gdb: get rid of get_displaced_stepping_state
[binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "target-connection.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34 #include "symfile.h"
35 #include "top.h"
36 #include "inf-loop.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "language.h"
41 #include "solib.h"
42 #include "main.h"
43 #include "block.h"
44 #include "mi/mi-common.h"
45 #include "event-top.h"
46 #include "record.h"
47 #include "record-full.h"
48 #include "inline-frame.h"
49 #include "jit.h"
50 #include "tracepoint.h"
51 #include "skip.h"
52 #include "probe.h"
53 #include "objfiles.h"
54 #include "completer.h"
55 #include "target-descriptions.h"
56 #include "target-dcache.h"
57 #include "terminal.h"
58 #include "solist.h"
59 #include "gdbsupport/event-loop.h"
60 #include "thread-fsm.h"
61 #include "gdbsupport/enum-flags.h"
62 #include "progspace-and-thread.h"
63 #include "gdbsupport/gdb_optional.h"
64 #include "arch-utils.h"
65 #include "gdbsupport/scope-exit.h"
66 #include "gdbsupport/forward-scope-exit.h"
67 #include "gdbsupport/gdb_select.h"
68 #include <unordered_map>
69 #include "async-event.h"
70 #include "gdbsupport/selftest.h"
71 #include "scoped-mock-context.h"
72 #include "test-target.h"
73 #include "gdbsupport/common-debug.h"
74
75 /* Prototypes for local functions */
76
77 static void sig_print_info (enum gdb_signal);
78
79 static void sig_print_header (void);
80
81 static void follow_inferior_reset_breakpoints (void);
82
83 static bool currently_stepping (struct thread_info *tp);
84
85 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
86
87 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
88
89 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
90
91 static bool maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
92
93 static void resume (gdb_signal sig);
94
95 static void wait_for_inferior (inferior *inf);
96
97 /* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99 static struct async_event_handler *infrun_async_inferior_event_token;
100
101 /* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103 static int infrun_is_async = -1;
104
105 /* See infrun.h. */
106
107 void
108 infrun_async (int enable)
109 {
110 if (infrun_is_async != enable)
111 {
112 infrun_is_async = enable;
113
114 infrun_debug_printf ("enable=%d", enable);
115
116 if (enable)
117 mark_async_event_handler (infrun_async_inferior_event_token);
118 else
119 clear_async_event_handler (infrun_async_inferior_event_token);
120 }
121 }
122
123 /* See infrun.h. */
124
125 void
126 mark_infrun_async_event_handler (void)
127 {
128 mark_async_event_handler (infrun_async_inferior_event_token);
129 }
130
131 /* When set, stop the 'step' command if we enter a function which has
132 no line number information. The normal behavior is that we step
133 over such function. */
134 bool step_stop_if_no_debug = false;
135 static void
136 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138 {
139 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
140 }
141
142 /* proceed and normal_stop use this to notify the user when the
143 inferior stopped in a different thread than it had been running
144 in. */
145
146 static ptid_t previous_inferior_ptid;
147
148 /* If set (default for legacy reasons), when following a fork, GDB
149 will detach from one of the fork branches, child or parent.
150 Exactly which branch is detached depends on 'set follow-fork-mode'
151 setting. */
152
153 static bool detach_fork = true;
154
155 bool debug_displaced = false;
156 static void
157 show_debug_displaced (struct ui_file *file, int from_tty,
158 struct cmd_list_element *c, const char *value)
159 {
160 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
161 }
162
163 unsigned int debug_infrun = 0;
164 static void
165 show_debug_infrun (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
169 }
170
171 /* Support for disabling address space randomization. */
172
173 bool disable_randomization = true;
174
175 static void
176 show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188 }
189
190 static void
191 set_disable_randomization (const char *args, int from_tty,
192 struct cmd_list_element *c)
193 {
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198 }
199
200 /* User interface for non-stop mode. */
201
202 bool non_stop = false;
203 static bool non_stop_1 = false;
204
205 static void
206 set_non_stop (const char *args, int from_tty,
207 struct cmd_list_element *c)
208 {
209 if (target_has_execution ())
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216 }
217
218 static void
219 show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221 {
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225 }
226
227 /* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
231 bool observer_mode = false;
232 static bool observer_mode_1 = false;
233
234 static void
235 set_observer_mode (const char *args, int from_tty,
236 struct cmd_list_element *c)
237 {
238 if (target_has_execution ())
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
253 may_insert_fast_tracepoints = true;
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
261 pagination_enabled = 0;
262 non_stop = non_stop_1 = true;
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268 }
269
270 static void
271 show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273 {
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275 }
276
277 /* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283 void
284 update_observer_mode (void)
285 {
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298 }
299
300 /* Tables of how to react to signals; the user sets them. */
301
302 static unsigned char signal_stop[GDB_SIGNAL_LAST];
303 static unsigned char signal_print[GDB_SIGNAL_LAST];
304 static unsigned char signal_program[GDB_SIGNAL_LAST];
305
306 /* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
308 signal" command. */
309 static unsigned char signal_catch[GDB_SIGNAL_LAST];
310
311 /* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
314 static unsigned char signal_pass[GDB_SIGNAL_LAST];
315
316 #define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324 #define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
332 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335 void
336 update_signals_program_target (void)
337 {
338 target_program_signals (signal_program);
339 }
340
341 /* Value to pass to target_resume() to cause all threads to resume. */
342
343 #define RESUME_ALL minus_one_ptid
344
345 /* Command list pointer for the "stop" placeholder. */
346
347 static struct cmd_list_element *stop_command;
348
349 /* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
351 int stop_on_solib_events;
352
353 /* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356 static void
357 set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
359 {
360 update_solib_breakpoints ();
361 }
362
363 static void
364 show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366 {
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369 }
370
371 /* True after stop if current stack frame should be printed. */
372
373 static bool stop_print_frame;
374
375 /* This is a cached copy of the target/ptid/waitstatus of the last
376 event returned by target_wait()/deprecated_target_wait_hook().
377 This information is returned by get_last_target_status(). */
378 static process_stratum_target *target_last_proc_target;
379 static ptid_t target_last_wait_ptid;
380 static struct target_waitstatus target_last_waitstatus;
381
382 void init_thread_stepping_state (struct thread_info *tss);
383
384 static const char follow_fork_mode_child[] = "child";
385 static const char follow_fork_mode_parent[] = "parent";
386
387 static const char *const follow_fork_mode_kind_names[] = {
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
391 };
392
393 static const char *follow_fork_mode_string = follow_fork_mode_parent;
394 static void
395 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397 {
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
401 value);
402 }
403 \f
404
405 /* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
411 static bool
412 follow_fork_inferior (bool follow_child, bool detach_fork)
413 {
414 int has_vforked;
415 ptid_t parent_ptid, child_ptid;
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
424 && current_ui->prompt_state == PROMPT_BLOCKED
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433 Can not resume the parent process over vfork in the foreground while\n\
434 holding the child stopped. Try \"set detach-on-fork\" or \
435 \"set schedule-multiple\".\n"));
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
454 remove_breakpoints_inf (current_inferior ());
455 }
456
457 if (print_inferior_events)
458 {
459 /* Ensure that we have a process ptid. */
460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
461
462 target_terminal::ours_for_output ();
463 fprintf_filtered (gdb_stdlog,
464 _("[Detaching after %s from child %s]\n"),
465 has_vforked ? "vfork" : "fork",
466 target_pid_to_str (process_ptid).c_str ());
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
472
473 /* Add process to GDB's tables. */
474 child_inf = add_inferior (child_ptid.pid ());
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
483
484 set_current_inferior (child_inf);
485 switch_to_no_thread ();
486 child_inf->symfile_flags = SYMFILE_NO_READ;
487 push_target (parent_inf->process_target ());
488 thread_info *child_thr
489 = add_thread_silent (child_inf->process_target (), child_ptid);
490
491 /* If this is a vfork child, then the address-space is
492 shared with the parent. */
493 if (has_vforked)
494 {
495 child_inf->pspace = parent_inf->pspace;
496 child_inf->aspace = parent_inf->aspace;
497
498 exec_on_vfork ();
499
500 /* The parent will be frozen until the child is done
501 with the shared region. Keep track of the
502 parent. */
503 child_inf->vfork_parent = parent_inf;
504 child_inf->pending_detach = 0;
505 parent_inf->vfork_child = child_inf;
506 parent_inf->pending_detach = 0;
507
508 /* Now that the inferiors and program spaces are all
509 wired up, we can switch to the child thread (which
510 switches inferior and program space too). */
511 switch_to_thread (child_thr);
512 }
513 else
514 {
515 child_inf->aspace = new_address_space ();
516 child_inf->pspace = new program_space (child_inf->aspace);
517 child_inf->removable = 1;
518 set_current_program_space (child_inf->pspace);
519 clone_program_space (child_inf->pspace, parent_inf->pspace);
520
521 /* solib_create_inferior_hook relies on the current
522 thread. */
523 switch_to_thread (child_thr);
524
525 /* Let the shared library layer (e.g., solib-svr4) learn
526 about this new process, relocate the cloned exec, pull
527 in shared libraries, and install the solib event
528 breakpoint. If a "cloned-VM" event was propagated
529 better throughout the core, this wouldn't be
530 required. */
531 solib_create_inferior_hook (0);
532 }
533 }
534
535 if (has_vforked)
536 {
537 struct inferior *parent_inf;
538
539 parent_inf = current_inferior ();
540
541 /* If we detached from the child, then we have to be careful
542 to not insert breakpoints in the parent until the child
543 is done with the shared memory region. However, if we're
544 staying attached to the child, then we can and should
545 insert breakpoints, so that we can debug it. A
546 subsequent child exec or exit is enough to know when does
547 the child stops using the parent's address space. */
548 parent_inf->waiting_for_vfork_done = detach_fork;
549 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
550 }
551 }
552 else
553 {
554 /* Follow the child. */
555 struct inferior *parent_inf, *child_inf;
556 struct program_space *parent_pspace;
557
558 if (print_inferior_events)
559 {
560 std::string parent_pid = target_pid_to_str (parent_ptid);
561 std::string child_pid = target_pid_to_str (child_ptid);
562
563 target_terminal::ours_for_output ();
564 fprintf_filtered (gdb_stdlog,
565 _("[Attaching after %s %s to child %s]\n"),
566 parent_pid.c_str (),
567 has_vforked ? "vfork" : "fork",
568 child_pid.c_str ());
569 }
570
571 /* Add the new inferior first, so that the target_detach below
572 doesn't unpush the target. */
573
574 child_inf = add_inferior (child_ptid.pid ());
575
576 parent_inf = current_inferior ();
577 child_inf->attach_flag = parent_inf->attach_flag;
578 copy_terminal_info (child_inf, parent_inf);
579 child_inf->gdbarch = parent_inf->gdbarch;
580 copy_inferior_target_desc_info (child_inf, parent_inf);
581
582 parent_pspace = parent_inf->pspace;
583
584 process_stratum_target *target = parent_inf->process_target ();
585
586 {
587 /* Hold a strong reference to the target while (maybe)
588 detaching the parent. Otherwise detaching could close the
589 target. */
590 auto target_ref = target_ops_ref::new_reference (target);
591
592 /* If we're vforking, we want to hold on to the parent until
593 the child exits or execs. At child exec or exit time we
594 can remove the old breakpoints from the parent and detach
595 or resume debugging it. Otherwise, detach the parent now;
596 we'll want to reuse it's program/address spaces, but we
597 can't set them to the child before removing breakpoints
598 from the parent, otherwise, the breakpoints module could
599 decide to remove breakpoints from the wrong process (since
600 they'd be assigned to the same address space). */
601
602 if (has_vforked)
603 {
604 gdb_assert (child_inf->vfork_parent == NULL);
605 gdb_assert (parent_inf->vfork_child == NULL);
606 child_inf->vfork_parent = parent_inf;
607 child_inf->pending_detach = 0;
608 parent_inf->vfork_child = child_inf;
609 parent_inf->pending_detach = detach_fork;
610 parent_inf->waiting_for_vfork_done = 0;
611 }
612 else if (detach_fork)
613 {
614 if (print_inferior_events)
615 {
616 /* Ensure that we have a process ptid. */
617 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
618
619 target_terminal::ours_for_output ();
620 fprintf_filtered (gdb_stdlog,
621 _("[Detaching after fork from "
622 "parent %s]\n"),
623 target_pid_to_str (process_ptid).c_str ());
624 }
625
626 target_detach (parent_inf, 0);
627 parent_inf = NULL;
628 }
629
630 /* Note that the detach above makes PARENT_INF dangling. */
631
632 /* Add the child thread to the appropriate lists, and switch
633 to this new thread, before cloning the program space, and
634 informing the solib layer about this new process. */
635
636 set_current_inferior (child_inf);
637 push_target (target);
638 }
639
640 thread_info *child_thr = add_thread_silent (target, child_ptid);
641
642 /* If this is a vfork child, then the address-space is shared
643 with the parent. If we detached from the parent, then we can
644 reuse the parent's program/address spaces. */
645 if (has_vforked || detach_fork)
646 {
647 child_inf->pspace = parent_pspace;
648 child_inf->aspace = child_inf->pspace->aspace;
649
650 exec_on_vfork ();
651 }
652 else
653 {
654 child_inf->aspace = new_address_space ();
655 child_inf->pspace = new program_space (child_inf->aspace);
656 child_inf->removable = 1;
657 child_inf->symfile_flags = SYMFILE_NO_READ;
658 set_current_program_space (child_inf->pspace);
659 clone_program_space (child_inf->pspace, parent_pspace);
660
661 /* Let the shared library layer (e.g., solib-svr4) learn
662 about this new process, relocate the cloned exec, pull in
663 shared libraries, and install the solib event breakpoint.
664 If a "cloned-VM" event was propagated better throughout
665 the core, this wouldn't be required. */
666 solib_create_inferior_hook (0);
667 }
668
669 switch_to_thread (child_thr);
670 }
671
672 return target_follow_fork (follow_child, detach_fork);
673 }
674
675 /* Tell the target to follow the fork we're stopped at. Returns true
676 if the inferior should be resumed; false, if the target for some
677 reason decided it's best not to resume. */
678
679 static bool
680 follow_fork ()
681 {
682 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
683 bool should_resume = true;
684 struct thread_info *tp;
685
686 /* Copy user stepping state to the new inferior thread. FIXME: the
687 followed fork child thread should have a copy of most of the
688 parent thread structure's run control related fields, not just these.
689 Initialized to avoid "may be used uninitialized" warnings from gcc. */
690 struct breakpoint *step_resume_breakpoint = NULL;
691 struct breakpoint *exception_resume_breakpoint = NULL;
692 CORE_ADDR step_range_start = 0;
693 CORE_ADDR step_range_end = 0;
694 int current_line = 0;
695 symtab *current_symtab = NULL;
696 struct frame_id step_frame_id = { 0 };
697 struct thread_fsm *thread_fsm = NULL;
698
699 if (!non_stop)
700 {
701 process_stratum_target *wait_target;
702 ptid_t wait_ptid;
703 struct target_waitstatus wait_status;
704
705 /* Get the last target status returned by target_wait(). */
706 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
707
708 /* If not stopped at a fork event, then there's nothing else to
709 do. */
710 if (wait_status.kind != TARGET_WAITKIND_FORKED
711 && wait_status.kind != TARGET_WAITKIND_VFORKED)
712 return 1;
713
714 /* Check if we switched over from WAIT_PTID, since the event was
715 reported. */
716 if (wait_ptid != minus_one_ptid
717 && (current_inferior ()->process_target () != wait_target
718 || inferior_ptid != wait_ptid))
719 {
720 /* We did. Switch back to WAIT_PTID thread, to tell the
721 target to follow it (in either direction). We'll
722 afterwards refuse to resume, and inform the user what
723 happened. */
724 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
725 switch_to_thread (wait_thread);
726 should_resume = false;
727 }
728 }
729
730 tp = inferior_thread ();
731
732 /* If there were any forks/vforks that were caught and are now to be
733 followed, then do so now. */
734 switch (tp->pending_follow.kind)
735 {
736 case TARGET_WAITKIND_FORKED:
737 case TARGET_WAITKIND_VFORKED:
738 {
739 ptid_t parent, child;
740
741 /* If the user did a next/step, etc, over a fork call,
742 preserve the stepping state in the fork child. */
743 if (follow_child && should_resume)
744 {
745 step_resume_breakpoint = clone_momentary_breakpoint
746 (tp->control.step_resume_breakpoint);
747 step_range_start = tp->control.step_range_start;
748 step_range_end = tp->control.step_range_end;
749 current_line = tp->current_line;
750 current_symtab = tp->current_symtab;
751 step_frame_id = tp->control.step_frame_id;
752 exception_resume_breakpoint
753 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
754 thread_fsm = tp->thread_fsm;
755
756 /* For now, delete the parent's sr breakpoint, otherwise,
757 parent/child sr breakpoints are considered duplicates,
758 and the child version will not be installed. Remove
759 this when the breakpoints module becomes aware of
760 inferiors and address spaces. */
761 delete_step_resume_breakpoint (tp);
762 tp->control.step_range_start = 0;
763 tp->control.step_range_end = 0;
764 tp->control.step_frame_id = null_frame_id;
765 delete_exception_resume_breakpoint (tp);
766 tp->thread_fsm = NULL;
767 }
768
769 parent = inferior_ptid;
770 child = tp->pending_follow.value.related_pid;
771
772 process_stratum_target *parent_targ = tp->inf->process_target ();
773 /* Set up inferior(s) as specified by the caller, and tell the
774 target to do whatever is necessary to follow either parent
775 or child. */
776 if (follow_fork_inferior (follow_child, detach_fork))
777 {
778 /* Target refused to follow, or there's some other reason
779 we shouldn't resume. */
780 should_resume = 0;
781 }
782 else
783 {
784 /* This pending follow fork event is now handled, one way
785 or another. The previous selected thread may be gone
786 from the lists by now, but if it is still around, need
787 to clear the pending follow request. */
788 tp = find_thread_ptid (parent_targ, parent);
789 if (tp)
790 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
791
792 /* This makes sure we don't try to apply the "Switched
793 over from WAIT_PID" logic above. */
794 nullify_last_target_wait_ptid ();
795
796 /* If we followed the child, switch to it... */
797 if (follow_child)
798 {
799 thread_info *child_thr = find_thread_ptid (parent_targ, child);
800 switch_to_thread (child_thr);
801
802 /* ... and preserve the stepping state, in case the
803 user was stepping over the fork call. */
804 if (should_resume)
805 {
806 tp = inferior_thread ();
807 tp->control.step_resume_breakpoint
808 = step_resume_breakpoint;
809 tp->control.step_range_start = step_range_start;
810 tp->control.step_range_end = step_range_end;
811 tp->current_line = current_line;
812 tp->current_symtab = current_symtab;
813 tp->control.step_frame_id = step_frame_id;
814 tp->control.exception_resume_breakpoint
815 = exception_resume_breakpoint;
816 tp->thread_fsm = thread_fsm;
817 }
818 else
819 {
820 /* If we get here, it was because we're trying to
821 resume from a fork catchpoint, but, the user
822 has switched threads away from the thread that
823 forked. In that case, the resume command
824 issued is most likely not applicable to the
825 child, so just warn, and refuse to resume. */
826 warning (_("Not resuming: switched threads "
827 "before following fork child."));
828 }
829
830 /* Reset breakpoints in the child as appropriate. */
831 follow_inferior_reset_breakpoints ();
832 }
833 }
834 }
835 break;
836 case TARGET_WAITKIND_SPURIOUS:
837 /* Nothing to follow. */
838 break;
839 default:
840 internal_error (__FILE__, __LINE__,
841 "Unexpected pending_follow.kind %d\n",
842 tp->pending_follow.kind);
843 break;
844 }
845
846 return should_resume;
847 }
848
849 static void
850 follow_inferior_reset_breakpoints (void)
851 {
852 struct thread_info *tp = inferior_thread ();
853
854 /* Was there a step_resume breakpoint? (There was if the user
855 did a "next" at the fork() call.) If so, explicitly reset its
856 thread number. Cloned step_resume breakpoints are disabled on
857 creation, so enable it here now that it is associated with the
858 correct thread.
859
860 step_resumes are a form of bp that are made to be per-thread.
861 Since we created the step_resume bp when the parent process
862 was being debugged, and now are switching to the child process,
863 from the breakpoint package's viewpoint, that's a switch of
864 "threads". We must update the bp's notion of which thread
865 it is for, or it'll be ignored when it triggers. */
866
867 if (tp->control.step_resume_breakpoint)
868 {
869 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
870 tp->control.step_resume_breakpoint->loc->enabled = 1;
871 }
872
873 /* Treat exception_resume breakpoints like step_resume breakpoints. */
874 if (tp->control.exception_resume_breakpoint)
875 {
876 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
877 tp->control.exception_resume_breakpoint->loc->enabled = 1;
878 }
879
880 /* Reinsert all breakpoints in the child. The user may have set
881 breakpoints after catching the fork, in which case those
882 were never set in the child, but only in the parent. This makes
883 sure the inserted breakpoints match the breakpoint list. */
884
885 breakpoint_re_set ();
886 insert_breakpoints ();
887 }
888
889 /* The child has exited or execed: resume threads of the parent the
890 user wanted to be executing. */
891
892 static int
893 proceed_after_vfork_done (struct thread_info *thread,
894 void *arg)
895 {
896 int pid = * (int *) arg;
897
898 if (thread->ptid.pid () == pid
899 && thread->state == THREAD_RUNNING
900 && !thread->executing
901 && !thread->stop_requested
902 && thread->suspend.stop_signal == GDB_SIGNAL_0)
903 {
904 infrun_debug_printf ("resuming vfork parent thread %s",
905 target_pid_to_str (thread->ptid).c_str ());
906
907 switch_to_thread (thread);
908 clear_proceed_status (0);
909 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
910 }
911
912 return 0;
913 }
914
915 /* Called whenever we notice an exec or exit event, to handle
916 detaching or resuming a vfork parent. */
917
918 static void
919 handle_vfork_child_exec_or_exit (int exec)
920 {
921 struct inferior *inf = current_inferior ();
922
923 if (inf->vfork_parent)
924 {
925 int resume_parent = -1;
926
927 /* This exec or exit marks the end of the shared memory region
928 between the parent and the child. Break the bonds. */
929 inferior *vfork_parent = inf->vfork_parent;
930 inf->vfork_parent->vfork_child = NULL;
931 inf->vfork_parent = NULL;
932
933 /* If the user wanted to detach from the parent, now is the
934 time. */
935 if (vfork_parent->pending_detach)
936 {
937 struct program_space *pspace;
938 struct address_space *aspace;
939
940 /* follow-fork child, detach-on-fork on. */
941
942 vfork_parent->pending_detach = 0;
943
944 scoped_restore_current_pspace_and_thread restore_thread;
945
946 /* We're letting loose of the parent. */
947 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
948 switch_to_thread (tp);
949
950 /* We're about to detach from the parent, which implicitly
951 removes breakpoints from its address space. There's a
952 catch here: we want to reuse the spaces for the child,
953 but, parent/child are still sharing the pspace at this
954 point, although the exec in reality makes the kernel give
955 the child a fresh set of new pages. The problem here is
956 that the breakpoints module being unaware of this, would
957 likely chose the child process to write to the parent
958 address space. Swapping the child temporarily away from
959 the spaces has the desired effect. Yes, this is "sort
960 of" a hack. */
961
962 pspace = inf->pspace;
963 aspace = inf->aspace;
964 inf->aspace = NULL;
965 inf->pspace = NULL;
966
967 if (print_inferior_events)
968 {
969 std::string pidstr
970 = target_pid_to_str (ptid_t (vfork_parent->pid));
971
972 target_terminal::ours_for_output ();
973
974 if (exec)
975 {
976 fprintf_filtered (gdb_stdlog,
977 _("[Detaching vfork parent %s "
978 "after child exec]\n"), pidstr.c_str ());
979 }
980 else
981 {
982 fprintf_filtered (gdb_stdlog,
983 _("[Detaching vfork parent %s "
984 "after child exit]\n"), pidstr.c_str ());
985 }
986 }
987
988 target_detach (vfork_parent, 0);
989
990 /* Put it back. */
991 inf->pspace = pspace;
992 inf->aspace = aspace;
993 }
994 else if (exec)
995 {
996 /* We're staying attached to the parent, so, really give the
997 child a new address space. */
998 inf->pspace = new program_space (maybe_new_address_space ());
999 inf->aspace = inf->pspace->aspace;
1000 inf->removable = 1;
1001 set_current_program_space (inf->pspace);
1002
1003 resume_parent = vfork_parent->pid;
1004 }
1005 else
1006 {
1007 /* If this is a vfork child exiting, then the pspace and
1008 aspaces were shared with the parent. Since we're
1009 reporting the process exit, we'll be mourning all that is
1010 found in the address space, and switching to null_ptid,
1011 preparing to start a new inferior. But, since we don't
1012 want to clobber the parent's address/program spaces, we
1013 go ahead and create a new one for this exiting
1014 inferior. */
1015
1016 /* Switch to no-thread while running clone_program_space, so
1017 that clone_program_space doesn't want to read the
1018 selected frame of a dead process. */
1019 scoped_restore_current_thread restore_thread;
1020 switch_to_no_thread ();
1021
1022 inf->pspace = new program_space (maybe_new_address_space ());
1023 inf->aspace = inf->pspace->aspace;
1024 set_current_program_space (inf->pspace);
1025 inf->removable = 1;
1026 inf->symfile_flags = SYMFILE_NO_READ;
1027 clone_program_space (inf->pspace, vfork_parent->pspace);
1028
1029 resume_parent = vfork_parent->pid;
1030 }
1031
1032 gdb_assert (current_program_space == inf->pspace);
1033
1034 if (non_stop && resume_parent != -1)
1035 {
1036 /* If the user wanted the parent to be running, let it go
1037 free now. */
1038 scoped_restore_current_thread restore_thread;
1039
1040 infrun_debug_printf ("resuming vfork parent process %d",
1041 resume_parent);
1042
1043 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1044 }
1045 }
1046 }
1047
1048 /* Enum strings for "set|show follow-exec-mode". */
1049
1050 static const char follow_exec_mode_new[] = "new";
1051 static const char follow_exec_mode_same[] = "same";
1052 static const char *const follow_exec_mode_names[] =
1053 {
1054 follow_exec_mode_new,
1055 follow_exec_mode_same,
1056 NULL,
1057 };
1058
1059 static const char *follow_exec_mode_string = follow_exec_mode_same;
1060 static void
1061 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1062 struct cmd_list_element *c, const char *value)
1063 {
1064 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1065 }
1066
1067 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1068
1069 static void
1070 follow_exec (ptid_t ptid, const char *exec_file_target)
1071 {
1072 struct inferior *inf = current_inferior ();
1073 int pid = ptid.pid ();
1074 ptid_t process_ptid;
1075
1076 /* Switch terminal for any messages produced e.g. by
1077 breakpoint_re_set. */
1078 target_terminal::ours_for_output ();
1079
1080 /* This is an exec event that we actually wish to pay attention to.
1081 Refresh our symbol table to the newly exec'd program, remove any
1082 momentary bp's, etc.
1083
1084 If there are breakpoints, they aren't really inserted now,
1085 since the exec() transformed our inferior into a fresh set
1086 of instructions.
1087
1088 We want to preserve symbolic breakpoints on the list, since
1089 we have hopes that they can be reset after the new a.out's
1090 symbol table is read.
1091
1092 However, any "raw" breakpoints must be removed from the list
1093 (e.g., the solib bp's), since their address is probably invalid
1094 now.
1095
1096 And, we DON'T want to call delete_breakpoints() here, since
1097 that may write the bp's "shadow contents" (the instruction
1098 value that was overwritten with a TRAP instruction). Since
1099 we now have a new a.out, those shadow contents aren't valid. */
1100
1101 mark_breakpoints_out ();
1102
1103 /* The target reports the exec event to the main thread, even if
1104 some other thread does the exec, and even if the main thread was
1105 stopped or already gone. We may still have non-leader threads of
1106 the process on our list. E.g., on targets that don't have thread
1107 exit events (like remote); or on native Linux in non-stop mode if
1108 there were only two threads in the inferior and the non-leader
1109 one is the one that execs (and nothing forces an update of the
1110 thread list up to here). When debugging remotely, it's best to
1111 avoid extra traffic, when possible, so avoid syncing the thread
1112 list with the target, and instead go ahead and delete all threads
1113 of the process but one that reported the event. Note this must
1114 be done before calling update_breakpoints_after_exec, as
1115 otherwise clearing the threads' resources would reference stale
1116 thread breakpoints -- it may have been one of these threads that
1117 stepped across the exec. We could just clear their stepping
1118 states, but as long as we're iterating, might as well delete
1119 them. Deleting them now rather than at the next user-visible
1120 stop provides a nicer sequence of events for user and MI
1121 notifications. */
1122 for (thread_info *th : all_threads_safe ())
1123 if (th->ptid.pid () == pid && th->ptid != ptid)
1124 delete_thread (th);
1125
1126 /* We also need to clear any left over stale state for the
1127 leader/event thread. E.g., if there was any step-resume
1128 breakpoint or similar, it's gone now. We cannot truly
1129 step-to-next statement through an exec(). */
1130 thread_info *th = inferior_thread ();
1131 th->control.step_resume_breakpoint = NULL;
1132 th->control.exception_resume_breakpoint = NULL;
1133 th->control.single_step_breakpoints = NULL;
1134 th->control.step_range_start = 0;
1135 th->control.step_range_end = 0;
1136
1137 /* The user may have had the main thread held stopped in the
1138 previous image (e.g., schedlock on, or non-stop). Release
1139 it now. */
1140 th->stop_requested = 0;
1141
1142 update_breakpoints_after_exec ();
1143
1144 /* What is this a.out's name? */
1145 process_ptid = ptid_t (pid);
1146 printf_unfiltered (_("%s is executing new program: %s\n"),
1147 target_pid_to_str (process_ptid).c_str (),
1148 exec_file_target);
1149
1150 /* We've followed the inferior through an exec. Therefore, the
1151 inferior has essentially been killed & reborn. */
1152
1153 breakpoint_init_inferior (inf_execd);
1154
1155 gdb::unique_xmalloc_ptr<char> exec_file_host
1156 = exec_file_find (exec_file_target, NULL);
1157
1158 /* If we were unable to map the executable target pathname onto a host
1159 pathname, tell the user that. Otherwise GDB's subsequent behavior
1160 is confusing. Maybe it would even be better to stop at this point
1161 so that the user can specify a file manually before continuing. */
1162 if (exec_file_host == NULL)
1163 warning (_("Could not load symbols for executable %s.\n"
1164 "Do you need \"set sysroot\"?"),
1165 exec_file_target);
1166
1167 /* Reset the shared library package. This ensures that we get a
1168 shlib event when the child reaches "_start", at which point the
1169 dld will have had a chance to initialize the child. */
1170 /* Also, loading a symbol file below may trigger symbol lookups, and
1171 we don't want those to be satisfied by the libraries of the
1172 previous incarnation of this process. */
1173 no_shared_libraries (NULL, 0);
1174
1175 if (follow_exec_mode_string == follow_exec_mode_new)
1176 {
1177 /* The user wants to keep the old inferior and program spaces
1178 around. Create a new fresh one, and switch to it. */
1179
1180 /* Do exit processing for the original inferior before setting the new
1181 inferior's pid. Having two inferiors with the same pid would confuse
1182 find_inferior_p(t)id. Transfer the terminal state and info from the
1183 old to the new inferior. */
1184 inf = add_inferior_with_spaces ();
1185 swap_terminal_info (inf, current_inferior ());
1186 exit_inferior_silent (current_inferior ());
1187
1188 inf->pid = pid;
1189 target_follow_exec (inf, exec_file_target);
1190
1191 inferior *org_inferior = current_inferior ();
1192 switch_to_inferior_no_thread (inf);
1193 push_target (org_inferior->process_target ());
1194 thread_info *thr = add_thread (inf->process_target (), ptid);
1195 switch_to_thread (thr);
1196 }
1197 else
1198 {
1199 /* The old description may no longer be fit for the new image.
1200 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1201 old description; we'll read a new one below. No need to do
1202 this on "follow-exec-mode new", as the old inferior stays
1203 around (its description is later cleared/refetched on
1204 restart). */
1205 target_clear_description ();
1206 }
1207
1208 gdb_assert (current_program_space == inf->pspace);
1209
1210 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1211 because the proper displacement for a PIE (Position Independent
1212 Executable) main symbol file will only be computed by
1213 solib_create_inferior_hook below. breakpoint_re_set would fail
1214 to insert the breakpoints with the zero displacement. */
1215 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1216
1217 /* If the target can specify a description, read it. Must do this
1218 after flipping to the new executable (because the target supplied
1219 description must be compatible with the executable's
1220 architecture, and the old executable may e.g., be 32-bit, while
1221 the new one 64-bit), and before anything involving memory or
1222 registers. */
1223 target_find_description ();
1224
1225 gdb::observers::inferior_execd.notify (inf);
1226
1227 breakpoint_re_set ();
1228
1229 /* Reinsert all breakpoints. (Those which were symbolic have
1230 been reset to the proper address in the new a.out, thanks
1231 to symbol_file_command...). */
1232 insert_breakpoints ();
1233
1234 /* The next resume of this inferior should bring it to the shlib
1235 startup breakpoints. (If the user had also set bp's on
1236 "main" from the old (parent) process, then they'll auto-
1237 matically get reset there in the new process.). */
1238 }
1239
1240 /* The queue of threads that need to do a step-over operation to get
1241 past e.g., a breakpoint. What technique is used to step over the
1242 breakpoint/watchpoint does not matter -- all threads end up in the
1243 same queue, to maintain rough temporal order of execution, in order
1244 to avoid starvation, otherwise, we could e.g., find ourselves
1245 constantly stepping the same couple threads past their breakpoints
1246 over and over, if the single-step finish fast enough. */
1247 struct thread_info *step_over_queue_head;
1248
1249 /* Bit flags indicating what the thread needs to step over. */
1250
1251 enum step_over_what_flag
1252 {
1253 /* Step over a breakpoint. */
1254 STEP_OVER_BREAKPOINT = 1,
1255
1256 /* Step past a non-continuable watchpoint, in order to let the
1257 instruction execute so we can evaluate the watchpoint
1258 expression. */
1259 STEP_OVER_WATCHPOINT = 2
1260 };
1261 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1262
1263 /* Info about an instruction that is being stepped over. */
1264
1265 struct step_over_info
1266 {
1267 /* If we're stepping past a breakpoint, this is the address space
1268 and address of the instruction the breakpoint is set at. We'll
1269 skip inserting all breakpoints here. Valid iff ASPACE is
1270 non-NULL. */
1271 const address_space *aspace;
1272 CORE_ADDR address;
1273
1274 /* The instruction being stepped over triggers a nonsteppable
1275 watchpoint. If true, we'll skip inserting watchpoints. */
1276 int nonsteppable_watchpoint_p;
1277
1278 /* The thread's global number. */
1279 int thread;
1280 };
1281
1282 /* The step-over info of the location that is being stepped over.
1283
1284 Note that with async/breakpoint always-inserted mode, a user might
1285 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1286 being stepped over. As setting a new breakpoint inserts all
1287 breakpoints, we need to make sure the breakpoint being stepped over
1288 isn't inserted then. We do that by only clearing the step-over
1289 info when the step-over is actually finished (or aborted).
1290
1291 Presently GDB can only step over one breakpoint at any given time.
1292 Given threads that can't run code in the same address space as the
1293 breakpoint's can't really miss the breakpoint, GDB could be taught
1294 to step-over at most one breakpoint per address space (so this info
1295 could move to the address space object if/when GDB is extended).
1296 The set of breakpoints being stepped over will normally be much
1297 smaller than the set of all breakpoints, so a flag in the
1298 breakpoint location structure would be wasteful. A separate list
1299 also saves complexity and run-time, as otherwise we'd have to go
1300 through all breakpoint locations clearing their flag whenever we
1301 start a new sequence. Similar considerations weigh against storing
1302 this info in the thread object. Plus, not all step overs actually
1303 have breakpoint locations -- e.g., stepping past a single-step
1304 breakpoint, or stepping to complete a non-continuable
1305 watchpoint. */
1306 static struct step_over_info step_over_info;
1307
1308 /* Record the address of the breakpoint/instruction we're currently
1309 stepping over.
1310 N.B. We record the aspace and address now, instead of say just the thread,
1311 because when we need the info later the thread may be running. */
1312
1313 static void
1314 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1315 int nonsteppable_watchpoint_p,
1316 int thread)
1317 {
1318 step_over_info.aspace = aspace;
1319 step_over_info.address = address;
1320 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1321 step_over_info.thread = thread;
1322 }
1323
1324 /* Called when we're not longer stepping over a breakpoint / an
1325 instruction, so all breakpoints are free to be (re)inserted. */
1326
1327 static void
1328 clear_step_over_info (void)
1329 {
1330 infrun_debug_printf ("clearing step over info");
1331 step_over_info.aspace = NULL;
1332 step_over_info.address = 0;
1333 step_over_info.nonsteppable_watchpoint_p = 0;
1334 step_over_info.thread = -1;
1335 }
1336
1337 /* See infrun.h. */
1338
1339 int
1340 stepping_past_instruction_at (struct address_space *aspace,
1341 CORE_ADDR address)
1342 {
1343 return (step_over_info.aspace != NULL
1344 && breakpoint_address_match (aspace, address,
1345 step_over_info.aspace,
1346 step_over_info.address));
1347 }
1348
1349 /* See infrun.h. */
1350
1351 int
1352 thread_is_stepping_over_breakpoint (int thread)
1353 {
1354 return (step_over_info.thread != -1
1355 && thread == step_over_info.thread);
1356 }
1357
1358 /* See infrun.h. */
1359
1360 int
1361 stepping_past_nonsteppable_watchpoint (void)
1362 {
1363 return step_over_info.nonsteppable_watchpoint_p;
1364 }
1365
1366 /* Returns true if step-over info is valid. */
1367
1368 static bool
1369 step_over_info_valid_p (void)
1370 {
1371 return (step_over_info.aspace != NULL
1372 || stepping_past_nonsteppable_watchpoint ());
1373 }
1374
1375 \f
1376 /* Displaced stepping. */
1377
1378 /* In non-stop debugging mode, we must take special care to manage
1379 breakpoints properly; in particular, the traditional strategy for
1380 stepping a thread past a breakpoint it has hit is unsuitable.
