* infrun.c (wait_for_inferior): Invalidate registers and overlay
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "inline-frame.h"
53
54 /* Prototypes for local functions */
55
56 static void signals_info (char *, int);
57
58 static void handle_command (char *, int);
59
60 static void sig_print_info (enum target_signal);
61
62 static void sig_print_header (void);
63
64 static void resume_cleanups (void *);
65
66 static int hook_stop_stub (void *);
67
68 static int restore_selected_frame (void *);
69
70 static void build_infrun (void);
71
72 static int follow_fork (void);
73
74 static void set_schedlock_func (char *args, int from_tty,
75 struct cmd_list_element *c);
76
77 static int currently_stepping (struct thread_info *tp);
78
79 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
80 void *data);
81
82 static void xdb_handle_command (char *args, int from_tty);
83
84 static int prepare_to_proceed (int);
85
86 void _initialize_infrun (void);
87
88 void nullify_last_target_wait_ptid (void);
89
90 /* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93 int step_stop_if_no_debug = 0;
94 static void
95 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99 }
100
101 /* In asynchronous mode, but simulating synchronous execution. */
102
103 int sync_execution = 0;
104
105 /* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
107 running in. */
108
109 static ptid_t previous_inferior_ptid;
110
111 int debug_displaced = 0;
112 static void
113 show_debug_displaced (struct ui_file *file, int from_tty,
114 struct cmd_list_element *c, const char *value)
115 {
116 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
117 }
118
119 static int debug_infrun = 0;
120 static void
121 show_debug_infrun (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c, const char *value)
123 {
124 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
125 }
126
127 /* If the program uses ELF-style shared libraries, then calls to
128 functions in shared libraries go through stubs, which live in a
129 table called the PLT (Procedure Linkage Table). The first time the
130 function is called, the stub sends control to the dynamic linker,
131 which looks up the function's real address, patches the stub so
132 that future calls will go directly to the function, and then passes
133 control to the function.
134
135 If we are stepping at the source level, we don't want to see any of
136 this --- we just want to skip over the stub and the dynamic linker.
137 The simple approach is to single-step until control leaves the
138 dynamic linker.
139
140 However, on some systems (e.g., Red Hat's 5.2 distribution) the
141 dynamic linker calls functions in the shared C library, so you
142 can't tell from the PC alone whether the dynamic linker is still
143 running. In this case, we use a step-resume breakpoint to get us
144 past the dynamic linker, as if we were using "next" to step over a
145 function call.
146
147 in_solib_dynsym_resolve_code() says whether we're in the dynamic
148 linker code or not. Normally, this means we single-step. However,
149 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
150 address where we can place a step-resume breakpoint to get past the
151 linker's symbol resolution function.
152
153 in_solib_dynsym_resolve_code() can generally be implemented in a
154 pretty portable way, by comparing the PC against the address ranges
155 of the dynamic linker's sections.
156
157 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
158 it depends on internal details of the dynamic linker. It's usually
159 not too hard to figure out where to put a breakpoint, but it
160 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
161 sanity checking. If it can't figure things out, returning zero and
162 getting the (possibly confusing) stepping behavior is better than
163 signalling an error, which will obscure the change in the
164 inferior's state. */
165
166 /* This function returns TRUE if pc is the address of an instruction
167 that lies within the dynamic linker (such as the event hook, or the
168 dld itself).
169
170 This function must be used only when a dynamic linker event has
171 been caught, and the inferior is being stepped out of the hook, or
172 undefined results are guaranteed. */
173
174 #ifndef SOLIB_IN_DYNAMIC_LINKER
175 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
176 #endif
177
178
179 /* Convert the #defines into values. This is temporary until wfi control
180 flow is completely sorted out. */
181
182 #ifndef CANNOT_STEP_HW_WATCHPOINTS
183 #define CANNOT_STEP_HW_WATCHPOINTS 0
184 #else
185 #undef CANNOT_STEP_HW_WATCHPOINTS
186 #define CANNOT_STEP_HW_WATCHPOINTS 1
187 #endif
188
189 /* Tables of how to react to signals; the user sets them. */
190
191 static unsigned char *signal_stop;
192 static unsigned char *signal_print;
193 static unsigned char *signal_program;
194
195 #define SET_SIGS(nsigs,sigs,flags) \
196 do { \
197 int signum = (nsigs); \
198 while (signum-- > 0) \
199 if ((sigs)[signum]) \
200 (flags)[signum] = 1; \
201 } while (0)
202
203 #define UNSET_SIGS(nsigs,sigs,flags) \
204 do { \
205 int signum = (nsigs); \
206 while (signum-- > 0) \
207 if ((sigs)[signum]) \
208 (flags)[signum] = 0; \
209 } while (0)
210
211 /* Value to pass to target_resume() to cause all threads to resume */
212
213 #define RESUME_ALL minus_one_ptid
214
215 /* Command list pointer for the "stop" placeholder. */
216
217 static struct cmd_list_element *stop_command;
218
219 /* Function inferior was in as of last step command. */
220
221 static struct symbol *step_start_function;
222
223 /* Nonzero if we want to give control to the user when we're notified
224 of shared library events by the dynamic linker. */
225 static int stop_on_solib_events;
226 static void
227 show_stop_on_solib_events (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229 {
230 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
231 value);
232 }
233
234 /* Nonzero means expecting a trace trap
235 and should stop the inferior and return silently when it happens. */
236
237 int stop_after_trap;
238
239 /* Save register contents here when executing a "finish" command or are
240 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
241 Thus this contains the return value from the called function (assuming
242 values are returned in a register). */
243
244 struct regcache *stop_registers;
245
246 /* Nonzero after stop if current stack frame should be printed. */
247
248 static int stop_print_frame;
249
250 /* This is a cached copy of the pid/waitstatus of the last event
251 returned by target_wait()/deprecated_target_wait_hook(). This
252 information is returned by get_last_target_status(). */
253 static ptid_t target_last_wait_ptid;
254 static struct target_waitstatus target_last_waitstatus;
255
256 static void context_switch (ptid_t ptid);
257
258 void init_thread_stepping_state (struct thread_info *tss);
259
260 void init_infwait_state (void);
261
262 static const char follow_fork_mode_child[] = "child";
263 static const char follow_fork_mode_parent[] = "parent";
264
265 static const char *follow_fork_mode_kind_names[] = {
266 follow_fork_mode_child,
267 follow_fork_mode_parent,
268 NULL
269 };
270
271 static const char *follow_fork_mode_string = follow_fork_mode_parent;
272 static void
273 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
274 struct cmd_list_element *c, const char *value)
275 {
276 fprintf_filtered (file, _("\
277 Debugger response to a program call of fork or vfork is \"%s\".\n"),
278 value);
279 }
280 \f
281
282 /* Tell the target to follow the fork we're stopped at. Returns true
283 if the inferior should be resumed; false, if the target for some
284 reason decided it's best not to resume. */
285
286 static int
287 follow_fork (void)
288 {
289 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
290 int should_resume = 1;
291 struct thread_info *tp;
292
293 /* Copy user stepping state to the new inferior thread. FIXME: the
294 followed fork child thread should have a copy of most of the
295 parent thread structure's run control related fields, not just these.
296 Initialized to avoid "may be used uninitialized" warnings from gcc. */
297 struct breakpoint *step_resume_breakpoint = NULL;
298 CORE_ADDR step_range_start = 0;
299 CORE_ADDR step_range_end = 0;
300 struct frame_id step_frame_id = { 0 };
301
302 if (!non_stop)
303 {
304 ptid_t wait_ptid;
305 struct target_waitstatus wait_status;
306
307 /* Get the last target status returned by target_wait(). */
308 get_last_target_status (&wait_ptid, &wait_status);
309
310 /* If not stopped at a fork event, then there's nothing else to
311 do. */
312 if (wait_status.kind != TARGET_WAITKIND_FORKED
313 && wait_status.kind != TARGET_WAITKIND_VFORKED)
314 return 1;
315
316 /* Check if we switched over from WAIT_PTID, since the event was
317 reported. */
318 if (!ptid_equal (wait_ptid, minus_one_ptid)
319 && !ptid_equal (inferior_ptid, wait_ptid))
320 {
321 /* We did. Switch back to WAIT_PTID thread, to tell the
322 target to follow it (in either direction). We'll
323 afterwards refuse to resume, and inform the user what
324 happened. */
325 switch_to_thread (wait_ptid);
326 should_resume = 0;
327 }
328 }
329
330 tp = inferior_thread ();
331
332 /* If there were any forks/vforks that were caught and are now to be
333 followed, then do so now. */
334 switch (tp->pending_follow.kind)
335 {
336 case TARGET_WAITKIND_FORKED:
337 case TARGET_WAITKIND_VFORKED:
338 {
339 ptid_t parent, child;
340
341 /* If the user did a next/step, etc, over a fork call,
342 preserve the stepping state in the fork child. */
343 if (follow_child && should_resume)
344 {
345 step_resume_breakpoint
346 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
347 step_range_start = tp->step_range_start;
348 step_range_end = tp->step_range_end;
349 step_frame_id = tp->step_frame_id;
350
351 /* For now, delete the parent's sr breakpoint, otherwise,
352 parent/child sr breakpoints are considered duplicates,
353 and the child version will not be installed. Remove
354 this when the breakpoints module becomes aware of
355 inferiors and address spaces. */
356 delete_step_resume_breakpoint (tp);
357 tp->step_range_start = 0;
358 tp->step_range_end = 0;
359 tp->step_frame_id = null_frame_id;
360 }
361
362 parent = inferior_ptid;
363 child = tp->pending_follow.value.related_pid;
364
365 /* Tell the target to do whatever is necessary to follow
366 either parent or child. */
367 if (target_follow_fork (follow_child))
368 {
369 /* Target refused to follow, or there's some other reason
370 we shouldn't resume. */
371 should_resume = 0;
372 }
373 else
374 {
375 /* This pending follow fork event is now handled, one way
376 or another. The previous selected thread may be gone
377 from the lists by now, but if it is still around, need
378 to clear the pending follow request. */
379 tp = find_thread_ptid (parent);
380 if (tp)
381 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
382
383 /* This makes sure we don't try to apply the "Switched
384 over from WAIT_PID" logic above. */
385 nullify_last_target_wait_ptid ();
386
387 /* If we followed the child, switch to it... */
388 if (follow_child)
389 {
390 switch_to_thread (child);
391
392 /* ... and preserve the stepping state, in case the
393 user was stepping over the fork call. */
394 if (should_resume)
395 {
396 tp = inferior_thread ();
397 tp->step_resume_breakpoint = step_resume_breakpoint;
398 tp->step_range_start = step_range_start;
399 tp->step_range_end = step_range_end;
400 tp->step_frame_id = step_frame_id;
401 }
402 else
403 {
404 /* If we get here, it was because we're trying to
405 resume from a fork catchpoint, but, the user
406 has switched threads away from the thread that
407 forked. In that case, the resume command
408 issued is most likely not applicable to the
409 child, so just warn, and refuse to resume. */
410 warning (_("\
411 Not resuming: switched threads before following fork child.\n"));
412 }
413
414 /* Reset breakpoints in the child as appropriate. */
415 follow_inferior_reset_breakpoints ();
416 }
417 else
418 switch_to_thread (parent);
419 }
420 }
421 break;
422 case TARGET_WAITKIND_SPURIOUS:
423 /* Nothing to follow. */
424 break;
425 default:
426 internal_error (__FILE__, __LINE__,
427 "Unexpected pending_follow.kind %d\n",
428 tp->pending_follow.kind);
429 break;
430 }
431
432 return should_resume;
433 }
434
435 void
436 follow_inferior_reset_breakpoints (void)
437 {
438 struct thread_info *tp = inferior_thread ();
439
440 /* Was there a step_resume breakpoint? (There was if the user
441 did a "next" at the fork() call.) If so, explicitly reset its
442 thread number.
443
444 step_resumes are a form of bp that are made to be per-thread.
445 Since we created the step_resume bp when the parent process
446 was being debugged, and now are switching to the child process,
447 from the breakpoint package's viewpoint, that's a switch of
448 "threads". We must update the bp's notion of which thread
449 it is for, or it'll be ignored when it triggers. */
450
451 if (tp->step_resume_breakpoint)
452 breakpoint_re_set_thread (tp->step_resume_breakpoint);
453
454 /* Reinsert all breakpoints in the child. The user may have set
455 breakpoints after catching the fork, in which case those
456 were never set in the child, but only in the parent. This makes
457 sure the inserted breakpoints match the breakpoint list. */
458
459 breakpoint_re_set ();
460 insert_breakpoints ();
461 }
462
463 /* EXECD_PATHNAME is assumed to be non-NULL. */
464
465 static void
466 follow_exec (ptid_t pid, char *execd_pathname)
467 {
468 struct target_ops *tgt;
469 struct thread_info *th = inferior_thread ();
470
471 /* This is an exec event that we actually wish to pay attention to.
472 Refresh our symbol table to the newly exec'd program, remove any
473 momentary bp's, etc.
474
475 If there are breakpoints, they aren't really inserted now,
476 since the exec() transformed our inferior into a fresh set
477 of instructions.
478
479 We want to preserve symbolic breakpoints on the list, since
480 we have hopes that they can be reset after the new a.out's
481 symbol table is read.
482
483 However, any "raw" breakpoints must be removed from the list
484 (e.g., the solib bp's), since their address is probably invalid
485 now.
486
487 And, we DON'T want to call delete_breakpoints() here, since
488 that may write the bp's "shadow contents" (the instruction
489 value that was overwritten witha TRAP instruction). Since
490 we now have a new a.out, those shadow contents aren't valid. */
491 update_breakpoints_after_exec ();
492
493 /* If there was one, it's gone now. We cannot truly step-to-next
494 statement through an exec(). */
495 th->step_resume_breakpoint = NULL;
496 th->step_range_start = 0;
497 th->step_range_end = 0;
498
499 /* The target reports the exec event to the main thread, even if
500 some other thread does the exec, and even if the main thread was
501 already stopped --- if debugging in non-stop mode, it's possible
502 the user had the main thread held stopped in the previous image
503 --- release it now. This is the same behavior as step-over-exec
504 with scheduler-locking on in all-stop mode. */
505 th->stop_requested = 0;
506
507 /* What is this a.out's name? */
508 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
509
510 /* We've followed the inferior through an exec. Therefore, the
511 inferior has essentially been killed & reborn. */
512
513 gdb_flush (gdb_stdout);
514
515 breakpoint_init_inferior (inf_execd);
516
517 if (gdb_sysroot && *gdb_sysroot)
518 {
519 char *name = alloca (strlen (gdb_sysroot)
520 + strlen (execd_pathname)
521 + 1);
522 strcpy (name, gdb_sysroot);
523 strcat (name, execd_pathname);
524 execd_pathname = name;
525 }
526
527 /* That a.out is now the one to use. */
528 exec_file_attach (execd_pathname, 0);
529
530 /* Reset the shared library package. This ensures that we get a
531 shlib event when the child reaches "_start", at which point the
532 dld will have had a chance to initialize the child. */
533 /* Also, loading a symbol file below may trigger symbol lookups, and
534 we don't want those to be satisfied by the libraries of the
535 previous incarnation of this process. */
536 no_shared_libraries (NULL, 0);
537
538 /* Load the main file's symbols. */
539 symbol_file_add_main (execd_pathname, 0);
540
541 #ifdef SOLIB_CREATE_INFERIOR_HOOK
542 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
543 #else
544 solib_create_inferior_hook ();
545 #endif
546
547 /* Reinsert all breakpoints. (Those which were symbolic have
548 been reset to the proper address in the new a.out, thanks
549 to symbol_file_command...) */
550 insert_breakpoints ();
551
552 /* The next resume of this inferior should bring it to the shlib
553 startup breakpoints. (If the user had also set bp's on
554 "main" from the old (parent) process, then they'll auto-
555 matically get reset there in the new process.) */
556 }
557
558 /* Non-zero if we just simulating a single-step. This is needed
559 because we cannot remove the breakpoints in the inferior process
560 until after the `wait' in `wait_for_inferior'. */
561 static int singlestep_breakpoints_inserted_p = 0;
562
563 /* The thread we inserted single-step breakpoints for. */
564 static ptid_t singlestep_ptid;
565
566 /* PC when we started this single-step. */
567 static CORE_ADDR singlestep_pc;
568
569 /* If another thread hit the singlestep breakpoint, we save the original
570 thread here so that we can resume single-stepping it later. */
571 static ptid_t saved_singlestep_ptid;
572 static int stepping_past_singlestep_breakpoint;
573
574 /* If not equal to null_ptid, this means that after stepping over breakpoint
575 is finished, we need to switch to deferred_step_ptid, and step it.
576
577 The use case is when one thread has hit a breakpoint, and then the user
578 has switched to another thread and issued 'step'. We need to step over
579 breakpoint in the thread which hit the breakpoint, but then continue
580 stepping the thread user has selected. */
581 static ptid_t deferred_step_ptid;
582 \f
583 /* Displaced stepping. */
584
585 /* In non-stop debugging mode, we must take special care to manage
586 breakpoints properly; in particular, the traditional strategy for
587 stepping a thread past a breakpoint it has hit is unsuitable.
588 'Displaced stepping' is a tactic for stepping one thread past a
589 breakpoint it has hit while ensuring that other threads running
590 concurrently will hit the breakpoint as they should.
591
592 The traditional way to step a thread T off a breakpoint in a
593 multi-threaded program in all-stop mode is as follows:
594
595 a0) Initially, all threads are stopped, and breakpoints are not
596 inserted.
597 a1) We single-step T, leaving breakpoints uninserted.
598 a2) We insert breakpoints, and resume all threads.
599
600 In non-stop debugging, however, this strategy is unsuitable: we
601 don't want to have to stop all threads in the system in order to
602 continue or step T past a breakpoint. Instead, we use displaced
603 stepping:
604
605 n0) Initially, T is stopped, other threads are running, and
606 breakpoints are inserted.
607 n1) We copy the instruction "under" the breakpoint to a separate
608 location, outside the main code stream, making any adjustments
609 to the instruction, register, and memory state as directed by
610 T's architecture.
611 n2) We single-step T over the instruction at its new location.
612 n3) We adjust the resulting register and memory state as directed
613 by T's architecture. This includes resetting T's PC to point
614 back into the main instruction stream.
615 n4) We resume T.
616
617 This approach depends on the following gdbarch methods:
618
619 - gdbarch_max_insn_length and gdbarch_displaced_step_location
620 indicate where to copy the instruction, and how much space must
621 be reserved there. We use these in step n1.
622
623 - gdbarch_displaced_step_copy_insn copies a instruction to a new
624 address, and makes any necessary adjustments to the instruction,
625 register contents, and memory. We use this in step n1.
626
627 - gdbarch_displaced_step_fixup adjusts registers and memory after
628 we have successfuly single-stepped the instruction, to yield the
629 same effect the instruction would have had if we had executed it
630 at its original address. We use this in step n3.
631
632 - gdbarch_displaced_step_free_closure provides cleanup.
633
634 The gdbarch_displaced_step_copy_insn and
635 gdbarch_displaced_step_fixup functions must be written so that
636 copying an instruction with gdbarch_displaced_step_copy_insn,
637 single-stepping across the copied instruction, and then applying
638 gdbarch_displaced_insn_fixup should have the same effects on the
639 thread's memory and registers as stepping the instruction in place
640 would have. Exactly which responsibilities fall to the copy and
641 which fall to the fixup is up to the author of those functions.
642
643 See the comments in gdbarch.sh for details.
644
645 Note that displaced stepping and software single-step cannot
646 currently be used in combination, although with some care I think
647 they could be made to. Software single-step works by placing
648 breakpoints on all possible subsequent instructions; if the
649 displaced instruction is a PC-relative jump, those breakpoints
650 could fall in very strange places --- on pages that aren't
651 executable, or at addresses that are not proper instruction
652 boundaries. (We do generally let other threads run while we wait
653 to hit the software single-step breakpoint, and they might
654 encounter such a corrupted instruction.) One way to work around
655 this would be to have gdbarch_displaced_step_copy_insn fully
656 simulate the effect of PC-relative instructions (and return NULL)
657 on architectures that use software single-stepping.
658
659 In non-stop mode, we can have independent and simultaneous step
660 requests, so more than one thread may need to simultaneously step
661 over a breakpoint. The current implementation assumes there is
662 only one scratch space per process. In this case, we have to
663 serialize access to the scratch space. If thread A wants to step
664 over a breakpoint, but we are currently waiting for some other
665 thread to complete a displaced step, we leave thread A stopped and
666 place it in the displaced_step_request_queue. Whenever a displaced
667 step finishes, we pick the next thread in the queue and start a new
668 displaced step operation on it. See displaced_step_prepare and
669 displaced_step_fixup for details. */
670
671 /* If this is not null_ptid, this is the thread carrying out a
672 displaced single-step. This thread's state will require fixing up
673 once it has completed its step. */
674 static ptid_t displaced_step_ptid;
675
676 struct displaced_step_request
677 {
678 ptid_t ptid;
679 struct displaced_step_request *next;
680 };
681
682 /* A queue of pending displaced stepping requests. */
683 struct displaced_step_request *displaced_step_request_queue;
684
685 /* The architecture the thread had when we stepped it. */
686 static struct gdbarch *displaced_step_gdbarch;
687
688 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
689 for post-step cleanup. */
690 static struct displaced_step_closure *displaced_step_closure;
691
692 /* The address of the original instruction, and the copy we made. */
693 static CORE_ADDR displaced_step_original, displaced_step_copy;
694
695 /* Saved contents of copy area. */
696 static gdb_byte *displaced_step_saved_copy;
697
698 /* Enum strings for "set|show displaced-stepping". */
699
700 static const char can_use_displaced_stepping_auto[] = "auto";
701 static const char can_use_displaced_stepping_on[] = "on";
702 static const char can_use_displaced_stepping_off[] = "off";
703 static const char *can_use_displaced_stepping_enum[] =
704 {
705 can_use_displaced_stepping_auto,
706 can_use_displaced_stepping_on,
707 can_use_displaced_stepping_off,
708 NULL,
709 };
710
711 /* If ON, and the architecture supports it, GDB will use displaced
712 stepping to step over breakpoints. If OFF, or if the architecture
713 doesn't support it, GDB will instead use the traditional
714 hold-and-step approach. If AUTO (which is the default), GDB will
715 decide which technique to use to step over breakpoints depending on
716 which of all-stop or non-stop mode is active --- displaced stepping
717 in non-stop mode; hold-and-step in all-stop mode. */
718
719 static const char *can_use_displaced_stepping =
720 can_use_displaced_stepping_auto;
721
722 static void
723 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
724 struct cmd_list_element *c,
725 const char *value)
726 {
727 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
728 fprintf_filtered (file, _("\
729 Debugger's willingness to use displaced stepping to step over \
730 breakpoints is %s (currently %s).\n"),
731 value, non_stop ? "on" : "off");
732 else
733 fprintf_filtered (file, _("\
734 Debugger's willingness to use displaced stepping to step over \
735 breakpoints is %s.\n"), value);
736 }
737
738 /* Return non-zero if displaced stepping can/should be used to step
739 over breakpoints. */
740
741 static int
742 use_displaced_stepping (struct gdbarch *gdbarch)
743 {
744 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
745 && non_stop)
746 || can_use_displaced_stepping == can_use_displaced_stepping_on)
747 && gdbarch_displaced_step_copy_insn_p (gdbarch)
748 && !RECORD_IS_USED);
749 }
750
751 /* Clean out any stray displaced stepping state. */
752 static void
753 displaced_step_clear (void)
754 {
755 /* Indicate that there is no cleanup pending. */
756 displaced_step_ptid = null_ptid;
757
758 if (displaced_step_closure)
759 {
760 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
761 displaced_step_closure);
762 displaced_step_closure = NULL;
763 }
764 }
765
766 static void
767 displaced_step_clear_cleanup (void *ignore)
768 {
769 displaced_step_clear ();
770 }
771
772 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
773 void
774 displaced_step_dump_bytes (struct ui_file *file,
775 const gdb_byte *buf,
776 size_t len)
777 {
778 int i;
779
780 for (i = 0; i < len; i++)
781 fprintf_unfiltered (file, "%02x ", buf[i]);
782 fputs_unfiltered ("\n", file);
783 }
784
785 /* Prepare to single-step, using displaced stepping.
786
787 Note that we cannot use displaced stepping when we have a signal to
788 deliver. If we have a signal to deliver and an instruction to step
789 over, then after the step, there will be no indication from the
790 target whether the thread entered a signal handler or ignored the
791 signal and stepped over the instruction successfully --- both cases
792 result in a simple SIGTRAP. In the first case we mustn't do a
793 fixup, and in the second case we must --- but we can't tell which.
