Make insert_breakpoints return void.
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51
52 /* Prototypes for local functions */
53
54 static void signals_info (char *, int);
55
56 static void handle_command (char *, int);
57
58 static void sig_print_info (enum target_signal);
59
60 static void sig_print_header (void);
61
62 static void resume_cleanups (void *);
63
64 static int hook_stop_stub (void *);
65
66 static int restore_selected_frame (void *);
67
68 static void build_infrun (void);
69
70 static int follow_fork (void);
71
72 static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75 struct execution_control_state;
76
77 static int currently_stepping (struct execution_control_state *ecs);
78
79 static void xdb_handle_command (char *args, int from_tty);
80
81 static int prepare_to_proceed (int);
82
83 void _initialize_infrun (void);
84
85 int inferior_ignoring_leading_exec_events = 0;
86
87 /* When set, stop the 'step' command if we enter a function which has
88 no line number information. The normal behavior is that we step
89 over such function. */
90 int step_stop_if_no_debug = 0;
91 static void
92 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94 {
95 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
96 }
97
98 /* In asynchronous mode, but simulating synchronous execution. */
99
100 int sync_execution = 0;
101
102 /* wait_for_inferior and normal_stop use this to notify the user
103 when the inferior stopped in a different thread than it had been
104 running in. */
105
106 static ptid_t previous_inferior_ptid;
107
108 /* This is true for configurations that may follow through execl() and
109 similar functions. At present this is only true for HP-UX native. */
110
111 #ifndef MAY_FOLLOW_EXEC
112 #define MAY_FOLLOW_EXEC (0)
113 #endif
114
115 static int may_follow_exec = MAY_FOLLOW_EXEC;
116
117 static int debug_infrun = 0;
118 static void
119 show_debug_infrun (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
123 }
124
125 /* If the program uses ELF-style shared libraries, then calls to
126 functions in shared libraries go through stubs, which live in a
127 table called the PLT (Procedure Linkage Table). The first time the
128 function is called, the stub sends control to the dynamic linker,
129 which looks up the function's real address, patches the stub so
130 that future calls will go directly to the function, and then passes
131 control to the function.
132
133 If we are stepping at the source level, we don't want to see any of
134 this --- we just want to skip over the stub and the dynamic linker.
135 The simple approach is to single-step until control leaves the
136 dynamic linker.
137
138 However, on some systems (e.g., Red Hat's 5.2 distribution) the
139 dynamic linker calls functions in the shared C library, so you
140 can't tell from the PC alone whether the dynamic linker is still
141 running. In this case, we use a step-resume breakpoint to get us
142 past the dynamic linker, as if we were using "next" to step over a
143 function call.
144
145 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
146 linker code or not. Normally, this means we single-step. However,
147 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
148 address where we can place a step-resume breakpoint to get past the
149 linker's symbol resolution function.
150
151 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
152 pretty portable way, by comparing the PC against the address ranges
153 of the dynamic linker's sections.
154
155 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
156 it depends on internal details of the dynamic linker. It's usually
157 not too hard to figure out where to put a breakpoint, but it
158 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
159 sanity checking. If it can't figure things out, returning zero and
160 getting the (possibly confusing) stepping behavior is better than
161 signalling an error, which will obscure the change in the
162 inferior's state. */
163
164 /* This function returns TRUE if pc is the address of an instruction
165 that lies within the dynamic linker (such as the event hook, or the
166 dld itself).
167
168 This function must be used only when a dynamic linker event has
169 been caught, and the inferior is being stepped out of the hook, or
170 undefined results are guaranteed. */
171
172 #ifndef SOLIB_IN_DYNAMIC_LINKER
173 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
174 #endif
175
176
177 /* Convert the #defines into values. This is temporary until wfi control
178 flow is completely sorted out. */
179
180 #ifndef CANNOT_STEP_HW_WATCHPOINTS
181 #define CANNOT_STEP_HW_WATCHPOINTS 0
182 #else
183 #undef CANNOT_STEP_HW_WATCHPOINTS
184 #define CANNOT_STEP_HW_WATCHPOINTS 1
185 #endif
186
187 /* Tables of how to react to signals; the user sets them. */
188
189 static unsigned char *signal_stop;
190 static unsigned char *signal_print;
191 static unsigned char *signal_program;
192
193 #define SET_SIGS(nsigs,sigs,flags) \
194 do { \
195 int signum = (nsigs); \
196 while (signum-- > 0) \
197 if ((sigs)[signum]) \
198 (flags)[signum] = 1; \
199 } while (0)
200
201 #define UNSET_SIGS(nsigs,sigs,flags) \
202 do { \
203 int signum = (nsigs); \
204 while (signum-- > 0) \
205 if ((sigs)[signum]) \
206 (flags)[signum] = 0; \
207 } while (0)
208
209 /* Value to pass to target_resume() to cause all threads to resume */
210
211 #define RESUME_ALL (pid_to_ptid (-1))
212
213 /* Command list pointer for the "stop" placeholder. */
214
215 static struct cmd_list_element *stop_command;
216
217 /* Function inferior was in as of last step command. */
218
219 static struct symbol *step_start_function;
220
221 /* Nonzero if we are expecting a trace trap and should proceed from it. */
222
223 static int trap_expected;
224
225 /* Nonzero if we want to give control to the user when we're notified
226 of shared library events by the dynamic linker. */
227 static int stop_on_solib_events;
228 static void
229 show_stop_on_solib_events (struct ui_file *file, int from_tty,
230 struct cmd_list_element *c, const char *value)
231 {
232 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
233 value);
234 }
235
236 /* Nonzero means expecting a trace trap
237 and should stop the inferior and return silently when it happens. */
238
239 int stop_after_trap;
240
241 /* Nonzero means expecting a trap and caller will handle it themselves.
242 It is used after attach, due to attaching to a process;
243 when running in the shell before the child program has been exec'd;
244 and when running some kinds of remote stuff (FIXME?). */
245
246 enum stop_kind stop_soon;
247
248 /* Nonzero if proceed is being used for a "finish" command or a similar
249 situation when stop_registers should be saved. */
250
251 int proceed_to_finish;
252
253 /* Save register contents here when about to pop a stack dummy frame,
254 if-and-only-if proceed_to_finish is set.
255 Thus this contains the return value from the called function (assuming
256 values are returned in a register). */
257
258 struct regcache *stop_registers;
259
260 /* Nonzero after stop if current stack frame should be printed. */
261
262 static int stop_print_frame;
263
264 static struct breakpoint *step_resume_breakpoint = NULL;
265
266 /* This is a cached copy of the pid/waitstatus of the last event
267 returned by target_wait()/deprecated_target_wait_hook(). This
268 information is returned by get_last_target_status(). */
269 static ptid_t target_last_wait_ptid;
270 static struct target_waitstatus target_last_waitstatus;
271
272 /* This is used to remember when a fork, vfork or exec event
273 was caught by a catchpoint, and thus the event is to be
274 followed at the next resume of the inferior, and not
275 immediately. */
276 static struct
277 {
278 enum target_waitkind kind;
279 struct
280 {
281 int parent_pid;
282 int child_pid;
283 }
284 fork_event;
285 char *execd_pathname;
286 }
287 pending_follow;
288
289 static const char follow_fork_mode_child[] = "child";
290 static const char follow_fork_mode_parent[] = "parent";
291
292 static const char *follow_fork_mode_kind_names[] = {
293 follow_fork_mode_child,
294 follow_fork_mode_parent,
295 NULL
296 };
297
298 static const char *follow_fork_mode_string = follow_fork_mode_parent;
299 static void
300 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
301 struct cmd_list_element *c, const char *value)
302 {
303 fprintf_filtered (file, _("\
304 Debugger response to a program call of fork or vfork is \"%s\".\n"),
305 value);
306 }
307 \f
308
309 static int
310 follow_fork (void)
311 {
312 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
313
314 return target_follow_fork (follow_child);
315 }
316
317 void
318 follow_inferior_reset_breakpoints (void)
319 {
320 /* Was there a step_resume breakpoint? (There was if the user
321 did a "next" at the fork() call.) If so, explicitly reset its
322 thread number.
323
324 step_resumes are a form of bp that are made to be per-thread.
325 Since we created the step_resume bp when the parent process
326 was being debugged, and now are switching to the child process,
327 from the breakpoint package's viewpoint, that's a switch of
328 "threads". We must update the bp's notion of which thread
329 it is for, or it'll be ignored when it triggers. */
330
331 if (step_resume_breakpoint)
332 breakpoint_re_set_thread (step_resume_breakpoint);
333
334 /* Reinsert all breakpoints in the child. The user may have set
335 breakpoints after catching the fork, in which case those
336 were never set in the child, but only in the parent. This makes
337 sure the inserted breakpoints match the breakpoint list. */
338
339 breakpoint_re_set ();
340 insert_breakpoints ();
341 }
342
343 /* EXECD_PATHNAME is assumed to be non-NULL. */
344
345 static void
346 follow_exec (int pid, char *execd_pathname)
347 {
348 int saved_pid = pid;
349 struct target_ops *tgt;
350
351 if (!may_follow_exec)
352 return;
353
354 /* This is an exec event that we actually wish to pay attention to.
355 Refresh our symbol table to the newly exec'd program, remove any
356 momentary bp's, etc.
357
358 If there are breakpoints, they aren't really inserted now,
359 since the exec() transformed our inferior into a fresh set
360 of instructions.
361
362 We want to preserve symbolic breakpoints on the list, since
363 we have hopes that they can be reset after the new a.out's
364 symbol table is read.
365
366 However, any "raw" breakpoints must be removed from the list
367 (e.g., the solib bp's), since their address is probably invalid
368 now.
369
370 And, we DON'T want to call delete_breakpoints() here, since
371 that may write the bp's "shadow contents" (the instruction
372 value that was overwritten witha TRAP instruction). Since
373 we now have a new a.out, those shadow contents aren't valid. */
374 update_breakpoints_after_exec ();
375
376 /* If there was one, it's gone now. We cannot truly step-to-next
377 statement through an exec(). */
378 step_resume_breakpoint = NULL;
379 step_range_start = 0;
380 step_range_end = 0;
381
382 /* What is this a.out's name? */
383 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
384
385 /* We've followed the inferior through an exec. Therefore, the
386 inferior has essentially been killed & reborn. */
387
388 /* First collect the run target in effect. */
389 tgt = find_run_target ();
390 /* If we can't find one, things are in a very strange state... */
391 if (tgt == NULL)
392 error (_("Could find run target to save before following exec"));
393
394 gdb_flush (gdb_stdout);
395 target_mourn_inferior ();
396 inferior_ptid = pid_to_ptid (saved_pid);
397 /* Because mourn_inferior resets inferior_ptid. */
398 push_target (tgt);
399
400 /* That a.out is now the one to use. */
401 exec_file_attach (execd_pathname, 0);
402
403 /* And also is where symbols can be found. */
404 symbol_file_add_main (execd_pathname, 0);
405
406 /* Reset the shared library package. This ensures that we get
407 a shlib event when the child reaches "_start", at which point
408 the dld will have had a chance to initialize the child. */
409 #if defined(SOLIB_RESTART)
410 SOLIB_RESTART ();
411 #endif
412 #ifdef SOLIB_CREATE_INFERIOR_HOOK
413 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
414 #else
415 solib_create_inferior_hook ();
416 #endif
417
418 /* Reinsert all breakpoints. (Those which were symbolic have
419 been reset to the proper address in the new a.out, thanks
420 to symbol_file_command...) */
421 insert_breakpoints ();
422
423 /* The next resume of this inferior should bring it to the shlib
424 startup breakpoints. (If the user had also set bp's on
425 "main" from the old (parent) process, then they'll auto-
426 matically get reset there in the new process.) */
427 }
428
429 /* Non-zero if we just simulating a single-step. This is needed
430 because we cannot remove the breakpoints in the inferior process
431 until after the `wait' in `wait_for_inferior'. */
432 static int singlestep_breakpoints_inserted_p = 0;
433
434 /* The thread we inserted single-step breakpoints for. */
435 static ptid_t singlestep_ptid;
436
437 /* PC when we started this single-step. */
438 static CORE_ADDR singlestep_pc;
439
440 /* If another thread hit the singlestep breakpoint, we save the original
441 thread here so that we can resume single-stepping it later. */
442 static ptid_t saved_singlestep_ptid;
443 static int stepping_past_singlestep_breakpoint;
444
445 /* Similarly, if we are stepping another thread past a breakpoint,
446 save the original thread here so that we can resume stepping it later. */
447 static ptid_t stepping_past_breakpoint_ptid;
448 static int stepping_past_breakpoint;
449 \f
450
451 /* Things to clean up if we QUIT out of resume (). */
452 static void
453 resume_cleanups (void *ignore)
454 {
455 normal_stop ();
456 }
457
458 static const char schedlock_off[] = "off";
459 static const char schedlock_on[] = "on";
460 static const char schedlock_step[] = "step";
461 static const char *scheduler_enums[] = {
462 schedlock_off,
463 schedlock_on,
464 schedlock_step,
465 NULL
466 };
467 static const char *scheduler_mode = schedlock_off;
468 static void
469 show_scheduler_mode (struct ui_file *file, int from_tty,
470 struct cmd_list_element *c, const char *value)
471 {
472 fprintf_filtered (file, _("\
473 Mode for locking scheduler during execution is \"%s\".\n"),
474 value);
475 }
476
477 static void
478 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
479 {
480 if (!target_can_lock_scheduler)
481 {
482 scheduler_mode = schedlock_off;
483 error (_("Target '%s' cannot support this command."), target_shortname);
484 }
485 }
486
487
488 /* Resume the inferior, but allow a QUIT. This is useful if the user
489 wants to interrupt some lengthy single-stepping operation
490 (for child processes, the SIGINT goes to the inferior, and so
491 we get a SIGINT random_signal, but for remote debugging and perhaps
492 other targets, that's not true).
493
494 STEP nonzero if we should step (zero to continue instead).
495 SIG is the signal to give the inferior (zero for none). */
496 void
497 resume (int step, enum target_signal sig)
498 {
499 int should_resume = 1;
500 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
501 QUIT;
502
503 if (debug_infrun)
504 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
505 step, sig);
506
507 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
508
509
510 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
511 over an instruction that causes a page fault without triggering
512 a hardware watchpoint. The kernel properly notices that it shouldn't
513 stop, because the hardware watchpoint is not triggered, but it forgets
514 the step request and continues the program normally.
515 Work around the problem by removing hardware watchpoints if a step is
516 requested, GDB will check for a hardware watchpoint trigger after the
517 step anyway. */
518 if (CANNOT_STEP_HW_WATCHPOINTS && step)
519 remove_hw_watchpoints ();
520
521
522 /* Normally, by the time we reach `resume', the breakpoints are either
523 removed or inserted, as appropriate. The exception is if we're sitting
524 at a permanent breakpoint; we need to step over it, but permanent
525 breakpoints can't be removed. So we have to test for it here. */
526 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
527 {
528 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
529 gdbarch_skip_permanent_breakpoint (current_gdbarch,
530 get_current_regcache ());
531 else
532 error (_("\
533 The program is stopped at a permanent breakpoint, but GDB does not know\n\
534 how to step past a permanent breakpoint on this architecture. Try using\n\
535 a command like `return' or `jump' to continue execution."));
536 }
537
538 if (step && gdbarch_software_single_step_p (current_gdbarch))
539 {
540 /* Do it the hard way, w/temp breakpoints */
541 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
542 {
543 /* ...and don't ask hardware to do it. */
544 step = 0;
545 /* and do not pull these breakpoints until after a `wait' in
546 `wait_for_inferior' */
547 singlestep_breakpoints_inserted_p = 1;
548 singlestep_ptid = inferior_ptid;
549 singlestep_pc = read_pc ();
550 }
551 }
552
553 /* If there were any forks/vforks/execs that were caught and are
554 now to be followed, then do so. */
555 switch (pending_follow.kind)
556 {
557 case TARGET_WAITKIND_FORKED:
558 case TARGET_WAITKIND_VFORKED:
559 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
560 if (follow_fork ())
561 should_resume = 0;
562 break;
563
564 case TARGET_WAITKIND_EXECD:
565 /* follow_exec is called as soon as the exec event is seen. */
566 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
567 break;
568
569 default:
570 break;
571 }
572
573 /* Install inferior's terminal modes. */
574 target_terminal_inferior ();
575
576 if (should_resume)
577 {
578 ptid_t resume_ptid;
579
580 resume_ptid = RESUME_ALL; /* Default */
581
582 /* If STEP is set, it's a request to use hardware stepping
583 facilities. But in that case, we should never
584 use singlestep breakpoint. */
585 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
586
587 if (singlestep_breakpoints_inserted_p
588 && stepping_past_singlestep_breakpoint)
589 {
590 /* The situation here is as follows. In thread T1 we wanted to
591 single-step. Lacking hardware single-stepping we've
592 set breakpoint at the PC of the next instruction -- call it
593 P. After resuming, we've hit that breakpoint in thread T2.
594 Now we've removed original breakpoint, inserted breakpoint
595 at P+1, and try to step to advance T2 past breakpoint.
