LAST];
310
311 /* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
314 static unsigned char signal_pass[GDB_SIGNAL_LAST];
315
316 #define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324 #define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
332 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335 void
336 update_signals_program_target (void)
337 {
338 target_program_signals (signal_program);
339 }
340
341 /* Value to pass to target_resume() to cause all threads to resume. */
342
343 #define RESUME_ALL minus_one_ptid
344
345 /* Command list pointer for the "stop" placeholder. */
346
347 static struct cmd_list_element *stop_command;
348
349 /* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
351 int stop_on_solib_events;
352
353 /* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356 static void
357 set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
359 {
360 update_solib_breakpoints ();
361 }
362
363 static void
364 show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366 {
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369 }
370
371 /* Nonzero after stop if current stack frame should be printed. */
372
373 static int stop_print_frame;
374
375 /* This is a cached copy of the target/ptid/waitstatus of the last
376 event returned by target_wait()/deprecated_target_wait_hook().
377 This information is returned by get_last_target_status(). */
378 static process_stratum_target *target_last_proc_target;
379 static ptid_t target_last_wait_ptid;
380 static struct target_waitstatus target_last_waitstatus;
381
382 void init_thread_stepping_state (struct thread_info *tss);
383
384 static const char follow_fork_mode_child[] = "child";
385 static const char follow_fork_mode_parent[] = "parent";
386
387 static const char *const follow_fork_mode_kind_names[] = {
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
391 };
392
393 static const char *follow_fork_mode_string = follow_fork_mode_parent;
394 static void
395 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397 {
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
401 value);
402 }
403 \f
404
405 /* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
411 static bool
412 follow_fork_inferior (bool follow_child, bool detach_fork)
413 {
414 int has_vforked;
415 ptid_t parent_ptid, child_ptid;
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
424 && current_ui->prompt_state == PROMPT_BLOCKED
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433 Can not resume the parent process over vfork in the foreground while\n\
434 holding the child stopped. Try \"set detach-on-fork\" or \
435 \"set schedule-multiple\".\n"));
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
454 remove_breakpoints_inf (current_inferior ());
455 }
456
457 if (print_inferior_events)
458 {
459 /* Ensure that we have a process ptid. */
460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
461
462 target_terminal::ours_for_output ();
463 fprintf_filtered (gdb_stdlog,
464 _("[Detaching after %s from child %s]\n"),
465 has_vforked ? "vfork" : "fork",
466 target_pid_to_str (process_ptid).c_str ());
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
472
473 /* Add process to GDB's tables. */
474 child_inf = add_inferior (child_ptid.pid ());
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
483
484 set_current_inferior (child_inf);
485 switch_to_no_thread ();
486 child_inf->symfile_flags = SYMFILE_NO_READ;
487 push_target (parent_inf->process_target ());
488 thread_info *child_thr
489 = add_thread_silent (child_inf->process_target (), child_ptid);
490
491 /* If this is a vfork child, then the address-space is
492 shared with the parent. */
493 if (has_vforked)
494 {
495 child_inf->pspace = parent_inf->pspace;
496 child_inf->aspace = parent_inf->aspace;
497
498 exec_on_vfork ();
499
500 /* The parent will be frozen until the child is done
501 with the shared region. Keep track of the
502 parent. */
503 child_inf->vfork_parent = parent_inf;
504 child_inf->pending_detach = 0;
505 parent_inf->vfork_child = child_inf;
506 parent_inf->pending_detach = 0;
507
508 /* Now that the inferiors and program spaces are all
509 wired up, we can switch to the child thread (which
510 switches inferior and program space too). */
511 switch_to_thread (child_thr);
512 }
513 else
514 {
515 child_inf->aspace = new_address_space ();
516 child_inf->pspace = new program_space (child_inf->aspace);
517 child_inf->removable = 1;
518 set_current_program_space (child_inf->pspace);
519 clone_program_space (child_inf->pspace, parent_inf->pspace);
520
521 /* solib_create_inferior_hook relies on the current
522 thread. */
523 switch_to_thread (child_thr);
524
525 /* Let the shared library layer (e.g., solib-svr4) learn
526 about this new process, relocate the cloned exec, pull
527 in shared libraries, and install the solib event
528 breakpoint. If a "cloned-VM" event was propagated
529 better throughout the core, this wouldn't be
530 required. */
531 solib_create_inferior_hook (0);
532 }
533 }
534
535 if (has_vforked)
536 {
537 struct inferior *parent_inf;
538
539 parent_inf = current_inferior ();
540
541 /* If we detached from the child, then we have to be careful
542 to not insert breakpoints in the parent until the child
543 is done with the shared memory region. However, if we're
544 staying attached to the child, then we can and should
545 insert breakpoints, so that we can debug it. A
546 subsequent child exec or exit is enough to know when does
547 the child stops using the parent's address space. */
548 parent_inf->waiting_for_vfork_done = detach_fork;
549 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
550 }
551 }
552 else
553 {
554 /* Follow the child. */
555 struct inferior *parent_inf, *child_inf;
556 struct program_space *parent_pspace;
557
558 if (print_inferior_events)
559 {
560 std::string parent_pid = target_pid_to_str (parent_ptid);
561 std::string child_pid = target_pid_to_str (child_ptid);
562
563 target_terminal::ours_for_output ();
564 fprintf_filtered (gdb_stdlog,
565 _("[Attaching after %s %s to child %s]\n"),
566 parent_pid.c_str (),
567 has_vforked ? "vfork" : "fork",
568 child_pid.c_str ());
569 }
570
571 /* Add the new inferior first, so that the target_detach below
572 doesn't unpush the target. */
573
574 child_inf = add_inferior (child_ptid.pid ());
575
576 parent_inf = current_inferior ();
577 child_inf->attach_flag = parent_inf->attach_flag;
578 copy_terminal_info (child_inf, parent_inf);
579 child_inf->gdbarch = parent_inf->gdbarch;
580 copy_inferior_target_desc_info (child_inf, parent_inf);
581
582 parent_pspace = parent_inf->pspace;
583
584 process_stratum_target *target = parent_inf->process_target ();
585
586 {
587 /* Hold a strong reference to the target while (maybe)
588 detaching the parent. Otherwise detaching could close the
589 target. */
590 auto target_ref = target_ops_ref::new_reference (target);
591
592 /* If we're vforking, we want to hold on to the parent until
593 the child exits or execs. At child exec or exit time we
594 can remove the old breakpoints from the parent and detach
595 or resume debugging it. Otherwise, detach the parent now;
596 we'll want to reuse it's program/address spaces, but we
597 can't set them to the child before removing breakpoints
598 from the parent, otherwise, the breakpoints module could
599 decide to remove breakpoints from the wrong process (since
600 they'd be assigned to the same address space). */
601
602 if (has_vforked)
603 {
604 gdb_assert (child_inf->vfork_parent == NULL);
605 gdb_assert (parent_inf->vfork_child == NULL);
606 child_inf->vfork_parent = parent_inf;
607 child_inf->pending_detach = 0;
608 parent_inf->vfork_child = child_inf;
609 parent_inf->pending_detach = detach_fork;
610 parent_inf->waiting_for_vfork_done = 0;
611 }
612 else if (detach_fork)
613 {
614 if (print_inferior_events)
615 {
616 /* Ensure that we have a process ptid. */
617 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
618
619 target_terminal::ours_for_output ();
620 fprintf_filtered (gdb_stdlog,
621 _("[Detaching after fork from "
622 "parent %s]\n"),
623 target_pid_to_str (process_ptid).c_str ());
624 }
625
626 target_detach (parent_inf, 0);
627 parent_inf = NULL;
628 }
629
630 /* Note that the detach above makes PARENT_INF dangling. */
631
632 /* Add the child thread to the appropriate lists, and switch
633 to this new thread, before cloning the program space, and
634 informing the solib layer about this new process. */
635
636 set_current_inferior (child_inf);
637 push_target (target);
638 }
639
640 thread_info *child_thr = add_thread_silent (target, child_ptid);
641
642 /* If this is a vfork child, then the address-space is shared
643 with the parent. If we detached from the parent, then we can
644 reuse the parent's program/address spaces. */
645 if (has_vforked || detach_fork)
646 {
647 child_inf->pspace = parent_pspace;
648 child_inf->aspace = child_inf->pspace->aspace;
649
650 exec_on_vfork ();
651 }
652 else
653 {
654 child_inf->aspace = new_address_space ();
655 child_inf->pspace = new program_space (child_inf->aspace);
656 child_inf->removable = 1;
657 child_inf->symfile_flags = SYMFILE_NO_READ;
658 set_current_program_space (child_inf->pspace);
659 clone_program_space (child_inf->pspace, parent_pspace);
660
661 /* Let the shared library layer (e.g., solib-svr4) learn
662 about this new process, relocate the cloned exec, pull in
663 shared libraries, and install the solib event breakpoint.
664 If a "cloned-VM" event was propagated better throughout
665 the core, this wouldn't be required. */
666 solib_create_inferior_hook (0);
667 }
668
669 switch_to_thread (child_thr);
670 }
671
672 return target_follow_fork (follow_child, detach_fork);
673 }
674
675 /* Tell the target to follow the fork we're stopped at. Returns true
676 if the inferior should be resumed; false, if the target for some
677 reason decided it's best not to resume. */
678
679 static bool
680 follow_fork ()
681 {
682 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
683 bool should_resume = true;
684 struct thread_info *tp;
685
686 /* Copy user stepping state to the new inferior thread. FIXME: the
687 followed fork child thread should have a copy of most of the
688 parent thread structure's run control related fields, not just these.
689 Initialized to avoid "may be used uninitialized" warnings from gcc. */
690 struct breakpoint *step_resume_breakpoint = NULL;
691 struct breakpoint *exception_resume_breakpoint = NULL;
692 CORE_ADDR step_range_start = 0;
693 CORE_ADDR step_range_end = 0;
694 int current_line = 0;
695 symtab *current_symtab = NULL;
696 struct frame_id step_frame_id = { 0 };
697 struct thread_fsm *thread_fsm = NULL;
698
699 if (!non_stop)
700 {
701 process_stratum_target *wait_target;
702 ptid_t wait_ptid;
703 struct target_waitstatus wait_status;
704
705 /* Get the last target status returned by target_wait(). */
706 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
707
708 /* If not stopped at a fork event, then there's nothing else to
709 do. */
710 if (wait_status.kind != TARGET_WAITKIND_FORKED
711 && wait_status.kind != TARGET_WAITKIND_VFORKED)
712 return 1;
713
714 /* Check if we switched over from WAIT_PTID, since the event was
715 reported. */
716 if (wait_ptid != minus_one_ptid
717 && (current_inferior ()->process_target () != wait_target
718 || inferior_ptid != wait_ptid))
719 {
720 /* We did. Switch back to WAIT_PTID thread, to tell the
721 target to follow it (in either direction). We'll
722 afterwards refuse to resume, and inform the user what
723 happened. */
724 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
725 switch_to_thread (wait_thread);
726 should_resume = false;
727 }
728 }
729
730 tp = inferior_thread ();
731
732 /* If there were any forks/vforks that were caught and are now to be
733 followed, then do so now. */
734 switch (tp->pending_follow.kind)
735 {
736 case TARGET_WAITKIND_FORKED:
737 case TARGET_WAITKIND_VFORKED:
738 {
739 ptid_t parent, child;
740
741 /* If the user did a next/step, etc, over a fork call,
742 preserve the stepping state in the fork child. */
743 if (follow_child && should_resume)
744 {
745 step_resume_breakpoint = clone_momentary_breakpoint
746 (tp->control.step_resume_breakpoint);
747 step_range_start = tp->control.step_range_start;
748 step_range_end = tp->control.step_range_end;
749 current_line = tp->current_line;
750 current_symtab = tp->current_symtab;
751 step_frame_id = tp->control.step_frame_id;
752 exception_resume_breakpoint
753 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
754 thread_fsm = tp->thread_fsm;
755
756 /* For now, delete the parent's sr breakpoint, otherwise,
757 parent/child sr breakpoints are considered duplicates,
758 and the child version will not be installed. Remove
759 this when the breakpoints module becomes aware of
760 inferiors and address spaces. */
761 delete_step_resume_breakpoint (tp);
762 tp->control.step_range_start = 0;
763 tp->control.step_range_end = 0;
764 tp->control.step_frame_id = null_frame_id;
765 delete_exception_resume_breakpoint (tp);
766 tp->thread_fsm = NULL;
767 }
768
769 parent = inferior_ptid;
770 child = tp->pending_follow.value.related_pid;
771
772 process_stratum_target *parent_targ = tp->inf->process_target ();
773 /* Set up inferior(s) as specified by the caller, and tell the
774 target to do whatever is necessary to follow either parent
775 or child. */
776 if (follow_fork_inferior (follow_child, detach_fork))
777 {
778 /* Target refused to follow, or there's some other reason
779 we shouldn't resume. */
780 should_resume = 0;
781 }
782 else
783 {
784 /* This pending follow fork event is now handled, one way
785 or another. The previous selected thread may be gone
786 from the lists by now, but if it is still around, need
787 to clear the pending follow request. */
788 tp = find_thread_ptid (parent_targ, parent);
789 if (tp)
790 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
791
792 /* This makes sure we don't try to apply the "Switched
793 over from WAIT_PID" logic above. */
794 nullify_last_target_wait_ptid ();
795
796 /* If we followed the child, switch to it... */
797 if (follow_child)
798 {
799 thread_info *child_thr = find_thread_ptid (parent_targ, child);
800 switch_to_thread (child_thr);
801
802 /* ... and preserve the stepping state, in case the
803 user was stepping over the fork call. */
804 if (should_resume)
805 {
806 tp = inferior_thread ();
807 tp->control.step_resume_breakpoint
808 = step_resume_breakpoint;
809 tp->control.step_range_start = step_range_start;
810 tp->control.step_range_end = step_range_end;
811 tp->current_line = current_line;
812 tp->current_symtab = current_symtab;
813 tp->control.step_frame_id = step_frame_id;
814 tp->control.exception_resume_breakpoint
815 = exception_resume_breakpoint;
816 tp->thread_fsm = thread_fsm;
817 }
818 else
819 {
820 /* If we get here, it was because we're trying to
821 resume from a fork catchpoint, but, the user
822 has switched threads away from the thread that
823 forked. In that case, the resume command
824 issued is most likely not applicable to the
825 child, so just warn, and refuse to resume. */
826 warning (_("Not resuming: switched threads "
827 "before following fork child."));
828 }
829
830 /* Reset breakpoints in the child as appropriate. */
831 follow_inferior_reset_breakpoints ();
832 }
833 }
834 }
835 break;
836 case TARGET_WAITKIND_SPURIOUS:
837 /* Nothing to follow. */
838 break;
839 default:
840 internal_error (__FILE__, __LINE__,
841 "Unexpected pending_follow.kind %d\n",
842 tp->pending_follow.kind);
843 break;
844 }
845
846 return should_resume;
847 }
848
849 static void
850 follow_inferior_reset_breakpoints (void)
851 {
852 struct thread_info *tp = inferior_thread ();
853
854 /* Was there a step_resume breakpoint? (There was if the user
855 did a "next" at the fork() call.) If so, explicitly reset its
856 thread number. Cloned step_resume breakpoints are disabled on
857 creation, so enable it here now that it is associated with the
858 correct thread.
859
860 step_resumes are a form of bp that are made to be per-thread.
861 Since we created the step_resume bp when the parent process
862 was being debugged, and now are switching to the child process,
863 from the breakpoint package's viewpoint, that's a switch of
864 "threads". We must update the bp's notion of which thread
865 it is for, or it'll be ignored when it triggers. */
866
867 if (tp->control.step_resume_breakpoint)
868 {
869 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
870 tp->control.step_resume_breakpoint->loc->enabled = 1;
871 }
872
873 /* Treat exception_resume breakpoints like step_resume breakpoints. */
874 if (tp->control.exception_resume_breakpoint)
875 {
876 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
877 tp->control.exception_resume_breakpoint->loc->enabled = 1;
878 }
879
880 /* Reinsert all breakpoints in the child. The user may have set
881 breakpoints after catching the fork, in which case those
882 were never set in the child, but only in the parent. This makes
883 sure the inserted breakpoints match the breakpoint list. */
884
885 breakpoint_re_set ();
886 insert_breakpoints ();
887 }
888
889 /* The child has exited or execed: resume threads of the parent the
890 user wanted to be executing. */
891
892 static int
893 proceed_after_vfork_done (struct thread_info *thread,
894 void *arg)
895 {
896 int pid = * (int *) arg;
897
898 if (thread->ptid.pid () == pid
899 && thread->state == THREAD_RUNNING
900 && !thread->executing
901 && !thread->stop_requested
902 && thread->suspend.stop_signal == GDB_SIGNAL_0)
903 {
904 if (debug_infrun)
905 fprintf_unfiltered (gdb_stdlog,
906 "infrun: resuming vfork parent thread %s\n",
907 target_pid_to_str (thread->ptid).c_str ());
908
909 switch_to_thread (thread);
910 clear_proceed_status (0);
911 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
912 }
913
914 return 0;
915 }
916
917 /* Called whenever we notice an exec or exit event, to handle
918 detaching or resuming a vfork parent. */
919
920 static void
921 handle_vfork_child_exec_or_exit (int exec)
922 {
923 struct inferior *inf = current_inferior ();
924
925 if (inf->vfork_parent)
926 {
927 int resume_parent = -1;
928
929 /* This exec or exit marks the end of the shared memory region
930 between the parent and the child. Break the bonds. */
931 inferior *vfork_parent = inf->vfork_parent;
932 inf->vfork_parent->vfork_child = NULL;
933 inf->vfork_parent = NULL;
934
935 /* If the user wanted to detach from the parent, now is the
936 time. */
937 if (vfork_parent->pending_detach)
938 {
939 struct program_space *pspace;
940 struct address_space *aspace;
941
942 /* follow-fork child, detach-on-fork on. */
943
944 vfork_parent->pending_detach = 0;
945
946 scoped_restore_current_pspace_and_thread restore_thread;
947
948 /* We're letting loose of the parent. */
949 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
950 switch_to_thread (tp);
951
952 /* We're about to detach from the parent, which implicitly
953 removes breakpoints from its address space. There's a
954 catch here: we want to reuse the spaces for the child,
955 but, parent/child are still sharing the pspace at this
956 point, although the exec in reality makes the kernel give
957 the child a fresh set of new pages. The problem here is
958 that the breakpoints module being unaware of this, would
959 likely chose the child process to write to the parent
960 address space. Swapping the child temporarily away from
961 the spaces has the desired effect. Yes, this is "sort
962 of" a hack. */
963
964 pspace = inf->pspace;
965 aspace = inf->aspace;
966 inf->aspace = NULL;
967 inf->pspace = NULL;
968
969 if (print_inferior_events)
970 {
971 std::string pidstr
972 = target_pid_to_str (ptid_t (vfork_parent->pid));
973
974 target_terminal::ours_for_output ();
975
976 if (exec)
977 {
978 fprintf_filtered (gdb_stdlog,
979 _("[Detaching vfork parent %s "
980 "after child exec]\n"), pidstr.c_str ());
981 }
982 else
983 {
984 fprintf_filtered (gdb_stdlog,
985 _("[Detaching vfork parent %s "
986 "after child exit]\n"), pidstr.c_str ());
987 }
988 }
989
990 target_detach (vfork_parent, 0);
991
992 /* Put it back. */
993 inf->pspace = pspace;
994 inf->aspace = aspace;
995 }
996 else if (exec)
997 {
998 /* We're staying attached to the parent, so, really give the
999 child a new address space. */
1000 inf->pspace = new program_space (maybe_new_address_space ());
1001 inf->aspace = inf->pspace->aspace;
1002 inf->removable = 1;
1003 set_current_program_space (inf->pspace);
1004
1005 resume_parent = vfork_parent->pid;
1006 }
1007 else
1008 {
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
1018 /* Switch to no-thread while running clone_program_space, so
1019 that clone_program_space doesn't want to read the
1020 selected frame of a dead process. */
1021 scoped_restore_current_thread restore_thread;
1022 switch_to_no_thread ();
1023
1024 inf->pspace = new program_space (maybe_new_address_space ());
1025 inf->aspace = inf->pspace->aspace;
1026 set_current_program_space (inf->pspace);
1027 inf->removable = 1;
1028 inf->symfile_flags = SYMFILE_NO_READ;
1029 clone_program_space (inf->pspace, vfork_parent->pspace);
1030
1031 resume_parent = vfork_parent->pid;
1032 }
1033
1034 gdb_assert (current_program_space == inf->pspace);
1035
1036 if (non_stop && resume_parent != -1)
1037 {
1038 /* If the user wanted the parent to be running, let it go
1039 free now. */
1040 scoped_restore_current_thread restore_thread;
1041
1042 if (debug_infrun)
1043 fprintf_unfiltered (gdb_stdlog,
1044 "infrun: resuming vfork parent process %d\n",
1045 resume_parent);
1046
1047 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1048 }
1049 }
1050 }
1051
1052 /* Enum strings for "set|show follow-exec-mode". */
1053
1054 static const char follow_exec_mode_new[] = "new";
1055 static const char follow_exec_mode_same[] = "same";
1056 static const char *const follow_exec_mode_names[] =
1057 {
1058 follow_exec_mode_new,
1059 follow_exec_mode_same,
1060 NULL,
1061 };
1062
1063 static const char *follow_exec_mode_string = follow_exec_mode_same;
1064 static void
1065 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1066 struct cmd_list_element *c, const char *value)
1067 {
1068 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1069 }
1070
1071 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1072
1073 static void
1074 follow_exec (ptid_t ptid, const char *exec_file_target)
1075 {
1076 struct inferior *inf = current_inferior ();
1077 int pid = ptid.pid ();
1078 ptid_t process_ptid;
1079
1080 /* Switch terminal for any messages produced e.g. by
1081 breakpoint_re_set. */
1082 target_terminal::ours_for_output ();
1083
1084 /* This is an exec event that we actually wish to pay attention to.
1085 Refresh our symbol table to the newly exec'd program, remove any
1086 momentary bp's, etc.
1087
1088 If there are breakpoints, they aren't really inserted now,
1089 since the exec() transformed our inferior into a fresh set
1090 of instructions.
1091
1092 We want to preserve symbolic breakpoints on the list, since
1093 we have hopes that they can be reset after the new a.out's
1094 symbol table is read.
1095
1096 However, any "raw" breakpoints must be removed from the list
1097 (e.g., the solib bp's), since their address is probably invalid
1098 now.
1099
1100 And, we DON'T want to call delete_breakpoints() here, since
1101 that may write the bp's "shadow contents" (the instruction
1102 value that was overwritten with a TRAP instruction). Since
1103 we now have a new a.out, those shadow contents aren't valid. */
1104
1105 mark_breakpoints_out ();
1106
1107 /* The target reports the exec event to the main thread, even if
1108 some other thread does the exec, and even if the main thread was
1109 stopped or already gone. We may still have non-leader threads of
1110 the process on our list. E.g., on targets that don't have thread
1111 exit events (like remote); or on native Linux in non-stop mode if
1112 there were only two threads in the inferior and the non-leader
1113 one is the one that execs (and nothing forces an update of the
1114 thread list up to here). When debugging remotely, it's best to
1115 avoid extra traffic, when possible, so avoid syncing the thread
1116 list with the target, and instead go ahead and delete all threads
1117 of the process but one that reported the event. Note this must
1118 be done before calling update_breakpoints_after_exec, as
1119 otherwise clearing the threads' resources would reference stale
1120 thread breakpoints -- it may have been one of these threads that
1121 stepped across the exec. We could just clear their stepping
1122 states, but as long as we're iterating, might as well delete
1123 them. Deleting them now rather than at the next user-visible
1124 stop provides a nicer sequence of events for user and MI
1125 notifications. */
1126 for (thread_info *th : all_threads_safe ())
1127 if (th->ptid.pid () == pid && th->ptid != ptid)
1128 delete_thread (th);
1129
1130 /* We also need to clear any left over stale state for the
1131 leader/event thread. E.g., if there was any step-resume
1132 breakpoint or similar, it's gone now. We cannot truly
1133 step-to-next statement through an exec(). */
1134 thread_info *th = inferior_thread ();
1135 th->control.step_resume_breakpoint = NULL;
1136 th->control.exception_resume_breakpoint = NULL;
1137 th->control.single_step_breakpoints = NULL;
1138 th->control.step_range_start = 0;
1139 th->control.step_range_end = 0;
1140
1141 /* The user may have had the main thread held stopped in the
1142 previous image (e.g., schedlock on, or non-stop). Release
1143 it now. */
1144 th->stop_requested = 0;
1145
1146 update_breakpoints_after_exec ();
1147
1148 /* What is this a.out's name? */
1149 process_ptid = ptid_t (pid);
1150 printf_unfiltered (_("%s is executing new program: %s\n"),
1151 target_pid_to_str (process_ptid).c_str (),
1152 exec_file_target);
1153
1154 /* We've followed the inferior through an exec. Therefore, the
1155 inferior has essentially been killed & reborn. */
1156
1157 breakpoint_init_inferior (inf_execd);
1158
1159 gdb::unique_xmalloc_ptr<char> exec_file_host
1160 = exec_file_find (exec_file_target, NULL);
1161
1162 /* If we were unable to map the executable target pathname onto a host
1163 pathname, tell the user that. Otherwise GDB's subsequent behavior
1164 is confusing. Maybe it would even be better to stop at this point
1165 so that the user can specify a file manually before continuing. */
1166 if (exec_file_host == NULL)
1167 warning (_("Could not load symbols for executable %s.\n"
1168 "Do you need \"set sysroot\"?"),
1169 exec_file_target);
1170
1171 /* Reset the shared library package. This ensures that we get a
1172 shlib event when the child reaches "_start", at which point the
1173 dld will have had a chance to initialize the child. */
1174 /* Also, loading a symbol file below may trigger symbol lookups, and
1175 we don't want those to be satisfied by the libraries of the
1176 previous incarnation of this process. */
1177 no_shared_libraries (NULL, 0);
1178
1179 if (follow_exec_mode_string == follow_exec_mode_new)
1180 {
1181 /* The user wants to keep the old inferior and program spaces
1182 around. Create a new fresh one, and switch to it. */
1183
1184 /* Do exit processing for the original inferior before setting the new
1185 inferior's pid. Having two inferiors with the same pid would confuse
1186 find_inferior_p(t)id. Transfer the terminal state and info from the
1187 old to the new inferior. */
1188 inf = add_inferior_with_spaces ();
1189 swap_terminal_info (inf, current_inferior ());
1190 exit_inferior_silent (current_inferior ());
1191
1192 inf->pid = pid;
1193 target_follow_exec (inf, exec_file_target);
1194
1195 inferior *org_inferior = current_inferior ();
1196 switch_to_inferior_no_thread (inf);
1197 push_target (org_inferior->process_target ());
1198 thread_info *thr = add_thread (inf->process_target (), ptid);
1199 switch_to_thread (thr);
1200 }
1201 else
1202 {
1203 /* The old description may no longer be fit for the new image.
1204 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1205 old description; we'll read a new one below. No need to do
1206 this on "follow-exec-mode new", as the old inferior stays
1207 around (its description is later cleared/refetched on
1208 restart). */
1209 target_clear_description ();
1210 }
1211
1212 gdb_assert (current_program_space == inf->pspace);
1213
1214 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1215 because the proper displacement for a PIE (Position Independent
1216 Executable) main symbol file will only be computed by
1217 solib_create_inferior_hook below. breakpoint_re_set would fail
1218 to insert the breakpoints with the zero displacement. */
1219 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1220
1221 /* If the target can specify a description, read it. Must do this
1222 after flipping to the new executable (because the target supplied
1223 description must be compatible with the executable's
1224 architecture, and the old executable may e.g., be 32-bit, while
1225 the new one 64-bit), and before anything involving memory or
1226 registers. */
1227 target_find_description ();
1228
1229 solib_create_inferior_hook (0);
1230
1231 jit_inferior_created_hook ();
1232
1233 breakpoint_re_set ();
1234
1235 /* Reinsert all breakpoints. (Those which were symbolic have
1236 been reset to the proper address in the new a.out, thanks
1237 to symbol_file_command...). */
1238 insert_breakpoints ();
1239
1240 /* The next resume of this inferior should bring it to the shlib
1241 startup breakpoints. (If the user had also set bp's on
1242 "main" from the old (parent) process, then they'll auto-
1243 matically get reset there in the new process.). */
1244 }
1245
1246 /* The queue of threads that need to do a step-over operation to get
1247 past e.g., a breakpoint. What technique is used to step over the
1248 breakpoint/watchpoint does not matter -- all threads end up in the
1249 same queue, to maintain rough temporal order of execution, in order
1250 to avoid starvation, otherwise, we could e.g., find ourselves
1251 constantly stepping the same couple threads past their breakpoints
1252 over and over, if the single-step finish fast enough. */
1253 struct thread_info *step_over_queue_head;
1254
1255 /* Bit flags indicating what the thread needs to step over. */
1256
1257 enum step_over_what_flag
1258 {
1259 /* Step over a breakpoint. */
1260 STEP_OVER_BREAKPOINT = 1,
1261
1262 /* Step past a non-continuable watchpoint, in order to let the
1263 instruction execute so we can evaluate the watchpoint
1264 expression. */
1265 STEP_OVER_WATCHPOINT = 2
1266 };
1267 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1268
1269 /* Info about an instruction that is being stepped over. */
1270
1271 struct step_over_info
1272 {
1273 /* If we're stepping past a breakpoint, this is the address space
1274 and address of the instruction the breakpoint is set at. We'll
1275 skip inserting all breakpoints here. Valid iff ASPACE is
1276 non-NULL. */
1277 const address_space *aspace;
1278 CORE_ADDR address;
1279
1280 /* The instruction being stepped over triggers a nonsteppable
1281 watchpoint. If true, we'll skip inserting watchpoints. */
1282 int nonsteppable_watchpoint_p;
1283
1284 /* The thread's global number. */
1285 int thread;
1286 };
1287
1288 /* The step-over info of the location that is being stepped over.
1289
1290 Note that with async/breakpoint always-inserted mode, a user might
1291 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1292 being stepped over. As setting a new breakpoint inserts all
1293 breakpoints, we need to make sure the breakpoint being stepped over
1294 isn't inserted then. We do that by only clearing the step-over
1295 info when the step-over is actually finished (or aborted).
1296
1297 Presently GDB can only step over one breakpoint at any given time.
1298 Given threads that can't run code in the same address space as the
1299 breakpoint's can't really miss the breakpoint, GDB could be taught
1300 to step-over at most one breakpoint per address space (so this info
1301 could move to the address space object if/when GDB is extended).
1302 The set of breakpoints being stepped over will normally be much
1303 smaller than the set of all breakpoints, so a flag in the
1304 breakpoint location structure would be wasteful. A separate list
1305 also saves complexity and run-time, as otherwise we'd have to go
1306 through all breakpoint locations clearing their flag whenever we
1307 start a new sequence. Similar considerations weigh against storing
1308 this info in the thread object. Plus, not all step overs actually
1309 have breakpoint locations -- e.g., stepping past a single-step
1310 breakpoint, or stepping to complete a non-continuable
1311 watchpoint. */
1312 static struct step_over_info step_over_info;
1313
1314 /* Record the address of the breakpoint/instruction we're currently
1315 stepping over.
1316 N.B. We record the aspace and address now, instead of say just the thread,
1317 because when we need the info later the thread may be running. */
1318
1319 static void
1320 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1321 int nonsteppable_watchpoint_p,
1322 int thread)
1323 {
1324 step_over_info.aspace = aspace;
1325 step_over_info.address = address;
1326 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1327 step_over_info.thread = thread;
1328 }
1329
1330 /* Called when we're not longer stepping over a breakpoint / an
1331 instruction, so all breakpoints are free to be (re)inserted. */
1332
1333 static void
1334 clear_step_over_info (void)
1335 {
1336 if (debug_infrun)
1337 fprintf_unfiltered (gdb_stdlog,
1338 "infrun: clear_step_over_info\n");
1339 step_over_info.aspace = NULL;
1340 step_over_info.address = 0;
1341 step_over_info.nonsteppable_watchpoint_p = 0;
1342 step_over_info.thread = -1;
1343 }
1344
1345 /* See infrun.h. */
1346
1347 int
1348 stepping_past_instruction_at (struct address_space *aspace,
1349 CORE_ADDR address)
1350 {
1351 return (step_over_info.aspace != NULL
1352 && breakpoint_address_match (aspace, address,
1353 step_over_info.aspace,
1354 step_over_info.address));
1355 }
1356
1357 /* See infrun.h. */
1358
1359 int
1360 thread_is_stepping_over_breakpoint (int thread)
1361 {
1362 return (step_over_info.thread != -1
1363 && thread == step_over_info.thread);
1364 }
1365
1366 /* See infrun.h. */
1367
1368 int
1369 stepping_past_nonsteppable_watchpoint (void)
1370 {
1371 return step_over_info.nonsteppable_watchpoint_p;
1372 }
1373
1374 /* Returns true if step-over info is valid. */
1375
1376 static int
1377 step_over_info_valid_p (void)
1378 {
1379 return (step_over_info.aspace != NULL
1380 || stepping_past_nonsteppable_watchpoint ());
1381 }
1382
1383 \f
1384 /* Displaced stepping. */
1385
1386 /* In non-stop debugging mode, we must take special care to manage
1387 breakpoints properly; in particular, the traditional strategy for
1388 stepping a thread past a breakpoint it has hit is unsuitable.
1389 'Displaced stepping' is a tactic for stepping one thread past a
1390 breakpoint it has hit while ensuring that other threads running
1391 concurrently will hit the breakpoint as they should.
1392
1393 The traditional way to step a thread T off a breakpoint in a
1394 multi-threaded program in all-stop mode is as follows:
1395
1396 a0) Initially, all threads are stopped, and breakpoints are not
1397 inserted.
1398 a1) We single-step T, leaving breakpoints uninserted.
1399 a2) We insert breakpoints, and resume all threads.
1400
1401 In non-stop debugging, however, this strategy is unsuitable: we
1402 don't want to have to stop all threads in the system in order to
1403 continue or step T past a breakpoint. Instead, we use displaced
1404 stepping:
1405
1406 n0) Initially, T is stopped, other threads are running, and
1407 breakpoints are inserted.
1408 n1) We copy the instruction "under" the breakpoint to a separate
1409 location, outside the main code stream, making any adjustments
1410 to the instruction, register, and memory state as directed by
1411 T's architecture.
1412 n2) We single-step T over the instruction at its new location.
1413 n3) We adjust the resulting register and memory state as directed
1414 by T's architecture. This includes resetting T's PC to point
1415 back into the main instruction stream.
1416 n4) We resume T.
1417
1418 This approach depends on the following gdbarch methods:
1419
1420 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1421 indicate where to copy the instruction, and how much space must
1422 be reserved there. We use these in step n1.
1423
1424 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1425 address, and makes any necessary adjustments to the instruction,
1426 register contents, and memory. We use this in step n1.
1427
1428 - gdbarch_displaced_step_fixup adjusts registers and memory after
1429 we have successfully single-stepped the instruction, to yield the
1430 same effect the instruction would have had if we had executed it
1431 at its original address. We use this in step n3.
1432
1433 The gdbarch_displaced_step_copy_insn and
1434 gdbarch_displaced_step_fixup functions must be written so that
1435 copying an instruction with gdbarch_displaced_step_copy_insn,
1436 single-stepping across the copied instruction, and then applying
1437 gdbarch_displaced_insn_fixup should have the same effects on the
1438 thread's memory and registers as stepping the instruction in place
1439 would have. Exactly which responsibilities fall to the copy and
1440 which fall to the fixup is up to the author of those functions.
1441
1442 See the comments in gdbarch.sh for details.
1443
1444 Note that displaced stepping and software single-step cannot
1445 currently be used in combination, although with some care I think
1446 they could be made to. Software single-step works by placing
1447 breakpoints on all possible subsequent instructions; if the
1448 displaced instruction is a PC-relative jump, those breakpoints
1449 could fall in very strange places --- on pages that aren't
1450 executable, or at addresses that are not proper instruction
1451 boundaries. (We do generally let other threads run while we wait
1452 to hit the software single-step breakpoint, and they might
1453 encounter such a corrupted instruction.) One way to work around
1454 this would be to have gdbarch_displaced_step_copy_insn fully
1455 simulate the effect of PC-relative instructions (and return NULL)
1456 on architectures that use software single-stepping.
