exec_cleanup murder.
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51
52 /* Prototypes for local functions */
53
54 static void signals_info (char *, int);
55
56 static void handle_command (char *, int);
57
58 static void sig_print_info (enum target_signal);
59
60 static void sig_print_header (void);
61
62 static void resume_cleanups (void *);
63
64 static int hook_stop_stub (void *);
65
66 static int restore_selected_frame (void *);
67
68 static void build_infrun (void);
69
70 static int follow_fork (void);
71
72 static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75 struct execution_control_state;
76
77 static int currently_stepping (struct execution_control_state *ecs);
78
79 static void xdb_handle_command (char *args, int from_tty);
80
81 static int prepare_to_proceed (int);
82
83 void _initialize_infrun (void);
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89 static void
90 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
91 struct cmd_list_element *c, const char *value)
92 {
93 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
94 }
95
96 /* In asynchronous mode, but simulating synchronous execution. */
97
98 int sync_execution = 0;
99
100 /* wait_for_inferior and normal_stop use this to notify the user
101 when the inferior stopped in a different thread than it had been
102 running in. */
103
104 static ptid_t previous_inferior_ptid;
105
106 static int debug_infrun = 0;
107 static void
108 show_debug_infrun (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
112 }
113
114 /* If the program uses ELF-style shared libraries, then calls to
115 functions in shared libraries go through stubs, which live in a
116 table called the PLT (Procedure Linkage Table). The first time the
117 function is called, the stub sends control to the dynamic linker,
118 which looks up the function's real address, patches the stub so
119 that future calls will go directly to the function, and then passes
120 control to the function.
121
122 If we are stepping at the source level, we don't want to see any of
123 this --- we just want to skip over the stub and the dynamic linker.
124 The simple approach is to single-step until control leaves the
125 dynamic linker.
126
127 However, on some systems (e.g., Red Hat's 5.2 distribution) the
128 dynamic linker calls functions in the shared C library, so you
129 can't tell from the PC alone whether the dynamic linker is still
130 running. In this case, we use a step-resume breakpoint to get us
131 past the dynamic linker, as if we were using "next" to step over a
132 function call.
133
134 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
135 linker code or not. Normally, this means we single-step. However,
136 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
137 address where we can place a step-resume breakpoint to get past the
138 linker's symbol resolution function.
139
140 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
141 pretty portable way, by comparing the PC against the address ranges
142 of the dynamic linker's sections.
143
144 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
145 it depends on internal details of the dynamic linker. It's usually
146 not too hard to figure out where to put a breakpoint, but it
147 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
148 sanity checking. If it can't figure things out, returning zero and
149 getting the (possibly confusing) stepping behavior is better than
150 signalling an error, which will obscure the change in the
151 inferior's state. */
152
153 /* This function returns TRUE if pc is the address of an instruction
154 that lies within the dynamic linker (such as the event hook, or the
155 dld itself).
156
157 This function must be used only when a dynamic linker event has
158 been caught, and the inferior is being stepped out of the hook, or
159 undefined results are guaranteed. */
160
161 #ifndef SOLIB_IN_DYNAMIC_LINKER
162 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
163 #endif
164
165
166 /* Convert the #defines into values. This is temporary until wfi control
167 flow is completely sorted out. */
168
169 #ifndef CANNOT_STEP_HW_WATCHPOINTS
170 #define CANNOT_STEP_HW_WATCHPOINTS 0
171 #else
172 #undef CANNOT_STEP_HW_WATCHPOINTS
173 #define CANNOT_STEP_HW_WATCHPOINTS 1
174 #endif
175
176 /* Tables of how to react to signals; the user sets them. */
177
178 static unsigned char *signal_stop;
179 static unsigned char *signal_print;
180 static unsigned char *signal_program;
181
182 #define SET_SIGS(nsigs,sigs,flags) \
183 do { \
184 int signum = (nsigs); \
185 while (signum-- > 0) \
186 if ((sigs)[signum]) \
187 (flags)[signum] = 1; \
188 } while (0)
189
190 #define UNSET_SIGS(nsigs,sigs,flags) \
191 do { \
192 int signum = (nsigs); \
193 while (signum-- > 0) \
194 if ((sigs)[signum]) \
195 (flags)[signum] = 0; \
196 } while (0)
197
198 /* Value to pass to target_resume() to cause all threads to resume */
199
200 #define RESUME_ALL (pid_to_ptid (-1))
201
202 /* Command list pointer for the "stop" placeholder. */
203
204 static struct cmd_list_element *stop_command;
205
206 /* Function inferior was in as of last step command. */
207
208 static struct symbol *step_start_function;
209
210 /* Nonzero if we are presently stepping over a breakpoint.
211
212 If we hit a breakpoint or watchpoint, and then continue,
213 we need to single step the current thread with breakpoints
214 disabled, to avoid hitting the same breakpoint or
215 watchpoint again. And we should step just a single
216 thread and keep other threads stopped, so that
217 other threads don't miss breakpoints while they are removed.
218
219 So, this variable simultaneously means that we need to single
220 step the current thread, keep other threads stopped, and that
221 breakpoints should be removed while we step.
222
223 This variable is set either:
224 - in proceed, when we resume inferior on user's explicit request
225 - in keep_going, if handle_inferior_event decides we need to
226 step over breakpoint.
227
228 The variable is cleared in clear_proceed_status, called every
229 time before we call proceed. The proceed calls wait_for_inferior,
230 which calls handle_inferior_event in a loop, and until
231 wait_for_inferior exits, this variable is changed only by keep_going. */
232
233 static int stepping_over_breakpoint;
234
235 /* Nonzero if we want to give control to the user when we're notified
236 of shared library events by the dynamic linker. */
237 static int stop_on_solib_events;
238 static void
239 show_stop_on_solib_events (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
243 value);
244 }
245
246 /* Nonzero means expecting a trace trap
247 and should stop the inferior and return silently when it happens. */
248
249 int stop_after_trap;
250
251 /* Nonzero means expecting a trap and caller will handle it themselves.
252 It is used after attach, due to attaching to a process;
253 when running in the shell before the child program has been exec'd;
254 and when running some kinds of remote stuff (FIXME?). */
255
256 enum stop_kind stop_soon;
257
258 /* Nonzero if proceed is being used for a "finish" command or a similar
259 situation when stop_registers should be saved. */
260
261 int proceed_to_finish;
262
263 /* Save register contents here when about to pop a stack dummy frame,
264 if-and-only-if proceed_to_finish is set.
265 Thus this contains the return value from the called function (assuming
266 values are returned in a register). */
267
268 struct regcache *stop_registers;
269
270 /* Nonzero after stop if current stack frame should be printed. */
271
272 static int stop_print_frame;
273
274 static struct breakpoint *step_resume_breakpoint = NULL;
275
276 /* This is a cached copy of the pid/waitstatus of the last event
277 returned by target_wait()/deprecated_target_wait_hook(). This
278 information is returned by get_last_target_status(). */
279 static ptid_t target_last_wait_ptid;
280 static struct target_waitstatus target_last_waitstatus;
281
282 /* This is used to remember when a fork, vfork or exec event
283 was caught by a catchpoint, and thus the event is to be
284 followed at the next resume of the inferior, and not
285 immediately. */
286 static struct
287 {
288 enum target_waitkind kind;
289 struct
290 {
291 int parent_pid;
292 int child_pid;
293 }
294 fork_event;
295 char *execd_pathname;
296 }
297 pending_follow;
298
299 static const char follow_fork_mode_child[] = "child";
300 static const char follow_fork_mode_parent[] = "parent";
301
302 static const char *follow_fork_mode_kind_names[] = {
303 follow_fork_mode_child,
304 follow_fork_mode_parent,
305 NULL
306 };
307
308 static const char *follow_fork_mode_string = follow_fork_mode_parent;
309 static void
310 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
311 struct cmd_list_element *c, const char *value)
312 {
313 fprintf_filtered (file, _("\
314 Debugger response to a program call of fork or vfork is \"%s\".\n"),
315 value);
316 }
317 \f
318
319 static int
320 follow_fork (void)
321 {
322 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
323
324 return target_follow_fork (follow_child);
325 }
326
327 void
328 follow_inferior_reset_breakpoints (void)
329 {
330 /* Was there a step_resume breakpoint? (There was if the user
331 did a "next" at the fork() call.) If so, explicitly reset its
332 thread number.
333
334 step_resumes are a form of bp that are made to be per-thread.
335 Since we created the step_resume bp when the parent process
336 was being debugged, and now are switching to the child process,
337 from the breakpoint package's viewpoint, that's a switch of
338 "threads". We must update the bp's notion of which thread
339 it is for, or it'll be ignored when it triggers. */
340
341 if (step_resume_breakpoint)
342 breakpoint_re_set_thread (step_resume_breakpoint);
343
344 /* Reinsert all breakpoints in the child. The user may have set
345 breakpoints after catching the fork, in which case those
346 were never set in the child, but only in the parent. This makes
347 sure the inserted breakpoints match the breakpoint list. */
348
349 breakpoint_re_set ();
350 insert_breakpoints ();
351 }
352
353 /* EXECD_PATHNAME is assumed to be non-NULL. */
354
355 static void
356 follow_exec (int pid, char *execd_pathname)
357 {
358 int saved_pid = pid;
359 struct target_ops *tgt;
360
361 /* This is an exec event that we actually wish to pay attention to.
362 Refresh our symbol table to the newly exec'd program, remove any
363 momentary bp's, etc.
364
365 If there are breakpoints, they aren't really inserted now,
366 since the exec() transformed our inferior into a fresh set
367 of instructions.
368
369 We want to preserve symbolic breakpoints on the list, since
370 we have hopes that they can be reset after the new a.out's
371 symbol table is read.
372
373 However, any "raw" breakpoints must be removed from the list
374 (e.g., the solib bp's), since their address is probably invalid
375 now.
376
377 And, we DON'T want to call delete_breakpoints() here, since
378 that may write the bp's "shadow contents" (the instruction
379 value that was overwritten witha TRAP instruction). Since
380 we now have a new a.out, those shadow contents aren't valid. */
381 update_breakpoints_after_exec ();
382
383 /* If there was one, it's gone now. We cannot truly step-to-next
384 statement through an exec(). */
385 step_resume_breakpoint = NULL;
386 step_range_start = 0;
387 step_range_end = 0;
388
389 /* What is this a.out's name? */
390 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
391
392 /* We've followed the inferior through an exec. Therefore, the
393 inferior has essentially been killed & reborn. */
394
395 gdb_flush (gdb_stdout);
396 generic_mourn_inferior ();
397 /* Because mourn_inferior resets inferior_ptid. */
398 inferior_ptid = pid_to_ptid (saved_pid);
399
400 if (gdb_sysroot && *gdb_sysroot)
401 {
402 char *name = alloca (strlen (gdb_sysroot)
403 + strlen (execd_pathname)
404 + 1);
405 strcpy (name, gdb_sysroot);
406 strcat (name, execd_pathname);
407 execd_pathname = name;
408 }
409
410 /* That a.out is now the one to use. */
411 exec_file_attach (execd_pathname, 0);
412
413 /* And also is where symbols can be found. */
414 symbol_file_add_main (execd_pathname, 0);
415
416 /* Reset the shared library package. This ensures that we get
417 a shlib event when the child reaches "_start", at which point
418 the dld will have had a chance to initialize the child. */
419 no_shared_libraries (NULL, 0);
420 #ifdef SOLIB_CREATE_INFERIOR_HOOK
421 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
422 #else
423 solib_create_inferior_hook ();
424 #endif
425
426 /* Reinsert all breakpoints. (Those which were symbolic have
427 been reset to the proper address in the new a.out, thanks
428 to symbol_file_command...) */
429 insert_breakpoints ();
430
431 /* The next resume of this inferior should bring it to the shlib
432 startup breakpoints. (If the user had also set bp's on
433 "main" from the old (parent) process, then they'll auto-
434 matically get reset there in the new process.) */
435 }
436
437 /* Non-zero if we just simulating a single-step. This is needed
438 because we cannot remove the breakpoints in the inferior process
439 until after the `wait' in `wait_for_inferior'. */
440 static int singlestep_breakpoints_inserted_p = 0;
441
442 /* The thread we inserted single-step breakpoints for. */
443 static ptid_t singlestep_ptid;
444
445 /* PC when we started this single-step. */
446 static CORE_ADDR singlestep_pc;
447
448 /* If another thread hit the singlestep breakpoint, we save the original
449 thread here so that we can resume single-stepping it later. */
450 static ptid_t saved_singlestep_ptid;
451 static int stepping_past_singlestep_breakpoint;
452
453 /* If not equal to null_ptid, this means that after stepping over breakpoint
454 is finished, we need to switch to deferred_step_ptid, and step it.
455
456 The use case is when one thread has hit a breakpoint, and then the user
457 has switched to another thread and issued 'step'. We need to step over
458 breakpoint in the thread which hit the breakpoint, but then continue
459 stepping the thread user has selected. */
460 static ptid_t deferred_step_ptid;
461 \f
462
463 /* Things to clean up if we QUIT out of resume (). */
464 static void
465 resume_cleanups (void *ignore)
466 {
467 normal_stop ();
468 }
469
470 static const char schedlock_off[] = "off";
471 static const char schedlock_on[] = "on";
472 static const char schedlock_step[] = "step";
473 static const char *scheduler_enums[] = {
474 schedlock_off,
475 schedlock_on,
476 schedlock_step,
477 NULL
478 };
479 static const char *scheduler_mode = schedlock_off;
480 static void
481 show_scheduler_mode (struct ui_file *file, int from_tty,
482 struct cmd_list_element *c, const char *value)
483 {
484 fprintf_filtered (file, _("\
485 Mode for locking scheduler during execution is \"%s\".\n"),
486 value);
487 }
488
489 static void
490 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
491 {
492 if (!target_can_lock_scheduler)
493 {
494 scheduler_mode = schedlock_off;
495 error (_("Target '%s' cannot support this command."), target_shortname);
496 }
497 }
498
499
500 /* Resume the inferior, but allow a QUIT. This is useful if the user
501 wants to interrupt some lengthy single-stepping operation
502 (for child processes, the SIGINT goes to the inferior, and so
503 we get a SIGINT random_signal, but for remote debugging and perhaps
504 other targets, that's not true).
505
506 STEP nonzero if we should step (zero to continue instead).
507 SIG is the signal to give the inferior (zero for none). */
508 void
509 resume (int step, enum target_signal sig)
510 {
511 int should_resume = 1;
512 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
513 QUIT;
514
515 if (debug_infrun)
516 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
517 step, sig);
518
519 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
520
521
522 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
523 over an instruction that causes a page fault without triggering
524 a hardware watchpoint. The kernel properly notices that it shouldn't
525 stop, because the hardware watchpoint is not triggered, but it forgets
526 the step request and continues the program normally.
527 Work around the problem by removing hardware watchpoints if a step is
528 requested, GDB will check for a hardware watchpoint trigger after the
529 step anyway. */
530 if (CANNOT_STEP_HW_WATCHPOINTS && step)
531 remove_hw_watchpoints ();
532
533
534 /* Normally, by the time we reach `resume', the breakpoints are either
535 removed or inserted, as appropriate. The exception is if we're sitting
536 at a permanent breakpoint; we need to step over it, but permanent
537 breakpoints can't be removed. So we have to test for it here. */
538 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
539 {
540 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
541 gdbarch_skip_permanent_breakpoint (current_gdbarch,
542 get_current_regcache ());
543 else
544 error (_("\
545 The program is stopped at a permanent breakpoint, but GDB does not know\n\
546 how to step past a permanent breakpoint on this architecture. Try using\n\
547 a command like `return' or `jump' to continue execution."));
548 }
549
550 if (step && gdbarch_software_single_step_p (current_gdbarch))
551 {
552 /* Do it the hard way, w/temp breakpoints */
553 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
554 {
555 /* ...and don't ask hardware to do it. */
556 step = 0;
557 /* and do not pull these breakpoints until after a `wait' in
558 `wait_for_inferior' */
559 singlestep_breakpoints_inserted_p = 1;
560 singlestep_ptid = inferior_ptid;
561 singlestep_pc = read_pc ();
562 }
563 }
564
565 /* If there were any forks/vforks/execs that were caught and are
566 now to be followed, then do so. */
567 switch (pending_follow.kind)
568 {
569 case TARGET_WAITKIND_FORKED:
570 case TARGET_WAITKIND_VFORKED:
571 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
572 if (follow_fork ())
573 should_resume = 0;
574 break;
575
576 case TARGET_WAITKIND_EXECD:
577 /* follow_exec is called as soon as the exec event is seen. */
578 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
579 break;
580
581 default:
582 break;
583 }
584
585 /* Install inferior's terminal modes. */
586 target_terminal_inferior ();
587
588 if (should_resume)
589 {
590 ptid_t resume_ptid;
591
592 resume_ptid = RESUME_ALL; /* Default */
593
594 /* If STEP is set, it's a request to use hardware stepping
595 facilities. But in that case, we should never
596 use singlestep breakpoint. */
597 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
598
599 if (singlestep_breakpoints_inserted_p
600 && stepping_past_singlestep_breakpoint)
601 {
602 /* The situation here is as follows. In thread T1 we wanted to
603 single-step. Lacking hardware single-stepping we've
604 set breakpoint at the PC of the next instruction -- call it
605 P. After resuming, we've hit that breakpoint in thread T2.
606 Now we've removed original breakpoint, inserted breakpoint
607 at P+1, and try to step to advance T2 past breakpoint.