794 Comments in the code for 'random signals' in handle_inferior_event
795 explain how we handle this case instead.
796
797 Returns 1 if preparing was successful -- this thread is going to be
798 stepped now; or 0 if displaced stepping this thread got queued. */
799 static int
800 displaced_step_prepare (ptid_t ptid)
801 {
802 struct cleanup *old_cleanups, *ignore_cleanups;
803 struct regcache *regcache = get_thread_regcache (ptid);
804 struct gdbarch *gdbarch = get_regcache_arch (regcache);
805 CORE_ADDR original, copy;
806 ULONGEST len;
807 struct displaced_step_closure *closure;
808
809 /* We should never reach this function if the architecture does not
810 support displaced stepping. */
811 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
812
813 /* For the first cut, we're displaced stepping one thread at a
814 time. */
815
816 if (!ptid_equal (displaced_step_ptid, null_ptid))
817 {
818 /* Already waiting for a displaced step to finish. Defer this
819 request and place in queue. */
820 struct displaced_step_request *req, *new_req;
821
822 if (debug_displaced)
823 fprintf_unfiltered (gdb_stdlog,
824 "displaced: defering step of %s\n",
825 target_pid_to_str (ptid));
826
827 new_req = xmalloc (sizeof (*new_req));
828 new_req->ptid = ptid;
829 new_req->next = NULL;
830
831 if (displaced_step_request_queue)
832 {
833 for (req = displaced_step_request_queue;
834 req && req->next;
835 req = req->next)
836 ;
837 req->next = new_req;
838 }
839 else
840 displaced_step_request_queue = new_req;
841
842 return 0;
843 }
844 else
845 {
846 if (debug_displaced)
847 fprintf_unfiltered (gdb_stdlog,
848 "displaced: stepping %s now\n",
849 target_pid_to_str (ptid));
850 }
851
852 displaced_step_clear ();
853
854 old_cleanups = save_inferior_ptid ();
855 inferior_ptid = ptid;
856
857 original = regcache_read_pc (regcache);
858
859 copy = gdbarch_displaced_step_location (gdbarch);
860 len = gdbarch_max_insn_length (gdbarch);
861
862 /* Save the original contents of the copy area. */
863 displaced_step_saved_copy = xmalloc (len);
864 ignore_cleanups = make_cleanup (free_current_contents,
865 &displaced_step_saved_copy);
866 read_memory (copy, displaced_step_saved_copy, len);
867 if (debug_displaced)
868 {
869 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
870 paddress (gdbarch, copy));
871 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
872 };
873
874 closure = gdbarch_displaced_step_copy_insn (gdbarch,
875 original, copy, regcache);
876
877 /* We don't support the fully-simulated case at present. */
878 gdb_assert (closure);
879
880 /* Save the information we need to fix things up if the step
881 succeeds. */
882 displaced_step_ptid = ptid;
883 displaced_step_gdbarch = gdbarch;
884 displaced_step_closure = closure;
885 displaced_step_original = original;
886 displaced_step_copy = copy;
887
888 make_cleanup (displaced_step_clear_cleanup, 0);
889
890 /* Resume execution at the copy. */
891 regcache_write_pc (regcache, copy);
892
893 discard_cleanups (ignore_cleanups);
894
895 do_cleanups (old_cleanups);
896
897 if (debug_displaced)
898 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
899 paddress (gdbarch, copy));
900
901 return 1;
902 }
903
904 static void
905 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
906 {
907 struct cleanup *ptid_cleanup = save_inferior_ptid ();
908 inferior_ptid = ptid;
909 write_memory (memaddr, myaddr, len);
910 do_cleanups (ptid_cleanup);
911 }
912
913 static void
914 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
915 {
916 struct cleanup *old_cleanups;
917
918 /* Was this event for the pid we displaced? */
919 if (ptid_equal (displaced_step_ptid, null_ptid)
920 || ! ptid_equal (displaced_step_ptid, event_ptid))
921 return;
922
923 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
924
925 /* Restore the contents of the copy area. */
926 {
927 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
928 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
929 displaced_step_saved_copy, len);
930 if (debug_displaced)
931 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
932 paddress (displaced_step_gdbarch,
933 displaced_step_copy));
934 }
935
936 /* Did the instruction complete successfully? */
937 if (signal == TARGET_SIGNAL_TRAP)
938 {
939 /* Fix up the resulting state. */
940 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
941 displaced_step_closure,
942 displaced_step_original,
943 displaced_step_copy,
944 get_thread_regcache (displaced_step_ptid));
945 }
946 else
947 {
948 /* Since the instruction didn't complete, all we can do is
949 relocate the PC. */
950 struct regcache *regcache = get_thread_regcache (event_ptid);
951 CORE_ADDR pc = regcache_read_pc (regcache);
952 pc = displaced_step_original + (pc - displaced_step_copy);
953 regcache_write_pc (regcache, pc);
954 }
955
956 do_cleanups (old_cleanups);
957
958 displaced_step_ptid = null_ptid;
959
960 /* Are there any pending displaced stepping requests? If so, run
961 one now. */
962 while (displaced_step_request_queue)
963 {
964 struct displaced_step_request *head;
965 ptid_t ptid;
966 struct regcache *regcache;
967 CORE_ADDR actual_pc;
968
969 head = displaced_step_request_queue;
970 ptid = head->ptid;
971 displaced_step_request_queue = head->next;
972 xfree (head);
973
974 context_switch (ptid);
975
976 regcache = get_thread_regcache (ptid);
977 actual_pc = regcache_read_pc (regcache);
978
979 if (breakpoint_here_p (actual_pc))
980 {
981 if (debug_displaced)
982 fprintf_unfiltered (gdb_stdlog,
983 "displaced: stepping queued %s now\n",
984 target_pid_to_str (ptid));
985
986 displaced_step_prepare (ptid);
987
988 if (debug_displaced)
989 {
990 struct gdbarch *gdbarch = get_regcache_arch (regcache);
991 gdb_byte buf[4];
992
993 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
994 paddress (gdbarch, actual_pc));
995 read_memory (actual_pc, buf, sizeof (buf));
996 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
997 }
998
999 target_resume (ptid, 1, TARGET_SIGNAL_0);
1000
1001 /* Done, we're stepping a thread. */
1002 break;
1003 }
1004 else
1005 {
1006 int step;
1007 struct thread_info *tp = inferior_thread ();
1008
1009 /* The breakpoint we were sitting under has since been
1010 removed. */
1011 tp->trap_expected = 0;
1012
1013 /* Go back to what we were trying to do. */
1014 step = currently_stepping (tp);
1015
1016 if (debug_displaced)
1017 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1018 target_pid_to_str (tp->ptid), step);
1019
1020 target_resume (ptid, step, TARGET_SIGNAL_0);
1021 tp->stop_signal = TARGET_SIGNAL_0;
1022
1023 /* This request was discarded. See if there's any other
1024 thread waiting for its turn. */
1025 }
1026 }
1027 }
1028
1029 /* Update global variables holding ptids to hold NEW_PTID if they were
1030 holding OLD_PTID. */
1031 static void
1032 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1033 {
1034 struct displaced_step_request *it;
1035
1036 if (ptid_equal (inferior_ptid, old_ptid))
1037 inferior_ptid = new_ptid;
1038
1039 if (ptid_equal (singlestep_ptid, old_ptid))
1040 singlestep_ptid = new_ptid;
1041
1042 if (ptid_equal (displaced_step_ptid, old_ptid))
1043 displaced_step_ptid = new_ptid;
1044
1045 if (ptid_equal (deferred_step_ptid, old_ptid))
1046 deferred_step_ptid = new_ptid;
1047
1048 for (it = displaced_step_request_queue; it; it = it->next)
1049 if (ptid_equal (it->ptid, old_ptid))
1050 it->ptid = new_ptid;
1051 }
1052
1053 \f
1054 /* Resuming. */
1055
1056 /* Things to clean up if we QUIT out of resume (). */
1057 static void
1058 resume_cleanups (void *ignore)
1059 {
1060 normal_stop ();
1061 }
1062
1063 static const char schedlock_off[] = "off";
1064 static const char schedlock_on[] = "on";
1065 static const char schedlock_step[] = "step";
1066 static const char *scheduler_enums[] = {
1067 schedlock_off,
1068 schedlock_on,
1069 schedlock_step,
1070 NULL
1071 };
1072 static const char *scheduler_mode = schedlock_off;
1073 static void
1074 show_scheduler_mode (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076 {
1077 fprintf_filtered (file, _("\
1078 Mode for locking scheduler during execution is \"%s\".\n"),
1079 value);
1080 }
1081
1082 static void
1083 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1084 {
1085 if (!target_can_lock_scheduler)
1086 {
1087 scheduler_mode = schedlock_off;
1088 error (_("Target '%s' cannot support this command."), target_shortname);
1089 }
1090 }
1091
1092 /* True if execution commands resume all threads of all processes by
1093 default; otherwise, resume only threads of the current inferior
1094 process. */
1095 int sched_multi = 0;
1096
1097 /* Try to setup for software single stepping over the specified location.
1098 Return 1 if target_resume() should use hardware single step.
1099
1100 GDBARCH the current gdbarch.
1101 PC the location to step over. */
1102
1103 static int
1104 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1105 {
1106 int hw_step = 1;
1107
1108 if (gdbarch_software_single_step_p (gdbarch)
1109 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1110 {
1111 hw_step = 0;
1112 /* Do not pull these breakpoints until after a `wait' in
1113 `wait_for_inferior' */
1114 singlestep_breakpoints_inserted_p = 1;
1115 singlestep_ptid = inferior_ptid;
1116 singlestep_pc = pc;
1117 }
1118 return hw_step;
1119 }
1120
1121 /* Resume the inferior, but allow a QUIT. This is useful if the user
1122 wants to interrupt some lengthy single-stepping operation
1123 (for child processes, the SIGINT goes to the inferior, and so
1124 we get a SIGINT random_signal, but for remote debugging and perhaps
1125 other targets, that's not true).
1126
1127 STEP nonzero if we should step (zero to continue instead).
1128 SIG is the signal to give the inferior (zero for none). */
1129 void
1130 resume (int step, enum target_signal sig)
1131 {
1132 int should_resume = 1;
1133 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1134 struct regcache *regcache = get_current_regcache ();
1135 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1136 struct thread_info *tp = inferior_thread ();
1137 CORE_ADDR pc = regcache_read_pc (regcache);
1138
1139 QUIT;
1140
1141 if (debug_infrun)
1142 fprintf_unfiltered (gdb_stdlog,
1143 "infrun: resume (step=%d, signal=%d), "
1144 "trap_expected=%d\n",
1145 step, sig, tp->trap_expected);
1146
1147 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
1148 over an instruction that causes a page fault without triggering
1149 a hardware watchpoint. The kernel properly notices that it shouldn't
1150 stop, because the hardware watchpoint is not triggered, but it forgets
1151 the step request and continues the program normally.
1152 Work around the problem by removing hardware watchpoints if a step is
1153 requested, GDB will check for a hardware watchpoint trigger after the
1154 step anyway. */
1155 if (CANNOT_STEP_HW_WATCHPOINTS && step)
1156 remove_hw_watchpoints ();
1157
1158
1159 /* Normally, by the time we reach `resume', the breakpoints are either
1160 removed or inserted, as appropriate. The exception is if we're sitting
1161 at a permanent breakpoint; we need to step over it, but permanent
1162 breakpoints can't be removed. So we have to test for it here. */
1163 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
1164 {
1165 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1166 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1167 else
1168 error (_("\
1169 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1170 how to step past a permanent breakpoint on this architecture. Try using\n\
1171 a command like `return' or `jump' to continue execution."));
1172 }
1173
1174 /* If enabled, step over breakpoints by executing a copy of the
1175 instruction at a different address.
1176
1177 We can't use displaced stepping when we have a signal to deliver;
1178 the comments for displaced_step_prepare explain why. The
1179 comments in the handle_inferior event for dealing with 'random
1180 signals' explain what we do instead. */
1181 if (use_displaced_stepping (gdbarch)
1182 && tp->trap_expected
1183 && sig == TARGET_SIGNAL_0)
1184 {
1185 if (!displaced_step_prepare (inferior_ptid))
1186 {
1187 /* Got placed in displaced stepping queue. Will be resumed
1188 later when all the currently queued displaced stepping
1189 requests finish. The thread is not executing at this point,
1190 and the call to set_executing will be made later. But we
1191 need to call set_running here, since from frontend point of view,
1192 the thread is running. */
1193 set_running (inferior_ptid, 1);
1194 discard_cleanups (old_cleanups);
1195 return;
1196 }
1197 }
1198
1199 /* Do we need to do it the hard way, w/temp breakpoints? */
1200 if (step)
1201 step = maybe_software_singlestep (gdbarch, pc);
1202
1203 if (should_resume)
1204 {
1205 ptid_t resume_ptid;
1206
1207 /* If STEP is set, it's a request to use hardware stepping
1208 facilities. But in that case, we should never
1209 use singlestep breakpoint. */
1210 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1211
1212 /* Decide the set of threads to ask the target to resume. Start
1213 by assuming everything will be resumed, than narrow the set
1214 by applying increasingly restricting conditions. */
1215
1216 /* By default, resume all threads of all processes. */
1217 resume_ptid = RESUME_ALL;
1218
1219 /* Maybe resume only all threads of the current process. */
1220 if (!sched_multi && target_supports_multi_process ())
1221 {
1222 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1223 }
1224
1225 /* Maybe resume a single thread after all. */
1226 if (singlestep_breakpoints_inserted_p
1227 && stepping_past_singlestep_breakpoint)
1228 {
1229 /* The situation here is as follows. In thread T1 we wanted to
1230 single-step. Lacking hardware single-stepping we've
1231 set breakpoint at the PC of the next instruction -- call it
1232 P. After resuming, we've hit that breakpoint in thread T2.
1233 Now we've removed original breakpoint, inserted breakpoint
1234 at P+1, and try to step to advance T2 past breakpoint.
1235 We need to step only T2, as if T1 is allowed to freely run,
1236 it can run past P, and if other threads are allowed to run,
1237 they can hit breakpoint at P+1, and nested hits of single-step
1238 breakpoints is not something we'd want -- that's complicated
1239 to support, and has no value. */
1240 resume_ptid = inferior_ptid;
1241 }
1242 else if ((step || singlestep_breakpoints_inserted_p)
1243 && tp->trap_expected)
1244 {
1245 /* We're allowing a thread to run past a breakpoint it has
1246 hit, by single-stepping the thread with the breakpoint
1247 removed. In which case, we need to single-step only this
1248 thread, and keep others stopped, as they can miss this
1249 breakpoint if allowed to run.
1250
1251 The current code actually removes all breakpoints when
1252 doing this, not just the one being stepped over, so if we
1253 let other threads run, we can actually miss any
1254 breakpoint, not just the one at PC. */
1255 resume_ptid = inferior_ptid;
1256 }
1257 else if (non_stop)
1258 {
1259 /* With non-stop mode on, threads are always handled
1260 individually. */
1261 resume_ptid = inferior_ptid;
1262 }
1263 else if ((scheduler_mode == schedlock_on)
1264 || (scheduler_mode == schedlock_step
1265 && (step || singlestep_breakpoints_inserted_p)))
1266 {
1267 /* User-settable 'scheduler' mode requires solo thread resume. */
1268 resume_ptid = inferior_ptid;
1269 }
1270
1271 if (gdbarch_cannot_step_breakpoint (gdbarch))
1272 {
1273 /* Most targets can step a breakpoint instruction, thus
1274 executing it normally. But if this one cannot, just
1275 continue and we will hit it anyway. */
1276 if (step && breakpoint_inserted_here_p (pc))
1277 step = 0;
1278 }
1279
1280 if (debug_displaced
1281 && use_displaced_stepping (gdbarch)
1282 && tp->trap_expected)
1283 {
1284 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1285 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1286 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1287 gdb_byte buf[4];
1288
1289 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1290 paddress (resume_gdbarch, actual_pc));
1291 read_memory (actual_pc, buf, sizeof (buf));
1292 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1293 }
1294
1295 /* Install inferior's terminal modes. */
1296 target_terminal_inferior ();
1297
1298 /* Avoid confusing the next resume, if the next stop/resume
1299 happens to apply to another thread. */
1300 tp->stop_signal = TARGET_SIGNAL_0;
1301
1302 target_resume (resume_ptid, step, sig);
1303 }
1304
1305 discard_cleanups (old_cleanups);
1306 }
1307 \f
1308 /* Proceeding. */
1309
1310 /* Clear out all variables saying what to do when inferior is continued.
1311 First do this, then set the ones you want, then call `proceed'. */
1312
1313 static void
1314 clear_proceed_status_thread (struct thread_info *tp)
1315 {
1316 if (debug_infrun)
1317 fprintf_unfiltered (gdb_stdlog,
1318 "infrun: clear_proceed_status_thread (%s)\n",
1319 target_pid_to_str (tp->ptid));
1320
1321 tp->trap_expected = 0;
1322 tp->step_range_start = 0;
1323 tp->step_range_end = 0;
1324 tp->step_frame_id = null_frame_id;
1325 tp->step_stack_frame_id = null_frame_id;
1326 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1327 tp->stop_requested = 0;
1328
1329 tp->stop_step = 0;
1330
1331 tp->proceed_to_finish = 0;
1332
1333 /* Discard any remaining commands or status from previous stop. */
1334 bpstat_clear (&tp->stop_bpstat);
1335 }
1336
1337 static int
1338 clear_proceed_status_callback (struct thread_info *tp, void *data)
1339 {
1340 if (is_exited (tp->ptid))
1341 return 0;
1342
1343 clear_proceed_status_thread (tp);
1344 return 0;
1345 }
1346
1347 void
1348 clear_proceed_status (void)
1349 {
1350 if (!ptid_equal (inferior_ptid, null_ptid))
1351 {
1352 struct inferior *inferior;
1353
1354 if (non_stop)
1355 {
1356 /* If in non-stop mode, only delete the per-thread status
1357 of the current thread. */
1358 clear_proceed_status_thread (inferior_thread ());
1359 }
1360 else
1361 {
1362 /* In all-stop mode, delete the per-thread status of
1363 *all* threads. */
1364 iterate_over_threads (clear_proceed_status_callback, NULL);
1365 }
1366
1367 inferior = current_inferior ();
1368 inferior->stop_soon = NO_STOP_QUIETLY;
1369 }
1370
1371 stop_after_trap = 0;
1372
1373 observer_notify_about_to_proceed ();
1374
1375 if (stop_registers)
1376 {
1377 regcache_xfree (stop_registers);
1378 stop_registers = NULL;
1379 }
1380 }
1381
1382 /* Check the current thread against the thread that reported the most recent
1383 event. If a step-over is required return TRUE and set the current thread
1384 to the old thread. Otherwise return FALSE.
1385
1386 This should be suitable for any targets that support threads. */
1387
1388 static int
1389 prepare_to_proceed (int step)
1390 {
1391 ptid_t wait_ptid;
1392 struct target_waitstatus wait_status;
1393 int schedlock_enabled;
1394
1395 /* With non-stop mode on, threads are always handled individually. */
1396 gdb_assert (! non_stop);
1397
1398 /* Get the last target status returned by target_wait(). */
1399 get_last_target_status (&wait_ptid, &wait_status);
1400
1401 /* Make sure we were stopped at a breakpoint. */
1402 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1403 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1404 {
1405 return 0;
1406 }
1407
1408 schedlock_enabled = (scheduler_mode == schedlock_on
1409 || (scheduler_mode == schedlock_step
1410 && step));
1411
1412 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1413 if (schedlock_enabled)
1414 return 0;
1415
1416 /* Don't switch over if we're about to resume some other process
1417 other than WAIT_PTID's, and schedule-multiple is off. */
1418 if (!sched_multi
1419 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1420 return 0;
1421
1422 /* Switched over from WAIT_PID. */
1423 if (!ptid_equal (wait_ptid, minus_one_ptid)
1424 && !ptid_equal (inferior_ptid, wait_ptid))
1425 {
1426 struct regcache *regcache = get_thread_regcache (wait_ptid);
1427
1428 if (breakpoint_here_p (regcache_read_pc (regcache)))
1429 {
1430 /* If stepping, remember current thread to switch back to. */
1431 if (step)
1432 deferred_step_ptid = inferior_ptid;
1433
1434 /* Switch back to WAIT_PID thread. */
1435 switch_to_thread (wait_ptid);
1436
1437 /* We return 1 to indicate that there is a breakpoint here,
1438 so we need to step over it before continuing to avoid
1439 hitting it straight away. */
1440 return 1;
1441 }
1442 }
1443
1444 return 0;
1445 }
1446
1447 /* Basic routine for continuing the program in various fashions.
1448
1449 ADDR is the address to resume at, or -1 for resume where stopped.
1450 SIGGNAL is the signal to give it, or 0 for none,
1451 or -1 for act according to how it stopped.
1452 STEP is nonzero if should trap after one instruction.
1453 -1 means return after that and print nothing.
1454 You should probably set various step_... variables
1455 before calling here, if you are stepping.
1456
1457 You should call clear_proceed_status before calling proceed. */
1458
1459 void
1460 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1461 {
1462 struct regcache *regcache;
1463 struct gdbarch *gdbarch;
1464 struct thread_info *tp;
1465 CORE_ADDR pc;
1466 int oneproc = 0;
1467
1468 /* If we're stopped at a fork/vfork, follow the branch set by the
1469 "set follow-fork-mode" command; otherwise, we'll just proceed
1470 resuming the current thread. */
1471 if (!follow_fork ())
1472 {
1473 /* The target for some reason decided not to resume. */
1474 normal_stop ();
1475 return;
1476 }
1477
1478 regcache = get_current_regcache ();
1479 gdbarch = get_regcache_arch (regcache);
1480 pc = regcache_read_pc (regcache);
1481
1482 if (step > 0)
1483 step_start_function = find_pc_function (pc);
1484 if (step < 0)
1485 stop_after_trap = 1;
1486
1487 if (addr == (CORE_ADDR) -1)
1488 {
1489 if (pc == stop_pc && breakpoint_here_p (pc)
1490 && execution_direction != EXEC_REVERSE)
1491 /* There is a breakpoint at the address we will resume at,
1492 step one instruction before inserting breakpoints so that
1493 we do not stop right away (and report a second hit at this
1494 breakpoint).
1495
1496 Note, we don't do this in reverse, because we won't
1497 actually be executing the breakpoint insn anyway.
1498 We'll be (un-)executing the previous instruction. */
1499
1500 oneproc = 1;
1501 else if (gdbarch_single_step_through_delay_p (gdbarch)
1502 && gdbarch_single_step_through_delay (gdbarch,
1503 get_current_frame ()))
1504 /* We stepped onto an instruction that needs to be stepped
1505 again before re-inserting the breakpoint, do so. */
1506 oneproc = 1;
1507 }
1508 else
1509 {
1510 regcache_write_pc (regcache, addr);
1511 }
1512
1513 if (debug_infrun)
1514 fprintf_unfiltered (gdb_stdlog,
1515 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
1516 paddress (gdbarch, addr), siggnal, step);
1517
1518 if (non_stop)
1519 /* In non-stop, each thread is handled individually. The context
1520 must already be set to the right thread here. */
1521 ;
1522 else
1523 {
1524 /* In a multi-threaded task we may select another thread and
1525 then continue or step.
1526
1527 But if the old thread was stopped at a breakpoint, it will
1528 immediately cause another breakpoint stop without any
1529 execution (i.e. it will report a breakpoint hit incorrectly).
