gdb/
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "dictionary.h"
49 #include "block.h"
50 #include "gdb_assert.h"
51 #include "mi/mi-common.h"
52 #include "event-top.h"
53 #include "record.h"
54 #include "inline-frame.h"
55 #include "jit.h"
56 #include "tracepoint.h"
57 #include "continuations.h"
58 #include "interps.h"
59
60 /* Prototypes for local functions */
61
62 static void signals_info (char *, int);
63
64 static void handle_command (char *, int);
65
66 static void sig_print_info (enum target_signal);
67
68 static void sig_print_header (void);
69
70 static void resume_cleanups (void *);
71
72 static int hook_stop_stub (void *);
73
74 static int restore_selected_frame (void *);
75
76 static int follow_fork (void);
77
78 static void set_schedlock_func (char *args, int from_tty,
79 struct cmd_list_element *c);
80
81 static int currently_stepping (struct thread_info *tp);
82
83 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
84 void *data);
85
86 static void xdb_handle_command (char *args, int from_tty);
87
88 static int prepare_to_proceed (int);
89
90 static void print_exited_reason (int exitstatus);
91
92 static void print_signal_exited_reason (enum target_signal siggnal);
93
94 static void print_no_history_reason (void);
95
96 static void print_signal_received_reason (enum target_signal siggnal);
97
98 static void print_end_stepping_range_reason (void);
99
100 void _initialize_infrun (void);
101
102 void nullify_last_target_wait_ptid (void);
103
104 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
105
106 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
107
108 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
109
110 /* When set, stop the 'step' command if we enter a function which has
111 no line number information. The normal behavior is that we step
112 over such function. */
113 int step_stop_if_no_debug = 0;
114 static void
115 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
116 struct cmd_list_element *c, const char *value)
117 {
118 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
119 }
120
121 /* In asynchronous mode, but simulating synchronous execution. */
122
123 int sync_execution = 0;
124
125 /* wait_for_inferior and normal_stop use this to notify the user
126 when the inferior stopped in a different thread than it had been
127 running in. */
128
129 static ptid_t previous_inferior_ptid;
130
131 /* Default behavior is to detach newly forked processes (legacy). */
132 int detach_fork = 1;
133
134 int debug_displaced = 0;
135 static void
136 show_debug_displaced (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138 {
139 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
140 }
141
142 int debug_infrun = 0;
143 static void
144 show_debug_infrun (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
148 }
149
150 /* If the program uses ELF-style shared libraries, then calls to
151 functions in shared libraries go through stubs, which live in a
152 table called the PLT (Procedure Linkage Table). The first time the
153 function is called, the stub sends control to the dynamic linker,
154 which looks up the function's real address, patches the stub so
155 that future calls will go directly to the function, and then passes
156 control to the function.
157
158 If we are stepping at the source level, we don't want to see any of
159 this --- we just want to skip over the stub and the dynamic linker.
160 The simple approach is to single-step until control leaves the
161 dynamic linker.
162
163 However, on some systems (e.g., Red Hat's 5.2 distribution) the
164 dynamic linker calls functions in the shared C library, so you
165 can't tell from the PC alone whether the dynamic linker is still
166 running. In this case, we use a step-resume breakpoint to get us
167 past the dynamic linker, as if we were using "next" to step over a
168 function call.
169
170 in_solib_dynsym_resolve_code() says whether we're in the dynamic
171 linker code or not. Normally, this means we single-step. However,
172 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
173 address where we can place a step-resume breakpoint to get past the
174 linker's symbol resolution function.
175
176 in_solib_dynsym_resolve_code() can generally be implemented in a
177 pretty portable way, by comparing the PC against the address ranges
178 of the dynamic linker's sections.
179
180 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
181 it depends on internal details of the dynamic linker. It's usually
182 not too hard to figure out where to put a breakpoint, but it
183 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
184 sanity checking. If it can't figure things out, returning zero and
185 getting the (possibly confusing) stepping behavior is better than
186 signalling an error, which will obscure the change in the
187 inferior's state. */
188
189 /* This function returns TRUE if pc is the address of an instruction
190 that lies within the dynamic linker (such as the event hook, or the
191 dld itself).
192
193 This function must be used only when a dynamic linker event has
194 been caught, and the inferior is being stepped out of the hook, or
195 undefined results are guaranteed. */
196
197 #ifndef SOLIB_IN_DYNAMIC_LINKER
198 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
199 #endif
200
201 /* "Observer mode" is somewhat like a more extreme version of
202 non-stop, in which all GDB operations that might affect the
203 target's execution have been disabled. */
204
205 static int non_stop_1 = 0;
206
207 int observer_mode = 0;
208 static int observer_mode_1 = 0;
209
210 static void
211 set_observer_mode (char *args, int from_tty,
212 struct cmd_list_element *c)
213 {
214 extern int pagination_enabled;
215
216 if (target_has_execution)
217 {
218 observer_mode_1 = observer_mode;
219 error (_("Cannot change this setting while the inferior is running."));
220 }
221
222 observer_mode = observer_mode_1;
223
224 may_write_registers = !observer_mode;
225 may_write_memory = !observer_mode;
226 may_insert_breakpoints = !observer_mode;
227 may_insert_tracepoints = !observer_mode;
228 /* We can insert fast tracepoints in or out of observer mode,
229 but enable them if we're going into this mode. */
230 if (observer_mode)
231 may_insert_fast_tracepoints = 1;
232 may_stop = !observer_mode;
233 update_target_permissions ();
234
235 /* Going *into* observer mode we must force non-stop, then
236 going out we leave it that way. */
237 if (observer_mode)
238 {
239 target_async_permitted = 1;
240 pagination_enabled = 0;
241 non_stop = non_stop_1 = 1;
242 }
243
244 if (from_tty)
245 printf_filtered (_("Observer mode is now %s.\n"),
246 (observer_mode ? "on" : "off"));
247 }
248
249 static void
250 show_observer_mode (struct ui_file *file, int from_tty,
251 struct cmd_list_element *c, const char *value)
252 {
253 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
254 }
255
256 /* This updates the value of observer mode based on changes in
257 permissions. Note that we are deliberately ignoring the values of
258 may-write-registers and may-write-memory, since the user may have
259 reason to enable these during a session, for instance to turn on a
260 debugging-related global. */
261
262 void
263 update_observer_mode (void)
264 {
265 int newval;
266
267 newval = (!may_insert_breakpoints
268 && !may_insert_tracepoints
269 && may_insert_fast_tracepoints
270 && !may_stop
271 && non_stop);
272
273 /* Let the user know if things change. */
274 if (newval != observer_mode)
275 printf_filtered (_("Observer mode is now %s.\n"),
276 (newval ? "on" : "off"));
277
278 observer_mode = observer_mode_1 = newval;
279 }
280
281 /* Tables of how to react to signals; the user sets them. */
282
283 static unsigned char *signal_stop;
284 static unsigned char *signal_print;
285 static unsigned char *signal_program;
286
287 /* Table of signals that the target may silently handle.
288 This is automatically determined from the flags above,
289 and simply cached here. */
290 static unsigned char *signal_pass;
291
292 #define SET_SIGS(nsigs,sigs,flags) \
293 do { \
294 int signum = (nsigs); \
295 while (signum-- > 0) \
296 if ((sigs)[signum]) \
297 (flags)[signum] = 1; \
298 } while (0)
299
300 #define UNSET_SIGS(nsigs,sigs,flags) \
301 do { \
302 int signum = (nsigs); \
303 while (signum-- > 0) \
304 if ((sigs)[signum]) \
305 (flags)[signum] = 0; \
306 } while (0)
307
308 /* Value to pass to target_resume() to cause all threads to resume. */
309
310 #define RESUME_ALL minus_one_ptid
311
312 /* Command list pointer for the "stop" placeholder. */
313
314 static struct cmd_list_element *stop_command;
315
316 /* Function inferior was in as of last step command. */
317
318 static struct symbol *step_start_function;
319
320 /* Nonzero if we want to give control to the user when we're notified
321 of shared library events by the dynamic linker. */
322 int stop_on_solib_events;
323 static void
324 show_stop_on_solib_events (struct ui_file *file, int from_tty,
325 struct cmd_list_element *c, const char *value)
326 {
327 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
328 value);
329 }
330
331 /* Nonzero means expecting a trace trap
332 and should stop the inferior and return silently when it happens. */
333
334 int stop_after_trap;
335
336 /* Save register contents here when executing a "finish" command or are
337 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
338 Thus this contains the return value from the called function (assuming
339 values are returned in a register). */
340
341 struct regcache *stop_registers;
342
343 /* Nonzero after stop if current stack frame should be printed. */
344
345 static int stop_print_frame;
346
347 /* This is a cached copy of the pid/waitstatus of the last event
348 returned by target_wait()/deprecated_target_wait_hook(). This
349 information is returned by get_last_target_status(). */
350 static ptid_t target_last_wait_ptid;
351 static struct target_waitstatus target_last_waitstatus;
352
353 static void context_switch (ptid_t ptid);
354
355 void init_thread_stepping_state (struct thread_info *tss);
356
357 void init_infwait_state (void);
358
359 static const char follow_fork_mode_child[] = "child";
360 static const char follow_fork_mode_parent[] = "parent";
361
362 static const char *follow_fork_mode_kind_names[] = {
363 follow_fork_mode_child,
364 follow_fork_mode_parent,
365 NULL
366 };
367
368 static const char *follow_fork_mode_string = follow_fork_mode_parent;
369 static void
370 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
371 struct cmd_list_element *c, const char *value)
372 {
373 fprintf_filtered (file,
374 _("Debugger response to a program "
375 "call of fork or vfork is \"%s\".\n"),
376 value);
377 }
378 \f
379
380 /* Tell the target to follow the fork we're stopped at. Returns true
381 if the inferior should be resumed; false, if the target for some
382 reason decided it's best not to resume. */
383
384 static int
385 follow_fork (void)
386 {
387 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
388 int should_resume = 1;
389 struct thread_info *tp;
390
391 /* Copy user stepping state to the new inferior thread. FIXME: the
392 followed fork child thread should have a copy of most of the
393 parent thread structure's run control related fields, not just these.
394 Initialized to avoid "may be used uninitialized" warnings from gcc. */
395 struct breakpoint *step_resume_breakpoint = NULL;
396 struct breakpoint *exception_resume_breakpoint = NULL;
397 CORE_ADDR step_range_start = 0;
398 CORE_ADDR step_range_end = 0;
399 struct frame_id step_frame_id = { 0 };
400
401 if (!non_stop)
402 {
403 ptid_t wait_ptid;
404 struct target_waitstatus wait_status;
405
406 /* Get the last target status returned by target_wait(). */
407 get_last_target_status (&wait_ptid, &wait_status);
408
409 /* If not stopped at a fork event, then there's nothing else to
410 do. */
411 if (wait_status.kind != TARGET_WAITKIND_FORKED
412 && wait_status.kind != TARGET_WAITKIND_VFORKED)
413 return 1;
414
415 /* Check if we switched over from WAIT_PTID, since the event was
416 reported. */
417 if (!ptid_equal (wait_ptid, minus_one_ptid)
418 && !ptid_equal (inferior_ptid, wait_ptid))
419 {
420 /* We did. Switch back to WAIT_PTID thread, to tell the
421 target to follow it (in either direction). We'll
422 afterwards refuse to resume, and inform the user what
423 happened. */
424 switch_to_thread (wait_ptid);
425 should_resume = 0;
426 }
427 }
428
429 tp = inferior_thread ();
430
431 /* If there were any forks/vforks that were caught and are now to be
432 followed, then do so now. */
433 switch (tp->pending_follow.kind)
434 {
435 case TARGET_WAITKIND_FORKED:
436 case TARGET_WAITKIND_VFORKED:
437 {
438 ptid_t parent, child;
439
440 /* If the user did a next/step, etc, over a fork call,
441 preserve the stepping state in the fork child. */
442 if (follow_child && should_resume)
443 {
444 step_resume_breakpoint = clone_momentary_breakpoint
445 (tp->control.step_resume_breakpoint);
446 step_range_start = tp->control.step_range_start;
447 step_range_end = tp->control.step_range_end;
448 step_frame_id = tp->control.step_frame_id;
449 exception_resume_breakpoint
450 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
451
452 /* For now, delete the parent's sr breakpoint, otherwise,
453 parent/child sr breakpoints are considered duplicates,
454 and the child version will not be installed. Remove
455 this when the breakpoints module becomes aware of
456 inferiors and address spaces. */
457 delete_step_resume_breakpoint (tp);
458 tp->control.step_range_start = 0;
459 tp->control.step_range_end = 0;
460 tp->control.step_frame_id = null_frame_id;
461 delete_exception_resume_breakpoint (tp);
462 }
463
464 parent = inferior_ptid;
465 child = tp->pending_follow.value.related_pid;
466
467 /* Tell the target to do whatever is necessary to follow
468 either parent or child. */
469 if (target_follow_fork (follow_child))
470 {
471 /* Target refused to follow, or there's some other reason
472 we shouldn't resume. */
473 should_resume = 0;
474 }
475 else
476 {
477 /* This pending follow fork event is now handled, one way
478 or another. The previous selected thread may be gone
479 from the lists by now, but if it is still around, need
480 to clear the pending follow request. */
481 tp = find_thread_ptid (parent);
482 if (tp)
483 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
484
485 /* This makes sure we don't try to apply the "Switched
486 over from WAIT_PID" logic above. */
487 nullify_last_target_wait_ptid ();
488
489 /* If we followed the child, switch to it... */
490 if (follow_child)
491 {
492 switch_to_thread (child);
493
494 /* ... and preserve the stepping state, in case the
495 user was stepping over the fork call. */
496 if (should_resume)
497 {
498 tp = inferior_thread ();
499 tp->control.step_resume_breakpoint
500 = step_resume_breakpoint;
501 tp->control.step_range_start = step_range_start;
502 tp->control.step_range_end = step_range_end;
503 tp->control.step_frame_id = step_frame_id;
504 tp->control.exception_resume_breakpoint
505 = exception_resume_breakpoint;
506 }
507 else
508 {
509 /* If we get here, it was because we're trying to
510 resume from a fork catchpoint, but, the user
511 has switched threads away from the thread that
512 forked. In that case, the resume command
513 issued is most likely not applicable to the
514 child, so just warn, and refuse to resume. */
515 warning (_("Not resuming: switched threads "
516 "before following fork child.\n"));
517 }
518
519 /* Reset breakpoints in the child as appropriate. */
520 follow_inferior_reset_breakpoints ();
521 }
522 else
523 switch_to_thread (parent);
524 }
525 }
526 break;
527 case TARGET_WAITKIND_SPURIOUS:
528 /* Nothing to follow. */
529 break;
530 default:
531 internal_error (__FILE__, __LINE__,
532 "Unexpected pending_follow.kind %d\n",
533 tp->pending_follow.kind);
534 break;
535 }
536
537 return should_resume;
538 }
539
540 void
541 follow_inferior_reset_breakpoints (void)
542 {
543 struct thread_info *tp = inferior_thread ();
544
545 /* Was there a step_resume breakpoint? (There was if the user
546 did a "next" at the fork() call.) If so, explicitly reset its
547 thread number.
548
549 step_resumes are a form of bp that are made to be per-thread.
550 Since we created the step_resume bp when the parent process
551 was being debugged, and now are switching to the child process,
552 from the breakpoint package's viewpoint, that's a switch of
553 "threads". We must update the bp's notion of which thread
554 it is for, or it'll be ignored when it triggers. */
555
556 if (tp->control.step_resume_breakpoint)
557 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
558
559 if (tp->control.exception_resume_breakpoint)
560 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
561
562 /* Reinsert all breakpoints in the child. The user may have set
563 breakpoints after catching the fork, in which case those
564 were never set in the child, but only in the parent. This makes
565 sure the inserted breakpoints match the breakpoint list. */
566
567 breakpoint_re_set ();
568 insert_breakpoints ();
569 }
570
571 /* The child has exited or execed: resume threads of the parent the
572 user wanted to be executing. */
573
574 static int
575 proceed_after_vfork_done (struct thread_info *thread,
576 void *arg)
577 {
578 int pid = * (int *) arg;
579
580 if (ptid_get_pid (thread->ptid) == pid
581 && is_running (thread->ptid)
582 && !is_executing (thread->ptid)
583 && !thread->stop_requested
584 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
585 {
586 if (debug_infrun)
587 fprintf_unfiltered (gdb_stdlog,
588 "infrun: resuming vfork parent thread %s\n",
589 target_pid_to_str (thread->ptid));
590
591 switch_to_thread (thread->ptid);
592 clear_proceed_status ();
593 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
594 }
595
596 return 0;
597 }
598
599 /* Called whenever we notice an exec or exit event, to handle
600 detaching or resuming a vfork parent. */
601
602 static void
603 handle_vfork_child_exec_or_exit (int exec)
604 {
605 struct inferior *inf = current_inferior ();
606
607 if (inf->vfork_parent)
608 {
609 int resume_parent = -1;
610
611 /* This exec or exit marks the end of the shared memory region
612 between the parent and the child. If the user wanted to
613 detach from the parent, now is the time. */
614
615 if (inf->vfork_parent->pending_detach)
616 {
617 struct thread_info *tp;
618 struct cleanup *old_chain;
619 struct program_space *pspace;
620 struct address_space *aspace;
621
622 /* follow-fork child, detach-on-fork on. */
623
624 old_chain = make_cleanup_restore_current_thread ();
625
626 /* We're letting loose of the parent. */
627 tp = any_live_thread_of_process (inf->vfork_parent->pid);
628 switch_to_thread (tp->ptid);
629
630 /* We're about to detach from the parent, which implicitly
631 removes breakpoints from its address space. There's a
632 catch here: we want to reuse the spaces for the child,
633 but, parent/child are still sharing the pspace at this
634 point, although the exec in reality makes the kernel give
635 the child a fresh set of new pages. The problem here is
636 that the breakpoints module being unaware of this, would
637 likely chose the child process to write to the parent
638 address space. Swapping the child temporarily away from
639 the spaces has the desired effect. Yes, this is "sort
640 of" a hack. */
641
642 pspace = inf->pspace;
643 aspace = inf->aspace;
644 inf->aspace = NULL;
645 inf->pspace = NULL;
646
647 if (debug_infrun || info_verbose)
648 {
649 target_terminal_ours ();
650
651 if (exec)
652 fprintf_filtered (gdb_stdlog,
653 "Detaching vfork parent process "
654 "%d after child exec.\n",
655 inf->vfork_parent->pid);
656 else
657 fprintf_filtered (gdb_stdlog,
658 "Detaching vfork parent process "
659 "%d after child exit.\n",
660 inf->vfork_parent->pid);
661 }
662
663 target_detach (NULL, 0);
664
665 /* Put it back. */
666 inf->pspace = pspace;
667 inf->aspace = aspace;
668
669 do_cleanups (old_chain);
670 }
671 else if (exec)
672 {
673 /* We're staying attached to the parent, so, really give the
674 child a new address space. */
675 inf->pspace = add_program_space (maybe_new_address_space ());
676 inf->aspace = inf->pspace->aspace;
677 inf->removable = 1;
678 set_current_program_space (inf->pspace);
679
680 resume_parent = inf->vfork_parent->pid;
681
682 /* Break the bonds. */
683 inf->vfork_parent->vfork_child = NULL;
684 }
685 else
686 {
687 struct cleanup *old_chain;
688 struct program_space *pspace;
689
690 /* If this is a vfork child exiting, then the pspace and
691 aspaces were shared with the parent. Since we're
692 reporting the process exit, we'll be mourning all that is
693 found in the address space, and switching to null_ptid,
694 preparing to start a new inferior. But, since we don't
695 want to clobber the parent's address/program spaces, we
696 go ahead and create a new one for this exiting
697 inferior. */
698
699 /* Switch to null_ptid, so that clone_program_space doesn't want
700 to read the selected frame of a dead process. */
701 old_chain = save_inferior_ptid ();
702 inferior_ptid = null_ptid;
703
704 /* This inferior is dead, so avoid giving the breakpoints
705 module the option to write through to it (cloning a
706 program space resets breakpoints). */
707 inf->aspace = NULL;
708 inf->pspace = NULL;
709 pspace = add_program_space (maybe_new_address_space ());
710 set_current_program_space (pspace);
711 inf->removable = 1;
712 clone_program_space (pspace, inf->vfork_parent->pspace);
713 inf->pspace = pspace;
714 inf->aspace = pspace->aspace;
715
716 /* Put back inferior_ptid. We'll continue mourning this
717 inferior. */
718 do_cleanups (old_chain);
719
720 resume_parent = inf->vfork_parent->pid;
721 /* Break the bonds. */
722 inf->vfork_parent->vfork_child = NULL;
723 }
724
725 inf->vfork_parent = NULL;
726
727 gdb_assert (current_program_space == inf->pspace);
728
729 if (non_stop && resume_parent != -1)
730 {
731 /* If the user wanted the parent to be running, let it go
732 free now. */
733 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
734
735 if (debug_infrun)
736 fprintf_unfiltered (gdb_stdlog,
737 "infrun: resuming vfork parent process %d\n",
738 resume_parent);
739
740 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
741
742 do_cleanups (old_chain);
743 }
744 }
745 }
746
747 /* Enum strings for "set|show displaced-stepping". */
748
749 static const char follow_exec_mode_new[] = "new";
750 static const char follow_exec_mode_same[] = "same";
751 static const char *follow_exec_mode_names[] =
752 {
753 follow_exec_mode_new,
754 follow_exec_mode_same,
755 NULL,
756 };
757
758 static const char *follow_exec_mode_string = follow_exec_mode_same;
759 static void
760 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
761 struct cmd_list_element *c, const char *value)
762 {
763 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
764 }
765
766 /* EXECD_PATHNAME is assumed to be non-NULL. */
767
768 static void
769 follow_exec (ptid_t pid, char *execd_pathname)
770 {
771 struct thread_info *th = inferior_thread ();
772 struct inferior *inf = current_inferior ();
773
774 /* This is an exec event that we actually wish to pay attention to.
775 Refresh our symbol table to the newly exec'd program, remove any
776 momentary bp's, etc.
777
778 If there are breakpoints, they aren't really inserted now,
779 since the exec() transformed our inferior into a fresh set
780 of instructions.
781
782 We want to preserve symbolic breakpoints on the list, since
783 we have hopes that they can be reset after the new a.out's
784 symbol table is read.
785
786 However, any "raw" breakpoints must be removed from the list
787 (e.g., the solib bp's), since their address is probably invalid
788 now.
789
790 And, we DON'T want to call delete_breakpoints() here, since
791 that may write the bp's "shadow contents" (the instruction
792 value that was overwritten witha TRAP instruction). Since
793 we now have a new a.out, those shadow contents aren't valid. */
794
795 mark_breakpoints_out ();
796
797 update_breakpoints_after_exec ();
798
799 /* If there was one, it's gone now. We cannot truly step-to-next
800 statement through an exec(). */
801 th->control.step_resume_breakpoint = NULL;
802 th->control.exception_resume_breakpoint = NULL;
803 th->control.step_range_start = 0;
804 th->control.step_range_end = 0;
805
806 /* The target reports the exec event to the main thread, even if
807 some other thread does the exec, and even if the main thread was
808 already stopped --- if debugging in non-stop mode, it's possible
809 the user had the main thread held stopped in the previous image
810 --- release it now. This is the same behavior as step-over-exec
811 with scheduler-locking on in all-stop mode. */
812 th->stop_requested = 0;
813
814 /* What is this a.out's name? */
815 printf_unfiltered (_("%s is executing new program: %s\n"),
816 target_pid_to_str (inferior_ptid),
817 execd_pathname);
818
819 /* We've followed the inferior through an exec. Therefore, the
820 inferior has essentially been killed & reborn. */
821
822 gdb_flush (gdb_stdout);
823
824 breakpoint_init_inferior (inf_execd);
825
826 if (gdb_sysroot && *gdb_sysroot)
827 {
828 char *name = alloca (strlen (gdb_sysroot)
829 + strlen (execd_pathname)
830 + 1);
831
832 strcpy (name, gdb_sysroot);
833 strcat (name, execd_pathname);
834 execd_pathname = name;
835 }
836
837 /* Reset the shared library package. This ensures that we get a
838 shlib event when the child reaches "_start", at which point the
839 dld will have had a chance to initialize the child. */
840 /* Also, loading a symbol file below may trigger symbol lookups, and
841 we don't want those to be satisfied by the libraries of the
842 previous incarnation of this process. */
843 no_shared_libraries (NULL, 0);
844
845 if (follow_exec_mode_string == follow_exec_mode_new)
846 {
847 struct program_space *pspace;
848
849 /* The user wants to keep the old inferior and program spaces
850 around. Create a new fresh one, and switch to it. */
851
852 inf = add_inferior (current_inferior ()->pid);
853 pspace = add_program_space (maybe_new_address_space ());
854 inf->pspace = pspace;
855 inf->aspace = pspace->aspace;
856
857 exit_inferior_num_silent (current_inferior ()->num);
858
859 set_current_inferior (inf);
860 set_current_program_space (pspace);
861 }
862
863 gdb_assert (current_program_space == inf->pspace);
864
865 /* That a.out is now the one to use. */
866 exec_file_attach (execd_pathname, 0);
867
868 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
869 (Position Independent Executable) main symbol file will get applied by
870 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
871 the breakpoints with the zero displacement. */
872
873 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
874 NULL, 0);
875
876 set_initial_language ();
877
878 #ifdef SOLIB_CREATE_INFERIOR_HOOK
879 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
880 #else
881 solib_create_inferior_hook (0);
882 #endif
883
884 jit_inferior_created_hook ();
885
886 breakpoint_re_set ();
887
888 /* Reinsert all breakpoints. (Those which were symbolic have
889 been reset to the proper address in the new a.out, thanks
890 to symbol_file_command...). */
891 insert_breakpoints ();
892
893 /* The next resume of this inferior should bring it to the shlib
894 startup breakpoints. (If the user had also set bp's on
895 "main" from the old (parent) process, then they'll auto-
896 matically get reset there in the new process.). */
897 }
898
899 /* Non-zero if we just simulating a single-step. This is needed
900 because we cannot remove the breakpoints in the inferior process
901 until after the `wait' in `wait_for_inferior'. */
902 static int singlestep_breakpoints_inserted_p = 0;
903
904 /* The thread we inserted single-step breakpoints for. */
905 static ptid_t singlestep_ptid;
906
907 /* PC when we started this single-step. */
908 static CORE_ADDR singlestep_pc;
909
910 /* If another thread hit the singlestep breakpoint, we save the original
911 thread here so that we can resume single-stepping it later. */
912 static ptid_t saved_singlestep_ptid;
913 static int stepping_past_singlestep_breakpoint;
914
915 /* If not equal to null_ptid, this means that after stepping over breakpoint
916 is finished, we need to switch to deferred_step_ptid, and step it.
917
918 The use case is when one thread has hit a breakpoint, and then the user
919 has switched to another thread and issued 'step'. We need to step over
920 breakpoint in the thread which hit the breakpoint, but then continue
921 stepping the thread user has selected. */
922 static ptid_t deferred_step_ptid;
923 \f
924 /* Displaced stepping. */
925
926 /* In non-stop debugging mode, we must take special care to manage
927 breakpoints properly; in particular, the traditional strategy for
928 stepping a thread past a breakpoint it has hit is unsuitable.
929 'Displaced stepping' is a tactic for stepping one thread past a
930 breakpoint it has hit while ensuring that other threads running
931 concurrently will hit the breakpoint as they should.
932
933 The traditional way to step a thread T off a breakpoint in a
934 multi-threaded program in all-stop mode is as follows:
935
936 a0) Initially, all threads are stopped, and breakpoints are not
937 inserted.
938 a1) We single-step T, leaving breakpoints uninserted.
939 a2) We insert breakpoints, and resume all threads.
940
941 In non-stop debugging, however, this strategy is unsuitable: we
942 don't want to have to stop all threads in the system in order to
943 continue or step T past a breakpoint. Instead, we use displaced
944 stepping:
945
946 n0) Initially, T is stopped, other threads are running, and
947 breakpoints are inserted.
948 n1) We copy the instruction "under" the breakpoint to a separate
949 location, outside the main code stream, making any adjustments
950 to the instruction, register, and memory state as directed by
951 T's architecture.
952 n2) We single-step T over the instruction at its new location.
953 n3) We adjust the resulting register and memory state as directed
954 by T's architecture. This includes resetting T's PC to point
955 back into the main instruction stream.
956 n4) We resume T.
957
958 This approach depends on the following gdbarch methods:
959
960 - gdbarch_max_insn_length and gdbarch_displaced_step_location
961 indicate where to copy the instruction, and how much space must
962 be reserved there. We use these in step n1.
963
964 - gdbarch_displaced_step_copy_insn copies a instruction to a new
965 address, and makes any necessary adjustments to the instruction,
966 register contents, and memory. We use this in step n1.
967
968 - gdbarch_displaced_step_fixup adjusts registers and memory after
969 we have successfuly single-stepped the instruction, to yield the
970 same effect the instruction would have had if we had executed it
971 at its original address. We use this in step n3.
972
973 - gdbarch_displaced_step_free_closure provides cleanup.