1457
1458 In non-stop mode, we can have independent and simultaneous step
1459 requests, so more than one thread may need to simultaneously step
1460 over a breakpoint. The current implementation assumes there is
1461 only one scratch space per process. In this case, we have to
1462 serialize access to the scratch space. If thread A wants to step
1463 over a breakpoint, but we are currently waiting for some other
1464 thread to complete a displaced step, we leave thread A stopped and
1465 place it in the displaced_step_request_queue. Whenever a displaced
1466 step finishes, we pick the next thread in the queue and start a new
1467 displaced step operation on it. See displaced_step_prepare and
1468 displaced_step_fixup for details. */
1469
1470 /* Default destructor for displaced_step_closure. */
1471
1472 displaced_step_closure::~displaced_step_closure () = default;
1473
1474 /* Get the displaced stepping state of process PID. */
1475
1476 static displaced_step_inferior_state *
1477 get_displaced_stepping_state (inferior *inf)
1478 {
1479 return &inf->displaced_step_state;
1480 }
1481
1482 /* Returns true if any inferior has a thread doing a displaced
1483 step. */
1484
1485 static bool
1486 displaced_step_in_progress_any_inferior ()
1487 {
1488 for (inferior *i : all_inferiors ())
1489 {
1490 if (i->displaced_step_state.step_thread != nullptr)
1491 return true;
1492 }
1493
1494 return false;
1495 }
1496
1497 /* Return true if thread represented by PTID is doing a displaced
1498 step. */
1499
1500 static int
1501 displaced_step_in_progress_thread (thread_info *thread)
1502 {
1503 gdb_assert (thread != NULL);
1504
1505 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1506 }
1507
1508 /* Return true if process PID has a thread doing a displaced step. */
1509
1510 static int
1511 displaced_step_in_progress (inferior *inf)
1512 {
1513 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1514 }
1515
1516 /* If inferior is in displaced stepping, and ADDR equals to starting address
1517 of copy area, return corresponding displaced_step_closure. Otherwise,
1518 return NULL. */
1519
1520 struct displaced_step_closure*
1521 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1522 {
1523 displaced_step_inferior_state *displaced
1524 = get_displaced_stepping_state (current_inferior ());
1525
1526 /* If checking the mode of displaced instruction in copy area. */
1527 if (displaced->step_thread != nullptr
1528 && displaced->step_copy == addr)
1529 return displaced->step_closure.get ();
1530
1531 return NULL;
1532 }
1533
1534 static void
1535 infrun_inferior_exit (struct inferior *inf)
1536 {
1537 inf->displaced_step_state.reset ();
1538 }
1539
1540 /* If ON, and the architecture supports it, GDB will use displaced
1541 stepping to step over breakpoints. If OFF, or if the architecture
1542 doesn't support it, GDB will instead use the traditional
1543 hold-and-step approach. If AUTO (which is the default), GDB will
1544 decide which technique to use to step over breakpoints depending on
1545 whether the target works in a non-stop way (see use_displaced_stepping). */
1546
1547 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1548
1549 static void
1550 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1551 struct cmd_list_element *c,
1552 const char *value)
1553 {
1554 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1555 fprintf_filtered (file,
1556 _("Debugger's willingness to use displaced stepping "
1557 "to step over breakpoints is %s (currently %s).\n"),
1558 value, target_is_non_stop_p () ? "on" : "off");
1559 else
1560 fprintf_filtered (file,
1561 _("Debugger's willingness to use displaced stepping "
1562 "to step over breakpoints is %s.\n"), value);
1563 }
1564
1565 /* Return true if the gdbarch implements the required methods to use
1566 displaced stepping. */
1567
1568 static bool
1569 gdbarch_supports_displaced_stepping (gdbarch *arch)
1570 {
1571 /* Only check for the presence of step_copy_insn. Other required methods
1572 are checked by the gdbarch validation. */
1573 return gdbarch_displaced_step_copy_insn_p (arch);
1574 }
1575
1576 /* Return non-zero if displaced stepping can/should be used to step
1577 over breakpoints of thread TP. */
1578
1579 static bool
1580 use_displaced_stepping (thread_info *tp)
1581 {
1582 /* If the user disabled it explicitly, don't use displaced stepping. */
1583 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1584 return false;
1585
1586 /* If "auto", only use displaced stepping if the target operates in a non-stop
1587 way. */
1588 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1589 && !target_is_non_stop_p ())
1590 return false;
1591
1592 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1593
1594 /* If the architecture doesn't implement displaced stepping, don't use
1595 it. */
1596 if (!gdbarch_supports_displaced_stepping (gdbarch))
1597 return false;
1598
1599 /* If recording, don't use displaced stepping. */
1600 if (find_record_target () != nullptr)
1601 return false;
1602
1603 displaced_step_inferior_state *displaced_state
1604 = get_displaced_stepping_state (tp->inf);
1605
1606 /* If displaced stepping failed before for this inferior, don't bother trying
1607 again. */
1608 if (displaced_state->failed_before)
1609 return false;
1610
1611 return true;
1612 }
1613
1614 /* Simple function wrapper around displaced_step_inferior_state::reset. */
1615
1616 static void
1617 displaced_step_reset (displaced_step_inferior_state *displaced)
1618 {
1619 displaced->reset ();
1620 }
1621
1622 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1623 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1624
1625 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1626
1627 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1628 void
1629 displaced_step_dump_bytes (struct ui_file *file,
1630 const gdb_byte *buf,
1631 size_t len)
1632 {
1633 int i;
1634
1635 for (i = 0; i < len; i++)
1636 fprintf_unfiltered (file, "%02x ", buf[i]);
1637 fputs_unfiltered ("\n", file);
1638 }
1639
1640 /* Prepare to single-step, using displaced stepping.
1641
1642 Note that we cannot use displaced stepping when we have a signal to
1643 deliver. If we have a signal to deliver and an instruction to step
1644 over, then after the step, there will be no indication from the
1645 target whether the thread entered a signal handler or ignored the
1646 signal and stepped over the instruction successfully --- both cases
1647 result in a simple SIGTRAP. In the first case we mustn't do a
1648 fixup, and in the second case we must --- but we can't tell which.
1649 Comments in the code for 'random signals' in handle_inferior_event
1650 explain how we handle this case instead.
1651
1652 Returns 1 if preparing was successful -- this thread is going to be
1653 stepped now; 0 if displaced stepping this thread got queued; or -1
1654 if this instruction can't be displaced stepped. */
1655
1656 static int
1657 displaced_step_prepare_throw (thread_info *tp)
1658 {
1659 regcache *regcache = get_thread_regcache (tp);
1660 struct gdbarch *gdbarch = regcache->arch ();
1661 const address_space *aspace = regcache->aspace ();
1662 CORE_ADDR original, copy;
1663 ULONGEST len;
1664 int status;
1665
1666 /* We should never reach this function if the architecture does not
1667 support displaced stepping. */
1668 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1669
1670 /* Nor if the thread isn't meant to step over a breakpoint. */
1671 gdb_assert (tp->control.trap_expected);
1672
1673 /* Disable range stepping while executing in the scratch pad. We
1674 want a single-step even if executing the displaced instruction in
1675 the scratch buffer lands within the stepping range (e.g., a
1676 jump/branch). */
1677 tp->control.may_range_step = 0;
1678
1679 /* We have to displaced step one thread at a time, as we only have
1680 access to a single scratch space per inferior. */
1681
1682 displaced_step_inferior_state *displaced
1683 = get_displaced_stepping_state (tp->inf);
1684
1685 if (displaced->step_thread != nullptr)
1686 {
1687 /* Already waiting for a displaced step to finish. Defer this
1688 request and place in queue. */
1689
1690 if (debug_displaced)
1691 fprintf_unfiltered (gdb_stdlog,
1692 "displaced: deferring step of %s\n",
1693 target_pid_to_str (tp->ptid).c_str ());
1694
1695 thread_step_over_chain_enqueue (tp);
1696 return 0;
1697 }
1698 else
1699 {
1700 if (debug_displaced)
1701 fprintf_unfiltered (gdb_stdlog,
1702 "displaced: stepping %s now\n",
1703 target_pid_to_str (tp->ptid).c_str ());
1704 }
1705
1706 displaced_step_reset (displaced);
1707
1708 scoped_restore_current_thread restore_thread;
1709
1710 switch_to_thread (tp);
1711
1712 original = regcache_read_pc (regcache);
1713
1714 copy = gdbarch_displaced_step_location (gdbarch);
1715 len = gdbarch_max_insn_length (gdbarch);
1716
1717 if (breakpoint_in_range_p (aspace, copy, len))
1718 {
1719 /* There's a breakpoint set in the scratch pad location range
1720 (which is usually around the entry point). We'd either
1721 install it before resuming, which would overwrite/corrupt the
1722 scratch pad, or if it was already inserted, this displaced
1723 step would overwrite it. The latter is OK in the sense that
1724 we already assume that no thread is going to execute the code
1725 in the scratch pad range (after initial startup) anyway, but
1726 the former is unacceptable. Simply punt and fallback to
1727 stepping over this breakpoint in-line. */
1728 if (debug_displaced)
1729 {
1730 fprintf_unfiltered (gdb_stdlog,
1731 "displaced: breakpoint set in scratch pad. "
1732 "Stepping over breakpoint in-line instead.\n");
1733 }
1734
1735 return -1;
1736 }
1737
1738 /* Save the original contents of the copy area. */
1739 displaced->step_saved_copy.resize (len);
1740 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1741 if (status != 0)
1742 throw_error (MEMORY_ERROR,
1743 _("Error accessing memory address %s (%s) for "
1744 "displaced-stepping scratch space."),
1745 paddress (gdbarch, copy), safe_strerror (status));
1746 if (debug_displaced)
1747 {
1748 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1749 paddress (gdbarch, copy));
1750 displaced_step_dump_bytes (gdb_stdlog,
1751 displaced->step_saved_copy.data (),
1752 len);
1753 };
1754
1755 displaced->step_closure
1756 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1757 if (displaced->step_closure == NULL)
1758 {
1759 /* The architecture doesn't know how or want to displaced step
1760 this instruction or instruction sequence. Fallback to
1761 stepping over the breakpoint in-line. */
1762 return -1;
1763 }
1764
1765 /* Save the information we need to fix things up if the step
1766 succeeds. */
1767 displaced->step_thread = tp;
1768 displaced->step_gdbarch = gdbarch;
1769 displaced->step_original = original;
1770 displaced->step_copy = copy;
1771
1772 {
1773 displaced_step_reset_cleanup cleanup (displaced);
1774
1775 /* Resume execution at the copy. */
1776 regcache_write_pc (regcache, copy);
1777
1778 cleanup.release ();
1779 }
1780
1781 if (debug_displaced)
1782 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1783 paddress (gdbarch, copy));
1784
1785 return 1;
1786 }
1787
1788 /* Wrapper for displaced_step_prepare_throw that disabled further
1789 attempts at displaced stepping if we get a memory error. */
1790
1791 static int
1792 displaced_step_prepare (thread_info *thread)
1793 {
1794 int prepared = -1;
1795
1796 try
1797 {
1798 prepared = displaced_step_prepare_throw (thread);
1799 }
1800 catch (const gdb_exception_error &ex)
1801 {
1802 struct displaced_step_inferior_state *displaced_state;
1803
1804 if (ex.error != MEMORY_ERROR
1805 && ex.error != NOT_SUPPORTED_ERROR)
1806 throw;
1807
1808 if (debug_infrun)
1809 {
1810 fprintf_unfiltered (gdb_stdlog,
1811 "infrun: disabling displaced stepping: %s\n",
1812 ex.what ());
1813 }
1814
1815 /* Be verbose if "set displaced-stepping" is "on", silent if
1816 "auto". */
1817 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1818 {
1819 warning (_("disabling displaced stepping: %s"),
1820 ex.what ());
1821 }
1822
1823 /* Disable further displaced stepping attempts. */
1824 displaced_state
1825 = get_displaced_stepping_state (thread->inf);
1826 displaced_state->failed_before = 1;
1827 }
1828
1829 return prepared;
1830 }
1831
1832 static void
1833 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1834 const gdb_byte *myaddr, int len)
1835 {
1836 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1837
1838 inferior_ptid = ptid;
1839 write_memory (memaddr, myaddr, len);
1840 }
1841
1842 /* Restore the contents of the copy area for thread PTID. */
1843
1844 static void
1845 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1846 ptid_t ptid)
1847 {
1848 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1849
1850 write_memory_ptid (ptid, displaced->step_copy,
1851 displaced->step_saved_copy.data (), len);
1852 if (debug_displaced)
1853 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1854 target_pid_to_str (ptid).c_str (),
1855 paddress (displaced->step_gdbarch,
1856 displaced->step_copy));
1857 }
1858
1859 /* If we displaced stepped an instruction successfully, adjust
1860 registers and memory to yield the same effect the instruction would
1861 have had if we had executed it at its original address, and return
1862 1. If the instruction didn't complete, relocate the PC and return
1863 -1. If the thread wasn't displaced stepping, return 0. */
1864
1865 static int
1866 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1867 {
1868 struct displaced_step_inferior_state *displaced
1869 = get_displaced_stepping_state (event_thread->inf);
1870 int ret;
1871
1872 /* Was this event for the thread we displaced? */
1873 if (displaced->step_thread != event_thread)
1874 return 0;
1875
1876 /* Fixup may need to read memory/registers. Switch to the thread
1877 that we're fixing up. Also, target_stopped_by_watchpoint checks
1878 the current thread, and displaced_step_restore performs ptid-dependent
1879 memory accesses using current_inferior() and current_top_target(). */
1880 switch_to_thread (event_thread);
1881
1882 displaced_step_reset_cleanup cleanup (displaced);
1883
1884 displaced_step_restore (displaced, displaced->step_thread->ptid);
1885
1886 /* Did the instruction complete successfully? */
1887 if (signal == GDB_SIGNAL_TRAP
1888 && !(target_stopped_by_watchpoint ()
1889 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1890 || target_have_steppable_watchpoint)))
1891 {
1892 /* Fix up the resulting state. */
1893 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1894 displaced->step_closure.get (),
1895 displaced->step_original,
1896 displaced->step_copy,
1897 get_thread_regcache (displaced->step_thread));
1898 ret = 1;
1899 }
1900 else
1901 {
1902 /* Since the instruction didn't complete, all we can do is
1903 relocate the PC. */
1904 struct regcache *regcache = get_thread_regcache (event_thread);
1905 CORE_ADDR pc = regcache_read_pc (regcache);
1906
1907 pc = displaced->step_original + (pc - displaced->step_copy);
1908 regcache_write_pc (regcache, pc);
1909 ret = -1;
1910 }
1911
1912 return ret;
1913 }
1914
1915 /* Data to be passed around while handling an event. This data is
1916 discarded between events. */
1917 struct execution_control_state
1918 {
1919 process_stratum_target *target;
1920 ptid_t ptid;
1921 /* The thread that got the event, if this was a thread event; NULL
1922 otherwise. */
1923 struct thread_info *event_thread;
1924
1925 struct target_waitstatus ws;
1926 int stop_func_filled_in;
1927 CORE_ADDR stop_func_start;
1928 CORE_ADDR stop_func_end;
1929 const char *stop_func_name;
1930 int wait_some_more;
1931
1932 /* True if the event thread hit the single-step breakpoint of
1933 another thread. Thus the event doesn't cause a stop, the thread
1934 needs to be single-stepped past the single-step breakpoint before
1935 we can switch back to the original stepping thread. */
1936 int hit_singlestep_breakpoint;
1937 };
1938
1939 /* Clear ECS and set it to point at TP. */
1940
1941 static void
1942 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1943 {
1944 memset (ecs, 0, sizeof (*ecs));
1945 ecs->event_thread = tp;
1946 ecs->ptid = tp->ptid;
1947 }
1948
1949 static void keep_going_pass_signal (struct execution_control_state *ecs);
1950 static void prepare_to_wait (struct execution_control_state *ecs);
1951 static int keep_going_stepped_thread (struct thread_info *tp);
1952 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1953
1954 /* Are there any pending step-over requests? If so, run all we can
1955 now and return true. Otherwise, return false. */
1956
1957 static int
1958 start_step_over (void)
1959 {
1960 struct thread_info *tp, *next;
1961
1962 /* Don't start a new step-over if we already have an in-line
1963 step-over operation ongoing. */
1964 if (step_over_info_valid_p ())
1965 return 0;
1966
1967 for (tp = step_over_queue_head; tp != NULL; tp = next)
1968 {
1969 struct execution_control_state ecss;
1970 struct execution_control_state *ecs = &ecss;
1971 step_over_what step_what;
1972 int must_be_in_line;
1973
1974 gdb_assert (!tp->stop_requested);
1975
1976 next = thread_step_over_chain_next (tp);
1977
1978 /* If this inferior already has a displaced step in process,
1979 don't start a new one. */
1980 if (displaced_step_in_progress (tp->inf))
1981 continue;
1982
1983 step_what = thread_still_needs_step_over (tp);
1984 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1985 || ((step_what & STEP_OVER_BREAKPOINT)
1986 && !use_displaced_stepping (tp)));
1987
1988 /* We currently stop all threads of all processes to step-over
1989 in-line. If we need to start a new in-line step-over, let
1990 any pending displaced steps finish first. */
1991 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1992 return 0;
1993
1994 thread_step_over_chain_remove (tp);
1995
1996 if (step_over_queue_head == NULL)
1997 {
1998 if (debug_infrun)
1999 fprintf_unfiltered (gdb_stdlog,
2000 "infrun: step-over queue now empty\n");
2001 }
2002
2003 if (tp->control.trap_expected
2004 || tp->resumed
2005 || tp->executing)
2006 {
2007 internal_error (__FILE__, __LINE__,
2008 "[%s] has inconsistent state: "
2009 "trap_expected=%d, resumed=%d, executing=%d\n",
2010 target_pid_to_str (tp->ptid).c_str (),
2011 tp->control.trap_expected,
2012 tp->resumed,
2013 tp->executing);
2014 }
2015
2016 if (debug_infrun)
2017 fprintf_unfiltered (gdb_stdlog,
2018 "infrun: resuming [%s] for step-over\n",
2019 target_pid_to_str (tp->ptid).c_str ());
2020
2021 /* keep_going_pass_signal skips the step-over if the breakpoint
2022 is no longer inserted. In all-stop, we want to keep looking
2023 for a thread that needs a step-over instead of resuming TP,
2024 because we wouldn't be able to resume anything else until the
2025 target stops again. In non-stop, the resume always resumes
2026 only TP, so it's OK to let the thread resume freely. */
2027 if (!target_is_non_stop_p () && !step_what)
2028 continue;
2029
2030 switch_to_thread (tp);
2031 reset_ecs (ecs, tp);
2032 keep_going_pass_signal (ecs);
2033
2034 if (!ecs->wait_some_more)
2035 error (_("Command aborted."));
2036
2037 gdb_assert (tp->resumed);
2038
2039 /* If we started a new in-line step-over, we're done. */
2040 if (step_over_info_valid_p ())
2041 {
2042 gdb_assert (tp->control.trap_expected);
2043 return 1;
2044 }
2045
2046 if (!target_is_non_stop_p ())
2047 {
2048 /* On all-stop, shouldn't have resumed unless we needed a
2049 step over. */
2050 gdb_assert (tp->control.trap_expected
2051 || tp->step_after_step_resume_breakpoint);
2052
2053 /* With remote targets (at least), in all-stop, we can't
2054 issue any further remote commands until the program stops
2055 again. */
2056 return 1;
2057 }
2058
2059 /* Either the thread no longer needed a step-over, or a new
2060 displaced stepping sequence started. Even in the latter
2061 case, continue looking. Maybe we can also start another
2062 displaced step on a thread of other process. */
2063 }
2064
2065 return 0;
2066 }
2067
2068 /* Update global variables holding ptids to hold NEW_PTID if they were
2069 holding OLD_PTID. */
2070 static void
2071 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2072 {
2073 if (inferior_ptid == old_ptid)
2074 inferior_ptid = new_ptid;
2075 }
2076
2077 \f
2078
2079 static const char schedlock_off[] = "off";
2080 static const char schedlock_on[] = "on";
2081 static const char schedlock_step[] = "step";
2082 static const char schedlock_replay[] = "replay";
2083 static const char *const scheduler_enums[] = {
2084 schedlock_off,
2085 schedlock_on,
2086 schedlock_step,
2087 schedlock_replay,
2088 NULL
2089 };
2090 static const char *scheduler_mode = schedlock_replay;
2091 static void
2092 show_scheduler_mode (struct ui_file *file, int from_tty,
2093 struct cmd_list_element *c, const char *value)
2094 {
2095 fprintf_filtered (file,
2096 _("Mode for locking scheduler "
2097 "during execution is \"%s\".\n"),
2098 value);
2099 }
2100
2101 static void
2102 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2103 {
2104 if (!target_can_lock_scheduler)
2105 {
2106 scheduler_mode = schedlock_off;
2107 error (_("Target '%s' cannot support this command."), target_shortname);
2108 }
2109 }
2110
2111 /* True if execution commands resume all threads of all processes by
2112 default; otherwise, resume only threads of the current inferior
2113 process. */
2114 bool sched_multi = false;
2115
2116 /* Try to setup for software single stepping over the specified location.
2117 Return 1 if target_resume() should use hardware single step.
2118
2119 GDBARCH the current gdbarch.
2120 PC the location to step over. */
2121
2122 static int
2123 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2124 {
2125 int hw_step = 1;
2126
2127 if (execution_direction == EXEC_FORWARD
2128 && gdbarch_software_single_step_p (gdbarch))
2129 hw_step = !insert_single_step_breakpoints (gdbarch);
2130
2131 return hw_step;
2132 }
2133
2134 /* See infrun.h. */
2135
2136 ptid_t
2137 user_visible_resume_ptid (int step)
2138 {
2139 ptid_t resume_ptid;
2140
2141 if (non_stop)
2142 {
2143 /* With non-stop mode on, threads are always handled
2144 individually. */
2145 resume_ptid = inferior_ptid;
2146 }
2147 else if ((scheduler_mode == schedlock_on)
2148 || (scheduler_mode == schedlock_step && step))
2149 {
2150 /* User-settable 'scheduler' mode requires solo thread
2151 resume. */
2152 resume_ptid = inferior_ptid;
2153 }
2154 else if ((scheduler_mode == schedlock_replay)
2155 && target_record_will_replay (minus_one_ptid, execution_direction))
2156 {
2157 /* User-settable 'scheduler' mode requires solo thread resume in replay
2158 mode. */
2159 resume_ptid = inferior_ptid;
2160 }
2161 else if (!sched_multi && target_supports_multi_process ())
2162 {
2163 /* Resume all threads of the current process (and none of other
2164 processes). */
2165 resume_ptid = ptid_t (inferior_ptid.pid ());
2166 }
2167 else
2168 {
2169 /* Resume all threads of all processes. */
2170 resume_ptid = RESUME_ALL;
2171 }
2172
2173 return resume_ptid;
2174 }
2175
2176 /* See infrun.h. */
2177
2178 process_stratum_target *
2179 user_visible_resume_target (ptid_t resume_ptid)
2180 {
2181 return (resume_ptid == minus_one_ptid && sched_multi
2182 ? NULL
2183 : current_inferior ()->process_target ());
2184 }
2185
2186 /* Return a ptid representing the set of threads that we will resume,
2187 in the perspective of the target, assuming run control handling
2188 does not require leaving some threads stopped (e.g., stepping past
2189 breakpoint). USER_STEP indicates whether we're about to start the
2190 target for a stepping command. */
2191
2192 static ptid_t
2193 internal_resume_ptid (int user_step)
2194 {
2195 /* In non-stop, we always control threads individually. Note that
2196 the target may always work in non-stop mode even with "set
2197 non-stop off", in which case user_visible_resume_ptid could
2198 return a wildcard ptid. */
2199 if (target_is_non_stop_p ())
2200 return inferior_ptid;
2201 else
2202 return user_visible_resume_ptid (user_step);
2203 }
2204
2205 /* Wrapper for target_resume, that handles infrun-specific
2206 bookkeeping. */
2207
2208 static void
2209 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2210 {
2211 struct thread_info *tp = inferior_thread ();
2212
2213 gdb_assert (!tp->stop_requested);
2214
2215 /* Install inferior's terminal modes. */
2216 target_terminal::inferior ();
2217
2218 /* Avoid confusing the next resume, if the next stop/resume
2219 happens to apply to another thread. */
2220 tp->suspend.stop_signal = GDB_SIGNAL_0;
2221
2222 /* Advise target which signals may be handled silently.
2223
2224 If we have removed breakpoints because we are stepping over one
2225 in-line (in any thread), we need to receive all signals to avoid
2226 accidentally skipping a breakpoint during execution of a signal
2227 handler.
2228
2229 Likewise if we're displaced stepping, otherwise a trap for a
2230 breakpoint in a signal handler might be confused with the
2231 displaced step finishing. We don't make the displaced_step_fixup
2232 step distinguish the cases instead, because:
2233
2234 - a backtrace while stopped in the signal handler would show the
2235 scratch pad as frame older than the signal handler, instead of
2236 the real mainline code.
2237
2238 - when the thread is later resumed, the signal handler would
2239 return to the scratch pad area, which would no longer be
2240 valid. */
2241 if (step_over_info_valid_p ()
2242 || displaced_step_in_progress (tp->inf))
2243 target_pass_signals ({});
2244 else
2245 target_pass_signals (signal_pass);
2246
2247 target_resume (resume_ptid, step, sig);
2248
2249 target_commit_resume ();
2250
2251 if (target_can_async_p ())
2252 target_async (1);
2253 }
2254
2255 /* Resume the inferior. SIG is the signal to give the inferior
2256 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2257 call 'resume', which handles exceptions. */
2258
2259 static void
2260 resume_1 (enum gdb_signal sig)
2261 {
2262 struct regcache *regcache = get_current_regcache ();
2263 struct gdbarch *gdbarch = regcache->arch ();
2264 struct thread_info *tp = inferior_thread ();
2265 const address_space *aspace = regcache->aspace ();
2266 ptid_t resume_ptid;
2267 /* This represents the user's step vs continue request. When
2268 deciding whether "set scheduler-locking step" applies, it's the
2269 user's intention that counts. */
2270 const int user_step = tp->control.stepping_command;
2271 /* This represents what we'll actually request the target to do.
2272 This can decay from a step to a continue, if e.g., we need to
2273 implement single-stepping with breakpoints (software
2274 single-step). */
2275 int step;
2276
2277 gdb_assert (!tp->stop_requested);
2278 gdb_assert (!thread_is_in_step_over_chain (tp));
2279
2280 if (tp->suspend.waitstatus_pending_p)
2281 {
2282 if (debug_infrun)
2283 {
2284 std::string statstr
2285 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2286
2287 fprintf_unfiltered (gdb_stdlog,
2288 "infrun: resume: thread %s has pending wait "
2289 "status %s (currently_stepping=%d).\n",
2290 target_pid_to_str (tp->ptid).c_str (),
2291 statstr.c_str (),
2292 currently_stepping (tp));
2293 }
2294
2295 tp->inf->process_target ()->threads_executing = true;
2296 tp->resumed = true;
2297
2298 /* FIXME: What should we do if we are supposed to resume this
2299 thread with a signal? Maybe we should maintain a queue of
2300 pending signals to deliver. */
2301 if (sig != GDB_SIGNAL_0)
2302 {
2303 warning (_("Couldn't deliver signal %s to %s."),
2304 gdb_signal_to_name (sig),
2305 target_pid_to_str (tp->ptid).c_str ());
2306 }
2307
2308 tp->suspend.stop_signal = GDB_SIGNAL_0;
2309
2310 if (target_can_async_p ())
2311 {
2312 target_async (1);
2313 /* Tell the event loop we have an event to process. */
2314 mark_async_event_handler (infrun_async_inferior_event_token);
2315 }
2316 return;
2317 }
2318
2319 tp->stepped_breakpoint = 0;
2320
2321 /* Depends on stepped_breakpoint. */
2322 step = currently_stepping (tp);
2323
2324 if (current_inferior ()->waiting_for_vfork_done)
2325 {
2326 /* Don't try to single-step a vfork parent that is waiting for
2327 the child to get out of the shared memory region (by exec'ing
2328 or exiting). This is particularly important on software
2329 single-step archs, as the child process would trip on the
2330 software single step breakpoint inserted for the parent
2331 process. Since the parent will not actually execute any
2332 instruction until the child is out of the shared region (such
2333 are vfork's semantics), it is safe to simply continue it.
2334 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2335 the parent, and tell it to `keep_going', which automatically
2336 re-sets it stepping. */
2337 if (debug_infrun)
2338 fprintf_unfiltered (gdb_stdlog,
2339 "infrun: resume : clear step\n");
2340 step = 0;
2341 }
2342
2343 CORE_ADDR pc = regcache_read_pc (regcache);
2344
2345 if (debug_infrun)
2346 fprintf_unfiltered (gdb_stdlog,
2347 "infrun: resume (step=%d, signal=%s), "
2348 "trap_expected=%d, current thread [%s] at %s\n",
2349 step, gdb_signal_to_symbol_string (sig),
2350 tp->control.trap_expected,
2351 target_pid_to_str (inferior_ptid).c_str (),
2352 paddress (gdbarch, pc));
2353
2354 /* Normally, by the time we reach `resume', the breakpoints are either
2355 removed or inserted, as appropriate. The exception is if we're sitting
2356 at a permanent breakpoint; we need to step over it, but permanent
2357 breakpoints can't be removed. So we have to test for it here. */
2358 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2359 {
2360 if (sig != GDB_SIGNAL_0)
2361 {
2362 /* We have a signal to pass to the inferior. The resume
2363 may, or may not take us to the signal handler. If this
2364 is a step, we'll need to stop in the signal handler, if
2365 there's one, (if the target supports stepping into
2366 handlers), or in the next mainline instruction, if
2367 there's no handler. If this is a continue, we need to be
2368 sure to run the handler with all breakpoints inserted.
2369 In all cases, set a breakpoint at the current address
2370 (where the handler returns to), and once that breakpoint
2371 is hit, resume skipping the permanent breakpoint. If
2372 that breakpoint isn't hit, then we've stepped into the
2373 signal handler (or hit some other event). We'll delete
2374 the step-resume breakpoint then. */
2375
2376 if (debug_infrun)
2377 fprintf_unfiltered (gdb_stdlog,
2378 "infrun: resume: skipping permanent breakpoint, "
2379 "deliver signal first\n");
2380
2381 clear_step_over_info ();
2382 tp->control.trap_expected = 0;
2383
2384 if (tp->control.step_resume_breakpoint == NULL)
2385 {
2386 /* Set a "high-priority" step-resume, as we don't want
2387 user breakpoints at PC to trigger (again) when this
2388 hits. */
2389 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2390 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2391
2392 tp->step_after_step_resume_breakpoint = step;
2393 }
2394
2395 insert_breakpoints ();
2396 }
2397 else
2398 {
2399 /* There's no signal to pass, we can go ahead and skip the
2400 permanent breakpoint manually. */
2401 if (debug_infrun)
2402 fprintf_unfiltered (gdb_stdlog,
2403 "infrun: resume: skipping permanent breakpoint\n");
2404 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2405 /* Update pc to reflect the new address from which we will
2406 execute instructions. */
2407 pc = regcache_read_pc (regcache);
2408
2409 if (step)
2410 {
2411 /* We've already advanced the PC, so the stepping part
2412 is done. Now we need to arrange for a trap to be
2413 reported to handle_inferior_event. Set a breakpoint
2414 at the current PC, and run to it. Don't update
2415 prev_pc, because if we end in
2416 switch_back_to_stepped_thread, we want the "expected
2417 thread advanced also" branch to be taken. IOW, we
2418 don't want this thread to step further from PC
2419 (overstep). */
2420 gdb_assert (!step_over_info_valid_p ());
2421 insert_single_step_breakpoint (gdbarch, aspace, pc);
2422 insert_breakpoints ();
2423
2424 resume_ptid = internal_resume_ptid (user_step);
2425 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2426 tp->resumed = true;
2427 return;
2428 }
2429 }
2430 }
2431
2432 /* If we have a breakpoint to step over, make sure to do a single
2433 step only. Same if we have software watchpoints. */
2434 if (tp->control.trap_expected || bpstat_should_step ())
2435 tp->control.may_range_step = 0;
2436
2437 /* If displaced stepping is enabled, step over breakpoints by executing a
2438 copy of the instruction at a different address.
2439
2440 We can't use displaced stepping when we have a signal to deliver;
2441 the comments for displaced_step_prepare explain why. The
2442 comments in the handle_inferior event for dealing with 'random
2443 signals' explain what we do instead.
2444
2445 We can't use displaced stepping when we are waiting for vfork_done
2446 event, displaced stepping breaks the vfork child similarly as single
2447 step software breakpoint. */
2448 if (tp->control.trap_expected
2449 && use_displaced_stepping (tp)
2450 && !step_over_info_valid_p ()
2451 && sig == GDB_SIGNAL_0
2452 && !current_inferior ()->waiting_for_vfork_done)
2453 {
2454 int prepared = displaced_step_prepare (tp);
2455
2456 if (prepared == 0)
2457 {
2458 if (debug_infrun)
2459 fprintf_unfiltered (gdb_stdlog,
2460 "Got placed in step-over queue\n");
2461
2462 tp->control.trap_expected = 0;
2463 return;
2464 }
2465 else if (prepared < 0)
2466 {
2467 /* Fallback to stepping over the breakpoint in-line. */
2468
2469 if (target_is_non_stop_p ())
2470 stop_all_threads ();
2471
2472 set_step_over_info (regcache->aspace (),
2473 regcache_read_pc (regcache), 0, tp->global_num);
2474
2475 step = maybe_software_singlestep (gdbarch, pc);
2476
2477 insert_breakpoints ();
2478 }
2479 else if (prepared > 0)
2480 {
2481 struct displaced_step_inferior_state *displaced;
2482
2483 /* Update pc to reflect the new address from which we will
2484 execute instructions due to displaced stepping. */
2485 pc = regcache_read_pc (get_thread_regcache (tp));
2486
2487 displaced = get_displaced_stepping_state (tp->inf);
2488 step = gdbarch_displaced_step_hw_singlestep
2489 (gdbarch, displaced->step_closure.get ());
2490 }
2491 }
2492
2493 /* Do we need to do it the hard way, w/temp breakpoints? */
2494 else if (step)
2495 step = maybe_software_singlestep (gdbarch, pc);
2496
2497 /* Currently, our software single-step implementation leads to different
2498 results than hardware single-stepping in one situation: when stepping
2499 into delivering a signal which has an associated signal handler,
2500 hardware single-step will stop at the first instruction of the handler,
2501 while software single-step will simply skip execution of the handler.
2502
2503 For now, this difference in behavior is accepted since there is no
2504 easy way to actually implement single-stepping into a signal handler
2505 without kernel support.
2506
2507 However, there is one scenario where this difference leads to follow-on
2508 problems: if we're stepping off a breakpoint by removing all breakpoints
2509 and then single-stepping. In this case, the software single-step
2510 behavior means that even if there is a *breakpoint* in the signal
2511 handler, GDB still would not stop.
2512
2513 Fortunately, we can at least fix this particular issue. We detect
2514 here the case where we are about to deliver a signal while software
2515 single-stepping with breakpoints removed. In this situation, we
2516 revert the decisions to remove all breakpoints and insert single-
2517 step breakpoints, and instead we install a step-resume breakpoint
2518 at the current address, deliver the signal without stepping, and
2519 once we arrive back at the step-resume breakpoint, actually step
2520 over the breakpoint we originally wanted to step over. */
2521 if (thread_has_single_step_breakpoints_set (tp)
2522 && sig != GDB_SIGNAL_0
2523 && step_over_info_valid_p ())
2524 {
2525 /* If we have nested signals or a pending signal is delivered
2526 immediately after a handler returns, might already have
2527 a step-resume breakpoint set on the earlier handler. We cannot
2528 set another step-resume breakpoint; just continue on until the
2529 original breakpoint is hit. */
2530 if (tp->control.step_resume_breakpoint == NULL)
2531 {
2532 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2533 tp->step_after_step_resume_breakpoint = 1;
2534 }
2535
2536 delete_single_step_breakpoints (tp);
2537
2538 clear_step_over_info ();
2539 tp->control.trap_expected = 0;
2540
2541 insert_breakpoints ();
2542 }
2543
2544 /* If STEP is set, it's a request to use hardware stepping
2545 facilities. But in that case, we should never
2546 use singlestep breakpoint. */
2547 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2548
2549 /* Decide the set of threads to ask the target to resume. */
2550 if (tp->control.trap_expected)
2551 {
2552 /* We're allowing a thread to run past a breakpoint it has
2553 hit, either by single-stepping the thread with the breakpoint
2554 removed, or by displaced stepping, with the breakpoint inserted.
2555 In the former case, we need to single-step only this thread,
2556 and keep others stopped, as they can miss this breakpoint if
2557 allowed to run. That's not really a problem for displaced
2558 stepping, but, we still keep other threads stopped, in case
2559 another thread is also stopped for a breakpoint waiting for
2560 its turn in the displaced stepping queue. */
2561 resume_ptid = inferior_ptid;
2562 }
2563 else
2564 resume_ptid = internal_resume_ptid (user_step);
2565
2566 if (execution_direction != EXEC_REVERSE
2567 && step && breakpoint_inserted_here_p (aspace, pc))
2568 {
2569 /* There are two cases where we currently need to step a
2570 breakpoint instruction when we have a signal to deliver:
2571
2572 - See handle_signal_stop where we handle random signals that
2573 could take out us out of the stepping range. Normally, in
2574 that case we end up continuing (instead of stepping) over the
2575 signal handler with a breakpoint at PC, but there are cases
2576 where we should _always_ single-step, even if we have a
2577 step-resume breakpoint, like when a software watchpoint is
2578 set. Assuming single-stepping and delivering a signal at the
2579 same time would takes us to the signal handler, then we could
2580 have removed the breakpoint at PC to step over it. However,
2581 some hardware step targets (like e.g., Mac OS) can't step
2582 into signal handlers, and for those, we need to leave the
2583 breakpoint at PC inserted, as otherwise if the handler
2584 recurses and executes PC again, it'll miss the breakpoint.
2585 So we leave the breakpoint inserted anyway, but we need to
2586 record that we tried to step a breakpoint instruction, so
2587 that adjust_pc_after_break doesn't end up confused.