1530 So we must step over it first.
1531
1532 prepare_to_proceed checks the current thread against the
1533 thread that reported the most recent event. If a step-over
1534 is required it returns TRUE and sets the current thread to
1535 the old thread. */
1536 if (prepare_to_proceed (step))
1537 oneproc = 1;
1538 }
1539
1540 /* prepare_to_proceed may change the current thread. */
1541 tp = inferior_thread ();
1542
1543 if (oneproc)
1544 {
1545 tp->trap_expected = 1;
1546 /* If displaced stepping is enabled, we can step over the
1547 breakpoint without hitting it, so leave all breakpoints
1548 inserted. Otherwise we need to disable all breakpoints, step
1549 one instruction, and then re-add them when that step is
1550 finished. */
1551 if (!use_displaced_stepping (gdbarch))
1552 remove_breakpoints ();
1553 }
1554
1555 /* We can insert breakpoints if we're not trying to step over one,
1556 or if we are stepping over one but we're using displaced stepping
1557 to do so. */
1558 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1559 insert_breakpoints ();
1560
1561 if (!non_stop)
1562 {
1563 /* Pass the last stop signal to the thread we're resuming,
1564 irrespective of whether the current thread is the thread that
1565 got the last event or not. This was historically GDB's
1566 behaviour before keeping a stop_signal per thread. */
1567
1568 struct thread_info *last_thread;
1569 ptid_t last_ptid;
1570 struct target_waitstatus last_status;
1571
1572 get_last_target_status (&last_ptid, &last_status);
1573 if (!ptid_equal (inferior_ptid, last_ptid)
1574 && !ptid_equal (last_ptid, null_ptid)
1575 && !ptid_equal (last_ptid, minus_one_ptid))
1576 {
1577 last_thread = find_thread_ptid (last_ptid);
1578 if (last_thread)
1579 {
1580 tp->stop_signal = last_thread->stop_signal;
1581 last_thread->stop_signal = TARGET_SIGNAL_0;
1582 }
1583 }
1584 }
1585
1586 if (siggnal != TARGET_SIGNAL_DEFAULT)
1587 tp->stop_signal = siggnal;
1588 /* If this signal should not be seen by program,
1589 give it zero. Used for debugging signals. */
1590 else if (!signal_program[tp->stop_signal])
1591 tp->stop_signal = TARGET_SIGNAL_0;
1592
1593 annotate_starting ();
1594
1595 /* Make sure that output from GDB appears before output from the
1596 inferior. */
1597 gdb_flush (gdb_stdout);
1598
1599 /* Refresh prev_pc value just prior to resuming. This used to be
1600 done in stop_stepping, however, setting prev_pc there did not handle
1601 scenarios such as inferior function calls or returning from
1602 a function via the return command. In those cases, the prev_pc
1603 value was not set properly for subsequent commands. The prev_pc value
1604 is used to initialize the starting line number in the ecs. With an
1605 invalid value, the gdb next command ends up stopping at the position
1606 represented by the next line table entry past our start position.
1607 On platforms that generate one line table entry per line, this
1608 is not a problem. However, on the ia64, the compiler generates
1609 extraneous line table entries that do not increase the line number.
1610 When we issue the gdb next command on the ia64 after an inferior call
1611 or a return command, we often end up a few instructions forward, still
1612 within the original line we started.
1613
1614 An attempt was made to have init_execution_control_state () refresh
1615 the prev_pc value before calculating the line number. This approach
1616 did not work because on platforms that use ptrace, the pc register
1617 cannot be read unless the inferior is stopped. At that point, we
1618 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1619 call can fail. Setting the prev_pc value here ensures the value is
1620 updated correctly when the inferior is stopped. */
1621 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1622
1623 /* Fill in with reasonable starting values. */
1624 init_thread_stepping_state (tp);
1625
1626 /* Reset to normal state. */
1627 init_infwait_state ();
1628
1629 /* Resume inferior. */
1630 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
1631
1632 /* Wait for it to stop (if not standalone)
1633 and in any case decode why it stopped, and act accordingly. */
1634 /* Do this only if we are not using the event loop, or if the target
1635 does not support asynchronous execution. */
1636 if (!target_can_async_p ())
1637 {
1638 wait_for_inferior (0);
1639 normal_stop ();
1640 }
1641 }
1642 \f
1643
1644 /* Start remote-debugging of a machine over a serial link. */
1645
1646 void
1647 start_remote (int from_tty)
1648 {
1649 struct inferior *inferior;
1650 init_wait_for_inferior ();
1651
1652 inferior = current_inferior ();
1653 inferior->stop_soon = STOP_QUIETLY_REMOTE;
1654
1655 /* Always go on waiting for the target, regardless of the mode. */
1656 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1657 indicate to wait_for_inferior that a target should timeout if
1658 nothing is returned (instead of just blocking). Because of this,
1659 targets expecting an immediate response need to, internally, set
1660 things up so that the target_wait() is forced to eventually
1661 timeout. */
1662 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1663 differentiate to its caller what the state of the target is after
1664 the initial open has been performed. Here we're assuming that
1665 the target has stopped. It should be possible to eventually have
1666 target_open() return to the caller an indication that the target
1667 is currently running and GDB state should be set to the same as
1668 for an async run. */
1669 wait_for_inferior (0);
1670
1671 /* Now that the inferior has stopped, do any bookkeeping like
1672 loading shared libraries. We want to do this before normal_stop,
1673 so that the displayed frame is up to date. */
1674 post_create_inferior (&current_target, from_tty);
1675
1676 normal_stop ();
1677 }
1678
1679 /* Initialize static vars when a new inferior begins. */
1680
1681 void
1682 init_wait_for_inferior (void)
1683 {
1684 /* These are meaningless until the first time through wait_for_inferior. */
1685
1686 breakpoint_init_inferior (inf_starting);
1687
1688 clear_proceed_status ();
1689
1690 stepping_past_singlestep_breakpoint = 0;
1691 deferred_step_ptid = null_ptid;
1692
1693 target_last_wait_ptid = minus_one_ptid;
1694
1695 previous_inferior_ptid = null_ptid;
1696 init_infwait_state ();
1697
1698 displaced_step_clear ();
1699
1700 /* Discard any skipped inlined frames. */
1701 clear_inline_frame_state (minus_one_ptid);
1702 }
1703
1704 \f
1705 /* This enum encodes possible reasons for doing a target_wait, so that
1706 wfi can call target_wait in one place. (Ultimately the call will be
1707 moved out of the infinite loop entirely.) */
1708
1709 enum infwait_states
1710 {
1711 infwait_normal_state,
1712 infwait_thread_hop_state,
1713 infwait_step_watch_state,
1714 infwait_nonstep_watch_state
1715 };
1716
1717 /* Why did the inferior stop? Used to print the appropriate messages
1718 to the interface from within handle_inferior_event(). */
1719 enum inferior_stop_reason
1720 {
1721 /* Step, next, nexti, stepi finished. */
1722 END_STEPPING_RANGE,
1723 /* Inferior terminated by signal. */
1724 SIGNAL_EXITED,
1725 /* Inferior exited. */
1726 EXITED,
1727 /* Inferior received signal, and user asked to be notified. */
1728 SIGNAL_RECEIVED,
1729 /* Reverse execution -- target ran out of history info. */
1730 NO_HISTORY
1731 };
1732
1733 /* The PTID we'll do a target_wait on.*/
1734 ptid_t waiton_ptid;
1735
1736 /* Current inferior wait state. */
1737 enum infwait_states infwait_state;
1738
1739 /* Data to be passed around while handling an event. This data is
1740 discarded between events. */
1741 struct execution_control_state
1742 {
1743 ptid_t ptid;
1744 /* The thread that got the event, if this was a thread event; NULL
1745 otherwise. */
1746 struct thread_info *event_thread;
1747
1748 struct target_waitstatus ws;
1749 int random_signal;
1750 CORE_ADDR stop_func_start;
1751 CORE_ADDR stop_func_end;
1752 char *stop_func_name;
1753 int new_thread_event;
1754 int wait_some_more;
1755 };
1756
1757 static void init_execution_control_state (struct execution_control_state *ecs);
1758
1759 static void handle_inferior_event (struct execution_control_state *ecs);
1760
1761 static void handle_step_into_function (struct gdbarch *gdbarch,
1762 struct execution_control_state *ecs);
1763 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
1764 struct execution_control_state *ecs);
1765 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1766 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1767 static void insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
1768 struct symtab_and_line sr_sal,
1769 struct frame_id sr_id);
1770 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
1771
1772 static void stop_stepping (struct execution_control_state *ecs);
1773 static void prepare_to_wait (struct execution_control_state *ecs);
1774 static void keep_going (struct execution_control_state *ecs);
1775 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1776 int stop_info);
1777
1778 /* Callback for iterate over threads. If the thread is stopped, but
1779 the user/frontend doesn't know about that yet, go through
1780 normal_stop, as if the thread had just stopped now. ARG points at
1781 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1782 ptid_is_pid(PTID) is true, applies to all threads of the process
1783 pointed at by PTID. Otherwise, apply only to the thread pointed by
1784 PTID. */
1785
1786 static int
1787 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1788 {
1789 ptid_t ptid = * (ptid_t *) arg;
1790
1791 if ((ptid_equal (info->ptid, ptid)
1792 || ptid_equal (minus_one_ptid, ptid)
1793 || (ptid_is_pid (ptid)
1794 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1795 && is_running (info->ptid)
1796 && !is_executing (info->ptid))
1797 {
1798 struct cleanup *old_chain;
1799 struct execution_control_state ecss;
1800 struct execution_control_state *ecs = &ecss;
1801
1802 memset (ecs, 0, sizeof (*ecs));
1803
1804 old_chain = make_cleanup_restore_current_thread ();
1805
1806 switch_to_thread (info->ptid);
1807
1808 /* Go through handle_inferior_event/normal_stop, so we always
1809 have consistent output as if the stop event had been
1810 reported. */
1811 ecs->ptid = info->ptid;
1812 ecs->event_thread = find_thread_ptid (info->ptid);
1813 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1814 ecs->ws.value.sig = TARGET_SIGNAL_0;
1815
1816 handle_inferior_event (ecs);
1817
1818 if (!ecs->wait_some_more)
1819 {
1820 struct thread_info *tp;
1821
1822 normal_stop ();
1823
1824 /* Finish off the continuations. The continations
1825 themselves are responsible for realising the thread
1826 didn't finish what it was supposed to do. */
1827 tp = inferior_thread ();
1828 do_all_intermediate_continuations_thread (tp);
1829 do_all_continuations_thread (tp);
1830 }
1831
1832 do_cleanups (old_chain);
1833 }
1834
1835 return 0;
1836 }
1837
1838 /* This function is attached as a "thread_stop_requested" observer.
1839 Cleanup local state that assumed the PTID was to be resumed, and
1840 report the stop to the frontend. */
1841
1842 static void
1843 infrun_thread_stop_requested (ptid_t ptid)
1844 {
1845 struct displaced_step_request *it, *next, *prev = NULL;
1846
1847 /* PTID was requested to stop. Remove it from the displaced
1848 stepping queue, so we don't try to resume it automatically. */
1849 for (it = displaced_step_request_queue; it; it = next)
1850 {
1851 next = it->next;
1852
1853 if (ptid_equal (it->ptid, ptid)
1854 || ptid_equal (minus_one_ptid, ptid)
1855 || (ptid_is_pid (ptid)
1856 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1857 {
1858 if (displaced_step_request_queue == it)
1859 displaced_step_request_queue = it->next;
1860 else
1861 prev->next = it->next;
1862
1863 xfree (it);
1864 }
1865 else
1866 prev = it;
1867 }
1868
1869 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1870 }
1871
1872 static void
1873 infrun_thread_thread_exit (struct thread_info *tp, int silent)
1874 {
1875 if (ptid_equal (target_last_wait_ptid, tp->ptid))
1876 nullify_last_target_wait_ptid ();
1877 }
1878
1879 /* Callback for iterate_over_threads. */
1880
1881 static int
1882 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1883 {
1884 if (is_exited (info->ptid))
1885 return 0;
1886
1887 delete_step_resume_breakpoint (info);
1888 return 0;
1889 }
1890
1891 /* In all-stop, delete the step resume breakpoint of any thread that
1892 had one. In non-stop, delete the step resume breakpoint of the
1893 thread that just stopped. */
1894
1895 static void
1896 delete_step_thread_step_resume_breakpoint (void)
1897 {
1898 if (!target_has_execution
1899 || ptid_equal (inferior_ptid, null_ptid))
1900 /* If the inferior has exited, we have already deleted the step
1901 resume breakpoints out of GDB's lists. */
1902 return;
1903
1904 if (non_stop)
1905 {
1906 /* If in non-stop mode, only delete the step-resume or
1907 longjmp-resume breakpoint of the thread that just stopped
1908 stepping. */
1909 struct thread_info *tp = inferior_thread ();
1910 delete_step_resume_breakpoint (tp);
1911 }
1912 else
1913 /* In all-stop mode, delete all step-resume and longjmp-resume
1914 breakpoints of any thread that had them. */
1915 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1916 }
1917
1918 /* A cleanup wrapper. */
1919
1920 static void
1921 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1922 {
1923 delete_step_thread_step_resume_breakpoint ();
1924 }
1925
1926 /* Pretty print the results of target_wait, for debugging purposes. */
1927
1928 static void
1929 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
1930 const struct target_waitstatus *ws)
1931 {
1932 char *status_string = target_waitstatus_to_string (ws);
1933 struct ui_file *tmp_stream = mem_fileopen ();
1934 char *text;
1935 long len;
1936
1937 /* The text is split over several lines because it was getting too long.
1938 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
1939 output as a unit; we want only one timestamp printed if debug_timestamp
1940 is set. */
1941
1942 fprintf_unfiltered (tmp_stream,
1943 "infrun: target_wait (%d", PIDGET (waiton_ptid));
1944 if (PIDGET (waiton_ptid) != -1)
1945 fprintf_unfiltered (tmp_stream,
1946 " [%s]", target_pid_to_str (waiton_ptid));
1947 fprintf_unfiltered (tmp_stream, ", status) =\n");
1948 fprintf_unfiltered (tmp_stream,
1949 "infrun: %d [%s],\n",
1950 PIDGET (result_ptid), target_pid_to_str (result_ptid));
1951 fprintf_unfiltered (tmp_stream,
1952 "infrun: %s\n",
1953 status_string);
1954
1955 text = ui_file_xstrdup (tmp_stream, &len);
1956
1957 /* This uses %s in part to handle %'s in the text, but also to avoid
1958 a gcc error: the format attribute requires a string literal. */
1959 fprintf_unfiltered (gdb_stdlog, "%s", text);
1960
1961 xfree (status_string);
1962 xfree (text);
1963 ui_file_delete (tmp_stream);
1964 }
1965
1966 /* Wait for control to return from inferior to debugger.
1967
1968 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1969 as if they were SIGTRAP signals. This can be useful during
1970 the startup sequence on some targets such as HP/UX, where
1971 we receive an EXEC event instead of the expected SIGTRAP.
1972
1973 If inferior gets a signal, we may decide to start it up again
1974 instead of returning. That is why there is a loop in this function.
1975 When this function actually returns it means the inferior
1976 should be left stopped and GDB should read more commands. */
1977
1978 void
1979 wait_for_inferior (int treat_exec_as_sigtrap)
1980 {
1981 struct cleanup *old_cleanups;
1982 struct execution_control_state ecss;
1983 struct execution_control_state *ecs;
1984
1985 if (debug_infrun)
1986 fprintf_unfiltered
1987 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1988 treat_exec_as_sigtrap);
1989
1990 old_cleanups =
1991 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
1992
1993 ecs = &ecss;
1994 memset (ecs, 0, sizeof (*ecs));
1995
1996 /* We'll update this if & when we switch to a new thread. */
1997 previous_inferior_ptid = inferior_ptid;
1998
1999 while (1)
2000 {
2001 struct cleanup *old_chain;
2002
2003 /* We have to invalidate the registers BEFORE calling target_wait
2004 because they can be loaded from the target while in target_wait.
2005 This makes remote debugging a bit more efficient for those
2006 targets that provide critical registers as part of their normal
2007 status mechanism. */
2008
2009 overlay_cache_invalid = 1;
2010 registers_changed ();
2011
2012 if (deprecated_target_wait_hook)
2013 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2014 else
2015 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2016
2017 if (debug_infrun)
2018 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2019
2020 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2021 {
2022 xfree (ecs->ws.value.execd_pathname);
2023 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2024 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2025 }
2026
2027 /* If an error happens while handling the event, propagate GDB's
2028 knowledge of the executing state to the frontend/user running
2029 state. */
2030 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2031
2032 /* Now figure out what to do with the result of the result. */
2033 handle_inferior_event (ecs);
2034
2035 /* No error, don't finish the state yet. */
2036 discard_cleanups (old_chain);
2037
2038 if (!ecs->wait_some_more)
2039 break;
2040 }
2041
2042 do_cleanups (old_cleanups);
2043 }
2044
2045 /* Asynchronous version of wait_for_inferior. It is called by the
2046 event loop whenever a change of state is detected on the file
2047 descriptor corresponding to the target. It can be called more than
2048 once to complete a single execution command. In such cases we need
2049 to keep the state in a global variable ECSS. If it is the last time
2050 that this function is called for a single execution command, then
2051 report to the user that the inferior has stopped, and do the
2052 necessary cleanups. */
2053
2054 void
2055 fetch_inferior_event (void *client_data)
2056 {
2057 struct execution_control_state ecss;
2058 struct execution_control_state *ecs = &ecss;
2059 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2060 struct cleanup *ts_old_chain;
2061 int was_sync = sync_execution;
2062
2063 memset (ecs, 0, sizeof (*ecs));
2064
2065 /* We'll update this if & when we switch to a new thread. */
2066 previous_inferior_ptid = inferior_ptid;
2067
2068 if (non_stop)
2069 /* In non-stop mode, the user/frontend should not notice a thread
2070 switch due to internal events. Make sure we reverse to the
2071 user selected thread and frame after handling the event and
2072 running any breakpoint commands. */
2073 make_cleanup_restore_current_thread ();
2074
2075 /* We have to invalidate the registers BEFORE calling target_wait
2076 because they can be loaded from the target while in target_wait.
2077 This makes remote debugging a bit more efficient for those
2078 targets that provide critical registers as part of their normal
2079 status mechanism. */
2080
2081 overlay_cache_invalid = 1;
2082 registers_changed ();
2083
2084 if (deprecated_target_wait_hook)
2085 ecs->ptid =
2086 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2087 else
2088 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2089
2090 if (debug_infrun)
2091 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2092
2093 if (non_stop
2094 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2095 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2096 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2097 /* In non-stop mode, each thread is handled individually. Switch
2098 early, so the global state is set correctly for this
2099 thread. */
2100 context_switch (ecs->ptid);
2101
2102 /* If an error happens while handling the event, propagate GDB's
2103 knowledge of the executing state to the frontend/user running
2104 state. */
2105 if (!non_stop)
2106 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2107 else
2108 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2109
2110 /* Now figure out what to do with the result of the result. */
2111 handle_inferior_event (ecs);
2112
2113 if (!ecs->wait_some_more)
2114 {
2115 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2116
2117 delete_step_thread_step_resume_breakpoint ();
2118
2119 /* We may not find an inferior if this was a process exit. */
2120 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
2121 normal_stop ();
2122
2123 if (target_has_execution
2124 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2125 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2126 && ecs->event_thread->step_multi
2127 && ecs->event_thread->stop_step)
2128 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2129 else
2130 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2131 }
2132
2133 /* No error, don't finish the thread states yet. */
2134 discard_cleanups (ts_old_chain);
2135
2136 /* Revert thread and frame. */
2137 do_cleanups (old_chain);
2138
2139 /* If the inferior was in sync execution mode, and now isn't,
2140 restore the prompt. */
2141 if (was_sync && !sync_execution)
2142 display_gdb_prompt (0);
2143 }
2144
2145 /* Record the frame and location we're currently stepping through. */
2146 void
2147 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2148 {
2149 struct thread_info *tp = inferior_thread ();
2150
2151 tp->step_frame_id = get_frame_id (frame);
2152 tp->step_stack_frame_id = get_stack_frame_id (frame);
2153
2154 tp->current_symtab = sal.symtab;
2155 tp->current_line = sal.line;
2156 }
2157
2158 /* Prepare an execution control state for looping through a
2159 wait_for_inferior-type loop. */
2160
2161 static void
2162 init_execution_control_state (struct execution_control_state *ecs)
2163 {
2164 ecs->random_signal = 0;
2165 }
2166
2167 /* Clear context switchable stepping state. */
2168
2169 void
2170 init_thread_stepping_state (struct thread_info *tss)
2171 {
2172 tss->stepping_over_breakpoint = 0;
2173 tss->step_after_step_resume_breakpoint = 0;
2174 tss->stepping_through_solib_after_catch = 0;
2175 tss->stepping_through_solib_catchpoints = NULL;
2176 }
2177
2178 /* Return the cached copy of the last pid/waitstatus returned by
2179 target_wait()/deprecated_target_wait_hook(). The data is actually
2180 cached by handle_inferior_event(), which gets called immediately
2181 after target_wait()/deprecated_target_wait_hook(). */
2182
2183 void
2184 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2185 {
2186 *ptidp = target_last_wait_ptid;
2187 *status = target_last_waitstatus;
2188 }
2189
2190 void
2191 nullify_last_target_wait_ptid (void)
2192 {
2193 target_last_wait_ptid = minus_one_ptid;
2194 }
2195
2196 /* Switch thread contexts. */
2197
2198 static void
2199 context_switch (ptid_t ptid)
2200 {
2201 if (debug_infrun)
2202 {
2203 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2204 target_pid_to_str (inferior_ptid));
2205 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2206 target_pid_to_str (ptid));
2207 }
2208
2209 switch_to_thread (ptid);
2210 }
2211
2212 static void
2213 adjust_pc_after_break (struct execution_control_state *ecs)
2214 {
2215 struct regcache *regcache;
2216 struct gdbarch *gdbarch;
2217 CORE_ADDR breakpoint_pc;
2218
2219 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2220 we aren't, just return.
2221
2222 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2223 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2224 implemented by software breakpoints should be handled through the normal
2225 breakpoint layer.
2226
2227 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2228 different signals (SIGILL or SIGEMT for instance), but it is less
2229 clear where the PC is pointing afterwards. It may not match
2230 gdbarch_decr_pc_after_break. I don't know any specific target that
2231 generates these signals at breakpoints (the code has been in GDB since at
2232 least 1992) so I can not guess how to handle them here.
2233
2234 In earlier versions of GDB, a target with
2235 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2236 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2237 target with both of these set in GDB history, and it seems unlikely to be
2238 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2239
2240 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2241 return;
2242
2243 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2244 return;
2245
2246 /* In reverse execution, when a breakpoint is hit, the instruction
2247 under it has already been de-executed. The reported PC always
2248 points at the breakpoint address, so adjusting it further would
2249 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2250 architecture:
2251
2252 B1 0x08000000 : INSN1
2253 B2 0x08000001 : INSN2
2254 0x08000002 : INSN3
2255 PC -> 0x08000003 : INSN4
2256
2257 Say you're stopped at 0x08000003 as above. Reverse continuing
2258 from that point should hit B2 as below. Reading the PC when the
2259 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2260 been de-executed already.
2261
2262 B1 0x08000000 : INSN1
2263 B2 PC -> 0x08000001 : INSN2
2264 0x08000002 : INSN3
2265 0x08000003 : INSN4
2266
2267 We can't apply the same logic as for forward execution, because
2268 we would wrongly adjust the PC to 0x08000000, since there's a
2269 breakpoint at PC - 1. We'd then report a hit on B1, although
2270 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2271 behaviour. */
2272 if (execution_direction == EXEC_REVERSE)
2273 return;
2274
2275 /* If this target does not decrement the PC after breakpoints, then
2276 we have nothing to do. */
2277 regcache = get_thread_regcache (ecs->ptid);
2278 gdbarch = get_regcache_arch (regcache);
2279 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2280 return;
2281
2282 /* Find the location where (if we've hit a breakpoint) the
2283 breakpoint would be. */
2284 breakpoint_pc = regcache_read_pc (regcache)
2285 - gdbarch_decr_pc_after_break (gdbarch);
2286
2287 /* Check whether there actually is a software breakpoint inserted at
2288 that location.
2289
2290 If in non-stop mode, a race condition is possible where we've
2291 removed a breakpoint, but stop events for that breakpoint were
2292 already queued and arrive later. To suppress those spurious
2293 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2294 and retire them after a number of stop events are reported. */
2295 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2296 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
2297 {
2298 struct cleanup *old_cleanups = NULL;
2299 if (RECORD_IS_USED)
2300 old_cleanups = record_gdb_operation_disable_set ();
2301
2302 /* When using hardware single-step, a SIGTRAP is reported for both
2303 a completed single-step and a software breakpoint. Need to
2304 differentiate between the two, as the latter needs adjusting
2305 but the former does not.
2306
2307 The SIGTRAP can be due to a completed hardware single-step only if
2308 - we didn't insert software single-step breakpoints
2309 - the thread to be examined is still the current thread
2310 - this thread is currently being stepped
2311
2312 If any of these events did not occur, we must have stopped due
2313 to hitting a software breakpoint, and have to back up to the
2314 breakpoint address.