974
975 The gdbarch_displaced_step_copy_insn and
976 gdbarch_displaced_step_fixup functions must be written so that
977 copying an instruction with gdbarch_displaced_step_copy_insn,
978 single-stepping across the copied instruction, and then applying
979 gdbarch_displaced_insn_fixup should have the same effects on the
980 thread's memory and registers as stepping the instruction in place
981 would have. Exactly which responsibilities fall to the copy and
982 which fall to the fixup is up to the author of those functions.
983
984 See the comments in gdbarch.sh for details.
985
986 Note that displaced stepping and software single-step cannot
987 currently be used in combination, although with some care I think
988 they could be made to. Software single-step works by placing
989 breakpoints on all possible subsequent instructions; if the
990 displaced instruction is a PC-relative jump, those breakpoints
991 could fall in very strange places --- on pages that aren't
992 executable, or at addresses that are not proper instruction
993 boundaries. (We do generally let other threads run while we wait
994 to hit the software single-step breakpoint, and they might
995 encounter such a corrupted instruction.) One way to work around
996 this would be to have gdbarch_displaced_step_copy_insn fully
997 simulate the effect of PC-relative instructions (and return NULL)
998 on architectures that use software single-stepping.
999
1000 In non-stop mode, we can have independent and simultaneous step
1001 requests, so more than one thread may need to simultaneously step
1002 over a breakpoint. The current implementation assumes there is
1003 only one scratch space per process. In this case, we have to
1004 serialize access to the scratch space. If thread A wants to step
1005 over a breakpoint, but we are currently waiting for some other
1006 thread to complete a displaced step, we leave thread A stopped and
1007 place it in the displaced_step_request_queue. Whenever a displaced
1008 step finishes, we pick the next thread in the queue and start a new
1009 displaced step operation on it. See displaced_step_prepare and
1010 displaced_step_fixup for details. */
1011
1012 struct displaced_step_request
1013 {
1014 ptid_t ptid;
1015 struct displaced_step_request *next;
1016 };
1017
1018 /* Per-inferior displaced stepping state. */
1019 struct displaced_step_inferior_state
1020 {
1021 /* Pointer to next in linked list. */
1022 struct displaced_step_inferior_state *next;
1023
1024 /* The process this displaced step state refers to. */
1025 int pid;
1026
1027 /* A queue of pending displaced stepping requests. One entry per
1028 thread that needs to do a displaced step. */
1029 struct displaced_step_request *step_request_queue;
1030
1031 /* If this is not null_ptid, this is the thread carrying out a
1032 displaced single-step in process PID. This thread's state will
1033 require fixing up once it has completed its step. */
1034 ptid_t step_ptid;
1035
1036 /* The architecture the thread had when we stepped it. */
1037 struct gdbarch *step_gdbarch;
1038
1039 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1040 for post-step cleanup. */
1041 struct displaced_step_closure *step_closure;
1042
1043 /* The address of the original instruction, and the copy we
1044 made. */
1045 CORE_ADDR step_original, step_copy;
1046
1047 /* Saved contents of copy area. */
1048 gdb_byte *step_saved_copy;
1049 };
1050
1051 /* The list of states of processes involved in displaced stepping
1052 presently. */
1053 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1054
1055 /* Get the displaced stepping state of process PID. */
1056
1057 static struct displaced_step_inferior_state *
1058 get_displaced_stepping_state (int pid)
1059 {
1060 struct displaced_step_inferior_state *state;
1061
1062 for (state = displaced_step_inferior_states;
1063 state != NULL;
1064 state = state->next)
1065 if (state->pid == pid)
1066 return state;
1067
1068 return NULL;
1069 }
1070
1071 /* Add a new displaced stepping state for process PID to the displaced
1072 stepping state list, or return a pointer to an already existing
1073 entry, if it already exists. Never returns NULL. */
1074
1075 static struct displaced_step_inferior_state *
1076 add_displaced_stepping_state (int pid)
1077 {
1078 struct displaced_step_inferior_state *state;
1079
1080 for (state = displaced_step_inferior_states;
1081 state != NULL;
1082 state = state->next)
1083 if (state->pid == pid)
1084 return state;
1085
1086 state = xcalloc (1, sizeof (*state));
1087 state->pid = pid;
1088 state->next = displaced_step_inferior_states;
1089 displaced_step_inferior_states = state;
1090
1091 return state;
1092 }
1093
1094 /* If inferior is in displaced stepping, and ADDR equals to starting address
1095 of copy area, return corresponding displaced_step_closure. Otherwise,
1096 return NULL. */
1097
1098 struct displaced_step_closure*
1099 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1100 {
1101 struct displaced_step_inferior_state *displaced
1102 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1103
1104 /* If checking the mode of displaced instruction in copy area. */
1105 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1106 && (displaced->step_copy == addr))
1107 return displaced->step_closure;
1108
1109 return NULL;
1110 }
1111
1112 /* Remove the displaced stepping state of process PID. */
1113
1114 static void
1115 remove_displaced_stepping_state (int pid)
1116 {
1117 struct displaced_step_inferior_state *it, **prev_next_p;
1118
1119 gdb_assert (pid != 0);
1120
1121 it = displaced_step_inferior_states;
1122 prev_next_p = &displaced_step_inferior_states;
1123 while (it)
1124 {
1125 if (it->pid == pid)
1126 {
1127 *prev_next_p = it->next;
1128 xfree (it);
1129 return;
1130 }
1131
1132 prev_next_p = &it->next;
1133 it = *prev_next_p;
1134 }
1135 }
1136
1137 static void
1138 infrun_inferior_exit (struct inferior *inf)
1139 {
1140 remove_displaced_stepping_state (inf->pid);
1141 }
1142
1143 /* Enum strings for "set|show displaced-stepping". */
1144
1145 static const char can_use_displaced_stepping_auto[] = "auto";
1146 static const char can_use_displaced_stepping_on[] = "on";
1147 static const char can_use_displaced_stepping_off[] = "off";
1148 static const char *can_use_displaced_stepping_enum[] =
1149 {
1150 can_use_displaced_stepping_auto,
1151 can_use_displaced_stepping_on,
1152 can_use_displaced_stepping_off,
1153 NULL,
1154 };
1155
1156 /* If ON, and the architecture supports it, GDB will use displaced
1157 stepping to step over breakpoints. If OFF, or if the architecture
1158 doesn't support it, GDB will instead use the traditional
1159 hold-and-step approach. If AUTO (which is the default), GDB will
1160 decide which technique to use to step over breakpoints depending on
1161 which of all-stop or non-stop mode is active --- displaced stepping
1162 in non-stop mode; hold-and-step in all-stop mode. */
1163
1164 static const char *can_use_displaced_stepping =
1165 can_use_displaced_stepping_auto;
1166
1167 static void
1168 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1169 struct cmd_list_element *c,
1170 const char *value)
1171 {
1172 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1173 fprintf_filtered (file,
1174 _("Debugger's willingness to use displaced stepping "
1175 "to step over breakpoints is %s (currently %s).\n"),
1176 value, non_stop ? "on" : "off");
1177 else
1178 fprintf_filtered (file,
1179 _("Debugger's willingness to use displaced stepping "
1180 "to step over breakpoints is %s.\n"), value);
1181 }
1182
1183 /* Return non-zero if displaced stepping can/should be used to step
1184 over breakpoints. */
1185
1186 static int
1187 use_displaced_stepping (struct gdbarch *gdbarch)
1188 {
1189 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1190 && non_stop)
1191 || can_use_displaced_stepping == can_use_displaced_stepping_on)
1192 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1193 && !RECORD_IS_USED);
1194 }
1195
1196 /* Clean out any stray displaced stepping state. */
1197 static void
1198 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1199 {
1200 /* Indicate that there is no cleanup pending. */
1201 displaced->step_ptid = null_ptid;
1202
1203 if (displaced->step_closure)
1204 {
1205 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1206 displaced->step_closure);
1207 displaced->step_closure = NULL;
1208 }
1209 }
1210
1211 static void
1212 displaced_step_clear_cleanup (void *arg)
1213 {
1214 struct displaced_step_inferior_state *state = arg;
1215
1216 displaced_step_clear (state);
1217 }
1218
1219 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1220 void
1221 displaced_step_dump_bytes (struct ui_file *file,
1222 const gdb_byte *buf,
1223 size_t len)
1224 {
1225 int i;
1226
1227 for (i = 0; i < len; i++)
1228 fprintf_unfiltered (file, "%02x ", buf[i]);
1229 fputs_unfiltered ("\n", file);
1230 }
1231
1232 /* Prepare to single-step, using displaced stepping.
1233
1234 Note that we cannot use displaced stepping when we have a signal to
1235 deliver. If we have a signal to deliver and an instruction to step
1236 over, then after the step, there will be no indication from the
1237 target whether the thread entered a signal handler or ignored the
1238 signal and stepped over the instruction successfully --- both cases
1239 result in a simple SIGTRAP. In the first case we mustn't do a
1240 fixup, and in the second case we must --- but we can't tell which.
1241 Comments in the code for 'random signals' in handle_inferior_event
1242 explain how we handle this case instead.
1243
1244 Returns 1 if preparing was successful -- this thread is going to be
1245 stepped now; or 0 if displaced stepping this thread got queued. */
1246 static int
1247 displaced_step_prepare (ptid_t ptid)
1248 {
1249 struct cleanup *old_cleanups, *ignore_cleanups;
1250 struct regcache *regcache = get_thread_regcache (ptid);
1251 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1252 CORE_ADDR original, copy;
1253 ULONGEST len;
1254 struct displaced_step_closure *closure;
1255 struct displaced_step_inferior_state *displaced;
1256
1257 /* We should never reach this function if the architecture does not
1258 support displaced stepping. */
1259 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1260
1261 /* We have to displaced step one thread at a time, as we only have
1262 access to a single scratch space per inferior. */
1263
1264 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1265
1266 if (!ptid_equal (displaced->step_ptid, null_ptid))
1267 {
1268 /* Already waiting for a displaced step to finish. Defer this
1269 request and place in queue. */
1270 struct displaced_step_request *req, *new_req;
1271
1272 if (debug_displaced)
1273 fprintf_unfiltered (gdb_stdlog,
1274 "displaced: defering step of %s\n",
1275 target_pid_to_str (ptid));
1276
1277 new_req = xmalloc (sizeof (*new_req));
1278 new_req->ptid = ptid;
1279 new_req->next = NULL;
1280
1281 if (displaced->step_request_queue)
1282 {
1283 for (req = displaced->step_request_queue;
1284 req && req->next;
1285 req = req->next)
1286 ;
1287 req->next = new_req;
1288 }
1289 else
1290 displaced->step_request_queue = new_req;
1291
1292 return 0;
1293 }
1294 else
1295 {
1296 if (debug_displaced)
1297 fprintf_unfiltered (gdb_stdlog,
1298 "displaced: stepping %s now\n",
1299 target_pid_to_str (ptid));
1300 }
1301
1302 displaced_step_clear (displaced);
1303
1304 old_cleanups = save_inferior_ptid ();
1305 inferior_ptid = ptid;
1306
1307 original = regcache_read_pc (regcache);
1308
1309 copy = gdbarch_displaced_step_location (gdbarch);
1310 len = gdbarch_max_insn_length (gdbarch);
1311
1312 /* Save the original contents of the copy area. */
1313 displaced->step_saved_copy = xmalloc (len);
1314 ignore_cleanups = make_cleanup (free_current_contents,
1315 &displaced->step_saved_copy);
1316 read_memory (copy, displaced->step_saved_copy, len);
1317 if (debug_displaced)
1318 {
1319 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1320 paddress (gdbarch, copy));
1321 displaced_step_dump_bytes (gdb_stdlog,
1322 displaced->step_saved_copy,
1323 len);
1324 };
1325
1326 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1327 original, copy, regcache);
1328
1329 /* We don't support the fully-simulated case at present. */
1330 gdb_assert (closure);
1331
1332 /* Save the information we need to fix things up if the step
1333 succeeds. */
1334 displaced->step_ptid = ptid;
1335 displaced->step_gdbarch = gdbarch;
1336 displaced->step_closure = closure;
1337 displaced->step_original = original;
1338 displaced->step_copy = copy;
1339
1340 make_cleanup (displaced_step_clear_cleanup, displaced);
1341
1342 /* Resume execution at the copy. */
1343 regcache_write_pc (regcache, copy);
1344
1345 discard_cleanups (ignore_cleanups);
1346
1347 do_cleanups (old_cleanups);
1348
1349 if (debug_displaced)
1350 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1351 paddress (gdbarch, copy));
1352
1353 return 1;
1354 }
1355
1356 static void
1357 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1358 const gdb_byte *myaddr, int len)
1359 {
1360 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1361
1362 inferior_ptid = ptid;
1363 write_memory (memaddr, myaddr, len);
1364 do_cleanups (ptid_cleanup);
1365 }
1366
1367 static void
1368 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1369 {
1370 struct cleanup *old_cleanups;
1371 struct displaced_step_inferior_state *displaced
1372 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1373
1374 /* Was any thread of this process doing a displaced step? */
1375 if (displaced == NULL)
1376 return;
1377
1378 /* Was this event for the pid we displaced? */
1379 if (ptid_equal (displaced->step_ptid, null_ptid)
1380 || ! ptid_equal (displaced->step_ptid, event_ptid))
1381 return;
1382
1383 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1384
1385 /* Restore the contents of the copy area. */
1386 {
1387 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1388
1389 write_memory_ptid (displaced->step_ptid, displaced->step_copy,
1390 displaced->step_saved_copy, len);
1391 if (debug_displaced)
1392 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
1393 paddress (displaced->step_gdbarch,
1394 displaced->step_copy));
1395 }
1396
1397 /* Did the instruction complete successfully? */
1398 if (signal == TARGET_SIGNAL_TRAP)
1399 {
1400 /* Fix up the resulting state. */
1401 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1402 displaced->step_closure,
1403 displaced->step_original,
1404 displaced->step_copy,
1405 get_thread_regcache (displaced->step_ptid));
1406 }
1407 else
1408 {
1409 /* Since the instruction didn't complete, all we can do is
1410 relocate the PC. */
1411 struct regcache *regcache = get_thread_regcache (event_ptid);
1412 CORE_ADDR pc = regcache_read_pc (regcache);
1413
1414 pc = displaced->step_original + (pc - displaced->step_copy);
1415 regcache_write_pc (regcache, pc);
1416 }
1417
1418 do_cleanups (old_cleanups);
1419
1420 displaced->step_ptid = null_ptid;
1421
1422 /* Are there any pending displaced stepping requests? If so, run
1423 one now. Leave the state object around, since we're likely to
1424 need it again soon. */
1425 while (displaced->step_request_queue)
1426 {
1427 struct displaced_step_request *head;
1428 ptid_t ptid;
1429 struct regcache *regcache;
1430 struct gdbarch *gdbarch;
1431 CORE_ADDR actual_pc;
1432 struct address_space *aspace;
1433
1434 head = displaced->step_request_queue;
1435 ptid = head->ptid;
1436 displaced->step_request_queue = head->next;
1437 xfree (head);
1438
1439 context_switch (ptid);
1440
1441 regcache = get_thread_regcache (ptid);
1442 actual_pc = regcache_read_pc (regcache);
1443 aspace = get_regcache_aspace (regcache);
1444
1445 if (breakpoint_here_p (aspace, actual_pc))
1446 {
1447 if (debug_displaced)
1448 fprintf_unfiltered (gdb_stdlog,
1449 "displaced: stepping queued %s now\n",
1450 target_pid_to_str (ptid));
1451
1452 displaced_step_prepare (ptid);
1453
1454 gdbarch = get_regcache_arch (regcache);
1455
1456 if (debug_displaced)
1457 {
1458 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1459 gdb_byte buf[4];
1460
1461 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1462 paddress (gdbarch, actual_pc));
1463 read_memory (actual_pc, buf, sizeof (buf));
1464 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1465 }
1466
1467 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1468 displaced->step_closure))
1469 target_resume (ptid, 1, TARGET_SIGNAL_0);
1470 else
1471 target_resume (ptid, 0, TARGET_SIGNAL_0);
1472
1473 /* Done, we're stepping a thread. */
1474 break;
1475 }
1476 else
1477 {
1478 int step;
1479 struct thread_info *tp = inferior_thread ();
1480
1481 /* The breakpoint we were sitting under has since been
1482 removed. */
1483 tp->control.trap_expected = 0;
1484
1485 /* Go back to what we were trying to do. */
1486 step = currently_stepping (tp);
1487
1488 if (debug_displaced)
1489 fprintf_unfiltered (gdb_stdlog,
1490 "breakpoint is gone %s: step(%d)\n",
1491 target_pid_to_str (tp->ptid), step);
1492
1493 target_resume (ptid, step, TARGET_SIGNAL_0);
1494 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1495
1496 /* This request was discarded. See if there's any other
1497 thread waiting for its turn. */
1498 }
1499 }
1500 }
1501
1502 /* Update global variables holding ptids to hold NEW_PTID if they were
1503 holding OLD_PTID. */
1504 static void
1505 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1506 {
1507 struct displaced_step_request *it;
1508 struct displaced_step_inferior_state *displaced;
1509
1510 if (ptid_equal (inferior_ptid, old_ptid))
1511 inferior_ptid = new_ptid;
1512
1513 if (ptid_equal (singlestep_ptid, old_ptid))
1514 singlestep_ptid = new_ptid;
1515
1516 if (ptid_equal (deferred_step_ptid, old_ptid))
1517 deferred_step_ptid = new_ptid;
1518
1519 for (displaced = displaced_step_inferior_states;
1520 displaced;
1521 displaced = displaced->next)
1522 {
1523 if (ptid_equal (displaced->step_ptid, old_ptid))
1524 displaced->step_ptid = new_ptid;
1525
1526 for (it = displaced->step_request_queue; it; it = it->next)
1527 if (ptid_equal (it->ptid, old_ptid))
1528 it->ptid = new_ptid;
1529 }
1530 }
1531
1532 \f
1533 /* Resuming. */
1534
1535 /* Things to clean up if we QUIT out of resume (). */
1536 static void
1537 resume_cleanups (void *ignore)
1538 {
1539 normal_stop ();
1540 }
1541
1542 static const char schedlock_off[] = "off";
1543 static const char schedlock_on[] = "on";
1544 static const char schedlock_step[] = "step";
1545 static const char *scheduler_enums[] = {
1546 schedlock_off,
1547 schedlock_on,
1548 schedlock_step,
1549 NULL
1550 };
1551 static const char *scheduler_mode = schedlock_off;
1552 static void
1553 show_scheduler_mode (struct ui_file *file, int from_tty,
1554 struct cmd_list_element *c, const char *value)
1555 {
1556 fprintf_filtered (file,
1557 _("Mode for locking scheduler "
1558 "during execution is \"%s\".\n"),
1559 value);
1560 }
1561
1562 static void
1563 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1564 {
1565 if (!target_can_lock_scheduler)
1566 {
1567 scheduler_mode = schedlock_off;
1568 error (_("Target '%s' cannot support this command."), target_shortname);
1569 }
1570 }
1571
1572 /* True if execution commands resume all threads of all processes by
1573 default; otherwise, resume only threads of the current inferior
1574 process. */
1575 int sched_multi = 0;
1576
1577 /* Try to setup for software single stepping over the specified location.
1578 Return 1 if target_resume() should use hardware single step.
1579
1580 GDBARCH the current gdbarch.
1581 PC the location to step over. */
1582
1583 static int
1584 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1585 {
1586 int hw_step = 1;
1587
1588 if (execution_direction == EXEC_FORWARD
1589 && gdbarch_software_single_step_p (gdbarch)
1590 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1591 {
1592 hw_step = 0;
1593 /* Do not pull these breakpoints until after a `wait' in
1594 `wait_for_inferior'. */
1595 singlestep_breakpoints_inserted_p = 1;
1596 singlestep_ptid = inferior_ptid;
1597 singlestep_pc = pc;
1598 }
1599 return hw_step;
1600 }
1601
1602 /* Return a ptid representing the set of threads that we will proceed,
1603 in the perspective of the user/frontend. We may actually resume
1604 fewer threads at first, e.g., if a thread is stopped at a
1605 breakpoint that needs stepping-off, but that should not be visible
1606 to the user/frontend, and neither should the frontend/user be
1607 allowed to proceed any of the threads that happen to be stopped for
1608 internal run control handling, if a previous command wanted them
1609 resumed. */
1610
1611 ptid_t
1612 user_visible_resume_ptid (int step)
1613 {
1614 /* By default, resume all threads of all processes. */
1615 ptid_t resume_ptid = RESUME_ALL;
1616
1617 /* Maybe resume only all threads of the current process. */
1618 if (!sched_multi && target_supports_multi_process ())
1619 {
1620 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1621 }
1622
1623 /* Maybe resume a single thread after all. */
1624 if (non_stop)
1625 {
1626 /* With non-stop mode on, threads are always handled
1627 individually. */
1628 resume_ptid = inferior_ptid;
1629 }
1630 else if ((scheduler_mode == schedlock_on)
1631 || (scheduler_mode == schedlock_step
1632 && (step || singlestep_breakpoints_inserted_p)))
1633 {
1634 /* User-settable 'scheduler' mode requires solo thread resume. */
1635 resume_ptid = inferior_ptid;
1636 }
1637
1638 return resume_ptid;
1639 }
1640
1641 /* Resume the inferior, but allow a QUIT. This is useful if the user
1642 wants to interrupt some lengthy single-stepping operation
1643 (for child processes, the SIGINT goes to the inferior, and so
1644 we get a SIGINT random_signal, but for remote debugging and perhaps
1645 other targets, that's not true).
1646
1647 STEP nonzero if we should step (zero to continue instead).
1648 SIG is the signal to give the inferior (zero for none). */
1649 void
1650 resume (int step, enum target_signal sig)
1651 {
1652 int should_resume = 1;
1653 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1654 struct regcache *regcache = get_current_regcache ();
1655 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1656 struct thread_info *tp = inferior_thread ();
1657 CORE_ADDR pc = regcache_read_pc (regcache);
1658 struct address_space *aspace = get_regcache_aspace (regcache);
1659
1660 QUIT;
1661
1662 if (current_inferior ()->waiting_for_vfork_done)
1663 {
1664 /* Don't try to single-step a vfork parent that is waiting for
1665 the child to get out of the shared memory region (by exec'ing
1666 or exiting). This is particularly important on software
1667 single-step archs, as the child process would trip on the
1668 software single step breakpoint inserted for the parent
1669 process. Since the parent will not actually execute any
1670 instruction until the child is out of the shared region (such
1671 are vfork's semantics), it is safe to simply continue it.
1672 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1673 the parent, and tell it to `keep_going', which automatically
1674 re-sets it stepping. */
1675 if (debug_infrun)
1676 fprintf_unfiltered (gdb_stdlog,
1677 "infrun: resume : clear step\n");
1678 step = 0;
1679 }
1680
1681 if (debug_infrun)
1682 fprintf_unfiltered (gdb_stdlog,
1683 "infrun: resume (step=%d, signal=%d), "
1684 "trap_expected=%d, current thread [%s] at %s\n",
1685 step, sig, tp->control.trap_expected,
1686 target_pid_to_str (inferior_ptid),
1687 paddress (gdbarch, pc));
1688
1689 /* Normally, by the time we reach `resume', the breakpoints are either
1690 removed or inserted, as appropriate. The exception is if we're sitting
1691 at a permanent breakpoint; we need to step over it, but permanent
1692 breakpoints can't be removed. So we have to test for it here. */
1693 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1694 {
1695 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1696 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1697 else
1698 error (_("\
1699 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1700 how to step past a permanent breakpoint on this architecture. Try using\n\
1701 a command like `return' or `jump' to continue execution."));
1702 }
1703
1704 /* If enabled, step over breakpoints by executing a copy of the
1705 instruction at a different address.
1706
1707 We can't use displaced stepping when we have a signal to deliver;
1708 the comments for displaced_step_prepare explain why. The
1709 comments in the handle_inferior event for dealing with 'random
1710 signals' explain what we do instead.
1711
1712 We can't use displaced stepping when we are waiting for vfork_done
1713 event, displaced stepping breaks the vfork child similarly as single
1714 step software breakpoint. */
1715 if (use_displaced_stepping (gdbarch)
1716 && (tp->control.trap_expected
1717 || (step && gdbarch_software_single_step_p (gdbarch)))
1718 && sig == TARGET_SIGNAL_0
1719 && !current_inferior ()->waiting_for_vfork_done)
1720 {
1721 struct displaced_step_inferior_state *displaced;
1722
1723 if (!displaced_step_prepare (inferior_ptid))
1724 {
1725 /* Got placed in displaced stepping queue. Will be resumed
1726 later when all the currently queued displaced stepping
1727 requests finish. The thread is not executing at this point,
1728 and the call to set_executing will be made later. But we
1729 need to call set_running here, since from frontend point of view,
1730 the thread is running. */
1731 set_running (inferior_ptid, 1);
1732 discard_cleanups (old_cleanups);
1733 return;
1734 }
1735
1736 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1737 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1738 displaced->step_closure);
1739 }
1740
1741 /* Do we need to do it the hard way, w/temp breakpoints? */
1742 else if (step)
1743 step = maybe_software_singlestep (gdbarch, pc);
1744
1745 /* Currently, our software single-step implementation leads to different
1746 results than hardware single-stepping in one situation: when stepping
1747 into delivering a signal which has an associated signal handler,
1748 hardware single-step will stop at the first instruction of the handler,
1749 while software single-step will simply skip execution of the handler.
1750
1751 For now, this difference in behavior is accepted since there is no
1752 easy way to actually implement single-stepping into a signal handler
1753 without kernel support.
1754
1755 However, there is one scenario where this difference leads to follow-on
1756 problems: if we're stepping off a breakpoint by removing all breakpoints
1757 and then single-stepping. In this case, the software single-step
1758 behavior means that even if there is a *breakpoint* in the signal
1759 handler, GDB still would not stop.
1760
1761 Fortunately, we can at least fix this particular issue. We detect
1762 here the case where we are about to deliver a signal while software
1763 single-stepping with breakpoints removed. In this situation, we
1764 revert the decisions to remove all breakpoints and insert single-
1765 step breakpoints, and instead we install a step-resume breakpoint
1766 at the current address, deliver the signal without stepping, and
1767 once we arrive back at the step-resume breakpoint, actually step
1768 over the breakpoint we originally wanted to step over. */
1769 if (singlestep_breakpoints_inserted_p
1770 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1771 {
1772 /* If we have nested signals or a pending signal is delivered
1773 immediately after a handler returns, might might already have
1774 a step-resume breakpoint set on the earlier handler. We cannot
1775 set another step-resume breakpoint; just continue on until the
1776 original breakpoint is hit. */
1777 if (tp->control.step_resume_breakpoint == NULL)
1778 {
1779 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1780 tp->step_after_step_resume_breakpoint = 1;
1781 }
1782
1783 remove_single_step_breakpoints ();
1784 singlestep_breakpoints_inserted_p = 0;
1785
1786 insert_breakpoints ();
1787 tp->control.trap_expected = 0;
1788 }
1789
1790 if (should_resume)
1791 {
1792 ptid_t resume_ptid;
1793
1794 /* If STEP is set, it's a request to use hardware stepping
1795 facilities. But in that case, we should never
1796 use singlestep breakpoint. */
1797 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1798
1799 /* Decide the set of threads to ask the target to resume. Start
1800 by assuming everything will be resumed, than narrow the set
1801 by applying increasingly restricting conditions. */
1802 resume_ptid = user_visible_resume_ptid (step);
1803
1804 /* Maybe resume a single thread after all. */
1805 if (singlestep_breakpoints_inserted_p
1806 && stepping_past_singlestep_breakpoint)
1807 {
1808 /* The situation here is as follows. In thread T1 we wanted to
1809 single-step. Lacking hardware single-stepping we've
1810 set breakpoint at the PC of the next instruction -- call it
1811 P. After resuming, we've hit that breakpoint in thread T2.
1812 Now we've removed original breakpoint, inserted breakpoint
1813 at P+1, and try to step to advance T2 past breakpoint.
1814 We need to step only T2, as if T1 is allowed to freely run,
1815 it can run past P, and if other threads are allowed to run,
1816 they can hit breakpoint at P+1, and nested hits of single-step
1817 breakpoints is not something we'd want -- that's complicated
1818 to support, and has no value. */
1819 resume_ptid = inferior_ptid;
1820 }
1821 else if ((step || singlestep_breakpoints_inserted_p)
1822 && tp->control.trap_expected)
1823 {
1824 /* We're allowing a thread to run past a breakpoint it has
1825 hit, by single-stepping the thread with the breakpoint
1826 removed. In which case, we need to single-step only this
1827 thread, and keep others stopped, as they can miss this
1828 breakpoint if allowed to run.
