2012-07-18 Pedro Alves <palves@redhat.com>
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "inline-frame.h"
53 #include "jit.h"
54 #include "tracepoint.h"
55 #include "continuations.h"
56 #include "interps.h"
57 #include "skip.h"
58 #include "probe.h"
59 #include "objfiles.h"
60
61 /* Prototypes for local functions */
62
63 static void signals_info (char *, int);
64
65 static void handle_command (char *, int);
66
67 static void sig_print_info (enum gdb_signal);
68
69 static void sig_print_header (void);
70
71 static void resume_cleanups (void *);
72
73 static int hook_stop_stub (void *);
74
75 static int restore_selected_frame (void *);
76
77 static int follow_fork (void);
78
79 static void set_schedlock_func (char *args, int from_tty,
80 struct cmd_list_element *c);
81
82 static int currently_stepping (struct thread_info *tp);
83
84 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
85 void *data);
86
87 static void xdb_handle_command (char *args, int from_tty);
88
89 static int prepare_to_proceed (int);
90
91 static void print_exited_reason (int exitstatus);
92
93 static void print_signal_exited_reason (enum gdb_signal siggnal);
94
95 static void print_no_history_reason (void);
96
97 static void print_signal_received_reason (enum gdb_signal siggnal);
98
99 static void print_end_stepping_range_reason (void);
100
101 void _initialize_infrun (void);
102
103 void nullify_last_target_wait_ptid (void);
104
105 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
106
107 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
108
109 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
110
111 /* When set, stop the 'step' command if we enter a function which has
112 no line number information. The normal behavior is that we step
113 over such function. */
114 int step_stop_if_no_debug = 0;
115 static void
116 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118 {
119 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
120 }
121
122 /* In asynchronous mode, but simulating synchronous execution. */
123
124 int sync_execution = 0;
125
126 /* wait_for_inferior and normal_stop use this to notify the user
127 when the inferior stopped in a different thread than it had been
128 running in. */
129
130 static ptid_t previous_inferior_ptid;
131
132 /* Default behavior is to detach newly forked processes (legacy). */
133 int detach_fork = 1;
134
135 int debug_displaced = 0;
136 static void
137 show_debug_displaced (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139 {
140 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
141 }
142
143 int debug_infrun = 0;
144 static void
145 show_debug_infrun (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
149 }
150
151
152 /* Support for disabling address space randomization. */
153
154 int disable_randomization = 1;
155
156 static void
157 show_disable_randomization (struct ui_file *file, int from_tty,
158 struct cmd_list_element *c, const char *value)
159 {
160 if (target_supports_disable_randomization ())
161 fprintf_filtered (file,
162 _("Disabling randomization of debuggee's "
163 "virtual address space is %s.\n"),
164 value);
165 else
166 fputs_filtered (_("Disabling randomization of debuggee's "
167 "virtual address space is unsupported on\n"
168 "this platform.\n"), file);
169 }
170
171 static void
172 set_disable_randomization (char *args, int from_tty,
173 struct cmd_list_element *c)
174 {
175 if (!target_supports_disable_randomization ())
176 error (_("Disabling randomization of debuggee's "
177 "virtual address space is unsupported on\n"
178 "this platform."));
179 }
180
181
182 /* If the program uses ELF-style shared libraries, then calls to
183 functions in shared libraries go through stubs, which live in a
184 table called the PLT (Procedure Linkage Table). The first time the
185 function is called, the stub sends control to the dynamic linker,
186 which looks up the function's real address, patches the stub so
187 that future calls will go directly to the function, and then passes
188 control to the function.
189
190 If we are stepping at the source level, we don't want to see any of
191 this --- we just want to skip over the stub and the dynamic linker.
192 The simple approach is to single-step until control leaves the
193 dynamic linker.
194
195 However, on some systems (e.g., Red Hat's 5.2 distribution) the
196 dynamic linker calls functions in the shared C library, so you
197 can't tell from the PC alone whether the dynamic linker is still
198 running. In this case, we use a step-resume breakpoint to get us
199 past the dynamic linker, as if we were using "next" to step over a
200 function call.
201
202 in_solib_dynsym_resolve_code() says whether we're in the dynamic
203 linker code or not. Normally, this means we single-step. However,
204 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
205 address where we can place a step-resume breakpoint to get past the
206 linker's symbol resolution function.
207
208 in_solib_dynsym_resolve_code() can generally be implemented in a
209 pretty portable way, by comparing the PC against the address ranges
210 of the dynamic linker's sections.
211
212 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
213 it depends on internal details of the dynamic linker. It's usually
214 not too hard to figure out where to put a breakpoint, but it
215 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
216 sanity checking. If it can't figure things out, returning zero and
217 getting the (possibly confusing) stepping behavior is better than
218 signalling an error, which will obscure the change in the
219 inferior's state. */
220
221 /* This function returns TRUE if pc is the address of an instruction
222 that lies within the dynamic linker (such as the event hook, or the
223 dld itself).
224
225 This function must be used only when a dynamic linker event has
226 been caught, and the inferior is being stepped out of the hook, or
227 undefined results are guaranteed. */
228
229 #ifndef SOLIB_IN_DYNAMIC_LINKER
230 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
231 #endif
232
233 /* "Observer mode" is somewhat like a more extreme version of
234 non-stop, in which all GDB operations that might affect the
235 target's execution have been disabled. */
236
237 static int non_stop_1 = 0;
238
239 int observer_mode = 0;
240 static int observer_mode_1 = 0;
241
242 static void
243 set_observer_mode (char *args, int from_tty,
244 struct cmd_list_element *c)
245 {
246 extern int pagination_enabled;
247
248 if (target_has_execution)
249 {
250 observer_mode_1 = observer_mode;
251 error (_("Cannot change this setting while the inferior is running."));
252 }
253
254 observer_mode = observer_mode_1;
255
256 may_write_registers = !observer_mode;
257 may_write_memory = !observer_mode;
258 may_insert_breakpoints = !observer_mode;
259 may_insert_tracepoints = !observer_mode;
260 /* We can insert fast tracepoints in or out of observer mode,
261 but enable them if we're going into this mode. */
262 if (observer_mode)
263 may_insert_fast_tracepoints = 1;
264 may_stop = !observer_mode;
265 update_target_permissions ();
266
267 /* Going *into* observer mode we must force non-stop, then
268 going out we leave it that way. */
269 if (observer_mode)
270 {
271 target_async_permitted = 1;
272 pagination_enabled = 0;
273 non_stop = non_stop_1 = 1;
274 }
275
276 if (from_tty)
277 printf_filtered (_("Observer mode is now %s.\n"),
278 (observer_mode ? "on" : "off"));
279 }
280
281 static void
282 show_observer_mode (struct ui_file *file, int from_tty,
283 struct cmd_list_element *c, const char *value)
284 {
285 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
286 }
287
288 /* This updates the value of observer mode based on changes in
289 permissions. Note that we are deliberately ignoring the values of
290 may-write-registers and may-write-memory, since the user may have
291 reason to enable these during a session, for instance to turn on a
292 debugging-related global. */
293
294 void
295 update_observer_mode (void)
296 {
297 int newval;
298
299 newval = (!may_insert_breakpoints
300 && !may_insert_tracepoints
301 && may_insert_fast_tracepoints
302 && !may_stop
303 && non_stop);
304
305 /* Let the user know if things change. */
306 if (newval != observer_mode)
307 printf_filtered (_("Observer mode is now %s.\n"),
308 (newval ? "on" : "off"));
309
310 observer_mode = observer_mode_1 = newval;
311 }
312
313 /* Tables of how to react to signals; the user sets them. */
314
315 static unsigned char *signal_stop;
316 static unsigned char *signal_print;
317 static unsigned char *signal_program;
318
319 /* Table of signals that the target may silently handle.
320 This is automatically determined from the flags above,
321 and simply cached here. */
322 static unsigned char *signal_pass;
323
324 #define SET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 1; \
330 } while (0)
331
332 #define UNSET_SIGS(nsigs,sigs,flags) \
333 do { \
334 int signum = (nsigs); \
335 while (signum-- > 0) \
336 if ((sigs)[signum]) \
337 (flags)[signum] = 0; \
338 } while (0)
339
340 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
341 this function is to avoid exporting `signal_program'. */
342
343 void
344 update_signals_program_target (void)
345 {
346 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
347 }
348
349 /* Value to pass to target_resume() to cause all threads to resume. */
350
351 #define RESUME_ALL minus_one_ptid
352
353 /* Command list pointer for the "stop" placeholder. */
354
355 static struct cmd_list_element *stop_command;
356
357 /* Function inferior was in as of last step command. */
358
359 static struct symbol *step_start_function;
360
361 /* Nonzero if we want to give control to the user when we're notified
362 of shared library events by the dynamic linker. */
363 int stop_on_solib_events;
364 static void
365 show_stop_on_solib_events (struct ui_file *file, int from_tty,
366 struct cmd_list_element *c, const char *value)
367 {
368 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
369 value);
370 }
371
372 /* Nonzero means expecting a trace trap
373 and should stop the inferior and return silently when it happens. */
374
375 int stop_after_trap;
376
377 /* Save register contents here when executing a "finish" command or are
378 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
379 Thus this contains the return value from the called function (assuming
380 values are returned in a register). */
381
382 struct regcache *stop_registers;
383
384 /* Nonzero after stop if current stack frame should be printed. */
385
386 static int stop_print_frame;
387
388 /* This is a cached copy of the pid/waitstatus of the last event
389 returned by target_wait()/deprecated_target_wait_hook(). This
390 information is returned by get_last_target_status(). */
391 static ptid_t target_last_wait_ptid;
392 static struct target_waitstatus target_last_waitstatus;
393
394 static void context_switch (ptid_t ptid);
395
396 void init_thread_stepping_state (struct thread_info *tss);
397
398 void init_infwait_state (void);
399
400 static const char follow_fork_mode_child[] = "child";
401 static const char follow_fork_mode_parent[] = "parent";
402
403 static const char *const follow_fork_mode_kind_names[] = {
404 follow_fork_mode_child,
405 follow_fork_mode_parent,
406 NULL
407 };
408
409 static const char *follow_fork_mode_string = follow_fork_mode_parent;
410 static void
411 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
412 struct cmd_list_element *c, const char *value)
413 {
414 fprintf_filtered (file,
415 _("Debugger response to a program "
416 "call of fork or vfork is \"%s\".\n"),
417 value);
418 }
419 \f
420
421 /* Tell the target to follow the fork we're stopped at. Returns true
422 if the inferior should be resumed; false, if the target for some
423 reason decided it's best not to resume. */
424
425 static int
426 follow_fork (void)
427 {
428 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
429 int should_resume = 1;
430 struct thread_info *tp;
431
432 /* Copy user stepping state to the new inferior thread. FIXME: the
433 followed fork child thread should have a copy of most of the
434 parent thread structure's run control related fields, not just these.
435 Initialized to avoid "may be used uninitialized" warnings from gcc. */
436 struct breakpoint *step_resume_breakpoint = NULL;
437 struct breakpoint *exception_resume_breakpoint = NULL;
438 CORE_ADDR step_range_start = 0;
439 CORE_ADDR step_range_end = 0;
440 struct frame_id step_frame_id = { 0 };
441
442 if (!non_stop)
443 {
444 ptid_t wait_ptid;
445 struct target_waitstatus wait_status;
446
447 /* Get the last target status returned by target_wait(). */
448 get_last_target_status (&wait_ptid, &wait_status);
449
450 /* If not stopped at a fork event, then there's nothing else to
451 do. */
452 if (wait_status.kind != TARGET_WAITKIND_FORKED
453 && wait_status.kind != TARGET_WAITKIND_VFORKED)
454 return 1;
455
456 /* Check if we switched over from WAIT_PTID, since the event was
457 reported. */
458 if (!ptid_equal (wait_ptid, minus_one_ptid)
459 && !ptid_equal (inferior_ptid, wait_ptid))
460 {
461 /* We did. Switch back to WAIT_PTID thread, to tell the
462 target to follow it (in either direction). We'll
463 afterwards refuse to resume, and inform the user what
464 happened. */
465 switch_to_thread (wait_ptid);
466 should_resume = 0;
467 }
468 }
469
470 tp = inferior_thread ();
471
472 /* If there were any forks/vforks that were caught and are now to be
473 followed, then do so now. */
474 switch (tp->pending_follow.kind)
475 {
476 case TARGET_WAITKIND_FORKED:
477 case TARGET_WAITKIND_VFORKED:
478 {
479 ptid_t parent, child;
480
481 /* If the user did a next/step, etc, over a fork call,
482 preserve the stepping state in the fork child. */
483 if (follow_child && should_resume)
484 {
485 step_resume_breakpoint = clone_momentary_breakpoint
486 (tp->control.step_resume_breakpoint);
487 step_range_start = tp->control.step_range_start;
488 step_range_end = tp->control.step_range_end;
489 step_frame_id = tp->control.step_frame_id;
490 exception_resume_breakpoint
491 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
492
493 /* For now, delete the parent's sr breakpoint, otherwise,
494 parent/child sr breakpoints are considered duplicates,
495 and the child version will not be installed. Remove
496 this when the breakpoints module becomes aware of
497 inferiors and address spaces. */
498 delete_step_resume_breakpoint (tp);
499 tp->control.step_range_start = 0;
500 tp->control.step_range_end = 0;
501 tp->control.step_frame_id = null_frame_id;
502 delete_exception_resume_breakpoint (tp);
503 }
504
505 parent = inferior_ptid;
506 child = tp->pending_follow.value.related_pid;
507
508 /* Tell the target to do whatever is necessary to follow
509 either parent or child. */
510 if (target_follow_fork (follow_child))
511 {
512 /* Target refused to follow, or there's some other reason
513 we shouldn't resume. */
514 should_resume = 0;
515 }
516 else
517 {
518 /* This pending follow fork event is now handled, one way
519 or another. The previous selected thread may be gone
520 from the lists by now, but if it is still around, need
521 to clear the pending follow request. */
522 tp = find_thread_ptid (parent);
523 if (tp)
524 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
525
526 /* This makes sure we don't try to apply the "Switched
527 over from WAIT_PID" logic above. */
528 nullify_last_target_wait_ptid ();
529
530 /* If we followed the child, switch to it... */
531 if (follow_child)
532 {
533 switch_to_thread (child);
534
535 /* ... and preserve the stepping state, in case the
536 user was stepping over the fork call. */
537 if (should_resume)
538 {
539 tp = inferior_thread ();
540 tp->control.step_resume_breakpoint
541 = step_resume_breakpoint;
542 tp->control.step_range_start = step_range_start;
543 tp->control.step_range_end = step_range_end;
544 tp->control.step_frame_id = step_frame_id;
545 tp->control.exception_resume_breakpoint
546 = exception_resume_breakpoint;
547 }
548 else
549 {
550 /* If we get here, it was because we're trying to
551 resume from a fork catchpoint, but, the user
552 has switched threads away from the thread that
553 forked. In that case, the resume command
554 issued is most likely not applicable to the
555 child, so just warn, and refuse to resume. */
556 warning (_("Not resuming: switched threads "
557 "before following fork child.\n"));
558 }
559
560 /* Reset breakpoints in the child as appropriate. */
561 follow_inferior_reset_breakpoints ();
562 }
563 else
564 switch_to_thread (parent);
565 }
566 }
567 break;
568 case TARGET_WAITKIND_SPURIOUS:
569 /* Nothing to follow. */
570 break;
571 default:
572 internal_error (__FILE__, __LINE__,
573 "Unexpected pending_follow.kind %d\n",
574 tp->pending_follow.kind);
575 break;
576 }
577
578 return should_resume;
579 }
580
581 void
582 follow_inferior_reset_breakpoints (void)
583 {
584 struct thread_info *tp = inferior_thread ();
585
586 /* Was there a step_resume breakpoint? (There was if the user
587 did a "next" at the fork() call.) If so, explicitly reset its
588 thread number.
589
590 step_resumes are a form of bp that are made to be per-thread.
591 Since we created the step_resume bp when the parent process
592 was being debugged, and now are switching to the child process,
593 from the breakpoint package's viewpoint, that's a switch of
594 "threads". We must update the bp's notion of which thread
595 it is for, or it'll be ignored when it triggers. */
596
597 if (tp->control.step_resume_breakpoint)
598 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
599
600 if (tp->control.exception_resume_breakpoint)
601 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
602
603 /* Reinsert all breakpoints in the child. The user may have set
604 breakpoints after catching the fork, in which case those
605 were never set in the child, but only in the parent. This makes
606 sure the inserted breakpoints match the breakpoint list. */
607
608 breakpoint_re_set ();
609 insert_breakpoints ();
610 }
611
612 /* The child has exited or execed: resume threads of the parent the
613 user wanted to be executing. */
614
615 static int
616 proceed_after_vfork_done (struct thread_info *thread,
617 void *arg)
618 {
619 int pid = * (int *) arg;
620
621 if (ptid_get_pid (thread->ptid) == pid
622 && is_running (thread->ptid)
623 && !is_executing (thread->ptid)
624 && !thread->stop_requested
625 && thread->suspend.stop_signal == GDB_SIGNAL_0)
626 {
627 if (debug_infrun)
628 fprintf_unfiltered (gdb_stdlog,
629 "infrun: resuming vfork parent thread %s\n",
630 target_pid_to_str (thread->ptid));
631
632 switch_to_thread (thread->ptid);
633 clear_proceed_status ();
634 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
635 }
636
637 return 0;
638 }
639
640 /* Called whenever we notice an exec or exit event, to handle
641 detaching or resuming a vfork parent. */
642
643 static void
644 handle_vfork_child_exec_or_exit (int exec)
645 {
646 struct inferior *inf = current_inferior ();
647
648 if (inf->vfork_parent)
649 {
650 int resume_parent = -1;
651
652 /* This exec or exit marks the end of the shared memory region
653 between the parent and the child. If the user wanted to
654 detach from the parent, now is the time. */
655
656 if (inf->vfork_parent->pending_detach)
657 {
658 struct thread_info *tp;
659 struct cleanup *old_chain;
660 struct program_space *pspace;
661 struct address_space *aspace;
662
663 /* follow-fork child, detach-on-fork on. */
664
665 old_chain = make_cleanup_restore_current_thread ();
666
667 /* We're letting loose of the parent. */
668 tp = any_live_thread_of_process (inf->vfork_parent->pid);
669 switch_to_thread (tp->ptid);
670
671 /* We're about to detach from the parent, which implicitly
672 removes breakpoints from its address space. There's a
673 catch here: we want to reuse the spaces for the child,
674 but, parent/child are still sharing the pspace at this
675 point, although the exec in reality makes the kernel give
676 the child a fresh set of new pages. The problem here is
677 that the breakpoints module being unaware of this, would
678 likely chose the child process to write to the parent
679 address space. Swapping the child temporarily away from
680 the spaces has the desired effect. Yes, this is "sort
681 of" a hack. */
682
683 pspace = inf->pspace;
684 aspace = inf->aspace;
685 inf->aspace = NULL;
686 inf->pspace = NULL;
687
688 if (debug_infrun || info_verbose)
689 {
690 target_terminal_ours ();
691
692 if (exec)
693 fprintf_filtered (gdb_stdlog,
694 "Detaching vfork parent process "
695 "%d after child exec.\n",
696 inf->vfork_parent->pid);
697 else
698 fprintf_filtered (gdb_stdlog,
699 "Detaching vfork parent process "
700 "%d after child exit.\n",
701 inf->vfork_parent->pid);
702 }
703
704 target_detach (NULL, 0);
705
706 /* Put it back. */
707 inf->pspace = pspace;
708 inf->aspace = aspace;
709
710 do_cleanups (old_chain);
711 }
712 else if (exec)
713 {
714 /* We're staying attached to the parent, so, really give the
715 child a new address space. */
716 inf->pspace = add_program_space (maybe_new_address_space ());
717 inf->aspace = inf->pspace->aspace;
718 inf->removable = 1;
719 set_current_program_space (inf->pspace);
720
721 resume_parent = inf->vfork_parent->pid;
722
723 /* Break the bonds. */
724 inf->vfork_parent->vfork_child = NULL;
725 }
726 else
727 {
728 struct cleanup *old_chain;
729 struct program_space *pspace;
730
731 /* If this is a vfork child exiting, then the pspace and
732 aspaces were shared with the parent. Since we're
733 reporting the process exit, we'll be mourning all that is
734 found in the address space, and switching to null_ptid,
735 preparing to start a new inferior. But, since we don't
736 want to clobber the parent's address/program spaces, we
737 go ahead and create a new one for this exiting
738 inferior. */
739
740 /* Switch to null_ptid, so that clone_program_space doesn't want
741 to read the selected frame of a dead process. */
742 old_chain = save_inferior_ptid ();
743 inferior_ptid = null_ptid;
744
745 /* This inferior is dead, so avoid giving the breakpoints
746 module the option to write through to it (cloning a
747 program space resets breakpoints). */
748 inf->aspace = NULL;
749 inf->pspace = NULL;
750 pspace = add_program_space (maybe_new_address_space ());
751 set_current_program_space (pspace);
752 inf->removable = 1;
753 inf->symfile_flags = SYMFILE_NO_READ;
754 clone_program_space (pspace, inf->vfork_parent->pspace);
755 inf->pspace = pspace;
756 inf->aspace = pspace->aspace;
757
758 /* Put back inferior_ptid. We'll continue mourning this
759 inferior. */
760 do_cleanups (old_chain);
761
762 resume_parent = inf->vfork_parent->pid;
763 /* Break the bonds. */
764 inf->vfork_parent->vfork_child = NULL;
765 }
766
767 inf->vfork_parent = NULL;
768
769 gdb_assert (current_program_space == inf->pspace);
770
771 if (non_stop && resume_parent != -1)
772 {
773 /* If the user wanted the parent to be running, let it go
774 free now. */
775 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
776
777 if (debug_infrun)
778 fprintf_unfiltered (gdb_stdlog,
779 "infrun: resuming vfork parent process %d\n",
780 resume_parent);
781
782 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
783
784 do_cleanups (old_chain);
785 }
786 }
787 }
788
789 /* Enum strings for "set|show displaced-stepping". */
790
791 static const char follow_exec_mode_new[] = "new";
792 static const char follow_exec_mode_same[] = "same";
793 static const char *const follow_exec_mode_names[] =
794 {
795 follow_exec_mode_new,
796 follow_exec_mode_same,
797 NULL,
798 };
799
800 static const char *follow_exec_mode_string = follow_exec_mode_same;
801 static void
802 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
803 struct cmd_list_element *c, const char *value)
804 {
805 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
806 }
807
808 /* EXECD_PATHNAME is assumed to be non-NULL. */
809
810 static void
811 follow_exec (ptid_t pid, char *execd_pathname)
812 {
813 struct thread_info *th = inferior_thread ();
814 struct inferior *inf = current_inferior ();
815
816 /* This is an exec event that we actually wish to pay attention to.
817 Refresh our symbol table to the newly exec'd program, remove any
818 momentary bp's, etc.
819
820 If there are breakpoints, they aren't really inserted now,
821 since the exec() transformed our inferior into a fresh set
822 of instructions.
823
824 We want to preserve symbolic breakpoints on the list, since
825 we have hopes that they can be reset after the new a.out's
826 symbol table is read.
827
828 However, any "raw" breakpoints must be removed from the list
829 (e.g., the solib bp's), since their address is probably invalid
830 now.
831
832 And, we DON'T want to call delete_breakpoints() here, since
833 that may write the bp's "shadow contents" (the instruction
834 value that was overwritten witha TRAP instruction). Since
835 we now have a new a.out, those shadow contents aren't valid. */
836
837 mark_breakpoints_out ();
838
839 update_breakpoints_after_exec ();
840
841 /* If there was one, it's gone now. We cannot truly step-to-next
842 statement through an exec(). */
843 th->control.step_resume_breakpoint = NULL;
844 th->control.exception_resume_breakpoint = NULL;
845 th->control.step_range_start = 0;
846 th->control.step_range_end = 0;
847
848 /* The target reports the exec event to the main thread, even if
849 some other thread does the exec, and even if the main thread was
850 already stopped --- if debugging in non-stop mode, it's possible
851 the user had the main thread held stopped in the previous image
852 --- release it now. This is the same behavior as step-over-exec
853 with scheduler-locking on in all-stop mode. */
854 th->stop_requested = 0;
855
856 /* What is this a.out's name? */
857 printf_unfiltered (_("%s is executing new program: %s\n"),
858 target_pid_to_str (inferior_ptid),
859 execd_pathname);
860
861 /* We've followed the inferior through an exec. Therefore, the
862 inferior has essentially been killed & reborn. */
863
864 gdb_flush (gdb_stdout);
865
866 breakpoint_init_inferior (inf_execd);
867
868 if (gdb_sysroot && *gdb_sysroot)
869 {
870 char *name = alloca (strlen (gdb_sysroot)
871 + strlen (execd_pathname)
872 + 1);
873
874 strcpy (name, gdb_sysroot);
875 strcat (name, execd_pathname);
876 execd_pathname = name;
877 }
878
879 /* Reset the shared library package. This ensures that we get a
880 shlib event when the child reaches "_start", at which point the
881 dld will have had a chance to initialize the child. */
882 /* Also, loading a symbol file below may trigger symbol lookups, and
883 we don't want those to be satisfied by the libraries of the
884 previous incarnation of this process. */
885 no_shared_libraries (NULL, 0);
886
887 if (follow_exec_mode_string == follow_exec_mode_new)
888 {
889 struct program_space *pspace;
890
891 /* The user wants to keep the old inferior and program spaces
892 around. Create a new fresh one, and switch to it. */
893
894 inf = add_inferior (current_inferior ()->pid);
895 pspace = add_program_space (maybe_new_address_space ());
896 inf->pspace = pspace;
897 inf->aspace = pspace->aspace;
898
899 exit_inferior_num_silent (current_inferior ()->num);
900
901 set_current_inferior (inf);
902 set_current_program_space (pspace);
903 }
904
905 gdb_assert (current_program_space == inf->pspace);
906
907 /* That a.out is now the one to use. */
908 exec_file_attach (execd_pathname, 0);
909
910 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
911 (Position Independent Executable) main symbol file will get applied by
912 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
913 the breakpoints with the zero displacement. */
914
915 symbol_file_add (execd_pathname,
916 (inf->symfile_flags
917 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
918 NULL, 0);
919
920 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
921 set_initial_language ();
922
923 #ifdef SOLIB_CREATE_INFERIOR_HOOK
924 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
925 #else
926 solib_create_inferior_hook (0);
927 #endif
928
929 jit_inferior_created_hook ();
930
931 breakpoint_re_set ();
932
933 /* Reinsert all breakpoints. (Those which were symbolic have
934 been reset to the proper address in the new a.out, thanks
935 to symbol_file_command...). */
936 insert_breakpoints ();
937
938 /* The next resume of this inferior should bring it to the shlib
939 startup breakpoints. (If the user had also set bp's on
940 "main" from the old (parent) process, then they'll auto-
941 matically get reset there in the new process.). */
942 }
943
944 /* Non-zero if we just simulating a single-step. This is needed
945 because we cannot remove the breakpoints in the inferior process
946 until after the `wait' in `wait_for_inferior'. */
947 static int singlestep_breakpoints_inserted_p = 0;
948
949 /* The thread we inserted single-step breakpoints for. */
950 static ptid_t singlestep_ptid;
951
952 /* PC when we started this single-step. */
953 static CORE_ADDR singlestep_pc;
954
955 /* If another thread hit the singlestep breakpoint, we save the original
956 thread here so that we can resume single-stepping it later. */
957 static ptid_t saved_singlestep_ptid;
958 static int stepping_past_singlestep_breakpoint;
959
960 /* If not equal to null_ptid, this means that after stepping over breakpoint
961 is finished, we need to switch to deferred_step_ptid, and step it.
962
963 The use case is when one thread has hit a breakpoint, and then the user
964 has switched to another thread and issued 'step'. We need to step over
965 breakpoint in the thread which hit the breakpoint, but then continue
966 stepping the thread user has selected. */
967 static ptid_t deferred_step_ptid;
968 \f
969 /* Displaced stepping. */
970
971 /* In non-stop debugging mode, we must take special care to manage
972 breakpoints properly; in particular, the traditional strategy for
973 stepping a thread past a breakpoint it has hit is unsuitable.
974 'Displaced stepping' is a tactic for stepping one thread past a
975 breakpoint it has hit while ensuring that other threads running
976 concurrently will hit the breakpoint as they should.
977
978 The traditional way to step a thread T off a breakpoint in a
979 multi-threaded program in all-stop mode is as follows:
980
981 a0) Initially, all threads are stopped, and breakpoints are not
982 inserted.
983 a1) We single-step T, leaving breakpoints uninserted.
984 a2) We insert breakpoints, and resume all threads.
985
986 In non-stop debugging, however, this strategy is unsuitable: we
987 don't want to have to stop all threads in the system in order to
988 continue or step T past a breakpoint. Instead, we use displaced
989 stepping:
990
991 n0) Initially, T is stopped, other threads are running, and
992 breakpoints are inserted.
993 n1) We copy the instruction "under" the breakpoint to a separate
994 location, outside the main code stream, making any adjustments
995 to the instruction, register, and memory state as directed by
996 T's architecture.
997 n2) We single-step T over the instruction at its new location.
998 n3) We adjust the resulting register and memory state as directed
999 by T's architecture. This includes resetting T's PC to point
1000 back into the main instruction stream.
1001 n4) We resume T.
1002
1003 This approach depends on the following gdbarch methods:
1004
1005 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1006 indicate where to copy the instruction, and how much space must
1007 be reserved there. We use these in step n1.
1008
1009 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1010 address, and makes any necessary adjustments to the instruction,
1011 register contents, and memory. We use this in step n1.