596 We need to step only T2, as if T1 is allowed to freely run,
597 it can run past P, and if other threads are allowed to run,
598 they can hit breakpoint at P+1, and nested hits of single-step
599 breakpoints is not something we'd want -- that's complicated
600 to support, and has no value. */
601 resume_ptid = inferior_ptid;
602 }
603
604 if ((step || singlestep_breakpoints_inserted_p)
605 && breakpoint_here_p (read_pc ())
606 && !breakpoint_inserted_here_p (read_pc ()))
607 {
608 /* We're stepping, have breakpoint at PC, and it's
609 not inserted. Most likely, proceed has noticed that
610 we have breakpoint and tries to single-step over it,
611 so that it's not hit. In which case, we need to
612 single-step only this thread, and keep others stopped,
613 as they can miss this breakpoint if allowed to run.
614
615 The current code either has all breakpoints inserted,
616 or all removed, so if we let other threads run,
617 we can actually miss any breakpoint, not the one at PC. */
618 resume_ptid = inferior_ptid;
619 }
620
621 if ((scheduler_mode == schedlock_on)
622 || (scheduler_mode == schedlock_step
623 && (step || singlestep_breakpoints_inserted_p)))
624 {
625 /* User-settable 'scheduler' mode requires solo thread resume. */
626 resume_ptid = inferior_ptid;
627 }
628
629 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
630 {
631 /* Most targets can step a breakpoint instruction, thus
632 executing it normally. But if this one cannot, just
633 continue and we will hit it anyway. */
634 if (step && breakpoint_inserted_here_p (read_pc ()))
635 step = 0;
636 }
637 target_resume (resume_ptid, step, sig);
638 }
639
640 discard_cleanups (old_cleanups);
641 }
642 \f
643
644 /* Clear out all variables saying what to do when inferior is continued.
645 First do this, then set the ones you want, then call `proceed'. */
646
647 void
648 clear_proceed_status (void)
649 {
650 trap_expected = 0;
651 step_range_start = 0;
652 step_range_end = 0;
653 step_frame_id = null_frame_id;
654 step_over_calls = STEP_OVER_UNDEBUGGABLE;
655 stop_after_trap = 0;
656 stop_soon = NO_STOP_QUIETLY;
657 proceed_to_finish = 0;
658 breakpoint_proceeded = 1; /* We're about to proceed... */
659
660 if (stop_registers)
661 {
662 regcache_xfree (stop_registers);
663 stop_registers = NULL;
664 }
665
666 /* Discard any remaining commands or status from previous stop. */
667 bpstat_clear (&stop_bpstat);
668 }
669
670 /* This should be suitable for any targets that support threads. */
671
672 static int
673 prepare_to_proceed (int step)
674 {
675 ptid_t wait_ptid;
676 struct target_waitstatus wait_status;
677
678 /* Get the last target status returned by target_wait(). */
679 get_last_target_status (&wait_ptid, &wait_status);
680
681 /* Make sure we were stopped at a breakpoint. */
682 if (wait_status.kind != TARGET_WAITKIND_STOPPED
683 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
684 {
685 return 0;
686 }
687
688 /* Switched over from WAIT_PID. */
689 if (!ptid_equal (wait_ptid, minus_one_ptid)
690 && !ptid_equal (inferior_ptid, wait_ptid)
691 && breakpoint_here_p (read_pc_pid (wait_ptid)))
692 {
693 /* If stepping, remember current thread to switch back to. */
694 if (step)
695 {
696 stepping_past_breakpoint = 1;
697 stepping_past_breakpoint_ptid = inferior_ptid;
698 }
699
700 /* Switch back to WAIT_PID thread. */
701 switch_to_thread (wait_ptid);
702
703 /* We return 1 to indicate that there is a breakpoint here,
704 so we need to step over it before continuing to avoid
705 hitting it straight away. */
706 return 1;
707 }
708
709 return 0;
710 }
711
712 /* Record the pc of the program the last time it stopped. This is
713 just used internally by wait_for_inferior, but need to be preserved
714 over calls to it and cleared when the inferior is started. */
715 static CORE_ADDR prev_pc;
716
717 /* Basic routine for continuing the program in various fashions.
718
719 ADDR is the address to resume at, or -1 for resume where stopped.
720 SIGGNAL is the signal to give it, or 0 for none,
721 or -1 for act according to how it stopped.
722 STEP is nonzero if should trap after one instruction.
723 -1 means return after that and print nothing.
724 You should probably set various step_... variables
725 before calling here, if you are stepping.
726
727 You should call clear_proceed_status before calling proceed. */
728
729 void
730 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
731 {
732 int oneproc = 0;
733
734 if (step > 0)
735 step_start_function = find_pc_function (read_pc ());
736 if (step < 0)
737 stop_after_trap = 1;
738
739 if (addr == (CORE_ADDR) -1)
740 {
741 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
742 /* There is a breakpoint at the address we will resume at,
743 step one instruction before inserting breakpoints so that
744 we do not stop right away (and report a second hit at this
745 breakpoint). */
746 oneproc = 1;
747 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
748 && gdbarch_single_step_through_delay (current_gdbarch,
749 get_current_frame ()))
750 /* We stepped onto an instruction that needs to be stepped
751 again before re-inserting the breakpoint, do so. */
752 oneproc = 1;
753 }
754 else
755 {
756 write_pc (addr);
757 }
758
759 if (debug_infrun)
760 fprintf_unfiltered (gdb_stdlog,
761 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
762 paddr_nz (addr), siggnal, step);
763
764 /* In a multi-threaded task we may select another thread
765 and then continue or step.
766
767 But if the old thread was stopped at a breakpoint, it
768 will immediately cause another breakpoint stop without
769 any execution (i.e. it will report a breakpoint hit
770 incorrectly). So we must step over it first.
771
772 prepare_to_proceed checks the current thread against the thread
773 that reported the most recent event. If a step-over is required
774 it returns TRUE and sets the current thread to the old thread. */
775 if (prepare_to_proceed (step))
776 oneproc = 1;
777
778 if (oneproc)
779 /* We will get a trace trap after one instruction.
780 Continue it automatically and insert breakpoints then. */
781 trap_expected = 1;
782 else
783 insert_breakpoints ();
784
785 if (siggnal != TARGET_SIGNAL_DEFAULT)
786 stop_signal = siggnal;
787 /* If this signal should not be seen by program,
788 give it zero. Used for debugging signals. */
789 else if (!signal_program[stop_signal])
790 stop_signal = TARGET_SIGNAL_0;
791
792 annotate_starting ();
793
794 /* Make sure that output from GDB appears before output from the
795 inferior. */
796 gdb_flush (gdb_stdout);
797
798 /* Refresh prev_pc value just prior to resuming. This used to be
799 done in stop_stepping, however, setting prev_pc there did not handle
800 scenarios such as inferior function calls or returning from
801 a function via the return command. In those cases, the prev_pc
802 value was not set properly for subsequent commands. The prev_pc value
803 is used to initialize the starting line number in the ecs. With an
804 invalid value, the gdb next command ends up stopping at the position
805 represented by the next line table entry past our start position.
806 On platforms that generate one line table entry per line, this
807 is not a problem. However, on the ia64, the compiler generates
808 extraneous line table entries that do not increase the line number.
809 When we issue the gdb next command on the ia64 after an inferior call
810 or a return command, we often end up a few instructions forward, still
811 within the original line we started.
812
813 An attempt was made to have init_execution_control_state () refresh
814 the prev_pc value before calculating the line number. This approach
815 did not work because on platforms that use ptrace, the pc register
816 cannot be read unless the inferior is stopped. At that point, we
817 are not guaranteed the inferior is stopped and so the read_pc ()
818 call can fail. Setting the prev_pc value here ensures the value is
819 updated correctly when the inferior is stopped. */
820 prev_pc = read_pc ();
821
822 /* Resume inferior. */
823 resume (oneproc || step || bpstat_should_step (), stop_signal);
824
825 /* Wait for it to stop (if not standalone)
826 and in any case decode why it stopped, and act accordingly. */
827 /* Do this only if we are not using the event loop, or if the target
828 does not support asynchronous execution. */
829 if (!target_can_async_p ())
830 {
831 wait_for_inferior ();
832 normal_stop ();
833 }
834 }
835 \f
836
837 /* Start remote-debugging of a machine over a serial link. */
838
839 void
840 start_remote (int from_tty)
841 {
842 init_thread_list ();
843 init_wait_for_inferior ();
844 stop_soon = STOP_QUIETLY_REMOTE;
845 trap_expected = 0;
846
847 /* Always go on waiting for the target, regardless of the mode. */
848 /* FIXME: cagney/1999-09-23: At present it isn't possible to
849 indicate to wait_for_inferior that a target should timeout if
850 nothing is returned (instead of just blocking). Because of this,
851 targets expecting an immediate response need to, internally, set
852 things up so that the target_wait() is forced to eventually
853 timeout. */
854 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
855 differentiate to its caller what the state of the target is after
856 the initial open has been performed. Here we're assuming that
857 the target has stopped. It should be possible to eventually have
858 target_open() return to the caller an indication that the target
859 is currently running and GDB state should be set to the same as
860 for an async run. */
861 wait_for_inferior ();
862
863 /* Now that the inferior has stopped, do any bookkeeping like
864 loading shared libraries. We want to do this before normal_stop,
865 so that the displayed frame is up to date. */
866 post_create_inferior (&current_target, from_tty);
867
868 normal_stop ();
869 }
870
871 /* Initialize static vars when a new inferior begins. */
872
873 void
874 init_wait_for_inferior (void)
875 {
876 /* These are meaningless until the first time through wait_for_inferior. */
877 prev_pc = 0;
878
879 breakpoint_init_inferior (inf_starting);
880
881 /* Don't confuse first call to proceed(). */
882 stop_signal = TARGET_SIGNAL_0;
883
884 /* The first resume is not following a fork/vfork/exec. */
885 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
886
887 clear_proceed_status ();
888
889 stepping_past_singlestep_breakpoint = 0;
890 stepping_past_breakpoint = 0;
891 }
892 \f
893 /* This enum encodes possible reasons for doing a target_wait, so that
894 wfi can call target_wait in one place. (Ultimately the call will be
895 moved out of the infinite loop entirely.) */
896
897 enum infwait_states
898 {
899 infwait_normal_state,
900 infwait_thread_hop_state,
901 infwait_step_watch_state,
902 infwait_nonstep_watch_state
903 };
904
905 /* Why did the inferior stop? Used to print the appropriate messages
906 to the interface from within handle_inferior_event(). */
907 enum inferior_stop_reason
908 {
909 /* Step, next, nexti, stepi finished. */
910 END_STEPPING_RANGE,
911 /* Inferior terminated by signal. */
912 SIGNAL_EXITED,
913 /* Inferior exited. */
914 EXITED,
915 /* Inferior received signal, and user asked to be notified. */
916 SIGNAL_RECEIVED
917 };
918
919 /* This structure contains what used to be local variables in
920 wait_for_inferior. Probably many of them can return to being
921 locals in handle_inferior_event. */
922
923 struct execution_control_state
924 {
925 struct target_waitstatus ws;
926 struct target_waitstatus *wp;
927 int another_trap;
928 int random_signal;
929 CORE_ADDR stop_func_start;
930 CORE_ADDR stop_func_end;
931 char *stop_func_name;
932 struct symtab_and_line sal;
933 int current_line;
934 struct symtab *current_symtab;
935 int handling_longjmp; /* FIXME */
936 ptid_t ptid;
937 ptid_t saved_inferior_ptid;
938 int step_after_step_resume_breakpoint;
939 int stepping_through_solib_after_catch;
940 bpstat stepping_through_solib_catchpoints;
941 int new_thread_event;
942 struct target_waitstatus tmpstatus;
943 enum infwait_states infwait_state;
944 ptid_t waiton_ptid;
945 int wait_some_more;
946 };
947
948 void init_execution_control_state (struct execution_control_state *ecs);
949
950 void handle_inferior_event (struct execution_control_state *ecs);
951
952 static void step_into_function (struct execution_control_state *ecs);
953 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
954 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
955 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
956 struct frame_id sr_id);
957 static void stop_stepping (struct execution_control_state *ecs);
958 static void prepare_to_wait (struct execution_control_state *ecs);
959 static void keep_going (struct execution_control_state *ecs);
960 static void print_stop_reason (enum inferior_stop_reason stop_reason,
961 int stop_info);
962
963 /* Wait for control to return from inferior to debugger.
964 If inferior gets a signal, we may decide to start it up again
965 instead of returning. That is why there is a loop in this function.
966 When this function actually returns it means the inferior
967 should be left stopped and GDB should read more commands. */
968
969 void
970 wait_for_inferior (void)
971 {
972 struct cleanup *old_cleanups;
973 struct execution_control_state ecss;
974 struct execution_control_state *ecs;
975
976 if (debug_infrun)
977 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
978
979 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
980 &step_resume_breakpoint);
981
982 /* wfi still stays in a loop, so it's OK just to take the address of
983 a local to get the ecs pointer. */
984 ecs = &ecss;
985
986 /* Fill in with reasonable starting values. */
987 init_execution_control_state (ecs);
988
989 /* We'll update this if & when we switch to a new thread. */
990 previous_inferior_ptid = inferior_ptid;
991
992 overlay_cache_invalid = 1;
993
994 /* We have to invalidate the registers BEFORE calling target_wait
995 because they can be loaded from the target while in target_wait.
996 This makes remote debugging a bit more efficient for those
997 targets that provide critical registers as part of their normal
998 status mechanism. */
999
1000 registers_changed ();
1001
1002 while (1)
1003 {
1004 if (deprecated_target_wait_hook)
1005 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1006 else
1007 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1008
1009 /* Now figure out what to do with the result of the result. */
1010 handle_inferior_event (ecs);
1011
1012 if (!ecs->wait_some_more)
1013 break;
1014 }
1015 do_cleanups (old_cleanups);
1016 }
1017
1018 /* Asynchronous version of wait_for_inferior. It is called by the
1019 event loop whenever a change of state is detected on the file
1020 descriptor corresponding to the target. It can be called more than
1021 once to complete a single execution command. In such cases we need
1022 to keep the state in a global variable ASYNC_ECSS. If it is the
1023 last time that this function is called for a single execution
1024 command, then report to the user that the inferior has stopped, and
1025 do the necessary cleanups. */
1026
1027 struct execution_control_state async_ecss;
1028 struct execution_control_state *async_ecs;
1029
1030 void
1031 fetch_inferior_event (void *client_data)
1032 {
1033 static struct cleanup *old_cleanups;
1034
1035 async_ecs = &async_ecss;
1036
1037 if (!async_ecs->wait_some_more)
1038 {
1039 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1040 &step_resume_breakpoint);
1041
1042 /* Fill in with reasonable starting values. */
1043 init_execution_control_state (async_ecs);
1044
1045 /* We'll update this if & when we switch to a new thread. */
1046 previous_inferior_ptid = inferior_ptid;
1047
1048 overlay_cache_invalid = 1;
1049
1050 /* We have to invalidate the registers BEFORE calling target_wait
1051 because they can be loaded from the target while in target_wait.
1052 This makes remote debugging a bit more efficient for those
1053 targets that provide critical registers as part of their normal
1054 status mechanism. */
1055
1056 registers_changed ();
1057 }
1058
1059 if (deprecated_target_wait_hook)
1060 async_ecs->ptid =
1061 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1062 else
1063 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1064
1065 /* Now figure out what to do with the result of the result. */
1066 handle_inferior_event (async_ecs);
1067
1068 if (!async_ecs->wait_some_more)
1069 {
1070 /* Do only the cleanups that have been added by this
1071 function. Let the continuations for the commands do the rest,
1072 if there are any. */
1073 do_exec_cleanups (old_cleanups);
1074 normal_stop ();
1075 if (step_multi && stop_step)
1076 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1077 else
1078 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1079 }
1080 }
1081
1082 /* Prepare an execution control state for looping through a
1083 wait_for_inferior-type loop. */
1084
1085 void
1086 init_execution_control_state (struct execution_control_state *ecs)
1087 {
1088 ecs->another_trap = 0;
1089 ecs->random_signal = 0;
1090 ecs->step_after_step_resume_breakpoint = 0;
1091 ecs->handling_longjmp = 0; /* FIXME */
1092 ecs->stepping_through_solib_after_catch = 0;
1093 ecs->stepping_through_solib_catchpoints = NULL;
1094 ecs->sal = find_pc_line (prev_pc, 0);
1095 ecs->current_line = ecs->sal.line;
1096 ecs->current_symtab = ecs->sal.symtab;
1097 ecs->infwait_state = infwait_normal_state;
1098 ecs->waiton_ptid = pid_to_ptid (-1);
1099 ecs->wp = &(ecs->ws);
1100 }
1101
1102 /* Return the cached copy of the last pid/waitstatus returned by
1103 target_wait()/deprecated_target_wait_hook(). The data is actually
1104 cached by handle_inferior_event(), which gets called immediately
1105 after target_wait()/deprecated_target_wait_hook(). */
1106
1107 void
1108 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1109 {
1110 *ptidp = target_last_wait_ptid;
1111 *status = target_last_waitstatus;
1112 }
1113
1114 void
1115 nullify_last_target_wait_ptid (void)
1116 {
1117 target_last_wait_ptid = minus_one_ptid;
1118 }
1119
1120 /* Switch thread contexts, maintaining "infrun state". */
1121
1122 static void
1123 context_switch (struct execution_control_state *ecs)
1124 {
1125 /* Caution: it may happen that the new thread (or the old one!)