1829
1830 The current code actually removes all breakpoints when
1831 doing this, not just the one being stepped over, so if we
1832 let other threads run, we can actually miss any
1833 breakpoint, not just the one at PC. */
1834 resume_ptid = inferior_ptid;
1835 }
1836
1837 if (gdbarch_cannot_step_breakpoint (gdbarch))
1838 {
1839 /* Most targets can step a breakpoint instruction, thus
1840 executing it normally. But if this one cannot, just
1841 continue and we will hit it anyway. */
1842 if (step && breakpoint_inserted_here_p (aspace, pc))
1843 step = 0;
1844 }
1845
1846 if (debug_displaced
1847 && use_displaced_stepping (gdbarch)
1848 && tp->control.trap_expected)
1849 {
1850 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1851 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1852 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1853 gdb_byte buf[4];
1854
1855 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1856 paddress (resume_gdbarch, actual_pc));
1857 read_memory (actual_pc, buf, sizeof (buf));
1858 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1859 }
1860
1861 /* Install inferior's terminal modes. */
1862 target_terminal_inferior ();
1863
1864 /* Avoid confusing the next resume, if the next stop/resume
1865 happens to apply to another thread. */
1866 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1867
1868 /* Advise target which signals may be handled silently. If we have
1869 removed breakpoints because we are stepping over one (which can
1870 happen only if we are not using displaced stepping), we need to
1871 receive all signals to avoid accidentally skipping a breakpoint
1872 during execution of a signal handler. */
1873 if ((step || singlestep_breakpoints_inserted_p)
1874 && tp->control.trap_expected
1875 && !use_displaced_stepping (gdbarch))
1876 target_pass_signals (0, NULL);
1877 else
1878 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1879
1880 target_resume (resume_ptid, step, sig);
1881 }
1882
1883 discard_cleanups (old_cleanups);
1884 }
1885 \f
1886 /* Proceeding. */
1887
1888 /* Clear out all variables saying what to do when inferior is continued.
1889 First do this, then set the ones you want, then call `proceed'. */
1890
1891 static void
1892 clear_proceed_status_thread (struct thread_info *tp)
1893 {
1894 if (debug_infrun)
1895 fprintf_unfiltered (gdb_stdlog,
1896 "infrun: clear_proceed_status_thread (%s)\n",
1897 target_pid_to_str (tp->ptid));
1898
1899 tp->control.trap_expected = 0;
1900 tp->control.step_range_start = 0;
1901 tp->control.step_range_end = 0;
1902 tp->control.step_frame_id = null_frame_id;
1903 tp->control.step_stack_frame_id = null_frame_id;
1904 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1905 tp->stop_requested = 0;
1906
1907 tp->control.stop_step = 0;
1908
1909 tp->control.proceed_to_finish = 0;
1910
1911 /* Discard any remaining commands or status from previous stop. */
1912 bpstat_clear (&tp->control.stop_bpstat);
1913 }
1914
1915 static int
1916 clear_proceed_status_callback (struct thread_info *tp, void *data)
1917 {
1918 if (is_exited (tp->ptid))
1919 return 0;
1920
1921 clear_proceed_status_thread (tp);
1922 return 0;
1923 }
1924
1925 void
1926 clear_proceed_status (void)
1927 {
1928 if (!non_stop)
1929 {
1930 /* In all-stop mode, delete the per-thread status of all
1931 threads, even if inferior_ptid is null_ptid, there may be
1932 threads on the list. E.g., we may be launching a new
1933 process, while selecting the executable. */
1934 iterate_over_threads (clear_proceed_status_callback, NULL);
1935 }
1936
1937 if (!ptid_equal (inferior_ptid, null_ptid))
1938 {
1939 struct inferior *inferior;
1940
1941 if (non_stop)
1942 {
1943 /* If in non-stop mode, only delete the per-thread status of
1944 the current thread. */
1945 clear_proceed_status_thread (inferior_thread ());
1946 }
1947
1948 inferior = current_inferior ();
1949 inferior->control.stop_soon = NO_STOP_QUIETLY;
1950 }
1951
1952 stop_after_trap = 0;
1953
1954 observer_notify_about_to_proceed ();
1955
1956 if (stop_registers)
1957 {
1958 regcache_xfree (stop_registers);
1959 stop_registers = NULL;
1960 }
1961 }
1962
1963 /* Check the current thread against the thread that reported the most recent
1964 event. If a step-over is required return TRUE and set the current thread
1965 to the old thread. Otherwise return FALSE.
1966
1967 This should be suitable for any targets that support threads. */
1968
1969 static int
1970 prepare_to_proceed (int step)
1971 {
1972 ptid_t wait_ptid;
1973 struct target_waitstatus wait_status;
1974 int schedlock_enabled;
1975
1976 /* With non-stop mode on, threads are always handled individually. */
1977 gdb_assert (! non_stop);
1978
1979 /* Get the last target status returned by target_wait(). */
1980 get_last_target_status (&wait_ptid, &wait_status);
1981
1982 /* Make sure we were stopped at a breakpoint. */
1983 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1984 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1985 && wait_status.value.sig != TARGET_SIGNAL_ILL
1986 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1987 && wait_status.value.sig != TARGET_SIGNAL_EMT))
1988 {
1989 return 0;
1990 }
1991
1992 schedlock_enabled = (scheduler_mode == schedlock_on
1993 || (scheduler_mode == schedlock_step
1994 && step));
1995
1996 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1997 if (schedlock_enabled)
1998 return 0;
1999
2000 /* Don't switch over if we're about to resume some other process
2001 other than WAIT_PTID's, and schedule-multiple is off. */
2002 if (!sched_multi
2003 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2004 return 0;
2005
2006 /* Switched over from WAIT_PID. */
2007 if (!ptid_equal (wait_ptid, minus_one_ptid)
2008 && !ptid_equal (inferior_ptid, wait_ptid))
2009 {
2010 struct regcache *regcache = get_thread_regcache (wait_ptid);
2011
2012 if (breakpoint_here_p (get_regcache_aspace (regcache),
2013 regcache_read_pc (regcache)))
2014 {
2015 /* If stepping, remember current thread to switch back to. */
2016 if (step)
2017 deferred_step_ptid = inferior_ptid;
2018
2019 /* Switch back to WAIT_PID thread. */
2020 switch_to_thread (wait_ptid);
2021
2022 if (debug_infrun)
2023 fprintf_unfiltered (gdb_stdlog,
2024 "infrun: prepare_to_proceed (step=%d), "
2025 "switched to [%s]\n",
2026 step, target_pid_to_str (inferior_ptid));
2027
2028 /* We return 1 to indicate that there is a breakpoint here,
2029 so we need to step over it before continuing to avoid
2030 hitting it straight away. */
2031 return 1;
2032 }
2033 }
2034
2035 return 0;
2036 }
2037
2038 /* Basic routine for continuing the program in various fashions.
2039
2040 ADDR is the address to resume at, or -1 for resume where stopped.
2041 SIGGNAL is the signal to give it, or 0 for none,
2042 or -1 for act according to how it stopped.
2043 STEP is nonzero if should trap after one instruction.
2044 -1 means return after that and print nothing.
2045 You should probably set various step_... variables
2046 before calling here, if you are stepping.
2047
2048 You should call clear_proceed_status before calling proceed. */
2049
2050 void
2051 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
2052 {
2053 struct regcache *regcache;
2054 struct gdbarch *gdbarch;
2055 struct thread_info *tp;
2056 CORE_ADDR pc;
2057 struct address_space *aspace;
2058 int oneproc = 0;
2059
2060 /* If we're stopped at a fork/vfork, follow the branch set by the
2061 "set follow-fork-mode" command; otherwise, we'll just proceed
2062 resuming the current thread. */
2063 if (!follow_fork ())
2064 {
2065 /* The target for some reason decided not to resume. */
2066 normal_stop ();
2067 if (target_can_async_p ())
2068 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2069 return;
2070 }
2071
2072 /* We'll update this if & when we switch to a new thread. */
2073 previous_inferior_ptid = inferior_ptid;
2074
2075 regcache = get_current_regcache ();
2076 gdbarch = get_regcache_arch (regcache);
2077 aspace = get_regcache_aspace (regcache);
2078 pc = regcache_read_pc (regcache);
2079
2080 if (step > 0)
2081 step_start_function = find_pc_function (pc);
2082 if (step < 0)
2083 stop_after_trap = 1;
2084
2085 if (addr == (CORE_ADDR) -1)
2086 {
2087 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2088 && execution_direction != EXEC_REVERSE)
2089 /* There is a breakpoint at the address we will resume at,
2090 step one instruction before inserting breakpoints so that
2091 we do not stop right away (and report a second hit at this
2092 breakpoint).
2093
2094 Note, we don't do this in reverse, because we won't
2095 actually be executing the breakpoint insn anyway.
2096 We'll be (un-)executing the previous instruction. */
2097
2098 oneproc = 1;
2099 else if (gdbarch_single_step_through_delay_p (gdbarch)
2100 && gdbarch_single_step_through_delay (gdbarch,
2101 get_current_frame ()))
2102 /* We stepped onto an instruction that needs to be stepped
2103 again before re-inserting the breakpoint, do so. */
2104 oneproc = 1;
2105 }
2106 else
2107 {
2108 regcache_write_pc (regcache, addr);
2109 }
2110
2111 if (debug_infrun)
2112 fprintf_unfiltered (gdb_stdlog,
2113 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2114 paddress (gdbarch, addr), siggnal, step);
2115
2116 if (non_stop)
2117 /* In non-stop, each thread is handled individually. The context
2118 must already be set to the right thread here. */
2119 ;
2120 else
2121 {
2122 /* In a multi-threaded task we may select another thread and
2123 then continue or step.
2124
2125 But if the old thread was stopped at a breakpoint, it will
2126 immediately cause another breakpoint stop without any
2127 execution (i.e. it will report a breakpoint hit incorrectly).
2128 So we must step over it first.
2129
2130 prepare_to_proceed checks the current thread against the
2131 thread that reported the most recent event. If a step-over
2132 is required it returns TRUE and sets the current thread to
2133 the old thread. */
2134 if (prepare_to_proceed (step))
2135 oneproc = 1;
2136 }
2137
2138 /* prepare_to_proceed may change the current thread. */
2139 tp = inferior_thread ();
2140
2141 if (oneproc)
2142 {
2143 tp->control.trap_expected = 1;
2144 /* If displaced stepping is enabled, we can step over the
2145 breakpoint without hitting it, so leave all breakpoints
2146 inserted. Otherwise we need to disable all breakpoints, step
2147 one instruction, and then re-add them when that step is
2148 finished. */
2149 if (!use_displaced_stepping (gdbarch))
2150 remove_breakpoints ();
2151 }
2152
2153 /* We can insert breakpoints if we're not trying to step over one,
2154 or if we are stepping over one but we're using displaced stepping
2155 to do so. */
2156 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2157 insert_breakpoints ();
2158
2159 if (!non_stop)
2160 {
2161 /* Pass the last stop signal to the thread we're resuming,
2162 irrespective of whether the current thread is the thread that
2163 got the last event or not. This was historically GDB's
2164 behaviour before keeping a stop_signal per thread. */
2165
2166 struct thread_info *last_thread;
2167 ptid_t last_ptid;
2168 struct target_waitstatus last_status;
2169
2170 get_last_target_status (&last_ptid, &last_status);
2171 if (!ptid_equal (inferior_ptid, last_ptid)
2172 && !ptid_equal (last_ptid, null_ptid)
2173 && !ptid_equal (last_ptid, minus_one_ptid))
2174 {
2175 last_thread = find_thread_ptid (last_ptid);
2176 if (last_thread)
2177 {
2178 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2179 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2180 }
2181 }
2182 }
2183
2184 if (siggnal != TARGET_SIGNAL_DEFAULT)
2185 tp->suspend.stop_signal = siggnal;
2186 /* If this signal should not be seen by program,
2187 give it zero. Used for debugging signals. */
2188 else if (!signal_program[tp->suspend.stop_signal])
2189 tp->suspend.stop_signal = TARGET_SIGNAL_0;
2190
2191 annotate_starting ();
2192
2193 /* Make sure that output from GDB appears before output from the
2194 inferior. */
2195 gdb_flush (gdb_stdout);
2196
2197 /* Refresh prev_pc value just prior to resuming. This used to be
2198 done in stop_stepping, however, setting prev_pc there did not handle
2199 scenarios such as inferior function calls or returning from
2200 a function via the return command. In those cases, the prev_pc
2201 value was not set properly for subsequent commands. The prev_pc value
2202 is used to initialize the starting line number in the ecs. With an
2203 invalid value, the gdb next command ends up stopping at the position
2204 represented by the next line table entry past our start position.
2205 On platforms that generate one line table entry per line, this
2206 is not a problem. However, on the ia64, the compiler generates
2207 extraneous line table entries that do not increase the line number.
2208 When we issue the gdb next command on the ia64 after an inferior call
2209 or a return command, we often end up a few instructions forward, still
2210 within the original line we started.
2211
2212 An attempt was made to refresh the prev_pc at the same time the
2213 execution_control_state is initialized (for instance, just before
2214 waiting for an inferior event). But this approach did not work
2215 because of platforms that use ptrace, where the pc register cannot
2216 be read unless the inferior is stopped. At that point, we are not
2217 guaranteed the inferior is stopped and so the regcache_read_pc() call
2218 can fail. Setting the prev_pc value here ensures the value is updated
2219 correctly when the inferior is stopped. */
2220 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2221
2222 /* Fill in with reasonable starting values. */
2223 init_thread_stepping_state (tp);
2224
2225 /* Reset to normal state. */
2226 init_infwait_state ();
2227
2228 /* Resume inferior. */
2229 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2230
2231 /* Wait for it to stop (if not standalone)
2232 and in any case decode why it stopped, and act accordingly. */
2233 /* Do this only if we are not using the event loop, or if the target
2234 does not support asynchronous execution. */
2235 if (!target_can_async_p ())
2236 {
2237 wait_for_inferior ();
2238 normal_stop ();
2239 }
2240 }
2241 \f
2242
2243 /* Start remote-debugging of a machine over a serial link. */
2244
2245 void
2246 start_remote (int from_tty)
2247 {
2248 struct inferior *inferior;
2249
2250 inferior = current_inferior ();
2251 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2252
2253 /* Always go on waiting for the target, regardless of the mode. */
2254 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2255 indicate to wait_for_inferior that a target should timeout if
2256 nothing is returned (instead of just blocking). Because of this,
2257 targets expecting an immediate response need to, internally, set
2258 things up so that the target_wait() is forced to eventually
2259 timeout. */
2260 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2261 differentiate to its caller what the state of the target is after
2262 the initial open has been performed. Here we're assuming that
2263 the target has stopped. It should be possible to eventually have
2264 target_open() return to the caller an indication that the target
2265 is currently running and GDB state should be set to the same as
2266 for an async run. */
2267 wait_for_inferior ();
2268
2269 /* Now that the inferior has stopped, do any bookkeeping like
2270 loading shared libraries. We want to do this before normal_stop,
2271 so that the displayed frame is up to date. */
2272 post_create_inferior (&current_target, from_tty);
2273
2274 normal_stop ();
2275 }
2276
2277 /* Initialize static vars when a new inferior begins. */
2278
2279 void
2280 init_wait_for_inferior (void)
2281 {
2282 /* These are meaningless until the first time through wait_for_inferior. */
2283
2284 breakpoint_init_inferior (inf_starting);
2285
2286 clear_proceed_status ();
2287
2288 stepping_past_singlestep_breakpoint = 0;
2289 deferred_step_ptid = null_ptid;
2290
2291 target_last_wait_ptid = minus_one_ptid;
2292
2293 previous_inferior_ptid = inferior_ptid;
2294 init_infwait_state ();
2295
2296 /* Discard any skipped inlined frames. */
2297 clear_inline_frame_state (minus_one_ptid);
2298 }
2299
2300 \f
2301 /* This enum encodes possible reasons for doing a target_wait, so that
2302 wfi can call target_wait in one place. (Ultimately the call will be
2303 moved out of the infinite loop entirely.) */
2304
2305 enum infwait_states
2306 {
2307 infwait_normal_state,
2308 infwait_thread_hop_state,
2309 infwait_step_watch_state,
2310 infwait_nonstep_watch_state
2311 };
2312
2313 /* The PTID we'll do a target_wait on.*/
2314 ptid_t waiton_ptid;
2315
2316 /* Current inferior wait state. */
2317 enum infwait_states infwait_state;
2318
2319 /* Data to be passed around while handling an event. This data is
2320 discarded between events. */
2321 struct execution_control_state
2322 {
2323 ptid_t ptid;
2324 /* The thread that got the event, if this was a thread event; NULL
2325 otherwise. */
2326 struct thread_info *event_thread;
2327
2328 struct target_waitstatus ws;
2329 int random_signal;
2330 int stop_func_filled_in;
2331 CORE_ADDR stop_func_start;
2332 CORE_ADDR stop_func_end;
2333 char *stop_func_name;
2334 int new_thread_event;
2335 int wait_some_more;
2336 };
2337
2338 static void handle_inferior_event (struct execution_control_state *ecs);
2339
2340 static void handle_step_into_function (struct gdbarch *gdbarch,
2341 struct execution_control_state *ecs);
2342 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2343 struct execution_control_state *ecs);
2344 static void check_exception_resume (struct execution_control_state *,
2345 struct frame_info *, struct symbol *);
2346
2347 static void stop_stepping (struct execution_control_state *ecs);
2348 static void prepare_to_wait (struct execution_control_state *ecs);
2349 static void keep_going (struct execution_control_state *ecs);
2350
2351 /* Callback for iterate over threads. If the thread is stopped, but
2352 the user/frontend doesn't know about that yet, go through
2353 normal_stop, as if the thread had just stopped now. ARG points at
2354 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2355 ptid_is_pid(PTID) is true, applies to all threads of the process
2356 pointed at by PTID. Otherwise, apply only to the thread pointed by
2357 PTID. */
2358
2359 static int
2360 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2361 {
2362 ptid_t ptid = * (ptid_t *) arg;
2363
2364 if ((ptid_equal (info->ptid, ptid)
2365 || ptid_equal (minus_one_ptid, ptid)
2366 || (ptid_is_pid (ptid)
2367 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2368 && is_running (info->ptid)
2369 && !is_executing (info->ptid))
2370 {
2371 struct cleanup *old_chain;
2372 struct execution_control_state ecss;
2373 struct execution_control_state *ecs = &ecss;
2374
2375 memset (ecs, 0, sizeof (*ecs));
2376
2377 old_chain = make_cleanup_restore_current_thread ();
2378
2379 switch_to_thread (info->ptid);
2380
2381 /* Go through handle_inferior_event/normal_stop, so we always
2382 have consistent output as if the stop event had been
2383 reported. */
2384 ecs->ptid = info->ptid;
2385 ecs->event_thread = find_thread_ptid (info->ptid);
2386 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2387 ecs->ws.value.sig = TARGET_SIGNAL_0;
2388
2389 handle_inferior_event (ecs);
2390
2391 if (!ecs->wait_some_more)
2392 {
2393 struct thread_info *tp;
2394
2395 normal_stop ();
2396
2397 /* Finish off the continuations. */
2398 tp = inferior_thread ();
2399 do_all_intermediate_continuations_thread (tp, 1);
2400 do_all_continuations_thread (tp, 1);
2401 }
2402
2403 do_cleanups (old_chain);
2404 }
2405
2406 return 0;
2407 }
2408
2409 /* This function is attached as a "thread_stop_requested" observer.
2410 Cleanup local state that assumed the PTID was to be resumed, and
2411 report the stop to the frontend. */
2412
2413 static void
2414 infrun_thread_stop_requested (ptid_t ptid)
2415 {
2416 struct displaced_step_inferior_state *displaced;
2417
2418 /* PTID was requested to stop. Remove it from the displaced
2419 stepping queue, so we don't try to resume it automatically. */
2420
2421 for (displaced = displaced_step_inferior_states;
2422 displaced;
2423 displaced = displaced->next)
2424 {
2425 struct displaced_step_request *it, **prev_next_p;
2426
2427 it = displaced->step_request_queue;
2428 prev_next_p = &displaced->step_request_queue;
2429 while (it)
2430 {
2431 if (ptid_match (it->ptid, ptid))
2432 {
2433 *prev_next_p = it->next;
2434 it->next = NULL;
2435 xfree (it);
2436 }
2437 else
2438 {
2439 prev_next_p = &it->next;
2440 }
2441
2442 it = *prev_next_p;
2443 }
2444 }
2445
2446 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2447 }
2448
2449 static void
2450 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2451 {
2452 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2453 nullify_last_target_wait_ptid ();
2454 }
2455
2456 /* Callback for iterate_over_threads. */
2457
2458 static int
2459 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2460 {
2461 if (is_exited (info->ptid))
2462 return 0;
2463
2464 delete_step_resume_breakpoint (info);
2465 delete_exception_resume_breakpoint (info);
2466 return 0;
2467 }
2468
2469 /* In all-stop, delete the step resume breakpoint of any thread that
2470 had one. In non-stop, delete the step resume breakpoint of the
2471 thread that just stopped. */
2472
2473 static void
2474 delete_step_thread_step_resume_breakpoint (void)
2475 {
2476 if (!target_has_execution
2477 || ptid_equal (inferior_ptid, null_ptid))
2478 /* If the inferior has exited, we have already deleted the step
2479 resume breakpoints out of GDB's lists. */
2480 return;
2481
2482 if (non_stop)
2483 {
2484 /* If in non-stop mode, only delete the step-resume or
2485 longjmp-resume breakpoint of the thread that just stopped
2486 stepping. */
2487 struct thread_info *tp = inferior_thread ();
2488
2489 delete_step_resume_breakpoint (tp);
2490 delete_exception_resume_breakpoint (tp);
2491 }
2492 else
2493 /* In all-stop mode, delete all step-resume and longjmp-resume
2494 breakpoints of any thread that had them. */
2495 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2496 }
2497
2498 /* A cleanup wrapper. */
2499
2500 static void
2501 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2502 {
2503 delete_step_thread_step_resume_breakpoint ();
2504 }
2505
2506 /* Pretty print the results of target_wait, for debugging purposes. */
2507
2508 static void
2509 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2510 const struct target_waitstatus *ws)
2511 {
2512 char *status_string = target_waitstatus_to_string (ws);
2513 struct ui_file *tmp_stream = mem_fileopen ();
2514 char *text;
2515
2516 /* The text is split over several lines because it was getting too long.
2517 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2518 output as a unit; we want only one timestamp printed if debug_timestamp
2519 is set. */
2520
2521 fprintf_unfiltered (tmp_stream,
2522 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2523 if (PIDGET (waiton_ptid) != -1)
2524 fprintf_unfiltered (tmp_stream,
2525 " [%s]", target_pid_to_str (waiton_ptid));
2526 fprintf_unfiltered (tmp_stream, ", status) =\n");
2527 fprintf_unfiltered (tmp_stream,
2528 "infrun: %d [%s],\n",
2529 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2530 fprintf_unfiltered (tmp_stream,
2531 "infrun: %s\n",
2532 status_string);
2533
2534 text = ui_file_xstrdup (tmp_stream, NULL);
2535
2536 /* This uses %s in part to handle %'s in the text, but also to avoid
2537 a gcc error: the format attribute requires a string literal. */
2538 fprintf_unfiltered (gdb_stdlog, "%s", text);
2539
2540 xfree (status_string);
2541 xfree (text);
2542 ui_file_delete (tmp_stream);
2543 }
2544
2545 /* Prepare and stabilize the inferior for detaching it. E.g.,
2546 detaching while a thread is displaced stepping is a recipe for
2547 crashing it, as nothing would readjust the PC out of the scratch
2548 pad. */
2549
2550 void
2551 prepare_for_detach (void)
2552 {
2553 struct inferior *inf = current_inferior ();
2554 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2555 struct cleanup *old_chain_1;
2556 struct displaced_step_inferior_state *displaced;
2557
2558 displaced = get_displaced_stepping_state (inf->pid);
2559
2560 /* Is any thread of this process displaced stepping? If not,
2561 there's nothing else to do. */
2562 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2563 return;
2564
2565 if (debug_infrun)
2566 fprintf_unfiltered (gdb_stdlog,
2567 "displaced-stepping in-process while detaching");
2568
2569 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2570 inf->detaching = 1;
2571
2572 while (!ptid_equal (displaced->step_ptid, null_ptid))
2573 {
2574 struct cleanup *old_chain_2;
2575 struct execution_control_state ecss;
2576 struct execution_control_state *ecs;
2577
2578 ecs = &ecss;
2579 memset (ecs, 0, sizeof (*ecs));
2580
2581 overlay_cache_invalid = 1;
2582
2583 /* We have to invalidate the registers BEFORE calling
2584 target_wait because they can be loaded from the target while
2585 in target_wait. This makes remote debugging a bit more
2586 efficient for those targets that provide critical registers
2587 as part of their normal status mechanism. */
2588
2589 registers_changed ();
2590
2591 if (deprecated_target_wait_hook)
2592 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2593 else
2594 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2595
2596 if (debug_infrun)
2597 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2598
2599 /* If an error happens while handling the event, propagate GDB's
2600 knowledge of the executing state to the frontend/user running
2601 state. */
2602 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2603 &minus_one_ptid);
2604
2605 /* In non-stop mode, each thread is handled individually.
2606 Switch early, so the global state is set correctly for this
2607 thread. */
2608 if (non_stop
2609 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2610 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2611 context_switch (ecs->ptid);
2612
2613 /* Now figure out what to do with the result of the result. */
2614 handle_inferior_event (ecs);
2615
2616 /* No error, don't finish the state yet. */
2617 discard_cleanups (old_chain_2);
2618
2619 /* Breakpoints and watchpoints are not installed on the target
2620 at this point, and signals are passed directly to the
2621 inferior, so this must mean the process is gone. */
2622 if (!ecs->wait_some_more)
2623 {
2624 discard_cleanups (old_chain_1);
2625 error (_("Program exited while detaching"));
2626 }
2627 }
2628
2629 discard_cleanups (old_chain_1);
2630 }
2631
2632 /* Wait for control to return from inferior to debugger.
2633
2634 If inferior gets a signal, we may decide to start it up again
2635 instead of returning. That is why there is a loop in this function.
2636 When this function actually returns it means the inferior
2637 should be left stopped and GDB should read more commands. */
2638
2639 void
2640 wait_for_inferior (void)
2641 {
2642 struct cleanup *old_cleanups;
2643 struct execution_control_state ecss;
2644 struct execution_control_state *ecs;
2645
2646 if (debug_infrun)
2647 fprintf_unfiltered
2648 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2649
2650 old_cleanups =
2651 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2652
2653 ecs = &ecss;
2654 memset (ecs, 0, sizeof (*ecs));
2655
2656 while (1)
2657 {
2658 struct cleanup *old_chain;
2659
2660 /* We have to invalidate the registers BEFORE calling target_wait
2661 because they can be loaded from the target while in target_wait.
2662 This makes remote debugging a bit more efficient for those
2663 targets that provide critical registers as part of their normal
2664 status mechanism. */
2665
2666 overlay_cache_invalid = 1;
2667 registers_changed ();
2668
2669 if (deprecated_target_wait_hook)
2670 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2671 else
2672 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2673
2674 if (debug_infrun)
2675 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2676
2677 /* If an error happens while handling the event, propagate GDB's
2678 knowledge of the executing state to the frontend/user running
2679 state. */
2680 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2681
2682 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2683 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2684 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2685
2686 /* Now figure out what to do with the result of the result. */
2687 handle_inferior_event (ecs);
2688
2689 /* No error, don't finish the state yet. */
2690 discard_cleanups (old_chain);
2691
2692 if (!ecs->wait_some_more)
2693 break;
2694 }
2695
2696 do_cleanups (old_cleanups);
2697 }
2698
2699 /* Asynchronous version of wait_for_inferior. It is called by the
2700 event loop whenever a change of state is detected on the file
2701 descriptor corresponding to the target. It can be called more than
2702 once to complete a single execution command. In such cases we need
2703 to keep the state in a global variable ECSS. If it is the last time
2704 that this function is called for a single execution command, then
2705 report to the user that the inferior has stopped, and do the
2706 necessary cleanups. */
2707
2708 void
2709 fetch_inferior_event (void *client_data)
2710 {
2711 struct execution_control_state ecss;
2712 struct execution_control_state *ecs = &ecss;
2713 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2714 struct cleanup *ts_old_chain;
2715 int was_sync = sync_execution;
2716 int cmd_done = 0;
2717
2718 memset (ecs, 0, sizeof (*ecs));
2719
2720 /* We're handling a live event, so make sure we're doing live
2721 debugging. If we're looking at traceframes while the target is
2722 running, we're going to need to get back to that mode after
2723 handling the event. */
2724 if (non_stop)
2725 {
2726 make_cleanup_restore_current_traceframe ();
2727 set_current_traceframe (-1);
2728 }
2729
2730 if (non_stop)
2731 /* In non-stop mode, the user/frontend should not notice a thread
2732 switch due to internal events. Make sure we reverse to the
2733 user selected thread and frame after handling the event and
2734 running any breakpoint commands. */
2735 make_cleanup_restore_current_thread ();
2736
2737 /* We have to invalidate the registers BEFORE calling target_wait
2738 because they can be loaded from the target while in target_wait.