1012
1013 - gdbarch_displaced_step_fixup adjusts registers and memory after
1014 we have successfuly single-stepped the instruction, to yield the
1015 same effect the instruction would have had if we had executed it
1016 at its original address. We use this in step n3.
1017
1018 - gdbarch_displaced_step_free_closure provides cleanup.
1019
1020 The gdbarch_displaced_step_copy_insn and
1021 gdbarch_displaced_step_fixup functions must be written so that
1022 copying an instruction with gdbarch_displaced_step_copy_insn,
1023 single-stepping across the copied instruction, and then applying
1024 gdbarch_displaced_insn_fixup should have the same effects on the
1025 thread's memory and registers as stepping the instruction in place
1026 would have. Exactly which responsibilities fall to the copy and
1027 which fall to the fixup is up to the author of those functions.
1028
1029 See the comments in gdbarch.sh for details.
1030
1031 Note that displaced stepping and software single-step cannot
1032 currently be used in combination, although with some care I think
1033 they could be made to. Software single-step works by placing
1034 breakpoints on all possible subsequent instructions; if the
1035 displaced instruction is a PC-relative jump, those breakpoints
1036 could fall in very strange places --- on pages that aren't
1037 executable, or at addresses that are not proper instruction
1038 boundaries. (We do generally let other threads run while we wait
1039 to hit the software single-step breakpoint, and they might
1040 encounter such a corrupted instruction.) One way to work around
1041 this would be to have gdbarch_displaced_step_copy_insn fully
1042 simulate the effect of PC-relative instructions (and return NULL)
1043 on architectures that use software single-stepping.
1044
1045 In non-stop mode, we can have independent and simultaneous step
1046 requests, so more than one thread may need to simultaneously step
1047 over a breakpoint. The current implementation assumes there is
1048 only one scratch space per process. In this case, we have to
1049 serialize access to the scratch space. If thread A wants to step
1050 over a breakpoint, but we are currently waiting for some other
1051 thread to complete a displaced step, we leave thread A stopped and
1052 place it in the displaced_step_request_queue. Whenever a displaced
1053 step finishes, we pick the next thread in the queue and start a new
1054 displaced step operation on it. See displaced_step_prepare and
1055 displaced_step_fixup for details. */
1056
1057 struct displaced_step_request
1058 {
1059 ptid_t ptid;
1060 struct displaced_step_request *next;
1061 };
1062
1063 /* Per-inferior displaced stepping state. */
1064 struct displaced_step_inferior_state
1065 {
1066 /* Pointer to next in linked list. */
1067 struct displaced_step_inferior_state *next;
1068
1069 /* The process this displaced step state refers to. */
1070 int pid;
1071
1072 /* A queue of pending displaced stepping requests. One entry per
1073 thread that needs to do a displaced step. */
1074 struct displaced_step_request *step_request_queue;
1075
1076 /* If this is not null_ptid, this is the thread carrying out a
1077 displaced single-step in process PID. This thread's state will
1078 require fixing up once it has completed its step. */
1079 ptid_t step_ptid;
1080
1081 /* The architecture the thread had when we stepped it. */
1082 struct gdbarch *step_gdbarch;
1083
1084 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1085 for post-step cleanup. */
1086 struct displaced_step_closure *step_closure;
1087
1088 /* The address of the original instruction, and the copy we
1089 made. */
1090 CORE_ADDR step_original, step_copy;
1091
1092 /* Saved contents of copy area. */
1093 gdb_byte *step_saved_copy;
1094 };
1095
1096 /* The list of states of processes involved in displaced stepping
1097 presently. */
1098 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1099
1100 /* Get the displaced stepping state of process PID. */
1101
1102 static struct displaced_step_inferior_state *
1103 get_displaced_stepping_state (int pid)
1104 {
1105 struct displaced_step_inferior_state *state;
1106
1107 for (state = displaced_step_inferior_states;
1108 state != NULL;
1109 state = state->next)
1110 if (state->pid == pid)
1111 return state;
1112
1113 return NULL;
1114 }
1115
1116 /* Add a new displaced stepping state for process PID to the displaced
1117 stepping state list, or return a pointer to an already existing
1118 entry, if it already exists. Never returns NULL. */
1119
1120 static struct displaced_step_inferior_state *
1121 add_displaced_stepping_state (int pid)
1122 {
1123 struct displaced_step_inferior_state *state;
1124
1125 for (state = displaced_step_inferior_states;
1126 state != NULL;
1127 state = state->next)
1128 if (state->pid == pid)
1129 return state;
1130
1131 state = xcalloc (1, sizeof (*state));
1132 state->pid = pid;
1133 state->next = displaced_step_inferior_states;
1134 displaced_step_inferior_states = state;
1135
1136 return state;
1137 }
1138
1139 /* If inferior is in displaced stepping, and ADDR equals to starting address
1140 of copy area, return corresponding displaced_step_closure. Otherwise,
1141 return NULL. */
1142
1143 struct displaced_step_closure*
1144 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1145 {
1146 struct displaced_step_inferior_state *displaced
1147 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1148
1149 /* If checking the mode of displaced instruction in copy area. */
1150 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1151 && (displaced->step_copy == addr))
1152 return displaced->step_closure;
1153
1154 return NULL;
1155 }
1156
1157 /* Remove the displaced stepping state of process PID. */
1158
1159 static void
1160 remove_displaced_stepping_state (int pid)
1161 {
1162 struct displaced_step_inferior_state *it, **prev_next_p;
1163
1164 gdb_assert (pid != 0);
1165
1166 it = displaced_step_inferior_states;
1167 prev_next_p = &displaced_step_inferior_states;
1168 while (it)
1169 {
1170 if (it->pid == pid)
1171 {
1172 *prev_next_p = it->next;
1173 xfree (it);
1174 return;
1175 }
1176
1177 prev_next_p = &it->next;
1178 it = *prev_next_p;
1179 }
1180 }
1181
1182 static void
1183 infrun_inferior_exit (struct inferior *inf)
1184 {
1185 remove_displaced_stepping_state (inf->pid);
1186 }
1187
1188 /* If ON, and the architecture supports it, GDB will use displaced
1189 stepping to step over breakpoints. If OFF, or if the architecture
1190 doesn't support it, GDB will instead use the traditional
1191 hold-and-step approach. If AUTO (which is the default), GDB will
1192 decide which technique to use to step over breakpoints depending on
1193 which of all-stop or non-stop mode is active --- displaced stepping
1194 in non-stop mode; hold-and-step in all-stop mode. */
1195
1196 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1197
1198 static void
1199 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1200 struct cmd_list_element *c,
1201 const char *value)
1202 {
1203 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1204 fprintf_filtered (file,
1205 _("Debugger's willingness to use displaced stepping "
1206 "to step over breakpoints is %s (currently %s).\n"),
1207 value, non_stop ? "on" : "off");
1208 else
1209 fprintf_filtered (file,
1210 _("Debugger's willingness to use displaced stepping "
1211 "to step over breakpoints is %s.\n"), value);
1212 }
1213
1214 /* Return non-zero if displaced stepping can/should be used to step
1215 over breakpoints. */
1216
1217 static int
1218 use_displaced_stepping (struct gdbarch *gdbarch)
1219 {
1220 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1221 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1222 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1223 && !RECORD_IS_USED);
1224 }
1225
1226 /* Clean out any stray displaced stepping state. */
1227 static void
1228 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1229 {
1230 /* Indicate that there is no cleanup pending. */
1231 displaced->step_ptid = null_ptid;
1232
1233 if (displaced->step_closure)
1234 {
1235 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1236 displaced->step_closure);
1237 displaced->step_closure = NULL;
1238 }
1239 }
1240
1241 static void
1242 displaced_step_clear_cleanup (void *arg)
1243 {
1244 struct displaced_step_inferior_state *state = arg;
1245
1246 displaced_step_clear (state);
1247 }
1248
1249 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1250 void
1251 displaced_step_dump_bytes (struct ui_file *file,
1252 const gdb_byte *buf,
1253 size_t len)
1254 {
1255 int i;
1256
1257 for (i = 0; i < len; i++)
1258 fprintf_unfiltered (file, "%02x ", buf[i]);
1259 fputs_unfiltered ("\n", file);
1260 }
1261
1262 /* Prepare to single-step, using displaced stepping.
1263
1264 Note that we cannot use displaced stepping when we have a signal to
1265 deliver. If we have a signal to deliver and an instruction to step
1266 over, then after the step, there will be no indication from the
1267 target whether the thread entered a signal handler or ignored the
1268 signal and stepped over the instruction successfully --- both cases
1269 result in a simple SIGTRAP. In the first case we mustn't do a
1270 fixup, and in the second case we must --- but we can't tell which.
1271 Comments in the code for 'random signals' in handle_inferior_event
1272 explain how we handle this case instead.
1273
1274 Returns 1 if preparing was successful -- this thread is going to be
1275 stepped now; or 0 if displaced stepping this thread got queued. */
1276 static int
1277 displaced_step_prepare (ptid_t ptid)
1278 {
1279 struct cleanup *old_cleanups, *ignore_cleanups;
1280 struct regcache *regcache = get_thread_regcache (ptid);
1281 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1282 CORE_ADDR original, copy;
1283 ULONGEST len;
1284 struct displaced_step_closure *closure;
1285 struct displaced_step_inferior_state *displaced;
1286 int status;
1287
1288 /* We should never reach this function if the architecture does not
1289 support displaced stepping. */
1290 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1291
1292 /* We have to displaced step one thread at a time, as we only have
1293 access to a single scratch space per inferior. */
1294
1295 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1296
1297 if (!ptid_equal (displaced->step_ptid, null_ptid))
1298 {
1299 /* Already waiting for a displaced step to finish. Defer this
1300 request and place in queue. */
1301 struct displaced_step_request *req, *new_req;
1302
1303 if (debug_displaced)
1304 fprintf_unfiltered (gdb_stdlog,
1305 "displaced: defering step of %s\n",
1306 target_pid_to_str (ptid));
1307
1308 new_req = xmalloc (sizeof (*new_req));
1309 new_req->ptid = ptid;
1310 new_req->next = NULL;
1311
1312 if (displaced->step_request_queue)
1313 {
1314 for (req = displaced->step_request_queue;
1315 req && req->next;
1316 req = req->next)
1317 ;
1318 req->next = new_req;
1319 }
1320 else
1321 displaced->step_request_queue = new_req;
1322
1323 return 0;
1324 }
1325 else
1326 {
1327 if (debug_displaced)
1328 fprintf_unfiltered (gdb_stdlog,
1329 "displaced: stepping %s now\n",
1330 target_pid_to_str (ptid));
1331 }
1332
1333 displaced_step_clear (displaced);
1334
1335 old_cleanups = save_inferior_ptid ();
1336 inferior_ptid = ptid;
1337
1338 original = regcache_read_pc (regcache);
1339
1340 copy = gdbarch_displaced_step_location (gdbarch);
1341 len = gdbarch_max_insn_length (gdbarch);
1342
1343 /* Save the original contents of the copy area. */
1344 displaced->step_saved_copy = xmalloc (len);
1345 ignore_cleanups = make_cleanup (free_current_contents,
1346 &displaced->step_saved_copy);
1347 status = target_read_memory (copy, displaced->step_saved_copy, len);
1348 if (status != 0)
1349 throw_error (MEMORY_ERROR,
1350 _("Error accessing memory address %s (%s) for "
1351 "displaced-stepping scratch space."),
1352 paddress (gdbarch, copy), safe_strerror (status));
1353 if (debug_displaced)
1354 {
1355 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1356 paddress (gdbarch, copy));
1357 displaced_step_dump_bytes (gdb_stdlog,
1358 displaced->step_saved_copy,
1359 len);
1360 };
1361
1362 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1363 original, copy, regcache);
1364
1365 /* We don't support the fully-simulated case at present. */
1366 gdb_assert (closure);
1367
1368 /* Save the information we need to fix things up if the step
1369 succeeds. */
1370 displaced->step_ptid = ptid;
1371 displaced->step_gdbarch = gdbarch;
1372 displaced->step_closure = closure;
1373 displaced->step_original = original;
1374 displaced->step_copy = copy;
1375
1376 make_cleanup (displaced_step_clear_cleanup, displaced);
1377
1378 /* Resume execution at the copy. */
1379 regcache_write_pc (regcache, copy);
1380
1381 discard_cleanups (ignore_cleanups);
1382
1383 do_cleanups (old_cleanups);
1384
1385 if (debug_displaced)
1386 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1387 paddress (gdbarch, copy));
1388
1389 return 1;
1390 }
1391
1392 static void
1393 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1394 const gdb_byte *myaddr, int len)
1395 {
1396 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1397
1398 inferior_ptid = ptid;
1399 write_memory (memaddr, myaddr, len);
1400 do_cleanups (ptid_cleanup);
1401 }
1402
1403 /* Restore the contents of the copy area for thread PTID. */
1404
1405 static void
1406 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1407 ptid_t ptid)
1408 {
1409 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1410
1411 write_memory_ptid (ptid, displaced->step_copy,
1412 displaced->step_saved_copy, len);
1413 if (debug_displaced)
1414 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1415 target_pid_to_str (ptid),
1416 paddress (displaced->step_gdbarch,
1417 displaced->step_copy));
1418 }
1419
1420 static void
1421 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1422 {
1423 struct cleanup *old_cleanups;
1424 struct displaced_step_inferior_state *displaced
1425 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1426
1427 /* Was any thread of this process doing a displaced step? */
1428 if (displaced == NULL)
1429 return;
1430
1431 /* Was this event for the pid we displaced? */
1432 if (ptid_equal (displaced->step_ptid, null_ptid)
1433 || ! ptid_equal (displaced->step_ptid, event_ptid))
1434 return;
1435
1436 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1437
1438 displaced_step_restore (displaced, displaced->step_ptid);
1439
1440 /* Did the instruction complete successfully? */
1441 if (signal == GDB_SIGNAL_TRAP)
1442 {
1443 /* Fix up the resulting state. */
1444 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1445 displaced->step_closure,
1446 displaced->step_original,
1447 displaced->step_copy,
1448 get_thread_regcache (displaced->step_ptid));
1449 }
1450 else
1451 {
1452 /* Since the instruction didn't complete, all we can do is
1453 relocate the PC. */
1454 struct regcache *regcache = get_thread_regcache (event_ptid);
1455 CORE_ADDR pc = regcache_read_pc (regcache);
1456
1457 pc = displaced->step_original + (pc - displaced->step_copy);
1458 regcache_write_pc (regcache, pc);
1459 }
1460
1461 do_cleanups (old_cleanups);
1462
1463 displaced->step_ptid = null_ptid;
1464
1465 /* Are there any pending displaced stepping requests? If so, run
1466 one now. Leave the state object around, since we're likely to
1467 need it again soon. */
1468 while (displaced->step_request_queue)
1469 {
1470 struct displaced_step_request *head;
1471 ptid_t ptid;
1472 struct regcache *regcache;
1473 struct gdbarch *gdbarch;
1474 CORE_ADDR actual_pc;
1475 struct address_space *aspace;
1476
1477 head = displaced->step_request_queue;
1478 ptid = head->ptid;
1479 displaced->step_request_queue = head->next;
1480 xfree (head);
1481
1482 context_switch (ptid);
1483
1484 regcache = get_thread_regcache (ptid);
1485 actual_pc = regcache_read_pc (regcache);
1486 aspace = get_regcache_aspace (regcache);
1487
1488 if (breakpoint_here_p (aspace, actual_pc))
1489 {
1490 if (debug_displaced)
1491 fprintf_unfiltered (gdb_stdlog,
1492 "displaced: stepping queued %s now\n",
1493 target_pid_to_str (ptid));
1494
1495 displaced_step_prepare (ptid);
1496
1497 gdbarch = get_regcache_arch (regcache);
1498
1499 if (debug_displaced)
1500 {
1501 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1502 gdb_byte buf[4];
1503
1504 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1505 paddress (gdbarch, actual_pc));
1506 read_memory (actual_pc, buf, sizeof (buf));
1507 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1508 }
1509
1510 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1511 displaced->step_closure))
1512 target_resume (ptid, 1, GDB_SIGNAL_0);
1513 else
1514 target_resume (ptid, 0, GDB_SIGNAL_0);
1515
1516 /* Done, we're stepping a thread. */
1517 break;
1518 }
1519 else
1520 {
1521 int step;
1522 struct thread_info *tp = inferior_thread ();
1523
1524 /* The breakpoint we were sitting under has since been
1525 removed. */
1526 tp->control.trap_expected = 0;
1527
1528 /* Go back to what we were trying to do. */
1529 step = currently_stepping (tp);
1530
1531 if (debug_displaced)
1532 fprintf_unfiltered (gdb_stdlog,
1533 "displaced: breakpoint is gone: %s, step(%d)\n",
1534 target_pid_to_str (tp->ptid), step);
1535
1536 target_resume (ptid, step, GDB_SIGNAL_0);
1537 tp->suspend.stop_signal = GDB_SIGNAL_0;
1538
1539 /* This request was discarded. See if there's any other
1540 thread waiting for its turn. */
1541 }
1542 }
1543 }
1544
1545 /* Update global variables holding ptids to hold NEW_PTID if they were
1546 holding OLD_PTID. */
1547 static void
1548 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1549 {
1550 struct displaced_step_request *it;
1551 struct displaced_step_inferior_state *displaced;
1552
1553 if (ptid_equal (inferior_ptid, old_ptid))
1554 inferior_ptid = new_ptid;
1555
1556 if (ptid_equal (singlestep_ptid, old_ptid))
1557 singlestep_ptid = new_ptid;
1558
1559 if (ptid_equal (deferred_step_ptid, old_ptid))
1560 deferred_step_ptid = new_ptid;
1561
1562 for (displaced = displaced_step_inferior_states;
1563 displaced;
1564 displaced = displaced->next)
1565 {
1566 if (ptid_equal (displaced->step_ptid, old_ptid))
1567 displaced->step_ptid = new_ptid;
1568
1569 for (it = displaced->step_request_queue; it; it = it->next)
1570 if (ptid_equal (it->ptid, old_ptid))
1571 it->ptid = new_ptid;
1572 }
1573 }
1574
1575 \f
1576 /* Resuming. */
1577
1578 /* Things to clean up if we QUIT out of resume (). */
1579 static void
1580 resume_cleanups (void *ignore)
1581 {
1582 normal_stop ();
1583 }
1584
1585 static const char schedlock_off[] = "off";
1586 static const char schedlock_on[] = "on";
1587 static const char schedlock_step[] = "step";
1588 static const char *const scheduler_enums[] = {
1589 schedlock_off,
1590 schedlock_on,
1591 schedlock_step,
1592 NULL
1593 };
1594 static const char *scheduler_mode = schedlock_off;
1595 static void
1596 show_scheduler_mode (struct ui_file *file, int from_tty,
1597 struct cmd_list_element *c, const char *value)
1598 {
1599 fprintf_filtered (file,
1600 _("Mode for locking scheduler "
1601 "during execution is \"%s\".\n"),
1602 value);
1603 }
1604
1605 static void
1606 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1607 {
1608 if (!target_can_lock_scheduler)
1609 {
1610 scheduler_mode = schedlock_off;
1611 error (_("Target '%s' cannot support this command."), target_shortname);
1612 }
1613 }
1614
1615 /* True if execution commands resume all threads of all processes by
1616 default; otherwise, resume only threads of the current inferior
1617 process. */
1618 int sched_multi = 0;
1619
1620 /* Try to setup for software single stepping over the specified location.
1621 Return 1 if target_resume() should use hardware single step.
1622
1623 GDBARCH the current gdbarch.
1624 PC the location to step over. */
1625
1626 static int
1627 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1628 {
1629 int hw_step = 1;
1630
1631 if (execution_direction == EXEC_FORWARD
1632 && gdbarch_software_single_step_p (gdbarch)
1633 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1634 {
1635 hw_step = 0;
1636 /* Do not pull these breakpoints until after a `wait' in
1637 `wait_for_inferior'. */
1638 singlestep_breakpoints_inserted_p = 1;
1639 singlestep_ptid = inferior_ptid;
1640 singlestep_pc = pc;
1641 }
1642 return hw_step;
1643 }
1644
1645 /* Return a ptid representing the set of threads that we will proceed,
1646 in the perspective of the user/frontend. We may actually resume
1647 fewer threads at first, e.g., if a thread is stopped at a
1648 breakpoint that needs stepping-off, but that should not be visible
1649 to the user/frontend, and neither should the frontend/user be
1650 allowed to proceed any of the threads that happen to be stopped for
1651 internal run control handling, if a previous command wanted them
1652 resumed. */
1653
1654 ptid_t
1655 user_visible_resume_ptid (int step)
1656 {
1657 /* By default, resume all threads of all processes. */
1658 ptid_t resume_ptid = RESUME_ALL;
1659
1660 /* Maybe resume only all threads of the current process. */
1661 if (!sched_multi && target_supports_multi_process ())
1662 {
1663 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1664 }
1665
1666 /* Maybe resume a single thread after all. */
1667 if (non_stop)
1668 {
1669 /* With non-stop mode on, threads are always handled
1670 individually. */
1671 resume_ptid = inferior_ptid;
1672 }
1673 else if ((scheduler_mode == schedlock_on)
1674 || (scheduler_mode == schedlock_step
1675 && (step || singlestep_breakpoints_inserted_p)))
1676 {
1677 /* User-settable 'scheduler' mode requires solo thread resume. */
1678 resume_ptid = inferior_ptid;
1679 }
1680
1681 return resume_ptid;
1682 }
1683
1684 /* Resume the inferior, but allow a QUIT. This is useful if the user
1685 wants to interrupt some lengthy single-stepping operation
1686 (for child processes, the SIGINT goes to the inferior, and so
1687 we get a SIGINT random_signal, but for remote debugging and perhaps
1688 other targets, that's not true).
1689
1690 STEP nonzero if we should step (zero to continue instead).
1691 SIG is the signal to give the inferior (zero for none). */
1692 void
1693 resume (int step, enum gdb_signal sig)
1694 {
1695 int should_resume = 1;
1696 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1697 struct regcache *regcache = get_current_regcache ();
1698 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1699 struct thread_info *tp = inferior_thread ();
1700 CORE_ADDR pc = regcache_read_pc (regcache);
1701 struct address_space *aspace = get_regcache_aspace (regcache);
1702
1703 QUIT;
1704
1705 if (current_inferior ()->waiting_for_vfork_done)
1706 {
1707 /* Don't try to single-step a vfork parent that is waiting for
1708 the child to get out of the shared memory region (by exec'ing
1709 or exiting). This is particularly important on software
1710 single-step archs, as the child process would trip on the
1711 software single step breakpoint inserted for the parent
1712 process. Since the parent will not actually execute any
1713 instruction until the child is out of the shared region (such
1714 are vfork's semantics), it is safe to simply continue it.
1715 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1716 the parent, and tell it to `keep_going', which automatically
1717 re-sets it stepping. */
1718 if (debug_infrun)
1719 fprintf_unfiltered (gdb_stdlog,
1720 "infrun: resume : clear step\n");
1721 step = 0;
1722 }
1723
1724 if (debug_infrun)
1725 fprintf_unfiltered (gdb_stdlog,
1726 "infrun: resume (step=%d, signal=%d), "
1727 "trap_expected=%d, current thread [%s] at %s\n",
1728 step, sig, tp->control.trap_expected,
1729 target_pid_to_str (inferior_ptid),
1730 paddress (gdbarch, pc));
1731
1732 /* Normally, by the time we reach `resume', the breakpoints are either
1733 removed or inserted, as appropriate. The exception is if we're sitting
1734 at a permanent breakpoint; we need to step over it, but permanent
1735 breakpoints can't be removed. So we have to test for it here. */
1736 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1737 {
1738 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1739 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1740 else
1741 error (_("\
1742 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1743 how to step past a permanent breakpoint on this architecture. Try using\n\
1744 a command like `return' or `jump' to continue execution."));
1745 }
1746
1747 /* If enabled, step over breakpoints by executing a copy of the
1748 instruction at a different address.
1749
1750 We can't use displaced stepping when we have a signal to deliver;
1751 the comments for displaced_step_prepare explain why. The
1752 comments in the handle_inferior event for dealing with 'random
1753 signals' explain what we do instead.
1754
1755 We can't use displaced stepping when we are waiting for vfork_done
1756 event, displaced stepping breaks the vfork child similarly as single
1757 step software breakpoint. */
1758 if (use_displaced_stepping (gdbarch)
1759 && (tp->control.trap_expected
1760 || (step && gdbarch_software_single_step_p (gdbarch)))
1761 && sig == GDB_SIGNAL_0
1762 && !current_inferior ()->waiting_for_vfork_done)
1763 {
1764 struct displaced_step_inferior_state *displaced;
1765
1766 if (!displaced_step_prepare (inferior_ptid))
1767 {
1768 /* Got placed in displaced stepping queue. Will be resumed
1769 later when all the currently queued displaced stepping
1770 requests finish. The thread is not executing at this point,
1771 and the call to set_executing will be made later. But we
1772 need to call set_running here, since from frontend point of view,
1773 the thread is running. */
1774 set_running (inferior_ptid, 1);
1775 discard_cleanups (old_cleanups);
1776 return;
1777 }
1778
1779 /* Update pc to reflect the new address from which we will execute
1780 instructions due to displaced stepping. */
1781 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1782
1783 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1784 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1785 displaced->step_closure);
1786 }
1787
1788 /* Do we need to do it the hard way, w/temp breakpoints? */
1789 else if (step)
1790 step = maybe_software_singlestep (gdbarch, pc);
1791
1792 /* Currently, our software single-step implementation leads to different
1793 results than hardware single-stepping in one situation: when stepping
1794 into delivering a signal which has an associated signal handler,
1795 hardware single-step will stop at the first instruction of the handler,
1796 while software single-step will simply skip execution of the handler.
1797
1798 For now, this difference in behavior is accepted since there is no
1799 easy way to actually implement single-stepping into a signal handler
1800 without kernel support.
1801
1802 However, there is one scenario where this difference leads to follow-on
1803 problems: if we're stepping off a breakpoint by removing all breakpoints
1804 and then single-stepping. In this case, the software single-step
1805 behavior means that even if there is a *breakpoint* in the signal
1806 handler, GDB still would not stop.
1807
1808 Fortunately, we can at least fix this particular issue. We detect
1809 here the case where we are about to deliver a signal while software
1810 single-stepping with breakpoints removed. In this situation, we
1811 revert the decisions to remove all breakpoints and insert single-
1812 step breakpoints, and instead we install a step-resume breakpoint
1813 at the current address, deliver the signal without stepping, and
1814 once we arrive back at the step-resume breakpoint, actually step
1815 over the breakpoint we originally wanted to step over. */
1816 if (singlestep_breakpoints_inserted_p
1817 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1818 {
1819 /* If we have nested signals or a pending signal is delivered
1820 immediately after a handler returns, might might already have
1821 a step-resume breakpoint set on the earlier handler. We cannot
1822 set another step-resume breakpoint; just continue on until the
1823 original breakpoint is hit. */
1824 if (tp->control.step_resume_breakpoint == NULL)
1825 {
1826 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1827 tp->step_after_step_resume_breakpoint = 1;
1828 }
1829
1830 remove_single_step_breakpoints ();
1831 singlestep_breakpoints_inserted_p = 0;
1832
1833 insert_breakpoints ();
1834 tp->control.trap_expected = 0;
1835 }
1836
1837 if (should_resume)
1838 {
1839 ptid_t resume_ptid;
1840
1841 /* If STEP is set, it's a request to use hardware stepping
1842 facilities. But in that case, we should never
1843 use singlestep breakpoint. */
1844 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1845
1846 /* Decide the set of threads to ask the target to resume. Start
1847 by assuming everything will be resumed, than narrow the set
1848 by applying increasingly restricting conditions. */
1849 resume_ptid = user_visible_resume_ptid (step);
1850
1851 /* Maybe resume a single thread after all. */
1852 if (singlestep_breakpoints_inserted_p
1853 && stepping_past_singlestep_breakpoint)
1854 {
1855 /* The situation here is as follows. In thread T1 we wanted to
1856 single-step. Lacking hardware single-stepping we've
1857 set breakpoint at the PC of the next instruction -- call it
1858 P. After resuming, we've hit that breakpoint in thread T2.
1859 Now we've removed original breakpoint, inserted breakpoint
1860 at P+1, and try to step to advance T2 past breakpoint.
1861 We need to step only T2, as if T1 is allowed to freely run,
1862 it can run past P, and if other threads are allowed to run,
1863 they can hit breakpoint at P+1, and nested hits of single-step
1864 breakpoints is not something we'd want -- that's complicated
1865 to support, and has no value. */
1866 resume_ptid = inferior_ptid;
1867 }
1868 else if ((step || singlestep_breakpoints_inserted_p)
1869 && tp->control.trap_expected)
1870 {
1871 /* We're allowing a thread to run past a breakpoint it has
1872 hit, by single-stepping the thread with the breakpoint
1873 removed. In which case, we need to single-step only this
1874 thread, and keep others stopped, as they can miss this
1875 breakpoint if allowed to run.