2588
2589 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2590 in one thread after another thread that was stepping had been
2591 momentarily paused for a step-over. When we re-resume the
2592 stepping thread, it may be resumed from that address with a
2593 breakpoint that hasn't trapped yet. Seen with
2594 gdb.threads/non-stop-fair-events.exp, on targets that don't
2595 do displaced stepping. */
2596
2597 if (debug_infrun)
2598 fprintf_unfiltered (gdb_stdlog,
2599 "infrun: resume: [%s] stepped breakpoint\n",
2600 target_pid_to_str (tp->ptid).c_str ());
2601
2602 tp->stepped_breakpoint = 1;
2603
2604 /* Most targets can step a breakpoint instruction, thus
2605 executing it normally. But if this one cannot, just
2606 continue and we will hit it anyway. */
2607 if (gdbarch_cannot_step_breakpoint (gdbarch))
2608 step = 0;
2609 }
2610
2611 if (debug_displaced
2612 && tp->control.trap_expected
2613 && use_displaced_stepping (tp)
2614 && !step_over_info_valid_p ())
2615 {
2616 struct regcache *resume_regcache = get_thread_regcache (tp);
2617 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2618 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2619 gdb_byte buf[4];
2620
2621 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2622 paddress (resume_gdbarch, actual_pc));
2623 read_memory (actual_pc, buf, sizeof (buf));
2624 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2625 }
2626
2627 if (tp->control.may_range_step)
2628 {
2629 /* If we're resuming a thread with the PC out of the step
2630 range, then we're doing some nested/finer run control
2631 operation, like stepping the thread out of the dynamic
2632 linker or the displaced stepping scratch pad. We
2633 shouldn't have allowed a range step then. */
2634 gdb_assert (pc_in_thread_step_range (pc, tp));
2635 }
2636
2637 do_target_resume (resume_ptid, step, sig);
2638 tp->resumed = true;
2639 }
2640
2641 /* Resume the inferior. SIG is the signal to give the inferior
2642 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2643 rolls back state on error. */
2644
2645 static void
2646 resume (gdb_signal sig)
2647 {
2648 try
2649 {
2650 resume_1 (sig);
2651 }
2652 catch (const gdb_exception &ex)
2653 {
2654 /* If resuming is being aborted for any reason, delete any
2655 single-step breakpoint resume_1 may have created, to avoid
2656 confusing the following resumption, and to avoid leaving
2657 single-step breakpoints perturbing other threads, in case
2658 we're running in non-stop mode. */
2659 if (inferior_ptid != null_ptid)
2660 delete_single_step_breakpoints (inferior_thread ());
2661 throw;
2662 }
2663 }
2664
2665 \f
2666 /* Proceeding. */
2667
2668 /* See infrun.h. */
2669
2670 /* Counter that tracks number of user visible stops. This can be used
2671 to tell whether a command has proceeded the inferior past the
2672 current location. This allows e.g., inferior function calls in
2673 breakpoint commands to not interrupt the command list. When the
2674 call finishes successfully, the inferior is standing at the same
2675 breakpoint as if nothing happened (and so we don't call
2676 normal_stop). */
2677 static ULONGEST current_stop_id;
2678
2679 /* See infrun.h. */
2680
2681 ULONGEST
2682 get_stop_id (void)
2683 {
2684 return current_stop_id;
2685 }
2686
2687 /* Called when we report a user visible stop. */
2688
2689 static void
2690 new_stop_id (void)
2691 {
2692 current_stop_id++;
2693 }
2694
2695 /* Clear out all variables saying what to do when inferior is continued.
2696 First do this, then set the ones you want, then call `proceed'. */
2697
2698 static void
2699 clear_proceed_status_thread (struct thread_info *tp)
2700 {
2701 if (debug_infrun)
2702 fprintf_unfiltered (gdb_stdlog,
2703 "infrun: clear_proceed_status_thread (%s)\n",
2704 target_pid_to_str (tp->ptid).c_str ());
2705
2706 /* If we're starting a new sequence, then the previous finished
2707 single-step is no longer relevant. */
2708 if (tp->suspend.waitstatus_pending_p)
2709 {
2710 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2711 {
2712 if (debug_infrun)
2713 fprintf_unfiltered (gdb_stdlog,
2714 "infrun: clear_proceed_status: pending "
2715 "event of %s was a finished step. "
2716 "Discarding.\n",
2717 target_pid_to_str (tp->ptid).c_str ());
2718
2719 tp->suspend.waitstatus_pending_p = 0;
2720 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2721 }
2722 else if (debug_infrun)
2723 {
2724 std::string statstr
2725 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2726
2727 fprintf_unfiltered (gdb_stdlog,
2728 "infrun: clear_proceed_status_thread: thread %s "
2729 "has pending wait status %s "
2730 "(currently_stepping=%d).\n",
2731 target_pid_to_str (tp->ptid).c_str (),
2732 statstr.c_str (),
2733 currently_stepping (tp));
2734 }
2735 }
2736
2737 /* If this signal should not be seen by program, give it zero.
2738 Used for debugging signals. */
2739 if (!signal_pass_state (tp->suspend.stop_signal))
2740 tp->suspend.stop_signal = GDB_SIGNAL_0;
2741
2742 delete tp->thread_fsm;
2743 tp->thread_fsm = NULL;
2744
2745 tp->control.trap_expected = 0;
2746 tp->control.step_range_start = 0;
2747 tp->control.step_range_end = 0;
2748 tp->control.may_range_step = 0;
2749 tp->control.step_frame_id = null_frame_id;
2750 tp->control.step_stack_frame_id = null_frame_id;
2751 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2752 tp->control.step_start_function = NULL;
2753 tp->stop_requested = 0;
2754
2755 tp->control.stop_step = 0;
2756
2757 tp->control.proceed_to_finish = 0;
2758
2759 tp->control.stepping_command = 0;
2760
2761 /* Discard any remaining commands or status from previous stop. */
2762 bpstat_clear (&tp->control.stop_bpstat);
2763 }
2764
2765 void
2766 clear_proceed_status (int step)
2767 {
2768 /* With scheduler-locking replay, stop replaying other threads if we're
2769 not replaying the user-visible resume ptid.
2770
2771 This is a convenience feature to not require the user to explicitly
2772 stop replaying the other threads. We're assuming that the user's
2773 intent is to resume tracing the recorded process. */
2774 if (!non_stop && scheduler_mode == schedlock_replay
2775 && target_record_is_replaying (minus_one_ptid)
2776 && !target_record_will_replay (user_visible_resume_ptid (step),
2777 execution_direction))
2778 target_record_stop_replaying ();
2779
2780 if (!non_stop && inferior_ptid != null_ptid)
2781 {
2782 ptid_t resume_ptid = user_visible_resume_ptid (step);
2783 process_stratum_target *resume_target
2784 = user_visible_resume_target (resume_ptid);
2785
2786 /* In all-stop mode, delete the per-thread status of all threads
2787 we're about to resume, implicitly and explicitly. */
2788 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2789 clear_proceed_status_thread (tp);
2790 }
2791
2792 if (inferior_ptid != null_ptid)
2793 {
2794 struct inferior *inferior;
2795
2796 if (non_stop)
2797 {
2798 /* If in non-stop mode, only delete the per-thread status of
2799 the current thread. */
2800 clear_proceed_status_thread (inferior_thread ());
2801 }
2802
2803 inferior = current_inferior ();
2804 inferior->control.stop_soon = NO_STOP_QUIETLY;
2805 }
2806
2807 gdb::observers::about_to_proceed.notify ();
2808 }
2809
2810 /* Returns true if TP is still stopped at a breakpoint that needs
2811 stepping-over in order to make progress. If the breakpoint is gone
2812 meanwhile, we can skip the whole step-over dance. */
2813
2814 static int
2815 thread_still_needs_step_over_bp (struct thread_info *tp)
2816 {
2817 if (tp->stepping_over_breakpoint)
2818 {
2819 struct regcache *regcache = get_thread_regcache (tp);
2820
2821 if (breakpoint_here_p (regcache->aspace (),
2822 regcache_read_pc (regcache))
2823 == ordinary_breakpoint_here)
2824 return 1;
2825
2826 tp->stepping_over_breakpoint = 0;
2827 }
2828
2829 return 0;
2830 }
2831
2832 /* Check whether thread TP still needs to start a step-over in order
2833 to make progress when resumed. Returns an bitwise or of enum
2834 step_over_what bits, indicating what needs to be stepped over. */
2835
2836 static step_over_what
2837 thread_still_needs_step_over (struct thread_info *tp)
2838 {
2839 step_over_what what = 0;
2840
2841 if (thread_still_needs_step_over_bp (tp))
2842 what |= STEP_OVER_BREAKPOINT;
2843
2844 if (tp->stepping_over_watchpoint
2845 && !target_have_steppable_watchpoint)
2846 what |= STEP_OVER_WATCHPOINT;
2847
2848 return what;
2849 }
2850
2851 /* Returns true if scheduler locking applies. STEP indicates whether
2852 we're about to do a step/next-like command to a thread. */
2853
2854 static int
2855 schedlock_applies (struct thread_info *tp)
2856 {
2857 return (scheduler_mode == schedlock_on
2858 || (scheduler_mode == schedlock_step
2859 && tp->control.stepping_command)
2860 || (scheduler_mode == schedlock_replay
2861 && target_record_will_replay (minus_one_ptid,
2862 execution_direction)));
2863 }
2864
2865 /* Calls target_commit_resume on all targets. */
2866
2867 static void
2868 commit_resume_all_targets ()
2869 {
2870 scoped_restore_current_thread restore_thread;
2871
2872 /* Map between process_target and a representative inferior. This
2873 is to avoid committing a resume in the same target more than
2874 once. Resumptions must be idempotent, so this is an
2875 optimization. */
2876 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2877
2878 for (inferior *inf : all_non_exited_inferiors ())
2879 if (inf->has_execution ())
2880 conn_inf[inf->process_target ()] = inf;
2881
2882 for (const auto &ci : conn_inf)
2883 {
2884 inferior *inf = ci.second;
2885 switch_to_inferior_no_thread (inf);
2886 target_commit_resume ();
2887 }
2888 }
2889
2890 /* Check that all the targets we're about to resume are in non-stop
2891 mode. Ideally, we'd only care whether all targets support
2892 target-async, but we're not there yet. E.g., stop_all_threads
2893 doesn't know how to handle all-stop targets. Also, the remote
2894 protocol in all-stop mode is synchronous, irrespective of
2895 target-async, which means that things like a breakpoint re-set
2896 triggered by one target would try to read memory from all targets
2897 and fail. */
2898
2899 static void
2900 check_multi_target_resumption (process_stratum_target *resume_target)
2901 {
2902 if (!non_stop && resume_target == nullptr)
2903 {
2904 scoped_restore_current_thread restore_thread;
2905
2906 /* This is used to track whether we're resuming more than one
2907 target. */
2908 process_stratum_target *first_connection = nullptr;
2909
2910 /* The first inferior we see with a target that does not work in
2911 always-non-stop mode. */
2912 inferior *first_not_non_stop = nullptr;
2913
2914 for (inferior *inf : all_non_exited_inferiors (resume_target))
2915 {
2916 switch_to_inferior_no_thread (inf);
2917
2918 if (!target_has_execution)
2919 continue;
2920
2921 process_stratum_target *proc_target
2922 = current_inferior ()->process_target();
2923
2924 if (!target_is_non_stop_p ())
2925 first_not_non_stop = inf;
2926
2927 if (first_connection == nullptr)
2928 first_connection = proc_target;
2929 else if (first_connection != proc_target
2930 && first_not_non_stop != nullptr)
2931 {
2932 switch_to_inferior_no_thread (first_not_non_stop);
2933
2934 proc_target = current_inferior ()->process_target();
2935
2936 error (_("Connection %d (%s) does not support "
2937 "multi-target resumption."),
2938 proc_target->connection_number,
2939 make_target_connection_string (proc_target).c_str ());
2940 }
2941 }
2942 }
2943 }
2944
2945 /* Basic routine for continuing the program in various fashions.
2946
2947 ADDR is the address to resume at, or -1 for resume where stopped.
2948 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2949 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2950
2951 You should call clear_proceed_status before calling proceed. */
2952
2953 void
2954 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2955 {
2956 struct regcache *regcache;
2957 struct gdbarch *gdbarch;
2958 CORE_ADDR pc;
2959 struct execution_control_state ecss;
2960 struct execution_control_state *ecs = &ecss;
2961 int started;
2962
2963 /* If we're stopped at a fork/vfork, follow the branch set by the
2964 "set follow-fork-mode" command; otherwise, we'll just proceed
2965 resuming the current thread. */
2966 if (!follow_fork ())
2967 {
2968 /* The target for some reason decided not to resume. */
2969 normal_stop ();
2970 if (target_can_async_p ())
2971 inferior_event_handler (INF_EXEC_COMPLETE);
2972 return;
2973 }
2974
2975 /* We'll update this if & when we switch to a new thread. */
2976 previous_inferior_ptid = inferior_ptid;
2977
2978 regcache = get_current_regcache ();
2979 gdbarch = regcache->arch ();
2980 const address_space *aspace = regcache->aspace ();
2981
2982 pc = regcache_read_pc_protected (regcache);
2983
2984 thread_info *cur_thr = inferior_thread ();
2985
2986 /* Fill in with reasonable starting values. */
2987 init_thread_stepping_state (cur_thr);
2988
2989 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2990
2991 ptid_t resume_ptid
2992 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2993 process_stratum_target *resume_target
2994 = user_visible_resume_target (resume_ptid);
2995
2996 check_multi_target_resumption (resume_target);
2997
2998 if (addr == (CORE_ADDR) -1)
2999 {
3000 if (pc == cur_thr->suspend.stop_pc
3001 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3002 && execution_direction != EXEC_REVERSE)
3003 /* There is a breakpoint at the address we will resume at,
3004 step one instruction before inserting breakpoints so that
3005 we do not stop right away (and report a second hit at this
3006 breakpoint).
3007
3008 Note, we don't do this in reverse, because we won't
3009 actually be executing the breakpoint insn anyway.
3010 We'll be (un-)executing the previous instruction. */
3011 cur_thr->stepping_over_breakpoint = 1;
3012 else if (gdbarch_single_step_through_delay_p (gdbarch)
3013 && gdbarch_single_step_through_delay (gdbarch,
3014 get_current_frame ()))
3015 /* We stepped onto an instruction that needs to be stepped
3016 again before re-inserting the breakpoint, do so. */
3017 cur_thr->stepping_over_breakpoint = 1;
3018 }
3019 else
3020 {
3021 regcache_write_pc (regcache, addr);
3022 }
3023
3024 if (siggnal != GDB_SIGNAL_DEFAULT)
3025 cur_thr->suspend.stop_signal = siggnal;
3026
3027 /* If an exception is thrown from this point on, make sure to
3028 propagate GDB's knowledge of the executing state to the
3029 frontend/user running state. */
3030 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3031
3032 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3033 threads (e.g., we might need to set threads stepping over
3034 breakpoints first), from the user/frontend's point of view, all
3035 threads in RESUME_PTID are now running. Unless we're calling an
3036 inferior function, as in that case we pretend the inferior
3037 doesn't run at all. */
3038 if (!cur_thr->control.in_infcall)
3039 set_running (resume_target, resume_ptid, true);
3040
3041 if (debug_infrun)
3042 fprintf_unfiltered (gdb_stdlog,
3043 "infrun: proceed (addr=%s, signal=%s)\n",
3044 paddress (gdbarch, addr),
3045 gdb_signal_to_symbol_string (siggnal));
3046
3047 annotate_starting ();
3048
3049 /* Make sure that output from GDB appears before output from the
3050 inferior. */
3051 gdb_flush (gdb_stdout);
3052
3053 /* Since we've marked the inferior running, give it the terminal. A
3054 QUIT/Ctrl-C from here on is forwarded to the target (which can
3055 still detect attempts to unblock a stuck connection with repeated
3056 Ctrl-C from within target_pass_ctrlc). */
3057 target_terminal::inferior ();
3058
3059 /* In a multi-threaded task we may select another thread and
3060 then continue or step.
3061
3062 But if a thread that we're resuming had stopped at a breakpoint,
3063 it will immediately cause another breakpoint stop without any
3064 execution (i.e. it will report a breakpoint hit incorrectly). So
3065 we must step over it first.
3066
3067 Look for threads other than the current (TP) that reported a
3068 breakpoint hit and haven't been resumed yet since. */
3069
3070 /* If scheduler locking applies, we can avoid iterating over all
3071 threads. */
3072 if (!non_stop && !schedlock_applies (cur_thr))
3073 {
3074 for (thread_info *tp : all_non_exited_threads (resume_target,
3075 resume_ptid))
3076 {
3077 switch_to_thread_no_regs (tp);
3078
3079 /* Ignore the current thread here. It's handled
3080 afterwards. */
3081 if (tp == cur_thr)
3082 continue;
3083
3084 if (!thread_still_needs_step_over (tp))
3085 continue;
3086
3087 gdb_assert (!thread_is_in_step_over_chain (tp));
3088
3089 if (debug_infrun)
3090 fprintf_unfiltered (gdb_stdlog,
3091 "infrun: need to step-over [%s] first\n",
3092 target_pid_to_str (tp->ptid).c_str ());
3093
3094 thread_step_over_chain_enqueue (tp);
3095 }
3096
3097 switch_to_thread (cur_thr);
3098 }
3099
3100 /* Enqueue the current thread last, so that we move all other
3101 threads over their breakpoints first. */
3102 if (cur_thr->stepping_over_breakpoint)
3103 thread_step_over_chain_enqueue (cur_thr);
3104
3105 /* If the thread isn't started, we'll still need to set its prev_pc,
3106 so that switch_back_to_stepped_thread knows the thread hasn't
3107 advanced. Must do this before resuming any thread, as in
3108 all-stop/remote, once we resume we can't send any other packet
3109 until the target stops again. */
3110 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3111
3112 {
3113 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3114
3115 started = start_step_over ();
3116
3117 if (step_over_info_valid_p ())
3118 {
3119 /* Either this thread started a new in-line step over, or some
3120 other thread was already doing one. In either case, don't
3121 resume anything else until the step-over is finished. */
3122 }
3123 else if (started && !target_is_non_stop_p ())
3124 {
3125 /* A new displaced stepping sequence was started. In all-stop,
3126 we can't talk to the target anymore until it next stops. */
3127 }
3128 else if (!non_stop && target_is_non_stop_p ())
3129 {
3130 /* In all-stop, but the target is always in non-stop mode.
3131 Start all other threads that are implicitly resumed too. */
3132 for (thread_info *tp : all_non_exited_threads (resume_target,
3133 resume_ptid))
3134 {
3135 switch_to_thread_no_regs (tp);
3136
3137 if (!tp->inf->has_execution ())
3138 {
3139 if (debug_infrun)
3140 fprintf_unfiltered (gdb_stdlog,
3141 "infrun: proceed: [%s] target has "
3142 "no execution\n",
3143 target_pid_to_str (tp->ptid).c_str ());
3144 continue;
3145 }
3146
3147 if (tp->resumed)
3148 {
3149 if (debug_infrun)
3150 fprintf_unfiltered (gdb_stdlog,
3151 "infrun: proceed: [%s] resumed\n",
3152 target_pid_to_str (tp->ptid).c_str ());
3153 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3154 continue;
3155 }
3156
3157 if (thread_is_in_step_over_chain (tp))
3158 {
3159 if (debug_infrun)
3160 fprintf_unfiltered (gdb_stdlog,
3161 "infrun: proceed: [%s] needs step-over\n",
3162 target_pid_to_str (tp->ptid).c_str ());
3163 continue;
3164 }
3165
3166 if (debug_infrun)
3167 fprintf_unfiltered (gdb_stdlog,
3168 "infrun: proceed: resuming %s\n",
3169 target_pid_to_str (tp->ptid).c_str ());
3170
3171 reset_ecs (ecs, tp);
3172 switch_to_thread (tp);
3173 keep_going_pass_signal (ecs);
3174 if (!ecs->wait_some_more)
3175 error (_("Command aborted."));
3176 }
3177 }
3178 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3179 {
3180 /* The thread wasn't started, and isn't queued, run it now. */
3181 reset_ecs (ecs, cur_thr);
3182 switch_to_thread (cur_thr);
3183 keep_going_pass_signal (ecs);
3184 if (!ecs->wait_some_more)
3185 error (_("Command aborted."));
3186 }
3187 }
3188
3189 commit_resume_all_targets ();
3190
3191 finish_state.release ();
3192
3193 /* If we've switched threads above, switch back to the previously
3194 current thread. We don't want the user to see a different
3195 selected thread. */
3196 switch_to_thread (cur_thr);
3197
3198 /* Tell the event loop to wait for it to stop. If the target
3199 supports asynchronous execution, it'll do this from within
3200 target_resume. */
3201 if (!target_can_async_p ())
3202 mark_async_event_handler (infrun_async_inferior_event_token);
3203 }
3204 \f
3205
3206 /* Start remote-debugging of a machine over a serial link. */
3207
3208 void
3209 start_remote (int from_tty)
3210 {
3211 inferior *inf = current_inferior ();
3212 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3213
3214 /* Always go on waiting for the target, regardless of the mode. */
3215 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3216 indicate to wait_for_inferior that a target should timeout if
3217 nothing is returned (instead of just blocking). Because of this,
3218 targets expecting an immediate response need to, internally, set
3219 things up so that the target_wait() is forced to eventually
3220 timeout. */
3221 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3222 differentiate to its caller what the state of the target is after
3223 the initial open has been performed. Here we're assuming that
3224 the target has stopped. It should be possible to eventually have
3225 target_open() return to the caller an indication that the target
3226 is currently running and GDB state should be set to the same as
3227 for an async run. */
3228 wait_for_inferior (inf);
3229
3230 /* Now that the inferior has stopped, do any bookkeeping like
3231 loading shared libraries. We want to do this before normal_stop,
3232 so that the displayed frame is up to date. */
3233 post_create_inferior (current_top_target (), from_tty);
3234
3235 normal_stop ();
3236 }
3237
3238 /* Initialize static vars when a new inferior begins. */
3239
3240 void
3241 init_wait_for_inferior (void)
3242 {
3243 /* These are meaningless until the first time through wait_for_inferior. */
3244
3245 breakpoint_init_inferior (inf_starting);
3246
3247 clear_proceed_status (0);
3248
3249 nullify_last_target_wait_ptid ();
3250
3251 previous_inferior_ptid = inferior_ptid;
3252 }
3253
3254 \f
3255
3256 static void handle_inferior_event (struct execution_control_state *ecs);
3257
3258 static void handle_step_into_function (struct gdbarch *gdbarch,
3259 struct execution_control_state *ecs);
3260 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3261 struct execution_control_state *ecs);
3262 static void handle_signal_stop (struct execution_control_state *ecs);
3263 static void check_exception_resume (struct execution_control_state *,
3264 struct frame_info *);
3265
3266 static void end_stepping_range (struct execution_control_state *ecs);
3267 static void stop_waiting (struct execution_control_state *ecs);
3268 static void keep_going (struct execution_control_state *ecs);
3269 static void process_event_stop_test (struct execution_control_state *ecs);
3270 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3271
3272 /* This function is attached as a "thread_stop_requested" observer.
3273 Cleanup local state that assumed the PTID was to be resumed, and
3274 report the stop to the frontend. */
3275
3276 static void
3277 infrun_thread_stop_requested (ptid_t ptid)
3278 {
3279 process_stratum_target *curr_target = current_inferior ()->process_target ();
3280
3281 /* PTID was requested to stop. If the thread was already stopped,
3282 but the user/frontend doesn't know about that yet (e.g., the
3283 thread had been temporarily paused for some step-over), set up
3284 for reporting the stop now. */
3285 for (thread_info *tp : all_threads (curr_target, ptid))
3286 {
3287 if (tp->state != THREAD_RUNNING)
3288 continue;
3289 if (tp->executing)
3290 continue;
3291
3292 /* Remove matching threads from the step-over queue, so
3293 start_step_over doesn't try to resume them
3294 automatically. */
3295 if (thread_is_in_step_over_chain (tp))
3296 thread_step_over_chain_remove (tp);
3297
3298 /* If the thread is stopped, but the user/frontend doesn't
3299 know about that yet, queue a pending event, as if the
3300 thread had just stopped now. Unless the thread already had
3301 a pending event. */
3302 if (!tp->suspend.waitstatus_pending_p)
3303 {
3304 tp->suspend.waitstatus_pending_p = 1;
3305 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3306 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3307 }
3308
3309 /* Clear the inline-frame state, since we're re-processing the
3310 stop. */
3311 clear_inline_frame_state (tp);
3312
3313 /* If this thread was paused because some other thread was
3314 doing an inline-step over, let that finish first. Once
3315 that happens, we'll restart all threads and consume pending
3316 stop events then. */
3317 if (step_over_info_valid_p ())
3318 continue;
3319
3320 /* Otherwise we can process the (new) pending event now. Set
3321 it so this pending event is considered by
3322 do_target_wait. */
3323 tp->resumed = true;
3324 }
3325 }
3326
3327 static void
3328 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3329 {
3330 if (target_last_proc_target == tp->inf->process_target ()
3331 && target_last_wait_ptid == tp->ptid)
3332 nullify_last_target_wait_ptid ();
3333 }
3334
3335 /* Delete the step resume, single-step and longjmp/exception resume
3336 breakpoints of TP. */
3337
3338 static void
3339 delete_thread_infrun_breakpoints (struct thread_info *tp)
3340 {
3341 delete_step_resume_breakpoint (tp);
3342 delete_exception_resume_breakpoint (tp);
3343 delete_single_step_breakpoints (tp);
3344 }
3345
3346 /* If the target still has execution, call FUNC for each thread that
3347 just stopped. In all-stop, that's all the non-exited threads; in
3348 non-stop, that's the current thread, only. */
3349
3350 typedef void (*for_each_just_stopped_thread_callback_func)
3351 (struct thread_info *tp);
3352
3353 static void
3354 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3355 {
3356 if (!target_has_execution || inferior_ptid == null_ptid)
3357 return;
3358
3359 if (target_is_non_stop_p ())
3360 {
3361 /* If in non-stop mode, only the current thread stopped. */
3362 func (inferior_thread ());
3363 }
3364 else
3365 {
3366 /* In all-stop mode, all threads have stopped. */
3367 for (thread_info *tp : all_non_exited_threads ())
3368 func (tp);
3369 }
3370 }
3371
3372 /* Delete the step resume and longjmp/exception resume breakpoints of
3373 the threads that just stopped. */
3374
3375 static void
3376 delete_just_stopped_threads_infrun_breakpoints (void)
3377 {
3378 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3379 }
3380
3381 /* Delete the single-step breakpoints of the threads that just
3382 stopped. */
3383
3384 static void
3385 delete_just_stopped_threads_single_step_breakpoints (void)
3386 {
3387 for_each_just_stopped_thread (delete_single_step_breakpoints);
3388 }
3389
3390 /* See infrun.h. */
3391
3392 void
3393 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3394 const struct target_waitstatus *ws)
3395 {
3396 std::string status_string = target_waitstatus_to_string (ws);
3397 string_file stb;
3398
3399 /* The text is split over several lines because it was getting too long.
3400 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3401 output as a unit; we want only one timestamp printed if debug_timestamp
3402 is set. */
3403
3404 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3405 waiton_ptid.pid (),
3406 waiton_ptid.lwp (),
3407 waiton_ptid.tid ());
3408 if (waiton_ptid.pid () != -1)
3409 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3410 stb.printf (", status) =\n");
3411 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3412 result_ptid.pid (),
3413 result_ptid.lwp (),
3414 result_ptid.tid (),
3415 target_pid_to_str (result_ptid).c_str ());
3416 stb.printf ("infrun: %s\n", status_string.c_str ());
3417
3418 /* This uses %s in part to handle %'s in the text, but also to avoid
3419 a gcc error: the format attribute requires a string literal. */
3420 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3421 }
3422
3423 /* Select a thread at random, out of those which are resumed and have
3424 had events. */
3425
3426 static struct thread_info *
3427 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3428 {
3429 int num_events = 0;
3430
3431 auto has_event = [&] (thread_info *tp)
3432 {
3433 return (tp->ptid.matches (waiton_ptid)
3434 && tp->resumed
3435 && tp->suspend.waitstatus_pending_p);
3436 };
3437
3438 /* First see how many events we have. Count only resumed threads
3439 that have an event pending. */
3440 for (thread_info *tp : inf->non_exited_threads ())
3441 if (has_event (tp))
3442 num_events++;
3443
3444 if (num_events == 0)
3445 return NULL;
3446
3447 /* Now randomly pick a thread out of those that have had events. */
3448 int random_selector = (int) ((num_events * (double) rand ())
3449 / (RAND_MAX + 1.0));
3450
3451 if (debug_infrun && num_events > 1)
3452 fprintf_unfiltered (gdb_stdlog,
3453 "infrun: Found %d events, selecting #%d\n",
3454 num_events, random_selector);
3455
3456 /* Select the Nth thread that has had an event. */
3457 for (thread_info *tp : inf->non_exited_threads ())
3458 if (has_event (tp))
3459 if (random_selector-- == 0)
3460 return tp;
3461
3462 gdb_assert_not_reached ("event thread not found");
3463 }
3464
3465 /* Wrapper for target_wait that first checks whether threads have
3466 pending statuses to report before actually asking the target for
3467 more events. INF is the inferior we're using to call target_wait
3468 on. */
3469
3470 static ptid_t
3471 do_target_wait_1 (inferior *inf, ptid_t ptid,
3472 target_waitstatus *status, int options)
3473 {
3474 ptid_t event_ptid;
3475 struct thread_info *tp;
3476
3477 /* We know that we are looking for an event in the target of inferior
3478 INF, but we don't know which thread the event might come from. As
3479 such we want to make sure that INFERIOR_PTID is reset so that none of
3480 the wait code relies on it - doing so is always a mistake. */
3481 switch_to_inferior_no_thread (inf);
3482
3483 /* First check if there is a resumed thread with a wait status
3484 pending. */
3485 if (ptid == minus_one_ptid || ptid.is_pid ())
3486 {
3487 tp = random_pending_event_thread (inf, ptid);
3488 }
3489 else
3490 {
3491 if (debug_infrun)
3492 fprintf_unfiltered (gdb_stdlog,
3493 "infrun: Waiting for specific thread %s.\n",
3494 target_pid_to_str (ptid).c_str ());
3495
3496 /* We have a specific thread to check. */
3497 tp = find_thread_ptid (inf, ptid);
3498 gdb_assert (tp != NULL);
3499 if (!tp->suspend.waitstatus_pending_p)
3500 tp = NULL;
3501 }
3502
3503 if (tp != NULL
3504 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3505 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3506 {
3507 struct regcache *regcache = get_thread_regcache (tp);
3508 struct gdbarch *gdbarch = regcache->arch ();
3509 CORE_ADDR pc;
3510 int discard = 0;
3511
3512 pc = regcache_read_pc (regcache);
3513
3514 if (pc != tp->suspend.stop_pc)
3515 {
3516 if (debug_infrun)
3517 fprintf_unfiltered (gdb_stdlog,
3518 "infrun: PC of %s changed. was=%s, now=%s\n",
3519 target_pid_to_str (tp->ptid).c_str (),
3520 paddress (gdbarch, tp->suspend.stop_pc),
3521 paddress (gdbarch, pc));
3522 discard = 1;
3523 }
3524 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3525 {
3526 if (debug_infrun)
3527 fprintf_unfiltered (gdb_stdlog,
3528 "infrun: previous breakpoint of %s, at %s gone\n",
3529 target_pid_to_str (tp->ptid).c_str (),
3530 paddress (gdbarch, pc));
3531
3532 discard = 1;
3533 }
3534
3535 if (discard)
3536 {
3537 if (debug_infrun)
3538 fprintf_unfiltered (gdb_stdlog,
3539 "infrun: pending event of %s cancelled.\n",
3540 target_pid_to_str (tp->ptid).c_str ());
3541
3542 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3543 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3544 }
3545 }
3546
3547 if (tp != NULL)
3548 {
3549 if (debug_infrun)
3550 {
3551 std::string statstr
3552 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3553
3554 fprintf_unfiltered (gdb_stdlog,
3555 "infrun: Using pending wait status %s for %s.\n",
3556 statstr.c_str (),
3557 target_pid_to_str (tp->ptid).c_str ());
3558 }
3559
3560 /* Now that we've selected our final event LWP, un-adjust its PC
3561 if it was a software breakpoint (and the target doesn't
3562 always adjust the PC itself). */
3563 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3564 && !target_supports_stopped_by_sw_breakpoint ())
3565 {
3566 struct regcache *regcache;
3567 struct gdbarch *gdbarch;
3568 int decr_pc;
3569
3570 regcache = get_thread_regcache (tp);
3571 gdbarch = regcache->arch ();
3572
3573 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3574 if (decr_pc != 0)
3575 {
3576 CORE_ADDR pc;
3577
3578 pc = regcache_read_pc (regcache);
3579 regcache_write_pc (regcache, pc + decr_pc);
3580 }
3581 }
3582
3583 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3584 *status = tp->suspend.waitstatus;
3585 tp->suspend.waitstatus_pending_p = 0;
3586
3587 /* Wake up the event loop again, until all pending events are
3588 processed. */
3589 if (target_is_async_p ())
3590 mark_async_event_handler (infrun_async_inferior_event_token);
3591 return tp->ptid;
3592 }
3593
3594 /* But if we don't find one, we'll have to wait. */
3595
3596 if (deprecated_target_wait_hook)
3597 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3598 else
3599 event_ptid = target_wait (ptid, status, options);
3600
3601 return event_ptid;
3602 }
3603
3604 /* Returns true if INF has any resumed thread with a status
3605 pending. */
3606
3607 static bool
3608 threads_are_resumed_pending_p (inferior *inf)
3609 {
3610 for (thread_info *tp : inf->non_exited_threads ())
3611 if (tp->resumed
3612 && tp->suspend.waitstatus_pending_p)
3613 return true;
3614
3615 return false;
3616 }
3617
3618 /* Wrapper for target_wait that first checks whether threads have
3619 pending statuses to report before actually asking the target for
3620 more events. Polls for events from all inferiors/targets. */
3621
3622 static bool
3623 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3624 {
3625 int num_inferiors = 0;
3626 int random_selector;
3627
3628 /* For fairness, we pick the first inferior/target to poll at
3629 random, and then continue polling the rest of the inferior list
3630 starting from that one in a circular fashion until the whole list
3631 is polled once. */
3632
3633 auto inferior_matches = [&wait_ptid] (inferior *inf)
3634 {
3635 return (inf->process_target () != NULL
3636 && (threads_are_executing (inf->process_target ())
3637 || threads_are_resumed_pending_p (inf))
3638 && ptid_t (inf->pid).matches (wait_ptid));
3639 };
3640
3641 /* First see how many resumed inferiors we have. */
3642 for (inferior *inf : all_inferiors ())
3643 if (inferior_matches (inf))
3644 num_inferiors++;
3645
3646 if (num_inferiors == 0)
3647 {
3648 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3649 return false;
3650 }
3651
3652 /* Now randomly pick an inferior out of those that were resumed. */
3653 random_selector = (int)
3654 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3655
3656 if (debug_infrun && num_inferiors > 1)
3657 fprintf_unfiltered (gdb_stdlog,
3658 "infrun: Found %d inferiors, starting at #%d\n",
3659 num_inferiors, random_selector);
3660
3661 /* Select the Nth inferior that was resumed. */
3662
3663 inferior *selected = nullptr;
3664
3665 for (inferior *inf : all_inferiors ())
3666 if (inferior_matches (inf))
3667 if (random_selector-- == 0)
3668 {
3669 selected = inf;
3670 break;
3671 }
3672
3673 /* Now poll for events out of each of the resumed inferior's
3674 targets, starting from the selected one. */
3675
3676 auto do_wait = [&] (inferior *inf)
3677 {
3678 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3679 ecs->target = inf->process_target ();
3680 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3681 };
3682
3683 /* Needed in all-stop+target-non-stop mode, because we end up here
3684 spuriously after the target is all stopped and we've already
3685 reported the stop to the user, polling for events. */
3686 scoped_restore_current_thread restore_thread;
3687
3688 int inf_num = selected->num;
3689 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3690 if (inferior_matches (inf))
3691 if (do_wait (inf))
3692 return true;
3693
3694 for (inferior *inf = inferior_list;
3695 inf != NULL && inf->num < inf_num;
3696 inf = inf->next)
3697 if (inferior_matches (inf))
3698 if (do_wait (inf))
3699 return true;
3700
3701 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3702 return false;
3703 }
3704
3705 /* Prepare and stabilize the inferior for detaching it. E.g.,
3706 detaching while a thread is displaced stepping is a recipe for
3707 crashing it, as nothing would readjust the PC out of the scratch
3708 pad. */
3709
3710 void
3711 prepare_for_detach (void)
3712 {
3713 struct inferior *inf = current_inferior ();
3714 ptid_t pid_ptid = ptid_t (inf->pid);
3715
3716 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3717
3718 /* Is any thread of this process displaced stepping? If not,
3719 there's nothing else to do. */
3720 if (displaced->step_thread == nullptr)
3721 return;
3722
3723 if (debug_infrun)
3724 fprintf_unfiltered (gdb_stdlog,
3725 "displaced-stepping in-process while detaching");
3726
3727 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3728
3729 while (displaced->step_thread != nullptr)
3730 {
3731 struct execution_control_state ecss;
3732 struct execution_control_state *ecs;
3733
3734 ecs = &ecss;
3735 memset (ecs, 0, sizeof (*ecs));
3736
3737 overlay_cache_invalid = 1;
3738 /* Flush target cache before starting to handle each event.
3739 Target was running and cache could be stale. This is just a
3740 heuristic. Running threads may modify target memory, but we
3741 don't get any event. */
3742 target_dcache_invalidate ();
3743
3744 do_target_wait (pid_ptid, ecs, 0);
3745
3746 if (debug_infrun)
3747 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3748
3749 /* If an error happens while handling the event, propagate GDB's
3750 knowledge of the executing state to the frontend/user running
3751 state. */
3752 scoped_finish_thread_state finish_state (inf->process_target (),
3753 minus_one_ptid);
3754
3755 /* Now figure out what to do with the result of the result. */
3756 handle_inferior_event (ecs);
3757
3758 /* No error, don't finish the state yet. */
3759 finish_state.release ();
3760
3761 /* Breakpoints and watchpoints are not installed on the target
3762 at this point, and signals are passed directly to the
3763 inferior, so this must mean the process is gone. */
3764 if (!ecs->wait_some_more)
3765 {
3766 restore_detaching.release ();
3767 error (_("Program exited while detaching"));
3768 }
3769 }
3770
3771 restore_detaching.release ();
3772 }
3773
3774 /* Wait for control to return from inferior to debugger.
3775
3776 If inferior gets a signal, we may decide to start it up again
3777 instead of returning. That is why there is a loop in this function.
3778 When this function actually returns it means the inferior
3779 should be left stopped and GDB should read more commands. */
3780
3781 static void
3782 wait_for_inferior (inferior *inf)
3783 {
3784 if (debug_infrun)
3785 fprintf_unfiltered
3786 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3787
3788 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3789
3790 /* If an error happens while handling the event, propagate GDB's
3791 knowledge of the executing state to the frontend/user running
3792 state. */
3793 scoped_finish_thread_state finish_state
3794 (inf->process_target (), minus_one_ptid);
3795
3796 while (1)
3797 {
3798 struct execution_control_state ecss;
3799 struct execution_control_state *ecs = &ecss;
3800
3801 memset (ecs, 0, sizeof (*ecs));
3802
3803 overlay_cache_invalid = 1;
3804
3805 /* Flush target cache before starting to handle each event.