2739 This makes remote debugging a bit more efficient for those
2740 targets that provide critical registers as part of their normal
2741 status mechanism. */
2742
2743 overlay_cache_invalid = 1;
2744
2745 /* But don't do it if the current thread is already stopped (hence
2746 this is either a delayed event that will result in
2747 TARGET_WAITKIND_IGNORE, or it's an event for another thread (and
2748 we always clear the register and frame caches when the user
2749 switches threads anyway). If we didn't do this, a spurious
2750 delayed event in all-stop mode would make the user lose the
2751 selected frame. */
2752 if (non_stop
2753 || (!ptid_equal (inferior_ptid, null_ptid)
2754 && is_executing (inferior_ptid)))
2755 registers_changed ();
2756
2757 make_cleanup_restore_integer (&execution_direction);
2758 execution_direction = target_execution_direction ();
2759
2760 if (deprecated_target_wait_hook)
2761 ecs->ptid =
2762 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2763 else
2764 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2765
2766 if (debug_infrun)
2767 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2768
2769 if (non_stop
2770 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2771 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2772 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2773 /* In non-stop mode, each thread is handled individually. Switch
2774 early, so the global state is set correctly for this
2775 thread. */
2776 context_switch (ecs->ptid);
2777
2778 /* If an error happens while handling the event, propagate GDB's
2779 knowledge of the executing state to the frontend/user running
2780 state. */
2781 if (!non_stop)
2782 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2783 else
2784 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2785
2786 /* Get executed before make_cleanup_restore_current_thread above to apply
2787 still for the thread which has thrown the exception. */
2788 make_bpstat_clear_actions_cleanup ();
2789
2790 /* Now figure out what to do with the result of the result. */
2791 handle_inferior_event (ecs);
2792
2793 if (!ecs->wait_some_more)
2794 {
2795 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2796
2797 delete_step_thread_step_resume_breakpoint ();
2798
2799 /* We may not find an inferior if this was a process exit. */
2800 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2801 normal_stop ();
2802
2803 if (target_has_execution
2804 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2805 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2806 && ecs->event_thread->step_multi
2807 && ecs->event_thread->control.stop_step)
2808 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2809 else
2810 {
2811 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2812 cmd_done = 1;
2813 }
2814 }
2815
2816 /* No error, don't finish the thread states yet. */
2817 discard_cleanups (ts_old_chain);
2818
2819 /* Revert thread and frame. */
2820 do_cleanups (old_chain);
2821
2822 /* If the inferior was in sync execution mode, and now isn't,
2823 restore the prompt (a synchronous execution command has finished,
2824 and we're ready for input). */
2825 if (interpreter_async && was_sync && !sync_execution)
2826 display_gdb_prompt (0);
2827
2828 if (cmd_done
2829 && !was_sync
2830 && exec_done_display_p
2831 && (ptid_equal (inferior_ptid, null_ptid)
2832 || !is_running (inferior_ptid)))
2833 printf_unfiltered (_("completed.\n"));
2834 }
2835
2836 /* Record the frame and location we're currently stepping through. */
2837 void
2838 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2839 {
2840 struct thread_info *tp = inferior_thread ();
2841
2842 tp->control.step_frame_id = get_frame_id (frame);
2843 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2844
2845 tp->current_symtab = sal.symtab;
2846 tp->current_line = sal.line;
2847 }
2848
2849 /* Clear context switchable stepping state. */
2850
2851 void
2852 init_thread_stepping_state (struct thread_info *tss)
2853 {
2854 tss->stepping_over_breakpoint = 0;
2855 tss->step_after_step_resume_breakpoint = 0;
2856 }
2857
2858 /* Return the cached copy of the last pid/waitstatus returned by
2859 target_wait()/deprecated_target_wait_hook(). The data is actually
2860 cached by handle_inferior_event(), which gets called immediately
2861 after target_wait()/deprecated_target_wait_hook(). */
2862
2863 void
2864 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2865 {
2866 *ptidp = target_last_wait_ptid;
2867 *status = target_last_waitstatus;
2868 }
2869
2870 void
2871 nullify_last_target_wait_ptid (void)
2872 {
2873 target_last_wait_ptid = minus_one_ptid;
2874 }
2875
2876 /* Switch thread contexts. */
2877
2878 static void
2879 context_switch (ptid_t ptid)
2880 {
2881 if (debug_infrun)
2882 {
2883 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2884 target_pid_to_str (inferior_ptid));
2885 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2886 target_pid_to_str (ptid));
2887 }
2888
2889 switch_to_thread (ptid);
2890 }
2891
2892 static void
2893 adjust_pc_after_break (struct execution_control_state *ecs)
2894 {
2895 struct regcache *regcache;
2896 struct gdbarch *gdbarch;
2897 struct address_space *aspace;
2898 CORE_ADDR breakpoint_pc;
2899
2900 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2901 we aren't, just return.
2902
2903 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2904 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2905 implemented by software breakpoints should be handled through the normal
2906 breakpoint layer.
2907
2908 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2909 different signals (SIGILL or SIGEMT for instance), but it is less
2910 clear where the PC is pointing afterwards. It may not match
2911 gdbarch_decr_pc_after_break. I don't know any specific target that
2912 generates these signals at breakpoints (the code has been in GDB since at
2913 least 1992) so I can not guess how to handle them here.
2914
2915 In earlier versions of GDB, a target with
2916 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2917 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2918 target with both of these set in GDB history, and it seems unlikely to be
2919 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2920
2921 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2922 return;
2923
2924 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2925 return;
2926
2927 /* In reverse execution, when a breakpoint is hit, the instruction
2928 under it has already been de-executed. The reported PC always
2929 points at the breakpoint address, so adjusting it further would
2930 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2931 architecture:
2932
2933 B1 0x08000000 : INSN1
2934 B2 0x08000001 : INSN2
2935 0x08000002 : INSN3
2936 PC -> 0x08000003 : INSN4
2937
2938 Say you're stopped at 0x08000003 as above. Reverse continuing
2939 from that point should hit B2 as below. Reading the PC when the
2940 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2941 been de-executed already.
2942
2943 B1 0x08000000 : INSN1
2944 B2 PC -> 0x08000001 : INSN2
2945 0x08000002 : INSN3
2946 0x08000003 : INSN4
2947
2948 We can't apply the same logic as for forward execution, because
2949 we would wrongly adjust the PC to 0x08000000, since there's a
2950 breakpoint at PC - 1. We'd then report a hit on B1, although
2951 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2952 behaviour. */
2953 if (execution_direction == EXEC_REVERSE)
2954 return;
2955
2956 /* If this target does not decrement the PC after breakpoints, then
2957 we have nothing to do. */
2958 regcache = get_thread_regcache (ecs->ptid);
2959 gdbarch = get_regcache_arch (regcache);
2960 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2961 return;
2962
2963 aspace = get_regcache_aspace (regcache);
2964
2965 /* Find the location where (if we've hit a breakpoint) the
2966 breakpoint would be. */
2967 breakpoint_pc = regcache_read_pc (regcache)
2968 - gdbarch_decr_pc_after_break (gdbarch);
2969
2970 /* Check whether there actually is a software breakpoint inserted at
2971 that location.
2972
2973 If in non-stop mode, a race condition is possible where we've
2974 removed a breakpoint, but stop events for that breakpoint were
2975 already queued and arrive later. To suppress those spurious
2976 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2977 and retire them after a number of stop events are reported. */
2978 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2979 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2980 {
2981 struct cleanup *old_cleanups = NULL;
2982
2983 if (RECORD_IS_USED)
2984 old_cleanups = record_gdb_operation_disable_set ();
2985
2986 /* When using hardware single-step, a SIGTRAP is reported for both
2987 a completed single-step and a software breakpoint. Need to
2988 differentiate between the two, as the latter needs adjusting
2989 but the former does not.
2990
2991 The SIGTRAP can be due to a completed hardware single-step only if
2992 - we didn't insert software single-step breakpoints
2993 - the thread to be examined is still the current thread
2994 - this thread is currently being stepped
2995
2996 If any of these events did not occur, we must have stopped due
2997 to hitting a software breakpoint, and have to back up to the
2998 breakpoint address.
2999
3000 As a special case, we could have hardware single-stepped a
3001 software breakpoint. In this case (prev_pc == breakpoint_pc),
3002 we also need to back up to the breakpoint address. */
3003
3004 if (singlestep_breakpoints_inserted_p
3005 || !ptid_equal (ecs->ptid, inferior_ptid)
3006 || !currently_stepping (ecs->event_thread)
3007 || ecs->event_thread->prev_pc == breakpoint_pc)
3008 regcache_write_pc (regcache, breakpoint_pc);
3009
3010 if (RECORD_IS_USED)
3011 do_cleanups (old_cleanups);
3012 }
3013 }
3014
3015 void
3016 init_infwait_state (void)
3017 {
3018 waiton_ptid = pid_to_ptid (-1);
3019 infwait_state = infwait_normal_state;
3020 }
3021
3022 void
3023 error_is_running (void)
3024 {
3025 error (_("Cannot execute this command while "
3026 "the selected thread is running."));
3027 }
3028
3029 void
3030 ensure_not_running (void)
3031 {
3032 if (is_running (inferior_ptid))
3033 error_is_running ();
3034 }
3035
3036 static int
3037 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3038 {
3039 for (frame = get_prev_frame (frame);
3040 frame != NULL;
3041 frame = get_prev_frame (frame))
3042 {
3043 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3044 return 1;
3045 if (get_frame_type (frame) != INLINE_FRAME)
3046 break;
3047 }
3048
3049 return 0;
3050 }
3051
3052 /* Auxiliary function that handles syscall entry/return events.
3053 It returns 1 if the inferior should keep going (and GDB
3054 should ignore the event), or 0 if the event deserves to be
3055 processed. */
3056
3057 static int
3058 handle_syscall_event (struct execution_control_state *ecs)
3059 {
3060 struct regcache *regcache;
3061 struct gdbarch *gdbarch;
3062 int syscall_number;
3063
3064 if (!ptid_equal (ecs->ptid, inferior_ptid))
3065 context_switch (ecs->ptid);
3066
3067 regcache = get_thread_regcache (ecs->ptid);
3068 gdbarch = get_regcache_arch (regcache);
3069 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
3070 stop_pc = regcache_read_pc (regcache);
3071
3072 target_last_waitstatus.value.syscall_number = syscall_number;
3073
3074 if (catch_syscall_enabled () > 0
3075 && catching_syscall_number (syscall_number) > 0)
3076 {
3077 if (debug_infrun)
3078 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3079 syscall_number);
3080
3081 ecs->event_thread->control.stop_bpstat
3082 = bpstat_stop_status (get_regcache_aspace (regcache),
3083 stop_pc, ecs->ptid);
3084 ecs->random_signal
3085 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3086
3087 if (!ecs->random_signal)
3088 {
3089 /* Catchpoint hit. */
3090 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3091 return 0;
3092 }
3093 }
3094
3095 /* If no catchpoint triggered for this, then keep going. */
3096 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3097 keep_going (ecs);
3098 return 1;
3099 }
3100
3101 /* Clear the supplied execution_control_state's stop_func_* fields. */
3102
3103 static void
3104 clear_stop_func (struct execution_control_state *ecs)
3105 {
3106 ecs->stop_func_filled_in = 0;
3107 ecs->stop_func_start = 0;
3108 ecs->stop_func_end = 0;
3109 ecs->stop_func_name = NULL;
3110 }
3111
3112 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3113
3114 static void
3115 fill_in_stop_func (struct gdbarch *gdbarch,
3116 struct execution_control_state *ecs)
3117 {
3118 if (!ecs->stop_func_filled_in)
3119 {
3120 /* Don't care about return value; stop_func_start and stop_func_name
3121 will both be 0 if it doesn't work. */
3122 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3123 &ecs->stop_func_start, &ecs->stop_func_end);
3124 ecs->stop_func_start
3125 += gdbarch_deprecated_function_start_offset (gdbarch);
3126
3127 ecs->stop_func_filled_in = 1;
3128 }
3129 }
3130
3131 /* Given an execution control state that has been freshly filled in
3132 by an event from the inferior, figure out what it means and take
3133 appropriate action. */
3134
3135 static void
3136 handle_inferior_event (struct execution_control_state *ecs)
3137 {
3138 struct frame_info *frame;
3139 struct gdbarch *gdbarch;
3140 int stopped_by_watchpoint;
3141 int stepped_after_stopped_by_watchpoint = 0;
3142 struct symtab_and_line stop_pc_sal;
3143 enum stop_kind stop_soon;
3144
3145 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3146 {
3147 /* We had an event in the inferior, but we are not interested in
3148 handling it at this level. The lower layers have already
3149 done what needs to be done, if anything.
3150
3151 One of the possible circumstances for this is when the
3152 inferior produces output for the console. The inferior has
3153 not stopped, and we are ignoring the event. Another possible
3154 circumstance is any event which the lower level knows will be
3155 reported multiple times without an intervening resume. */
3156 if (debug_infrun)
3157 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3158 prepare_to_wait (ecs);
3159 return;
3160 }
3161
3162 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3163 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3164 {
3165 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3166
3167 gdb_assert (inf);
3168 stop_soon = inf->control.stop_soon;
3169 }
3170 else
3171 stop_soon = NO_STOP_QUIETLY;
3172
3173 /* Cache the last pid/waitstatus. */
3174 target_last_wait_ptid = ecs->ptid;
3175 target_last_waitstatus = ecs->ws;
3176
3177 /* Always clear state belonging to the previous time we stopped. */
3178 stop_stack_dummy = STOP_NONE;
3179
3180 /* If it's a new process, add it to the thread database. */
3181
3182 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3183 && !ptid_equal (ecs->ptid, minus_one_ptid)
3184 && !in_thread_list (ecs->ptid));
3185
3186 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3187 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3188 add_thread (ecs->ptid);
3189
3190 ecs->event_thread = find_thread_ptid (ecs->ptid);
3191
3192 /* Dependent on valid ECS->EVENT_THREAD. */
3193 adjust_pc_after_break (ecs);
3194
3195 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3196 reinit_frame_cache ();
3197
3198 breakpoint_retire_moribund ();
3199
3200 /* First, distinguish signals caused by the debugger from signals
3201 that have to do with the program's own actions. Note that
3202 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3203 on the operating system version. Here we detect when a SIGILL or
3204 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3205 something similar for SIGSEGV, since a SIGSEGV will be generated
3206 when we're trying to execute a breakpoint instruction on a
3207 non-executable stack. This happens for call dummy breakpoints
3208 for architectures like SPARC that place call dummies on the
3209 stack. */
3210 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3211 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3212 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
3213 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
3214 {
3215 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3216
3217 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3218 regcache_read_pc (regcache)))
3219 {
3220 if (debug_infrun)
3221 fprintf_unfiltered (gdb_stdlog,
3222 "infrun: Treating signal as SIGTRAP\n");
3223 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3224 }
3225 }
3226
3227 /* Mark the non-executing threads accordingly. In all-stop, all
3228 threads of all processes are stopped when we get any event
3229 reported. In non-stop mode, only the event thread stops. If
3230 we're handling a process exit in non-stop mode, there's nothing
3231 to do, as threads of the dead process are gone, and threads of
3232 any other process were left running. */
3233 if (!non_stop)
3234 set_executing (minus_one_ptid, 0);
3235 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3236 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3237 set_executing (inferior_ptid, 0);
3238
3239 switch (infwait_state)
3240 {
3241 case infwait_thread_hop_state:
3242 if (debug_infrun)
3243 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3244 break;
3245
3246 case infwait_normal_state:
3247 if (debug_infrun)
3248 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3249 break;
3250
3251 case infwait_step_watch_state:
3252 if (debug_infrun)
3253 fprintf_unfiltered (gdb_stdlog,
3254 "infrun: infwait_step_watch_state\n");
3255
3256 stepped_after_stopped_by_watchpoint = 1;
3257 break;
3258
3259 case infwait_nonstep_watch_state:
3260 if (debug_infrun)
3261 fprintf_unfiltered (gdb_stdlog,
3262 "infrun: infwait_nonstep_watch_state\n");
3263 insert_breakpoints ();
3264
3265 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3266 handle things like signals arriving and other things happening
3267 in combination correctly? */
3268 stepped_after_stopped_by_watchpoint = 1;
3269 break;
3270
3271 default:
3272 internal_error (__FILE__, __LINE__, _("bad switch"));
3273 }
3274
3275 infwait_state = infwait_normal_state;
3276 waiton_ptid = pid_to_ptid (-1);
3277
3278 switch (ecs->ws.kind)
3279 {
3280 case TARGET_WAITKIND_LOADED:
3281 if (debug_infrun)
3282 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3283 /* Ignore gracefully during startup of the inferior, as it might
3284 be the shell which has just loaded some objects, otherwise
3285 add the symbols for the newly loaded objects. Also ignore at
3286 the beginning of an attach or remote session; we will query
3287 the full list of libraries once the connection is
3288 established. */
3289 if (stop_soon == NO_STOP_QUIETLY)
3290 {
3291 /* Check for any newly added shared libraries if we're
3292 supposed to be adding them automatically. Switch
3293 terminal for any messages produced by
3294 breakpoint_re_set. */
3295 target_terminal_ours_for_output ();
3296 /* NOTE: cagney/2003-11-25: Make certain that the target
3297 stack's section table is kept up-to-date. Architectures,
3298 (e.g., PPC64), use the section table to perform
3299 operations such as address => section name and hence
3300 require the table to contain all sections (including
3301 those found in shared libraries). */
3302 #ifdef SOLIB_ADD
3303 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3304 #else
3305 solib_add (NULL, 0, &current_target, auto_solib_add);
3306 #endif
3307 target_terminal_inferior ();
3308
3309 /* If requested, stop when the dynamic linker notifies
3310 gdb of events. This allows the user to get control
3311 and place breakpoints in initializer routines for
3312 dynamically loaded objects (among other things). */
3313 if (stop_on_solib_events)
3314 {
3315 /* Make sure we print "Stopped due to solib-event" in
3316 normal_stop. */
3317 stop_print_frame = 1;
3318
3319 stop_stepping (ecs);
3320 return;
3321 }
3322
3323 /* NOTE drow/2007-05-11: This might be a good place to check
3324 for "catch load". */
3325 }
3326
3327 /* If we are skipping through a shell, or through shared library
3328 loading that we aren't interested in, resume the program. If
3329 we're running the program normally, also resume. But stop if
3330 we're attaching or setting up a remote connection. */
3331 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3332 {
3333 /* Loading of shared libraries might have changed breakpoint
3334 addresses. Make sure new breakpoints are inserted. */
3335 if (stop_soon == NO_STOP_QUIETLY
3336 && !breakpoints_always_inserted_mode ())
3337 insert_breakpoints ();
3338 resume (0, TARGET_SIGNAL_0);
3339 prepare_to_wait (ecs);
3340 return;
3341 }
3342
3343 break;
3344
3345 case TARGET_WAITKIND_SPURIOUS:
3346 if (debug_infrun)
3347 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3348 resume (0, TARGET_SIGNAL_0);
3349 prepare_to_wait (ecs);
3350 return;
3351
3352 case TARGET_WAITKIND_EXITED:
3353 if (debug_infrun)
3354 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3355 inferior_ptid = ecs->ptid;
3356 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3357 set_current_program_space (current_inferior ()->pspace);
3358 handle_vfork_child_exec_or_exit (0);
3359 target_terminal_ours (); /* Must do this before mourn anyway. */
3360 print_exited_reason (ecs->ws.value.integer);
3361
3362 /* Record the exit code in the convenience variable $_exitcode, so
3363 that the user can inspect this again later. */
3364 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3365 (LONGEST) ecs->ws.value.integer);
3366
3367 /* Also record this in the inferior itself. */
3368 current_inferior ()->has_exit_code = 1;
3369 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3370
3371 gdb_flush (gdb_stdout);
3372 target_mourn_inferior ();
3373 singlestep_breakpoints_inserted_p = 0;
3374 cancel_single_step_breakpoints ();
3375 stop_print_frame = 0;
3376 stop_stepping (ecs);
3377 return;
3378
3379 case TARGET_WAITKIND_SIGNALLED:
3380 if (debug_infrun)
3381 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3382 inferior_ptid = ecs->ptid;
3383 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3384 set_current_program_space (current_inferior ()->pspace);
3385 handle_vfork_child_exec_or_exit (0);
3386 stop_print_frame = 0;
3387 target_terminal_ours (); /* Must do this before mourn anyway. */
3388
3389 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3390 reach here unless the inferior is dead. However, for years
3391 target_kill() was called here, which hints that fatal signals aren't
3392 really fatal on some systems. If that's true, then some changes
3393 may be needed. */
3394 target_mourn_inferior ();
3395
3396 print_signal_exited_reason (ecs->ws.value.sig);
3397 singlestep_breakpoints_inserted_p = 0;
3398 cancel_single_step_breakpoints ();
3399 stop_stepping (ecs);
3400 return;
3401
3402 /* The following are the only cases in which we keep going;
3403 the above cases end in a continue or goto. */
3404 case TARGET_WAITKIND_FORKED:
3405 case TARGET_WAITKIND_VFORKED:
3406 if (debug_infrun)
3407 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3408
3409 if (!ptid_equal (ecs->ptid, inferior_ptid))
3410 {
3411 context_switch (ecs->ptid);
3412 reinit_frame_cache ();
3413 }
3414
3415 /* Immediately detach breakpoints from the child before there's
3416 any chance of letting the user delete breakpoints from the
3417 breakpoint lists. If we don't do this early, it's easy to
3418 leave left over traps in the child, vis: "break foo; catch
3419 fork; c; <fork>; del; c; <child calls foo>". We only follow
3420 the fork on the last `continue', and by that time the
3421 breakpoint at "foo" is long gone from the breakpoint table.
3422 If we vforked, then we don't need to unpatch here, since both
3423 parent and child are sharing the same memory pages; we'll
3424 need to unpatch at follow/detach time instead to be certain
3425 that new breakpoints added between catchpoint hit time and
3426 vfork follow are detached. */
3427 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3428 {
3429 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3430
3431 /* This won't actually modify the breakpoint list, but will
3432 physically remove the breakpoints from the child. */
3433 detach_breakpoints (child_pid);
3434 }
3435
3436 if (singlestep_breakpoints_inserted_p)
3437 {
3438 /* Pull the single step breakpoints out of the target. */
3439 remove_single_step_breakpoints ();
3440 singlestep_breakpoints_inserted_p = 0;
3441 }
3442
3443 /* In case the event is caught by a catchpoint, remember that
3444 the event is to be followed at the next resume of the thread,
3445 and not immediately. */
3446 ecs->event_thread->pending_follow = ecs->ws;
3447
3448 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3449
3450 ecs->event_thread->control.stop_bpstat
3451 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3452 stop_pc, ecs->ptid);
3453
3454 /* Note that we're interested in knowing the bpstat actually
3455 causes a stop, not just if it may explain the signal.
3456 Software watchpoints, for example, always appear in the
3457 bpstat. */
3458 ecs->random_signal
3459 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3460
3461 /* If no catchpoint triggered for this, then keep going. */
3462 if (ecs->random_signal)
3463 {
3464 ptid_t parent;
3465 ptid_t child;
3466 int should_resume;
3467 int follow_child
3468 = (follow_fork_mode_string == follow_fork_mode_child);
3469
3470 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3471
3472 should_resume = follow_fork ();
3473
3474 parent = ecs->ptid;
3475 child = ecs->ws.value.related_pid;
3476
3477 /* In non-stop mode, also resume the other branch. */
3478 if (non_stop && !detach_fork)
3479 {
3480 if (follow_child)
3481 switch_to_thread (parent);
3482 else
3483 switch_to_thread (child);
3484
3485 ecs->event_thread = inferior_thread ();
3486 ecs->ptid = inferior_ptid;
3487 keep_going (ecs);
3488 }
3489
3490 if (follow_child)
3491 switch_to_thread (child);
3492 else
3493 switch_to_thread (parent);
3494
3495 ecs->event_thread = inferior_thread ();
3496 ecs->ptid = inferior_ptid;
3497
3498 if (should_resume)
3499 keep_going (ecs);
3500 else
3501 stop_stepping (ecs);
3502 return;
3503 }
3504 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3505 goto process_event_stop_test;
3506
3507 case TARGET_WAITKIND_VFORK_DONE:
3508 /* Done with the shared memory region. Re-insert breakpoints in
3509 the parent, and keep going. */
3510
3511 if (debug_infrun)
3512 fprintf_unfiltered (gdb_stdlog,
3513 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3514
3515 if (!ptid_equal (ecs->ptid, inferior_ptid))
3516 context_switch (ecs->ptid);
3517
3518 current_inferior ()->waiting_for_vfork_done = 0;
3519 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3520 /* This also takes care of reinserting breakpoints in the
3521 previously locked inferior. */
3522 keep_going (ecs);
3523 return;
3524
3525 case TARGET_WAITKIND_EXECD:
3526 if (debug_infrun)
3527 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3528
3529 if (!ptid_equal (ecs->ptid, inferior_ptid))
3530 {
3531 context_switch (ecs->ptid);
3532 reinit_frame_cache ();
3533 }
3534
3535 singlestep_breakpoints_inserted_p = 0;
3536 cancel_single_step_breakpoints ();
3537
3538 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3539
3540 /* Do whatever is necessary to the parent branch of the vfork. */
3541 handle_vfork_child_exec_or_exit (1);
3542
3543 /* This causes the eventpoints and symbol table to be reset.
3544 Must do this now, before trying to determine whether to
3545 stop. */
3546 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3547
3548 ecs->event_thread->control.stop_bpstat
3549 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3550 stop_pc, ecs->ptid);
3551 ecs->random_signal
3552 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3553
3554 /* Note that this may be referenced from inside
3555 bpstat_stop_status above, through inferior_has_execd. */
3556 xfree (ecs->ws.value.execd_pathname);
3557 ecs->ws.value.execd_pathname = NULL;
3558
3559 /* If no catchpoint triggered for this, then keep going. */
3560 if (ecs->random_signal)
3561 {
3562 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3563 keep_going (ecs);
3564 return;
3565 }
3566 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3567 goto process_event_stop_test;
3568
3569 /* Be careful not to try to gather much state about a thread
3570 that's in a syscall. It's frequently a losing proposition. */
3571 case TARGET_WAITKIND_SYSCALL_ENTRY:
3572 if (debug_infrun)
3573 fprintf_unfiltered (gdb_stdlog,
3574 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3575 /* Getting the current syscall number. */
3576 if (handle_syscall_event (ecs) != 0)
3577 return;
3578 goto process_event_stop_test;
3579
3580 /* Before examining the threads further, step this thread to
3581 get it entirely out of the syscall. (We get notice of the
3582 event when the thread is just on the verge of exiting a
3583 syscall. Stepping one instruction seems to get it back
3584 into user code.) */
3585 case TARGET_WAITKIND_SYSCALL_RETURN:
3586 if (debug_infrun)
3587 fprintf_unfiltered (gdb_stdlog,
3588 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3589 if (handle_syscall_event (ecs) != 0)
3590 return;
3591 goto process_event_stop_test;
3592
3593 case TARGET_WAITKIND_STOPPED:
3594 if (debug_infrun)
3595 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3596 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3597 break;
3598
3599 case TARGET_WAITKIND_NO_HISTORY:
3600 /* Reverse execution: target ran out of history info. */
3601 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3602 print_no_history_reason ();
3603 stop_stepping (ecs);
3604 return;
3605 }
3606
3607 if (ecs->new_thread_event)
3608 {
3609 if (non_stop)
3610 /* Non-stop assumes that the target handles adding new threads
3611 to the thread list. */
3612 internal_error (__FILE__, __LINE__,
3613 "targets should add new threads to the thread "
3614 "list themselves in non-stop mode.");
3615
3616 /* We may want to consider not doing a resume here in order to
3617 give the user a chance to play with the new thread. It might
3618 be good to make that a user-settable option. */
3619
3620 /* At this point, all threads are stopped (happens automatically
3621 in either the OS or the native code). Therefore we need to
3622 continue all threads in order to make progress. */
3623
3624 if (!ptid_equal (ecs->ptid, inferior_ptid))
3625 context_switch (ecs->ptid);
3626 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3627 prepare_to_wait (ecs);
3628 return;
3629 }
3630
3631 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3632 {
3633 /* Do we need to clean up the state of a thread that has
3634 completed a displaced single-step? (Doing so usually affects
3635 the PC, so do it here, before we set stop_pc.) */
3636 displaced_step_fixup (ecs->ptid,
3637 ecs->event_thread->suspend.stop_signal);
3638
3639 /* If we either finished a single-step or hit a breakpoint, but
3640 the user wanted this thread to be stopped, pretend we got a
3641 SIG0 (generic unsignaled stop). */
3642
3643 if (ecs->event_thread->stop_requested
3644 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3645 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3646 }
3647
3648 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3649
3650 if (debug_infrun)
3651 {
3652 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3653 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3654 struct cleanup *old_chain = save_inferior_ptid ();
3655
3656 inferior_ptid = ecs->ptid;
3657
3658 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3659 paddress (gdbarch, stop_pc));
3660 if (target_stopped_by_watchpoint ())
3661 {
3662 CORE_ADDR addr;
3663
3664 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3665
3666 if (target_stopped_data_address (&current_target, &addr))
3667 fprintf_unfiltered (gdb_stdlog,
3668 "infrun: stopped data address = %s\n",
3669 paddress (gdbarch, addr));
3670 else
3671 fprintf_unfiltered (gdb_stdlog,
3672 "infrun: (no data address available)\n");
3673 }
3674
3675 do_cleanups (old_chain);
3676 }
3677
3678 if (stepping_past_singlestep_breakpoint)
3679 {
3680 gdb_assert (singlestep_breakpoints_inserted_p);
3681 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3682 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3683
3684 stepping_past_singlestep_breakpoint = 0;
3685
3686 /* We've either finished single-stepping past the single-step
3687 breakpoint, or stopped for some other reason. It would be nice if
3688 we could tell, but we can't reliably. */
3689 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3690 {
3691 if (debug_infrun)
3692 fprintf_unfiltered (gdb_stdlog,
3693 "infrun: stepping_past_"
3694 "singlestep_breakpoint\n");
3695 /* Pull the single step breakpoints out of the target. */
3696 remove_single_step_breakpoints ();
3697 singlestep_breakpoints_inserted_p = 0;
3698
3699 ecs->random_signal = 0;
3700 ecs->event_thread->control.trap_expected = 0;
3701
3702 context_switch (saved_singlestep_ptid);
3703 if (deprecated_context_hook)
3704 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3705
3706 resume (1, TARGET_SIGNAL_0);
3707 prepare_to_wait (ecs);
3708 return;
3709 }
3710 }
3711
3712 if (!ptid_equal (deferred_step_ptid, null_ptid))
3713 {
3714 /* In non-stop mode, there's never a deferred_step_ptid set. */
3715 gdb_assert (!non_stop);
3716
3717 /* If we stopped for some other reason than single-stepping, ignore
3718 the fact that we were supposed to switch back. */
3719 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3720 {
3721 if (debug_infrun)
3722 fprintf_unfiltered (gdb_stdlog,
3723 "infrun: handling deferred step\n");
3724
3725 /* Pull the single step breakpoints out of the target. */
3726 if (singlestep_breakpoints_inserted_p)
3727 {
3728 remove_single_step_breakpoints ();
3729 singlestep_breakpoints_inserted_p = 0;
3730 }
3731
3732 ecs->event_thread->control.trap_expected = 0;
3733
3734 /* Note: We do not call context_switch at this point, as the
3735 context is already set up for stepping the original thread. */
3736 switch_to_thread (deferred_step_ptid);
3737 deferred_step_ptid = null_ptid;
3738 /* Suppress spurious "Switching to ..." message. */
3739 previous_inferior_ptid = inferior_ptid;
3740
3741 resume (1, TARGET_SIGNAL_0);
3742 prepare_to_wait (ecs);
3743 return;
3744 }
3745
3746 deferred_step_ptid = null_ptid;
3747 }
3748
3749 /* See if a thread hit a thread-specific breakpoint that was meant for
3750 another thread. If so, then step that thread past the breakpoint,
3751 and continue it. */
3752
3753 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3754 {
3755 int thread_hop_needed = 0;
3756 struct address_space *aspace =
3757 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3758
3759 /* Check if a regular breakpoint has been hit before checking
3760 for a potential single step breakpoint. Otherwise, GDB will
3761 not see this breakpoint hit when stepping onto breakpoints. */
3762 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3763 {
3764 ecs->random_signal = 0;
3765 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3766 thread_hop_needed = 1;
3767 }
3768 else if (singlestep_breakpoints_inserted_p)
3769 {
3770 /* We have not context switched yet, so this should be true
3771 no matter which thread hit the singlestep breakpoint. */
3772 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3773 if (debug_infrun)
3774 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3775 "trap for %s\n",
3776 target_pid_to_str (ecs->ptid));
3777
3778 ecs->random_signal = 0;
3779 /* The call to in_thread_list is necessary because PTIDs sometimes
3780 change when we go from single-threaded to multi-threaded. If
3781 the singlestep_ptid is still in the list, assume that it is
3782 really different from ecs->ptid. */
3783 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3784 && in_thread_list (singlestep_ptid))
3785 {
3786 /* If the PC of the thread we were trying to single-step
3787 has changed, discard this event (which we were going
3788 to ignore anyway), and pretend we saw that thread
3789 trap. This prevents us continuously moving the
3790 single-step breakpoint forward, one instruction at a
3791 time. If the PC has changed, then the thread we were
3792 trying to single-step has trapped or been signalled,
3793 but the event has not been reported to GDB yet.