1876
1877 The current code actually removes all breakpoints when
1878 doing this, not just the one being stepped over, so if we
1879 let other threads run, we can actually miss any
1880 breakpoint, not just the one at PC. */
1881 resume_ptid = inferior_ptid;
1882 }
1883
1884 if (gdbarch_cannot_step_breakpoint (gdbarch))
1885 {
1886 /* Most targets can step a breakpoint instruction, thus
1887 executing it normally. But if this one cannot, just
1888 continue and we will hit it anyway. */
1889 if (step && breakpoint_inserted_here_p (aspace, pc))
1890 step = 0;
1891 }
1892
1893 if (debug_displaced
1894 && use_displaced_stepping (gdbarch)
1895 && tp->control.trap_expected)
1896 {
1897 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1898 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1899 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1900 gdb_byte buf[4];
1901
1902 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1903 paddress (resume_gdbarch, actual_pc));
1904 read_memory (actual_pc, buf, sizeof (buf));
1905 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1906 }
1907
1908 /* Install inferior's terminal modes. */
1909 target_terminal_inferior ();
1910
1911 /* Avoid confusing the next resume, if the next stop/resume
1912 happens to apply to another thread. */
1913 tp->suspend.stop_signal = GDB_SIGNAL_0;
1914
1915 /* Advise target which signals may be handled silently. If we have
1916 removed breakpoints because we are stepping over one (which can
1917 happen only if we are not using displaced stepping), we need to
1918 receive all signals to avoid accidentally skipping a breakpoint
1919 during execution of a signal handler. */
1920 if ((step || singlestep_breakpoints_inserted_p)
1921 && tp->control.trap_expected
1922 && !use_displaced_stepping (gdbarch))
1923 target_pass_signals (0, NULL);
1924 else
1925 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1926
1927 target_resume (resume_ptid, step, sig);
1928 }
1929
1930 discard_cleanups (old_cleanups);
1931 }
1932 \f
1933 /* Proceeding. */
1934
1935 /* Clear out all variables saying what to do when inferior is continued.
1936 First do this, then set the ones you want, then call `proceed'. */
1937
1938 static void
1939 clear_proceed_status_thread (struct thread_info *tp)
1940 {
1941 if (debug_infrun)
1942 fprintf_unfiltered (gdb_stdlog,
1943 "infrun: clear_proceed_status_thread (%s)\n",
1944 target_pid_to_str (tp->ptid));
1945
1946 tp->control.trap_expected = 0;
1947 tp->control.step_range_start = 0;
1948 tp->control.step_range_end = 0;
1949 tp->control.step_frame_id = null_frame_id;
1950 tp->control.step_stack_frame_id = null_frame_id;
1951 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1952 tp->stop_requested = 0;
1953
1954 tp->control.stop_step = 0;
1955
1956 tp->control.proceed_to_finish = 0;
1957
1958 /* Discard any remaining commands or status from previous stop. */
1959 bpstat_clear (&tp->control.stop_bpstat);
1960 }
1961
1962 static int
1963 clear_proceed_status_callback (struct thread_info *tp, void *data)
1964 {
1965 if (is_exited (tp->ptid))
1966 return 0;
1967
1968 clear_proceed_status_thread (tp);
1969 return 0;
1970 }
1971
1972 void
1973 clear_proceed_status (void)
1974 {
1975 if (!non_stop)
1976 {
1977 /* In all-stop mode, delete the per-thread status of all
1978 threads, even if inferior_ptid is null_ptid, there may be
1979 threads on the list. E.g., we may be launching a new
1980 process, while selecting the executable. */
1981 iterate_over_threads (clear_proceed_status_callback, NULL);
1982 }
1983
1984 if (!ptid_equal (inferior_ptid, null_ptid))
1985 {
1986 struct inferior *inferior;
1987
1988 if (non_stop)
1989 {
1990 /* If in non-stop mode, only delete the per-thread status of
1991 the current thread. */
1992 clear_proceed_status_thread (inferior_thread ());
1993 }
1994
1995 inferior = current_inferior ();
1996 inferior->control.stop_soon = NO_STOP_QUIETLY;
1997 }
1998
1999 stop_after_trap = 0;
2000
2001 observer_notify_about_to_proceed ();
2002
2003 if (stop_registers)
2004 {
2005 regcache_xfree (stop_registers);
2006 stop_registers = NULL;
2007 }
2008 }
2009
2010 /* Check the current thread against the thread that reported the most recent
2011 event. If a step-over is required return TRUE and set the current thread
2012 to the old thread. Otherwise return FALSE.
2013
2014 This should be suitable for any targets that support threads. */
2015
2016 static int
2017 prepare_to_proceed (int step)
2018 {
2019 ptid_t wait_ptid;
2020 struct target_waitstatus wait_status;
2021 int schedlock_enabled;
2022
2023 /* With non-stop mode on, threads are always handled individually. */
2024 gdb_assert (! non_stop);
2025
2026 /* Get the last target status returned by target_wait(). */
2027 get_last_target_status (&wait_ptid, &wait_status);
2028
2029 /* Make sure we were stopped at a breakpoint. */
2030 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2031 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2032 && wait_status.value.sig != GDB_SIGNAL_ILL
2033 && wait_status.value.sig != GDB_SIGNAL_SEGV
2034 && wait_status.value.sig != GDB_SIGNAL_EMT))
2035 {
2036 return 0;
2037 }
2038
2039 schedlock_enabled = (scheduler_mode == schedlock_on
2040 || (scheduler_mode == schedlock_step
2041 && step));
2042
2043 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2044 if (schedlock_enabled)
2045 return 0;
2046
2047 /* Don't switch over if we're about to resume some other process
2048 other than WAIT_PTID's, and schedule-multiple is off. */
2049 if (!sched_multi
2050 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2051 return 0;
2052
2053 /* Switched over from WAIT_PID. */
2054 if (!ptid_equal (wait_ptid, minus_one_ptid)
2055 && !ptid_equal (inferior_ptid, wait_ptid))
2056 {
2057 struct regcache *regcache = get_thread_regcache (wait_ptid);
2058
2059 if (breakpoint_here_p (get_regcache_aspace (regcache),
2060 regcache_read_pc (regcache)))
2061 {
2062 /* If stepping, remember current thread to switch back to. */
2063 if (step)
2064 deferred_step_ptid = inferior_ptid;
2065
2066 /* Switch back to WAIT_PID thread. */
2067 switch_to_thread (wait_ptid);
2068
2069 if (debug_infrun)
2070 fprintf_unfiltered (gdb_stdlog,
2071 "infrun: prepare_to_proceed (step=%d), "
2072 "switched to [%s]\n",
2073 step, target_pid_to_str (inferior_ptid));
2074
2075 /* We return 1 to indicate that there is a breakpoint here,
2076 so we need to step over it before continuing to avoid
2077 hitting it straight away. */
2078 return 1;
2079 }
2080 }
2081
2082 return 0;
2083 }
2084
2085 /* Basic routine for continuing the program in various fashions.
2086
2087 ADDR is the address to resume at, or -1 for resume where stopped.
2088 SIGGNAL is the signal to give it, or 0 for none,
2089 or -1 for act according to how it stopped.
2090 STEP is nonzero if should trap after one instruction.
2091 -1 means return after that and print nothing.
2092 You should probably set various step_... variables
2093 before calling here, if you are stepping.
2094
2095 You should call clear_proceed_status before calling proceed. */
2096
2097 void
2098 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2099 {
2100 struct regcache *regcache;
2101 struct gdbarch *gdbarch;
2102 struct thread_info *tp;
2103 CORE_ADDR pc;
2104 struct address_space *aspace;
2105 int oneproc = 0;
2106
2107 /* If we're stopped at a fork/vfork, follow the branch set by the
2108 "set follow-fork-mode" command; otherwise, we'll just proceed
2109 resuming the current thread. */
2110 if (!follow_fork ())
2111 {
2112 /* The target for some reason decided not to resume. */
2113 normal_stop ();
2114 if (target_can_async_p ())
2115 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2116 return;
2117 }
2118
2119 /* We'll update this if & when we switch to a new thread. */
2120 previous_inferior_ptid = inferior_ptid;
2121
2122 regcache = get_current_regcache ();
2123 gdbarch = get_regcache_arch (regcache);
2124 aspace = get_regcache_aspace (regcache);
2125 pc = regcache_read_pc (regcache);
2126
2127 if (step > 0)
2128 step_start_function = find_pc_function (pc);
2129 if (step < 0)
2130 stop_after_trap = 1;
2131
2132 if (addr == (CORE_ADDR) -1)
2133 {
2134 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2135 && execution_direction != EXEC_REVERSE)
2136 /* There is a breakpoint at the address we will resume at,
2137 step one instruction before inserting breakpoints so that
2138 we do not stop right away (and report a second hit at this
2139 breakpoint).
2140
2141 Note, we don't do this in reverse, because we won't
2142 actually be executing the breakpoint insn anyway.
2143 We'll be (un-)executing the previous instruction. */
2144
2145 oneproc = 1;
2146 else if (gdbarch_single_step_through_delay_p (gdbarch)
2147 && gdbarch_single_step_through_delay (gdbarch,
2148 get_current_frame ()))
2149 /* We stepped onto an instruction that needs to be stepped
2150 again before re-inserting the breakpoint, do so. */
2151 oneproc = 1;
2152 }
2153 else
2154 {
2155 regcache_write_pc (regcache, addr);
2156 }
2157
2158 if (debug_infrun)
2159 fprintf_unfiltered (gdb_stdlog,
2160 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2161 paddress (gdbarch, addr), siggnal, step);
2162
2163 if (non_stop)
2164 /* In non-stop, each thread is handled individually. The context
2165 must already be set to the right thread here. */
2166 ;
2167 else
2168 {
2169 /* In a multi-threaded task we may select another thread and
2170 then continue or step.
2171
2172 But if the old thread was stopped at a breakpoint, it will
2173 immediately cause another breakpoint stop without any
2174 execution (i.e. it will report a breakpoint hit incorrectly).
2175 So we must step over it first.
2176
2177 prepare_to_proceed checks the current thread against the
2178 thread that reported the most recent event. If a step-over
2179 is required it returns TRUE and sets the current thread to
2180 the old thread. */
2181 if (prepare_to_proceed (step))
2182 oneproc = 1;
2183 }
2184
2185 /* prepare_to_proceed may change the current thread. */
2186 tp = inferior_thread ();
2187
2188 if (oneproc)
2189 {
2190 tp->control.trap_expected = 1;
2191 /* If displaced stepping is enabled, we can step over the
2192 breakpoint without hitting it, so leave all breakpoints
2193 inserted. Otherwise we need to disable all breakpoints, step
2194 one instruction, and then re-add them when that step is
2195 finished. */
2196 if (!use_displaced_stepping (gdbarch))
2197 remove_breakpoints ();
2198 }
2199
2200 /* We can insert breakpoints if we're not trying to step over one,
2201 or if we are stepping over one but we're using displaced stepping
2202 to do so. */
2203 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2204 insert_breakpoints ();
2205
2206 if (!non_stop)
2207 {
2208 /* Pass the last stop signal to the thread we're resuming,
2209 irrespective of whether the current thread is the thread that
2210 got the last event or not. This was historically GDB's
2211 behaviour before keeping a stop_signal per thread. */
2212
2213 struct thread_info *last_thread;
2214 ptid_t last_ptid;
2215 struct target_waitstatus last_status;
2216
2217 get_last_target_status (&last_ptid, &last_status);
2218 if (!ptid_equal (inferior_ptid, last_ptid)
2219 && !ptid_equal (last_ptid, null_ptid)
2220 && !ptid_equal (last_ptid, minus_one_ptid))
2221 {
2222 last_thread = find_thread_ptid (last_ptid);
2223 if (last_thread)
2224 {
2225 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2226 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2227 }
2228 }
2229 }
2230
2231 if (siggnal != GDB_SIGNAL_DEFAULT)
2232 tp->suspend.stop_signal = siggnal;
2233 /* If this signal should not be seen by program,
2234 give it zero. Used for debugging signals. */
2235 else if (!signal_program[tp->suspend.stop_signal])
2236 tp->suspend.stop_signal = GDB_SIGNAL_0;
2237
2238 annotate_starting ();
2239
2240 /* Make sure that output from GDB appears before output from the
2241 inferior. */
2242 gdb_flush (gdb_stdout);
2243
2244 /* Refresh prev_pc value just prior to resuming. This used to be
2245 done in stop_stepping, however, setting prev_pc there did not handle
2246 scenarios such as inferior function calls or returning from
2247 a function via the return command. In those cases, the prev_pc
2248 value was not set properly for subsequent commands. The prev_pc value
2249 is used to initialize the starting line number in the ecs. With an
2250 invalid value, the gdb next command ends up stopping at the position
2251 represented by the next line table entry past our start position.
2252 On platforms that generate one line table entry per line, this
2253 is not a problem. However, on the ia64, the compiler generates
2254 extraneous line table entries that do not increase the line number.
2255 When we issue the gdb next command on the ia64 after an inferior call
2256 or a return command, we often end up a few instructions forward, still
2257 within the original line we started.
2258
2259 An attempt was made to refresh the prev_pc at the same time the
2260 execution_control_state is initialized (for instance, just before
2261 waiting for an inferior event). But this approach did not work
2262 because of platforms that use ptrace, where the pc register cannot
2263 be read unless the inferior is stopped. At that point, we are not
2264 guaranteed the inferior is stopped and so the regcache_read_pc() call
2265 can fail. Setting the prev_pc value here ensures the value is updated
2266 correctly when the inferior is stopped. */
2267 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2268
2269 /* Fill in with reasonable starting values. */
2270 init_thread_stepping_state (tp);
2271
2272 /* Reset to normal state. */
2273 init_infwait_state ();
2274
2275 /* Resume inferior. */
2276 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2277
2278 /* Wait for it to stop (if not standalone)
2279 and in any case decode why it stopped, and act accordingly. */
2280 /* Do this only if we are not using the event loop, or if the target
2281 does not support asynchronous execution. */
2282 if (!target_can_async_p ())
2283 {
2284 wait_for_inferior ();
2285 normal_stop ();
2286 }
2287 }
2288 \f
2289
2290 /* Start remote-debugging of a machine over a serial link. */
2291
2292 void
2293 start_remote (int from_tty)
2294 {
2295 struct inferior *inferior;
2296
2297 inferior = current_inferior ();
2298 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2299
2300 /* Always go on waiting for the target, regardless of the mode. */
2301 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2302 indicate to wait_for_inferior that a target should timeout if
2303 nothing is returned (instead of just blocking). Because of this,
2304 targets expecting an immediate response need to, internally, set
2305 things up so that the target_wait() is forced to eventually
2306 timeout. */
2307 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2308 differentiate to its caller what the state of the target is after
2309 the initial open has been performed. Here we're assuming that
2310 the target has stopped. It should be possible to eventually have
2311 target_open() return to the caller an indication that the target
2312 is currently running and GDB state should be set to the same as
2313 for an async run. */
2314 wait_for_inferior ();
2315
2316 /* Now that the inferior has stopped, do any bookkeeping like
2317 loading shared libraries. We want to do this before normal_stop,
2318 so that the displayed frame is up to date. */
2319 post_create_inferior (&current_target, from_tty);
2320
2321 normal_stop ();
2322 }
2323
2324 /* Initialize static vars when a new inferior begins. */
2325
2326 void
2327 init_wait_for_inferior (void)
2328 {
2329 /* These are meaningless until the first time through wait_for_inferior. */
2330
2331 breakpoint_init_inferior (inf_starting);
2332
2333 clear_proceed_status ();
2334
2335 stepping_past_singlestep_breakpoint = 0;
2336 deferred_step_ptid = null_ptid;
2337
2338 target_last_wait_ptid = minus_one_ptid;
2339
2340 previous_inferior_ptid = inferior_ptid;
2341 init_infwait_state ();
2342
2343 /* Discard any skipped inlined frames. */
2344 clear_inline_frame_state (minus_one_ptid);
2345 }
2346
2347 \f
2348 /* This enum encodes possible reasons for doing a target_wait, so that
2349 wfi can call target_wait in one place. (Ultimately the call will be
2350 moved out of the infinite loop entirely.) */
2351
2352 enum infwait_states
2353 {
2354 infwait_normal_state,
2355 infwait_thread_hop_state,
2356 infwait_step_watch_state,
2357 infwait_nonstep_watch_state
2358 };
2359
2360 /* The PTID we'll do a target_wait on.*/
2361 ptid_t waiton_ptid;
2362
2363 /* Current inferior wait state. */
2364 enum infwait_states infwait_state;
2365
2366 /* Data to be passed around while handling an event. This data is
2367 discarded between events. */
2368 struct execution_control_state
2369 {
2370 ptid_t ptid;
2371 /* The thread that got the event, if this was a thread event; NULL
2372 otherwise. */
2373 struct thread_info *event_thread;
2374
2375 struct target_waitstatus ws;
2376 int random_signal;
2377 int stop_func_filled_in;
2378 CORE_ADDR stop_func_start;
2379 CORE_ADDR stop_func_end;
2380 const char *stop_func_name;
2381 int wait_some_more;
2382 };
2383
2384 static void handle_inferior_event (struct execution_control_state *ecs);
2385
2386 static void handle_step_into_function (struct gdbarch *gdbarch,
2387 struct execution_control_state *ecs);
2388 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2389 struct execution_control_state *ecs);
2390 static void check_exception_resume (struct execution_control_state *,
2391 struct frame_info *);
2392
2393 static void stop_stepping (struct execution_control_state *ecs);
2394 static void prepare_to_wait (struct execution_control_state *ecs);
2395 static void keep_going (struct execution_control_state *ecs);
2396
2397 /* Callback for iterate over threads. If the thread is stopped, but
2398 the user/frontend doesn't know about that yet, go through
2399 normal_stop, as if the thread had just stopped now. ARG points at
2400 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2401 ptid_is_pid(PTID) is true, applies to all threads of the process
2402 pointed at by PTID. Otherwise, apply only to the thread pointed by
2403 PTID. */
2404
2405 static int
2406 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2407 {
2408 ptid_t ptid = * (ptid_t *) arg;
2409
2410 if ((ptid_equal (info->ptid, ptid)
2411 || ptid_equal (minus_one_ptid, ptid)
2412 || (ptid_is_pid (ptid)
2413 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2414 && is_running (info->ptid)
2415 && !is_executing (info->ptid))
2416 {
2417 struct cleanup *old_chain;
2418 struct execution_control_state ecss;
2419 struct execution_control_state *ecs = &ecss;
2420
2421 memset (ecs, 0, sizeof (*ecs));
2422
2423 old_chain = make_cleanup_restore_current_thread ();
2424
2425 /* Go through handle_inferior_event/normal_stop, so we always
2426 have consistent output as if the stop event had been
2427 reported. */
2428 ecs->ptid = info->ptid;
2429 ecs->event_thread = find_thread_ptid (info->ptid);
2430 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2431 ecs->ws.value.sig = GDB_SIGNAL_0;
2432
2433 handle_inferior_event (ecs);
2434
2435 if (!ecs->wait_some_more)
2436 {
2437 struct thread_info *tp;
2438
2439 normal_stop ();
2440
2441 /* Finish off the continuations. */
2442 tp = inferior_thread ();
2443 do_all_intermediate_continuations_thread (tp, 1);
2444 do_all_continuations_thread (tp, 1);
2445 }
2446
2447 do_cleanups (old_chain);
2448 }
2449
2450 return 0;
2451 }
2452
2453 /* This function is attached as a "thread_stop_requested" observer.
2454 Cleanup local state that assumed the PTID was to be resumed, and
2455 report the stop to the frontend. */
2456
2457 static void
2458 infrun_thread_stop_requested (ptid_t ptid)
2459 {
2460 struct displaced_step_inferior_state *displaced;
2461
2462 /* PTID was requested to stop. Remove it from the displaced
2463 stepping queue, so we don't try to resume it automatically. */
2464
2465 for (displaced = displaced_step_inferior_states;
2466 displaced;
2467 displaced = displaced->next)
2468 {
2469 struct displaced_step_request *it, **prev_next_p;
2470
2471 it = displaced->step_request_queue;
2472 prev_next_p = &displaced->step_request_queue;
2473 while (it)
2474 {
2475 if (ptid_match (it->ptid, ptid))
2476 {
2477 *prev_next_p = it->next;
2478 it->next = NULL;
2479 xfree (it);
2480 }
2481 else
2482 {
2483 prev_next_p = &it->next;
2484 }
2485
2486 it = *prev_next_p;
2487 }
2488 }
2489
2490 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2491 }
2492
2493 static void
2494 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2495 {
2496 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2497 nullify_last_target_wait_ptid ();
2498 }
2499
2500 /* Callback for iterate_over_threads. */
2501
2502 static int
2503 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2504 {
2505 if (is_exited (info->ptid))
2506 return 0;
2507
2508 delete_step_resume_breakpoint (info);
2509 delete_exception_resume_breakpoint (info);
2510 return 0;
2511 }
2512
2513 /* In all-stop, delete the step resume breakpoint of any thread that
2514 had one. In non-stop, delete the step resume breakpoint of the
2515 thread that just stopped. */
2516
2517 static void
2518 delete_step_thread_step_resume_breakpoint (void)
2519 {
2520 if (!target_has_execution
2521 || ptid_equal (inferior_ptid, null_ptid))
2522 /* If the inferior has exited, we have already deleted the step
2523 resume breakpoints out of GDB's lists. */
2524 return;
2525
2526 if (non_stop)
2527 {
2528 /* If in non-stop mode, only delete the step-resume or
2529 longjmp-resume breakpoint of the thread that just stopped
2530 stepping. */
2531 struct thread_info *tp = inferior_thread ();
2532
2533 delete_step_resume_breakpoint (tp);
2534 delete_exception_resume_breakpoint (tp);
2535 }
2536 else
2537 /* In all-stop mode, delete all step-resume and longjmp-resume
2538 breakpoints of any thread that had them. */
2539 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2540 }
2541
2542 /* A cleanup wrapper. */
2543
2544 static void
2545 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2546 {
2547 delete_step_thread_step_resume_breakpoint ();
2548 }
2549
2550 /* Pretty print the results of target_wait, for debugging purposes. */
2551
2552 static void
2553 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2554 const struct target_waitstatus *ws)
2555 {
2556 char *status_string = target_waitstatus_to_string (ws);
2557 struct ui_file *tmp_stream = mem_fileopen ();
2558 char *text;
2559
2560 /* The text is split over several lines because it was getting too long.
2561 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2562 output as a unit; we want only one timestamp printed if debug_timestamp
2563 is set. */
2564
2565 fprintf_unfiltered (tmp_stream,
2566 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2567 if (PIDGET (waiton_ptid) != -1)
2568 fprintf_unfiltered (tmp_stream,
2569 " [%s]", target_pid_to_str (waiton_ptid));
2570 fprintf_unfiltered (tmp_stream, ", status) =\n");
2571 fprintf_unfiltered (tmp_stream,
2572 "infrun: %d [%s],\n",
2573 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2574 fprintf_unfiltered (tmp_stream,
2575 "infrun: %s\n",
2576 status_string);
2577
2578 text = ui_file_xstrdup (tmp_stream, NULL);
2579
2580 /* This uses %s in part to handle %'s in the text, but also to avoid
2581 a gcc error: the format attribute requires a string literal. */
2582 fprintf_unfiltered (gdb_stdlog, "%s", text);
2583
2584 xfree (status_string);
2585 xfree (text);
2586 ui_file_delete (tmp_stream);
2587 }
2588
2589 /* Prepare and stabilize the inferior for detaching it. E.g.,
2590 detaching while a thread is displaced stepping is a recipe for
2591 crashing it, as nothing would readjust the PC out of the scratch
2592 pad. */
2593
2594 void
2595 prepare_for_detach (void)
2596 {
2597 struct inferior *inf = current_inferior ();
2598 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2599 struct cleanup *old_chain_1;
2600 struct displaced_step_inferior_state *displaced;
2601
2602 displaced = get_displaced_stepping_state (inf->pid);
2603
2604 /* Is any thread of this process displaced stepping? If not,
2605 there's nothing else to do. */
2606 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2607 return;
2608
2609 if (debug_infrun)
2610 fprintf_unfiltered (gdb_stdlog,
2611 "displaced-stepping in-process while detaching");
2612
2613 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2614 inf->detaching = 1;
2615
2616 while (!ptid_equal (displaced->step_ptid, null_ptid))
2617 {
2618 struct cleanup *old_chain_2;
2619 struct execution_control_state ecss;
2620 struct execution_control_state *ecs;
2621
2622 ecs = &ecss;
2623 memset (ecs, 0, sizeof (*ecs));
2624
2625 overlay_cache_invalid = 1;
2626
2627 if (deprecated_target_wait_hook)
2628 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2629 else
2630 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2631
2632 if (debug_infrun)
2633 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2634
2635 /* If an error happens while handling the event, propagate GDB's
2636 knowledge of the executing state to the frontend/user running
2637 state. */
2638 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2639 &minus_one_ptid);
2640
2641 /* Now figure out what to do with the result of the result. */
2642 handle_inferior_event (ecs);
2643
2644 /* No error, don't finish the state yet. */
2645 discard_cleanups (old_chain_2);
2646
2647 /* Breakpoints and watchpoints are not installed on the target
2648 at this point, and signals are passed directly to the
2649 inferior, so this must mean the process is gone. */
2650 if (!ecs->wait_some_more)
2651 {
2652 discard_cleanups (old_chain_1);
2653 error (_("Program exited while detaching"));
2654 }
2655 }
2656
2657 discard_cleanups (old_chain_1);
2658 }
2659
2660 /* Wait for control to return from inferior to debugger.
2661
2662 If inferior gets a signal, we may decide to start it up again
2663 instead of returning. That is why there is a loop in this function.
2664 When this function actually returns it means the inferior
2665 should be left stopped and GDB should read more commands. */
2666
2667 void
2668 wait_for_inferior (void)
2669 {
2670 struct cleanup *old_cleanups;
2671
2672 if (debug_infrun)
2673 fprintf_unfiltered
2674 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2675
2676 old_cleanups =
2677 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2678
2679 while (1)
2680 {
2681 struct execution_control_state ecss;
2682 struct execution_control_state *ecs = &ecss;
2683 struct cleanup *old_chain;
2684
2685 memset (ecs, 0, sizeof (*ecs));
2686
2687 overlay_cache_invalid = 1;
2688
2689 if (deprecated_target_wait_hook)
2690 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2691 else
2692 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2693
2694 if (debug_infrun)
2695 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2696
2697 /* If an error happens while handling the event, propagate GDB's
2698 knowledge of the executing state to the frontend/user running
2699 state. */
2700 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2701
2702 /* Now figure out what to do with the result of the result. */
2703 handle_inferior_event (ecs);
2704
2705 /* No error, don't finish the state yet. */
2706 discard_cleanups (old_chain);
2707
2708 if (!ecs->wait_some_more)
2709 break;
2710 }
2711
2712 do_cleanups (old_cleanups);
2713 }
2714
2715 /* Asynchronous version of wait_for_inferior. It is called by the
2716 event loop whenever a change of state is detected on the file
2717 descriptor corresponding to the target. It can be called more than
2718 once to complete a single execution command. In such cases we need
2719 to keep the state in a global variable ECSS. If it is the last time
2720 that this function is called for a single execution command, then
2721 report to the user that the inferior has stopped, and do the
2722 necessary cleanups. */
2723
2724 void
2725 fetch_inferior_event (void *client_data)
2726 {
2727 struct execution_control_state ecss;
2728 struct execution_control_state *ecs = &ecss;
2729 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2730 struct cleanup *ts_old_chain;
2731 int was_sync = sync_execution;
2732 int cmd_done = 0;
2733
2734 memset (ecs, 0, sizeof (*ecs));
2735
2736 /* We're handling a live event, so make sure we're doing live
2737 debugging. If we're looking at traceframes while the target is
2738 running, we're going to need to get back to that mode after
2739 handling the event. */
2740 if (non_stop)
2741 {
2742 make_cleanup_restore_current_traceframe ();
2743 set_current_traceframe (-1);
2744 }
2745
2746 if (non_stop)
2747 /* In non-stop mode, the user/frontend should not notice a thread
2748 switch due to internal events. Make sure we reverse to the
2749 user selected thread and frame after handling the event and
2750 running any breakpoint commands. */
2751 make_cleanup_restore_current_thread ();
2752
2753 overlay_cache_invalid = 1;
2754
2755 make_cleanup_restore_integer (&execution_direction);
2756 execution_direction = target_execution_direction ();
2757
2758 if (deprecated_target_wait_hook)
2759 ecs->ptid =
2760 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2761 else
2762 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2763
2764 if (debug_infrun)
2765 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2766
2767 /* If an error happens while handling the event, propagate GDB's
2768 knowledge of the executing state to the frontend/user running
2769 state. */
2770 if (!non_stop)
2771 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2772 else
2773 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2774
2775 /* Get executed before make_cleanup_restore_current_thread above to apply
2776 still for the thread which has thrown the exception. */
2777 make_bpstat_clear_actions_cleanup ();
2778
2779 /* Now figure out what to do with the result of the result. */
2780 handle_inferior_event (ecs);
2781
2782 if (!ecs->wait_some_more)
2783 {
2784 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2785
2786 delete_step_thread_step_resume_breakpoint ();
2787
2788 /* We may not find an inferior if this was a process exit. */
2789 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2790 normal_stop ();
2791
2792 if (target_has_execution
2793 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2794 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2795 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2796 && ecs->event_thread->step_multi
2797 && ecs->event_thread->control.stop_step)
2798 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2799 else
2800 {
2801 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2802 cmd_done = 1;
2803 }
2804 }
2805
2806 /* No error, don't finish the thread states yet. */
2807 discard_cleanups (ts_old_chain);
2808
2809 /* Revert thread and frame. */
2810 do_cleanups (old_chain);
2811
2812 /* If the inferior was in sync execution mode, and now isn't,
2813 restore the prompt (a synchronous execution command has finished,
2814 and we're ready for input). */
2815 if (interpreter_async && was_sync && !sync_execution)
2816 display_gdb_prompt (0);
2817
2818 if (cmd_done
2819 && !was_sync
2820 && exec_done_display_p
2821 && (ptid_equal (inferior_ptid, null_ptid)
2822 || !is_running (inferior_ptid)))
2823 printf_unfiltered (_("completed.\n"));
2824 }
2825
2826 /* Record the frame and location we're currently stepping through. */
2827 void
2828 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2829 {
2830 struct thread_info *tp = inferior_thread ();
2831
2832 tp->control.step_frame_id = get_frame_id (frame);
2833 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2834
2835 tp->current_symtab = sal.symtab;
2836 tp->current_line = sal.line;
2837 }
2838
2839 /* Clear context switchable stepping state. */
2840
2841 void
2842 init_thread_stepping_state (struct thread_info *tss)
2843 {
2844 tss->stepping_over_breakpoint = 0;
2845 tss->step_after_step_resume_breakpoint = 0;
2846 }
2847
2848 /* Return the cached copy of the last pid/waitstatus returned by
2849 target_wait()/deprecated_target_wait_hook(). The data is actually
2850 cached by handle_inferior_event(), which gets called immediately
2851 after target_wait()/deprecated_target_wait_hook(). */
2852
2853 void
2854 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2855 {
2856 *ptidp = target_last_wait_ptid;
2857 *status = target_last_waitstatus;
2858 }
2859
2860 void
2861 nullify_last_target_wait_ptid (void)
2862 {
2863 target_last_wait_ptid = minus_one_ptid;
2864 }
2865
2866 /* Switch thread contexts. */
2867
2868 static void
2869 context_switch (ptid_t ptid)
2870 {
2871 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2872 {
2873 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2874 target_pid_to_str (inferior_ptid));
2875 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2876 target_pid_to_str (ptid));
2877 }
2878
2879 switch_to_thread (ptid);
2880 }
2881
2882 static void
2883 adjust_pc_after_break (struct execution_control_state *ecs)
2884 {
2885 struct regcache *regcache;
2886 struct gdbarch *gdbarch;
2887 struct address_space *aspace;
2888 CORE_ADDR breakpoint_pc;
2889
2890 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2891 we aren't, just return.