608 We need to step only T2, as if T1 is allowed to freely run,
609 it can run past P, and if other threads are allowed to run,
610 they can hit breakpoint at P+1, and nested hits of single-step
611 breakpoints is not something we'd want -- that's complicated
612 to support, and has no value. */
613 resume_ptid = inferior_ptid;
614 }
615
616 if ((step || singlestep_breakpoints_inserted_p)
617 && stepping_over_breakpoint)
618 {
619 /* We're allowing a thread to run past a breakpoint it has
620 hit, by single-stepping the thread with the breakpoint
621 removed. In which case, we need to single-step only this
622 thread, and keep others stopped, as they can miss this
623 breakpoint if allowed to run.
624
625 The current code actually removes all breakpoints when
626 doing this, not just the one being stepped over, so if we
627 let other threads run, we can actually miss any
628 breakpoint, not just the one at PC. */
629 resume_ptid = inferior_ptid;
630 }
631
632 if ((scheduler_mode == schedlock_on)
633 || (scheduler_mode == schedlock_step
634 && (step || singlestep_breakpoints_inserted_p)))
635 {
636 /* User-settable 'scheduler' mode requires solo thread resume. */
637 resume_ptid = inferior_ptid;
638 }
639
640 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
641 {
642 /* Most targets can step a breakpoint instruction, thus
643 executing it normally. But if this one cannot, just
644 continue and we will hit it anyway. */
645 if (step && breakpoint_inserted_here_p (read_pc ()))
646 step = 0;
647 }
648 target_resume (resume_ptid, step, sig);
649 }
650
651 discard_cleanups (old_cleanups);
652 }
653 \f
654
655 /* Clear out all variables saying what to do when inferior is continued.
656 First do this, then set the ones you want, then call `proceed'. */
657
658 void
659 clear_proceed_status (void)
660 {
661 stepping_over_breakpoint = 0;
662 step_range_start = 0;
663 step_range_end = 0;
664 step_frame_id = null_frame_id;
665 step_over_calls = STEP_OVER_UNDEBUGGABLE;
666 stop_after_trap = 0;
667 stop_soon = NO_STOP_QUIETLY;
668 proceed_to_finish = 0;
669 breakpoint_proceeded = 1; /* We're about to proceed... */
670
671 if (stop_registers)
672 {
673 regcache_xfree (stop_registers);
674 stop_registers = NULL;
675 }
676
677 /* Discard any remaining commands or status from previous stop. */
678 bpstat_clear (&stop_bpstat);
679 }
680
681 /* This should be suitable for any targets that support threads. */
682
683 static int
684 prepare_to_proceed (int step)
685 {
686 ptid_t wait_ptid;
687 struct target_waitstatus wait_status;
688
689 /* Get the last target status returned by target_wait(). */
690 get_last_target_status (&wait_ptid, &wait_status);
691
692 /* Make sure we were stopped at a breakpoint. */
693 if (wait_status.kind != TARGET_WAITKIND_STOPPED
694 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
695 {
696 return 0;
697 }
698
699 /* Switched over from WAIT_PID. */
700 if (!ptid_equal (wait_ptid, minus_one_ptid)
701 && !ptid_equal (inferior_ptid, wait_ptid)
702 && breakpoint_here_p (read_pc_pid (wait_ptid)))
703 {
704 /* If stepping, remember current thread to switch back to. */
705 if (step)
706 {
707 deferred_step_ptid = inferior_ptid;
708 }
709
710 /* Switch back to WAIT_PID thread. */
711 switch_to_thread (wait_ptid);
712
713 /* We return 1 to indicate that there is a breakpoint here,
714 so we need to step over it before continuing to avoid
715 hitting it straight away. */
716 return 1;
717 }
718
719 return 0;
720 }
721
722 /* Record the pc of the program the last time it stopped. This is
723 just used internally by wait_for_inferior, but need to be preserved
724 over calls to it and cleared when the inferior is started. */
725 static CORE_ADDR prev_pc;
726
727 /* Basic routine for continuing the program in various fashions.
728
729 ADDR is the address to resume at, or -1 for resume where stopped.
730 SIGGNAL is the signal to give it, or 0 for none,
731 or -1 for act according to how it stopped.
732 STEP is nonzero if should trap after one instruction.
733 -1 means return after that and print nothing.
734 You should probably set various step_... variables
735 before calling here, if you are stepping.
736
737 You should call clear_proceed_status before calling proceed. */
738
739 void
740 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
741 {
742 int oneproc = 0;
743
744 if (step > 0)
745 step_start_function = find_pc_function (read_pc ());
746 if (step < 0)
747 stop_after_trap = 1;
748
749 if (addr == (CORE_ADDR) -1)
750 {
751 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
752 /* There is a breakpoint at the address we will resume at,
753 step one instruction before inserting breakpoints so that
754 we do not stop right away (and report a second hit at this
755 breakpoint). */
756 oneproc = 1;
757 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
758 && gdbarch_single_step_through_delay (current_gdbarch,
759 get_current_frame ()))
760 /* We stepped onto an instruction that needs to be stepped
761 again before re-inserting the breakpoint, do so. */
762 oneproc = 1;
763 }
764 else
765 {
766 write_pc (addr);
767 }
768
769 if (debug_infrun)
770 fprintf_unfiltered (gdb_stdlog,
771 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
772 paddr_nz (addr), siggnal, step);
773
774 /* In a multi-threaded task we may select another thread
775 and then continue or step.
776
777 But if the old thread was stopped at a breakpoint, it
778 will immediately cause another breakpoint stop without
779 any execution (i.e. it will report a breakpoint hit
780 incorrectly). So we must step over it first.
781
782 prepare_to_proceed checks the current thread against the thread
783 that reported the most recent event. If a step-over is required
784 it returns TRUE and sets the current thread to the old thread. */
785 if (prepare_to_proceed (step))
786 oneproc = 1;
787
788 if (oneproc)
789 {
790 /* We will get a trace trap after one instruction.
791 Continue it automatically and insert breakpoints then. */
792 stepping_over_breakpoint = 1;
793 /* FIXME: if breakpoints are always inserted, we'll trap
794 if trying to single-step over breakpoint. Disable
795 all breakpoints. In future, we'd need to invent some
796 smart way of stepping over breakpoint instruction without
797 hitting breakpoint. */
798 remove_breakpoints ();
799 }
800 else
801 insert_breakpoints ();
802
803 if (siggnal != TARGET_SIGNAL_DEFAULT)
804 stop_signal = siggnal;
805 /* If this signal should not be seen by program,
806 give it zero. Used for debugging signals. */
807 else if (!signal_program[stop_signal])
808 stop_signal = TARGET_SIGNAL_0;
809
810 annotate_starting ();
811
812 /* Make sure that output from GDB appears before output from the
813 inferior. */
814 gdb_flush (gdb_stdout);
815
816 /* Refresh prev_pc value just prior to resuming. This used to be
817 done in stop_stepping, however, setting prev_pc there did not handle
818 scenarios such as inferior function calls or returning from
819 a function via the return command. In those cases, the prev_pc
820 value was not set properly for subsequent commands. The prev_pc value
821 is used to initialize the starting line number in the ecs. With an
822 invalid value, the gdb next command ends up stopping at the position
823 represented by the next line table entry past our start position.
824 On platforms that generate one line table entry per line, this
825 is not a problem. However, on the ia64, the compiler generates
826 extraneous line table entries that do not increase the line number.
827 When we issue the gdb next command on the ia64 after an inferior call
828 or a return command, we often end up a few instructions forward, still
829 within the original line we started.
830
831 An attempt was made to have init_execution_control_state () refresh
832 the prev_pc value before calculating the line number. This approach
833 did not work because on platforms that use ptrace, the pc register
834 cannot be read unless the inferior is stopped. At that point, we
835 are not guaranteed the inferior is stopped and so the read_pc ()
836 call can fail. Setting the prev_pc value here ensures the value is
837 updated correctly when the inferior is stopped. */
838 prev_pc = read_pc ();
839
840 /* Resume inferior. */
841 resume (oneproc || step || bpstat_should_step (), stop_signal);
842
843 /* Wait for it to stop (if not standalone)
844 and in any case decode why it stopped, and act accordingly. */
845 /* Do this only if we are not using the event loop, or if the target
846 does not support asynchronous execution. */
847 if (!target_can_async_p ())
848 {
849 wait_for_inferior (0);
850 normal_stop ();
851 }
852 }
853 \f
854
855 /* Start remote-debugging of a machine over a serial link. */
856
857 void
858 start_remote (int from_tty)
859 {
860 init_thread_list ();
861 init_wait_for_inferior ();
862 stop_soon = STOP_QUIETLY_REMOTE;
863 stepping_over_breakpoint = 0;
864
865 /* Always go on waiting for the target, regardless of the mode. */
866 /* FIXME: cagney/1999-09-23: At present it isn't possible to
867 indicate to wait_for_inferior that a target should timeout if
868 nothing is returned (instead of just blocking). Because of this,
869 targets expecting an immediate response need to, internally, set
870 things up so that the target_wait() is forced to eventually
871 timeout. */
872 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
873 differentiate to its caller what the state of the target is after
874 the initial open has been performed. Here we're assuming that
875 the target has stopped. It should be possible to eventually have
876 target_open() return to the caller an indication that the target
877 is currently running and GDB state should be set to the same as
878 for an async run. */
879 wait_for_inferior (0);
880
881 /* Now that the inferior has stopped, do any bookkeeping like
882 loading shared libraries. We want to do this before normal_stop,
883 so that the displayed frame is up to date. */
884 post_create_inferior (&current_target, from_tty);
885
886 normal_stop ();
887 }
888
889 /* Initialize static vars when a new inferior begins. */
890
891 void
892 init_wait_for_inferior (void)
893 {
894 /* These are meaningless until the first time through wait_for_inferior. */
895 prev_pc = 0;
896
897 breakpoint_init_inferior (inf_starting);
898
899 /* Don't confuse first call to proceed(). */
900 stop_signal = TARGET_SIGNAL_0;
901
902 /* The first resume is not following a fork/vfork/exec. */
903 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
904
905 clear_proceed_status ();
906
907 stepping_past_singlestep_breakpoint = 0;
908 deferred_step_ptid = null_ptid;
909
910 target_last_wait_ptid = minus_one_ptid;
911 }
912 \f
913 /* This enum encodes possible reasons for doing a target_wait, so that
914 wfi can call target_wait in one place. (Ultimately the call will be
915 moved out of the infinite loop entirely.) */
916
917 enum infwait_states
918 {
919 infwait_normal_state,
920 infwait_thread_hop_state,
921 infwait_step_watch_state,
922 infwait_nonstep_watch_state
923 };
924
925 /* Why did the inferior stop? Used to print the appropriate messages
926 to the interface from within handle_inferior_event(). */
927 enum inferior_stop_reason
928 {
929 /* Step, next, nexti, stepi finished. */
930 END_STEPPING_RANGE,
931 /* Inferior terminated by signal. */
932 SIGNAL_EXITED,
933 /* Inferior exited. */
934 EXITED,
935 /* Inferior received signal, and user asked to be notified. */
936 SIGNAL_RECEIVED
937 };
938
939 /* This structure contains what used to be local variables in
940 wait_for_inferior. Probably many of them can return to being
941 locals in handle_inferior_event. */
942
943 struct execution_control_state
944 {
945 struct target_waitstatus ws;
946 struct target_waitstatus *wp;
947 /* Should we step over breakpoint next time keep_going
948 is called? */
949 int stepping_over_breakpoint;
950 int random_signal;
951 CORE_ADDR stop_func_start;
952 CORE_ADDR stop_func_end;
953 char *stop_func_name;
954 struct symtab_and_line sal;
955 int current_line;
956 struct symtab *current_symtab;
957 int handling_longjmp; /* FIXME */
958 ptid_t ptid;
959 ptid_t saved_inferior_ptid;
960 int step_after_step_resume_breakpoint;
961 int stepping_through_solib_after_catch;
962 bpstat stepping_through_solib_catchpoints;
963 int new_thread_event;
964 struct target_waitstatus tmpstatus;
965 enum infwait_states infwait_state;
966 ptid_t waiton_ptid;
967 int wait_some_more;
968 };
969
970 void init_execution_control_state (struct execution_control_state *ecs);
971
972 void handle_inferior_event (struct execution_control_state *ecs);
973
974 static void step_into_function (struct execution_control_state *ecs);
975 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
976 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
977 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
978 struct frame_id sr_id);
979 static void stop_stepping (struct execution_control_state *ecs);
980 static void prepare_to_wait (struct execution_control_state *ecs);
981 static void keep_going (struct execution_control_state *ecs);
982 static void print_stop_reason (enum inferior_stop_reason stop_reason,
983 int stop_info);
984
985 /* Wait for control to return from inferior to debugger.
986
987 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
988 as if they were SIGTRAP signals. This can be useful during
989 the startup sequence on some targets such as HP/UX, where
990 we receive an EXEC event instead of the expected SIGTRAP.
991
992 If inferior gets a signal, we may decide to start it up again
993 instead of returning. That is why there is a loop in this function.
994 When this function actually returns it means the inferior
995 should be left stopped and GDB should read more commands. */
996
997 void
998 wait_for_inferior (int treat_exec_as_sigtrap)
999 {
1000 struct cleanup *old_cleanups;
1001 struct execution_control_state ecss;
1002 struct execution_control_state *ecs;
1003
1004 if (debug_infrun)
1005 fprintf_unfiltered
1006 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1007 treat_exec_as_sigtrap);
1008
1009 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1010 &step_resume_breakpoint);
1011
1012 /* wfi still stays in a loop, so it's OK just to take the address of
1013 a local to get the ecs pointer. */
1014 ecs = &ecss;
1015
1016 /* Fill in with reasonable starting values. */
1017 init_execution_control_state (ecs);
1018
1019 /* We'll update this if & when we switch to a new thread. */
1020 previous_inferior_ptid = inferior_ptid;
1021
1022 overlay_cache_invalid = 1;
1023
1024 /* We have to invalidate the registers BEFORE calling target_wait
1025 because they can be loaded from the target while in target_wait.
1026 This makes remote debugging a bit more efficient for those
1027 targets that provide critical registers as part of their normal
1028 status mechanism. */
1029
1030 registers_changed ();
1031
1032 while (1)
1033 {
1034 if (deprecated_target_wait_hook)
1035 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1036 else
1037 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1038
1039 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1040 {
1041 xfree (ecs->ws.value.execd_pathname);
1042 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1043 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1044 }
1045
1046 /* Now figure out what to do with the result of the result. */
1047 handle_inferior_event (ecs);
1048
1049 if (!ecs->wait_some_more)
1050 break;
1051 }
1052 do_cleanups (old_cleanups);
1053 }
1054
1055 /* Asynchronous version of wait_for_inferior. It is called by the
1056 event loop whenever a change of state is detected on the file
1057 descriptor corresponding to the target. It can be called more than
1058 once to complete a single execution command. In such cases we need
1059 to keep the state in a global variable ASYNC_ECSS. If it is the
1060 last time that this function is called for a single execution
1061 command, then report to the user that the inferior has stopped, and
1062 do the necessary cleanups. */
1063
1064 struct execution_control_state async_ecss;
1065 struct execution_control_state *async_ecs;
1066
1067 void
1068 fetch_inferior_event (void *client_data)
1069 {
1070 static struct cleanup *old_cleanups;
1071
1072 async_ecs = &async_ecss;
1073
1074 if (!async_ecs->wait_some_more)
1075 {
1076 /* Fill in with reasonable starting values. */
1077 init_execution_control_state (async_ecs);
1078
1079 /* We'll update this if & when we switch to a new thread. */
1080 previous_inferior_ptid = inferior_ptid;
1081
1082 overlay_cache_invalid = 1;
1083
1084 /* We have to invalidate the registers BEFORE calling target_wait
1085 because they can be loaded from the target while in target_wait.