3794
3795 There might be some cases where this loses signal
3796 information, if a signal has arrived at exactly the
3797 same time that the PC changed, but this is the best
3798 we can do with the information available. Perhaps we
3799 should arrange to report all events for all threads
3800 when they stop, or to re-poll the remote looking for
3801 this particular thread (i.e. temporarily enable
3802 schedlock). */
3803
3804 CORE_ADDR new_singlestep_pc
3805 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3806
3807 if (new_singlestep_pc != singlestep_pc)
3808 {
3809 enum target_signal stop_signal;
3810
3811 if (debug_infrun)
3812 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3813 " but expected thread advanced also\n");
3814
3815 /* The current context still belongs to
3816 singlestep_ptid. Don't swap here, since that's
3817 the context we want to use. Just fudge our
3818 state and continue. */
3819 stop_signal = ecs->event_thread->suspend.stop_signal;
3820 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3821 ecs->ptid = singlestep_ptid;
3822 ecs->event_thread = find_thread_ptid (ecs->ptid);
3823 ecs->event_thread->suspend.stop_signal = stop_signal;
3824 stop_pc = new_singlestep_pc;
3825 }
3826 else
3827 {
3828 if (debug_infrun)
3829 fprintf_unfiltered (gdb_stdlog,
3830 "infrun: unexpected thread\n");
3831
3832 thread_hop_needed = 1;
3833 stepping_past_singlestep_breakpoint = 1;
3834 saved_singlestep_ptid = singlestep_ptid;
3835 }
3836 }
3837 }
3838
3839 if (thread_hop_needed)
3840 {
3841 struct regcache *thread_regcache;
3842 int remove_status = 0;
3843
3844 if (debug_infrun)
3845 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3846
3847 /* Switch context before touching inferior memory, the
3848 previous thread may have exited. */
3849 if (!ptid_equal (inferior_ptid, ecs->ptid))
3850 context_switch (ecs->ptid);
3851
3852 /* Saw a breakpoint, but it was hit by the wrong thread.
3853 Just continue. */
3854
3855 if (singlestep_breakpoints_inserted_p)
3856 {
3857 /* Pull the single step breakpoints out of the target. */
3858 remove_single_step_breakpoints ();
3859 singlestep_breakpoints_inserted_p = 0;
3860 }
3861
3862 /* If the arch can displace step, don't remove the
3863 breakpoints. */
3864 thread_regcache = get_thread_regcache (ecs->ptid);
3865 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3866 remove_status = remove_breakpoints ();
3867
3868 /* Did we fail to remove breakpoints? If so, try
3869 to set the PC past the bp. (There's at least
3870 one situation in which we can fail to remove
3871 the bp's: On HP-UX's that use ttrace, we can't
3872 change the address space of a vforking child
3873 process until the child exits (well, okay, not
3874 then either :-) or execs. */
3875 if (remove_status != 0)
3876 error (_("Cannot step over breakpoint hit in wrong thread"));
3877 else
3878 { /* Single step */
3879 if (!non_stop)
3880 {
3881 /* Only need to require the next event from this
3882 thread in all-stop mode. */
3883 waiton_ptid = ecs->ptid;
3884 infwait_state = infwait_thread_hop_state;
3885 }
3886
3887 ecs->event_thread->stepping_over_breakpoint = 1;
3888 keep_going (ecs);
3889 return;
3890 }
3891 }
3892 else if (singlestep_breakpoints_inserted_p)
3893 {
3894 ecs->random_signal = 0;
3895 }
3896 }
3897 else
3898 ecs->random_signal = 1;
3899
3900 /* See if something interesting happened to the non-current thread. If
3901 so, then switch to that thread. */
3902 if (!ptid_equal (ecs->ptid, inferior_ptid))
3903 {
3904 if (debug_infrun)
3905 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3906
3907 context_switch (ecs->ptid);
3908
3909 if (deprecated_context_hook)
3910 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3911 }
3912
3913 /* At this point, get hold of the now-current thread's frame. */
3914 frame = get_current_frame ();
3915 gdbarch = get_frame_arch (frame);
3916
3917 if (singlestep_breakpoints_inserted_p)
3918 {
3919 /* Pull the single step breakpoints out of the target. */
3920 remove_single_step_breakpoints ();
3921 singlestep_breakpoints_inserted_p = 0;
3922 }
3923
3924 if (stepped_after_stopped_by_watchpoint)
3925 stopped_by_watchpoint = 0;
3926 else
3927 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3928
3929 /* If necessary, step over this watchpoint. We'll be back to display
3930 it in a moment. */
3931 if (stopped_by_watchpoint
3932 && (target_have_steppable_watchpoint
3933 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3934 {
3935 /* At this point, we are stopped at an instruction which has
3936 attempted to write to a piece of memory under control of
3937 a watchpoint. The instruction hasn't actually executed
3938 yet. If we were to evaluate the watchpoint expression
3939 now, we would get the old value, and therefore no change
3940 would seem to have occurred.
3941
3942 In order to make watchpoints work `right', we really need
3943 to complete the memory write, and then evaluate the
3944 watchpoint expression. We do this by single-stepping the
3945 target.
3946
3947 It may not be necessary to disable the watchpoint to stop over
3948 it. For example, the PA can (with some kernel cooperation)
3949 single step over a watchpoint without disabling the watchpoint.
3950
3951 It is far more common to need to disable a watchpoint to step
3952 the inferior over it. If we have non-steppable watchpoints,
3953 we must disable the current watchpoint; it's simplest to
3954 disable all watchpoints and breakpoints. */
3955 int hw_step = 1;
3956
3957 if (!target_have_steppable_watchpoint)
3958 {
3959 remove_breakpoints ();
3960 /* See comment in resume why we need to stop bypassing signals
3961 while breakpoints have been removed. */
3962 target_pass_signals (0, NULL);
3963 }
3964 /* Single step */
3965 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
3966 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
3967 waiton_ptid = ecs->ptid;
3968 if (target_have_steppable_watchpoint)
3969 infwait_state = infwait_step_watch_state;
3970 else
3971 infwait_state = infwait_nonstep_watch_state;
3972 prepare_to_wait (ecs);
3973 return;
3974 }
3975
3976 clear_stop_func (ecs);
3977 ecs->event_thread->stepping_over_breakpoint = 0;
3978 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
3979 ecs->event_thread->control.stop_step = 0;
3980 stop_print_frame = 1;
3981 ecs->random_signal = 0;
3982 stopped_by_random_signal = 0;
3983
3984 /* Hide inlined functions starting here, unless we just performed stepi or
3985 nexti. After stepi and nexti, always show the innermost frame (not any
3986 inline function call sites). */
3987 if (ecs->event_thread->control.step_range_end != 1)
3988 skip_inline_frames (ecs->ptid);
3989
3990 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3991 && ecs->event_thread->control.trap_expected
3992 && gdbarch_single_step_through_delay_p (gdbarch)
3993 && currently_stepping (ecs->event_thread))
3994 {
3995 /* We're trying to step off a breakpoint. Turns out that we're
3996 also on an instruction that needs to be stepped multiple
3997 times before it's been fully executing. E.g., architectures
3998 with a delay slot. It needs to be stepped twice, once for
3999 the instruction and once for the delay slot. */
4000 int step_through_delay
4001 = gdbarch_single_step_through_delay (gdbarch, frame);
4002
4003 if (debug_infrun && step_through_delay)
4004 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4005 if (ecs->event_thread->control.step_range_end == 0
4006 && step_through_delay)
4007 {
4008 /* The user issued a continue when stopped at a breakpoint.
4009 Set up for another trap and get out of here. */
4010 ecs->event_thread->stepping_over_breakpoint = 1;
4011 keep_going (ecs);
4012 return;
4013 }
4014 else if (step_through_delay)
4015 {
4016 /* The user issued a step when stopped at a breakpoint.
4017 Maybe we should stop, maybe we should not - the delay
4018 slot *might* correspond to a line of source. In any
4019 case, don't decide that here, just set
4020 ecs->stepping_over_breakpoint, making sure we
4021 single-step again before breakpoints are re-inserted. */
4022 ecs->event_thread->stepping_over_breakpoint = 1;
4023 }
4024 }
4025
4026 /* Look at the cause of the stop, and decide what to do.
4027 The alternatives are:
4028 1) stop_stepping and return; to really stop and return to the debugger,
4029 2) keep_going and return to start up again
4030 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4031 3) set ecs->random_signal to 1, and the decision between 1 and 2
4032 will be made according to the signal handling tables. */
4033
4034 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4035 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4036 || stop_soon == STOP_QUIETLY_REMOTE)
4037 {
4038 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4039 && stop_after_trap)
4040 {
4041 if (debug_infrun)
4042 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4043 stop_print_frame = 0;
4044 stop_stepping (ecs);
4045 return;
4046 }
4047
4048 /* This is originated from start_remote(), start_inferior() and
4049 shared libraries hook functions. */
4050 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4051 {
4052 if (debug_infrun)
4053 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4054 stop_stepping (ecs);
4055 return;
4056 }
4057
4058 /* This originates from attach_command(). We need to overwrite
4059 the stop_signal here, because some kernels don't ignore a
4060 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4061 See more comments in inferior.h. On the other hand, if we
4062 get a non-SIGSTOP, report it to the user - assume the backend
4063 will handle the SIGSTOP if it should show up later.
4064
4065 Also consider that the attach is complete when we see a
4066 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4067 target extended-remote report it instead of a SIGSTOP
4068 (e.g. gdbserver). We already rely on SIGTRAP being our
4069 signal, so this is no exception.
4070
4071 Also consider that the attach is complete when we see a
4072 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4073 the target to stop all threads of the inferior, in case the
4074 low level attach operation doesn't stop them implicitly. If
4075 they weren't stopped implicitly, then the stub will report a
4076 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4077 other than GDB's request. */
4078 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4079 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4080 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4081 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
4082 {
4083 stop_stepping (ecs);
4084 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4085 return;
4086 }
4087
4088 /* See if there is a breakpoint at the current PC. */
4089 ecs->event_thread->control.stop_bpstat
4090 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4091 stop_pc, ecs->ptid);
4092
4093 /* Following in case break condition called a
4094 function. */
4095 stop_print_frame = 1;
4096
4097 /* This is where we handle "moribund" watchpoints. Unlike
4098 software breakpoints traps, hardware watchpoint traps are
4099 always distinguishable from random traps. If no high-level
4100 watchpoint is associated with the reported stop data address
4101 anymore, then the bpstat does not explain the signal ---
4102 simply make sure to ignore it if `stopped_by_watchpoint' is
4103 set. */
4104
4105 if (debug_infrun
4106 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4107 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4108 && stopped_by_watchpoint)
4109 fprintf_unfiltered (gdb_stdlog,
4110 "infrun: no user watchpoint explains "
4111 "watchpoint SIGTRAP, ignoring\n");
4112
4113 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4114 at one stage in the past included checks for an inferior
4115 function call's call dummy's return breakpoint. The original
4116 comment, that went with the test, read:
4117
4118 ``End of a stack dummy. Some systems (e.g. Sony news) give
4119 another signal besides SIGTRAP, so check here as well as
4120 above.''
4121
4122 If someone ever tries to get call dummys on a
4123 non-executable stack to work (where the target would stop
4124 with something like a SIGSEGV), then those tests might need
4125 to be re-instated. Given, however, that the tests were only
4126 enabled when momentary breakpoints were not being used, I
4127 suspect that it won't be the case.
4128
4129 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4130 be necessary for call dummies on a non-executable stack on
4131 SPARC. */
4132
4133 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
4134 ecs->random_signal
4135 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4136 || stopped_by_watchpoint
4137 || ecs->event_thread->control.trap_expected
4138 || (ecs->event_thread->control.step_range_end
4139 && (ecs->event_thread->control.step_resume_breakpoint
4140 == NULL)));
4141 else
4142 {
4143 ecs->random_signal = !bpstat_explains_signal
4144 (ecs->event_thread->control.stop_bpstat);
4145 if (!ecs->random_signal)
4146 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
4147 }
4148 }
4149
4150 /* When we reach this point, we've pretty much decided
4151 that the reason for stopping must've been a random
4152 (unexpected) signal. */
4153
4154 else
4155 ecs->random_signal = 1;
4156
4157 process_event_stop_test:
4158
4159 /* Re-fetch current thread's frame in case we did a
4160 "goto process_event_stop_test" above. */
4161 frame = get_current_frame ();
4162 gdbarch = get_frame_arch (frame);
4163
4164 /* For the program's own signals, act according to
4165 the signal handling tables. */
4166
4167 if (ecs->random_signal)
4168 {
4169 /* Signal not for debugging purposes. */
4170 int printed = 0;
4171 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4172
4173 if (debug_infrun)
4174 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4175 ecs->event_thread->suspend.stop_signal);
4176
4177 stopped_by_random_signal = 1;
4178
4179 if (signal_print[ecs->event_thread->suspend.stop_signal])
4180 {
4181 printed = 1;
4182 target_terminal_ours_for_output ();
4183 print_signal_received_reason
4184 (ecs->event_thread->suspend.stop_signal);
4185 }
4186 /* Always stop on signals if we're either just gaining control
4187 of the program, or the user explicitly requested this thread
4188 to remain stopped. */
4189 if (stop_soon != NO_STOP_QUIETLY
4190 || ecs->event_thread->stop_requested
4191 || (!inf->detaching
4192 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4193 {
4194 stop_stepping (ecs);
4195 return;
4196 }
4197 /* If not going to stop, give terminal back
4198 if we took it away. */
4199 else if (printed)
4200 target_terminal_inferior ();
4201
4202 /* Clear the signal if it should not be passed. */
4203 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4204 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4205
4206 if (ecs->event_thread->prev_pc == stop_pc
4207 && ecs->event_thread->control.trap_expected
4208 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4209 {
4210 /* We were just starting a new sequence, attempting to
4211 single-step off of a breakpoint and expecting a SIGTRAP.
4212 Instead this signal arrives. This signal will take us out
4213 of the stepping range so GDB needs to remember to, when
4214 the signal handler returns, resume stepping off that
4215 breakpoint. */
4216 /* To simplify things, "continue" is forced to use the same
4217 code paths as single-step - set a breakpoint at the
4218 signal return address and then, once hit, step off that
4219 breakpoint. */
4220 if (debug_infrun)
4221 fprintf_unfiltered (gdb_stdlog,
4222 "infrun: signal arrived while stepping over "
4223 "breakpoint\n");
4224
4225 insert_hp_step_resume_breakpoint_at_frame (frame);
4226 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4227 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4228 ecs->event_thread->control.trap_expected = 0;
4229 keep_going (ecs);
4230 return;
4231 }
4232
4233 if (ecs->event_thread->control.step_range_end != 0
4234 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4235 && (ecs->event_thread->control.step_range_start <= stop_pc
4236 && stop_pc < ecs->event_thread->control.step_range_end)
4237 && frame_id_eq (get_stack_frame_id (frame),
4238 ecs->event_thread->control.step_stack_frame_id)
4239 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4240 {
4241 /* The inferior is about to take a signal that will take it
4242 out of the single step range. Set a breakpoint at the
4243 current PC (which is presumably where the signal handler
4244 will eventually return) and then allow the inferior to
4245 run free.
4246
4247 Note that this is only needed for a signal delivered
4248 while in the single-step range. Nested signals aren't a
4249 problem as they eventually all return. */
4250 if (debug_infrun)
4251 fprintf_unfiltered (gdb_stdlog,
4252 "infrun: signal may take us out of "
4253 "single-step range\n");
4254
4255 insert_hp_step_resume_breakpoint_at_frame (frame);
4256 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4257 ecs->event_thread->control.trap_expected = 0;
4258 keep_going (ecs);
4259 return;
4260 }
4261
4262 /* Note: step_resume_breakpoint may be non-NULL. This occures
4263 when either there's a nested signal, or when there's a
4264 pending signal enabled just as the signal handler returns
4265 (leaving the inferior at the step-resume-breakpoint without
4266 actually executing it). Either way continue until the
4267 breakpoint is really hit. */
4268 keep_going (ecs);
4269 return;
4270 }
4271
4272 /* Handle cases caused by hitting a breakpoint. */
4273 {
4274 CORE_ADDR jmp_buf_pc;
4275 struct bpstat_what what;
4276
4277 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4278
4279 if (what.call_dummy)
4280 {
4281 stop_stack_dummy = what.call_dummy;
4282 }
4283
4284 /* If we hit an internal event that triggers symbol changes, the
4285 current frame will be invalidated within bpstat_what (e.g., if
4286 we hit an internal solib event). Re-fetch it. */
4287 frame = get_current_frame ();
4288 gdbarch = get_frame_arch (frame);
4289
4290 switch (what.main_action)
4291 {
4292 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4293 /* If we hit the breakpoint at longjmp while stepping, we
4294 install a momentary breakpoint at the target of the
4295 jmp_buf. */
4296
4297 if (debug_infrun)
4298 fprintf_unfiltered (gdb_stdlog,
4299 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4300
4301 ecs->event_thread->stepping_over_breakpoint = 1;
4302
4303 if (what.is_longjmp)
4304 {
4305 if (!gdbarch_get_longjmp_target_p (gdbarch)
4306 || !gdbarch_get_longjmp_target (gdbarch,
4307 frame, &jmp_buf_pc))
4308 {
4309 if (debug_infrun)
4310 fprintf_unfiltered (gdb_stdlog,
4311 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4312 "(!gdbarch_get_longjmp_target)\n");
4313 keep_going (ecs);
4314 return;
4315 }
4316
4317 /* We're going to replace the current step-resume breakpoint
4318 with a longjmp-resume breakpoint. */
4319 delete_step_resume_breakpoint (ecs->event_thread);
4320
4321 /* Insert a breakpoint at resume address. */
4322 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4323 }
4324 else
4325 {
4326 struct symbol *func = get_frame_function (frame);
4327
4328 if (func)
4329 check_exception_resume (ecs, frame, func);
4330 }
4331 keep_going (ecs);
4332 return;
4333
4334 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4335 if (debug_infrun)
4336 fprintf_unfiltered (gdb_stdlog,
4337 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4338
4339 if (what.is_longjmp)
4340 {
4341 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4342 != NULL);
4343 delete_step_resume_breakpoint (ecs->event_thread);
4344 }
4345 else
4346 {
4347 /* There are several cases to consider.
4348
4349 1. The initiating frame no longer exists. In this case
4350 we must stop, because the exception has gone too far.
4351
4352 2. The initiating frame exists, and is the same as the
4353 current frame. We stop, because the exception has been
4354 caught.
4355
4356 3. The initiating frame exists and is different from
4357 the current frame. This means the exception has been
4358 caught beneath the initiating frame, so keep going. */
4359 struct frame_info *init_frame
4360 = frame_find_by_id (ecs->event_thread->initiating_frame);
4361
4362 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4363 != NULL);
4364 delete_exception_resume_breakpoint (ecs->event_thread);
4365
4366 if (init_frame)
4367 {
4368 struct frame_id current_id
4369 = get_frame_id (get_current_frame ());
4370 if (frame_id_eq (current_id,
4371 ecs->event_thread->initiating_frame))
4372 {
4373 /* Case 2. Fall through. */
4374 }
4375 else
4376 {
4377 /* Case 3. */
4378 keep_going (ecs);
4379 return;
4380 }
4381 }
4382
4383 /* For Cases 1 and 2, remove the step-resume breakpoint,
4384 if it exists. */
4385 delete_step_resume_breakpoint (ecs->event_thread);
4386 }
4387
4388 ecs->event_thread->control.stop_step = 1;
4389 print_end_stepping_range_reason ();
4390 stop_stepping (ecs);
4391 return;
4392
4393 case BPSTAT_WHAT_SINGLE:
4394 if (debug_infrun)
4395 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4396 ecs->event_thread->stepping_over_breakpoint = 1;
4397 /* Still need to check other stuff, at least the case
4398 where we are stepping and step out of the right range. */
4399 break;
4400
4401 case BPSTAT_WHAT_STEP_RESUME:
4402 if (debug_infrun)
4403 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4404
4405 delete_step_resume_breakpoint (ecs->event_thread);
4406 if (ecs->event_thread->control.proceed_to_finish
4407 && execution_direction == EXEC_REVERSE)
4408 {
4409 struct thread_info *tp = ecs->event_thread;
4410
4411 /* We are finishing a function in reverse, and just hit
4412 the step-resume breakpoint at the start address of the
4413 function, and we're almost there -- just need to back
4414 up by one more single-step, which should take us back
4415 to the function call. */
4416 tp->control.step_range_start = tp->control.step_range_end = 1;
4417 keep_going (ecs);
4418 return;
4419 }
4420 fill_in_stop_func (gdbarch, ecs);
4421 if (stop_pc == ecs->stop_func_start
4422 && execution_direction == EXEC_REVERSE)
4423 {
4424 /* We are stepping over a function call in reverse, and
4425 just hit the step-resume breakpoint at the start
4426 address of the function. Go back to single-stepping,
4427 which should take us back to the function call. */
4428 ecs->event_thread->stepping_over_breakpoint = 1;
4429 keep_going (ecs);
4430 return;
4431 }
4432 break;
4433
4434 case BPSTAT_WHAT_STOP_NOISY:
4435 if (debug_infrun)
4436 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4437 stop_print_frame = 1;
4438
4439 /* We are about to nuke the step_resume_breakpointt via the
4440 cleanup chain, so no need to worry about it here. */
4441
4442 stop_stepping (ecs);
4443 return;
4444
4445 case BPSTAT_WHAT_STOP_SILENT:
4446 if (debug_infrun)
4447 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4448 stop_print_frame = 0;
4449
4450 /* We are about to nuke the step_resume_breakpoin via the
4451 cleanup chain, so no need to worry about it here. */
4452
4453 stop_stepping (ecs);
4454 return;
4455
4456 case BPSTAT_WHAT_HP_STEP_RESUME:
4457 if (debug_infrun)
4458 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4459
4460 delete_step_resume_breakpoint (ecs->event_thread);
4461 if (ecs->event_thread->step_after_step_resume_breakpoint)
4462 {
4463 /* Back when the step-resume breakpoint was inserted, we
4464 were trying to single-step off a breakpoint. Go back
4465 to doing that. */
4466 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4467 ecs->event_thread->stepping_over_breakpoint = 1;
4468 keep_going (ecs);
4469 return;
4470 }
4471 break;
4472
4473 case BPSTAT_WHAT_KEEP_CHECKING:
4474 break;
4475 }
4476 }
4477
4478 /* We come here if we hit a breakpoint but should not
4479 stop for it. Possibly we also were stepping
4480 and should stop for that. So fall through and
4481 test for stepping. But, if not stepping,
4482 do not stop. */
4483
4484 /* In all-stop mode, if we're currently stepping but have stopped in
4485 some other thread, we need to switch back to the stepped thread. */
4486 if (!non_stop)
4487 {
4488 struct thread_info *tp;
4489
4490 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4491 ecs->event_thread);
4492 if (tp)
4493 {
4494 /* However, if the current thread is blocked on some internal
4495 breakpoint, and we simply need to step over that breakpoint
4496 to get it going again, do that first. */
4497 if ((ecs->event_thread->control.trap_expected
4498 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
4499 || ecs->event_thread->stepping_over_breakpoint)
4500 {
4501 keep_going (ecs);
4502 return;
4503 }
4504
4505 /* If the stepping thread exited, then don't try to switch
4506 back and resume it, which could fail in several different
4507 ways depending on the target. Instead, just keep going.
4508
4509 We can find a stepping dead thread in the thread list in
4510 two cases:
4511
4512 - The target supports thread exit events, and when the
4513 target tries to delete the thread from the thread list,
4514 inferior_ptid pointed at the exiting thread. In such
4515 case, calling delete_thread does not really remove the
4516 thread from the list; instead, the thread is left listed,
4517 with 'exited' state.
4518
4519 - The target's debug interface does not support thread
4520 exit events, and so we have no idea whatsoever if the
4521 previously stepping thread is still alive. For that
4522 reason, we need to synchronously query the target
4523 now. */
4524 if (is_exited (tp->ptid)
4525 || !target_thread_alive (tp->ptid))
4526 {
4527 if (debug_infrun)
4528 fprintf_unfiltered (gdb_stdlog,
4529 "infrun: not switching back to "
4530 "stepped thread, it has vanished\n");
4531
4532 delete_thread (tp->ptid);
4533 keep_going (ecs);
4534 return;
4535 }
4536
4537 /* Otherwise, we no longer expect a trap in the current thread.
4538 Clear the trap_expected flag before switching back -- this is
4539 what keep_going would do as well, if we called it. */
4540 ecs->event_thread->control.trap_expected = 0;
4541
4542 if (debug_infrun)
4543 fprintf_unfiltered (gdb_stdlog,
4544 "infrun: switching back to stepped thread\n");
4545
4546 ecs->event_thread = tp;
4547 ecs->ptid = tp->ptid;
4548 context_switch (ecs->ptid);
4549 keep_going (ecs);
4550 return;
4551 }
4552 }
4553
4554 if (ecs->event_thread->control.step_resume_breakpoint)
4555 {
4556 if (debug_infrun)
4557 fprintf_unfiltered (gdb_stdlog,
4558 "infrun: step-resume breakpoint is inserted\n");
4559
4560 /* Having a step-resume breakpoint overrides anything
4561 else having to do with stepping commands until
4562 that breakpoint is reached. */
4563 keep_going (ecs);
4564 return;
4565 }
4566
4567 if (ecs->event_thread->control.step_range_end == 0)
4568 {
4569 if (debug_infrun)
4570 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4571 /* Likewise if we aren't even stepping. */
4572 keep_going (ecs);
4573 return;
4574 }
4575
4576 /* Re-fetch current thread's frame in case the code above caused
4577 the frame cache to be re-initialized, making our FRAME variable
4578 a dangling pointer. */
4579 frame = get_current_frame ();
4580 gdbarch = get_frame_arch (frame);
4581 fill_in_stop_func (gdbarch, ecs);
4582
4583 /* If stepping through a line, keep going if still within it.