3806 Target was running and cache could be stale. This is just a
3807 heuristic. Running threads may modify target memory, but we
3808 don't get any event. */
3809 target_dcache_invalidate ();
3810
3811 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3812 ecs->target = inf->process_target ();
3813
3814 if (debug_infrun)
3815 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3816
3817 /* Now figure out what to do with the result of the result. */
3818 handle_inferior_event (ecs);
3819
3820 if (!ecs->wait_some_more)
3821 break;
3822 }
3823
3824 /* No error, don't finish the state yet. */
3825 finish_state.release ();
3826 }
3827
3828 /* Cleanup that reinstalls the readline callback handler, if the
3829 target is running in the background. If while handling the target
3830 event something triggered a secondary prompt, like e.g., a
3831 pagination prompt, we'll have removed the callback handler (see
3832 gdb_readline_wrapper_line). Need to do this as we go back to the
3833 event loop, ready to process further input. Note this has no
3834 effect if the handler hasn't actually been removed, because calling
3835 rl_callback_handler_install resets the line buffer, thus losing
3836 input. */
3837
3838 static void
3839 reinstall_readline_callback_handler_cleanup ()
3840 {
3841 struct ui *ui = current_ui;
3842
3843 if (!ui->async)
3844 {
3845 /* We're not going back to the top level event loop yet. Don't
3846 install the readline callback, as it'd prep the terminal,
3847 readline-style (raw, noecho) (e.g., --batch). We'll install
3848 it the next time the prompt is displayed, when we're ready
3849 for input. */
3850 return;
3851 }
3852
3853 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3854 gdb_rl_callback_handler_reinstall ();
3855 }
3856
3857 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3858 that's just the event thread. In all-stop, that's all threads. */
3859
3860 static void
3861 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3862 {
3863 if (ecs->event_thread != NULL
3864 && ecs->event_thread->thread_fsm != NULL)
3865 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3866
3867 if (!non_stop)
3868 {
3869 for (thread_info *thr : all_non_exited_threads ())
3870 {
3871 if (thr->thread_fsm == NULL)
3872 continue;
3873 if (thr == ecs->event_thread)
3874 continue;
3875
3876 switch_to_thread (thr);
3877 thr->thread_fsm->clean_up (thr);
3878 }
3879
3880 if (ecs->event_thread != NULL)
3881 switch_to_thread (ecs->event_thread);
3882 }
3883 }
3884
3885 /* Helper for all_uis_check_sync_execution_done that works on the
3886 current UI. */
3887
3888 static void
3889 check_curr_ui_sync_execution_done (void)
3890 {
3891 struct ui *ui = current_ui;
3892
3893 if (ui->prompt_state == PROMPT_NEEDED
3894 && ui->async
3895 && !gdb_in_secondary_prompt_p (ui))
3896 {
3897 target_terminal::ours ();
3898 gdb::observers::sync_execution_done.notify ();
3899 ui_register_input_event_handler (ui);
3900 }
3901 }
3902
3903 /* See infrun.h. */
3904
3905 void
3906 all_uis_check_sync_execution_done (void)
3907 {
3908 SWITCH_THRU_ALL_UIS ()
3909 {
3910 check_curr_ui_sync_execution_done ();
3911 }
3912 }
3913
3914 /* See infrun.h. */
3915
3916 void
3917 all_uis_on_sync_execution_starting (void)
3918 {
3919 SWITCH_THRU_ALL_UIS ()
3920 {
3921 if (current_ui->prompt_state == PROMPT_NEEDED)
3922 async_disable_stdin ();
3923 }
3924 }
3925
3926 /* Asynchronous version of wait_for_inferior. It is called by the
3927 event loop whenever a change of state is detected on the file
3928 descriptor corresponding to the target. It can be called more than
3929 once to complete a single execution command. In such cases we need
3930 to keep the state in a global variable ECSS. If it is the last time
3931 that this function is called for a single execution command, then
3932 report to the user that the inferior has stopped, and do the
3933 necessary cleanups. */
3934
3935 void
3936 fetch_inferior_event ()
3937 {
3938 struct execution_control_state ecss;
3939 struct execution_control_state *ecs = &ecss;
3940 int cmd_done = 0;
3941
3942 memset (ecs, 0, sizeof (*ecs));
3943
3944 /* Events are always processed with the main UI as current UI. This
3945 way, warnings, debug output, etc. are always consistently sent to
3946 the main console. */
3947 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3948
3949 /* End up with readline processing input, if necessary. */
3950 {
3951 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3952
3953 /* We're handling a live event, so make sure we're doing live
3954 debugging. If we're looking at traceframes while the target is
3955 running, we're going to need to get back to that mode after
3956 handling the event. */
3957 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3958 if (non_stop)
3959 {
3960 maybe_restore_traceframe.emplace ();
3961 set_current_traceframe (-1);
3962 }
3963
3964 /* The user/frontend should not notice a thread switch due to
3965 internal events. Make sure we revert to the user selected
3966 thread and frame after handling the event and running any
3967 breakpoint commands. */
3968 scoped_restore_current_thread restore_thread;
3969
3970 overlay_cache_invalid = 1;
3971 /* Flush target cache before starting to handle each event. Target
3972 was running and cache could be stale. This is just a heuristic.
3973 Running threads may modify target memory, but we don't get any
3974 event. */
3975 target_dcache_invalidate ();
3976
3977 scoped_restore save_exec_dir
3978 = make_scoped_restore (&execution_direction,
3979 target_execution_direction ());
3980
3981 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3982 return;
3983
3984 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3985
3986 /* Switch to the target that generated the event, so we can do
3987 target calls. Any inferior bound to the target will do, so we
3988 just switch to the first we find. */
3989 for (inferior *inf : all_inferiors (ecs->target))
3990 {
3991 switch_to_inferior_no_thread (inf);
3992 break;
3993 }
3994
3995 if (debug_infrun)
3996 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3997
3998 /* If an error happens while handling the event, propagate GDB's
3999 knowledge of the executing state to the frontend/user running
4000 state. */
4001 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
4002 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
4003
4004 /* Get executed before scoped_restore_current_thread above to apply
4005 still for the thread which has thrown the exception. */
4006 auto defer_bpstat_clear
4007 = make_scope_exit (bpstat_clear_actions);
4008 auto defer_delete_threads
4009 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4010
4011 /* Now figure out what to do with the result of the result. */
4012 handle_inferior_event (ecs);
4013
4014 if (!ecs->wait_some_more)
4015 {
4016 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4017 int should_stop = 1;
4018 struct thread_info *thr = ecs->event_thread;
4019
4020 delete_just_stopped_threads_infrun_breakpoints ();
4021
4022 if (thr != NULL)
4023 {
4024 struct thread_fsm *thread_fsm = thr->thread_fsm;
4025
4026 if (thread_fsm != NULL)
4027 should_stop = thread_fsm->should_stop (thr);
4028 }
4029
4030 if (!should_stop)
4031 {
4032 keep_going (ecs);
4033 }
4034 else
4035 {
4036 bool should_notify_stop = true;
4037 int proceeded = 0;
4038
4039 clean_up_just_stopped_threads_fsms (ecs);
4040
4041 if (thr != NULL && thr->thread_fsm != NULL)
4042 should_notify_stop = thr->thread_fsm->should_notify_stop ();
4043
4044 if (should_notify_stop)
4045 {
4046 /* We may not find an inferior if this was a process exit. */
4047 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4048 proceeded = normal_stop ();
4049 }
4050
4051 if (!proceeded)
4052 {
4053 inferior_event_handler (INF_EXEC_COMPLETE);
4054 cmd_done = 1;
4055 }
4056
4057 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4058 previously selected thread is gone. We have two
4059 choices - switch to no thread selected, or restore the
4060 previously selected thread (now exited). We chose the
4061 later, just because that's what GDB used to do. After
4062 this, "info threads" says "The current thread <Thread
4063 ID 2> has terminated." instead of "No thread
4064 selected.". */
4065 if (!non_stop
4066 && cmd_done
4067 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4068 restore_thread.dont_restore ();
4069 }
4070 }
4071
4072 defer_delete_threads.release ();
4073 defer_bpstat_clear.release ();
4074
4075 /* No error, don't finish the thread states yet. */
4076 finish_state.release ();
4077
4078 /* This scope is used to ensure that readline callbacks are
4079 reinstalled here. */
4080 }
4081
4082 /* If a UI was in sync execution mode, and now isn't, restore its
4083 prompt (a synchronous execution command has finished, and we're
4084 ready for input). */
4085 all_uis_check_sync_execution_done ();
4086
4087 if (cmd_done
4088 && exec_done_display_p
4089 && (inferior_ptid == null_ptid
4090 || inferior_thread ()->state != THREAD_RUNNING))
4091 printf_unfiltered (_("completed.\n"));
4092 }
4093
4094 /* See infrun.h. */
4095
4096 void
4097 set_step_info (thread_info *tp, struct frame_info *frame,
4098 struct symtab_and_line sal)
4099 {
4100 /* This can be removed once this function no longer implicitly relies on the
4101 inferior_ptid value. */
4102 gdb_assert (inferior_ptid == tp->ptid);
4103
4104 tp->control.step_frame_id = get_frame_id (frame);
4105 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4106
4107 tp->current_symtab = sal.symtab;
4108 tp->current_line = sal.line;
4109 }
4110
4111 /* Clear context switchable stepping state. */
4112
4113 void
4114 init_thread_stepping_state (struct thread_info *tss)
4115 {
4116 tss->stepped_breakpoint = 0;
4117 tss->stepping_over_breakpoint = 0;
4118 tss->stepping_over_watchpoint = 0;
4119 tss->step_after_step_resume_breakpoint = 0;
4120 }
4121
4122 /* See infrun.h. */
4123
4124 void
4125 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4126 target_waitstatus status)
4127 {
4128 target_last_proc_target = target;
4129 target_last_wait_ptid = ptid;
4130 target_last_waitstatus = status;
4131 }
4132
4133 /* See infrun.h. */
4134
4135 void
4136 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4137 target_waitstatus *status)
4138 {
4139 if (target != nullptr)
4140 *target = target_last_proc_target;
4141 if (ptid != nullptr)
4142 *ptid = target_last_wait_ptid;
4143 if (status != nullptr)
4144 *status = target_last_waitstatus;
4145 }
4146
4147 /* See infrun.h. */
4148
4149 void
4150 nullify_last_target_wait_ptid (void)
4151 {
4152 target_last_proc_target = nullptr;
4153 target_last_wait_ptid = minus_one_ptid;
4154 target_last_waitstatus = {};
4155 }
4156
4157 /* Switch thread contexts. */
4158
4159 static void
4160 context_switch (execution_control_state *ecs)
4161 {
4162 if (debug_infrun
4163 && ecs->ptid != inferior_ptid
4164 && (inferior_ptid == null_ptid
4165 || ecs->event_thread != inferior_thread ()))
4166 {
4167 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4168 target_pid_to_str (inferior_ptid).c_str ());
4169 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4170 target_pid_to_str (ecs->ptid).c_str ());
4171 }
4172
4173 switch_to_thread (ecs->event_thread);
4174 }
4175
4176 /* If the target can't tell whether we've hit breakpoints
4177 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4178 check whether that could have been caused by a breakpoint. If so,
4179 adjust the PC, per gdbarch_decr_pc_after_break. */
4180
4181 static void
4182 adjust_pc_after_break (struct thread_info *thread,
4183 struct target_waitstatus *ws)
4184 {
4185 struct regcache *regcache;
4186 struct gdbarch *gdbarch;
4187 CORE_ADDR breakpoint_pc, decr_pc;
4188
4189 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4190 we aren't, just return.
4191
4192 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4193 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4194 implemented by software breakpoints should be handled through the normal
4195 breakpoint layer.
4196
4197 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4198 different signals (SIGILL or SIGEMT for instance), but it is less
4199 clear where the PC is pointing afterwards. It may not match
4200 gdbarch_decr_pc_after_break. I don't know any specific target that
4201 generates these signals at breakpoints (the code has been in GDB since at
4202 least 1992) so I can not guess how to handle them here.
4203
4204 In earlier versions of GDB, a target with
4205 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4206 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4207 target with both of these set in GDB history, and it seems unlikely to be
4208 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4209
4210 if (ws->kind != TARGET_WAITKIND_STOPPED)
4211 return;
4212
4213 if (ws->value.sig != GDB_SIGNAL_TRAP)
4214 return;
4215
4216 /* In reverse execution, when a breakpoint is hit, the instruction
4217 under it has already been de-executed. The reported PC always
4218 points at the breakpoint address, so adjusting it further would
4219 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4220 architecture:
4221
4222 B1 0x08000000 : INSN1
4223 B2 0x08000001 : INSN2
4224 0x08000002 : INSN3
4225 PC -> 0x08000003 : INSN4
4226
4227 Say you're stopped at 0x08000003 as above. Reverse continuing
4228 from that point should hit B2 as below. Reading the PC when the
4229 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4230 been de-executed already.
4231
4232 B1 0x08000000 : INSN1
4233 B2 PC -> 0x08000001 : INSN2
4234 0x08000002 : INSN3
4235 0x08000003 : INSN4
4236
4237 We can't apply the same logic as for forward execution, because
4238 we would wrongly adjust the PC to 0x08000000, since there's a
4239 breakpoint at PC - 1. We'd then report a hit on B1, although
4240 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4241 behaviour. */
4242 if (execution_direction == EXEC_REVERSE)
4243 return;
4244
4245 /* If the target can tell whether the thread hit a SW breakpoint,
4246 trust it. Targets that can tell also adjust the PC
4247 themselves. */
4248 if (target_supports_stopped_by_sw_breakpoint ())
4249 return;
4250
4251 /* Note that relying on whether a breakpoint is planted in memory to
4252 determine this can fail. E.g,. the breakpoint could have been
4253 removed since. Or the thread could have been told to step an
4254 instruction the size of a breakpoint instruction, and only
4255 _after_ was a breakpoint inserted at its address. */
4256
4257 /* If this target does not decrement the PC after breakpoints, then
4258 we have nothing to do. */
4259 regcache = get_thread_regcache (thread);
4260 gdbarch = regcache->arch ();
4261
4262 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4263 if (decr_pc == 0)
4264 return;
4265
4266 const address_space *aspace = regcache->aspace ();
4267
4268 /* Find the location where (if we've hit a breakpoint) the
4269 breakpoint would be. */
4270 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4271
4272 /* If the target can't tell whether a software breakpoint triggered,
4273 fallback to figuring it out based on breakpoints we think were
4274 inserted in the target, and on whether the thread was stepped or
4275 continued. */
4276
4277 /* Check whether there actually is a software breakpoint inserted at
4278 that location.
4279
4280 If in non-stop mode, a race condition is possible where we've
4281 removed a breakpoint, but stop events for that breakpoint were
4282 already queued and arrive later. To suppress those spurious
4283 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4284 and retire them after a number of stop events are reported. Note
4285 this is an heuristic and can thus get confused. The real fix is
4286 to get the "stopped by SW BP and needs adjustment" info out of
4287 the target/kernel (and thus never reach here; see above). */
4288 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4289 || (target_is_non_stop_p ()
4290 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4291 {
4292 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4293
4294 if (record_full_is_used ())
4295 restore_operation_disable.emplace
4296 (record_full_gdb_operation_disable_set ());
4297
4298 /* When using hardware single-step, a SIGTRAP is reported for both
4299 a completed single-step and a software breakpoint. Need to
4300 differentiate between the two, as the latter needs adjusting
4301 but the former does not.
4302
4303 The SIGTRAP can be due to a completed hardware single-step only if
4304 - we didn't insert software single-step breakpoints
4305 - this thread is currently being stepped
4306
4307 If any of these events did not occur, we must have stopped due
4308 to hitting a software breakpoint, and have to back up to the
4309 breakpoint address.
4310
4311 As a special case, we could have hardware single-stepped a
4312 software breakpoint. In this case (prev_pc == breakpoint_pc),
4313 we also need to back up to the breakpoint address. */
4314
4315 if (thread_has_single_step_breakpoints_set (thread)
4316 || !currently_stepping (thread)
4317 || (thread->stepped_breakpoint
4318 && thread->prev_pc == breakpoint_pc))
4319 regcache_write_pc (regcache, breakpoint_pc);
4320 }
4321 }
4322
4323 static int
4324 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4325 {
4326 for (frame = get_prev_frame (frame);
4327 frame != NULL;
4328 frame = get_prev_frame (frame))
4329 {
4330 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4331 return 1;
4332 if (get_frame_type (frame) != INLINE_FRAME)
4333 break;
4334 }
4335
4336 return 0;
4337 }
4338
4339 /* Look for an inline frame that is marked for skip.
4340 If PREV_FRAME is TRUE start at the previous frame,
4341 otherwise start at the current frame. Stop at the
4342 first non-inline frame, or at the frame where the
4343 step started. */
4344
4345 static bool
4346 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4347 {
4348 struct frame_info *frame = get_current_frame ();
4349
4350 if (prev_frame)
4351 frame = get_prev_frame (frame);
4352
4353 for (; frame != NULL; frame = get_prev_frame (frame))
4354 {
4355 const char *fn = NULL;
4356 symtab_and_line sal;
4357 struct symbol *sym;
4358
4359 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4360 break;
4361 if (get_frame_type (frame) != INLINE_FRAME)
4362 break;
4363
4364 sal = find_frame_sal (frame);
4365 sym = get_frame_function (frame);
4366
4367 if (sym != NULL)
4368 fn = sym->print_name ();
4369
4370 if (sal.line != 0
4371 && function_name_is_marked_for_skip (fn, sal))
4372 return true;
4373 }
4374
4375 return false;
4376 }
4377
4378 /* If the event thread has the stop requested flag set, pretend it
4379 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4380 target_stop). */
4381
4382 static bool
4383 handle_stop_requested (struct execution_control_state *ecs)
4384 {
4385 if (ecs->event_thread->stop_requested)
4386 {
4387 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4388 ecs->ws.value.sig = GDB_SIGNAL_0;
4389 handle_signal_stop (ecs);
4390 return true;
4391 }
4392 return false;
4393 }
4394
4395 /* Auxiliary function that handles syscall entry/return events.
4396 It returns 1 if the inferior should keep going (and GDB
4397 should ignore the event), or 0 if the event deserves to be
4398 processed. */
4399
4400 static int
4401 handle_syscall_event (struct execution_control_state *ecs)
4402 {
4403 struct regcache *regcache;
4404 int syscall_number;
4405
4406 context_switch (ecs);
4407
4408 regcache = get_thread_regcache (ecs->event_thread);
4409 syscall_number = ecs->ws.value.syscall_number;
4410 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4411
4412 if (catch_syscall_enabled () > 0
4413 && catching_syscall_number (syscall_number) > 0)
4414 {
4415 if (debug_infrun)
4416 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4417 syscall_number);
4418
4419 ecs->event_thread->control.stop_bpstat
4420 = bpstat_stop_status (regcache->aspace (),
4421 ecs->event_thread->suspend.stop_pc,
4422 ecs->event_thread, &ecs->ws);
4423
4424 if (handle_stop_requested (ecs))
4425 return 0;
4426
4427 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4428 {
4429 /* Catchpoint hit. */
4430 return 0;
4431 }
4432 }
4433
4434 if (handle_stop_requested (ecs))
4435 return 0;
4436
4437 /* If no catchpoint triggered for this, then keep going. */
4438 keep_going (ecs);
4439 return 1;
4440 }
4441
4442 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4443
4444 static void
4445 fill_in_stop_func (struct gdbarch *gdbarch,
4446 struct execution_control_state *ecs)
4447 {
4448 if (!ecs->stop_func_filled_in)
4449 {
4450 const block *block;
4451
4452 /* Don't care about return value; stop_func_start and stop_func_name
4453 will both be 0 if it doesn't work. */
4454 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4455 &ecs->stop_func_name,
4456 &ecs->stop_func_start,
4457 &ecs->stop_func_end,
4458 &block);
4459
4460 /* The call to find_pc_partial_function, above, will set
4461 stop_func_start and stop_func_end to the start and end
4462 of the range containing the stop pc. If this range
4463 contains the entry pc for the block (which is always the
4464 case for contiguous blocks), advance stop_func_start past
4465 the function's start offset and entrypoint. Note that
4466 stop_func_start is NOT advanced when in a range of a
4467 non-contiguous block that does not contain the entry pc. */
4468 if (block != nullptr
4469 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4470 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4471 {
4472 ecs->stop_func_start
4473 += gdbarch_deprecated_function_start_offset (gdbarch);
4474
4475 if (gdbarch_skip_entrypoint_p (gdbarch))
4476 ecs->stop_func_start
4477 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4478 }
4479
4480 ecs->stop_func_filled_in = 1;
4481 }
4482 }
4483
4484
4485 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4486
4487 static enum stop_kind
4488 get_inferior_stop_soon (execution_control_state *ecs)
4489 {
4490 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4491
4492 gdb_assert (inf != NULL);
4493 return inf->control.stop_soon;
4494 }
4495
4496 /* Poll for one event out of the current target. Store the resulting
4497 waitstatus in WS, and return the event ptid. Does not block. */
4498
4499 static ptid_t
4500 poll_one_curr_target (struct target_waitstatus *ws)
4501 {
4502 ptid_t event_ptid;
4503
4504 overlay_cache_invalid = 1;
4505
4506 /* Flush target cache before starting to handle each event.
4507 Target was running and cache could be stale. This is just a
4508 heuristic. Running threads may modify target memory, but we
4509 don't get any event. */
4510 target_dcache_invalidate ();
4511
4512 if (deprecated_target_wait_hook)
4513 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4514 else
4515 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4516
4517 if (debug_infrun)
4518 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4519
4520 return event_ptid;
4521 }
4522
4523 /* An event reported by wait_one. */
4524
4525 struct wait_one_event
4526 {
4527 /* The target the event came out of. */
4528 process_stratum_target *target;
4529
4530 /* The PTID the event was for. */
4531 ptid_t ptid;
4532
4533 /* The waitstatus. */
4534 target_waitstatus ws;
4535 };
4536
4537 /* Wait for one event out of any target. */
4538
4539 static wait_one_event
4540 wait_one ()
4541 {
4542 while (1)
4543 {
4544 for (inferior *inf : all_inferiors ())
4545 {
4546 process_stratum_target *target = inf->process_target ();
4547 if (target == NULL
4548 || !target->is_async_p ()
4549 || !target->threads_executing)
4550 continue;
4551
4552 switch_to_inferior_no_thread (inf);
4553
4554 wait_one_event event;
4555 event.target = target;
4556 event.ptid = poll_one_curr_target (&event.ws);
4557
4558 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4559 {
4560 /* If nothing is resumed, remove the target from the
4561 event loop. */
4562 target_async (0);
4563 }
4564 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4565 return event;
4566 }
4567
4568 /* Block waiting for some event. */
4569
4570 fd_set readfds;
4571 int nfds = 0;
4572
4573 FD_ZERO (&readfds);
4574
4575 for (inferior *inf : all_inferiors ())
4576 {
4577 process_stratum_target *target = inf->process_target ();
4578 if (target == NULL
4579 || !target->is_async_p ()
4580 || !target->threads_executing)
4581 continue;
4582
4583 int fd = target->async_wait_fd ();
4584 FD_SET (fd, &readfds);
4585 if (nfds <= fd)
4586 nfds = fd + 1;
4587 }
4588
4589 if (nfds == 0)
4590 {
4591 /* No waitable targets left. All must be stopped. */
4592 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4593 }
4594
4595 QUIT;
4596
4597 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4598 if (numfds < 0)
4599 {
4600 if (errno == EINTR)
4601 continue;
4602 else
4603 perror_with_name ("interruptible_select");
4604 }
4605 }
4606 }
4607
4608 /* Save the thread's event and stop reason to process it later. */
4609
4610 static void
4611 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4612 {
4613 if (debug_infrun)
4614 {
4615 std::string statstr = target_waitstatus_to_string (ws);
4616
4617 fprintf_unfiltered (gdb_stdlog,
4618 "infrun: saving status %s for %d.%ld.%ld\n",
4619 statstr.c_str (),
4620 tp->ptid.pid (),
4621 tp->ptid.lwp (),
4622 tp->ptid.tid ());
4623 }
4624
4625 /* Record for later. */
4626 tp->suspend.waitstatus = *ws;
4627 tp->suspend.waitstatus_pending_p = 1;
4628
4629 struct regcache *regcache = get_thread_regcache (tp);
4630 const address_space *aspace = regcache->aspace ();
4631
4632 if (ws->kind == TARGET_WAITKIND_STOPPED
4633 && ws->value.sig == GDB_SIGNAL_TRAP)
4634 {
4635 CORE_ADDR pc = regcache_read_pc (regcache);
4636
4637 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4638
4639 scoped_restore_current_thread restore_thread;
4640 switch_to_thread (tp);
4641
4642 if (target_stopped_by_watchpoint ())
4643 {
4644 tp->suspend.stop_reason
4645 = TARGET_STOPPED_BY_WATCHPOINT;
4646 }
4647 else if (target_supports_stopped_by_sw_breakpoint ()
4648 && target_stopped_by_sw_breakpoint ())
4649 {
4650 tp->suspend.stop_reason
4651 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4652 }
4653 else if (target_supports_stopped_by_hw_breakpoint ()
4654 && target_stopped_by_hw_breakpoint ())
4655 {
4656 tp->suspend.stop_reason
4657 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4658 }
4659 else if (!target_supports_stopped_by_hw_breakpoint ()
4660 && hardware_breakpoint_inserted_here_p (aspace,
4661 pc))
4662 {
4663 tp->suspend.stop_reason
4664 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4665 }
4666 else if (!target_supports_stopped_by_sw_breakpoint ()
4667 && software_breakpoint_inserted_here_p (aspace,
4668 pc))
4669 {
4670 tp->suspend.stop_reason
4671 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4672 }
4673 else if (!thread_has_single_step_breakpoints_set (tp)
4674 && currently_stepping (tp))
4675 {
4676 tp->suspend.stop_reason
4677 = TARGET_STOPPED_BY_SINGLE_STEP;
4678 }
4679 }
4680 }
4681
4682 /* Mark the non-executing threads accordingly. In all-stop, all
4683 threads of all processes are stopped when we get any event
4684 reported. In non-stop mode, only the event thread stops. */
4685
4686 static void
4687 mark_non_executing_threads (process_stratum_target *target,
4688 ptid_t event_ptid,
4689 struct target_waitstatus ws)
4690 {
4691 ptid_t mark_ptid;
4692
4693 if (!target_is_non_stop_p ())
4694 mark_ptid = minus_one_ptid;
4695 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4696 || ws.kind == TARGET_WAITKIND_EXITED)
4697 {
4698 /* If we're handling a process exit in non-stop mode, even
4699 though threads haven't been deleted yet, one would think
4700 that there is nothing to do, as threads of the dead process
4701 will be soon deleted, and threads of any other process were
4702 left running. However, on some targets, threads survive a
4703 process exit event. E.g., for the "checkpoint" command,
4704 when the current checkpoint/fork exits, linux-fork.c
4705 automatically switches to another fork from within
4706 target_mourn_inferior, by associating the same
4707 inferior/thread to another fork. We haven't mourned yet at
4708 this point, but we must mark any threads left in the
4709 process as not-executing so that finish_thread_state marks
4710 them stopped (in the user's perspective) if/when we present
4711 the stop to the user. */
4712 mark_ptid = ptid_t (event_ptid.pid ());
4713 }
4714 else
4715 mark_ptid = event_ptid;
4716
4717 set_executing (target, mark_ptid, false);
4718
4719 /* Likewise the resumed flag. */
4720 set_resumed (target, mark_ptid, false);
4721 }
4722
4723 /* See infrun.h. */
4724
4725 void
4726 stop_all_threads (void)
4727 {
4728 /* We may need multiple passes to discover all threads. */
4729 int pass;
4730 int iterations = 0;
4731
4732 gdb_assert (exists_non_stop_target ());
4733
4734 if (debug_infrun)
4735 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4736
4737 scoped_restore_current_thread restore_thread;
4738
4739 /* Enable thread events of all targets. */
4740 for (auto *target : all_non_exited_process_targets ())
4741 {
4742 switch_to_target_no_thread (target);
4743 target_thread_events (true);
4744 }
4745
4746 SCOPE_EXIT
4747 {
4748 /* Disable thread events of all targets. */
4749 for (auto *target : all_non_exited_process_targets ())
4750 {
4751 switch_to_target_no_thread (target);
4752 target_thread_events (false);
4753 }
4754
4755 if (debug_infrun)
4756 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4757 };
4758
4759 /* Request threads to stop, and then wait for the stops. Because
4760 threads we already know about can spawn more threads while we're
4761 trying to stop them, and we only learn about new threads when we
4762 update the thread list, do this in a loop, and keep iterating
4763 until two passes find no threads that need to be stopped. */
4764 for (pass = 0; pass < 2; pass++, iterations++)
4765 {
4766 if (debug_infrun)
4767 fprintf_unfiltered (gdb_stdlog,
4768 "infrun: stop_all_threads, pass=%d, "
4769 "iterations=%d\n", pass, iterations);
4770 while (1)
4771 {
4772 int waits_needed = 0;
4773
4774 for (auto *target : all_non_exited_process_targets ())
4775 {
4776 switch_to_target_no_thread (target);
4777 update_thread_list ();
4778 }
4779
4780 /* Go through all threads looking for threads that we need
4781 to tell the target to stop. */
4782 for (thread_info *t : all_non_exited_threads ())
4783 {
4784 /* For a single-target setting with an all-stop target,
4785 we would not even arrive here. For a multi-target
4786 setting, until GDB is able to handle a mixture of
4787 all-stop and non-stop targets, simply skip all-stop
4788 targets' threads. This should be fine due to the
4789 protection of 'check_multi_target_resumption'. */
4790
4791 switch_to_thread_no_regs (t);
4792 if (!target_is_non_stop_p ())
4793 continue;
4794
4795 if (t->executing)
4796 {
4797 /* If already stopping, don't request a stop again.
4798 We just haven't seen the notification yet. */
4799 if (!t->stop_requested)
4800 {
4801 if (debug_infrun)
4802 fprintf_unfiltered (gdb_stdlog,
4803 "infrun: %s executing, "
4804 "need stop\n",
4805 target_pid_to_str (t->ptid).c_str ());
4806 target_stop (t->ptid);
4807 t->stop_requested = 1;
4808 }
4809 else
4810 {
4811 if (debug_infrun)
4812 fprintf_unfiltered (gdb_stdlog,
4813 "infrun: %s executing, "
4814 "already stopping\n",
4815 target_pid_to_str (t->ptid).c_str ());
4816 }
4817
4818 if (t->stop_requested)
4819 waits_needed++;
4820 }
4821 else
4822 {
4823 if (debug_infrun)
4824 fprintf_unfiltered (gdb_stdlog,
4825 "infrun: %s not executing\n",
4826 target_pid_to_str (t->ptid).c_str ());
4827
4828 /* The thread may be not executing, but still be
4829 resumed with a pending status to process. */
4830 t->resumed = false;
4831 }
4832 }
4833
4834 if (waits_needed == 0)
4835 break;
4836
4837 /* If we find new threads on the second iteration, restart
4838 over. We want to see two iterations in a row with all
4839 threads stopped. */
4840 if (pass > 0)
4841 pass = -1;
4842
4843 for (int i = 0; i < waits_needed; i++)
4844 {
4845 wait_one_event event = wait_one ();
4846
4847 if (debug_infrun)
4848 {
4849 fprintf_unfiltered (gdb_stdlog,
4850 "infrun: stop_all_threads %s %s\n",
4851 target_waitstatus_to_string (&event.ws).c_str (),
4852 target_pid_to_str (event.ptid).c_str ());
4853 }
4854
4855 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4856 {
4857 /* All resumed threads exited. */
4858 break;
4859 }
4860 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4861 || event.ws.kind == TARGET_WAITKIND_EXITED
4862 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4863 {
4864 /* One thread/process exited/signalled. */
4865
4866 thread_info *t = nullptr;
4867
4868 /* The target may have reported just a pid. If so, try
4869 the first non-exited thread. */
4870 if (event.ptid.is_pid ())
4871 {
4872 int pid = event.ptid.pid ();
4873 inferior *inf = find_inferior_pid (event.target, pid);
4874 for (thread_info *tp : inf->non_exited_threads ())
4875 {
4876 t = tp;
4877 break;
4878 }
4879
4880 /* If there is no available thread, the event would
4881 have to be appended to a per-inferior event list,
4882 which does not exist (and if it did, we'd have
4883 to adjust run control command to be able to
4884 resume such an inferior). We assert here instead
4885 of going into an infinite loop. */
4886 gdb_assert (t != nullptr);
4887
4888 if (debug_infrun)
4889 fprintf_unfiltered (gdb_stdlog,
4890 "infrun: stop_all_threads, using %s\n",
4891 target_pid_to_str (t->ptid).c_str ());
4892 }
4893 else
4894 {
4895 t = find_thread_ptid (event.target, event.ptid);
4896 /* Check if this is the first time we see this thread.
4897 Don't bother adding if it individually exited. */
4898 if (t == nullptr
4899 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4900 t = add_thread (event.target, event.ptid);
4901 }
4902
4903 if (t != nullptr)
4904 {
4905 /* Set the threads as non-executing to avoid
4906 another stop attempt on them. */
4907 switch_to_thread_no_regs (t);
4908 mark_non_executing_threads (event.target, event.ptid,
4909 event.ws);
4910 save_waitstatus (t, &event.ws);
4911 t->stop_requested = false;
4912 }
4913 }
4914 else
4915 {
4916 thread_info *t = find_thread_ptid (event.target, event.ptid);
4917 if (t == NULL)
4918 t = add_thread (event.target, event.ptid);
4919
4920 t->stop_requested = 0;
4921 t->executing = 0;
4922 t->resumed = false;
4923 t->control.may_range_step = 0;
4924
4925 /* This may be the first time we see the inferior report
4926 a stop. */
4927 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4928 if (inf->needs_setup)
4929 {
4930 switch_to_thread_no_regs (t);
4931 setup_inferior (0);
4932 }
4933
4934 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4935 && event.ws.value.sig == GDB_SIGNAL_0)
4936 {
4937 /* We caught the event that we intended to catch, so
4938 there's no event pending. */
4939 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4940 t->suspend.waitstatus_pending_p = 0;
4941
4942 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4943 {
4944 /* Add it back to the step-over queue. */
4945 if (debug_infrun)
4946 {
4947 fprintf_unfiltered (gdb_stdlog,
4948 "infrun: displaced-step of %s "
4949 "canceled: adding back to the "
4950 "step-over queue\n",
4951 target_pid_to_str (t->ptid).c_str ());
4952 }
4953 t->control.trap_expected = 0;
4954 thread_step_over_chain_enqueue (t);
4955 }
4956 }
4957 else
4958 {
4959 enum gdb_signal sig;
4960 struct regcache *regcache;
4961
4962 if (debug_infrun)
4963 {
4964 std::string statstr = target_waitstatus_to_string (&event.ws);
4965
4966 fprintf_unfiltered (gdb_stdlog,
4967 "infrun: target_wait %s, saving "
4968 "status for %d.%ld.%ld\n",
4969 statstr.c_str (),
4970 t->ptid.pid (),
4971 t->ptid.lwp (),
4972 t->ptid.tid ());
4973 }
4974
4975 /* Record for later. */
4976 save_waitstatus (t, &event.ws);
4977
4978 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4979 ? event.ws.value.sig : GDB_SIGNAL_0);
4980
4981 if (displaced_step_fixup (t, sig) < 0)
4982 {
4983 /* Add it back to the step-over queue. */
4984 t->control.trap_expected = 0;
4985 thread_step_over_chain_enqueue (t);
4986 }
4987
4988 regcache = get_thread_regcache (t);
4989 t->suspend.stop_pc = regcache_read_pc (regcache);
4990
4991 if (debug_infrun)
4992 {
4993 fprintf_unfiltered (gdb_stdlog,
4994 "infrun: saved stop_pc=%s for %s "
4995 "(currently_stepping=%d)\n",
4996 paddress (target_gdbarch (),
4997 t->suspend.stop_pc),
4998 target_pid_to_str (t->ptid).c_str (),
4999 currently_stepping (t));
5000 }
5001 }
5002 }
5003 }
5004 }
5005 }
5006 }
5007
5008 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
5009
5010 static int
5011 handle_no_resumed (struct execution_control_state *ecs)
5012 {
5013 if (target_can_async_p ())
5014 {
5015 int any_sync = 0;
5016
5017 for (ui *ui : all_uis ())
5018 {
5019 if (ui->prompt_state == PROMPT_BLOCKED)
5020 {
5021 any_sync = 1;
5022 break;
5023 }
5024 }
5025 if (!any_sync)
5026 {
5027 /* There were no unwaited-for children left in the target, but,
5028 we're not synchronously waiting for events either. Just
5029 ignore. */
5030
5031 if (debug_infrun)
5032 fprintf_unfiltered (gdb_stdlog,
5033 "infrun: TARGET_WAITKIND_NO_RESUMED "
5034 "(ignoring: bg)\n");
5035 prepare_to_wait (ecs);
5036 return 1;
5037 }
5038 }
5039
5040 /* Otherwise, if we were running a synchronous execution command, we
5041 may need to cancel it and give the user back the terminal.
5042
5043 In non-stop mode, the target can't tell whether we've already
5044 consumed previous stop events, so it can end up sending us a
5045 no-resumed event like so:
5046
5047 #0 - thread 1 is left stopped
5048
5049 #1 - thread 2 is resumed and hits breakpoint
5050 -> TARGET_WAITKIND_STOPPED
5051
5052 #2 - thread 3 is resumed and exits
5053 this is the last resumed thread, so
5054 -> TARGET_WAITKIND_NO_RESUMED
5055
5056 #3 - gdb processes stop for thread 2 and decides to re-resume
5057 it.
5058
5059 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
5060 thread 2 is now resumed, so the event should be ignored.
5061
5062 IOW, if the stop for thread 2 doesn't end a foreground command,
5063 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
5064 event. But it could be that the event meant that thread 2 itself
5065 (or whatever other thread was the last resumed thread) exited.