1126 is not in the thread list. In this case we must not attempt
1127 to "switch context", or we run the risk that our context may
1128 be lost. This may happen as a result of the target module
1129 mishandling thread creation. */
1130
1131 if (debug_infrun)
1132 {
1133 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1134 target_pid_to_str (inferior_ptid));
1135 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1136 target_pid_to_str (ecs->ptid));
1137 }
1138
1139 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1140 { /* Perform infrun state context switch: */
1141 /* Save infrun state for the old thread. */
1142 save_infrun_state (inferior_ptid, prev_pc,
1143 trap_expected, step_resume_breakpoint,
1144 step_range_start,
1145 step_range_end, &step_frame_id,
1146 ecs->handling_longjmp, ecs->another_trap,
1147 ecs->stepping_through_solib_after_catch,
1148 ecs->stepping_through_solib_catchpoints,
1149 ecs->current_line, ecs->current_symtab);
1150
1151 /* Load infrun state for the new thread. */
1152 load_infrun_state (ecs->ptid, &prev_pc,
1153 &trap_expected, &step_resume_breakpoint,
1154 &step_range_start,
1155 &step_range_end, &step_frame_id,
1156 &ecs->handling_longjmp, &ecs->another_trap,
1157 &ecs->stepping_through_solib_after_catch,
1158 &ecs->stepping_through_solib_catchpoints,
1159 &ecs->current_line, &ecs->current_symtab);
1160 }
1161
1162 switch_to_thread (ecs->ptid);
1163 }
1164
1165 static void
1166 adjust_pc_after_break (struct execution_control_state *ecs)
1167 {
1168 CORE_ADDR breakpoint_pc;
1169
1170 /* If this target does not decrement the PC after breakpoints, then
1171 we have nothing to do. */
1172 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
1173 return;
1174
1175 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1176 we aren't, just return.
1177
1178 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1179 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1180 implemented by software breakpoints should be handled through the normal
1181 breakpoint layer.
1182
1183 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1184 different signals (SIGILL or SIGEMT for instance), but it is less
1185 clear where the PC is pointing afterwards. It may not match
1186 gdbarch_decr_pc_after_break. I don't know any specific target that
1187 generates these signals at breakpoints (the code has been in GDB since at
1188 least 1992) so I can not guess how to handle them here.
1189
1190 In earlier versions of GDB, a target with
1191 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1192 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1193 target with both of these set in GDB history, and it seems unlikely to be
1194 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1195
1196 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1197 return;
1198
1199 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1200 return;
1201
1202 /* Find the location where (if we've hit a breakpoint) the
1203 breakpoint would be. */
1204 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1205 (current_gdbarch);
1206
1207 /* Check whether there actually is a software breakpoint inserted
1208 at that location. */
1209 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1210 {
1211 /* When using hardware single-step, a SIGTRAP is reported for both
1212 a completed single-step and a software breakpoint. Need to
1213 differentiate between the two, as the latter needs adjusting
1214 but the former does not.
1215
1216 The SIGTRAP can be due to a completed hardware single-step only if
1217 - we didn't insert software single-step breakpoints
1218 - the thread to be examined is still the current thread
1219 - this thread is currently being stepped
1220
1221 If any of these events did not occur, we must have stopped due
1222 to hitting a software breakpoint, and have to back up to the
1223 breakpoint address.
1224
1225 As a special case, we could have hardware single-stepped a
1226 software breakpoint. In this case (prev_pc == breakpoint_pc),
1227 we also need to back up to the breakpoint address. */
1228
1229 if (singlestep_breakpoints_inserted_p
1230 || !ptid_equal (ecs->ptid, inferior_ptid)
1231 || !currently_stepping (ecs)
1232 || prev_pc == breakpoint_pc)
1233 write_pc_pid (breakpoint_pc, ecs->ptid);
1234 }
1235 }
1236
1237 /* Given an execution control state that has been freshly filled in
1238 by an event from the inferior, figure out what it means and take
1239 appropriate action. */
1240
1241 void
1242 handle_inferior_event (struct execution_control_state *ecs)
1243 {
1244 int sw_single_step_trap_p = 0;
1245 int stopped_by_watchpoint;
1246 int stepped_after_stopped_by_watchpoint = 0;
1247
1248 /* Cache the last pid/waitstatus. */
1249 target_last_wait_ptid = ecs->ptid;
1250 target_last_waitstatus = *ecs->wp;
1251
1252 adjust_pc_after_break (ecs);
1253
1254 switch (ecs->infwait_state)
1255 {
1256 case infwait_thread_hop_state:
1257 if (debug_infrun)
1258 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1259 /* Cancel the waiton_ptid. */
1260 ecs->waiton_ptid = pid_to_ptid (-1);
1261 break;
1262
1263 case infwait_normal_state:
1264 if (debug_infrun)
1265 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1266 break;
1267
1268 case infwait_step_watch_state:
1269 if (debug_infrun)
1270 fprintf_unfiltered (gdb_stdlog,
1271 "infrun: infwait_step_watch_state\n");
1272
1273 stepped_after_stopped_by_watchpoint = 1;
1274 break;
1275
1276 case infwait_nonstep_watch_state:
1277 if (debug_infrun)
1278 fprintf_unfiltered (gdb_stdlog,
1279 "infrun: infwait_nonstep_watch_state\n");
1280 insert_breakpoints ();
1281
1282 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1283 handle things like signals arriving and other things happening
1284 in combination correctly? */
1285 stepped_after_stopped_by_watchpoint = 1;
1286 break;
1287
1288 default:
1289 internal_error (__FILE__, __LINE__, _("bad switch"));
1290 }
1291 ecs->infwait_state = infwait_normal_state;
1292
1293 reinit_frame_cache ();
1294
1295 /* If it's a new process, add it to the thread database */
1296
1297 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1298 && !ptid_equal (ecs->ptid, minus_one_ptid)
1299 && !in_thread_list (ecs->ptid));
1300
1301 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1302 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1303 {
1304 add_thread (ecs->ptid);
1305
1306 ui_out_text (uiout, "[New ");
1307 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1308 ui_out_text (uiout, "]\n");
1309 }
1310
1311 switch (ecs->ws.kind)
1312 {
1313 case TARGET_WAITKIND_LOADED:
1314 if (debug_infrun)
1315 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1316 /* Ignore gracefully during startup of the inferior, as it might
1317 be the shell which has just loaded some objects, otherwise
1318 add the symbols for the newly loaded objects. Also ignore at
1319 the beginning of an attach or remote session; we will query
1320 the full list of libraries once the connection is
1321 established. */
1322 if (stop_soon == NO_STOP_QUIETLY)
1323 {
1324 /* Remove breakpoints, SOLIB_ADD might adjust
1325 breakpoint addresses via breakpoint_re_set. */
1326 remove_breakpoints ();
1327
1328 /* Check for any newly added shared libraries if we're
1329 supposed to be adding them automatically. Switch
1330 terminal for any messages produced by
1331 breakpoint_re_set. */
1332 target_terminal_ours_for_output ();
1333 /* NOTE: cagney/2003-11-25: Make certain that the target
1334 stack's section table is kept up-to-date. Architectures,
1335 (e.g., PPC64), use the section table to perform
1336 operations such as address => section name and hence
1337 require the table to contain all sections (including
1338 those found in shared libraries). */
1339 /* NOTE: cagney/2003-11-25: Pass current_target and not
1340 exec_ops to SOLIB_ADD. This is because current GDB is
1341 only tooled to propagate section_table changes out from
1342 the "current_target" (see target_resize_to_sections), and
1343 not up from the exec stratum. This, of course, isn't
1344 right. "infrun.c" should only interact with the
1345 exec/process stratum, instead relying on the target stack
1346 to propagate relevant changes (stop, section table
1347 changed, ...) up to other layers. */
1348 #ifdef SOLIB_ADD
1349 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1350 #else
1351 solib_add (NULL, 0, &current_target, auto_solib_add);
1352 #endif
1353 target_terminal_inferior ();
1354
1355 /* If requested, stop when the dynamic linker notifies
1356 gdb of events. This allows the user to get control
1357 and place breakpoints in initializer routines for
1358 dynamically loaded objects (among other things). */
1359 if (stop_on_solib_events)
1360 {
1361 stop_stepping (ecs);
1362 return;
1363 }
1364
1365 /* NOTE drow/2007-05-11: This might be a good place to check
1366 for "catch load". */
1367
1368 /* Reinsert breakpoints and continue. */
1369 insert_breakpoints ();
1370 }
1371
1372 /* If we are skipping through a shell, or through shared library
1373 loading that we aren't interested in, resume the program. If
1374 we're running the program normally, also resume. But stop if
1375 we're attaching or setting up a remote connection. */
1376 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1377 {
1378 resume (0, TARGET_SIGNAL_0);
1379 prepare_to_wait (ecs);
1380 return;
1381 }
1382
1383 break;
1384
1385 case TARGET_WAITKIND_SPURIOUS:
1386 if (debug_infrun)
1387 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1388 resume (0, TARGET_SIGNAL_0);
1389 prepare_to_wait (ecs);
1390 return;
1391
1392 case TARGET_WAITKIND_EXITED:
1393 if (debug_infrun)
1394 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1395 target_terminal_ours (); /* Must do this before mourn anyway */
1396 print_stop_reason (EXITED, ecs->ws.value.integer);
1397
1398 /* Record the exit code in the convenience variable $_exitcode, so
1399 that the user can inspect this again later. */
1400 set_internalvar (lookup_internalvar ("_exitcode"),
1401 value_from_longest (builtin_type_int,
1402 (LONGEST) ecs->ws.value.integer));
1403 gdb_flush (gdb_stdout);
1404 target_mourn_inferior ();
1405 singlestep_breakpoints_inserted_p = 0;
1406 stop_print_frame = 0;
1407 stop_stepping (ecs);
1408 return;
1409
1410 case TARGET_WAITKIND_SIGNALLED:
1411 if (debug_infrun)
1412 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1413 stop_print_frame = 0;
1414 stop_signal = ecs->ws.value.sig;
1415 target_terminal_ours (); /* Must do this before mourn anyway */
1416
1417 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1418 reach here unless the inferior is dead. However, for years
1419 target_kill() was called here, which hints that fatal signals aren't
1420 really fatal on some systems. If that's true, then some changes
1421 may be needed. */
1422 target_mourn_inferior ();
1423
1424 print_stop_reason (SIGNAL_EXITED, stop_signal);
1425 singlestep_breakpoints_inserted_p = 0;
1426 stop_stepping (ecs);
1427 return;
1428
1429 /* The following are the only cases in which we keep going;
1430 the above cases end in a continue or goto. */
1431 case TARGET_WAITKIND_FORKED:
1432 case TARGET_WAITKIND_VFORKED:
1433 if (debug_infrun)
1434 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1435 stop_signal = TARGET_SIGNAL_TRAP;
1436 pending_follow.kind = ecs->ws.kind;
1437
1438 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1439 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1440
1441 if (!ptid_equal (ecs->ptid, inferior_ptid))
1442 {
1443 context_switch (ecs);
1444 reinit_frame_cache ();
1445 }
1446
1447 stop_pc = read_pc ();
1448
1449 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1450
1451 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1452
1453 /* If no catchpoint triggered for this, then keep going. */
1454 if (ecs->random_signal)
1455 {
1456 stop_signal = TARGET_SIGNAL_0;
1457 keep_going (ecs);
1458 return;
1459 }
1460 goto process_event_stop_test;
1461
1462 case TARGET_WAITKIND_EXECD:
1463 if (debug_infrun)
1464 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1465 stop_signal = TARGET_SIGNAL_TRAP;
1466
1467 /* NOTE drow/2002-12-05: This code should be pushed down into the
1468 target_wait function. Until then following vfork on HP/UX 10.20
1469 is probably broken by this. Of course, it's broken anyway. */
1470 /* Is this a target which reports multiple exec events per actual
1471 call to exec()? (HP-UX using ptrace does, for example.) If so,
1472 ignore all but the last one. Just resume the exec'r, and wait
1473 for the next exec event. */
1474 if (inferior_ignoring_leading_exec_events)
1475 {
1476 inferior_ignoring_leading_exec_events--;
1477 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1478 prepare_to_wait (ecs);
1479 return;
1480 }
1481 inferior_ignoring_leading_exec_events =
1482 target_reported_exec_events_per_exec_call () - 1;
1483
1484 pending_follow.execd_pathname =
1485 savestring (ecs->ws.value.execd_pathname,
1486 strlen (ecs->ws.value.execd_pathname));
1487
1488 /* This causes the eventpoints and symbol table to be reset. Must
1489 do this now, before trying to determine whether to stop. */
1490 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1491 xfree (pending_follow.execd_pathname);
1492
1493 stop_pc = read_pc_pid (ecs->ptid);
1494 ecs->saved_inferior_ptid = inferior_ptid;
1495 inferior_ptid = ecs->ptid;
1496
1497 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1498
1499 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1500 inferior_ptid = ecs->saved_inferior_ptid;
1501
1502 if (!ptid_equal (ecs->ptid, inferior_ptid))
1503 {
1504 context_switch (ecs);
1505 reinit_frame_cache ();
1506 }
1507
1508 /* If no catchpoint triggered for this, then keep going. */
1509 if (ecs->random_signal)
1510 {
1511 stop_signal = TARGET_SIGNAL_0;
1512 keep_going (ecs);
1513 return;
1514 }
1515 goto process_event_stop_test;
1516
1517 /* Be careful not to try to gather much state about a thread
1518 that's in a syscall. It's frequently a losing proposition. */
1519 case TARGET_WAITKIND_SYSCALL_ENTRY:
1520 if (debug_infrun)
1521 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1522 resume (0, TARGET_SIGNAL_0);
1523 prepare_to_wait (ecs);
1524 return;
1525
1526 /* Before examining the threads further, step this thread to
1527 get it entirely out of the syscall. (We get notice of the
1528 event when the thread is just on the verge of exiting a
1529 syscall. Stepping one instruction seems to get it back
1530 into user code.) */
1531 case TARGET_WAITKIND_SYSCALL_RETURN:
1532 if (debug_infrun)
1533 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1534 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1535 prepare_to_wait (ecs);
1536 return;
1537
1538 case TARGET_WAITKIND_STOPPED:
1539 if (debug_infrun)
1540 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1541 stop_signal = ecs->ws.value.sig;
1542 break;
1543
1544 /* We had an event in the inferior, but we are not interested
1545 in handling it at this level. The lower layers have already
1546 done what needs to be done, if anything.