2892
2893 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2894 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2895 implemented by software breakpoints should be handled through the normal
2896 breakpoint layer.
2897
2898 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2899 different signals (SIGILL or SIGEMT for instance), but it is less
2900 clear where the PC is pointing afterwards. It may not match
2901 gdbarch_decr_pc_after_break. I don't know any specific target that
2902 generates these signals at breakpoints (the code has been in GDB since at
2903 least 1992) so I can not guess how to handle them here.
2904
2905 In earlier versions of GDB, a target with
2906 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2907 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2908 target with both of these set in GDB history, and it seems unlikely to be
2909 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2910
2911 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2912 return;
2913
2914 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2915 return;
2916
2917 /* In reverse execution, when a breakpoint is hit, the instruction
2918 under it has already been de-executed. The reported PC always
2919 points at the breakpoint address, so adjusting it further would
2920 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2921 architecture:
2922
2923 B1 0x08000000 : INSN1
2924 B2 0x08000001 : INSN2
2925 0x08000002 : INSN3
2926 PC -> 0x08000003 : INSN4
2927
2928 Say you're stopped at 0x08000003 as above. Reverse continuing
2929 from that point should hit B2 as below. Reading the PC when the
2930 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2931 been de-executed already.
2932
2933 B1 0x08000000 : INSN1
2934 B2 PC -> 0x08000001 : INSN2
2935 0x08000002 : INSN3
2936 0x08000003 : INSN4
2937
2938 We can't apply the same logic as for forward execution, because
2939 we would wrongly adjust the PC to 0x08000000, since there's a
2940 breakpoint at PC - 1. We'd then report a hit on B1, although
2941 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2942 behaviour. */
2943 if (execution_direction == EXEC_REVERSE)
2944 return;
2945
2946 /* If this target does not decrement the PC after breakpoints, then
2947 we have nothing to do. */
2948 regcache = get_thread_regcache (ecs->ptid);
2949 gdbarch = get_regcache_arch (regcache);
2950 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2951 return;
2952
2953 aspace = get_regcache_aspace (regcache);
2954
2955 /* Find the location where (if we've hit a breakpoint) the
2956 breakpoint would be. */
2957 breakpoint_pc = regcache_read_pc (regcache)
2958 - gdbarch_decr_pc_after_break (gdbarch);
2959
2960 /* Check whether there actually is a software breakpoint inserted at
2961 that location.
2962
2963 If in non-stop mode, a race condition is possible where we've
2964 removed a breakpoint, but stop events for that breakpoint were
2965 already queued and arrive later. To suppress those spurious
2966 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2967 and retire them after a number of stop events are reported. */
2968 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2969 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2970 {
2971 struct cleanup *old_cleanups = NULL;
2972
2973 if (RECORD_IS_USED)
2974 old_cleanups = record_gdb_operation_disable_set ();
2975
2976 /* When using hardware single-step, a SIGTRAP is reported for both
2977 a completed single-step and a software breakpoint. Need to
2978 differentiate between the two, as the latter needs adjusting
2979 but the former does not.
2980
2981 The SIGTRAP can be due to a completed hardware single-step only if
2982 - we didn't insert software single-step breakpoints
2983 - the thread to be examined is still the current thread
2984 - this thread is currently being stepped
2985
2986 If any of these events did not occur, we must have stopped due
2987 to hitting a software breakpoint, and have to back up to the
2988 breakpoint address.
2989
2990 As a special case, we could have hardware single-stepped a
2991 software breakpoint. In this case (prev_pc == breakpoint_pc),
2992 we also need to back up to the breakpoint address. */
2993
2994 if (singlestep_breakpoints_inserted_p
2995 || !ptid_equal (ecs->ptid, inferior_ptid)
2996 || !currently_stepping (ecs->event_thread)
2997 || ecs->event_thread->prev_pc == breakpoint_pc)
2998 regcache_write_pc (regcache, breakpoint_pc);
2999
3000 if (RECORD_IS_USED)
3001 do_cleanups (old_cleanups);
3002 }
3003 }
3004
3005 void
3006 init_infwait_state (void)
3007 {
3008 waiton_ptid = pid_to_ptid (-1);
3009 infwait_state = infwait_normal_state;
3010 }
3011
3012 void
3013 error_is_running (void)
3014 {
3015 error (_("Cannot execute this command while "
3016 "the selected thread is running."));
3017 }
3018
3019 void
3020 ensure_not_running (void)
3021 {
3022 if (is_running (inferior_ptid))
3023 error_is_running ();
3024 }
3025
3026 static int
3027 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3028 {
3029 for (frame = get_prev_frame (frame);
3030 frame != NULL;
3031 frame = get_prev_frame (frame))
3032 {
3033 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3034 return 1;
3035 if (get_frame_type (frame) != INLINE_FRAME)
3036 break;
3037 }
3038
3039 return 0;
3040 }
3041
3042 /* Auxiliary function that handles syscall entry/return events.
3043 It returns 1 if the inferior should keep going (and GDB
3044 should ignore the event), or 0 if the event deserves to be
3045 processed. */
3046
3047 static int
3048 handle_syscall_event (struct execution_control_state *ecs)
3049 {
3050 struct regcache *regcache;
3051 struct gdbarch *gdbarch;
3052 int syscall_number;
3053
3054 if (!ptid_equal (ecs->ptid, inferior_ptid))
3055 context_switch (ecs->ptid);
3056
3057 regcache = get_thread_regcache (ecs->ptid);
3058 gdbarch = get_regcache_arch (regcache);
3059 syscall_number = ecs->ws.value.syscall_number;
3060 stop_pc = regcache_read_pc (regcache);
3061
3062 if (catch_syscall_enabled () > 0
3063 && catching_syscall_number (syscall_number) > 0)
3064 {
3065 if (debug_infrun)
3066 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3067 syscall_number);
3068
3069 ecs->event_thread->control.stop_bpstat
3070 = bpstat_stop_status (get_regcache_aspace (regcache),
3071 stop_pc, ecs->ptid, &ecs->ws);
3072 ecs->random_signal
3073 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3074
3075 if (!ecs->random_signal)
3076 {
3077 /* Catchpoint hit. */
3078 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3079 return 0;
3080 }
3081 }
3082
3083 /* If no catchpoint triggered for this, then keep going. */
3084 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3085 keep_going (ecs);
3086 return 1;
3087 }
3088
3089 /* Clear the supplied execution_control_state's stop_func_* fields. */
3090
3091 static void
3092 clear_stop_func (struct execution_control_state *ecs)
3093 {
3094 ecs->stop_func_filled_in = 0;
3095 ecs->stop_func_start = 0;
3096 ecs->stop_func_end = 0;
3097 ecs->stop_func_name = NULL;
3098 }
3099
3100 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3101
3102 static void
3103 fill_in_stop_func (struct gdbarch *gdbarch,
3104 struct execution_control_state *ecs)
3105 {
3106 if (!ecs->stop_func_filled_in)
3107 {
3108 /* Don't care about return value; stop_func_start and stop_func_name
3109 will both be 0 if it doesn't work. */
3110 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3111 &ecs->stop_func_start, &ecs->stop_func_end);
3112 ecs->stop_func_start
3113 += gdbarch_deprecated_function_start_offset (gdbarch);
3114
3115 ecs->stop_func_filled_in = 1;
3116 }
3117 }
3118
3119 /* Given an execution control state that has been freshly filled in
3120 by an event from the inferior, figure out what it means and take
3121 appropriate action. */
3122
3123 static void
3124 handle_inferior_event (struct execution_control_state *ecs)
3125 {
3126 struct frame_info *frame;
3127 struct gdbarch *gdbarch;
3128 int stopped_by_watchpoint;
3129 int stepped_after_stopped_by_watchpoint = 0;
3130 struct symtab_and_line stop_pc_sal;
3131 enum stop_kind stop_soon;
3132
3133 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3134 {
3135 /* We had an event in the inferior, but we are not interested in
3136 handling it at this level. The lower layers have already
3137 done what needs to be done, if anything.
3138
3139 One of the possible circumstances for this is when the
3140 inferior produces output for the console. The inferior has
3141 not stopped, and we are ignoring the event. Another possible
3142 circumstance is any event which the lower level knows will be
3143 reported multiple times without an intervening resume. */
3144 if (debug_infrun)
3145 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3146 prepare_to_wait (ecs);
3147 return;
3148 }
3149
3150 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3151 && target_can_async_p () && !sync_execution)
3152 {
3153 /* There were no unwaited-for children left in the target, but,
3154 we're not synchronously waiting for events either. Just
3155 ignore. Otherwise, if we were running a synchronous
3156 execution command, we need to cancel it and give the user
3157 back the terminal. */
3158 if (debug_infrun)
3159 fprintf_unfiltered (gdb_stdlog,
3160 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3161 prepare_to_wait (ecs);
3162 return;
3163 }
3164
3165 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3166 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3167 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3168 {
3169 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3170
3171 gdb_assert (inf);
3172 stop_soon = inf->control.stop_soon;
3173 }
3174 else
3175 stop_soon = NO_STOP_QUIETLY;
3176
3177 /* Cache the last pid/waitstatus. */
3178 target_last_wait_ptid = ecs->ptid;
3179 target_last_waitstatus = ecs->ws;
3180
3181 /* Always clear state belonging to the previous time we stopped. */
3182 stop_stack_dummy = STOP_NONE;
3183
3184 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3185 {
3186 /* No unwaited-for children left. IOW, all resumed children
3187 have exited. */
3188 if (debug_infrun)
3189 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3190
3191 stop_print_frame = 0;
3192 stop_stepping (ecs);
3193 return;
3194 }
3195
3196 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3197 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3198 && !ptid_equal (ecs->ptid, minus_one_ptid))
3199 {
3200 ecs->event_thread = find_thread_ptid (ecs->ptid);
3201 /* If it's a new thread, add it to the thread database. */
3202 if (ecs->event_thread == NULL)
3203 ecs->event_thread = add_thread (ecs->ptid);
3204 }
3205
3206 /* Dependent on valid ECS->EVENT_THREAD. */
3207 adjust_pc_after_break (ecs);
3208
3209 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3210 reinit_frame_cache ();
3211
3212 breakpoint_retire_moribund ();
3213
3214 /* First, distinguish signals caused by the debugger from signals
3215 that have to do with the program's own actions. Note that
3216 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3217 on the operating system version. Here we detect when a SIGILL or
3218 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3219 something similar for SIGSEGV, since a SIGSEGV will be generated
3220 when we're trying to execute a breakpoint instruction on a
3221 non-executable stack. This happens for call dummy breakpoints
3222 for architectures like SPARC that place call dummies on the
3223 stack. */
3224 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3225 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3226 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3227 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3228 {
3229 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3230
3231 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3232 regcache_read_pc (regcache)))
3233 {
3234 if (debug_infrun)
3235 fprintf_unfiltered (gdb_stdlog,
3236 "infrun: Treating signal as SIGTRAP\n");
3237 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3238 }
3239 }
3240
3241 /* Mark the non-executing threads accordingly. In all-stop, all
3242 threads of all processes are stopped when we get any event
3243 reported. In non-stop mode, only the event thread stops. If
3244 we're handling a process exit in non-stop mode, there's nothing
3245 to do, as threads of the dead process are gone, and threads of
3246 any other process were left running. */
3247 if (!non_stop)
3248 set_executing (minus_one_ptid, 0);
3249 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3250 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3251 set_executing (ecs->ptid, 0);
3252
3253 switch (infwait_state)
3254 {
3255 case infwait_thread_hop_state:
3256 if (debug_infrun)
3257 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3258 break;
3259
3260 case infwait_normal_state:
3261 if (debug_infrun)
3262 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3263 break;
3264
3265 case infwait_step_watch_state:
3266 if (debug_infrun)
3267 fprintf_unfiltered (gdb_stdlog,
3268 "infrun: infwait_step_watch_state\n");
3269
3270 stepped_after_stopped_by_watchpoint = 1;
3271 break;
3272
3273 case infwait_nonstep_watch_state:
3274 if (debug_infrun)
3275 fprintf_unfiltered (gdb_stdlog,
3276 "infrun: infwait_nonstep_watch_state\n");
3277 insert_breakpoints ();
3278
3279 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3280 handle things like signals arriving and other things happening
3281 in combination correctly? */
3282 stepped_after_stopped_by_watchpoint = 1;
3283 break;
3284
3285 default:
3286 internal_error (__FILE__, __LINE__, _("bad switch"));
3287 }
3288
3289 infwait_state = infwait_normal_state;
3290 waiton_ptid = pid_to_ptid (-1);
3291
3292 switch (ecs->ws.kind)
3293 {
3294 case TARGET_WAITKIND_LOADED:
3295 if (debug_infrun)
3296 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3297 /* Ignore gracefully during startup of the inferior, as it might
3298 be the shell which has just loaded some objects, otherwise
3299 add the symbols for the newly loaded objects. Also ignore at
3300 the beginning of an attach or remote session; we will query
3301 the full list of libraries once the connection is
3302 established. */
3303 if (stop_soon == NO_STOP_QUIETLY)
3304 {
3305 struct regcache *regcache;
3306
3307 if (!ptid_equal (ecs->ptid, inferior_ptid))
3308 context_switch (ecs->ptid);
3309 regcache = get_thread_regcache (ecs->ptid);
3310
3311 handle_solib_event ();
3312
3313 ecs->event_thread->control.stop_bpstat
3314 = bpstat_stop_status (get_regcache_aspace (regcache),
3315 stop_pc, ecs->ptid, &ecs->ws);
3316 ecs->random_signal
3317 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3318
3319 if (!ecs->random_signal)
3320 {
3321 /* A catchpoint triggered. */
3322 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3323 goto process_event_stop_test;
3324 }
3325
3326 /* If requested, stop when the dynamic linker notifies
3327 gdb of events. This allows the user to get control
3328 and place breakpoints in initializer routines for
3329 dynamically loaded objects (among other things). */
3330 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3331 if (stop_on_solib_events)
3332 {
3333 /* Make sure we print "Stopped due to solib-event" in
3334 normal_stop. */
3335 stop_print_frame = 1;
3336
3337 stop_stepping (ecs);
3338 return;
3339 }
3340 }
3341
3342 /* If we are skipping through a shell, or through shared library
3343 loading that we aren't interested in, resume the program. If
3344 we're running the program normally, also resume. But stop if
3345 we're attaching or setting up a remote connection. */
3346 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3347 {
3348 if (!ptid_equal (ecs->ptid, inferior_ptid))
3349 context_switch (ecs->ptid);
3350
3351 /* Loading of shared libraries might have changed breakpoint
3352 addresses. Make sure new breakpoints are inserted. */
3353 if (stop_soon == NO_STOP_QUIETLY
3354 && !breakpoints_always_inserted_mode ())
3355 insert_breakpoints ();
3356 resume (0, GDB_SIGNAL_0);
3357 prepare_to_wait (ecs);
3358 return;
3359 }
3360
3361 break;
3362
3363 case TARGET_WAITKIND_SPURIOUS:
3364 if (debug_infrun)
3365 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3366 if (!ptid_equal (ecs->ptid, inferior_ptid)
3367 && !ptid_equal (ecs->ptid, minus_one_ptid))
3368 context_switch (ecs->ptid);
3369 resume (0, GDB_SIGNAL_0);
3370 prepare_to_wait (ecs);
3371 return;
3372
3373 case TARGET_WAITKIND_EXITED:
3374 if (debug_infrun)
3375 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3376 inferior_ptid = ecs->ptid;
3377 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3378 set_current_program_space (current_inferior ()->pspace);
3379 handle_vfork_child_exec_or_exit (0);
3380 target_terminal_ours (); /* Must do this before mourn anyway. */
3381 print_exited_reason (ecs->ws.value.integer);
3382
3383 /* Record the exit code in the convenience variable $_exitcode, so
3384 that the user can inspect this again later. */
3385 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3386 (LONGEST) ecs->ws.value.integer);
3387
3388 /* Also record this in the inferior itself. */
3389 current_inferior ()->has_exit_code = 1;
3390 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3391
3392 gdb_flush (gdb_stdout);
3393 target_mourn_inferior ();
3394 singlestep_breakpoints_inserted_p = 0;
3395 cancel_single_step_breakpoints ();
3396 stop_print_frame = 0;
3397 stop_stepping (ecs);
3398 return;
3399
3400 case TARGET_WAITKIND_SIGNALLED:
3401 if (debug_infrun)
3402 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3403 inferior_ptid = ecs->ptid;
3404 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3405 set_current_program_space (current_inferior ()->pspace);
3406 handle_vfork_child_exec_or_exit (0);
3407 stop_print_frame = 0;
3408 target_terminal_ours (); /* Must do this before mourn anyway. */
3409
3410 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3411 reach here unless the inferior is dead. However, for years
3412 target_kill() was called here, which hints that fatal signals aren't
3413 really fatal on some systems. If that's true, then some changes
3414 may be needed. */
3415 target_mourn_inferior ();
3416
3417 print_signal_exited_reason (ecs->ws.value.sig);
3418 singlestep_breakpoints_inserted_p = 0;
3419 cancel_single_step_breakpoints ();
3420 stop_stepping (ecs);
3421 return;
3422
3423 /* The following are the only cases in which we keep going;
3424 the above cases end in a continue or goto. */
3425 case TARGET_WAITKIND_FORKED:
3426 case TARGET_WAITKIND_VFORKED:
3427 if (debug_infrun)
3428 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3429
3430 /* Check whether the inferior is displaced stepping. */
3431 {
3432 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3433 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3434 struct displaced_step_inferior_state *displaced
3435 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3436
3437 /* If checking displaced stepping is supported, and thread
3438 ecs->ptid is displaced stepping. */
3439 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3440 {
3441 struct inferior *parent_inf
3442 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3443 struct regcache *child_regcache;
3444 CORE_ADDR parent_pc;
3445
3446 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3447 indicating that the displaced stepping of syscall instruction
3448 has been done. Perform cleanup for parent process here. Note
3449 that this operation also cleans up the child process for vfork,
3450 because their pages are shared. */
3451 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3452
3453 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3454 {
3455 /* Restore scratch pad for child process. */
3456 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3457 }
3458
3459 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3460 the child's PC is also within the scratchpad. Set the child's PC
3461 to the parent's PC value, which has already been fixed up.
3462 FIXME: we use the parent's aspace here, although we're touching
3463 the child, because the child hasn't been added to the inferior
3464 list yet at this point. */
3465
3466 child_regcache
3467 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3468 gdbarch,
3469 parent_inf->aspace);
3470 /* Read PC value of parent process. */
3471 parent_pc = regcache_read_pc (regcache);
3472
3473 if (debug_displaced)
3474 fprintf_unfiltered (gdb_stdlog,
3475 "displaced: write child pc from %s to %s\n",
3476 paddress (gdbarch,
3477 regcache_read_pc (child_regcache)),
3478 paddress (gdbarch, parent_pc));
3479
3480 regcache_write_pc (child_regcache, parent_pc);
3481 }
3482 }
3483
3484 if (!ptid_equal (ecs->ptid, inferior_ptid))
3485 context_switch (ecs->ptid);
3486
3487 /* Immediately detach breakpoints from the child before there's
3488 any chance of letting the user delete breakpoints from the
3489 breakpoint lists. If we don't do this early, it's easy to
3490 leave left over traps in the child, vis: "break foo; catch
3491 fork; c; <fork>; del; c; <child calls foo>". We only follow
3492 the fork on the last `continue', and by that time the
3493 breakpoint at "foo" is long gone from the breakpoint table.
3494 If we vforked, then we don't need to unpatch here, since both
3495 parent and child are sharing the same memory pages; we'll
3496 need to unpatch at follow/detach time instead to be certain
3497 that new breakpoints added between catchpoint hit time and
3498 vfork follow are detached. */
3499 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3500 {
3501 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3502
3503 /* This won't actually modify the breakpoint list, but will
3504 physically remove the breakpoints from the child. */
3505 detach_breakpoints (child_pid);
3506 }
3507
3508 if (singlestep_breakpoints_inserted_p)
3509 {
3510 /* Pull the single step breakpoints out of the target. */
3511 remove_single_step_breakpoints ();
3512 singlestep_breakpoints_inserted_p = 0;
3513 }
3514
3515 /* In case the event is caught by a catchpoint, remember that
3516 the event is to be followed at the next resume of the thread,
3517 and not immediately. */
3518 ecs->event_thread->pending_follow = ecs->ws;
3519
3520 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3521
3522 ecs->event_thread->control.stop_bpstat
3523 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3524 stop_pc, ecs->ptid, &ecs->ws);
3525
3526 /* Note that we're interested in knowing the bpstat actually
3527 causes a stop, not just if it may explain the signal.
3528 Software watchpoints, for example, always appear in the
3529 bpstat. */
3530 ecs->random_signal
3531 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3532
3533 /* If no catchpoint triggered for this, then keep going. */
3534 if (ecs->random_signal)
3535 {
3536 ptid_t parent;
3537 ptid_t child;
3538 int should_resume;
3539 int follow_child
3540 = (follow_fork_mode_string == follow_fork_mode_child);
3541
3542 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3543
3544 should_resume = follow_fork ();
3545
3546 parent = ecs->ptid;
3547 child = ecs->ws.value.related_pid;
3548
3549 /* In non-stop mode, also resume the other branch. */
3550 if (non_stop && !detach_fork)
3551 {
3552 if (follow_child)
3553 switch_to_thread (parent);
3554 else
3555 switch_to_thread (child);
3556
3557 ecs->event_thread = inferior_thread ();
3558 ecs->ptid = inferior_ptid;
3559 keep_going (ecs);
3560 }
3561
3562 if (follow_child)
3563 switch_to_thread (child);
3564 else
3565 switch_to_thread (parent);
3566
3567 ecs->event_thread = inferior_thread ();
3568 ecs->ptid = inferior_ptid;
3569
3570 if (should_resume)
3571 keep_going (ecs);
3572 else
3573 stop_stepping (ecs);
3574 return;
3575 }
3576 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3577 goto process_event_stop_test;
3578
3579 case TARGET_WAITKIND_VFORK_DONE:
3580 /* Done with the shared memory region. Re-insert breakpoints in
3581 the parent, and keep going. */
3582
3583 if (debug_infrun)
3584 fprintf_unfiltered (gdb_stdlog,
3585 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3586
3587 if (!ptid_equal (ecs->ptid, inferior_ptid))
3588 context_switch (ecs->ptid);
3589
3590 current_inferior ()->waiting_for_vfork_done = 0;
3591 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3592 /* This also takes care of reinserting breakpoints in the
3593 previously locked inferior. */
3594 keep_going (ecs);
3595 return;
3596
3597 case TARGET_WAITKIND_EXECD:
3598 if (debug_infrun)
3599 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3600
3601 if (!ptid_equal (ecs->ptid, inferior_ptid))
3602 context_switch (ecs->ptid);
3603
3604 singlestep_breakpoints_inserted_p = 0;
3605 cancel_single_step_breakpoints ();
3606
3607 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3608
3609 /* Do whatever is necessary to the parent branch of the vfork. */
3610 handle_vfork_child_exec_or_exit (1);
3611
3612 /* This causes the eventpoints and symbol table to be reset.
3613 Must do this now, before trying to determine whether to
3614 stop. */
3615 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3616
3617 ecs->event_thread->control.stop_bpstat
3618 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3619 stop_pc, ecs->ptid, &ecs->ws);
3620 ecs->random_signal
3621 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3622
3623 /* Note that this may be referenced from inside
3624 bpstat_stop_status above, through inferior_has_execd. */
3625 xfree (ecs->ws.value.execd_pathname);
3626 ecs->ws.value.execd_pathname = NULL;
3627
3628 /* If no catchpoint triggered for this, then keep going. */
3629 if (ecs->random_signal)
3630 {
3631 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3632 keep_going (ecs);
3633 return;
3634 }
3635 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3636 goto process_event_stop_test;
3637
3638 /* Be careful not to try to gather much state about a thread
3639 that's in a syscall. It's frequently a losing proposition. */
3640 case TARGET_WAITKIND_SYSCALL_ENTRY:
3641 if (debug_infrun)
3642 fprintf_unfiltered (gdb_stdlog,
3643 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3644 /* Getting the current syscall number. */
3645 if (handle_syscall_event (ecs) != 0)
3646 return;
3647 goto process_event_stop_test;
3648
3649 /* Before examining the threads further, step this thread to
3650 get it entirely out of the syscall. (We get notice of the
3651 event when the thread is just on the verge of exiting a
3652 syscall. Stepping one instruction seems to get it back
3653 into user code.) */
3654 case TARGET_WAITKIND_SYSCALL_RETURN:
3655 if (debug_infrun)
3656 fprintf_unfiltered (gdb_stdlog,
3657 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3658 if (handle_syscall_event (ecs) != 0)
3659 return;
3660 goto process_event_stop_test;
3661
3662 case TARGET_WAITKIND_STOPPED:
3663 if (debug_infrun)
3664 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3665 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3666 break;
3667
3668 case TARGET_WAITKIND_NO_HISTORY:
3669 if (debug_infrun)
3670 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3671 /* Reverse execution: target ran out of history info. */
3672
3673 /* Pull the single step breakpoints out of the target. */
3674 if (singlestep_breakpoints_inserted_p)
3675 {
3676 if (!ptid_equal (ecs->ptid, inferior_ptid))
3677 context_switch (ecs->ptid);
3678 remove_single_step_breakpoints ();
3679 singlestep_breakpoints_inserted_p = 0;
3680 }
3681 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3682 print_no_history_reason ();
3683 stop_stepping (ecs);
3684 return;
3685 }
3686
3687 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3688 {
3689 /* Do we need to clean up the state of a thread that has
3690 completed a displaced single-step? (Doing so usually affects
3691 the PC, so do it here, before we set stop_pc.) */
3692 displaced_step_fixup (ecs->ptid,
3693 ecs->event_thread->suspend.stop_signal);
3694
3695 /* If we either finished a single-step or hit a breakpoint, but
3696 the user wanted this thread to be stopped, pretend we got a
3697 SIG0 (generic unsignaled stop). */
3698
3699 if (ecs->event_thread->stop_requested
3700 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3701 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3702 }
3703
3704 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3705
3706 if (debug_infrun)
3707 {
3708 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3709 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3710 struct cleanup *old_chain = save_inferior_ptid ();
3711
3712 inferior_ptid = ecs->ptid;
3713
3714 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3715 paddress (gdbarch, stop_pc));
3716 if (target_stopped_by_watchpoint ())
3717 {
3718 CORE_ADDR addr;
3719
3720 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3721
3722 if (target_stopped_data_address (&current_target, &addr))
3723 fprintf_unfiltered (gdb_stdlog,
3724 "infrun: stopped data address = %s\n",
3725 paddress (gdbarch, addr));
3726 else
3727 fprintf_unfiltered (gdb_stdlog,
3728 "infrun: (no data address available)\n");
3729 }
3730
3731 do_cleanups (old_chain);
3732 }
3733
3734 if (stepping_past_singlestep_breakpoint)
3735 {
3736 gdb_assert (singlestep_breakpoints_inserted_p);
3737 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3738 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3739
3740 stepping_past_singlestep_breakpoint = 0;
3741
3742 /* We've either finished single-stepping past the single-step
3743 breakpoint, or stopped for some other reason. It would be nice if
3744 we could tell, but we can't reliably. */
3745 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3746 {
3747 if (debug_infrun)
3748 fprintf_unfiltered (gdb_stdlog,
3749 "infrun: stepping_past_"
3750 "singlestep_breakpoint\n");
3751 /* Pull the single step breakpoints out of the target. */
3752 if (!ptid_equal (ecs->ptid, inferior_ptid))
3753 context_switch (ecs->ptid);
3754 remove_single_step_breakpoints ();
3755 singlestep_breakpoints_inserted_p = 0;
3756
3757 ecs->random_signal = 0;
3758 ecs->event_thread->control.trap_expected = 0;
3759
3760 context_switch (saved_singlestep_ptid);
3761 if (deprecated_context_hook)
3762 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3763
3764 resume (1, GDB_SIGNAL_0);
3765 prepare_to_wait (ecs);
3766 return;
3767 }
3768 }
3769
3770 if (!ptid_equal (deferred_step_ptid, null_ptid))
3771 {
3772 /* In non-stop mode, there's never a deferred_step_ptid set. */
3773 gdb_assert (!non_stop);
3774
3775 /* If we stopped for some other reason than single-stepping, ignore
3776 the fact that we were supposed to switch back. */
3777 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3778 {
3779 if (debug_infrun)
3780 fprintf_unfiltered (gdb_stdlog,
3781 "infrun: handling deferred step\n");
3782
3783 /* Pull the single step breakpoints out of the target. */
3784 if (singlestep_breakpoints_inserted_p)
3785 {
3786 if (!ptid_equal (ecs->ptid, inferior_ptid))
3787 context_switch (ecs->ptid);
3788 remove_single_step_breakpoints ();
3789 singlestep_breakpoints_inserted_p = 0;
3790 }
3791
3792 ecs->event_thread->control.trap_expected = 0;
3793
3794 context_switch (deferred_step_ptid);
3795 deferred_step_ptid = null_ptid;
3796 /* Suppress spurious "Switching to ..." message. */
3797 previous_inferior_ptid = inferior_ptid;
3798
3799 resume (1, GDB_SIGNAL_0);
3800 prepare_to_wait (ecs);
3801 return;
3802 }
3803
3804 deferred_step_ptid = null_ptid;
3805 }
3806
3807 /* See if a thread hit a thread-specific breakpoint that was meant for
3808 another thread. If so, then step that thread past the breakpoint,
3809 and continue it. */
3810
3811 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3812 {
3813 int thread_hop_needed = 0;
3814 struct address_space *aspace =
3815 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3816
3817 /* Check if a regular breakpoint has been hit before checking
3818 for a potential single step breakpoint. Otherwise, GDB will
3819 not see this breakpoint hit when stepping onto breakpoints. */
3820 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3821 {
3822 ecs->random_signal = 0;
3823 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3824 thread_hop_needed = 1;
3825 }
3826 else if (singlestep_breakpoints_inserted_p)
3827 {
3828 /* We have not context switched yet, so this should be true
3829 no matter which thread hit the singlestep breakpoint. */
3830 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3831 if (debug_infrun)
3832 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3833 "trap for %s\n",
3834 target_pid_to_str (ecs->ptid));
3835
3836 ecs->random_signal = 0;
3837 /* The call to in_thread_list is necessary because PTIDs sometimes
3838 change when we go from single-threaded to multi-threaded. If
3839 the singlestep_ptid is still in the list, assume that it is
3840 really different from ecs->ptid. */
3841 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3842 && in_thread_list (singlestep_ptid))
3843 {
3844 /* If the PC of the thread we were trying to single-step
3845 has changed, discard this event (which we were going
3846 to ignore anyway), and pretend we saw that thread
3847 trap. This prevents us continuously moving the
3848 single-step breakpoint forward, one instruction at a
3849 time. If the PC has changed, then the thread we were
3850 trying to single-step has trapped or been signalled,
3851 but the event has not been reported to GDB yet.