2315
2316 As a special case, we could have hardware single-stepped a
2317 software breakpoint. In this case (prev_pc == breakpoint_pc),
2318 we also need to back up to the breakpoint address. */
2319
2320 if (singlestep_breakpoints_inserted_p
2321 || !ptid_equal (ecs->ptid, inferior_ptid)
2322 || !currently_stepping (ecs->event_thread)
2323 || ecs->event_thread->prev_pc == breakpoint_pc)
2324 regcache_write_pc (regcache, breakpoint_pc);
2325
2326 if (RECORD_IS_USED)
2327 do_cleanups (old_cleanups);
2328 }
2329 }
2330
2331 void
2332 init_infwait_state (void)
2333 {
2334 waiton_ptid = pid_to_ptid (-1);
2335 infwait_state = infwait_normal_state;
2336 }
2337
2338 void
2339 error_is_running (void)
2340 {
2341 error (_("\
2342 Cannot execute this command while the selected thread is running."));
2343 }
2344
2345 void
2346 ensure_not_running (void)
2347 {
2348 if (is_running (inferior_ptid))
2349 error_is_running ();
2350 }
2351
2352 static int
2353 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2354 {
2355 for (frame = get_prev_frame (frame);
2356 frame != NULL;
2357 frame = get_prev_frame (frame))
2358 {
2359 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2360 return 1;
2361 if (get_frame_type (frame) != INLINE_FRAME)
2362 break;
2363 }
2364
2365 return 0;
2366 }
2367
2368 /* Given an execution control state that has been freshly filled in
2369 by an event from the inferior, figure out what it means and take
2370 appropriate action. */
2371
2372 static void
2373 handle_inferior_event (struct execution_control_state *ecs)
2374 {
2375 struct frame_info *frame;
2376 struct gdbarch *gdbarch;
2377 int sw_single_step_trap_p = 0;
2378 int stopped_by_watchpoint;
2379 int stepped_after_stopped_by_watchpoint = 0;
2380 struct symtab_and_line stop_pc_sal;
2381 enum stop_kind stop_soon;
2382
2383 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2384 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2385 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2386 {
2387 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2388 gdb_assert (inf);
2389 stop_soon = inf->stop_soon;
2390 }
2391 else
2392 stop_soon = NO_STOP_QUIETLY;
2393
2394 /* Cache the last pid/waitstatus. */
2395 target_last_wait_ptid = ecs->ptid;
2396 target_last_waitstatus = ecs->ws;
2397
2398 /* Always clear state belonging to the previous time we stopped. */
2399 stop_stack_dummy = 0;
2400
2401 /* If it's a new process, add it to the thread database */
2402
2403 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2404 && !ptid_equal (ecs->ptid, minus_one_ptid)
2405 && !in_thread_list (ecs->ptid));
2406
2407 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2408 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2409 add_thread (ecs->ptid);
2410
2411 ecs->event_thread = find_thread_ptid (ecs->ptid);
2412
2413 /* Dependent on valid ECS->EVENT_THREAD. */
2414 adjust_pc_after_break (ecs);
2415
2416 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2417 reinit_frame_cache ();
2418
2419 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2420 {
2421 breakpoint_retire_moribund ();
2422
2423 /* Mark the non-executing threads accordingly. In all-stop, all
2424 threads of all processes are stopped when we get any event
2425 reported. In non-stop mode, only the event thread stops. If
2426 we're handling a process exit in non-stop mode, there's
2427 nothing to do, as threads of the dead process are gone, and
2428 threads of any other process were left running. */
2429 if (!non_stop)
2430 set_executing (minus_one_ptid, 0);
2431 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2432 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2433 set_executing (inferior_ptid, 0);
2434 }
2435
2436 switch (infwait_state)
2437 {
2438 case infwait_thread_hop_state:
2439 if (debug_infrun)
2440 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
2441 break;
2442
2443 case infwait_normal_state:
2444 if (debug_infrun)
2445 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
2446 break;
2447
2448 case infwait_step_watch_state:
2449 if (debug_infrun)
2450 fprintf_unfiltered (gdb_stdlog,
2451 "infrun: infwait_step_watch_state\n");
2452
2453 stepped_after_stopped_by_watchpoint = 1;
2454 break;
2455
2456 case infwait_nonstep_watch_state:
2457 if (debug_infrun)
2458 fprintf_unfiltered (gdb_stdlog,
2459 "infrun: infwait_nonstep_watch_state\n");
2460 insert_breakpoints ();
2461
2462 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2463 handle things like signals arriving and other things happening
2464 in combination correctly? */
2465 stepped_after_stopped_by_watchpoint = 1;
2466 break;
2467
2468 default:
2469 internal_error (__FILE__, __LINE__, _("bad switch"));
2470 }
2471
2472 infwait_state = infwait_normal_state;
2473 waiton_ptid = pid_to_ptid (-1);
2474
2475 switch (ecs->ws.kind)
2476 {
2477 case TARGET_WAITKIND_LOADED:
2478 if (debug_infrun)
2479 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
2480 /* Ignore gracefully during startup of the inferior, as it might
2481 be the shell which has just loaded some objects, otherwise
2482 add the symbols for the newly loaded objects. Also ignore at
2483 the beginning of an attach or remote session; we will query
2484 the full list of libraries once the connection is
2485 established. */
2486 if (stop_soon == NO_STOP_QUIETLY)
2487 {
2488 /* Check for any newly added shared libraries if we're
2489 supposed to be adding them automatically. Switch
2490 terminal for any messages produced by
2491 breakpoint_re_set. */
2492 target_terminal_ours_for_output ();
2493 /* NOTE: cagney/2003-11-25: Make certain that the target
2494 stack's section table is kept up-to-date. Architectures,
2495 (e.g., PPC64), use the section table to perform
2496 operations such as address => section name and hence
2497 require the table to contain all sections (including
2498 those found in shared libraries). */
2499 #ifdef SOLIB_ADD
2500 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2501 #else
2502 solib_add (NULL, 0, &current_target, auto_solib_add);
2503 #endif
2504 target_terminal_inferior ();
2505
2506 /* If requested, stop when the dynamic linker notifies
2507 gdb of events. This allows the user to get control
2508 and place breakpoints in initializer routines for
2509 dynamically loaded objects (among other things). */
2510 if (stop_on_solib_events)
2511 {
2512 stop_stepping (ecs);
2513 return;
2514 }
2515
2516 /* NOTE drow/2007-05-11: This might be a good place to check
2517 for "catch load". */
2518 }
2519
2520 /* If we are skipping through a shell, or through shared library
2521 loading that we aren't interested in, resume the program. If
2522 we're running the program normally, also resume. But stop if
2523 we're attaching or setting up a remote connection. */
2524 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2525 {
2526 /* Loading of shared libraries might have changed breakpoint
2527 addresses. Make sure new breakpoints are inserted. */
2528 if (stop_soon == NO_STOP_QUIETLY
2529 && !breakpoints_always_inserted_mode ())
2530 insert_breakpoints ();
2531 resume (0, TARGET_SIGNAL_0);
2532 prepare_to_wait (ecs);
2533 return;
2534 }
2535
2536 break;
2537
2538 case TARGET_WAITKIND_SPURIOUS:
2539 if (debug_infrun)
2540 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2541 resume (0, TARGET_SIGNAL_0);
2542 prepare_to_wait (ecs);
2543 return;
2544
2545 case TARGET_WAITKIND_EXITED:
2546 if (debug_infrun)
2547 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2548 inferior_ptid = ecs->ptid;
2549 target_terminal_ours (); /* Must do this before mourn anyway */
2550 print_stop_reason (EXITED, ecs->ws.value.integer);
2551
2552 /* Record the exit code in the convenience variable $_exitcode, so
2553 that the user can inspect this again later. */
2554 set_internalvar_integer (lookup_internalvar ("_exitcode"),
2555 (LONGEST) ecs->ws.value.integer);
2556 gdb_flush (gdb_stdout);
2557 target_mourn_inferior ();
2558 singlestep_breakpoints_inserted_p = 0;
2559 stop_print_frame = 0;
2560 stop_stepping (ecs);
2561 return;
2562
2563 case TARGET_WAITKIND_SIGNALLED:
2564 if (debug_infrun)
2565 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2566 inferior_ptid = ecs->ptid;
2567 stop_print_frame = 0;
2568 target_terminal_ours (); /* Must do this before mourn anyway */
2569
2570 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2571 reach here unless the inferior is dead. However, for years
2572 target_kill() was called here, which hints that fatal signals aren't
2573 really fatal on some systems. If that's true, then some changes
2574 may be needed. */
2575 target_mourn_inferior ();
2576
2577 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
2578 singlestep_breakpoints_inserted_p = 0;
2579 stop_stepping (ecs);
2580 return;
2581
2582 /* The following are the only cases in which we keep going;
2583 the above cases end in a continue or goto. */
2584 case TARGET_WAITKIND_FORKED:
2585 case TARGET_WAITKIND_VFORKED:
2586 if (debug_infrun)
2587 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2588
2589 if (!ptid_equal (ecs->ptid, inferior_ptid))
2590 {
2591 context_switch (ecs->ptid);
2592 reinit_frame_cache ();
2593 }
2594
2595 /* Immediately detach breakpoints from the child before there's
2596 any chance of letting the user delete breakpoints from the
2597 breakpoint lists. If we don't do this early, it's easy to
2598 leave left over traps in the child, vis: "break foo; catch
2599 fork; c; <fork>; del; c; <child calls foo>". We only follow
2600 the fork on the last `continue', and by that time the
2601 breakpoint at "foo" is long gone from the breakpoint table.
2602 If we vforked, then we don't need to unpatch here, since both
2603 parent and child are sharing the same memory pages; we'll
2604 need to unpatch at follow/detach time instead to be certain
2605 that new breakpoints added between catchpoint hit time and
2606 vfork follow are detached. */
2607 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
2608 {
2609 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
2610
2611 /* This won't actually modify the breakpoint list, but will
2612 physically remove the breakpoints from the child. */
2613 detach_breakpoints (child_pid);
2614 }
2615
2616 /* In case the event is caught by a catchpoint, remember that
2617 the event is to be followed at the next resume of the thread,
2618 and not immediately. */
2619 ecs->event_thread->pending_follow = ecs->ws;
2620
2621 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2622
2623 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2624
2625 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2626
2627 /* If no catchpoint triggered for this, then keep going. */
2628 if (ecs->random_signal)
2629 {
2630 int should_resume;
2631
2632 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2633
2634 should_resume = follow_fork ();
2635
2636 ecs->event_thread = inferior_thread ();
2637 ecs->ptid = inferior_ptid;
2638
2639 if (should_resume)
2640 keep_going (ecs);
2641 else
2642 stop_stepping (ecs);
2643 return;
2644 }
2645 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2646 goto process_event_stop_test;
2647
2648 case TARGET_WAITKIND_EXECD:
2649 if (debug_infrun)
2650 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2651
2652 if (!ptid_equal (ecs->ptid, inferior_ptid))
2653 {
2654 context_switch (ecs->ptid);
2655 reinit_frame_cache ();
2656 }
2657
2658 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2659
2660 /* This causes the eventpoints and symbol table to be reset.
2661 Must do this now, before trying to determine whether to
2662 stop. */
2663 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
2664
2665 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2666 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2667
2668 /* Note that this may be referenced from inside
2669 bpstat_stop_status above, through inferior_has_execd. */
2670 xfree (ecs->ws.value.execd_pathname);
2671 ecs->ws.value.execd_pathname = NULL;
2672
2673 /* If no catchpoint triggered for this, then keep going. */
2674 if (ecs->random_signal)
2675 {
2676 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2677 keep_going (ecs);
2678 return;
2679 }
2680 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2681 goto process_event_stop_test;
2682
2683 /* Be careful not to try to gather much state about a thread
2684 that's in a syscall. It's frequently a losing proposition. */
2685 case TARGET_WAITKIND_SYSCALL_ENTRY:
2686 if (debug_infrun)
2687 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2688 resume (0, TARGET_SIGNAL_0);
2689 prepare_to_wait (ecs);
2690 return;
2691
2692 /* Before examining the threads further, step this thread to
2693 get it entirely out of the syscall. (We get notice of the
2694 event when the thread is just on the verge of exiting a
2695 syscall. Stepping one instruction seems to get it back
2696 into user code.) */
2697 case TARGET_WAITKIND_SYSCALL_RETURN:
2698 if (debug_infrun)
2699 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2700 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2701 prepare_to_wait (ecs);
2702 return;
2703
2704 case TARGET_WAITKIND_STOPPED:
2705 if (debug_infrun)
2706 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2707 ecs->event_thread->stop_signal = ecs->ws.value.sig;
2708 break;
2709
2710 case TARGET_WAITKIND_NO_HISTORY:
2711 /* Reverse execution: target ran out of history info. */
2712 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2713 print_stop_reason (NO_HISTORY, 0);
2714 stop_stepping (ecs);
2715 return;
2716
2717 /* We had an event in the inferior, but we are not interested
2718 in handling it at this level. The lower layers have already
2719 done what needs to be done, if anything.
2720
2721 One of the possible circumstances for this is when the
2722 inferior produces output for the console. The inferior has
2723 not stopped, and we are ignoring the event. Another possible
2724 circumstance is any event which the lower level knows will be
2725 reported multiple times without an intervening resume. */
2726 case TARGET_WAITKIND_IGNORE:
2727 if (debug_infrun)
2728 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2729 prepare_to_wait (ecs);
2730 return;
2731 }
2732
2733 if (ecs->new_thread_event)
2734 {
2735 if (non_stop)
2736 /* Non-stop assumes that the target handles adding new threads
2737 to the thread list. */
2738 internal_error (__FILE__, __LINE__, "\
2739 targets should add new threads to the thread list themselves in non-stop mode.");
2740
2741 /* We may want to consider not doing a resume here in order to
2742 give the user a chance to play with the new thread. It might
2743 be good to make that a user-settable option. */
2744
2745 /* At this point, all threads are stopped (happens automatically
2746 in either the OS or the native code). Therefore we need to
2747 continue all threads in order to make progress. */
2748
2749 if (!ptid_equal (ecs->ptid, inferior_ptid))
2750 context_switch (ecs->ptid);
2751 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2752 prepare_to_wait (ecs);
2753 return;
2754 }
2755
2756 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
2757 {
2758 /* Do we need to clean up the state of a thread that has
2759 completed a displaced single-step? (Doing so usually affects
2760 the PC, so do it here, before we set stop_pc.) */
2761 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2762
2763 /* If we either finished a single-step or hit a breakpoint, but
2764 the user wanted this thread to be stopped, pretend we got a
2765 SIG0 (generic unsignaled stop). */
2766
2767 if (ecs->event_thread->stop_requested
2768 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2769 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2770 }
2771
2772 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2773
2774 if (debug_infrun)
2775 {
2776 struct regcache *regcache = get_thread_regcache (ecs->ptid);
2777 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2778
2779 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
2780 paddress (gdbarch, stop_pc));
2781 if (target_stopped_by_watchpoint ())
2782 {
2783 CORE_ADDR addr;
2784 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2785
2786 if (target_stopped_data_address (&current_target, &addr))
2787 fprintf_unfiltered (gdb_stdlog,
2788 "infrun: stopped data address = %s\n",
2789 paddress (gdbarch, addr));
2790 else
2791 fprintf_unfiltered (gdb_stdlog,
2792 "infrun: (no data address available)\n");
2793 }
2794 }
2795
2796 if (stepping_past_singlestep_breakpoint)
2797 {
2798 gdb_assert (singlestep_breakpoints_inserted_p);
2799 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2800 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2801
2802 stepping_past_singlestep_breakpoint = 0;
2803
2804 /* We've either finished single-stepping past the single-step
2805 breakpoint, or stopped for some other reason. It would be nice if
2806 we could tell, but we can't reliably. */
2807 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2808 {
2809 if (debug_infrun)
2810 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2811 /* Pull the single step breakpoints out of the target. */
2812 remove_single_step_breakpoints ();
2813 singlestep_breakpoints_inserted_p = 0;
2814
2815 ecs->random_signal = 0;
2816
2817 context_switch (saved_singlestep_ptid);
2818 if (deprecated_context_hook)
2819 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2820
2821 resume (1, TARGET_SIGNAL_0);
2822 prepare_to_wait (ecs);
2823 return;
2824 }
2825 }
2826
2827 if (!ptid_equal (deferred_step_ptid, null_ptid))
2828 {
2829 /* In non-stop mode, there's never a deferred_step_ptid set. */
2830 gdb_assert (!non_stop);
2831
2832 /* If we stopped for some other reason than single-stepping, ignore
2833 the fact that we were supposed to switch back. */
2834 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2835 {
2836 if (debug_infrun)
2837 fprintf_unfiltered (gdb_stdlog,
2838 "infrun: handling deferred step\n");
2839
2840 /* Pull the single step breakpoints out of the target. */
2841 if (singlestep_breakpoints_inserted_p)
2842 {
2843 remove_single_step_breakpoints ();
2844 singlestep_breakpoints_inserted_p = 0;
2845 }
2846
2847 /* Note: We do not call context_switch at this point, as the
2848 context is already set up for stepping the original thread. */
2849 switch_to_thread (deferred_step_ptid);
2850 deferred_step_ptid = null_ptid;
2851 /* Suppress spurious "Switching to ..." message. */
2852 previous_inferior_ptid = inferior_ptid;
2853
2854 resume (1, TARGET_SIGNAL_0);
2855 prepare_to_wait (ecs);
2856 return;
2857 }
2858
2859 deferred_step_ptid = null_ptid;
2860 }
2861
2862 /* See if a thread hit a thread-specific breakpoint that was meant for
2863 another thread. If so, then step that thread past the breakpoint,
2864 and continue it. */
2865
2866 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2867 {
2868 int thread_hop_needed = 0;
2869
2870 /* Check if a regular breakpoint has been hit before checking
2871 for a potential single step breakpoint. Otherwise, GDB will
2872 not see this breakpoint hit when stepping onto breakpoints. */
2873 if (regular_breakpoint_inserted_here_p (stop_pc))
2874 {
2875 ecs->random_signal = 0;
2876 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2877 thread_hop_needed = 1;
2878 }
2879 else if (singlestep_breakpoints_inserted_p)
2880 {
2881 /* We have not context switched yet, so this should be true
2882 no matter which thread hit the singlestep breakpoint. */
2883 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2884 if (debug_infrun)
2885 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2886 "trap for %s\n",
2887 target_pid_to_str (ecs->ptid));
2888
2889 ecs->random_signal = 0;
2890 /* The call to in_thread_list is necessary because PTIDs sometimes
2891 change when we go from single-threaded to multi-threaded. If
2892 the singlestep_ptid is still in the list, assume that it is
2893 really different from ecs->ptid. */
2894 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2895 && in_thread_list (singlestep_ptid))
2896 {
2897 /* If the PC of the thread we were trying to single-step
2898 has changed, discard this event (which we were going
2899 to ignore anyway), and pretend we saw that thread
2900 trap. This prevents us continuously moving the
2901 single-step breakpoint forward, one instruction at a
2902 time. If the PC has changed, then the thread we were
2903 trying to single-step has trapped or been signalled,
2904 but the event has not been reported to GDB yet.
2905
2906 There might be some cases where this loses signal
2907 information, if a signal has arrived at exactly the
2908 same time that the PC changed, but this is the best
2909 we can do with the information available. Perhaps we
2910 should arrange to report all events for all threads
2911 when they stop, or to re-poll the remote looking for
2912 this particular thread (i.e. temporarily enable
2913 schedlock). */
2914
2915 CORE_ADDR new_singlestep_pc
2916 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2917
2918 if (new_singlestep_pc != singlestep_pc)
2919 {
2920 enum target_signal stop_signal;
2921
2922 if (debug_infrun)
2923 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2924 " but expected thread advanced also\n");
2925
2926 /* The current context still belongs to
2927 singlestep_ptid. Don't swap here, since that's
2928 the context we want to use. Just fudge our
2929 state and continue. */
2930 stop_signal = ecs->event_thread->stop_signal;
2931 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2932 ecs->ptid = singlestep_ptid;
2933 ecs->event_thread = find_thread_ptid (ecs->ptid);
2934 ecs->event_thread->stop_signal = stop_signal;
2935 stop_pc = new_singlestep_pc;
2936 }
2937 else
2938 {
2939 if (debug_infrun)
2940 fprintf_unfiltered (gdb_stdlog,
2941 "infrun: unexpected thread\n");
2942
2943 thread_hop_needed = 1;
2944 stepping_past_singlestep_breakpoint = 1;
2945 saved_singlestep_ptid = singlestep_ptid;
2946 }
2947 }
2948 }
2949
2950 if (thread_hop_needed)
2951 {
2952 struct regcache *thread_regcache;
2953 int remove_status = 0;
2954
2955 if (debug_infrun)
2956 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2957
2958 /* Switch context before touching inferior memory, the
2959 previous thread may have exited. */
2960 if (!ptid_equal (inferior_ptid, ecs->ptid))
2961 context_switch (ecs->ptid);
2962
2963 /* Saw a breakpoint, but it was hit by the wrong thread.
2964 Just continue. */
2965
2966 if (singlestep_breakpoints_inserted_p)
2967 {
2968 /* Pull the single step breakpoints out of the target. */
2969 remove_single_step_breakpoints ();
2970 singlestep_breakpoints_inserted_p = 0;
2971 }
2972
2973 /* If the arch can displace step, don't remove the
2974 breakpoints. */
2975 thread_regcache = get_thread_regcache (ecs->ptid);
2976 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
2977 remove_status = remove_breakpoints ();
2978
2979 /* Did we fail to remove breakpoints? If so, try
2980 to set the PC past the bp. (There's at least
2981 one situation in which we can fail to remove
2982 the bp's: On HP-UX's that use ttrace, we can't
2983 change the address space of a vforking child
2984 process until the child exits (well, okay, not
2985 then either :-) or execs. */
2986 if (remove_status != 0)
2987 error (_("Cannot step over breakpoint hit in wrong thread"));
2988 else
2989 { /* Single step */
2990 if (!non_stop)
2991 {
2992 /* Only need to require the next event from this
2993 thread in all-stop mode. */
2994 waiton_ptid = ecs->ptid;
2995 infwait_state = infwait_thread_hop_state;
2996 }
2997
2998 ecs->event_thread->stepping_over_breakpoint = 1;
2999 keep_going (ecs);
3000 return;
3001 }
3002 }
3003 else if (singlestep_breakpoints_inserted_p)
3004 {
3005 sw_single_step_trap_p = 1;
3006 ecs->random_signal = 0;
3007 }
3008 }
3009 else
3010 ecs->random_signal = 1;
3011
3012 /* See if something interesting happened to the non-current thread. If
3013 so, then switch to that thread. */
3014 if (!ptid_equal (ecs->ptid, inferior_ptid))
3015 {
3016 if (debug_infrun)
3017 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3018
3019 context_switch (ecs->ptid);
3020
3021 if (deprecated_context_hook)
3022 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3023 }
3024
3025 /* At this point, get hold of the now-current thread's frame. */
3026 frame = get_current_frame ();
3027 gdbarch = get_frame_arch (frame);
3028
3029 if (singlestep_breakpoints_inserted_p)
3030 {
3031 /* Pull the single step breakpoints out of the target. */
3032 remove_single_step_breakpoints ();
3033 singlestep_breakpoints_inserted_p = 0;
3034 }
3035
3036 if (stepped_after_stopped_by_watchpoint)
3037 stopped_by_watchpoint = 0;
3038 else
3039 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3040
3041 /* If necessary, step over this watchpoint. We'll be back to display
3042 it in a moment. */
3043 if (stopped_by_watchpoint
3044 && (target_have_steppable_watchpoint
3045 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3046 {
3047 /* At this point, we are stopped at an instruction which has
3048 attempted to write to a piece of memory under control of
3049 a watchpoint. The instruction hasn't actually executed
3050 yet. If we were to evaluate the watchpoint expression
3051 now, we would get the old value, and therefore no change
3052 would seem to have occurred.
3053
3054 In order to make watchpoints work `right', we really need
3055 to complete the memory write, and then evaluate the
3056 watchpoint expression. We do this by single-stepping the
3057 target.
3058
3059 It may not be necessary to disable the watchpoint to stop over
3060 it. For example, the PA can (with some kernel cooperation)
3061 single step over a watchpoint without disabling the watchpoint.