1547
1548 One of the possible circumstances for this is when the
1549 inferior produces output for the console. The inferior has
1550 not stopped, and we are ignoring the event. Another possible
1551 circumstance is any event which the lower level knows will be
1552 reported multiple times without an intervening resume. */
1553 case TARGET_WAITKIND_IGNORE:
1554 if (debug_infrun)
1555 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1556 prepare_to_wait (ecs);
1557 return;
1558 }
1559
1560 /* We may want to consider not doing a resume here in order to give
1561 the user a chance to play with the new thread. It might be good
1562 to make that a user-settable option. */
1563
1564 /* At this point, all threads are stopped (happens automatically in
1565 either the OS or the native code). Therefore we need to continue
1566 all threads in order to make progress. */
1567 if (ecs->new_thread_event)
1568 {
1569 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1570 prepare_to_wait (ecs);
1571 return;
1572 }
1573
1574 stop_pc = read_pc_pid (ecs->ptid);
1575
1576 if (debug_infrun)
1577 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1578
1579 if (stepping_past_singlestep_breakpoint)
1580 {
1581 gdb_assert (singlestep_breakpoints_inserted_p);
1582 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1583 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1584
1585 stepping_past_singlestep_breakpoint = 0;
1586
1587 /* We've either finished single-stepping past the single-step
1588 breakpoint, or stopped for some other reason. It would be nice if
1589 we could tell, but we can't reliably. */
1590 if (stop_signal == TARGET_SIGNAL_TRAP)
1591 {
1592 if (debug_infrun)
1593 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1594 /* Pull the single step breakpoints out of the target. */
1595 remove_single_step_breakpoints ();
1596 singlestep_breakpoints_inserted_p = 0;
1597
1598 ecs->random_signal = 0;
1599
1600 ecs->ptid = saved_singlestep_ptid;
1601 context_switch (ecs);
1602 if (deprecated_context_hook)
1603 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1604
1605 resume (1, TARGET_SIGNAL_0);
1606 prepare_to_wait (ecs);
1607 return;
1608 }
1609 }
1610
1611 stepping_past_singlestep_breakpoint = 0;
1612
1613 if (stepping_past_breakpoint)
1614 {
1615 stepping_past_breakpoint = 0;
1616
1617 /* If we stopped for some other reason than single-stepping, ignore
1618 the fact that we were supposed to switch back. */
1619 if (stop_signal == TARGET_SIGNAL_TRAP)
1620 {
1621 if (debug_infrun)
1622 fprintf_unfiltered (gdb_stdlog,
1623 "infrun: stepping_past_breakpoint\n");
1624
1625 /* Pull the single step breakpoints out of the target. */
1626 if (singlestep_breakpoints_inserted_p)
1627 {
1628 remove_single_step_breakpoints ();
1629 singlestep_breakpoints_inserted_p = 0;
1630 }
1631
1632 /* Note: We do not call context_switch at this point, as the
1633 context is already set up for stepping the original thread. */
1634 switch_to_thread (stepping_past_breakpoint_ptid);
1635 /* Suppress spurious "Switching to ..." message. */
1636 previous_inferior_ptid = inferior_ptid;
1637
1638 resume (1, TARGET_SIGNAL_0);
1639 prepare_to_wait (ecs);
1640 return;
1641 }
1642 }
1643
1644 /* See if a thread hit a thread-specific breakpoint that was meant for
1645 another thread. If so, then step that thread past the breakpoint,
1646 and continue it. */
1647
1648 if (stop_signal == TARGET_SIGNAL_TRAP)
1649 {
1650 int thread_hop_needed = 0;
1651
1652 /* Check if a regular breakpoint has been hit before checking
1653 for a potential single step breakpoint. Otherwise, GDB will
1654 not see this breakpoint hit when stepping onto breakpoints. */
1655 if (regular_breakpoint_inserted_here_p (stop_pc))
1656 {
1657 ecs->random_signal = 0;
1658 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1659 thread_hop_needed = 1;
1660 }
1661 else if (singlestep_breakpoints_inserted_p)
1662 {
1663 /* We have not context switched yet, so this should be true
1664 no matter which thread hit the singlestep breakpoint. */
1665 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1666 if (debug_infrun)
1667 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1668 "trap for %s\n",
1669 target_pid_to_str (ecs->ptid));
1670
1671 ecs->random_signal = 0;
1672 /* The call to in_thread_list is necessary because PTIDs sometimes
1673 change when we go from single-threaded to multi-threaded. If
1674 the singlestep_ptid is still in the list, assume that it is
1675 really different from ecs->ptid. */
1676 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1677 && in_thread_list (singlestep_ptid))
1678 {
1679 /* If the PC of the thread we were trying to single-step
1680 has changed, discard this event (which we were going
1681 to ignore anyway), and pretend we saw that thread
1682 trap. This prevents us continuously moving the
1683 single-step breakpoint forward, one instruction at a
1684 time. If the PC has changed, then the thread we were
1685 trying to single-step has trapped or been signalled,
1686 but the event has not been reported to GDB yet.
1687
1688 There might be some cases where this loses signal
1689 information, if a signal has arrived at exactly the
1690 same time that the PC changed, but this is the best
1691 we can do with the information available. Perhaps we
1692 should arrange to report all events for all threads
1693 when they stop, or to re-poll the remote looking for
1694 this particular thread (i.e. temporarily enable
1695 schedlock). */
1696 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1697 {
1698 if (debug_infrun)
1699 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1700 " but expected thread advanced also\n");
1701
1702 /* The current context still belongs to
1703 singlestep_ptid. Don't swap here, since that's
1704 the context we want to use. Just fudge our
1705 state and continue. */
1706 ecs->ptid = singlestep_ptid;
1707 stop_pc = read_pc_pid (ecs->ptid);
1708 }
1709 else
1710 {
1711 if (debug_infrun)
1712 fprintf_unfiltered (gdb_stdlog,
1713 "infrun: unexpected thread\n");
1714
1715 thread_hop_needed = 1;
1716 stepping_past_singlestep_breakpoint = 1;
1717 saved_singlestep_ptid = singlestep_ptid;
1718 }
1719 }
1720 }
1721
1722 if (thread_hop_needed)
1723 {
1724 int remove_status;
1725
1726 if (debug_infrun)
1727 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1728
1729 /* Saw a breakpoint, but it was hit by the wrong thread.
1730 Just continue. */
1731
1732 if (singlestep_breakpoints_inserted_p)
1733 {
1734 /* Pull the single step breakpoints out of the target. */
1735 remove_single_step_breakpoints ();
1736 singlestep_breakpoints_inserted_p = 0;
1737 }
1738
1739 remove_status = remove_breakpoints ();
1740 /* Did we fail to remove breakpoints? If so, try
1741 to set the PC past the bp. (There's at least
1742 one situation in which we can fail to remove
1743 the bp's: On HP-UX's that use ttrace, we can't
1744 change the address space of a vforking child
1745 process until the child exits (well, okay, not
1746 then either :-) or execs. */
1747 if (remove_status != 0)
1748 {
1749 /* FIXME! This is obviously non-portable! */
1750 write_pc_pid (stop_pc + 4, ecs->ptid);
1751 /* We need to restart all the threads now,
1752 * unles we're running in scheduler-locked mode.
1753 * Use currently_stepping to determine whether to
1754 * step or continue.
1755 */
1756 /* FIXME MVS: is there any reason not to call resume()? */
1757 if (scheduler_mode == schedlock_on)
1758 target_resume (ecs->ptid,
1759 currently_stepping (ecs), TARGET_SIGNAL_0);
1760 else
1761 target_resume (RESUME_ALL,
1762 currently_stepping (ecs), TARGET_SIGNAL_0);
1763 prepare_to_wait (ecs);
1764 return;
1765 }
1766 else
1767 { /* Single step */
1768 if (!ptid_equal (inferior_ptid, ecs->ptid))
1769 context_switch (ecs);
1770 ecs->waiton_ptid = ecs->ptid;
1771 ecs->wp = &(ecs->ws);
1772 ecs->another_trap = 1;
1773
1774 ecs->infwait_state = infwait_thread_hop_state;
1775 keep_going (ecs);
1776 registers_changed ();
1777 return;
1778 }
1779 }
1780 else if (singlestep_breakpoints_inserted_p)
1781 {
1782 sw_single_step_trap_p = 1;
1783 ecs->random_signal = 0;
1784 }
1785 }
1786 else
1787 ecs->random_signal = 1;
1788
1789 /* See if something interesting happened to the non-current thread. If
1790 so, then switch to that thread. */
1791 if (!ptid_equal (ecs->ptid, inferior_ptid))
1792 {
1793 if (debug_infrun)
1794 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1795
1796 context_switch (ecs);
1797
1798 if (deprecated_context_hook)
1799 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1800 }
1801
1802 if (singlestep_breakpoints_inserted_p)
1803 {
1804 /* Pull the single step breakpoints out of the target. */
1805 remove_single_step_breakpoints ();
1806 singlestep_breakpoints_inserted_p = 0;
1807 }
1808
1809 if (stepped_after_stopped_by_watchpoint)
1810 stopped_by_watchpoint = 0;
1811 else
1812 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
1813
1814 /* If necessary, step over this watchpoint. We'll be back to display
1815 it in a moment. */
1816 if (stopped_by_watchpoint
1817 && (HAVE_STEPPABLE_WATCHPOINT
1818 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
1819 {
1820 if (debug_infrun)
1821 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1822
1823 /* At this point, we are stopped at an instruction which has
1824 attempted to write to a piece of memory under control of
1825 a watchpoint. The instruction hasn't actually executed
1826 yet. If we were to evaluate the watchpoint expression
1827 now, we would get the old value, and therefore no change
1828 would seem to have occurred.
1829
1830 In order to make watchpoints work `right', we really need
1831 to complete the memory write, and then evaluate the
1832 watchpoint expression. We do this by single-stepping the
1833 target.
1834
1835 It may not be necessary to disable the watchpoint to stop over
1836 it. For example, the PA can (with some kernel cooperation)
1837 single step over a watchpoint without disabling the watchpoint.
1838
1839 It is far more common to need to disable a watchpoint to step
1840 the inferior over it. If we have non-steppable watchpoints,
1841 we must disable the current watchpoint; it's simplest to
1842 disable all watchpoints and breakpoints. */
1843
1844 if (!HAVE_STEPPABLE_WATCHPOINT)
1845 remove_breakpoints ();
1846 registers_changed ();
1847 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1848 ecs->waiton_ptid = ecs->ptid;
1849 if (HAVE_STEPPABLE_WATCHPOINT)
1850 ecs->infwait_state = infwait_step_watch_state;
1851 else
1852 ecs->infwait_state = infwait_nonstep_watch_state;
1853 prepare_to_wait (ecs);
1854 return;
1855 }
1856
1857 ecs->stop_func_start = 0;
1858 ecs->stop_func_end = 0;
1859 ecs->stop_func_name = 0;
1860 /* Don't care about return value; stop_func_start and stop_func_name
1861 will both be 0 if it doesn't work. */
1862 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1863 &ecs->stop_func_start, &ecs->stop_func_end);
1864 ecs->stop_func_start
1865 += gdbarch_deprecated_function_start_offset (current_gdbarch);
1866 ecs->another_trap = 0;
1867 bpstat_clear (&stop_bpstat);
1868 stop_step = 0;
1869 stop_stack_dummy = 0;
1870 stop_print_frame = 1;
1871 ecs->random_signal = 0;
1872 stopped_by_random_signal = 0;
1873
1874 if (stop_signal == TARGET_SIGNAL_TRAP
1875 && trap_expected
1876 && gdbarch_single_step_through_delay_p (current_gdbarch)
1877 && currently_stepping (ecs))
1878 {
1879 /* We're trying to step of a breakpoint. Turns out that we're
1880 also on an instruction that needs to be stepped multiple
1881 times before it's been fully executing. E.g., architectures
1882 with a delay slot. It needs to be stepped twice, once for
1883 the instruction and once for the delay slot. */
1884 int step_through_delay
1885 = gdbarch_single_step_through_delay (current_gdbarch,
1886 get_current_frame ());
1887 if (debug_infrun && step_through_delay)
1888 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1889 if (step_range_end == 0 && step_through_delay)
1890 {
1891 /* The user issued a continue when stopped at a breakpoint.
1892 Set up for another trap and get out of here. */
1893 ecs->another_trap = 1;
1894 keep_going (ecs);
1895 return;
1896 }
1897 else if (step_through_delay)
1898 {
1899 /* The user issued a step when stopped at a breakpoint.
1900 Maybe we should stop, maybe we should not - the delay
1901 slot *might* correspond to a line of source. In any
1902 case, don't decide that here, just set ecs->another_trap,
1903 making sure we single-step again before breakpoints are
1904 re-inserted. */
1905 ecs->another_trap = 1;
1906 }
1907 }
1908
1909 /* Look at the cause of the stop, and decide what to do.
1910 The alternatives are:
1911 1) break; to really stop and return to the debugger,
1912 2) drop through to start up again
1913 (set ecs->another_trap to 1 to single step once)
1914 3) set ecs->random_signal to 1, and the decision between 1 and 2
1915 will be made according to the signal handling tables. */
1916
1917 /* First, distinguish signals caused by the debugger from signals
1918 that have to do with the program's own actions. Note that
1919 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1920 on the operating system version. Here we detect when a SIGILL or
1921 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1922 something similar for SIGSEGV, since a SIGSEGV will be generated
1923 when we're trying to execute a breakpoint instruction on a
1924 non-executable stack. This happens for call dummy breakpoints
1925 for architectures like SPARC that place call dummies on the
1926 stack. */
1927
1928 if (stop_signal == TARGET_SIGNAL_TRAP
1929 || (breakpoint_inserted_here_p (stop_pc)
1930 && (stop_signal == TARGET_SIGNAL_ILL
1931 || stop_signal == TARGET_SIGNAL_SEGV
1932 || stop_signal == TARGET_SIGNAL_EMT))
1933 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1934 || stop_soon == STOP_QUIETLY_REMOTE)
1935 {
1936 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1937 {
1938 if (debug_infrun)
1939 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1940 stop_print_frame = 0;
1941 stop_stepping (ecs);
1942 return;
1943 }
1944
1945 /* This is originated from start_remote(), start_inferior() and
1946 shared libraries hook functions. */
1947 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
1948 {
1949 if (debug_infrun)
1950 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1951 stop_stepping (ecs);
1952 return;
1953 }
1954
1955 /* This originates from attach_command(). We need to overwrite
1956 the stop_signal here, because some kernels don't ignore a
1957 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1958 See more comments in inferior.h. */
1959 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1960 {
1961 stop_stepping (ecs);
1962 if (stop_signal == TARGET_SIGNAL_STOP)
1963 stop_signal = TARGET_SIGNAL_0;
1964 return;
1965 }
1966
1967 /* Don't even think about breakpoints if just proceeded over a
1968 breakpoint. */
1969 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1970 {
1971 if (debug_infrun)
1972 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1973 bpstat_clear (&stop_bpstat);
1974 }
1975 else
1976 {
1977 /* See if there is a breakpoint at the current PC. */
1978 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1979
1980 /* Following in case break condition called a
1981 function. */
1982 stop_print_frame = 1;
1983 }
1984
1985 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1986 at one stage in the past included checks for an inferior
1987 function call's call dummy's return breakpoint. The original
1988 comment, that went with the test, read:
1989
1990 ``End of a stack dummy. Some systems (e.g. Sony news) give
1991 another signal besides SIGTRAP, so check here as well as
1992 above.''
1993
1994 If someone ever tries to get get call dummys on a
1995 non-executable stack to work (where the target would stop
1996 with something like a SIGSEGV), then those tests might need
1997 to be re-instated. Given, however, that the tests were only
1998 enabled when momentary breakpoints were not being used, I
1999 suspect that it won't be the case.
2000
2001 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2002 be necessary for call dummies on a non-executable stack on
2003 SPARC. */
2004
2005 if (stop_signal == TARGET_SIGNAL_TRAP)
2006 ecs->random_signal
2007 = !(bpstat_explains_signal (stop_bpstat)
2008 || trap_expected
2009 || (step_range_end && step_resume_breakpoint == NULL));
2010 else
2011 {
2012 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2013 if (!ecs->random_signal)
2014 stop_signal = TARGET_SIGNAL_TRAP;
2015 }
2016 }
2017
2018 /* When we reach this point, we've pretty much decided
2019 that the reason for stopping must've been a random
2020 (unexpected) signal. */
2021
2022 else
2023 ecs->random_signal = 1;
2024
2025 process_event_stop_test:
2026 /* For the program's own signals, act according to
2027 the signal handling tables. */
2028
2029 if (ecs->random_signal)
2030 {
2031 /* Signal not for debugging purposes. */
2032 int printed = 0;
2033
2034 if (debug_infrun)
2035 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2036
2037 stopped_by_random_signal = 1;
2038
2039 if (signal_print[stop_signal])
2040 {
2041 printed = 1;
2042 target_terminal_ours_for_output ();
2043 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2044 }
2045 if (signal_stop[stop_signal])
2046 {
2047 stop_stepping (ecs);
2048 return;
2049 }
2050 /* If not going to stop, give terminal back
2051 if we took it away. */
2052 else if (printed)
2053 target_terminal_inferior ();
2054
2055 /* Clear the signal if it should not be passed. */
2056 if (signal_program[stop_signal] == 0)
2057 stop_signal = TARGET_SIGNAL_0;
2058
2059 if (prev_pc == read_pc ()
2060 && breakpoint_here_p (read_pc ())
2061 && !breakpoint_inserted_here_p (read_pc ())
2062 && step_resume_breakpoint == NULL)
2063 {
2064 /* We were just starting a new sequence, attempting to
2065 single-step off of a breakpoint and expecting a SIGTRAP.
2066 Intead this signal arrives. This signal will take us out
2067 of the stepping range so GDB needs to remember to, when
2068 the signal handler returns, resume stepping off that
2069 breakpoint. */
2070 /* To simplify things, "continue" is forced to use the same
2071 code paths as single-step - set a breakpoint at the
2072 signal return address and then, once hit, step off that
2073 breakpoint. */
2074
2075 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2076 ecs->step_after_step_resume_breakpoint = 1;
2077 keep_going (ecs);
2078 return;
2079 }
2080
2081 if (step_range_end != 0
2082 && stop_signal != TARGET_SIGNAL_0
2083 && stop_pc >= step_range_start && stop_pc < step_range_end
2084 && frame_id_eq (get_frame_id (get_current_frame ()),
2085 step_frame_id)
2086 && step_resume_breakpoint == NULL)
2087 {
2088 /* The inferior is about to take a signal that will take it
2089 out of the single step range. Set a breakpoint at the
2090 current PC (which is presumably where the signal handler
2091 will eventually return) and then allow the inferior to
2092 run free.