3852
3853 There might be some cases where this loses signal
3854 information, if a signal has arrived at exactly the
3855 same time that the PC changed, but this is the best
3856 we can do with the information available. Perhaps we
3857 should arrange to report all events for all threads
3858 when they stop, or to re-poll the remote looking for
3859 this particular thread (i.e. temporarily enable
3860 schedlock). */
3861
3862 CORE_ADDR new_singlestep_pc
3863 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3864
3865 if (new_singlestep_pc != singlestep_pc)
3866 {
3867 enum gdb_signal stop_signal;
3868
3869 if (debug_infrun)
3870 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3871 " but expected thread advanced also\n");
3872
3873 /* The current context still belongs to
3874 singlestep_ptid. Don't swap here, since that's
3875 the context we want to use. Just fudge our
3876 state and continue. */
3877 stop_signal = ecs->event_thread->suspend.stop_signal;
3878 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3879 ecs->ptid = singlestep_ptid;
3880 ecs->event_thread = find_thread_ptid (ecs->ptid);
3881 ecs->event_thread->suspend.stop_signal = stop_signal;
3882 stop_pc = new_singlestep_pc;
3883 }
3884 else
3885 {
3886 if (debug_infrun)
3887 fprintf_unfiltered (gdb_stdlog,
3888 "infrun: unexpected thread\n");
3889
3890 thread_hop_needed = 1;
3891 stepping_past_singlestep_breakpoint = 1;
3892 saved_singlestep_ptid = singlestep_ptid;
3893 }
3894 }
3895 }
3896
3897 if (thread_hop_needed)
3898 {
3899 struct regcache *thread_regcache;
3900 int remove_status = 0;
3901
3902 if (debug_infrun)
3903 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3904
3905 /* Switch context before touching inferior memory, the
3906 previous thread may have exited. */
3907 if (!ptid_equal (inferior_ptid, ecs->ptid))
3908 context_switch (ecs->ptid);
3909
3910 /* Saw a breakpoint, but it was hit by the wrong thread.
3911 Just continue. */
3912
3913 if (singlestep_breakpoints_inserted_p)
3914 {
3915 /* Pull the single step breakpoints out of the target. */
3916 remove_single_step_breakpoints ();
3917 singlestep_breakpoints_inserted_p = 0;
3918 }
3919
3920 /* If the arch can displace step, don't remove the
3921 breakpoints. */
3922 thread_regcache = get_thread_regcache (ecs->ptid);
3923 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3924 remove_status = remove_breakpoints ();
3925
3926 /* Did we fail to remove breakpoints? If so, try
3927 to set the PC past the bp. (There's at least
3928 one situation in which we can fail to remove
3929 the bp's: On HP-UX's that use ttrace, we can't
3930 change the address space of a vforking child
3931 process until the child exits (well, okay, not
3932 then either :-) or execs. */
3933 if (remove_status != 0)
3934 error (_("Cannot step over breakpoint hit in wrong thread"));
3935 else
3936 { /* Single step */
3937 if (!non_stop)
3938 {
3939 /* Only need to require the next event from this
3940 thread in all-stop mode. */
3941 waiton_ptid = ecs->ptid;
3942 infwait_state = infwait_thread_hop_state;
3943 }
3944
3945 ecs->event_thread->stepping_over_breakpoint = 1;
3946 keep_going (ecs);
3947 return;
3948 }
3949 }
3950 else if (singlestep_breakpoints_inserted_p)
3951 {
3952 ecs->random_signal = 0;
3953 }
3954 }
3955 else
3956 ecs->random_signal = 1;
3957
3958 /* See if something interesting happened to the non-current thread. If
3959 so, then switch to that thread. */
3960 if (!ptid_equal (ecs->ptid, inferior_ptid))
3961 {
3962 if (debug_infrun)
3963 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3964
3965 context_switch (ecs->ptid);
3966
3967 if (deprecated_context_hook)
3968 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3969 }
3970
3971 /* At this point, get hold of the now-current thread's frame. */
3972 frame = get_current_frame ();
3973 gdbarch = get_frame_arch (frame);
3974
3975 if (singlestep_breakpoints_inserted_p)
3976 {
3977 /* Pull the single step breakpoints out of the target. */
3978 remove_single_step_breakpoints ();
3979 singlestep_breakpoints_inserted_p = 0;
3980 }
3981
3982 if (stepped_after_stopped_by_watchpoint)
3983 stopped_by_watchpoint = 0;
3984 else
3985 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3986
3987 /* If necessary, step over this watchpoint. We'll be back to display
3988 it in a moment. */
3989 if (stopped_by_watchpoint
3990 && (target_have_steppable_watchpoint
3991 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3992 {
3993 /* At this point, we are stopped at an instruction which has
3994 attempted to write to a piece of memory under control of
3995 a watchpoint. The instruction hasn't actually executed
3996 yet. If we were to evaluate the watchpoint expression
3997 now, we would get the old value, and therefore no change
3998 would seem to have occurred.
3999
4000 In order to make watchpoints work `right', we really need
4001 to complete the memory write, and then evaluate the
4002 watchpoint expression. We do this by single-stepping the
4003 target.
4004
4005 It may not be necessary to disable the watchpoint to stop over
4006 it. For example, the PA can (with some kernel cooperation)
4007 single step over a watchpoint without disabling the watchpoint.
4008
4009 It is far more common to need to disable a watchpoint to step
4010 the inferior over it. If we have non-steppable watchpoints,
4011 we must disable the current watchpoint; it's simplest to
4012 disable all watchpoints and breakpoints. */
4013 int hw_step = 1;
4014
4015 if (!target_have_steppable_watchpoint)
4016 {
4017 remove_breakpoints ();
4018 /* See comment in resume why we need to stop bypassing signals
4019 while breakpoints have been removed. */
4020 target_pass_signals (0, NULL);
4021 }
4022 /* Single step */
4023 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4024 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4025 waiton_ptid = ecs->ptid;
4026 if (target_have_steppable_watchpoint)
4027 infwait_state = infwait_step_watch_state;
4028 else
4029 infwait_state = infwait_nonstep_watch_state;
4030 prepare_to_wait (ecs);
4031 return;
4032 }
4033
4034 clear_stop_func (ecs);
4035 ecs->event_thread->stepping_over_breakpoint = 0;
4036 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4037 ecs->event_thread->control.stop_step = 0;
4038 stop_print_frame = 1;
4039 ecs->random_signal = 0;
4040 stopped_by_random_signal = 0;
4041
4042 /* Hide inlined functions starting here, unless we just performed stepi or
4043 nexti. After stepi and nexti, always show the innermost frame (not any
4044 inline function call sites). */
4045 if (ecs->event_thread->control.step_range_end != 1)
4046 {
4047 struct address_space *aspace =
4048 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4049
4050 /* skip_inline_frames is expensive, so we avoid it if we can
4051 determine that the address is one where functions cannot have
4052 been inlined. This improves performance with inferiors that
4053 load a lot of shared libraries, because the solib event
4054 breakpoint is defined as the address of a function (i.e. not
4055 inline). Note that we have to check the previous PC as well
4056 as the current one to catch cases when we have just
4057 single-stepped off a breakpoint prior to reinstating it.
4058 Note that we're assuming that the code we single-step to is
4059 not inline, but that's not definitive: there's nothing
4060 preventing the event breakpoint function from containing
4061 inlined code, and the single-step ending up there. If the
4062 user had set a breakpoint on that inlined code, the missing
4063 skip_inline_frames call would break things. Fortunately
4064 that's an extremely unlikely scenario. */
4065 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4066 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4067 && ecs->event_thread->control.trap_expected
4068 && pc_at_non_inline_function (aspace,
4069 ecs->event_thread->prev_pc,
4070 &ecs->ws)))
4071 {
4072 skip_inline_frames (ecs->ptid);
4073
4074 /* Re-fetch current thread's frame in case that invalidated
4075 the frame cache. */
4076 frame = get_current_frame ();
4077 gdbarch = get_frame_arch (frame);
4078 }
4079 }
4080
4081 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4082 && ecs->event_thread->control.trap_expected
4083 && gdbarch_single_step_through_delay_p (gdbarch)
4084 && currently_stepping (ecs->event_thread))
4085 {
4086 /* We're trying to step off a breakpoint. Turns out that we're
4087 also on an instruction that needs to be stepped multiple
4088 times before it's been fully executing. E.g., architectures
4089 with a delay slot. It needs to be stepped twice, once for
4090 the instruction and once for the delay slot. */
4091 int step_through_delay
4092 = gdbarch_single_step_through_delay (gdbarch, frame);
4093
4094 if (debug_infrun && step_through_delay)
4095 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4096 if (ecs->event_thread->control.step_range_end == 0
4097 && step_through_delay)
4098 {
4099 /* The user issued a continue when stopped at a breakpoint.
4100 Set up for another trap and get out of here. */
4101 ecs->event_thread->stepping_over_breakpoint = 1;
4102 keep_going (ecs);
4103 return;
4104 }
4105 else if (step_through_delay)
4106 {
4107 /* The user issued a step when stopped at a breakpoint.
4108 Maybe we should stop, maybe we should not - the delay
4109 slot *might* correspond to a line of source. In any
4110 case, don't decide that here, just set
4111 ecs->stepping_over_breakpoint, making sure we
4112 single-step again before breakpoints are re-inserted. */
4113 ecs->event_thread->stepping_over_breakpoint = 1;
4114 }
4115 }
4116
4117 /* Look at the cause of the stop, and decide what to do.
4118 The alternatives are:
4119 1) stop_stepping and return; to really stop and return to the debugger,
4120 2) keep_going and return to start up again
4121 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4122 3) set ecs->random_signal to 1, and the decision between 1 and 2
4123 will be made according to the signal handling tables. */
4124
4125 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4126 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4127 || stop_soon == STOP_QUIETLY_REMOTE)
4128 {
4129 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4130 && stop_after_trap)
4131 {
4132 if (debug_infrun)
4133 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4134 stop_print_frame = 0;
4135 stop_stepping (ecs);
4136 return;
4137 }
4138
4139 /* This is originated from start_remote(), start_inferior() and
4140 shared libraries hook functions. */
4141 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4142 {
4143 if (debug_infrun)
4144 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4145 stop_stepping (ecs);
4146 return;
4147 }
4148
4149 /* This originates from attach_command(). We need to overwrite
4150 the stop_signal here, because some kernels don't ignore a
4151 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4152 See more comments in inferior.h. On the other hand, if we
4153 get a non-SIGSTOP, report it to the user - assume the backend
4154 will handle the SIGSTOP if it should show up later.
4155
4156 Also consider that the attach is complete when we see a
4157 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4158 target extended-remote report it instead of a SIGSTOP
4159 (e.g. gdbserver). We already rely on SIGTRAP being our
4160 signal, so this is no exception.
4161
4162 Also consider that the attach is complete when we see a
4163 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4164 the target to stop all threads of the inferior, in case the
4165 low level attach operation doesn't stop them implicitly. If
4166 they weren't stopped implicitly, then the stub will report a
4167 GDB_SIGNAL_0, meaning: stopped for no particular reason
4168 other than GDB's request. */
4169 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4170 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4171 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4172 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4173 {
4174 stop_stepping (ecs);
4175 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4176 return;
4177 }
4178
4179 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4180 handles this event. */
4181 ecs->event_thread->control.stop_bpstat
4182 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4183 stop_pc, ecs->ptid, &ecs->ws);
4184
4185 /* Following in case break condition called a
4186 function. */
4187 stop_print_frame = 1;
4188
4189 /* This is where we handle "moribund" watchpoints. Unlike
4190 software breakpoints traps, hardware watchpoint traps are
4191 always distinguishable from random traps. If no high-level
4192 watchpoint is associated with the reported stop data address
4193 anymore, then the bpstat does not explain the signal ---
4194 simply make sure to ignore it if `stopped_by_watchpoint' is
4195 set. */
4196
4197 if (debug_infrun
4198 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4199 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4200 && stopped_by_watchpoint)
4201 fprintf_unfiltered (gdb_stdlog,
4202 "infrun: no user watchpoint explains "
4203 "watchpoint SIGTRAP, ignoring\n");
4204
4205 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4206 at one stage in the past included checks for an inferior
4207 function call's call dummy's return breakpoint. The original
4208 comment, that went with the test, read:
4209
4210 ``End of a stack dummy. Some systems (e.g. Sony news) give
4211 another signal besides SIGTRAP, so check here as well as
4212 above.''
4213
4214 If someone ever tries to get call dummys on a
4215 non-executable stack to work (where the target would stop
4216 with something like a SIGSEGV), then those tests might need
4217 to be re-instated. Given, however, that the tests were only
4218 enabled when momentary breakpoints were not being used, I
4219 suspect that it won't be the case.
4220
4221 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4222 be necessary for call dummies on a non-executable stack on
4223 SPARC. */
4224
4225 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4226 ecs->random_signal
4227 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4228 || stopped_by_watchpoint
4229 || ecs->event_thread->control.trap_expected
4230 || (ecs->event_thread->control.step_range_end
4231 && (ecs->event_thread->control.step_resume_breakpoint
4232 == NULL)));
4233 else
4234 {
4235 ecs->random_signal = !bpstat_explains_signal
4236 (ecs->event_thread->control.stop_bpstat);
4237 if (!ecs->random_signal)
4238 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4239 }
4240 }
4241
4242 /* When we reach this point, we've pretty much decided
4243 that the reason for stopping must've been a random
4244 (unexpected) signal. */
4245
4246 else
4247 ecs->random_signal = 1;
4248
4249 process_event_stop_test:
4250
4251 /* Re-fetch current thread's frame in case we did a
4252 "goto process_event_stop_test" above. */
4253 frame = get_current_frame ();
4254 gdbarch = get_frame_arch (frame);
4255
4256 /* For the program's own signals, act according to
4257 the signal handling tables. */
4258
4259 if (ecs->random_signal)
4260 {
4261 /* Signal not for debugging purposes. */
4262 int printed = 0;
4263 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4264
4265 if (debug_infrun)
4266 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4267 ecs->event_thread->suspend.stop_signal);
4268
4269 stopped_by_random_signal = 1;
4270
4271 if (signal_print[ecs->event_thread->suspend.stop_signal])
4272 {
4273 printed = 1;
4274 target_terminal_ours_for_output ();
4275 print_signal_received_reason
4276 (ecs->event_thread->suspend.stop_signal);
4277 }
4278 /* Always stop on signals if we're either just gaining control
4279 of the program, or the user explicitly requested this thread
4280 to remain stopped. */
4281 if (stop_soon != NO_STOP_QUIETLY
4282 || ecs->event_thread->stop_requested
4283 || (!inf->detaching
4284 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4285 {
4286 stop_stepping (ecs);
4287 return;
4288 }
4289 /* If not going to stop, give terminal back
4290 if we took it away. */
4291 else if (printed)
4292 target_terminal_inferior ();
4293
4294 /* Clear the signal if it should not be passed. */
4295 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4296 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4297
4298 if (ecs->event_thread->prev_pc == stop_pc
4299 && ecs->event_thread->control.trap_expected
4300 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4301 {
4302 /* We were just starting a new sequence, attempting to
4303 single-step off of a breakpoint and expecting a SIGTRAP.
4304 Instead this signal arrives. This signal will take us out
4305 of the stepping range so GDB needs to remember to, when
4306 the signal handler returns, resume stepping off that
4307 breakpoint. */
4308 /* To simplify things, "continue" is forced to use the same
4309 code paths as single-step - set a breakpoint at the
4310 signal return address and then, once hit, step off that
4311 breakpoint. */
4312 if (debug_infrun)
4313 fprintf_unfiltered (gdb_stdlog,
4314 "infrun: signal arrived while stepping over "
4315 "breakpoint\n");
4316
4317 insert_hp_step_resume_breakpoint_at_frame (frame);
4318 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4319 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4320 ecs->event_thread->control.trap_expected = 0;
4321 keep_going (ecs);
4322 return;
4323 }
4324
4325 if (ecs->event_thread->control.step_range_end != 0
4326 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4327 && (ecs->event_thread->control.step_range_start <= stop_pc
4328 && stop_pc < ecs->event_thread->control.step_range_end)
4329 && frame_id_eq (get_stack_frame_id (frame),
4330 ecs->event_thread->control.step_stack_frame_id)
4331 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4332 {
4333 /* The inferior is about to take a signal that will take it
4334 out of the single step range. Set a breakpoint at the
4335 current PC (which is presumably where the signal handler
4336 will eventually return) and then allow the inferior to
4337 run free.
4338
4339 Note that this is only needed for a signal delivered
4340 while in the single-step range. Nested signals aren't a
4341 problem as they eventually all return. */
4342 if (debug_infrun)
4343 fprintf_unfiltered (gdb_stdlog,
4344 "infrun: signal may take us out of "
4345 "single-step range\n");
4346
4347 insert_hp_step_resume_breakpoint_at_frame (frame);
4348 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4349 ecs->event_thread->control.trap_expected = 0;
4350 keep_going (ecs);
4351 return;
4352 }
4353
4354 /* Note: step_resume_breakpoint may be non-NULL. This occures
4355 when either there's a nested signal, or when there's a
4356 pending signal enabled just as the signal handler returns
4357 (leaving the inferior at the step-resume-breakpoint without
4358 actually executing it). Either way continue until the
4359 breakpoint is really hit. */
4360 }
4361 else
4362 {
4363 /* Handle cases caused by hitting a breakpoint. */
4364
4365 CORE_ADDR jmp_buf_pc;
4366 struct bpstat_what what;
4367
4368 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4369
4370 if (what.call_dummy)
4371 {
4372 stop_stack_dummy = what.call_dummy;
4373 }
4374
4375 /* If we hit an internal event that triggers symbol changes, the
4376 current frame will be invalidated within bpstat_what (e.g.,
4377 if we hit an internal solib event). Re-fetch it. */
4378 frame = get_current_frame ();
4379 gdbarch = get_frame_arch (frame);
4380
4381 switch (what.main_action)
4382 {
4383 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4384 /* If we hit the breakpoint at longjmp while stepping, we
4385 install a momentary breakpoint at the target of the
4386 jmp_buf. */
4387
4388 if (debug_infrun)
4389 fprintf_unfiltered (gdb_stdlog,
4390 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4391
4392 ecs->event_thread->stepping_over_breakpoint = 1;
4393
4394 if (what.is_longjmp)
4395 {
4396 struct value *arg_value;
4397
4398 /* If we set the longjmp breakpoint via a SystemTap
4399 probe, then use it to extract the arguments. The
4400 destination PC is the third argument to the
4401 probe. */
4402 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4403 if (arg_value)
4404 jmp_buf_pc = value_as_address (arg_value);
4405 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4406 || !gdbarch_get_longjmp_target (gdbarch,
4407 frame, &jmp_buf_pc))
4408 {
4409 if (debug_infrun)
4410 fprintf_unfiltered (gdb_stdlog,
4411 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4412 "(!gdbarch_get_longjmp_target)\n");
4413 keep_going (ecs);
4414 return;
4415 }
4416
4417 /* Insert a breakpoint at resume address. */
4418 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4419 }
4420 else
4421 check_exception_resume (ecs, frame);
4422 keep_going (ecs);
4423 return;
4424
4425 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4426 {
4427 struct frame_info *init_frame;
4428
4429 /* There are several cases to consider.
4430
4431 1. The initiating frame no longer exists. In this case
4432 we must stop, because the exception or longjmp has gone
4433 too far.
4434
4435 2. The initiating frame exists, and is the same as the
4436 current frame. We stop, because the exception or
4437 longjmp has been caught.
4438
4439 3. The initiating frame exists and is different from
4440 the current frame. This means the exception or longjmp
4441 has been caught beneath the initiating frame, so keep
4442 going.
4443
4444 4. longjmp breakpoint has been placed just to protect
4445 against stale dummy frames and user is not interested
4446 in stopping around longjmps. */
4447
4448 if (debug_infrun)
4449 fprintf_unfiltered (gdb_stdlog,
4450 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4451
4452 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4453 != NULL);
4454 delete_exception_resume_breakpoint (ecs->event_thread);
4455
4456 if (what.is_longjmp)
4457 {
4458 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4459
4460 if (!frame_id_p (ecs->event_thread->initiating_frame))
4461 {
4462 /* Case 4. */
4463 keep_going (ecs);
4464 return;
4465 }
4466 }
4467
4468 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4469
4470 if (init_frame)
4471 {
4472 struct frame_id current_id
4473 = get_frame_id (get_current_frame ());
4474 if (frame_id_eq (current_id,
4475 ecs->event_thread->initiating_frame))
4476 {
4477 /* Case 2. Fall through. */
4478 }
4479 else
4480 {
4481 /* Case 3. */
4482 keep_going (ecs);
4483 return;
4484 }
4485 }
4486
4487 /* For Cases 1 and 2, remove the step-resume breakpoint,
4488 if it exists. */
4489 delete_step_resume_breakpoint (ecs->event_thread);
4490
4491 ecs->event_thread->control.stop_step = 1;
4492 print_end_stepping_range_reason ();
4493 stop_stepping (ecs);
4494 }
4495 return;
4496
4497 case BPSTAT_WHAT_SINGLE:
4498 if (debug_infrun)
4499 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4500 ecs->event_thread->stepping_over_breakpoint = 1;
4501 /* Still need to check other stuff, at least the case where
4502 we are stepping and step out of the right range. */
4503 break;
4504
4505 case BPSTAT_WHAT_STEP_RESUME:
4506 if (debug_infrun)
4507 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4508
4509 delete_step_resume_breakpoint (ecs->event_thread);
4510 if (ecs->event_thread->control.proceed_to_finish
4511 && execution_direction == EXEC_REVERSE)
4512 {
4513 struct thread_info *tp = ecs->event_thread;
4514
4515 /* We are finishing a function in reverse, and just hit
4516 the step-resume breakpoint at the start address of
4517 the function, and we're almost there -- just need to
4518 back up by one more single-step, which should take us
4519 back to the function call. */
4520 tp->control.step_range_start = tp->control.step_range_end = 1;
4521 keep_going (ecs);
4522 return;
4523 }
4524 fill_in_stop_func (gdbarch, ecs);
4525 if (stop_pc == ecs->stop_func_start
4526 && execution_direction == EXEC_REVERSE)
4527 {
4528 /* We are stepping over a function call in reverse, and
4529 just hit the step-resume breakpoint at the start
4530 address of the function. Go back to single-stepping,
4531 which should take us back to the function call. */
4532 ecs->event_thread->stepping_over_breakpoint = 1;
4533 keep_going (ecs);
4534 return;
4535 }
4536 break;
4537
4538 case BPSTAT_WHAT_STOP_NOISY:
4539 if (debug_infrun)
4540 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4541 stop_print_frame = 1;
4542
4543 /* We are about to nuke the step_resume_breakpointt via the
4544 cleanup chain, so no need to worry about it here. */
4545
4546 stop_stepping (ecs);
4547 return;
4548
4549 case BPSTAT_WHAT_STOP_SILENT:
4550 if (debug_infrun)
4551 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4552 stop_print_frame = 0;
4553
4554 /* We are about to nuke the step_resume_breakpoin via the
4555 cleanup chain, so no need to worry about it here. */
4556
4557 stop_stepping (ecs);
4558 return;
4559
4560 case BPSTAT_WHAT_HP_STEP_RESUME:
4561 if (debug_infrun)
4562 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4563
4564 delete_step_resume_breakpoint (ecs->event_thread);
4565 if (ecs->event_thread->step_after_step_resume_breakpoint)
4566 {
4567 /* Back when the step-resume breakpoint was inserted, we
4568 were trying to single-step off a breakpoint. Go back
4569 to doing that. */
4570 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4571 ecs->event_thread->stepping_over_breakpoint = 1;
4572 keep_going (ecs);
4573 return;
4574 }
4575 break;
4576
4577 case BPSTAT_WHAT_KEEP_CHECKING:
4578 break;
4579 }
4580 }
4581
4582 /* We come here if we hit a breakpoint but should not
4583 stop for it. Possibly we also were stepping
4584 and should stop for that. So fall through and
4585 test for stepping. But, if not stepping,
4586 do not stop. */
4587
4588 /* In all-stop mode, if we're currently stepping but have stopped in
4589 some other thread, we need to switch back to the stepped thread. */
4590 if (!non_stop)
4591 {
4592 struct thread_info *tp;
4593
4594 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4595 ecs->event_thread);
4596 if (tp)
4597 {
4598 /* However, if the current thread is blocked on some internal
4599 breakpoint, and we simply need to step over that breakpoint
4600 to get it going again, do that first. */
4601 if ((ecs->event_thread->control.trap_expected
4602 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
4603 || ecs->event_thread->stepping_over_breakpoint)
4604 {
4605 keep_going (ecs);
4606 return;
4607 }
4608
4609 /* If the stepping thread exited, then don't try to switch
4610 back and resume it, which could fail in several different
4611 ways depending on the target. Instead, just keep going.
4612
4613 We can find a stepping dead thread in the thread list in
4614 two cases:
4615
4616 - The target supports thread exit events, and when the
4617 target tries to delete the thread from the thread list,
4618 inferior_ptid pointed at the exiting thread. In such
4619 case, calling delete_thread does not really remove the
4620 thread from the list; instead, the thread is left listed,
4621 with 'exited' state.
4622
4623 - The target's debug interface does not support thread
4624 exit events, and so we have no idea whatsoever if the
4625 previously stepping thread is still alive. For that
4626 reason, we need to synchronously query the target
4627 now. */
4628 if (is_exited (tp->ptid)
4629 || !target_thread_alive (tp->ptid))
4630 {
4631 if (debug_infrun)
4632 fprintf_unfiltered (gdb_stdlog,
4633 "infrun: not switching back to "
4634 "stepped thread, it has vanished\n");
4635
4636 delete_thread (tp->ptid);
4637 keep_going (ecs);
4638 return;
4639 }
4640
4641 /* Otherwise, we no longer expect a trap in the current thread.