1086 This makes remote debugging a bit more efficient for those
1087 targets that provide critical registers as part of their normal
1088 status mechanism. */
1089
1090 registers_changed ();
1091 }
1092
1093 if (deprecated_target_wait_hook)
1094 async_ecs->ptid =
1095 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1096 else
1097 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1098
1099 /* Now figure out what to do with the result of the result. */
1100 handle_inferior_event (async_ecs);
1101
1102 if (!async_ecs->wait_some_more)
1103 {
1104 delete_step_resume_breakpoint (&step_resume_breakpoint);
1105
1106 normal_stop ();
1107 if (step_multi && stop_step)
1108 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1109 else
1110 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1111 }
1112 }
1113
1114 /* Prepare an execution control state for looping through a
1115 wait_for_inferior-type loop. */
1116
1117 void
1118 init_execution_control_state (struct execution_control_state *ecs)
1119 {
1120 ecs->stepping_over_breakpoint = 0;
1121 ecs->random_signal = 0;
1122 ecs->step_after_step_resume_breakpoint = 0;
1123 ecs->handling_longjmp = 0; /* FIXME */
1124 ecs->stepping_through_solib_after_catch = 0;
1125 ecs->stepping_through_solib_catchpoints = NULL;
1126 ecs->sal = find_pc_line (prev_pc, 0);
1127 ecs->current_line = ecs->sal.line;
1128 ecs->current_symtab = ecs->sal.symtab;
1129 ecs->infwait_state = infwait_normal_state;
1130 ecs->waiton_ptid = pid_to_ptid (-1);
1131 ecs->wp = &(ecs->ws);
1132 }
1133
1134 /* Return the cached copy of the last pid/waitstatus returned by
1135 target_wait()/deprecated_target_wait_hook(). The data is actually
1136 cached by handle_inferior_event(), which gets called immediately
1137 after target_wait()/deprecated_target_wait_hook(). */
1138
1139 void
1140 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1141 {
1142 *ptidp = target_last_wait_ptid;
1143 *status = target_last_waitstatus;
1144 }
1145
1146 void
1147 nullify_last_target_wait_ptid (void)
1148 {
1149 target_last_wait_ptid = minus_one_ptid;
1150 }
1151
1152 /* Switch thread contexts, maintaining "infrun state". */
1153
1154 static void
1155 context_switch (struct execution_control_state *ecs)
1156 {
1157 /* Caution: it may happen that the new thread (or the old one!)
1158 is not in the thread list. In this case we must not attempt
1159 to "switch context", or we run the risk that our context may
1160 be lost. This may happen as a result of the target module
1161 mishandling thread creation. */
1162
1163 if (debug_infrun)
1164 {
1165 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1166 target_pid_to_str (inferior_ptid));
1167 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1168 target_pid_to_str (ecs->ptid));
1169 }
1170
1171 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1172 { /* Perform infrun state context switch: */
1173 /* Save infrun state for the old thread. */
1174 save_infrun_state (inferior_ptid, prev_pc,
1175 stepping_over_breakpoint, step_resume_breakpoint,
1176 step_range_start,
1177 step_range_end, &step_frame_id,
1178 ecs->handling_longjmp, ecs->stepping_over_breakpoint,
1179 ecs->stepping_through_solib_after_catch,
1180 ecs->stepping_through_solib_catchpoints,
1181 ecs->current_line, ecs->current_symtab);
1182
1183 /* Load infrun state for the new thread. */
1184 load_infrun_state (ecs->ptid, &prev_pc,
1185 &stepping_over_breakpoint, &step_resume_breakpoint,
1186 &step_range_start,
1187 &step_range_end, &step_frame_id,
1188 &ecs->handling_longjmp, &ecs->stepping_over_breakpoint,
1189 &ecs->stepping_through_solib_after_catch,
1190 &ecs->stepping_through_solib_catchpoints,
1191 &ecs->current_line, &ecs->current_symtab);
1192 }
1193
1194 switch_to_thread (ecs->ptid);
1195 }
1196
1197 static void
1198 adjust_pc_after_break (struct execution_control_state *ecs)
1199 {
1200 CORE_ADDR breakpoint_pc;
1201
1202 /* If this target does not decrement the PC after breakpoints, then
1203 we have nothing to do. */
1204 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
1205 return;
1206
1207 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1208 we aren't, just return.
1209
1210 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1211 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1212 implemented by software breakpoints should be handled through the normal
1213 breakpoint layer.
1214
1215 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1216 different signals (SIGILL or SIGEMT for instance), but it is less
1217 clear where the PC is pointing afterwards. It may not match
1218 gdbarch_decr_pc_after_break. I don't know any specific target that
1219 generates these signals at breakpoints (the code has been in GDB since at
1220 least 1992) so I can not guess how to handle them here.
1221
1222 In earlier versions of GDB, a target with
1223 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1224 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1225 target with both of these set in GDB history, and it seems unlikely to be
1226 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1227
1228 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1229 return;
1230
1231 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1232 return;
1233
1234 /* Find the location where (if we've hit a breakpoint) the
1235 breakpoint would be. */
1236 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1237 (current_gdbarch);
1238
1239 /* Check whether there actually is a software breakpoint inserted
1240 at that location. */
1241 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1242 {
1243 /* When using hardware single-step, a SIGTRAP is reported for both
1244 a completed single-step and a software breakpoint. Need to
1245 differentiate between the two, as the latter needs adjusting
1246 but the former does not.
1247
1248 The SIGTRAP can be due to a completed hardware single-step only if
1249 - we didn't insert software single-step breakpoints
1250 - the thread to be examined is still the current thread
1251 - this thread is currently being stepped
1252
1253 If any of these events did not occur, we must have stopped due
1254 to hitting a software breakpoint, and have to back up to the
1255 breakpoint address.
1256
1257 As a special case, we could have hardware single-stepped a
1258 software breakpoint. In this case (prev_pc == breakpoint_pc),
1259 we also need to back up to the breakpoint address. */
1260
1261 if (singlestep_breakpoints_inserted_p
1262 || !ptid_equal (ecs->ptid, inferior_ptid)
1263 || !currently_stepping (ecs)
1264 || prev_pc == breakpoint_pc)
1265 write_pc_pid (breakpoint_pc, ecs->ptid);
1266 }
1267 }
1268
1269 /* Given an execution control state that has been freshly filled in
1270 by an event from the inferior, figure out what it means and take
1271 appropriate action. */
1272
1273 void
1274 handle_inferior_event (struct execution_control_state *ecs)
1275 {
1276 int sw_single_step_trap_p = 0;
1277 int stopped_by_watchpoint;
1278 int stepped_after_stopped_by_watchpoint = 0;
1279
1280 /* Cache the last pid/waitstatus. */
1281 target_last_wait_ptid = ecs->ptid;
1282 target_last_waitstatus = *ecs->wp;
1283
1284 /* Always clear state belonging to the previous time we stopped. */
1285 stop_stack_dummy = 0;
1286
1287 adjust_pc_after_break (ecs);
1288
1289 switch (ecs->infwait_state)
1290 {
1291 case infwait_thread_hop_state:
1292 if (debug_infrun)
1293 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1294 /* Cancel the waiton_ptid. */
1295 ecs->waiton_ptid = pid_to_ptid (-1);
1296 break;
1297
1298 case infwait_normal_state:
1299 if (debug_infrun)
1300 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1301 break;
1302
1303 case infwait_step_watch_state:
1304 if (debug_infrun)
1305 fprintf_unfiltered (gdb_stdlog,
1306 "infrun: infwait_step_watch_state\n");
1307
1308 stepped_after_stopped_by_watchpoint = 1;
1309 break;
1310
1311 case infwait_nonstep_watch_state:
1312 if (debug_infrun)
1313 fprintf_unfiltered (gdb_stdlog,
1314 "infrun: infwait_nonstep_watch_state\n");
1315 insert_breakpoints ();
1316
1317 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1318 handle things like signals arriving and other things happening
1319 in combination correctly? */
1320 stepped_after_stopped_by_watchpoint = 1;
1321 break;
1322
1323 default:
1324 internal_error (__FILE__, __LINE__, _("bad switch"));
1325 }
1326 ecs->infwait_state = infwait_normal_state;
1327
1328 reinit_frame_cache ();
1329
1330 /* If it's a new process, add it to the thread database */
1331
1332 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1333 && !ptid_equal (ecs->ptid, minus_one_ptid)
1334 && !in_thread_list (ecs->ptid));
1335
1336 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1337 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1338 add_thread (ecs->ptid);
1339
1340 switch (ecs->ws.kind)
1341 {
1342 case TARGET_WAITKIND_LOADED:
1343 if (debug_infrun)
1344 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1345 /* Ignore gracefully during startup of the inferior, as it might
1346 be the shell which has just loaded some objects, otherwise
1347 add the symbols for the newly loaded objects. Also ignore at
1348 the beginning of an attach or remote session; we will query
1349 the full list of libraries once the connection is
1350 established. */
1351 if (stop_soon == NO_STOP_QUIETLY)
1352 {
1353 /* Check for any newly added shared libraries if we're
1354 supposed to be adding them automatically. Switch
1355 terminal for any messages produced by
1356 breakpoint_re_set. */
1357 target_terminal_ours_for_output ();
1358 /* NOTE: cagney/2003-11-25: Make certain that the target
1359 stack's section table is kept up-to-date. Architectures,
1360 (e.g., PPC64), use the section table to perform
1361 operations such as address => section name and hence
1362 require the table to contain all sections (including
1363 those found in shared libraries). */
1364 /* NOTE: cagney/2003-11-25: Pass current_target and not
1365 exec_ops to SOLIB_ADD. This is because current GDB is
1366 only tooled to propagate section_table changes out from
1367 the "current_target" (see target_resize_to_sections), and
1368 not up from the exec stratum. This, of course, isn't
1369 right. "infrun.c" should only interact with the
1370 exec/process stratum, instead relying on the target stack
1371 to propagate relevant changes (stop, section table
1372 changed, ...) up to other layers. */
1373 #ifdef SOLIB_ADD
1374 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1375 #else
1376 solib_add (NULL, 0, &current_target, auto_solib_add);
1377 #endif
1378 target_terminal_inferior ();
1379
1380 /* If requested, stop when the dynamic linker notifies
1381 gdb of events. This allows the user to get control
1382 and place breakpoints in initializer routines for
1383 dynamically loaded objects (among other things). */
1384 if (stop_on_solib_events)
1385 {
1386 stop_stepping (ecs);
1387 return;
1388 }
1389
1390 /* NOTE drow/2007-05-11: This might be a good place to check
1391 for "catch load". */
1392 }
1393
1394 /* If we are skipping through a shell, or through shared library
1395 loading that we aren't interested in, resume the program. If
1396 we're running the program normally, also resume. But stop if
1397 we're attaching or setting up a remote connection. */
1398 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1399 {
1400 /* Loading of shared libraries might have changed breakpoint
1401 addresses. Make sure new breakpoints are inserted. */
1402 if (!breakpoints_always_inserted_mode ())
1403 insert_breakpoints ();
1404 resume (0, TARGET_SIGNAL_0);
1405 prepare_to_wait (ecs);
1406 return;
1407 }
1408
1409 break;
1410
1411 case TARGET_WAITKIND_SPURIOUS:
1412 if (debug_infrun)
1413 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1414 resume (0, TARGET_SIGNAL_0);
1415 prepare_to_wait (ecs);
1416 return;
1417
1418 case TARGET_WAITKIND_EXITED:
1419 if (debug_infrun)
1420 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1421 target_terminal_ours (); /* Must do this before mourn anyway */
1422 print_stop_reason (EXITED, ecs->ws.value.integer);
1423
1424 /* Record the exit code in the convenience variable $_exitcode, so
1425 that the user can inspect this again later. */
1426 set_internalvar (lookup_internalvar ("_exitcode"),
1427 value_from_longest (builtin_type_int,
1428 (LONGEST) ecs->ws.value.integer));
1429 gdb_flush (gdb_stdout);
1430 target_mourn_inferior ();
1431 singlestep_breakpoints_inserted_p = 0;
1432 stop_print_frame = 0;
1433 stop_stepping (ecs);
1434 return;
1435
1436 case TARGET_WAITKIND_SIGNALLED:
1437 if (debug_infrun)
1438 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1439 stop_print_frame = 0;
1440 stop_signal = ecs->ws.value.sig;
1441 target_terminal_ours (); /* Must do this before mourn anyway */
1442
1443 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1444 reach here unless the inferior is dead. However, for years
1445 target_kill() was called here, which hints that fatal signals aren't
1446 really fatal on some systems. If that's true, then some changes
1447 may be needed. */
1448 target_mourn_inferior ();
1449
1450 print_stop_reason (SIGNAL_EXITED, stop_signal);
1451 singlestep_breakpoints_inserted_p = 0;
1452 stop_stepping (ecs);
1453 return;
1454
1455 /* The following are the only cases in which we keep going;
1456 the above cases end in a continue or goto. */
1457 case TARGET_WAITKIND_FORKED:
1458 case TARGET_WAITKIND_VFORKED:
1459 if (debug_infrun)
1460 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1461 stop_signal = TARGET_SIGNAL_TRAP;
1462 pending_follow.kind = ecs->ws.kind;
1463
1464 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1465 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1466
1467 if (!ptid_equal (ecs->ptid, inferior_ptid))
1468 {
1469 context_switch (ecs);
1470 reinit_frame_cache ();
1471 }
1472
1473 stop_pc = read_pc ();
1474
1475 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1476
1477 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1478
1479 /* If no catchpoint triggered for this, then keep going. */
1480 if (ecs->random_signal)
1481 {
1482 stop_signal = TARGET_SIGNAL_0;
1483 keep_going (ecs);
1484 return;
1485 }
1486 goto process_event_stop_test;
1487
1488 case TARGET_WAITKIND_EXECD:
1489 if (debug_infrun)
1490 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1491 stop_signal = TARGET_SIGNAL_TRAP;
1492
1493 pending_follow.execd_pathname =
1494 savestring (ecs->ws.value.execd_pathname,
1495 strlen (ecs->ws.value.execd_pathname));
1496
1497 /* This causes the eventpoints and symbol table to be reset. Must
1498 do this now, before trying to determine whether to stop. */
1499 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1500 xfree (pending_follow.execd_pathname);
1501
1502 stop_pc = read_pc_pid (ecs->ptid);
1503 ecs->saved_inferior_ptid = inferior_ptid;
1504 inferior_ptid = ecs->ptid;
1505
1506 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1507
1508 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1509 inferior_ptid = ecs->saved_inferior_ptid;
1510
1511 if (!ptid_equal (ecs->ptid, inferior_ptid))
1512 {
1513 context_switch (ecs);
1514 reinit_frame_cache ();
1515 }
1516
1517 /* If no catchpoint triggered for this, then keep going. */
1518 if (ecs->random_signal)
1519 {
1520 stop_signal = TARGET_SIGNAL_0;
1521 keep_going (ecs);
1522 return;
1523 }
1524 goto process_event_stop_test;
1525
1526 /* Be careful not to try to gather much state about a thread
1527 that's in a syscall. It's frequently a losing proposition. */
1528 case TARGET_WAITKIND_SYSCALL_ENTRY:
1529 if (debug_infrun)
1530 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1531 resume (0, TARGET_SIGNAL_0);
1532 prepare_to_wait (ecs);
1533 return;
1534
1535 /* Before examining the threads further, step this thread to
1536 get it entirely out of the syscall. (We get notice of the
1537 event when the thread is just on the verge of exiting a
1538 syscall. Stepping one instruction seems to get it back
1539 into user code.) */
1540 case TARGET_WAITKIND_SYSCALL_RETURN:
1541 if (debug_infrun)
1542 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1543 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1544 prepare_to_wait (ecs);
1545 return;
1546
1547 case TARGET_WAITKIND_STOPPED:
1548 if (debug_infrun)
1549 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1550 stop_signal = ecs->ws.value.sig;
1551 break;
1552
1553 /* We had an event in the inferior, but we are not interested
1554 in handling it at this level. The lower layers have already
1555 done what needs to be done, if anything.