4584
4585 Note that step_range_end is the address of the first instruction
4586 beyond the step range, and NOT the address of the last instruction
4587 within it!
4588
4589 Note also that during reverse execution, we may be stepping
4590 through a function epilogue and therefore must detect when
4591 the current-frame changes in the middle of a line. */
4592
4593 if (stop_pc >= ecs->event_thread->control.step_range_start
4594 && stop_pc < ecs->event_thread->control.step_range_end
4595 && (execution_direction != EXEC_REVERSE
4596 || frame_id_eq (get_frame_id (frame),
4597 ecs->event_thread->control.step_frame_id)))
4598 {
4599 if (debug_infrun)
4600 fprintf_unfiltered
4601 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4602 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4603 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4604
4605 /* When stepping backward, stop at beginning of line range
4606 (unless it's the function entry point, in which case
4607 keep going back to the call point). */
4608 if (stop_pc == ecs->event_thread->control.step_range_start
4609 && stop_pc != ecs->stop_func_start
4610 && execution_direction == EXEC_REVERSE)
4611 {
4612 ecs->event_thread->control.stop_step = 1;
4613 print_end_stepping_range_reason ();
4614 stop_stepping (ecs);
4615 }
4616 else
4617 keep_going (ecs);
4618
4619 return;
4620 }
4621
4622 /* We stepped out of the stepping range. */
4623
4624 /* If we are stepping at the source level and entered the runtime
4625 loader dynamic symbol resolution code...
4626
4627 EXEC_FORWARD: we keep on single stepping until we exit the run
4628 time loader code and reach the callee's address.
4629
4630 EXEC_REVERSE: we've already executed the callee (backward), and
4631 the runtime loader code is handled just like any other
4632 undebuggable function call. Now we need only keep stepping
4633 backward through the trampoline code, and that's handled further
4634 down, so there is nothing for us to do here. */
4635
4636 if (execution_direction != EXEC_REVERSE
4637 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4638 && in_solib_dynsym_resolve_code (stop_pc))
4639 {
4640 CORE_ADDR pc_after_resolver =
4641 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4642
4643 if (debug_infrun)
4644 fprintf_unfiltered (gdb_stdlog,
4645 "infrun: stepped into dynsym resolve code\n");
4646
4647 if (pc_after_resolver)
4648 {
4649 /* Set up a step-resume breakpoint at the address
4650 indicated by SKIP_SOLIB_RESOLVER. */
4651 struct symtab_and_line sr_sal;
4652
4653 init_sal (&sr_sal);
4654 sr_sal.pc = pc_after_resolver;
4655 sr_sal.pspace = get_frame_program_space (frame);
4656
4657 insert_step_resume_breakpoint_at_sal (gdbarch,
4658 sr_sal, null_frame_id);
4659 }
4660
4661 keep_going (ecs);
4662 return;
4663 }
4664
4665 if (ecs->event_thread->control.step_range_end != 1
4666 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4667 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4668 && get_frame_type (frame) == SIGTRAMP_FRAME)
4669 {
4670 if (debug_infrun)
4671 fprintf_unfiltered (gdb_stdlog,
4672 "infrun: stepped into signal trampoline\n");
4673 /* The inferior, while doing a "step" or "next", has ended up in
4674 a signal trampoline (either by a signal being delivered or by
4675 the signal handler returning). Just single-step until the
4676 inferior leaves the trampoline (either by calling the handler
4677 or returning). */
4678 keep_going (ecs);
4679 return;
4680 }
4681
4682 /* Check for subroutine calls. The check for the current frame
4683 equalling the step ID is not necessary - the check of the
4684 previous frame's ID is sufficient - but it is a common case and
4685 cheaper than checking the previous frame's ID.
4686
4687 NOTE: frame_id_eq will never report two invalid frame IDs as
4688 being equal, so to get into this block, both the current and
4689 previous frame must have valid frame IDs. */
4690 /* The outer_frame_id check is a heuristic to detect stepping
4691 through startup code. If we step over an instruction which
4692 sets the stack pointer from an invalid value to a valid value,
4693 we may detect that as a subroutine call from the mythical
4694 "outermost" function. This could be fixed by marking
4695 outermost frames as !stack_p,code_p,special_p. Then the
4696 initial outermost frame, before sp was valid, would
4697 have code_addr == &_start. See the comment in frame_id_eq
4698 for more. */
4699 if (!frame_id_eq (get_stack_frame_id (frame),
4700 ecs->event_thread->control.step_stack_frame_id)
4701 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4702 ecs->event_thread->control.step_stack_frame_id)
4703 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4704 outer_frame_id)
4705 || step_start_function != find_pc_function (stop_pc))))
4706 {
4707 CORE_ADDR real_stop_pc;
4708
4709 if (debug_infrun)
4710 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4711
4712 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4713 || ((ecs->event_thread->control.step_range_end == 1)
4714 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4715 ecs->stop_func_start)))
4716 {
4717 /* I presume that step_over_calls is only 0 when we're
4718 supposed to be stepping at the assembly language level
4719 ("stepi"). Just stop. */
4720 /* Also, maybe we just did a "nexti" inside a prolog, so we
4721 thought it was a subroutine call but it was not. Stop as
4722 well. FENN */
4723 /* And this works the same backward as frontward. MVS */
4724 ecs->event_thread->control.stop_step = 1;
4725 print_end_stepping_range_reason ();
4726 stop_stepping (ecs);
4727 return;
4728 }
4729
4730 /* Reverse stepping through solib trampolines. */
4731
4732 if (execution_direction == EXEC_REVERSE
4733 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4734 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4735 || (ecs->stop_func_start == 0
4736 && in_solib_dynsym_resolve_code (stop_pc))))
4737 {
4738 /* Any solib trampoline code can be handled in reverse
4739 by simply continuing to single-step. We have already
4740 executed the solib function (backwards), and a few
4741 steps will take us back through the trampoline to the
4742 caller. */
4743 keep_going (ecs);
4744 return;
4745 }
4746
4747 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4748 {
4749 /* We're doing a "next".
4750
4751 Normal (forward) execution: set a breakpoint at the
4752 callee's return address (the address at which the caller
4753 will resume).
4754
4755 Reverse (backward) execution. set the step-resume
4756 breakpoint at the start of the function that we just
4757 stepped into (backwards), and continue to there. When we
4758 get there, we'll need to single-step back to the caller. */
4759
4760 if (execution_direction == EXEC_REVERSE)
4761 {
4762 struct symtab_and_line sr_sal;
4763
4764 /* Normal function call return (static or dynamic). */
4765 init_sal (&sr_sal);
4766 sr_sal.pc = ecs->stop_func_start;
4767 sr_sal.pspace = get_frame_program_space (frame);
4768 insert_step_resume_breakpoint_at_sal (gdbarch,
4769 sr_sal, null_frame_id);
4770 }
4771 else
4772 insert_step_resume_breakpoint_at_caller (frame);
4773
4774 keep_going (ecs);
4775 return;
4776 }
4777
4778 /* If we are in a function call trampoline (a stub between the
4779 calling routine and the real function), locate the real
4780 function. That's what tells us (a) whether we want to step
4781 into it at all, and (b) what prologue we want to run to the
4782 end of, if we do step into it. */
4783 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4784 if (real_stop_pc == 0)
4785 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4786 if (real_stop_pc != 0)
4787 ecs->stop_func_start = real_stop_pc;
4788
4789 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4790 {
4791 struct symtab_and_line sr_sal;
4792
4793 init_sal (&sr_sal);
4794 sr_sal.pc = ecs->stop_func_start;
4795 sr_sal.pspace = get_frame_program_space (frame);
4796
4797 insert_step_resume_breakpoint_at_sal (gdbarch,
4798 sr_sal, null_frame_id);
4799 keep_going (ecs);
4800 return;
4801 }
4802
4803 /* If we have line number information for the function we are
4804 thinking of stepping into, step into it.
4805
4806 If there are several symtabs at that PC (e.g. with include
4807 files), just want to know whether *any* of them have line
4808 numbers. find_pc_line handles this. */
4809 {
4810 struct symtab_and_line tmp_sal;
4811
4812 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4813 if (tmp_sal.line != 0)
4814 {
4815 if (execution_direction == EXEC_REVERSE)
4816 handle_step_into_function_backward (gdbarch, ecs);
4817 else
4818 handle_step_into_function (gdbarch, ecs);
4819 return;
4820 }
4821 }
4822
4823 /* If we have no line number and the step-stop-if-no-debug is
4824 set, we stop the step so that the user has a chance to switch
4825 in assembly mode. */
4826 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4827 && step_stop_if_no_debug)
4828 {
4829 ecs->event_thread->control.stop_step = 1;
4830 print_end_stepping_range_reason ();
4831 stop_stepping (ecs);
4832 return;
4833 }
4834
4835 if (execution_direction == EXEC_REVERSE)
4836 {
4837 /* Set a breakpoint at callee's start address.
4838 From there we can step once and be back in the caller. */
4839 struct symtab_and_line sr_sal;
4840
4841 init_sal (&sr_sal);
4842 sr_sal.pc = ecs->stop_func_start;
4843 sr_sal.pspace = get_frame_program_space (frame);
4844 insert_step_resume_breakpoint_at_sal (gdbarch,
4845 sr_sal, null_frame_id);
4846 }
4847 else
4848 /* Set a breakpoint at callee's return address (the address
4849 at which the caller will resume). */
4850 insert_step_resume_breakpoint_at_caller (frame);
4851
4852 keep_going (ecs);
4853 return;
4854 }
4855
4856 /* Reverse stepping through solib trampolines. */
4857
4858 if (execution_direction == EXEC_REVERSE
4859 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4860 {
4861 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4862 || (ecs->stop_func_start == 0
4863 && in_solib_dynsym_resolve_code (stop_pc)))
4864 {
4865 /* Any solib trampoline code can be handled in reverse
4866 by simply continuing to single-step. We have already
4867 executed the solib function (backwards), and a few
4868 steps will take us back through the trampoline to the
4869 caller. */
4870 keep_going (ecs);
4871 return;
4872 }
4873 else if (in_solib_dynsym_resolve_code (stop_pc))
4874 {
4875 /* Stepped backward into the solib dynsym resolver.
4876 Set a breakpoint at its start and continue, then
4877 one more step will take us out. */
4878 struct symtab_and_line sr_sal;
4879
4880 init_sal (&sr_sal);
4881 sr_sal.pc = ecs->stop_func_start;
4882 sr_sal.pspace = get_frame_program_space (frame);
4883 insert_step_resume_breakpoint_at_sal (gdbarch,
4884 sr_sal, null_frame_id);
4885 keep_going (ecs);
4886 return;
4887 }
4888 }
4889
4890 /* If we're in the return path from a shared library trampoline,
4891 we want to proceed through the trampoline when stepping. */
4892 if (gdbarch_in_solib_return_trampoline (gdbarch,
4893 stop_pc, ecs->stop_func_name))
4894 {
4895 /* Determine where this trampoline returns. */
4896 CORE_ADDR real_stop_pc;
4897
4898 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4899
4900 if (debug_infrun)
4901 fprintf_unfiltered (gdb_stdlog,
4902 "infrun: stepped into solib return tramp\n");
4903
4904 /* Only proceed through if we know where it's going. */
4905 if (real_stop_pc)
4906 {
4907 /* And put the step-breakpoint there and go until there. */
4908 struct symtab_and_line sr_sal;
4909
4910 init_sal (&sr_sal); /* initialize to zeroes */
4911 sr_sal.pc = real_stop_pc;
4912 sr_sal.section = find_pc_overlay (sr_sal.pc);
4913 sr_sal.pspace = get_frame_program_space (frame);
4914
4915 /* Do not specify what the fp should be when we stop since
4916 on some machines the prologue is where the new fp value
4917 is established. */
4918 insert_step_resume_breakpoint_at_sal (gdbarch,
4919 sr_sal, null_frame_id);
4920
4921 /* Restart without fiddling with the step ranges or
4922 other state. */
4923 keep_going (ecs);
4924 return;
4925 }
4926 }
4927
4928 stop_pc_sal = find_pc_line (stop_pc, 0);
4929
4930 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4931 the trampoline processing logic, however, there are some trampolines
4932 that have no names, so we should do trampoline handling first. */
4933 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4934 && ecs->stop_func_name == NULL
4935 && stop_pc_sal.line == 0)
4936 {
4937 if (debug_infrun)
4938 fprintf_unfiltered (gdb_stdlog,
4939 "infrun: stepped into undebuggable function\n");
4940
4941 /* The inferior just stepped into, or returned to, an
4942 undebuggable function (where there is no debugging information
4943 and no line number corresponding to the address where the
4944 inferior stopped). Since we want to skip this kind of code,
4945 we keep going until the inferior returns from this
4946 function - unless the user has asked us not to (via
4947 set step-mode) or we no longer know how to get back
4948 to the call site. */
4949 if (step_stop_if_no_debug
4950 || !frame_id_p (frame_unwind_caller_id (frame)))
4951 {
4952 /* If we have no line number and the step-stop-if-no-debug
4953 is set, we stop the step so that the user has a chance to
4954 switch in assembly mode. */
4955 ecs->event_thread->control.stop_step = 1;
4956 print_end_stepping_range_reason ();
4957 stop_stepping (ecs);
4958 return;
4959 }
4960 else
4961 {
4962 /* Set a breakpoint at callee's return address (the address
4963 at which the caller will resume). */
4964 insert_step_resume_breakpoint_at_caller (frame);
4965 keep_going (ecs);
4966 return;
4967 }
4968 }
4969
4970 if (ecs->event_thread->control.step_range_end == 1)
4971 {
4972 /* It is stepi or nexti. We always want to stop stepping after
4973 one instruction. */
4974 if (debug_infrun)
4975 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
4976 ecs->event_thread->control.stop_step = 1;
4977 print_end_stepping_range_reason ();
4978 stop_stepping (ecs);
4979 return;
4980 }
4981
4982 if (stop_pc_sal.line == 0)
4983 {
4984 /* We have no line number information. That means to stop
4985 stepping (does this always happen right after one instruction,
4986 when we do "s" in a function with no line numbers,
4987 or can this happen as a result of a return or longjmp?). */
4988 if (debug_infrun)
4989 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
4990 ecs->event_thread->control.stop_step = 1;
4991 print_end_stepping_range_reason ();
4992 stop_stepping (ecs);
4993 return;
4994 }
4995
4996 /* Look for "calls" to inlined functions, part one. If the inline
4997 frame machinery detected some skipped call sites, we have entered
4998 a new inline function. */
4999
5000 if (frame_id_eq (get_frame_id (get_current_frame ()),
5001 ecs->event_thread->control.step_frame_id)
5002 && inline_skipped_frames (ecs->ptid))
5003 {
5004 struct symtab_and_line call_sal;
5005
5006 if (debug_infrun)
5007 fprintf_unfiltered (gdb_stdlog,
5008 "infrun: stepped into inlined function\n");
5009
5010 find_frame_sal (get_current_frame (), &call_sal);
5011
5012 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5013 {
5014 /* For "step", we're going to stop. But if the call site
5015 for this inlined function is on the same source line as
5016 we were previously stepping, go down into the function
5017 first. Otherwise stop at the call site. */
5018
5019 if (call_sal.line == ecs->event_thread->current_line
5020 && call_sal.symtab == ecs->event_thread->current_symtab)
5021 step_into_inline_frame (ecs->ptid);
5022
5023 ecs->event_thread->control.stop_step = 1;
5024 print_end_stepping_range_reason ();
5025 stop_stepping (ecs);
5026 return;
5027 }
5028 else
5029 {
5030 /* For "next", we should stop at the call site if it is on a
5031 different source line. Otherwise continue through the
5032 inlined function. */
5033 if (call_sal.line == ecs->event_thread->current_line
5034 && call_sal.symtab == ecs->event_thread->current_symtab)
5035 keep_going (ecs);
5036 else
5037 {
5038 ecs->event_thread->control.stop_step = 1;
5039 print_end_stepping_range_reason ();
5040 stop_stepping (ecs);
5041 }
5042 return;
5043 }
5044 }
5045
5046 /* Look for "calls" to inlined functions, part two. If we are still
5047 in the same real function we were stepping through, but we have
5048 to go further up to find the exact frame ID, we are stepping
5049 through a more inlined call beyond its call site. */
5050
5051 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5052 && !frame_id_eq (get_frame_id (get_current_frame ()),
5053 ecs->event_thread->control.step_frame_id)
5054 && stepped_in_from (get_current_frame (),
5055 ecs->event_thread->control.step_frame_id))
5056 {
5057 if (debug_infrun)
5058 fprintf_unfiltered (gdb_stdlog,
5059 "infrun: stepping through inlined function\n");
5060
5061 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5062 keep_going (ecs);
5063 else
5064 {
5065 ecs->event_thread->control.stop_step = 1;
5066 print_end_stepping_range_reason ();
5067 stop_stepping (ecs);
5068 }
5069 return;
5070 }
5071
5072 if ((stop_pc == stop_pc_sal.pc)
5073 && (ecs->event_thread->current_line != stop_pc_sal.line
5074 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5075 {
5076 /* We are at the start of a different line. So stop. Note that
5077 we don't stop if we step into the middle of a different line.
5078 That is said to make things like for (;;) statements work
5079 better. */
5080 if (debug_infrun)
5081 fprintf_unfiltered (gdb_stdlog,
5082 "infrun: stepped to a different line\n");
5083 ecs->event_thread->control.stop_step = 1;
5084 print_end_stepping_range_reason ();
5085 stop_stepping (ecs);
5086 return;
5087 }
5088
5089 /* We aren't done stepping.
5090
5091 Optimize by setting the stepping range to the line.
5092 (We might not be in the original line, but if we entered a
5093 new line in mid-statement, we continue stepping. This makes
5094 things like for(;;) statements work better.) */
5095
5096 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5097 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5098 set_step_info (frame, stop_pc_sal);
5099
5100 if (debug_infrun)
5101 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5102 keep_going (ecs);
5103 }
5104
5105 /* Is thread TP in the middle of single-stepping? */
5106
5107 static int
5108 currently_stepping (struct thread_info *tp)
5109 {
5110 return ((tp->control.step_range_end
5111 && tp->control.step_resume_breakpoint == NULL)
5112 || tp->control.trap_expected
5113 || bpstat_should_step ());
5114 }
5115
5116 /* Returns true if any thread *but* the one passed in "data" is in the
5117 middle of stepping or of handling a "next". */
5118
5119 static int
5120 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5121 {
5122 if (tp == data)
5123 return 0;
5124
5125 return (tp->control.step_range_end
5126 || tp->control.trap_expected);
5127 }
5128
5129 /* Inferior has stepped into a subroutine call with source code that
5130 we should not step over. Do step to the first line of code in
5131 it. */
5132
5133 static void
5134 handle_step_into_function (struct gdbarch *gdbarch,
5135 struct execution_control_state *ecs)
5136 {
5137 struct symtab *s;
5138 struct symtab_and_line stop_func_sal, sr_sal;
5139
5140 fill_in_stop_func (gdbarch, ecs);
5141
5142 s = find_pc_symtab (stop_pc);
5143 if (s && s->language != language_asm)
5144 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5145 ecs->stop_func_start);
5146
5147 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5148 /* Use the step_resume_break to step until the end of the prologue,
5149 even if that involves jumps (as it seems to on the vax under
5150 4.2). */
5151 /* If the prologue ends in the middle of a source line, continue to
5152 the end of that source line (if it is still within the function).
5153 Otherwise, just go to end of prologue. */
5154 if (stop_func_sal.end
5155 && stop_func_sal.pc != ecs->stop_func_start
5156 && stop_func_sal.end < ecs->stop_func_end)
5157 ecs->stop_func_start = stop_func_sal.end;
5158
5159 /* Architectures which require breakpoint adjustment might not be able
5160 to place a breakpoint at the computed address. If so, the test
5161 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5162 ecs->stop_func_start to an address at which a breakpoint may be
5163 legitimately placed.
5164
5165 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5166 made, GDB will enter an infinite loop when stepping through
5167 optimized code consisting of VLIW instructions which contain
5168 subinstructions corresponding to different source lines. On
5169 FR-V, it's not permitted to place a breakpoint on any but the
5170 first subinstruction of a VLIW instruction. When a breakpoint is
5171 set, GDB will adjust the breakpoint address to the beginning of
5172 the VLIW instruction. Thus, we need to make the corresponding
5173 adjustment here when computing the stop address. */
5174
5175 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5176 {
5177 ecs->stop_func_start
5178 = gdbarch_adjust_breakpoint_address (gdbarch,
5179 ecs->stop_func_start);
5180 }
5181
5182 if (ecs->stop_func_start == stop_pc)
5183 {
5184 /* We are already there: stop now. */
5185 ecs->event_thread->control.stop_step = 1;
5186 print_end_stepping_range_reason ();
5187 stop_stepping (ecs);
5188 return;
5189 }
5190 else
5191 {
5192 /* Put the step-breakpoint there and go until there. */
5193 init_sal (&sr_sal); /* initialize to zeroes */
5194 sr_sal.pc = ecs->stop_func_start;
5195 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5196 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5197
5198 /* Do not specify what the fp should be when we stop since on
5199 some machines the prologue is where the new fp value is
5200 established. */
5201 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5202
5203 /* And make sure stepping stops right away then. */
5204 ecs->event_thread->control.step_range_end
5205 = ecs->event_thread->control.step_range_start;
5206 }
5207 keep_going (ecs);
5208 }
5209
5210 /* Inferior has stepped backward into a subroutine call with source
5211 code that we should not step over. Do step to the beginning of the
5212 last line of code in it. */
5213
5214 static void
5215 handle_step_into_function_backward (struct gdbarch *gdbarch,
5216 struct execution_control_state *ecs)
5217 {
5218 struct symtab *s;
5219 struct symtab_and_line stop_func_sal;
5220
5221 fill_in_stop_func (gdbarch, ecs);
5222
5223 s = find_pc_symtab (stop_pc);
5224 if (s && s->language != language_asm)
5225 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5226 ecs->stop_func_start);
5227
5228 stop_func_sal = find_pc_line (stop_pc, 0);
5229
5230 /* OK, we're just going to keep stepping here. */
5231 if (stop_func_sal.pc == stop_pc)
5232 {
5233 /* We're there already. Just stop stepping now. */
5234 ecs->event_thread->control.stop_step = 1;
5235 print_end_stepping_range_reason ();
5236 stop_stepping (ecs);
5237 }
5238 else
5239 {
5240 /* Else just reset the step range and keep going.
5241 No step-resume breakpoint, they don't work for
5242 epilogues, which can have multiple entry paths. */
5243 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5244 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5245 keep_going (ecs);
5246 }
5247 return;
5248 }
5249
5250 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5251 This is used to both functions and to skip over code. */
5252
5253 static void
5254 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5255 struct symtab_and_line sr_sal,
5256 struct frame_id sr_id,
5257 enum bptype sr_type)
5258 {
5259 /* There should never be more than one step-resume or longjmp-resume
5260 breakpoint per thread, so we should never be setting a new
5261 step_resume_breakpoint when one is already active. */
5262 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5263 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5264
5265 if (debug_infrun)
5266 fprintf_unfiltered (gdb_stdlog,
5267 "infrun: inserting step-resume breakpoint at %s\n",
5268 paddress (gdbarch, sr_sal.pc));
5269
5270 inferior_thread ()->control.step_resume_breakpoint
5271 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5272 }
5273
5274 void
5275 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5276 struct symtab_and_line sr_sal,
5277 struct frame_id sr_id)
5278 {
5279 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5280 sr_sal, sr_id,
5281 bp_step_resume);
5282 }
5283
5284 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5285 This is used to skip a potential signal handler.
5286
5287 This is called with the interrupted function's frame. The signal
5288 handler, when it returns, will resume the interrupted function at
5289 RETURN_FRAME.pc. */
5290
5291 static void
5292 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5293 {
5294 struct symtab_and_line sr_sal;
5295 struct gdbarch *gdbarch;
5296
5297 gdb_assert (return_frame != NULL);
5298 init_sal (&sr_sal); /* initialize to zeros */
5299
5300 gdbarch = get_frame_arch (return_frame);
5301 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5302 sr_sal.section = find_pc_overlay (sr_sal.pc);
5303 sr_sal.pspace = get_frame_program_space (return_frame);
5304
5305 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5306 get_stack_frame_id (return_frame),
5307 bp_hp_step_resume);
5308 }
5309
5310 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5311 is used to skip a function after stepping into it (for "next" or if
5312 the called function has no debugging information).
5313
5314 The current function has almost always been reached by single
5315 stepping a call or return instruction. NEXT_FRAME belongs to the
5316 current function, and the breakpoint will be set at the caller's
5317 resume address.
5318
5319 This is a separate function rather than reusing
5320 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5321 get_prev_frame, which may stop prematurely (see the implementation
5322 of frame_unwind_caller_id for an example). */
5323
5324 static void
5325 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5326 {
5327 struct symtab_and_line sr_sal;
5328 struct gdbarch *gdbarch;
5329
5330 /* We shouldn't have gotten here if we don't know where the call site
5331 is. */
5332 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5333
5334 init_sal (&sr_sal); /* initialize to zeros */
5335
5336 gdbarch = frame_unwind_caller_arch (next_frame);
5337 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5338 frame_unwind_caller_pc (next_frame));
5339 sr_sal.section = find_pc_overlay (sr_sal.pc);
5340 sr_sal.pspace = frame_unwind_program_space (next_frame);
5341
5342 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5343 frame_unwind_caller_id (next_frame));
5344 }
5345
5346 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5347 new breakpoint at the target of a jmp_buf. The handling of
5348 longjmp-resume uses the same mechanisms used for handling
5349 "step-resume" breakpoints. */
5350
5351 static void
5352 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5353 {
5354 /* There should never be more than one step-resume or longjmp-resume
5355 breakpoint per thread, so we should never be setting a new
5356 longjmp_resume_breakpoint when one is already active. */
5357 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5358
5359 if (debug_infrun)
5360 fprintf_unfiltered (gdb_stdlog,
5361 "infrun: inserting longjmp-resume breakpoint at %s\n",
5362 paddress (gdbarch, pc));
5363
5364 inferior_thread ()->control.step_resume_breakpoint =
5365 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5366 }
5367
5368 /* Insert an exception resume breakpoint. TP is the thread throwing
5369 the exception. The block B is the block of the unwinder debug hook
5370 function. FRAME is the frame corresponding to the call to this
5371 function. SYM is the symbol of the function argument holding the
5372 target PC of the exception. */
5373
5374 static void
5375 insert_exception_resume_breakpoint (struct thread_info *tp,
5376 struct block *b,
5377 struct frame_info *frame,
5378 struct symbol *sym)
5379 {
5380 struct gdb_exception e;
5381
5382 /* We want to ignore errors here. */
5383 TRY_CATCH (e, RETURN_MASK_ERROR)
5384 {
5385 struct symbol *vsym;
5386 struct value *value;
5387 CORE_ADDR handler;
5388 struct breakpoint *bp;
5389
5390 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5391 value = read_var_value (vsym, frame);
5392 /* If the value was optimized out, revert to the old behavior. */
5393 if (! value_optimized_out (value))
5394 {
5395 handler = value_as_address (value);
5396
5397 if (debug_infrun)
5398 fprintf_unfiltered (gdb_stdlog,
5399 "infrun: exception resume at %lx\n",
5400 (unsigned long) handler);
5401
5402 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5403 handler, bp_exception_resume);
5404 bp->thread = tp->num;
5405 inferior_thread ()->control.exception_resume_breakpoint = bp;
5406 }
5407 }
5408 }
5409
5410 /* This is called when an exception has been intercepted. Check to
5411 see whether the exception's destination is of interest, and if so,
5412 set an exception resume breakpoint there. */
5413
5414 static void
5415 check_exception_resume (struct execution_control_state *ecs,
5416 struct frame_info *frame, struct symbol *func)
5417 {
5418 struct gdb_exception e;
5419
5420 TRY_CATCH (e, RETURN_MASK_ERROR)
5421 {
5422 struct block *b;
5423 struct dict_iterator iter;
5424 struct symbol *sym;
5425 int argno = 0;
5426
5427 /* The exception breakpoint is a thread-specific breakpoint on
5428 the unwinder's debug hook, declared as:
5429
5430 void _Unwind_DebugHook (void *cfa, void *handler);
5431
5432 The CFA argument indicates the frame to which control is
5433 about to be transferred. HANDLER is the destination PC.