3062
3063 It is far more common to need to disable a watchpoint to step
3064 the inferior over it. If we have non-steppable watchpoints,
3065 we must disable the current watchpoint; it's simplest to
3066 disable all watchpoints and breakpoints. */
3067 int hw_step = 1;
3068
3069 if (!target_have_steppable_watchpoint)
3070 remove_breakpoints ();
3071 /* Single step */
3072 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
3073 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
3074 waiton_ptid = ecs->ptid;
3075 if (target_have_steppable_watchpoint)
3076 infwait_state = infwait_step_watch_state;
3077 else
3078 infwait_state = infwait_nonstep_watch_state;
3079 prepare_to_wait (ecs);
3080 return;
3081 }
3082
3083 ecs->stop_func_start = 0;
3084 ecs->stop_func_end = 0;
3085 ecs->stop_func_name = 0;
3086 /* Don't care about return value; stop_func_start and stop_func_name
3087 will both be 0 if it doesn't work. */
3088 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3089 &ecs->stop_func_start, &ecs->stop_func_end);
3090 ecs->stop_func_start
3091 += gdbarch_deprecated_function_start_offset (gdbarch);
3092 ecs->event_thread->stepping_over_breakpoint = 0;
3093 bpstat_clear (&ecs->event_thread->stop_bpstat);
3094 ecs->event_thread->stop_step = 0;
3095 stop_print_frame = 1;
3096 ecs->random_signal = 0;
3097 stopped_by_random_signal = 0;
3098
3099 /* Hide inlined functions starting here, unless we just performed stepi or
3100 nexti. After stepi and nexti, always show the innermost frame (not any
3101 inline function call sites). */
3102 if (ecs->event_thread->step_range_end != 1)
3103 skip_inline_frames (ecs->ptid);
3104
3105 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3106 && ecs->event_thread->trap_expected
3107 && gdbarch_single_step_through_delay_p (gdbarch)
3108 && currently_stepping (ecs->event_thread))
3109 {
3110 /* We're trying to step off a breakpoint. Turns out that we're
3111 also on an instruction that needs to be stepped multiple
3112 times before it's been fully executing. E.g., architectures
3113 with a delay slot. It needs to be stepped twice, once for
3114 the instruction and once for the delay slot. */
3115 int step_through_delay
3116 = gdbarch_single_step_through_delay (gdbarch, frame);
3117 if (debug_infrun && step_through_delay)
3118 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3119 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3120 {
3121 /* The user issued a continue when stopped at a breakpoint.
3122 Set up for another trap and get out of here. */
3123 ecs->event_thread->stepping_over_breakpoint = 1;
3124 keep_going (ecs);
3125 return;
3126 }
3127 else if (step_through_delay)
3128 {
3129 /* The user issued a step when stopped at a breakpoint.
3130 Maybe we should stop, maybe we should not - the delay
3131 slot *might* correspond to a line of source. In any
3132 case, don't decide that here, just set
3133 ecs->stepping_over_breakpoint, making sure we
3134 single-step again before breakpoints are re-inserted. */
3135 ecs->event_thread->stepping_over_breakpoint = 1;
3136 }
3137 }
3138
3139 /* Look at the cause of the stop, and decide what to do.
3140 The alternatives are:
3141 1) stop_stepping and return; to really stop and return to the debugger,
3142 2) keep_going and return to start up again
3143 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
3144 3) set ecs->random_signal to 1, and the decision between 1 and 2
3145 will be made according to the signal handling tables. */
3146
3147 /* First, distinguish signals caused by the debugger from signals
3148 that have to do with the program's own actions. Note that
3149 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3150 on the operating system version. Here we detect when a SIGILL or
3151 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3152 something similar for SIGSEGV, since a SIGSEGV will be generated
3153 when we're trying to execute a breakpoint instruction on a
3154 non-executable stack. This happens for call dummy breakpoints
3155 for architectures like SPARC that place call dummies on the
3156 stack.
3157
3158 If we're doing a displaced step past a breakpoint, then the
3159 breakpoint is always inserted at the original instruction;
3160 non-standard signals can't be explained by the breakpoint. */
3161 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3162 || (! ecs->event_thread->trap_expected
3163 && breakpoint_inserted_here_p (stop_pc)
3164 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
3165 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
3166 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
3167 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3168 || stop_soon == STOP_QUIETLY_REMOTE)
3169 {
3170 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
3171 {
3172 if (debug_infrun)
3173 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3174 stop_print_frame = 0;
3175 stop_stepping (ecs);
3176 return;
3177 }
3178
3179 /* This is originated from start_remote(), start_inferior() and
3180 shared libraries hook functions. */
3181 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
3182 {
3183 if (debug_infrun)
3184 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3185 stop_stepping (ecs);
3186 return;
3187 }
3188
3189 /* This originates from attach_command(). We need to overwrite
3190 the stop_signal here, because some kernels don't ignore a
3191 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3192 See more comments in inferior.h. On the other hand, if we
3193 get a non-SIGSTOP, report it to the user - assume the backend
3194 will handle the SIGSTOP if it should show up later.
3195
3196 Also consider that the attach is complete when we see a
3197 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3198 target extended-remote report it instead of a SIGSTOP
3199 (e.g. gdbserver). We already rely on SIGTRAP being our
3200 signal, so this is no exception.
3201
3202 Also consider that the attach is complete when we see a
3203 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3204 the target to stop all threads of the inferior, in case the
3205 low level attach operation doesn't stop them implicitly. If
3206 they weren't stopped implicitly, then the stub will report a
3207 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3208 other than GDB's request. */
3209 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3210 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
3211 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3212 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
3213 {
3214 stop_stepping (ecs);
3215 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3216 return;
3217 }
3218
3219 /* See if there is a breakpoint at the current PC. */
3220 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
3221
3222 /* Following in case break condition called a
3223 function. */
3224 stop_print_frame = 1;
3225
3226 /* NOTE: cagney/2003-03-29: These two checks for a random signal
3227 at one stage in the past included checks for an inferior
3228 function call's call dummy's return breakpoint. The original
3229 comment, that went with the test, read:
3230
3231 ``End of a stack dummy. Some systems (e.g. Sony news) give
3232 another signal besides SIGTRAP, so check here as well as
3233 above.''
3234
3235 If someone ever tries to get call dummys on a
3236 non-executable stack to work (where the target would stop
3237 with something like a SIGSEGV), then those tests might need
3238 to be re-instated. Given, however, that the tests were only
3239 enabled when momentary breakpoints were not being used, I
3240 suspect that it won't be the case.
3241
3242 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3243 be necessary for call dummies on a non-executable stack on
3244 SPARC. */
3245
3246 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3247 ecs->random_signal
3248 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
3249 || ecs->event_thread->trap_expected
3250 || (ecs->event_thread->step_range_end
3251 && ecs->event_thread->step_resume_breakpoint == NULL));
3252 else
3253 {
3254 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
3255 if (!ecs->random_signal)
3256 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
3257 }
3258 }
3259
3260 /* When we reach this point, we've pretty much decided
3261 that the reason for stopping must've been a random
3262 (unexpected) signal. */
3263
3264 else
3265 ecs->random_signal = 1;
3266
3267 process_event_stop_test:
3268
3269 /* Re-fetch current thread's frame in case we did a
3270 "goto process_event_stop_test" above. */
3271 frame = get_current_frame ();
3272 gdbarch = get_frame_arch (frame);
3273
3274 /* For the program's own signals, act according to
3275 the signal handling tables. */
3276
3277 if (ecs->random_signal)
3278 {
3279 /* Signal not for debugging purposes. */
3280 int printed = 0;
3281
3282 if (debug_infrun)
3283 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3284 ecs->event_thread->stop_signal);
3285
3286 stopped_by_random_signal = 1;
3287
3288 if (signal_print[ecs->event_thread->stop_signal])
3289 {
3290 printed = 1;
3291 target_terminal_ours_for_output ();
3292 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
3293 }
3294 /* Always stop on signals if we're either just gaining control
3295 of the program, or the user explicitly requested this thread
3296 to remain stopped. */
3297 if (stop_soon != NO_STOP_QUIETLY
3298 || ecs->event_thread->stop_requested
3299 || signal_stop_state (ecs->event_thread->stop_signal))
3300 {
3301 stop_stepping (ecs);
3302 return;
3303 }
3304 /* If not going to stop, give terminal back
3305 if we took it away. */
3306 else if (printed)
3307 target_terminal_inferior ();
3308
3309 /* Clear the signal if it should not be passed. */
3310 if (signal_program[ecs->event_thread->stop_signal] == 0)
3311 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3312
3313 if (ecs->event_thread->prev_pc == stop_pc
3314 && ecs->event_thread->trap_expected
3315 && ecs->event_thread->step_resume_breakpoint == NULL)
3316 {
3317 /* We were just starting a new sequence, attempting to
3318 single-step off of a breakpoint and expecting a SIGTRAP.
3319 Instead this signal arrives. This signal will take us out
3320 of the stepping range so GDB needs to remember to, when
3321 the signal handler returns, resume stepping off that
3322 breakpoint. */
3323 /* To simplify things, "continue" is forced to use the same
3324 code paths as single-step - set a breakpoint at the
3325 signal return address and then, once hit, step off that
3326 breakpoint. */
3327 if (debug_infrun)
3328 fprintf_unfiltered (gdb_stdlog,
3329 "infrun: signal arrived while stepping over "
3330 "breakpoint\n");
3331
3332 insert_step_resume_breakpoint_at_frame (frame);
3333 ecs->event_thread->step_after_step_resume_breakpoint = 1;
3334 keep_going (ecs);
3335 return;
3336 }
3337
3338 if (ecs->event_thread->step_range_end != 0
3339 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
3340 && (ecs->event_thread->step_range_start <= stop_pc
3341 && stop_pc < ecs->event_thread->step_range_end)
3342 && frame_id_eq (get_stack_frame_id (frame),
3343 ecs->event_thread->step_stack_frame_id)
3344 && ecs->event_thread->step_resume_breakpoint == NULL)
3345 {
3346 /* The inferior is about to take a signal that will take it
3347 out of the single step range. Set a breakpoint at the
3348 current PC (which is presumably where the signal handler
3349 will eventually return) and then allow the inferior to
3350 run free.
3351
3352 Note that this is only needed for a signal delivered
3353 while in the single-step range. Nested signals aren't a
3354 problem as they eventually all return. */
3355 if (debug_infrun)
3356 fprintf_unfiltered (gdb_stdlog,
3357 "infrun: signal may take us out of "
3358 "single-step range\n");
3359
3360 insert_step_resume_breakpoint_at_frame (frame);
3361 keep_going (ecs);
3362 return;
3363 }
3364
3365 /* Note: step_resume_breakpoint may be non-NULL. This occures
3366 when either there's a nested signal, or when there's a
3367 pending signal enabled just as the signal handler returns
3368 (leaving the inferior at the step-resume-breakpoint without
3369 actually executing it). Either way continue until the
3370 breakpoint is really hit. */
3371 keep_going (ecs);
3372 return;
3373 }
3374
3375 /* Handle cases caused by hitting a breakpoint. */
3376 {
3377 CORE_ADDR jmp_buf_pc;
3378 struct bpstat_what what;
3379
3380 what = bpstat_what (ecs->event_thread->stop_bpstat);
3381
3382 if (what.call_dummy)
3383 {
3384 stop_stack_dummy = 1;
3385 }
3386
3387 switch (what.main_action)
3388 {
3389 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
3390 /* If we hit the breakpoint at longjmp while stepping, we
3391 install a momentary breakpoint at the target of the
3392 jmp_buf. */
3393
3394 if (debug_infrun)
3395 fprintf_unfiltered (gdb_stdlog,
3396 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3397
3398 ecs->event_thread->stepping_over_breakpoint = 1;
3399
3400 if (!gdbarch_get_longjmp_target_p (gdbarch)
3401 || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc))
3402 {
3403 if (debug_infrun)
3404 fprintf_unfiltered (gdb_stdlog, "\
3405 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
3406 keep_going (ecs);
3407 return;
3408 }
3409
3410 /* We're going to replace the current step-resume breakpoint
3411 with a longjmp-resume breakpoint. */
3412 delete_step_resume_breakpoint (ecs->event_thread);
3413
3414 /* Insert a breakpoint at resume address. */
3415 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
3416
3417 keep_going (ecs);
3418 return;
3419
3420 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
3421 if (debug_infrun)
3422 fprintf_unfiltered (gdb_stdlog,
3423 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3424
3425 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3426 delete_step_resume_breakpoint (ecs->event_thread);
3427
3428 ecs->event_thread->stop_step = 1;
3429 print_stop_reason (END_STEPPING_RANGE, 0);
3430 stop_stepping (ecs);
3431 return;
3432
3433 case BPSTAT_WHAT_SINGLE:
3434 if (debug_infrun)
3435 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
3436 ecs->event_thread->stepping_over_breakpoint = 1;
3437 /* Still need to check other stuff, at least the case
3438 where we are stepping and step out of the right range. */
3439 break;
3440
3441 case BPSTAT_WHAT_STOP_NOISY:
3442 if (debug_infrun)
3443 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
3444 stop_print_frame = 1;
3445
3446 /* We are about to nuke the step_resume_breakpointt via the
3447 cleanup chain, so no need to worry about it here. */
3448
3449 stop_stepping (ecs);
3450 return;
3451
3452 case BPSTAT_WHAT_STOP_SILENT:
3453 if (debug_infrun)
3454 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
3455 stop_print_frame = 0;
3456
3457 /* We are about to nuke the step_resume_breakpoin via the
3458 cleanup chain, so no need to worry about it here. */
3459
3460 stop_stepping (ecs);
3461 return;
3462
3463 case BPSTAT_WHAT_STEP_RESUME:
3464 if (debug_infrun)
3465 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
3466
3467 delete_step_resume_breakpoint (ecs->event_thread);
3468 if (ecs->event_thread->step_after_step_resume_breakpoint)
3469 {
3470 /* Back when the step-resume breakpoint was inserted, we
3471 were trying to single-step off a breakpoint. Go back
3472 to doing that. */
3473 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3474 ecs->event_thread->stepping_over_breakpoint = 1;
3475 keep_going (ecs);
3476 return;
3477 }
3478 if (stop_pc == ecs->stop_func_start
3479 && execution_direction == EXEC_REVERSE)
3480 {
3481 /* We are stepping over a function call in reverse, and
3482 just hit the step-resume breakpoint at the start
3483 address of the function. Go back to single-stepping,
3484 which should take us back to the function call. */
3485 ecs->event_thread->stepping_over_breakpoint = 1;
3486 keep_going (ecs);
3487 return;
3488 }
3489 break;
3490
3491 case BPSTAT_WHAT_CHECK_SHLIBS:
3492 {
3493 if (debug_infrun)
3494 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
3495
3496 /* Check for any newly added shared libraries if we're
3497 supposed to be adding them automatically. Switch
3498 terminal for any messages produced by
3499 breakpoint_re_set. */
3500 target_terminal_ours_for_output ();
3501 /* NOTE: cagney/2003-11-25: Make certain that the target
3502 stack's section table is kept up-to-date. Architectures,
3503 (e.g., PPC64), use the section table to perform
3504 operations such as address => section name and hence
3505 require the table to contain all sections (including
3506 those found in shared libraries). */
3507 #ifdef SOLIB_ADD
3508 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3509 #else
3510 solib_add (NULL, 0, &current_target, auto_solib_add);
3511 #endif
3512 target_terminal_inferior ();
3513
3514 /* If requested, stop when the dynamic linker notifies
3515 gdb of events. This allows the user to get control
3516 and place breakpoints in initializer routines for
3517 dynamically loaded objects (among other things). */
3518 if (stop_on_solib_events || stop_stack_dummy)
3519 {
3520 stop_stepping (ecs);
3521 return;
3522 }
3523 else
3524 {
3525 /* We want to step over this breakpoint, then keep going. */
3526 ecs->event_thread->stepping_over_breakpoint = 1;
3527 break;
3528 }
3529 }
3530 break;
3531
3532 case BPSTAT_WHAT_LAST:
3533 /* Not a real code, but listed here to shut up gcc -Wall. */
3534
3535 case BPSTAT_WHAT_KEEP_CHECKING:
3536 break;
3537 }
3538 }
3539
3540 /* We come here if we hit a breakpoint but should not
3541 stop for it. Possibly we also were stepping
3542 and should stop for that. So fall through and
3543 test for stepping. But, if not stepping,
3544 do not stop. */
3545
3546 /* In all-stop mode, if we're currently stepping but have stopped in
3547 some other thread, we need to switch back to the stepped thread. */
3548 if (!non_stop)
3549 {
3550 struct thread_info *tp;
3551 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
3552 ecs->event_thread);
3553 if (tp)
3554 {
3555 /* However, if the current thread is blocked on some internal
3556 breakpoint, and we simply need to step over that breakpoint
3557 to get it going again, do that first. */
3558 if ((ecs->event_thread->trap_expected
3559 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3560 || ecs->event_thread->stepping_over_breakpoint)
3561 {
3562 keep_going (ecs);
3563 return;
3564 }
3565
3566 /* If the stepping thread exited, then don't try to switch
3567 back and resume it, which could fail in several different
3568 ways depending on the target. Instead, just keep going.
3569
3570 We can find a stepping dead thread in the thread list in
3571 two cases:
3572
3573 - The target supports thread exit events, and when the
3574 target tries to delete the thread from the thread list,
3575 inferior_ptid pointed at the exiting thread. In such
3576 case, calling delete_thread does not really remove the
3577 thread from the list; instead, the thread is left listed,
3578 with 'exited' state.
3579
3580 - The target's debug interface does not support thread
3581 exit events, and so we have no idea whatsoever if the
3582 previously stepping thread is still alive. For that
3583 reason, we need to synchronously query the target
3584 now. */
3585 if (is_exited (tp->ptid)
3586 || !target_thread_alive (tp->ptid))
3587 {
3588 if (debug_infrun)
3589 fprintf_unfiltered (gdb_stdlog, "\
3590 infrun: not switching back to stepped thread, it has vanished\n");
3591
3592 delete_thread (tp->ptid);
3593 keep_going (ecs);
3594 return;
3595 }
3596
3597 /* Otherwise, we no longer expect a trap in the current thread.
3598 Clear the trap_expected flag before switching back -- this is
3599 what keep_going would do as well, if we called it. */
3600 ecs->event_thread->trap_expected = 0;
3601
3602 if (debug_infrun)
3603 fprintf_unfiltered (gdb_stdlog,
3604 "infrun: switching back to stepped thread\n");
3605
3606 ecs->event_thread = tp;
3607 ecs->ptid = tp->ptid;
3608 context_switch (ecs->ptid);
3609 keep_going (ecs);
3610 return;
3611 }
3612 }
3613
3614 /* Are we stepping to get the inferior out of the dynamic linker's
3615 hook (and possibly the dld itself) after catching a shlib
3616 event? */
3617 if (ecs->event_thread->stepping_through_solib_after_catch)
3618 {
3619 #if defined(SOLIB_ADD)
3620 /* Have we reached our destination? If not, keep going. */
3621 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3622 {
3623 if (debug_infrun)
3624 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
3625 ecs->event_thread->stepping_over_breakpoint = 1;
3626 keep_going (ecs);
3627 return;
3628 }
3629 #endif
3630 if (debug_infrun)
3631 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
3632 /* Else, stop and report the catchpoint(s) whose triggering
3633 caused us to begin stepping. */
3634 ecs->event_thread->stepping_through_solib_after_catch = 0;
3635 bpstat_clear (&ecs->event_thread->stop_bpstat);
3636 ecs->event_thread->stop_bpstat
3637 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
3638 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
3639 stop_print_frame = 1;
3640 stop_stepping (ecs);
3641 return;
3642 }
3643
3644 if (ecs->event_thread->step_resume_breakpoint)
3645 {
3646 if (debug_infrun)
3647 fprintf_unfiltered (gdb_stdlog,
3648 "infrun: step-resume breakpoint is inserted\n");
3649
3650 /* Having a step-resume breakpoint overrides anything
3651 else having to do with stepping commands until
3652 that breakpoint is reached. */
3653 keep_going (ecs);
3654 return;
3655 }
3656
3657 if (ecs->event_thread->step_range_end == 0)
3658 {
3659 if (debug_infrun)
3660 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3661 /* Likewise if we aren't even stepping. */
3662 keep_going (ecs);
3663 return;
3664 }
3665
3666 /* If stepping through a line, keep going if still within it.
3667
3668 Note that step_range_end is the address of the first instruction
3669 beyond the step range, and NOT the address of the last instruction
3670 within it!
3671
3672 Note also that during reverse execution, we may be stepping
3673 through a function epilogue and therefore must detect when
3674 the current-frame changes in the middle of a line. */
3675
3676 if (stop_pc >= ecs->event_thread->step_range_start
3677 && stop_pc < ecs->event_thread->step_range_end
3678 && (execution_direction != EXEC_REVERSE
3679 || frame_id_eq (get_frame_id (frame),
3680 ecs->event_thread->step_frame_id)))
3681 {
3682 if (debug_infrun)
3683 fprintf_unfiltered
3684 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
3685 paddress (gdbarch, ecs->event_thread->step_range_start),
3686 paddress (gdbarch, ecs->event_thread->step_range_end));
3687
3688 /* When stepping backward, stop at beginning of line range
3689 (unless it's the function entry point, in which case
3690 keep going back to the call point). */
3691 if (stop_pc == ecs->event_thread->step_range_start
3692 && stop_pc != ecs->stop_func_start
3693 && execution_direction == EXEC_REVERSE)
3694 {
3695 ecs->event_thread->stop_step = 1;
3696 print_stop_reason (END_STEPPING_RANGE, 0);
3697 stop_stepping (ecs);
3698 }
3699 else
3700 keep_going (ecs);
3701
3702 return;
3703 }
3704
3705 /* We stepped out of the stepping range. */
3706
3707 /* If we are stepping at the source level and entered the runtime
3708 loader dynamic symbol resolution code...
3709
3710 EXEC_FORWARD: we keep on single stepping until we exit the run
3711 time loader code and reach the callee's address.
3712
3713 EXEC_REVERSE: we've already executed the callee (backward), and
3714 the runtime loader code is handled just like any other
3715 undebuggable function call. Now we need only keep stepping
3716 backward through the trampoline code, and that's handled further
3717 down, so there is nothing for us to do here. */
3718
3719 if (execution_direction != EXEC_REVERSE
3720 && ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3721 && in_solib_dynsym_resolve_code (stop_pc))
3722 {
3723 CORE_ADDR pc_after_resolver =
3724 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
3725
3726 if (debug_infrun)
3727 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3728
3729 if (pc_after_resolver)
3730 {
3731 /* Set up a step-resume breakpoint at the address
3732 indicated by SKIP_SOLIB_RESOLVER. */
3733 struct symtab_and_line sr_sal;
3734 init_sal (&sr_sal);
3735 sr_sal.pc = pc_after_resolver;
3736
3737 insert_step_resume_breakpoint_at_sal (gdbarch,
3738 sr_sal, null_frame_id);
3739 }
3740
3741 keep_going (ecs);
3742 return;
3743 }
3744
3745 if (ecs->event_thread->step_range_end != 1
3746 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3747 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3748 && get_frame_type (frame) == SIGTRAMP_FRAME)
3749 {
3750 if (debug_infrun)
3751 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3752 /* The inferior, while doing a "step" or "next", has ended up in
3753 a signal trampoline (either by a signal being delivered or by
3754 the signal handler returning). Just single-step until the
3755 inferior leaves the trampoline (either by calling the handler
3756 or returning). */
3757 keep_going (ecs);
3758 return;
3759 }
3760
3761 /* Check for subroutine calls. The check for the current frame
3762 equalling the step ID is not necessary - the check of the
3763 previous frame's ID is sufficient - but it is a common case and
3764 cheaper than checking the previous frame's ID.
3765
3766 NOTE: frame_id_eq will never report two invalid frame IDs as
3767 being equal, so to get into this block, both the current and
3768 previous frame must have valid frame IDs. */
3769 if (!frame_id_eq (get_stack_frame_id (frame),
3770 ecs->event_thread->step_stack_frame_id)
3771 && frame_id_eq (frame_unwind_caller_id (frame),
3772 ecs->event_thread->step_stack_frame_id))
3773 {
3774 CORE_ADDR real_stop_pc;
3775
3776 if (debug_infrun)
3777 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3778
3779 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
3780 || ((ecs->event_thread->step_range_end == 1)
3781 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
3782 ecs->stop_func_start)))
3783 {
3784 /* I presume that step_over_calls is only 0 when we're
3785 supposed to be stepping at the assembly language level
3786 ("stepi"). Just stop. */
3787 /* Also, maybe we just did a "nexti" inside a prolog, so we
3788 thought it was a subroutine call but it was not. Stop as
3789 well. FENN */
3790 /* And this works the same backward as frontward. MVS */
3791 ecs->event_thread->stop_step = 1;
3792 print_stop_reason (END_STEPPING_RANGE, 0);
3793 stop_stepping (ecs);
3794 return;
3795 }
3796
3797 /* Reverse stepping through solib trampolines. */
3798
3799 if (execution_direction == EXEC_REVERSE
3800 && ecs->event_thread->step_over_calls != STEP_OVER_NONE
3801 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
3802 || (ecs->stop_func_start == 0
3803 && in_solib_dynsym_resolve_code (stop_pc))))
3804 {
3805 /* Any solib trampoline code can be handled in reverse
3806 by simply continuing to single-step. We have already
3807 executed the solib function (backwards), and a few
3808 steps will take us back through the trampoline to the
3809 caller. */
3810 keep_going (ecs);
3811 return;
3812 }
3813
3814 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3815 {
3816 /* We're doing a "next".