2093
2094 Note that this is only needed for a signal delivered
2095 while in the single-step range. Nested signals aren't a
2096 problem as they eventually all return. */
2097 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2098 keep_going (ecs);
2099 return;
2100 }
2101
2102 /* Note: step_resume_breakpoint may be non-NULL. This occures
2103 when either there's a nested signal, or when there's a
2104 pending signal enabled just as the signal handler returns
2105 (leaving the inferior at the step-resume-breakpoint without
2106 actually executing it). Either way continue until the
2107 breakpoint is really hit. */
2108 keep_going (ecs);
2109 return;
2110 }
2111
2112 /* Handle cases caused by hitting a breakpoint. */
2113 {
2114 CORE_ADDR jmp_buf_pc;
2115 struct bpstat_what what;
2116
2117 what = bpstat_what (stop_bpstat);
2118
2119 if (what.call_dummy)
2120 {
2121 stop_stack_dummy = 1;
2122 }
2123
2124 switch (what.main_action)
2125 {
2126 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2127 /* If we hit the breakpoint at longjmp, disable it for the
2128 duration of this command. Then, install a temporary
2129 breakpoint at the target of the jmp_buf. */
2130 if (debug_infrun)
2131 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2132 disable_longjmp_breakpoint ();
2133 remove_breakpoints ();
2134 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2135 || !gdbarch_get_longjmp_target (current_gdbarch,
2136 get_current_frame (), &jmp_buf_pc))
2137 {
2138 keep_going (ecs);
2139 return;
2140 }
2141
2142 /* Need to blow away step-resume breakpoint, as it
2143 interferes with us */
2144 if (step_resume_breakpoint != NULL)
2145 {
2146 delete_step_resume_breakpoint (&step_resume_breakpoint);
2147 }
2148
2149 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2150 ecs->handling_longjmp = 1; /* FIXME */
2151 keep_going (ecs);
2152 return;
2153
2154 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2155 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2156 if (debug_infrun)
2157 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2158 remove_breakpoints ();
2159 disable_longjmp_breakpoint ();
2160 ecs->handling_longjmp = 0; /* FIXME */
2161 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2162 break;
2163 /* else fallthrough */
2164
2165 case BPSTAT_WHAT_SINGLE:
2166 if (debug_infrun)
2167 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2168 remove_breakpoints ();
2169 ecs->another_trap = 1;
2170 /* Still need to check other stuff, at least the case
2171 where we are stepping and step out of the right range. */
2172 break;
2173
2174 case BPSTAT_WHAT_STOP_NOISY:
2175 if (debug_infrun)
2176 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2177 stop_print_frame = 1;
2178
2179 /* We are about to nuke the step_resume_breakpointt via the
2180 cleanup chain, so no need to worry about it here. */
2181
2182 stop_stepping (ecs);
2183 return;
2184
2185 case BPSTAT_WHAT_STOP_SILENT:
2186 if (debug_infrun)
2187 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2188 stop_print_frame = 0;
2189
2190 /* We are about to nuke the step_resume_breakpoin via the
2191 cleanup chain, so no need to worry about it here. */
2192
2193 stop_stepping (ecs);
2194 return;
2195
2196 case BPSTAT_WHAT_STEP_RESUME:
2197 /* This proably demands a more elegant solution, but, yeah
2198 right...
2199
2200 This function's use of the simple variable
2201 step_resume_breakpoint doesn't seem to accomodate
2202 simultaneously active step-resume bp's, although the
2203 breakpoint list certainly can.
2204
2205 If we reach here and step_resume_breakpoint is already
2206 NULL, then apparently we have multiple active
2207 step-resume bp's. We'll just delete the breakpoint we
2208 stopped at, and carry on.
2209
2210 Correction: what the code currently does is delete a
2211 step-resume bp, but it makes no effort to ensure that
2212 the one deleted is the one currently stopped at. MVS */
2213
2214 if (debug_infrun)
2215 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2216
2217 if (step_resume_breakpoint == NULL)
2218 {
2219 step_resume_breakpoint =
2220 bpstat_find_step_resume_breakpoint (stop_bpstat);
2221 }
2222 delete_step_resume_breakpoint (&step_resume_breakpoint);
2223 if (ecs->step_after_step_resume_breakpoint)
2224 {
2225 /* Back when the step-resume breakpoint was inserted, we
2226 were trying to single-step off a breakpoint. Go back
2227 to doing that. */
2228 ecs->step_after_step_resume_breakpoint = 0;
2229 remove_breakpoints ();
2230 ecs->another_trap = 1;
2231 keep_going (ecs);
2232 return;
2233 }
2234 break;
2235
2236 case BPSTAT_WHAT_CHECK_SHLIBS:
2237 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2238 {
2239 if (debug_infrun)
2240 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2241 /* Remove breakpoints, we eventually want to step over the
2242 shlib event breakpoint, and SOLIB_ADD might adjust
2243 breakpoint addresses via breakpoint_re_set. */
2244 remove_breakpoints ();
2245
2246 /* Check for any newly added shared libraries if we're
2247 supposed to be adding them automatically. Switch
2248 terminal for any messages produced by
2249 breakpoint_re_set. */
2250 target_terminal_ours_for_output ();
2251 /* NOTE: cagney/2003-11-25: Make certain that the target
2252 stack's section table is kept up-to-date. Architectures,
2253 (e.g., PPC64), use the section table to perform
2254 operations such as address => section name and hence
2255 require the table to contain all sections (including
2256 those found in shared libraries). */
2257 /* NOTE: cagney/2003-11-25: Pass current_target and not
2258 exec_ops to SOLIB_ADD. This is because current GDB is
2259 only tooled to propagate section_table changes out from
2260 the "current_target" (see target_resize_to_sections), and
2261 not up from the exec stratum. This, of course, isn't
2262 right. "infrun.c" should only interact with the
2263 exec/process stratum, instead relying on the target stack
2264 to propagate relevant changes (stop, section table
2265 changed, ...) up to other layers. */
2266 #ifdef SOLIB_ADD
2267 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2268 #else
2269 solib_add (NULL, 0, &current_target, auto_solib_add);
2270 #endif
2271 target_terminal_inferior ();
2272
2273 /* If requested, stop when the dynamic linker notifies
2274 gdb of events. This allows the user to get control
2275 and place breakpoints in initializer routines for
2276 dynamically loaded objects (among other things). */
2277 if (stop_on_solib_events || stop_stack_dummy)
2278 {
2279 stop_stepping (ecs);
2280 return;
2281 }
2282
2283 /* If we stopped due to an explicit catchpoint, then the
2284 (see above) call to SOLIB_ADD pulled in any symbols
2285 from a newly-loaded library, if appropriate.
2286
2287 We do want the inferior to stop, but not where it is
2288 now, which is in the dynamic linker callback. Rather,
2289 we would like it stop in the user's program, just after
2290 the call that caused this catchpoint to trigger. That
2291 gives the user a more useful vantage from which to
2292 examine their program's state. */
2293 else if (what.main_action
2294 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2295 {
2296 /* ??rehrauer: If I could figure out how to get the
2297 right return PC from here, we could just set a temp
2298 breakpoint and resume. I'm not sure we can without
2299 cracking open the dld's shared libraries and sniffing
2300 their unwind tables and text/data ranges, and that's
2301 not a terribly portable notion.
2302
2303 Until that time, we must step the inferior out of the
2304 dld callback, and also out of the dld itself (and any
2305 code or stubs in libdld.sl, such as "shl_load" and
2306 friends) until we reach non-dld code. At that point,
2307 we can stop stepping. */
2308 bpstat_get_triggered_catchpoints (stop_bpstat,
2309 &ecs->
2310 stepping_through_solib_catchpoints);
2311 ecs->stepping_through_solib_after_catch = 1;
2312
2313 /* Be sure to lift all breakpoints, so the inferior does
2314 actually step past this point... */
2315 ecs->another_trap = 1;
2316 break;
2317 }
2318 else
2319 {
2320 /* We want to step over this breakpoint, then keep going. */
2321 ecs->another_trap = 1;
2322 break;
2323 }
2324 }
2325 break;
2326
2327 case BPSTAT_WHAT_LAST:
2328 /* Not a real code, but listed here to shut up gcc -Wall. */
2329
2330 case BPSTAT_WHAT_KEEP_CHECKING:
2331 break;
2332 }
2333 }
2334
2335 /* We come here if we hit a breakpoint but should not
2336 stop for it. Possibly we also were stepping
2337 and should stop for that. So fall through and
2338 test for stepping. But, if not stepping,
2339 do not stop. */
2340
2341 /* Are we stepping to get the inferior out of the dynamic linker's
2342 hook (and possibly the dld itself) after catching a shlib
2343 event? */
2344 if (ecs->stepping_through_solib_after_catch)
2345 {
2346 #if defined(SOLIB_ADD)
2347 /* Have we reached our destination? If not, keep going. */
2348 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2349 {
2350 if (debug_infrun)
2351 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2352 ecs->another_trap = 1;
2353 keep_going (ecs);
2354 return;
2355 }
2356 #endif
2357 if (debug_infrun)
2358 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2359 /* Else, stop and report the catchpoint(s) whose triggering
2360 caused us to begin stepping. */
2361 ecs->stepping_through_solib_after_catch = 0;
2362 bpstat_clear (&stop_bpstat);
2363 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2364 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2365 stop_print_frame = 1;
2366 stop_stepping (ecs);
2367 return;
2368 }
2369
2370 if (step_resume_breakpoint)
2371 {
2372 if (debug_infrun)
2373 fprintf_unfiltered (gdb_stdlog,
2374 "infrun: step-resume breakpoint is inserted\n");
2375
2376 /* Having a step-resume breakpoint overrides anything
2377 else having to do with stepping commands until
2378 that breakpoint is reached. */
2379 keep_going (ecs);
2380 return;
2381 }
2382
2383 if (step_range_end == 0)
2384 {
2385 if (debug_infrun)
2386 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2387 /* Likewise if we aren't even stepping. */
2388 keep_going (ecs);
2389 return;
2390 }
2391
2392 /* If stepping through a line, keep going if still within it.
2393
2394 Note that step_range_end is the address of the first instruction
2395 beyond the step range, and NOT the address of the last instruction
2396 within it! */
2397 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2398 {
2399 if (debug_infrun)
2400 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2401 paddr_nz (step_range_start),
2402 paddr_nz (step_range_end));
2403 keep_going (ecs);
2404 return;
2405 }
2406
2407 /* We stepped out of the stepping range. */
2408
2409 /* If we are stepping at the source level and entered the runtime
2410 loader dynamic symbol resolution code, we keep on single stepping
2411 until we exit the run time loader code and reach the callee's
2412 address. */
2413 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2414 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2415 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2416 #else
2417 && in_solib_dynsym_resolve_code (stop_pc)
2418 #endif
2419 )
2420 {
2421 CORE_ADDR pc_after_resolver =
2422 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2423
2424 if (debug_infrun)
2425 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2426
2427 if (pc_after_resolver)
2428 {
2429 /* Set up a step-resume breakpoint at the address
2430 indicated by SKIP_SOLIB_RESOLVER. */
2431 struct symtab_and_line sr_sal;
2432 init_sal (&sr_sal);
2433 sr_sal.pc = pc_after_resolver;
2434
2435 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2436 }
2437
2438 keep_going (ecs);
2439 return;
2440 }
2441
2442 if (step_range_end != 1
2443 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2444 || step_over_calls == STEP_OVER_ALL)
2445 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2446 {
2447 if (debug_infrun)
2448 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2449 /* The inferior, while doing a "step" or "next", has ended up in
2450 a signal trampoline (either by a signal being delivered or by
2451 the signal handler returning). Just single-step until the
2452 inferior leaves the trampoline (either by calling the handler
2453 or returning). */
2454 keep_going (ecs);
2455 return;
2456 }
2457
2458 /* Check for subroutine calls. The check for the current frame
2459 equalling the step ID is not necessary - the check of the
2460 previous frame's ID is sufficient - but it is a common case and
2461 cheaper than checking the previous frame's ID.
2462
2463 NOTE: frame_id_eq will never report two invalid frame IDs as
2464 being equal, so to get into this block, both the current and
2465 previous frame must have valid frame IDs. */
2466 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2467 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2468 {
2469 CORE_ADDR real_stop_pc;
2470
2471 if (debug_infrun)
2472 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2473
2474 if ((step_over_calls == STEP_OVER_NONE)
2475 || ((step_range_end == 1)
2476 && in_prologue (prev_pc, ecs->stop_func_start)))
2477 {
2478 /* I presume that step_over_calls is only 0 when we're
2479 supposed to be stepping at the assembly language level
2480 ("stepi"). Just stop. */
2481 /* Also, maybe we just did a "nexti" inside a prolog, so we
2482 thought it was a subroutine call but it was not. Stop as
2483 well. FENN */
2484 stop_step = 1;
2485 print_stop_reason (END_STEPPING_RANGE, 0);
2486 stop_stepping (ecs);
2487 return;
2488 }
2489
2490 if (step_over_calls == STEP_OVER_ALL)
2491 {
2492 /* We're doing a "next", set a breakpoint at callee's return
2493 address (the address at which the caller will
2494 resume). */
2495 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2496 keep_going (ecs);
2497 return;
2498 }
2499
2500 /* If we are in a function call trampoline (a stub between the
2501 calling routine and the real function), locate the real
2502 function. That's what tells us (a) whether we want to step
2503 into it at all, and (b) what prologue we want to run to the
2504 end of, if we do step into it. */
2505 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2506 if (real_stop_pc == 0)
2507 real_stop_pc = gdbarch_skip_trampoline_code
2508 (current_gdbarch, get_current_frame (), stop_pc);
2509 if (real_stop_pc != 0)
2510 ecs->stop_func_start = real_stop_pc;
2511
2512 if (
2513 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2514 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2515 #else
2516 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2517 #endif
2518 )
2519 {
2520 struct symtab_and_line sr_sal;
2521 init_sal (&sr_sal);
2522 sr_sal.pc = ecs->stop_func_start;
2523
2524 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2525 keep_going (ecs);
2526 return;
2527 }
2528
2529 /* If we have line number information for the function we are
2530 thinking of stepping into, step into it.
2531
2532 If there are several symtabs at that PC (e.g. with include
2533 files), just want to know whether *any* of them have line
2534 numbers. find_pc_line handles this. */
2535 {
2536 struct symtab_and_line tmp_sal;
2537
2538 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2539 if (tmp_sal.line != 0)
2540 {
2541 step_into_function (ecs);
2542 return;
2543 }
2544 }
2545
2546 /* If we have no line number and the step-stop-if-no-debug is
2547 set, we stop the step so that the user has a chance to switch
2548 in assembly mode. */
2549 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2550 {
2551 stop_step = 1;
2552 print_stop_reason (END_STEPPING_RANGE, 0);
2553 stop_stepping (ecs);
2554 return;
2555 }
2556
2557 /* Set a breakpoint at callee's return address (the address at
2558 which the caller will resume). */
2559 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2560 keep_going (ecs);
2561 return;
2562 }
2563
2564 /* If we're in the return path from a shared library trampoline,
2565 we want to proceed through the trampoline when stepping. */
2566 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2567 stop_pc, ecs->stop_func_name))
2568 {
2569 /* Determine where this trampoline returns. */
2570 CORE_ADDR real_stop_pc;
2571 real_stop_pc = gdbarch_skip_trampoline_code
2572 (current_gdbarch, get_current_frame (), stop_pc);
2573
2574 if (debug_infrun)
2575 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2576
2577 /* Only proceed through if we know where it's going. */
2578 if (real_stop_pc)
2579 {
2580 /* And put the step-breakpoint there and go until there. */
2581 struct symtab_and_line sr_sal;
2582
2583 init_sal (&sr_sal); /* initialize to zeroes */
2584 sr_sal.pc = real_stop_pc;
2585 sr_sal.section = find_pc_overlay (sr_sal.pc);
2586
2587 /* Do not specify what the fp should be when we stop since
2588 on some machines the prologue is where the new fp value
2589 is established. */
2590 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2591
2592 /* Restart without fiddling with the step ranges or
2593 other state. */
2594 keep_going (ecs);
2595 return;
2596 }
2597 }
2598
2599 ecs->sal = find_pc_line (stop_pc, 0);
2600
2601 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2602 the trampoline processing logic, however, there are some trampolines
2603 that have no names, so we should do trampoline handling first. */
2604 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2605 && ecs->stop_func_name == NULL
2606 && ecs->sal.line == 0)
2607 {
2608 if (debug_infrun)
2609 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2610
2611 /* The inferior just stepped into, or returned to, an
2612 undebuggable function (where there is no debugging information
2613 and no line number corresponding to the address where the
2614 inferior stopped). Since we want to skip this kind of code,
2615 we keep going until the inferior returns from this
2616 function - unless the user has asked us not to (via
2617 set step-mode) or we no longer know how to get back
2618 to the call site. */
2619 if (step_stop_if_no_debug
2620 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2621 {
2622 /* If we have no line number and the step-stop-if-no-debug
2623 is set, we stop the step so that the user has a chance to
2624 switch in assembly mode. */
2625 stop_step = 1;
2626 print_stop_reason (END_STEPPING_RANGE, 0);
2627 stop_stepping (ecs);
2628 return;
2629 }
2630 else
2631 {
2632 /* Set a breakpoint at callee's return address (the address
2633 at which the caller will resume). */
2634 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2635 keep_going (ecs);
2636 return;
2637 }
2638 }
2639
2640 if (step_range_end == 1)
2641 {
2642 /* It is stepi or nexti. We always want to stop stepping after
2643 one instruction. */
2644 if (debug_infrun)
2645 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2646 stop_step = 1;
2647 print_stop_reason (END_STEPPING_RANGE, 0);
2648 stop_stepping (ecs);
2649 return;
2650 }
2651
2652 if (ecs->sal.line == 0)
2653 {
2654 /* We have no line number information. That means to stop
2655 stepping (does this always happen right after one instruction,
2656 when we do "s" in a function with no line numbers,
2657 or can this happen as a result of a return or longjmp?). */
2658 if (debug_infrun)
2659 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2660 stop_step = 1;
2661 print_stop_reason (END_STEPPING_RANGE, 0);
2662 stop_stepping (ecs);
2663 return;
2664 }
2665
2666 if ((stop_pc == ecs->sal.pc)
2667 && (ecs->current_line != ecs->sal.line
2668 || ecs->current_symtab != ecs->sal.symtab))
2669 {
2670 /* We are at the start of a different line. So stop. Note that
2671 we don't stop if we step into the middle of a different line.