4642 Clear the trap_expected flag before switching back -- this is
4643 what keep_going would do as well, if we called it. */
4644 ecs->event_thread->control.trap_expected = 0;
4645
4646 if (debug_infrun)
4647 fprintf_unfiltered (gdb_stdlog,
4648 "infrun: switching back to stepped thread\n");
4649
4650 ecs->event_thread = tp;
4651 ecs->ptid = tp->ptid;
4652 context_switch (ecs->ptid);
4653 keep_going (ecs);
4654 return;
4655 }
4656 }
4657
4658 if (ecs->event_thread->control.step_resume_breakpoint)
4659 {
4660 if (debug_infrun)
4661 fprintf_unfiltered (gdb_stdlog,
4662 "infrun: step-resume breakpoint is inserted\n");
4663
4664 /* Having a step-resume breakpoint overrides anything
4665 else having to do with stepping commands until
4666 that breakpoint is reached. */
4667 keep_going (ecs);
4668 return;
4669 }
4670
4671 if (ecs->event_thread->control.step_range_end == 0)
4672 {
4673 if (debug_infrun)
4674 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4675 /* Likewise if we aren't even stepping. */
4676 keep_going (ecs);
4677 return;
4678 }
4679
4680 /* Re-fetch current thread's frame in case the code above caused
4681 the frame cache to be re-initialized, making our FRAME variable
4682 a dangling pointer. */
4683 frame = get_current_frame ();
4684 gdbarch = get_frame_arch (frame);
4685 fill_in_stop_func (gdbarch, ecs);
4686
4687 /* If stepping through a line, keep going if still within it.
4688
4689 Note that step_range_end is the address of the first instruction
4690 beyond the step range, and NOT the address of the last instruction
4691 within it!
4692
4693 Note also that during reverse execution, we may be stepping
4694 through a function epilogue and therefore must detect when
4695 the current-frame changes in the middle of a line. */
4696
4697 if (stop_pc >= ecs->event_thread->control.step_range_start
4698 && stop_pc < ecs->event_thread->control.step_range_end
4699 && (execution_direction != EXEC_REVERSE
4700 || frame_id_eq (get_frame_id (frame),
4701 ecs->event_thread->control.step_frame_id)))
4702 {
4703 if (debug_infrun)
4704 fprintf_unfiltered
4705 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4706 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4707 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4708
4709 /* When stepping backward, stop at beginning of line range
4710 (unless it's the function entry point, in which case
4711 keep going back to the call point). */
4712 if (stop_pc == ecs->event_thread->control.step_range_start
4713 && stop_pc != ecs->stop_func_start
4714 && execution_direction == EXEC_REVERSE)
4715 {
4716 ecs->event_thread->control.stop_step = 1;
4717 print_end_stepping_range_reason ();
4718 stop_stepping (ecs);
4719 }
4720 else
4721 keep_going (ecs);
4722
4723 return;
4724 }
4725
4726 /* We stepped out of the stepping range. */
4727
4728 /* If we are stepping at the source level and entered the runtime
4729 loader dynamic symbol resolution code...
4730
4731 EXEC_FORWARD: we keep on single stepping until we exit the run
4732 time loader code and reach the callee's address.
4733
4734 EXEC_REVERSE: we've already executed the callee (backward), and
4735 the runtime loader code is handled just like any other
4736 undebuggable function call. Now we need only keep stepping
4737 backward through the trampoline code, and that's handled further
4738 down, so there is nothing for us to do here. */
4739
4740 if (execution_direction != EXEC_REVERSE
4741 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4742 && in_solib_dynsym_resolve_code (stop_pc))
4743 {
4744 CORE_ADDR pc_after_resolver =
4745 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4746
4747 if (debug_infrun)
4748 fprintf_unfiltered (gdb_stdlog,
4749 "infrun: stepped into dynsym resolve code\n");
4750
4751 if (pc_after_resolver)
4752 {
4753 /* Set up a step-resume breakpoint at the address
4754 indicated by SKIP_SOLIB_RESOLVER. */
4755 struct symtab_and_line sr_sal;
4756
4757 init_sal (&sr_sal);
4758 sr_sal.pc = pc_after_resolver;
4759 sr_sal.pspace = get_frame_program_space (frame);
4760
4761 insert_step_resume_breakpoint_at_sal (gdbarch,
4762 sr_sal, null_frame_id);
4763 }
4764
4765 keep_going (ecs);
4766 return;
4767 }
4768
4769 if (ecs->event_thread->control.step_range_end != 1
4770 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4771 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4772 && get_frame_type (frame) == SIGTRAMP_FRAME)
4773 {
4774 if (debug_infrun)
4775 fprintf_unfiltered (gdb_stdlog,
4776 "infrun: stepped into signal trampoline\n");
4777 /* The inferior, while doing a "step" or "next", has ended up in
4778 a signal trampoline (either by a signal being delivered or by
4779 the signal handler returning). Just single-step until the
4780 inferior leaves the trampoline (either by calling the handler
4781 or returning). */
4782 keep_going (ecs);
4783 return;
4784 }
4785
4786 /* If we're in the return path from a shared library trampoline,
4787 we want to proceed through the trampoline when stepping. */
4788 /* macro/2012-04-25: This needs to come before the subroutine
4789 call check below as on some targets return trampolines look
4790 like subroutine calls (MIPS16 return thunks). */
4791 if (gdbarch_in_solib_return_trampoline (gdbarch,
4792 stop_pc, ecs->stop_func_name)
4793 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4794 {
4795 /* Determine where this trampoline returns. */
4796 CORE_ADDR real_stop_pc;
4797
4798 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4799
4800 if (debug_infrun)
4801 fprintf_unfiltered (gdb_stdlog,
4802 "infrun: stepped into solib return tramp\n");
4803
4804 /* Only proceed through if we know where it's going. */
4805 if (real_stop_pc)
4806 {
4807 /* And put the step-breakpoint there and go until there. */
4808 struct symtab_and_line sr_sal;
4809
4810 init_sal (&sr_sal); /* initialize to zeroes */
4811 sr_sal.pc = real_stop_pc;
4812 sr_sal.section = find_pc_overlay (sr_sal.pc);
4813 sr_sal.pspace = get_frame_program_space (frame);
4814
4815 /* Do not specify what the fp should be when we stop since
4816 on some machines the prologue is where the new fp value
4817 is established. */
4818 insert_step_resume_breakpoint_at_sal (gdbarch,
4819 sr_sal, null_frame_id);
4820
4821 /* Restart without fiddling with the step ranges or
4822 other state. */
4823 keep_going (ecs);
4824 return;
4825 }
4826 }
4827
4828 /* Check for subroutine calls. The check for the current frame
4829 equalling the step ID is not necessary - the check of the
4830 previous frame's ID is sufficient - but it is a common case and
4831 cheaper than checking the previous frame's ID.
4832
4833 NOTE: frame_id_eq will never report two invalid frame IDs as
4834 being equal, so to get into this block, both the current and
4835 previous frame must have valid frame IDs. */
4836 /* The outer_frame_id check is a heuristic to detect stepping
4837 through startup code. If we step over an instruction which
4838 sets the stack pointer from an invalid value to a valid value,
4839 we may detect that as a subroutine call from the mythical
4840 "outermost" function. This could be fixed by marking
4841 outermost frames as !stack_p,code_p,special_p. Then the
4842 initial outermost frame, before sp was valid, would
4843 have code_addr == &_start. See the comment in frame_id_eq
4844 for more. */
4845 if (!frame_id_eq (get_stack_frame_id (frame),
4846 ecs->event_thread->control.step_stack_frame_id)
4847 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4848 ecs->event_thread->control.step_stack_frame_id)
4849 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4850 outer_frame_id)
4851 || step_start_function != find_pc_function (stop_pc))))
4852 {
4853 CORE_ADDR real_stop_pc;
4854
4855 if (debug_infrun)
4856 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4857
4858 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4859 || ((ecs->event_thread->control.step_range_end == 1)
4860 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4861 ecs->stop_func_start)))
4862 {
4863 /* I presume that step_over_calls is only 0 when we're
4864 supposed to be stepping at the assembly language level
4865 ("stepi"). Just stop. */
4866 /* Also, maybe we just did a "nexti" inside a prolog, so we
4867 thought it was a subroutine call but it was not. Stop as
4868 well. FENN */
4869 /* And this works the same backward as frontward. MVS */
4870 ecs->event_thread->control.stop_step = 1;
4871 print_end_stepping_range_reason ();
4872 stop_stepping (ecs);
4873 return;
4874 }
4875
4876 /* Reverse stepping through solib trampolines. */
4877
4878 if (execution_direction == EXEC_REVERSE
4879 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4880 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4881 || (ecs->stop_func_start == 0
4882 && in_solib_dynsym_resolve_code (stop_pc))))
4883 {
4884 /* Any solib trampoline code can be handled in reverse
4885 by simply continuing to single-step. We have already
4886 executed the solib function (backwards), and a few
4887 steps will take us back through the trampoline to the
4888 caller. */
4889 keep_going (ecs);
4890 return;
4891 }
4892
4893 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4894 {
4895 /* We're doing a "next".
4896
4897 Normal (forward) execution: set a breakpoint at the
4898 callee's return address (the address at which the caller
4899 will resume).
4900
4901 Reverse (backward) execution. set the step-resume
4902 breakpoint at the start of the function that we just
4903 stepped into (backwards), and continue to there. When we
4904 get there, we'll need to single-step back to the caller. */
4905
4906 if (execution_direction == EXEC_REVERSE)
4907 {
4908 struct symtab_and_line sr_sal;
4909
4910 /* Normal function call return (static or dynamic). */
4911 init_sal (&sr_sal);
4912 sr_sal.pc = ecs->stop_func_start;
4913 sr_sal.pspace = get_frame_program_space (frame);
4914 insert_step_resume_breakpoint_at_sal (gdbarch,
4915 sr_sal, null_frame_id);
4916 }
4917 else
4918 insert_step_resume_breakpoint_at_caller (frame);
4919
4920 keep_going (ecs);
4921 return;
4922 }
4923
4924 /* If we are in a function call trampoline (a stub between the
4925 calling routine and the real function), locate the real
4926 function. That's what tells us (a) whether we want to step
4927 into it at all, and (b) what prologue we want to run to the
4928 end of, if we do step into it. */
4929 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4930 if (real_stop_pc == 0)
4931 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4932 if (real_stop_pc != 0)
4933 ecs->stop_func_start = real_stop_pc;
4934
4935 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4936 {
4937 struct symtab_and_line sr_sal;
4938
4939 init_sal (&sr_sal);
4940 sr_sal.pc = ecs->stop_func_start;
4941 sr_sal.pspace = get_frame_program_space (frame);
4942
4943 insert_step_resume_breakpoint_at_sal (gdbarch,
4944 sr_sal, null_frame_id);
4945 keep_going (ecs);
4946 return;
4947 }
4948
4949 /* If we have line number information for the function we are
4950 thinking of stepping into and the function isn't on the skip
4951 list, step into it.
4952
4953 If there are several symtabs at that PC (e.g. with include
4954 files), just want to know whether *any* of them have line
4955 numbers. find_pc_line handles this. */
4956 {
4957 struct symtab_and_line tmp_sal;
4958
4959 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4960 if (tmp_sal.line != 0
4961 && !function_pc_is_marked_for_skip (ecs->stop_func_start))
4962 {
4963 if (execution_direction == EXEC_REVERSE)
4964 handle_step_into_function_backward (gdbarch, ecs);
4965 else
4966 handle_step_into_function (gdbarch, ecs);
4967 return;
4968 }
4969 }
4970
4971 /* If we have no line number and the step-stop-if-no-debug is
4972 set, we stop the step so that the user has a chance to switch
4973 in assembly mode. */
4974 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4975 && step_stop_if_no_debug)
4976 {
4977 ecs->event_thread->control.stop_step = 1;
4978 print_end_stepping_range_reason ();
4979 stop_stepping (ecs);
4980 return;
4981 }
4982
4983 if (execution_direction == EXEC_REVERSE)
4984 {
4985 /* Set a breakpoint at callee's start address.
4986 From there we can step once and be back in the caller. */
4987 struct symtab_and_line sr_sal;
4988
4989 init_sal (&sr_sal);
4990 sr_sal.pc = ecs->stop_func_start;
4991 sr_sal.pspace = get_frame_program_space (frame);
4992 insert_step_resume_breakpoint_at_sal (gdbarch,
4993 sr_sal, null_frame_id);
4994 }
4995 else
4996 /* Set a breakpoint at callee's return address (the address
4997 at which the caller will resume). */
4998 insert_step_resume_breakpoint_at_caller (frame);
4999
5000 keep_going (ecs);
5001 return;
5002 }
5003
5004 /* Reverse stepping through solib trampolines. */
5005
5006 if (execution_direction == EXEC_REVERSE
5007 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5008 {
5009 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5010 || (ecs->stop_func_start == 0
5011 && in_solib_dynsym_resolve_code (stop_pc)))
5012 {
5013 /* Any solib trampoline code can be handled in reverse
5014 by simply continuing to single-step. We have already
5015 executed the solib function (backwards), and a few
5016 steps will take us back through the trampoline to the
5017 caller. */
5018 keep_going (ecs);
5019 return;
5020 }
5021 else if (in_solib_dynsym_resolve_code (stop_pc))
5022 {
5023 /* Stepped backward into the solib dynsym resolver.
5024 Set a breakpoint at its start and continue, then
5025 one more step will take us out. */
5026 struct symtab_and_line sr_sal;
5027
5028 init_sal (&sr_sal);
5029 sr_sal.pc = ecs->stop_func_start;
5030 sr_sal.pspace = get_frame_program_space (frame);
5031 insert_step_resume_breakpoint_at_sal (gdbarch,
5032 sr_sal, null_frame_id);
5033 keep_going (ecs);
5034 return;
5035 }
5036 }
5037
5038 stop_pc_sal = find_pc_line (stop_pc, 0);
5039
5040 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5041 the trampoline processing logic, however, there are some trampolines
5042 that have no names, so we should do trampoline handling first. */
5043 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5044 && ecs->stop_func_name == NULL
5045 && stop_pc_sal.line == 0)
5046 {
5047 if (debug_infrun)
5048 fprintf_unfiltered (gdb_stdlog,
5049 "infrun: stepped into undebuggable function\n");
5050
5051 /* The inferior just stepped into, or returned to, an
5052 undebuggable function (where there is no debugging information
5053 and no line number corresponding to the address where the
5054 inferior stopped). Since we want to skip this kind of code,
5055 we keep going until the inferior returns from this
5056 function - unless the user has asked us not to (via
5057 set step-mode) or we no longer know how to get back
5058 to the call site. */
5059 if (step_stop_if_no_debug
5060 || !frame_id_p (frame_unwind_caller_id (frame)))
5061 {
5062 /* If we have no line number and the step-stop-if-no-debug
5063 is set, we stop the step so that the user has a chance to
5064 switch in assembly mode. */
5065 ecs->event_thread->control.stop_step = 1;
5066 print_end_stepping_range_reason ();
5067 stop_stepping (ecs);
5068 return;
5069 }
5070 else
5071 {
5072 /* Set a breakpoint at callee's return address (the address
5073 at which the caller will resume). */
5074 insert_step_resume_breakpoint_at_caller (frame);
5075 keep_going (ecs);
5076 return;
5077 }
5078 }
5079
5080 if (ecs->event_thread->control.step_range_end == 1)
5081 {
5082 /* It is stepi or nexti. We always want to stop stepping after
5083 one instruction. */
5084 if (debug_infrun)
5085 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5086 ecs->event_thread->control.stop_step = 1;
5087 print_end_stepping_range_reason ();
5088 stop_stepping (ecs);
5089 return;
5090 }
5091
5092 if (stop_pc_sal.line == 0)
5093 {
5094 /* We have no line number information. That means to stop
5095 stepping (does this always happen right after one instruction,
5096 when we do "s" in a function with no line numbers,
5097 or can this happen as a result of a return or longjmp?). */
5098 if (debug_infrun)
5099 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5100 ecs->event_thread->control.stop_step = 1;
5101 print_end_stepping_range_reason ();
5102 stop_stepping (ecs);
5103 return;
5104 }
5105
5106 /* Look for "calls" to inlined functions, part one. If the inline
5107 frame machinery detected some skipped call sites, we have entered
5108 a new inline function. */
5109
5110 if (frame_id_eq (get_frame_id (get_current_frame ()),
5111 ecs->event_thread->control.step_frame_id)
5112 && inline_skipped_frames (ecs->ptid))
5113 {
5114 struct symtab_and_line call_sal;
5115
5116 if (debug_infrun)
5117 fprintf_unfiltered (gdb_stdlog,
5118 "infrun: stepped into inlined function\n");
5119
5120 find_frame_sal (get_current_frame (), &call_sal);
5121
5122 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5123 {
5124 /* For "step", we're going to stop. But if the call site
5125 for this inlined function is on the same source line as
5126 we were previously stepping, go down into the function
5127 first. Otherwise stop at the call site. */
5128
5129 if (call_sal.line == ecs->event_thread->current_line
5130 && call_sal.symtab == ecs->event_thread->current_symtab)
5131 step_into_inline_frame (ecs->ptid);
5132
5133 ecs->event_thread->control.stop_step = 1;
5134 print_end_stepping_range_reason ();
5135 stop_stepping (ecs);
5136 return;
5137 }
5138 else
5139 {
5140 /* For "next", we should stop at the call site if it is on a
5141 different source line. Otherwise continue through the
5142 inlined function. */
5143 if (call_sal.line == ecs->event_thread->current_line
5144 && call_sal.symtab == ecs->event_thread->current_symtab)
5145 keep_going (ecs);
5146 else
5147 {
5148 ecs->event_thread->control.stop_step = 1;
5149 print_end_stepping_range_reason ();
5150 stop_stepping (ecs);
5151 }
5152 return;
5153 }
5154 }
5155
5156 /* Look for "calls" to inlined functions, part two. If we are still
5157 in the same real function we were stepping through, but we have
5158 to go further up to find the exact frame ID, we are stepping
5159 through a more inlined call beyond its call site. */
5160
5161 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5162 && !frame_id_eq (get_frame_id (get_current_frame ()),
5163 ecs->event_thread->control.step_frame_id)
5164 && stepped_in_from (get_current_frame (),
5165 ecs->event_thread->control.step_frame_id))
5166 {
5167 if (debug_infrun)
5168 fprintf_unfiltered (gdb_stdlog,
5169 "infrun: stepping through inlined function\n");
5170
5171 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5172 keep_going (ecs);
5173 else
5174 {
5175 ecs->event_thread->control.stop_step = 1;
5176 print_end_stepping_range_reason ();
5177 stop_stepping (ecs);
5178 }
5179 return;
5180 }
5181
5182 if ((stop_pc == stop_pc_sal.pc)
5183 && (ecs->event_thread->current_line != stop_pc_sal.line
5184 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5185 {
5186 /* We are at the start of a different line. So stop. Note that
5187 we don't stop if we step into the middle of a different line.
5188 That is said to make things like for (;;) statements work
5189 better. */
5190 if (debug_infrun)
5191 fprintf_unfiltered (gdb_stdlog,
5192 "infrun: stepped to a different line\n");
5193 ecs->event_thread->control.stop_step = 1;
5194 print_end_stepping_range_reason ();
5195 stop_stepping (ecs);
5196 return;
5197 }
5198
5199 /* We aren't done stepping.
5200
5201 Optimize by setting the stepping range to the line.
5202 (We might not be in the original line, but if we entered a
5203 new line in mid-statement, we continue stepping. This makes
5204 things like for(;;) statements work better.) */
5205
5206 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5207 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5208 set_step_info (frame, stop_pc_sal);
5209
5210 if (debug_infrun)
5211 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5212 keep_going (ecs);
5213 }
5214
5215 /* Is thread TP in the middle of single-stepping? */
5216
5217 static int
5218 currently_stepping (struct thread_info *tp)
5219 {
5220 return ((tp->control.step_range_end
5221 && tp->control.step_resume_breakpoint == NULL)
5222 || tp->control.trap_expected
5223 || bpstat_should_step ());
5224 }
5225
5226 /* Returns true if any thread *but* the one passed in "data" is in the
5227 middle of stepping or of handling a "next". */
5228
5229 static int
5230 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5231 {
5232 if (tp == data)
5233 return 0;
5234
5235 return (tp->control.step_range_end
5236 || tp->control.trap_expected);
5237 }
5238
5239 /* Inferior has stepped into a subroutine call with source code that
5240 we should not step over. Do step to the first line of code in
5241 it. */
5242
5243 static void
5244 handle_step_into_function (struct gdbarch *gdbarch,
5245 struct execution_control_state *ecs)
5246 {
5247 struct symtab *s;
5248 struct symtab_and_line stop_func_sal, sr_sal;
5249
5250 fill_in_stop_func (gdbarch, ecs);
5251
5252 s = find_pc_symtab (stop_pc);
5253 if (s && s->language != language_asm)
5254 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5255 ecs->stop_func_start);
5256
5257 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5258 /* Use the step_resume_break to step until the end of the prologue,
5259 even if that involves jumps (as it seems to on the vax under
5260 4.2). */
5261 /* If the prologue ends in the middle of a source line, continue to
5262 the end of that source line (if it is still within the function).
5263 Otherwise, just go to end of prologue. */
5264 if (stop_func_sal.end
5265 && stop_func_sal.pc != ecs->stop_func_start
5266 && stop_func_sal.end < ecs->stop_func_end)
5267 ecs->stop_func_start = stop_func_sal.end;
5268
5269 /* Architectures which require breakpoint adjustment might not be able
5270 to place a breakpoint at the computed address. If so, the test
5271 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5272 ecs->stop_func_start to an address at which a breakpoint may be
5273 legitimately placed.
5274
5275 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5276 made, GDB will enter an infinite loop when stepping through
5277 optimized code consisting of VLIW instructions which contain
5278 subinstructions corresponding to different source lines. On
5279 FR-V, it's not permitted to place a breakpoint on any but the
5280 first subinstruction of a VLIW instruction. When a breakpoint is
5281 set, GDB will adjust the breakpoint address to the beginning of
5282 the VLIW instruction. Thus, we need to make the corresponding
5283 adjustment here when computing the stop address. */
5284
5285 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5286 {
5287 ecs->stop_func_start
5288 = gdbarch_adjust_breakpoint_address (gdbarch,
5289 ecs->stop_func_start);
5290 }
5291
5292 if (ecs->stop_func_start == stop_pc)
5293 {
5294 /* We are already there: stop now. */
5295 ecs->event_thread->control.stop_step = 1;
5296 print_end_stepping_range_reason ();
5297 stop_stepping (ecs);
5298 return;
5299 }
5300 else
5301 {
5302 /* Put the step-breakpoint there and go until there. */
5303 init_sal (&sr_sal); /* initialize to zeroes */
5304 sr_sal.pc = ecs->stop_func_start;
5305 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5306 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5307
5308 /* Do not specify what the fp should be when we stop since on
5309 some machines the prologue is where the new fp value is
5310 established. */
5311 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5312
5313 /* And make sure stepping stops right away then. */
5314 ecs->event_thread->control.step_range_end
5315 = ecs->event_thread->control.step_range_start;
5316 }
5317 keep_going (ecs);
5318 }
5319
5320 /* Inferior has stepped backward into a subroutine call with source
5321 code that we should not step over. Do step to the beginning of the
5322 last line of code in it. */
5323
5324 static void
5325 handle_step_into_function_backward (struct gdbarch *gdbarch,
5326 struct execution_control_state *ecs)
5327 {
5328 struct symtab *s;
5329 struct symtab_and_line stop_func_sal;
5330
5331 fill_in_stop_func (gdbarch, ecs);
5332
5333 s = find_pc_symtab (stop_pc);
5334 if (s && s->language != language_asm)
5335 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5336 ecs->stop_func_start);
5337
5338 stop_func_sal = find_pc_line (stop_pc, 0);
5339
5340 /* OK, we're just going to keep stepping here. */
5341 if (stop_func_sal.pc == stop_pc)
5342 {
5343 /* We're there already. Just stop stepping now. */
5344 ecs->event_thread->control.stop_step = 1;
5345 print_end_stepping_range_reason ();
5346 stop_stepping (ecs);
5347 }
5348 else
5349 {
5350 /* Else just reset the step range and keep going.
5351 No step-resume breakpoint, they don't work for
5352 epilogues, which can have multiple entry paths. */
5353 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5354 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5355 keep_going (ecs);
5356 }
5357 return;
5358 }
5359
5360 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5361 This is used to both functions and to skip over code. */
5362
5363 static void
5364 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5365 struct symtab_and_line sr_sal,
5366 struct frame_id sr_id,
5367 enum bptype sr_type)
5368 {
5369 /* There should never be more than one step-resume or longjmp-resume
5370 breakpoint per thread, so we should never be setting a new
5371 step_resume_breakpoint when one is already active. */
5372 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5373 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5374
5375 if (debug_infrun)
5376 fprintf_unfiltered (gdb_stdlog,
5377 "infrun: inserting step-resume breakpoint at %s\n",
5378 paddress (gdbarch, sr_sal.pc));
5379
5380 inferior_thread ()->control.step_resume_breakpoint
5381 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5382 }
5383
5384 void
5385 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5386 struct symtab_and_line sr_sal,
5387 struct frame_id sr_id)
5388 {
5389 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5390 sr_sal, sr_id,
5391 bp_step_resume);
5392 }
5393
5394 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5395 This is used to skip a potential signal handler.
5396
5397 This is called with the interrupted function's frame. The signal
5398 handler, when it returns, will resume the interrupted function at
5399 RETURN_FRAME.pc. */
5400
5401 static void
5402 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5403 {
5404 struct symtab_and_line sr_sal;
5405 struct gdbarch *gdbarch;
5406
5407 gdb_assert (return_frame != NULL);
5408 init_sal (&sr_sal); /* initialize to zeros */
5409
5410 gdbarch = get_frame_arch (return_frame);
5411 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5412 sr_sal.section = find_pc_overlay (sr_sal.pc);
5413 sr_sal.pspace = get_frame_program_space (return_frame);
5414
5415 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5416 get_stack_frame_id (return_frame),
5417 bp_hp_step_resume);
5418 }
5419
5420 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5421 is used to skip a function after stepping into it (for "next" or if
5422 the called function has no debugging information).
5423
5424 The current function has almost always been reached by single
5425 stepping a call or return instruction. NEXT_FRAME belongs to the
5426 current function, and the breakpoint will be set at the caller's
5427 resume address.
5428
5429 This is a separate function rather than reusing
5430 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5431 get_prev_frame, which may stop prematurely (see the implementation
5432 of frame_unwind_caller_id for an example). */
5433
5434 static void
5435 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5436 {
5437 struct symtab_and_line sr_sal;
5438 struct gdbarch *gdbarch;
5439
5440 /* We shouldn't have gotten here if we don't know where the call site
5441 is. */
5442 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5443
5444 init_sal (&sr_sal); /* initialize to zeros */
5445
5446 gdbarch = frame_unwind_caller_arch (next_frame);
5447 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5448 frame_unwind_caller_pc (next_frame));
5449 sr_sal.section = find_pc_overlay (sr_sal.pc);
5450 sr_sal.pspace = frame_unwind_program_space (next_frame);
5451
5452 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5453 frame_unwind_caller_id (next_frame));
5454 }
5455
5456 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5457 new breakpoint at the target of a jmp_buf. The handling of
5458 longjmp-resume uses the same mechanisms used for handling
5459 "step-resume" breakpoints. */
5460
5461 static void
5462 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5463 {
5464 /* There should never be more than one longjmp-resume breakpoint per
5465 thread, so we should never be setting a new
5466 longjmp_resume_breakpoint when one is already active. */
5467 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5468
5469 if (debug_infrun)
5470 fprintf_unfiltered (gdb_stdlog,
5471 "infrun: inserting longjmp-resume breakpoint at %s\n",
5472 paddress (gdbarch, pc));
5473
5474 inferior_thread ()->control.exception_resume_breakpoint =
5475 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5476 }
5477
5478 /* Insert an exception resume breakpoint. TP is the thread throwing
5479 the exception. The block B is the block of the unwinder debug hook
5480 function. FRAME is the frame corresponding to the call to this
5481 function. SYM is the symbol of the function argument holding the
5482 target PC of the exception. */
5483
5484 static void
5485 insert_exception_resume_breakpoint (struct thread_info *tp,
5486 struct block *b,
5487 struct frame_info *frame,
5488 struct symbol *sym)
5489 {
5490 volatile struct gdb_exception e;
5491
5492 /* We want to ignore errors here. */
5493 TRY_CATCH (e, RETURN_MASK_ERROR)
5494 {
5495 struct symbol *vsym;
5496 struct value *value;
5497 CORE_ADDR handler;
5498 struct breakpoint *bp;
5499
5500 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5501 value = read_var_value (vsym, frame);
5502 /* If the value was optimized out, revert to the old behavior. */
5503 if (! value_optimized_out (value))
5504 {
5505 handler = value_as_address (value);
5506
5507 if (debug_infrun)
5508 fprintf_unfiltered (gdb_stdlog,
5509 "infrun: exception resume at %lx\n",
5510 (unsigned long) handler);
5511
5512 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5513 handler, bp_exception_resume);
5514
5515 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5516 frame = NULL;
5517
5518 bp->thread = tp->num;
5519 inferior_thread ()->control.exception_resume_breakpoint = bp;
5520 }
5521 }
5522 }
5523
5524 /* A helper for check_exception_resume that sets an
5525 exception-breakpoint based on a SystemTap probe. */
5526
5527 static void
5528 insert_exception_resume_from_probe (struct thread_info *tp,
5529 const struct probe *probe,
5530 struct frame_info *frame)
5531 {
5532 struct value *arg_value;
5533 CORE_ADDR handler;
5534 struct breakpoint *bp;
5535
5536 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5537 if (!arg_value)
5538 return;
5539
5540 handler = value_as_address (arg_value);
5541
5542 if (debug_infrun)
5543 fprintf_unfiltered (gdb_stdlog,
5544 "infrun: exception resume at %s\n",
5545 paddress (get_objfile_arch (probe->objfile),
5546 handler));
5547
5548 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5549 handler, bp_exception_resume);
5550 bp->thread = tp->num;
5551 inferior_thread ()->control.exception_resume_breakpoint = bp;
5552 }
5553
5554 /* This is called when an exception has been intercepted. Check to
5555 see whether the exception's destination is of interest, and if so,
5556 set an exception resume breakpoint there. */
5557
5558 static void
5559 check_exception_resume (struct execution_control_state *ecs,
5560 struct frame_info *frame)
5561 {
5562 volatile struct gdb_exception e;
5563 const struct probe *probe;
5564 struct symbol *func;
5565
5566 /* First see if this exception unwinding breakpoint was set via a
5567 SystemTap probe point. If so, the probe has two arguments: the
5568 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5569 set a breakpoint there. */
5570 probe = find_probe_by_pc (get_frame_pc (frame));
5571 if (probe)
5572 {
5573 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
5574 return;
5575 }
5576
5577 func = get_frame_function (frame);
5578 if (!func)
5579 return;
5580
5581 TRY_CATCH (e, RETURN_MASK_ERROR)
5582 {
5583 struct block *b;
5584 struct block_iterator iter;
5585 struct symbol *sym;
5586 int argno = 0;
5587
5588 /* The exception breakpoint is a thread-specific breakpoint on
5589 the unwinder's debug hook, declared as:
5590
5591 void _Unwind_DebugHook (void *cfa, void *handler);
5592
5593 The CFA argument indicates the frame to which control is
5594 about to be transferred. HANDLER is the destination PC.