1381 'Displaced stepping' is a tactic for stepping one thread past a
1382 breakpoint it has hit while ensuring that other threads running
1383 concurrently will hit the breakpoint as they should.
1384
1385 The traditional way to step a thread T off a breakpoint in a
1386 multi-threaded program in all-stop mode is as follows:
1387
1388 a0) Initially, all threads are stopped, and breakpoints are not
1389 inserted.
1390 a1) We single-step T, leaving breakpoints uninserted.
1391 a2) We insert breakpoints, and resume all threads.
1392
1393 In non-stop debugging, however, this strategy is unsuitable: we
1394 don't want to have to stop all threads in the system in order to
1395 continue or step T past a breakpoint. Instead, we use displaced
1396 stepping:
1397
1398 n0) Initially, T is stopped, other threads are running, and
1399 breakpoints are inserted.
1400 n1) We copy the instruction "under" the breakpoint to a separate
1401 location, outside the main code stream, making any adjustments
1402 to the instruction, register, and memory state as directed by
1403 T's architecture.
1404 n2) We single-step T over the instruction at its new location.
1405 n3) We adjust the resulting register and memory state as directed
1406 by T's architecture. This includes resetting T's PC to point
1407 back into the main instruction stream.
1408 n4) We resume T.
1409
1410 This approach depends on the following gdbarch methods:
1411
1412 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1413 indicate where to copy the instruction, and how much space must
1414 be reserved there. We use these in step n1.
1415
1416 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1417 address, and makes any necessary adjustments to the instruction,
1418 register contents, and memory. We use this in step n1.
1419
1420 - gdbarch_displaced_step_fixup adjusts registers and memory after
1421 we have successfully single-stepped the instruction, to yield the
1422 same effect the instruction would have had if we had executed it
1423 at its original address. We use this in step n3.
1424
1425 The gdbarch_displaced_step_copy_insn and
1426 gdbarch_displaced_step_fixup functions must be written so that
1427 copying an instruction with gdbarch_displaced_step_copy_insn,
1428 single-stepping across the copied instruction, and then applying
1429 gdbarch_displaced_insn_fixup should have the same effects on the
1430 thread's memory and registers as stepping the instruction in place
1431 would have. Exactly which responsibilities fall to the copy and
1432 which fall to the fixup is up to the author of those functions.
1433
1434 See the comments in gdbarch.sh for details.
1435
1436 Note that displaced stepping and software single-step cannot
1437 currently be used in combination, although with some care I think
1438 they could be made to. Software single-step works by placing
1439 breakpoints on all possible subsequent instructions; if the
1440 displaced instruction is a PC-relative jump, those breakpoints
1441 could fall in very strange places --- on pages that aren't
1442 executable, or at addresses that are not proper instruction
1443 boundaries. (We do generally let other threads run while we wait
1444 to hit the software single-step breakpoint, and they might
1445 encounter such a corrupted instruction.) One way to work around
1446 this would be to have gdbarch_displaced_step_copy_insn fully
1447 simulate the effect of PC-relative instructions (and return NULL)
1448 on architectures that use software single-stepping.
1449
1450 In non-stop mode, we can have independent and simultaneous step
1451 requests, so more than one thread may need to simultaneously step
1452 over a breakpoint. The current implementation assumes there is
1453 only one scratch space per process. In this case, we have to
1454 serialize access to the scratch space. If thread A wants to step
1455 over a breakpoint, but we are currently waiting for some other
1456 thread to complete a displaced step, we leave thread A stopped and
1457 place it in the displaced_step_request_queue. Whenever a displaced
1458 step finishes, we pick the next thread in the queue and start a new
1459 displaced step operation on it. See displaced_step_prepare and
1460 displaced_step_fixup for details. */
1461
1462 /* Default destructor for displaced_step_closure. */
1463
1464 displaced_step_closure::~displaced_step_closure () = default;
1465
1466 /* Returns true if any inferior has a thread doing a displaced
1467 step. */
1468
1469 static bool
1470 displaced_step_in_progress_any_inferior ()
1471 {
1472 for (inferior *i : all_inferiors ())
1473 {
1474 if (i->displaced_step_state.step_thread != nullptr)
1475 return true;
1476 }
1477
1478 return false;
1479 }
1480
1481 /* Return true if THREAD is doing a displaced step. */
1482
1483 static bool
1484 displaced_step_in_progress_thread (thread_info *thread)
1485 {
1486 gdb_assert (thread != NULL);
1487
1488 return thread->inf->displaced_step_state.step_thread == thread;
1489 }
1490
1491 /* Return true if INF has a thread doing a displaced step. */
1492
1493 static bool
1494 displaced_step_in_progress (inferior *inf)
1495 {
1496 return inf->displaced_step_state.step_thread != nullptr;
1497 }
1498
1499 /* If inferior is in displaced stepping, and ADDR equals to starting address
1500 of copy area, return corresponding displaced_step_closure. Otherwise,
1501 return NULL. */
1502
1503 struct displaced_step_closure*
1504 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1505 {
1506 displaced_step_inferior_state &displaced
1507 = current_inferior ()->displaced_step_state;
1508
1509 /* If checking the mode of displaced instruction in copy area. */
1510 if (displaced.step_thread != nullptr
1511 && displaced.step_copy == addr)
1512 return displaced.step_closure.get ();
1513
1514 return NULL;
1515 }
1516
1517 static void
1518 infrun_inferior_exit (struct inferior *inf)
1519 {
1520 inf->displaced_step_state.reset ();
1521 }
1522
1523 static void
1524 infrun_inferior_execd (inferior *inf)
1525 {
1526 /* If a thread was doing a displaced step in this inferior at the moment of
1527 the exec, it no longer exists. Even if the exec'ing thread was the one
1528 doing a displaced step, we don't want to to any fixup nor restore displaced
1529 stepping buffer bytes. */
1530 inf->displaced_step_state.reset ();
1531
1532 /* Since an in-line step is done with everything else stopped, if there was
1533 one in progress at the time of the exec, it must have been the exec'ing
1534 thread. */
1535 clear_step_over_info ();
1536 }
1537
1538 /* If ON, and the architecture supports it, GDB will use displaced
1539 stepping to step over breakpoints. If OFF, or if the architecture
1540 doesn't support it, GDB will instead use the traditional
1541 hold-and-step approach. If AUTO (which is the default), GDB will
1542 decide which technique to use to step over breakpoints depending on
1543 whether the target works in a non-stop way (see use_displaced_stepping). */
1544
1545 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1546
1547 static void
1548 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1549 struct cmd_list_element *c,
1550 const char *value)
1551 {
1552 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1553 fprintf_filtered (file,
1554 _("Debugger's willingness to use displaced stepping "
1555 "to step over breakpoints is %s (currently %s).\n"),
1556 value, target_is_non_stop_p () ? "on" : "off");
1557 else
1558 fprintf_filtered (file,
1559 _("Debugger's willingness to use displaced stepping "
1560 "to step over breakpoints is %s.\n"), value);
1561 }
1562
1563 /* Return true if the gdbarch implements the required methods to use
1564 displaced stepping. */
1565
1566 static bool
1567 gdbarch_supports_displaced_stepping (gdbarch *arch)
1568 {
1569 /* Only check for the presence of step_copy_insn. Other required methods
1570 are checked by the gdbarch validation. */
1571 return gdbarch_displaced_step_copy_insn_p (arch);
1572 }
1573
1574 /* Return non-zero if displaced stepping can/should be used to step
1575 over breakpoints of thread TP. */
1576
1577 static bool
1578 use_displaced_stepping (thread_info *tp)
1579 {
1580 /* If the user disabled it explicitly, don't use displaced stepping. */
1581 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1582 return false;
1583
1584 /* If "auto", only use displaced stepping if the target operates in a non-stop
1585 way. */
1586 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1587 && !target_is_non_stop_p ())
1588 return false;
1589
1590 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1591
1592 /* If the architecture doesn't implement displaced stepping, don't use
1593 it. */
1594 if (!gdbarch_supports_displaced_stepping (gdbarch))
1595 return false;
1596
1597 /* If recording, don't use displaced stepping. */
1598 if (find_record_target () != nullptr)
1599 return false;
1600
1601 /* If displaced stepping failed before for this inferior, don't bother trying
1602 again. */
1603 if (tp->inf->displaced_step_state.failed_before)
1604 return false;
1605
1606 return true;
1607 }
1608
1609 /* Simple function wrapper around displaced_step_inferior_state::reset. */
1610
1611 static void
1612 displaced_step_reset (displaced_step_inferior_state *displaced)
1613 {
1614 displaced->reset ();
1615 }
1616
1617 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1618 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1619
1620 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1621
1622 /* See infrun.h. */
1623
1624 std::string
1625 displaced_step_dump_bytes (const gdb_byte *buf, size_t len)
1626 {
1627 std::string ret;
1628
1629 for (size_t i = 0; i < len; i++)
1630 {
1631 if (i == 0)
1632 ret += string_printf ("%02x", buf[i]);
1633 else
1634 ret += string_printf (" %02x", buf[i]);
1635 }
1636
1637 return ret;
1638 }
1639
1640 /* Prepare to single-step, using displaced stepping.
1641
1642 Note that we cannot use displaced stepping when we have a signal to
1643 deliver. If we have a signal to deliver and an instruction to step
1644 over, then after the step, there will be no indication from the
1645 target whether the thread entered a signal handler or ignored the
1646 signal and stepped over the instruction successfully --- both cases
1647 result in a simple SIGTRAP. In the first case we mustn't do a
1648 fixup, and in the second case we must --- but we can't tell which.
1649 Comments in the code for 'random signals' in handle_inferior_event
1650 explain how we handle this case instead.
1651
1652 Returns 1 if preparing was successful -- this thread is going to be
1653 stepped now; 0 if displaced stepping this thread got queued; or -1
1654 if this instruction can't be displaced stepped. */
1655
1656 static int
1657 displaced_step_prepare_throw (thread_info *tp)
1658 {
1659 regcache *regcache = get_thread_regcache (tp);
1660 struct gdbarch *gdbarch = regcache->arch ();
1661 const address_space *aspace = regcache->aspace ();
1662 CORE_ADDR original, copy;
1663 ULONGEST len;
1664 int status;
1665
1666 /* We should never reach this function if the architecture does not
1667 support displaced stepping. */
1668 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1669
1670 /* Nor if the thread isn't meant to step over a breakpoint. */
1671 gdb_assert (tp->control.trap_expected);
1672
1673 /* Disable range stepping while executing in the scratch pad. We
1674 want a single-step even if executing the displaced instruction in
1675 the scratch buffer lands within the stepping range (e.g., a
1676 jump/branch). */
1677 tp->control.may_range_step = 0;
1678
1679 /* We have to displaced step one thread at a time, as we only have
1680 access to a single scratch space per inferior. */
1681
1682 displaced_step_inferior_state *displaced = &tp->inf->displaced_step_state;
1683
1684 if (displaced->step_thread != nullptr)
1685 {
1686 /* Already waiting for a displaced step to finish. Defer this
1687 request and place in queue. */
1688
1689 displaced_debug_printf ("deferring step of %s",
1690 target_pid_to_str (tp->ptid).c_str ());
1691
1692 thread_step_over_chain_enqueue (tp);
1693 return 0;
1694 }
1695 else
1696 displaced_debug_printf ("stepping %s now",
1697 target_pid_to_str (tp->ptid).c_str ());
1698
1699 displaced_step_reset (displaced);
1700
1701 scoped_restore_current_thread restore_thread;
1702
1703 switch_to_thread (tp);
1704
1705 original = regcache_read_pc (regcache);
1706
1707 copy = gdbarch_displaced_step_location (gdbarch);
1708 len = gdbarch_max_insn_length (gdbarch);
1709
1710 if (breakpoint_in_range_p (aspace, copy, len))
1711 {
1712 /* There's a breakpoint set in the scratch pad location range
1713 (which is usually around the entry point). We'd either
1714 install it before resuming, which would overwrite/corrupt the
1715 scratch pad, or if it was already inserted, this displaced
1716 step would overwrite it. The latter is OK in the sense that
1717 we already assume that no thread is going to execute the code
1718 in the scratch pad range (after initial startup) anyway, but
1719 the former is unacceptable. Simply punt and fallback to
1720 stepping over this breakpoint in-line. */
1721 displaced_debug_printf ("breakpoint set in scratch pad. "
1722 "Stepping over breakpoint in-line instead.");
1723
1724 return -1;
1725 }
1726
1727 /* Save the original contents of the copy area. */
1728 displaced->step_saved_copy.resize (len);
1729 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1730 if (status != 0)
1731 throw_error (MEMORY_ERROR,
1732 _("Error accessing memory address %s (%s) for "
1733 "displaced-stepping scratch space."),
1734 paddress (gdbarch, copy), safe_strerror (status));
1735
1736 displaced_debug_printf ("saved %s: %s",
1737 paddress (gdbarch, copy),
1738 displaced_step_dump_bytes
1739 (displaced->step_saved_copy.data (), len).c_str ());
1740
1741 displaced->step_closure
1742 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1743 if (displaced->step_closure == NULL)
1744 {
1745 /* The architecture doesn't know how or want to displaced step
1746 this instruction or instruction sequence. Fallback to
1747 stepping over the breakpoint in-line. */
1748 return -1;
1749 }
1750
1751 /* Save the information we need to fix things up if the step
1752 succeeds. */
1753 displaced->step_thread = tp;
1754 displaced->step_gdbarch = gdbarch;
1755 displaced->step_original = original;
1756 displaced->step_copy = copy;
1757
1758 {
1759 displaced_step_reset_cleanup cleanup (displaced);
1760
1761 /* Resume execution at the copy. */
1762 regcache_write_pc (regcache, copy);
1763
1764 cleanup.release ();
1765 }
1766
1767 displaced_debug_printf ("displaced pc to %s", paddress (gdbarch, copy));
1768
1769 return 1;
1770 }
1771
1772 /* Wrapper for displaced_step_prepare_throw that disabled further
1773 attempts at displaced stepping if we get a memory error. */
1774
1775 static int
1776 displaced_step_prepare (thread_info *thread)
1777 {
1778 int prepared = -1;
1779
1780 try
1781 {
1782 prepared = displaced_step_prepare_throw (thread);
1783 }
1784 catch (const gdb_exception_error &ex)
1785 {
1786 if (ex.error != MEMORY_ERROR
1787 && ex.error != NOT_SUPPORTED_ERROR)
1788 throw;
1789
1790 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1791 ex.what ());
1792
1793 /* Be verbose if "set displaced-stepping" is "on", silent if
1794 "auto". */
1795 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1796 {
1797 warning (_("disabling displaced stepping: %s"),
1798 ex.what ());
1799 }
1800
1801 /* Disable further displaced stepping attempts. */
1802 thread->inf->displaced_step_state.failed_before = 1;
1803 }
1804
1805 return prepared;
1806 }
1807
1808 static void
1809 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1810 const gdb_byte *myaddr, int len)
1811 {
1812 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1813
1814 inferior_ptid = ptid;
1815 write_memory (memaddr, myaddr, len);
1816 }
1817
1818 /* Restore the contents of the copy area for thread PTID. */
1819
1820 static void
1821 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1822 ptid_t ptid)
1823 {
1824 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1825
1826 write_memory_ptid (ptid, displaced->step_copy,
1827 displaced->step_saved_copy.data (), len);
1828
1829 displaced_debug_printf ("restored %s %s",
1830 target_pid_to_str (ptid).c_str (),
1831 paddress (displaced->step_gdbarch,
1832 displaced->step_copy));
1833 }
1834
1835 /* If we displaced stepped an instruction successfully, adjust
1836 registers and memory to yield the same effect the instruction would
1837 have had if we had executed it at its original address, and return
1838 1. If the instruction didn't complete, relocate the PC and return
1839 -1. If the thread wasn't displaced stepping, return 0. */
1840
1841 static int
1842 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1843 {
1844 displaced_step_inferior_state *displaced
1845 = &event_thread->inf->displaced_step_state;
1846 int ret;
1847
1848 /* Was this event for the thread we displaced? */
1849 if (displaced->step_thread != event_thread)
1850 return 0;
1851
1852 /* Fixup may need to read memory/registers. Switch to the thread
1853 that we're fixing up. Also, target_stopped_by_watchpoint checks
1854 the current thread, and displaced_step_restore performs ptid-dependent
1855 memory accesses using current_inferior() and current_top_target(). */
1856 switch_to_thread (event_thread);
1857
1858 displaced_step_reset_cleanup cleanup (displaced);
1859
1860 displaced_step_restore (displaced, displaced->step_thread->ptid);
1861
1862 /* Did the instruction complete successfully? */
1863 if (signal == GDB_SIGNAL_TRAP
1864 && !(target_stopped_by_watchpoint ()
1865 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1866 || target_have_steppable_watchpoint ())))
1867 {
1868 /* Fix up the resulting state. */
1869 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1870 displaced->step_closure.get (),
1871 displaced->step_original,
1872 displaced->step_copy,
1873 get_thread_regcache (displaced->step_thread));
1874 ret = 1;
1875 }
1876 else
1877 {
1878 /* Since the instruction didn't complete, all we can do is
1879 relocate the PC. */
1880 struct regcache *regcache = get_thread_regcache (event_thread);
1881 CORE_ADDR pc = regcache_read_pc (regcache);
1882
1883 pc = displaced->step_original + (pc - displaced->step_copy);
1884 regcache_write_pc (regcache, pc);
1885 ret = -1;
1886 }
1887
1888 return ret;
1889 }
1890
1891 /* Data to be passed around while handling an event. This data is
1892 discarded between events. */
1893 struct execution_control_state
1894 {
1895 process_stratum_target *target;
1896 ptid_t ptid;
1897 /* The thread that got the event, if this was a thread event; NULL
1898 otherwise. */
1899 struct thread_info *event_thread;
1900
1901 struct target_waitstatus ws;
1902 int stop_func_filled_in;
1903 CORE_ADDR stop_func_start;
1904 CORE_ADDR stop_func_end;
1905 const char *stop_func_name;
1906 int wait_some_more;
1907
1908 /* True if the event thread hit the single-step breakpoint of
1909 another thread. Thus the event doesn't cause a stop, the thread
1910 needs to be single-stepped past the single-step breakpoint before
1911 we can switch back to the original stepping thread. */
1912 int hit_singlestep_breakpoint;
1913 };
1914
1915 /* Clear ECS and set it to point at TP. */
1916
1917 static void
1918 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1919 {
1920 memset (ecs, 0, sizeof (*ecs));
1921 ecs->event_thread = tp;
1922 ecs->ptid = tp->ptid;
1923 }
1924
1925 static void keep_going_pass_signal (struct execution_control_state *ecs);
1926 static void prepare_to_wait (struct execution_control_state *ecs);
1927 static bool keep_going_stepped_thread (struct thread_info *tp);
1928 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1929
1930 /* Are there any pending step-over requests? If so, run all we can
1931 now and return true. Otherwise, return false. */
1932
1933 static bool
1934 start_step_over (void)
1935 {
1936 struct thread_info *tp, *next;
1937
1938 /* Don't start a new step-over if we already have an in-line
1939 step-over operation ongoing. */
1940 if (step_over_info_valid_p ())
1941 return false;
1942
1943 for (tp = step_over_queue_head; tp != NULL; tp = next)
1944 {
1945 struct execution_control_state ecss;
1946 struct execution_control_state *ecs = &ecss;
1947 step_over_what step_what;
1948 int must_be_in_line;
1949
1950 gdb_assert (!tp->stop_requested);
1951
1952 next = thread_step_over_chain_next (tp);
1953
1954 /* If this inferior already has a displaced step in process,
1955 don't start a new one. */
1956 if (displaced_step_in_progress (tp->inf))
1957 continue;
1958
1959 step_what = thread_still_needs_step_over (tp);
1960 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1961 || ((step_what & STEP_OVER_BREAKPOINT)
1962 && !use_displaced_stepping (tp)));
1963
1964 /* We currently stop all threads of all processes to step-over
1965 in-line. If we need to start a new in-line step-over, let
1966 any pending displaced steps finish first. */
1967 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1968 return false;
1969
1970 thread_step_over_chain_remove (tp);
1971
1972 if (step_over_queue_head == NULL)
1973 infrun_debug_printf ("step-over queue now empty");
1974
1975 if (tp->control.trap_expected
1976 || tp->resumed
1977 || tp->executing)
1978 {
1979 internal_error (__FILE__, __LINE__,
1980 "[%s] has inconsistent state: "
1981 "trap_expected=%d, resumed=%d, executing=%d\n",
1982 target_pid_to_str (tp->ptid).c_str (),
1983 tp->control.trap_expected,
1984 tp->resumed,
1985 tp->executing);
1986 }
1987
1988 infrun_debug_printf ("resuming [%s] for step-over",
1989 target_pid_to_str (tp->ptid).c_str ());
1990
1991 /* keep_going_pass_signal skips the step-over if the breakpoint
1992 is no longer inserted. In all-stop, we want to keep looking
1993 for a thread that needs a step-over instead of resuming TP,
1994 because we wouldn't be able to resume anything else until the
1995 target stops again. In non-stop, the resume always resumes
1996 only TP, so it's OK to let the thread resume freely. */
1997 if (!target_is_non_stop_p () && !step_what)
1998 continue;
1999
2000 switch_to_thread (tp);
2001 reset_ecs (ecs, tp);
2002 keep_going_pass_signal (ecs);
2003
2004 if (!ecs->wait_some_more)
2005 error (_("Command aborted."));
2006
2007 gdb_assert (tp->resumed);
2008
2009 /* If we started a new in-line step-over, we're done. */
2010 if (step_over_info_valid_p ())
2011 {
2012 gdb_assert (tp->control.trap_expected);
2013 return true;
2014 }
2015
2016 if (!target_is_non_stop_p ())
2017 {
2018 /* On all-stop, shouldn't have resumed unless we needed a
2019 step over. */
2020 gdb_assert (tp->control.trap_expected
2021 || tp->step_after_step_resume_breakpoint);
2022
2023 /* With remote targets (at least), in all-stop, we can't
2024 issue any further remote commands until the program stops
2025 again. */
2026 return true;
2027 }
2028
2029 /* Either the thread no longer needed a step-over, or a new
2030 displaced stepping sequence started. Even in the latter
2031 case, continue looking. Maybe we can also start another
2032 displaced step on a thread of other process. */
2033 }
2034
2035 return false;
2036 }
2037
2038 /* Update global variables holding ptids to hold NEW_PTID if they were
2039 holding OLD_PTID. */
2040 static void
2041 infrun_thread_ptid_changed (process_stratum_target *target,
2042 ptid_t old_ptid, ptid_t new_ptid)
2043 {
2044 if (inferior_ptid == old_ptid
2045 && current_inferior ()->process_target () == target)
2046 inferior_ptid = new_ptid;
2047 }
2048
2049 \f
2050
2051 static const char schedlock_off[] = "off";
2052 static const char schedlock_on[] = "on";
2053 static const char schedlock_step[] = "step";
2054 static const char schedlock_replay[] = "replay";
2055 static const char *const scheduler_enums[] = {
2056 schedlock_off,
2057 schedlock_on,
2058 schedlock_step,
2059 schedlock_replay,
2060 NULL
2061 };
2062 static const char *scheduler_mode = schedlock_replay;
2063 static void
2064 show_scheduler_mode (struct ui_file *file, int from_tty,
2065 struct cmd_list_element *c, const char *value)
2066 {
2067 fprintf_filtered (file,
2068 _("Mode for locking scheduler "
2069 "during execution is \"%s\".\n"),
2070 value);
2071 }
2072
2073 static void
2074 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2075 {
2076 if (!target_can_lock_scheduler ())
2077 {
2078 scheduler_mode = schedlock_off;
2079 error (_("Target '%s' cannot support this command."), target_shortname);
2080 }
2081 }
2082
2083 /* True if execution commands resume all threads of all processes by
2084 default; otherwise, resume only threads of the current inferior
2085 process. */
2086 bool sched_multi = false;
2087
2088 /* Try to setup for software single stepping over the specified location.
2089 Return true if target_resume() should use hardware single step.
2090
2091 GDBARCH the current gdbarch.
2092 PC the location to step over. */
2093
2094 static bool
2095 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2096 {
2097 bool hw_step = true;
2098
2099 if (execution_direction == EXEC_FORWARD
2100 && gdbarch_software_single_step_p (gdbarch))
2101 hw_step = !insert_single_step_breakpoints (gdbarch);
2102
2103 return hw_step;
2104 }
2105
2106 /* See infrun.h. */
2107
2108 ptid_t
2109 user_visible_resume_ptid (int step)
2110 {
2111 ptid_t resume_ptid;
2112
2113 if (non_stop)
2114 {
2115 /* With non-stop mode on, threads are always handled
2116 individually. */
2117 resume_ptid = inferior_ptid;
2118 }
2119 else if ((scheduler_mode == schedlock_on)
2120 || (scheduler_mode == schedlock_step && step))
2121 {
2122 /* User-settable 'scheduler' mode requires solo thread
2123 resume. */
2124 resume_ptid = inferior_ptid;
2125 }
2126 else if ((scheduler_mode == schedlock_replay)
2127 && target_record_will_replay (minus_one_ptid, execution_direction))
2128 {
2129 /* User-settable 'scheduler' mode requires solo thread resume in replay
2130 mode. */
2131 resume_ptid = inferior_ptid;
2132 }
2133 else if (!sched_multi && target_supports_multi_process ())
2134 {
2135 /* Resume all threads of the current process (and none of other
2136 processes). */
2137 resume_ptid = ptid_t (inferior_ptid.pid ());
2138 }
2139 else
2140 {
2141 /* Resume all threads of all processes. */
2142 resume_ptid = RESUME_ALL;
2143 }
2144
2145 return resume_ptid;
2146 }
2147
2148 /* See infrun.h. */
2149
2150 process_stratum_target *
2151 user_visible_resume_target (ptid_t resume_ptid)
2152 {
2153 return (resume_ptid == minus_one_ptid && sched_multi
2154 ? NULL
2155 : current_inferior ()->process_target ());
2156 }
2157
2158 /* Return a ptid representing the set of threads that we will resume,
2159 in the perspective of the target, assuming run control handling
2160 does not require leaving some threads stopped (e.g., stepping past
2161 breakpoint). USER_STEP indicates whether we're about to start the
2162 target for a stepping command. */
2163
2164 static ptid_t
2165 internal_resume_ptid (int user_step)
2166 {
2167 /* In non-stop, we always control threads individually. Note that
2168 the target may always work in non-stop mode even with "set
2169 non-stop off", in which case user_visible_resume_ptid could
2170 return a wildcard ptid. */
2171 if (target_is_non_stop_p ())
2172 return inferior_ptid;
2173 else
2174 return user_visible_resume_ptid (user_step);
2175 }
2176
2177 /* Wrapper for target_resume, that handles infrun-specific
2178 bookkeeping. */
2179
2180 static void
2181 do_target_resume (ptid_t resume_ptid, bool step, enum gdb_signal sig)
2182 {
2183 struct thread_info *tp = inferior_thread ();
2184
2185 gdb_assert (!tp->stop_requested);
2186
2187 /* Install inferior's terminal modes. */
2188 target_terminal::inferior ();
2189
2190 /* Avoid confusing the next resume, if the next stop/resume
2191 happens to apply to another thread. */
2192 tp->suspend.stop_signal = GDB_SIGNAL_0;
2193
2194 /* Advise target which signals may be handled silently.
2195
2196 If we have removed breakpoints because we are stepping over one
2197 in-line (in any thread), we need to receive all signals to avoid
2198 accidentally skipping a breakpoint during execution of a signal
2199 handler.
2200
2201 Likewise if we're displaced stepping, otherwise a trap for a
2202 breakpoint in a signal handler might be confused with the
2203 displaced step finishing. We don't make the displaced_step_fixup
2204 step distinguish the cases instead, because:
2205
2206 - a backtrace while stopped in the signal handler would show the
2207 scratch pad as frame older than the signal handler, instead of
2208 the real mainline code.
2209
2210 - when the thread is later resumed, the signal handler would
2211 return to the scratch pad area, which would no longer be
2212 valid. */
2213 if (step_over_info_valid_p ()
2214 || displaced_step_in_progress (tp->inf))
2215 target_pass_signals ({});
2216 else
2217 target_pass_signals (signal_pass);
2218
2219 target_resume (resume_ptid, step, sig);
2220
2221 target_commit_resume ();
2222
2223 if (target_can_async_p ())
2224 target_async (1);
2225 }
2226
2227 /* Resume the inferior. SIG is the signal to give the inferior
2228 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2229 call 'resume', which handles exceptions. */
2230
2231 static void
2232 resume_1 (enum gdb_signal sig)
2233 {
2234 struct regcache *regcache = get_current_regcache ();
2235 struct gdbarch *gdbarch = regcache->arch ();
2236 struct thread_info *tp = inferior_thread ();
2237 const address_space *aspace = regcache->aspace ();
2238 ptid_t resume_ptid;
2239 /* This represents the user's step vs continue request. When
2240 deciding whether "set scheduler-locking step" applies, it's the
2241 user's intention that counts. */
2242 const int user_step = tp->control.stepping_command;
2243 /* This represents what we'll actually request the target to do.
2244 This can decay from a step to a continue, if e.g., we need to
2245 implement single-stepping with breakpoints (software
2246 single-step). */
2247 bool step;
2248
2249 gdb_assert (!tp->stop_requested);
2250 gdb_assert (!thread_is_in_step_over_chain (tp));
2251
2252 if (tp->suspend.waitstatus_pending_p)
2253 {
2254 infrun_debug_printf
2255 ("thread %s has pending wait "
2256 "status %s (currently_stepping=%d).",
2257 target_pid_to_str (tp->ptid).c_str (),
2258 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2259 currently_stepping (tp));
2260
2261 tp->inf->process_target ()->threads_executing = true;
2262 tp->resumed = true;
2263
2264 /* FIXME: What should we do if we are supposed to resume this
2265 thread with a signal? Maybe we should maintain a queue of
2266 pending signals to deliver. */
2267 if (sig != GDB_SIGNAL_0)
2268 {
2269 warning (_("Couldn't deliver signal %s to %s."),
2270 gdb_signal_to_name (sig),
2271 target_pid_to_str (tp->ptid).c_str ());
2272 }
2273
2274 tp->suspend.stop_signal = GDB_SIGNAL_0;
2275
2276 if (target_can_async_p ())
2277 {
2278 target_async (1);
2279 /* Tell the event loop we have an event to process. */
2280 mark_async_event_handler (infrun_async_inferior_event_token);
2281 }
2282 return;
2283 }
2284
2285 tp->stepped_breakpoint = 0;
2286
2287 /* Depends on stepped_breakpoint. */
2288 step = currently_stepping (tp);
2289
2290 if (current_inferior ()->waiting_for_vfork_done)
2291 {
2292 /* Don't try to single-step a vfork parent that is waiting for
2293 the child to get out of the shared memory region (by exec'ing
2294 or exiting). This is particularly important on software
2295 single-step archs, as the child process would trip on the
2296 software single step breakpoint inserted for the parent
2297 process. Since the parent will not actually execute any
2298 instruction until the child is out of the shared region (such
2299 are vfork's semantics), it is safe to simply continue it.
2300 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2301 the parent, and tell it to `keep_going', which automatically
2302 re-sets it stepping. */
2303 infrun_debug_printf ("resume : clear step");
2304 step = false;
2305 }
2306
2307 CORE_ADDR pc = regcache_read_pc (regcache);
2308
2309 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2310 "current thread [%s] at %s",
2311 step, gdb_signal_to_symbol_string (sig),
2312 tp->control.trap_expected,
2313 target_pid_to_str (inferior_ptid).c_str (),
2314 paddress (gdbarch, pc));
2315
2316 /* Normally, by the time we reach `resume', the breakpoints are either
2317 removed or inserted, as appropriate. The exception is if we're sitting
2318 at a permanent breakpoint; we need to step over it, but permanent
2319 breakpoints can't be removed. So we have to test for it here. */
2320 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2321 {
2322 if (sig != GDB_SIGNAL_0)
2323 {
2324 /* We have a signal to pass to the inferior. The resume
2325 may, or may not take us to the signal handler. If this
2326 is a step, we'll need to stop in the signal handler, if
2327 there's one, (if the target supports stepping into
2328 handlers), or in the next mainline instruction, if
2329 there's no handler. If this is a continue, we need to be
2330 sure to run the handler with all breakpoints inserted.
2331 In all cases, set a breakpoint at the current address
2332 (where the handler returns to), and once that breakpoint
2333 is hit, resume skipping the permanent breakpoint. If
2334 that breakpoint isn't hit, then we've stepped into the
2335 signal handler (or hit some other event). We'll delete
2336 the step-resume breakpoint then. */
2337
2338 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2339 "deliver signal first");
2340
2341 clear_step_over_info ();
2342 tp->control.trap_expected = 0;
2343
2344 if (tp->control.step_resume_breakpoint == NULL)
2345 {
2346 /* Set a "high-priority" step-resume, as we don't want
2347 user breakpoints at PC to trigger (again) when this
2348 hits. */
2349 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2350 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2351
2352 tp->step_after_step_resume_breakpoint = step;
2353 }
2354
2355 insert_breakpoints ();
2356 }
2357 else
2358 {
2359 /* There's no signal to pass, we can go ahead and skip the
2360 permanent breakpoint manually. */
2361 infrun_debug_printf ("skipping permanent breakpoint");
2362 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2363 /* Update pc to reflect the new address from which we will
2364 execute instructions. */
2365 pc = regcache_read_pc (regcache);
2366
2367 if (step)
2368 {
2369 /* We've already advanced the PC, so the stepping part
2370 is done. Now we need to arrange for a trap to be
2371 reported to handle_inferior_event. Set a breakpoint
2372 at the current PC, and run to it. Don't update
2373 prev_pc, because if we end in
2374 switch_back_to_stepped_thread, we want the "expected
2375 thread advanced also" branch to be taken. IOW, we
2376 don't want this thread to step further from PC
2377 (overstep). */
2378 gdb_assert (!step_over_info_valid_p ());
2379 insert_single_step_breakpoint (gdbarch, aspace, pc);
2380 insert_breakpoints ();
2381
2382 resume_ptid = internal_resume_ptid (user_step);
2383 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
2384 tp->resumed = true;
2385 return;
2386 }
2387 }
2388 }
2389
2390 /* If we have a breakpoint to step over, make sure to do a single
2391 step only. Same if we have software watchpoints. */
2392 if (tp->control.trap_expected || bpstat_should_step ())
2393 tp->control.may_range_step = 0;
2394
2395 /* If displaced stepping is enabled, step over breakpoints by executing a
2396 copy of the instruction at a different address.
2397
2398 We can't use displaced stepping when we have a signal to deliver;
2399 the comments for displaced_step_prepare explain why. The
2400 comments in the handle_inferior event for dealing with 'random
2401 signals' explain what we do instead.
2402
2403 We can't use displaced stepping when we are waiting for vfork_done
2404 event, displaced stepping breaks the vfork child similarly as single
2405 step software breakpoint. */
2406 if (tp->control.trap_expected
2407 && use_displaced_stepping (tp)
2408 && !step_over_info_valid_p ()
2409 && sig == GDB_SIGNAL_0
2410 && !current_inferior ()->waiting_for_vfork_done)
2411 {
2412 int prepared = displaced_step_prepare (tp);
2413
2414 if (prepared == 0)
2415 {
2416 infrun_debug_printf ("Got placed in step-over queue");
2417
2418 tp->control.trap_expected = 0;
2419 return;
2420 }
2421 else if (prepared < 0)
2422 {
2423 /* Fallback to stepping over the breakpoint in-line. */
2424
2425 if (target_is_non_stop_p ())
2426 stop_all_threads ();
2427
2428 set_step_over_info (regcache->aspace (),
2429 regcache_read_pc (regcache), 0, tp->global_num);
2430
2431 step = maybe_software_singlestep (gdbarch, pc);
2432
2433 insert_breakpoints ();
2434 }
2435 else if (prepared > 0)
2436 {
2437 /* Update pc to reflect the new address from which we will
2438 execute instructions due to displaced stepping. */
2439 pc = regcache_read_pc (get_thread_regcache (tp));
2440
2441 step = gdbarch_displaced_step_hw_singlestep (gdbarch);
2442 }
2443 }
2444
2445 /* Do we need to do it the hard way, w/temp breakpoints? */
2446 else if (step)
2447 step = maybe_software_singlestep (gdbarch, pc);
2448
2449 /* Currently, our software single-step implementation leads to different
2450 results than hardware single-stepping in one situation: when stepping
2451 into delivering a signal which has an associated signal handler,
2452 hardware single-step will stop at the first instruction of the handler,
2453 while software single-step will simply skip execution of the handler.
2454
2455 For now, this difference in behavior is accepted since there is no
2456 easy way to actually implement single-stepping into a signal handler
2457 without kernel support.
2458
2459 However, there is one scenario where this difference leads to follow-on
2460 problems: if we're stepping off a breakpoint by removing all breakpoints
2461 and then single-stepping. In this case, the software single-step
2462 behavior means that even if there is a *breakpoint* in the signal
2463 handler, GDB still would not stop.