5066
5067 To address this we refresh the thread list and check whether we
5068 have resumed threads _now_. In the example above, this removes
5069 thread 3 from the thread list. If thread 2 was re-resumed, we
5070 ignore this event. If we find no thread resumed, then we cancel
5071 the synchronous command and show "no unwaited-for " to the
5072 user. */
5073
5074 inferior *curr_inf = current_inferior ();
5075
5076 scoped_restore_current_thread restore_thread;
5077
5078 for (auto *target : all_non_exited_process_targets ())
5079 {
5080 switch_to_target_no_thread (target);
5081 update_thread_list ();
5082 }
5083
5084 /* If:
5085
5086 - the current target has no thread executing, and
5087 - the current inferior is native, and
5088 - the current inferior is the one which has the terminal, and
5089 - we did nothing,
5090
5091 then a Ctrl-C from this point on would remain stuck in the
5092 kernel, until a thread resumes and dequeues it. That would
5093 result in the GDB CLI not reacting to Ctrl-C, not able to
5094 interrupt the program. To address this, if the current inferior
5095 no longer has any thread executing, we give the terminal to some
5096 other inferior that has at least one thread executing. */
5097 bool swap_terminal = true;
5098
5099 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
5100 whether to report it to the user. */
5101 bool ignore_event = false;
5102
5103 for (thread_info *thread : all_non_exited_threads ())
5104 {
5105 if (swap_terminal && thread->executing)
5106 {
5107 if (thread->inf != curr_inf)
5108 {
5109 target_terminal::ours ();
5110
5111 switch_to_thread (thread);
5112 target_terminal::inferior ();
5113 }
5114 swap_terminal = false;
5115 }
5116
5117 if (!ignore_event
5118 && (thread->executing
5119 || thread->suspend.waitstatus_pending_p))
5120 {
5121 /* Either there were no unwaited-for children left in the
5122 target at some point, but there are now, or some target
5123 other than the eventing one has unwaited-for children
5124 left. Just ignore. */
5125 if (debug_infrun)
5126 fprintf_unfiltered (gdb_stdlog,
5127 "infrun: TARGET_WAITKIND_NO_RESUMED "
5128 "(ignoring: found resumed)\n");
5129
5130 ignore_event = true;
5131 }
5132
5133 if (ignore_event && !swap_terminal)
5134 break;
5135 }
5136
5137 if (ignore_event)
5138 {
5139 switch_to_inferior_no_thread (curr_inf);
5140 prepare_to_wait (ecs);
5141 return 1;
5142 }
5143
5144 /* Go ahead and report the event. */
5145 return 0;
5146 }
5147
5148 /* Given an execution control state that has been freshly filled in by
5149 an event from the inferior, figure out what it means and take
5150 appropriate action.
5151
5152 The alternatives are:
5153
5154 1) stop_waiting and return; to really stop and return to the
5155 debugger.
5156
5157 2) keep_going and return; to wait for the next event (set
5158 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5159 once). */
5160
5161 static void
5162 handle_inferior_event (struct execution_control_state *ecs)
5163 {
5164 /* Make sure that all temporary struct value objects that were
5165 created during the handling of the event get deleted at the
5166 end. */
5167 scoped_value_mark free_values;
5168
5169 enum stop_kind stop_soon;
5170
5171 if (debug_infrun)
5172 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5173 target_waitstatus_to_string (&ecs->ws).c_str ());
5174
5175 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5176 {
5177 /* We had an event in the inferior, but we are not interested in
5178 handling it at this level. The lower layers have already
5179 done what needs to be done, if anything.
5180
5181 One of the possible circumstances for this is when the
5182 inferior produces output for the console. The inferior has
5183 not stopped, and we are ignoring the event. Another possible
5184 circumstance is any event which the lower level knows will be
5185 reported multiple times without an intervening resume. */
5186 prepare_to_wait (ecs);
5187 return;
5188 }
5189
5190 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5191 {
5192 prepare_to_wait (ecs);
5193 return;
5194 }
5195
5196 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5197 && handle_no_resumed (ecs))
5198 return;
5199
5200 /* Cache the last target/ptid/waitstatus. */
5201 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5202
5203 /* Always clear state belonging to the previous time we stopped. */
5204 stop_stack_dummy = STOP_NONE;
5205
5206 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5207 {
5208 /* No unwaited-for children left. IOW, all resumed children
5209 have exited. */
5210 stop_print_frame = 0;
5211 stop_waiting (ecs);
5212 return;
5213 }
5214
5215 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5216 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5217 {
5218 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5219 /* If it's a new thread, add it to the thread database. */
5220 if (ecs->event_thread == NULL)
5221 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5222
5223 /* Disable range stepping. If the next step request could use a
5224 range, this will be end up re-enabled then. */
5225 ecs->event_thread->control.may_range_step = 0;
5226 }
5227
5228 /* Dependent on valid ECS->EVENT_THREAD. */
5229 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5230
5231 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5232 reinit_frame_cache ();
5233
5234 breakpoint_retire_moribund ();
5235
5236 /* First, distinguish signals caused by the debugger from signals
5237 that have to do with the program's own actions. Note that
5238 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5239 on the operating system version. Here we detect when a SIGILL or
5240 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5241 something similar for SIGSEGV, since a SIGSEGV will be generated
5242 when we're trying to execute a breakpoint instruction on a
5243 non-executable stack. This happens for call dummy breakpoints
5244 for architectures like SPARC that place call dummies on the
5245 stack. */
5246 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5247 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5248 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5249 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5250 {
5251 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5252
5253 if (breakpoint_inserted_here_p (regcache->aspace (),
5254 regcache_read_pc (regcache)))
5255 {
5256 if (debug_infrun)
5257 fprintf_unfiltered (gdb_stdlog,
5258 "infrun: Treating signal as SIGTRAP\n");
5259 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5260 }
5261 }
5262
5263 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5264
5265 switch (ecs->ws.kind)
5266 {
5267 case TARGET_WAITKIND_LOADED:
5268 context_switch (ecs);
5269 /* Ignore gracefully during startup of the inferior, as it might
5270 be the shell which has just loaded some objects, otherwise
5271 add the symbols for the newly loaded objects. Also ignore at
5272 the beginning of an attach or remote session; we will query
5273 the full list of libraries once the connection is
5274 established. */
5275
5276 stop_soon = get_inferior_stop_soon (ecs);
5277 if (stop_soon == NO_STOP_QUIETLY)
5278 {
5279 struct regcache *regcache;
5280
5281 regcache = get_thread_regcache (ecs->event_thread);
5282
5283 handle_solib_event ();
5284
5285 ecs->event_thread->control.stop_bpstat
5286 = bpstat_stop_status (regcache->aspace (),
5287 ecs->event_thread->suspend.stop_pc,
5288 ecs->event_thread, &ecs->ws);
5289
5290 if (handle_stop_requested (ecs))
5291 return;
5292
5293 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5294 {
5295 /* A catchpoint triggered. */
5296 process_event_stop_test (ecs);
5297 return;
5298 }
5299
5300 /* If requested, stop when the dynamic linker notifies
5301 gdb of events. This allows the user to get control
5302 and place breakpoints in initializer routines for
5303 dynamically loaded objects (among other things). */
5304 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5305 if (stop_on_solib_events)
5306 {
5307 /* Make sure we print "Stopped due to solib-event" in
5308 normal_stop. */
5309 stop_print_frame = 1;
5310
5311 stop_waiting (ecs);
5312 return;
5313 }
5314 }
5315
5316 /* If we are skipping through a shell, or through shared library
5317 loading that we aren't interested in, resume the program. If
5318 we're running the program normally, also resume. */
5319 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5320 {
5321 /* Loading of shared libraries might have changed breakpoint
5322 addresses. Make sure new breakpoints are inserted. */
5323 if (stop_soon == NO_STOP_QUIETLY)
5324 insert_breakpoints ();
5325 resume (GDB_SIGNAL_0);
5326 prepare_to_wait (ecs);
5327 return;
5328 }
5329
5330 /* But stop if we're attaching or setting up a remote
5331 connection. */
5332 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5333 || stop_soon == STOP_QUIETLY_REMOTE)
5334 {
5335 if (debug_infrun)
5336 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5337 stop_waiting (ecs);
5338 return;
5339 }
5340
5341 internal_error (__FILE__, __LINE__,
5342 _("unhandled stop_soon: %d"), (int) stop_soon);
5343
5344 case TARGET_WAITKIND_SPURIOUS:
5345 if (handle_stop_requested (ecs))
5346 return;
5347 context_switch (ecs);
5348 resume (GDB_SIGNAL_0);
5349 prepare_to_wait (ecs);
5350 return;
5351
5352 case TARGET_WAITKIND_THREAD_CREATED:
5353 if (handle_stop_requested (ecs))
5354 return;
5355 context_switch (ecs);
5356 if (!switch_back_to_stepped_thread (ecs))
5357 keep_going (ecs);
5358 return;
5359
5360 case TARGET_WAITKIND_EXITED:
5361 case TARGET_WAITKIND_SIGNALLED:
5362 {
5363 /* Depending on the system, ecs->ptid may point to a thread or
5364 to a process. On some targets, target_mourn_inferior may
5365 need to have access to the just-exited thread. That is the
5366 case of GNU/Linux's "checkpoint" support, for example.
5367 Call the switch_to_xxx routine as appropriate. */
5368 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5369 if (thr != nullptr)
5370 switch_to_thread (thr);
5371 else
5372 {
5373 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5374 switch_to_inferior_no_thread (inf);
5375 }
5376 }
5377 handle_vfork_child_exec_or_exit (0);
5378 target_terminal::ours (); /* Must do this before mourn anyway. */
5379
5380 /* Clearing any previous state of convenience variables. */
5381 clear_exit_convenience_vars ();
5382
5383 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5384 {
5385 /* Record the exit code in the convenience variable $_exitcode, so
5386 that the user can inspect this again later. */
5387 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5388 (LONGEST) ecs->ws.value.integer);
5389
5390 /* Also record this in the inferior itself. */
5391 current_inferior ()->has_exit_code = 1;
5392 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5393
5394 /* Support the --return-child-result option. */
5395 return_child_result_value = ecs->ws.value.integer;
5396
5397 gdb::observers::exited.notify (ecs->ws.value.integer);
5398 }
5399 else
5400 {
5401 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5402
5403 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5404 {
5405 /* Set the value of the internal variable $_exitsignal,
5406 which holds the signal uncaught by the inferior. */
5407 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5408 gdbarch_gdb_signal_to_target (gdbarch,
5409 ecs->ws.value.sig));
5410 }
5411 else
5412 {
5413 /* We don't have access to the target's method used for
5414 converting between signal numbers (GDB's internal
5415 representation <-> target's representation).
5416 Therefore, we cannot do a good job at displaying this
5417 information to the user. It's better to just warn
5418 her about it (if infrun debugging is enabled), and
5419 give up. */
5420 if (debug_infrun)
5421 fprintf_filtered (gdb_stdlog, _("\
5422 Cannot fill $_exitsignal with the correct signal number.\n"));
5423 }
5424
5425 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5426 }
5427
5428 gdb_flush (gdb_stdout);
5429 target_mourn_inferior (inferior_ptid);
5430 stop_print_frame = 0;
5431 stop_waiting (ecs);
5432 return;
5433
5434 case TARGET_WAITKIND_FORKED:
5435 case TARGET_WAITKIND_VFORKED:
5436 /* Check whether the inferior is displaced stepping. */
5437 {
5438 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5439 struct gdbarch *gdbarch = regcache->arch ();
5440
5441 /* If checking displaced stepping is supported, and thread
5442 ecs->ptid is displaced stepping. */
5443 if (displaced_step_in_progress_thread (ecs->event_thread))
5444 {
5445 struct inferior *parent_inf
5446 = find_inferior_ptid (ecs->target, ecs->ptid);
5447 struct regcache *child_regcache;
5448 CORE_ADDR parent_pc;
5449
5450 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5451 {
5452 struct displaced_step_inferior_state *displaced
5453 = get_displaced_stepping_state (parent_inf);
5454
5455 /* Restore scratch pad for child process. */
5456 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5457 }
5458
5459 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5460 indicating that the displaced stepping of syscall instruction
5461 has been done. Perform cleanup for parent process here. Note
5462 that this operation also cleans up the child process for vfork,
5463 because their pages are shared. */
5464 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5465 /* Start a new step-over in another thread if there's one
5466 that needs it. */
5467 start_step_over ();
5468
5469 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5470 the child's PC is also within the scratchpad. Set the child's PC
5471 to the parent's PC value, which has already been fixed up.
5472 FIXME: we use the parent's aspace here, although we're touching
5473 the child, because the child hasn't been added to the inferior
5474 list yet at this point. */
5475
5476 child_regcache
5477 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5478 ecs->ws.value.related_pid,
5479 gdbarch,
5480 parent_inf->aspace);
5481 /* Read PC value of parent process. */
5482 parent_pc = regcache_read_pc (regcache);
5483
5484 if (debug_displaced)
5485 fprintf_unfiltered (gdb_stdlog,
5486 "displaced: write child pc from %s to %s\n",
5487 paddress (gdbarch,
5488 regcache_read_pc (child_regcache)),
5489 paddress (gdbarch, parent_pc));
5490
5491 regcache_write_pc (child_regcache, parent_pc);
5492 }
5493 }
5494
5495 context_switch (ecs);
5496
5497 /* Immediately detach breakpoints from the child before there's
5498 any chance of letting the user delete breakpoints from the
5499 breakpoint lists. If we don't do this early, it's easy to
5500 leave left over traps in the child, vis: "break foo; catch
5501 fork; c; <fork>; del; c; <child calls foo>". We only follow
5502 the fork on the last `continue', and by that time the
5503 breakpoint at "foo" is long gone from the breakpoint table.
5504 If we vforked, then we don't need to unpatch here, since both
5505 parent and child are sharing the same memory pages; we'll
5506 need to unpatch at follow/detach time instead to be certain
5507 that new breakpoints added between catchpoint hit time and
5508 vfork follow are detached. */
5509 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5510 {
5511 /* This won't actually modify the breakpoint list, but will
5512 physically remove the breakpoints from the child. */
5513 detach_breakpoints (ecs->ws.value.related_pid);
5514 }
5515
5516 delete_just_stopped_threads_single_step_breakpoints ();
5517
5518 /* In case the event is caught by a catchpoint, remember that
5519 the event is to be followed at the next resume of the thread,
5520 and not immediately. */
5521 ecs->event_thread->pending_follow = ecs->ws;
5522
5523 ecs->event_thread->suspend.stop_pc
5524 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5525
5526 ecs->event_thread->control.stop_bpstat
5527 = bpstat_stop_status (get_current_regcache ()->aspace (),
5528 ecs->event_thread->suspend.stop_pc,
5529 ecs->event_thread, &ecs->ws);
5530
5531 if (handle_stop_requested (ecs))
5532 return;
5533
5534 /* If no catchpoint triggered for this, then keep going. Note
5535 that we're interested in knowing the bpstat actually causes a
5536 stop, not just if it may explain the signal. Software
5537 watchpoints, for example, always appear in the bpstat. */
5538 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5539 {
5540 bool follow_child
5541 = (follow_fork_mode_string == follow_fork_mode_child);
5542
5543 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5544
5545 process_stratum_target *targ
5546 = ecs->event_thread->inf->process_target ();
5547
5548 bool should_resume = follow_fork ();
5549
5550 /* Note that one of these may be an invalid pointer,
5551 depending on detach_fork. */
5552 thread_info *parent = ecs->event_thread;
5553 thread_info *child
5554 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5555
5556 /* At this point, the parent is marked running, and the
5557 child is marked stopped. */
5558
5559 /* If not resuming the parent, mark it stopped. */
5560 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5561 parent->set_running (false);
5562
5563 /* If resuming the child, mark it running. */
5564 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5565 child->set_running (true);
5566
5567 /* In non-stop mode, also resume the other branch. */
5568 if (!detach_fork && (non_stop
5569 || (sched_multi && target_is_non_stop_p ())))
5570 {
5571 if (follow_child)
5572 switch_to_thread (parent);
5573 else
5574 switch_to_thread (child);
5575
5576 ecs->event_thread = inferior_thread ();
5577 ecs->ptid = inferior_ptid;
5578 keep_going (ecs);
5579 }
5580
5581 if (follow_child)
5582 switch_to_thread (child);
5583 else
5584 switch_to_thread (parent);
5585
5586 ecs->event_thread = inferior_thread ();
5587 ecs->ptid = inferior_ptid;
5588
5589 if (should_resume)
5590 keep_going (ecs);
5591 else
5592 stop_waiting (ecs);
5593 return;
5594 }
5595 process_event_stop_test (ecs);
5596 return;
5597
5598 case TARGET_WAITKIND_VFORK_DONE:
5599 /* Done with the shared memory region. Re-insert breakpoints in
5600 the parent, and keep going. */
5601
5602 context_switch (ecs);
5603
5604 current_inferior ()->waiting_for_vfork_done = 0;
5605 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5606
5607 if (handle_stop_requested (ecs))
5608 return;
5609
5610 /* This also takes care of reinserting breakpoints in the
5611 previously locked inferior. */
5612 keep_going (ecs);
5613 return;
5614
5615 case TARGET_WAITKIND_EXECD:
5616
5617 /* Note we can't read registers yet (the stop_pc), because we
5618 don't yet know the inferior's post-exec architecture.
5619 'stop_pc' is explicitly read below instead. */
5620 switch_to_thread_no_regs (ecs->event_thread);
5621
5622 /* Do whatever is necessary to the parent branch of the vfork. */
5623 handle_vfork_child_exec_or_exit (1);
5624
5625 /* This causes the eventpoints and symbol table to be reset.
5626 Must do this now, before trying to determine whether to
5627 stop. */
5628 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5629
5630 /* In follow_exec we may have deleted the original thread and
5631 created a new one. Make sure that the event thread is the
5632 execd thread for that case (this is a nop otherwise). */
5633 ecs->event_thread = inferior_thread ();
5634
5635 ecs->event_thread->suspend.stop_pc
5636 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5637
5638 ecs->event_thread->control.stop_bpstat
5639 = bpstat_stop_status (get_current_regcache ()->aspace (),
5640 ecs->event_thread->suspend.stop_pc,
5641 ecs->event_thread, &ecs->ws);
5642
5643 /* Note that this may be referenced from inside
5644 bpstat_stop_status above, through inferior_has_execd. */
5645 xfree (ecs->ws.value.execd_pathname);
5646 ecs->ws.value.execd_pathname = NULL;
5647
5648 if (handle_stop_requested (ecs))
5649 return;
5650
5651 /* If no catchpoint triggered for this, then keep going. */
5652 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5653 {
5654 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5655 keep_going (ecs);
5656 return;
5657 }
5658 process_event_stop_test (ecs);
5659 return;
5660
5661 /* Be careful not to try to gather much state about a thread
5662 that's in a syscall. It's frequently a losing proposition. */
5663 case TARGET_WAITKIND_SYSCALL_ENTRY:
5664 /* Getting the current syscall number. */
5665 if (handle_syscall_event (ecs) == 0)
5666 process_event_stop_test (ecs);
5667 return;
5668
5669 /* Before examining the threads further, step this thread to
5670 get it entirely out of the syscall. (We get notice of the
5671 event when the thread is just on the verge of exiting a
5672 syscall. Stepping one instruction seems to get it back
5673 into user code.) */
5674 case TARGET_WAITKIND_SYSCALL_RETURN:
5675 if (handle_syscall_event (ecs) == 0)
5676 process_event_stop_test (ecs);
5677 return;
5678
5679 case TARGET_WAITKIND_STOPPED:
5680 handle_signal_stop (ecs);
5681 return;
5682
5683 case TARGET_WAITKIND_NO_HISTORY:
5684 /* Reverse execution: target ran out of history info. */
5685
5686 /* Switch to the stopped thread. */
5687 context_switch (ecs);
5688 if (debug_infrun)
5689 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5690
5691 delete_just_stopped_threads_single_step_breakpoints ();
5692 ecs->event_thread->suspend.stop_pc
5693 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5694
5695 if (handle_stop_requested (ecs))
5696 return;
5697
5698 gdb::observers::no_history.notify ();
5699 stop_waiting (ecs);
5700 return;
5701 }
5702 }
5703
5704 /* Restart threads back to what they were trying to do back when we
5705 paused them for an in-line step-over. The EVENT_THREAD thread is
5706 ignored. */
5707
5708 static void
5709 restart_threads (struct thread_info *event_thread)
5710 {
5711 /* In case the instruction just stepped spawned a new thread. */
5712 update_thread_list ();
5713
5714 for (thread_info *tp : all_non_exited_threads ())
5715 {
5716 switch_to_thread_no_regs (tp);
5717
5718 if (tp == event_thread)
5719 {
5720 if (debug_infrun)
5721 fprintf_unfiltered (gdb_stdlog,
5722 "infrun: restart threads: "
5723 "[%s] is event thread\n",
5724 target_pid_to_str (tp->ptid).c_str ());
5725 continue;
5726 }
5727
5728 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5729 {
5730 if (debug_infrun)
5731 fprintf_unfiltered (gdb_stdlog,
5732 "infrun: restart threads: "
5733 "[%s] not meant to be running\n",
5734 target_pid_to_str (tp->ptid).c_str ());
5735 continue;
5736 }
5737
5738 if (tp->resumed)
5739 {
5740 if (debug_infrun)
5741 fprintf_unfiltered (gdb_stdlog,
5742 "infrun: restart threads: [%s] resumed\n",
5743 target_pid_to_str (tp->ptid).c_str ());
5744 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5745 continue;
5746 }
5747
5748 if (thread_is_in_step_over_chain (tp))
5749 {
5750 if (debug_infrun)
5751 fprintf_unfiltered (gdb_stdlog,
5752 "infrun: restart threads: "
5753 "[%s] needs step-over\n",
5754 target_pid_to_str (tp->ptid).c_str ());
5755 gdb_assert (!tp->resumed);
5756 continue;
5757 }
5758
5759
5760 if (tp->suspend.waitstatus_pending_p)
5761 {
5762 if (debug_infrun)
5763 fprintf_unfiltered (gdb_stdlog,
5764 "infrun: restart threads: "
5765 "[%s] has pending status\n",
5766 target_pid_to_str (tp->ptid).c_str ());
5767 tp->resumed = true;
5768 continue;
5769 }
5770
5771 gdb_assert (!tp->stop_requested);
5772
5773 /* If some thread needs to start a step-over at this point, it
5774 should still be in the step-over queue, and thus skipped
5775 above. */
5776 if (thread_still_needs_step_over (tp))
5777 {
5778 internal_error (__FILE__, __LINE__,
5779 "thread [%s] needs a step-over, but not in "
5780 "step-over queue\n",
5781 target_pid_to_str (tp->ptid).c_str ());
5782 }
5783
5784 if (currently_stepping (tp))
5785 {
5786 if (debug_infrun)
5787 fprintf_unfiltered (gdb_stdlog,
5788 "infrun: restart threads: [%s] was stepping\n",
5789 target_pid_to_str (tp->ptid).c_str ());
5790 keep_going_stepped_thread (tp);
5791 }
5792 else
5793 {
5794 struct execution_control_state ecss;
5795 struct execution_control_state *ecs = &ecss;
5796
5797 if (debug_infrun)
5798 fprintf_unfiltered (gdb_stdlog,
5799 "infrun: restart threads: [%s] continuing\n",
5800 target_pid_to_str (tp->ptid).c_str ());
5801 reset_ecs (ecs, tp);
5802 switch_to_thread (tp);
5803 keep_going_pass_signal (ecs);
5804 }
5805 }
5806 }
5807
5808 /* Callback for iterate_over_threads. Find a resumed thread that has
5809 a pending waitstatus. */
5810
5811 static int
5812 resumed_thread_with_pending_status (struct thread_info *tp,
5813 void *arg)
5814 {
5815 return (tp->resumed
5816 && tp->suspend.waitstatus_pending_p);
5817 }
5818
5819 /* Called when we get an event that may finish an in-line or
5820 out-of-line (displaced stepping) step-over started previously.
5821 Return true if the event is processed and we should go back to the
5822 event loop; false if the caller should continue processing the
5823 event. */
5824
5825 static int
5826 finish_step_over (struct execution_control_state *ecs)
5827 {
5828 int had_step_over_info;
5829
5830 displaced_step_fixup (ecs->event_thread,
5831 ecs->event_thread->suspend.stop_signal);
5832
5833 had_step_over_info = step_over_info_valid_p ();
5834
5835 if (had_step_over_info)
5836 {
5837 /* If we're stepping over a breakpoint with all threads locked,
5838 then only the thread that was stepped should be reporting
5839 back an event. */
5840 gdb_assert (ecs->event_thread->control.trap_expected);
5841
5842 clear_step_over_info ();
5843 }
5844
5845 if (!target_is_non_stop_p ())
5846 return 0;
5847
5848 /* Start a new step-over in another thread if there's one that
5849 needs it. */
5850 start_step_over ();
5851
5852 /* If we were stepping over a breakpoint before, and haven't started
5853 a new in-line step-over sequence, then restart all other threads
5854 (except the event thread). We can't do this in all-stop, as then
5855 e.g., we wouldn't be able to issue any other remote packet until
5856 these other threads stop. */
5857 if (had_step_over_info && !step_over_info_valid_p ())
5858 {
5859 struct thread_info *pending;
5860
5861 /* If we only have threads with pending statuses, the restart
5862 below won't restart any thread and so nothing re-inserts the
5863 breakpoint we just stepped over. But we need it inserted
5864 when we later process the pending events, otherwise if
5865 another thread has a pending event for this breakpoint too,
5866 we'd discard its event (because the breakpoint that
5867 originally caused the event was no longer inserted). */
5868 context_switch (ecs);
5869 insert_breakpoints ();
5870
5871 restart_threads (ecs->event_thread);
5872
5873 /* If we have events pending, go through handle_inferior_event
5874 again, picking up a pending event at random. This avoids
5875 thread starvation. */
5876
5877 /* But not if we just stepped over a watchpoint in order to let
5878 the instruction execute so we can evaluate its expression.
5879 The set of watchpoints that triggered is recorded in the
5880 breakpoint objects themselves (see bp->watchpoint_triggered).
5881 If we processed another event first, that other event could
5882 clobber this info. */
5883 if (ecs->event_thread->stepping_over_watchpoint)
5884 return 0;
5885
5886 pending = iterate_over_threads (resumed_thread_with_pending_status,
5887 NULL);
5888 if (pending != NULL)
5889 {
5890 struct thread_info *tp = ecs->event_thread;
5891 struct regcache *regcache;
5892
5893 if (debug_infrun)
5894 {
5895 fprintf_unfiltered (gdb_stdlog,
5896 "infrun: found resumed threads with "
5897 "pending events, saving status\n");
5898 }
5899
5900 gdb_assert (pending != tp);
5901
5902 /* Record the event thread's event for later. */
5903 save_waitstatus (tp, &ecs->ws);
5904 /* This was cleared early, by handle_inferior_event. Set it
5905 so this pending event is considered by
5906 do_target_wait. */
5907 tp->resumed = true;
5908
5909 gdb_assert (!tp->executing);
5910
5911 regcache = get_thread_regcache (tp);
5912 tp->suspend.stop_pc = regcache_read_pc (regcache);
5913
5914 if (debug_infrun)
5915 {
5916 fprintf_unfiltered (gdb_stdlog,
5917 "infrun: saved stop_pc=%s for %s "
5918 "(currently_stepping=%d)\n",
5919 paddress (target_gdbarch (),
5920 tp->suspend.stop_pc),
5921 target_pid_to_str (tp->ptid).c_str (),
5922 currently_stepping (tp));
5923 }
5924
5925 /* This in-line step-over finished; clear this so we won't
5926 start a new one. This is what handle_signal_stop would
5927 do, if we returned false. */
5928 tp->stepping_over_breakpoint = 0;
5929
5930 /* Wake up the event loop again. */
5931 mark_async_event_handler (infrun_async_inferior_event_token);
5932
5933 prepare_to_wait (ecs);
5934 return 1;
5935 }
5936 }
5937
5938 return 0;
5939 }
5940
5941 /* Come here when the program has stopped with a signal. */
5942
5943 static void
5944 handle_signal_stop (struct execution_control_state *ecs)
5945 {
5946 struct frame_info *frame;
5947 struct gdbarch *gdbarch;
5948 int stopped_by_watchpoint;
5949 enum stop_kind stop_soon;
5950 int random_signal;
5951
5952 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5953
5954 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5955
5956 /* Do we need to clean up the state of a thread that has
5957 completed a displaced single-step? (Doing so usually affects
5958 the PC, so do it here, before we set stop_pc.) */
5959 if (finish_step_over (ecs))
5960 return;
5961
5962 /* If we either finished a single-step or hit a breakpoint, but
5963 the user wanted this thread to be stopped, pretend we got a
5964 SIG0 (generic unsignaled stop). */
5965 if (ecs->event_thread->stop_requested
5966 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5967 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5968
5969 ecs->event_thread->suspend.stop_pc
5970 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5971
5972 if (debug_infrun)
5973 {
5974 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5975 struct gdbarch *reg_gdbarch = regcache->arch ();
5976
5977 switch_to_thread (ecs->event_thread);
5978
5979 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5980 paddress (reg_gdbarch,
5981 ecs->event_thread->suspend.stop_pc));
5982 if (target_stopped_by_watchpoint ())
5983 {
5984 CORE_ADDR addr;
5985
5986 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5987
5988 if (target_stopped_data_address (current_top_target (), &addr))
5989 fprintf_unfiltered (gdb_stdlog,
5990 "infrun: stopped data address = %s\n",
5991 paddress (reg_gdbarch, addr));
5992 else
5993 fprintf_unfiltered (gdb_stdlog,
5994 "infrun: (no data address available)\n");
5995 }
5996 }
5997
5998 /* This is originated from start_remote(), start_inferior() and
5999 shared libraries hook functions. */
6000 stop_soon = get_inferior_stop_soon (ecs);
6001 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
6002 {
6003 context_switch (ecs);
6004 if (debug_infrun)
6005 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
6006 stop_print_frame = 1;
6007 stop_waiting (ecs);
6008 return;
6009 }
6010
6011 /* This originates from attach_command(). We need to overwrite
6012 the stop_signal here, because some kernels don't ignore a
6013 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
6014 See more comments in inferior.h. On the other hand, if we
6015 get a non-SIGSTOP, report it to the user - assume the backend
6016 will handle the SIGSTOP if it should show up later.
6017
6018 Also consider that the attach is complete when we see a
6019 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
6020 target extended-remote report it instead of a SIGSTOP
6021 (e.g. gdbserver). We already rely on SIGTRAP being our
6022 signal, so this is no exception.
6023
6024 Also consider that the attach is complete when we see a
6025 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
6026 the target to stop all threads of the inferior, in case the
6027 low level attach operation doesn't stop them implicitly. If
6028 they weren't stopped implicitly, then the stub will report a
6029 GDB_SIGNAL_0, meaning: stopped for no particular reason
6030 other than GDB's request. */
6031 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
6032 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
6033 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6034 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
6035 {
6036 stop_print_frame = 1;
6037 stop_waiting (ecs);
6038 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6039 return;
6040 }
6041
6042 /* See if something interesting happened to the non-current thread. If
6043 so, then switch to that thread. */
6044 if (ecs->ptid != inferior_ptid)
6045 {
6046 if (debug_infrun)
6047 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
6048
6049 context_switch (ecs);
6050
6051 if (deprecated_context_hook)
6052 deprecated_context_hook (ecs->event_thread->global_num);
6053 }
6054
6055 /* At this point, get hold of the now-current thread's frame. */
6056 frame = get_current_frame ();
6057 gdbarch = get_frame_arch (frame);
6058
6059 /* Pull the single step breakpoints out of the target. */
6060 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6061 {
6062 struct regcache *regcache;
6063 CORE_ADDR pc;
6064
6065 regcache = get_thread_regcache (ecs->event_thread);
6066 const address_space *aspace = regcache->aspace ();
6067
6068 pc = regcache_read_pc (regcache);
6069
6070 /* However, before doing so, if this single-step breakpoint was
6071 actually for another thread, set this thread up for moving
6072 past it. */
6073 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
6074 aspace, pc))
6075 {
6076 if (single_step_breakpoint_inserted_here_p (aspace, pc))
6077 {
6078 if (debug_infrun)
6079 {
6080 fprintf_unfiltered (gdb_stdlog,
6081 "infrun: [%s] hit another thread's "
6082 "single-step breakpoint\n",
6083 target_pid_to_str (ecs->ptid).c_str ());
6084 }
6085 ecs->hit_singlestep_breakpoint = 1;
6086 }
6087 }
6088 else
6089 {
6090 if (debug_infrun)
6091 {
6092 fprintf_unfiltered (gdb_stdlog,
6093 "infrun: [%s] hit its "
6094 "single-step breakpoint\n",
6095 target_pid_to_str (ecs->ptid).c_str ());
6096 }
6097 }
6098 }
6099 delete_just_stopped_threads_single_step_breakpoints ();
6100
6101 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6102 && ecs->event_thread->control.trap_expected
6103 && ecs->event_thread->stepping_over_watchpoint)
6104 stopped_by_watchpoint = 0;
6105 else
6106 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6107
6108 /* If necessary, step over this watchpoint. We'll be back to display
6109 it in a moment. */
6110 if (stopped_by_watchpoint
6111 && (target_have_steppable_watchpoint
6112 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
6113 {
6114 /* At this point, we are stopped at an instruction which has
6115 attempted to write to a piece of memory under control of
6116 a watchpoint. The instruction hasn't actually executed
6117 yet. If we were to evaluate the watchpoint expression
6118 now, we would get the old value, and therefore no change
6119 would seem to have occurred.
6120
6121 In order to make watchpoints work `right', we really need
6122 to complete the memory write, and then evaluate the
6123 watchpoint expression. We do this by single-stepping the
6124 target.
6125
6126 It may not be necessary to disable the watchpoint to step over
6127 it. For example, the PA can (with some kernel cooperation)
6128 single step over a watchpoint without disabling the watchpoint.
6129
6130 It is far more common to need to disable a watchpoint to step
6131 the inferior over it. If we have non-steppable watchpoints,
6132 we must disable the current watchpoint; it's simplest to
6133 disable all watchpoints.
6134
6135 Any breakpoint at PC must also be stepped over -- if there's
6136 one, it will have already triggered before the watchpoint
6137 triggered, and we either already reported it to the user, or
6138 it didn't cause a stop and we called keep_going. In either
6139 case, if there was a breakpoint at PC, we must be trying to
6140 step past it. */
6141 ecs->event_thread->stepping_over_watchpoint = 1;
6142 keep_going (ecs);
6143 return;
6144 }
6145
6146 ecs->event_thread->stepping_over_breakpoint = 0;
6147 ecs->event_thread->stepping_over_watchpoint = 0;
6148 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6149 ecs->event_thread->control.stop_step = 0;
6150 stop_print_frame = 1;
6151 stopped_by_random_signal = 0;
6152 bpstat stop_chain = NULL;
6153
6154 /* Hide inlined functions starting here, unless we just performed stepi or
6155 nexti. After stepi and nexti, always show the innermost frame (not any
6156 inline function call sites). */
6157 if (ecs->event_thread->control.step_range_end != 1)
6158 {
6159 const address_space *aspace
6160 = get_thread_regcache (ecs->event_thread)->aspace ();
6161
6162 /* skip_inline_frames is expensive, so we avoid it if we can
6163 determine that the address is one where functions cannot have
6164 been inlined. This improves performance with inferiors that
6165 load a lot of shared libraries, because the solib event
6166 breakpoint is defined as the address of a function (i.e. not
6167 inline). Note that we have to check the previous PC as well
6168 as the current one to catch cases when we have just
6169 single-stepped off a breakpoint prior to reinstating it.
6170 Note that we're assuming that the code we single-step to is
6171 not inline, but that's not definitive: there's nothing
6172 preventing the event breakpoint function from containing
6173 inlined code, and the single-step ending up there. If the
6174 user had set a breakpoint on that inlined code, the missing
6175 skip_inline_frames call would break things. Fortunately
6176 that's an extremely unlikely scenario. */
6177 if (!pc_at_non_inline_function (aspace,
6178 ecs->event_thread->suspend.stop_pc,
6179 &ecs->ws)
6180 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6181 && ecs->event_thread->control.trap_expected
6182 && pc_at_non_inline_function (aspace,
6183 ecs->event_thread->prev_pc,
6184 &ecs->ws)))
6185 {
6186 stop_chain = build_bpstat_chain (aspace,
6187 ecs->event_thread->suspend.stop_pc,
6188 &ecs->ws);
6189 skip_inline_frames (ecs->event_thread, stop_chain);
6190
6191 /* Re-fetch current thread's frame in case that invalidated
6192 the frame cache. */
6193 frame = get_current_frame ();
6194 gdbarch = get_frame_arch (frame);
6195 }
6196 }
6197
6198 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6199 && ecs->event_thread->control.trap_expected
6200 && gdbarch_single_step_through_delay_p (gdbarch)
6201 && currently_stepping (ecs->event_thread))
6202 {
6203 /* We're trying to step off a breakpoint. Turns out that we're
6204 also on an instruction that needs to be stepped multiple
6205 times before it's been fully executing. E.g., architectures
6206 with a delay slot. It needs to be stepped twice, once for
6207 the instruction and once for the delay slot. */
6208 int step_through_delay
6209 = gdbarch_single_step_through_delay (gdbarch, frame);
6210
6211 if (debug_infrun && step_through_delay)
6212 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
6213 if (ecs->event_thread->control.step_range_end == 0
6214 && step_through_delay)
6215 {
6216 /* The user issued a continue when stopped at a breakpoint.
6217 Set up for another trap and get out of here. */
6218 ecs->event_thread->stepping_over_breakpoint = 1;
6219 keep_going (ecs);
6220 return;
6221 }
6222 else if (step_through_delay)
6223 {
6224 /* The user issued a step when stopped at a breakpoint.