3817
3818 Normal (forward) execution: set a breakpoint at the
3819 callee's return address (the address at which the caller
3820 will resume).
3821
3822 Reverse (backward) execution. set the step-resume
3823 breakpoint at the start of the function that we just
3824 stepped into (backwards), and continue to there. When we
3825 get there, we'll need to single-step back to the caller. */
3826
3827 if (execution_direction == EXEC_REVERSE)
3828 {
3829 struct symtab_and_line sr_sal;
3830
3831 /* Normal function call return (static or dynamic). */
3832 init_sal (&sr_sal);
3833 sr_sal.pc = ecs->stop_func_start;
3834 insert_step_resume_breakpoint_at_sal (gdbarch,
3835 sr_sal, null_frame_id);
3836 }
3837 else
3838 insert_step_resume_breakpoint_at_caller (frame);
3839
3840 keep_going (ecs);
3841 return;
3842 }
3843
3844 /* If we are in a function call trampoline (a stub between the
3845 calling routine and the real function), locate the real
3846 function. That's what tells us (a) whether we want to step
3847 into it at all, and (b) what prologue we want to run to the
3848 end of, if we do step into it. */
3849 real_stop_pc = skip_language_trampoline (frame, stop_pc);
3850 if (real_stop_pc == 0)
3851 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
3852 if (real_stop_pc != 0)
3853 ecs->stop_func_start = real_stop_pc;
3854
3855 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
3856 {
3857 struct symtab_and_line sr_sal;
3858 init_sal (&sr_sal);
3859 sr_sal.pc = ecs->stop_func_start;
3860
3861 insert_step_resume_breakpoint_at_sal (gdbarch,
3862 sr_sal, null_frame_id);
3863 keep_going (ecs);
3864 return;
3865 }
3866
3867 /* If we have line number information for the function we are
3868 thinking of stepping into, step into it.
3869
3870 If there are several symtabs at that PC (e.g. with include
3871 files), just want to know whether *any* of them have line
3872 numbers. find_pc_line handles this. */
3873 {
3874 struct symtab_and_line tmp_sal;
3875
3876 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3877 if (tmp_sal.line != 0)
3878 {
3879 if (execution_direction == EXEC_REVERSE)
3880 handle_step_into_function_backward (gdbarch, ecs);
3881 else
3882 handle_step_into_function (gdbarch, ecs);
3883 return;
3884 }
3885 }
3886
3887 /* If we have no line number and the step-stop-if-no-debug is
3888 set, we stop the step so that the user has a chance to switch
3889 in assembly mode. */
3890 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3891 && step_stop_if_no_debug)
3892 {
3893 ecs->event_thread->stop_step = 1;
3894 print_stop_reason (END_STEPPING_RANGE, 0);
3895 stop_stepping (ecs);
3896 return;
3897 }
3898
3899 if (execution_direction == EXEC_REVERSE)
3900 {
3901 /* Set a breakpoint at callee's start address.
3902 From there we can step once and be back in the caller. */
3903 struct symtab_and_line sr_sal;
3904 init_sal (&sr_sal);
3905 sr_sal.pc = ecs->stop_func_start;
3906 insert_step_resume_breakpoint_at_sal (gdbarch,
3907 sr_sal, null_frame_id);
3908 }
3909 else
3910 /* Set a breakpoint at callee's return address (the address
3911 at which the caller will resume). */
3912 insert_step_resume_breakpoint_at_caller (frame);
3913
3914 keep_going (ecs);
3915 return;
3916 }
3917
3918 /* Reverse stepping through solib trampolines. */
3919
3920 if (execution_direction == EXEC_REVERSE
3921 && ecs->event_thread->step_over_calls != STEP_OVER_NONE)
3922 {
3923 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
3924 || (ecs->stop_func_start == 0
3925 && in_solib_dynsym_resolve_code (stop_pc)))
3926 {
3927 /* Any solib trampoline code can be handled in reverse
3928 by simply continuing to single-step. We have already
3929 executed the solib function (backwards), and a few
3930 steps will take us back through the trampoline to the
3931 caller. */
3932 keep_going (ecs);
3933 return;
3934 }
3935 else if (in_solib_dynsym_resolve_code (stop_pc))
3936 {
3937 /* Stepped backward into the solib dynsym resolver.
3938 Set a breakpoint at its start and continue, then
3939 one more step will take us out. */
3940 struct symtab_and_line sr_sal;
3941 init_sal (&sr_sal);
3942 sr_sal.pc = ecs->stop_func_start;
3943 insert_step_resume_breakpoint_at_sal (gdbarch,
3944 sr_sal, null_frame_id);
3945 keep_going (ecs);
3946 return;
3947 }
3948 }
3949
3950 /* If we're in the return path from a shared library trampoline,
3951 we want to proceed through the trampoline when stepping. */
3952 if (gdbarch_in_solib_return_trampoline (gdbarch,
3953 stop_pc, ecs->stop_func_name))
3954 {
3955 /* Determine where this trampoline returns. */
3956 CORE_ADDR real_stop_pc;
3957 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
3958
3959 if (debug_infrun)
3960 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3961
3962 /* Only proceed through if we know where it's going. */
3963 if (real_stop_pc)
3964 {
3965 /* And put the step-breakpoint there and go until there. */
3966 struct symtab_and_line sr_sal;
3967
3968 init_sal (&sr_sal); /* initialize to zeroes */
3969 sr_sal.pc = real_stop_pc;
3970 sr_sal.section = find_pc_overlay (sr_sal.pc);
3971
3972 /* Do not specify what the fp should be when we stop since
3973 on some machines the prologue is where the new fp value
3974 is established. */
3975 insert_step_resume_breakpoint_at_sal (gdbarch,
3976 sr_sal, null_frame_id);
3977
3978 /* Restart without fiddling with the step ranges or
3979 other state. */
3980 keep_going (ecs);
3981 return;
3982 }
3983 }
3984
3985 stop_pc_sal = find_pc_line (stop_pc, 0);
3986
3987 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3988 the trampoline processing logic, however, there are some trampolines
3989 that have no names, so we should do trampoline handling first. */
3990 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3991 && ecs->stop_func_name == NULL
3992 && stop_pc_sal.line == 0)
3993 {
3994 if (debug_infrun)
3995 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3996
3997 /* The inferior just stepped into, or returned to, an
3998 undebuggable function (where there is no debugging information
3999 and no line number corresponding to the address where the
4000 inferior stopped). Since we want to skip this kind of code,
4001 we keep going until the inferior returns from this
4002 function - unless the user has asked us not to (via
4003 set step-mode) or we no longer know how to get back
4004 to the call site. */
4005 if (step_stop_if_no_debug
4006 || !frame_id_p (frame_unwind_caller_id (frame)))
4007 {
4008 /* If we have no line number and the step-stop-if-no-debug
4009 is set, we stop the step so that the user has a chance to
4010 switch in assembly mode. */
4011 ecs->event_thread->stop_step = 1;
4012 print_stop_reason (END_STEPPING_RANGE, 0);
4013 stop_stepping (ecs);
4014 return;
4015 }
4016 else
4017 {
4018 /* Set a breakpoint at callee's return address (the address
4019 at which the caller will resume). */
4020 insert_step_resume_breakpoint_at_caller (frame);
4021 keep_going (ecs);
4022 return;
4023 }
4024 }
4025
4026 if (ecs->event_thread->step_range_end == 1)
4027 {
4028 /* It is stepi or nexti. We always want to stop stepping after
4029 one instruction. */
4030 if (debug_infrun)
4031 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
4032 ecs->event_thread->stop_step = 1;
4033 print_stop_reason (END_STEPPING_RANGE, 0);
4034 stop_stepping (ecs);
4035 return;
4036 }
4037
4038 if (stop_pc_sal.line == 0)
4039 {
4040 /* We have no line number information. That means to stop
4041 stepping (does this always happen right after one instruction,
4042 when we do "s" in a function with no line numbers,
4043 or can this happen as a result of a return or longjmp?). */
4044 if (debug_infrun)
4045 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
4046 ecs->event_thread->stop_step = 1;
4047 print_stop_reason (END_STEPPING_RANGE, 0);
4048 stop_stepping (ecs);
4049 return;
4050 }
4051
4052 /* Look for "calls" to inlined functions, part one. If the inline
4053 frame machinery detected some skipped call sites, we have entered
4054 a new inline function. */
4055
4056 if (frame_id_eq (get_frame_id (get_current_frame ()),
4057 ecs->event_thread->step_frame_id)
4058 && inline_skipped_frames (ecs->ptid))
4059 {
4060 struct symtab_and_line call_sal;
4061
4062 if (debug_infrun)
4063 fprintf_unfiltered (gdb_stdlog,
4064 "infrun: stepped into inlined function\n");
4065
4066 find_frame_sal (get_current_frame (), &call_sal);
4067
4068 if (ecs->event_thread->step_over_calls != STEP_OVER_ALL)
4069 {
4070 /* For "step", we're going to stop. But if the call site
4071 for this inlined function is on the same source line as
4072 we were previously stepping, go down into the function
4073 first. Otherwise stop at the call site. */
4074
4075 if (call_sal.line == ecs->event_thread->current_line
4076 && call_sal.symtab == ecs->event_thread->current_symtab)
4077 step_into_inline_frame (ecs->ptid);
4078
4079 ecs->event_thread->stop_step = 1;
4080 print_stop_reason (END_STEPPING_RANGE, 0);
4081 stop_stepping (ecs);
4082 return;
4083 }
4084 else
4085 {
4086 /* For "next", we should stop at the call site if it is on a
4087 different source line. Otherwise continue through the
4088 inlined function. */
4089 if (call_sal.line == ecs->event_thread->current_line
4090 && call_sal.symtab == ecs->event_thread->current_symtab)
4091 keep_going (ecs);
4092 else
4093 {
4094 ecs->event_thread->stop_step = 1;
4095 print_stop_reason (END_STEPPING_RANGE, 0);
4096 stop_stepping (ecs);
4097 }
4098 return;
4099 }
4100 }
4101
4102 /* Look for "calls" to inlined functions, part two. If we are still
4103 in the same real function we were stepping through, but we have
4104 to go further up to find the exact frame ID, we are stepping
4105 through a more inlined call beyond its call site. */
4106
4107 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4108 && !frame_id_eq (get_frame_id (get_current_frame ()),
4109 ecs->event_thread->step_frame_id)
4110 && stepped_in_from (get_current_frame (),
4111 ecs->event_thread->step_frame_id))
4112 {
4113 if (debug_infrun)
4114 fprintf_unfiltered (gdb_stdlog,
4115 "infrun: stepping through inlined function\n");
4116
4117 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4118 keep_going (ecs);
4119 else
4120 {
4121 ecs->event_thread->stop_step = 1;
4122 print_stop_reason (END_STEPPING_RANGE, 0);
4123 stop_stepping (ecs);
4124 }
4125 return;
4126 }
4127
4128 if ((stop_pc == stop_pc_sal.pc)
4129 && (ecs->event_thread->current_line != stop_pc_sal.line
4130 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
4131 {
4132 /* We are at the start of a different line. So stop. Note that
4133 we don't stop if we step into the middle of a different line.
4134 That is said to make things like for (;;) statements work
4135 better. */
4136 if (debug_infrun)
4137 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
4138 ecs->event_thread->stop_step = 1;
4139 print_stop_reason (END_STEPPING_RANGE, 0);
4140 stop_stepping (ecs);
4141 return;
4142 }
4143
4144 /* We aren't done stepping.
4145
4146 Optimize by setting the stepping range to the line.
4147 (We might not be in the original line, but if we entered a
4148 new line in mid-statement, we continue stepping. This makes
4149 things like for(;;) statements work better.) */
4150
4151 ecs->event_thread->step_range_start = stop_pc_sal.pc;
4152 ecs->event_thread->step_range_end = stop_pc_sal.end;
4153 set_step_info (frame, stop_pc_sal);
4154
4155 if (debug_infrun)
4156 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
4157 keep_going (ecs);
4158 }
4159
4160 /* Is thread TP in the middle of single-stepping? */
4161
4162 static int
4163 currently_stepping (struct thread_info *tp)
4164 {
4165 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
4166 || tp->trap_expected
4167 || tp->stepping_through_solib_after_catch
4168 || bpstat_should_step ());
4169 }
4170
4171 /* Returns true if any thread *but* the one passed in "data" is in the
4172 middle of stepping or of handling a "next". */
4173
4174 static int
4175 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
4176 {
4177 if (tp == data)
4178 return 0;
4179
4180 return (tp->step_range_end
4181 || tp->trap_expected
4182 || tp->stepping_through_solib_after_catch);
4183 }
4184
4185 /* Inferior has stepped into a subroutine call with source code that
4186 we should not step over. Do step to the first line of code in
4187 it. */
4188
4189 static void
4190 handle_step_into_function (struct gdbarch *gdbarch,
4191 struct execution_control_state *ecs)
4192 {
4193 struct symtab *s;
4194 struct symtab_and_line stop_func_sal, sr_sal;
4195
4196 s = find_pc_symtab (stop_pc);
4197 if (s && s->language != language_asm)
4198 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
4199 ecs->stop_func_start);
4200
4201 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
4202 /* Use the step_resume_break to step until the end of the prologue,
4203 even if that involves jumps (as it seems to on the vax under
4204 4.2). */
4205 /* If the prologue ends in the middle of a source line, continue to
4206 the end of that source line (if it is still within the function).
4207 Otherwise, just go to end of prologue. */
4208 if (stop_func_sal.end
4209 && stop_func_sal.pc != ecs->stop_func_start
4210 && stop_func_sal.end < ecs->stop_func_end)
4211 ecs->stop_func_start = stop_func_sal.end;
4212
4213 /* Architectures which require breakpoint adjustment might not be able
4214 to place a breakpoint at the computed address. If so, the test
4215 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4216 ecs->stop_func_start to an address at which a breakpoint may be
4217 legitimately placed.
4218
4219 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4220 made, GDB will enter an infinite loop when stepping through
4221 optimized code consisting of VLIW instructions which contain
4222 subinstructions corresponding to different source lines. On
4223 FR-V, it's not permitted to place a breakpoint on any but the
4224 first subinstruction of a VLIW instruction. When a breakpoint is
4225 set, GDB will adjust the breakpoint address to the beginning of
4226 the VLIW instruction. Thus, we need to make the corresponding
4227 adjustment here when computing the stop address. */
4228
4229 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
4230 {
4231 ecs->stop_func_start
4232 = gdbarch_adjust_breakpoint_address (gdbarch,
4233 ecs->stop_func_start);
4234 }
4235
4236 if (ecs->stop_func_start == stop_pc)
4237 {
4238 /* We are already there: stop now. */
4239 ecs->event_thread->stop_step = 1;
4240 print_stop_reason (END_STEPPING_RANGE, 0);
4241 stop_stepping (ecs);
4242 return;
4243 }
4244 else
4245 {
4246 /* Put the step-breakpoint there and go until there. */
4247 init_sal (&sr_sal); /* initialize to zeroes */
4248 sr_sal.pc = ecs->stop_func_start;
4249 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
4250
4251 /* Do not specify what the fp should be when we stop since on
4252 some machines the prologue is where the new fp value is
4253 established. */
4254 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
4255
4256 /* And make sure stepping stops right away then. */
4257 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
4258 }
4259 keep_going (ecs);
4260 }
4261
4262 /* Inferior has stepped backward into a subroutine call with source
4263 code that we should not step over. Do step to the beginning of the
4264 last line of code in it. */
4265
4266 static void
4267 handle_step_into_function_backward (struct gdbarch *gdbarch,
4268 struct execution_control_state *ecs)
4269 {
4270 struct symtab *s;
4271 struct symtab_and_line stop_func_sal, sr_sal;
4272
4273 s = find_pc_symtab (stop_pc);
4274 if (s && s->language != language_asm)
4275 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
4276 ecs->stop_func_start);
4277
4278 stop_func_sal = find_pc_line (stop_pc, 0);
4279
4280 /* OK, we're just going to keep stepping here. */
4281 if (stop_func_sal.pc == stop_pc)
4282 {
4283 /* We're there already. Just stop stepping now. */
4284 ecs->event_thread->stop_step = 1;
4285 print_stop_reason (END_STEPPING_RANGE, 0);
4286 stop_stepping (ecs);
4287 }
4288 else
4289 {
4290 /* Else just reset the step range and keep going.
4291 No step-resume breakpoint, they don't work for
4292 epilogues, which can have multiple entry paths. */
4293 ecs->event_thread->step_range_start = stop_func_sal.pc;
4294 ecs->event_thread->step_range_end = stop_func_sal.end;
4295 keep_going (ecs);
4296 }
4297 return;
4298 }
4299
4300 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
4301 This is used to both functions and to skip over code. */
4302
4303 static void
4304 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
4305 struct symtab_and_line sr_sal,
4306 struct frame_id sr_id)
4307 {
4308 /* There should never be more than one step-resume or longjmp-resume
4309 breakpoint per thread, so we should never be setting a new
4310 step_resume_breakpoint when one is already active. */
4311 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
4312
4313 if (debug_infrun)
4314 fprintf_unfiltered (gdb_stdlog,
4315 "infrun: inserting step-resume breakpoint at %s\n",
4316 paddress (gdbarch, sr_sal.pc));
4317
4318 inferior_thread ()->step_resume_breakpoint
4319 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
4320 }
4321
4322 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
4323 to skip a potential signal handler.
4324
4325 This is called with the interrupted function's frame. The signal
4326 handler, when it returns, will resume the interrupted function at
4327 RETURN_FRAME.pc. */
4328
4329 static void
4330 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
4331 {
4332 struct symtab_and_line sr_sal;
4333 struct gdbarch *gdbarch;
4334
4335 gdb_assert (return_frame != NULL);
4336 init_sal (&sr_sal); /* initialize to zeros */
4337
4338 gdbarch = get_frame_arch (return_frame);
4339 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
4340 sr_sal.section = find_pc_overlay (sr_sal.pc);
4341
4342 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
4343 get_stack_frame_id (return_frame));
4344 }
4345
4346 /* Similar to insert_step_resume_breakpoint_at_frame, except
4347 but a breakpoint at the previous frame's PC. This is used to
4348 skip a function after stepping into it (for "next" or if the called
4349 function has no debugging information).
4350
4351 The current function has almost always been reached by single
4352 stepping a call or return instruction. NEXT_FRAME belongs to the
4353 current function, and the breakpoint will be set at the caller's
4354 resume address.
4355
4356 This is a separate function rather than reusing
4357 insert_step_resume_breakpoint_at_frame in order to avoid
4358 get_prev_frame, which may stop prematurely (see the implementation
4359 of frame_unwind_caller_id for an example). */
4360
4361 static void
4362 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4363 {
4364 struct symtab_and_line sr_sal;
4365 struct gdbarch *gdbarch;
4366
4367 /* We shouldn't have gotten here if we don't know where the call site
4368 is. */
4369 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
4370
4371 init_sal (&sr_sal); /* initialize to zeros */
4372
4373 gdbarch = frame_unwind_caller_arch (next_frame);
4374 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
4375 frame_unwind_caller_pc (next_frame));
4376 sr_sal.section = find_pc_overlay (sr_sal.pc);
4377
4378 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
4379 frame_unwind_caller_id (next_frame));
4380 }
4381
4382 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4383 new breakpoint at the target of a jmp_buf. The handling of
4384 longjmp-resume uses the same mechanisms used for handling
4385 "step-resume" breakpoints. */
4386
4387 static void
4388 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
4389 {
4390 /* There should never be more than one step-resume or longjmp-resume
4391 breakpoint per thread, so we should never be setting a new
4392 longjmp_resume_breakpoint when one is already active. */
4393 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
4394
4395 if (debug_infrun)
4396 fprintf_unfiltered (gdb_stdlog,
4397 "infrun: inserting longjmp-resume breakpoint at %s\n",
4398 paddress (gdbarch, pc));
4399
4400 inferior_thread ()->step_resume_breakpoint =
4401 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
4402 }
4403
4404 static void
4405 stop_stepping (struct execution_control_state *ecs)
4406 {
4407 if (debug_infrun)
4408 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
4409
4410 /* Let callers know we don't want to wait for the inferior anymore. */
4411 ecs->wait_some_more = 0;
4412 }
4413
4414 /* This function handles various cases where we need to continue
4415 waiting for the inferior. */
4416 /* (Used to be the keep_going: label in the old wait_for_inferior) */
4417
4418 static void
4419 keep_going (struct execution_control_state *ecs)
4420 {
4421 /* Save the pc before execution, to compare with pc after stop. */
4422 ecs->event_thread->prev_pc
4423 = regcache_read_pc (get_thread_regcache (ecs->ptid));
4424
4425 /* If we did not do break;, it means we should keep running the
4426 inferior and not return to debugger. */
4427
4428 if (ecs->event_thread->trap_expected
4429 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
4430 {
4431 /* We took a signal (which we are supposed to pass through to
4432 the inferior, else we'd not get here) and we haven't yet
4433 gotten our trap. Simply continue. */
4434 resume (currently_stepping (ecs->event_thread),
4435 ecs->event_thread->stop_signal);
4436 }
4437 else
4438 {
4439 /* Either the trap was not expected, but we are continuing
4440 anyway (the user asked that this signal be passed to the
4441 child)
4442 -- or --
4443 The signal was SIGTRAP, e.g. it was our signal, but we
4444 decided we should resume from it.
4445
4446 We're going to run this baby now!
4447
4448 Note that insert_breakpoints won't try to re-insert
4449 already inserted breakpoints. Therefore, we don't
4450 care if breakpoints were already inserted, or not. */
4451
4452 if (ecs->event_thread->stepping_over_breakpoint)
4453 {
4454 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
4455 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
4456 /* Since we can't do a displaced step, we have to remove
4457 the breakpoint while we step it. To keep things
4458 simple, we remove them all. */
4459 remove_breakpoints ();
4460 }
4461 else
4462 {
4463 struct gdb_exception e;
4464 /* Stop stepping when inserting breakpoints
4465 has failed. */
4466 TRY_CATCH (e, RETURN_MASK_ERROR)
4467 {
4468 insert_breakpoints ();
4469 }
4470 if (e.reason < 0)
4471 {
4472 stop_stepping (ecs);
4473 return;
4474 }
4475 }
4476
4477 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
4478
4479 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
4480 specifies that such a signal should be delivered to the
4481 target program).