2672 That is said to make things like for (;;) statements work
2673 better. */
2674 if (debug_infrun)
2675 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2676 stop_step = 1;
2677 print_stop_reason (END_STEPPING_RANGE, 0);
2678 stop_stepping (ecs);
2679 return;
2680 }
2681
2682 /* We aren't done stepping.
2683
2684 Optimize by setting the stepping range to the line.
2685 (We might not be in the original line, but if we entered a
2686 new line in mid-statement, we continue stepping. This makes
2687 things like for(;;) statements work better.) */
2688
2689 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2690 {
2691 /* If this is the last line of the function, don't keep stepping
2692 (it would probably step us out of the function).
2693 This is particularly necessary for a one-line function,
2694 in which after skipping the prologue we better stop even though
2695 we will be in mid-line. */
2696 if (debug_infrun)
2697 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2698 stop_step = 1;
2699 print_stop_reason (END_STEPPING_RANGE, 0);
2700 stop_stepping (ecs);
2701 return;
2702 }
2703 step_range_start = ecs->sal.pc;
2704 step_range_end = ecs->sal.end;
2705 step_frame_id = get_frame_id (get_current_frame ());
2706 ecs->current_line = ecs->sal.line;
2707 ecs->current_symtab = ecs->sal.symtab;
2708
2709 /* In the case where we just stepped out of a function into the
2710 middle of a line of the caller, continue stepping, but
2711 step_frame_id must be modified to current frame */
2712 #if 0
2713 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2714 generous. It will trigger on things like a step into a frameless
2715 stackless leaf function. I think the logic should instead look
2716 at the unwound frame ID has that should give a more robust
2717 indication of what happened. */
2718 if (step - ID == current - ID)
2719 still stepping in same function;
2720 else if (step - ID == unwind (current - ID))
2721 stepped into a function;
2722 else
2723 stepped out of a function;
2724 /* Of course this assumes that the frame ID unwind code is robust
2725 and we're willing to introduce frame unwind logic into this
2726 function. Fortunately, those days are nearly upon us. */
2727 #endif
2728 {
2729 struct frame_info *frame = get_current_frame ();
2730 struct frame_id current_frame = get_frame_id (frame);
2731 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
2732 step_frame_id)))
2733 step_frame_id = current_frame;
2734 }
2735
2736 if (debug_infrun)
2737 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2738 keep_going (ecs);
2739 }
2740
2741 /* Are we in the middle of stepping? */
2742
2743 static int
2744 currently_stepping (struct execution_control_state *ecs)
2745 {
2746 return ((!ecs->handling_longjmp
2747 && ((step_range_end && step_resume_breakpoint == NULL)
2748 || trap_expected))
2749 || ecs->stepping_through_solib_after_catch
2750 || bpstat_should_step ());
2751 }
2752
2753 /* Subroutine call with source code we should not step over. Do step
2754 to the first line of code in it. */
2755
2756 static void
2757 step_into_function (struct execution_control_state *ecs)
2758 {
2759 struct symtab *s;
2760 struct symtab_and_line sr_sal;
2761
2762 s = find_pc_symtab (stop_pc);
2763 if (s && s->language != language_asm)
2764 ecs->stop_func_start = gdbarch_skip_prologue
2765 (current_gdbarch, ecs->stop_func_start);
2766
2767 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2768 /* Use the step_resume_break to step until the end of the prologue,
2769 even if that involves jumps (as it seems to on the vax under
2770 4.2). */
2771 /* If the prologue ends in the middle of a source line, continue to
2772 the end of that source line (if it is still within the function).
2773 Otherwise, just go to end of prologue. */
2774 if (ecs->sal.end
2775 && ecs->sal.pc != ecs->stop_func_start
2776 && ecs->sal.end < ecs->stop_func_end)
2777 ecs->stop_func_start = ecs->sal.end;
2778
2779 /* Architectures which require breakpoint adjustment might not be able
2780 to place a breakpoint at the computed address. If so, the test
2781 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2782 ecs->stop_func_start to an address at which a breakpoint may be
2783 legitimately placed.
2784
2785 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2786 made, GDB will enter an infinite loop when stepping through
2787 optimized code consisting of VLIW instructions which contain
2788 subinstructions corresponding to different source lines. On
2789 FR-V, it's not permitted to place a breakpoint on any but the
2790 first subinstruction of a VLIW instruction. When a breakpoint is
2791 set, GDB will adjust the breakpoint address to the beginning of
2792 the VLIW instruction. Thus, we need to make the corresponding
2793 adjustment here when computing the stop address. */
2794
2795 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2796 {
2797 ecs->stop_func_start
2798 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2799 ecs->stop_func_start);
2800 }
2801
2802 if (ecs->stop_func_start == stop_pc)
2803 {
2804 /* We are already there: stop now. */
2805 stop_step = 1;
2806 print_stop_reason (END_STEPPING_RANGE, 0);
2807 stop_stepping (ecs);
2808 return;
2809 }
2810 else
2811 {
2812 /* Put the step-breakpoint there and go until there. */
2813 init_sal (&sr_sal); /* initialize to zeroes */
2814 sr_sal.pc = ecs->stop_func_start;
2815 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2816
2817 /* Do not specify what the fp should be when we stop since on
2818 some machines the prologue is where the new fp value is
2819 established. */
2820 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2821
2822 /* And make sure stepping stops right away then. */
2823 step_range_end = step_range_start;
2824 }
2825 keep_going (ecs);
2826 }
2827
2828 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2829 This is used to both functions and to skip over code. */
2830
2831 static void
2832 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2833 struct frame_id sr_id)
2834 {
2835 /* There should never be more than one step-resume breakpoint per
2836 thread, so we should never be setting a new
2837 step_resume_breakpoint when one is already active. */
2838 gdb_assert (step_resume_breakpoint == NULL);
2839
2840 if (debug_infrun)
2841 fprintf_unfiltered (gdb_stdlog,
2842 "infrun: inserting step-resume breakpoint at 0x%s\n",
2843 paddr_nz (sr_sal.pc));
2844
2845 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2846 bp_step_resume);
2847 }
2848
2849 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2850 to skip a potential signal handler.
2851
2852 This is called with the interrupted function's frame. The signal
2853 handler, when it returns, will resume the interrupted function at
2854 RETURN_FRAME.pc. */
2855
2856 static void
2857 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2858 {
2859 struct symtab_and_line sr_sal;
2860
2861 gdb_assert (return_frame != NULL);
2862 init_sal (&sr_sal); /* initialize to zeros */
2863
2864 sr_sal.pc = gdbarch_addr_bits_remove
2865 (current_gdbarch, get_frame_pc (return_frame));
2866 sr_sal.section = find_pc_overlay (sr_sal.pc);
2867
2868 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2869 }
2870
2871 /* Similar to insert_step_resume_breakpoint_at_frame, except
2872 but a breakpoint at the previous frame's PC. This is used to
2873 skip a function after stepping into it (for "next" or if the called
2874 function has no debugging information).
2875
2876 The current function has almost always been reached by single
2877 stepping a call or return instruction. NEXT_FRAME belongs to the
2878 current function, and the breakpoint will be set at the caller's
2879 resume address.
2880
2881 This is a separate function rather than reusing
2882 insert_step_resume_breakpoint_at_frame in order to avoid
2883 get_prev_frame, which may stop prematurely (see the implementation
2884 of frame_unwind_id for an example). */
2885
2886 static void
2887 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2888 {
2889 struct symtab_and_line sr_sal;
2890
2891 /* We shouldn't have gotten here if we don't know where the call site
2892 is. */
2893 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2894
2895 init_sal (&sr_sal); /* initialize to zeros */
2896
2897 sr_sal.pc = gdbarch_addr_bits_remove
2898 (current_gdbarch, frame_pc_unwind (next_frame));
2899 sr_sal.section = find_pc_overlay (sr_sal.pc);
2900
2901 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2902 }
2903
2904 static void
2905 stop_stepping (struct execution_control_state *ecs)
2906 {
2907 if (debug_infrun)
2908 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2909
2910 /* Let callers know we don't want to wait for the inferior anymore. */
2911 ecs->wait_some_more = 0;
2912 }
2913
2914 /* This function handles various cases where we need to continue
2915 waiting for the inferior. */
2916 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2917
2918 static void
2919 keep_going (struct execution_control_state *ecs)
2920 {
2921 /* Save the pc before execution, to compare with pc after stop. */
2922 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2923
2924 /* If we did not do break;, it means we should keep running the
2925 inferior and not return to debugger. */
2926
2927 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2928 {
2929 /* We took a signal (which we are supposed to pass through to
2930 the inferior, else we'd have done a break above) and we
2931 haven't yet gotten our trap. Simply continue. */
2932 resume (currently_stepping (ecs), stop_signal);
2933 }
2934 else
2935 {
2936 /* Either the trap was not expected, but we are continuing
2937 anyway (the user asked that this signal be passed to the
2938 child)
2939 -- or --
2940 The signal was SIGTRAP, e.g. it was our signal, but we
2941 decided we should resume from it.
2942
2943 We're going to run this baby now!
2944
2945 Note that insert_breakpoints won't try to re-insert
2946 already inserted breakpoints. Therefore, we don't
2947 care if breakpoints were already inserted, or not. */
2948
2949 if (!ecs->another_trap)
2950 {
2951 struct gdb_exception e;
2952 /* Stop stepping when inserting breakpoints
2953 has failed. */
2954 TRY_CATCH (e, RETURN_MASK_ERROR)
2955 {
2956 insert_breakpoints ();
2957 }
2958 if (e.reason < 0)
2959 {
2960 stop_stepping (ecs);
2961 return;
2962 }
2963 }
2964
2965 trap_expected = ecs->another_trap;
2966
2967 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2968 specifies that such a signal should be delivered to the
2969 target program).
2970
2971 Typically, this would occure when a user is debugging a
2972 target monitor on a simulator: the target monitor sets a
2973 breakpoint; the simulator encounters this break-point and
2974 halts the simulation handing control to GDB; GDB, noteing
2975 that the break-point isn't valid, returns control back to the
2976 simulator; the simulator then delivers the hardware
2977 equivalent of a SIGNAL_TRAP to the program being debugged. */
2978
2979 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2980 stop_signal = TARGET_SIGNAL_0;
2981
2982
2983 resume (currently_stepping (ecs), stop_signal);
2984 }
2985
2986 prepare_to_wait (ecs);
2987 }
2988
2989 /* This function normally comes after a resume, before
2990 handle_inferior_event exits. It takes care of any last bits of
2991 housekeeping, and sets the all-important wait_some_more flag. */
2992
2993 static void
2994 prepare_to_wait (struct execution_control_state *ecs)
2995 {
2996 if (debug_infrun)
2997 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2998 if (ecs->infwait_state == infwait_normal_state)
2999 {
3000 overlay_cache_invalid = 1;
3001
3002 /* We have to invalidate the registers BEFORE calling
3003 target_wait because they can be loaded from the target while
3004 in target_wait. This makes remote debugging a bit more
3005 efficient for those targets that provide critical registers
3006 as part of their normal status mechanism. */
3007
3008 registers_changed ();
3009 ecs->waiton_ptid = pid_to_ptid (-1);
3010 ecs->wp = &(ecs->ws);
3011 }
3012 /* This is the old end of the while loop. Let everybody know we
3013 want to wait for the inferior some more and get called again
3014 soon. */
3015 ecs->wait_some_more = 1;
3016 }
3017
3018 /* Print why the inferior has stopped. We always print something when
3019 the inferior exits, or receives a signal. The rest of the cases are
3020 dealt with later on in normal_stop() and print_it_typical(). Ideally
3021 there should be a call to this function from handle_inferior_event()
3022 each time stop_stepping() is called.*/
3023 static void
3024 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3025 {
3026 switch (stop_reason)
3027 {
3028 case END_STEPPING_RANGE:
3029 /* We are done with a step/next/si/ni command. */
3030 /* For now print nothing. */
3031 /* Print a message only if not in the middle of doing a "step n"
3032 operation for n > 1 */
3033 if (!step_multi || !stop_step)
3034 if (ui_out_is_mi_like_p (uiout))
3035 ui_out_field_string
3036 (uiout, "reason",
3037 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3038 break;
3039 case SIGNAL_EXITED:
3040 /* The inferior was terminated by a signal. */
3041 annotate_signalled ();
3042 if (ui_out_is_mi_like_p (uiout))
3043 ui_out_field_string
3044 (uiout, "reason",
3045 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3046 ui_out_text (uiout, "\nProgram terminated with signal ");
3047 annotate_signal_name ();
3048 ui_out_field_string (uiout, "signal-name",
3049 target_signal_to_name (stop_info));
3050 annotate_signal_name_end ();
3051 ui_out_text (uiout, ", ");
3052 annotate_signal_string ();
3053 ui_out_field_string (uiout, "signal-meaning",
3054 target_signal_to_string (stop_info));
3055 annotate_signal_string_end ();
3056 ui_out_text (uiout, ".\n");
3057 ui_out_text (uiout, "The program no longer exists.\n");
3058 break;
3059 case EXITED:
3060 /* The inferior program is finished. */
3061 annotate_exited (stop_info);
3062 if (stop_info)
3063 {
3064 if (ui_out_is_mi_like_p (uiout))
3065 ui_out_field_string (uiout, "reason",
3066 async_reason_lookup (EXEC_ASYNC_EXITED));
3067 ui_out_text (uiout, "\nProgram exited with code ");
3068 ui_out_field_fmt (uiout, "exit-code", "0%o",
3069 (unsigned int) stop_info);
3070 ui_out_text (uiout, ".\n");
3071 }
3072 else
3073 {
3074 if (ui_out_is_mi_like_p (uiout))
3075 ui_out_field_string
3076 (uiout, "reason",
3077 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3078 ui_out_text (uiout, "\nProgram exited normally.\n");
3079 }
3080 /* Support the --return-child-result option. */
3081 return_child_result_value = stop_info;
3082 break;
3083 case SIGNAL_RECEIVED:
3084 /* Signal received. The signal table tells us to print about
3085 it. */
3086 annotate_signal ();
3087 ui_out_text (uiout, "\nProgram received signal ");
3088 annotate_signal_name ();
3089 if (ui_out_is_mi_like_p (uiout))
3090 ui_out_field_string
3091 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3092 ui_out_field_string (uiout, "signal-name",
3093 target_signal_to_name (stop_info));
3094 annotate_signal_name_end ();
3095 ui_out_text (uiout, ", ");
3096 annotate_signal_string ();
3097 ui_out_field_string (uiout, "signal-meaning",
3098 target_signal_to_string (stop_info));
3099 annotate_signal_string_end ();
3100 ui_out_text (uiout, ".\n");
3101 break;
3102 default:
3103 internal_error (__FILE__, __LINE__,
3104 _("print_stop_reason: unrecognized enum value"));
3105 break;
3106 }
3107 }
3108 \f
3109
3110 /* Here to return control to GDB when the inferior stops for real.