1556
1557 One of the possible circumstances for this is when the
1558 inferior produces output for the console. The inferior has
1559 not stopped, and we are ignoring the event. Another possible
1560 circumstance is any event which the lower level knows will be
1561 reported multiple times without an intervening resume. */
1562 case TARGET_WAITKIND_IGNORE:
1563 if (debug_infrun)
1564 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1565 prepare_to_wait (ecs);
1566 return;
1567 }
1568
1569 /* We may want to consider not doing a resume here in order to give
1570 the user a chance to play with the new thread. It might be good
1571 to make that a user-settable option. */
1572
1573 /* At this point, all threads are stopped (happens automatically in
1574 either the OS or the native code). Therefore we need to continue
1575 all threads in order to make progress. */
1576 if (ecs->new_thread_event)
1577 {
1578 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1579 prepare_to_wait (ecs);
1580 return;
1581 }
1582
1583 stop_pc = read_pc_pid (ecs->ptid);
1584
1585 if (debug_infrun)
1586 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1587
1588 if (stepping_past_singlestep_breakpoint)
1589 {
1590 gdb_assert (singlestep_breakpoints_inserted_p);
1591 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1592 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1593
1594 stepping_past_singlestep_breakpoint = 0;
1595
1596 /* We've either finished single-stepping past the single-step
1597 breakpoint, or stopped for some other reason. It would be nice if
1598 we could tell, but we can't reliably. */
1599 if (stop_signal == TARGET_SIGNAL_TRAP)
1600 {
1601 if (debug_infrun)
1602 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1603 /* Pull the single step breakpoints out of the target. */
1604 remove_single_step_breakpoints ();
1605 singlestep_breakpoints_inserted_p = 0;
1606
1607 ecs->random_signal = 0;
1608
1609 ecs->ptid = saved_singlestep_ptid;
1610 context_switch (ecs);
1611 if (deprecated_context_hook)
1612 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1613
1614 resume (1, TARGET_SIGNAL_0);
1615 prepare_to_wait (ecs);
1616 return;
1617 }
1618 }
1619
1620 stepping_past_singlestep_breakpoint = 0;
1621
1622 if (!ptid_equal (deferred_step_ptid, null_ptid))
1623 {
1624 /* If we stopped for some other reason than single-stepping, ignore
1625 the fact that we were supposed to switch back. */
1626 if (stop_signal == TARGET_SIGNAL_TRAP)
1627 {
1628 if (debug_infrun)
1629 fprintf_unfiltered (gdb_stdlog,
1630 "infrun: handling deferred step\n");
1631
1632 /* Pull the single step breakpoints out of the target. */
1633 if (singlestep_breakpoints_inserted_p)
1634 {
1635 remove_single_step_breakpoints ();
1636 singlestep_breakpoints_inserted_p = 0;
1637 }
1638
1639 /* Note: We do not call context_switch at this point, as the
1640 context is already set up for stepping the original thread. */
1641 switch_to_thread (deferred_step_ptid);
1642 deferred_step_ptid = null_ptid;
1643 /* Suppress spurious "Switching to ..." message. */
1644 previous_inferior_ptid = inferior_ptid;
1645
1646 resume (1, TARGET_SIGNAL_0);
1647 prepare_to_wait (ecs);
1648 return;
1649 }
1650
1651 deferred_step_ptid = null_ptid;
1652 }
1653
1654 /* See if a thread hit a thread-specific breakpoint that was meant for
1655 another thread. If so, then step that thread past the breakpoint,
1656 and continue it. */
1657
1658 if (stop_signal == TARGET_SIGNAL_TRAP)
1659 {
1660 int thread_hop_needed = 0;
1661
1662 /* Check if a regular breakpoint has been hit before checking
1663 for a potential single step breakpoint. Otherwise, GDB will
1664 not see this breakpoint hit when stepping onto breakpoints. */
1665 if (regular_breakpoint_inserted_here_p (stop_pc))
1666 {
1667 ecs->random_signal = 0;
1668 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1669 thread_hop_needed = 1;
1670 }
1671 else if (singlestep_breakpoints_inserted_p)
1672 {
1673 /* We have not context switched yet, so this should be true
1674 no matter which thread hit the singlestep breakpoint. */
1675 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1676 if (debug_infrun)
1677 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1678 "trap for %s\n",
1679 target_pid_to_str (ecs->ptid));
1680
1681 ecs->random_signal = 0;
1682 /* The call to in_thread_list is necessary because PTIDs sometimes
1683 change when we go from single-threaded to multi-threaded. If
1684 the singlestep_ptid is still in the list, assume that it is
1685 really different from ecs->ptid. */
1686 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1687 && in_thread_list (singlestep_ptid))
1688 {
1689 /* If the PC of the thread we were trying to single-step
1690 has changed, discard this event (which we were going
1691 to ignore anyway), and pretend we saw that thread
1692 trap. This prevents us continuously moving the
1693 single-step breakpoint forward, one instruction at a
1694 time. If the PC has changed, then the thread we were
1695 trying to single-step has trapped or been signalled,
1696 but the event has not been reported to GDB yet.
1697
1698 There might be some cases where this loses signal
1699 information, if a signal has arrived at exactly the
1700 same time that the PC changed, but this is the best
1701 we can do with the information available. Perhaps we
1702 should arrange to report all events for all threads
1703 when they stop, or to re-poll the remote looking for
1704 this particular thread (i.e. temporarily enable
1705 schedlock). */
1706 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1707 {
1708 if (debug_infrun)
1709 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1710 " but expected thread advanced also\n");
1711
1712 /* The current context still belongs to
1713 singlestep_ptid. Don't swap here, since that's
1714 the context we want to use. Just fudge our
1715 state and continue. */
1716 ecs->ptid = singlestep_ptid;
1717 stop_pc = read_pc_pid (ecs->ptid);
1718 }
1719 else
1720 {
1721 if (debug_infrun)
1722 fprintf_unfiltered (gdb_stdlog,
1723 "infrun: unexpected thread\n");
1724
1725 thread_hop_needed = 1;
1726 stepping_past_singlestep_breakpoint = 1;
1727 saved_singlestep_ptid = singlestep_ptid;
1728 }
1729 }
1730 }
1731
1732 if (thread_hop_needed)
1733 {
1734 int remove_status;
1735
1736 if (debug_infrun)
1737 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1738
1739 /* Saw a breakpoint, but it was hit by the wrong thread.
1740 Just continue. */
1741
1742 if (singlestep_breakpoints_inserted_p)
1743 {
1744 /* Pull the single step breakpoints out of the target. */
1745 remove_single_step_breakpoints ();
1746 singlestep_breakpoints_inserted_p = 0;
1747 }
1748
1749 remove_status = remove_breakpoints ();
1750 /* Did we fail to remove breakpoints? If so, try
1751 to set the PC past the bp. (There's at least
1752 one situation in which we can fail to remove
1753 the bp's: On HP-UX's that use ttrace, we can't
1754 change the address space of a vforking child
1755 process until the child exits (well, okay, not
1756 then either :-) or execs. */
1757 if (remove_status != 0)
1758 error (_("Cannot step over breakpoint hit in wrong thread"));
1759 else
1760 { /* Single step */
1761 if (!ptid_equal (inferior_ptid, ecs->ptid))
1762 context_switch (ecs);
1763 ecs->waiton_ptid = ecs->ptid;
1764 ecs->wp = &(ecs->ws);
1765 ecs->stepping_over_breakpoint = 1;
1766
1767 ecs->infwait_state = infwait_thread_hop_state;
1768 keep_going (ecs);
1769 registers_changed ();
1770 return;
1771 }
1772 }
1773 else if (singlestep_breakpoints_inserted_p)
1774 {
1775 sw_single_step_trap_p = 1;
1776 ecs->random_signal = 0;
1777 }
1778 }
1779 else
1780 ecs->random_signal = 1;
1781
1782 /* See if something interesting happened to the non-current thread. If
1783 so, then switch to that thread. */
1784 if (!ptid_equal (ecs->ptid, inferior_ptid))
1785 {
1786 if (debug_infrun)
1787 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1788
1789 context_switch (ecs);
1790
1791 if (deprecated_context_hook)
1792 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1793 }
1794
1795 if (singlestep_breakpoints_inserted_p)
1796 {
1797 /* Pull the single step breakpoints out of the target. */
1798 remove_single_step_breakpoints ();
1799 singlestep_breakpoints_inserted_p = 0;
1800 }
1801
1802 if (stepped_after_stopped_by_watchpoint)
1803 stopped_by_watchpoint = 0;
1804 else
1805 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
1806
1807 /* If necessary, step over this watchpoint. We'll be back to display
1808 it in a moment. */
1809 if (stopped_by_watchpoint
1810 && (HAVE_STEPPABLE_WATCHPOINT
1811 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
1812 {
1813 if (debug_infrun)
1814 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1815
1816 /* At this point, we are stopped at an instruction which has
1817 attempted to write to a piece of memory under control of
1818 a watchpoint. The instruction hasn't actually executed
1819 yet. If we were to evaluate the watchpoint expression
1820 now, we would get the old value, and therefore no change
1821 would seem to have occurred.
1822
1823 In order to make watchpoints work `right', we really need
1824 to complete the memory write, and then evaluate the
1825 watchpoint expression. We do this by single-stepping the
1826 target.
1827
1828 It may not be necessary to disable the watchpoint to stop over
1829 it. For example, the PA can (with some kernel cooperation)
1830 single step over a watchpoint without disabling the watchpoint.
1831
1832 It is far more common to need to disable a watchpoint to step
1833 the inferior over it. If we have non-steppable watchpoints,
1834 we must disable the current watchpoint; it's simplest to
1835 disable all watchpoints and breakpoints. */
1836
1837 if (!HAVE_STEPPABLE_WATCHPOINT)
1838 remove_breakpoints ();
1839 registers_changed ();
1840 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1841 ecs->waiton_ptid = ecs->ptid;
1842 if (HAVE_STEPPABLE_WATCHPOINT)
1843 ecs->infwait_state = infwait_step_watch_state;
1844 else
1845 ecs->infwait_state = infwait_nonstep_watch_state;
1846 prepare_to_wait (ecs);
1847 return;
1848 }
1849
1850 ecs->stop_func_start = 0;
1851 ecs->stop_func_end = 0;
1852 ecs->stop_func_name = 0;
1853 /* Don't care about return value; stop_func_start and stop_func_name
1854 will both be 0 if it doesn't work. */
1855 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1856 &ecs->stop_func_start, &ecs->stop_func_end);
1857 ecs->stop_func_start
1858 += gdbarch_deprecated_function_start_offset (current_gdbarch);
1859 ecs->stepping_over_breakpoint = 0;
1860 bpstat_clear (&stop_bpstat);
1861 stop_step = 0;
1862 stop_print_frame = 1;
1863 ecs->random_signal = 0;
1864 stopped_by_random_signal = 0;
1865
1866 if (stop_signal == TARGET_SIGNAL_TRAP
1867 && stepping_over_breakpoint
1868 && gdbarch_single_step_through_delay_p (current_gdbarch)
1869 && currently_stepping (ecs))
1870 {
1871 /* We're trying to step off a breakpoint. Turns out that we're
1872 also on an instruction that needs to be stepped multiple
1873 times before it's been fully executing. E.g., architectures
1874 with a delay slot. It needs to be stepped twice, once for
1875 the instruction and once for the delay slot. */
1876 int step_through_delay
1877 = gdbarch_single_step_through_delay (current_gdbarch,
1878 get_current_frame ());
1879 if (debug_infrun && step_through_delay)
1880 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1881 if (step_range_end == 0 && step_through_delay)
1882 {
1883 /* The user issued a continue when stopped at a breakpoint.
1884 Set up for another trap and get out of here. */
1885 ecs->stepping_over_breakpoint = 1;
1886 keep_going (ecs);
1887 return;
1888 }
1889 else if (step_through_delay)
1890 {
1891 /* The user issued a step when stopped at a breakpoint.
1892 Maybe we should stop, maybe we should not - the delay
1893 slot *might* correspond to a line of source. In any
1894 case, don't decide that here, just set
1895 ecs->stepping_over_breakpoint, making sure we
1896 single-step again before breakpoints are re-inserted. */
1897 ecs->stepping_over_breakpoint = 1;
1898 }
1899 }
1900
1901 /* Look at the cause of the stop, and decide what to do.
1902 The alternatives are:
1903 1) break; to really stop and return to the debugger,
1904 2) drop through to start up again
1905 (set ecs->stepping_over_breakpoint to 1 to single step once)
1906 3) set ecs->random_signal to 1, and the decision between 1 and 2
1907 will be made according to the signal handling tables. */
1908
1909 /* First, distinguish signals caused by the debugger from signals
1910 that have to do with the program's own actions. Note that
1911 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1912 on the operating system version. Here we detect when a SIGILL or
1913 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1914 something similar for SIGSEGV, since a SIGSEGV will be generated
1915 when we're trying to execute a breakpoint instruction on a
1916 non-executable stack. This happens for call dummy breakpoints
1917 for architectures like SPARC that place call dummies on the
1918 stack. */
1919
1920 if (stop_signal == TARGET_SIGNAL_TRAP
1921 || (breakpoint_inserted_here_p (stop_pc)
1922 && (stop_signal == TARGET_SIGNAL_ILL
1923 || stop_signal == TARGET_SIGNAL_SEGV
1924 || stop_signal == TARGET_SIGNAL_EMT))
1925 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1926 || stop_soon == STOP_QUIETLY_REMOTE)
1927 {
1928 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1929 {
1930 if (debug_infrun)
1931 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1932 stop_print_frame = 0;
1933 stop_stepping (ecs);
1934 return;
1935 }
1936
1937 /* This is originated from start_remote(), start_inferior() and
1938 shared libraries hook functions. */
1939 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
1940 {
1941 if (debug_infrun)
1942 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1943 stop_stepping (ecs);
1944 return;
1945 }
1946
1947 /* This originates from attach_command(). We need to overwrite
1948 the stop_signal here, because some kernels don't ignore a
1949 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1950 See more comments in inferior.h. */
1951 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1952 {
1953 stop_stepping (ecs);
1954 if (stop_signal == TARGET_SIGNAL_STOP)
1955 stop_signal = TARGET_SIGNAL_0;
1956 return;
1957 }
1958
1959 /* See if there is a breakpoint at the current PC. */
1960 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1961
1962 /* Following in case break condition called a
1963 function. */
1964 stop_print_frame = 1;
1965
1966 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1967 at one stage in the past included checks for an inferior
1968 function call's call dummy's return breakpoint. The original
1969 comment, that went with the test, read:
1970
1971 ``End of a stack dummy. Some systems (e.g. Sony news) give
1972 another signal besides SIGTRAP, so check here as well as
1973 above.''
1974
1975 If someone ever tries to get get call dummys on a
1976 non-executable stack to work (where the target would stop
1977 with something like a SIGSEGV), then those tests might need
1978 to be re-instated. Given, however, that the tests were only
1979 enabled when momentary breakpoints were not being used, I
1980 suspect that it won't be the case.
1981
1982 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1983 be necessary for call dummies on a non-executable stack on
1984 SPARC. */
1985
1986 if (stop_signal == TARGET_SIGNAL_TRAP)
1987 ecs->random_signal
1988 = !(bpstat_explains_signal (stop_bpstat)
1989 || stepping_over_breakpoint
1990 || (step_range_end && step_resume_breakpoint == NULL));
1991 else
1992 {
1993 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1994 if (!ecs->random_signal)
1995 stop_signal = TARGET_SIGNAL_TRAP;
1996 }
1997 }
1998
1999 /* When we reach this point, we've pretty much decided
2000 that the reason for stopping must've been a random
2001 (unexpected) signal. */
2002
2003 else
2004 ecs->random_signal = 1;
2005
2006 process_event_stop_test:
2007 /* For the program's own signals, act according to
2008 the signal handling tables. */
2009
2010 if (ecs->random_signal)
2011 {
2012 /* Signal not for debugging purposes. */
2013 int printed = 0;
2014
2015 if (debug_infrun)
2016 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2017
2018 stopped_by_random_signal = 1;
2019
2020 if (signal_print[stop_signal])
2021 {
2022 printed = 1;
2023 target_terminal_ours_for_output ();
2024 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2025 }
2026 if (signal_stop[stop_signal])
2027 {
2028 stop_stepping (ecs);
2029 return;
2030 }
2031 /* If not going to stop, give terminal back
2032 if we took it away. */
2033 else if (printed)
2034 target_terminal_inferior ();
2035
2036 /* Clear the signal if it should not be passed. */
2037 if (signal_program[stop_signal] == 0)
2038 stop_signal = TARGET_SIGNAL_0;
2039
2040 if (prev_pc == read_pc ()
2041 && stepping_over_breakpoint
2042 && step_resume_breakpoint == NULL)
2043 {
2044 /* We were just starting a new sequence, attempting to
2045 single-step off of a breakpoint and expecting a SIGTRAP.
2046 Intead this signal arrives. This signal will take us out
2047 of the stepping range so GDB needs to remember to, when
2048 the signal handler returns, resume stepping off that
2049 breakpoint. */
2050 /* To simplify things, "continue" is forced to use the same
2051 code paths as single-step - set a breakpoint at the
2052 signal return address and then, once hit, step off that
2053 breakpoint. */
2054
2055 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2056 ecs->step_after_step_resume_breakpoint = 1;
2057 keep_going (ecs);
2058 return;
2059 }
2060
2061 if (step_range_end != 0
2062 && stop_signal != TARGET_SIGNAL_0
2063 && stop_pc >= step_range_start && stop_pc < step_range_end
2064 && frame_id_eq (get_frame_id (get_current_frame ()),
2065 step_frame_id)
2066 && step_resume_breakpoint == NULL)
2067 {
2068 /* The inferior is about to take a signal that will take it
2069 out of the single step range. Set a breakpoint at the
2070 current PC (which is presumably where the signal handler
2071 will eventually return) and then allow the inferior to
2072 run free.