4482
4483 Typically, this would occure when a user is debugging a
4484 target monitor on a simulator: the target monitor sets a
4485 breakpoint; the simulator encounters this break-point and
4486 halts the simulation handing control to GDB; GDB, noteing
4487 that the break-point isn't valid, returns control back to the
4488 simulator; the simulator then delivers the hardware
4489 equivalent of a SIGNAL_TRAP to the program being debugged. */
4490
4491 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4492 && !signal_program[ecs->event_thread->stop_signal])
4493 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
4494
4495 resume (currently_stepping (ecs->event_thread),
4496 ecs->event_thread->stop_signal);
4497 }
4498
4499 prepare_to_wait (ecs);
4500 }
4501
4502 /* This function normally comes after a resume, before
4503 handle_inferior_event exits. It takes care of any last bits of
4504 housekeeping, and sets the all-important wait_some_more flag. */
4505
4506 static void
4507 prepare_to_wait (struct execution_control_state *ecs)
4508 {
4509 if (debug_infrun)
4510 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
4511
4512 /* This is the old end of the while loop. Let everybody know we
4513 want to wait for the inferior some more and get called again
4514 soon. */
4515 ecs->wait_some_more = 1;
4516 }
4517
4518 /* Print why the inferior has stopped. We always print something when
4519 the inferior exits, or receives a signal. The rest of the cases are
4520 dealt with later on in normal_stop() and print_it_typical(). Ideally
4521 there should be a call to this function from handle_inferior_event()
4522 each time stop_stepping() is called.*/
4523 static void
4524 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4525 {
4526 switch (stop_reason)
4527 {
4528 case END_STEPPING_RANGE:
4529 /* We are done with a step/next/si/ni command. */
4530 /* For now print nothing. */
4531 /* Print a message only if not in the middle of doing a "step n"
4532 operation for n > 1 */
4533 if (!inferior_thread ()->step_multi
4534 || !inferior_thread ()->stop_step)
4535 if (ui_out_is_mi_like_p (uiout))
4536 ui_out_field_string
4537 (uiout, "reason",
4538 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
4539 break;
4540 case SIGNAL_EXITED:
4541 /* The inferior was terminated by a signal. */
4542 annotate_signalled ();
4543 if (ui_out_is_mi_like_p (uiout))
4544 ui_out_field_string
4545 (uiout, "reason",
4546 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
4547 ui_out_text (uiout, "\nProgram terminated with signal ");
4548 annotate_signal_name ();
4549 ui_out_field_string (uiout, "signal-name",
4550 target_signal_to_name (stop_info));
4551 annotate_signal_name_end ();
4552 ui_out_text (uiout, ", ");
4553 annotate_signal_string ();
4554 ui_out_field_string (uiout, "signal-meaning",
4555 target_signal_to_string (stop_info));
4556 annotate_signal_string_end ();
4557 ui_out_text (uiout, ".\n");
4558 ui_out_text (uiout, "The program no longer exists.\n");
4559 break;
4560 case EXITED:
4561 /* The inferior program is finished. */
4562 annotate_exited (stop_info);
4563 if (stop_info)
4564 {
4565 if (ui_out_is_mi_like_p (uiout))
4566 ui_out_field_string (uiout, "reason",
4567 async_reason_lookup (EXEC_ASYNC_EXITED));
4568 ui_out_text (uiout, "\nProgram exited with code ");
4569 ui_out_field_fmt (uiout, "exit-code", "0%o",
4570 (unsigned int) stop_info);
4571 ui_out_text (uiout, ".\n");
4572 }
4573 else
4574 {
4575 if (ui_out_is_mi_like_p (uiout))
4576 ui_out_field_string
4577 (uiout, "reason",
4578 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
4579 ui_out_text (uiout, "\nProgram exited normally.\n");
4580 }
4581 /* Support the --return-child-result option. */
4582 return_child_result_value = stop_info;
4583 break;
4584 case SIGNAL_RECEIVED:
4585 /* Signal received. The signal table tells us to print about
4586 it. */
4587 annotate_signal ();
4588
4589 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4590 {
4591 struct thread_info *t = inferior_thread ();
4592
4593 ui_out_text (uiout, "\n[");
4594 ui_out_field_string (uiout, "thread-name",
4595 target_pid_to_str (t->ptid));
4596 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4597 ui_out_text (uiout, " stopped");
4598 }
4599 else
4600 {
4601 ui_out_text (uiout, "\nProgram received signal ");
4602 annotate_signal_name ();
4603 if (ui_out_is_mi_like_p (uiout))
4604 ui_out_field_string
4605 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4606 ui_out_field_string (uiout, "signal-name",
4607 target_signal_to_name (stop_info));
4608 annotate_signal_name_end ();
4609 ui_out_text (uiout, ", ");
4610 annotate_signal_string ();
4611 ui_out_field_string (uiout, "signal-meaning",
4612 target_signal_to_string (stop_info));
4613 annotate_signal_string_end ();
4614 }
4615 ui_out_text (uiout, ".\n");
4616 break;
4617 case NO_HISTORY:
4618 /* Reverse execution: target ran out of history info. */
4619 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4620 break;
4621 default:
4622 internal_error (__FILE__, __LINE__,
4623 _("print_stop_reason: unrecognized enum value"));
4624 break;
4625 }
4626 }
4627 \f
4628
4629 /* Here to return control to GDB when the inferior stops for real.
4630 Print appropriate messages, remove breakpoints, give terminal our modes.
4631
4632 STOP_PRINT_FRAME nonzero means print the executing frame
4633 (pc, function, args, file, line number and line text).
4634 BREAKPOINTS_FAILED nonzero means stop was due to error
4635 attempting to insert breakpoints. */
4636
4637 void
4638 normal_stop (void)
4639 {
4640 struct target_waitstatus last;
4641 ptid_t last_ptid;
4642 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4643
4644 get_last_target_status (&last_ptid, &last);
4645
4646 /* If an exception is thrown from this point on, make sure to
4647 propagate GDB's knowledge of the executing state to the
4648 frontend/user running state. A QUIT is an easy exception to see
4649 here, so do this before any filtered output. */
4650 if (!non_stop)
4651 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
4652 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4653 && last.kind != TARGET_WAITKIND_EXITED)
4654 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
4655
4656 /* In non-stop mode, we don't want GDB to switch threads behind the
4657 user's back, to avoid races where the user is typing a command to
4658 apply to thread x, but GDB switches to thread y before the user
4659 finishes entering the command. */
4660
4661 /* As with the notification of thread events, we want to delay
4662 notifying the user that we've switched thread context until
4663 the inferior actually stops.
4664
4665 There's no point in saying anything if the inferior has exited.
4666 Note that SIGNALLED here means "exited with a signal", not
4667 "received a signal". */
4668 if (!non_stop
4669 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
4670 && target_has_execution
4671 && last.kind != TARGET_WAITKIND_SIGNALLED
4672 && last.kind != TARGET_WAITKIND_EXITED)
4673 {
4674 target_terminal_ours_for_output ();
4675 printf_filtered (_("[Switching to %s]\n"),
4676 target_pid_to_str (inferior_ptid));
4677 annotate_thread_changed ();
4678 previous_inferior_ptid = inferior_ptid;
4679 }
4680
4681 if (!breakpoints_always_inserted_mode () && target_has_execution)
4682 {
4683 if (remove_breakpoints ())
4684 {
4685 target_terminal_ours_for_output ();
4686 printf_filtered (_("\
4687 Cannot remove breakpoints because program is no longer writable.\n\
4688 Further execution is probably impossible.\n"));
4689 }
4690 }
4691
4692 /* If an auto-display called a function and that got a signal,
4693 delete that auto-display to avoid an infinite recursion. */
4694
4695 if (stopped_by_random_signal)
4696 disable_current_display ();
4697
4698 /* Don't print a message if in the middle of doing a "step n"
4699 operation for n > 1 */
4700 if (target_has_execution
4701 && last.kind != TARGET_WAITKIND_SIGNALLED
4702 && last.kind != TARGET_WAITKIND_EXITED
4703 && inferior_thread ()->step_multi
4704 && inferior_thread ()->stop_step)
4705 goto done;
4706
4707 target_terminal_ours ();
4708
4709 /* Set the current source location. This will also happen if we
4710 display the frame below, but the current SAL will be incorrect
4711 during a user hook-stop function. */
4712 if (has_stack_frames () && !stop_stack_dummy)
4713 set_current_sal_from_frame (get_current_frame (), 1);
4714
4715 /* Let the user/frontend see the threads as stopped. */
4716 do_cleanups (old_chain);
4717
4718 /* Look up the hook_stop and run it (CLI internally handles problem
4719 of stop_command's pre-hook not existing). */
4720 if (stop_command)
4721 catch_errors (hook_stop_stub, stop_command,
4722 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4723
4724 if (!has_stack_frames ())
4725 goto done;
4726
4727 if (last.kind == TARGET_WAITKIND_SIGNALLED
4728 || last.kind == TARGET_WAITKIND_EXITED)
4729 goto done;
4730
4731 /* Select innermost stack frame - i.e., current frame is frame 0,
4732 and current location is based on that.
4733 Don't do this on return from a stack dummy routine,
4734 or if the program has exited. */
4735
4736 if (!stop_stack_dummy)
4737 {
4738 select_frame (get_current_frame ());
4739
4740 /* Print current location without a level number, if
4741 we have changed functions or hit a breakpoint.
4742 Print source line if we have one.
4743 bpstat_print() contains the logic deciding in detail
4744 what to print, based on the event(s) that just occurred. */
4745
4746 /* If --batch-silent is enabled then there's no need to print the current
4747 source location, and to try risks causing an error message about
4748 missing source files. */
4749 if (stop_print_frame && !batch_silent)
4750 {
4751 int bpstat_ret;
4752 int source_flag;
4753 int do_frame_printing = 1;
4754 struct thread_info *tp = inferior_thread ();
4755
4756 bpstat_ret = bpstat_print (tp->stop_bpstat);
4757 switch (bpstat_ret)
4758 {
4759 case PRINT_UNKNOWN:
4760 /* If we had hit a shared library event breakpoint,
4761 bpstat_print would print out this message. If we hit
4762 an OS-level shared library event, do the same
4763 thing. */
4764 if (last.kind == TARGET_WAITKIND_LOADED)
4765 {
4766 printf_filtered (_("Stopped due to shared library event\n"));
4767 source_flag = SRC_LINE; /* something bogus */
4768 do_frame_printing = 0;
4769 break;
4770 }
4771
4772 /* FIXME: cagney/2002-12-01: Given that a frame ID does
4773 (or should) carry around the function and does (or
4774 should) use that when doing a frame comparison. */
4775 if (tp->stop_step
4776 && frame_id_eq (tp->step_frame_id,
4777 get_frame_id (get_current_frame ()))
4778 && step_start_function == find_pc_function (stop_pc))
4779 source_flag = SRC_LINE; /* finished step, just print source line */
4780 else
4781 source_flag = SRC_AND_LOC; /* print location and source line */
4782 break;
4783 case PRINT_SRC_AND_LOC:
4784 source_flag = SRC_AND_LOC; /* print location and source line */
4785 break;
4786 case PRINT_SRC_ONLY:
4787 source_flag = SRC_LINE;
4788 break;
4789 case PRINT_NOTHING:
4790 source_flag = SRC_LINE; /* something bogus */
4791 do_frame_printing = 0;
4792 break;
4793 default:
4794 internal_error (__FILE__, __LINE__, _("Unknown value."));
4795 }
4796
4797 /* The behavior of this routine with respect to the source
4798 flag is:
4799 SRC_LINE: Print only source line
4800 LOCATION: Print only location
4801 SRC_AND_LOC: Print location and source line */
4802 if (do_frame_printing)
4803 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
4804
4805 /* Display the auto-display expressions. */
4806 do_displays ();
4807 }
4808 }
4809
4810 /* Save the function value return registers, if we care.
4811 We might be about to restore their previous contents. */
4812 if (inferior_thread ()->proceed_to_finish)
4813 {
4814 /* This should not be necessary. */
4815 if (stop_registers)
4816 regcache_xfree (stop_registers);
4817
4818 /* NB: The copy goes through to the target picking up the value of
4819 all the registers. */
4820 stop_registers = regcache_dup (get_current_regcache ());
4821 }
4822
4823 if (stop_stack_dummy)
4824 {
4825 /* Pop the empty frame that contains the stack dummy.
4826 This also restores inferior state prior to the call
4827 (struct inferior_thread_state). */
4828 struct frame_info *frame = get_current_frame ();
4829 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
4830 frame_pop (frame);
4831 /* frame_pop() calls reinit_frame_cache as the last thing it does
4832 which means there's currently no selected frame. We don't need
4833 to re-establish a selected frame if the dummy call returns normally,
4834 that will be done by restore_inferior_status. However, we do have
4835 to handle the case where the dummy call is returning after being
4836 stopped (e.g. the dummy call previously hit a breakpoint). We
4837 can't know which case we have so just always re-establish a
4838 selected frame here. */
4839 select_frame (get_current_frame ());
4840 }
4841
4842 done:
4843 annotate_stopped ();
4844
4845 /* Suppress the stop observer if we're in the middle of:
4846
4847 - a step n (n > 1), as there still more steps to be done.
4848
4849 - a "finish" command, as the observer will be called in
4850 finish_command_continuation, so it can include the inferior
4851 function's return value.
4852
4853 - calling an inferior function, as we pretend we inferior didn't
4854 run at all. The return value of the call is handled by the
4855 expression evaluator, through call_function_by_hand. */
4856
4857 if (!target_has_execution
4858 || last.kind == TARGET_WAITKIND_SIGNALLED
4859 || last.kind == TARGET_WAITKIND_EXITED
4860 || (!inferior_thread ()->step_multi
4861 && !(inferior_thread ()->stop_bpstat
4862 && inferior_thread ()->proceed_to_finish)
4863 && !inferior_thread ()->in_infcall))
4864 {
4865 if (!ptid_equal (inferior_ptid, null_ptid))
4866 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
4867 stop_print_frame);
4868 else
4869 observer_notify_normal_stop (NULL, stop_print_frame);
4870 }
4871
4872 if (target_has_execution)
4873 {
4874 if (last.kind != TARGET_WAITKIND_SIGNALLED
4875 && last.kind != TARGET_WAITKIND_EXITED)
4876 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4877 Delete any breakpoint that is to be deleted at the next stop. */
4878 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
4879 }
4880 }
4881
4882 static int
4883 hook_stop_stub (void *cmd)
4884 {
4885 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
4886 return (0);
4887 }
4888 \f
4889 int
4890 signal_stop_state (int signo)
4891 {
4892 return signal_stop[signo];
4893 }
4894
4895 int
4896 signal_print_state (int signo)
4897 {
4898 return signal_print[signo];
4899 }
4900
4901 int
4902 signal_pass_state (int signo)
4903 {
4904 return signal_program[signo];
4905 }
4906
4907 int
4908 signal_stop_update (int signo, int state)
4909 {
4910 int ret = signal_stop[signo];
4911 signal_stop[signo] = state;
4912 return ret;
4913 }
4914
4915 int
4916 signal_print_update (int signo, int state)
4917 {
4918 int ret = signal_print[signo];
4919 signal_print[signo] = state;
4920 return ret;
4921 }
4922
4923 int
4924 signal_pass_update (int signo, int state)
4925 {
4926 int ret = signal_program[signo];
4927 signal_program[signo] = state;
4928 return ret;
4929 }
4930
4931 static void
4932 sig_print_header (void)
4933 {
4934 printf_filtered (_("\
4935 Signal Stop\tPrint\tPass to program\tDescription\n"));
4936 }
4937
4938 static void
4939 sig_print_info (enum target_signal oursig)
4940 {
4941 const char *name = target_signal_to_name (oursig);
4942 int name_padding = 13 - strlen (name);
4943
4944 if (name_padding <= 0)
4945 name_padding = 0;
4946
4947 printf_filtered ("%s", name);
4948 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4949 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4950 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4951 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4952 printf_filtered ("%s\n", target_signal_to_string (oursig));
4953 }
4954
4955 /* Specify how various signals in the inferior should be handled. */
4956
4957 static void
4958 handle_command (char *args, int from_tty)
4959 {
4960 char **argv;
4961 int digits, wordlen;
4962 int sigfirst, signum, siglast;
4963 enum target_signal oursig;
4964 int allsigs;
4965 int nsigs;
4966 unsigned char *sigs;
4967 struct cleanup *old_chain;
4968
4969 if (args == NULL)
4970 {
4971 error_no_arg (_("signal to handle"));
4972 }
4973
4974 /* Allocate and zero an array of flags for which signals to handle. */
4975
4976 nsigs = (int) TARGET_SIGNAL_LAST;
4977 sigs = (unsigned char *) alloca (nsigs);
4978 memset (sigs, 0, nsigs);
4979
4980 /* Break the command line up into args. */
4981
4982 argv = gdb_buildargv (args);
4983 old_chain = make_cleanup_freeargv (argv);
4984
4985 /* Walk through the args, looking for signal oursigs, signal names, and
4986 actions. Signal numbers and signal names may be interspersed with
4987 actions, with the actions being performed for all signals cumulatively
4988 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4989
4990 while (*argv != NULL)
4991 {
4992 wordlen = strlen (*argv);
4993 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4994 {;
4995 }
4996 allsigs = 0;
4997 sigfirst = siglast = -1;
4998
4999 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
5000 {
5001 /* Apply action to all signals except those used by the
5002 debugger. Silently skip those. */
5003 allsigs = 1;
5004 sigfirst = 0;
5005 siglast = nsigs - 1;
5006 }
5007 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
5008 {
5009 SET_SIGS (nsigs, sigs, signal_stop);
5010 SET_SIGS (nsigs, sigs, signal_print);
5011 }
5012 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
5013 {
5014 UNSET_SIGS (nsigs, sigs, signal_program);
5015 }
5016 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
5017 {
5018 SET_SIGS (nsigs, sigs, signal_print);
5019 }
5020 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
5021 {
5022 SET_SIGS (nsigs, sigs, signal_program);
5023 }
5024 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
5025 {
5026 UNSET_SIGS (nsigs, sigs, signal_stop);
5027 }
5028 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
5029 {
5030 SET_SIGS (nsigs, sigs, signal_program);
5031 }
5032 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5033 {
5034 UNSET_SIGS (nsigs, sigs, signal_print);
5035 UNSET_SIGS (nsigs, sigs, signal_stop);
5036 }
5037 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5038 {
5039 UNSET_SIGS (nsigs, sigs, signal_program);
5040 }
5041 else if (digits > 0)
5042 {
5043 /* It is numeric. The numeric signal refers to our own
5044 internal signal numbering from target.h, not to host/target
5045 signal number. This is a feature; users really should be
5046 using symbolic names anyway, and the common ones like
5047 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
5048
5049 sigfirst = siglast = (int)
5050 target_signal_from_command (atoi (*argv));
5051 if ((*argv)[digits] == '-')
5052 {
5053 siglast = (int)
5054 target_signal_from_command (atoi ((*argv) + digits + 1));
5055 }
5056 if (sigfirst > siglast)
5057 {
5058 /* Bet he didn't figure we'd think of this case... */
5059 signum = sigfirst;
5060 sigfirst = siglast;
5061 siglast = signum;
5062 }
5063 }
5064 else
5065 {
5066 oursig = target_signal_from_name (*argv);
5067 if (oursig != TARGET_SIGNAL_UNKNOWN)
5068 {
5069 sigfirst = siglast = (int) oursig;
5070 }
5071 else
5072 {
5073 /* Not a number and not a recognized flag word => complain. */
5074 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
5075 }
5076 }
5077
5078 /* If any signal numbers or symbol names were found, set flags for
5079 which signals to apply actions to. */
5080
5081 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
5082 {
5083 switch ((enum target_signal) signum)
5084 {
5085 case TARGET_SIGNAL_TRAP:
5086 case TARGET_SIGNAL_INT:
5087 if (!allsigs && !sigs[signum])
5088 {
5089 if (query (_("%s is used by the debugger.\n\
5090 Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
5091 {
5092 sigs[signum] = 1;
5093 }
5094 else
5095 {
5096 printf_unfiltered (_("Not confirmed, unchanged.\n"));
5097 gdb_flush (gdb_stdout);
5098 }
5099 }
5100 break;
5101 case TARGET_SIGNAL_0:
5102 case TARGET_SIGNAL_DEFAULT:
5103 case TARGET_SIGNAL_UNKNOWN:
5104 /* Make sure that "all" doesn't print these. */
5105 break;
5106 default:
5107 sigs[signum] = 1;
5108 break;
5109 }
5110 }
5111
5112 argv++;
5113 }
5114
5115 for (signum = 0; signum < nsigs; signum++)
5116 if (sigs[signum])
5117 {
5118 target_notice_signals (inferior_ptid);
5119
5120 if (from_tty)
5121 {
5122 /* Show the results. */
5123 sig_print_header ();
5124 for (; signum < nsigs; signum++)
5125 if (sigs[signum])
5126 sig_print_info (signum);
5127 }
5128
5129 break;
5130 }
5131
5132 do_cleanups (old_chain);
5133 }
5134
5135 static void
5136 xdb_handle_command (char *args, int from_tty)
5137 {
5138 char **argv;
5139 struct cleanup *old_chain;
5140
5141 if (args == NULL)
5142 error_no_arg (_("xdb command"));
5143
5144 /* Break the command line up into args. */
5145
5146 argv = gdb_buildargv (args);
5147 old_chain = make_cleanup_freeargv (argv);
5148 if (argv[1] != (char *) NULL)
5149 {
5150 char *argBuf;
5151 int bufLen;
5152
5153 bufLen = strlen (argv[0]) + 20;
5154 argBuf = (char *) xmalloc (bufLen);
5155 if (argBuf)
5156 {
5157 int validFlag = 1;
5158 enum target_signal oursig;
5159
5160 oursig = target_signal_from_name (argv[0]);
5161 memset (argBuf, 0, bufLen);
5162 if (strcmp (argv[1], "Q") == 0)
5163 sprintf (argBuf, "%s %s", argv[0], "noprint");
5164 else
5165 {
5166 if (strcmp (argv[1], "s") == 0)
5167 {
5168 if (!signal_stop[oursig])
5169 sprintf (argBuf, "%s %s", argv[0], "stop");
5170 else
5171 sprintf (argBuf, "%s %s", argv[0], "nostop");
5172 }
5173 else if (strcmp (argv[1], "i") == 0)
5174 {
5175 if (!signal_program[oursig])
5176 sprintf (argBuf, "%s %s", argv[0], "pass");
5177 else
5178 sprintf (argBuf, "%s %s", argv[0], "nopass");
5179 }
5180 else if (strcmp (argv[1], "r") == 0)
5181 {
5182 if (!signal_print[oursig])
5183 sprintf (argBuf, "%s %s", argv[0], "print");
5184 else
5185 sprintf (argBuf, "%s %s", argv[0], "noprint");
5186 }
5187 else
5188 validFlag = 0;
5189 }
5190 if (validFlag)
5191 handle_command (argBuf, from_tty);
5192 else
5193 printf_filtered (_("Invalid signal handling flag.\n"));
5194 if (argBuf)
5195 xfree (argBuf);
5196 }
5197 }
5198 do_cleanups (old_chain);
5199 }
5200
5201 /* Print current contents of the tables set by the handle command.
5202 It is possible we should just be printing signals actually used
5203 by the current target (but for things to work right when switching
5204 targets, all signals should be in the signal tables). */
5205
5206 static void
5207 signals_info (char *signum_exp, int from_tty)
5208 {
5209 enum target_signal oursig;
5210 sig_print_header ();
5211
5212 if (signum_exp)
5213 {
5214 /* First see if this is a symbol name. */
5215 oursig = target_signal_from_name (signum_exp);
5216 if (oursig == TARGET_SIGNAL_UNKNOWN)
5217 {
5218 /* No, try numeric. */
5219 oursig =
5220 target_signal_from_command (parse_and_eval_long (signum_exp));
5221 }
5222 sig_print_info (oursig);
5223 return;
5224 }
5225
5226 printf_filtered ("\n");
5227 /* These ugly casts brought to you by the native VAX compiler. */
5228 for (oursig = TARGET_SIGNAL_FIRST;
5229 (int) oursig < (int) TARGET_SIGNAL_LAST;
5230 oursig = (enum target_signal) ((int) oursig + 1))
5231 {
5232 QUIT;
5233
5234 if (oursig != TARGET_SIGNAL_UNKNOWN
5235 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
5236 sig_print_info (oursig);
5237 }
5238
5239 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
5240 }
5241
5242 /* The $_siginfo convenience variable is a bit special. We don't know
5243 for sure the type of the value until we actually have a chance to
5244 fetch the data. The type can change depending on gdbarch, so it it
5245 also dependent on which thread you have selected.
5246
5247 1. making $_siginfo be an internalvar that creates a new value on
5248 access.
5249
5250 2. making the value of $_siginfo be an lval_computed value. */
5251
5252 /* This function implements the lval_computed support for reading a
5253 $_siginfo value. */
5254
5255 static void
5256 siginfo_value_read (struct value *v)
5257 {
5258 LONGEST transferred;
5259
5260 transferred =
5261 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5262 NULL,
5263 value_contents_all_raw (v),
5264 value_offset (v),
5265 TYPE_LENGTH (value_type (v)));
5266
5267 if (transferred != TYPE_LENGTH (value_type (v)))
5268 error (_("Unable to read siginfo"));
5269 }
5270
5271 /* This function implements the lval_computed support for writing a
5272 $_siginfo value. */
5273
5274 static void
5275 siginfo_value_write (struct value *v, struct value *fromval)
5276 {
5277 LONGEST transferred;
5278
5279 transferred = target_write (&current_target,
5280 TARGET_OBJECT_SIGNAL_INFO,
5281 NULL,
5282 value_contents_all_raw (fromval),
5283 value_offset (v),
5284 TYPE_LENGTH (value_type (fromval)));
5285
5286 if (transferred != TYPE_LENGTH (value_type (fromval)))
5287 error (_("Unable to write siginfo"));
5288 }
5289
5290 static struct lval_funcs siginfo_value_funcs =
5291 {
5292 siginfo_value_read,
5293 siginfo_value_write
5294 };
5295
5296 /* Return a new value with the correct type for the siginfo object of
5297 the current thread using architecture GDBARCH. Return a void value
5298 if there's no object available. */
5299
5300 static struct value *
5301 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
5302 {
5303 if (target_has_stack
5304 && !ptid_equal (inferior_ptid, null_ptid)
5305 && gdbarch_get_siginfo_type_p (gdbarch))
5306 {
5307 struct type *type = gdbarch_get_siginfo_type (gdbarch);
5308 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
5309 }
5310
5311 return allocate_value (builtin_type (gdbarch)->builtin_void);
5312 }
5313
5314 \f
5315 /* Inferior thread state.