3111 Print appropriate messages, remove breakpoints, give terminal our modes.
3112
3113 STOP_PRINT_FRAME nonzero means print the executing frame
3114 (pc, function, args, file, line number and line text).
3115 BREAKPOINTS_FAILED nonzero means stop was due to error
3116 attempting to insert breakpoints. */
3117
3118 void
3119 normal_stop (void)
3120 {
3121 struct target_waitstatus last;
3122 ptid_t last_ptid;
3123
3124 get_last_target_status (&last_ptid, &last);
3125
3126 /* As with the notification of thread events, we want to delay
3127 notifying the user that we've switched thread context until
3128 the inferior actually stops.
3129
3130 There's no point in saying anything if the inferior has exited.
3131 Note that SIGNALLED here means "exited with a signal", not
3132 "received a signal". */
3133 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3134 && target_has_execution
3135 && last.kind != TARGET_WAITKIND_SIGNALLED
3136 && last.kind != TARGET_WAITKIND_EXITED)
3137 {
3138 target_terminal_ours_for_output ();
3139 printf_filtered (_("[Switching to %s]\n"),
3140 target_pid_or_tid_to_str (inferior_ptid));
3141 previous_inferior_ptid = inferior_ptid;
3142 }
3143
3144 /* NOTE drow/2004-01-17: Is this still necessary? */
3145 /* Make sure that the current_frame's pc is correct. This
3146 is a correction for setting up the frame info before doing
3147 gdbarch_decr_pc_after_break */
3148 if (target_has_execution)
3149 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3150 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3151 frame code to check for this and sort out any resultant mess.
3152 gdbarch_decr_pc_after_break needs to just go away. */
3153 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3154
3155 if (target_has_execution)
3156 {
3157 if (remove_breakpoints ())
3158 {
3159 target_terminal_ours_for_output ();
3160 printf_filtered (_("\
3161 Cannot remove breakpoints because program is no longer writable.\n\
3162 It might be running in another process.\n\
3163 Further execution is probably impossible.\n"));
3164 }
3165 }
3166
3167 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3168 Delete any breakpoint that is to be deleted at the next stop. */
3169
3170 breakpoint_auto_delete (stop_bpstat);
3171
3172 /* If an auto-display called a function and that got a signal,
3173 delete that auto-display to avoid an infinite recursion. */
3174
3175 if (stopped_by_random_signal)
3176 disable_current_display ();
3177
3178 /* Don't print a message if in the middle of doing a "step n"
3179 operation for n > 1 */
3180 if (step_multi && stop_step)
3181 goto done;
3182
3183 target_terminal_ours ();
3184
3185 /* Set the current source location. This will also happen if we
3186 display the frame below, but the current SAL will be incorrect
3187 during a user hook-stop function. */
3188 if (target_has_stack && !stop_stack_dummy)
3189 set_current_sal_from_frame (get_current_frame (), 1);
3190
3191 /* Look up the hook_stop and run it (CLI internally handles problem
3192 of stop_command's pre-hook not existing). */
3193 if (stop_command)
3194 catch_errors (hook_stop_stub, stop_command,
3195 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3196
3197 if (!target_has_stack)
3198 {
3199
3200 goto done;
3201 }
3202
3203 /* Select innermost stack frame - i.e., current frame is frame 0,
3204 and current location is based on that.
3205 Don't do this on return from a stack dummy routine,
3206 or if the program has exited. */
3207
3208 if (!stop_stack_dummy)
3209 {
3210 select_frame (get_current_frame ());
3211
3212 /* Print current location without a level number, if
3213 we have changed functions or hit a breakpoint.
3214 Print source line if we have one.
3215 bpstat_print() contains the logic deciding in detail
3216 what to print, based on the event(s) that just occurred. */
3217
3218 if (stop_print_frame)
3219 {
3220 int bpstat_ret;
3221 int source_flag;
3222 int do_frame_printing = 1;
3223
3224 bpstat_ret = bpstat_print (stop_bpstat);
3225 switch (bpstat_ret)
3226 {
3227 case PRINT_UNKNOWN:
3228 /* If we had hit a shared library event breakpoint,
3229 bpstat_print would print out this message. If we hit
3230 an OS-level shared library event, do the same
3231 thing. */
3232 if (last.kind == TARGET_WAITKIND_LOADED)
3233 {
3234 printf_filtered (_("Stopped due to shared library event\n"));
3235 source_flag = SRC_LINE; /* something bogus */
3236 do_frame_printing = 0;
3237 break;
3238 }
3239
3240 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3241 (or should) carry around the function and does (or
3242 should) use that when doing a frame comparison. */
3243 if (stop_step
3244 && frame_id_eq (step_frame_id,
3245 get_frame_id (get_current_frame ()))
3246 && step_start_function == find_pc_function (stop_pc))
3247 source_flag = SRC_LINE; /* finished step, just print source line */
3248 else
3249 source_flag = SRC_AND_LOC; /* print location and source line */
3250 break;
3251 case PRINT_SRC_AND_LOC:
3252 source_flag = SRC_AND_LOC; /* print location and source line */
3253 break;
3254 case PRINT_SRC_ONLY:
3255 source_flag = SRC_LINE;
3256 break;
3257 case PRINT_NOTHING:
3258 source_flag = SRC_LINE; /* something bogus */
3259 do_frame_printing = 0;
3260 break;
3261 default:
3262 internal_error (__FILE__, __LINE__, _("Unknown value."));
3263 }
3264
3265 if (ui_out_is_mi_like_p (uiout))
3266 ui_out_field_int (uiout, "thread-id",
3267 pid_to_thread_id (inferior_ptid));
3268 /* The behavior of this routine with respect to the source
3269 flag is:
3270 SRC_LINE: Print only source line
3271 LOCATION: Print only location
3272 SRC_AND_LOC: Print location and source line */
3273 if (do_frame_printing)
3274 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3275
3276 /* Display the auto-display expressions. */
3277 do_displays ();
3278 }
3279 }
3280
3281 /* Save the function value return registers, if we care.
3282 We might be about to restore their previous contents. */
3283 if (proceed_to_finish)
3284 {
3285 /* This should not be necessary. */
3286 if (stop_registers)
3287 regcache_xfree (stop_registers);
3288
3289 /* NB: The copy goes through to the target picking up the value of
3290 all the registers. */
3291 stop_registers = regcache_dup (get_current_regcache ());
3292 }
3293
3294 if (stop_stack_dummy)
3295 {
3296 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3297 ends with a setting of the current frame, so we can use that
3298 next. */
3299 frame_pop (get_current_frame ());
3300 /* Set stop_pc to what it was before we called the function.
3301 Can't rely on restore_inferior_status because that only gets
3302 called if we don't stop in the called function. */
3303 stop_pc = read_pc ();
3304 select_frame (get_current_frame ());
3305 }
3306
3307 done:
3308 annotate_stopped ();
3309 observer_notify_normal_stop (stop_bpstat);
3310 }
3311
3312 static int
3313 hook_stop_stub (void *cmd)
3314 {
3315 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3316 return (0);
3317 }
3318 \f
3319 int
3320 signal_stop_state (int signo)
3321 {
3322 return signal_stop[signo];
3323 }
3324
3325 int
3326 signal_print_state (int signo)
3327 {
3328 return signal_print[signo];
3329 }
3330
3331 int
3332 signal_pass_state (int signo)
3333 {
3334 return signal_program[signo];
3335 }
3336
3337 int
3338 signal_stop_update (int signo, int state)
3339 {
3340 int ret = signal_stop[signo];
3341 signal_stop[signo] = state;
3342 return ret;
3343 }
3344
3345 int
3346 signal_print_update (int signo, int state)
3347 {
3348 int ret = signal_print[signo];
3349 signal_print[signo] = state;
3350 return ret;
3351 }
3352
3353 int
3354 signal_pass_update (int signo, int state)
3355 {
3356 int ret = signal_program[signo];
3357 signal_program[signo] = state;
3358 return ret;
3359 }
3360
3361 static void
3362 sig_print_header (void)
3363 {
3364 printf_filtered (_("\
3365 Signal Stop\tPrint\tPass to program\tDescription\n"));
3366 }
3367
3368 static void
3369 sig_print_info (enum target_signal oursig)
3370 {
3371 char *name = target_signal_to_name (oursig);
3372 int name_padding = 13 - strlen (name);
3373
3374 if (name_padding <= 0)
3375 name_padding = 0;
3376
3377 printf_filtered ("%s", name);
3378 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3379 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3380 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3381 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3382 printf_filtered ("%s\n", target_signal_to_string (oursig));
3383 }
3384
3385 /* Specify how various signals in the inferior should be handled. */
3386
3387 static void
3388 handle_command (char *args, int from_tty)
3389 {
3390 char **argv;
3391 int digits, wordlen;
3392 int sigfirst, signum, siglast;
3393 enum target_signal oursig;
3394 int allsigs;
3395 int nsigs;
3396 unsigned char *sigs;
3397 struct cleanup *old_chain;
3398
3399 if (args == NULL)
3400 {
3401 error_no_arg (_("signal to handle"));
3402 }
3403
3404 /* Allocate and zero an array of flags for which signals to handle. */
3405
3406 nsigs = (int) TARGET_SIGNAL_LAST;
3407 sigs = (unsigned char *) alloca (nsigs);
3408 memset (sigs, 0, nsigs);
3409
3410 /* Break the command line up into args. */
3411
3412 argv = buildargv (args);
3413 if (argv == NULL)
3414 {
3415 nomem (0);
3416 }
3417 old_chain = make_cleanup_freeargv (argv);
3418
3419 /* Walk through the args, looking for signal oursigs, signal names, and
3420 actions. Signal numbers and signal names may be interspersed with
3421 actions, with the actions being performed for all signals cumulatively
3422 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3423
3424 while (*argv != NULL)
3425 {
3426 wordlen = strlen (*argv);
3427 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3428 {;
3429 }
3430 allsigs = 0;
3431 sigfirst = siglast = -1;
3432
3433 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3434 {
3435 /* Apply action to all signals except those used by the
3436 debugger. Silently skip those. */
3437 allsigs = 1;
3438 sigfirst = 0;
3439 siglast = nsigs - 1;
3440 }
3441 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3442 {
3443 SET_SIGS (nsigs, sigs, signal_stop);
3444 SET_SIGS (nsigs, sigs, signal_print);
3445 }
3446 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3447 {
3448 UNSET_SIGS (nsigs, sigs, signal_program);
3449 }
3450 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3451 {
3452 SET_SIGS (nsigs, sigs, signal_print);
3453 }
3454 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3455 {
3456 SET_SIGS (nsigs, sigs, signal_program);
3457 }
3458 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3459 {
3460 UNSET_SIGS (nsigs, sigs, signal_stop);
3461 }
3462 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3463 {
3464 SET_SIGS (nsigs, sigs, signal_program);
3465 }
3466 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3467 {
3468 UNSET_SIGS (nsigs, sigs, signal_print);
3469 UNSET_SIGS (nsigs, sigs, signal_stop);
3470 }
3471 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3472 {
3473 UNSET_SIGS (nsigs, sigs, signal_program);
3474 }
3475 else if (digits > 0)
3476 {
3477 /* It is numeric. The numeric signal refers to our own
3478 internal signal numbering from target.h, not to host/target
3479 signal number. This is a feature; users really should be
3480 using symbolic names anyway, and the common ones like
3481 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3482
3483 sigfirst = siglast = (int)
3484 target_signal_from_command (atoi (*argv));
3485 if ((*argv)[digits] == '-')
3486 {
3487 siglast = (int)
3488 target_signal_from_command (atoi ((*argv) + digits + 1));
3489 }
3490 if (sigfirst > siglast)
3491 {
3492 /* Bet he didn't figure we'd think of this case... */
3493 signum = sigfirst;
3494 sigfirst = siglast;
3495 siglast = signum;
3496 }
3497 }
3498 else
3499 {
3500 oursig = target_signal_from_name (*argv);
3501 if (oursig != TARGET_SIGNAL_UNKNOWN)
3502 {
3503 sigfirst = siglast = (int) oursig;
3504 }
3505 else
3506 {
3507 /* Not a number and not a recognized flag word => complain. */
3508 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3509 }
3510 }
3511
3512 /* If any signal numbers or symbol names were found, set flags for
3513 which signals to apply actions to. */
3514
3515 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3516 {
3517 switch ((enum target_signal) signum)
3518 {
3519 case TARGET_SIGNAL_TRAP:
3520 case TARGET_SIGNAL_INT:
3521 if (!allsigs && !sigs[signum])
3522 {
3523 if (query ("%s is used by the debugger.\n\
3524 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3525 {
3526 sigs[signum] = 1;
3527 }
3528 else
3529 {
3530 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3531 gdb_flush (gdb_stdout);
3532 }
3533 }
3534 break;
3535 case TARGET_SIGNAL_0:
3536 case TARGET_SIGNAL_DEFAULT:
3537 case TARGET_SIGNAL_UNKNOWN:
3538 /* Make sure that "all" doesn't print these. */
3539 break;
3540 default:
3541 sigs[signum] = 1;
3542 break;
3543 }
3544 }
3545
3546 argv++;
3547 }
3548
3549 target_notice_signals (inferior_ptid);
3550
3551 if (from_tty)
3552 {
3553 /* Show the results. */
3554 sig_print_header ();
3555 for (signum = 0; signum < nsigs; signum++)
3556 {
3557 if (sigs[signum])
3558 {
3559 sig_print_info (signum);
3560 }
3561 }
3562 }
3563
3564 do_cleanups (old_chain);
3565 }
3566
3567 static void
3568 xdb_handle_command (char *args, int from_tty)
3569 {
3570 char **argv;
3571 struct cleanup *old_chain;
3572
3573 /* Break the command line up into args. */
3574
3575 argv = buildargv (args);
3576 if (argv == NULL)
3577 {
3578 nomem (0);
3579 }
3580 old_chain = make_cleanup_freeargv (argv);
3581 if (argv[1] != (char *) NULL)
3582 {
3583 char *argBuf;
3584 int bufLen;
3585
3586 bufLen = strlen (argv[0]) + 20;
3587 argBuf = (char *) xmalloc (bufLen);
3588 if (argBuf)
3589 {
3590 int validFlag = 1;
3591 enum target_signal oursig;
3592
3593 oursig = target_signal_from_name (argv[0]);
3594 memset (argBuf, 0, bufLen);
3595 if (strcmp (argv[1], "Q") == 0)
3596 sprintf (argBuf, "%s %s", argv[0], "noprint");
3597 else
3598 {
3599 if (strcmp (argv[1], "s") == 0)
3600 {
3601 if (!signal_stop[oursig])
3602 sprintf (argBuf, "%s %s", argv[0], "stop");
3603 else
3604 sprintf (argBuf, "%s %s", argv[0], "nostop");
3605 }
3606 else if (strcmp (argv[1], "i") == 0)
3607 {
3608 if (!signal_program[oursig])
3609 sprintf (argBuf, "%s %s", argv[0], "pass");
3610 else
3611 sprintf (argBuf, "%s %s", argv[0], "nopass");
3612 }
3613 else if (strcmp (argv[1], "r") == 0)
3614 {
3615 if (!signal_print[oursig])
3616 sprintf (argBuf, "%s %s", argv[0], "print");
3617 else
3618 sprintf (argBuf, "%s %s", argv[0], "noprint");
3619 }
3620 else
3621 validFlag = 0;
3622 }
3623 if (validFlag)
3624 handle_command (argBuf, from_tty);
3625 else
3626 printf_filtered (_("Invalid signal handling flag.\n"));
3627 if (argBuf)
3628 xfree (argBuf);
3629 }
3630 }
3631 do_cleanups (old_chain);
3632 }
3633
3634 /* Print current contents of the tables set by the handle command.