6225 Maybe we should stop, maybe we should not - the delay
6226 slot *might* correspond to a line of source. In any
6227 case, don't decide that here, just set
6228 ecs->stepping_over_breakpoint, making sure we
6229 single-step again before breakpoints are re-inserted. */
6230 ecs->event_thread->stepping_over_breakpoint = 1;
6231 }
6232 }
6233
6234 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6235 handles this event. */
6236 ecs->event_thread->control.stop_bpstat
6237 = bpstat_stop_status (get_current_regcache ()->aspace (),
6238 ecs->event_thread->suspend.stop_pc,
6239 ecs->event_thread, &ecs->ws, stop_chain);
6240
6241 /* Following in case break condition called a
6242 function. */
6243 stop_print_frame = 1;
6244
6245 /* This is where we handle "moribund" watchpoints. Unlike
6246 software breakpoints traps, hardware watchpoint traps are
6247 always distinguishable from random traps. If no high-level
6248 watchpoint is associated with the reported stop data address
6249 anymore, then the bpstat does not explain the signal ---
6250 simply make sure to ignore it if `stopped_by_watchpoint' is
6251 set. */
6252
6253 if (debug_infrun
6254 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6255 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6256 GDB_SIGNAL_TRAP)
6257 && stopped_by_watchpoint)
6258 fprintf_unfiltered (gdb_stdlog,
6259 "infrun: no user watchpoint explains "
6260 "watchpoint SIGTRAP, ignoring\n");
6261
6262 /* NOTE: cagney/2003-03-29: These checks for a random signal
6263 at one stage in the past included checks for an inferior
6264 function call's call dummy's return breakpoint. The original
6265 comment, that went with the test, read:
6266
6267 ``End of a stack dummy. Some systems (e.g. Sony news) give
6268 another signal besides SIGTRAP, so check here as well as
6269 above.''
6270
6271 If someone ever tries to get call dummys on a
6272 non-executable stack to work (where the target would stop
6273 with something like a SIGSEGV), then those tests might need
6274 to be re-instated. Given, however, that the tests were only
6275 enabled when momentary breakpoints were not being used, I
6276 suspect that it won't be the case.
6277
6278 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6279 be necessary for call dummies on a non-executable stack on
6280 SPARC. */
6281
6282 /* See if the breakpoints module can explain the signal. */
6283 random_signal
6284 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6285 ecs->event_thread->suspend.stop_signal);
6286
6287 /* Maybe this was a trap for a software breakpoint that has since
6288 been removed. */
6289 if (random_signal && target_stopped_by_sw_breakpoint ())
6290 {
6291 if (gdbarch_program_breakpoint_here_p (gdbarch,
6292 ecs->event_thread->suspend.stop_pc))
6293 {
6294 struct regcache *regcache;
6295 int decr_pc;
6296
6297 /* Re-adjust PC to what the program would see if GDB was not
6298 debugging it. */
6299 regcache = get_thread_regcache (ecs->event_thread);
6300 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6301 if (decr_pc != 0)
6302 {
6303 gdb::optional<scoped_restore_tmpl<int>>
6304 restore_operation_disable;
6305
6306 if (record_full_is_used ())
6307 restore_operation_disable.emplace
6308 (record_full_gdb_operation_disable_set ());
6309
6310 regcache_write_pc (regcache,
6311 ecs->event_thread->suspend.stop_pc + decr_pc);
6312 }
6313 }
6314 else
6315 {
6316 /* A delayed software breakpoint event. Ignore the trap. */
6317 if (debug_infrun)
6318 fprintf_unfiltered (gdb_stdlog,
6319 "infrun: delayed software breakpoint "
6320 "trap, ignoring\n");
6321 random_signal = 0;
6322 }
6323 }
6324
6325 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6326 has since been removed. */
6327 if (random_signal && target_stopped_by_hw_breakpoint ())
6328 {
6329 /* A delayed hardware breakpoint event. Ignore the trap. */
6330 if (debug_infrun)
6331 fprintf_unfiltered (gdb_stdlog,
6332 "infrun: delayed hardware breakpoint/watchpoint "
6333 "trap, ignoring\n");
6334 random_signal = 0;
6335 }
6336
6337 /* If not, perhaps stepping/nexting can. */
6338 if (random_signal)
6339 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6340 && currently_stepping (ecs->event_thread));
6341
6342 /* Perhaps the thread hit a single-step breakpoint of _another_
6343 thread. Single-step breakpoints are transparent to the
6344 breakpoints module. */
6345 if (random_signal)
6346 random_signal = !ecs->hit_singlestep_breakpoint;
6347
6348 /* No? Perhaps we got a moribund watchpoint. */
6349 if (random_signal)
6350 random_signal = !stopped_by_watchpoint;
6351
6352 /* Always stop if the user explicitly requested this thread to
6353 remain stopped. */
6354 if (ecs->event_thread->stop_requested)
6355 {
6356 random_signal = 1;
6357 if (debug_infrun)
6358 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6359 }
6360
6361 /* For the program's own signals, act according to
6362 the signal handling tables. */
6363
6364 if (random_signal)
6365 {
6366 /* Signal not for debugging purposes. */
6367 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6368 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6369
6370 if (debug_infrun)
6371 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6372 gdb_signal_to_symbol_string (stop_signal));
6373
6374 stopped_by_random_signal = 1;
6375
6376 /* Always stop on signals if we're either just gaining control
6377 of the program, or the user explicitly requested this thread
6378 to remain stopped. */
6379 if (stop_soon != NO_STOP_QUIETLY
6380 || ecs->event_thread->stop_requested
6381 || (!inf->detaching
6382 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6383 {
6384 stop_waiting (ecs);
6385 return;
6386 }
6387
6388 /* Notify observers the signal has "handle print" set. Note we
6389 returned early above if stopping; normal_stop handles the
6390 printing in that case. */
6391 if (signal_print[ecs->event_thread->suspend.stop_signal])
6392 {
6393 /* The signal table tells us to print about this signal. */
6394 target_terminal::ours_for_output ();
6395 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6396 target_terminal::inferior ();
6397 }
6398
6399 /* Clear the signal if it should not be passed. */
6400 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6401 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6402
6403 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6404 && ecs->event_thread->control.trap_expected
6405 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6406 {
6407 /* We were just starting a new sequence, attempting to
6408 single-step off of a breakpoint and expecting a SIGTRAP.
6409 Instead this signal arrives. This signal will take us out
6410 of the stepping range so GDB needs to remember to, when
6411 the signal handler returns, resume stepping off that
6412 breakpoint. */
6413 /* To simplify things, "continue" is forced to use the same
6414 code paths as single-step - set a breakpoint at the
6415 signal return address and then, once hit, step off that
6416 breakpoint. */
6417 if (debug_infrun)
6418 fprintf_unfiltered (gdb_stdlog,
6419 "infrun: signal arrived while stepping over "
6420 "breakpoint\n");
6421
6422 insert_hp_step_resume_breakpoint_at_frame (frame);
6423 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6424 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6425 ecs->event_thread->control.trap_expected = 0;
6426
6427 /* If we were nexting/stepping some other thread, switch to
6428 it, so that we don't continue it, losing control. */
6429 if (!switch_back_to_stepped_thread (ecs))
6430 keep_going (ecs);
6431 return;
6432 }
6433
6434 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6435 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6436 ecs->event_thread)
6437 || ecs->event_thread->control.step_range_end == 1)
6438 && frame_id_eq (get_stack_frame_id (frame),
6439 ecs->event_thread->control.step_stack_frame_id)
6440 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6441 {
6442 /* The inferior is about to take a signal that will take it
6443 out of the single step range. Set a breakpoint at the
6444 current PC (which is presumably where the signal handler
6445 will eventually return) and then allow the inferior to
6446 run free.
6447
6448 Note that this is only needed for a signal delivered
6449 while in the single-step range. Nested signals aren't a
6450 problem as they eventually all return. */
6451 if (debug_infrun)
6452 fprintf_unfiltered (gdb_stdlog,
6453 "infrun: signal may take us out of "
6454 "single-step range\n");
6455
6456 clear_step_over_info ();
6457 insert_hp_step_resume_breakpoint_at_frame (frame);
6458 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6459 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6460 ecs->event_thread->control.trap_expected = 0;
6461 keep_going (ecs);
6462 return;
6463 }
6464
6465 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6466 when either there's a nested signal, or when there's a
6467 pending signal enabled just as the signal handler returns
6468 (leaving the inferior at the step-resume-breakpoint without
6469 actually executing it). Either way continue until the
6470 breakpoint is really hit. */
6471
6472 if (!switch_back_to_stepped_thread (ecs))
6473 {
6474 if (debug_infrun)
6475 fprintf_unfiltered (gdb_stdlog,
6476 "infrun: random signal, keep going\n");
6477
6478 keep_going (ecs);
6479 }
6480 return;
6481 }
6482
6483 process_event_stop_test (ecs);
6484 }
6485
6486 /* Come here when we've got some debug event / signal we can explain
6487 (IOW, not a random signal), and test whether it should cause a
6488 stop, or whether we should resume the inferior (transparently).
6489 E.g., could be a breakpoint whose condition evaluates false; we
6490 could be still stepping within the line; etc. */
6491
6492 static void
6493 process_event_stop_test (struct execution_control_state *ecs)
6494 {
6495 struct symtab_and_line stop_pc_sal;
6496 struct frame_info *frame;
6497 struct gdbarch *gdbarch;
6498 CORE_ADDR jmp_buf_pc;
6499 struct bpstat_what what;
6500
6501 /* Handle cases caused by hitting a breakpoint. */
6502
6503 frame = get_current_frame ();
6504 gdbarch = get_frame_arch (frame);
6505
6506 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6507
6508 if (what.call_dummy)
6509 {
6510 stop_stack_dummy = what.call_dummy;
6511 }
6512
6513 /* A few breakpoint types have callbacks associated (e.g.,
6514 bp_jit_event). Run them now. */
6515 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6516
6517 /* If we hit an internal event that triggers symbol changes, the
6518 current frame will be invalidated within bpstat_what (e.g., if we
6519 hit an internal solib event). Re-fetch it. */
6520 frame = get_current_frame ();
6521 gdbarch = get_frame_arch (frame);
6522
6523 switch (what.main_action)
6524 {
6525 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6526 /* If we hit the breakpoint at longjmp while stepping, we
6527 install a momentary breakpoint at the target of the
6528 jmp_buf. */
6529
6530 if (debug_infrun)
6531 fprintf_unfiltered (gdb_stdlog,
6532 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6533
6534 ecs->event_thread->stepping_over_breakpoint = 1;
6535
6536 if (what.is_longjmp)
6537 {
6538 struct value *arg_value;
6539
6540 /* If we set the longjmp breakpoint via a SystemTap probe,
6541 then use it to extract the arguments. The destination PC
6542 is the third argument to the probe. */
6543 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6544 if (arg_value)
6545 {
6546 jmp_buf_pc = value_as_address (arg_value);
6547 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6548 }
6549 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6550 || !gdbarch_get_longjmp_target (gdbarch,
6551 frame, &jmp_buf_pc))
6552 {
6553 if (debug_infrun)
6554 fprintf_unfiltered (gdb_stdlog,
6555 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6556 "(!gdbarch_get_longjmp_target)\n");
6557 keep_going (ecs);
6558 return;
6559 }
6560
6561 /* Insert a breakpoint at resume address. */
6562 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6563 }
6564 else
6565 check_exception_resume (ecs, frame);
6566 keep_going (ecs);
6567 return;
6568
6569 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6570 {
6571 struct frame_info *init_frame;
6572
6573 /* There are several cases to consider.
6574
6575 1. The initiating frame no longer exists. In this case we
6576 must stop, because the exception or longjmp has gone too
6577 far.
6578
6579 2. The initiating frame exists, and is the same as the
6580 current frame. We stop, because the exception or longjmp
6581 has been caught.
6582
6583 3. The initiating frame exists and is different from the
6584 current frame. This means the exception or longjmp has
6585 been caught beneath the initiating frame, so keep going.
6586
6587 4. longjmp breakpoint has been placed just to protect
6588 against stale dummy frames and user is not interested in
6589 stopping around longjmps. */
6590
6591 if (debug_infrun)
6592 fprintf_unfiltered (gdb_stdlog,
6593 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6594
6595 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6596 != NULL);
6597 delete_exception_resume_breakpoint (ecs->event_thread);
6598
6599 if (what.is_longjmp)
6600 {
6601 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6602
6603 if (!frame_id_p (ecs->event_thread->initiating_frame))
6604 {
6605 /* Case 4. */
6606 keep_going (ecs);
6607 return;
6608 }
6609 }
6610
6611 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6612
6613 if (init_frame)
6614 {
6615 struct frame_id current_id
6616 = get_frame_id (get_current_frame ());
6617 if (frame_id_eq (current_id,
6618 ecs->event_thread->initiating_frame))
6619 {
6620 /* Case 2. Fall through. */
6621 }
6622 else
6623 {
6624 /* Case 3. */
6625 keep_going (ecs);
6626 return;
6627 }
6628 }
6629
6630 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6631 exists. */
6632 delete_step_resume_breakpoint (ecs->event_thread);
6633
6634 end_stepping_range (ecs);
6635 }
6636 return;
6637
6638 case BPSTAT_WHAT_SINGLE:
6639 if (debug_infrun)
6640 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6641 ecs->event_thread->stepping_over_breakpoint = 1;
6642 /* Still need to check other stuff, at least the case where we
6643 are stepping and step out of the right range. */
6644 break;
6645
6646 case BPSTAT_WHAT_STEP_RESUME:
6647 if (debug_infrun)
6648 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6649
6650 delete_step_resume_breakpoint (ecs->event_thread);
6651 if (ecs->event_thread->control.proceed_to_finish
6652 && execution_direction == EXEC_REVERSE)
6653 {
6654 struct thread_info *tp = ecs->event_thread;
6655
6656 /* We are finishing a function in reverse, and just hit the
6657 step-resume breakpoint at the start address of the
6658 function, and we're almost there -- just need to back up
6659 by one more single-step, which should take us back to the
6660 function call. */
6661 tp->control.step_range_start = tp->control.step_range_end = 1;
6662 keep_going (ecs);
6663 return;
6664 }
6665 fill_in_stop_func (gdbarch, ecs);
6666 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6667 && execution_direction == EXEC_REVERSE)
6668 {
6669 /* We are stepping over a function call in reverse, and just
6670 hit the step-resume breakpoint at the start address of
6671 the function. Go back to single-stepping, which should
6672 take us back to the function call. */
6673 ecs->event_thread->stepping_over_breakpoint = 1;
6674 keep_going (ecs);
6675 return;
6676 }
6677 break;
6678
6679 case BPSTAT_WHAT_STOP_NOISY:
6680 if (debug_infrun)
6681 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6682 stop_print_frame = 1;
6683
6684 /* Assume the thread stopped for a breapoint. We'll still check
6685 whether a/the breakpoint is there when the thread is next
6686 resumed. */
6687 ecs->event_thread->stepping_over_breakpoint = 1;
6688
6689 stop_waiting (ecs);
6690 return;
6691
6692 case BPSTAT_WHAT_STOP_SILENT:
6693 if (debug_infrun)
6694 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6695 stop_print_frame = 0;
6696
6697 /* Assume the thread stopped for a breapoint. We'll still check
6698 whether a/the breakpoint is there when the thread is next
6699 resumed. */
6700 ecs->event_thread->stepping_over_breakpoint = 1;
6701 stop_waiting (ecs);
6702 return;
6703
6704 case BPSTAT_WHAT_HP_STEP_RESUME:
6705 if (debug_infrun)
6706 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6707
6708 delete_step_resume_breakpoint (ecs->event_thread);
6709 if (ecs->event_thread->step_after_step_resume_breakpoint)
6710 {
6711 /* Back when the step-resume breakpoint was inserted, we
6712 were trying to single-step off a breakpoint. Go back to
6713 doing that. */
6714 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6715 ecs->event_thread->stepping_over_breakpoint = 1;
6716 keep_going (ecs);
6717 return;
6718 }
6719 break;
6720
6721 case BPSTAT_WHAT_KEEP_CHECKING:
6722 break;
6723 }
6724
6725 /* If we stepped a permanent breakpoint and we had a high priority
6726 step-resume breakpoint for the address we stepped, but we didn't
6727 hit it, then we must have stepped into the signal handler. The
6728 step-resume was only necessary to catch the case of _not_
6729 stepping into the handler, so delete it, and fall through to
6730 checking whether the step finished. */
6731 if (ecs->event_thread->stepped_breakpoint)
6732 {
6733 struct breakpoint *sr_bp
6734 = ecs->event_thread->control.step_resume_breakpoint;
6735
6736 if (sr_bp != NULL
6737 && sr_bp->loc->permanent
6738 && sr_bp->type == bp_hp_step_resume
6739 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6740 {
6741 if (debug_infrun)
6742 fprintf_unfiltered (gdb_stdlog,
6743 "infrun: stepped permanent breakpoint, stopped in "
6744 "handler\n");
6745 delete_step_resume_breakpoint (ecs->event_thread);
6746 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6747 }
6748 }
6749
6750 /* We come here if we hit a breakpoint but should not stop for it.
6751 Possibly we also were stepping and should stop for that. So fall
6752 through and test for stepping. But, if not stepping, do not
6753 stop. */
6754
6755 /* In all-stop mode, if we're currently stepping but have stopped in
6756 some other thread, we need to switch back to the stepped thread. */
6757 if (switch_back_to_stepped_thread (ecs))
6758 return;
6759
6760 if (ecs->event_thread->control.step_resume_breakpoint)
6761 {
6762 if (debug_infrun)
6763 fprintf_unfiltered (gdb_stdlog,
6764 "infrun: step-resume breakpoint is inserted\n");
6765
6766 /* Having a step-resume breakpoint overrides anything
6767 else having to do with stepping commands until
6768 that breakpoint is reached. */
6769 keep_going (ecs);
6770 return;
6771 }
6772
6773 if (ecs->event_thread->control.step_range_end == 0)
6774 {
6775 if (debug_infrun)
6776 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6777 /* Likewise if we aren't even stepping. */
6778 keep_going (ecs);
6779 return;
6780 }
6781
6782 /* Re-fetch current thread's frame in case the code above caused
6783 the frame cache to be re-initialized, making our FRAME variable
6784 a dangling pointer. */
6785 frame = get_current_frame ();
6786 gdbarch = get_frame_arch (frame);
6787 fill_in_stop_func (gdbarch, ecs);
6788
6789 /* If stepping through a line, keep going if still within it.
6790
6791 Note that step_range_end is the address of the first instruction
6792 beyond the step range, and NOT the address of the last instruction
6793 within it!
6794
6795 Note also that during reverse execution, we may be stepping
6796 through a function epilogue and therefore must detect when
6797 the current-frame changes in the middle of a line. */
6798
6799 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6800 ecs->event_thread)
6801 && (execution_direction != EXEC_REVERSE
6802 || frame_id_eq (get_frame_id (frame),
6803 ecs->event_thread->control.step_frame_id)))
6804 {
6805 if (debug_infrun)
6806 fprintf_unfiltered
6807 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6808 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6809 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6810
6811 /* Tentatively re-enable range stepping; `resume' disables it if
6812 necessary (e.g., if we're stepping over a breakpoint or we
6813 have software watchpoints). */
6814 ecs->event_thread->control.may_range_step = 1;
6815
6816 /* When stepping backward, stop at beginning of line range
6817 (unless it's the function entry point, in which case
6818 keep going back to the call point). */
6819 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6820 if (stop_pc == ecs->event_thread->control.step_range_start
6821 && stop_pc != ecs->stop_func_start
6822 && execution_direction == EXEC_REVERSE)
6823 end_stepping_range (ecs);
6824 else
6825 keep_going (ecs);
6826
6827 return;
6828 }
6829
6830 /* We stepped out of the stepping range. */
6831
6832 /* If we are stepping at the source level and entered the runtime
6833 loader dynamic symbol resolution code...
6834
6835 EXEC_FORWARD: we keep on single stepping until we exit the run
6836 time loader code and reach the callee's address.
6837
6838 EXEC_REVERSE: we've already executed the callee (backward), and
6839 the runtime loader code is handled just like any other
6840 undebuggable function call. Now we need only keep stepping
6841 backward through the trampoline code, and that's handled further
6842 down, so there is nothing for us to do here. */
6843
6844 if (execution_direction != EXEC_REVERSE
6845 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6846 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6847 {
6848 CORE_ADDR pc_after_resolver =
6849 gdbarch_skip_solib_resolver (gdbarch,
6850 ecs->event_thread->suspend.stop_pc);
6851
6852 if (debug_infrun)
6853 fprintf_unfiltered (gdb_stdlog,
6854 "infrun: stepped into dynsym resolve code\n");
6855
6856 if (pc_after_resolver)
6857 {
6858 /* Set up a step-resume breakpoint at the address
6859 indicated by SKIP_SOLIB_RESOLVER. */
6860 symtab_and_line sr_sal;
6861 sr_sal.pc = pc_after_resolver;
6862 sr_sal.pspace = get_frame_program_space (frame);
6863
6864 insert_step_resume_breakpoint_at_sal (gdbarch,
6865 sr_sal, null_frame_id);
6866 }
6867
6868 keep_going (ecs);
6869 return;
6870 }
6871
6872 /* Step through an indirect branch thunk. */
6873 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6874 && gdbarch_in_indirect_branch_thunk (gdbarch,
6875 ecs->event_thread->suspend.stop_pc))
6876 {
6877 if (debug_infrun)
6878 fprintf_unfiltered (gdb_stdlog,
6879 "infrun: stepped into indirect branch thunk\n");
6880 keep_going (ecs);
6881 return;
6882 }
6883
6884 if (ecs->event_thread->control.step_range_end != 1
6885 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6886 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6887 && get_frame_type (frame) == SIGTRAMP_FRAME)
6888 {
6889 if (debug_infrun)
6890 fprintf_unfiltered (gdb_stdlog,
6891 "infrun: stepped into signal trampoline\n");
6892 /* The inferior, while doing a "step" or "next", has ended up in
6893 a signal trampoline (either by a signal being delivered or by
6894 the signal handler returning). Just single-step until the
6895 inferior leaves the trampoline (either by calling the handler
6896 or returning). */
6897 keep_going (ecs);
6898 return;
6899 }
6900
6901 /* If we're in the return path from a shared library trampoline,
6902 we want to proceed through the trampoline when stepping. */
6903 /* macro/2012-04-25: This needs to come before the subroutine
6904 call check below as on some targets return trampolines look
6905 like subroutine calls (MIPS16 return thunks). */
6906 if (gdbarch_in_solib_return_trampoline (gdbarch,
6907 ecs->event_thread->suspend.stop_pc,
6908 ecs->stop_func_name)
6909 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6910 {
6911 /* Determine where this trampoline returns. */
6912 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6913 CORE_ADDR real_stop_pc
6914 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6915
6916 if (debug_infrun)
6917 fprintf_unfiltered (gdb_stdlog,
6918 "infrun: stepped into solib return tramp\n");
6919
6920 /* Only proceed through if we know where it's going. */
6921 if (real_stop_pc)
6922 {
6923 /* And put the step-breakpoint there and go until there. */
6924 symtab_and_line sr_sal;
6925 sr_sal.pc = real_stop_pc;
6926 sr_sal.section = find_pc_overlay (sr_sal.pc);
6927 sr_sal.pspace = get_frame_program_space (frame);
6928
6929 /* Do not specify what the fp should be when we stop since
6930 on some machines the prologue is where the new fp value
6931 is established. */
6932 insert_step_resume_breakpoint_at_sal (gdbarch,
6933 sr_sal, null_frame_id);
6934
6935 /* Restart without fiddling with the step ranges or
6936 other state. */
6937 keep_going (ecs);
6938 return;
6939 }
6940 }
6941
6942 /* Check for subroutine calls. The check for the current frame
6943 equalling the step ID is not necessary - the check of the
6944 previous frame's ID is sufficient - but it is a common case and
6945 cheaper than checking the previous frame's ID.
6946
6947 NOTE: frame_id_eq will never report two invalid frame IDs as
6948 being equal, so to get into this block, both the current and
6949 previous frame must have valid frame IDs. */
6950 /* The outer_frame_id check is a heuristic to detect stepping
6951 through startup code. If we step over an instruction which
6952 sets the stack pointer from an invalid value to a valid value,
6953 we may detect that as a subroutine call from the mythical
6954 "outermost" function. This could be fixed by marking
6955 outermost frames as !stack_p,code_p,special_p. Then the
6956 initial outermost frame, before sp was valid, would
6957 have code_addr == &_start. See the comment in frame_id_eq
6958 for more. */
6959 if (!frame_id_eq (get_stack_frame_id (frame),
6960 ecs->event_thread->control.step_stack_frame_id)
6961 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6962 ecs->event_thread->control.step_stack_frame_id)
6963 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6964 outer_frame_id)
6965 || (ecs->event_thread->control.step_start_function
6966 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6967 {
6968 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6969 CORE_ADDR real_stop_pc;
6970
6971 if (debug_infrun)
6972 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6973
6974 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6975 {
6976 /* I presume that step_over_calls is only 0 when we're
6977 supposed to be stepping at the assembly language level
6978 ("stepi"). Just stop. */
6979 /* And this works the same backward as frontward. MVS */
6980 end_stepping_range (ecs);
6981 return;
6982 }
6983
6984 /* Reverse stepping through solib trampolines. */
6985
6986 if (execution_direction == EXEC_REVERSE
6987 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6988 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6989 || (ecs->stop_func_start == 0
6990 && in_solib_dynsym_resolve_code (stop_pc))))
6991 {
6992 /* Any solib trampoline code can be handled in reverse
6993 by simply continuing to single-step. We have already
6994 executed the solib function (backwards), and a few
6995 steps will take us back through the trampoline to the
6996 caller. */
6997 keep_going (ecs);
6998 return;
6999 }
7000
7001 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
7002 {
7003 /* We're doing a "next".
7004
7005 Normal (forward) execution: set a breakpoint at the
7006 callee's return address (the address at which the caller
7007 will resume).
7008
7009 Reverse (backward) execution. set the step-resume
7010 breakpoint at the start of the function that we just
7011 stepped into (backwards), and continue to there. When we
7012 get there, we'll need to single-step back to the caller. */
7013
7014 if (execution_direction == EXEC_REVERSE)
7015 {
7016 /* If we're already at the start of the function, we've either
7017 just stepped backward into a single instruction function,
7018 or stepped back out of a signal handler to the first instruction
7019 of the function. Just keep going, which will single-step back
7020 to the caller. */
7021 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
7022 {
7023 /* Normal function call return (static or dynamic). */
7024 symtab_and_line sr_sal;
7025 sr_sal.pc = ecs->stop_func_start;
7026 sr_sal.pspace = get_frame_program_space (frame);
7027 insert_step_resume_breakpoint_at_sal (gdbarch,
7028 sr_sal, null_frame_id);
7029 }
7030 }
7031 else
7032 insert_step_resume_breakpoint_at_caller (frame);
7033
7034 keep_going (ecs);
7035 return;
7036 }
7037
7038 /* If we are in a function call trampoline (a stub between the
7039 calling routine and the real function), locate the real
7040 function. That's what tells us (a) whether we want to step
7041 into it at all, and (b) what prologue we want to run to the
7042 end of, if we do step into it. */
7043 real_stop_pc = skip_language_trampoline (frame, stop_pc);
7044 if (real_stop_pc == 0)
7045 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
7046 if (real_stop_pc != 0)
7047 ecs->stop_func_start = real_stop_pc;
7048
7049 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
7050 {
7051 symtab_and_line sr_sal;
7052 sr_sal.pc = ecs->stop_func_start;
7053 sr_sal.pspace = get_frame_program_space (frame);
7054
7055 insert_step_resume_breakpoint_at_sal (gdbarch,
7056 sr_sal, null_frame_id);
7057 keep_going (ecs);
7058 return;
7059 }
7060
7061 /* If we have line number information for the function we are
7062 thinking of stepping into and the function isn't on the skip
7063 list, step into it.
7064
7065 If there are several symtabs at that PC (e.g. with include
7066 files), just want to know whether *any* of them have line
7067 numbers. find_pc_line handles this. */
7068 {
7069 struct symtab_and_line tmp_sal;
7070
7071 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
7072 if (tmp_sal.line != 0
7073 && !function_name_is_marked_for_skip (ecs->stop_func_name,
7074 tmp_sal)
7075 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
7076 {
7077 if (execution_direction == EXEC_REVERSE)
7078 handle_step_into_function_backward (gdbarch, ecs);
7079 else
7080 handle_step_into_function (gdbarch, ecs);
7081 return;
7082 }
7083 }
7084
7085 /* If we have no line number and the step-stop-if-no-debug is
7086 set, we stop the step so that the user has a chance to switch
7087 in assembly mode. */
7088 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7089 && step_stop_if_no_debug)
7090 {
7091 end_stepping_range (ecs);
7092 return;
7093 }
7094
7095 if (execution_direction == EXEC_REVERSE)
7096 {
7097 /* If we're already at the start of the function, we've either just
7098 stepped backward into a single instruction function without line
7099 number info, or stepped back out of a signal handler to the first
7100 instruction of the function without line number info. Just keep
7101 going, which will single-step back to the caller. */
7102 if (ecs->stop_func_start != stop_pc)
7103 {
7104 /* Set a breakpoint at callee's start address.
7105 From there we can step once and be back in the caller. */
7106 symtab_and_line sr_sal;
7107 sr_sal.pc = ecs->stop_func_start;
7108 sr_sal.pspace = get_frame_program_space (frame);
7109 insert_step_resume_breakpoint_at_sal (gdbarch,
7110 sr_sal, null_frame_id);
7111 }
7112 }
7113 else
7114 /* Set a breakpoint at callee's return address (the address
7115 at which the caller will resume). */
7116 insert_step_resume_breakpoint_at_caller (frame);
7117
7118 keep_going (ecs);
7119 return;
7120 }
7121
7122 /* Reverse stepping through solib trampolines. */
7123
7124 if (execution_direction == EXEC_REVERSE
7125 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
7126 {
7127 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7128
7129 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7130 || (ecs->stop_func_start == 0
7131 && in_solib_dynsym_resolve_code (stop_pc)))
7132 {
7133 /* Any solib trampoline code can be handled in reverse
7134 by simply continuing to single-step. We have already
7135 executed the solib function (backwards), and a few
7136 steps will take us back through the trampoline to the
7137 caller. */
7138 keep_going (ecs);
7139 return;
7140 }
7141 else if (in_solib_dynsym_resolve_code (stop_pc))
7142 {
7143 /* Stepped backward into the solib dynsym resolver.
7144 Set a breakpoint at its start and continue, then
7145 one more step will take us out. */
7146 symtab_and_line sr_sal;
7147 sr_sal.pc = ecs->stop_func_start;
7148 sr_sal.pspace = get_frame_program_space (frame);
7149 insert_step_resume_breakpoint_at_sal (gdbarch,
7150 sr_sal, null_frame_id);
7151 keep_going (ecs);
7152 return;
7153 }
7154 }
7155
7156 /* This always returns the sal for the inner-most frame when we are in a
7157 stack of inlined frames, even if GDB actually believes that it is in a
7158 more outer frame. This is checked for below by calls to
7159 inline_skipped_frames. */
7160 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7161
7162 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7163 the trampoline processing logic, however, there are some trampolines
7164 that have no names, so we should do trampoline handling first. */
7165 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7166 && ecs->stop_func_name == NULL
7167 && stop_pc_sal.line == 0)
7168 {
7169 if (debug_infrun)
7170 fprintf_unfiltered (gdb_stdlog,
7171 "infrun: stepped into undebuggable function\n");
7172
7173 /* The inferior just stepped into, or returned to, an
7174 undebuggable function (where there is no debugging information
7175 and no line number corresponding to the address where the
7176 inferior stopped). Since we want to skip this kind of code,
7177 we keep going until the inferior returns from this
7178 function - unless the user has asked us not to (via
7179 set step-mode) or we no longer know how to get back
7180 to the call site. */
7181 if (step_stop_if_no_debug
7182 || !frame_id_p (frame_unwind_caller_id (frame)))
7183 {
7184 /* If we have no line number and the step-stop-if-no-debug
7185 is set, we stop the step so that the user has a chance to
7186 switch in assembly mode. */
7187 end_stepping_range (ecs);
7188 return;
7189 }
7190 else
7191 {
7192 /* Set a breakpoint at callee's return address (the address
7193 at which the caller will resume). */
7194 insert_step_resume_breakpoint_at_caller (frame);
7195 keep_going (ecs);
7196 return;
7197 }
7198 }
7199
7200 if (ecs->event_thread->control.step_range_end == 1)
7201 {
7202 /* It is stepi or nexti. We always want to stop stepping after
7203 one instruction. */
7204 if (debug_infrun)
7205 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
7206 end_stepping_range (ecs);
7207 return;
7208 }
7209
7210 if (stop_pc_sal.line == 0)
7211 {
7212 /* We have no line number information. That means to stop
7213 stepping (does this always happen right after one instruction,
7214 when we do "s" in a function with no line numbers,
7215 or can this happen as a result of a return or longjmp?). */
7216 if (debug_infrun)
7217 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
7218 end_stepping_range (ecs);
7219 return;
7220 }
7221
7222 /* Look for "calls" to inlined functions, part one. If the inline
7223 frame machinery detected some skipped call sites, we have entered
7224 a new inline function. */
7225
7226 if (frame_id_eq (get_frame_id (get_current_frame ()),
7227 ecs->event_thread->control.step_frame_id)
7228 && inline_skipped_frames (ecs->event_thread))
7229 {
7230 if (debug_infrun)
7231 fprintf_unfiltered (gdb_stdlog,
7232 "infrun: stepped into inlined function\n");
7233
7234 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7235
7236 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7237 {
7238 /* For "step", we're going to stop. But if the call site
7239 for this inlined function is on the same source line as
7240 we were previously stepping, go down into the function
7241 first. Otherwise stop at the call site. */
7242
7243 if (call_sal.line == ecs->event_thread->current_line
7244 && call_sal.symtab == ecs->event_thread->current_symtab)
7245 {
7246 step_into_inline_frame (ecs->event_thread);
7247 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7248 {
7249 keep_going (ecs);
7250 return;
7251 }
7252 }
7253
7254 end_stepping_range (ecs);
7255 return;
7256 }
7257 else
7258 {
7259 /* For "next", we should stop at the call site if it is on a
7260 different source line. Otherwise continue through the
7261 inlined function. */
7262 if (call_sal.line == ecs->event_thread->current_line
7263 && call_sal.symtab == ecs->event_thread->current_symtab)
7264 keep_going (ecs);
7265 else
7266 end_stepping_range (ecs);
7267 return;
7268 }
7269 }
7270
7271 /* Look for "calls" to inlined functions, part two. If we are still
7272 in the same real function we were stepping through, but we have
7273 to go further up to find the exact frame ID, we are stepping
7274 through a more inlined call beyond its call site. */
7275
7276 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7277 && !frame_id_eq (get_frame_id (get_current_frame ()),
7278 ecs->event_thread->control.step_frame_id)
7279 && stepped_in_from (get_current_frame (),
7280 ecs->event_thread->control.step_frame_id))
7281 {
7282 if (debug_infrun)
7283 fprintf_unfiltered (gdb_stdlog,
7284 "infrun: stepping through inlined function\n");
7285
7286 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7287 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7288 keep_going (ecs);
7289 else
7290 end_stepping_range (ecs);
7291 return;
7292 }
7293
7294 bool refresh_step_info = true;
7295 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7296 && (ecs->event_thread->current_line != stop_pc_sal.line
7297 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7298 {
7299 if (stop_pc_sal.is_stmt)
7300 {
7301 /* We are at the start of a different line. So stop. Note that
7302 we don't stop if we step into the middle of a different line.
7303 That is said to make things like for (;;) statements work
7304 better. */
7305 if (debug_infrun)
7306 fprintf_unfiltered (gdb_stdlog,
7307 "infrun: stepped to a different line\n");
7308 end_stepping_range (ecs);
7309 return;
7310 }
7311 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7312 ecs->event_thread->control.step_frame_id))
7313 {
7314 /* We are at the start of a different line, however, this line is
7315 not marked as a statement, and we have not changed frame. We
7316 ignore this line table entry, and continue stepping forward,
7317 looking for a better place to stop. */
7318 refresh_step_info = false;
7319 if (debug_infrun)
7320 fprintf_unfiltered (gdb_stdlog,
7321 "infrun: stepped to a different line, but "
7322 "it's not the start of a statement\n");
7323 }
7324 }
7325
7326 /* We aren't done stepping.
7327
7328 Optimize by setting the stepping range to the line.
7329 (We might not be in the original line, but if we entered a
7330 new line in mid-statement, we continue stepping. This makes
7331 things like for(;;) statements work better.)
7332
7333 If we entered a SAL that indicates a non-statement line table entry,
7334 then we update the stepping range, but we don't update the step info,
7335 which includes things like the line number we are stepping away from.
7336 This means we will stop when we find a line table entry that is marked
7337 as is-statement, even if it matches the non-statement one we just
7338 stepped into. */
7339
7340 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7341 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7342 ecs->event_thread->control.may_range_step = 1;
7343 if (refresh_step_info)
7344 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7345
7346 if (debug_infrun)
7347 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7348 keep_going (ecs);
7349 }
7350
7351 /* In all-stop mode, if we're currently stepping but have stopped in
7352 some other thread, we may need to switch back to the stepped
7353 thread. Returns true we set the inferior running, false if we left
7354 it stopped (and the event needs further processing). */
7355
7356 static int
7357 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7358 {
7359 if (!target_is_non_stop_p ())
7360 {
7361 struct thread_info *stepping_thread;
7362
7363 /* If any thread is blocked on some internal breakpoint, and we
7364 simply need to step over that breakpoint to get it going
7365 again, do that first. */
7366
7367 /* However, if we see an event for the stepping thread, then we
7368 know all other threads have been moved past their breakpoints
7369 already. Let the caller check whether the step is finished,
7370 etc., before deciding to move it past a breakpoint. */
7371 if (ecs->event_thread->control.step_range_end != 0)
7372 return 0;
7373
7374 /* Check if the current thread is blocked on an incomplete
7375 step-over, interrupted by a random signal. */
7376 if (ecs->event_thread->control.trap_expected
7377 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7378 {
7379 if (debug_infrun)
7380 {
7381 fprintf_unfiltered (gdb_stdlog,
7382 "infrun: need to finish step-over of [%s]\n",
7383 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7384 }
7385 keep_going (ecs);
7386 return 1;
7387 }
7388
7389 /* Check if the current thread is blocked by a single-step
7390 breakpoint of another thread. */
7391 if (ecs->hit_singlestep_breakpoint)
7392 {
7393 if (debug_infrun)
7394 {
7395 fprintf_unfiltered (gdb_stdlog,
7396 "infrun: need to step [%s] over single-step "
7397 "breakpoint\n",
7398 target_pid_to_str (ecs->ptid).c_str ());
7399 }
7400 keep_going (ecs);
7401 return 1;
7402 }
7403
7404 /* If this thread needs yet another step-over (e.g., stepping
7405 through a delay slot), do it first before moving on to
7406 another thread. */
7407 if (thread_still_needs_step_over (ecs->event_thread))
7408 {
7409 if (debug_infrun)
7410 {
7411 fprintf_unfiltered (gdb_stdlog,
7412 "infrun: thread [%s] still needs step-over\n",
7413 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7414 }
7415 keep_going (ecs);
7416 return 1;
7417 }
7418
7419 /* If scheduler locking applies even if not stepping, there's no
7420 need to walk over threads. Above we've checked whether the
7421 current thread is stepping. If some other thread not the
7422 event thread is stepping, then it must be that scheduler
7423 locking is not in effect. */
7424 if (schedlock_applies (ecs->event_thread))
7425 return 0;
7426
7427 /* Otherwise, we no longer expect a trap in the current thread.