2464
2465 Fortunately, we can at least fix this particular issue. We detect
2466 here the case where we are about to deliver a signal while software
2467 single-stepping with breakpoints removed. In this situation, we
2468 revert the decisions to remove all breakpoints and insert single-
2469 step breakpoints, and instead we install a step-resume breakpoint
2470 at the current address, deliver the signal without stepping, and
2471 once we arrive back at the step-resume breakpoint, actually step
2472 over the breakpoint we originally wanted to step over. */
2473 if (thread_has_single_step_breakpoints_set (tp)
2474 && sig != GDB_SIGNAL_0
2475 && step_over_info_valid_p ())
2476 {
2477 /* If we have nested signals or a pending signal is delivered
2478 immediately after a handler returns, might already have
2479 a step-resume breakpoint set on the earlier handler. We cannot
2480 set another step-resume breakpoint; just continue on until the
2481 original breakpoint is hit. */
2482 if (tp->control.step_resume_breakpoint == NULL)
2483 {
2484 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2485 tp->step_after_step_resume_breakpoint = 1;
2486 }
2487
2488 delete_single_step_breakpoints (tp);
2489
2490 clear_step_over_info ();
2491 tp->control.trap_expected = 0;
2492
2493 insert_breakpoints ();
2494 }
2495
2496 /* If STEP is set, it's a request to use hardware stepping
2497 facilities. But in that case, we should never
2498 use singlestep breakpoint. */
2499 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2500
2501 /* Decide the set of threads to ask the target to resume. */
2502 if (tp->control.trap_expected)
2503 {
2504 /* We're allowing a thread to run past a breakpoint it has
2505 hit, either by single-stepping the thread with the breakpoint
2506 removed, or by displaced stepping, with the breakpoint inserted.
2507 In the former case, we need to single-step only this thread,
2508 and keep others stopped, as they can miss this breakpoint if
2509 allowed to run. That's not really a problem for displaced
2510 stepping, but, we still keep other threads stopped, in case
2511 another thread is also stopped for a breakpoint waiting for
2512 its turn in the displaced stepping queue. */
2513 resume_ptid = inferior_ptid;
2514 }
2515 else
2516 resume_ptid = internal_resume_ptid (user_step);
2517
2518 if (execution_direction != EXEC_REVERSE
2519 && step && breakpoint_inserted_here_p (aspace, pc))
2520 {
2521 /* There are two cases where we currently need to step a
2522 breakpoint instruction when we have a signal to deliver:
2523
2524 - See handle_signal_stop where we handle random signals that
2525 could take out us out of the stepping range. Normally, in
2526 that case we end up continuing (instead of stepping) over the
2527 signal handler with a breakpoint at PC, but there are cases
2528 where we should _always_ single-step, even if we have a
2529 step-resume breakpoint, like when a software watchpoint is
2530 set. Assuming single-stepping and delivering a signal at the
2531 same time would takes us to the signal handler, then we could
2532 have removed the breakpoint at PC to step over it. However,
2533 some hardware step targets (like e.g., Mac OS) can't step
2534 into signal handlers, and for those, we need to leave the
2535 breakpoint at PC inserted, as otherwise if the handler
2536 recurses and executes PC again, it'll miss the breakpoint.
2537 So we leave the breakpoint inserted anyway, but we need to
2538 record that we tried to step a breakpoint instruction, so
2539 that adjust_pc_after_break doesn't end up confused.
2540
2541 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2542 in one thread after another thread that was stepping had been
2543 momentarily paused for a step-over. When we re-resume the
2544 stepping thread, it may be resumed from that address with a
2545 breakpoint that hasn't trapped yet. Seen with
2546 gdb.threads/non-stop-fair-events.exp, on targets that don't
2547 do displaced stepping. */
2548
2549 infrun_debug_printf ("resume: [%s] stepped breakpoint",
2550 target_pid_to_str (tp->ptid).c_str ());
2551
2552 tp->stepped_breakpoint = 1;
2553
2554 /* Most targets can step a breakpoint instruction, thus
2555 executing it normally. But if this one cannot, just
2556 continue and we will hit it anyway. */
2557 if (gdbarch_cannot_step_breakpoint (gdbarch))
2558 step = false;
2559 }
2560
2561 if (debug_displaced
2562 && tp->control.trap_expected
2563 && use_displaced_stepping (tp)
2564 && !step_over_info_valid_p ())
2565 {
2566 struct regcache *resume_regcache = get_thread_regcache (tp);
2567 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2568 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2569 gdb_byte buf[4];
2570
2571 read_memory (actual_pc, buf, sizeof (buf));
2572 displaced_debug_printf ("run %s: %s",
2573 paddress (resume_gdbarch, actual_pc),
2574 displaced_step_dump_bytes
2575 (buf, sizeof (buf)).c_str ());
2576 }
2577
2578 if (tp->control.may_range_step)
2579 {
2580 /* If we're resuming a thread with the PC out of the step
2581 range, then we're doing some nested/finer run control
2582 operation, like stepping the thread out of the dynamic
2583 linker or the displaced stepping scratch pad. We
2584 shouldn't have allowed a range step then. */
2585 gdb_assert (pc_in_thread_step_range (pc, tp));
2586 }
2587
2588 do_target_resume (resume_ptid, step, sig);
2589 tp->resumed = true;
2590 }
2591
2592 /* Resume the inferior. SIG is the signal to give the inferior
2593 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2594 rolls back state on error. */
2595
2596 static void
2597 resume (gdb_signal sig)
2598 {
2599 try
2600 {
2601 resume_1 (sig);
2602 }
2603 catch (const gdb_exception &ex)
2604 {
2605 /* If resuming is being aborted for any reason, delete any
2606 single-step breakpoint resume_1 may have created, to avoid
2607 confusing the following resumption, and to avoid leaving
2608 single-step breakpoints perturbing other threads, in case
2609 we're running in non-stop mode. */
2610 if (inferior_ptid != null_ptid)
2611 delete_single_step_breakpoints (inferior_thread ());
2612 throw;
2613 }
2614 }
2615
2616 \f
2617 /* Proceeding. */
2618
2619 /* See infrun.h. */
2620
2621 /* Counter that tracks number of user visible stops. This can be used
2622 to tell whether a command has proceeded the inferior past the
2623 current location. This allows e.g., inferior function calls in
2624 breakpoint commands to not interrupt the command list. When the
2625 call finishes successfully, the inferior is standing at the same
2626 breakpoint as if nothing happened (and so we don't call
2627 normal_stop). */
2628 static ULONGEST current_stop_id;
2629
2630 /* See infrun.h. */
2631
2632 ULONGEST
2633 get_stop_id (void)
2634 {
2635 return current_stop_id;
2636 }
2637
2638 /* Called when we report a user visible stop. */
2639
2640 static void
2641 new_stop_id (void)
2642 {
2643 current_stop_id++;
2644 }
2645
2646 /* Clear out all variables saying what to do when inferior is continued.
2647 First do this, then set the ones you want, then call `proceed'. */
2648
2649 static void
2650 clear_proceed_status_thread (struct thread_info *tp)
2651 {
2652 infrun_debug_printf ("%s", target_pid_to_str (tp->ptid).c_str ());
2653
2654 /* If we're starting a new sequence, then the previous finished
2655 single-step is no longer relevant. */
2656 if (tp->suspend.waitstatus_pending_p)
2657 {
2658 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2659 {
2660 infrun_debug_printf ("pending event of %s was a finished step. "
2661 "Discarding.",
2662 target_pid_to_str (tp->ptid).c_str ());
2663
2664 tp->suspend.waitstatus_pending_p = 0;
2665 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2666 }
2667 else
2668 {
2669 infrun_debug_printf
2670 ("thread %s has pending wait status %s (currently_stepping=%d).",
2671 target_pid_to_str (tp->ptid).c_str (),
2672 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2673 currently_stepping (tp));
2674 }
2675 }
2676
2677 /* If this signal should not be seen by program, give it zero.
2678 Used for debugging signals. */
2679 if (!signal_pass_state (tp->suspend.stop_signal))
2680 tp->suspend.stop_signal = GDB_SIGNAL_0;
2681
2682 delete tp->thread_fsm;
2683 tp->thread_fsm = NULL;
2684
2685 tp->control.trap_expected = 0;
2686 tp->control.step_range_start = 0;
2687 tp->control.step_range_end = 0;
2688 tp->control.may_range_step = 0;
2689 tp->control.step_frame_id = null_frame_id;
2690 tp->control.step_stack_frame_id = null_frame_id;
2691 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2692 tp->control.step_start_function = NULL;
2693 tp->stop_requested = 0;
2694
2695 tp->control.stop_step = 0;
2696
2697 tp->control.proceed_to_finish = 0;
2698
2699 tp->control.stepping_command = 0;
2700
2701 /* Discard any remaining commands or status from previous stop. */
2702 bpstat_clear (&tp->control.stop_bpstat);
2703 }
2704
2705 void
2706 clear_proceed_status (int step)
2707 {
2708 /* With scheduler-locking replay, stop replaying other threads if we're
2709 not replaying the user-visible resume ptid.
2710
2711 This is a convenience feature to not require the user to explicitly
2712 stop replaying the other threads. We're assuming that the user's
2713 intent is to resume tracing the recorded process. */
2714 if (!non_stop && scheduler_mode == schedlock_replay
2715 && target_record_is_replaying (minus_one_ptid)
2716 && !target_record_will_replay (user_visible_resume_ptid (step),
2717 execution_direction))
2718 target_record_stop_replaying ();
2719
2720 if (!non_stop && inferior_ptid != null_ptid)
2721 {
2722 ptid_t resume_ptid = user_visible_resume_ptid (step);
2723 process_stratum_target *resume_target
2724 = user_visible_resume_target (resume_ptid);
2725
2726 /* In all-stop mode, delete the per-thread status of all threads
2727 we're about to resume, implicitly and explicitly. */
2728 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2729 clear_proceed_status_thread (tp);
2730 }
2731
2732 if (inferior_ptid != null_ptid)
2733 {
2734 struct inferior *inferior;
2735
2736 if (non_stop)
2737 {
2738 /* If in non-stop mode, only delete the per-thread status of
2739 the current thread. */
2740 clear_proceed_status_thread (inferior_thread ());
2741 }
2742
2743 inferior = current_inferior ();
2744 inferior->control.stop_soon = NO_STOP_QUIETLY;
2745 }
2746
2747 gdb::observers::about_to_proceed.notify ();
2748 }
2749
2750 /* Returns true if TP is still stopped at a breakpoint that needs
2751 stepping-over in order to make progress. If the breakpoint is gone
2752 meanwhile, we can skip the whole step-over dance. */
2753
2754 static bool
2755 thread_still_needs_step_over_bp (struct thread_info *tp)
2756 {
2757 if (tp->stepping_over_breakpoint)
2758 {
2759 struct regcache *regcache = get_thread_regcache (tp);
2760
2761 if (breakpoint_here_p (regcache->aspace (),
2762 regcache_read_pc (regcache))
2763 == ordinary_breakpoint_here)
2764 return true;
2765
2766 tp->stepping_over_breakpoint = 0;
2767 }
2768
2769 return false;
2770 }
2771
2772 /* Check whether thread TP still needs to start a step-over in order
2773 to make progress when resumed. Returns an bitwise or of enum
2774 step_over_what bits, indicating what needs to be stepped over. */
2775
2776 static step_over_what
2777 thread_still_needs_step_over (struct thread_info *tp)
2778 {
2779 step_over_what what = 0;
2780
2781 if (thread_still_needs_step_over_bp (tp))
2782 what |= STEP_OVER_BREAKPOINT;
2783
2784 if (tp->stepping_over_watchpoint
2785 && !target_have_steppable_watchpoint ())
2786 what |= STEP_OVER_WATCHPOINT;
2787
2788 return what;
2789 }
2790
2791 /* Returns true if scheduler locking applies. STEP indicates whether
2792 we're about to do a step/next-like command to a thread. */
2793
2794 static bool
2795 schedlock_applies (struct thread_info *tp)
2796 {
2797 return (scheduler_mode == schedlock_on
2798 || (scheduler_mode == schedlock_step
2799 && tp->control.stepping_command)
2800 || (scheduler_mode == schedlock_replay
2801 && target_record_will_replay (minus_one_ptid,
2802 execution_direction)));
2803 }
2804
2805 /* Calls target_commit_resume on all targets. */
2806
2807 static void
2808 commit_resume_all_targets ()
2809 {
2810 scoped_restore_current_thread restore_thread;
2811
2812 /* Map between process_target and a representative inferior. This
2813 is to avoid committing a resume in the same target more than
2814 once. Resumptions must be idempotent, so this is an
2815 optimization. */
2816 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2817
2818 for (inferior *inf : all_non_exited_inferiors ())
2819 if (inf->has_execution ())
2820 conn_inf[inf->process_target ()] = inf;
2821
2822 for (const auto &ci : conn_inf)
2823 {
2824 inferior *inf = ci.second;
2825 switch_to_inferior_no_thread (inf);
2826 target_commit_resume ();
2827 }
2828 }
2829
2830 /* Check that all the targets we're about to resume are in non-stop
2831 mode. Ideally, we'd only care whether all targets support
2832 target-async, but we're not there yet. E.g., stop_all_threads
2833 doesn't know how to handle all-stop targets. Also, the remote
2834 protocol in all-stop mode is synchronous, irrespective of
2835 target-async, which means that things like a breakpoint re-set
2836 triggered by one target would try to read memory from all targets
2837 and fail. */
2838
2839 static void
2840 check_multi_target_resumption (process_stratum_target *resume_target)
2841 {
2842 if (!non_stop && resume_target == nullptr)
2843 {
2844 scoped_restore_current_thread restore_thread;
2845
2846 /* This is used to track whether we're resuming more than one
2847 target. */
2848 process_stratum_target *first_connection = nullptr;
2849
2850 /* The first inferior we see with a target that does not work in
2851 always-non-stop mode. */
2852 inferior *first_not_non_stop = nullptr;
2853
2854 for (inferior *inf : all_non_exited_inferiors (resume_target))
2855 {
2856 switch_to_inferior_no_thread (inf);
2857
2858 if (!target_has_execution ())
2859 continue;
2860
2861 process_stratum_target *proc_target
2862 = current_inferior ()->process_target();
2863
2864 if (!target_is_non_stop_p ())
2865 first_not_non_stop = inf;
2866
2867 if (first_connection == nullptr)
2868 first_connection = proc_target;
2869 else if (first_connection != proc_target
2870 && first_not_non_stop != nullptr)
2871 {
2872 switch_to_inferior_no_thread (first_not_non_stop);
2873
2874 proc_target = current_inferior ()->process_target();
2875
2876 error (_("Connection %d (%s) does not support "
2877 "multi-target resumption."),
2878 proc_target->connection_number,
2879 make_target_connection_string (proc_target).c_str ());
2880 }
2881 }
2882 }
2883 }
2884
2885 /* Basic routine for continuing the program in various fashions.
2886
2887 ADDR is the address to resume at, or -1 for resume where stopped.
2888 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2889 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2890
2891 You should call clear_proceed_status before calling proceed. */
2892
2893 void
2894 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2895 {
2896 struct regcache *regcache;
2897 struct gdbarch *gdbarch;
2898 CORE_ADDR pc;
2899 struct execution_control_state ecss;
2900 struct execution_control_state *ecs = &ecss;
2901 bool started;
2902
2903 /* If we're stopped at a fork/vfork, follow the branch set by the
2904 "set follow-fork-mode" command; otherwise, we'll just proceed
2905 resuming the current thread. */
2906 if (!follow_fork ())
2907 {
2908 /* The target for some reason decided not to resume. */
2909 normal_stop ();
2910 if (target_can_async_p ())
2911 inferior_event_handler (INF_EXEC_COMPLETE);
2912 return;
2913 }
2914
2915 /* We'll update this if & when we switch to a new thread. */
2916 previous_inferior_ptid = inferior_ptid;
2917
2918 regcache = get_current_regcache ();
2919 gdbarch = regcache->arch ();
2920 const address_space *aspace = regcache->aspace ();
2921
2922 pc = regcache_read_pc_protected (regcache);
2923
2924 thread_info *cur_thr = inferior_thread ();
2925
2926 /* Fill in with reasonable starting values. */
2927 init_thread_stepping_state (cur_thr);
2928
2929 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2930
2931 ptid_t resume_ptid
2932 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2933 process_stratum_target *resume_target
2934 = user_visible_resume_target (resume_ptid);
2935
2936 check_multi_target_resumption (resume_target);
2937
2938 if (addr == (CORE_ADDR) -1)
2939 {
2940 if (pc == cur_thr->suspend.stop_pc
2941 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2942 && execution_direction != EXEC_REVERSE)
2943 /* There is a breakpoint at the address we will resume at,
2944 step one instruction before inserting breakpoints so that
2945 we do not stop right away (and report a second hit at this
2946 breakpoint).
2947
2948 Note, we don't do this in reverse, because we won't
2949 actually be executing the breakpoint insn anyway.
2950 We'll be (un-)executing the previous instruction. */
2951 cur_thr->stepping_over_breakpoint = 1;
2952 else if (gdbarch_single_step_through_delay_p (gdbarch)
2953 && gdbarch_single_step_through_delay (gdbarch,
2954 get_current_frame ()))
2955 /* We stepped onto an instruction that needs to be stepped
2956 again before re-inserting the breakpoint, do so. */
2957 cur_thr->stepping_over_breakpoint = 1;
2958 }
2959 else
2960 {
2961 regcache_write_pc (regcache, addr);
2962 }
2963
2964 if (siggnal != GDB_SIGNAL_DEFAULT)
2965 cur_thr->suspend.stop_signal = siggnal;
2966
2967 /* If an exception is thrown from this point on, make sure to
2968 propagate GDB's knowledge of the executing state to the
2969 frontend/user running state. */
2970 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
2971
2972 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2973 threads (e.g., we might need to set threads stepping over
2974 breakpoints first), from the user/frontend's point of view, all
2975 threads in RESUME_PTID are now running. Unless we're calling an
2976 inferior function, as in that case we pretend the inferior
2977 doesn't run at all. */
2978 if (!cur_thr->control.in_infcall)
2979 set_running (resume_target, resume_ptid, true);
2980
2981 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
2982 gdb_signal_to_symbol_string (siggnal));
2983
2984 annotate_starting ();
2985
2986 /* Make sure that output from GDB appears before output from the
2987 inferior. */
2988 gdb_flush (gdb_stdout);
2989
2990 /* Since we've marked the inferior running, give it the terminal. A
2991 QUIT/Ctrl-C from here on is forwarded to the target (which can
2992 still detect attempts to unblock a stuck connection with repeated
2993 Ctrl-C from within target_pass_ctrlc). */
2994 target_terminal::inferior ();
2995
2996 /* In a multi-threaded task we may select another thread and
2997 then continue or step.
2998
2999 But if a thread that we're resuming had stopped at a breakpoint,
3000 it will immediately cause another breakpoint stop without any
3001 execution (i.e. it will report a breakpoint hit incorrectly). So
3002 we must step over it first.
3003
3004 Look for threads other than the current (TP) that reported a
3005 breakpoint hit and haven't been resumed yet since. */
3006
3007 /* If scheduler locking applies, we can avoid iterating over all
3008 threads. */
3009 if (!non_stop && !schedlock_applies (cur_thr))
3010 {
3011 for (thread_info *tp : all_non_exited_threads (resume_target,
3012 resume_ptid))
3013 {
3014 switch_to_thread_no_regs (tp);
3015
3016 /* Ignore the current thread here. It's handled
3017 afterwards. */
3018 if (tp == cur_thr)
3019 continue;
3020
3021 if (!thread_still_needs_step_over (tp))
3022 continue;
3023
3024 gdb_assert (!thread_is_in_step_over_chain (tp));
3025
3026 infrun_debug_printf ("need to step-over [%s] first",
3027 target_pid_to_str (tp->ptid).c_str ());
3028
3029 thread_step_over_chain_enqueue (tp);
3030 }
3031
3032 switch_to_thread (cur_thr);
3033 }
3034
3035 /* Enqueue the current thread last, so that we move all other
3036 threads over their breakpoints first. */
3037 if (cur_thr->stepping_over_breakpoint)
3038 thread_step_over_chain_enqueue (cur_thr);
3039
3040 /* If the thread isn't started, we'll still need to set its prev_pc,
3041 so that switch_back_to_stepped_thread knows the thread hasn't
3042 advanced. Must do this before resuming any thread, as in
3043 all-stop/remote, once we resume we can't send any other packet
3044 until the target stops again. */
3045 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3046
3047 {
3048 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3049
3050 started = start_step_over ();
3051
3052 if (step_over_info_valid_p ())
3053 {
3054 /* Either this thread started a new in-line step over, or some
3055 other thread was already doing one. In either case, don't
3056 resume anything else until the step-over is finished. */
3057 }
3058 else if (started && !target_is_non_stop_p ())
3059 {
3060 /* A new displaced stepping sequence was started. In all-stop,
3061 we can't talk to the target anymore until it next stops. */
3062 }
3063 else if (!non_stop && target_is_non_stop_p ())
3064 {
3065 /* In all-stop, but the target is always in non-stop mode.
3066 Start all other threads that are implicitly resumed too. */
3067 for (thread_info *tp : all_non_exited_threads (resume_target,
3068 resume_ptid))
3069 {
3070 switch_to_thread_no_regs (tp);
3071
3072 if (!tp->inf->has_execution ())
3073 {
3074 infrun_debug_printf ("[%s] target has no execution",
3075 target_pid_to_str (tp->ptid).c_str ());
3076 continue;
3077 }
3078
3079 if (tp->resumed)
3080 {
3081 infrun_debug_printf ("[%s] resumed",
3082 target_pid_to_str (tp->ptid).c_str ());
3083 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3084 continue;
3085 }
3086
3087 if (thread_is_in_step_over_chain (tp))
3088 {
3089 infrun_debug_printf ("[%s] needs step-over",
3090 target_pid_to_str (tp->ptid).c_str ());
3091 continue;
3092 }
3093
3094 infrun_debug_printf ("resuming %s",
3095 target_pid_to_str (tp->ptid).c_str ());
3096
3097 reset_ecs (ecs, tp);
3098 switch_to_thread (tp);
3099 keep_going_pass_signal (ecs);
3100 if (!ecs->wait_some_more)
3101 error (_("Command aborted."));
3102 }
3103 }
3104 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3105 {
3106 /* The thread wasn't started, and isn't queued, run it now. */
3107 reset_ecs (ecs, cur_thr);
3108 switch_to_thread (cur_thr);
3109 keep_going_pass_signal (ecs);
3110 if (!ecs->wait_some_more)
3111 error (_("Command aborted."));
3112 }
3113 }
3114
3115 commit_resume_all_targets ();
3116
3117 finish_state.release ();
3118
3119 /* If we've switched threads above, switch back to the previously
3120 current thread. We don't want the user to see a different
3121 selected thread. */
3122 switch_to_thread (cur_thr);
3123
3124 /* Tell the event loop to wait for it to stop. If the target
3125 supports asynchronous execution, it'll do this from within
3126 target_resume. */
3127 if (!target_can_async_p ())
3128 mark_async_event_handler (infrun_async_inferior_event_token);
3129 }
3130 \f
3131
3132 /* Start remote-debugging of a machine over a serial link. */
3133
3134 void
3135 start_remote (int from_tty)
3136 {
3137 inferior *inf = current_inferior ();
3138 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3139
3140 /* Always go on waiting for the target, regardless of the mode. */
3141 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3142 indicate to wait_for_inferior that a target should timeout if
3143 nothing is returned (instead of just blocking). Because of this,
3144 targets expecting an immediate response need to, internally, set
3145 things up so that the target_wait() is forced to eventually
3146 timeout. */
3147 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3148 differentiate to its caller what the state of the target is after
3149 the initial open has been performed. Here we're assuming that
3150 the target has stopped. It should be possible to eventually have
3151 target_open() return to the caller an indication that the target
3152 is currently running and GDB state should be set to the same as
3153 for an async run. */
3154 wait_for_inferior (inf);
3155
3156 /* Now that the inferior has stopped, do any bookkeeping like
3157 loading shared libraries. We want to do this before normal_stop,
3158 so that the displayed frame is up to date. */
3159 post_create_inferior (from_tty);
3160
3161 normal_stop ();
3162 }
3163
3164 /* Initialize static vars when a new inferior begins. */
3165
3166 void
3167 init_wait_for_inferior (void)
3168 {
3169 /* These are meaningless until the first time through wait_for_inferior. */
3170
3171 breakpoint_init_inferior (inf_starting);
3172
3173 clear_proceed_status (0);
3174
3175 nullify_last_target_wait_ptid ();
3176
3177 previous_inferior_ptid = inferior_ptid;
3178 }
3179
3180 \f
3181
3182 static void handle_inferior_event (struct execution_control_state *ecs);
3183
3184 static void handle_step_into_function (struct gdbarch *gdbarch,
3185 struct execution_control_state *ecs);
3186 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3187 struct execution_control_state *ecs);
3188 static void handle_signal_stop (struct execution_control_state *ecs);
3189 static void check_exception_resume (struct execution_control_state *,
3190 struct frame_info *);
3191
3192 static void end_stepping_range (struct execution_control_state *ecs);
3193 static void stop_waiting (struct execution_control_state *ecs);
3194 static void keep_going (struct execution_control_state *ecs);
3195 static void process_event_stop_test (struct execution_control_state *ecs);
3196 static bool switch_back_to_stepped_thread (struct execution_control_state *ecs);
3197
3198 /* This function is attached as a "thread_stop_requested" observer.
3199 Cleanup local state that assumed the PTID was to be resumed, and
3200 report the stop to the frontend. */
3201
3202 static void
3203 infrun_thread_stop_requested (ptid_t ptid)
3204 {
3205 process_stratum_target *curr_target = current_inferior ()->process_target ();
3206
3207 /* PTID was requested to stop. If the thread was already stopped,
3208 but the user/frontend doesn't know about that yet (e.g., the
3209 thread had been temporarily paused for some step-over), set up
3210 for reporting the stop now. */
3211 for (thread_info *tp : all_threads (curr_target, ptid))
3212 {
3213 if (tp->state != THREAD_RUNNING)
3214 continue;
3215 if (tp->executing)
3216 continue;
3217
3218 /* Remove matching threads from the step-over queue, so
3219 start_step_over doesn't try to resume them
3220 automatically. */
3221 if (thread_is_in_step_over_chain (tp))
3222 thread_step_over_chain_remove (tp);
3223
3224 /* If the thread is stopped, but the user/frontend doesn't
3225 know about that yet, queue a pending event, as if the
3226 thread had just stopped now. Unless the thread already had
3227 a pending event. */
3228 if (!tp->suspend.waitstatus_pending_p)
3229 {
3230 tp->suspend.waitstatus_pending_p = 1;
3231 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3232 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3233 }
3234
3235 /* Clear the inline-frame state, since we're re-processing the
3236 stop. */
3237 clear_inline_frame_state (tp);
3238
3239 /* If this thread was paused because some other thread was
3240 doing an inline-step over, let that finish first. Once
3241 that happens, we'll restart all threads and consume pending
3242 stop events then. */
3243 if (step_over_info_valid_p ())
3244 continue;
3245
3246 /* Otherwise we can process the (new) pending event now. Set
3247 it so this pending event is considered by
3248 do_target_wait. */
3249 tp->resumed = true;
3250 }
3251 }
3252
3253 static void
3254 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3255 {
3256 if (target_last_proc_target == tp->inf->process_target ()
3257 && target_last_wait_ptid == tp->ptid)
3258 nullify_last_target_wait_ptid ();
3259 }
3260
3261 /* Delete the step resume, single-step and longjmp/exception resume
3262 breakpoints of TP. */
3263
3264 static void
3265 delete_thread_infrun_breakpoints (struct thread_info *tp)
3266 {
3267 delete_step_resume_breakpoint (tp);
3268 delete_exception_resume_breakpoint (tp);
3269 delete_single_step_breakpoints (tp);
3270 }
3271
3272 /* If the target still has execution, call FUNC for each thread that
3273 just stopped. In all-stop, that's all the non-exited threads; in
3274 non-stop, that's the current thread, only. */
3275
3276 typedef void (*for_each_just_stopped_thread_callback_func)
3277 (struct thread_info *tp);
3278
3279 static void
3280 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3281 {
3282 if (!target_has_execution () || inferior_ptid == null_ptid)
3283 return;
3284
3285 if (target_is_non_stop_p ())
3286 {
3287 /* If in non-stop mode, only the current thread stopped. */
3288 func (inferior_thread ());
3289 }
3290 else
3291 {
3292 /* In all-stop mode, all threads have stopped. */
3293 for (thread_info *tp : all_non_exited_threads ())
3294 func (tp);
3295 }
3296 }
3297
3298 /* Delete the step resume and longjmp/exception resume breakpoints of
3299 the threads that just stopped. */
3300
3301 static void
3302 delete_just_stopped_threads_infrun_breakpoints (void)
3303 {
3304 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3305 }
3306
3307 /* Delete the single-step breakpoints of the threads that just
3308 stopped. */
3309
3310 static void
3311 delete_just_stopped_threads_single_step_breakpoints (void)
3312 {
3313 for_each_just_stopped_thread (delete_single_step_breakpoints);
3314 }
3315
3316 /* See infrun.h. */
3317
3318 void
3319 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3320 const struct target_waitstatus *ws)
3321 {
3322 std::string status_string = target_waitstatus_to_string (ws);
3323 string_file stb;
3324
3325 /* The text is split over several lines because it was getting too long.
3326 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3327 output as a unit; we want only one timestamp printed if debug_timestamp
3328 is set. */
3329
3330 stb.printf ("[infrun] target_wait (%d.%ld.%ld",
3331 waiton_ptid.pid (),
3332 waiton_ptid.lwp (),
3333 waiton_ptid.tid ());
3334 if (waiton_ptid.pid () != -1)
3335 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3336 stb.printf (", status) =\n");
3337 stb.printf ("[infrun] %d.%ld.%ld [%s],\n",
3338 result_ptid.pid (),
3339 result_ptid.lwp (),
3340 result_ptid.tid (),
3341 target_pid_to_str (result_ptid).c_str ());
3342 stb.printf ("[infrun] %s\n", status_string.c_str ());
3343
3344 /* This uses %s in part to handle %'s in the text, but also to avoid
3345 a gcc error: the format attribute requires a string literal. */
3346 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3347 }
3348
3349 /* Select a thread at random, out of those which are resumed and have
3350 had events. */
3351
3352 static struct thread_info *
3353 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3354 {
3355 int num_events = 0;
3356
3357 auto has_event = [&] (thread_info *tp)
3358 {
3359 return (tp->ptid.matches (waiton_ptid)
3360 && tp->resumed
3361 && tp->suspend.waitstatus_pending_p);
3362 };
3363
3364 /* First see how many events we have. Count only resumed threads
3365 that have an event pending. */
3366 for (thread_info *tp : inf->non_exited_threads ())
3367 if (has_event (tp))
3368 num_events++;
3369
3370 if (num_events == 0)
3371 return NULL;
3372
3373 /* Now randomly pick a thread out of those that have had events. */
3374 int random_selector = (int) ((num_events * (double) rand ())
3375 / (RAND_MAX + 1.0));
3376
3377 if (num_events > 1)
3378 infrun_debug_printf ("Found %d events, selecting #%d",
3379 num_events, random_selector);
3380
3381 /* Select the Nth thread that has had an event. */
3382 for (thread_info *tp : inf->non_exited_threads ())
3383 if (has_event (tp))
3384 if (random_selector-- == 0)
3385 return tp;
3386
3387 gdb_assert_not_reached ("event thread not found");
3388 }
3389
3390 /* Wrapper for target_wait that first checks whether threads have
3391 pending statuses to report before actually asking the target for
3392 more events. INF is the inferior we're using to call target_wait
3393 on. */
3394
3395 static ptid_t
3396 do_target_wait_1 (inferior *inf, ptid_t ptid,
3397 target_waitstatus *status, target_wait_flags options)
3398 {
3399 ptid_t event_ptid;
3400 struct thread_info *tp;
3401
3402 /* We know that we are looking for an event in the target of inferior
3403 INF, but we don't know which thread the event might come from. As
3404 such we want to make sure that INFERIOR_PTID is reset so that none of
3405 the wait code relies on it - doing so is always a mistake. */
3406 switch_to_inferior_no_thread (inf);
3407
3408 /* First check if there is a resumed thread with a wait status
3409 pending. */
3410 if (ptid == minus_one_ptid || ptid.is_pid ())
3411 {
3412 tp = random_pending_event_thread (inf, ptid);
3413 }
3414 else
3415 {
3416 infrun_debug_printf ("Waiting for specific thread %s.",
3417 target_pid_to_str (ptid).c_str ());
3418
3419 /* We have a specific thread to check. */
3420 tp = find_thread_ptid (inf, ptid);
3421 gdb_assert (tp != NULL);
3422 if (!tp->suspend.waitstatus_pending_p)
3423 tp = NULL;
3424 }
3425
3426 if (tp != NULL
3427 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3428 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3429 {
3430 struct regcache *regcache = get_thread_regcache (tp);
3431 struct gdbarch *gdbarch = regcache->arch ();
3432 CORE_ADDR pc;
3433 int discard = 0;
3434
3435 pc = regcache_read_pc (regcache);
3436
3437 if (pc != tp->suspend.stop_pc)
3438 {
3439 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
3440 target_pid_to_str (tp->ptid).c_str (),
3441 paddress (gdbarch, tp->suspend.stop_pc),
3442 paddress (gdbarch, pc));
3443 discard = 1;
3444 }
3445 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3446 {
3447 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3448 target_pid_to_str (tp->ptid).c_str (),
3449 paddress (gdbarch, pc));
3450
3451 discard = 1;
3452 }
3453
3454 if (discard)
3455 {
3456 infrun_debug_printf ("pending event of %s cancelled.",
3457 target_pid_to_str (tp->ptid).c_str ());
3458
3459 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3460 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3461 }
3462 }
3463
3464 if (tp != NULL)
3465 {
3466 infrun_debug_printf ("Using pending wait status %s for %s.",
3467 target_waitstatus_to_string
3468 (&tp->suspend.waitstatus).c_str (),
3469 target_pid_to_str (tp->ptid).c_str ());
3470
3471 /* Now that we've selected our final event LWP, un-adjust its PC
3472 if it was a software breakpoint (and the target doesn't
3473 always adjust the PC itself). */
3474 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3475 && !target_supports_stopped_by_sw_breakpoint ())
3476 {
3477 struct regcache *regcache;
3478 struct gdbarch *gdbarch;
3479 int decr_pc;
3480
3481 regcache = get_thread_regcache (tp);
3482 gdbarch = regcache->arch ();
3483
3484 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3485 if (decr_pc != 0)
3486 {
3487 CORE_ADDR pc;
3488
3489 pc = regcache_read_pc (regcache);
3490 regcache_write_pc (regcache, pc + decr_pc);
3491 }
3492 }
3493
3494 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3495 *status = tp->suspend.waitstatus;
3496 tp->suspend.waitstatus_pending_p = 0;
3497
3498 /* Wake up the event loop again, until all pending events are
3499 processed. */
3500 if (target_is_async_p ())
3501 mark_async_event_handler (infrun_async_inferior_event_token);
3502 return tp->ptid;
3503 }
3504
3505 /* But if we don't find one, we'll have to wait. */
3506
3507 /* We can't ask a non-async target to do a non-blocking wait, so this will be
3508 a blocking wait. */
3509 if (!target_can_async_p ())
3510 options &= ~TARGET_WNOHANG;
3511
3512 if (deprecated_target_wait_hook)
3513 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3514 else
3515 event_ptid = target_wait (ptid, status, options);
3516
3517 return event_ptid;
3518 }
3519
3520 /* Wrapper for target_wait that first checks whether threads have
3521 pending statuses to report before actually asking the target for
3522 more events. Polls for events from all inferiors/targets. */
3523
3524 static bool
3525 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs,
3526 target_wait_flags options)
3527 {
3528 int num_inferiors = 0;
3529 int random_selector;
3530
3531 /* For fairness, we pick the first inferior/target to poll at random
3532 out of all inferiors that may report events, and then continue
3533 polling the rest of the inferior list starting from that one in a
3534 circular fashion until the whole list is polled once. */
3535
3536 auto inferior_matches = [&wait_ptid] (inferior *inf)
3537 {
3538 return (inf->process_target () != NULL
3539 && ptid_t (inf->pid).matches (wait_ptid));
3540 };
3541
3542 /* First see how many matching inferiors we have. */
3543 for (inferior *inf : all_inferiors ())
3544 if (inferior_matches (inf))
3545 num_inferiors++;
3546
3547 if (num_inferiors == 0)
3548 {
3549 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3550 return false;
3551 }
3552
3553 /* Now randomly pick an inferior out of those that matched. */
3554 random_selector = (int)
3555 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3556
3557 if (num_inferiors > 1)
3558 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3559 num_inferiors, random_selector);
3560
3561 /* Select the Nth inferior that matched. */
3562
3563 inferior *selected = nullptr;
3564
3565 for (inferior *inf : all_inferiors ())
3566 if (inferior_matches (inf))
3567 if (random_selector-- == 0)
3568 {
3569 selected = inf;
3570 break;
3571 }
3572
3573 /* Now poll for events out of each of the matching inferior's
3574 targets, starting from the selected one. */
3575
3576 auto do_wait = [&] (inferior *inf)
3577 {
3578 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3579 ecs->target = inf->process_target ();
3580 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3581 };
3582
3583 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3584 here spuriously after the target is all stopped and we've already
3585 reported the stop to the user, polling for events. */
3586 scoped_restore_current_thread restore_thread;
3587
3588 int inf_num = selected->num;
3589 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3590 if (inferior_matches (inf))
3591 if (do_wait (inf))
3592 return true;
3593
3594 for (inferior *inf = inferior_list;
3595 inf != NULL && inf->num < inf_num;
3596 inf = inf->next)
3597 if (inferior_matches (inf))
3598 if (do_wait (inf))
3599 return true;
3600
3601 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3602 return false;
3603 }
3604
3605 /* Prepare and stabilize the inferior for detaching it. E.g.,
3606 detaching while a thread is displaced stepping is a recipe for
3607 crashing it, as nothing would readjust the PC out of the scratch
3608 pad. */
3609
3610 void
3611 prepare_for_detach (void)
3612 {
3613 struct inferior *inf = current_inferior ();
3614 ptid_t pid_ptid = ptid_t (inf->pid);
3615
3616 displaced_step_inferior_state *displaced = &inf->displaced_step_state;
3617
3618 /* Is any thread of this process displaced stepping? If not,
3619 there's nothing else to do. */
3620 if (displaced->step_thread == nullptr)
3621 return;
3622
3623 infrun_debug_printf ("displaced-stepping in-process while detaching");
3624
3625 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3626
3627 while (displaced->step_thread != nullptr)
3628 {
3629 struct execution_control_state ecss;
3630 struct execution_control_state *ecs;
3631
3632 ecs = &ecss;
3633 memset (ecs, 0, sizeof (*ecs));
3634
3635 overlay_cache_invalid = 1;
3636 /* Flush target cache before starting to handle each event.