2073
2074 Note that this is only needed for a signal delivered
2075 while in the single-step range. Nested signals aren't a
2076 problem as they eventually all return. */
2077 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2078 keep_going (ecs);
2079 return;
2080 }
2081
2082 /* Note: step_resume_breakpoint may be non-NULL. This occures
2083 when either there's a nested signal, or when there's a
2084 pending signal enabled just as the signal handler returns
2085 (leaving the inferior at the step-resume-breakpoint without
2086 actually executing it). Either way continue until the
2087 breakpoint is really hit. */
2088 keep_going (ecs);
2089 return;
2090 }
2091
2092 /* Handle cases caused by hitting a breakpoint. */
2093 {
2094 CORE_ADDR jmp_buf_pc;
2095 struct bpstat_what what;
2096
2097 what = bpstat_what (stop_bpstat);
2098
2099 if (what.call_dummy)
2100 {
2101 stop_stack_dummy = 1;
2102 }
2103
2104 switch (what.main_action)
2105 {
2106 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2107 /* If we hit the breakpoint at longjmp, disable it for the
2108 duration of this command. Then, install a temporary
2109 breakpoint at the target of the jmp_buf. */
2110 if (debug_infrun)
2111 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2112 disable_longjmp_breakpoint ();
2113 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2114 || !gdbarch_get_longjmp_target (current_gdbarch,
2115 get_current_frame (), &jmp_buf_pc))
2116 {
2117 keep_going (ecs);
2118 return;
2119 }
2120
2121 /* Need to blow away step-resume breakpoint, as it
2122 interferes with us */
2123 if (step_resume_breakpoint != NULL)
2124 {
2125 delete_step_resume_breakpoint (&step_resume_breakpoint);
2126 }
2127
2128 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2129 ecs->handling_longjmp = 1; /* FIXME */
2130 keep_going (ecs);
2131 return;
2132
2133 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2134 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2135 if (debug_infrun)
2136 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2137 disable_longjmp_breakpoint ();
2138 ecs->handling_longjmp = 0; /* FIXME */
2139 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2140 break;
2141 /* else fallthrough */
2142
2143 case BPSTAT_WHAT_SINGLE:
2144 if (debug_infrun)
2145 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2146 ecs->stepping_over_breakpoint = 1;
2147 /* Still need to check other stuff, at least the case
2148 where we are stepping and step out of the right range. */
2149 break;
2150
2151 case BPSTAT_WHAT_STOP_NOISY:
2152 if (debug_infrun)
2153 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2154 stop_print_frame = 1;
2155
2156 /* We are about to nuke the step_resume_breakpointt via the
2157 cleanup chain, so no need to worry about it here. */
2158
2159 stop_stepping (ecs);
2160 return;
2161
2162 case BPSTAT_WHAT_STOP_SILENT:
2163 if (debug_infrun)
2164 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2165 stop_print_frame = 0;
2166
2167 /* We are about to nuke the step_resume_breakpoin via the
2168 cleanup chain, so no need to worry about it here. */
2169
2170 stop_stepping (ecs);
2171 return;
2172
2173 case BPSTAT_WHAT_STEP_RESUME:
2174 /* This proably demands a more elegant solution, but, yeah
2175 right...
2176
2177 This function's use of the simple variable
2178 step_resume_breakpoint doesn't seem to accomodate
2179 simultaneously active step-resume bp's, although the
2180 breakpoint list certainly can.
2181
2182 If we reach here and step_resume_breakpoint is already
2183 NULL, then apparently we have multiple active
2184 step-resume bp's. We'll just delete the breakpoint we
2185 stopped at, and carry on.
2186
2187 Correction: what the code currently does is delete a
2188 step-resume bp, but it makes no effort to ensure that
2189 the one deleted is the one currently stopped at. MVS */
2190
2191 if (debug_infrun)
2192 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2193
2194 if (step_resume_breakpoint == NULL)
2195 {
2196 step_resume_breakpoint =
2197 bpstat_find_step_resume_breakpoint (stop_bpstat);
2198 }
2199 delete_step_resume_breakpoint (&step_resume_breakpoint);
2200 if (ecs->step_after_step_resume_breakpoint)
2201 {
2202 /* Back when the step-resume breakpoint was inserted, we
2203 were trying to single-step off a breakpoint. Go back
2204 to doing that. */
2205 ecs->step_after_step_resume_breakpoint = 0;
2206 ecs->stepping_over_breakpoint = 1;
2207 keep_going (ecs);
2208 return;
2209 }
2210 break;
2211
2212 case BPSTAT_WHAT_CHECK_SHLIBS:
2213 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2214 {
2215 if (debug_infrun)
2216 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2217
2218 /* Check for any newly added shared libraries if we're
2219 supposed to be adding them automatically. Switch
2220 terminal for any messages produced by
2221 breakpoint_re_set. */
2222 target_terminal_ours_for_output ();
2223 /* NOTE: cagney/2003-11-25: Make certain that the target
2224 stack's section table is kept up-to-date. Architectures,
2225 (e.g., PPC64), use the section table to perform
2226 operations such as address => section name and hence
2227 require the table to contain all sections (including
2228 those found in shared libraries). */
2229 /* NOTE: cagney/2003-11-25: Pass current_target and not
2230 exec_ops to SOLIB_ADD. This is because current GDB is
2231 only tooled to propagate section_table changes out from
2232 the "current_target" (see target_resize_to_sections), and
2233 not up from the exec stratum. This, of course, isn't
2234 right. "infrun.c" should only interact with the
2235 exec/process stratum, instead relying on the target stack
2236 to propagate relevant changes (stop, section table
2237 changed, ...) up to other layers. */
2238 #ifdef SOLIB_ADD
2239 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2240 #else
2241 solib_add (NULL, 0, &current_target, auto_solib_add);
2242 #endif
2243 target_terminal_inferior ();
2244
2245 /* If requested, stop when the dynamic linker notifies
2246 gdb of events. This allows the user to get control
2247 and place breakpoints in initializer routines for
2248 dynamically loaded objects (among other things). */
2249 if (stop_on_solib_events || stop_stack_dummy)
2250 {
2251 stop_stepping (ecs);
2252 return;
2253 }
2254
2255 /* If we stopped due to an explicit catchpoint, then the
2256 (see above) call to SOLIB_ADD pulled in any symbols
2257 from a newly-loaded library, if appropriate.
2258
2259 We do want the inferior to stop, but not where it is
2260 now, which is in the dynamic linker callback. Rather,
2261 we would like it stop in the user's program, just after
2262 the call that caused this catchpoint to trigger. That
2263 gives the user a more useful vantage from which to
2264 examine their program's state. */
2265 else if (what.main_action
2266 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2267 {
2268 /* ??rehrauer: If I could figure out how to get the
2269 right return PC from here, we could just set a temp
2270 breakpoint and resume. I'm not sure we can without
2271 cracking open the dld's shared libraries and sniffing
2272 their unwind tables and text/data ranges, and that's
2273 not a terribly portable notion.
2274
2275 Until that time, we must step the inferior out of the
2276 dld callback, and also out of the dld itself (and any
2277 code or stubs in libdld.sl, such as "shl_load" and
2278 friends) until we reach non-dld code. At that point,
2279 we can stop stepping. */
2280 bpstat_get_triggered_catchpoints (stop_bpstat,
2281 &ecs->
2282 stepping_through_solib_catchpoints);
2283 ecs->stepping_through_solib_after_catch = 1;
2284
2285 /* Be sure to lift all breakpoints, so the inferior does
2286 actually step past this point... */
2287 ecs->stepping_over_breakpoint = 1;
2288 break;
2289 }
2290 else
2291 {
2292 /* We want to step over this breakpoint, then keep going. */
2293 ecs->stepping_over_breakpoint = 1;
2294 break;
2295 }
2296 }
2297 break;
2298
2299 case BPSTAT_WHAT_LAST:
2300 /* Not a real code, but listed here to shut up gcc -Wall. */
2301
2302 case BPSTAT_WHAT_KEEP_CHECKING:
2303 break;
2304 }
2305 }
2306
2307 /* We come here if we hit a breakpoint but should not
2308 stop for it. Possibly we also were stepping
2309 and should stop for that. So fall through and
2310 test for stepping. But, if not stepping,
2311 do not stop. */
2312
2313 /* Are we stepping to get the inferior out of the dynamic linker's
2314 hook (and possibly the dld itself) after catching a shlib
2315 event? */
2316 if (ecs->stepping_through_solib_after_catch)
2317 {
2318 #if defined(SOLIB_ADD)
2319 /* Have we reached our destination? If not, keep going. */
2320 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2321 {
2322 if (debug_infrun)
2323 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2324 ecs->stepping_over_breakpoint = 1;
2325 keep_going (ecs);
2326 return;
2327 }
2328 #endif
2329 if (debug_infrun)
2330 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2331 /* Else, stop and report the catchpoint(s) whose triggering
2332 caused us to begin stepping. */
2333 ecs->stepping_through_solib_after_catch = 0;
2334 bpstat_clear (&stop_bpstat);
2335 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2336 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2337 stop_print_frame = 1;
2338 stop_stepping (ecs);
2339 return;
2340 }
2341
2342 if (step_resume_breakpoint)
2343 {
2344 if (debug_infrun)
2345 fprintf_unfiltered (gdb_stdlog,
2346 "infrun: step-resume breakpoint is inserted\n");
2347
2348 /* Having a step-resume breakpoint overrides anything
2349 else having to do with stepping commands until
2350 that breakpoint is reached. */
2351 keep_going (ecs);
2352 return;
2353 }
2354
2355 if (step_range_end == 0)
2356 {
2357 if (debug_infrun)
2358 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2359 /* Likewise if we aren't even stepping. */
2360 keep_going (ecs);
2361 return;
2362 }
2363
2364 /* If stepping through a line, keep going if still within it.
2365
2366 Note that step_range_end is the address of the first instruction
2367 beyond the step range, and NOT the address of the last instruction
2368 within it! */
2369 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2370 {
2371 if (debug_infrun)
2372 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2373 paddr_nz (step_range_start),
2374 paddr_nz (step_range_end));
2375 keep_going (ecs);
2376 return;
2377 }
2378
2379 /* We stepped out of the stepping range. */
2380
2381 /* If we are stepping at the source level and entered the runtime
2382 loader dynamic symbol resolution code, we keep on single stepping
2383 until we exit the run time loader code and reach the callee's
2384 address. */
2385 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2386 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2387 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2388 #else
2389 && in_solib_dynsym_resolve_code (stop_pc)
2390 #endif
2391 )
2392 {
2393 CORE_ADDR pc_after_resolver =
2394 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2395
2396 if (debug_infrun)
2397 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2398
2399 if (pc_after_resolver)
2400 {
2401 /* Set up a step-resume breakpoint at the address
2402 indicated by SKIP_SOLIB_RESOLVER. */
2403 struct symtab_and_line sr_sal;
2404 init_sal (&sr_sal);
2405 sr_sal.pc = pc_after_resolver;
2406
2407 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2408 }
2409
2410 keep_going (ecs);
2411 return;
2412 }
2413
2414 if (step_range_end != 1
2415 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2416 || step_over_calls == STEP_OVER_ALL)
2417 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2418 {
2419 if (debug_infrun)
2420 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2421 /* The inferior, while doing a "step" or "next", has ended up in
2422 a signal trampoline (either by a signal being delivered or by
2423 the signal handler returning). Just single-step until the
2424 inferior leaves the trampoline (either by calling the handler
2425 or returning). */
2426 keep_going (ecs);
2427 return;
2428 }
2429
2430 /* Check for subroutine calls. The check for the current frame
2431 equalling the step ID is not necessary - the check of the
2432 previous frame's ID is sufficient - but it is a common case and
2433 cheaper than checking the previous frame's ID.
2434
2435 NOTE: frame_id_eq will never report two invalid frame IDs as
2436 being equal, so to get into this block, both the current and
2437 previous frame must have valid frame IDs. */
2438 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2439 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2440 {
2441 CORE_ADDR real_stop_pc;
2442
2443 if (debug_infrun)
2444 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2445
2446 if ((step_over_calls == STEP_OVER_NONE)
2447 || ((step_range_end == 1)
2448 && in_prologue (prev_pc, ecs->stop_func_start)))
2449 {
2450 /* I presume that step_over_calls is only 0 when we're
2451 supposed to be stepping at the assembly language level
2452 ("stepi"). Just stop. */
2453 /* Also, maybe we just did a "nexti" inside a prolog, so we
2454 thought it was a subroutine call but it was not. Stop as
2455 well. FENN */
2456 stop_step = 1;
2457 print_stop_reason (END_STEPPING_RANGE, 0);
2458 stop_stepping (ecs);
2459 return;
2460 }
2461
2462 if (step_over_calls == STEP_OVER_ALL)
2463 {
2464 /* We're doing a "next", set a breakpoint at callee's return
2465 address (the address at which the caller will
2466 resume). */
2467 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2468 keep_going (ecs);
2469 return;
2470 }
2471
2472 /* If we are in a function call trampoline (a stub between the
2473 calling routine and the real function), locate the real
2474 function. That's what tells us (a) whether we want to step
2475 into it at all, and (b) what prologue we want to run to the
2476 end of, if we do step into it. */
2477 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2478 if (real_stop_pc == 0)
2479 real_stop_pc = gdbarch_skip_trampoline_code
2480 (current_gdbarch, get_current_frame (), stop_pc);
2481 if (real_stop_pc != 0)
2482 ecs->stop_func_start = real_stop_pc;
2483
2484 if (
2485 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2486 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2487 #else
2488 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2489 #endif
2490 )
2491 {
2492 struct symtab_and_line sr_sal;
2493 init_sal (&sr_sal);
2494 sr_sal.pc = ecs->stop_func_start;
2495
2496 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2497 keep_going (ecs);
2498 return;
2499 }
2500
2501 /* If we have line number information for the function we are
2502 thinking of stepping into, step into it.
2503
2504 If there are several symtabs at that PC (e.g. with include
2505 files), just want to know whether *any* of them have line
2506 numbers. find_pc_line handles this. */
2507 {
2508 struct symtab_and_line tmp_sal;
2509
2510 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2511 if (tmp_sal.line != 0)
2512 {
2513 step_into_function (ecs);
2514 return;
2515 }
2516 }
2517
2518 /* If we have no line number and the step-stop-if-no-debug is
2519 set, we stop the step so that the user has a chance to switch
2520 in assembly mode. */
2521 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2522 {
2523 stop_step = 1;
2524 print_stop_reason (END_STEPPING_RANGE, 0);
2525 stop_stepping (ecs);
2526 return;
2527 }
2528
2529 /* Set a breakpoint at callee's return address (the address at
2530 which the caller will resume). */
2531 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2532 keep_going (ecs);
2533 return;
2534 }
2535
2536 /* If we're in the return path from a shared library trampoline,
2537 we want to proceed through the trampoline when stepping. */
2538 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2539 stop_pc, ecs->stop_func_name))
2540 {
2541 /* Determine where this trampoline returns. */
2542 CORE_ADDR real_stop_pc;
2543 real_stop_pc = gdbarch_skip_trampoline_code
2544 (current_gdbarch, get_current_frame (), stop_pc);
2545
2546 if (debug_infrun)
2547 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2548
2549 /* Only proceed through if we know where it's going. */
2550 if (real_stop_pc)
2551 {
2552 /* And put the step-breakpoint there and go until there. */
2553 struct symtab_and_line sr_sal;
2554
2555 init_sal (&sr_sal); /* initialize to zeroes */
2556 sr_sal.pc = real_stop_pc;
2557 sr_sal.section = find_pc_overlay (sr_sal.pc);
2558
2559 /* Do not specify what the fp should be when we stop since
2560 on some machines the prologue is where the new fp value
2561 is established. */
2562 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2563
2564 /* Restart without fiddling with the step ranges or
2565 other state. */
2566 keep_going (ecs);
2567 return;
2568 }
2569 }
2570
2571 ecs->sal = find_pc_line (stop_pc, 0);
2572
2573 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2574 the trampoline processing logic, however, there are some trampolines
2575 that have no names, so we should do trampoline handling first. */
2576 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2577 && ecs->stop_func_name == NULL
2578 && ecs->sal.line == 0)
2579 {
2580 if (debug_infrun)
2581 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2582
2583 /* The inferior just stepped into, or returned to, an
2584 undebuggable function (where there is no debugging information
2585 and no line number corresponding to the address where the
2586 inferior stopped). Since we want to skip this kind of code,
2587 we keep going until the inferior returns from this
2588 function - unless the user has asked us not to (via
2589 set step-mode) or we no longer know how to get back
2590 to the call site. */
2591 if (step_stop_if_no_debug
2592 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2593 {
2594 /* If we have no line number and the step-stop-if-no-debug
2595 is set, we stop the step so that the user has a chance to
2596 switch in assembly mode. */
2597 stop_step = 1;
2598 print_stop_reason (END_STEPPING_RANGE, 0);
2599 stop_stepping (ecs);
2600 return;
2601 }
2602 else
2603 {
2604 /* Set a breakpoint at callee's return address (the address
2605 at which the caller will resume). */
2606 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2607 keep_going (ecs);
2608 return;
2609 }
2610 }
2611
2612 if (step_range_end == 1)
2613 {
2614 /* It is stepi or nexti. We always want to stop stepping after
2615 one instruction. */
2616 if (debug_infrun)
2617 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2618 stop_step = 1;
2619 print_stop_reason (END_STEPPING_RANGE, 0);
2620 stop_stepping (ecs);
2621 return;
2622 }
2623
2624 if (ecs->sal.line == 0)
2625 {
2626 /* We have no line number information. That means to stop
2627 stepping (does this always happen right after one instruction,
2628 when we do "s" in a function with no line numbers,
2629 or can this happen as a result of a return or longjmp?). */
2630 if (debug_infrun)
2631 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2632 stop_step = 1;
2633 print_stop_reason (END_STEPPING_RANGE, 0);
2634 stop_stepping (ecs);
2635 return;
2636 }
2637
2638 if ((stop_pc == ecs->sal.pc)
2639 && (ecs->current_line != ecs->sal.line
2640 || ecs->current_symtab != ecs->sal.symtab))
2641 {
2642 /* We are at the start of a different line. So stop. Note that
2643 we don't stop if we step into the middle of a different line.