5434
5435 We ignore the CFA and set a temporary breakpoint at HANDLER.
5436 This is not extremely efficient but it avoids issues in gdb
5437 with computing the DWARF CFA, and it also works even in weird
5438 cases such as throwing an exception from inside a signal
5439 handler. */
5440
5441 b = SYMBOL_BLOCK_VALUE (func);
5442 ALL_BLOCK_SYMBOLS (b, iter, sym)
5443 {
5444 if (!SYMBOL_IS_ARGUMENT (sym))
5445 continue;
5446
5447 if (argno == 0)
5448 ++argno;
5449 else
5450 {
5451 insert_exception_resume_breakpoint (ecs->event_thread,
5452 b, frame, sym);
5453 break;
5454 }
5455 }
5456 }
5457 }
5458
5459 static void
5460 stop_stepping (struct execution_control_state *ecs)
5461 {
5462 if (debug_infrun)
5463 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5464
5465 /* Let callers know we don't want to wait for the inferior anymore. */
5466 ecs->wait_some_more = 0;
5467 }
5468
5469 /* This function handles various cases where we need to continue
5470 waiting for the inferior. */
5471 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5472
5473 static void
5474 keep_going (struct execution_control_state *ecs)
5475 {
5476 /* Make sure normal_stop is called if we get a QUIT handled before
5477 reaching resume. */
5478 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5479
5480 /* Save the pc before execution, to compare with pc after stop. */
5481 ecs->event_thread->prev_pc
5482 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5483
5484 /* If we did not do break;, it means we should keep running the
5485 inferior and not return to debugger. */
5486
5487 if (ecs->event_thread->control.trap_expected
5488 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
5489 {
5490 /* We took a signal (which we are supposed to pass through to
5491 the inferior, else we'd not get here) and we haven't yet
5492 gotten our trap. Simply continue. */
5493
5494 discard_cleanups (old_cleanups);
5495 resume (currently_stepping (ecs->event_thread),
5496 ecs->event_thread->suspend.stop_signal);
5497 }
5498 else
5499 {
5500 /* Either the trap was not expected, but we are continuing
5501 anyway (the user asked that this signal be passed to the
5502 child)
5503 -- or --
5504 The signal was SIGTRAP, e.g. it was our signal, but we
5505 decided we should resume from it.
5506
5507 We're going to run this baby now!
5508
5509 Note that insert_breakpoints won't try to re-insert
5510 already inserted breakpoints. Therefore, we don't
5511 care if breakpoints were already inserted, or not. */
5512
5513 if (ecs->event_thread->stepping_over_breakpoint)
5514 {
5515 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5516
5517 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5518 /* Since we can't do a displaced step, we have to remove
5519 the breakpoint while we step it. To keep things
5520 simple, we remove them all. */
5521 remove_breakpoints ();
5522 }
5523 else
5524 {
5525 struct gdb_exception e;
5526
5527 /* Stop stepping when inserting breakpoints
5528 has failed. */
5529 TRY_CATCH (e, RETURN_MASK_ERROR)
5530 {
5531 insert_breakpoints ();
5532 }
5533 if (e.reason < 0)
5534 {
5535 exception_print (gdb_stderr, e);
5536 stop_stepping (ecs);
5537 return;
5538 }
5539 }
5540
5541 ecs->event_thread->control.trap_expected
5542 = ecs->event_thread->stepping_over_breakpoint;
5543
5544 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5545 specifies that such a signal should be delivered to the
5546 target program).
5547
5548 Typically, this would occure when a user is debugging a
5549 target monitor on a simulator: the target monitor sets a
5550 breakpoint; the simulator encounters this break-point and
5551 halts the simulation handing control to GDB; GDB, noteing
5552 that the break-point isn't valid, returns control back to the
5553 simulator; the simulator then delivers the hardware
5554 equivalent of a SIGNAL_TRAP to the program being debugged. */
5555
5556 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5557 && !signal_program[ecs->event_thread->suspend.stop_signal])
5558 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
5559
5560 discard_cleanups (old_cleanups);
5561 resume (currently_stepping (ecs->event_thread),
5562 ecs->event_thread->suspend.stop_signal);
5563 }
5564
5565 prepare_to_wait (ecs);
5566 }
5567
5568 /* This function normally comes after a resume, before
5569 handle_inferior_event exits. It takes care of any last bits of
5570 housekeeping, and sets the all-important wait_some_more flag. */
5571
5572 static void
5573 prepare_to_wait (struct execution_control_state *ecs)
5574 {
5575 if (debug_infrun)
5576 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5577
5578 /* This is the old end of the while loop. Let everybody know we
5579 want to wait for the inferior some more and get called again
5580 soon. */
5581 ecs->wait_some_more = 1;
5582 }
5583
5584 /* Several print_*_reason functions to print why the inferior has stopped.
5585 We always print something when the inferior exits, or receives a signal.
5586 The rest of the cases are dealt with later on in normal_stop and
5587 print_it_typical. Ideally there should be a call to one of these
5588 print_*_reason functions functions from handle_inferior_event each time
5589 stop_stepping is called. */
5590
5591 /* Print why the inferior has stopped.
5592 We are done with a step/next/si/ni command, print why the inferior has
5593 stopped. For now print nothing. Print a message only if not in the middle
5594 of doing a "step n" operation for n > 1. */
5595
5596 static void
5597 print_end_stepping_range_reason (void)
5598 {
5599 if ((!inferior_thread ()->step_multi
5600 || !inferior_thread ()->control.stop_step)
5601 && ui_out_is_mi_like_p (current_uiout))
5602 ui_out_field_string (current_uiout, "reason",
5603 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5604 }
5605
5606 /* The inferior was terminated by a signal, print why it stopped. */
5607
5608 static void
5609 print_signal_exited_reason (enum target_signal siggnal)
5610 {
5611 struct ui_out *uiout = current_uiout;
5612
5613 annotate_signalled ();
5614 if (ui_out_is_mi_like_p (uiout))
5615 ui_out_field_string
5616 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5617 ui_out_text (uiout, "\nProgram terminated with signal ");
5618 annotate_signal_name ();
5619 ui_out_field_string (uiout, "signal-name",
5620 target_signal_to_name (siggnal));
5621 annotate_signal_name_end ();
5622 ui_out_text (uiout, ", ");
5623 annotate_signal_string ();
5624 ui_out_field_string (uiout, "signal-meaning",
5625 target_signal_to_string (siggnal));
5626 annotate_signal_string_end ();
5627 ui_out_text (uiout, ".\n");
5628 ui_out_text (uiout, "The program no longer exists.\n");
5629 }
5630
5631 /* The inferior program is finished, print why it stopped. */
5632
5633 static void
5634 print_exited_reason (int exitstatus)
5635 {
5636 struct inferior *inf = current_inferior ();
5637 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5638 struct ui_out *uiout = current_uiout;
5639
5640 annotate_exited (exitstatus);
5641 if (exitstatus)
5642 {
5643 if (ui_out_is_mi_like_p (uiout))
5644 ui_out_field_string (uiout, "reason",
5645 async_reason_lookup (EXEC_ASYNC_EXITED));
5646 ui_out_text (uiout, "[Inferior ");
5647 ui_out_text (uiout, plongest (inf->num));
5648 ui_out_text (uiout, " (");
5649 ui_out_text (uiout, pidstr);
5650 ui_out_text (uiout, ") exited with code ");
5651 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5652 ui_out_text (uiout, "]\n");
5653 }
5654 else
5655 {
5656 if (ui_out_is_mi_like_p (uiout))
5657 ui_out_field_string
5658 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5659 ui_out_text (uiout, "[Inferior ");
5660 ui_out_text (uiout, plongest (inf->num));
5661 ui_out_text (uiout, " (");
5662 ui_out_text (uiout, pidstr);
5663 ui_out_text (uiout, ") exited normally]\n");
5664 }
5665 /* Support the --return-child-result option. */
5666 return_child_result_value = exitstatus;
5667 }
5668
5669 /* Signal received, print why the inferior has stopped. The signal table
5670 tells us to print about it. */
5671
5672 static void
5673 print_signal_received_reason (enum target_signal siggnal)
5674 {
5675 struct ui_out *uiout = current_uiout;
5676
5677 annotate_signal ();
5678
5679 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5680 {
5681 struct thread_info *t = inferior_thread ();
5682
5683 ui_out_text (uiout, "\n[");
5684 ui_out_field_string (uiout, "thread-name",
5685 target_pid_to_str (t->ptid));
5686 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5687 ui_out_text (uiout, " stopped");
5688 }
5689 else
5690 {
5691 ui_out_text (uiout, "\nProgram received signal ");
5692 annotate_signal_name ();
5693 if (ui_out_is_mi_like_p (uiout))
5694 ui_out_field_string
5695 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5696 ui_out_field_string (uiout, "signal-name",
5697 target_signal_to_name (siggnal));
5698 annotate_signal_name_end ();
5699 ui_out_text (uiout, ", ");
5700 annotate_signal_string ();
5701 ui_out_field_string (uiout, "signal-meaning",
5702 target_signal_to_string (siggnal));
5703 annotate_signal_string_end ();
5704 }
5705 ui_out_text (uiout, ".\n");
5706 }
5707
5708 /* Reverse execution: target ran out of history info, print why the inferior
5709 has stopped. */
5710
5711 static void
5712 print_no_history_reason (void)
5713 {
5714 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5715 }
5716
5717 /* Here to return control to GDB when the inferior stops for real.
5718 Print appropriate messages, remove breakpoints, give terminal our modes.
5719
5720 STOP_PRINT_FRAME nonzero means print the executing frame
5721 (pc, function, args, file, line number and line text).
5722 BREAKPOINTS_FAILED nonzero means stop was due to error
5723 attempting to insert breakpoints. */
5724
5725 void
5726 normal_stop (void)
5727 {
5728 struct target_waitstatus last;
5729 ptid_t last_ptid;
5730 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5731
5732 get_last_target_status (&last_ptid, &last);
5733
5734 /* If an exception is thrown from this point on, make sure to
5735 propagate GDB's knowledge of the executing state to the
5736 frontend/user running state. A QUIT is an easy exception to see
5737 here, so do this before any filtered output. */
5738 if (!non_stop)
5739 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5740 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5741 && last.kind != TARGET_WAITKIND_EXITED)
5742 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5743
5744 /* In non-stop mode, we don't want GDB to switch threads behind the
5745 user's back, to avoid races where the user is typing a command to
5746 apply to thread x, but GDB switches to thread y before the user
5747 finishes entering the command. */
5748
5749 /* As with the notification of thread events, we want to delay
5750 notifying the user that we've switched thread context until
5751 the inferior actually stops.
5752
5753 There's no point in saying anything if the inferior has exited.
5754 Note that SIGNALLED here means "exited with a signal", not
5755 "received a signal". */
5756 if (!non_stop
5757 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5758 && target_has_execution
5759 && last.kind != TARGET_WAITKIND_SIGNALLED
5760 && last.kind != TARGET_WAITKIND_EXITED)
5761 {
5762 target_terminal_ours_for_output ();
5763 printf_filtered (_("[Switching to %s]\n"),
5764 target_pid_to_str (inferior_ptid));
5765 annotate_thread_changed ();
5766 previous_inferior_ptid = inferior_ptid;
5767 }
5768
5769 if (!breakpoints_always_inserted_mode () && target_has_execution)
5770 {
5771 if (remove_breakpoints ())
5772 {
5773 target_terminal_ours_for_output ();
5774 printf_filtered (_("Cannot remove breakpoints because "
5775 "program is no longer writable.\nFurther "
5776 "execution is probably impossible.\n"));
5777 }
5778 }
5779
5780 /* If an auto-display called a function and that got a signal,
5781 delete that auto-display to avoid an infinite recursion. */
5782
5783 if (stopped_by_random_signal)
5784 disable_current_display ();
5785
5786 /* Don't print a message if in the middle of doing a "step n"
5787 operation for n > 1 */
5788 if (target_has_execution
5789 && last.kind != TARGET_WAITKIND_SIGNALLED
5790 && last.kind != TARGET_WAITKIND_EXITED
5791 && inferior_thread ()->step_multi
5792 && inferior_thread ()->control.stop_step)
5793 goto done;
5794
5795 target_terminal_ours ();
5796 async_enable_stdin ();
5797
5798 /* Set the current source location. This will also happen if we
5799 display the frame below, but the current SAL will be incorrect
5800 during a user hook-stop function. */
5801 if (has_stack_frames () && !stop_stack_dummy)
5802 set_current_sal_from_frame (get_current_frame (), 1);
5803
5804 /* Let the user/frontend see the threads as stopped. */
5805 do_cleanups (old_chain);
5806
5807 /* Look up the hook_stop and run it (CLI internally handles problem
5808 of stop_command's pre-hook not existing). */
5809 if (stop_command)
5810 catch_errors (hook_stop_stub, stop_command,
5811 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5812
5813 if (!has_stack_frames ())
5814 goto done;
5815
5816 if (last.kind == TARGET_WAITKIND_SIGNALLED
5817 || last.kind == TARGET_WAITKIND_EXITED)
5818 goto done;
5819
5820 /* Select innermost stack frame - i.e., current frame is frame 0,
5821 and current location is based on that.
5822 Don't do this on return from a stack dummy routine,
5823 or if the program has exited. */
5824
5825 if (!stop_stack_dummy)
5826 {
5827 select_frame (get_current_frame ());
5828
5829 /* Print current location without a level number, if
5830 we have changed functions or hit a breakpoint.
5831 Print source line if we have one.
5832 bpstat_print() contains the logic deciding in detail
5833 what to print, based on the event(s) that just occurred. */
5834
5835 /* If --batch-silent is enabled then there's no need to print the current
5836 source location, and to try risks causing an error message about
5837 missing source files. */
5838 if (stop_print_frame && !batch_silent)
5839 {
5840 int bpstat_ret;
5841 int source_flag;
5842 int do_frame_printing = 1;
5843 struct thread_info *tp = inferior_thread ();
5844
5845 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
5846 switch (bpstat_ret)
5847 {
5848 case PRINT_UNKNOWN:
5849 /* If we had hit a shared library event breakpoint,
5850 bpstat_print would print out this message. If we hit
5851 an OS-level shared library event, do the same
5852 thing. */
5853 if (last.kind == TARGET_WAITKIND_LOADED)
5854 {
5855 printf_filtered (_("Stopped due to shared library event\n"));
5856 source_flag = SRC_LINE; /* something bogus */
5857 do_frame_printing = 0;
5858 break;
5859 }
5860
5861 /* FIXME: cagney/2002-12-01: Given that a frame ID does
5862 (or should) carry around the function and does (or
5863 should) use that when doing a frame comparison. */
5864 if (tp->control.stop_step
5865 && frame_id_eq (tp->control.step_frame_id,
5866 get_frame_id (get_current_frame ()))
5867 && step_start_function == find_pc_function (stop_pc))
5868 source_flag = SRC_LINE; /* Finished step, just
5869 print source line. */
5870 else
5871 source_flag = SRC_AND_LOC; /* Print location and
5872 source line. */
5873 break;
5874 case PRINT_SRC_AND_LOC:
5875 source_flag = SRC_AND_LOC; /* Print location and
5876 source line. */
5877 break;
5878 case PRINT_SRC_ONLY:
5879 source_flag = SRC_LINE;
5880 break;
5881 case PRINT_NOTHING:
5882 source_flag = SRC_LINE; /* something bogus */
5883 do_frame_printing = 0;
5884 break;
5885 default:
5886 internal_error (__FILE__, __LINE__, _("Unknown value."));
5887 }
5888
5889 /* The behavior of this routine with respect to the source
5890 flag is:
5891 SRC_LINE: Print only source line
5892 LOCATION: Print only location
5893 SRC_AND_LOC: Print location and source line. */
5894 if (do_frame_printing)
5895 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
5896
5897 /* Display the auto-display expressions. */
5898 do_displays ();
5899 }
5900 }
5901
5902 /* Save the function value return registers, if we care.
5903 We might be about to restore their previous contents. */
5904 if (inferior_thread ()->control.proceed_to_finish
5905 && execution_direction != EXEC_REVERSE)
5906 {
5907 /* This should not be necessary. */
5908 if (stop_registers)
5909 regcache_xfree (stop_registers);
5910
5911 /* NB: The copy goes through to the target picking up the value of
5912 all the registers. */
5913 stop_registers = regcache_dup (get_current_regcache ());
5914 }
5915
5916 if (stop_stack_dummy == STOP_STACK_DUMMY)
5917 {
5918 /* Pop the empty frame that contains the stack dummy.
5919 This also restores inferior state prior to the call
5920 (struct infcall_suspend_state). */
5921 struct frame_info *frame = get_current_frame ();
5922
5923 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5924 frame_pop (frame);
5925 /* frame_pop() calls reinit_frame_cache as the last thing it
5926 does which means there's currently no selected frame. We
5927 don't need to re-establish a selected frame if the dummy call
5928 returns normally, that will be done by
5929 restore_infcall_control_state. However, we do have to handle
5930 the case where the dummy call is returning after being
5931 stopped (e.g. the dummy call previously hit a breakpoint).
5932 We can't know which case we have so just always re-establish
5933 a selected frame here. */
5934 select_frame (get_current_frame ());
5935 }
5936
5937 done:
5938 annotate_stopped ();
5939
5940 /* Suppress the stop observer if we're in the middle of:
5941
5942 - a step n (n > 1), as there still more steps to be done.
5943
5944 - a "finish" command, as the observer will be called in
5945 finish_command_continuation, so it can include the inferior
5946 function's return value.
5947
5948 - calling an inferior function, as we pretend we inferior didn't
5949 run at all. The return value of the call is handled by the
5950 expression evaluator, through call_function_by_hand. */
5951
5952 if (!target_has_execution
5953 || last.kind == TARGET_WAITKIND_SIGNALLED
5954 || last.kind == TARGET_WAITKIND_EXITED
5955 || (!inferior_thread ()->step_multi
5956 && !(inferior_thread ()->control.stop_bpstat
5957 && inferior_thread ()->control.proceed_to_finish)
5958 && !inferior_thread ()->control.in_infcall))
5959 {
5960 if (!ptid_equal (inferior_ptid, null_ptid))
5961 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
5962 stop_print_frame);
5963 else
5964 observer_notify_normal_stop (NULL, stop_print_frame);
5965 }
5966
5967 if (target_has_execution)
5968 {
5969 if (last.kind != TARGET_WAITKIND_SIGNALLED
5970 && last.kind != TARGET_WAITKIND_EXITED)
5971 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5972 Delete any breakpoint that is to be deleted at the next stop. */
5973 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
5974 }
5975
5976 /* Try to get rid of automatically added inferiors that are no
5977 longer needed. Keeping those around slows down things linearly.
5978 Note that this never removes the current inferior. */
5979 prune_inferiors ();
5980 }
5981
5982 static int
5983 hook_stop_stub (void *cmd)
5984 {
5985 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
5986 return (0);
5987 }
5988 \f
5989 int
5990 signal_stop_state (int signo)
5991 {
5992 return signal_stop[signo];
5993 }
5994
5995 int
5996 signal_print_state (int signo)
5997 {
5998 return signal_print[signo];
5999 }
6000
6001 int
6002 signal_pass_state (int signo)
6003 {
6004 return signal_program[signo];
6005 }
6006
6007 static void
6008 signal_cache_update (int signo)
6009 {
6010 if (signo == -1)
6011 {
6012 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
6013 signal_cache_update (signo);
6014
6015 return;
6016 }
6017
6018 signal_pass[signo] = (signal_stop[signo] == 0
6019 && signal_print[signo] == 0
6020 && signal_program[signo] == 1);
6021 }
6022
6023 int
6024 signal_stop_update (int signo, int state)
6025 {
6026 int ret = signal_stop[signo];
6027
6028 signal_stop[signo] = state;
6029 signal_cache_update (signo);
6030 return ret;
6031 }
6032
6033 int
6034 signal_print_update (int signo, int state)
6035 {
6036 int ret = signal_print[signo];
6037
6038 signal_print[signo] = state;
6039 signal_cache_update (signo);
6040 return ret;
6041 }
6042
6043 int
6044 signal_pass_update (int signo, int state)
6045 {
6046 int ret = signal_program[signo];
6047
6048 signal_program[signo] = state;
6049 signal_cache_update (signo);
6050 return ret;
6051 }
6052
6053 static void
6054 sig_print_header (void)
6055 {
6056 printf_filtered (_("Signal Stop\tPrint\tPass "
6057 "to program\tDescription\n"));
6058 }
6059
6060 static void
6061 sig_print_info (enum target_signal oursig)
6062 {
6063 const char *name = target_signal_to_name (oursig);
6064 int name_padding = 13 - strlen (name);
6065
6066 if (name_padding <= 0)
6067 name_padding = 0;
6068
6069 printf_filtered ("%s", name);
6070 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6071 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6072 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6073 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6074 printf_filtered ("%s\n", target_signal_to_string (oursig));
6075 }
6076
6077 /* Specify how various signals in the inferior should be handled. */
6078
6079 static void
6080 handle_command (char *args, int from_tty)
6081 {
6082 char **argv;
6083 int digits, wordlen;
6084 int sigfirst, signum, siglast;
6085 enum target_signal oursig;
6086 int allsigs;
6087 int nsigs;
6088 unsigned char *sigs;
6089 struct cleanup *old_chain;
6090
6091 if (args == NULL)
6092 {
6093 error_no_arg (_("signal to handle"));
6094 }
6095
6096 /* Allocate and zero an array of flags for which signals to handle. */
6097
6098 nsigs = (int) TARGET_SIGNAL_LAST;
6099 sigs = (unsigned char *) alloca (nsigs);
6100 memset (sigs, 0, nsigs);
6101
6102 /* Break the command line up into args. */
6103
6104 argv = gdb_buildargv (args);
6105 old_chain = make_cleanup_freeargv (argv);
6106
6107 /* Walk through the args, looking for signal oursigs, signal names, and
6108 actions. Signal numbers and signal names may be interspersed with
6109 actions, with the actions being performed for all signals cumulatively
6110 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6111
6112 while (*argv != NULL)
6113 {
6114 wordlen = strlen (*argv);
6115 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6116 {;
6117 }
6118 allsigs = 0;
6119 sigfirst = siglast = -1;
6120
6121 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6122 {
6123 /* Apply action to all signals except those used by the
6124 debugger. Silently skip those. */
6125 allsigs = 1;
6126 sigfirst = 0;
6127 siglast = nsigs - 1;
6128 }
6129 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6130 {
6131 SET_SIGS (nsigs, sigs, signal_stop);
6132 SET_SIGS (nsigs, sigs, signal_print);
6133 }
6134 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6135 {
6136 UNSET_SIGS (nsigs, sigs, signal_program);
6137 }
6138 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6139 {
6140 SET_SIGS (nsigs, sigs, signal_print);
6141 }
6142 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6143 {
6144 SET_SIGS (nsigs, sigs, signal_program);
6145 }
6146 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6147 {
6148 UNSET_SIGS (nsigs, sigs, signal_stop);
6149 }
6150 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6151 {
6152 SET_SIGS (nsigs, sigs, signal_program);
6153 }
6154 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6155 {
6156 UNSET_SIGS (nsigs, sigs, signal_print);
6157 UNSET_SIGS (nsigs, sigs, signal_stop);
6158 }
6159 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6160 {
6161 UNSET_SIGS (nsigs, sigs, signal_program);
6162 }
6163 else if (digits > 0)
6164 {
6165 /* It is numeric. The numeric signal refers to our own
6166 internal signal numbering from target.h, not to host/target
6167 signal number. This is a feature; users really should be
6168 using symbolic names anyway, and the common ones like
6169 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6170
6171 sigfirst = siglast = (int)
6172 target_signal_from_command (atoi (*argv));
6173 if ((*argv)[digits] == '-')
6174 {
6175 siglast = (int)
6176 target_signal_from_command (atoi ((*argv) + digits + 1));
6177 }
6178 if (sigfirst > siglast)
6179 {
6180 /* Bet he didn't figure we'd think of this case... */
6181 signum = sigfirst;
6182 sigfirst = siglast;
6183 siglast = signum;
6184 }
6185 }
6186 else
6187 {
6188 oursig = target_signal_from_name (*argv);
6189 if (oursig != TARGET_SIGNAL_UNKNOWN)
6190 {
6191 sigfirst = siglast = (int) oursig;
6192 }
6193 else
6194 {
6195 /* Not a number and not a recognized flag word => complain. */
6196 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6197 }
6198 }
6199
6200 /* If any signal numbers or symbol names were found, set flags for
6201 which signals to apply actions to. */
6202
6203 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6204 {
6205 switch ((enum target_signal) signum)
6206 {
6207 case TARGET_SIGNAL_TRAP:
6208 case TARGET_SIGNAL_INT:
6209 if (!allsigs && !sigs[signum])
6210 {
6211 if (query (_("%s is used by the debugger.\n\
6212 Are you sure you want to change it? "),
6213 target_signal_to_name ((enum target_signal) signum)))
6214 {
6215 sigs[signum] = 1;
6216 }
6217 else
6218 {
6219 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6220 gdb_flush (gdb_stdout);
6221 }
6222 }
6223 break;
6224 case TARGET_SIGNAL_0:
6225 case TARGET_SIGNAL_DEFAULT:
6226 case TARGET_SIGNAL_UNKNOWN:
6227 /* Make sure that "all" doesn't print these. */
6228 break;
6229 default:
6230 sigs[signum] = 1;
6231 break;
6232 }
6233 }
6234
6235 argv++;
6236 }
6237
6238 for (signum = 0; signum < nsigs; signum++)
6239 if (sigs[signum])
6240 {
6241 signal_cache_update (-1);
6242 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
6243
6244 if (from_tty)
6245 {
6246 /* Show the results. */
6247 sig_print_header ();
6248 for (; signum < nsigs; signum++)
6249 if (sigs[signum])
6250 sig_print_info (signum);
6251 }
6252
6253 break;
6254 }
6255
6256 do_cleanups (old_chain);
6257 }
6258
6259 static void
6260 xdb_handle_command (char *args, int from_tty)
6261 {
6262 char **argv;
6263 struct cleanup *old_chain;
6264
6265 if (args == NULL)
6266 error_no_arg (_("xdb command"));
6267
6268 /* Break the command line up into args. */
6269
6270 argv = gdb_buildargv (args);
6271 old_chain = make_cleanup_freeargv (argv);
6272 if (argv[1] != (char *) NULL)
6273 {
6274 char *argBuf;
6275 int bufLen;
6276
6277 bufLen = strlen (argv[0]) + 20;
6278 argBuf = (char *) xmalloc (bufLen);
6279 if (argBuf)
6280 {
6281 int validFlag = 1;
6282 enum target_signal oursig;
6283
6284 oursig = target_signal_from_name (argv[0]);
6285 memset (argBuf, 0, bufLen);
6286 if (strcmp (argv[1], "Q") == 0)
6287 sprintf (argBuf, "%s %s", argv[0], "noprint");
6288 else
6289 {
6290 if (strcmp (argv[1], "s") == 0)
6291 {
6292 if (!signal_stop[oursig])
6293 sprintf (argBuf, "%s %s", argv[0], "stop");
6294 else
6295 sprintf (argBuf, "%s %s", argv[0], "nostop");
6296 }
6297 else if (strcmp (argv[1], "i") == 0)
6298 {
6299 if (!signal_program[oursig])
6300 sprintf (argBuf, "%s %s", argv[0], "pass");
6301 else
6302 sprintf (argBuf, "%s %s", argv[0], "nopass");
6303 }
6304 else if (strcmp (argv[1], "r") == 0)
6305 {
6306 if (!signal_print[oursig])
6307 sprintf (argBuf, "%s %s", argv[0], "print");
6308 else
6309 sprintf (argBuf, "%s %s", argv[0], "noprint");
6310 }
6311 else
6312 validFlag = 0;
6313 }
6314 if (validFlag)
6315 handle_command (argBuf, from_tty);
6316 else
6317 printf_filtered (_("Invalid signal handling flag.\n"));
6318 if (argBuf)
6319 xfree (argBuf);
6320 }
6321 }
6322 do_cleanups (old_chain);
6323 }
6324
6325 /* Print current contents of the tables set by the handle command.
6326 It is possible we should just be printing signals actually used
6327 by the current target (but for things to work right when switching
6328 targets, all signals should be in the signal tables). */
6329
6330 static void
6331 signals_info (char *signum_exp, int from_tty)
6332 {
6333 enum target_signal oursig;
6334
6335 sig_print_header ();
6336
6337 if (signum_exp)
6338 {
6339 /* First see if this is a symbol name. */
6340 oursig = target_signal_from_name (signum_exp);
6341 if (oursig == TARGET_SIGNAL_UNKNOWN)
6342 {
6343 /* No, try numeric. */
6344 oursig =
6345 target_signal_from_command (parse_and_eval_long (signum_exp));
6346 }
6347 sig_print_info (oursig);
6348 return;
6349 }
6350
6351 printf_filtered ("\n");
6352 /* These ugly casts brought to you by the native VAX compiler. */
6353 for (oursig = TARGET_SIGNAL_FIRST;
6354 (int) oursig < (int) TARGET_SIGNAL_LAST;
6355 oursig = (enum target_signal) ((int) oursig + 1))
6356 {
6357 QUIT;
6358
6359 if (oursig != TARGET_SIGNAL_UNKNOWN
6360 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
6361 sig_print_info (oursig);
6362 }
6363
6364 printf_filtered (_("\nUse the \"handle\" command "
6365 "to change these tables.\n"));
6366 }
6367
6368 /* Check if it makes sense to read $_siginfo from the current thread
6369 at this point. If not, throw an error. */
6370
6371 static void
6372 validate_siginfo_access (void)
6373 {
6374 /* No current inferior, no siginfo. */
6375 if (ptid_equal (inferior_ptid, null_ptid))
6376 error (_("No thread selected."));
6377
6378 /* Don't try to read from a dead thread. */
6379 if (is_exited (inferior_ptid))
6380 error (_("The current thread has terminated"));
6381
6382 /* ... or from a spinning thread. */
6383 if (is_running (inferior_ptid))
6384 error (_("Selected thread is running."));
6385 }
6386
6387 /* The $_siginfo convenience variable is a bit special. We don't know
6388 for sure the type of the value until we actually have a chance to
6389 fetch the data. The type can change depending on gdbarch, so it is
6390 also dependent on which thread you have selected.