3637 Target was running and cache could be stale. This is just a
3638 heuristic. Running threads may modify target memory, but we
3639 don't get any event. */
3640 target_dcache_invalidate ();
3641
3642 do_target_wait (pid_ptid, ecs, 0);
3643
3644 if (debug_infrun)
3645 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3646
3647 /* If an error happens while handling the event, propagate GDB's
3648 knowledge of the executing state to the frontend/user running
3649 state. */
3650 scoped_finish_thread_state finish_state (inf->process_target (),
3651 minus_one_ptid);
3652
3653 /* Now figure out what to do with the result of the result. */
3654 handle_inferior_event (ecs);
3655
3656 /* No error, don't finish the state yet. */
3657 finish_state.release ();
3658
3659 /* Breakpoints and watchpoints are not installed on the target
3660 at this point, and signals are passed directly to the
3661 inferior, so this must mean the process is gone. */
3662 if (!ecs->wait_some_more)
3663 {
3664 restore_detaching.release ();
3665 error (_("Program exited while detaching"));
3666 }
3667 }
3668
3669 restore_detaching.release ();
3670 }
3671
3672 /* Wait for control to return from inferior to debugger.
3673
3674 If inferior gets a signal, we may decide to start it up again
3675 instead of returning. That is why there is a loop in this function.
3676 When this function actually returns it means the inferior
3677 should be left stopped and GDB should read more commands. */
3678
3679 static void
3680 wait_for_inferior (inferior *inf)
3681 {
3682 infrun_debug_printf ("wait_for_inferior ()");
3683
3684 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3685
3686 /* If an error happens while handling the event, propagate GDB's
3687 knowledge of the executing state to the frontend/user running
3688 state. */
3689 scoped_finish_thread_state finish_state
3690 (inf->process_target (), minus_one_ptid);
3691
3692 while (1)
3693 {
3694 struct execution_control_state ecss;
3695 struct execution_control_state *ecs = &ecss;
3696
3697 memset (ecs, 0, sizeof (*ecs));
3698
3699 overlay_cache_invalid = 1;
3700
3701 /* Flush target cache before starting to handle each event.
3702 Target was running and cache could be stale. This is just a
3703 heuristic. Running threads may modify target memory, but we
3704 don't get any event. */
3705 target_dcache_invalidate ();
3706
3707 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3708 ecs->target = inf->process_target ();
3709
3710 if (debug_infrun)
3711 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3712
3713 /* Now figure out what to do with the result of the result. */
3714 handle_inferior_event (ecs);
3715
3716 if (!ecs->wait_some_more)
3717 break;
3718 }
3719
3720 /* No error, don't finish the state yet. */
3721 finish_state.release ();
3722 }
3723
3724 /* Cleanup that reinstalls the readline callback handler, if the
3725 target is running in the background. If while handling the target
3726 event something triggered a secondary prompt, like e.g., a
3727 pagination prompt, we'll have removed the callback handler (see
3728 gdb_readline_wrapper_line). Need to do this as we go back to the
3729 event loop, ready to process further input. Note this has no
3730 effect if the handler hasn't actually been removed, because calling
3731 rl_callback_handler_install resets the line buffer, thus losing
3732 input. */
3733
3734 static void
3735 reinstall_readline_callback_handler_cleanup ()
3736 {
3737 struct ui *ui = current_ui;
3738
3739 if (!ui->async)
3740 {
3741 /* We're not going back to the top level event loop yet. Don't
3742 install the readline callback, as it'd prep the terminal,
3743 readline-style (raw, noecho) (e.g., --batch). We'll install
3744 it the next time the prompt is displayed, when we're ready
3745 for input. */
3746 return;
3747 }
3748
3749 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3750 gdb_rl_callback_handler_reinstall ();
3751 }
3752
3753 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3754 that's just the event thread. In all-stop, that's all threads. */
3755
3756 static void
3757 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3758 {
3759 if (ecs->event_thread != NULL
3760 && ecs->event_thread->thread_fsm != NULL)
3761 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3762
3763 if (!non_stop)
3764 {
3765 for (thread_info *thr : all_non_exited_threads ())
3766 {
3767 if (thr->thread_fsm == NULL)
3768 continue;
3769 if (thr == ecs->event_thread)
3770 continue;
3771
3772 switch_to_thread (thr);
3773 thr->thread_fsm->clean_up (thr);
3774 }
3775
3776 if (ecs->event_thread != NULL)
3777 switch_to_thread (ecs->event_thread);
3778 }
3779 }
3780
3781 /* Helper for all_uis_check_sync_execution_done that works on the
3782 current UI. */
3783
3784 static void
3785 check_curr_ui_sync_execution_done (void)
3786 {
3787 struct ui *ui = current_ui;
3788
3789 if (ui->prompt_state == PROMPT_NEEDED
3790 && ui->async
3791 && !gdb_in_secondary_prompt_p (ui))
3792 {
3793 target_terminal::ours ();
3794 gdb::observers::sync_execution_done.notify ();
3795 ui_register_input_event_handler (ui);
3796 }
3797 }
3798
3799 /* See infrun.h. */
3800
3801 void
3802 all_uis_check_sync_execution_done (void)
3803 {
3804 SWITCH_THRU_ALL_UIS ()
3805 {
3806 check_curr_ui_sync_execution_done ();
3807 }
3808 }
3809
3810 /* See infrun.h. */
3811
3812 void
3813 all_uis_on_sync_execution_starting (void)
3814 {
3815 SWITCH_THRU_ALL_UIS ()
3816 {
3817 if (current_ui->prompt_state == PROMPT_NEEDED)
3818 async_disable_stdin ();
3819 }
3820 }
3821
3822 /* Asynchronous version of wait_for_inferior. It is called by the
3823 event loop whenever a change of state is detected on the file
3824 descriptor corresponding to the target. It can be called more than
3825 once to complete a single execution command. In such cases we need
3826 to keep the state in a global variable ECSS. If it is the last time
3827 that this function is called for a single execution command, then
3828 report to the user that the inferior has stopped, and do the
3829 necessary cleanups. */
3830
3831 void
3832 fetch_inferior_event ()
3833 {
3834 struct execution_control_state ecss;
3835 struct execution_control_state *ecs = &ecss;
3836 int cmd_done = 0;
3837
3838 memset (ecs, 0, sizeof (*ecs));
3839
3840 /* Events are always processed with the main UI as current UI. This
3841 way, warnings, debug output, etc. are always consistently sent to
3842 the main console. */
3843 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3844
3845 /* Temporarily disable pagination. Otherwise, the user would be
3846 given an option to press 'q' to quit, which would cause an early
3847 exit and could leave GDB in a half-baked state. */
3848 scoped_restore save_pagination
3849 = make_scoped_restore (&pagination_enabled, false);
3850
3851 /* End up with readline processing input, if necessary. */
3852 {
3853 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3854
3855 /* We're handling a live event, so make sure we're doing live
3856 debugging. If we're looking at traceframes while the target is
3857 running, we're going to need to get back to that mode after
3858 handling the event. */
3859 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3860 if (non_stop)
3861 {
3862 maybe_restore_traceframe.emplace ();
3863 set_current_traceframe (-1);
3864 }
3865
3866 /* The user/frontend should not notice a thread switch due to
3867 internal events. Make sure we revert to the user selected
3868 thread and frame after handling the event and running any
3869 breakpoint commands. */
3870 scoped_restore_current_thread restore_thread;
3871
3872 overlay_cache_invalid = 1;
3873 /* Flush target cache before starting to handle each event. Target
3874 was running and cache could be stale. This is just a heuristic.
3875 Running threads may modify target memory, but we don't get any
3876 event. */
3877 target_dcache_invalidate ();
3878
3879 scoped_restore save_exec_dir
3880 = make_scoped_restore (&execution_direction,
3881 target_execution_direction ());
3882
3883 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3884 return;
3885
3886 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3887
3888 /* Switch to the target that generated the event, so we can do
3889 target calls. */
3890 switch_to_target_no_thread (ecs->target);
3891
3892 if (debug_infrun)
3893 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3894
3895 /* If an error happens while handling the event, propagate GDB's
3896 knowledge of the executing state to the frontend/user running
3897 state. */
3898 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3899 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
3900
3901 /* Get executed before scoped_restore_current_thread above to apply
3902 still for the thread which has thrown the exception. */
3903 auto defer_bpstat_clear
3904 = make_scope_exit (bpstat_clear_actions);
3905 auto defer_delete_threads
3906 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3907
3908 /* Now figure out what to do with the result of the result. */
3909 handle_inferior_event (ecs);
3910
3911 if (!ecs->wait_some_more)
3912 {
3913 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
3914 bool should_stop = true;
3915 struct thread_info *thr = ecs->event_thread;
3916
3917 delete_just_stopped_threads_infrun_breakpoints ();
3918
3919 if (thr != NULL)
3920 {
3921 struct thread_fsm *thread_fsm = thr->thread_fsm;
3922
3923 if (thread_fsm != NULL)
3924 should_stop = thread_fsm->should_stop (thr);
3925 }
3926
3927 if (!should_stop)
3928 {
3929 keep_going (ecs);
3930 }
3931 else
3932 {
3933 bool should_notify_stop = true;
3934 int proceeded = 0;
3935
3936 clean_up_just_stopped_threads_fsms (ecs);
3937
3938 if (thr != NULL && thr->thread_fsm != NULL)
3939 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3940
3941 if (should_notify_stop)
3942 {
3943 /* We may not find an inferior if this was a process exit. */
3944 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3945 proceeded = normal_stop ();
3946 }
3947
3948 if (!proceeded)
3949 {
3950 inferior_event_handler (INF_EXEC_COMPLETE);
3951 cmd_done = 1;
3952 }
3953
3954 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3955 previously selected thread is gone. We have two
3956 choices - switch to no thread selected, or restore the
3957 previously selected thread (now exited). We chose the
3958 later, just because that's what GDB used to do. After
3959 this, "info threads" says "The current thread <Thread
3960 ID 2> has terminated." instead of "No thread
3961 selected.". */
3962 if (!non_stop
3963 && cmd_done
3964 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3965 restore_thread.dont_restore ();
3966 }
3967 }
3968
3969 defer_delete_threads.release ();
3970 defer_bpstat_clear.release ();
3971
3972 /* No error, don't finish the thread states yet. */
3973 finish_state.release ();
3974
3975 /* This scope is used to ensure that readline callbacks are
3976 reinstalled here. */
3977 }
3978
3979 /* If a UI was in sync execution mode, and now isn't, restore its
3980 prompt (a synchronous execution command has finished, and we're
3981 ready for input). */
3982 all_uis_check_sync_execution_done ();
3983
3984 if (cmd_done
3985 && exec_done_display_p
3986 && (inferior_ptid == null_ptid
3987 || inferior_thread ()->state != THREAD_RUNNING))
3988 printf_unfiltered (_("completed.\n"));
3989 }
3990
3991 /* See infrun.h. */
3992
3993 void
3994 set_step_info (thread_info *tp, struct frame_info *frame,
3995 struct symtab_and_line sal)
3996 {
3997 /* This can be removed once this function no longer implicitly relies on the
3998 inferior_ptid value. */
3999 gdb_assert (inferior_ptid == tp->ptid);
4000
4001 tp->control.step_frame_id = get_frame_id (frame);
4002 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4003
4004 tp->current_symtab = sal.symtab;
4005 tp->current_line = sal.line;
4006 }
4007
4008 /* Clear context switchable stepping state. */
4009
4010 void
4011 init_thread_stepping_state (struct thread_info *tss)
4012 {
4013 tss->stepped_breakpoint = 0;
4014 tss->stepping_over_breakpoint = 0;
4015 tss->stepping_over_watchpoint = 0;
4016 tss->step_after_step_resume_breakpoint = 0;
4017 }
4018
4019 /* See infrun.h. */
4020
4021 void
4022 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4023 target_waitstatus status)
4024 {
4025 target_last_proc_target = target;
4026 target_last_wait_ptid = ptid;
4027 target_last_waitstatus = status;
4028 }
4029
4030 /* See infrun.h. */
4031
4032 void
4033 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4034 target_waitstatus *status)
4035 {
4036 if (target != nullptr)
4037 *target = target_last_proc_target;
4038 if (ptid != nullptr)
4039 *ptid = target_last_wait_ptid;
4040 if (status != nullptr)
4041 *status = target_last_waitstatus;
4042 }
4043
4044 /* See infrun.h. */
4045
4046 void
4047 nullify_last_target_wait_ptid (void)
4048 {
4049 target_last_proc_target = nullptr;
4050 target_last_wait_ptid = minus_one_ptid;
4051 target_last_waitstatus = {};
4052 }
4053
4054 /* Switch thread contexts. */
4055
4056 static void
4057 context_switch (execution_control_state *ecs)
4058 {
4059 if (ecs->ptid != inferior_ptid
4060 && (inferior_ptid == null_ptid
4061 || ecs->event_thread != inferior_thread ()))
4062 {
4063 infrun_debug_printf ("Switching context from %s to %s",
4064 target_pid_to_str (inferior_ptid).c_str (),
4065 target_pid_to_str (ecs->ptid).c_str ());
4066 }
4067
4068 switch_to_thread (ecs->event_thread);
4069 }
4070
4071 /* If the target can't tell whether we've hit breakpoints
4072 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4073 check whether that could have been caused by a breakpoint. If so,
4074 adjust the PC, per gdbarch_decr_pc_after_break. */
4075
4076 static void
4077 adjust_pc_after_break (struct thread_info *thread,
4078 struct target_waitstatus *ws)
4079 {
4080 struct regcache *regcache;
4081 struct gdbarch *gdbarch;
4082 CORE_ADDR breakpoint_pc, decr_pc;
4083
4084 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4085 we aren't, just return.
4086
4087 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4088 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4089 implemented by software breakpoints should be handled through the normal
4090 breakpoint layer.
4091
4092 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4093 different signals (SIGILL or SIGEMT for instance), but it is less
4094 clear where the PC is pointing afterwards. It may not match
4095 gdbarch_decr_pc_after_break. I don't know any specific target that
4096 generates these signals at breakpoints (the code has been in GDB since at
4097 least 1992) so I can not guess how to handle them here.
4098
4099 In earlier versions of GDB, a target with
4100 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4101 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4102 target with both of these set in GDB history, and it seems unlikely to be
4103 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4104
4105 if (ws->kind != TARGET_WAITKIND_STOPPED)
4106 return;
4107
4108 if (ws->value.sig != GDB_SIGNAL_TRAP)
4109 return;
4110
4111 /* In reverse execution, when a breakpoint is hit, the instruction
4112 under it has already been de-executed. The reported PC always
4113 points at the breakpoint address, so adjusting it further would
4114 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4115 architecture:
4116
4117 B1 0x08000000 : INSN1
4118 B2 0x08000001 : INSN2
4119 0x08000002 : INSN3
4120 PC -> 0x08000003 : INSN4
4121
4122 Say you're stopped at 0x08000003 as above. Reverse continuing
4123 from that point should hit B2 as below. Reading the PC when the
4124 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4125 been de-executed already.
4126
4127 B1 0x08000000 : INSN1
4128 B2 PC -> 0x08000001 : INSN2
4129 0x08000002 : INSN3
4130 0x08000003 : INSN4
4131
4132 We can't apply the same logic as for forward execution, because
4133 we would wrongly adjust the PC to 0x08000000, since there's a
4134 breakpoint at PC - 1. We'd then report a hit on B1, although
4135 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4136 behaviour. */
4137 if (execution_direction == EXEC_REVERSE)
4138 return;
4139
4140 /* If the target can tell whether the thread hit a SW breakpoint,
4141 trust it. Targets that can tell also adjust the PC
4142 themselves. */
4143 if (target_supports_stopped_by_sw_breakpoint ())
4144 return;
4145
4146 /* Note that relying on whether a breakpoint is planted in memory to
4147 determine this can fail. E.g,. the breakpoint could have been
4148 removed since. Or the thread could have been told to step an
4149 instruction the size of a breakpoint instruction, and only
4150 _after_ was a breakpoint inserted at its address. */
4151
4152 /* If this target does not decrement the PC after breakpoints, then
4153 we have nothing to do. */
4154 regcache = get_thread_regcache (thread);
4155 gdbarch = regcache->arch ();
4156
4157 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4158 if (decr_pc == 0)
4159 return;
4160
4161 const address_space *aspace = regcache->aspace ();
4162
4163 /* Find the location where (if we've hit a breakpoint) the
4164 breakpoint would be. */
4165 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4166
4167 /* If the target can't tell whether a software breakpoint triggered,
4168 fallback to figuring it out based on breakpoints we think were
4169 inserted in the target, and on whether the thread was stepped or
4170 continued. */
4171
4172 /* Check whether there actually is a software breakpoint inserted at
4173 that location.
4174
4175 If in non-stop mode, a race condition is possible where we've
4176 removed a breakpoint, but stop events for that breakpoint were
4177 already queued and arrive later. To suppress those spurious
4178 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4179 and retire them after a number of stop events are reported. Note
4180 this is an heuristic and can thus get confused. The real fix is
4181 to get the "stopped by SW BP and needs adjustment" info out of
4182 the target/kernel (and thus never reach here; see above). */
4183 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4184 || (target_is_non_stop_p ()
4185 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4186 {
4187 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4188
4189 if (record_full_is_used ())
4190 restore_operation_disable.emplace
4191 (record_full_gdb_operation_disable_set ());
4192
4193 /* When using hardware single-step, a SIGTRAP is reported for both
4194 a completed single-step and a software breakpoint. Need to
4195 differentiate between the two, as the latter needs adjusting
4196 but the former does not.
4197
4198 The SIGTRAP can be due to a completed hardware single-step only if
4199 - we didn't insert software single-step breakpoints
4200 - this thread is currently being stepped
4201
4202 If any of these events did not occur, we must have stopped due
4203 to hitting a software breakpoint, and have to back up to the
4204 breakpoint address.
4205
4206 As a special case, we could have hardware single-stepped a
4207 software breakpoint. In this case (prev_pc == breakpoint_pc),
4208 we also need to back up to the breakpoint address. */
4209
4210 if (thread_has_single_step_breakpoints_set (thread)
4211 || !currently_stepping (thread)
4212 || (thread->stepped_breakpoint
4213 && thread->prev_pc == breakpoint_pc))
4214 regcache_write_pc (regcache, breakpoint_pc);
4215 }
4216 }
4217
4218 static bool
4219 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4220 {
4221 for (frame = get_prev_frame (frame);
4222 frame != NULL;
4223 frame = get_prev_frame (frame))
4224 {
4225 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4226 return true;
4227
4228 if (get_frame_type (frame) != INLINE_FRAME)
4229 break;
4230 }
4231
4232 return false;
4233 }
4234
4235 /* Look for an inline frame that is marked for skip.
4236 If PREV_FRAME is TRUE start at the previous frame,
4237 otherwise start at the current frame. Stop at the
4238 first non-inline frame, or at the frame where the
4239 step started. */
4240
4241 static bool
4242 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4243 {
4244 struct frame_info *frame = get_current_frame ();
4245
4246 if (prev_frame)
4247 frame = get_prev_frame (frame);
4248
4249 for (; frame != NULL; frame = get_prev_frame (frame))
4250 {
4251 const char *fn = NULL;
4252 symtab_and_line sal;
4253 struct symbol *sym;
4254
4255 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4256 break;
4257 if (get_frame_type (frame) != INLINE_FRAME)
4258 break;
4259
4260 sal = find_frame_sal (frame);
4261 sym = get_frame_function (frame);
4262
4263 if (sym != NULL)
4264 fn = sym->print_name ();
4265
4266 if (sal.line != 0
4267 && function_name_is_marked_for_skip (fn, sal))
4268 return true;
4269 }
4270
4271 return false;
4272 }
4273
4274 /* If the event thread has the stop requested flag set, pretend it
4275 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4276 target_stop). */
4277
4278 static bool
4279 handle_stop_requested (struct execution_control_state *ecs)
4280 {
4281 if (ecs->event_thread->stop_requested)
4282 {
4283 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4284 ecs->ws.value.sig = GDB_SIGNAL_0;
4285 handle_signal_stop (ecs);
4286 return true;
4287 }
4288 return false;
4289 }
4290
4291 /* Auxiliary function that handles syscall entry/return events.
4292 It returns true if the inferior should keep going (and GDB
4293 should ignore the event), or false if the event deserves to be
4294 processed. */
4295
4296 static bool
4297 handle_syscall_event (struct execution_control_state *ecs)
4298 {
4299 struct regcache *regcache;
4300 int syscall_number;
4301
4302 context_switch (ecs);
4303
4304 regcache = get_thread_regcache (ecs->event_thread);
4305 syscall_number = ecs->ws.value.syscall_number;
4306 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4307
4308 if (catch_syscall_enabled () > 0
4309 && catching_syscall_number (syscall_number) > 0)
4310 {
4311 infrun_debug_printf ("syscall number=%d", syscall_number);
4312
4313 ecs->event_thread->control.stop_bpstat
4314 = bpstat_stop_status (regcache->aspace (),
4315 ecs->event_thread->suspend.stop_pc,
4316 ecs->event_thread, &ecs->ws);
4317
4318 if (handle_stop_requested (ecs))
4319 return false;
4320
4321 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4322 {
4323 /* Catchpoint hit. */
4324 return false;
4325 }
4326 }
4327
4328 if (handle_stop_requested (ecs))
4329 return false;
4330
4331 /* If no catchpoint triggered for this, then keep going. */
4332 keep_going (ecs);
4333
4334 return true;
4335 }
4336
4337 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4338
4339 static void
4340 fill_in_stop_func (struct gdbarch *gdbarch,
4341 struct execution_control_state *ecs)
4342 {
4343 if (!ecs->stop_func_filled_in)
4344 {
4345 const block *block;
4346 const general_symbol_info *gsi;
4347
4348 /* Don't care about return value; stop_func_start and stop_func_name
4349 will both be 0 if it doesn't work. */
4350 find_pc_partial_function_sym (ecs->event_thread->suspend.stop_pc,
4351 &gsi,
4352 &ecs->stop_func_start,
4353 &ecs->stop_func_end,
4354 &block);
4355 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
4356
4357 /* The call to find_pc_partial_function, above, will set
4358 stop_func_start and stop_func_end to the start and end
4359 of the range containing the stop pc. If this range
4360 contains the entry pc for the block (which is always the
4361 case for contiguous blocks), advance stop_func_start past
4362 the function's start offset and entrypoint. Note that
4363 stop_func_start is NOT advanced when in a range of a
4364 non-contiguous block that does not contain the entry pc. */
4365 if (block != nullptr
4366 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4367 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4368 {
4369 ecs->stop_func_start
4370 += gdbarch_deprecated_function_start_offset (gdbarch);
4371
4372 if (gdbarch_skip_entrypoint_p (gdbarch))
4373 ecs->stop_func_start
4374 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4375 }
4376
4377 ecs->stop_func_filled_in = 1;
4378 }
4379 }
4380
4381
4382 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4383
4384 static enum stop_kind
4385 get_inferior_stop_soon (execution_control_state *ecs)
4386 {
4387 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4388
4389 gdb_assert (inf != NULL);
4390 return inf->control.stop_soon;
4391 }
4392
4393 /* Poll for one event out of the current target. Store the resulting
4394 waitstatus in WS, and return the event ptid. Does not block. */
4395
4396 static ptid_t
4397 poll_one_curr_target (struct target_waitstatus *ws)
4398 {
4399 ptid_t event_ptid;
4400
4401 overlay_cache_invalid = 1;
4402
4403 /* Flush target cache before starting to handle each event.
4404 Target was running and cache could be stale. This is just a
4405 heuristic. Running threads may modify target memory, but we
4406 don't get any event. */
4407 target_dcache_invalidate ();
4408
4409 if (deprecated_target_wait_hook)
4410 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4411 else
4412 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4413
4414 if (debug_infrun)
4415 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4416
4417 return event_ptid;
4418 }
4419
4420 /* An event reported by wait_one. */
4421
4422 struct wait_one_event
4423 {
4424 /* The target the event came out of. */
4425 process_stratum_target *target;
4426
4427 /* The PTID the event was for. */
4428 ptid_t ptid;
4429
4430 /* The waitstatus. */
4431 target_waitstatus ws;
4432 };
4433
4434 /* Wait for one event out of any target. */
4435
4436 static wait_one_event
4437 wait_one ()
4438 {
4439 while (1)
4440 {
4441 for (inferior *inf : all_inferiors ())
4442 {
4443 process_stratum_target *target = inf->process_target ();
4444 if (target == NULL
4445 || !target->is_async_p ()
4446 || !target->threads_executing)
4447 continue;
4448
4449 switch_to_inferior_no_thread (inf);
4450
4451 wait_one_event event;
4452 event.target = target;
4453 event.ptid = poll_one_curr_target (&event.ws);
4454
4455 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4456 {
4457 /* If nothing is resumed, remove the target from the
4458 event loop. */
4459 target_async (0);
4460 }
4461 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4462 return event;
4463 }
4464
4465 /* Block waiting for some event. */
4466
4467 fd_set readfds;
4468 int nfds = 0;
4469
4470 FD_ZERO (&readfds);
4471
4472 for (inferior *inf : all_inferiors ())
4473 {
4474 process_stratum_target *target = inf->process_target ();
4475 if (target == NULL
4476 || !target->is_async_p ()
4477 || !target->threads_executing)
4478 continue;
4479
4480 int fd = target->async_wait_fd ();
4481 FD_SET (fd, &readfds);
4482 if (nfds <= fd)
4483 nfds = fd + 1;
4484 }
4485
4486 if (nfds == 0)
4487 {
4488 /* No waitable targets left. All must be stopped. */
4489 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4490 }
4491
4492 QUIT;
4493
4494 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4495 if (numfds < 0)
4496 {
4497 if (errno == EINTR)
4498 continue;
4499 else
4500 perror_with_name ("interruptible_select");
4501 }
4502 }
4503 }
4504
4505 /* Save the thread's event and stop reason to process it later. */
4506
4507 static void
4508 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4509 {
4510 infrun_debug_printf ("saving status %s for %d.%ld.%ld",
4511 target_waitstatus_to_string (ws).c_str (),
4512 tp->ptid.pid (),
4513 tp->ptid.lwp (),
4514 tp->ptid.tid ());
4515
4516 /* Record for later. */
4517 tp->suspend.waitstatus = *ws;
4518 tp->suspend.waitstatus_pending_p = 1;
4519
4520 struct regcache *regcache = get_thread_regcache (tp);
4521 const address_space *aspace = regcache->aspace ();
4522
4523 if (ws->kind == TARGET_WAITKIND_STOPPED
4524 && ws->value.sig == GDB_SIGNAL_TRAP)
4525 {
4526 CORE_ADDR pc = regcache_read_pc (regcache);
4527
4528 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4529
4530 scoped_restore_current_thread restore_thread;
4531 switch_to_thread (tp);
4532
4533 if (target_stopped_by_watchpoint ())
4534 {
4535 tp->suspend.stop_reason
4536 = TARGET_STOPPED_BY_WATCHPOINT;
4537 }
4538 else if (target_supports_stopped_by_sw_breakpoint ()
4539 && target_stopped_by_sw_breakpoint ())
4540 {
4541 tp->suspend.stop_reason
4542 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4543 }
4544 else if (target_supports_stopped_by_hw_breakpoint ()
4545 && target_stopped_by_hw_breakpoint ())
4546 {
4547 tp->suspend.stop_reason
4548 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4549 }
4550 else if (!target_supports_stopped_by_hw_breakpoint ()
4551 && hardware_breakpoint_inserted_here_p (aspace,
4552 pc))
4553 {
4554 tp->suspend.stop_reason
4555 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4556 }
4557 else if (!target_supports_stopped_by_sw_breakpoint ()
4558 && software_breakpoint_inserted_here_p (aspace,
4559 pc))
4560 {
4561 tp->suspend.stop_reason
4562 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4563 }
4564 else if (!thread_has_single_step_breakpoints_set (tp)
4565 && currently_stepping (tp))
4566 {
4567 tp->suspend.stop_reason
4568 = TARGET_STOPPED_BY_SINGLE_STEP;
4569 }
4570 }
4571 }
4572
4573 /* Mark the non-executing threads accordingly. In all-stop, all
4574 threads of all processes are stopped when we get any event
4575 reported. In non-stop mode, only the event thread stops. */
4576
4577 static void
4578 mark_non_executing_threads (process_stratum_target *target,
4579 ptid_t event_ptid,
4580 struct target_waitstatus ws)
4581 {
4582 ptid_t mark_ptid;
4583
4584 if (!target_is_non_stop_p ())
4585 mark_ptid = minus_one_ptid;
4586 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4587 || ws.kind == TARGET_WAITKIND_EXITED)
4588 {
4589 /* If we're handling a process exit in non-stop mode, even
4590 though threads haven't been deleted yet, one would think
4591 that there is nothing to do, as threads of the dead process
4592 will be soon deleted, and threads of any other process were
4593 left running. However, on some targets, threads survive a
4594 process exit event. E.g., for the "checkpoint" command,
4595 when the current checkpoint/fork exits, linux-fork.c
4596 automatically switches to another fork from within
4597 target_mourn_inferior, by associating the same
4598 inferior/thread to another fork. We haven't mourned yet at
4599 this point, but we must mark any threads left in the
4600 process as not-executing so that finish_thread_state marks
4601 them stopped (in the user's perspective) if/when we present
4602 the stop to the user. */
4603 mark_ptid = ptid_t (event_ptid.pid ());
4604 }
4605 else
4606 mark_ptid = event_ptid;
4607
4608 set_executing (target, mark_ptid, false);
4609
4610 /* Likewise the resumed flag. */
4611 set_resumed (target, mark_ptid, false);
4612 }
4613
4614 /* See infrun.h. */
4615
4616 void
4617 stop_all_threads (void)
4618 {
4619 /* We may need multiple passes to discover all threads. */
4620 int pass;
4621 int iterations = 0;
4622
4623 gdb_assert (exists_non_stop_target ());
4624
4625 infrun_debug_printf ("starting");
4626
4627 scoped_restore_current_thread restore_thread;
4628
4629 /* Enable thread events of all targets. */
4630 for (auto *target : all_non_exited_process_targets ())
4631 {
4632 switch_to_target_no_thread (target);
4633 target_thread_events (true);
4634 }
4635
4636 SCOPE_EXIT
4637 {
4638 /* Disable thread events of all targets. */
4639 for (auto *target : all_non_exited_process_targets ())
4640 {
4641 switch_to_target_no_thread (target);
4642 target_thread_events (false);
4643 }
4644
4645 /* Use debug_prefixed_printf directly to get a meaningful function
4646 name. */
4647 if (debug_infrun)
4648 debug_prefixed_printf ("infrun", "stop_all_threads", "done");
4649 };
4650
4651 /* Request threads to stop, and then wait for the stops. Because
4652 threads we already know about can spawn more threads while we're
4653 trying to stop them, and we only learn about new threads when we
4654 update the thread list, do this in a loop, and keep iterating
4655 until two passes find no threads that need to be stopped. */
4656 for (pass = 0; pass < 2; pass++, iterations++)
4657 {
4658 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
4659 while (1)
4660 {
4661 int waits_needed = 0;
4662
4663 for (auto *target : all_non_exited_process_targets ())
4664 {
4665 switch_to_target_no_thread (target);
4666 update_thread_list ();
4667 }
4668
4669 /* Go through all threads looking for threads that we need
4670 to tell the target to stop. */
4671 for (thread_info *t : all_non_exited_threads ())
4672 {
4673 /* For a single-target setting with an all-stop target,
4674 we would not even arrive here. For a multi-target
4675 setting, until GDB is able to handle a mixture of
4676 all-stop and non-stop targets, simply skip all-stop
4677 targets' threads. This should be fine due to the
4678 protection of 'check_multi_target_resumption'. */
4679
4680 switch_to_thread_no_regs (t);
4681 if (!target_is_non_stop_p ())
4682 continue;
4683
4684 if (t->executing)
4685 {
4686 /* If already stopping, don't request a stop again.
4687 We just haven't seen the notification yet. */
4688 if (!t->stop_requested)
4689 {
4690 infrun_debug_printf (" %s executing, need stop",
4691 target_pid_to_str (t->ptid).c_str ());
4692 target_stop (t->ptid);
4693 t->stop_requested = 1;
4694 }
4695 else
4696 {
4697 infrun_debug_printf (" %s executing, already stopping",
4698 target_pid_to_str (t->ptid).c_str ());
4699 }
4700
4701 if (t->stop_requested)
4702 waits_needed++;
4703 }
4704 else
4705 {
4706 infrun_debug_printf (" %s not executing",
4707 target_pid_to_str (t->ptid).c_str ());
4708
4709 /* The thread may be not executing, but still be
4710 resumed with a pending status to process. */
4711 t->resumed = false;
4712 }
4713 }
4714
4715 if (waits_needed == 0)
4716 break;
4717
4718 /* If we find new threads on the second iteration, restart
4719 over. We want to see two iterations in a row with all
4720 threads stopped. */
4721 if (pass > 0)
4722 pass = -1;
4723
4724 for (int i = 0; i < waits_needed; i++)
4725 {
4726 wait_one_event event = wait_one ();
4727
4728 infrun_debug_printf
4729 ("%s %s", target_waitstatus_to_string (&event.ws).c_str (),
4730 target_pid_to_str (event.ptid).c_str ());
4731
4732 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4733 {
4734 /* All resumed threads exited. */
4735 break;
4736 }
4737 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4738 || event.ws.kind == TARGET_WAITKIND_EXITED
4739 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4740 {
4741 /* One thread/process exited/signalled. */
4742
4743 thread_info *t = nullptr;
4744
4745 /* The target may have reported just a pid. If so, try
4746 the first non-exited thread. */
4747 if (event.ptid.is_pid ())
4748 {
4749 int pid = event.ptid.pid ();
4750 inferior *inf = find_inferior_pid (event.target, pid);
4751 for (thread_info *tp : inf->non_exited_threads ())
4752 {
4753 t = tp;
4754 break;
4755 }
4756
4757 /* If there is no available thread, the event would
4758 have to be appended to a per-inferior event list,
4759 which does not exist (and if it did, we'd have
4760 to adjust run control command to be able to
4761 resume such an inferior). We assert here instead
4762 of going into an infinite loop. */
4763 gdb_assert (t != nullptr);
4764
4765 infrun_debug_printf
4766 ("using %s", target_pid_to_str (t->ptid).c_str ());
4767 }
4768 else
4769 {
4770 t = find_thread_ptid (event.target, event.ptid);
4771 /* Check if this is the first time we see this thread.
4772 Don't bother adding if it individually exited. */
4773 if (t == nullptr
4774 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4775 t = add_thread (event.target, event.ptid);
4776 }
4777
4778 if (t != nullptr)
4779 {
4780 /* Set the threads as non-executing to avoid
4781 another stop attempt on them. */
4782 switch_to_thread_no_regs (t);
4783 mark_non_executing_threads (event.target, event.ptid,
4784 event.ws);
4785 save_waitstatus (t, &event.ws);
4786 t->stop_requested = false;
4787 }
4788 }
4789 else
4790 {
4791 thread_info *t = find_thread_ptid (event.target, event.ptid);
4792 if (t == NULL)
4793 t = add_thread (event.target, event.ptid);
4794
4795 t->stop_requested = 0;
4796 t->executing = 0;
4797 t->resumed = false;
4798 t->control.may_range_step = 0;
4799
4800 /* This may be the first time we see the inferior report
4801 a stop. */
4802 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4803 if (inf->needs_setup)
4804 {
4805 switch_to_thread_no_regs (t);
4806 setup_inferior (0);
4807 }
4808
4809 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4810 && event.ws.value.sig == GDB_SIGNAL_0)
4811 {
4812 /* We caught the event that we intended to catch, so
4813 there's no event pending. */
4814 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4815 t->suspend.waitstatus_pending_p = 0;
4816
4817 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4818 {
4819 /* Add it back to the step-over queue. */
4820 infrun_debug_printf
4821 ("displaced-step of %s canceled: adding back to "
4822 "the step-over queue",
4823 target_pid_to_str (t->ptid).c_str ());
4824
4825 t->control.trap_expected = 0;
4826 thread_step_over_chain_enqueue (t);
4827 }
4828 }
4829 else
4830 {
4831 enum gdb_signal sig;
4832 struct regcache *regcache;
4833
4834 infrun_debug_printf
4835 ("target_wait %s, saving status for %d.%ld.%ld",
4836 target_waitstatus_to_string (&event.ws).c_str (),
4837 t->ptid.pid (), t->ptid.lwp (), t->ptid.tid ());
4838
4839 /* Record for later. */
4840 save_waitstatus (t, &event.ws);
4841
4842 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4843 ? event.ws.value.sig : GDB_SIGNAL_0);
4844
4845 if (displaced_step_fixup (t, sig) < 0)
4846 {
4847 /* Add it back to the step-over queue. */
4848 t->control.trap_expected = 0;
4849 thread_step_over_chain_enqueue (t);
4850 }
4851
4852 regcache = get_thread_regcache (t);
4853 t->suspend.stop_pc = regcache_read_pc (regcache);
4854
4855 infrun_debug_printf ("saved stop_pc=%s for %s "
4856 "(currently_stepping=%d)",
4857 paddress (target_gdbarch (),
4858 t->suspend.stop_pc),
4859 target_pid_to_str (t->ptid).c_str (),
4860 currently_stepping (t));
4861 }
4862 }
4863 }
4864 }
4865 }
4866 }
4867
4868 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4869
4870 static bool
4871 handle_no_resumed (struct execution_control_state *ecs)
4872 {
4873 if (target_can_async_p ())
4874 {
4875 bool any_sync = false;
4876
4877 for (ui *ui : all_uis ())
4878 {
4879 if (ui->prompt_state == PROMPT_BLOCKED)
4880 {
4881 any_sync = true;
4882 break;
4883 }
4884 }
4885 if (!any_sync)
4886 {
4887 /* There were no unwaited-for children left in the target, but,
4888 we're not synchronously waiting for events either. Just
4889 ignore. */
4890
4891 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
4892 prepare_to_wait (ecs);
4893 return true;
4894 }
4895 }
4896
4897 /* Otherwise, if we were running a synchronous execution command, we
4898 may need to cancel it and give the user back the terminal.