2644 That is said to make things like for (;;) statements work
2645 better. */
2646 if (debug_infrun)
2647 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2648 stop_step = 1;
2649 print_stop_reason (END_STEPPING_RANGE, 0);
2650 stop_stepping (ecs);
2651 return;
2652 }
2653
2654 /* We aren't done stepping.
2655
2656 Optimize by setting the stepping range to the line.
2657 (We might not be in the original line, but if we entered a
2658 new line in mid-statement, we continue stepping. This makes
2659 things like for(;;) statements work better.) */
2660
2661 step_range_start = ecs->sal.pc;
2662 step_range_end = ecs->sal.end;
2663 step_frame_id = get_frame_id (get_current_frame ());
2664 ecs->current_line = ecs->sal.line;
2665 ecs->current_symtab = ecs->sal.symtab;
2666
2667 /* In the case where we just stepped out of a function into the
2668 middle of a line of the caller, continue stepping, but
2669 step_frame_id must be modified to current frame */
2670 #if 0
2671 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2672 generous. It will trigger on things like a step into a frameless
2673 stackless leaf function. I think the logic should instead look
2674 at the unwound frame ID has that should give a more robust
2675 indication of what happened. */
2676 if (step - ID == current - ID)
2677 still stepping in same function;
2678 else if (step - ID == unwind (current - ID))
2679 stepped into a function;
2680 else
2681 stepped out of a function;
2682 /* Of course this assumes that the frame ID unwind code is robust
2683 and we're willing to introduce frame unwind logic into this
2684 function. Fortunately, those days are nearly upon us. */
2685 #endif
2686 {
2687 struct frame_info *frame = get_current_frame ();
2688 struct frame_id current_frame = get_frame_id (frame);
2689 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
2690 step_frame_id)))
2691 step_frame_id = current_frame;
2692 }
2693
2694 if (debug_infrun)
2695 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2696 keep_going (ecs);
2697 }
2698
2699 /* Are we in the middle of stepping? */
2700
2701 static int
2702 currently_stepping (struct execution_control_state *ecs)
2703 {
2704 return ((!ecs->handling_longjmp
2705 && ((step_range_end && step_resume_breakpoint == NULL)
2706 || stepping_over_breakpoint))
2707 || ecs->stepping_through_solib_after_catch
2708 || bpstat_should_step ());
2709 }
2710
2711 /* Subroutine call with source code we should not step over. Do step
2712 to the first line of code in it. */
2713
2714 static void
2715 step_into_function (struct execution_control_state *ecs)
2716 {
2717 struct symtab *s;
2718 struct symtab_and_line sr_sal;
2719
2720 s = find_pc_symtab (stop_pc);
2721 if (s && s->language != language_asm)
2722 ecs->stop_func_start = gdbarch_skip_prologue
2723 (current_gdbarch, ecs->stop_func_start);
2724
2725 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2726 /* Use the step_resume_break to step until the end of the prologue,
2727 even if that involves jumps (as it seems to on the vax under
2728 4.2). */
2729 /* If the prologue ends in the middle of a source line, continue to
2730 the end of that source line (if it is still within the function).
2731 Otherwise, just go to end of prologue. */
2732 if (ecs->sal.end
2733 && ecs->sal.pc != ecs->stop_func_start
2734 && ecs->sal.end < ecs->stop_func_end)
2735 ecs->stop_func_start = ecs->sal.end;
2736
2737 /* Architectures which require breakpoint adjustment might not be able
2738 to place a breakpoint at the computed address. If so, the test
2739 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2740 ecs->stop_func_start to an address at which a breakpoint may be
2741 legitimately placed.
2742
2743 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2744 made, GDB will enter an infinite loop when stepping through
2745 optimized code consisting of VLIW instructions which contain
2746 subinstructions corresponding to different source lines. On
2747 FR-V, it's not permitted to place a breakpoint on any but the
2748 first subinstruction of a VLIW instruction. When a breakpoint is
2749 set, GDB will adjust the breakpoint address to the beginning of
2750 the VLIW instruction. Thus, we need to make the corresponding
2751 adjustment here when computing the stop address. */
2752
2753 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2754 {
2755 ecs->stop_func_start
2756 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2757 ecs->stop_func_start);
2758 }
2759
2760 if (ecs->stop_func_start == stop_pc)
2761 {
2762 /* We are already there: stop now. */
2763 stop_step = 1;
2764 print_stop_reason (END_STEPPING_RANGE, 0);
2765 stop_stepping (ecs);
2766 return;
2767 }
2768 else
2769 {
2770 /* Put the step-breakpoint there and go until there. */
2771 init_sal (&sr_sal); /* initialize to zeroes */
2772 sr_sal.pc = ecs->stop_func_start;
2773 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2774
2775 /* Do not specify what the fp should be when we stop since on
2776 some machines the prologue is where the new fp value is
2777 established. */
2778 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2779
2780 /* And make sure stepping stops right away then. */
2781 step_range_end = step_range_start;
2782 }
2783 keep_going (ecs);
2784 }
2785
2786 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2787 This is used to both functions and to skip over code. */
2788
2789 static void
2790 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2791 struct frame_id sr_id)
2792 {
2793 /* There should never be more than one step-resume breakpoint per
2794 thread, so we should never be setting a new
2795 step_resume_breakpoint when one is already active. */
2796 gdb_assert (step_resume_breakpoint == NULL);
2797
2798 if (debug_infrun)
2799 fprintf_unfiltered (gdb_stdlog,
2800 "infrun: inserting step-resume breakpoint at 0x%s\n",
2801 paddr_nz (sr_sal.pc));
2802
2803 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2804 bp_step_resume);
2805 }
2806
2807 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2808 to skip a potential signal handler.
2809
2810 This is called with the interrupted function's frame. The signal
2811 handler, when it returns, will resume the interrupted function at
2812 RETURN_FRAME.pc. */
2813
2814 static void
2815 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2816 {
2817 struct symtab_and_line sr_sal;
2818
2819 gdb_assert (return_frame != NULL);
2820 init_sal (&sr_sal); /* initialize to zeros */
2821
2822 sr_sal.pc = gdbarch_addr_bits_remove
2823 (current_gdbarch, get_frame_pc (return_frame));
2824 sr_sal.section = find_pc_overlay (sr_sal.pc);
2825
2826 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2827 }
2828
2829 /* Similar to insert_step_resume_breakpoint_at_frame, except
2830 but a breakpoint at the previous frame's PC. This is used to
2831 skip a function after stepping into it (for "next" or if the called
2832 function has no debugging information).
2833
2834 The current function has almost always been reached by single
2835 stepping a call or return instruction. NEXT_FRAME belongs to the
2836 current function, and the breakpoint will be set at the caller's
2837 resume address.
2838
2839 This is a separate function rather than reusing
2840 insert_step_resume_breakpoint_at_frame in order to avoid
2841 get_prev_frame, which may stop prematurely (see the implementation
2842 of frame_unwind_id for an example). */
2843
2844 static void
2845 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2846 {
2847 struct symtab_and_line sr_sal;
2848
2849 /* We shouldn't have gotten here if we don't know where the call site
2850 is. */
2851 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2852
2853 init_sal (&sr_sal); /* initialize to zeros */
2854
2855 sr_sal.pc = gdbarch_addr_bits_remove
2856 (current_gdbarch, frame_pc_unwind (next_frame));
2857 sr_sal.section = find_pc_overlay (sr_sal.pc);
2858
2859 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2860 }
2861
2862 static void
2863 stop_stepping (struct execution_control_state *ecs)
2864 {
2865 if (debug_infrun)
2866 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2867
2868 /* Let callers know we don't want to wait for the inferior anymore. */
2869 ecs->wait_some_more = 0;
2870 }
2871
2872 /* This function handles various cases where we need to continue
2873 waiting for the inferior. */
2874 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2875
2876 static void
2877 keep_going (struct execution_control_state *ecs)
2878 {
2879 /* Save the pc before execution, to compare with pc after stop. */
2880 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2881
2882 /* If we did not do break;, it means we should keep running the
2883 inferior and not return to debugger. */
2884
2885 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
2886 {
2887 /* We took a signal (which we are supposed to pass through to
2888 the inferior, else we'd have done a break above) and we
2889 haven't yet gotten our trap. Simply continue. */
2890 resume (currently_stepping (ecs), stop_signal);
2891 }
2892 else
2893 {
2894 /* Either the trap was not expected, but we are continuing
2895 anyway (the user asked that this signal be passed to the
2896 child)
2897 -- or --
2898 The signal was SIGTRAP, e.g. it was our signal, but we
2899 decided we should resume from it.
2900
2901 We're going to run this baby now!
2902
2903 Note that insert_breakpoints won't try to re-insert
2904 already inserted breakpoints. Therefore, we don't
2905 care if breakpoints were already inserted, or not. */
2906
2907 if (ecs->stepping_over_breakpoint)
2908 {
2909 remove_breakpoints ();
2910 }
2911 else
2912 {
2913 struct gdb_exception e;
2914 /* Stop stepping when inserting breakpoints
2915 has failed. */
2916 TRY_CATCH (e, RETURN_MASK_ERROR)
2917 {
2918 insert_breakpoints ();
2919 }
2920 if (e.reason < 0)
2921 {
2922 stop_stepping (ecs);
2923 return;
2924 }
2925 }
2926
2927 stepping_over_breakpoint = ecs->stepping_over_breakpoint;
2928
2929 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2930 specifies that such a signal should be delivered to the
2931 target program).
2932
2933 Typically, this would occure when a user is debugging a
2934 target monitor on a simulator: the target monitor sets a
2935 breakpoint; the simulator encounters this break-point and
2936 halts the simulation handing control to GDB; GDB, noteing
2937 that the break-point isn't valid, returns control back to the
2938 simulator; the simulator then delivers the hardware
2939 equivalent of a SIGNAL_TRAP to the program being debugged. */
2940
2941 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2942 stop_signal = TARGET_SIGNAL_0;
2943
2944
2945 resume (currently_stepping (ecs), stop_signal);
2946 }
2947
2948 prepare_to_wait (ecs);
2949 }
2950
2951 /* This function normally comes after a resume, before
2952 handle_inferior_event exits. It takes care of any last bits of
2953 housekeeping, and sets the all-important wait_some_more flag. */
2954
2955 static void
2956 prepare_to_wait (struct execution_control_state *ecs)
2957 {
2958 if (debug_infrun)
2959 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2960 if (ecs->infwait_state == infwait_normal_state)
2961 {
2962 overlay_cache_invalid = 1;
2963
2964 /* We have to invalidate the registers BEFORE calling
2965 target_wait because they can be loaded from the target while
2966 in target_wait. This makes remote debugging a bit more
2967 efficient for those targets that provide critical registers
2968 as part of their normal status mechanism. */
2969
2970 registers_changed ();
2971 ecs->waiton_ptid = pid_to_ptid (-1);
2972 ecs->wp = &(ecs->ws);
2973 }
2974 /* This is the old end of the while loop. Let everybody know we
2975 want to wait for the inferior some more and get called again
2976 soon. */
2977 ecs->wait_some_more = 1;
2978 }
2979
2980 /* Print why the inferior has stopped. We always print something when
2981 the inferior exits, or receives a signal. The rest of the cases are
2982 dealt with later on in normal_stop() and print_it_typical(). Ideally
2983 there should be a call to this function from handle_inferior_event()
2984 each time stop_stepping() is called.*/
2985 static void
2986 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2987 {
2988 switch (stop_reason)
2989 {
2990 case END_STEPPING_RANGE:
2991 /* We are done with a step/next/si/ni command. */
2992 /* For now print nothing. */
2993 /* Print a message only if not in the middle of doing a "step n"
2994 operation for n > 1 */
2995 if (!step_multi || !stop_step)
2996 if (ui_out_is_mi_like_p (uiout))
2997 ui_out_field_string
2998 (uiout, "reason",
2999 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3000 break;
3001 case SIGNAL_EXITED:
3002 /* The inferior was terminated by a signal. */
3003 annotate_signalled ();
3004 if (ui_out_is_mi_like_p (uiout))
3005 ui_out_field_string
3006 (uiout, "reason",
3007 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3008 ui_out_text (uiout, "\nProgram terminated with signal ");
3009 annotate_signal_name ();
3010 ui_out_field_string (uiout, "signal-name",
3011 target_signal_to_name (stop_info));
3012 annotate_signal_name_end ();
3013 ui_out_text (uiout, ", ");
3014 annotate_signal_string ();
3015 ui_out_field_string (uiout, "signal-meaning",
3016 target_signal_to_string (stop_info));
3017 annotate_signal_string_end ();
3018 ui_out_text (uiout, ".\n");
3019 ui_out_text (uiout, "The program no longer exists.\n");
3020 break;
3021 case EXITED:
3022 /* The inferior program is finished. */
3023 annotate_exited (stop_info);
3024 if (stop_info)
3025 {
3026 if (ui_out_is_mi_like_p (uiout))
3027 ui_out_field_string (uiout, "reason",
3028 async_reason_lookup (EXEC_ASYNC_EXITED));
3029 ui_out_text (uiout, "\nProgram exited with code ");
3030 ui_out_field_fmt (uiout, "exit-code", "0%o",
3031 (unsigned int) stop_info);
3032 ui_out_text (uiout, ".\n");
3033 }
3034 else
3035 {
3036 if (ui_out_is_mi_like_p (uiout))
3037 ui_out_field_string
3038 (uiout, "reason",
3039 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3040 ui_out_text (uiout, "\nProgram exited normally.\n");
3041 }
3042 /* Support the --return-child-result option. */
3043 return_child_result_value = stop_info;
3044 break;
3045 case SIGNAL_RECEIVED:
3046 /* Signal received. The signal table tells us to print about
3047 it. */
3048 annotate_signal ();
3049 ui_out_text (uiout, "\nProgram received signal ");
3050 annotate_signal_name ();
3051 if (ui_out_is_mi_like_p (uiout))
3052 ui_out_field_string
3053 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3054 ui_out_field_string (uiout, "signal-name",
3055 target_signal_to_name (stop_info));
3056 annotate_signal_name_end ();
3057 ui_out_text (uiout, ", ");
3058 annotate_signal_string ();
3059 ui_out_field_string (uiout, "signal-meaning",
3060 target_signal_to_string (stop_info));
3061 annotate_signal_string_end ();
3062 ui_out_text (uiout, ".\n");
3063 break;
3064 default:
3065 internal_error (__FILE__, __LINE__,
3066 _("print_stop_reason: unrecognized enum value"));
3067 break;
3068 }
3069 }
3070 \f
3071
3072 /* Here to return control to GDB when the inferior stops for real.