3635 It is possible we should just be printing signals actually used
3636 by the current target (but for things to work right when switching
3637 targets, all signals should be in the signal tables). */
3638
3639 static void
3640 signals_info (char *signum_exp, int from_tty)
3641 {
3642 enum target_signal oursig;
3643 sig_print_header ();
3644
3645 if (signum_exp)
3646 {
3647 /* First see if this is a symbol name. */
3648 oursig = target_signal_from_name (signum_exp);
3649 if (oursig == TARGET_SIGNAL_UNKNOWN)
3650 {
3651 /* No, try numeric. */
3652 oursig =
3653 target_signal_from_command (parse_and_eval_long (signum_exp));
3654 }
3655 sig_print_info (oursig);
3656 return;
3657 }
3658
3659 printf_filtered ("\n");
3660 /* These ugly casts brought to you by the native VAX compiler. */
3661 for (oursig = TARGET_SIGNAL_FIRST;
3662 (int) oursig < (int) TARGET_SIGNAL_LAST;
3663 oursig = (enum target_signal) ((int) oursig + 1))
3664 {
3665 QUIT;
3666
3667 if (oursig != TARGET_SIGNAL_UNKNOWN
3668 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3669 sig_print_info (oursig);
3670 }
3671
3672 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3673 }
3674 \f
3675 struct inferior_status
3676 {
3677 enum target_signal stop_signal;
3678 CORE_ADDR stop_pc;
3679 bpstat stop_bpstat;
3680 int stop_step;
3681 int stop_stack_dummy;
3682 int stopped_by_random_signal;
3683 int trap_expected;
3684 CORE_ADDR step_range_start;
3685 CORE_ADDR step_range_end;
3686 struct frame_id step_frame_id;
3687 enum step_over_calls_kind step_over_calls;
3688 CORE_ADDR step_resume_break_address;
3689 int stop_after_trap;
3690 int stop_soon;
3691
3692 /* These are here because if call_function_by_hand has written some
3693 registers and then decides to call error(), we better not have changed
3694 any registers. */
3695 struct regcache *registers;
3696
3697 /* A frame unique identifier. */
3698 struct frame_id selected_frame_id;
3699
3700 int breakpoint_proceeded;
3701 int restore_stack_info;
3702 int proceed_to_finish;
3703 };
3704
3705 void
3706 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3707 LONGEST val)
3708 {
3709 int size = register_size (current_gdbarch, regno);
3710 void *buf = alloca (size);
3711 store_signed_integer (buf, size, val);
3712 regcache_raw_write (inf_status->registers, regno, buf);
3713 }
3714
3715 /* Save all of the information associated with the inferior<==>gdb
3716 connection. INF_STATUS is a pointer to a "struct inferior_status"
3717 (defined in inferior.h). */
3718
3719 struct inferior_status *
3720 save_inferior_status (int restore_stack_info)
3721 {
3722 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3723
3724 inf_status->stop_signal = stop_signal;
3725 inf_status->stop_pc = stop_pc;
3726 inf_status->stop_step = stop_step;
3727 inf_status->stop_stack_dummy = stop_stack_dummy;
3728 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3729 inf_status->trap_expected = trap_expected;
3730 inf_status->step_range_start = step_range_start;
3731 inf_status->step_range_end = step_range_end;
3732 inf_status->step_frame_id = step_frame_id;
3733 inf_status->step_over_calls = step_over_calls;
3734 inf_status->stop_after_trap = stop_after_trap;
3735 inf_status->stop_soon = stop_soon;
3736 /* Save original bpstat chain here; replace it with copy of chain.
3737 If caller's caller is walking the chain, they'll be happier if we
3738 hand them back the original chain when restore_inferior_status is
3739 called. */
3740 inf_status->stop_bpstat = stop_bpstat;
3741 stop_bpstat = bpstat_copy (stop_bpstat);
3742 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3743 inf_status->restore_stack_info = restore_stack_info;
3744 inf_status->proceed_to_finish = proceed_to_finish;
3745
3746 inf_status->registers = regcache_dup (get_current_regcache ());
3747
3748 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3749 return inf_status;
3750 }
3751
3752 static int
3753 restore_selected_frame (void *args)
3754 {
3755 struct frame_id *fid = (struct frame_id *) args;
3756 struct frame_info *frame;
3757
3758 frame = frame_find_by_id (*fid);
3759
3760 /* If inf_status->selected_frame_id is NULL, there was no previously
3761 selected frame. */
3762 if (frame == NULL)
3763 {
3764 warning (_("Unable to restore previously selected frame."));
3765 return 0;
3766 }
3767
3768 select_frame (frame);
3769
3770 return (1);
3771 }
3772
3773 void
3774 restore_inferior_status (struct inferior_status *inf_status)
3775 {
3776 stop_signal = inf_status->stop_signal;
3777 stop_pc = inf_status->stop_pc;
3778 stop_step = inf_status->stop_step;
3779 stop_stack_dummy = inf_status->stop_stack_dummy;
3780 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3781 trap_expected = inf_status->trap_expected;
3782 step_range_start = inf_status->step_range_start;
3783 step_range_end = inf_status->step_range_end;
3784 step_frame_id = inf_status->step_frame_id;
3785 step_over_calls = inf_status->step_over_calls;
3786 stop_after_trap = inf_status->stop_after_trap;
3787 stop_soon = inf_status->stop_soon;
3788 bpstat_clear (&stop_bpstat);
3789 stop_bpstat = inf_status->stop_bpstat;
3790 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3791 proceed_to_finish = inf_status->proceed_to_finish;
3792
3793 /* The inferior can be gone if the user types "print exit(0)"
3794 (and perhaps other times). */
3795 if (target_has_execution)
3796 /* NB: The register write goes through to the target. */
3797 regcache_cpy (get_current_regcache (), inf_status->registers);
3798 regcache_xfree (inf_status->registers);
3799
3800 /* FIXME: If we are being called after stopping in a function which
3801 is called from gdb, we should not be trying to restore the
3802 selected frame; it just prints a spurious error message (The
3803 message is useful, however, in detecting bugs in gdb (like if gdb
3804 clobbers the stack)). In fact, should we be restoring the
3805 inferior status at all in that case? . */
3806
3807 if (target_has_stack && inf_status->restore_stack_info)
3808 {
3809 /* The point of catch_errors is that if the stack is clobbered,
3810 walking the stack might encounter a garbage pointer and
3811 error() trying to dereference it. */
3812 if (catch_errors
3813 (restore_selected_frame, &inf_status->selected_frame_id,
3814 "Unable to restore previously selected frame:\n",
3815 RETURN_MASK_ERROR) == 0)
3816 /* Error in restoring the selected frame. Select the innermost
3817 frame. */
3818 select_frame (get_current_frame ());
3819
3820 }
3821
3822 xfree (inf_status);
3823 }
3824
3825 static void
3826 do_restore_inferior_status_cleanup (void *sts)
3827 {
3828 restore_inferior_status (sts);
3829 }
3830
3831 struct cleanup *
3832 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3833 {
3834 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3835 }
3836
3837 void
3838 discard_inferior_status (struct inferior_status *inf_status)
3839 {
3840 /* See save_inferior_status for info on stop_bpstat. */
3841 bpstat_clear (&inf_status->stop_bpstat);
3842 regcache_xfree (inf_status->registers);
3843 xfree (inf_status);
3844 }
3845
3846 int
3847 inferior_has_forked (int pid, int *child_pid)
3848 {
3849 struct target_waitstatus last;
3850 ptid_t last_ptid;
3851
3852 get_last_target_status (&last_ptid, &last);
3853
3854 if (last.kind != TARGET_WAITKIND_FORKED)
3855 return 0;
3856
3857 if (ptid_get_pid (last_ptid) != pid)
3858 return 0;
3859
3860 *child_pid = last.value.related_pid;
3861 return 1;
3862 }
3863
3864 int
3865 inferior_has_vforked (int pid, int *child_pid)
3866 {
3867 struct target_waitstatus last;
3868 ptid_t last_ptid;
3869
3870 get_last_target_status (&last_ptid, &last);
3871
3872 if (last.kind != TARGET_WAITKIND_VFORKED)
3873 return 0;
3874
3875 if (ptid_get_pid (last_ptid) != pid)
3876 return 0;
3877
3878 *child_pid = last.value.related_pid;
3879 return 1;
3880 }
3881
3882 int
3883 inferior_has_execd (int pid, char **execd_pathname)
3884 {
3885 struct target_waitstatus last;
3886 ptid_t last_ptid;
3887
3888 get_last_target_status (&last_ptid, &last);
3889
3890 if (last.kind != TARGET_WAITKIND_EXECD)
3891 return 0;
3892
3893 if (ptid_get_pid (last_ptid) != pid)
3894 return 0;
3895
3896 *execd_pathname = xstrdup (last.value.execd_pathname);
3897 return 1;
3898 }
3899
3900 /* Oft used ptids */
3901 ptid_t null_ptid;
3902 ptid_t minus_one_ptid;
3903
3904 /* Create a ptid given the necessary PID, LWP, and TID components. */
3905
3906 ptid_t
3907 ptid_build (int pid, long lwp, long tid)
3908 {
3909 ptid_t ptid;
3910
3911 ptid.pid = pid;
3912 ptid.lwp = lwp;
3913 ptid.tid = tid;
3914 return ptid;
3915 }
3916
3917 /* Create a ptid from just a pid. */
3918
3919 ptid_t
3920 pid_to_ptid (int pid)
3921 {
3922 return ptid_build (pid, 0, 0);
3923 }
3924
3925 /* Fetch the pid (process id) component from a ptid. */
3926
3927 int
3928 ptid_get_pid (ptid_t ptid)
3929 {
3930 return ptid.pid;
3931 }
3932
3933 /* Fetch the lwp (lightweight process) component from a ptid. */
3934
3935 long
3936 ptid_get_lwp (ptid_t ptid)
3937 {
3938 return ptid.lwp;
3939 }
3940
3941 /* Fetch the tid (thread id) component from a ptid. */
3942
3943 long
3944 ptid_get_tid (ptid_t ptid)
3945 {
3946 return ptid.tid;
3947 }
3948
3949 /* ptid_equal() is used to test equality of two ptids. */
3950
3951 int
3952 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3953 {
3954 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3955 && ptid1.tid == ptid2.tid);
3956 }
3957
3958 /* restore_inferior_ptid() will be used by the cleanup machinery
3959 to restore the inferior_ptid value saved in a call to
3960 save_inferior_ptid(). */
3961
3962 static void
3963 restore_inferior_ptid (void *arg)
3964 {
3965 ptid_t *saved_ptid_ptr = arg;
3966 inferior_ptid = *saved_ptid_ptr;
3967 xfree (arg);
3968 }
3969
3970 /* Save the value of inferior_ptid so that it may be restored by a
3971 later call to do_cleanups(). Returns the struct cleanup pointer
3972 needed for later doing the cleanup. */
3973
3974 struct cleanup *
3975 save_inferior_ptid (void)
3976 {
3977 ptid_t *saved_ptid_ptr;
3978
3979 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3980 *saved_ptid_ptr = inferior_ptid;
3981 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3982 }
3983 \f
3984
3985 void
3986 _initialize_infrun (void)
3987 {
3988 int i;
3989 int numsigs;
3990 struct cmd_list_element *c;
3991
3992 add_info ("signals", signals_info, _("\
3993 What debugger does when program gets various signals.\n\
3994 Specify a signal as argument to print info on that signal only."));
3995 add_info_alias ("handle", "signals", 0);
3996
3997 add_com ("handle", class_run, handle_command, _("\
3998 Specify how to handle a signal.\n\
3999 Args are signals and actions to apply to those signals.\n\
4000 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4001 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4002 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4003 The special arg \"all\" is recognized to mean all signals except those\n\
4004 used by the debugger, typically SIGTRAP and SIGINT.\n\
4005 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4006 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4007 Stop means reenter debugger if this signal happens (implies print).\n\
4008 Print means print a message if this signal happens.\n\
4009 Pass means let program see this signal; otherwise program doesn't know.\n\
4010 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4011 Pass and Stop may be combined."));
4012 if (xdb_commands)
4013 {
4014 add_com ("lz", class_info, signals_info, _("\
4015 What debugger does when program gets various signals.\n\
4016 Specify a signal as argument to print info on that signal only."));
4017 add_com ("z", class_run, xdb_handle_command, _("\
4018 Specify how to handle a signal.\n\
4019 Args are signals and actions to apply to those signals.\n\
4020 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4021 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4022 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4023 The special arg \"all\" is recognized to mean all signals except those\n\
4024 used by the debugger, typically SIGTRAP and SIGINT.\n\
4025 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4026 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4027 nopass), \"Q\" (noprint)\n\
4028 Stop means reenter debugger if this signal happens (implies print).\n\
4029 Print means print a message if this signal happens.\n\
4030 Pass means let program see this signal; otherwise program doesn't know.\n\
4031 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4032 Pass and Stop may be combined."));
4033 }
4034
4035 if (!dbx_commands)
4036 stop_command = add_cmd ("stop", class_obscure,
4037 not_just_help_class_command, _("\
4038 There is no `stop' command, but you can set a hook on `stop'.\n\
4039 This allows you to set a list of commands to be run each time execution\n\
4040 of the program stops."), &cmdlist);
4041
4042 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4043 Set inferior debugging."), _("\
4044 Show inferior debugging."), _("\
4045 When non-zero, inferior specific debugging is enabled."),
4046 NULL,
4047 show_debug_infrun,
4048 &setdebuglist, &showdebuglist);
4049
4050 numsigs = (int) TARGET_SIGNAL_LAST;
4051 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4052 signal_print = (unsigned char *)
4053 xmalloc (sizeof (signal_print[0]) * numsigs);
4054 signal_program = (unsigned char *)
4055 xmalloc (sizeof (signal_program[0]) * numsigs);
4056 for (i = 0; i < numsigs; i++)
4057 {
4058 signal_stop[i] = 1;
4059 signal_print[i] = 1;
4060 signal_program[i] = 1;
4061 }
4062
4063 /* Signals caused by debugger's own actions
4064 should not be given to the program afterwards. */
4065 signal_program[TARGET_SIGNAL_TRAP] = 0;
4066 signal_program[TARGET_SIGNAL_INT] = 0;
4067
4068 /* Signals that are not errors should not normally enter the debugger. */
4069 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4070 signal_print[TARGET_SIGNAL_ALRM] = 0;
4071 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4072 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4073 signal_stop[TARGET_SIGNAL_PROF] = 0;
4074 signal_print[TARGET_SIGNAL_PROF] = 0;
4075 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4076 signal_print[TARGET_SIGNAL_CHLD] = 0;
4077 signal_stop[TARGET_SIGNAL_IO] = 0;
4078 signal_print[TARGET_SIGNAL_IO] = 0;
4079 signal_stop[TARGET_SIGNAL_POLL] = 0;
4080 signal_print[TARGET_SIGNAL_POLL] = 0;
4081 signal_stop[TARGET_SIGNAL_URG] = 0;
4082 signal_print[TARGET_SIGNAL_URG] = 0;
4083 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4084 signal_print[TARGET_SIGNAL_WINCH] = 0;
4085
4086 /* These signals are used internally by user-level thread
4087 implementations. (See signal(5) on Solaris.) Like the above
4088 signals, a healthy program receives and handles them as part of
4089 its normal operation. */
4090 signal_stop[TARGET_SIGNAL_LWP] = 0;
4091 signal_print[TARGET_SIGNAL_LWP] = 0;
4092 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4093 signal_print[TARGET_SIGNAL_WAITING] = 0;
4094 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4095 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4096
4097 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4098 &stop_on_solib_events, _("\
4099 Set stopping for shared library events."), _("\
4100 Show stopping for shared library events."), _("\
4101 If nonzero, gdb will give control to the user when the dynamic linker\n\
4102 notifies gdb of shared library events. The most common event of interest\n\
4103 to the user would be loading/unloading of a new library."),
4104 NULL,
4105 show_stop_on_solib_events,
4106 &setlist, &showlist);
4107
4108 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4109 follow_fork_mode_kind_names,
4110 &follow_fork_mode_string, _("\
4111 Set debugger response to a program call of fork or vfork."), _("\
4112 Show debugger response to a program call of fork or vfork."), _("\
4113 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4114 parent - the original process is debugged after a fork\n\
4115 child - the new process is debugged after a fork\n\
4116 The unfollowed process will continue to run.\n\
4117 By default, the debugger will follow the parent process."),
4118 NULL,
4119 show_follow_fork_mode_string,
4120 &setlist, &showlist);
4121
4122 add_setshow_enum_cmd ("scheduler-locking", class_run,
4123 scheduler_enums, &scheduler_mode, _("\
4124 Set mode for locking scheduler during execution."), _("\
4125 Show mode for locking scheduler during execution."), _("\
4126 off == no locking (threads may preempt at any time)\n\
4127 on == full locking (no thread except the current thread may run)\n\
4128 step == scheduler locked during every single-step operation.\n\
4129 In this mode, no other thread may run during a step command.\n\
4130 Other threads may run while stepping over a function call ('next')."),
4131 set_schedlock_func, /* traps on target vector */
4132 show_scheduler_mode,
4133 &setlist, &showlist);
4134
4135 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4136 Set mode of the step operation."), _("\
4137 Show mode of the step operation."), _("\
4138 When set, doing a step over a function without debug line information\n\
4139 will stop at the first instruction of that function. Otherwise, the\n\
4140 function is skipped and the step command stops at a different source line."),
4141 NULL,
4142 show_step_stop_if_no_debug,
4143 &setlist, &showlist);
4144
4145 /* ptid initializations */
4146 null_ptid = ptid_build (0, 0, 0);
4147 minus_one_ptid = ptid_build (-1, 0, 0);
4148 inferior_ptid = null_ptid;
4149 target_last_wait_ptid = minus_one_ptid;
4150 }