4899
4900 In non-stop mode, the target can't tell whether we've already
4901 consumed previous stop events, so it can end up sending us a
4902 no-resumed event like so:
4903
4904 #0 - thread 1 is left stopped
4905
4906 #1 - thread 2 is resumed and hits breakpoint
4907 -> TARGET_WAITKIND_STOPPED
4908
4909 #2 - thread 3 is resumed and exits
4910 this is the last resumed thread, so
4911 -> TARGET_WAITKIND_NO_RESUMED
4912
4913 #3 - gdb processes stop for thread 2 and decides to re-resume
4914 it.
4915
4916 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4917 thread 2 is now resumed, so the event should be ignored.
4918
4919 IOW, if the stop for thread 2 doesn't end a foreground command,
4920 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4921 event. But it could be that the event meant that thread 2 itself
4922 (or whatever other thread was the last resumed thread) exited.
4923
4924 To address this we refresh the thread list and check whether we
4925 have resumed threads _now_. In the example above, this removes
4926 thread 3 from the thread list. If thread 2 was re-resumed, we
4927 ignore this event. If we find no thread resumed, then we cancel
4928 the synchronous command and show "no unwaited-for " to the
4929 user. */
4930
4931 inferior *curr_inf = current_inferior ();
4932
4933 scoped_restore_current_thread restore_thread;
4934
4935 for (auto *target : all_non_exited_process_targets ())
4936 {
4937 switch_to_target_no_thread (target);
4938 update_thread_list ();
4939 }
4940
4941 /* If:
4942
4943 - the current target has no thread executing, and
4944 - the current inferior is native, and
4945 - the current inferior is the one which has the terminal, and
4946 - we did nothing,
4947
4948 then a Ctrl-C from this point on would remain stuck in the
4949 kernel, until a thread resumes and dequeues it. That would
4950 result in the GDB CLI not reacting to Ctrl-C, not able to
4951 interrupt the program. To address this, if the current inferior
4952 no longer has any thread executing, we give the terminal to some
4953 other inferior that has at least one thread executing. */
4954 bool swap_terminal = true;
4955
4956 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
4957 whether to report it to the user. */
4958 bool ignore_event = false;
4959
4960 for (thread_info *thread : all_non_exited_threads ())
4961 {
4962 if (swap_terminal && thread->executing)
4963 {
4964 if (thread->inf != curr_inf)
4965 {
4966 target_terminal::ours ();
4967
4968 switch_to_thread (thread);
4969 target_terminal::inferior ();
4970 }
4971 swap_terminal = false;
4972 }
4973
4974 if (!ignore_event
4975 && (thread->executing
4976 || thread->suspend.waitstatus_pending_p))
4977 {
4978 /* Either there were no unwaited-for children left in the
4979 target at some point, but there are now, or some target
4980 other than the eventing one has unwaited-for children
4981 left. Just ignore. */
4982 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
4983 "(ignoring: found resumed)");
4984
4985 ignore_event = true;
4986 }
4987
4988 if (ignore_event && !swap_terminal)
4989 break;
4990 }
4991
4992 if (ignore_event)
4993 {
4994 switch_to_inferior_no_thread (curr_inf);
4995 prepare_to_wait (ecs);
4996 return true;
4997 }
4998
4999 /* Go ahead and report the event. */
5000 return false;
5001 }
5002
5003 /* Given an execution control state that has been freshly filled in by
5004 an event from the inferior, figure out what it means and take
5005 appropriate action.
5006
5007 The alternatives are:
5008
5009 1) stop_waiting and return; to really stop and return to the
5010 debugger.
5011
5012 2) keep_going and return; to wait for the next event (set
5013 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5014 once). */
5015
5016 static void
5017 handle_inferior_event (struct execution_control_state *ecs)
5018 {
5019 /* Make sure that all temporary struct value objects that were
5020 created during the handling of the event get deleted at the
5021 end. */
5022 scoped_value_mark free_values;
5023
5024 enum stop_kind stop_soon;
5025
5026 infrun_debug_printf ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
5027
5028 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5029 {
5030 /* We had an event in the inferior, but we are not interested in
5031 handling it at this level. The lower layers have already
5032 done what needs to be done, if anything.
5033
5034 One of the possible circumstances for this is when the
5035 inferior produces output for the console. The inferior has
5036 not stopped, and we are ignoring the event. Another possible
5037 circumstance is any event which the lower level knows will be
5038 reported multiple times without an intervening resume. */
5039 prepare_to_wait (ecs);
5040 return;
5041 }
5042
5043 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5044 {
5045 prepare_to_wait (ecs);
5046 return;
5047 }
5048
5049 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5050 && handle_no_resumed (ecs))
5051 return;
5052
5053 /* Cache the last target/ptid/waitstatus. */
5054 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5055
5056 /* Always clear state belonging to the previous time we stopped. */
5057 stop_stack_dummy = STOP_NONE;
5058
5059 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5060 {
5061 /* No unwaited-for children left. IOW, all resumed children
5062 have exited. */
5063 stop_print_frame = false;
5064 stop_waiting (ecs);
5065 return;
5066 }
5067
5068 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5069 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5070 {
5071 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5072 /* If it's a new thread, add it to the thread database. */
5073 if (ecs->event_thread == NULL)
5074 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5075
5076 /* Disable range stepping. If the next step request could use a
5077 range, this will be end up re-enabled then. */
5078 ecs->event_thread->control.may_range_step = 0;
5079 }
5080
5081 /* Dependent on valid ECS->EVENT_THREAD. */
5082 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5083
5084 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5085 reinit_frame_cache ();
5086
5087 breakpoint_retire_moribund ();
5088
5089 /* First, distinguish signals caused by the debugger from signals
5090 that have to do with the program's own actions. Note that
5091 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5092 on the operating system version. Here we detect when a SIGILL or
5093 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5094 something similar for SIGSEGV, since a SIGSEGV will be generated
5095 when we're trying to execute a breakpoint instruction on a
5096 non-executable stack. This happens for call dummy breakpoints
5097 for architectures like SPARC that place call dummies on the
5098 stack. */
5099 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5100 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5101 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5102 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5103 {
5104 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5105
5106 if (breakpoint_inserted_here_p (regcache->aspace (),
5107 regcache_read_pc (regcache)))
5108 {
5109 infrun_debug_printf ("Treating signal as SIGTRAP");
5110 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5111 }
5112 }
5113
5114 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5115
5116 switch (ecs->ws.kind)
5117 {
5118 case TARGET_WAITKIND_LOADED:
5119 context_switch (ecs);
5120 /* Ignore gracefully during startup of the inferior, as it might
5121 be the shell which has just loaded some objects, otherwise
5122 add the symbols for the newly loaded objects. Also ignore at
5123 the beginning of an attach or remote session; we will query
5124 the full list of libraries once the connection is
5125 established. */
5126
5127 stop_soon = get_inferior_stop_soon (ecs);
5128 if (stop_soon == NO_STOP_QUIETLY)
5129 {
5130 struct regcache *regcache;
5131
5132 regcache = get_thread_regcache (ecs->event_thread);
5133
5134 handle_solib_event ();
5135
5136 ecs->event_thread->control.stop_bpstat
5137 = bpstat_stop_status (regcache->aspace (),
5138 ecs->event_thread->suspend.stop_pc,
5139 ecs->event_thread, &ecs->ws);
5140
5141 if (handle_stop_requested (ecs))
5142 return;
5143
5144 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5145 {
5146 /* A catchpoint triggered. */
5147 process_event_stop_test (ecs);
5148 return;
5149 }
5150
5151 /* If requested, stop when the dynamic linker notifies
5152 gdb of events. This allows the user to get control
5153 and place breakpoints in initializer routines for
5154 dynamically loaded objects (among other things). */
5155 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5156 if (stop_on_solib_events)
5157 {
5158 /* Make sure we print "Stopped due to solib-event" in
5159 normal_stop. */
5160 stop_print_frame = true;
5161
5162 stop_waiting (ecs);
5163 return;
5164 }
5165 }
5166
5167 /* If we are skipping through a shell, or through shared library
5168 loading that we aren't interested in, resume the program. If
5169 we're running the program normally, also resume. */
5170 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5171 {
5172 /* Loading of shared libraries might have changed breakpoint
5173 addresses. Make sure new breakpoints are inserted. */
5174 if (stop_soon == NO_STOP_QUIETLY)
5175 insert_breakpoints ();
5176 resume (GDB_SIGNAL_0);
5177 prepare_to_wait (ecs);
5178 return;
5179 }
5180
5181 /* But stop if we're attaching or setting up a remote
5182 connection. */
5183 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5184 || stop_soon == STOP_QUIETLY_REMOTE)
5185 {
5186 infrun_debug_printf ("quietly stopped");
5187 stop_waiting (ecs);
5188 return;
5189 }
5190
5191 internal_error (__FILE__, __LINE__,
5192 _("unhandled stop_soon: %d"), (int) stop_soon);
5193
5194 case TARGET_WAITKIND_SPURIOUS:
5195 if (handle_stop_requested (ecs))
5196 return;
5197 context_switch (ecs);
5198 resume (GDB_SIGNAL_0);
5199 prepare_to_wait (ecs);
5200 return;
5201
5202 case TARGET_WAITKIND_THREAD_CREATED:
5203 if (handle_stop_requested (ecs))
5204 return;
5205 context_switch (ecs);
5206 if (!switch_back_to_stepped_thread (ecs))
5207 keep_going (ecs);
5208 return;
5209
5210 case TARGET_WAITKIND_EXITED:
5211 case TARGET_WAITKIND_SIGNALLED:
5212 {
5213 /* Depending on the system, ecs->ptid may point to a thread or
5214 to a process. On some targets, target_mourn_inferior may
5215 need to have access to the just-exited thread. That is the
5216 case of GNU/Linux's "checkpoint" support, for example.
5217 Call the switch_to_xxx routine as appropriate. */
5218 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5219 if (thr != nullptr)
5220 switch_to_thread (thr);
5221 else
5222 {
5223 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5224 switch_to_inferior_no_thread (inf);
5225 }
5226 }
5227 handle_vfork_child_exec_or_exit (0);
5228 target_terminal::ours (); /* Must do this before mourn anyway. */
5229
5230 /* Clearing any previous state of convenience variables. */
5231 clear_exit_convenience_vars ();
5232
5233 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5234 {
5235 /* Record the exit code in the convenience variable $_exitcode, so
5236 that the user can inspect this again later. */
5237 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5238 (LONGEST) ecs->ws.value.integer);
5239
5240 /* Also record this in the inferior itself. */
5241 current_inferior ()->has_exit_code = 1;
5242 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5243
5244 /* Support the --return-child-result option. */
5245 return_child_result_value = ecs->ws.value.integer;
5246
5247 gdb::observers::exited.notify (ecs->ws.value.integer);
5248 }
5249 else
5250 {
5251 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5252
5253 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5254 {
5255 /* Set the value of the internal variable $_exitsignal,
5256 which holds the signal uncaught by the inferior. */
5257 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5258 gdbarch_gdb_signal_to_target (gdbarch,
5259 ecs->ws.value.sig));
5260 }
5261 else
5262 {
5263 /* We don't have access to the target's method used for
5264 converting between signal numbers (GDB's internal
5265 representation <-> target's representation).
5266 Therefore, we cannot do a good job at displaying this
5267 information to the user. It's better to just warn
5268 her about it (if infrun debugging is enabled), and
5269 give up. */
5270 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5271 "signal number.");
5272 }
5273
5274 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5275 }
5276
5277 gdb_flush (gdb_stdout);
5278 target_mourn_inferior (inferior_ptid);
5279 stop_print_frame = false;
5280 stop_waiting (ecs);
5281 return;
5282
5283 case TARGET_WAITKIND_FORKED:
5284 case TARGET_WAITKIND_VFORKED:
5285 /* Check whether the inferior is displaced stepping. */
5286 {
5287 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5288 struct gdbarch *gdbarch = regcache->arch ();
5289 inferior *parent_inf = find_inferior_ptid (ecs->target, ecs->ptid);
5290
5291 /* If this is a fork (child gets its own address space copy) and the
5292 displaced step buffer was in use at the time of the fork, restore
5293 displaced step buffer bytes in the child process. */
5294 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5295 {
5296 displaced_step_inferior_state *displaced
5297 = &parent_inf->displaced_step_state;
5298
5299 if (displaced->step_thread != nullptr)
5300 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5301 }
5302
5303 /* If displaced stepping is supported, and thread ecs->ptid is
5304 displaced stepping. */
5305 if (displaced_step_in_progress_thread (ecs->event_thread))
5306 {
5307 struct regcache *child_regcache;
5308 CORE_ADDR parent_pc;
5309
5310 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5311 indicating that the displaced stepping of syscall instruction
5312 has been done. Perform cleanup for parent process here. Note
5313 that this operation also cleans up the child process for vfork,
5314 because their pages are shared. */
5315 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5316 /* Start a new step-over in another thread if there's one
5317 that needs it. */
5318 start_step_over ();
5319
5320 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5321 the child's PC is also within the scratchpad. Set the child's PC
5322 to the parent's PC value, which has already been fixed up.
5323 FIXME: we use the parent's aspace here, although we're touching
5324 the child, because the child hasn't been added to the inferior
5325 list yet at this point. */
5326
5327 child_regcache
5328 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5329 ecs->ws.value.related_pid,
5330 gdbarch,
5331 parent_inf->aspace);
5332 /* Read PC value of parent process. */
5333 parent_pc = regcache_read_pc (regcache);
5334
5335 displaced_debug_printf ("write child pc from %s to %s",
5336 paddress (gdbarch,
5337 regcache_read_pc (child_regcache)),
5338 paddress (gdbarch, parent_pc));
5339
5340 regcache_write_pc (child_regcache, parent_pc);
5341 }
5342 }
5343
5344 context_switch (ecs);
5345
5346 /* Immediately detach breakpoints from the child before there's
5347 any chance of letting the user delete breakpoints from the
5348 breakpoint lists. If we don't do this early, it's easy to
5349 leave left over traps in the child, vis: "break foo; catch
5350 fork; c; <fork>; del; c; <child calls foo>". We only follow
5351 the fork on the last `continue', and by that time the
5352 breakpoint at "foo" is long gone from the breakpoint table.
5353 If we vforked, then we don't need to unpatch here, since both
5354 parent and child are sharing the same memory pages; we'll
5355 need to unpatch at follow/detach time instead to be certain
5356 that new breakpoints added between catchpoint hit time and
5357 vfork follow are detached. */
5358 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5359 {
5360 /* This won't actually modify the breakpoint list, but will
5361 physically remove the breakpoints from the child. */
5362 detach_breakpoints (ecs->ws.value.related_pid);
5363 }
5364
5365 delete_just_stopped_threads_single_step_breakpoints ();
5366
5367 /* In case the event is caught by a catchpoint, remember that
5368 the event is to be followed at the next resume of the thread,
5369 and not immediately. */
5370 ecs->event_thread->pending_follow = ecs->ws;
5371
5372 ecs->event_thread->suspend.stop_pc
5373 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5374
5375 ecs->event_thread->control.stop_bpstat
5376 = bpstat_stop_status (get_current_regcache ()->aspace (),
5377 ecs->event_thread->suspend.stop_pc,
5378 ecs->event_thread, &ecs->ws);
5379
5380 if (handle_stop_requested (ecs))
5381 return;
5382
5383 /* If no catchpoint triggered for this, then keep going. Note
5384 that we're interested in knowing the bpstat actually causes a
5385 stop, not just if it may explain the signal. Software
5386 watchpoints, for example, always appear in the bpstat. */
5387 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5388 {
5389 bool follow_child
5390 = (follow_fork_mode_string == follow_fork_mode_child);
5391
5392 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5393
5394 process_stratum_target *targ
5395 = ecs->event_thread->inf->process_target ();
5396
5397 bool should_resume = follow_fork ();
5398
5399 /* Note that one of these may be an invalid pointer,
5400 depending on detach_fork. */
5401 thread_info *parent = ecs->event_thread;
5402 thread_info *child
5403 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5404
5405 /* At this point, the parent is marked running, and the
5406 child is marked stopped. */
5407
5408 /* If not resuming the parent, mark it stopped. */
5409 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5410 parent->set_running (false);
5411
5412 /* If resuming the child, mark it running. */
5413 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5414 child->set_running (true);
5415
5416 /* In non-stop mode, also resume the other branch. */
5417 if (!detach_fork && (non_stop
5418 || (sched_multi && target_is_non_stop_p ())))
5419 {
5420 if (follow_child)
5421 switch_to_thread (parent);
5422 else
5423 switch_to_thread (child);
5424
5425 ecs->event_thread = inferior_thread ();
5426 ecs->ptid = inferior_ptid;
5427 keep_going (ecs);
5428 }
5429
5430 if (follow_child)
5431 switch_to_thread (child);
5432 else
5433 switch_to_thread (parent);
5434
5435 ecs->event_thread = inferior_thread ();
5436 ecs->ptid = inferior_ptid;
5437
5438 if (should_resume)
5439 keep_going (ecs);
5440 else
5441 stop_waiting (ecs);
5442 return;
5443 }
5444 process_event_stop_test (ecs);
5445 return;
5446
5447 case TARGET_WAITKIND_VFORK_DONE:
5448 /* Done with the shared memory region. Re-insert breakpoints in
5449 the parent, and keep going. */
5450
5451 context_switch (ecs);
5452
5453 current_inferior ()->waiting_for_vfork_done = 0;
5454 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5455
5456 if (handle_stop_requested (ecs))
5457 return;
5458
5459 /* This also takes care of reinserting breakpoints in the
5460 previously locked inferior. */
5461 keep_going (ecs);
5462 return;
5463
5464 case TARGET_WAITKIND_EXECD:
5465
5466 /* Note we can't read registers yet (the stop_pc), because we
5467 don't yet know the inferior's post-exec architecture.
5468 'stop_pc' is explicitly read below instead. */
5469 switch_to_thread_no_regs (ecs->event_thread);
5470
5471 /* Do whatever is necessary to the parent branch of the vfork. */
5472 handle_vfork_child_exec_or_exit (1);
5473
5474 /* This causes the eventpoints and symbol table to be reset.
5475 Must do this now, before trying to determine whether to
5476 stop. */
5477 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5478
5479 /* In follow_exec we may have deleted the original thread and
5480 created a new one. Make sure that the event thread is the
5481 execd thread for that case (this is a nop otherwise). */
5482 ecs->event_thread = inferior_thread ();
5483
5484 ecs->event_thread->suspend.stop_pc
5485 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5486
5487 ecs->event_thread->control.stop_bpstat
5488 = bpstat_stop_status (get_current_regcache ()->aspace (),
5489 ecs->event_thread->suspend.stop_pc,
5490 ecs->event_thread, &ecs->ws);
5491
5492 /* Note that this may be referenced from inside
5493 bpstat_stop_status above, through inferior_has_execd. */
5494 xfree (ecs->ws.value.execd_pathname);
5495 ecs->ws.value.execd_pathname = NULL;
5496
5497 if (handle_stop_requested (ecs))
5498 return;
5499
5500 /* If no catchpoint triggered for this, then keep going. */
5501 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5502 {
5503 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5504 keep_going (ecs);
5505 return;
5506 }
5507 process_event_stop_test (ecs);
5508 return;
5509
5510 /* Be careful not to try to gather much state about a thread
5511 that's in a syscall. It's frequently a losing proposition. */
5512 case TARGET_WAITKIND_SYSCALL_ENTRY:
5513 /* Getting the current syscall number. */
5514 if (handle_syscall_event (ecs) == 0)
5515 process_event_stop_test (ecs);
5516 return;
5517
5518 /* Before examining the threads further, step this thread to
5519 get it entirely out of the syscall. (We get notice of the
5520 event when the thread is just on the verge of exiting a
5521 syscall. Stepping one instruction seems to get it back
5522 into user code.) */
5523 case TARGET_WAITKIND_SYSCALL_RETURN:
5524 if (handle_syscall_event (ecs) == 0)
5525 process_event_stop_test (ecs);
5526 return;
5527
5528 case TARGET_WAITKIND_STOPPED:
5529 handle_signal_stop (ecs);
5530 return;
5531
5532 case TARGET_WAITKIND_NO_HISTORY:
5533 /* Reverse execution: target ran out of history info. */
5534
5535 /* Switch to the stopped thread. */
5536 context_switch (ecs);
5537 infrun_debug_printf ("stopped");
5538
5539 delete_just_stopped_threads_single_step_breakpoints ();
5540 ecs->event_thread->suspend.stop_pc
5541 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5542
5543 if (handle_stop_requested (ecs))
5544 return;
5545
5546 gdb::observers::no_history.notify ();
5547 stop_waiting (ecs);
5548 return;
5549 }
5550 }
5551
5552 /* Restart threads back to what they were trying to do back when we
5553 paused them for an in-line step-over. The EVENT_THREAD thread is
5554 ignored. */
5555
5556 static void
5557 restart_threads (struct thread_info *event_thread)
5558 {
5559 /* In case the instruction just stepped spawned a new thread. */
5560 update_thread_list ();
5561
5562 for (thread_info *tp : all_non_exited_threads ())
5563 {
5564 switch_to_thread_no_regs (tp);
5565
5566 if (tp == event_thread)
5567 {
5568 infrun_debug_printf ("restart threads: [%s] is event thread",
5569 target_pid_to_str (tp->ptid).c_str ());
5570 continue;
5571 }
5572
5573 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5574 {
5575 infrun_debug_printf ("restart threads: [%s] not meant to be running",
5576 target_pid_to_str (tp->ptid).c_str ());
5577 continue;
5578 }
5579
5580 if (tp->resumed)
5581 {
5582 infrun_debug_printf ("restart threads: [%s] resumed",
5583 target_pid_to_str (tp->ptid).c_str ());
5584 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5585 continue;
5586 }
5587
5588 if (thread_is_in_step_over_chain (tp))
5589 {
5590 infrun_debug_printf ("restart threads: [%s] needs step-over",
5591 target_pid_to_str (tp->ptid).c_str ());
5592 gdb_assert (!tp->resumed);
5593 continue;
5594 }
5595
5596
5597 if (tp->suspend.waitstatus_pending_p)
5598 {
5599 infrun_debug_printf ("restart threads: [%s] has pending status",
5600 target_pid_to_str (tp->ptid).c_str ());
5601 tp->resumed = true;
5602 continue;
5603 }
5604
5605 gdb_assert (!tp->stop_requested);
5606
5607 /* If some thread needs to start a step-over at this point, it
5608 should still be in the step-over queue, and thus skipped
5609 above. */
5610 if (thread_still_needs_step_over (tp))
5611 {
5612 internal_error (__FILE__, __LINE__,
5613 "thread [%s] needs a step-over, but not in "
5614 "step-over queue\n",
5615 target_pid_to_str (tp->ptid).c_str ());
5616 }
5617
5618 if (currently_stepping (tp))
5619 {
5620 infrun_debug_printf ("restart threads: [%s] was stepping",
5621 target_pid_to_str (tp->ptid).c_str ());
5622 keep_going_stepped_thread (tp);
5623 }
5624 else
5625 {
5626 struct execution_control_state ecss;
5627 struct execution_control_state *ecs = &ecss;
5628
5629 infrun_debug_printf ("restart threads: [%s] continuing",
5630 target_pid_to_str (tp->ptid).c_str ());
5631 reset_ecs (ecs, tp);
5632 switch_to_thread (tp);
5633 keep_going_pass_signal (ecs);
5634 }
5635 }
5636 }
5637
5638 /* Callback for iterate_over_threads. Find a resumed thread that has
5639 a pending waitstatus. */
5640
5641 static int
5642 resumed_thread_with_pending_status (struct thread_info *tp,
5643 void *arg)
5644 {
5645 return (tp->resumed
5646 && tp->suspend.waitstatus_pending_p);
5647 }
5648
5649 /* Called when we get an event that may finish an in-line or
5650 out-of-line (displaced stepping) step-over started previously.
5651 Return true if the event is processed and we should go back to the
5652 event loop; false if the caller should continue processing the
5653 event. */
5654
5655 static int
5656 finish_step_over (struct execution_control_state *ecs)
5657 {
5658 displaced_step_fixup (ecs->event_thread,
5659 ecs->event_thread->suspend.stop_signal);
5660
5661 bool had_step_over_info = step_over_info_valid_p ();
5662
5663 if (had_step_over_info)
5664 {
5665 /* If we're stepping over a breakpoint with all threads locked,
5666 then only the thread that was stepped should be reporting
5667 back an event. */
5668 gdb_assert (ecs->event_thread->control.trap_expected);
5669
5670 clear_step_over_info ();
5671 }
5672
5673 if (!target_is_non_stop_p ())
5674 return 0;
5675
5676 /* Start a new step-over in another thread if there's one that
5677 needs it. */
5678 start_step_over ();
5679
5680 /* If we were stepping over a breakpoint before, and haven't started
5681 a new in-line step-over sequence, then restart all other threads
5682 (except the event thread). We can't do this in all-stop, as then
5683 e.g., we wouldn't be able to issue any other remote packet until
5684 these other threads stop. */
5685 if (had_step_over_info && !step_over_info_valid_p ())
5686 {
5687 struct thread_info *pending;
5688
5689 /* If we only have threads with pending statuses, the restart
5690 below won't restart any thread and so nothing re-inserts the
5691 breakpoint we just stepped over. But we need it inserted
5692 when we later process the pending events, otherwise if
5693 another thread has a pending event for this breakpoint too,
5694 we'd discard its event (because the breakpoint that
5695 originally caused the event was no longer inserted). */
5696 context_switch (ecs);
5697 insert_breakpoints ();
5698
5699 restart_threads (ecs->event_thread);
5700
5701 /* If we have events pending, go through handle_inferior_event
5702 again, picking up a pending event at random. This avoids
5703 thread starvation. */
5704
5705 /* But not if we just stepped over a watchpoint in order to let
5706 the instruction execute so we can evaluate its expression.
5707 The set of watchpoints that triggered is recorded in the
5708 breakpoint objects themselves (see bp->watchpoint_triggered).
5709 If we processed another event first, that other event could
5710 clobber this info. */
5711 if (ecs->event_thread->stepping_over_watchpoint)
5712 return 0;
5713
5714 pending = iterate_over_threads (resumed_thread_with_pending_status,
5715 NULL);
5716 if (pending != NULL)
5717 {
5718 struct thread_info *tp = ecs->event_thread;
5719 struct regcache *regcache;
5720
5721 infrun_debug_printf ("found resumed threads with "
5722 "pending events, saving status");
5723
5724 gdb_assert (pending != tp);
5725
5726 /* Record the event thread's event for later. */
5727 save_waitstatus (tp, &ecs->ws);
5728 /* This was cleared early, by handle_inferior_event. Set it
5729 so this pending event is considered by
5730 do_target_wait. */
5731 tp->resumed = true;
5732
5733 gdb_assert (!tp->executing);
5734
5735 regcache = get_thread_regcache (tp);
5736 tp->suspend.stop_pc = regcache_read_pc (regcache);
5737
5738 infrun_debug_printf ("saved stop_pc=%s for %s "
5739 "(currently_stepping=%d)",
5740 paddress (target_gdbarch (),
5741 tp->suspend.stop_pc),
5742 target_pid_to_str (tp->ptid).c_str (),
5743 currently_stepping (tp));
5744
5745 /* This in-line step-over finished; clear this so we won't
5746 start a new one. This is what handle_signal_stop would
5747 do, if we returned false. */
5748 tp->stepping_over_breakpoint = 0;
5749
5750 /* Wake up the event loop again. */
5751 mark_async_event_handler (infrun_async_inferior_event_token);
5752
5753 prepare_to_wait (ecs);
5754 return 1;
5755 }
5756 }
5757
5758 return 0;
5759 }
5760
5761 /* Come here when the program has stopped with a signal. */
5762
5763 static void
5764 handle_signal_stop (struct execution_control_state *ecs)
5765 {
5766 struct frame_info *frame;
5767 struct gdbarch *gdbarch;
5768 int stopped_by_watchpoint;
5769 enum stop_kind stop_soon;
5770 int random_signal;
5771
5772 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5773
5774 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5775
5776 /* Do we need to clean up the state of a thread that has
5777 completed a displaced single-step? (Doing so usually affects
5778 the PC, so do it here, before we set stop_pc.) */
5779 if (finish_step_over (ecs))
5780 return;
5781
5782 /* If we either finished a single-step or hit a breakpoint, but
5783 the user wanted this thread to be stopped, pretend we got a
5784 SIG0 (generic unsignaled stop). */
5785 if (ecs->event_thread->stop_requested
5786 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5787 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5788
5789 ecs->event_thread->suspend.stop_pc
5790 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5791
5792 if (debug_infrun)
5793 {
5794 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5795 struct gdbarch *reg_gdbarch = regcache->arch ();
5796
5797 switch_to_thread (ecs->event_thread);
5798
5799 infrun_debug_printf ("stop_pc=%s",
5800 paddress (reg_gdbarch,
5801 ecs->event_thread->suspend.stop_pc));
5802 if (target_stopped_by_watchpoint ())
5803 {
5804 CORE_ADDR addr;
5805
5806 infrun_debug_printf ("stopped by watchpoint");
5807
5808 if (target_stopped_data_address (current_top_target (), &addr))
5809 infrun_debug_printf ("stopped data address=%s",
5810 paddress (reg_gdbarch, addr));
5811 else
5812 infrun_debug_printf ("(no data address available)");
5813 }
5814 }
5815
5816 /* This is originated from start_remote(), start_inferior() and
5817 shared libraries hook functions. */
5818 stop_soon = get_inferior_stop_soon (ecs);
5819 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5820 {
5821 context_switch (ecs);
5822 infrun_debug_printf ("quietly stopped");
5823 stop_print_frame = true;
5824 stop_waiting (ecs);
5825 return;
5826 }
5827
5828 /* This originates from attach_command(). We need to overwrite
5829 the stop_signal here, because some kernels don't ignore a
5830 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5831 See more comments in inferior.h. On the other hand, if we
5832 get a non-SIGSTOP, report it to the user - assume the backend
5833 will handle the SIGSTOP if it should show up later.
5834
5835 Also consider that the attach is complete when we see a
5836 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5837 target extended-remote report it instead of a SIGSTOP
5838 (e.g. gdbserver). We already rely on SIGTRAP being our
5839 signal, so this is no exception.
5840
5841 Also consider that the attach is complete when we see a
5842 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5843 the target to stop all threads of the inferior, in case the
5844 low level attach operation doesn't stop them implicitly. If
5845 they weren't stopped implicitly, then the stub will report a
5846 GDB_SIGNAL_0, meaning: stopped for no particular reason
5847 other than GDB's request. */
5848 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5849 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5850 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5851 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5852 {
5853 stop_print_frame = true;
5854 stop_waiting (ecs);
5855 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5856 return;
5857 }
5858
5859 /* See if something interesting happened to the non-current thread. If
5860 so, then switch to that thread. */
5861 if (ecs->ptid != inferior_ptid)
5862 {
5863 infrun_debug_printf ("context switch");
5864
5865 context_switch (ecs);
5866
5867 if (deprecated_context_hook)
5868 deprecated_context_hook (ecs->event_thread->global_num);
5869 }
5870
5871 /* At this point, get hold of the now-current thread's frame. */
5872 frame = get_current_frame ();
5873 gdbarch = get_frame_arch (frame);
5874
5875 /* Pull the single step breakpoints out of the target. */
5876 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5877 {
5878 struct regcache *regcache;
5879 CORE_ADDR pc;
5880
5881 regcache = get_thread_regcache (ecs->event_thread);
5882 const address_space *aspace = regcache->aspace ();
5883
5884 pc = regcache_read_pc (regcache);
5885
5886 /* However, before doing so, if this single-step breakpoint was
5887 actually for another thread, set this thread up for moving
5888 past it. */
5889 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5890 aspace, pc))
5891 {
5892 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5893 {
5894 infrun_debug_printf ("[%s] hit another thread's single-step "
5895 "breakpoint",
5896 target_pid_to_str (ecs->ptid).c_str ());
5897 ecs->hit_singlestep_breakpoint = 1;
5898 }
5899 }
5900 else
5901 {
5902 infrun_debug_printf ("[%s] hit its single-step breakpoint",
5903 target_pid_to_str (ecs->ptid).c_str ());
5904 }
5905 }
5906 delete_just_stopped_threads_single_step_breakpoints ();
5907
5908 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5909 && ecs->event_thread->control.trap_expected
5910 && ecs->event_thread->stepping_over_watchpoint)
5911 stopped_by_watchpoint = 0;
5912 else
5913 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5914
5915 /* If necessary, step over this watchpoint. We'll be back to display
5916 it in a moment. */
5917 if (stopped_by_watchpoint
5918 && (target_have_steppable_watchpoint ()
5919 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5920 {
5921 /* At this point, we are stopped at an instruction which has
5922 attempted to write to a piece of memory under control of
5923 a watchpoint. The instruction hasn't actually executed
5924 yet. If we were to evaluate the watchpoint expression
5925 now, we would get the old value, and therefore no change
5926 would seem to have occurred.
5927
5928 In order to make watchpoints work `right', we really need
5929 to complete the memory write, and then evaluate the
5930 watchpoint expression. We do this by single-stepping the
5931 target.
5932
5933 It may not be necessary to disable the watchpoint to step over
5934 it. For example, the PA can (with some kernel cooperation)
5935 single step over a watchpoint without disabling the watchpoint.
5936
5937 It is far more common to need to disable a watchpoint to step
5938 the inferior over it. If we have non-steppable watchpoints,
5939 we must disable the current watchpoint; it's simplest to
5940 disable all watchpoints.
5941
5942 Any breakpoint at PC must also be stepped over -- if there's
5943 one, it will have already triggered before the watchpoint
5944 triggered, and we either already reported it to the user, or
5945 it didn't cause a stop and we called keep_going. In either
5946 case, if there was a breakpoint at PC, we must be trying to
5947 step past it. */
5948 ecs->event_thread->stepping_over_watchpoint = 1;
5949 keep_going (ecs);
5950 return;
5951 }
5952
5953 ecs->event_thread->stepping_over_breakpoint = 0;
5954 ecs->event_thread->stepping_over_watchpoint = 0;
5955 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5956 ecs->event_thread->control.stop_step = 0;
5957 stop_print_frame = true;
5958 stopped_by_random_signal = 0;
5959 bpstat stop_chain = NULL;
5960
5961 /* Hide inlined functions starting here, unless we just performed stepi or
5962 nexti. After stepi and nexti, always show the innermost frame (not any
5963 inline function call sites). */
5964 if (ecs->event_thread->control.step_range_end != 1)
5965 {
5966 const address_space *aspace
5967 = get_thread_regcache (ecs->event_thread)->aspace ();
5968
5969 /* skip_inline_frames is expensive, so we avoid it if we can
5970 determine that the address is one where functions cannot have
5971 been inlined. This improves performance with inferiors that
5972 load a lot of shared libraries, because the solib event
5973 breakpoint is defined as the address of a function (i.e. not
5974 inline). Note that we have to check the previous PC as well
5975 as the current one to catch cases when we have just
5976 single-stepped off a breakpoint prior to reinstating it.
5977 Note that we're assuming that the code we single-step to is
5978 not inline, but that's not definitive: there's nothing
5979 preventing the event breakpoint function from containing
5980 inlined code, and the single-step ending up there. If the
5981 user had set a breakpoint on that inlined code, the missing
5982 skip_inline_frames call would break things. Fortunately
5983 that's an extremely unlikely scenario. */
5984 if (!pc_at_non_inline_function (aspace,
5985 ecs->event_thread->suspend.stop_pc,
5986 &ecs->ws)
5987 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5988 && ecs->event_thread->control.trap_expected
5989 && pc_at_non_inline_function (aspace,
5990 ecs->event_thread->prev_pc,
5991 &ecs->ws)))
5992 {
5993 stop_chain = build_bpstat_chain (aspace,
5994 ecs->event_thread->suspend.stop_pc,
5995 &ecs->ws);
5996 skip_inline_frames (ecs->event_thread, stop_chain);
5997
5998 /* Re-fetch current thread's frame in case that invalidated
5999 the frame cache. */
6000 frame = get_current_frame ();
6001 gdbarch = get_frame_arch (frame);
6002 }
6003 }
6004
6005 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6006 && ecs->event_thread->control.trap_expected
6007 && gdbarch_single_step_through_delay_p (gdbarch)
6008 && currently_stepping (ecs->event_thread))
6009 {
6010 /* We're trying to step off a breakpoint. Turns out that we're
6011 also on an instruction that needs to be stepped multiple
6012 times before it's been fully executing. E.g., architectures
6013 with a delay slot. It needs to be stepped twice, once for
6014 the instruction and once for the delay slot. */
6015 int step_through_delay
6016 = gdbarch_single_step_through_delay (gdbarch, frame);
6017
6018 if (step_through_delay)
6019 infrun_debug_printf ("step through delay");
6020
6021 if (ecs->event_thread->control.step_range_end == 0
6022 && step_through_delay)
6023 {
6024 /* The user issued a continue when stopped at a breakpoint.