3073 Print appropriate messages, remove breakpoints, give terminal our modes.
3074
3075 STOP_PRINT_FRAME nonzero means print the executing frame
3076 (pc, function, args, file, line number and line text).
3077 BREAKPOINTS_FAILED nonzero means stop was due to error
3078 attempting to insert breakpoints. */
3079
3080 void
3081 normal_stop (void)
3082 {
3083 struct target_waitstatus last;
3084 ptid_t last_ptid;
3085
3086 get_last_target_status (&last_ptid, &last);
3087
3088 /* As with the notification of thread events, we want to delay
3089 notifying the user that we've switched thread context until
3090 the inferior actually stops.
3091
3092 There's no point in saying anything if the inferior has exited.
3093 Note that SIGNALLED here means "exited with a signal", not
3094 "received a signal". */
3095 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3096 && target_has_execution
3097 && last.kind != TARGET_WAITKIND_SIGNALLED
3098 && last.kind != TARGET_WAITKIND_EXITED)
3099 {
3100 target_terminal_ours_for_output ();
3101 printf_filtered (_("[Switching to %s]\n"),
3102 target_pid_to_str (inferior_ptid));
3103 previous_inferior_ptid = inferior_ptid;
3104 }
3105
3106 /* NOTE drow/2004-01-17: Is this still necessary? */
3107 /* Make sure that the current_frame's pc is correct. This
3108 is a correction for setting up the frame info before doing
3109 gdbarch_decr_pc_after_break */
3110 if (target_has_execution)
3111 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3112 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3113 frame code to check for this and sort out any resultant mess.
3114 gdbarch_decr_pc_after_break needs to just go away. */
3115 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3116
3117 if (!breakpoints_always_inserted_mode () && target_has_execution)
3118 {
3119 if (remove_breakpoints ())
3120 {
3121 target_terminal_ours_for_output ();
3122 printf_filtered (_("\
3123 Cannot remove breakpoints because program is no longer writable.\n\
3124 It might be running in another process.\n\
3125 Further execution is probably impossible.\n"));
3126 }
3127 }
3128
3129 /* If an auto-display called a function and that got a signal,
3130 delete that auto-display to avoid an infinite recursion. */
3131
3132 if (stopped_by_random_signal)
3133 disable_current_display ();
3134
3135 /* Don't print a message if in the middle of doing a "step n"
3136 operation for n > 1 */
3137 if (step_multi && stop_step)
3138 goto done;
3139
3140 target_terminal_ours ();
3141
3142 /* Set the current source location. This will also happen if we
3143 display the frame below, but the current SAL will be incorrect
3144 during a user hook-stop function. */
3145 if (target_has_stack && !stop_stack_dummy)
3146 set_current_sal_from_frame (get_current_frame (), 1);
3147
3148 /* Look up the hook_stop and run it (CLI internally handles problem
3149 of stop_command's pre-hook not existing). */
3150 if (stop_command)
3151 catch_errors (hook_stop_stub, stop_command,
3152 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3153
3154 if (!target_has_stack)
3155 {
3156
3157 goto done;
3158 }
3159
3160 /* Select innermost stack frame - i.e., current frame is frame 0,
3161 and current location is based on that.
3162 Don't do this on return from a stack dummy routine,
3163 or if the program has exited. */
3164
3165 if (!stop_stack_dummy)
3166 {
3167 select_frame (get_current_frame ());
3168
3169 /* Print current location without a level number, if
3170 we have changed functions or hit a breakpoint.
3171 Print source line if we have one.
3172 bpstat_print() contains the logic deciding in detail
3173 what to print, based on the event(s) that just occurred. */
3174
3175 if (stop_print_frame)
3176 {
3177 int bpstat_ret;
3178 int source_flag;
3179 int do_frame_printing = 1;
3180
3181 bpstat_ret = bpstat_print (stop_bpstat);
3182 switch (bpstat_ret)
3183 {
3184 case PRINT_UNKNOWN:
3185 /* If we had hit a shared library event breakpoint,
3186 bpstat_print would print out this message. If we hit
3187 an OS-level shared library event, do the same
3188 thing. */
3189 if (last.kind == TARGET_WAITKIND_LOADED)
3190 {
3191 printf_filtered (_("Stopped due to shared library event\n"));
3192 source_flag = SRC_LINE; /* something bogus */
3193 do_frame_printing = 0;
3194 break;
3195 }
3196
3197 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3198 (or should) carry around the function and does (or
3199 should) use that when doing a frame comparison. */
3200 if (stop_step
3201 && frame_id_eq (step_frame_id,
3202 get_frame_id (get_current_frame ()))
3203 && step_start_function == find_pc_function (stop_pc))
3204 source_flag = SRC_LINE; /* finished step, just print source line */
3205 else
3206 source_flag = SRC_AND_LOC; /* print location and source line */
3207 break;
3208 case PRINT_SRC_AND_LOC:
3209 source_flag = SRC_AND_LOC; /* print location and source line */
3210 break;
3211 case PRINT_SRC_ONLY:
3212 source_flag = SRC_LINE;
3213 break;
3214 case PRINT_NOTHING:
3215 source_flag = SRC_LINE; /* something bogus */
3216 do_frame_printing = 0;
3217 break;
3218 default:
3219 internal_error (__FILE__, __LINE__, _("Unknown value."));
3220 }
3221
3222 if (ui_out_is_mi_like_p (uiout))
3223 ui_out_field_int (uiout, "thread-id",
3224 pid_to_thread_id (inferior_ptid));
3225 /* The behavior of this routine with respect to the source
3226 flag is:
3227 SRC_LINE: Print only source line
3228 LOCATION: Print only location
3229 SRC_AND_LOC: Print location and source line */
3230 if (do_frame_printing)
3231 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3232
3233 /* Display the auto-display expressions. */
3234 do_displays ();
3235 }
3236 }
3237
3238 /* Save the function value return registers, if we care.
3239 We might be about to restore their previous contents. */
3240 if (proceed_to_finish)
3241 {
3242 /* This should not be necessary. */
3243 if (stop_registers)
3244 regcache_xfree (stop_registers);
3245
3246 /* NB: The copy goes through to the target picking up the value of
3247 all the registers. */
3248 stop_registers = regcache_dup (get_current_regcache ());
3249 }
3250
3251 if (stop_stack_dummy)
3252 {
3253 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3254 ends with a setting of the current frame, so we can use that
3255 next. */
3256 frame_pop (get_current_frame ());
3257 /* Set stop_pc to what it was before we called the function.
3258 Can't rely on restore_inferior_status because that only gets
3259 called if we don't stop in the called function. */
3260 stop_pc = read_pc ();
3261 select_frame (get_current_frame ());
3262 }
3263
3264 done:
3265 annotate_stopped ();
3266 observer_notify_normal_stop (stop_bpstat);
3267 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3268 Delete any breakpoint that is to be deleted at the next stop. */
3269 breakpoint_auto_delete (stop_bpstat);
3270 }
3271
3272 static int
3273 hook_stop_stub (void *cmd)
3274 {
3275 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3276 return (0);
3277 }
3278 \f
3279 int
3280 signal_stop_state (int signo)
3281 {
3282 return signal_stop[signo];
3283 }
3284
3285 int
3286 signal_print_state (int signo)
3287 {
3288 return signal_print[signo];
3289 }
3290
3291 int
3292 signal_pass_state (int signo)
3293 {
3294 return signal_program[signo];
3295 }
3296
3297 int
3298 signal_stop_update (int signo, int state)
3299 {
3300 int ret = signal_stop[signo];
3301 signal_stop[signo] = state;
3302 return ret;
3303 }
3304
3305 int
3306 signal_print_update (int signo, int state)
3307 {
3308 int ret = signal_print[signo];
3309 signal_print[signo] = state;
3310 return ret;
3311 }
3312
3313 int
3314 signal_pass_update (int signo, int state)
3315 {
3316 int ret = signal_program[signo];
3317 signal_program[signo] = state;
3318 return ret;
3319 }
3320
3321 static void
3322 sig_print_header (void)
3323 {
3324 printf_filtered (_("\
3325 Signal Stop\tPrint\tPass to program\tDescription\n"));
3326 }
3327
3328 static void
3329 sig_print_info (enum target_signal oursig)
3330 {
3331 char *name = target_signal_to_name (oursig);
3332 int name_padding = 13 - strlen (name);
3333
3334 if (name_padding <= 0)
3335 name_padding = 0;
3336
3337 printf_filtered ("%s", name);
3338 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3339 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3340 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3341 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3342 printf_filtered ("%s\n", target_signal_to_string (oursig));
3343 }
3344
3345 /* Specify how various signals in the inferior should be handled. */
3346
3347 static void
3348 handle_command (char *args, int from_tty)
3349 {
3350 char **argv;
3351 int digits, wordlen;
3352 int sigfirst, signum, siglast;
3353 enum target_signal oursig;
3354 int allsigs;
3355 int nsigs;
3356 unsigned char *sigs;
3357 struct cleanup *old_chain;
3358
3359 if (args == NULL)
3360 {
3361 error_no_arg (_("signal to handle"));
3362 }
3363
3364 /* Allocate and zero an array of flags for which signals to handle. */
3365
3366 nsigs = (int) TARGET_SIGNAL_LAST;
3367 sigs = (unsigned char *) alloca (nsigs);
3368 memset (sigs, 0, nsigs);
3369
3370 /* Break the command line up into args. */
3371
3372 argv = buildargv (args);
3373 if (argv == NULL)
3374 {
3375 nomem (0);
3376 }
3377 old_chain = make_cleanup_freeargv (argv);
3378
3379 /* Walk through the args, looking for signal oursigs, signal names, and
3380 actions. Signal numbers and signal names may be interspersed with
3381 actions, with the actions being performed for all signals cumulatively
3382 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3383
3384 while (*argv != NULL)
3385 {
3386 wordlen = strlen (*argv);
3387 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3388 {;
3389 }
3390 allsigs = 0;
3391 sigfirst = siglast = -1;
3392
3393 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3394 {
3395 /* Apply action to all signals except those used by the
3396 debugger. Silently skip those. */
3397 allsigs = 1;
3398 sigfirst = 0;
3399 siglast = nsigs - 1;
3400 }
3401 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3402 {
3403 SET_SIGS (nsigs, sigs, signal_stop);
3404 SET_SIGS (nsigs, sigs, signal_print);
3405 }
3406 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3407 {
3408 UNSET_SIGS (nsigs, sigs, signal_program);
3409 }
3410 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3411 {
3412 SET_SIGS (nsigs, sigs, signal_print);
3413 }
3414 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3415 {
3416 SET_SIGS (nsigs, sigs, signal_program);
3417 }
3418 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3419 {
3420 UNSET_SIGS (nsigs, sigs, signal_stop);
3421 }
3422 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3423 {
3424 SET_SIGS (nsigs, sigs, signal_program);
3425 }
3426 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3427 {
3428 UNSET_SIGS (nsigs, sigs, signal_print);
3429 UNSET_SIGS (nsigs, sigs, signal_stop);
3430 }
3431 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3432 {
3433 UNSET_SIGS (nsigs, sigs, signal_program);
3434 }
3435 else if (digits > 0)
3436 {
3437 /* It is numeric. The numeric signal refers to our own
3438 internal signal numbering from target.h, not to host/target
3439 signal number. This is a feature; users really should be
3440 using symbolic names anyway, and the common ones like
3441 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3442
3443 sigfirst = siglast = (int)
3444 target_signal_from_command (atoi (*argv));
3445 if ((*argv)[digits] == '-')
3446 {
3447 siglast = (int)
3448 target_signal_from_command (atoi ((*argv) + digits + 1));
3449 }
3450 if (sigfirst > siglast)
3451 {
3452 /* Bet he didn't figure we'd think of this case... */
3453 signum = sigfirst;
3454 sigfirst = siglast;
3455 siglast = signum;
3456 }
3457 }
3458 else
3459 {
3460 oursig = target_signal_from_name (*argv);
3461 if (oursig != TARGET_SIGNAL_UNKNOWN)
3462 {
3463 sigfirst = siglast = (int) oursig;
3464 }
3465 else
3466 {
3467 /* Not a number and not a recognized flag word => complain. */
3468 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3469 }
3470 }
3471
3472 /* If any signal numbers or symbol names were found, set flags for
3473 which signals to apply actions to. */
3474
3475 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3476 {
3477 switch ((enum target_signal) signum)
3478 {
3479 case TARGET_SIGNAL_TRAP:
3480 case TARGET_SIGNAL_INT:
3481 if (!allsigs && !sigs[signum])
3482 {
3483 if (query ("%s is used by the debugger.\n\
3484 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3485 {
3486 sigs[signum] = 1;
3487 }
3488 else
3489 {
3490 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3491 gdb_flush (gdb_stdout);
3492 }
3493 }
3494 break;
3495 case TARGET_SIGNAL_0:
3496 case TARGET_SIGNAL_DEFAULT:
3497 case TARGET_SIGNAL_UNKNOWN:
3498 /* Make sure that "all" doesn't print these. */
3499 break;
3500 default:
3501 sigs[signum] = 1;
3502 break;
3503 }
3504 }
3505
3506 argv++;
3507 }
3508
3509 target_notice_signals (inferior_ptid);
3510
3511 if (from_tty)
3512 {
3513 /* Show the results. */
3514 sig_print_header ();
3515 for (signum = 0; signum < nsigs; signum++)
3516 {
3517 if (sigs[signum])
3518 {
3519 sig_print_info (signum);
3520 }
3521 }
3522 }
3523
3524 do_cleanups (old_chain);
3525 }
3526
3527 static void
3528 xdb_handle_command (char *args, int from_tty)
3529 {
3530 char **argv;
3531 struct cleanup *old_chain;
3532
3533 /* Break the command line up into args. */
3534
3535 argv = buildargv (args);
3536 if (argv == NULL)
3537 {
3538 nomem (0);
3539 }
3540 old_chain = make_cleanup_freeargv (argv);
3541 if (argv[1] != (char *) NULL)
3542 {
3543 char *argBuf;
3544 int bufLen;
3545
3546 bufLen = strlen (argv[0]) + 20;
3547 argBuf = (char *) xmalloc (bufLen);
3548 if (argBuf)
3549 {
3550 int validFlag = 1;
3551 enum target_signal oursig;
3552
3553 oursig = target_signal_from_name (argv[0]);
3554 memset (argBuf, 0, bufLen);
3555 if (strcmp (argv[1], "Q") == 0)
3556 sprintf (argBuf, "%s %s", argv[0], "noprint");
3557 else
3558 {
3559 if (strcmp (argv[1], "s") == 0)
3560 {
3561 if (!signal_stop[oursig])
3562 sprintf (argBuf, "%s %s", argv[0], "stop");
3563 else
3564 sprintf (argBuf, "%s %s", argv[0], "nostop");
3565 }
3566 else if (strcmp (argv[1], "i") == 0)
3567 {
3568 if (!signal_program[oursig])
3569 sprintf (argBuf, "%s %s", argv[0], "pass");
3570 else
3571 sprintf (argBuf, "%s %s", argv[0], "nopass");
3572 }
3573 else if (strcmp (argv[1], "r") == 0)
3574 {
3575 if (!signal_print[oursig])
3576 sprintf (argBuf, "%s %s", argv[0], "print");
3577 else
3578 sprintf (argBuf, "%s %s", argv[0], "noprint");
3579 }
3580 else
3581 validFlag = 0;
3582 }
3583 if (validFlag)
3584 handle_command (argBuf, from_tty);
3585 else
3586 printf_filtered (_("Invalid signal handling flag.\n"));
3587 if (argBuf)
3588 xfree (argBuf);
3589 }
3590 }
3591 do_cleanups (old_chain);
3592 }
3593
3594 /* Print current contents of the tables set by the handle command.