5316 These are details related to the inferior itself, and don't include
5317 things like what frame the user had selected or what gdb was doing
5318 with the target at the time.
5319 For inferior function calls these are things we want to restore
5320 regardless of whether the function call successfully completes
5321 or the dummy frame has to be manually popped. */
5322
5323 struct inferior_thread_state
5324 {
5325 enum target_signal stop_signal;
5326 CORE_ADDR stop_pc;
5327 struct regcache *registers;
5328 };
5329
5330 struct inferior_thread_state *
5331 save_inferior_thread_state (void)
5332 {
5333 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5334 struct thread_info *tp = inferior_thread ();
5335
5336 inf_state->stop_signal = tp->stop_signal;
5337 inf_state->stop_pc = stop_pc;
5338
5339 inf_state->registers = regcache_dup (get_current_regcache ());
5340
5341 return inf_state;
5342 }
5343
5344 /* Restore inferior session state to INF_STATE. */
5345
5346 void
5347 restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5348 {
5349 struct thread_info *tp = inferior_thread ();
5350
5351 tp->stop_signal = inf_state->stop_signal;
5352 stop_pc = inf_state->stop_pc;
5353
5354 /* The inferior can be gone if the user types "print exit(0)"
5355 (and perhaps other times). */
5356 if (target_has_execution)
5357 /* NB: The register write goes through to the target. */
5358 regcache_cpy (get_current_regcache (), inf_state->registers);
5359 regcache_xfree (inf_state->registers);
5360 xfree (inf_state);
5361 }
5362
5363 static void
5364 do_restore_inferior_thread_state_cleanup (void *state)
5365 {
5366 restore_inferior_thread_state (state);
5367 }
5368
5369 struct cleanup *
5370 make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5371 {
5372 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
5373 }
5374
5375 void
5376 discard_inferior_thread_state (struct inferior_thread_state *inf_state)
5377 {
5378 regcache_xfree (inf_state->registers);
5379 xfree (inf_state);
5380 }
5381
5382 struct regcache *
5383 get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
5384 {
5385 return inf_state->registers;
5386 }
5387
5388 /* Session related state for inferior function calls.
5389 These are the additional bits of state that need to be restored
5390 when an inferior function call successfully completes. */
5391
5392 struct inferior_status
5393 {
5394 bpstat stop_bpstat;
5395 int stop_step;
5396 int stop_stack_dummy;
5397 int stopped_by_random_signal;
5398 int stepping_over_breakpoint;
5399 CORE_ADDR step_range_start;
5400 CORE_ADDR step_range_end;
5401 struct frame_id step_frame_id;
5402 struct frame_id step_stack_frame_id;
5403 enum step_over_calls_kind step_over_calls;
5404 CORE_ADDR step_resume_break_address;
5405 int stop_after_trap;
5406 int stop_soon;
5407
5408 /* ID if the selected frame when the inferior function call was made. */
5409 struct frame_id selected_frame_id;
5410
5411 int proceed_to_finish;
5412 int in_infcall;
5413 };
5414
5415 /* Save all of the information associated with the inferior<==>gdb
5416 connection. */
5417
5418 struct inferior_status *
5419 save_inferior_status (void)
5420 {
5421 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
5422 struct thread_info *tp = inferior_thread ();
5423 struct inferior *inf = current_inferior ();
5424
5425 inf_status->stop_step = tp->stop_step;
5426 inf_status->stop_stack_dummy = stop_stack_dummy;
5427 inf_status->stopped_by_random_signal = stopped_by_random_signal;
5428 inf_status->stepping_over_breakpoint = tp->trap_expected;
5429 inf_status->step_range_start = tp->step_range_start;
5430 inf_status->step_range_end = tp->step_range_end;
5431 inf_status->step_frame_id = tp->step_frame_id;
5432 inf_status->step_stack_frame_id = tp->step_stack_frame_id;
5433 inf_status->step_over_calls = tp->step_over_calls;
5434 inf_status->stop_after_trap = stop_after_trap;
5435 inf_status->stop_soon = inf->stop_soon;
5436 /* Save original bpstat chain here; replace it with copy of chain.
5437 If caller's caller is walking the chain, they'll be happier if we
5438 hand them back the original chain when restore_inferior_status is
5439 called. */
5440 inf_status->stop_bpstat = tp->stop_bpstat;
5441 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
5442 inf_status->proceed_to_finish = tp->proceed_to_finish;
5443 inf_status->in_infcall = tp->in_infcall;
5444
5445 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
5446
5447 return inf_status;
5448 }
5449
5450 static int
5451 restore_selected_frame (void *args)
5452 {
5453 struct frame_id *fid = (struct frame_id *) args;
5454 struct frame_info *frame;
5455
5456 frame = frame_find_by_id (*fid);
5457
5458 /* If inf_status->selected_frame_id is NULL, there was no previously
5459 selected frame. */
5460 if (frame == NULL)
5461 {
5462 warning (_("Unable to restore previously selected frame."));
5463 return 0;
5464 }
5465
5466 select_frame (frame);
5467
5468 return (1);
5469 }
5470
5471 /* Restore inferior session state to INF_STATUS. */
5472
5473 void
5474 restore_inferior_status (struct inferior_status *inf_status)
5475 {
5476 struct thread_info *tp = inferior_thread ();
5477 struct inferior *inf = current_inferior ();
5478
5479 tp->stop_step = inf_status->stop_step;
5480 stop_stack_dummy = inf_status->stop_stack_dummy;
5481 stopped_by_random_signal = inf_status->stopped_by_random_signal;
5482 tp->trap_expected = inf_status->stepping_over_breakpoint;
5483 tp->step_range_start = inf_status->step_range_start;
5484 tp->step_range_end = inf_status->step_range_end;
5485 tp->step_frame_id = inf_status->step_frame_id;
5486 tp->step_stack_frame_id = inf_status->step_stack_frame_id;
5487 tp->step_over_calls = inf_status->step_over_calls;
5488 stop_after_trap = inf_status->stop_after_trap;
5489 inf->stop_soon = inf_status->stop_soon;
5490 bpstat_clear (&tp->stop_bpstat);
5491 tp->stop_bpstat = inf_status->stop_bpstat;
5492 inf_status->stop_bpstat = NULL;
5493 tp->proceed_to_finish = inf_status->proceed_to_finish;
5494 tp->in_infcall = inf_status->in_infcall;
5495
5496 if (target_has_stack)
5497 {
5498 /* The point of catch_errors is that if the stack is clobbered,
5499 walking the stack might encounter a garbage pointer and
5500 error() trying to dereference it. */
5501 if (catch_errors
5502 (restore_selected_frame, &inf_status->selected_frame_id,
5503 "Unable to restore previously selected frame:\n",
5504 RETURN_MASK_ERROR) == 0)
5505 /* Error in restoring the selected frame. Select the innermost
5506 frame. */
5507 select_frame (get_current_frame ());
5508 }
5509
5510 xfree (inf_status);
5511 }
5512
5513 static void
5514 do_restore_inferior_status_cleanup (void *sts)
5515 {
5516 restore_inferior_status (sts);
5517 }
5518
5519 struct cleanup *
5520 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5521 {
5522 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5523 }
5524
5525 void
5526 discard_inferior_status (struct inferior_status *inf_status)
5527 {
5528 /* See save_inferior_status for info on stop_bpstat. */
5529 bpstat_clear (&inf_status->stop_bpstat);
5530 xfree (inf_status);
5531 }
5532 \f
5533 int
5534 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
5535 {
5536 struct target_waitstatus last;
5537 ptid_t last_ptid;
5538
5539 get_last_target_status (&last_ptid, &last);
5540
5541 if (last.kind != TARGET_WAITKIND_FORKED)
5542 return 0;
5543
5544 if (!ptid_equal (last_ptid, pid))
5545 return 0;
5546
5547 *child_pid = last.value.related_pid;
5548 return 1;
5549 }
5550
5551 int
5552 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
5553 {
5554 struct target_waitstatus last;
5555 ptid_t last_ptid;
5556
5557 get_last_target_status (&last_ptid, &last);
5558
5559 if (last.kind != TARGET_WAITKIND_VFORKED)
5560 return 0;
5561
5562 if (!ptid_equal (last_ptid, pid))
5563 return 0;
5564
5565 *child_pid = last.value.related_pid;
5566 return 1;
5567 }
5568
5569 int
5570 inferior_has_execd (ptid_t pid, char **execd_pathname)
5571 {
5572 struct target_waitstatus last;
5573 ptid_t last_ptid;
5574
5575 get_last_target_status (&last_ptid, &last);
5576
5577 if (last.kind != TARGET_WAITKIND_EXECD)
5578 return 0;
5579
5580 if (!ptid_equal (last_ptid, pid))
5581 return 0;
5582
5583 *execd_pathname = xstrdup (last.value.execd_pathname);
5584 return 1;
5585 }
5586
5587 /* Oft used ptids */
5588 ptid_t null_ptid;
5589 ptid_t minus_one_ptid;
5590
5591 /* Create a ptid given the necessary PID, LWP, and TID components. */
5592
5593 ptid_t
5594 ptid_build (int pid, long lwp, long tid)
5595 {
5596 ptid_t ptid;
5597
5598 ptid.pid = pid;
5599 ptid.lwp = lwp;
5600 ptid.tid = tid;
5601 return ptid;
5602 }
5603
5604 /* Create a ptid from just a pid. */
5605
5606 ptid_t
5607 pid_to_ptid (int pid)
5608 {
5609 return ptid_build (pid, 0, 0);
5610 }
5611
5612 /* Fetch the pid (process id) component from a ptid. */
5613
5614 int
5615 ptid_get_pid (ptid_t ptid)
5616 {
5617 return ptid.pid;
5618 }
5619
5620 /* Fetch the lwp (lightweight process) component from a ptid. */
5621
5622 long
5623 ptid_get_lwp (ptid_t ptid)
5624 {
5625 return ptid.lwp;
5626 }
5627
5628 /* Fetch the tid (thread id) component from a ptid. */
5629
5630 long
5631 ptid_get_tid (ptid_t ptid)
5632 {
5633 return ptid.tid;
5634 }
5635
5636 /* ptid_equal() is used to test equality of two ptids. */
5637
5638 int
5639 ptid_equal (ptid_t ptid1, ptid_t ptid2)
5640 {
5641 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
5642 && ptid1.tid == ptid2.tid);
5643 }
5644
5645 /* Returns true if PTID represents a process. */
5646
5647 int
5648 ptid_is_pid (ptid_t ptid)
5649 {
5650 if (ptid_equal (minus_one_ptid, ptid))
5651 return 0;
5652 if (ptid_equal (null_ptid, ptid))
5653 return 0;
5654
5655 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5656 }
5657
5658 /* restore_inferior_ptid() will be used by the cleanup machinery
5659 to restore the inferior_ptid value saved in a call to
5660 save_inferior_ptid(). */
5661
5662 static void
5663 restore_inferior_ptid (void *arg)
5664 {
5665 ptid_t *saved_ptid_ptr = arg;
5666 inferior_ptid = *saved_ptid_ptr;
5667 xfree (arg);
5668 }
5669
5670 /* Save the value of inferior_ptid so that it may be restored by a
5671 later call to do_cleanups(). Returns the struct cleanup pointer
5672 needed for later doing the cleanup. */
5673
5674 struct cleanup *
5675 save_inferior_ptid (void)
5676 {
5677 ptid_t *saved_ptid_ptr;
5678
5679 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5680 *saved_ptid_ptr = inferior_ptid;
5681 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5682 }
5683 \f
5684
5685 /* User interface for reverse debugging:
5686 Set exec-direction / show exec-direction commands
5687 (returns error unless target implements to_set_exec_direction method). */
5688
5689 enum exec_direction_kind execution_direction = EXEC_FORWARD;
5690 static const char exec_forward[] = "forward";
5691 static const char exec_reverse[] = "reverse";
5692 static const char *exec_direction = exec_forward;
5693 static const char *exec_direction_names[] = {
5694 exec_forward,
5695 exec_reverse,
5696 NULL
5697 };
5698
5699 static void
5700 set_exec_direction_func (char *args, int from_tty,
5701 struct cmd_list_element *cmd)
5702 {
5703 if (target_can_execute_reverse)
5704 {
5705 if (!strcmp (exec_direction, exec_forward))
5706 execution_direction = EXEC_FORWARD;
5707 else if (!strcmp (exec_direction, exec_reverse))
5708 execution_direction = EXEC_REVERSE;
5709 }
5710 }
5711
5712 static void
5713 show_exec_direction_func (struct ui_file *out, int from_tty,
5714 struct cmd_list_element *cmd, const char *value)
5715 {
5716 switch (execution_direction) {
5717 case EXEC_FORWARD:
5718 fprintf_filtered (out, _("Forward.\n"));
5719 break;
5720 case EXEC_REVERSE:
5721 fprintf_filtered (out, _("Reverse.\n"));
5722 break;
5723 case EXEC_ERROR:
5724 default:
5725 fprintf_filtered (out,
5726 _("Forward (target `%s' does not support exec-direction).\n"),
5727 target_shortname);
5728 break;
5729 }
5730 }
5731
5732 /* User interface for non-stop mode. */
5733
5734 int non_stop = 0;
5735 static int non_stop_1 = 0;
5736
5737 static void
5738 set_non_stop (char *args, int from_tty,
5739 struct cmd_list_element *c)
5740 {
5741 if (target_has_execution)
5742 {
5743 non_stop_1 = non_stop;
5744 error (_("Cannot change this setting while the inferior is running."));
5745 }
5746
5747 non_stop = non_stop_1;
5748 }
5749
5750 static void
5751 show_non_stop (struct ui_file *file, int from_tty,
5752 struct cmd_list_element *c, const char *value)
5753 {
5754 fprintf_filtered (file,
5755 _("Controlling the inferior in non-stop mode is %s.\n"),
5756 value);
5757 }
5758
5759 static void
5760 show_schedule_multiple (struct ui_file *file, int from_tty,
5761 struct cmd_list_element *c, const char *value)
5762 {
5763 fprintf_filtered (file, _("\
5764 Resuming the execution of threads of all processes is %s.\n"), value);
5765 }
5766
5767 void
5768 _initialize_infrun (void)
5769 {
5770 int i;
5771 int numsigs;
5772 struct cmd_list_element *c;
5773
5774 add_info ("signals", signals_info, _("\
5775 What debugger does when program gets various signals.\n\
5776 Specify a signal as argument to print info on that signal only."));
5777 add_info_alias ("handle", "signals", 0);
5778
5779 add_com ("handle", class_run, handle_command, _("\
5780 Specify how to handle a signal.\n\
5781 Args are signals and actions to apply to those signals.\n\
5782 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5783 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5784 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5785 The special arg \"all\" is recognized to mean all signals except those\n\
5786 used by the debugger, typically SIGTRAP and SIGINT.\n\
5787 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
5788 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5789 Stop means reenter debugger if this signal happens (implies print).\n\
5790 Print means print a message if this signal happens.\n\
5791 Pass means let program see this signal; otherwise program doesn't know.\n\
5792 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5793 Pass and Stop may be combined."));
5794 if (xdb_commands)
5795 {
5796 add_com ("lz", class_info, signals_info, _("\
5797 What debugger does when program gets various signals.\n\
5798 Specify a signal as argument to print info on that signal only."));
5799 add_com ("z", class_run, xdb_handle_command, _("\
5800 Specify how to handle a signal.\n\
5801 Args are signals and actions to apply to those signals.\n\
5802 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5803 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5804 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5805 The special arg \"all\" is recognized to mean all signals except those\n\
5806 used by the debugger, typically SIGTRAP and SIGINT.\n\
5807 Recognized actions include \"s\" (toggles between stop and nostop), \n\
5808 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5809 nopass), \"Q\" (noprint)\n\
5810 Stop means reenter debugger if this signal happens (implies print).\n\
5811 Print means print a message if this signal happens.\n\
5812 Pass means let program see this signal; otherwise program doesn't know.\n\
5813 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5814 Pass and Stop may be combined."));
5815 }
5816
5817 if (!dbx_commands)
5818 stop_command = add_cmd ("stop", class_obscure,
5819 not_just_help_class_command, _("\
5820 There is no `stop' command, but you can set a hook on `stop'.\n\
5821 This allows you to set a list of commands to be run each time execution\n\
5822 of the program stops."), &cmdlist);
5823
5824 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5825 Set inferior debugging."), _("\
5826 Show inferior debugging."), _("\
5827 When non-zero, inferior specific debugging is enabled."),
5828 NULL,
5829 show_debug_infrun,
5830 &setdebuglist, &showdebuglist);
5831
5832 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5833 Set displaced stepping debugging."), _("\
5834 Show displaced stepping debugging."), _("\
5835 When non-zero, displaced stepping specific debugging is enabled."),
5836 NULL,
5837 show_debug_displaced,
5838 &setdebuglist, &showdebuglist);
5839
5840 add_setshow_boolean_cmd ("non-stop", no_class,
5841 &non_stop_1, _("\
5842 Set whether gdb controls the inferior in non-stop mode."), _("\
5843 Show whether gdb controls the inferior in non-stop mode."), _("\
5844 When debugging a multi-threaded program and this setting is\n\
5845 off (the default, also called all-stop mode), when one thread stops\n\
5846 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5847 all other threads in the program while you interact with the thread of\n\
5848 interest. When you continue or step a thread, you can allow the other\n\
5849 threads to run, or have them remain stopped, but while you inspect any\n\
5850 thread's state, all threads stop.\n\
5851 \n\
5852 In non-stop mode, when one thread stops, other threads can continue\n\
5853 to run freely. You'll be able to step each thread independently,\n\
5854 leave it stopped or free to run as needed."),
5855 set_non_stop,
5856 show_non_stop,
5857 &setlist,
5858 &showlist);
5859
5860 numsigs = (int) TARGET_SIGNAL_LAST;
5861 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
5862 signal_print = (unsigned char *)
5863 xmalloc (sizeof (signal_print[0]) * numsigs);
5864 signal_program = (unsigned char *)
5865 xmalloc (sizeof (signal_program[0]) * numsigs);
5866 for (i = 0; i < numsigs; i++)
5867 {
5868 signal_stop[i] = 1;
5869 signal_print[i] = 1;
5870 signal_program[i] = 1;
5871 }
5872
5873 /* Signals caused by debugger's own actions
5874 should not be given to the program afterwards. */
5875 signal_program[TARGET_SIGNAL_TRAP] = 0;
5876 signal_program[TARGET_SIGNAL_INT] = 0;
5877
5878 /* Signals that are not errors should not normally enter the debugger. */
5879 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5880 signal_print[TARGET_SIGNAL_ALRM] = 0;
5881 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5882 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5883 signal_stop[TARGET_SIGNAL_PROF] = 0;
5884 signal_print[TARGET_SIGNAL_PROF] = 0;
5885 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5886 signal_print[TARGET_SIGNAL_CHLD] = 0;
5887 signal_stop[TARGET_SIGNAL_IO] = 0;
5888 signal_print[TARGET_SIGNAL_IO] = 0;
5889 signal_stop[TARGET_SIGNAL_POLL] = 0;
5890 signal_print[TARGET_SIGNAL_POLL] = 0;
5891 signal_stop[TARGET_SIGNAL_URG] = 0;
5892 signal_print[TARGET_SIGNAL_URG] = 0;
5893 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5894 signal_print[TARGET_SIGNAL_WINCH] = 0;
5895
5896 /* These signals are used internally by user-level thread
5897 implementations. (See signal(5) on Solaris.) Like the above
5898 signals, a healthy program receives and handles them as part of
5899 its normal operation. */
5900 signal_stop[TARGET_SIGNAL_LWP] = 0;
5901 signal_print[TARGET_SIGNAL_LWP] = 0;
5902 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5903 signal_print[TARGET_SIGNAL_WAITING] = 0;
5904 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5905 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5906
5907 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5908 &stop_on_solib_events, _("\
5909 Set stopping for shared library events."), _("\
5910 Show stopping for shared library events."), _("\
5911 If nonzero, gdb will give control to the user when the dynamic linker\n\
5912 notifies gdb of shared library events. The most common event of interest\n\
5913 to the user would be loading/unloading of a new library."),
5914 NULL,
5915 show_stop_on_solib_events,
5916 &setlist, &showlist);
5917
5918 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5919 follow_fork_mode_kind_names,
5920 &follow_fork_mode_string, _("\
5921 Set debugger response to a program call of fork or vfork."), _("\
5922 Show debugger response to a program call of fork or vfork."), _("\
5923 A fork or vfork creates a new process. follow-fork-mode can be:\n\
5924 parent - the original process is debugged after a fork\n\
5925 child - the new process is debugged after a fork\n\
5926 The unfollowed process will continue to run.\n\
5927 By default, the debugger will follow the parent process."),
5928 NULL,
5929 show_follow_fork_mode_string,
5930 &setlist, &showlist);
5931
5932 add_setshow_enum_cmd ("scheduler-locking", class_run,
5933 scheduler_enums, &scheduler_mode, _("\
5934 Set mode for locking scheduler during execution."), _("\
5935 Show mode for locking scheduler during execution."), _("\
5936 off == no locking (threads may preempt at any time)\n\
5937 on == full locking (no thread except the current thread may run)\n\
5938 step == scheduler locked during every single-step operation.\n\
5939 In this mode, no other thread may run during a step command.\n\
5940 Other threads may run while stepping over a function call ('next')."),
5941 set_schedlock_func, /* traps on target vector */
5942 show_scheduler_mode,
5943 &setlist, &showlist);
5944
5945 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
5946 Set mode for resuming threads of all processes."), _("\
5947 Show mode for resuming threads of all processes."), _("\
5948 When on, execution commands (such as 'continue' or 'next') resume all\n\
5949 threads of all processes. When off (which is the default), execution\n\
5950 commands only resume the threads of the current process. The set of\n\
5951 threads that are resumed is further refined by the scheduler-locking\n\
5952 mode (see help set scheduler-locking)."),
5953 NULL,
5954 show_schedule_multiple,
5955 &setlist, &showlist);
5956
5957 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5958 Set mode of the step operation."), _("\
5959 Show mode of the step operation."), _("\
5960 When set, doing a step over a function without debug line information\n\
5961 will stop at the first instruction of that function. Otherwise, the\n\
5962 function is skipped and the step command stops at a different source line."),
5963 NULL,
5964 show_step_stop_if_no_debug,
5965 &setlist, &showlist);
5966
5967 add_setshow_enum_cmd ("displaced-stepping", class_run,
5968 can_use_displaced_stepping_enum,
5969 &can_use_displaced_stepping, _("\
5970 Set debugger's willingness to use displaced stepping."), _("\
5971 Show debugger's willingness to use displaced stepping."), _("\
5972 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5973 supported by the target architecture. If off, gdb will not use displaced\n\
5974 stepping to step over breakpoints, even if such is supported by the target\n\
5975 architecture. If auto (which is the default), gdb will use displaced stepping\n\
5976 if the target architecture supports it and non-stop mode is active, but will not\n\
5977 use it in all-stop mode (see help set non-stop)."),
5978 NULL,
5979 show_can_use_displaced_stepping,
5980 &setlist, &showlist);
5981
5982 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5983 &exec_direction, _("Set direction of execution.\n\
5984 Options are 'forward' or 'reverse'."),
5985 _("Show direction of execution (forward/reverse)."),
5986 _("Tells gdb whether to execute forward or backward."),
5987 set_exec_direction_func, show_exec_direction_func,
5988 &setlist, &showlist);
5989
5990 /* ptid initializations */
5991 null_ptid = ptid_build (0, 0, 0);
5992 minus_one_ptid = ptid_build (-1, 0, 0);
5993 inferior_ptid = null_ptid;
5994 target_last_wait_ptid = minus_one_ptid;
5995 displaced_step_ptid = null_ptid;
5996
5997 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
5998 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
5999 observer_attach_thread_exit (infrun_thread_thread_exit);
6000
6001 /* Explicitly create without lookup, since that tries to create a
6002 value with a void typed value, and when we get here, gdbarch
6003 isn't initialized yet. At this point, we're quite sure there
6004 isn't another convenience variable of the same name. */
6005 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
6006 }