5595
5596 We ignore the CFA and set a temporary breakpoint at HANDLER.
5597 This is not extremely efficient but it avoids issues in gdb
5598 with computing the DWARF CFA, and it also works even in weird
5599 cases such as throwing an exception from inside a signal
5600 handler. */
5601
5602 b = SYMBOL_BLOCK_VALUE (func);
5603 ALL_BLOCK_SYMBOLS (b, iter, sym)
5604 {
5605 if (!SYMBOL_IS_ARGUMENT (sym))
5606 continue;
5607
5608 if (argno == 0)
5609 ++argno;
5610 else
5611 {
5612 insert_exception_resume_breakpoint (ecs->event_thread,
5613 b, frame, sym);
5614 break;
5615 }
5616 }
5617 }
5618 }
5619
5620 static void
5621 stop_stepping (struct execution_control_state *ecs)
5622 {
5623 if (debug_infrun)
5624 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5625
5626 /* Let callers know we don't want to wait for the inferior anymore. */
5627 ecs->wait_some_more = 0;
5628 }
5629
5630 /* This function handles various cases where we need to continue
5631 waiting for the inferior. */
5632 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5633
5634 static void
5635 keep_going (struct execution_control_state *ecs)
5636 {
5637 /* Make sure normal_stop is called if we get a QUIT handled before
5638 reaching resume. */
5639 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5640
5641 /* Save the pc before execution, to compare with pc after stop. */
5642 ecs->event_thread->prev_pc
5643 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5644
5645 /* If we did not do break;, it means we should keep running the
5646 inferior and not return to debugger. */
5647
5648 if (ecs->event_thread->control.trap_expected
5649 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5650 {
5651 /* We took a signal (which we are supposed to pass through to
5652 the inferior, else we'd not get here) and we haven't yet
5653 gotten our trap. Simply continue. */
5654
5655 discard_cleanups (old_cleanups);
5656 resume (currently_stepping (ecs->event_thread),
5657 ecs->event_thread->suspend.stop_signal);
5658 }
5659 else
5660 {
5661 /* Either the trap was not expected, but we are continuing
5662 anyway (the user asked that this signal be passed to the
5663 child)
5664 -- or --
5665 The signal was SIGTRAP, e.g. it was our signal, but we
5666 decided we should resume from it.
5667
5668 We're going to run this baby now!
5669
5670 Note that insert_breakpoints won't try to re-insert
5671 already inserted breakpoints. Therefore, we don't
5672 care if breakpoints were already inserted, or not. */
5673
5674 if (ecs->event_thread->stepping_over_breakpoint)
5675 {
5676 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5677
5678 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5679 /* Since we can't do a displaced step, we have to remove
5680 the breakpoint while we step it. To keep things
5681 simple, we remove them all. */
5682 remove_breakpoints ();
5683 }
5684 else
5685 {
5686 volatile struct gdb_exception e;
5687
5688 /* Stop stepping when inserting breakpoints
5689 has failed. */
5690 TRY_CATCH (e, RETURN_MASK_ERROR)
5691 {
5692 insert_breakpoints ();
5693 }
5694 if (e.reason < 0)
5695 {
5696 exception_print (gdb_stderr, e);
5697 stop_stepping (ecs);
5698 return;
5699 }
5700 }
5701
5702 ecs->event_thread->control.trap_expected
5703 = ecs->event_thread->stepping_over_breakpoint;
5704
5705 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5706 specifies that such a signal should be delivered to the
5707 target program).
5708
5709 Typically, this would occure when a user is debugging a
5710 target monitor on a simulator: the target monitor sets a
5711 breakpoint; the simulator encounters this break-point and
5712 halts the simulation handing control to GDB; GDB, noteing
5713 that the break-point isn't valid, returns control back to the
5714 simulator; the simulator then delivers the hardware
5715 equivalent of a SIGNAL_TRAP to the program being debugged. */
5716
5717 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5718 && !signal_program[ecs->event_thread->suspend.stop_signal])
5719 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5720
5721 discard_cleanups (old_cleanups);
5722 resume (currently_stepping (ecs->event_thread),
5723 ecs->event_thread->suspend.stop_signal);
5724 }
5725
5726 prepare_to_wait (ecs);
5727 }
5728
5729 /* This function normally comes after a resume, before
5730 handle_inferior_event exits. It takes care of any last bits of
5731 housekeeping, and sets the all-important wait_some_more flag. */
5732
5733 static void
5734 prepare_to_wait (struct execution_control_state *ecs)
5735 {
5736 if (debug_infrun)
5737 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5738
5739 /* This is the old end of the while loop. Let everybody know we
5740 want to wait for the inferior some more and get called again
5741 soon. */
5742 ecs->wait_some_more = 1;
5743 }
5744
5745 /* Several print_*_reason functions to print why the inferior has stopped.
5746 We always print something when the inferior exits, or receives a signal.
5747 The rest of the cases are dealt with later on in normal_stop and
5748 print_it_typical. Ideally there should be a call to one of these
5749 print_*_reason functions functions from handle_inferior_event each time
5750 stop_stepping is called. */
5751
5752 /* Print why the inferior has stopped.
5753 We are done with a step/next/si/ni command, print why the inferior has
5754 stopped. For now print nothing. Print a message only if not in the middle
5755 of doing a "step n" operation for n > 1. */
5756
5757 static void
5758 print_end_stepping_range_reason (void)
5759 {
5760 if ((!inferior_thread ()->step_multi
5761 || !inferior_thread ()->control.stop_step)
5762 && ui_out_is_mi_like_p (current_uiout))
5763 ui_out_field_string (current_uiout, "reason",
5764 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5765 }
5766
5767 /* The inferior was terminated by a signal, print why it stopped. */
5768
5769 static void
5770 print_signal_exited_reason (enum gdb_signal siggnal)
5771 {
5772 struct ui_out *uiout = current_uiout;
5773
5774 annotate_signalled ();
5775 if (ui_out_is_mi_like_p (uiout))
5776 ui_out_field_string
5777 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5778 ui_out_text (uiout, "\nProgram terminated with signal ");
5779 annotate_signal_name ();
5780 ui_out_field_string (uiout, "signal-name",
5781 gdb_signal_to_name (siggnal));
5782 annotate_signal_name_end ();
5783 ui_out_text (uiout, ", ");
5784 annotate_signal_string ();
5785 ui_out_field_string (uiout, "signal-meaning",
5786 gdb_signal_to_string (siggnal));
5787 annotate_signal_string_end ();
5788 ui_out_text (uiout, ".\n");
5789 ui_out_text (uiout, "The program no longer exists.\n");
5790 }
5791
5792 /* The inferior program is finished, print why it stopped. */
5793
5794 static void
5795 print_exited_reason (int exitstatus)
5796 {
5797 struct inferior *inf = current_inferior ();
5798 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5799 struct ui_out *uiout = current_uiout;
5800
5801 annotate_exited (exitstatus);
5802 if (exitstatus)
5803 {
5804 if (ui_out_is_mi_like_p (uiout))
5805 ui_out_field_string (uiout, "reason",
5806 async_reason_lookup (EXEC_ASYNC_EXITED));
5807 ui_out_text (uiout, "[Inferior ");
5808 ui_out_text (uiout, plongest (inf->num));
5809 ui_out_text (uiout, " (");
5810 ui_out_text (uiout, pidstr);
5811 ui_out_text (uiout, ") exited with code ");
5812 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5813 ui_out_text (uiout, "]\n");
5814 }
5815 else
5816 {
5817 if (ui_out_is_mi_like_p (uiout))
5818 ui_out_field_string
5819 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5820 ui_out_text (uiout, "[Inferior ");
5821 ui_out_text (uiout, plongest (inf->num));
5822 ui_out_text (uiout, " (");
5823 ui_out_text (uiout, pidstr);
5824 ui_out_text (uiout, ") exited normally]\n");
5825 }
5826 /* Support the --return-child-result option. */
5827 return_child_result_value = exitstatus;
5828 }
5829
5830 /* Signal received, print why the inferior has stopped. The signal table
5831 tells us to print about it. */
5832
5833 static void
5834 print_signal_received_reason (enum gdb_signal siggnal)
5835 {
5836 struct ui_out *uiout = current_uiout;
5837
5838 annotate_signal ();
5839
5840 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5841 {
5842 struct thread_info *t = inferior_thread ();
5843
5844 ui_out_text (uiout, "\n[");
5845 ui_out_field_string (uiout, "thread-name",
5846 target_pid_to_str (t->ptid));
5847 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5848 ui_out_text (uiout, " stopped");
5849 }
5850 else
5851 {
5852 ui_out_text (uiout, "\nProgram received signal ");
5853 annotate_signal_name ();
5854 if (ui_out_is_mi_like_p (uiout))
5855 ui_out_field_string
5856 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5857 ui_out_field_string (uiout, "signal-name",
5858 gdb_signal_to_name (siggnal));
5859 annotate_signal_name_end ();
5860 ui_out_text (uiout, ", ");
5861 annotate_signal_string ();
5862 ui_out_field_string (uiout, "signal-meaning",
5863 gdb_signal_to_string (siggnal));
5864 annotate_signal_string_end ();
5865 }
5866 ui_out_text (uiout, ".\n");
5867 }
5868
5869 /* Reverse execution: target ran out of history info, print why the inferior
5870 has stopped. */
5871
5872 static void
5873 print_no_history_reason (void)
5874 {
5875 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5876 }
5877
5878 /* Here to return control to GDB when the inferior stops for real.
5879 Print appropriate messages, remove breakpoints, give terminal our modes.
5880
5881 STOP_PRINT_FRAME nonzero means print the executing frame
5882 (pc, function, args, file, line number and line text).
5883 BREAKPOINTS_FAILED nonzero means stop was due to error
5884 attempting to insert breakpoints. */
5885
5886 void
5887 normal_stop (void)
5888 {
5889 struct target_waitstatus last;
5890 ptid_t last_ptid;
5891 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5892
5893 get_last_target_status (&last_ptid, &last);
5894
5895 /* If an exception is thrown from this point on, make sure to
5896 propagate GDB's knowledge of the executing state to the
5897 frontend/user running state. A QUIT is an easy exception to see
5898 here, so do this before any filtered output. */
5899 if (!non_stop)
5900 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5901 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5902 && last.kind != TARGET_WAITKIND_EXITED
5903 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5904 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5905
5906 /* In non-stop mode, we don't want GDB to switch threads behind the
5907 user's back, to avoid races where the user is typing a command to
5908 apply to thread x, but GDB switches to thread y before the user
5909 finishes entering the command. */
5910
5911 /* As with the notification of thread events, we want to delay
5912 notifying the user that we've switched thread context until
5913 the inferior actually stops.
5914
5915 There's no point in saying anything if the inferior has exited.
5916 Note that SIGNALLED here means "exited with a signal", not
5917 "received a signal". */
5918 if (!non_stop
5919 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5920 && target_has_execution
5921 && last.kind != TARGET_WAITKIND_SIGNALLED
5922 && last.kind != TARGET_WAITKIND_EXITED
5923 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5924 {
5925 target_terminal_ours_for_output ();
5926 printf_filtered (_("[Switching to %s]\n"),
5927 target_pid_to_str (inferior_ptid));
5928 annotate_thread_changed ();
5929 previous_inferior_ptid = inferior_ptid;
5930 }
5931
5932 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5933 {
5934 gdb_assert (sync_execution || !target_can_async_p ());
5935
5936 target_terminal_ours_for_output ();
5937 printf_filtered (_("No unwaited-for children left.\n"));
5938 }
5939
5940 if (!breakpoints_always_inserted_mode () && target_has_execution)
5941 {
5942 if (remove_breakpoints ())
5943 {
5944 target_terminal_ours_for_output ();
5945 printf_filtered (_("Cannot remove breakpoints because "
5946 "program is no longer writable.\nFurther "
5947 "execution is probably impossible.\n"));
5948 }
5949 }
5950
5951 /* If an auto-display called a function and that got a signal,
5952 delete that auto-display to avoid an infinite recursion. */
5953
5954 if (stopped_by_random_signal)
5955 disable_current_display ();
5956
5957 /* Don't print a message if in the middle of doing a "step n"
5958 operation for n > 1 */
5959 if (target_has_execution
5960 && last.kind != TARGET_WAITKIND_SIGNALLED
5961 && last.kind != TARGET_WAITKIND_EXITED
5962 && inferior_thread ()->step_multi
5963 && inferior_thread ()->control.stop_step)
5964 goto done;
5965
5966 target_terminal_ours ();
5967 async_enable_stdin ();
5968
5969 /* Set the current source location. This will also happen if we
5970 display the frame below, but the current SAL will be incorrect
5971 during a user hook-stop function. */
5972 if (has_stack_frames () && !stop_stack_dummy)
5973 set_current_sal_from_frame (get_current_frame (), 1);
5974
5975 /* Let the user/frontend see the threads as stopped. */
5976 do_cleanups (old_chain);
5977
5978 /* Look up the hook_stop and run it (CLI internally handles problem
5979 of stop_command's pre-hook not existing). */
5980 if (stop_command)
5981 catch_errors (hook_stop_stub, stop_command,
5982 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5983
5984 if (!has_stack_frames ())
5985 goto done;
5986
5987 if (last.kind == TARGET_WAITKIND_SIGNALLED
5988 || last.kind == TARGET_WAITKIND_EXITED)
5989 goto done;
5990
5991 /* Select innermost stack frame - i.e., current frame is frame 0,
5992 and current location is based on that.
5993 Don't do this on return from a stack dummy routine,
5994 or if the program has exited. */
5995
5996 if (!stop_stack_dummy)
5997 {
5998 select_frame (get_current_frame ());
5999
6000 /* Print current location without a level number, if
6001 we have changed functions or hit a breakpoint.
6002 Print source line if we have one.
6003 bpstat_print() contains the logic deciding in detail
6004 what to print, based on the event(s) that just occurred. */
6005
6006 /* If --batch-silent is enabled then there's no need to print the current
6007 source location, and to try risks causing an error message about
6008 missing source files. */
6009 if (stop_print_frame && !batch_silent)
6010 {
6011 int bpstat_ret;
6012 int source_flag;
6013 int do_frame_printing = 1;
6014 struct thread_info *tp = inferior_thread ();
6015
6016 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6017 switch (bpstat_ret)
6018 {
6019 case PRINT_UNKNOWN:
6020 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6021 (or should) carry around the function and does (or
6022 should) use that when doing a frame comparison. */
6023 if (tp->control.stop_step
6024 && frame_id_eq (tp->control.step_frame_id,
6025 get_frame_id (get_current_frame ()))
6026 && step_start_function == find_pc_function (stop_pc))
6027 source_flag = SRC_LINE; /* Finished step, just
6028 print source line. */
6029 else
6030 source_flag = SRC_AND_LOC; /* Print location and
6031 source line. */
6032 break;
6033 case PRINT_SRC_AND_LOC:
6034 source_flag = SRC_AND_LOC; /* Print location and
6035 source line. */
6036 break;
6037 case PRINT_SRC_ONLY:
6038 source_flag = SRC_LINE;
6039 break;
6040 case PRINT_NOTHING:
6041 source_flag = SRC_LINE; /* something bogus */
6042 do_frame_printing = 0;
6043 break;
6044 default:
6045 internal_error (__FILE__, __LINE__, _("Unknown value."));
6046 }
6047
6048 /* The behavior of this routine with respect to the source
6049 flag is:
6050 SRC_LINE: Print only source line
6051 LOCATION: Print only location
6052 SRC_AND_LOC: Print location and source line. */
6053 if (do_frame_printing)
6054 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
6055
6056 /* Display the auto-display expressions. */
6057 do_displays ();
6058 }
6059 }
6060
6061 /* Save the function value return registers, if we care.
6062 We might be about to restore their previous contents. */
6063 if (inferior_thread ()->control.proceed_to_finish
6064 && execution_direction != EXEC_REVERSE)
6065 {
6066 /* This should not be necessary. */
6067 if (stop_registers)
6068 regcache_xfree (stop_registers);
6069
6070 /* NB: The copy goes through to the target picking up the value of
6071 all the registers. */
6072 stop_registers = regcache_dup (get_current_regcache ());
6073 }
6074
6075 if (stop_stack_dummy == STOP_STACK_DUMMY)
6076 {
6077 /* Pop the empty frame that contains the stack dummy.
6078 This also restores inferior state prior to the call
6079 (struct infcall_suspend_state). */
6080 struct frame_info *frame = get_current_frame ();
6081
6082 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6083 frame_pop (frame);
6084 /* frame_pop() calls reinit_frame_cache as the last thing it
6085 does which means there's currently no selected frame. We
6086 don't need to re-establish a selected frame if the dummy call
6087 returns normally, that will be done by
6088 restore_infcall_control_state. However, we do have to handle
6089 the case where the dummy call is returning after being
6090 stopped (e.g. the dummy call previously hit a breakpoint).
6091 We can't know which case we have so just always re-establish
6092 a selected frame here. */
6093 select_frame (get_current_frame ());
6094 }
6095
6096 done:
6097 annotate_stopped ();
6098
6099 /* Suppress the stop observer if we're in the middle of:
6100
6101 - a step n (n > 1), as there still more steps to be done.
6102
6103 - a "finish" command, as the observer will be called in
6104 finish_command_continuation, so it can include the inferior
6105 function's return value.
6106
6107 - calling an inferior function, as we pretend we inferior didn't
6108 run at all. The return value of the call is handled by the
6109 expression evaluator, through call_function_by_hand. */
6110
6111 if (!target_has_execution
6112 || last.kind == TARGET_WAITKIND_SIGNALLED
6113 || last.kind == TARGET_WAITKIND_EXITED
6114 || last.kind == TARGET_WAITKIND_NO_RESUMED
6115 || (!(inferior_thread ()->step_multi
6116 && inferior_thread ()->control.stop_step)
6117 && !(inferior_thread ()->control.stop_bpstat
6118 && inferior_thread ()->control.proceed_to_finish)
6119 && !inferior_thread ()->control.in_infcall))
6120 {
6121 if (!ptid_equal (inferior_ptid, null_ptid))
6122 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6123 stop_print_frame);
6124 else
6125 observer_notify_normal_stop (NULL, stop_print_frame);
6126 }
6127
6128 if (target_has_execution)
6129 {
6130 if (last.kind != TARGET_WAITKIND_SIGNALLED
6131 && last.kind != TARGET_WAITKIND_EXITED)
6132 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6133 Delete any breakpoint that is to be deleted at the next stop. */
6134 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6135 }
6136
6137 /* Try to get rid of automatically added inferiors that are no
6138 longer needed. Keeping those around slows down things linearly.
6139 Note that this never removes the current inferior. */
6140 prune_inferiors ();
6141 }
6142
6143 static int
6144 hook_stop_stub (void *cmd)
6145 {
6146 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6147 return (0);
6148 }
6149 \f
6150 int
6151 signal_stop_state (int signo)
6152 {
6153 return signal_stop[signo];
6154 }
6155
6156 int
6157 signal_print_state (int signo)
6158 {
6159 return signal_print[signo];
6160 }
6161
6162 int
6163 signal_pass_state (int signo)
6164 {
6165 return signal_program[signo];
6166 }
6167
6168 static void
6169 signal_cache_update (int signo)
6170 {
6171 if (signo == -1)
6172 {
6173 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6174 signal_cache_update (signo);
6175
6176 return;
6177 }
6178
6179 signal_pass[signo] = (signal_stop[signo] == 0
6180 && signal_print[signo] == 0
6181 && signal_program[signo] == 1);
6182 }
6183
6184 int
6185 signal_stop_update (int signo, int state)
6186 {
6187 int ret = signal_stop[signo];
6188
6189 signal_stop[signo] = state;
6190 signal_cache_update (signo);
6191 return ret;
6192 }
6193
6194 int
6195 signal_print_update (int signo, int state)
6196 {
6197 int ret = signal_print[signo];
6198
6199 signal_print[signo] = state;
6200 signal_cache_update (signo);
6201 return ret;
6202 }
6203
6204 int
6205 signal_pass_update (int signo, int state)
6206 {
6207 int ret = signal_program[signo];
6208
6209 signal_program[signo] = state;
6210 signal_cache_update (signo);
6211 return ret;
6212 }
6213
6214 static void
6215 sig_print_header (void)
6216 {
6217 printf_filtered (_("Signal Stop\tPrint\tPass "
6218 "to program\tDescription\n"));
6219 }
6220
6221 static void
6222 sig_print_info (enum gdb_signal oursig)
6223 {
6224 const char *name = gdb_signal_to_name (oursig);
6225 int name_padding = 13 - strlen (name);
6226
6227 if (name_padding <= 0)
6228 name_padding = 0;
6229
6230 printf_filtered ("%s", name);
6231 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6232 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6233 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6234 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6235 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6236 }
6237
6238 /* Specify how various signals in the inferior should be handled. */
6239
6240 static void
6241 handle_command (char *args, int from_tty)
6242 {
6243 char **argv;
6244 int digits, wordlen;
6245 int sigfirst, signum, siglast;
6246 enum gdb_signal oursig;
6247 int allsigs;
6248 int nsigs;
6249 unsigned char *sigs;
6250 struct cleanup *old_chain;
6251
6252 if (args == NULL)
6253 {
6254 error_no_arg (_("signal to handle"));
6255 }
6256
6257 /* Allocate and zero an array of flags for which signals to handle. */
6258
6259 nsigs = (int) GDB_SIGNAL_LAST;
6260 sigs = (unsigned char *) alloca (nsigs);
6261 memset (sigs, 0, nsigs);
6262
6263 /* Break the command line up into args. */
6264
6265 argv = gdb_buildargv (args);
6266 old_chain = make_cleanup_freeargv (argv);
6267
6268 /* Walk through the args, looking for signal oursigs, signal names, and
6269 actions. Signal numbers and signal names may be interspersed with
6270 actions, with the actions being performed for all signals cumulatively
6271 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6272
6273 while (*argv != NULL)
6274 {
6275 wordlen = strlen (*argv);
6276 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6277 {;
6278 }
6279 allsigs = 0;
6280 sigfirst = siglast = -1;
6281
6282 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6283 {
6284 /* Apply action to all signals except those used by the
6285 debugger. Silently skip those. */
6286 allsigs = 1;
6287 sigfirst = 0;
6288 siglast = nsigs - 1;
6289 }
6290 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6291 {
6292 SET_SIGS (nsigs, sigs, signal_stop);
6293 SET_SIGS (nsigs, sigs, signal_print);
6294 }
6295 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6296 {
6297 UNSET_SIGS (nsigs, sigs, signal_program);
6298 }
6299 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6300 {
6301 SET_SIGS (nsigs, sigs, signal_print);
6302 }
6303 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6304 {
6305 SET_SIGS (nsigs, sigs, signal_program);
6306 }
6307 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6308 {
6309 UNSET_SIGS (nsigs, sigs, signal_stop);
6310 }
6311 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6312 {
6313 SET_SIGS (nsigs, sigs, signal_program);
6314 }
6315 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6316 {
6317 UNSET_SIGS (nsigs, sigs, signal_print);
6318 UNSET_SIGS (nsigs, sigs, signal_stop);
6319 }
6320 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6321 {
6322 UNSET_SIGS (nsigs, sigs, signal_program);
6323 }
6324 else if (digits > 0)
6325 {
6326 /* It is numeric. The numeric signal refers to our own
6327 internal signal numbering from target.h, not to host/target
6328 signal number. This is a feature; users really should be
6329 using symbolic names anyway, and the common ones like
6330 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6331
6332 sigfirst = siglast = (int)
6333 gdb_signal_from_command (atoi (*argv));
6334 if ((*argv)[digits] == '-')
6335 {
6336 siglast = (int)
6337 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6338 }
6339 if (sigfirst > siglast)
6340 {
6341 /* Bet he didn't figure we'd think of this case... */
6342 signum = sigfirst;
6343 sigfirst = siglast;
6344 siglast = signum;
6345 }
6346 }
6347 else
6348 {
6349 oursig = gdb_signal_from_name (*argv);
6350 if (oursig != GDB_SIGNAL_UNKNOWN)
6351 {
6352 sigfirst = siglast = (int) oursig;
6353 }
6354 else
6355 {
6356 /* Not a number and not a recognized flag word => complain. */
6357 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6358 }
6359 }
6360
6361 /* If any signal numbers or symbol names were found, set flags for
6362 which signals to apply actions to. */
6363
6364 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6365 {
6366 switch ((enum gdb_signal) signum)
6367 {
6368 case GDB_SIGNAL_TRAP:
6369 case GDB_SIGNAL_INT:
6370 if (!allsigs && !sigs[signum])
6371 {
6372 if (query (_("%s is used by the debugger.\n\
6373 Are you sure you want to change it? "),
6374 gdb_signal_to_name ((enum gdb_signal) signum)))
6375 {
6376 sigs[signum] = 1;
6377 }
6378 else
6379 {
6380 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6381 gdb_flush (gdb_stdout);
6382 }
6383 }
6384 break;
6385 case GDB_SIGNAL_0:
6386 case GDB_SIGNAL_DEFAULT:
6387 case GDB_SIGNAL_UNKNOWN:
6388 /* Make sure that "all" doesn't print these. */
6389 break;
6390 default:
6391 sigs[signum] = 1;
6392 break;
6393 }
6394 }
6395
6396 argv++;
6397 }
6398
6399 for (signum = 0; signum < nsigs; signum++)
6400 if (sigs[signum])
6401 {
6402 signal_cache_update (-1);
6403 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6404 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6405
6406 if (from_tty)
6407 {
6408 /* Show the results. */
6409 sig_print_header ();
6410 for (; signum < nsigs; signum++)
6411 if (sigs[signum])
6412 sig_print_info (signum);
6413 }
6414
6415 break;
6416 }
6417
6418 do_cleanups (old_chain);
6419 }
6420
6421 static void
6422 xdb_handle_command (char *args, int from_tty)
6423 {
6424 char **argv;
6425 struct cleanup *old_chain;
6426
6427 if (args == NULL)
6428 error_no_arg (_("xdb command"));
6429
6430 /* Break the command line up into args. */
6431
6432 argv = gdb_buildargv (args);
6433 old_chain = make_cleanup_freeargv (argv);
6434 if (argv[1] != (char *) NULL)
6435 {
6436 char *argBuf;
6437 int bufLen;
6438
6439 bufLen = strlen (argv[0]) + 20;
6440 argBuf = (char *) xmalloc (bufLen);
6441 if (argBuf)
6442 {
6443 int validFlag = 1;
6444 enum gdb_signal oursig;
6445
6446 oursig = gdb_signal_from_name (argv[0]);
6447 memset (argBuf, 0, bufLen);
6448 if (strcmp (argv[1], "Q") == 0)
6449 sprintf (argBuf, "%s %s", argv[0], "noprint");
6450 else
6451 {
6452 if (strcmp (argv[1], "s") == 0)
6453 {
6454 if (!signal_stop[oursig])
6455 sprintf (argBuf, "%s %s", argv[0], "stop");
6456 else
6457 sprintf (argBuf, "%s %s", argv[0], "nostop");
6458 }
6459 else if (strcmp (argv[1], "i") == 0)
6460 {
6461 if (!signal_program[oursig])
6462 sprintf (argBuf, "%s %s", argv[0], "pass");
6463 else
6464 sprintf (argBuf, "%s %s", argv[0], "nopass");
6465 }
6466 else if (strcmp (argv[1], "r") == 0)
6467 {
6468 if (!signal_print[oursig])
6469 sprintf (argBuf, "%s %s", argv[0], "print");
6470 else
6471 sprintf (argBuf, "%s %s", argv[0], "noprint");
6472 }
6473 else
6474 validFlag = 0;
6475 }
6476 if (validFlag)
6477 handle_command (argBuf, from_tty);
6478 else
6479 printf_filtered (_("Invalid signal handling flag.\n"));
6480 if (argBuf)
6481 xfree (argBuf);
6482 }
6483 }
6484 do_cleanups (old_chain);
6485 }
6486
6487 enum gdb_signal
6488 gdb_signal_from_command (int num)
6489 {
6490 if (num >= 1 && num <= 15)
6491 return (enum gdb_signal) num;
6492 error (_("Only signals 1-15 are valid as numeric signals.\n\
6493 Use \"info signals\" for a list of symbolic signals."));
6494 }
6495
6496 /* Print current contents of the tables set by the handle command.