3595 It is possible we should just be printing signals actually used
3596 by the current target (but for things to work right when switching
3597 targets, all signals should be in the signal tables). */
3598
3599 static void
3600 signals_info (char *signum_exp, int from_tty)
3601 {
3602 enum target_signal oursig;
3603 sig_print_header ();
3604
3605 if (signum_exp)
3606 {
3607 /* First see if this is a symbol name. */
3608 oursig = target_signal_from_name (signum_exp);
3609 if (oursig == TARGET_SIGNAL_UNKNOWN)
3610 {
3611 /* No, try numeric. */
3612 oursig =
3613 target_signal_from_command (parse_and_eval_long (signum_exp));
3614 }
3615 sig_print_info (oursig);
3616 return;
3617 }
3618
3619 printf_filtered ("\n");
3620 /* These ugly casts brought to you by the native VAX compiler. */
3621 for (oursig = TARGET_SIGNAL_FIRST;
3622 (int) oursig < (int) TARGET_SIGNAL_LAST;
3623 oursig = (enum target_signal) ((int) oursig + 1))
3624 {
3625 QUIT;
3626
3627 if (oursig != TARGET_SIGNAL_UNKNOWN
3628 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3629 sig_print_info (oursig);
3630 }
3631
3632 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3633 }
3634 \f
3635 struct inferior_status
3636 {
3637 enum target_signal stop_signal;
3638 CORE_ADDR stop_pc;
3639 bpstat stop_bpstat;
3640 int stop_step;
3641 int stop_stack_dummy;
3642 int stopped_by_random_signal;
3643 int stepping_over_breakpoint;
3644 CORE_ADDR step_range_start;
3645 CORE_ADDR step_range_end;
3646 struct frame_id step_frame_id;
3647 enum step_over_calls_kind step_over_calls;
3648 CORE_ADDR step_resume_break_address;
3649 int stop_after_trap;
3650 int stop_soon;
3651
3652 /* These are here because if call_function_by_hand has written some
3653 registers and then decides to call error(), we better not have changed
3654 any registers. */
3655 struct regcache *registers;
3656
3657 /* A frame unique identifier. */
3658 struct frame_id selected_frame_id;
3659
3660 int breakpoint_proceeded;
3661 int restore_stack_info;
3662 int proceed_to_finish;
3663 };
3664
3665 void
3666 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3667 LONGEST val)
3668 {
3669 int size = register_size (current_gdbarch, regno);
3670 void *buf = alloca (size);
3671 store_signed_integer (buf, size, val);
3672 regcache_raw_write (inf_status->registers, regno, buf);
3673 }
3674
3675 /* Save all of the information associated with the inferior<==>gdb
3676 connection. INF_STATUS is a pointer to a "struct inferior_status"
3677 (defined in inferior.h). */
3678
3679 struct inferior_status *
3680 save_inferior_status (int restore_stack_info)
3681 {
3682 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3683
3684 inf_status->stop_signal = stop_signal;
3685 inf_status->stop_pc = stop_pc;
3686 inf_status->stop_step = stop_step;
3687 inf_status->stop_stack_dummy = stop_stack_dummy;
3688 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3689 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
3690 inf_status->step_range_start = step_range_start;
3691 inf_status->step_range_end = step_range_end;
3692 inf_status->step_frame_id = step_frame_id;
3693 inf_status->step_over_calls = step_over_calls;
3694 inf_status->stop_after_trap = stop_after_trap;
3695 inf_status->stop_soon = stop_soon;
3696 /* Save original bpstat chain here; replace it with copy of chain.
3697 If caller's caller is walking the chain, they'll be happier if we
3698 hand them back the original chain when restore_inferior_status is
3699 called. */
3700 inf_status->stop_bpstat = stop_bpstat;
3701 stop_bpstat = bpstat_copy (stop_bpstat);
3702 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3703 inf_status->restore_stack_info = restore_stack_info;
3704 inf_status->proceed_to_finish = proceed_to_finish;
3705
3706 inf_status->registers = regcache_dup (get_current_regcache ());
3707
3708 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3709 return inf_status;
3710 }
3711
3712 static int
3713 restore_selected_frame (void *args)
3714 {
3715 struct frame_id *fid = (struct frame_id *) args;
3716 struct frame_info *frame;
3717
3718 frame = frame_find_by_id (*fid);
3719
3720 /* If inf_status->selected_frame_id is NULL, there was no previously
3721 selected frame. */
3722 if (frame == NULL)
3723 {
3724 warning (_("Unable to restore previously selected frame."));
3725 return 0;
3726 }
3727
3728 select_frame (frame);
3729
3730 return (1);
3731 }
3732
3733 void
3734 restore_inferior_status (struct inferior_status *inf_status)
3735 {
3736 stop_signal = inf_status->stop_signal;
3737 stop_pc = inf_status->stop_pc;
3738 stop_step = inf_status->stop_step;
3739 stop_stack_dummy = inf_status->stop_stack_dummy;
3740 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3741 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
3742 step_range_start = inf_status->step_range_start;
3743 step_range_end = inf_status->step_range_end;
3744 step_frame_id = inf_status->step_frame_id;
3745 step_over_calls = inf_status->step_over_calls;
3746 stop_after_trap = inf_status->stop_after_trap;
3747 stop_soon = inf_status->stop_soon;
3748 bpstat_clear (&stop_bpstat);
3749 stop_bpstat = inf_status->stop_bpstat;
3750 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3751 proceed_to_finish = inf_status->proceed_to_finish;
3752
3753 /* The inferior can be gone if the user types "print exit(0)"
3754 (and perhaps other times). */
3755 if (target_has_execution)
3756 /* NB: The register write goes through to the target. */
3757 regcache_cpy (get_current_regcache (), inf_status->registers);
3758 regcache_xfree (inf_status->registers);
3759
3760 /* FIXME: If we are being called after stopping in a function which
3761 is called from gdb, we should not be trying to restore the
3762 selected frame; it just prints a spurious error message (The
3763 message is useful, however, in detecting bugs in gdb (like if gdb
3764 clobbers the stack)). In fact, should we be restoring the
3765 inferior status at all in that case? . */
3766
3767 if (target_has_stack && inf_status->restore_stack_info)
3768 {
3769 /* The point of catch_errors is that if the stack is clobbered,
3770 walking the stack might encounter a garbage pointer and
3771 error() trying to dereference it. */
3772 if (catch_errors
3773 (restore_selected_frame, &inf_status->selected_frame_id,
3774 "Unable to restore previously selected frame:\n",
3775 RETURN_MASK_ERROR) == 0)
3776 /* Error in restoring the selected frame. Select the innermost
3777 frame. */
3778 select_frame (get_current_frame ());
3779
3780 }
3781
3782 xfree (inf_status);
3783 }
3784
3785 static void
3786 do_restore_inferior_status_cleanup (void *sts)
3787 {
3788 restore_inferior_status (sts);
3789 }
3790
3791 struct cleanup *
3792 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3793 {
3794 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3795 }
3796
3797 void
3798 discard_inferior_status (struct inferior_status *inf_status)
3799 {
3800 /* See save_inferior_status for info on stop_bpstat. */
3801 bpstat_clear (&inf_status->stop_bpstat);
3802 regcache_xfree (inf_status->registers);
3803 xfree (inf_status);
3804 }
3805
3806 int
3807 inferior_has_forked (int pid, int *child_pid)
3808 {
3809 struct target_waitstatus last;
3810 ptid_t last_ptid;
3811
3812 get_last_target_status (&last_ptid, &last);
3813
3814 if (last.kind != TARGET_WAITKIND_FORKED)
3815 return 0;
3816
3817 if (ptid_get_pid (last_ptid) != pid)
3818 return 0;
3819
3820 *child_pid = last.value.related_pid;
3821 return 1;
3822 }
3823
3824 int
3825 inferior_has_vforked (int pid, int *child_pid)
3826 {
3827 struct target_waitstatus last;
3828 ptid_t last_ptid;
3829
3830 get_last_target_status (&last_ptid, &last);
3831
3832 if (last.kind != TARGET_WAITKIND_VFORKED)
3833 return 0;
3834
3835 if (ptid_get_pid (last_ptid) != pid)
3836 return 0;
3837
3838 *child_pid = last.value.related_pid;
3839 return 1;
3840 }
3841
3842 int
3843 inferior_has_execd (int pid, char **execd_pathname)
3844 {
3845 struct target_waitstatus last;
3846 ptid_t last_ptid;
3847
3848 get_last_target_status (&last_ptid, &last);
3849
3850 if (last.kind != TARGET_WAITKIND_EXECD)
3851 return 0;
3852
3853 if (ptid_get_pid (last_ptid) != pid)
3854 return 0;
3855
3856 *execd_pathname = xstrdup (last.value.execd_pathname);
3857 return 1;
3858 }
3859
3860 /* Oft used ptids */
3861 ptid_t null_ptid;
3862 ptid_t minus_one_ptid;
3863
3864 /* Create a ptid given the necessary PID, LWP, and TID components. */
3865
3866 ptid_t
3867 ptid_build (int pid, long lwp, long tid)
3868 {
3869 ptid_t ptid;
3870
3871 ptid.pid = pid;
3872 ptid.lwp = lwp;
3873 ptid.tid = tid;
3874 return ptid;
3875 }
3876
3877 /* Create a ptid from just a pid. */
3878
3879 ptid_t
3880 pid_to_ptid (int pid)
3881 {
3882 return ptid_build (pid, 0, 0);
3883 }
3884
3885 /* Fetch the pid (process id) component from a ptid. */
3886
3887 int
3888 ptid_get_pid (ptid_t ptid)
3889 {
3890 return ptid.pid;
3891 }
3892
3893 /* Fetch the lwp (lightweight process) component from a ptid. */
3894
3895 long
3896 ptid_get_lwp (ptid_t ptid)
3897 {
3898 return ptid.lwp;
3899 }
3900
3901 /* Fetch the tid (thread id) component from a ptid. */
3902
3903 long
3904 ptid_get_tid (ptid_t ptid)
3905 {
3906 return ptid.tid;
3907 }
3908
3909 /* ptid_equal() is used to test equality of two ptids. */
3910
3911 int
3912 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3913 {
3914 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3915 && ptid1.tid == ptid2.tid);
3916 }
3917
3918 /* restore_inferior_ptid() will be used by the cleanup machinery
3919 to restore the inferior_ptid value saved in a call to
3920 save_inferior_ptid(). */
3921
3922 static void
3923 restore_inferior_ptid (void *arg)
3924 {
3925 ptid_t *saved_ptid_ptr = arg;
3926 inferior_ptid = *saved_ptid_ptr;
3927 xfree (arg);
3928 }
3929
3930 /* Save the value of inferior_ptid so that it may be restored by a
3931 later call to do_cleanups(). Returns the struct cleanup pointer
3932 needed for later doing the cleanup. */
3933
3934 struct cleanup *
3935 save_inferior_ptid (void)
3936 {
3937 ptid_t *saved_ptid_ptr;
3938
3939 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3940 *saved_ptid_ptr = inferior_ptid;
3941 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3942 }
3943 \f
3944
3945 void
3946 _initialize_infrun (void)
3947 {
3948 int i;
3949 int numsigs;
3950 struct cmd_list_element *c;
3951
3952 add_info ("signals", signals_info, _("\
3953 What debugger does when program gets various signals.\n\
3954 Specify a signal as argument to print info on that signal only."));
3955 add_info_alias ("handle", "signals", 0);
3956
3957 add_com ("handle", class_run, handle_command, _("\
3958 Specify how to handle a signal.\n\
3959 Args are signals and actions to apply to those signals.\n\
3960 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3961 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3962 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3963 The special arg \"all\" is recognized to mean all signals except those\n\
3964 used by the debugger, typically SIGTRAP and SIGINT.\n\
3965 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3966 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3967 Stop means reenter debugger if this signal happens (implies print).\n\
3968 Print means print a message if this signal happens.\n\
3969 Pass means let program see this signal; otherwise program doesn't know.\n\
3970 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3971 Pass and Stop may be combined."));
3972 if (xdb_commands)
3973 {
3974 add_com ("lz", class_info, signals_info, _("\
3975 What debugger does when program gets various signals.\n\
3976 Specify a signal as argument to print info on that signal only."));
3977 add_com ("z", class_run, xdb_handle_command, _("\
3978 Specify how to handle a signal.\n\
3979 Args are signals and actions to apply to those signals.\n\
3980 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3981 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3982 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3983 The special arg \"all\" is recognized to mean all signals except those\n\
3984 used by the debugger, typically SIGTRAP and SIGINT.\n\
3985 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3986 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3987 nopass), \"Q\" (noprint)\n\
3988 Stop means reenter debugger if this signal happens (implies print).\n\
3989 Print means print a message if this signal happens.\n\
3990 Pass means let program see this signal; otherwise program doesn't know.\n\
3991 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3992 Pass and Stop may be combined."));
3993 }
3994
3995 if (!dbx_commands)
3996 stop_command = add_cmd ("stop", class_obscure,
3997 not_just_help_class_command, _("\
3998 There is no `stop' command, but you can set a hook on `stop'.\n\
3999 This allows you to set a list of commands to be run each time execution\n\
4000 of the program stops."), &cmdlist);
4001
4002 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4003 Set inferior debugging."), _("\
4004 Show inferior debugging."), _("\
4005 When non-zero, inferior specific debugging is enabled."),
4006 NULL,
4007 show_debug_infrun,
4008 &setdebuglist, &showdebuglist);
4009
4010 numsigs = (int) TARGET_SIGNAL_LAST;
4011 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4012 signal_print = (unsigned char *)
4013 xmalloc (sizeof (signal_print[0]) * numsigs);
4014 signal_program = (unsigned char *)
4015 xmalloc (sizeof (signal_program[0]) * numsigs);
4016 for (i = 0; i < numsigs; i++)
4017 {
4018 signal_stop[i] = 1;
4019 signal_print[i] = 1;
4020 signal_program[i] = 1;
4021 }
4022
4023 /* Signals caused by debugger's own actions
4024 should not be given to the program afterwards. */
4025 signal_program[TARGET_SIGNAL_TRAP] = 0;
4026 signal_program[TARGET_SIGNAL_INT] = 0;
4027
4028 /* Signals that are not errors should not normally enter the debugger. */
4029 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4030 signal_print[TARGET_SIGNAL_ALRM] = 0;
4031 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4032 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4033 signal_stop[TARGET_SIGNAL_PROF] = 0;
4034 signal_print[TARGET_SIGNAL_PROF] = 0;
4035 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4036 signal_print[TARGET_SIGNAL_CHLD] = 0;
4037 signal_stop[TARGET_SIGNAL_IO] = 0;
4038 signal_print[TARGET_SIGNAL_IO] = 0;
4039 signal_stop[TARGET_SIGNAL_POLL] = 0;
4040 signal_print[TARGET_SIGNAL_POLL] = 0;
4041 signal_stop[TARGET_SIGNAL_URG] = 0;
4042 signal_print[TARGET_SIGNAL_URG] = 0;
4043 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4044 signal_print[TARGET_SIGNAL_WINCH] = 0;
4045
4046 /* These signals are used internally by user-level thread
4047 implementations. (See signal(5) on Solaris.) Like the above
4048 signals, a healthy program receives and handles them as part of
4049 its normal operation. */
4050 signal_stop[TARGET_SIGNAL_LWP] = 0;
4051 signal_print[TARGET_SIGNAL_LWP] = 0;
4052 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4053 signal_print[TARGET_SIGNAL_WAITING] = 0;
4054 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4055 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4056
4057 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4058 &stop_on_solib_events, _("\
4059 Set stopping for shared library events."), _("\
4060 Show stopping for shared library events."), _("\
4061 If nonzero, gdb will give control to the user when the dynamic linker\n\
4062 notifies gdb of shared library events. The most common event of interest\n\
4063 to the user would be loading/unloading of a new library."),
4064 NULL,
4065 show_stop_on_solib_events,
4066 &setlist, &showlist);
4067
4068 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4069 follow_fork_mode_kind_names,
4070 &follow_fork_mode_string, _("\
4071 Set debugger response to a program call of fork or vfork."), _("\
4072 Show debugger response to a program call of fork or vfork."), _("\
4073 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4074 parent - the original process is debugged after a fork\n\
4075 child - the new process is debugged after a fork\n\
4076 The unfollowed process will continue to run.\n\
4077 By default, the debugger will follow the parent process."),
4078 NULL,
4079 show_follow_fork_mode_string,
4080 &setlist, &showlist);
4081
4082 add_setshow_enum_cmd ("scheduler-locking", class_run,
4083 scheduler_enums, &scheduler_mode, _("\
4084 Set mode for locking scheduler during execution."), _("\
4085 Show mode for locking scheduler during execution."), _("\
4086 off == no locking (threads may preempt at any time)\n\
4087 on == full locking (no thread except the current thread may run)\n\
4088 step == scheduler locked during every single-step operation.\n\
4089 In this mode, no other thread may run during a step command.\n\
4090 Other threads may run while stepping over a function call ('next')."),
4091 set_schedlock_func, /* traps on target vector */
4092 show_scheduler_mode,
4093 &setlist, &showlist);
4094
4095 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4096 Set mode of the step operation."), _("\
4097 Show mode of the step operation."), _("\
4098 When set, doing a step over a function without debug line information\n\
4099 will stop at the first instruction of that function. Otherwise, the\n\
4100 function is skipped and the step command stops at a different source line."),
4101 NULL,
4102 show_step_stop_if_no_debug,
4103 &setlist, &showlist);
4104
4105 /* ptid initializations */
4106 null_ptid = ptid_build (0, 0, 0);
4107 minus_one_ptid = ptid_build (-1, 0, 0);
4108 inferior_ptid = null_ptid;
4109 target_last_wait_ptid = minus_one_ptid;
4110 }