7428 Clear the trap_expected flag before switching back -- this is
7429 what keep_going does as well, if we call it. */
7430 ecs->event_thread->control.trap_expected = 0;
7431
7432 /* Likewise, clear the signal if it should not be passed. */
7433 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7434 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7435
7436 /* Do all pending step-overs before actually proceeding with
7437 step/next/etc. */
7438 if (start_step_over ())
7439 {
7440 prepare_to_wait (ecs);
7441 return 1;
7442 }
7443
7444 /* Look for the stepping/nexting thread. */
7445 stepping_thread = NULL;
7446
7447 for (thread_info *tp : all_non_exited_threads ())
7448 {
7449 switch_to_thread_no_regs (tp);
7450
7451 /* Ignore threads of processes the caller is not
7452 resuming. */
7453 if (!sched_multi
7454 && (tp->inf->process_target () != ecs->target
7455 || tp->inf->pid != ecs->ptid.pid ()))
7456 continue;
7457
7458 /* When stepping over a breakpoint, we lock all threads
7459 except the one that needs to move past the breakpoint.
7460 If a non-event thread has this set, the "incomplete
7461 step-over" check above should have caught it earlier. */
7462 if (tp->control.trap_expected)
7463 {
7464 internal_error (__FILE__, __LINE__,
7465 "[%s] has inconsistent state: "
7466 "trap_expected=%d\n",
7467 target_pid_to_str (tp->ptid).c_str (),
7468 tp->control.trap_expected);
7469 }
7470
7471 /* Did we find the stepping thread? */
7472 if (tp->control.step_range_end)
7473 {
7474 /* Yep. There should only one though. */
7475 gdb_assert (stepping_thread == NULL);
7476
7477 /* The event thread is handled at the top, before we
7478 enter this loop. */
7479 gdb_assert (tp != ecs->event_thread);
7480
7481 /* If some thread other than the event thread is
7482 stepping, then scheduler locking can't be in effect,
7483 otherwise we wouldn't have resumed the current event
7484 thread in the first place. */
7485 gdb_assert (!schedlock_applies (tp));
7486
7487 stepping_thread = tp;
7488 }
7489 }
7490
7491 if (stepping_thread != NULL)
7492 {
7493 if (debug_infrun)
7494 fprintf_unfiltered (gdb_stdlog,
7495 "infrun: switching back to stepped thread\n");
7496
7497 if (keep_going_stepped_thread (stepping_thread))
7498 {
7499 prepare_to_wait (ecs);
7500 return 1;
7501 }
7502 }
7503
7504 switch_to_thread (ecs->event_thread);
7505 }
7506
7507 return 0;
7508 }
7509
7510 /* Set a previously stepped thread back to stepping. Returns true on
7511 success, false if the resume is not possible (e.g., the thread
7512 vanished). */
7513
7514 static int
7515 keep_going_stepped_thread (struct thread_info *tp)
7516 {
7517 struct frame_info *frame;
7518 struct execution_control_state ecss;
7519 struct execution_control_state *ecs = &ecss;
7520
7521 /* If the stepping thread exited, then don't try to switch back and
7522 resume it, which could fail in several different ways depending
7523 on the target. Instead, just keep going.
7524
7525 We can find a stepping dead thread in the thread list in two
7526 cases:
7527
7528 - The target supports thread exit events, and when the target
7529 tries to delete the thread from the thread list, inferior_ptid
7530 pointed at the exiting thread. In such case, calling
7531 delete_thread does not really remove the thread from the list;
7532 instead, the thread is left listed, with 'exited' state.
7533
7534 - The target's debug interface does not support thread exit
7535 events, and so we have no idea whatsoever if the previously
7536 stepping thread is still alive. For that reason, we need to
7537 synchronously query the target now. */
7538
7539 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7540 {
7541 if (debug_infrun)
7542 fprintf_unfiltered (gdb_stdlog,
7543 "infrun: not resuming previously "
7544 "stepped thread, it has vanished\n");
7545
7546 delete_thread (tp);
7547 return 0;
7548 }
7549
7550 if (debug_infrun)
7551 fprintf_unfiltered (gdb_stdlog,
7552 "infrun: resuming previously stepped thread\n");
7553
7554 reset_ecs (ecs, tp);
7555 switch_to_thread (tp);
7556
7557 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7558 frame = get_current_frame ();
7559
7560 /* If the PC of the thread we were trying to single-step has
7561 changed, then that thread has trapped or been signaled, but the
7562 event has not been reported to GDB yet. Re-poll the target
7563 looking for this particular thread's event (i.e. temporarily
7564 enable schedlock) by:
7565
7566 - setting a break at the current PC
7567 - resuming that particular thread, only (by setting trap
7568 expected)
7569
7570 This prevents us continuously moving the single-step breakpoint
7571 forward, one instruction at a time, overstepping. */
7572
7573 if (tp->suspend.stop_pc != tp->prev_pc)
7574 {
7575 ptid_t resume_ptid;
7576
7577 if (debug_infrun)
7578 fprintf_unfiltered (gdb_stdlog,
7579 "infrun: expected thread advanced also (%s -> %s)\n",
7580 paddress (target_gdbarch (), tp->prev_pc),
7581 paddress (target_gdbarch (), tp->suspend.stop_pc));
7582
7583 /* Clear the info of the previous step-over, as it's no longer
7584 valid (if the thread was trying to step over a breakpoint, it
7585 has already succeeded). It's what keep_going would do too,
7586 if we called it. Do this before trying to insert the sss
7587 breakpoint, otherwise if we were previously trying to step
7588 over this exact address in another thread, the breakpoint is
7589 skipped. */
7590 clear_step_over_info ();
7591 tp->control.trap_expected = 0;
7592
7593 insert_single_step_breakpoint (get_frame_arch (frame),
7594 get_frame_address_space (frame),
7595 tp->suspend.stop_pc);
7596
7597 tp->resumed = true;
7598 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7599 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7600 }
7601 else
7602 {
7603 if (debug_infrun)
7604 fprintf_unfiltered (gdb_stdlog,
7605 "infrun: expected thread still hasn't advanced\n");
7606
7607 keep_going_pass_signal (ecs);
7608 }
7609 return 1;
7610 }
7611
7612 /* Is thread TP in the middle of (software or hardware)
7613 single-stepping? (Note the result of this function must never be
7614 passed directly as target_resume's STEP parameter.) */
7615
7616 static int
7617 currently_stepping (struct thread_info *tp)
7618 {
7619 return ((tp->control.step_range_end
7620 && tp->control.step_resume_breakpoint == NULL)
7621 || tp->control.trap_expected
7622 || tp->stepped_breakpoint
7623 || bpstat_should_step ());
7624 }
7625
7626 /* Inferior has stepped into a subroutine call with source code that
7627 we should not step over. Do step to the first line of code in
7628 it. */
7629
7630 static void
7631 handle_step_into_function (struct gdbarch *gdbarch,
7632 struct execution_control_state *ecs)
7633 {
7634 fill_in_stop_func (gdbarch, ecs);
7635
7636 compunit_symtab *cust
7637 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7638 if (cust != NULL && compunit_language (cust) != language_asm)
7639 ecs->stop_func_start
7640 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7641
7642 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7643 /* Use the step_resume_break to step until the end of the prologue,
7644 even if that involves jumps (as it seems to on the vax under
7645 4.2). */
7646 /* If the prologue ends in the middle of a source line, continue to
7647 the end of that source line (if it is still within the function).
7648 Otherwise, just go to end of prologue. */
7649 if (stop_func_sal.end
7650 && stop_func_sal.pc != ecs->stop_func_start
7651 && stop_func_sal.end < ecs->stop_func_end)
7652 ecs->stop_func_start = stop_func_sal.end;
7653
7654 /* Architectures which require breakpoint adjustment might not be able
7655 to place a breakpoint at the computed address. If so, the test
7656 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7657 ecs->stop_func_start to an address at which a breakpoint may be
7658 legitimately placed.
7659
7660 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7661 made, GDB will enter an infinite loop when stepping through
7662 optimized code consisting of VLIW instructions which contain
7663 subinstructions corresponding to different source lines. On
7664 FR-V, it's not permitted to place a breakpoint on any but the
7665 first subinstruction of a VLIW instruction. When a breakpoint is
7666 set, GDB will adjust the breakpoint address to the beginning of
7667 the VLIW instruction. Thus, we need to make the corresponding
7668 adjustment here when computing the stop address. */
7669
7670 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7671 {
7672 ecs->stop_func_start
7673 = gdbarch_adjust_breakpoint_address (gdbarch,
7674 ecs->stop_func_start);
7675 }
7676
7677 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7678 {
7679 /* We are already there: stop now. */
7680 end_stepping_range (ecs);
7681 return;
7682 }
7683 else
7684 {
7685 /* Put the step-breakpoint there and go until there. */
7686 symtab_and_line sr_sal;
7687 sr_sal.pc = ecs->stop_func_start;
7688 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7689 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7690
7691 /* Do not specify what the fp should be when we stop since on
7692 some machines the prologue is where the new fp value is
7693 established. */
7694 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7695
7696 /* And make sure stepping stops right away then. */
7697 ecs->event_thread->control.step_range_end
7698 = ecs->event_thread->control.step_range_start;
7699 }
7700 keep_going (ecs);
7701 }
7702
7703 /* Inferior has stepped backward into a subroutine call with source
7704 code that we should not step over. Do step to the beginning of the
7705 last line of code in it. */
7706
7707 static void
7708 handle_step_into_function_backward (struct gdbarch *gdbarch,
7709 struct execution_control_state *ecs)
7710 {
7711 struct compunit_symtab *cust;
7712 struct symtab_and_line stop_func_sal;
7713
7714 fill_in_stop_func (gdbarch, ecs);
7715
7716 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7717 if (cust != NULL && compunit_language (cust) != language_asm)
7718 ecs->stop_func_start
7719 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7720
7721 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7722
7723 /* OK, we're just going to keep stepping here. */
7724 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7725 {
7726 /* We're there already. Just stop stepping now. */
7727 end_stepping_range (ecs);
7728 }
7729 else
7730 {
7731 /* Else just reset the step range and keep going.
7732 No step-resume breakpoint, they don't work for
7733 epilogues, which can have multiple entry paths. */
7734 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7735 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7736 keep_going (ecs);
7737 }
7738 return;
7739 }
7740
7741 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7742 This is used to both functions and to skip over code. */
7743
7744 static void
7745 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7746 struct symtab_and_line sr_sal,
7747 struct frame_id sr_id,
7748 enum bptype sr_type)
7749 {
7750 /* There should never be more than one step-resume or longjmp-resume
7751 breakpoint per thread, so we should never be setting a new
7752 step_resume_breakpoint when one is already active. */
7753 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7754 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7755
7756 if (debug_infrun)
7757 fprintf_unfiltered (gdb_stdlog,
7758 "infrun: inserting step-resume breakpoint at %s\n",
7759 paddress (gdbarch, sr_sal.pc));
7760
7761 inferior_thread ()->control.step_resume_breakpoint
7762 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7763 }
7764
7765 void
7766 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7767 struct symtab_and_line sr_sal,
7768 struct frame_id sr_id)
7769 {
7770 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7771 sr_sal, sr_id,
7772 bp_step_resume);
7773 }
7774
7775 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7776 This is used to skip a potential signal handler.
7777
7778 This is called with the interrupted function's frame. The signal
7779 handler, when it returns, will resume the interrupted function at
7780 RETURN_FRAME.pc. */
7781
7782 static void
7783 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7784 {
7785 gdb_assert (return_frame != NULL);
7786
7787 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7788
7789 symtab_and_line sr_sal;
7790 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7791 sr_sal.section = find_pc_overlay (sr_sal.pc);
7792 sr_sal.pspace = get_frame_program_space (return_frame);
7793
7794 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7795 get_stack_frame_id (return_frame),
7796 bp_hp_step_resume);
7797 }
7798
7799 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7800 is used to skip a function after stepping into it (for "next" or if
7801 the called function has no debugging information).
7802
7803 The current function has almost always been reached by single
7804 stepping a call or return instruction. NEXT_FRAME belongs to the
7805 current function, and the breakpoint will be set at the caller's
7806 resume address.
7807
7808 This is a separate function rather than reusing
7809 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7810 get_prev_frame, which may stop prematurely (see the implementation
7811 of frame_unwind_caller_id for an example). */
7812
7813 static void
7814 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7815 {
7816 /* We shouldn't have gotten here if we don't know where the call site
7817 is. */
7818 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7819
7820 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7821
7822 symtab_and_line sr_sal;
7823 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7824 frame_unwind_caller_pc (next_frame));
7825 sr_sal.section = find_pc_overlay (sr_sal.pc);
7826 sr_sal.pspace = frame_unwind_program_space (next_frame);
7827
7828 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7829 frame_unwind_caller_id (next_frame));
7830 }
7831
7832 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7833 new breakpoint at the target of a jmp_buf. The handling of
7834 longjmp-resume uses the same mechanisms used for handling
7835 "step-resume" breakpoints. */
7836
7837 static void
7838 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7839 {
7840 /* There should never be more than one longjmp-resume breakpoint per
7841 thread, so we should never be setting a new
7842 longjmp_resume_breakpoint when one is already active. */
7843 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7844
7845 if (debug_infrun)
7846 fprintf_unfiltered (gdb_stdlog,
7847 "infrun: inserting longjmp-resume breakpoint at %s\n",
7848 paddress (gdbarch, pc));
7849
7850 inferior_thread ()->control.exception_resume_breakpoint =
7851 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7852 }
7853
7854 /* Insert an exception resume breakpoint. TP is the thread throwing
7855 the exception. The block B is the block of the unwinder debug hook
7856 function. FRAME is the frame corresponding to the call to this
7857 function. SYM is the symbol of the function argument holding the
7858 target PC of the exception. */
7859
7860 static void
7861 insert_exception_resume_breakpoint (struct thread_info *tp,
7862 const struct block *b,
7863 struct frame_info *frame,
7864 struct symbol *sym)
7865 {
7866 try
7867 {
7868 struct block_symbol vsym;
7869 struct value *value;
7870 CORE_ADDR handler;
7871 struct breakpoint *bp;
7872
7873 vsym = lookup_symbol_search_name (sym->search_name (),
7874 b, VAR_DOMAIN);
7875 value = read_var_value (vsym.symbol, vsym.block, frame);
7876 /* If the value was optimized out, revert to the old behavior. */
7877 if (! value_optimized_out (value))
7878 {
7879 handler = value_as_address (value);
7880
7881 if (debug_infrun)
7882 fprintf_unfiltered (gdb_stdlog,
7883 "infrun: exception resume at %lx\n",
7884 (unsigned long) handler);
7885
7886 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7887 handler,
7888 bp_exception_resume).release ();
7889
7890 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7891 frame = NULL;
7892
7893 bp->thread = tp->global_num;
7894 inferior_thread ()->control.exception_resume_breakpoint = bp;
7895 }
7896 }
7897 catch (const gdb_exception_error &e)
7898 {
7899 /* We want to ignore errors here. */
7900 }
7901 }
7902
7903 /* A helper for check_exception_resume that sets an
7904 exception-breakpoint based on a SystemTap probe. */
7905
7906 static void
7907 insert_exception_resume_from_probe (struct thread_info *tp,
7908 const struct bound_probe *probe,
7909 struct frame_info *frame)
7910 {
7911 struct value *arg_value;
7912 CORE_ADDR handler;
7913 struct breakpoint *bp;
7914
7915 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7916 if (!arg_value)
7917 return;
7918
7919 handler = value_as_address (arg_value);
7920
7921 if (debug_infrun)
7922 fprintf_unfiltered (gdb_stdlog,
7923 "infrun: exception resume at %s\n",
7924 paddress (probe->objfile->arch (),
7925 handler));
7926
7927 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7928 handler, bp_exception_resume).release ();
7929 bp->thread = tp->global_num;
7930 inferior_thread ()->control.exception_resume_breakpoint = bp;
7931 }
7932
7933 /* This is called when an exception has been intercepted. Check to
7934 see whether the exception's destination is of interest, and if so,
7935 set an exception resume breakpoint there. */
7936
7937 static void
7938 check_exception_resume (struct execution_control_state *ecs,
7939 struct frame_info *frame)
7940 {
7941 struct bound_probe probe;
7942 struct symbol *func;
7943
7944 /* First see if this exception unwinding breakpoint was set via a
7945 SystemTap probe point. If so, the probe has two arguments: the
7946 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7947 set a breakpoint there. */
7948 probe = find_probe_by_pc (get_frame_pc (frame));
7949 if (probe.prob)
7950 {
7951 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7952 return;
7953 }
7954
7955 func = get_frame_function (frame);
7956 if (!func)
7957 return;
7958
7959 try
7960 {
7961 const struct block *b;
7962 struct block_iterator iter;
7963 struct symbol *sym;
7964 int argno = 0;
7965
7966 /* The exception breakpoint is a thread-specific breakpoint on
7967 the unwinder's debug hook, declared as:
7968
7969 void _Unwind_DebugHook (void *cfa, void *handler);
7970
7971 The CFA argument indicates the frame to which control is
7972 about to be transferred. HANDLER is the destination PC.
7973
7974 We ignore the CFA and set a temporary breakpoint at HANDLER.
7975 This is not extremely efficient but it avoids issues in gdb
7976 with computing the DWARF CFA, and it also works even in weird
7977 cases such as throwing an exception from inside a signal
7978 handler. */
7979
7980 b = SYMBOL_BLOCK_VALUE (func);
7981 ALL_BLOCK_SYMBOLS (b, iter, sym)
7982 {
7983 if (!SYMBOL_IS_ARGUMENT (sym))
7984 continue;
7985
7986 if (argno == 0)
7987 ++argno;
7988 else
7989 {
7990 insert_exception_resume_breakpoint (ecs->event_thread,
7991 b, frame, sym);
7992 break;
7993 }
7994 }
7995 }
7996 catch (const gdb_exception_error &e)
7997 {
7998 }
7999 }
8000
8001 static void
8002 stop_waiting (struct execution_control_state *ecs)
8003 {
8004 if (debug_infrun)
8005 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
8006
8007 /* Let callers know we don't want to wait for the inferior anymore. */
8008 ecs->wait_some_more = 0;
8009
8010 /* If all-stop, but there exists a non-stop target, stop all
8011 threads now that we're presenting the stop to the user. */
8012 if (!non_stop && exists_non_stop_target ())
8013 stop_all_threads ();
8014 }
8015
8016 /* Like keep_going, but passes the signal to the inferior, even if the
8017 signal is set to nopass. */
8018
8019 static void
8020 keep_going_pass_signal (struct execution_control_state *ecs)
8021 {
8022 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
8023 gdb_assert (!ecs->event_thread->resumed);
8024
8025 /* Save the pc before execution, to compare with pc after stop. */
8026 ecs->event_thread->prev_pc
8027 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
8028
8029 if (ecs->event_thread->control.trap_expected)
8030 {
8031 struct thread_info *tp = ecs->event_thread;
8032
8033 if (debug_infrun)
8034 fprintf_unfiltered (gdb_stdlog,
8035 "infrun: %s has trap_expected set, "
8036 "resuming to collect trap\n",
8037 target_pid_to_str (tp->ptid).c_str ());
8038
8039 /* We haven't yet gotten our trap, and either: intercepted a
8040 non-signal event (e.g., a fork); or took a signal which we
8041 are supposed to pass through to the inferior. Simply
8042 continue. */
8043 resume (ecs->event_thread->suspend.stop_signal);
8044 }
8045 else if (step_over_info_valid_p ())
8046 {
8047 /* Another thread is stepping over a breakpoint in-line. If
8048 this thread needs a step-over too, queue the request. In
8049 either case, this resume must be deferred for later. */
8050 struct thread_info *tp = ecs->event_thread;
8051
8052 if (ecs->hit_singlestep_breakpoint
8053 || thread_still_needs_step_over (tp))
8054 {
8055 if (debug_infrun)
8056 fprintf_unfiltered (gdb_stdlog,
8057 "infrun: step-over already in progress: "
8058 "step-over for %s deferred\n",
8059 target_pid_to_str (tp->ptid).c_str ());
8060 thread_step_over_chain_enqueue (tp);
8061 }
8062 else
8063 {
8064 if (debug_infrun)
8065 fprintf_unfiltered (gdb_stdlog,
8066 "infrun: step-over in progress: "
8067 "resume of %s deferred\n",
8068 target_pid_to_str (tp->ptid).c_str ());
8069 }
8070 }
8071 else
8072 {
8073 struct regcache *regcache = get_current_regcache ();
8074 int remove_bp;
8075 int remove_wps;
8076 step_over_what step_what;
8077
8078 /* Either the trap was not expected, but we are continuing
8079 anyway (if we got a signal, the user asked it be passed to
8080 the child)
8081 -- or --
8082 We got our expected trap, but decided we should resume from
8083 it.
8084
8085 We're going to run this baby now!
8086
8087 Note that insert_breakpoints won't try to re-insert
8088 already inserted breakpoints. Therefore, we don't
8089 care if breakpoints were already inserted, or not. */
8090
8091 /* If we need to step over a breakpoint, and we're not using
8092 displaced stepping to do so, insert all breakpoints
8093 (watchpoints, etc.) but the one we're stepping over, step one
8094 instruction, and then re-insert the breakpoint when that step
8095 is finished. */
8096
8097 step_what = thread_still_needs_step_over (ecs->event_thread);
8098
8099 remove_bp = (ecs->hit_singlestep_breakpoint
8100 || (step_what & STEP_OVER_BREAKPOINT));
8101 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
8102
8103 /* We can't use displaced stepping if we need to step past a
8104 watchpoint. The instruction copied to the scratch pad would
8105 still trigger the watchpoint. */
8106 if (remove_bp
8107 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
8108 {
8109 set_step_over_info (regcache->aspace (),
8110 regcache_read_pc (regcache), remove_wps,
8111 ecs->event_thread->global_num);
8112 }
8113 else if (remove_wps)
8114 set_step_over_info (NULL, 0, remove_wps, -1);
8115
8116 /* If we now need to do an in-line step-over, we need to stop
8117 all other threads. Note this must be done before
8118 insert_breakpoints below, because that removes the breakpoint
8119 we're about to step over, otherwise other threads could miss
8120 it. */
8121 if (step_over_info_valid_p () && target_is_non_stop_p ())
8122 stop_all_threads ();
8123
8124 /* Stop stepping if inserting breakpoints fails. */
8125 try
8126 {
8127 insert_breakpoints ();
8128 }
8129 catch (const gdb_exception_error &e)
8130 {
8131 exception_print (gdb_stderr, e);
8132 stop_waiting (ecs);
8133 clear_step_over_info ();
8134 return;
8135 }
8136
8137 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
8138
8139 resume (ecs->event_thread->suspend.stop_signal);
8140 }
8141
8142 prepare_to_wait (ecs);
8143 }
8144
8145 /* Called when we should continue running the inferior, because the
8146 current event doesn't cause a user visible stop. This does the
8147 resuming part; waiting for the next event is done elsewhere. */
8148
8149 static void
8150 keep_going (struct execution_control_state *ecs)
8151 {
8152 if (ecs->event_thread->control.trap_expected
8153 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8154 ecs->event_thread->control.trap_expected = 0;
8155
8156 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8157 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8158 keep_going_pass_signal (ecs);
8159 }
8160
8161 /* This function normally comes after a resume, before
8162 handle_inferior_event exits. It takes care of any last bits of
8163 housekeeping, and sets the all-important wait_some_more flag. */
8164
8165 static void
8166 prepare_to_wait (struct execution_control_state *ecs)
8167 {
8168 if (debug_infrun)
8169 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
8170
8171 ecs->wait_some_more = 1;
8172
8173 /* If the target can't async, emulate it by marking the infrun event
8174 handler such that as soon as we get back to the event-loop, we
8175 immediately end up in fetch_inferior_event again calling
8176 target_wait. */
8177 if (!target_can_async_p ())
8178 mark_infrun_async_event_handler ();
8179 }
8180
8181 /* We are done with the step range of a step/next/si/ni command.
8182 Called once for each n of a "step n" operation. */
8183
8184 static void
8185 end_stepping_range (struct execution_control_state *ecs)
8186 {
8187 ecs->event_thread->control.stop_step = 1;
8188 stop_waiting (ecs);
8189 }
8190
8191 /* Several print_*_reason functions to print why the inferior has stopped.
8192 We always print something when the inferior exits, or receives a signal.
8193 The rest of the cases are dealt with later on in normal_stop and
8194 print_it_typical. Ideally there should be a call to one of these
8195 print_*_reason functions functions from handle_inferior_event each time
8196 stop_waiting is called.
8197
8198 Note that we don't call these directly, instead we delegate that to
8199 the interpreters, through observers. Interpreters then call these
8200 with whatever uiout is right. */
8201
8202 void
8203 print_end_stepping_range_reason (struct ui_out *uiout)
8204 {
8205 /* For CLI-like interpreters, print nothing. */
8206
8207 if (uiout->is_mi_like_p ())
8208 {
8209 uiout->field_string ("reason",
8210 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8211 }
8212 }
8213
8214 void
8215 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8216 {
8217 annotate_signalled ();
8218 if (uiout->is_mi_like_p ())
8219 uiout->field_string
8220 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8221 uiout->text ("\nProgram terminated with signal ");
8222 annotate_signal_name ();
8223 uiout->field_string ("signal-name",
8224 gdb_signal_to_name (siggnal));
8225 annotate_signal_name_end ();
8226 uiout->text (", ");
8227 annotate_signal_string ();
8228 uiout->field_string ("signal-meaning",
8229 gdb_signal_to_string (siggnal));
8230 annotate_signal_string_end ();
8231 uiout->text (".\n");
8232 uiout->text ("The program no longer exists.\n");
8233 }
8234
8235 void
8236 print_exited_reason (struct ui_out *uiout, int exitstatus)
8237 {
8238 struct inferior *inf = current_inferior ();
8239 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
8240
8241 annotate_exited (exitstatus);
8242 if (exitstatus)
8243 {
8244 if (uiout->is_mi_like_p ())
8245 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
8246 std::string exit_code_str
8247 = string_printf ("0%o", (unsigned int) exitstatus);
8248 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8249 plongest (inf->num), pidstr.c_str (),
8250 string_field ("exit-code", exit_code_str.c_str ()));
8251 }
8252 else
8253 {
8254 if (uiout->is_mi_like_p ())
8255 uiout->field_string
8256 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8257 uiout->message ("[Inferior %s (%s) exited normally]\n",
8258 plongest (inf->num), pidstr.c_str ());
8259 }
8260 }
8261
8262 /* Some targets/architectures can do extra processing/display of
8263 segmentation faults. E.g., Intel MPX boundary faults.
8264 Call the architecture dependent function to handle the fault. */
8265
8266 static void
8267 handle_segmentation_fault (struct ui_out *uiout)
8268 {
8269 struct regcache *regcache = get_current_regcache ();
8270 struct gdbarch *gdbarch = regcache->arch ();
8271
8272 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8273 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8274 }
8275
8276 void
8277 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8278 {
8279 struct thread_info *thr = inferior_thread ();
8280
8281 annotate_signal ();
8282
8283 if (uiout->is_mi_like_p ())
8284 ;
8285 else if (show_thread_that_caused_stop ())
8286 {
8287 const char *name;
8288
8289 uiout->text ("\nThread ");
8290 uiout->field_string ("thread-id", print_thread_id (thr));
8291
8292 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8293 if (name != NULL)
8294 {
8295 uiout->text (" \"");
8296 uiout->field_string ("name", name);
8297 uiout->text ("\"");
8298 }
8299 }
8300 else
8301 uiout->text ("\nProgram");
8302
8303 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8304 uiout->text (" stopped");
8305 else
8306 {
8307 uiout->text (" received signal ");
8308 annotate_signal_name ();
8309 if (uiout->is_mi_like_p ())
8310 uiout->field_string
8311 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8312 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8313 annotate_signal_name_end ();
8314 uiout->text (", ");
8315 annotate_signal_string ();
8316 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8317
8318 if (siggnal == GDB_SIGNAL_SEGV)
8319 handle_segmentation_fault (uiout);
8320
8321 annotate_signal_string_end ();
8322 }
8323 uiout->text (".\n");
8324 }
8325
8326 void
8327 print_no_history_reason (struct ui_out *uiout)
8328 {
8329 uiout->text ("\nNo more reverse-execution history.\n");
8330 }
8331
8332 /* Print current location without a level number, if we have changed
8333 functions or hit a breakpoint. Print source line if we have one.
8334 bpstat_print contains the logic deciding in detail what to print,
8335 based on the event(s) that just occurred. */
8336
8337 static void
8338 print_stop_location (struct target_waitstatus *ws)
8339 {
8340 int bpstat_ret;
8341 enum print_what source_flag;
8342 int do_frame_printing = 1;
8343 struct thread_info *tp = inferior_thread ();
8344
8345 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8346 switch (bpstat_ret)
8347 {
8348 case PRINT_UNKNOWN:
8349 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8350 should) carry around the function and does (or should) use
8351 that when doing a frame comparison. */
8352 if (tp->control.stop_step
8353 && frame_id_eq (tp->control.step_frame_id,
8354 get_frame_id (get_current_frame ()))
8355 && (tp->control.step_start_function
8356 == find_pc_function (tp->suspend.stop_pc)))
8357 {
8358 /* Finished step, just print source line. */
8359 source_flag = SRC_LINE;
8360 }
8361 else
8362 {
8363 /* Print location and source line. */
8364 source_flag = SRC_AND_LOC;
8365 }
8366 break;
8367 case PRINT_SRC_AND_LOC:
8368 /* Print location and source line. */
8369 source_flag = SRC_AND_LOC;
8370 break;
8371 case PRINT_SRC_ONLY:
8372 source_flag = SRC_LINE;
8373 break;
8374 case PRINT_NOTHING:
8375 /* Something bogus. */
8376 source_flag = SRC_LINE;
8377 do_frame_printing = 0;
8378 break;
8379 default:
8380 internal_error (__FILE__, __LINE__, _("Unknown value."));
8381 }
8382
8383 /* The behavior of this routine with respect to the source
8384 flag is:
8385 SRC_LINE: Print only source line
8386 LOCATION: Print only location
8387 SRC_AND_LOC: Print location and source line. */
8388 if (do_frame_printing)
8389 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8390 }
8391
8392 /* See infrun.h. */
8393
8394 void
8395 print_stop_event (struct ui_out *uiout, bool displays)
8396 {
8397 struct target_waitstatus last;
8398 struct thread_info *tp;
8399
8400 get_last_target_status (nullptr, nullptr, &last);
8401
8402 {
8403 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8404
8405 print_stop_location (&last);
8406
8407 /* Display the auto-display expressions. */
8408 if (displays)
8409 do_displays ();
8410 }
8411
8412 tp = inferior_thread ();
8413 if (tp->thread_fsm != NULL
8414 && tp->thread_fsm->finished_p ())
8415 {
8416 struct return_value_info *rv;
8417
8418 rv = tp->thread_fsm->return_value ();
8419 if (rv != NULL)
8420 print_return_value (uiout, rv);
8421 }
8422 }
8423
8424 /* See infrun.h. */
8425
8426 void
8427 maybe_remove_breakpoints (void)
8428 {
8429 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8430 {
8431 if (remove_breakpoints ())
8432 {
8433 target_terminal::ours_for_output ();
8434 printf_filtered (_("Cannot remove breakpoints because "
8435 "program is no longer writable.\nFurther "
8436 "execution is probably impossible.\n"));
8437 }
8438 }
8439 }
8440
8441 /* The execution context that just caused a normal stop. */
8442
8443 struct stop_context
8444 {
8445 stop_context ();
8446 ~stop_context ();
8447
8448 DISABLE_COPY_AND_ASSIGN (stop_context);
8449
8450 bool changed () const;
8451
8452 /* The stop ID. */
8453 ULONGEST stop_id;
8454
8455 /* The event PTID. */
8456
8457 ptid_t ptid;
8458
8459 /* If stopp for a thread event, this is the thread that caused the
8460 stop. */
8461 struct thread_info *thread;
8462
8463 /* The inferior that caused the stop. */
8464 int inf_num;
8465 };
8466
8467 /* Initializes a new stop context. If stopped for a thread event, this
8468 takes a strong reference to the thread. */
8469
8470 stop_context::stop_context ()
8471 {
8472 stop_id = get_stop_id ();
8473 ptid = inferior_ptid;
8474 inf_num = current_inferior ()->num;
8475
8476 if (inferior_ptid != null_ptid)
8477 {
8478 /* Take a strong reference so that the thread can't be deleted
8479 yet. */
8480 thread = inferior_thread ();
8481 thread->incref ();
8482 }
8483 else
8484 thread = NULL;
8485 }
8486
8487 /* Release a stop context previously created with save_stop_context.
8488 Releases the strong reference to the thread as well. */
8489
8490 stop_context::~stop_context ()
8491 {
8492 if (thread != NULL)
8493 thread->decref ();
8494 }
8495
8496 /* Return true if the current context no longer matches the saved stop
8497 context. */
8498
8499 bool
8500 stop_context::changed () const
8501 {
8502 if (ptid != inferior_ptid)
8503 return true;
8504 if (inf_num != current_inferior ()->num)
8505 return true;
8506 if (thread != NULL && thread->state != THREAD_STOPPED)
8507 return true;
8508 if (get_stop_id () != stop_id)
8509 return true;
8510 return false;
8511 }
8512
8513 /* See infrun.h. */
8514
8515 int
8516 normal_stop (void)
8517 {
8518 struct target_waitstatus last;
8519
8520 get_last_target_status (nullptr, nullptr, &last);
8521
8522 new_stop_id ();
8523
8524 /* If an exception is thrown from this point on, make sure to
8525 propagate GDB's knowledge of the executing state to the
8526 frontend/user running state. A QUIT is an easy exception to see
8527 here, so do this before any filtered output. */
8528
8529 ptid_t finish_ptid = null_ptid;
8530
8531 if (!non_stop)
8532 finish_ptid = minus_one_ptid;
8533 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8534 || last.kind == TARGET_WAITKIND_EXITED)
8535 {
8536 /* On some targets, we may still have live threads in the
8537 inferior when we get a process exit event. E.g., for
8538 "checkpoint", when the current checkpoint/fork exits,
8539 linux-fork.c automatically switches to another fork from
8540 within target_mourn_inferior. */
8541 if (inferior_ptid != null_ptid)
8542 finish_ptid = ptid_t (inferior_ptid.pid ());
8543 }
8544 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8545 finish_ptid = inferior_ptid;
8546
8547 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8548 if (finish_ptid != null_ptid)
8549 {
8550 maybe_finish_thread_state.emplace
8551 (user_visible_resume_target (finish_ptid), finish_ptid);
8552 }
8553
8554 /* As we're presenting a stop, and potentially removing breakpoints,
8555 update the thread list so we can tell whether there are threads
8556 running on the target. With target remote, for example, we can
8557 only learn about new threads when we explicitly update the thread
8558 list. Do this before notifying the interpreters about signal
8559 stops, end of stepping ranges, etc., so that the "new thread"
8560 output is emitted before e.g., "Program received signal FOO",
8561 instead of after. */
8562 update_thread_list ();
8563
8564 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8565 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8566
8567 /* As with the notification of thread events, we want to delay
8568 notifying the user that we've switched thread context until
8569 the inferior actually stops.
8570
8571 There's no point in saying anything if the inferior has exited.
8572 Note that SIGNALLED here means "exited with a signal", not
8573 "received a signal".