6497 It is possible we should just be printing signals actually used
6498 by the current target (but for things to work right when switching
6499 targets, all signals should be in the signal tables). */
6500
6501 static void
6502 signals_info (char *signum_exp, int from_tty)
6503 {
6504 enum gdb_signal oursig;
6505
6506 sig_print_header ();
6507
6508 if (signum_exp)
6509 {
6510 /* First see if this is a symbol name. */
6511 oursig = gdb_signal_from_name (signum_exp);
6512 if (oursig == GDB_SIGNAL_UNKNOWN)
6513 {
6514 /* No, try numeric. */
6515 oursig =
6516 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6517 }
6518 sig_print_info (oursig);
6519 return;
6520 }
6521
6522 printf_filtered ("\n");
6523 /* These ugly casts brought to you by the native VAX compiler. */
6524 for (oursig = GDB_SIGNAL_FIRST;
6525 (int) oursig < (int) GDB_SIGNAL_LAST;
6526 oursig = (enum gdb_signal) ((int) oursig + 1))
6527 {
6528 QUIT;
6529
6530 if (oursig != GDB_SIGNAL_UNKNOWN
6531 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6532 sig_print_info (oursig);
6533 }
6534
6535 printf_filtered (_("\nUse the \"handle\" command "
6536 "to change these tables.\n"));
6537 }
6538
6539 /* Check if it makes sense to read $_siginfo from the current thread
6540 at this point. If not, throw an error. */
6541
6542 static void
6543 validate_siginfo_access (void)
6544 {
6545 /* No current inferior, no siginfo. */
6546 if (ptid_equal (inferior_ptid, null_ptid))
6547 error (_("No thread selected."));
6548
6549 /* Don't try to read from a dead thread. */
6550 if (is_exited (inferior_ptid))
6551 error (_("The current thread has terminated"));
6552
6553 /* ... or from a spinning thread. */
6554 if (is_running (inferior_ptid))
6555 error (_("Selected thread is running."));
6556 }
6557
6558 /* The $_siginfo convenience variable is a bit special. We don't know
6559 for sure the type of the value until we actually have a chance to
6560 fetch the data. The type can change depending on gdbarch, so it is
6561 also dependent on which thread you have selected.
6562
6563 1. making $_siginfo be an internalvar that creates a new value on
6564 access.
6565
6566 2. making the value of $_siginfo be an lval_computed value. */
6567
6568 /* This function implements the lval_computed support for reading a
6569 $_siginfo value. */
6570
6571 static void
6572 siginfo_value_read (struct value *v)
6573 {
6574 LONGEST transferred;
6575
6576 validate_siginfo_access ();
6577
6578 transferred =
6579 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6580 NULL,
6581 value_contents_all_raw (v),
6582 value_offset (v),
6583 TYPE_LENGTH (value_type (v)));
6584
6585 if (transferred != TYPE_LENGTH (value_type (v)))
6586 error (_("Unable to read siginfo"));
6587 }
6588
6589 /* This function implements the lval_computed support for writing a
6590 $_siginfo value. */
6591
6592 static void
6593 siginfo_value_write (struct value *v, struct value *fromval)
6594 {
6595 LONGEST transferred;
6596
6597 validate_siginfo_access ();
6598
6599 transferred = target_write (&current_target,
6600 TARGET_OBJECT_SIGNAL_INFO,
6601 NULL,
6602 value_contents_all_raw (fromval),
6603 value_offset (v),
6604 TYPE_LENGTH (value_type (fromval)));
6605
6606 if (transferred != TYPE_LENGTH (value_type (fromval)))
6607 error (_("Unable to write siginfo"));
6608 }
6609
6610 static const struct lval_funcs siginfo_value_funcs =
6611 {
6612 siginfo_value_read,
6613 siginfo_value_write
6614 };
6615
6616 /* Return a new value with the correct type for the siginfo object of
6617 the current thread using architecture GDBARCH. Return a void value
6618 if there's no object available. */
6619
6620 static struct value *
6621 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6622 void *ignore)
6623 {
6624 if (target_has_stack
6625 && !ptid_equal (inferior_ptid, null_ptid)
6626 && gdbarch_get_siginfo_type_p (gdbarch))
6627 {
6628 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6629
6630 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6631 }
6632
6633 return allocate_value (builtin_type (gdbarch)->builtin_void);
6634 }
6635
6636 \f
6637 /* infcall_suspend_state contains state about the program itself like its
6638 registers and any signal it received when it last stopped.
6639 This state must be restored regardless of how the inferior function call
6640 ends (either successfully, or after it hits a breakpoint or signal)
6641 if the program is to properly continue where it left off. */
6642
6643 struct infcall_suspend_state
6644 {
6645 struct thread_suspend_state thread_suspend;
6646 #if 0 /* Currently unused and empty structures are not valid C. */
6647 struct inferior_suspend_state inferior_suspend;
6648 #endif
6649
6650 /* Other fields: */
6651 CORE_ADDR stop_pc;
6652 struct regcache *registers;
6653
6654 /* Format of SIGINFO_DATA or NULL if it is not present. */
6655 struct gdbarch *siginfo_gdbarch;
6656
6657 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6658 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6659 content would be invalid. */
6660 gdb_byte *siginfo_data;
6661 };
6662
6663 struct infcall_suspend_state *
6664 save_infcall_suspend_state (void)
6665 {
6666 struct infcall_suspend_state *inf_state;
6667 struct thread_info *tp = inferior_thread ();
6668 struct inferior *inf = current_inferior ();
6669 struct regcache *regcache = get_current_regcache ();
6670 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6671 gdb_byte *siginfo_data = NULL;
6672
6673 if (gdbarch_get_siginfo_type_p (gdbarch))
6674 {
6675 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6676 size_t len = TYPE_LENGTH (type);
6677 struct cleanup *back_to;
6678
6679 siginfo_data = xmalloc (len);
6680 back_to = make_cleanup (xfree, siginfo_data);
6681
6682 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6683 siginfo_data, 0, len) == len)
6684 discard_cleanups (back_to);
6685 else
6686 {
6687 /* Errors ignored. */
6688 do_cleanups (back_to);
6689 siginfo_data = NULL;
6690 }
6691 }
6692
6693 inf_state = XZALLOC (struct infcall_suspend_state);
6694
6695 if (siginfo_data)
6696 {
6697 inf_state->siginfo_gdbarch = gdbarch;
6698 inf_state->siginfo_data = siginfo_data;
6699 }
6700
6701 inf_state->thread_suspend = tp->suspend;
6702 #if 0 /* Currently unused and empty structures are not valid C. */
6703 inf_state->inferior_suspend = inf->suspend;
6704 #endif
6705
6706 /* run_inferior_call will not use the signal due to its `proceed' call with
6707 GDB_SIGNAL_0 anyway. */
6708 tp->suspend.stop_signal = GDB_SIGNAL_0;
6709
6710 inf_state->stop_pc = stop_pc;
6711
6712 inf_state->registers = regcache_dup (regcache);
6713
6714 return inf_state;
6715 }
6716
6717 /* Restore inferior session state to INF_STATE. */
6718
6719 void
6720 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6721 {
6722 struct thread_info *tp = inferior_thread ();
6723 struct inferior *inf = current_inferior ();
6724 struct regcache *regcache = get_current_regcache ();
6725 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6726
6727 tp->suspend = inf_state->thread_suspend;
6728 #if 0 /* Currently unused and empty structures are not valid C. */
6729 inf->suspend = inf_state->inferior_suspend;
6730 #endif
6731
6732 stop_pc = inf_state->stop_pc;
6733
6734 if (inf_state->siginfo_gdbarch == gdbarch)
6735 {
6736 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6737 size_t len = TYPE_LENGTH (type);
6738
6739 /* Errors ignored. */
6740 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6741 inf_state->siginfo_data, 0, len);
6742 }
6743
6744 /* The inferior can be gone if the user types "print exit(0)"
6745 (and perhaps other times). */
6746 if (target_has_execution)
6747 /* NB: The register write goes through to the target. */
6748 regcache_cpy (regcache, inf_state->registers);
6749
6750 discard_infcall_suspend_state (inf_state);
6751 }
6752
6753 static void
6754 do_restore_infcall_suspend_state_cleanup (void *state)
6755 {
6756 restore_infcall_suspend_state (state);
6757 }
6758
6759 struct cleanup *
6760 make_cleanup_restore_infcall_suspend_state
6761 (struct infcall_suspend_state *inf_state)
6762 {
6763 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6764 }
6765
6766 void
6767 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6768 {
6769 regcache_xfree (inf_state->registers);
6770 xfree (inf_state->siginfo_data);
6771 xfree (inf_state);
6772 }
6773
6774 struct regcache *
6775 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6776 {
6777 return inf_state->registers;
6778 }
6779
6780 /* infcall_control_state contains state regarding gdb's control of the
6781 inferior itself like stepping control. It also contains session state like
6782 the user's currently selected frame. */
6783
6784 struct infcall_control_state
6785 {
6786 struct thread_control_state thread_control;
6787 struct inferior_control_state inferior_control;
6788
6789 /* Other fields: */
6790 enum stop_stack_kind stop_stack_dummy;
6791 int stopped_by_random_signal;
6792 int stop_after_trap;
6793
6794 /* ID if the selected frame when the inferior function call was made. */
6795 struct frame_id selected_frame_id;
6796 };
6797
6798 /* Save all of the information associated with the inferior<==>gdb
6799 connection. */
6800
6801 struct infcall_control_state *
6802 save_infcall_control_state (void)
6803 {
6804 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6805 struct thread_info *tp = inferior_thread ();
6806 struct inferior *inf = current_inferior ();
6807
6808 inf_status->thread_control = tp->control;
6809 inf_status->inferior_control = inf->control;
6810
6811 tp->control.step_resume_breakpoint = NULL;
6812 tp->control.exception_resume_breakpoint = NULL;
6813
6814 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6815 chain. If caller's caller is walking the chain, they'll be happier if we
6816 hand them back the original chain when restore_infcall_control_state is
6817 called. */
6818 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6819
6820 /* Other fields: */
6821 inf_status->stop_stack_dummy = stop_stack_dummy;
6822 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6823 inf_status->stop_after_trap = stop_after_trap;
6824
6825 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6826
6827 return inf_status;
6828 }
6829
6830 static int
6831 restore_selected_frame (void *args)
6832 {
6833 struct frame_id *fid = (struct frame_id *) args;
6834 struct frame_info *frame;
6835
6836 frame = frame_find_by_id (*fid);
6837
6838 /* If inf_status->selected_frame_id is NULL, there was no previously
6839 selected frame. */
6840 if (frame == NULL)
6841 {
6842 warning (_("Unable to restore previously selected frame."));
6843 return 0;
6844 }
6845
6846 select_frame (frame);
6847
6848 return (1);
6849 }
6850
6851 /* Restore inferior session state to INF_STATUS. */
6852
6853 void
6854 restore_infcall_control_state (struct infcall_control_state *inf_status)
6855 {
6856 struct thread_info *tp = inferior_thread ();
6857 struct inferior *inf = current_inferior ();
6858
6859 if (tp->control.step_resume_breakpoint)
6860 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6861
6862 if (tp->control.exception_resume_breakpoint)
6863 tp->control.exception_resume_breakpoint->disposition
6864 = disp_del_at_next_stop;
6865
6866 /* Handle the bpstat_copy of the chain. */
6867 bpstat_clear (&tp->control.stop_bpstat);
6868
6869 tp->control = inf_status->thread_control;
6870 inf->control = inf_status->inferior_control;
6871
6872 /* Other fields: */
6873 stop_stack_dummy = inf_status->stop_stack_dummy;
6874 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6875 stop_after_trap = inf_status->stop_after_trap;
6876
6877 if (target_has_stack)
6878 {
6879 /* The point of catch_errors is that if the stack is clobbered,
6880 walking the stack might encounter a garbage pointer and
6881 error() trying to dereference it. */
6882 if (catch_errors
6883 (restore_selected_frame, &inf_status->selected_frame_id,
6884 "Unable to restore previously selected frame:\n",
6885 RETURN_MASK_ERROR) == 0)
6886 /* Error in restoring the selected frame. Select the innermost
6887 frame. */
6888 select_frame (get_current_frame ());
6889 }
6890
6891 xfree (inf_status);
6892 }
6893
6894 static void
6895 do_restore_infcall_control_state_cleanup (void *sts)
6896 {
6897 restore_infcall_control_state (sts);
6898 }
6899
6900 struct cleanup *
6901 make_cleanup_restore_infcall_control_state
6902 (struct infcall_control_state *inf_status)
6903 {
6904 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6905 }
6906
6907 void
6908 discard_infcall_control_state (struct infcall_control_state *inf_status)
6909 {
6910 if (inf_status->thread_control.step_resume_breakpoint)
6911 inf_status->thread_control.step_resume_breakpoint->disposition
6912 = disp_del_at_next_stop;
6913
6914 if (inf_status->thread_control.exception_resume_breakpoint)
6915 inf_status->thread_control.exception_resume_breakpoint->disposition
6916 = disp_del_at_next_stop;
6917
6918 /* See save_infcall_control_state for info on stop_bpstat. */
6919 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6920
6921 xfree (inf_status);
6922 }
6923 \f
6924 int
6925 ptid_match (ptid_t ptid, ptid_t filter)
6926 {
6927 if (ptid_equal (filter, minus_one_ptid))
6928 return 1;
6929 if (ptid_is_pid (filter)
6930 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6931 return 1;
6932 else if (ptid_equal (ptid, filter))
6933 return 1;
6934
6935 return 0;
6936 }
6937
6938 /* restore_inferior_ptid() will be used by the cleanup machinery
6939 to restore the inferior_ptid value saved in a call to
6940 save_inferior_ptid(). */
6941
6942 static void
6943 restore_inferior_ptid (void *arg)
6944 {
6945 ptid_t *saved_ptid_ptr = arg;
6946
6947 inferior_ptid = *saved_ptid_ptr;
6948 xfree (arg);
6949 }
6950
6951 /* Save the value of inferior_ptid so that it may be restored by a
6952 later call to do_cleanups(). Returns the struct cleanup pointer
6953 needed for later doing the cleanup. */
6954
6955 struct cleanup *
6956 save_inferior_ptid (void)
6957 {
6958 ptid_t *saved_ptid_ptr;
6959
6960 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6961 *saved_ptid_ptr = inferior_ptid;
6962 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6963 }
6964 \f
6965
6966 /* User interface for reverse debugging:
6967 Set exec-direction / show exec-direction commands
6968 (returns error unless target implements to_set_exec_direction method). */
6969
6970 int execution_direction = EXEC_FORWARD;
6971 static const char exec_forward[] = "forward";
6972 static const char exec_reverse[] = "reverse";
6973 static const char *exec_direction = exec_forward;
6974 static const char *const exec_direction_names[] = {
6975 exec_forward,
6976 exec_reverse,
6977 NULL
6978 };
6979
6980 static void
6981 set_exec_direction_func (char *args, int from_tty,
6982 struct cmd_list_element *cmd)
6983 {
6984 if (target_can_execute_reverse)
6985 {
6986 if (!strcmp (exec_direction, exec_forward))
6987 execution_direction = EXEC_FORWARD;
6988 else if (!strcmp (exec_direction, exec_reverse))
6989 execution_direction = EXEC_REVERSE;
6990 }
6991 else
6992 {
6993 exec_direction = exec_forward;
6994 error (_("Target does not support this operation."));
6995 }
6996 }
6997
6998 static void
6999 show_exec_direction_func (struct ui_file *out, int from_tty,
7000 struct cmd_list_element *cmd, const char *value)
7001 {
7002 switch (execution_direction) {
7003 case EXEC_FORWARD:
7004 fprintf_filtered (out, _("Forward.\n"));
7005 break;
7006 case EXEC_REVERSE:
7007 fprintf_filtered (out, _("Reverse.\n"));
7008 break;
7009 default:
7010 internal_error (__FILE__, __LINE__,
7011 _("bogus execution_direction value: %d"),
7012 (int) execution_direction);
7013 }
7014 }
7015
7016 /* User interface for non-stop mode. */
7017
7018 int non_stop = 0;
7019
7020 static void
7021 set_non_stop (char *args, int from_tty,
7022 struct cmd_list_element *c)
7023 {
7024 if (target_has_execution)
7025 {
7026 non_stop_1 = non_stop;
7027 error (_("Cannot change this setting while the inferior is running."));
7028 }
7029
7030 non_stop = non_stop_1;
7031 }
7032
7033 static void
7034 show_non_stop (struct ui_file *file, int from_tty,
7035 struct cmd_list_element *c, const char *value)
7036 {
7037 fprintf_filtered (file,
7038 _("Controlling the inferior in non-stop mode is %s.\n"),
7039 value);
7040 }
7041
7042 static void
7043 show_schedule_multiple (struct ui_file *file, int from_tty,
7044 struct cmd_list_element *c, const char *value)
7045 {
7046 fprintf_filtered (file, _("Resuming the execution of threads "
7047 "of all processes is %s.\n"), value);
7048 }
7049
7050 /* Implementation of `siginfo' variable. */
7051
7052 static const struct internalvar_funcs siginfo_funcs =
7053 {
7054 siginfo_make_value,
7055 NULL,
7056 NULL
7057 };
7058
7059 void
7060 _initialize_infrun (void)
7061 {
7062 int i;
7063 int numsigs;
7064
7065 add_info ("signals", signals_info, _("\
7066 What debugger does when program gets various signals.\n\
7067 Specify a signal as argument to print info on that signal only."));
7068 add_info_alias ("handle", "signals", 0);
7069
7070 add_com ("handle", class_run, handle_command, _("\
7071 Specify how to handle a signal.\n\
7072 Args are signals and actions to apply to those signals.\n\
7073 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7074 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7075 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7076 The special arg \"all\" is recognized to mean all signals except those\n\
7077 used by the debugger, typically SIGTRAP and SIGINT.\n\
7078 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7079 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7080 Stop means reenter debugger if this signal happens (implies print).\n\
7081 Print means print a message if this signal happens.\n\
7082 Pass means let program see this signal; otherwise program doesn't know.\n\
7083 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7084 Pass and Stop may be combined."));
7085 if (xdb_commands)
7086 {
7087 add_com ("lz", class_info, signals_info, _("\
7088 What debugger does when program gets various signals.\n\
7089 Specify a signal as argument to print info on that signal only."));
7090 add_com ("z", class_run, xdb_handle_command, _("\
7091 Specify how to handle a signal.\n\
7092 Args are signals and actions to apply to those signals.\n\
7093 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7094 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7095 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7096 The special arg \"all\" is recognized to mean all signals except those\n\
7097 used by the debugger, typically SIGTRAP and SIGINT.\n\
7098 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7099 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7100 nopass), \"Q\" (noprint)\n\
7101 Stop means reenter debugger if this signal happens (implies print).\n\
7102 Print means print a message if this signal happens.\n\
7103 Pass means let program see this signal; otherwise program doesn't know.\n\
7104 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7105 Pass and Stop may be combined."));
7106 }
7107
7108 if (!dbx_commands)
7109 stop_command = add_cmd ("stop", class_obscure,
7110 not_just_help_class_command, _("\
7111 There is no `stop' command, but you can set a hook on `stop'.\n\
7112 This allows you to set a list of commands to be run each time execution\n\
7113 of the program stops."), &cmdlist);
7114
7115 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7116 Set inferior debugging."), _("\
7117 Show inferior debugging."), _("\
7118 When non-zero, inferior specific debugging is enabled."),
7119 NULL,
7120 show_debug_infrun,
7121 &setdebuglist, &showdebuglist);
7122
7123 add_setshow_boolean_cmd ("displaced", class_maintenance,
7124 &debug_displaced, _("\
7125 Set displaced stepping debugging."), _("\
7126 Show displaced stepping debugging."), _("\
7127 When non-zero, displaced stepping specific debugging is enabled."),
7128 NULL,
7129 show_debug_displaced,
7130 &setdebuglist, &showdebuglist);
7131
7132 add_setshow_boolean_cmd ("non-stop", no_class,
7133 &non_stop_1, _("\
7134 Set whether gdb controls the inferior in non-stop mode."), _("\
7135 Show whether gdb controls the inferior in non-stop mode."), _("\
7136 When debugging a multi-threaded program and this setting is\n\
7137 off (the default, also called all-stop mode), when one thread stops\n\
7138 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7139 all other threads in the program while you interact with the thread of\n\
7140 interest. When you continue or step a thread, you can allow the other\n\
7141 threads to run, or have them remain stopped, but while you inspect any\n\
7142 thread's state, all threads stop.\n\
7143 \n\
7144 In non-stop mode, when one thread stops, other threads can continue\n\
7145 to run freely. You'll be able to step each thread independently,\n\
7146 leave it stopped or free to run as needed."),
7147 set_non_stop,
7148 show_non_stop,
7149 &setlist,
7150 &showlist);
7151
7152 numsigs = (int) GDB_SIGNAL_LAST;
7153 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7154 signal_print = (unsigned char *)
7155 xmalloc (sizeof (signal_print[0]) * numsigs);
7156 signal_program = (unsigned char *)
7157 xmalloc (sizeof (signal_program[0]) * numsigs);
7158 signal_pass = (unsigned char *)
7159 xmalloc (sizeof (signal_program[0]) * numsigs);
7160 for (i = 0; i < numsigs; i++)
7161 {
7162 signal_stop[i] = 1;
7163 signal_print[i] = 1;
7164 signal_program[i] = 1;
7165 }
7166
7167 /* Signals caused by debugger's own actions
7168 should not be given to the program afterwards. */
7169 signal_program[GDB_SIGNAL_TRAP] = 0;
7170 signal_program[GDB_SIGNAL_INT] = 0;
7171
7172 /* Signals that are not errors should not normally enter the debugger. */
7173 signal_stop[GDB_SIGNAL_ALRM] = 0;
7174 signal_print[GDB_SIGNAL_ALRM] = 0;
7175 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7176 signal_print[GDB_SIGNAL_VTALRM] = 0;
7177 signal_stop[GDB_SIGNAL_PROF] = 0;
7178 signal_print[GDB_SIGNAL_PROF] = 0;
7179 signal_stop[GDB_SIGNAL_CHLD] = 0;
7180 signal_print[GDB_SIGNAL_CHLD] = 0;
7181 signal_stop[GDB_SIGNAL_IO] = 0;
7182 signal_print[GDB_SIGNAL_IO] = 0;
7183 signal_stop[GDB_SIGNAL_POLL] = 0;
7184 signal_print[GDB_SIGNAL_POLL] = 0;
7185 signal_stop[GDB_SIGNAL_URG] = 0;
7186 signal_print[GDB_SIGNAL_URG] = 0;
7187 signal_stop[GDB_SIGNAL_WINCH] = 0;
7188 signal_print[GDB_SIGNAL_WINCH] = 0;
7189 signal_stop[GDB_SIGNAL_PRIO] = 0;
7190 signal_print[GDB_SIGNAL_PRIO] = 0;
7191
7192 /* These signals are used internally by user-level thread
7193 implementations. (See signal(5) on Solaris.) Like the above
7194 signals, a healthy program receives and handles them as part of
7195 its normal operation. */
7196 signal_stop[GDB_SIGNAL_LWP] = 0;
7197 signal_print[GDB_SIGNAL_LWP] = 0;
7198 signal_stop[GDB_SIGNAL_WAITING] = 0;
7199 signal_print[GDB_SIGNAL_WAITING] = 0;
7200 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7201 signal_print[GDB_SIGNAL_CANCEL] = 0;
7202
7203 /* Update cached state. */
7204 signal_cache_update (-1);
7205
7206 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7207 &stop_on_solib_events, _("\
7208 Set stopping for shared library events."), _("\
7209 Show stopping for shared library events."), _("\
7210 If nonzero, gdb will give control to the user when the dynamic linker\n\
7211 notifies gdb of shared library events. The most common event of interest\n\
7212 to the user would be loading/unloading of a new library."),
7213 NULL,
7214 show_stop_on_solib_events,
7215 &setlist, &showlist);
7216
7217 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7218 follow_fork_mode_kind_names,
7219 &follow_fork_mode_string, _("\
7220 Set debugger response to a program call of fork or vfork."), _("\
7221 Show debugger response to a program call of fork or vfork."), _("\
7222 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7223 parent - the original process is debugged after a fork\n\
7224 child - the new process is debugged after a fork\n\
7225 The unfollowed process will continue to run.\n\
7226 By default, the debugger will follow the parent process."),
7227 NULL,
7228 show_follow_fork_mode_string,
7229 &setlist, &showlist);
7230
7231 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7232 follow_exec_mode_names,
7233 &follow_exec_mode_string, _("\
7234 Set debugger response to a program call of exec."), _("\
7235 Show debugger response to a program call of exec."), _("\
7236 An exec call replaces the program image of a process.\n\
7237 \n\
7238 follow-exec-mode can be:\n\
7239 \n\
7240 new - the debugger creates a new inferior and rebinds the process\n\
7241 to this new inferior. The program the process was running before\n\
7242 the exec call can be restarted afterwards by restarting the original\n\
7243 inferior.\n\
7244 \n\
7245 same - the debugger keeps the process bound to the same inferior.\n\
7246 The new executable image replaces the previous executable loaded in\n\
7247 the inferior. Restarting the inferior after the exec call restarts\n\
7248 the executable the process was running after the exec call.\n\
7249 \n\
7250 By default, the debugger will use the same inferior."),
7251 NULL,
7252 show_follow_exec_mode_string,
7253 &setlist, &showlist);
7254
7255 add_setshow_enum_cmd ("scheduler-locking", class_run,
7256 scheduler_enums, &scheduler_mode, _("\
7257 Set mode for locking scheduler during execution."), _("\
7258 Show mode for locking scheduler during execution."), _("\
7259 off == no locking (threads may preempt at any time)\n\
7260 on == full locking (no thread except the current thread may run)\n\
7261 step == scheduler locked during every single-step operation.\n\
7262 In this mode, no other thread may run during a step command.\n\
7263 Other threads may run while stepping over a function call ('next')."),
7264 set_schedlock_func, /* traps on target vector */
7265 show_scheduler_mode,
7266 &setlist, &showlist);
7267
7268 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7269 Set mode for resuming threads of all processes."), _("\
7270 Show mode for resuming threads of all processes."), _("\
7271 When on, execution commands (such as 'continue' or 'next') resume all\n\
7272 threads of all processes. When off (which is the default), execution\n\
7273 commands only resume the threads of the current process. The set of\n\
7274 threads that are resumed is further refined by the scheduler-locking\n\
7275 mode (see help set scheduler-locking)."),
7276 NULL,
7277 show_schedule_multiple,
7278 &setlist, &showlist);
7279
7280 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7281 Set mode of the step operation."), _("\
7282 Show mode of the step operation."), _("\
7283 When set, doing a step over a function without debug line information\n\
7284 will stop at the first instruction of that function. Otherwise, the\n\
7285 function is skipped and the step command stops at a different source line."),
7286 NULL,
7287 show_step_stop_if_no_debug,
7288 &setlist, &showlist);
7289
7290 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7291 &can_use_displaced_stepping, _("\
7292 Set debugger's willingness to use displaced stepping."), _("\
7293 Show debugger's willingness to use displaced stepping."), _("\
7294 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7295 supported by the target architecture. If off, gdb will not use displaced\n\
7296 stepping to step over breakpoints, even if such is supported by the target\n\
7297 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7298 if the target architecture supports it and non-stop mode is active, but will not\n\
7299 use it in all-stop mode (see help set non-stop)."),
7300 NULL,
7301 show_can_use_displaced_stepping,
7302 &setlist, &showlist);
7303
7304 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7305 &exec_direction, _("Set direction of execution.\n\
7306 Options are 'forward' or 'reverse'."),
7307 _("Show direction of execution (forward/reverse)."),
7308 _("Tells gdb whether to execute forward or backward."),
7309 set_exec_direction_func, show_exec_direction_func,
7310 &setlist, &showlist);
7311
7312 /* Set/show detach-on-fork: user-settable mode. */
7313
7314 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7315 Set whether gdb will detach the child of a fork."), _("\
7316 Show whether gdb will detach the child of a fork."), _("\
7317 Tells gdb whether to detach the child of a fork."),
7318 NULL, NULL, &setlist, &showlist);
7319
7320 /* Set/show disable address space randomization mode. */
7321
7322 add_setshow_boolean_cmd ("disable-randomization", class_support,
7323 &disable_randomization, _("\
7324 Set disabling of debuggee's virtual address space randomization."), _("\
7325 Show disabling of debuggee's virtual address space randomization."), _("\
7326 When this mode is on (which is the default), randomization of the virtual\n\
7327 address space is disabled. Standalone programs run with the randomization\n\
7328 enabled by default on some platforms."),
7329 &set_disable_randomization,
7330 &show_disable_randomization,
7331 &setlist, &showlist);
7332
7333 /* ptid initializations */
7334 inferior_ptid = null_ptid;
7335 target_last_wait_ptid = minus_one_ptid;
7336
7337 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7338 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7339 observer_attach_thread_exit (infrun_thread_thread_exit);
7340 observer_attach_inferior_exit (infrun_inferior_exit);
7341
7342 /* Explicitly create without lookup, since that tries to create a
7343 value with a void typed value, and when we get here, gdbarch
7344 isn't initialized yet. At this point, we're quite sure there
7345 isn't another convenience variable of the same name. */
7346 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7347
7348 add_setshow_boolean_cmd ("observer", no_class,
7349 &observer_mode_1, _("\
7350 Set whether gdb controls the inferior in observer mode."), _("\
7351 Show whether gdb controls the inferior in observer mode."), _("\
7352 In observer mode, GDB can get data from the inferior, but not\n\
7353 affect its execution. Registers and memory may not be changed,\n\
7354 breakpoints may not be set, and the program cannot be interrupted\n\
7355 or signalled."),
7356 set_observer_mode,
7357 show_observer_mode,
7358 &setlist,
7359 &showlist);
7360 }