6391
6392 1. making $_siginfo be an internalvar that creates a new value on
6393 access.
6394
6395 2. making the value of $_siginfo be an lval_computed value. */
6396
6397 /* This function implements the lval_computed support for reading a
6398 $_siginfo value. */
6399
6400 static void
6401 siginfo_value_read (struct value *v)
6402 {
6403 LONGEST transferred;
6404
6405 validate_siginfo_access ();
6406
6407 transferred =
6408 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6409 NULL,
6410 value_contents_all_raw (v),
6411 value_offset (v),
6412 TYPE_LENGTH (value_type (v)));
6413
6414 if (transferred != TYPE_LENGTH (value_type (v)))
6415 error (_("Unable to read siginfo"));
6416 }
6417
6418 /* This function implements the lval_computed support for writing a
6419 $_siginfo value. */
6420
6421 static void
6422 siginfo_value_write (struct value *v, struct value *fromval)
6423 {
6424 LONGEST transferred;
6425
6426 validate_siginfo_access ();
6427
6428 transferred = target_write (&current_target,
6429 TARGET_OBJECT_SIGNAL_INFO,
6430 NULL,
6431 value_contents_all_raw (fromval),
6432 value_offset (v),
6433 TYPE_LENGTH (value_type (fromval)));
6434
6435 if (transferred != TYPE_LENGTH (value_type (fromval)))
6436 error (_("Unable to write siginfo"));
6437 }
6438
6439 static const struct lval_funcs siginfo_value_funcs =
6440 {
6441 siginfo_value_read,
6442 siginfo_value_write
6443 };
6444
6445 /* Return a new value with the correct type for the siginfo object of
6446 the current thread using architecture GDBARCH. Return a void value
6447 if there's no object available. */
6448
6449 static struct value *
6450 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
6451 {
6452 if (target_has_stack
6453 && !ptid_equal (inferior_ptid, null_ptid)
6454 && gdbarch_get_siginfo_type_p (gdbarch))
6455 {
6456 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6457
6458 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6459 }
6460
6461 return allocate_value (builtin_type (gdbarch)->builtin_void);
6462 }
6463
6464 \f
6465 /* infcall_suspend_state contains state about the program itself like its
6466 registers and any signal it received when it last stopped.
6467 This state must be restored regardless of how the inferior function call
6468 ends (either successfully, or after it hits a breakpoint or signal)
6469 if the program is to properly continue where it left off. */
6470
6471 struct infcall_suspend_state
6472 {
6473 struct thread_suspend_state thread_suspend;
6474 struct inferior_suspend_state inferior_suspend;
6475
6476 /* Other fields: */
6477 CORE_ADDR stop_pc;
6478 struct regcache *registers;
6479
6480 /* Format of SIGINFO_DATA or NULL if it is not present. */
6481 struct gdbarch *siginfo_gdbarch;
6482
6483 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6484 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6485 content would be invalid. */
6486 gdb_byte *siginfo_data;
6487 };
6488
6489 struct infcall_suspend_state *
6490 save_infcall_suspend_state (void)
6491 {
6492 struct infcall_suspend_state *inf_state;
6493 struct thread_info *tp = inferior_thread ();
6494 struct inferior *inf = current_inferior ();
6495 struct regcache *regcache = get_current_regcache ();
6496 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6497 gdb_byte *siginfo_data = NULL;
6498
6499 if (gdbarch_get_siginfo_type_p (gdbarch))
6500 {
6501 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6502 size_t len = TYPE_LENGTH (type);
6503 struct cleanup *back_to;
6504
6505 siginfo_data = xmalloc (len);
6506 back_to = make_cleanup (xfree, siginfo_data);
6507
6508 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6509 siginfo_data, 0, len) == len)
6510 discard_cleanups (back_to);
6511 else
6512 {
6513 /* Errors ignored. */
6514 do_cleanups (back_to);
6515 siginfo_data = NULL;
6516 }
6517 }
6518
6519 inf_state = XZALLOC (struct infcall_suspend_state);
6520
6521 if (siginfo_data)
6522 {
6523 inf_state->siginfo_gdbarch = gdbarch;
6524 inf_state->siginfo_data = siginfo_data;
6525 }
6526
6527 inf_state->thread_suspend = tp->suspend;
6528 inf_state->inferior_suspend = inf->suspend;
6529
6530 /* run_inferior_call will not use the signal due to its `proceed' call with
6531 TARGET_SIGNAL_0 anyway. */
6532 tp->suspend.stop_signal = TARGET_SIGNAL_0;
6533
6534 inf_state->stop_pc = stop_pc;
6535
6536 inf_state->registers = regcache_dup (regcache);
6537
6538 return inf_state;
6539 }
6540
6541 /* Restore inferior session state to INF_STATE. */
6542
6543 void
6544 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6545 {
6546 struct thread_info *tp = inferior_thread ();
6547 struct inferior *inf = current_inferior ();
6548 struct regcache *regcache = get_current_regcache ();
6549 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6550
6551 tp->suspend = inf_state->thread_suspend;
6552 inf->suspend = inf_state->inferior_suspend;
6553
6554 stop_pc = inf_state->stop_pc;
6555
6556 if (inf_state->siginfo_gdbarch == gdbarch)
6557 {
6558 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6559 size_t len = TYPE_LENGTH (type);
6560
6561 /* Errors ignored. */
6562 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6563 inf_state->siginfo_data, 0, len);
6564 }
6565
6566 /* The inferior can be gone if the user types "print exit(0)"
6567 (and perhaps other times). */
6568 if (target_has_execution)
6569 /* NB: The register write goes through to the target. */
6570 regcache_cpy (regcache, inf_state->registers);
6571
6572 discard_infcall_suspend_state (inf_state);
6573 }
6574
6575 static void
6576 do_restore_infcall_suspend_state_cleanup (void *state)
6577 {
6578 restore_infcall_suspend_state (state);
6579 }
6580
6581 struct cleanup *
6582 make_cleanup_restore_infcall_suspend_state
6583 (struct infcall_suspend_state *inf_state)
6584 {
6585 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6586 }
6587
6588 void
6589 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6590 {
6591 regcache_xfree (inf_state->registers);
6592 xfree (inf_state->siginfo_data);
6593 xfree (inf_state);
6594 }
6595
6596 struct regcache *
6597 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6598 {
6599 return inf_state->registers;
6600 }
6601
6602 /* infcall_control_state contains state regarding gdb's control of the
6603 inferior itself like stepping control. It also contains session state like
6604 the user's currently selected frame. */
6605
6606 struct infcall_control_state
6607 {
6608 struct thread_control_state thread_control;
6609 struct inferior_control_state inferior_control;
6610
6611 /* Other fields: */
6612 enum stop_stack_kind stop_stack_dummy;
6613 int stopped_by_random_signal;
6614 int stop_after_trap;
6615
6616 /* ID if the selected frame when the inferior function call was made. */
6617 struct frame_id selected_frame_id;
6618 };
6619
6620 /* Save all of the information associated with the inferior<==>gdb
6621 connection. */
6622
6623 struct infcall_control_state *
6624 save_infcall_control_state (void)
6625 {
6626 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6627 struct thread_info *tp = inferior_thread ();
6628 struct inferior *inf = current_inferior ();
6629
6630 inf_status->thread_control = tp->control;
6631 inf_status->inferior_control = inf->control;
6632
6633 tp->control.step_resume_breakpoint = NULL;
6634 tp->control.exception_resume_breakpoint = NULL;
6635
6636 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6637 chain. If caller's caller is walking the chain, they'll be happier if we
6638 hand them back the original chain when restore_infcall_control_state is
6639 called. */
6640 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6641
6642 /* Other fields: */
6643 inf_status->stop_stack_dummy = stop_stack_dummy;
6644 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6645 inf_status->stop_after_trap = stop_after_trap;
6646
6647 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6648
6649 return inf_status;
6650 }
6651
6652 static int
6653 restore_selected_frame (void *args)
6654 {
6655 struct frame_id *fid = (struct frame_id *) args;
6656 struct frame_info *frame;
6657
6658 frame = frame_find_by_id (*fid);
6659
6660 /* If inf_status->selected_frame_id is NULL, there was no previously
6661 selected frame. */
6662 if (frame == NULL)
6663 {
6664 warning (_("Unable to restore previously selected frame."));
6665 return 0;
6666 }
6667
6668 select_frame (frame);
6669
6670 return (1);
6671 }
6672
6673 /* Restore inferior session state to INF_STATUS. */
6674
6675 void
6676 restore_infcall_control_state (struct infcall_control_state *inf_status)
6677 {
6678 struct thread_info *tp = inferior_thread ();
6679 struct inferior *inf = current_inferior ();
6680
6681 if (tp->control.step_resume_breakpoint)
6682 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6683
6684 if (tp->control.exception_resume_breakpoint)
6685 tp->control.exception_resume_breakpoint->disposition
6686 = disp_del_at_next_stop;
6687
6688 /* Handle the bpstat_copy of the chain. */
6689 bpstat_clear (&tp->control.stop_bpstat);
6690
6691 tp->control = inf_status->thread_control;
6692 inf->control = inf_status->inferior_control;
6693
6694 /* Other fields: */
6695 stop_stack_dummy = inf_status->stop_stack_dummy;
6696 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6697 stop_after_trap = inf_status->stop_after_trap;
6698
6699 if (target_has_stack)
6700 {
6701 /* The point of catch_errors is that if the stack is clobbered,
6702 walking the stack might encounter a garbage pointer and
6703 error() trying to dereference it. */
6704 if (catch_errors
6705 (restore_selected_frame, &inf_status->selected_frame_id,
6706 "Unable to restore previously selected frame:\n",
6707 RETURN_MASK_ERROR) == 0)
6708 /* Error in restoring the selected frame. Select the innermost
6709 frame. */
6710 select_frame (get_current_frame ());
6711 }
6712
6713 xfree (inf_status);
6714 }
6715
6716 static void
6717 do_restore_infcall_control_state_cleanup (void *sts)
6718 {
6719 restore_infcall_control_state (sts);
6720 }
6721
6722 struct cleanup *
6723 make_cleanup_restore_infcall_control_state
6724 (struct infcall_control_state *inf_status)
6725 {
6726 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6727 }
6728
6729 void
6730 discard_infcall_control_state (struct infcall_control_state *inf_status)
6731 {
6732 if (inf_status->thread_control.step_resume_breakpoint)
6733 inf_status->thread_control.step_resume_breakpoint->disposition
6734 = disp_del_at_next_stop;
6735
6736 if (inf_status->thread_control.exception_resume_breakpoint)
6737 inf_status->thread_control.exception_resume_breakpoint->disposition
6738 = disp_del_at_next_stop;
6739
6740 /* See save_infcall_control_state for info on stop_bpstat. */
6741 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6742
6743 xfree (inf_status);
6744 }
6745 \f
6746 int
6747 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
6748 {
6749 struct target_waitstatus last;
6750 ptid_t last_ptid;
6751
6752 get_last_target_status (&last_ptid, &last);
6753
6754 if (last.kind != TARGET_WAITKIND_FORKED)
6755 return 0;
6756
6757 if (!ptid_equal (last_ptid, pid))
6758 return 0;
6759
6760 *child_pid = last.value.related_pid;
6761 return 1;
6762 }
6763
6764 int
6765 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
6766 {
6767 struct target_waitstatus last;
6768 ptid_t last_ptid;
6769
6770 get_last_target_status (&last_ptid, &last);
6771
6772 if (last.kind != TARGET_WAITKIND_VFORKED)
6773 return 0;
6774
6775 if (!ptid_equal (last_ptid, pid))
6776 return 0;
6777
6778 *child_pid = last.value.related_pid;
6779 return 1;
6780 }
6781
6782 int
6783 inferior_has_execd (ptid_t pid, char **execd_pathname)
6784 {
6785 struct target_waitstatus last;
6786 ptid_t last_ptid;
6787
6788 get_last_target_status (&last_ptid, &last);
6789
6790 if (last.kind != TARGET_WAITKIND_EXECD)
6791 return 0;
6792
6793 if (!ptid_equal (last_ptid, pid))
6794 return 0;
6795
6796 *execd_pathname = xstrdup (last.value.execd_pathname);
6797 return 1;
6798 }
6799
6800 int
6801 inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6802 {
6803 struct target_waitstatus last;
6804 ptid_t last_ptid;
6805
6806 get_last_target_status (&last_ptid, &last);
6807
6808 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6809 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6810 return 0;
6811
6812 if (!ptid_equal (last_ptid, pid))
6813 return 0;
6814
6815 *syscall_number = last.value.syscall_number;
6816 return 1;
6817 }
6818
6819 int
6820 ptid_match (ptid_t ptid, ptid_t filter)
6821 {
6822 if (ptid_equal (filter, minus_one_ptid))
6823 return 1;
6824 if (ptid_is_pid (filter)
6825 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6826 return 1;
6827 else if (ptid_equal (ptid, filter))
6828 return 1;
6829
6830 return 0;
6831 }
6832
6833 /* restore_inferior_ptid() will be used by the cleanup machinery
6834 to restore the inferior_ptid value saved in a call to
6835 save_inferior_ptid(). */
6836
6837 static void
6838 restore_inferior_ptid (void *arg)
6839 {
6840 ptid_t *saved_ptid_ptr = arg;
6841
6842 inferior_ptid = *saved_ptid_ptr;
6843 xfree (arg);
6844 }
6845
6846 /* Save the value of inferior_ptid so that it may be restored by a
6847 later call to do_cleanups(). Returns the struct cleanup pointer
6848 needed for later doing the cleanup. */
6849
6850 struct cleanup *
6851 save_inferior_ptid (void)
6852 {
6853 ptid_t *saved_ptid_ptr;
6854
6855 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6856 *saved_ptid_ptr = inferior_ptid;
6857 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6858 }
6859 \f
6860
6861 /* User interface for reverse debugging:
6862 Set exec-direction / show exec-direction commands
6863 (returns error unless target implements to_set_exec_direction method). */
6864
6865 int execution_direction = EXEC_FORWARD;
6866 static const char exec_forward[] = "forward";
6867 static const char exec_reverse[] = "reverse";
6868 static const char *exec_direction = exec_forward;
6869 static const char *exec_direction_names[] = {
6870 exec_forward,
6871 exec_reverse,
6872 NULL
6873 };
6874
6875 static void
6876 set_exec_direction_func (char *args, int from_tty,
6877 struct cmd_list_element *cmd)
6878 {
6879 if (target_can_execute_reverse)
6880 {
6881 if (!strcmp (exec_direction, exec_forward))
6882 execution_direction = EXEC_FORWARD;
6883 else if (!strcmp (exec_direction, exec_reverse))
6884 execution_direction = EXEC_REVERSE;
6885 }
6886 else
6887 {
6888 exec_direction = exec_forward;
6889 error (_("Target does not support this operation."));
6890 }
6891 }
6892
6893 static void
6894 show_exec_direction_func (struct ui_file *out, int from_tty,
6895 struct cmd_list_element *cmd, const char *value)
6896 {
6897 switch (execution_direction) {
6898 case EXEC_FORWARD:
6899 fprintf_filtered (out, _("Forward.\n"));
6900 break;
6901 case EXEC_REVERSE:
6902 fprintf_filtered (out, _("Reverse.\n"));
6903 break;
6904 default:
6905 internal_error (__FILE__, __LINE__,
6906 _("bogus execution_direction value: %d"),
6907 (int) execution_direction);
6908 }
6909 }
6910
6911 /* User interface for non-stop mode. */
6912
6913 int non_stop = 0;
6914
6915 static void
6916 set_non_stop (char *args, int from_tty,
6917 struct cmd_list_element *c)
6918 {
6919 if (target_has_execution)
6920 {
6921 non_stop_1 = non_stop;
6922 error (_("Cannot change this setting while the inferior is running."));
6923 }
6924
6925 non_stop = non_stop_1;
6926 }
6927
6928 static void
6929 show_non_stop (struct ui_file *file, int from_tty,
6930 struct cmd_list_element *c, const char *value)
6931 {
6932 fprintf_filtered (file,
6933 _("Controlling the inferior in non-stop mode is %s.\n"),
6934 value);
6935 }
6936
6937 static void
6938 show_schedule_multiple (struct ui_file *file, int from_tty,
6939 struct cmd_list_element *c, const char *value)
6940 {
6941 fprintf_filtered (file, _("Resuming the execution of threads "
6942 "of all processes is %s.\n"), value);
6943 }
6944
6945 void
6946 _initialize_infrun (void)
6947 {
6948 int i;
6949 int numsigs;
6950
6951 add_info ("signals", signals_info, _("\
6952 What debugger does when program gets various signals.\n\
6953 Specify a signal as argument to print info on that signal only."));
6954 add_info_alias ("handle", "signals", 0);
6955
6956 add_com ("handle", class_run, handle_command, _("\
6957 Specify how to handle a signal.\n\
6958 Args are signals and actions to apply to those signals.\n\
6959 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6960 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6961 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6962 The special arg \"all\" is recognized to mean all signals except those\n\
6963 used by the debugger, typically SIGTRAP and SIGINT.\n\
6964 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
6965 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6966 Stop means reenter debugger if this signal happens (implies print).\n\
6967 Print means print a message if this signal happens.\n\
6968 Pass means let program see this signal; otherwise program doesn't know.\n\
6969 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6970 Pass and Stop may be combined."));
6971 if (xdb_commands)
6972 {
6973 add_com ("lz", class_info, signals_info, _("\
6974 What debugger does when program gets various signals.\n\
6975 Specify a signal as argument to print info on that signal only."));
6976 add_com ("z", class_run, xdb_handle_command, _("\
6977 Specify how to handle a signal.\n\
6978 Args are signals and actions to apply to those signals.\n\
6979 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6980 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6981 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6982 The special arg \"all\" is recognized to mean all signals except those\n\
6983 used by the debugger, typically SIGTRAP and SIGINT.\n\
6984 Recognized actions include \"s\" (toggles between stop and nostop),\n\
6985 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6986 nopass), \"Q\" (noprint)\n\
6987 Stop means reenter debugger if this signal happens (implies print).\n\
6988 Print means print a message if this signal happens.\n\
6989 Pass means let program see this signal; otherwise program doesn't know.\n\
6990 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6991 Pass and Stop may be combined."));
6992 }
6993
6994 if (!dbx_commands)
6995 stop_command = add_cmd ("stop", class_obscure,
6996 not_just_help_class_command, _("\
6997 There is no `stop' command, but you can set a hook on `stop'.\n\
6998 This allows you to set a list of commands to be run each time execution\n\
6999 of the program stops."), &cmdlist);
7000
7001 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7002 Set inferior debugging."), _("\
7003 Show inferior debugging."), _("\
7004 When non-zero, inferior specific debugging is enabled."),
7005 NULL,
7006 show_debug_infrun,
7007 &setdebuglist, &showdebuglist);
7008
7009 add_setshow_boolean_cmd ("displaced", class_maintenance,
7010 &debug_displaced, _("\
7011 Set displaced stepping debugging."), _("\
7012 Show displaced stepping debugging."), _("\
7013 When non-zero, displaced stepping specific debugging is enabled."),
7014 NULL,
7015 show_debug_displaced,
7016 &setdebuglist, &showdebuglist);
7017
7018 add_setshow_boolean_cmd ("non-stop", no_class,
7019 &non_stop_1, _("\
7020 Set whether gdb controls the inferior in non-stop mode."), _("\
7021 Show whether gdb controls the inferior in non-stop mode."), _("\
7022 When debugging a multi-threaded program and this setting is\n\
7023 off (the default, also called all-stop mode), when one thread stops\n\
7024 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7025 all other threads in the program while you interact with the thread of\n\
7026 interest. When you continue or step a thread, you can allow the other\n\
7027 threads to run, or have them remain stopped, but while you inspect any\n\
7028 thread's state, all threads stop.\n\
7029 \n\
7030 In non-stop mode, when one thread stops, other threads can continue\n\
7031 to run freely. You'll be able to step each thread independently,\n\
7032 leave it stopped or free to run as needed."),
7033 set_non_stop,
7034 show_non_stop,
7035 &setlist,
7036 &showlist);
7037
7038 numsigs = (int) TARGET_SIGNAL_LAST;
7039 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7040 signal_print = (unsigned char *)
7041 xmalloc (sizeof (signal_print[0]) * numsigs);
7042 signal_program = (unsigned char *)
7043 xmalloc (sizeof (signal_program[0]) * numsigs);
7044 signal_pass = (unsigned char *)
7045 xmalloc (sizeof (signal_program[0]) * numsigs);
7046 for (i = 0; i < numsigs; i++)
7047 {
7048 signal_stop[i] = 1;
7049 signal_print[i] = 1;
7050 signal_program[i] = 1;
7051 }
7052
7053 /* Signals caused by debugger's own actions
7054 should not be given to the program afterwards. */
7055 signal_program[TARGET_SIGNAL_TRAP] = 0;
7056 signal_program[TARGET_SIGNAL_INT] = 0;
7057
7058 /* Signals that are not errors should not normally enter the debugger. */
7059 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7060 signal_print[TARGET_SIGNAL_ALRM] = 0;
7061 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7062 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7063 signal_stop[TARGET_SIGNAL_PROF] = 0;
7064 signal_print[TARGET_SIGNAL_PROF] = 0;
7065 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7066 signal_print[TARGET_SIGNAL_CHLD] = 0;
7067 signal_stop[TARGET_SIGNAL_IO] = 0;
7068 signal_print[TARGET_SIGNAL_IO] = 0;
7069 signal_stop[TARGET_SIGNAL_POLL] = 0;
7070 signal_print[TARGET_SIGNAL_POLL] = 0;
7071 signal_stop[TARGET_SIGNAL_URG] = 0;
7072 signal_print[TARGET_SIGNAL_URG] = 0;
7073 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7074 signal_print[TARGET_SIGNAL_WINCH] = 0;
7075 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7076 signal_print[TARGET_SIGNAL_PRIO] = 0;
7077
7078 /* These signals are used internally by user-level thread
7079 implementations. (See signal(5) on Solaris.) Like the above
7080 signals, a healthy program receives and handles them as part of
7081 its normal operation. */
7082 signal_stop[TARGET_SIGNAL_LWP] = 0;
7083 signal_print[TARGET_SIGNAL_LWP] = 0;
7084 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7085 signal_print[TARGET_SIGNAL_WAITING] = 0;
7086 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7087 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7088
7089 /* Update cached state. */
7090 signal_cache_update (-1);
7091
7092 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7093 &stop_on_solib_events, _("\
7094 Set stopping for shared library events."), _("\
7095 Show stopping for shared library events."), _("\
7096 If nonzero, gdb will give control to the user when the dynamic linker\n\
7097 notifies gdb of shared library events. The most common event of interest\n\
7098 to the user would be loading/unloading of a new library."),
7099 NULL,
7100 show_stop_on_solib_events,
7101 &setlist, &showlist);
7102
7103 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7104 follow_fork_mode_kind_names,
7105 &follow_fork_mode_string, _("\
7106 Set debugger response to a program call of fork or vfork."), _("\
7107 Show debugger response to a program call of fork or vfork."), _("\
7108 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7109 parent - the original process is debugged after a fork\n\
7110 child - the new process is debugged after a fork\n\
7111 The unfollowed process will continue to run.\n\
7112 By default, the debugger will follow the parent process."),
7113 NULL,
7114 show_follow_fork_mode_string,
7115 &setlist, &showlist);
7116
7117 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7118 follow_exec_mode_names,
7119 &follow_exec_mode_string, _("\
7120 Set debugger response to a program call of exec."), _("\
7121 Show debugger response to a program call of exec."), _("\
7122 An exec call replaces the program image of a process.\n\
7123 \n\
7124 follow-exec-mode can be:\n\
7125 \n\
7126 new - the debugger creates a new inferior and rebinds the process\n\
7127 to this new inferior. The program the process was running before\n\
7128 the exec call can be restarted afterwards by restarting the original\n\
7129 inferior.\n\
7130 \n\
7131 same - the debugger keeps the process bound to the same inferior.\n\
7132 The new executable image replaces the previous executable loaded in\n\
7133 the inferior. Restarting the inferior after the exec call restarts\n\
7134 the executable the process was running after the exec call.\n\
7135 \n\
7136 By default, the debugger will use the same inferior."),
7137 NULL,
7138 show_follow_exec_mode_string,
7139 &setlist, &showlist);
7140
7141 add_setshow_enum_cmd ("scheduler-locking", class_run,
7142 scheduler_enums, &scheduler_mode, _("\
7143 Set mode for locking scheduler during execution."), _("\
7144 Show mode for locking scheduler during execution."), _("\
7145 off == no locking (threads may preempt at any time)\n\
7146 on == full locking (no thread except the current thread may run)\n\
7147 step == scheduler locked during every single-step operation.\n\
7148 In this mode, no other thread may run during a step command.\n\
7149 Other threads may run while stepping over a function call ('next')."),
7150 set_schedlock_func, /* traps on target vector */
7151 show_scheduler_mode,
7152 &setlist, &showlist);
7153
7154 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7155 Set mode for resuming threads of all processes."), _("\
7156 Show mode for resuming threads of all processes."), _("\
7157 When on, execution commands (such as 'continue' or 'next') resume all\n\
7158 threads of all processes. When off (which is the default), execution\n\
7159 commands only resume the threads of the current process. The set of\n\
7160 threads that are resumed is further refined by the scheduler-locking\n\
7161 mode (see help set scheduler-locking)."),
7162 NULL,
7163 show_schedule_multiple,
7164 &setlist, &showlist);
7165
7166 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7167 Set mode of the step operation."), _("\
7168 Show mode of the step operation."), _("\
7169 When set, doing a step over a function without debug line information\n\
7170 will stop at the first instruction of that function. Otherwise, the\n\
7171 function is skipped and the step command stops at a different source line."),
7172 NULL,
7173 show_step_stop_if_no_debug,
7174 &setlist, &showlist);
7175
7176 add_setshow_enum_cmd ("displaced-stepping", class_run,
7177 can_use_displaced_stepping_enum,
7178 &can_use_displaced_stepping, _("\
7179 Set debugger's willingness to use displaced stepping."), _("\
7180 Show debugger's willingness to use displaced stepping."), _("\
7181 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7182 supported by the target architecture. If off, gdb will not use displaced\n\
7183 stepping to step over breakpoints, even if such is supported by the target\n\
7184 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7185 if the target architecture supports it and non-stop mode is active, but will not\n\
7186 use it in all-stop mode (see help set non-stop)."),
7187 NULL,
7188 show_can_use_displaced_stepping,
7189 &setlist, &showlist);
7190
7191 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7192 &exec_direction, _("Set direction of execution.\n\
7193 Options are 'forward' or 'reverse'."),
7194 _("Show direction of execution (forward/reverse)."),
7195 _("Tells gdb whether to execute forward or backward."),
7196 set_exec_direction_func, show_exec_direction_func,
7197 &setlist, &showlist);
7198
7199 /* Set/show detach-on-fork: user-settable mode. */
7200
7201 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7202 Set whether gdb will detach the child of a fork."), _("\
7203 Show whether gdb will detach the child of a fork."), _("\
7204 Tells gdb whether to detach the child of a fork."),
7205 NULL, NULL, &setlist, &showlist);
7206
7207 /* ptid initializations */
7208 inferior_ptid = null_ptid;
7209 target_last_wait_ptid = minus_one_ptid;
7210
7211 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7212 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7213 observer_attach_thread_exit (infrun_thread_thread_exit);
7214 observer_attach_inferior_exit (infrun_inferior_exit);
7215
7216 /* Explicitly create without lookup, since that tries to create a
7217 value with a void typed value, and when we get here, gdbarch
7218 isn't initialized yet. At this point, we're quite sure there
7219 isn't another convenience variable of the same name. */
7220 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
7221
7222 add_setshow_boolean_cmd ("observer", no_class,
7223 &observer_mode_1, _("\
7224 Set whether gdb controls the inferior in observer mode."), _("\
7225 Show whether gdb controls the inferior in observer mode."), _("\
7226 In observer mode, GDB can get data from the inferior, but not\n\
7227 affect its execution. Registers and memory may not be changed,\n\
7228 breakpoints may not be set, and the program cannot be interrupted\n\
7229 or signalled."),
7230 set_observer_mode,
7231 show_observer_mode,
7232 &setlist,
7233 &showlist);
7234 }