6025 Set up for another trap and get out of here. */
6026 ecs->event_thread->stepping_over_breakpoint = 1;
6027 keep_going (ecs);
6028 return;
6029 }
6030 else if (step_through_delay)
6031 {
6032 /* The user issued a step when stopped at a breakpoint.
6033 Maybe we should stop, maybe we should not - the delay
6034 slot *might* correspond to a line of source. In any
6035 case, don't decide that here, just set
6036 ecs->stepping_over_breakpoint, making sure we
6037 single-step again before breakpoints are re-inserted. */
6038 ecs->event_thread->stepping_over_breakpoint = 1;
6039 }
6040 }
6041
6042 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6043 handles this event. */
6044 ecs->event_thread->control.stop_bpstat
6045 = bpstat_stop_status (get_current_regcache ()->aspace (),
6046 ecs->event_thread->suspend.stop_pc,
6047 ecs->event_thread, &ecs->ws, stop_chain);
6048
6049 /* Following in case break condition called a
6050 function. */
6051 stop_print_frame = true;
6052
6053 /* This is where we handle "moribund" watchpoints. Unlike
6054 software breakpoints traps, hardware watchpoint traps are
6055 always distinguishable from random traps. If no high-level
6056 watchpoint is associated with the reported stop data address
6057 anymore, then the bpstat does not explain the signal ---
6058 simply make sure to ignore it if `stopped_by_watchpoint' is
6059 set. */
6060
6061 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6062 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6063 GDB_SIGNAL_TRAP)
6064 && stopped_by_watchpoint)
6065 {
6066 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6067 "ignoring");
6068 }
6069
6070 /* NOTE: cagney/2003-03-29: These checks for a random signal
6071 at one stage in the past included checks for an inferior
6072 function call's call dummy's return breakpoint. The original
6073 comment, that went with the test, read:
6074
6075 ``End of a stack dummy. Some systems (e.g. Sony news) give
6076 another signal besides SIGTRAP, so check here as well as
6077 above.''
6078
6079 If someone ever tries to get call dummys on a
6080 non-executable stack to work (where the target would stop
6081 with something like a SIGSEGV), then those tests might need
6082 to be re-instated. Given, however, that the tests were only
6083 enabled when momentary breakpoints were not being used, I
6084 suspect that it won't be the case.
6085
6086 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6087 be necessary for call dummies on a non-executable stack on
6088 SPARC. */
6089
6090 /* See if the breakpoints module can explain the signal. */
6091 random_signal
6092 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6093 ecs->event_thread->suspend.stop_signal);
6094
6095 /* Maybe this was a trap for a software breakpoint that has since
6096 been removed. */
6097 if (random_signal && target_stopped_by_sw_breakpoint ())
6098 {
6099 if (gdbarch_program_breakpoint_here_p (gdbarch,
6100 ecs->event_thread->suspend.stop_pc))
6101 {
6102 struct regcache *regcache;
6103 int decr_pc;
6104
6105 /* Re-adjust PC to what the program would see if GDB was not
6106 debugging it. */
6107 regcache = get_thread_regcache (ecs->event_thread);
6108 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6109 if (decr_pc != 0)
6110 {
6111 gdb::optional<scoped_restore_tmpl<int>>
6112 restore_operation_disable;
6113
6114 if (record_full_is_used ())
6115 restore_operation_disable.emplace
6116 (record_full_gdb_operation_disable_set ());
6117
6118 regcache_write_pc (regcache,
6119 ecs->event_thread->suspend.stop_pc + decr_pc);
6120 }
6121 }
6122 else
6123 {
6124 /* A delayed software breakpoint event. Ignore the trap. */
6125 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
6126 random_signal = 0;
6127 }
6128 }
6129
6130 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6131 has since been removed. */
6132 if (random_signal && target_stopped_by_hw_breakpoint ())
6133 {
6134 /* A delayed hardware breakpoint event. Ignore the trap. */
6135 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6136 "trap, ignoring");
6137 random_signal = 0;
6138 }
6139
6140 /* If not, perhaps stepping/nexting can. */
6141 if (random_signal)
6142 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6143 && currently_stepping (ecs->event_thread));
6144
6145 /* Perhaps the thread hit a single-step breakpoint of _another_
6146 thread. Single-step breakpoints are transparent to the
6147 breakpoints module. */
6148 if (random_signal)
6149 random_signal = !ecs->hit_singlestep_breakpoint;
6150
6151 /* No? Perhaps we got a moribund watchpoint. */
6152 if (random_signal)
6153 random_signal = !stopped_by_watchpoint;
6154
6155 /* Always stop if the user explicitly requested this thread to
6156 remain stopped. */
6157 if (ecs->event_thread->stop_requested)
6158 {
6159 random_signal = 1;
6160 infrun_debug_printf ("user-requested stop");
6161 }
6162
6163 /* For the program's own signals, act according to
6164 the signal handling tables. */
6165
6166 if (random_signal)
6167 {
6168 /* Signal not for debugging purposes. */
6169 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6170 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6171
6172 infrun_debug_printf ("random signal (%s)",
6173 gdb_signal_to_symbol_string (stop_signal));
6174
6175 stopped_by_random_signal = 1;
6176
6177 /* Always stop on signals if we're either just gaining control
6178 of the program, or the user explicitly requested this thread
6179 to remain stopped. */
6180 if (stop_soon != NO_STOP_QUIETLY
6181 || ecs->event_thread->stop_requested
6182 || (!inf->detaching
6183 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6184 {
6185 stop_waiting (ecs);
6186 return;
6187 }
6188
6189 /* Notify observers the signal has "handle print" set. Note we
6190 returned early above if stopping; normal_stop handles the
6191 printing in that case. */
6192 if (signal_print[ecs->event_thread->suspend.stop_signal])
6193 {
6194 /* The signal table tells us to print about this signal. */
6195 target_terminal::ours_for_output ();
6196 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6197 target_terminal::inferior ();
6198 }
6199
6200 /* Clear the signal if it should not be passed. */
6201 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6202 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6203
6204 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6205 && ecs->event_thread->control.trap_expected
6206 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6207 {
6208 /* We were just starting a new sequence, attempting to
6209 single-step off of a breakpoint and expecting a SIGTRAP.
6210 Instead this signal arrives. This signal will take us out
6211 of the stepping range so GDB needs to remember to, when
6212 the signal handler returns, resume stepping off that
6213 breakpoint. */
6214 /* To simplify things, "continue" is forced to use the same
6215 code paths as single-step - set a breakpoint at the
6216 signal return address and then, once hit, step off that
6217 breakpoint. */
6218 infrun_debug_printf ("signal arrived while stepping over breakpoint");
6219
6220 insert_hp_step_resume_breakpoint_at_frame (frame);
6221 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6222 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6223 ecs->event_thread->control.trap_expected = 0;
6224
6225 /* If we were nexting/stepping some other thread, switch to
6226 it, so that we don't continue it, losing control. */
6227 if (!switch_back_to_stepped_thread (ecs))
6228 keep_going (ecs);
6229 return;
6230 }
6231
6232 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6233 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6234 ecs->event_thread)
6235 || ecs->event_thread->control.step_range_end == 1)
6236 && frame_id_eq (get_stack_frame_id (frame),
6237 ecs->event_thread->control.step_stack_frame_id)
6238 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6239 {
6240 /* The inferior is about to take a signal that will take it
6241 out of the single step range. Set a breakpoint at the
6242 current PC (which is presumably where the signal handler
6243 will eventually return) and then allow the inferior to
6244 run free.
6245
6246 Note that this is only needed for a signal delivered
6247 while in the single-step range. Nested signals aren't a
6248 problem as they eventually all return. */
6249 infrun_debug_printf ("signal may take us out of single-step range");
6250
6251 clear_step_over_info ();
6252 insert_hp_step_resume_breakpoint_at_frame (frame);
6253 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6254 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6255 ecs->event_thread->control.trap_expected = 0;
6256 keep_going (ecs);
6257 return;
6258 }
6259
6260 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6261 when either there's a nested signal, or when there's a
6262 pending signal enabled just as the signal handler returns
6263 (leaving the inferior at the step-resume-breakpoint without
6264 actually executing it). Either way continue until the
6265 breakpoint is really hit. */
6266
6267 if (!switch_back_to_stepped_thread (ecs))
6268 {
6269 infrun_debug_printf ("random signal, keep going");
6270
6271 keep_going (ecs);
6272 }
6273 return;
6274 }
6275
6276 process_event_stop_test (ecs);
6277 }
6278
6279 /* Come here when we've got some debug event / signal we can explain
6280 (IOW, not a random signal), and test whether it should cause a
6281 stop, or whether we should resume the inferior (transparently).
6282 E.g., could be a breakpoint whose condition evaluates false; we
6283 could be still stepping within the line; etc. */
6284
6285 static void
6286 process_event_stop_test (struct execution_control_state *ecs)
6287 {
6288 struct symtab_and_line stop_pc_sal;
6289 struct frame_info *frame;
6290 struct gdbarch *gdbarch;
6291 CORE_ADDR jmp_buf_pc;
6292 struct bpstat_what what;
6293
6294 /* Handle cases caused by hitting a breakpoint. */
6295
6296 frame = get_current_frame ();
6297 gdbarch = get_frame_arch (frame);
6298
6299 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6300
6301 if (what.call_dummy)
6302 {
6303 stop_stack_dummy = what.call_dummy;
6304 }
6305
6306 /* A few breakpoint types have callbacks associated (e.g.,
6307 bp_jit_event). Run them now. */
6308 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6309
6310 /* If we hit an internal event that triggers symbol changes, the
6311 current frame will be invalidated within bpstat_what (e.g., if we
6312 hit an internal solib event). Re-fetch it. */
6313 frame = get_current_frame ();
6314 gdbarch = get_frame_arch (frame);
6315
6316 switch (what.main_action)
6317 {
6318 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6319 /* If we hit the breakpoint at longjmp while stepping, we
6320 install a momentary breakpoint at the target of the
6321 jmp_buf. */
6322
6323 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6324
6325 ecs->event_thread->stepping_over_breakpoint = 1;
6326
6327 if (what.is_longjmp)
6328 {
6329 struct value *arg_value;
6330
6331 /* If we set the longjmp breakpoint via a SystemTap probe,
6332 then use it to extract the arguments. The destination PC
6333 is the third argument to the probe. */
6334 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6335 if (arg_value)
6336 {
6337 jmp_buf_pc = value_as_address (arg_value);
6338 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6339 }
6340 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6341 || !gdbarch_get_longjmp_target (gdbarch,
6342 frame, &jmp_buf_pc))
6343 {
6344 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6345 "(!gdbarch_get_longjmp_target)");
6346 keep_going (ecs);
6347 return;
6348 }
6349
6350 /* Insert a breakpoint at resume address. */
6351 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6352 }
6353 else
6354 check_exception_resume (ecs, frame);
6355 keep_going (ecs);
6356 return;
6357
6358 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6359 {
6360 struct frame_info *init_frame;
6361
6362 /* There are several cases to consider.
6363
6364 1. The initiating frame no longer exists. In this case we
6365 must stop, because the exception or longjmp has gone too
6366 far.
6367
6368 2. The initiating frame exists, and is the same as the
6369 current frame. We stop, because the exception or longjmp
6370 has been caught.
6371
6372 3. The initiating frame exists and is different from the
6373 current frame. This means the exception or longjmp has
6374 been caught beneath the initiating frame, so keep going.
6375
6376 4. longjmp breakpoint has been placed just to protect
6377 against stale dummy frames and user is not interested in
6378 stopping around longjmps. */
6379
6380 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6381
6382 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6383 != NULL);
6384 delete_exception_resume_breakpoint (ecs->event_thread);
6385
6386 if (what.is_longjmp)
6387 {
6388 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6389
6390 if (!frame_id_p (ecs->event_thread->initiating_frame))
6391 {
6392 /* Case 4. */
6393 keep_going (ecs);
6394 return;
6395 }
6396 }
6397
6398 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6399
6400 if (init_frame)
6401 {
6402 struct frame_id current_id
6403 = get_frame_id (get_current_frame ());
6404 if (frame_id_eq (current_id,
6405 ecs->event_thread->initiating_frame))
6406 {
6407 /* Case 2. Fall through. */
6408 }
6409 else
6410 {
6411 /* Case 3. */
6412 keep_going (ecs);
6413 return;
6414 }
6415 }
6416
6417 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6418 exists. */
6419 delete_step_resume_breakpoint (ecs->event_thread);
6420
6421 end_stepping_range (ecs);
6422 }
6423 return;
6424
6425 case BPSTAT_WHAT_SINGLE:
6426 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
6427 ecs->event_thread->stepping_over_breakpoint = 1;
6428 /* Still need to check other stuff, at least the case where we
6429 are stepping and step out of the right range. */
6430 break;
6431
6432 case BPSTAT_WHAT_STEP_RESUME:
6433 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
6434
6435 delete_step_resume_breakpoint (ecs->event_thread);
6436 if (ecs->event_thread->control.proceed_to_finish
6437 && execution_direction == EXEC_REVERSE)
6438 {
6439 struct thread_info *tp = ecs->event_thread;
6440
6441 /* We are finishing a function in reverse, and just hit the
6442 step-resume breakpoint at the start address of the
6443 function, and we're almost there -- just need to back up
6444 by one more single-step, which should take us back to the
6445 function call. */
6446 tp->control.step_range_start = tp->control.step_range_end = 1;
6447 keep_going (ecs);
6448 return;
6449 }
6450 fill_in_stop_func (gdbarch, ecs);
6451 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6452 && execution_direction == EXEC_REVERSE)
6453 {
6454 /* We are stepping over a function call in reverse, and just
6455 hit the step-resume breakpoint at the start address of
6456 the function. Go back to single-stepping, which should
6457 take us back to the function call. */
6458 ecs->event_thread->stepping_over_breakpoint = 1;
6459 keep_going (ecs);
6460 return;
6461 }
6462 break;
6463
6464 case BPSTAT_WHAT_STOP_NOISY:
6465 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
6466 stop_print_frame = true;
6467
6468 /* Assume the thread stopped for a breakpoint. We'll still check
6469 whether a/the breakpoint is there when the thread is next
6470 resumed. */
6471 ecs->event_thread->stepping_over_breakpoint = 1;
6472
6473 stop_waiting (ecs);
6474 return;
6475
6476 case BPSTAT_WHAT_STOP_SILENT:
6477 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
6478 stop_print_frame = false;
6479
6480 /* Assume the thread stopped for a breakpoint. We'll still check
6481 whether a/the breakpoint is there when the thread is next
6482 resumed. */
6483 ecs->event_thread->stepping_over_breakpoint = 1;
6484 stop_waiting (ecs);
6485 return;
6486
6487 case BPSTAT_WHAT_HP_STEP_RESUME:
6488 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
6489
6490 delete_step_resume_breakpoint (ecs->event_thread);
6491 if (ecs->event_thread->step_after_step_resume_breakpoint)
6492 {
6493 /* Back when the step-resume breakpoint was inserted, we
6494 were trying to single-step off a breakpoint. Go back to
6495 doing that. */
6496 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6497 ecs->event_thread->stepping_over_breakpoint = 1;
6498 keep_going (ecs);
6499 return;
6500 }
6501 break;
6502
6503 case BPSTAT_WHAT_KEEP_CHECKING:
6504 break;
6505 }
6506
6507 /* If we stepped a permanent breakpoint and we had a high priority
6508 step-resume breakpoint for the address we stepped, but we didn't
6509 hit it, then we must have stepped into the signal handler. The
6510 step-resume was only necessary to catch the case of _not_
6511 stepping into the handler, so delete it, and fall through to
6512 checking whether the step finished. */
6513 if (ecs->event_thread->stepped_breakpoint)
6514 {
6515 struct breakpoint *sr_bp
6516 = ecs->event_thread->control.step_resume_breakpoint;
6517
6518 if (sr_bp != NULL
6519 && sr_bp->loc->permanent
6520 && sr_bp->type == bp_hp_step_resume
6521 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6522 {
6523 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
6524 delete_step_resume_breakpoint (ecs->event_thread);
6525 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6526 }
6527 }
6528
6529 /* We come here if we hit a breakpoint but should not stop for it.
6530 Possibly we also were stepping and should stop for that. So fall
6531 through and test for stepping. But, if not stepping, do not
6532 stop. */
6533
6534 /* In all-stop mode, if we're currently stepping but have stopped in
6535 some other thread, we need to switch back to the stepped thread. */
6536 if (switch_back_to_stepped_thread (ecs))
6537 return;
6538
6539 if (ecs->event_thread->control.step_resume_breakpoint)
6540 {
6541 infrun_debug_printf ("step-resume breakpoint is inserted");
6542
6543 /* Having a step-resume breakpoint overrides anything
6544 else having to do with stepping commands until
6545 that breakpoint is reached. */
6546 keep_going (ecs);
6547 return;
6548 }
6549
6550 if (ecs->event_thread->control.step_range_end == 0)
6551 {
6552 infrun_debug_printf ("no stepping, continue");
6553 /* Likewise if we aren't even stepping. */
6554 keep_going (ecs);
6555 return;
6556 }
6557
6558 /* Re-fetch current thread's frame in case the code above caused
6559 the frame cache to be re-initialized, making our FRAME variable
6560 a dangling pointer. */
6561 frame = get_current_frame ();
6562 gdbarch = get_frame_arch (frame);
6563 fill_in_stop_func (gdbarch, ecs);
6564
6565 /* If stepping through a line, keep going if still within it.
6566
6567 Note that step_range_end is the address of the first instruction
6568 beyond the step range, and NOT the address of the last instruction
6569 within it!
6570
6571 Note also that during reverse execution, we may be stepping
6572 through a function epilogue and therefore must detect when
6573 the current-frame changes in the middle of a line. */
6574
6575 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6576 ecs->event_thread)
6577 && (execution_direction != EXEC_REVERSE
6578 || frame_id_eq (get_frame_id (frame),
6579 ecs->event_thread->control.step_frame_id)))
6580 {
6581 infrun_debug_printf
6582 ("stepping inside range [%s-%s]",
6583 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6584 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6585
6586 /* Tentatively re-enable range stepping; `resume' disables it if
6587 necessary (e.g., if we're stepping over a breakpoint or we
6588 have software watchpoints). */
6589 ecs->event_thread->control.may_range_step = 1;
6590
6591 /* When stepping backward, stop at beginning of line range
6592 (unless it's the function entry point, in which case
6593 keep going back to the call point). */
6594 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6595 if (stop_pc == ecs->event_thread->control.step_range_start
6596 && stop_pc != ecs->stop_func_start
6597 && execution_direction == EXEC_REVERSE)
6598 end_stepping_range (ecs);
6599 else
6600 keep_going (ecs);
6601
6602 return;
6603 }
6604
6605 /* We stepped out of the stepping range. */
6606
6607 /* If we are stepping at the source level and entered the runtime
6608 loader dynamic symbol resolution code...
6609
6610 EXEC_FORWARD: we keep on single stepping until we exit the run
6611 time loader code and reach the callee's address.
6612
6613 EXEC_REVERSE: we've already executed the callee (backward), and
6614 the runtime loader code is handled just like any other
6615 undebuggable function call. Now we need only keep stepping
6616 backward through the trampoline code, and that's handled further
6617 down, so there is nothing for us to do here. */
6618
6619 if (execution_direction != EXEC_REVERSE
6620 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6621 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6622 {
6623 CORE_ADDR pc_after_resolver =
6624 gdbarch_skip_solib_resolver (gdbarch,
6625 ecs->event_thread->suspend.stop_pc);
6626
6627 infrun_debug_printf ("stepped into dynsym resolve code");
6628
6629 if (pc_after_resolver)
6630 {
6631 /* Set up a step-resume breakpoint at the address
6632 indicated by SKIP_SOLIB_RESOLVER. */
6633 symtab_and_line sr_sal;
6634 sr_sal.pc = pc_after_resolver;
6635 sr_sal.pspace = get_frame_program_space (frame);
6636
6637 insert_step_resume_breakpoint_at_sal (gdbarch,
6638 sr_sal, null_frame_id);
6639 }
6640
6641 keep_going (ecs);
6642 return;
6643 }
6644
6645 /* Step through an indirect branch thunk. */
6646 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6647 && gdbarch_in_indirect_branch_thunk (gdbarch,
6648 ecs->event_thread->suspend.stop_pc))
6649 {
6650 infrun_debug_printf ("stepped into indirect branch thunk");
6651 keep_going (ecs);
6652 return;
6653 }
6654
6655 if (ecs->event_thread->control.step_range_end != 1
6656 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6657 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6658 && get_frame_type (frame) == SIGTRAMP_FRAME)
6659 {
6660 infrun_debug_printf ("stepped into signal trampoline");
6661 /* The inferior, while doing a "step" or "next", has ended up in
6662 a signal trampoline (either by a signal being delivered or by
6663 the signal handler returning). Just single-step until the
6664 inferior leaves the trampoline (either by calling the handler
6665 or returning). */
6666 keep_going (ecs);
6667 return;
6668 }
6669
6670 /* If we're in the return path from a shared library trampoline,
6671 we want to proceed through the trampoline when stepping. */
6672 /* macro/2012-04-25: This needs to come before the subroutine
6673 call check below as on some targets return trampolines look
6674 like subroutine calls (MIPS16 return thunks). */
6675 if (gdbarch_in_solib_return_trampoline (gdbarch,
6676 ecs->event_thread->suspend.stop_pc,
6677 ecs->stop_func_name)
6678 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6679 {
6680 /* Determine where this trampoline returns. */
6681 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6682 CORE_ADDR real_stop_pc
6683 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6684
6685 infrun_debug_printf ("stepped into solib return tramp");
6686
6687 /* Only proceed through if we know where it's going. */
6688 if (real_stop_pc)
6689 {
6690 /* And put the step-breakpoint there and go until there. */
6691 symtab_and_line sr_sal;
6692 sr_sal.pc = real_stop_pc;
6693 sr_sal.section = find_pc_overlay (sr_sal.pc);
6694 sr_sal.pspace = get_frame_program_space (frame);
6695
6696 /* Do not specify what the fp should be when we stop since
6697 on some machines the prologue is where the new fp value
6698 is established. */
6699 insert_step_resume_breakpoint_at_sal (gdbarch,
6700 sr_sal, null_frame_id);
6701
6702 /* Restart without fiddling with the step ranges or
6703 other state. */
6704 keep_going (ecs);
6705 return;
6706 }
6707 }
6708
6709 /* Check for subroutine calls. The check for the current frame
6710 equalling the step ID is not necessary - the check of the
6711 previous frame's ID is sufficient - but it is a common case and
6712 cheaper than checking the previous frame's ID.
6713
6714 NOTE: frame_id_eq will never report two invalid frame IDs as
6715 being equal, so to get into this block, both the current and
6716 previous frame must have valid frame IDs. */
6717 /* The outer_frame_id check is a heuristic to detect stepping
6718 through startup code. If we step over an instruction which
6719 sets the stack pointer from an invalid value to a valid value,
6720 we may detect that as a subroutine call from the mythical
6721 "outermost" function. This could be fixed by marking
6722 outermost frames as !stack_p,code_p,special_p. Then the
6723 initial outermost frame, before sp was valid, would
6724 have code_addr == &_start. See the comment in frame_id_eq
6725 for more. */
6726 if (!frame_id_eq (get_stack_frame_id (frame),
6727 ecs->event_thread->control.step_stack_frame_id)
6728 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6729 ecs->event_thread->control.step_stack_frame_id)
6730 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6731 outer_frame_id)
6732 || (ecs->event_thread->control.step_start_function
6733 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6734 {
6735 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6736 CORE_ADDR real_stop_pc;
6737
6738 infrun_debug_printf ("stepped into subroutine");
6739
6740 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6741 {
6742 /* I presume that step_over_calls is only 0 when we're
6743 supposed to be stepping at the assembly language level
6744 ("stepi"). Just stop. */
6745 /* And this works the same backward as frontward. MVS */
6746 end_stepping_range (ecs);
6747 return;
6748 }
6749
6750 /* Reverse stepping through solib trampolines. */
6751
6752 if (execution_direction == EXEC_REVERSE
6753 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6754 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6755 || (ecs->stop_func_start == 0
6756 && in_solib_dynsym_resolve_code (stop_pc))))
6757 {
6758 /* Any solib trampoline code can be handled in reverse
6759 by simply continuing to single-step. We have already
6760 executed the solib function (backwards), and a few
6761 steps will take us back through the trampoline to the
6762 caller. */
6763 keep_going (ecs);
6764 return;
6765 }
6766
6767 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6768 {
6769 /* We're doing a "next".
6770
6771 Normal (forward) execution: set a breakpoint at the
6772 callee's return address (the address at which the caller
6773 will resume).
6774
6775 Reverse (backward) execution. set the step-resume
6776 breakpoint at the start of the function that we just
6777 stepped into (backwards), and continue to there. When we
6778 get there, we'll need to single-step back to the caller. */
6779
6780 if (execution_direction == EXEC_REVERSE)
6781 {
6782 /* If we're already at the start of the function, we've either
6783 just stepped backward into a single instruction function,
6784 or stepped back out of a signal handler to the first instruction
6785 of the function. Just keep going, which will single-step back
6786 to the caller. */
6787 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6788 {
6789 /* Normal function call return (static or dynamic). */
6790 symtab_and_line sr_sal;
6791 sr_sal.pc = ecs->stop_func_start;
6792 sr_sal.pspace = get_frame_program_space (frame);
6793 insert_step_resume_breakpoint_at_sal (gdbarch,
6794 sr_sal, null_frame_id);
6795 }
6796 }
6797 else
6798 insert_step_resume_breakpoint_at_caller (frame);
6799
6800 keep_going (ecs);
6801 return;
6802 }
6803
6804 /* If we are in a function call trampoline (a stub between the
6805 calling routine and the real function), locate the real
6806 function. That's what tells us (a) whether we want to step
6807 into it at all, and (b) what prologue we want to run to the
6808 end of, if we do step into it. */
6809 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6810 if (real_stop_pc == 0)
6811 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6812 if (real_stop_pc != 0)
6813 ecs->stop_func_start = real_stop_pc;
6814
6815 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6816 {
6817 symtab_and_line sr_sal;
6818 sr_sal.pc = ecs->stop_func_start;
6819 sr_sal.pspace = get_frame_program_space (frame);
6820
6821 insert_step_resume_breakpoint_at_sal (gdbarch,
6822 sr_sal, null_frame_id);
6823 keep_going (ecs);
6824 return;
6825 }
6826
6827 /* If we have line number information for the function we are
6828 thinking of stepping into and the function isn't on the skip
6829 list, step into it.
6830
6831 If there are several symtabs at that PC (e.g. with include
6832 files), just want to know whether *any* of them have line
6833 numbers. find_pc_line handles this. */
6834 {
6835 struct symtab_and_line tmp_sal;
6836
6837 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6838 if (tmp_sal.line != 0
6839 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6840 tmp_sal)
6841 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6842 {
6843 if (execution_direction == EXEC_REVERSE)
6844 handle_step_into_function_backward (gdbarch, ecs);
6845 else
6846 handle_step_into_function (gdbarch, ecs);
6847 return;
6848 }
6849 }
6850
6851 /* If we have no line number and the step-stop-if-no-debug is
6852 set, we stop the step so that the user has a chance to switch
6853 in assembly mode. */
6854 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6855 && step_stop_if_no_debug)
6856 {
6857 end_stepping_range (ecs);
6858 return;
6859 }
6860
6861 if (execution_direction == EXEC_REVERSE)
6862 {
6863 /* If we're already at the start of the function, we've either just
6864 stepped backward into a single instruction function without line
6865 number info, or stepped back out of a signal handler to the first
6866 instruction of the function without line number info. Just keep
6867 going, which will single-step back to the caller. */
6868 if (ecs->stop_func_start != stop_pc)
6869 {
6870 /* Set a breakpoint at callee's start address.
6871 From there we can step once and be back in the caller. */
6872 symtab_and_line sr_sal;
6873 sr_sal.pc = ecs->stop_func_start;
6874 sr_sal.pspace = get_frame_program_space (frame);
6875 insert_step_resume_breakpoint_at_sal (gdbarch,
6876 sr_sal, null_frame_id);
6877 }
6878 }
6879 else
6880 /* Set a breakpoint at callee's return address (the address
6881 at which the caller will resume). */
6882 insert_step_resume_breakpoint_at_caller (frame);
6883
6884 keep_going (ecs);
6885 return;
6886 }
6887
6888 /* Reverse stepping through solib trampolines. */
6889
6890 if (execution_direction == EXEC_REVERSE
6891 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6892 {
6893 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6894
6895 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6896 || (ecs->stop_func_start == 0
6897 && in_solib_dynsym_resolve_code (stop_pc)))
6898 {
6899 /* Any solib trampoline code can be handled in reverse
6900 by simply continuing to single-step. We have already
6901 executed the solib function (backwards), and a few
6902 steps will take us back through the trampoline to the
6903 caller. */
6904 keep_going (ecs);
6905 return;
6906 }
6907 else if (in_solib_dynsym_resolve_code (stop_pc))
6908 {
6909 /* Stepped backward into the solib dynsym resolver.
6910 Set a breakpoint at its start and continue, then
6911 one more step will take us out. */
6912 symtab_and_line sr_sal;
6913 sr_sal.pc = ecs->stop_func_start;
6914 sr_sal.pspace = get_frame_program_space (frame);
6915 insert_step_resume_breakpoint_at_sal (gdbarch,
6916 sr_sal, null_frame_id);
6917 keep_going (ecs);
6918 return;
6919 }
6920 }
6921
6922 /* This always returns the sal for the inner-most frame when we are in a
6923 stack of inlined frames, even if GDB actually believes that it is in a
6924 more outer frame. This is checked for below by calls to
6925 inline_skipped_frames. */
6926 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6927
6928 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6929 the trampoline processing logic, however, there are some trampolines
6930 that have no names, so we should do trampoline handling first. */
6931 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6932 && ecs->stop_func_name == NULL
6933 && stop_pc_sal.line == 0)
6934 {
6935 infrun_debug_printf ("stepped into undebuggable function");
6936
6937 /* The inferior just stepped into, or returned to, an
6938 undebuggable function (where there is no debugging information
6939 and no line number corresponding to the address where the
6940 inferior stopped). Since we want to skip this kind of code,
6941 we keep going until the inferior returns from this
6942 function - unless the user has asked us not to (via
6943 set step-mode) or we no longer know how to get back
6944 to the call site. */
6945 if (step_stop_if_no_debug
6946 || !frame_id_p (frame_unwind_caller_id (frame)))
6947 {
6948 /* If we have no line number and the step-stop-if-no-debug
6949 is set, we stop the step so that the user has a chance to
6950 switch in assembly mode. */
6951 end_stepping_range (ecs);
6952 return;
6953 }
6954 else
6955 {
6956 /* Set a breakpoint at callee's return address (the address
6957 at which the caller will resume). */
6958 insert_step_resume_breakpoint_at_caller (frame);
6959 keep_going (ecs);
6960 return;
6961 }
6962 }
6963
6964 if (ecs->event_thread->control.step_range_end == 1)
6965 {
6966 /* It is stepi or nexti. We always want to stop stepping after
6967 one instruction. */
6968 infrun_debug_printf ("stepi/nexti");
6969 end_stepping_range (ecs);
6970 return;
6971 }
6972
6973 if (stop_pc_sal.line == 0)
6974 {
6975 /* We have no line number information. That means to stop
6976 stepping (does this always happen right after one instruction,
6977 when we do "s" in a function with no line numbers,
6978 or can this happen as a result of a return or longjmp?). */
6979 infrun_debug_printf ("line number info");
6980 end_stepping_range (ecs);
6981 return;
6982 }
6983
6984 /* Look for "calls" to inlined functions, part one. If the inline
6985 frame machinery detected some skipped call sites, we have entered
6986 a new inline function. */
6987
6988 if (frame_id_eq (get_frame_id (get_current_frame ()),
6989 ecs->event_thread->control.step_frame_id)
6990 && inline_skipped_frames (ecs->event_thread))
6991 {
6992 infrun_debug_printf ("stepped into inlined function");
6993
6994 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6995
6996 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6997 {
6998 /* For "step", we're going to stop. But if the call site
6999 for this inlined function is on the same source line as
7000 we were previously stepping, go down into the function
7001 first. Otherwise stop at the call site. */
7002
7003 if (call_sal.line == ecs->event_thread->current_line
7004 && call_sal.symtab == ecs->event_thread->current_symtab)
7005 {
7006 step_into_inline_frame (ecs->event_thread);
7007 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7008 {
7009 keep_going (ecs);
7010 return;
7011 }
7012 }
7013
7014 end_stepping_range (ecs);
7015 return;
7016 }
7017 else
7018 {
7019 /* For "next", we should stop at the call site if it is on a
7020 different source line. Otherwise continue through the
7021 inlined function. */
7022 if (call_sal.line == ecs->event_thread->current_line
7023 && call_sal.symtab == ecs->event_thread->current_symtab)
7024 keep_going (ecs);
7025 else
7026 end_stepping_range (ecs);
7027 return;
7028 }
7029 }
7030
7031 /* Look for "calls" to inlined functions, part two. If we are still
7032 in the same real function we were stepping through, but we have
7033 to go further up to find the exact frame ID, we are stepping
7034 through a more inlined call beyond its call site. */
7035
7036 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7037 && !frame_id_eq (get_frame_id (get_current_frame ()),
7038 ecs->event_thread->control.step_frame_id)
7039 && stepped_in_from (get_current_frame (),
7040 ecs->event_thread->control.step_frame_id))
7041 {
7042 infrun_debug_printf ("stepping through inlined function");
7043
7044 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7045 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7046 keep_going (ecs);
7047 else
7048 end_stepping_range (ecs);
7049 return;
7050 }
7051
7052 bool refresh_step_info = true;
7053 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7054 && (ecs->event_thread->current_line != stop_pc_sal.line
7055 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7056 {
7057 if (stop_pc_sal.is_stmt)
7058 {
7059 /* We are at the start of a different line. So stop. Note that
7060 we don't stop if we step into the middle of a different line.
7061 That is said to make things like for (;;) statements work
7062 better. */
7063 infrun_debug_printf ("stepped to a different line");
7064 end_stepping_range (ecs);
7065 return;
7066 }
7067 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7068 ecs->event_thread->control.step_frame_id))
7069 {
7070 /* We are at the start of a different line, however, this line is
7071 not marked as a statement, and we have not changed frame. We
7072 ignore this line table entry, and continue stepping forward,
7073 looking for a better place to stop. */
7074 refresh_step_info = false;
7075 infrun_debug_printf ("stepped to a different line, but "
7076 "it's not the start of a statement");
7077 }
7078 }
7079
7080 /* We aren't done stepping.
7081
7082 Optimize by setting the stepping range to the line.
7083 (We might not be in the original line, but if we entered a
7084 new line in mid-statement, we continue stepping. This makes
7085 things like for(;;) statements work better.)
7086
7087 If we entered a SAL that indicates a non-statement line table entry,
7088 then we update the stepping range, but we don't update the step info,
7089 which includes things like the line number we are stepping away from.
7090 This means we will stop when we find a line table entry that is marked
7091 as is-statement, even if it matches the non-statement one we just
7092 stepped into. */
7093
7094 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7095 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7096 ecs->event_thread->control.may_range_step = 1;
7097 if (refresh_step_info)
7098 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7099
7100 infrun_debug_printf ("keep going");
7101 keep_going (ecs);
7102 }
7103
7104 /* In all-stop mode, if we're currently stepping but have stopped in
7105 some other thread, we may need to switch back to the stepped
7106 thread. Returns true we set the inferior running, false if we left
7107 it stopped (and the event needs further processing). */
7108
7109 static bool
7110 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7111 {
7112 if (!target_is_non_stop_p ())
7113 {
7114 struct thread_info *stepping_thread;
7115
7116 /* If any thread is blocked on some internal breakpoint, and we
7117 simply need to step over that breakpoint to get it going
7118 again, do that first. */
7119
7120 /* However, if we see an event for the stepping thread, then we
7121 know all other threads have been moved past their breakpoints
7122 already. Let the caller check whether the step is finished,
7123 etc., before deciding to move it past a breakpoint. */
7124 if (ecs->event_thread->control.step_range_end != 0)
7125 return false;
7126
7127 /* Check if the current thread is blocked on an incomplete
7128 step-over, interrupted by a random signal. */
7129 if (ecs->event_thread->control.trap_expected
7130 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7131 {
7132 infrun_debug_printf
7133 ("need to finish step-over of [%s]",
7134 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7135 keep_going (ecs);
7136 return true;
7137 }
7138
7139 /* Check if the current thread is blocked by a single-step
7140 breakpoint of another thread. */
7141 if (ecs->hit_singlestep_breakpoint)
7142 {
7143 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7144 target_pid_to_str (ecs->ptid).c_str ());
7145 keep_going (ecs);
7146 return true;
7147 }
7148
7149 /* If this thread needs yet another step-over (e.g., stepping
7150 through a delay slot), do it first before moving on to
7151 another thread. */
7152 if (thread_still_needs_step_over (ecs->event_thread))
7153 {
7154 infrun_debug_printf
7155 ("thread [%s] still needs step-over",
7156 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7157 keep_going (ecs);
7158 return true;
7159 }
7160
7161 /* If scheduler locking applies even if not stepping, there's no
7162 need to walk over threads. Above we've checked whether the
7163 current thread is stepping. If some other thread not the
7164 event thread is stepping, then it must be that scheduler
7165 locking is not in effect. */
7166 if (schedlock_applies (ecs->event_thread))
7167 return false;
7168
7169 /* Otherwise, we no longer expect a trap in the current thread.