8574
8575 Also skip saying anything in non-stop mode. In that mode, as we
8576 don't want GDB to switch threads behind the user's back, to avoid
8577 races where the user is typing a command to apply to thread x,
8578 but GDB switches to thread y before the user finishes entering
8579 the command, fetch_inferior_event installs a cleanup to restore
8580 the current thread back to the thread the user had selected right
8581 after this event is handled, so we're not really switching, only
8582 informing of a stop. */
8583 if (!non_stop
8584 && previous_inferior_ptid != inferior_ptid
8585 && target_has_execution
8586 && last.kind != TARGET_WAITKIND_SIGNALLED
8587 && last.kind != TARGET_WAITKIND_EXITED
8588 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8589 {
8590 SWITCH_THRU_ALL_UIS ()
8591 {
8592 target_terminal::ours_for_output ();
8593 printf_filtered (_("[Switching to %s]\n"),
8594 target_pid_to_str (inferior_ptid).c_str ());
8595 annotate_thread_changed ();
8596 }
8597 previous_inferior_ptid = inferior_ptid;
8598 }
8599
8600 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8601 {
8602 SWITCH_THRU_ALL_UIS ()
8603 if (current_ui->prompt_state == PROMPT_BLOCKED)
8604 {
8605 target_terminal::ours_for_output ();
8606 printf_filtered (_("No unwaited-for children left.\n"));
8607 }
8608 }
8609
8610 /* Note: this depends on the update_thread_list call above. */
8611 maybe_remove_breakpoints ();
8612
8613 /* If an auto-display called a function and that got a signal,
8614 delete that auto-display to avoid an infinite recursion. */
8615
8616 if (stopped_by_random_signal)
8617 disable_current_display ();
8618
8619 SWITCH_THRU_ALL_UIS ()
8620 {
8621 async_enable_stdin ();
8622 }
8623
8624 /* Let the user/frontend see the threads as stopped. */
8625 maybe_finish_thread_state.reset ();
8626
8627 /* Select innermost stack frame - i.e., current frame is frame 0,
8628 and current location is based on that. Handle the case where the
8629 dummy call is returning after being stopped. E.g. the dummy call
8630 previously hit a breakpoint. (If the dummy call returns
8631 normally, we won't reach here.) Do this before the stop hook is
8632 run, so that it doesn't get to see the temporary dummy frame,
8633 which is not where we'll present the stop. */
8634 if (has_stack_frames ())
8635 {
8636 if (stop_stack_dummy == STOP_STACK_DUMMY)
8637 {
8638 /* Pop the empty frame that contains the stack dummy. This
8639 also restores inferior state prior to the call (struct
8640 infcall_suspend_state). */
8641 struct frame_info *frame = get_current_frame ();
8642
8643 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8644 frame_pop (frame);
8645 /* frame_pop calls reinit_frame_cache as the last thing it
8646 does which means there's now no selected frame. */
8647 }
8648
8649 select_frame (get_current_frame ());
8650
8651 /* Set the current source location. */
8652 set_current_sal_from_frame (get_current_frame ());
8653 }
8654
8655 /* Look up the hook_stop and run it (CLI internally handles problem
8656 of stop_command's pre-hook not existing). */
8657 if (stop_command != NULL)
8658 {
8659 stop_context saved_context;
8660
8661 try
8662 {
8663 execute_cmd_pre_hook (stop_command);
8664 }
8665 catch (const gdb_exception &ex)
8666 {
8667 exception_fprintf (gdb_stderr, ex,
8668 "Error while running hook_stop:\n");
8669 }
8670
8671 /* If the stop hook resumes the target, then there's no point in
8672 trying to notify about the previous stop; its context is
8673 gone. Likewise if the command switches thread or inferior --
8674 the observers would print a stop for the wrong
8675 thread/inferior. */
8676 if (saved_context.changed ())
8677 return 1;
8678 }
8679
8680 /* Notify observers about the stop. This is where the interpreters
8681 print the stop event. */
8682 if (inferior_ptid != null_ptid)
8683 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8684 stop_print_frame);
8685 else
8686 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8687
8688 annotate_stopped ();
8689
8690 if (target_has_execution)
8691 {
8692 if (last.kind != TARGET_WAITKIND_SIGNALLED
8693 && last.kind != TARGET_WAITKIND_EXITED
8694 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8695 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8696 Delete any breakpoint that is to be deleted at the next stop. */
8697 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8698 }
8699
8700 /* Try to get rid of automatically added inferiors that are no
8701 longer needed. Keeping those around slows down things linearly.
8702 Note that this never removes the current inferior. */
8703 prune_inferiors ();
8704
8705 return 0;
8706 }
8707 \f
8708 int
8709 signal_stop_state (int signo)
8710 {
8711 return signal_stop[signo];
8712 }
8713
8714 int
8715 signal_print_state (int signo)
8716 {
8717 return signal_print[signo];
8718 }
8719
8720 int
8721 signal_pass_state (int signo)
8722 {
8723 return signal_program[signo];
8724 }
8725
8726 static void
8727 signal_cache_update (int signo)
8728 {
8729 if (signo == -1)
8730 {
8731 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8732 signal_cache_update (signo);
8733
8734 return;
8735 }
8736
8737 signal_pass[signo] = (signal_stop[signo] == 0
8738 && signal_print[signo] == 0
8739 && signal_program[signo] == 1
8740 && signal_catch[signo] == 0);
8741 }
8742
8743 int
8744 signal_stop_update (int signo, int state)
8745 {
8746 int ret = signal_stop[signo];
8747
8748 signal_stop[signo] = state;
8749 signal_cache_update (signo);
8750 return ret;
8751 }
8752
8753 int
8754 signal_print_update (int signo, int state)
8755 {
8756 int ret = signal_print[signo];
8757
8758 signal_print[signo] = state;
8759 signal_cache_update (signo);
8760 return ret;
8761 }
8762
8763 int
8764 signal_pass_update (int signo, int state)
8765 {
8766 int ret = signal_program[signo];
8767
8768 signal_program[signo] = state;
8769 signal_cache_update (signo);
8770 return ret;
8771 }
8772
8773 /* Update the global 'signal_catch' from INFO and notify the
8774 target. */
8775
8776 void
8777 signal_catch_update (const unsigned int *info)
8778 {
8779 int i;
8780
8781 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8782 signal_catch[i] = info[i] > 0;
8783 signal_cache_update (-1);
8784 target_pass_signals (signal_pass);
8785 }
8786
8787 static void
8788 sig_print_header (void)
8789 {
8790 printf_filtered (_("Signal Stop\tPrint\tPass "
8791 "to program\tDescription\n"));
8792 }
8793
8794 static void
8795 sig_print_info (enum gdb_signal oursig)
8796 {
8797 const char *name = gdb_signal_to_name (oursig);
8798 int name_padding = 13 - strlen (name);
8799
8800 if (name_padding <= 0)
8801 name_padding = 0;
8802
8803 printf_filtered ("%s", name);
8804 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8805 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8806 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8807 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8808 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8809 }
8810
8811 /* Specify how various signals in the inferior should be handled. */
8812
8813 static void
8814 handle_command (const char *args, int from_tty)
8815 {
8816 int digits, wordlen;
8817 int sigfirst, siglast;
8818 enum gdb_signal oursig;
8819 int allsigs;
8820
8821 if (args == NULL)
8822 {
8823 error_no_arg (_("signal to handle"));
8824 }
8825
8826 /* Allocate and zero an array of flags for which signals to handle. */
8827
8828 const size_t nsigs = GDB_SIGNAL_LAST;
8829 unsigned char sigs[nsigs] {};
8830
8831 /* Break the command line up into args. */
8832
8833 gdb_argv built_argv (args);
8834
8835 /* Walk through the args, looking for signal oursigs, signal names, and
8836 actions. Signal numbers and signal names may be interspersed with
8837 actions, with the actions being performed for all signals cumulatively
8838 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8839
8840 for (char *arg : built_argv)
8841 {
8842 wordlen = strlen (arg);
8843 for (digits = 0; isdigit (arg[digits]); digits++)
8844 {;
8845 }
8846 allsigs = 0;
8847 sigfirst = siglast = -1;
8848
8849 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8850 {
8851 /* Apply action to all signals except those used by the
8852 debugger. Silently skip those. */
8853 allsigs = 1;
8854 sigfirst = 0;
8855 siglast = nsigs - 1;
8856 }
8857 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8858 {
8859 SET_SIGS (nsigs, sigs, signal_stop);
8860 SET_SIGS (nsigs, sigs, signal_print);
8861 }
8862 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8863 {
8864 UNSET_SIGS (nsigs, sigs, signal_program);
8865 }
8866 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8867 {
8868 SET_SIGS (nsigs, sigs, signal_print);
8869 }
8870 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8871 {
8872 SET_SIGS (nsigs, sigs, signal_program);
8873 }
8874 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8875 {
8876 UNSET_SIGS (nsigs, sigs, signal_stop);
8877 }
8878 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8879 {
8880 SET_SIGS (nsigs, sigs, signal_program);
8881 }
8882 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8883 {
8884 UNSET_SIGS (nsigs, sigs, signal_print);
8885 UNSET_SIGS (nsigs, sigs, signal_stop);
8886 }
8887 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8888 {
8889 UNSET_SIGS (nsigs, sigs, signal_program);
8890 }
8891 else if (digits > 0)
8892 {
8893 /* It is numeric. The numeric signal refers to our own
8894 internal signal numbering from target.h, not to host/target
8895 signal number. This is a feature; users really should be
8896 using symbolic names anyway, and the common ones like
8897 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8898
8899 sigfirst = siglast = (int)
8900 gdb_signal_from_command (atoi (arg));
8901 if (arg[digits] == '-')
8902 {
8903 siglast = (int)
8904 gdb_signal_from_command (atoi (arg + digits + 1));
8905 }
8906 if (sigfirst > siglast)
8907 {
8908 /* Bet he didn't figure we'd think of this case... */
8909 std::swap (sigfirst, siglast);
8910 }
8911 }
8912 else
8913 {
8914 oursig = gdb_signal_from_name (arg);
8915 if (oursig != GDB_SIGNAL_UNKNOWN)
8916 {
8917 sigfirst = siglast = (int) oursig;
8918 }
8919 else
8920 {
8921 /* Not a number and not a recognized flag word => complain. */
8922 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8923 }
8924 }
8925
8926 /* If any signal numbers or symbol names were found, set flags for
8927 which signals to apply actions to. */
8928
8929 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8930 {
8931 switch ((enum gdb_signal) signum)
8932 {
8933 case GDB_SIGNAL_TRAP:
8934 case GDB_SIGNAL_INT:
8935 if (!allsigs && !sigs[signum])
8936 {
8937 if (query (_("%s is used by the debugger.\n\
8938 Are you sure you want to change it? "),
8939 gdb_signal_to_name ((enum gdb_signal) signum)))
8940 {
8941 sigs[signum] = 1;
8942 }
8943 else
8944 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8945 }
8946 break;
8947 case GDB_SIGNAL_0:
8948 case GDB_SIGNAL_DEFAULT:
8949 case GDB_SIGNAL_UNKNOWN:
8950 /* Make sure that "all" doesn't print these. */
8951 break;
8952 default:
8953 sigs[signum] = 1;
8954 break;
8955 }
8956 }
8957 }
8958
8959 for (int signum = 0; signum < nsigs; signum++)
8960 if (sigs[signum])
8961 {
8962 signal_cache_update (-1);
8963 target_pass_signals (signal_pass);
8964 target_program_signals (signal_program);
8965
8966 if (from_tty)
8967 {
8968 /* Show the results. */
8969 sig_print_header ();
8970 for (; signum < nsigs; signum++)
8971 if (sigs[signum])
8972 sig_print_info ((enum gdb_signal) signum);
8973 }
8974
8975 break;
8976 }
8977 }
8978
8979 /* Complete the "handle" command. */
8980
8981 static void
8982 handle_completer (struct cmd_list_element *ignore,
8983 completion_tracker &tracker,
8984 const char *text, const char *word)
8985 {
8986 static const char * const keywords[] =
8987 {
8988 "all",
8989 "stop",
8990 "ignore",
8991 "print",
8992 "pass",
8993 "nostop",
8994 "noignore",
8995 "noprint",
8996 "nopass",
8997 NULL,
8998 };
8999
9000 signal_completer (ignore, tracker, text, word);
9001 complete_on_enum (tracker, keywords, word, word);
9002 }
9003
9004 enum gdb_signal
9005 gdb_signal_from_command (int num)
9006 {
9007 if (num >= 1 && num <= 15)
9008 return (enum gdb_signal) num;
9009 error (_("Only signals 1-15 are valid as numeric signals.\n\
9010 Use \"info signals\" for a list of symbolic signals."));
9011 }
9012
9013 /* Print current contents of the tables set by the handle command.
9014 It is possible we should just be printing signals actually used
9015 by the current target (but for things to work right when switching
9016 targets, all signals should be in the signal tables). */
9017
9018 static void
9019 info_signals_command (const char *signum_exp, int from_tty)
9020 {
9021 enum gdb_signal oursig;
9022
9023 sig_print_header ();
9024
9025 if (signum_exp)
9026 {
9027 /* First see if this is a symbol name. */
9028 oursig = gdb_signal_from_name (signum_exp);
9029 if (oursig == GDB_SIGNAL_UNKNOWN)
9030 {
9031 /* No, try numeric. */
9032 oursig =
9033 gdb_signal_from_command (parse_and_eval_long (signum_exp));
9034 }
9035 sig_print_info (oursig);
9036 return;
9037 }
9038
9039 printf_filtered ("\n");
9040 /* These ugly casts brought to you by the native VAX compiler. */
9041 for (oursig = GDB_SIGNAL_FIRST;
9042 (int) oursig < (int) GDB_SIGNAL_LAST;
9043 oursig = (enum gdb_signal) ((int) oursig + 1))
9044 {
9045 QUIT;
9046
9047 if (oursig != GDB_SIGNAL_UNKNOWN
9048 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
9049 sig_print_info (oursig);
9050 }
9051
9052 printf_filtered (_("\nUse the \"handle\" command "
9053 "to change these tables.\n"));
9054 }
9055
9056 /* The $_siginfo convenience variable is a bit special. We don't know
9057 for sure the type of the value until we actually have a chance to
9058 fetch the data. The type can change depending on gdbarch, so it is
9059 also dependent on which thread you have selected.
9060
9061 1. making $_siginfo be an internalvar that creates a new value on
9062 access.
9063
9064 2. making the value of $_siginfo be an lval_computed value. */
9065
9066 /* This function implements the lval_computed support for reading a
9067 $_siginfo value. */
9068
9069 static void
9070 siginfo_value_read (struct value *v)
9071 {
9072 LONGEST transferred;
9073
9074 /* If we can access registers, so can we access $_siginfo. Likewise
9075 vice versa. */
9076 validate_registers_access ();
9077
9078 transferred =
9079 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
9080 NULL,
9081 value_contents_all_raw (v),
9082 value_offset (v),
9083 TYPE_LENGTH (value_type (v)));
9084
9085 if (transferred != TYPE_LENGTH (value_type (v)))
9086 error (_("Unable to read siginfo"));
9087 }
9088
9089 /* This function implements the lval_computed support for writing a
9090 $_siginfo value. */
9091
9092 static void
9093 siginfo_value_write (struct value *v, struct value *fromval)
9094 {
9095 LONGEST transferred;
9096
9097 /* If we can access registers, so can we access $_siginfo. Likewise
9098 vice versa. */
9099 validate_registers_access ();
9100
9101 transferred = target_write (current_top_target (),
9102 TARGET_OBJECT_SIGNAL_INFO,
9103 NULL,
9104 value_contents_all_raw (fromval),
9105 value_offset (v),
9106 TYPE_LENGTH (value_type (fromval)));
9107
9108 if (transferred != TYPE_LENGTH (value_type (fromval)))
9109 error (_("Unable to write siginfo"));
9110 }
9111
9112 static const struct lval_funcs siginfo_value_funcs =
9113 {
9114 siginfo_value_read,
9115 siginfo_value_write
9116 };
9117
9118 /* Return a new value with the correct type for the siginfo object of
9119 the current thread using architecture GDBARCH. Return a void value
9120 if there's no object available. */
9121
9122 static struct value *
9123 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9124 void *ignore)
9125 {
9126 if (target_has_stack
9127 && inferior_ptid != null_ptid
9128 && gdbarch_get_siginfo_type_p (gdbarch))
9129 {
9130 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9131
9132 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
9133 }
9134
9135 return allocate_value (builtin_type (gdbarch)->builtin_void);
9136 }
9137
9138 \f
9139 /* infcall_suspend_state contains state about the program itself like its
9140 registers and any signal it received when it last stopped.
9141 This state must be restored regardless of how the inferior function call
9142 ends (either successfully, or after it hits a breakpoint or signal)
9143 if the program is to properly continue where it left off. */
9144
9145 class infcall_suspend_state
9146 {
9147 public:
9148 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9149 once the inferior function call has finished. */
9150 infcall_suspend_state (struct gdbarch *gdbarch,
9151 const struct thread_info *tp,
9152 struct regcache *regcache)
9153 : m_thread_suspend (tp->suspend),
9154 m_registers (new readonly_detached_regcache (*regcache))
9155 {
9156 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9157
9158 if (gdbarch_get_siginfo_type_p (gdbarch))
9159 {
9160 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9161 size_t len = TYPE_LENGTH (type);
9162
9163 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9164
9165 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9166 siginfo_data.get (), 0, len) != len)
9167 {
9168 /* Errors ignored. */
9169 siginfo_data.reset (nullptr);
9170 }
9171 }
9172
9173 if (siginfo_data)
9174 {
9175 m_siginfo_gdbarch = gdbarch;
9176 m_siginfo_data = std::move (siginfo_data);
9177 }
9178 }
9179
9180 /* Return a pointer to the stored register state. */
9181
9182 readonly_detached_regcache *registers () const
9183 {
9184 return m_registers.get ();
9185 }
9186
9187 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9188
9189 void restore (struct gdbarch *gdbarch,
9190 struct thread_info *tp,
9191 struct regcache *regcache) const
9192 {
9193 tp->suspend = m_thread_suspend;
9194
9195 if (m_siginfo_gdbarch == gdbarch)
9196 {
9197 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9198
9199 /* Errors ignored. */
9200 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9201 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9202 }
9203
9204 /* The inferior can be gone if the user types "print exit(0)"
9205 (and perhaps other times). */
9206 if (target_has_execution)
9207 /* NB: The register write goes through to the target. */
9208 regcache->restore (registers ());
9209 }
9210
9211 private:
9212 /* How the current thread stopped before the inferior function call was
9213 executed. */
9214 struct thread_suspend_state m_thread_suspend;
9215
9216 /* The registers before the inferior function call was executed. */
9217 std::unique_ptr<readonly_detached_regcache> m_registers;
9218
9219 /* Format of SIGINFO_DATA or NULL if it is not present. */
9220 struct gdbarch *m_siginfo_gdbarch = nullptr;
9221
9222 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9223 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9224 content would be invalid. */
9225 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
9226 };
9227
9228 infcall_suspend_state_up
9229 save_infcall_suspend_state ()
9230 {
9231 struct thread_info *tp = inferior_thread ();
9232 struct regcache *regcache = get_current_regcache ();
9233 struct gdbarch *gdbarch = regcache->arch ();
9234
9235 infcall_suspend_state_up inf_state
9236 (new struct infcall_suspend_state (gdbarch, tp, regcache));
9237
9238 /* Having saved the current state, adjust the thread state, discarding
9239 any stop signal information. The stop signal is not useful when
9240 starting an inferior function call, and run_inferior_call will not use
9241 the signal due to its `proceed' call with GDB_SIGNAL_0. */
9242 tp->suspend.stop_signal = GDB_SIGNAL_0;
9243
9244 return inf_state;
9245 }
9246
9247 /* Restore inferior session state to INF_STATE. */
9248
9249 void
9250 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9251 {
9252 struct thread_info *tp = inferior_thread ();
9253 struct regcache *regcache = get_current_regcache ();
9254 struct gdbarch *gdbarch = regcache->arch ();
9255
9256 inf_state->restore (gdbarch, tp, regcache);
9257 discard_infcall_suspend_state (inf_state);
9258 }
9259
9260 void
9261 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9262 {
9263 delete inf_state;
9264 }
9265
9266 readonly_detached_regcache *
9267 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9268 {
9269 return inf_state->registers ();
9270 }
9271
9272 /* infcall_control_state contains state regarding gdb's control of the
9273 inferior itself like stepping control. It also contains session state like
9274 the user's currently selected frame. */
9275
9276 struct infcall_control_state
9277 {
9278 struct thread_control_state thread_control;
9279 struct inferior_control_state inferior_control;
9280
9281 /* Other fields: */
9282 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9283 int stopped_by_random_signal = 0;
9284
9285 /* ID if the selected frame when the inferior function call was made. */
9286 struct frame_id selected_frame_id {};
9287 };
9288
9289 /* Save all of the information associated with the inferior<==>gdb
9290 connection. */
9291
9292 infcall_control_state_up
9293 save_infcall_control_state ()
9294 {
9295 infcall_control_state_up inf_status (new struct infcall_control_state);
9296 struct thread_info *tp = inferior_thread ();
9297 struct inferior *inf = current_inferior ();
9298
9299 inf_status->thread_control = tp->control;
9300 inf_status->inferior_control = inf->control;
9301
9302 tp->control.step_resume_breakpoint = NULL;
9303 tp->control.exception_resume_breakpoint = NULL;
9304
9305 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9306 chain. If caller's caller is walking the chain, they'll be happier if we
9307 hand them back the original chain when restore_infcall_control_state is
9308 called. */
9309 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9310
9311 /* Other fields: */
9312 inf_status->stop_stack_dummy = stop_stack_dummy;
9313 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9314
9315 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9316
9317 return inf_status;
9318 }
9319
9320 static void
9321 restore_selected_frame (const frame_id &fid)
9322 {
9323 frame_info *frame = frame_find_by_id (fid);
9324
9325 /* If inf_status->selected_frame_id is NULL, there was no previously
9326 selected frame. */
9327 if (frame == NULL)
9328 {
9329 warning (_("Unable to restore previously selected frame."));
9330 return;
9331 }
9332
9333 select_frame (frame);
9334 }
9335
9336 /* Restore inferior session state to INF_STATUS. */
9337
9338 void
9339 restore_infcall_control_state (struct infcall_control_state *inf_status)
9340 {
9341 struct thread_info *tp = inferior_thread ();
9342 struct inferior *inf = current_inferior ();
9343
9344 if (tp->control.step_resume_breakpoint)
9345 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9346
9347 if (tp->control.exception_resume_breakpoint)
9348 tp->control.exception_resume_breakpoint->disposition
9349 = disp_del_at_next_stop;
9350
9351 /* Handle the bpstat_copy of the chain. */
9352 bpstat_clear (&tp->control.stop_bpstat);
9353
9354 tp->control = inf_status->thread_control;
9355 inf->control = inf_status->inferior_control;
9356
9357 /* Other fields: */
9358 stop_stack_dummy = inf_status->stop_stack_dummy;
9359 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9360
9361 if (target_has_stack)
9362 {
9363 /* The point of the try/catch is that if the stack is clobbered,
9364 walking the stack might encounter a garbage pointer and
9365 error() trying to dereference it. */
9366 try
9367 {
9368 restore_selected_frame (inf_status->selected_frame_id);
9369 }
9370 catch (const gdb_exception_error &ex)
9371 {
9372 exception_fprintf (gdb_stderr, ex,
9373 "Unable to restore previously selected frame:\n");
9374 /* Error in restoring the selected frame. Select the
9375 innermost frame. */
9376 select_frame (get_current_frame ());
9377 }
9378 }
9379
9380 delete inf_status;
9381 }
9382
9383 void
9384 discard_infcall_control_state (struct infcall_control_state *inf_status)
9385 {
9386 if (inf_status->thread_control.step_resume_breakpoint)
9387 inf_status->thread_control.step_resume_breakpoint->disposition
9388 = disp_del_at_next_stop;
9389
9390 if (inf_status->thread_control.exception_resume_breakpoint)
9391 inf_status->thread_control.exception_resume_breakpoint->disposition
9392 = disp_del_at_next_stop;
9393
9394 /* See save_infcall_control_state for info on stop_bpstat. */
9395 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9396
9397 delete inf_status;
9398 }
9399 \f
9400 /* See infrun.h. */
9401
9402 void
9403 clear_exit_convenience_vars (void)
9404 {
9405 clear_internalvar (lookup_internalvar ("_exitsignal"));
9406 clear_internalvar (lookup_internalvar ("_exitcode"));
9407 }
9408 \f
9409
9410 /* User interface for reverse debugging:
9411 Set exec-direction / show exec-direction commands
9412 (returns error unless target implements to_set_exec_direction method). */
9413
9414 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9415 static const char exec_forward[] = "forward";
9416 static const char exec_reverse[] = "reverse";
9417 static const char *exec_direction = exec_forward;
9418 static const char *const exec_direction_names[] = {
9419 exec_forward,
9420 exec_reverse,
9421 NULL
9422 };
9423
9424 static void
9425 set_exec_direction_func (const char *args, int from_tty,
9426 struct cmd_list_element *cmd)
9427 {
9428 if (target_can_execute_reverse)
9429 {
9430 if (!strcmp (exec_direction, exec_forward))
9431 execution_direction = EXEC_FORWARD;
9432 else if (!strcmp (exec_direction, exec_reverse))
9433 execution_direction = EXEC_REVERSE;
9434 }
9435 else
9436 {
9437 exec_direction = exec_forward;
9438 error (_("Target does not support this operation."));
9439 }
9440 }
9441
9442 static void
9443 show_exec_direction_func (struct ui_file *out, int from_tty,
9444 struct cmd_list_element *cmd, const char *value)
9445 {
9446 switch (execution_direction) {
9447 case EXEC_FORWARD:
9448 fprintf_filtered (out, _("Forward.\n"));
9449 break;
9450 case EXEC_REVERSE:
9451 fprintf_filtered (out, _("Reverse.\n"));
9452 break;
9453 default:
9454 internal_error (__FILE__, __LINE__,
9455 _("bogus execution_direction value: %d"),
9456 (int) execution_direction);
9457 }
9458 }
9459
9460 static void
9461 show_schedule_multiple (struct ui_file *file, int from_tty,
9462 struct cmd_list_element *c, const char *value)
9463 {
9464 fprintf_filtered (file, _("Resuming the execution of threads "
9465 "of all processes is %s.\n"), value);
9466 }
9467
9468 /* Implementation of `siginfo' variable. */
9469
9470 static const struct internalvar_funcs siginfo_funcs =
9471 {
9472 siginfo_make_value,
9473 NULL,
9474 NULL
9475 };
9476
9477 /* Callback for infrun's target events source. This is marked when a
9478 thread has a pending status to process. */
9479
9480 static void
9481 infrun_async_inferior_event_handler (gdb_client_data data)
9482 {
9483 inferior_event_handler (INF_REG_EVENT);
9484 }
9485
9486 void _initialize_infrun ();
9487 void
9488 _initialize_infrun ()
9489 {
9490 struct cmd_list_element *c;
9491
9492 /* Register extra event sources in the event loop. */
9493 infrun_async_inferior_event_token
9494 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9495
9496 add_info ("signals", info_signals_command, _("\
9497 What debugger does when program gets various signals.\n\
9498 Specify a signal as argument to print info on that signal only."));
9499 add_info_alias ("handle", "signals", 0);
9500
9501 c = add_com ("handle", class_run, handle_command, _("\
9502 Specify how to handle signals.\n\
9503 Usage: handle SIGNAL [ACTIONS]\n\
9504 Args are signals and actions to apply to those signals.\n\
9505 If no actions are specified, the current settings for the specified signals\n\
9506 will be displayed instead.\n\
9507 \n\
9508 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9509 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9510 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9511 The special arg \"all\" is recognized to mean all signals except those\n\
9512 used by the debugger, typically SIGTRAP and SIGINT.\n\
9513 \n\
9514 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9515 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9516 Stop means reenter debugger if this signal happens (implies print).\n\
9517 Print means print a message if this signal happens.\n\
9518 Pass means let program see this signal; otherwise program doesn't know.\n\
9519 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9520 Pass and Stop may be combined.\n\
9521 \n\
9522 Multiple signals may be specified. Signal numbers and signal names\n\
9523 may be interspersed with actions, with the actions being performed for\n\
9524 all signals cumulatively specified."));
9525 set_cmd_completer (c, handle_completer);
9526
9527 if (!dbx_commands)
9528 stop_command = add_cmd ("stop", class_obscure,
9529 not_just_help_class_command, _("\
9530 There is no `stop' command, but you can set a hook on `stop'.\n\
9531 This allows you to set a list of commands to be run each time execution\n\
9532 of the program stops."), &cmdlist);
9533
9534 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9535 Set inferior debugging."), _("\
9536 Show inferior debugging."), _("\
9537 When non-zero, inferior specific debugging is enabled."),
9538 NULL,
9539 show_debug_infrun,
9540 &setdebuglist, &showdebuglist);
9541
9542 add_setshow_boolean_cmd ("displaced", class_maintenance,
9543 &debug_displaced, _("\
9544 Set displaced stepping debugging."), _("\
9545 Show displaced stepping debugging."), _("\
9546 When non-zero, displaced stepping specific debugging is enabled."),
9547 NULL,
9548 show_debug_displaced,
9549 &setdebuglist, &showdebuglist);
9550
9551 add_setshow_boolean_cmd ("non-stop", no_class,
9552 &non_stop_1, _("\
9553 Set whether gdb controls the inferior in non-stop mode."), _("\
9554 Show whether gdb controls the inferior in non-stop mode."), _("\
9555 When debugging a multi-threaded program and this setting is\n\
9556 off (the default, also called all-stop mode), when one thread stops\n\
9557 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9558 all other threads in the program while you interact with the thread of\n\
9559 interest. When you continue or step a thread, you can allow the other\n\
9560 threads to run, or have them remain stopped, but while you inspect any\n\
9561 thread's state, all threads stop.\n\
9562 \n\
9563 In non-stop mode, when one thread stops, other threads can continue\n\
9564 to run freely. You'll be able to step each thread independently,\n\
9565 leave it stopped or free to run as needed."),
9566 set_non_stop,
9567 show_non_stop,
9568 &setlist,
9569 &showlist);
9570
9571 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9572 {
9573 signal_stop[i] = 1;
9574 signal_print[i] = 1;
9575 signal_program[i] = 1;
9576 signal_catch[i] = 0;
9577 }
9578
9579 /* Signals caused by debugger's own actions should not be given to
9580 the program afterwards.
9581
9582 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9583 explicitly specifies that it should be delivered to the target
9584 program. Typically, that would occur when a user is debugging a
9585 target monitor on a simulator: the target monitor sets a
9586 breakpoint; the simulator encounters this breakpoint and halts
9587 the simulation handing control to GDB; GDB, noting that the stop
9588 address doesn't map to any known breakpoint, returns control back
9589 to the simulator; the simulator then delivers the hardware
9590 equivalent of a GDB_SIGNAL_TRAP to the program being
9591 debugged. */
9592 signal_program[GDB_SIGNAL_TRAP] = 0;
9593 signal_program[GDB_SIGNAL_INT] = 0;
9594
9595 /* Signals that are not errors should not normally enter the debugger. */
9596 signal_stop[GDB_SIGNAL_ALRM] = 0;
9597 signal_print[GDB_SIGNAL_ALRM] = 0;
9598 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9599 signal_print[GDB_SIGNAL_VTALRM] = 0;
9600 signal_stop[GDB_SIGNAL_PROF] = 0;
9601 signal_print[GDB_SIGNAL_PROF] = 0;
9602 signal_stop[GDB_SIGNAL_CHLD] = 0;
9603 signal_print[GDB_SIGNAL_CHLD] = 0;
9604 signal_stop[GDB_SIGNAL_IO] = 0;
9605 signal_print[GDB_SIGNAL_IO] = 0;
9606 signal_stop[GDB_SIGNAL_POLL] = 0;
9607 signal_print[GDB_SIGNAL_POLL] = 0;
9608 signal_stop[GDB_SIGNAL_URG] = 0;
9609 signal_print[GDB_SIGNAL_URG] = 0;
9610 signal_stop[GDB_SIGNAL_WINCH] = 0;
9611 signal_print[GDB_SIGNAL_WINCH] = 0;
9612 signal_stop[GDB_SIGNAL_PRIO] = 0;
9613 signal_print[GDB_SIGNAL_PRIO] = 0;
9614
9615 /* These signals are used internally by user-level thread
9616 implementations. (See signal(5) on Solaris.) Like the above
9617 signals, a healthy program receives and handles them as part of
9618 its normal operation. */
9619 signal_stop[GDB_SIGNAL_LWP] = 0;
9620 signal_print[GDB_SIGNAL_LWP] = 0;
9621 signal_stop[GDB_SIGNAL_WAITING] = 0;
9622 signal_print[GDB_SIGNAL_WAITING] = 0;
9623 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9624 signal_print[GDB_SIGNAL_CANCEL] = 0;
9625 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9626 signal_print[GDB_SIGNAL_LIBRT] = 0;
9627
9628 /* Update cached state. */
9629 signal_cache_update (-1);
9630
9631 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9632 &stop_on_solib_events, _("\
9633 Set stopping for shared library events."), _("\
9634 Show stopping for shared library events."), _("\
9635 If nonzero, gdb will give control to the user when the dynamic linker\n\
9636 notifies gdb of shared library events. The most common event of interest\n\
9637 to the user would be loading/unloading of a new library."),
9638 set_stop_on_solib_events,
9639 show_stop_on_solib_events,
9640 &setlist, &showlist);
9641
9642 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9643 follow_fork_mode_kind_names,
9644 &follow_fork_mode_string, _("\
9645 Set debugger response to a program call of fork or vfork."), _("\
9646 Show debugger response to a program call of fork or vfork."), _("\
9647 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9648 parent - the original process is debugged after a fork\n\
9649 child - the new process is debugged after a fork\n\
9650 The unfollowed process will continue to run.\n\
9651 By default, the debugger will follow the parent process."),
9652 NULL,
9653 show_follow_fork_mode_string,
9654 &setlist, &showlist);
9655
9656 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9657 follow_exec_mode_names,
9658 &follow_exec_mode_string, _("\
9659 Set debugger response to a program call of exec."), _("\
9660 Show debugger response to a program call of exec."), _("\
9661 An exec call replaces the program image of a process.\n\
9662 \n\
9663 follow-exec-mode can be:\n\
9664 \n\
9665 new - the debugger creates a new inferior and rebinds the process\n\
9666 to this new inferior. The program the process was running before\n\
9667 the exec call can be restarted afterwards by restarting the original\n\
9668 inferior.\n\
9669 \n\
9670 same - the debugger keeps the process bound to the same inferior.\n\
9671 The new executable image replaces the previous executable loaded in\n\
9672 the inferior. Restarting the inferior after the exec call restarts\n\
9673 the executable the process was running after the exec call.\n\
9674 \n\
9675 By default, the debugger will use the same inferior."),
9676 NULL,
9677 show_follow_exec_mode_string,
9678 &setlist, &showlist);
9679
9680 add_setshow_enum_cmd ("scheduler-locking", class_run,
9681 scheduler_enums, &scheduler_mode, _("\
9682 Set mode for locking scheduler during execution."), _("\
9683 Show mode for locking scheduler during execution."), _("\
9684 off == no locking (threads may preempt at any time)\n\
9685 on == full locking (no thread except the current thread may run)\n\
9686 This applies to both normal execution and replay mode.\n\
9687 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9688 In this mode, other threads may run during other commands.\n\
9689 This applies to both normal execution and replay mode.\n\
9690 replay == scheduler locked in replay mode and unlocked during normal execution."),
9691 set_schedlock_func, /* traps on target vector */
9692 show_scheduler_mode,
9693 &setlist, &showlist);
9694
9695 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9696 Set mode for resuming threads of all processes."), _("\
9697 Show mode for resuming threads of all processes."), _("\
9698 When on, execution commands (such as 'continue' or 'next') resume all\n\
9699 threads of all processes. When off (which is the default), execution\n\
9700 commands only resume the threads of the current process. The set of\n\
9701 threads that are resumed is further refined by the scheduler-locking\n\
9702 mode (see help set scheduler-locking)."),
9703 NULL,
9704 show_schedule_multiple,
9705 &setlist, &showlist);
9706
9707 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9708 Set mode of the step operation."), _("\
9709 Show mode of the step operation."), _("\
9710 When set, doing a step over a function without debug line information\n\
9711 will stop at the first instruction of that function. Otherwise, the\n\
9712 function is skipped and the step command stops at a different source line."),
9713 NULL,
9714 show_step_stop_if_no_debug,
9715 &setlist, &showlist);
9716
9717 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9718 &can_use_displaced_stepping, _("\
9719 Set debugger's willingness to use displaced stepping."), _("\
9720 Show debugger's willingness to use displaced stepping."), _("\
9721 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9722 supported by the target architecture. If off, gdb will not use displaced\n\
9723 stepping to step over breakpoints, even if such is supported by the target\n\
9724 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9725 if the target architecture supports it and non-stop mode is active, but will not\n\
9726 use it in all-stop mode (see help set non-stop)."),
9727 NULL,
9728 show_can_use_displaced_stepping,
9729 &setlist, &showlist);
9730
9731 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9732 &exec_direction, _("Set direction of execution.\n\
9733 Options are 'forward' or 'reverse'."),
9734 _("Show direction of execution (forward/reverse)."),
9735 _("Tells gdb whether to execute forward or backward."),
9736 set_exec_direction_func, show_exec_direction_func,
9737 &setlist, &showlist);
9738
9739 /* Set/show detach-on-fork: user-settable mode. */
9740
9741 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9742 Set whether gdb will detach the child of a fork."), _("\
9743 Show whether gdb will detach the child of a fork."), _("\
9744 Tells gdb whether to detach the child of a fork."),
9745 NULL, NULL, &setlist, &showlist);
9746
9747 /* Set/show disable address space randomization mode. */
9748
9749 add_setshow_boolean_cmd ("disable-randomization", class_support,
9750 &disable_randomization, _("\
9751 Set disabling of debuggee's virtual address space randomization."), _("\
9752 Show disabling of debuggee's virtual address space randomization."), _("\
9753 When this mode is on (which is the default), randomization of the virtual\n\
9754 address space is disabled. Standalone programs run with the randomization\n\
9755 enabled by default on some platforms."),
9756 &set_disable_randomization,
9757 &show_disable_randomization,
9758 &setlist, &showlist);
9759
9760 /* ptid initializations */
9761 inferior_ptid = null_ptid;
9762 target_last_wait_ptid = minus_one_ptid;
9763
9764 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9765 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9766 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9767 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9768
9769 /* Explicitly create without lookup, since that tries to create a
9770 value with a void typed value, and when we get here, gdbarch
9771 isn't initialized yet. At this point, we're quite sure there
9772 isn't another convenience variable of the same name. */
9773 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9774
9775 add_setshow_boolean_cmd ("observer", no_class,
9776 &observer_mode_1, _("\
9777 Set whether gdb controls the inferior in observer mode."), _("\
9778 Show whether gdb controls the inferior in observer mode."), _("\
9779 In observer mode, GDB can get data from the inferior, but not\n\
9780 affect its execution. Registers and memory may not be changed,\n\
9781 breakpoints may not be set, and the program cannot be interrupted\n\
9782 or signalled."),
9783 set_observer_mode,
9784 show_observer_mode,
9785 &setlist,
9786 &showlist);
9787 }