7170 Clear the trap_expected flag before switching back -- this is
7171 what keep_going does as well, if we call it. */
7172 ecs->event_thread->control.trap_expected = 0;
7173
7174 /* Likewise, clear the signal if it should not be passed. */
7175 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7176 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7177
7178 /* Do all pending step-overs before actually proceeding with
7179 step/next/etc. */
7180 if (start_step_over ())
7181 {
7182 prepare_to_wait (ecs);
7183 return true;
7184 }
7185
7186 /* Look for the stepping/nexting thread. */
7187 stepping_thread = NULL;
7188
7189 for (thread_info *tp : all_non_exited_threads ())
7190 {
7191 switch_to_thread_no_regs (tp);
7192
7193 /* Ignore threads of processes the caller is not
7194 resuming. */
7195 if (!sched_multi
7196 && (tp->inf->process_target () != ecs->target
7197 || tp->inf->pid != ecs->ptid.pid ()))
7198 continue;
7199
7200 /* When stepping over a breakpoint, we lock all threads
7201 except the one that needs to move past the breakpoint.
7202 If a non-event thread has this set, the "incomplete
7203 step-over" check above should have caught it earlier. */
7204 if (tp->control.trap_expected)
7205 {
7206 internal_error (__FILE__, __LINE__,
7207 "[%s] has inconsistent state: "
7208 "trap_expected=%d\n",
7209 target_pid_to_str (tp->ptid).c_str (),
7210 tp->control.trap_expected);
7211 }
7212
7213 /* Did we find the stepping thread? */
7214 if (tp->control.step_range_end)
7215 {
7216 /* Yep. There should only one though. */
7217 gdb_assert (stepping_thread == NULL);
7218
7219 /* The event thread is handled at the top, before we
7220 enter this loop. */
7221 gdb_assert (tp != ecs->event_thread);
7222
7223 /* If some thread other than the event thread is
7224 stepping, then scheduler locking can't be in effect,
7225 otherwise we wouldn't have resumed the current event
7226 thread in the first place. */
7227 gdb_assert (!schedlock_applies (tp));
7228
7229 stepping_thread = tp;
7230 }
7231 }
7232
7233 if (stepping_thread != NULL)
7234 {
7235 infrun_debug_printf ("switching back to stepped thread");
7236
7237 if (keep_going_stepped_thread (stepping_thread))
7238 {
7239 prepare_to_wait (ecs);
7240 return true;
7241 }
7242 }
7243
7244 switch_to_thread (ecs->event_thread);
7245 }
7246
7247 return false;
7248 }
7249
7250 /* Set a previously stepped thread back to stepping. Returns true on
7251 success, false if the resume is not possible (e.g., the thread
7252 vanished). */
7253
7254 static bool
7255 keep_going_stepped_thread (struct thread_info *tp)
7256 {
7257 struct frame_info *frame;
7258 struct execution_control_state ecss;
7259 struct execution_control_state *ecs = &ecss;
7260
7261 /* If the stepping thread exited, then don't try to switch back and
7262 resume it, which could fail in several different ways depending
7263 on the target. Instead, just keep going.
7264
7265 We can find a stepping dead thread in the thread list in two
7266 cases:
7267
7268 - The target supports thread exit events, and when the target
7269 tries to delete the thread from the thread list, inferior_ptid
7270 pointed at the exiting thread. In such case, calling
7271 delete_thread does not really remove the thread from the list;
7272 instead, the thread is left listed, with 'exited' state.
7273
7274 - The target's debug interface does not support thread exit
7275 events, and so we have no idea whatsoever if the previously
7276 stepping thread is still alive. For that reason, we need to
7277 synchronously query the target now. */
7278
7279 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7280 {
7281 infrun_debug_printf ("not resuming previously stepped thread, it has "
7282 "vanished");
7283
7284 delete_thread (tp);
7285 return false;
7286 }
7287
7288 infrun_debug_printf ("resuming previously stepped thread");
7289
7290 reset_ecs (ecs, tp);
7291 switch_to_thread (tp);
7292
7293 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7294 frame = get_current_frame ();
7295
7296 /* If the PC of the thread we were trying to single-step has
7297 changed, then that thread has trapped or been signaled, but the
7298 event has not been reported to GDB yet. Re-poll the target
7299 looking for this particular thread's event (i.e. temporarily
7300 enable schedlock) by:
7301
7302 - setting a break at the current PC
7303 - resuming that particular thread, only (by setting trap
7304 expected)
7305
7306 This prevents us continuously moving the single-step breakpoint
7307 forward, one instruction at a time, overstepping. */
7308
7309 if (tp->suspend.stop_pc != tp->prev_pc)
7310 {
7311 ptid_t resume_ptid;
7312
7313 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7314 paddress (target_gdbarch (), tp->prev_pc),
7315 paddress (target_gdbarch (), tp->suspend.stop_pc));
7316
7317 /* Clear the info of the previous step-over, as it's no longer
7318 valid (if the thread was trying to step over a breakpoint, it
7319 has already succeeded). It's what keep_going would do too,
7320 if we called it. Do this before trying to insert the sss
7321 breakpoint, otherwise if we were previously trying to step
7322 over this exact address in another thread, the breakpoint is
7323 skipped. */
7324 clear_step_over_info ();
7325 tp->control.trap_expected = 0;
7326
7327 insert_single_step_breakpoint (get_frame_arch (frame),
7328 get_frame_address_space (frame),
7329 tp->suspend.stop_pc);
7330
7331 tp->resumed = true;
7332 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7333 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
7334 }
7335 else
7336 {
7337 infrun_debug_printf ("expected thread still hasn't advanced");
7338
7339 keep_going_pass_signal (ecs);
7340 }
7341
7342 return true;
7343 }
7344
7345 /* Is thread TP in the middle of (software or hardware)
7346 single-stepping? (Note the result of this function must never be
7347 passed directly as target_resume's STEP parameter.) */
7348
7349 static bool
7350 currently_stepping (struct thread_info *tp)
7351 {
7352 return ((tp->control.step_range_end
7353 && tp->control.step_resume_breakpoint == NULL)
7354 || tp->control.trap_expected
7355 || tp->stepped_breakpoint
7356 || bpstat_should_step ());
7357 }
7358
7359 /* Inferior has stepped into a subroutine call with source code that
7360 we should not step over. Do step to the first line of code in
7361 it. */
7362
7363 static void
7364 handle_step_into_function (struct gdbarch *gdbarch,
7365 struct execution_control_state *ecs)
7366 {
7367 fill_in_stop_func (gdbarch, ecs);
7368
7369 compunit_symtab *cust
7370 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7371 if (cust != NULL && compunit_language (cust) != language_asm)
7372 ecs->stop_func_start
7373 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7374
7375 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7376 /* Use the step_resume_break to step until the end of the prologue,
7377 even if that involves jumps (as it seems to on the vax under
7378 4.2). */
7379 /* If the prologue ends in the middle of a source line, continue to
7380 the end of that source line (if it is still within the function).
7381 Otherwise, just go to end of prologue. */
7382 if (stop_func_sal.end
7383 && stop_func_sal.pc != ecs->stop_func_start
7384 && stop_func_sal.end < ecs->stop_func_end)
7385 ecs->stop_func_start = stop_func_sal.end;
7386
7387 /* Architectures which require breakpoint adjustment might not be able
7388 to place a breakpoint at the computed address. If so, the test
7389 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7390 ecs->stop_func_start to an address at which a breakpoint may be
7391 legitimately placed.
7392
7393 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7394 made, GDB will enter an infinite loop when stepping through
7395 optimized code consisting of VLIW instructions which contain
7396 subinstructions corresponding to different source lines. On
7397 FR-V, it's not permitted to place a breakpoint on any but the
7398 first subinstruction of a VLIW instruction. When a breakpoint is
7399 set, GDB will adjust the breakpoint address to the beginning of
7400 the VLIW instruction. Thus, we need to make the corresponding
7401 adjustment here when computing the stop address. */
7402
7403 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7404 {
7405 ecs->stop_func_start
7406 = gdbarch_adjust_breakpoint_address (gdbarch,
7407 ecs->stop_func_start);
7408 }
7409
7410 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7411 {
7412 /* We are already there: stop now. */
7413 end_stepping_range (ecs);
7414 return;
7415 }
7416 else
7417 {
7418 /* Put the step-breakpoint there and go until there. */
7419 symtab_and_line sr_sal;
7420 sr_sal.pc = ecs->stop_func_start;
7421 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7422 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7423
7424 /* Do not specify what the fp should be when we stop since on
7425 some machines the prologue is where the new fp value is
7426 established. */
7427 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7428
7429 /* And make sure stepping stops right away then. */
7430 ecs->event_thread->control.step_range_end
7431 = ecs->event_thread->control.step_range_start;
7432 }
7433 keep_going (ecs);
7434 }
7435
7436 /* Inferior has stepped backward into a subroutine call with source
7437 code that we should not step over. Do step to the beginning of the
7438 last line of code in it. */
7439
7440 static void
7441 handle_step_into_function_backward (struct gdbarch *gdbarch,
7442 struct execution_control_state *ecs)
7443 {
7444 struct compunit_symtab *cust;
7445 struct symtab_and_line stop_func_sal;
7446
7447 fill_in_stop_func (gdbarch, ecs);
7448
7449 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7450 if (cust != NULL && compunit_language (cust) != language_asm)
7451 ecs->stop_func_start
7452 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7453
7454 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7455
7456 /* OK, we're just going to keep stepping here. */
7457 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7458 {
7459 /* We're there already. Just stop stepping now. */
7460 end_stepping_range (ecs);
7461 }
7462 else
7463 {
7464 /* Else just reset the step range and keep going.
7465 No step-resume breakpoint, they don't work for
7466 epilogues, which can have multiple entry paths. */
7467 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7468 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7469 keep_going (ecs);
7470 }
7471 return;
7472 }
7473
7474 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7475 This is used to both functions and to skip over code. */
7476
7477 static void
7478 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7479 struct symtab_and_line sr_sal,
7480 struct frame_id sr_id,
7481 enum bptype sr_type)
7482 {
7483 /* There should never be more than one step-resume or longjmp-resume
7484 breakpoint per thread, so we should never be setting a new
7485 step_resume_breakpoint when one is already active. */
7486 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7487 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7488
7489 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7490 paddress (gdbarch, sr_sal.pc));
7491
7492 inferior_thread ()->control.step_resume_breakpoint
7493 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7494 }
7495
7496 void
7497 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7498 struct symtab_and_line sr_sal,
7499 struct frame_id sr_id)
7500 {
7501 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7502 sr_sal, sr_id,
7503 bp_step_resume);
7504 }
7505
7506 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7507 This is used to skip a potential signal handler.
7508
7509 This is called with the interrupted function's frame. The signal
7510 handler, when it returns, will resume the interrupted function at
7511 RETURN_FRAME.pc. */
7512
7513 static void
7514 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7515 {
7516 gdb_assert (return_frame != NULL);
7517
7518 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7519
7520 symtab_and_line sr_sal;
7521 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7522 sr_sal.section = find_pc_overlay (sr_sal.pc);
7523 sr_sal.pspace = get_frame_program_space (return_frame);
7524
7525 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7526 get_stack_frame_id (return_frame),
7527 bp_hp_step_resume);
7528 }
7529
7530 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7531 is used to skip a function after stepping into it (for "next" or if
7532 the called function has no debugging information).
7533
7534 The current function has almost always been reached by single
7535 stepping a call or return instruction. NEXT_FRAME belongs to the
7536 current function, and the breakpoint will be set at the caller's
7537 resume address.
7538
7539 This is a separate function rather than reusing
7540 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7541 get_prev_frame, which may stop prematurely (see the implementation
7542 of frame_unwind_caller_id for an example). */
7543
7544 static void
7545 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7546 {
7547 /* We shouldn't have gotten here if we don't know where the call site
7548 is. */
7549 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7550
7551 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7552
7553 symtab_and_line sr_sal;
7554 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7555 frame_unwind_caller_pc (next_frame));
7556 sr_sal.section = find_pc_overlay (sr_sal.pc);
7557 sr_sal.pspace = frame_unwind_program_space (next_frame);
7558
7559 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7560 frame_unwind_caller_id (next_frame));
7561 }
7562
7563 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7564 new breakpoint at the target of a jmp_buf. The handling of
7565 longjmp-resume uses the same mechanisms used for handling
7566 "step-resume" breakpoints. */
7567
7568 static void
7569 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7570 {
7571 /* There should never be more than one longjmp-resume breakpoint per
7572 thread, so we should never be setting a new
7573 longjmp_resume_breakpoint when one is already active. */
7574 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7575
7576 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7577 paddress (gdbarch, pc));
7578
7579 inferior_thread ()->control.exception_resume_breakpoint =
7580 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7581 }
7582
7583 /* Insert an exception resume breakpoint. TP is the thread throwing
7584 the exception. The block B is the block of the unwinder debug hook
7585 function. FRAME is the frame corresponding to the call to this
7586 function. SYM is the symbol of the function argument holding the
7587 target PC of the exception. */
7588
7589 static void
7590 insert_exception_resume_breakpoint (struct thread_info *tp,
7591 const struct block *b,
7592 struct frame_info *frame,
7593 struct symbol *sym)
7594 {
7595 try
7596 {
7597 struct block_symbol vsym;
7598 struct value *value;
7599 CORE_ADDR handler;
7600 struct breakpoint *bp;
7601
7602 vsym = lookup_symbol_search_name (sym->search_name (),
7603 b, VAR_DOMAIN);
7604 value = read_var_value (vsym.symbol, vsym.block, frame);
7605 /* If the value was optimized out, revert to the old behavior. */
7606 if (! value_optimized_out (value))
7607 {
7608 handler = value_as_address (value);
7609
7610 infrun_debug_printf ("exception resume at %lx",
7611 (unsigned long) handler);
7612
7613 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7614 handler,
7615 bp_exception_resume).release ();
7616
7617 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7618 frame = NULL;
7619
7620 bp->thread = tp->global_num;
7621 inferior_thread ()->control.exception_resume_breakpoint = bp;
7622 }
7623 }
7624 catch (const gdb_exception_error &e)
7625 {
7626 /* We want to ignore errors here. */
7627 }
7628 }
7629
7630 /* A helper for check_exception_resume that sets an
7631 exception-breakpoint based on a SystemTap probe. */
7632
7633 static void
7634 insert_exception_resume_from_probe (struct thread_info *tp,
7635 const struct bound_probe *probe,
7636 struct frame_info *frame)
7637 {
7638 struct value *arg_value;
7639 CORE_ADDR handler;
7640 struct breakpoint *bp;
7641
7642 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7643 if (!arg_value)
7644 return;
7645
7646 handler = value_as_address (arg_value);
7647
7648 infrun_debug_printf ("exception resume at %s",
7649 paddress (probe->objfile->arch (), handler));
7650
7651 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7652 handler, bp_exception_resume).release ();
7653 bp->thread = tp->global_num;
7654 inferior_thread ()->control.exception_resume_breakpoint = bp;
7655 }
7656
7657 /* This is called when an exception has been intercepted. Check to
7658 see whether the exception's destination is of interest, and if so,
7659 set an exception resume breakpoint there. */
7660
7661 static void
7662 check_exception_resume (struct execution_control_state *ecs,
7663 struct frame_info *frame)
7664 {
7665 struct bound_probe probe;
7666 struct symbol *func;
7667
7668 /* First see if this exception unwinding breakpoint was set via a
7669 SystemTap probe point. If so, the probe has two arguments: the
7670 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7671 set a breakpoint there. */
7672 probe = find_probe_by_pc (get_frame_pc (frame));
7673 if (probe.prob)
7674 {
7675 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7676 return;
7677 }
7678
7679 func = get_frame_function (frame);
7680 if (!func)
7681 return;
7682
7683 try
7684 {
7685 const struct block *b;
7686 struct block_iterator iter;
7687 struct symbol *sym;
7688 int argno = 0;
7689
7690 /* The exception breakpoint is a thread-specific breakpoint on
7691 the unwinder's debug hook, declared as:
7692
7693 void _Unwind_DebugHook (void *cfa, void *handler);
7694
7695 The CFA argument indicates the frame to which control is
7696 about to be transferred. HANDLER is the destination PC.
7697
7698 We ignore the CFA and set a temporary breakpoint at HANDLER.
7699 This is not extremely efficient but it avoids issues in gdb
7700 with computing the DWARF CFA, and it also works even in weird
7701 cases such as throwing an exception from inside a signal
7702 handler. */
7703
7704 b = SYMBOL_BLOCK_VALUE (func);
7705 ALL_BLOCK_SYMBOLS (b, iter, sym)
7706 {
7707 if (!SYMBOL_IS_ARGUMENT (sym))
7708 continue;
7709
7710 if (argno == 0)
7711 ++argno;
7712 else
7713 {
7714 insert_exception_resume_breakpoint (ecs->event_thread,
7715 b, frame, sym);
7716 break;
7717 }
7718 }
7719 }
7720 catch (const gdb_exception_error &e)
7721 {
7722 }
7723 }
7724
7725 static void
7726 stop_waiting (struct execution_control_state *ecs)
7727 {
7728 infrun_debug_printf ("stop_waiting");
7729
7730 /* Let callers know we don't want to wait for the inferior anymore. */
7731 ecs->wait_some_more = 0;
7732
7733 /* If all-stop, but there exists a non-stop target, stop all
7734 threads now that we're presenting the stop to the user. */
7735 if (!non_stop && exists_non_stop_target ())
7736 stop_all_threads ();
7737 }
7738
7739 /* Like keep_going, but passes the signal to the inferior, even if the
7740 signal is set to nopass. */
7741
7742 static void
7743 keep_going_pass_signal (struct execution_control_state *ecs)
7744 {
7745 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7746 gdb_assert (!ecs->event_thread->resumed);
7747
7748 /* Save the pc before execution, to compare with pc after stop. */
7749 ecs->event_thread->prev_pc
7750 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
7751
7752 if (ecs->event_thread->control.trap_expected)
7753 {
7754 struct thread_info *tp = ecs->event_thread;
7755
7756 infrun_debug_printf ("%s has trap_expected set, "
7757 "resuming to collect trap",
7758 target_pid_to_str (tp->ptid).c_str ());
7759
7760 /* We haven't yet gotten our trap, and either: intercepted a
7761 non-signal event (e.g., a fork); or took a signal which we
7762 are supposed to pass through to the inferior. Simply
7763 continue. */
7764 resume (ecs->event_thread->suspend.stop_signal);
7765 }
7766 else if (step_over_info_valid_p ())
7767 {
7768 /* Another thread is stepping over a breakpoint in-line. If
7769 this thread needs a step-over too, queue the request. In
7770 either case, this resume must be deferred for later. */
7771 struct thread_info *tp = ecs->event_thread;
7772
7773 if (ecs->hit_singlestep_breakpoint
7774 || thread_still_needs_step_over (tp))
7775 {
7776 infrun_debug_printf ("step-over already in progress: "
7777 "step-over for %s deferred",
7778 target_pid_to_str (tp->ptid).c_str ());
7779 thread_step_over_chain_enqueue (tp);
7780 }
7781 else
7782 {
7783 infrun_debug_printf ("step-over in progress: resume of %s deferred",
7784 target_pid_to_str (tp->ptid).c_str ());
7785 }
7786 }
7787 else
7788 {
7789 struct regcache *regcache = get_current_regcache ();
7790 int remove_bp;
7791 int remove_wps;
7792 step_over_what step_what;
7793
7794 /* Either the trap was not expected, but we are continuing
7795 anyway (if we got a signal, the user asked it be passed to
7796 the child)
7797 -- or --
7798 We got our expected trap, but decided we should resume from
7799 it.
7800
7801 We're going to run this baby now!
7802
7803 Note that insert_breakpoints won't try to re-insert
7804 already inserted breakpoints. Therefore, we don't
7805 care if breakpoints were already inserted, or not. */
7806
7807 /* If we need to step over a breakpoint, and we're not using
7808 displaced stepping to do so, insert all breakpoints
7809 (watchpoints, etc.) but the one we're stepping over, step one
7810 instruction, and then re-insert the breakpoint when that step
7811 is finished. */
7812
7813 step_what = thread_still_needs_step_over (ecs->event_thread);
7814
7815 remove_bp = (ecs->hit_singlestep_breakpoint
7816 || (step_what & STEP_OVER_BREAKPOINT));
7817 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7818
7819 /* We can't use displaced stepping if we need to step past a
7820 watchpoint. The instruction copied to the scratch pad would
7821 still trigger the watchpoint. */
7822 if (remove_bp
7823 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7824 {
7825 set_step_over_info (regcache->aspace (),
7826 regcache_read_pc (regcache), remove_wps,
7827 ecs->event_thread->global_num);
7828 }
7829 else if (remove_wps)
7830 set_step_over_info (NULL, 0, remove_wps, -1);
7831
7832 /* If we now need to do an in-line step-over, we need to stop
7833 all other threads. Note this must be done before
7834 insert_breakpoints below, because that removes the breakpoint
7835 we're about to step over, otherwise other threads could miss
7836 it. */
7837 if (step_over_info_valid_p () && target_is_non_stop_p ())
7838 stop_all_threads ();
7839
7840 /* Stop stepping if inserting breakpoints fails. */
7841 try
7842 {
7843 insert_breakpoints ();
7844 }
7845 catch (const gdb_exception_error &e)
7846 {
7847 exception_print (gdb_stderr, e);
7848 stop_waiting (ecs);
7849 clear_step_over_info ();
7850 return;
7851 }
7852
7853 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7854
7855 resume (ecs->event_thread->suspend.stop_signal);
7856 }
7857
7858 prepare_to_wait (ecs);
7859 }
7860
7861 /* Called when we should continue running the inferior, because the
7862 current event doesn't cause a user visible stop. This does the
7863 resuming part; waiting for the next event is done elsewhere. */
7864
7865 static void
7866 keep_going (struct execution_control_state *ecs)
7867 {
7868 if (ecs->event_thread->control.trap_expected
7869 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7870 ecs->event_thread->control.trap_expected = 0;
7871
7872 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7873 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7874 keep_going_pass_signal (ecs);
7875 }
7876
7877 /* This function normally comes after a resume, before
7878 handle_inferior_event exits. It takes care of any last bits of
7879 housekeeping, and sets the all-important wait_some_more flag. */
7880
7881 static void
7882 prepare_to_wait (struct execution_control_state *ecs)
7883 {
7884 infrun_debug_printf ("prepare_to_wait");
7885
7886 ecs->wait_some_more = 1;
7887
7888 /* If the target can't async, emulate it by marking the infrun event
7889 handler such that as soon as we get back to the event-loop, we
7890 immediately end up in fetch_inferior_event again calling
7891 target_wait. */
7892 if (!target_can_async_p ())
7893 mark_infrun_async_event_handler ();
7894 }
7895
7896 /* We are done with the step range of a step/next/si/ni command.
7897 Called once for each n of a "step n" operation. */
7898
7899 static void
7900 end_stepping_range (struct execution_control_state *ecs)
7901 {
7902 ecs->event_thread->control.stop_step = 1;
7903 stop_waiting (ecs);
7904 }
7905
7906 /* Several print_*_reason functions to print why the inferior has stopped.
7907 We always print something when the inferior exits, or receives a signal.
7908 The rest of the cases are dealt with later on in normal_stop and
7909 print_it_typical. Ideally there should be a call to one of these
7910 print_*_reason functions functions from handle_inferior_event each time
7911 stop_waiting is called.
7912
7913 Note that we don't call these directly, instead we delegate that to
7914 the interpreters, through observers. Interpreters then call these
7915 with whatever uiout is right. */
7916
7917 void
7918 print_end_stepping_range_reason (struct ui_out *uiout)
7919 {
7920 /* For CLI-like interpreters, print nothing. */
7921
7922 if (uiout->is_mi_like_p ())
7923 {
7924 uiout->field_string ("reason",
7925 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7926 }
7927 }
7928
7929 void
7930 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7931 {
7932 annotate_signalled ();
7933 if (uiout->is_mi_like_p ())
7934 uiout->field_string
7935 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7936 uiout->text ("\nProgram terminated with signal ");
7937 annotate_signal_name ();
7938 uiout->field_string ("signal-name",
7939 gdb_signal_to_name (siggnal));
7940 annotate_signal_name_end ();
7941 uiout->text (", ");
7942 annotate_signal_string ();
7943 uiout->field_string ("signal-meaning",
7944 gdb_signal_to_string (siggnal));
7945 annotate_signal_string_end ();
7946 uiout->text (".\n");
7947 uiout->text ("The program no longer exists.\n");
7948 }
7949
7950 void
7951 print_exited_reason (struct ui_out *uiout, int exitstatus)
7952 {
7953 struct inferior *inf = current_inferior ();
7954 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7955
7956 annotate_exited (exitstatus);
7957 if (exitstatus)
7958 {
7959 if (uiout->is_mi_like_p ())
7960 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7961 std::string exit_code_str
7962 = string_printf ("0%o", (unsigned int) exitstatus);
7963 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7964 plongest (inf->num), pidstr.c_str (),
7965 string_field ("exit-code", exit_code_str.c_str ()));
7966 }
7967 else
7968 {
7969 if (uiout->is_mi_like_p ())
7970 uiout->field_string
7971 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7972 uiout->message ("[Inferior %s (%s) exited normally]\n",
7973 plongest (inf->num), pidstr.c_str ());
7974 }
7975 }
7976
7977 void
7978 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7979 {
7980 struct thread_info *thr = inferior_thread ();
7981
7982 annotate_signal ();
7983
7984 if (uiout->is_mi_like_p ())
7985 ;
7986 else if (show_thread_that_caused_stop ())
7987 {
7988 const char *name;
7989
7990 uiout->text ("\nThread ");
7991 uiout->field_string ("thread-id", print_thread_id (thr));
7992
7993 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7994 if (name != NULL)
7995 {
7996 uiout->text (" \"");
7997 uiout->field_string ("name", name);
7998 uiout->text ("\"");
7999 }
8000 }
8001 else
8002 uiout->text ("\nProgram");
8003
8004 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8005 uiout->text (" stopped");
8006 else
8007 {
8008 uiout->text (" received signal ");
8009 annotate_signal_name ();
8010 if (uiout->is_mi_like_p ())
8011 uiout->field_string
8012 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8013 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8014 annotate_signal_name_end ();
8015 uiout->text (", ");
8016 annotate_signal_string ();
8017 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8018
8019 struct regcache *regcache = get_current_regcache ();
8020 struct gdbarch *gdbarch = regcache->arch ();
8021 if (gdbarch_report_signal_info_p (gdbarch))
8022 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8023
8024 annotate_signal_string_end ();
8025 }
8026 uiout->text (".\n");
8027 }
8028
8029 void
8030 print_no_history_reason (struct ui_out *uiout)
8031 {
8032 uiout->text ("\nNo more reverse-execution history.\n");
8033 }
8034
8035 /* Print current location without a level number, if we have changed
8036 functions or hit a breakpoint. Print source line if we have one.
8037 bpstat_print contains the logic deciding in detail what to print,
8038 based on the event(s) that just occurred. */
8039
8040 static void
8041 print_stop_location (struct target_waitstatus *ws)
8042 {
8043 int bpstat_ret;
8044 enum print_what source_flag;
8045 int do_frame_printing = 1;
8046 struct thread_info *tp = inferior_thread ();
8047
8048 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8049 switch (bpstat_ret)
8050 {
8051 case PRINT_UNKNOWN:
8052 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8053 should) carry around the function and does (or should) use
8054 that when doing a frame comparison. */
8055 if (tp->control.stop_step
8056 && frame_id_eq (tp->control.step_frame_id,
8057 get_frame_id (get_current_frame ()))
8058 && (tp->control.step_start_function
8059 == find_pc_function (tp->suspend.stop_pc)))
8060 {
8061 /* Finished step, just print source line. */
8062 source_flag = SRC_LINE;
8063 }
8064 else
8065 {
8066 /* Print location and source line. */
8067 source_flag = SRC_AND_LOC;
8068 }
8069 break;
8070 case PRINT_SRC_AND_LOC:
8071 /* Print location and source line. */
8072 source_flag = SRC_AND_LOC;
8073 break;
8074 case PRINT_SRC_ONLY:
8075 source_flag = SRC_LINE;
8076 break;
8077 case PRINT_NOTHING:
8078 /* Something bogus. */
8079 source_flag = SRC_LINE;
8080 do_frame_printing = 0;
8081 break;
8082 default:
8083 internal_error (__FILE__, __LINE__, _("Unknown value."));
8084 }
8085
8086 /* The behavior of this routine with respect to the source
8087 flag is:
8088 SRC_LINE: Print only source line
8089 LOCATION: Print only location
8090 SRC_AND_LOC: Print location and source line. */
8091 if (do_frame_printing)
8092 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8093 }
8094
8095 /* See infrun.h. */
8096
8097 void
8098 print_stop_event (struct ui_out *uiout, bool displays)
8099 {
8100 struct target_waitstatus last;
8101 struct thread_info *tp;
8102
8103 get_last_target_status (nullptr, nullptr, &last);
8104
8105 {
8106 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8107
8108 print_stop_location (&last);
8109
8110 /* Display the auto-display expressions. */
8111 if (displays)
8112 do_displays ();
8113 }
8114
8115 tp = inferior_thread ();
8116 if (tp->thread_fsm != NULL
8117 && tp->thread_fsm->finished_p ())
8118 {
8119 struct return_value_info *rv;
8120
8121 rv = tp->thread_fsm->return_value ();
8122 if (rv != NULL)
8123 print_return_value (uiout, rv);
8124 }
8125 }
8126
8127 /* See infrun.h. */
8128
8129 void
8130 maybe_remove_breakpoints (void)
8131 {
8132 if (!breakpoints_should_be_inserted_now () && target_has_execution ())
8133 {
8134 if (remove_breakpoints ())
8135 {
8136 target_terminal::ours_for_output ();
8137 printf_filtered (_("Cannot remove breakpoints because "
8138 "program is no longer writable.\nFurther "
8139 "execution is probably impossible.\n"));
8140 }
8141 }
8142 }
8143
8144 /* The execution context that just caused a normal stop. */
8145
8146 struct stop_context
8147 {
8148 stop_context ();
8149 ~stop_context ();
8150
8151 DISABLE_COPY_AND_ASSIGN (stop_context);
8152
8153 bool changed () const;
8154
8155 /* The stop ID. */
8156 ULONGEST stop_id;
8157
8158 /* The event PTID. */
8159
8160 ptid_t ptid;
8161
8162 /* If stopp for a thread event, this is the thread that caused the
8163 stop. */
8164 struct thread_info *thread;
8165
8166 /* The inferior that caused the stop. */
8167 int inf_num;
8168 };
8169
8170 /* Initializes a new stop context. If stopped for a thread event, this
8171 takes a strong reference to the thread. */
8172
8173 stop_context::stop_context ()
8174 {
8175 stop_id = get_stop_id ();
8176 ptid = inferior_ptid;
8177 inf_num = current_inferior ()->num;
8178
8179 if (inferior_ptid != null_ptid)
8180 {
8181 /* Take a strong reference so that the thread can't be deleted
8182 yet. */
8183 thread = inferior_thread ();
8184 thread->incref ();
8185 }
8186 else
8187 thread = NULL;
8188 }
8189
8190 /* Release a stop context previously created with save_stop_context.
8191 Releases the strong reference to the thread as well. */
8192
8193 stop_context::~stop_context ()
8194 {
8195 if (thread != NULL)
8196 thread->decref ();
8197 }
8198
8199 /* Return true if the current context no longer matches the saved stop
8200 context. */
8201
8202 bool
8203 stop_context::changed () const
8204 {
8205 if (ptid != inferior_ptid)
8206 return true;
8207 if (inf_num != current_inferior ()->num)
8208 return true;
8209 if (thread != NULL && thread->state != THREAD_STOPPED)
8210 return true;
8211 if (get_stop_id () != stop_id)
8212 return true;
8213 return false;
8214 }
8215
8216 /* See infrun.h. */
8217
8218 int
8219 normal_stop (void)
8220 {
8221 struct target_waitstatus last;
8222
8223 get_last_target_status (nullptr, nullptr, &last);
8224
8225 new_stop_id ();
8226
8227 /* If an exception is thrown from this point on, make sure to
8228 propagate GDB's knowledge of the executing state to the
8229 frontend/user running state. A QUIT is an easy exception to see
8230 here, so do this before any filtered output. */
8231
8232 ptid_t finish_ptid = null_ptid;
8233
8234 if (!non_stop)
8235 finish_ptid = minus_one_ptid;
8236 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8237 || last.kind == TARGET_WAITKIND_EXITED)
8238 {
8239 /* On some targets, we may still have live threads in the
8240 inferior when we get a process exit event. E.g., for
8241 "checkpoint", when the current checkpoint/fork exits,
8242 linux-fork.c automatically switches to another fork from
8243 within target_mourn_inferior. */
8244 if (inferior_ptid != null_ptid)
8245 finish_ptid = ptid_t (inferior_ptid.pid ());
8246 }
8247 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8248 finish_ptid = inferior_ptid;
8249
8250 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8251 if (finish_ptid != null_ptid)
8252 {
8253 maybe_finish_thread_state.emplace
8254 (user_visible_resume_target (finish_ptid), finish_ptid);
8255 }
8256
8257 /* As we're presenting a stop, and potentially removing breakpoints,
8258 update the thread list so we can tell whether there are threads
8259 running on the target. With target remote, for example, we can
8260 only learn about new threads when we explicitly update the thread
8261 list. Do this before notifying the interpreters about signal
8262 stops, end of stepping ranges, etc., so that the "new thread"
8263 output is emitted before e.g., "Program received signal FOO",
8264 instead of after. */
8265 update_thread_list ();
8266
8267 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8268 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8269
8270 /* As with the notification of thread events, we want to delay
8271 notifying the user that we've switched thread context until
8272 the inferior actually stops.
8273
8274 There's no point in saying anything if the inferior has exited.
8275 Note that SIGNALLED here means "exited with a signal", not
8276 "received a signal".
8277
8278 Also skip saying anything in non-stop mode. In that mode, as we
8279 don't want GDB to switch threads behind the user's back, to avoid
8280 races where the user is typing a command to apply to thread x,
8281 but GDB switches to thread y before the user finishes entering
8282 the command, fetch_inferior_event installs a cleanup to restore
8283 the current thread back to the thread the user had selected right
8284 after this event is handled, so we're not really switching, only
8285 informing of a stop. */
8286 if (!non_stop
8287 && previous_inferior_ptid != inferior_ptid
8288 && target_has_execution ()
8289 && last.kind != TARGET_WAITKIND_SIGNALLED
8290 && last.kind != TARGET_WAITKIND_EXITED
8291 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8292 {
8293 SWITCH_THRU_ALL_UIS ()
8294 {
8295 target_terminal::ours_for_output ();
8296 printf_filtered (_("[Switching to %s]\n"),
8297 target_pid_to_str (inferior_ptid).c_str ());
8298 annotate_thread_changed ();
8299 }
8300 previous_inferior_ptid = inferior_ptid;
8301 }
8302
8303 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8304 {
8305 SWITCH_THRU_ALL_UIS ()
8306 if (current_ui->prompt_state == PROMPT_BLOCKED)
8307 {
8308 target_terminal::ours_for_output ();
8309 printf_filtered (_("No unwaited-for children left.\n"));
8310 }
8311 }
8312
8313 /* Note: this depends on the update_thread_list call above. */
8314 maybe_remove_breakpoints ();
8315
8316 /* If an auto-display called a function and that got a signal,
8317 delete that auto-display to avoid an infinite recursion. */
8318
8319 if (stopped_by_random_signal)
8320 disable_current_display ();
8321
8322 SWITCH_THRU_ALL_UIS ()
8323 {
8324 async_enable_stdin ();
8325 }
8326
8327 /* Let the user/frontend see the threads as stopped. */
8328 maybe_finish_thread_state.reset ();
8329
8330 /* Select innermost stack frame - i.e., current frame is frame 0,
8331 and current location is based on that. Handle the case where the
8332 dummy call is returning after being stopped. E.g. the dummy call
8333 previously hit a breakpoint. (If the dummy call returns
8334 normally, we won't reach here.) Do this before the stop hook is
8335 run, so that it doesn't get to see the temporary dummy frame,
8336 which is not where we'll present the stop. */
8337 if (has_stack_frames ())
8338 {
8339 if (stop_stack_dummy == STOP_STACK_DUMMY)
8340 {
8341 /* Pop the empty frame that contains the stack dummy. This
8342 also restores inferior state prior to the call (struct
8343 infcall_suspend_state). */
8344 struct frame_info *frame = get_current_frame ();
8345
8346 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8347 frame_pop (frame);
8348 /* frame_pop calls reinit_frame_cache as the last thing it
8349 does which means there's now no selected frame. */
8350 }
8351
8352 select_frame (get_current_frame ());
8353
8354 /* Set the current source location. */
8355 set_current_sal_from_frame (get_current_frame ());
8356 }
8357
8358 /* Look up the hook_stop and run it (CLI internally handles problem
8359 of stop_command's pre-hook not existing). */
8360 if (stop_command != NULL)
8361 {
8362 stop_context saved_context;
8363
8364 try
8365 {
8366 execute_cmd_pre_hook (stop_command);
8367 }
8368 catch (const gdb_exception &ex)
8369 {
8370 exception_fprintf (gdb_stderr, ex,
8371 "Error while running hook_stop:\n");
8372 }
8373
8374 /* If the stop hook resumes the target, then there's no point in
8375 trying to notify about the previous stop; its context is
8376 gone. Likewise if the command switches thread or inferior --
8377 the observers would print a stop for the wrong
8378 thread/inferior. */
8379 if (saved_context.changed ())
8380 return 1;
8381 }
8382
8383 /* Notify observers about the stop. This is where the interpreters
8384 print the stop event. */
8385 if (inferior_ptid != null_ptid)
8386 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8387 stop_print_frame);
8388 else
8389 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8390
8391 annotate_stopped ();
8392
8393 if (target_has_execution ())
8394 {
8395 if (last.kind != TARGET_WAITKIND_SIGNALLED
8396 && last.kind != TARGET_WAITKIND_EXITED
8397 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8398 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8399 Delete any breakpoint that is to be deleted at the next stop. */
8400 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8401 }
8402
8403 /* Try to get rid of automatically added inferiors that are no
8404 longer needed. Keeping those around slows down things linearly.
8405 Note that this never removes the current inferior. */
8406 prune_inferiors ();
8407
8408 return 0;
8409 }
8410 \f
8411 int
8412 signal_stop_state (int signo)
8413 {
8414 return signal_stop[signo];
8415 }
8416
8417 int
8418 signal_print_state (int signo)
8419 {
8420 return signal_print[signo];
8421 }
8422
8423 int
8424 signal_pass_state (int signo)
8425 {
8426 return signal_program[signo];
8427 }
8428
8429 static void
8430 signal_cache_update (int signo)
8431 {
8432 if (signo == -1)
8433 {
8434 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8435 signal_cache_update (signo);
8436
8437 return;
8438 }
8439
8440 signal_pass[signo] = (signal_stop[signo] == 0
8441 && signal_print[signo] == 0
8442 && signal_program[signo] == 1
8443 && signal_catch[signo] == 0);
8444 }
8445
8446 int
8447 signal_stop_update (int signo, int state)
8448 {
8449 int ret = signal_stop[signo];
8450
8451 signal_stop[signo] = state;
8452 signal_cache_update (signo);
8453 return ret;
8454 }
8455
8456 int
8457 signal_print_update (int signo, int state)
8458 {
8459 int ret = signal_print[signo];
8460
8461 signal_print[signo] = state;
8462 signal_cache_update (signo);
8463 return ret;
8464 }
8465
8466 int
8467 signal_pass_update (int signo, int state)
8468 {
8469 int ret = signal_program[signo];
8470
8471 signal_program[signo] = state;
8472 signal_cache_update (signo);
8473 return ret;
8474 }
8475
8476 /* Update the global 'signal_catch' from INFO and notify the
8477 target. */
8478
8479 void
8480 signal_catch_update (const unsigned int *info)
8481 {
8482 int i;
8483
8484 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8485 signal_catch[i] = info[i] > 0;
8486 signal_cache_update (-1);
8487 target_pass_signals (signal_pass);
8488 }
8489
8490 static void
8491 sig_print_header (void)
8492 {
8493 printf_filtered (_("Signal Stop\tPrint\tPass "
8494 "to program\tDescription\n"));
8495 }
8496
8497 static void
8498 sig_print_info (enum gdb_signal oursig)
8499 {
8500 const char *name = gdb_signal_to_name (oursig);
8501 int name_padding = 13 - strlen (name);
8502
8503 if (name_padding <= 0)
8504 name_padding = 0;
8505
8506 printf_filtered ("%s", name);
8507 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8508 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8509 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8510 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8511 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8512 }
8513
8514 /* Specify how various signals in the inferior should be handled. */
8515
8516 static void
8517 handle_command (const char *args, int from_tty)
8518 {
8519 int digits, wordlen;
8520 int sigfirst, siglast;
8521 enum gdb_signal oursig;
8522 int allsigs;
8523
8524 if (args == NULL)
8525 {
8526 error_no_arg (_("signal to handle"));
8527 }
8528
8529 /* Allocate and zero an array of flags for which signals to handle. */
8530
8531 const size_t nsigs = GDB_SIGNAL_LAST;
8532 unsigned char sigs[nsigs] {};
8533
8534 /* Break the command line up into args. */
8535
8536 gdb_argv built_argv (args);
8537
8538 /* Walk through the args, looking for signal oursigs, signal names, and
8539 actions. Signal numbers and signal names may be interspersed with
8540 actions, with the actions being performed for all signals cumulatively
8541 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8542
8543 for (char *arg : built_argv)
8544 {
8545 wordlen = strlen (arg);
8546 for (digits = 0; isdigit (arg[digits]); digits++)
8547 {;
8548 }
8549 allsigs = 0;
8550 sigfirst = siglast = -1;
8551
8552 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8553 {
8554 /* Apply action to all signals except those used by the
8555 debugger. Silently skip those. */
8556 allsigs = 1;
8557 sigfirst = 0;
8558 siglast = nsigs - 1;
8559 }
8560 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8561 {
8562 SET_SIGS (nsigs, sigs, signal_stop);
8563 SET_SIGS (nsigs, sigs, signal_print);
8564 }
8565 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8566 {
8567 UNSET_SIGS (nsigs, sigs, signal_program);
8568 }
8569 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8570 {
8571 SET_SIGS (nsigs, sigs, signal_print);
8572 }
8573 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8574 {
8575 SET_SIGS (nsigs, sigs, signal_program);
8576 }
8577 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8578 {
8579 UNSET_SIGS (nsigs, sigs, signal_stop);
8580 }
8581 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8582 {
8583 SET_SIGS (nsigs, sigs, signal_program);
8584 }
8585 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8586 {
8587 UNSET_SIGS (nsigs, sigs, signal_print);
8588 UNSET_SIGS (nsigs, sigs, signal_stop);
8589 }
8590 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8591 {
8592 UNSET_SIGS (nsigs, sigs, signal_program);
8593 }
8594 else if (digits > 0)
8595 {
8596 /* It is numeric. The numeric signal refers to our own
8597 internal signal numbering from target.h, not to host/target
8598 signal number. This is a feature; users really should be
8599 using symbolic names anyway, and the common ones like
8600 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8601
8602 sigfirst = siglast = (int)
8603 gdb_signal_from_command (atoi (arg));
8604 if (arg[digits] == '-')
8605 {
8606 siglast = (int)
8607 gdb_signal_from_command (atoi (arg + digits + 1));
8608 }
8609 if (sigfirst > siglast)
8610 {
8611 /* Bet he didn't figure we'd think of this case... */
8612 std::swap (sigfirst, siglast);
8613 }
8614 }
8615 else
8616 {
8617 oursig = gdb_signal_from_name (arg);
8618 if (oursig != GDB_SIGNAL_UNKNOWN)
8619 {
8620 sigfirst = siglast = (int) oursig;
8621 }
8622 else
8623 {
8624 /* Not a number and not a recognized flag word => complain. */
8625 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8626 }
8627 }
8628
8629 /* If any signal numbers or symbol names were found, set flags for
8630 which signals to apply actions to. */
8631
8632 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8633 {
8634 switch ((enum gdb_signal) signum)
8635 {
8636 case GDB_SIGNAL_TRAP:
8637 case GDB_SIGNAL_INT:
8638 if (!allsigs && !sigs[signum])
8639 {
8640 if (query (_("%s is used by the debugger.\n\
8641 Are you sure you want to change it? "),
8642 gdb_signal_to_name ((enum gdb_signal) signum)))
8643 {
8644 sigs[signum] = 1;
8645 }
8646 else
8647 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8648 }
8649 break;
8650 case GDB_SIGNAL_0:
8651 case GDB_SIGNAL_DEFAULT:
8652 case GDB_SIGNAL_UNKNOWN:
8653 /* Make sure that "all" doesn't print these. */
8654 break;
8655 default:
8656 sigs[signum] = 1;
8657 break;
8658 }
8659 }
8660 }
8661
8662 for (int signum = 0; signum < nsigs; signum++)
8663 if (sigs[signum])
8664 {
8665 signal_cache_update (-1);
8666 target_pass_signals (signal_pass);
8667 target_program_signals (signal_program);
8668
8669 if (from_tty)
8670 {
8671 /* Show the results. */
8672 sig_print_header ();
8673 for (; signum < nsigs; signum++)
8674 if (sigs[signum])
8675 sig_print_info ((enum gdb_signal) signum);
8676 }
8677
8678 break;
8679 }
8680 }
8681
8682 /* Complete the "handle" command. */
8683
8684 static void
8685 handle_completer (struct cmd_list_element *ignore,
8686 completion_tracker &tracker,
8687 const char *text, const char *word)
8688 {
8689 static const char * const keywords[] =
8690 {
8691 "all",
8692 "stop",
8693 "ignore",
8694 "print",
8695 "pass",
8696 "nostop",
8697 "noignore",
8698 "noprint",
8699 "nopass",
8700 NULL,
8701 };
8702
8703 signal_completer (ignore, tracker, text, word);
8704 complete_on_enum (tracker, keywords, word, word);
8705 }
8706
8707 enum gdb_signal
8708 gdb_signal_from_command (int num)
8709 {
8710 if (num >= 1 && num <= 15)
8711 return (enum gdb_signal) num;
8712 error (_("Only signals 1-15 are valid as numeric signals.\n\
8713 Use \"info signals\" for a list of symbolic signals."));
8714 }
8715
8716 /* Print current contents of the tables set by the handle command.
8717 It is possible we should just be printing signals actually used
8718 by the current target (but for things to work right when switching
8719 targets, all signals should be in the signal tables). */
8720
8721 static void
8722 info_signals_command (const char *signum_exp, int from_tty)
8723 {
8724 enum gdb_signal oursig;
8725
8726 sig_print_header ();
8727
8728 if (signum_exp)
8729 {
8730 /* First see if this is a symbol name. */
8731 oursig = gdb_signal_from_name (signum_exp);
8732 if (oursig == GDB_SIGNAL_UNKNOWN)
8733 {
8734 /* No, try numeric. */
8735 oursig =
8736 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8737 }
8738 sig_print_info (oursig);
8739 return;
8740 }
8741
8742 printf_filtered ("\n");
8743 /* These ugly casts brought to you by the native VAX compiler. */
8744 for (oursig = GDB_SIGNAL_FIRST;
8745 (int) oursig < (int) GDB_SIGNAL_LAST;
8746 oursig = (enum gdb_signal) ((int) oursig + 1))
8747 {
8748 QUIT;
8749
8750 if (oursig != GDB_SIGNAL_UNKNOWN
8751 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8752 sig_print_info (oursig);
8753 }
8754
8755 printf_filtered (_("\nUse the \"handle\" command "
8756 "to change these tables.\n"));
8757 }
8758
8759 /* The $_siginfo convenience variable is a bit special. We don't know
8760 for sure the type of the value until we actually have a chance to
8761 fetch the data. The type can change depending on gdbarch, so it is
8762 also dependent on which thread you have selected.
8763
8764 1. making $_siginfo be an internalvar that creates a new value on
8765 access.
8766
8767 2. making the value of $_siginfo be an lval_computed value. */
8768
8769 /* This function implements the lval_computed support for reading a
8770 $_siginfo value. */
8771
8772 static void
8773 siginfo_value_read (struct value *v)
8774 {
8775 LONGEST transferred;
8776
8777 /* If we can access registers, so can we access $_siginfo. Likewise
8778 vice versa. */
8779 validate_registers_access ();
8780
8781 transferred =
8782 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8783 NULL,
8784 value_contents_all_raw (v),
8785 value_offset (v),
8786 TYPE_LENGTH (value_type (v)));
8787
8788 if (transferred != TYPE_LENGTH (value_type (v)))
8789 error (_("Unable to read siginfo"));
8790 }
8791
8792 /* This function implements the lval_computed support for writing a
8793 $_siginfo value. */
8794
8795 static void
8796 siginfo_value_write (struct value *v, struct value *fromval)
8797 {
8798 LONGEST transferred;
8799
8800 /* If we can access registers, so can we access $_siginfo. Likewise
8801 vice versa. */
8802 validate_registers_access ();
8803
8804 transferred = target_write (current_top_target (),
8805 TARGET_OBJECT_SIGNAL_INFO,
8806 NULL,
8807 value_contents_all_raw (fromval),
8808 value_offset (v),
8809 TYPE_LENGTH (value_type (fromval)));
8810
8811 if (transferred != TYPE_LENGTH (value_type (fromval)))
8812 error (_("Unable to write siginfo"));
8813 }
8814
8815 static const struct lval_funcs siginfo_value_funcs =
8816 {
8817 siginfo_value_read,
8818 siginfo_value_write
8819 };
8820
8821 /* Return a new value with the correct type for the siginfo object of
8822 the current thread using architecture GDBARCH. Return a void value
8823 if there's no object available. */
8824
8825 static struct value *
8826 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8827 void *ignore)
8828 {
8829 if (target_has_stack ()
8830 && inferior_ptid != null_ptid
8831 && gdbarch_get_siginfo_type_p (gdbarch))
8832 {
8833 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8834
8835 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8836 }
8837
8838 return allocate_value (builtin_type (gdbarch)->builtin_void);
8839 }
8840
8841 \f
8842 /* infcall_suspend_state contains state about the program itself like its
8843 registers and any signal it received when it last stopped.
8844 This state must be restored regardless of how the inferior function call
8845 ends (either successfully, or after it hits a breakpoint or signal)
8846 if the program is to properly continue where it left off. */
8847
8848 class infcall_suspend_state
8849 {
8850 public:
8851 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8852 once the inferior function call has finished. */
8853 infcall_suspend_state (struct gdbarch *gdbarch,
8854 const struct thread_info *tp,
8855 struct regcache *regcache)
8856 : m_thread_suspend (tp->suspend),
8857 m_registers (new readonly_detached_regcache (*regcache))
8858 {
8859 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8860
8861 if (gdbarch_get_siginfo_type_p (gdbarch))
8862 {
8863 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8864 size_t len = TYPE_LENGTH (type);
8865
8866 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8867
8868 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8869 siginfo_data.get (), 0, len) != len)
8870 {
8871 /* Errors ignored. */
8872 siginfo_data.reset (nullptr);
8873 }
8874 }
8875
8876 if (siginfo_data)
8877 {
8878 m_siginfo_gdbarch = gdbarch;
8879 m_siginfo_data = std::move (siginfo_data);
8880 }
8881 }
8882
8883 /* Return a pointer to the stored register state. */
8884
8885 readonly_detached_regcache *registers () const
8886 {
8887 return m_registers.get ();
8888 }
8889
8890 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8891
8892 void restore (struct gdbarch *gdbarch,
8893 struct thread_info *tp,
8894 struct regcache *regcache) const
8895 {
8896 tp->suspend = m_thread_suspend;
8897
8898 if (m_siginfo_gdbarch == gdbarch)
8899 {
8900 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8901
8902 /* Errors ignored. */
8903 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8904 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8905 }
8906
8907 /* The inferior can be gone if the user types "print exit(0)"
8908 (and perhaps other times). */
8909 if (target_has_execution ())
8910 /* NB: The register write goes through to the target. */
8911 regcache->restore (registers ());
8912 }
8913
8914 private:
8915 /* How the current thread stopped before the inferior function call was
8916 executed. */
8917 struct thread_suspend_state m_thread_suspend;
8918
8919 /* The registers before the inferior function call was executed. */
8920 std::unique_ptr<readonly_detached_regcache> m_registers;
8921
8922 /* Format of SIGINFO_DATA or NULL if it is not present. */
8923 struct gdbarch *m_siginfo_gdbarch = nullptr;
8924
8925 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8926 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8927 content would be invalid. */
8928 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8929 };
8930
8931 infcall_suspend_state_up
8932 save_infcall_suspend_state ()
8933 {
8934 struct thread_info *tp = inferior_thread ();
8935 struct regcache *regcache = get_current_regcache ();
8936 struct gdbarch *gdbarch = regcache->arch ();
8937
8938 infcall_suspend_state_up inf_state
8939 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8940
8941 /* Having saved the current state, adjust the thread state, discarding
8942 any stop signal information. The stop signal is not useful when
8943 starting an inferior function call, and run_inferior_call will not use
8944 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8945 tp->suspend.stop_signal = GDB_SIGNAL_0;
8946
8947 return inf_state;
8948 }
8949
8950 /* Restore inferior session state to INF_STATE. */
8951
8952 void
8953 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8954 {
8955 struct thread_info *tp = inferior_thread ();
8956 struct regcache *regcache = get_current_regcache ();
8957 struct gdbarch *gdbarch = regcache->arch ();
8958
8959 inf_state->restore (gdbarch, tp, regcache);
8960 discard_infcall_suspend_state (inf_state);
8961 }
8962
8963 void
8964 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8965 {
8966 delete inf_state;
8967 }
8968
8969 readonly_detached_regcache *
8970 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8971 {
8972 return inf_state->registers ();
8973 }
8974
8975 /* infcall_control_state contains state regarding gdb's control of the
8976 inferior itself like stepping control. It also contains session state like
8977 the user's currently selected frame. */
8978
8979 struct infcall_control_state
8980 {
8981 struct thread_control_state thread_control;
8982 struct inferior_control_state inferior_control;
8983
8984 /* Other fields: */
8985 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8986 int stopped_by_random_signal = 0;
8987
8988 /* ID and level of the selected frame when the inferior function
8989 call was made. */
8990 struct frame_id selected_frame_id {};
8991 int selected_frame_level = -1;
8992 };
8993
8994 /* Save all of the information associated with the inferior<==>gdb
8995 connection. */
8996
8997 infcall_control_state_up
8998 save_infcall_control_state ()
8999 {
9000 infcall_control_state_up inf_status (new struct infcall_control_state);
9001 struct thread_info *tp = inferior_thread ();
9002 struct inferior *inf = current_inferior ();
9003
9004 inf_status->thread_control = tp->control;
9005 inf_status->inferior_control = inf->control;
9006
9007 tp->control.step_resume_breakpoint = NULL;
9008 tp->control.exception_resume_breakpoint = NULL;
9009
9010 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9011 chain. If caller's caller is walking the chain, they'll be happier if we
9012 hand them back the original chain when restore_infcall_control_state is
9013 called. */
9014 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9015
9016 /* Other fields: */
9017 inf_status->stop_stack_dummy = stop_stack_dummy;
9018 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9019
9020 save_selected_frame (&inf_status->selected_frame_id,
9021 &inf_status->selected_frame_level);
9022
9023 return inf_status;
9024 }
9025
9026 /* Restore inferior session state to INF_STATUS. */
9027
9028 void
9029 restore_infcall_control_state (struct infcall_control_state *inf_status)
9030 {
9031 struct thread_info *tp = inferior_thread ();
9032 struct inferior *inf = current_inferior ();
9033
9034 if (tp->control.step_resume_breakpoint)
9035 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9036
9037 if (tp->control.exception_resume_breakpoint)
9038 tp->control.exception_resume_breakpoint->disposition
9039 = disp_del_at_next_stop;
9040
9041 /* Handle the bpstat_copy of the chain. */
9042 bpstat_clear (&tp->control.stop_bpstat);
9043
9044 tp->control = inf_status->thread_control;
9045 inf->control = inf_status->inferior_control;
9046
9047 /* Other fields: */
9048 stop_stack_dummy = inf_status->stop_stack_dummy;
9049 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9050
9051 if (target_has_stack ())
9052 {
9053 restore_selected_frame (inf_status->selected_frame_id,
9054 inf_status->selected_frame_level);
9055 }
9056
9057 delete inf_status;
9058 }
9059
9060 void
9061 discard_infcall_control_state (struct infcall_control_state *inf_status)
9062 {
9063 if (inf_status->thread_control.step_resume_breakpoint)
9064 inf_status->thread_control.step_resume_breakpoint->disposition
9065 = disp_del_at_next_stop;
9066
9067 if (inf_status->thread_control.exception_resume_breakpoint)
9068 inf_status->thread_control.exception_resume_breakpoint->disposition
9069 = disp_del_at_next_stop;
9070
9071 /* See save_infcall_control_state for info on stop_bpstat. */
9072 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9073
9074 delete inf_status;
9075 }
9076 \f
9077 /* See infrun.h. */
9078
9079 void
9080 clear_exit_convenience_vars (void)
9081 {
9082 clear_internalvar (lookup_internalvar ("_exitsignal"));
9083 clear_internalvar (lookup_internalvar ("_exitcode"));
9084 }
9085 \f
9086
9087 /* User interface for reverse debugging:
9088 Set exec-direction / show exec-direction commands
9089 (returns error unless target implements to_set_exec_direction method). */
9090
9091 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9092 static const char exec_forward[] = "forward";
9093 static const char exec_reverse[] = "reverse";
9094 static const char *exec_direction = exec_forward;
9095 static const char *const exec_direction_names[] = {
9096 exec_forward,
9097 exec_reverse,
9098 NULL
9099 };
9100
9101 static void
9102 set_exec_direction_func (const char *args, int from_tty,
9103 struct cmd_list_element *cmd)
9104 {
9105 if (target_can_execute_reverse ())
9106 {
9107 if (!strcmp (exec_direction, exec_forward))
9108 execution_direction = EXEC_FORWARD;
9109 else if (!strcmp (exec_direction, exec_reverse))
9110 execution_direction = EXEC_REVERSE;
9111 }
9112 else
9113 {
9114 exec_direction = exec_forward;
9115 error (_("Target does not support this operation."));
9116 }
9117 }
9118
9119 static void
9120 show_exec_direction_func (struct ui_file *out, int from_tty,
9121 struct cmd_list_element *cmd, const char *value)
9122 {
9123 switch (execution_direction) {
9124 case EXEC_FORWARD:
9125 fprintf_filtered (out, _("Forward.\n"));
9126 break;
9127 case EXEC_REVERSE:
9128 fprintf_filtered (out, _("Reverse.\n"));
9129 break;
9130 default:
9131 internal_error (__FILE__, __LINE__,
9132 _("bogus execution_direction value: %d"),
9133 (int) execution_direction);
9134 }
9135 }
9136
9137 static void
9138 show_schedule_multiple (struct ui_file *file, int from_tty,
9139 struct cmd_list_element *c, const char *value)
9140 {
9141 fprintf_filtered (file, _("Resuming the execution of threads "
9142 "of all processes is %s.\n"), value);
9143 }
9144
9145 /* Implementation of `siginfo' variable. */
9146
9147 static const struct internalvar_funcs siginfo_funcs =
9148 {
9149 siginfo_make_value,
9150 NULL,
9151 NULL
9152 };
9153
9154 /* Callback for infrun's target events source. This is marked when a
9155 thread has a pending status to process. */
9156
9157 static void
9158 infrun_async_inferior_event_handler (gdb_client_data data)
9159 {
9160 inferior_event_handler (INF_REG_EVENT);
9161 }
9162
9163 #if GDB_SELF_TEST
9164 namespace selftests
9165 {
9166
9167 /* Verify that when two threads with the same ptid exist (from two different
9168 targets) and one of them changes ptid, we only update inferior_ptid if
9169 it is appropriate. */
9170
9171 static void
9172 infrun_thread_ptid_changed ()
9173 {
9174 gdbarch *arch = current_inferior ()->gdbarch;
9175
9176 /* The thread which inferior_ptid represents changes ptid. */
9177 {
9178 scoped_restore_current_pspace_and_thread restore;
9179
9180 scoped_mock_context<test_target_ops> target1 (arch);
9181 scoped_mock_context<test_target_ops> target2 (arch);
9182 target2.mock_inferior.next = &target1.mock_inferior;
9183
9184 ptid_t old_ptid (111, 222);
9185 ptid_t new_ptid (111, 333);
9186
9187 target1.mock_inferior.pid = old_ptid.pid ();
9188 target1.mock_thread.ptid = old_ptid;
9189 target2.mock_inferior.pid = old_ptid.pid ();
9190 target2.mock_thread.ptid = old_ptid;
9191
9192 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9193 set_current_inferior (&target1.mock_inferior);
9194
9195 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9196
9197 gdb_assert (inferior_ptid == new_ptid);
9198 }
9199
9200 /* A thread with the same ptid as inferior_ptid, but from another target,
9201 changes ptid. */
9202 {
9203 scoped_restore_current_pspace_and_thread restore;
9204
9205 scoped_mock_context<test_target_ops> target1 (arch);
9206 scoped_mock_context<test_target_ops> target2 (arch);
9207 target2.mock_inferior.next = &target1.mock_inferior;
9208
9209 ptid_t old_ptid (111, 222);
9210 ptid_t new_ptid (111, 333);
9211
9212 target1.mock_inferior.pid = old_ptid.pid ();
9213 target1.mock_thread.ptid = old_ptid;
9214 target2.mock_inferior.pid = old_ptid.pid ();
9215 target2.mock_thread.ptid = old_ptid;
9216
9217 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9218 set_current_inferior (&target2.mock_inferior);
9219
9220 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9221
9222 gdb_assert (inferior_ptid == old_ptid);
9223 }
9224 }
9225
9226 } /* namespace selftests */
9227
9228 #endif /* GDB_SELF_TEST */
9229
9230 void _initialize_infrun ();
9231 void
9232 _initialize_infrun ()
9233 {
9234 struct cmd_list_element *c;
9235
9236 /* Register extra event sources in the event loop. */
9237 infrun_async_inferior_event_token
9238 = create_async_event_handler (infrun_async_inferior_event_handler, NULL,
9239 "infrun");
9240
9241 add_info ("signals", info_signals_command, _("\
9242 What debugger does when program gets various signals.\n\
9243 Specify a signal as argument to print info on that signal only."));
9244 add_info_alias ("handle", "signals", 0);
9245
9246 c = add_com ("handle", class_run, handle_command, _("\
9247 Specify how to handle signals.\n\
9248 Usage: handle SIGNAL [ACTIONS]\n\
9249 Args are signals and actions to apply to those signals.\n\
9250 If no actions are specified, the current settings for the specified signals\n\
9251 will be displayed instead.\n\
9252 \n\
9253 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9254 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9255 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9256 The special arg \"all\" is recognized to mean all signals except those\n\
9257 used by the debugger, typically SIGTRAP and SIGINT.\n\
9258 \n\
9259 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9260 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9261 Stop means reenter debugger if this signal happens (implies print).\n\
9262 Print means print a message if this signal happens.\n\
9263 Pass means let program see this signal; otherwise program doesn't know.\n\
9264 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9265 Pass and Stop may be combined.\n\
9266 \n\
9267 Multiple signals may be specified. Signal numbers and signal names\n\
9268 may be interspersed with actions, with the actions being performed for\n\
9269 all signals cumulatively specified."));
9270 set_cmd_completer (c, handle_completer);
9271
9272 if (!dbx_commands)
9273 stop_command = add_cmd ("stop", class_obscure,
9274 not_just_help_class_command, _("\
9275 There is no `stop' command, but you can set a hook on `stop'.\n\
9276 This allows you to set a list of commands to be run each time execution\n\
9277 of the program stops."), &cmdlist);
9278
9279 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9280 Set inferior debugging."), _("\
9281 Show inferior debugging."), _("\
9282 When non-zero, inferior specific debugging is enabled."),
9283 NULL,
9284 show_debug_infrun,
9285 &setdebuglist, &showdebuglist);
9286
9287 add_setshow_boolean_cmd ("displaced", class_maintenance,
9288 &debug_displaced, _("\
9289 Set displaced stepping debugging."), _("\
9290 Show displaced stepping debugging."), _("\
9291 When non-zero, displaced stepping specific debugging is enabled."),
9292 NULL,
9293 show_debug_displaced,
9294 &setdebuglist, &showdebuglist);
9295
9296 add_setshow_boolean_cmd ("non-stop", no_class,
9297 &non_stop_1, _("\
9298 Set whether gdb controls the inferior in non-stop mode."), _("\
9299 Show whether gdb controls the inferior in non-stop mode."), _("\
9300 When debugging a multi-threaded program and this setting is\n\
9301 off (the default, also called all-stop mode), when one thread stops\n\
9302 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9303 all other threads in the program while you interact with the thread of\n\
9304 interest. When you continue or step a thread, you can allow the other\n\
9305 threads to run, or have them remain stopped, but while you inspect any\n\
9306 thread's state, all threads stop.\n\
9307 \n\
9308 In non-stop mode, when one thread stops, other threads can continue\n\
9309 to run freely. You'll be able to step each thread independently,\n\
9310 leave it stopped or free to run as needed."),
9311 set_non_stop,
9312 show_non_stop,
9313 &setlist,
9314 &showlist);
9315
9316 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9317 {
9318 signal_stop[i] = 1;
9319 signal_print[i] = 1;
9320 signal_program[i] = 1;
9321 signal_catch[i] = 0;
9322 }
9323
9324 /* Signals caused by debugger's own actions should not be given to
9325 the program afterwards.
9326
9327 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9328 explicitly specifies that it should be delivered to the target
9329 program. Typically, that would occur when a user is debugging a
9330 target monitor on a simulator: the target monitor sets a
9331 breakpoint; the simulator encounters this breakpoint and halts
9332 the simulation handing control to GDB; GDB, noting that the stop
9333 address doesn't map to any known breakpoint, returns control back
9334 to the simulator; the simulator then delivers the hardware
9335 equivalent of a GDB_SIGNAL_TRAP to the program being
9336 debugged. */
9337 signal_program[GDB_SIGNAL_TRAP] = 0;
9338 signal_program[GDB_SIGNAL_INT] = 0;
9339
9340 /* Signals that are not errors should not normally enter the debugger. */
9341 signal_stop[GDB_SIGNAL_ALRM] = 0;
9342 signal_print[GDB_SIGNAL_ALRM] = 0;
9343 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9344 signal_print[GDB_SIGNAL_VTALRM] = 0;
9345 signal_stop[GDB_SIGNAL_PROF] = 0;
9346 signal_print[GDB_SIGNAL_PROF] = 0;
9347 signal_stop[GDB_SIGNAL_CHLD] = 0;
9348 signal_print[GDB_SIGNAL_CHLD] = 0;
9349 signal_stop[GDB_SIGNAL_IO] = 0;
9350 signal_print[GDB_SIGNAL_IO] = 0;
9351 signal_stop[GDB_SIGNAL_POLL] = 0;
9352 signal_print[GDB_SIGNAL_POLL] = 0;
9353 signal_stop[GDB_SIGNAL_URG] = 0;
9354 signal_print[GDB_SIGNAL_URG] = 0;
9355 signal_stop[GDB_SIGNAL_WINCH] = 0;
9356 signal_print[GDB_SIGNAL_WINCH] = 0;
9357 signal_stop[GDB_SIGNAL_PRIO] = 0;
9358 signal_print[GDB_SIGNAL_PRIO] = 0;
9359
9360 /* These signals are used internally by user-level thread
9361 implementations. (See signal(5) on Solaris.) Like the above
9362 signals, a healthy program receives and handles them as part of
9363 its normal operation. */
9364 signal_stop[GDB_SIGNAL_LWP] = 0;
9365 signal_print[GDB_SIGNAL_LWP] = 0;
9366 signal_stop[GDB_SIGNAL_WAITING] = 0;
9367 signal_print[GDB_SIGNAL_WAITING] = 0;
9368 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9369 signal_print[GDB_SIGNAL_CANCEL] = 0;
9370 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9371 signal_print[GDB_SIGNAL_LIBRT] = 0;
9372
9373 /* Update cached state. */
9374 signal_cache_update (-1);
9375
9376 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9377 &stop_on_solib_events, _("\
9378 Set stopping for shared library events."), _("\
9379 Show stopping for shared library events."), _("\
9380 If nonzero, gdb will give control to the user when the dynamic linker\n\
9381 notifies gdb of shared library events. The most common event of interest\n\
9382 to the user would be loading/unloading of a new library."),
9383 set_stop_on_solib_events,
9384 show_stop_on_solib_events,
9385 &setlist, &showlist);
9386
9387 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9388 follow_fork_mode_kind_names,
9389 &follow_fork_mode_string, _("\
9390 Set debugger response to a program call of fork or vfork."), _("\
9391 Show debugger response to a program call of fork or vfork."), _("\
9392 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9393 parent - the original process is debugged after a fork\n\
9394 child - the new process is debugged after a fork\n\
9395 The unfollowed process will continue to run.\n\
9396 By default, the debugger will follow the parent process."),
9397 NULL,
9398 show_follow_fork_mode_string,
9399 &setlist, &showlist);
9400
9401 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9402 follow_exec_mode_names,
9403 &follow_exec_mode_string, _("\
9404 Set debugger response to a program call of exec."), _("\
9405 Show debugger response to a program call of exec."), _("\
9406 An exec call replaces the program image of a process.\n\
9407 \n\
9408 follow-exec-mode can be:\n\
9409 \n\
9410 new - the debugger creates a new inferior and rebinds the process\n\
9411 to this new inferior. The program the process was running before\n\
9412 the exec call can be restarted afterwards by restarting the original\n\
9413 inferior.\n\
9414 \n\
9415 same - the debugger keeps the process bound to the same inferior.\n\
9416 The new executable image replaces the previous executable loaded in\n\
9417 the inferior. Restarting the inferior after the exec call restarts\n\
9418 the executable the process was running after the exec call.\n\
9419 \n\
9420 By default, the debugger will use the same inferior."),
9421 NULL,
9422 show_follow_exec_mode_string,
9423 &setlist, &showlist);
9424
9425 add_setshow_enum_cmd ("scheduler-locking", class_run,
9426 scheduler_enums, &scheduler_mode, _("\
9427 Set mode for locking scheduler during execution."), _("\
9428 Show mode for locking scheduler during execution."), _("\
9429 off == no locking (threads may preempt at any time)\n\
9430 on == full locking (no thread except the current thread may run)\n\
9431 This applies to both normal execution and replay mode.\n\
9432 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9433 In this mode, other threads may run during other commands.\n\
9434 This applies to both normal execution and replay mode.\n\
9435 replay == scheduler locked in replay mode and unlocked during normal execution."),
9436 set_schedlock_func, /* traps on target vector */
9437 show_scheduler_mode,
9438 &setlist, &showlist);
9439
9440 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9441 Set mode for resuming threads of all processes."), _("\
9442 Show mode for resuming threads of all processes."), _("\
9443 When on, execution commands (such as 'continue' or 'next') resume all\n\
9444 threads of all processes. When off (which is the default), execution\n\
9445 commands only resume the threads of the current process. The set of\n\
9446 threads that are resumed is further refined by the scheduler-locking\n\
9447 mode (see help set scheduler-locking)."),
9448 NULL,
9449 show_schedule_multiple,
9450 &setlist, &showlist);
9451
9452 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9453 Set mode of the step operation."), _("\
9454 Show mode of the step operation."), _("\
9455 When set, doing a step over a function without debug line information\n\
9456 will stop at the first instruction of that function. Otherwise, the\n\
9457 function is skipped and the step command stops at a different source line."),
9458 NULL,
9459 show_step_stop_if_no_debug,
9460 &setlist, &showlist);
9461
9462 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9463 &can_use_displaced_stepping, _("\
9464 Set debugger's willingness to use displaced stepping."), _("\
9465 Show debugger's willingness to use displaced stepping."), _("\
9466 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9467 supported by the target architecture. If off, gdb will not use displaced\n\
9468 stepping to step over breakpoints, even if such is supported by the target\n\
9469 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9470 if the target architecture supports it and non-stop mode is active, but will not\n\
9471 use it in all-stop mode (see help set non-stop)."),
9472 NULL,
9473 show_can_use_displaced_stepping,
9474 &setlist, &showlist);
9475
9476 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9477 &exec_direction, _("Set direction of execution.\n\
9478 Options are 'forward' or 'reverse'."),
9479 _("Show direction of execution (forward/reverse)."),
9480 _("Tells gdb whether to execute forward or backward."),
9481 set_exec_direction_func, show_exec_direction_func,
9482 &setlist, &showlist);
9483
9484 /* Set/show detach-on-fork: user-settable mode. */
9485
9486 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9487 Set whether gdb will detach the child of a fork."), _("\
9488 Show whether gdb will detach the child of a fork."), _("\
9489 Tells gdb whether to detach the child of a fork."),
9490 NULL, NULL, &setlist, &showlist);
9491
9492 /* Set/show disable address space randomization mode. */
9493
9494 add_setshow_boolean_cmd ("disable-randomization", class_support,
9495 &disable_randomization, _("\
9496 Set disabling of debuggee's virtual address space randomization."), _("\
9497 Show disabling of debuggee's virtual address space randomization."), _("\
9498 When this mode is on (which is the default), randomization of the virtual\n\
9499 address space is disabled. Standalone programs run with the randomization\n\
9500 enabled by default on some platforms."),
9501 &set_disable_randomization,
9502 &show_disable_randomization,
9503 &setlist, &showlist);
9504
9505 /* ptid initializations */
9506 inferior_ptid = null_ptid;
9507 target_last_wait_ptid = minus_one_ptid;
9508
9509 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9510 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9511 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9512 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9513 gdb::observers::inferior_execd.attach (infrun_inferior_execd);
9514
9515 /* Explicitly create without lookup, since that tries to create a
9516 value with a void typed value, and when we get here, gdbarch
9517 isn't initialized yet. At this point, we're quite sure there
9518 isn't another convenience variable of the same name. */
9519 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9520
9521 add_setshow_boolean_cmd ("observer", no_class,
9522 &observer_mode_1, _("\
9523 Set whether gdb controls the inferior in observer mode."), _("\
9524 Show whether gdb controls the inferior in observer mode."), _("\
9525 In observer mode, GDB can get data from the inferior, but not\n\
9526 affect its execution. Registers and memory may not be changed,\n\
9527 breakpoints may not be set, and the program cannot be interrupted\n\
9528 or signalled."),
9529 set_observer_mode,
9530 show_observer_mode,
9531 &setlist,
9532 &showlist);
9533
9534 #if GDB_SELF_TEST
9535 selftests::register_test ("infrun_thread_ptid_changed",
9536 selftests::infrun_thread_ptid_changed);
9537 #endif
9538 }